
i

From the Institute for Telematics
The University of Luebeck

Director:
Prof. Dr. rer. nat. Stefan Fischer

Aspect-Oriented Adaptation Composition and Dynamic
Reconfiguration in Multimedia Frameworks

Dissertation
For Fulfillment of

Requirements
For the doctoral degree

of the University of Luebeck
from the faculty of Technology and Natural Sciences –

Submitted by

Muhammad Asadullah Khan
from Rawalpindi, Pakistan

Luebeck, 2007

 ii

iii

Abstract

 With enormous expansion of the Internet in size, particularly the wireless part, and

an ever increasing myriad of distributed multimedia applications, we are moving towards

its more ubiquitous use in future. In particular, the number of embedded and resource

constrained computers will significantly increase along with the resulting increase in the

number of applications. Due to the distributed nature of such systems, the number of

inter- and intra-application interactions will rise. These interactions will be

unpredictable, dynamic and distributed. Therefore, the system as a whole will need to

adapt to the changes as soon as they occur. Contemporary solutions exist in the form of a

middleware layer, which is reconfigurable using reflective or aspect-oriented

programming. This indirectly enables adaptive execution of the applications running on

top of it. The applications interact with this layer via stubs, skeletons or interfaces.

 In this thesis the existing development paradigm has been reviewed for its

shortcomings and a new paradigm of composing adaptive behaviors has been developed,

in the context of multimedia frameworks. Two main issues which have been tackled are

static composition of adaptation and its dynamic reconfiguration. This new paradigm is

based on the state machine model and is implemented in software as an event-based

system. The new paradigm differs from the contemporary work in the sense that it does

not rely on any stubs, skeletons or interfaces. Adaptation mechanism is completely

confined in a separate layer, at the time of adaptation composition, whereas, at the

application load-time, smart patches of code are generated according to the specified

adaptation behaviors and are weaved into the supplied application code, using aspect-

oriented programming techniques. The source code of the application is not required;

weaving is done on the compiled code instead. Thus the actual application code is

transformed into new code, which has now adaptation behaviors composed into it. When
the transformed code starts execution, it generates events. The events are trapped and

adaptively diverted to trigger the application from one state to another, in response to

dynamic changes occurring in the entire system. Consequently, the execution pattern of

the given code is impacted by changes external to the application and the application

code adapts to those changes. Since multimedia application code has been considered in

iv

particular, multimedia data flow undergoes dynamic and adaptive modifications as a

result.

 Through quantitative and comparative analysis it has been shown that the model

performs significantly better than the existing systems, which use middleware as a

separate layer underneath the application. Also, this model can handle various types of

application oriented multimedia adaptations, which rely on the application code and

cannot be adequately handled by existing systems without human involvement. The

architecture is portable and realizable in other languages as well. Although the work was

done in the context of multimedia frameworks, the principles used by the conceptual

model are applicable to any event based framework. The work presented in this thesis

concludes by proposing suggestions for further development with particular reference to

its portability to different frameworks and extensibility using dynamically reconfigurable

hardware.

v

Acknowledgements

With a deep feeling of satisfaction that comes upon completion of a task, I thank my

supervisor Prof. Dr. rer. nat. Stefan Fischer, whose guidance and encouragement

throughout my work at IBR, Braunschweig and later at ITM, Luebeck has been a great

source of inspiration. I felt a great pleasure, when I was given a free-hand to experiment

and explore research ideas. In addition to his valuable technical suggestions during the

process of writing scientific papers and this dissertation, he was happy to help solve

many of my problems which were not even related to his profession, but I would have

faced them as a foreign student in Germany. In particular, I am thankful for all the

‘letters’ he wrote to the “Auslaenderbehoerde” and different foreign offices and

embassies, to handle visa related issues.

I am grateful to the Braunschweig University of Technology and the University of

Luebeck for employing me as a Scientific Assistant and providing necessary financial

assistance to enable my all conference participations. Prof. Dr.-Ing. Lars C. Wolf

deserves my thanks, for all his efforts to handle my visa extension issues with the

Braunschweig Foreign Office, after Prof. Fischer moved to Luebeck.

 My colleagues, Dr.-Ing. Joerg Diedrich and Frank Strauss deserve thanks in

particular, since without them, my initial days in Germany would have been miserable.

They were there to help with even those things which often appeared minor, but were

practically significant and hard to handle as a foreign student. For me, they were not

only ‘Live German-English Dictionaries’, they also told some wonderful tricks to survive

in Germany. They deserve appreciation for all the help they extended to me, including

their all ‘unsuccessful’ efforts to teach me the German Language! My colleague Prof. Dr.

Christian Werner, was particularly helpful in finalizing dissertation submission

formalities.

Last but above all, I must remember the long time sacrifice of my family, without whose

encouragement and support, I would have neither been able to start this task, nor

complete it.

vi

vii

Table of Contents

Abstract.. iii

Acknowledgements..v

Table of Contents ... vii

List of Figures ... xi

List of Tables ... xiii

Chapter 1 .. 1

Introduction.. 1

1.1 Motivation ...1

1.2 An Overview of Existing Approaches...2

1.3 Limitations of Existing Work..3

1.4 Aimed Contributions...5

1.5 Technical Challenges...6

1.6 Organization of the Thesis ..7

Chapter 2 .. 8

Background and Survey of Related Work... 8

2.1 Introduction...8

2.2 Quality of Service and Adaptation - Fundamentals ...9
2.2.1 System (Network) Oriented QoS ... 10
2.2.2 Application Oriented QoS (Adaptation) .. 11
2.2.3 Combined System QoS and Application Adaptation Approaches ... 11
2.2.4 Adaptation in Pervasive and Mobile Computing ... 12

2.2.4.1 Adaptation with respect to Characteristics of Pervasive Environment............................... 12
2.2.4.2 Adaptation with respect to Characteristics of Pervasive Devices....................................... 13

2.3 Language Features and Software Tools for Adaptation ..18
2.3.1 Reflection and Reification ... 18

2.3.1.1 Reflection Support in Contemporary Languages ... 19
2.3.2 Meta Object Protocols and Meta Architectures ... 20
2.3.3 Aspect Oriented Programming... 21

2.3.3.1 Elements of an Aspect Oriented Language .. 21
2.3.3.2 Aspect Weavers and Related Work.. 23

2.4 Software Systems and Models for Adaptation ...23
2.4.1 Adaptation’s Place in System Hierarchy – The Middleware Level ... 23

2.4.1.1 Reflective and Adaptive Middleware and Related Work ... 23
2.4.1.2 Aspect Oriented Middleware and AoP Frameworks.. 29

viii

2.5 Summary of the Related Work and Limitations ..35

Chapter 3 .. 37

Aspect-Oriented Model for Adaptive Code Generation.. 37

3.1 Introduction...37

3.2 System State Machine ...38

3.3 Application State Set ...42

3.4 Profile State Set ...43

3.5 Realizable State Machine ..44

3.6 Towards a Practical Model ...49

Chapter 4 .. 54

Adaptation Composition and Runtime Environment for Multimedia Applications
(ACREMA)... 54

4.1 Introduction...54

4.2 JMF Media Processing Elements..54

4.3 Architectural Overview of the System Model...55
4.3.1 Static Composition... 57
4.3.2 Dynamic Reconfiguration .. 58

4.4 System-wide Adaptation Coordination...60

4.5 State Machines and Code Transformation...61

4.6 Adaptation Classification..64
4.6.1 Code Interception Event Diversion Adaptation (CIED) .. 65
4.6.2 Static Pre or Post-Processing Chain Adaptation(SPPC) .. 67
4.6.3 Main Processing Chain Static Adaptations (MPCS).. 68
4.6.4 Main Processing Chain Dynamic Adaptations (MPCD).. 70
4.6.5 Multiple Code Manipulation Adaptations (MCMA).. 71
4.6.6 Adaptations requiring ACREMA Extensions .. 71

Chapter 5 .. 72

ACREMA Implementation .. 72

5.1 Specification of Adaptation Preferences and Profiles ..72

5.2 Derivation of the Resultant State Machine...74
5.2.1 CIED Code Transformation and Parameter Tuning... 75
5.2.2 SPPC Code Transformation and Parameter Tuning... 78
5.2.3 MPCS Code Transformation and Parameter Tuning... 80
5.2.4 MPCD Adaptation Implementation ... 82

Chapter 6 .. 85

ACREMA Evaluation .. 85

ix

6.1 Evaluation Test Bench ..85

6.2 Architectural Evaluation of ACREMA ..86

6.3 Application Test Case Evaluation...90
6.3.1 Code Interception Event Diversion (CIED) Adaptations... 91
6.3.2 Static Alteration of Pre or Post Processing Chain (SPPC Adaptation) 91
6.3.3 Static Alterations of Main Processing Chain ... 92
6.3.4 Dynamic Data Flow Diversion... 93
6.3.5 Multiple Adaptation Application Test Case... 95

6.4 Qualitative Evaluation ..96
6.4.1 Scalability .. 96
6.4.2 Generality... 97
6.4.3 Co-Existence.. 97
6.4.4 Limitations ... 97

Chapter 7 .. 99

Outlook and Future Directions ... 99

7.1 Contributions ..99

7.2 Future Extensions..100
7.2.1 Software Related Extensions.. 101
7.2.2 Dynamically Reconfigurable Hardware Related Extensions ... 101

List of Abbreviations .. 104

Appendix A : List of Author’s Publications.. 117

x

xi

List of Figures

Fig. 3.1 – A System State Machine with arbitrarily chosen state names, showing all possible states.......... 38
Fig 3.2a – First transition of System State Machine.. 40
Fig 3.2b – System state machine taking a transition pushing resource limits to threshold level. 40
Fig 3.2c – Resulting System State Machine upon completion of transition from S0 to S3 41
Fig. 3.3 – A sample Realizable State Machine ... 48
Fig. 3.4a – Altering pre-processing chain of the given application code... 51
Fig. 3.4b – Altering pre and main processing chains of the given application code.................................... 52
Fig. 3.4c - Altering post processing chain of the given application code... 52
Fig. 3.4d – Altering entire processing chain of the given application.. 52
Fig 4.1: Application loaded on top of ACREMA resident layer ... 56
Fig 4.2: Aspectized application code produced after generated adaptation behaviors have been weaved-in.
.. 56
Fig. 4.3 – Static Composition Phase .. 57
Fig 4.4: Dynamic Reconfiguration Phase .. 59
Fig 4.5 – An overview of the application code processing through the static composition and dynamic
reconfiguration phases. .. 63
Fig. 4.6 – Static Composition Passes ... 64
Fig 4.7: Sequence of operations to weave-in CIED Adaptations ... 66
Fig 4.8: Sequence of operations to weave-in SPPC Adaptations... 68
Fig 4.9: Sequence of operations to weave-in MPCS Adaptations .. 69
Fig 5.1: An excerpt of user’s adaptation preferences .. 73
Fig. 5.2 – An excerpt of sample profile .. 75
Fig 5.3: Given application byte-code being intercepted by the Pointcuts residing outside the application,
advice being woven and runtime adaptation hooks being exported as a result.. 76
Fig 5.4 (a) showing code interception and patching in case of SPPC adaptations...................................... 79
Fig 5.4 (b): showing the resulting component swap (DirectDraw Renderer swapped with LightWeight
Renderer), as the result of above advice weaving. ... 80
Fig 5.5: A codec chain being swapped with a new H.263 codec during the static composition phase of an
MPCS adaptation. .. 81
Fig 5.6 (a): Multiple processing chain installation of a DMFC adaptation. I/O sync. code left out for
simplicity. ... 83
Fig 5.6(b): resulting change in dynamic adaptation hooks, (initially JPEG quality control was available),
now in addition to H.263 quality control a number of other fine tuning parameters are exported as
adaptation hooks. ... 84
Fig 5.6(c): multiple elements of the media processing chain have been swapped, as a result of main chain
incompatibility resolution process (described earlier in sec.4.5.4).. 84
Fig 6.1 – Evaluation test bench.. 85
Fig. 6.2 –Adaptation Composition Latency Graph (load time) .. 87
Fig 6.3 – Adaptation Invocation Latency Graph (runtime).. 88
Fig 6.4 – Comparison of Network Bandwidth Requirements ... 89
Fig 6.5 – Server CPU Load adaptation by varying MJPEG Quality Factor, with negligible adaptation
latencies.. 91
Fig 6.6 – Static Pre/Post Processing Adaptation –Example of Client-only adaptation 92
Fig 6.7 – Main Processing Chain Static Adaptation – Changing frame-rate in H.263 video...................... 93
Fig 6.8 – Codec Swap Adaptation – Conflicting Adaptation Example... 95
Fig 6.9 – Multiple adaptation invocations in a complex real-life situation.. 96

xii

xiii

List of Tables

Table 1.1 – Comparison of placement of adaptation in overall system.. 4
Table 3.1 : Adaptation types and their corresponding effects on system resources 49
Table 4.1 –Java Media Framework’s media processing elements ... 55
Table 4.2 – Summary of adaptation classification ... 70
Table 5.1 – Different adaptation types and relative overheads.. 72
Table 6.1 – Comparison of Adaptation invocation Latencies... 88
Table 7.1 – Summary of Contributions... 100

1

Chapter 1

Introduction

1.1 Motivation
With the enormous expansion of the Internet in size, particularly the wireless part, and

an ever increasing myriad of distributed multimedia applications, we are moving towards
its more ubiquitous use in future. The number of computers (in particular those which are
embedded and resource constrained) will significantly increase. This will lead to an even
greater number of applications running on such devices and a corresponding rise in the
number of their interactions. These interactions among applications (and different
components of the same application) will be distributed, un-predictable and dynamic.
Therefore, stable operation of future systems can only be guaranteed if different
components constituting an application and different applications making up the entire
system are capable of adapting themselves to changes in a coordinated manner. However,
looking at the complexity of large distributed systems of resource constrained devices, it
is neither feasible nor possible to take into account so many different adaptation
scenarios, because the number of situations which may arise during an applications
execution lifetime, and interaction patterns of different applications are unpredictable
beforehand.

These inter-application, intra-application and system/network-wide interactions, which
in-turn contribute to dynamically changing resource requirements during the application
runtime, will render the design of adaptable applications very complex and their
interactions un-manageable, especially when certain Quality of Service (QoS) is desired.
Furthermore, it is not possible to have as many human experts to cope with this situation
because it requires a good understanding of specific adaptation Application Programming
Interfaces (APIs) and using those APIs in developing every application requires analysis
of the entire system dynamics. The solution lies in development of systems which require
no or minimal user involvement to adapt their functionality to varying operating
environments.

2

The work presented in this dissertation is motivated by the need to develop
frameworks/environments, which can facilitate intelligent adaptations after making
legacy multimedia applications (non-adaptive ones) capable of adapting, without any user
involvement in programming adaptation behaviors and with minimum (or without) user
involvement in configuring adaptation parameters. Although this work is focused on
multimedia applications on wireless networks of resource constrained devices, the
methodology presented here is applicable to other event-based development frameworks
in different domains.

1.2 An Overview of Existing Approaches
Since the early days of distributed computing software like Remote Procedure

Calls(RPC) efforts have been mostly focused on hiding low level networking details,
providing distribution transparency and certain other such features by introducing an
abstraction layer beneath the applications. Later developments like Distributed
Computing Environment(DCE-RPC) provided some additional services along with a
number of uniform interfaces for the application programmers while masking the
network heterogeneity. Further middleware systems including a number of well known
technologies like OMG’s CORBA [OMG1995], DCOM (which evolved as DDE to OLE
to COM to DCOM) [MM1997], Java RMI [Sun1997] matured and are being widely used
today, however, the motivation behind all such progress was to ease the development of
enterprise applications for which, characterizing parameters are robustness, persistence,
transaction security etc. These technologies in their common form are, therefore, not
suitable for applications which are required to adapt dynamically to changes in their
operating context.

Technologies like CCM [OMG2001] , EJB [Sun2001] and COM [Don1997] , mainly
enhanced the capabilities of existing middleware technologies by using component
models, enabling reusable service composition, configuration and installation, but the
focus remained on business QoS. Other approaches to produce purpose-built middleware
for communication, like Adaptive Communication Environment (ACE) [Sch1994], and
TAO [Sch1999], were although custom tailored to communication QoS, at least a part of
these middleware still remained as a monolithic layer beneath the applications. This is not
suited to resource constrained devices due to the relatively large footprint of the
middleware.

3

Further improvements in literature appear in the form of custom-tailored middleware
mostly relying on reflective-programming techniques, and can be broadly classified as
Adaptive and Reflective Middleware, which facilitate inspection and alteration of the
middleware layer and adjusting it to needs. The principal benefit of such technologies is
that low level networking details remain hidden when required, but, can be exposed to the
application programmer where needed, through reflection. Thus a general purpose
middleware can be made domain specific when desired. Two prominent examples are
Open ORB [BCA+2001] and Dynamic TAO [RKC1999]. Although in both these
research prototypes, reflection is used to configure the ORB, the process of application
development and customization is fairly human dependent and requires two phases:

(i) - The applications should be written to benefit from the API offered by the ORB

(ii) - and the ORB must be configured to the operating environment.

A number of projects like BBN’s Quality Objects(QuO) [LBS+1998] and middleware
based on CORBA compliant ORBs, like Component-Integrated ACE ORB (CIAO)
[Wang2003], ZEN [KKS+2003], AspectIX [HBG+2001] are targeted to provide
communication oriented QoS by using Meta Object Protocols (MOPS) [Kic1991] or
Aspect oriented Programming (AoP) [KLM+1997]. These technologies enable separation
of functional and non-functional concerns in the middleware layer. Due to this separation
of concerns, the resulting middleware is customizable and can have small footprint as
well, however, there are still some limitations discussed below; in particular, when a
general purpose middleware is customized to a specific domain.

1.3 Limitations of Existing Work
Despite having undergone many improvements, the existing middleware technologies

are still limited in coping with the challenges posed by specific domains, like integrated
networks, wireless multimedia on resource constrained devices etc. These limitations are
summarized below:

• Middleware exists as a separate layer beneath the application. Additional
abstraction layer is not suitable in case of multimedia applications,
because it introduces un-necessary overhead in copying packets and
transfer of other control signals to and from this layer. The additional
operations consume a significant amount of system resources like the
battery power on small devices. Even in those schemes, which offer the
option of bypassing the middleware layer, application dependent
properties (e.g., multimedia transcoding) cannot be efficiently handled..

4

• The programmer is required to program with some purpose-built QoS
API, which needs substantial effort to analyze (rather predict) the runtime
system behavior, precisely estimate resource utilization etc, which is never
possible due to time varying nature of the interplay between resource
requirements and resource fluctuations. This impact is many-fold in
wireless networks (the details are given in later chapters). It is a major
problem and will always hinder system’s performance predictability,
throughout its life-time.

• These models mainly target system-side adaptation (based on resource
reservation and allocation etc.) and have been used for mission-critical
distributed real-time embedded applications (which are non-elastic in
nature and rely on pre-hand over-booking of the system resources). In
order to guarantee QoS, these schemes reserve resources in multiples of
the minimum application requirements. Therefore, unless the resource
fluctuations are very high, most of over-booked resources go waste for
most of the application lifetime. Since multimedia applications can
generally tolerate some resource fluctuation and resource over-booking
will lead to waste of resources, adaptation based schemes is likely to
perform better.

Implementation
type

Flexibility Efficiency Programming Ease Size Suitability

Implemented solely
inside application

Less High Low; the user needs to
devise the adaptation

procedures and program
them.

Suitable for small
foot print devices
(because only the

application is present,
no middleware)

Implemented purely
outside the
application

High Less (because the
application has no

control and is bound
to rely on whatever
the system provides.

High; because the user
does not need to master
the adaptation details
for each application, a

general API will suffice
in all cases.

Not Suitable for
small foot print

devices, because of
the existence of

additional
middleware layer.

Implementation
spread across the

application and the
layer beneath

Relatively
high

Low (because the
application and the
middleware both

have to coordinate
adaptation decisions,

which reduces
execution speed)

High; because the user
does not need to master
the adaptation details
for each application, a

general API will suffice
in all cases. However

the applications must be
specifically designed to

operate in different
modes.

Midway between the
above two extremes.

Table 1.1 – Comparison of placement of adaptation in overall system

5

The limitations of the existing models, as described above were in particular related to
the systems, which mainly target system-side adaptation by resource reservation and
adaptive (re)-allocation. Adaptive software systems can also be classified with respect to
the placement of adaptation mechanism inside the system, as shown in table 1.1.

1.4 Aimed Contributions
Considering the limitations and comparison, above, we conclude that:

high execution efficiency and small footprint can be achieved only if the adaptation
mechanism is embedded into the application, while maximum flexibility can only be
retained when the implementation of adaptation mechanism resides completely outside
the application.

The goal of this research is to devise a conceptual model, develop an architecture and
realize the developed architecture to fulfill both the above conflicting requirements in an
optimal way. This has been done by integrating aspect oriented methodologies existing in
the software engineering community with the adaptation mechanisms proposed by the
networking community to develop an adaptation composition and dynamic
reconfiguration environment. Main contribution of the this research is that it proposes an
improved paradigm to engineer domain specific adaptation systems for event based
frameworks. The work presented in this dissertation is distinctive in three respects:

• The system software layer, responsible for adaptation exists separately at
the time of composition (due to which the adaptation parts stay separate
from the application, giving the benefits of separation of functional and
behavioral concerns), but forms a part of the application at runtime (thus
giving the performance benefits of embedding adaptation code into the
application).

• The implementation is custom-tailored to multimedia application on
resource devices, due to which it has a very small foot print and as it is
particularly in the context of multimedia frameworks (where the skeleton
is pre-defined), it does not need programming effort (except the very
minimum ‘tweaking’ in some cases, for fine tuning).

• Since its implementation is Aspect Oriented and aspects are additive in
nature (code patches are added only when required, thus stripping off the
unnecessary adaptation code when not required). These aspects are added
to the application’s target code (source code in not required) and
adaptation is achieved on the data stream.

6

 Although the research was carried out in the context of multimedia application
development frameworks, which are largely event-based, the impact of the concept of
using automated aspect weaving for self-managed adaptations is far-reaching. Since the
fundamental approach of this work is based on the concept of state machines, the
implementation can be extended to other event based development frameworks and other
categories of applications can be targeted.

A number of research works and prototypes target context aware application
adaptation. Although these efforts are adaptation based and radically different from the
resource reservation based approaches (which are widely employed for QoS guarantees),
these mainly concentrate on service adaptations, and a few others, which may not be
considered as full-fledged middleware (e.g, SMIL) focus on content adaptations. None of
these provides the concept of automated weaving of some adaptation mechanism, but,
rely on the user to design each individual application according to the anticipated
operating context, which is again not a good solution because of the third limitation
detailed above.

1.5 Technical Challenges
To reach an optimal compromise between these two conflicting requirements, there are

a number of challenges which need to be addressed at different levels.

Technical challenges exist in:

• Devising the right conceptual model which can capture adaptation
requirements with minimum user involvement.

• Developing the most feasible architecture to realize the proposed model,
which comprehensively incorporates (or be extendable to incorporate)
various aspects of application-oriented and system-oriented adaptations.

• Realizing the proposed model and architecture using, developing and
extending specific language features and software abstractions.

In the scope of this work it will be proved with the help of a test-case implementation
that it is possible to devise an implicit adaptation mechanism for an event based
multimedia framework, which can intelligently and without (or with minimal) user
involvement, comprehensively map inter-application, intra-application and network-wide
adaptation requirements to the underlying development framework and that these
requirements can be automatically weaved into prewritten non-adaptive applications,
transforming them into adaptive ones, completely getting rid of any middleware layer (at

7

the expense of loosing some flexibility), thus making adaptation a sole property of the
composition and reconfiguration environment.

1.6 Organization of the Thesis
Having given a background introduction to the work presented here, the rest of this

dissertation is organized as follows:

Chapter 2 presents a detailed survey of the related work, giving a classification of
existing work and introduces the fundamental concepts useful in understanding the rest of
this dissertation.

Chapter 3 introduces the conceptual model of the system developed in this research.
The model is based on the basic principles of state machines and event based systems. It
sets the stage for integrating application oriented adaptation with software engineering
techniques of reflection and aspect-oriented programming, in the realm of multimedia
frameworks.

Chapter 4 gives an architectural overview of the proposed model in the form of an
Adaptive Composition and Runtime Environment for Multimedia Applications
(ACREMA).

Chapter 5 details implementation of the proposed architectural model with examples of
code snippets to show main parts of implementation.

Chapter 6 explains the results obtained from practical evaluation of the implemented
model using test applications. Results include both functional as well as architectural
evaluation and are obtained from application execution on an emulated network on Linux
Virtual Machines.

Chapter 7 concludes this research with the lessons learnt, proposes some enhancements
and gives suggestions for further improvements and future work.

8

Chapter 2

Background and Survey of Related Work

2.1 Introduction
The work presented in this report has benefited from a wealth of research existing

across a multitude of QoS and adaptation related fields. This includes in particular,
research related to algorithms and implementation of the fundamental QoS and
adaptation concepts, existing work in the domain of mobile and pervasive computing,
especially the language features and abstractions for development of adaptive software
systems and the related work in development of adaptive software platforms and their
architectural models. Keeping in view the wide span of these disciplines and the theme of
the work presented in this dissertation, the chapter has been broadly divided into three
main sections as follows:

QoS and Adaptation – Fundamental Concepts (details in section 2.2), which
provides a background for establishing the requirements and categorizing them. The work
presented in this section includes relevant fundamental concepts, overview of the existing
algorithms and standards and some example implementations. This section mainly
summarizes the work where main emphasis was on design of a QoS provisioning or
adaptation algorithm. In these cases the work does not focus on exploring the
effectiveness of a particular language feature or a particular architectural model of the
software.

