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Zusammenfassung

Diese Arbeit untersucht die Verteilung ordinaler Muster in stochastischen Prozessen und
die Schiatzung der Auftretenswahrscheinlichkeit ordinaler Muster. Ordinale Muster be-
schreiben die Ordnungsrelationen zwischen einer festen Anzahl von Werten einer Zeitreihe.
Sind die Werte der Zeitreihe paarweise verschieden, so konnen ordinale Muster durch Per-
mutationen dargestellt werden. Die Verteilung ordinaler Muster in einer Zeitreihe (bzw.
in Teilen der Zeitreihe) dient dazu, Charakteristiken der zu Grunde liegenden Dynamik
zu berechnen, oder zwischen der Dynamik in unterschiedlichen Teilen der Zeitreihe zu
unterscheiden. Ein Beispiel solch einer Charakteristik ist die Permutationsentropie, die
durch die Shannon-Entropie der Verteilung ordinaler Muster gegeben ist und als Ma$f fiir
die Komplexitdt von Zeitreihen angesehen werden kann. Eine Anwendung der Permuta-
tionsentropie ist die Analyse epileptischer Aktivitat in EEG Zeitreihen.

Der Kontext der Untersuchungen dieser Arbeit ist eine parametrische Familie stochasti-
scher Prozesse mit stationaren, nicht-degenerierten, zentrierten Gauss’schen Zuwachsen.
Diese Prozessklasse beinhaltet equidistante Diskretisierungen Fraktaler Brown’scher Be-
wegung sowie integrierte ARFIMA(0,d,0) und AR(1) Prozesse. In Kapitel 3 zeigen wir,
dass die Verteilung ordinaler Muster in solchen Prozessen stationar ist, und dass jedes
ordinale Muster eine strikt positive Auftretenswahrscheinlichkeit hat. Ist eine endliche
Anzahl von Beobachtungen ordinaler Muster gegeben, so ist die relative Haufigkeit eines
Musters ein unverzerrter Schétzer fiir die entsprechende Auftretenswahrscheinlichkeit. Da
die Verteilung stationdrer und zentrierter (GGauss’scher Prozesse invariant ist beziiglich
einer Umkehrung der Raum- bzw. Zeitachse, haben bestimmte ordinale Muster dieselbe
Auftretenswahrscheinlichkeit. Indem man die relativen Haufigkeiten dieser Muster mit-
telt, erhalt man Schatzer mit niedrigerer Varianz.

Eine hinreichende Bedingung fiir schwache Konsistenz der Schétzer ist, dass die Au-
tokovarianzen des Zuwachsprozesses fiir wachsende Zeitabstande gegen null gehen. Wie
wir zeigen, ist diese Bedingung auch hinreichend fiir starke Konsistenz. Hinreichend fiir
asymptotische Normalitat ist, dass die Autokovarianzen des Zuwachsprozesses schneller
abklingen als £ — Lk Diese Aussage gilt allgemeiner auch fiir bestimmte differenzierbare
Funktionen der Auftretenswahrscheinlichkeiten, sowie im mehrdimensionalen Fall, wenn
die Auftretenswahrscheinlichkeiten verschiedener Muster gleichzeitig geschétzt werden.



In Kapitel 4 untersuchen wir die Kovarianzen von Nulldurchldufen in nicht-degenerierten,
stationaren, zentrierten Gauss’schen Prozessen. Kern der Untersuchungen ist die Ana-
lyse vierdimensionaler Gauss’scher Orthant-Wahrscheinlichkeiten sowie ihrer Ableitungen
beziiglich bestimmter Korrelationskoeffizienten. Wie wir zeigen, lassen sich die Kovari-
anzen von Nulldurchlaufen als Summen eindimensionaler Integrale darstellen, die nu-
merisch mit beliebiger Genauigkeit ausgewertet werden konnen. Wir bestimmen aufer-
dem das asymptotische Verhalten der Kovarianzen und geben untere und obere Schranken
sowie Approximationen an. Auf Grundlage dieser Ergebnisse leiten wir Eigenschaften der
Varianz empirischer Nulldurchlaufsraten her.

In Kapitel 5 betrachten wir als Spezialfall ordinale Muster, die die Ordnungsrelationen
zwischen genau drei aufeinanderfolgenden Werten einer Zeitreihe beschreiben. Wie wir
zeigen, 148t sich in diesem Fall jeder “verniinftige” Schétzer von Auftretenswahrschein-
lichkeiten ordinaler Muster als affine Funktion der empirischen Nulldurchlaufsrate im
Zuwachsprozess darstellen. Auf Grundlage der Ergebnisse aus Kapitel 4 berechnen wir
die Varianz der Schatzer in equidistanten Diskretisierungen Fraktaler Brown’scher Bewe-
gung, sowie in integrierten ARFIMA(0,d,0) und AR(1) Prozessen.

Stehen die Parameter der stochastischen Prozesse in einer monotonen Beziehung zur
Wahrscheinlichkeit eines Nullduchlaufes, so erhalt man Schétzer fiir diese Parameter,
indem man die empirische Nulldurchlaufsrate in die inverse monotone Beziehung ein-
setzt. Mittels der Ergebnisse aus Kapitel 3 leiten wir Eigenschaften dieser Schatzer her.
Unter zusatzlichen Anforderungen an die Autokovarianzen des Zuwachsprozesses bestim-
men wir Konfidenzintervalle fiir die Prozessparameter. Wir illustrieren die Methoden fiir
die Schatzung des Hurst Parameters in Fraktaler Brown’scher Bewegung, des fraktalen
Differenzierungsparameters in ARFIMA(0,d,0) Prozessen, sowie des autoregressiven Ko-
effizienten in AR(1) Prozessen.

In einer Simulationsstudie untersuchen wir die Giite der Schatzer sowie die Uberdeckung
der Prozessparameter durch die Konfidenzintervalle. Im Fall des Hurst Parameters ver-
gleichen wir die Giite mit der eines alternativen Schéitzers. Weiterhin betrachten wir die
Verteilung der empirischen Nulldurchlaufsrate in den Zuwéchsen Fraktaler Brown’scher
Bewegung. Wie sich herausstellt, ist die Verteilung fiir grofle Werte des Hurst Parameters
auflerst unregelmafig.

In Kapitel 6 betrachten wir ordinale Muster, die die Ordnungsrelationen zwischen Werten
zu beliebigen Zeitpunkten beschreiben (an Stelle von unmittelbar aufeinanderfolgenden
Werten). Wir zeigen, wie ordinale Muster auf groflen Zeitskalen verwendet werden konnen,
um den Index asymptotisch selbstahnlicher Prozesse zu schiatzen. Eine Anwendung ist
die Schatzung des Hurst Parameters in Fraktaler Brown’scher Bewegung, die von schwach
korreliertem “Rauschen” tiberlagert ist. Wir illustrieren die Anwendung dieser Methode
fiir zwei empirische Zeitreihen, namlich, Pegelstande des Nils sowie Prazisionsmessungen
des amerikanischen NBS Institutes.



Abstract

This thesis studies the distribution of ordinal patterns in stochastic process and the es-
timation of occurrence probabilities of ordinal patterns. Ordinal patterns represent the
order relations among a fixed number of values in a time series. Under the assumption
that the values of the time series are pairwise different, it is natural to identify ordinal
patterns with permutations. The distribution of ordinal patterns in a time series (or parts
of it) can be used to compute characteristics of the underlying dynamics, or to discrimi-
nate between the dynamics in different parts of the time series. For instance, permutation
entropy (which is the Shannon entropy of ordinal pattern distribution) has been proposed
as a measure for the complexity of time series. Permutation entropy measurements have
been applied, for example, to the analysis of epileptic acivity in EEG data.

The framework of our analysis is a parametric family of stochastic processes with station-
ary, non-degenerate and zero-mean Gaussian increments. This class of processes includes,
e.g., equidistant discretizations of Fractional Brownian Motion, and processes where the
increments are ARFIMA(0,d,0) or AR(1) processes. In Chapter 3, we show that the distri-
bution of ordinal patterns in such processes is stationary, and each pattern has a strictly
positive probability of occurrence. Given a finite number of observations, the relative
frequency of an ordinal pattern is an unbiased estimator of the corresponding occurrence
probability. By the fact that the distribution of stationary zero-mean Gaussian processes
is invariant with respect to reversions of the time and space orientation, certain ordinal
patterns have the same probability. We show that averaging the relative frequencies of
these patterns yields unbiased estimators with smaller variance.

A sufficient condition for the estimators of ordinal pattern probabilities to be consistent
is that the autocovariances of the increment process tend to zero. We show that this
condition is also sufficient for strong consistency. A sufficient condition for asymptotic
normality of the estimators is that the autocovariances of the increment process decay
faster than k£ — Lk More generally, this statement is true for certain differentiable
functions of ordinal pattern probabilities and also in the multidimensional case when the

probabilities of several patterns are jointly estimated.

In Chapter 4, we study covariances of zero crossings in non-degenerate and stationary
zero-mean Gaussian processes. The results are obtained by analyzing four-dimensional



normal orthant probabilities and their derivatives with respect to correlation coefficients.
We propose a representation of the zero crossing covariances by one-dimensional integrals
which can be numerically evaluated using standard quadrature rules. Furthermore, we
derive asymptotics of the covariances and establish approximations and bounds. Based
on these results, we derive properties of the variance of empirical zero crossing rates.

In Chapter 5, we focus on ordinal patterns describing the order relations among three
subsequent values of a time series. In this case, any “reasonable” estimator of ordinal
pattern probabilities can be expressed as an affine function of the empirical zero crossing
rate in the increment process. Using the results of Chapter 4, we evaluate the variance
of the estimators in equidistant discretizations of Fractional Brownian Motion and in
processes where the increments are ARFIMA(0,d,0) and AR(1), respectively.

When the parameters of the family of stochastic processes are real numbers and mono-
tonically related to the probability of a zero crossing, an estimator of the parameters
is obtained by plugging the empirical zero crossing rate into the inverse of the mono-
tonic relation. Using the results of Chapter 3, we establish properties of this estimator.
Under additional conditions on the autocovariances of the increment process, we also de-
rive confidence intervals. We show how the results apply to the estimation of the Hurst
parameter in Fractional Brownian Motion, of the fractional differencing parameter in
ARFIMA(0,d,0) processes and of the autoregressive coefficient in AR(1) processes.

In a simulation study, we evaluate the performance of the estimators and the coverage
of the parameters by the confidence intervals. For the Hurst parameter, we compare
the performance to that of an alternative estimator. We also consider the distribution
of empirical zero crossing rates in the increment process of FBM. It turns out that the
distribution is very irregular for large values of the Hurst parameter.

Chapter 6 generalizes the results of the previous chapters to ordinal patterns describing
the order relations among values at arbitrary times instead of immediately subsequent
values. We demonstrate how ordinal patterns on increasing time scales can be used
for estimating the index of asymptotically self-similar processes. One application is the
estimation of the Hurst parameter in equidistant discretizations of Fractional Brownian
Motion superimposed with short range dependent “noise”. We illustrate our method for
two practical time series, namely, River Nile data and NBS precision measurements.
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Chapter 1

Introduction

Modern science progresses through the collection of data and the development of new
methods for their analysis. Often data are obtained by sequential measurements of a
quantity in time, so-called time series. Examples are manifold: daily temperatures, river
gauges, currency exchange rates or the electric activity of the human brain. With the
advances in computer technology which make it possible to store gigabytes of data, one
of the main challenges of time series analysis these days is the computational complexity
due to the large amount of data.

Major approaches to time series analysis are the theory of dynamical systems and the
theory of stochastic processes. A dynamical system is a deterministic model for the gen-
eration of time series. Thus, if the dynamics and all initial states are known, any future
value can be predicted. A stochastic process includes a random component which makes
it impossible to exactly forecast future values.

Since the 1980’s, non-linear dynamical systems have been receiving particular attention.
One reason is that linear dynamical systems are unable to capture important charac-
teristics of many time series observed in nature, such as aperiodic behaviour and high
sensitivity to initial states. Another reason is that, nowadays, computers allow to study
properties of non-linear dynamics, for instance, by means of simulations (see Galka [42]).
Although non-linear dynamical systems are deterministic, even an approximate predic-
tion of future values can be impossible when the initial states are not known exactly.
Therefore, an essential concept in the study of non-linear dynamics is complezity which,
roughly speaking, quantifies the unpredictability of a dynamical system. For instance,
the complexity of linear systems is low, while “chaotic” non-linear systems have high
complexity.

The complexity of dynamical systems can be measured by entropies, dimensions and
Lyapunov exponents (see Walters [99], Grassberger and Procaccia [44], Galka [42]). While
these quantities are well-motivated from the theoretical viewpoint, it is often difficult to
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estimate them in practice. In particular, the estimates depend on the specific choice
of a sequence of families of sets over the state space, so there is no standardized way
for computing them. Moreover, the computation of estimates is time-consuming, and
when the complexity of the system is high, the estimates themselves are very sensitive to
observational noise.

Permutation entropy. An interesting alternative for measuring the complexity of a
one-dimensional system is the permutation entropy introduced by Bandt and Pompe [10].
The basic idea is to partition the state space of a system in such a way that two points lie
in the same part of the state space if and only if their first d iterates are correspondingly
ordered. The permutation entropy of order d is given by the Shannon entropy of this
partition. The permutation entropy rate is defined as the upper limit of the permutation
entropy of order d divided by d as d tends to infinity.

Surprisingly at first glance, there are fundamental relations between the permutation
entropy rate and complexity measures which take the whole metrical or topological infor-
mation of time series into account. For piecewise monotone interval maps, Bandt et al. [9]
shows coincidence with the Kolmogorov-Sinai entropy, and a similar result holds for the
topological entropy (see Bandt et al. [9], Misiurewicz [75]). Amigé et al. [3, 4, 5] gener-
alize the result for the Kolmogorov-Sinai entropy to the multi-dimensional case, however,
based on a concept of permutation entropy which uses non-standardized partitions of the
state space. For ergodic systems, Keller and Sinn [61, 62] show that the permutation
entropy rate is always an upper bound for Kolmogorov-Sinai entropy.

Partitioning the state space of a system (or the space of a fixed number of consecutive
states of the system) and considering only the information in which piece of the partition
the actual state is offers a coarse-grained view of the system. This is helpful, e.g., to
detect periodicities in the dynamics. Because the pieces of partitions are often associated
with “symbols”, the general methodology is known as symbolic dynamics (see Kitchens
[64]). In order to analyze the symbol sequences obtained by the orbit of a system, nominal
statistics and techniques from information theory can be applied, such as measuring the
complexity of an information source by the Shannon entropy.

From the practical viewpoint, one major advantage of using permutation entropy for mea-
suring the complexity of a system is that the computation of estimates can be realized
by simple and fast algorithms (see Bandt and Pompe [10], Keller and Sinn [57]). Fur-
thermore, the estimates are robust with respect to observational and dynamical noise (see
Bandt and Pompe [10], Veisi et al. [98]). For these reasons, permutation entropy has
been applied to real data in recent years, with the main focus on the analysis of epileptic
activity in EEG recordings.
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Figure 1.1: The 10-20 system for electrode placement and 20 seconds of an EEG recording.

Application to EEG data analysis. An electroencephalogram (EEG) measures the
electric activity of the brain (of humans or animals) by electrodes on the scalp. Figure 1.1
displays the 10-20 system, which is a standard scheme for the placement of 19 electrodes
on the human scalp. Furthermore, Figure 1.1 shows a 20 seconds parts from an EEG which
was recorded according to the 10-20 system. Note that each line represents one channel,
that is, the signal from one electrode. EEG recordings are usually very long (some minutes
up to several hours, digitalized with sampling rates of 250 Hertz and higher). Moreover,
the brain is a very complex non-linear system (some researchers even believe it is chaotic).
Therefore, measuring the complexity of brain dynamics is a particularly challenging task.

Epileptic activity is related to a loss of complexity in the brain dynamics, caused by
abnormal synchronizations of large clusters of neuronal cells. Hence, detecting and quan-
tifying epileptic activity by estimating the complexity of the brain dynamics is obvious.
See Galka [42] for an overview of applications of entropies, dimensions and Lyapunov ex-
ponents. In recent years, many authors have reported epileptic activity to be associated
with a decrease of permutation entropy. In particular, Faul et al. [39] discusses permu-
tation entropy for analyzing the EEG of newborn children, Veisi et al. [98] studies the
detection of epilepsy in noisy signals and Keller and Lauffer [55] investigates the effect of
Vagus stimulation.

In a methodological study, Staniek and Lehnertz [93] discusses the impact of the order
and delay of ordinal patterns (see below) on permutation entropy measurements. Li et
al. [70] examines the predictability of epileptic seizures for rats, and Bretschneider et al.
[18] uses permutation entropy to measure the coherence of in vivo/in vitro field potential
activities and of the EEG. See also Cao et al. [24] and Keller et al. [58].

Besides epileptic seizures, other causes of changes in the complexity of the brain dynamics
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are, e.g., aging and sleep. For instance, one finds typical differences between the EEGs of
a child and an adult, or the EEGs of a person with eyes open and eyes closed. In a study
on the detection of brain states preceding epileptic seizures, Bruzzo et al. [21] reports
reduced vigilance to result in lower permutation entropy. Olofsen et al. [77] observes a
similar effect for anaesthetic drugs and discusses the applicability of permutation entropy
for measuring anaesthetic drug effects (see also Li et al. [69]).

In addition to EEG data, permutation entropy has also been used for the analysis of
electrocardiogram recordings (Cammarota and Rogora [22, 23], Frank et al. [41]) and
econometric data (Matilla-Garcia [74]). Another application is the evaluation of pseudo-
random number generators (Larrondo et al. [65]).

1.1 Ordinal time series analysis

In the light of the relation between permutation entropy and the complexity of dynam-
ical systems, together with the results obtained by permutation entropy in practice, the
basic approach of considering only the order relations between the values of a time series
instead of the values themselves has been further investigated. A general theoretical and

methodological framework is established by ordinal time series analysis (see Bandt [11],
Keller and Sinn [57]).

The central concept of ordinal time series analysis are ordinal patterns (or order patterns,
according to the terminology of Bandt and Shiha [12]). Ordinal patterns represent the
order relations among a fixed number of values in a time series. While the order of an
ordinal pattern specifies the number of values taken into account, the delay defines the
distances between them. When the values are pairwise different, there exists a unique
rank order indicating which is the largest value, which is the second largest value, and
so on. If there are equal values, a unique rank order can be established, for instance, by
defining earlier values to be larger than subsequent ones. Ordinal patterns are identified
with the permutations representing the rank orders. Actually, the one-to-one relation
between ordinal patterns and permutations gives permutation entropy its name.

For the statistical analysis of time series, the distribution of ordinal patterns is of particular
interest. Bandt and Shiha [12] considers the difference between certain ordinal pattern
probabilities as a measure of the symmetry of time series and shows the application to
the detection of trends. Keller and Wittfeld [56] quantifies local differences in the EEG
by means of correspondence analysis. Groth [45] uses recurrence plots of ordinal patterns
for analyzing speech signals. Keller et al. [57, 58] propose statistics of ordinal pattern
distributions which are related to the probability of changes between “upwards” and
“downwards” and to the mean length of monotone parts. Note that also permutation
entropy is a statistic of ordinal pattern distributions (namely, the Shannon entropy of the
distributions).
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General results on distributions of ordinal patterns are established by Shiha [91], Bandt
and Shiha [12] and Keller et al. [60]. As a major finding, interdependencies among succes-
sive ordinal patterns yield fundamental inequalities among ordinal pattern probabilities.
Furthermore, the measure of ordinal pattern distributions is concentrated either on a very
“thin” or a very “thick” subset of the space of ordinal pattern sequences (see Keller et al.
[59, 60], Amigé et al. [6]).

At first glance, considering only the ordinal structure of a time series may seem to be
a waste of information. However, compared to methods which take the whole metrical
information into account, ordinal time series analysis has some major advantages:

e The ordinal methods are computationally simple and fast (in particular, the compu-
tation of ordinal pattern distributions only takes linear time with respect to the time
series length). This allows to apply ordinal methods to one and the same time series
for various parameters. For example, by considering ordinal patterns with varying
delays, time series can be “simultaneously” analyzed on different time scales. Also
an online analysis of time series is possible.

e Ordinal methods are robust with respect to transformations of time series which
do not affect any order relation among the values, such as offsets and (non-linear)
scalings. Thus, ordinal methods are particularly well-suited for the analysis of phys-
ical time series where the exact calibration of the measurement device is unknown.
Moreover, ordinal methods are relatively robust with respect to artefacts which
affect only few of the order relations among values (e.g., slow drifts, abrupt level-
changes).

Ordinal patterns in stochastic processes. Originally, the concepts of permutation
entropy and ordinal time series analysis have been introduced in the context of dynamical
systems. In recent years, also the distribution of ordinal patterns in stochastic processes
has been considered. Bandt and Shiha [12] gives explicit formulas for ordinal pattern
probabilities in Gaussian processes. These results are used by Rosso et al. [87] for a
numerical analysis of permutation entropy in equidistant discretizations of Fractional
Brownian Motion. Keller et al. [58] consider ordinal processes, with ordinal patterns
obtained from real-valued processes as a special case.

From the statistical viewpoint, time series generated by non-linear dynamical systems and
by stochastic processes share many similarities. In particular, because of the complexity
of the dynamics and the impossibility to exactly measure the initial conditions, time
series from non-linear dynamical systems often appear “random” to the observer, despite
of their intrinsically deterministic nature. Furthermore, it is often hard to decide by a
statistical test whether a time series is generated by a deterministic or a stochastic system.
Actually, any dynamical system can formally be represented by a stationary stochastic
process and vice versa. In this thesis, we are only interested in statistical properties
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of time series. We use the framework of stochastic processes for modelling time series,
because it is particularly well suited for describing the problem of estimating ordinal
pattern probabilities.

Considering only the order relations among observations is a typical approach in non-
parametric statistics. However, while so-called rank-based statistics are widely applied in
the case of independent observations, e.g., for testing whether there is a difference between
two distributions, only few literature is available for the dependent case. Basically, ordinal
patterns generate same sigma-fields as rank vectors, and if permutations with the same
number of inversions are identified, they yield the same information as Kendall’s tau (see
Lehmann [67]). A test for serial dependence in time series based on Kendall’s tau is
introduced by Ferguson et al. [40]. Garel and Hallin [43] and Hallin and Jureckova [46]
propose rank-based methods for the identification of the order of autoregressive models.

Relation to zero crossings. Most contributions to the investigation of ordinal patterns
in stochastic processes originate from the study of zero crossings. The event that two
successive values of a process have different signs (and thus a straight line connecting
these values crosses the level zero) is called a zero crossing. Zero crossings are related to
ordinal patterns by the fact that changes between “upwards” and “downwards” (which are
fully described by ordinal patterns) are equivalent to zero crossings in the process of first-
order differences. In particular, a change from “upwards” to “downwards” is equivalent
to a positive difference followed by a negative one, and a change from “downwards” to
“upwards” is equivalent to a negative difference followed by a positive one.

In engineering, statistics based on zero crossings are applied to the processing of speech
signals. Dating back to the 1940’s, telephony engineers found that replacing speech signals
with rectangular waves having the same zero crossings retained high intelligibility (see
Chang et al. [26]). A mathematical explanation of this phenomenon is given by the
formula of Rice [84] which relates the zero crossing rate in a sum of random sinusoids
to the dominant frequency in the spectral domain. Since the beginning of digital speech
signal processing, zero crossing analysis is used for the detection of pitch frequencies and
to distinguish voiced and unvoiced intervals (see, e.g., Ewing and Taylor [38], Rabiner
and Schafer [82]).

Kedem [53] proposes estimators for autocorrelations and spectral frequencies based on
empirical zero crossing rates of higher order, that is, zero crossings in the processes of
higher-order differences. Moreover, Kedem [52] considers zero crossings for the modelling
of binary time series. Here, the basic idea is that the presence or absence of a phenomenon
(represented by “1” and “0”, respectively) can often be explained by a real-valued process
exceeding or not exceeding a critical level. If the critical level is zero, then the event of
observing subsequently “1”7 and “0” or “0” and “1” corresponds to a zero crossing of
the real-valued process. Applications are the modelling of binary data in ecology (see
Damsleth and El-Shaarawi [31]) and in hydrology (see Salas et al. [88]).
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Note that there is also extensive literature on zero crossings in time-continuous stochastic
processes. The questions arising in this context, however, are different from those in the
time-discrete case. For example, in the continuous case, the number of zero crossings in
a finite time interval is not necessarily finite (see Leadbetter et al. [66], Piterbarg [80]).

Ordinal patterns in equidistant discretizations of Fractional Brownian motion.
The class of stochastic processes called Fractional Brownian Motion (abbrev. FBM) plays
an important role both in the theory of stochastic processes and in the statistical modelling
of time series. For instance, any selfsimilar Gaussian processes with stationary increments
belongs to FBM (see Embrechts and Maejima [36]). FBM occurs as the functional limit
of partial sums of random variables if the summands have a certain dependence structure
(see Taqqu [95]).

In statistics, FBM has been the first model to capture the so-called Hurst phenomenon,
which is also known as long range dependence or long memory of time series (see Man-
delbrot [71] and Molchan [76] for historical bibliographical remarks). Since long range
dependent time series appear in diverse fields such as hydrology, meteorology, economet-
rics and computer network design, there is a considerable number of monographs devoted
to this subject (see Beran [15], Robinson [86], Doukhan et al. [35], Samorodnitsky [89]).
Besides long range dependence, FBM is also applied to the modelling of turbulences in
physics and in finance (see Mantegna and Stanley [72]).

Bandt and Shiha [12] shows that, as a consequence of the selfsimilarity of FBM, the
distribution of ordinal patterns is identical on every time scale. Coeurjolly [28] proposes
an estimator of the Hurst parameter based on the empirical zero crossing rate in the
increment process, an idea which can generally be applied to the estimation of monotonic
functions of the first-order autocorrelation in stationary Gaussian processes. Coeurjolly’s
estimator is applied to the analysis of hydrological time series (Markovi¢ and Koch [73])
and atmospheric turbulence data (Shi et al. [90]).

1.2 Illustration: EEG data analysis

In this section, we illustrate how ordinal methods can be applied to the analysis of EEG
data. The reader can skip this part and continue with Section 1.3 where we outline the
thesis.

Here, we do not give a mathematical definition of ordinal pattern distributions but an
intuitive explanation. Table 1.1 shows the six ordinal patterns which can occur for three
sequent values of a time series. We identify the patterns with numbers from 1 to 6. For
instance, if the third value is larger than the second one and the second value is larger
than the first one, then the ordinal pattern is equal to 1. If the third value is larger than
the first one and the first value is larger than the second one, then the ordinal pattern
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1 2 3 4 3 6

Table 1.1: Ordinal patterns of order d = 2.

is equal to 2, and so on. The empirical distribution of ordinal patterns in a time series
is obtained by determining the ordinal pattern for each triple of three consecutive values
and counting the occurrences of 1 to 6.

Epileptic activity. The upper plot of Figure 1.2 shows a 250 seconds long part of the
EEG from an 8-years old boy. The signal has been recorded from the electrode F8 in the
10-20 scheme (see Figure 1.1) and digitalized with a sampling rate of 256 Hertz. Thus,
the displayed time series has a length of 250-256 = 64 000 data points. After 160 seconds,
there is an increase of the amplitude which is related to the onset of an epileptic seizure.

The lower plot of Figure 1.2 shows the empirical distribution of ordinal patterns in subse-
quent non-overlapping parts of 2 seconds (= 512 data points) each. Altogether, we obtain
125 such distributions. The space between horizontal lines represents the relative fre-
quency of ordinal patterns. For instance, the space between the ordinate and the first line
from below represents the relative frequency of the ordinal pattern 1, the space between
the first and the second line from below represents the relative frequency of the ordinal
pattern 2, and so on. Clearly, the relative frequencies of any of the ordinal patterns 1 to
6 add up to 1.

As can be seen from Figure 1.2, the sequence of ordinal pattern distributions clearly
reflects the change in the dynamics related to the onset of the epileptic seizure. Typically
during epileptic seizures, the EEG exhibits pronounced waveforms with high amplitudes.
Therefore, the ordinal patterns 1 and 6, which represent monotone behaviour of the time
series (see Table 1.1), are prevailing during this stage.

The background colors of Figure 1.2 visualize the result of a cluster analysis of the ordinal
pattern distributions. We have used the total variation distance measure for distributions
and the complete linkage algorithm to group the distributions into three clusters (see
Hérdle and Simar [47] for more information on the clustering method). Roughly speaking,
the white cluster corresponds to the time before and after the epileptic seizure, the dark
gray cluster to peaks of the seizure, and the light gray cluster to transitions between
normal and epileptic activity.

Classification of sleep stages. Figure 1.3 shows another application of ordinal time
series analysis. According to the methodology of Rechtschaffen and Kales [83], six differ-
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Figure 1.2: EEG time series and ordinal pattern distributions.

ent stages in the sleep of an adult are distinguished: awake (W), sleep stages S1, S2, S3,
S4 and rapid eye movement (REM) sleep. The classification is based on the recordings
of EEG, electrooculogram (EOG, measuring eye movements) and electromyogram (EMG,
measuring muscle activity). The recordings from the whole night are divided into subse-
quent non-overlapping parts of 30 second, the so-called epochs. Separately for each epoch,
the corresponding sleep stage is determined. For instance, the transition from W to S1
is associated with a slowdown of the EEG and a decrease of muscle tone. A necessary
criterion for S2 is the occurence of so-called sleep spindles and K-complexes in the EEG.
REM sleep is characterized by special eye movement patterns and very low mucle tone.
S3 and S4 are defined by the amount of delta activity in the EEG, that is, slow waves in
a frequency range smaller than 4 Hertz. For S3, the proportion of delta activity is 20 to
50 percent of an epoch, for S4, it is higher than 50 percent.

The upper plot in Figure 1.3 shows a hypnogram visualizing the sequence of sleep stages
in the first 300 minutes of sleep of an adult. Note that the corresponding 600 epochs have
been manually classified by an expert. The hypnogram shows the typical cycles of light
and deep sleep: The awake stage (W) at the beginning is followed by light sleep (S1 and
S2), deep sleep (S3 and S4), short light sleep (S1 and S2) and REM sleep, before the next
cycle begins.

The lower plot in Figure 1.3 displays the empirical ordinal pattern distributions obtained
for the 600 epochs. Here, the ordinal patterns are not obtained for directly consecutive
values, but for values with a distance of 12 time points in between. We chose this distance
because it stresses contrasts between ordinal pattern distributions in different parts of the
time series to a maximum extent.
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Figure 1.3: Hypnogram and ordinal pattern distributions.

The sleep cycles can be recognized very well. In particular, S3 and S4 coincide with
an increase of the frequency of the ordinal patterns 1 and 6, corresponding to a higher
proportion of monotone parts in the EEG during these stages. Hardly any difference can
be found among the distributions obtained during the stages W, S1, S2 and REM, which is
not surprising since the main criterions to distinguish these stages refer to features of EOG
and EMG. S3 and S4 result in very similar ordinal pattern distributions, corresponding
to the only gradual difference in the proportion of delta activity. Note that more recent
methodologies do not distinguish between S3 and S4 (see Iber et al. [51]).

Similar to Figure 1.2, the background color visualizes the result of a cluster analysis.
Here, the 600 epochs are gouped into two clusters. It is remarkable how well the white
cluster matches the epochs classified as W, S1, S2 and REM, and the gray cluster the
epochs classfied as S3 and S4. We find that

e 408 of the 414 epochs (x 98.6%) classified as W, S1, S2 and REM are covered by
the white cluster.

e 155 of the 186 epochs (= 83.3%) classified as S3 and S4 are covered by the gray
cluster.

Altogether, 563 of the 600 epochs (= 93.8%) are covered by the “right” cluster. Note that
we obtain even higher rates if we cluster the distributions of ordinal patterns of higher
orders (that is, ordinal patterns describing the order relations among more than three
values).
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1.3 Outline of the thesis

This thesis studies the estimation of ordinal pattern probabilities. The framework of our
analysis are parametric families of stochastic processes with stationary, non-degenerate
and zero-mean Gaussian increments. In Chapter 2, we introduce notation and review
concepts from the theory of stochastic processes and their distributions. Furthermore, we
investigate properties of Fractional Gaussian Noise, ARFIMA(0,d,0) and AR(1) processes.

Chapter 3 is devoted to a general discussion of the estimation of ordinal pattern proba-
bilities. We show that the distribution of ordinal patterns is stationary, and each pattern
occurs with a strictly positive probability. Given a finite number of observations, the
relative frequency of an ordinal pattern is an unbiased estimator of the corresponding
occurrence probability. By the fact that the distribution of stationary zero-mean Gaus-
sian processes is invariant with respect to reversions of the time and space orientation,
certain ordinal patterns have the same probability. We show that averaging the relative
frequencies of these patterns yields unbiased estimators with smaller variance.

A sufficient condition for the estimators of ordinal pattern probabilities to be consistent is
that the autocovariances of the increment process tend to zero. We show that this condi-
tion is also sufficient for strong consistency. For asymptotic normality of the estimators it
is sufficient that the autocovariances of the increment process decay faster than k — Lk
More generally, this statement is true for certain differentiable functions of ordinal pat-
tern probabilities and also in the multidimensional case when the probabilities of several
patterns are jointly estimated. We illustrate the results for equidistant discretizations of
Fractional Brownian Motion and for processes where the increments are ARFIMA (0,d,0)
and AR(1), respectively.

In Chapter 4, we study covariances of zero crossings. The results are obtained by an-
alyzing four-dimensional normal orthant probabilities and their derivatives with respect
to correlation coefficients. We propose a representation of zero crossing covariances by
one-dimensional integrals which can be numerically evaluated using standard quadrature
rules. Furthermore, we derive asymptotics of the covariances and establish approxima-
tions and bounds. Based on these results, we derive properties of the variance of empirical
Zero crossing rates.

In Chapter 5, we focus on ordinal patterns of order d = 2. We show that any “reasonable”
estimator of ordinal pattern probabilities can be expressed as an affine function of the
empirical zero crossing rate in the increment process. Using the results of Chapter 4,
we evaluate the variance of the estimators in equidistant discretizations of Fractional
Brownian Motion and in processes where the increments are ARFIMA(0,d,0) and AR(1),
respectively.

When the parameters of the family of stochastic processes are real numbers and monoton-
ically related to the probability of a change, an estimator of the parameters is obtained by
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plugging the frequency of changes into the inverse of the monotonic relation. Using the
results of Chapter 3, we establish properties of this estimator. Under additional condi-
tions on the autocovariances of the increment process, we also derive confidence intervals.
We show how the results apply to the estimation of the Hurst parameter in Fractional
Brownian Motion, of the fractional differencing parameter in ARFIMA(0,d,0) processes
and of the autoregressive coefficient in AR(1) processes.

In a simulation study, we evaluate the performance of the estimators and the coverage
of the parameters by the confidence intervals. For the Hurst parameter, we compare
the performance to that of an alternative estimator. We also consider the distribution
of empirical zero crossing rates in the increment process of FBM. It turns out that the
distribution is very irregular when the Hurst parameter is large and thus the increment
process exhibits long range dependence.

