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Zusammenfassung
Diese Arbeit untersucht die Verteilung ordinaler Muster in stochastischen Prozessen unddie Sch�atzung der Auftretenswahrscheinlichkeit ordinaler Muster. Ordinale Muster be-schreiben die Ordnungsrelationen zwischen einer festen Anzahl von Werten einer Zeitreihe.Sind die Werte der Zeitreihe paarweise verschieden, so k�onnen ordinale Muster durch Per-mutationen dargestellt werden. Die Verteilung ordinaler Muster in einer Zeitreihe (bzw.in Teilen der Zeitreihe) dient dazu, Charakteristiken der zu Grunde liegenden Dynamikzu berechnen, oder zwischen der Dynamik in unterschiedlichen Teilen der Zeitreihe zuunterscheiden. Ein Beispiel solch einer Charakteristik ist die Permutationsentropie, diedurch die Shannon-Entropie der Verteilung ordinaler Muster gegeben ist und als Ma� f�urdie Komplexit�at von Zeitreihen angesehen werden kann. Eine Anwendung der Permuta-tionsentropie ist die Analyse epileptischer Aktivit�at in EEG Zeitreihen.Der Kontext der Untersuchungen dieser Arbeit ist eine parametrische Familie stochasti-scher Prozesse mit station�aren, nicht-degenerierten, zentrierten Gauss'schen Zuw�achsen.Diese Prozessklasse beinhaltet equidistante Diskretisierungen Fraktaler Brown'scher Be-wegung sowie integrierte ARFIMA(0,d,0) und AR(1) Prozesse. In Kapitel 3 zeigen wir,dass die Verteilung ordinaler Muster in solchen Prozessen station�ar ist, und dass jedesordinale Muster eine strikt positive Auftretenswahrscheinlichkeit hat. Ist eine endlicheAnzahl von Beobachtungen ordinaler Muster gegeben, so ist die relative H�au�gkeit einesMusters ein unverzerrter Sch�atzer f�ur die entsprechende Auftretenswahrscheinlichkeit. Dadie Verteilung station�arer und zentrierter Gauss'scher Prozesse invariant ist bez�uglicheiner Umkehrung der Raum- bzw. Zeitachse, haben bestimmte ordinale Muster dieselbeAuftretenswahrscheinlichkeit. Indem man die relativen H�au�gkeiten dieser Muster mit-telt, erh�alt man Sch�atzer mit niedrigerer Varianz.Eine hinreichende Bedingung f�ur schwache Konsistenz der Sch�atzer ist, dass die Au-tokovarianzen des Zuwachsprozesses f�ur wachsende Zeitabst�ande gegen null gehen. Wiewir zeigen, ist diese Bedingung auch hinreichend f�ur starke Konsistenz. Hinreichend f�urasymptotische Normalit�at ist, dass die Autokovarianzen des Zuwachsprozesses schnellerabklingen als k 7! 1pk . Diese Aussage gilt allgemeiner auch f�ur bestimmte di�erenzierbareFunktionen der Auftretenswahrscheinlichkeiten, sowie im mehrdimensionalen Fall, wenndie Auftretenswahrscheinlichkeiten verschiedener Muster gleichzeitig gesch�atzt werden.
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In Kapitel 4 untersuchen wir die Kovarianzen von Nulldurchl�aufen in nicht-degenerierten,station�aren, zentrierten Gauss'schen Prozessen. Kern der Untersuchungen ist die Ana-lyse vierdimensionaler Gauss'scher Orthant-Wahrscheinlichkeiten sowie ihrer Ableitungenbez�uglich bestimmter Korrelationskoe�zienten. Wie wir zeigen, lassen sich die Kovari-anzen von Nulldurchl�aufen als Summen eindimensionaler Integrale darstellen, die nu-merisch mit beliebiger Genauigkeit ausgewertet werden k�onnen. Wir bestimmen au�er-dem das asymptotische Verhalten der Kovarianzen und geben untere und obere Schrankensowie Approximationen an. Auf Grundlage dieser Ergebnisse leiten wir Eigenschaften derVarianz empirischer Nulldurchlaufsraten her.In Kapitel 5 betrachten wir als Spezialfall ordinale Muster, die die Ordnungsrelationenzwischen genau drei aufeinanderfolgenden Werten einer Zeitreihe beschreiben. Wie wirzeigen, l�a�t sich in diesem Fall jeder \vern�unftige" Sch�atzer von Auftretenswahrschein-lichkeiten ordinaler Muster als a�ne Funktion der empirischen Nulldurchlaufsrate imZuwachsprozess darstellen. Auf Grundlage der Ergebnisse aus Kapitel 4 berechnen wirdie Varianz der Sch�atzer in equidistanten Diskretisierungen Fraktaler Brown'scher Bewe-gung, sowie in integrierten ARFIMA(0,d,0) und AR(1) Prozessen.Stehen die Parameter der stochastischen Prozesse in einer monotonen Beziehung zurWahrscheinlichkeit eines Nullduchlaufes, so erh�alt man Sch�atzer f�ur diese Parameter,indem man die empirische Nulldurchlaufsrate in die inverse monotone Beziehung ein-setzt. Mittels der Ergebnisse aus Kapitel 3 leiten wir Eigenschaften dieser Sch�atzer her.Unter zus�atzlichen Anforderungen an die Autokovarianzen des Zuwachsprozesses bestim-men wir Kon�denzintervalle f�ur die Prozessparameter. Wir illustrieren die Methoden f�urdie Sch�atzung des Hurst Parameters in Fraktaler Brown'scher Bewegung, des fraktalenDi�erenzierungsparameters in ARFIMA(0,d,0) Prozessen, sowie des autoregressiven Ko-e�zienten in AR(1) Prozessen.In einer Simulationsstudie untersuchen wir die G�ute der Sch�atzer sowie die �Uberdeckungder Prozessparameter durch die Kon�denzintervalle. Im Fall des Hurst Parameters ver-gleichen wir die G�ute mit der eines alternativen Sch�atzers. Weiterhin betrachten wir dieVerteilung der empirischen Nulldurchlaufsrate in den Zuw�achsen Fraktaler Brown'scherBewegung. Wie sich herausstellt, ist die Verteilung f�ur gro�e Werte des Hurst Parameters�au�erst unregelm�a�ig.In Kapitel 6 betrachten wir ordinale Muster, die die Ordnungsrelationen zwischen Wertenzu beliebigen Zeitpunkten beschreiben (an Stelle von unmittelbar aufeinanderfolgendenWerten). Wir zeigen, wie ordinale Muster auf gro�en Zeitskalen verwendet werden k�onnen,um den Index asymptotisch selbst�ahnlicher Prozesse zu sch�atzen. Eine Anwendung istdie Sch�atzung des Hurst Parameters in Fraktaler Brown'scher Bewegung, die von schwachkorreliertem \Rauschen" �uberlagert ist. Wir illustrieren die Anwendung dieser Methodef�ur zwei empirische Zeitreihen, n�amlich, Pegelst�ande des Nils sowie Pr�azisionsmessungendes amerikanischen NBS Institutes.
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Abstract
This thesis studies the distribution of ordinal patterns in stochastic process and the es-timation of occurrence probabilities of ordinal patterns. Ordinal patterns represent theorder relations among a �xed number of values in a time series. Under the assumptionthat the values of the time series are pairwise di�erent, it is natural to identify ordinalpatterns with permutations. The distribution of ordinal patterns in a time series (or partsof it) can be used to compute characteristics of the underlying dynamics, or to discrimi-nate between the dynamics in di�erent parts of the time series. For instance, permutationentropy (which is the Shannon entropy of ordinal pattern distribution) has been proposedas a measure for the complexity of time series. Permutation entropy measurements havebeen applied, for example, to the analysis of epileptic acivity in EEG data.The framework of our analysis is a parametric family of stochastic processes with station-ary, non-degenerate and zero-mean Gaussian increments. This class of processes includes,e.g., equidistant discretizations of Fractional Brownian Motion, and processes where theincrements are ARFIMA(0,d,0) or AR(1) processes. In Chapter 3, we show that the distri-bution of ordinal patterns in such processes is stationary, and each pattern has a strictlypositive probability of occurrence. Given a �nite number of observations, the relativefrequency of an ordinal pattern is an unbiased estimator of the corresponding occurrenceprobability. By the fact that the distribution of stationary zero-mean Gaussian processesis invariant with respect to reversions of the time and space orientation, certain ordinalpatterns have the same probability. We show that averaging the relative frequencies ofthese patterns yields unbiased estimators with smaller variance.A su�cient condition for the estimators of ordinal pattern probabilities to be consistentis that the autocovariances of the increment process tend to zero. We show that thiscondition is also su�cient for strong consistency. A su�cient condition for asymptoticnormality of the estimators is that the autocovariances of the increment process decayfaster than k 7! 1pk . More generally, this statement is true for certain di�erentiablefunctions of ordinal pattern probabilities and also in the multidimensional case when theprobabilities of several patterns are jointly estimated.In Chapter 4, we study covariances of zero crossings in non-degenerate and stationaryzero-mean Gaussian processes. The results are obtained by analyzing four-dimensional
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normal orthant probabilities and their derivatives with respect to correlation coe�cients.We propose a representation of the zero crossing covariances by one-dimensional integralswhich can be numerically evaluated using standard quadrature rules. Furthermore, wederive asymptotics of the covariances and establish approximations and bounds. Basedon these results, we derive properties of the variance of empirical zero crossing rates.In Chapter 5, we focus on ordinal patterns describing the order relations among threesubsequent values of a time series. In this case, any \reasonable" estimator of ordinalpattern probabilities can be expressed as an a�ne function of the empirical zero crossingrate in the increment process. Using the results of Chapter 4, we evaluate the varianceof the estimators in equidistant discretizations of Fractional Brownian Motion and inprocesses where the increments are ARFIMA(0,d,0) and AR(1), respectively.When the parameters of the family of stochastic processes are real numbers and mono-tonically related to the probability of a zero crossing, an estimator of the parametersis obtained by plugging the empirical zero crossing rate into the inverse of the mono-tonic relation. Using the results of Chapter 3, we establish properties of this estimator.Under additional conditions on the autocovariances of the increment process, we also de-rive con�dence intervals. We show how the results apply to the estimation of the Hurstparameter in Fractional Brownian Motion, of the fractional di�erencing parameter inARFIMA(0,d,0) processes and of the autoregressive coe�cient in AR(1) processes.In a simulation study, we evaluate the performance of the estimators and the coverageof the parameters by the con�dence intervals. For the Hurst parameter, we comparethe performance to that of an alternative estimator. We also consider the distributionof empirical zero crossing rates in the increment process of FBM. It turns out that thedistribution is very irregular for large values of the Hurst parameter.Chapter 6 generalizes the results of the previous chapters to ordinal patterns describingthe order relations among values at arbitrary times instead of immediately subsequentvalues. We demonstrate how ordinal patterns on increasing time scales can be usedfor estimating the index of asymptotically self-similar processes. One application is theestimation of the Hurst parameter in equidistant discretizations of Fractional BrownianMotion superimposed with short range dependent \noise". We illustrate our method fortwo practical time series, namely, River Nile data and NBS precision measurements.
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Chapter 1
Introduction
Modern science progresses through the collection of data and the development of newmethods for their analysis. Often data are obtained by sequential measurements of aquantity in time, so-called time series. Examples are manifold: daily temperatures, rivergauges, currency exchange rates or the electric activity of the human brain. With theadvances in computer technology which make it possible to store gigabytes of data, oneof the main challenges of time series analysis these days is the computational complexitydue to the large amount of data.Major approaches to time series analysis are the theory of dynamical systems and thetheory of stochastic processes. A dynamical system is a deterministic model for the gen-eration of time series. Thus, if the dynamics and all initial states are known, any futurevalue can be predicted. A stochastic process includes a random component which makesit impossible to exactly forecast future values.Since the 1980's, non-linear dynamical systems have been receiving particular attention.One reason is that linear dynamical systems are unable to capture important charac-teristics of many time series observed in nature, such as aperiodic behaviour and highsensitivity to initial states. Another reason is that, nowadays, computers allow to studyproperties of non-linear dynamics, for instance, by means of simulations (see Galka [42]).Although non-linear dynamical systems are deterministic, even an approximate predic-tion of future values can be impossible when the initial states are not known exactly.Therefore, an essential concept in the study of non-linear dynamics is complexity which,roughly speaking, quanti�es the unpredictability of a dynamical system. For instance,the complexity of linear systems is low, while \chaotic" non-linear systems have highcomplexity.The complexity of dynamical systems can be measured by entropies, dimensions andLyapunov exponents (see Walters [99], Grassberger and Procaccia [44], Galka [42]). Whilethese quantities are well-motivated from the theoretical viewpoint, it is often di�cult to
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estimate them in practice. In particular, the estimates depend on the speci�c choiceof a sequence of families of sets over the state space, so there is no standardized wayfor computing them. Moreover, the computation of estimates is time-consuming, andwhen the complexity of the system is high, the estimates themselves are very sensitive toobservational noise.

Permutation entropy. An interesting alternative for measuring the complexity of aone-dimensional system is the permutation entropy introduced by Bandt and Pompe [10].The basic idea is to partition the state space of a system in such a way that two points liein the same part of the state space if and only if their �rst d iterates are correspondinglyordered. The permutation entropy of order d is given by the Shannon entropy of thispartition. The permutation entropy rate is de�ned as the upper limit of the permutationentropy of order d divided by d as d tends to in�nity.Surprisingly at �rst glance, there are fundamental relations between the permutationentropy rate and complexity measures which take the whole metrical or topological infor-mation of time series into account. For piecewise monotone interval maps, Bandt et al. [9]shows coincidence with the Kolmogorov-Sinai entropy, and a similar result holds for thetopological entropy (see Bandt et al. [9], Misiurewicz [75]). Amig�o et al. [3, 4, 5] gener-alize the result for the Kolmogorov-Sinai entropy to the multi-dimensional case, however,based on a concept of permutation entropy which uses non-standardized partitions of thestate space. For ergodic systems, Keller and Sinn [61, 62] show that the permutationentropy rate is always an upper bound for Kolmogorov-Sinai entropy.Partitioning the state space of a system (or the space of a �xed number of consecutivestates of the system) and considering only the information in which piece of the partitionthe actual state is o�ers a coarse-grained view of the system. This is helpful, e.g., todetect periodicities in the dynamics. Because the pieces of partitions are often associatedwith \symbols", the general methodology is known as symbolic dynamics (see Kitchens[64]). In order to analyze the symbol sequences obtained by the orbit of a system, nominalstatistics and techniques from information theory can be applied, such as measuring thecomplexity of an information source by the Shannon entropy.From the practical viewpoint, one major advantage of using permutation entropy for mea-suring the complexity of a system is that the computation of estimates can be realizedby simple and fast algorithms (see Bandt and Pompe [10], Keller and Sinn [57]). Fur-thermore, the estimates are robust with respect to observational and dynamical noise (seeBandt and Pompe [10], Veisi et al. [98]). For these reasons, permutation entropy hasbeen applied to real data in recent years, with the main focus on the analysis of epilepticactivity in EEG recordings.
14
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Figure 1.1: The 10-20 system for electrode placement and 20 seconds of an EEG recording.
Application to EEG data analysis. An electroencephalogram (EEG) measures theelectric activity of the brain (of humans or animals) by electrodes on the scalp. Figure 1.1displays the 10-20 system, which is a standard scheme for the placement of 19 electrodeson the human scalp. Furthermore, Figure 1.1 shows a 20 seconds parts from an EEG whichwas recorded according to the 10-20 system. Note that each line represents one channel,that is, the signal from one electrode. EEG recordings are usually very long (some minutesup to several hours, digitalized with sampling rates of 250 Hertz and higher). Moreover,the brain is a very complex non-linear system (some researchers even believe it is chaotic).Therefore, measuring the complexity of brain dynamics is a particularly challenging task.Epileptic activity is related to a loss of complexity in the brain dynamics, caused byabnormal synchronizations of large clusters of neuronal cells. Hence, detecting and quan-tifying epileptic activity by estimating the complexity of the brain dynamics is obvious.See Galka [42] for an overview of applications of entropies, dimensions and Lyapunov ex-ponents. In recent years, many authors have reported epileptic activity to be associatedwith a decrease of permutation entropy. In particular, Faul et al. [39] discusses permu-tation entropy for analyzing the EEG of newborn children, Veisi et al. [98] studies thedetection of epilepsy in noisy signals and Keller and Lau�er [55] investigates the e�ect ofVagus stimulation.In a methodological study, Staniek and Lehnertz [93] discusses the impact of the orderand delay of ordinal patterns (see below) on permutation entropy measurements. Li etal. [70] examines the predictability of epileptic seizures for rats, and Bretschneider et al.[18] uses permutation entropy to measure the coherence of in vivo/in vitro �eld potentialactivities and of the EEG. See also Cao et al. [24] and Keller et al. [58].Besides epileptic seizures, other causes of changes in the complexity of the brain dynamics
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are, e.g., aging and sleep. For instance, one �nds typical di�erences between the EEGs ofa child and an adult, or the EEGs of a person with eyes open and eyes closed. In a studyon the detection of brain states preceding epileptic seizures, Bruzzo et al. [21] reportsreduced vigilance to result in lower permutation entropy. Olofsen et al. [77] observes asimilar e�ect for anaesthetic drugs and discusses the applicability of permutation entropyfor measuring anaesthetic drug e�ects (see also Li et al. [69]).In addition to EEG data, permutation entropy has also been used for the analysis ofelectrocardiogram recordings (Cammarota and Rogora [22, 23], Frank et al. [41]) andeconometric data (Matilla-Garcia [74]). Another application is the evaluation of pseudo-random number generators (Larrondo et al. [65]).
1.1 Ordinal time series analysis
In the light of the relation between permutation entropy and the complexity of dynam-ical systems, together with the results obtained by permutation entropy in practice, thebasic approach of considering only the order relations between the values of a time seriesinstead of the values themselves has been further investigated. A general theoretical andmethodological framework is established by ordinal time series analysis (see Bandt [11],Keller and Sinn [57]).The central concept of ordinal time series analysis are ordinal patterns (or order patterns,according to the terminology of Bandt and Shiha [12]). Ordinal patterns represent theorder relations among a �xed number of values in a time series. While the order of anordinal pattern speci�es the number of values taken into account, the delay de�nes thedistances between them. When the values are pairwise di�erent, there exists a uniquerank order indicating which is the largest value, which is the second largest value, andso on. If there are equal values, a unique rank order can be established, for instance, byde�ning earlier values to be larger than subsequent ones. Ordinal patterns are identi�edwith the permutations representing the rank orders. Actually, the one-to-one relationbetween ordinal patterns and permutations gives permutation entropy its name.For the statistical analysis of time series, the distribution of ordinal patterns is of particularinterest. Bandt and Shiha [12] considers the di�erence between certain ordinal patternprobabilities as a measure of the symmetry of time series and shows the application tothe detection of trends. Keller and Wittfeld [56] quanti�es local di�erences in the EEGby means of correspondence analysis. Groth [45] uses recurrence plots of ordinal patternsfor analyzing speech signals. Keller et al. [57, 58] propose statistics of ordinal patterndistributions which are related to the probability of changes between \upwards" and\downwards" and to the mean length of monotone parts. Note that also permutationentropy is a statistic of ordinal pattern distributions (namely, the Shannon entropy of thedistributions).
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General results on distributions of ordinal patterns are established by Shiha [91], Bandtand Shiha [12] and Keller et al. [60]. As a major �nding, interdependencies among succes-sive ordinal patterns yield fundamental inequalities among ordinal pattern probabilities.Furthermore, the measure of ordinal pattern distributions is concentrated either on a very\thin" or a very \thick" subset of the space of ordinal pattern sequences (see Keller et al.[59, 60], Amig�o et al. [6]).At �rst glance, considering only the ordinal structure of a time series may seem to bea waste of information. However, compared to methods which take the whole metricalinformation into account, ordinal time series analysis has some major advantages:
� The ordinal methods are computationally simple and fast (in particular, the compu-tation of ordinal pattern distributions only takes linear time with respect to the timeseries length). This allows to apply ordinal methods to one and the same time seriesfor various parameters. For example, by considering ordinal patterns with varyingdelays, time series can be \simultaneously" analyzed on di�erent time scales. Alsoan online analysis of time series is possible.� Ordinal methods are robust with respect to transformations of time series whichdo not a�ect any order relation among the values, such as o�sets and (non-linear)scalings. Thus, ordinal methods are particularly well-suited for the analysis of phys-ical time series where the exact calibration of the measurement device is unknown.Moreover, ordinal methods are relatively robust with respect to artefacts whicha�ect only few of the order relations among values (e.g., slow drifts, abrupt level-changes).

Ordinal patterns in stochastic processes. Originally, the concepts of permutationentropy and ordinal time series analysis have been introduced in the context of dynamicalsystems. In recent years, also the distribution of ordinal patterns in stochastic processeshas been considered. Bandt and Shiha [12] gives explicit formulas for ordinal patternprobabilities in Gaussian processes. These results are used by Rosso et al. [87] for anumerical analysis of permutation entropy in equidistant discretizations of FractionalBrownian Motion. Keller et al. [58] consider ordinal processes, with ordinal patternsobtained from real-valued processes as a special case.From the statistical viewpoint, time series generated by non-linear dynamical systems andby stochastic processes share many similarities. In particular, because of the complexityof the dynamics and the impossibility to exactly measure the initial conditions, timeseries from non-linear dynamical systems often appear \random" to the observer, despiteof their intrinsically deterministic nature. Furthermore, it is often hard to decide by astatistical test whether a time series is generated by a deterministic or a stochastic system.Actually, any dynamical system can formally be represented by a stationary stochasticprocess and vice versa. In this thesis, we are only interested in statistical properties
17



of time series. We use the framework of stochastic processes for modelling time series,because it is particularly well suited for describing the problem of estimating ordinalpattern probabilities.Considering only the order relations among observations is a typical approach in non-parametric statistics. However, while so-called rank-based statistics are widely applied inthe case of independent observations, e.g., for testing whether there is a di�erence betweentwo distributions, only few literature is available for the dependent case. Basically, ordinalpatterns generate same sigma-�elds as rank vectors, and if permutations with the samenumber of inversions are identi�ed, they yield the same information as Kendall's tau (seeLehmann [67]). A test for serial dependence in time series based on Kendall's tau isintroduced by Ferguson et al. [40]. Garel and Hallin [43] and Hallin and Jure�ckova [46]propose rank-based methods for the identi�cation of the order of autoregressive models.
Relation to zero crossings. Most contributions to the investigation of ordinal patternsin stochastic processes originate from the study of zero crossings. The event that twosuccessive values of a process have di�erent signs (and thus a straight line connectingthese values crosses the level zero) is called a zero crossing. Zero crossings are related toordinal patterns by the fact that changes between \upwards" and \downwards" (which arefully described by ordinal patterns) are equivalent to zero crossings in the process of �rst-order di�erences. In particular, a change from \upwards" to \downwards" is equivalentto a positive di�erence followed by a negative one, and a change from \downwards" to\upwards" is equivalent to a negative di�erence followed by a positive one.In engineering, statistics based on zero crossings are applied to the processing of speechsignals. Dating back to the 1940's, telephony engineers found that replacing speech signalswith rectangular waves having the same zero crossings retained high intelligibility (seeChang et al. [26]). A mathematical explanation of this phenomenon is given by theformula of Rice [84] which relates the zero crossing rate in a sum of random sinusoidsto the dominant frequency in the spectral domain. Since the beginning of digital speechsignal processing, zero crossing analysis is used for the detection of pitch frequencies andto distinguish voiced and unvoiced intervals (see, e.g., Ewing and Taylor [38], Rabinerand Schafer [82]).Kedem [53] proposes estimators for autocorrelations and spectral frequencies based onempirical zero crossing rates of higher order, that is, zero crossings in the processes ofhigher-order di�erences. Moreover, Kedem [52] considers zero crossings for the modellingof binary time series. Here, the basic idea is that the presence or absence of a phenomenon(represented by \1" and \0", respectively) can often be explained by a real-valued processexceeding or not exceeding a critical level. If the critical level is zero, then the event ofobserving subsequently \1" and \0" or \0" and \1" corresponds to a zero crossing ofthe real-valued process. Applications are the modelling of binary data in ecology (seeDamsleth and El-Shaarawi [31]) and in hydrology (see Salas et al. [88]).
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Note that there is also extensive literature on zero crossings in time-continuous stochasticprocesses. The questions arising in this context, however, are di�erent from those in thetime-discrete case. For example, in the continuous case, the number of zero crossings ina �nite time interval is not necessarily �nite (see Leadbetter et al. [66], Piterbarg [80]).
Ordinal patterns in equidistant discretizations of Fractional Brownian motion.The class of stochastic processes called Fractional Brownian Motion (abbrev. FBM ) playsan important role both in the theory of stochastic processes and in the statistical modellingof time series. For instance, any selfsimilar Gaussian processes with stationary incrementsbelongs to FBM (see Embrechts and Maejima [36]). FBM occurs as the functional limitof partial sums of random variables if the summands have a certain dependence structure(see Taqqu [95]).In statistics, FBM has been the �rst model to capture the so-called Hurst phenomenon,which is also known as long range dependence or long memory of time series (see Man-delbrot [71] and Molchan [76] for historical bibliographical remarks). Since long rangedependent time series appear in diverse �elds such as hydrology, meteorology, economet-rics and computer network design, there is a considerable number of monographs devotedto this subject (see Beran [15], Robinson [86], Doukhan et al. [35], Samorodnitsky [89]).Besides long range dependence, FBM is also applied to the modelling of turbulences inphysics and in �nance (see Mantegna and Stanley [72]).Bandt and Shiha [12] shows that, as a consequence of the selfsimilarity of FBM, thedistribution of ordinal patterns is identical on every time scale. Coeurjolly [28] proposesan estimator of the Hurst parameter based on the empirical zero crossing rate in theincrement process, an idea which can generally be applied to the estimation of monotonicfunctions of the �rst-order autocorrelation in stationary Gaussian processes. Coeurjolly'sestimator is applied to the analysis of hydrological time series (Markovi�c and Koch [73])and atmospheric turbulence data (Shi et al. [90]).
1.2 Illustration: EEG data analysis
In this section, we illustrate how ordinal methods can be applied to the analysis of EEGdata. The reader can skip this part and continue with Section 1.3 where we outline thethesis.Here, we do not give a mathematical de�nition of ordinal pattern distributions but anintuitive explanation. Table 1.1 shows the six ordinal patterns which can occur for threesequent values of a time series. We identify the patterns with numbers from 1 to 6. Forinstance, if the third value is larger than the second one and the second value is largerthan the �rst one, then the ordinal pattern is equal to 1. If the third value is larger thanthe �rst one and the �rst value is larger than the second one, then the ordinal pattern
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1 2 3 4 5 6
Table 1.1: Ordinal patterns of order d = 2.

is equal to 2, and so on. The empirical distribution of ordinal patterns in a time seriesis obtained by determining the ordinal pattern for each triple of three consecutive valuesand counting the occurrences of 1 to 6.
Epileptic activity. The upper plot of Figure 1.2 shows a 250 seconds long part of theEEG from an 8-years old boy. The signal has been recorded from the electrode F8 in the10-20 scheme (see Figure 1.1) and digitalized with a sampling rate of 256 Hertz. Thus,the displayed time series has a length of 250 �256 = 64 000 data points. After 160 seconds,there is an increase of the amplitude which is related to the onset of an epileptic seizure.The lower plot of Figure 1.2 shows the empirical distribution of ordinal patterns in subse-quent non-overlapping parts of 2 seconds (= 512 data points) each. Altogether, we obtain125 such distributions. The space between horizontal lines represents the relative fre-quency of ordinal patterns. For instance, the space between the ordinate and the �rst linefrom below represents the relative frequency of the ordinal pattern 1, the space betweenthe �rst and the second line from below represents the relative frequency of the ordinalpattern 2, and so on. Clearly, the relative frequencies of any of the ordinal patterns 1 to6 add up to 1.As can be seen from Figure 1.2, the sequence of ordinal pattern distributions clearlyreects the change in the dynamics related to the onset of the epileptic seizure. Typicallyduring epileptic seizures, the EEG exhibits pronounced waveforms with high amplitudes.Therefore, the ordinal patterns 1 and 6, which represent monotone behaviour of the timeseries (see Table 1.1), are prevailing during this stage.The background colors of Figure 1.2 visualize the result of a cluster analysis of the ordinalpattern distributions. We have used the total variation distance measure for distributionsand the complete linkage algorithm to group the distributions into three clusters (seeH�ardle and Simar [47] for more information on the clustering method). Roughly speaking,the white cluster corresponds to the time before and after the epileptic seizure, the darkgray cluster to peaks of the seizure, and the light gray cluster to transitions betweennormal and epileptic activity.
Classi�cation of sleep stages. Figure 1.3 shows another application of ordinal timeseries analysis. According to the methodology of Rechtscha�en and Kales [83], six di�er-
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Figure 1.2: EEG time series and ordinal pattern distributions.
ent stages in the sleep of an adult are distinguished: awake (W), sleep stages S1, S2, S3,S4 and rapid eye movement (REM) sleep. The classi�cation is based on the recordingsof EEG, electrooculogram (EOG, measuring eye movements) and electromyogram (EMG,measuring muscle activity). The recordings from the whole night are divided into subse-quent non-overlapping parts of 30 second, the so-called epochs. Separately for each epoch,the corresponding sleep stage is determined. For instance, the transition from W to S1is associated with a slowdown of the EEG and a decrease of muscle tone. A necessarycriterion for S2 is the occurence of so-called sleep spindles and K-complexes in the EEG.REM sleep is characterized by special eye movement patterns and very low mucle tone.S3 and S4 are de�ned by the amount of delta activity in the EEG, that is, slow waves ina frequency range smaller than 4 Hertz. For S3, the proportion of delta activity is 20 to50 percent of an epoch, for S4, it is higher than 50 percent.The upper plot in Figure 1.3 shows a hypnogram visualizing the sequence of sleep stagesin the �rst 300 minutes of sleep of an adult. Note that the corresponding 600 epochs havebeen manually classi�ed by an expert. The hypnogram shows the typical cycles of lightand deep sleep: The awake stage (W) at the beginning is followed by light sleep (S1 andS2), deep sleep (S3 and S4), short light sleep (S1 and S2) and REM sleep, before the nextcycle begins.The lower plot in Figure 1.3 displays the empirical ordinal pattern distributions obtainedfor the 600 epochs. Here, the ordinal patterns are not obtained for directly consecutivevalues, but for values with a distance of 12 time points in between. We chose this distancebecause it stresses contrasts between ordinal pattern distributions in di�erent parts of thetime series to a maximum extent.
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Figure 1.3: Hypnogram and ordinal pattern distributions.
The sleep cycles can be recognized very well. In particular, S3 and S4 coincide withan increase of the frequency of the ordinal patterns 1 and 6, corresponding to a higherproportion of monotone parts in the EEG during these stages. Hardly any di�erence canbe found among the distributions obtained during the stages W, S1, S2 and REM, which isnot surprising since the main criterions to distinguish these stages refer to features of EOGand EMG. S3 and S4 result in very similar ordinal pattern distributions, correspondingto the only gradual di�erence in the proportion of delta activity. Note that more recentmethodologies do not distinguish between S3 and S4 (see Iber et al. [51]).Similar to Figure 1.2, the background color visualizes the result of a cluster analysis.Here, the 600 epochs are gouped into two clusters. It is remarkable how well the whitecluster matches the epochs classi�ed as W, S1, S2 and REM, and the gray cluster theepochs class�ed as S3 and S4. We �nd that

� 408 of the 414 epochs (� 98:6%) classi�ed as W, S1, S2 and REM are covered bythe white cluster.
� 155 of the 186 epochs (� 83:3%) classi�ed as S3 and S4 are covered by the graycluster.

Altogether, 563 of the 600 epochs (� 93:8%) are covered by the \right" cluster. Note thatwe obtain even higher rates if we cluster the distributions of ordinal patterns of higherorders (that is, ordinal patterns describing the order relations among more than threevalues).
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1.3 Outline of the thesis
This thesis studies the estimation of ordinal pattern probabilities. The framework of ouranalysis are parametric families of stochastic processes with stationary, non-degenerateand zero-mean Gaussian increments. In Chapter 2, we introduce notation and reviewconcepts from the theory of stochastic processes and their distributions. Furthermore, weinvestigate properties of Fractional Gaussian Noise, ARFIMA(0,d,0) and AR(1) processes.Chapter 3 is devoted to a general discussion of the estimation of ordinal pattern proba-bilities. We show that the distribution of ordinal patterns is stationary, and each patternoccurs with a strictly positive probability. Given a �nite number of observations, therelative frequency of an ordinal pattern is an unbiased estimator of the correspondingoccurrence probability. By the fact that the distribution of stationary zero-mean Gaus-sian processes is invariant with respect to reversions of the time and space orientation,certain ordinal patterns have the same probability. We show that averaging the relativefrequencies of these patterns yields unbiased estimators with smaller variance.A su�cient condition for the estimators of ordinal pattern probabilities to be consistent isthat the autocovariances of the increment process tend to zero. We show that this condi-tion is also su�cient for strong consistency. For asymptotic normality of the estimators itis su�cient that the autocovariances of the increment process decay faster than k 7! 1pk .More generally, this statement is true for certain di�erentiable functions of ordinal pat-tern probabilities and also in the multidimensional case when the probabilities of severalpatterns are jointly estimated. We illustrate the results for equidistant discretizations ofFractional Brownian Motion and for processes where the increments are ARFIMA(0,d,0)and AR(1), respectively.In Chapter 4, we study covariances of zero crossings. The results are obtained by an-alyzing four-dimensional normal orthant probabilities and their derivatives with respectto correlation coe�cients. We propose a representation of zero crossing covariances byone-dimensional integrals which can be numerically evaluated using standard quadraturerules. Furthermore, we derive asymptotics of the covariances and establish approxima-tions and bounds. Based on these results, we derive properties of the variance of empiricalzero crossing rates.In Chapter 5, we focus on ordinal patterns of order d = 2. We show that any \reasonable"estimator of ordinal pattern probabilities can be expressed as an a�ne function of theempirical zero crossing rate in the increment process. Using the results of Chapter 4,we evaluate the variance of the estimators in equidistant discretizations of FractionalBrownian Motion and in processes where the increments are ARFIMA(0,d,0) and AR(1),respectively.When the parameters of the family of stochastic processes are real numbers and monoton-ically related to the probability of a change, an estimator of the parameters is obtained by
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plugging the frequency of changes into the inverse of the monotonic relation. Using theresults of Chapter 3, we establish properties of this estimator. Under additional condi-tions on the autocovariances of the increment process, we also derive con�dence intervals.We show how the results apply to the estimation of the Hurst parameter in FractionalBrownian Motion, of the fractional di�erencing parameter in ARFIMA(0,d,0) processesand of the autoregressive coe�cient in AR(1) processes.In a simulation study, we evaluate the performance of the estimators and the coverageof the parameters by the con�dence intervals. For the Hurst parameter, we comparethe performance to that of an alternative estimator. We also consider the distributionof empirical zero crossing rates in the increment process of FBM. It turns out that thedistribution is very irregular when the Hurst parameter is large and thus the incrementprocess exhibits long range dependence.Chapter 6 generalizes the results of the previous chapters to ordinal patterns with ar-bitrary delays. We demonstrate how patterns with increasing delays can be used forestimating the Hurst parameter in asymptotically self-similar processes. One applicationis the estimation of the Hurst parameter in equidistant discretizations of Fractional Brow-nian Motion superimposed with short range dependent \noise". We illustrate our methodfor two practical time series, namely, River Nile data and NBS precision measurements.
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Chapter 2
Preliminaries
This chapter introduces notation and concepts from the theory of stochastic processes.Furthermore, we provide some properties of important classes of Gaussian processes.
2.1 Notation
Except for commonly used notation, we will explain the meaning of symbols at their �rstoccurence in the text. For a list of symbols used throughout the thesis, see p. 147.
Sets. We use \�" to denote inclusion or equality of sets. N = f 1; 2; : : : g stands for theset of natural numbers and N0 for N [ f0g. We write Z = f : : : ; �2; �1; 0; 1; 2; : : : g forthe set of integers and R for the set of real numbers.If Y is a set and T = R or T = Z, then YT denotes the set of sequences (yt)t2T withyt 2 Y for t 2 T. By ]Y we denote the cardinality of Y . If Y is a topological space,we write B(Y) for the Borel �-�eld of Y , that is, the smallest �-�eld containing all opensubsets of Y .
Matrices. We use bold uppercase letters to denote matrices and bold lowercase lettersto denote vectors. For n 2 N, we write Rn for the set of n-dimensional row vectors (i.e.,Rn stands for R1�n). For (a1; a2; : : : ; an) 2 Rn, let

diag(a1; a2; : : : ; an) =
0BBB@

a1 0 : : : 00 a2 : : : 0... ... . . . ...0 0 : : : an

1CCCA
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be the n� n matrix with the entries a1; a2; : : : ; an on the main diagonal and zero entries,otherwise. By 0 we denote the vector (0; 0; : : : ; 0) 2 Rn, and In stands for the matrixdiag(1; 1; : : : ; 1) 2 Rn�n.
Asymptotics. We write g(k) = O(h(k)) for mappings g; h : N! R i�

lim supk!1 jg(k)jjh(k)j < 1 :
We write g(k) = o(h(k)) i�

limk!1 g(k)h(k) = 0 :
With 00 := 1, we write g(k) � h(k) and say g is asymptotically equivalent to h i�

limk!1 g(k)h(k) = 1 :
2.2 Stochastic processes
In Section 2.2.1, we review basic concepts of random variables and their distributionsand give corresponding de�nitions for stochastic processes. We recall the de�nition ofGaussian processes in Section 2.2.2 and give properties of Fractional Gaussian Noise,ARFIMA(0,d,0) and AR(1) processes in Sections 2.2.3 - 2.2.5.
2.2.1 Basic concepts
Throughout this section, let (
;A;P) be a probability space and (Y ;B) a measurablespace.
De�nition 2.1. Let Y; Y1; Y2; : : : and Z be (Y ;B)-valued random variables on (
;A;P).
(i) We write Y dist= Z and say Y and Z have the same distribution (or Y and Z areidentically distributed) i� P(Y 2 B) = P(Z 2 B) for every B 2 B.
(ii) Suppose (Y ;B) = (Rk;B(Rk)) for some k 2 N. We say Y is non-degenerate i�

P(Y 2 B) > 0
only if B 2 B(Rk) has strictly positive Lebesgue measure.