Language Features and Software Tools for Adaptation (details in section 2.3) This
section details certain language features and various language enhancements which
provide different techniques to incorporate adaptive behaviors in software. Therefore, the
work summarized in this section is focused on exploring the effectiveness of a particular
language feature in the development of adaptive software systems (and not on
development of adaptation algorithms). It is meant to introduce those enabling
technologies which are used by the work presented in the next section. These techniques

9

mainly include reflection, reification, Meta Object Protocols (MOPs) and Aspect-
oriented Programming/Aspect Oriented Software Development (AoP/AOSD).

Software Systems and Models to Realize QoS and Adaptation (details in section 2.4)
This section describes the employment of the language features and tools discussed in
section 2.3, in developing adaptive systems. Examples include adaptive and reflective
middleware, aspect-oriented middleware, meta architectures, runtime environments and
the related work in these domains. The above mentioned language features and software
tools. This is mainly a comparative study of existing adaptive (reflective and/or Aspect-
oriented) middleware and runtime environments, including in particular the study of
architectural models for resource constrained devices and ubiquitous environments. The
work presented here is mainly from the software engineering community and is focused
on exploring the effectiveness of a software engineering paradigm or language features to
develop adaptive systems.

2.2 Quality of Service and Adaptation - Fundamental s
The International Telecommunication Union (ITU) standard X.902, Information

technology – Open distributed processing – Reference Model, refers to QoS as “A set of
quality requirements on the collective behavior of one or more objects”. Different
researchers have given various definitions. We agree on the following definition of
Quality of Service (QoS), given by IEEE “The set of those quantitative and qualitative
characteristics of a distributed multimedia system, which are necessary in order to
achieve the required functionality of an application” [SN2004].

Practically, providing QoS is achieved by striking a balance between resource supply
and demand, by allocating (and dynamically reallocating) the resources in high demand
to various applications or their components, according to preset contracts.
Implementation of such contracts may involve resource costs, service charges, user
preferences etc. Two well known standards, for providing QoS in the Internet are
Integrated Services (Intserv) and Differentiated Services (Diffserv). However, the
applicability of these standards is limited to wired, fixed networks. Intserv is aimed at
providing QoS guarantees to individual application sessions, whereas, Diffserv is to
handle different classes of internet traffic in different ways. Inherent scalability problem
due to per-flow state maintenance of the Intserv and the resolution of pushing the load to
edge routers in the case of Diffserv, make the suitability of these standards questionable

10

for wireless networks, in particular. In case of wireless communication, the problem of
data transmission and reception itself becomes a problem and due to the same reason,
issues like efficient and reliable routing, mobility management, adaptive resource
management etc. are hot areas of research in their own right. Such issues are being
mostly handled at the network and MAC layers in the networking community.

In general, QoS provisioning as viewed by the available literature can be seen as a
combined effect of QoS specification, mapping, routing, resource management and
adaptation. QoS Specification refers to the definition of the required QoS level in terms
interpretable form the viewpoint of a particular system entity. At user level it may only be
specification of the human perception [ZKS+2003] (e.g; of a video or audio, in terms of
excellent, good, poor etc). At application level, the specification parameters will be
application specific (e.g; frame rate, frame size). At system level, these may be buffer
size, tolerable delays etc. Similarly, there are parameters related to communication
channel signal to noise levels etc.

Therefore QoS provisioning mechanisms are generally implemented using a layered
architecture, and quality requirements from each higher level are translated to (mapped
onto) the adjacent lower level of the architecture. For example the specification given by
the user, or that given by a specific application has to be translated to lower levels of the
protocol stack, considering available resources (like specification of the requirements of
good, poor or excellent has to be somehow translated into parameters like frame-rate,
frame-size etc at application level, or to inter-arrival jitter, delay, throughput of the
network channel, device display capabilities, buffer size and available battery life
keeping in view the available resources.

Two principle approaches that exist at present to provide QoS in IP networks and differ
in their suitability for application domains are: System-Oriented QoS and Application-
Oriented Qos (Adaptation). These are discussed in the next two sub-sections.

2.2.12.2.12.2.12.2.1 SystSystSystSystemememem (Network) (Network) (Network) (Network) Oriented QoSOriented QoSOriented QoSOriented QoS

A lot of work has been focused in this area in the networks community. This scheme is
based on pre-hand resource reservation and relies on some reservation protocol like
RSVP [ZDE+1993], dynamic RSVP (dRSVP) [KK2000]. The applications submit their
requirements in advance and this information is used in the subsequent phases. The calls
are admitted (or denied) on the basis of the information provided before the setup.

11

The advantage is that it can lead to a stable QoS through out the session. However, this
assumption only holds if the applications can precisely estimate their resource
requirements throughout the system, which is seldom possible. Due to this reason, the
resources will need to be reserved in higher amounts than those demanded by the
applications, in order to guarantee the availability of that amount throughout the
application lifetime. The downside of all such approaches is that if each application
reserves resources in excess amounts, and the situation where these surplus resources are
required does not occur or remains for a very short duration, then for a significant period
of time those resources which were reserved in surplus will go waste. This will result in
guaranteed QoS provisioning at a very high cost. Due to these reasons such an approach
is suitable only in mission-critical applications (like DRE, UAV), examples
implementations include TAO, CIAO, ZEN.

2.2.22.2.22.2.22.2.2 Application Oriented QoSApplication Oriented QoSApplication Oriented QoSApplication Oriented QoS (Adaptation) (Adaptation) (Adaptation) (Adaptation)

Application Oriented approach to provide QoS is more flexible as compared the one
discussed above. The applications do not need to submit an estimate of resource
consumption in advance, but benefit from the resources when they are available and
adapt themselves to utilize lesser resources when the resources fall below the critical
levels. This approach cannot provide any hard QoS guarantees and is suitable only where
soft QoS is required (e,g; in certain multimedia applications, if optimum video quality is
available it would be better but the user would generally bear with slightly lower quality).
This approach is effectively a compromise between guaranteed QoS and best effort
implementations. This kind of approach to provide QoS is discussed in more detail in the
subsequent sections.

More importantly and above all, both the approaches discussed can co-exist in a
system. We can have examples of the systems mainly relying on Network Oriented QoS
but supporting Adaptation, where adaptation is used only when the resources in the
system fall below critical levels.

2.2.32.2.32.2.32.2.3 Combined System QoS and Application Adaptation ApproachesCombined System QoS and Application Adaptation ApproachesCombined System QoS and Application Adaptation ApproachesCombined System QoS and Application Adaptation Approaches

There are some approaches like [FRS2000], where both the aspects have been
considered. Such schemes take into account the demands of the application, initially
reserving the system resources in surplus and provide QoS guarantees within certain

12

operational bands. When the application requirements exceed those initially specified (or
in case when the demands cannot be met by the underlying system), the application is
required to adapt to whatever can be offered by the system. In such cases the mechanisms
to realize certain QoS are built into both the application and the system.

Since a discussion of QoS algorithms and mechanisms at lower levels of the protocol
stack are not directly within the scope of the work presented in later chapters of this
dissertation, only a brief overview has been presented.

2.2.42.2.42.2.42.2.4 Adaptation in Pervasive and Mobile ComputingAdaptation in Pervasive and Mobile ComputingAdaptation in Pervasive and Mobile ComputingAdaptation in Pervasive and Mobile Computing

Since pervasive computing [Wei1993] is about the technologies that disappear, its
realization needs addressing the challenges of very large scalability, seamless integration
of different technologies, acquisition and management of context and invisibility of the
technology enabling all these. Pervasive computing can be viewed as a close companion
of mobile computing or as suggested in [SM2003], as a superset of mobile computing. In
case of pervasive environments, adaptation takes on several dimensions, since not only
the network bandwidth is usually limited, device capabilities (relating to its processing
power, display size, available battery power) are also constrained, adaptation can play a
pivotal role to realize the vision of pervasive computing, this section therefore,
summarizes some existing work related to adaptation in pervasive and mobile
environments. While considering adaptation (in particular multimedia adaptation), in the
context of pervasive and mobile environments, two most significant facets of the subject
are concerned with (i) – characteristics of the environment and (ii) – characteristics of the
devices operating in such environments. These two dimensions of pervasive and mobile
adaptation are briefly described below.

2.2.4.12.2.4.12.2.4.12.2.4.1 Adaptation with respect to Adaptation with respect to Adaptation with respect to Adaptation with respect to CharacteristicsCharacteristicsCharacteristicsCharacteristics of Pervasive Envir of Pervasive Envir of Pervasive Envir of Pervasive Environmentonmentonmentonment

With regard to pervasive computing, adaptation of content and services is critical in
accordance with the changes in the environment and device limitations. A significant
amount of research aimed at this type of adaptation is found in the literature,
encompassing a wide range of techniques from media transcoding proxies to use of
different markup languages to describe the content itself. These are the approaches
generally using compression, searching, indexing and filtering to manage and scale
multimedia data. Early work in this respect, like [KDP+2002] has mostly addressed the

13

issues like compression and content adaptation and applied these concepts to video
adaptation for both streaming media and point to point communication, while keeping
main focus on compression of the content. Work like InfoPyramid [SML1999], manages
different variations of multimedia data objects with different fidelities (summarized,
compressed and scaled variations) and modalities (video, image, text and audio) and
generates and selects among the alternatives in order to adapt the delivery to different
client devices. [YLC+2002], introduces a method based on clipping of the web content
using Web Clipping Markup Language (WCML), using which a clip is automatically
extracted from a source page based on a clip specification provided by a content provider
and transformed into a target page according to a set of conversion rules. The clips stored
in an intermediate meta-language are later transformed into multiple presentation pages
in different target markup languages. In a similar work [LL2002], content adaptation
using SMIL has been combined with a proxy-based architecture. On contrary to pure
content-based adaptation using markup languages, which necessitate generating multiple
versions of the same application, combining proxy-based architecture with markup
languages enables this generation on the fly, without requiring the content provider to
write multiple versions of an application for multiple types of clients.

2.2.4.22.2.4.22.2.4.22.2.4.2 Adaptation with respect to CharAdaptation with respect to CharAdaptation with respect to CharAdaptation with respect to Charaaaacteristicscteristicscteristicscteristics of Pervasive Devices of Pervasive Devices of Pervasive Devices of Pervasive Devices

A distinguishing property of any pervasive environment is associated with the devices
used in such an environment, which are generally limited in resources, like battery power
and display size, in particular. In this regard, researchers have targeted both hardware
oriented procedures which includes designing low-voltage devices to Real Time Dynamic

Voltage Scaling (RT-DVS) [PS2001] strategies for energy conservation on small foot-
print devices by integrating adaptive battery consumption strategies and real-time task
constraints into the operating system scheduler. Enhancements of such work include
[PHS], putting forward the concept of Energy Aware QoS (EQoS) that can manage real-
time tasks and adapt their execution to maximize the benefits of their computation for a
limited energy budget.

Some prominent examples of research specifically related to energy aware multimedia
adaptation include [KW2001], proposing software implementation strategies for power-
conscious systems to algorithms and middleware frameworks for energy-aware processor
reservation [YN2006] to coordinate adaptation of multimedia algorithms and energy

14

resources [YNG2001]. [MV2003; TSY+2004] present an adaptive middleware solution
for power-aware video streaming to mobile hand-held devices by adaptive switching of
the device network interface card to sleep mode and adapting the video burst size, while
[PS2004] details an approach to strike a balance between the end-system QoS
requirements and available battery power on resource constrained devices by dynamically
selecting the appropriate transcoders and adaptively scaling the transcoding parameters
for streaming video. In a similar approach [CKP2003], MPEG4 Fine Grain Scaling (FGS)
has been used by adaptively sending enhancement layers in addition to the base layer to
resource-constrained client to achieve energy-aware multimedia transmission. In small
devices like PDAs and mobile phones, a significant amount of battery power is sipped by
the backlight of the display unit. Especially with regard to video, there are approaches
like [PLM+2004; PML+2003] that suggest middleware solutions which target adaptation
of the display units backlight to save energy, while preserving video QoS at a reasonable
level.

In addition to the research related to optimizing adaptive behaviors with respect to any
single characteristic of pervasive computing (as clear from the above examples), existing
work that resulted in development of complete pervasive and mobile computing
platforms is of great interest and relevance. Work related to pervasive adaptation can be
divided into two broad categories [BN2004a]; context models that provide a database-
style management and interaction and context ontologies that focus on a thorough
representation of the context knowledge with some reliance on artificial intelligence
methods for its manipulation. Since ontology based work is not directly relevant to the
research presented in this dissertation, this section focuses mainly on the work that
targeted pervasive adaptation in a broader sense and led to the development of complete
frameworks or middleware, aimed at achieving system-wide adaptation. Some examples
are outlined below:

MobiPADS

Mobile Platform for Actively Deployable Service (MobiPADS)[CC2003] is a reflective
middleware specifically designed to facilitate context-aware processing by providing an
execution platform to enable active service deployment and reconfiguration of the service
composition in response to varying contexts. Unlike most mobile middleware,
MobiPADS supports dynamic adaptation at both the middleware and application layers to

15

provide flexible configuration of resources to optimize the operations of mobile
applications.

Gaia

Gaia [RC2000; RHC+2002; RHC+2002a] is a meta-operating system supporting the
development of applications for active spaces. An active space is defined as
programmable ubiquitous computing environments in which users interact with several
devices and services simultaneously. These active spaces must support development and
execution of user-centric applications, in which sessions associate user data and
applications with the users themselves. Users can define different sessions, thus forming
a user virtual space and can activate and suspend sessions as desired. This allows users to
move about with in the active space and still stay connected to their applications.

The core of the Gaia operating system consists of a component management core and it
can use CORBA, RMI, SOAP or any other communication middleware. Five basic
services offered by Gaia are; the context service, presence service, event management,
space repository and the context file-system. Gaia uses LuaOrb, which is based on
scripting language Lua, to program active spaces and configure the entities they contain.

Although Gaia is a step forward in the direction of removing the classical interfaces
(keyboard, mouse, monitor etc) and takes a step in the direction of pervasive computing,
the involvement of the user to configure individual sessions is significant. Also, in a
ubiquitous environment a user may not be assumed to be expert in writing language
scripts to describe different possible configurations.

Aura

Aura [Garlan2001; SG2002] is an architectural framework to tackle user mobility in
ubiquitous computing environments. In Aura, user tasks are represented explicitly, using
place holders to capture the user intent and search for suitable configurations in changing
environments. Aura’s architecture consists of a task manager, environment manager,

context observer and service suppliers. The task manager is aimed at minimizing user
distraction in face of changes. With user movements, all the information relating to a
particular task is migrated to the new environment along with negotiating support for that
task. The QoS information of the components monitoring a particular task is monitored

16

and when the requirements cannot be met by the new environment, the environment
manager is signaled to find an alternative configuration (if possible). When a task change
is explicitly triggered by the user, the task manager takes care of the related house-
keeping activity like status saving etc. When the context changes, (the user moves from
one environment to another, or someone else walks in the office) context constraints like
privacy requirements are readjusted. The service suppliers typically occur in the form of
normal applications wrapped such that the wrappers map abstract service descriptions
into application specific settings. Service discovery mechanisms of Aura are built on top
of existing technologies like Jini.

The main difference between Gaia and Aura is that Gaia emphasizes space
programmability by allowing its users to configure the applications to benefit from the
resources in their current space [RHC+2002a].

BASE

BASE [BS2003; BSG+2003] is a middleware for pervasive computing based on the
concept of micro-broker for resource constrained devices, aimed at providing easy to use
abstractions to access remote services and device specific capabilities. The design of
BASE is inspired by the research in micro kernels, therefore, instead of providing a
whole lot of functionality in the middleware infrastructure, it relies on a flexible plug-in
based architecture. Plug-ins can be used to communicate with different local and remote
services and to query the device capabilities. The device capabilities are registered at the
local registry service and transport protocols at the invocation broker itself. In contrast
with the approaches like Gaia discussed above, BASE does not rely on the presence of a
specific surrounding where the services could be discovered and used. BASE facilitates
different communication models and simple service lookup in the locality of a device is
provided by the device registry, which keeps a list of the devices reachable and transport
plug-ins to access another device.

PCOM

PCOM is a component system for pervasive computing, which offers application
programmers a high level programming abstraction to capture the dependencies among
components using contracts [BHS+2004]. In PCOM, adaptation is two fold: at lower
level, it uses BASE [BSG+2003], which can swap communication protocols even at

17

runtime and at the level of application, dependencies among components can be resolved
by the adaptation policies embedded in PCOM, without any human involvement, which
allows application component selection when more than one suitable components are
available. Component dependencies are modeled using contracts. A contract has two
parts: the first specifies the corresponding components’ requirements (like libraries,
memory) while the second part specifies the functionality provided by the component and
its dependencies on other components. An application is thus modeled as a tree of
components and their dependencies, where the root component identifies the application.
PCOM provides three signaling mechanisms to indicate the availability of used
components, that of new components and to indicate any change in the quality parameters
of a component. These signals can be used by the application programmers to hook the
required actions corresponding to different events or use system provided adaptation
procedures. The components are atomic with respect to distribution.

AMUN

Autonomic Middleware for Ubiquitous eNvironments (AMUN) [TBP+2005] is a
pervasive computing middleware similar to Gaia, which is meant to support a smart
office environment, in which personalization issues (like automated telephone call
forwarding) related to office assignment to different persons can be managed in an
adaptive manner. The underlying structure of the middleware is based on peer-to-peer
network, supporting transparent messaging and monitoring. AMUN is a based around the
concepts of self-configuration, self-optimization and self-healing. Architecturally, it
consists of four main entities; the transport interface, the service interface and the service
proxy, the event dispatcher and the autonomic manager. The transport interface provides
abstracts the underlying communication platform. The event dispatcher supports the
services to send messages and receive messages from other services by registering
themselves as listeners.

The main feature of AMUN which makes it suitable for ubiquitous computing is the
use of message introspection. Message parameters are given as name, value pairs and
only the names and types of the elements are defined using WSDL, therefore, using
introspection on messages, it is possible to match parameters to a service description.
Also, as the number of message parameters can vary, it is easier to extend the system, for
example incorporating a better service after development. For a service that has moved to
another node, service proxies are used to forward incoming messages to the new location.

18

System resources, message latencies and events are monitored by the system to trigger
adaptation decisions, e.g., using message latencies and local resources to decide whether
it is beneficial to run a service locally or on a remote node.

In addition to the projects described in this section above, there is a significant amount
of other related work, which can be classified under the general category of pervasive
adaptation. Examples of such research include: Reconfigurable Context Sensitive
Middleware (RCSM) [YKW+2002], that models context-sensitive application software
as context-objects. It uses a context sensitive reconfigurable ORG (R-ORB) which hides
the underlying ad-hoc networking details and is responsible for service and device
discovery on behalf of the context objects. The implementation has been targeted to
support both kinds of communications (direct, like RPC) and indirect (by sharing a
common space between interacting applications).

2.3 Language Features and Software Tools for Adapta tion
While algorithms and standards for QoS and adaptation provide fundamental concepts
and abstractions for various strategies, programming languages and software tools
provide the necessary constructs to realize adaptive implementations. Typical language
features include code instrumentation, inspection and alteration, dictated by adaptation
policies to develop adaptive software. This section presents an overview of these
enabling technologies from the programming language and software engineering
perspective.

2.3.12.3.12.3.12.3.1 Reflection and ReificationReflection and ReificationReflection and ReificationReflection and Reification

In the context of programming languages, reflection has been defined in [BGW93] as,
“Reflection is the ability of a program to manipulate as data, something representing the
state of the program during its own execution. There are two aspects of such
manipulation: introspection and intercessions. Introspection is the ability for a program to
observe and therefore reason about its own state. Intercession is the ability for a program
to modify its own execution state or alter its own interpretation or meaning. Both aspects
require a mechanism for encoding execution state as data; providing such an encoding is
called reification.”

Different words have been used in the literature to explain this term. For the purpose of
discussion in this report, we agree on the following definition, “The process of providing

19

an external representation of the internals of a system, which allows the internals of the
system to be manipulated at runtime, is called reification”.

Reflection can be structural or behavioral. Structural reflection implies the ability of
the language to provide a complete reification of both the program currently executing as
well as a complete reification of its abstract data types [ALD+2003]. Therefore, structural
reflection provides the ability to alter statically fixed internal data/functional structures
and architecture used in a program. A structural reflective system would provide a
complete reification of its internal methods and state, allowing them to be inspected and
changed. For example, the definition of a class, a method or a function etc can be altered
on demand.

Behavioral reflection on the other hand implies the ability of the language to provide a
complete reification of its own semantics as well as a complete reification of the data it
uses to execute the current program. Therefore behavioral reflection provides the ability
to intercept an operation such as a method invocation and alter the behavior of that
operation. This allows the program or another program to change the way it functions or
behaves.

In brief, structural reflection changes the internal structure of a program, while
behavioral reflection alters the actions of a program.

Efficient implementation of structural reflection is much simpler than that of
behavioral reflection. Structural reflection features have existed in some form in
languages like Lisp and Prolog since long, but, behavioral reflection is a hot topic of
research, in particular being investigated for its applications in designing reflective
middleware. Various example works making use of behavioral reflection will be
discussed in later sections of this chapter.

2.3.1.12.3.1.12.3.1.12.3.1.1 ReflReflReflReflection ection ection ection Support inSupport inSupport inSupport in Contemporary LanguagesContemporary LanguagesContemporary LanguagesContemporary Languages

In programming languages, like Smalltalk, Lisp, Prolog reflection and reflective
programming concepts existed since long [DM1995], most modern languages like Ruby,
Python, C# etc. also support reflective programming. Limited reflective support was
added to java with JDK 1.1 reflection API. Java reflection can be used by (1) – the

applications that need to discover and use all of the public members of a target object
based on its run-time class and (2) – by the applications that need to discover and use the
members declared by a given class. These applications need run-time access to the

implementation of a class at the level provided by a class file. Examples in this category

20

are development tools, such as debuggers, interpreters, inspectors, and class browsers,
and run-time services, such as Java Object Serialization. These applications use instances

of the classes Field, Method, and Constructor obtained through different methods of

the class Class. This allows inspection of the program related metadata like class names,
methods, access specifiers, fields etc, within the JDK security restrictions on the fields,
methods, and constructors in other objects. It is also possible to load and instantiate
classes at runtime and invoke methods on the objects of those classes. An even powerful
feature introduced with JDK 1.3 is the possibility of using proxies, which support the
interface of another object (the target), such that the proxy can substitute for the target
for all practical purposes through implementation and delegation. The proxy therefore
acts as an intermediary or a substitute and forwards some or all calls to the target,
importantly, it can add method pre-processing or post-processing to the calls when
working as an intermediary. This procedure for adding pre and/or post processing to a
method call resembles the concept of before and after advice (explained in section 2.3.4)
in Aspect oriented Programming (AoP), however it has certain limitations and is not as
powerful as that in AoP. Java 1.5 offers significantly enhanced support for adaptive
programming in the form of enhanced reflection features, code instrumentation class and
metadata support in the form of annotations.

Among the tools for java byte-code instrumentation, ASM[ASM], BCEL[BCEL],
Javassist and Reflex[] provide means of changing class definitions in java. Javassist is
more systematic, since it offer an Aspect composition tool Gluonj[], based on top of it,
which provides all the basic constructs of an Aspect Oriented Language. Due to its
support for code instrumentation and availability of AOP constructs, Gluonj and Javassist
were used to form the Aspect Engine in this work.

2.3.22.3.22.3.22.3.2 Meta Object Protocols Meta Object Protocols Meta Object Protocols Meta Object Protocols and Meta Architecturesand Meta Architecturesand Meta Architecturesand Meta Architectures

Gregor Kickzales, in 1991, pioneered the idea of Meta Object Protocols (MOPs)
through his groundbreaking work [Kic1991]. The key idea of MOPs is the division of a
software system into two levels; the base level and the meta level. The base level
describes the actual design of the software to carry out its particular functions, whereas
the meta-level keeps information about the base-level and therefore describes different
policies which determine the behavior of the base-level. Thus meta-level keeps
information about the actual program and this information is known as meta-data. In case
of object oriented software, this meta-data is organized into objects, called meta-objects.
Thus meta-level can be used to inspect and alter the behavior of the base level. The meta-

21

interfaces which expose the functions of the base-level are called meta-object protocols,
since they specify the means of altering the behavior of base level components, objects or
modules. A meta object protocol relies on the fundamental principles of reflection, and
should be sufficiently general to permit unanticipated changes to the platform, but be
restricted to prevent the integrity of the system [DM1995].

2.3.32.3.32.3.32.3.3 Aspect Oriented ProgrammingAspect Oriented ProgrammingAspect Oriented ProgrammingAspect Oriented Programming

One of the key features of Object Oriented Design is to encapsulate data and functions
specific to a goal, in a specific object. Thus an object is a self-contained unit without any
information about other objects and others don’t have any information about that object,
except what the object makes public. In practical software design, there are a number of
concerns which cannot be adequately confined into a specific object. A concern is a

specific requirement or consideration that must be addressed in order to satisfy the overall system

goal. Implementation of such concerns affects multiple objects (rather classes) in a system
and they are known as cross-cutting concerns. For example if a software had been
designed without keeping security issues in mind and later on some security policy needs
to be implemented, then this will require changes in multiple modules composing the
system e.g; it may involve modification of a number of classes. Thus security is a cross-
cutting concern, which cuts across several modules of the entire software. Other
examples include logging, scheduling etc.

Aspect oriented Programming [Kiczales1996] is a paradigm which facilitates seamless
incorporation of cross-cutting concerns into existing software through a mechanism
known as weaving. Using this software development paradigm, a prewritten program can
be ‘intelligently patched’ at various well defined places, resulting in new code. An aspect
oriented language has four main elements which are necessary to carry out the code
weaving process. These elements are detailed below.

