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Lübeck 2009



Erster Berichterstatter: Prof. Dr.-Ing. Erhardt Barth

Zweiter Berichterstatter: Prof. Dr. rer. nat. Heiko Neumann

Tag der mündlichen Prüfung: 23. April 2010
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Zusammenfassung

Die visuelle Aufmerksamkeit des Menschen ist auf wenige Ereignisse oder Ob-
jekteigenschaften gleichzeitig beschränkt, und nur ein Bruchteil der im Auge
eintreffenden visuellen Information wird tatsächlich bewusst verarbeitet. So
wird die optimale örtliche Auflösung des Sehens nur in der Fovea im Zen-
trum der Netzhaut erreicht; ungefähr die Hälfte aller Neurone im visuellen
Kortex verarbeitet Information aus den zentralen zwei Prozent des Gesichts-
feldes. Als Konsequenz werden die Augen typischerweise zwei- bis dreimal
pro Sekunde bewegt, um die visuelle Szene sukzessive mit der Fovea abzuta-
sten. Die Blickmuster, mit denen verschiedene Beobachter eine Szene abtasten,
unterscheiden sich dabei teilweise erheblich, und welche Nachricht einem Bild
entnommen wird, hängt auch vom Blickmuster ab. In vielen Problemberei-
chen haben z.B. Experten andere, effizientere Blickstrategien als Laien. Eine
grundsätzliche Schwierigkeit beim Erlernen solcher Strategien ist dabei, dass
Blickmuster nicht wie die klassischen Bildattribute Helligkeit und Farbe dar-
gestellt werden können.

Ziel dieser Arbeit ist daher die Entwicklung von Systemen zur Aufmerk-
samkeitslenkung, die das Betrachten einer Szene bzw. eines Videos mit einem
optimalen Blickmuster ermöglichen. Ein Gerät zur Messung der Blickrichtung
wird mit einem schnellen Videoverarbeitungssystem gekoppelt und die Auf-
merksamkeitslenkung erfolgt in Echtzeit und kontinuierlich in drei Schritten:
i) basierend auf der derzeitigen Blickposition und den Bildeigenschaften des
Videomaterials wird eine Liste von Kandidatenpunkten vorhergesagt, die mit
der nächsten Augenbewegung angesprungen werden könnten; ii) die Wahr-
scheinlichkeit für den gewünschten Kandidatenpunkt wird durch eine Echt-
zeittransformation wie z.B. lokale Kontrasterhöhung des Videos vergrößert; iii)
die Wahrscheinlichkeiten für die übrigen Kandidatenpunkte werden durch z.B.
Filterung oder Kontrastabschwächung verringert.

Zuerst erarbeiten wir einige nötige, grundlegende Ergebnisse zum Ver-
ständnis des visuellen Systems. Während die meiste Forschung zu Augen-
bewegungen noch statische Bilder als Stimuli verwendet, sammeln wir einen
großen Datensatz an Blickmustern auf natürlichen Videos und finden einen
qualitativen Unterschied zu Blickmustern auf Bildern. Weiter untersuchen wir
den Zusammenhang von Blickmustern und Bildeigenschaften wie Kontrast,
Bewegung und Farbe mit Methoden des maschinellen Lernens. Anhand der
geometrischen Invarianten, die die Zahl der lokal genutzten Freiheitsgrade ei-
nes Signals angeben, erzielen wir eine höhere Prädiktionsgenauigkeit als bisher
in der Literatur berichtet.
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ZUSAMMENFASSUNG

Wir implementieren dann eine Reihe von blickwinkelabhängigen Displays,
die Videos als Funktion der Blickrichtung modifizieren, und untersuchen ihren
Einfluss auf die Aufmerksamkeit. Ein besonderes Augenmerk liegt dabei auf
effizienten Bildverarbeitungsalgorithmen und Multiskalenmethoden. Bisheri-
ge Systeme waren beschränkt auf eine örtliche Tiefpassfilterung in retinalen
Koordinaten, d.h. als Funktion der Blickrichtung. Wir erweitern diese Syste-
me in zwei Richtungen, die die Berechnungskomplexität erheblich erhöhen.
Zum einen filtern wir Videos auch in der Zeitdomäne, da zeitliche Information
wie z.B. Bewegung großen Einfluss auf die Aufmerksamkeit hat. Zum anderen
erweitern wir die Flexibilität der Filterung; anstelle der Grenzfrequenz einer
Tiefpassfilterung erlauben wir die Spezifikation individueller Gewichtskoef-
fizienten für alle orts-zeitlichen Frequenzbänder einer anisotropen Laplace-
Pyramide. Durch verbesserte Algorithmen und eine Implementation auf Gra-
phikhardware erreicht unser System eine Verarbeitungsrate von mehr als 60
Bildern pro Sekunde auf hochaufgelöstem Video. Kritischer als die Durch-
satzleistung ist für blickwinkelabhängige Displays jedoch die Latenz zwischen
einer Augenbewegung und der Bildschirmaktualisierung; wir erreichen eine
Bildverarbeitungslatenz von 2 ms und eine Gesamtlatenz von 20–25 ms.

Erste Versuche mit unseren Systemen zur Aufmerksamkeitslenkung zeigen
sowohl einen Effekt auf die Blickmuster als auch einen positiven Effekt auf die
Verarbeitungsleistung in visuellen Aufgaben. Probanden, die einen Lehrfilm
mit Aufmerksamkeitslenkung sehen, können relevante Bildbereiche in nach-
folgenden Testfilmen schneller erkennen. Weitere Experimente zeigen dabei,
dass blickwinkelabhängige Videomodifikationen aufgrund der geringen La-
tenzen unbemerkt bleiben können.

Systeme zur Lenkung der Aufmerksamkeit versprechen daher, ein Bestand-
teil optimierter Informations- und Kommunikationssysteme der Zukunft zu
werden.
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Part I

Introduction and basics
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“Imagination is the beginning of creation.”

George Bernard Shaw

1
Introduction

While you are reading this, countless photons enter your eyes every second that
induce myriads of electrical discharges in the roughly two hundred million pho-
tosensitive cells of your retinae. Nevertheless, you are likely not overwhelmed
by this stream of information, but simply take in one word at a time, while
ignoring most of the black and white patterns that constitute the text on the rest
of this page. The ability to focus attention on only a tiny selection of objects
or features in the visual input is an important property of the human visual
system that is also reflected in its anatomy. About half of all cells in the primary
visual cortex are devoted to processing information from the central two per
cent of visual field, where photoreceptor density and acuity are highest. The
high-resolution centre of the retina, the fovea, is typically moved around sev-
eral times per second to successively sample the visual scene, e.g. one word at a
time while reading, whereas peripheral, low-resolution information is mainly
used to determine where to look next. During reading, the decision where to
look next is straightforward due to the sequential nature of text, and different
readers differ in their eye movements mainly only in the number of fixations
and the time required to process a single word. In general, however, eye
movements are not restricted to reading, but are a ubiquitous phenomenon in
virtually all activities. Because of the close relationship of attention and con-
scious processing with gaze direction, eye movements can be a critical factor in
what we perceive in a scene and how well we can solve a visual task, but for
complex scenes and tasks, deciding on an optimal eye movement pattern, or
scanpath, is far from trivial.

Consequentially, experts in many problem domains exhibit different view-
ing behaviour from novices, for example in flying a helicopter, driving a car,
analysing X-rays, or classifying fish locomotion patterns. To a certain extent,
this difference can be explained by the better world model of the expert that
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CHAPTER 1. INTRODUCTION

Guide gaze

Record eye movements

Information

User Display

Figure 1.1: Gaze-contingent interactive displays dynamically adapt to the user’s eye movements
and simultaneously guide gaze to improve communication.

allows them to direct their eyes more efficiently. For example, a radiologist
might know from experience where a tumour is most likely to be found in a
radiogram, or a driver who has passed a complicated intersection before might
not need to scan the scene for relevant street signs anymore. Yet, a fundamental
problem of experts’ eye movements is that they cannot be demonstrated and
observed as easily as other movements.

In this thesis, we therefore propose the development of gaze-guidance sys-
tems that guide an observer’s eye movements through a scene to follow a
predetermined, optimal scanpath. Such an optimal scanpath could be the
recorded scanpath of an expert or determined by computer vision algorithms;
the latter might be useful in safety-critical applications such as in driving, be-
cause computers never get tired or distracted, but human drivers occasionally
do.

Gaze guidance as it is envisaged in this thesis can be realized by gaze-
contingent interactive displays that are connected to an eye tracker that con-
stantly monitors where the user is looking (see Figure 1.1). High-speed eye
trackers are commercially available already, and so our focus will be on the
algorithms on the display side. If a mismatch between actual and optimal gaze
position is detected, the display’s contents are changed in real time to steer
gaze towards the optimal location. More specifically, the gaze-guidance strat-
egy consists of three parts: i) predict a set of candidate points where a subject
will look next, based on the video input and current gaze position; ii) increase
the probability for one candidate point to be attended next by increasing image-
based saliency there; iii) decrease saliency everywhere else.

We should stress here that the development of full gaze-guidance systems
is an interdisciplinary and complex research problem that we cannot expect
to completely solve in the context of this thesis. Nevertheless, we will take
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the first steps towards this goal and create technical systems that are capable
of performing the necessary complex transformations of high-resolution video
as a function of gaze in real time, and use these systems for first psychophys-
ical experiments. The analysis of these and other experiments that we have
performed will also further improve our theoretical understanding of human
oculomotor behaviour.

As we shall see later, even our rudimentary gaze-guidance algorithms have
a beneficial effect in training scenarios. Besides the aforementioned safety-
critical applications, gaze guidance might also prove useful in the more general
case of human-human and human-machine communication, where a visual
message might be specified not only by its physical attributes such as colour
and brightness anymore, but also by a prescription how to look at it. The gaze-
contingent techniques developed in this thesis are also promising for patients
with attention disorders such as visual neglect.

Historically, gaze guidance was first proposed in (Barth, 2001), and first
experimental results were published in (Dorr, Martinetz, Gegenfurtner, and
Barth, 2004; Dorr, Böhme, Martinetz, and Barth, 2005b). In the meantime,
several other groups have also begun to investigate how eye movements can
be guided by low-level changes to the stimulus, e.g. by locally removing fine
spatial details (Su et al., 2005), changing contrast (Nyström and Holmqvist,
2010), or adding phase noise (Einhäuser et al., 2006). These approaches all failed
to show a gaze-guidance effect for all but the most extreme local modifications,
but suffered from two issues. First, they all modified static images only, but
natural viewing behaviour has evolved to deal with dynamic content; motion
often marks regions that require immediate visual attention, such as predators
or prey, and is therefore a very strong attractor for eye movements. Second,
image modifications were not gaze-contingent, i.e. they were static as well.
Because image modifications thus could also be perceived foveally, subjects
quickly became aware of them and could then consciously compensate for
their presence.

For a well-defined visual search task in rendered scenes, McNamara et al.
have successfully used very simple, but gaze-contingent stimuli to improve
search performance (McNamara et al., 2008, 2009). Blinking Gabor-like stimuli
were placed at target locations, but they were switched off before gaze position
came close enough to enable their identification. Because stimuli were always
presented in the periphery only, subjects did not report noticing them, but still
managed to find the highlighted target locations faster.

Linţu and Carbonell (2009) recently described a gaze-contingent display
that facilitates inhibition of return and thus faster exploration of the whole
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CHAPTER 1. INTRODUCTION

stimulus by blurring image locations once they have been fixated, but have not
reported experimental results yet.

1.1 Thesis organization

In more detail, this thesis will be structured as follows. We shall set out with a
few basics on image processing and perception in Chapter 2; in particular, we
shall review multiresolution methods that make possible efficient processing
of frequency subbands, and a geometrical framework that will prove useful
for understanding oculomotor control in the following. In the context of this
geometrical framework, we can also explain some of our own results on the
perception of transparent motions that we shall present in Appendix A.

After this first chapter on fundamentals, the following parts on “Models”
and “Systems” will exclusively describe our own original research. Work on
a novel and interdisciplinary research field such as gaze guidance cannot be
performed by a lone researcher in their ivory tower; where results were obtained
in collaboration, the respective contributions are listed at the beginning of each
chapter.

The first step in the gaze-guidance strategy outlined above is to predict
where subjects will look on dynamic natural scenes. Most research on eye
movements so far, however, has dealt with static stimuli only. We shall there-
fore describe some basic properties of eye movements on several different
stimulus types such as static images, natural movies, and Hollywood trailers
in Chapter 3. One aspect we are particularly interested in is the variability of
eye movements, that is, how similar the gaze patterns of different subjects are.
Our hypothesis is that gaze guidance is possible only if variability is neither
too low – when all subjects look at the same location – nor too high – when
eye movements are essentially random. We shall see that both variability and
other eye movement characteristics vary with stimulus type, and one important
result thus is that the commonly used paradigm of collecting eye movement
data on static images is not very representative of natural viewing behaviour.

In Chapter 4, we shall pursue the question of eye movement similarity fur-
ther in the domain of image features, and investigate how predictive different
low-level image features are for fixation behaviour. In one approach, we shall
look at the relationship of features at the current centre of fixation with those
at potential saccade targets, and develop novel methods to distinguish feature
correlations that are induced by eye movements from those that are image-
inherent. In a second approach, we shall use advanced machine learning al-
gorithms to automatically classify movie patches as attended or non-attended,
based on a large data set of examples. We compute the geometrical invariants
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1.2. PREVIOUS PUBLICATIONS

of the movies, which describe how many degrees of freedom are used locally,
and achieve very high prediction rates with these features by using a trick to
discard information and thus avoid the curse of dimensionality.

These results shed light on the human visual system, but to efficiently and
robustly perform such analyses is also an interesting challenge from a technical
viewpoint. More importantly, the implementation of gaze-contingent displays
that will be described in the following chapters is impossible without efficient
image processing algorithms. Therefore, Chapter 5 is devoted to technical
details of the algorithms and the software infrastructure that was developed as
a part of this thesis.

We shall then proceed to the core of our research in Chapter 6. Here, we shall
present and analyse in detail a series of increasingly complex gaze-contingent
displays and space-variant filtering algorithms. The technical goal was to de-
velop algorithms and systems that are fast enough to react to changes in gaze
position in very few milliseconds, and yet flexible and powerful enough to
enable movie transformations that have a guiding effect on eye movements.
As we shall see, this goal can be met by implementing all image processing
operations on multiresolution pyramids. We shall show that the introduc-
tion of temporal blur in the periphery can alter eye movement statistics even
though the blur is hardly noticeable to subjects. In another experiment, we
shall increase transformation complexity and show that gaze guidance can in-
deed have a beneficial effect: spatio-temporal contrast modulations of training
videos can facilitate perceptual learning and thus help novices to acquire ex-
perts’ skills faster. However, the training videos in this experiment had to be
precomputed because the algorithm is not suitable for real-time applications.
We shall therefore end this chapter with the presentation of an improved al-
gorithm for space-variant spatio-temporal filtering that was implemented on
dedicated graphics hardware and has a very low image processing latency of
2 ms.

Finally, we shall conclude this thesis in Chapter 7.

1.2 Previous publications

The work presented throughout this thesis has been published in 17 full journal
and conference papers and one book chapter; three papers are currently under
submission and two more are in preparation. A poster on the estimation and
perception of multiple motions (Dorr, Stuke, Mota, and Barth, 2001) won the
“Best Student’s Poster Prize” at the Tübingen Perception Conference 2001; the
exhibit “Gaze-contingent displays and interaction” won a “Second Prize for
Best Exhibit” at the Science Beyond Fiction Conference (Prague, 2009) of projects
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CHAPTER 1. INTRODUCTION

funded by the European Commission’s Future and Emerging Technologies
programme, and was featured by the BBC. A similar exhibit was also presented
at the CeBit trade fair 2006 and received press coverage, for example in Computer
Zeitung, Lübecker Nachrichten, and VDI nachrichten.

Demo material This thesis deals with the real-time modification of natural
videos, but paper does not lend itself easily to reproduce temporal content.
Therefore, selected videos are available at
http://www.gazecom.eu/demo-material.
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“Given a signal with a 2 Hz bandwagon,
the Nyquil frequency must be 1 Hz to avoid
aliening of the furrier transformer.”

phdcomics.com 2
Basics

In this chapter, we will review some basics that will be relevant throughout
the rest of this thesis. We shall start with fundamentals of signal and image
processing; one important property of images is that they can be represented
in terms of their frequency content. As it turns out, the human visual system
processes information on several spatial scales, so a bandpass representation of
images is highly useful for probing and understanding visual perception. To
efficiently operate on such representations, we shall introduce the concept of
multiresolution pyramids, which store information about an image sequence
at multiple spatio-temporal scales. Because this information is stored at the
optimal resolution, i.e. with no more pixels than necessary, these multiresolu-
tion pyramids are central to the work presented in this thesis: we extensively
make use of them to efficiently analyse and modify high-resolution video con-
tent, and one of our contributions is the fast and flexible implementation of
such pyramids for several hardware architectures (see Part III). The synthesis
of novel stimuli is another application of multiresolution pyramids; they can
be used to create noise that, in some characteristics, resembles natural movies
(these stimuli will be used in Chapter 3), and to smoothly combine multiple
movies into one blended movie (used in Section 4.4).

Then, we shall turn to a geometrical interpretation of image sequences and
see that this interpretation leads to an “alphabet of changes”, i.e. a categorization
of how a spatio-temporal signal can change, which will prove to be very useful
in understanding human vision in several places of this thesis. A further benefit
of this framework is that it allows for a fast and robust algorithm for motion
estimation, which we will describe briefly in this chapter and use in Section 4.2.
The generalization of this framework to an arbitrary number of overlaid signals
has obvious technical applications, but also allows further insight into human
perception (see below).

9



CHAPTER 2. BASICS

Furthermore, we will cover some aspects of the human visual system that
are relevant in the context of this interdisciplinary thesis. Obviously, the most
important fact is that humans make several eye movements per second to
successively sample the visual input with the high-resolution centre of the
retina, and we will explore the anatomical basics for this property and some
psychophysical data.

2.1 Image processing basics

A signal is a physical representation of a message from a sender to a receiver,
such as acoustic waves transmitting voice or changes in electrical current to
transmit bits in a computer network. In these examples, the signal usually is
a function of time and is denoted as s(t), but signals can also be a function of
vectorial variables. In this thesis, we will concern ourselves mostly with images
s(x, y), which are a function of space, and image sequences s(x, y, t), which are
a function of space and time.

Fourier transform

Fourier analysis can tell us how much of a given frequency is present in a signal
by means of a projection onto a set of orthogonal basis functions

e−j2π ~f~x = cos(2π ~f~x) + j · sin(2π ~f~x).

The Fourier transform S( ~f ) of a continuous image s(~x) is thus defined as

S( fx, fy) =

∫ +∞

−∞
s(~x) · e−j2π ~f~xd~x

=

∫ +∞

−∞
s(x, y) · e−j2π( fxx+ fy y)dxdy.

In practice, we can only deal with images that comprise of a finite number of
discrete pixel elements, or pixels. For discrete images with M by N pixels, the
Fourier transform is defined as

F(k, l) =
1

MN

M−1∑
x=0

N−1∑
y=0

f (x, y) · e−j2π
(

kx
M +

ly
N

)
,

and there exist efficient algorithms for the fast computation of this transform
(Cooley and Tukey, 1965; Frigo and Johnson, 2005); the extension to image
sequences is straightforward.
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2.2. SPECTRA OF SPATIO-TEMPORAL NATURAL SCENES

The inverse transform from a continuous spectrum S( ~f ) to an image is
defined as

s(~x) =
∫ +∞

−∞
S( ~f ) · e j2π ~f~xd ~f

with its discrete counterpart

f (x, y) =
1

MN

M−1∑
k=0

N−1∑
l=0

F(k, l) · e j2π
(

kx
M +

ly
N

)
.

The spectrum can also be represented in polar coordinates, so that

S( ~f ) = |S( ~f )| · e jϕ( ~f ),

with the phase spectrum

ϕ( ~f ) = arctan

 Im{S( ~f )}
Re{S( ~f )}


and the amplitude spectrum

|S( ~f )| =
√

Re2{S( ~f )}+ Im2{S( ~f )}

One important property of the Fourier transform that we will need in Section 2.4
is that of linearity, i.e.

a · s(~x) + b · g(~x) c sa · S( ~f ) + b · G( ~f ).
�� ��2.1

For a more in-depth review, we refer to a textbook on signal processing, e.g.
Lüke (1999) or Oppenheim et al. (1996).

2.2 Spectra of spatio-temporal natural scenes

The amplitude spectra of natural still images exhibit an abundance of lower
frequencies and only little high-frequency content, roughly following a 1/ f β

falloff with a β between 1.5-2.0 (Field, 1987; Balboa and Grzywacz, 2003; see
also Figure 2.1).

For time-varying images, such an analysis is more difficult because the
space of “natural” stimuli is much larger. One source of temporal variation in
visual input is due to self-motion, and it is not necessarily clear what camera
motion should be allowed to simulate this effect. Furthermore, both a still
life as well as a busy suburban scene full of dynamic objects are valid natural
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Figure 2.1: Log-plot of the horizontal amplitude spectrum ( fy = 0) of natural images, averaged
over all about 11000 frames of our data set of natural movies (see Chapter 3). To reduce the
picket-fence effect, frames were masked with a Tukey window prior to the Fourier transform.
Clearly, energy is concentrated in the lower frequencies.

scenes; the average amount of temporal variation is difficult to estimate, in
particular if one is interested in the ecological habitat in which the human visual
system evolved (and which it presumably is optimized for), see e.g. Balboa and
Grzywacz (2003). Nevertheless, at least approximately the temporal spectra of
natural scenes exhibit a similar 1/ f β characteristic to that of spatial spectra of
still images; in contrast to the two spatial dimensions in the case of still images,
space and time are inseparable, however (Dong and Atick, 1995; Dong, 2001).

Much of vision research has focused on linking perception to the amplitude
spectrum of a stimulus for at least two reasons. First, amplitude spectra are
more similar across different natural images than phase spectra and therefore
are an easier object of investigation; second, complex cells, which are among the
most common neurons in the primary visual cortex, encode amplitude only but
no phase. However, perception is ultimately dominated by phase information
(Oppenheim and Lim, 1981), as demonstrated in Figure 2.2: here, images are
created as a mixture of phase information from one and amplitude information
from another image. Clearly, the results perceptually are closer to the image
with the same phase.

12
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(a) (b) (c) (d)

Figure 2.2: Perception is dominated by the phase spectrum (Oppenheim and Lim, 1981): the
image in (c) is computed from the phase information of (a) and the amplitude spectrum of (b);
the image in (d) is computed from the phase information of (b) and the amplitude spectrum of
(a). Clearly, (c) is perceptually more similar to (a) and (d) is more similar to (c). Nevertheless,
complex cells in the visual cortex are known to encode only amplitude information.

2.3 Gaussian multiresolution pyramids

A common problem in image processing is to access only certain parts of the
frequency spectrum of an image; for example, adaptive thresholding algorithms
differentiate between the local variation in image intensity, i.e. image structure,
and the local intensity average, i.e. changes that are due to a variation in
illumination. In terms of Fourier analysis, the relevant information in this
example is contained in the high-frequency part of the spectrum, whereas
the low-frequency content should be removed. A straightforward approach to
separate low and high frequencies is to apply an appropriate filter; in the spatial
domain, this can be achieved by convolution. However, as filter sizes grow
larger, convolution quickly becomes very expensive in terms of computational
costs. A more efficient solution was developed almost simultaneously in the
context of image coding (Adelson and Burt, 1981; Burt and Adelson, 1983a)
and of computer graphics (Williams, 1983): Gaussian image pyramids (or mip
maps) store an image in several sizes and with different frequency content. To
understand the benefits of this representation, however, we must first review
how images are stored in image processing systems.

In theory, we can treat images as continuous functions s(x, y); in practice,
however, we can only deal with finite quantities and signals that comprise
of discrete elements. An image thus is described as a – usually rectangular
– grid of M by N pixels, where each pixel represents the average intensity
of a finite neighbourhood around the pixel centre. A fundamental result on
the relationship of continuous signals and their discrete approximations is the
Nyquist theorem (Shannon, 1949; reprinted as Shannon, 1998), which specifies
limits on the size of these neigbourhoods (i.e. the number of pixels):
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Figure 2.3: Multiresolution pyramid for one-dimensional signals. (a-b) A signal and its
schematic spectrum. For a given sampling rate, frequencies up to the Nyquist frequency fν
can be represented faithfully. The spectra of discrete signals periodically repeat themselves in
intervals of 2 fν. (c-d) The signal in (a), filtered with a 5-tap binomial lowpass filter, and its
spectrum. The high-frequency content has been filtered out, so that the spectrum has vanished
beyond fν/2 (in practice, some high-frequency content may remain, depending on the exact choice
of filter kernel). (e-f) After lowpass filtering, the signal can be sampled at a lower rate. After
downsampling, the whole spectrum is used up to the (new) fν.

Theorem 1 If a function f (x) contains no frequencies higher than W cpd, it is com-
pletely determined by giving its ordinates at a series of points spaced 1

2W degrees apart.

In other words, a signal must be sampled with at least twice the rate of the
highest frequency that should be faithfully represented; it also directly follows
that sampling a signal with a higher rate than this Nyquist rate does not add
useful information. This fact can be exploited by reducing the resolution of
an image, or downsampling, after lowpass-filtering the image has reduced its
Nyquist rate (for a one-dimensional example, see Figure 2.3); usually, resolution
is reduced by a factor of two per dimension, so that the number of pixels is
reduced by a factor of four.

If the downsampled image is now convolved again with the same kernel,
the effective filter width (relative to the original image) has doubled although
the computational costs remain constant. Naturally, this operation can be
iteratively repeated to obtain a series of successively smaller images, which,
when displayed as stacked on top of each other, resemble a pyramid (hence
the name). We note here that despite the original nomenclature of referring
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to the individual levels according to their position in this pyramid (with low
frequencies at the top), we shall identify pyramid levels by their frequency
content, so that the “highest” level is the original image. If the size of this
image is a power of two, the lowest possible level then consists of only one
pixel, which represents the DC component, i.e. the average intensity of the
whole image.

We will now briefly present some theoretical considerations; for a more
in-depth coverage, we refer to textbooks on multiscale image processing such
as Jähne and Haußecker (2000). Implementation details will be described in
Part III.

We denote the original image by I(x, y), which has a width of W and a height
of H pixels. This original image is also the highest level G0(x, y) of the Gaussian
pyramid. The other Gaussian levels Gk, which have a resolution of W/2k by
H/2k pixels, can then be computed iteratively:

Gk+1(x, y) =
c∑

i=−c

wi

c∑
j=−c

w j · Gk(2x + j, 2y + j).

Note that the filtering operation and the downsampling were combined into
one step; only the pixels that remain after the downsampling are explicitly
computed. The separable filtering kernel w has length 2c + 1 and coefficients
w−c, . . . ,wc; a non-separable kernel wi, j is also possible.

To avoid a phase shift during the filtering operation, the kernel w should be
symmetric, i.e. w−i = wi. Also, in order to keep the energy per pixel constant,
the filter coefficients should be normalized to unit sum,

c∑
i=−c

wi = 1.

A further constraint on the filter kernel is the so-called equal contribution
principle. To avoid artefacts, each pixel in the high-resolution image has to
contribute equally to the low-resolution version (because the number of pixels
is reduced by a factor of four, this contribution factor must be 1/4); for a five-tap
filter kernel w0 = p, w−1 = w1 = q, w−2 = w2 = r thus follows p+2r = 2q, which
is fulfilled by, for example, the commonly used binomial kernel (1, 4, 6, 4, 1)/16.

So far, we have only discussed a Gaussian pyramid of images, i.e. a succes-
sive reduction of spatial resolution. However, the same principle can also be
applied to image sequences in time. Instead of disregarding every second pixel
during the downsampling phase, every second frame of the image sequence
can be thrown away. In principle, this is only a trivial modification to the spatial
pyramid; in practice, however, the dimension of images is known beforehand
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and typically small enough to fit into memory. Videos, on the other hand, are of
potentially infinite length and cannot necessarily be stored in memory at once,
so that an appropriate buffering scheme has to be developed (see Chapter 6).

Furthermore, image sequences can also be processed on a spatio-temporal
pyramid, where the image sequence is filtered and subsampled in both space
and time. We differentiate between an isotropic pyramid, where space and time
are subsampled simultaneously, and an anisotropic pyramid, for which each level
of a spatial pyramid is decomposed further into its temporal bands. This finer
partition of the spectrum comes at a computational cost, however, which is
directly linked to its memory requirements.

The Gaussian pyramid necessarily is an overcomplete representation of the
original signal since G0 alone has full resolution. Nevertheless, because of the
exponential reduction in resolution on the lower levels, the overall number of
pixels is only moderately increased; this is particularly true for an isotropic
spatio-temporal pyramid where resolution is reduced on three dimensions
simultaneously (and thus by a factor of eight per level). For an input image or
image sequence with N pixels, a full spatial Gaussian pyramid will consume
4
3N and a temporal pyramid 2N pixels; an isotropic spatio-temporal pyramid
requires only 8

7N pixels, whereas an anisotropic pyramid with S spatial and T
temporal levels consumes 4

3T ·N pixels.
One limitation of the Gaussian pyramid is that it allows only for an octave-

based decomposition into subbands. For a finer-grained partition, alternative
methods exist, but are less efficient (Köthe, 2004).

2.4 Laplacian multiresolution pyramids

The Laplacian pyramid is based on the Gaussian pyramid and is one of the
fundamental data structures in image processing; the seminal paper by Burt
and Adelson (1983a) has been cited almost 3000 times. Its applications include
image compression (Adelson and Burt, 1981), image mosaicing (Burt and Adel-
son, 1983b), texture synthesis (Heeger and Bergen, 1995), scene understanding
(Jolion and Montanvert, 1992), template matching (Bonmassar and Schwartz,
1998), and medical image enhancement (Trifas et al., 2006).

The underlying idea of the Laplacian pyramid is based on the linearity of
the Fourier transform (Equation 2.1). If two images are subtracted from each
other, the spectrum of the result will also be equal to the subtraction of the
two original spectra; for example, subtracting a lowpass-filtered version of an
image from the original image will leave only the high-frequency content and
thus is akin to a highpass filter. The different levels of the Gaussian pyramid all
have different spectral content; however, because of their different resolution,

16



2.4. LAPLACIAN MULTIRESOLUTION PYRAMIDS

they cannot be subtracted from each other pixel-wise. Therefore, lower levels
have to be brought to the resolution of the next higher level by upsampling
first; this can be achieved by inserting zeros and a subsequent interpolation
with a lowpass filter (in practice, this is often the same filter that was used for
creating the Gaussian pyramid).1 We denote the expanded version of Gk with
↑ Gk or G′k−1:

G′k−1(x, y) =
c∑

i=−c

wi

c∑
j=−c

w j · Gk

(
x − i
2
,

y − j
2

)
,

and only those pixels of Gk are included in the sums that exist for Gk, i.e. where
(x − i) mod 2 = 0, (y − j) mod 2 = 0.

Now that adjacent Gaussian pyramid levels have matching resolution, the
Laplacian levels can be formed by subtraction:

Lk(x, y) = Gk(x, y)− ↑ Gk+1(x, y).
�� ��2.2

Because the lowest level GN of a pyramid with N + 1 levels has no lower
neighbour anymore, we set the lowest level of the Laplacian to the same as that
of the Gaussian, i.e. the DC component is

LN = GN.

A schematic overview of the Laplacian analysis phase is shown in Figure 2.4.
Based on the rightmost column in that figure, we can see that the middle levels
of the Laplacian pyramid represent subbands in octaves; it thus follows that
the pyramid is an efficient bandpass representation.

In principle, the same result can be obtained by filtering the signal with
a kernel that is the difference of two Gaussian kernels with varying width
(DoG filter, see Figure 2.5). However, the pyramid scheme makes use of the
reduced Nyquist frequency after filtering to reduce resolution of the lower
levels; even large filter widths (relative to the original image) can then be
computed efficiently.

A useful property of an octave-based decomposition into subbands is that
this roughly matches the energy falloff in natural scenes (see above): lower
bands represent only a smaller fraction of the spectrum, but have approximately
the same overall amount of energy due to their higher energy concentration.

So far, we have only looked at the analysis phase of the pyramid. It is also
possible, however, to reconstruct an image from its bandpass decomposition;
this obviously is particularly useful if the frequency bands are modified between

1Note that depending on context, in this thesis we shall use the term “upsampling” both to
describe only the insertion of zeros as well as the subsequent interpolation.
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Figure 2.4: Schematic overview of analysis phase of a spatial Laplacian pyramid. First, the
Gaussian pyramid is computed by iteratively filtering and subsampling the input image; the
smaller image versions lack high-frequency content and therefore contain only a (lowpass) part
of the spectrum (left). Adjacent pyramid levels can be subtracted from each other after an
upsampling operation that brings the lower level to matching resolution (middle). Finally,
subtraction results yield images that contain information from specific subbands only (right).

analysis and pyramid synthesis. Synthesis is straightforward and is achieved
by iteratively upsampling and adding the Laplacian levels:

L′k(x, y) = Lk(x, y)+ ↑ L′k+1(x, y),
�� ��2.3

with L′0(x, y) a faithful reconstruction of the original image (if the Lk remained
unmodified); because of the missing neighbour for the DC component, we set

L′N = LN.

From a theoretical standpoint, the upsampling operation in Equation 2.2 is
redundant; the same information that is represented by ↑ Gk+1 should be
contained in the lowpass-filtered version of Gk prior to the downsampling step
already. If speed is a major concern, it is therefore possible to subtract the
filtered Gk instead of ↑ Gk+1 from Gk (note, however, that this prevents us from
rolling filtering and subsampling into one step as above). This comes at the
expense of accuracy, though; practical filter kernels w do not set all frequencies
above half the Nyquist frequency to zero, so that some alias is introduced in
the subsampling step. Subtracting ↑ Gk+1 in Equation 2.2 ensures that this alias
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Figure 2.5: Example for DoG (Difference of Gaussians) filter. (a) In the spatial domain, the
“Mexican hat” filter is the result of subtraction of two Gaussians with different bandwidths. (b)
The bandpass characteristic can be seen clearly in the frequency domain.

cancels out during pyramid synthesis, so that the pyramid reconstruction is
identical to the input image.

In analogy to the Gaussian pyramid, the same principles as above on im-
ages can be applied in the temporal domain on image sequences. As in the
spatial domain, the temporal Laplacian pyramid can make use of an under-
lying Gaussian pyramid; a further complexity arises, however, by the need
to appropriately buffer intermediate results (temporal filtering requires recent
and future items).

Spatio-temporal Laplacian pyramid

Once a temporal Laplacian pyramid is available, it is straightforward to extend
the Laplacian pyramid also to the spatio-temporal domain. In analogy to the
spatio-temporal Gaussian pyramid, such pyramid can either be isotropic or
anisotropic (see Figure 2.6). On an isotropic pyramid, spatial and temporal
frequencies vary together, e.g. one subband may encompass low spatial and
low temporal frequencies and another subband may comprise of high spatial
and high temporal frequencies. The anisotropic pyramid yields a finer-grained
decomposition of the spectrum (similar to a steerable pyramid, see Simoncelli
et al., 1992) and results in a higher number of subbands that also represent,
for example, low spatial and high temporal frequencies. In principle, such
an anisotropic decomposition could also be performed on the horizontal and
vertical domain of a spatial pyramid; in practice, this is rarely done due to the
computational cost.

In Chapter 6, we will present efficient implementations of an isotropic Lapla-
cian pyramid for offline space-variant filtering and of an anisotropic Laplacian
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(a) (b)

Figure 2.6: Spectral decomposition of an isotropic Laplacian pyramid (a) and an anisotropic
pyramid (b). Whereas e.g. low spatial and low temporal frequencies are represented together on
an isotropic pyramid, the anisotropic pyramid also represents e.g. low spatial and high temporal
frequencies.

for real-time gaze-contingent rendering; in the following, we shall discuss fur-
ther applications of a spatio-temporal pyramid for image processing.

2.5 Spatio-temporal “natural” noise

The typical input to the human visual system comprises of semantically mean-
ingful objects. For research dealing with the influence of image features on
perception, this poses a problem because it is difficult to disentangle the role
of semantics (high-level information) from that of syntax (low-level image fea-
tures). A common approach in vision science is therefore to generate random
stimuli that convey no semantic information, but are similar to natural stimuli
in their low-level content (Geisler et al., 2006; Jansen et al., 2009). One funda-
mental low-level property of natural images is that they are strongly correlated;
in other words, as we have seen above, the amplitude spectra of natural scenes
follow a 1/ f β falloff.

Random (white noise) images have a flat amplitude spectrum. Images with-
out semantic content, but with natural spectrum, can therefore be produced by
performing the inverse Fourier transform on a random spectrum with appro-
priate 1/ f β characteristic:

s(x, y) c sS( fx, fy) =
1√

f 2x + f 2y
β
· X,
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where X is a uniformly distributed random variable. Care has to be taken,
however, how to treat the DC component ( fx = 0, fy = 0); a common solution
is to simply set the DC component to zero.

Alternatively, one can compute the Fourier transform of an image, randomly
permutate its phase spectrum, and then perform the inverse transform to obtain
a noise image with natural amplitude spectrum (Sadr and Sinha, 2004). This
method is computationally more expensive than the first method, but models
the falloff parameter β more accurately for a given input image.

In the context of this thesis, however, we are interested not only in images,
but in image sequences. Because of the 1/ f β falloff of the temporal spectrum
of natural movies and its spatio-temporal inseparability (see above), we cannot
simply apply the Fourier-based technique to each frame of our videos; per-
forming a Fourier analysis of long high-resolution videos is infeasible due to
its memory and computational requirements.

Therefore, we use a spatio-temporal Laplacian pyramid to create spatio-
temporal noise with a natural amplitude spectrum. On static images, the
Laplacian has been used for texture synthesis before (Heeger and Bergen, 1995).
The underlying idea is to measure the first-order statistics for each subband of
an input movie and to synthesize an output movie from subbands that have
matching statistics:

L′s,t(x, y,n) = Xs,t,

where Xs,t is a random variable from a normal distribution with mean zero and
a variance σ2s,t that equals the average energy on the frequency band (s, t) of the
input movie,

σ2s,t = Ls,t(~x)2.

As a drawback compared to the Fourier-based methods above, this approach
can only approximate the original spectrum because of alias during the down-
sampling steps of the Laplacian pyramid. However, this technique is more
efficient than a Fourier analysis and can be used simultaneously to seamlessly
blend between natural and synthetic stimuli (see next section); we will use such
noise stimuli in Chapter 3. An example stillshot is given in Figure 3.2.

