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Tag der mündlichen Prüfung: Donnerstag, 03.12.2009

Zum Druck genehmigt: Lübeck, den 12.04.2010
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Preface

Orthogonal polynomials have received, and continue to receive, much attention in
the mathematical community. Developed from a study of continued fractions by
Chebyshev in the 19th century and fostered by, among others, Markov and Stielt-
jes, orthogonal polynomials have found applications in many areas of mathematics
and physics. More recently, the field of orthogonal polynomials has “mushroomed
enormously”, as Walter Gautschi has put it in his enjoyable book [23]. Piling up
an enormous number of theoretical and practical results, research in this area con-
tinues to expand into previously unknown terrain. This text is restricted to the
treatment of the well-established classical orthogonal polynomials and their close
relatives, the classical associated functions.

The availability of modern day computers and the numerous applications also de-
mand efficient algorithms to handle computational problems involving orthogonal
polynomials. Some of these areas have so far been mainly of theoretical interest
and prove to be a formidable challenge for the design of efficient algorithms. For
example, classical orthogonal polynomials and classical associated functions play
an essential role for Fourier analysis on the hyperspheres Sd and the related ro-
tation groups SO(d). Both types of manifolds are important, for example, in the
case of the sphere S2 for the analysis of satellite data which are usually recorded
in spherical coordinates. The main goal of this text is to develop efficient algo-
rithms related to the various applications of classical orthogonal polynomials and
the classical associated functions.

Another efficient algorithm, one that has strongly influenced large areas of research,
clearly is the fast Fourier transform (FFT). It is no exaggeration to call it one of
the most important algorithms of the 20th century [12]. Since the description of
a divide-and-conquer method for the calculation of the discrete Fourier transform
by Cooley and Tukey in 1965 [13], the FFT has become one of the most influential
algorithms ever. Today, the FFT has undergone many improvements and is an
essential part of a large fraction of algorithms used today.

In recent years, a generalization of the FFT to arbitrary point configurations in the
time (or space) domain, called the non-equispaced fast Fourier transform (NFFT),
has contributed to a number of new numerical methods. A software library is
publicly available free of charge [40]. The NFFT offers a more flexible way to
approach a number of problems that previously have been difficult to access for
Fourier methods; see, for example, [43, 68] and the references therein. As it turns
out, the NFFT is also an important tool for the discrete Fourier transform on the
sphere S2, the rotation group SO(3), and other manifolds, also in higher dimensions,
for one simple reason: Typically, it is desirable or even required that the manifold be
sampled non-uniformly with respect to the chosen coordinate system. One reason
for this is that a uniform sampling usually entails a number of numerical problems.
For example, on the sphere S2, a uniform sampling in spherical coordinates leads
to points that cluster near the poles. Therefore, it is rather essential to have an
algorithm that works efficiently for arbitrary nodes.

A problem with Fourier analysis on the mentioned manifolds is that one needs
to handle expansions that no longer only involve complex exponentials, but also
classical orthogonal polynomials and classical associated functions. To enable the
application of the NFFT algorithm, an efficient method is needed to modify the
expansions at hand so that they attain a suitable form. This must often be con-
sidered the hardest part as one routinely faces numerical challenges. In this thesis,

xi
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we provide a complete framework for efficient and, as far as numerical results in-
dicate, numerically robust algorithms to handle these problems. To achieve this,
we formulate new theoretical results that characterize the connection problem for
classical orthogonal polynomials and classical associated functions. This problem
is concerned with the linear transformation that converts one expansion in classical
orthogonal polynomials (or associated functions) into another one in a different se-
quence of classical orthogonal polynomials (or associated functions). Based on the
theoretical results, we develop new efficient methods that provide the desired trans-
formations. Our numerical examples show that the new methods offer competitive
results.

Chapter 1 contains a compilation of mostly basic material on classical orthogonal
polynomials and their associated functions. While many results can be found in
standard references, the material has been adopted into a consistent form that is
suitable for our needs. Most importantly, a number of explicit expressions for the
connection coefficients is given. These numbers describe how a sequence of orthog-
onal polynomials may be represented through the members of another. We also
observe a number of special cases that are important for algorithmic considerations
in later chapters. Moreover, we give a complete definition of classical associated
functions. To my best knowledge and despite the fact that most of these functions
are well-known (at least in certain circles), reference literature on this topic seems
to be scarce. This made it necessary to provide a concise study of this matter.
Our approach is based on a modification to the Rodrigues formula for classical or-
thogonal polynomials and should be consistent with the literature, at least up to
conventional scaling.

Chapter 1 is divided into two parts. In each, we develop a method for the effi-
cient conversion between different expansions in classical orthogonal polynomials
and in the closely related associated functions, respectively. We start with some
basic material on certain classes of structured matrices that are important for our
investigations. The single most important type of structured matrices that we
will encounter are the semiseparable matrices. Interestingly, these have been in-
vestigated independently in different fields, see [78], and have recently received a
growing amount of attention. The main goal of this chapter is to establish a link
between the connection problem for classical orthogonal polynomials and their as-
sociated functions, and the class of semiseparable matrices. Our exploration of this
topic was inspired by earlier work on the subject by Rokhlin and Tygert [70] who
obtained such connection for the associated Legendre functions. They combined
this with an algorithm developed by Chandrasekaran and Gu [9] to efficiently cal-
culate the eigendecomposition of symmetric diagonal plus semiseparable matrices.
As will be shown, this can be exploited for the desired purposes.

In the first part of Chapter 2, we describe an algorithm for the efficient calcula-
tion of the eigendecomposition of diagonal plus triangular generator representable
semiseparable matrices. This algorithm was first published by the author in [38] and
is based on an idea similar to that of Chandrasekaran and Gu in [9]. In addition, we
provide also a simple extension to higher semiseparability ranks. It is then shown
that the connection matrices between different sequences of classical orthogonal
polynomials are properly scaled eigenvector matrices of certain diagonal plus trian-
gular generator representable semiseparable matrices. The entries of these matrices
are calculated explicitly for all important cases. This substantially expands upon
the results obtained in [38] which covered only the Gegenbauer polynomials. For
the first time, we provide results for all classical orthogonal polynomials. We show
how the described algorithm that obtains the eigendecomposition of the calculated
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matrices can be exploited to obtain an entirely new method to convert between
expansions in different classical orthogonal polynomials.

In the second part of Chapter 2, we briefly review the algorithm from [9] for the
efficient calculation of the eigendecomposition of symmetric diagonal plus generator
representable semiseparable matrices. An application, albeit unrelated to the con-
tent of this text, was explored in [46]. In addition to the original algorithm, we also
give a simple extension to higher semiseparability ranks. Then we show that the
connection matrices between different sequences of classical associated functions
contain properly scaled eigenvectors of certain symmetric diagonal plus generator
representable semiseparable matrices. The entries of these matrices are calculated
explicitly for all relevant cases. This work substantially expands upon the findings
in [70] where a similar result for the associated Legendre functions was obtained.
For the first time, we provide results for all classical associated functions, including
the generalized associated Jacobi functions.

In Chapter 3 an alternative method is developed for the conversion between differ-
ent sequences of classical orthogonal polynomials. As of now, it is unfortunately
not applicable to the classical associated functions. The method is based on the
observation that the connection coefficients have a certain smoothness. This can
be exploited by simple, yet powerful approximation techniques. More precisely, a
number of results is given that state the exact convergence rate with which inter-
polants at the Chebyshev points converge to the desired coefficients. This enables
the use of a variation of the well-known fast multipole method [28] to accelerate
the calculation of the transformation. The work in this area was motivated by a
similar result by Alpert and Rokhlin [1] for the connection between Chebyshev and
Legendre polynomials, albeit with weaker theoretical results. Their findings were
later generalized by the author in [39] to the Gegenbauer polynomials, proving for
the first time the exact convergence rate. In this text, we also extend the technique
to all classical orthogonal polynomials.

To demonstrate a few applications of the methods that we have developed, two
non-equispaced fast Fourier transform algorithms are described in Chapter 4, one
for the sphere S2 and the other for the rotation group SO(3). A method, similar
to the first algorithm, was published by Rokhlin and Tygert in [70]. However, we
combine this method, which is based on the findings in Chapter 2, with the NFFT
for the first time. This allows for arbitrarily placed nodes on the sphere S2. Discrete
Fourier transforms on the sphere are important in many applications. Related work
includes [41, 42, 44, 45]. The second algorithm can be seen as a generalization of
the previous concepts to the rotation group SO(3). While the methods are very
similar, we use, for the first time, the results from the second part of Chapter 2 to
establish the technique on the rotation group SO(3).

Since this thesis repeatedly makes use of a number of properties of classical or-
thogonal polynomials, an extensive formula reference is provided in the Appen-
dix A. There, all relevant expressions can also be found for different normalizations,
whereas the results in the text are usually only given for one particular normal-
ization. To the reader this should serve as a reference for all expressions that
are needed to implement the described numerical methods for classical orthogonal
polynomials and classical associated functions.

The material has been arranged such that it can be read sequentially. General
knowledge about orthogonal polynomials and structured matrices is not mandatory,
but highly recommended. Chapters 2 and 3 contain a large number of tables and
figures for illustration of numerical results. The reader may skip this material safely.
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Chapter 1
Orthogonal polynomials

This introductory chapter is to present basic material on orthogonal polynomials
with a particular focus on the classical orthogonal polynomials and their associated
functions. Most of the results are found in standard references [2, 10, 23, 63, 64,
65, 73, 74] and have been adapted from there. Proofs are given for a number of
other results that are usually not found in the literature.

1.1 Definition and existence

Orthogonal polynomials can be introduced in various ways. A definition that is
sufficient for our purposes is given by Gautschi [23, p. 1]: Let λ(x) be a non-
decreasing function on the real line R with finite limits for x → ±∞ and assume
that the induced positive measure dλ has finite moments of all orders

µn = µn(dλ) :=

∫
R
xn dλ(x), n = 0, 1, . . . , with µ0 > 0. (1.1)

Let P denote the space of real polynomials and let Pn ⊂ P be the restriction to
those of degree at most n. Then for two polynomials p, q ∈ P one may define an
inner product by

〈p, q〉 = 〈p, q〉dλ :=

∫
R
p(x)q(x) dλ(x). (1.2)

If 〈p, q〉 = 0, then p and q are said to be orthogonal to each other. If we take p = q,
then

‖p‖ :=
√
〈p, p〉 =

(∫
R

(
p(x)

)2
dλ(x)

)1/2

is the induced norm of p. We restrict ourselves to polynomials of a continuous
variable, usually denoted x. Most of the theory, however, carries through to poly-
nomials of a discrete variable; see, e.g., [64, p. 106].

Definition 1.1 A sequence of polynomials {pn}n∈N0
with degree deg pn = n is

called orthogonal (with respect to a measure dλ) if it satisfies

〈pn, pm〉 = 0, n,m = 0, 1, . . . , with n 6= m,

||pn|| > 0, n = 0, 1, . . . .

In most cases, the measure dλ uniquely defines a sequence of orthogonal polyno-
mials {pn}n∈N0

up to a multiplicative constant in each pn; see Theorem 1.9. Two
important cases of such scalings are the monic and orthonormal variants.

Definition 1.2 Let {pn}n∈N0 be a sequence of orthogonal polynomials. Then kn
denotes the leading coefficient of the polynomial pn(x) = knx

n + · · · , and hn :=
‖pn‖2 the square of its norm.

Definition 1.3 Let {pn}n∈N0
be a sequence of orthogonal polynomials. Then {p̄n}n∈N0

denotes the corresponding sequence of monic orthogonal polynomials

p̄n(x) := k−1
n pn(x) = xn + · · · ,

with leading coefficient k̄n = 1 and squared norm h̄n := ‖p̄n‖2. Likewise, {p̃n}n∈N0

denotes the sequence of orthonormal polynomials

p̃n(x) := h−1/2
n pn(x),

with k̃n as leading coefficient of p̃n and the squared norm h̃n = 1.

1
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The following result shows how the squared norm h̄n and leading coefficient k̃n for
the monic and orthonormal polynomials, respectively, can be calculated from the
known squared norm hn and the leading coefficient kn.

Lemma 1.4 Let {pn}n∈N0 be a sequence of orthogonal polynomials with leading
coefficients kn and hn. Then

h̄n =
hn
k2
n

, and k̃n =
kn√
hn
.

Proof. For the monic polynomial p̄n = k−1
n pn, we calculate

h̄n = ‖p̄n‖2 =
‖pn‖2

k2
n

=
hn
k2
n

.

The identity for k̃n follows immediately from p̃n = h
−1/2
n pn. �

Remark 1.5 It should be noted that above definition of normalized orthogonal
polynomials carries a slight sense of arbitrariness. For each normalized polynomial
p̃n also the polynomial −p̃n has unit norm. Our definition ensures that the sign of
the leading coefficients of normalized and non-normalized variants, p̃n and pn, are
the same.

Remark 1.6 Throughout this work, results will usually be given only for one
normalization. Appendix A contains an extensive collection of formulae for all
three normalizations.

Orthogonal polynomials satisfy 〈pn, pm〉 = δn,mhn with the usual Kronecker delta

δn,m :=

{
1, if n = m,

0, else.

Owing to the orthogonality relation, orthogonal polynomials provide a basis for
polynomial spaces. The following result can be found in [23, p. 2].

Lemma 1.7 Let {pn}n∈N0 be a sequence of orthogonal polynomials. Then the set
{pj : 0 ≤ j ≤ n} constitutes a basis for the space Pn.

Proof. Clearly, Pn is an (n+ 1)-dimensional vector space. If

n∑
j=0

γjpj = 0,

then, by orthogonality, taking the inner product with the polynomials pi, i =
0, 1, . . . , n, on both sides reveals that γj = 0 for j = 0, 1, . . . , n. Thus, the polyno-
mials p0, p1, . . . , pn must be linearly independent and thereby constitute a basis for
the space Pn. �
We have defined the inner product in (1.2) in a loose sense since it is generally not
guaranteed that it will be positive definite. Since positive definiteness is a sensible
and important requirement that is satisfied by most inner products that we may
define, let us make the definition precise.

Definition 1.8 The inner product in (1.2) is said to be positive definite on P if it
satisfies ‖p‖ > 0 for any p ∈ P with p 6= 0.

We are now ready to state a sufficient criterion for the existence and uniqueness of
a sequence of orthogonal polynomials, with respect to a measure dλ. For this, we
must require positive definiteness.

Theorem 1.9 If the inner product (1.2) is positive definite, then there exists a
unique infinite sequence of monic polynomials {p̄n}n∈N0

that is orthogonal with
respect to the measure dλ.
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Proof. The polynomials p̄n can be generated by applying the Gram-Schmidt pro-
cess to the monomials en(x) := xn, n = 0, 1, . . . . Positive definiteness of the inner
product ensures that the recursively generated polynomials

p̄n = en −
n−1∑
j=0

〈en, p̄j〉
〈p̄j , p̄j〉

p̄j , n = 0, 1, . . . ,

are uniquely defined and, by construction, are orthogonal to all polynomials p̄j with
0 ≤ j < n. �

1.2 Properties

Let in this section a measure dλ be given as before and we assume that it has
infinitely many points of increase. We will also assume that the measure dλ is
absolutely continuous, whereby dλ(x) = w(x) dx with some non-negative integrable
weight function w. Let {pn}n∈N0

denote a sequence of polynomials, orthogonal with
respect to the measure dλ, with its monic and orthonormal variants {p̄n}n∈N0

and
{p̃n}n∈N0 , respectively.