2.3.3.12.3.3.12.3.3.12.3.3.1 Elements of an Aspect Oriented Elements of an Aspect Oriented Elements of an Aspect Oriented Elements of an Aspect Oriented LanguageLanguageLanguageLanguage

Join Point

A join point is a well defined location within the actual program code (i.e; the code
written by the user to do a specific task), where a concern will crosscut the application. It
can be considered as a well defined point within the program, where some additional

22

code can be meaningfully patched. Examples include, method calls, constructor calls,
exception handlers etc. Basically, join points are the places where cross cutting actions
are woven in.

Point Cut

A point cut is a program construct which selects the join points (and/or a set of join
points). It also collects the context information at those points. For example, a point cut
can select a particular method call as a join point and can also capture that method’s
context like its arguments and the target object. Basically, point cuts provide a kind of
link to joint points using the aspect weaver’s language constructs. Point cuts are the
constructs used to specify weaving rules and join points are the conditions which occur
within the primary program flow upon which those rules are satisfied.

Advice

An advice is the additional code, which existed outside the primary program and is to
be executed at a join point, specified using a point cut. The advice code is executed,
before, after or around join points. If we consider a particular method call as a join point,
then before advice, refers to the additional code which will be executed before that
method invocation, after advice is defined as the code that will be executed after that
method invocation and around advice defines the code which will completely substitute
the pre-existing method.

Aspect

An aspect is like a class in an object oriented language. It is a modular unit of code,
which contains the point cuts along with corresponding advices.

Different aspect oriented languages use different terms to refer to the above mentioned
elements or they extend these basic elements with some language specific features.

23

2.3.3.22.3.3.22.3.3.22.3.3.2 Aspect WeaversAspect WeaversAspect WeaversAspect Weavers and Related Work and Related Work and Related Work and Related Work

An aspect weaver or an aspect engine is software, which enables compilation of aspects.
The process of weaving can be static; meaning that the actual aspects are inserted
statically or it may be dynamic; meaning that only insertion hooks are inserted statically
and the actual code patching takes place at runtime. There are also cases where weaving
is done at load time. Dynamic approaches are generally more flexible, because they allow
partial application code modification while the application is running. There are a large
number of aspect weavers available for different languages each with its own strengths
and weaknesses and a number of those which are language-independent. These weavers

differ in the ways they express the crosscutting concerns and how they translate those concerns to
form the final system.

2.4 Software Systems and Models for Adaptation
Having presented the language features for software adaptation, this section details the
architectural models which have been developed using those language features. In the
context of software systems, adaptation refers to extensibility, enhancement of complete
or partial software system to tailor it no new needs. Adaptation in software exists in some
well known forms, hot-fixing, hot-swapping, software patching etc. Scientific literature in
the related area unfolds a whole lot of efforts vested in devising better architectural
models for software adaptation. It includes component [] based approaches, using
reflection, and recently aspect oriented programming. This section gives an overview of
some of the famous projects and a summary of the related work where these techniques
of software adaptation have been applied, especially to the middleware layer.

2.4.12.4.12.4.12.4.1 Adaptation’s Place in System Hierarchy Adaptation’s Place in System Hierarchy Adaptation’s Place in System Hierarchy Adaptation’s Place in System Hierarchy –––– The Middleware Lev The Middleware Lev The Middleware Lev The Middleware Levelelelel

Traditionally, middleware systems have been developed keeping in mind generic
problems like heterogeneity, distribution etc. For example, CORBA [COR], J2EE[J2E]
were mainly devised to ease the development of enterprise applications. The middleware
level has so far been the most attractive place in the system hierarchy to design adaptive
systems [DLS+2004].

2.4.1.12.4.1.12.4.1.12.4.1.1 RRRReflecteflecteflecteflectiveiveiveive an an an and Adaptived Adaptived Adaptived Adaptive Middleware Middleware Middleware Middleware and Related Work and Related Work and Related Work and Related Work

Adaptive middleware is software whose functional behavior can be modified dynamically
to optimize for a change in environmental conditions or requirements [LSZ+2001]. Thus

24

adaptive middleware can be customized to the needs of a specific domain, e.g; embedded
control systems with real-time requirements, resource constrained mobile devices etc.
Adaptive and reflective techniques have emerged as a new paradigm for the development
of next generation dynamic middleware [5] and generally reflection is the primitive
technique to achieve adaptation. These techniques enable the system to self-alter to meet
the changing environment or user needs. Adaptation can take place autonomously or semi
autonomously, on the basis of the systems deployment environment, or according the
user defined policies [BCC+1999]. Primary requirements of a runtime adaptive system
are: measurement, reporting, control, feedback and stability. Being adaptable is only a
feature which a middleware system may have, and this feature is realized using reflective
programming. Therefore, in literature, adaptive and reflective middleware are treated
together (sometime synonymously).

RAFDA

The Reflective Architecture Framework for Distributed Applications (RAFDA)
[PWK+2003] is a reflective framework enabling the transformation of an non-distributed
application into a flexibly distributed equivalent one. RAFDA allows an application to
adapt to its environment by dynamically adapting its distribution boundaries. It can
transform a local object into a remote object and vice-versa, allowing local and remote
objects to be interchangeable. RAFDA achieves flexible distribution boundaries by
substituting an object with a proxy to a remote instance. The transformation process takes
place at the bytecode level. Points of substitutability are identified and an interface is
extracted for each substitutable class, then every reference to the substituted class is
transformed to use the extracted interface. The proxy implementation provides different
transport options including Simple Object Access Protocol(SOAP), Remote Method
Invocation(RMI) and Internet Inter-ORB Protocol(IIOP). Policies determine substitutable
classes and the transport mechanism to be used.

mChaRM

The multi-Channel Reification Model (mChaRM) [CA2000], is a reflective
implementation which reifies and reflects directly on communications. This model does
not operate on base-objects but on the communication among base-objects, resulting in a
communication-oriented model of reflection. It abstracts and encapsulates inter-object

25

communications and enables the meta-programmers to enrich and/or replace the
predefined communication semantics. mChaRM handles a method call as a message sent
through a logical channel between a set of senders and receivers. The model supports
reification of such logical channels into logical objects called multi-channels. A multi-
channel can enrich the messages (method calls) with new functionality, thus allowing a
finer reification-reflection granularity than that use din other approaches. mChaRM is
specifically targeted for developing complex communication mechanisms and has been
used to extend standard Java RMI to support multicast RMI.

GARF and CodA

GARF [GGM1993] and CodA [McAffer1995] are considered to be milestone in
reflective research. GARF is a tool that supports the design and development of reliable
distributed applications by wrapping distribution primitives of a system to create a
uniform abstract interface which allows the basic behavior of the system to be enhanced.

CodA is a project aimed at fine grain decomposition of the meta-level architecture. Its
main goal was to allow decomposition based on logical behavior, thus it was mainly
meant to deal with the problem of monolithic meta-architectures. CodA eliminated this
by using multiple meta-objects, each one describing a single small behavioral aspect,
instead of one large object describing many aspects of an objects behavior. For example
if distribution is a behavioral concern, then in CodA, it can be decomposed into smaller
aspects like, message sending, receiving, queuing etc.

Open ORB

OpenORB [BCA+2001] is a good example of a full-fledged reflective middleware. It
relies on component paradigm and provides reflective features by defining three
fundamental concepts: components, interfaces and bindings. Reflective facilities in
OpenORB support inspection and dynamic adaptation of multiple aspects of components
and bindings [BCB+2002]. These facilities are organized into four meta-models: the
interface, architecture, interception and resources meta-model. An excellent and detailed
architectural as well as performance analysis of OpenORB has been presented in
[LPP+2005].

26

Interface meta-model provides access to the external view of components and bindings,
enabling enumeration of provided interfaces and discovery of new interface definitions.
The interception meta-model enables dynamic attachment of interceptors to interfaces
which allows insertion of pre- and post- processing functionality. The architecture meta-
model provides access to the internal structure of components and bindings, represented
as an object graph; it provides operations to retrieve, insert, remove and replace
components and explicit bindings, as well as operations to manipulate the local bindings
connecting them. The resources meta-model provides access to underlying resources and
resource management. Specifically, the meta-model captures diverse types of resources at
different levels of abstraction (e.g. buffers, user-level threads, and kernel-level threads),
and provides control over the distribution of resources among tasks, defined as units of
resource allocation. Tasks are invocation sequences that can span multiple components
distributed over different address spaces.

DynamicTAO and UIC(LegORB)

DynamicTAO [KRL+2000] is a reflective ORB built as an extension of TAO
[SLM1998]. TAO is a modular and configurable middleware platform based on design
patterns. TAO uses the strategy design pattern [GHJ+1995] to encapsulate different
aspects of the middleware implementation and provide reconfigurability. However, TAO
itself is not reflective in nature and is aimed at static hard real-time systems (avionics in
particular) and does not provide sufficient support for on-the-fly configuration of
strategies, once the ORB has been statically configured. DynamicTAO on the other hand
is a reflective ORB and allows inspection and reconfiguration of its internal engine. This
is achieved by exporting an interface for transferring components across the distributed
system, loading and running modules into the ORB runtime and inspecting and
modifying the ORB configuration state.

The Universally Interoperable Core (UIC) , (previously known as LegORB
[RMK+2000]) is a reflective ORB targeting environments with limited resources, such as
handheld devices. LegORB adopts a microkernel-like approach, where the core contains
only the low-level essential components. The application programmer implements
customized policies, or selects them from a collection of policies available with the ORB
package (marshaling, demarshaling, specific GIOP implementations, etc.). UIC defines a
skeleton of abstract components that encapsulates standard functional aspects of ORBs
(e.g. marshalling strategies and concurrency policies), and it can be specialized to form

27

different personalities (e.g. CORBA client-side personality or Java RMI personality).
Specialization in UIC involves developing concrete components that conform to the
abstract components and inserting them into the skeleton structure [LPP+2005].

2K

2K [KRC+2000] is an operating system that incorporates most of the dynamic
reconfiguration functionality of middleware. On top of the 2K microkernel, it uses
dynamicTAO and LegORB (renamed as UIC), as reflective ORBs. In 2K, resource
management responsibilities of the operating system supplemented with algorithms for
QoS provisioning, including admission control, negotiation, reservation and regeneration.
The application programmers can, therefore, access the system’s dynamic state and can
implement application-specific adaptations, while the system guarantees that the QoS is
preserved. The services provided include standard CORBA services (e.g. naming,
trading, and security service) as well as services for automatic configuration, resource
management, and code distribution.

Multe-Orb

Multe-ORB [EKP+2000; KKP2001] is a reflective multimedia object request broker
suited to Low Latency, High Throughput Environments. It handles application QoS
requirements, by supporting QoS specification on CORBA binding and protocol level.
Reflection is achieved by reifying the binding compositions and allowing any component
to be inspected, thus manipulating the object graph by inserting, removing or replacing
individual components using meta object protocols. This concept of open bindings is
similar to the one introduced in [BCD+1997]. Application specific QoS parameters are
instantiated as a set of protocol modules that collectively achieve the required QoS goals.
Multe-Orb aims at integrating an end-to-end QoS solution with a standardized ORB in
the least intrusive way. However, provisioning of QoS is supported only for CORBA
request-reply invocations.

K-Components

K-Components [DC2001; JC2001; JV2004] is an implementation of a dynamically
adaptable architectural meta-model. It is designed to build dynamically adaptable
software architectures whose configuration is stored as a typed connected graph, where

28

the vertices are interfaces that are labeled with the component instances that implement
them. Interfaces are connected by directed edges labeled with connector properties,
which represent the reconfigurable properties of the connector such as the ability to
change its communication protocol, etc. The entry point in the program is represented as
the root of the vertex.

The graph is automatically generated from the component definitions and the actual
implementation code. It is stored and managed by a meta-level component called the
configuration manager. Dynamic reconfiguration is achieved using reflective code called
adaptation contracts. These adaptation contracts specify conditional transformations
based on architectural constraints. They are implemented as metalevel objects that can be
loaded and unloaded at run-time using the configuration manager. The integrity of the
system is maintained by the configuration rules specified on the edges of the graph and
by a reconfiguration protocol that ensures that vertices involved in the reconfiguration are
in a safe state. Further adaptation contracts also take care of the management of incoming
and outgoing dependencies of the system. The adaptation code is kept separate from the
computational code by using a special Adaptation Contract Description Language
(ACDL) to specify this code. The K-Components system implements components with
an architecture metamodel, and adaptations contracts to support reconfiguration.

Quartz

Quartz [SC2000] defines an architecture that provides support for quality of service
(QoS) specification and enforcement in heterogeneous distributed computing systems.
Applications requiring QoS enforcement use the mechanisms provided by Quartz to
specify their requirements. In order to enforce the required QoS, Quartz employs the
resource reservation protocols available in the target network and operating system.
Quartz defines two main levels of abstraction for QoS specification, the application level
and the system level. A Translation Unit that is part of the middleware architecture is
responsible for translating the application defined QoS specification to a set of
parameters corresponding to the available protocol of the hosting platform.

The central component in Quartz is the QoS agent, that is composed of the Translation
Unit and multiple System Agents associated with the reservation protocols responsible
for administering the use of the available resources. Quartz provides no support for
extending binding types. As it is not a generic middleware architecture, but rather a QoS

29

architecture. Quartz provides extensive infrastructure for dealing with resource adaptation
and reservation. Adaptation rules can be specified at the system and the application
levels. At the system level, the System Agent is used to adapt to environmental condition
including network or host resources. The System Agent is also responsible for monitoring
of the resources that are occupied by the reservation protocol it corresponds to. At the
application layer, Quartz employs a declarative attribute-value based syntax for resource
reservation. Application adaptation is provided in the form of call-backs from the
middleware. Applications are notified only in case the middleware is unable to provide
the resources originally requested.

2.4.1.22.4.1.22.4.1.22.4.1.2 AAAAspect Orientespect Orientespect Orientespect Oriented Middlewared Middlewared Middlewared Middleware and AoP Frameworks and AoP Frameworks and AoP Frameworks and AoP Frameworks

A number of systems, including our implementation presented in this report have often

combined reflection and AoP together. While application of reflective techniques eases
the reconfiguration of middleware, application of aspect oriented programming to
develop middleware aids in modularizing the cross cutting concerns in the middleware
layer. System wide concerns like persistence, transactional communication, security,
QoS, and synchronization cannot be easily modularized and the code for handling them is
often spread across (rather entangled in) different modules. Therefore, many research and
commercial middleware has chosen the middleware layer as the right place to use Aspect
Oriented Programming for middleware adaptation.

Since the very fundamental requirements were put forward in the discipline of software
engineering, cohesion and coupling were defined. Well designed software must show a
high degree of cohesion while minimizing the inter-module coupling. In the domain of
middleware, a key challenge is the achievement of accurate modularization at the level of
objects, components, agents etc. However, this is not a straight forward task and involves
many cycles of re-factoring during the development phases. A large number of research
projects have applied AoP successfully, to modularize systemic concerns in the
middleware layer, producing various aspect oriented middleware. Among them, a broader
classification can be done with respect to the application of AoP in their development;

• those systems which pre-existed and have been extended (or made domain
specific), for example those applying AoP to existing CORBA, CORBA
compliant or Corba Component Model (CCM) compliant by using AoP.

30

• those which have been engineered from the ground up to benefit from
AoP. This mainly includes the systems where CBSE has been combined
with AoP while designing the system or AoP has been used to custom-
tailor the system to pervasive computing needs.

Both these types of systems have been reviewed in the following subsections:

2.4.1.2.12.4.1.2.12.4.1.2.12.4.1.2.1 Aspect Oriented Aspect Oriented Aspect Oriented Aspect Oriented QoS Extension QoS Extension QoS Extension QoS Extension ofofofof CORBA CORBA CORBA CORBA and CORBA and CORBA and CORBA and CORBA Compliant SystemsCompliant SystemsCompliant SystemsCompliant Systems

Early works with respect to middleware aspectization have been focused on extending
CORBA with aspects hence providing some QoS support. This type of work has mostly
been focused on customizing existing middleware to support real-time and real-time
embedded systems. Early examples include: The Quality Objects (QuO) framework
[ZBS1997], which addresses the issue of QoS using CORBA by extending the CORBA-
IDL with a Quality Description Language (QDL). QDL is actually a set of Quality
Description Languages [LBS+1998], which are used to specify possible QoS states, the
system resources and mechanisms for measuring and controlling QoS, and behavior for
adapting to changing levels of available QoS at runtime. QuO supports QoS at COBRA
Object level, by allowing the user to specify an application’s expected usage patterns and
QoS requirements for a connection to an object. The QoS usage specification is at the
object level (like methods per second) and not at the communication level (like bits per
second). Thus an object may have several connections to the same object, each with
different system properties. [DLS+2004] shows development of adaptive distributed
applications using QuO framework.

In [HCG2001], AspectJ has been used to incrementally add adaptation features to
existing ACE-ORB(TAO) [Schmidt1998] middleware, by using their AspectIDL on the
java real time event channel. AspectIX [HBG+1998] is a CORBA compliant ORB and
supports QoS management on per-service basis, by using fragmented objects called
Qoslets, which travel from the server to the client and cooperate to achieve end-to-end
QoS. Management of Adaptive QoS enabled Services (MAQS) [BG1997a; GB2001] is a
framework developed using MICO (an open source CORBA compliant ORB) [RP1997]
and QoS IDL (QIDL). QIDL [BG1998] is an extension of the OMG IDL with QoS
definitions. A distinguishing benefit of this approach is that unlike the BBN’s QuO,
QIDL does not introduce a new language for writing aspects and does not use a separate
aspect weaver, instead, it implicitly extends the existing IDL with the notion of QoS.

31

2.4.1.2.22.4.1.2.22.4.1.2.22.4.1.2.2 Component BaComponent BaComponent BaComponent Based Aspect Oriented Frameworkssed Aspect Oriented Frameworkssed Aspect Oriented Frameworkssed Aspect Oriented Frameworks

The related work discussed in this section contains those examples where AoP has
been applied to component based systems. Various projects mentioned below mainly
differ from each other in their join point model (invasive or non-invasive) along with
certain features specific to each of them. Invasive Dynamic AOP breaks the component
architecture by weaving code within the base component implementation, i.e. behind the
interface contracts, whereas non-invasive approaches utilize the component interfaces as
point-cuts, and hence these aspects are implemented as interceptors on the interfaces. The
former approach tends to rely on code re-writing techniques, such as bye-code rewriting
as supported by tools such as Javassist. In contrast, non-invasive approaches tend to rely
on behavioral reflection mechanisms such as interception to dynamically introduce or
remove aspects [Blair].

JBoss AOP

JBoss AOP is a Java based aspect oriented framework. Aspects and other constructs are
written using java and which are then bound with the applications using java 5.0
annotations or XML. Point cut and advice bindings are resolved at runtime. Jboss AOP is
normally used together with the JBoss Application server. Its microkernel layer delivers
light weight component model and for the same reason it has found place in various
embedded systems. The join point model of JBoss is Invasive.

Lasagne

Lasagne [TVJ+2001] is an Aspect-Oriented Middleware for Context-Sensitive and
Dynamic Customization of Distributed Services. In Lasagne, aspects are woven non-
invasively at system runtime and the selection of the aspects to be composed is context
sensitive. These are the two features which make it more dynamic in comparison with
other examples in the same class. The aspect oriented approach of Lasagne is based upon
extensions, where an extension encapsulates a slice of behavior that updates multiple
components at the same time. For example an authentication extension may crosscut a
number of components involved in a client-server request. A service will have some
contextual properties attached to it. Interceptors attached to the components of the
middleware inspect the values of those properties and decide which extensions to
execute. In Lasagne aspects are woven/unwoven dynamically and this feature is similar

32

to the JAC implementation (discussed next). The dynamicity is achieved by policy
selection on the client. However, in case of Lasagne the distribution mechanism is
provided by the regular ORB, hence distribution as an aspect would be relatively difficult
to implement.

JAC

Java Aspect Components (JAC) [PSD+2004] is an open source middleware project at
Object Web [JAC], and is aimed at developing Aspect Oriented Middleware. It has been
written in Java and provides dynamic AoP features. It relies on the use of containers,
which are similar to J2EE. The two core mechanisms that JAC relies upon are in order to
extend the application semantics, are dynamic wrappers and meta-model annotations.
Through the configuration interfaces provided by them, new aspects can be integrated
with running applications. The framework also facilitates, the use of distributed point-
cuts, thus enabling cross-cutting structures which are not in the same host. There is a
library of pre-defined aspects in JAC, which can be used by the application programmers
or alternatively, new aspects can be defined. Among the predefined aspects are; session,
persistence, transaction, deployment, GUI, authentication, caching, integrity and
consistency aspects.

The distribution related, predefined aspects are a special feature of this framework. For
code instrumentation, JAC is dependent on BCEL, which wraps the classes at load time
and then aspect components are instantiated later on. Aspects can be woven and unwoven
during the application runtime. The core distribution mechanism in JAC is based upon
two kinds of application components; a deployment aspect which is used to create a
distributed application and a set of distributed aspects which implement distributed
protocols .

The key concept introduced by JAC is the notion of aspect component. An aspect
component is the software entity that captures a crosscutting concern. Due to this feature,
JAC is very powerful in applying system-wide concerns, since the all parts of a
distributed application automatically get updated. To achieve this, JAC comes with a
container mechanism. The containers host both business objects and aspect component
instance. They are remotely accessible using either CORBA or Java RMI.

33

Prisma

Prisma [APC+2004; ASJ+2003; PRJ+2003] is another attempt to combine the benefits
of component based software engineering (CBSE) with aspect oriented software
development (AOSD). A unique feature of PRISMA is that it does not have the notion of
the base program to which aspects may be woven, instead, functionality is considered as
another aspect. Thus in this case aspects are woven together. PRISMA can be used as a
framework to evolve architecture of complex information systems. It relies on
requirements-driven evolution, which is supported by means of a meta-level and the
reflexive properties of PRISMA Architecture Description Language (ADL), which have
been implemented as a middleware. PRISMA specifies different characteristics (like
distribution, safety, context-awareness, coordination etc) of an architectural element (e.g,
a component or connector) using aspects, and its architecture is evolved at meta-level
using the specified properties. In PRISMA the distribution aspect has to be added to the
set of aspects types of a conceptual model in order to enable the specification of software
architectures of distributed systems. The distribution aspect specifies the features and
strategies that manage the dynamic location of instances of architectural elements in a
software architecture. The distribution aspect deals with all the properties related to
distribution and changes in location. Each architectural element with a distribution aspect
must have a location.

PRISMA is an architectural model that can be used to describe the architecture of
software applications based on components and aspects. Applications designed with
PRISMA have to be implemented using different kinds of object-oriented and/or aspect-
oriented languages.

PROSE and MIDAS

MIDAS (MIDleware Adaptive Services) [FPA2003; PAG2003] is a system based on
PROSE (PROgrammable Service Extension) that allows applications to self-organize into
spontaneous information systems, but without relying on a fixed infrastructure. MIDAS
is a middleware layer for adaptive services, and Prose is the language providing the
facilities required by MIDAS. MIDAS is based on the spontaneous container concept. A
spontaneous container is a container that adapts computer appliances to the environment
where they are being executed. It works dynamically for entire service communities,
which are built dynamically, using dynamic service discovery. Although in this

34

dissertation, it has been classified from the point of view of its architecture and placed
under this sub-section, with respect to its features it can also be classified under
middleware for pervasive systems. MIDAS does not have special features furthermore
than exposed in EJB/Jini, which is the middleware layer over which MIDAS is
constructed.. PROSE/MIDAS is designed for Java, and to be used over EJB or Jini. They
offer a dynamic weaving mechanism based on a JITcompiler.

JAsCo

JAsCo [SVJ2003] is basically an aspect oriented language, combining the component
based design concepts with aspect oriented programming. It introduces the notions of an
aspect-bean and a connector. An aspect-bean is like a normal java bean, however it
contains extra code to realize a particular behavior of a component. It also specifies a
deployment hook. The connectors are used to deploy one or more hooks in a specific
context (the so called traps). These concepts of hooks, traps and aspect beans are
functionally very similar to the concepts of joinpoint, point and an aspect, introduced
earlier, except that JAsCo uses them with components. The traps should be known before
the execution is started, which makes the approach a bit limited, however, if it is used
together with JAsCo HotSwap-2 (which requires JVM1.5+), runtime insertion and
removal of traps is supported, which overcomes its limitations and makes the approach
more dynamic.

Jadabs

Jadabs [AG2005] is a light weight middleware for pervasive computing, based on
service oriented architecture (SOA). It describes applications by annotating components
and services with metadata. By using this metadata, new dependencies can be evaluated
at runtime to adapt the application with extensions provided or required by the
environment. Jadabs can use different underlying network technologies and enables
communication in centralized as well as decentralized environments by using peer-to-
peer communication paradigm. The unique feature of Jadabs is that it offers both
segmented containers, suitable for powerful devices like laptops and monolithic

containers, which are somewhat limited in their support, but suitable for small devices
like mobile phones. Jadabs makes use of PROSE for segmented containers and Nanning
[NAN] for monolithic containers for aspect weaving.