Chapter 6 generalizes the results of the previous chapters to ordinal patterns with ar-
bitrary delays. We demonstrate how patterns with increasing delays can be used for
estimating the Hurst parameter in asymptotically self-similar processes. One application
is the estimation of the Hurst parameter in equidistant discretizations of Fractional Brow-
nian Motion superimposed with short range dependent “noise”. We illustrate our method
for two practical time series, namely, River Nile data and NBS precision measurements.
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Chapter 2

Preliminaries

This chapter introduces notation and concepts from the theory of stochastic processes.
Furthermore, we provide some properties of important classes of Gaussian processes.

2.1 Notation

Except for commonly used notation, we will explain the meaning of symbols at their first
occurence in the text. For a list of symbols used throughout the thesis, see p. 147.

Sets. We use “C” to denote inclusion or equality of sets. N = {1,2,...} stands for the
set of natural numbers and Ny for N U {0}, We write Z={..., =2, —1,0, 1, 2, ...} for
the set of integers and R for the set of real numbers.

If YVisaset and T = R or T = Z, then YT denotes the set of sequences (y;)icr with
y, € Y for t € T. By )Y we denote the cardinality of ). If ) is a topological space,
we write B()) for the Borel o-field of ), that is, the smallest o-field containing all open
subsets of V.

Matrices. We use bold uppercase letters to denote matrices and bold lowercase letters
to denote vectors. For n € N, we write R" for the set of n-dimensional row vectors (i.e.,
R" stands for R*™). For (ay,as,...,a,) € R", let

aq 0 ... 0

. 0 as ... 0
diag(ai, as,y...,a,) = . .
0 0 an
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be the n x n matrix with the entries a1, as,...,a, on the main diagonal and zero entries,
otherwise. By O we denote the vector (0,0,...,0) € R™, and I, stands for the matrix
diag(1,1,...,1) € R™".

Asymptotics. We write g(k) = O(h(k)) for mappings g, h: N — R iff

. lg(k)]
lim sup —%
b [(F)|

We write g(k) = o(h(k)) iff

im 9B _

With % =1, we write g(k) ~ h(k) and say g is asymptotically equivalent to h iff

. g(k)
o T

2.2 Stochastic processes

In Section 2.2.1, we review basic concepts of random variables and their distributions
and give corresponding definitions for stochastic processes. We recall the definition of
(Gaussian processes in Section 2.2.2 and give properties of Fractional Gaussian Noise,
ARFIMA(0,d,0) and AR(1) processes in Sections 2.2.3 - 2.2.5.

2.2.1 Basic concepts

Throughout this section, let (€2, A4,P) be a probability space and (), B) a measurable
space.

Definition 2.1. Let Y, Y7, Y5, ... and Z be (), B)-valued random variables on (€2, A, P).

(i) We write Y = Z and say Y and Z have the same distribution (or Y and Z are
identically distributed) iff P(Y € B) = P(Z € B) for every B € B.

(i) Suppose (Y, B) = (R¥, B(R*)) for some k € N. We say Y is non-degenerate iff
P(Y €B) > 0
only if B € B(R*) has strictly positive Lebesgue measure.
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(77i) Let ) be a topological space, B = B()) and 0B the boundary of a set B € B. We
write

Y, — Y
and say Y, converges to Y in distribution iff

lim P(Y, € B) = P(Y € B)

n—00

for every B € B with P(Y € dB) = 0.

Clearly, if Y = Z P-almost surely (that is, P(Y = Z) = 1), then Y and Z are identically

distributed. Some authors use a different notion of non-degeneracy. For example, Bauer
[14] calls Y non-degenerate if there does not exist a y € R¥ with P(Y =y) = 1.

Note that there are equivalent ways to define convergence in distribution (see Theorem
29.1 in Billingsley [17]). In the special case where (Y, B) = (R*,B(R*)) with k € N,
a common definition is given by pointwise convergence of the distribution functions of
Y1, Y5, ... to the distribution function of Y at all continuity points of the distribution
function of Y (see Billingsley [17], pp. 327, 329).

Clearly, we may replace Y in (i74) with any other random variable having the same
distribution as Y. When Y is normally distributed with mean p and variance o2, we

occasionally write
P 2
Y, — N(g,o0°%)

(for the definition of N(u,0?), see Section 2.2.2).

Stochastic processes. Let T = R or T = Z. Any family Y = (Y (¢))er of (Y, B)-
measurable mappings on (Q, A, P) is called a (), B)-valued stochastic process. We say Y
15 time-continuous if T = R, and Y s tsme-discrete, otherwise. In the following chapters,
when Y is time-discrete, we write time indices as subscripts, that is, Y; instead of Y'(¢).

For k € N, let B®F denote the smallest o-field containing any set B; x By x ... X By
with By, By,..., By € B. Clearly, for all t,,t9,...,t € T with £ € N, the mapping
(Y(t),Y (t2), ..., Y (tg)) is (Y*, B¥F)-measurable. If Y is finite and B is the power set of
Y, or Y =R and B = B(R), then the distributions of all such finite-dimensional random
vectors uniquely determine a probability measure on (YT, B(YT)). (More generally, this
statement is true when ) is a separable and completely metrizable topological space and
B is the corresponding Borel o-field, see Theorem 35.3 in Bauer [14]. Indeed, finite sets
equipped with the discrete topology and R equipped with the Euclidean topology are
separable and completely metrizable, see Engelking [37], pp. 25-26 and pp. 268-269). We
refer to this probability measure as the distribution of Y. Clearly, Y = (Y (¢))ier and
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Z = (Z(t))ier have the same distribution iff all finite-dimensional distributions of Y and
Z are identical, that is,

(Y1), Y(E), ... Y(E) & (Z(t), Z(ta), ..., Z(te))

for all #1,ts,...,1; € T with k € N. In this case, we write Y £ Z.

The following definition introduces basic properties of stochastic processes.

Definition 2.2. Let T = R or T = Z. Assume that ) is finite and B is the power set
of Y, or (¥,B) = (R,B(R)). Let Y = (Y(t))rer, Y = (Y (#))sep for n =1,2,... and
Z = (Z(t))er be (¥, B)-valued stochastic processes on (2, .4, P).

dist

(i) Y is stationary iff (Y (t))ier = (Y(t + 7))ser for all 7 € T.

(i7) Let (Y, B) = (R,B(R)). Y is weakly stationary iff E(Y (¢)) = E(Y(0)) forallt € T
and Cov(Y (s),Y(t)) = Cov(Y(0),Y(t — s)) for all s, € T.

(i13) Let (¥, B) = (R,B(R)). Y is zero-mean iff E(Y(¢)) = 0 for all t € T. Y has unit
variance iff Var(Y(t)) = 1 for all ¢ € T.

(iv) Let (V,B) = (R,B(R)). Y is non-degenerate iff (Y(¢1), Y(t2), ..., Y(¢x)) is non-
degenerate for all t; <ty < ... <t € T with k € N.

(v) We say Y™ converges to Y in distribution and write
Yy Dy
iff all finite-dimensional distributions of Y converge to those of Y, that is,
(Y (1), Y (1), ..., YO (1) N (Y(t1), Y(ta), ..., Y(tx))

for all ti,t9,...,1k € T with £ € N.

Clearly, we may replace Y in (v) with any other stochastic process having the same
distribution as Y. For instance, we write

Ym L Gy

if the finite-dimensional distributions of Y converge to those of Fractional Gaussian
Noise with the Hurst parameter H (see Section 2.2.3).
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2.2.2 Gaussian processes

Throughout this section, let (€2, .4, P) be a probability space.

Definition 2.3. Let Y and (Y3,Y5,...,Y%;) with & € N be random variables on (2, A, P)
with values in (R, B(R)) and (R* B(R*)), respectively.

(i) Y has a normal distribution with mean p € R and variance o* € [0,00) (or Y is
distributed according to N(u,c?)) iff, in the case o2 = 0,

PY=up =1

or, otherwise,

P(Y € B) = éaéexp(—%)dx

for every B € B(R). The normal distribution with mean 0 and variance 1 is called
the standard normal distribution.

(i) (Y1,Ys,...,Y%) has a normal distribution with means p € R¥ and covariance matriz
¥ € RP* (or (Yy,Y5,...,Ys) is distributed according to N(u, X)) iff, for every
a = (al,a27...,ak) € Rk,

a1y + apYs + ... + agYy is distributed according to N(ap”, aXa’).

The normal distribution with means 0 and covariance matrix I, is called the standard
normal distribution.

It is well-known that if ¥ is distributed according to N(u,o?), then E(Y) = u and
Var(Y) = o%. Furthermore, if (Y;,Y5,...,Y;) has a normal distribution with means

p = (p1, pia, - - ., pu) and covariance matrix 3 = (0y;);;—,, then

E(Y;) =p; fori=1,2,...,k and Cov(Y;,Y;) =0y fori,j=1,2,... k.

In particular, the covariance matrix ¥ is symmetric and positive definite, that is, & = =7
and aXa” > 0 for every a € R*. The condition that ¥ € R¥** is symmetric and positive
definite is also sufficient for the existence of a normal distribution with means g € R¥ and
covariance matrix . If (Y1,Y5,...,Y}) is distributed according to N(u, ) and A € R>*,
then A (Y1,Y3,...,Y;)" is distributed according to N(A p'', A X AT) (see Billingsley [17],
p. 384).

The following theorem gives other well-known properties of normal distributions. We
state these properties in a theorem, because we will frequently refer to them throughout
the rest of the thesis.
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Theorem 2.4.

(1) If (Y1,Ys,...,Yy) is distributed according to N(u, X), then (Y1,Ya,...,Yy) is non-
degenerate if and only if X is strictly positive definite, that is, aX al > 0 for every
a € R* with a # (0,0,...,0). If X is strictly positive definite, then

P(Yi,Ya,....Ys) € B) = /qusm, %, x) dx

for every B € B(R¥), with ¢(u, 3, +) given by

1

O, T, x) = ((2m) det(®)) 7 exp (5 (x— ) B (x — )"

for x € RE. In particular, if B € B(R*) has strictly positive Lebesque measure, then

(¢3) If (Y1, Y2, ..., Yy) and (21, Za, ..., Zy) are normally distributed, then (Y1,Ys, ..., Y%)
and (Z1,Za, ..., Zy) are identically distributed if and only if E(Y;) = E(Z;) for
i=1,2,...,k and Cov(Y;,Y;) = Cov(Z;, Z;) fori,j =1,2,... k.

(1ii) If (Y1,Ya,...,Yy) and (71, Zs, ..., 7)) are normally distributed, then (Y1,Ya, ..., Yy)
and (21, Zs, ..., Z;) are independent if and only if Cov(Y;, Z;) =0 fori=1,2,...,k
and 3 =1,2,...,1.

(iv) If (Yl(l), YQ(I), . ,Yk(l)), (Y1(2), }/2(2), ce Yk(2)), ... are normally distributed, then

if and only if (Y1,Ya,...,Yy) is normally distributed, lim, . E Yi(n)) = E(Y;) for
i=1,2,...,k and lim,_,o COV(Y;(“), Y;.(n)) = Cov(Y;,Y;) fori,j=1,2,... )k

iy Lyg

Proof. (i)-(iti) See Billingsley [17], pp. 384-385. (iv) is easily established by means of
characteristic functions (see Theorems 26.2, 26.3 and 29.4 in Billingsley [17]). O

Next, we recall the concept of GGaussian processes.

Definition 2.5. Let Y = (Y (¢))er with T = R or T = Z be an (R, B(R))-valued
stochastic process on (2, A4, P). We say Y is a Gaussian process (or Y is Gaussian) iff,
for all t1,ts,...,t; € T with k£ € N, there exist a vector u € R¥ and a symmetric positive
definite matrix 3 € R¥** such that

(Y(t1),Y (t2),...,Y (tg)) is distributed according to N(u, ).
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The following theorem states some of the properties of Gaussian processes. We give a
proof of (iv), because it is usually not included in the more applied literature.

Theorem 2.6.

(1) If Y = (Y(t))ier is Gaussian, then Y is stationary if and only if Y is weakly
stationary.

(i) If Y = (Y(t))ter and Z = (Z(t))rer are Gaussian, then Y and Z have the same
distribution if and only if E(Y (t)) = E(Z(t)) for allt € T and Cov(Y (s),Y (1)) =
Cov(Z(s), Z(t)) for all s,t € T.

(i3i) If Y™ = (Y™ (t))er is Gaussian forn=1,2,..., then
Ym Iy vy
if and only if Y is Gaussian, lim,_ o E(Y™(t)) = E(Y (t)) for all t € T and

lim Cov(Y™(s),Y™M(t)) = Cov(Y(s),Y(t))

n—o0

for all s,t € T.

(iv) Suppose Y = (Y (t))ier with T = 7Z is Gaussian and stationary. Then a necessary
condition for Y to be non-degenerate is given by |Cov(Y (0),Y (k))| < Var(Y(0)) for
all k € N. A sufficient condition for Y to be non-degenerate is that Var(Y (0)) > 0
and Y has a spectral density fy, that is,

is well-defined for all X € [—m, 7], and

Cov(Y(0),Y (k) = Sy () e?FdA

-7

forall k € Z.

Proof. (i) See Brockwell and Davis [19], p. 13. (4i) and (iii) are immediate consequences
of Theorem 2.4 (i7) and (iv).

(i) Let k£ € N. If |Cov(Y(0),Y(k))| = Var(Y(0)), then the covariance matrix of
(Y(0),Y (k)) is singular and thus, according to Theorem 2.4 (i), (Y (0),Y(k)) is de-
generate. Hence, |Cov(Y(0),Y(k))| < Var(Y(0)) is a necessary condition for Y to be
non-degenerate.
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In order to establish the sufficient condition, suppose that Var(Y(0)) > 0 and Y has a
spectral density fy. Furthermore, without loss of generality, suppose that Y is zero-

mean. Now, assume there exist ¢ < t, < ... < t, € Z with £ € N such that
(Y(t1), Y (t2),...,Y(tx)) is degenerate. Let 3 := (Cov(Y (t;),Y(t;)));,;=;. Since Y is
Gaussian, it follows the existence a vector a = (ay, as, ..., a;) € RF with a # (0,0,...,0)

such that aXa” = 0. Consequently, Var(a;Y (¢;) + a2Y (t2) +. .. +a,Y (tx)) = 0 and thus
a1Y (t1) + a2Y (ta) + ... + @Y (tx) = 0 P-almost surely. Without loss of generality, we
may assume that a, # 0 (if ay = 0, then (Y'(¢1),Y (t2),...,Y (tx—1)) is degenerate). For
s € Ny, define

afs) = —aZ—;" ifi € {'1,2,...715— 1} is such that s =t — t_;
0 otherwise

Note that a1Y (t1) + a2Y (t2) + ... 4+ Y (tx) = 0 is equivalent to

o
Za tk—s
L

Since Y is stationary, we obtain that
o
Z a(s)Y (t — s)
s=0

P-almost surely for every ¢t € Z. Let u € [0,1] and consider the process X = (X (¢))ez
defined by X(¢) := pY (t) + (1 — p) D sepa(s)Y(t —s) for t € Z. Since X and Y are
identical, X has a spectral density fx, and fx(\) = fy(}) for all A € [0,7]. On the other
hand, X is obtained by a linear filtering of Y, and thus

- ish |2
Fx) =t (=) 3 a(s)e™ [P e ()
s=0
for A € [0, 7] (see Theorem 4.10.1 in Brockwell and Davis [19]). Let N := ¢; — ¢;. Since

a(s) =0 for s =0 and s > N, it follows that

N

o+ (1 —M)Za(s)em“ =1

s=1

for all A € [0, 7] with fy(A\) > 0. Because p € [0, 1] is arbitrary, we obtain

(2.1) 1—2@(5)6”)‘ =0



for all A € [0, 7) with fy(A) > 0. Since Var(Y(0)) = ["_fy(A)dXand fy(A) = fy(—A) for
all A € [0,7) (see Brockwell and Davis [19], pp. 121-122), the assumption Var(Y(0)) > 0
yields the existence of infinitely many A € [0,7) with fy(\) > 0. Therefore, we find
pairwise different Ay, Ao, ..., Ayy1 € [0,7) such that fy(N\;) > 0fori=1,2,.... N+ 1.
Since the Vandermonde matrix

1 e)qi 62)\1i L eN)\li

1 eAgi 62)\21' L eN)\zi
A =

1 6)\N+1i 62)\N+1i . eN/\NJrli

has rank N 41 (see Horn and Johnson [49], p. 29), the only solution of the linear equation
Ax" = 0is given by x = (0,0,...,0) (see Horn and Johnson [49], p. 14). However, equa-
tion (2.1) holds for A = Ay, Mg, ..., Ayaq, and thus (1, —a(1), —a(2), ..., —a(N)) is another
solution of the linear equation. This contradiction shows that Y is non-degenerate. [

2.2.3 Fractional Gaussian Noise
Let Y = (Y (£))sez be a family of (R, B(R))-measurable mappings on a measurable space

(€2, A) which is equipped with a family of probability measures (Pg) gre(o,1y- The subscript
H (for instance, Eg, Varg, etc.) indicates integration with respect to Pg.

Assume that, for H € (0, 1), the following conditions are satisfied:

(A1) Y measured with respect to Py is zero-mean Gaussian.

(A2) The autocovariances of Y measured with respect to Py are given by

(\k‘+1]2H—2]kl2H+\k—1\2H)

DO | —

Covu(Y (), Y(E+H) = pulk) =
for t,k € Z.

Then Y measured with respect to Py is called (standard) Fractional Gaussian Noise
(FGN) with the Hurst parameter H. For H € (0, 1), we denote by Gg the distribution
of FGN with the Hurst parameter H. According to Theorem 2.6 (i), Gy is uniquely
determined by (Al) and (A2).

Note that (©2,.A), Y and (Pg)mec(o,) such that Y measured with respect to Py is FGN
with the Hurst parameter H for every H € (0,1) actually do exist. In particular, the
existence of FGN with the Hurst parameter H follows by the existence of FBM with the
Hurst parameter H (see below). Now, (€2,.4) can be chosen as the space of real-valued
sequences R” with the corresponding Borel o-algebra, Y as the identity on (£, .A), and
Py as the probability measure on (£2,.4) induced by Gg.
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We refer to Fractional Gaussian Noise as defined by (Al) and (A2) as standard FGN,
because Varg (Y (t)) = pg(0) = 1 for all ¢t € Z. In particular,

pua(k) = Corrg(Y(t), Y(t+k))

for all £, k € Z. More generally, one can consider FGN with the autocovariances given by
Covg(Y(t), Y(t+k)) =o?pu(k) for some o2 > 0.

It is well-known that FGN with the Hurst parameter H € (0, 1) is stationary (see Beran
[15], p. 55). Furthermore, FGN with the Hurst parameter H € (0,1) has a spectral
density (see Proposition 2.1 in Beran [15]). Thus, according to Theorem 2.6 (iv), FGN
with the Hurst parameter H € (0, 1) is non-degenerate.

Note that one can also consider FGN as given by (A1) and (A2) for the Hurst parameter
H =1 (see Beran [15]). In this case, pg(k) = 1 for every k € Z which shows that Y is
degenerate (see Theorem 2.6 (iv)). In particular, Varg (Y (s) — Y (t)) = 0 for all s,t € Z
and thus Y(s) = Y (¢) Pg-almost surely.

Lemma 2.7. The autocovariances of FGN have the following properties:
(1) If H =%, then pp(k) =0 for all k € N.
(i) For every H € (0,1), we have pg(k) ~ H(2H — 1) k*H-2,
(111) If H < 3, then pa(k) < pa(k+1) <0 for all k € N, and
> pu(k) = 0.

k=—o00

(iv) If I C (0,3) is compact, then there ezists a function v : N — R satisfying v(1) > —1
and |v(k)| = o(k™?) for some B> L such that

pu(k) > v(k)
for all H € I and k € N. In particular, pa (k) > —5= for all H € (0, 3) and k € N.
Proof. (i) immediately follows by the definition of pg (k).
(1) See Proposition 3.1. (f) in Taqqu [96].
(#4i) Let H < 5. Consider the mapping p : [1,00) — R given by
plz) = (z+17H — 22 4 (o 1pH

for x € [1,00). Since z > z?H is strictly concave on (0, 00) and continuous on [0, 00), we
have p(z) < 0 for every z € [1,00), which shows that pg(k) = 1p(z) < 0 for all k € N.
Note that the first derivative of p on (1, 00) is given by

pr) = 2H(z+ 1) —4H*H 1 2H (v — 1)2H!
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for x € (1,00). Since the mapping x — z?H~! is strictly convex on (0,00), we obtain

p'(x) > 0 for every z € (1,00) and thus pg(k) < pg(k + 1) for all k£ € N. Finally,
according to (i), we have 27 |pm (k)| < co and hence

> pulk) = Jim > pu(k)
k=—00 k=—n

= lim ((n+1)*" —n*") = 0.

(iv) For (z,y) € (0,1] x I, define
fry) = (A =24 (1 —n)?).

Using the binomial series expansions of (1 + z)* and (1 — z)? (see Bronshtein and
Semendyayev [20], p. 22), we obtain

flay) = ;2 (EOO: (%{y)xk — 2+ ZOO: <2ky)(_1)kxk>
£ 5

1

=2 (21 2)
=0 +

The latter expression shows that, for every y € I, the mapping = — f(z,y) can be
continuously continued to [—1, 1], namely, with 0° := 1, the extension of f is given by
f(0,y) =2y(2y — 1). Since x — f(x,y) is a power series, the partial derivative of f with
respect to x is obtained by differentiating each term. Thus,

af _ 20—1
axzry = 222[(2[ )x

for each interior point (x,y) of [~1,1] x I. Since I C (0, 3), we have

2y 2y(2y—1)... 2y — 20— 1)
<2l + 2> B (20 + 2)! <0
o1

for all y € I and I € N, which shows that
[0,1] x I. Consequently,

is negative at each interior point (z,y) of

min f(‘T?y) = f(17y)

z€[0,1]
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for all y € I. Now, let H,,;;, := min [ and H ,, := max I. According to the definition of
[, we have f(1,y) =2% — 2 for y € I and thus

min f(l‘:y) = f(1>Hmin)-

(zy)€0,1]x1

For k € N, define
1
v(k) = 5 f(L Huin) o Hmax=2

Since f(1, H ) < 0, we obtain

1 . . .
pu(k) = 5 ((k+1)*H =27 4 (K —1)*")
— %kZ ((1 + k_1)2H -9 + (1 o k—l)?H) k?H—Z
— %f(kl,H) kQH*Q
> v(k)

for all k € Nand H € I. Note that v(1) = % f(1, Hyw) > —1. Furthermore, because
H ..« < %, we have |v(k)| = o(k™?) for some g > 5. If I = {H} for some H € (0, 3),
then v(k) = £ f(1, H) k*® =2 which shows that pg (k) > —5 for all k € N. The proof is
complete. O

Note that FGN can be considered as the increment process of Fractional Brownian Motion.
Let B = (B(t))icr be a family of (R, B(R))-measurable mappings on a measurable space
(©,A) which is equipped with a family of probability measures (Pg)mec(o,). Suppose
that, for H € (0,1), the following conditions are satisfied:

(B1) B measured with respect to Py is zero-mean Gaussian.

(B2) The autocovariances of B measured with respect to Py are given by

(W2H 4 ’S’2H o ’t o S’QH)

DO | —

Covg(B(s), B(t)) =
for s,t € R.

Then B measured with respect to Py is called (standard) Fractional Brownian Motion
(FBM) with the Hurst parameter H.

In fact, such (€2,.4), B and (Pu)#e(o,1) do exist. For a proof of the existence of FBM with
the Hurst parameter H, see Proposition 2.2 in Taqqu [96]. Furthermore, for each H, there
exists a version of FBM with continuous sample paths (see Taqqu [96]). Thus, (22, A) can
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be chosen as the set of continuous functions on R with the corresponding Borel o-algebra,
B as the identity on (2,.4), and Py as the probability measure on (£2,.4) induced by the
distribution of FBM with Hurst parameter H. Note that some authors define FBM only
for ¢t € [0, 00) (see, e.g., Embrechts and Maejima [36]). Here, we adopt the definition with
double-side infinite time range of Taqqu [96].

Now, let Y = (Y (¢))iez be the process of first-order differences of B, given by
Y(t) = B()—B(t—1)

for t € Z. Then Y measured with respect to Py is standard FGN with the Hurst
parameter H (see Taqqu [96]).

It is well-known that FBM with the Hurst parameter H is H -self-similar, that is,
(2.2) (B(at))ier = (a"B(1))icr

for every a > 0 (see Embrechts and Maejima [36]).

Similarly as for FGN, one can also consider FBM with the Hurst parameter H = 1. In
this case, Covg (B(s), B(t)) = Covg(sB(1),tB(1)) = st for s,t € R which shows that the
sample paths of B are almost surely straight lines, where the slope B(1) is distributed
according to N(0,1).

2.2.4 ARFIMA(0,d,0) processes

Let Y = (Y(2))4ez be a family of (R, B(R))-measurable mappings on a measurable space
(€2, A) which is equipped with a family of probability measures (Pq) e

55)

Assume that, for d € (-1 the following conditions are satisfied:

2 5)
(A1) Y measured with respect to Pq is zero-mean Gaussian.

(A2) The autocovariances of Y measured with respect to Pgq are given by
Cova(Y' (1), Y(t+ k) = palk)
for t, k € Z, where pg(0) :=1 and pg(k) := 0 for k € Z\ {0} if d =0, and

T(k+d)T(1—d)
T(k+1-d)I(d)

pa(k)
for k € 7Z, otherwise.

Then Y measured with respect to Pg is called (standard) ARFIMA(0,d,0) process with
the fractional differencing parameter d.
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Note that “ARFIMA” stands for Auto-Regressive Fractionally Integrated Moving Average.
For the more general definition of ARFIMA (p,d,q) processes and a proof of their existence,
see Taqqu [96]. The existence of (€2,.4), Y and (Pg) de(- 1,1 follows by the same arguments
as for FGN. According to Theorem 2.6 (i), the distribution of an ARFIMA(0,d,0) process
is uniquely determined by (Al) and (A2). We refer to ARFIMA(0,d,0) processes as
defined by (A1) and (A2) as standard, because Varg(Y (t)) = pa(0) = 1 for all t € Z. In

particular,
pa(k) = Corrg(Y(t), Y(t + k))

for all t,k € Z. Tt is well-known that ARFIMA(0,d,0) processes with d € (—3,3) are
stationary (see Beran [15], p. 61). Furthermore, ARFIMA(0,d,0) processes have a spectral
density (see Beran [15], p. 63). Thus, according to Theorem 2.6 (iv), ARFIMA(0,d,0)

processes are non-degenerate for every d € (—1,1).

Lemma 2.8. The autocovariances of an ARFIMA(0,d,0) process with the fractional dif-

ferencing parameter d € (—%, %) have the following properties:

(i) If d#0, then pa(k) ~ "5 ka1,

(i1) If d <0, then pg(k) < pa(k +1) <0 for all k € N, and

o0

> palk) = 0.

k=—00

(#i9) If I C (—3,0) is compact, then there exists a function v : N — R with v(1) > —1
and |v(k)| = o(k™?) for some B > % such that

foralld € I and k € N.

Proof. (i) See Taqqu [96], Proposition 6.1.

(¢4) Let d € (—3,0). It is well-known that '(z) > 0 for > 0, T'(z) < 0 for z € (—1,0)
and T'(1 + x) = 2T (x) for all x € R\ {0,—1,—2,...} (see Olver [78], pp. 32-35). Thus,
pa(k) <0 for all k € N. Furthermore, pg(k + 1) = 254 p4(k) for all k € N, which shows
that pg(k + 1) > pa(k). By induction, one easily establishes

Nd) < _ Il-d)T(1+d+n)—dT(d)T(1—d+n)
T(1—d) ;”d(’“) - 2dT(1—d)T(1—d+n)
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for n € N. Similarly to (i), we obtain that

'l+d+n)  (d+n)I'(d+n)

— ~ d 2d—1 ~ 2d
T(l—d+n) Ti—dtn) ~ @fnn "

as n — oo, which shows that I'(1 +d + n)/I'(1 —d +n) — 0 as n — oo and thus
> pey pa(k) = —35. Since Y72 pa(k) =142 377, pa(k), the statement follows.

(1ii) Define dyi, := min I and dy,, := max . Furthermore, let

'l —x)
I'(z)

K = max
xzel

Note that x is well-defined because = — I'(z) is continuous on R\ {0,—1,—2,...} (see
Olver [78], p. 32) and I is compact. Now, define v(1) := %min Since z — £ is

_dmln 1-z

increasing on (—3,0), we have —1 < v(1) < pg(1) for all d € I. For k € N with k& > 1, let

T'(k + dax)
F(k +1 - dmax) )

v(k) = —k

Since z — ['(z) is positive and increasing on [2, 00) (see Olver [78], p. 36), we obtain that
Pikto) is positive and increasing on (—1,0) for all k¥ € N with & > 1. Altogether,

T i) 3
v(k) < pa(k) for all £ € N and d € I. Similar to (i), we obtain

T'(k + diax)
F(k +1- dmaX)

demaxfl

Since dpax < 0, we have |v(k)| = o(k~?) for some § > 1, and hence the proof is complete.
[

2.2.5 AR(1) processes

Let Y = (Y (¢))sez be a family of (R, B(R))-measurable mappings on a measurable space
(€2, A), and let (€2, A) be equipped with a family of probability measures (Pg)ae(-1,1)-

Assume that, for @ € (=1, 1), the following conditions are satisfied:

(A1) Y measured with respect to P, is zero-mean Gaussian.

(A2) The autocovariances of Y measured with respect to P, are given by
Cova(Y (1), Y(t+k) = pa(k) == al

for t, k € Z, where 0" := 1.
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Then Y measured with respect to P, is called (standard) AR(1) process with the autore-
gressive coefficient a.

The acronym “AR” stands for Auto-Regressive. For the more general definition of AR(p)
processes and a proof of their existence, see Beran [15], p. 59. According to Theorem 2.6
(i), the distribution of AR(1) processes is uniquely determined by (Al) and (A2). We
refer to an AR(1) process as defined by (Al) and (A2) as standard, because Varg (Y (t)) =
pa(0) =1 for all ¢ € Z. In particular,

pa(k) = Corra(Y(t),Y(t+k))

for all t, k € Z. Note that AR(1) processes with the autoregressive coefficient @ € (—1, 1)
are stationary (see Beran [15], p. 59). Furthermore, AR(1) processes have a spectral
density (see Beran [15], p. 61). Thus, according to Theorem 2.6 (iv), we obtain that
AR(1) processes are non-degenerate for every a € (—1,1).

Lemma 2.9. For every a € (—1,1),

o0

S lea®l = 4 and Y pulh) = 1422
k=1

1—a

k=—o00

Proof. The statement is obtained by the expression for the sum of a geometric series. [
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Chapter 3

Estimation of ordinal pattern
probabilities

In this chapter, we study the estimation of ordinal pattern probabilities in real-valued
stochastic processes. Our work extends and partially generalizes the results given in
Shiha [91] and Bandt and Shiha [12].

In Section 3.1, we introduce a parametric family of real-valued stochastic processes as the
framework of our analysis. We assume that the increment processes are non-degenerate,
stationary and zero-mean (Gaussian with unit variance. In Section 3.2, we show that the
distribution of ordinal patterns in such processes is stationary and any ordinal pattern
has a strictly positive probability of occurrence.

Estimators of ordinal pattern probabilities are considered in Section 3.3. A simple un-
biased estimator is given by the relative frequency of ordinal patterns in a sample. We
show that, due to statistical symmetries of the increment processes, “better” estimators
(in terms of the risk with respect to convex loss functions) are obtained by averaging
the estimates of certain ordinal pattern probabilities. Conditions for strong consistency
and asymptotic normality are established in Section 3.4. In Section 3.5, we apply the
results to equidistant discretizations of FBM and to processes where the increments are
ARFIMA(0,d,0) and AR(1).

3.1 Modelling

Throughout this chapter, the framework of our analysis is given by the following class of
stochastic processes:

Let (€,.A) be a measurable space and X = (X;);cz a sequence of measurable mappings
from (2, A) into (R, B(R)). Let Y = (¥}):ez denote the process of increments of X, given
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by V; :== X; — X; ;| for t € Z. Suppose (£2,.A) is equipped with a family of probability
measures (Pg)ygco with © # (). The subscript 9 (for instance, Eg, Varg, ...) indicates
integration with respect to Py. By saying that a certain property of X holds for ¥ € O,
we mean that this property holds for X measured with respect to Py.

We always assume that Y satisfies the following conditions:
(M1) Y is non-degenerate for every ¥ € ©.
(M2) Y is stationary for every 9 € ©.

(M3) Y is zero-mean Gaussian and has unit variance for every ¢ € ©.

As a consequence of (M1), the values of (X;)scz are pairwise different Py-almost surely for
every ¥ € ©. To see this, note that the set {(yy,v2,..., %) € R¥ |y1 +y2 + ... +yp = 0}
has Lebesgue measure 0 for every k € N. Therefore, for all t € Z,

(31) ]P)ﬂ(Xt # Xt+k) = 1- ]Pﬂ(Xt = Xt+k)
= 1—Pﬂ(}g+1+}/¥+2++Yt+k:0)
= 1.

For ¥ € ©® and k € 7Z, define
(3.2) po(k) = Corry(Yp,Ys).
Since Y is non-degenerate, we have

po(k)| < 1

for all ¥ € ® and k € Z \ {0} (see Theorem 2.6 (iv)).

The class of stochastic processes satisfying (M1)-(M3) includes, for example, standard
Fractional Gaussian Noise with the Hurst parameter H € (0,1) (see Section 2.2.3), stan-
dard ARFIMA(0,d,0) processes with the fractional differencing parameter d € (—%, %)
(see Section 2.2.4), and standard AR(1) processes with the autoregressive coefficient

a € (—1,1) (see Section 2.2.5).

As we will see below, the distribution of ordinal patterns does not depend on the variance
of Y (as long as the variance is strictly positive, which is necessary for Y to be non-
degenerate). The assumption that Y has unit variance is for sake of convenience. In
particular, the autocovariances of Y are equal to the autocorrelations in this case.

The reason why we consider Gaussian processes is that there exist simple closed-form
expressions for ordinal pattern probabilities in this case, and the variance of estimators
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can be easily evaluated numerically. As we show in the following section, all statements
on ordinal patterns and their distributions are valid for a larger class of processes. In par-
ticular, (X;);ez can be replaced by the transformed process (h(X;));cz where h : R — R is
strictly monotonically increasing. Note that, in general, the increments of the transformed
process (h(X;))iez are not Gaussian.