1.2.1 Symmetry.

Definition 1.10 An absolutely continuous measure dλ(x) = w(x) dx is called
symmetric with respect to the origin, if its support interval is [−a, a] for some
0 < a ≤ ∞, and w(−x) = w(x) holds for all x ∈ R.

Symmetry of the measure dλ implies that each orthogonal polynomial pn is either
an even or an odd function. This depends on the parity of the degree n and is
formalized in the following result which can be found in [23, p. 6].

Theorem 1.11 Let dλ be a symmetric measure. Then

pn(−x) = (−1)npn(x), n = 0, 1, . . . . (1.3)

Proof. We define the polynomials p̂n(x) := (−1)npn(−x) = (−1)nknp̄n(−x). Then

〈p̂n, p̂m〉 = (−1)n+mknkm〈p̄n, p̄m〉 = δn,mĥn,

that is, the polynomials p̂n(x) are orthogonal. Since k−1
n p̂n is a monic polynomial,

we have p̂n(x) = pn(x) by uniqueness of the monic orthogonal polynomials; cf.
Theorem 1.9. �

1.2.2 Zeros. The following two results state important facts about the zeros of
orthogonal polynomials. They can be found in [23, p. 6].

Theorem 1.12 For n ≥ 1, all zeros of the polynomial pn are real, simple, and
located in the interior of the support interval of the measure dλ.

Proof. Since ∫
R
pn(x) dλ(x) = 0, n = 1, 2, . . . ,

the polynomial pn must change the sign at least once inside the support interval of
dλ. Let xj , j = 1, 2, . . . , k, be all such points. If we had k < n, then∫

R
pn(x)

k∏
j=1

(x− xj) dλ(x) = 0

by orthogonality. This is impossible since the integrand has constant sign. Thus,
we must have k = n. �
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Theorem 1.13 For n ≥ 1, the zeros of the polynomial pn+1 alternate with those
of the polynomial pn, that is,

τ
(n+1)
1 < τ

(n)
1 < τ

(n+1)
2 < τ

(n)
2 < · · · < τ (n)

n < τ
(n+1)
n+1 ,

where τ
(n)
i and τ

(n+1)
i are, in ascending order, the zeros of pn and pn+1, respectively.

Proof. See Remark 1.25 on page 6 for a sketch of a short proof. �

1.2.3 Three-term recurrence. For convenience, it is customary to formally ex-
tend a sequence of orthogonal polynomials {pn}n∈N0 by an element p−1.

Definition 1.14 Let {pn}n∈N0
be a sequence of orthogonal polynomials. Then the

polynomial p−1 is defined by p−1 = 0. Furthermore, we let k−1 = h−1 = 1.

Arguably, the single most important property of orthogonal polynomials is that
they satisfy a three-term recurrence. The following result is found in similar form
in [23, p. 10].

Theorem 1.15 Let {pn}n∈N0
be a sequence of orthogonal polynomials. Then the

polynomials pn satisfy the three-term recurrence and initial conditions

pn+1(x) = (anx− bn)pn(x)− cnpn−1(x), n = 0, 1, . . . ,

p−1(x) = 0, p0(x) = k0,
(1.4)

with some coefficients an, bn, cn, k0 ∈ R, where an, cn 6= 0 for n = 1, 2, . . . , and
a0 6= 0.

Proof. Since x · pn(x) is a polynomial of degree n + 1 it can be represented as a
linear combination of the polynomials pj for j = 0, 1, . . . , n+ 1,

x · pn(x) =

n+1∑
j=0

γjpj(x), with γj =
〈x · pn, pj〉
〈pj , pj〉

.

With the shift property 〈x · , · 〉 = 〈 · , x · 〉, obviously enjoyed by the inner product
(1.2), the identity

〈x · pn, pj〉
〈pj , pj〉

=
〈pn, x · pj〉
〈pj , pj〉

is obtained. This evaluates to zero when j < n − 1, owing to orthogonality of the
polynomial pn to those of strictly smaller degree. We have consequently γj = 0 for
j = 0, 1, . . . , n− 2, whereby

x · pn(x) =
〈x · pn, pn+1〉
〈pn+1, pn+1〉

pn+1(x) +
〈x · pn, pn〉
〈pn, pn〉

pn(x) +
〈x · pn, pn−1〉
〈pn−1, pn−1〉

pn−1(x).

Solving this equation for pn+1 yields the desired result. For n = 0, 1, . . . , the fact
that pn+1 is a proper polynomial of degree n+ 1 also implies an 6= 0. For cn with
n = 1, 2, . . . , we note that

cn =
〈pn+1, pn+1〉
〈x · pn, pn+1〉

〈x · pn, pn−1〉
〈pn−1, pn−1〉

=
kn−1kn+1

k2
n

hn
hn−1

6= 0. (1.5)

�

Remark 1.16 Although the coefficient c0 is free of choice (it multiplies the poly-
nomial p−1 = 0 in (1.4)) it is convenient to define c0 = 0.

If the measure dλ is symmetric, the three-term recurrence (1.4) is simplified. This
is made precise in the following result.

Lemma 1.17 Let {pn}n∈N0
be a sequence of polynomials that is orthogonal with

respect to a symmetric measure. Then bn = 0 is satisfied in (1.4).
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Proof. With Theorem 1.11 (1.4), we can verify for n = 0, 1, . . . , the identity

0 = pn+1(x)− (−1)n+1pn+1(−x)

=
(
anx pn(x)− bnpn(x)− cnpn−1(x)

)
− (−1)n+1

(
− anx pn(−x)− bnpn(−x)− cnpn−1(−x)

)
=
(
anx pn(x)− bnpn(x)− cnpn−1(x)

)
−
(
anx pn(x) + bnpn(x)− cnpn−1(x)

)
= − 2bnpn(x).

This implies bn = 0 because we have pn 6= 0 while x is free of choice. �
It is at times useful to write the three-term recurrence (1.4) in an alternative form
as follows.

Corollary 1.18 The orthogonal polynomials {pn}n∈N0
satisfy the equation

x pn(x) = a′npn+1(x) + b′npn(x) + c′npn−1(x), n = 0, 1, . . . , (1.6)

with

a′n =
1

an
, b′n =

bn
an
, c′n =

cn
an
, n = 0, 1, . . . .

Of course, there are corresponding three-term recurrences for the monic and nor-
malized variants, {p̄n}n∈N0 and {p̃n}n∈N0 , respectively. Knowing the three-term
recurrence coefficients an, bn, cn, the leading coefficients kn, and the squared norms
hn allows to derive these forms.

Lemma 1.19 The monic orthogonal polynomials {p̄n}n∈N0
satisfy

p̄n+1(x) = (ānx− b̄n)p̄n(x)− c̄np̄n−1(x), n = 0, 1, . . . ,

p̄−1(x) = 0, p̄0(x) = k̄0 = 1,
(1.7)

with

ān = 1, b̄n = bn
kn
kn+1

, c̄n = cn
kn−1

kn+1
, n = 0, 1, . . . .

Proof. Replace pj = kj p̄j for j = n− 1, n, n+ 1 in (1.4). �

Corollary 1.20 The monic orthogonal polynomials {p̄n}n∈N0
satisfy the equation

x p̄n(x) = ā′np̄n+1(x) + b̄′np̄n(x) + c̄′np̄n−1(x), n = 0, 1, . . . ,

with

ā′n = 1, b̄′n = b̄n, c̄′n = c̄n, n = 0, 1, . . . .

Lemma 1.21 The orthonormal polynomials {p̃n}n∈N0
satisfy

p̃n+1(x) = (ãnx− b̃n)p̃n(x)− c̃np̃n−1(x), n = 0, 1, . . . ,

p̃−1(x) = 0, p̃0(x) = k̃0 = h
−1/2
0 ,

with

ãn = an

√
hn
hn+1

=
1

√
c̄n+1

,

b̃n = bn

√
hn
hn+1

=
b̄n√
c̄n+1

, n = 0, 1, . . . .

c̃n = cn

√
hn−1

hn+1
=

√
c̄n
c̄n+1

.

(1.8)

Proof. Replace pj = h
1/2
j p̃j for j = n− 1, n, n+ 1 in (1.4). �
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Corollary 1.22 The orthonormal polynomials {p̃n}n∈N0
satisfy the equation

x p̃n(x) = ã′np̃n+1(x) + b̃′np̃n(x) + c̃′np̃n−1(x), n = 0, 1, . . . ,

with

ã′n =
1

ãn
, b̃′n =

b̃n
ãn
, c̃′n =

c̃n
ãn
, n = 0, 1, . . . . (1.9)

1.2.4 Jacobi matrix.

Definition 1.23 Let {pn}n∈N0
be a sequence of orthogonal polynomials. Then the

corresponding Jacobi matrix is the infinite tridiagonal matrix

J∞ =


b′0 a′0 0

c′1 b′1 a′1
c′2 b′2

. . .

0
. . .

. . .

 .

Its n×n principal minor matrix is denoted Jn. The Jacobi matrices J̄∞ and J̄n, as
well as J̃∞ and J̃n are defined accordingly for monic and orthonormal polynomials.

With the vector p(x) =
(
p0(x), p1(x), . . . , pn−1(x)

)T
the recurrence (1.6) may be

rewritten in matrix-vector form,

xp(x) = Jnp(x) + a′npn(x)en, (1.10)

where en = (0, 0, . . . , 0, 1)
T

is the nth coordinate vector in Rn. This form reveals
that the zeros of pn are the eigenvalues of the matrix Jn. The following result is
found in [23, p. 13].

Theorem 1.24 The zeros τ
(n)
i , i = 1, 2, . . . , n, of the polynomial pn are the eigen-

values of the Jacobi matrix Jn. The corresponding eigenvectors are the vectors

p
(
τ

(n)
i

)
.

Proof. The assertion follows from (1.10) by replacing x with τ
(n)
i for i = 1, 2, . . . , n.

Note that p
(
τ

(n)
i

)
is not the null vector since p0

(
τ

(n)
i

)
= k0 6= 0. �

Remark 1.25 The fact that the zeros of the polynomial pn are the eigenvalues
of the matrix Jn allows for a simple proof of Theorem 1.13. Since Jn is the first
principal minor of Jn+1, the eigenvalues of Jn separate those of Jn+1; see [82, p.
103] for a proof of this result.

An interesting property of the Jacobi matrix J∞ is that it is symmetrized under
normalization of the orthogonal polynomials pn.

Lemma 1.26 The Jacobi matrix J̃∞ corresponding to the orthonormal polynomials
p̃n is symmetric.

Proof. By virtue of (1.8) and (1.9), we obtain

ã′n =
√
c̄n+1, b̃′n = b̄n, c̃′n =

√
c̄n.

Therefore, we have

J̃∞ =


b̄0

√
c̄1 0

√
c̄1 b̄1

√
c̄2√

c̄2 b̄2
. . .

0
. . .

. . .

 .

�
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1.3 Classical orthogonal polynomials

1.3.1 General theory. According to most definitions, see for example [10, p.
150], [64, p. 21], [74, p. 141], and [23, p. 26], classical orthogonal polynomials are
those satisfying a linear second-order differential equation of hypergeometric type,
defined as follows.

Definition 1.27 A differential equation of the form

σy′′ + τy′ + λy = 0, with σ ∈ P2, τ ∈ P1, and λ ∈ R (1.11)

is called a differential equation of hypergeometric type or hypergeometric differen-
tial equation.

According to Chihara [10, p. 150], the equation (1.11) was shown by Bochner [6]
to fully characterize the class of classical orthogonal polynomials. Historically, the
classical polynomials and many of their common properties, including that they
solve a hypergeometric differential equation, had been known before.
A hypergeometric differential equation is a special case of a Sturm-Liouville equa-
tion [3, p. 497]. These usually have singularities in their solutions unless the
parameter λ takes certain values. Finding these values can be thought of as an
eigenproblem.

Remark 1.28 Every solution of (1.11) is an eigenfunction to the eigenvalue λ of
the differential operator D = D(σ, τ) that is defined by

D = −σ d2

dx2
− τ d

dx
.

Given the differential operator D, consider the problem of finding (non-singular)
eigenfunctions and their corresponding eigenvalues λ. Problems of this type typi-
cally arise in mathematical physics while solving a partial differential equation in
non-cartesian coordinates after applying the method of separation of variables. Un-
der certain conditions it can be shown that there is a discrete set of eigenvalues
λn, n = 0, 1, . . . , whose corresponding eigenfunctions form an orthogonal system
with respect to a certain inner product. In the particular setting of (1.11), these
eigenfunctions turn out to be the classical orthogonal polynomials.
That equation (1.11) indeed admits for polynomial solutions follows from the fact
that the differential operator D carries polynomials into other polynomials of the
same degree. Following Nikiforov and Uvarov [64], let us establish an explicit
formula for these polynomial solutions: the well-known Rodrigues formula.

Lemma 1.29 Let y be a solution to (1.11). Then the nth derivative yn := y(n),
n ∈ N0, satisfies the equation

σy′′n + τny
′
n + µnyn = 0, (1.12)

with τn = τ + nσ′, µn = λ+ nτ ′ + n(n−1)
2 σ′′.

Proof. It is straightforward to verify that y1 = y(1) satisfies the differential equa-
tion

σy′′1 + τ1y
′
1 + µ1y1 = 0,

with τ1 = τ + σ′, µ1 = λ+ τ ′. The proof for n > 1 follows by induction. �
The converse is also true. It can be shown (see [64, p. 6]) that every solution yn of
(1.12) with µj 6= 0, j = 0, . . . , n− 1, is of the form yn = y(n), where y is a solution
of (1.11). This observation allows one to construct particular solutions of (1.11) by
setting µn = 0. Then yn is a constant solution of (1.12). This means that when

λ = λn := −nτ ′ − n(n− 1)

2
σ′′,
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equation (1.11) has a particular solution of the form y = pn, that is, a polynomial
of degree n. These thoughts give rise to the Rodrigues formula presented in the
following.

Theorem 1.30 Let pn be a polynomial of degree n satisfying (1.11). Then

p(m)
n =

An,mBn
wm

dn−m

dxn−m
wn =

An,mBn
σmw

dn−m

dxn−m
(σnw), (1.13)

with

An,m := Am(λn), Am(λ) := (−1)m
m−1∏
j=0

µj(λ), A0(λ) = 1,

a normalizing constant Bn ∈ R \ {0}, wn(x) := 1
σ(x)e

∫ τn(x)
σ(x)

dx, and w := w0.

Proof. We multiply equations (1.11) and (1.12) by the functions

w(x) = 1
σ(x)e

∫ τ(x)
σ(x)

dx and wn(x) = 1
σ(x)e

∫ τn(x)
σ(x)

dx (1.14)

to obtain the self-adjoint forms

(σw y′)
′
+ λwy = 0, (σwny

′
n)
′
+ µnwnyn = 0.

From (1.14) the identity wn = σnw follows up to a positive multiplicative constant.
Now, we start with the self-adjoint form of the hypergeometric differential equation
for any 0 ≤ m ≤ n, i.e., we take

(σwmy
′
m)
′
+ µmwmym = 0.

Recall that σwm = wm+1 and y′m = ym+1. Then,

wmym = − 1

µm
(wm+1ym+1)′

=
1

µmµm+1
(wm+2ym+2)′′

= − 1

µmµm+1µm+2
(wm+3ym+3)′′′

=
Am
An

(wnyn)(n−m).

(1.15)

If y = pn is a polynomial of degree n then yn = p
(n)
n = Bn is a constant with

some Bn ∈ R \ {0}. Thus, from (1.15) the following explicit expression for the

polynomials ym = p
(m)
n is obtained,

p(m)
n =

An,mBn
wm

dn−m

dxn−m
wn =

An,mBn
σmw

dn−m

dxn−m
(σnw) .