26



(iii) Let Y be a topological space, B = B(Y) and @B the boundary of a set B 2 B. Wewrite
Yn P�! Y

and say Yn converges to Y in distribution i�
limn!1P(Yn 2 B) = P(Y 2 B)

for every B 2 B with P(Y 2 @B) = 0.
Clearly, if Y = Z P-almost surely (that is, P(Y = Z) = 1), then Y and Z are identicallydistributed. Some authors use a di�erent notion of non-degeneracy. For example, Bauer[14] calls Y non-degenerate if there does not exist a y 2 Rk with P(Y = y) = 1.Note that there are equivalent ways to de�ne convergence in distribution (see Theorem29.1 in Billingsley [17]). In the special case where (Y ;B) = (Rk;B(Rk)) with k 2 N,a common de�nition is given by pointwise convergence of the distribution functions ofY1; Y2; : : : to the distribution function of Y at all continuity points of the distributionfunction of Y (see Billingsley [17], pp. 327, 329).Clearly, we may replace Y in (iii) with any other random variable having the samedistribution as Y . When Y is normally distributed with mean � and variance �2, weoccasionally write

Yn P�! N(�; �2)
(for the de�nition of N(�; �2), see Section 2.2.2).
Stochastic processes. Let T = R or T = Z. Any family Y = (Y (t))t2T of (Y ;B)-measurable mappings on (
;A;P) is called a (Y ;B)-valued stochastic process. We say Yis time-continuous if T = R, and Y is time-discrete, otherwise. In the following chapters,when Y is time-discrete, we write time indices as subscripts, that is, Yt instead of Y (t).For k 2 N, let B
k denote the smallest �-�eld containing any set B1 � B2 � : : : � Bkwith B1; B2; : : : ; Bk 2 B. Clearly, for all t1; t2; : : : ; tk 2 T with k 2 N, the mapping(Y (t1); Y (t2); : : : ; Y (tk)) is (Yk;B
k)-measurable. If Y is �nite and B is the power set ofY , or Y = R and B = B(R), then the distributions of all such �nite-dimensional randomvectors uniquely determine a probability measure on (YT;B(YT)). (More generally, thisstatement is true when Y is a separable and completely metrizable topological space andB is the corresponding Borel �-�eld, see Theorem 35.3 in Bauer [14]. Indeed, �nite setsequipped with the discrete topology and R equipped with the Euclidean topology areseparable and completely metrizable, see Engelking [37], pp. 25-26 and pp. 268-269). Werefer to this probability measure as the distribution of Y. Clearly, Y = (Y (t))t2T and
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Z = (Z(t))t2T have the same distribution i� all �nite-dimensional distributions of Y andZ are identical, that is,
(Y (t1); Y (t2); : : : ; Y (tk)) dist= (Z(t1); Z(t2); : : : ; Z(tk))

for all t1; t2; : : : ; tk 2 T with k 2 N. In this case, we write Y dist= Z.The following de�nition introduces basic properties of stochastic processes.
De�nition 2.2. Let T = R or T = Z. Assume that Y is �nite and B is the power setof Y , or (Y ;B) = (R;B(R)). Let Y = (Y (t))t2T, Y(n) = (Y (n)(t))t2T for n = 1; 2; : : : andZ = (Z(t))t2T be (Y ;B)-valued stochastic processes on (
;A;P).
(i) Y is stationary i� (Y (t))t2T dist= (Y (t+ �))t2T for all � 2 T.
(ii) Let (Y ;B) = (R;B(R)). Y is weakly stationary i� E(Y (t)) = E(Y (0)) for all t 2 Tand Cov(Y (s); Y (t)) = Cov(Y (0); Y (t� s)) for all s; t 2 T.
(iii) Let (Y ;B) = (R;B(R)). Y is zero-mean i� E(Y (t)) = 0 for all t 2 T. Y has unitvariance i� Var(Y (t)) = 1 for all t 2 T.
(iv) Let (Y ;B) = (R;B(R)). Y is non-degenerate i� (Y (t1); Y (t2); : : : ; Y (tk)) is non-degenerate for all t1 < t2 < : : : < tk 2 T with k 2 N.
(v) We say Y(n) converges to Y in distribution and write

Y(n) P�! Y
i� all �nite-dimensional distributions of Y(n) converge to those of Y, that is,

(Y (n)(t1); Y (n)(t2); : : : ; Y (n)(tk)) P�! (Y (t1); Y (t2); : : : ; Y (tk))
for all t1; t2; : : : ; tk 2 T with k 2 N.

Clearly, we may replace Y in (v) with any other stochastic process having the samedistribution as Y. For instance, we write
Y(n) P�! GH

if the �nite-dimensional distributions of Y(n) converge to those of Fractional GaussianNoise with the Hurst parameter H (see Section 2.2.3).
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2.2.2 Gaussian processes
Throughout this section, let (
;A;P) be a probability space.De�nition 2.3. Let Y and (Y1; Y2; : : : ; Yk) with k 2 N be random variables on (
;A;P)with values in (R;B(R)) and (Rk;B(Rk)), respectively.
(i) Y has a normal distribution with mean � 2 R and variance �2 2 [0;1) (or Y isdistributed according to N(�; �2)) i�, in the case �2 = 0,

P(Y = �) = 1
or, otherwise,

P(Y 2 B) = 1p2� �
Z
B exp �� (x� �)22�2 � dx

for every B 2 B(R). The normal distribution with mean 0 and variance 1 is calledthe standard normal distribution.
(ii) (Y1; Y2; : : : ; Yk) has a normal distribution with means � 2 Rk and covariance matrix� 2 Rk�k (or (Y1; Y2; : : : ; Yk) is distributed according to N(�;�)) i�, for everya = (a1; a2; : : : ; ak) 2 Rk,

a1Y1 + a2Y2 + : : :+ akYk is distributed according to N(a�T ; a�aT ) :
The normal distribution with means 0 and covariance matrix Ik is called the standardnormal distribution.

It is well-known that if Y is distributed according to N(�; �2), then E(Y ) = � andVar(Y ) = �2. Furthermore, if (Y1; Y2; : : : ; Yk) has a normal distribution with means
� = (�1; �2; : : : ; �k) and covariance matrix � = (�ij)ki;j=1, thenE(Yi) = �i for i = 1; 2; : : : ; k and Cov(Yi; Yj) = �ij for i; j = 1; 2; : : : ; k.
In particular, the covariance matrix � is symmetric and positive de�nite, that is, � = �Tand a�aT � 0 for every a 2 Rk. The condition that � 2 Rk�k is symmetric and positivede�nite is also su�cient for the existence of a normal distribution with means � 2 Rk andcovariance matrix �. If (Y1; Y2; : : : ; Yk) is distributed according to N(�;�) and A 2 Rl�k,thenA (Y1; Y2; : : : ; Yk)T is distributed according to N(A�T ; A�AT ) (see Billingsley [17],p. 384).The following theorem gives other well-known properties of normal distributions. Westate these properties in a theorem, because we will frequently refer to them throughoutthe rest of the thesis.
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Theorem 2.4.
(i) If (Y1; Y2; : : : ; Yk) is distributed according to N(�; �), then (Y1; Y2; : : : ; Yk) is non-degenerate if and only if � is strictly positive de�nite, that is, a�aT > 0 for everya 2 Rk with a 6= (0; 0; : : : ; 0). If � is strictly positive de�nite, then

P((Y1; Y2; : : : ; Yk) 2 B) = Z
B �(�; �; x) dxfor every B 2 B(Rk), with �(�; �; �) given by

�(�; �; x) := �(2�)k det(�)�� 1
2 exp �� 12 (x� �)��1 (x� �)T �

for x 2 Rk. In particular, if B 2 B(Rk) has strictly positive Lebesgue measure, then
P((Y1; Y2; : : : ; Yk) 2 B) > 0 :

(ii) If (Y1; Y2; : : : ; Yk) and (Z1; Z2; : : : ; Zk) are normally distributed, then (Y1; Y2; : : : ; Yk)and (Z1; Z2; : : : ; Zk) are identically distributed if and only if E(Yi) = E(Zi) fori = 1; 2; : : : ; k and Cov(Yi; Yj) = Cov(Zi; Zj) for i; j = 1; 2; : : : ; k.
(iii) If (Y1; Y2; : : : ; Yk) and (Z1; Z2; : : : ; Zl) are normally distributed, then (Y1; Y2; : : : ; Yk)and (Z1; Z2; : : : ; Zl) are independent if and only if Cov(Yi; Zj) = 0 for i = 1; 2; : : : ; kand j = 1; 2; : : : ; l.
(iv) If (Y (1)1 ; Y (1)2 ; : : : ; Y (1)k ), (Y (2)1 ; Y (2)2 ; : : : ; Y (2)k ), . . . are normally distributed, then

(Y (n)1 ; Y (n)2 ; : : : ; Y (n)k ) P�! (Y1; Y2; : : : ; Yk)
if and only if (Y1; Y2; : : : ; Yk) is normally distributed, limn!1 E(Y (n)i ) = E(Yi) fori = 1; 2; : : : ; k and limn!1Cov(Y (n)i ; Y (n)j ) = Cov(Yi; Yj) for i; j = 1; 2; : : : ; k.

Proof. (i)-(iii) See Billingsley [17], pp. 384-385. (iv) is easily established by means ofcharacteristic functions (see Theorems 26.2, 26.3 and 29.4 in Billingsley [17]).
Next, we recall the concept of Gaussian processes.
De�nition 2.5. Let Y = (Y (t))t2T with T = R or T = Z be an (R;B(R))-valuedstochastic process on (
;A;P). We say Y is a Gaussian process (or Y is Gaussian) i�,for all t1; t2; : : : ; tk 2 T with k 2 N, there exist a vector � 2 Rk and a symmetric positivede�nite matrix � 2 Rk�k such that

(Y (t1); Y (t2); : : : ; Y (tk)) is distributed according to N(�;�).
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The following theorem states some of the properties of Gaussian processes. We give aproof of (iv), because it is usually not included in the more applied literature.
Theorem 2.6.
(i) If Y = (Y (t))t2T is Gaussian, then Y is stationary if and only if Y is weaklystationary.
(ii) If Y = (Y (t))t2T and Z = (Z(t))t2T are Gaussian, then Y and Z have the samedistribution if and only if E(Y (t)) = E(Z(t)) for all t 2 T and Cov(Y (s); Y (t)) =Cov(Z(s); Z(t)) for all s; t 2 T.
(iii) If Y(n) = (Y (n)(t))t2T is Gaussian for n = 1; 2; : : :, then

Y(n) P�! Y
if and only if Y is Gaussian, limn!1 E(Y (n)(t)) = E(Y (t)) for all t 2 T and

limn!1Cov(Y (n)(s); Y (n)(t)) = Cov(Y (s); Y (t))
for all s; t 2 T.

(iv) Suppose Y = (Y (t))t2T with T = Z is Gaussian and stationary. Then a necessarycondition for Y to be non-degenerate is given by jCov(Y (0); Y (k))j < Var(Y (0)) forall k 2 N. A su�cient condition for Y to be non-degenerate is that Var(Y (0)) > 0and Y has a spectral density fY, that is,
fY(�) := 12� 1X

k=�1Cov(Y (0); Y (k)) e�i�k
is well-de�ned for all � 2 [��; �], and

Cov(Y (0); Y (k)) = Z �
�� fY(�) ei�kd�for all k 2 Z.

Proof. (i) See Brockwell and Davis [19], p. 13. (ii) and (iii) are immediate consequencesof Theorem 2.4 (ii) and (iv).(iv) Let k 2 N. If jCov(Y (0); Y (k))j = Var(Y (0)), then the covariance matrix of(Y (0); Y (k)) is singular and thus, according to Theorem 2.4 (i), (Y (0); Y (k)) is de-generate. Hence, jCov(Y (0); Y (k))j < Var(Y (0)) is a necessary condition for Y to benon-degenerate.
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In order to establish the su�cient condition, suppose that Var(Y (0)) > 0 and Y has aspectral density fY. Furthermore, without loss of generality, suppose that Y is zero-mean. Now, assume there exist t1 < t2 < : : : < tk 2 Z with k 2 N such that(Y (t1); Y (t2); : : : ; Y (tk)) is degenerate. Let � := (Cov(Y (ti); Y (tj)))ki;j=1. Since Y isGaussian, it follows the existence a vector a = (a1; a2; : : : ; ak) 2 Rk with a 6= (0; 0; : : : ; 0)such that a�aT = 0. Consequently, Var(a1Y (t1)+ a2Y (t2)+ : : :+ akY (tk)) = 0 and thusa1Y (t1) + a2Y (t2) + : : : + akY (tk) = 0 P-almost surely. Without loss of generality, wemay assume that ak 6= 0 (if ak = 0, then (Y (t1); Y (t2); : : : ; Y (tk�1)) is degenerate). Fors 2 N0, de�ne
a(s) := � �ak�iak if i 2 f1; 2; : : : ; k � 1g is such that s = tk � tk�i0 otherwise :

Note that a1Y (t1) + a2Y (t2) + : : :+ akY (tk) = 0 is equivalent to
Y (tk) = 1X

s=0 a(s)Y (tk � s) :
Since Y is stationary, we obtain that

Y (t) = 1X
s=0 a(s)Y (t� s)

P-almost surely for every t 2 Z. Let � 2 [0; 1] and consider the process X = (X(t))t2Zde�ned by X(t) := �Y (t) + (1 � �)P1s=0 a(s)Y (t � s) for t 2 Z. Since X and Y areidentical, X has a spectral density fX, and fX(�) = fY(�) for all � 2 [0; �]. On the otherhand, X is obtained by a linear �ltering of Y, and thus
fX(�) = ���+ (1� �) 1X

s=0 a(s)eis�
��2 fY(�)

for � 2 [0; �] (see Theorem 4.10.1 in Brockwell and Davis [19]). Let N := tk � t1. Sincea(s) = 0 for s = 0 and s > N , it follows that
���+ (1� �) NX

s=1 a(s)eis�
�� = 1

for all � 2 [0; �] with fY(�) > 0. Because � 2 [0; 1] is arbitrary, we obtain
1� NX

s=1 a(s)eis� = 0(2.1)
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for all � 2 [0; �) with fY(�) > 0. Since Var(Y (0)) = R ��� fY(�)d� and fY(�) = fY(��) forall � 2 [0; �) (see Brockwell and Davis [19], pp. 121-122), the assumption Var(Y (0)) > 0yields the existence of in�nitely many � 2 [0; �) with fY(�) > 0. Therefore, we �ndpairwise di�erent �1; �2; : : : ; �N+1 2 [0; �) such that fY(�i) > 0 for i = 1; 2; : : : ; N + 1.Since the Vandermonde matrix
A =

0BBB@
1 e�1i e2�1i : : : eN�1i1 e�2i e2�2i : : : eN�2i... ... ... . . . ...1 e�N+1i e2�N+1i : : : eN�N+1i

1CCCA
has rank N+1 (see Horn and Johnson [49], p. 29), the only solution of the linear equationAxT = 0 is given by x = (0; 0; : : : ; 0) (see Horn and Johnson [49], p. 14). However, equa-tion (2.1) holds for � = �1; �2; : : : ; �N+1, and thus (1;�a(1);�a(2); : : : ;�a(N)) is anothersolution of the linear equation. This contradiction shows that Y is non-degenerate.
2.2.3 Fractional Gaussian Noise
Let Y = (Y (t))t2Z be a family of (R;B(R))-measurable mappings on a measurable space(
;A) which is equipped with a family of probability measures (PH)H2(0;1). The subscript
H (for instance, EH , VarH , etc.) indicates integration with respect to PH .Assume that, for H 2 (0; 1), the following conditions are satis�ed:
(A1) Y measured with respect to PH is zero-mean Gaussian.
(A2) The autocovariances of Y measured with respect to PH are given by

CovH(Y (t); Y (t+ k)) = �H(k) := 12 � jk + 1j2H � 2 jkj2H + jk � 1j2H �
for t; k 2 Z.

Then Y measured with respect to PH is called (standard) Fractional Gaussian Noise(FGN) with the Hurst parameter H . For H 2 (0; 1), we denote by GH the distributionof FGN with the Hurst parameter H . According to Theorem 2.6 (i), GH is uniquelydetermined by (A1) and (A2).Note that (
;A), Y and (PH)H2(0;1) such that Y measured with respect to PH is FGNwith the Hurst parameter H for every H 2 (0; 1) actually do exist. In particular, theexistence of FGN with the Hurst parameter H follows by the existence of FBM with theHurst parameter H (see below). Now, (
;A) can be chosen as the space of real-valuedsequences RZ with the corresponding Borel �-algebra, Y as the identity on (
;A), andPH as the probability measure on (
;A) induced by GH .
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We refer to Fractional Gaussian Noise as de�ned by (A1) and (A2) as standard FGN,because VarH(Y (t)) = �H(0) = 1 for all t 2 Z. In particular,�H(k) = CorrH(Y (t); Y (t+ k))for all t; k 2 Z. More generally, one can consider FGN with the autocovariances given byCovH(Y (t); Y (t+ k)) = �2�H(k) for some �2 > 0.It is well-known that FGN with the Hurst parameter H 2 (0; 1) is stationary (see Beran[15], p. 55). Furthermore, FGN with the Hurst parameter H 2 (0; 1) has a spectraldensity (see Proposition 2.1 in Beran [15]). Thus, according to Theorem 2.6 (iv), FGNwith the Hurst parameter H 2 (0; 1) is non-degenerate.Note that one can also consider FGN as given by (A1) and (A2) for the Hurst parameter
H = 1 (see Beran [15]). In this case, �H(k) = 1 for every k 2 Z which shows that Y isdegenerate (see Theorem 2.6 (iv)). In particular, VarH(Y (s)� Y (t)) = 0 for all s; t 2 Zand thus Y (s) = Y (t) PH-almost surely.Lemma 2.7. The autocovariances of FGN have the following properties:
(i) If H = 12 , then �H(k) = 0 for all k 2 N.(ii) For every H 2 (0; 1), we have �H(k) � H(2H � 1) k2H�2 .(iii) If H < 12 , then �H(k) < �H(k + 1) < 0 for all k 2 N, and1X

k=�1 �H(k) = 0 :
(iv) If I � (0; 12) is compact, then there exists a function � : N! R satisfying �(1) > �1and j�(k)j = o(k��) for some � > 12 such that�H(k) � �(k)for all H 2 I and k 2 N. In particular, �H(k) > � 12k for all H 2 (0; 12) and k 2 N.Proof. (i) immediately follows by the de�nition of �H(k).(ii) See Proposition 3.1. (f) in Taqqu [96].(iii) Let H < 12 . Consider the mapping � : [1;1)! R given by�(x) := (x+ 1)2H � 2x2H + (x� 1)2Hfor x 2 [1;1). Since x 7! x2H is strictly concave on (0;1) and continuous on [0;1), wehave �(x) < 0 for every x 2 [1;1), which shows that �H(k) = 12�(x) < 0 for all k 2 N.Note that the �rst derivative of � on (1;1) is given by�0(x) = 2H(x+ 1)2H�1 � 4Hx2H�1 + 2H(x� 1)2H�1
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for x 2 (1;1). Since the mapping x 7! x2H�1 is strictly convex on (0;1), we obtain�0(x) > 0 for every x 2 (1;1) and thus �H(k) < �H(k + 1) for all k 2 N. Finally,according to (ii), we have P1k=�1 j�H(k)j <1 and hence1X
k=�1 �H(k) = limn!1 nX

k=�n �H(k)= limn!1 �(n+ 1)2H � n2H� = 0 :
(iv) For (x; y) 2 (0; 1]� I, de�ne

f(x; y) := 1x2 � (1 + x)2y � 2 + (1� x)2y � :
Using the binomial series expansions of (1 + x)2y and (1 � x)2y (see Bronshtein andSemendyayev [20], p. 22), we obtain

f(x; y) = 1x2
 1X

k=0
�2yk

�xk � 2 + 1X
k=0
�2yk

�(�1)kxk!

= 1X
k=1
�2yk

�xk�2 + 1X
k=1
�2yk

�(�1)kxk�2
= 2 1X

l=0
� 2y2l + 2

�x2l :
The latter expression shows that, for every y 2 I, the mapping x 7! f(x; y) can becontinuously continued to [�1; 1], namely, with 00 := 1, the extension of f is given byf(0; y) = 2y(2y � 1). Since x 7! f(x; y) is a power series, the partial derivative of f withrespect to x is obtained by di�erentiating each term. Thus,

@f@x (x; y) = 2 1X
l=1 2l

� 2y2l + 2
�x2l�1

for each interior point (x; y) of [�1; 1]� I. Since I � (0; 12), we have� 2y2l + 2
� = 2y(2y � 1) : : : (2y � 2l � 1)(2l + 2)! < 0

for all y 2 I and l 2 N, which shows that @f@x is negative at each interior point (x; y) of[0; 1]� I. Consequently,
minx2[0;1] f(x; y) = f(1; y)
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for all y 2 I. Now, let Hmin := min I and Hmax := max I. According to the de�nition off , we have f(1; y) = 22y � 2 for y 2 I and thus
min(x;y)2[0;1]�I f(x; y) = f(1;Hmin) :

For k 2 N, de�ne
�(k) := 12 f(1;Hmin) k2Hmax�2

Since f(1;Hmin) < 0, we obtain
�H(k) = 12 � (k + 1)2H � 2 k2H + (k � 1)2H �

= 12 k2 � (1 + k�1)2H � 2 + (1� k�1)2H � k2H�2
= 12 f(k�1;H) k2H�2
� �(k)

for all k 2 N and H 2 I. Note that �(1) = 12 f(1;Hmin) > �1. Furthermore, because
Hmax < 12 , we have j�(k)j = o(k��) for some � > 12 . If I = fHg for some H 2 (0; 12),then �(k) = 12 f(1;H) k2H�2 which shows that �H(k) > � 12k for all k 2 N. The proof iscomplete.
Note that FGN can be considered as the increment process of Fractional Brownian Motion.Let B = (B(t))t2R be a family of (R;B(R))-measurable mappings on a measurable space(
;A) which is equipped with a family of probability measures (PH)H2(0;1). Supposethat, for H 2 (0; 1), the following conditions are satis�ed:
(B1) B measured with respect to PH is zero-mean Gaussian.
(B2) The autocovariances of B measured with respect to PH are given by

CovH(B(s); B(t)) = 12 � jtj2H + jsj2H � jt� sj2H �
for s; t 2 R.

Then B measured with respect to PH is called (standard) Fractional Brownian Motion(FBM) with the Hurst parameter H .In fact, such (
;A), B and (PH)H2(0;1) do exist. For a proof of the existence of FBM withthe Hurst parameterH , see Proposition 2.2 in Taqqu [96]. Furthermore, for eachH , thereexists a version of FBM with continuous sample paths (see Taqqu [96]). Thus, (
;A) can
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be chosen as the set of continuous functions on R with the corresponding Borel �-algebra,B as the identity on (
;A), and PH as the probability measure on (
;A) induced by thedistribution of FBM with Hurst parameter H . Note that some authors de�ne FBM onlyfor t 2 [0;1) (see, e.g., Embrechts and Maejima [36]). Here, we adopt the de�nition withdouble-side in�nite time range of Taqqu [96].Now, let Y = (Y (t))t2Z be the process of �rst-order di�erences of B, given by
Y (t) := B(t)�B(t� 1)

for t 2 Z. Then Y measured with respect to PH is standard FGN with the Hurstparameter H (see Taqqu [96]).It is well-known that FBM with the Hurst parameter H is H-self-similar, that is,
(B(at))t2R dist= (aHB(t))t2R(2.2)

for every a > 0 (see Embrechts and Maejima [36]).Similarly as for FGN, one can also consider FBM with the Hurst parameter H = 1. Inthis case, CovH(B(s); B(t)) = CovH(sB(1); tB(1)) = st for s; t 2 R which shows that thesample paths of B are almost surely straight lines, where the slope B(1) is distributedaccording to N(0; 1).
2.2.4 ARFIMA(0,d,0) processes
Let Y = (Y (t))t2Z be a family of (R;B(R))-measurable mappings on a measurable space(
;A) which is equipped with a family of probability measures (Pd)d2(� 1

2 ; 12 ).Assume that, for d 2 (�12 ; 12), the following conditions are satis�ed:
(A1) Y measured with respect to Pd is zero-mean Gaussian.
(A2) The autocovariances of Y measured with respect to Pd are given by

Covd(Y (t); Y (t+ k)) = �d(k)for t; k 2 Z, where �d(0) := 1 and �d(k) := 0 for k 2 Z n f0g if d = 0, and
�d(k) := �(k + d) �(1� d)�(k + 1� d) �(d)for k 2 Z, otherwise.

Then Y measured with respect to Pd is called (standard) ARFIMA(0,d,0) process withthe fractional di�erencing parameter d.
37



Note that \ARFIMA" stands for Auto-Regressive Fractionally Integrated Moving Average.For the more general de�nition of ARFIMA(p,d,q) processes and a proof of their existence,see Taqqu [96]. The existence of (
;A),Y and (Pd)d2(� 1
2 ; 12 ) follows by the same argumentsas for FGN. According to Theorem 2.6 (i), the distribution of an ARFIMA(0,d,0) processis uniquely determined by (A1) and (A2). We refer to ARFIMA(0,d,0) processes asde�ned by (A1) and (A2) as standard, because Vard(Y (t)) = �d(0) = 1 for all t 2 Z. Inparticular,

�d(k) = Corrd(Y (t); Y (t+ k))
for all t; k 2 Z. It is well-known that ARFIMA(0,d,0) processes with d 2 (�12 ; 12) arestationary (see Beran [15], p. 61). Furthermore, ARFIMA(0,d,0) processes have a spectraldensity (see Beran [15], p. 63). Thus, according to Theorem 2.6 (iv), ARFIMA(0,d,0)processes are non-degenerate for every d 2 (�12 ; 12).Lemma 2.8. The autocovariances of an ARFIMA(0,d,0) process with the fractional dif-ferencing parameter d 2 (�12 ; 12) have the following properties:
(i) If d 6= 0, then �d(k) � �(1�d)�(d) k2d�1.
(ii) If d < 0, then �d(k) < �d(k + 1) < 0 for all k 2 N, and1X

k=�1 �d(k) = 0 :
(iii) If I � (�12 ; 0) is compact, then there exists a function � : N ! R with �(1) > �1and j�(k)j = o(k��) for some � > 12 such that

�d(k) � �(k)
for all d 2 I and k 2 N.

Proof. (i) See Taqqu [96], Proposition 6.1.(ii) Let d 2 (�12 ; 0). It is well-known that �(x) > 0 for x > 0, �(x) < 0 for x 2 (�1; 0)and �(1 + x) = x�(x) for all x 2 R n f0;�1;�2; : : :g (see Olver [78], pp. 32-35). Thus,�d(k) < 0 for all k 2 N. Furthermore, �d(k+1) = k+dk�d+1 �d(k) for all k 2 N, which showsthat �d(k + 1) > �d(k). By induction, one easily establishes
�(d)�(1� d) nX

k=1 �d(k) = �(1� d) �(1 + d+ n)� d�(d) �(1� d+ n)2d�(1� d) �(1� d+ n)
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for n 2 N. Similarly to (i), we obtain that
�(1 + d+ n)�(1� d+ n) = (d+ n)�(d+ n)�(1� d+ n) � (d+ n)n2d�1 � n2d

as n ! 1, which shows that �(1 + d + n)=�(1 � d + n) ! 0 as n ! 1 and thusP1k=1 �d(k) = �12 . Since P1k=�1 �d(k) = 1 + 2 P1k=1 �d(k), the statement follows.(iii) De�ne dmin := min I and dmax := max I. Furthermore, let
� := maxx2I

�����(1� x)�(x)
����

Note that � is well-de�ned because x 7! �(x) is continuous on R n f0;�1;�2; : : :g (seeOlver [78], p. 32) and I is compact. Now, de�ne �(1) := dmin1�dmin . Since x 7! x1�x isincreasing on (�12 ; 0), we have �1 < �(1) � �d(1) for all d 2 I. For k 2 N with k > 1, let
�(k) := �� �(k + dmax)�(k + 1� dmax) :

Since x 7! �(x) is positive and increasing on [32 ;1) (see Olver [78], p. 36), we obtain thatx 7! �(k+x)�(k+1�x) is positive and increasing on (�12 ; 0) for all k 2 N with k > 1. Altogether,�(k) � �d(k) for all k 2 N and d 2 I. Similar to (i), we obtain
�(k + dmax)�(k + 1� dmax) � k2dmax�1 :

Since dmax < 0, we have j�(k)j = o(k��) for some � > 12 , and hence the proof is complete.
2.2.5 AR(1) processes
Let Y = (Y (t))t2Z be a family of (R;B(R))-measurable mappings on a measurable space(
;A), and let (
;A) be equipped with a family of probability measures (Pa)a2(�1;1).Assume that, for a 2 (�1; 1), the following conditions are satis�ed:
(A1) Y measured with respect to Pa is zero-mean Gaussian.
(A2) The autocovariances of Y measured with respect to Pa are given by

Cova(Y (t); Y (t+ k)) = �a(k) := ajkj
for t; k 2 Z, where 00 := 1.
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Then Y measured with respect to Pa is called (standard) AR(1) process with the autore-gressive coe�cient a.The acronym \AR" stands for Auto-Regressive. For the more general de�nition of AR(p)processes and a proof of their existence, see Beran [15], p. 59. According to Theorem 2.6(i), the distribution of AR(1) processes is uniquely determined by (A1) and (A2). Werefer to an AR(1) process as de�ned by (A1) and (A2) as standard, because Vara(Y (t)) =�a(0) = 1 for all t 2 Z. In particular,
�a(k) = Corra(Y (t); Y (t+ k))

for all t; k 2 Z. Note that AR(1) processes with the autoregressive coe�cient a 2 (�1; 1)are stationary (see Beran [15], p. 59). Furthermore, AR(1) processes have a spectraldensity (see Beran [15], p. 61). Thus, according to Theorem 2.6 (iv), we obtain thatAR(1) processes are non-degenerate for every a 2 (�1; 1).
Lemma 2.9. For every a 2 (�1; 1),1X

k=1 j�a(k)j = jaj1� jaj and 1X
k=�1 �a(k) = 1 + 2 a1� a :

Proof. The statement is obtained by the expression for the sum of a geometric series.
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Chapter 3
Estimation of ordinal pattern
probabilities
In this chapter, we study the estimation of ordinal pattern probabilities in real-valuedstochastic processes. Our work extends and partially generalizes the results given inShiha [91] and Bandt and Shiha [12].In Section 3.1, we introduce a parametric family of real-valued stochastic processes as theframework of our analysis. We assume that the increment processes are non-degenerate,stationary and zero-mean Gaussian with unit variance. In Section 3.2, we show that thedistribution of ordinal patterns in such processes is stationary and any ordinal patternhas a strictly positive probability of occurrence.Estimators of ordinal pattern probabilities are considered in Section 3.3. A simple un-biased estimator is given by the relative frequency of ordinal patterns in a sample. Weshow that, due to statistical symmetries of the increment processes, \better" estimators(in terms of the risk with respect to convex loss functions) are obtained by averagingthe estimates of certain ordinal pattern probabilities. Conditions for strong consistencyand asymptotic normality are established in Section 3.4. In Section 3.5, we apply theresults to equidistant discretizations of FBM and to processes where the increments areARFIMA(0,d,0) and AR(1).
3.1 Modelling
Throughout this chapter, the framework of our analysis is given by the following class ofstochastic processes:Let (
;A) be a measurable space and X = (Xt)t2Z a sequence of measurable mappingsfrom (
;A) into (R;B(R)). Let Y = (Yt)t2Z denote the process of increments of X, given
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by Yt := Xt � Xt�1 for t 2 Z. Suppose (
;A) is equipped with a family of probabilitymeasures (P#)#2� with � 6= ;. The subscript # (for instance, E#, Var#, . . . ) indicatesintegration with respect to P#. By saying that a certain property of X holds for # 2 �,we mean that this property holds for X measured with respect to P#.
We always assume that Y satis�es the following conditions:
(M1) Y is non-degenerate for every # 2 �.
(M2) Y is stationary for every # 2 �.
(M3) Y is zero-mean Gaussian and has unit variance for every # 2 �.
As a consequence of (M1), the values of (Xt)t2Z are pairwise di�erent P#-almost surely forevery # 2 �. To see this, note that the set f(y1; y2; : : : ; yk) 2 Rk j y1 + y2 + : : :+ yk = 0ghas Lebesgue measure 0 for every k 2 N. Therefore, for all t 2 Z,

P#(Xt 6= Xt+k) = 1� P#(Xt = Xt+k)(3.1) = 1� P#(Yt+1 + Yt+2 + : : :+ Yt+k = 0)= 1 :
For # 2 � and k 2 Z, de�ne

�#(k) := Corr#(Y0; Yk) :(3.2)
Since Y is non-degenerate, we have

j�#(k)j < 1
for all # 2 � and k 2 Z n f0g (see Theorem 2.6 (iv)).The class of stochastic processes satisfying (M1)-(M3) includes, for example, standardFractional Gaussian Noise with the Hurst parameter H 2 (0; 1) (see Section 2.2.3), stan-dard ARFIMA(0,d,0) processes with the fractional di�erencing parameter d 2 (�12 ; 12)(see Section 2.2.4), and standard AR(1) processes with the autoregressive coe�cienta 2 (�1; 1) (see Section 2.2.5).As we will see below, the distribution of ordinal patterns does not depend on the varianceof Y (as long as the variance is strictly positive, which is necessary for Y to be non-degenerate). The assumption that Y has unit variance is for sake of convenience. Inparticular, the autocovariances of Y are equal to the autocorrelations in this case.The reason why we consider Gaussian processes is that there exist simple closed-formexpressions for ordinal pattern probabilities in this case, and the variance of estimators

42



can be easily evaluated numerically. As we show in the following section, all statementson ordinal patterns and their distributions are valid for a larger class of processes. In par-ticular, (Xt)t2Z can be replaced by the transformed process (h(Xt))t2Z where h : R! R isstrictly monotonically increasing. Note that, in general, the increments of the transformedprocess (h(Xt))t2Z are not Gaussian.
3.2 Ordinal pattern probabilities
Ordinal patterns. We start with the main de�nition of this thesis. For d 2 N, letSd denote the set of permutations of f0; 1; : : : ; dg, which we write as (d+1)-tuples con-taining each of the numbers 0; 1; : : : ; d exactly once. For instance, S1 = f(0; 1); (1; 0)g,S2 = f(0; 1; 2); (1; 0; 2); (1; 2; 0); (2; 0; 1); (0; 2; 1); (2; 1; 0)g, and so on. Ordinal patternsrepresent the order relations among a �xed number of equidistant values in a time series.If we assume that the values are pairwise di�erent, then it is natural to identify ordinalpatterns with permutations.Let d 2 N. For x = (x0; x1; : : : ; xd) 2 Rd+1, let�(x) = (r0; r1; : : : ; rd)be the unique permutation of f0; 1; : : : ; dg which satis�esxr0 � xr1 � : : : � xrd(3.3)and ri�1 > ri if xri�1 = xri for i = 1; 2; : : : ; d:(3.4)Condition (3.4) is necessary to guarantee the uniqueness of (r0; r1; : : : ; rd) if there areequal values among x0; x1; : : : ; xd.We may regard �(x) as a representation of the rank order of x0; x1; : : : ; xd. If xi = xj fori; j 2 f0; 1; : : : ; dg with i < j, then xj is ranked higher than xi. When x0; x1; : : : ; xd arepairwise di�erent, then the order relation between any two components of x (being either< or >) can be obtained from �(x).Figure 3.1 displays the components x0; x1; : : : ; x5 of a vector x 2 R6. The horizontal align-ment and the connecting line segments suggest that x0; x1; : : : ; x5 are observed sequentlyin time. As emphasized by the dashed lines, x3 = 0:9 is the largest value, x4 = 0:7 is thesecond-largest value, and so on. This rank order is uniquely described by the permuta-tion �(x) = (3; 4; 5; 2; 0; 1). Since there are no equal values among the components of x,condition (3.4) does not apply here.Now, let d 2 N and t 2 Z. By the (random) ordinal pattern of order d at time t in X,we mean the random permutation�(t) := �(Xt; Xt+1; : : : ; Xt+d) :
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Figure 3.1: A vector x = (x0; x1; : : : ; x5) 2 R6 for which �(x) = (3; 4; 5; 2; 0; 1).
According to (3.1), the random variables Xt; Xt+1; : : : ; Xt+d are pairwise di�erent P#-almost surely for every # 2 �. Therefore, for every r = (r0; r1; : : : ; rd) 2 Sd, the eventsf�(t) = rg and fXt+r0 > Xt+r1 > : : : > Xt+rdg are equivalent P#-almost surely (that is,the symmetric di�erence of both events has probability 0 with respect to P#).In this chapter, we study the distribution of the ordinal pattern process (�(t))t2Z and theestimation of ordinal pattern probabilities. In Chapter 5, we focus on ordinal patternsof order d = 2. In Chapter 6, we introduce delays of ordinal patterns as an additionalparameter besides the order.Clearly, if h : R! R is strictly monotonically increasing, then