35

2.5 Summary of the Related Work and Limitations
Adaptive mobile applications are generally built using two approaches; either the

adaptation is performed by the system which underpins the application or the application
itself monitors and adapts to change [ECD+2001]. These two approaches differ from
each other in the levels of efficiency and flexibility. Programming adaptive behaviors
into applications is more efficient, but is practically very cumbersome, it is difficult for
the application designer to predict the runtime behavior of an application and in
particular, to estimate all possible scenarios which can occur at runtime on a system-wide
basis [KF2005]. Handling the adaptation responsibility to the underlying system (usually
middleware) is less efficient but more flexible, since the application code does not need
to explicitly handle adaptive behaviors. Most of the recent research has benefited from
the latter approach by using different techniques to develop QoS middleware, among
which are included Meta Object Protocols (MOPS) [KR1991] for separation of concerns
and behaviors, reflection and Aspect oriented Programming. A wealth of research is
available in literature, mainly in the area of adaptive, reflective and in particular aspect
oriented middleware, where specific languages for describing QoS aspects have been
developed, and existing middleware has been custom tailored to provide QoS. A
comprehensive comparison of different aspect weavers and aspect oriented middleware is
provided in [LPP+2005]. While different aspect oriented middleware systems have their
own pros and cons, a commonality found in them is the assumption that, the applications
running on top of such systems are using the API’s provided by the middleware. The
systems based on this assumption give the benefit of interoperability, and will generally
be capable of adapting a wide range of applications, if aspects are directly woven into the
application code, this will be more efficient and will be feasible if adaptation is required
for a specific class of applications and can be used to transform non-adaptive applications
into adaptive ones. An example of this is found in TRAP/J project [SMC+2004]. While
TRAP/J can be used as a tool to make applications adaptive, this requires selecting
classes to be adapted and defining adaptive behaviors for them.

Adaptation, in all its forms (software, resource or service), affects multiple elements of
a system and has been identified as a cross-cutting concern, particularly in the context of
pervasive computing [RK2004]. In case of wireless networks, the communication
problems are even more complicated due to the fact that not only the application demands
remain fluctuating, the available resources like the network bandwidth, in particular, are
also neither constant nor precisely known at any instant.

36

Reflective implementations of middleware depending upon the component model
suffer from an inherent property of the component model, that is, since reflective
facilities are indispensable from the component model (because all components maintain
meta-information about themselves, which is discovered through reflection to facilitate
plugability), the associated overhead scales up with the number and size of components
in a system. Therefore, on resource constrained devices in particular, it is not feasible to
keep a general purpose middleware layer, and customize it when required. In some cases
customization of a large middleware to specific environment can prove complicated. This
suggests the need for domain-specific middleware.

Thus, despite being beneficial in comparison with the classical middleware
technologies, effectiveness of reflective middleware is only proven for the middleware
developers, because, they can develop a general purpose reflective middleware once and
then customize it using reflection, to market it faster. Thus applying reflection to engineer
middleware itself can be a good example of software reusability, but, its use to
application programmers is limited.

The common factor of all the existing approaches is the inherent idea of providing the
user with an API, using which the user can design applications on top of it, which can
then benefit from the underlying middleware features. The work presented in this report
is based on the existing concept of separation of concerns and behaviors, with the main
difference that we are implementing it in more autonomous fashion. Our approach can be
seen as an example of the same principles, however, since it is in the context of a
framework (Java Media Framework : JMF), where the structure of applications is pre-
defined, it gives us the benefit of specifying adaptive concerns at a higher level of
abstraction and system-wide manner in the form of profiles and makes the adaptations
more self-managed, at the cost of limiting the applicability to a specific framework.

37

Chapter 3

 Aspect-Oriented Model for Adaptive Code

Generation

3.1 Introduction
A wealth of research has gone into developing and deploying various strategies for

providing Quality of Service (QoS). On one hand are the approaches providing
guaranteed QoS for non-elastic applications and on the other hand are those attempting to
adapt the resource usage to whatever is available, applicable in case of elastic
applications. In the networks community, adaptation refers to altering the transmission of
data by different means like compression, transcoding or adaptive routing, resulting in
adaptive behavior of data flow. In the software engineering community, adaptation
research is concentrated in adapting the software itself to enhance its functionality at
runtime (hot-fixing; updating application components without taking the application
offline), facilitating content or service adaptation, resulting from adaptive code

modifications. Despite seemingly being two different research directions, it is possible to
combine these two approaches, in such a way that for any multimedia application,
adaptive behavior of the multimedia data stream can by achieved through adaptive

modification of that application’s code. Therefore, software abstractions and techniques
used to map adaptation requirements for any distributed computing software can be
enhanced to be applied in the context of multimedia frameworks, which are used to
develop multimedia applications.

This chapter presents a conceptual model based on state machines and state sets, and
maps adaptation requirements given at a higher level of abstraction onto the application

38

target code using Aspect Oriented Programming techniques. The model developed in this
research relies on four constituents:

• A System State Machine

• An Application State Set

• A Profile State Set

• A Resultant State Machine

These are the main components of the model and are described in detail in the
following sections.

3.2 System State Machine
The purpose of the System State Machine is to keep track of past resource availability,
present state and future resource availability prediction. When the application starts, the
state of the resource availability represents the default (or current) state of the systems. At
any given time, the System State Machine consists of the default state/reference state
(representing current resource levels) and different other states, each of which can be
characterized by a unique combination of resource levels. An example of System State
Machine is shown in the figure below:

r1+r1+

r1Start

r2Start

r2+

{r1+|r1new<=r1Thd}

{r2+|r2new<=r2Thd}

r2- r2-

r1-

{r1+|r1new<=r1Thd}
r2-

r1-
r2-

{r1+|r1new<=r1Thd}
{r2+|r2new<=r2Thd}

r1-

r2- r2+

r1-
r2+

r1-
r2-

r1+
r2-

r1+
r2+

r1-
{r2+|r2new<=r2Thd}

S1

S0

S2

S3
S4

S5

S6

S7
S8

Fig. 3.1 – A System State Machine with arbitrarily chosen state names, showing all possible states

39

Fig 3.1 represents a System State Machine, with two resources. Possible combinations
of these variations have been shown in the arbitrarily named states, S1 to S8, while S0 is
the default (current) or start state. Taking this current state as the reference, all other
states have been marked with resource name, followed by a ‘+’ or a ‘-’ sign, indicating an
increase or a decrease in the resource. Thus, ‘r1+’ inside a state bubble means that
resource r1 will increase as compared to the current state. Similar meanings can be
attached to other symbols. The conditions on the edges, indicate restrictions on switching
to any terminal state, e.g., {r1+|r1new<=r1Thd} on the edge from S0 to S2 indicates that the
System State Machine can switch to state S2 only if there is an increase in the level of
resource r1, such that the new level (or the increased level) of r1 is less than or equal to
the threshold level of r1. A threshold level of any resource is that level beyond which the
system is likely to show some unpredictable behavior at any time (e.g., if 95% of the
peak CPU availability is set as the CPU threshold, then it simply means, that more than
95% CPU load is not desirable and since it may make the system unstable). Similarly, in
case of available bandwidth, it may be defined as 3% packet loss, (meaning that a packet
loss higher than that is not tolerable etc). A state that is labeled with an increase (or a
decrease) in the resource level, only tells that it is reached when that specific resource
increases (or decreases); it does not define new states on the basis of the magnitude of
increase or decrease. Due to this reason, at any point in time, any terminal state of the
machine is reached in single transition.

Once the System State Machine switches from one state to another, the new state to
which the machine transitioned, now becomes the current (or reference) state. The
resource increase and/or decrease possibilities are then evaluated again and a new System
State Machine is constructed. With the new machine, some of the existing states may no
longer be available, some new states may become available, which did not exist in the
previous state machine, or the new state machine may consist of exactly the same states
as the previous machine (this case is easily understandable if we keep in mind that a state
only shows the type of resource variations which led to that state not the magnitude of

resource variations). Due to this reason, the state machine does not show any transition
back to the start state. An example of state transition, where the System State Machine
switches to a new state is shown in the figure 3.2a,b,c.

40

r1+r1+

r1Start

r2Start

r2+

{r1+|r1new<=r1Thd}

{r2+|r2new<=r2Thd}

r2- r2-

r1-

{r1+|r1new<=r1Thd}
r2-

r1-
r2-

{r1+|r1new<=r1Thd}
{r2+|r2new<=r2Thd}

r1-

r2- r2+

r1-
r2+

r1-
r2-

r1+
r2-

r1+
r2+

r1-
{r2+|r2new<=r2Thd}

S1

S0

S2

S3
S4

S5

S6

S7
S8

Fig 3.2a – First transition of System State Machine

Assuming that the System State Machine takes the transition from state S0 to S3, as
shown in the diagram above, then, as soon as the transition is complete, a new state
machine is constructed. This transition will occur only when utilization of resource r1
increases and that of r2 decreases at the same time.

r1+r1+

r1Start

r2Start

r2+

{r1+|r1new<=r1Thd}

{r2+|r2new<=r2Thd}

r2- r2-

r1-

{r1+|r1new<=r1Thd}
r2-

r1-
r2-

{r1+|r1new<=r1Thd}
{r2+|r2new<=r2Thd}

r1-

r2- r2+

r1-
r2+

r1-
r2-

r1+
r2-

r1+
r2+

r1-
{r2+|r2new<=r2Thd}

S1

S0

S2

S3
S4

S5

S6

S7
S8

Fig 3.2b – System state machine taking a transition pushing resource limits to threshold level.

41

If the increase in r1 is enough to push it to the threshold level, then the new System
State Machine will be as shown in figure 3.2b. Now all other states (i.e., S2 and S4)
which could have been reached due to increase in the consumption of r1, will not be
available, therefore they have been shown masked (shown in pink rectangles) in figure
3.2b. Therefore, after this transition, the new System State Machine will be as shown in
figure 3.2c.

r1Start

r2Start

r2+

{r2+|r2new<=r2Thd}

r2- r2-

r1-
r2-

r2- r2+

r1-
r2+

r1-
r2-

r1-
{r2+|r2new<=r2Thd}

S1

S0

S5

S7
S8

r1-r1-

S6

Fig 3.2c – Resulting System State Machine upon completion of transition from S0 to S3

It is notable that the System State Machine resulting upon the completion of transition
has the current (or default/reference state) S0, which was S3 in the actual machine before
the transition (fig. 3.2a).

In this example, a System State Machine has been shown with combinations of only
two resources, in practice however, the resources are more than that and the state
machine is correspondingly complex. In practical implementation of this model,
switching of states can occur as a result of resource fluctuation or when the application
switches from one mode to another. For example, when the application switches from
one state to another to realize a video format change, it may overburden some resource,

42

due to which in the new application execution state, some system resource states may not
be available, meaning that the number of possible transitions from this new state are
somewhat limited or it may happen that new resource combinations (states) become
available as a result of positive resource fluctuation or as a result of the application state
switching. Thus a System State Machine keeps changing throughout the execution time.

3.3 Application State Set
When a multimedia application is running, it has some characteristics with respect to

the multimedia stream. For example it can have a specific bit rate, frame rate, play-out
buffer size etc. Different elements like codecs can have further tunable parameters, e.g.,
video size may also be variable etc. At any particular point in time, therefore, a
multimedia application can also be given a characteristic representation with realizable
combinations of such parameters.

A collection of all valid combinations of such characterizing parameters can therefore,
define an application state set. As a simple example, let us assume, videosize and frame-

rate be the only two characterizing parameters for an H.263 application, denoted by s and
f respectively. Also assume that the application supports QCIF and SQCIF sizes and
frame rates of 5 frames per second and 10 frames per second. Different valid
combinations of the two parameters (size and f-rate) will be.

1 (5), ()aS f s SQCIF= 2 (10), ()aS f s SQCIF=

3 (5), ()aS f s QCIF= 4 (10), ()aS f s QCIF=

where aiS , 1 4i<= <= , denotes the ith element (state) in application state set.

Or the set of application states can be written as:

1 2 3 4{ , , , }app a a a aS S S S S=

Thus, a set of application states as shown above identifies different modes of
execution, to which the given application can switch. Each of these states has associated
resource requirements. In case of applications which show some degree of adaptability by
default, the application state set consists of more than one element, while in the
applications which are non-adaptable by default, the application state set will consist of
only one element. In such cases, where the application is either not adaptable by default
and/or extension of its default adaptability is desired, changes to application code are

43

necessary, such that the application state set has mode elements (states) to which the
application can switch. (Details of application code manipulation are given in chapters 4
and 5).

3.4 Profile State Set
Since an adaptive application has to fulfill user demands of adaptive behavior, its
execution is dependent on different user preferences. Therefore, similar to an application
state set a profile state set is defined. Each element of the profile state set defines a state
which consists of a combination of properties that the user wants the application to
satisfy. These states defined by the user have to be specified in some preferential order1.
For example, a user may like an H.263 video to be in one of the states given below.

1 (5), ()uS f s CIF= 2 (10), ()uS f s CIF= 3 (15), ()uS f s CIF=

4 (5), ()uS f s QCIF= 5 (10), ()uS f s QCIF= 6 (15), ()uS f s QCIF=

where f and s denote frame-rate and video size respectively and

uiS , 1 6i<= <= , denotes the ith element (state) in user’s profile state set.

Then the user’s profile state set can be written as: 1 2 3 4 5 6{ , , , , , }prof u u u u u uS S S S S S S=

The profile state set for any user must specify all the states, which are demanded from
the application during its entire life time. It should also be noted that the parameters,
defining different states exist in groups, and each group varies from the other most of the

1 Since, sets do not offer sufficient means to arrange elements in a ‘preferred order’, more details on this
specification of preferences will be presented in chapter 5, using XML examples.

44

time, not only in the values of these parameter but also in the number of parameters. For
example, if in addition to H.263, MJPEG adaptations are also needed, then those options
must also be added to the profile state set. In this case, size parameter for H.263 and
MJPEG will be different. For all the states contained in the profile state set, the
preferences defined by the user along with the resource costs, a state machine can be
constructed (as explained in the next section with implementation details in chapter 4 and
5).

3.5 Realizable State Machine
As described above, the application state set and the profile state set, both are related to

the states of execution of the application. Therefore, the application state set contains all
those states, in which the given application code can execute while the user’s profile state
set lists all the states in which the user wishes the application to be executable. This
possible difference in the states of execution of the given application code and those
demanded by the user, is fulfilled by modifying the application code. A state machine

whose states are obtained by intersection of the application state set and the user’s

profile state set and edges derived from the user preferences, is called the Realizable

State Machine. It indicates the modifications required in the default application code,
necessary to achieve the desired adaptive behaviors. Therefore, depending upon the type
of elements (definition of states) in the two given sets, there are four possible results of
set intersection, and the type of result determines what will be used to derive the edges of
the Realizable State Machine. The edges are derived either from the user supplied
adaptation preferences or from the adaptation priority tables of the system or using both.
The four possible results of set intersection are discussed below.

 (i) - app prof app profS S S S= =∩

This is the simplest case. It happens when the application is inherently adaptive and the
user demands exactly what is provided by the given application code. In this case, there
exists a possibility that the application had only one state (i.e., a non-adaptive
application) and the user also does not demand any adaptation. (There is a very little
chance of this happening in a practical situation). In such cases, the Realizable State

Machine is derived from profS , by taking all elements as distinct states and the adaptation

45

priorities configured2 by the user to form the edges of the machine. This means that even
in the cases, where adaptation provided by the application without any code
modifications is the same as the user desires, state transitions of the Realizable State
Machine are directed by the adaptation configurations given by the user.

(ii) - app prof appS S S=∩ and app profS S⊂

Mostly, this is the type of relationship that occurs in practice between what the
application offers and what the user demands. It is the case when the application offers
some (or only one state of execution at minimum; which is the case of no adaptation).
And user demands additional adaptations. In this case too, the Realizable State Machine

is derived from profS , by taking all elements as distinct states and the adaptation priorities

configured by the user to form the edges of the machine. The Application State Set and
the Profile State Set in section 3.2.2 and 3.2.3 come under this category.

(iii) - app prof profS S S=∩ and prof appS S⊂

This is a very rare case, and can occur only when the given application offers a good
degree of adaptation and the users demands are less. To construct a Realizable State

Machine in this case, for those states which are common to both profS and appS , the edges

are derived from the adaptation configuration supplied by the user and for those states

2 Configuration of adaptation preferences by the user are discussed in chapter 4 and 5.

46

which are not common to both the sets, default transition conditions of the application
stay untouched.

 (iv) - app profS S φ=∩

This is the situation where both appS and profS are disjoint sets (they have nothing in

common) which means that the adaptation provided by the application (if any) is not
needed by the user, but the user has made completely different demands. In this case the

Realizable State Machine is constructed entirely from profS and the edges of the machine

are also derived from the adaptation preferences supplied by the user. In this case
adaptive code has to be intelligently patched into the supplied application code. The
resultant code after the application has undergone this code transformation represents the
states of the Realizable State Machine in software and the transitions are implemented as
state switching conditions. Since, the adaptations (if any) provided by the initially
supplied application code are not needed at all, execution of the supplied code may be
masked at different places, using around advice. (Detailed explanation is given in chapter
5).

In all the cases of obtaining the realizable machine states through application and
user’s profile state set intersection, the edges of the machine are derived from the user
adaptation preferences, starting from the highest to the lowest. The reverse link in each

47

case is added automatically between the two states involved in the forward transition.
Assuming the user’s preferences3 given below,

(15), (); 1

(10), (); 2

(5), (); 3

(15), (); 4

(10), (); 5

(5), (); 6

f s CIF pref

f s CIF pref

f s CIF pref

f s QCIF pref

f s QCIf pref

f s QCIF pref

Then if the given application is non-adaptive by default (the most frequent case), then
the user’s state set of section 3.2.3, will be used alone for derivation of the Realizable
State Machine as shown in figure 3.3.

3 In fig 3.3, the edges are marked with the changing conditions. They could have been marked with the
preference numbers; like pref1, pref2, etc. similar to XML implementation files in chapter 5.

48

f(15)
s(CIF)

f(15)
s(QCIF)

f(10)
s(CIF)

f(5)
s(CIF)

f(5)
s(QCIF)

f(10)
s(QCIF)

f(10)

f(15)

f(5)

f(10)

f(15)
s(QCIF)

f(10)f(10)

f(5)
s(CIF)

f(15)

f(5)

Fig. 3.3 – A sample Realizable State Machine

In practice, user’s adaptation preferences can be of greater complexity and so is the
corresponding Realizable State Machine.

In cases where the given application shows adaptive characteristics (e.g., the

application state set given in section 3.2.2), the intersection of appS and profS will contain

some elements representing the states to which the default application code can switch,
therefore, to switch across those states, the transitions for the Realizable State Machine
can be derived from the internal adaptation tables. An internal adaptation table lists the
effects of changing adaptation parameters upon system resources. An internal adaptation
table is shown below.

In order to determine the transitions for the elements coming from the application state
set, the priority shown in table 3.1 is used; the lower the number, the higher the priority
and vice-versa.

49

Adaptation Effect on
Network

Effect
on

Server
CPU

Effect
on

Client
CPU

Overhead RAM (Buffer)
Requirement

Battery
Life

Impact Priority

Compression↑ Data
Sent↓

Load ↑ Load ↓ High - - System
wide

5

Format↔ - - - Medium - - System
wide

4

Size↓ Data
Sent↓

Load↓ Load ↓ Medium ↓ ↑ System
wide

3

Pre/ Post
Swap ↓

- - Load ↓ Medium - - Client
side

2

Dimension ↓ - - Load ↓ None ↓ ↑ Client
side

1

Table 3.1 : Adaptation types and their corresponding effects on system resources4

3.6 Towards a Practical Model
Previous sections have only described the model itself, without any reference to it the

use of software engineering techniques to realize it. This section gives a principle
overview of the use of adaptive software engineering techniques and language features
which help realize the proposed adaptation model.

Multimedia frameworks (e.g; Java Multimedia Framework, Microsoft Direct Show,
largely open source GStreamer etc.) are based on the flow-graph5 model. Components of

4 ↑shows increase, ↓shows decrease, ↔ only means change form one to another, - shows not known or
negligible change.

5 While different multimedia frameworks have been using the terms; filter graph, flow graph, pipes etc, a

general term media processing chain or simply a processing chain will be used in this dissertation.

50

a multimedia framework are characterized by their media processing states, therefore,
execution of multimedia applications developed using multimedia frameworks is realized
by switching the states of constituent application components. Thus the way an entire
application executes is determined by the way its components transition from one state to
another, which directly depends upon which events are fired. Use of different media
processing elements can be controlled by altering the application code and once desired
elements are used, tunable parameters of such elements can be tweaked to gain adaptive
performance.

Therefore, a realizable model of adaptive execution (i-e; adaptive processing of
multimedia data in the processing chain) is based on the fundamental principle of
mapping the states of the Realizable State Machine onto the states of underlying
framework components and adaptively controlling the flow of state-transition events. In
principle, this task can be decomposed into Static Composition and Dynamic
Reconfiguration phases.

Since the Realizable State Machine is the resultant of the application state machine and
the user preferences/profiles, its states inherently represent possible adaptive behaviors
contained in them. During the Static Composition phase, by using Aspect oriented
Programming (AoP), code required to carry-out the state transitions dictated by the
Realizable State Machine are woven into those framework components which are used by
the application. Thus the given application code is aspectized with several before, after
and around advice to facilitate interception, diversion and masking of the events used by
the given application code. Additional adaptive code is also hooked with these event
interceptions, thus at the application runtime, pre-processing, post-processing or even

51

completely new code (at certain places) is executed in response to different state
transitions. Thus, in accordance with the user preferences/ profiles, the media processing
chain generated may be partially or completely different from the original applications’
media processing chain. In practical situations, instead of one chain, several chains exist,
each with its own characteristic media processing capabilities and associated resource
demands. At application runtime, when a request to adapt to certain situation has to be
fulfilled, the chain suited best to that kind of processing is installed (this gives coarse-
grain adaptation) and then it the tunable parameters of the media processing elements in
that chain are tweaked (this gives fine-grain adaptation). In summary, the default media
processing chain of the multimedia framework gets altered6. This is shown in figure 3.4
a, b, c and d.

Pre Main PostIN OUT

Media Processing Chain
with Original Application

Code

Altered Pre-Processing
Chain with Aspectized

Code

Pre

Fig. 3.4a – Altering pre-processing chain of the given application code

6 It is notable, that the change in the pre, post or main processing chain elements may either result in
complete replacement of that element with a new one, or only masking of some methods and/or addition of

some others.

52

Pre Main PostIN OUT

Media Processing Chain
with Original Application

Code

Altered Pre and Main
Processing Chains with

Aspectized Code

Pre Main

Fig. 3.4b – Altering pre and main processing chains of the given application code

Pre Main Post

Post

IN OUT

Media Processing Chain
with Original Application

Code

Altered Post Processing
Chain with Aspectized

Code

Fig. 3.4c - Altering post processing chain of the given application code

Pre Main PostIN OUT

Media Processing Chain
with Original Application

Code

Completely Altered
Processing Chain with

Aspectized Code
Pre Main Post

Fig. 3.4d – Altering entire processing chain of the given application

In addition to figure 3.4a,b,c and d, at times more than one media processing chains
can exist in parallel to each other and switching from one to another is done at runtime. In
all the cases, during the Dynamic Reconfiguration phase, already aspectized application’s
media processing chain, which is now hooked with an adaptation policy, is directed to
fine-tune the parameters associated with each media processing element (like a codec, a
renderer, a packetizer etc). It is notable that in addition to the cases shown in figure 3.4

53

above, there are several other possibilities of code aspectization. In many cases, instead
of completely swapping a processing chain component with another one, only
modification of some methods can give the desired adaptive behavior, so that only that
modification is made to the code without swapping the existing chain with a new one.
Subsequent chapters, discuss the theoretical model developed in this chapter from a
practical standpoint, with particular reference to Java Media Framework (JMF).

For practical implementation of any adaptation, a number of factors relating its type are
to be considered. An adaptation parameter may be device specific (e.g; LCD backlight
switching on/off, changing the play-out buffer size on the client etc.) it may be user
specific (e.g; each user defining a different profile for the same content type), or instead
of determining the local device behavior, it may impact system-wide adaptation decision
(e.g; incase of format change, server and client both have to adapt in a coordinated
manner; details in sec. 4.4).

54

Chapter 4

Adaptation Composition and Runtime Environment

for Multimedia Applications (ACREMA)

4.1 Introduction
The adaptation model presented in the last chapter can be easily realized in software if

the applications are adaptive by default; i.e; if they have been programmed to have modal
adaptation characteristics within themselves, however, for non-adaptive applications
(those which only have minimal functionality) but need to show adaptive behavior, some
architectural abstractions that can transform non-adaptive code to execute in an adaptive
manner must be developed. This chapter provides architectural and implementation
details of how the adaptation model discussed in the previous chapter can be extended to
non-adaptive (legacy) multimedia applications. It also discusses some test applications
and how the results can be applied in general. The first section describes media
processing elements of the Java Media Framework (JMF), since sample application code
from JMF was used to realize the concept for the purpose of testing.

4.2 JMF Media Processing Elements
The JMF API mainly consists of several interfaces and a few classes, which abstract

audio and video processing devices used in daily life. Some features of these media
processing elements are tunable, while the framework itself is extendable as a whole to
incorporate new functionality. The table given below, lists important media processing
elements of JMF along with the possible adaptive behaviors that can be attached to each
one of them.

Element Name Possible Adaptation Features
Processor A Processor is the basic element which can be used in a number of ways, starting from capturing

media from input devices, reading from URL or files etc. It can be used to add adaptive behaviors
like size of the display picture.

RTPManager RTPManagers are responsible for RTP session management. Thus any kind of adaptation related to
controlling the network response can be done by using adaptive method code to an RTPManager.

Codecs (Several Of all the elements, codecs are the most versatile for the purpose of tenability. Many different types

55

Types) of coarse and fine adaptations are possible on audio and video, including format, frame-rate, bit-
rate, encoding quality, and different other codec specific parameters.

Buffer A playout buffer can be managed adaptively, and may help reduce jitter.