�
An important special case is the formula for the polynomial pn itself.

Corollary 1.31 For m = 0 in (1.13), we obtain the formula

pn =
Bn
w

dn

dxn
(σnw) , (1.16)

and all polynomial solutions of (1.11) are defined by (1.16) up to a constant mul-
tiplicative factor. Each polynomial pn corresponds to the eigenvalue

λn = −nτ ′ − n(n− 1)

2
σ′′

of the differential operator D; see Remark 1.28.
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To derive the different classes of polynomials that arise from (1.11), three different
cases for the degree of the polynomial σ can be distinguished. For each, one can
write the linear polynomial τ in a general form with two degrees of freedom, say,
α, β ∈ R. Furthermore, the function w from (1.14) can be shown to satisfy the
differential equation

(σw)′ = τw. (1.17)

Solving this equation, one obtains, up to constant factors, all possible forms of the
function w,

w(x) =


(b− x)α(x− a)β , if σ(x) = (b− x)(x− a),

(x− a)αeβx, if σ(x) = (x− a),

eαx
2+βx, if σ(x) = 1.

Here, a and b are for our purposes real constants. By a linear change of variable,
the expressions for σ and w can be standardized into the following forms:

w(x) =


(1− x)α(1 + x)β , if σ(x) = 1− x2,

xαe−x, if σ(x) = x,

e−x
2

, if σ(x) = 1.

(1.18)

The last display omits the special case σ(x) = x2 which generates the Bessel poly-
nomials. These are not orthogonal on a real domain but in the complex plane; see
[64, p. 24]. Under the last transformations, equations (1.11) and (1.17) retain their
form and the corresponding polynomials pn remain polynomials in the new variable
and are, as before, defined by a Rodrigues formula of the form (1.13).
A consequence of the Rodrigues formula is that the function w, under mild restric-
tions, can be shown to be the weight function that defines the inner product with
respect to which the polynomials pn are orthogonal. The following result can be
found in a slightly different form in [64].

Theorem 1.32 Let the function w from (1.14) satisfy the conditions

σ(x)w(x)xj
∣∣∣
x=a,b

= 0, with j = 0, 1, . . . , (1.19)

at the endpoints of an interval [a, b] on the extended real line, and let w be positive
inside this interval. Then the polynomials pn corresponding to the eigenvalues λn
are orthogonal with respect to the measure induced by w on [a, b],∫ b

a

pn(x)pm(x)w(x) dx = δn,mhn, with hn > 0.

Proof. We assume n 6= m and take the differential equations satisfied by pn and
pm, respectively,

(σw p′n)
′
+ λnw pn = 0, (σw p′m)

′
+ λmw pm = 0.

We multiply the first equation by pm, the second by pn, and subtract the first from
the second. We now have

pn (σw pm)
′ − pm (σw pn)

′
= (λn − λm)w pn pm. (1.20)

The left-hand side can be written in the form

pn (σw pm)
′ − pm (σw pn)

′
=

d

dx

(
σwW (pn, pm)

)
,
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where W (pn, pm) :=

∣∣∣∣pn pm
p′n p′m

∣∣∣∣ is the Wronskian, that is, a polynomial. We integrate

both sides to obtain∫ b

a

pn(x)pm(x)w(x) dx =
1

λn − λm

[
σ(x)w(x)W (pn(x), pm(x))

]b
a
,

and since W
(
pn(x), pm(x)

)
is a polynomial in x, the right hand side vanishes by

(1.19). The positivity of the value hn is ensured by the positivity of the weight
function w(x) inside the support interval [a, b]. �

1.3.2 Examples. According to the different degrees of the polynomial σ (see
(1.18)) we obtain three different types of classical orthogonal polynomials. These
are usually normalized in some ad-hoc way and are therefore neither monic nor
orthonormal. This section is to give a concise overview over all classical polyno-
mials. A comprehensive reference with the most important properties and related
constants and formulae, also for the monic and normalized variants, is given in the
Appendix A.

Hermite polynomials

If σ(x) = 1, then w(x) = e−x
2

and

τ(x) = −2x, λn = 2n.

The corresponding polynomials are the Hermite polynomials Hn which are orthog-
onal over the real line (−∞,∞). They satisfy the Hermite differential equation

y′′(x)− 2xy′(x) + 2ny(x) = 0, with y = Hn,

and have the Rodrigues formula

Hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)
.

The corresponding three-term recurrence and initial conditions are

Hn+1(x) = 2xHn(x)− 2nHn−1(x), n = 0, 1, . . . ,

H−1(x) = 0, H0(x) = 1.

Hermite polynomials play an important role in probability theory and mathematical
physics, e.g., as eigenfunctions of the Fourier transform or in Schrödinger’s equation
for the harmonic linear oscillator; see, e.g., [2, p. 278], [74, p. 133], and [7, p.
346]. They do not carry any parameter, so there is only a single sequence of
Hermite polynomials. Since this work is concerned with methods to convert between
different polynomial families within the same class of orthogonal polynomials, they
will not play a role for the rest of this text.

Laguerre polynomials

If σ(x) = x, then w(x) = xαe−x and

τ(x) = 1 + α− x, λn = n.

To ensure the existence of the moments µn in (1.1), we must require α > −1.

The corresponding polynomials are the Laguerre polynomials L
(α)
n normalized by

L
(α)
n (1) =

(
n+α
n

)
. They are orthogonal over the positive real line [0,∞) and satisfy

the Laguerre differential equation

xy′′(x) + (1 + α− x)y′(x) + ny(x) = 0, with y = L(α)
n .

The Rodrigues formula reads

L(α)
n (x) =

1

Γ(n+ 1)
x−αex

dn

dxn
(
xα+ne−x

)
.
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Laguerre polynomials satisfy the three-term recurrence and initial conditions

(n+ 1)L
(α)
n+1(x) = (−x+ (2n+ α+ 1))L(α)

n (x)− (n+ α)L
(α)
n−1(x), n = 0, 1, . . . ,

L
(α)
−1 (x) = 0, L

(α)
0 (x) = 1.

They have many applications, mainly in quantum mechanics, and bear a close
connection to Hermite polynomials; see [2, p. 282] and [7, p. 353]. Sometimes they
are called generalized Laguerre polynomials or associated Laguerre polynomials; see,
e.g., [65, p. 48]. This convention is not used in this work as it would introduce
confusion with other denominations.

Jacobi polynomials

If σ(x) = 1− x2, then w(x) = (1− x)α(1 + x)β and

τ(x) = −(α+ β + 2)x+ β − α, λn = n(n+ α+ β + 1).

To ensure the existence of the moments µn in (1.1), we must require α, β > −1.

The corresponding polynomials are the Jacobi polynomials P
(α,β)
n normalized by

P
(α,β)
n (1) =

(
n+α
n

)
. They are orthogonal over the closed interval [−1, 1] and are

solutions to the Jacobi differential equation

(1− x2)y′′(x)−
(
(α+ β + 2)x+ α− β

)
y′(x) + n(n+ α+ β + 1)y(x) = 0,

where y = P
(α,β)
n . The Rodrigues formula is

P (α,β)
n (x) =

(−1)n

2nΓ(n+ 1)
(1− x)−α(1 + x)−β

dn

dxn
(
(1− x)n+α(1 + x)n+β

)
.

From this, we also obtain the useful identity

P (α,β)
n (x) = (−1)nP (β,α)

n (−x). (1.21)

Notice the change of the roles of α and β on the right hand side. If α = β, then the
weight function w is symmetric and (1.21) is equivalent to (1.3). Jacobi polynomials
satisfy the three-term recurrence and initial conditions

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)P
(α,β)
n+1 (x)

=
(
(2n+ α+ β)3x+ (2n+ α+ β + 1)(α2 − β2)

)
P (α,β)
n (x)

− 2(n+ α)(n+ β)(2n+ α+ β + 2)P
(α,β)
n−1 (x), n = 0, 1, . . . ,

P
(α,β)
−1 (x) = 0, P

(α,β)
0 (x) = 1.

(1.22)
Here, (a)b := a(a+ 1) · · · · · (a+ b− 1) is the rising factorial or Pochhammer symbol.
Notice that the recurrence is not usable if α = β = −1/2 and n = 1 to obtain the

polynomial P
(−1/2,−1/2)
1 . But from the fact that P

(−1/2,−1/2)
1 (x) is an odd linear

polynomial, normalized to P
(−1/2,−1/2)
1 (1) =

(
1/2
1

)
= 1

2 , we must have

P
(−1/2,−1/2)
1 (x) =

x

2
.

Jacobi polynomials have numerous applications. They arise, for example, in the
study of spherical symmetries and rotation groups. A few of these areas are men-
tioned below.
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Legendre polynomials

Legendre polynomials Pn are Jacobi polynomials P
(α,β)
n with α = β = 0,

Pn(x) = P (0,0)
n (x) =

(−1)n

2nΓ(n+ 1)

dn

dxn

((
1− x2

)n)
,

which are orthogonal with respect to the symmetric measure dλ(x) = dx. They
are solutions to the Legendre differential equation

(1− x2)P ′′n (x)− 2xP ′n(x) + n(n+ 1)Pn(x) = 0.

The recurrence formula (1.22) is simplified to

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x), n = 0, 1, . . . ,

P−1(x) = 0, P0(x) = 1.

Legendre polynomials can be used for series expansions of radial functions on the
two-dimensional unit sphere S2; see, e.g., [62].

Chebyshev polynomials of first and second kind

Chebyshev polynomials of first kind Tn and Chebyshev polynomials of second kind
Un are Jacobi polynomials for α = β = −1/2 and α = β = 1/2, respectively, with
a different normalization,

Tn(x) =
Γ(1/2)Γ(n+ 1)

Γ(n+ 1/2)
P (−1/2,−1/2)
n (x) = cos(nθ),

Un(x) =
Γ(3/2)Γ(n+ 2)

Γ(n+ 3/2)
P (1/2,1/2)
n (x) =

sin
(
(n+ 1)θ

)
sin θ

,

(1.23)

where the trigonometric formulae are valid for x ∈ [−1, 1] with θ = arccosx (at
the borders we need to take limits). Chebyshev polynomials satisfy the Chebyshev
differential equations of first and second kind,

(1− x2)T ′′n (x)− xT ′n(x) + n2Tn(x) = 0,

(1− x2)U ′′n (x)− 3xU ′n(x) + n(n+ 2)Un(x) = 0.

The three-term recurrences and initial conditions are

and

Tn+1(x) = 2xTn(x)− Tn−1(x),

T−1(x) = 0, T0(x) = 1, T1(x) = x,

Un+1(x) = 2xUn(x)− Un−1(x),

U−1(x) = 0, U0(x) = 1.

n = 1, 2, . . . ,

n = 0, 1, . . . ,

Note that the recurrence formula for the Chebyshev polynomials of first kind Tn
starts at n = 1. By virtue of (1.23), Chebyshev polynomials are closely related to
Fourier series, a fact that underlines their great importance for numerous applica-
tions.

Gegenbauer polynomials

Gegenbauer polynomials C
(α)
n , with α > −1/2 and α 6= 0, are Jacobi polynomials

with a different normalization,

C(α)
n (x) =

Γ(α+ 1/2)Γ(n+ 2α)

Γ(n+ α+ 1/2)Γ(2α)
P (α−1/2,α−1/2)
n (x).

The parameter α must not vanish since this would leave above formula indeter-

minate. However, the monic and normalized versions C̄
(α)
n (x) and C̃

(α)
n (x) are

well-defined, even when α = 0. The corresponding polynomials are identical,
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respectively, to the monic and normalized Chebyshev polynomials of first kind.
Gegenbauer polynomials are solutions to the Gegenbauer differential equation

(1− x2)y′′(x)− (2α+ 1)xy′(x) + n(n+ 2α)y(x) = 0, with y = C(α)
n .

The three-term recurrence and initial conditions are

(n+ 1)C
(α)
n+1(x) = 2(n+ α)xC(α)

n (x)− (n+ 2α− 1)C
(α)
n−1(x), n = 0, 1, . . . ,

C
(α)
−1 (x) = 0, C

(α)
0 (x) = 1.

Gegenbauer polynomials have applications as a generalization of Chebyshev and
Legendre polynomials to higher dimensional spheres; see [62].

1.4 Connection coefficients for classical orthogonal polynomials

The connection coefficients are those coefficients that allow one to express a se-
quence of orthogonal polynomials {pn}n∈N0

in terms of another sequence {qn}n∈N0

of orthogonal polynomials. Determining these coefficients is an elementary theoret-
ical question. For example, Askey [4] considered this problem among a line of other
related ones, like the linearization of products of orthogonal polynomials. However,
results about the connection coefficients between classical orthogonal polynomials
also have practical impact. This is the topic of Chapters 2 and 3. Therefore, the
purpose of this section is not only to survey basic results that are mostly found
in the literature, but to state a number of special cases that can be exploited for
numerical computations. Usually, most of the latter observations do not appear in
the usual references, although they are rather simple consequences of known results.

1.4.1 General theory.

Definition 1.33 Let {pn}n∈N0
and {qn}n∈N0

be two different sequences of orthog-
onal polynomials. Then every polynomial pj, j = 0, 1, . . . , can be represented as a
linear combination of the polynomials q0, q1, . . . , qj,

pj =

j∑
i=0

κi,jqi.

The polynomials {pn}n∈N0 are called the source polynomials and the polynomials
{qn}n∈N0 are called the target polynomials. The coefficients κi,j are called the
connection coefficients between {pn}n∈N0

and {qn}n∈N0
. For i < 0, j < 0, or j < i,

the connection coefficients are defined by κi,j = 0.

If 〈 · , · 〉dλ is the inner product with respect to which the target polynomials qn are
orthogonal, then the connection coefficients are clearly given by

κi,j =
〈qi, pj〉dλ
〈qi, qi〉dλ

. (1.24)

Remark 1.34 While connection coefficients κi,j exist for every pair of orthogonal
polynomials, only the cases where the sequences {pn}n∈N0

and {qn}n∈N0
belong to

the same type of classical orthogonal polynomials will be of interest for the rest
of this text. For example, we will only consider the connection problem for two
different sequences of, say, Jacobi polynomials, but not for a sequence of Hermite
and another sequence of Jacobi polynomials.

The following theorem shows that the connection coefficients can be generated by a
recurrence that follows directly from the three-term recurrences satisfied by source
and target polynomials. This is a slightly modified version of Theorem 1 in [59, p.
295].
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Theorem 1.35 Let {pn}n∈N0
be a sequence of orthogonal polynomials satisfying

the three-term recurrence and initial conditions

pn+1(x) = (anx− bn)pn(x)− cnpn−1(x), n = 0, 1, . . . ,

p−1(x) = 0, p0(x) = k0,
(1.25)

that have leading coefficients kn. Furthermore, let {qn}n∈N0
be a sequence of poly-

nomials, orthogonal with respect to the measure dλ, that satisfy the three-term re-
currence and the initial conditions

qn+1(x) = (ânx− b̂n)qn(x)− ĉnqn−1(x), n = 0, 1, . . . ,

q−1(x) = 0, q0(x) = k̂0,
(1.26)

with ĥn = 〈qn, qn〉dλ and leading coefficients k̂n. Then the connection coefficients
κi,j in the formula

pj =

j∑
i=0

κi,jqi

satisfy the recurrence formula

κi,j = aj−1

(
1

âi

ĥi+1

ĥi
κi+1,j−1 +

b̂i
âi
κi,j−1 +

ĉi
âi

ĥi−1

ĥi
κi−1,j−1

)
− bj−1κi,j−1 − cj−1κi,j−2,

(1.27)

for 0 ≤ i ≤ j with the initial conditions

κi,j =


k0

k̂0

(
a0

â0
b̂0 − b0

)
, if i = 0 and j = 1,

ki

k̂i
, if i = j.