3.2 Ordinal pattern probabilities

Ordinal patterns. We start with the main definition of this thesis. For d € N, let
Sq denote the set of permutations of {0,1,...,d}, which we write as (d+1)-tuples con-
taining each of the numbers 0,1,...,d exactly once. For instance, S; = {(0,1), (1,0)},
S, = {(0,1,2),(1,0,2),(1,2,0),(2,0,1),(0,2,1),(2,1,0)}, and so on. Ordinal patterns
represent the order relations among a fixed number of equidistant values in a time series.
If we assume that the values are pairwise different, then it is natural to identify ordinal
patterns with permutations.

Let d € N. For x = (zg,21,...,74) € R let
7T-(}C) = (T07T17"'7Td)

be the unique permutation of {0, 1,...,d} which satisfies

(3.3) Tpy = Ty = .. > Ty

and

(3.4) rioy > rpif ., = x,, fori=12,...,d.

Condition (3.4) is necessary to guarantee the uniqueness of (rg,ry,...,74) if there are
equal values among g, 1, ..., z4.

We may regard 7(x) as a representation of the rank order of zg, z1,...,24. If 2; = z; for

i,j € {0,1,...,d} with ¢ < j, then x; is ranked higher than x;. When =z, z,...,z, are
pairwise different, then the order relation between any two components of x (being either
< or >) can be obtained from 7(x).

Figure 3.1 displays the components zg, 71, . . ., x5 of a vector x € R°. The horizontal align-
ment and the connecting line segments suggest that zg, x1,...,z5 are observed sequently
in time. As emphasized by the dashed lines, x3 = 0.9 is the largest value, 4, = 0.7 is the
second-largest value, and so on. This rank order is uniquely described by the permuta-
tion 7(x) = (3,4,5,2,0,1). Since there are no equal values among the components of x,
condition (3.4) does not apply here.

Now, let d € N and ¢ € Z. By the (random) ordinal pattern of order d at time t in X,
we mean the random permutation

H(t) = W(Xt;Xt—&—l;--th—l—d)'
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Figure 3.1: A vector x = (1g, 21, ...,%5) € R® for which 7(x) = (3,4,5,2,0,1).

According to (3.1), the random variables Xy, X;i1,..., X4 are pairwise different Py-
almost surely for every ¥ € ©. Therefore, for every r = (rg,r1,...,74) € Sy, the events
{II(t) = r} and {Xi4ry > Xigr, > ... > Xy, } are equivalent Py-almost surely (that is,
the symmetric difference of both events has probability 0 with respect to Py).

In this chapter, we study the distribution of the ordinal pattern process (I1(¢))scz and the
estimation of ordinal pattern probabilities. In Chapter 5, we focus on ordinal patterns
of order d = 2. In Chapter 6, we introduce delays of ordinal patterns as an additional
parameter besides the order.

Clearly, if A : R — R is strictly monotonically increasing, then

(3.5) n(x) = 7w(h(zo), h(z1),...,h(z4))

for all x = (g, 1, ..,74) € RYTL. Thus, the ordinal patterns in (X;);cz and in (h(X}))scz
are identical. Note that this statement is also true when A depends on w € €). For instance,
if A and B are random “offsets” and “scalings”, that is, measurable mappings from (2, .A)
into R and (0, 00), respectively, then the ordinal patterns in (X;)iez and in (A+ B~ X})iez
are identical.

If h(z) = cx for some ¢ > 0, then (h(X;))iez has the increments h(X;) —h(X;—1) = ¢Y; for
t € Z. Thus, according to the model assumptions (M1)-(M3), the process of increments
is non-degenerate, stationary, zero-mean Gaussian and has variance Varg(cY;) = ¢? for
every ¥ € ©. This argument shows that the distribution of ordinal patterns actually does
not depend on the variance of the increment process.

Note that we could have defined II(t) as a causal filter I1(t) = m(X;_g, X4—gr1,---, Xt)
only depending on the “past” of X at time ¢. The above “non-causal” definition is just
for the sake of simpler notation in some proofs.

Stationarity. Next we show that, as a consequence of the model assumption (M2), the
ordinal pattern process (I1(t));cz is stationary for every 9 € ©.
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Let x = (29, 71,...,74) € R¥L Since shifting a vector by constant does not affect any
order relation among its components, we have

m(x) = 7w(xg— 2o, T1 — Tg, ..., Tg — Xp) -
Furthermore, for each i € {1,2,...,d}, we can write z; — xy as the sum of the differences
Ty — Tg, To — X1, ..., T; — x;_1. Therefore, with 7 defined by
7(y) = 0, ¥, y1 Y2, s Y1t Y2+ A Ya)

for y = (y1, 42, - - -,94) € RY, we obtain
m(x) = 7(xy — 2o, Ty — X1, ..., Tg— Tg_1) -

This shows that, for every ¢ € Z, the ordinal pattern I1(¢) only depends on the increments
Yir1, Yigo, - - -, Yiig, namely,

H(t) = 7~T(Yt+1, Yiro, ooy Yi+d)'

Now, the following corollary is an immediate consequence of the model assumption (M2)
that Y is stationary for every ¥ € ©.

Corollary 3.1. The process (I1(t))ez is stationary for every 9 € O,

Note that Corollary 3.1 relaxes the condition for stationarity of (II(¢)).ez given in Shiha
[91], which requires the increments to be stationary and independent.

Let r = (ro,r1,...,7q) € Sq. For 9 € O, define
pe(9) = Pyu(ll(t) =r).

According to Corollary 3.1, the function p.(-) does not depend on the specific time point
t € Z on the right hand side of the definition. We call p,(-) the probability of the ordinal
pattern r. The following corollary shows that the probability of any ordinal pattern is
strictly positive.

Corollary 3.2. For everyr = (ro,r1,...,7q) € Sq with d € N and every 9 € O,
0 < pe(¥9) < 1.

Proof. Let 9 € ®. We only need to show that p.(d) > 0. Since there exists an s € Sy
with s # r, it then follows that p.(9) < 1 — ps(d) < 1. Note that

pe(9) = Po(X,, > X, >... > X,))
= Py(X,, — X, >0, X,, —X,, >0,..., X

Td—1

- X,,>0).
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Thus, in order to prove that p.(d9) > 0, it suffices to show that the random vector
Xy — X0y, Xpy — Xy, ..o, X, — X,,) is non-degenerate Gaussian. Let k € {1,2,...,d}
and suppose 4,j € {0,1,...,d} are the indices for which r; = k and r;, =k — 1. If i < j,
then

Y = (Xh' - X’I“i+1) + (XTi+1 - XTiJrZ) +.o+ (er—l - X7'j) ’

and if ¢ > j, we have

Vi = (X~ X)) = (X = X ) — = (X — X))
Consequently, there exists a matrix B € R such that

(Y, Yo, ., V)b = B(Xpy — Xy, Xpy — Xy oo, Xy — X))
Now, let X be the covariance matrix of (V;, Y3, ..., Y3) and ¥ the covariance matrix of

(Xpo —Xp, Xo, — Xoy, o0, X, —X,,). Since Y is non-degenerate, X is strictly positive
definite. Furthermore, ¥ = B 3 B? which shows that B is non-singular and X is strictly
positive definite. Consequently, (X,, —X,,, X,, —X,,, ..., X;,_, —X,,) is non-degenerate

Gaussian, and hence the proof is complete. O

Bandt and Shiha [12] gives closed-form expressions for the probability of ordinal patterns
of order d = 2 and d = 3. We will review the results for d = 2 in Chapter 5.

3.3 Estimators of ordinal pattern probabilities

Let d € N and r € S;. Furthermore, let n € N and define
I, := (I1(0), II(1), ..., II(n—1)).

In this section, we study the problem of estimating the ordinal pattern probability p, (1)
given an observation of the ordinal pattern sample IT, governed by Py with 9 € ©
unknown. A natural estimator of p.(-) is the relative frequency of observations of r in
I1,, namely,

n—1
. R 1
Qrn = Qr,n(Hn) = ﬁ Z l{H(t):r} )
=0
According to Corollary 3.1, we have

Eﬂ (Qr,n) = Pr ('19)

for all ¥ € ©, that is, ¢, is an unbiased estimator of p.(-). Next we show that, due to
statistical symmetries of the increment process Y, there is a simple way for improving
this estimator.
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Space and time symmetry. Let n € Nand t; <ty <...<t, € Z. According to the

model assumption (M3), both (V;,,Y%,,...,Y:, ) and (=Y;,,=Y,,,..., =Y, ) are zero-mean
Gaussian for every 9 € ©. Furthermore, because Covy(Yy,,Y;,) = Covy(—Y;,, —Y;,) for
alli,j € {1,2,...,n}, they have the same covariance matrix and thus they are identically
distributed. Consequently,

(3.6) Yez Z (—Yi)ez

for every 9 € ©. Now, note that, because Y is stationary (see model assumption (M2)),
we have Covy(Yy,,Y;) = Covg(Y_y,Y_y;) for all 4,5 € {1,2,...,n}, which shows that
(Y, Yy, ..., Ys,) and (Y_y, Yoy,,. .., Y, ) are identically distributed. Consequently,

(3.7) Yz = (Yoihez

for every ¥ € ©®. We refer to the properties (3.6) and (3.7) of Y as symmetry in space
and time, respectively. Note that it is well-known that zero-mean stationary Gaussian
processes have these properties. According to the terminology of Bandt and Shiha [12],
symmetry in space is equivalent to reversibility, and symmetry in time is equivalent to
rotation symmetry.

Next we show that, as a consequence of (3.6) and (3.7), the distribution of II, is invariant
with respect to spatial and time reversals of ordinal pattern sequences.

Let the mappings «, § from Sy onto itself be defined by

(3.8) a(r) = (rg, ra—1, ..., 7o) and B(r) := (d—ro, d—11,...,d—714g)
for r = (ro,71,...,74) € Sg. Geometrically, we may regard a(r) and 5(r) as the spatial
and time reversal of r (for an illustration, see Figure 3.2). In particular, if the components
of x = (wq, 1, ...,2q4) € R are pairwise different, then

(3.9) a(r(x)) = 7(=zo, —21,...,—2q¢) and B(7(x)) = 7(24,Ta-1,- .., To).

Thus, a(r(x)) and 5(7(x)) represent the rank orders of the vectors obtained by reversing
the components of x in “space” and “time”, respectively. In terms of the vector of

increments y = (y1, Yo, ..., %q) given by yy := xx — %1 for k = 1,2,...,d, we can write
(3.9) as
(3.10) a(7(y) = 7(=y1, =Yz, —ya) and B(F(y)) = T(~Ya, —Ya-1,---, —Y1) -

For r € Sy, consider the subset T of Sy defined by

t = {r,ar), 8(r),Boalr)}.

Since « o 3(r)

= (r) and o a(r) = B o f(r) = r, the set r is closed under o and
S, that is, a(r)

o
p(r) = r. Consequently, if s € r for r;s € Sy, then s = r. This

p
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N N Y

r=(0,2,1) a(r) = (1,2,0) B(r) = (2,0,1) pfoa(r)=(1,0,2)

Figure 3.2: The spatial and time reversals of r = (0,2, 1).

provides a partition of each S; into classes which contain 2 or 4 elements. For d = 1, the
only class is S1 = {(0,1),(1,0)}; for d = 2, there are two classes: {(0,1,2),(2,1,0)} and
{(0,2,1),(2,0,1),(1,2,0),(1,0,2)}; for d = 3, there are 8 classes. In general, for d > 2,
both classes of 2 and 4 elements are possible, for instance, fr =2 if r = (0,1,...,d) and
tr=4ifr=(0,2,3,...,d,1).

Now, let n € N. Consider the mappings A, B from (Sy)™ onto (S4)" defined by
A(ry, rg, ..., 1) = (a(ry), a(ry), ..., a(r,)),
B(rla o, ..oy r’n) = (ﬁ(rn)a 6(1.77,71)7 S 6(1.1))

for (rq, rg, ..., r,) € (Sg)". According to the geometrical interpretation of « and §, the
ordinal pattern sequences A(ry, ro, ..., r,) and B(ry, 1o, ..., r,) can be regarded as the
spatial and time reversal of the ordinal pattern sequence (ry, ro, ..., Iy).

Lemma 3.3. For every 9 € O,
I, = A(Il,) = B(II,) = BoA(Il,).

Proof. Let ¥ € ©. Since the values in X are pairwise different Py-almost surely (see
(3.1)), the first equation in (3.10) yields

04(7~T(Yt+17 Yito, .. ;Y;t+d)) = 7~T(—Y¥+17 Yo, —Y;H-d)

Py-almost surely for every ¢t € Z. Furthermore, according to the space symmetry of
Y, the random vectors (Y1,Ys, ..., Y4 1) and (=Y7,—=Y5,..., =Y, 4 1) have the same
distribution with respect to Py. Thus,

I, = (7(Y,...,Yy), #(Ya,.. . Yap)s ooy @Yo, .o, Yaga—1))
= (A=Y = Ya), A (Yo, oo, =Yar1), o, A=Yy oo, —Yoia1))
(3.11) = A(IL,),

where the last equality holds Pg-almost surely. Similarly, we obtain that
B(ﬁ-(Yt—‘rla Yt—‘r27 R 7}/;5+d)) = ﬁ-(_}/t-‘rdJ _}/;H—d—h R _}/;—1—1)
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Py-almost surely for every ¢ € Z. By the space and time symmetry of Y, we obtain that
(Y,Ys, ..., Yoa1) and (=Y, 14 1, —Yniq 2,...,—Y1) have the same distribution with re-
spect to Py, and thus

(~(}/17 ,ﬁ-(YVQJ"'7Yd+1)7 SRR ﬁ—(yna n—l—d 1))
( ( Yn+d 15 - '7_Yn)7ﬁ(_Yn+d727-"7_Ynfl)> 7~T( Yd7~~- _1/1))
(312) = B(IL),

where the last equality holds Pg-almost surely. Now, combining (3.11) and (3.12) yields
equality in distribution of I, and B o A(IL,). O

For the proof of Lemma 3.3 we have only used that Y is symmetric in space and time
and the values of X are pairwise different Pg-almost surely. Thus, the statement that
I, A(IL,), B(I1,) and B o A(IL,) have the same distribution is valid under much more
general conditions than (M1)-(M3).

In the following paragraph, we show that when IT,, A(IL,), B(IL,) and B o A(II,) have
the same distribution, a better estimator of p.(-) than ¢, is obtained by averaging the
relative frequencies of r, a(r), B(r) and 5o «a(r). This finding is of great practical impor-
tance, as many empirical time series seem to be realizations of processes for which the
distributions of ordinal pattern sequences and their spatial and time reversals are iden-
tical. For instance, Bandt and Shiha [12] reports a similar frequency of ordinal patterns
and their time reversals in speech signals and EEG data. Also, Keller et al. [58] observes
a similar frequency of ordinal patterns and their space reversals in EEG data. As an
exception, Keller et al. [58] shows “asymmetric” EEG time series with more “upwards”
than “downwards” patterns.

A Rao-Blackwellization. Letd € N, r € S; and 9 € ©. For n = 1, Lemma 3.3 shows
that I1(0), «(I1(0)), S(11(0)) and S o «(11(0)) have the same distribution with respect to
Py, and thus

Py(I1(0) = 1) = Py(a(Il(0)) =1) = Py(B(TI(0)) =1) = Py(Boa(ll(0)) =1).
According to the properties of o and 3, the events {«(I1(0)) = r}, {B(I1(0)) = r} and

{Boa(ll(0)) = r} are equivalent to {II(0) = «a(r)}, {I1(0) = S(r)} and {II(0) = a0 5(r)},

respectively. Therefore,



which shows that ¢rn, Gar)n, 48(r)n a0d aos(r),n are all unbiased estimators of p,(-). By
averaging them, we obtain another unbiased estimator of p.(-), namely,

R R L. R .
Pra = Pea(M) = 7 (G (ML) + dateyn (TL) + ey (TLa) + aoson (L))
1 n—1
= ( =r} + L= ()}+1{H(t):f3(r)}+1{H(t):a05(r)})
t=0
n—1
(3.13) = nzl{n (ver -
t=0

In Theorem 3.5, we show that the estimator p,, has lower risk than ¢, with respect to
any convex loss function. The key step in the proof is to establish a sufficient statistic for
IT, which identifies IL,,, A(IL,), B(II,) and Bo A(I1,). Then, according to the Sufficiency
Principle, the inference on p,(-) should be the same regardless of whether I1,, A(IL,),
B(IL,) or B o A(IL,) is observed (see Casella and Berger [25], p. 272).

First, we establish the following lemma.

Lemma 3.4. For every 9 € ©,
Pﬂ(ﬁr,n 7£ ér,n) > 0.

Proof. Let ¥ € ©. We show the existence of a permutation (sg, s1, ..., Spird—1) € Snrd—1
such that X, > X;, > ... > X implies py, > 0 and ¢y, = 0. Then, according to
Corollary 3.2,

Sn4d—1

Pﬁ(ﬁmn 7£ grm) P'ﬂ(ﬁr,n > 07 Qr,n - O)
Py(Xsy > X5, > ... > X

0.

Sn4d—1 )

AARAVAR LY,

Let 7,7 € {0,1,...,d} be such that r; =d — 1 and r; = d. If i < j, then we choose
(80,815 «s8ntda—1) = (n+d—1,n+d—2,....,d+1,rg,7q-1,---,70)-

Otherwise, we choose

(80,81« s Sntd_1) = (rg,ra—1,---,7r0,d+1,d+2,....n+d—1).
In both cases, X,, > X, > ... > X, ., | implies that II(0) = a(r) and 1I(t) # r for
t=1,2,...,n—1, and thus p;, > 0 and ¢, ,, = 0. The proof is complete. O

20



Theorem 3.5. The estimator py,, of pe(-) is unbiased and has lower risk than §y, with
respect to any conver loss function, that is, for every ¥ € ©,

Eﬂ( Qp(ﬁr,n; pr(lﬁ))) S Eﬂ(@(qAr,m pr('ﬂ)))

with respect to each function ¢ : [0,1] x [0,1] — [0, 00) such that ¢(p, p) = 0 and (-, p)
is convez for every p € [0,1]. When ¢(-, p) is strictly convex for every p € [0, 1], then py,,
has strictly lower risk than Gy, with respect to . In particular,

Varﬂ (ﬁr,n) < Varﬂ((jryn)
for every 9 € ©.

Proof. Let < be any total order on (Sy)". Define
S(IL,) = min {I1,, A(I1,), B(IL,), Bo A(1L,)}

where min_ denotes the minimum with respect to <. According to Lemma 3.3, when
€ (S4)" and ¥ € O are such that Py(S(I1,) = m) # 0, then the conditional distribution
of IT,, given that S(IL,) = = is the equidistribution on {m, A(w), B(=w), B o A(w)}, that
is,

1
Py(Il, =«'| SII,) =7) = 1
for #' € {m, A(w), B(w), B o A(m)}. Since the conditional distribution does not depend
on 9, it follows that S(IT,) is a sufficient statistic for IL,. Now, note that

1

Bra = 7 (8en(TL) + Gen(A(TL) + Gen( BIL)) + (B o A(IL)))

Py-almost surely for every ¥ € ©, which shows that p,, is a conditional expectation of
Grn given S(IL,). Since G, is unbiased, Theorem 3.2.1 in Pfanzagl [79] shows that p,,
has lower risk than ¢,,. The result on strictness is also a consequence of Theorem 3.2.1
in Pfanzagl [79] and the fact that, according to Lemma 3.4, Py(pr # Gen) > 0. Now,
the statement on the variance follows because the function (- — p)? is strictly convex for
every p € [0, 1]. ]

Remark 3.6. As the proof of Theorem 3.5 shows, the estimator obtained by averaging
the relative frequencies of r and «(r) also has lower risk than ¢, ,. In particular,

T(IL,) = min{IL,, A(TL,)}

is a sufficient statistic for Il,,, and

—_

1/. X 1 —
§(qr,n(Hn)+qr,n(A(Hn))) = 5 (1{n<t>=r}+1{n<t>=a<r>})
t

I
=)

is a conditional expectation of ¢, given 7'(IL,). O
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Note that the proof of Theorem 3.5 only uses the assumptions of Lemma 3.3 and Lemma
3.4. In particular, for showing that p,, has lower risk than ¢, ,, it is sufficient that Y is
symmetric in space and time and the values of X are pairwise different Py-almost surely
for every 9 € ©.

3.4 Asymptotic properties

In this section, we study asymptotic properties of p,,. As mentioned above, p,, is
an unbiased estimator of p,(-), that is, Eg(p,,) = pe(9) for all n € N and ¥ € O.
Next, we investigate conditions under which p, ,, is consistent and asymptotically normally
distributed.

3.4.1 Consistency
Estimators are weakly consistent if they converge to the quantity of interest in probability,
and strongly consistent if the convergence is almost surely. We will show that, under the

model assumptions (M1)-(M3), a natural sufficient condition for weak consistency of py,,
is also sufficient for strong consistency.

Weak consistency. Let ¥ € ©. By the definition of convergence in probability, weak
consistency of p,, is equivalent to

nh—>nolo]P>ﬂ( |ﬁr,n _pr(lﬁ” 2 6) =0
for every € > 0. Since Ey(py ) = pr(¥), Chebyshev’s inequality yields

Val‘g (ﬁr,n)

P'ﬂ( ’ﬁr,n - pr(ﬂ)’ Z 6) S 62

Therefore, a sufficient condition for weak consistency of p,, is lim, . Varg(p,,) = 0.
For k € Z, define

vo(k) = Cove(lmoyer} Lnmer) -
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Because (II(t));cz is stationary, we have Covy(1im)es}, Limeir)ery) = Yyo(k) for t,k € Z,
and thus

n—1

1

Varg(Prn) = VT > Covo(Lin(s)ests Lnes))
3,t=0
1 n—1
= e (100 + 230 = k)0 (4)
n—1
2
< - vo(k) .
n k=0

Therefore, a sufficient condition for lim,_,o Vary(py,) = 0 is limy_,o 79(k) = 0. Note
that, for k € Z,

vo(k) = Py(1I(0) e r, II(k) e r) — Py(11(0) e ) Py(Il(k) € T)
= Po((V1, Yo, ..., Ya) € B, (Yit1, Yiro, ..., Yiya) € B)
— (Ps( (Y3, Ya, ..., Yy) € B))?,
where B = {(y1,v2,---,%a) € R %(y1,92,...,5a) € T}. Furthermore, a necessary
condition for (yi,y2,.--,Ya), (Y, ¥h, -,y € RE to satisfy 7(yi,vys,...,y4) € T and

(Yl vh, ., y,) & T is the existence of a binary vector (by,bs,...,bs) € {0,1}¢\ {0}
such that

d d d d
Zbkykzo and Zbky;€<0, or Zbkyk<0 and Zbky,'CZO.
k=1 k=1 k=1 k=1

This argument shows that the boundary of B in R? is contained in the union of all sets
By with b= (bl, b, ... ,bd) € {0, 1}d \ {0} given by

By = {(?/1792;---7?/(1 ) eR? | Zbkyk—o}

Since each of these finitely many sets is a hyperplane in R? the boundary of B in
R? has Lebesgue measure 0. Hence, a sufficient condition for limy_,. ye(k) = 0 is
that (Y7,Ys,..., Yy, Yiyr, Yeao, ..., Yiq) converges in distribution to a random vector
(Zb ZQ, ey Zd, Zd+1, Zd+2, ceey ng) with (Zb ZQ, ceey Zd) and (ZdJrl’ Zd+2, ey sz) being
independent and both having the same distribution as (Y7,Y3,...,Yy). According to
Theorem 2.4 (iii), (iv) and the model assumption that Y is stationary and zero-mean
Gaussian with unit variance, we obtain the following result.

Theorem 3.7. If py(k) — 0 as k — oo for every 9 € ©, then py,, is a weakly consistent
estimator of py(-).

As we show in the next paragraph, the assumptions of Theorem 3.7 are also sufficient for
strong consistency of pyp,.

93



Strong consistency. For establishing strong consistency, we use well-known results
from ergodic theory. For more background, we refer to Cornfeld et al. [29]. Let 7 denote
the shift operator, given by

m(z) = (Z41)iez
for z = (2)iez € R”. For j € N, we define 7/(z) := 777'(7(2)), where 7%(z) := z
is the identity on RZ. A real-valued stationary stochastic process Z = (Z;)ycz on a

probability space (', A", P) is called ergodic iff P(Z € B) =0 or P(Z € B) = 1 for every
set B € B(R?) satisfying P(7='(B) A B) = 0. The Birkhoff-Khinchin Ergodic Theorem
states that, if Z is ergodic,

lm LY p@) = Er2)

P-almost surely for every measurable mapping f : RZ? — R with E(|f(Z)]) < oo (see
Cornfeld et al. [29], Chapter 1, §2, Theorem 1). This property of ergodic processes is
often referred to by saying that “time averages are equal to space averages”. A stronger
property than ergodicity is the mizing property, which means that, for any two measurable
mappings f, g : RZ — R satisfying E((f(Z))?) < oo and E((g(Z))?) < oo, respectively,

lim E(f(+7(2)) 9(2) = E(/(2))E(y(2)).

According to Theorem 2 in Chapter 14, §2 in Cornfeld et al. [29], a necessary and
sufficient condition for a stationary Gaussian process to have the mixing property is that
the autocorrelations tend to zero as the lag tends to infinity.

The following theorem gives sufficient conditions under which estimators of continuous
functions of ordinal pattern probabilities are strongly consistent and asymptotically un-
biased.

Theorem 3.8.

(¢) If po(k) — 0 as k — oo for every 9 € © and h : [0,1] — R is continuous on an
open set containing p.(®), then h(pyn) is a strongly consistent estimator of h(p.(-)),
that s,

lim A(prn) = h(pe(9))

n—oo

Py-almost surely for every ¥ € ©.

(i) If, additionally to the conditions in (i), h is bounded on [0,1], then h(py,) is an
asymptotically unbiased estimator of h(p,(-)), that is,
) =

Jim B (h(pr.n) h(p:(9))

for every 9 € ©.
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Proof. (i) Let 9 € ©. For y = (y)1ez € RZ, define

o 1 if 7(y1,y2,...,yq) €T
fly) = { 0 otherwise

According to the definition of 7,

_ 1 if 7 (yj1, Yjs2s - > Yjra) €T
j - J+1s Jj+2 » Jj+d
f(r(y) = { 0 otherwise

for j = 0,1,2,..., and hence f(7/(Y)) = Ling)er}- Under the assumptions, Y has the
mixing property, and thus Y is ergodic. According to the Birkhoff-Khinchin Ergodic
Theorem, we obtain

lim pr, = ﬂir lim. %;f(ﬂ(Y))
= 2 El/Y) = pil®)

Pg-almost surely. Since h is continuous on an open set containing p.(®), there exists a
d > 0 such that h is continuous on (p.(9) — 8, pr(9¥) + ). Thus,

lim A(prn) = hipe(9))

n—oo

Py-almost surely, which shows that h(p,,) is strongly consistent.

(1) Let ¥ € ©. Since h is bounded on [0, 1], there exists a ¢ < oo with Ey( |h(prn)]) < ¢
for every n € N. According to the Dominated Convergence Theorem and the strong
consistency of h(pr ), it follows that

n—00 n—oo

The proof is complete. O

Remark 3.9. According to Corollary 3.2, we have p.(®) C (0,1) for every r € S, with
d € N. Therefore, an open set as in (i) does always exist. O
3.4.2 Asymptotic normality

Next, we derive sufficient conditions for asymptotic normality of p.,. The result is ob-
tained by the Limit Theorem of Arcones [7], which we present in the following paragraph.
Note that the result can also be established by a limit theorem of Ho and Sun [48].
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The Limit Theorem of Arcones. Recall the concept of Hermite ranks: For 1 =
(I, 1o, ..., 1g) € N¢, define [1| := [, +1y+. .. +14. Furthermore, for z = (21, 29, ..., 24) € RY,
let z! := Hle z;'. Suppose Z = (Z1,Z,...,Z) is a Gaussian random vector on a
probability space (', A',P) and g : R — R is a mapping satisfying E((g(Z))?) < oo.
The Hermaite rank of g with respect to Z is defined by

(3.14) rank(g) := inf{x €N | There exists an 1 € N§ with [1] =
and E([g(Z) — E(9(Z))]Z') # 0},

where the infimum of the empty set is infinity. As we show in the following paragraph,
the definition given here is equivalent to the usual definition of Hermite ranks in terms of
Hermite polynomials.

Let (Z(t))iez with Z(t) = (Z1(t), Za(t), ..., Z4(t)) be a stationary and non-degenerate
sequence of Gaussian random vectors on (€', A’ P). Define

r@D (k) = Corr(Z;(0), Z;(k))

fori,j € {1,2,...,d} and k € Z. Theorem 4 in Arcones [7] states that, if ¢ has Hermite
rank k < oo with respect to Z(0) and

(3.15) S P E)|" < oo

(3.16) % t:: (9(Z(t) — E[g(Z(0)]) — N(0,0%),
where
(3.17) o” = Var(g(Z(0))) + 2 Y _ Cov(g(Z(0)), g(Z(k))) .

Arcones also gives a generalization in the multidimensional case. Let m € N. Assume
that each of g1, ¢2,...,9m has Hermite rank s or greater with respect to Z(0), where k
satisfies condition (3.15). It is easy to see that a;g; + asgs + ... + angm has Hermite
rank x or greater with respect to Z(0) for all ay,as,...,a, € R and thus, by the Limit
Theorem,

—_

3 (0,20) ~ Bl (ZO)]) > N[0, 3 wiaysti ).

j=1 ij=1

-

I
=)

t
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where
s(i,j) = Cov(gi(Z(0)), g;(Z(0)))

+ kz_j (Cov(gi(Z(())), 9;(Z(K))) + Cov(gi(Z(k)), gj(Z(O))))

for i,7 = 1,2,...,m. According to the Cramér-Wold Theorem (see Theorem 29.4 in
Billingsley [17]), we obtain
1 n—1 n—1 n—1 b
(318) (3 0(@®), Y @0), .Y m@Z®)) > Nw.=),
t=0 t=0 t=0
where p = (E[g1(Z(0))], E[92(Z(0))], ..., E[gm(Z(0))]) and X = (04;)7%_; is given by

oij = s(1,7) fori,j =1,2,...,m.

Background: Hermite expansions. Next we provide some background on Hermite
ranks and the derivation of Arcones’ Limit Theorem. The reader can skip this part and
continue with the following paragraph, where we apply the Limit Theorem to estimators
of ordinal pattern probabilities. Recall the definition of Hermite polynomials: For n € Ny,
let H, : R — R be defined by

5 d” )
H, — (=1 22j2 & —2)2
() = (et e
for z € R. Indeed, each H,, is a polynomial of degree n, called the nth Hermite polynomial.
For instance, Hy(z) = 1, Hy(z) = 2z, and Hy(z) = 2> — 1 for z € R.

Suppose that Z = (71, Za, ..., Z4) is a standard normal random vector on (', 4", P). Let
IL?(Z) be the set containing any measurable function g : R — R satisfying E(g(Z)) = 0
and E((g(Z))?) < oco. By L%*(Z) we denote the set obtained by identifying functions
f,g € L¥Z) with f(Z) = g(Z) P-almost surely. Define (g,h) := Cov(g(Z), h(Z)) for
g,h € L*(Z). Note that L*(Z) equipped with the inner product (-,-) is a Hilbert space.

For 1= (Iy,ls,...,13) € N& let 1! := [} 15! ... [;l. Furthermore, define

b(z) = H Hy, (%)

for z = (21,2, ...,24) € R The family of mappings b with 1€ Nd\ {(0,0,...,0)} forms
an orthogonal basis of L*(Z). The Hermite expansion of g € L*(Z) is given by

o) = Y plehn)

1end
1%£(0,0,...,0)
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for z € R? (see Arcones [7], Doukhan [34]).

Now, suppose (Z(t)):wcz is a stationary sequence of standard normal random vectors on
(QV, A",P). For the proof of his Limit Theorem, Arcones [7] first shows that when g has
Hermite rank xk < oo with respect to Z(0) and condition (3.15) is satisfied,

—_

n—

1
(3.19) —= > 9(Z(t) — N(0,0%)
Vi S
with % as given in (3.17). The general result for possibly non-centered functions of

arbitrary non-degenerate Gaussian random vectors is obtained as follows: If E(g(Z)) # 0,
then consider the mapping g(-)—IE(g(Z)) instead of ¢g(-). Furthermore, for every symmetric
and strictly positive definite matrix ¥ € R%“ and every pu € R?, there exists a matrix
L € R%*? such that g(-) applied to a Gaussian random vector with means p and covariance
matrix ¥ has the same distribution as g(p + L-) applied to a standard normal random
vector (see Horn and Johnson [49], p. 406).

The basic step in the proof of Arcones is to insert the Hermite expansions of g(Z(t)) for
t=0,1,...,n — 1 into the left hand side of (3.19), namely,

—_

n—

(3.20) o7) = =Y Y lenh),

1end
1£(0,0,...,0)

Si-

Il
=)

t

and showing that the moments of the expression on the right hand side of (3.20) converge
to the corresponding moments of a normal distribution. Note that, for m € N, the mth
moment of the expression on the right hand side of (3.20) can be written as the weighted
sum of terms

E( Hy, (Zi,(t1)) Hi,(Ziy(t2)) ... H,(Zi,(t,)))

with r = md and [; € Ny, i; € {1,2,...,d},t; € {0,1,...,n—1} for j =1,2,...,r. By
using the Diagram Formula (see Surgailis [94]), each of these expressions can be written
as a sum of products of correlations among Z; (t1), Z;, (t2), - .., Z; (t,). The products are
determined by the edges of diagrams, which are certain undirected graphs describing the
stochastic dependencies among Hy, (Z;, (t1)), Hi,(Zi,(t2)), - . ., H, (Z;, (t,)).

It turns out that the limiting distribution of \/Lﬁ S g(Z(1)) is essentially determined
by the lowest order basis terms b; for which (g, b)) # 0. This is the reason for introducing
the Hermite rank of g,

rank(g) := inf{x € N | There exists an 1 € N¢ with [1] = x and (g, b)) # 0} .

Let us verify that this definition is equivalent to the one given in (3.15). Suppose there
exists a k € N such that (g, b)) = E(g(Z) b(Z)) # 0 for some 1 € N¢ with || = x and
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(g, by) = 0 for every 1 € N¢ with |I| < . It is easy to see that E(g(Z)Z') # 0 for some
1 € N¢ with [1] = x and E(g(Z)Z') = 0 for all 1 € N¢ with |I| < k. (In fact, this is a
consequence of both by and z — z' with || < k being a basis of the polynomials R — R
of degree k.) Therefore, an equivalent expression for rank(g) is given by

rank(g) = inf{x € N | There exists an 1 € N{ with |I| = x and E(g(Z) Z) # 0} .

Now, if g(Z) is non-centered, replacing it by the centered random variable g(Z) —E(g(Z))
yields the statement in (3.15).

Application to ordinal patterns. Let us apply Arcones’ Limit Theorem to derive
conditions for asymptotic normality of the estimators of ordinal pattern probabilities.
For t € Z, define

Y(t) = N@), Ya(t), .-, Ya(t) = (Yirr, Yigr, -, Yiga) -
Furthermore, let
(3.21) rg? (k) = Corrg(¥;(0), Y;(k))
forde® keZandi,je{l,2,...,d}.
Theorem 3.10. If |ps(k)| = o(k™?) for some B > 1, then
Vi (e = pe(9) =% N(0,03).

where
o = 79(0) + 2 (k)
k=1

and g (k) := ﬁ Cove (Limo)es} Linryesy) for k € Z.