Renderer A renderer is an abstraction of an output device. Thus several client side adaptations can be realized
by adaptively controlling the renderer.

Device Ports These elements abstract physical device ports.

Effect It is one of the special plug-ins and by writing custom Effect plug-in, various media processing
features of the JMF API can be enhanced, e.g; any kind of manipulation of individual frames or

transcoding the input stream etc.

Packetizers Packetizers are responsible for converting the data generated by the application for transmission
over the network (e.g; encoding for RTP transmission). Depacketizers do the reverse.

Table 4.1 –Java Media Framework’s media processing elements

The above table shows media processing elements controlling the behavior of a
multimedia application. Each application typically uses several of these elements and
each element has several versions, each one with a different set of properties (e.g; the
same codec by one vendor may behave differently the one from another vendor etc).
Different characteristics of each of such elements are controlled by a number of methods,
spread across many interfaces/classes. Such methods need to incorporate code changes in
order to give adaptive behavior to the entire application. To make the given non-adaptive
application, adaptive, code changes have to be made to several methods spread across the
entire application code, adaptation is therefore considered as a cross-cutting concern in
this context. That is why AoP has been used to handle it.

4.3 Architectural Overview of the System Model
The model presented in the previous chapter only describes how user’s adaptation

requirements and the properties of the given multimedia application code are merged
together, giving a theoretical manifestation of the adaptable code. Practically, this process
starts with exploring the given application code using reflection and exploring the media
processing elements present in the application along with methods which can manipulate
those media processing elements. The given application code itself resides on top of the
ACREMA layer as shown in figure 4.1.

Thus, initially the application in question only consists of its basic functionality, and all
the adaptation behaviors are contained inside ACREMA. Transforming a non-adaptive
application into an adaptable one is completed in two phases. During the first phase when
the application is loaded on top of ACREMA, ACREMA generates code patches
according to the Realizable State Machine and weaves them into the given application
code at different points. It is notable that these operations are carried out on byte code of

56

the application (source code is not at all required). This weaving process exports some
‘hooks’ inside the given application code at well-defined adaptation points.

ACRE (Resident Layer)

Device owned resources

Resource Monitor Adaptation Policy

Predeveloped Non-Adaptable Application Code

ACRE (Resident Layer)

Java Virtual Machine

Resource Monitor Adaptation Policy

Predeveloped Non-Adaptable Application Code

ACREMA (Resident Layer)

Device owned resources

Realizable State Machine

Predeveloped Non-Adaptable Application Code

Fig 4.1: Application loaded on top of ACREMA resident layer

These ‘hooks’ which are now part of the modified application-code on one hand and
can be tweaked according to the adaptation policy and on the other hand, can be used to
link to adaptive code patches at the application load time or to adaptively divert the flow
of control during application runtime. In terms of AOP, this whole process is finding the
appropriate join points, composing pointcuts and weaving-in advice code. Figure 4.2
illustrates the concept.

Adaptable Application Code

ACREMA (Resident Layer)

Adaptation Policy

Java Virtual Machine

Device owned resources

Fig 4.2: Aspectized application code produced after generated adaptation behaviors have been weaved-in.

57

The given non-adaptive application code now contains adaptation hooks (green patches
inside yellow, shown in figure 4.2).

At an abstract level, the entire system consists of two main phases: the static

composition phase, which is responsible for identifying the appropriate joinpoints in the
given application code along with the adaptation advice to be woven at those joinpoints
and the dynamic reconfiguration phase, which uses the weaved advice code along with
different adaptation policies and available resource levels, to realize runtime adaptation.
The entities constituting the whole system are shown in the figures 4.3 and 4.4.

4.3.14.3.14.3.14.3.1 Static CStatic CStatic CStatic Compositionompositionompositionomposition

The Static Composition, is meant to produce the runtime adaptable code from the given
non-adaptable application code. A conceptual overview of the process is shown in figure
4.4. The lower portion of figure 4.4, where the Mapping Interface is shown producing the
Realizable State Machine has already been explained in the last chapter, while the upper
portion which is transforming the supplied application code according to the Realizable
State Machine, using an aspect engine is the subject of section 4.5.

Resultant State Set

User's Adaptation
Preferences

Supplied Application Code
(Non-Adaptive)

Mapping Interface

System
Adaptation
Priorities &
Adaptable
Elements

Realizable
 State

Machine

Aspect
Engine

Aspectized
Application Code

Fig. 4.3 – Static Composition Phase

58

 The Mapping Interface takes a list of adaptable elements of all the system elements
available in the JMF API, along with the provided non-adaptive byte code for the
application. The application code is analyzed (details in section 4.5) for all possible
adaptive behaviors which can be added to the classes and methods used by the given
application. The pointcuts are identified at this stage. In addition to specifying the types
of adaptive behaviors desired, mostly other information related to the characteristics of
the device (e.g., battery and cpu power, cpu and lcd adaptation features, network
interfaces etc.) can also be specified. If there are any conflicting (non-realizable) adaptive
behaviors in the specification, they are filtered out. The Realizable State Machine
produced by the mapping interface is used to weave the adaptive code into the supplied
application code, thus transforming it into adaptable code (shown as ‘aspectized code’ in
figure 4.4). Since the aspect engine is a load-time aspect-weaver, the functions of JMF
API, used by the user application are aspectized at the application load time. It is notable
that due to load-time nature of the weaving process, when the application is loaded, the
adaptation hooks are inserted and when the application completes execution and is
unloaded, the application code is again the same as before loading. The changes made to
the code are not permanent. The aspectized application code is made to divert its flow of
control at specified points to the code patches, which give the overall execution an
adaptive behavior.

4.3.24.3.24.3.24.3.2 DynamicDynamicDynamicDynamic ReconfigurationReconfigurationReconfigurationReconfiguration

Dynamic Reconfiguration of the application is done to achieve adaptation at runtime. It
is realized by executing the aspectized code produced during the Static Composition
phase along with the current input from the System State Machine at any time. Vital
resource levels like CPU usage, remaining battery, available network bandwidth and
RAM usage are obtained by the resource monitor, along with the pre-programmed
resource threshold limits. The aspectized application code, which now has various states
of operation is switched from one state to another by the adaptation engine, in accordance
with the possible transitions of the System State Machine. The System State Machine, is
indirectly used to predict future adaptation possibilities by the Adaptation Engine.

59

Aspectized Applicaiton Code
(produced during Static Customization Phase)

System
State

Machine

Adaptation Policy Adaptation Engine

Resource Thresholds

Resource Monitor/Manager

Battery CPU Network RAM

Comm. Interfaces

Fig 4.4: Dynamic Reconfiguration Phase

The time varying input to the Adaptation Engine, fed by the System State Machine,
only predicts adaptation possibilities and anticipates the effects on the system resources.
However, the application may not be capable of taking adaptation suggested by the
System State Machine (because resource variations are independent of both the type of
application and the user desires). Therefore, when its time to adapt, the Adaptation
Engine has to choose from only those choices provided by the System State Machine,
which are realizable by the aspectized code according to the constraints provided by the
adaptation policy.

It may be noted that the user’s adaptation preferences which together with the profile
state set, partly (or in some cases fully) define the Realizable State Machine during the
static composition phase are different from the adaptation policy used at runtime (figure
4.5). The difference is that the adaptation preferences in the static composition describe
all the desired ‘possibilities’ of adaptation and enable the application for coarse-grain

adaptation, while the adaptation policy used at runtime is for fine-grain adaptation,
hence the name dynamic reconfiguration phase. A coarse grain adaptation is
characterized by the way it impacts system resources. In case of coarse-grain adaptation,
whenever the application switches from one mode to another, the change in system

60

resource utilization is significant, while for fine-grain adaptations, this change is very
minor. Examples of course-grain adaptation include, compression scheme change, format
adaptations etc, while tuning codec parameters, quality factor etc are examples of fine-
grain adaptation.

In actual implementation, adaptation requirements are translated onto different plug-ins
of the JMF. Therefore the process of mapping different profiles and preferences to make
applications adaptive is effectively a two step process. In the first step, aspects are
generated from profiles and are woven across different plug-ins constituting a JMF
application. In the second step, adaptation preferences dynamically reconfigure the plug-
ins. For example, normal codecs are made rate-adaptive by inserting mechanism for
frame dropping and adaptive bit-rate control, special effects like converting a colored
image to grey scale are adaptive enabled/disabled at runtime, while insertion of hooks
takes place statically. This reconfiguration of media processing elements facilitates fine-
grain adaptation and management of complete RTP sessions.

4.4 System-wide Adaptation Coordination
Since the application software can be spread across a complete network, adaptation is

viewed as a system-wide coordinated activity. System-wide communication of initial
negotiation and runtime statistics from different resource state machines existing on
communicating peers, along with adaptation decisions from the server and
synchronization signals are sent on the communication interface shown in figure 4.4. In
all cases a machine with more resources and the one that is acting as a server, stays the
adaptation master (controller of adaptation decisions) and the client remains adaptation
slave. Therefore, the process of system-wide adaptation starts with the client application
registering itself with the server side, mentioning the node’s IP address and
communication port and the server, registering the data with the client. In case of
multiple clients, separate media processing chains exist on the server, because, the
adaptation capabilities of all the clients are generally not the same.

During application runtime when there is a need to adapt, depending upon the type of
adaptation required (whether due to scarcity of a local resource or a network resource) the
client tries to adapt locally by altering the local application parameters, if possible (e.g.,
by making the picture small or swapping a local application component like a heavy-
weight video renderer with a lightweight one). If the adaptation needs involvement of the

61

server, the client sends an adaptation request along with the adaptation type. The client
determines the type of adaptation from the parameters of the target state of its own
Realizable State Machine. If the adaptation cannot be handled locally on the client, then
the server coordinates the system-wide adaptation. For example, if currently the client is
receiving an H.263 video with 15 frames per second (the present state of it Realizable
State Machine) and the fluctuation in the system resources switch its System State

Machine to a new state, where it’s Realizable State Machine must transition to a target
state defined by H.263 video of 10 frames per second, then the adaptation request sent to
the server will be:

<?xml version="1.0" encoding="utf-8"?>
<adaptreq type = "adaptdown">
 <format>h263</format>
 <framerate>10</framerate>
</adaptreq>

 After parsing the adaptation request, the server will signal the client if the request
cannot be fulfilled, otherwise, when the Realizable State Machines of both the client and
the server have reached a common state to switch, the client will be signaled to switch to
the target state and the server will fulfill the request. When the client’s request is refused,
the client can send another request later. Apart from the adaptation request, the client
periodically sends feedback reports.

If the server needs to adapt, the server will start the adaptation negotiation in a similar
manner with the client. However, in this case when the server’s and the client’s
Realizable State Machines both have a common state to which they can switch, the server
has to trigger the adaptation. All adaptation co-ordination messages are sent via comm.

Interfaces shown in fig. 4.4.

4.5 State Machines and Code Transformation
Figure 4.3 and figure 4.4 above, only described the phases of static composition and

dynamic adaptation at a conceptual level, without giving details of implementation in
software. Both these only serve as a ‘bridge’ to explain how the theoretical model
presented in chapter 3 is related to the software implementation. In both these figures, the
grey highlighted portions are mainly related to the software implementation of the
adaptation using AoP and are explained in figure 4.5.

Entire ACREMA layer shown in fig 4.5 is an elaboration of the abstract view given in
figure 4.3 and 4.4. It has been shown enclosed inside a dotted boundary, which is further

62

subdivided into two parts by a vertical dotted line, in order to separate the static
composition phase from the dynamic reconfiguration phase. Both the static composition
and the dynamic reconfiguration phases proceed in four passes, shown by the two dotted
arrows in the figure 4.5. During the static composition phase, each pass starts by scanning
the given byte code for adaptable properties of the components that the application loads
by default (e.g; a default codec may support multiple frame rate or bit rates etc). This is
done by the ACREMA Event Listener, which captures the events fired when the media
processing chain takes transitions. Further details of these passes are shown in figure 4.6.
The four different blocks (Composers) shown in figure 4.5, inside the static composition
phase, correspond to four different classes of adaptation described in section 4.6. These
four blocks enable composition of adaptive behaviors in the given application’s byte code
during the four composition passes shown in figure 4.6.

63

CIED Composer

SPPC Composer

MPCS Composer

MPCD Composer

CIED Adapter

SPPC Adapter

MPCS Adapter

MPCD Adapter

Realizable
State

Machine

Adaptation
 Policy

System
State

Machine
Aspect Engine (Gluonj/Javassist)

Java Virtual Machine

System Resources

Given Byte Code Aspectized Code

S

Dynamic Reconfiguration PhaseStatic Composition Phase

Fig 4.5 – An overview of the application code processing through the static composition and dynamic
reconfiguration phases7.

7 In fig. 4.5, other parts of the system like Realizable State Machine generation, network communication
etc have been deliberately omitted to avoid cluttering.

64

Upon completion of the static composition phase, the aspectization process is complete
and the aspectized code of the given application which is now capable of showing
adaptive behaviors is used by the dynamic reconfiguration phase. Four adaptors shown in
figure 4.5 correspond to four different classes of adaptation discussed in section in 4.6.
According to the adaptation policy and in response to the state transitions taken by the
System State Machine at runtime, these four adaptors invoke the adaptive code patches
corresponding to the state transitions of the Realizable State Machine.

Fig. 4.6 – Static Composition Passes

4.6 Adaptation Classification
There can be several ways to classify the adaptations carried out by ACREMA, e.g;

categorizing with respect to the type of application (e.g; running locally on the device
playing stored media, executing on the network as a simple client and server, a multiparty

Pass -1:
 Scan the given code, locate media processing elements;
 Deduce the application type (whether, local or network);
 Use before advice, intercept and prioritize event queue;
 Generate Realizable State Machine;
 Enable all CIED adaptations;

Pass -2:
 Read Realizable State Machine;
 Locate Pre- and Post Processing Adaptation Requirements;
 Mask conflicting methods, using around advice;
 Weave in new Aspects and Generate new Realizable State Machine;

Pass -3:
 Read Realizable State Machine;
 Locate Static Main Processing Adaptation Requirements;
 Mask conflicting methods, using around advice;
 Weave in new Aspects and Generate new Realizable State Machine;

Pass -4:
 Read Realizable State Machine;
 Locate Dynamic Main Processing Adaptation Requirements;
 Mask conflicting methods, using around advice;
 Weave in new Aspects and Generate new Realizable State Machine;
 Enable Parameter Tuning for Runtime Reconfiguration;
 Report Static Composition Completion;

65

conference where several sessions are to be managed separately etc). Classification can
also be done on the basis of the type of implementation (i.e; how are the adaptive
behaviors injected in into the application). Another possible categorization is with
reference to the type of adaptive code injection and replacement which is more related to
ACREMAs’ architecture and type of the supplied byte-code of the application. In the
subsequent sections, the classification will be done from an architectural standpoint with
respect to the type of Aspect oriented features used.

4.6.14.6.14.6.14.6.1 CodeCodeCodeCode InterceptionInterceptionInterceptionInterception Event Diversion Event Diversion Event Diversion Event Diversion AdaptationAdaptationAdaptationAdaptation ((((CIEDCIEDCIEDCIED))))

This type of adaptation is characterized by its existence anywhere in the application
code (i-e; it can effect any of the Pre, Post or Main processing chain(s)) and are handled
by intercepting running code and diverting events. For any non-adaptive application, this
is the simplest type of adaptation and basically requires identification of tunable media
processing elements (if any) constituting the entire chain, along with their properties
which may be tuned to get the desired behavior. Examples of the applications requiring
this type of adaptation include any application that is to play or record a simple
audio/video from/on the local device and the user preferences demand very simple
adaptation. Typical adaptation requirements in such cases are related to demands on bit-
rate, frame-rate, display size, different codec parameters etc.

Since this type of adaptation is characterized by its property of Dynamic Stream
Reconfiguration, it requires minimum code manipulation and the Static Composition
phase is the simplest for such cases. This phase mainly involves identification of the
media processing element(s) which are responsible for giving the desired output.
Identifiers pointing to all such elements are listed, event ACREMA event listeners are
registered to divert to the flow of control to the Adaptation Engine and corresponding
Aspects are added. The UML sequence diagram below shows the process.

66

ACREMA Application

scanByteCode()

addControllerListener()

Manager.createProcessor()

BEFORE {add ACREMAEventListener()}

ACREMAEventListener
message

ConfigureCompleteEvent

getEventSource()

EventSource

CIED Adaptor

AdaptationKnobs[1..n]

getAvailableParameterControls()

intercepted control returned

Fig 4.7: Sequence of operations to weave-in CIED Adaptations

As soon as an adaptive element (like a Media Processor) is created, the pointcut
matches the condition and by adding before advice, the execution of the application is
intercepted and the flow of control is diverted to add ACREMAEventListener, which is
responsible for extracting all tunable parameters as dictated by the Profile S.M. The flow
of control is returned to the given application after all Runtime Adaptation Knobs have
been exported to the CIED Adaptor, which is responsible for parameter-tuning at
runtime, under the constraints of the System S.M. Use of before advice here ensures that
all events are intercepted by ACREMA, before they reach the actual application.

Since this type of adaptation, does not involve code injection into the application
(instead it works only by intercepting the given code and diverting events), it relies
entirely on the default media-processing chain of the application and the extent of CIED
adaptations that can be extracted from the given application code depends upon the
number and type of media-processing elements loaded by the application.
(Implementation example in sec.5.2.1)

67

4.6.24.6.24.6.24.6.2 StaticStaticStaticStatic Pre or PostPre or PostPre or PostPre or Post----Processing Chain AdaptationProcessing Chain AdaptationProcessing Chain AdaptationProcessing Chain Adaptation((((SPPCSPPCSPPCSPPC))))

SPPC Adaptations are characterized by their existence in pre- and/or post-processing
media chains, due to which the additional code required to impart adaptive behaviors is
also in the pre- and/or post processing chains. This type of adaptation involves relatively
more work to be done during the Static Composition phase. Examples can include
adaptation choices made by the user which cannot be fulfilled by tuning existing media
processing elements of the given application. Thus, the requirements are met by adding
additional code fragments which can display the desired adaptive behavior. Practical
examples of this type may include applications involving custom processing of a media
track (if it is desired that the size of the playback display be variable, it may need addition
of a display components, having properties of screen size scaling, or it may be desired to
have a light-weight video-renderer than one the application already has, (in order to suit
the deployment on a resource constrained device). Another example may be addition of
media pre-processing or post-processing elements in the codec chain (e.g; a user opts for
some adaptation which, although, can be provided by the default codec used by the
application, but the output produced cannot be displayed by the default video-renderer or
the codec in its present form takes only specific input video size, in the pre-processing
chain, then the pre-processing chain may need code modifications to handle additional
sizes. Similarly, some post processing (e.g; RGB to YUV conversion or vice-versa) may
be needed.

This kind of adaptation is relatively complicated than the previous one and is mainly
carried out on different pre and/or post-processing elements of the chain. The UML
sequence diagram below shows the operations involved during the Static Composition of
the given application from this type of adaptations.

68

ACREMA Application

scanByteCode() - PASS-2

SPPC Composer

listAllChainPreProcessors()

listAllChainPostProcessors()

Profile S.M

PreProcessors[1..m]

PostProcessors[1..p]
getAdaptationProfile()

AdaptationPreferences[1..q]

maskConflictings()

installPreProcessingChain()

installPostProcessingChain()

SPPC Aspectized Code
generateSPPCAspectizedCode()

SPPC Adaptor

exportRuntimeReconfigurationHooks()
SPPC Hooks[1..r]

Fig 4.8: Sequence of operations to weave-in SPPC Adaptations

All pre and post processing elements are obtained, their media processing properties
explored (through reflection) and in view of the constraints set by the Profile S.M, their
default properties are altered. This may need only partial code injection (using before or
after advice, to add additional code, e.g; in case of video size change) or complete
replacement of a specific element (using around advice, e.g; in case of swapping default
video-renderer with a leight-weight renderer). As a final step, all adaptation hooks are
obtained by exploring the configurable properties of the modified pre and/or post-
processing chain and exported for runtime adaptation.

All related pointcuts are identified, the joinpoints formed and Aspect Advice is woven
to carry out desired adaptive processing. (Complete implementation example in sec.5.2.2)

4.6.34.6.34.6.34.6.3 Main Processing ChaMain Processing ChaMain Processing ChaMain Processing Chainininin Static Static Static Static Adaptations (Adaptations (Adaptations (Adaptations (MPCSMPCSMPCSMPCS))))

This type of adaptation exhibits a higher degree of complexity and is found in the
applications which are written with their basic functionality in mind, but need to adapt to
a different format. It is particularly related to installation of custom codecs. These
adaptations are characterized by their requirement to modify the main processing chain.
A typical example of this type of adaptation involves transcoding from one format to
another, where the transcoding format is selected statically and is not altered

69

dynamically. That is, it has the transcoding property as a coarse-grain adaptation
requirement during static composition phase and may or may not have fine-grain
adaptation requirements during dynamic reconfiguration phase. A practical example may
not even involve media display or play-out, but only, reading one format and storing in
another format or reading in one format, transcoding on the fly and transmitting in
another format. UML sequence diagram given below shows the operations involved.

ACREMA SPPC Aspectized Code

scanByteCode() - PASS-3

MPCS Composer

extractMainProcessingChain()

Profile S.M

MainProcessingChain

PreProcessingChain

getAdaptationProfile()

AdaptationPreferences[1..q]

maskConflicting()

resolveChainIncompatibilities()

generateNewChains()

MPCS Aspectized Code
generateSPPCAspectizedCode()

MPCS Adaptor

exportRuntimeReconfigurationHooks()
MPCS Hooks[1..t]

extractPreProcessingChain()

extractPostProcessingChain()
PostProcessingChain

installNewChains()

Fig 4.9: Sequence of operations to weave-in MPCS Adaptations

In addition to swapping the existing main-processing chain with the new one, an
additional (and iterative) step in this case is to resolve the incompatibilities arising with
the installation of the new codec. This conflict resolution may require changes to pre
and/or post-processing chains (e.g; if a codec accepts YUV input instead of RGB, then
color scale needs conversion, which is basically a pre-processing operation). Like the
previous cases, runtime adaptation hooks from the resulting aspectized code are passed to
the adaptor for runtime tuning. (Implementation example in sec.5.2.3).

70

4.6.44.6.44.6.44.6.4 Main Processing ChainMain Processing ChainMain Processing ChainMain Processing Chain DynamicDynamicDynamicDynamic Adaptations (Adaptations (Adaptations (Adaptations (MPCDMPCDMPCDMPCD))))

This type of adaptation has the highest degree of complexity, both during the static
configuration phase as well as during the Dynamic Reconfiguration phase. It is different
from all other adaptation types due to its resource conflicting nature and very high
overhead. This type of adaptations are resource-conflicting becaue, when the system
adapts with respect to one resource, another resource gets overloaded mainly due to
heavy house-keeping overhead. These adaptations are basically on the main processing
chain, but, occasionally effect pre- and post-processing chains as well. Thus complexity
of the runtime phase is the main factor which differentiates it from PMCS case discussed
above. Example of this kind of adaptation is found where a codec swap is needed at
runtime. In this case mostly an existing processing chain has to be completely replaced
with another, and this process of chain swaps may continue on to multiple sets of pre,
post and main processing chains. Additional code to facilitate synchronized switching of
the media stream from one chain to another is generated. All runtime adaptation hooks
from all complete chains are then exported in sets (each set corresponding to a complete
chain), therefore, switching from one chain to another can exhibit entirely new adaptive
behavior of each element of the chain under consideration. This type of adaptations have
maximum overhead due to the fact that each time a new chain is installed while the
application is running, the one already in place has to be garbage collected. (Complete
implementation example in sec.5.2.4).

Table 4.2 gives a summary of basic adaptation types, categorized on the basis of
implementation type.

Adaptation Identifying Property Implementation Overhead Nature
CIED Exists anywhere in the

program code
Implemented by intercepting running code

and diverting events
Least Non-

Conflicting

SPPC Only in pre and/or
post-

processing chains

Implemented by injecting additional code
in pre and/or post processing chain(s)

More than
CIED

Non-
Conflicting

MPCS Basically in the main
processing chain, but
can effect pre and/or

post processing chains

Implemented by one-time static modification
of the main (and possibly pre and/or post)
processing chain(s) using code injection

Comparable
with SPPC

Non-
Conflicting

MPCD Basically in the main
processing chain, but

mostly effects pre
and/or post processing

chains

Implemented by one or more static code
modifications of the main (and possibly pre
and/or post) processing chain(s) using code

injection along with addition of runtime
switching and stream synchronization code

Highest Resource
Conflicting

Table 4.2 – Summary of adaptation classification

71

4.6.54.6.54.6.54.6.5 Multiple Code ManipulationMultiple Code ManipulationMultiple Code ManipulationMultiple Code Manipulation Adaptations (MCMA) Adaptations (MCMA) Adaptations (MCMA) Adaptations (MCMA)

Each of the adaptation types discussed above corresponded to the four passes of
application code processing in fig.4.5 and fig.4.6. Since the formation of Realizable State
Machine is also dependent on User’s Profile State Set in addition to the Application State
Set, and the User’s Profile State Set is defined by the user along with the adaptation
preferences (also) given by the user, real life adaptation requirements are much complex
than the 4 basic categories of adaptation discussed above. The complexity mainly arises
from the fact that to fulfill user’s adaptation demands, the processing of the given
application code has to undergo multiple passes (shown in fig. 4.6). Therefore MCMA
represents the real life adaptation scenarios where multiple locations in the application
code are aspectized. This is the most complex adaptation situation and can virtually
handle all types of requirements, therefore, is the most practical situation also. However,
the corresponding complexities of both the Static Composition and Dynamic
Reconfiguration phases are proportionally high. Another important feature of these
adaptations lies in the fact that they have to do an additional pass to scan the application
for such methods which can interfere with the ACREMA adaptation implementations and
mask all such methods, so that the user may not be able to deliberately or accidentally
tamper with the system. These adaptations are characterized by existence of multiple
adaptation instances of the types described in sec.4.5.1 to sec.4.5.4. This requirement of
making multiple changes throughout the code-base, where these changes satisfy well
defined conditions, justifies the use of Aspect oriented Programming to handle these
practical cases of adaptation. (Complete implementation and evaluation example is in
Chapter 6.)