�(x) = �(h(x0); h(x1); : : : ; h(xd))(3.5)
for all x = (x0; x1; : : : ; xd) 2 Rd+1. Thus, the ordinal patterns in (Xt)t2Z and in (h(Xt))t2Zare identical. Note that this statement is also true when h depends on ! 2 
. For instance,if A and B are random \o�sets" and \scalings", that is, measurable mappings from (
;A)into R and (0;1), respectively, then the ordinal patterns in (Xt)t2Z and in (A+B �Xt)t2Zare identical.If h(x) = cx for some c > 0, then (h(Xt))t2Z has the increments h(Xt)�h(Xt�1) = cYt fort 2 Z. Thus, according to the model assumptions (M1)-(M3), the process of incrementsis non-degenerate, stationary, zero-mean Gaussian and has variance Var#(cYt) = c2 forevery # 2 �. This argument shows that the distribution of ordinal patterns actually doesnot depend on the variance of the increment process.Note that we could have de�ned �(t) as a causal �lter �(t) = �(Xt�d; Xt�d+1; : : : ; Xt)only depending on the \past" of X at time t. The above \non-causal" de�nition is justfor the sake of simpler notation in some proofs.
Stationarity. Next we show that, as a consequence of the model assumption (M2), theordinal pattern process (�(t))t2Z is stationary for every # 2 �.
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Let x = (x0; x1; : : : ; xd) 2 Rd+1. Since shifting a vector by constant does not a�ect anyorder relation among its components, we have
�(x) = �(x0 � x0; x1 � x0; : : : ; xd � x0) :

Furthermore, for each i 2 f1; 2; : : : ; dg, we can write xi� x0 as the sum of the di�erencesx1 � x0, x2 � x1, . . . , xi � xi�1. Therefore, with ~� de�ned by
~�(y) := �(0; y1; y1 + y2; : : : ; y1 + y2 + : : :+ yd) :

for y = (y1; y2; : : : ; yd) 2 Rd, we obtain
�(x) = ~�(x1 � x0; x2 � x1; : : : ; xd � xd�1) :

This shows that, for every t 2 Z, the ordinal pattern �(t) only depends on the incrementsYt+1; Yt+2; : : : ; Yt+d, namely,
�(t) = ~�(Yt+1; Yt+2; : : : ; Yt+d) :

Now, the following corollary is an immediate consequence of the model assumption (M2)that Y is stationary for every # 2 �.
Corollary 3.1. The process (�(t))t2Z is stationary for every # 2 �.
Note that Corollary 3.1 relaxes the condition for stationarity of (�(t))t2Z given in Shiha[91], which requires the increments to be stationary and independent.Let r = (r0; r1; : : : ; rd) 2 Sd. For # 2 �, de�ne

pr(#) := P#(�(t) = r) :
According to Corollary 3.1, the function pr(�) does not depend on the speci�c time pointt 2 Z on the right hand side of the de�nition. We call pr(�) the probability of the ordinalpattern r. The following corollary shows that the probability of any ordinal pattern isstrictly positive.
Corollary 3.2. For every r = (r0; r1; : : : ; rd) 2 Sd with d 2 N and every # 2 �,

0 < pr(#) < 1 :
Proof. Let # 2 �. We only need to show that pr(#) > 0. Since there exists an s 2 Sdwith s 6= r, it then follows that pr(#) � 1� ps(#) < 1. Note that

pr(#) = P#(Xr0 > Xr1 > : : : > Xrd)= P#(Xr0 �Xr1 > 0; Xr1 �Xr2 > 0; : : : ; Xrd�1 �Xrd > 0) :
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Thus, in order to prove that pr(#) > 0, it su�ces to show that the random vector(Xr0�Xr1 ; Xr1�Xr2 ; : : : ; Xrd�1�Xrd) is non-degenerate Gaussian. Let k 2 f1; 2; : : : ; dgand suppose i; j 2 f0; 1; : : : ; dg are the indices for which ri = k and rj = k � 1. If i < j,then Yk = (Xri �Xri+1) + (Xri+1 �Xri+2) + : : :+ (Xrj�1 �Xrj) ;and if i > j, we haveYk = �(Xri�1 �Xri)� (Xri�2 �Xri�1)� : : :� (Xrj�1 �Xrj) :Consequently, there exists a matrix B 2 Rd�d such that(Y1; Y2; : : : ; Yd)T = B (Xr0 �Xr1 ; Xr1 �Xr2 ; : : : ; Xrd�1 �Xrd)T :Now, let � be the covariance matrix of (Y1; Y2; : : : ; Yd) and ~� the covariance matrix of(Xr0�Xr1 ; Xr1�Xr2 ; : : : ; Xrd�1�Xrd). Since Y is non-degenerate, � is strictly positivede�nite. Furthermore, � = B ~�BT which shows that B is non-singular and ~� is strictlypositive de�nite. Consequently, (Xr0�Xr1 ; Xr1�Xr2 ; : : : ; Xrd�1�Xrd) is non-degenerateGaussian, and hence the proof is complete.
Bandt and Shiha [12] gives closed-form expressions for the probability of ordinal patternsof order d = 2 and d = 3. We will review the results for d = 2 in Chapter 5.
3.3 Estimators of ordinal pattern probabilities
Let d 2 N and r 2 Sd. Furthermore, let n 2 N and de�ne�n := (�(0); �(1); : : : ; �(n� 1)) :In this section, we study the problem of estimating the ordinal pattern probability pr(#)given an observation of the ordinal pattern sample �n governed by P# with # 2 �unknown. A natural estimator of pr(�) is the relative frequency of observations of r in�n, namely,

q̂r;n = q̂r;n(�n) := 1n n�1X
t=0 1f�(t)=rg :According to Corollary 3.1, we haveE#(q̂r;n) = pr(#)for all # 2 �, that is, q̂r;n is an unbiased estimator of pr(�). Next we show that, due tostatistical symmetries of the increment process Y, there is a simple way for improvingthis estimator.
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Space and time symmetry. Let n 2 N and t1 < t2 < : : : < tn 2 Z. According to themodel assumption (M3), both (Yt1 ; Yt2 ; : : : ; Ytn) and (�Yt1 ;�Yt2 ; : : : ;�Ytn) are zero-meanGaussian for every # 2 �. Furthermore, because Cov#(Yti ; Ytj) = Cov#(�Yti ;�Ytj) forall i; j 2 f1; 2; : : : ; ng, they have the same covariance matrix and thus they are identicallydistributed. Consequently,
(Yt)t2Z dist= (�Yt)t2Z(3.6)

for every # 2 �. Now, note that, because Y is stationary (see model assumption (M2)),we have Cov#(Yti ; Ytj) = Cov#(Y�ti ; Y�tj) for all i; j 2 f1; 2; : : : ; ng, which shows that(Yt1 ; Yt2 ; : : : ; Ytn) and (Y�t1 ; Y�t2 ; : : : ; Y�tn) are identically distributed. Consequently,
(Yt)t2Z dist= (Y�t)t2Z(3.7)

for every # 2 �. We refer to the properties (3.6) and (3.7) of Y as symmetry in spaceand time, respectively. Note that it is well-known that zero-mean stationary Gaussianprocesses have these properties. According to the terminology of Bandt and Shiha [12],symmetry in space is equivalent to reversibility, and symmetry in time is equivalent torotation symmetry.Next we show that, as a consequence of (3.6) and (3.7), the distribution of �n is invariantwith respect to spatial and time reversals of ordinal pattern sequences.Let the mappings �; � from Sd onto itself be de�ned by
�(r) := (rd; rd�1; : : : ; r0) and �(r) := (d� r0; d� r1; : : : ; d� rd)(3.8)

for r = (r0; r1; : : : ; rd) 2 Sd. Geometrically, we may regard �(r) and �(r) as the spatialand time reversal of r (for an illustration, see Figure 3.2). In particular, if the componentsof x = (x0; x1; : : : ; xd) 2 Rd+1 are pairwise di�erent, then
�(�(x)) = �(�x0;�x1; : : : ;�xd) and �(�(x)) = �(xd; xd�1; : : : ; x0) :(3.9)

Thus, �(�(x)) and �(�(x)) represent the rank orders of the vectors obtained by reversingthe components of x in \space" and \time", respectively. In terms of the vector ofincrements y = (y1; y2; : : : ; yd) given by yk := xk � xk�1 for k = 1; 2; : : : ; d, we can write(3.9) as
�(~�(y)) = ~�(�y1;�y2; : : : ;�yd) and �(~�(y)) = ~�(�yd;�yd�1; : : : ;�y1) :(3.10)

For r 2 Sd, consider the subset �r of Sd de�ned by
�r := �r; �(r); �(r); � � �(r)	 :

Since � � �(r) = � � �(r) and � � �(r) = � � �(r) = r, the set �r is closed under � and�, that is, �(�r) = �(�r) = �r. Consequently, if s 2 �r for r; s 2 Sd, then �s = �r. This
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r = (0; 2; 1) �(r) = (1; 2; 0) �(r) = (2; 0; 1) � � �(r) = (1; 0; 2)
Figure 3.2: The spatial and time reversals of r = (0; 2; 1).

provides a partition of each Sd into classes which contain 2 or 4 elements. For d = 1, theonly class is S1 = f(0; 1); (1; 0)g; for d = 2, there are two classes: f(0; 1; 2); (2; 1; 0)g andf(0; 2; 1); (2; 0; 1); (1; 2; 0); (1; 0; 2)g; for d = 3, there are 8 classes. In general, for d � 2,both classes of 2 and 4 elements are possible, for instance, ] �r = 2 if r = (0; 1; : : : ; d) and] �r = 4 if r = (0; 2; 3; : : : ; d; 1).Now, let n 2 N. Consider the mappings A;B from (Sd)n onto (Sd)n de�ned by
A(r1; r2; : : : ; rn) := (�(r1); �(r2); : : : ; �(rn));B(r1; r2; : : : ; rn) := (�(rn); �(rn�1); : : : ; �(r1))for (r1; r2; : : : ; rn) 2 (Sd)n. According to the geometrical interpretation of � and �, theordinal pattern sequences A(r1; r2; : : : ; rn) and B(r1; r2; : : : ; rn) can be regarded as thespatial and time reversal of the ordinal pattern sequence (r1; r2; : : : ; rn).Lemma 3.3. For every # 2 �,
�n dist= A(�n) dist= B(�n) dist= B � A(�n) :

Proof. Let # 2 �. Since the values in X are pairwise di�erent P#-almost surely (see(3.1)), the �rst equation in (3.10) yields
�(~�(Yt+1; Yt+2; : : : ; Yt+d)) = ~�(�Yt+1;�Yt+2; : : : ;�Yt+d)

P#-almost surely for every t 2 Z. Furthermore, according to the space symmetry ofY, the random vectors (Y1; Y2; : : : ; Yn+d�1) and (�Y1;�Y2; : : : ;�Yn+d�1) have the samedistribution with respect to P#. Thus,�n = � ~�(Y1; : : : ; Yd); ~�(Y2; : : : ; Yd+1); : : : ; ~�(Yn; : : : ; Yn+d�1) �
dist= � ~�(�Y1; : : : ;�Yd); ~�(�Y2; : : : ;�Yd+1); : : : ; ~�(�Yn; : : : ;�Yn+d�1) �= A(�n) ;(3.11)

where the last equality holds P#-almost surely. Similarly, we obtain that
�(~�(Yt+1; Yt+2; : : : ; Yt+d)) = ~�(�Yt+d;�Yt+d�1; : : : ;�Yt+1)
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P#-almost surely for every t 2 Z. By the space and time symmetry of Y, we obtain that(Y1; Y2; : : : ; Yn+d�1) and (�Yn+d�1;�Yn+d�2; : : : ;�Y1) have the same distribution with re-spect to P#, and thus
�n = � ~�(Y1; : : : ; Yd); ~�(Y2; : : : ; Yd+1); : : : ; ~�(Yn; : : : ; Yn+d�1) �

dist= � ~�(�Yn+d�1; : : : ;�Yn); ~�(�Yn+d�2; : : : ;�Yn�1); : : : ; ~�(�Yd; : : : ;�Y1) �= B(�n) ;(3.12)
where the last equality holds P#-almost surely. Now, combining (3.11) and (3.12) yieldsequality in distribution of �n and B � A(�n).
For the proof of Lemma 3.3 we have only used that Y is symmetric in space and timeand the values of X are pairwise di�erent P#-almost surely. Thus, the statement that�n, A(�n), B(�n) and B �A(�n) have the same distribution is valid under much moregeneral conditions than (M1)-(M3).In the following paragraph, we show that when �n, A(�n), B(�n) and B � A(�n) havethe same distribution, a better estimator of pr(�) than q̂r;n is obtained by averaging therelative frequencies of r, �(r), �(r) and � ��(r). This �nding is of great practical impor-tance, as many empirical time series seem to be realizations of processes for which thedistributions of ordinal pattern sequences and their spatial and time reversals are iden-tical. For instance, Bandt and Shiha [12] reports a similar frequency of ordinal patternsand their time reversals in speech signals and EEG data. Also, Keller et al. [58] observesa similar frequency of ordinal patterns and their space reversals in EEG data. As anexception, Keller et al. [58] shows \asymmetric" EEG time series with more \upwards"than \downwards" patterns.
A Rao-Blackwellization. Let d 2 N, r 2 Sd and # 2 �. For n = 1, Lemma 3.3 showsthat �(0), �(�(0)), �(�(0)) and � � �(�(0)) have the same distribution with respect toP#, and thus

P#(�(0) = r) = P#(�(�(0)) = r) = P#(�(�(0)) = r) = P#(� � �(�(0)) = r) :
According to the properties of � and �, the events f�(�(0)) = rg, f�(�(0)) = rg andf� ��(�(0)) = rg are equivalent to f�(0) = �(r)g, f�(0) = �(r)g and f�(0) = ���(r)g,respectively. Therefore,

pr(�) = p�(r)(�) = p�(r)(�) = p���(r)(�)
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which shows that q̂r;n, q̂�(r);n, q̂�(r);n and q̂���(r);n are all unbiased estimators of pr(�). Byaveraging them, we obtain another unbiased estimator of pr(�), namely,
p̂r;n = p̂r;n(�n) := 14�q̂r;n(�n) + q̂�(r);n(�n) + q̂�(r);n(�n) + q̂���(r);n(�n)�

= 14n n�1X
t=0
�1f�(t)=rg + 1f�(t)=�(r)g + 1f�(t)=�(r)g + 1f�(t)=���(r)g�

= 1(] �r)n n�1X
t=0 1f�(t)2�rg :(3.13)

In Theorem 3.5, we show that the estimator p̂r;n has lower risk than q̂r;n with respect toany convex loss function. The key step in the proof is to establish a su�cient statistic for�n which identi�es�n, A(�n), B(�n) and B�A(�n). Then, according to the Su�ciencyPrinciple, the inference on pr(�) should be the same regardless of whether �n, A(�n),B(�n) or B � A(�n) is observed (see Casella and Berger [25], p. 272).First, we establish the following lemma.
Lemma 3.4. For every # 2 �,

P#(p̂r;n 6= q̂r;n) > 0 :
Proof. Let # 2 �. We show the existence of a permutation (s0; s1; : : : ; sn+d�1) 2 Sn+d�1such that Xs0 > Xs1 > : : : > Xsn+d�1 implies p̂r;n > 0 and q̂r;n = 0. Then, according toCorollary 3.2,

P#(p̂r;n 6= q̂r;n) � P#(p̂r;n > 0; q̂r;n = 0)� P#(Xs0 > Xs1 > : : : > Xsn+d�1)> 0 :
Let i; j 2 f0; 1; : : : ; dg be such that ri = d� 1 and rj = d. If i < j, then we choose

(s0; s1; : : : ; sn+d�1) = (n+ d� 1; n+ d� 2; : : : ; d+ 1; rd; rd�1; : : : ; r0) :
Otherwise, we choose

(s0; s1; : : : ; sn+d�1) = (rd; rd�1; : : : ; r0; d+ 1; d+ 2; : : : ; n+ d� 1) :
In both cases, Xs0 > Xs1 > : : : > Xsn+d�1 implies that �(0) = �(r) and �(t) 6= r fort = 1; 2; : : : ; n� 1, and thus p̂r;n > 0 and q̂r;n = 0. The proof is complete.
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Theorem 3.5. The estimator p̂r;n of pr(�) is unbiased and has lower risk than q̂r;n withrespect to any convex loss function, that is, for every # 2 �,E#�'(p̂r;n; pr(#)) � � E#�'(q̂r;n; pr(#)) �with respect to each function ' : [0; 1]� [0; 1]! [0;1) such that '(p; p) = 0 and '(�; p)is convex for every p 2 [0; 1]. When '(�; p) is strictly convex for every p 2 [0; 1], then p̂r;nhas strictly lower risk than q̂r;n with respect to '. In particular,Var#(p̂r;n) < Var#(q̂r;n)for every # 2 �.
Proof. Let � be any total order on (Sd)n. De�neS(�n) := min� ��n; A(�n); B(�n); B � A(�n)	where min� denotes the minimum with respect to �. According to Lemma 3.3, when
� 2 (Sd)n and # 2 � are such that P#(S(�n) = �) 6= 0, then the conditional distributionof �n given that S(�n) = � is the equidistribution on f�; A(�); B(�); B �A(�)g, thatis,

P#(�n = �0 jS(�n) = �) = 14for �0 2 f�; A(�); B(�); B �A(�)g. Since the conditional distribution does not dependon #, it follows that S(�n) is a su�cient statistic for �n. Now, note that
p̂r;n = 14�q̂r;n(�n) + q̂r;n(A(�n)) + q̂r;n(B(�n)) + q̂r;n(B � A(�n))�

P#-almost surely for every # 2 �, which shows that p̂r;n is a conditional expectation ofq̂r;n given S(�n). Since q̂r;n is unbiased, Theorem 3.2.1 in Pfanzagl [79] shows that p̂r;nhas lower risk than q̂r;n. The result on strictness is also a consequence of Theorem 3.2.1in Pfanzagl [79] and the fact that, according to Lemma 3.4, P#(p̂r;n 6= q̂r;n) > 0. Now,the statement on the variance follows because the function (� � p)2 is strictly convex forevery p 2 [0; 1].Remark 3.6. As the proof of Theorem 3.5 shows, the estimator obtained by averagingthe relative frequencies of r and �(r) also has lower risk than q̂r;n. In particular,T (�n) := min� ��n; A(�n)	is a su�cient statistic for �n, and12�q̂r;n(�n) + q̂r;n(A(�n))� = 12n n�1X
t=0
�1f�(t)=rg + 1f�(t)=�(r)g�

is a conditional expectation of q̂r;n given T (�n). �
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Note that the proof of Theorem 3.5 only uses the assumptions of Lemma 3.3 and Lemma3.4. In particular, for showing that p̂r;n has lower risk than q̂r;n, it is su�cient that Y issymmetric in space and time and the values of X are pairwise di�erent P#-almost surelyfor every # 2 �.

3.4 Asymptotic properties
In this section, we study asymptotic properties of p̂r;n. As mentioned above, p̂r;n isan unbiased estimator of pr(�), that is, E#(p̂r;n) = pr(#) for all n 2 N and # 2 �.Next, we investigate conditions under which p̂r;n is consistent and asymptotically normallydistributed.
3.4.1 Consistency
Estimators are weakly consistent if they converge to the quantity of interest in probability,and strongly consistent if the convergence is almost surely. We will show that, under themodel assumptions (M1)-(M3), a natural su�cient condition for weak consistency of p̂r;nis also su�cient for strong consistency.
Weak consistency. Let # 2 �. By the de�nition of convergence in probability, weakconsistency of p̂r;n is equivalent to

limn!1P#( jp̂r;n � pr(#)j � � ) = 0
for every � > 0. Since E#(p̂r;n) = pr(#), Chebyshev's inequality yields

P#( jp̂r;n � pr(#)j � � ) � Var#(p̂r;n)�2 :
Therefore, a su�cient condition for weak consistency of p̂r;n is limn!1Var#(p̂r;n) = 0.For k 2 Z, de�ne

#(k) := Cov#(1f�(0)2�rg; 1f�(k)2�rg) :
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Because (�(t))t2Z is stationary, we have Cov#(1f�(t)2�rg; 1f�(t+k)2�rg) = #(k) for t; k 2 Z,and thus
Var#(p̂r;n) = 1n2 (] �r)2 n�1X

s;t=0Cov#(1f�(s)2�rg; 1f�(t)2�rg)
= 1n2 (] �r)2�n #(0) + 2 n�1X

k=1(n� k) #(k)�
� 2n n�1X

k=0 #(k) :Therefore, a su�cient condition for limn!1Var#(p̂r;n) = 0 is limk!1 #(k) = 0. Notethat, for k 2 Z,#(k) = P#(�(0) 2 �r; �(k) 2 �r )� P#(�(0) 2 �r )P#(�(k) 2 �r )= P#( (Y1; Y2; : : : ; Yd) 2 B; (Yk+1; Yk+2; : : : ; Yk+d) 2 B)� (P#( (Y1; Y2; : : : ; Yd) 2 B))2 ;where B = f(y1; y2; : : : ; yd) 2 Rd j ~�(y1; y2; : : : ; yd) 2 �rg. Furthermore, a necessarycondition for (y1; y2; : : : ; yd); (y01; y02; : : : ; y0d) 2 Rd to satisfy ~�(y1; y2; : : : ; yd) 2 �r and~�(y01; y02; : : : ; y0d) =2 �r is the existence of a binary vector (b1; b2; : : : ; bd) 2 f0; 1gd n f0gsuch that dX
k=1 bkyk � 0 and dX

k=1 bky0k < 0 ; or dX
k=1 bkyk < 0 and dX

k=1 bky0k � 0 :
This argument shows that the boundary of B in Rd is contained in the union of all setsBb with b = (b1; b2; : : : ; bd) 2 f0; 1gd n f0g, given by

Bb := n (y1; y2; : : : ; yd) 2 Rd �� dX
k=1 bkyk = 0o :

Since each of these �nitely many sets is a hyperplane in Rd, the boundary of B inRd has Lebesgue measure 0. Hence, a su�cient condition for limk!1 #(k) = 0 isthat (Y1; Y2; : : : ; Yd; Yk+1; Yk+2; : : : ; Yk+d) converges in distribution to a random vector(Z1; Z2; : : : ; Zd; Zd+1; Zd+2; : : : ; Z2d) with (Z1; Z2; : : : ; Zd) and (Zd+1; Zd+2; : : : ; Z2d) beingindependent and both having the same distribution as (Y1; Y2; : : : ; Yd). According toTheorem 2.4 (iii), (iv) and the model assumption that Y is stationary and zero-meanGaussian with unit variance, we obtain the following result.Theorem 3.7. If �#(k)! 0 as k !1 for every # 2 �, then p̂r;n is a weakly consistentestimator of pr(�).As we show in the next paragraph, the assumptions of Theorem 3.7 are also su�cient forstrong consistency of p̂r;n.
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Strong consistency. For establishing strong consistency, we use well-known resultsfrom ergodic theory. For more background, we refer to Cornfeld et al. [29]. Let � denotethe shift operator, given by �(z) = (zt+1)t2Zfor z = (zt)t2Z 2 RZ. For j 2 N, we de�ne � j(z) := � j�1(�(z)), where � 0(z) := zis the identity on RZ. A real-valued stationary stochastic process Z = (Zt)t2Z on aprobability space (
0;A0;P) is called ergodic i� P(Z 2 B) = 0 or P(Z 2 B) = 1 for everyset B 2 B(RZ) satisfying P(��1(B)�B) = 0. The Birkho�-Khinchin Ergodic Theoremstates that, if Z is ergodic,
limn!1 1n n�1X

j=0 f(� j(Z)) = E(f(Z))
P-almost surely for every measurable mapping f : RZ ! R with E( jf(Z)j ) < 1 (seeCornfeld et al. [29], Chapter 1, x2, Theorem 1). This property of ergodic processes isoften referred to by saying that \time averages are equal to space averages". A strongerproperty than ergodicity is the mixing property, which means that, for any two measurablemappings f; g : RZ ! R satisfying E((f(Z))2) <1 and E((g(Z))2) <1, respectively,limj!1E�f(� j(Z)) g(Z)� = E(f(Z))E(g(Z)) :
According to Theorem 2 in Chapter 14, x2 in Cornfeld et al. [29], a necessary andsu�cient condition for a stationary Gaussian process to have the mixing property is thatthe autocorrelations tend to zero as the lag tends to in�nity.The following theorem gives su�cient conditions under which estimators of continuousfunctions of ordinal pattern probabilities are strongly consistent and asymptotically un-biased.Theorem 3.8.
(i) If �#(k) ! 0 as k ! 1 for every # 2 � and h : [0; 1] ! R is continuous on anopen set containing pr(�), then h(p̂r;n) is a strongly consistent estimator of h(pr(�)),that is, limn!1h(p̂r;n) = h(pr(#))

P#-almost surely for every # 2 �.(ii) If, additionally to the conditions in (i), h is bounded on [0; 1], then h(p̂r;n) is anasymptotically unbiased estimator of h(pr(�)), that is,limn!1E#(h(p̂r;n)) = h(pr(#))for every # 2 �.
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Proof. (i) Let # 2 �. For y = (yt)t2Z 2 RZ, de�ne
f(y) := � 1 if ~�(y1; y2; : : : ; yd) 2 �r0 otherwise :

According to the de�nition of � ,
f(� j(y)) = � 1 if ~�(yj+1; yj+2; : : : ; yj+d) 2 �r0 otherwise

for j = 0; 1; 2; : : :, and hence f(� j(Y)) = 1f�(j)2�rg. Under the assumptions, Y has themixing property, and thus Y is ergodic. According to the Birkho�-Khinchin ErgodicTheorem, we obtain
limn!1 p̂r;n = 1] �r limn!1 1n n�1X

j=0 f(� j(Y))
= 1] �r E#(f(Y)) = pr(#)

P#-almost surely. Since h is continuous on an open set containing pr(�), there exists a� > 0 such that h is continuous on (pr(#)� �; pr(#) + �). Thus,
limn!1h(p̂r;n) = h(pr(#))

P#-almost surely, which shows that h(p̂r;n) is strongly consistent.(ii) Let # 2 �. Since h is bounded on [0; 1], there exists a c <1 with E#( jh(p̂r;n)j ) < cfor every n 2 N. According to the Dominated Convergence Theorem and the strongconsistency of h(p̂r;n), it follows that
limn!1E#(h(p̂r;n)) = E#( limn!1h(p̂r;n) ) = h(pr(#)) :

The proof is complete.
Remark 3.9. According to Corollary 3.2, we have pr(�) � (0; 1) for every r 2 Sd withd 2 N. Therefore, an open set as in (i) does always exist. �

3.4.2 Asymptotic normality
Next, we derive su�cient conditions for asymptotic normality of p̂r;n. The result is ob-tained by the Limit Theorem of Arcones [7], which we present in the following paragraph.Note that the result can also be established by a limit theorem of Ho and Sun [48].
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The Limit Theorem of Arcones. Recall the concept of Hermite ranks: For l =(l1; l2; : : : ; ld) 2 Nd0, de�ne jlj := l1+l2+: : :+ld. Furthermore, for z = (z1; z2; : : : ; zd) 2 Rd,let zl := Qdi=1 zlii . Suppose Z = (Z1; Z2; : : : ; Zd) is a Gaussian random vector on aprobability space (
0;A0;P) and g : Rd ! R is a mapping satisfying E((g(Z))2) < 1.The Hermite rank of g with respect to Z is de�ned by
rank(g) := inf �� 2 N �� There exists an l 2 Nd0 with jlj = �(3.14) and E( [ g(Z)� E(g(Z)) ]Zl ) 6= 0	 ;

where the in�mum of the empty set is in�nity. As we show in the following paragraph,the de�nition given here is equivalent to the usual de�nition of Hermite ranks in terms ofHermite polynomials.Let (Z(t))t2Z with Z(t) = (Z1(t); Z2(t); : : : ; Zd(t)) be a stationary and non-degeneratesequence of Gaussian random vectors on (
0;A0;P). De�ne
r(i;j)(k) := Corr(Zi(0); Zj(k))

for i; j 2 f1; 2; : : : ; dg and k 2 Z. Theorem 4 in Arcones [7] states that, if g has Hermiterank � <1 with respect to Z(0) and1X
k=1
��r(i;j)(k)��� < 1(3.15)

for all i; j 2 f1; 2; : : : ; dg, then
1pn n�1X

t=0 � g(Z(t))� E[g(Z(0))] � P�! N(0; �2) ;(3.16)
where

�2 := Var� g(Z(0)) � + 2 1X
k=1 Cov

� g(Z(0)); g(Z(k)) � :(3.17)
Arcones also gives a generalization in the multidimensional case. Let m 2 N. Assumethat each of g1; g2; : : : ; gm has Hermite rank � or greater with respect to Z(0), where �satis�es condition (3.15). It is easy to see that a1g1 + a2g2 + : : : + amgm has Hermiterank � or greater with respect to Z(0) for all a1; a2; : : : ; am 2 R and thus, by the LimitTheorem,

1pn n�1X
t=0

mX
j=1 aj � gj(Z(t))� E[gj(Z(0))] � P�! N�0; mX

i;j=1 aiajs(i; j)
� ;
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where
s(i; j) := Cov� gi(Z(0)); gj(Z(0)) �

+ 1X
k=1

�Cov� gi(Z(0)); gj(Z(k)) � + Cov� gi(Z(k)); gj(Z(0)) � �
for i; j = 1; 2; : : : ;m. According to the Cram�er-Wold Theorem (see Theorem 29.4 inBillingsley [17]), we obtain

1pn � n�1X
t=0 g1(Z(t)); n�1X

t=0 g2(Z(t)); : : : ; n�1Xt=0 gm(Z(t))� P�! N(�;�) ;(3.18)
where � = �E[ g1(Z(0))]; E[ g2(Z(0))]; : : : ; E[ gm(Z(0))] � and � = (�ij)mi;j=1 is given by�ij := s(i; j) for i; j = 1; 2; : : : ;m.
Background: Hermite expansions. Next we provide some background on Hermiteranks and the derivation of Arcones' Limit Theorem. The reader can skip this part andcontinue with the following paragraph, where we apply the Limit Theorem to estimatorsof ordinal pattern probabilities. Recall the de�nition of Hermite polynomials: For n 2 N0,let Hn : R! R be de�ned by

Hn(z) := (�1)n ez2=2 dndzn e�z2=2for z 2 R. Indeed, eachHn is a polynomial of degree n, called the nth Hermite polynomial.For instance, H0(z) = 1, H1(z) = z, and H2(z) = z2 � 1 for z 2 R.Suppose that Z = (Z1; Z2; : : : ; Zd) is a standard normal random vector on (
0;A0;P). LetL2(Z) be the set containing any measurable function g : Rd ! R satisfying E(g(Z)) = 0and E((g(Z))2) < 1. By L2(Z) we denote the set obtained by identifying functionsf; g 2 L2(Z) with f(Z) = g(Z) P-almost surely. De�ne hg; hi := Cov(g(Z); h(Z)) forg; h 2 L2(Z). Note that L2(Z) equipped with the inner product h� ; �i is a Hilbert space.For l = (l1; l2; : : : ; ld) 2 Nd0, let l! := l1! l2! : : : ld!. Furthermore, de�ne
bl(z) := dY

i=1 Hli(zi)
for z = (z1; z2; : : : ; zd) 2 Rd. The family of mappings bl with l 2 Nd0 n f(0; 0; : : : ; 0)g formsan orthogonal basis of L2(Z). The Hermite expansion of g 2 L2(Z) is given by

g(z) = X
l2Nd0

l 6=(0;0;:::;0)

1l! hg; bli bl(z)
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for z 2 Rd (see Arcones [7], Doukhan [34]).Now, suppose (Z(t))t2Z is a stationary sequence of standard normal random vectors on(
0;A0;P). For the proof of his Limit Theorem, Arcones [7] �rst shows that when g hasHermite rank � <1 with respect to Z(0) and condition (3.15) is satis�ed,
1pn n�1X

t=0 g(Z(t)) P�! N(0; �2)(3.19)
with �2 as given in (3.17). The general result for possibly non-centered functions ofarbitrary non-degenerate Gaussian random vectors is obtained as follows: If E(g(Z)) 6= 0,then consider the mapping g(�)�E(g(Z)) instead of g(�). Furthermore, for every symmetricand strictly positive de�nite matrix � 2 Rd�d and every � 2 Rd, there exists a matrixL 2 Rd�d such that g(�) applied to a Gaussian random vector with means � and covariancematrix � has the same distribution as g(� + L �) applied to a standard normal randomvector (see Horn and Johnson [49], p. 406).The basic step in the proof of Arcones is to insert the Hermite expansions of g(Z(t)) fort = 0; 1; : : : ; n� 1 into the left hand side of (3.19), namely,

1pn n�1X
t=0 g(Z(t)) = 1pn n�1X

t=0
X
l2Nd0

l6=(0;0;:::;0)

1l! hg; bli bl(Z(t)) ;(3.20)
and showing that the moments of the expression on the right hand side of (3.20) convergeto the corresponding moments of a normal distribution. Note that, for m 2 N, the mthmoment of the expression on the right hand side of (3.20) can be written as the weightedsum of terms

E�Hl1(Zi1(t1))Hl2(Zi2(t2)) : : : Hlr(Zir(tr)) �with r = md and lj 2 N0, ij 2 f1; 2; : : : ; dg, tj 2 f0; 1; : : : ; n � 1g for j = 1; 2; : : : ; r. Byusing the Diagram Formula (see Surgailis [94]), each of these expressions can be writtenas a sum of products of correlations among Zi1(t1); Zi2(t2); : : : ; Zir(tr). The products aredetermined by the edges of diagrams, which are certain undirected graphs describing thestochastic dependencies among Hl1(Zi1(t1)); Hl2(Zi2(t2)); : : : ; Hlr(Zir(tr)).It turns out that the limiting distribution of 1pn Pn�1t=0 g(Z(t)) is essentially determinedby the lowest order basis terms bl for which hg; bli 6= 0. This is the reason for introducingthe Hermite rank of g,
rank(g) := inf �� 2 N �� There exists an l 2 Nd0 with jlj = � and hg; bli 6= 0	 :

Let us verify that this de�nition is equivalent to the one given in (3.15). Suppose thereexists a � 2 N such that hg; bli = E(g(Z) bl(Z)) 6= 0 for some l 2 Nd0 with jlj = � and
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hg; bli = 0 for every l 2 Nd0 with jlj < �. It is easy to see that E(g(Z)Zl) 6= 0 for somel 2 Nd0 with jlj = � and E(g(Z)Zl) = 0 for all l 2 Nd0 with jlj < �. (In fact, this is aconsequence of both bl and z 7! zl with jlj � � being a basis of the polynomials Rd ! Rof degree �.) Therefore, an equivalent expression for rank(g) is given by
rank(g) = inf �� 2 N �� There exists an l 2 Nd0 with jlj = � and E(g(Z)Zl) 6= 0	 :

Now, if g(Z) is non-centered, replacing it by the centered random variable g(Z)�E(g(Z))yields the statement in (3.15).
Application to ordinal patterns. Let us apply Arcones' Limit Theorem to deriveconditions for asymptotic normality of the estimators of ordinal pattern probabilities.For t 2 Z, de�ne

Y(t) = (Y1(t); Y2(t); : : : ; Yd(t)) := (Yt+1; Yt+1; : : : ; Yt+d) :
Furthermore, let

r(i;j)# (k) := Corr#(Yi(0); Yj(k))(3.21)
for # 2 �, k 2 Z and i; j 2 f1; 2; : : : ; dg.
Theorem 3.10. If j�#(k)j = o(k��) for some � > 12 , thenpn (p̂r;n � pr(#)) P#�! N(0; �2

#) ;where
�2
# := #(0) + 2 1X

k=1 #(k)and #(k) := 1(] �r)2 Cov#(1f�(0)2�rg; 1f�(k)2�rg) for k 2 Z.
Proof. Let g : Rd ! R be de�ned by

g(z) := � 1] �r if ~�(z) 2 �r0 otherwise
for z 2 Rd. Note that g(Y(t)) = 1] �r 1f�(t)2�rg for every t 2 Z. Therefore, according to thede�nition of p̂r;n (see (3.13)), we obtain

pn (p̂r;n � pr(#)) = 1pn n�1X
t=0 � g(Y(t))� E[g(Y(0))] �
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for every n 2 N. Now, let Z = (Z1; Z2; : : : ; Zd) be a standard normal random vector on(
0;A0;P) and note that E((g(Z))2) <1. We show that g has Hermite rank � � 2 withrespect to Z. Let i 2 f1; 2; : : : ; dg. According to (3.15), it su�ces to show that
E([g(Z)� E(g(Z))]Zi) = 0 :