Proof. Let g : R* — R be defined by

L ifw(z)er
— gr 1
9(z) { 0 otherwise

for z € RY. Note that g(Y(t)) = ﬁif 1{r(tes) for every t € Z. Therefore, according to the
definition of p,, (see (3.13)), we obtain

V7 (Bom — pol(9)) = % (4(Y (1) — Elg(Y(0)])



for every n € N. Now, let Z = (7, Zs, ..., Z4) be a standard normal random vector on
(2, A',P) and note that E((g(Z))?) < co. We show that g has Hermite rank x > 2 with
respect to Z. Let i € {1,2,...,d}. According to (3.15), it suffices to show that

E(l9(Z) —E(9(2))] Z:) = 0.

Since Z; is zero-mean Gaussian, we have E(g(Z)) E(Z;) = 0 and thus

E(l9(2) —E(9(2))] Z:) = E(9(Z) Z:).

Furthermore, because Z is non-degenerate, using the same argument as in the proof of
Lemma 3.3 shows that 1(z_z)=a(s)} = 1{#(z)=s} P-almost surely for every s € Sy. Since Z
is zero-mean Gaussian, Z and —Z are identically distributed (compare to the discussion
of space symmetry in Section 3.3), and thus

E(1iz2)=ate)) Zi) = E(lizz)=a(s)} (%) = —E(L{zz)=s) Zi) -
In the case fr = 2, where g(Z) = %(l{ﬁ(z):r} + 1{#(z)=a(r)}), We obtain
2E(g(Z2) Zi) = E(lizzy=n Zi) + E(l{zz)=a@)) Zi) = 0.
Analogously, in the case T = 4, we have
4E(g(Z) Zi) = E(l{ﬁ—(z):r} Zi) + E(l{ﬁ(z):a(r)} Zi)
+ E(lz@=s01 Zi) + EQz@)=acsey Zi) = 0.

Altogether, E([g(Z) —E(g(Z))] Z;) = 0 which shows that g has Hermite rank x > 2. Note
that we have only used that Z is non-degenerate zero-mean (Gaussian, so g has Hermite
rank £ > 2 also with respect to Y (0) for all 9 € ©.

Now, let 9 € © and suppose pg(k) = o(k™?) for some § > 1. According to (3.21),
rg? () = polk+i—j)

for k € Z and 4,5 € {1,2,...,d}. Since (k+1i— 7)™ ~ k™7 forall i,j € {1,2,...,d}, we

have 57 (k) = o(k=") and thus

Dl (B < oo,
k=1

By the Limit Theorem of Arcones (see (3.15)-(3.17)), we obtain that p, , is asymptotically
normally distributed, where the expression for 03 follows from

Cove(g(Y(0)), g(Y(k))) = ﬁ Cove( Lino)er}s Linyer) )

for k € Z. The proof is complete. O

60



Remark 3.11. According to the multidimensional version of Arcones’ Limit Theorem

(see (3.18)), we obtain that the joint estimate (Pr, n, Prons - - - » Drmon) Of the probabilities
of ry € Sy,,r2 € Sq,,..., 0 € Sg,, With dy,ds,...,d, € N is asymptotically normally
distributed if the assumptions of Theorem 3.10 are satisfied. 0

Remark 3.12. The limiting distribution N(0,03) in the conclusion of Theorem 3.10 can
be degenerate. In particular, if r = (1,0) or r = (0,1) , then r = {(1,0),(0,1)} and thus

3
—

A 1
Pran % (1{Xt+12Xt} + 1{Xt<Xt+1}) )
t=0
which shows that p,,, is consistently equal to % for every n € N. O

Remark 3.13. If there does not exist a § > 3 such that |pg(k)| = o(k™7), then, in
general, the conclusion of Theorem 3.10 does not hold. In particular, for ordinal patterns
of order d = 2, the quantity o3 is infinite in this case (see Chapter 5). It remains an
open problem whether a different scaling than /n yields convergence to a non-degenerate

normal distribution. O

Remark 3.14. The condition on the rate of decrease of k — |pg(k)| cannot be relaxed in
general. In particular, the Hermite rank of the mapping g defined in the proof of Theorem
3.10 may be exactly equal to 2. To see this, let Z = (71, Z;) be standard normal and
r = (0,1,2). Since r = {(0,1,2),(2,1,0)}, we obtain

1 1

9(Z) = 5(1{zl>o,zz>0}+1{z1<o,z2<0}) = 5 lmnsy

P-almost surely, so g has the same Hermite rank with respect to Z as the mapping h given
by h(z1,29) := 1if 2122 > 0 and h(z1, 29) := 0, otherwise. Note that

E([MZ) - E(h(Z))] Z:12;) = E([1 —E(h(Z))]Z:12; | h(Z) = 1) P(h(Z) = 1)
+ E([0 ~E(h(Z))]Z:1Z; | h(Z) = 0)P(h(Z) = 0).
Moreover,
E([1 -E(MZ)]212: | MZ)=1) = (1-P(h(Z)=1))E(Z:2, | Z:Z5 > 0),
E([0 -E(MZ)] 2172 | M(Z)=0) = —P(WZ)=1)E(Z17, | Z:17Z, <0),

and with P(h(Z) = 1) = P(Z1Z5 > 0) and P(h(Z) = 0) = (1 — P(Z,Z, > 0)), we obtain

E([MZ) —E(WZ)] Z:12:) = [1 —P(Z1Zs > 0)|P(Z,Z5 > 0)
X (E(Z1Zy | 2125 > 0) —E(Z1Z> | 212, < 0)).

Since P(Z,75 > 0) =
E([n(Z) - E(hZ))] 2

and B(Z, 7, | 275 > 0) = ~E(Z, 7 | Z,7Z5 < 0) > 0 we have
) > 0 and thus rank(h) = 2. O

1
2
12
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Remark 3.15. The assumptions of Theorem 3.10 are sufficient also for the asymptotic
normality of the estimator obtained by averaging the relative frequencies of r and «a(r).
In particular, as the proof of Theorem 3.10 shows, the mapping h given by h(z) := 1 if
7(z) € {r,a(r)} and h(z) := 0, otherwise, has Hermite rank greater than 1. O

Remark 3.16. According to the Limit Theorem of Arcones, a sufficient condition for the
estimator g, to be asymptotically normal is given by |pg(k)| = o(k ?) for some 8 > 1.
In particular, with the mapping h defined by

h(z) = {ﬁ% it 7(z) = ¢

0 otherwise

for z € R?, we have

Vit = pe®) = = Y (WY () - B(Y(0)]).

Moreover, h has Hermite rank 1 with respect to any non-degenerate zero-mean Gaussian
random vector Z = (Zy, Zs, ..., Zy). This can be seen as follows: Corollary 3.2 implies
P(h(Z) = 1) > 0. Furthermore, we have either P(Z; > 0 | h(Z) = 1) = 1 or P(Z;, <
0| h(Z)=1) =1, and hence
E([n(Z) - E(h(Z))] 21) = E(h(Z)Z))
= E(Z [ WZ)=1DP(WZ)=1) # 0.

Since Y (0) is non-degenerate zero-mean Gaussian, we obtain that h has Hermite rank 1
with respect to Y (0). O

By applying the Delta Method (Lehmann [68], Theorem 2.5.2), we obtain the following
statement on the limiting distribution of certain differentiable functions of py .

Corollary 3.17. If |pg(k)| = o(k™") for some f > 5 and h : [0,1] — R has a non-
vanishing first derivative at p,(9¥), then

Vi (h(feg) = h(pe(®))) =2 N(0, 03[0 (p(9)]?),

with 0% as given in Theorem 3.10.

Similar to Remark 3.11, we also obtain a statement for the multdimensional case: Let
r1 € Sq,, 9 € Sgyy ... Ly € Sy, with dy,ds, ..., d, €N, and suppose h; : [0,1] — R has
a non-vanishing first derivative at p,,(9) for i = 1,2,....m. If |pg(k)| = o(k~?) for some
8> %, then (hi(Dryn), P2(Pran)s -« - s hn(Pr,un)) is asymptotically normally distributed.
In particular, since linear combinations of jointly normal random variables are normally
distributed, the empirical permutation entropy, given by

Pn = _Zﬁr,nlnﬁr,na

reSy

is asymptotically normally distributed if |pg(k)| = o(k?) for some > 1.
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3.5 Examples

Equidistant discretizations of FBM. Next, we apply the previous results to the es-
timation of ordinal pattern probabilities in equidistant discretizations of Fractional Brow-
nian Motion (FBM). Suppose B = (B(t))ier is a family of measurable mappings from
(©, A) into (R, B(R)), where (€2, .A) is equipped with a family (Pg)me(o,1) of probability
measures such that B measured with respect to Pg is standard FBM with the Hurst pa-
rameter H (see Section 2.2.3 for the definition of FBM and the existence of such (£2,.4),
B and (PH)HE(O,I))-

Let the process X = (X})icz be defined by

for t € Z. We may regard X as an equidistant discretization of FBM with the sampling
interval length 6 = 1. As first observed in Bandt and Shiha [12], the sampling interval
length does not have any effect on the distribution of ordinal patterns. In particular, by
the self-similarity of FBM (see (2.2), p. 37),

(B(td))ez = (67 B(t))iez

for H € (0,1) and 6 > 0. Since 7(x) = 7(6¥ x) for every x € R4™, the ordinal patterns
in (B(t0))ez and (6" B(t))sez are identical, and thus they have the same distribution.

Let Y = (Y})4ez with Y := X; — X, for ¢t € Z be the increment process of X. Note that
Y measured with respect to Py is standard Fractional Gaussian Noise (FGN) with the
Hurst parameter H (see Section 2.2.3). According to the properties of standard FGN,
Y is non-degenerate, stationary, zero-mean Gaussian and has unit variance for every
H € (0,1). Thus, with ® := (0,1) and ¥ := H, we have a class of stochastic processes
as in Section 3.1, particularly with Y satisfying the model assumptions (M1)-(M3) for
every H € (0,1). We do not consider equidistant discretizations of FBM with the Hurst
parameter H = 1, because Y would be degenerate in this case (see Section 2.2.3) and
thus not meet the model assumption (M1).

The following corollary summarizes properties of py .

Corollary 3.18. Let d € N and r € S,.

(1) Prn is an unbiased estimator of p(-).

(¢7) If h . [0,1] — R is continuous on an open set containing the image of (0,1) under
pe(:), then h(prn) is a strongly consistent estimator of h(p.(+)). If, additionally, h
is bounded on [0, 1], then h(py,) is an asymptotically unbiased estimator of h(p.(-)).
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(¢43) If H <3 and h: [0,1] = R has a non-vanishing first derivative at p.(H), then
N P
Vi (h(pra) = h(pe(H))) = N(O, g [l (p:(H))*) .
where

of = va(0)+2> vu(k)

and vy (k) := ﬁ COVH(l{H(O)ef}, 1{H(k)€f-}) for k € Z.

Proof. (i) follows by Theorem 3.5.

(1) is a consequence of Theorem 3.8 and the fact that pg(k) — 0 as k — oo for every
H € (0,1) (see Lemma 2.7 (ii)).

(¢46) If H < 2, then there exists a 8 > § with |pa (k)| = o(k™") (for instance, we can
choose B := 2 — H, see Lemma 2.7 (i7)). Thus, the statement follows by Corollary
3.17. ]

In the following, let ITy with H € (0,1) denote the distribution of the ordinal pattern
process (I1(t))ez in an equidistant discretization of FBM with the Hurst parameter H.

ARFIMA(0,d,0) processes. Let X = (X;)iez be a family of measurable mappings
from (£, A) into (R, B(R)). Suppose (Pa)ge( 1 1) is a family of probability measures on
(€2, A) such that the process of increments Y = (V})scz, given by V; 1= X; — X, ; for t € Z,
measured with respect to Py is a standard ARFIMA(0,d,0) process with the fractional

differencing parameter d.

According to the properties of ARFIMA(0,d,0) processes discussed in Section 2.2.4, Y is

non-degenerate, stationary, zero-mean Gaussian with unit variance for every d € (—%, %)
Thus, with © = (—%, %) and ¥ := d, we have a class of stochastic process as defined

in Section 3.1. In particular, Y satisfies the model assumptions (M1)-(M3) for every

d € (—3,3). Therefore, we obtain the following statement.

Corollary 3.19. Letd € N andr € S,.

(1) Drn s an unbiased estimator of pe(-).

(¢) If h:[0,1] — R is continuous on an open set containing the image of (—3, 3) under
pe(:), then h(prn) is a strongly consistent estimator of h(p.(+)). If, additionally, h

is bounded on [0, 1], then h(py,) is an asymptotically unbiased estimator of h(p.(-)).
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(¢49) If d < 1 and h:[0,1] — R has a non-vanishing first derivative at p.(d), then

Vi (h(Ben) — h(pe(d))) =% N(0, o3[H (p(d))]?).

where
oy = ~4(0)+2 Z’yd(k‘)
k=1

and vq(k) = ﬁ Cova(1{uyesy, Liumesy) for k € Z.

Proof. The proof is similar to that of Corollary 3.18. In particular, according to Lemma
2.8 (i), we have pg(k) — 0 as k — oo for every d € (—1,1), and if d < 1, then

|pa(k)| = o(k~P) for =3 —d. O

AR(1) processes. Now, let X = (X;);ez be a family of measurable mappings from
(€2, A) into (R,B(R)). Suppose (Pg)ac(-1,1) is a family of probability measures on (£2,.4)
such that the increment process Y = (Y;)iez, given by Y, := X, — X 4 for ¢t € Z, measured
with respect to P, is a standard AR(1) process with the autoregressive coefficient a.

According to the properties of AR(1) processes discussed in Section 2.2.5, Y is non-
degenerate, stationary, zero-mean Gaussian and has unit variance for every a € (—1,1).
Thus, with ® := (—1,1) and ¥ := a, we have a class of stochastic process as defined
in Section 3.1. In particular, Y satisfies the model assumptions (M1)-(M3) for every
ac(—1,1).

Corollary 3.20. Let d € N and r € S,.
(1) Prn s an unbiased estimator of py(-).

(¢7) If h 1 [0,1] — R is continuous on an open set containing the image of (—1,1) under
pe(+), then h(pey) is a strongly consistent estimator of h(p.(-)). If, additionally, h
is bounded on [0, 1], then h(py,) is an asymptotically unbiased estimator of h(p.(-)).

(i13) For every a € (—1,1), if h : [0,1] — R has a non-vanishing first derivative at p.(a),
then

Vi (h(pen) — h(pe(@)) == N(0, o2[1 (pe(@))]?)

where
oo = Ya(0)+2 Z'Ya(k)
k=1

and ’}/a(k) = ﬁ COVG(I{H(O)@-}, l{H(k)Ef.}) fOT' k & Z,
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Proof. The proof is similar to that of Corollary 3.18. In particular, |ps (k)| — 0 as k — oo
with an exponential rate of decrease for every a € (—1,1) (see Section 2.2.5). Thus,
|pa(k)| = o(k™7) for any 8 > 1. O
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Chapter 4

Covariances of zero crossings

In this chapter we investigate the covariances of zero crossing indicator variables. The
framework of analysis is the same as in Chapter 3, namely, X = (X});cz is a family of
real-valued measurable mappings defined on a measurable space (€2, .4) which is equipped
with a non-empty family of probability measures (Pg)yco. By Y = (¥})1cz we denote the
process of increments given by Y; := X; — X;_; for t € Z. We always assume that Y
satisfies the model assumptions (M1)-(M3) on p. 42. For ¥ € © and k € Z, let
po(k) = Corrg(Yy, Yy) denote the autocorrelations of Y.

As we show in Chapter 5, any ordinal pattern probability of order d = 2 is an affine
function of the probability of a zero crossing. The results of this chapter can be used for
evaluating the variance of the estimators of ordinal pattern probabilities.

Zero crossings. The indicator for a zero crossing in Y at time ¢ € Z is given by

(4'1) C(t) = Lvi1<0,vigo >0y T 1vii1>0,vipa <0} -
Note that, according to assumption (M1), the probability that Y, = 0 or Y40 = 0 is

equal to 0 for every 9 € ®. As a consequence of assumption (M2), the process (C(t))sez
is stationary for every 9 € ©®. Therefore, the probability for a zero crossing, given by

c(d) = Pyp(C(t) =1)

for 9 € ©, does not depend on the specific time point ¢ on the right hand side of the
definition. An estimator for ¢(-) is given by

(4.2) by = %ZC(t).



Statistical properties of ¢, will be further investigated in Chapter 5. Here, we focus on
the evaluation of the variance of ¢,. Clearly, by the stationarity of (C(t));cz, we obtain

1
n?

(4.3) Varg(é,) = (n ~o(0) + 2 i(n k) %,(k))

for n € N, where
vo(k) = Covyg(C(0),C(k))

for k € Z. In Section 4.1, we derive closed-form expressions for v-(0) and ~»(1). For
k > 1, we give a representation of yy(k) in terms of four-dimensional normal orthant
probabilities. The numerical evaluation of these expressions is investigated in Section
4.2. We derive asymptotic properties of the zero crossing covariances in Section 4.3, and
provide bounds and approximations in Section 4.4. Asymptotic properties of Vary(é,)
are investigated in Sections 4.5 and 4.6.

4.1 Closed-form expressions

Normal orthant probabilities. Let n € N and suppose X € R"*" is symmetric and
strictly positive definite. The n-dimensional normal orthant probability with respect to 3
is given by

B(E) = /[O 00,3, %),

where ¢(0, 3, -) denotes the Lebesgue density of the n-dimensional normal distribution
with means 0 and covariance matrix 3 (see Theorem 2.4 (i)).

Let Z = (Z1,Z,...,Z,) be a non-degenerate zero-mean Gaussian random vector with
Cov(Z) = X. (Throughout this chapter, we assume any random vector Z, Z', . . . is defined
on some probability space (', A',P).) Clearly,

O(B) = P(Z,>0,2,>0, ..., 2, >0).
Let ay,a9,...,a, > 0 and A = diag(\/a1, /az, ..., /G, ). Since
P(Z1207222077Zn20) - P(\/G/_IZ1207\/G_QZQZOJ7VG/TLZTLEO)

and Cov(\/a1 Z1, \Jaz Zs, ..., \Jan Z,) = AX A, we have &(X) = ®(AX A). By choos-
ing a; = (Var(Z;)) ! for i = 1,2,...,n, we obtain

O(Cov(Z)) = ®(Corr(Z)).
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Thus, only the correlation structure of a non-degenerate zero-mean (Gaussian random
vector is relevant for the probability that all components simultaneously exceed the level
0.

The following expressions for two- and three-dimensional normal orthant probabilities are

well-known (see Bacon [8]).

Lemma 4.1. Let (Z,Z5,Z3) be a zero-mean non-degenerate Gaussian random vector
and p;j = Corr(Z;, Z;) fori,j € {1,2,3}. Then

1 1
P(Zl > 0, ZQ > 0) = Z + ﬁarcsin P12,
1 1 ) 1 . 1 .
P(Z, >0, 7,>0, 73 >0) = —+ — arcsin pj2 + — arcsin p;3 + — arcsin pog .
8 Ar 47 4

Note that

Po(C(0) =1) = Po(=Y; >0, Y, > 0)+Pg(Y; <0, ~Y, < 0)
= 2Py(Y; >0, —Y; > 0),

where the first equality follows because Py(Y; = 0) = Py(Yo = 0) = 0, and the second
one because (—Y7,Y3) and (Y7, —Y3) are zero-mean Gaussian with the same covariance
structure and hence identically distributed. Since x — arcsinz is an odd function and
Corrg(Y7, =Ys) = —py(1), Lemma 4.1 yields

(4.4) (W) = % - %arcsin po(1).

Clearly, the variance of C(0) is given by
(4.5) 19(0) = Pp(C(0) =1) (1 —Py(C(0) = 1))
— %(arcsm pa(1))?.

By the same argument as above, (Y7, —Y5,Y3) and (—Y7,Y5, —Y3) are identically dis-
tributed. Thus,

Py(C(0)=1,C(1)=1) = 2Py(Y1 >0, -Y3>0,Y; >0).
Since Corryg (Y7, —Y3) = Corrg(—Y2,Y3) = —pyg(1), we obtain

(4.6) 19(1) = Po(C(0) =1, C(1) = 1) — (Pe(C(0) = 1))’

1 1
= 5 arcsin py(2) — F(arcsin pa(1)).
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The four-dimensional case. For k > 1, we can express 9 (k) as the sum and product,
respectively, of two- and four-dimensional normal orthant probabilities: Note that

vo(k) = Covy(l—C(0),1—-C(k))
= Py(C(0) =0, C(k) = 0) — (Py(C(0) = 0))*.

Using the equivalent expressions {Y; <0, Y5 <0} U{Y; >0, Y2 > 0} for {C(0) = 0} and
{Vit1 <0, Yiga <0}U{Yss1 > 0, Yiio > 0} for {C(k) = 0}, respectively, and identifying
equal probabilities, we obtain

(47) ’Yﬂ(k) == 2]P)'19(1/1 Z 0; 1/2 Z 07 1/]<:+1 Z 07 1/;€+2 2 O)
+ 2Py(Y1 >0, >0, =Yiq1 >0, =Y,10 > 0)
— 4(Py(¥1 >0, Y, >0))*.

Up to now, no closed-form expression is known for normal orthant probabilities of dimen-
sion n > 4. Abrahamson [2] derives a formula involving two-dimensional integrals for the
special case of orthoscheme probabilities, where certain entries of the covariance matrix
3 are equal to 0. As Abrahamson [2] shows, any four-dimensional normal orthant prob-
ability can be written as a linear combination of six orthoscheme probabilities. Cheng
[27] proposes an expression involving the dilogarithm function in the case where certain
entries of 3 are identical.

Damsleth and El-Shaarawi [31] gives a formula involving two-dimensional integrals when
¥ is the covariance matrix of four variables in a stationary process (that is, 3 is a principal
submatrix of a symmetric and strictly positive definite Toeplitz matrix). For the special
case where the stationary process is an AR(1) process, Damsleth and El-Shaarawi [31]
proposes an approximation which seems to work well as long as the autoregressive coeffi-
cient is not too large. Recent approaches to the evaluation of normal orthant probabilities
of dimension four and higher use Monte Carlo sampling (see Craig [30] for an overview).
Note that, according to a recursive formula given in David [32], five-dimensional normal
orthant probabilities can be expressed as the sum of at most four-dimensional normal
orthant probabilities.

Framework of analysis. We consider the problem of evaluating vy (k) for £ > 1 in the
following context: By R we denote the set of r = (11,79, 73,74, 75,76) € [—1, 1]6 for which
the matrix

1 ry Treo T3
ro 1 ry 715
ro T4 1 Tg
rs Ts Tg 1
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is strictly positive definite, that is, x X(r)x? > 0 for all x € R*\ {0}. Note that 3(R)
is the set of correlation matrices of four-dimensional non-degenerate Gaussian random
vectors (see Theorem 2.4 (7)). Thus, r € R implies that all components of r lie in (—1, 1).
Furthermore, if r,s € R, then

xZ(h-r+(1-h)-s)x’ = hxZ(@)x" +(1-h)xS(s)x’ > 0

for all x € R*\ {0} and h € [0, 1], which shows that R is convex.
For h € [—1,1], define

I, := diag(l,h h,h,h1).

We also use the symbol I, to denote the mapping r + I, r from R onto itself. Next,
we establish closedness of R with respect to I, for all h € [—1,1]. Let r € R. We
first show that I_jr € R. Let Z = (71,2, 7Z3,7Z,) be a zero-mean non-degenerate
Gaussian random vector with Corr(Z) = X(r). Define Z' := (7, Zy, — Z3, —Z,) and note
that Corr(Z') = 3(I_;r). Since Z' is also non-degenerate Gaussian, 3(I_;r) is strictly
positive definite and thus I ;r € R. Now, let h € [-1,1]. Since I; r = r and

1+h 1—h

IhI' = 5 Ilr+Tlflr>

we obtain I, r € R by the convexity of R.

Since X(r) is strictly positive definite and symmetric, ®(32(r)) is well-defined for every
r € R. To simplify notation, we write

(r) = ®(B(r)).
Now, consider the mapping ¥ : R — R given by
(4.8) U(r) := 2&(r)+2®(I_;r) —4P(Iyr)

forr € R. Since I, r € R for all h € [—1,1], ¥ is well-defined. The reason for introducing
U is the following: Let r € R and suppose (21, Za, Z3, Z4) is a zero-mean non-degenerate
Gaussian random vector with correlation matrix 3(r). Then

CI)(I') = P(Zl Z 0, ZQ Z 0, Z3 Z O, Z4 Z O) .
Furthermore, 3(I_; r) is the correlation matrix of (7, Z2, —Z3, —Z,) and hence
q)(:[,l I') == P(Zl 2 O, ZQ 2 O, —Z3 2 O, —Z4 Z O)

Finally, ¥(Ior) is the correlation matrix of (Z1, 2}, Z}, Z}) with (Z}, Z}) and (Z}, Z})
being uncorrelated (and thus independent) and having the same distribution as (71, Z,)
and (Zs3, Zy), respectively. Therefore,

(b(]:() I') = ]P(Zl Z 0, ZQ Z 0) ]P)(Z;g Z 0, Z4 Z 0) .
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Putting it all together, we have

(49) \I](I') = 2]?(21 2 07 ZQ 2 07 Zg 2 07 Z4 2 0)
+ 2]P)(Zl Z 07 Z2 2 07 _Z3 Z O; _Z4 Z 0)
— AP(Z, 20, Zy 2 0)P(Z3 > 0, Z4 > 0).
Now, let 9 € ® and k£ > 1. By comparing (4.9) with (4.7) and noting that X(pg(1), ps(k),

po(k+1), pe(k—1), pe(k), pe(1)) is the correlation matrix of (Y1, Y5, Y11, Yii2) measured
with respect to Py, we obtain

(4.10) vo(k) = W(ps(1), po(k), po(k+1), pa(k —1), ps(k), ps(l)).

Therefore, we study properties of ¥ and ® in the following.

Note that if our purpose was only evaluating vy(k), we could restrict our investigations
tor = (ry,re,r3,r4,75,76) € R satisfying 1 = r¢ and ro = 5. However, the problem of
evaluating four-dimensional orthant probabilities is interesting in its own right, therefore,
we study it in a more general context.

Basic properties. The following Lemma establishes basic equations for ¥ and closed-
form expressions for ¥ and ® in some special cases.

Lemma 4.2.

(i) For everyr = (r1,72,73,74,75,76) € R,

U(I, r) = U(r) = W(—ry, =79, T3, T4, —T5, —T6)

== \Il(—’)"h To, —T3, —T4, s, _TG) .
(17) If ro=r3 =1y =15 =0, then ¥(r) =0 and

b= ;g (- i)
r)=1- — arcsin — — arcsin .
1 QWaCS T1 1 27racs Te

Proof. (i) The first equation is obtained by the definition of ¥ and because Iy I | = I,.
In order to show the second equation, let (7, Zs, Z3, Z;) be zero-mean Gaussian with
correlation matrix 3(r). Furthermore, let v’ := (—ry, —r9, 73,74, =75, —7¢). Since X(r') is
the correlation matrix of (7, —Z,, —Z3, Z,), we have

U(r) = Cov(l{z>0,z200 + L{z<0,z<0} 1{z520,2:>0) + L{z5<0,7:<0})

= Cov(1liz,>0,-z<0y + L{zi<0,- 2,30}, L{z5>0,—z4<0} + L{zs<0,—z4>0})
= Y(r'),
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and the result follows. Applying U(r) = W(I_ 1) tor = (—ry, =19, 73,74, —75, —T¢) yields
the third equation.

(¢4) Under the assumptions, r = I_;r = Ijr which shows that ¥(r) = 0. Further-
more, if (7, 75, Z3, Z4) is Gaussian with the correlation matrix X(r), then (7;, Z3) and
(Zs, Z4) are independent and hence ®(r) = P(Z, > 0,7, > 0)P(Z; > 0,7, > 0). Since
Corr(Zy, Zy) = ry and Corr(Zs, Zy) = re, the result follows by Lemma 4.1. O

Note that bounds for ¥(r) can be obtained by the Berman-inequality, namely,

) < 2y

(see Theorem 2.6.1 in Berman [16] and Theorem C.2 in Piterbarg [80]).

4.2 Numerical evaluation

Partial derivatives. In this section, we derive representations of ¥ and ® by one-
dimensional integrals which can easily be evaluated numerically. We begin our analysis
by determining partial derivatives of ® and W.

Lemma 4.3. For everyr = (11,72,73,74,75,76) € R,

8_@(1“) - (1 + L arcsin o (1) )
a702 27T\/1 — T% 4 2 \/0'22(1')0'44(1') ’
8_@(1-) = ( + arcsm 025(r) ) ,
a703 1 — 7"3 099 (I‘)O'gg (I‘)
0P 1 1 . 014 (I‘)

i — — 4 — ,
aT4 (r) 2w 1 — TZ <4 2 aresm g11 (I‘)O'44 (I‘) )
0P 1 1 013 (I‘)

i — — 4 — ,
Jrs (x 27 1 - r% <4 2m aresin \/011(1')033(1‘))

where

2 2 2
1—ry—r5 —15 +2rarsre,

= 1—715— 713 — 715+ 2ror376,

Q

=

-
=

—

w
N TN N N N N N N
' e N e N N N N

™

2 _ .2 _ .2
= 1—r{—1r5—1;+2rir3rs,

-

=

= 1—7“%—7“%—7"3—1—27’17"27"4,
2
Yo — 7174 + 1374l — Tol'y — T3T¢ + 1757 ,

2
= r3— 71175+ roryrs — T34 — T2l + 17476,

=

2
= 14— T1T9 + Torsrs — Iy’ — I'ste + rir'sre,

=

[

2
= r5—T1T3 + rorsry — 5Ty — T4Te + r1r27s .
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Proof. Let v = (r1,72,73,74,75,76) € R. For i,j € {1,2,3,4}, let o{;(r) denote the (4, j)-
th component of (X(r))~!. As a well-known fact, the inverse and any principal submatrix
of a symmetric strictly positive definite matrix are symmetric and strictly positive definite
(see Horn and Johnson [49], pp. 169, 397). Let k € {2,3,...,5}. Suppose {i,j} with i # j
is the unique subset of {1,2, 3,4} such that r does not lie in the i-th row and j-th column
of 3(r). By the so-called reduction formula for normal orthant probabilities (see Plackett
[81], Berman [16], p. 31), we obtain

g g (4 )

Note that the matrix in the argument of ® on the right hand side of (4.11) is the inverse
of a principal submatrix of (2(r))~" and hence symmetric and strictly positive definite.
Computing the inverse yields

-1
< 03 (r) Ugj(r) > _ 1 < U}j(r) _Uz,'j(r) ) .
0i;(r)  04(r) a(r)al;(r) — (o7;(r)) \ —oi(r)  oj(r)
It is easy to see that if (77, Z,) is a random vector with the expression on the right hand
side of the previous equation as covariance matrix, the correlation coefficient is given by

o (r
Cor(20.2) = ——28
7j;(r) a7, (r)

Thus, according to Lemma 4.1, we obtain

! ! -1 /

' g 1 1 o,
(4.12) ol ( Ufl(r) ij(r) ) ) = - — —arcsinﬁ.

aij(r) ajj(r) 4 27 Oéi(r)U}j(r)

Now, for 4,5 € {1,2,3,4}, let 0;;(r) be given by oy;(r) := —det(X(r)) o};(r) if i # j, and
by 0ij(r) := det(X(r)) oy;(r), otherwise. By combining (4.11) and (4.12), we obtain the
expressions for g%(r). Note that o;;(r) is equal to the determinant of the matrix which is
obtained by deleting the ith row and the jth column of 2(r), multiplied with (—1)"/*!
if i # j (see Horn and Johnson [49], p. 20). Thus, by elementary calculations, we obtain

the expressions for o;;(r). O

As an immediate consequence of Lemma 4.3, any partial derivative of first order of ®
with respect to ry, 73, r4, 75 is continuous on R. Furthermore, any partial derivative of
higher order can be written as the sum, the product and the composition, respectively,
of rational functions and derivatives of z — arcsinx. Therefore, we obtain the following
corollary:

74



Corollary 4.4. Any partial derivative of ® with respect to ro, 13,74, 15 exists and is con-
tinuous on R.

The following lemma gives partial derivatives of W.

Lemma 4.5. For every r = (r1,79,73,74,75,76) € R,

ov 1 . 0'24(1')
o™ T e Jonmon)
a—\I,(r) - arcsin 02(r)
ors w2y/1 — 12 09 (1)o33(r)
a—\I,(r) - arcsin 714(r)
87“4 7T2\/]_—TZ \/0'11(1')0'44(1') ’
ov 1 . o13(r)
N AN TR
with o11(r), 09s(r), ..., 02(r) as given in Lemma 4.3.

Proof. Let r € R and k = 2. For k = 3,4, 5, the proof is similar. For h € [—1,1], let I,
denote the mapping r — I, r from R onto itself. Clearly,

o o A(®ol A(® o Iy)

_ 1)
8—742(1') = 2—()+2T(r)—4T(r).

4.1
( 3) 87"2

According to Lemma 4.2 (ii), we have (® oIy)(r) = (} + 5-arcsinry) (§ + 5= arcsinrg).
Thus, r — (® o Ij)(r) is constant in 7, and the last term on the right side of (4.13) is
equal to 0. Now, note that 2= l( ) = —1 and hence, by the chain rule of differentiation,

0P
87’2

r)) = 0u4(r) and o94(I (1))
)) from Lemma 4.3 into (4.13

IHPol ) B
T W T

(L1 (r)) -
—094(r), inserting the

SIHCG 022( ( )) = 022( ), 044( ==
) yields the result. [

a(
expressions for J% (r) nd gf’ (I_y(r
Integral representation. Next, we state the main result of this section. We give
representations of U(r) and ®(r) by one-dimensional integrals which can be evaluated nu-
merically using standard quadrature rules. Furthermore, we establish a simple expression

for the difference between ®(r) and ®(I_;r). Note that a similar representation of ¥(r)
as in (4.14) is used for the proof of the Berman inequality (see above).
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Theorem 4.6. For every r = (ry,79,73,74,75,76) € R,

5

(414)  U(r) = Zrk/o S—Z(Ihr) d,

1 1 1 .

5
1 1 v
(4.15) @(r) = (— + — arcsin 7”1) (Z + 5, aresin r6> + 3 ,;_ arcsin ry + (r)

4 Y

4 27
138
(4.16) P(r) — @I r) = yym ; arcsin ry, .