(1.28)

Proof. Let us start with the general case. First, we use (1.24) and the three-term
recurrence (1.25) to obtain

κi,j =
〈qi, pj〉dλ
〈qi, qj〉dλ

=
1

ĥi

(
aj−1〈qi, xpj−1〉dλ − bj−1〈qi, pj−1〉dλ − cj−1〈qi, pj−2〉dλ

)
.

(1.29)
The shift property of the inner product, i.e., 〈 · , x · 〉dλ = 〈x · , · 〉dλ, allows us to
apply the three-term recurrence (1.26) to expand the polynomial x·qi; cf. Corollary
1.18. Then,

〈qi, x·pj−1〉dλ = 〈xqi, pj−1〉dλ =
1

âi
〈qi+1, pj−1〉dλ+

b̂i
âi
〈qi, pj−1〉dλ+

ĉi
âi
〈qi−1, pj−1〉dλ.

It remains to combine this result with (1.29) and identify the remaining inner prod-

ucts with the connection coefficients, e.g., 〈qi, pj−1〉dλ = ĥiκi,j−1. This completes
the proof of the recurrence formula.
For the initial conditions, assume i = j first. Both pi and qi are orthogonal to every
polynomial of strictly smaller degree, so the following identity is readily obtained,

κi,i =
〈qi, pi〉dλ

ĥi
=
〈qi, kixi〉dλ

ĥi
=
ki

k̂i

〈qi, k̂ixi〉dλ
ĥi

=
ki

k̂i

〈qi, qi〉dλ
ĥi

=
ki

k̂i
. (1.30)
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Finally, for the coefficient κ0,1, the proof amounts to another direct calculation,

κ0,1 =
〈q0, p1〉dλ

ĥ0

=
〈k̂0, (a0x− b0)k0〉dλ

ĥ0

=
1

ĥ0

k0

k̂0

〈k̂0, (a0x− b0)k̂0〉dλ

=
1

ĥ0

k0

k̂0

(
a0

â0
〈k̂0, (â0x− b̂0)k̂0〉dλ +

(
a0

â0
b̂0 − b0

)
〈k̂0, k̂0〉dλ

)

=
1

ĥ0

k0

k̂0

(
a0

â0
〈q0, q1〉dλ +

(
a0

â0
b̂0 − b0

)
〈q0, q0〉dλ

)

=
k0

k̂0

(
a0

â0
b̂0 − b0

)
.

�
Not surprisingly, in the case of symmetric measures, the recurrence is simplified.
The result is an immediate consequence of the last theorem.

Corollary 1.36 Let two polynomial sequences {pn}n∈N0 and {qn}n∈N0 be given that
satisfy the assumptions of Theorem 1.35. Assume furthermore, that both sequences
are orthogonal with respect to symmetric measures. Then the connection coefficients
κi,j satisfy the simplified recurrence formula

κi,j = aj−1

(
1

âi

ĥi+1

ĥi
κi+1,j−1 +

ĉi
âi

ĥi−1

ĥi
κi−1,j−1

)
− cj−1κi,j−2, (1.31)

for 0 ≤ i ≤ j with initial conditions κi,i = ki/k̂i, i = 0, 1, . . . , and κ0,1 = 0. This
implies κi,j = 0 if i+ j is odd.

Proof. We take the result from Theorem 1.35 and notice that b̂i = bj−1 = 0 by
symmetry of the corresponding measures; cf. Lemma 1.17. �
Once the connection coefficients between two sequences of orthogonal polynomials
are obtained, they are also available for differently normalized variants.

Lemma 1.37 Let {pn}n∈N0 and {qn}n∈N0 be two sequences of polynomials with

leading coefficients kn, k̂n, and squared norms hn, ĥn, n = 0, 1, . . . , respectively.
Furthermore, let {p∗n}n∈N0

and {q∗n}n∈N0
be differently normalized versions of the

same polynomials with leading coefficients k∗n, k̂∗n and squared norms h∗n, ĥ∗n, n =
0, 1, . . . , respectively. If in the equation

pj =

j∑
i=0

κi,jqi, j = 0, 1, . . . , (1.32)

the connection coefficients κi,j are known, then in the equation

p∗j =

j∑
i=0

κ∗i,jq
∗
i , j = 0, 1, . . . ,

the connection coefficients κ∗i,j are given by

κ∗i,j =
k∗j
kj

k̂i

k̂∗i
κi,j , i, j = 0, 1, . . . .
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(a) Non-symmetric measure.
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(b) Symmetric measure.

Figure 1.1: Schematic representation of a triangular connection matrix K = (κi,j)
between two sequences of orthogonal polynomials, and the recurrence for the con-
nection coefficients κi,j . Non-shaded areas represent coefficients that always van-
ish. Black squares represent entries given by the initial conditions; these are κi,i,
i = 0, 1, . . . , and κ0,1. Gray squares stand for the rest of the coefficients that are
determined by the three-term recurrence. For the computation of one of these co-
efficients κi,j (represented by ∗ ) the entries κi−1,j−1, κi,j−1, κi,j−2, and κi+1,j−1

(represented by ) have to be known. In the case of a symmetric measure, the re-
currence is simpler since the dependence on κi,j−1 is removed. Also, the coefficient
κ0,1 is known to be zero as is the rest corresponding to the non-shaded boxes. The
rest of the coefficients is aligned in a checkerboard pattern.

If furthermore knk
∗
n > 0 and k̂nk̂

∗
n > 0, i.e., the sign of the leading coefficients is

the same, then

κ∗i,j =

√
h∗j
hj

ĥi

ĥ∗i
κi,j , i, j = 0, 1, . . . .

Proof. We replace pj = (kj/k
∗
j )p∗j and qi = (k̂i/k̂

∗
i )q∗i in (1.32). This proves the

first assertion. For the second, we replace pj = (hj/h
∗
j )

1/2p∗j and qi = (ĥi/ĥ
∗
i )

1/2q∗i
in the same equation. �
The recurrence for the connection coefficients κi,j is illustrated in Figure 1.1. While,
in principle, it allows to numerically compute every connection coefficient κi,j , it
is only of marginal use in practice. To see this, let us first define the connection
matrix.

Definition 1.38 Let {pn}n∈N0
and {qn}n∈N0

be two sequences of orthogonal poly-
nomials, and denote by κi,j the connection coefficients between them. Then the
upper triangular matrix

K := (κi,j)
N
i,j=0 ∈ R(N+1)×(N+1), N ∈ N0,

is called the connection matrix of degree N between {pn}n∈N0
and {qn}n∈N0

.

This matrix allows for writing the conversion between expansions in different sys-
tems of orthogonal polynomials in a more succinct matrix-vector notation.
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Lemma 1.39 Let a function f be represented by a finite expansion in a sequence
of orthogonal polynomials {pn}n∈N0

, i.e.,

f =

N∑
j=0

xjpj ,

with N ∈ N0. If {qn}n∈N0
is another sequence of orthogonal polynomials, then the

corresponding expansion coefficients yj in

f =

N∑
j=0

yjqj ,

and the coefficients xj in the previous expansion are related by the equation

y = K x, with y = (yj)
N
j=0, x = (xj)

N
j=0, (1.33)

where K is the connection matrix of degree N between {pn}n∈N0
and {qn}n∈N0

.

For most problems under consideration, one needs an efficient way to apply the
connection matrix K. Even though all its entries can be evaluated with a total
of O(N2) arithmetic operations using the recurrence formula (1.27), this is usually
considered too expensive as one is often interested only in applying the matrix K to
a vector like in (1.33). Computing the entries of K explicitly and then multiplying
the usual way is in most cases not the most efficient way.
As we shall see later in Chapters 2 and 3, there exist algorithms that apply K to
a vector at a more favorable cost than O(N2). These methods will not be based
on the recursive procedure, but will use explicit expressions for the connection
coefficients κi,j . This compels us to first seek these expressions.

1.4.2 Explicit expressions. A basic problem is to obtain explicit expressions for
the connection coefficients κi,j between two sequences of orthogonal polynomials.
Another question, although not important here, is to ask whether these coefficients
are positive. These and related problems have a long history. Also, many results
in this area that have been thought to be new in the first place, have later been
re-discovered in older works. As a starting point for the study of results about
connection coefficients, reading [4] or [2] is recommended. Both texts contain almost
all important results used in this work that are related to the classical orthogonal
polynomials. One also finds a lot of background on relevant historical developments
there. Other references include [36, 59, 73].
The approach to connection coefficients used in this work is based on [59] using
the recurrence that was proven in Theorem 1.35 and Corollary 1.36 for symmetric
measures. It should be noted that this is by no means the only valid way to go. In
most cases, there are several options how expressions for the connection coefficients
can be derived; see [4].
The recurrence formulae (1.27) and (1.31) can help generating explicit expressions
for the connection coefficients κi,j by using a procedure that relies on enough sample
expressions that are generated by the recurrence. While this approach might not be
mathematically as sophisticated as others, it has the advantage that it requires only
very little extra knowledge about the orthogonal polynomials at hand. To obtain a
concrete expression for the connection coefficients κi,j the following program from
[59, p. 296] can be followed. It consists of two steps.
First, one uses the recursive formulae and initial conditions from Theorem 1.35 or
Corollary 1.36 to generate the connection coefficients κi,j for, say, i, j = 0, . . . , n,
for some finite and not too large n. It is convenient, if not imperative, to realize this
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step with a symbolic computation software such as Mathematica1. The computed
expressions are then, if possible, simplified and rearranged. This should lead to a
guess how the connection coefficients κi,j might be defined explicitly.
The second step consists in proving that the guessed formula is indeed correct by
showing that the recurrence formula (1.27) and the initial conditions (1.28) are
satisfied. It can be implemented with a symbolic computation software to check
the respective identities.
In the following, a number of results which yield explicit expressions for the con-
nection coefficients between various families of classical orthogonal polynomials are
given. We will observe several special cases where the corresponding connection
matrix K has a particular structure. The terms used to characterize these matrices
are explained in Chapter 2.
Generally, the expressions will involve fractions of gamma functions, some of which
can formally become singular in certain special cases. To avoid obscurities which
could lead to the impression that the obtained expressions would not be always well
defined, let us fix how the results should be interpreted.
For a family of orthogonal polynomials with one or more parameters, e.g., the

Gegenbauer polynomials C
(α)
n carry a single parameter α, the connection coeffi-

cients between two sequences of polynomials obviously depend on these parameters.
It can be checked easily that all quantities in the definition of the mentioned classi-
cal orthogonal polynomials depend smoothly on the respective parameters. Thus,
Theorem 1.35 also asserts that the generated connection coefficients will depend
continuously on the involved parameters. In problematic cases it is therefore al-
lowed to take limits in the expressions for the connection coefficients, with respect
to the parameters. The following finite limit is then frequently encountered.

Lemma 1.40 Let n,m ∈ N0. Then

lim
ν→m

Γ(n− ν)

Γ(−ν)
=

(−1)n
Γ(m+ 1)

Γ(m− n+ 1)
, if n ≤ m,

0, else.

Proof. First, assume n ≤ m. The function Γ(z) has isolated poles of order one at
z = n−m and z = −m with respective residues

Res(Γ, n−m) =
(−1)m−n

Γ(m− n+ 1)
, Res(Γ,−m) =

(−1)m

Γ(m+ 1)
.

Since Γ(z) is analytic in the punctured open discs of radius one centered at either
pole, we suppose without loss of generality that 0 < |m − ν| < 1 and consider
the Laurent series expansion around z = n −m and z = −m, each multiplied by
(m− ν), i.e.,

(m− ν)Γ(n− ν) =

∞∑
j=1

aj(m− ν)j +
(−1)m−n

Γ(m− n+ 1)
,

(m− ν)Γ(−ν) =

∞∑
j=1

bj(m− ν)j +
(−1)m

Γ(m+ 1)
,

with certain aj , bj ∈ C, j ∈ N. Since the limits

lim
ν→m

(m− ν)Γ(n− ν) =
(−1)m−n

Γ(m− n+ 1)
, lim

ν→m
(m− ν)Γ(−ν) =

(−1)m

Γ(m+ 1)

1Mathematica is a registered trademark of Wolfram Research, Inc.
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exist, we have

lim
ν→m

Γ(n− ν)

Γ(−ν)
= (−1)n

Γ(m+ 1)

Γ(m− n+ 1)
.

For the case n > m, we note that while Γ(n−m) is finite, the function 1/Γ(z) has
a zero of order one at z = −m. Therefore, the limit limν→m Γ(n− ν)/Γ(−ν) must
vanish. �
The last result should be kept in mind for each explicit expressions for connection
coefficients κi,j . It is understood that for parameter combinations for which the
numerator or denominator (or both) would be undefined due to poles of the gamma
function, one has to take the limit with respect to one parameter and consider
Lemma 1.40 to obtain a valid expression.

Laguerre polynomials

The Laguerre family of orthogonal polynomials carries a single parameter α > −1.
An explicit expression for the connection coefficients between these polynomials is
given in Askey [4, p. 57], without any reference, but mentioning that it is very
old. It can also be obtained by the “guessing” procedure from above, although the
result itself is not given in [59]. The expression for the connection coefficients turns
out to be reasonably simple, indeed so concise that it serves as a good example for
patterns common to all classical orthogonal polynomials.

Definition 1.41 Let
{
L̄

(α)
n

}
n∈N0

and
{
L̄

(β)
n

}
n∈N0

with α, β > −1 be two families

of monic Laguerre polynomials. Then the connection coefficients κ̄i,j in the formula

L̄
(α)
j =

j∑
i=0

κ̄i,jL̄
(β)
i , j = 0, 1, . . . ,

are denoted κ̄i,j = κ̄
L,(α)→(β)
i,j or κ̄

(α)→(β)
i,j if it is clear that the related polynomi-

als are the Laguerre polynomials. The corresponding connection matrix is denoted
K̄L,(α)→(β) or K̄(α)→(β) for short.

Theorem 1.42 Let α, β > −1. Then the connection coefficients between the se-

quences of Laguerre polynomials
{
L̄

(α)
n

}
n∈N0

and
{
L̄

(β)
n

}
n∈N0

are given by

κ̄
(α)→(β)
i,j =

(−1)i+j

Γ(α− β)

Γ(j + 1)

Γ(i+ 1)

Γ(j − i+ α− β)

Γ(j − i+ 1)
, with 0 ≤ i ≤ j.

Proof. Verify that the recurrence formula (1.27) and initial conditions (1.28) are
satisfied. �
Let us look at a special case, namely when the difference between β and α is a pos-
itive integer. Using Lemma 1.40, the following simple formula is readily obtained.

Corollary 1.43 Let −1 < α < β such that β − α is a positive integer. Then the

connection coefficients between the sequences of Laguerre polynomials
{
L̄

(α)
n

}
n∈N0

and
{
L̄

(β)
n

}
n∈N0

are given by

κ̄
(α)→(β)
i,j =


(
β − α
j − i

)
Γ(j + 1)

Γ(i+ 1)
, if 0 ≤ i ≤ j ≤ i+ β − α,

0, else.
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This implies that the degree-n connection matrix

β−α+1︷ ︸︸ ︷

K̄(α)→(β) =



1 ∗ . . . ∗

1 ∗
. . .