2.6 Movie blending

The Laplacian pyramid can also be used to seamlessly stitch together two
images (Burt and Adelson, 1983b). If a transition region between the images
is defined by the same number of pixels on all pyramid levels, the effective
size of the transition region will be larger on the lower levels; thus, the amount
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(a) (b)

(c) (d)

Figure 2.7: (a-b) Stillshots of two movies with very different spatio-temporal energy distribu-
tions. (c) Result of blending the movies by averaging frame-wise. (d) Result of blending on a
spatio-temporal Laplacian pyramid, where the contribution of each movie to each frequency band
was equalized. Note, for example, the reduced contrast of the oncoming pedestrians to the left or
the man in pink in the middle. The effect is perceptually more striking when real movies instead
of stillshots are displayed because temporal change is highly salient (and temporal contrast was
also equalized).

of the spectrum that is blended will vary smoothly, and sharp boundaries are
avoided.

For our work on multiple overlaid motions (see Chapter 4), however, we
are not interested in stitching two (or more) movies, but in blending them over
their whole spatio-temporal extent. A trivial approach would be to simply take
the average value of the input movies at each pixel to create the blended pixels.
With N input movies m0(~x), . . . ,mN−1(~x) and output movie b(~x), this approach
would be

b(~x) =
1

N

N−1∑
i=0

mi(~x).

An example is shown in Figure 2.7(c). However, when movies with very
different spatio-temporal contrast distribution (such as the two movies in Fig-
ure 2.7(a) and 2.7(b)) are being blended, one movie might perceptually domi-
nate the result. Especially if one movie contains significantly more motion or
temporal change, this motion will grab the viewer’s attention and render the
second movie almost invisible. Therefore, we use a spatio-temporal Laplacian
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pyramid to equalize the contribution of the individual movies to each frequency
band.

Let Lmi
s,t denote the s-th spatial and t-th temporal level of an anisotropic

Laplacian pyramid (we here use a pyramid with five spatial and five temporal
levels) of movie mi. First, we compute the square root of the average energy
for each frequency band,

Emi
s,t =

√
Lmi

s,t(~x)2.

Then,

Lb
s,t(~x) =

1

N
·

N−1∑
i=0

Emi
s,t ·

N−1∑
i=0

Lmi
s,t(~x)

Emi
s,t

.

The first two terms that average over E serve to normalize the mean energy
of the output movie to the same range as that of the original movie; this is
needed only for display purposes, where the dynamic range per pixel usually
is fixed to [0, 255]. The result of this pyramid-based blending algorithm can
be seen in Figure 2.7(d). Obviously, it is impossible to see the difference in
temporal contrast to the simple averaging algorithm (Figure 2.7(c)) on these
stillshots; nevertheless, spatial contrast of the street scene is clearly reduced to
enhance visibility of the sailboat (e.g. at the oncoming pedestrians to the left or
the pink-clad person in the centre).

It should be noted – and we shall elaborate on this in Part III – that the
temporal filtering operations on the Laplacian pyramid lead to temporal border
effects. In order to avoid artefacts, the spatio-temporally blended movies are
thus slightly shorter than the original input movies.

2.7 Geometry of image sequences

We will now look at the geometry of image sequences and discuss how we
can obtain an “alphabet of signal change” that will prove highly useful later in
understanding several human vision phenomena.

Let a gray-scale image sequence be modelled by a function f : R3 → R.
There are now four possibilities how f behaves in an (open) region Ω for all
(x, y, t) ∈ Ω: i) f is constant in all directions, f (x, y, t) = c; ii) f is constant
in all directions but one; iii) f changes in two directions; iv) f varies in all
directions. The number of locally used degrees of freedom of a signal is called
the intrinsic dimension (Zetzsche and Barth, 1990). This concept is important for
the representation of images and image sequences because in natural scenes,
regions with high intrinsic dimension are less frequent than regions with low
intrinsic dimension, and image regions of intrinsic dimension less than two are
redundant (Mota and Barth, 2000). An example sketch for a synthetic image is
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i0D

i1D

i2D

Figure 2.8: Intrinsic dimension of an image. Homogeneous areas do not change in any direction
and are i0D, edges change in a direction orthogonal to their orientation and are i1D, and corners
use all degrees of freedom in an image and are i2D. A transient (i.e. appearing or disappearing)
corner in an image sequence would be i3D.

shown in Figure 2.8; for image sequences, homogeneous areas are of intrinsic
dimension zero (i0D), stationary edges are i1D, corners and transient edges
are i2D, and transient, i.e. appearing or disappearing corners are i3D (for an
example of i2D regions on a natural movie, see Figure 4.2).

We will first formalize these observations and then introduce several tech-
niques to estimate the intrinsic dimension, following Mota et al. (2006). For
a given region Ω, we choose a linear subspace E ⊂ R3, of highest dimension,
such that

f (~x + ~v) = f (~x) for all ~x, ~v such that ~x, ~x + ~v ∈ Ω, ~v ⊂ E.
�� ��2.4

The intrinsic dimension of f is then 3 − dim(E).

Structure tensor

We note the equivalence of Ω above and the constraint

∂ f
∂~v

= 0 for all ~v ∈ E.

The subspace E can be estimated as the subspace spanned by the set of unity
vectors that minimize the energy functional

ε(~v) =
∫
Ω

∣∣∣∣∣∂ f
∂~v

∣∣∣∣∣2 dΩ = ~vT J~v,
�� ��2.5

where the structure tensor J (Bigün et al., 1991) is given by

J =
∫
Ω

∇ f ⊗ ∇ f dΩ
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with the tensor product ⊗. Alternatively, we can then write

J = ω ∗


fx fx fx fy fx ft
fx fy fy fy fy ft
fx ft fy ft ft ft


�� ��2.6

with a spatio-temporal lowpass filter kernelω and partial derivatives fx, i.e. fx =

∂ f/∂x. Therefore, E is the eigenspace associated with the smallest eigenvalue
of J, and the intrinsic dimension of f corresponds to the rank of J. Instead of
performing an eigenvalue analysis, the intrinsic dimension can also be obtained
from the symmetric invariants of J (see below).

We note here that the scale on which the intrinsic dimension is estimated
depends on the bandwidth of the derivative operators and the kernel ω; this
dependency holds also for the following methods. In practice, we therefore
perform our computations on spatio-temporal multiresolution pyramids to
analyse several scales simultaneously; we shall present efficient implementa-
tions in Part III.

Hessian matrix

From Equation 2.4, it follows that, in Ω,

∂2 f
∂~w∂~v

= 0 for all ~v ∈ E and ~w ∈ R2,

which is equivalent to (Golland and Bruckstein, 1997)

H~v = 0 for all ~v ∈ E,

where H is the Hessian of f :

H =


fxx fxy fxt

fxy fyy fyt

fxt fyt ftt


As in the case of the structure tensor, both the subspace E and the intrinsic
dimension can be estimated by eigenvalue analysis of the Hessian of f (Zetzsche
and Barth, 1990).

Energy tensor

The previous two methods both have drawbacks. The structure tensor fails
at extreme points, whereas the method based on the Hessian matrix fails at
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inflection points of the image. To overcome these drawbacks, the energy tensor
(Felsberg and Granlund, 2004) is a combination of the structure tensor and the
Hessian matrix:

E = ∇ f ⊗ ∇ f − f H.

Felsberg and Granlund (2004) showed that the energy tensor is phase invariant,
which is beneficial if an exact localization of features is desired; for example, one
common supposition is that the human visual system has a dedicated “where”
pathway for localization (Ungerleider and Mishkin, 1982). Furthermore, the
statistics of natural images are separable only in terms of phase and amplitude,
but not in terms of even and odd filters (Zetzsche et al., 1999), indicating a
benefit of distinguishing phase and amplitude.

However, the energy tensor is well-defined only for continuous bandpass
signals; since natural videos typically contain a strong DC component, f has to
be appropriately filtered in practice.

2.8 Geometrical invariants

The numerically costly eigenvalue analysis for these tensor methods can be
avoided by computing the geometrical invariants H, S, and K, which corre-
spond to the minimum intrinsic dimension of a region:

H = 1/3 trace(J) = λ1 + λ2 + λ3

S = |M11|+ |M22|+ |M33| = λ1λ2 + λ2λ3 + λ1λ3

K = |J| = λ1λ2λ3.

Regions where H > 0 are at least i1D, regions where S > 0 are at least i2D, and
K > 0 in i3D regions. The Mii are the minors of J, i.e. the determinants of the
matrices obtained by eliminating the row 4− i and the column 4− i from J, e.g.

M11 =

∣∣∣∣∣∣∣ fxx fxy

fxy fyy

∣∣∣∣∣∣∣ .
The structure tensor is positive semidefinite and therefore H,S,K ≥ 0; for the
energy tensor, this holds only for appropriately filtered bandpass signals. On
the Hessian, the invariants can also become negative.

2.9 Multispectral image sequences

Until now, we have discussed techniques to estimate the intrinsic dimension
only for grayscale image sequences. However, colour does play an important
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role both in perception (Wichmann et al., 2002) and in oculomotor control; for
our work on eye movement prediction in Chapter 4, we therefore here extend
the technique based on the structure tensor to multispectral, i.e. colour image
sequences (Mota et al., 2006).

As above in Equation 2.4, we look for the subspace E of highest dimension
such that, in Ω,

∂ ~f
∂~v

= 0 for all ~v ∈ E.

Note that ~f is now a vector from Rq (for an image sequence with q colour
channels), so we choose an appropriate scalar product for ~y = (y1, . . . , yq) and
~z = (z1, . . . , zq) such that ~y · ~z =

∑q
k=1

akykzk, with positive weights ak that can
be used to assign higher importance to certain colour channels.

In analogy to Equation 2.5, we may now estimate the intrinsic dimension of
~f by minimizing the energy functional

ε(~v) =
∫
Ω

∥∥∥∥∥∥∥∂ ~f∂~v
∥∥∥∥∥∥∥
2

dΩ,
�� ��2.7

∂ ~f
∂~v

= vx
~fx + vy

~fy + vt
~ft,

with ~v = (vx, vy, vt). Rewriting Equation 2.7 as

ε(~v) = ~vT J~v,

and we arrive at the multispectral structure tensor

J =
∫
Ω


‖~fx‖2 ~fx · ~fy

~fx · ~ft
~fx · ~fy ‖~fy‖2 ~fy · ~ft
~fx · ~ft ~fy · ~ft ‖~ft‖2

 dΩ,

which, in the case of a grayscale video, is the same as in Equation 2.6.

2.10 Orientation estimation

The structure tensor can also be used to estimate local orientation. In an image,
orientation simply refers to orientation of an edge; in image sequences, moving
objects also produce oriented edges in space-time, so that similar techniques
can be used to estimate motion (edge orientation and motion will be used
in Section 4.2). Then, we shall briefly cover how the structure tensor can
be extended to the generalized structure tensor, on which we can estimate the
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superposition of multiple motions. In Chapter 4, we will then predict eye
movements on overlaid movies (for their generation, see Section 2.6) by their
intrinsic dimension computed on the generalized structure tensor.

Local orientation estimation on images based on an eigenvalue analysis
of the two-dimensional structure tensor J2D is a standard technique in image
processing (for a textbook coverage, see e.g. Jähne, 1999). Similar to the three-
dimensional structure tensor above,

J2D = ω ∗
 fx fx fx fy

fx fy fy fy

 ,
where f (x, y) is the image-intensity function, subscripts indicate partial deriva-
tives, and ω is a spatial smoothing kernel applied to their products. If the rank
of J2D is zero (both eigenvalues λ1, λ2 = 0), the image patch is homogeneous.
A rank of two (λ1 > 0, λ2 > 0) indicates a 2D feature, e.g. a corner. An ideal ori-
entation corresponds to a rank of one (λ1 > 0, λ2 = 0), with a direction given by
the eigenvector corresponding to the zero eigenvalue. To increase robustness
in the presence of noise, however, eigenvalues typically are not checked against
zero, but against a threshold θ1 defined by λmax, the maximum eigenvalue over
all image patches, and a second threshold θ2 that controls the relative size of
the eigenvalues:

θ1 <
λ1+λ2
λmax

θ2 <
λ2−λ1
λ1+λ2

.

�� ��2.8

2.11 Motion estimation

To estimate the displacement vector (vx, vy) of a moving point in an image
sequence f (x, y, t), we assume that the intensity or colour of the point does
not change; this is the well-known constant brightness equation (Horn and
Schunck, 1981):

vx fx + vy fy + ft = 0.
�� ��2.9

However, this does not fully constrain ~v at a given position (x, y) and therefore
~v is estimated under the assumption of being constant in a spatio-temporal
region Ω. Another way of looking at this is that the gradient of f lies in a plane
whose normal is parallel to (vx, vy, 1) in Ω. This normal ~n = (nx,ny,nt) can be
estimated by minimizing the energy functional

E1(~n) =
∫
Ω

[∇ f · ~n]2dΩ.
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t0

t1

Figure 2.9: The aperture problem is a fundamental problem for motion estimation of 1D patterns:
the veridical motion of the line stimulus cannot be determined locally.

We can compute the vector ~n up to a scaling factor by finding the eigenvector
associated to the zero eigenvalue of the structure tensor J (Haußecker and Spies,
1999). Note that since E1 is homogeneous, both ~n and −~n are minimal points of
E1. Actually, λ~n minimizes E1 when the arguments of E1 are vectors with norm
λ. Therefore, we can think of ~n as homogeneous coordinates for ~v and simply
write

~v = [vx, vy, 1] = [nx,ny,nt].

We can see that ~v can only be estimated reliably if there is only one zero
eigenvalue of J, i.e. rank J = 2. Even then, motion is only present if nt , 0.
In practice, due to noise, eigenvalues are rarely zero and thus a confidence
measure is employed, e.g. with λ1 ≥ λ2 ≥ λ3,

θ < ((λ1 − λ3)/(λ1 + λ3))
2 − ((λ1 − λ2)/(λ1 + λ2))

2.

Based on the eigenvalues of J, we can now describe the local motion patterns
in f . Under constant motion ~v, the sequence f can be written as

f (~x, t) = g(~x − t~v)

within Ω.

In regions with constant intensity (◦), any motion vector is admissible and
the rank of J is zero. A rank of one corresponds to the motion of a straight
pattern (|); here the motion vectors are ambiguous due to the aperture problem
(see Figure 2.9). Other moving patterns (•) correspond to rank J = 2, and non-
coherent motion types such as noise, popping up objects, etc. correspond to
rank J = 3. These correspondences are summarized in Table 2.1.

A related, but more robust and more efficient algorithm to estimate motion
than the above eigenvalue analysis is based on the minors of J (Barth, 2000);
the matrix M has elements Mi j, (i, j = 1, 2, 3), which are the determinants of the
matrices obtained from J by eliminating the row 4− i and the column 4− j, e.g.
M11 = (ω ∗ f 2x )(ω ∗ f 2y ) − ((ω ∗ fx fy))

2. Using the constant brightness equation
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Moving patterns rank J1

◦ 0

| 1

• 2

others 3

Table 2.1: Different moving patterns and the ranks of the structure tensor (Mota et al., 2004a):
(◦) constant intensity pattern; (|) 1D pattern; (•) 2D patterns.

(Equation 2.9), we can obtain several expressions for the velocity vector ~v:

(M31,−M21)/M11 = ~v1

(M23,−M22)/M12 = ~v2

(M33,−M23)/M13 = ~v3

(M33,−M22)/M11 = (v24x, v
2
4y),

with ~v4 =
(
sign(v1x)

√
M33, sign(v1y)

√
−M22

) /√
M11 . For a translation with

constant velocity, the ~vi are identical; for on- and offset (e.g. occlusions), how-
ever, the ~vi differ, and it is thus straightforward to compare these estimates
and use the results only if the maximum difference does not exceed a certain
threshold. For a further confidence measure, see the section on estimation of
multiple motions below.

The problem of motion estimation has often been studied in the Fourier
domain and it is known that additive transparent moving patterns correspond
to the additive superposition of Dirac planes through the origin. For an intu-
itive interpretation of multiple motions in the Fourier domain, we introduce a
representation of f in the projective plane below.

Projective plane

A useful representation of different motion types is the projective plane (Mota
et al., 2004a); intuitively, the projective plane can be obtained by adding an
extra point, the so-called ideal point, to each line of the Euclidean plane under
the constraint that all parallel lines share the same ideal point. The set of
ideal points is called the ideal line. More precisely, we can use homogeneous
coordinates to represent each point of the projective plane by a non-zero vector
~P = (X,Y,Z). Two vectors ~P and ~Q represent the same point if ~P = λ~Q, λ ∈ R.
Points with a non-null Z-coordinate correspond to points of the Euclidean plane
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by means of the projection

x =
X
Z
, y =

Y
Z

and points with Z = 0 represent the ideal points of the projective plane. Using
this projection, a point (x, y) of the Euclidean plane is identified to (x, y, 1) in
the projective plane; a line can be described by (X,Y,Z) | AX + BY + CZ = 0.

Turning now to the representation of moving patterns, a single motion layer
with velocity ~v is described by

f (~x, t) = g(~x − t~v).

We can also write this in the Fourier domain as

F(ξ, ξt) = δ(~v · ξ+ ξt) · G(ξ)

and see that F is restricted to a plane through the origin of the Fourier domain,
which corresponds to a line in the projective plane. The dual point to this line
is then the velocity of the grating, which in the Fourier domain is encoded by
the normal of the plane. For 1D spatial patterns, which correspond to lines in
the Fourier domain (points in the projective plane), all the admissible velocities
are represented by the dual line.

2.12 Generalized structure tensor

In the following, we will briefly discuss the extension of motion estimation to
the case of two transparent motions. For the case of an arbitrary number of
motions N, we refer to Mota et al. (2001).

An image sequence consisting of two transparent layers can be modeled as

f (~x, t) = g1(~x − t~u) + g2(~x − t~v),

where ~u = (ux,uy) and ~v = (vx, vy) are the velocities of the respective layers. In
homogeneous coordinates, the basic constraint equation is

cxx fxx + cxy fxy + cyy fyy + cxt fxt + cyt fyt + ctt ftt = 0,
�� ��2.10

where ~c = (ci j)
T is given by

ci j =

u jv j if i = j

uiv j + u jvi otherwise

31



CHAPTER 2. BASICS

Moving pattern Projective representation rank J1 rank J2

◦ the empty set 0 0

| a point 1 1

|+ | 2 points 2 2

• a line 2 3

•+ | a line + a point 3 4

•+ • 2 lines 3 5

others others 3 6

Table 2.2: Different motion patterns (first column) and the ranks of the generalized structure
tensors for 1 and 2 motions (table rows). This table shows the correspondence between the different
motion patterns and the tensor ranks that can, in turn, be used to estimate the confidence for a
particular pattern, i.e. a proper motion model. Note that the rank of J2 induces a natural order
of complexity for patterns consisting of two additive layers.

with ut = vt = 1. As in the single motion case, Equation 2.10 implies that the
Hessian of f lies in a hyperplane of a six-dimensional space (the space of 3 × 3

symmetric matrices) whose normal is the symmetric matrix C with entries ci j if
i = j and ci j/2 if i , j. In analogy to the case of a single motion, ~c is estimated
as the eigenvector related to the smallest eigenvalue of the tensor

J2 =

∫
Ω


f 2xx fxx fxy · · · fxx ftt

fxx fxy f 2xy · · · fxy ftt
...

...
...

fxx ftt fxy ftt · · · f 2tt

 dΩ.
�� ��2.11

It follows that motion can be reliably estimated only if the rank of J2 is ord(J2)−
1 = 5 and the last coordinate of the eigenvector that corresponds to the zero
eigenvalue is different from zero (again as in the case of one motion). A
summary of different motion types and the corresponding ranks of J1 and
J2 is given in Table 2.2. Instead of comparing the eigenvalues against zero, a
confidence measure based on the geometrical invariants is

K
1
m < εS

1
m−1 ≤ H

with m = ord(J2) (Mota et al., 2001). However, these conditions are only
necessary but not sufficient; further constraints are given in (Mota et al., 2004a).
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x0

x1

Figure 2.10: Schematic representation of a soft-margin support vector machine (SVM). The
two classes (dark circles and squares) are separated by the hyperplane that results in the largest
margin between the two classes; only those data points that lie closest to that hyperplane are
relevant for classification, and they are denoted as support vectors. The soft-margin SVM
allows for some classification errors (light gray data points in the centre) in order to maintain a
large margin, which often is beneficial for generalization performance.

2.13 Support vector machines

For the prediction of eye movements in Chapter 4, we will use machine learning
techniques, namely support vector machines. We shall here discuss the fun-
damental ideas of this classification algorithm very briefly; for a more detailed
review, we refer to textbooks, e.g. Bishop (2006).

Given a set of (training) data points ~xi = (xi0, . . . , xid) and a set of class
labels yi ∈ {−1, 1}, which assigns each ~xi to either the negative or positive class,
we want to find a hyperplane that separates these two classes; an additional
constraint is that the distance of this hyperplane to both classes should be
maximal. This constraint is based on the assumption that novel (or test) data
points from a certain class might lie between the training points from this class
and the hyperplane; the wider the margin, the higher the likelihood that these
novel data points are also classified correctly. Ultimately, it is such generalization
of correctly classifying novel data that determines the utility of a classification
algorithm; good training performance, on the other hand, is of less importance
because the training labels are known already (and could easily be recited by
a trivial algorithm, the so-called “rote learner”). For a schematic overview, see
Figure 2.10.
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Formally, we are looking for the two hyperplanes with normal vector ~w that
are defined by the set of points of ~x with

~w · ~x − b = 1

~w · ~x − b = −1 ,

where b
‖~w‖ specifies the bias, i.e. the distance of the hyperplanes from the origin.

The two classes should be separated by the hyperplanes, so

~w · ~xi − b ≥ 1 for yi = 1

~w · ~xi − b ≤ −1 for yi = −1 .

This leads us to a minimization problem: minimize (in ~w, b)

1

2
‖~w‖2 such that yi(~w · ~xi − b) ≥ 1.

However, a solution can only be found if the two training classes are linearly
separable; if this is not the case, the soft margin support vector machine introduces
slack variables ξi that penalize, but allow wrongly classified data points ~xi:

yi(~w · ~xi − b) ≥ 1 − ξi,

with the minimization problem

1

2
‖~w‖2 + C

∑
i

ξi such that yi(~w · ~xi − b) ≥ 1 − ξi.

The penalty constant C – and other parameters if a kernel support vector ma-
chine is used, see e.g. Schölkopf and Smola (2002) – usually have to be subject to
an optimization procedure themselves in order to obtain good generalization
performance.

A standard implementation of various support vector machine types is the
publicly available libSVM package (Chang and Lin, 2001), which we shall also
use in Chapter 4.

2.14 Human vision basics

The human eye absorbs about 50 billion photons every second in moderate
daylight, but sends only about 10 million bits per second to the visual processing
areas of the brain (Koch et al., 2006). Ultimately, conscious perception is limited
much more severely. Even though an exact number is hard to compute, human
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Figure 2.11: Anatomy of the human eye. Light enters the eye through the cornea and is projected
onto the retina through the lens. The fovea is the locus of highest acuity on the retina and consists
almost exclusively of cones.

cognitive capacity for simultaneous processing lies probably in the one-digit
range – a popular number is about three bits or seven items (Miller, 1956).

In the following, we shall review some facts about the human visual system,
with an emphasis on convergence, i.e. how the visual system distills relevant
information from the continuous stream of light it receives. One particular
trick is space-variant processing, which takes place on almost all levels of the
visual system. Only a fraction of the incoming information in the centre of the
retina is processed in full detail; to compensate for the peripheral resolution
loss, the eyes are moved around several times per second. For a more detailed
account of the human visual system, we refer to e.g. Kandel et al. (1995) and
Findlay and Gilchrist (2003).

Our own experimental results on the perception of multiple overlaid mo-
tions are of interest in the context of mathematical algorithms for the estimation
of multiple motions (see Section 2.12) and of prediction of eye movements on
such stimuli (see Section 4.4). Because they do not strictly fit our work on gaze
guidance, however, we shall present them in Appendix A.

Eye anatomy

The anatomy of the human eye is schematically shown in Figure 2.11. Light
enters the eye through the cornea and is projected through the lens onto the retina,
where it becomes transduced into electrical, i.e. neural signals. The shape of the
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rods cones

night vision, high light sensitivity day vision, low sensitivity to light
single photon detection detect only hundreds of photons
achromatic three different types: S-, M-, L-

cones (blue, green, red)
low spatial resolution high spatial resolution
highly convergent neural pathways less convergent pathways
low temporal resolution (12 Hz) high temporal resolution (55 Hz)
fixed size across the visual field larger towards the periphery

Table 2.3: Differences between rods and cones.

lens leads to spherical aberrations, which are stronger towards the periphery.
Because of optical limits and facial features such as the nose, the two eyes have
different fields of view. For example, the left visual hemifield is projected onto
the temporal hemiretina of the right eye and the nasal hemiretina of the left
eye. Even further to the left, the so-called temporal crescent is that part of the
visual field that can only be seen with the left eye, due to the nose. Therefore,
it is also called left monocular zone.

The eyeball can move in its socket with six degrees of freedom, three each for
rotation and translation. The muscles responsible for these movements are the
superior and inferior recti for up/down movement, the medial and lateral recti for
movement to the left or right, and the superior and inferior obliques for rotational
movement.

Retina

The retina consists of three different cell layers and, interspersed in-between,
two synaptic layers. Farthest away from the incoming light is the outer nuclear
layer that contains the photoreceptors that convert incoming light to electrical
impulses. There are two types of photoreceptors, rods and cones. Rods are
far more numerous than cones with about 90 million rods and about 4.6 million
cones (Curcio et al., 1990). Rods also come in just one type that is responsible for
achromatic low-light vision, whereas cones can be separated into S-, M-, and L-
types which are sensitive to short, medium, and long wavelengths, respectively,
and thus allow colour vision; cones also have much finer spatial resolution. The
differences of rods and cones are summarized in Table 2.3.

As can be seen in Figure 2.12, the density of rods and cones varies greatly
across the visual field. At the centre of the visual axis, but slightly offset (on
average, about four to eight degrees) relative to the optical axis of the eye, lies
the so-called fovea, an area of about two degrees diameter that contains only
very few rods. Actually, the central one degree has no rods at all and is called
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Figure 2.12: Density of rod and cone photoreceptors as a function of visual eccentricity. Data
replotted from Curcio et al. (1990).

foveola. Because of the macula, a region of yellow pigmentation over the fovea,
foveal vision is also often called macular vision. The term parafoveal vision
is used for the visual field around the fovea spanning approximately 10 deg.
Towards the periphery, the number of cones decreases sharply, and only very
few cones can be found beyond 30 deg eccentricity.

Connected to the outer nuclear layer by synapses that form the outer plexi-
form layer is the inner nuclear layer. Here horizontal, bipolar, amacrine, and inter-
plexiform cells can be found. At this stage, spatial aspects such as gradients of
the scene illumination are processed. For example, there are two types of bipo-
lar cells, centre-depolarizing and centre-hyperpolarizing ones, which respond
strongest to dark spots in a bright surround and bright spots in dark surrounds,
respectively. To extract such features, information has to be pooled over several
photoreceptors, and the size of the pooling area increases towards the periph-
ery. In the foveal region, one bipolar cell is connected to one cone directly, and
indirectly to several cones by horizontal cells, which each connect to about six
cones. In the periphery, horizontal cells connect to 30–40 cones and bipolar cells
connect directly to several cones. A qualitatively similar pattern can be found
for rods and rod bipolars, but these show a much higher connectivity with up
to hundreds of rods connected to a single bipolar (Adelman, 1987).

Further towards the incoming light lie the inner plexiform layer and, con-
nected by it, the ganglion cell layer, which serve to decorrelate the visual input
(Atick and Redlich, 1992). In order to increase acuity, the ganglion cells in front
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of the fovea are shifted sideways towards the periphery so that rays of light
hitting the fovea do not get distorted. The approximately one million ganglion
cells can be discriminated morphologically into two types and functionally
into three types. Morphologically, about 80% of ganglion cells are of the β-type.
They have relatively small cell bodies and dendrites, and their projections go
to the parvo-cellular layer of the lateral geniculate nucleus, a brain area that relays
signals to the visual cortex. They are well-suited to the discrimination of fine
details, low contrast, and colour. The α-type cells make up about 10% of the
ganglion cells. They have larger cell bodies and dendrites, are achromatic, and
they respond better to moving stimuli. Their projections go to the magno-cellular
layer.

Functionally, X-, Y-, and W-type ganglion cells can be distinguished. X-
cells project to both the parvo- and magno-cellular layers and are sensitive to
stationary stimuli with fine detail. Y-cells, on the other hand, project to the
magno-cellular layer only and are sensitive to transient stimuli or motion. Of
special interest are the W-type ganglion cells. They are sensitive to coarse
features and motion and project to the superior colliculus, a brain area that is
concerned with the control of involuntary eye movements.

We have here summarized retinal circuitry only very briefly, but should
highlight two important characteristics of the retina in the context of this thesis.
First, the retina does not simply “sense light” and passes this information on to
higher visual areas; complex information processing, in particular the encoding
of spatio-temporal change, takes place already at the retinal level. Second, the
retina exhibits very space-variant behaviour, with an emphasis of processing
on the central part of the visual field.

Beyond the retina

Visual signals from the retina are sent through the optic nerve towards the
processing sites in the brain. On their way, the fibres from both right and
left hemifields are brought together at the optic chiasm. The two optic tracts
project to three subcortical targets. The lateral geniculate nucleus relays data to
the primary visual cortex at the back of the head. Here, higher-order information
processing such as form extraction or motion estimation takes place. Conscious
perception is based on these processes. The other two targets are the pretectum
that is responsible for pupillary reflexes, and the superior colliculus that uses
its visual input to generate involuntary eye movements (Kandel et al., 1995).

The optic tracts can be discriminated into two pathways, the parvo- and
magno-cellular pathways. As we have seen before, different types of ganglion
cells project to these two pathways. Due to their cell characteristics and their
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apparent functional distinction, the parvo-cellular pathway is also called the
what pathway while the magno-cellular pathway is called the where pathway.
The P-pathway is concerned with the details of an object and object recognition
(“what”). It can actually be further discriminated into the parvocellular-blob
pathway and the parvocellular-interblob pathway. The former deals with the per-
ception of colour, the latter with the perception of shapes and depth. The
M-pathway is concerned with the spatial relationship of objects and behaviour
oriented towards them (“where”). This distinction can not only be made on
anatomical grounds, but can also be established with patients who suffered a
brain damage, usually due to a stroke, that left only one of the pathways intact.
Despite this distinction, there are interactions between the pathways at many
different levels (Kandel et al., 1995).

In analogy to these pathways, the human visual system also operates at a
multitude of spatial scales or channels (Blakemore and Campbell, 1969).

Psychophysics

As we have seen in the previous sections, the visual system is optimized for
the processing of fine details around the fovea, which is also reflected in psy-
chophysical measurements.

The horizontal field of view is approximately 180 deg, the vertical field
of view spans about 130 deg. Only the central 30 deg on both axes have a
reasonable spatial resolution that can be used for object recognition and are
thus called the “useful” visual field. At eccentricities exceeding 30 deg, only
ambient motion can be perceived.

Whereas spatial resolution clearly is best in the centre of the visual field,
the distribution of temporal resolution is more complex to establish. On the
one hand, the threshold for the perception of translational motion increases
with eccentricity, although not as strongly as that for spatial frequency (Lei-
bowitz et al., 1972); multiple motion detection is also impaired in the periphery
(de Bruyn, 1997). On the other hand, the perceptual sensitivity to flicker is
much higher in the periphery (Baker and Braddick, 1985), even though the
actual thresholds at which flicker can be detected are higher foveally because
of the higher temporal resolution of cones.

As we have seen, many visual functions depend on eccentricity; the eyes
move several times per second to successively sample a visual scene with the
high-acuity fovea. In the following, we shall give a short introduction to some
eye movement properties.
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2.15 Eye movements

The first qualitative description of jump-like eye movements was made by the
French ophthalmologist Javal (1878), who used a mirror to monitor the eye
movements subjects made while reading. Quantitative studies of eye move-
ments date back to Buswell (1935) and Yarbus (1967). They observed that the
eyes move about two to three times per second in jump-like movements, the
so-called saccades. Because saccades are rapid and have a duration of only
20–80 ms, about 90% of viewing time are spent with the eyes apparently sta-
tionary, in fixations with a typical duration of about 150–600 ms (Duchowski
and Vertegaal, 2000). However, a closer look reveals that even during fixations,
the eyes are not perfectly still and exhibit fixational eye movements, such as
microsaccades. The role of these fixational eye movements is still under debate;
one common explanation is that they prevent neural adaptation in the retina
that would otherwise lead to fading of the perceived image (Rolfs, 2009).

Saccade dynamics

Because of mechanical constraints, the amplitude of (horizontal) eye-in-head
movements is limited to about ± 55 deg away from the central position, and
saccades with an amplitude of more than 30 deg usually are accompanied by a
head movement.

For saccades with an amplitude of 5–50 deg, duration is linearly determined
by amplitude (Becker, 1991):

D = D0 + dA

with D0 ≈ 20–30 ms and d ≈ 2–3 ms/deg, e.g. a typical saccade of 15 deg has
a duration of about 50–75 ms. Our own data (see Figure 2.13) shows approxi-
mately similar results, but with a lower D0. For smaller saccades of up to five
degrees, the above equation should be replaced by a power law,

D = D1Ap,

with D1 ≈ D0 and p ≈ 0.15–0.2. For saccades larger than 50 deg, duration
increases overproportionally because of the mechanical limits of the eye.

From Figure 2.13, we can see that peak velocity of a saccade increases with
amplitude and saturates at about 700–1000 deg/s.
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Figure 2.13: Relationship of saccade amplitude with saccade duration (a) and peak velocity (b).
Eye movements were recorded at 1250 Hz from one subject fixating a marker that was randomly
displaced on the screen every 900 ms. Overall, 1674 saccades were extracted.

Saccade accuracy

The typical saccade duration of 20–80 ms is less than it takes an optic signal
to be transduced to a neural signal and projected to the brain areas that are
concerned with eye movements; thus, saccades are too fast to be guided by
visual feedback and have to be ballistic. In complex scenes, saccades tend
to undershoot, i.e. fall short of an intended target, by up to 18% of veridical
amplitude to target (Rasche and Gegenfurtner, 2010).

Saccadic suppression

During a saccade, the visual input moves across the retina with a velocity
of several hundred degrees per second. However, humans do not perceive
this global motion due to saccadic suppression, which reduces visual sensitivity
shortly before, during, and shortly after saccades. Sensitivity is reduced by
several order of magnitude for image displacements and about two- to threefold
for brief flashes; in the latter case, fine spatial details are less suppressed than
low spatial frequencies (Deubel et al., 2004).

Other types of eye movements

In the following, we shall give a brief overview of other types of eye movements
besides saccades. Smooth pursuit eye movements are used to fixate objects that
move across the visual field. They have a very low latency of around 100 ms
(Pack and Born, 2001), but their velocity is usually only up to 40 deg/s. A
nystagmus is a periodic eye movement to track rotating targets, or to compensate
for rotation of the body, respectively. It consists of two phases, the slow phase
in which a visual feature is fixated, and the fast phase that brings the eye
back to its initial position. The movement on the horizontal axis of both eyes
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towards or away from each other is called vergence. It allows for fixation of
the same object with both eyes, a prerequisite for stereopsis. The velocity
of vergent eye movements is fairly slow at around 10 deg/s. Vestibular eye
movements are made to maintain fixation of an object while the head or body
moves. Head movements can have peak velocities of up 300 deg/s. The head-
eye coordination is controlled by the vestibulo-ocular reflex. This reflex, which is
controlled by information from the vestibular organs, is complemented by the
optokinetic reflex, which is triggered by optical flow.

Attention and gaze

Everyday experience tells us that it is possible in principle to deploy attention
without an accompanying fixation. However, deployment of covert attention
is quite rare under natural viewing conditions. Indeed, eye movements are
always preceded by a shift in attention to the subsequent saccade target (Currie
et al., 1995; Deubel, 2008).
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Models
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Part II

The ultimate goal of this thesis is to develop systems that can guide the gaze
of an observer. Before we can build such systems, however, we first have to
understand more about how the human visual system selects saccade targets
under natural viewing conditions. Thus, the following part of this thesis will
present models of eye guidance on dynamic natural scenes.

The majority of research on eye movements so far has dealt with synthetic
scenes, e.g. simple geometrical shapes popping up or being translated, or with
static images. Only recently, more groups have begun to address eye move-
ments on dynamic content. In Chapter 3, we will present a large data set of
eye movements from more than 50 subjects who watched naturalistic high-
resolution videos. We also collected data for several control conditions, such
as noise movies that had the same frequency content as the natural movies but
showed no discernible objects, “stop-motion” movies that lacked continuous
motion, and professionally cut Hollywood action movie trailers. We compared
eye movements across these conditions and found that gaze behaviour on natu-
ral movies differs both in first-order characteristics such as saccade amplitudes
and fixation durations, and in second-order characteristics such as the similarity
of eye movements of different observers.

This study required statistical methods and image processing techniques for
the generation of stimuli and for data analysis. It is a product of a collaboration
with Karl Gegenfurtner, University of Giessen; a manuscript is currently under
submission (Dorr, Gegenfurtner, and Barth, 2010a).

Chapter 4 then will address the question of how well eye movements can
be predicted based on low-level image features. We shall first test a recent
hypothesis that neural adaptation might play a role in oculomotor control. To
this end, we analysed the data set from Chapter 3 and looked at the correlations
of a variety of image features along scanpaths that are induced by the subject’s
eye movements. However, natural scenes themselves are highly correlated
in space and time, and we therefore developed novel algorithms to create
artificial scanpaths that can serve as appropriate reference conditions. Once
the image-inherent correlations were accounted for, we could not find evidence
for a contribution of low-level features at the centre of gaze to saccade target
selection.

An emphasis in this study was placed on solid image feature extraction
on a spatio-temporal multiresolution pyramid, for example for orientation and
motion estimation. This study’s findings have been published in (Dorr, Gegen-
furtner, and Barth, 2009a).

Then, we shall turn to the use of machine learning techniques for the predic-
tion of eye movements. This work was performed in close collaboration with
Eleonóra Vı́g, who signed responsible for the machine learning algorithms. A
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major problem when dealing with the classification of movie patches is the curse
of dimensionality. Because the dimensionality of the classification problem typ-
ically grows with the number of pixels (which grows cubically for space-time
sub-volumes of a movie), classification quickly becomes intractable.