Since Zi is zero-mean Gaussian, we have E(g(Z))E(Zi) = 0 and thus
E([g(Z)� E(g(Z))]Zi) = E(g(Z)Zi) :Furthermore, because Z is non-degenerate, using the same argument as in the proof ofLemma 3.3 shows that 1f~�(�Z)=�(s)g = 1f~�(Z)=sg P-almost surely for every s 2 Sd. Since Zis zero-mean Gaussian, Z and �Z are identically distributed (compare to the discussionof space symmetry in Section 3.3), and thus

E(1f~�(Z)=�(s)g Zi) = E(1f~�(�Z)=�(s)g (�Zi)) = �E(1f~�(Z)=sg Zi) :In the case ] �r = 2, where g(Z) = 12(1f~�(Z)=rg + 1f~�(Z)=�(r)g), we obtain2E(g(Z)Zi) = E(1f~�(Z)=rg Zi) + E(1f~�(Z)=�(r)g Zi) = 0 :
Analogously, in the case ] �r = 4, we have

4E(g(Z)Zi) = E(1f~�(Z)=rg Zi) + E(1f~�(Z)=�(r)g Zi)+ E(1f~�(Z)=�(r)g Zi) + E(1f~�(Z)=���(r)g Zi) = 0 :
Altogether, E([g(Z)�E(g(Z))]Zi) = 0 which shows that g has Hermite rank � � 2. Notethat we have only used that Z is non-degenerate zero-mean Gaussian, so g has Hermiterank � � 2 also with respect to Y(0) for all # 2 �.Now, let # 2 � and suppose �#(k) = o(k��) for some � > 12 . According to (3.21),r(i;j)# (k) = �#(k + i� j)
for k 2 Z and i; j 2 f1; 2; : : : ; dg. Since (k + i� j)�� � k�� for all i; j 2 f1; 2; : : : ; dg, wehave r(i;j)# (k) = o(k��) and thus 1X

k=1 jr(i;j)# (k)j� < 1 :
By the Limit Theorem of Arcones (see (3.15)-(3.17)), we obtain that p̂r;n is asymptoticallynormally distributed, where the expression for �2

# follows from
Cov#� g(Y(0)); g(Y(k)) � = 1(] �r)2 Cov#�1f�(0)2�rg; 1f�(k)2�rg �for k 2 Z. The proof is complete.
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Remark 3.11. According to the multidimensional version of Arcones' Limit Theorem(see (3.18)), we obtain that the joint estimate (p̂r1;n; p̂r2;n; : : : ; p̂rm;n) of the probabilitiesof r1 2 Sd1 ; r2 2 Sd2 ; : : : ; rm 2 Sdm with d1; d2; : : : ; dm 2 N is asymptotically normallydistributed if the assumptions of Theorem 3.10 are satis�ed. �Remark 3.12. The limiting distribution N(0; �2
#) in the conclusion of Theorem 3.10 canbe degenerate. In particular, if r = (1; 0) or r = (0; 1) , then �r = f(1; 0); (0; 1)g and thus

p̂r;n = 12n n�1X
t=0 �1fXt+1�Xtg + 1fXt<Xt+1g� ;

which shows that p̂r;n is consistently equal to 12 for every n 2 N. �Remark 3.13. If there does not exist a � > 12 such that j�#(k)j = o(k��), then, ingeneral, the conclusion of Theorem 3.10 does not hold. In particular, for ordinal patternsof order d = 2, the quantity �2
# is in�nite in this case (see Chapter 5). It remains anopen problem whether a di�erent scaling than pn yields convergence to a non-degeneratenormal distribution. �Remark 3.14. The condition on the rate of decrease of k 7! j�#(k)j cannot be relaxed ingeneral. In particular, the Hermite rank of the mapping g de�ned in the proof of Theorem3.10 may be exactly equal to 2. To see this, let Z = (Z1; Z2) be standard normal andr = (0; 1; 2). Since �r = f(0; 1; 2); (2; 1; 0)g, we obtain

g(Z) = 12 �1fZ1>0; Z2>0g + 1fZ1<0; Z2<0g� = 12 1fZ1Z2>0g
P-almost surely, so g has the same Hermite rank with respect to Z as the mapping h givenby h(z1; z2) := 1 if z1z2 > 0 and h(z1; z2) := 0, otherwise. Note that

E( [h(Z)� E(h(Z)) ]Z1Z2 ) = E( [1� E(h(Z))]Z1Z2 j h(Z) = 1 )P(h(Z) = 1)+ E( [0� E(h(Z))]Z1Z2 j h(Z) = 0 )P(h(Z) = 0) :
Moreover,

E( [1� E(h(Z))]Z1Z2 j h(Z) = 1 ) = (1� P(h(Z) = 1))E(Z1Z2 j Z1Z2 > 0) ;E( [0� E(h(Z))]Z1Z2 j h(Z) = 0 ) = �P(h(Z) = 1)E(Z1Z2 j Z1Z2 < 0) ;
and with P(h(Z) = 1) = P(Z1Z2 > 0) and P(h(Z) = 0) = (1� P(Z1Z2 > 0)), we obtain
E( [h(Z)� E(h(Z)) ]Z1Z2 ) = [1� P(Z1Z2 > 0)]P(Z1Z2 > 0)� �E(Z1Z2 j Z1Z2 > 0)� E(Z1Z2 j Z1Z2 < 0) � :
Since P(Z1Z2 > 0) = 12 and E(Z1Z2 j Z1Z2 > 0) = �E(Z1Z2 j Z1Z2 < 0) > 0 we haveE( [h(Z)� E(h(Z)) ]Z1Z2 ) > 0 and thus rank(h) = 2. �
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Remark 3.15. The assumptions of Theorem 3.10 are su�cient also for the asymptoticnormality of the estimator obtained by averaging the relative frequencies of r and �(r).In particular, as the proof of Theorem 3.10 shows, the mapping h given by h(z) := 1 if~�(z) 2 fr; �(r)g and h(z) := 0, otherwise, has Hermite rank greater than 1. �Remark 3.16. According to the Limit Theorem of Arcones, a su�cient condition for theestimator q̂r;n to be asymptotically normal is given by j�#(k)j = o(k��) for some � > 1.In particular, with the mapping h de�ned by
h(z) := � 1] �r if ~�(z) = r0 otherwisefor z 2 Rd, we havepn (q̂r;n � pr(#)) = 1pn n�1X

t=0 �h(Y(t))� E[h(Y(0))] � :
Moreover, h has Hermite rank 1 with respect to any non-degenerate zero-mean Gaussianrandom vector Z = (Z1; Z2; : : : ; Zd). This can be seen as follows: Corollary 3.2 impliesP(h(Z) = 1) > 0. Furthermore, we have either P(Z1 > 0 j h(Z) = 1) = 1 or P(Z1 <0 j h(Z) = 1) = 1, and henceE([h(Z)� E(h(Z))]Z1) = E(h(Z)Z1)= E(Z1 j h(Z) = 1)P(h(Z) = 1) 6= 0 :Since Y(0) is non-degenerate zero-mean Gaussian, we obtain that h has Hermite rank 1with respect to Y(0). �By applying the Delta Method (Lehmann [68], Theorem 2.5.2), we obtain the followingstatement on the limiting distribution of certain di�erentiable functions of p̂r;n.Corollary 3.17. If j�#(k)j = o(k��) for some � > 12 and h : [0; 1] ! R has a non-vanishing �rst derivative at pr(#), thenpn �h(p̂r;n)� h(pr(#)) � P#�! N( 0; �2

#[h0(pr(#))]2 ) ;with �2
# as given in Theorem 3.10.Similar to Remark 3.11, we also obtain a statement for the multdimensional case: Letr1 2 Sd1 ; r2 2 Sd2 ; : : : ; rm 2 Sdm with d1; d2; : : : ; dm 2 N, and suppose hi : [0; 1] ! R hasa non-vanishing �rst derivative at pri(#) for i = 1; 2; : : : ;m. If j�#(k)j = o(k��) for some� > 12 , then (h1(p̂r1;n); h2(p̂r2;n); : : : ; hm(p̂rm;n)) is asymptotically normally distributed.In particular, since linear combinations of jointly normal random variables are normallydistributed, the empirical permutation entropy, given byP̂n := �Xr2Sd p̂r;n ln p̂r;n ;is asymptotically normally distributed if j�#(k)j = o(k��) for some � > 12 .
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3.5 Examples
Equidistant discretizations of FBM. Next, we apply the previous results to the es-timation of ordinal pattern probabilities in equidistant discretizations of Fractional Brow-nian Motion (FBM). Suppose B = (B(t))t2R is a family of measurable mappings from(
;A) into (R;B(R)), where (
;A) is equipped with a family (PH)H2(0;1) of probabilitymeasures such that B measured with respect to PH is standard FBM with the Hurst pa-rameter H (see Section 2.2.3 for the de�nition of FBM and the existence of such (
;A),B and (PH)H2(0;1)).Let the process X = (Xt)t2Z be de�ned by

Xt := B(t)
for t 2 Z. We may regard X as an equidistant discretization of FBM with the samplinginterval length � = 1. As �rst observed in Bandt and Shiha [12], the sampling intervallength does not have any e�ect on the distribution of ordinal patterns. In particular, bythe self-similarity of FBM (see (2.2), p. 37),

(B(t�))t2Z dist= (�H B(t))t2Z
for H 2 (0; 1) and � > 0. Since �(x) = �(�H x) for every x 2 Rd+1, the ordinal patternsin (B(t�))t2Z and (�H B(t))t2Z are identical, and thus they have the same distribution.Let Y = (Yt)t2Z with Yt := Xt�Xt�1 for t 2 Z be the increment process of X. Note thatY measured with respect to PH is standard Fractional Gaussian Noise (FGN) with theHurst parameter H (see Section 2.2.3). According to the properties of standard FGN,Y is non-degenerate, stationary, zero-mean Gaussian and has unit variance for every
H 2 (0; 1). Thus, with � := (0; 1) and # := H , we have a class of stochastic processesas in Section 3.1, particularly with Y satisfying the model assumptions (M1)-(M3) forevery H 2 (0; 1). We do not consider equidistant discretizations of FBM with the Hurstparameter H = 1, because Y would be degenerate in this case (see Section 2.2.3) andthus not meet the model assumption (M1).The following corollary summarizes properties of p̂r;n.
Corollary 3.18. Let d 2 N and r 2 Sd.
(i) p̂r;n is an unbiased estimator of pr(�).
(ii) If h : [0; 1] ! R is continuous on an open set containing the image of (0; 1) underpr(�), then h(p̂r;n) is a strongly consistent estimator of h(pr(�)). If, additionally, his bounded on [0; 1], then h(p̂r;n) is an asymptotically unbiased estimator of h(pr(�)).
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(iii) If H < 34 and h : [0; 1]! R has a non-vanishing �rst derivative at pr(H), thenpn �h(p̂r;n)� h(pr(H)) � PH�! N(0; �2
H [h0(pr(H))]2 ) ;

where
�2
H := H(0) + 2 1X

k=1 H(k)
and H(k) := 1(] �r)2 CovH(1f�(0)2�rg; 1f�(k)2�rg) for k 2 Z.

Proof. (i) follows by Theorem 3.5.(ii) is a consequence of Theorem 3.8 and the fact that �H(k) ! 0 as k ! 1 for every
H 2 (0; 1) (see Lemma 2.7 (ii)).(iii) If H < 34 , then there exists a � > 12 with j�H(k)j = o(k��) (for instance, we canchoose � := 54 � H , see Lemma 2.7 (ii)). Thus, the statement follows by Corollary3.17.
In the following, let �H with H 2 (0; 1) denote the distribution of the ordinal patternprocess (�(t))t2Z in an equidistant discretization of FBM with the Hurst parameter H .
ARFIMA(0,d,0) processes. Let X = (Xt)t2Z be a family of measurable mappingsfrom (
;A) into (R;B(R)). Suppose (Pd)d2(� 1

2 ; 12 ) is a family of probability measures on(
;A) such that the process of incrementsY = (Yt)t2Z, given by Yt := Xt�Xt�1 for t 2 Z,measured with respect to Pd is a standard ARFIMA(0,d,0) process with the fractionaldi�erencing parameter d.According to the properties of ARFIMA(0,d,0) processes discussed in Section 2.2.4, Y isnon-degenerate, stationary, zero-mean Gaussian with unit variance for every d 2 (�12 ; 12).Thus, with � := (�12 ; 12) and # := d, we have a class of stochastic process as de�nedin Section 3.1. In particular, Y satis�es the model assumptions (M1)-(M3) for every
d 2 (�12 ; 12). Therefore, we obtain the following statement.
Corollary 3.19. Let d 2 N and r 2 Sd.
(i) p̂r;n is an unbiased estimator of pr(�).
(ii) If h : [0; 1]! R is continuous on an open set containing the image of (�12 ; 12) underpr(�), then h(p̂r;n) is a strongly consistent estimator of h(pr(�)). If, additionally, his bounded on [0; 1], then h(p̂r;n) is an asymptotically unbiased estimator of h(pr(�)).
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(iii) If d < 14 and h : [0; 1]! R has a non-vanishing �rst derivative at pr(d), thenpn �h(p̂r;n)� h(pr(d)) � Pd�! N(0; �2
d[h0(pr(d))]2 ) ;where

�2
d := d(0) + 2 1X

k=1 d(k)and d(k) := 1(] �r)2 Covd(1f�(0)2�rg; 1f�(k)2�rg) for k 2 Z.Proof. The proof is similar to that of Corollary 3.18. In particular, according to Lemma2.8 (i), we have �d(k) ! 0 as k ! 1 for every d 2 (�12 ; 12), and if d < 14 , thenj�d(k)j = o(k��) for � := 34 � d.
AR(1) processes. Now, let X = (Xt)t2Z be a family of measurable mappings from(
;A) into (R;B(R)). Suppose (Pa)a2(�1;1) is a family of probability measures on (
;A)such that the increment processY = (Yt)t2Z, given by Yt := Xt�Xt�1 for t 2 Z, measuredwith respect to Pa is a standard AR(1) process with the autoregressive coe�cient a.According to the properties of AR(1) processes discussed in Section 2.2.5, Y is non-degenerate, stationary, zero-mean Gaussian and has unit variance for every a 2 (�1; 1).Thus, with � := (�1; 1) and # := a, we have a class of stochastic process as de�nedin Section 3.1. In particular, Y satis�es the model assumptions (M1)-(M3) for every
a 2 (�1; 1).Corollary 3.20. Let d 2 N and r 2 Sd.
(i) p̂r;n is an unbiased estimator of pr(�).(ii) If h : [0; 1]! R is continuous on an open set containing the image of (�1; 1) underpr(�), then h(p̂r;n) is a strongly consistent estimator of h(pr(�)). If, additionally, his bounded on [0; 1], then h(p̂r;n) is an asymptotically unbiased estimator of h(pr(�)).(iii) For every a 2 (�1; 1), if h : [0; 1]! R has a non-vanishing �rst derivative at pr(a),then pn �h(p̂r;n)� h(pr(a)) � Pa�! N(0; �2

a[h0(pr(a))]2 ) ;where
�2
a := a(0) + 2 1X

k=1 a(k)and a(k) := 1(] �r)2 Cova(1f�(0)2�rg; 1f�(k)2�rg) for k 2 Z.
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Proof. The proof is similar to that of Corollary 3.18. In particular, j�a(k)j ! 0 as k !1with an exponential rate of decrease for every a 2 (�1; 1) (see Section 2.2.5). Thus,j�a(k)j = o(k��) for any � > 12 .
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Chapter 4
Covariances of zero crossings
In this chapter we investigate the covariances of zero crossing indicator variables. Theframework of analysis is the same as in Chapter 3, namely, X = (Xt)t2Z is a family ofreal-valued measurable mappings de�ned on a measurable space (
;A) which is equippedwith a non-empty family of probability measures (P#)#2�. By Y = (Yt)t2Z we denote theprocess of increments given by Yt := Xt �Xt�1 for t 2 Z. We always assume that Ysatis�es the model assumptions (M1)-(M3) on p. 42. For # 2 � and k 2 Z, let�#(k) = Corr#(Y0; Yk) denote the autocorrelations of Y.As we show in Chapter 5, any ordinal pattern probability of order d = 2 is an a�nefunction of the probability of a zero crossing. The results of this chapter can be used forevaluating the variance of the estimators of ordinal pattern probabilities.
Zero crossings. The indicator for a zero crossing in Y at time t 2 Z is given by

C(t) := 1fYt+1�0; Yt+2>0g + 1fYt+1>0; Yt+2�0g :(4.1)
Note that, according to assumption (M1), the probability that Yt+1 = 0 or Yt+2 = 0 isequal to 0 for every # 2 �. As a consequence of assumption (M2), the process (C(t))t2Zis stationary for every # 2 �. Therefore, the probability for a zero crossing, given by

c(#) := P#(C(t) = 1)
for # 2 �, does not depend on the speci�c time point t on the right hand side of thede�nition. An estimator for c(�) is given by

ĉn := 1n n�1X
t=0 C(t) :(4.2)
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Statistical properties of ĉn will be further investigated in Chapter 5. Here, we focus onthe evaluation of the variance of ĉn. Clearly, by the stationarity of (C(t))t2Z, we obtain
Var#(ĉn) = 1n2�n #(0) + 2 n�1X

k=1(n� k) #(k)�(4.3)
for n 2 N, where

#(k) := Cov#(C(0); C(k))
for k 2 Z. In Section 4.1, we derive closed-form expressions for #(0) and #(1). Fork > 1, we give a representation of #(k) in terms of four-dimensional normal orthantprobabilities. The numerical evaluation of these expressions is investigated in Section4.2. We derive asymptotic properties of the zero crossing covariances in Section 4.3, andprovide bounds and approximations in Section 4.4. Asymptotic properties of Var#(ĉn)are investigated in Sections 4.5 and 4.6.
4.1 Closed-form expressions
Normal orthant probabilities. Let n 2 N and suppose � 2 Rn�n is symmetric andstrictly positive de�nite. The n-dimensional normal orthant probability with respect to �is given by

�(�) := Z
[0;1)n �(0; �; x) dx ;where �(0; �; �) denotes the Lebesgue density of the n-dimensional normal distributionwith means 0 and covariance matrix � (see Theorem 2.4 (i)).Let Z = (Z1; Z2; : : : ; Zn) be a non-degenerate zero-mean Gaussian random vector withCov(Z) = �. (Throughout this chapter, we assume any random vector Z, Z0, . . . is de�nedon some probability space (
0;A0;P).) Clearly,

�(�) = P(Z1 � 0; Z2 � 0; : : : ; Zn � 0) :
Let a1; a2; : : : ; an > 0 and A = diag(pa1; pa2; : : : ; pan ). Since

P(Z1 � 0; Z2 � 0; : : : ; Zn � 0) = P(pa1 Z1 � 0; pa2 Z2 � 0; : : : ; pan Zn � 0)
and Cov(pa1 Z1; pa2 Z2; : : : ; pan Zn) = A�A, we have �(�) = �(A�A). By choos-ing ai = (Var(Zi))�1 for i = 1; 2; : : : ; n, we obtain

�(Cov(Z)) = �(Corr(Z)) :
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Thus, only the correlation structure of a non-degenerate zero-mean Gaussian randomvector is relevant for the probability that all components simultaneously exceed the level0.The following expressions for two- and three-dimensional normal orthant probabilities arewell-known (see Bacon [8]).
Lemma 4.1. Let (Z1; Z2; Z3) be a zero-mean non-degenerate Gaussian random vectorand �ij = Corr(Zi; Zj) for i; j 2 f1; 2; 3g. Then

P(Z1 � 0; Z2 � 0) = 14 + 12� arcsin �12 ;
P(Z1 � 0; Z2 � 0; Z3 � 0) = 18 + 14� arcsin �12 + 14� arcsin �13 + 14� arcsin �23 :

Note that
P#(C(0) = 1) = P#(�Y1 � 0; Y2 � 0) + P#(Y1 � 0; �Y2 � 0)= 2P#(Y1 � 0; �Y2 � 0) ;

where the �rst equality follows because P#(Y1 = 0) = P#(Y2 = 0) = 0, and the secondone because (�Y1; Y2) and (Y1;�Y2) are zero-mean Gaussian with the same covariancestructure and hence identically distributed. Since x 7! arcsinx is an odd function andCorr#(Y1;�Y2) = ��#(1), Lemma 4.1 yields
c(#) = 12 � 1� arcsin �#(1) :(4.4)

Clearly, the variance of C(0) is given by
#(0) = P#(C(0) = 1) (1� P#(C(0) = 1))(4.5) = 14 � 1�2 (arcsin �#(1))2 :

By the same argument as above, (Y1;�Y2; Y3) and (�Y1; Y2;�Y3) are identically dis-tributed. Thus,
P#(C(0) = 1; C(1) = 1) = 2P#(Y1 > 0; �Y2 > 0; Y3 > 0) :

Since Corr#(Y1;�Y2) = Corr#(�Y2; Y3) = ��#(1), we obtain
#(1) = P#(C(0) = 1; C(1) = 1)� (P#(C(0) = 1))2(4.6) = 12� arcsin �#(2)� 1�2 (arcsin �#(1))2 :
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The four-dimensional case. For k > 1, we can express #(k) as the sum and product,respectively, of two- and four-dimensional normal orthant probabilities: Note that
#(k) = Cov#(1� C(0); 1� C(k))= P#(C(0) = 0; C(k) = 0)� (P#(C(0) = 0))2 :

Using the equivalent expressions fY1 � 0; Y2 � 0g [ fY1 > 0; Y2 > 0g for fC(0) = 0g andfYk+1 � 0; Yk+2 � 0g[fYk+1 > 0; Yk+2 > 0g for fC(k) = 0g, respectively, and identifyingequal probabilities, we obtain
#(k) = 2P#(Y1 � 0; Y2 � 0; Yk+1 � 0; Yk+2 � 0)(4.7) + 2P#(Y1 � 0; Y2 � 0; �Yk+1 � 0; �Yk+2 � 0)� 4 (P#(Y1 � 0; Y2 � 0))2 :

Up to now, no closed-form expression is known for normal orthant probabilities of dimen-sion n � 4. Abrahamson [2] derives a formula involving two-dimensional integrals for thespecial case of orthoscheme probabilities, where certain entries of the covariance matrix� are equal to 0. As Abrahamson [2] shows, any four-dimensional normal orthant prob-ability can be written as a linear combination of six orthoscheme probabilities. Cheng[27] proposes an expression involving the dilogarithm function in the case where certainentries of � are identical.Damsleth and El-Shaarawi [31] gives a formula involving two-dimensional integrals when� is the covariance matrix of four variables in a stationary process (that is, � is a principalsubmatrix of a symmetric and strictly positive de�nite Toeplitz matrix). For the specialcase where the stationary process is an AR(1) process, Damsleth and El-Shaarawi [31]proposes an approximation which seems to work well as long as the autoregressive coe�-cient is not too large. Recent approaches to the evaluation of normal orthant probabilitiesof dimension four and higher use Monte Carlo sampling (see Craig [30] for an overview).Note that, according to a recursive formula given in David [32], �ve-dimensional normalorthant probabilities can be expressed as the sum of at most four-dimensional normalorthant probabilities.
Framework of analysis. We consider the problem of evaluating #(k) for k > 1 in thefollowing context: By R we denote the set of r = (r1; r2; r3; r4; r5; r6) 2 [�1; 1]6 for whichthe matrix

�(r) :=
0BB@

1 r1 r2 r3r1 1 r4 r5r2 r4 1 r6r3 r5 r6 1
1CCA
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is strictly positive de�nite, that is, x�(r)xT > 0 for all x 2 R4 n f0g. Note that �(R)is the set of correlation matrices of four-dimensional non-degenerate Gaussian randomvectors (see Theorem 2.4 (i)). Thus, r 2 R implies that all components of r lie in (�1; 1).Furthermore, if r; s 2 R, thenx�(h � r+ (1� h) � s)xT = hx�(r)xT + (1� h)x�(s)xT > 0for all x 2 R4 n f0g and h 2 [0; 1], which shows that R is convex.For h 2 [�1; 1], de�ne Ih := diag(1; h; h; h; h; 1):We also use the symbol Ih to denote the mapping r 7! Ih r from R onto itself. Next,we establish closedness of R with respect to Ih for all h 2 [�1; 1]. Let r 2 R. We�rst show that I�1 r 2 R. Let Z = (Z1; Z2; Z3; Z4) be a zero-mean non-degenerateGaussian random vector with Corr(Z) = �(r). De�ne Z0 := (Z1; Z2;�Z3;�Z4) and notethat Corr(Z0) = �(I�1 r). Since Z0 is also non-degenerate Gaussian, �(I�1 r) is strictlypositive de�nite and thus I�1 r 2 R. Now, let h 2 [�1; 1]. Since I1 r = r and
Ih r = 1 + h2 I1 r+ 1� h2 I�1 r ;

we obtain Ih r 2 R by the convexity of R.Since �(r) is strictly positive de�nite and symmetric, �(�(r)) is well-de�ned for everyr 2 R. To simplify notation, we write�(r) = �(�(r)) :Now, consider the mapping 	 : R ! R given by	(r) := 2�(r) + 2�(I�1 r)� 4�(I0 r)(4.8)for r 2 R. Since Ih r 2 R for all h 2 [�1; 1], 	 is well-de�ned. The reason for introducing	 is the following: Let r 2 R and suppose (Z1; Z2; Z3; Z4) is a zero-mean non-degenerateGaussian random vector with correlation matrix �(r). Then�(r) = P(Z1 � 0; Z2 � 0; Z3 � 0; Z4 � 0) :Furthermore, �(I�1 r) is the correlation matrix of (Z1; Z2;�Z3;�Z4) and hence�(I�1 r) = P(Z1 � 0; Z2 � 0; �Z3 � 0; �Z4 � 0):Finally, �(I0 r) is the correlation matrix of (Z 01; Z 02; Z 03; Z 04) with (Z 01; Z 02) and (Z 03; Z 04)being uncorrelated (and thus independent) and having the same distribution as (Z1; Z2)and (Z3; Z4), respectively. Therefore,�(I0 r) = P(Z1 � 0; Z2 � 0)P(Z3 � 0; Z4 � 0) :
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Putting it all together, we have
	(r) = 2P(Z1 � 0; Z2 � 0; Z3 � 0; Z4 � 0)(4.9) + 2P(Z1 � 0; Z2 � 0; �Z3 � 0; �Z4 � 0)� 4P(Z1 � 0; Z2 � 0)P(Z3 � 0; Z4 � 0) :

Now, let # 2 � and k > 1. By comparing (4.9) with (4.7) and noting that�(�#(1); �#(k);�#(k+1); �#(k�1); �#(k); �#(1)) is the correlation matrix of (Y1; Y2; Yk+1; Yk+2) measuredwith respect to P#, we obtain
#(k) = 	(�#(1); �#(k); �#(k + 1); �#(k � 1); �#(k); �#(1)) :(4.10)

Therefore, we study properties of 	 and � in the following.Note that if our purpose was only evaluating #(k), we could restrict our investigationsto r = (r1; r2; r3; r4; r5; r6) 2 R satisfying r1 = r6 and r2 = r5. However, the problem ofevaluating four-dimensional orthant probabilities is interesting in its own right, therefore,we study it in a more general context.
Basic properties. The following Lemma establishes basic equations for 	 and closed-form expressions for 	 and � in some special cases.
Lemma 4.2.
(i) For every r = (r1; r2; r3; r4; r5; r6) 2 R,

	(I�1 r) = 	(r) = 	(�r1; �r2; r3; r4; �r5; �r6)= 	(�r1; r2; �r3; �r4; r5; �r6) :
(ii) If r2 = r3 = r4 = r5 = 0, then 	(r) = 0 and

�(r) = �14 + 12� arcsin r1��14 + 12� arcsin r6� :
Proof. (i) The �rst equation is obtained by the de�nition of 	 and because I0 I�1 = I0.In order to show the second equation, let (Z1; Z2; Z3; Z4) be zero-mean Gaussian withcorrelation matrix �(r). Furthermore, let r0 := (�r1;�r2; r3; r4;�r5;�r6). Since �(r0) isthe correlation matrix of (Z1;�Z2;�Z3; Z4), we have

	(r) = Cov(1fZ1�0;Z2�0g + 1fZ1�0;Z2�0g; 1fZ3�0;Z4�0g + 1fZ3�0;Z4�0g)= Cov(1fZ1�0;�Z2�0g + 1fZ1�0;�Z2�0g; 1fZ3�0;�Z4�0g + 1fZ3�0;�Z4�0g)= 	(r0) ;
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and the result follows. Applying 	(r) = 	(I�1 r) to r = (�r1;�r2; r3; r4;�r5;�r6) yieldsthe third equation.(ii) Under the assumptions, r = I�1 r = I0 r which shows that 	(r) = 0. Further-more, if (Z1; Z2; Z3; Z4) is Gaussian with the correlation matrix �(r), then (Z1; Z2) and(Z3; Z4) are independent and hence �(r) = P(Z1 � 0; Z2 � 0)P(Z3 � 0; Z4 � 0). SinceCorr(Z1; Z2) = r1 and Corr(Z3; Z4) = r6, the result follows by Lemma 4.1.
Note that bounds for 	(r) can be obtained by the Berman-inequality, namely,

j	(r)j � 2� 5X
k=2 jrkjp1� rk :(see Theorem 2.6.1 in Berman [16] and Theorem C.2 in Piterbarg [80]).

4.2 Numerical evaluation
Partial derivatives. In this section, we derive representations of 	 and � by one-dimensional integrals which can easily be evaluated numerically. We begin our analysisby determining partial derivatives of � and 	.Lemma 4.3. For every r = (r1; r2; r3; r4; r5; r6) 2 R,@�@r2 (r) = 12�p1� r22

�14 + 12� arcsin �24(r)p�22(r)�44(r)
� ;

@�@r3 (r) = 12�p1� r23
�14 + 12� arcsin �23(r)p�22(r)�33(r)

� ;
@�@r4 (r) = 12�p1� r24

�14 + 12� arcsin �14(r)p�11(r)�44(r)
� ;

@�@r5 (r) = 12�p1� r25
�14 + 12� arcsin �13(r)p�11(r)�33(r)

� ;
where �11(r) = 1� r24 � r25 � r26 + 2r4r5r6 ;�22(r) = 1� r22 � r23 � r26 + 2r2r3r6 ;�33(r) = 1� r21 � r23 � r25 + 2r1r3r5 ;�44(r) = 1� r21 � r22 � r24 + 2r1r2r4 ;�13(r) = r2 � r1r4 + r3r4r5 � r2r25 � r3r6 + r1r5r6 ;�14(r) = r3 � r1r5 + r2r4r5 � r3r24 � r2r6 + r1r4r6 ;�23(r) = r4 � r1r2 + r2r3r5 � r4r23 � r5r6 + r1r3r6 ;�24(r) = r5 � r1r3 + r2r3r4 � r5r22 � r4r6 + r1r2r6 :
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Proof. Let r = (r1; r2; r3; r4; r5; r6) 2 R. For i; j 2 f1; 2; 3; 4g, let �0ij(r) denote the (i; j)-th component of (�(r))�1. As a well-known fact, the inverse and any principal submatrixof a symmetric strictly positive de�nite matrix are symmetric and strictly positive de�nite(see Horn and Johnson [49], pp. 169, 397). Let k 2 f2; 3; : : : ; 5g. Suppose fi; jg with i 6= jis the unique subset of f1; 2; 3; 4g such that rk does not lie in the i-th row and j-th columnof �(r). By the so-called reduction formula for normal orthant probabilities (see Plackett[81], Berman [16], p. 31), we obtain
@�@rk (r) = 12�p1� r2k �(

� �0ii(r) �0ij(r)�0ij(r) �0jj(r)
��1 ) :(4.11)

Note that the matrix in the argument of � on the right hand side of (4.11) is the inverseof a principal submatrix of (�(r))�1 and hence symmetric and strictly positive de�nite.Computing the inverse yields� �0ii(r) �0ij(r)�0ij(r) �0jj(r)
��1 = 1�0ii(r)�0jj(r)� (�0jj(r))

� �0jj(r) ��0ij(r)��0ij(r) �0ii(r)
� :

It is easy to see that if (Z1; Z2) is a random vector with the expression on the right handside of the previous equation as covariance matrix, the correlation coe�cient is given by
Corr(Z1; Z2) = � �0ij(r)q�0ii(r)�0jj(r) :

Thus, according to Lemma 4.1, we obtain
�( � �0ii(r) �0ij(r)�0ij(r) �0jj(r)

��1 ) = 14 � 12� arcsin �0ij(r)q�0ii(r)�0jj(r) :(4.12)
Now, for i; j 2 f1; 2; 3; 4g, let �ij(r) be given by �ij(r) := �det(�(r))�0ij(r) if i 6= j, andby �ij(r) := det(�(r))�0ij(r), otherwise. By combining (4.11) and (4.12), we obtain theexpressions for @�@rk (r). Note that �ij(r) is equal to the determinant of the matrix which isobtained by deleting the ith row and the jth column of �(r), multiplied with (�1)i+j+1if i 6= j (see Horn and Johnson [49], p. 20). Thus, by elementary calculations, we obtainthe expressions for �ij(r).
As an immediate consequence of Lemma 4.3, any partial derivative of �rst order of �with respect to r2, r3, r4, r5 is continuous on R. Furthermore, any partial derivative ofhigher order can be written as the sum, the product and the composition, respectively,of rational functions and derivatives of x 7! arcsinx. Therefore, we obtain the followingcorollary:
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Corollary 4.4. Any partial derivative of � with respect to r2; r3; r4; r5 exists and is con-tinuous on R.
The following lemma gives partial derivatives of 	.
Lemma 4.5. For every r = (r1; r2; r3; r4; r5; r6) 2 R,

@	@r2 (r) = 1�2p1� r22 arcsin �24(r)p�22(r)�44(r) ;@	@r3 (r) = 1�2p1� r23 arcsin �23(r)p�22(r)�33(r) ;@	@r4 (r) = 1�2p1� r24 arcsin �14(r)p�11(r)�44(r) ;@	@r5 (r) = 1�2p1� r25 arcsin �13(r)p�11(r)�33(r) ;
with �11(r); �22(r); : : : ; �24(r) as given in Lemma 4.3.
Proof. Let r 2 R and k = 2. For k = 3; 4; 5, the proof is similar. For h 2 [�1; 1], let Ihdenote the mapping r 7! Ih r from R onto itself. Clearly,

@	@r2 (r) = 2 @�@r2 (r) + 2 @(� � I�1)@r2 (r)� 4 @(� � I0)@r2 (r) :(4.13)
According to Lemma 4.2 (ii), we have (� � I0)(r) = �14 + 12� arcsin r1��14 + 12� arcsin r6�.Thus, r 7! (� � I0)(r) is constant in r2 and the last term on the right side of (4.13) isequal to 0. Now, note that @I�1@r2 (r) = �1 and hence, by the chain rule of di�erentiation,

@(� � I�1)@r2 (r) = � @�@r2 (I�1(r)) :
Since �22(I�1(r)) = �22(r), �44(I�1(r)) = �44(r) and �24(I�1(r)) = ��24(r), inserting theexpressions for @�@r2 (r) and @�@r2 (I�1(r)) from Lemma 4.3 into (4.13) yields the result.
Integral representation. Next, we state the main result of this section. We giverepresentations of 	(r) and �(r) by one-dimensional integrals which can be evaluated nu-merically using standard quadrature rules. Furthermore, we establish a simple expressionfor the di�erence between �(r) and �(I�1 r). Note that a similar representation of 	(r)as in (4.14) is used for the proof of the Berman inequality (see above).
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Theorem 4.6. For every r = (r1; r2; r3; r4; r5; r6) 2 R,
	(r) = 5X

k=2 rk
Z 1
0 @	@rk (Ih r) dh ;(4.14)

�(r) = �14 + 12� arcsin r1��14 + 12� arcsin r6�+ 18� 5X
k=2 arcsin rk + 	(r)4 ;(4.15)

�(r)� �(I�1 r) = 14� 5X
k=2 arcsin rk :(4.16)

Proof. Let r 2 R. For h 2 [0; 1], de�ne u(h) := 	(Ih r). By the chain rule of di�erentia-tion, we obtain
u0(h) = 5X

i=2 ri@	@ri (Ih r) :Since u(1) = 	(r), the Fundamental Theorem of Calculus yields
	(r) = u(0) + Z 1

0 u0(h) dh :
According to Lemma 4.2 (ii), we have u(0) = 0 and hence (4.14) follows. Analogously,let v(h) := �(Ih r) for h 2 [0; 1] and note that

�(r) = v(0) + Z 1
0 v0(h) dh :

Comparing the partial derivatives of � and 	 given in Lemma 4.3 and 4.5, respectively,we obtain @�@rk (r) = 18�p1� r2k + 14 @	@rk (r)for k = 2; 3; 4; 5. Thus,Z 1
0 v0(h) dh = 5X

k=2 rk
Z 1
0 @�@rk (Ih r) dh

= 18� 5X
k=2 rk

Z 1
0 1p1� r2kh2 dh + 14 5X

k=2 rk
Z 1
0 @	@rk (Ih r) dh

= 18� 5X
k=2 arcsin rk + 	(r)4 ;
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where the last equality follows from (4.14) and
rk Z 1