1 ∗ ∗

1
. . .

...
. . . ∗

1


is stricly (0, β − α)-banded; see Definition 2.2 on page 60.

Proof. Use Theorem 1.42 in conjunction with Lemma 1.40. �
One can then take this theme even a step further and look at the case when β =
α+ 1.

Corollary 1.44 Let −1 < α. Then the connection coefficients between the se-

quences of Laguerre polynomials
{
L̄

(α)
n

}
n∈N0

and
{
L̄

(α+1)
n

}
n∈N0

are given by

κ̄
(α)→(α+1)
i,j =


1, if j = i,

i+ 1, if j = i+ 1,

0, else.

Thus, the connection matrix

K̄(α)→(α+1) =



1 1
1 2

1
. . .

. . . n
1


is strictly (0, 1)-banded; see Definition 2.2 on page 60.

Proof. The proof is a direct consequence of the preceding Corollary. �
The last two results are remarkable because they reveal special cases where the
connection matrix is not densely populated. This is usually an appealing prop-
erty from a computational point of view, since the cost of an n × n matrix-vector
multiplication can then be reduced from O(n2) to O(n).
A similar observation about structuredness of the connection matrix can be made
in the dual case, i.e., when β − α is a negative integer. But let us start here with
the special case β = α− 1.

Corollary 1.45 Let 0 < α. Then the connection coefficients between the sequences

of Laguerre polynomials
{
L̄

(α)
n

}
n∈N0

and
{
L̄

(α−1)
n

}
n∈N0

are given by

κ̄
(α)→(α−1)
i,j =

(−1)jΓ(j + 1)

(−1)iΓ(i+ 1)
, with 0 ≤ i ≤ j.

Thus, the connection matrix

K̄(α)→(α−1) = triu(u vT),

with
u =

(
(−1)i/Γ(i+ 1)

)n
i=0

, v =
(
(−1)jΓ(j + 1)

)n
j=0

is upper (1)-generator representable semiseparable; see Definition 2.6 on page 62.

Proof. The result is a direct consequence of Theorem 1.42. �
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Now, we are ready to show that larger steps, i.e., β = α − k, k ∈ N, result in
connection matrices with semiseparability rank equal to k.

Corollary 1.46 Let −1 < β < α such that α−β is a positive integer. Then the con-

nection matrix K̄(α)→(β) between the sequences of Laguerre polynomials {L̄(α)
n }n∈N0

and {L̄(β)
n }n∈N0 is upper (α− β)-generator representable semiseparable.

Proof. The matrix K̄(α)→(β) is a product of α − β many upper (1)-generator
representable semiseparable matrices,

K̄(α)→(β) = K̄(β+1)→(β) · K̄(β+2)→(β+1) · · · · · K̄(α−1)→(α−2) · K̄(α)→(α−1),

and is as such upper (α − β)-generator representable semiseparable; see Theorem
2.7 on page 62. �
We have now identified important special cases, more precisely, those that represent
integer steps from α to β which give rise to rank-structured connection matrices
K(α)→(β). The structuredness of these matrices can be exploited to apply the
connection matrix to a vector with O(n) operations instead of O(n2).

Remark 1.47 The situation for the connection coefficients between different La-
guerre polynomials is typical and the theme repeats in the case of Jacobi polyno-
mials, albeit in a slightly more complicated way; see Section 1.4.2.
As shown in Figure 1.2, any connection between different sequences of Laguerre

polynomials, {L̄(α)
n }n∈N0

and {L̄(β)
n }n∈N0

, can be decomposed into two parts: a
transformation from the parameter α to a certain α′ and then from α′ to the
actual target β, where α′ has been determined such that α′ − α is an integer and
|β − α′| < 1.
The purpose of such a decomposition becomes clear when one is interested in ap-
plying the connection matrix K̄(α)→(β) efficiently. This matrix can be factored into
the product of the heavily structured matrix K̄(α)→(α′) (which is either banded or

semiseparable) and the matrix K̄(α′)→(β), i.e.,

K̄(α)→(β) = K̄(α′)→(β) K̄(α)→(α′).

The matrix K̄(α′)→(β), as we shall see in Chapter 3, can also be applied efficiently.

This completes the important results about the connection coefficients in the La-
guerre case. Let us turn to the second and arguably more important class of Jacobi

polynomials. The situation here is more complex since Jacobi polynomials P
(α,β)
n

carry to parameters α, β > −1. However, if one parameter is kept fixed, then
the connection coefficients have a similar behavior, as observed for the Laguerre
polynomials, with respect to structuredness of the connection matrices.

Jacobi polynomials with one parameter kept fixed

Definition 1.48 Let {P̄ (α,β)
n }n∈N0

with α, β > −1 and {P̄ (γ,δ)
n }n∈N0

with γ, δ > −1
be two families of monic Jacobi polynomials. Then the connection coefficients κ̄i,j
in the formula

P̄
(α,β)
j =

j∑
i=0

κ̄i,jP̄
(γ,δ)
i , j = 0, 1, . . . , (1.34)

are denoted κ̄i,j = κ
J,(α,β)→(γ,δ)
i,j or just κ̄

(α,β)→(γ,δ)
i,j if it is clear that the correspond-

ing polynomials are the Jacobi polynomials. The corresponding connection matrix
is denoted K̄J,(α,β)→(γ,δ) or K̄(α,β)→(γ,δ) for short.

As said before, the connection between sequences of Jacobi polynomials is some-
what symmetric to the Laguerre case. But unlike Laguerre polynomials, Jacobi
polynomials carry two parameters, α and β. It is therefore natural to start with
the cases where one of these parameters remains fixed. A useful observation is that
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(0, k)-banded
(0, 1)-bandedsmall distance

upper (k)-generator
representable
semiseparable

upper (1)-generator
representable
semiseparable small distance

α α+ 1 α+ 2 α+ k − 1 α+ kα− 1α− 2α− k + 1α− k

β α′ α α′ β

. . . . . .

Figure 1.2: The connection between Laguerre polynomials: If the parameter α in
the polynomials Ln(α) is increased or decreased in unit steps then the connection
matrices are (0, 1)-banded or upper (1)-generator representable semiseparable, re-
spectively. Integer steps of length k lead to (0, k)-banded or upper (k)-generator
representable semiseparable matrices. General steps can be decomposed into an
integer length step and a second step that spans only a small distance.

once an expression with respect to one parameter has been obtained, the identity

P
(α,β)
n (x) = (−1)nP

(β,α)
n (−x) readily allows to obtain the corresponding expres-

sions with the roles of α and β exchanged. This is made precise in the following
result.

Lemma 1.49 The connection coefficients for monic Jacobi polynomials satisfy the
identity

κ̄
(α,β)→(γ,δ)
i,j = (−1)i+j κ̄

(β,α)→(δ,γ)
i,j .

Proof. Take the connection coefficients κ̄
(α,β)→(γ,δ)
i,j which satisfy

P̄
(α,β)
j (x) =

j∑
i=0

κ̄
(α,β)→(γ,δ)
i,j P̄

(γ,δ)
i (x), j= 0, 1, . . . .

Then use (1.21) to obtain

P̄
(β,α)
j (−x) =

j∑
i=0

(−1)i+j κ̄
(α,β)→(γ,δ)
i,j P̄

(δ,γ)
i (−x), j= 0, 1, . . . .

�
The following result is found in [4, p. 63] for Jacobi polynomials in the standard
normalization, and in [59, p. 305] for monic Jacobi polynomials, in the latter with
the roles of α and β exchanged due to a different definition.

Theorem 1.50 Let α, γ, β > −1. Then the connection coefficients between the

sequences of Jacobi polynomials {P̄ (α,β)
n }n∈N0

and {P̄ (γ,β)
n }n∈N0

are given by

κ̄
(α,β)→(γ,β)
i,j =

1

Γ(α− γ)

2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(j + β + 1)

Γ(i+ β + 1)

Γ(2i+ γ + β + 2)

Γ(2j + α+ β + 1)

× Γ(j + i+ α+ β + 1)

Γ(j + i+ γ + β + 2)

Γ(j − i+ α− γ)

Γ(j − i+ 1)

with 0 ≤ i ≤ j.
Proof. Verify that the recurrence formula (1.27) and initial conditions (1.28) are
satisfied. �
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Now, we are in a position to use Lemma 1.49 to derive the corresponding expression
for the connection coefficients when the parameter α is kept fixed.

Corollary 1.51 Let α, β, δ > −1. Then the connection coefficients between the

sequences of Jacobi polynomials {P̄ (α,β)
n }n∈N0

and {P̄ (α,δ)
n }n∈N0

are given by

κ̄
(α,β)→(α,δ)
i,j = (−1)i+j κ̄

(β,α)→(δ,α)
i,j

=
(−1)i+j

Γ(β − δ)
2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(j + α+ 1)

Γ(i+ α+ 1)

Γ(2i+ α+ δ + 2)

Γ(2j + α+ β + 1)

× Γ(j + i+ α+ β + 1)

Γ(j + i+ α+ δ + 2)

Γ(j − i+ β − δ)
Γ(j − i+ 1)

,

with 0 ≤ i ≤ j.
As for the Laguerre case, important special cases are obtained for integer changes
in one of the parameters α and β.

Corollary 1.52 Let −1 < α < γ and −1 < β < δ. If γ − α is a positive inte-
ger, then the connection coefficients between the sequences of Jacobi polynomials

{P̄ (α,β)
n }n∈N0 and {P̄ (γ,β)

n }n∈N0
are given by

κ̄
(α,β)→(γ,β)
i,j =



(−1)i+j
2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(j + β + 1)

Γ(i+ β + 1)

×
(
γ − α
j − i

)
Γ(2i+ γ + β + 2)

Γ(2j + α+ β + 1)

×Γ(j + i+ α+ β + 1)

Γ(j + i+ γ + β + 2)
, if 0 ≤ i ≤ j ≤ j + γ − α,

0, else,

and if δ − β is a positive integer, then the connection coefficients between the se-

quences of Jacobi polynomials {P̄ (α,β)
n }n∈N0 and {P̄ (α,δ)

n }n∈N0 are given by

κ̄
(α,β)→(α,δ)
i,j =



2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(j + α+ 1)

Γ(i+ α+ 1)

×
(
δ − β
j − i

)
Γ(2i+ α+ δ + 2)

Γ(2j + α+ β + 1)

×Γ(j + i+ α+ β + 1)

Γ(j + i+ α+ δ + 2)
, if 0 ≤ i ≤ j ≤ i+ δ − β,

0, else.

This implies that the connection matrix

γ − α+ 1︷ ︸︸ ︷

K̄(α,β)→(γ,β) =



1 ∗ . . . ∗

1 ∗
. . .

1 ∗ ∗

1
. . .

...
. . . ∗

1


is strictly (0, γ−α)-banded. Similarly, the matrix K̄(α,β)→(α,δ) is strictly (0, δ−β)-
banded; see Definition 2.2 on page 60.
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Proof. Use Theorem 1.50 and Corollary 1.51 in conjunction with Lemma 1.40. �
As seen before, unit changes to the parameters result in even more simpler struc-
tured connection matrices.

Corollary 1.53 Let α, β > −1. Then the connection coefficients between the se-

quences of Jacobi polynomials {P̄ (α,β)
n }n∈N0

and {P̄ (α+1,β)
n }n∈N0

, or {P̄ (α,β)
n }n∈N0

and {P̄ (α,β+1)
n }n∈N0 , respectively, are given by

κ̄
(α,β)→(α+1,β)
i,j =


1, if j = i,

−2j(j + β)

(2j + α+ β)(2j + α+ β + 1)
, if j = i+ 1,

0, else,

κ̄
(α,β)→(α,β+1)
i,j =


1, if j = i,

2j(j + α)

(2j + α+ β)(2j + α+ β + 1)
, if j = i+ 1,

0, else.

Thus, the connection matrix

K̄(α,β)→(α+1,β) =



1 ∗
1 ∗

1
. . .

. . . ∗
1


is strictly (0, 1)-banded. Similarly, the matrix K̄(α,β)→(α,β+1) is (0, 1)-banded; see
Definition 2.2 on page 60.

Proof. The proof is a direct consequence of the preceding Corollary. �
Also similar to the Laguerre case, let us start in the other direction with the cases
γ = α− 1 and δ = β − 1, respectively.

Corollary 1.54 Let α > 0 and β > −1. Then the connection coefficients between

the sequences of Jacobi polynomials {P̄ (α,β)
n }n∈N0 and {P̄ (α−1,β)

n }n∈N0 are given by

κ̄
(α,β)→(α−1,β)
i,j =

2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(j + β + 1)

Γ(i+ β + 1)

Γ(2i+ α+ β + 1)

Γ(2j + α+ β + 1)
,

with 0 ≤ i ≤ j. Let α > −1 and β > 0. Then the connection coefficients between

the sequences of Jacobi polynomials {P̄ (α,β)
n }n∈N0

and {P̄ (α,β−1)
n }n∈N0

are given by

κ̄
(α,β)→(α,β−1)
i,j = (−1)i+j

2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(j + α+ 1)

Γ(i+ α+ 1)

Γ(2i+ α+ β + 1)

Γ(2j + α+ β + 1)
,

with 0 ≤ i ≤ j. As a consequence, the matrices

K̄(α,β)→(α−1,β) = triu
(
u vT

)
,

with

u =

(
Γ(2i+ α+ β + 1)

2iΓ(i+ 1)Γ(i+ β + 1)

)n
i=0

, v =

(
2jΓ(j + 1)Γ(j + β + 1)

Γ(2j + α+ β + 1)

)n
j=0

,



1.4. CONNECTION COEFFICIENTS FOR CLASSICAL ORTHOGONAL POLYNOMIALS 25

. . . . . .

...

...

. . . . . .

...

...

. . . . . .
...

...

. . . . . .

...

...

. . . . . .

...

...

. . . . . .

...

...
. . . . . .

...

...

. . . . . .

...

...

. . . . . .

...

...

(0, k)-banded

(0, 1)-bandedsmall distance

upper (k)-generator
representable semiseparable

upper (1)-generator representable
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α α+ 1 α+ 2 α+ k − 1 α+ kα− 1α− 2α− k + 1α− k

γ α′ α α′ γ
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β + 1

β + 2
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β + k

δ
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δ

Figure 1.3: The connection between Jacobi polynomials where one parameter is kept
fixed. If either α or β are increased or decreased in unit steps, then the connection
matrices are (0, 1)-banded or upper (1)-generator representable semiseparable, re-
spectively. Integer steps of length k lead to (0, k)-banded or upper (k)-generator
representable semiseparable matrices. General steps can be decomposed into a step
of integer length and a second step that spans only a small distance.

and
K̄(α,β)→(α,β−1) = triu

(
u vT

)
,

with

u =

(
(−1)iΓ(2i+ α+ β + 1)

2iΓ(i+ 1)Γ(i+ α+ 1)

)n
i=0

, v =

(
2jΓ(j + 1)Γ(j + α+ 1)

(−1)jΓ(2j + α+ β + 1)

)n
j=0

,

are upper (1)-generator representable semiseparable; see Definition 2.6 on page 62.

Proof. The result is a direct consequence of Theorem 1.50 and Corollary 1.51. �
Now, following the same principle as before, larger integer steps result in higher
order semiseparable matrices.