4.6.64.6.64.6.64.6.6 Adaptations requiring Adaptations requiring Adaptations requiring Adaptations requiring ACREMAACREMAACREMAACREMA Extensions Extensions Extensions Extensions

The adaptations which are not strictly confined to application code modifications, but
rely on several other factors (e.g; different cross-layer adaptations, which can be carried-
out effectively without making any changes to the application code), fall under this
category. Although, such cases were not directly within the scope of the work presented
here and have not been implemented fully in ACREMA however, a limited extension
related to adaptations with respect to device characteristics have been incorporated. This
can incorporate system wide adaptations (e.g, any specific adaptive resource management
strategy of any network transmission methodology like composition filters etc, layered
transmission with online format conversion into multiple content qualities, without
requiring to write multiple content types).

72

Chapter 5

ACREMA Implementation

This chapter explains specification of adaptation preferences/profiles along with code
snippets to show some sample code injection examples. To implement the concepts
discussed in the last chapters, Java was the language of choice, since it provided all
desired language properties (reflection, meta-data handling, AoP), and a wide variety of
aspect engines, each with a host of features. On top of that Java Media Framework (JMF)
was available to design the test applications and prove the suitability for an existing
platform, therefore application development was carried out in JMF.

5.1 Specification of Adaptation Preferences and Pro files
Adaptation preferences are accepted from the user using a GUI and are internally kept

in XML files. A sample adaptation preferences file is shown in fig. 5.1. Different
switching possibilities given by the user, along with the default application code
determine the possible code instrumentation (adaptive code injection into the given
applicaiotn code), thus defining the states of the application and user state sets, while
preferences define the transitions of the Profile State Machine.

Although, resource usage in multimedia compression largely depends upon the type of
image/video being encoded/decoded, from a number of experiments, the resource
overheads were computed, and based on resource consumption in different types of
operations, adaptations tables were devised.

Table 5.1 – Different adaptation types and relative overheads

Adaptation Type Implementation
 Overhead

Reliability Comments

Format
change↑

Conflicting complicated, high can be faulty consecutive invocations not
recommended

Size change↑ Non-
conflicting

simple, low can be faulty only first time consecutive invocations
possible

Frame rate
change↑

Non-
conflicting

very simple Never faulty consecutive invocations
possible

Image Quality
change↑

Non-
conflicting

Simplest Never faulty Step-wise invocations possible

73

In addition to the coarse-grain adaptation types described in table 5.1, other fine-grain
adaptations also exist. For example, a list of tunable codec parameters is in case of H.263,
the parameters, which in-turn is represented as enabling different modes of the codec.
The default order for codec parameters are no-options, PB-enable, AC-enable, AP-PB-
enable and AP-PB-AC-enable.

Fig 5.1: An excerpt of user’s adaptation preferences

Considering the above mentioned sample profile and adaptation preferences, the
Profile State Set with a default state is derived.

For generation of the Profile State Set, device profile, network profile etc are, taken
into account in addition to user preferences for desired adaptive behavior. A device

<?xml version="1.0" encoding="utf-8"?>
<preferences>
 :
 :
 :
 <compression standard = "h263">
 <codec pref = "1">
 <adaptation type = "format">
 <size pref = "1">16CIF</size>
 <size pref = "2">4CIF</size>
 <size pref = "3">CIF</size>
 <size pref = "4">QCIF</size>
 <size pref = "5">SQCIF</size>
 </adaptation>
 <adaptation type = "framerate">
 <fps pref = "1">highrate</fps>
 <fps pref = "2">midrate</fps>
 <fps pref = "3">lowrate</fps>
 :
 :
 :
 </adaptation>
 </codec>

 :
 :
 :
 </compression>
 :
 :
 :
</preferences>

74

profile describes device characteristics like, capabilities to switch on/off the LCD
backlight, cpu speed-stepping modes, low-power-stand-by mode availability etc. The
network profile describes the connection possibilities and preferences e.g; it can contain
preferences with respect to pricing (per minute usage in GPRS, dependent on the amount
of data transfer in case of GSM, free in case of WLAN etc) which helps the system
decide how expensive an adaptation would be8. A sample profile is shown in fig 5.2.

5.2 Derivation of the Resultant State Machine
The first step in aspectizing a pre-written application code is the identification of

elements which can be used to weave adaptive behaviors. This is done once for whole
framework API (in this case JMF API). The classes, their identifiers and methods, which
represent and control the functionality of media processing elements are identified and
corresponding information stored in a repository. Depending upon the given application
code, the ACREMA Resident Layer thus appropriately identifies all the joinpoints in the
given code (details in the next four sub-sections), such points are usually spread across
the whole code-base, spanning multiple classes. These joinpoints are used in the
Pointcut(s) and Advice for adaptive execution is woven.

8 In the simulation examples for evaluating ACREMA’s architecture and application test cases, switching
between WLAN, GSM or GPRS part was not implemented (due to restrictions of the evaluation
environment). Further more this is not within direct scope of the work presented here; this type of
adaptation comes under ACREMA’s extensions.

75

Fig. 5.2 – An excerpt of sample profile

5.2.15.2.15.2.15.2.1 CCCCIIIIEDEDEDED Code Transformation and Parameter Tuning Code Transformation and Parameter Tuning Code Transformation and Parameter Tuning Code Transformation and Parameter Tuning

 This type of adaptation mainly involves identification of the software elements, which
can be operated in an adaptive manner. Although, some kind of load-time composition is
needed in all cases, in this case, the patched code only exports adaptive features of
already existing components inside the application. Therefore, the adaptation is mainly
confined to parameter tuning of existing components. To illustrate the example, we take a
prewritten application available from Sun Microsystems as a sample java media
framework application.

<?xml version="1.0" encoding="utf-8"?>
<profile>
 <clientside>
 <renderer pref = "1">lightweight</renderer>
 <renderer pref = "2">awt</renderer>
 <renderer pref = "3">native</renderer>
 <renderer pref = "4">java</renderer>
 <dimension pref = "1">large</dimension>
 <dimension pref = "2">medium</dimension>
 <dimension pref = "3">small</dimension>
 :
 :
 :
 </clientside>
 <deviceproperties>
 <cpu type = "ARM">
 <freq>200Mhz</freq>
 <scaling = "3">speedstep</scaling>
 </cpu>
 <ram>64M</ram>
 <lcd level = "2">backlight</lcd>
 :
 :
 :
 </deviceproperties>
 <resourcecosts>
 <connection cost = "high">gprs</connection>
 <connection cost = "low">gsm</connection>
 <conection cost = "none">wlan</conection>
 :
 :
 :
 </resourcecosts>
</profile>

76

:
:
public boolean beginSession()
 {
 MediaLocator mediaLocator = new MediaLocator(fileName);
 try {
 processor = Manager.createProcessor(mediaLocator);
 processor.addControllerListener(new
 ProcessorEventHandler());
 System.out.println("Processor configuring...");
 processor.configure();
 }catch (Exception ex) {
:
:

:
:
@Glue class CIEDComposer{
@Before("{((javax.media.Processor)str).addControllerListener(new

CIEDAdapter());}")
 Pointcut pc = Pcd.define("str",
 $0").call("javax.media.Processor#addControllerListener(..)");
:
:
}

BEFORE advice,
prioritizing the
flow of Events

:
:
class CIEDAdapter extends ControllerAdapter{
 private TrackControl[] tc;
 private Control[] cont;
 Control bitratecontrol, buffercontrol, formatcontrol, frameratecontrol,
 trackcontrol, frameprocessingcontrol, keyframecontrol, h261control,
 h263control, mpegaudiocontrol, packetsizecontrol, qualitycontrol,
 rtpcontrol, streamwritercontrol, monitorcontrol;
 public void configureComplete(ConfigureCompleteEvent ConfigEvent){
 :
 :
 // obtain all possible controls and export hooks for Dynamic Reconfiguration
 :
 }
}
:
:

Non-Adaptive code
being intercepted

Dynamically patching-

in additional code

Fig 5.3: Given application byte-code being intercepted by the Pointcuts residing outside the application, advice being
woven and runtime adaptation hooks being exported as a result

77

Since the adaptation can only be carried out on the application written using JMF, the
framework API was searched thoroughly for the media elements which can be vital in
adapting the multimedia data stream. Considering the following application excerpt in fig

5.3, which declares an element of type javax.media.Processor. It is one such element
which processes multimedia data and can be used to perform adaptive media processing.
Since this type of adaptation can is realized by event-channel interception, to divert the
control flow and monitor the operations and states of the Processor, the ACREMA
Resident Layer adds event listeners on it using sample AoP snippet shown in fig. 5.3.

At runtime, as soon as the method, p.configure() has completed execution, before it
has exited from its body, the pointcut defined in the figure matches the condition and
weaves-in the corresponding advice, thus effectively enabling the control flow diversion

upon event reception, to the class ACREMAEventListener. This class in-turn captures the

source of the event (javax.media.Processor) and adds event listeners on it to keep

track of its states. In the example code it gets a reference to the trackcontrols and thus
can access and adaptively alter the behavior of individual media track to be played by the
application. It is worth noting that the use of @before registers the
ACREMAEventListener by intercepting the application code in such a way that in the
event queue, the desired events are captured by ACREMA, before they can be passed to
the application, so that they can be diverted (and manipulated) adaptively.

Upon completion of this whole chain of events (defined as Static Composition), the
given non-adaptive application, is now capable of showing the sample adaptive behavior.
Like this simple example of a behavior addition, when the entire application code is
aspectized with any such adaptation advice, a number of adaptations can be realized. The
AoP code shown in fig-5.3 captures the reference to the argument passed to the function

configure() of class javax.media.Processor. Its clear from fig-5.3 that its the

variable p of type javax.media.Processor. The sample Aspect Code defines and alias
to the parameter passed and the alias is then used by the advice of this aspect code to
register an event listener with that variable. Therefore, when the byte-code corresponding
to the program snippet shown in fig-5.3 is loaded on top of the ACREMA Resident
Layer, first of all, the code is analyzed and by taking a reference to the media processing
element, ACREMA Event Listener is attached to it, which keeps monitoring that element
for adaptive processing of the media stream passing through it. Once event channel
interception is completed successfully, the different Controls get hooked to ACREMA for
dynamic reconfiguration according to adaptation preferences, and changing system states.

78

5.2.25.2.25.2.25.2.2 SPPCSPPCSPPCSPPC Code Transformation and Parameter Tuning Code Transformation and Parameter Tuning Code Transformation and Parameter Tuning Code Transformation and Parameter Tuning

Like the example shown above, in this case too, the events are intercepted to divert the
flow of control, however the difference here is that additional code is patched. In contrast

to the case described above, where different Controls (e.g., bit-rate, frame-rate etc)

were obtained by intercepting the events and only fine grain adaptation was possible
through dynamic reconfiguration of the existing code, now additional code patched-in
provides the hooks for fine-grain adaptation These adaptations also rely on dynamic
parameter tuning, but the tunable parameters are of those components, which did not
form the part of the given application code, but were, injected by ACREMA at load time
and then at runtime, there parameters are adaptively tuned. Or the cases of load-time
component swapping, where a pre-existing component of the application code is replaced
with another for adaptive processing, however, this component must be a part of media
pre-processing or media post-processing chain.

An example can be the situation, where the application (an RTP Client) was developed
for a powerful computer, is now required to execute on a resource-constrained device like
a PDA. Due to use a resource limited nature of the target device an adaptation possibility
is to use a light-weight video renderer. Thus instead of using the default renderer, a new
renderer is to be used with this pre-written non-adaptive application, for which the user
only needs to have the byte-code available. Then the device characteristics of the new
device will need to be specified (in the device profile). Keeping this adaptation
requirement in view, the sample code shown below will undergo an adaptive
transformation through ACREMA, the details of this process are shown in fig. 5.4.

79

:
:
@Glue class SPPCComposer{
@Before("{((javax.media.Processor)str).addControllerListener(new

SPPCAdapter());}")
 Pointcut pc = Pcd.define("str",
 $0").call("javax.media.Processor#addControllerListener(..)");
:
:
}

Before advice
intercepting control
flow

:
public class SPPCAdapter{
 :
 javax.media.renderer.VideoRenderer ren = new

com.sun.media.renderer.video.DDRenderer();
 :
 :
private TrackControl[] tc;
 Format format;
 public void configureComplete(ConfigureCompleteEvent ConfigEvent){
 tc = ((Processor)ConfigEvent.getSource()).getTrackControls();
 for (int i=0; i<tc.length; i++){
 if (tc[i].getFormat() instanceof VideoFormat){
 try{
 tc[0].setRenderer(ren);
 }catch(Exception e){
 :
 }
 :
 }
:
}

Non-Adaptive code
being intercepted

Dynamically patching-

in additional code

:
:
public boolean beginSession()
 {
 MediaLocator mediaLocator = new MediaLocator(fileName);
 try {
 processor = Manager.createProcessor(mediaLocator);
 processor.addControllerListener(new
 ProcessorEventHandler());
 System.out.println("Processor configuring...");
 processor.configure();
 }catch (Exception ex) {
:
:

Fig 5.4 (a) showing code interception and patching in case of SPPC adaptations

Depending upon the application code a similar analysis is done on other media
processing elements, including codecs, input and output devices, communication

80

channels etc, in order to monitor their processing behaviors and then adaptive behavior is
given to them by altering their default way of data processing.

Fig 5.4 (b): showing the resulting component swap (DirectDraw Renderer swapped with LightWeight Renderer), as
the result of above advice weaving.

Having added the advice, corresponding to variations in the resource demands, when
the element which has been made adaptive switches across different modes of operation,
lead to generation of the Realizable State Machine. In the example code shown above,
since a method call was trapped and it ultimately completed upon addition of a custom
codec to the already provided application code. This codec provides the following
tunable parameters and corresponding to different modes of the codec, there are resource
variations as the table above.

5.2.35.2.35.2.35.2.3 MPCSMPCSMPCSMPCS Code Transformation and Parameter Tuning Code Transformation and Parameter Tuning Code Transformation and Parameter Tuning Code Transformation and Parameter Tuning

Example of this includes format change adaptations where the codec is completely
swapped on the fly. This type of adaptation is vitally different from the previous one by
its nature of affecting the main processing chain of multimedia data processing, whereas
the adaptation mentioned above affects the pre-processing or post-processing chains.

Due to this reason the implementation overhead of MPCS is higher than that of the
previous cases, however, this overhead is mostly confined to application load time. A
practical example shown below is of an application where the application was initially
designed to use a specific compression and the user wants a different one.

81

:
:
public boolean beginSession()
 {
 MediaLocator mediaLocator = new MediaLocator(fileName);
 try {
 processor = Manager.createProcessor(mediaLocator);
 processor.addControllerListener(new
 ProcessorEventHandler());
 System.out.println("Processor configuring...");
 processor.configure();
 }catch (Exception ex) {
:
:

:
:
@Glue class MPCSComposer{
@Before("{((javax.media.Processor)str).addControllerListener(new

MPCSAdapter());}")
 Pointcut pc = Pcd.define("str",
 $0").call("javax.media.Processor#addControllerListener(..)");
:
:
}

BEFORE advice,
prioritizing the
flow of Events

:
:
class MPCSAdapter extends ControllerAdapter{
 Codec[] H263AdaptationCodec = {new

com.ibm.media.codec.video.h263.NativeEncoder()};

 private TrackControl[] tc;
 Format format;
 public void configureComplete(ConfigureCompleteEvent ConfigEvent){
 tc = ((Processor)ConfigEvent.getSource()).getTrackControls();
 for (int i=0; i<tc.length; i++){
 if (tc[i].getFormat() instanceof VideoFormat){
 try{

 tc[i].setFormat(new VideoFormat("RGB",new Dimension(352, 288),
 VideoFormat.NOT_SPECIFIED, null,
 VideoFormat.NOT_SPECIFIED));
 tc[i].setCodecChain(H263AdaptationCodec);
 }catch(Exception exp){
 :

 :
 }
 }
 }
 }
:
:

Non-Adaptive code
being intercepted

Dynamically patching-

in additional code

Fig 5.5: A codec chain being swapped with a new H.263 codec during the static composition phase of an MPCS
adaptation.

82

5.2.45.2.45.2.45.2.4 MMMMPPPPCCCCDDDD Adaptation Implementation Adaptation Implementation Adaptation Implementation Adaptation Implementation

In contrast with the adaptations in the previous cases, this is the final phase of
applcaiton processing and scans the provided non-adaptive byte-code, for necessary code
swaps, in view of the profile state machine, when multiple media processing elements are
needed in the main processing chain of the application, such that during application
runtime, such changes need to be incorporated on the fly. A typical example of this type
of adaptation is implemented as a dynamic codec swap requirement.

In MPCD Adaptations several complete media processing chains are installed during
Static Composition phase and during the Dynamic Reconfiguration phase, those chains
are activated. This, however involves additional effort to synchronize media data,
stopping one chain, to switch to another and so on. Due to this, in practical applications,
MPCD adaptations get lowest priority and are used rarely, since they often lead to
resource usage conflicts.

Implementation details of different adaptations as given in this chapter, differ from
each other mainly during Static Customization phase. During Dynamic Reconfiguration,
all adaptations are invoked in response to custom events, fired due to transitions of the
System State Machine.

83

:
:
public boolean beginSession()
 {
 MediaLocator mediaLocator = new MediaLocator(fileName);
 try {
 processor = Manager.createProcessor(mediaLocator);
 processor.addControllerListener(new
 ProcessorEventHandler());
 System.out.println("Processor configuring...");
 processor.configure();
 }catch (Exception ex) {
:
:

:
@Glue class MPCDComposer{@Before("{((javax.media.Processor)str).addControllerListener(new

MPCDAdapter());}")
 Pointcut pc = Pcd.define("str",
 $0").call("javax.media.Processor#addControllerListener(..)");
:
}

BEFORE advice,
prioritizing the
flow of Events

:
class MPCDAdapter extends ControllerAdapter{
 Codec[] H263AdaptationCodec = {new

com.ibm.media.codec.video.h263.NativeEncoder()};
 Codec[] MJPGAdaptationCodec = {new

com.sun.media.codec.video.jpeg.NativeDecoder()};
 private TrackControl[] tc;
 Format format;
 public void configureComplete(ConfigureCompleteEvent ConfigEvent){
 tc = ((Processor)ConfigEvent.getSource()).getTrackControls();
 // default processing chain
 for (int i=0; i<tc.length; i++){
 if ((tc[i].getFormat() instanceof VideoFormat)){
 try{

 tc[i].setFormat(new VideoFormat("RGB",new Dimension(352, 240),
 VideoFormat.NOT_SPECIFIED, null,
 VideoFormat.NOT_SPECIFIED));
 tc[i].setCodecChain(MJPGAdaptationCodec);
 }catch(Exception e1){
 :
 }
 }
 :
 // DYNAMICALLY INVOKABLE DURING RECONFIGURATION
 :
 for (int i=0; i<tc.length; i++){
 if ((tc[i].getFormat() instanceof VideoFormat)){
 try{

 tc[i].setFormat(new VideoFormat("YUV",new Dimension(352, 288),
 VideoFormat.NOT_SPECIFIED, null,
 VideoFormat.NOT_SPECIFIED));
 tc[i].setCodecChain(H263AdaptationCodec);
 }catch(Exception e2){
 :
 }
 :
 }
}

Non-Adaptive code
being intercepted

Dynamically patching-

in additional code

Dynamically patching-

in additional code

Fig 5.6 (a): Multiple processing chain installation of a DMFC adaptation. I/O sync. code left out for simplicity.

84

Fig 5.6(b): resulting change in dynamic adaptation
hooks, (initially JPEG quality control was available),
now in addition to H.263 quality control a number of
other fine tuning parameters are exported as
adaptation hooks.

Fig 5.6(c): multiple elements of the media processing chain have been swapped, as a result of main chain
incompatibility resolution process (described earlier in sec.4.5.4)

85

Chapter 6

ACREMA Evaluation

6.1 Evaluation Test Bench
This chapter provides details of the evaluation setup and quantitative measurements

made in order to measure the efficiency of ACREMA’s architecture and adaptive code
injection, compilation and execution overheads. The evaluation of ACREMA was
conducted in an emulated test-bench, which simulates situations that can occur in real
life. The experimental setup to emulate virtual machines was realized as shown in the
diagram below:

Fig 6.1 – Evaluation test bench

Using virtual machines, a network of clients and server was emulated on an Intel Dual
Core, 2.0 GHz, machine such that one client is running application on ACREMA while
the other without it. Different scenarios of network bandwidth variation were simulated
by selective packet forwarding/dropping through the emulated router while CPU load
variations were simulated by randomly, starting and stopping graphic animation
applications, so that the emulated virtual machines running ACREMA were subject to
varying CPU load.

86

Different compression schemes make use of different varying properties of the media
data, therefore, to test the response of the applications running in ACREMA, a sample
uncompressed movie file was streamed under ideal network and CPU conditions and
sample profiles of transmission in H263 and MJPEG were generated. Having established
the following relationship under ideal conditions, adaptation policy was devised.

– MJPEG bandwidth requirement >> H263 bandwidth requirement

– MJPEG Client CPU load > H263 Client CPU load

– MJPEG Server CPU load << H263 Server CPU load

 Since main purpose of the work presented in this dissertation was to test the
effectiveness of the principles of AoP, when applied to achieve multimedia adaptation, on
by aspectizing pre-written applications in a pre-designed framework (and not to devise a
comprehensive adaptation algorithm) adaptation policy was made dependent upon user’s
preferences, along with the default adaptation priorities coded in the internal tables.

Different aspects of overall evaluation can be categorized under three broad classes of :

• Architectural Evaluation

• Application Test Cases, and

• Qualitative Evaluation

6.2 Architectural Evaluation of ACREMA
In order to measure different architectural overheads, a high precision timer, based or

the actual hardware of the machine was used by accessing the microprocessor registers.
On an Intel Dual Core machine with 2GHz clock frequency, the maximum precision
achieved was 25.4222 micro-seconds.

Since adaptations in ACREMA take place in two different phases: Static Composition
Phase and Dynamic Reconfiguration Phase, ACREMA’s own architectural evaluation
was done in terms of load time and runtime latencies. Load time latencies occur due to
that fact that the application code in Aspectized at load time, while runtime latencies are
the adaptation invocation latencies. Fig 6.2 shows Static Composition Phase latencies
averaged over 10 runs of test cases.

87

Static Composition Phase Latencies

0

50

100

150

200

250

300

350

400

450

SPPC Adaptation SPCS Adaptation MPCD Adaptation

Adaptation types

T
im

e
(m

ill
i s

ec
)

Fig. 6.2 –Adaptation Composition Latency Graph (load time)

Since CIED Adaptations rely on event interception only, the latencies in this case are
only runtime latencies. For the other three types (SPPC, MPCS and MPCD Adaptations),
latencies are mainly loadtime. For these 3 different cases of adaptation ranged from
125.792 milli-sec in case of SPPC Adaptations (minimum) to 398.8715 milli-sec in case
of Dynamic Flow Diversion, where adaptive code for dynamic codec swap was to be
injected codec swap was involved at runtime. This figure may seem a significant
overhead, however it is worth noting, that all this overhead is load-time overhead.

Table 6.1 and fig. 6.3 show relative adaptation invocation latencies for different
invocations. Each bar is an average of 10 readings. The normal case depicts the case of
hand-coded adaptation (in blue), while the instrumentation done by ACREMA is plotted
in pink. These are the per-invocation latencies, however, in an application there may be
several adaptation invocations, in which case the latencies will add up.

88

Adaptation Normal ACREMA
Bit Rate Adaptations 1525 2414

Buffer Control Adaptations 2131 2454

Format Control Adaptations 2041 2898

Frame Processing Control 2052 2884

Frame Rate Control 2048 3000

H.263 Control 2043 2083

Key Frame Control 2019 2840

Monitor Control 2061 3062

Mpeg Audio Control 2039 2844

Packet Size Control 2067 2900

Quality Control 2123 2980

RTP Control 2041 2947

Media Track Controls 2074 2836

Stream Writer Control 2021 2969

Table 6.1 – Comparison of Adaptation invocation Latencies

Adaptation Latency Comparison

0

500

1000

1500

2000

2500

3000

3500

Bit R
at

e
Ada

pt
at

ion
s

Buf
fer

 C
on

tro
l A

da
pt

at
ion

s

For
mat C

on
tro

l A
da

pta
tio

ns

Fra
me P

ro
ce

ss
ing

 C
on

tro
l

Fra
me R

ate
 C

on
tro

l

H.2
63 C

on
tro

l

Key
 F

ra
me C

on
tro

l

M
on

ito
r C

ont
ro

l

M
pe

g A
ud

io
 C

on
tro

l

Pac
ke

t S
ize

 C
on

tro
l

Qua
lity

 C
on

tro
l

RTP C
on

tro
l

M
ed

ia
Tra

ck
 C

on
tro

ls

Stre
am

 W
rit

er
 C

on
tro

l

Adaptations

T
im

e
(m

ic
ro

-s
ec

)

Normal ACREMA

Fig 6.3 – Adaptation Invocation Latency Graph (runtime)

From the graphs of adaptation composition latencies (fig 6.2) and dynamic adaptation
invocation latencies (fig. 6.3), it can be inferred that irrespective of the simplicity or

89

complexity of a real life adaptation situation, adaptation composition latencies are much
higher than the adaptation invocation latencies. Thus ACREMA successfully shifts most
of the overall temporal overhead of any adaptation to load time, while minimum (in most
of the cases negligible) latencies appear during application execution time. This is in
accordance with the general understanding of adaptations found in contemporary
scientific literature, according to which, it’s better to start an application with some delay,
in order to avoid runtime disturbance, than to start an application quickly and disturb it
afterwards.