0 1p1� r2kh2 dh = Z rk0 1p1� t2 dt = arcsin rk :
According to Lemma 4.2 (ii), we have

v(0) = �14 + 12� arcsin r1��14 + 12� arcsin r6�;
and thus (4.15) follows. Now (4.16) is an immediate consequence of (4.15) and the factthat x 7! arcsinx is an odd function.
Note that, for k = 2; 3; 4; 5, the derivative of h 7! @	@rk (Ih r) is continuous on [0; 1] andhence bounded. Furthermore, for �xed r 2 R, upper and lower bounds can be given ina closed form, which allows to evaluate the integrals in (4.14) numerically to any desiredprecision.
4.3 Asymptotic properties
Next, we relate the asymptotics of special sequences in R to the asymptotics of thecorresponding values of 	. At the end of this section, we specialize the results to deriveasymptotics of zero crossing covariances.In order to state the main result in Theorem 4.8, we de�ne asymptotic equivalence ofvector-valued sequences: Let (r(k))k2N and (s(k))k2N be sequences of vectors in Rn, wherer(k) = (r1(k); r2(k); : : : ; rn(k)) and s(k) = (s1(k); s2(k); : : : ; sn(k)) for k 2 N. We writer(k) � s(k)and say (r(k))k2N and (s(k))k2N are asymptotically equivalent i� ri(k) � si(k) for alli 2 f1; 2; : : : ; ng. For the proof of Theorem 4.8, we need the following lemma.Lemma 4.7. For every r = (r1; r2; r3; r4; r5; r6) 2 R,@2�@2r2 (I0 r) = @2�@2r3 (I0 r) = @2�@2r4 (I0 r) = @2�@2r5 (I0 r) = r1r64�2p(1� r21)(1� r26) ;@2�@r2@r3 (I0 r) = @2�@r4@r5 (I0 r) = �r14�2p(1� r21)(1� r26) ;@2�@r2@r4 (I0 r) = @2�@r3@r5 (I0 r) = �r64�2p(1� r21)(1� r26) ;@2�@r2@r5 (I0 r) = @2�@r3@r4 (I0 r) = 14�2p(1� r21)(1� r26) :
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Proof. Let k; l 2 f2; 3; 4; 5g. According to Lemma 4.3, there exist unique i; j 2 f1; 2; 3; 4gsuch that @�@rk (r) = 12� f(r) �14 + 12� g(r)�, where
f(r) := 1p1� r2k and g(r) := arcsin �ij(r)p�ii(r)�jj(r) :

Note that f(I0 r) = 1 and @f@rl (I0 r) = 0. Consequently,
@2�@rk@rl (I0 r) = 14�2 @g@rl (I0 r) :

Since �ij(I0 r) = 0 and the �rst derivative of x 7! arcsinx in 0 is equal to 1, we obtain
@2�@rk@rl (I0 r) = 14�2p�ii(I0 r)�jj(I0 r) @�ij@rl (I0 r)

With the expressions for �ii, �jj and �ij given in Lemma 4.3, the statement follows.
Theorem 4.8. Let (r(k))k2N be a sequence in R. If there exists a function f : N ! Rwith limk!1 f(k) = 0 and a vector � = (�1; �2; �3; �4; �5; �6) 2 R6 with j�1j; j�6j < 1such that r(k) � (�1; �2 f(k); �3 f(k); �4 f(k); �5 f(k); �6), then

	(r(k)) � (f(k))2 q(�)2�2p(1� �21)(1� �26) + O�(f(k))4� ;
where q(�) := �1�6P5i=2 �2i � 2�1(�2�3 + �4�5)� 2�6(�2�4 + �3�5) + 2(�2�5 + �3�4).
Proof. Let r(k) = (r1(k); r2(k); r3(k); r4(k); r5(k); r6(k)). According to Corollary 4.4,any partial derivative of � with respect to r2, r3, r4, r5 exists on the entire R. Therefore,according to Taylor's Theorem, we �nd for each k 2 N an h1(k) 2 [0; 1] such that
�(r(k)) = �(I0 r(k)) + 5X

i=2 ri(k)@�@ri (I0 r(k)) + 12 5X
i;j=2 ri(k)rj(k) @2�@ri@rj (I0 r(k))

+ 16 5X
i;j;l=2 ri(k)rj(k)rl(k) @3�@ri@rj@rl (I0 r(k))

+ 124 5X
i;j;l;m=2 ri(k)rj(k)rl(k)rm(k) @4�@ri@rj@rl@rm � (I0 + h1(k)(I1 � I0)) r(k) � :
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Furthermore, using the fact that I0 I�1 = I0, we �nd an h2(k) 2 [�1; 0] such that
�(I�1 r(k)) = �(I0 r(k)) � 5X

i=2 ri(k)@�@ri (I0 r(k)) + 12 5X
i;j=2 ri(k)rj(k) @2�@ri@rj (I0 r(k))

� 16 5X
i;j;l=2 ri(k)rj(k)rl(k) @3�@ri@rj@rl (I0 r(k))

+ 124 5X
i;j;l;m=2 ri(k)rj(k)rl(k)rm(k) @4�@ri@rj@rl@rm � (I0 � h2(k)(I�1 � I0)) r(k) � :

Since I0 + h(I1 � I0) = Ih and I0 + h(I�1 � I0) = I�h for all h 2 [0; 1], we obtain
2�(r(k)) + 2�(I�1 r(k)) = 4�(I0 r(k)) + 2 5X

i;j=2 ri(k)rj(k) @2�@ri@rj (I0 r(k))
+ 112 5X

i;j;l;m=2 ri(k)rj(k)rl(k)rm(k) @4�@ri@rj@rl@rm (Ih1(k) r(k))
+ 112 5X

i;j;l;m=2 ri(k)rj(k)rl(k)rm(k) @4�@ri@rj@rl@rm (Ih2(k) r(k)) :(4.17)
Note that ri1(k) ri2(k) : : : rin(k) � �i1�i2 : : : �in(f(k))n for all i1; i2; : : : ; in 2 f2; 3; 4; 5gwith n 2 N. Thus, inserting the asymptotically equivalent expressions for r2(k), r3(k),r4(k), r5(k) into (4.17) yields
2�(r(k)) + 2�(I�1 r(k)) � 4�(I0 r(k)) + 2 (f(k))2 5X

i;j=2�i�j @2�@ri@rj (I0 r(k))
+ 112 (f(k))4 5X

i;j;l;m=2�i�j�l�m @4�@ri@rj@rl@rm (Ih1(k) r(k))
+ 112 (f(k))4 5X

i;j;l;m=2�i�j�l�m @4�@ri@rj@rl@rm (Ih2(k) r(k)) :
According to the de�nition of 	, we obtain

	(r(k)) � 2 (f(k))2 5X
i;j=2�i�j @2�@ri@rj (I0 r(k)) + (f(k))4R(k) ;(4.18)
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where
R(k) = 112 5X

i;j;l;m=2 �i�j�l�m� @4�@ri@rj@rl@rm (Ih1(k) r(k)) + @4�@ri@rj@rl@rm (Ih2(k) r(k))
� :

Note that j�1j; j�6j < 1 implies I0� = (�1; 0; 0; 0; 0; �6) 2 R. Hence, according toCorollary 4.4, the partial derivatives of second order of � exist and are continuous atI0�. Since limk!1 I0 r(k) = I0�, we obtain
limk!1 @2�@ri@rj (I0 r(k)) = @2�@ri@rj (I0�)for all i; j 2 f2; 3; 4; 5g. Thus, I0 r(k) in (4.18) can be replaced by I0�. Inserting theexpressions from Lemma 4.7 with r = � into (4.18) yields

	(r(k)) � 2(f(k))2 q(�)4�2p(1� �21)(1� �26) + (f(k))4R(k) ;
with q(�) as given in the statement of the theorem. Now, it only remains to showthat (f(k))4R(k) = O�(f(k))4� or, equivalently, supk2NR(k) < 1. Since the sequences(r(k))k2N and (I�1 r(k))k2N both have the limit I0�, the set

S := fI0�g [ [
k2Nfr(k); I�1 r(k)gis closed in R6. Furthermore, because S � R � [�1; 1]6, we obtain that S is compact.Consequently, also the convex hull �S of S (that is, the set containing all convex combi-nation of points in S) is compact. According to Corollary 4.4, the partial derivatives offourth order of � with respect to r2, r3, r4, r5 are continuous on the entire R. Hence,

sup @4�@ri@rj@rl@rm ( �S ) < 1
for all i; j; l;m 2 f2; 3; 4; 5g. Now, note that, for all k 2 N and h 2 [�1; 1], we haveIh r(k) = 1+h2 r(k) + 1�h2 I�1 r(k). Thus, Ih r(k) is a convex combination of r(k) andI�1 r(k), which shows that Ih r(k) is an element of �S. The proof is complete.
A special case. In the remaining part of this section, we apply Theorem 4.8 to vectorsr = (r1; r2; r3; r4; r5; r6) 2 R satisfying r1 = r6 and r2 = r5.For r = (r1; r2; r3; r4) 2 (�1; 1)4, de�ne ��(r) := (r1; r2; r3; r4; r2; r1). Furthermore, letR� := �r 2 (�1; 1)4 �� ��(r) 2 R	 :
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For r 2 R�, de�ne
	�(r) := 	(��(r)) :(4.19)

Note that r = (r1; r2; r3; r4) 2 R� if and only if
�(��(r)) =

0BB@
1 r1 r2 r3r1 1 r4 r2r2 r4 1 r1r3 r2 r1 1

1CCA
is strictly positive de�nite. Furthermore, ��((1� h) r+ h s) = (1� h) ��(r) + h��(s) forall r; s 2 R� and h 2 [0; 1]. Since R is convex, it follows that R� is convex.The reason for introducing R� and 	� is that, for all # 2 � and k > 1, the correlationmatrix of (Y1; Y2; Yk+1; Yk+2) measured with respect to P# is an element of �(��(R�)). Inparticular, according to (4.10),

#(k) = 	�(�#(1); �#(k); �#(k + 1); �#(k � 1)) :(4.20)
In order to evaluate 	�(r) numerically, we can apply Theorem 4.6 to the evaluation of	(��(r)). The next corollary is a special case of Theorem 4.8.
Corollary 4.9. Let (r(k))k2N be a sequence in R� and assume f : N ! R is a functionwith limk!1 f(k) = 0.
(i) If r(k) � (�1; �2 f(k); �3 f(k); �4 f(k)) for some vector � = (�1; �2; �3; �4) withj�1j < 1, then

	�(r(k)) � (f(k))2 q(�)2�2(1� �21) + O�(f(k))4� ;
where q(�) := �21(2�22 + �23 + �24)� 4�1�2(�3 + �4) + 2(�22 + �3�4).(ii) If f(k + 1) � �f(k) for some � 6= 0 and there exists an � with j�j < 1 such thatr(k) � (�; f(k); f(k + 1); f(k � 1)), then

	�(r(k)) � (f(k))2 (2� �(� + ��1))22�2(1� �2) + O�(f(k))4� :
(iii) If the assumptions of (ii) hold with � = 1, then

	�(r(k)) � 2 (f(k))2 (1� �)�2(1 + �) + O�(f(k))4� :
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Proof. (i) follows by Theorem 4.8 and the fact that, under the assumptions, ��(r(k)) isasymptotically equivalent to (�1; �2 f(k); �3 f(k); �4 f(k); �2 f(k); �1).(ii) is a special case of (i) where r(k) � (�; f(k); � f(k); f(k)=�) and thusq(�; 1; �; 1=�) = �2(2 + �2 + ��2)� 4�(� + ��1) + 4= (2� �(� + ��1))2 :Now, (iii) is obvious.
4.4 Bounds and approximations
Bounds. Under certain conditions on r = (r1; r2; r3; r4) 2 R�, Theorem 4.11 belowshows that lower and upper bounds for 	�(r) are obtained by setting r2; r3; r4 equal tor3 and r4, respectively. In the context of zero crossing covariances, where (r1; r2; r3; r4) =(�#(1); �#(k); �#(k + 1); �#(k � 1)), the bounds are obtained by setting the correlationsbetween (Y1; Y2) and (Yk+1; Yk+2) equal to the correlations between Y1 and Yk+2 andbetween Y2 and Yk+1, respectively.For the proof of Theorem 4.11, we need the following lemma.Lemma 4.10. For every r = (r1; r2; r3; r4) 2 R�,@	�@r2 (r) = 2�2p1� r22 arcsin �13(��(r))p�11(��(r))�22(��(r)) ;@	�@r3 (r) = 1�2p1� r23 arcsin �23(�

�(r))�22(��(r)) ;@	�@r4 (r) = 1�2p1� r24 arcsin �14(�
�(r))�11(��(r))and �11(��(r)) = 1� r21 � r22 � r24 + 2r1r2r4 ;�22(��(r)) = 1� r21 � r22 � r23 + 2r1r2r3 ;�13(��(r)) = r2 � r1r3 + r2r3r4 � r32 � r1r4 + r2r21 ;�14(��(r)) = r3 � 2r1r2 + r4r22 � r3r24 + r4r21 ;�23(��(r)) = r4 � 2r1r2 + r3r22 � r4r23 + r3r21 :

Proof. The expressions for �ij(��(r)) are special cases of the expressions given in Lemma4.3. By the chain rule of di�erentiation, we obtain@	�@r2 (r) = @	@r2 (��(r)) + @	@r5 (��(r)) and @	�@rk (r) = @	@rk (��(r)) for k = 3; 4:
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Since �11(��(r)) = �44(��(r)), �22(��(r)) = �33(��(r)) and �13(��(r)) = �24(��(r)) (seeLemma 4.3), we obtain the result according to Lemma 4.5.Theorem 4.11. Let r = (r1; r2; r3; r4) 2 R� with r4; r2 � r3 � 0. For h 2 [0; 1], de�nesh := (1� h) � r+ h � (r1; r3; r3; r3) and th := (1� h) � r+ h � (r1; r4; r4; r4).
(i) If 1 + r1 � 2r3 > 0 and �13(��(sh)), �14(��(sh)) � 0 for all h 2 [0; 1], then

	�(r) � 	�(r1; r3; r3; r3) :
(ii) If 1 + r1 � 2r4 > 0 and �13(��(th)), �23(��(th)) � 0 for all h 2 [0; 1], then

	�(r1; r4; r4; r4) � 	�(r) :
Proof. (i) Note that the set of eigenvalues of �(��(r1; r3; r3; r3)) is given by f1 � r1;1+ r1+2r3; 1+ r1� 2r3g. Under the assumptions, each eigenvalue is strictly larger than0, which shows that �(��(r1; r3; r3; r3)) is strictly positive de�nite (see Horn and Johnson[49], p. 398) and hence (r1; r3; r3; r3) 2 R�. Since R� is convex, we have sh 2 R� for allh 2 [0; 1], and thus f(h) := 	�(sh) is well-de�ned for all h 2 [0; 1]. Because f(0) = 	�(r)and f(1) = 	�(r1; r3; r3; r3), it is su�cient to show that h 7! f(h) is monotonicallydecreasing on [0; 1] or, equivalently,

f 0(h) = (r3 � r2) @	�(sh)@r2 + (r3 � r4) @	�(sh)@r4 � 0
for all h 2 [0; 1]. Since r3 � r2 � 0 and r3 � r4 � 0, Lemma 4.10 shows that a su�cientcondition for this inequality to hold is �13(��(sh)) � 0 and �14(��(sh)) � 0 for all h 2 [0; 1].(ii) Analogously, de�ne g(h) := 	�(th) and note that a su�cient condition for

g0(h) = (r4 � r2) @	(th)@r2 + (r4 � r3) @	(th)@r3 � 0
to hold is given by �13(��(th)) � 0 and �23(��(th)) � 0 for all h 2 [0; 1].Remark 4.12. As the proof of Theorem 4.11 shows, a su�cient condition for strictinequality in (i) is given by r4 > r3 and �14(��(sh)) > 0 for some h 2 [0; 1], or r2 > r3 and�13(��(sh)) > 0 for some h 2 [0; 1]. Similarly, a su�cient condition for strict inequalityin (ii) is given by r4 > r3 and �23(��(th)) > 0 for some h 2 [0; 1], or r4 > r2 and�13(��(th)) > 0 for some h 2 [0; 1].
The next lemma gives easily veri�able conditions for the assumptions of Theorem 4.11.Lemma 4.13. Let r = (r1; r2; r3; r4) 2 R� and sh, th as de�ned in Theorem 4.11. Ifr1 � 0 and r2; r3; r4 � 0, then �13(sh), �14(sh) > 0 and �13(th), �23(th) > 0 for allh 2 [0; 1].
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Proof. Let h 2 [0; 1] and (s1; s2; s3; s4) = sh. Note that s1 � 0 and s2, s3, s4 2 [0; 1).Since �13(��(sh)) � s2 � s32 and �14(��(sh)) � s3 � s3s24 (see Lemma 4.10), we obtain�13(sh), �14(sh) > 0. For (t1; t2; t3; t4) = th, we have t1 � 0 and t2, t3, t4 2 [0; 1). Because�13(��(th)) � t2 � t32 and �23(��(th)) � t4 � t4t23, the statement follows.
Approximations. Next, we analyze approximations of the lower and upper bounds for	�(r) established by Theorem 4.11. Let R�� be the set of r = (r1; r2) 2 (�1; 1)2 suchthat ���(r) := (r1; r2; r2; r2) 2 R� or, equivalently,

�(���(r)) =
0BB@

1 r1 r2 r2r1 1 r2 r2r2 r2 1 r1r2 r2 r1 1
1CCA

is strictly positive de�nite. Note that the set of eigenvalues of �(���(r)) is given byf1� r1; 1+ r1+2r2; 1+ r1�2r2g. Since a matrix is strictly positive de�nite if and only ifall its eigenvalues are greater than 0 (see Horn and Johnson [49], p. 398), R�� is given byR�� = � (r1; r2) 2 (�1; 1)2 �� 2 jr2j < 1 + r1 	 :(4.21)For r 2 R��, de�ne���(r) := �(���(r)) and 	��(r) := 	(���(r)) :If (r(k))k2N is a sequence in R�� with r(k) � (�1; �2 f(k)) for a function f : N ! Rwith limk!1 f(k) = 0 and �1; �2 2 R with j�1j < 1, then the asymptotics of 	��(r(k)) isobtained by Corollary 4.9 (iii), namely,
	��(r(k)) � 2 (f(k))2 (1� �)�2(1 + �) + O�(f(k))4� :(4.22)

Let r 2 R��. In order to evaluate 	��(r) numerically, we can use the integral representa-tion for 	(���(r)) given in (4.14). Because of the special structure of ���(r), this integralrepresentation has a very simple form: Note that �ii(���(r)) = (1� r1)(1 + r1 � 2r22) fori = 1; 2; 3; 4, and �13(���(r)) = �14(���(r)) = �23(���(r)) = �24(���(r)) = r2(1� r1)2 (seeLemma 4.3). Therefore, according to Lemma 4.5,@	@rk (���(r)) = 1p1� r22 arcsin r2(1� r1)1 + r1 � 2r22for k = 2; 3; 4; 5. Inserting these expressions into (4.14) yields
	��(r) = 4 r2�2 Z 1

0 1�2p1� r22 arcsin r2(1� r1)h1 + r1 � 2r22h2 dh(4.23)
= 4�2 Z r20 1p1� t2 arcsin (1� r1) t1 + r1 � 2t2 dt :
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By analyzing the expression on the right hand side of (4.23), we immediately obtain thefollowing statement.
Corollary 4.14.
(i) For every r = (r1; r2) 2 R��,

	��(r) � 0 and 	��(r1; r2) = 	��(r1;�r2) :
(ii) If (r1; r2); (r01; r02) 2 R�� satisfy r01 � r1 and r02 � r2 < 0, then

	��(r1; r2) � 	��(r01; r02) :
As the following theorem shows, 	��(r) can be approximated monotonically from belowby successively adding further terms of the Taylor expansion of 	��(r) at (r1; 0). For theproof, we need the partial derivative of ��� with respect to r2. By the expressions for thepartial derivatives of � given in Lemma 4.3, we obtain

@�@rk (���(r)) = 12�p1� r22
�14 + 12� arcsin r2(1� r1)1 + r1 � 2r22

�
for k = 2; 3; 4; 5. Hence, according to the chain rule of di�erentation,

@���@r2 (r) = @�@r2 (���(r)) + @�@r3 (���(r)) + @�@r4 (���(r)) + @�@r5 (���(r))(4.24)
= 2�p1� r22

�14 + 12� arcsin r2(1� r1)1 + r1 � 2r22
� :

Theorem 4.15. For every r = (r1; r2) 2 R��,
@l���@lr2 (r1; 0) � 0 for all l 2 N0 ;(4.25)

	��(r) = 4 1X
l=1 r2l2(2l)! @2l���@2lr2 (r1; 0) :(4.26)

Proof. Let r = (r1; r2) 2 R��. Since the orthant probability ���(r1; 0) is non-negative,(4.25) is true for l = 0. Now, let f(x) := 12� arcsinx for x 2 (�1; 1). Furthermore,de�ne g1(x) := x(1 � r1), g2(x) := 11+r1�2x2 , g(x) := g1(x)g2(x) and h(x) := f(g(x)) forx 2 (�1+r12 ; 1+r12 ). According to (4.21), we have jr2j < 1+r12 , so (4.24) yields
@���@r2 (r) = f 0(r2) + 4f 0(r2)h(r2) :
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By Leibniz's rule, we obtain
@l���@lr2 (r1; 0) = f (l)(0) + 4 lX

k=1
� l � 1k � 1

�f (k)(0)h(l�k)(0)
for l 2 N. As a well-known fact, x 7! arcsinx has the power series expansion

arcsinx = 1X
n=0 3 � 5 � : : : � (2n� 1)2 � 4 � : : : � (2n) � (2n+ 1) x2n+1

for x 2 (�1; 1) (see Bronshtein and Semendyayev [20], p. 24), so f (l)(0) � 0 for all l 2 N.Therefore, in order to prove (4.25), it is su�cient to show that h(l)(0) � 0 for all l 2 N.Let g2(x) = f2(f1(x)) with f1(x) := 1 + r1 � 2x2 and f2(x) := 1x . For each l 2 N, we canwrite g(l)2 (0) = (f2 � f1)(l)(0) as the sum of terms f (k)2 (f1(0)) � f (i1)1 (0) � f (i2)1 (0) � : : : � f (ik)1 (0)with k; i1; i2; : : : ; ik 2 N which satisfy i1 + i2 + : : : + ik = l. Because f (l)1 (0) 6= 0 only ifl 2 f0; 2g, each term can only be non-zero if i1 = i2 = : : : = ik = 2. Since f (k)2 (f1(0)) =(�1)kk!(1 + r1)�(k+1) and f (2)1 (0) = �4, we obtain g(l)2 (0) � 0. Now, because g(k)1 (0) 6= 0only if k = 1, applying Leibniz's rule yields g(l)(0) = l�g(1)1 (0)�g(l�1)2 (0) = l�(1�r1)�g(l�1)2 (0)and hence g(l)(0) � 0 for all l 2 N. For each l 2 N, we can write h(l)(0) = (f � g)(l)(0)as the sum of products consisting of factors of the form f (k)(g(0)) = f (k)(0) and g(m)(0)with k;m 2 N. Thus, h(l)(0) � 0.In order to prove (4.26), note that f and g have power series expansions at 0 with theradius of convergence 1 and 1+r12 , respectively, and the image of the interval (�1+r12 ; 1+r12 )under g is a subset of (�1; 1). By elementary properties of power series, the mapping@���@r2 (r1; �) = f 0(�) + 4f 0(�)f(g(�)) has a power series expansion at 0 with the radius ofconvergence 1+r12 , and the same holds for ���(r1; �). Since r2 2 (�1+r12 ; 1+r12 ), we obtain
	��(r) = 2���(r) + 2���(r1;�r2)� 4���(r1; 0)

= 2 1X
l=0 r

l2l! @l���@lr2 (r1; 0) + 2 1X
l=0 (�r2)ll! @l���@lr2 (r1; 0)� 4���(r1; 0)

= 4 1X
l=1 r2l2(2l)! @2l���@2lr2 (r1; 0) :

The proof is complete.
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When the order is small, closed-form expressions for the partial derivatives of ��� at (r1; 0)can be obtained manually. For larger orders, we can use computer algebra systems. Forinstance, the derivatives of second, fourth and sixth order are given by@2���@2r2 (r1; 0) = 1� r1�2(1 + r1) ;(4.27)
@4���@4r2 (r1; 0) = 4(1� r1)(2 + r1)2�2(1 + r1)3 ;(4.28)
@6���@6r2 (r1; 0) = 16(1� r1)(7 + 6r1 + 2r21)2�2(1 + r1)5 :(4.29)

4.5 The variance of the empirical zero crossing rate
In this section, we apply the previous results to the analysis of the variance of empiricalzero crossing rates. Recall formula (4.3),

Var#(ĉn) = 1n2�n #(0) + 2 n�1X
k=1(n� k) #(k)� :

In order to evaluate Var#(ĉn) numerically, we can use formulas (4.5) and (4.6) for thecomputation of #(0) and #(1). For k > 1, formula (4.20) yields
#(k) = 	�(�#(1); �#(k); �#(k + 1); �#(k � 1)) ;

and the right hand side can be evaluated numerically using the integral representation of	 and 	�, respectively, given in (4.14).When n is large, an \exact" numerical evaluation of #(k) for every k = 0; 1; : : : ; n � 1is time-consuming. A quick way for getting approximate values of Var#(ĉn) is to use ap-proximations of #(k) in terms of the function 	��. Due to a smaller number of numericalintegrations to be performed, evaluating 	�� takes less than half of the time required forthe evaluation of 	�. In Corollaries 4.16 and 4.17 below we give su�cient conditions onk 7! �#(k) such that
	��(�#(1); �#(k + 1)) < #(k) < 	��(�#(1); �#(k � 1)) :

In this case, approximating #(k) by 	��(�#(1); �#(k + 1)) and 	��(�#(1); �#(k � 1)),respectively, yields lower and upper bounds for Var#(ĉn). A further speed-up can beachieved by using the �nite-order approximations of 	�� provided by Theorem 4.15. Forinstance, when the autocorrelations of Y are not too large, one can use the approximation
#(k) � 2(1� �#(1))�2(1 + �#(1)) (�#(k))2
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which only includes the partial derivative of ��� of second order (see (4.27)). Note thatthe fraction does not depend on k and thus only needs to be computed once.An alternative method for computing approximate values of Var#(ĉn) is to use the exactvalues of #(k) for k = 2; 3; : : : until the relative error of the approximations falls belowa given threshold � > 0. After that, we use the approximations of #(k). If the relativeerror does not get larger than � anymore, then also the relative error of the resultingapproximation of Var#(ĉn) is not larger than �. For the calculations behind Figures 5.1-5.3 in Section 5.2 and for the computation of the con�dence intervals in Section 5.4, wehave used this method with the threshold � = 0:001.
Corollary 4.16. Let k0 2 N and # 2 �. We have #(k) > 	��(�#(1); �#(k + 1)) for allk > k0 if one of the following conditions is satis�ed:
(i) �#(1) < 0, 1 + �#(1) + 2 �#(k0 + 2) > 0 and �#(k) < �#(k + 1) < 0 for all k � k0.(ii) There exists some a 2 (�1; 1) n f0g with �#(1) = a and �#(k) = ak for all k � k0.

Proof. (i) Let k > k0. According to formula (4.20) and Lemma 4.2 (i), we have
#(k) = 	�(�#(1); �#(k); �#(k + 1); �#(k � 1))= 	�(�#(1); ��#(k); ��#(k + 1); ��#(k � 1)) :

Furthermore, ��#(k � 1);��#(k) > ��#(k + 1) > 0 and
1 + �#(1) + 2 �#(k + 1) � 1 + �#(1) + 2 �#(k0 + 2) > 0 :

Therefore, according to Lemma 4.13, Theorem 4.11 (i) and Remark 4.12,
	�(�#(1); ��#(k); ��#(k + 1); ��#(k � 1)) > 	��(�#(1); ��#(k + 1)) :

(ii) Let k > k0. According to Lemma 4.2 (i), we have
#(k) = 	�(a; ak; ak+1; ak�1) = 	�(�a; �ak; ak+1; ak�1)= 	�(�a; ak; �ak+1; �ak�1) :

Thus, without loss of generality, we may assume that a > 0. For h 2 [0; 1], let
sh := �

a; (1� h) � ak + h � ak+1; ak+1; (1� h) � ak�1 + h � ak+1 � :
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By elementary but tedious computations, we obtain
�13(��(sh)) = (1� a)2 ak h �a+ a2k(1� h)(1� h(1� a))� ;�14(��(sh)) = (1� a)2 ak�1 h �a2 � a2k(1� h)(1� h(1� a2))� ;

so it is easy to see that �13(��(sh)) � 0 and �14(��(sh)) � 0 for all h 2 [0; 1], with strictinequality for h > 0. Furthermore, ak�1;ak > ak+1 > 0 and 1+a�2ak+1 > 0. Therefore,according to Theorem 4.11 (i) and Remark 4.12,
	�(a; ak; ak+1; ak�1) > 	��(a; ak+1) :

The proof is complete.
Corollary 4.17. Let k0 2 N and # 2 �. We have #(k) < 	��(�#(1); �#(k � 1)) for allk > k0 if one of the following conditions is satis�ed:
(i) �#(1) < 0, 1 + �#(1) + 2 �#(k0) > 0 and �#(k) < �#(k + 1) < 0 for all k � k0.
(ii) There exists some a 2 (�1; 1) n f0g with �#(1) = a and �#(k) = ak for all k � k0.
Proof. (i) The proof is similar to the proof of Corollary 4.16 (i).(ii) By the same argument as in the proof of Corollary 4.16 (ii), we may assume that
a > 0. For h 2 [0; 1], de�ne

th := �
a; (1� h) � ak + h � ak�1; (1� h) � ak+1 + h � ak�1; ak�1 � :

By elementary but tedious computations, we obtain
�13(��(th)) = (1� a)2 ak�3 h �a2 + a2k(1� h)(a(1� h) + h)� ;�23(��(th)) = (1� a)2 ak�1 �1 + (1� h)(2a� h(1� h)a2k)�+ (1� a)2 ak�3 (1� h) �a4 � h2a2k� ;

which shows that �13(��(th)); �23(��(th)) � 0 for all h 2 [0; 1], with strict inequality forh > 0. Clearly, ak�1;ak > ak+1 > 0 and 1 + a� 2ak�1 > 0. Thus, the statement followsfrom Theorem 4.11 (ii) and Remark 4.12.
Note that numerical experiments suggest that the conclusions of Corollaries 4.16 and 4.17are valid under more general conditions. However, we do not have a rigorous proof atthis time. The di�culty is to verify the assumptions of Theorem 4.11. As the proofs ofCorollaries 4.16 (ii) and 4.17 (ii) show, this can be hard even for a very simple structureof k 7! �#(k).
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Asymptotic properties. According to Corollary 4.9, we obtain the following statementon the asymptotics of Var#(ĉn).
Theorem 4.18. Let # 2 �. Suppose there exists a function f : N ! R such that�#(k) � f(k).
(i) If jf(k)j = o(k��) with � > 12 , then �2

# := #(0) + 2P1k=1 #(k) <1 and
Var#(ĉn) � �2

# n�1 :
(ii) If f(k) = �k� 1

2 for some � 2 (�1; 1) n f0g, then
Var#(ĉn) � 4�2(1� �#(1))�2(1 + �#(1)) lnnn :

(iii) If f(k) = �k�� for some � 2 (�1; 1) n f0g and � 2 (0; 12), then
Var#(ĉn) � 4�2(1� �#(1))�2(1 + �#(1))(1� 2�) n�2� :

Proof. (i) According to Corollary 4.9 (i), we have #(k) = O((f(k))2), which shows thatP1k=1 j#(k)j <1. By the Dominated Convergence Theorem, we obtain
n�1X
k=1 n� kn #(k) � limn!1 1X

k=1 max
�n� kn ; 0	 #(k)

= 1X
k=1 limn!1max�n� kn ; 0	 #(k) = 1X

k=1 #(k) :
Now, with formula (4.3), the result follows.(ii) Note that f(k) � f(k + 1) and thus, according to Corollary 4.9 (iii),

#(k) � 2�2 (1� �#(1))�2(1 + �#(1)) k�1 :
Using the fact that Pn�1k=1 k�1 � lnn, we obtain

n�1X
k=1 #(k) � 2�2 (1� �#(1))�2(1 + �#(1)) lnn :(4.30)
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Furthermore,n�1X
k=1 #(k)�

n�1X
k=1 n� kn #(k) = n�1X

k=1 kn #(k)
� 1n n�1X

k=1 2�
2 (1� �#(1))�2(1 + �#(1)) = o(lnn)

which shows that n�1X
k=1 #(k) � n�1X

k=1 n� kn #(k) :
According to formula (4.3), we obtain

Var#(ĉn) � 2n n�1X
k=1 #(k) ;and together with (4.30) the statement follows.(iii) The proof is similar to (ii), using the fact that Pn�1k=1 k�2� � 11�2� n1�2�.In the following section, we investigate further properties of the quantity �2

# in (i). Asshown by numerical experiments, the expressions in (ii) and (iii) are \good" approxima-tions of Var#(ĉn) only if n is extremely large.
4.6 Asymptotic variance
Consider the subset �0 of � given by�0 := �

# 2 � j There exist a function f : N! R and some � > 12with �#(k) � f(k) and jf(k)j = o(k��) 	 :Let # 2 �0. By Corollary 4.9 (i) we obtain that j#(k)j = o(k�1). Therefore,
�2
# := #(0) + 2 1X

k=1 #(k)is well-de�ned and �nite. In the remaining part of this chapter, we establish furtherproperties of �2
#. Theorem 4.22 gives su�cient conditions on k 7! �#(k) such that �2

#is strictly positive. In the case where �0 is a subset of R and I is a compact subset of�0, Theorem 4.24 gives su�cient conditions on k 7! �#(k) such that # 7! n � Var#(ĉn)converges to # 7! �2
# uniformly on I, and # 7! �2

# is continuous on I. In Section 5.3, wewill apply these results to derive con�dence intervals for #. In order to prove Theorem4.22, we �rst show the following three lemmas.
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Lemma 4.19. If R 2 R3�3 is a symmetric Toeplitz matrix with all entries on the maindiagonal equal to 1, that is,
R =

0@ 1 r1 r2r1 1 r1r2 r1 1
1A

for some r1; r2 2 R, then 12�2 + r2 �p8r21 + r22 � is an eigenvalue of R.
Proof. The result is obtained by simple algebraic calculation.
Lemma 4.20. For (x; y) 2 [�1; 1]2, let

f(x; y) := 14 � 3�2 (arcsinx)2 + 1� arcsin y :
If x 2 [�1; 0] and maxfx; 2x2 � 1g � y � 0, then f(x; y) � 0.
Proof. Clearly, y 7! f(x; y) is increasing on [maxfx; 2x2 � 1g; 0] for every x 2 [�1; 0],so we only need to show f(x;maxfx; 2x2 � 1g) � 0 for x 2 [�1; 0], or, equivalently,f1(x) := f(x; 2x2�1) � 0 for all x 2 [�1;�12 ] and f2(x) := f(x; x) � 0 for all x 2 [�12 ; 0].Clearly, f1 and f2 are continuous on [�1;�12 ] and [�12 ; 0], respectively, and f1(�1) =f1(12) = f2(12) = 0. By elementary calculus we obtain that f1 has a unique extremal pointin (sin(��=3); 112) and f2 is increasing on [�12 ; 0], which yields the statement.
Lemma 4.21. For every x 2 [�1; 1],

g(x) := 12� arcsinx2 � 1�2 (arcsinx)2 � 0 :
Proof. Since g(x) = g(�x), we may assume x 2 [�1; 0]. Clearly, g(�1) = g(0) = 0. Thus,it su�ces to show that there exists an x0 2 [�1; 0] with g0(x) � 0 for all x 2 (�1; x0) andg0(x) � 0 for all x 2 (x0; 0). Note that, for x 2 (�1; 0),

g0(x) = 2h(x)�2p1� x4
where h(x) := x�=2�p1 + x2 arcsinx. By elementary calculus we obtain

h00(x) = �3x� 2x3 + x5 � (1� x2) 32 arcsinx(1� x4) 32 � 0
for x 2 (�1; 0), which shows that h is convex on (�1; 0). Now, because limx!�1 h(x) > 0and limx!0 h(x) = 0, the statement follows.
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Theorem 4.22. Let # 2 �0. We have �2
# > 0 if one of the following conditions issatis�ed:

(i) j�#(1)j < sin(�=p12 ) and �#(k) = 0 for all k > 1.
(ii) 1 + �#(1) + 2 �#(3) > 0 and �#(k) < �#(k + 1) < 0 for all k 2 N.
(iii) There exists some a 2 (�1; 1) with �#(k) = ak for all k 2 N.
Proof. (i) By Lemma 4.2 (ii), we obtain #(k) = 	�(�#(1); 0; 0; 0) = 0 for all k > 1.Thus, according to formulas (4.5) and (4.6),

�2
# = #(0) + 2 #(1) = 14 � 3�2 (arcsin �#(1))2 :

Under the assumptions, the latter expression is strictly positive.(ii) Let k > 1. By Corollary 4.16, we obtain #(k) > 	��(�#(1); �#(k + 1)). Thus,according to Corollary 4.14 (i), #(k) > 0. It remains to show that #(0) + 2 #(1) � 0.Note that, according to formulas (4.5) and (4.6),
#(0) + 2 #(1) = f(�#(1); �#(2))

with f as de�ned in Lemma 4.20. Since �#(1); �#(2) 2 (�1; 0) and �#(1) < �#(2), weonly need to show that 2(�#(1))2 � 1 � �#(2). By the model assumptions (M1)-(M3) onp. 42, Y is non-degenerate and Gaussian. Therefore, the matrix0@ 1 �#(1) �#(2)�#(1) 1 �#(1)�#(2) �#(1) 1
1A

is strictly positive de�nite (see Theorem 2.4 (i)). Since the eigenvalues of a strictly positivede�nite matrix are greater than 0 (see Horn and Johnson [49], p. 398), Lemma 4.19 yields
12� 2 + �#(2)�p8(�#(1))2 + (�#(2))2 � > 0

and thus �#(2) > 2(�#(1))2 � 1.(iii) If a = 0, then the statement follows according to (i). Otherwise, Corollary 4.16 (ii)and Corollary 4.14 (i) yield #(k) > 0 for all k > 1. Furthermore, since #(1) = g(a;a2)with the function g as de�ned in Lemma 4.21 (compare to (4.6)), we obtain #(1) � 0.Clearly, #(0) � 0 (see (4.5)), and thus the proof is complete.
For the proof of Theorem 4.24, we need the following lemma.
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Lemma 4.23. Assume X is a topological space and I � X with I 6= ; is compact. If(gk)k2N is a sequence of continuous mappings from I onto R and there exists a � > 12 withjgk(xk)j = o(k�2�) for every sequence (xk)k2N in I, then the sequence of mappings (fn)n2Ngiven by
fn(x) := 1n n�1X

k=1(n� k) gk(x)
for n 2 N and x 2 I uniformly converges to the mapping f given by

f(x) := 1X
k=1 gk(x)

for x 2 I, and f is continuous on I.
Proof. Note that P1k=1 jgk(x)j < 1 for every x 2 I, so f is well-de�ned. Since gk iscontinuous on I for every k 2 N, there exists a sequence (xk)k2N in I satisfying jgk(x)j �jgk(xk)j for all k 2 N and x 2 I. With this we obtain

��f(x)� fn(x)�� = ��� n�1X
k=1 kn gk(x) + 1X

k=n gk(x) ���
= ��� 1X

k=1 min
�k=n; 1	 gk(x) ���

� 1X
k=1 min

�k=n; 1	 ��gk(x)��
� 1X

k=1 min
�k=n; 1	 ��gk(xk)��

for all x 2 I, that is, the absolute di�erence between f and fn on I is uniformly boundedby P1k=1min�k=n; 1	 ��gk(xk)��. Since jgk(xk)j = o(k�2�), we obtain P1k=1 ��gk(xk)�� < 1and thus, according to the Dominated Convergence Theorem,
limn!1 1X

k=1 min
�k=n; 1	 ��gk(xk)�� = 1X

k=1 limn!1min�k=n; 1	 ��gk(xk)�� = 0 ;
which shows that fn converges to f uniformly on I. Obviously, fn is continuous on I forevery n 2 N. Since the limit of a uniformly converging sequence of continuous mappingson a compact set is again a continuous mapping, it follows that f is continuous.
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Theorem 4.24. Suppose � is a subset of R. Furthermore, let I � �0 with I 6= ; becompact, and suppose # 7! �#(k) is continuous on I for every k 2 Z.Then # 7! n � Var#(ĉn) converges to # 7! �2
# uniformly on I as n ! 1 and # 7! �2

# iscontinuous on I if one of the following conditions is satis�ed:
(i) There exist a k0 2 N and a function � : N! R with �(1) > �1 and j�(k)j = o(k��)for some � > 12 such that, for every # 2 I,

(a) 1 + �#(1) + 2 �#(k0) > 0,(b) �#(1) < 0 and �#(k) < �#(k + 1) < 0 for all k � k0,(c) �(1) � �#(1) and �(k) � �#(k) for all k � k0.(ii) There exists a k0 2 N such that the following is valid: for every # 2 I, we �nd some
a 2 (�1; 1) with �#(1) = a and �#(k) = ak for all k � k0.