We therefore applied a trick to reduce the dimensionality of the problem.
For image feature extraction, the tensor methods from Chapter 2 were applied
on a spatio-temporal multiresolution pyramid. Then, only one scalar value per
spatio-temporal scale, namely the average feature energy in a neighbourhood
around fixation, was used to train a support vector machine with attended and
non-attended locations.

The prediction results we obtain on this low-dimensional representation are
very favourable. An additional finding is that movie regions that change in
more spatio-temporal directions are also more predictive for eye movements.
Because these regions are also less frequent, this finding is an indicator of
efficient coding in the human visual system.

Some of these results that were obtained by state-of-the-art machine learning
and image processing techniques have already been published (Vig, Dorr, and
Barth, 2009); a more detailed analysis is currently in preparation.

Finally, we shall apply our machine learning framework to the case of
multiple transparent movies. Gaze data from subjects watching two natural
movies that had been blended on the spatio-temporal Laplacian pyramid was
analysed in terms of the rank of the generalized structure tensor (see Chapter 2),
and it turned out that the generalized structure tensor indeed represents higher-
order motion types better than the classical structure tensor.

Experimental data collection and analysis were run by Laura Pomarjanschi;
a manuscript that includes first results is currently under submission (Barth,
Dorr, Vig, Pomarjanschi, and Mota, 2010).
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“Gaze on them, till the tears shall dim thy sight,
But keep that earlier, wilder image bright.”

William Cullen Bryant 3
Eye movements on natural videos

In this chapter, we shall investigate the variability of eye movements on dy-
namic natural scenes, and compare this variability with that on other stimulus
types such as static images or semantic-free noise.

3.1 Previous work

Humans make several eye movements per second, and where they look ulti-
mately determines what they perceive. Consequently, much research over sev-
eral decades has been devoted to the study of eye movements, but for technical
reasons, this research has mostly been limited to the use of static images as stim-
uli. More recently, however, an increasing body of research on eye movements
on dynamic content has evolved. Blackmon et al. (1999) reported evidence
for the “scanpath theory” (Noton and Stark, 1971) on very simple, synthetic
dynamic scenes. Several studies were concerned with modelling saliency, i.e.
the contribution of low-level features to gaze control (e.g. Itti, 2005; Meur et al.,
2007), and found, not surprisingly, that motion and temporal change are strong
predictors for eye movements. Tseng et al. (2009) quantified the bias of gaze to-
wards the centre of the screen and linked this centre bias to the photographer’s
bias to place structured and interesting objects in the centre of the stimulus.
Carmi and Itti (2006) investigated the role of scene cuts in “MTV-style” video
clips and showed that perceptual memory has an effect of eye movements
across scene cuts. ’t Hart et al. (2009) used recordings of a head-mounted and
gaze-controlled camera (Schneider et al., 2009) to replay the visual input during
outdoor walking in either a continuous movie or in a random sequence of 1 s-
stillshots. The distribution of gaze on the continuous stimuli was wider than
for the static sequence and also a better predictor of gaze during the original
natural behaviour. The variability of eye movements of different observers was
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studied with an emphasis on how large the most-attended region must be to
encompass the majority of fixations in the context of video compression (Stel-
mach et al., 1991; Stelmach and Tam, 1994) and enhancement for the visually
impaired (Goldstein et al., 2007). Marat et al. (2009) evaluated eye movement
variability on short TV clips using the Normalized Scanpath Saliency (Peters
et al., 2005). Comparing the viewing behaviour of humans and monkeys, Berg
et al. (2009) found that monkeys’ eye movements were less consistent with
each other than those of humans. Hasson et al. (2008a) presented clips from
Hollywood movies and everyday street scenes to observers while simultane-
ously recording brain activation and eye movements; both measures showed
more similarity across observers on the Hollywood movies (particularly by Al-
fred Hitchcock) than on the street scenes. However, when playing the movies
backwards, eye movements remained coherent whereas brain activation did
not.

With a few exceptions (’t Hart et al., 2009; Tseng et al., 2009; Carmi and Itti,
2006; Stelmach and Tam, 1994), these studies used professionally recorded and
cut stimulus material such as TV shows or Hollywood movies. Arguably, such
stimuli are not representative of the typical input to a primate visual system.
Other authors therefore have also studied gaze behaviour in real-world tasks,
such as driving (Land and Tatler, 2001; Land and Lee, 1994), food preparation
(Land and Hayhoe, 2001), and walking around indoors (Munn et al., 2008) and
outdoors (Schneider et al., 2009). We here set out to investigate how similar
eye movements of a large group of observers are on natural, everyday outdoor
videos and compare this similarity with the similarity of eye movements on
several other stimulus categories.

3.2 Our work

For our work on gaze guidance, we aim to understand the common and the op-
timal degree of variability in eye movements that observers make on dynamic
natural scenes. Intuitively, a very low variability, i.e. a scene on which all ob-
servers follow the same gaze pattern, offers little room to guide the observer’s
attention; at the same time, a very high variability might indicate a dominance
of idiosyncratic viewing strategies that would also be hard to influence. We
cannot expect to easily quantify such variability in absolute terms and there-
fore resort to a comparison of variability on different stimulus categories. As
a baseline, we use high-resolution videos of everyday outdoor scenes without
cuts because these are very close to natural viewing behaviour. For a lower
limit of variability, we compare these natural videos to professionally-cut trail-
ers for Hollywood action movies. On the other end of the variability range,
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we investigate the role of semantic information by measuring variability of
eye movements on synthetic noise movies with a natural spatio-temporal am-
plitude spectrum. As we have seen in Section 2.2, the amplitude spectra of
natural still images exhibit an abundance of lower frequencies and only little
high-frequency content, roughly following a 1/ f β falloff with a β between 1.5-
2.0 (Field, 1987). Noise images with a similar amplitude spectrum have been
used as semantic-free models of natural images (Geisler et al., 2006; Jansen
et al., 2009) and can easily be synthesized by phase-scrambling a natural image
or by appropriately filtering the Fourier transform of a random image. Because
of the computational cost of performing such operations in space and time,
we here use the more efficient approach to generate movies with a natural
(spatio-temporal) amplitude, but random phase spectrum that was presented
in Section 2.5.

We also investigate the role of continuous temporal change in dynamic
scenes as opposed to static images. A common psychophysical paradigm for
the collection of eye movements on static images is to present a “random”
series of images for several seconds each. If the presentation time is too short,
obviously not much information can be extracted beyond the very first few
fixations; if the presentation time is too long, on the other hand, observers
might lose interest and resort to idiosyncratic top-down viewing strategies in
absence of sufficient bottom-up stimulation. Indeed, some authors have argued
that the direct contribution of low-level saliency to the choice of fixation targets
decreases with viewing time (Parkhurst et al., 2002; Itti, 2006), while others,
e.g. Tatler et al. (2005), argue that only the top-down strategy changes (that
picks targets from a low-level defined set of candidate locations). Random
series of images are typically used to avoid any potential bias introduced by
prior knowledge of the stimulus, i.e. any upcoming stimulus image should
be unpredictable by the observer. Contrary to this paradigm, we specifically
designed the stop-motion movies to be fully predictable by the subjects; they
were created so that the presented sequence of single frames (that were each
shown for three seconds) was identical to one of the natural movies except
for the absence of continuous motion. A similar study to compare static and
continuous image presentation was recently undertaken by ’t Hart et al. (2009),
who took 1 s long stillshots from a set of natural videos and reassembled them
into random sequences. However, in their experiment, depicted scenes were
not predictable by the previous images, whereas in the work presented here,
most of the scene (the static background, but not moving objects) stayed the
same across image transitions.
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Furthermore, we evaluate whether the scanpath theory (Noton and Stark,
1971) can also be applied to dynamic natural scenes; so far, it has only been
tested empirically for very simple, synthetic videos (Blackmon et al., 1999).

3.3 Methods

In the following, we shall first describe the stimuli and experimental conditions
and then review data analysis methods.

Natural movies

A JVC JY-HD10 HDTV video camera was used to record 18 high-resolution
movies of a variety of real-world scenes in and around Lübeck. Eight movies
depicted people in pedestrian areas, on the beach, playing mini golf in a park,
etc.; three movies each mainly showed either cars passing by or animals; a
further three movies showed relatively static scenes, e.g. a ship passing by in
the distance; and one movie was taken from a church tower, giving a bird’s-eye
view of buildings and cars. All movie clips were cut to about 20 s duration; their
temporal resolution was 29.97 frames per second and their spatial resolution
was 1280 by 720 pixels (NTSC HDTV progressive scan). All videos were stored
to disk in the MPEG-2 video format with a bitrate of 18.3 MBit/s. The camera was
fixed on a tripod and most movies contained no camera or zooming movements;
only four sequences (three of which depicted animals) contained minor pan and
tilt camera motion. A representative sample of stillshots is given in Figure 3.1.

Trailers

The official trailers for the Hollywood movies “Star Wars - Episode III” and
“War of the Worlds” were used for this condition. Both had a duration of
about 32 s each and a spatio-temporal resolution of 480 by 360 pixels, 15 fps,
and 480 by 272 pixels, 24 fps, respectively. Some text on plain background is
shown during the first and last few seconds, but in-between, these trailers are
characterized by a large amount of object motion, explosions, etc., and many
scene cuts (21 and 24, respectively). Camera work is deliberately aimed at
guiding the viewer’s attention, e.g. by zooming in on the face of a scared child.

The accompanying sound track was not played during stimulus presenta-
tion.
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Figure 3.1: Stillshots from all movies used in the natural condition.

Natural noise

Six movies similar in content to the above natural movies (but of longer du-
ration) were decomposed on a spatio-temporal anisotropic Laplacian pyra-
mid with eight spatial and five temporal levels, and their frequency subbands
were replaced with random noise with same statistics. After synthesis of the
pyramid, the resulting output movies had approximately the same low-level
content, i.e. the same spatio-temporal amplitude spectrum, but contained no
discernible objects (see Section 2.5). In order to avoid that subjects lost interest
too quickly watching such movies, the displayed movie during a trial would
oscillate between the original and the noise movie, with intermediate periods
where some noise and some natural structure were present. The transition
function is shown as dashed line in Figure 3.8 and stillshots from a resulting
movie are given in Figure 3.2. Overall, six such movies of 63 s duration each
were shown to the subjects.
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(a) (b)

Figure 3.2: Example of movie that oscillates between a natural movie and one with similar
amplitude, but random phase spectrum. See Figure 3.8 for the time course of oscillations. (a)
50% noise level; some natural movie structure is still visible. (b) 100% noise level.

Stop-motion

Nine out of the 18 natural movies were also shown in a “stop-motion” condition.
Instead of displaying all (around) 600 frames at 30 frames per second, only
every 90th frame was displayed for a full three seconds. Thus, the sequence
and timing of depicted events was the same as in the original movie, but was
revealed only in steps similar to scene cuts (note that typically, the whole scene
layout changes with a cut; here, only the position and appearance of moving
objects changes, whereas the background stays the same).

Static images

Finally, stillshots from the nine movies not used in the “stop-motion” condition
were used to record eye movements on static images. Similar to the “stop-
motion” condition, every 90th frame of a movie was used, but the order was
randomized over movies and the temporal sequence of stillshots so that subjects
could not predict a stimulus from the previous one.

Data recording

All eye-movement recordings were made using the commercially available SR
Research EyeLink II eye tracker running at 250 Hz. This tracker compensates
for small head movements, but subjects’ heads were still fixated in a chin
rest. After an initial binocular calibration, only monocular data from the eye
with the smaller validation error was used throughout the experiments (mean
validation error 0.62 deg). Subjects were seated 45 cm away from an Iiyama
MA203DT screen that had a width of 40 cm and a height of 30 cm. Since the
videos (except for the Hollywood trailers) had an aspect ratio of 16:9 and would
not natively fit on the monitor with an aspect ratio of 4:3, they were displayed
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in the “letterbox” format with black borders below and above such that pixels
had the same physical width as height. Videos covered about 48 by 27 degrees
of visual field, and about 26.7 pixels on the screen corresponded to one degree
of visual angle for the high-resolution movies (1280 by 720 pixels).

For a smooth playback of videos, two computers were used. The first
computer ran the eye tracking software, the second was used for stimulus
decoding and display. Therefore, gaze recordings and video timing had to be
synchronized, for which two strategies were employed. In experiment one,
the display computer sent a trigger signal to the tracking host via a dedicated
ethernet link whenever a new frame was displayed (every 33 ms); these trigger
signals and the gaze data were stored to disk using common timestamps by the
manufacturer’s software. In all other experiments, a three-computer setup was
used. Gaze measurements were sent from the tracker across an ethernet link to a
relay computer and from there on to the display computer, where independent
threads wrote both gaze and video frame timestamps to disk using the same
hardware clock. This seemingly complicated setup was necessary because the
tracker manufacturer’s API requires the network to be constantly monitored
(polled) for new gaze samples to arrive, wasting CPU cycles and potentially
disturbing the smooth playback of (high-resolution) video. The task of the
relay computer thus was to constantly check whether a new gaze sample had
arrived from the tracker, using the proprietary software; each sample was then
converted to a custom clear-text format and sent on to the display computer,
where the receiving thread (performing a “blocking wait” on its network socket)
would only run very briefly every four milliseconds (at a sampling rate of
250 Hz). Because of the low system load and the low conversion rate, this
relay step did not incur a significant delay; the latency of both synchronization
approaches is in the single-digit millisecond range, and the latter approach has
also been used successfully for latency-critical gaze-contingent paradigms, see
Part III.

Fifty-four subjects (students at the Psychology Department of Giessen Uni-
versity; eight male, 46 female) participated in experiment one. After an initial
nine point calibration and the selection of the preferred eye, all 18 movies were
shown in one block. After every movie presentation, a drift correction was
performed.

For the repetitive presentation of movies in experiment two, 11 subjects
came to the lab for two days in a row. Each day, the trailers and six movies out
of the 18 natural movies from experiment one (beach, breite strasse, ducks -
children, koenigstrasse, roundabout, street) were shown five times each in
randomized order. As in experiment one, the eye tracker was set up with a
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nine point calibration procedure initially and drift corrections after each video
clip; this scheme was also adhered to in the following experiments.

A further 11 subjects participated in experiment three and watched nine
“stop-motion” movies, which were created from a subset of the 18 natu-
ral movies from experiment one (beach, breite strasse, bridge 1, bumblebee,
ducks children, golf, koenigstrasse, st petri gate, st petri mcdonalds). Then
subjects were shown, after another calibration, stillshots from the remaining
nine movies (bridge 2, ducks boat, doves, holsten gate, roundabout, st petri -
market, street, sea, puppies) in randomized order. Stillshots were shown for
two seconds each.

Finally, 12 subjects partipicated in experiment four and were shown the
oscillating natural noise movies.

In all of the above experiments, subjects were not given any specific task
other than to “watch the sequences attentively”.

Data analysis

Gaze data preprocessing The eye tracker marks invalid samples and blinks,
during which gaze position cannot be reliably estimated. Furthermore, blinks
are often flanked by short periods of seemingly high gaze velocity because
the pupil gets partially occluded by the eye lid during lid closure, which in
turn leads to an erroneous gaze estimation by the tracker. These artefacts were
removed and recordings that contained more than five per cent of such low-
confidence samples were discarded. In experiment one, this left between 37
and 52 recordings per video sequence, and 844 recordings overall.

Saccades are typically extracted from raw gaze recordings based on the
high velocity of saccadic samples. However, the choice of an optimal threshold
for saccade velocity is difficult: a low threshold might lead to a high false
positive rate, i.e. the detection of too many saccades due to microsaccades
and impulse noise in the eye tracker measurements; a high threshold, on the
other hand, might forfeit information from the beginning and end of saccades,
where velocity is still accelerating or decelerating, respectively. Therefore, we
labelled saccadic samples in a two-step procedure. To initialize search for a
saccade onset, velocity had to exceed a relatively high threshold (138 deg/s)
first. Then, going back in time, the first sample was searched where velocity
exceeded a lower threshold θoff (17 deg/s) that is biologically more plausible but
less robust to noise (both parameters were determined by comparing detection
results with a hand-labelled subset of our data). In a similar fashion, saccade
offset was the first sample at which velocity fell below the lower threshold again.
Finally, several tests of biological plausibility were carried out to ensure that
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impulse noise was not identified as a saccade: minimal and maximal saccade
duration (15 and 160 ms, respectively) and average and maximum velocity (17
and 1030 deg/s, respectively).

Determining fixation periods is particularly difficult for recordings made
on dynamic stimuli (Munn et al., 2008). Smooth pursuit eye movements cannot
occur on static images and are hard to distinguish from fixations because of
their relatively low velocity of up to tens of degrees per second; but even a
small, noise-induced displacement in the gaze measurement of just one pixel
from one sample to the next already corresponds to about nine degrees per
second. However, manual labelling of fixations is not feasible on such large
data sets as that of experiment one (about 40000 fixations); we therefore used a
hybrid velocity- and dispersion-based approach (Salvucci and Goldberg, 2000)
and validated its parameters on a smaller data set of hand-labelled fixations.
After saccade detection, the intrasaccadic samples were extracted. Here, a
sliding window of at least 100 ms was moved across the samples until a fixa-
tion was detected. This minimum duration of 100 ms ensured that very brief
stationary phases in the gaze data were not labelled as fixations. Then, this
fixation window was extended until either one of two conditions was met: the
maximum distance of any sample in the window to the centre of the fixation
window exceeded 0.35 deg (this threshold was gradually increased to 0.55 deg
with longer fixation duration); or the average velocity from beginning to end
of the window exceeded five degrees per second. The latter condition served
to distinguish pursuit-like motion from noise where sample-to-sample veloci-
ties might be high, but velocities integrated over longer time intervals are low
because the direction of gaze displacements is random.

Eye movement similarity A variety of methods has been proposed in the
literature to assess the consistency of eye movements across different observers.
The fundamental problem is that there is no obvious metric for eye movement
similarity since there is no direct (known) mapping from eye position to its
perceptual consequences. In practice, there is only a small probability that two
observers will fixate exactly the same location at exactly the same time; small
spatio-temporal distances between eye positions, however, might have been
introduced in the measurement only by fixational instability and the limited eye
tracker accuracy, and are thus of little practical relevance. For larger distances
of more than about one degree and a few tens of milliseconds, on the other
hand, it is not clear how a similarity metric should scale: is a fixation twice as
far also twice as different? How about two fixations to the same location, but
of different duration? In the case of our (moving) stimuli, a further problem
arises that looking at the same image region at different points in time, e.g.
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in the background of the scene, might carry a different notion depending on
what is (or is not) occurring elsewhere, e.g. in the foreground. As pointed out
by Tatler et al. (2005), a good similarity metric should be robust to extreme
outliers and sensitive not only to location differences, but also to differences
in the probability of such locations; if all but one of the subjects looked at the
same location A and the remaining subject looked at location B, this should be
reflected as more coherent than an even distribution of fixations over A and
B. Additionally, hard thresholds should be avoided in order to deal with the
inherent spatio-temporal uncertainty in the eye tracker measurements. Finally,
an ideal metric would yield an intuitively interpretable result and allow for
fine-grained distinctions.

We will now discuss similarity metrics proposed in the literature according
to the above criteria and then describe our modification of the Normalized
Scanpath Saliency method that will be used in the remainder of this paper.

Several authors have used clustering algorithms to group fixations and then
determined what percentage of fixations fell into the main cluster, or how large
an image region must be to contain the gaze traces of a certain number of
observers (Stelmach et al., 1991; Osberger and Rohaly, 2001; Goldstein et al.,
2007). Obviously, these measures yield very intuitive values and are also
robust to outliers. However, they might be sensitive to cluster initialization,
and even if they were extended to regard the fixations in several clusters,
they cannot capture differences in the distribution of fixations across several
locations. Furthermore, a fixation can either be counted as inside the cluster or
not, which means that a small spatial displacement can have a significant impact
on the result. Some clustering algorithms introduce a certain smoothness to
overcome this problem, e.g. mean-shift clustering (Santella and DeCarlo, 2004),
but the scale of the resulting cluster becomes unpredictable, so that for densely
distributed data, even two fixations that are very far apart might be classified
as similar.

Another popular approach is to assign a set of letters to image regions and to
create a string where the i-th letter corresponds to the location of fixation i. The
resulting strings can then be compared by string editing algorithms, which sum
penalties for every letter mismatch or other string dissimilarity such as letter
insertions or transpositions. Drawbacks of this method are the need for an a
priori definition of regions of interest for the string alphabet and of a penalty
table; inherently, it cannot distinguish between fixations of different duration.
Nevertheless, the string-editing approach has been used successfully on line
drawings (Noton and Stark, 1971) and on semi-realistic dynamic natural scenes
(Blackmon et al., 1999), and has been extended to handle the case where the
order of fixated regions matters (Clauss et al., 2004).
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Mannan et al. (1996) developed a measure to compare two sets of fixations by
summing up the distances between the closest pairs of fixations from both sets.
This is problematic because the result is dominated by outliers and probability
distribution differences are not accounted for.

Hasson et al. (2008b) cross-correlated horizontal and vertical eye trace com-
ponents of observers across two presentations of the same movie. The intuitive
range of the measure is from minus one for highly dissimilar scanpaths to one
for exactly the same scanpaths, with zero indicating no correlation between
the traces. However, similarity here is defined relative to the mean position
of the eye (which usually also is roughly the centre of the screen, see below);
this means that two scanpaths oscillating between two fixations in counter-
phase, i.e. ABAB. . . and BABA. . . will always be classified as very dissimilar,
regardless of the actual distance between A and B.

Another class of methods operates on so-called fixation maps or probability
distributions created by the additive superposition of Gaussians, each centred
at one fixation location ~x = (x, y) (to obtain a probability distribution function, a
subsequent normalization step is required so that the sum of probabilities over
the fixation map equals one). The inherent smoothness of the Gaussians offers
the advantage that two fixations at exactly the same location will sum up to a
higher value than two closely-spaced fixations, whereas very distant fixations
will contribute only very little to their respective probabilities. This means
that noise both in the visual system and the measurement has only a small
impact on the final result; by definition, these methods also are sensitive to
location distribution differences. There now are various possibilities to assess
the similarity of two fixation maps, which includes both the comparison of
two different groups of observers and the comparison of just one observer to
another. Since in practice, fixation maps can only be created for a finite set of
locations anyway, the most straightforward difference metric is the sum over a
squared pointwise subtraction of two maps (Wooding, 2002a); Pomplun et al.
(1996) have computed the angle between the vectors formed by a linearization
of the two-dimensional fixation maps. In the latter study, fixations were also
weighted with their duration, a modification that in principle could also be
applied to the other fixation map-based measures as well.

An approach based in information theory, the Kullback-Leibler Divergence,
was chosen by Rajashekar et al. (2004) and Tatler et al. (2005). This measure,
which strictly speaking is not a distance metric and needs minor modifications
to fulfill metric requirements (Rajashekar et al., 2004), specifies the information
one distribution provides given knowledge of the second distribution. The
KLD matches all of the above criteria for a good similarity measure with the
possible exception of intuitiveness: identical distributions have a KLD of zero,
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but the interpretation of the (theoretically unbounded) result for non-identical
distributions is not straightforward.

For this reason, we use the Normalized Scanpath Saliency (NSS) measure as
proposed by Peters et al. (2005). Originally, this measure has been developed
to evaluate how closely artificial saliency models match human gaze data, but
NSS directly can be applied to assess inter-subject variability as well. The
underlying idea is to construct a fixation map by superposition of Gaussians as
above, but with a different normalization scheme: mean intensity is subtracted
and the resulting distribution is scaled to unit standard deviation. This has
the effect that a random sampling of locations in the NSS map has an expected
value of zero, with positive values resulting from fixated locations and negative
values from non-fixated regions. To evaluate the similarity of eye movements
of multiple observers, it is possible to use a standard method from machine
learning, “leave one out”. For each observer A, the scanpaths of all other
observers are used to create the NSS map; the values of this NSS map are then
summed up over all fixations made by A. If A tends to look at regions that
were fixated by the other observers, the sum will be positive; for essentially
uncorrelated gaze patterns, this value will be zero and it will be negative for
very dissimilar eye movements. NSS has been used on videos before (Marat
et al., 2009), but only on a frame-by-frame basis, similar to the analysis of static
images by Peters et al. (2005). To achieve temporal smoothing, so that slightly
shifted fixation onsets are not considered to be dissimilar by a hard cut-off, we
extended NSS to the three-dimensional case.

Formally, for each movie and observers i = 1, . . . ,N, Mi gaze positions
~x j

i = (x, y, t) were obtained, j = 1, . . . ,Mi. Then, for each ~x j
i of the training set

of observers S = {1, . . . , k − 1, k + 1, . . . ,N}, a spatio-temporal Gaussian centred
around ~x j

i was placed in a spatio-temporal fixation map F,

F(~x) =
∑
i∈S

Mi∑
j=1

G j
i (~x),

with

G j
i (~x) = e

− (~x−~xj
i)

2

2(σ2x +σ2y +σ2t ) .

This fixation map F was subsequently normalized to zero mean and unit stan-
dard deviation to compute an NSS map N,

N(~x) =
F(~x) − F(~x)

Std(F)
.
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Finally, the NSS score was evaluated as the sum of the NSS map values at the
gaze samples of test observer k,

NSS =

Mk∑
j=1

N(~x j
k),

and this was repeated for all possible training sets (i.e. N times with N different
test subjects).

The spatio-temporal Gaussian G had parameters σx = σy = 1.2deg, σt =

26.25ms. To evaluate gaze variability over the 20 s time course of the videos,
NSS was not computed on the whole movie at once, but on temporal windows of
225 ms length that were moved forward by 25 ms every step. These parameters
were varied systematically with qualitatively similar results. Because NSS is
sensitive to the size of the Gaussian G, all results that are presented in the
following were normalized with the inverse of the NSS of a single Gaussian.

Gaze positions ~x here refer to the raw gaze samples provided by the eye
tracker except for those samples that were labelled as part of a saccade. Because
visual processing is greatly reduced during saccades, these saccadic samples
are of no practical relevance for the present analysis. In principle, the fixation
spots could have been used instead of the raw samples as well, which would
have significantly reduced the computational cost of this analysis; however,
this might have biased results during episodes of pursuit, where automatic
fixation detection algorithms still have problems and potentially ascribe fixa-
tions to random positions on the pursuit trajectory. Indeed, it was those movie
parts in which many subjects made pursuit eye movements where we found
eye movements to be particularly coherent. Furthermore, using the raw data
allows for a distinction of different fixation durations; two fixations to the same
location, but with varying duration will be classified as less similar than two
fixations of identical length (given they take place at similar points in time).

In theory, this measure is independent of the number of training samples
because it normalizes the training distribution to unit standard deviation. In
practice, however, small training set sizes may lead to quantization artefacts;
where applicable, we therefore matched the number of training samples when
comparing two conditions. This was particularly important for the comparison
of “local” and “repetitive”, because in the latter condition each scanpath had
to be evaluated in terms of a maximum of only four other scanpaths (the
stimuli were repeated five times per day). A further consequence is that in the
following, different absolute NSS values are occasionally reported for the same
condition (but in the context of different comparisons).
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Finally, we ran a comparison of the NSS measure with the Kullback-Leibler
Divergence to exclude the possibility that our results might underlie some
methodological bias. We did not want to compare two probability functions
(that of the measured eye movement data and a saliency map), but we wanted
to assess how systematic the subjects’ eye movements were. We achieved this
by calculating the divergence of the measured data D from a random, uniform
model M, which is the difference of the cross entropy between D and M and
the entropy of D:

KLD(D,M) = H(D,M) −H(D)

= −
~x∑

D(~x) · log(M(~x)) −
~x∑
−D(~x) · log(D(~x))

= −log
(
1

N

)
+

~x∑
−D(~x) · log(D(~x))

Even though the NSS analysis yields a more intuitive absolute score, NSS and
KLD differ only slightly in their relative results. We computed both NSS and
KLD scores over time for all movies in the “local” condition and found that they
are highly correlated (r = 0.87, s.d. 0.05), i.e. both methods approximately mark
eye movements on the same video parts as coherent or incoherent, respectively.

3.4 Results

Saccadic amplitudes and fixation durations The distribution of saccadic am-
plitudes for natural movies and for the other stimulus types is shown in Figures
3.3 and 3.4(a), respectively. On natural movies, saccadic amplitudes follow a
skewed distribution with a mean of 7.4 deg and a median of 5.6 deg. Looking
at the shape of the empirical cumulative distribution function (ECDF) in com-
parison to that of the other stimulus types, the ECDF for natural movies rises
quickly, but saturates late. This means that observers tend to make both more
small and more large saccades (with amplitudes of less than five and more than
10 degrees, respectively) on natural movies, whereas saccades of intermediate
amplitudes are less frequent than in the other conditions. In contrast to this, the
saccades on Hollywood trailers show the smallest fraction of large amplitudes,
e.g. only 7.8% have an amplitude of 12 deg or more (natural movies: 18.2%).
Spatio-temporal noise movies with a natural amplitude spectrum elicited fewer
small saccades than all other stimuli types (median 6.5 deg; the mode of the am-
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Figure 3.3: Distribution of saccadic amplitudes on natural movies and static images. Saccades of
medium amplitude (4–12 deg) are more frequent in the static images condition, whereas saccades
on natural movies have small amplitude (up to four degrees) more often.

plitude distribution lies at seven degrees compared to three degrees for natural
movies) and more large saccades than the Hollywood trailers only. All the con-
ditions differ from each other highly significantly (Kolmogorov-Smirnov test,
p < 10−10), with the only exception that the difference of saccadic amplitude
distributions between stop-motion movies and static images is only weakly
significant (p < 0.027).

Fixation durations are depicted in Figure 3.4(b). We here also find stimulus
type-specific effects. Similar to saccadic amplitudes, the distributions are heav-
ily skewed, which is reflected in a pronounced difference of mean and median
values (for natural movies, 326 and 247 ms, respectively). The longest average
fixation duration (mean 443, median 348 ms) can be found on the natural noise
stimuli. Fixations on Hollywood trailers are much shorter, but still longer than
on natural movies (mean 361.9, median 268.7 ms). The shortest fixations occur
on static images (mean 239.8, median 205.8 ms).

All these differences are statistically significant (Kolmogorov-Smirnov test;
natural and stop-motion movies p < 0.021, all other conditions p < 10−10).

Centre bias of gaze and stimuli A well-documented property of human view-
ing behaviour is that observers preferentially look at the centre of the stimulus,
the so-called centre bias (Tseng et al., 2009; Tatler, 2007; Parkhurst et al., 2002;
Buswell, 1935). Especially on smaller displays, this stands to reason since the
centre of the screen is the most informative location: because of the decline in
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Figure 3.4: Empirical cumulative distribution functions (ECDF) of saccadic amplitudes (a) and
fixation durations (b) for the different movie types. Natural movies elicit a higher number of
either small or large (but not intermediate) saccades and relatively short fixations; natural noise
movies and trailers elicit longer fixations.

peripheral acuity of the retina, a fixation to one side of the screen will lead to
an even lower resolution on the opposite side of the display. Because at least
a coarse “snapshot” of the scene is particularly important during the first few,
exploratory fixations, the central bias is strongest directly after stimulus onset
(Tatler, 2007). In Figure 3.5, density estimates are shown for the different stimu-
lus categories. Clearly, eye movements on the Hollywood trailers are the most
centred; here, the densest 10% of screen area (15.2 by 8.5 deg) contain about
76% of all fixations, whereas for natural movies this number is only 30% (and
62% of fixations fall into the densest 30% of the screen). For natural noise and
stop-motion movies, the centre bias is slightly stronger than for natural movies
again (42 and 37%, respectively; 73% in the densest 30% for both conditions).
In the latter case, fixations are redrawn to the centre at every new frame onset;
in the former case, maintaining gaze close to the centre is a useful strategy
because the central location will be most informative when the natural movie
appears again in the oscillating noise movies.

A further common explanation for the centre bias of fixations is that there
usually is a bias already in the stimuli because photographers (consciously or
subconsciously) place objects of interest in the image centre. When recording
the natural movies, no particular care was taken to avoid such central bias; on
the contrary, the goal was to record image sequences “from a human stand-
point” to fulfil a common definition of natural scenes (Henderson and Ferreira,
2004), which ruled out any truly random sampling. To assess the magnitude of
this potential bias, the spatial distribution of image features was computed (see
Figure 3.6). The feature used here is the geometrical invariant K, which denotes
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(a) (b)

(c) (d)

Figure 3.5: Distribution of gaze in the different conditions, averaged over all movies and
subjects. (a) Natural movies. (b) Stop-motion movies. (c) Hollywood trailers. (d) Noise
movies. Probability maps were computed for each condition by the superposition of Gaussians
(σ = 0.96 deg) at each gaze sample and subsequent normalization; shown here are contour
lines. The distribution of gaze on Hollywood trailers (c) is clearly more centred than in the
other conditions. Gaze on natural movies (a) has the widest distribution; in the other conditions,
frequent reorienting saccades to the centre are elicited by scene cuts (trailers), frame onsets
(stop-motion), or “reappearance”/onset of structure from noise.

those image regions that change in three spatio-temporal directions, i.e. tran-
sient corners; this feature has been shown to be predictive of eye movements
(Vig et al., 2009). Even for the natural movies, there is a certain predominance
of central features, but this effect is particularly strong for the Hollywood trail-
ers (in fact, Figure 3.6 still underestimates the central bias because the frequent
scene cuts introduce globally homogeneous temporal transients). It is worth
pointing out that the fixation distribution for Hollywood trailers also reflects
this central feature distribution; nevertheless, this does not necessarily imply a
causal connection. Indeed, Tatler (2007) found that the centre bias of fixations
on natural static images was independent of spatial shifts in the underlying
feature distributions.

Variability of eye movements on natural videos After these general obser-
vations, we will now present results on the variability of eye movements. We
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(a) (b)

Figure 3.6: Distribution of spatio-temporal structure for natural movies (a) and Hollywood
trailers (b). Shown here is the average spatial distribution of intrinsically three-dimensional
regions as measured by the structure tensor, i.e. transient or non-rigidly moving corners, which
have been shown to be highly predictive of eye movements (Vig et al., 2009). The trailers show a
stronger bias for placing structure in the centre.

start out with the variability across different observers watching the same nat-
ural movie for a single presentation of the stimulus (which Stark coined the
“local” condition), see Figure 3.7. Shown here are one example where variabil-
ity is very high, one example where most observers look at the same region
at least temporarily, and data for one Hollywood movie trailer. Common to
all movies is that variability is relatively low (coherence, as shown in the fig-
ures, is high) during the first one to two seconds due to the central bias of
the first few saccades. After this initial phase, gaze patterns for the movie
“roundabout” diverge and remain relatively incoherent until the end of the
movie; this is not surprising since the scene is composed of a crowded round-
about seen from an elevated viewpoint, i.e. moving objects (cars, pedestrians,
cyclists) are distributed almost uniformly across the screen. Nevertheless, gaze
patterns are still more similar than the random baseline of different observers
looking at different movies (what Stark coined the “global” condition, which
models stimulus- and subject-independent effects such as the central bias; mean
NSS for “roundabout” 0.45, for “global” 0.18, p < 10−10). NSS for the movie
“ducks boat” is shown by the peaked curve in Figure 3.7. The overall scene is
fairly static with two boats moored on a canal, but no humans or moving objects
(see Figure 3.1). At about the 5 s mark, a bird flies by, followed by another bird
at 10 s; both these events make virtually all observers look at the same location
(max NSS 2.61, mean 0.84). For a comparison, NSS for the trailer “War of the
Worlds” is also plotted and exhibits several such highly coherent peaks; on
average, gaze on trailers is significantly more coherent than on natural movies
(1.37 vs. 0.72, p < 10−10).

A further prediction by the scanpath theory is that “idiosyncratic” viewing
behaviour should be less variable than the “global” condition, i.e. the eye
movements of one person watching different movies should be more coherent
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Figure 3.7: Normalized Scanpath Saliency on natural movies: when a flock of birds flies by (from
5–10 s, some more birds follow 11–13 s), almost all observers orient their attention to the same
spot (red line); in the “roundabout” video with small, moving objects evenly distributed across
the scene, eye movements are highly variable and thus have a low coherence (black line). For
comparison, the horizontal line denotes the average across all natural movies; the much higher
coherence for one Hollywood trailer is also shown (dashed line).

than those of different persons watching different movies. However, our data
does not support this hypothesis; indeed, NSS for the idiosyncratic condition
is even lower than for global (0.09 vs. 0.15).

Variability of eye movements on natural noise Figure 3.8 shows the NSS
scores for the natural noise movies that oscillate between natural scenes and
noise while the same spatio-temporal amplitude spectrum is maintained. One
interesting observation is that even in those episodes where no discernible nat-
ural structure is visible (noise level> 95%), eye movements are still significantly
more coherent than in the global baseline condition (mean NSS for noise 0.49,
for global 0.18; Kolmogorov-Smirnov test p < 10−10). Yet, episodes with low
noise level, i.e. more semantically meaningful content, have higher coherence;
noise level and NSS are thus anti-correlated (r = −0.57). Also notable is the ob-
servers’ behaviour when the natural scene re-appears, i.e. along the downward
slopes of the noise level curve: during a slow change, eye movement coherence
goes up only slightly (at around t = 25 s); faster transitions (at around t1 = 50 s,
t2 = 60 s) seem to elicit a re-orientation response similar to abrupt frame onsets
(since the underlying natural movie did not change during the noise oscilla-
tions, observers should have been able to predict the layout of the natural scene
following a noise episode).
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Figure 3.8: NSS values averaged over the “natural noise” movies. The dashed line denotes the
noise level, i.e. peaks in the sinusoidal curves correspond to phases where subjects only saw noise
and minima correspond to phases where the original movie was fully visible. Eye movement
coherence is inversely correlated with noise level (r = −0.57), i.e. when natural image structure
is visible, eye movements are more coherent than on pure noise. However, even in phases of pure
noises, the distribution of gaze is not random: NSS scores are higher than the “global” baseline of
natural movies (lower horizontal line). The green horizontal line denotes the average coherence
on natural movies (“local” condition).

Variability of eye movements on stop-motion movies Figure 3.9 shows the
average NSS for the stop-motion movies and for the matched set of natural
movies (only nine out of the 18 natural movies were shown in a stop-motion
version), with dashed vertical lines denoting the onset of new stop-motion
frames. Inter-subject coherence spikes after every frame onset to above the
NSS score on the continuous movies; after about one to two seconds, however,
variability increases and the NSS score drops below that of the continuous case.
This observation is statistically significant when pooling the first and second
halves of the 3 s frame intervals: initially, stop-motion NSS is higher than local
NSS (paired Wilcoxon’s signed rank test, p < 10−10); in the second half, this
relationship is reversed (p < 0.007).