ACREMA versus Normal Transmission under Ideal Condi tions

-50000000

50000000

150000000

250000000

350000000

450000000

1 2 3 4 5

Frame Rate (fps), SCALE : Each Unit = 5 frames per sec

D
at

a
T

ra
ns

m
itt

ed

(M
b)

0

5

10

15

20

25

%
 C

P
U

 L
oa

d

Data Transmitted (Normal) Data Transmitted (ACREMA)

CPU Load (Normal) CPU Load (ACEMA)

Fig 6.4 – Comparison of Network Bandwidth Requirements

ACEMA was evaluated for runtime overhead on the CPU and the network in
comparison with the normal case (i-e; application running without ACREMA), under
ideal conditions. The results are shown in fig. 6.4. It was observed that there is no
significant load on the CPU or the Network. A minor difference can be seen from the
graph, in case of CPU, however this is with in the range of experimental error. Thus
under ideal network conditions, ACREMA does not overload system resources more than
they will be loaded without ACREMA.

90

6.3 Application Test Case Evaluation
As described in (sec.4.5.1 to sec.4.5.4) and (sec.5.2.1 to sec.5.2.4), the applications can

be categorized with respect to the type of code (event) interceptions (diversions) they
utilize. In order to further ensure fair evaluation of ACREMA architecture and
implementation, the application type used in all cases of simple and complex adaptations
discussed below, was kept the same, so that any discrepancies in quantitative analysis can
be avoided by keeping the measurement-reference constant for all different types of
simple and complex adaptations. For the four main categories of adaptations, application
performance was measured as detailed below.

The performance evaluation is based around taking pre-written non-adaptive
application using JMF API and evaluating them for the efficiency of adaptation advice
injection. The applications tested in this regard fall under two main categories: those
which were written with minimum functionality (e.g, a simplest application consisting of
an RTP server and a corresponding client), and those which the user has already written
to incorporate some feedback or monitoring (a case of pre-implemented limited adaptive
behavior).

In all the sample evaluations of the system presented in the subsequent sections of this
chapter, the worst case scenario was put to test. The worst case scenario is defined by the
following two characteristics:

• The given application’s byte-code should be completely void of any kind
of default adaptation behavior (so that any kind of pre-existing behavior
e.g; programmed parameter tuning etc. neither adds to nor subtracts from
the adaptive behavior(s) dictated to the application by ACREMA).

• The given application code and the adaptation preferences described by
ACREMA, should exist in two completely independent units (so that the
genuine efficiency of Aspect oriented Programming paradigm, applied in
the context of this thesis can be evaluated in true spirit of the paradigm
itself).

Sections 6.3.1 to 6.3.4 show single invocation of a specific type of adaptation. In these
cases, except the one specific adaptation under test, all others were masked from
triggering, while a case of multiple adaptations is shown in section 6.3.5.

91

6.3.16.3.16.3.16.3.1 CodeCodeCodeCode InterceptionInterceptionInterceptionInterception Event Diversion Event Diversion Event Diversion Event Diversion (CIED) (CIED) (CIED) (CIED) AdaptationsAdaptationsAdaptationsAdaptations

These adaptations are the simplest to implement and have the minimum overhead,
however are limited in their adaptation capabilities. It incorporates all those cases, where
no additional code needs to be injected to the given application code and the adaptation
policy works by hooking itself with the media processing events of the application
through the Aspects, used by ACREMA. The figure below shows Quality Factor
Adaptation of an MJPEG video stream from 8 down to 2 and then up to 10 (maximum).
Quality Factor mainly effects Server CPU, this is a non-conflicting adaptation. The
adaptation was triggered by starting graphic application at time point 65 which ended on
104. The adaptation latency in this case is negligible (approximately 3 milliseconds
directly obtainable from fig. 6.3).

Changing Quality Factor for CPU Load Adaptation

0

5

10

15

20

25

30

35

1 9 17 25 33 41 49 57 65 73 81 89 97 105 113 121 129 137 145 153 161

Time (sec)

C
P

U
 L

oa
d

(%
)

Quality Adaptation

Fig 6.5 – Server CPU Load adaptation by varying MJPEG Quality Factor, with negligible adaptation latencies.

6.3.26.3.26.3.26.3.2 Static Static Static Static Alteration of Alteration of Alteration of Alteration of Pre or Post Processing ChainPre or Post Processing ChainPre or Post Processing ChainPre or Post Processing Chain (SPPC Adaptation) (SPPC Adaptation) (SPPC Adaptation) (SPPC Adaptation)

An example of SPPC adaptation is encountered when adaptive alterations to the post
processing media chain is required by swapping a heavy weight component
(DirectDrawRenderer) with its light weight equivalent (LightWeightRenderer). In the
example adaptation scenario shown in fig. 6.8. Since this is an adaptation that affects, the
client side only, network transmission has not been shown in the figure. In the figure
below, at sample time point 70, the default video renderer is swapped with its light
weight equivalent and the application on the resource constrained client device, demands
lesser CPU share. This is an example of a non-conflicting post-processing chain local

92

adaptation, which can be carried out in isolation and synchronization of the client and
server is not required.

Video Renderer Swap

0

5

10

15

20

25

1 10 19 28 37 46 55 64 73 82 91 100 109 118 127 136 145 154 163 172 181 190 199 208 217

Sample Time (sec)

%
 C

P
U

 L
oa

d

% CPU Load

 Fig 6.6 – Static Pre/Post Processing Adaptation –Example of Client-only adaptation

6.3.36.3.36.3.36.3.3 Static AlterStatic AlterStatic AlterStatic Alterations of Main Processing Chainations of Main Processing Chainations of Main Processing Chainations of Main Processing Chain

The implementation was tested to adapt a pre-written (non-adaptive) video
conferencing application transmitting H.263 coded CIF size frames in WLAN, to adapt to
bandwidth variations. The results are shown in the fig 6.9. The application was
configured to adapt down (decrease frame rate) and adapt up (increase frame rate)
according to the two threshold values (arbitrarily set). As an example of adaptation policy
in this case, reaching the upper threshold value of percentage packet loss triggers the
‘adapt-down’ behavior, while staying in the ‘adapt-down state’ for five consecutive time-
points triggers the ‘adapt-up’ behavior. In the figure, ‘adapt-down’ is invoked at time-
point 13, upon crossing the threshold of 5% loss, and again at time-point 25, while
‘adapt-up’ is invoked at after 5 stable time-points at 30. (The experimental results shown
in this case were obtained by simulating the scenario on a 1.1 Ghz, single processor PC).

93

Both the adapt-down and adapt-up operations take place instantaneously, with a very
small invocation latency.

0

10

20

30

40

50

60

70

80

90

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42

Time Points

C
P

U
 L

oa
d

0

1

2

3

4

5

6

7

8

9

10

%
 P

ac
ke

t L
os

s

Server CPU Load Client CPU Load % Packet Loss

Fig 6.7 – Main Processing Chain Static Adaptation – Changing frame-rate in H.263 video

6.3.46.3.46.3.46.3.4 Dynamic Data Flow Diversion Dynamic Data Flow Diversion Dynamic Data Flow Diversion Dynamic Data Flow Diversion

This type of adaptation is the most resource intensive and incurs the heaviest load-time
overhead. The performance of ACREMA for such adaptations was measured by starting

94

a client-server session, where initial transmission was in MJPG format in a stable system
state. At time=35, packet loss starts increasing and the system remains stable no longer.
As the packet loss continues for the next 5 points, a format adaptation is triggered, which
results in stopping the current flow, synchronizing and starting a new media data flow
with H.263 codec. However, as soon as ACREMA starts adaptation operation, and both
client and server synchronize to initiate the codec swap and flow diversion operation,
CPUs on both sides experience a heavy load. It is notable that dynamic behavior of this
adaptation is resource-conflicting (i-e; adapting the application to relieve one resource,
result in temporary overload of another)9. Fig 6.8. a significantly long adaptation latency
due to the same reason. The data transmission even drops down to zero, which occurs due
to switching from one media processing chain (chain swapping discussed in chapter 3) to
another.

9 This also explains presence of a small wait time between successive adaptations, in the adaptation policy,
because, if the adaptation policy is void of a small wait-time between two consecutive adaptations, the
system may go into a thrashing state, where, the overall resource consumption by the adaptation engine

would increase the overall resource consumption by the application under test.

95

Codec Swap Adaptation

0

1000000

2000000

3000000

4000000

5000000

6000000

1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 93

Time (sec)

D
at

a
se

nt
 a

nd
 re

ce
iv

ed

(b
ps

)

0

5

10

15

20

25

30

35

40

45

50

%
 C

P
U

 L
oa

d

Data sent Data received Server CPU Load Client CPU Load % Packet Loss

Fig 6.8 – Codec Swap Adaptation – Conflicting Adaptation Example

6.3.56.3.56.3.56.3.5 Multiple Adaptation Application Test CaseMultiple Adaptation Application Test CaseMultiple Adaptation Application Test CaseMultiple Adaptation Application Test Case

Fig 6.9 shows results of mixed and multiple frame-rate and size adaptation invocations
on an MJPG video in response to simulated packet loss due to custom firewall switching
on and off on the router, shown in fig 6.1. The allocated bandwidth (shown red) in fig 6.9
was periodically increased and decreased in several steps to observe the adaptation
response. It may be noticed that this variation in allocated bandwidth stays constant for
some time before changing. It is due to the fact that adaptation is not based on
instantaneous values, but uses a moving average instead. Moreover, whenever there is a
need to adapt, the adaptation process is not very abrupt. Also, at times, when the packet
loss reduces to zero, if the adaptation engine has already adapted-down, then it may
trigger adapt-up operation, however, at the same time, the allocated bandwidth may
further reduce. An example of such a deceptive decision may be observed at point 25,
100 and 101 and 105 where the already adapted application is trying to adapt-up, while
the allocated bandwidth is still not sufficient.

It may also be observed that even in presence of ACREMA, although the percentage
packet loss decreases considerably, it is not zero, because, whenever an adaptation is

96

invoked, it is triggered with some delay (a ‘lazy’ response). The adaptation is invoked on
the basis of packet loss reported by a three-term moving-averager, therefore the response
in not instantaneous.

Multiple Adaptation Invocations

0

10000

20000

30000

40000

50000

60000

70000

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97 103 109 115 121 127

Time (sec)

D
at

a
T

ra
ns

m
itt

ed
 (

bp
s)

0

5

10

15

20

25

30

35

40

45

50

%
 P

ac
ke

t L
os

s

Normal Transmission Adaptive Transmission Allocated Bandwidth

% Packet Loss (Normal) % Packet Loss (ACREMA)

Fig 6.9 – Multiple adaptation invocations in a complex real-life situation

At the same time it can also be observed that ACREMA can reduce packet loss by a
significant amount (the actual quantity will depend upon a number of factors and varies
from case to case).

6.4 Qualitative Evaluation
Qualitative evaluation can be done in the cases, where quantitative evaluation is not

possible. In case of ACREMA, the following factors may be considered for qualitative
evaluation.

6.4.16.4.16.4.16.4.1 ScalabilityScalabilityScalabilityScalability

Scalability can be addressed from two view points: scalability of the software system
as well as scalability of performance of the system, with respect to multimedia
application type and size. With respect to the size of application (software), ACREMA,

97

can adaptively aspectize an application of any size, however, if complexity of adaptation
requirements to be fulfilled is increased by the user, then the latencies will increase
correspondingly. The exact increase in latencies will be dependent upon the size and type
of the pre-written non-adaptive software application.

With respect the complexity of the multimedia, ACREMA should scale very well,
because communication overhead of ACREMA is negligible. There may be some
inherent limitation on communication scalability due to RTCP, which can be attributed to
the protocol (not ACREMA). Runtime computational overhead depends mainly upon the
number of times adaptation is invoked. Static computational overhead will be
considerable, however, it can be tolerated in most of the cases, since it occurs only at load
time.

6.4.26.4.26.4.26.4.2 GeneralityGeneralityGeneralityGenerality

Although, the implementation presented here has been specific to Java Media
Framework, its’ architecture relies on fundamental principles of reflection and Aspect

oriented Programming. This makes ACREMA a system capable of being developed and
extended to various other languages and media frameworks.

6.4.36.4.36.4.36.4.3 CoCoCoCo----ExistenceExistenceExistenceExistence

ACREMA in its present state is limited to application oriented adaptations, which don’t
rely on any specific network service and are not bound to any particular protocol.
Although it has been tested with RTP/RTCP, since JMF facilitates use of custom
transport, ACREMA is not limited to a specific protocol too. It does not interfere with
any other adaptation system existing on the same device which may be meant to handle
adaptive features of other applications. Therefore, it can co-exist on a system with any
other such system, as long as ACREMA is independently responsible for adapting
multimedia applications.

6.4.46.4.46.4.46.4.4 LimitationsLimitationsLimitationsLimitations

The limitations described in this section relate to display of unpredictable behavior. It
can mainly happen when the user deliberately incorporates some code which can trigger
any actions, and the events, method signatures or the system elements, involved with
realization of those behaviors are the same which are used by ACREMA to inject
automated adaptations. The reason for this anomalous response is the fact that, actions
carried out depend upon the order in which the events are caught by the user application

98

and the ACREMA. This limitation, however, occurs only when the user violates the
fundamental principle of keeping the behavioral aspects separate from the application
core functionality and also by making some programming error (i-e, the limitation is only
seen in the cases, where the user deliberately programs an application to defeat the
system!).

99

Chapter 7

Outlook and Future Directions

7.1 Contributions
While in existing research and most of contemporary work, middleware has been

extensively used as a means to achieve objectives like distribution transparency by
increasing the level of abstraction, the abstraction achieved so far is still limited to the
extent that requires an application developer to develop additional code which serves as
an interface between the application and the middleware. During application loadtime
and execution the middleware stays as a separate layer underneath the application. This
adds to the processing overhead on one hand and the abstraction provided is still limited
since some ‘interfacing code’ needs to be developed by the application developer on the
other hand. The Aspect oriented approach presented in this dissertation increases the
level of abstraction by providing the application developer means of configuration
(instead of requiring to develop ‘interfacing code’), reduces the software footprint since
the middleware does not exist as a separate layer underneath the application while
increasing the execution efficiency at the same time, since there are no extra copying and
un-copying operations involved in contrast with middleware. However, all this is
achieved at the cost of being a domain-specific environment (i-e., works with multimedia
applications only), which may not be seen as a major limitation in this case, since the aim
was to solve a domain specific problem. The contribution of this work lies in the fact that
two conflicting properties of efficiency and abstraction which have been difficult to
handle in contemporary middleware implementations has been successfully (but domain
specifically) tackled in this dissertation.

Table 7.1 summarizes the contribution of this work along with a comparison with
existing solutions.

100

Existing Solutions ACREMA Comparison
Middleware layer exists as a separate layer

beneath the application. Additional layer is not
suitable in case of multimedia applications

because it will introduce un-necessary overhead
in copying packets and transfer of other control

signals to and from this layer. Even those
approaches which handle stream based flows by
bypassing this layer, do so partially and they are

unable to properly handle application-side
adaptations.

The System Software Layer responsible for
adaptation exists separately at the time of Static

Composition (giving the benefits of separation of
functional and behavioral concerns), but weaves
itself into application at runtime (thus giving the
performance benefits of embedding adaptation

code into the application.

ACEMA ↑↑10

The programmer is required to program QoS or
Adaptation behavior using some purpose-built
API, which may at times involve some kind of
knowledge of the runtime circumstances of the

system. (precise knowledge of this type is
generally not available due to complex runtime
system resource and requirements fluctuations)

The programmer does not need to program using
any purpose-built API and knowledge of

complex adaptations is also not required. Only
users preferences, together with the application

type and device profiles will generate the
adaptation requirements and program them.

ACREMA ↑

Mainly target system-side adaptations,
involving pre-hand resource reservation, which
can lead to waste of reserved resources in case
of multimedia applications, which can tolerate

some QoS degradation

Mainly targets application-side adaptations,
involving no pre-hand resource reservation. In

case of multimedia applications which are
mostly elastic in nature, this will generally do

well, however in some cases, this may temporary
disrupt the communication.

Generally,
ACREMA ↑

In some cases,
ACREMA ↓

Table 7.1 – Summary of Contributions

7.2 Future Extensions
Having presented and evaluating ACREMA in the last few chapters, future work can

take mainly two directions:

10 ACEMA ↑↑ denotes ACREMA is much better. ACREMA ↑ denotes ACEMA is better.

101

7.2.17.2.17.2.17.2.1 Software Related ExtensionsSoftware Related ExtensionsSoftware Related ExtensionsSoftware Related Extensions

• Since Aspects are mainly used for software re-factoring and handling
concerns spread across several modules, ACREMA was developed to
address unmanaged application-oriented adaptation. Since Aspects can be
used to make adaptive modifications to existing non-adaptive code and
also because adaptation, by its very nature is a cross-cutting concern. In
addition to that, ACREMA can be extended to incorporate any kind of
cross-layer or resource-oriented adaptations. Therefore, system-oriented
QoS work may be combined to complement the solution provided and a
comprehensive approach for cross-layer adaptation (including the
application-side adaptations) can be realized, to address the QoS and
Adaptation problem more comprehensively.

• With respect to support for multimedia development frameworks, the
current implementation can be extended with DSJ[Direct Show Java], to
support a more feature rich multimedia API. Since the prototype
implementation was based around JMF, Mobile Multimedia API
(MMAPI), can be easily supported on the client side. The architecture of
ACREMA relies on fundamental principles of reflection and Aspect

oriented Programming and not only reflective features are now supported
by most of contemporary languages, a wide range of aspect weavers also
exists for a number of languages. Therefore, the same system can be
implemented in other languages (e.g; on .Net platform, C# or others). This
will enable support for multimedia frameworks already developed in other
languages (e.g; largely open source G-Streamer).

• The adaptation process handled in current implementation was based on a
number of if-then-else decisions. However, the adaptation process by its
very nature can be better handled using fuzzy / neural algorithms.
Therefore, future work may also be in the direction of integrating such
adaptation algorithms.

7.2.27.2.27.2.27.2.2 Dynamically Reconfigurable HardwareDynamically Reconfigurable HardwareDynamically Reconfigurable HardwareDynamically Reconfigurable Hardware Related Ex Related Ex Related Ex Related Extensionstensionstensionstensions

During the course of this project the following two observations were made
regarding computational overhead:

102

• It was observed a number of times, that modifying a pre-written software
can involve significant amount of overhead, which in case of multimedia
can be intolerable at times. For example in case of codec swap in
particular, both the Client and Server CPUs are overloaded, due to the
requirement to load a number of java classes, since most of the codecs use
Java Native Interface (JNI), this process is slowed down and
synchronizing media streams further slows down the over all task.

• Multimedia processing (like encoding and transcoding in particular)
involve a number of mathematical operations, due to which performance
of a software codec is not as good as a hardware codec.

Considering implementation of such operations in hardware, in particular dynamically
reconfigurable FPGA’s seems promising. In this regard, researchers have already done
some fruitful work using dynamically partially reconfigurable hardware, where different
hardware configurations are used by dynamically changing data paths to switch across
several algorithm implementations. For example, [AFK+2006] and [PAK+2007] provide
such a solution for network processors, while [CHP+2006] presents a reconfigurable
multimedia audio player on FPGA, which can download a configuration bit-stream from
a remote database, in case of a codec being absent and reconfigure the FPGA with the
new codec.

Another motivating factor that suggests the implementation of ACREMA’s
architecture on dynamically reconfigurable hardware is due to the fact that Aspects offer
a very good way of code instrumentation, and the applicability of the Aspect Oriented

Programming to modular reconfigurable computing has been formally studied and
proved in [VB2007].

As a natural extension of the work presented in this dissertation, implementation of
ACREMA’s architecture in dynamically reconfigurable hardware is therefore proposed.
The proposed implementation will mainly consist of a general purpose CPU and an
FPGA which can be dynamically, partially reconfigured (e.g., Xilinx Virtex II Pro) on
board. Communication between the JVM running on the CPU and codecs implemented in
the FPGA can be established by using JNI. Using Aspect Oriented Programming, all
responses to handle transcoding and codec swap adaptations (which have a very high
overhead) can be intercepted and served by the hardware codecs implemented inside the
FPGA. As swapping a codec in software involves loading a number of new classes,

103

unloading the already loaded ones, running garbage collector, synchronizing media
streams etc, the CPU is overloaded in the process and the user notices a temporary
transmission interruption. In case of implementation on dynamically reconfigurable
FPGA, AOP may be used to intercept the class loading operation. Swapping a codec in
hardware will then be a matter of loading the reconfiguration bit-stream to one area of the
FPGA while the other is still in use (which is actually a very fast operation). The data
flow paths can then be attached to the newly installed codec.

 Since different codecs share several common internal functional units, on a runtime
reconfigurable hardware, exploring a finer degree of runtime reconfigurability, such that
codec are partially swapped would also be of interest. It is believed that in case of
successful implementation of the proposed system, ACREMA’s performance can be
enhanced many folds and a device as small as a mobile phone may be powerful enough to
adaptively transcode multimedia!

104

List of Abbreviations

Acronym Definition

ACE Adaptive Communication Environment
ACM Association for Computing Machinery

ACREMA Adaptation Composition and Reconfiguration
Environment for Multimedia Applications

AI Artificial Intelligence
AOP Aspect-Oriented Programming

AOSD Aspect Oriented Software Development
API Application Programming Interfaces
ASM Assembler (A Byte Code Instrumentation Tool)
BCEL Byte Code Engineering Library
CBSE Component Based Software Engineering
CCM CORBA Component Model
CIAO Component Integrated ACE Orb
CIED Code Interception Event Diversion
CIF Common Intermediate Format

COM Component Object Model
CORBA Common Object Request Broker Architecture

CPU Central Processing Unit
DCE Distributed Computing Environment

DCOM Distributed Component Object Model
DDE Dynamic Data Exchange
DRE Distributed Realtime Embedded
DVS Dynamic Voltage Scaling
EJB Enterprise Java Beans
FGS Fine Grain Scaling
GIOP General Inter-Orb Protocol
GPRS General Packet Ratio Service
GSM Global System for Mobile communications
GUI Graphical User Interface
IDL Interface Description Language
IEEE Institute of Electrical and Electronics Engineers
IIOP Internet Inter-Orb Protocol
IP Internet Protocol

ITU International Telecommunication Union
J2EE Java 2 Enterprise Edition

105

Acronym Definition
JDK Java Development Kit
JMF Java Media Frameworks
JPEG Joint Photographic Experts Group
JVM Java Virtual Machine
LCD Liquid Crystal Display
LVM Linux Virtual Machine
MAC Medium Access Control

MJPEG Motion JPEG
MJPG Motion JPEG

MMAPI Mobile Media Application Programming Interface
MOP Meta Object Protocol

MPCD Main Processing Chain Dynamic
MPCS Main Processing Chain Static
MPEG Motion Picture Experts Group
OMG Object Management Group
ORB Object Request Broker
QCIF Quarter Common Intermediate Format
QDL Quality Description Language
RGB Red Green Blue
RMI Remote Method Invocation
RPC Remote Procedure Call

RSVP ReSerVation Protocol
RTP Real Time Protocol

RTCP Real Time Control Protocol
SMIL Synchronized Multimedia Integration Language
SNR Signal to Noise Ratio
SOA Service Oriented Architecture
SOAP Simple Object Access Protocol
SPPC Simple Pre/Post Processing Chain
SQCIF Sub-Quarter Common Interchange Format
TCP Transmission Control Protocol
UAV Unmanned Arial Vehicle
UML Unified modeling Language

WCML Web Clipping Markup Language
WLAN Wireless Local Area Network
WSDL Web Service Definition Language
XML eXtensible Markup Language

106

Bibliography

[AFK+2006] Albrecht, C., Foag, J., Koch, R., Maehle, E. DynaCORE – A
Dynamically Reconfigurable Coprocessor Architecture for Network
Processors. In Euromicro Conference on Parallel, Distributed and Network-
Centric Processing. 2006.

[AG2005] Andreas Frei and Gustavo Alonso. A Dynamic Lightweight Platform for
Ad-Hoc Infrastructures . In PERCOM '05: Proceedings of the Third IEEE
International Conference on Pervasive Computing and Communications. 2005.

[ALD+2003] Atallah S.B. and Layaida O. and De Palma N. and Hagimont D., Dynamic
Configuration of Multimedia Applications, N PROC. OF THE 6TH IFIP/IEEE

INTERNATIONAL CONFERENCE ON MANAGEMENT OF MULTIMEDIA NETWORKS
AND SERVICES (MMNS’03). BELFAST SEPT (2003) : .

[APC+2004] Ali N. and Perez J., Implementation of the PRISMA Model in the. Net
Platform, PROC. OF DYNAMICA M{\' A (2004) : .

[ASJ+2003] Ali NH and Silva J. and Jaen J. and Ramos I. and Carsi JA and Perez
J., Mobility and Replicability Patterns in Aspect-Oriented Component-Based
Software Architectures, PROCEEDINGS OF (2003) 15: p. 820--826.

[ASM] . http://asm.objectweb.org/.