Corollary 1.55 Let α > γ > −1 and β > −1 such that α − γ is a positive
integer. Then the connection matrix K̄(α,β)→(γ,β) between the sequences of Jacobi

polynomials {P̄ (α,β)
n }n∈N0

and {P̄ (γ,β)
n }n∈N0

is upper (α−γ)-generator representable
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semiseparable. Analogously, the connection matrix K̄(α,β)→(α,δ) is upper (β − δ)-
generator representable semiseparable, if for β > δ > −1 and α > −1, the value
β − δ is a positive integer.

Proof. We can use the same argument as in Corollary 1.46 on page 21. �

Jacobi polynomials – general case

The connection between Jacobi polynomials where both parameters are varied is
more involved. Askey [4, p. 62] uses a relatively direct approach to calculate the
expressions for the connection coefficients in the general case, using the Rodrigues
formula and a derivative identity; see also Section 1.5. He arrives at a formula that
is equivalent to the one shown below, but for Jacobi polynomials in the standard
normalization. From that, the special cases with one parameter fixed are derived.
Another way is to combine the results for changes in one parameter, which have been
obtained in the last section, to obtain expressions for changes in both parameters.
This can be done by using the identities

K̄(α,β)→(γ,δ) = K̄(γ,β)→(γ,δ) K̄(α,β)→(γ,β),

K̄(α,β)→(γ,δ) = K̄(α,δ)→(γ,δ) K̄(α,β)→(α,δ).

The following theorem combines these to express the connection coefficients in the
general case through the coefficients for changes in a single parameter. A similar
result is given in [59, p. 306].

Lemma 1.56 Let α, γ, β, δ > −1. Then the connection coefficients between the

sequences of Jacobi polynomials {P̄ (α,β)
n }n∈N0 and {P̄ (γ,δ)

n }n∈N0 satisfy the identity

κ̄
(α,β)→(γ,δ)
i,j =

j∑
k=i

κ̄
(γ,β)→(γ,δ)
i,k κ̄

(α,β)→(γ,β)
k,j . (1.35)

Proof. Consider the connection coefficients between the sequences
{
P̄

(α,β)
n

}
n∈N0

,{
P̄

(γ,β)
n

}
n∈N0

, and
{
P̄

(γ,δ)
n

}
n∈N0

as given in Theorems 1.50 and 1.51. Then

P̄
(α,β)
j =

j∑
k=0

κ̄
(α,β)→(γ,β)
k,j P̄

(γ,β)
k

=

j∑
k=0

κ̄
(α,β)→(γ,β)
k,j

k∑
i=0

κ̄
(γ,β)→(γ,δ)
i,k P̄

(γ,δ)
i

=

j∑
i=0

j∑
k=i

κ̄
(γ,β)→(γ,δ)
i,k κ̄

(α,β)→(γ,β)
k,j P̄

(γ,δ)
i .

Thus, we have

κ̄
(α,β)→(γ,δ)
i,j =

j∑
k=i

κ̄
(γ,β)→(γ,δ)
i,k κ̄

(α,β)→(γ,β)
k,j .

Analogous results hold for differently normalized variants. �
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Theorem 1.57 Let α, γ, β, δ > −1. Then the connection coefficients between the

sequences of Jacobi polynomials {P̄ (α,β)
n }n∈N0

and {P̄ (γ,δ)
n }n∈N0

are given by

κ̄
(α,β)→(γ,δ)
i,j =

(−1)i

Γ(α− γ)Γ(β − δ)
2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(j + β + 1)

Γ(i+ γ + 1)

Γ(2i+ γ + δ + 2)

Γ(2j + α+ β + 1)

×
j∑
k=i

(−1)k(2k + γ + β + 1)
Γ(k + γ + 1)

Γ(k + β + 1)

Γ(j + k + α+ β + 1)

Γ(j + k + γ + β + 2)

× Γ(k + i+ γ + β + 1)

Γ(k + i+ γ + δ + 2)

Γ(j − k + α− γ)

Γ(j − k + 1)

Γ(k − i+ β − δ)
Γ(k − i+ 1)

.

(1.36)

Proof. We insert the explicit expressions for the connection coefficients in (1.35).
This leads to

κ̄
(α,β)→(γ,δ)
i,j

=

j∑
k=i

κ̄
(γ,β)→(γ,δ)
i,k κ̄

(α,β)→(γ,β)
k,j

=

j∑
k=i

(−1)i+k

Γ(β − δ)
2k

2i
Γ(k + 1)

Γ(i+ 1)

Γ(k + γ + 1)

Γ(i+ γ + 1)

Γ(2i+ γ + δ + 2)

Γ(2k + γ + β + 1)

Γ(k + i+ γ + β + 1)

Γ(k + i+ γ + δ + 2)

× Γ(k − i+ β − δ)
Γ(k − i+ 1)

1

Γ(α− γ)

2j

2k
Γ(j + 1)

Γ(k + 1)

Γ(j + β + 1)

Γ(k + β + 1)

Γ(2k + γ + β + 2)

Γ(2j + α+ β + 1)

× Γ(j + k + α+ β + 1)

Γ(j + k + γ + β + 2)

Γ(j − k + α− γ)

Γ(j − k + 1)
.

Then, we rearrange and simplify this expression to the desired result. �

Remark 1.58 Askey [4, p. 63] gives a formula for Jacobi polynomials in the
standard normalization which involves the hypergeometric function. Using Lemma
1.37, one obtains

κ̄
(α,β)→(γ,δ)
i,j =

2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(j + α+ 1)

Γ(i+ α+ 1)

Γ(j + i+ α+ β + 1)

Γ(2j + α+ β + 1)Γ(j − i+ 1)

× 3F 2

(
i− j, j + i+ α+ β + 1, i+ γ + 1

i+ α+ 1, 2i+ γ + δ + 2
; 1

)

which is equivalent to (1.36) and where 3F2 denotes the hypergeometric function.

These formulae are usually too complicated to be used in numerical practice. How-
ever, there are other special cases, more precisely, when both parameters α and β
are changed the same way, that again lead to particularly structured connection
matrices. To consider these cases is only natural, given that we have already consid-
ered integer changes in one parameter at a time. Let us look at the case γ = α+ 1
and δ = β + 1 first.
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Lemma 1.59 Let α, β > −1. Then the connection coefficients between the se-

quences of Jacobi polynomials {P̄ (α,β)
n }n∈N0

and {P̄ (α+1,β+1)
n }n∈N0

satisfy the iden-
tity

κ̄
(α,β)→(α+1,β+1)
i,j =



1, if j = i,

2j(j + α+ 1)

(2j + α+ β + 1)(2j + α+ β + 2)

− 2j(j + β)

(2j + α+ β)(2j + α+ β + 1)
, if j = i+ 1,

−4(j − 1)j(j + α)(j + β)

(2j + α+ β − 1)(2j + α+ β)2(2j + α+ β + 1)
, if j = i+ 2,

0, else.

Thus, the connection matrix

K̄(α,β)→(α+1,β+1) =



1 ∗ ∗

1 ∗
. . .

1
. . . ∗
. . . ∗

1


is strictly (0, 2)-banded; see Definition 2.2 on page 60.

Proof. It is clear that the connection matrix K̄(α,β)→(α+1,β+1) must be (0, 2)-
banded, since it is the product of the two (0, 1)-banded matrices,

K̄(α,β)→(α+1,β+1) = K̄(α+1,β)→(α+1,β+1)K̄(α,β)→(α+1,β).

To prove the explicit expressions for the entries, we use Lemma 1.56 which gives

κ̄
(α,β)→(α+1,β+1)
i,j =

j∑
k=i

κ̄
(α+1,β)→(α+1,β+1)
i,k κ̄

(α,β)→(α+1,β)
k,j

=



1, if j = i,

κ̄
(α+1,β)→(α+1,β+1)
j−1,j−1 κ̄

(α,β)→(α+1,β)
j−1,j

+κ̄
(α+1,β)→(α+1,β+1)
j−1,j κ̄

(α,β)→(α+1,β)
j,j , if j = i+ 1,

κ
(α+1,β)→(α+1,β+1)
j−2,j−1 κ

(α,β)→(α+1,β)
j−1,j , if j = i+ 2,

0, else.

We insert the explicit expressions obtained in Corollary 1.53 to complete the proof.
�

The result shows that we are able to carry over results for changes to a single
parameter, α or β, somewhat naturally to situations for symmetric changes to both
parameters by using Lemma 1.56. Of course, one is also interested in the case when
γ = α − 1 and δ = β − 1. But before stating the result, we need the following
lemma about the calculation of a particular sum.

Lemma 1.60 Let α, β > 0, and i, j ∈ N0 with i ≤ j. Then

j∑
k=i

(−1)k(2k + α+ β)
Γ(k + α)

Γ(k + β + 1)
= (−1)j

Γ(j + α+ 1)

Γ(j + β + 1)
+ (−1)i

Γ(i+ α)

Γ(i+ β)
.
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Proof. Let us start with the case i = j. Then the sum consists of a single term,

i∑
k=i

(−1)k(2k + α+ β)
Γ(k + α)

Γ(k + β + 1)
= (−1)i(2i+ α+ β)

Γ(i+ α)

Γ(i+ β + 1)

=(−1)i((i+ α) + (i+ β))
Γ(i+ α)

Γ(i+ β + 1)
= (−1)i

Γ(i+ α+ 1)

Γ(i+ β + 1)
+ (−1)i

Γ(i+ α)

Γ(i+ β)
.

Thus, the formula is true for i = j. Now, fix an arbitrary i ≥ 0 and prove the
general case by induction over j. The initial case i = j has already been verified.
So we fix j ≥ i arbitrary and suppose that the formula is true for this particular j;
this is the induction hypothesis. Then, using the induction hypothesis, the sum for
j + 1 satisfies

j+1∑
k=i

(−1)k(2k + α+ β)
Γ(k + α)

Γ(k + β + 1)

=

j∑
k=i

(−1)k(2k + α+ β)
Γ(k + α)

Γ(k + β + 1)
+ (−1)j+1(2j + α+ β + 2)

Γ(j + α+ 1)

Γ(j + β + 2)

=(−1)j
Γ(j + α+ 1)

Γ(j + β + 1)
+ (−1)i

Γ(i+ α)

Γ(i+ β)
+ (−1)j+1(2j + α+ β + 2)

Γ(j + α+ 1)

Γ(j + β + 2)

=(−1)j+1 Γ(j + α+ 2)

Γ(j + β + 2)

(
2j + α+ β + 2

j + α+ 1
− j + β + 1

j + α+ 1

)
+ (−1)i

Γ(i+ α)

Γ(i+ β)

=(−1)j+1 Γ(j + α+ 2)

Γ(j + β + 2)
+ (−1)i

Γ(i+ α)

Γ(i+ β)
,

which proves the result. �
Now we are ready to state an explicit expression for the connection coefficients
between Jacobi polynomials when γ = α− 1 and δ = β − 1.

Theorem 1.61 Let α, β > 0. Then the connection coefficients between the se-

quences of Jacobi polynomials {P̄ (α,β)
n }n∈N0

and {P̄ (α−1,β−1)
n }n∈N0

are given by

κ̄
(α,β)→(α−1,β−1)
i,j

=
2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(2i+ α+ β)

Γ(2j + α+ β + 1)

(
(−1)i+j

Γ(j + α+ 1)

Γ(i+ α)
+

Γ(j + β + 1)

Γ(i+ β)

)
.

Proof. We take the result from Lemma 1.56 for γ = α− 1 and δ = β − 1,

κ
(α,β)→(α−1,β−1)
i,j =

j∑
k=i

κ
(α−1,β)→(α−1,β−1)
i,k κ

(α,β)→(α−1,β)
k,j ,

and replace κ̄
(α−1,β)→(α−1,β−1)
i,k and κ̄

(α,β)→(α−1,β)
k,j by the expressions obtained in

Corollary 1.54. Then

κ̄
(α,β)→(α−1,β−1)
i,j

=
j∑
k=i

(−1)i+k
2kΓ(k + 1)Γ(k + α)Γ(2i+ α+ β)

2iΓ(i+ 1)Γ(i+ α)Γ(2k + α+ β)

2jΓ(j + 1)Γ(j + β + 1)Γ(2k + α+ β + 1)

2kΓ(k + 1)Γ(k + β + 1)Γ(2j + α+ β + 1)

=(−1)i
2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(j + β + 1)

Γ(i+ α)

Γ(2i+ α+ β)

Γ(2j + α+ β + 1)

j∑
k=i

(−1)k(2k + α+ β)
Γ(k + α)

Γ(k + β + 1)
.

Now, we replace the sum by the expression obtained in Lemma 1.60,

κ̄
(α,β)→(α−1,β−1)
i,j

=(−1)i
2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(j + β + 1)

Γ(i+ α)

Γ(2i+ α+ β)

Γ(2j + α+ β + 1)

(
(−1)j

Γ(j + α+ 1)

Γ(j + β + 1)
+ (−1)i

Γ(i+ α)

Γ(i+ β)

)
.
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This is easily simplified to the desired expression. �

Corollary 1.62 Let α, β > 0. Then the connection matrix K̄(α,β)→(α−1,β−1) can
be written as

K̄(α,β)→(α−1,β−1) = triu(u vT) + triu(w zT),

with

u =

(
(−1)i

Γ(2i+ α+ β)

2iΓ(i+ 1)Γ(i+ α)

)n
i=0

, v =

(
(−1)j

2jΓ(j + 1)Γ(j + α+ 1)

Γ(2j + α+ β + 1)

)n
j=0

,

w =

(
Γ(2i+ α+ β)

2iΓ(i+ 1)Γ(i+ β)

)n
i=0

, z =

(
2jΓ(j + 1)Γ(j + β + 1)

Γ(2j + α+ β + 1)

)n
j=0

.

The matrix K̄(α,β)→(α+1,β+1) is upper (2)-generator representable semiseparable;
see Definition 2.6 on page 62.

Corollary 1.63 Let α, β, γ, δ > 0 such that α − γ = β − δ is a positive integer.
Then the connection matrix K̄(α,β)→(γ,δ) is upper

(
2(γ−α)

)
-generator representable

semiseparable.

The results in this section allow us to make Figure 1.3 complete. Although the
connection between arbitrary Jacobi polynomials is not a simple expression, chang-
ing both parameters symmetrically leads to easier special cases. This is shown in
Figure 1.4.

Gegenbauer polynomials

Gegenbauer polynomials are a special case of the Jacobi polynomials P
(α,β)
n with

α = β and a different normalization; see Section 1.3.2. Since they carry only a single
parameter, the results for the connection coefficients will be somewhat similar to
those for Laguerre polynomials. The following is a first general result. We recall
that since Gegenbauer polynomials are orthogonal with respect to a symmetric
measure, the connection coefficients κi,j are zero if i+ j is odd. This is understood
in the following.

Definition 1.64 Let {C̄(α)
n }n∈N0 with α > −1/2 and {C̄(β)

n }n∈N0 with β > −1/2
be two families of monic Gegenbauer polynomials. Then the connection coefficients
κ̄i,j in the formula

C̄
(α)
j =

j∑
i=0

κ̄i,jC̄
(β)
i , j = 0, 1, . . . ,

are denoted κ̄i,j = κ̄
G,(α)→(β)
i,j or κ̄

(α)→(β)
i,j if clear that we mean the Gegenbauer poly-

nomials. The corresponding connection matrix is denoted K̄G,(α)→(β) or K̄(α)→(β)

for short.

The following formula is found in [4, p. 359], [36], [73, p. 99], and also [59, p. 298].