Variability increases with repetitive viewing of the same stimulus Several
studies have found that repetitive presentation of the same stimulus leads
to similar scanpaths (on static images, Hasson et al., 2008b; Foulsham and
Underwood, 2008; for simple artificial dynamic scenes, Blackmon et al., 1999).
Results from experiment two confirm these earlier findings; indeed intra-subject
variability is lower than inter-subject variability (mean NSS for repetitive 0.66,
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Figure 3.9: Eye movement coherence on the same set of movies for continuous display (local
condition) and for the stop-motion condition, where one frame is shown every three seconds.
In the stop-motion condition, coherence spikes after each frame transition and then drops again
steeply until the next frame onset. This demonstrates a systematic difference in gaze behaviour
on static and dynamic stimuli.

local 0.47, and 1.41/0.88 for trailers; Kolmogorov-Smirnov test p < 10−10; the
local score here is smaller than above because of the matched sample size, see
Methods). One possible confound is that when recording eye movements from
one subject in one session, calibration inaccuracies might not be independent
across trials, i.e. eye movement coherence might be overestimated; we therefore
compared one subject’s scanpaths only with scanpaths from the other day of
data collection (and indeed found that failure to do so resulted in an even
higher increase in eye movement coherence than above). However, pooling
together up to five repetitions of a movie also may underestimate how similar
gaze patterns evoked by the same stimulus are: the variability of the individual
presentations i.e. for the first, second, . . . presentation is shown in Figure 3.10.
With increasing number of repetitions, the variability of eye movements across
subjects increased (p < 10−4 for natural movies, p < 0.002 for trailers, paired
Wilcoxon’s test). Because the bottom-up stimulus properties were kept constant
by definition, this means that individual viewing strategies had an increasing
influence. Interestingly, though, this effect was reversed when the stimuli were
presented again the following day. The first presentation on the second day
(presentation 6 in Figure 3.10) led to a coherence across subjects comparable to
that of the very first presentation (on day one); for subsequent presentations,
coherence declined again.
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Figure 3.10: Evolution of coherence during repeated presentation of the same stimulus on
natural movies (a) and Hollywood trailers (b). Each movie was presented five times in one
session (trials 1–5) and another five times the following day (trials 6–10). Later presentations at
the same day are significantly more variable (paired Wilcoxon’s test, p < 0.002), but coherence is
comparable between both days. Thus, it is not stimulus familiarity per se that drives variability,
but an experimental artefact (subjects lost interest).

Correlation of basic eye movement parameters with variability/hotspots Fi-
nally, we investigated whether the fixations at locations with high observer
similarity, or hotspots, are different from random fixations. Figure 3.11 shows
fixation duration and amplitude of the saccade preceding that fixation as a func-
tion of NSS at fixation (relative to the maximum NSS over all movies; because
of the small sample size for larger values, the range of NSS is clipped at 70% of
the maximum). Locations with high coherence, i.e. locations that were looked
at by many observers simultaneously, were examined with fixations of longer
duration compared to random locations; also, observers tended to make small
saccades towards such highly coherent locations. In other words, the image
regions that attract attention by a number of people also attract the attention of
individual observers for longer and more small, object-investigating saccades.

3.5 Discussion

In this chapter, we have collected a large set of eye movements on natural
movies and on several other stimulus types. To investigate the role of tem-
poral change in dynamic stimuli, we used stop-motion stimuli that have the
same semantic content as the natural movies, but lack continuous motion.
We also probed the limits of the influence of semantics on eye movements:
in the one extreme, eye movements were recorded on noise movies that had
similar low-level features (spatio-temporal amplitude spectrum) as the natural
movies, but lacked any semantic content; in the other extreme, we used trailers
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Figure 3.11: (a) Correlation of NSS values on natural movies and fixation duration. “Hot
spots”, where many subjects look simultaneously and NSS is high, are fixated for longer periods
of time (9.4ms/%, R2 = 0.79). (b) Correlation of NSS values and saccadic amplitudes. Saccades
towards hot spots are typically of small amplitude (−0.05deg/%, R2 = 0.81).

for Hollywood action movies where both low-level features and semantically
meaningful objects were deliberately arranged in order to guide the viewer’s
attention. We found systematic differences throughout these different stimulus
types, and will now discuss each of these findings in more detail.

General eye movement parameters Saccadic amplitude and fixation dura-
tion are two well-studied, basic eye movement parameters. In line with earlier
findings, saccadic amplitudes on natural stimuli follow a heavily skewed dis-
tribution biased towards short amplitudes, with a long tail of relatively rare
saccades of larger amplitude. In a review of several studies, von Wartburg
et al. (2007) found that mean saccadic amplitude scales linearly with stimulus
size; the largest natural stimuli reported had an extent of 34 by 26 deg and
resulted in a mean saccadic amplitude of 6.3 deg (median 5.2 deg). In contrast
to this, we measured only slightly larger saccades (mean 7.4, median 5.6 deg)
on more than 30% larger stimuli (image extent of our videos 48 by 27 deg).
However, this probably can be explained by the fact that there are obvious
mechanical limits to the range of eye movements: under natural viewing con-
ditions, saccades typically are accompanied by a head movement (Einhäuser
et al., 2007), but in the present experiments, these were suppressed by a chin
rest. When comparing the distributions of saccadic amplitudes across the dif-
ferent stimulus types, eye movements on natural movies comprised of more
either small or large saccades, with less saccades of intermediate amplitude
than in the other conditions. Apparently, viewing behaviour on natural movies
can be characterized by occasional larger jumps between clusters of interesting
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objects, which are then examined in detail by small, intra-object saccades. On
Hollywood trailers, the smallest fraction of large amplitudes was observed;
here, the producers deliberately capture the viewer’s attention in the centre of
the screen, using special effects such as explosions, tracking shots, etc., so that
there is little incentive for large saccades towards the periphery. This was also
reflected in the fact that saccades on this type of movie showed the highest cen-
tre bias. Spatio-temporal noise with a natural amplitude spectrum also elicited
few large saccades, but also very few small saccades. This different viewing
behaviour makes sense since the noise lacks semantic objects that might need to
be examined in detail; because spatio-temporal structure is evenly distributed
across the whole stimulus, there also is little stimulus-driven incentive to make
(large) eye movements towards the periphery. Nevertheless, these results are
at odds with a study by Jansen et al. (2009), who had found that – for static
images – saccade lengths on natural and pink noise images were comparable.
We see two differences in the used stimuli that could explain this difference: for
once, the introduction of temporal changes obviously might have an impact on
eye movements, and this impact might differ for semantically meaningful and
meaningless stimuli, even if their amplitude spectra are matched; furthermore,
different falloff parameters β during creation of the 1/ f β noise might lead to a
different predominant scale in the stimuli, which in turn might lead to different
saccadic amplitudes.

That fixation duration varies with task is a well-established fact (Tatler
et al., 2006; Loschky et al., 2005; Canosa, 2009). We found the longest fixation
durations on average on the natural noise movies, where subjects might not
feel the need to quickly explore the scene since there are no discernible objects
to examine. The shortest fixation durations were found on static images and
possibly can be explained by an artefact of the experimental setup: the short
presentation time of static images puts pressure on the subjects to quickly scan
the image before it disappears again.

Summarizing, the exact stimulus type has a profound impact on saccadic
amplitudes. Specifically, observers tend to make more saccades of intermediate
amplitude and shorter fixations on static images than on image sequences.

Centre bias Our data replicated the well-studied phenomenon that subjects
preferentially look at the centre of the screen (Tseng et al., 2009; Tatler, 2007;
Parkhurst et al., 2002; Reinagel and Zador, 1999; Buswell, 1935); however,
we could show that the effect varies with stimulus type. Not surprisingly, the
strongest centre bias could be found on Hollywood trailers. Here, the photogra-
pher’s bias to place interesting objects in the centre was deliberately employed,
which is also reflected in the distribution of low-level spatio-temporal structure
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that is skewed towards the centre much more than the natural movies. Fur-
thermore, the frequent scene cuts also contributed to the centre bias; the abrupt
frame transitions in the stop-motion condition led to a stronger centre bias than
on natural movies.

Variability Not surprisingly, we found that eye movements of several ob-
servers on one natural movie are less variable than eye movements on different
movies; in other words, that eye movements are at least partially determined by
the visual input. This effect was even stronger for professionally cut Hollywood
trailers.

It is a well-established fact that the consistency in fixation locations between
observers decreases with prolonged viewing (Tatler et al., 2005). We here
found a systematic difference in viewing behaviour on dynamic, i.e. more
natural stimuli compared to static images predominantly used in eye movement
studies. Whereas the first few fixations on the static images used in our stop-
motion movies are heavily influenced by stimulus onset and drawn towards
the centre of the stimulus, viewing after as little as 1.5 s becomes unnatural and
idiosyncratic in the absence of continuous temporal change. ’t Hart et al. (2009)
found a similar result in a recent study. They presented their subjects with a
random sequence of stillshots from a set of videos for one second each; these
stillshots lacked continuous motion and elicited more centred eye movements
than the original videos. The time course of such gaze behaviour led the authors
to interpret this finding as a dominance of stimulus onset effects. We here
confirm this finding for longer presentation times (3 s instead of 1 s) and extend
it to a case where scenes are highly predictable; even though the stillshots
are taken from the same movie and presented in their correct chronological
sequence, frame transitions still elicit reorienting responses towards the centre.

In line with the scanpath theory, we could also confirm earlier findings
on very simple, synthetic scenes (Blackmon et al., 1999) that a single observer
watching the same movie repetitively exhibits more coherent eye movements
than several observers watching this movie. This effect has also been shown
for two consecutive presentations of static images (Foulsham and Underwood,
2008). However, we found that variability increased with a growing number of
presentations, but dropped back to its original level when subjects watched the
movie for the first time in the second half of the experiment on the following
day. Considering that subjects presumably were still familiar with the stimuli
(they had seen them five times the previous day), this implies that the increase
in variability is not due to stimulus familiarity per se, but rather an artefact of
the experimental conditions (subjects lost interest).
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A further hypothesis of the scanpath theory (Noton and Stark, 1971) is
that idiosyncratic viewing behaviour exists, so that eye movements of a single
person on different stimuli are more coherent than those of different persons
looking at these stimuli. Our experimental data does not support this notion
on complex dynamic scenes; indeed, variability of eye movements was slightly
higher in the idiosyncratic than in the global condition.

On natural noise movies, eye movements were more coherent than the
global baseline (which incorporates the centre bias) even during the episodes
where no discernible objects were visible. This finding pertains to the ongoing
debate to what extent eye movements are driven by low-level features, such
as contrast and motion, or whether the preference of the oculomotor system
for highly structured image regions is merely correlative in nature because
these regions coincide with meaningful objects (for this point of view, see e.g.
Einhäuser et al. (2008a); Foulsham and Underwood (2008); Elazary and Itti
(2008), on the other hand, contend that the low-level structure gives rise to
the perception of objects). We here found evidence for a causal contribution
of low-level features to oculomotor control, at least on movies with similar
spatio-temporal amplitude spectrum as that of natural movies.

Finally, we investigated the characteristics of eye movements at hot spots,
i.e. at regions that were fixated simultaneously by several observers. Results
show that fixations on these regions on average lasted longer and were the
result of smaller saccades than on less-fixated regions; this effect was linear in
the amount of fixations (NSS value).

3.6 Chapter conclusion

We have extended the study of variability of eye movements to the temporal
domain and natural videos and measured basic eye movement parameters
on a range of different stimulus categories. We investigated the variability
introduced by the temporal dynamics of a stimulus using novel “stop-motion”
stimuli and found that briefly presented static images, as used in common
psychophysical paradigms, are a special case and not very representative of
human viewing behaviour. Noise movies with a natural amplitude spectrum
elicited more coherent eye movements than predicted by the central bias alone;
this indicates that the low-level features of the noise attracted attention. Less
surprisingly, professionally-cut Hollywood trailers evoked very similar eye
movement patterns among observers. We also put to test the “scanpath theory”
on natural videos and found that repetitive viewing of the same stimulus of
the same observer elicited more coherent eye movements than single stimulus
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presentations from different observers. However, we did not find evidence for
idiosyncratic viewing patterns of the same subject across different movies.
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“It’s tough to make predictions, especially about the future.”

Yogi Berra

4
Prediction of eye movements

In the previous chapter, we have seen that eye movements are far from random,
but show systematic tendencies. There are certain oculomotor constraints, such
as a bias towards the centre of the display and a relative overabundance of
saccades with small amplitude, but these constraints do not suffice to explain
why fixation positions on dynamic natural scenes often are so similar between
observers. In this chapter, we are now going to explore how this similarity is
related to low-level image features and how these, in turn, can be used to predict
where people look. The development of a successful prediction algorithm has
not only consequences for the understanding of human vision, but might also
have technical applications, for example in active vision.

We shall first give a brief overview of the literature on the prediction of
eye movements. Over the last decade, numerous studies have dealt with the
relationship of eye movements and low-level image features; most of these
studies, however, analysed data recorded on static stimuli, which are not very
representative for natural viewing behaviour, as we have discussed in the
previous chapter.

In the main part of this chapter, we shall present our own work that stud-
ies the relationship of a wide range of low-level image features at the centre
of gaze with such features at potential saccade targets. This work had been
motivated by a study (Dragoi and Sur, 2006) that showed – for monkeys watch-
ing still grayscale images – that scanpaths were systematically biased towards
alternating between iso-oriented and orthogonal edges, avoiding intermediate
orientation differences. Together with electrophysiological recordings on mon-
keys and psychophysical discrimination experiments in humans, Dragoi and
Sur explained this bias in terms of neural adaptation. We tested their hypothesis
for humans and videos, using the data set from the previous chapter, and did
not only look at orientation, but also a variety of other image features. We also
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contributed a methodological improvement to the design of a proper baseline
condition; we developed an algorithm that transforms gaze data from a set
of subjects to random scanpaths while leaving certain statistical characteristics
intact. Using this improved baseline condition and advanced image processing
algorithms, we could show that the finding by Dragoi and Sur is likely due to
a methodological bias; this study has been published in (Dorr, Gegenfurtner,
and Barth, 2009a).

We will then turn to the prediction of eye movements using machine learn-
ing techniques. Some attempts at learning from data those image structures that
draw gaze have been made before; however, these attempts usually suffered
from the curse of dimensionality because even small image patches quickly be-
come computationally intractable. We here use a – in hindsight – simple trick
to reduce the dimensionality of the data and achieve prediction rates that out-
perform much more complex, state-of-the-art models. Instead of learning on
the raw image intensities, our classifier operates on a set of image features such
as the geometric invariants; these have been used to predict eye movements
before, albeit without machine learning (Böhme, Dorr, Krause, Martinetz, and
Barth, 2006a).

This work was performed in close collaboration with Eleonóra Vı́g, who
signs responsible for the machine learning algorithms and modifications to the
software framework that was used to efficiently compute geometrical invari-
ants, process the videos, etc. (see next chapter). Some results obtained with this
approach have been published already (Vig, Dorr, and Barth, 2009), a further
manuscript with more detailed analyses is in preparation.

To conclude this chapter, we will present some early results that extend
gaze prediction to transparently overlaid videos; to the best of our knowledge,
this topic has not been addressed in the literature so far. These experiments
were carried out by Laura Pomarjanschi, who collected the data and used the
software for blending movies on a spatio-temporal pyramid (see Chapter 2)
and for computing the eigenvalues of the generalized structure tensor written
by Michael Dorr, and the machine learning framework by Eleonóra Vı́g. A
manuscript that includes first results is currently under submission (Barth,
Dorr, Vig, Pomarjanschi, and Mota, 2010).

4.1 Bottom-up and top-down eye guidance

An influence of the task at hand on gaze behaviour was already found by
Yarbus (1967), a finding that was corroborated also for real-life activities (Land
and Hayhoe, 2001; Ballard and Hayhoe, 2009). Because of the complexity of
modelling cognitive factors, however, much research has focused on bottom-up,
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low-level factors that can be computed from the stimuli alone. This was further
facilitated by the finding that the distribution of image features at the centre
of fixation differs significantly from that at random control locations (Mannan
et al., 1997; Reinagel and Zador, 1999; Parkhurst et al., 2002; Tatler et al., 2005;
Baddeley and Tatler, 2006; Tatler et al., 2006), which can be interpreted as a
preference of the human visual system for highly structured image regions
(but see below). Over the past decade, much research has been done to exploit
this preference and to develop algorithms for the prediction of gaze based on
bottom-up features.

A common approach to model such low-level factors is that of a saliency map,
which was first formulated for static images (Itti et al., 1998; Privitera and Stark,
2000; Itti and Koch, 2001; Itti, 2005). Canonically, a set of biologically inspired
feature detectors, such as for contrast, colour, or orientation is assembled that
assigns a certain relevance value for each feature under consideration to every
location in the image. In the case of contrast, for example, it is intuitively
plausible that a high contrast value should also be assigned a high relevance;
for orientation, on the other hand, all possible values have the same a priori
saliency. Therefore, centre-surround detectors are used so that e.g. a single
horizontally oriented edge amongst vertical edges is assigned a high relevance.
These feature maps are combined by a weighting scheme to obtain one saliency
value per image location; a simple model might then always pick the image
location with the maximum saliency value as the next saccade target.

Several modifications and additions to the original saliency map model have
been made over the years, including inhibition-of-return (Itti and Koch, 2001),
extension to the temporal domain (Carmi and Itti, 2006), feature map fusion
schemes (Meur et al., 2006, 2007), or features that are based on information-
theoretic considerations rather than on having a direct (known) neural correlate
(Böhme et al., 2006a; Bruce and Tsotsos, 2006; Guo et al., 2008; Bruce and Tsotsos,
2009; Seo and Milanfar, 2009).

Other studies have analysed fixation locations in a Bayesian framework
(Zhang et al., 2008, 2009); Itti and Baldi (2006) coined the term “surprise”
(measured in “wows”) for videos that expresses how much a pixel or region
deviates from its expected value.

Some authors have looked directly at the distribution of feature values
at fixated and non-fixated locations and used decision-theoretic methods to
classify novel locations (Tatler et al., 2006; Gao and Vasconcelos, 2009).

Another interesting approach is to use machine learning techniques. Instead
of an a priori definition of important features and their appropriate scales,
machine learning should be able to distill the relevant image structure from a
data set of attended image or movie locations. Judd et al. (2009), in a first step,

77



CHAPTER 4. PREDICTION OF EYE MOVEMENTS

learned optimal parameters for the Itti and Koch saliency model. The work
by Kienzle et al. went further and learned interest points directly on the pixel
intensity values of static scenes (Kienzle et al., 2006, 2009) and on Hollywood
movies (Kienzle et al., 2007). These studies, however, were limited to only one
spatial scale and also suffered from the curse of dimensionality, because their
feature vectors had a separate dimension for each pixel of a neighbourhood
around fixation; even with a relatively small neighbourhood of e.g. 32 by 32
pixels, the classification problem becomes more than 1000-dimensional. In
comparison, even a very large gaze data set such as the one presented in the
previous chapter consists of about 40000 saccades only. Nevertheless, Kienzle
et al. achieved prediction rates that were comparable to previous approaches
(ROC score of 0.63 on static images; 0.58 on videos).

Despite these successes in predicting eye movements based on low-level fea-
tures alone during free viewing, it has also been shown that task demands can
overrule image-based saliency (Henderson et al., 2007; Einhäuser et al., 2008b).
Some authors argue that it is not low-level features per se, but semantically
meaningful objects (the presence of which is correlated with image structure)
that drive attention (Foulsham and Underwood, 2008; Einhäuser et al., 2008a);
however, it is also still under debate whether low-level features are merely
correlated with objects or give rise to their perception (Elazary and Itti, 2008).

Finally, it should be noted that the majority of work on gaze prediction has
dealt with static stimuli; only very recently, several studies have been published
that used eye movements on videos (Carmi and Itti, 2006; Böhme et al., 2006a;
Meur et al., 2007; Kienzle et al., 2007; Zhang et al., 2009; Bruce and Tsotsos,
2009).

4.2 Saccade target selection based on low-level
features at fixation

In the previous section, we have discussed that eye movements are guided
by both image-driven, bottom-up properties as well as cognitive, top-down
processes; the relative importance of these two mechanisms is still under debate.
Recently, Dragoi and Sur (2006) introduced a further mechanism that does not
fall neatly in either category and rests on the relationship of low-level features
at the current centre of gaze and low-level features at potential saccade targets.
Because information about the observer, the current gaze position, needs to
be taken into account, a pure bottom-up model does not suffice to describe
this mechanism; on the other hand, the mechanism seems to work at a pre-
attentive stage, so a description as top-down would also be inadequate. Dragoi
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Figure 4.1: Schematic illustration of the analysis for a synthetic scene; real data was measured
on natural videos. Low-level features (here: orientation) are extracted from each fixated image
patch and their differences along the scanpath are computed.

and Sur based their work on measurements of rhesus monkeys watching still
images. In this section, we will systematically investigate whether the proposed
mechanism also can be found, for a variety of low-level features, in human
observers watching videos, i.e. whether low-level features at the current centre
of gaze contribute to saccade target selection under natural viewing conditions.

Correlations of low-level features at successive fixations

Based on psychophysical and electrophysiological evidence, a novel mecha-
nism for the selection of saccade targets was put forward by Dragoi and Sur
(2006). They showed that when V1 neurons were adapted to gratings of a cer-
tain orientation for 400 ms, subsequent discrimination performance improved
for both iso-orientation and orthogonal gratings; discrimination of gratings
with an intermediate orientation difference, on the other hand, did not change
significantly. Dragoi and Sur (2006) related these findings to eye movement
recordings from rhesus monkeys viewing still images that showed that fixa-
tions of an image patch were likely to be followed by either a small saccade to
a patch with similar orientation or by a large saccade to a patch with largely
dissimilar orientation. The proposed explanation was that eye movements ex-
ploit the improved discrimination performance and steer gaze towards either
iso-oriented or orthogonally oriented image patches. A schematic illustration
of this analysis can be found in Figure 4.1, which depicts a putative scanpath
on a synthetic scene: from each fixation patch, dominant local orientation φ is
extracted (e.g. φ1 = 90deg, φ2 = 135deg, etc.). The differences of orientation
at successive fixations then can be computed (e.g. ∆φ1 = |φ2 − φ1| = 45deg)
and their distribution compared with a distribution of differences obtained on
randomly generated control scanpaths. In the case of Dragoi and Sur, the distri-
bution of differences in orientation was more U-shaped for measured than for
random baseline scanpaths because both very small and very large differences
occurred more often. Looking at these differences of low-level features can
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also be interpreted as evaluating the correlation of such features introduced
by the visual system’s target selection process. At this point, however, it is
important to note that natural scenes are highly correlated both in space and
time (Zetzsche et al., 1993; Simoncelli, 1997); it is therefore crucial to carefully
discriminate these image-inherent correlations from those that are due to eye
movements.

If we found such eye movement–induced correlations indeed, we could also
understand them as a contribution of low-level features at the current centre of
fixation to the selection of the next saccade target. This is of particular interest
to the prediction of eye movements: here, it were not sufficient anymore to look
at a saliency map that is independent of current eye position. On the contrary,
information from the current eye position would be required to determine
where the eye will look next. Similar analyses of oculomotor tendencies such
as saccadic amplitude and direction, fixation duration, and the bias towards the
centre of the stimulus have shown that such factors can significantly improve
feature-based models of eye guidance (Tatler and Vincent, 2008, 2009).

In the remainder of this section, we will apply the technique of looking at
feature differences at successive fixations to our large set of eye movement data
from human subjects watching high-resolution video clips that was presented
in Chapter 3. To use video clips instead of still images has the advantage that
viewing conditions are more natural; on still images, a few fixations might
suffice to capture all relevant scene information, after which image sampling
might become idiosyncratic.

To extend the analysis beyond that of Dragoi and Sur (2006), we did not
only look at local orientation, but systematically investigated other low-level
features as well. In particular, these were brightness, colour, and motion. Even
though the choice of these features might be arbitrary to a certain extent, there
seems to be a general consensus that these features are extracted at an early stage
in visual information processing (Adelson and Bergen, 1991). Furthermore, we
analysed the correlation of geometrical invariants (see Section 2.8), which are
basic dynamic features from a computational perspective and have been shown
to be useful in understanding various phenomena in biological vision (Zetzsche
and Barth, 1990; Zetzsche et al., 1993; Barth and Watson, 2000). The invariant
H can also be interpreted as spatio-temporal contrast.

Finally, our analysis was performed on a spatio-temporal multiresolution
pyramid (see Section 2.3) in order to capture any effect that might be limited to
a certain spatio-temporal scale.
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Stimuli and gaze data

We used the data set of eye movements on high-resolution natural movies as
presented in Chapter 3. Our algorithm for fixation detection is described in
Section 3.3; however, the extraction of fixations made on dynamic scenes from
raw eye movement data is not trivial due to the occurrence of smooth pursuit
eye movements (Munn et al., 2008), and our investigation of successive fixations
in this section obviously hinges crucially on a faithful detection of fixations.
Therefore, we chose to implement a further fixation identification algorithm
for comparison purposes, namely the GUIDe algorithm developed by Kumar
(2007). Performance of both algorithms was validated against a randomly
sampled set of 550 hand-labelled fixations; the GUIDe algorithm yielded a
slightly better agreement and was therefore used for all results presented in this
section. Nevertheless, we ran the same analyses using the second algorithm
and obtained qualitatively similar results. For the GUIDe algorithm, we also
computed the extent to which gaze samples remained unlabelled as either
fixation or saccade, which might indicate a smooth pursuit movement. About
9% of gaze samples could not be labelled reliably; however, average duration
of such unlabelled episodes was 37 ms, which would be fairly short for phases
of smooth pursuit, so that it was possibly often rather the transitions between
(high-velocity) saccades and (low-velocity) fixations that caused problems for
the algorithm. Manual inspection further revealed that some clear episodes
of smooth pursuit, e.g. when a flock of birds flies by in one of the videos,
were broken into a series of fixations and ’undefined’ samples. However, the
depicted objects are not translated rigidly, change course, etc., so that even a
manual labelling would be difficult. In the context of the present study, it is
not clear at any rate how smooth pursuit should be treated, since e.g. catch-up
saccades would keep fixation on the same object.

Low-level features

All low-level features were computed on a multiresolution pyramid constructed
from the image sequence by successive blurring and sub-sampling in both the
spatial and the temporal domain. In our implementation, we created five
spatial (13.4, 6.7, 3.3, 1.7, and 0.8 cycles/deg) and three temporal (30, 15, 7.5 fps)
scales. Except for colour, all features were determined on the luma channel (see
below) of the video.

Timing of feature extraction with regard to fixation onset For each fixation,
we extracted features from that video frame that was shown on the screen
at the onset of fixation. The human visual system, however, has to base its
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decision where to move the eyes next on information that was available earlier
already because of its sensory-motor latency. Therefore, we additionally ran
all analyses again with features that were extracted at up to 200 ms (in steps of
25 ms) before fixation onset, respectively; due to the temporal correlations in
the videos, results were qualitatively similar (data not shown).

Orientation We extracted orientation as described in Section 2.10 by an eigen-
value analysis on the two-dimensional structure tensor, with an 11-tap binomial
kernel for the lowpass filterω. We already have discussed that for natural stim-
uli, eigenvalues of J are rarely exactly zero, and so confidence measures based
on the relative size of the eigenvalues are needed to reliably detect oriented
features, see Equation 2.8. For the present analysis, we systematically varied
θ1, θ2 in the range 0.01–0.1 and 0.1–0.9, respectively.

Colour MPEG-2 video as recorded by our camera stores colour in the Y′CrCb

format with one channel corresponding to brightness and two corresponding to
colour-opponency information (Poynton, 2003). We directly used the intensity
values from all channels.

Velocity Motion estimation followed the algorithm based on the minors of
the structure tensor presented in Section 2.11. Here, ω was a spatio-temporal
smoothing filter with five-tap binomial kernels in both space and time. Four
estimates of local motion ~v1, . . . , ~v4 were obtained and only processed further
if they deviated from each other by not more than 45 deg. Velocity was then

computed as v =

√
vx

2
+ vy

2 and locations where v was less than 1% of the
maximum velocity in that video frame were discarded. Finally, results were
smoothed with a Gaussian kernel with length 15, σ = 3pixels.

Geometrical invariants We also computed the geometrical invariants on the
structure tensor (see Section 2.8) that have been shown to be useful in under-
standing biological vision (Barth and Watson, 2000); they have also been used
to predict eye movements before (Böhme et al., 2006a; Vig et al., 2009). An
example image for invariant S on a natural movie is shown in Figure 4.2.

Artificial scanpaths as baseline measure

To be able to compare our results against a baseline measure, we created ran-
dom sequences of fixations, or scanpaths. However, real scanpaths have certain
characteristics that need to be taken into account. For example, the distribution
of saccadic amplitudes that subjects made on our stimuli (see Figure 3.3) is
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(a) (b)

Figure 4.2: (a) Stillshot from one of the movies used in our experiment. (b) Corresponding
image of geometrical invariant S. Non-white locations change in at least two spatio-temporal
directions (brightness thresholded and inverted for better legibility). For an illustration of
intrinsic dimension on a synthetic scene, see Figure 2.8.

heavily skewed (mean amplitude is 7.4 deg, median is 5.6 deg). Because natu-
ral scenes show spatio-temporal correlations that vary with distance (Zetzsche
et al., 1993; Simoncelli, 1997), see also Figure 4.3, any correlations found along
the scanpath might be due to these image-inherent correlations alone. Fur-
thermore, it is a well-known fact that human gaze prefers image patches with
high local structure, such as edges, corners, or motion. This repulsion from
homogeneous areas is of particular importance in the context of the orientation
feature since orientation cannot be reasonably extracted from such areas.

In order to disambiguate these effects, we created four different sets of
baseline scanpaths with a different similarity to the recorded scanpaths. A
graphical illustration of these control conditions is given in Figure 4.4.

“Random” Fixation durations were copied from real scanpaths, but image
coordinates of fixations were uniformly sampled across the whole scene, re-
sulting in a mean saccadic amplitude of 19 deg. Thus, in this condition neither
saccadic amplitude nor the set of fixated patches remained the same as in the
real scanpaths.

“Same lengths” Saccade lengths were copied from real scanpaths, but di-
rection was randomized; most correlations inherent in natural scenes were
therefore conserved, but the image patches from which features were extracted
were random.

“Scrambled” In this condition, the order in which a subject fixated a series of
image patches was shuffled. This yielded a different distribution of saccadic
amplitudes (mean 13 deg, almost twice as large as that of the original distri-
bution), but the set of fixation coordinates (x, y) remained constant. Note that
this does not imply that fixated image patches were exactly the same; because
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Figure 4.3: (a) Log-plot of joint distribution of saccadic amplitudes and angles. There is a strong
bias towards horizontal and vertical saccades. (b) Image-based correlation of local orientations on
the highest spatial scale (13.4 cycles/deg). The bottom-left corner corresponds to the correlation
of a pixel with itself, which is 1.0 by definition. At longer distances (above 0.5 to 1 deg),
correlations drop to chance level; notable is the anisotropy that correlations decay more slowly
along the horizontal axis. (c) Image-based correlation of local orientations for a middle spatial
scale (3.3 cycles/deg). Again, correlations are anisotropic.

of moving objects and illumination changes over time, features at (x, y, t1) and
(x, y, t2) might differ for t1 , t2.

“Synthetic” All the above conditions are based on data from a single trial
(combination of one subject and one movie) per output scanpath. Using data
only from a single subject, it is impossible to change the scanpath (i.e. generate
an artificial scanpath) while keeping constant both the set of fixated patches
and the spatio-temporal distances between these fixations. However, by mixing
scanpaths made by different observers on the same video, both these charac-
teristics can be approximated simultaneously. Consider a sequence of two fixa-
tions made by subject A: fA(n) = (xA(n), yA(n)), fA(n+1) = (xA(n+1), yA(n+1))

with a distance ∆A(n) = (xA(n + 1) − xA(n), yA(n + 1) − yA(n)) (for simplic-
ity, we ignore time in this example). In an artificial scanpath S, we would
then want to model a pair of fixations with the same distance (since ∆ is a
vector-valued function, this also includes the angle between the two fixations),
fS(n) = (xS(n), yS(n)), fS(n + 1) = fS(n) + ∆A(n). Furthermore, fS(n) and
fS(n + 1) should not be random points, but real fixation points. Given a suf-
ficient number of scanpaths from other subjects, it is not unlikely to find (at
least approximately) such a pair of fixations, e.g. from subjects B and C: fB,
fC = fB +∆A(n) + ε, that we can use for our “synthetic” scanpath: fS(n) := fB,
fS(n + 1) := fC. Care has to be taken, however, that the artificial scanpath does
not coincidentally become a mere copy of original scanpath segments, i.e. that
there is no subject X with fixations fX(n) = fB, fX(n + 1) = fC.
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4.2. CONTRIBUTION OF FEATURES AT CENTRE OF GAZE

(a) “Original” (b) “Scrambled”

(c) “Same lengths” (d) “Synthetic”

Figure 4.4: Illustration of the control conditions (“random” not shown). (a) Measured scanpaths
from two subjects (solid line / dashed line). (b) “Scrambled”: fixations are the same, but their
order is randomized. (c) “Same lengths”: the fixation locations (except for the start position) are
random, but the connecting saccades have the same amplitudes as in the “original” condition.
(d) “Synthetic”: using scanpaths from several subjects, both the set of fixated locations and
the joint distribution of saccadic angles and amplitudes are approximated (in this small sketch,
only amplitudes are similar); no saccadic segment occurs in the “original” scanpaths. Note the
fixation from a putative third subject in the top right corner.

In practice, “synthetic” scanpaths were created as follows. An output scan-
path was initialized with the first fixation of an original scanpath. Then, the
same number of fixations as in the input scanpath was generated by sampling
pairs of angles and amplitudes from the joint distribution over the original scan-
paths (see Figure 4.3(a)); for each sample, we searched among all observers’
fixations for one with a similar distance at a similar angle to the current fixation
(tolerances were 0.2 deg of amplitude and 10 deg of angle). Because of moving
objects, the image patch around one fixation point might look different over
time, and therefore we initially searched only among those fixations that had
been made at a similar point in time (tolerance 0.5 s). As mentioned above,
theoretically it would be possible to end up with an exact copy of the input
scanpath, since that copy trivially mimics both saccadic amplitudes and an-
gles and the set of fixation points. Therefore, a further constraint was that no
sampled pair of saccade onset and offset was also part of any of all subjects’
original scanpaths (again with a tolerance of 0.2 deg). Obviously, these condi-
tions could not always be fulfilled: even a large data set of fixation points is
relatively sparse on the screen (the screen measures about 1300 deg2; at a spatial
tolerance of 0.2 deg, a single fixation point covers only 0.01% of this area), and
certain combinations of angles and amplitudes might take a scanpath outside
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the borders of the video, which is clearly nonsensical. In these cases, sampling
from the joint distribution was repeated up to 10 times and the tolerance for
“similar” time points was gradually relaxed until a matching fixation patch
could be found.

To assess how closely the original distribution of saccade length and direc-
tion was approximated, we computed the Kullback-Leibler divergence between
the original distribution and those generated by the baseline conditions. For a
reference point, we also computed the KLD of one half of the original data set
to the other half. Results were 1.19, 0.4, 0.08, 0.07, and 0.05, respectively (for
“random”, “scrambled”, “lengths”, “synthetic”, and “original”). These results
show that the “synthetic” scanpaths are only an approximation to the original
scanpaths, but model the saccade characteristics of original scanpaths more
closely than those in the “lengths” condition, even though they consist only of
real fixation points (in the “lengths” condition, fixation points are random).

In summary, by introducing the concept of synthetic scanpaths, we can
avoid the shortcomings of random and scrambled scanpaths and, in addition,
match the natural distribution of saccade length and direction.

4.3 Results

To see whether the features along scanpaths made by human observers are
correlated beyond the level that is to be expected from image-inherent spatio-
temporal correlations alone, we have to compare the distributions of feature
differences along the “original” scanpaths with distributions based on the con-
trol scanpaths. Because of random fluctuations, finding subtle differences in
raw distributions is quite hard; we therefore look at the empirical cumulative
distribution functions

Fn(x) =
1

n

n∑
i=1

IXi≤x,

where IXi≤x =

 1 if Xi ≤ x
0 otherwise

, which integrate over difference magnitude.

As an example, consider the two distributions of orientation values in Fig-
ure 4.5. The solid line depicts the distribution of orientations at human fixation
points and the dashed line those at random control points; the dominance of
the horizontal (φ = 0deg) and vertical (φ = ±90deg) axes is a well-known
property of natural scenes and can therefore be found both in human and ran-
dom data. The ECDF (shown in the right panel) at x tells us what proportion of
samples have a value of less than or equal to x, e.g. about 50% of samples have
an orientation between -90 and 0 deg. Peaks in the probability distribution (left
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Figure 4.5: Example of probability and empirical cumulative distribution functions (ECDF);
here, the distribution of orientations is plotted. Fn(x) denotes the proportion of samples having a
value of less than or equal to x, e.g. 50% of samples have an orientation between -90 and 0 deg.
Peaks in the probability distribution (a) correspond to a steep slope in the ECDF (b), e.g. at -90,
0, 90 deg.

panel) correspond to a steep slope in the ECDF (e.g. for the cardinal axes); low
p(x) values correspond to plateaus (e.g. for oblique orientations). Based on the
ECDF, the Kolmogorov-Smirnov test statistic Di j = sup

x
|Fi(x) − F j(x)| denotes

the maximum distance of two cumulative distributions on the y-axis. In our
example in Figure 4.5, this maximum distance is 6.3%: around 82% of samples
in the “original” distribution have an orientation of less than x = 80deg, but
the dashed “random” curve has reached more than 88% at this point already.

Depending on the number of samples in the distributions, every such dis-
tance Di j is then assigned a probability p to test for statistical significance. Since
the Kolmogorov-Smirnov test is valid only for continuous distributions, but
the low-level features colour and invariants are represented by discrete values,
we performed a 1000-fold bootstrap test and report 95% confidence interval
values.

We should take statistical tests with a grain of salt, though. Overall, we have
almost 500 conditions (5·3 spatio-temporal levels, eight different features with
varying parameters, four types of control scanpaths). Even at a significance
level of p = 0.01, this implies that we have to expect around five conditions
with presumably significant results, even if there was no underlying effect.
Therefore, we carefully have to look out for systematic effects, i.e. those that are
robust against scale or parameter changes. Also, because of the high number
of samples, even miniscule effects can show up as highly significant.