Proof. De�ne gk(#) := #(k) for k 2 Z and # 2 I. Furthermore, let
fn(#) := 1n n�1X

k=1(n� k) gk(#) and f(#) := 1X
k=1 gk(#)for n 2 N and # 2 I. Note that n �Var#(ĉn) = g0(#) + 2fn(#) and �2

# = g0(#) + 2f(#).Thus, according to Lemma 4.23, it is su�cient to show that # 7! #(k) is continuous onI for all k � 0 and that there exists a � > 12 such that
j#k(k)j = o(k�2�)(4.31)

for every sequence (#k)k2N in I.First, we establish continuity of # 7! #(k). For k = 0 and k = 1, this is an immediateconsequence of formulas (4.5), (4.6) and the assumption that # 7! �#(k) is continuous on Ifor every k 2 Z. In order to establish continuity for k > 1, letm 2 N and t1; t2; : : : ; tm 2 Z.Suppose (#k)k2N is a convergent sequence in I, and let #� := limk!1 #k. Under theassumptions, # 7! �#(ti � tj) is continuous on I and thus
limk!1Corr#k(Yti ; Ytj) = Corr#�(Yti ; Ytj)

for all i; j = 1; 2; : : : ;m. Since Y is zero-mean Gaussian and has unit variance for every
# 2 I (see model assumption (M3), p. 42), Theorem 2.4 (iv) shows that the distributionof (Yt1 ; Yt2 ; : : : ; Ytm) measured with respect to P#k converges to that of (Yt1 ; Yt2 ; : : : ; Ytm)measured with respect to P#� . Now, let Bi = [0;1) or Bi = (�1; 0] for i = 1; 2; : : : ;m.Since @(B1 �B2 � : : :�Bm) = f0g has Lebesgue-measure 0, we obtain
P#k(Yt1 2 B1; Yt2 2 B2; : : : ; Ytm 2 Bm) �! P#�(Yt1 2 B1; Yt2 2 B2; : : : ; Ytm 2 Bm)
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as k !1, which shows that
# 7! P#(Yt1 2 B1; Yt2 2 B2; : : : ; Ytm 2 Bm)(4.32)is continuous on I. According to equation (4.7), # 7! #(k) with k > 1 can be written asthe sum and product, respectively, of mappings as given in (4.32). Therefore, # 7! #(k)is continuous on I.In order to establish (4.31), let (#k)k2N be a sequence in I. First, we assume that (i)holds. By Corollaries 4.16 (i) and 4.17 (i) we obtain	��(�#(1); �#(k + 1)) < #(k) < 	��(�#(1); �#(k � 1))for all k > k0 and # 2 I. Since 	��(r) � 0 for every r 2 R�� (see Corollary 4.14 (i)), itfollows that j#k(k)j � 	��(�#k(1); �#k(k � 1))for all k > k0. Under the assumptions, �(k)! 0 as k !1. Therefore, we �nd a k1 � k0such that 2j�(k)j < 1 + �(1) and thus (�(1); �(k)) 2 R�� for all k � k1 (see (4.21)). Since�(1) � �#k(1) and �(k � 1) � �#k(k � 1) < 0 for all k > k1, Corollary 4.14 (ii) yields	��(�#k(1); �#k(k � 1)) � 	��(�(1); �(k � 1))for all k > k1. According to (4.22), we have 	��(�(1); �(k� 1)) = O((�(k))2). Therefore,	��(�(1); �(k � 1)) = o(k�2�)and hence the statement follows.Now, we assume that (ii) holds. Let # 2 I and a 2 (�1; 1) be such that �#(k) = ak fork = 1 and k � k0. If a = 0, then Lemma 4.2 (ii) shows that 	��(�#(1); �#(k + 1)) =#(k) = 	��(�#(1); �#(k � 1)) = 0 for all k > k0. Otherwise, Corollaries 4.16 (ii) and4.17 (ii) yield 	��(�#(1); �#(k+ 1)) < #(k) < 	��(�#(1); �#(k� 1)) for all k > k0. Bythe same argument as above, we obtainj#k(k)j � 	��(�#k(1); �#k(k � 1))for all k > k0. Since I is compact and # 7! �#(1) is continuous, amax := max#2I j�#(1)j iswell-de�ned and lies in [0; 1). Note that �amax � �#k(1) and �ak�1max � �j�#k(k � 1)j < 0for all k > k0. Therefore, according to Corollary 4.14 (ii),	��(�#k(1); �#k(k � 1)) � 	��(�amax; �ak�1max)for all k > k0. By (4.22) we obtain 	��(�amax; �ak�1max) = O(a2kmax), and hence	��(�amax; �ak�1max) = o(k�2�)for every � > 12 . The proof is complete.
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Chapter 5
The case d=2
In this chapter, we focus on ordinal patterns of order d = 2. The framework of analysis isthe same as in the previous chapters: X = (Xt)t2Z is a family of real-valued measurablemappings de�ned on a measurable space (
;A) which is equipped with a non-empty familyof probability measures (P#)#2�. By Y = (Yt)t2Z we denote the process of incrementsgiven by Yt := Xt �Xt�1 for t 2 Z. We always assume that Y satis�es the modelassumptions (M1)-(M3) on p. 42. For # 2 � and k 2 Z, let �#(k) = Corr#(Y0; Yk)denote the autocorrelations of Y.In Section 5.1, we establish a simple relation between the ordinal patterns of order d = 2and changes between \upwards" and \downwards". Using the results of Chapter 4, weevaluate the variance of estimators of ordinal pattern probabilities. Examples are givenin Section 5.2.In Section 5.3, we consider the estimation of the parameter # in the case where � is asubset of R and the probability of a change is strictly monotone in #. Under additionalassumptions on the autocorrelations ofY, we derive asymptotic con�dence intervals for #.We apply the results to the estimation of the Hurst parameter in FBM, of the fractionaldi�erencing parameter in ARFIMA(0,d,0) processes and of the autoregressive coe�cientin AR(1) processes.In Section 5.4, we evaluate the performance of the parameter estimates in a simulationstudy. Furthermore, we consider the distribution of the number of changes between\upwards" and \downwards" in equidistant discretizations of FBM. It turns out thatthe distribution is very irregular when the Hurst parameter is large.Note that in the case d = 1, the estimation of ordinal pattern probabilities is \trivial". Inparticular, pr(�) = 12 for r = (0; 1) and r = (1; 0). Furthermore, p̂r;n is consistently equalto 12 for all n 2 N. According to this argument, we consider the simplest non-trivial casein this chapter.
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5.1 Changes between \upwards" and \downwards"
For t 2 Z, de�ne

C(t) := 1fXt�Xt+1<Xt+2g + 1fXt<Xt+1�Xt+2g :
We may regard C(t) as the indicator for a change, either from \downwards" to \upwards"(whenXt � Xt+1 andXt+1 < Xt+2), or from \upwards" to \downwards" (whenXt < Xt+1and Xt+1 � Xt+2). In terms of the increments, C(t) can be written as

C(t) = 1fYt+1�0; Yt+2>0g + 1fYt+1>0; Yt+2�0g :(5.1)
Thus, changes between \upwards" and \downwards" in X are equivalent to zero-crossingsin Y.As illustrated by Table 5.1, a change from \downwards" to \upwards" is equivalent to anoccurrence of the ordinal patterns (2; 0; 1) or (0; 2; 1), that is,

Xt � Xt+1 < Xt+2 if and only if �(t) = (2; 0; 1) or �(t) = (0; 2; 1) :
A change from \upwards" to \downwards" is equivalent to an occurrence of (1; 2; 0) or(1; 0; 2), that is,

Xt < Xt+1 � Xt+2 if and only if �(t) = (1; 2; 0) or �(t) = (1; 0; 2) :
The event \no change" is equivalent to an occurrence of the patterns (2; 1; 0) or (0; 1; 2).Consequently, the indicator for a change can be written as

C(t) = 1f�(t)=(2;0;1)g + 1f�(t)=(0;2;1)g + 1f�(t)=(1;2;0)g + 1f�(t)=(1;0;2)g ;(5.2)
and the indicator for \no change" as

1� C(t) = 1f�(t)=(2;1;0)g + 1f�(t)=(0;1;2)g :(5.3)
With the set �r de�ned on p. 47, these relations can be represented in a more compactform, namely,

C(t) = ( 1f�(t)2�rg if r 2 �(2; 0; 1); (0; 2; 1); (1; 2; 0); (1; 0; 2)	1� 1f�(t)2�rg if r 2 �(2; 1; 0); (0; 1; 2)	 :(5.4)
The probability of a change. Since (Yt)t2Z is stationary for every # 2 � (see modelassumption (M2)) and C(t) is a measurable function of Yt+1 and Yt+2 for every t 2 Z (see(5.1)), we immediately obtain the following statement.
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(2; 1; 0) (2; 0; 1) (0; 2; 1) (1; 2; 0) (1; 0; 2) (0; 1; 2)
Table 5.1: Ordinal patterns of order d = 2.

Corollary 5.1. The process (C(t))t2Z is stationary for every # 2 �.As in Chapter 4, let c(�) denote the probability of a change in X or, equivalently, of azero-crossing in Y, that is,
c(#) := P#(C(t) = 1)(5.5)

for # 2 �. Since the process (C(t))t2Z is stationary for every # 2 �, c(#) does notdepend on the speci�c time point t on the right hand side of (5.5). According to equation(4.4) on p. 69, we have
c(#) = 12 � 1� arcsin �#(1)(5.6)

for # 2 �. Thus, the higher the �rst-order autocorrelation of Y, the lower the proba-bility of a change. In particular, when the �rst-order autocorrelation tends to �1, theprobability of a change tends to 1, and when the �rst-order autocorrelation tends to 1,the probability of a change tends to 0.Next, we show how the probability of a change is related to ordinal pattern probabilities.Note that, for any r 2 Sd with d 2 N, the ordinal patterns in �r have the same probability(see the discussion in Section 3.3). In particular,
P#(�(t) = (2; 0; 1)) = P#(�(t) = (0; 2; 1))= P#(�(t) = (1; 2; 0)) = P#(�(t) = (1; 0; 2))

and
P#(�(t) = (2; 1; 0)) = P#(�(t) = (0; 1; 2))

for every # 2 �. Furthermore, according to (5.2) and (5.3),
P#(C(t) = 1) = P#(�(t) = (2; 0; 1)) + P#(�(t) = (0; 2; 1))+ P#(�(t) = (1; 2; 0)) + P#(�(t) = (1; 0; 2))

and
1� P#(C(t) = 1) = P#(�(t) = (2; 1; 0)) + P#(�(t) = (0; 1; 2)) ;
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which shows that
pr(#) = ( 14 c(#) if r 2 �(1; 0; 2); (1; 2; 0); (0; 2; 1); (2; 0; 1)	12 (1� c(#)) if r 2 �(2; 1; 0); (0; 1; 2)	(5.7)

for every # 2 �.According to (5.7), any ordinal pattern probability in the case d = 2 is an a�ne functionof the probability of a change. By inserting the expression for c(�) given in (5.6) intothe right hand side of (5.7), we obtain closed-form expressions for pr(�). Note that theseexpressions have been �rst derived in Bandt and Shiha [12].
Estimating the probability of a change. As in Chapter 4, let ĉn denote the estimatorfor the probability of a change given by

ĉn := 1n n�1X
t=0 C(t) :According to (5.4), we have

ĉn = 1n n�1X
t=0
�1f�(t)=(2;0;1)g + 1f�(t)=(0;2;1)g + 1f�(t)=(1;2;0)g + 1f�(t)=(1;0;2)g�

= 1n n�1X
t=0
�1� 1f�(t)=(2;1;0)g � 1f�(t)=(0;1;2)g� :

Therefore, by the de�nition of p̂r;n (see (3.13) on p. 50),
p̂r;n = ( 14 ĉn if r 2 �(1; 0; 2); (1; 2; 0); (0; 2; 1); (2; 0; 1)	12 (1� ĉn) if r 2 �(2; 1; 0); (0; 1; 2)	 :(5.8)

This shows that, in the case d = 2, any reasonable estimator of ordinal pattern probabil-ities (\reasonable" in the sense of Theorem 3.5) is an a�ne function of ĉn. In particular,
Var#(p̂r;n) = ( 116 Var#(ĉn) if r 2 �(1; 0; 2); (1; 2; 0); (0; 2; 1); (2; 0; 1)	14 Var#(ĉn) if r 2 �(2; 1; 0); (0; 1; 2)	

and thus the results on the variance of ĉn established in Chapter 4 can be used to evaluatethe variance of p̂r;n. On the other hand, ĉn has essentially the same statistical propertiesas p̂r;n. Thus, according to the results of Chapter 3, we obtain the following statement.
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Corollary 5.2.
(i) ĉn is an unbiased estimator of c(�).
(ii) If �#(k) ! 0 as k ! 1 for every # 2 � and h : [0; 1] ! R is continuous on anopen set containing c(�), then h(ĉn) is a strongly consistent estimator of h(c(�)).If, additionally, h is bounded on [0; 1], then h(ĉn) is an asymptotically unbiasedestimator of h(c(�)).
(iii) If j�#(k)j = o(k��) for some � > 12 and h : [0; 1] ! R has a non-vanishing �rstderivative at c(#), thenpn �h(ĉn)� h(c(#)) � P#�! N(0; �2

#[h0(c(#))]2 ) ;where
�2
# := #(0) + 2 1X

k=1 #(k)and #(k) := Cov#(C(0); C(k)) for k 2 Z.
Proof. (i) is an immediate consequence of Corollary 5.1.(ii) Let r = (2; 0; 1). (For any other choice of r 2 Sd with d = 2, the proof is similar.)According to (5.7) and (5.8), we have

ĉn = 4 p̂r;n and c(#) = 4 pr(#) for every # 2 �.
Now, let ~h(x) := h(4x) for x 2 [0; 1]. Under the assumptions, Theorem 3.8 shows that~h(p̂r;n) is a strongly consistent (asymptotically unbiased) estimator of ~h(pr(�)), and thush(ĉn) is a strongly consistent (asymptotically unbiased) estimator of h((�)).(iii) Under the assumptions, the mapping ~h de�ned in the proof of (ii) has a non-vanishing�rst derivative at pr(#). Therefore, according to Corollary 3.17,pn � ~h(p̂r;n)� ~h(pr(#)) � P#�! N(0; ~�2

#[~h0(pr(#))]2 ) ;where
~�2
# := ~#(0) + 2 1X

k=1 ~#(k)and ~#(k) := 1(] �r)2 Cov#(1f�(0)2�rg; 1f�(k)2�rg) for k 2 Z. Now, note that ~h(p̂r;n) = h(ĉn),~h(pr(#)) = h(c(#)) and [~h0(pr(#))]2 = 16 [h0(c(#))]2. Since ] �r = 4 and 1f�(t)2�rg = C(t)for every t 2 Z, we obtain ~�2
# = 116 �2

#, and thus the proof is complete.
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5.2 Examples
In this section, we consider the estimation of the probability of a change in equidistantdiscretizations of FBM and in processes where the increments are ARFIMA(0,d,0) andAR(1). In particular, we use the results of Chapter 4 to evaluate the variance of ĉn.
Equidistant discretizations of FBM. Suppose that� = (0; 1) and, for every # 2 �,Y measured with respect to P# is standard FGN with the Hurst parameter #. As inSection 3.5, we write H instead of #.According to the de�nition of FGN, the �rst-order autocorrelation of Y measured withrespect to PH is given by

�H(1) = 22H�1 � 1(5.9)
for H 2 (0; 1) (see Section 2.2.3). By formula (5.6) and the fact that

arcsinx = 2arcsinp(1 + x)=2� �2for x 2 [�1; 1], we obtain
c(H) = 12 � 1� arcsin �H(1) = 1� 2� arcsin 2H�1(5.10)

for H 2 (0; 1). Equation (5.10) shows that the higher the Hurst parameter, the lowerthe probability of a change. Since arcsin 12 = �6 and arcsin 1 = 0, we obtain c(H)! 23 as
H ! 0 and c(H)! 0 as H ! 1. In Section 5.3, we use the monotonic relation between
H and c(H) to derive an estimator for the Hurst parameter.Note that the sample paths of FBM with the Hurst parameter H almost surely haveHausdor� dimension 2 �H (see Proposition 2.5 in Taqqu [96]). Therefore, the Hurstparameter is often regarded as a measure for the \roughness" of FBM. The monotonicrelation between H and c(H) shows that the Hurst parameter is also a measure for theroughness of equidistant discretizations of FBM: the higher the Hurst parameter, thelower the number of changes in the sample paths.Next, let us investigate the variance of ĉn. According to equation (4.3) in Chapter 4, wehave

VarH(ĉn) = 1n2�n H(0) + 2 n�1X
k=1(n� k) H(k)� ;

where
H(k) := CovH(C(0); C(k))
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Figure 5.1: VarH(ĉn) for H 2 (0; 1) and n = 10; 11; : : : ; 100.
for k 2 Z. Using formulas (4.5) and (4.6), we can compute H(0) and H(1). For k > 1,H(k) can be represented in terms of the mapping 	� de�ned in (4.19), namely,

H(k) = 	�(�H(1); �H(k); �H(k + 1); �H(k � 1))(5.11)
(see (4.20)). Using the integral representation of 	� given in Theorem 4.6, we can evaluatethe right hand side of (5.11) numerically. As explained in Section 4.5, when n is large andthus an \exact" numerical evaluation of #(k) for k = 0; 1; : : : ; n � 1 is time-consuming,approximate methods can be used.For H = 12 , we obtain a simple closed-form expression for VarH(ĉn). Since �H(k) = 0 forevery k 2 N (see Lemma 2.7 (i)), formulas (4.5) and (4.6) yield H(0) = 14 and H(1) = 0.Furthermore, according to Lemma 4.2 (ii), 	�(0; 0; 0; 0) = 0 and hence H(k) = 0 fork > 1. (This can also be seen from the fact that Y1; Y2; : : : are uncorrelated and thusindependent, and C(0), C(k) depend on the disjoint blocks (Y1; Y2) and (Yk+1; Yk+2),respectively.) Thus, altogether, we have VarH(ĉn) = 1n H(0) = 14n .Figure 5.1 displays VarH(ĉn) for H 2 (0; 1) and n = 10; 11; : : : ; 100. As can be seen, thevariance of ĉn is particularly high for large values of the Hurst parameter, but decreasesto 0 asH tends to 1. The reason for the latter is that, according to (5.10), the probabilityof a change tends to 0 as H tends to 1. Therefore, the probability that ĉn is equal to 0tends to 1, and hence the variance of ĉn decreases to 0.Next, we investigate asymptotic properties of VarH(ĉn). Let H 2 (0; 1). For k 2 N,de�ne f(k) := k�(2�2H). According to Lemma 2.7 (ii), we have �H(k) �H(2H�1)f(k).We distinguish three cases:
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(i) If H < 34 , then 2� 2H > 12 and thus, according to Theorem 4.18 (i),
VarH(ĉn) � �2

H n�1 ;
where �2

H := H(0) + 2P1k=1 H(k) <1.
(ii) IfH = 34 , then 2�2H = 12 . Thus, according to Theorem 4.18 (ii) and the expressionfor �H(1) given in (5.9),

VarH(ĉn) � 4 (H(2H � 1))2(1� �H(1))�2(1 + �H(1)) lnnn
= 9 (p2� 1)16 �2 lnnn :

(iii) If H > 34 , then 2� 2H < 12 and thus, according to Theorem 4.18 (iii),
VarH(ĉn) � 4 (H(2H � 1))2(1� �H(1))�2(1 + �H(1))(1� 2(2� 2H)) n�2(2�2H)

= 4 (H(2H � 1))2(22�2H � 1)�2 (4H � 3) n4H�4 :
ARFIMA(0,d,0) processes. Let � = (�12 ; 12). As in Section 3.5, we write d insteadof # for # 2 (�12 ; 12). Suppose Y measured with respect to Pd is an ARFIMA(0,d,0)process with the fractional di�erencing parameter d. According to the de�nition ofARFIMA(0,d,0) processes, the �rst-order autocorrelation of Y measured with respectto Pd is given by

�d(1) = d1� d
for d 2 (�12 ; 12) (see Section 2.2.4). By formula (5.6), we obtain

c(d) = 12 � 1� arcsin d1� d ;(5.12)
which shows that the higher the fractional di�erencing parameter, the lower the proba-bility of a change.In order to evaluate the variance of ĉn, we proceed as for equidistant discretizations ofFBM in the previous paragraph. By the same argument as in the case H = 12 , weobtain that Vard(ĉn) = 14n if d = 0. Figure 5.2 displays Vard(ĉn) for d 2 (�12 ; 12) andn = 10; 11; : : : ; 100. The picture is very similar to Figure 5.1. In particular, the variance
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Figure 5.2: Vard(ĉn) for d 2 (�12 ; 12) and n = 10; 11; : : : ; 100.
of ĉn is high when d is large and tends to 0 as d tends to 12 . Again, the reason for thelatter is that the probability of a change tends to 0.Let d 2 (�12 ; 12). Similarly as in the previous paragraph, we derive asymptotic propertiesof Vard(ĉn). De�ne f(k) := k�(1�2d) for k 2 N, and note that �d(k) � �(1�d)�(d) f(k) (seeLemma 2.8 (i)). According to Theorem 4.18, we distinguish the following three cases:
(i) If d < 14 , then �2

d := d(0) + 2P1k=1 d(k) <1 and
Vard(ĉn) � �2

d n�1 :
(ii) If d = 14 , then

Vard(ĉn) � 2 ��(34)�2�2 ��(14)�2 lnnn :
(iii) If d > 14 , then

Vard(ĉn) � 4 (�(1� d))2 (1� 2d)�2 (�(d))2 (4d� 1) n4d�2 :
AR(1) processes. Now, suppose that � = (�1; 1) and Y measured with respect to P#with # 2 � is an AR(1) process with the autoregressive coe�cient #. As in Section 3.5, we
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Figure 5.3: Vara(ĉn) for a 2 (�1; 1) and n = 10; 11; : : : ; 100.
write a instead of #. By the de�nition of AR(1) processes, the �rst order autocorrelationof Y measured with respect to Pa is given by�a(1) = afor a 2 (�1; 1) (see Section 2.2.5). Thus, according to formula (5.6),

c(a) = 12 � 1� arcsina(5.13)
for a 2 (�1; 1), which shows that the larger the autoregressive coe�cient a, the lower theprobability of a change c(a).Similarly as in the previous paragraphs, we can evaluate the variance of ĉn. In the case
a = 0 where �a(k) = 0 for every k 2 N, we obtain Vara(ĉn) = 14n by the same argumentas for d = 0 and H = 12 .Figure 5.3 displays Vara(ĉn) for a 2 (�1; 1) and n = 10; 11; : : : ; 100. Remarkably, thevariance of ĉn measured with respect to Pa is equal to the variance of ĉn measured withrespect to P�a for every n 2 N. In particular, one can show that a(k) = �a(k) for all
a 2 (�1; 1) and k 2 Z. For k = 0 and k = 1, this is a direct consequence of formulas(4.5) and (4.6). For k > 1, Lemma 4.2 (i) yieldsa(k) = 	�(�a(1); �a(k); �a(k + 1); �a(k � 1))= 	�(a; ak; ak+1; ak�1)= 	�(�a; (�a)k; (�a)k+1; (�a)k�1)= 	�(��a(1); ��a(k); ��a(k + 1); ��a(k � 1))= �a(k) :
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Since a(k) = a(�k), we obtain a(k) = �a(k) for all k 2 Z.Note that Vara(ĉn) decreases to 0 as a tends to �1 and 1, respectively. The reason forthis is that the probability of a change tends to 1 as a ! �1, and to 0 as a ! 0 (see(5.13)), and thus the probability that ĉn is constant tends to 1.Finally, let us derive asymptotic properties of Vara(ĉn). Let a 2 (�1; 1). For k 2 N,de�ne f(k) := ak. Clearly, �a(k) � f(k) and jf(k)j = o(k��) for any � > 12 . Thus,according to Theorem 4.18 (i),
Vara(ĉn) � �2

a n�1 ;where �2
a := a(0) + 2P1k=1 a(k) < 1. This shows that, in contrast to the previousexamples, the variance of ĉn in AR(1) processes decreases with a rate of n�1 for the entirerange of parameters.

5.3 Parameter estimates
Estimation of the �rst-order autocorrelation. Let �(�) denote the mapping whichassigns to # 2 � the �rst-order autocorrelation of Y measured with respect to P#, thatis,

�(#) := �#(1)(5.14)
for # 2 �. According to equation (5.6), we have

c(�) = 12 � 1� arcsin �(�) :(5.15)
Thus, �(�) and c(�) are monotonically related: the larger the �rst-order autocorrelation ofY, the lower the probability of a change. Using the fact that sin(�(12 � x)) = cos(�x) forall x 2 R, we can write equation (5.15) as

�(�) = cos(�c(�)) :(5.16)
Plugging the estimate ĉn of c(�) into the right hand side of (5.16), we obtain

�̂n := cos(�ĉn)(5.17)
as an estimate of �(�). By the model assumption that Y is non-degenerate for all # 2 �,we have c(�) � (0; 1). Furthermore, the mapping x 7! cos(�x) is bounded, continuousand has a non-vanishing �rst derivative at x for every x 2 (0; 1). Therefore, accordingto Corollary 5.2, if limk!1 �#(k) = 0 for all # 2 �, then �̂n is a strongly consistent andasymptotically unbiased estimator of �(�). If j�#(k)j = o(k��) for some � > 12 , then �̂nmeasured with respect to P# is asymptotically normally distributed.
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Note that the estimator �̂n of �(�) has been known for more than half a century. The ideato use empirical zero crossing rates for estimating second-order properties of stationaryprocesses (such as autocorrelations, dominant frequencies in the spectral domain, etc.)has attracted considerable attention in engineering, e.g., for speech recognition or theanalysis of vibrations. See Kedem [52, 53] and Section 1.1 in the introduction.Let us compare �̂n to the sample autocorrelation, given by
~�n := Pn�1t=1 (Yt � �Yn)(Yt+1 � �Yn)Pnt=1(Yt � �Yn)2 ;(5.18)

where �Yn := 1nPnt=1 Yt is the sample mean. Under the assumption that Y is stationaryGaussian, a su�cient condition for ~�n to be asymptotically normally distributed is that�#(k) = O(k��) for some � � 12 (see Hosking [50]). Note that in the case � = 12 , the rateof convergence is pn=plnn. If there exist � > 0 and 0 < � < 12 such that �#(k) � �k��,then the limit distribution is a Modi�ed Rosenblatt distribution.Note that ~�n does not require Y to be Gaussian, whereas �̂n is invariant with respect tomonotonic transformations of X. In Section 5.4, we compare the performance of ~�n and�̂n for the estimation of the �rst-order autocorrelation in Fractional Gaussian Noise. Itturns out that ~�n has a smaller variance but larger bias than �̂n.
Estimation of real-valued #. Suppose that � is a subset of R, and there exists afunction h : [0; 1]! R with h(c(#)) = #(5.19)for every # 2 �. Clearly, a su�cient condition for the existence of such a function his that # 7! c(#) is strictly monotone on � which, according to (5.15), is equivalent to
# 7! �(#) being strictly monotone. Plugging the estimate ĉn of c(�) into the left handside of (5.19), we obtain

#̂n := h(ĉn)as an estimate of #. Properties of this estimator can be derived by Corollary 5.2.Corollary 5.3.(i) If �#(k) ! 0 as k ! 1 for every # 2 � and h is continuous on an open setcontaining c(�), then #̂n is a strongly consistent estimator of #. If, additionally, his bounded, then #̂n is an asymptotically unbiased estimator of #.(ii) If j�#(k)j = o(k��) for some � > 12 and h has a non-vanishing �rst derivative atc(#), then pn (#̂n � #) P#�! N(0; �2
#[h0(c(#))]2 ) ;with �2

# as given in Corollary 5.2 (iii).
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Con�dence intervals. If #̂n is asymptotically normal and the limit distribution is non-degenerate, that is, �2
# given in Corollary 5.2 (iii) is strictly positive, then we can derivecon�dence intervals for #. As in Section 4.6, let �0 � � be given by

�0 := �
# 2 � j There exist a function f : N! R and some � > 12with j�#(k)j � f(k) and f(k) = o(k��) 	 :

Note that # 2 �0 implies that �2
# is well-de�ned and �nite (see Section 4.6). Now, let

# 2 �0 be such that �2
# > 0, and suppose h has a non-vanishing �rst derivative at c(#).Clearly,

s2# := �2
# [h0(c(#))]2is strictly greater than zero in this case. Thus, according to Corollary 5.3 (ii),pn (#̂n � #) = s# P#�! N(0; 1) :(5.20)

In the following, let ��1 denote the quantile function of the standard normal distribution.It is well-known that if Z is a standard normal random variable on some probabilityspace (
0;A0;P), then P(Z 2 (�1; ��1(�) ] ) = � for every � 2 (0; 1). Furthermore,��1(1� �) = ���1(�) for every � 2 (0; 1).For n 2 N and � 2 (0; 1), let the random interval Kn(�;#) � R be de�ned by
Kn(�;#) := �

#̂n � ��1(1� �=2) s#=pn ; #̂n + ��1(1� �=2) s#=pn � :
Note that
P#(# 2 Kn(�;#) ) = P#(pn (#̂n � #)=s# 2 [���1(1� �=2); ��1(1� �=2) ] )= P#(pn (#̂n � #)=s# 2 (�1; ��1(1� �=2) ] )� P#(pn (#̂n � #)=s# 2 (�1; ��1(�=2) ] ) :(5.21)

Since pn (#̂n�#)=s# converges in distribution to N(0; 1) (see (5.20)) and the boundariesof (�1; ��1(1��=2) ] and (�1; ��1(�=2) ] in R both have Lebesgue-measure zero, theprobabilities on the right hand side of (5.21) converge to 1 � �=2 and �=2, respectively,and thus
limn!1P#(# 2 Kn(�;#) ) = 1� � :(5.22)

This shows that Kn(�;#) is an asymptotic 100(1� �)% con�dence interval for #.In practice, the con�dence interval Kn(�;#) is not very useful because its computationrequires the knowledge of s2# and hence of #. However, if we know the true value of #,then we do not need a con�dence interval for it.
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Next, we study su�cient conditions under which s2# can be replaced by an estimate, thecomputation of which does not require the knowledge of #. De�ne
�̂2n := n � Var#̂n(ĉn)(5.23)

and
ŝ2n := (h0(ĉn))2 �̂2n :(5.24)

The following theorem establishes su�cient conditions for s2# to be strictly positive andfor ŝ2n to be a consistent estimator of s2#.Theorem 5.4. Let �+0 be a subset of �0 satisfying one of the following conditions:
(i) For every # 2 �+0 ,(a) 1 + �#(1) + 2 �#(3) > 0,(b) �#(k) < �#(k + 1) < 0 for all k 2 N.