Proof. Let r € R. For h € [0,1], define u(h) := ¥(I, r). By the chain rule of differentia-
tion, we obtain

According to Lemma 4.2 (i7), we have u(0) = 0 and hence (4.14) follows. Analogously,
let v(h) := ®(I,r) for h € [0, 1] and note that

Comparing the partial derivatives of ® and ¥ given in Lemma 4.3 and 4.5, respectively,
we obtain

o0d 1 10V

o™ = i aon™

for k = 2,3,4,5. Thus,

1 5 L 9d
/Ov(h)dh = kzrk’/o a—rk(Ihr)dh

5 1 5 1
1 1 1 ov
= — r + r —(Ipr)dh
SW;k o \/1—rih? 4;k/0 aTk(h)
1 & L)
= — ) arcsinry )
8T — 4



where the last equality follows from (4.14) and

/1 1 dh /T’“ 1 di
r —_ = —_—
g 0 \/1—7“]%h2 0 V1-—1?

= arcsinry.
According to Lemma 4.2 (ii), we have
(0) (1 N 1 . ) (1 n 1 : )
= (- + —arcsin — 4+ — arcsin
v 3 g aresinm | {7+ o—aresins ),
and thus (4.15) follows. Now (4.16) is an immediate consequence of (4.15) and the fact
that o — arcsinz is an odd function. O

Note that, for £ = 2,3,4,5, the derivative of h +— %(Ih r) is continuous on [0, 1] and
hence bounded. Furthermore, for fixed r € R, upper and lower bounds can be given in
a closed form, which allows to evaluate the integrals in (4.14) numerically to any desired

precision.

4.3 Asymptotic properties

Next, we relate the asymptotics of special sequences in R to the asymptotics of the
corresponding values of W. At the end of this section, we specialize the results to derive
asymptotics of zero crossing covariances.

In order to state the main result in Theorem 4.8, we define asymptotic equivalence of
vector-valued sequences: Let (r(k))reny and (s(k))ren be sequences of vectors in R™, where
r(k) = (ri(k),ro(k),...,m(k)) and s(k) = (s1(k), s2(k), ..., sp(k)) for k € N. We write

r(k) ~ s(k)

and say (r(k))ken and (s(k))ren are asymptotically equivalent iff ri(k) ~ s;(k) for all
i €{1,2,...,n}. For the proof of Theorem 4.8, we need the following lemma.

Lemma 4.7. For everyr = (11,72,73,74,75,76) € R,

gz—Z(Ior) = gj—i(Ior) = gj—i(:[or) = gz—i(:[or) = 4%2\/(1 il:;)(l—n%y
2 2 _
%“m = ai;f“” B 4w2¢<1—:%><1—r§>’
2 2 _
afzaif”) - ai,;nf”) B 4w<1—:§><1—r§>’
2 2
% Lr) = 833;«4 for) = 4w2¢(1—1r%>(1—r%>'



Proof. Let k,l € {2,3,4,5}. Accordmg to Lemma 4.3, there exist unique 4, j € {1,2,3,4}
such that g%(r) =5 f ( ) (5 + 5= g(r)), where

._; n r):=ar inL(r)
Jr) = = 7 4ot e 0ii(r)ay;(r)

Note that f(Iyr) =1 and 8—7{2(10 r) = 0. Consequently,

0?® 1 dg
oreon ) = g2 0T

Since 0;;(Ipr) = 0 and the first derivative of z +— arcsinz in 0 is equal to 1, we obtain

82@ 1 aO'ij

— = I
aTlcarl( Or) 472\/0“‘(10 I‘)Uj]’(IO I‘) aTl ( Or)

With the expressions for 0y, 0;; and o;; given in Lemma 4.3, the statement follows. [

Theorem 4.8. Let (r(k))ien be a sequence in R. If there exists a function f : N — R
with limy_,oo f(k) = 0 and a vector o = (a1, g, as, ay, as, ag) € RS with |ay|, o] < 1
such that (k) ~ (o, ag f(k), az f(k), as f(k), as f(k), ag), then

(f(F)* ¢(c)
272\/(1 = af)(1 — of)

W(r(k)) + O((f(k)")

where g(a) == arag Y0y 02 — 201 (a0 + agais) — 20 (a0 + azas) + 2(os + azay).

Proof. Let r(k) = (ri(k), ra(k), r3(k), ra(k), r5(k), r6(k)). According to Corollary 4.4,
any partial derivative of ® with respect to ro, r3, 14, r5 exists on the entire R. Therefore,
according to Taylor’s Theorem, we find for each & € N an hy(k) € [0, 1] such that

D) = Do) + 3B G Qo) + 5 3 ()55 (Lor(h)
b 3 0 (n(h) 5 5 ()
30 D0 IR () g (T -+ ()T~ L) x(h)).

2,7,l,m=2
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Furthermore, using the fact that IyI | = Iy, we find an ho(k) € [—1, 0] such that

5

O 1< B

B(Ly(0) = r(h) = SRR Do) + 5 3 nlbr (b5 Tox(k)
1 O 00

~ 5 2 Ti(k)rj(’f)ﬁ(k)mao r(k))

Far 2 Wm0 (o= ) = L) ).

Since Iy + h(I; — Iy) =1 and Iy + A(I_; — L) = I_, for all h € [0, 1], we obtain

5

20(r(k)) + 2011 r(k)) = 4D(Tor(k)) +2 Zri(k)rj(k)%(xor(k))
F g, 3 ) s o i)

1 o 0'®
(4.17) +t ij%n::;"i(k)?"j(k)ﬁ(k) m (K )m(lhz ) T(k)).

Note that Ty (k) TiZ(lﬁ) - Tin(k) ~ QG Qg e Ol (f(k))n for all 11,19, ...,0, € {27 3,4, 5}
with n € N. Thus, inserting the asymptotically equivalent expressions for ro(k), r3(k),
r4(k), r5(k) into (4.17) yields

20(x(k)) +28(L 1 x(K) ~ 49 (Tyr(k) DY S Tox(h)
1,j=2
1 '
il Y= 1
NETRAS J%; QQ’QJO‘lamar,arjarlarm( m(k (k)
1 0P
— — (1, k).
+ 12( ”lzn; QO‘ZO‘JO‘ZO‘marZarjamarm( hz(k)r( )

According to the definition of ¥, we obtain

A1)~ 200 ey v Qax(b) + (F(k) R(E),

1,J=2
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R(k) = 12 Z QO Ol
il m=2
0'® P
arararar (1 k)| -
(87“@87“]-87787“771( mw )+ 8n8rjarl8rm( i ¥{ ))>

Note that |aq],|ag| < 1 implies Iy = (a4,0,0,0,0,6) € R. Hence, according to
Corollary 4.4, the partial derivatives of second order of ® exist and are continuous at
Iy a. Since limg o Ipr(k) = I a, we obtain

0*® 0*°®
Mor(h) = 55 (he

lim
k—o0 87“1‘ 8rj

for all i,7 € {2,3,4,5}. Thus, Iyr(k) in (4.18) can be replaced by Iy . Inserting the
expressions from Lemma 4.7 with r = a into (4.18) yields

2(f(k))* a(@)
4m\/(1 = af)(1 - af)
with ¢(e) as given in the statement of the theorem. Now, it only remains to show

that (f(k))* R(k) = O((f(k))*) or, equivalently, sup,cy R(k) < oc. Since the sequences
(r(k))ken and (I_; r(k))keny both have the limit Iy e, the set

S = {La}u [ J{xk), Lix(k)}

keN

W(r(k)) + (f(k)" R(k),

is closed in RS. Furthermore, because S C R C [—1,1]% we obtain that S is compact.
Consequently, also the convex hull S of S (that is, the set containing all convex combi-
nation of points in §) is compact. According to Corollary 4.4, the partial derivatives of
fourth order of ® with respect to r9, r3, 14, 75 are continuous on the entire R. Hence,

0'® <
sup W(S) < o0

for all i,7,l,m € {2,3,4,5}. Now, note that, for all £ € N and h € [—1,1], we have
I,r(k) = SPr(k) + 521 (k). Thus, I,r(k) is a convex combination of r(k) and
I, r(k), which shows that I, r(k) is an element of S. The proof is complete. O

A special case. In the remaining part of this section, we apply Theorem 4.8 to vectors
r = (ry,7e,73,74,75,7¢) € R satisfying ry = rg and 79 = 5.

For r = (ry,re,r3,74) € (—1, 1)4, define 7*(r) := (rq, ro, r3, 14,72, 71). Furthermore, let

R* = {re (-1,1)* | 7*(r) e R}.
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For r € R*, define

(4.19) U*(r) = ¥(n*(r)).
Note that r = (ry,r9,73,74) € R* if and only if

1 1 ry 1ra
rir 1 74 1o

ro T4 1 1
s T2 T 1

E(rt(r) =

is strictly positive definite. Furthermore, 7*((1 — h)r + hs) = (1 — h) 7*(r) + hw*(s) for
all r,s € R* and h € [0, 1]. Since R is convex, it follows that R* is convex.

The reason for introducing R* and ¥* is that, for all 9 € ® and k£ > 1, the correlation
matrix of (Y7, Ys, Yi11, Yk 2) measured with respect to Py is an element of 3 (7*(R*)). In
particular, according to (4.10),

(4.20) vo(k) = W (ps(l), po(k), po(k +1), ps(k —1)).

In order to evaluate U*(r) numerically, we can apply Theorem 4.6 to the evaluation of
U(7r*(r)). The next corollary is a special case of Theorem 4.8.

Corollary 4.9. Let (r(k))ren be a sequence in R* and assume f : N — R is a function
with limg_,o f(k) = 0.

(1) If r(k) ~ (cq, ag f(k), as f(k), aq f(k)) for some vector & = (a1, g, g, vy) with
lai| < 1, then

i) ~ LOEIS L o(rmy).

where q(a) == a3(2a3 + a3 + af) — dajas(az + ay) + 2(ad + azay).

(it) If f(k+ 1) ~ Bf(k) for some B # 0 and there exists an o with |a| < 1 such that
r(k) ~ (o, f(k), f(k+1), f(k—1)), then

(f(k)? (2 —a(B+571))
272(1 — o?)

U (r(k))

+ O((f(k)") -

(1ii) If the assumptions of (it) hold with =1, then

w(e(ry) ~ 200

+ O((f(k)") -
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Proof. (i) follows by Theorem 4.8 and the fact that, under the assumptions, 7*(r(k)) is
asymptotically equivalent to (aq, as f(k), as f(k), ay f(k), a2 f(k), aq).

(17) is a special case of (i) where r(k) ~ (o, f(k), 8 f(k), f(k)/B) and thus

q(a, 1, 8, 1/8) = P2+ +87%) —4a(B+57")+4
= (2-a(B+B7N).

Now, (#i7) is obvious. O

4.4 Bounds and approximations

Bounds. Under certain conditions on r = (ry,79,73,74) € R*, Theorem 4.11 below
shows that lower and upper bounds for ¥*(r) are obtained by setting 79,73, 74 equal to
r3 and ry, respectively. In the context of zero crossing covariances, where (rq,re,r3,74) =
(po(1), pa(k), po(k + 1), pg(k — 1)), the bounds are obtained by setting the correlations
between (Y7,Ys) and (Yjy1,Yei2) equal to the correlations between Y; and Yj,o and
between Y5 and Y}, respectively.

For the proof of Theorem 4.11, we need the following lemma.

Lemma 4.10. For every r = (r1,79,73,74) € R*,

o (r) = _ arcsin 713(7 (x))

Ory VAR Vou(r ) ox(r (r)
o (r) = L arcsin 07 (x))

ors w2\/1 —132 ooa(m*(r))

o ) = ; arcsin o1 (x))

Iry m2/1—13 o1 (m*(r))

and

2 .2 .2
= 1—r]—r,—r]+2rirory,

= 1—7"%—7"%—7"%—1—27"17“27‘3,

(" (r))
(m*(r))

o13(m(r)) = 1o —rirs 4 rarsry — 5 — rira + ot}
(m*(r)) = 13 —2ryrg +14rs — 1377 + 1417,
(m*(r))

2 2 2
= 14— 2mTe + 13Ty — T4T3 + T3]

Proof. The expressions for o;;(7*(r)) are special cases of the expressions given in Lemma
4.3. By the chain rule of differentiation, we obtain
ov*, 0V ov ov* 0V

_ = % il % d — =
Ory r Ory (7" (r)) + ors (w*(r)) an ory, ' ory

(r*(r)) for k = 3,4.
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Since o11(7*(r)) = oua(7*(x)), o22(7*(r)) = o33(7*(r)) and o13(7*(r)) = o2(7*(r)) (see
Lemma 4.3), we obtain the result according to Lemma 4.5. ]

Theorem 4.11. Let v = (r1,r9,7r3,74) € R* with ry,r9 > r3 > 0. For h € [0,1], define
s,i=0—=h)-v+h-(r,r3,r3,73) and t := (1 —h) -+ h-(r1, 74,74, 74).

(i) If 1 +711 — 213 >0 and oy3(7*(sp)), o1a(7*(sp)) > 0 for all h € [0, 1], then

\IJ*(I') Z m*(Tl,Tg,Tg,Tg) .

(¢3) If 1 +11 —2ry > 0 and o13(7*(tp)), o93(7*(t)) > 0 for all h € [0,1], then

U*(ry, rq,m4,7m4) > U(r).

Proof. (i) Note that the set of eigenvalues of 3(n*(ry,73,73,73)) is given by {1 — ry,
147y +2r3, 1+ 7 — 2r3}. Under the assumptions, each eigenvalue is strictly larger than
0, which shows that X(7*(r, r3, 73, 73)) is strictly positive definite (see Horn and Johnson
[49], p. 398) and hence (r1,73,73,73) € R*. Since R* is convex, we have s, € R* for all
h € [0,1], and thus f(h) := ¥*(s;) is well-defined for all h € [0,1]. Because f(0) = ¥*(r)
and f(1) = W*(ry,r3,73,73), it is sufficient to show that h — f(h) is monotonically
decreasing on [0, 1] or, equivalently,

oU*(sp,) ov*(sy)
Ora ory

for all h € [0,1]. Since r3 — 1y < 0 and 73 — ry < 0, Lemma 4.10 shows that a sufficient
condition for this inequality to hold is oy3(7*(sp,)) > 0 and o14(7*(sy)) > 0 for all h € [0, 1].

(74) Analogously, define g(h) := ¥*(t;) and note that a sufficient condition for

f'(h) = (r3—1y)

+ (7’3—7“4)

<0

, DU (t DU (¢
J0) = (=) T3 (= ) T
to hold is given by o13(7*(ts)) > 0 and oo3(7*(t)) > 0 for all h € [0,1]. O

Remark 4.12. As the proof of Theorem 4.11 shows, a sufficient condition for strict
inequality in (%) is given by ry > r3 and o14(7*(s;,)) > 0 for some h € [0,1], or 75 > r3 and
o13(m*(sp)) > 0 for some h € [0,1]. Similarly, a sufficient condition for strict inequality
in (i) is given by 74 > ry and o93(7*(t,)) > 0 for some h € [0,1], or 74 > 7y and
o13(7*(ts,)) > 0 for some h € [0, 1].

The next lemma gives easily verifiable conditions for the assumptions of Theorem 4.11.

Lemma 4.13. Let r = (ry,r9,73,74) € R* and sy, ty as defined in Theorem 4.11. If
ry < 0 and ro,r3,m4 > 0, then o13(sy), o14(sp) > 0 and o13(ts), o93(ty) > 0 for all
h € [0,1].
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Proof. Let h € [0,1] and (s1, S2, S3,54) = sp. Note that s < 0 and sg, s3, s4 € [0,1).
Since oy3(m*(sp)) > s2 — s5 and oy4(7*(sp)) > s3 — s3s57 (see Lemma 4.10), we obtain
013(Sk), 014(sp) > 0. For (t1, e, t3,t4) = t, we have t; < 0 and o, t3, t4 € [0,1). Because
o13(m*(ty)) > to — t3 and o93(m* (t),)) > t4 — t4t3, the statement follows. O

Approximations. Next, we analyze approximations of the lower and upper bounds for
W*(r) established by Theorem 4.11. Let R* be the set of r = (ry,75) € (—1,1)% such
that 7*(r) := (11, 79,72, 72) € R* or, equivalently,

1 r Te T9
1 1 To T9
T9g T2 1 1
rog To T7 1

S(r*(r)) =

is strictly positive definite. Note that the set of eigenvalues of X(7**(r)) is given by
{1—=ry, 14+r1+2ry, 14+7r; —2ry}. Since a matrix is strictly positive definite if and only if
all its eigenvalues are greater than 0 (see Horn and Johnson [49], p. 398), R** is given by

(4.21) R = {(r,m) € (=1,1)* | 2|rs] <147 }.
For r € R*, define
O™ (r) := ®(n™(r)) and Y™ (r) := U(7™(r)).

If (r(k))ken is a sequence in R* with r(k) ~ (a1, ag f(k)) for a function f : N - R
with limg_,o f(k) = 0 and a1, as € R with |ay| < 1, then the asymptotics of U**(r(k)) is
obtained by Corollary 4.9 (i7i), namely,

2(f(k)* (1 =)

(4.22) U (x(k) e

+ O((f(k))") -

Let r € R**. In order to evaluate U**(r) numerically, we can use the integral representa-
tion for ¥(7**(r)) given in (4.14). Because of the special structure of 7**(r), this integral
representation has a very simple form: Note that oy (7**(r)) = (1 — r)(1 +r; — 2r3) for
i=1,2,3,4, and o13(7**(r)) = o14(7** (1)) = 0o3(7** (1)) = oou(7**(r)) = 12(1 — r1)? (see
Lemma 4.3). Therefore, according to Lemma 4.5,

ov 1 ro(l — 1)

a—rk(w (r)) = T = aresin 7———— 5 R

for k = 2,3,4,5. Inserting these expressions into (4.14) yields

47"2 ! 1 . 7”2(]_ - Tl) h
4.23 pr* = dh
(4.23) (r) ol Ry = arcsin - ST
4 [ 1 1—r)t
= = arcsin (—701)2 dt.
7 Jo 1—1¢2 1+m -2t
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By analyzing the expression on the right hand side of (4.23), we immediately obtain the
following statement.

Corollary 4.14.
(1) For everyr = (ry,ry) € R*™,

U™(r) > 0 and P*(ri,re) = U (ry, —r9).

(1) If (ri,m2), (ry,rh) € R*™ satisfy v} <y and vy, <1y <0, then

U (ry, m) < W (rl, ).

As the following theorem shows, ¥**(r) can be approximated monotonically from below
by successively adding further terms of the Taylor expansion of ¥**(r) at (r1,0). For the
proof, we need the partial derivative of ®** with respect to r,. By the expressions for the
partial derivatives of ® given in Lemma 4.3, we obtain

g—i(ﬂ**(r)) B (1 + 2L aresin M)

ory/1—r2 \4 27 147 — 2r3

for £k = 2,3,4,5. Hence, according to the chain rule of differentation,

a2) S = S+ g (W) + () 5 ()

2 1 1 1-—
= —( +—arcsmu> .

m/1—r2\4 2r 1+7r —2r2

Theorem 4.15. For every r = (r1,712) € R™,

alq)**

4.2
(4.25) 5

(r1,0) > 0 foralll € Ny,

oo
T%l an P+

(4.26) U (r) = 42(25) i ———(r,0).

Proof. Let r = (r1,15) € R*. Since the orthant probability ®**(r1,0) is non-negative,

(4.25) is true for I = 0. Now, let f(z) := s-arcsinz for x € (—1,1). Furthermore,

define gi(2) == 2(1 — 1), 02(%) = 577500 9(2) = g1(2)g2(x) and h(z) := f(g(x)) for

ze (—Hn By According to (4.21), we have |ry| < £ so (4.24) yields

8@**
87“2

(r) = fir2) +4f (ra)h(rs).

85



By Leibniz’s rule, we obtain

o) = f0+a 3 (1)) 000

for [ € N. As a well-known fact, x — arcsin x has the power series expansion

arcsinz = Z 3:5-...-(2n—1) 2"
=24 (2n) - (20 + 1)

for z € (—1,1) (see Bronshtein and Semendyayev [20], p. 24), so £ (0) > 0 for all | € N.
Therefore, in order to prove (4.25), it is sufficient to show that A (0) > 0 for all [ € N.

Let g2( ) fo(fi(z)) with fi(z) =147 —22% and fo(x) := L. For each [ € N, we can

write g3 (0) = (fo 0 f1)(0) as the sum of terms £ (£,(0)) - & (0) - £22(0) - ...~ £ (0)
with k,i1,19,...,7 € N which satisfy i1 + i + ... + i, = [. Because fl(l)(O) 7é 0 only if
I € {0,2}, each term can only be non-zero if iy = iy = ... = iy = 2. Since fi¥ (fl( )
(=1)FEI1 + r1)~®+D) and £ (0) = —4, we obtain ¢{(0) > 0. Now, because g* ( ) #+
only if k = 1, applying Leibniz’s rule yields ¢{(0) = l-ggl)(()) g 1)(0) = 1-(1—ry)-gd7H(
and hence ¢g(0) > 0 for all [ € N. For each [ € N, we can write 2()(0) = (f o )(l)(
as the sum of products consisting of factors of the form f*)(g(0)) = f*(0) and ¢(™ (0
with k,m € N. Thus, h¥(0) > 0.

In order to prove (4.26), note that f and g have power series expansions at 0 with the
radius of convergence 1 and H%, respectively, and the image of the interval (—%, 1+—2“)
under ¢ is a subset of (—1,1). By elementary properties of power series, the mapping
O (1) = f'(-) + 4f'(-)f(g(-)) has a power series expansion at 0 with the radius of

Ors
convergence L and the same holds for ®**(r,-). Since ro € (=14, L0

), we obtain
\I/**(I') = 2 @**(r) + 2@**(7“17 —7"2) — 4(1)**(7“17 0)

0 al **

al(p** »
= 2 “ i (10 +2Z (r1,0) — 4 0**(ry,0)
l_

o 7,.2l an(I)**
= 4 Z anT 7"1, O) .
=1

The proof is complete. O
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When the order is small, closed-form expressions for the partial derivatives of ®** at (1, 0)
can be obtained manually. For larger orders, we can use computer algebra systems. For
instance, the derivatives of second, fourth and sixth order are given by

82(1)** 1— 1
(4.27) 755;;-(T1,0) = 24

oL 4(1—=711)(2411)?
(4.28) 84—7“2(T1’0) N w2(1 4 r)3

5P+ 16(1 — 1) (7 4 614 + 2r7)?
4.2 —_— = .
( 9) 867"2 (7"1, 0) 7_‘_2(1 + 7_1)5

4.5 The variance of the empirical zero crossing rate

In this section, we apply the previous results to the analysis of the variance of empirical
zero crossing rates. Recall formula (4.3),

Varg(e,) = 5 (n70(0) +2 z_:(n—k)%g(k)).

n2

In order to evaluate Varg(¢é,) numerically, we can use formulas (4.5) and (4.6) for the
computation of v9(0) and ~y(1). For k > 1, formula (4.20) yields

vo(k) = W (pa(1), po(k), po(k +1), ps(k —1)),

and the right hand side can be evaluated numerically using the integral representation of
U and U*, respectively, given in (4.14).

When n is large, an “exact” numerical evaluation of vy (k) for every k = 0,1,...,n — 1
is time-consuming. A quick way for getting approximate values of Varg(é,) is to use ap-
proximations of g (k) in terms of the function U**. Due to a smaller number of numerical
integrations to be performed, evaluating ¥** takes less than half of the time required for
the evaluation of ¥*. In Corollaries 4.16 and 4.17 below we give sufficient conditions on
k — pg(k) such that

U (po(1), po(k +1)) < (k) < ¥ (pa(1), polk —1)).

In this case, approximating ~g(k) by U**(pyg(1), ps(k + 1)) and U**(pg(1), pe(k — 1)),
respectively, yields lower and upper bounds for Varg(é,). A further speed-up can be
achieved by using the finite-order approximations of ¥** provided by Theorem 4.15. For
instance, when the autocorrelations of Y are not too large, one can use the approximation

2(1 = pa(1))
w2 (14 pa(1))

(0o (k))*

Vﬂ(k)
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which only includes the partial derivative of ®** of second order (see (4.27)). Note that
the fraction does not depend on &k and thus only needs to be computed once.

An alternative method for computing approximate values of Varg(¢é,) is to use the exact
values of vy (k) for £ = 2,3, ... until the relative error of the approximations falls below
a given threshold e > 0. After that, we use the approximations of vy (k). If the relative
error does not get larger than ¢ anymore, then also the relative error of the resulting
approximation of Varg(é,) is not larger than e. For the calculations behind Figures 5.1-
5.3 in Section 5.2 and for the computation of the confidence intervals in Section 5.4, we
have used this method with the threshold € = 0.001.

Corollary 4.16. Let ky € N and 9 € ©. We have vg(k) > U**(pg(1), pe(k + 1)) for all
k > ko if one of the following conditions is satisfied:

(i) po(1) <0, L+ ps(1) +2pg(ko+2) > 0 and pg(k) < po(k+1) <0 for all k > ko.
(ii) There exists some a € (—1,1) \ {0} with py(1) = a and py(k) = a* for all k > k.
Proof. (i) Let k > ky. According to formula (4.20) and Lemma 4.2 (i), we have

vo(k) = Y (ps(1), po(k), po(k +1), ps(k — 1))
= U(ps(1), —polk), —ps(k+1), —ps(k —1)).

Furthermore, —pg(k — 1), —pg(k) > —pg(k + 1) > 0 and
14+ po(1)+2p9(k+1) > 14 pe(l)+2pg(ko+2) > 0.
Therefore, according to Lemma 4.13, Theorem 4.11 (i) and Remark 4.12,
U (pa(1), =po(k), —=po(k +1), —pa(k =1)) > T(py(1), —pa(k +1)).
(11) Let k > ky. According to Lemma 4.2 (i), we have

%9(]{) _ \IJ*(O,, ak:} ak:Jrl, aszl) _ \I’*(—a, _ak, ak+1, akfl)

— \Ij*(—a, ak" _ak)+1 _ak—l) .
Thus, without loss of generality, we may assume that @ > 0. For h € [0, 1], let

s, == (a, (1—=h)-a*+h-a"", &', (1-h)-a""'+h-a**").
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By elementary but tedious computations, we obtain
oi3(m*(sp)) = (1—a)?a*h (a +a®*(1 - h)1 - h(1 — a))) ,
ouu(m*(sp)) = (1—a)*a" 'h(a®—a™(1—h)(1-nr(1-a?))),

so it is easy to see that o13(7*(sy)) > 0 and oy14(7*(sp)) > 0 for all h € [0, 1], with strict
inequality for A > 0. Furthermore, a*~',a* > a**' > 0 and 1+a —2a**' > 0. Therefore,
according to Theorem 4.11 (i) and Remark 4.12,

\I!*(a, a,k, ak+17 akfl) > \II**(a, ak“).
The proof is complete. O

Corollary 4.17. Let ky € N and 9 € ©. We have v9(k) < U*(pg(1), pe(k — 1)) for all
k > ko if one of the following conditions is satisfied:

(1) po(1) <0, 1+ py(1) +2pg(ko) >0 and py(k) < pe(k+1) <0 for all k > k.

(ii) There exists some a € (—1,1) \ {0} with py(1) = a and py(k) = a* for all k > k.

Proof. (i) The proof is similar to the proof of Corollary 4.16 (7).

(i1) By the same argument as in the proof of Corollary 4.16 (i), we may assume that
a > 0. For h € [0, 1], define

t, == (a, (1—-h)-a"+h-a""', (1-h)-a*" +h-ad"" o).
By elementary but tedious computations, we obtain

oi(r*(tn)) = (1—a)*a"?h(a®+a™(1—h)(a(l—h)+h)),
oo(m*(ts)) = (1—a)’a" ' (14 (1 - h)(2a — (1 — h)a®))
+ (1-a)*a"?(1-h)(a* - 1r%a™),

which shows that o13(7*(tg,)), oo3(7*(t,)) > 0 for all h € [0, 1], with strict inequality for
h > 0. Clearly, a*~',a* > a**' > 0 and 1 + a@ — 2a*~! > 0. Thus, the statement follows
from Theorem 4.11 (i7) and Remark 4.12. O

Note that numerical experiments suggest that the conclusions of Corollaries 4.16 and 4.17
are valid under more general conditions. However, we do not have a rigorous proof at
this time. The difficulty is to verify the assumptions of Theorem 4.11. As the proofs of
Corollaries 4.16 (i) and 4.17 (4i) show, this can be hard even for a very simple structure
of k+— py(k).
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Asymptotic properties. According to Corollary 4.9, we obtain the following statement
on the asymptotics of Varg(é,).

Theorem 4.18. Let ¥ € ©. Suppose there exists a function f : N — R such that
po(k) ~ f(k).

(1) If |[f(k)| = o(k™") with 8 > 3, then o} := 19(0) + 2> 5, yo(k) < 0o and

Varg(é,) ~ ozn'.

(i) If f(k) = ak~2 for some a € (=1,1) \ {0}, then

40*(1— pp(1)) Inn
(14 ps(1)) n

Varg (én )

(117) If f(k) = ak™" for some v € (—1,1) \ {0} and 3 € (0,1), then

4a?(1—po(1) o

Varﬂ(én) 7T2(1 + pﬂ(l))(l - Qﬁ)

Proof. (i) According to Corollary 4.9 (4), we have v5(k) = O((f(k))?), which shows that
>0 v (k)| < oo. By the Dominated Convergence Theorem, we obtain

n—1

—k L e —k
nn vo(k) ~ lim ;max{n 70}’}/19(]€)

n—o0 n
k=1
- inm max{n_k 0} yol(k) = i (k)
r ol n ) Yo £ Yo .

Now, with formula (4.3), the result follows.
(i1) Note that f(k) ~ f(k+ 1) and thus, according to Corollary 4.9 (iii),

20 (1= po(1))
P+ pe(l))

%(/f)

Using the fact that 22;11 k=% ~ Inn, we obtain

(4.30) Z’Yﬂ(/ﬁ) ~ 2:;2(;1_;;9128))) Inn.
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Furthermore,

n—1 n—1 n—k n—1 k
Z vo(k) — vo(k) = n Yo (k)
k=1 k=1 k=1
. ln—l 202 (1 — pg(1)) — olnn)
n <= m*(1+ pe(l))
which shows that
n—1 n—1
n—£k
Do velk) ~ D0 (k).
k=1 k=1
According to formula (4.3), we obtain
9 n—1
Varg(é,) ~ —
arﬂ(cn) n nyﬂ(k) ’
k=1
and together with (4.30) the statement follows.
(i) The proof is similar to (i), using the fact that 327 | k=% ~ ' O

In the following section, we investigate further properties of the quantity o3 in (i). As
shown by numerical experiments, the expressions in (i7) and (iii) are “good” approxima-
tions of Vary(é,) only if n is extremely large.

4.6 Asymptotic variance

Consider the subset ®( of ® given by

©) := {9 €O | There exist a function f: N - R and some 3 > 1
with po(k) ~ f(k) and |§ (k)| = o(k) }.
Let 9 € ©y. By Corollary 4.9 (i) we obtain that |vg(k)| = o(k~!). Therefore,

oy = 719(0)—%22%9(/@

is well-defined and finite. In the remaining part of this chapter, we establish further
properties of 03. Theorem 4.22 gives sufficient conditions on k — pg(k) such that o3
is strictly positive. In the case where @y is a subset of R and [ is a compact subset of
©y, Theorem 4.24 gives sufficient conditions on k +— py(k) such that 4 — n - Vary(é,)
converges to ¥ — o3 uniformly on 7, and ¥ — o3 is continuous on I. In Section 5.3, we
will apply these results to derive confidence intervals for 9. In order to prove Theorem
4.22, we first show the following three lemmas.
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Lemma 4.19. If R € R**3 is a symmetric Toeplitz matriz with all entries on the main
diagonal equal to 1, that is,

1 T To
R = T 1 T1
T T 1

for some r1,15 € R, then 1(2+ 15 — \/8r7 +72) is an eigenvalue of R.

Proof. The result is obtained by simple algebraic calculation. O]

Lemma 4.20. For (z,y) € [—1,1]?, let

1 3 1
flzy) = 1 p(arcsin z)? + p arcsiny .
If v € [-1,0] and max{z, 22> — 1} <y <0, then f(z,y) > 0.

Proof. Clearly, y — f(z,y) is increasing on [max{x,2z* — 1},0] for every z € [-1,0],
so we only need to show f(z, max{x,22> —1}) > 0 for z € [~1,0], or, equivalently,
filz) == f(z,222 —1) > 0for all z € [-1,—1] and fo(z) := f(z,2) > 0 forall x € [—3,0].
Clearly, f; and f, are continuous on [—1,—1] and [—3,0], respectively, and f(—1) =
fl(%) = fz(%) = 0. By elementary calculus we obtain that f; has a unique extremal point
in (sin(—m/3), 15) and f, is increasing on [—3, 0], which yields the statement. O
Lemma 4.21. For every x € [—1,1],

(1) = o axcsing? — g (arcsina)? > 0

x) = ——arcsinz” — — (arcsinx :

g T 2 -

Proof. Since g(x) = g(—z), we may assume x € [—1,0]. Clearly, g(—1) = ¢(0) = 0. Thus,
it suffices to show that there exists an zy € [—1,0] with ¢’(z) > 0 for all z € (-1, 2¢) and
g'(z) <0 for all z € (¢,0). Note that, for z € (—1,0),

iy - 2N
g(x) = 21— 2t

where h(z) := xm/2 — /1 + z? arcsin z. By elementary calculus we obtain

3z — 223 + 2% — (1 — 22)2 arcsin x

hll T — .
@ T

for x € (—1,0), which shows that h is convex on (—1,0). Now, because lim,_,_; h(z) > 0
and lim, o h(z) = 0, the statement follows. O
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Theorem 4.22. Let ¥ € ©y. We have o3 > 0 if one of the following conditions is
satisfied:

(1) |pe(1)] < sin(7/v/12) and pg(k) =0 for all k > 1.
(i1) 14 po(1) 4+ 2 p(3) > 0 and py(k) < pe(k +1) < 0 for all k € N.

(ii1) There exists some a € (—1,1) with pg(k) = a® for all k € N.

Proof. (i) By Lemma 4.2 (ii), we obtain yy(k) = ¥*(pg(1), 0, 0, 0) = 0 for all & > 1.
Thus, according to formulas (4.5) and (4.6),

1 3 .
o5 = 79(0) +279(1) = 1 F(arcsm po(1))%.

Under the assumptions, the latter expression is strictly positive.
(i1) Let & > 1. By Corollary 4.16, we obtain vg(k) > ¥*(pg(1), ps(k + 1)). Thus,

according to Corollary 4.14 (i), v9(k) > 0. It remains to show that 75(0) + 2v9(1) > 0.
Note that, according to formulas (4.5) and (4.6),

Y9(0) + 279(1) = f(ps(1), pa(2))

with f as defined in Lemma 4.20. Since pg(1), ps(2) € (—1,0) and pg(1) < py(2), we
only need to show that 2(py(1))? — 1 < pg(2). By the model assumptions (M1)-(M3) on
p. 42, Y is non-degenerate and (GGaussian. Therefore, the matrix

L pe(l) ps(2)
po(1) 1 pp(1)
pe(2) po(l) 1

is strictly positive definite (see Theorem 2.4 (7)). Since the eigenvalues of a strictly positive
definite matrix are greater than 0 (see Horn and Johnson [49], p. 398), Lemma 4.19 yields

(2+po(2) — V8(pa(1)? + (ps(2))2) > 0

DO | —

and thus pg(2) > 2(pg(1))* — 1.