In the following, we will present and discuss some representative find-
ings. We will start out with orientation and colour because here the analysis is
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Figure 4.6: Results for local orientation. (a) ECDF for differences of orientations on the second
spatial, first temporal level. The “random” and “scrambled” conditions strongly differ from the
original data in their saccadic amplitudes and therefore also differ in their orientation differences.
The “same lengths” condition is closer, but still different at around significance level (D = 6.0%,
p < 0.017); “synthetic” scanpaths show no such difference (D = 4.0%, p > 0.18). (b) Maximum
distance between original data distribution and control conditions for different spatial scales (first
temporal scale; results are similar for other temporal scales). The “synthetic” condition is always
closest; “random” is particularly different on the lower-frequency scales.

straightforward; results for motion and the geometrical invariants need more
consideration.

The evaluation of local orientation poses the problem that the thresholds
θ1, θ2, which separate oriented from homogeneous patches, have to be defined.
We systematically varied these parameters and found, not surprisingly, that for
low orientation specificity (θ1 < 0.02, θ2 < 0.4), random noise dominates the
measurements and the control conditions cannot be distinguished from the
“original” condition. At e.g. θ1 = 0.05, θ2 = 0.8, however, reliability of orien-
tation estimation is high; at only about 12% of image patches can orientation be
extracted then (nevertheless, the following also holds true for moderate param-
eter variation). Because of the well-known fact that human fixations are drawn
to structured image regions, the number of strongly oriented patches decreases
slightly for the “same lengths” and the “random” conditions (to about 9%).

In Figure 4.6(a), the distributions of orientation differences along the scan-
paths are plotted for one exemplary spatio-temporal scale. Clearly, the “scram-
bled” and the “random” conditions are very different from the original data. In
these conditions, the saccadic amplitudes changed drastically and hence, also
the distance-determined correlations of the image patches changed. The “same
lengths” condition mimics the original data more closely, but is still different
almost at significance level (D = 6.0%, p < 0.017); however, only when the
image-based correlations are fully modelled in the “synthetic” condition and
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Figure 4.7: (a) ECDFs of colour differences on the fourth spatial, first temporal level. The
“synthetic” condition shows no significant difference to the original data (D = 0.7%, p > 0.07).
(b) Maximum distance between original data distribution and controls for different spatial scales.

even the angular distribution of saccades is taken into account, the difference to
the human data vanishes. Compared to the “synthetic” artificial scanpaths, hu-
man subjects did not show a preference for certain orientation differences from
one fixation to the next (D = 4.0%, p > 0.18). The same pattern can be seen in
Figure 4.6(b), where the test statistic D is plotted for all spatial scales. The “syn-
thetic” condition is always closest to “original”, and “random” is particularly
bad on the lower spatial scales.

Because Dragoi and Sur (2006) found different effects for saccades of differ-
ent sizes, we also evaluated subsets of our data based on saccadic amplitude:
following Dragoi and Sur, we binned saccades into small (<1 deg), medium (1–
3 deg), and large (>3 deg); since the stimuli in our data set were much larger, we
also partitioned the saccades along the median of roughly 6 deg. No significant
differences between “synthetic” and “original” could be found in any of these
subsets (data not shown).

Proceeding to the next low-level feature, colour, Figure 4.7(a) shows ex-
emplary data for the blue-difference chroma channel Cb on the fourth spatial
level, but the following applies also to luma (Y) and red-difference chroma (Cr).
Here, all those artificial scanpath models with different saccadic amplitudes
(“scrambled” and “random”) or different fixation locations (“same lengths”)
lead to very different colour differences along the scanpath (p < 10−5 on almost
all spatio-temporal levels). Only the “synthetic” condition shows no signifi-
cant difference to the original data (D = 0.7%, p > 0.07); for this condition, no
such difference can be found for any spatio-temporal level (see Figure 4.7(b))
or colour or brightness channel.
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Figure 4.8: (a) Cumulative distribution of K values at fixated image patches. The “original”
condition shows a small bias towards larger K values compared to “synthetic” and a large bias
compared to “same lengths”. (b) ECDF of differences of geometrical invariant K on the third
spatial and the first temporal level. There is a statistically significant difference (D = 2.5%,
p < 10−5) between the “original” and the “synthetic” condition, but this difference can be
explained by the difference in the underlying feature distributions, see (a).

In Figure 4.8(a), results are plotted for the geometrical invariant K, which
describes the intrinsically three-dimensional video patches such as transient
corners. Similar effects could be found on several spatio-temporal levels, and
we will here describe one exemplary case (third spatial, first temporal level).
Statistically significant differences could not be found for invariants H and S,
which correspond to intrinsically one- and two-dimensional features; these fea-
tures are less sparsely distributed than K and the following discussion therefore
does apply only loosely to them.

The black solid curve in Figure 4.8(b), which represents the “original” data,
saturates later than the other curves; they, in turn, have a steeper slope near
∆K = 0. This means that in the original scanpaths, K values showed larger
absolute differences. This effect is particularly strong when comparing the
original scanpaths with the conditions “same lengths” and “random”, which
are those conditions where image patches were drawn (quasi-)randomly. The
difference for the “synthetic” and “scrambled” conditions is less pronounced,
but still is statistically significant (D = 0.9%, p < 0.017).

Let us now turn to Figure 4.8(b) for an explanation. Shown here are the
cumulative distributions of raw K values at fixated image patches. When
comparing the “original” condition with “same lengths”, we can see that there
is a strong bias towards higher K values, which is in line with the observation
that humans prefer to look at highly structured image regions. The image patch
selection in the “same lengths” condition, on the other hand, was random and
therefore showed no such bias. Although the set of image patches in the
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Figure 4.9: (a) Cumulative distribution of velocities. Subjects exhibit a clear bias towards image
patches with high velocities. (b) ECDF of differences of velocity on the third spatial and the first
temporal level. There is a statistically significant (D = 2.9%, p < 10−5) difference between the
“original” and the “synthetic” condition.

“synthetic” condition approximates the measured set of fixated image patches,
some spatio-temporal uncertainty is introduced (see above), so the raw K values
for this condition are slightly smaller than for the recorded data (D = 3.6%;
although these numbers cannot be compared directly, this is at least in the same
order of magnitude as the distance of the distributions of ∆K, D∆K = 2.5%).

Thus, we can state that the distribution of K at the centre of gaze is wider
for human data than for artificial scanpaths; therefore, the distribution of dif-
ferences along the scanpath also becomes wider. This bias of the human visual
system towards image regions with higher K values, i.e. regions of changes in
all spatio-temporal dimensions, can be used to reliably predict eye movements
(Vig et al., 2009), regardless of the question whether this observed bias is merely
a correlate of other, top-down factors such as a preference for (moving) objects.
However, there is no strong evidence for a particular bias in selecting the next
saccade target based on the K value at the current centre of fixation.

A similar effect could be found for the motion feature. On almost all spatio-
temporal levels, there are significant differences between the original scanpaths
and all control conditions. For an example, the distribution of velocity differ-
ences on the third spatial and first temporal level is shown in Figure 4.9(b).
Again, human subjects show a bias towards larger absolute feature differences
compared to random processes, but as in the case of K, the underlying distri-
bution is also different. As can be seen in Figure 4.9(a), humans tend to fixate
moving objects more often (in practice, moving objects are often followed with
a smooth pursuit eye movement; see the Methods section for a discussion).
Note that the difference between the “original” and the “scrambled” condition
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is fairly large here even though the spatial locations of the image patches stay
the same. Their temporal order changes, and by definition, a moving object
will be at a different place at a different time.

Summarizing our results, we can conclude that for orientation, as well as for
the other low-level features, there is no significant contribution of the feature
at the current centre of gaze to saccade target selection.

4.4 Gaze prediction with machine learning

So far, we have attempted to predict where a person will look next based
on what they are looking at right now. We did not find strong evidence for
a mechanism in the human visual system that would pick fixation targets
based on low-level features at the current fixation; however, we found – in
line with earlier findings – a very pronounced preference for fixating image
regions with local structure. As we have discussed at the beginning of this
chapter, much research has been devoted to the question how this preference
can be used to predict where human subjects will look in visual scenes. A
common approach is that of a saliency map that is typically computed from
a set of biologically inspired feature detectors. An alternative approach is to
employ techniques from machine learning to differentiate between attended
and non-attended movie patches, and thus to obtain information about the
image structures that are relevant for this distinction. The first to follow such
an approach were Kienzle et al. (Kienzle et al., 2007, 2006, 2009), who learned
on all raw pixel intensities in a neighbourhood around fixation on one spatial
scale. Their trained classifier had a centre-surround receptive field structure,
which often also is a part of biologically plausible saliency map formulations,
and prediction performance was in line with other results in the literature.
A major problem with learning on all pixels in a neighbourhood, however,
is the curse of dimensionality. Even small (spatio-temporal) neighbourhood
sizes quickly become intractable, and so learning has to be constrained to one
scale with relatively small resolution. In the following, we shall therefore
present a novel algorithm to predict eye movements on natural movies based
on machine learning that employs a trick to reduce dimensionality, and thus
makes the problem tractable. We explicitly discard information by averaging
image feature energy in the spatial neighbourhood around fixation, so that we
obtain only one scalar value instead of up to thousands (e.g. 4096 for an image
patch of 64 by 64 pixels). This dimensionality reduction, on the other hand,
allows us to use more information elsewhere, and we obtain such averaged
energy on every scale of a spatio-temporal pyramid, so that the feature vector
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for the classifier is multidimensional again; the use of temporal scales ensures
that information is taken from more than one point in time.

Obviously, the choice of image feature is crucial for this algorithm. Simply
using the raw pixel intensities would result in a distinction of bright and dark
patches only after averaging, which probably is not enough to capture the com-
plexity of eye guidance processes. We therefore use the geometrical invariants
on tensor-based image representations (see Chapter 2); without machine learn-
ing, the geometrical invariants on the structure tensor have been used to predict
gaze before (Böhme, Dorr, Krause, Martinetz, and Barth, 2006a). Besides the
prediction of eye movements per se, our algorithm can also be used to com-
pare different image features and their predictive power. We shall therefore
also compute the invariants on the multispectral structure tensor (see Sec-
tion 2.9) and investigate whether the inclusion of colour information improves
predictability.

To evaluate the performance of our algorithm, we use the receiver operat-
ing characteristic (ROC) curve, which gives us insight on the relationship of
specificity (how many of the patches that were classified as fixated indeed are
from the fixated class) and sensitivity (how many of the fixated patches were
classified as such) of the algorithm. The area under this curve (AUC) pro-
vides an intuitive number for performance; a perfect classifier would achieve
an AUC of 100% and a random classification would result in an AUC of 50%.
The first to use ROC scores for the analysis of gaze prediction schemes were
Tatler et al. (2006); in the meantime, several groups have now reported such
scores, typically in the range 0.58–0.68, for their algorithms.

Prediction of eye movements on natural movies

We computed image features at about 40000 saccadic landing positions of the
data set presented in the previous chapter, i.e. of 54 subjects watching 18 high-
resolution movies of natural scenes. Because of the latency of the oculomotor
system, we extracted image features not at the end of the saccade (i.e. at fixation
onset), but 70 ms earlier. We derived this number by choosing the time offset
that yielded maximum cross-correlation of our dynamic saliency measures with
the so-called empirical saliency, i.e. a saliency map obtained from real gaze data.
Obviously, these 70 ms are much shorter than the well-established latency of
about 150–250 ms reported from laboratory experiments with synthetic stimuli,
such as the sudden onset of saccade targets. Apparently, natural stimuli are
highly predictive, and the human visual system can thus partially compensate
for its physiological and mechanical latency.
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Generating a set of negative examples, i.e. non-attended movie locations,
is a non-trivial challenge. A commonly used, straightforward approach is to
randomly sample locations in (x, y, t); a slightly better way is to pick locations
only if they were in fact not attended, i.e. if their spatio-temporal distance to
the nearest fixation exceeds a threshold. This, however, poses the problem that
a spatial separation of several fovea diameters might arguably be considered
to be enough to make two fixations dissimilar; the role of temporal distance, on
the other hand, is not that clear.

Both these approaches have the disadvantage that they ignore two spatial
biases of stimulus design and subjects. First, the central bias (see Chapter 3)
makes subjects look preferentially at the stimulus centre. The central bias can
be used by itself to predict eye movements, but here we want to delineate
the predictability based on image features alone from other factors. Second,
the so-called photographer’s bias leads to highly structured and semantically
interesting objects often being placed in the centre of the stimulus, which might
lead to a structural difference of central and peripheral image patches.

Therefore, we chose to generate negative examples in a way that kept the
spatial distribution of fixations intact. Scanpaths of subjects and movies were
shuffled, so that the set of fixations on movie A served as positive training
examples on movie A; the same number of fixations was drawn randomly from
all other movies to create the set of negative examples.

As stated above, the feature vector contained the average image feature
energy in a neighbourhood around the saccadic landing point (x, y) on each
scale of a multiresolution pyramid; for an anisotropic pyramid with S spatial
and T temporal levels, the feature vector formally was thus

~x = (e0,0, e0,1, . . . , eS,T),

es,t =

√√√√
1

WsHs

Ws/2∑
i=−Ws/2

Hs/2∑
j=−Ws/2

I2s,t(xs − i, ys − j).
�� ��4.1

with a neighbourhood width and height on spatial scale s of Ws and Hs, re-
spectively, and a gaze position of (xs, ys) = (x/2s, y/2s) because of the reduced
resolution on spatial scale s (see Chapter 2).

For the results reported below, we used a neighbourhood size of 128 by 128
pixels on the highest scale and accordingly smaller sizes on lower scales, so
that the effective window size was about 4.8 deg on all scales. Larger window
sizes tend to average over too much of the stimulus area to still allow for fine
distinctions; smaller window sizes suffer from the spatial uncertainty both in
saccade programming (saccades tend to undershoot, see Chapter 2) and the eye
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tracker measurement. In time, only the information from the current frame was
used; on the lower scales, this implicitly averaged over a longer time course
(up to half a second for five scales).

Spatial uncertainty also affects the choice of filter kernels to compute the
structure tensor, on which the geometrical invariants are based. We here used
spatio-temporal binomial kernels of length five, (1, 4, 6, 4, 1)/16 both for the
lowpass filter ω and for smoothing before computing the partial derivatives;
for derivation, a standard highpass (−1, 0, 1) was used.

Ideally, we would have computed the geometrical invariants “on the fly”,
because this would have left intact the dynamic range of the floating-point
computations. However, in order to achieve statistical confidence that our
results are not due to chance alone, we had to analyse the features multiple
times; despite our efficient implementation, this was not feasible computation-
ally. Therefore, we stored the geometrical invariants to disk as video streams,
which could then be easily read repeatedly. The dynamic range of videos is
limited to [0, 255] and the geometrical invariants thus had to be normalized to
that range. To this end, H, S, and K were first raised to the power of six, three,
and two, respectively, because they comprise of products of one, two, and three
eigenvalues, respectively. The dynamic range then had to be reduced again by
taking the eighth root and was finally mapped linearly to [0, 255].

Once features were extracted at attended and non-attended locations, data
was partitioned into a training set of two thirds of the available data and a test
set of one third. A soft-margin support vector machine with Gaussian kernel
(Schölkopf and Smola, 2002) was trained using the training set; the optimal
parameters for the width of the Gaussian γ and the penalty constant C were
found by five-fold cross-validation. To obtain statistical confidence, prediction
performance was evaluated on 10 realizations of the data into training and test
set.

Results for the geometrical invariants both on the luminance channel alone
and a multispectral representation are shown in Figure 4.10. Predictability
reaches an ROC score of up to 0.74, which is favourable in comparison to the
numbers reported in the literature so far that have been in the range between
0.58 and 0.71 (note, though, that numbers cannot be directly compared across
different data sets; many studies have also reported other measures than ROC
scores). The qualitatively most relevant result, however, is that prediction per-
formance increases with the intrinsic dimension (K > S > H, p << 0.0003,
paired non-parametric Wilcoxon’s signed rank test); movie regions that change
in more spatio-temporal directions (and are thus more informative) are also
more predictive for eye movements. This relates directly to the fact that i0D
and i1D are redundant; a reasonable supposition then is that the human visual
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Figure 4.10: ROC scores for prediction of eye movements on natural movies using the geometrical
invariants of the structure tensor on the luminance channel (Y) and of the multispectral structure
tensor (YUV). Invariants were computed on an anisotropic pyramid with five spatial and five
temporal levels, and feature energy was averaged in a window of about five degrees. Regions
with higher intrinsic dimension are significantly more predictive for eye movements, K > S > H
(p < 0.0003, paired Wilcoxon’s signed rank test) for both conditions. However, there is no
significant difference between the single-channel and the colour condition except for the invariant
S, which is weakly significantly better on colour (p < 0.043).

system has learned to preferentially fixate those regions that are most informa-
tive.

No strong difference could be found between the invariants on luminance
and those on a multispectral representation (S is better on colour with weak
significance, p < 0.043). We also found no significant difference between the
invariants computed on the structure tensor and those computed on the energy
tensor (data not shown). A possible explanation is that the main advantage
of the energy tensor over the structure tensor is that is does not require strong
regularization (with the lowpass kernel ω, see Equation 2.6). In principle, the
energy tensor thus yields a sparser representation; this advantage, however, is
lost during our computation of average energy.

Prediction of eye movements on overlaid movies

An interesting question now is whether the prediction of eye movements on
natural movies also generalizes to the case of multiple overlaid movies. With the
generalized structure tensor (see Section 2.12), we already have a tool available
to describe multidimensional signal variation, and we shall present results for
gaze prediction on transparently overlaid movies using this generalized tensor
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in the following. An example stimulus and a description how stimuli were
created can be found in Section 2.6. Obviously, such visual input with global
transparency is not fully realistic anymore; locally, however, multiple motions
are common in natural scenes due to occlusions, reflections, etc.

The generalized structure tensor J2 is more powerful than the previously
used J1. For example, based on the rank of J2, a distinction becomes possible
between the superposition of a moving 1D and a moving 2D pattern (rank J2 =

4), two moving 2D patterns (rank J2 = 5), and higher-order motion types;
the rank of J1, however, is three in all these cases. Therefore, we tested the
hypothesis that a prediction based on J2 might outperform prediction based on
J1. If this is indeed the case, this will be even more remarkable since the tensor
products in J2 consist of second-order derivatives, which are more sensitive to
noise than the first-order derivatives in J1.

We first created a set of 19 movies based on two randomly chosen movies
from our set of natural movies (see above). They were blended following the
algorithm in Section 2.6 on an anisotropic spatio-temporal Laplacian pyramid
with five spatial and five temporal levels; the contribution of the two movies
to each frequency band was equalized to obtain similar visibility. Because of
temporal border effects of the pyramid, resulting movies were slightly shorter
than their individual parts (17 s instead of 20 s).

Ten subjects watched the 19 transparent movies while their eye movements
were recorded by an SMI Hi-Speed eye tracker running at 1250 Hz. Initially, the
eye-tracking equipment was calibrated using a five-point procedure, and a drift
correction was applied before each movie screening. Stimuli were displayed
on an Iiyama MA204DT screen at a distance of 55 cm from subjects, so that they
covered a visual field of 40 by 22.5 deg. The subjects’ task was simply to “watch
the movies attentively”.

Overall, about 17000 saccades were extracted. Negative training examples
were obtained by shuffling movies and scanpaths, but with a slightly different
algorithm than on single natural movies. The set of fixations on movie A served
as positive examples for movie A and as negative examples for movie B, and
vice versa; the pairs of movies A, B were drawn randomly for each realiza-
tion. Because of this difference, numbers cannot be compared directly between
single and overlaid movies; here, however, we only compared prediction per-
formance of features computed on J1 and J2. Both tensors were computed on
an anisotropic Gaussian pyramid with 25 levels (five spatial, five temporal) as
above. In principle, it is also possible to estimate the rank of J2 based on its
minors; the necessary terms become rather complex, however, and so we chose
to use a publicly available eigenvalue solver (Galassi et al., 2009).
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Figure 4.11: ROC scores for prediction of eye movements on overlaid movies. A support vector
machine was trained with 25-dimensional feature vectors; these contained the average feature
energy in a neighbourhood around fixation (about five degrees diameter) on each spatio-temporal
scale of an anisotropic multiresolution pyramid (five spatial, five temporal levels). Features
were computed at those movies regions where the structure tensor J1 (left) or the generalized
structure tensor J2 (right) had at least a certain rank. As in Figure 4.10, predictability is better
with a higher rank. J2 is also significantly better than J1 (p ≈ 10−4, paired Wilcoxon’s test, 25
cross-validations).

Results for 25 realizations of the data into training and test set are shown
in Figure 4.11, and we can draw three interesting conclusions. First, we can
confirm the result obtained on single natural movies that eye movements are
highly predictable based on a simple model of how the spatio-temporal signal
changes locally. Second, regions that change in more directions (where the
rank of J2 is higher) are more predictive than more uniform regions. Finally,
the higher-order representation of J2 that allows for a finer distinction between
motion types yields significantly better results than J1 (p < 1.1 · 10−4, paired
Wilcoxon’s test).

4.5 Discussion

The present analyses were motivated by our research on gaze prediction and
gaze guidance. As we saw at the beginning of this chapter, low-level features
such as contrast and motion can be successfully used to predict where observers
will direct their gaze in natural movies. In order to potentially improve such
prediction algorithms, we investigated the correlation of a variety of low-level
features across consecutive fixations. In line with earlier findings by Dragoi
and Sur (2006), we found that such correlations are not random and feature
differences along the scanpath exhibit systematic characteristics. However, our
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data does not support the hypothesis by Dragoi and Sur that neural adaptation
plays a crucial role in forming these characteristics; in other words, that low-
level features at the centre of gaze contribute to saccade target selection.

On the contrary, we found that the correlations of features along the scanpath
can be explained by two factors. First, natural scenes themselves show strong
spatio-temporal correlations, and any distribution of saccadic amplitudes and
angles will reproduce these correlations to a varying degree. Second, there
exists a general bias in saccade target selection, e.g. the preference of human
observers to look at image regions with spatio-temporal structure, which in
natural scenes often corresponds to object locations.

For geometrical invariants, which describe the number of spatio-temporal
dimensions that change locally, and motion, this preference resulted in a wider
distribution of raw feature values at fixated patches; therefore, differences of
those features at successive fixations also differed from those in control condi-
tions. For colour and local orientation, we were able to find an effect only for
some of the control scanpath models; when we matched saccade statistics and
therefore matched the scene-inherent spatio-temporal correlations, the effect
vanished.

Nevertheless, we should stress that our findings do not rule out that low-
level features at fixation contribute to saccade target selection at all; it is possible
that the human visual system might have learned to make use of a specific
distribution of saccadic amplitudes and angles, which induces correlations
in the sequence of fixated low-level features that may be beneficial in terms
of neural adaptation. However, such a putative mechanism would require
no direct knowledge of the relationship of features at fixation and potential
saccade targets.

If we had found strong evidence that the visual system does indeed evaluate
and compare low-level features at fixation and in the periphery, this would have
been a strong argument in the ongoing debate whether top-down or bottom-up
factors are more important in the control of eye movements on natural scenes.
We here found no indicator that low-level features are explicitly represented
and used in oculomotor control. Nonetheless, the opposite conclusion that
low-level features are irrelevant is also not supported by our data, since here
we investigated exclusively the role of features along the scanpath, not at single
fixations.

In order to be able to distinguish between the different sources of feature
correlations, we developed and compared several methods to generate artificial
scanpaths. The “scrambled” and the “lengths” condition focus on the charac-
teristics of saccade target selection and of oculomotor tendencies, respectively;
the “synthetic” condition accurately models both these processes and should
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thus be preferred, but requires a larger data set to sample from. The highly
different results we obtained for these different control conditions emphasize
the importance of precisely modelling saccade statistics when comparing hu-
man subjects with random processes. In general, this helps to disentangle the
properties of the visual input and those of the human visual system.

In the second part of this chapter, we used a novel machine learning algo-
rithm to classify movie patches as attended or non-attended and obtained very
favourable prediction results. Image patches and movie sub-volumes have
many pixels and therefore machine learning methods on such patches suffer
from the curse of dimensionality. We explicitly forfeited information and re-
duced dimensionality by computing only the average of feature energy in a
neighbourhood around fixation. This step then enabled us to compute features
on multiple scales of a multiresolution pyramid, thereby modestly increasing
dimensionality again.

A critical choice in this approach is that of the correct image feature. We first
computed the intrinsic dimension of the movie patches based on the geomet-
ric invariants of the structure tensor. Results showed that those patches with
higher intrinsic dimension were significantly more predictive for eye move-
ments. This is an interesting finding for two reasons. First, regions with higher
intrinsic dimension change in more spatio-temporal directions, and therefore
are more informative in an information-theoretic sense; the human visual sys-
tem apparently prefers these informative patches. Second, only patches with
an intrinsic dimension of at least two are needed to fully determine a movie,
and the fact that patches with lower dimension, that is redundant patches, are
less often fixated indicates an efficient coding strategy of the brain. Estimating
the intrinsic dimension on different tensor representations, such as the mul-
tispectral structure tensor and the energy tensor, did not significantly change
prediction results.

Finally, we extended our approach also to the case of multiple overlaid
movies. Typical natural input obviously does not comprise of two very dif-
ferent superimposed movies, but locally, multiple motions abound because
of occlusions. Not only could we replicate findings that movie patches with
a higher intrinsic dimension are more predictive of eye movements, but we
could also show that the generalized structure tensor is able to capture the
effects of multiple signals better than the classical structure tensor. The geo-
metric interpretation of multidimensional signal variation thus is a useful tool
in understanding human vision.
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4.6 Chapter conclusion

In this chapter, we have investigated how eye movements on dynamic natural
scenes can be predicted based on a low-level stimulus description. With a
novel application of machine learning techniques, we were able to show that
the human oculomotor system preferentially fixates more informative image
regions. In computer vision, such a strategy is known as an interest point
detector, and there are technical applications such as image understanding or
robotics. Here, however, we were interested in gaze-guidance systems and the
understanding of human vision required to build them. As a benefit across
interdisciplinary borders, we could show that a neural adaptation mechanism
that supposedly was found in monkeys does not have a human homologue.
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Now that we have covered some theoretical groundwork on how the human
visual system controls eye movements on dynamic natural scenes, we are ready
to move forward to the design and implementation of systems that can react to
and ultimately guide eye movements.

Even with the continuous growth in hardware speed, high-resolution video
processing still is computationally challenging, especially if low latencies in the
single-digit range of milliseconds are required. In Chapter 5, we shall there-
fore discuss the software infrastructure that was created together with Martin
Böhme to enable easy and efficient video handling and the synchronization of
data streams (such as gaze data and video). A particular emphasis was put on
the implementation of spatio-temporal multiresolution data structures.

The multiresolution pyramids will then be analysed in detail in Chapter 6.
We shall start with the description of a gaze-contingent display that is based
on a spatial Laplacian pyramid and capable of locally weighting individual
frequency subbands. We shall then successively increase the complexity of
the underlying pyramid and finally arrive at a system that is based on an
anisotropic spatio-temporal Laplacian, where each spatio-temporal subband
can be weighted locally. Because of the vastly increased computational cost
of this pyramid (compared to the spatial Laplacian, complexity increases by a
factor of about 40), this system was implemented on dedicated graphics hard-
ware to meet real-time constraints. Due to further algorithmic improvements,
the time required for gaze-contingent pyramid synthesis, which is critical for
overall system latency (see Equation 5.1), was reduced to as little as 2 ms.
Throughout Chapter 6, we shall also discuss results from experiments that
evaluate the gaze-guiding effect of the respective gaze-contingent displays.

The work presented in Chapter 6 has been published in numerous places
(Dorr, Böhme, Martinetz, and Barth, 2005a; Barth, Dorr, Böhme, Gegenfurtner,
and Martinetz, 2006; Böhme, Dorr, Martinetz, and Barth, 2006b; Dorr, Vig,
Gegenfurtner, Martinetz, and Barth, 2008; Jarodzka, Scheiter, Gerjets, van Gog,
and Dorr, 2009; Dorr, Jarodzka, and Barth, 2010b; currently under submission
is Jarodzka, van Gog, Dorr, Scheiter, and Gerjets, 2010b). The most complex
gaze-contingent display that is based on a spatio-temporal Laplacian pyramid
has not been described in a publication yet; a manuscript is in preparation.
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“Make it work, make it right, make it fast.”

Kent Beck

5
Software

Gaze guidance might lead to a deeper understanding of human vision and im-
proved human-machine communication. Before we can aspire to reach these
goals, however, we need to develop the software infrastructure that is neces-
sary for low-latency processing of high-resolution video, and a major contri-
bution of the work presented in this thesis is such development. For real-time
gaze-contingent displays, this need is obvious; but even for the kind of offline
analyses of gaze data on videos that we have presented in Part II, efficient al-
gorithms are paramount. In Chapter 3, for example, smooth three-dimensional
probability density functions that consume more than 2 GB of memory have to
be computed for each realization of a leave-one-out validation scheme on more
than 800 samples, and a full run of all analyses on all conditions and param-
eter sets takes almost 48 hours on a grid system with more than 50 nodes. In
Chapter 4, image features are computed on all scales of a spatio-temporal mul-
tiresolution pyramid. The extension of multiscale methods into the temporal
domain brings two problems. First, the complexity of neighbourhood-based
algorithms grows from at least O(n2) to at least O(n3) due to the addition of
an extra dimension. Second, temporal filtering of data with non-causal filters
requires buffering of a suitable number of video frames and introduces a la-
tency; to ensure temporal coherence of data buffers is not a trivial task. For
example, to compute the structure tensor (see Chapter 2) on several tempo-
ral scales, a temporal shift between the original video and its multiresolution
representation is first incurred during computation of the underlying Gaussian
temporal pyramid (see also Chapter 6); then, computation of the first-order
derivatives introduces a further latency (note that because of the different filter
bandwidths relative to the original video, these latencies differ from scale to
scale), and finally, another spatio-temporal filtering step, smoothing with ω,
adds another source of latency that varies with scale. Therefore, a major goal

107



CHAPTER 5. SOFTWARE

for the development of the Data Source Framework was to hide such intri-
cacies of temporal synchronization from the user; a further, related problem
that is addressed by the Data Source Framework is the simple access to data
streams that concurrently produce data at different temporal resolution, such
as (multiple) sources of gaze and video data.

“Ease of use” certainly is a design goal of many software frameworks, but the
proof of the pudding is in the eating. Despite the difficulty of demonstrating
this feature, we shall first give a quick tour of the Data Source Framework,
and then conclude this chapter with some further considerations of hard- and
software implementations.

It is important to note that the work presented here is the fruit of a very
collaborative effort. Martin Böhme initiated the development of the software
framework in 2003 and for the early years was the lead maintainer in the sense
that every line the author of this thesis committed to the central repository
was reviewed in painstaking detail, which certainly had a profound impact on
overall code quality. Over the years, numerous students also have contributed
code; of particular note, Sönke Ludwig laid the foundations for processing
videos on Graphics Processing Units during work on his Bachelor’s thesis.

5.1 Real-time video processing framework

We shall start this exposition of the Data Source Framework with the funda-
mental concept that gave rise to its name, namely that of DataSources and
their corresponding DataReaders. A DataSource<T> is a templatized object
that runs in a separate thread and continuously produces items of type T. The
data types most often used in practice are GazeCoord, that is (x, y) pairs that
represent gaze position with an associated confidence value (which is low,
for example, when the eye tracker lost the eye due to a blink, or a binocular
tracker could reliably track only one eye), and ImageYUV420, which represents
a video frame in the most common colour space format with one brightness
channel and two colour opponency channels at reduced resolution. Both these
types can be decoded from files on hard disk or produced online (e.g. from a
network stream of gaze data or a camera recording video frames), and many
other data types, such as information on image features, can also be produced
by a DataSource. An Adapter is derived from a DataSource and operates on
its items; for example, this makes it possible to decompose an image into its
frequency bands on a Laplacian pyramid. Because DataSources run in sepa-
rate threads, this is a straightforward tool to distribute computational load on
multicore systems.
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Access to the items produced by a DataSource<T> is realized by means
of a DataReader<T>. During initialization, a number of history and looka-
head items that need to be available can be specified; a current item is always
available. This makes temporal filtering trivial:

DataSource<GazeCoord> source ;
/ / . . .
DataReader<GazeCoord> reader (&source , h is tory , lookahead ) ;
/ / . . .

/ / Five−t a p box f i l t e r o f h o r i z o n t a l gaz e c o o r d i n a t e
double sum=0 . 0 ;
for ( i=−h i s t o r y ; i<=lookahead ; ++ i )

sum+=reader . PData ( i )−>x / ( h i s t o r y+lookahead +1 ) ;

f p r i n t f ( stdout , ”x coordinate a t %zd : %g\n” ,
reader . GetTimeStamp ( 0 ) . GetMicroseconds ( ) , sum ) ;

From this example, we can also see that each item that can be accessed by
a DataReader has a time stamp associated with it. So far, the benefit of the
DataSource–DataReader concept might not be intuitively clear, so let us look at
the above piece of code using some example numbers. The eye tracker source
might provide one gaze sample every millisecond, starting with the first sample
at t=0 ms. Now, the first time reader.PData(0) is accessed, the gaze sample
for t=2 ms will be returned (because before that, the two required history items
cannot be provided), but only at t=4 ms (because the two lookahead items
reader.PData(1) and reader.PData(2) need to be valid already). Moving
forward the current item is achieved by a call to

reader . Advance ( ) ;

and this will, transparently to the user, block the calling thread until at least
t=5 ms. There are two modes to compute the current time t. In the default
mode that is suited for real-time, online applications, t is simply linked to the
hardware clock (for e.g. slow-motion playback of video, the hardware clock can
also be multiplied with a constant). In the second mode, t is spun forward as
fast as items can be produced; this is useful, for example, for offline analysis of
gaze that can often happen at a much faster rate than the rate of the eye tracker
during data collection. In both modes, however, synchronization of different
DataSources is guaranteed because calls to Advance() block until all necessary
items are produced; at the same time, only the calling thread blocks, so that all
DataSource threads can continue to produce items independently.
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Different sources can not only be synchronized by a balanced number of
calls to Advance(), but also synchronized explicitly; in the following example,
the eye tracker produces items much faster than the frame rate of the video and
is always moved forward to the first gaze sample that has a time stamp right
at or after the beginning of the current video frame:

DataReader<ImageYUV420> videoReader ;
DataReader<GazeCoord> gazeReader ;

/ / . . .

while ( videoReader . Advance ( ) )
{

gazeReader . AdvanceTo ( videoReader . GetTimeStamp ( 0 ) ) ;

/ / P r i n t f i r s t gaze sample p e r f rame
f p r i n t f ( stdout , ”%g %g\n” ,

gazeReader . PData(0)−>x , gazeReader . PData(0)−>y ) ;
}

We have successfully used these mechanisms to synchronize more than 1000
concurrent threads and to operate on 75 video streams (quasi-) simultaneously
on hardware with up to 16 processor cores.

Another important feature of the Data Source Framework is the ability to
encode and write videos to disk. Again, the user can write an arbitrary number
of videos concurrently because each VideoFileWriter runs in a dedicated
thread. Because video en- and decoding are based on the FFMPEG libraries
(FFM, 2009), lossless compression of videos is supported, which is particularly
useful for storage of sparse image features such as the geometrical invariants.
Lossy video codecs, in contrast to this, are typically optimized towards natural
scenes and therefore can introduce artefacts on sparse videos that may distort
results.

As we have noted in the introduction to this chapter, operating on several
scales of temporal multiresolution pyramids raises the problem of synchro-
nized access. To ease the burden on the user, the Data Source Framework
contains classes that encapsulate these problems. For example, the interface for
InvariantsStructureTensorPyramid, which computes the structure tensor J
on a spatio-temporal pyramid, looks as follows:
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void I n i t ( const Parameters &params ) ;

i n t AddImage ( const ImageYUV420 &img , const TimeStamp &t ) ;

i n t Latency ( ) const ;

i n t Equil ibriumLatency ( ) const ;

TimeStamp CurrentTimeStamp ( ) const ;

const Image32F &I n v a r i a n t ( Type inv , i n t s , i n t t ) const ;

During initialization, the user can specify both the spatio-temporal smooth-
ing kernel ω and the noise-reduction smoothing kernel that is applied before
taking the derivatives as well as the desired number of spatial and temporal
levels. Videos are fed to this class image by image with their correspond-
ing time stamps using AddImage(), and the invariants H, S, and K can be
retrieved at spatial scale s and temporal scale t using Invariant(). However,
because of temporal filtering operations with non-causal kernels, there is a de-
lay between the time stamp of the most recently added image and the point
in time for which Invariant() returns image features, which can be obtained
by CurrentTimeStamp(). This delay corresponds to Latency() many video
frames; this means that only Latency() many calls to AddImage() after the
video started, any (non-black) response can be obtained (for a detailed account
of this latency, see the following chapter). However, it takes even more time to
fill the underlying temporal pyramid with valid history items, and thus it takes
EquilibriumLatency()many frames before temporal border effects cannot be
observed anymore.

Implementation details

In the Data Source Framework images can either be held in main memory
and be operated upon by the Central Processing Unit (CPU), or they can be
represented as textures in graphics memory and be operated upon by the
Graphics Processing Unit (GPU). In the former case, ImageOf<T> is an im-
age structure that is based on the Intel OpenCV Computer Vision Library
(Bradski et al., 2008), templatized with the bit depth of each pixel, and a col-
lection of stateless functions in a class called ImageOps that operate on these
images. ImageOps started out as a simple wrapper for basic image process-
ing functions from OpenCV, but over time, many functions were replaced with
more efficient implementations from the Intel Performance Primitives and
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the AMD counterpart FrameWave. Functions that turned out to be critical for
overall performance were implemented in hand-written assembly using the
SSE vector extensions that can be used to perform operations on several pixels
at once. For example, computation time for the geometrical invariants was
reduced by more than 50% by replacing a high-level implementation of the
normalization function that raised pixel values to the 1/8th power and mapped
them to [0, 255] (see Chapter 4). The normalization function itself was sped up
by a factor of 125 by replacing C++ with SSE code, replacing the power func-
tion by three square roots, and the square roots with reciprocal square roots
(which are faster because of their reduced accuracy of 12 bits; this is sufficient
for normalization because the output video has 8 bits accuracy only).