Furthermore, if I � �+0 is non-empty and compact, then there exist a k0 2 N and afunction � : N! R with �(1) > �1 and j�(k)j = o(k��) for some � > 12 such that,for all # 2 I and k � k0, �(1) � �#(1) and �(k) � �#(k).
(ii) For every # 2 �+0 , there exists some a 2 (�1; 1) such that �#(k) = ak for all k 2 N.
Then �2

# > 0 for every # 2 �+0 . If, additionally, �+0 is an open set in R, the mapping
# 7! �#(k) is continuous on �+0 for every k 2 N, and h0 exists and is continuous on anopen set containing c(�+0 ), then

limn!1 ŝ2n = s2#
P#-almost surely for every # 2 �+0 .
Proof. The statement �2

# > 0 for every # 2 �+0 is an immediate consequence of Theorem4.22. Furthermore, Theorem 4.24 shows that if I � �+0 is compact, then # 7! n �Var#(ĉn)converges to # 7! �2
# uniformly on I as n ! 1, and # 7! �2

# is continuous on I. Now,let # 2 �+0 . The existence of h0 implies that h is continuous on an open set containingc(�+0 ), and thus limn!1 #̂n = # P#-almost surely (see Corollary 5.3 (i)). Consequently,there exist n0 2 N and � > 0 such that [# � �;# + �] � �+0 and #̂n 2 [# � �;# + �] forall n � n0 P#-almost surely. Since [#� �;#+ �] is compact, Theorem 4.24 yields
limn!1 �̂2n = �2

#
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P#-almost surely. Furthermore, according to Corollary 5.2 (ii),limn!1[h0(ĉn)]2 = [h0(c(#))]2
P#-almost surely. Altogether, limn!1 ŝ2n = s2# P#-almost surely for every # 2 �+0 , andhence the proof is complete.
Suppose there exists a non-empty subset �+0 of �0 such that the assumptions of Theorem5.4 are satis�ed. Let # 2 �+0 . According to Theorem 2.3.3 in Lehmann [68], replacing s2#in (5.20) by the consistent estimate ŝ2n has no e�ect on the limiting distribution. Thus,pn (#̂n � #) = ŝ2n P#�! N(0; 1) :Now, for n 2 N and � 2 (0; 1), de�neKn(�) := �

#̂n � ��1(1� �=2) ŝn=pn ; #̂n + ��1(1� �=2) ŝn=pn � :Analogously to (5.22), we obtain that Kn(�) is an asymptotic 100(1 � �)% con�denceinterval for #. We formally state this fact in the following corollary.Corollary 5.5. Suppose �+0 is a subset of �0 satisfying condition (i) or (ii) in Theorem5.4. Furthermore, suppose �+0 is an open set in R, the mapping # 7! �#(k) is continuouson �+0 for every k 2 N, and h0 exists and is continuous on an open set containing c(�+0 ).Then, for all � 2 (0; 1) and # 2 �+0 ,limn!1P#(# 2 Kn(�) ) = 1� � :
The main di�culty in determining the con�dence interval Kn(�) is the evaluation ofVar#̂n(ĉn), which is required for the computation of ŝ2n (see (5.23) and (5.24)). Whenn is large, an exact numerical evaluation can be time-consuming (see the discussion inSection 4.5). In order to speed-up computations, the variance of ĉn for certain parametervalues can be stored in a look-up table. If the outcome of #̂n is not among the parametervalues in the table, the corresponding value of the variance can be approximated byinterpolation.Clearly, in practice, the con�dence intervals obtained according to Corollary 5.5 shouldbe interpreted with caution. Firstly, even when # 2 �+0 and n is large, the probabilitythat Kn(�) covers # can be much lower than 1 � �. Secondly, if we cannot exclude apriori that # 2 � n�+0 , then the realization of Kn(�) basically does not allow to drawany conclusion on the true value of #.In Section 5.4, we provide simulations of the accuracy of con�dence intervals for the Hurstparameter in FBM, for the fractional di�erencing parameter in ARFIMA(0,d,0) processesand for the autoregressive coe�cient in AR(1) processes. It turns out that the coverage ofthese parameters is about 95% also when n is small and not all assumptions of Corollary5.5 are satis�ed.
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Estimating the Hurst parameter. Let h : [0; 1]! R be de�ned by
h(x) := max�0; log2(cos(�x=2)) + 1	(5.25)

for x 2 [0; 1]. Note that h is the maximum of two continuous functions and thus continuouson [0; 1]. Furthermore, h(x) = log2(cos(�x=2)) + 1 for x 2 [0; 23 ], and the �rst derivativeof h on (0; 23) is given by
h0(x) = � �2 ln 2 tan(�x=2)(5.26)

for x 2 (0; 23). According to the relation between the probability of a change c(H) andthe Hurst parameter H established in (5.10), we have
h(c(H)) = H(5.27)

forH 2 (0; 1). Plugging the estimate ĉn of c(�) into the left hand side of (5.27), we obtain
Ĥn := h(ĉn)

as an estimate of H . Properties of Ĥn and con�dence intervals for H are established bythe following corollary.Note that the asymptotic properties of Ĥn are the same if we replace h in the de�nitionof Ĥn with the mapping ~h : [0; 1] ! [�1;1] given by ~h(x) := log2(cos(�x=2)) + 1 forx 2 [0; 1]. For �nite sample sizes, however, the estimates of H might be negative or evenequal to negative in�nity.
Corollary 5.6. The estimator Ĥn has the following properties:
(i) Ĥn is a strongly consistent and asymptotically unbiased estimator of H.
(ii) If H < 34 , then pn (Ĥn �H) PH�! N(0; �2

H [h0(c(H))]2) ;
where h0 is given by (5.26) and

�2
H := H(0) + 2 1X

k=1 H(k)
with H(k) := CovH(C(0); C(k)) for k 2 Z.
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(iii) Let � 2 (0; 1). If H < 12 , then
Kn(�) := �

Ĥn � ��1(1� �=2) ŝn=pn ; Ĥn + ��1(1� �=2) ŝn=pn �
with ŝn given by

ŝ2n := (h0(ĉn))2 � n � VarĤn(ĉn)satis�es
limn!1PH(H 2 Kn(�) ) = 1� � :

Proof. (i) According to (5.10), the image of (0; 1) under c(�) is given by (0; 23). Further-more, h is continuous and hence bounded on [0; 1] (see (5.25)). Thus, the statement is animmediate consequence of Corollary 5.3 (i) and the fact that �H(k) ! 0 as k ! 1 forevery H 2 (0; 1) (see Lemma 2.7 (ii)).(ii) If H < 34 , then there exists a � > 12 such that j�H(k)j = o(k��) (for instance, we canchoose � = 54�H , see Lemma 2.7 (ii)). Since h0 is non-vanishing on (0; 23), the statementfollows by Corollary 5.3 (ii).(iii) We show that the conditions of Corollary 5.5 are satis�ed. Clearly, (0; 12) is an openset in R with the image (0; 12) under c(�), and h0 is continuous on (0; 12). According tothe de�nition of FGN, the mapping H 7! �H(k) is continuous on (0; 12) for every k 2 N(see Section 2.2.3). Moreover, �H(k) < �H(k + 1) < 0 for all k 2 N and H 2 (0; 12) (seeLemma 2.7 (iii)). By Lemma 2.7 (iv), we obtain that �H(k) > � 12k for all H 2 (0; 12)and k 2 N, which shows that
1 + �H(1) + 2 �H(3) > 22H�1 � 13 > 12 � 13 > 0

for every H 2 (0; 12). Now, let I � (0; 12) be compact. According to Lemma 2.7 (iv),there exists a function � : N ! R with �(1) > �1 and j�(k)j = o(k��) for some � > 12such that �(k) � �H(k) for all k 2 N and H 2 I. The proof is complete.
Let � 2 (0; 1). Since H is ranging in (0; 1), we have

PH(H 2 Kn(�) ) = PH(H 2 Kn(�) \ (0; 1) )
for allH 2 (0; 1) and n 2 N. Therefore, Kn(�) in Corollary 5.6 (iii) can be replaced withKn(�) \ (0; 1). Note that we may replace Kn(�) also with Kn(�) \ (0; 12). In practice,however, when we cannot assert a priori that H 2 (0; 12), it is preferable to take thecon�dence interval Kn(�) \ (0; 1) because it may cover H with a probability close to1� � also in the case H =2 (0; 12).
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Indeed, the simulations in Section 5.4 indicate that the conclusion of Corollary 5.6 (iii)is valid also for H 2 [12 ; 34) and thus for the whole range of parameters where Ĥn isasymptotically normally distributed (see Corollary 5.6 (ii)). For H � 34 , the simulationssuggest that PH(H 2 Kn(�) \ (0; 1) ) still converges to 1� � (or even to larger values),however, with a lower speed of convergence.Note that Ĥn has been known for some time as the Zero Crossings (ZC ) estimator ofthe Hurst parameter (according to the equivalence of zero crossings in Y and changesin X discussed in Section 5.1). Coeurjolly [28] resumes properties of Ĥn such as strongconsistency and asymptotic normality for H < 34 . Markovi�c and Koch [73] investigatesthe robustness of Ĥn in a simulation study and shows the application to the analysisof hydrological time series. Shi et al. [90] applies Ĥn to the analysis of atmosphericturbulence data.
Alternative estimation methods. There are various alternative methods for esti-mating the Hurst parameter. Some of these methods can be more generally applied, forexample, to the estimation of the index of selfsimilarity in selfsimilar process, or to theestimation of parameters in arbitrary parametric Gaussian models. For an overview, werefer to Beran [15] and Doukhan et al. [35]. Taqqu et al. [97] compares estimationmethods in a simulation study.Here, we briey mention some of the available methods. An important class of estimatorsis given by Maximum Likelihood (ML) estimates and approximations thereof, such as(approximate) Whittle estimates. These methods are well understood theoretically andknown to have asymptotic optimality properties. In practice, a drawback of ML methodsis that they are computationally intensive and thus time-consuming.Another class of estimators is given by semi-parametric methods. These include, for in-stance, estimates based on the rescaled range (R/S) statistic, on the periodogram (suchas the Local Whittle Estimators, see Robinson [85]), or on coe�cients of wavelet decom-positions (see Abry and Veitch [1]). Typically, semi-parametric methods do not require acomplete speci�cation of the model distribution, which makes the methods more robustand generally applicable, but usually also less e�cient. A disadvantage of semi-parametricmethods is that the estimates depend on certain tuning parameters which are di�cult toselect automatically.A simple estimator for the Hurst parameter has been proposed in Kettani and Gubner[63]. For x 2 [0; 1], de�ne

g(x) := max�0; 12(log2(1 + x) + 1)	 :(5.28)
According to (5.9), we have

g(�(H)) = H(5.29)
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for every H 2 (0; 1). The idea of Kettani and Gubner [63] is to plug the sample autocor-relation ~�n (see (5.18)) into the left hand side of (5.29), which yields the estimator
~Hn := g(~�n) :

Note that the ZC estimator Ĥn can be written as
Ĥn = g(�̂n)

where �̂n is the estimator of �(�) given in (5.17). Thus, ~Hn di�ers from Ĥn only by usinga di�erent estimator for �(�).In Section 5.4, we compare the performance of Ĥn and ~Hn in a simulation study. Similarto the results for �̂n and ~�n, the estimator Ĥn has a larger variance but smaller bias than~Hn. Note that the estimator ~Hn can be more generally applied to the estimation of theindex of self-similarity in (not necessarily Gaussian) selfsimilar processes with stationaryincrements. In contrast to Ĥn, however, ~Hn is not invariant with respect to monotonetransformations of the process.
Estimating the fractional di�erencing parameter. Let h : [0; 1] ! R be de�nedby

h(x) := max�0; cos(�x)1 + cos(�x)	(5.30)
for x 2 [0; 1]. Clearly, h is the maximum of two continuous mappings and thus continuouson [0; 1]. Note that h(x) = cos(�x)1+cos(�x) if x � 12 + 1� arcsin 13 , and the �rst derivative of h on(0; 12 + 1� arcsin 13) is given by

h0(x) = � � sin(�x)(1 + cos(�x))2(5.31)
for x 2 (0; 12 + 1� arcsin 13). According to the relation between the fractional di�erencingparameter d and the probability of a change c(d) established in (5.12), we have

h(c(d)) = d(5.32)
for d 2 (�12 ; 12). Plugging the estimate ĉn of c(�) into the left hand side of (5.32) yields

d̂n := h(ĉn)
as an estimate of d. Properties of d̂n and con�dence intervals for d are given in thefollowing corollary.
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Corollary 5.7. The estimator d̂n has the following properties:
(i) d̂n is a strongly consistent and asymptotically unbiased estimator of d.(ii) If d < 14 , then pn (d̂n � d) Pd�! N(0; �2

d [h0(c(d))]2) ;where h0 is given by (5.31) and
�2
d := d(0) + 2 1X

k=1 d(k)with d(k) := Covd(C(0); C(k)) for k 2 Z.(iii) Let � 2 (0; 1). If d < 0, thenKn(�) := �
d̂n � ��1(1� �=2) ŝn=pn ; d̂n + ��1(1� �=2) ŝn=pn �with ŝn given by ŝ2n := (h0(ĉn))2 � n � Vard̂n(ĉn)satis�es limn!1Pd(d 2 Kn(�) ) = 1� � :

Proof. (i) According to (5.12), the image of (0; 1) under c(�) is given by (0; 12+ 1� arcsin 13).Furthermore, h is continuous and thus bounded on [0; 1]. Therefore, the statement is animmediate consequence of Corollary 5.3 (i) and the fact that �d(k) ! 0 as k ! 1 forevery d 2 (�12 ; 12) (see Lemma 2.8 (i)).(ii) If d < 14 , then there exists a � > 12 with j�d(k)j = o(k��) (for instance, we maychoose � = 34 �d, see Lemma 2.8 (i)). Since h0 is non-vanishing on (0; 12 + 1� arcsin 13), thestatement follows by Corollary 5.3 (ii).(iii) We show that the conditions of Corollary 5.5 are satis�ed. Clearly, (�12 ; 0) is an openset in R with the image (0; 12) under c(�), and h0 is continuous on (0; 12). According to thede�nition of ARFIMA(0,d,0) processes, the mapping d 7! �d(k) is continuous on (�12 ; 0)for every k 2 N (see Section 2.2.4). Moreover, �d(k) < �d(k + 1) < 0 for all k 2 N and
d 2 (�12 ; 0) (see Lemma 2.8 (ii)). In particular,

1 + �d(1) + 2 �d(3) > 1 + 3 �d(1) = 1 + 2d1� d > 0
for every d 2 (�12 ; 0). Now, let I � (�12 ; 0) be compact. According to Lemma 2.8 (iii),there exists a function � : N ! R with �(1) > �1 and j�(k)j = o(k��) for some � > 12such that �(k) � �d(k) for all k 2 N and d 2 I. The proof is complete.
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Similar to the remark after Corollary 5.6, we may replace Kn(�) in Corollary 5.7 (iii) bythe con�dence interval Kn(�)\ (�12 ; 12). Note that the simulations in Section 5.4 suggestthat the conclusion of Corollary 5.7 (iii) is true for all d 2 (�12 ; 14), which correspondsto the whole range of parameters where d̂n is asymptotically normally distributed (seeCorollary 5.7 (ii)).
Estimating the autoregressive coe�cient. Consider the function h : [0; 1] ! Rde�ned by

h(x) := cos(�x)(5.33)
for x 2 [0; 1]. Clearly, h is continuous on [0; 1] and has the �rst derivative

h0(x) = �� sin(�x)(5.34)
for x 2 (0; 1). According to the relation between the autoregressive coe�cient a and theprobability of a change c(a) established in (5.13), we have

h(c(a)) = a(5.35)
for a 2 (�1; 1). By plugging the estimate ĉn of c(�) into the left hand side of (5.35), weobtain

ân := h(ĉn)
as an estimate of a. Note that ân is equal to the estimator �̂n of the �rst-order auto-correlation �(a) = a. The following corollary establishes properties of ân and con�denceintervals for the autoregressive coe�cient.
Corollary 5.8. The estimator ân has the following properties:
(i) ân is a strongly consistent and asymptotically unbiased estimator of a.
(ii) For every a 2 (�1; 1),pn (ân � a) Pa�! N(0; �2

a [h0(c(a))]2) ;where h0 is given by (5.34) and
�2
a := a(0) + 2 1X

k=1 a(k)with a(k) := Cova(C(0); C(k)) for k 2 Z.
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(iii) Let � 2 (0; 1). For every a 2 (�1; 1),
Kn(�) := �

ân � ��1(1� �=2) ŝn=pn ; ân + ��1(1� �=2) ŝn=pn �with ŝn given by
ŝ2n := (h0(ĉn))2 � n � Varân(ĉn)satis�es
limn!1Pa(a 2 Kn(�) ) = 1� � :

Proof. (i) According to (5.13), the image of (�1; 1) under c(�) is given by (0; 1). Fur-thermore, h is continuous and thus bounded on [0; 1]. Therefore, the statement is animmediate consequence of Corollary 5.3 (i) and the fact that �a(k) ! 0 as k ! 1 forevery a 2 (�1; 1) (see Section 2.2.5).(ii) Note that j�a(k)j = o(k��) for all a 2 (�1; 1) and any � > 12 (see Section 2.2.5).Since h0 is non-vanishing on (0; 1), the statement follows by Corollary 5.3 (ii).(iii) We show that the conditions of Corollary 5.5 are satis�ed. Clearly, (�1; 1) is anopen set in R with the image (0; 1) under c(�), and h0 is continuous on (0; 1). Moreover,according to the de�nition of AR(1) processes, �a(k) = ak for k 2 N and a 2 (�1; 1)(see Section 2.2.5) which in particular shows that a 7! �a(k) is continuous on (�1; 1) forevery k 2 N. The proof is complete.
5.4 Simulation studies
We use the pseudo random number generator of Matlab 7.6.0 and the algorithm of Daviesand Harte [33] for the simulation of stationary zero-mean Gaussian processes. For moreinformation on the algorithm and a comparison to other simulation methods, we refer toBardet et al. [13].
Estimation of the �rst-order autocorrelation in FGN. For di�erent sample sizesand values of the Hurst parameter, we generate each 100 000 sample paths of FGN andcompute the resulting estimates �̂n and ~�n of the �rst-order autocorrelation �(H) (see(5.17) and (5.18)). The sample mean and the sample standard deviation of the 100 000estimates are taken as estimates of the mean and of the standard deviation of �̂n and ~�n.
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Mean and standard deviation of �̂n:n = 100 n = 1000 n = 10 000
H �(H) � � � � � �0:05 �0:464 �0:459 0:120 �0:464 0:038 �0:464 0:0120:10 �0:426 �0:422 0:124 �0:426 0:039 �0:426 0:0120:15 �0:384 �0:381 0:128 �0:384 0:041 �0:384 0:0130:20 �0:340 �0:337 0:133 �0:340 0:043 �0:340 0:0130:25 �0:293 �0:289 0:138 �0:293 0:044 �0:293 0:0140:30 �0:242 �0:240 0:141 �0:242 0:045 �0:242 0:0140:35 �0:188 �0:185 0:146 �0:187 0:047 �0:188 0:0150:40 �0:129 �0:128 0:149 �0:129 0:048 �0:129 0:0150:45 �0:067 �0:066 0:153 �0:067 0:049 �0:067 0:0150:50 0:000 �0:000 0:155 0:000 0:050 0:000 0:0160:55 0:072 0:070 0:158 0:072 0:050 0:072 0:0160:60 0:149 0:147 0:160 0:148 0:051 0:149 0:0160:65 0:231 0:227 0:161 0:231 0:052 0:231 0:0160:70 0:320 0:315 0:164 0:319 0:054 0:320 0:0170:75 0:414 0:407 0:168 0:413 0:058 0:414 0:0200:80 0:516 0:504 0:173 0:513 0:066 0:515 0:0250:85 0:625 0:606 0:176 0:621 0:079 0:624 0:0380:90 0:741 0:712 0:175 0:732 0:093 0:738 0:0570:95 0:866 0:822 0:161 0:844 0:099 0:854 0:071
Mean and standard deviation of ~�n:n = 100 n = 1000 n = 10 000
H �(H) � � � � � �0:05 �0:464 �0:459 0:074 �0:463 0:023 �0:464 0:0070:10 �0:426 �0:421 0:076 �0:425 0:024 �0:426 0:0080:15 �0:384 �0:380 0:080 �0:384 0:025 �0:384 0:0080:20 �0:340 �0:337 0:083 �0:340 0:026 �0:340 0:0080:25 �0:293 �0:290 0:086 �0:293 0:027 �0:293 0:0090:30 �0:242 �0:240 0:088 �0:242 0:028 �0:242 0:0090:35 �0:188 �0:188 0:091 �0:188 0:029 �0:188 0:0090:40 �0:129 �0:132 0:094 �0:129 0:030 �0:129 0:0090:45 �0:067 �0:073 0:096 �0:067 0:031 �0:067 0:0100:50 0:000 �0:010 0:099 �0:001 0:032 �0:000 0:0100:55 0:072 0:056 0:101 0:070 0:032 0:071 0:0100:60 0:149 0:124 0:103 0:145 0:033 0:148 0:0110:65 0:231 0:194 0:105 0:224 0:035 0:230 0:0110:70 0:320 0:266 0:106 0:307 0:036 0:317 0:0120:75 0:414 0:339 0:107 0:393 0:038 0:408 0:0130:80 0:516 0:411 0:108 0:480 0:040 0:503 0:0160:85 0:625 0:482 0:107 0:567 0:043 0:598 0:0190:90 0:741 0:549 0:106 0:649 0:044 0:691 0:0220:95 0:866 0:613 0:102 0:724 0:044 0:775 0:024Table 5.2: Mean (�) and standard deviation (�) of the estimators �̂n and ~�n of the �rst-order autocorrelation in FGN.
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Mean and standard deviation of Ĥn,and coverage of H by the asymptotic 95% con�dence interval:n = 100 n = 1000 n = 10 000
H � � cov. � � cov. � � cov.0:05 0:087 0:101 0:965 0:054 0:043 0:973 0:050 0:016 0:9490:10 0:119 0:113 0:973 0:099 0:048 0:971 0:100 0:016 0:9510:15 0:156 0:124 0:964 0:149 0:048 0:948 0:150 0:015 0:9510:20 0:199 0:131 0:969 0:199 0:047 0:952 0:200 0:015 0:9490:25 0:245 0:134 0:973 0:249 0:045 0:949 0:250 0:014 0:9480:30 0:291 0:133 0:962 0:299 0:043 0:949 0:300 0:014 0:9500:35 0:341 0:131 0:945 0:349 0:042 0:948 0:350 0:013 0:9500:40 0:390 0:127 0:946 0:399 0:040 0:949 0:400 0:013 0:9490:45 0:441 0:121 0:943 0:449 0:038 0:951 0:450 0:012 0:9500:50 0:491 0:116 0:954 0:499 0:036 0:949 0:500 0:011 0:9490:55 0:541 0:110 0:949 0:549 0:034 0:950 0:550 0:011 0:9490:60 0:592 0:103 0:954 0:599 0:032 0:951 0:600 0:010 0:9500:65 0:641 0:097 0:961 0:649 0:031 0:954 0:650 0:010 0:9510:70 0:692 0:093 0:967 0:699 0:030 0:955 0:700 0:010 0:9500:75 0:741 0:089 0:962 0:749 0:029 0:961 0:750 0:010 0:9540:80 0:790 0:085 0:955 0:798 0:031 0:959 0:800 0:012 0:9580:85 0:837 0:081 0:923 0:848 0:035 0:955 0:849 0:017 0:9720:90 0:884 0:076 0:874 0:895 0:039 0:927 0:898 0:023 0:9710:95 0:930 0:067 0:750 0:941 0:039 0:834 0:944 0:027 0:899
Mean and standard deviation of ~Hn:n = 100 n = 1000 n = 10 000
H � � � � � �0:05 0:070 0:072 0:051 0:030 0:050 0:0100:10 0:108 0:082 0:100 0:031 0:100 0:0100:15 0:152 0:088 0:150 0:030 0:150 0:0090:20 0:199 0:089 0:200 0:029 0:200 0:0090:25 0:248 0:087 0:250 0:028 0:250 0:0090:30 0:297 0:085 0:300 0:027 0:300 0:0080:35 0:345 0:082 0:350 0:026 0:350 0:0080:40 0:394 0:079 0:400 0:025 0:400 0:0080:45 0:442 0:076 0:449 0:024 0:450 0:0080:50 0:489 0:073 0:499 0:023 0:500 0:0070:55 0:536 0:070 0:548 0:022 0:550 0:0070:60 0:581 0:067 0:597 0:021 0:600 0:0070:65 0:625 0:064 0:646 0:020 0:649 0:0070:70 0:668 0:061 0:693 0:020 0:698 0:0070:75 0:708 0:059 0:739 0:020 0:747 0:0070:80 0:746 0:056 0:783 0:020 0:794 0:0080:85 0:782 0:053 0:824 0:020 0:838 0:0090:90 0:814 0:050 0:860 0:019 0:879 0:0090:95 0:843 0:046 0:893 0:018 0:914 0:010

Table 5.3: Mean (�) and standard deviation (�) of the estimators Ĥn and ~Hn of theHurst parameter, and the coverage (cov.) ofH by the asymptotic 95% con�dence intervalKn(0:05).
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The results are shown in Table 5.2. We �nd that the estimator �̂n has a larger standarddeviation than ~�n. For instance, when n = 10 000 and the Hurst parameter is smallerthan 0:85, the standard deviation is about 1:5 times as large. This loss of e�ciency of�̂n compared to ~�n is not surprising, because �̂n is based only on the number of changesbetween upwards and downwards whereas ~�n uses the whole metric information.When n is small, both estimators overestimate the �rst-order autocorrelation forH < 0:5,and underestimate it whenH > 0:5. Particularly for large values of the Hurst parameter,�̂n has smaller bias than ~�n. Note that it is well-known that the sample autocorrelation ispositively biased in processes with negative correlations and negatively biased in processeswith positive correlations (see Beran [15]).
Estimation of the Hurst parameter. The mean and the standard deviation of theestimators Ĥn and ~Hn of the Hurst parameter are shown in Table 5.3. As mentionedbefore, with the mapping g given in (5.28), these estimators can be written as Ĥn = g(�̂n)and ~Hn = g(~�n), respectively. Similarly as for �̂n and ~�n, the estimator Ĥn has a largerstandard deviation but smaller bias than ~Hn.For n = 100 and n = 1000, the standard deviation of Ĥn is particularly large for smallvalues of H . A possible explanation is the following: With the mapping h given in (5.25)we have Ĥn = h(ĉn), and (5.26) shows that the �rst derivative of h at c(H) is particularlylarge when H is small. Thus, when H is small, the variance of ĉn is relatively small (seeFigure 5.1), but small deviations of ĉn result in relatively large deviations of Ĥn.Table 5.3 also provides estimates of the probability that the asymptotic con�dence intervalKn(0:05) covers the true Hurst parameter H . These values are obtained by the relativefrequency of realizations of Kn(0:05) which cover H . The results suggest that Kn(0:05)covers H with a probability of 95% or higher except when H is close to 1 and n is small.As the following argument shows, it is very likely that the coverage rates provided byTable 5.3 have a precision of at least two decimal places. Suppose we have a binomialexperiment with 100 000 trials and p = PH(H 2 Kn(0:05)) being the probability of asuccess. The standard deviation of the sample mean is equal to pp(1� p)=100 000, andthus � 0:00069 when p � 0:95. By a normal approximation of the binomial distributionwe obtain that, with a probability of � 95%, the deviation of the sample mean from p isnot larger than two times 0:00069.
The distribution of the number of changes. Figure 5.4 shows the distribution ofthe number of changes in samples of size n = 100. For instance, the upper left plot isobtained by determining the number of changes in the 100 000 sample paths generatedfor the Hurst parameterH = 0:70 and displaying the relative frequencies of the outcomesin a histogram. It can be seen that the number of changes is concentrated about 40,corresponding to the probability of a change c(0:70) = 0:396 (see (5.10)).
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Figure 5.4: Distribution of the number of changes in samples of size n = 100.
For H = 0:70, the distribution of the number of changes is approximately normal. Notethat we �nd similar distributions also for smaller values of the Hurst parameter. Forlarger values of H , the distributions become more and more irregular. Remarkably, thefrequency of even numbers is larger than the frequency of odd numbers, and the distribu-tions conditioned on an odd and an even number, respectively, look entirely di�erent. Forinstance, in the case H = 0:95, the frequencies of odd and even numbers are 0:321 and0:679, respectively. The distribution conditioned on an odd number is slightly left-skewedand has the mean 21:5 and the mode 23. The distribution conditioned on an even numberhas the mean 14:4, the mode 0 and roughly looks like the mixture of a geometric and abinomial distribution. As a consequence of the contrast between the conditional distribu-tions, the probability of a change (which is given by c(0:95) = 0:167) is overestimated by
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the relative frequency of changes in a sample given that the number of changes is odd,and underestimated given that the number of changes is even.An intuitive explanation for the high frequency of even numbers is the following: WhenHis large, there is a high probability to observe sample path segments which roughly looklike a straight line. Typically for such segments, there are only local changes in direction.Globally, there is one prevailing trend, either \upwards" or \downwards", and thus theoverall number of changes between \upwards" and \downwards" is even. In other words:a sample path segment with an even number of changes is more similar to a straight linethan a sample path segment with an odd number of changes.A related �nding is that, whenH is large, the occurence of a change at time t�1 increasesthe probability of a change at time t. In order to calculate the conditional probabilityPH(C(t) = 1 jC(t� 1) = 1), note that
PH(C(t) = 1; C(t� 1) = 1) = PH(Yt � 0; Yt+1 > 0; Yt+2 � 0)+ PH(Yt > 0; Yt+1 � 0; Yt+2 > 0)

and
PH(C(t� 1) = 1) = PH(Yt � 0; Yt+1 > 0) + PH(Yt > 0; Yt+1 � 0)

(compare to (5.1)). Since Y is zero-mean Gaussian and non-degenerate, we have
PH(C(t) = 1; C(t� 1) = 1) = 2PH(Yt � 0; �Yt+2 � 0; Yt+2 � 0)

and
PH(C(t� 1) = 1) = 2PH(Yt � 0; �Yt+1 � 0) :

Thus, according to Lemma 4.1, we obtain
PH(C(t) = 1 j C(t� 1) = 1) = PH(Yt � 0; �Yt+2 � 0; Yt+2 � 0)PH(Yt � 0; �Yt+1 � 0)(5.36)

= 18 � 12� arcsin �H(1) + 14� arcsin �H(2)14 � 12� arcsin �H(1) :
For H = 0:95, formula (5.36) yields PH(C(t) = 1 jC(t� 1) = 1) = 0:385, compared tothe unconditional probability PH(C(t) = 1) = 0:167 obtained by formula (5.10). Thus,the probability of a change at time t given a change at time t� 1 is more than two timeslarger than the unconditional probability of a change at time t. The occurence of change\clusters" with the paths \keeping track" of the modulo of the number of changes showshow complicated the dependency structure is for large values of the Hurst parameter.
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Figure 5.5 shows the cumulative standardized distribution of the number of changes insamples of size n = 10 000, compared to the cumulative standard normal distribution.For values of H greater than 0:75, there is a clear di�erence between both curves, thusindicating that the number of changes is not asymptotically normally distributed. Thedi�erence between the frequencies of odd and even numbers of changes is not as large as inthe case n = 100. For instance, whenH = 0:95, the frequencies of odd and even numbersare given by 0:391 and 0:609, respectively. Note that the distributions in Figure 5.5 aresimilar to those obtained for ARFIMA(0,d,0) processes with the fractional di�erencingparameter d =H � 12 .
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Figure 5.5: Cumulative distribution of the number of changes in samples of size n = 10 000(blue line), compared to the standard normal distribution (black line).
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Mean and standard deviation of d̂n,and coverage of d by the asymptotic 95% con�dence interval:n = 100 n = 1000 n = 10 000
d � � cov. � � cov. � � cov.�0:45 �0:379 0:147 0:950 �0:436 0:065 0:963 �0:450 0:027 0:972�0:40 �0:354 0:158 0:954 �0:398 0:074 0:954 �0:401 0:027 0:950�0:35 �0:325 0:168 0:954 �0:352 0:077 0:967 �0:350 0:026 0:949�0:30 �0:292 0:175 0:955 �0:304 0:076 0:949 �0:300 0:024 0:950�0:25 �0:254 0:181 0:954 �0:253 0:072 0:951 �0:250 0:023 0:950�0:20 �0:214 0:184 0:951 �0:204 0:068 0:951 �0:200 0:021 0:950�0:15 �0:169 0:184 0:944 �0:153 0:063 0:953 �0:150 0:020 0:950�0:10 �0:123 0:180 0:959 �0:103 0:059 0:951 �0:100 0:018 0:951�0:05 �0:075 0:174 0:949 �0:054 0:054 0:951 �0:050 0:017 0:9500:00 �0:024 0:165 0:956 �0:002 0:050 0:951 �0:000 0:016 0:9510:05 0:027 0:154 0:958 0:048 0:046 0:950 0:050 0:014 0:9500:10 0:079 0:142 0:971 0:098 0:042 0:951 0:010 0:013 0:9510:15 0:131 0:130 0:975 0:148 0:039 0:956 0:150 0:012 0:9500:20 0:182 0:119 0:974 0:198 0:036 0:957 0:200 0:011 0:9500:25 0:233 0:108 0:970 0:248 0:034 0:964 0:250 0:011 0:9540:30 0:282 0:099 0:967 0:297 0:034 0:964 0:300 0:013 0:9570:35 0:331 0:091 0:943 0:346 0:037 0:954 0:349 0:018 0:9720:40 0:379 0:083 0:890 0:394 0:040 0:927 0:398 0:024 0:9710:45 0:425 0:072 0:790 0:439 0:040 0:832 0:444 0:028 0:900

Mean and standard deviation of ân,and coverage of a by the asymptotic 95% con�dence interval:n = 100 n = 1000 n = 10 000
a � � cov. � � cov. � � cov.�0:90 �0:889 0:073 0:905 �0:899 0:023 0:948 �0:900 0:007 0:951�0:80 �0:790 0:097 0:930 �0:799 0:030 0:947 �0:800 0:010 0:949�0:70 �0:691 0:113 0:927 �0:699 0:036 0:945 �0:700 0:011 0:951�0:60 �0:593 0:126 0:949 �0:599 0:040 0:947 �0:600 0:013 0:949�0:50 �0:494 0:136 0:940 �0:500 0:043 0:948 �0:500 0:014 0:949�0:40 �0:395 0:143 0:954 �0:400 0:046 0:948 �0:400 0:014 0:951�0:30 �0:296 0:149 0:940 �0:300 0:048 0:949 �0:300 0:015 0:949�0:20 �0:197 0:152 0:943 �0:200 0:049 0:950 �0:200 0:015 0:950�0:10 �0:100 0:155 0:941 �0:100 0:049 0:951 �0:100 0:016 0:9500:00 �0:000 0:155 0:943 0:000 0:050 0:945 0:000 0:016 0:9480:10 0:099 0:154 0:944 0:100 0:049 0:950 0:100 0:016 0:9500:20 0:197 0:152 0:943 0:200 0:049 0:949 0:200 0:015 0:9500:30 0:296 0:149 0:940 0:299 0:047 0:949 0:300 0:015 0:9500:40 0:395 0:143 0:952 0:400 0:046 0:948 0:400 0:014 0:9500:50 0:494 0:136 0:941 0:499 0:043 0:946 0:500 0:014 0:9500:60 0:592 0:126 0:950 0:599 0:040 0:947 0:600 0:013 0:9500:70 0:690 0:114 0:927 0:699 0:036 0:947 0:700 0:011 0:9510:80 0:790 0:098 0:928 0:799 0:030 0:948 0:800 0:010 0:9510:90 0:889 0:074 0:906 0:899 0:022 0:948 0:900 0:007 0:949

Table 5.4: Mean (�) and standard deviation (�) of the estimators d̂n and ân, and thecoverage (cov.) of d and a by the 95% asymptotic con�dence intervals.
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Estimation of the fractional di�erencing parameter and of the autoregressivecoe�cient. Table 5.4 shows the mean and the standard deviation of the estimators d̂nand ân. Furthermore, Table 5.4 provides the coverage of d and a by the 95%-con�denceintervals.With d = H � 12 , the results for d̂n are similar to those for Ĥn provided by Table 5.3.Except for very large values of the fractional di�erencing parameter, the probability thatthe con�dence interval Kn(0:05) covers d is 95%, also when the sample size is small. For
d = �0:45, we obtain coverage rates greater than 95% which may be due to numericalproblems of the simulation method when the autocorrelations of the simulated processare negative (see Bardet et al. [13]).Most remarkably for the estimator ân, the results for the mean and the standard deviationare symmetric about a = 0. While the bias is particularly large when a is close to 1 or �1,the standard deviation reaches its maximum when a = 0. For n = 100, the coverage of aby the con�dence interval Kn(0:05) is below 95%, except for some outliers (e.g., a = 0:40and a = 0:60). For n = 1000 and n = 10 000, the coverage rates are close to 95%.
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Chapter 6
Ordinal patterns on di�erent scales
In this chapter, we introduce delays of ordinal patterns as an additional parameter besidesthe order. The framework of our analysis is the same as in the previous chapters, namely,we consider a real-valued stochastic process X = (Xt)t2Z on a measurable space (
;A)which is equipped with a family of probability measures (P#)#2� where � 6= ;. Theprocess of increments Y = (Yt)t2Z is given by Yt := Xt � Xt�1 for t 2 Z. We alwaysassume that Y satis�es the model assumptions (M1)-(M3) on p. 42. For # 2 �and k 2 Z, let �#(k) = Corr#(Y0; Yk) denote the autocorrelations of Y.Introducing the delays allows to consider the order relations among values at arbitrarytimes instead of immediately subsequent values. As we will see in Sections 6.1 and 6.2, theresults from Chapters 3 - 5 are also valid in this more general context. In Section 6.3, wedemonstrate how ordinal patterns with increasing delays can be used to estimate the Hurstparameter in equidistant discretizations of Fractional Brownian Motion superimposed byshort range dependent \noise". More generally, we consider the estimation of the indexof asymptotically self-similar processes in Section 6.4. The application to practical timeseries is illustrated in Section 6.5.
6.1 Ordinal pattern delays
Let d 2 N and � = (�1; �2; : : : ; �d) 2 Nd. De�ne � (0) := 0 and � (k) := �1 + �2 + : : : + �kfor k = 1; 2; : : : ; d. The ordinal pattern of order d with the delays � at time t is given by

�� (t) := �(Xt; Xt+� (1); Xt+� (2); : : : ; Xt+� (d)) ;with the mapping � : Rd+1 ! Sd as de�ned in Section 3.2. Ordinal patterns as de�ned inChapter 3 are included here as the special case where �k = 1 for k = 1; 2; : : : ; d. Next, wegeneralize the results of Chapter 3 to the estimation of ordinal pattern probabilities witharbitrary delays.
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Stationarity. Let x = (x0; x1; : : : ; x� (d)) 2 R� (d)+1. Clearly, shifting a vector by aconstant does not change any order relation among its components, so we have�(x0; x� (1); x� (2); : : : ; x� (d)) = �(0; x� (1) � x0; x� (2) � x0; : : : ; x� (d) � x0) :Note that, for k = 1; 2; : : : ; � (d), we can write the di�erence x� (k) � x0 as the telescopingsum (x1� x0)+ (x2� x1)+ : : :+(x� (k)� x� (k)�1). Thus, with the mapping ~�� from R� (d)onto Sd given by
~�� (y) := �( 0; � (1)X

k=1 yk;
� (2)X
k=1 yk; : : : ;

� (d)X
k=1 yk )for y = (y1; y2; : : : ; y� (d)) 2 R� (d), we obtain�(x0; x� (1); x� (2); : : : ; x� (d)) = ~�� ((x1 � x0); (x2 � x1); : : : ; (x� (k) � x� (k)�1)) :Consequently, �� (t) = ~�� (Yt+1; Yt+2; : : : ; Yt+� (d))for every t 2 Z. Similar to Corollary 3.1 on p. 45, we obtain the following statement.Corollary 6.1. (�� (t))t2Z measured with respect to P# is stationary for every # 2 �.