Theorem 1.65 Let α, β > −1/2. Then the connection coefficients between the

sequences of Gegenbauer polynomials {C̄(α)
n }n∈N0

and {C̄(β)
n }n∈N0

are given by

κ̄
(α)→(β)
i,j =

1

Γ(α− β)

2i

2j
Γ(i+ β + 1)

Γ(i+ 1)

Γ(j + 1)

Γ(j + α)

Γ
(
j−i
2 + α− β

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + α

)
Γ
(
j+i
2 + β + 1

) ,
with i+ j even and i ≤ j.
Proof. It can be verified that the recurrence formula (1.27) and the initial condi-
tions (1.28) are satisfied. �
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Figure 1.4: The connection between Jacobi polynomials if both parameters, α and

β, in the polynomials P
(α,β)
n are changed symmetrically: If α and β are simul-

taneously increased or decreased in unit steps, then the connection matrices are
(0, 2)-banded or upper (2)-generator representable semiseparable, respectively. In-
teger steps of length k have (0, 2k)-banded or upper (2k)-generator representable
semiseparable matrices. General steps can be decomposed into an integer length
step and a second step that spans only a small distance.

Remark 1.66 The proof found in [59] is rather complicated. A more elegant proof
is given in [2] by noting that when α = β and γ = δ,

κ̄
(α)→(γ)
i,j =

2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(j + α+ 1)

Γ(i+ α+ 1)

Γ(j + i+ 2α+ 1)

Γ(2j + 2α+ 1)Γ(j − i+ 1)

× 3F 2

(
i− j, j + i+ 2α+ 1, i+ γ + 1

i+ α+ 1, 2i+ 2γ + 2
; 1

)
.

In this case, the hypergeometric function is explicitly summable [2, p. 148, Theorem
3.5.5],

3F 2

(
a, b, c

(a+ b+ 1)/2, 2c
; 1

)
=

Γ(1/2)Γ
(
c+ 1

2

)
Γ
(
a+b+1

2

)
Γ
(
c− a+b−1

2

)
Γ
(
a+1

2

)
Γ
(
b+1

2

)
Γ
(
c− a−1

2

)
Γ
(
c− b−1

2

) .
Combining the two results, one obtains the desired identity.
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The next natural step is to look at the case when the difference between β and α
is a positive integer.

Corollary 1.67 Let −1/2 < α < β such that β−α is a positive integer. Then the

connection coefficients between the sequences of Gegenbauer polynomials {C̄(α)
n }n∈N0

and {C̄(β)
n }n∈N0

are given by

κ̄
(α)→(β)
i,j =



(−1)(j−i)/2
(

β − α
(j − i)/2

)
2i

2j

×Γ(i+ β + 1)

Γ(i+ 1)

Γ(j + 1)

Γ(j + α)

Γ
(
j+i
2 + α

)
Γ
(
j+i
2 + β + 1

) , if i+ j even and
i ≤ j ≤ i+ 2(β − α),

0, else.

This implies that the connection matrix

2(β−α)+1︷ ︸︸ ︷

K̄(α)→(β) =



1 0 ∗ 0 ∗ . . . ∗

1 0 ∗ 0 ∗
. . .

1 0 ∗ 0 ∗ ∗

1 0 ∗ 0
. . .

...

1 0 ∗
. . . ∗

1 0
. . . 0

1
. . . ∗
. . . 0

1


is checkerboard-like

(
0, 2(β−α)

)
-banded; see Definition 2.2 on page 60 and Defini-

tion 2.9 on page 63.

Corollary 1.68 Let α > −1/2. Then the connection coefficients between the se-

quences of Gegenbauer polynomials {C̄(α)
n }n∈N0

and {C̄(α+1)
n }n∈N0

are given by

κ̄
(α)→(α+1)
i,j =


1, if j = i,

−(j − 1)j

4(j + α− 1)(j + α)
, if j = i+ 2,

0, else.

Thus, the connection matrix

K̄(α)→(α+1) =



1 0 ∗

1 0
. . .

1
. . . ∗
. . . 0

1


is checkerboard-like (0, 2)-banded; see Definition 2.2 on page 60 and Definition 2.9
on page 63.

Proof. The proof is a direct consequence of the previous result. �
Let us also observe the case when the parameter α is decreased in an integer step.
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Figure 1.5: The connection between Gegenbauer polynomials: If the parameter α

in C
(α)
n is increased or decreased in unit steps, then the connection matrices are

checkerboard-like (0, 2)-banded or upper (1)-generator representable semiseparable,
respectively. Integer steps of length k lead to checkerboard-like (0, 2k)-banded or
upper (k)-generator representable semiseparable matrices. General steps can be
decomposed into an integer length step and a second step that spans only a small
distance.

Corollary 1.69 Let α > 1/2. Then the connection coefficients between the se-

quences of Gegenbauer polynomials {C̄(α)
n }n∈N0 and {C̄(α−1)

n }n∈N0 are given by

κ̄
(α)→(α−1)
i,j =

2i

2j
Γ(j + 1)

Γ(j + α)

Γ(i+ α)

Γ(i+ 1)
, with i+ j even and i ≤ j.

Thus, the connection matrix

K̄(α)→(α−1) = triuc(u vT)

with

u =

(
2iΓ(i+ α)

Γ(i+ 1)

)n
i=0

, v =

(
Γ(j + 1)

2jΓ(j + α)

)n
j=0

is checkerboard-like upper (1)-generator representable semiseparable.

Proof. The proof is a direct consequence of Theorem 1.65. �

Corollary 1.70 Let −1/2 < β < α such that α − β is a positive integer. Then
the connection matrix K̄(α)→(β) between the sequences of Gegenbauer polynomi-

als {C̄(α)
n }n∈N0 and {C̄(β)

n }n∈N0 is checkerboard-like upper (α− β)-generator repre-
sentable semiseparable.

Proof. The matrix K̄(α)→(β) is a product of (α− β) checkerboard-like upper (1)-
generator representable semiseparable matrices,

K̄(α)→(β) = K̄(β+1)→(β) · K̄(β+2)→(β+1) · · · · · K̄(α−1)→(α−2) · K̄(α)→(α−1)

and is therefore checkerboard-like upper (α− β)-generator representable semisepa-
rable. See Corollary 9.57 in [79, p. 432]. �
The connection between Gegenbauer polynomials is illustrated in Figure 1.5.

Chebyshev and Legendre polynomials

The results of the previous section enable us to obtain the connection coefficients
between Chebyshev polynomials of first and second kind and Legendre polynomials,
since these are, up to normalization, identical to the Gegenbauer polynomials. Note

that the monic and normalized Gegenbauer polynomials {C̄(α)
n }n∈N0 are also well

defined for α = 0, in contrast to the standard normalization.
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Theorem 1.71 The connection coefficients between the sequences of Chebyshev
polynomials

{T̄n}n∈N0
= {P̄ (−1/2,−1/2)

n }n∈N0
= {C̄(0)

n }n∈N0

and

{Ūn}n∈N0
= {P̄ (1/2,1/2)

n }n∈N0
= {C̄(1)

n }n∈N0

are given by

κ̄
(−1/2,−1/2)→(1/2,1/2)
i,j =


1, if j = i,

−1/4, if j = i+ 2,

0, else,

κ̄
(1/2,1/2)→(−1/2,−1/2)
i,j = 2i−j , with i+ j even.

Proof. The proof is obtained from Corollary 1.68 for α = 0 and Corollary 1.69 for
α = 1. Alternatively, we can use Lemma 1.59 for α = β = −1/2 and Theorem 1.61
for α = β = 1/2. �

Theorem 1.72 The connection coefficients between the Chebyshev polynomials of
first kind

{T̄n}n∈N0
= {P̄ (−1/2,−1/2)

n }n∈N0
= {C̄(0)

n }n∈N0

and the Legendre polynomials

{P̄n}n∈N0 = {P̄ (0,0)
n }n∈N0 = {C̄(1/2)

n }n∈N0

are given by

κ̄
(−1/2,−1/2)→(0,0)
i,j =

−j
2
√
π

2i

2j
Γ
(
i+ 3

2

)
Γ(i+ 1)

Γ
(
j−i
2 −

1
2

)
Γ
(
j−i
2 + 1

) Γ
(
i+j
2

)
Γ
(
j+i
2 + 3

2

) ,
κ̄

(0,0)→(−1/2,−1/2)
i,j =

1√
π

2i

2j
Γ(j + 1)

Γ
(
j + 1

2

) Γ
(
j−i
2 + 1

2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + 1

2

)
Γ
(
j+i
2 + 1

) .
Theorem 1.73 The connection coefficients between the Chebyshev polynomials of
first kind

{Ūn}n∈N0
= {P̄ (1/2,1/2)

n }n∈N0
= {C̄(1)

n }n∈N0

and the Legendre polynomials

{P̄n}n∈N0
= {P̄ (0,0)

n }n∈N0
= {C̄(1/2)

n }n∈N0

are given by

κ̄
(0,0)→(1/2,1/2)
i,j =

−(i+ 1)

2
√
π

2i

2j
Γ(j + 1)

Γ
(
j + 1

2

) Γ
(
j−i
2 −

1
2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + 1

2

)
Γ
(
j+i
2 + 2

) ,
κ̄

(1/2,1/2)→(0,0)
i,j =

1√
π

2i

2j
Γ
(
i+ 3

2

)
Γ(i+ 1)

Γ
(
j−i
2 + 1

2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + 1

)
Γ
(
j+i
2 + 3

2

) .
1.5 Derivative identities

An important property of classical orthogonal polynomials is that they are linked by
a single differential equation. As we have seen in Lemma 1.29 on page 7, derivatives
of classical polynomials are classical themselves. The Rodrigues formula makes it
easy to identify these derivatives.
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Lemma 1.74 Let n ≥ 0. Then the following identities hold:

d

dx
H̄n = nH̄n−1, (1.37)

d

dx
L̄(α)
n = nL̄

(α+1)
n−1 ,

d

dx
P̄ (α,β)
n = nP̄

(α+1,β+1)
n−1 . (1.38)

Proof. The proof follows from the Rodrigues formula (1.16) on page 8. �
These are well-known results. For our purposes, we need to express the derivatives
of a classical polynomial in the same family it belongs to. For example, the first

derivative of a Laguerre polynomial L
(α)
n should be expressed as a linear combina-

tion of the polynomials L
(α)
i instead of the polynomials L

(α+1)
i , i = 0, 1, . . . , n− 1.

Of course, this can be done by using the connection coefficients obtained in the last
section. At this point, the chief observation is that the resulting expressions have
a very simple structure.

Theorem 1.75 For the monic Laguerre polynomials {L̄(α)
n }n∈N0

, we have

d

dx
L̄(α)
n = Ān

n−1∑
i=0

B̄iL̄
(α)
i ,

with

Ān := (−1)n+1Γ(n+ 1), B̄i :=
(−1)i

Γ(i+ 1)
.

Similarly, for the monic Jacobi polynomials P̄
(α,β)
n , we have

d

dx
P̄ (α,β)
n = Ān

n−1∑
i=0

B̄iP̄
(α,β)
i + C̄n

n−1∑
i=0

D̄iP̄
(α,β)
i ,

with

Ān = (−1)n+1Γ(n+ α+ 1)Ā′n, B̄i =
(−1)i

Γ(i+ α+ 1)
B̄′i,

C̄n = Γ(n+ β + 1)Ā′n, D̄i =
1

Γ(i+ β + 1)
B̄′i,

Ā′n =
2n−1Γ(n+ 1)

Γ(2n+ α+ β + 1)
, B̄′i =

Γ(2i+ α+ β + 2)

2iΓ(i+ 1)
.

(1.39)

Proof. For the Laguerre polynomials, we use Lemma 1.74 in conjunction with
Corollary 1.45. The result for Jacobi polynomials follows similarly from Lemma
1.74 together with Theorem 1.61. �
The derivative identity obtained for the monic Jacobi polynomials easily translates
into the special cases for the Chebyshev polynomials of first and second kind, the
Legendre polynomials, and the Gegenbauer polynomials.

Corollary 1.76 Assume n ∈ N0 and define

χ = χ(n) :=

{
1, if n even,

0, if n odd.
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Then the following identities hold:

d

dx
T̄n =

n

2n

n−1∑
i=0

2i
(
(−1)n+i+1 + 1

)
Ti

=
n

2n

b(n−1)/2c∑
i=0

22i+χ+1T2i+χ,

d

dx
Ūn =

1

2n

n−1∑
i=0

(i+ 1)2i
(
(−1)n+i+1 + 1

)
Ui

=
1

2n

b(n−1)/2c∑
i=0

22i+χ+1(2i+ χ+ 1)U2i+χ,

d

dx
C̄(α)
n =

Γ(n+ 1)

2nΓ(n+ α)

n−1∑
i=0

2iΓ(i+ α+ 1)

Γ(i+ 1)

(
(−1)n+i−1 + 1

)
C̄

(α)
i

=
Γ(n+ 1)

2nΓ(n+ α)

b(n−1)/2c∑
i=0

22i+χ+1Γ(2i+ χ+ α+ 1)

Γ(2i+ χ+ 1)
C̄

(α)
2i+χ.

1.6 Classical associated functions

There does not seem to be a widely accepted definition of associated functions in
the context of classical orthogonal polynomials. The one used in this text is based
on a modification to the Rodrigues formula for classical orthogonal polynomials. It
is motivated by the attempt to generalize some results obtained for the well-known
associated Legendre functions, see, e.g., [2, p. 456], to functions of similar type. It
seems appropriate to give a definition of associated functions via a Rodrigues-type
formula derived from the one for classical orthogonal polynomials.
It can be shown that the obtained functions are identical, at least up to multiplica-
tive constants, to those used in many fields of mathematical physics. For example,
the associated Gegenbauer functions are important on higher dimensional spheres,
and the definition given below coincides with the one used in [62]. It is also possible
to define the more general associated Jacobi functions which play a role in harmonic
analysis on the cross product of two spheres; see [48, 49, 50, 51, 75]. Further types
of associated functions, like associated Laguerre functions and generalized associ-
ated Jacobi functions, are also given below. Generally, the theory developed in
this section involves classes of functions that are well-known in certain circles, but
that are usually not found in the standard references about classical orthogonal
polynomials.

1.6.1 General theory. The following definition introduces associated functions
that are derived from the Rodrigues formula for classical orthogonal polynomials.

Definition 1.77 Let {pn}n∈N0 be a sequence of classical polynomials, orthogonal
with respect to an absolutely continuous measure dλ(x) = w(x)dx, given by the
Rodrigues formula

p(m)
n (x) =

An,mBn
σm(x)w(x)

dn−m

dxn−m
(
σn(x)w(x)

)
,

which satisfy a differential equation of hypergeometric type

σ(x)p′′n(x) + τ(x)p′n(x) + λnpn(x) = 0.
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Then the corresponding associated functions of order m, denoted {pmn }n∈N0,|m|≤n
are defined by the Rodrigues-type formula

pmn (x) := Cn,µσ
µ/2(x)p(µ)

n (x) =
An,µBnCn,µ
σµ/2(x)w(x)

dn−µ

dxn−µ
(
σn(x)w(x)

)
(1.40)

for n = µ, µ+ 1, . . . , with µ = µ(m) := |m| and the normalizing factor

Cn,µ =

( ∫
R
(
pn(x)

)2
dλ(x)∫

R
(
p

(µ)
n (x)

)2
dλ(µ)(x)

)1/2

, (1.41)

and where dλ(µ)(x) := σµ(x)w(x)dx is the measure of orthogonality for the polyno-

mials
{
p

(µ)
n

}
n∈N0,µ≤n

.