Videos are commonly stored in the Y′CrCb colour space (Poynton, 2003),
where only the luminance channel (Y′) is encoded at full spatial resolution and
two colour opponency channels are encoded at half resolution. Compared to
an RGB representation, frame size is reduced by 50%, and this also reduces
computational cost by 50%. Therefore, the Data Source Framework operates
on Y′CrCb images; the conversion to the RGB colour space is performed in
hardware using XVideo or DirectDraw functions right before display on the
screen only.

As a recent, more powerful alternative to image processing on the CPU, we
have also implemented our algorithms on the GPU. GPUs are geared towards
highly parallel, throughput-oriented processing and have limited flexibility
compared to CPUs (recently, however, the distinction has become blurrier with
the advent of GPGPU, General-Purpose computation on Graphics Processing
Units). They consist of an array of up to hundreds of so-called shader units,
which all execute the same small kernel in parallel on one pixel each with the
position of the pixel in the image as a parameter. Obviously, this is suited
ideally for gaze-contingent displays, where each output pixel is a function of
its position relative to gaze. Several high-level programming languages for
GPUs have recently become available; the Data Source Framework uses Cg (C
for graphics, Mark et al., 2003). A toy example that illustrates a shader kernel
in Cg is as follows:
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s t r u c t foutput { f l o a t 4 c o l o r : COLOR; } ;

f l o a t 2 random ( f l o a t d i s t a n c e ) { / * . . . * / }

foutput main ( f l o a t 2 texCoord : TEXCOORD0,
uniform sampler2D input : TEX0 ,
uniform f l o a t 2 gazePos )

{
foutput OUT;

f l o a t d = d i s t a n c e ( texCoord , gazePos ) ;
f l o a t 2 o f f s e t = random ( d ) ;

OUT. c o l o r = tex2D ( input , texCoord+o f f s e t ) ;

return OUT;
}

The Cg built-in function distance computes the length of its input vector in
just one shader clock cycle. random(d) is a putative function that produces a
random perturbation vector offset whose length increases with d. tex2D is a
texture lookup function and here for the output pixel at position texCoord does
not look up the input texel at the same position, but at a position perturbed
by offset. In effect, this small example program scrambles pixels of an image
locally, with a small scrambling distance at fixation and a larger distance in the
periphery.

To make Cg kernels as the above example usable from C++ code, we imple-
mented a TextureOperator class to which a kernel can be associated. Textures
are images that were uploaded to the graphics memory; to the CPU, they are
only references afterwards. Any texture reference can then be passed to the
TextureOperator to have the kernel executed on each of its pixels. In prin-
ciple, this emulates the state-less functions in ImageOps for CPU-based image
processing; in practice, however, the very different programming model for the
GPU does require some algorithmic changes, especially if the higher theoretical
throughput of the GPU should be fully exploited.

One major difference is that GPU shader units are optimized to process
tuples of red, green, blue, and alpha channels simultaneously. As we have
noted above, however, videos are stored in the memory-saving Y′CbCr format,
which is not natively supported by GPUs. Especially for temporal pyramids
with high memory requirements, this is a drawback of GPUs. If memory is not
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the limiting issue, one can simply convert Y′CbCr images to RGB right before
or after texture upload to graphics memory; if, on the other hand, speed is not
critical, each colour channel can be stored as a separate texture. Even though
this reduces the overall memory bandwidth that is required, the three-fold
increase in shader passes can significantly affect system performance because
of the communication overhead between CPU and GPU (see measurements in
Section 6.7).

However, the fact that GPUs are designed specifically for image processing
and for rendering textures with varying resolution obviously also offers ben-
efits. For example, texture lookups can be interpolated in hardware, so that
an n-tap binomial filter kernel can be realized with only n − 1 texture accesses.
Furthermore, in the next chapter we shall see that gaze-contingent displays
often use so-called resolution maps that specify filter parameters for each pixel.
On the GPU, these maps can be stored at the minimum resolution required (for
example, one coefficient per degree of visual angle), and hardware interpola-
tion ensures that the values from these maps still vary smoothly for each pixel
of the output image. This saves memory bandwidth and the cost of computing
the resolution map at full resolution; on the CPU, a coordinate conversion for
each pixel access would be prohibitively expensive.

5.2 Latency

In this section, we shall briefly estimate the system latency of a gaze-contingent
display, that is the time between an eye movement and the appearance of the
corresponding display change on the screen. Obviously, we would like to
reduce latency as much as possible; from work on saccadic suppression (see
Section 2.15), we know that visual sensitivity is reduced during saccades and
about 20–50 ms after the end of a saccade, so a maximum latency of 20 ms is
desirable. We here assume a setup where eye tracker and display workstation
are two independent computers connected via ethernet.

The end-to-end latency of the whole system can be estimated as

τ = τtracker + τnet + τcollect + τimgproc + τdisplay.

The latency of the SMI iViewX Hi-Speed eye tracker running at 1250 Hz is
specified with 1 ms. The network latency τnet can be assumed to be well below
1ms for a dedicated Gigabit Ethernet link, where average “ping” round-trip
times are around 0.2 ms. On the display workstation, gaze information is
immediately collected by a separate thread (see discussion of DataSources
above), but the display thread might use this information with delay τcollect
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only. Because the display thread is synchronized with the vertical retrace signal
of the display, τcollect < 1/ fdsp, with a display refresh rate fdsp that is 120 Hz in
our setup. Image processing latency τimgproc will be discussed in Chapter 6 and
is on the order of 2–10 ms. The display uses double buffering to avoid tearing
effects. Therefore, for every vertical refresh, fore- and background buffers are
swapped. After a buffer swap, the image is finally drawn to the screen by an
electron beam (on a CRT) that traverses the frontal glass pane of the screen from
the top left to the bottom right corner. The contents of the bottom right corner
are therefore updated only at the very end of a vertical screen refresh cycle,
and τdisplay ∈ [0, 2/ fdsp]. At fdsp=120 Hz, the overall system latency can now
be estimated to τ = 27ms + τimgproc. In practice, concurrent system activities
might make this estimate slightly too optimistic. For example, during image
processing on the GPU, commands may be buffered and thus not executed
immediately. On the other hand, we can impose an upper bound on τcollect

by detecting saccades online. Because it is particularly critical to react after
a saccade has ended (and a new fixation has begun), the display thread can
spin-wait for saccade offset, thus reducing τcollect to about 1 ms, and

τ = 20ms + τimgproc,
�� ��5.1

which just meets our goal of 20 ms overall latency.

From these observations, we can see that a large part of system latency is
determined by the refresh rate of the display hardware, which currently is still
limited to 120 Hz both for TFTs and for CRTs (at high resolution). Because the
production of display panels is very expensive and the number of vision science
laboratories is comparatively small, we here can only hope for faster consumer
electronics devices eventually becoming available. TV sets with up to 200 Hz
panels are on the market already, but they accept input signals only at 50 Hz
and interpolate to generate intermediate frames, which in fact introduces even
further delays. Therefore, our only means of substantially lowering system
latency is a reduction in image processing latency.

5.3 Chapter conclusion

In this chapter, we have presented some key concepts of the software infras-
tructure that was built to enable the development of gaze-contingent displays
that process high-resolution videos in real time. Despite its powerful and flex-
ible abstraction, efficiency was one of the major implementation criteria. In
particular, we exploited parallelism on all levels: instruction level parallelism
is a feature of all modern CPUs. Parallelism on the data level was exploited by
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hand-writing assembler routines for CPU vector extensions and by implement-
ing image processing routines on highly parallel graphics hardware. At the
thread level, the DataSource concept ensured that expensive operations such
as lossless video de- and encoding scale easily with the number of CPU cores
in a system; we have successfully run programs with more than 1000 threads
on 16-core hardware. Not described in detail in this chapter was the use of
parallelism at the cluster level. Up to almost a hundred computer nodes at the
Institute for Neuro- and Bioinformatics were employed during data analysis
and machine learning using the Portable Batch System (PBS, 2009).

In summary, building systems for gaze guidance is a technical challenge
because of the strict real-time constraints. We have invested a major effort into
the development of efficient image processing algorithms to face this challenge.
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“To find out what happens to a system when you interfere with it
you have to interfere with it (not just passively observe it).”

George Edward Pelham Box 6
Space-variant filtering and

gaze-contingent displays

In this chapter, we shall present a series of successively more complex ap-
proaches to efficient space-variant filtering. Gaze-contingent displays perform
space-variant filtering in real time, and we need this for steps ii and iii of our
gaze-guidance strategy that we outlined in Chapter 1: i) predict a set of can-
didate points where a subject will look next, based on the video input and
current gaze position; ii) increase the probability for one candidate point to be
attended next by increasing image-based saliency there; iii) decrease saliency
everywhere else.

The algorithms that we shall present in the following were inspired by the
work of Geisler and Perry (2002), who were the first to implement a gaze-
contingent display to simulate smooth visual fields. They created a Gaussian
multiresolution pyramid for each image of an input video in real time; instead
of individually filtering each pixel of the output image in retinal coordinates,
i.e. relative to gaze position, they computed output pixels by interpolating
between two adjacent pyramid levels to efficiently approximate any desired
filter bandwidth. The resolution map that assigned a filter bandwidth to each
retinal location was precomputed; for example, the input image was strongly
lowpass filtered in a certain retinal region to simulate a scotoma.

We will now extend this concept of assembling an output image from the
levels of a multiresolution pyramid in real time to various pyramid types,
and perform first gaze-guidance experiments with the thus obtained gaze-
contingent displays.

Following a brief overview of gaze-contingent displays in general, we shall
discuss a gaze-contingent display based on a spatial Laplacian pyramid. The
extension from an underlying Gaussian to a Laplacian pyramid significantly
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increases the computational cost of the system, but instead of mere lowpass
filtering allows to individually weight frequency bands. As a further modifica-
tion, the resolution map for this gaze-contingent display was not precomputed,
but updated after each saccade. This modification makes a very low latency
crucial, because the human visual system is highly sensitive to the temporal
transients induced by the sudden on- and offsets of filtering results, i.e. con-
trast changes; these changes remain invisible only if they still take place during
saccadic suppression. Results obtained with this gaze-contingent display were
published in (Dorr, Vig, Gegenfurtner, Martinetz, and Barth, 2008).

Then, we shall review the adaptation of Geisler and Perry’s algorithm to
the temporal domain that was developed and implemented by Martin Böhme
(Böhme, Dorr, Martinetz, and Barth, 2006b) in detail to facilitate a later com-
parison with improved algorithms. In analogy to the simulation of spatial
visual fields, i.e. foveation, this gaze-contingent display was termed “temporal
foveation”. Using this display, we could show that peripheral temporal blur
is hardly noticeable (Dorr, Böhme, Martinetz, and Barth, 2005a), and that eye
movement characteristics change when a movie is displayed with temporal
filtering in the periphery (Barth, Dorr, Böhme, Gegenfurtner, and Martinetz,
2006).

Taking a step back from gaze-contingent real-time applications, we shall
then discuss how (offline) space-variant filtering based on an isotropic spatio-
temporal Laplacian pyramid can be used for the visualization of expert’s eye
movements during training of novices. Those regions that were not attended
by the expert are reduced both in their contrast and their colour saturation, so
that the novices’ gaze is drawn towards the relevant movie regions. In subse-
quent tests, novices who received such gaze guidance during training perform
better than novices without gaze guidance. The perceptual learning experi-
ments were designed and carried out by Halszka Jarodzka, Knowledge Media
Research Center, Tübingen. Initial results have been outlined in (Jarodzka,
Scheiter, Gerjets, van Gog, and Dorr, 2009), the video processing algorithm is
described in detail in (Dorr, Jarodzka, and Barth, 2010b), and a manuscript on
the experimental data is currently under submission (Jarodzka, van Gog, Dorr,
Scheiter, and Gerjets, 2010b).

Finally, we shall present a gaze-contingent display that is based on an
anisotropic spatio-temporal Laplacian pyramid. The spatio-temporal Lapla-
cian pyramid used for gaze visualization above is too computationally ex-
pensive to be used in a gaze-contingent fashion; we therefore developed a
modified approach to efficiently compute spatio-temporal subbands. We also
improved upon the temporal upsampling algorithm first used for temporal
foveation above. Despite these improvements, the computational complexity
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of this display is still too great for conventional computer workstations; we
therefore implemented the system on dedicated graphics hardware (the GPU).
The first such implementation was undertaken by Sönke Ludwig as part of his
undergraduate thesis.

6.1 Gaze-contingent displays

The properties of the human visual system vary significantly across the visual
field. The density of photoreceptors is much higher in the centre of the retina
than in the periphery, and about 50% of visual cortex are devoted to the process-
ing of input from the central 2% of visual field (Wandell, 1995). Consequently,
humans move their eyes about two to three times per second to successively
sample a visual scene with the region of highest acuity, the so-called fovea.
Gaze-contingent displays render their contents as a function of where the user
is looking, using real-time information about eye position gained by an eye
tracker. Some systems simply mask parts of the visual field, e.g. the first gaze-
contingent displays used in reading research (McConkie and Rayner, 1975;
Rayner, 1975, 1998) to investigate the perceptual span, or to simulate scotomata
to study visual search strategies (Cornelissen et al., 2005). Another class of
displays takes advantage of the reduced visual sensitivity during saccades and
modifies some property of the scene whenever the subject moves their eyes;
these displays have been used for research on change blindness (Henderson
and Hollingworth, 1999), transsaccadic integration (Germeys et al., 2004), and
saccadic adaptation (Garaas et al., 2008). Rucci et al. (2007) developed a gaze-
contingent system with very low latency to artificially stabilize an image on
the retina and studied the role of fixational eye movements. Furthermore,
gaze-contingent displays can be used to aid the user in making the right eye
movements to improve visual communication (McNamara et al., 2008; Barth
et al., 2006). In a broader sense, gaze-controlled games can also be understood
as gaze-contingent displays (Dorr, Böhme, Martinetz, and Barth, 2007; Dorr, Po-
marjanschi, and Barth, 2009b; Smith and Graham, 2006; Isokoski and Martin,
2006); in the human-computer interaction field, several gaze-contingent tech-
niques have been developed to use gaze as an input modality or for improved
visibility of user interface elements (Dorr, Rasche, and Barth, 2009c, Jacob, 1993;
Istance et al., 2008). For a more detailed review, we refer to e.g. Duchowski
et al. (2004) and Reingold et al. (2003).

The category of gaze-contingent displays that is most relevant to the present
work exploits the space-variant spatio-temporal properties of the visual system.
For computer-generated content, information about gaze can be used to reduce
the level of detail at which the periphery is rendered to achieve higher rendering
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throughput (Parkhurst and Niebur, 2004; Duchowski et al., 2009); in a similar
fashion, video transmission systems can reduce bandwidth requirements for
given, non-rendered images by streaming only the fixated image region at full
resolution (Geisler and Perry, 1998; Perry and Geisler, 2002; Sheikh et al., 2003).
Such space-variant filtering in retinal coordinates has been termed “foveation”
and its psychophysical effects have been studied empirically (Loschky and Mc-
Conkie, 2000; Loschky and Wolverton, 2007; Loschky et al., 2005; Geisler et al.,
2006; Dorr et al., 2005a); without the real-time constraints, similar algorithms
have also been used in order to accurately model the input to the oculomotor
system (Itti, 2006; Rajashekar et al., 2007). For alternative strategies towards
space-variant filtering, we refer to e.g. Hua and Liu (2008), who implemented
foveation in an optical system, or Tan et al. (2003).

6.2 Real-time spatial Laplacian pyramid

In this section, we shall present a modification of the gaze-contingent display by
Geisler and Perry (2002). Our modification uses a spatial Laplacian instead of a
spatial Gaussian pyramid to be able to specify weights for individual frequency
bands instead of the specification of a cutoff frequency for a lowpass filter only.
In principle, the possible use of a Laplacian has been mentioned already in the
original paper; in practice, this modification significantly increases computa-
tional complexity for two reasons. First, computing the Laplacian is obviously
more costly because computation of the Gaussian is one part of Laplacian pyra-
mid analysis; for each downsampling operation, one additional upsampling
operation and one subtraction at the higher resolution are necessary. A second
performance issue arises because of the need to store signed intermediate re-
sults, i.e. the need of a sign bit without losing precision; in practice, this leads
to a doubling of the data type width from 8 bits to 16 bits, so that required
memory bandwidth is also doubled (plus an additional overhead because of
the limited support of signed words in the SIMD instruction set).

The main idea of this algorithm is to analyse and synthesize a Laplacian
pyramid in real time; the individual levels are weighted as a function of gaze
position during the synthesis phase. We thus extend Equation 2.3, which de-
scribes the pyramid synthesis phase, and introduce a space-variant weighting
function α for each level l:

L′l(x, y) = αl(gx, gy, x, y) · Ll(x, y)+ ↑ Ll+1(x, y),

with gaze position (gx, gy).
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Figure 6.1: Distribution of spectral energy across spatial frequency bands for fixated and non-
fixated locations. Clearly, spectral energy is higher in image regions that drew attention. Energy
per stimulus area here was computed in a neighbourhood of two degrees diameter around each
fixation point; the non-fixated class comprised of all fixations that were made on different movies
and thus represents the central bias.

An analysis of the average local spectral energy at fixated and non-fixated
image regions showed that fixated locations have a much higher spectral energy
(see Figure 6.1). The rationale for the experiment that shall be described in the
following was therefore to reduce spectral energy at a subset of likely fixation
locations, and thus change the saliency distribution of the scene in real time.

We used six out of the 18 high-resolution natural videos from our data set
presented in Chapter 3. Because of real-time constraints, we reduced their
resolution from 1280 by 720 pixels to 1024 by 576 pixels. For each frame of the
input movies, we determined up to 20 candidate locations that were likely to be
fixated. In principle, we could have chosen to use our gaze prediction algorithm
for this purpose (see Chapter 4); because we were here interested in testing
our gaze-contingent display under optimal conditions, we used the fixation
data from our 54 subjects described in Chapter 3. We computed a probability
density for each frame by placing a two-dimensional Gaussian with standard
deviation 0.75 deg at each gaze sample and normalizing the superposition of all
these Gaussians to unit sum; then, we iteratively extracted the maximum and
suppressed the location of that maximum by lateral inhibition with an inverted
Gaussian of standard deviation 2.35 deg.

Under the assumption that these eye movements had been driven by im-
age features, we had to account for the oculomotor latency between a gaze-
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Figure 6.2: Example stillshot of gaze-contingent display based on a real-time spatial Laplacian
pyramid. The red marker (gaze position) and the white lines were not shown during the
experiment and serve illustrative purposes only. In one randomly chosen quadrant of the visual
field (indicated by the white lines), contrast remained as in the original video; in the remaining
three quadrants, spatial contrast was reduced at up to 20 candidate locations that were likely
fixation targets (for example, note the street sign or the pedestrians bottom right).

capturing event and a saccade landing at its location. Therefore, the candidate
points were shifted backwards in time by 100 ms. This number was a com-
promise between the about 200 ms that are the typically recorded oculomotor
latency with synthetic stimuli, and the 70 ms that we obtained as the average
time shift between dynamic features and eye movements (see Chapter 4).

We implemented a Data Source Framework adapter for the Laplacian anal-
ysis phase (see previous chapter), so that video decoding and pyramid analysis
were computed in dedicated threads and decoupled from the main display
thread; therefore, image processing latency between an eye movement and a
change in the display was only affected by the gaze-contingent synthesis (if it
was ensured that the display thread was never preempted; we achieved this
by assigning appropriate priorities to all threads). Performance measurements
on a 3 GHz Pentium 4 showed that the space-variant pyramid synthesis of a
pyramid with five levels took about 10 ms on the videos with 1024 by 576 pixels.

Instead of shifting a precomputed resolution map around with gaze posi-
tion as in Geisler and Perry (2002), we updated the resolution map after each
saccade. Once a saccade offset was detected (see Section 3.3), one quadrant of
the subject’s visual field was chosen randomly (see Figure 6.2). In the remaining
three quadrants, all candidate points outside a radius of five degrees around
centre of gaze were modified in their saliency as follows.
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The spectral energy Ei,k in a neighbourhood around each candidate point i
was computed for each Laplacian scale k,

Ei,k =

√√
c∑

m=−c

c∑
n=−c

L2
k (xi,k −m, yi,k − n)

and if this energy was higher than the average energy of non-fixated locations
Enonfix

k , spectral energy was reduced by a multiplication of that neighbourhood
with a factor that was smaller than one,

α′k(xi,k, yi,k) =

1 Ei,k ≤ θEnonfix
k

θ · Enonfix
k /Ei,k otherwise

We here used a neighbourhood size of 2c + 1 = 9 pixels that was held
constant over spatial scales; thus, this corresponded to about 3.4deg on the
fourth scale, and due to the multiresolution pyramid, the transition between
unmodified and modified areas was a smooth gradient instead of a sharp edge.
The threshold θ that determined how far energy should be decreased was set
to 1.2 after the informal observation that a lower threshold led to a peripheral
visibility of the modified locations. On average, this meant a reduction factor
of 1.6 for the spectral energy of candidate locations. In order to avoid a highly
noticeable change in local brightness, the lowest level of the Laplacian, which
represents the DC component, was not modified.

Twelve subjects took part in the experiment; the physical setup was the
same as in Chapter 3. The hypothesis that drove this experiment was that the
reduced spectral energy at some candidate points would render these candidate
points less likely to become fixated. If this had been the case, we would have
registered less saccades that went into the modified quadrants, and thus more
than 25% of eye movements into the unmodified quadrant. Unfortunately,
subjects reported having seen occasional flicker in the periphery; this indicates
that the graphics update after a saccade was at least sometimes too slow and a
temporal transient became visible to the subjects at exactly those locations that
we wanted to reduce in their conspicuity. We believe it is due to this unintended
increase rather than decrease in saliency that the distribution of fixations over
the quadrants did not change overall, i.e. only 25% of eye movements landed
in the unmodified quadrant.

Even though no gaze-guiding effect could be found, one interesting effect
of the gaze-contingent stimulation is shown in Figure 6.3. The number of
saccades per second is significantly reduced on the gaze-contingent display.
Two possible explanations can be given for this phenomenon. One possibility
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Figure 6.3: Saccade rates per second for movies that were shown with gaze-contingent spatial
contrast modification and for original movies. Saccade rate is significantly reduced by the
contrast modification (p < 0.032, paired Wilcoxon’s test).

is that temporal transients early during fixation increased fixation duration, an
effect that is known from reading research (Yang, 2009); in those experiments,
however, temporal transients were introduced much later during fixation. The
other possibility is that the reduced amount of contrast in the overall scene led
to a lower saccade rate.

In conclusion, we can state that the gaze-contingent display that modified
spatial spectral energy suffered from the restriction to the spatial domain and,
despite our efforts to implement a low-latency system, a failure to make saliency
changes happen invisibly, i.e. directly after fixation onset. In the following, we
shall therefore present algorithms that also modify the temporal domain and
faster implementations.

6.3 Temporal filtering on a Gaussian pyramid

In this section, we shall extend the original pyramid-based gaze-contingent
display by Geisler and Perry (2002) to the temporal domain. Two major chal-
lenges have to be met for this extension. First, computational costs increase by
about one order of magnitude, and second, a suitable buffering scheme has to
be developed because videos, in contrast to static images, usually cannot be
held in memory completely.

We shall first look at the creation of a canonical temporal Gaussian pyramid
where resolution is successively reduced on the lower levels. Ultimately, we
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want to blend different levels of such multiresolution pyramid to create an out-
put image with space-variant temporal resolution. However, because we want
to perform such blending in every time step, even the lower pyramid levels
need to be updated in every time step and cannot be kept at reduced resolution
anymore. We shall therefore describe a scheme to iteratively interpolate the
lower pyramid levels to full resolution; because interpolation cannot add in-
formation, these upsampled levels still have lower cutoff frequencies than the
original video.

Notation

The input video is given as an image sequence I(t). Images have a size of W by
H pixels and represent a single colour channel; for videos with several colour
channels, each channel can be filtered separately. Operations on entire images,
such as addition, are to be applied pixelwise to all pixels in the image. The
individual levels of the multiresolution pyramid are referred to as G0 to GN (for
a pyramid with N + 1 levels). Gk(n) refers to the n-th image at level k. Because
of the temporal downsampling, lower levels have fewer frames, so that Gk+1(n)
corresponds to the same point in time as Gk(2n). For time steps t that are not
a multiple of 2N, not all pyramid levels have a corresponding image Gk(t/2k);
we use Ct to denote the highest index of levels with valid images at time t (in
the implementation, these are the levels that have changed at time t and need
to be updated), i.e. Ct is the largest integer with Ct ≤ N and t mod 2Ct = 0.

To interpolate lower levels Gk, k > 0, back to full temporal resolution, we
introduce upsampled levels Ul

k with intermediate resolutions, so that Uk
k has

the same frame rate as Gk and U0
k has the same frame rate as G0. However, all

Ul
k have the same spectral content as Gk.

Downsampling

Gk+1(n) is obtained by low-pass filtering images in Gk and discarding every
second frame. In practice, only every second frame has to be computed:

Gk+1(n) =
c∑

i=−c

wi · Gk(2n − i)
/ c∑

i=−c

wi .

The w−c, . . . ,wc are the kernel coefficients. We use a binomial filter with c =

2, w = (1, 4, 6, 4, 1). As we shall see later, the use of a symmetric, i.e. non-
causal filter kernel requires the use of video frames with future time stamps,
or lookahead frames. This makes this algorithm usable only for pre-recorded
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Figure 6.4: Temporal Gaussian pyramid with three levels and c = 2. Lower levels have a
reduced frame rate. Note that history and lookahead video frames are required because of the
temporal filter with symmetric kernel, e.g. computation of G2(1) depends on G1(4), which in
turn depends on G0(6).

video sequences, but the use of non-symmetric filter kernels, which do not
require future items, would lead to phase shifts and thus visible artefacts.

A schematic illustration of the downsampling phase is shown in Figure 6.4.

Upsampling

Interpolation to full temporal resolution is achieved by iteratively upsampling
by a factor of two until full resolution is reached and storing the intermediate
results in Ui

k. For level Gk, we start with

Uk
k(n) = Gk(n)

and then upsample by inserting zeros and a subsequent lowpass filtering:

Ul
k(n) =

∑
i∈P(n)

wi ·Ul+1
k

(n − i
2

) / ∑
i∈P(n)

wi ,
�� ��6.1

with an index function P(n) = { j = −c, . . . , c | (n − j)mod 2 = 0} that lists the
valid images that are available on the lower level. A schematic overview is
shown in Figure 6.5.

Number of lookahead frames From Figures 6.4 and 6.5, it is clear that the
temporal filtering uses video frames both from past and future time steps. To
estimate the number of video frames that need to be held in memory, we first
analyse the upsampling phase; the required number of history and lookahead
items during the downsampling phase follows from that. We first note that
to produce U0

k (t), we need to already have produced frames U1
k

(
t
2 − c

2

)
to

U1
k

(
t
2 + c

2

)
, i.e. we have c

2 history and c
2 lookahead items. For simplicity, we

can achieve the same result by using zero history and c lookahead, and then

126



6.3. TEMPORAL FILTERING ON A GAUSSIAN PYRAMID
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Figure 6.5: Schematic view of interpolating the third level G2 of a temporal Gaussian pyramid
back to full temporal resolution. In each interpolation step, resolution is doubled by inserting
zeros and a subsequent lowpass filtering. Note that similar to the downsampling step, upsampling
requires history and lookahead items to be available; for example, computation of U0

2(4) requires
U1

2(3) to be known. This, in turn, requires U2
2(2), which corresponds to the same point in time

as U0
2(8).

repeat the same argument as above: e.g. to compute U1
k

(
t
2 + c

)
, we need to

know U2
k

(
t
4 + c

2 − c
2

)
,. . . , U2

k

(
t
4 + c

2 + c
2

)
. We can therefore conclude that zero

history and c lookahead items are sufficient for all levels.
With these constraints imposed by the upsampling phase, we can now

address the history and lookahead requirements of the downsampling phase.
On the lowest level, we need to have available frames UN

N

(
t
2N

)
= GN

(
t
2N

)
to

UN
N

(
t
2N + c

)
= GN

(
t
2N + c

)
. We note that in time step t, we only need to update

GN

(
t
2N + c

)
, so that we need frames GN−1

(
t

2N−1 + 2c − c
)

to GN−1
(

t
2N−1 + 2c + c

)
,

i.e. a history of zero and a lookahead of 3c items. We can repeat this argument
and obtain a lookahead λk for level k of

λk = (2N−k+1 − 1) · c,

and the lookaheadλ0 on the highest level, i.e. the overall latency of the pyramid,
is thus (2N+1 − 1) · c.

Space-variant temporal filtering

Now that we have interpolated all pyramid levels to full temporal resolution,
we can blend them in a gaze-contingent fashion. We first define a resolution
map α(x, y) that specifies the desired cutoff frequency for each pixel in retinal
coordinates. Because gaze position usually does not coincide with the centre of
the screen, but can also be in any corner of the display, the size of the resolution
map must be almost twice that of the video, with −(W − 1) ≤ x ≤ (W − 1)

and −(H − 1) ≤ y ≤ (H − 1). The values that are stored in α range from 0
to 1 and represent the cutoff frequency for each pixel relative to the highest
resolution, so that a pixel (x, y) with α(x, y) = 1 should be taken directly from
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Figure 6.6: (a) Transfer functions of pyramid levels Gl. Lower pyramid levels have successively
lower cutoff frequencies. (b) Example resolution map. Full temporal resolution is retained at the
centre of fixation (0 deg eccentricity) and falls off steeply towards the periphery.

the highest level, α = 0.5 corresponds to the second level, etc. Values that
are not a power of two are interpolated between the two levels that bracket
this resolution; even though the lowest level N typically is not the true DC
component, but still contains a considerable portion of the frequency spectrum,
resolution values smaller than 2−N correspond to that lowest level, because no
further downsampled level is available.

For the interpolation of adjacent pyramid levels, the transfer function Tl of
each pyramid level Gl can be approximated by

Tl(r) = e−r2/(2σ2l ),

with r as relative resolution and σ2l = 1/(22l+1ln2). The first few Tl are plotted
in Figure 6.6(a); for further details, we refer to Perry and Geisler (2002).

Based on these transfer functions, we obtain the blending function Bl that
specifies the weight for level U0

l at each pixel; note that the contribution of U0
l

is non-zero for at most two (adjacent) frequency bands:

Bl(x, y) =


1
2−Tl+1(α(x,y))

Tl(α(x,y))−Tl+1(α(x,y)) 2−(l+1) < α(x, y) < 2−l

1 − Bl−1 2−l ≤ α(x, y) ≤ 2−(l−1)

0 otherwise

with an additional constraint that BN = 1 if α < 2−N. The output image O(t)
can now be computed simply by adding up the interpolated levels weighted
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Algorithm 1 Pseudocode for gaze-contingent temporal filtering and rendering.

Input: t Time step

Downsampling step: update pyramid levels G0, . . . ,GCt

Upsampling step: update Ul(k)
k , with k ≤ Ct, l(k) = {0, . . . , k}

Get current gaze position (gx(t), gy(t))
Compute output image O(t)
Display image O(t)

with the blending function,

O(t)(x, y) =
N∑

l=0

Bl(x − gx(t), y − gy(t)) ·U0
l (t)(x, y).

To summarize, the complete algorithm for gaze-contingent temporal filter-
ing is listed in Algorithm 1. From this algorithm, it can be seen that the current
gaze position needs to be obtained only right before blending the pyramid
levels to create the output image. The critical system latency from a change in
gaze position to a display update is therefore determined only by the weighted
addition of a small number of video frames; the downsampling and in partic-
ular the upsampling phase, which require significantly more computation, can
be performed independently in the background. It can also be seen that the
number of levels G and U that need to be updated in each time step t varies with
t; with a suitable buffering scheme, the computational load can be distributed
over more time steps.

An example resolution map, where α(r) is a sigmoidal function of radius r
relative to the maximum eccentricity is

α(r) =
1

2
− 1

2
tanh (2πr − π) ,

which is also plotted in Figure 6.6(b). In a loose analogy to the well-established
falloff in spatial acuity across the retina, this example resolution map retains
full temporal resolution in the centre, i.e. at the fovea, and introduces temporal
blur steeply with eccentricity. An example stillshot of a video together with its
temporally filtered counterpart is rendered in Figure 6.7.

Downsampling memory requirements On each level k, we need to store λk

lookahead items and the current image, so that the overall number framesdown

of full-size video frames to be stored for the creation of a temporal Gaussian
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(a) (b)

Figure 6.7: Example stillshot from “temporal foveation” experiment. (a) Original video frame.
(b) Video frame after gaze-contingent temporal filtering; gaze position is indicated by the white
marker at the left image border below the sail. The static background (low temporal frequencies)
is unmodified, but moving objects are progressively filtered out with increasing distance from
gaze (note that two walkers in the original frame have disappeared). The resolution falloff is
described by the curve in Figure 6.6(b).

pyramid with c lookahead items on the lowest level is

framesdown =

N∑
k=0

(λk + 1) =

N∑
k=0

(2N−k+1 − 1) · c + 1

= c ·
N+1∑
k=1

[
2k

]
− (N + 1) · c + N + 1

= c · (2N+2 −N − 3) + N + 1.

�� ��6.2

Downsampling computational costs A downsampling operation is required
for every frame Gk(n), k > 0; on average, this means that

∑N
k=1 2

−k downsam-
pling operations are required in each time step. For large N, this approaches 1.
However, the number of downsampling operations varies for each frame; be-
cause level l has to be updated in every 2l-th time step only, every second input
frame sees no downsampling performed, whereas in some frames, all N lower
pyramid levels have to be updated. Nevertheless, this varying computational
load (and therefore, varying latency for the finally rendered output image)
can be overcome by appropriately buffering the output of the downsampling
pyramid in a variable-length buffer.

Because our experimental results indicate that temporal filtering is mainly
limited by memory bandwidth, we ignore the exact number of arithmetic CPU
instructions required and approximate computational costs by memory ac-
cesses: for each downsampling operation, the number of images to read is
readsdown = 2c + 1 and that to be written is writesdown = 1.
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6.4. EXPERIMENTS WITH PERIPHERAL MOTION BLUR

6.4 Experiments with peripheral motion blur

We shall now use our gaze-contingent display that can lowpass filter in the
temporal domain as a function of gaze for psychophysical experiments.

Effect on eye movements

It is a well-established fact that motion and temporal transients in the periph-
ery attract attention; the hypothesis we tested therefore was that the removal of
high temporal frequencies in the periphery should reduce the number of sac-
cades towards the periphery, i.e. saccades with a large amplitude. Ten subjects
participated in the experiment and were presented with a set of seven movies
out of our set of 18 high-resolution natural movies (see Chapter 3). Due to real-
time constraints, the videos were reduced in resolution to 1024 by 576 pixels;
on a temporal pyramid with six levels, the initial latency is 126 video frames
(see above), so that video duration also was reduced from about 20 s to about
16 s. Eye movements were recorded at 250 Hz using an SR Research EyeLink II
eye tracker; overall, about 2800 saccades were collected. The resolution map
was as above in Figure 6.6(b), so that full temporal resolution of 29.97 frames
per second was retained foveally, and dropped to 0.94 frames per second in the
far periphery (the lowest resolution possible on a pyramid with six temporal
levels).

Results are shown in Figure 6.8. The baseline condition is described by the
dashed line and corresponds to the saccades in our data set of 54 subjects from
the same seven movies (see Chapter 3). Beyond an eccentricity of about 18 deg,
the temporal filtering sets in (see the resolution map in Figure 6.6(b)), and
large-amplitude saccades are less frequent; the difference in saccade amplitude
distributions is statistically significant (p < 0.013, Kolmogorov-Smirnov test).

Visibility

We will now describe an experiment where we locally suppress higher temporal
frequencies. Locus and size of the suppressed region are varied in order to
investigate the visibility of such changes as a function of eccentricity. Note
that we do not intend to measure the threshold for the maximum temporal
frequency that can be detected at a given eccentricity; it is the absence of higher
temporal frequencies above a certain threshold that should go unnoticed. For
typical natural scenes with their multitude of different moving objects, these
two thresholds may differ considerably. Because visual attention is limited to
only a small number of objects or events at any one time (O’Regan et al., 1999),
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Figure 6.8: Effect of temporal foveation on saccade amplitudes. The rate of saccades with
large amplitude (≥ 18 deg) is reduced compared to the unfiltered display. Temporal filtering
increases with eccentricity and is very weak close to the fovea, so small-amplitude saccades
are not affected. The difference in saccade amplitude distributions is statistically significant
(p < 0.013, Kolmogorov-Smirnov test).

it is essential only to preserve a “natural” percept of a scene rather than its full
spatio-temporal content.

We used a temporal pyramid as above with five levels, so that the lowest
temporal resolution on the display was about 1.9 frames per second. The res-
olution map preserved full temporal resolution everywhere in the visual field
except for a ring-shaped region at a given eccentricity around centre of fixation;
to prevent the rise of sharp ring boundaries, the transition between filtered and
non-filtered region was smoothened by a Gaussian. Formally, the resolution
map α was defined as

α(φ) =


αr φi ≤ φ ≤ φo

1 φ < φi − 2σ ∨ φ > φo + 2σ

αr + (1 − αr) · G′σ
(
min
k=i,o
{|φ − φk|}

)
otherwise,

where φi is the eccentricity of the inner border of the ring, w is the width of the
ring, φo = φi + w is the eccentricity of the outer border of the ring, and G′σ is an
inverted Gaussian with standard deviation σ.

We measured thresholds for three different scotoma widths (1.25, 2.5, and
5 deg), a flank width of 2σ = 0.5deg, and five different eccentricities φi, namely
0 deg (a foveally presented circular disk), 10, 20, 30, and 40 deg. Thresholds
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Figure 6.9: Visibility of temporal blur on a gaze-contingent display. Temporal blur was intro-
duced along a ring-shaped mask of varying width (1.25, 2.5, and 5 deg) and eccentricity. At far
eccentricities, even large parts of the temporal frequency spectrum can be filtered out without
subjects being able to notice; if these modifications take place in a larger area, they are also more
visible.

were determined in a staircase procedure where blur was increased until sub-
jects reported noticing it; then, blur was decreased again until subjects did not
report perception anymore. The average intensity of 10 reversal points was the
threshold estimate. Before each trial, one parameter set was chosen randomly
so that the subject could not know beforehand where in the visual field the
“temporal scotoma” would occur.