Let r = (r0; r1; : : : ; rd) 2 Sd. For # 2 �, de�nep�r (#) := P#(�� (t) = r) :According to Corollary 6.1, the function p�r (�) does not depend on the speci�c value oft 2 Z on the right hand side of the de�nition. We call p�r (�) the probability of the ordinalpattern r with the delays � . The following corollary shows that, for any delays, ordinalpattern probabilities are strictly positive.Corollary 6.2. For every r = (r0; r1; : : : ; rd) 2 Sd with d 2 N and every # 2 �,0 < p�r (#) < 1 :
Proof. Let s = (s0; s1; : : : ; s� (d)) 2 S� (d) be such that sk = � (rk) for k = 0; 1; : : : ; d.Clearly, Xs0 > Xs1 > : : : > Xs�(d) implies X� (r0) > X� (r1) > : : : > X� (rd) and thusp�r (#) = P#(X� (r0) > X� (r1) > : : : > X� (rd))� P#(Xs0 > Xs1 > : : : > Xs�(d))= ps(#)for every # 2 �. By Corollary 3.2 we obtain ps(#) > 0 and thus p�r (#) > 0. Furthermore,since there exists an ~r 2 Sd with ~r 6= r, we have p�r (#) � 1 � p�~r (#) < 1. The proof iscomplete.
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Let n 2 N and suppose we are given an observation of the ordinal pattern sample
��n := (�� (0); �� (1); : : : ; �� (n� 1))

governed by P# with # 2 � unknown. A natural estimator of p�r (#) is given by therelative frequency of observations of r in ��n, namely,
q̂�r;n := 1n n�1X

t=0 1f�� (t)=rg :
According to Corollary 6.1, q̂�r;n is an unbiased estimator of p�r (�).Similarly as in Section 3.3, we obtain better estimators by averaging the number of ob-servations of r and of its spatial and time reversals. With the mappings � and � given in(3.8) on p. 47, let the subset �r(� ) of Sd be de�ned by

�r(� ) := � fr; �(r); �(r); � � �(r)g if �k = �d�k+1 for k = 1; 2; : : : ; dfr; �(r)g otherwise :
Now, let

p̂�r;n := 1n n�1X
t=0 1] �r(� ) 1f�� (t)2�r(� )g :

If �k = �d�k+1 for k = 1; 2; : : : ; d, then p̂�r;n is the average of the relative frequencies of r,�(r), �(r) and � ��(r). Otherwise, p̂�r;n is the average of the relative frequencies of r and�(r).Statement (i) of the following theorem shows that p̂�r;n is a better estimator of p�r (�) thanq̂�r;n (\better" in terms of the risk with respect to convex loss functions, see Theorem 3.5on p. 51). Statements (ii) and (iii) establish su�cient conditions for strong consistency,asymptotic unbiasedness and asymptotic normality of p̂�r;n (and of certain functions ofp̂�r;n).Theorem 6.3.
(i) The estimator p̂�r;n of p�r (�) is unbiased and has (strictly) lower risk than q̂�r;n withrespect to any (strictly) convex loss function.
(ii) If �#(k) ! 0 as k ! 1 for every # 2 � and h : [0; 1] ! R is continuous onan open set containing p�r (�), then h(p̂�r;n) is a strongly consistent estimator ofh(p�r (�)). If, additionally, h is bounded on [0; 1], then h(p̂�r;n) is an asymptoticallyunbiased estimator of h(p�r (�)).
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(iii) If j�#(k)j = o(k��) for some � > 12 and h : [0; 1] ! R has a non-vanishing �rstderivative at p�r (#), thenpn �h(p̂�n)� h(p�r (#))� P#�! N(0; �2
#[h0(p�r (#))]2 ) ;where

�2
# := �#(0) + 2 1X

k=1 �#(k)
and �#(k) := 1(] �r(� ))2 Cov(1f�� (0)2�r(� )g; 1f�� (k)2�r(� )g) for k 2 Z.

Proof. (i) Let # 2 � and x = (x0; x1; : : : ; x� (d)) 2 R� (d)+1. If x has pairwise di�erentcomponents, then
�x� (r0) > �x� (r1) > : : : > �x� (rd) , x� (rd) > x� (rd�1) > : : : > x� (r0) :By the same argument as in the proof of Lemma 3.3, we obtain that

�(~�� (Yt+1; Yt+2; : : : ; Yt+� (d))) = ~�� (�Yt+1;�Yt+2; : : : ;�Yt+� (d))
P#-almost surely for every t 2 Z and thus, with the mapping A de�ned on p. 48,

��n dist= A(��n) :Now, suppose �k = �d�k+1 for k = 1; 2; : : : ; d. Clearly,
� (d)� � (k) = �k+1 + �k+2 + : : :+ �d= �1 + �2 + : : :+ �d�k = � (d� k)

for k = 0; 1; : : : ; d and hence
x� (d)�� (r0) > x� (d)�� (r1) > : : : > x� (d)�� (rd) , x� (d�r0) > x� (d�r1) > : : : > x� (d�rd) :Similar to the proof of Lemma 3.3, we obtain

�(~�� (Yt+1; Yt+2; : : : ; Yt+� (d))) = ~�� (�Yt+� (d);�Yt+� (d)�1; : : : ;�Yt+1)
P#-almost surely for every t 2 Z and thus

��n dist= A(��n) dist= B(��n) dist= B � A(��n) :Now, by the same arguments as in the proof of Theorem 3.5 and in Remark 3.6, it followsthat p̂�r;n has lower risk than q̂�r;n with respect to any convex loss function.
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Let s = (s0; s1; : : : ; sn+� (d)�1) 2 Sn+� (d)�1 be such that Xs0 > Xs1 > : : : > Xsn+�(d)�1implies X� (rd) > X� (rd�1) > : : : > X� (r0) and Xt+� (rd) > Xt+� (rd�1) for t = 1; 2; : : : ; n� 1.(The existence of such a permutation is obvious.) Then
P#(p̂�r;n 6= q̂�r;n) � P#(p̂�r;n > 0; q̂�r;n = 0)� P#(�� (0) = �(r); �� (1) 6= r; �� (2) 6= r; : : : ; �� (n� 1) 6= r)� P#(Xs0 > Xs1 > : : : > Xsn+�(d)�1)for every # 2 �. According to Corollary 6.2, the latter probability is strictly positive,so P#(p̂�r;n 6= q̂�r;n) > 0 for every # 2 �. Now, by the same argument as in the proof ofTheorem 3.5, it follows that p̂�r;n has strictly lower risk than q̂�r;n with respect to strictlyconvex loss functions.

(ii) For y = (yt)t2Z 2 RZ, let f(y) := 1 if ~�� (y1; y2; : : : ; y� (d)) 2 �r(� ), and f(y) := 0,otherwise. Then the result is obtained analogously to Theorem 3.8.
(iii) Let g : R� (d) ! R be de�ned by

g(z) := � 1] �r(� ) if ~�� (z) 2 �r(� )0 otherwise
for z 2 R� (d). By the same argument as in the proof of Theorem 3.10, we obtain that ghas Hermite rank � � 2 with respect to any zero-mean non-degenerate Gaussian randomvector. Therefore, similar to Theorem 3.10 and Corollary 3.17, the statement follows.
Delays in equidistant discretizations of FBM. As we show next, the distributionof ordinal patterns in equidistant discretizations of FBM is invariant with respect to asimultaneous scaling of time and delays. Same as in Section 3.5, suppose (
;A) is equip-ped with a family of probability measures (PH)H2(0;1) such that X measured with respectto PH is an equidistant discretization of FBM with the Hurst parameter H . As shownin Section 3.5, the distribution of ordinal patterns in X does not depend on the samplinginterval length �, so we may assume � = 1 without loss of generality.Now, let H 2 (0; 1) and N 2 N. By N� we denote the vector (N�1; N�2; : : : ; N�d).Note that (�N� (Nt))t2Z can be regarded as the process of ordinal patterns with delays
� in an equidistant discretization of FBM with the sampling interval length N . Thus,(�N� (Nt))t2Z has the same distribution as the process of ordinal patterns with delays �in an equidistant discretization of FBM with the sampling interval length 1, that is,

(�� (t))t2Z dist= (�N� (Nt))t2Z :As a consequence, we obtain
p�r (�) = pN�r (�)(6.1)
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for every N 2 N. Note that (6.1) is valid for the ordinal patterns in any self-similarprocess with stationary increments. Therefore, as a simple non-rigorous method for testingwhether a time series is generated by a self-similar process, we propose to check whetherthe estimates p̂N�r;n are \similar" for di�erent values of N . We consider some examples atthe end of this chapter.Analogous to the de�nition of �H given in Section 3.5, let ��
H denote the distribution ofthe ordinal pattern process (�� (t))t2Z in an equidistant discretization of FBM with theHurst parameter H .

6.2 The case d=2
Let us consider ordinal patterns of order d = 2. We assume that the delays are given by
� = (�; �) for some � 2 N. For t 2 Z, de�ne

C� (t) := 1fXt�Xt+�<Xt+2�g + 1fXt<Xt+��Xt+2�g :(6.2)
If we consider � -distant values of X, we may regard C� (t) as the indicator for a changebetween \upwards" and \downwards". Similarly as in the case � = (1; 1) discussed inChapter 5, we have

C� (t) = 1f�� (t)=(2;0;1)g + 1f�� (t)=(0;2;1)g + 1f�� (t)=(1;2;0)g + 1f�� (t)=(1;0;2)g
(compare to (5.2) on p. 98). Since (�� (t))t2Z is stationary, it follows that (C� (t))t2Z isstationary for every # 2 �. Consequently, the relative frequency of changes, given by

ĉ�n := 1n n�1X
t=0 C� (t)(6.3)

for n 2 N, is an unbiased estimator of the probability of a change, given by
c� (#) := P#(C� (t) = 1)

for # 2 �. Similar to the case � = (1; 1), we obtain
p̂�r;n =

8<:
14 ĉ�n if r 2 �(1; 0; 2); (1; 2; 0); (0; 2; 1); (2; 0; 1)	

12 (1� ĉ�n) if r 2 �(2; 1; 0); (0; 1; 2)	 :
Analogous to Corollary 5.2, we obtain statistical properties of ĉ�n by the correspondingproperties of p̂�r;n.
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Corollary 6.4.
(i) ĉ�n is an unbiased estimator of c� (�).(ii) If limk!1 �#(k) = 0 for every # 2 � and h : [0; 1] ! R is continuous on anopen set containing c� (�), then h(ĉ�n) is a strongly consistent estimator of h(c� (�)).If, additionally, h is bounded on [0; 1], then h(ĉ�n) is an asymptotically unbiasedestimator of h(c� (�)).(iii) If j�#(k)j = o(k��) for some � > 12 and h : [0; 1] ! R has a non-vanishing �rstderivative at c� (#), thenpn �h(ĉ�n)� h(c� (#)) � P#�! N(0; �2

#[h0(c� (#))]2 ) ;where
�2
# := �#(0) + 2 1X

k=1 �#(k)and �#(k) := Cov#(C� (0); C� (k)) for k 2 Z.
Computation of moments. Next, we investigate the evaluation of the �rst and secondmoments of the process (C� (t))t2Z. This allows us, e.g., to compute the variance of ĉ�n.The key ingredient is the evaluation of correlations between sums of increments. Fort 2 Z, de�ne Zt := Yt+1 + Yt+2 + : : :+ Yt+� :Furthermore, let ��#(k) := Corr#(Z0; Zk)for k 2 Z and # 2 �. Since Y is stationary, non-degenerate and Gaussian (see the modelassumptions (M1)-(M3) on p. 42), we obtain that (Zt)t2Z is stationary, non-degenerateand Gaussian for every # 2 �. Moreover,

��#(k) = Cov#(Z0; Zk)Var#(Z0)(6.4)
= P��1l=�(��1)(� � jlj) �#(k + l)� + 2P��1l=1 (� � l) �#(l)for k 2 Z and # 2 �, where �# is the autocorrelation function of Y measured withrespect to P#. According to (6.2), we can express C� (t) in terms of sums of increments,namely, C� (t) = 1fZt�0; Zt+�>0g + 1fZt>0; Zt+��0g
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for t 2 Z. Thus, analogous to formula (4.4) on p. 69, we obtain
c� (#) = 12 � 1� arcsin ��#(�)

for # 2 �. The autocovariances �#(k) = Cov#(C� (0); C� (k)) for k = 0; 1; : : : can be eval-uated similarly as in the case � = (1; 1) discussed in Chapter 4. In particular, accordingto formula (4.5) on p. 69, we obtain
�#(0) = 14 � 1�2 (arcsin ��#(�))2 ;

and the analogue of formula (4.6) is given by
�#(�) = 12� arcsin ��#(2�)� 1�2 (arcsin ��#(�))2 :For k = 1; 2; : : : ; � � 1 and k = � + 1; � + 2; : : :, respectively, we have

�#(k) = 2P#(Z0 > 0; Z� > 0; Zk > 0; Zk+� > 0)+ 2P#(Z0 > 0; Z� > 0; �Zk > 0; �Zk+� > 0)� 4P#(Z0 > 0; Z� > 0)P#(Zk > 0; Zk+� > 0)
(compare to (4.7)). Thus, analogous to formula (4.20) on p. 81, we obtain

�#(k) = 	�( ��#(�); ��#(k); ��#(k + �); ��#(k � �) ) :
Using the integral representation of 	� given by Theorem 4.6, we can evaluate �#(k)numerically.In a similar manner, we obtain formulas for the evaluation of covariances between C�1(k)and C�2(l) for � 1 = (�1; �1) and � 2 = (�2; �2) with �1; �2 2 N and �1 6= �2, which is usefulfor determining the asymptotic joint distribution of ĉ�1n and ĉ�2n .
Asymptotic properties. Let # 2 �. Next, we derive asymptotics of �#(k) as k !1.Suppose there exists a function f : N! R with �#(k) � f(k) and a constant � 6= 0 suchthat f(k + 1) � �f(k). De�ne

� := P��1l=�(��1)(� � jlj) �l� + 2P��1l=1 (� � l) �#(l) :According to formula (6.4), we obtain
��#(k) � P��1l=�(��1)(� � jlj) �l f(k)� + 2P��1l=1 (� � l) �#(l) = � f(k) :
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Consequently, ��#(k + 1) � ���#(k), and hence
( ��#(�); ��#(k); ��#(k + �); ��#(k � �) ) � ( ��#(�); � f(k); ��� f(k); ���� f(k) ) :Since (Zt)t2Z is Gaussian and non-degenerate, we have j��#(�)j < 1 (see Theorem 2.6 (iv)).Thus, according to Corollary 4.9 (ii),

�#(k) � (� f(k))2 (2� ��#(�) (�� + ��� ))22�2(1� (��#(�))2) + O�(f(k))4� :
Similar to Theorem 4.18, the latter expression allows to derive the asymptotics of thevariance of ĉ�n. Note that the rate of decreasing of �#(k) does not depend on � , and hencethe same is true for the rate of decreasing of the variance of ĉ�n.
6.3 Increasing delays
Next, we investigate ordinal pattern probabilities for increasing delays. In particular, weare interested in whether the sequence p�r (#); p2�r (#); p3�r (#); : : : (with �xed # 2 �) hasa well-de�ned limit. In Section 6.4, we study this problem using results from the theoryof renormalization groups. From the statistical viewpoint, considering ordinal patternson large time scales is useful for studying the long term behavior of time series. For amathematical description, we introduce a more speci�c model for time series.
Mixture models. Let (
;A) be a measurable space and X = (Xt)t2Z a sequence ofmeasurable mappings from (
;A) into (R;B(R)). The increment process Y = (Yt)t2Z isgiven by Yt := Xt �Xt�1 for t 2 Z. Let m 2 N and �1;�2; : : : ;�m 6= ;. Suppose (
;A)is equipped with a family of probability measures (P#)#2� where

� := m
�l=1 �l :

Furthermore, suppose there exist w1; w2; : : : ; wm > 0 with w21 + w22 + : : : + w2m = 1 andmeasurable mappings Y(l) = (Y (l)t )t2Z from (
;A) into (R;B(R)) for l = 1; 2; : : : ;m suchthat
Y = mX

l=1 wlY(l) :
We will assume that, for every # = (#1;#2; : : : ;#m) 2 �, the following conditions aresatis�ed:
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(M1') Y(1);Y(2); : : : ;Y(m) are independent.
(M2') Y(1);Y(2); : : : ;Y(m) are non-degenerate.
(M3') Y(1);Y(2); : : : ;Y(m) are stationary.
(M4') Y(1);Y(2); : : : ;Y(m) are zero-mean Gaussian and have unit variance.
(M5') For l = 1; 2; : : : ;m, the autocorrelation function of Y(l), given by

�(l)# (k) := Corr#(Y (l)0 ; Y (l)k )
for k 2 Z, only depends on #l.

Condition (M5') means that, if #0 = (#01;#02; : : : ;#0m) 2 � satis�es #0l = #l, we have
�(l)#0 (k) = �(l)# (k)

for all k 2 Z. Assumptions (M1')-(M4') imply that Y is non-degenerate and stationaryzero-mean Gaussian for every # 2 �. In order to establish non-degeneracy, let # 2 �and t1 < t2 < : : : < tk 2 Z with k 2 N. For l = 1; 2, let �(l) denote the covariance matrixof (Y (l)t1 ; Y (l)t2 ; : : : ; Y (l)tk ) measured with respect to P#. Since Y(1) and Y(2) are independent,the covariance matrix of (w1Y (1)t1 +w2Y (2)t1 ; w1Y (1)t2 +w2Y (2)t2 ; : : : ; w1Y (1)tk +w2Y (2)tk ) is givenby w21�(1) + w22�(2). Furthermore, because Y(1) and Y(2) are non-degenerate, �(1) and�(2) are strictly positive de�nite. Thus, for any x 2 Rk with x 6= 0,
x�w21�(1) + w22�(2)�xT = w21 x�(1)xT + w22 x�(2)xT > 0 ;

which shows that w21�(1) +w22�(2) is strictly positive de�nite and hence w1Y(1) +w2Y(2)is non-degenerate. By repeating this argument, we obtain that Y is non-degenerate.Note that, for all # 2 � and t 2 Z,
Var#(Yt) = mX

l=1 w2l Var#(Y (l)t ) :
Since Y(1);Y(2); : : : ;Y(m) have unit variance and w21 +w22 + : : :+w2m = 1, we obtain thatY has unit variance for every # 2 �. Thus, Y satis�es the model assumptions (M1)-(M3)on p. 42.Since Y(1), Y(2), . . . , Y(m) are independent, the autocorrelations of Y are given by

�#(k) := Corr#(Y0; Yk) = mX
l=1 w2l �(l)# (k)(6.5)

for # 2 � and k 2 Z.
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Example. Let m = 2 and � = (0; 1) � (�1; 1). For # = (#1;#2) 2 �, suppose thatY(1) and Y(2) measured with respect to P# are FGN with the Hurst parameter #1 andan AR(1) process with the autoregressive coe�cient #2, respectively. Then the process Xcan be regarded as the mixture of an equidistant discretization of FBM and an integratedAR(1) process. Same as in the previous chapters, we writeH instead of #1 and a insteadof #2.For many practical applications, the actual value of H is of particular interest. Forinstance, if H > 12 , then Y has long memory (in particular, the autocorrelations ofY given in (6.5) are not absolutely summable), and the long term behaviour of X isessentially determined by the contribution of Y(1). Thus, we may regard Y(2) as \noise"corrupting the \signal" Y(1) and a�ecting the precision of estimates of H . The ratio ofthe signal variance to the total variance of Y is given by
Var#(w1 Y (1)t )Var#(w1 Y (1)t + w2 Y (2)t ) = w21w21 + w22 :

Figure 6.1 shows simulated sample paths of X with the Hurst parameter H = 0:75 andthe autoregressive coe�cient a = �0:75. The squared weights w21 and w22 are given by (a)w21 = 1 and w22 = 0, (b) w21 = 12 and w22 = 12 , (c) w21 = 15 and w22 = 45 . The correspondingratios of the \signal" variance to the total variance of Y are 1, 12 and 15 , respectively. Notethat the weight w2 = 0 is not admissible in the mixture model as de�ned above. Thepurpose of including it in (a) is to display the pure \signal" component of X.Typically for a sample path of FBM with a large Hurst parameter, the time series in (a)exhibits long monotone parts and only a small number of changes between \upwards" and\downwards". The addition of an integrated AR(1) process with a small autoregressivecoe�cient in (b) and (c) leads to an increase of the number of changes. On a larger timescale, however, the appearance of the three time series is very similar.The graphs (d)-(f) are obtained by computing estimates of H for increasing delays. Let
� = (1; 1), and de�ne

Ĥ
N�n := max�0; log2 cos(�ĉN�n =2) + 1	(6.6)

for n 2 N and N 2 N, with ĉN�n as given in (6.3). For N = 1, ĤN�n is the estimator ofthe Hurst parameter discussed in Section 5.3.Figure 6.1 (d)-(f) shows the estimates obtained for N = 1; 2; : : : ; 50. The estimatesare obtained for larger samples than displayed in (a)-(c), namely, for samples of sizen = 10 000 each. As graph (d) shows, the time series in (a) results in estimates of
H approximately equal to 0:75 for any delay. Note that this is in accordance withequation (6.1), which states that, in equidistant discretizations of FBM, ordinal patternprobabilities (and functions thereof) are invariant with respect to a scaling of the delays.

137



50 100 150 200

-20

-10

0

10

20

30

40

(c)

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

(f)
50 100 150 200

-20

-10

0

10

20

30

40

(b)

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

(e)
50 100 150 200

-20

-10

0

10

20

30

40

(a)

0 10 20 30 40 50
0.0

0.2

0.4

0.6

0.8

(d)

Figure 6.1: Mixture of FBM with the Hurst parameterH = 0:75 and an integrated AR(1)process with the autoregressive coe�cient a = �0:75. The squared weights w21 and w22are given by (a) w21 = 1 and w22 = 0, (b) w21 = 12 and w22 = 12 , (c) w21 = 15 and w22 = 45 .The resulting estimates of H for N = 1; 2; : : : ; 50 are shown in (d)-(f).

For the time series in (b) and (c), we obtain di�erent estimates of H depending on thedelays. For small delays, the Hurst parameter is underestimated, but as N increases, theestimates tend to 0:75.The above results show that considering X on large time scales �lters out the short rangedependent noise added by the integrated AR(1) process and thus allows to estimate H .One could also imagine the opposite situation where H is smaller than 12 (and hence Xdoes not exhibit long memory), but the addition of an integrated AR(1) process with alarge autoregressive coe�cient leads to an overestimation of H for small delays. In thefollowing section, we study these phenomenons systematically. The application to theanalysis of real-life time series is demonstrated in Section 6.5.
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6.4 Asymptotic self-similarity
Throughout this section, any stochastic process is assumed to be de�ned on a probabilityspace (
0;A0;P). In fact, we are only interested in the distribution of the processes, sothe structure of (
0;A0) is irrelevant.
The renormalization group. LetH 2 (0; 1). For N 2 N, consider the operator TN;Hon RZ given by

TN;H z = �(TN;H z)t�t2Zfor z = (zt)t2Z 2 RZ, where
(TN;H z)t := 1NH

tNX
k=(t�1)N+1 zk

for t 2 Z. Thus, the sequence TN;H z is obtained by summing the components of z oversuccessive non-overlapping blocks of size N and scaling the sums by 1NH .Since TN;H � TM;H = TNM;H for M;N 2 N, the set of transformations fTN;H jN 2 Ngtogether with � forms a semi-group, which is called renormalization group with index H(see Embrechts and Maejima [36], p. 15, Taqqu [96]).A real-valued stationary process Z = (Zt)t2Z is called a �xed point of the renormalizationgroup with index H i� Z dist= TN;H Z for all N 2 N. Note that if Z is almost surely equalto 0, then Z is a �xed point of the renormalization group with indexH for allH 2 (0; 1).In order to avoid trivialities, we will require that �xed points of renormalization groupsare non-degenerate.A real-valued stationary process Y = (Yt)t2Z is said to be asymptotically self-similar withindex H i� there exists a �xed point Z of the renormalization group with index H suchthat TN;H Y converges in distribution to Z as N goes to in�nity.The following result is well-known (see Theorem 2.2.1 in Embrechts and Maejima [36]).Recall that we use GH to denote the distribution of FGN with the Hurst parameter H(see Section 2.2.3).
Theorem 6.5. A necessary and su�cient condition for a Gaussian process Y to beasymptotically self-similar with index H 2 (0; 1) is that, as N !1,

TN;H Y P�! GH :
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Implications for ordinal pattern probabilities. Suppose that X = (Xt)t2Z is a real-valued process on (
0;A0;P) and Y is the increment process of X, i.e., Yt = Xt � Xt�1for t 2 Z. For d 2 N and � = (�1; �2; : : : ; �d) 2 Nd, let (�� (t))t2Z denote the process ofordinal patterns of order d and with delays � in X. The following corollary shows that ifY is Gaussian and asymptotically self-similar with index H 2 (0; 1), the distribution of(�N� (t))t2Z converges to ��
H de�ned in the last paragraph of Section 6.1.Corollary 6.6. If Y is Gaussian and asymptotically self-similar with index H 2 (0; 1),then, as N !1,

(�N� (Nt))t2Z P�! ��
H :

Proof. Let H 2 (0; 1) and suppose Y is Gaussian and asymptotically self-similar withindex H . Let (��
H(t))t2Z be distributed according to ��

H . Note that, for all N 2 N andt 2 Z,�N� (Nt) = ~�N� (YNt+1; YNt+2; : : : ; YNt+N� (d))= ~�� (NH(TN;H Y)t+1; NH(TN;H Y)t+2; : : : ; NH(TN;H Y)t+� (d))= ~�� ((TN;H Y)t+1; (TN;H Y)t+2; : : : ; (TN;H Y)t+� (d)) ;where the last equality holds because ~�� is invariant under positive scaling. Accordingto Theorem 6.5, the distribution of ((TN;H Y)t+1; (TN;H Y)t+2; : : : ; (TN;H Y)t+� (d)) con-verges to that of � (d) subsequent values in FGN with the Hurst parameter H . Fur-thermore, for every r 2 Sd, the boundary of fy 2 R� (d) j ~�� (y) = rg in R� (d) hasLebesgue measure 0 (this follows by the same argument showing that the boundary offy 2 Rd j ~�(y) 2 �rg in Rd has Lebesgue measure 0, see p. 53). Thus, as N ! 1, thedistribution of �N� (Nt) converges to that ��
H(t). Analogously, we obtain that, for allt1; t2; : : : ; tk 2 Z with k 2 N, the distribution of (�N� (Nt1);�N� (Nt2); : : : ;�N� (Ntk))converges to that of (��

H(t1);��
H(t2); : : : ;��

H(tk)), and hence the statement follows.
Corollary 6.6 implies that when Y is Gaussian and asymptotically self-similar with index
H 2 (0; 1), the ordinal pattern probability P(�N� (t) = r) converges to the correspond-ing probability PH(�� (t) = r) in an equidistant discretization of FBM with the Hurstparameter H . For the probability of a change with delays � = (1; 1), we obtain

limN!1P(CN� (t) = 1) = 1� 2� arcsin 2H�1
(compare to formula (5.10) on p. 102). Thus, when N is \su�ciently large", ĤN�n givenin (6.6) can be regarded as a (slightly) biased estimator for the index of asymptotical self-similarity H . Clearly, we do not know a priori how large N has to be in order to obtainan estimator which is only slightly biased. As an a posteriori criterion, the estimates of
H should not vary \too much" if we further increase N . Compare to Figure 6.1 and thediscussion in Section 6.5.
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Conditions for asymptotic self-similarity. The following lemma relates the auto-correlation structure of Y to the index of asymptotical self-similarity.Lemma 6.7. Suppose Y is non-degenerate stationary Gaussian with zero means andunit variance. For k 2 Z, let �(k) := Corr(Y0; Yk). A su�cient condition for Y to beasymptotically self-similar with index H 2 (0; 1) is given as follows:
(i) For H 2 (0; 12): there exists a c > 0 with

�(k) � �ck2H�2 and 1X
k=�1 �(k) = 0 :

(ii) For H = 12 : there exists a c > 0 with1X
k=1 j�(k)j <1 and 1X

k=�1 �(k) = c :
(iii) For H 2 (12 ; 1): there exists a c > 0 with

�(k) � ck2H�2 :
Proof. See Example 3.2 in Taqqu [96].
The following lemma shows that the sum of independent Gaussian asymptotically self-similar processes is again asymptotically self-similar, and the index of the sum process isthe maximum of the indices of the summand processes.Lemma 6.8. LetY(1);Y(2); : : : ;Y(m) withm 2 N be independent Gaussian asymptoticallyself-similar processes with indices H1;H2; : : : ;Hm 2 (0; 1). Then Y := Pml=1Y(l) isasymptotically selfsimilar with index H = maxfH1;H2; : : : ;Hmg.
Proof. Note that it is su�cient to show the statement for m = 2. By induction, we thenobtain the statement for m > 2. According to Theorem 6.5, in order to prove that TN;H Yconverges in distribution to FGN with the Hurst parameter H as N !1, we only needto show the existence of a �2 > 0 such that

limN!1Cov�(TN;H Y)0; (TN;H Y)k� = �22 � jk + 1j2H � 2jkj2H + jk � 1j2H �(6.7)
for every k 2 Z (see Theorem 2.6 (iii) and the de�nition of FGN in Section 2.2.3). Letk 2 Z. Since Y(1) and Y(2) are independent, we have

Cov�(TN;H Y)0; (TN;H Y)k� = Cov�(TN;H Y(1))0; (TN;H Y(1))k�+ Cov�(TN;H Y(2))0; (TN;H Y(2))k�
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for every N 2 N. Furthermore, according to the asymptotic self-similarity of Y(l) forl = 1; 2, we obtain that
limN!1Cov�(TN;Hl Y(l))0; (TN;Hl Y(l))k� = 12� jk + 1j2Hl � 2jkj2Hl + jk � 1j2Hl

� :
Thus, if H1 = H2 = H , then (6.7) holds with �2 = 2. Now, without loss of generality,suppose that H1 <H2 and thus H =H2. SinceCov�(TN;H2 Y(1))0; (TN;H2 Y(1))k� = 1N2(H2�H1) Cov�(TN;H1 Y(1))0; (TN;H1 Y(1))k�for every N 2 N, we obtainlimN!1Cov�(TN;H2 Y(1))0; (TN;H2 Y(1))k� = 0 :
Consequently, (6.7) holds with �2 = 1. The proof is complete.
The following lemma gives examples of asymptotically self-similar Gaussian processes.Lemma 6.9.(i) If Y is FGN with the Hurst parameter H 2 (0; 1), then Y is asymptotically self-similar with index H.(ii) If Y is an ARFIMA(0,d,0) process with the fractional di�erencing parameter d 2(�12 ; 12), then Y is asymptotically self-similar with index d+ 12 .(iii) If Y is an AR(1) process with the autoregressive coe�cient a 2 (�1; 1), then Y isasymptotically self-similar with index 12 .Proof. (i) See Theorem 2.2.1 in Embrechts and Maejima [36]). (ii) and (iii) follow byLemma 6.7, Lemma 2.8 and Lemma 2.9, respectively.
Now we have a mathematical explanation for the �ndings in Figure 6.1. According toLemma 6.9, the processes Y(1) and Y(2) are asymptotically self-similar with the indices
H1 = 0:75 and H2 = 0:5, respectively. Therefore, Lemma 6.8 implies Y = Y(1) +Y(2) isasymptotically self-similar with the index H = 0:75, and Corollary 6.6 shows that if Nis su�ciently large, ĤN�n is an only slightly biased estimator of H . In fact, how large Nneeds to be depends on the ratio of the signal variance to the total variance.
6.5 Application to practical time series
Let us demonstrate the application of our method to the analysis of two real life timeseries: the yearly minimal water levels of the Nile River at the Roda Gauge and the NBShigh precision weight measurements. Note that both data sets are well-known examplesof long memory processes. (see Beran [15], pp. 20-29).
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Figure 6.2: (a) Nile River minima. (b) NBS weight measurements. (c) and (d) Resultingestimates of the Hurst parameter.
Nile River minima. The yearly Nile River minima for the years 622-1281 recorded atthe Roda Gauge near Cairo is one of the most famous data sets from hydrology. Figure 6.2(a) shows this time series with the mean subtracted. Remarkably, there are long periodsof \dryness" and \oods" where the measurements stay below and above 0, respectively,for many successive years. Evidence for long memory in the data has been �rst presentedby the hydrologist H. E. Hurst. For a long time, the de�nition of a model which explainsthis phenomenon has been an open problem. B. M. Mandelbrot and his co-authors haveintroduced FGN exactly for this purpose. Therefore, the parameter H in FGN is nowcommonly referred to as the Hurst parameter (see Beran [15], pp. 32-34).In fact, by a �rst diagnosis, there is no evidence against modelling the Nile River data byFGN: The time series does not exhibit a relevant deviation from (univariate) normality.Also, the spectral density of FGN gives a good �t of the periodogram of the Nile Riverdata, where the best model �t is obtained for the Hurst parameterH = 0:84 (in Figure 6.2(b), this value is displayed by the black dashed line). The most important argumentagainst using FGN is some evidence of non-stationarity. For details, see Beran [15],pp. 117-118, 125-126.Figure 6.2 (b) shows the estimates of H obtained by ĤN�n for N = 1; 2; : : : ; 200. Forsmall N , the estimates are almost identical and close to the best model �t H = 0:84. AsN increases, the variation becomes larger and, �nally, the sequence of estimates tends to0. Note that we obtain qualitatively very similar graphs for simulations of FGN with theHurst parameter H = 0:84. For large N , the variance of the estimates increases due to a
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Figure 6.3: Estimates of the Hurst parameter for the Nile River data in successive non-overlapping time windows of length n = 100 each.
decreasing number of sample data points.Now, consider the six time series obtained by dividing the �rst 600 observations of theNile River data into parts of length 100. The best model �t of these time series is obtainedfor H = 0:54, 0:85, 0:86, 0:83, 0:84 and 0:93 (see Beran [15], p. 207). Figure 6.2 (a)-(f)shows the estimates obtained by ĤN�n for N = 1; 2; : : : ; 20. For small N , these estimatesare close to the best model �t (except for the time series (a) and (b), where H is under-and overestimated, respectively). Given the small sample sizes, we �nd the variation ofthe estimates is surprisingly low.
NBS data. The NBS data set is given by high precision weight measurements of a1kg standard weight, performed between June 1963 and October 1975 at the NationalInstitute of Standards and Technology, Gaithersburg, USA. Figure 6.1 (c) displays thistime series with the mean subtracted. Note that the measurements were not performed atequidistant dates. Treating them as if they were performed at equidistant dates, however,is likely to only slightly a�ect the long-range dependence structure (see Beran [15], p. 27).The data set is particularly interesting because it exhibits features of a long memorytime series, even though the experimental setting was almost perfectly designed to obtainindependent observations.The HUBINC estimator yields H = 0:60 as an estimate of the Hurst parameter, with anapproximate standard deviation of 0:044 (see Beran [15], p. 140). Here,H is not necessar-ily interpreted as the Hurst parameter in FGN but, more generally, as the parameter in amodel for long memory time series determining the rate of decay of the autocovariances.
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Figure 6.1 (d) displays the estimates of H obtained by ĤN�n for N = 1; 2; : : : ; 150. Theestimates are all close to the value H = 0:60, except for very large values of N . After all,the variation of the estimates is small, in particular, smaller than the variation which weobserve for simulations of FGN with the Hurst parameter H = 0:60.
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List of symbols
B(Y) Borel �-�eld of the topological space Y]A cardinality of a set AA�B symmetric di�erence of sets A and B; the empty set@A boundary of a subset A of a topological spacemax(A) maximimum of a subset A � Rmin(A) minimum of a subset A � Rinf(A) in�mum of a subset A � Rsup(A) supremum of a subset A � RN set of natural numbersN0 set of natural numbers including 0R set of real numbersZ set of integersAT transpose of the matrix Adet(A) determinant of the matrix AA�1 inverse of the matrix Adiag(a1; a2; : : : ; an) n� n-diagonal matrix with the entries a1; a2; : : : ; an on the diagonal�(x) value of the Gamma function at xN(�; �2) normal distribution with mean � and variance �2N(�;�) (multidimensional) normal distribution with means � andcovariance matrix �
dist= equality in distribution
P�! convergence in distribution with respect to theprobability measure P�(x) ordinal pattern of the vector x 2 Rd+1~�(y) ordinal pattern of the vector of increments y 2 Rd
GH distribution of FGN with the Hurst parameter H�H distribution of ordinal patterns in FGN with the Hurst parameter H��
H distribution of ordinal patterns with delays � in FGNwith the Hurst parameter H
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