(173) If @ = 0, then the statement follows according to (¢). Otherwise, Corollary 4.16 (i)
and Corollary 4.14 () yield ~g(k) > 0 for all k£ > 1. Furthermore, since (1) = g(a, a?)
with the function g as defined in Lemma 4.21 (compare to (4.6)), we obtain y(1) > 0.
Clearly, v9(0) > 0 (see (4.5)), and thus the proof is complete. O

For the proof of Theorem 4.24, we need the following lemma.
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Lemma 4.23. Assume X is a topological space and I C X with I # 0 is compact. If
(k) ken 1S a sequence of continuous mappings from I onto R and there exists a 3 > % with
\gk ()| = 0(k~28) for every sequence (xy)gen in I, then the sequence of mappings (fn)nen
given by

forx € I, and f is continuous on I.

Proof. Note that > 7, |gr(x)| < oo for every z € I, so f is well-defined. Since gy is
continuous on [ for every k € N, there exists a sequence (xy)ren in I satisfying |gi(x)| <
lgr.(zx)| for all k € N and = € I. With this we obtain

NCE AT IS SEPNERS Spe)

< Zmin{k/n, 1} [gr()]
< Zmin{k/n, 1} ‘gk(ﬂﬁk)‘

for all x € I, that is, the absolute difference between f and f, on I is uniformly bounded

by > re, min {k/n, 1} ‘gk(xk)‘ Since |gx(zx)| = o(k=2#), we obtain Y orey ‘gk(xk)‘ < o0
and thus, according to the Dominated Convergence Theorem,

lim Zmin{k/n,l} gk (zi)| = Z lim min {k/n,1} |gi(zx)| = 0,
k=1 k=1

n—oo n—o0

which shows that f,, converges to f uniformly on I. Obviously, f, is continuous on [ for
every n € N. Since the limit of a uniformly converging sequence of continuous mappings
on a compact set is again a continuous mapping, it follows that f is continuous. O
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Theorem 4.24. Suppose © is a subset of R. Furthermore, let I C @y with I # () be
compact, and suppose ¥ — py(k) is continuous on I for every k € Z.

Then 9 — n - Varg(¢,) converges to 9 — o3 uniformly on I as n — oo and 9 — o3 is
continuous on I if one of the following conditions is satisfied:

(i) There exist a ko € N and a function v : N — R with v(1) > —1 and |v(k)| = o(k~")
for some 3 > % such that, for every 9 € 1,
(a) 14 po(1) +2py(ko) > 0,
(b) po(1) <0 and py(k) < ps(k+1) <0 for all k > ko,
() v(1) < py(1) and v(k) < po(k) for all k > k.
11 ere ex1sts a kg € N such that the following is valid: for every ¥ € I, we find some
Th ko € N such that the foll lid: f vel find
a € (—1,1) with ps(1) = a and py(k) = a* for all k > k.

Proof. Define gi(9) := vg(k) for k € Z and ¢ € I. Furthermore, let

3
—

3| =

fa(9) = (n—k)gr(®) and  f(9) = ) gi(9)

T

1

for n € N and 9 € I. Note that n- Varyg(¢,) = go(9) +2f,(9) and 03 = go(9) + 2f(9).
Thus, according to Lemma 4.23, it is sufficient to show that 9 — ~y(k) is continuous on
I for all £ > 0 and that there exists a 5 > % such that

(4.31) o ()] = o(k™)

for every sequence (9y)gen in 1.

First, we establish continuity of 9 — ~y(k). For £ = 0 and k£ = 1, this is an immediate
consequence of formulas (4.5), (4.6) and the assumption that 9 — pyg(k) is continuous on I
for every k € Z. In order to establish continuity for £ > 1, let m € Nand ty,19,...,t, € Z.
Suppose (¥ )ren 1S a convergent sequence in I, and let 9° := limg o ¥. Under the
assumptions, 9 — pg(t; — t;) is continuous on I and thus

lim Corry, (Y3,,Y;,) = Corrg-(Yy,,Y)))
k—o0

for all 1,7 = 1,2,...,m. Since Y is zero-mean Gaussian and has unit variance for every
9 € I (see model assumption (M3), p. 42), Theorem 2.4 (iv) shows that the distribution
of (Y4,,Ys,,...,Y:, ) measured with respect to Py, converges to that of (Y3,,Y:,,...,Y%,)
measured with respect to Pg-. Now, let B; = [0,00) or B; = (—o0,0] for i = 1,2,...,m.
Since (B X By X ... X Bp,) = {0} has Lebesgue-measure 0, we obtain

Py, (Yy, € B, Y, € By, ..., Y, €B,) — Py(Yy, €B, Y, €DBy,....,Y,, €B,)
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as k — oo, which shows that
(432) 9 — Pﬂ(y;h € B17 Y;fz € BQ: SRR Y;fm € Bm)

is continuous on I. According to equation (4.7), ¥ — ~vg(k) with & > 1 can be written as
the sum and product, respectively, of mappings as given in (4.32). Therefore, 9 +— 79(k)
is continuous on I.

In order to establish (4.31), let (¥x)ren be a sequence in I. First, we assume that (i)
holds. By Corollaries 4.16 (¢) and 4.17 (i) we obtain

U (po(1), pok +1)) < vo(k) < ¥(pa(1), po(k — 1))
for all £ > kg and 9 € I. Since U**(r) > 0 for every r € R** (see Corollary 4.14 (7)), it
follows that
h/ﬂk(k)‘ < \P**(pﬁk(l)7 pﬂk(k - 1))
for all k > kg. Under the assumptions, v(k) — 0 as k — oc. Therefore, we find a k; > kg
such that 2|v(k)| < 1+ v(1) and thus (v(1),v(k)) € R*™ for all k > k; (see (4.21)). Since
v(1) < pg, (1) and v(k — 1) < pg, (k — 1) <0 for all £ > ky, Corollary 4.14 (i7) yields
U™ (po, (1), po, (k= 1)) < ¥*(w(1), v(k - 1))
for all k > k;. According to (4.22), we have U**(v(1), v(k — 1)) = O((v(k))?). Therefore,
T (w(1), vk = 1)) = o(k™*)
and hence the statement follows.

Now, we assume that (i7) holds. Let ¥ € I and a € (—1,1) be such that py(k) = a” for
k=1and k > ko. If @ = 0, then Lemma 4.2 (i) shows that U**(pg(1), pe(k + 1)) =
Yo(k) = U*(pp(1l), po(k — 1)) = 0 for all k£ > ky. Otherwise, Corollaries 4.16 (i) and
4.17 (4i) yield ¥**(pg(1), po(k+1)) < vo(k) < ¥*(pg(1), po(k — 1)) for all k > ky. By
the same argument as above, we obtain

|7191¢(k)| < \Il**(pﬂk(l)7 pﬁk(k - 1))
for all k£ > ky. Since I is compact and 9 — pg(1) is continuous, @y := maxge; |po(1)] is
well-defined and lies in [0,1). Note that —@max < pg, (1) and —ak.l < —|py, (k—1)| <0
for all k& > ky. Therefore, according to Corollary 4.14 (ii),
qj**(pﬁk(l)v Py, (k - 1)) < qj**(_ama)n _aicn;}()

for all k> kg. By (4.22) we obtain U**(—@may, —a¥.!) = O(a?:), and hence

max max
U (—@max, —arl) = o(k™)

max

for every § > % The proof is complete. O
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Chapter 5

The case d=2

In this chapter, we focus on ordinal patterns of order d = 2. The framework of analysis is
the same as in the previous chapters: X = (X})¢cz is a family of real-valued measurable
mappings defined on a measurable space (€2, .A) which is equipped with a non-empty family
of probability measures (Pg)gco. By Y = (Y})iez we denote the process of increments
given by Y; := X, — X, for t € Z. We always assume that Y satisfies the model
assumptions (M1)-(M3) on p. 42. For ¥ € © and k € Z, let py(k) = Corryg(Yy, Yz)
denote the autocorrelations of Y.

In Section 5.1, we establish a simple relation between the ordinal patterns of order d = 2
and changes between “upwards” and “downwards”. Using the results of Chapter 4, we
evaluate the variance of estimators of ordinal pattern probabilities. Examples are given
in Section 5.2.

In Section 5.3, we consider the estimation of the parameter 9 in the case where © is a
subset of R and the probability of a change is strictly monotone in 9. Under additional
assumptions on the autocorrelations of Y, we derive asymptotic confidence intervals for 4.
We apply the results to the estimation of the Hurst parameter in FBM, of the fractional
differencing parameter in ARFIMA(0,d,0) processes and of the autoregressive coefficient
in AR(1) processes.

In Section 5.4, we evaluate the performance of the parameter estimates in a simulation
study. Furthermore, we consider the distribution of the number of changes between
“upwards” and “downwards” in equidistant discretizations of FBM. It turns out that
the distribution is very irregular when the Hurst parameter is large.

Note that in the case d = 1, the estimation of ordinal pattern probabilities is “trivial”. In
particular, py(-) = 1 for r = (0,1) and r = (1,0). Furthermore, p,, is consistently equal
to % for all n € N. According to this argument, we consider the simplest non-trivial case
in this chapter.
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5.1 Changes between “upwards” and “downwards”

For t € Z, define

C(t) = l{XtZXt+1<Xt+2} + l{Xt<Xt+1ZXt+2} .

We may regard C(t) as the indicator for a change, either from “downwards” to “upwards”
(when X; > X,y and X;1 < Xyyo), or from “upwards” to “downwards” (when X; < X4
and X;11 > X¢i9). In terms of the increments, C(t) can be written as

(5.1) C(t) = 1yyi1<0,Yipe>0} T 1{vii >0, viga<0) -

Thus, changes between “upwards” and “downwards” in X are equivalent to zero-crossings
inY.

As illustrated by Table 5.1, a change from “downwards” to “upwards” is equivalent to an
occurrence of the ordinal patterns (2,0, 1) or (0,2, 1), that is,

X > Xiy1 < Xiyo ifand only if  II(¢) = (2,0,1) or 1I(¢) = (0,2,1) .

A change from “upwards” to “downwards” is equivalent to an occurrence of (1,2,0) or
(1,0,2), that is,

Xy < X410 > Xiyo ifand only if  II(¢) = (1,2,0) or 1I(¢) = (1,0,2) .

The event “no change” is equivalent to an occurrence of the patterns (2,1,0) or (0, 1, 2).
Consequently, the indicator for a change can be written as

(5.2) Ct) = Lnw=-eony + Lmm=020 T Hnw=.20} + Law-02)
and the indicator for “no change” as
(5.3) L=Ct) = Lmnm=eLo) + Luwm=01.2) -

With the set T defined on p. 47, these relations can be represented in a more compact
form, namely,

o) — { Lnmes  ifr € {(2,0,1), (0,2,1), (1,2,0), (1,0,2)}

(5.4) = '
1—1mpery ifre{(2,1,0), (0,1,2)}

The probability of a change. Since (Y})cz is stationary for every 4 € © (see model
assumption (M2)) and C(t) is a measurable function of Y; 1 and Y}, for every ¢t € Z (see
(5.1)), we immediately obtain the following statement.
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(2,1,0) | (2,0,1) | (0,2,1) | (1,2,0) | (1,0,2) | (0,1,2)

Table 5.1: Ordinal patterns of order d = 2.

Corollary 5.1. The process (C(t))ez is stationary for every 9 € ©.

As in Chapter 4, let ¢(-) denote the probability of a change in X or, equivalently, of a
zero-crossing in Y, that is,

(5.5) () = Py(C(t) =1)

for ¥ € ©. Since the process (C(t))iwcz is stationary for every ¥ € O, ¢(¥) does not
depend on the specific time point ¢ on the right hand side of (5.5). According to equation
(4.4) on p. 69, we have
(56) (9) = 5~ —arcsinpg(1)

. c = — — —arcsin

2 7w po

for 9 € ©. Thus, the higher the first-order autocorrelation of Y, the lower the proba-
bility of a change. In particular, when the first-order autocorrelation tends to —1, the
probability of a change tends to 1, and when the first-order autocorrelation tends to 1,
the probability of a change tends to 0.

Next, we show how the probability of a change is related to ordinal pattern probabilities.
Note that, for any r € Sy with d € N, the ordinal patterns in ¥ have the same probability
(see the discussion in Section 3.3). In particular,

Pﬁ(n(t) = (27 0, 1)) = Pﬂ(n(t) (0’ 2, 1))
= Pﬂ(n(t) = (17270)) = Pﬂ(n(t) = (17072))

and
Po(TI(t) = (2,1,0)) = Po(TI(t) = (0,1,2))
for every 9 € ©. Furthermore, according to (5.2) and (5.3),

Po(C(1)=1) = Po(TI() = (2,0,1)) + Py(TI(t) = (0,2, 1))
+ Pﬁ(n(t) = (17270)) + Pﬂ(n(t) = (17072))

and

1- Pﬂ(c(t) = 1) = Pﬂ(H(t) = (27 170)) + P'B(H(t) = (07 172))7
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which shows that
(5.7 pe(9) = {1
3 (

for every 9 € O.

According to (5.7), any ordinal pattern probability in the case d = 2 is an affine function
of the probability of a change. By inserting the expression for ¢(-) given in (5.6) into
the right hand side of (5.7), we obtain closed-form expressions for p,(-). Note that these
expressions have been first derived in Bandt and Shiha [12].

Estimating the probability of a change. Asin Chapter 4, let ¢,, denote the estimator
for the probability of a change given by

n—1
1
o o= = C(t)
n t=0
According to (5.4), we have
n—1
) 1
o= =) (1{H(t>=<2,o,l>} + Luw=0203 + Huwm=0203 + 1{H(t):(1,0,2)})
t=0

1

n—1
- > (1 — Lmw=(21.0 — 1{H(t):(o,1,z)}) :
t=0

Therefore, by the definition of p,, (see (3.13) on p. 50),
(5:5) X Ye, ifre{(1,0,2), (1,2,0), (0,2,1), (2,0,1)}
' Prm = L1 —¢,) ifre{(21,0),(0,1,2)}

This shows that, in the case d = 2, any reasonable estimator of ordinal pattern probabil-
ities (“reasonable” in the sense of Theorem 3.5) is an affine function of ¢é,. In particular,
L Varg(é,) ifre {(1,0,2), (1,2,0), (0,2,1), (2,0,1)}

Varg(Prn) =
9(Pen) { i Varg(e,) ifre {(2,1,0), (0,1,2)}

and thus the results on the variance of ¢, established in Chapter 4 can be used to evaluate
the variance of p,,. On the other hand, ¢, has essentially the same statistical properties
as Prn. Thus, according to the results of Chapter 3, we obtain the following statement.
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Corollary 5.2.
(1) ¢, is an unbiased estimator of c(-).

(it) If po(k) — 0 as k — oo for every 9 € ©® and h : [0,1] — R is continuous on an
open set containing ¢(®), then h(é,) is a strongly consistent estimator of h(c(-)).
If, additionally, h is bounded on [0,1], then h(é,) is an asymptotically unbiased
estimator of h(c(-)).

(ii7) If |po(k)| = o(k™P) for some B > 3 and h : [0,1] — R has a non-vanishing first
derivative at c(9), then

Vi (h(é) = h(e(9))) =2 N(0, a3[1(c(9)))?)

where

o = 1(0)+2 Y ya(k)

and vg(k) := Covg(C(0),C(k)) for k € Z.

Proof. (i) is an immediate consequence of Corollary 5.1.
(11) Let r = (2,0,1). (For any other choice of r € Sy with d = 2, the proof is similar.)
According to (5.7) and (5.8), we have

Cn = 4Prn,  and () = 4p.(9) for every ¥ € ©.

Now, let h(z) := h(4z) for z € [0,1]. Under the assumptions, Theorem 3.8 shows that
h(pyy) is a strongly consistent (asymptotically unbiased) estimator of hA(p.(-)), and thus
h(¢,) is a strongly consistent (asymptotically unbiased) estimator of A((+)).

(#47) Under the assumptions, the mapping h defined in the proof of (ii) has a non-vanishing
first derivative at p.(¥). Therefore, according to Corollary 3.17,

Vi (h(Ben) = B(pe(9))) =2 N(0, G3[1 (p:(9))?),

where
5y = F9(0)+2 > Fa(k)
k=1

and ’S/ﬂ(k) = ﬁcov'g(l{n(o)ef-}, l{H(k)ET}) for k € Z. NOW, note that iL(ﬁr’n) == h(én)

h(pe(9)) = h(c(9)) and [I'(p(9))]> = 16 [W'(c(8))]2. Since 1 = 4 and 1jpyer; = C(t
for every t € Z, we obtain 63 = & 05, and thus the proof is complete.

[
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5.2 Examples

In this section, we consider the estimation of the probability of a change in equidistant
discretizations of FBM and in processes where the increments are ARFIMA(0,d,0) and
AR(1). In particular, we use the results of Chapter 4 to evaluate the variance of ¢,.

Equidistant discretizations of FBM. Suppose that ® = (0,1) and, for every ¥ € ©,
Y measured with respect to Py is standard FGN with the Hurst parameter 9. As in
Section 3.5, we write H instead of 9.

According to the definition of FGN, the first-order autocorrelation of Y measured with
respect to Py is given by

(5.9) pur(l) = 22H°1 1

for H € (0,1) (see Section 2.2.3). By formula (5.6) and the fact that

arcsinx = 2arcsiny/(1+x)/2 — T
for x € [—1, 1], we obtain
1 1 . 9  Ho1
(5.10) c(H) = 5 & arcsin pgr(1) = 1 — — arcsin 2
T T

for H € (0,1). Equation (5.10) shows that the higher the Hurst parameter, the lower
the probability of a change. Since arcsin § = ¥ and arcsin1 = 0, we obtain ¢(H) — % as
H — 0 and ¢(H) — 0 as H — 1. In Section 5.3, we use the monotonic relation between

H and ¢(H) to derive an estimator for the Hurst parameter.

Note that the sample paths of FBM with the Hurst parameter H almost surely have
Hausdorff dimension 2 — H (see Proposition 2.5 in Taqqu [96]). Therefore, the Hurst
parameter is often regarded as a measure for the “roughness” of FBM. The monotonic
relation between H and c¢(H') shows that the Hurst parameter is also a measure for the
roughness of equidistant discretizations of FBM: the higher the Hurst parameter, the
lower the number of changes in the sample paths.

Next, let us investigate the variance of ¢,. According to equation (4.3) in Chapter 4, we
have

n—1

Varw(e) = 25 (nmr(©0) +2 30— B va(h))

where

vy (k) = Covg(C(0),C(k))
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Figure 5.1: Varg(é,) for H € (0,1) and n = 10,11,.. ., 100.

for k € Z. Using formulas (4.5) and (4.6), we can compute vg(0) and yg(1). For k& > 1,
~vu (k) can be represented in terms of the mapping ¥* defined in (4.19), namely,

(5.11) ya(k) = Y (pu(l), pa(k), pa(k+1), pa(k —1))

(see (4.20)). Using the integral representation of ¥* given in Theorem 4.6, we can evaluate
the right hand side of (5.11) numerically. As explained in Section 4.5, when n is large and
thus an “exact” numerical evaluation of vg(k) for k = 0,1,...,n — 1 is time-consuming,
approximate methods can be used.

For H = £, we obtain a simple closed-form expression for Varg(¢é,). Since pg (k) = 0 for
every k € N (see Lemma 2.7 (7)), formulas (4.5) and (4.6) yield v (0) = I and vg(1) = 0.
Furthermore, according to Lemma 4.2 (i7), ¥*(0, 0, 0, 0) = 0 and hence yg (k) = 0 for
k > 1. (This can also be seen from the fact that Y;,Y5,... are uncorrelated and thus
independent, and C(0), C(k) depend on the disjoint blocks (Y1,Y;) and (Yii1, Yii2),

respectively.) Thus, altogether, we have Varg(¢é,) = %'}/H(O) =1

-
Figure 5.1 displays Varg(é,) for H € (0,1) and n = 10,11,...,100. As can be seen, the
variance of ¢, is particularly high for large values of the Hurst parameter, but decreases
to 0 as H tends to 1. The reason for the latter is that, according to (5.10), the probability
of a change tends to 0 as H tends to 1. Therefore, the probability that ¢, is equal to 0
tends to 1, and hence the variance of ¢, decreases to 0.

Next, we investigate asymptotic properties of Varg(¢,). Let H € (0,1). For k € N,
define f(k) := k=?=2H)_ According to Lemma 2.7 (i), we have pg (k) ~ H(2H —1)f (k).
We distinguish three cases:

103



(1) If H < 2, then 2 — 2H > 3 and thus, according to Theorem 4.18 (7),

Varg(¢,) ~ opn ',

where 0%, 1= v (0) + 2> 7 v (k) < .

(it) If H = 2, then 2—2H = 1. Thus, according to Theorem 4.18 (i¢) and the expression
for pg (1) given in (5.9),

4(H(2H —1))*(1 — pa(1)) Inn
(14 pu(1)) n
9(v2—1)Inn

16 72 n

Varg (¢,) ~

(137) If H > 2, then 2 — 2H < § and thus, according to Theorem 4.18 (i),
4(HQ2H - 1)) (1= pu(1)  _sp-2m)
721+ pr (1) (1 — 202 — 2H)

A(HZH - D))*(2**H —1) 1y,
72 (4H — 3) '

VarH(én) ~

ARFIMA(0,d,0) processes. Let ® = (—%7 %) As in Section 3.5, we write d instead
of ¥ for 9 € (—21,1). Suppose Y measured with respect to Pg is an ARFIMA(0,d,0)

202
process with the fractional differencing parameter d. According to the definition of

ARFIMA(0,d,0) processes, the first-order autocorrelation of Y measured with respect
to P4 is given by

for d € (—1,1) (see Section 2.2.4). By formula (5.6), we obtain
1 1 ) d
(5.12) cd) = 5~ aresin —,

which shows that the higher the fractional differencing parameter, the lower the proba-
bility of a change.

In order to evaluate the variance of ¢,, we proceed as for equidistant discretizations of

FBM in the previous paragraph. By the same argument as in the case H = %, we
obtain that Varg(é,) = £ if d = 0. Figure 5.2 displays Varg(é,) for d € (—3,3) and
n =10,11,...,100. The picture is very similar to Figure 5.1. In particular, the variance
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Figure 5.2: Varg(é,) for d € (—3,3) and n = 10,11, ..., 100.

of ¢, is high when d is large and tends to 0 as d tends to i. Again, the reason for the

2
latter is that the probability of a change tends to 0.

Let d € (—%, %) Similarly as in the previous paragraph, we derive asymptotic properties
of Varg(é,). Define f(k) := k=(=2@ for k € N, and note that pg(k) ~ F(Fl(;;i) J(k) (see

Lemma 2.8 (i)). According to Theorem 4.18, we distinguish the following three cases:

(¢) I d < 1, then 07 := 74(0) + 2377, 7a(k) < oo and

Varg(é,) ~ oin'.

(i7) If d = %, then

(¢34) If d > 1, then

A0 - ) (1-2d) 4,

Yarale) @y a1

AR(1) processes. Now, suppose that @ = (—1,1) and Y measured with respect to Py
with 9 € © is an AR(1) process with the autoregressive coeflicient ¥. As in Section 3.5, we
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Figure 5.3: Var,(é,) for a € (—1,1) and n = 10,11, ..., 100.

write a instead of ¥. By the definition of AR(1) processes, the first order autocorrelation
of Y measured with respect to P, is given by

pa(l) = a
for a € (—1,1) (see Section 2.2.5). Thus, according to formula (5.6),
1 1
(5.13) cla) = S arcsin a

for a € (—1, 1), which shows that the larger the autoregressive coefficient a, the lower the
probability of a change ¢(a).

Similarly as in the previous paragraphs, we can evaluate the variance of ¢,. In the case
a = 0 where pa(k) = 0 for every k € N, we obtain Varg(é,) = ¢~ by the same argument
asford:OandH:%.

Figure 5.3 displays Var,(¢,) for @ € (=1,1) and n = 10,11,...,100. Remarkably, the
variance of ¢, measured with respect to P, is equal to the variance of ¢, measured with
respect to P_, for every n € N. In particular, one can show that v4(k) = v_o(k) for all
a € (—1,1) and k € Z. For k = 0 and k = 1, this is a direct consequence of formulas
(4.5) and (4.6). For k > 1, Lemma 4.2 (i) yields

Ya(k) = Y (pa(1), palk), pa(k +1), pa(k — 1))
— V(a, a*, a*', a* )
= ¥ (-a, (o)}, (-a)**", (-a)")
= U*(p-a(l), p-a(k), p-alk +1), p_a(k — 1))
= Y-a(k).
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Since Y4 (k) = va(—k), we obtain v4(k) = v_4(k) for all k € Z.

Note that Varg(é,) decreases to 0 as a tends to —1 and 1, respectively. The reason for
this is that the probability of a change tends to 1 as @ — —1, and to 0 as @ — 0 (see
(5.13)), and thus the probability that ¢, is constant tends to 1.

Finally, let us derive asymptotic properties of Vary(¢,). Let @ € (—1,1). For k € N,
define f(k) := a*. Clearly, pa(k) ~ f(k) and |f(k)| = o(k™") for any 8 > 1. Thus,
according to Theorem 4.18 (i),

Varg(é,) ~ ain’l,

where 02 := 7,(0) + 2> 32, va(k) < co. This shows that, in contrast to the previous
examples, the variance of ¢, in AR(1) processes decreases with a rate of n~! for the entire

range of parameters.

5.3 Parameter estimates

Estimation of the first-order autocorrelation. Let p(-) denote the mapping which
assigns to ¥ € O the first-order autocorrelation of Y measured with respect to Py, that
is,

(5.14) p(9) = ps(l)
for ¥ € ©. According to equation (5.6), we have
1 1 .
(5.15) c(-) = = — —arcsinp(-).
2 7

Thus, p(-) and ¢(-) are monotonically related: the larger the first-order autocorrelation of
Y, the lower the probability of a change. Using the fact that sin(7 (3 — z)) = cos(mz) for
all z € R, we can write equation (5.15) as

(5.16) p(-) = cos(me(+)).
Plugging the estimate ¢, of ¢(+) into the right hand side of (5.16), we obtain
(5.17) pn = cos(mé,)

as an estimate of p(-). By the model assumption that Y is non-degenerate for all ¥ € ©,
we have ¢(©) C (0,1). Furthermore, the mapping x — cos(mz) is bounded, continuous
and has a non-vanishing first derivative at x for every x € (0,1). Therefore, according
to Corollary 5.2, if limy_,o pg(k) = 0 for all ¥ € O, then p, is a strongly consistent and
asymptotically unbiased estimator of p(-). If |pg(k)| = o(k™") for some 3 > £, then p,
measured with respect to Py is asymptotically normally distributed.
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Note that the estimator p, of p(-) has been known for more than half a century. The idea
to use empirical zero crossing rates for estimating second-order properties of stationary
processes (such as autocorrelations, dominant frequencies in the spectral domain, etc.)
has attracted considerable attention in engineering, e.g., for speech recognition or the
analysis of vibrations. See Kedem [52, 53] and Section 1.1 in the introduction.

Let us compare p, to the sample autocorrelation, given by

(5.18) ﬁn — ?:_11(1%_ Yn)(Yfﬂ - Yn) :

Zt:l(Yi - Yn)2
where Y, := %Z?:l Y; is the sample mean. Under the assumption that Y is stationary
Gaussian, a sufficient condition for p, to be asymptotically normally distributed is that
pe(k) = O(k~7) for some § > 1 (see Hosking [50]). Note that in the case 8 = 1, the rate
of convergence is /n/vInn. If there exist @ > 0 and 0 < 8 < % such that pg(k) ~ ak™?,
then the limit distribution is a Modified Rosenblatt distribution.

Note that p, does not require Y to be Gaussian, whereas p,, is invariant with respect to
monotonic transformations of X. In Section 5.4, we compare the performance of p, and
pn for the estimation of the first-order autocorrelation in Fractional Gaussian Noise. It
turns out that p, has a smaller variance but larger bias than p,.

Estimation of real-valued ¥. Suppose that © is a subset of R, and there exists a
function A : [0,1] — R with

(5.19) h(c(®) = o

for every ¥ € ©. Clearly, a sufficient condition for the existence of such a function h
is that 9 — ¢(¥9) is strictly monotone on ® which, according to (5.15), is equivalent to
9 — p(¥) being strictly monotone. Plugging the estimate ¢, of ¢(-) into the left hand
side of (5.19), we obtain

9, = h(é,)
as an estimate of 9. Properties of this estimator can be derived by Corollary 5.2.

Corollary 5.3.

(@) If po(k) — 0 as k — oo for every 9 € © and h is continuous on an open set
containing c(©), then 9y, is a strongly consistent estimator of 9. If, additionally, h
15 bounded, then 9, is an asymptotically unbiased estimator of V.

(i) If |po(k)| = o(k™?) for some 8 > % and h has a non-vanishing first derivative at
c(9), then

Vi (@, —9) —% N(0, o3[ (c(9))]?),

with o as giwen in Corollary 5.2 (it1).
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Confidence intervals. If 9, is asymptotically normal and the limit distribution is non-
degenerate, that is, o3 given in Corollary 5.2 (i74) is strictly positive, then we can derive
confidence intervals for ©¥. As in Section 4.6, let ®, C © be given by

0, = {19 € © | There exist a function f: N — R and some § > %
with |pa (k)| ~ f(k) and f(k) = o(k™") }.
Note that 9 € © implies that o3 is well-defined and finite (see Section 4.6). Now, let

¥ € Oy be such that 63 > 0, and suppose h has a non-vanishing first derivative at c(49).
Clearly,

sp = 0yl (c(9)]
is strictly greater than zero in this case. Thus, according to Corollary 5.3 (i),

(5.20) Vi@, —9) /ss —= N(0,1).

In the following, let ® ! denote the quantile function of the standard normal distribution.
It is well-known that if Z is a standard normal random variable on some probability
space (', A',P), then P(Z € (—oo, ® '(a)]) = a for every a € (0,1). Furthermore,
=11 —a) = -0 (a) for every a € (0,1).

For n € Nand a € (0,1), let the random interval K, (c, ) C R be defined by
Ku(a,9) = [0, — &' (1—/2) sg/vn, O, + &7 (1 —a/2) se/v/n].
Note that

Py(9 € K (o, 9)) = Pﬂ(ﬁ(f}n —0)/sg € [P 11 —a/2), D1 —a/2)])
Py(V/n(9n = 9)/s9 € (00, 27 (1 - /2)])
(5.21) — Po(v/n (9, —09)/s9 € (—o0, D (a/2)]).
Since /n (9, — 1) /sy converges in distribution to N(0,1) (see (5.20)) and the boundaries
of (—oo, 711 —a/2)] and (—oo, ®7'(a/2)] in R both have Lebesgue-measure zero, the

probabilities on the right hand side of (5.21) converge to 1 — /2 and «/2, respectively,
and thus

(5.22) lim Py(¥ € Kp(a,9)) = 1-—a.

n—oo

This shows that K, (o, ?) is an asymptotic 100(1 — «)% confidence interval for .

In practice, the confidence interval K, (a, ) is not very useful because its computation
requires the knowledge of s3 and hence of 9. However, if we know the true value of ¥,
then we do not need a confidence interval for it.
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Next, we study sufficient conditions under which s3 can be replaced by an estimate, the
computation of which does not require the knowledge of 1. Define

(5.23) 6, = n-Vary (&)
and
(5.24) 82 = (W(ey))?62.

The following theorem establishes sufficient conditions for s to be strictly positive and
for §2 to be a consistent estimator of s3.

Theorem 5.4. Let ©F be a subset of @ satisfying one of the following conditions:
(i) For every 9 € O,

(a) 1+ ps(1) +2ps(3) >0,
(0) po(k) < pg(k+1) <0 for all k € N.

Furthermore, if I C ©f is non-empty and compact, then there exist a ko € N and a
function v : N — R with v(1) > =1 and |v(k)| = o(k™?) for some 8 > % such that,
forall9 € I and k > ko, v(1) < py(1) and v(k) < py(k).

(i1) For every ¥ € OF, there exists some a € (—1,1) such that pg(k) = a* for all k € N.

Then o2 > 0 for every ¥ € OF. If, additionally, ©f is an open set in R, the mapping
9 — py(k) is continuous on Of for every k € N, and h' exists and is continuous on an
open set containing c(©f), then

: a2 2
Jim s = 5

Py-almost surely for every 9 € O .

Proof. The statement o2 > 0 for every 9 € ©¢ is an immediate consequence of Theorem
4.22. Furthermore, Theorem 4.24 shows that if I C @ is compact, then 9 — n-Vary(é,)
converges to ¥ — o3 uniformly on I as n — oo, and ¥ — 5 is continuous on I. Now,
let 9 € ©. The existence of i/ implies that A is continuous on an open set containing
c(©7), and thus lim,_, 9, = ¥ Py-almost surely (see Corollary 5.3 (i)). Consequently,
there exist 7o € N and § > 0 such that [ — 6,9+ 6] C ©F and 9, € [9 — 6,9 + 4] for

all n > ny Py-almost surely. Since [ — 6,9 + §] is compact, Theorem 4.24 yields
lim 62 = o}

n
n—0o0
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Pg-almost surely. Furthermore, according to Corollary 5.2 (7),

lim [1'(¢,)]? = [I(c(9))]”

n—0o0
Pg-almost surely. Altogether, lim,, ., 52 = s3 Py-almost surely for every 9 € O, and
hence the proof is complete. O

Suppose there exists a non-empty subset @y of ©¢ such that the assumptions of Theorem
5.4 are satisfied. Let 9 € ©f. According to Theorem 2.3.3 in Lehmann [68], replacing s%
in (5.20) by the consistent estimate 52 has no effect on the limiting distribution. Thus,

Vi@, —9) /82 2% N(0,1).
Now, for n € N and « € (0, 1), define
Ky(a) == [0, — 7' (1 —a/2) 3,/vn, 9, + &1 —a/2) 5./Vn].

Analogously to (5.22), we obtain that K, («) is an asymptotic 100(1 — a)% confidence
interval for 9. We formally state this fact in the following corollary.

Corollary 5.5. Suppose ©F is a subset of ¢ satisfying condition (i) or (it) in Theorem
5.4. Furthermore, suppose ©f is an open set in R, the mapping 9 — py(k) is continuous
on ©f for every k € N, and I’ exists and is continuous on an open set containing c(©]).

Then, for all o« € (0,1) and 9 € Oy,
lim Py(d9 € K, (o)) = 1—q.

n—oo

The main difficulty in determining the confidence interval K,(«) is the evaluation of
Varg (¢n), which is required for the computation of &2 (see (5.23) and (5.24)). When
n is large, an exact numerical evaluation can be time-consuming (see the discussion in
Section 4.5). In order to speed-up computations, the variance of ¢, for certain parameter
values can be stored in a look-up table. If the outcome of 9, is not among the parameter
values in the table, the corresponding value of the variance can be approximated by
interpolation.