Figure 6.9 shows results for three subjects. Sensitivity to high temporal
frequencies drops towards the periphery, and thresholds are lower (detection
frequencies are higher) when a larger area is temporally blurred, i.e. for larger
scotoma widths. These results demonstrate that it is possible to introduce
strong modifications as long as these preserve the “naturalness” of a scene
(many scenes do not contain moving objects; thus, removing them does not
change naturalness) and as long as they happen in a gaze-contingent fashion,
i.e. the scene remains unmodified at centre of fixation. The results in Figure 6.9
may seem counterintuitive at first, considering that laboratory experiments
with synthetic stimuli such as drifting gratings have shown much higher sen-
sitivity to high temporal frequencies in the periphery. We here have not tested
the threshold for the presence of certain frequencies, but for their absence; fur-
thermore, we do not claim that the curve in Figure 6.9 is universally applicable.
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Ultimately, however, visual performance in natural scenes with their specific
spatio-temporal energy distribution is more relevant than on artificial stimuli.

6.5 Gaze visualization

As we have seen already, humans move their eyes around several times per
second to successively sample visual scenes with the high-resolution centre of
the retina. The direction of gaze is tightly linked to attention, and what people
perceive ultimately depends on where they look (Stone et al., 2003). Naturally,
the ability to record eye movement data led to the need for meaningful visual-
izations. One-dimensional plots of the horizontal and vertical components of
eye position over time have been in use since the very first gaze recording ex-
periments (Delabarre (1898) affixed a small cap on the cornea to transduce eye
movements onto a rotating drum, using plaster of Paris as glue). Such plots are
useful for detailed quantitative analyses, but not very intuitively interpreted.
Other tools supporting interpretation of the data include the visualization of
gaze density by means of clustered gaze samples (Heminghous and Duchowski,
2006) or the visualization of other features such as fixation duration (Ramloll
et al., 2004). Better suited for visual inspection are approaches that use the
stimulus and enrich it with eye movement data; in the classical paper of Yarbus
(1967), gaze traces overlaid on the original images immediately show the re-
gions that were preferentially looked at by the subjects. Because of the noisy
nature of both eye movements and their measurements, there is also an indirect
indication of fixation duration (traces are denser in areas of longer fixation).
However, such abstract information can also be extracted from the raw data
and presented in condensed form: for example, bars of different size are placed
in a three-dimensional view of the original stimulus to denote fixation dura-
tion in (Lankford, 2000); in a more application-specific manner, Špakov and
Räihä (2008) annotate text with abstract information on gaze behaviour for the
analysis of translation processes.

Another common method is the use of so-called fixation maps (Velichkovsky
et al., 1996; Wooding, 2002b). Here, a probability density map is computed
by the superposition of Gaussians, each centred at a single fixation (or raw
gaze sample), with a subsequent normalization step. Areas that were fixated
more often are thus assigned higher probabilities; by varying the width of
the underlying Gaussians, it is possible to vary the distance up to which two
fixations are considered similar. Based on this probability map, the stimulus
images are processed so that for example luminance is gradually reduced in
areas that received little attention; so-called heat maps mark regions of interest
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with transparently overlaid colours. Špakov and Miniotas (2007) add “fog” to
render visible only the attended parts of the stimulus.

For dynamic stimuli, such as movies, all the above techniques can be applied
as well; one straightforward extension from images to image sequences would
be to apply the fixation map technique to every video frame individually. Care
has to be taken, however, to appropriately filter the gaze input in order to
ensure a smooth transition between video frames.

In this section, we shall present an algorithm to visualize dynamic gaze den-
sity maps by locally modifying spatio-temporal contrast on a spatio-temporal
Laplacian pyramid. In regions of low interest, spectral energy is reduced, i.e.
edge and motion intensity are dampened, whereas regions of high interest
remain as in the original stimulus. Conceptually, this algorithm is related to
gaze-contingent displays simulating visual fields as presented in the previous
sections; in these approaches, however, fine spatial or temporal details are
blurred selectively. Instead of blurring, the work presented here leaves details
intact but reduces spectral amplitude equally across all frequency bands (note,
however, that an individual weighting of separate frequency bands is a trivial
extension; also see Section 6.7). Furthermore, while the algorithm presented
here is based on work by Geisler and Perry (2002) and Böhme et al. (2006b), it
cannot be used for gaze-contingent applications where all levels of the underly-
ing pyramid need to be upsampled to full temporal resolution for every video
frame. Its purpose is the off-line visualization of pre-recorded gaze patterns.
A gaze-contingent version of a spatio-temporal Laplacian pyramid, which has
much higher computational costs, shall be introduced at the end of this chapter.

Pyramid-based rendering as a function of gaze has been shown to have a
guiding effect on eye movements (see previous sections). To further demon-
strate the usefulness of our algorithm, we will present some results from a
validation experiment in which students received instructional videos either
with or without a visualization of the eye movements of an expert watching
the same stimulus. Results show that the visualization technique presented
here indeed facilitates perceptual learning and improves students’ later visual
search performance on novel stimuli.

In the previous sections, we have discussed a spatial Laplacian and a tempo-
ral Gaussian pyramid. For the temporal pyramid, we analysed in detail which
video frames need to be held in memory for the temporal filtering operations,
which require history and lookahead frames. We also looked at the interpo-
lation or upsampling of lower pyramid levels to be able to use them in every
time step of a gaze-contingent display. We shall now combine these techniques
to develop an isotropic spatio-temporal Laplacian pyramid.
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G0 − L0

↓ ↑

G1 − L1

↓ ↑

G2 L2

Figure 6.10: Analysis phase of a Laplacian pyramid in space. Based on the Gaussian pyramid
on the left side, which stores successively smaller image versions (with higher-frequency content
successively removed), differences of Gaussian pyramid levels are formed to obtain individual
frequency bands (right side). To be able to form these differences, lower levels have to be upsampled
before subtraction (middle). The gray bars indicate – relative to the original spectrum – what
frequency band is stored in each image. The extension into the temporal domain results in lower
frame rates for the smaller video versions (not shown).

From Chapter 2, we recapitulate that the analysis phase of a Laplacian pyra-
mid is performed by subtracting from each other adjacent levels of a Gaussian
pyramid; the resulting frequency subbands are then (possibly after a modifica-
tion) added up to synthesize the original signal again. A schematic overview
of pyramid analysis is depicted in Figure 6.10, and pyramid synthesis is shown
in Figure 6.11.

Both for the subtraction of adjacent Gaussian pyramid levels (to create
Laplacian levels) and for the reconstruction step (in which the Laplacian levels
are recombined), lower levels first have to be upsampled to match the resolution
of the higher level. Following these upsampling steps, the results have to be
filtered to interpolate at the inserted pixels and frames; again, history and
lookahead video frames are required. We shall now describe these operations
in more detail and analyse the number of video frames to be buffered.

Notation

The sequence of input images is denoted by I(t); input images have a size of W
by H pixels and an arbitrary number of colour channels (individual channels
are treated separately). A single pixel at location (x, y) and time t is referred
to as I(t)(x, y); in the following, operations on whole images, such as addition,
are to be applied pixelwise to all pixels.
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L0 +

R0 = G0

L1 + ↑ R1

L2 ↑ R2

Figure 6.11: Synthesis phase of a Laplacian pyramid in space. The Laplacian levels are iteratively
upsampled and added up to obtain a series of reconstructed images RN,RN−1, . . . ,R0 with
increasing cutoff frequencies. If the Ln remain unchanged, R0 is an exact reproduction of the
original input image G0.

The individual levels of a Gaussian multiresolution pyramid with N + 1

levels are referred to as Gk(t), 0 ≤ k ≤ N. The highest level G0 is the same as the
input sequence; because of the spatio-temporal downsampling, lower levels
have fewer pixels and a lower frame rate, so that Gk(n) has a spatial resolution
of W/2k by H/2k pixels and corresponds to the same point in time as G0(2

kn).
Spatial up- and downsampling operations on an image I are denoted as ↑ [I]
and ↓ [I], respectively. As was the case for the temporal Gaussian pyramid in
the previous section, not all pyramid levels have a valid image Gk(t/2k) for time
steps t that are not a multiple of 2N. Therefore, Ct denotes the highest index of
levels with valid images at time t, i.e. Ct is the largest integer with Ct ≤ N and
t mod 2Ct = 0. Similar to the Gaussian levels Gk, we refer to the levels of the
Laplacian pyramid as Lk(t), 0 ≤ k ≤ N (again, resolution is reduced by a factor
of two in all dimensions with increasing k); the intermediate steps during the
iterative reconstruction of the original signal are denoted as Rk(t).

The temporal filtering which is required for temporal down- and upsam-
pling introduces a latency. The number of lookahead items required on level k
is denoted by λk for the analysis phase and by Λk for the synthesis phase.

Analysis phase

To compute the Laplacian levels, the Gaussian pyramid has to be created first
(see Figure 6.10). The relationship of different Gaussian levels is shown in
Figure 6.12; lower levels are obtained by lowpass filtering and spatially down-
sampling higher levels:

Gk+1(n) =
c∑

i=−c

wi · ↓ [Gk(2n − i)]
/ c∑

i=−c

wi .
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G0(0) G0(1) G0(2) G0(3) G0(4) G0(5) G0(6) G0(7) G0(8)

G1(0) G1(1) G1(2) G1(3) G1(4)

G2(0) G2(1) G2(2)

w−1w−2 w0 w1 w2

w−1w−2 w0 w1 w2

Figure 6.12: Spatio-temporal Gaussian pyramid with three levels and c = 2. Lower levels have
reduced resolution both in space and in time. Note that history and lookahead video frames are
required because of the temporal filter with symmetric kernel, e.g. computation of G2(1) depends
on G1(4), which in turn depends on G0(6).

We here use a binomial filter kernel (1, 4, 6, 4, 1) with c = 2.

The Laplacian levels are then computed as differences of adjacent Gaussian
levels (the lowest level LN is the same as the lowest Gaussian level GN); be-
fore performing the subtraction, the lower level has to be brought back to a
matching resolution again by inserting zeros (blank frames) to upsample and
a subsequent lowpass filtering. In practice, the inserted frames can be ignored
and their corresponding filter coefficients are set to zero:

Lk(n) = Gk(n) −
x
 ∑

i∈P(n)

wi · Gk+1

(n − i
2

) / ∑
i∈P(n)

wi

 ,
with P(n) = { j = −c, . . . , c | (n − j) mod 2 = 0} giving the set of valid images on
the lower level.

Based on these equations, we can now derive the number of lookahead
items required for the generation of the Laplacian. For the upsampling of
lower Gaussian levels, we need a lookahead of β = b c+1

2 c images on each
level, with bc denoting floating-point truncation. Starting on the lowest level
GN, this implies that 2β + c images must be available on level GN−1 during
the downsampling phase; we can repeatedly follow this argument and obtain
λk = 2N−k · (β+ c) − c as the number of required lookahead images for level k.

Synthesis phase

Turning now to the synthesis phase of the Laplacian pyramid, we note from Fig-
ure 6.11 that the Laplacian levels are successively upsampled and added up to
reconstruct the original image; this simply is the inverse of the “upsample–and–
subtract” operation during the analysis phase. On the lowest level, RN(n) =

LN(n); for higher levels, the intermediate reconstructed images are computed
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Figure 6.13: Synthesis step of spatio-temporal Laplacian pyramid. Here shown are both the
Laplacian levels Li and the (partially) reconstructed images Ri, which are based on lower levels
with indices ≥ i; in practice, the same buffers can be used for both R and L. For example,
to compute the reconstruction R0(t) of the original image, we have to add L0(t) to a spatio-
temporally upsampled version of R1. The second level L1 is combined with the upsampling result
of L2 in R1(

t+c
2
) = R1(

t
2
+ β1) (see pseudocode). In this schematic overview, new frames are

added on the right side and shifted leftwards with time.

as

Rk(n) = Lk(n) +
∑

i∈P(n)

wi

x
Rk+1

(n − i
2

) / ∑
i∈P(n)

wi

 . �� ��6.3

Clearly, a further latency is incurred between the point in time for which band-
pass information and the reconstructed or filtered image are available. Similar
to the study of the analysis phase in the preceding paragraphs, we can com-
pute the number Λk of required lookahead items on each level by induction.
On the lowest level LN, again β = b c+1

2 c images are required for the upsampling
operation, which corresponds to 2β images on level N−1. As can be seen in Fig-
ure 6.13, the result of the upsampling operation is added to the β-th lookahead
item on level N − 1, so that ΛN−1 = 3β. Repeating this computation, we obtain
Λk = (2N+1−k − 1) · β; for L0, however, no further upsampling is required, so it
is possible to reduce the lookahead on the highest level to Λ0 = (2N+1 − 2) · β.

In practice, we do not need to differentiate explicitly between L and R; the
same buffers can be used for both L and R images. Care has to be taken then
not to perform a desired modification of a given Laplacian level on a buffer that
already contains information from lower levels as well (i.e. an R image).

Pseudocode and implementation

We are now ready to bring together the above observations and put them into
pseudocode, see Algorithms 2 and 3. Based on P(n) above, the index function
that determines which images are available on lower levels in the following is
Pk(t) = { j = −c, . . . , c |

(
t
2k + βk − j

)
mod 2 = 0}. In the synthesis phase, the

image offset βk at which the recombination L and R takes place can be set to
zero on the highest level; we therefore use βk = β for k > 0, β0 = 0.
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Algorithm 2 Pseudocode for one time step of the pyramid analysis phase.

Input: t Time step to update the pyramid for
G0, . . . ,GN Levels of the Gaussian pyramid
L0, . . . ,LN Levels of the Laplacian pyramid

Ct = max({γ ∈N | 0 ≤ γ ≤ N, t mod 2γ = 0})
. Gaussian pyramid creation

G0(t + λ0) = I(t + λ0)
for k = 1, . . . ,Ct do

Gk

( t
2k

+ λk

)
=

c∑
i=−c

wi ·
y[Gk−1

( t
2k−1 + 2λk − i

)] / c∑
i=−c

wi

end for
. Laplacian pyramid creation

for k = 0, . . . ,Ct do
if k = N then

LN

( t
2N + ΛN

)
= GN

( t
2N + ΛN

)
else

Lk

( t
2k

+ Λk

)
= Gk

( t
2k

+ Λk

)
−x

 ∑
i∈Pk(t)

wi · Gk+1

( t
2k+1

+
Λk − i
2

) / ∑
i∈Pk(t)

wi


end if

end for

From the pseudocode, a buffering scheme for the implementation directly
follows. First, images from the Gaussian pyramid have to be stored; each level k
needs at least λk lookahead images, one current image, and βk history. Trading
memory requirements for computational costs, it is also possible to keep all
images of the Gaussian pyramid in memory twice, once in the “correct” size
and once in the downsampled version; for each frame of the input video,
only one downsampling operation has to be executed then. In analogy to the
Gaussian levels, both the Laplacian and the (partially) reconstructed levels L
and R can be held together in one buffer per level k with Λk lookahead, one
current image, and the βk history.

In practice, the output of the pyramid can be accessed only with a certain
latency because of the symmetric temporal filters that require video frames
from the future. Input images are fed into lookahead position λ0 of buffer
G0, and images are shifted towards the “current” position by one position for
every new video frame. This means that only λ0 many time steps after video
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Algorithm 3 Pseudocode for one time step of the pyramid synthesis phase.

Input: t Time step to update the pyramid for
G0, . . . ,GN Levels of the Gaussian pyramid
L0, . . . ,LN Levels of the Laplacian pyramid

Ct = max({γ ∈N | 0 ≤ γ ≤ N, t mod 2γ = 0})
for k = Ct, . . . , 0 do

if k = N then
RN

( t
2N + βN

)
= LN

( t
2N + βN

)
else

Rk

( t
2k

+ βk

)
= Lk

( t
2k

+ βk

)
+

x
 ∑

i∈Pk(t)

wi · Rk+1

(
t

2k+1
+
βk − i
2

) / ∑
i∈Pk(t)

wi


end if

end for

frame I(t0) has been added, the Gaussian images G0 to GN that represent I(t0)
at various spatio-temporal resolutions are available in the “current” positions
of the Gaussian buffers. The resulting differences L0 to LN then are stored at the
lookahead positions Λ0 to ΛN of the Laplacian buffers, respectively; here, differ-
ent frequency bands can be accessed both for analysis and modification. Only
Λ0 time steps later does the input image I re-appear after pyramid synthesis;
overall, this leads to a pyramid latency between input and output of λ0 + Λ0

time steps.

The necessary buffering and the handling of lookahead frames could be
reduced and simplified if causal filters were used; a further possibility to effi-
ciently filter in time without lookahead is to use temporally recursive filters.
However, any non-symmetry in the filters will introduce phase shifts. Particu-
larly in the case of space-variant filtering (see below), this would produce image
artefacts (such as a pedestrian with disconnected – fast – legs and – relatively
slow – upper body).

Space-variant pyramid synthesis

In the previous section, we described the analysis and synthesis phase of a
spatio-temporal Laplacian pyramid. However, the result of the synthesis phase
is a mere reconstruction of the original image sequence; we want to filter the
image sequence based on a list of gaze positions instead.
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Algorithm 4 Pseudocode for one time step of the space-variant synthesis phase.

Input: t Time step to update the pyramid for
G0, . . . ,GN Levels of the Gaussian pyramid
L0, . . . ,LN Levels of the Laplacian pyramid
W0, . . . ,WN Coefficient maps

Ct = max({γ ∈N | 0 ≤ γ ≤ N, t mod 2γ = 0})
for k = Ct, . . . , 0 do

if k = N then
RN

( t
2N + βN

)
= LN

( t
2N + βN

)
else

Rk

(
x, y,

t
2k

+ βk

)
= Wk

(
x, y,

t
2k

+ βk

)
· Lk

(
x, y,

t
2k

+ βk

)
+

x
 ∑

i∈Pk(t)

wi · Rk+1

(
x, y,

t
2k+1

+
βk − i
2

) / ∑
i∈Pk(t)

wi


end if

end for

For the gaze-contingent displays discussed earlier, we had introduced the
concept of a resolution map. Because we here have not only a single cutoff
frequency anymore, but a set of coefficients that indicates how spectral energy
should be modified in each frequency band at each pixel of the output image
sequence, we shall denote the coefficient map for level k at time t with Wk(t); the
Wk have the same spatial resolution as the corresponding Lk, i.e. W/2k by H/2k

pixels.

To bandpass-filter the image sequence, the Laplacian levels Lk are simply
multiplied pixel-wise with the Wk prior to the recombination into Rk.

Based on the pseudocode (Algorithm 4), we can see that coefficient maps
for different points in time are applied to the different levels in each synthesis
step of the pyramid; this follows from the iterative recombination of L into the
reconstructed levels. In practice, a more straightforward solution is to apply
coefficient maps corresponding to one time t to the farthest lookahead item Λk

of each level Lk (i.e. right after subtraction of adjacent Gaussian levels).

As noted before, in the following validation experiment we will use the same
coefficient map for all levels (for computational efficiency, however, coefficient
maps for lower levels can be stored with fewer pixels). In principle, this means
that a similar effect could be achieved by computing the mean pixel intensity
of the whole image sequence and then, depending on gaze position, smoothly
blending between this mean value and each video pixel. However, for practical
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reasons, the lowest level of the pyramid does not represent the “true” DC (the
mean of the image sequence), but merely a very strongly lowpass-filtered video
version; this means that some coarse spatio-temporal structure remains even in
regions where all contrast in higher levels is removed by setting the coefficient
map to zero. The temporal multiresolution character of the pyramid also adds
smoothness to changes in the coefficient maps over time; because temporal
levels are updated at varying rates, such changes are introduced gradually.
Finally, by using different coefficient maps for each level, it is trivially possible to
highlight certain frequency bands, which is impossible based on a computation
of the mean alone.

6.6 Perceptual learning experiment

Pyramid-based rendering of video as a function of gaze has been shown to have
a guiding effect on eye movements. For example, we have seen in the previous
section that the introduction of peripheral temporal blur on a gaze-contingent
display reduces the number of large-amplitude saccades, even though the visi-
bility of such blur is low. Using a real-time gaze-contingent version of a spatial
Laplacian pyramid, locally reducing (spatial) spectral energy at likely fixation
points also changed eye movement characteristics.

In the following, we will therefore briefly summarize how the gaze visual-
ization algorithm from the previous section can be applied in a learning task
to guide the student’s gaze. For further details of this experiment, we refer to
Jarodzka et al. (2010b).

Perceptual learning

In many problem domains, experts develop efficient eye movement strategies
because the underlying problem requires substantial visual search. Examples
include the analysis of radiograms (Lesgold et al., 1988), driving (Underwood
et al., 2003), and the classification of fish locomotion (Jarodzka et al., 2010a).
In order to aid novices in acquiring the efficient eye movement strategies of
an expert, it is possible to use cueing to guide their attention towards relevant
stimulus locations; however, it often remains unclear where and how to cue the
user. Van Gog et al. (2009) guided attention during problem-solving tasks by
directly displaying the eye movements of an expert made during performing
the same task on modeling examples, but found that the attentional guidance
actually decreased novices’ subsequent test performance instead of facilitating
the learning process. One possible explanation of this effect could be that the
chosen method of guidance (a red dot at the experts’ gaze position that grew in
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size with fixation duration) was not optimal because the gaze marker covered
exactly those visual features it was supposed to highlight, and its dynamical
nature might have distracted the observers. To avoid this problem, we here
use the space-variant filtering algorithm presented in the previous sections to
render instructional videos such that the viewer’s attention is guided to those
areas that were attended by the expert. However, instead of altering these
attended areas, we decrease spatio-temporal contrast (i.e. edge and motion
intensity) elsewhere, in order to increase the relative visual saliency of the
problem-relevant areas without covering them or introducing artefacts.

Stimulus material and experimental setup

Eight videos of different fish species with a duration of 4 s each were recorded,
depicting different locomotion patterns. They had a spatial resolution of 720 by
576 pixels and a frame rate of 25 frames per second. Four of these videos were
shown in a continuous loop to an expert on fish locomotion (a professor of ma-
rine zoology) and his eye movements were collected using a Tobii 1750 remote
eye tracker running at 50 Hz. Simultaneously, a spoken didactical explanation
of the locomotion pattern (i.e. how different body parts moved) was recorded.
These four videos were shown to 72 subjects (university students without prior
task experience) in a training phase either as-is, with the expert’s eye move-
ments marked by a simple yellow disk at gaze position, or with attentional
guidance by the pyramid-based contrast reduction. In the subsequent test or
recall phase, the remaining four videos were shown to the subjects without
any modification. After presentation, subjects had to apply the knowledge ac-
quired during the training phase and had to name and describe the locomotion
pattern displayed in each test video; the number of correct answers yielded a
performance score.

Gaze filtering

Functionally, a sequence of eye movements consists of a series of fixations,
where eye position remains constant, and saccades, during which eye position
changes rapidly (smooth pursuit movements here can be understood as fixa-
tions where gaze position remains constant on a moving object). In practice,
however, the eye position as measured by the eye tracker hardly ever stays
constant from one sample to the next; the fixational instability of the oculo-
motor system, minor head movements, and noise in the camera system of the
eye tracker all contribute to the effect that the measured eye position exhibits a
substantial jitter. If this jitter were to be replayed to the novice, such constant
erratic motion might distract the observer from the very scene that gaze guid-
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Figure 6.14: Eccentricity-dependent coefficient map: at centre of fixation, spectral energy
remains the same; energy is increasingly reduced with increasing distance from gaze.

ance is supposed to highlight. In order to reduce the jitter, raw gaze data was
filtered with a temporal Gaussian lowpass filter with a support of 200 ms and
a standard deviation of 42 ms.

Space-variant filtering and colour removal

A Laplacian pyramid with five levels was used; coefficient maps were created
in such a way that the original image sequence was reconstructed faithfully in
the fixated area (the weight of all levels during pyramid synthesis was set to
1.0) and spatio-temporal changes were diminished (all level weights set to 0.0)
in those areas that the expert had only seen peripherally. On the highest level,
the first zone was defined by a radius of 32 pixels around gaze position and
weights were set to 0.0 outside a radius of 256 pixels; these radii approximately
corresponded to 1.15 and 9.2 degrees of visual angle, respectively. In parafoveal
vision, weights were gradually decreased from 1.0 to 0.0 for a smooth transi-
tion, following a Gaussian falloff with a standard deviation of 40 pixels (see
Figure 6.14). Furthermore, these maps were produced not only by placing a
mask at the current gaze position in each video frame; instead, masks for all
gaze positions of the preceding and following 300 ms were superimposed and
the coefficient map was then normalized to a maximum of 1.0. During periods
of fixation, this superposition had little or no effect; during saccades, how-
ever, this procedure elongated the radially symmetric coefficient map along the
direction of the saccade. Thus, the observer was able to follow the expert’s
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(a) (b)

Figure 6.15: (a) Stillshot from an instructional video on classifying fish locomotion patterns. (b)
The eye movements of an expert giving voiceover explanations are visualized by space-variant
filtering on a spatio-temporal Laplacian pyramid: spatio-temporal contrast and colour saturation
are reduced in unattended areas. This visualization technique aids novices in acquiring the
expert’s perceptual skills.

saccades and unpredictable large displacements of the unmodified area were
prevented. Finally, colour saturation was also removed from non-attended ar-
eas similar to the reduction of spectral energy; here, complete removal of colour
started outside a radius of 384 pixels around gaze, and the Gaussian falloff in
the transition area had a standard deviation of 67 pixels. Note that these param-
eters were determined rather informally to find a reasonable trade-off between
a focus that would be too restricted (if the focus were only a few pixels wide,
discrimination of relevant features would be impossible) and a wide focus that
would be without guidance effect (if the unmodified area encompassed the
whole stimulus). As such, these parameters are likely to be specific to the
stimulus material used here. For a thorough investigation of the visibility of
peripherally removed colour saturation using a gaze-contingent display, we
refer to Duchowski et al. (2009). An example frame is shown in Figure 6.15.

Results

Previous research has already shown that providing a gaze marker in the highly
perceptual task of classifying fish locomotion facilitates perceptual learning:
subjects look at relevant movie regions for a longer time and take less time
to find relevant locations after stimulus onset, which in turn results in higher
performance scores in subsequent tests on novel stimuli (Jarodzka et al., 2009).
The gaze visualization technique presented here does not cover these relevant
locations; subjects’ visual search performance is improved even beyond that
obtained with the simple gaze marker. Results are summarized in Table 6.1:
time needed to find relevant locations after stimulus onset decreases by 21.26%
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Control group Gaze marker Gaze guidance

Time until looked 1662.87 1530.36 1205.00
at relevant areas (s) (697.05) (509.55) (391.75)

Time spent 505.19 701.00 751.82
on relevant areas (s) (353.68) (332.07) (300.57)

Multiple choice 0.97 1.14 1.02
test performance (0.32) (0.47) (0.44)

Table 6.1: Results for test phase of perceptual learning experiment on fish locomotion patterns
(first row shows mean performance, standard deviation in parentheses). Students had received
instructional videos during the training phase either as-is (control group), with the expert’s gaze
position indicated by a simple yellow marker (gaze marker), or with the expert’s gaze position
highlighted by a contrast reduction of non-relevant locations (gaze guidance). On novel stimuli
during test (without guidance), the gaze-guidance group finds task-relevant stimulus areas faster
and spends more time fixating them. Recognition performance, i.e. correctly naming the depicted
locomotion pattern, is also slightly improved compared to the control group.

compared to the gaze marker condition and by 27.53% compared to the con-
dition without any guidance. Moreover, dwell time on the relevant locations
increases by 7.25% compared to the gaze marker condition and by 48.82% com-
pared to the condition without any guidance. The recognition performance
on novel test stimuli is also slightly improved in those students that received
attentional guidance, but this effect is not statistically significant. For a more
in-depth analysis see Jarodzka, van Gog, Dorr, Scheiter, and Gerjets (2010b).

Discussion

We have presented a novel algorithm to perform space-variant filtering of a
movie based on a spatio-temporal Laplacian pyramid. One application is the
visualization of eye movements on videos; spatio-temporal contrast is modi-
fied as a function of gaze density, i.e. spectral energy is reduced in regions of
low interest. In a validation experiment, subjects watched instructional videos
on fish locomotion either with or without visualization of the eye movements
of an expert. We were able to show that on novel test stimuli, subjects who
had received such information performed better than subjects who had not
benefited from the expert’s eye movements during training, and that the gaze
visualization technique presented here facilitated learning better than a simple
gaze display (yellow gaze marker). In principle, any visualization technique
that reduces the relative visibility of those regions not attended by the expert
might have a similar effect; our choice for this particular technique was mo-
tivated by our work on eye movement prediction, which shows that spectral
energy is a good predictor for eye movements (see Chapter 4).
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6.7 Real-time spatio-temporal Laplacian pyramid

In this section, we will now present an algorithm to perform efficient space-
variant spatio-temporal bandpass filtering of video as a function of gaze. We
have implemented this algorithm on the Graphics Processing Unit of commod-
ity graphics hardware and achieve frame rates of more than 60 frames per
second on HDTV video (1280 by 720 pixels). Using an eye tracker to perform
filtering in retinal coordinates, we can thus simulate spatio-temporal visual
fields in real time.

Overview

We presented an isotropic spatio-temporal Laplacian pyramid for space-variant
filtering and gaze visualization in the previous section. As we already have
pointed out, that algorithm is not suitable for gaze-contingent filtering because
the lower levels are stored at a lower frame rate than the original video. Accord-
ing to the Nyquist theorem (Theorem 1), this lower frame rate suffices to even-
tually reconstruct the original video faithfully; however, for a gaze-contingent
application we want to be able to (locally) modify the weight assigned to each
band at any time in response to an eye movement. Therefore, lower temporal
levels have to be upsampled and interpolated at every frame. In principle, this
could be achieved by synthesizing the full pyramid in every time step; as we
shall see in the following, however, this approach is prohibitively expensive so
that low latencies cannot be realized.

We shall therefore present a more efficient algorithm that computes the fre-
quency subbands in each time step, based on a Gaussian pyramid where all
levels have been upsampled to full temporal resolution. Using this algorithm,
even the more costly anisotropic decomposition of the spectrum into individ-
ual spatio-temporal subbands becomes feasible, so that e.g. content with high
spatial and low temporal frequencies can also be individually weighted.

An iterative upsampling scheme for a temporal Gaussian pyramid was
developed by Böhme, Dorr, Martinetz, and Barth (2006b) and reviewed earlier
in this chapter; later in this section, we shall present a more efficient scheme
that directly upsamples lower levels to full temporal resolution.

Finally, we have implemented the spatio-temporal gaze-contingent display
on commodity graphics hardware using the Cg shading language (Mark et al.,
2003). Today’s Graphics Processing Units (GPUs) can operate on several hun-
dred pixels simultaneously and have much higher throughput than CPUs;
because the pixel position in an image is an explicit parameter in GPU pro-
grams, they are ideally suited for gaze-contingent displays (Duchowski and
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Algorithm 5 Algorithm for gaze-contingent spatio-temporal filtering.

Input: n Time step

Update spatio-temporal Laplacian pyramid with new image I(n)
Locally weight each pyramid level Ls,t(n) as a function of gaze (gx(n), gy(n))
Synthesize pyramid to create reconstructed image R0,0(n)

Çöltekin, 2007; Nikolov et al., 2004). We shall therefore conclude this chapter
with data from an experiment that was performed with this setup, and present
benchmark results.

Upsampling all Laplacian levels to full resolution

We shall now look at the implementation of gaze-contingent filtering on an
anisotropic spatio-temporal Laplacian pyramid in detail. In contrast to the
isotropic pyramid described previously, such a pyramid does not require to
mix spatial and temporal up- and downsampling steps. Instead, it is straight-
forward to first create a spatial Laplacian pyramid from each frame of the input
image sequence, and then further decompose each of these spatial subbands
into a temporal Laplacian pyramid. Pyramid synthesis in this case is equally
simple and can be achieved by synthesis of each temporal pyramid first, fol-
lowed by synthesis of a spatial pyramid where each level corresponds to a
temporal synthesis result. Because computation of a spatial Laplacian has been
covered before, we shall here put an emphasis on the details of the temporal
Laplacian. The same notation applies as before, but to avoid confusion with
the indexing of temporal levels later, we shall denote video frames with time
step n instead of t, so that e.g. the input image sequence is denoted by I(n).

To understand the basic steps required for gaze-contingent filtering, a very
high-level overview of the gaze-contingent algorithm is listed in Algorithm 5.
We can see that the current gaze position only needs to be known before the
(locally weighted) pyramid synthesis; it is thus only the synthesis phase that
is critical for display latency, which is a major performance goal for gaze-
contingent applications.

To compute the Laplacian levels Lk from the Gaussian levels Gk, we refer
back to Equation 6.4 and adapt it to the case of an anisotropic pyramid that
subsamples in the temporal domain only:

Lk(n) = Gk(n) −
∑

i∈P(n)

wi · Gk+1

(n − i
2

) / ∑
i∈P(n)

wi .
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Computation of Lk(n) on average requires 1 + 2c+1
2 reads and 1 write. Since Lk

needs to be updated only every 2k-th frame, the cost of computing all Laplacian
levels from a Gaussian pyramid with N + 1 levels is (note that LN = GN and
thefore no explicit additional computation is required for LN)

readsL(N) =

N−1∑
k=0

1 +
(
2c + 1

2k+1

)
= N + (2c + 1)

(
1 − 1

2N

)
writesL(N) = N.

�� ��6.4

We now move on to temporal pyramid synthesis; a graphical illustration
of the canonical algorithm is shown in Figure 6.16 (similar to synthesis of an
isotropic pyramid, which was shown in Figure 6.13). We can here see that a
problem arises with the gaze-contingent algorithm (Algorithm 5): R0(n) does
not only depend on the Lk(n), but also on L1(n − 1), L1(n + 1), etc. If the local
weighting of the frequency bands changes due to an eye movement, all Rk have
to be recomputed, which leads to an exponential increase in run time with the
number of levels. For simplicity, we shall ignore the computational cost of
applying the local weighting in the following and give an approximation of the
number of memory accesses required. In our experience, the number of mem-
ory accesses is a reasonable indicator for computational complexity because
algorithms on temporal pyramids typically are memory bandwidth-bound; op-
erations on several high-resolution video frames at once usually exceed cache
sizes. Furthermore, the implementation target are Graphics Processing Units
with hundreds of shader units that can perform multiply–and–add operations
in one clock cycle, so that it is possible to e.g. add a local weighting scheme at
virtually no cost.

The adaptation of Equation 6.3 to the case of an anisotropic pyramid is also
straightforward:

Rk(n) = Lk(n) +
∑

i∈P(n)

wi Rk+1

(n − i
2

) / ∑
i∈P(n)

wi .
�� ��6.5

From this, we can see that computation of R0(n) from R1 on average requires
1 + 2c+1

2 reads and 1 write. The 2c+1
2 reads are from R1 (the remaining read is

from L0(n)), which again each require the same number of reads and writes as
R0(n); this reasoning can be repeated until level RN−1 is reached, where for each
level image 2c+1

2 images from LN are read. Putting these thoughts together, we
can estimate the number of reads and writes for synthesis of a pyramid with
N + 1 levels as
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Figure 6.16: Schematic overview of temporal pyramid synthesis. For example, R0(n) is com-
puted by adding to L0(n), which represents the high-frequency information, a temporally up-
sampled and filtered version of R1; R1, in turn, is the result of adding the mid-frequency band
L1 to the DC component L2. This overview shows the anisotropic case of Figure 6.13.

readscanonical(N) =

N−1∑
k=0

(
2c + 1

2

)k
+

N∑
k=1

(
2c + 1

2

)k

writescanonical(N) =

N−1∑
k=0

(
2c + 1

2

)k
.

�� ��6.6

Even for a relatively small number of temporal levels such as four (N = 3), this
results in an average of about 44 accesses to high-resolution video frames that
need to be processed before the gaze-contingent display can be updated. We
have seen in Section 6.2 that an image processing latency even as low as 10 ms
can lead to noticeable artefacts on gaze-contingent displays; we therefore need
a more efficient algorithm for locally weighted pyramid synthesis.

Such a more efficient algorithm can be found if we do not compute the
Laplacian levels Lk as differences of Gaussian levels Gk, Gk+1 at reduced frame
rate 1/2k anymore, but at full temporal resolution. We remember from Sec-
tion 6.3 that we already have an algorithm that provides levels U0

k with the
same spectral content as Gk, but at full frame rate. Ignoring the cost of comput-
ing the Uk

k for the moment, we note that we can obtain bandpass levels Lu
k (n)

with full temporal resolution as

Lu
k (n) = U0

k (n) −U0
k+1(n),

so that the set of Lu
k depends only on N + 1 frames with time stamp n, and

notably does not depend on gaze position. The number of necessary memory
accesses for this step is (assuming an implementation that can read all U0

k
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simultaneously)
readsnew = N + 1

writesnew = N.

�� ��6.7

A weighted, gaze-contingent synthesis can then be obtained simply as

R(n) =
N∑

k=0

αk(n, gx(n), gy(n)) · Lu
k (n),

�� ��6.8

with αk(x, y) a coefficient map that directly specifies the desired weighting coef-
ficient for frequency band k at pixel (x, y). It directly follows that for the latency-
critical part of the algorithm, namely the operations required in response to an
eye movement and thus a change in the local weighting, computational cost is
greatly reduced:

readssynth = N + 1

writessynth = 1.

�� ��6.9

Of course, this reduction in latency-critical operations comes at the expense
that we now have to compute the U0

k and the Lu
k for every time step. For three

reasons, however, this trade-off is justified. First, this information can be com-
puted in the background and does not affect the primary acceptance criterion
of gaze-contingent displays, namely latency. Second, the U0

k and Lu
k have to

be computed with the frame rate of the input video only; if higher display
update rates are desired, additional computation is limited to Equation 6.8.
Finally, as we shall see in the following, upsampling all levels of a Gaussian
pyramid (Equation 6.1) to full temporal resolution can be achieved with signif-
icantly fewer operations than in Equation 6.6; in particular, we shall present an
improved upsampling algorithm that saves up to a further 20% of operations
compared to Equation 6.1.

Upsampling of a temporal Gaussian pyramid

We shall first analyse the iterative upsampling scheme from Equation 6.1. To
recapitulate, U0

k is obtained from Gk by performing k iterative upsampling steps.
The intermediate results of these operations are denoted by Uk

k to U0
k , where

Uk
k = Gk, and Ul

k is the result of upsampling Ul+1
k .