[BCA+2001] Blair G.S. and Coulson G. and Andersen A. and Blair L. and Clarke M.
and Costa F. and Duran-Limon H. and Fitzpatrick T. and Johnston L. and
Moreira R. and others, The Design and Implementation of Open ORB 2, IEEE

DISTRIBUTED SYSTEMS ONLINE (2001) 2: p. 1--40.

[BCB+2002] Blair Gordon S. and Coulson Geoff and Blair Lynne and Duran-Limon
Hector and Grace Paul and Moreira Rui and Parlavantzas Nikos. Reflection
self-awareness and self-healing in OpenORB. In WOSS '02: Proceedings of the
first workshop on Self-healing systems. 2002.

[BCC+1999] Gordon S. Blair and Fabio M. Costa and Geoff Coulson and Hector A.
 Duran and Nikos Parlavantzas and Fabien Delpiano and Bruno Dumant
 and Horn and Jean-Bernard Stefani. The Design of a Resource-Aware
Reflective Middleware Architecture. In Reflection '99: Proceedings of the
Second International Conference on Meta-Level Architectures and Reflection.
1999.

107

[BCD+1997] Blair G.S. and Coulson G. and Davies N. and Robin P. and Fitzpatrick
 T., Adaptive Middleware for Mobile Multimedia Applications,
PROCEEDINGS OF THE 8TH INTERNATIONAL WORKSHOP ON NETWORK AND

OPERATING SYSTEM SUPPORT FOR DIGITAL AUDIO AND VIDEO (NOSSDAV)
(1997) : p. 259--273.

[BCEL] . http://bcel.sourceforge.net/.

[BG1997a] Becker C. and Geihs K., MAQS-Management for Adaptive QoS-enabled
Services, PROCEEDINGS OF IEEE WORKSHOP ON M IDDLEWARE FOR

DISTRIBUTED REAL -T IME SYSTEMS AND SERVICES (1997) : .

[BG1998] Becker C. and Geihs K., Quality of Service—Aspects of Distributed
Programs, INTERNATIONAL WORKSHOP ON ASPECT-ORIENTED PROGRAMMING

AT ICSE'98 KYOTO /JAPAN 1998 (1998) : .

[BHS+2004] Becker C. and Handte M. and Schiele G. and Rothermel K., PCOM-a
component system for pervasive computing, PERVASIVE COMPUTING AND

COMMUNICATIONS 2004. PERCOM 2004. PROCEEDINGS OF THE SECOND
IEEE ANNUAL CONFERENCE ON (2004) : p. 67--76.

[BN2004a] Becker C. and Nicklas D., Where do spatial context-models end and where
do ontologies start? A proposal of a combined approach, PROCEEDINGS OF THE

FIRST INTERNATIONAL WORKSHOP ON ADVANCED CONTEXT MODELLING
REASONING AND MANAGEMENT IN CONJUNCTION WITH UBICOMP 2004 (2004) :
.

[BS2003] Becker C. and Schiele G., Middleware and application adaptation
requirements and their support in pervasive computing, DISTRIBUTED

COMPUTING SYSTEMS WORKSHOPS 2003. PROCEEDINGS. 23RD
 INTERNATIONAL CONFERENCE ON (2003) : p. 98--103.

[BSG+2003] Becker C. and Schiele G. and Gubbels H. and Rothermel K., BASE-a
micro-broker-based middleware for pervasive computing, PERVASIVE

COMPUTING AND COMMUNICATIONS 2003.(PERCOM 2003). PROCEEDINGS OF
THE FIRST IEEE INTERNATIONAL CONFERENCE ON (2003) : p. 443--451.

[CA2000] Cazzola W. and Ancona M., mChaRM: a Reflective Middleware for
Communication-Based Reflection, DISI UNIVERSITA DEFLI STUDI DI M ILANO

TECHNICAL REPORT: DISI-TR-00-09 (2000) : .

108

[CC2003] Chan ATS and Chuang SN, MobiPADS: A Reflective Middleware for
Context-Aware Mobile Computing, IEEE TRANSACTIONS ON SOFTWARE

ENGINEERING (2003) 29: p. 1072 -- 1085.

[CHP+2006] Castillo, J., Huerta, P., Pedraza, C., Martinez, J. I. A Self-Reconfigurable
Multimedia Player on FPGA. , 2006.

[CKP2003] Kihwan Choi and Kwanho Kim and Massoud Pedram. Energy-aware
MPEG-4 FGS streaming. In DAC '03: Proceedings of the 40th conference on
Design automation. 2003.

[DC2001] Jim Dowling and Vinny Cahill. The K-Component Architecture Meta-
model for Self-Adaptive Software. In REFLECTION '01: Proceedings of the
Third International Conference on Metalevel Architectures and Separation
of Crosscutting Concerns. 2001.

[DLS+2004] Duzan G. and Loyall J. and Schantz R. and Shapiro R. and Zinky J.,
Building adaptive distributed applications with middleware and aspects,
PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON ASPECT-
ORIENTED SOFTWARE DEVELOPMENT (2004) : p. 66--73.

[DM1995] Demers F.N. and Malenfant J., Reflection in logic functional and object-
oriented programming: a short comparative study, WORKSHOP ON REFLECTION

AND METALEVEL ARCHITECTURES AND THEIR APPLICATIONS IN AI. IJCAI
(1995) 95: pp. 29-38.

[Don1997] Don Box, Essential COM, (1997) : .

[ECD+2001] Efstratiou C. and Cheverst K. and Davies N. and Friday A., Architectural
requirements for the effective support of adaptive Mobile applications,
PROCEEDINGS OF THE SECOND INTERNATIONAL CONFERENCE ON MOBILE
DATA MANAGEMENT (2001) : .

[EKP+2000] Eliassen F. and Kristensen T. and Plagemann T. and Rafaelsen H.O.,
MULTE-ORB: Adaptive QoS aware binding, WORKSHOP ON REFLECTIVE

M IDDLEWARE (RM 2000). NEW YORK USA (2000) : .

[FPA2003] Frei A. and Popovici A. and Alonso G., Event based systems as adaptive
middleware platforms, WORKSHOP OF THE 17TH EUROPEEAN CONFERENCE FOR

OBJECT-ORIENTED PROGRAMMING JULY (2003) : .

[FRS2000] Foster I. and Roy A. and Sander V., A quality of service architecture that
combines resourcereservation and application adaptation, QUALITY OF SERVICE

109

2000. IWQOS. 2000 EIGHTH INTERNATIONAL WORKSHOP ON (2000) : p. 181--
188.

[GB2001] Geihs K. and Becker C., A framework for re-use and maintenance of
Quality of Servicemechanisms in distributed object systems, SOFTWARE

MAINTENANCE 2001. PROCEEDINGS. IEEE INTERNATIONAL CONFERENCE ON
(2001) : p. 470--478.

[GGM1993] Garbinato B. and Guerraoui R. and Mazouni K., Distributed Programming
in GARF, PROCEEDINGS OF THE WORKSHOP ON OBJECT-BASED DISTRIBUTED

PROGRAMMING (1993) : p. 225--239.

[GHJ+1995] Gamma Erich and Helm Richard and Johnson Ralph and Vlissides
John. Design Patterns: Elements of Reusable Object-Oriented Software (Addison-
Wesley Professional Computing Series). . Addison-Wesley Professional, 1995.

[Garlan2001] Garlan D., Aura: Distraction-Free Ubiquitous Computing., ENGINEERING

FOR HUMAN -COMPUTER INTERACTION , 8TH IFIP INTERNATIONAL
CONFERENCE, EHCI 2001, TORONTO, CANADA , REVISED PAPERS (2001) : pp.
1-2.

[HBG+1998] Franz J. Hauck and Ulrich Becker and Martin Geier and Erich Meier and
Uwe Rastofer and Martin Steckermeier. The AspectIX ORB Architecture. In
Object-Oriented Technology ECOOP'98 Workshop Reader. 1998.

[HBG+2001] Hauck, F. J., Becker, U., Geier, M., Meier, U., Rastofer, U., Steckermeier,
M.. AspectIX: a Quality-Aware, Object-Based Middleware Architecture.. In
3rd IFIP International Conference on Distributed Applications and Interoperable
Systems. 2001.

[HCG2001] Hunleth F and Cytron R and Gill C, Building Customizable Middleware
using Aspect Oriented Programming, WORKSHOP ON ADVANCED SEPARATION

OF CONCERNS (OOPSLA?01) (2001) : .

[JAC] . http://jac.objectweb.org/.

[JC2001] Jim Dowling and Vinny Cahill, Dynamic Software Evolution and the K-
Component Model, WORKSHOP ON SOFTWARE EVOLUTION , OOPSLA 2001
(2001) : .

[JV2004] Jim Dowling and Vinny Cahill, Self-Managed Decentralised Systems
using K-Components and Collaborative Reinforcement Learning, PROCEEDINGS

OF THE WORKSHOP ON SELF-MANAGED SYSTEMS (WOSS'04) (2004) : .

110

[KDP+2002] Karunanidhi A. and Doermann D. and Parekh N. and Rautio V., Video
analysis applications for pervasive environments, PROC. 1 STINTERNATIONAL

CONFERENCE ON MOBILE AND UBIQUITOUS MULTIMEDIA OULU FINLAND
(2002) : p. 48--55.

[KF2005] Khan, M. A., Fischer, S. A Reflective Runtime Environment for
Dynamic Adaptation of Streaming Media on Resource Constrained Devices. ,
2005.

[KK2000] Kuo, G.S. and Ko, P.C.. Dynamic RSVP forMobile IPv6 in Wireless
Networks. In 51st IEEE Vehicular Techonology Conference. 2000.

[KKP2001] Kristensen T K.T.A.P.T., Implementing configurable signalling in the
MULTE-ORB, IN 4TH IEEE CONFERENCE ON OPEN ARCHITECTURES AND

NETWORK PROGRAMMING (IEEE OPENARCH'01) (2001) : .

[KKS+2003] Krishna, A.S. Klefstad, R. Schmidt, D.C. Corsaro, A.. Towards
Predictable Real-time Java Object Request Brokers. In The 9th IEEE Real-
Time and Embedded Technology and Applications Symposium, 2003.. 2003.

[KLM+1997] Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V.,

Loingtier, J.M., Irwin, J.,. Aspect-Oriented Programming. In European Conference on
Object-Oriented Programming (ECOOP). 1997.

[KR1991] Kiczales, G and Des Rivieres, J. The art of metaobject protocol. . MIT
Press Cambridge MA USA, 1991.

[KRC+2000] Fabio Kon and Roy H. Campbell and M. Dennis Mickunas and
Klara Nahrstedt and Francisco J. Ballesteros. 2K: A Distributed Operating
System for Dynamic Heterogeneous Environments. In Proceedings of the 9th
IEEE International Symposium on High Performance Distributed
Computing (HPDC'9). 2000.

[KRL+2000] Kon F. and Rom{\'a, Monitoring security and dynamic configuration with
the dynamicTAO reflective ORB, MULTIMEDIA M IDDLEWARE WORKSHOP
(2000) : p. 121--143.

[KW2001] Kshirasagar Naik and David S. L. Wei, Software implementation
strategies for power-conscious systems, MOBILE NETWORKS AND APPLICATIONS
(2001) 6: p. 291--305.

111

[Kic1991] Kiczales G.. The art of metaobject protocol. . MIT Press Cambridge MA
USA, 1991.

[Kiczales1996] Kiczales G., Aspect-oriented programming, ACM COMPUTING

SURVEYS (CSUR) (1996) 28: .

[LBS+1998] Loyall J.P. and Bakken D.E. and Schantz R.E. and Zinky J.A. and Karr
D.A. and Vanegas R. and Anderson K.R., QoS Aspect Languages and Their
Runtime Integration, LECTURE NOTES IN COMPUTER SCIENCE (1998) 1511: .

[LL2002] T. Lemlouma and N. Layada, SMIL Content Adaptation for Embedded
Devices, SMIL CONFERENCE EUROPE 2002 (2002) : .

[LPP+2005] Loughran N, Parlavantzas N, Pinto M, Fernández L.F, Sánchez P, Webster
M and Colyer A, AOSD-Europe-ULANC-10, (2005) : .

[LSZ+2001] Loyall, Joseph P. Schantz, Richard E. Zinky, John A. Pratim Pal, Partha
Shapiro, Richard Rodrigues, Craig Atighetchi, Michael Karr, David A. Gossett,
Jeanna Gill, Christopher D.. Comparing and Contrasting Adaptive
Middleware Support in Wide-Area and Embedded Distributed Object
Applications. In ICDCS '01: Proceedings of the The 21st International
Conference on Distributed Computing Systems. 2001.

[MM1997] Mowbray, T. J and Malveau, R.C.. CORBA Design Pattern. . Wiley, New
York, 1997.

[MV2003] MOHAPATRA S. and VENKATASUBRAMANIAN N., Proactive
Energy-Aware Streaming to Mobile Hand-Held Devices, PROCEEDINGS OF THE

IEEE 5TH MOBILE AND WIRELESS COMMUNICATION NETWORKS (MWCN)
(2003) : .

[McAffer1995] McAffer J., Meta-level programming with CodA, PROCEEDINGS

OF ECOOP (1995) 95: .

[NAN] , http://nanning.codehaus.org/overview.html, () : .

[OMG1995] OMG, Common Object Request Broker: Architecture and Specification,
Revision 2.0, (1995) : .

[OMG2001] Object Management Group, CORBA 3.0 New Components Chapters,

OMG TC Document ptc/2001-11-03 edition, (2001) : .

112

[PAG2003] Popovici A. and Alonso G. and Gross T., Just-in-time aspects: efficient
dynamic weaving for Java, PROCEEDINGS OF THE 2ND INTERNATIONAL

CONFERENCE ON ASPECT-ORIENTED SOFTWARE DEVELOPMENT (2003) : p. 100--
109.

[PAK+2007] Pionteck, T., Albrecht, C., Koch, R., Maehle, E., Huebner, M., Becker, J.
Communication Architectures for Dynamically Recon¯ gurable FPGA
Designs. , 2007.

[PHS] Pillai P. and Huang H. and Shin K.G., Energy-Aware Quality of Service
Adaptation, () : .

[PLM+2004] Pasricha S. and Luthra M. and Mohapatra S. and Dutt N. and
Venkatasubramanian N., Dynamic Backlight Adaptation for Low-Power
Handheld Devices, IEEE DESIGN AND TEST OF COMPUTERS (2004) : .

[PML+2003] Pasricha S. and Mohapatra S. and Luthra M. and Dutt N. and
Venkatasubramanian N., Reducing backlight power consumption for streaming
video applications on mobile handheld devices, PROC. FIRST WORKSHOP

EMBEDDED SYSTEMS FOR REAL -TIME MULTIMEDIA (2003) : .

[PRJ+2003] P'erez J. and Ramos I. and Ja'en J. and Letelier P. and Navarro E.,
PRISMA: Towards Quality Aspect Oriented and Dynamic Software
Architectures, 3RD IEEE INTERNATIONAL CONFERENCE ON QUALITY

SOFTWARE (QSIC 2003) DALLAS TEXAS USA NOVEMBER (2003) : p. 6--7.

[PS2001] Padmanabhan Pillai and Kang G. Shin. Real-time dynamic voltage
scaling for low-power embedded operating systems. In SOSP '01: Proceedings
of the eighteenth ACM symposium on Operating systems principles. 2001.

[PS2004] C. Poellabauer and K. Schwan, Energy-Aware Media Transcoding in
Wireless Systems, PROCEEDINGS OF THE SECOND IEEE INTL . CONFERENCE ON

PERVASIVE COMPUTING AND COMMUNICATIONS (PERCOM 2004) (2004) : .

[PSD+2004] Pawlak R. and Seinturier L. and Duchien L. and Florin G. and
 Legond-Aubry F. and Martelli L., JAC: an aspect-based distributed
dynamic framework, SOFTWARE PRACTICE AND EXPERIENCE (2004) 34: p.
1119--1148.

[PWK+2003] Portillo A. R, Walker S., Kirby G., and Dearly A., A Reflective Approach
to Providing Flexibility in Application Distribution, PROC. 2ND INTERNATIONAL

WORKSHOP ON REFLECTIVE AND ADAPTIVE M IDDLEWARE

113

ACM/IFIP/USENIX INTERNATIONAL M IDDLEWARE CONFERENCE
(M IDDLEWARE 2003) RIO DE JANEIRO BRAZIL (2003) : .

[RC2000] Roman M. and Campbell R.H., Gaia: enabling active spaces,
PROCEEDINGS OF THE 9TH WORKSHOP ON ACM SIGOPS EUROPEAN

WORKSHOP: BEYOND THE PC: NEW CHALLENGES FOR THE OPERATING SYSTEM
(2000) : p. 229--234.

[RHC+2002] Roman M. and Hess C.K. and Cerqueira R. and Ranganathan A. and
Campbell R.H. and Nahrstedt K., Gaia: A Middleware Infrastructure to Enable
Active Spaces, IEEE PERVASIVE COMPUTING (2002) 1: p. 74--83.

[RHC+2002a] Roman M and Hess C and Cerqueira R and Ranganathan A and Campbell
 RH and Nahrstedt K, A middleware infrastructure for active spaces,
PERVASIVE COMPUTING IEEE (2002) 1: .

[RK2004] Rashid A. and Kortuem G., Adaptation as an aspect in pervasive
computing, WORKSHOP ON BUILDING SOFTWARE FOR PERVASIVE COMPUTING

AT THE 19TH ACM SIGPLAN CONF ON OBJECT-ORIENTED PROGRAMMING

SYSTEMS LANGUAGES AND APPLICATION (OOPSLA 2004) VANCOUVER
CANADA (2004) : .

[RKC1999] Roman, M., Kon, F.,and Campbell, R.H., Design and Implementation of
Runtime Reflection in Communication Middleware: The DynamicTAO Case,
19TH IEEE CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS, WORKSHOP
ON E-COMMERCE AND WEB-BASED APPLICATIONS (1999) : pp. 122-127.

[RMK+2000] Roman M, Mickunas M.D, Kon F. and Roy Campbell, LegORB and
Ubiquitous CORBA, IN IFIP/ACM M IDDLEWARE '2000 WORKSHOP ON

REFLECTIVE M IDDLEWARE . (2000) : .

[RP1997] Romer K. and Puder A., MICO: CORBA 2.0 implementation, USER AND

PROGRAMMER GUIDE COMPUTER SCIENCE DEPARTMENT UNIVERSITY OF
FRANKFURT GERMANY (1997) : .

[SC2000] Siqueira F. and Cahill V., Quartz: A QoS Architecture for Open Systems,
PROCEEDINGS OF IEEE INTERNATIONAL CONFERENCE ON DISTRIBUTED
COMPUTING SYSTEMS (ICDCS 2000) (2000) : p. 197--204.

[SG2002] Sousa J.P. and Garlan D., Aura: an Architectural Framework for User
Mobility in Ubiquitous Computing Environments, PROCEEDINGS OF THE 3RD

WORKING IEEE/IFIP CONFERENCE ON SOFTWARE ARCHITECTURE (2002) : p.
25--31.

114

[SLM1998] Schmidt D.C. and Levine D.L. and Mungee S., Design of the TAO real-
time object request broker, COMPUTER COMMUNICATIONS (1998) 21: p. 294--
324.

[SM2003] Saha D. and Mukherjee A., Pervasive computing: a paradigm for the 21st
century, COMPUTER (2003) 36: p. 25--31.

[SMC+2004] Sadjadi S.M. and McKinley P.K. and Cheng B.H.C. and Stirewalt R.E.K.,
TRAP/J: Transparent generation of adaptable java programs, PROCEEDINGS OF

THE INTERNATIONAL SYMPOSIUM ON DISTRIBUTED OBJECTS AND
APPLICATIONS (DOA’04) (2004) : .

[SML1999] Smith J.R. and Mohan R. and Li C.S., Scalable multimedia delivery for
pervasive computing, PROCEEDINGS OF THE SEVENTH ACM INTERNATIONAL

CONFERENCE ON MULTIMEDIA (PART 1) (1999) : p. 131--140.

[SN2004] Steinmetz, R., Nahrstedt, K.. Multimedia Systems. . Springer, 2004.

[SVJ2003] Suvee D., Vanderperren W., Jonckers V, JAsCo: an aspect-oriented
approach tailored for component based software development, PROCEEDINGS OF

THE 2ND INTERNATIONAL CONFERENCE ON ASPECT-ORIENTED SOFTWARE
DEVELOPMENT (2003) : p. 21--29.

[Sch1994] Schmidt D.C.. ACE: an Object-Oriented Framework for Developing
Distributed Applications. In 6th USENIX C++ Technical Conference. 1994.

[Sch1999] Schmidt, D. C. and Cleeland, C., Applying Patterns to Develop Extensible
ORB Middleware, IEEE COMMUNICATIONS (1999) : .

[Schmidt1998] Schmidt D.C., An Architectural Overview of the ACE Framework:
A Case-study of Successful Cross-platform Systems Software Reuse, USENIX

LOGIN MAGAZINE TOOLS SPECIAL ISSUE NOV (1998) : .

[Sun1997] Sun Microsystems:, Java Remote Method Invocation Specication, (1997)
: .

[Sun2001] Sun Microsystems, Java 2 Platform Enterprise Edition, (2001) : .

[TBP+2005] Trumler W. and Bagci F. and Petzold J. and Ungerer T., AMUN—
autonomic middleware for ubiquitous environments applied to the smart
doorplate project, ADVANCED ENGINEERING INFORMATICS (2005) 19: p. 243--
252.

115

[TSY+2004] M. Tamai and T. Sun and K. Yasumoto and N. Shibata and M. Ito,
Energy-aware Video Streaming with QoS Control for Portable Computing
Devices, (NOSSDAV 2004) (2004) : .

[TVJ+2001] Truyen E., Vanhaute B., Joosen W., Verbaeten P., Jørgensen B.N,
Dynamic and Selective Combination of Extensions in Component-Based
Application, PROCEEDINGS OF ICSE (2001) : pp. 233-242.

[VB2007] Vinh, C. P., Bowen, J. P.. A Formal Approach to Aspect-Oriented
Modular Reconfigurable Computing. , 2007.

[Wang2003] Wang, N., Schmidt, D.C., Gokhale, A., Rodrigues C., Natarajan, B.,
Loyall J.P., Schantz, R.E., and Gill, C. D. QoS-enabled Middleware. Qusay H.
Mahmood. Wiley and Sons, 2003.

[Wei1993] Weiser M., Some Computer Science Problems in Ubiquitous Computing,
COMMUNICATIONS OF THE ACM, (1993) : .

[YKW+2002] Yau, S.S., Karim, F., Wang, Y., Wang, B. and Gupta, S.K.S,
Reconfigurable context-sensitive middleware for pervasive computing,
PERVASIVE COMPUTING IEEE (2002) 1: pp. 33 - 40.

[YLC+2002] Yang S. and Lee H. and Chung K. and Kim H., A Content Provider-
Specified Web Clipping Approach for Mobile Content Adaptation, 4TH

INTERNATIONAL SYMPOSIUM ON MOBILE HUMAN -COMPUTER INTERACTION
(2002) : p. 324--328.

[YN2006] Wanghong Yuan and Klara Nahrstedt, Energy-efficient CPU scheduling
for multimedia applications, ACM TRANSACTIONS ON COMPUTER SYSTEMS
(2006) 24: p. 292--331.

[YNG2001] Yuan W. and Nahrstedt K. and Gu X., Coordinating energy-aware
adaptation of multimedia applications and hardware resource, PROCEEDINGS OF

THE 2001 INTERNATIONAL WORKSHOP ON MULTIMEDIA MIDDLEWARE (2001) :
p. 60--63.

[ZBS1997] Zinky J.A. and Bakken D.E. and Schantz R.E., Architectural support for
quality of service for CORBA objects, THEORY AND PRACTICE OF OBJECT

SYSTEMS (1997) 3: p. 55--73.

[ZDE+1993] Zhang, L., Deering, S., Estrin, D., Shenker, S., Zappala, D., RSVP: A New
Resource Reservation Protocol, IEEE NETWORK MAGAZINE (1993) 7: pp. 8-18.

116

[ZKS+2003] Zink M., Kuenzel O., Schmitt, J.and Steinmetz, R., Subjective Impression
of Variations in Layer Encoded Videos, INTERNATIONAL WORKSHOP ON

QUALITY OF SERVICE (2003) : p. 137--154.

117

Appendix A : List of Author’s Publications

Muhammad A. Khan and Stefan Fischer, “ACREMA - An Adaptive Composition and
Runtime Environment for Multimedia Applications”, in the 32nd Euromicro
Conference on Software Engineering and Advanced Applications (SEEA 2006), Aug.-
Sept. 2006, Cavtat, Croatia.

Muhammad A. Khan and Stefan Fischer, “Towards Unmanaged Multimedia
Adaptations using Automated Aspect Weaving”, short paper in the International
Conference on Software Engineering Research and Practice (SERP'2006), June 2006,
Las Vegas, USA.

Muhammad A. Khan and Stefan Fischer, “A Customizable, Reconfigurable
Deployment Environment for QoS-aware Multimedia Application", in the 4th
international workshop on Adaptive and Reflective Middleware (ARM-2005), Nov.
2005, Grenoble, France.

Muhammad A. Khan and Stefan Fischer, “A Reflective Runtime Environment for Dynamic

Adaptation of Streaming Media on Resource Constrained Devices” , proceedings of 38th
Hawaii International Conference on System Sciences (HICSS-38), Jan 2005, Hawaii,
USA.

Muhammad A. Khan and Stefan Fischer, “A Reflective Runtime Environment for Dynamic

Adaptation of Streaming Media”, workshop proceedings, the 5th ACM/IFIP/USENIX
International Middleware Conference (Middleware 2004), Oct 2004, Toronto, Canada.