Clearly, in practice, the confidence intervals obtained according to Corollary 5.5 should
be interpreted with caution. Firstly, even when 9 € ©f and n is large, the probability
that K,(«) covers 9 can be much lower than 1 — . Secondly, if we cannot exclude a
priori that ¥ € © \ O, then the realization of K, () basically does not allow to draw
any conclusion on the true value of 9.

In Section 5.4, we provide simulations of the accuracy of confidence intervals for the Hurst
parameter in FBM, for the fractional differencing parameter in ARFIMA(0,d,0) processes
and for the autoregressive coefficient in AR(1) processes. It turns out that the coverage of
these parameters is about 95% also when n is small and not all assumptions of Corollary
5.5 are satisfied.
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Estimating the Hurst parameter. Let i :[0,1] — R be defined by
(5.25) h(z) := max {0, log,(cos(rz/2)) + 1}

for x € [0,1]. Note that A is the maximum of two continuous functions and thus continuous
on [0,1]. Furthermore, h(z) = log,(cos(rz/2)) + 1 for € [0, 2], and the first derivative

3
of h on (0,2) is given by

(5.26) W(z) = —217; > tan(mz/2)

for € (0,%). According to the relation between the probability of a change ¢(H) and
the Hurst parameter H established in (5.10), we have

(5.27) he(H) = H

for H € (0,1). Plugging the estimate &, of ¢(-) into the left hand side of (5.27), we obtain

as an estimate of H. Properties of H, and confidence intervals for H are established by
the following corollary.

Note that the asymptotic properties of H,, are the same if we replace h in the definition
of H, with the mapping A : [0,1] — [—o0, oc] given by A(z) := log,(cos(rz/2)) + 1 for
x € [0, 1]. For finite sample sizes, however, the estimates of H might be negative or even
equal to negative infinity.

Corollary 5.6. The estimator H,, has the following properties:

(1) H, isa strongly consistent and asymptotically unbiased estimator of H.

(17) If H < 3, then
Vi (H, — H) =% N0, oy (W (c(H))P).
where h' is given by (5.26) and

oy = vm(0)+2 Y vu(k)

with yg (k) :== Covg (C(0),C(k)) for k € Z.
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(#4i) Let v € (0,1). If H < 3, then

Ku(a) = [H, - ®'(1-0a/2) 3,/vVn, H, + ®'(1—a/2) s5,/v/n |

with §, given by

52 = (W(¢n)? -n-Varg (én)
satisfies
lim Pg(H € K,,(a)) = 1—a.
n—oo

Proof. (i) According to (5.10), the image of (0,1) under ¢(-) is given by (0, %). Further-
more, h is continuous and hence bounded on [0, 1] (see (5.25)). Thus, the statement is an
immediate consequence of Corollary 5.3 (i) and the fact that pg(k) — 0 as k — oo for
every H € (0,1) (see Lemma 2.7 (ii)).

(¢4) If H < 2, then there exists a # > £ such that |pg (k)| = o(k™7) (for instance, we can
choose § = 2 — H, see Lemma 2.7 (i7)). Since &’ is non-vanishing on (0, %), the statement
follows by Corollary 5.3 (7).

(111) We show that the conditions of Corollary 5.5 are satisfied. Clearly, (0, 3) is an open
set in R with the image (0,1) under ¢(-), and A’ is continuous on (0,1). According to
the definition of FGN, the mapping H ~— pg(k) is continuous on (0, 3) for every k € N
(see Section 2.2.3). Moreover, pg (k) < pu(k+1) <0 for all k € N and H € (0,3) (see
Lemma 2.7 (iii)). By Lemma 2.7 (iv), we obtain that pg (k) > —5- for all H € (0, 3)
and k£ € N, which shows that

1 11
1+ pu(1) +2pu(3) > 22"“—g >5-3>0

for every H € (0,3). Now, let I C (0,3) be compact. According to Lemma 2.7 (iv),
there exists a function v : N — R with v(1) > —1 and |v(k)| = o(k™7) for some § > 2
such that v(k) < pm(k) for all £ € N and H € I. The proof is complete. O

Let a € (0,1). Since H is ranging in (0, 1), we have
Pu(H € Ko(a)) = Py(H € Ko(a)N(0,1))

for all H € (0,1) and n € N. Therefore, K,,(«) in Corollary 5.6 (ii7) can be replaced with
K, (a) N (0,1). Note that we may replace K, () also with K, (a) N (0, 3). In practice,
however, when we cannot assert a priori that H € (0, %), it is preferable to take the
confidence interval K, (a) N (0,1) because it may cover H with a probability close to

1 — o also in the case H ¢ (0, 3).
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Indeed, the simulations in Section 5.4 indicate that the conclusion of Corollary 5.6 (7i7)
is valid also for H € [5,2) and thus for the whole range of parameters where H, is
asymptotically normally distributed (see Corollary 5.6 (i7)). For H > 2, the simulations
suggest that Py ( H € K,(«) N (0,1)) still converges to 1 — « (or even to larger values),

however, with a lower speed of convergence.

Note that H, has been known for some time as the Zero Crossings (ZC) estimator of
the Hurst parameter (according to the equivalence of zero crossings in Y and changes
in X discussed in Section 5.1). Coeurjolly [28] resumes properties of H,, such as strong
consistency and asymptotic normality for H < %. Markovi¢ and Koch [73] investigates

the robustness of H, in a simulation study and shows the application to the analysis
of hydrological time series. Shi et al. [90] applies H, to the analysis of atmospheric
turbulence data.

Alternative estimation methods. There are various alternative methods for esti-
mating the Hurst parameter. Some of these methods can be more generally applied, for
example, to the estimation of the index of selfsimilarity in selfsimilar process, or to the
estimation of parameters in arbitrary parametric Gaussian models. For an overview, we
refer to Beran [15] and Doukhan et al. [35]. Taqqu et al. [97] compares estimation
methods in a simulation study.

Here, we briefly mention some of the available methods. An important class of estimators
is given by Maximum Likelihood (ML) estimates and approximations thereof, such as
(approximate) Whittle estimates. These methods are well understood theoretically and
known to have asymptotic optimality properties. In practice, a drawback of ML methods
is that they are computationally intensive and thus time-consuming.

Another class of estimators is given by semi-parametric methods. These include, for in-
stance, estimates based on the rescaled range (R/S) statistic, on the periodogram (such
as the Local Whittle Estimators, see Robinson [85]), or on coefficients of wavelet decom-
positions (see Abry and Veitch [1]). Typically, semi-parametric methods do not require a
complete specification of the model distribution, which makes the methods more robust
and generally applicable, but usually also less efficient. A disadvantage of semi-parametric
methods is that the estimates depend on certain tuning parameters which are difficult to
select, automatically.

A simple estimator for the Hurst parameter has been proposed in Kettani and Gubner
[63]. For = € [0, 1], define

(5.28) g(z) = max {0, %(logQ(l +x)+1)}.

According to (5.9), we have
(5.29) 9(p(H)) = H



for every H € (0,1). The idea of Kettani and Gubner [63] is to plug the sample autocor-
relation p, (see (5.18)) into the left hand side of (5.29), which yields the estimator

Hn = g(ﬁn)

Note that the ZC estimator ﬂn can be written as

~

H, = g(pn)

where p,, is the estimator of p(-) given in (5.17). Thus, H, differs from H, only by using
a different estimator for p(-).

In Section 5.4, we compare the performance of H, and H, in a simulation study. Similar
to the results for p,, and p,, the estimator H, has a larger variance but smaller bias than
H,,. Note that the estimator H, can be more generally applied to the estimation of the
index of self-similarity in (not necessarily Gaussian) selfsimilar processes with stationary
increments. In contrast to H . however, H, is not invariant with respect to monotone
transformations of the process.

Estimating the fractional differencing parameter. Let i : [0,1] — R be defined
by

cos(mzx) )

(5.30) W) = max {0, s

for x € [0,1]. Clearly, h is the maximum of two continuous mappings and thus continuous
on [0, 1] Note that h(z) = <2ED_ g 5 < L 1 + Larcsin £, and the first derivative of h on

1+cos(7mz)

(0,5 + T arcsin 3) is given by

_ wsin(rz)
(1 + cos(mx))?

(5.31) h ()

for z € (0, % + %arcsin %) According to the relation between the fractional differencing
parameter d and the probability of a change ¢(d) established in (5.12), we have

(5.32) hie(d) = d

for d € (—1,1). Plugging the estimate ¢, of ¢(-) into the left hand side of (5.32) yields

as an estimate of d. Properties of d, and confidence intervals for d are given in the
following corollary.
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Corollary 5.7. The estimator d,, has the following properties:

~

(1) d,, is a strongly consistent and asymptotically unbiased estimator of d.

(i7) If d < 1, then

Vin(dy —d) =% N(0, oG [1 (c(d)P).
where h' is given by (5.31) and

o = 7a(0)+2 > va(k)

with va(k) := Covg(C(0), C(k)) for k € Z.
(173) Let a € (0,1). If d <0, then
Ka(@) = [dn — @71 = a/2) 50/, dn+ (1= /2) 5./v/ ]
with §, given by

§2 = (W(¢n)? -n- Vary (é)

n
satisfies

lim Py(d € Kp(a)) = 1—a.

n—oo

Proof. (i) According to (5.12), the image of (0, 1) under ¢(-) is given by (0, 5+ = arcsin ).
Furthermore, h is continuous and thus bounded on [0, 1]. Therefore, the statement is an
immediate consequence of Corollary 5.3 (i) and the fact that pg(k) — 0 as k — oo for

every d € (—3, 5) (see Lemma 2.8 (7)).

(11) If d < 1, then there exists a § > $ with [pa(k)| = o(k™F) (for instance, we may
choose 8 = 2 —d, see Lemma 2.8 (7)). Since ' is non-vanishing on (0,  + £ arcsin 1), the

statement follows by Corollary 5.3 (it).

(417) We show that the conditions of Corollary 5.5 are satisfied. Clearly, (—3,0) is an open
set in R with the image (0, ) under ¢(-), and A’ is continuous on (0,1). According to the
definition of ARFIMA(0,d,0) processes, the mapping d — pq(k) is continuous on (-3, 0)
for every k € N (see Section 2.2.4). Moreover, pg(k) < pa(k + 1) < 0 for all £ € N and

d € (—3,0) (see Lemma 2.8 (i)). In particular,

14+2d
1—d
for every d € (—3,0). Now, let I C (—3,0) be compact. According to Lemma 2.8 (i),

there exists a function v : N — R with v(1) > —1 and |[v(k)| = o(k™7) for some § > 3
such that v(k) < pg(k) for all k € N and d € I. The proof is complete. O

14 pa(1) +2pg(3) > 14 3pa(1) = > 0
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Similar to the remark after Corollary 5.6, we may replace K, («) in Corollary 5.7 (iii) by
the confidence interval K,(«) N (—3,3). Note that the simulations in Section 5.4 suggest

-1
that the conclusion of Corollary 5.7 (iii) is true for all d € (—3, 1), which corresponds

to the whole range of parameters where d,, is asymptotically normally distributed (see
Corollary 5.7 (i1)).

Estimating the autoregressive coefficient. Consider the function h : [0,1] — R
defined by

(5.33) h(z) = cos(mx)
for x € [0,1]. Clearly, h is continuous on [0, 1] and has the first derivative
(5.34) h'(x) = —wsin(nr)

for x € (0,1). According to the relation between the autoregressive coefficient @ and the
probability of a change c¢(a) established in (5.13), we have

(5.35) hic(a)) = a

for @ € (—1,1). By plugging the estimate ¢, of ¢(-) into the left hand side of (5.35), we
obtain

as an estimate of a. Note that a, is equal to the estimator p, of the first-order auto-
correlation p(a) = a. The following corollary establishes properties of a,, and confidence
intervals for the autoregressive coefficient.

Corollary 5.8. The estimator a,, has the following properties:

(1) @y, is a strongly consistent and asymptotically unbiased estimator of a.

(it) For every a € (—1,1),
Vi@, —a) == N, o [ (c(@)]).,
where h' is given by (5.34) and

ol = fya(0)+227a(k)

with v4(k) := Covge(C(0),C(k)) for k € Z.
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(i73) Let aw € (0,1). For every a € (—1,1),
Ko(a) == [a, — 7' (1—a/2) 8/Vn, an+ @' (1—/2) §,/vn ]
with &, given by

52 = (W(¢,))?* -n- Varg, (¢,)

n

satisfies

lim Po(a € Ky(o)) = 1—a.

n—oo
Proof. (i) According to (5.13), the image of (—1,1) under ¢(-) is given by (0,1). Fur-
thermore, h is continuous and thus bounded on [0,1]. Therefore, the statement is an
immediate consequence of Corollary 5.3 (i) and the fact that pg(k) — 0 as & — oo for
every a € (—1,1) (see Section 2.2.5).

(#7) Note that |pa(k)| = o(k™F) for all @ € (—1,1) and any § > £ (see Section 2.2.5).

Since A’ is non-vanishing on (0, 1), the statement follows by Corollary 5.3 (i7).

(7ii) We show that the conditions of Corollary 5.5 are satisfied. Clearly, (—1,1) is an
open set in R with the image (0, 1) under ¢(-), and A’ is continuous on (0,1). Moreover,
according to the definition of AR(1) processes, pq(k) = a* for k € N and a € (—1,1)
(see Section 2.2.5) which in particular shows that @ — pe (k) is continuous on (—1,1) for
every k € N. The proof is complete. O

5.4 Simulation studies

We use the pseudo random number generator of Matlab 7.6.0 and the algorithm of Davies
and Harte [33] for the simulation of stationary zero-mean Gaussian processes. For more
information on the algorithm and a comparison to other simulation methods, we refer to
Bardet et al. [13].

Estimation of the first-order autocorrelation in FGN. For different sample sizes
and values of the Hurst parameter, we generate each 100000 sample paths of FGN and
compute the resulting estimates p, and p, of the first-order autocorrelation p(H) (see
(5.17) and (5.18)). The sample mean and the sample standard deviation of the 100000
estimates are taken as estimates of the mean and of the standard deviation of p, and p,.
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Mean and standard deviation of p,:

n = 100 n = 1000 n = 10000
H p(H) @ o @ o Iz o
0.05 —0.464 —0.459 0.120 —0.464 0.038 —0.464 0.012
0.10 —0.426 —0.422 0.124 —0.426  0.039 —0.426  0.012
0.15 —0.384 —0.381 0.128 —0.384 0.041 —0.384 0.013
0.20 —0.340 | —0.337 0.133 | —0.340 0.043 | —0.340 0.013
0.25 —0.293 | —0.289 0.138 | —0.293 0.044 | —0.293 0.014
0.30 —0.242 —0.240 0.141 —0.242  0.045 —0.242 0.014
0.35 —0.188 | —0.185 0.146 | —0.187 0.047 | —0.188 0.015
0.40 —0.129 —0.128 0.149 —0.129 0.048 —0.129 0.015
0.45 —0.067 | —0.066 0.153 | —0.067 0.049 | —0.067 0.015
0.50 0.000 —0.000 0.155 0.000 0.050 0.000 0.016
0.55 0.072 0.070 0.158 0.072  0.050 0.072 0.016
0.60 0.149 0.147  0.160 0.148 0.051 0.149 0.016
0.65 0.231 0.227 0.161 0.231 0.052 0.231 0.016
0.70 0.320 0.315 0.164 0.319  0.054 0.320 0.017
0.75 0.414 0.407 0.168 0.413  0.058 0.414  0.020
0.80 0.516 0.504 0.173 0.513  0.066 0.515  0.025
0.85 0.625 0.606 0.176 0.621 0.079 0.624 0.038
0.90 0.741 0.712  0.175 0.732  0.093 0.738  0.057
0.95 0.866 0.822 0.161 0.844  0.099 0.854 0.071
Mean and standard deviation of pn:

n = 100 n = 1000 n = 10000
H p(H) 2 a 2 o 7 o
0.06 —0.464 | —0.459 0.074 | —0.463 0.023 | —0.464 0.007
0.10 —0.426 —0.421 0.076 —0.425 0.024 —0.426  0.008
0.15 —0.384 | —0.380 0.080 | —0.384 0.025 | —0.384 0.008
0.20 —0.340 —0.337 0.083 —0.340 0.026 —0.340 0.008
0.25 —0.293 | —0.290 0.086 | —0.293 0.027 | —0.293 0.009
0.30 —0.242 —0.240 0.088 —0.242  0.028 —0.242  0.009
0.35 —0.188 —0.188 0.091 —0.188  0.029 —0.188  0.009
0.40 —0.129 | —0.132 0.094 | —0.129 0.030 | —0.129 0.009
0.45 —0.067 —0.073 0.096 —0.067 0.031 —0.067 0.010
0.50 0.000 | —0.010 0.099 | —0.001 0.032 | —0.000 0.010
0.55 0.072 0.056  0.101 0.070 0.032 0.071 0.010
0.60 0.149 0.124 0.103 0.145 0.033 0.148 0.011
0.65 0.231 0.194 0.105 0.224  0.035 0.230 0.011
0.70 0.320 0.266 0.106 0.307 0.036 0.317 0.012
0.75 0.414 0.339 0.107 0.393 0.038 0.408 0.013
0.80 0.516 0.411 0.108 0.480  0.040 0.503 0.016
0.85 0.625 0.482  0.107 0.567  0.043 0.598 0.019
0.90 0.741 0.549 0.106 0.649  0.044 0.691 0.022
0.95 0.866 0.613 0.102 0.724  0.044 0.775  0.024

Table 5.2: Mean (1) and standard deviation (o) of the estimators p, and p, of the first-
order autocorrelation in FGN.
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Table 5.3: Mean (y) and standard deviation (o) of the estimators H, and H, of the
Hurst parameter, and the coverage (cov.) of H by the asymptotic 95% confidence interval

K,,(0.05).

Mean and standard deviation of IfIn,
and coverage of H by the asymptotic 95% confidence interval:

n = 100 n = 1000 n = 10000
H o o cov. m o cov. m o cov.
0.05 | 0.087 0.101 0.965 | 0.054 0.043 0.973 | 0.050 0.016 0.949
0.10 | 0.119 0.113 0.973 | 0.099 0.048 0.971 0.100 0.016 0.951
0.15 | 0.156 0.124 0.964 | 0.149 0.048 0.948 | 0.150 0.015 0.951
0.20 | 0.199 0.131 0.969 | 0.199 0.047 0.952 | 0.200 0.015 0.949
0.25 | 0.245 0.134 0.973 | 0.249 0.045 0.949 | 0.250 0.014 0.948
0.30 | 0.291 0.133 0.962 | 0.299 0.043 0.949 | 0.300 0.014 0.950
0.35 | 0.341 0.131 0.945 | 0.349 0.042 0.948 | 0.350 0.013 0.950
0.40 | 0.390 0.127 0.946 | 0.399 0.040 0.949 | 0.400 0.013 0.949
0.45 | 0.441 0.121 0.943 | 0.449 0.038 0.951 0.450 0.012 0.950
0.50 | 0.491 0.116 0.954 | 0.499 0.036 0.949 | 0.500 0.011 0.949
0.55 | 0.541 0.110 0.949 | 0.549 0.034 0.950 | 0.550 0.011 0.949
0.60 | 0.592 0.103 0.954 | 0.599 0.032 0.951 0.600 0.010 0.950
0.65 | 0.641 0.097 0.961 | 0.649 0.031 0.954 | 0.650 0.010 0.951
0.70 | 0.692 0.093 0.967 | 0.699 0.030 0.955 | 0.700 0.010 0.950
0.75 | 0.741 0.089 0.962 | 0.749 0.029 0.961 | 0.750 0.010 0.954
0.80 | 0.790 0.085 0.955 | 0.798 0.031 0.959 | 0.800 0.012 0.958
0.85 | 0.837 0.081 0.923 | 0.848 0.035 0.955 | 0.849 0.017 0.972
0.90 | 0.884 0.076 0.874 | 0.895 0.039 0.927 | 0.898 0.023 0.971
0.95 | 0.930 0.067 0.750 | 0.941 0.039 0.834 | 0.944 0.027 0.899
Mean and standard deviation of H,:

n = 100 n = 1000 n = 10000
H o o n o I o
0.05 0.070 0.072 0.051 0.030 0.050 0.010
0.10 0.108 0.082 0.100 0.031 0.100 0.010
0.15 0.152 0.088 0.150 0.030 0.150 0.009
0.20 0.199 0.089 0.200 0.029 0.200 0.009
0.25 0.248 0.087 0.250 0.028 0.250 0.009
0.30 0.297 0.085 0.300 0.027 0.300 0.008
0.35 0.345 0.082 0.350 0.026 0.350 0.008
0.40 0.394 0.079 0.400 0.025 0.400 0.008
0.45 0.442 0.076 0.449 0.024 0.450 0.008
0.50 0.489 0.073 0.499 0.023 0.500 0.007
0.55 0.536 0.070 0.548 0.022 0.550 0.007
0.60 0.581 0.067 0.597 0.021 0.600 0.007
0.65 0.625 0.064 0.646 0.020 0.649 0.007
0.70 0.668 0.061 0.693 0.020 0.698 0.007
0.75 0.708 0.059 0.739 0.020 0.747 0.007
0.80 0.746 0.056 0.783 0.020 0.794 0.008
0.85 0.782 0.053 0.824 0.020 0.838 0.009
0.90 0.814 0.050 0.860 0.019 0.879 0.009
0.95 0.843 0.046 0.893 0.018 0.914 0.010
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The results are shown in Table 5.2. We find that the estimator p, has a larger standard
deviation than p,. For instance, when n = 10000 and the Hurst parameter is smaller
than 0.85, the standard deviation is about 1.5 times as large. This loss of efficiency of
pn compared to p, is not surprising, because p, is based only on the number of changes
between upwards and downwards whereas p,, uses the whole metric information.

When n is small, both estimators overestimate the first-order autocorrelation for H < 0.5,
and underestimate it when H > 0.5. Particularly for large values of the Hurst parameter,
prn has smaller bias than p,,. Note that it is well-known that the sample autocorrelation is
positively biased in processes with negative correlations and negatively biased in processes
with positive correlations (see Beran [15]).

Estimation of the Hurst parameter. The mean and the standard deviation of the
estimators H » and H » of the Hurst parameter are shown in Table 5.3. As mentioned
before, with the mapping g given in (5.28), these estimators can be written as H, = ¢(p»)
and H, = g(p,), respectively. Similarly as for j, and p,, the estimator H, has a larger
standard deviation but smaller bias than H n

For n = 100 and n = 1000, the standard deviation of H,, is particularly large for small
values of H. A possible explanation is the following: With the mapping h given in (5.25)
we have H,, = h(¢,), and (5.26) shows that the first derivative of h at ¢(H) is particularly
large when H is small. Thus, when H is small, the variance of ¢, is relatively small (see
Figure 5.1), but small deviations of ¢, result in relatively large deviations of H,.

Table 5.3 also provides estimates of the probability that the asymptotic confidence interval
K,,(0.05) covers the true Hurst parameter H. These values are obtained by the relative
frequency of realizations of K,,(0.05) which cover H. The results suggest that K, (0.05)
covers H with a probability of 95% or higher except when H is close to 1 and n is small.

As the following argument shows, it is very likely that the coverage rates provided by
Table 5.3 have a precision of at least two decimal places. Suppose we have a binomial
experiment with 100000 trials and p = Pyg(H € K,(0.05)) being the probability of a
success. The standard deviation of the sample mean is equal to v/p(1 — p)/100 000, and
thus &~ 0.00069 when p =~ 0.95. By a normal approximation of the binomial distribution
we obtain that, with a probability of & 95%, the deviation of the sample mean from p is
not larger than two times 0.00069.

The distribution of the number of changes. Figure 5.4 shows the distribution of
the number of changes in samples of size n = 100. For instance, the upper left plot is
obtained by determining the number of changes in the 100 000 sample paths generated
for the Hurst parameter H = 0.70 and displaying the relative frequencies of the outcomes
in a histogram. It can be seen that the number of changes is concentrated about 40,
corresponding to the probability of a change ¢(0.70) = 0.396 (see (5.10)).
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Figure 5.4: Distribution of the number of changes in samples of size n = 100.

For H = 0.70, the distribution of the number of changes is approximately normal. Note
that we find similar distributions also for smaller values of the Hurst parameter. For
larger values of H, the distributions become more and more irregular. Remarkably, the
frequency of even numbers is larger than the frequency of odd numbers, and the distribu-
tions conditioned on an odd and an even number, respectively, look entirely different. For
instance, in the case H = 0.95, the frequencies of odd and even numbers are 0.321 and
0.679, respectively. The distribution conditioned on an odd number is slightly left-skewed
and has the mean 21.5 and the mode 23. The distribution conditioned on an even number
has the mean 14.4, the mode 0 and roughly looks like the mixture of a geometric and a
binomial distribution. As a consequence of the contrast between the conditional distribu-
tions, the probability of a change (which is given by ¢(0.95) = 0.167) is overestimated by
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the relative frequency of changes in a sample given that the number of changes is odd,
and underestimated given that the number of changes is even.

An intuitive explanation for the high frequency of even numbers is the following: When H
is large, there is a high probability to observe sample path segments which roughly look
like a straight line. Typically for such segments, there are only local changes in direction.
Globally, there is one prevailing trend, either “upwards” or “downwards”, and thus the
overall number of changes between “upwards” and “downwards” is even. In other words:
a sample path segment with an even number of changes is more similar to a straight line
than a sample path segment with an odd number of changes.

A related finding is that, when H is large, the occurence of a change at time ¢ —1 increases
the probability of a change at time {. In order to calculate the conditional probability
Py (C(t) =1|C(t — 1) = 1), note that

Pu(C(t)=1,C(t—1)=1) = Pu(V; <0, Y1 >0, Yiss < 0)
+ ]P)H(}/;f > 07 }/;5—1—1 S 07 Yt—‘r2 > 0)

and
Pg(Ct—1)=1) = Py(V; <0,V >0)+Pyg(Y; >0,V <0)
(compare to (5.1)). Since Y is zero-mean Gaussian and non-degenerate, we have
Pu(C(t)=1,C(t—1)=1) = 2P(Y; >0, —Yiis >0, Yiys > 0)
and
Pg(C(t—1)=1) = 2Pyx(¥; >0, =Yy >0).
Thus, according to Lemma 4.1, we obtain

]P)H(}/;f 2 07 _)-/t—l—Z 2 07 }/;4—2 2 0)
IEDH(}/t Z 07 _)/t—‘rl Z 0)

(5.36) Pu(C()=1|Ct-1)=1) =

1
2

arcsin pg (1) + 4= arcsin pg(2)
T 1

1 — 3= arcsin pgr(1)

1
8

For H = 0.95, formula (5.36) yields Py (C(t) = 1|C(t —1) = 1) = 0.385, compared to
the unconditional probability Pg(C(¢t) = 1) = 0.167 obtained by formula (5.10). Thus,
the probability of a change at time ¢ given a change at time ¢ — 1 is more than two times
larger than the unconditional probability of a change at time ¢. The occurence of change
“clusters” with the paths “keeping track” of the modulo of the number of changes shows
how complicated the dependency structure is for large values of the Hurst parameter.
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Figure 5.5 shows the cumulative standardized distribution of the number of changes in
samples of size n = 10000, compared to the cumulative standard normal distribution.
For values of H greater than 0.75, there is a clear difference between both curves, thus
indicating that the number of changes is not asymptotically normally distributed. The
difference between the frequencies of odd and even numbers of changes is not as large as in
the case n = 100. For instance, when H = 0.95, the frequencies of odd and even numbers
are given by 0.391 and 0.609, respectively. Note that the distributions in Figure 5.5 are
similar to those obtained for ARFIMA(0,d,0) processes with the fractional differencing
parameter d = H — %

. . . . .
-4 -2 2 4 -4 -2 0 2 4

o

Figure 5.5: Cumulative distribution of the number of changes in samples of size n = 10 000
(blue line), compared to the standard normal distribution (black line).
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Mean and standard deviation of cin,
and coverage of d by the asymptotic 95% confidence interval:

n = 100 n = 1000 n = 10000
d " o cov. " o cov. m o cov.
—0.45 | —0.379 0.147 0.950 | —0.436 0.065 0.963 | —0.450 0.027 0.972
—0.40 | —0.354 0.158 0.954 | —0.398 0.074 0.954 | —0.401 0.027 0.950
—-0.35 | —0.325 0.168 0.954 | —0.352 0.077 0.967 | —0.350 0.026 0.949
—0.30 | —0.292 0.175 0.955 | —0.304 0.076 0.949 | —0.300 0.024 0.950
—0.25 | —0.254 0.181 0.954 | —0.253 0.072 0.951 | —0.250 0.023 0.950
—-0.20 | —0.214 0.184 0.951 | —0.204 0.068 0.951 | —0.200 0.021 0.950
—0.15 | —0.169 0.184 0.944 | —0.153 0.063 0.953 | —0.150 0.020 0.950
—-0.10 | —0.123 0.180 0.959 | —0.103 0.059 0.951 | —0.100 0.018 0.951
—0.05 | —0.075 0.174 0.949 | —0.054 0.054 0.951 | —0.050 0.017 0.950
0.00 | —0.024 0.165 0.956 | —0.002 0.050 0.951 | —0.000 0.016 0.951
0.05 0.027 0.154 0.958 0.048 0.046 0.950 0.050 0.014 0.950
0.10 0.079 0.142 0.971 0.098 0.042 0.951 0.010 0.013 0.951
0.15 0.131 0.130 0.975 0.148 0.039 0.956 0.150 0.012 0.950
0.20 0.182 0.119 0.974 0.198 0.036 0.957 0.200 0.011 0.950
0.25 0.233 0.108 0.970 0.248 0.034 0.964 0.250 0.011 0.954
0.30 0.282 0.099 0.967 0.297 0.034 0.964 0.300 0.013 0.957
0.35 0.331 0.091 0.943 0.346 0.037 0.954 0.349 0.018 0.972
0.40 0.379 0.083 0.890 0.394 0.040 0.927 0.398 0.024 0.971
0.45 0.425 0.072 0.790 0.439 0.040 0.832 0.444 0.028 0.900
Mean and standard deviation of an,
and coverage of a by the asymptotic 95% confidence interval:
n = 100 n = 1000 n = 10000
a o o cov. o o cov. u o cov.
—0.90 | —0.889 0.073 0.905 | —0.899 0.023 0.948 | —0.900 0.007 0.951
—0.80 | —0.790 0.097 0.930 | —0.799 0.030 0.947 | —0.800 0.010 0.949
—0.70 | —0.691 0.113 0.927 | —0.699 0.036 0.945 | —0.700 0.011 0.951
—0.60 | —0.593 0.126 0.949 | —0.599 0.040 0.947 | —0.600 0.013 0.949
—0.50 | —0.494 0.136 0.940 | —0.500 0.043 0.948 | —0.500 0.014 0.949
—0.40 | —0.395 0.143 0.954 | —0.400 0.046 0.948 | —0.400 0.014 0.951
—0.30 | —0.296 0.149 0.940 | —0.300 0.048 0.949 | —0.300 0.015 0.949
—-0.20 | —0.197 0.152 0.943 | —0.200 0.049 0.950 | —0.200 0.015 0.950
—0.10 | —0.100 0.155 0.941 | —0.100 0.049 0.951 | —0.100 0.016 0.950
0.00 | —0.000 0.155 0.943 0.000 0.050 0.945 0.000 0.016 0.948
0.10 0.099 0.154 0.944 0.100 0.049 0.950 0.100 0.016 0.950
0.20 0.197 0.152 0.943 0.200 0.049 0.949 0.200 0.015 0.950
0.30 0.296 0.149 0.940 0.299 0.047 0.949 0.300 0.015 0.950
0.40 0.395 0.143 0.952 0.400 0.046 0.948 0.400 0.014 0.950
0.50 0.494 0.136 0.941 0.499 0.043 0.946 0.500 0.014 0.950
0.60 0.592 0.126 0.950 0.599 0.040 0.947 0.600 0.013 0.950
0.70 0.690 0.114 0.927 0.699 0.036 0.947 0.700 0.011 0.951
0.80 0.790 0.098 0.928 0.799 0.030 0.948 0.800 0.010 0.951
0.90 0.889 0.074 0.906 0.899 0.022 0.948 0.900 0.007 0.949

Table 5.4: Mean (1) and standard deviation (o) of the estimators d,, and @,, and the

coverage (cov.) of d and a by the 95% asymptotic confidence intervals.
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Estimation of the fractional differencing parameter and of the autoregressive
coefficient. Table 5.4 shows the mean and the standard deviation of the estimators d,,
and a,. Furthermore, Table 5.4 provides the coverage of d and a by the 95%-confidence
intervals.

With d = H — %, the results for Eln are similar to those for H,, provided by Table 5.3.
Except for very large values of the fractional differencing parameter, the probability that
the confidence interval K,,(0.05) covers d is 95%, also when the sample size is small. For
d = —0.45, we obtain coverage rates greater than 95% which may be due to numerical
problems of the simulation method when the autocorrelations of the simulated process
are negative (see Bardet et al. [13]).

Most remarkably for the estimator a,,, the results for the mean and the standard deviation
are symmetric about @ = 0. While the bias is particularly large when a is close to 1 or —1,
the standard deviation reaches its maximum when a = 0. For n = 100, the coverage of a
by the confidence interval K,(0.05) is below 95%, except for some outliers (e.g., a = 0.40
and a = 0.60). For n = 1000 and n = 10000, the coverage rates are close to 95%.
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Chapter 6

Ordinal patterns on different scales

In this chapter, we introduce delays of ordinal patterns as an additional parameter besides
the order. The framework of our analysis is the same as in the previous chapters, namely,
we consider a real-valued stochastic process X = (X;);cz on a measurable space (€2,.4)
which is equipped with a family of probability measures (Py)gce@ where ® # (). The
process of increments Y = (Y});ez is given by V; := X; — X;_; for t € Z. We always
assume that Y satisfies the model assumptions (M1)-(M3) on p. 42. Ford € ©
and k € Z, let py(k) = Corryg(Yp, Yy) denote the autocorrelations of Y.

Introducing the delays allows to consider the order relations among values at arbitrary
times instead of immediately subsequent values. As we will see in Sections 6.1 and 6.2, the
results from Chapters 3 - 5 are also valid in this more general context. In Section 6.3, we
demonstrate how ordinal patterns with increasing delays can be used to estimate the Hurst
parameter in equidistant discretizations of Fractional Brownian Motion superimposed by
short range dependent “noise”. More generally, we consider the estimation of the index
of asymptotically self-similar processes in Section 6.4. The application to practical time
series is illustrated in Section 6.5.