Iterative upsampling memory requirements As we have seen in Section 6.3,
c lookahead, one current, and zero history items have to be buffered on each
level Ui

k. Since the images Uk
k do not need to be explicitly represented, but can

be taken from Gk, overall we have to buffer Miter = (c+1) · N(N+1)

2 video frames
for the iterative upsampling scheme.
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Iterative upsampling computational costs The length of the kernel w used
for interpolation during the upsampling step is the same as for downsampling,
K = 2 · c + 1. However, on average, half of the coefficients would apply only
to empty frames on the lower level, so do not need to be taken into account.
On average, one upsampling operation therefore requires K/2 reads and one
write. The number of reads required to compute Ul

k from Ul+1
k is thus K/2 · 1

2l ,
and to compute U0

k from Uk
k,

readsk = K/2 ·
k−1∑
i=0

1

2i .

To upsample all levels to full temporal resolution, we then need

readsiter = K/2 ·
N−1∑
i=0

N − i
2i

writesiter = 2 · readsiter/K =

N−1∑
i=0

N − i
2i .

Direct upsampling We now improve upon the temporal upsampling algo-
rithm by “direct upsampling” as opposed to the previously implemented “it-
erative upsampling”. The underlying idea is that for each pyramid level k, we
precompute the filter kernel wk = wk

−ck
,. . . ,wk

0, . . . , wk
ck

that effectively assigns
the same weight to each frame on level k as would do the iterative convolution
with the standard kernel w. Intuitively, one might assume that this is inefficient
because the length of such direct upsampling kernels grows exponentially in
the number of levels; however, at the same time, the frame rate and thus the
rate of kernel coefficients that are used at all shrinks exponentially on the lower
levels as well. As we will see later, the number of memory accesses is indeed
reduced. The main benefit of this scheme is that no intermediate results need
to be stored because the upsampling from Gk to Uk := U0

k can be performed in
one step,

Uk(n) =
∑

i∈Pk(n)

wk
i · Gk

(n − i
2k

) / ∑
i∈Pk(n)

wk
i

with Pk(n) = { j = − |wk |−1
2 , . . . , |w

k |−1
2 | (n − j) mod 2k = 0}. We can now itera-

tively derive the upsampling kernel wk that upsamples Gk to Uk. Since level
G0 is the same as the input sequence, no upsampling is required, and w0 = (1)

therefore is the identity. To obtain wk+1, we upsample wk by filling in zeros
and then convolve the result wk

up with w1 = w; this is the same operation as the
one performed in each iteration of the iterative upsampling algorithm. To es-
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tablish a straightforward index scheme, we assign indices i = − |wk |−1
2 , . . . , |w

k |−1
2

to the kernel coefficients wk
i ; because the original kernel w should be chosen

symmetric, wk
i = wk

−i. Formally,

wk+1 = wk
up ∗ w,

and we can prove that

|wk| = (2k − 1) · |w| − 2k + 2.

We begin by noting that |wk
up| = 2 · |wk| − 1 because of the insertion of zeros, and

|wk+1| = |wk
up|+ |w| − 1 due to the convolution. |wk| = (2k − 1) · |w| − 2k +2 holds

for |w0| = 1, and

|wk+1| = 2 · |wk| − 1 + |w| − 1

= 2[(2k − 1) · |w| − 2k + 2] − 1 + |w| − 1

= (2k+1 − 1) · |w| − 2k+1 + 4 − 2.

Direct upsampling memory requirements Since there are no intermediate
results that have to be stored in memory and all operands can be taken from
the downsampling pyramid, direct upsampling only uses Mdirect = N frames
extra memory (for U0 = G0, the original image can be used).

Direct upsampling computational costs As noted above, the size of the up-
sampling kernel on level k is |wk| = (2k − 1) · |w| − 2k +2; however, since this size
refers to the frame rate on the highest level, only a fraction of kernel coefficients
need to be used – the frame rate on level k is 1/2k. On average, the number of
reads per frame for upsampling one level k to full resolution thus is

readsk
direct =

|wk|
2k

= (1 − 2−k) · |w| − 1 +
2

2k
,

and the maximum number of reads for upsampling one level is

lim
k→∞

readsk
direct = |w| − 1.

�� ��6.10
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The number of reads for all levels combined is

readsdirect =

N∑
k=1

(1 − 2−k)|w| − 1 +
2

2k

=

N −
N∑

k=1

2−k

 (|w| − 1) +

N∑
k=1

2−k

= O
(
(N − 1) (|w| − 1)

)
.

�� ��6.11

Since no intermediate frames are generated and only the output frame has to
be written for every upsampled level, the number of writes is

writesdirect = N.
�� ��6.12

Comparison canonical and improved algorithm From Figure 6.17, we can
see that the number of both reads and writes is reduced by direct upsampling
compared to iterative upsampling. For eight temporal levels, about 21% of
memory accesses can be saved. We can now also tally the number of memory
accesses required to compute the Laplacian levels on a Gaussian that is fully up-
sampled in each time step. We have to add the cost of upsampling the Gaussian
(Equations 6.11,6.12) and that of computing the Laplacian levels (Equation 6.7)
to the cost of pyramid synthesis (Equation 6.9) and can estimate the number of
memory accesses in each time step for a pyramid with five temporal levels and
a five-tap filter kernel (c = 2) as 32.19. Compared to the canonical generation
and synthesis of the Laplacian pyramid (Equations 6.4,6.6) with 126.88 mem-
ory accesses, this is a reduction by almost 75%; taking into account the cost
of downsampling the underlying Gaussian pyramid first with 5.63 memory
accesses, which is the same for both algorithms, the reduction is still more than
71%. As a further benefit, the levels of a Gaussian pyramid can be stored with
a shorter data type than the Laplacian levels, which require a sign bit. To avoid
quantization artefacts, the canonical algorithm needs 16 bits per pixel instead
of eight for the improved algorithm, so that the effective speedup of the new
algorithm (required memory bandwidth) is about eight-fold. Additionally, the
number of frames that need to be stored is also reduced. From Section 6.5, we
know that two sets of buffers need to be retained for the canonical algorithm,
and we have computed the necessary number of lookahead items on each level
λk (for the buffer that stores the Gaussian pyramid) and Λk (for the bandpass
information); furthermore, each buffer level requires one current item and βk

history items. The computation here is simplified because for one spatial level
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Figure 6.17: Comparison of read and write memory accesses for direct and iterative upsampling
schemes. Direct upsampling saves about 21% of accesses for eight temporal levels.

of an anisotropic pyramid, video frames have the same size on all temporal
levels; memory consumption of the canonical algorithm therefore is

framesgauss =

 N∑
k=0

λk

+ N(β+ 1) + 1

=

 N∑
k=0

2N−k · (β+ c) − c

+ N(β+ 1) + 1

= (2N+1 − 1) · (β+ c) − (N + 1) · (c − 1) + Nβ

frameslaplace =

 N∑
k=0

Λk

+ N(β+ 1) + 1

= β ·
 N∑

k=0

2N+1−k − 1

 − β+ N(β+ 1) + 1

= (2N+2 − 4) · β+ N + 1,

and overall framescanonical = framesgauss + frameslaplace. The number of frames
required by the improved algorithm can be estimated as follows. The max-
imum number of frames needed for one direct upsampling step is |w| − 1

(Equation 6.10), and we thus need at least c history and c lookahead items on
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Figure 6.18: Schematic overview of generation of anisotropic Laplacian levels based on
a Gaussian pyramid where all levels are upsampled to full temporal resolution, L0,0 =
G0,0 − G0,1 − G1, 0 + G1,1. The two levels G1,0 and G1,1 need to be spatially upsampled;
for efficiency, their difference should be computed and then upsampled.

each level of the Gaussian pyramid (except for the highest level). The memory
requirements for a Gaussian with zero history and c lookahead were computed
in Equation 6.2; adding the N · c history items and the N images to store the
differences of adjacent Gaussian levels, we obtain

framesnew = c ·
(
2N+2 − 3

)
+ 2N + 1.

It follows that the new algorithm is not only more efficient computationally, but
also has a lower memory consumption. For a pyramid with five temporal levels
and c = 2, the number of frames to buffer is reduced from 157 to 131 (a reduction
of 16%); in the limit, memory requirements can be reduced by up to 20%. Again,
the use of narrower data types can also yield a further 50% reduction in memory
footprint, which is of particular importance for an implementation on the GPU
because the amount of memory available on graphics cards is currently still
much smaller than that of main memory.

Gaze-contingent spatio-temporal Laplacian

So far, we have only addressed a temporal Laplacian pyramid. Using the ob-
servation that it is more efficient to first upsample all levels of the underlying
Gaussian pyramid to full temporal resolution and only then compute the dif-
ferences of adjacent levels in each time step, we can now extend our algorithm
to the spatio-temporal domain. We begin with notation and remark that be-
cause we are here dealing with anisotropic pyramids, we need two-dimensional
indices. The individual levels of an anisotropic spatio-temporal Gaussian pyra-

157



CHAPTER 6. GAZE-CONTINGENT DISPLAYS

(a) (b) (c)

Figure 6.19: Schematic overview of the spatio-temporal Laplacian pyramid underlying the gaze-
contingent display. First, an anisotropic spatio-temporal Gaussian pyramid is created where
lower levels are stored at lower resolution (a). Then, the lower temporal levels are upsampled
to full temporal resolution again (b). Finally, adjacent pyramid levels are subtracted from each
other to obtain individual frequency bands (c). These frequency bands can easily be modified
locally; their sum yields the (modified) input image.

mid with S + 1 spatial and T + 1 temporal levels therefore are referred to as
Gs,t(n), 0 ≤ s ≤ S and 0 ≤ t ≤ T; images on level (s, t) have a spatial resolution
of W/2s by H/2s pixels and are updated with a frame rate of 1/2t. With Us,t(n),
we denote the temporally upsampled Gs,t(n) that has full temporal resolution
(but still reduced spatial resolution). With ↑ [I] a spatial upsampling operation,
we can obtain a bandpass representation of the image sequence in each time
step as

Lu
s,t = Us,t −Us,t+1 −

x[Us+1,t −Us+1,t+1] .

This procedure is shown schematically in Figures 6.18 and 6.19. The pseu-
docode that now describes the direct upsampling to full temporal resolution of
a spatio-temporal Gaussian pyramid and the generation of anisotropic Lapla-
cian levels based on this pyramid is listed in Algorithm 6.

Following generation of the Laplacian levels, we want to synthesize the
pyramid again with a gaze-contingent, space-variant filtering mask. In order
to specify a pixel-wise weighting coefficient for each spatio-temporal frequency
band, we can simply extend Equation 6.8 to

R(n) =
S∑

s=0

xs

 T∑
t=0

αs,t

(
n, gx(n), gy(n)

)
Lu

s,t(n)

 ,
where ↑k [I] denotes k iterative spatial upsampling operations and αs,t denotes
the coefficient map for spatial level s and temporal level t. In practice, the
lower-resolution levels are explicitly upsampled in space only once and then
added to the next level, so that multiple upsampling steps are not necessary.
This procedure is also described as pseudocode in Algorithm 7.
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Algorithm 6 Pseudocode for direct upsampling of spatio-temporal Gaussian
pyramid with efficient computation of anisotropic Laplacian levels Lu

s,t.

Input: n Time step to update the pyramid for
Gs,t(n) Gaussian levels, 0 ≤ s ≤ S, 0 ≤ t ≤ T
wt Temporal upsampling kernel for level t

Output: Lu
s,t(n) Laplacian levels

for s = S, . . . , 0 do
for t = T, . . . , 0 do

Us,t = λ . Set Us,t to empty image
i = b n

2t c . Index of current image on Gaussian level t
p = n − 2t · i . Sampling position in upsampling filter kernel
Pt = { j = −c, . . . , c | 2t · j − p ∈ [−ct, ct] }
Us,t(n) =

∑
k∈Pt

wt
k · Gs,t(i + k)

/∑
k∈Pt

wt
k

if s = S AND t = T then
Lu

s,t(n) = Us,t(n) . Spatio-temporal DC
else if s = S then

Lu
s,t(n) = Us,t(n) −Us,t+1(n) . Spatial DC

else if t = T then
Lu

s,t(n) = Us,t(n) −
x[Us+1,t(n)] . Temporal DC

else
Lu

s,t(n) = Us,t(n) −Us,t+1(n) −
x[Us+1,t(n) −Us+1,t+1(n)]

end if
end for

end for

Performance

Now that we have theoretically analysed our gaze-contingent display and de-
veloped a pseudocode description, we can turn to an implementation and its
performance. We shall first give some examples of the effects we can achieve
with our space-variant filtering algorithm, and then provide some benchmark
numbers for throughput and latency.

Two example stillshots are shown in Figures 6.20 and 6.21. In Figure 6.20,
the coefficient maps for the mid-spatial frequency bands gradually change from
1.0 at the top of the image to 0.0 at the bottom; in other words, only very low
(<0.8 cycles/deg) and very high (>6.7 cycles/deg) spatial frequencies constitute
the bottom part of the image. A similar gradient was introduced for the mid-
range of temporal frequencies, but here filter strength increases from right to
left. The contours of the two walking men coming into the image from the
left, for example, are still clearly visible, but overall contrast of the walkers is
reduced; compare that with the effect of temporal blur shown in Figure 6.7.

In Figure 6.21, it is shown that the range of subband coefficients is not limited
to [0, 1]. High spatial and high temporal frequencies are amplitude-enhanced
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Algorithm 7 Pseudocode for gaze-contingent synthesis step.

Input: n Time step
Lu

s,t(n) Laplacian levels
αs,t Coefficient map for each level
gx(n), gy(n) Gaze position

Output: R Spatio-temporally modified pyramid reconstruction

R(n) = Lu
S,T(n) . Initialize R(n) with DC component

for t = T − 1, . . . , 0 do
R(n, x, y) = R(n, x, y) + αS,t(x − gx(n), y − gy(n)) · Lu

S,t(n)
end for
for s = S − 1, . . . , 0 do

R(n) =↑ [R(n)]
for t = T, . . . , 0 do

R(n, x, y) = R(n, x, y) + αs,t(x − gx(n), y − gy(n)) · Lu
s,t(n)

end for
end for

by a factor of three, whereas low- and mid-frequencies are removed. Only the
“DC” component remained constant, but on a pyramid with five spatial and
five temporal levels, the DC component still contains a considerable range of
frequencies (up to about one cycle per degree or per second). Whereas the
overall scene appears slightly blurred, fine details especially of moving objects
have strongly increased contrast, such as the cars. Obviously, it is a trivial
step to also change the coefficients for the DC component. This, however,
requires different normalization schemes for display purposes, because output
images have to be mapped to pixel intensity values in [0, 255], but about 50%
of pixels would have negative values without the DC component. For extreme
enhancements of non-DC levels, pixel saturation can also occur; note the black
and white areas around the cars in Figure 6.21. We shall discuss a solution to
this problem below.

Figures 6.22 and 6.23 show some benchmark results for the gaze-contingent
display as implemented on the GPU. Measurements were obtained on a sys-
tem with an NVIDIA GeForce GTX280 GPU with 1 GB of RAM and an Intel
Core 2 Duo CPU running at 3 GHz. In Figure 6.22, we plot the median of image
processing time on high-resolution movies (1280 by 720 pixels) for the down-
sampling phase, upsampling the pyramid to full temporal resolution on all
levels, and space-variant synthesis for a pyramid with two to six temporal (on
the y-axis) and two to six spatial levels (quasi-parallel lines). Even for a pyra-
mid with six spatial and four temporal levels, all image processing combined
takes less than 15 ms, which means that frame rates of more than 60 frames per
second are possible. Even more importantly, the latency-critical synthesis step
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(a) (b)

Figure 6.20: Example of space-variant bandpass filtering. (a) Original image. (b) Mid-spatial
frequencies (bands 1–3, corresponding to 0.8–6.7 cycles/deg) are filtered out progressively from
top to bottom, and mid-temporal frequencies (1.9–7.5 cycles/s) are filtered out progressively from
right to left. Note, for example, the temporal ringing effect around the pedestrian in red to the
left: subtle traces of the pedestrian can also be found ahead and behind of him.

takes only 2 ms, and we can estimate overall system latency thus to 20–25 ms
(see Equation 5.1). For five and six temporal levels, computation time increases
superlinearly, which is due to the fact that current GPUs have limited amounts
of memory. For five and more temporal levels, textures have to be stored in the
computer’s main memory and the transfer via the system bus incurs a perfor-
mance penalty. This, however, is not a fundamental problem because graphics
boards with larger memory sizes have recently become available. Also notable
is the increase in computation time with the number of spatial levels. From a
theoretical standpoint, going from two to six spatial levels increases the number
of pixels by less than seven per cent, yet processing time more than doubles
for a pyramid with two temporal levels. This can be explained by two fac-
tors. First, the communication costs between CPU and GPU per shader run are
constant, and the number of shader runs increases linearly with the number of
spatial levels. Second, the number of pixels on lower spatial levels is so small
that the cost of actual image processing on these levels vanishes against setting
up shader units on the GPU.

For comparison purposes, similar measurements are plotted for smaller
videos (640 by 360 pixels) in Figure 6.23 (only two to four spatial levels are
plotted). Because frame size is reduced by a factor of four, even a pyramid with
six temporal levels fits into the GPU’s memory completely, so there is no sharp
performance drop as on high-resolution video. Nevertheless, image processing
time is only slightly lower than for high-resolution videos, and it follows that
the GPU is fully utilized only with high-resolution material.
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(a) (b)

Figure 6.21: Example of contrast enhancement in selected subbands. (a) Original image. (b)
High spatio-temporal frequencies ( fs > 6.7 cycles/deg, ft > 7.5 cycles/s) are enhanced three-fold;
all other subbands except for the lowest-frequency component are set to zero (computed on a
pyramid with five temporal and five spatial levels, even the “DC” component still contains a
considerable range of frequencies, so that the overall impression of the scene does not change
dramatically).

6.8 Applications

In order to finally put our gaze-contingent display to experimental use, we
shall now present an experiment where the coefficient map is derived from
information on salient and non-salient image structures that was obtained us-
ing the machine learning techniques that were discussed in Chapter 4. First, a
kernel support vector machine was trained with the spectral energy of fixated
and non-fixated patches. This feature was computed as the mean energy of
pixel intensity in a neighbourhood around fixation on each level of a spatio-
temporal Laplacian. Under the assumption that the correctly classified patches
approximate the manifolds of their respective classes, a second, linear support
vector machine was trained with only these patches. Using spectral energy and
a linear SVM has the advantage that the feature space is now approximately
invertible, i.e. any feature vector can be mapped back to an image patch. This
mapping is only approximate because there are various possibilities to increase
or decrease spectral energy of an image patch; we here chose the straightfor-
ward approach of multiplying every pixel in the patch with the ratio of desired
and actual energy. For the geometrical invariants on the structure tensor, which
showed slightly better prediction performance than spectral energy and there-
fore would be a natural choice of image features, such “inversion” strategy does
not exist. We used this property of spectral energy to modify candidate points
(see Section 6.2) and move their feature space representation perpendicular
to the separating hyperplane, either to make a patch less salient (towards the
non-attended class, which for salient points means towards the hyperplane) or
to increase its saliency (away from the hyperplane).
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Figure 6.22: Performance of space-variant spatio-temporal filtering algorithm implemented on
the GPU and on high-resolution video. Quasi-parallel lines show image processing times for
different numbers of spatial levels (two to six). A pyramid with four temporal and six spatial
levels can be downsampled and resynthesized as a function of gaze with more than 60 frames
per second. For a higher number of temporal levels, memory on the graphics board becomes a
bottleneck and textures have to be transferred back and forth over the system bus, which reduces
performance.

This procedure is a more elaborate version of the heuristic used in Section 6.2
that simply set spectral energy to a fixed constant relative to the mean spectral
energy of the non-attended patches. Now, local structure of the manifold of
natural movie patches is also taken into account and relative weightings of the
individual frequency bands become possible. As we have mentioned above,
contrast enhancements can lead to artefacts because of the limited dynamic
range of the display; an additional normalization step is too costly to perform
in real time. We therefore reduced all movies to 95% overall contrast and
adjusted the learned weights such that no overflows would occur. A reduction
of saliency (moving a point towards the separating hyperplane) usually led to
a decrease in coefficients for most frequency bands; in principle, even negative
weightings are possible. To avoid this situation, the strength of the saliency-
reducing transformation was chosen such that for each modified patch, only
three individual frequency band coefficients would be set to zero, and negative
coefficients were clipped.

Six subjects participated in the experiment and watched our 18 natural
movies on the gaze-contingent display (see Chapter 3 for the physical setup).
Their task was to press the space bar whenever they detected contrast modifi-
cations similar to a set of modifications that was shown prior to the experiment,
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Figure 6.23: Performance of space-variant spatio-temporal filtering algorithm implemented on
the GPU as in Figure 6.22, but on smaller videos. Because of the reduced memory requirements,
performance does not drop as sharply for a large number of temporal levels as in the case of high-
resolution video. However, the latency-critical synthesis step is only marginally faster because
of the fixed cost of communication between CPU and GPU.

where modifications were not contingent upon gaze and therefore easily visi-
ble. Six different parameter strengths were tested so that each subject watched
a different set of three movies with a particular set of parameters; overall, we
thus obtained data for each combination of movie and parameter strength. For
simplicity, we will here report data only from one condition; by pooling to-
gether data, stronger statistical significance could easily be achieved. During
the experiment, up to 20 candidate points were determined after each saccade.
The saliency of the most likely candidate point was increased further, and all
other candidate points were decreased in their saliency. To reliably associate
responses with modifications, the rate of modifications was limited to one every
three seconds.

The effect of the gaze-contingent contrast modifications that were derived by
machine learning algorithms on eye movements is shown in Figure 6.24. Here,
distance is measured between saccade landing points and the nearest modi-
fied candidate location. The distribution is shifted to the left (towards smaller
distances) compared to the control condition (where modifications were not
shown, so could possibly have no effect). This means that gaze was drawn
towards the modified regions significantly more often (p < 0.05, even on the
relatively limited sample size). Notable is the fact that subjects reported modi-
fication detection in only 4.5% of trials; this means that the oculomotor system
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Figure 6.24: Effect of gaze-contingent spatio-temporal contrast modifications on eye movements.
Gaze is drawn towards modified locations (the distribution of distances to the nearest modified
location is shifted to the left).

could detect contrast modifications and steer gaze towards them without sub-
jects becoming aware of this. The existence of such a gap between unconscious
peripheral processing and consciousness is a good indicator that gaze guidance
is possible and useful.

6.9 Chapter conclusion

In this chapter, we have presented a set of increasingly more complex and
powerful space-variant filtering algorithms, and performed first gaze-guidance
experiments. We started out with a gaze-contingent display based on a spatial
Laplacian pyramid. For the first time, this display allowed to specify a full set
of weights for each frequency band in retinal coordinates, whereas previous
gaze-contingent displays only allowed for lowpass filtering with a specified
cutoff frequency. Implemented on the CPU, however, this spatial bandpass
filtering still suffered from latency problems due to its increased computational
complexity compared to gaze-contingent displays based on a Gaussian pyra-
mid.

We then analysed in detail an algorithm to upsample all levels of a temporal
Gaussian pyramid to full temporal resolution. For gaze-contingent applica-
tions, this is a necessary step because the contribution of each level to a specific
pixel of the output image can change at any point in time due to eye move-
ments. Again, this algorithm can only be used for a lowpass-filtering, but
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operates on the computationally much more costly temporal domain. The tem-
poral domain offers two advantages over the modification of spatial content,
as we have shown in two validation experiments. First, the natural appear-
ance of a visual scene is less impaired by the introduction of temporal blur in
the periphery than by spatial blur. A scene may contain no moving objects
at all and therefore little high temporal frequencies, but a scene with no spa-
tial details seems unnatural even when viewed only peripherally. Second, it
is a well-known fact that high temporal frequencies in the periphery attract
attention; conversely, the removal of high frequencies in the periphery reduces
the number of saccades with large amplitude, that is saccades towards the pe-
riphery. One conclusion from these experiments is that it is possible to alter
eye movement characteristics even with comparatively simple gaze-contingent
modifications such as peripheral blur.

The logical next step after a spatial Laplacian and a temporal Gaussian is
the extension to a spatio-temporal Laplacian pyramid. Due to the immensely
increased computational complexity, however, we first implemented an algo-
rithm that was not suitable for real-time gaze-contingent applications, but for
offline rendering of video only. Nevertheless, we could show that the visualiza-
tion of an expert’s eye movements on instructional videos on fish locomotion
patterns had a positive effect on students’ performance. Their gaze was guided
towards the relevant stimulus locations, which were difficult to determine for
novices in a visually very rich scenery. Interestingly, the removal of peripheral
distractors did not help students to acquire conceptual skills (after training,
they could not name different locomotion patterns better than controls), but
they had acquired significantly better perceptual skills (they could find task-
relevant locations on novel stimuli faster than controls), which obviously is a
necessary, but not sufficient condition for subsequent conceptual knowledge.

Then, we proceeded with a thorough analysis of a novel algorithm to com-
pute a spatio-temporal Laplacian pyramid that is suitable for gaze-contingent
applications. One critical element of this algorithm is that the image process-
ing latency of the system depends only on the space-variant addition of a
few video frames, whereas the canonical algorithm to compute the Laplacian
would require processing of dozens of images. We also developed a more ef-
ficient algorithm to upsample a temporal Gaussian pyramid. In combination
with an implementation on dedicated graphics hardware, these algorithmic im-
provements led to a system capable of space-variant spatio-temporal filtering
of high-resolution video with 60 frames per second. Pyramid synthesis latency,
which is critical to react to eye movements, is as low as 2 ms.

Finally, we ended this chapter with a validation experiment of our novel
gaze-contingent system. This experiment showed that movie transformations
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that were derived by machine learning techniques to make movie patches more
or less salient could attract attention without becoming visible to the observer.
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“Whatever good things we build end up building us.”

Jim Rohn

7
Conclusion

The development of gaze-guidance systems is an interdisciplinary challenge.
On the technical side, gaze-contingent displays are needed that can react to eye
movements and modify videos accordingly with very low latencies. Eye track-
ers with high temporal resolution are already commercially available, and thus
the focus must be put on fast video transformations. However, sophisticated
real-time image processing routines alone are not sufficient, because a deep un-
derstanding of the human visual system is also necessary to know where and
how to apply video transformations in an optimal fashion. Once these require-
ments are fully met, gaze guidance promises considerable benefits in many
areas of human-human and human-machine communication. In safety-critical
applications, such as driving, users might be alerted of potential hazards un-
obtrusively, which is a major acceptance criterion for driver assistance systems.
In training scenarios, the demonstration of an expert’s more efficient viewing
strategy might help novices to acquire task-specific skills faster. Also, patients
with attentional deficits such as neglect might benefit from gaze guidance.

In this thesis, we have approached the development of gaze-guidance sys-
tems from an engineering viewpoint. We first created a software framework
that allows flexible, yet highly efficient image processing on multiresolution
pyramids both on commodity hardware as well as on dedicated graphics boards
(Chapter 5). Using this software framework, we significantly advanced the state
of the art in gaze-contingent displays. Prior to the work presented in this thesis,
real-time space-variant filtering algorithms were limited to the introduction of
spatial blur as a function of gaze. We pushed the envelope on these algorithms
along two lines. First, we extended gaze-contingent displays from a modifica-
tion of spatial information only to the spatio-temporal domain, which greatly
increases computational complexity, but is very important because temporal
information is a strong factor in oculomotor control. Second, we increased
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flexibility of the filtering by moving from the specification of a single cutoff fre-
quency per output pixel to the specification of a weighting coefficient for each
individual spatio-temporal frequency band, i.e. from lowpass filtering to a fully
specified frequency response, which led to a further increase in computational
costs and memory requirements (Chapter 6).

With these extensions, a gaze-contingent display based on a spatio-temporal
Laplacian pyramid with five spatial and four temporal scales allows the space-
variant specification of 20 different coefficients for subbands of the spatio-
temporal frequency spectrum in retinal coordinates. Despite this computa-
tional complexity, we achieved frame rates of 60 frames per second even on
high-resolution videos with an implementation on the Graphics Processing
Unit. An even more important performance measure than system throughput,
however, is the system latency between an eye movement and the correspond-
ing update on the screen. We achieved an image processing latency of only 2 ms
and an overall system latency including eye tracking and screen refresh of 20–
25 ms, which is even faster than for previous gaze-contingent displays of lower
complexity. Such a performance improvement would not have been possible
using faster hardware alone, but also required improved algorithms. In partic-
ular, we contributed novel, more efficient algorithms for temporal upsampling
and the creation of a temporal Laplacian pyramid.

In summary, we have successfully established the necessary technical foun-
dations for gaze-guidance systems. Beyond this technical achievement, fur-
ther contributions were also made to the understanding of human vision. We
collected a large data set of eye movements on dynamic natural scenes and
investigated what factors drive oculomotor behaviour under naturalistic con-
ditions. This was particularly important because much prior research on eye
movements has focused mainly on synthetic scenes or static images as stim-
uli, and we could show that viewing behaviour under such circumstances is
qualitatively different (Chapter 3). Using our image processing framework and
advanced machine learning methods, we could also improve the state of the
art in eye movement prediction based on low-level features (Chapter 4).

Finally, we used these perceptual insights and our gaze-contingent systems
to perform several validation experiments. We found that certain video modi-
fications can go unnoticed in the visual periphery, and that these modifications
can change eye movement characteristics. In a first test of gaze guidance in a
real-world training scenario, we were able to show that students who had re-
ceived gaze guidance during training could recognize relevant image locations
during test significantly faster than controls. This result shows that gaze guid-
ance does not only affect eye movements, but is also beneficial for real-world
task performance.
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Now that the technical foundations for gaze guidance and a proof of concept
are at hand, it remains for future work to generalize gaze guidance to a broader
set of applications. Some work on putting to use both gaze-contingent displays
and gaze guidance has already been started, but has been omitted from this
thesis for brevity. For example, we were able to show that the introduction
of peripheral temporal blur in a head-mounted display can reduce simulator
sickness, which so far has been a major obstacle in the wide-spread adoption
of head-mounted displays. A gaze-contingent mouse cursor that changes its
size as a function of gaze to remain visible even in the periphery can be useful
on large screen setups with a wide field of view and was rated positively by a
group of test users. Gaze can also be used as an alternative input modality for
people with motor impairments, and we could demonstrate that gaze control
can beat mouse input in an open-source game that we adapted. For children
with dyslexia, a display that rendered text such that only the fixated syllable
or word was visible and distractors were suppressed proved motivating; in a
similar fashion, we have worked on displays for patients with visual neglect
that encourage them to explore the impaired hemifield more.

Ultimately, the incorporation of gaze information in general and gaze guid-
ance in particular promise to optimize future information and communication
systems.
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A
Perception of multiple motions

In this appendix, we shall present some of our results on the perception of
multiple motions. A common class of stimuli used in experiments on motion
perception is that of line gratings; on these stimuli, however, any local motion
detection scheme (such as the receptive field of a motion-sensitive cell in the
visual cortex) suffers from the so-called “aperture problem”, which states that
the veridical motion of the grating cannot be detected reliably. The superposi-
tion of several gratings (and other stimuli) gives rise to higher-order aperture
problems, and we shall describe some perceptual phenomena that occur with
these stimuli, and how these phenomena can be understood by the the inter-
section of lines (for 1D patterns such as gratings) and points (for 2D patterns)
in the projective plane (see Section 2.11).

The framework that can explain these phenomena has been published in
several places (Mota, Dorr, Stuke, and Barth, 2004a,b, 2003; Barth, Dorr, Vig,
Pomarjanschi, and Mota, 2010 currently under submission); a conference con-
tribution detailing the perceptual results has won a poster prize (Dorr, Stuke,
Mota, and Barth, 2001).

Perception

The aperture problem has a high significance for the visual perception of motion
and has been well-studied for single motions (Wuerger et al., 1996). The motion
of a 1D pattern such as a line grating is inherently ambiguous (see Figure 2.9);
an initial neural response simply assumes motion orthogonal to the grating,
but both neural response and perception are quickly determined by the motion
of the so-called terminators, i.e. the ends of the 1D patterns (Pack and Born,
2001).

For superimposed gratings, similar effects can occur, and motion percepts
may be different from the directions orthogonal to the individual gratings. For
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(a) (b) (c) (d) (e) (f)

Figure A.1: If two gratings of different orientations - as shown in (a) and (b) - are moved in
the directions shown in (c), the plaid pattern shown in (d) is seen as moving in the direction
indicated in (f) which corresponds to the only coherent velocity that is defined by the intersection
of the projective lines as shown in (e).

example, two gratings, one moving down and to the left, the other one moving
down and to the right, are perceived as a single pattern moving downwards
under most experimental conditions, see Figure A.1. Three moving gratings,
on the other hand, can be perceived in several different ways (Adelson and
Movshon, 1982).

Two 1D transparent moving gratings

In the projective plane, two moving gratings correspond to the {line, line} case –
see Table 2.2. According to the theory, the perceived motion should correspond
to the intersection point the two lines and indeed it does – see Figure A.1. We
shall show further examples in the following; nevertheless, for a more intuitive
visualization of perceptual effects, we also recommend to use the interactive
tool for multiple motion synthesis at
http://www.inb.uni-luebeck.de/˜barth/demos/ppmotion.

Three 1D transparent moving gratings

In the case of three moving gratings, a percept of one coherent pattern only
arises when all three lines intersect in the same point. This is, for example,
the case for the configuration shown in Figure A.2. On the other hand, a
configuration as shown in Figure A.3 has no unique percept: human observers
see the three 1D patterns as moving individually or see combinations of one 1D
pattern and a 2D plaid pattern.

Entrainment effect for 2D patterns over 1D patterns

A spatial field of dots superimposed on a grating (see Figure A.4) corresponds to
the {line, point} case. From Table 2.2, we can see that this motion configuration
corresponds to a rank of J2 of four and is thus a higher-order aperture problem.
The direction of the grating by itself is not uniquely determined; if the point
representing the spatial dot field falls on or close to the line representing the
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(a) (b) (c) (d) (e) (f)

Figure A.2: Coherent motion of three superimposed gratings. To the superposition of two
gratings (a) a third grating shown in (b) is added. The physical motions of the three gratings are
as shown in (c) and the lines of admissible velocities for each grating in (e). The percept is that
of a coherent pattern as shown in (d) moving in the direction indicated by the arrow in (f). The
coherent percept of one motion corresponds to the intersection of the lines in only one point.

(a) (b) (c) (d) (e) (f)

Figure A.3: Incoherent motion of three superimposed gratings. The sub-figures are according
to those in Figure A.2. However, the directions of motions are now changed such that the lines
of motion in the projective plane do not intersect in a single point (e). This makes the motions
undefined and causes the percept to change dramatically such that a coherent motion is not
perceived. Observers can see either of the single motions indicated in (f) (the other two motions
are seen either individually or grouped to a plaid motion).

grating in the projective plane, the grating should seem to move in coherence
with the random dots. To test this hypothesis, we generated sinusoidal gratings
of frequency ξ = 1/8, orientation ψ = kπ/4, k = 1, .., 8, and a size of 10 by
10 deg visual angle. These were translated perpendicular to their orientation
(φg = ψ ± π/2) with a velocity of vg = 1.6deg/s. Mean brightness of the screen
was 10 cd/m2. Then, a 2D dot pattern with same brightness distribution was
overlaid to the grating and translated with direction φr = φg±π/4 and velocity
vr = vg/

√
2, so that one component of the motion vector always coincided in

the grating and the moving dot pattern. Fifteen of these stimuli were presented
to seven human subjects for 1.6 seconds. After presentation of each stimulus,
subjects had to rotate an arrow to indicate the direction of the grating they
had perceived. The deviation of subjects’ responses from the true direction
of the grating is given in Figure A.6(a). If the dot pattern had exerted no
influence on the percept for the grating at all, a single peak at 0 deg could be
expected. Analogously, a single peak at 45 deg would indicate that subjects
always perceived a single coherent pattern. Note that the small peak at 135 deg
actually corresponds to cases of 45 deg deviation and can be attributed to the
phenomenon of induced motion (the same effect that makes the platform appear
moving while sitting in a moving train).
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(a) (b) (c) (d)

Figure A.4: Schematic illustration of the 2D-over-1D entrainment effect. The admissible
velocities for the grating (a) all lie on a line (c), the only admissible velocity for the 2D stimulus
(b) is a point (c). The percept of the superposition of 1D and 2D pattern is that of a single motion
(d).

Entrainment effect and the barberpole illusion

The shape of an aperture through which a grating is seen can strongly influence
motion perception. This phenomenon is called the barberpole illusion. For
example, the straight lines in Figure A.5 seem to change their direction along
their path behind the aperture (Wuerger et al., 1996): the bar moves as indicated
by the arrows and the perceived motion is indicated by the dashed line.

To show that the entrainment effect is able to override the barberpole illu-
sion, we designed the stimuli illustrated in Figure A.5. We masked the moving
grating by an aperture perpendicular to the orientation of the grating. This
should strengthen the percept of motion in a direction orthogonal to the grat-
ing. As an additional modification, only the terminators of the grating were
overlaid with a random dot field that moved in one coherent direction. Be-
cause this led to the rise of new terminators at the boundary of the coherent
random dot field, the remaining middle of the stimulus was overlaid with a
white-noise pattern, which had the same density and brightness as the coher-
ent noise pattern. Nevertheless, the entrainment effect seen in Figure A.6(b)
is still qualitatively similar to that in Figure A.6(a) which shows that the effect
dominates over the influence of the aperture.

176



(a) (b) (c) (d)

Figure A.5: Barberpole illusion. The veridical motion of the vertical line that is seen through
the aperture is constant from left to right, but the perceived direction changes with the perceived
direction of the line terminators at the aperture boundaries (a). Stimulus configuration for our
entrainment experiment. Overlaid are a random dot field moving coherently from left to right that
is shown only at the aperture boundaries (b), random noise in the centre of the aperture (c), and
a 1D grating with an orientation perpendicular to that of the aperture (d). Both the orientation
of the grating and that of the aperture should facilitate a percept of the grating as moving from
bottom left to top right; experimental results in Figure A.6 show that the entrainment effect at
the line terminators still dominates the percept.
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Figure A.6: Data illustrating the entrainment effect of a 2D pattern over a 1D grating. No
aperture (a). Aperture orientation perpendicular to that of the 1D grating (b). Both plots have
peaks at 45 deg, indicating that the 2D motion pattern (coherent random dot field) entrains the
grating, even if it is superimposed only at the line terminators and if the orientation of the
aperture facilitates perception of the veridical direction of the grating (0 deg deviation).
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Wolfgang Einhäuser, Ueli Rutishauser, and Christof Koch. Task-demands can
immediately reverse the effects of sensory-driven saliency in complex visual
stimuli. Journal of Vision, 8(2):1–19, 2008b.

Lior Elazary and Laurent Itti. Interesting objects are visually salient. Journal of
Vision, 8(3):1–15, 2008.
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