6.1 Ordinal pattern delays

Let d € Nand 7 = (11, 79,...,74) € N% Define 7(0) ;=0 and 7(k) :==7 + T2 + ... + 7,
for k =1,2,...,d. The ordinal pattern of order d with the delays T at time ¢ is given by

7 (t) = 7(Xy, Xeyr@)s Xegr@)s - Xewr(@) s
with the mapping 7 : R — S, as defined in Section 3.2. Ordinal patterns as defined in
Chapter 3 are included here as the special case where 7, = 1 for k = 1,2,...,d. Next, we

generalize the results of Chapter 3 to the estimation of ordinal pattern probabilities with
arbitrary delays.
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Stationarity. Let x = (20, %1,...,%+@q) € R7(@+1 " Clearly, shifting a vector by a
constant does not change any order relation among its components, so we have

(2o, Tr(1), Tr(2)s -+ Tr(@) = 7(0, Tr(1) — To, Tr(2) — Lo, - -+, Tr(d) — Zo) -

Note that, for k = 1,2,...,7(d), we can write the difference z,) — x as the telescoping
sum (1 — 2¢) + (g — 1) + ... + (Tr(k) — Trky—1)- Thus, with the mapping 77 from R7(
onto Sy given by

7(1) 7(2) 7(d)
ﬁ-T(Y) = 7T(07 Zylﬁ Zyk; ey Zyk)
k=1 k=1 k=1

fory = (y1, 92, -, Yr(a)) € R7@ | we obtain

7T(Z‘0, Tr), Tr2) -- > x‘r(d)) = 7Tr‘r((xl - l‘o), ('I'Z - 1‘1), cee (x‘l'(k?) - '/L.T(k:)fl)) -

Consequently,

7 (t) = 77 (Y1, Yigo, - Yigr@)
for every t € Z. Similar to Corollary 3.1 on p. 45, we obtain the following statement.

Corollary 6.1. (II7(t))cz measured with respect to Py is stationary for every ¥ € ©.

Let r = (ro,r1,...,7q) € Sq. For 9 € O, define
pr(¥) = Po(Il'(i) =r).

According to Corollary 6.1, the function pZ(-) does not depend on the specific value of
t € Z on the right hand side of the definition. We call p(-) the probability of the ordinal
pattern r with the delays 7. The following corollary shows that, for any delays, ordinal
pattern probabilities are strictly positive.

Corollary 6.2. For everyr = (rg,r1,...,7q) € Sq with d € N and every 9 € O,
0 < pi(¥) < 1.

Proof. Let s = (s0,51,...,5:a) € Sr be such that s, = 7(ry) for k = 0,1,...,d.
Clearly, X;, > X, > ... > X implies X;¢0) > X7 > ... > X;(;,) and thus

St(d)
p:(’ﬂ) = Pﬂ(XT(TO) > X.,-(rl) > > X'r(rd))
> Po(Xyo > Xy >0 > X, )
= ps(9)
for every 9 € ©. By Corollary 3.2 we obtain ps(¥) > 0 and thus p7 () > 0. Furthermore,

since there exists an T € S; with T # r, we have pT(9¥) < 1 — pI(d) < 1. The proof is
complete. O
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Let n € N and suppose we are given an observation of the ordinal pattern sample

" .= (II7(0), (1), ..., T (n — 1))

n

governed by Py with ¥ € © unknown. A natural estimator of pl(¥) is given by the
relative frequency of observations of r in IT7, namely,

1 n—1
Gpp = ﬁzl{mt):r}-
t=0

According to Corollary 6.1, ¢y, is an unbiased estimator of py (-).

Similarly as in Section 3.3, we obtain better estimators by averaging the number of ob-
servations of r and of its spatial and time reversals. With the mappings « and S given in
(3.8) on p. 47, let the subset ¥(7) of S; be defined by

B(r) = {r, a(r), B(r), Boa(r)} if1p=r14 k1 fork=1,2,....d
o {r, a(r)} otherwise
Now, let
. - 1 n—1 1 )
Prp = n ﬂi‘(‘r) {7 (t)er(r)} -

t

Il
)

If 7, = T4 41 for k=1,2,...,d, then py, is the average of the relative frequencies of r,
a(r), B(r) and Boa(r). Otherwise, p7, is the average of the relative frequencies of r and
a(r).

Statement (i) of the following theorem shows that p7, is a better estimator of p](-) than
Grn (“better” in terms of the risk with respect to convex loss functions, see Theorem 3.5
on p. 51). Statements (i3) and (4i7) establish sufficient conditions for strong consistency,
asymptotic unbiasedness and asymptotic normality of py , (and of certain functions of

Drp)-
Theorem 6.3.

(i) The estimator pf,, of py(-) is unbiased and has (strictly) lower risk than g7, with
respect to any (strictly) convex loss function.

(i1) If pe(k) — 0 as k — oo for every 9 € © and h : [0,1] — R is continuous on
an open set containing py (@), then h(p],) is a strongly consistent estimator of
h(p7(-)). If, additionally, h is bounded on [0,1], then h(pl,) is an asymptotically
unbiased estimator of h(pI(-)).
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(i59) If |po(k)| = o(k™P) for some 8 > 5 and h : [0,1] — R has a non-vanishing first
derivative at pl(9), then

Vi (M@T) — h(pI(9))) —% N0, o3 [R (pT(9))?)

where

and 75 (k) == W Cov(Lpr(oyer(r)ys L{nrwyer(=)y) for k € Z.

Proof. (i) Let ¥ € © and x = (20,21, ..., %) € R If x has pairwise different
components, then

—Tr(rg) > ~Tr(ry) = - 7 Tr(ry) & Tr(rg) 2 Tr(rg_1) = -+ = Tr(rg) -
By the same argument as in the proof of Lemma 3.3, we obtain that
(77 (Yegr, Yiga, - - Yt+7(d))) = 7 (=Yi41, Yo, ..., _Y;Jr-r(d))
Py-almost surely for every ¢ € Z and thus, with the mapping A defined on p. 48,
I A,
Now, suppose 7, = Ty_py1 for £ =1,2,...,d. Clearly,

T(d)—T(k) = Tk+1+7—k+2+~~~+7—d
n+nt...+714, = 7(d—k)

for k=0,1,...,d and hence
Tr(d)—r(ro) = Tr(d)—r(r1) = -+ = Tr(d)—1(ry) < Lr(d—ro) = Lr(d—r1) =« = Tr(d—ry) -
Similar to the proof of Lemma 3.3, we obtain
BET(Yier, Yiea, - Yigr(a)) = T (—Yiir@y, —Yerr@y—15-- > —Yiy1)
Pg-almost surely for every ¢ € Z and thus
I = A £ BOT) % BoA(IL).

Now, by the same arguments as in the proof of Theorem 3.5 and in Remark 3.6, it follows
that py, has lower risk than ¢7, with respect to any convex loss function.
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Let s = (50,51,...,Sn17(d)-1) € Snir(@-1 be such that X0 > X, > ... > D O
implies Xy > Xrry ) > -0 > Xy and Xyyrpy > Xyyrry, p fort =1,2,...,n — 1.
(The existence of such a permutation is obvious.) Then

Po(Prn # Grp) = Po(pr, >0, 47, =0)

Py(II"(0) = a(r), II7(1) #x, 1" (2) # 1, ..., 11" (n — 1) #r)
Py(Xs, > X5, > ... > X

Td—1

VAR

n+‘r(d)—1)

for every ¥ € ©. According to Corollary 6.2, the latter probability is strictly positive,
so Py (P, # Gr,) > 0 for every 9 € ©. Now, by the same argument as in the proof of
Theorem 3.5, it follows that py, has strictly lower risk than ¢y, with respect to strictly
convex loss functions.

(”) For y = (yt)tEZ € RZ7 let f(Y) = 11f 7~TT(91;?J27- - Jy‘r(d)) € f(T)J and f(y) = 07
otherwise. Then the result is obtained analogously to Theorem 3.8.

(iii) Let g : R™® — R be defined by

2 if 77(z) € T(T)
— @ !
9(z) { 0  otherwise

for z € R™@. By the same argument as in the proof of Theorem 3.10, we obtain that g
has Hermite rank £ > 2 with respect to any zero-mean non-degenerate Gaussian random
vector. Therefore, similar to Theorem 3.10 and Corollary 3.17, the statement follows. []

Delays in equidistant discretizations of FBM. As we show next, the distribution
of ordinal patterns in equidistant discretizations of FBM is invariant with respect to a
simultaneous scaling of time and delays. Same as in Section 3.5, suppose (£, .A) is equip-
ped with a family of probability measures (Pg) me(o,1y such that X measured with respect
to Pg is an equidistant discretization of FBM with the Hurst parameter H. As shown
in Section 3.5, the distribution of ordinal patterns in X does not depend on the sampling
interval length &, so we may assume ¢ = 1 without loss of generality.

Now, let H € (0,1) and N € N. By N7 we denote the vector (N7, N7o,..., N7y).
Note that (IT¥7(NNt))iez can be regarded as the process of ordinal patterns with delays
7 in an equidistant discretization of FBM with the sampling interval length N. Thus,
(ITNT(Nt))sez has the same distribution as the process of ordinal patterns with delays 7
in an equidistant discretization of FBM with the sampling interval length 1, that is,

(I ()ez = (IYT(NE))iez .

As a consequence, we obtain
(6.1) pr() = p7()
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for every N € N. Note that (6.1) is valid for the ordinal patterns in any self-similar
process with stationary increments. Therefore, as a simple non-rigorous method for testing
whether a time series is generated by a self-similar process, we propose to check whether
the estimates ﬁf;’{ are “similar” for different values of N. We consider some examples at
the end of this chapter.

Analogous to the definition of ITg given in Section 3.5, let I1%; denote the distribution of
the ordinal pattern process (II7(¢));cz in an equidistant discretization of FBM with the
Hurst parameter H.

6.2 The case d=2

Let us consider ordinal patterns of order d = 2. We assume that the delays are given by
T = (1, 7) for some 7 € N. For ¢ € Z, define

(62) OT(t) = 1{XtZXt+r<Xt+27—} + 1{Xt<Xt+'r2Xt+2r} .

If we consider 7-distant values of X, we may regard C7(¢) as the indicator for a change
between “upwards” and “downwards”. Similarly as in the case 7 = (1,1) discussed in
Chapter 5, we have

C7(t) = lmrw=@on + L=z} + L m=a.20} + L m=0,02)

(compare to (5.2) on p. 98). Since (II7(¢))scz is stationary, it follows that (C7(t))iez is
stationary for every 9 € ©. Consequently, the relative frequency of changes, given by

(6.3) &= =) CT()

for n € N, is an unbiased estimator of the probability of a change, given by
T(9) = Pa(CT(H) = 1)
for ¥ € ©. Similar to the case 7 = (1,1), we obtain
rer ifre {(1,0,2), (1,2,0), (0,2,1), (2,0,1)}
frn = La—en) ifre{(21,0),(0,1,2)}

Analogous to Corollary 5.2, we obtain statistical properties of ¢ by the corresponding
properties of pf ..
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Corollary 6.4.

(1) €T is an unbiased estimator of ¢ (-).

n

(1) If im0 po(k) = 0 for every 9 € © and h : [0,1] — R is continuous on an
open set containing ¢ (@), then h(¢T) is a strongly consistent estimator of h(c™(-)).
If, additionally, h is bounded on [0,1], then h(¢l) is an asymptotically unbiased
estimator of h(c™(-)).

(#51) If |po(k)| = o(k™P) for some B > 5 and h : [0,1] — R has a non-vanishing first
derivative at ¢™(9), then

Vi (h(ED) = h(cT(9))) —2 N(0, a3[1 (T (9))]?)

where

and v5 (k) := Covg(CT(0),C7(k)) for k € Z.

Computation of moments. Next, we investigate the evaluation of the first and second
moments of the process (C7(t))iez. This allows us, e.g., to compute the variance of ¢7.

The key ingredient is the evaluation of correlations between sums of increments. For
t € Z, define

Zy = Y+ Yo+ o+ Y,
Furthermore, let
po(k) = Corrg(Zy, Zx)

for k € Z and ¥ € ©. Since Y is stationary, non-degenerate and Gaussian (see the model
assumptions (M1)-(M3) on p. 42), we obtain that (Z;)cz is stationary, non-degenerate
and Gaussian for every 9 € ©. Moreover,

COVﬂ (Z(), Zk)
Varg(Zo)

7—1

=1y = [1]) po(k +1)
T42 Zz:11 (t—=1)ps(l)
for £k € Z and 9 € O, where py is the autocorrelation function of Y measured with

respect to Py. According to (6.2), we can express C7(¢) in terms of sums of increments,
namely,

(6.4) Py (k)

CT(t) = 1{z<0,24.50) T 1{2,50, 2., <0}
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for t € Z. Thus, analogous to formula (4.4) on p. 69, we obtain

1 1
cT(V¥) = 3o arcsin pg(7)

for ¥ € ©. The autocovariances 73 (k) = Covy(C7(0),C7(k)) for k = 0,1, ... can be eval-
uated similarly as in the case 7 = (1, 1) discussed in Chapter 4. In particular, according
to formula (4.5) on p. 69, we obtain

1 1

15(0) =~ y(arcsinpp(r)

and the analogue of formula (4.6) is given by

1
vo(T) = 7 arcsin pg(27) — P(arcsin ph(T))?.

Fork=1,2,...,7—land k =7+ 1,7+ 2,..., respectively, we have

Yo(k) = 2Py(Zy>0,Z, >0, Zp >0, Zyyr > 0)
+ 2Py(Zy> 0,72, >0, —Z;, >0, —Zyy, > 0)
— 4]P)19(Z0 > 0, Zr > O) Pﬂ(Zk; > 0, Zk+7 > 0)
(compare to (4.7)). Thus, analogous to formula (4.20) on p. 81, we obtain

(k) = W (pp(7), py(k), pp(k+T), py(k—7)).
Using the integral representation of ¥* given by Theorem 4.6, we can evaluate 7§ (k)
numerically.

In a similar manner, we obtain formulas for the evaluation of covariances between C7* (k)
and C™2(l) for 71 = (11, 71) and 79 = (79, 7o) with 71,79 € N and 77 # 7, which is useful
for determining the asymptotic joint distribution of ¢! and ¢72.

Asymptotic properties. Let ¥ € ©. Next, we derive asymptotics of v (k) as k — oo.
Suppose there exists a function f: N — R with pgy(k) ~ f(k) and a constant § # 0 such
that f(k+1) ~ Sf(k). Define

lT;—1(7—1)(T —I]) B!
T+ 230 (T =D ps(l)

According to formula (6.4), we obtain

D i e )
) YT T~ 1) el
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Consequently, ph(k + 1) ~ Bp%(k), and hence

(pa(7); py(k), py(k+7), pp(k—7)) ~ (pp(7), w[(k), 57w [(k), B 7K [(K)).

Since (Z;)iez is Gaussian and non-degenerate, we have |p§(7)| < 1 (see Theorem 2.6 (iv)).
Thus, according to Corollary 4.9 (i),

(k f(k))* (2 — pp(7) (B” +B77))?
2w (1 — (py(7))?)
Similar to Theorem 4.18, the latter expression allows to derive the asymptotics of the

variance of ¢]. Note that the rate of decreasing of vj (k) does not depend on 7, and hence
the same is true for the rate of decreasing of the variance of ¢7.

19 (k) ~ + O((f(k)") -

6.3 Increasing delays

Next, we investigate ordinal pattern probabilities for increasing delays. In particular, we
are interested in whether the sequence pT(9), p?™(9), p27(9), ... (with fixed ¥ € ©) has
a well-defined limit. In Section 6.4, we study this problem using results from the theory
of renormalization groups. From the statistical viewpoint, considering ordinal patterns
on large time scales is useful for studying the long term behavior of time series. For a
mathematical description, we introduce a more specific model for time series.

Mixture models. Let (Q,.A) be a measurable space and X = (X})ez a sequence of
measurable mappings from (Q, 4) into (R, B(R)). The increment process Y = (Y})se7 is
given by V; ;= X; — X; y fort € Z. Let m € N and ©1,0,,...,0,, # (). Suppose ({2, .4)
is equipped with a family of probability measures (Py)gce where

Furthermore, suppose there exist wy, ws, ..., w, > 0 with w} + w5 + ... + w?, = 1 and
measurable mappings Y() = (Y;(l))tez from (€, A) into (R,B(R)) for [ =1,2,...,m such
that

We will assume that, for every 4 = (91,9,...,9,,) € O, the following conditions are
satisfied:
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M1) YO Y@ Y0 are independent.
M2) YU Y@ Y0 are non-degenerate.
M3) YU, Y@ Y0 are stationary.
M4) YOO, Y@ Y™ are zero-mean Gaussian and have unit variance.
M5’) For [ = 1,2,...,m, the autocorrelation function of Y, given by
po (k) = Corrg(vy", ¥,)

for k € Z, only depends on ;.
Condition (M5’) means that, if 9’ = (9],9,,...,9),) € O satisfies 9; = 9,, we have

P(k) = P (k)

for all k € Z. Assumptions (M1’)-(M4’) imply that Y is non-degenerate and stationary
zero-mean Gaussian for every ¥ € ©. In order to establish non-degeneracy, let ¥ € ©
and 6] <ty <...<tp € Zwithk e€N. Forl=1,2, let @ denote the covariance matrix

of (Y;t(1 ), Yt,(zl), . ,Ytil)) measured with respect to Pg. Since Y and Y® are independent,
the covariance matrix of (wlYt(ll) +w2Yt(12), wlYtF ) +w2Yt( L wlYtS) —1—w2Yti2)) is given

by w?E® + w2E® . Furthermore, because Y() and Y® are non-degenerate, (V) and
»® are strictly positive definite. Thus, for any x € R* with x # 0,

x(w%E( )+ win® )) = wxIWx" +w2xx@x" > 0,

which shows that wIE( )+ w%EQ) is strictly positive definite and hence w; Y + w,Y®
is non-degenerate. By repeating this argument, we obtain that Y is non-degenerate.

Note that, for all ¥ € ® and ¢ € Z,
Varg(Y;) Zwl Varyg (Y,

Since YV, Y@ Y™ have unit variance and w? 4+ w? + ... 4+ w?, = 1, we obtain that
Y has unit variance for every 9 € ©. Thus, Y satisfies the model assumptions (M1)-(M3)
on p. 42.

Since YV, Y® ., Y™ are independent, the autocorrelations of Y are given by
(6.5) pe(k) = Corry(Yo, Ys) Zwl pl9

for e ®and k € Z.
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Example. Let m =2 and ® = (0,1) x (—1,1). For 9 = (9;,92) € O, suppose that
Y™ and Y® measured with respect to Py are FGN with the Hurst parameter 9, and
an AR(1) process with the autoregressive coefficient 99, respectively. Then the process X
can be regarded as the mixture of an equidistant discretization of FBM and an integrated

AR(1) process. Same as in the previous chapters, we write H instead of 19; and a instead
of ’192.

For many practical applications, the actual value of H is of particular interest. For
instance, if H > %, then Y has long memory (in particular, the autocorrelations of
Y given in (6.5) are not absolutely summable), and the long term behaviour of X is
essentially determined by the contribution of Y. Thus, we may regard Y as “noise”
corrupting the “signal” Y and affecting the precision of estimates of H. The ratio of

the signal variance to the total variance of Y is given by

Varg (w; Yt(l)) B w?

Varg (wy Yt(l) + wo th) w? + ws

Figure 6.1 shows simulated sample paths of X with the Hurst parameter H = 0.75 and
the autoregressive coefficient @ = —0.75. The squared weights w? and w3 are given by (a)
w} =1and wi =0, (b) w{ =3 and w} = 1, (¢) w{ = } and w} = 2. The corresponding
ratios of the “signal” variance to the total variance of Y are 1, % and %, respectively. Note
that the weight ws = 0 is not admissible in the mixture model as defined above. The

purpose of including it in (a) is to display the pure “signal” component of X.

Typically for a sample path of FBM with a large Hurst parameter, the time series in (a)
exhibits long monotone parts and only a small number of changes between “upwards” and
“downwards”. The addition of an integrated AR(1) process with a small autoregressive
coefficient in (b) and (¢) leads to an increase of the number of changes. On a larger time
scale, however, the appearance of the three time series is very similar.

The graphs (d)-(f) are obtained by computing estimates of H for increasing delays. Let
7 =(1,1), and define

(6.6) H := max {0, log, cos(ré)7/2) + 1}

N
for n € Nand N € N, with é¥7 as given in (6.3). For N = 1, H, ' is the estimator of
the Hurst parameter discussed in Section 5.3.

Figure 6.1 (d)-(f) shows the estimates obtained for N = 1,2,...,50. The estimates
are obtained for larger samples than displayed in (a)-(c), namely, for samples of size
n = 10000 each. As graph (d) shows, the time series in (a) results in estimates of
H approximately equal to 0.75 for any delay. Note that this is in accordance with
equation (6.1), which states that, in equidistant discretizations of FBM, ordinal pattern
probabilities (and functions thereof) are invariant with respect to a scaling of the delays.
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Figure 6.1: Mixture of FBM with the Hurst parameter H = 0.75 and an integrated AR(1)

process with the autoregressive coefficient @ = —0.75. The squared weights w? and w3
are given by (a) w? =1 and w3 =0, (b) w} = 1 and w} =1, (¢) w} =} and w} = ;.

The resulting estimates of H for N = 1,2,...,50 are shown in (d)-(f).

For the time series in (b) and (c), we obtain different estimates of H depending on the
delays. For small delays, the Hurst parameter is underestimated, but as N increases, the
estimates tend to 0.75.

The above results show that considering X on large time scales filters out the short range
dependent noise added by the integrated AR(1) process and thus allows to estimate H.
One could also imagine the opposite situation where H is smaller than % (and hence X
does not exhibit long memory), but the addition of an integrated AR(1) process with a
large autoregressive coefficient leads to an overestimation of H for small delays. In the
following section, we study these phenomenons systematically. The application to the

analysis of real-life time series is demonstrated in Section 6.5.
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6.4 Asymptotic self-similarity

Throughout this section, any stochastic process is assumed to be defined on a probability
space (', A", P). In fact, we are only interested in the distribution of the processes, so
the structure of (€', A’) is irrelevant.

The renormalization group. Let H € (0,1). For N € N, consider the operator Ty g
on R” given by

Tvaz = (Inu Z)t)tez
for z = (2;)sez € RZ, where
1 tN
(TN,H Z)t = ﬁ Z 2k
k=(t—1)N+1

for ¢t € Z. Thus, the sequence Ty g z is obtained by summing the components of z over
successive non-overlapping blocks of size N and scaling the sums by NLH

Since T, © Tayrg = T for M, N € N, the set of transformations {Ty g |N € N}
together with o forms a semi-group, which is called renormalization group with index H
(see Embrechts and Maejima [36], p. 15, Taqqu [96]).

A real-valued stationary process Z = (Z;)cz is called a fized point of the renormalization
group with index H iff Z = Tnm Z for all N € N. Note that if Z is almost surely equal
to 0, then Z is a fixed point of the renormalization group with index H for all H € (0,1).
In order to avoid trivialities, we will require that fixed points of renormalization groups

are non-degenerate.

A real-valued stationary process Y = (Y})sez is said to be asymptotically self-similar with
index H iff there exists a fixed point Z of the renormalization group with index H such
that Tv g Y converges in distribution to Z as N goes to infinity.

The following result is well-known (see Theorem 2.2.1 in Embrechts and Maejima [36]).
Recall that we use Gy to denote the distribution of FGN with the Hurst parameter H
(see Section 2.2.3).

Theorem 6.5. A necessary and sufficient condition for a Gaussian process Y to be
asymptotically self-similar with index H € (0,1) is that, as N — oo,

TxuY — Gg.
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Implications for ordinal pattern probabilities. Suppose that X = (X});cz is a real-
valued process on (€', A", P) and Y is the increment process of X, i.e., ¥; = X; — X;
for t € Z. Ford € Nand 7 = (11,72,...,74) € N, let (II™(¢));ez denote the process of
ordinal patterns of order d and with delays 7 in X. The following corollary shows that if
Y is Gaussian and asymptotically self-similar with index H € (0, 1), the distribution of
(TINT(t))4ez converges to ITg defined in the last paragraph of Section 6.1.

Corollary 6.6. If Y is Gaussian and asymptotically self-similar with index H € (0, 1),
then, as N — oo,

(VT (Nt))per, — I,

Proof. Let H € (0,1) and suppose Y is Gaussian and asymptotically self-similar with
index H. Let (T1%(¢))ez be distributed according to ITg. Note that, for all N € N and
teZ,

Y7 (Nt) = YNt Yoeras o5 YNtenT(d))
= T (N (T )i, NI Tva Yz, -, N (Tvm Y)iir@)
T ((Ina Y, Tva Yo, o (Iva Y)ir@)

T

=

N

where the last equality holds because 77 is invariant under positive scaling. According
to Theorem 6.5, the distribution of ((I'ng Y )41, (Ina Y)ig2, -, (Ing Y)t4r(a) con-
verges to that of 7(d) subsequent values in FGN with the Hurst parameter H. Fur-
thermore, for every r € Sy, the boundary of {y € R™®|#7(y) = r} in R™? has
Lebesgue measure 0 (this follows by the same argument showing that the boundary of
{y € RY|#(y) € t} in R? has Lebesgue measure 0, see p. 53). Thus, as N — oo, the
distribution of IINT(NNt) converges to that I1%(#). Analogously, we obtain that, for all
t1,ta, ... tx € Z with k € N, the distribution of (IIN™(Nt,),[IV7(Nty),... , TINT(Nty))
converges to that of (IIg(¢1), I (¢2), ..., I (¢k)), and hence the statement follows. [

Corollary 6.6 implies that when Y is Gaussian and asymptotically self-similar with index
H € (0,1), the ordinal pattern probability P(IT¥7(¢) = r) converges to the correspond-
ing probability Pg(II7(¢) = r) in an equidistant discretization of FBM with the Hurst
parameter H. For the probability of a change with delays = = (1, 1), we obtain

lim P(CY"(t)=1) = 1-— 2 arcsin 287!
N—00 ™
T .

. given
in (6.6) can be regarded as a (slightly) biased estimator for the index of asymptotical self-
similarity H. Clearly, we do not know a priori how large N has to be in order to obtain
an estimator which is only slightly biased. As an a posteriori criterion, the estimates of
H should not vary “too much” if we further increase N. Compare to Figure 6.1 and the
discussion in Section 6.5.

(compare to formula (5.10) on p. 102). Thus, when N is “sufficiently large”, H
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Conditions for asymptotic self-similarity. The following lemma relates the auto-
correlation structure of Y to the index of asymptotical self-similarity.

Lemma 6.7. Suppose Y is non-degenerate stationary Gaussian with zero means and
unit variance. For k € Z, let p(k) := Corr(Yy, Yx). A sufficient condition for Y to be
asymptotically self-similar with index H € (0,1) is given as follows:

(1) For H € (0,3): there exists a ¢ > 0 with

p(k) ~ —ck*%  and Z p(k)=0.
k=—0o0
(11) For H = 4: there exists a ¢ > 0 with
Z lp(k)| < 0o and Z plk)=c.
k=1 k=—0c

(i17) For H € (3,1): there ezists a ¢ > 0 with
p(k) ~ ck*®72,
Proof. See Example 3.2 in Taqqu [96]. O

The following lemma shows that the sum of independent Gaussian asymptotically self-
similar processes is again asymptotically self-similar, and the index of the sum process is
the maximum of the indices of the summand processes.

Lemma 6.8. Let YV, Y® Y withm € N be independent Gaussian asymptotically
self-similar processes with indices Hy,Hs,...,H, € (0,1). Then Y = Y2, YO is
asymptotically selfsimilar with index H = max{H, H,,..., H,,}.

Proof. Note that it is sufficient to show the statement for m = 2. By induction, we then
obtain the statement for m > 2. According to Theorem 6.5, in order to prove that Tn g 'Y
converges in distribution to FGN with the Hurst parameter H as N — oo, we only need
to show the existence of a 02 > 0 such that

2
6.7 lim Cov(Tyu Yo, Txa Y)i) = =([k+17 — 20" + |k — 1°7)
N—o0 ’ ’ 2

for every k € Z (see Theorem 2.6 (iii) and the definition of FGN in Section 2.2.3). Let
k€ Z. Since YO and Y® are independent, we have

COV((TN,H Y)O, (TN,H Y)k:) = COV((TN7H Y(l))O; (TN7H Y(l))k;)
+ Cov((Twa Yo, (Tna YP))
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for every N € N. Furthermore, according to the asymptotic self-similarity of Y for
[ =1,2, we obtain that

lim Cov((Tw,er, YD), T, YO)) =

N—o0

Thus, if H, = H, = H, then (6.7) holds with ¢ = 2. Now, without loss of generality,
suppose that H; < H5 and thus H = H,. Since

1

COV((TN,Hz Y0, (I'n,m, Y(l))k) il = COV((TN,HI Y, (Tw.m, Y(l))k)

(1k + 1P = 2)kPHr 4 |k — 12H)

NN

for every N € N, we obtain
lim COV((T}V’H2 Y(l))o, (TN7H2 Y(l))k) = 0.

N—00

Consequently, (6.7) holds with 0? = 1. The proof is complete. ]

The following lemma gives examples of asymptotically self-similar Gaussian processes.

Lemma 6.9.

(i) If Y is FGN with the Hurst parameter H € (0,1), then Y is asymptotically self-
stmilar with index H.

(it) If Y is an ARFIMA(0,d,0) process with the fractional differencing parameter d €
(=%, 3), then' Y is asymptotically self-similar with index d + 5.

(i13) If Y is an AR(1) process with the autoregressive coefficient a € (—1,1), then Y is
asymptotically self-similar with index %

Proof. (i) See Theorem 2.2.1 in Embrechts and Maejima [36]). (i) and (ii¢) follow by
Lemma 6.7, Lemma 2.8 and Lemma 2.9, respectively. O

Now we have a mathematical explanation for the findings in Figure 6.1. According to
Lemma 6.9, the processes Y and Y® are asymptotically self-similar with the indices
H, =0.75 and H, = 0.5, respectively. Therefore, Lemma 6.8 implies Y = Y 4+ Y® ig
asymptotically self-similar with the index H = 0.75, and Corollary 6.6 shows that if N
is sufficiently large, IEI,]TVT is an only slightly biased estimator of H. In fact, how large N
needs to be depends on the ratio of the signal variance to the total variance.

6.5 Application to practical time series

Let us demonstrate the application of our method to the analysis of two real life time
series: the yearly minimal water levels of the Nile River at the Roda Gauge and the NBS
high precision weight measurements. Note that both data sets are well-known examples
of long memory processes. (see Beran [15], pp. 20-29).
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Figure 6.2: (a) Nile River minima. (b) NBS weight measurements. (c) and (d) Resulting
estimates of the Hurst parameter.

Nile River minima. The yearly Nile River minima for the years 622-1281 recorded at
the Roda Gauge near Cairo is one of the most famous data sets from hydrology. Figure 6.2
(a) shows this time series with the mean subtracted. Remarkably, there are long periods
of “dryness” and “floods” where the measurements stay below and above 0, respectively,
for many successive years. Evidence for long memory in the data has been first presented
by the hydrologist H. E. Hurst. For a long time, the definition of a model which explains
this phenomenon has been an open problem. B. M. Mandelbrot and his co-authors have
introduced FGN exactly for this purpose. Therefore, the parameter H in FGN is now
commonly referred to as the Hurst parameter (see Beran [15], pp. 32-34).

In fact, by a first diagnosis, there is no evidence against modelling the Nile River data by
FGN: The time series does not exhibit a relevant deviation from (univariate) normality.
Also, the spectral density of FGN gives a good fit of the periodogram of the Nile River
data, where the best model fit is obtained for the Hurst parameter H = 0.84 (in Figure 6.2
(b), this value is displayed by the black dashed line). The most important argument
against using FGN is some evidence of non-stationarity. For details, see Beran [15],
pp. 117-118, 125-126.

Figure 6.2 (b) shows the estimates of H obtained by IEIiVT for N =1,2,...,200. For
small N, the estimates are almost identical and close to the best model fit H = 0.84. As
N increases, the variation becomes larger and, finally, the sequence of estimates tends to
0. Note that we obtain qualitatively very similar graphs for simulations of FGN with the
Hurst parameter H = 0.84. For large NN, the variance of the estimates increases due to a
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Figure 6.3: Estimates of the Hurst parameter for the Nile River data in successive non-
overlapping time windows of length n = 100 each.

decreasing number of sample data points.

Now, consider the six time series obtained by dividing the first 600 observations of the
Nile River data into parts of length 100. The best model fit of these time series is obtained
for H = 0.54, 0.85, 0.86, 0.83, 0.84 and 0.93 (see Beran [15], p. 207). Figure 6.2 (a)-(f)

shows the estimates obtained by ﬂiw for N =1,2,...,20. For small N, these estimates
are close to the best model fit (except for the time series (a) and (b), where H is under-
and overestimated, respectively). Given the small sample sizes, we find the variation of
the estimates is surprisingly low.

NBS data. The NBS data set is given by high precision weight measurements of a
lkg standard weight, performed between June 1963 and October 1975 at the National
Institute of Standards and Technology, Gaithersburg, USA. Figure 6.1 (c) displays this
time series with the mean subtracted. Note that the measurements were not performed at
equidistant dates. Treating them as if they were performed at equidistant dates, however,
is likely to only slightly affect the long-range dependence structure (see Beran [15], p. 27).
The data set is particularly interesting because it exhibits features of a long memory
time series, even though the experimental setting was almost perfectly designed to obtain
independent observations.

The HUBINC estimator yields H = 0.60 as an estimate of the Hurst parameter, with an
approximate standard deviation of 0.044 (see Beran [15], p. 140). Here, H is not necessar-
ily interpreted as the Hurst parameter in FGN but, more generally, as the parameter in a
model for long memory time series determining the rate of decay of the autocovariances.

144



Figure 6.1 (d) displays the estimates of H obtained by I:Ii:fT for N =1,2,...,150. The
estimates are all close to the value H = 0.60, except for very large values of N. After all,
the variation of the estimates is small, in particular, smaller than the variation which we
observe for simulations of FGN with the Hurst parameter H = 0.60.
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List of symbols

B(Y)
A
AAB
0

0A
max(A)
min(A)
inf(A)
sup(A)
N

No

R
Z
AT
det(A)
Afl

diag(ai,as, ...

['(x)

N(p, o)
N(p, )

o

ist

P

|

;an)

Borel o-field of the topological space Y

cardinality of a set A

symmetric difference of sets A and B

the empty set

boundary of a subset A of a topological space
maximimum of a subset A C R

minimum of a subset A C R

infimum of a subset A C R

supremum of a subset A C R

set of natural numbers

set of natural numbers including 0

set, of real numbers

set of integers

transpose of the matrix A

determinant of the matrix A

inverse of the matrix A

n X n-diagonal matrix with the entries a1, aq, ..., a, on the diagonal
value of the Gamma function at x

normal distribution with mean p and variance o2
(multidimensional) normal distribution with means g and
covariance matrix X

equality in distribution

convergence in distribution with respect to the
probability measure P

ordinal pattern of the vector x € R4*!

ordinal pattern of the vector of increments y € R?
distribution of FGN with the Hurst parameter H
distribution of ordinal patterns in FGN with the Hurst parameter H
distribution of ordinal patterns with delays 7 in FGN
with the Hurst parameter H
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