Remark 1.78 According to Definition 1.77, we have pmn = p−mn . This redundancy
is intended, as associated functions are often used in combination with other func-
tions that also depend on the order m and where the sign of m matters. Moreover,
in the literature, the associated functions are often defined to incorporate a factor
of (−1)m or similar. The normalizing factor Cn,µ is introduced for convenience; see
Lemma 1.80 below.
If the polynomials pn are the Hermite polynomials Hn, then σ(x) = 1, and it
follows from (1.40) and (1.37) that the corresponding associated functions Hm

n are
identical to the Hermite polynomials Hn. For the rest of this text we will therefore
only treat the Laguerre and the Jacobi case.

The classical associated functions are functions that are either polynomials or al-
most polynomials. To see this, recall that we have σ(x) = x for Laguerre polyno-
mials and σ(x) = 1−x2 for the Jacobi polynomials, respectively. Then from (1.40)
it follows that the parity of µ, that is, the parity of the order m, decides whether

the polynomial part p
(µ)
n (x) on the right-hand side is multiplied by an integer or

a half-integer power of either x or 1 − x2. This means that associated functions
are not more than a factor of

√
x or

√
1− x2 away from the space of polynomials

P. This is summarized in the following result. The proof follows immediately from
(1.40).

Lemma 1.79 Let
{
pmn
}
n∈N0,µ≤n

be a sequence of associated functions. If the order

m is even, then µ is even and pmn is a polynomial of degree

µ

2
deg(σ) + n− µ = n+ µ

(
deg(σ)

2
− 1

)
.

If the order m is odd, then µ is odd and pmn is a polynomial of degree

µ− 1

2
deg(σ) + n− µ = n+ µ

(
deg(σ)

2
− 1

)
− deg(σ)/2

multiplied by
√
σ(x). Here, deg(σ) denotes the exponent of the highest power of x

that appears in σ.

Associated functions have a lot in common with the sequence of orthogonal poly-
nomials they are derived from. An easy to verify consequence of Definition 1.77 is
that associated functions pmn are orthogonal with respect to the same inner product.

Lemma 1.80 Let {pn}n∈N0
be a sequence of classical polynomials, orthogonal with

respect to an absolutely continuous measure dλ(x) = w(x)dx. Then the associated
functions of order m, {pmn }n∈N0,µ≤n, are also orthogonal with respect to the measure
dλ(x) and satisfy ∫

R

(
pmn (x)

)2
dλ(x) =

∫
R

(
pn(x)

)2
dλ(x).
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Proof. Using (1.40) and (1.41), a direct calculation shows that∫
R
pmn (x)pmk (x) dλ(x) = Cn,µCk,µ

∫
R
p(µ)
n (x)p

(µ)
k (x) dλ(µ)(x)

= δn,k

∫
R

(
pn(x)

)2
dλ(x).

�
The notion of leading coefficients kn and squared norms hn can be adopted to the
associated functions. The following definition introduces these quantities.

Definition 1.81 Let
{
pmn
}
n∈N0,µ≤n

be a sequence of classical associated functions.

Then kmn denotes the factor in front of the highest power of x that appears in pmn ,
that is,

pmn (x) = kmn x
r + · · · , with r = µ

(
deg(σ)

2
− 1

)
+ n,

and hmn denotes the squared norm of pmn with respect to the measure dλ(x),

hmn :=

∫
R

(
pmn (x)

)2
dλ(x).

Also, it is convenient to define, respectively, monic and orthonormal variants of
associated functions.

Definition 1.82 Let {pmn }n∈N0,µ≤n be a sequence of associated functions. Then
{p̄mn }n∈N0,µ≤n denotes the corresponding monic associated functions

p̄mn (x) :=
pmn (x)

kmn
= xr + · · · ,

with leading coefficient k̄mn = 1. Similarly, the normalized associated functions
{p̃mn }n∈N0,µ≤n are defined by

p̃mn (x) :=
pmn (x)√
hmn

,

and we have h̃mn = 1.

Lemma 1.4, which allows to calculate squared norms of the monic variants and
leading coefficients of the orthonormal variants for orthogonal polynomials, easily
translates to the situation involving associated functions. The proof is entirely
analogous.

Lemma 1.83 Let {pmn }n∈N0,µ≤n be a sequence of associated functions. Then

h̄mn =
hmn(
kmn
)2 , k̃mn =

kmn√
hmn

.

Associated functions also satisfy a three-term recurrence, because the polynomials

p
(µ)
n used in (1.40) also do.

Lemma 1.84 Let the assumptions of Definition 1.77 hold. Furthermore, assume

that the polynomials
{
p

(µ)
n

}
n∈N0,µ≤n

satisfy the three-term recurrence formula and

initial conditions

p
(µ)
n+1(x) = (anx− bn)p(µ)

n (x)− cnp(µ)
n−1(x), n = µ, µ+ 1, . . . ,

p
(µ)
µ−1(x) = 0, p(µ)

µ (x) = k0.
(1.42)

Then the associated functions
{
pmn
}
n∈N0,µ≤n

satisfy the three-term recurrence and

initial conditions

pmn+1(x) = (amn x− bmn )pmn (x)− cmn pmn−1(x), n = µ, µ+ 1, . . . ,

pmµ−1(x) = 0, pmµ (x) = Cµ,µσ
µ/2(x)k0,
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with

amn =
Cn+1,µ

Cn,µ
an, bmn =

Cn+1,µ

Cn,µ
bn, cmn =

Cn+1,µ

Cn−1,µ
cn.

Proof. The initial conditions can be verified directly using (1.40) and (1.42). Now,
assume µ ≤ n. Then

pmn+1(x) = Cn+1,µσ
µ/2(x)p

(µ)
n+1(x)

= Cn+1,µσ
µ/2(x)

(
(anx− bn)p(µ)

n (x)− cnp(µ)
n−1(x)

)
=

(
Cn+1,µ

Cn,µ
anx−

Cn+1,µ

Cn,µ
bn

)
pmn (x)− Cn+1,µ

Cn−1,µ
cnp

m
n−1(x).

�
Since the classical associated functions are closely related to the classical orthogo-
nal polynomials, it is not surprising that they are solutions to similar differential
equations.

Theorem 1.85 Let {pn}n∈N0
be a sequence of classical orthogonal polynomials that

are solutions to the hypergeometric differential equation

σ(x)y′′(x) + τ(x)y′(x) + λny(x) = 0,

with certain σ ∈ P2, σ ∈ P1, and λn ∈ R. Then the corresponding associated
functions {pmn }n∈N0,µ≤n satisfy the hypergeometric-like differential equation

σ(x)y′′(x) + τ(x)y′(x) +
(
λn + fµ(x)

)
y(x) = 0, y = pmn , (1.43)

with

fµ(x) := µτ ′ +
µ(µ− 2)

2
σ′′ − µ

2

σ′(x)

σ(x)

((µ
2
− 1
)
σ′(x) + τ(x)

)
.

Proof. Let y = pmn and ỹ = p
(µ)
n . Now, we use (1.40) and verify

τ(x)
d

dx
y(x) =Cn,µσ

µ/2(x)

(
µσ′(x)

2σ(x)
τ(x)ỹ(x) + τ(x)ỹ′(x)

)
,

σ(x)
d2

dx2
y(x) =Cn,µσ

µ/2(x)

((
µσ′(x)

2σ(x)

(µ
2
− 1
)
σ′(x) +

µ

2
σ′′
)
ỹ(x)

+ µσ′(x)ỹ′(x) + σ(x)ỹ′′(x)

)
.

Plugging this into the left-hand side of (1.43), we obtain

σ(x)y′′(x) + τ(x)y′(x) +
(
λn + fµ(x)

)
y(x)

= Cn,µσ
µ/2(x)

(
σ(x)ỹ′′(x) +

(
τ(x) + µσ′(x)

)
ỹ′(x) +

(
λn + µτ ′ + µ(µ−1)

2 σ′′
)
ỹ(x)

)
.

This part vanishes since it is equivalent to the differential equation satisfied by

the polynomials
{
p

(µ)
n

}
n∈N0,µ≤n

; cf. Lemma 1.29. Thus, the associated functions

{pmn }n∈N0,µ≤n satisfy the differential equation (1.43). �

1.6.2 Generalized associated Jacobi functions. While the previous definition
applies to all types of classical orthogonal polynomials, the following class of gen-
eralized associated functions is defined exclusively for the Jacobi polynomials and
their descendants.
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Definition 1.86 Let
{
P

(α,β)
n

}
n∈N0

be the Jacobi polynomials defined by the Ro-

drigues formula

P (α,β)
n (x) =

(−1)n

2nΓ(n+ 1)
(1− x)−α(1 + x)−β

dn

dxn
(
(1− x)n+α(1 + x)n+β

)
.

Furthermore, assume m,m′ ∈ Z and define the symbols

n∗ := max{|m|, |m′|}, µ := |m′ −m|, ν := |m′ +m|.

Notice that we have n∗ = µ+ν
2 . Then for n = n∗, n∗+1, . . . , the generalized associ-

ated Jacobi functions P
(α,β),m,m′

n of orders m and m′ are defined by the Rodrigues-
type formula

P (α,β),m,m′

n (x) := Cn,µ,ν(1− x)µ/2(1 + x)ν/2P
(α+µ,β+ν)
n−n∗ (x)

=
(−1)n−n

∗
Cn,µ,ν

2n−n∗Γ(n− n∗ + 1)(1− x)α+µ/2(1 + x)β+ν/2

× dn−n
∗

dxn−n∗

(
(1− x)n−n

∗+α+µ(1 + x)n−n
∗+β+ν

)
,

(1.44)
with

Cn,µ,ν :=2−n
∗

(
Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α+ β + 1)

× Γ(n− n∗ + 1)Γ(n+ n∗ + α+ β + 1)

Γ(n− n∗ + α+ µ+ 1)Γ(n− n∗ + β + ν + 1)

)1/2

.

Again, the normalizing factor Cn,µ,ν is chosen such that the norm of the function

P
(α,β),m,m′

n (x) is equal to that of the polynomial P
(α,β)
n (x) with respect to the

measure of orthogonality.

Lemma 1.87 The generalized associated Jacobi functions
{
P

(α,β),m,m′

n

}
n∈N0,n∗≤n

of orders m and m′ are orthogonal on the interval [−1, 1] with respect to the measure
dλ(x) = (1− x)α(1 + x)βdx and satisfy∫ 1

−1

(
P (α,β),m,m′

n (x)
)2

dλ(x) =

∫ 1

−1

(
P (α,β)
n (x)

)2
dλ(x).

Proof. The constant Cn,µ,ν must satisfy

Cn,µ,ν =

( ∫ 1

−1

(
P

(α,β)
n (x)

)2
(1− x)α(1 + x)β dx∫ 1

−1

(
P

(α+µ,β+ν)
n−n∗ (x)

)2
(1− x)α+µ(1 + x)β+ν dx

)1/2

.

This is indeed true, since∫ 1

−1

(
P (α,β)
n (x)

)2
(1− x)α(1 + x)β dx

=
2α+β+1

(2n+ α+ β + 1)

Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α+ β + 1)
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and∫ 1

−1

(
P

(α+µ,β+ν)
n−n∗ (x)

)2
(1− x)α+µ(1 + x)β+ν dx

=
2α+µ+β+ν+1(

2(n− n∗) + α+ µ+ β + ν + 1
) Γ(n− n∗ + α+ µ+ 1)Γ(n− n∗ + β + ν + 1)

Γ(n− n∗ + 1)Γ(n− n∗ + α+ µ+ β + ν + 1)

=
22n∗+α+β+1

(2n+ α+ β + 1)

Γ(n− n∗ + α+ µ+ 1)Γ(n− n∗ + β + ν + 1)

Γ(n− n∗ + 1)Γ(n+ n∗ + α+ β + 1)
.

The desired result is then verified by∫ 1

−1

P (α,β),m,m′

n (x)P
(α,β),m,m′

k (x) (1− x)α(1 + x)βdx

= Cn,µ,νCk,µ,ν

∫ 1

−1

P
(α+µ,β+ν)
n−n∗ (x)P

(α+µ,β+ν)
k−n∗ (x) (1− x)α+µ(1 + x)β+ν dx

= δn,k

∫ 1

−1

(
P (α,β)
n (x)

)2
(1− x)α(1 + x)β dx.

�
The notion of leading coefficients, squared norms, and monic and orthonormal
functions can be adapted to the generalized associated Jacobi functions. Similar to
Lemma 1.84, one verifies that a three-term recurrence is satisfied by the generalized
associated Jacobi functions.

Lemma 1.88 The generalized associated Jacobi functions P
(α,β),m,m′

n (x) satisfy
the three-term recurrence

P
(α,β),m,m′

n+1 (x) =
(
am,m

′

n x− bm,m
′

n

)
P (α,β),m,m′

n (x)− cm,m
′

n P
(α,β),m,m′

n−1 (x),

and initial conditions

P
(α,β),m,m′

n∗−1 (x) = 0,

P
(α,β),m,m′

n∗ (x) = 2−n
∗
(

Γ(n∗ + α+ 1)Γ(n∗ + β + 1)Γ(2n∗ + α+ β + 1)

Γ(n∗ + 1)Γ(n∗ + α+ β + 1)Γ(α+ µ+ 1)Γ(β + ν + 1)

)1/2

× (1− x)µ/2(1 + x)ν/2,

with

am,m
′

n =

(
(n+ α+ 1)(n+ β + 1)

(n− n∗ + α+ µ+ 1)(n− n∗ + β + ν + 1)(n− n∗ + 1)(n+ 1)

)1/2

× (2n+ α+ β + 1)(2n+ α+ β + 2)

2
(
(n+ α+ β + 1)(n+ n∗ + α+ β + 1)

)1/2 ,
bm,m

′

n =

(
(n+ α+ 1)(n+ β + 1)

(n− n∗ + α+ µ+ 1)(n− n∗ + β + ν + 1)(n− n∗ + 1)(n+ 1)

)1/2

× (2n+ α+ β + 1)

(2n+ α+ β)

(β + ν − α− µ)(2n∗ + α+ β)

2
(
(n+ α+ β + 1)(n+ n∗ + α+ β + 1)

)1/2 ,
and

cm,m
′

n =
2n+ α+ β + 2

2n+ α+ β

(
(n− n∗)

(n− n∗ + 1)

(n+ α)(n+ α+ 1)(n+ β)(n+ β + 1)

n(n+ 1)(n+ α+ β)(n+ α+ β + 1)

× (n+ n∗ + α+ β)

(n+ n∗ + α+ β + 1)

(n− n∗ + α+ µ)

(n− n∗ + α+ µ+ 1)

(n− n∗ + β + ν)

(n− n∗ + β + ν + 1)

)1/2

.
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Not surprisingly, there is also a hypergeometric-like differential equation satisfied
by the generalized associated Jacobi functions.

Theorem 1.89 The Jacobi polynomials {P (α,β)
n }n∈N0

are solutions to the Jacobi
differential equation of hypergeometric type

σ(x)y′′(x) + τ(x)y′(x) + λny(x) = 0, y = P (α,β)
n ,

with

σ(x) = 1− x2, τ(x) = −(α+ β + 2)x+ β − α, λn = n(n+ α+ β + 1).

The generalized associated Jacobi functions P
(α,β),m,m′

n satisfy the hypergeometric-
like differential equation

σ(x)y′′(x) + τ(x)y′(x) +
(
λn + fµ,ν(x)

)
y(x) = 0, y = P (α,β),m,m′

n , (1.45)

with

fµ,ν(x) := −
(
µ(2α+ µ)

2(1− x)
+
ν(2β + ν)

2(1 + x)

)
.

Proof. Let y = P
(α,β),m,m′

n and ỹ = P
(α+µ,β+ν)
n−n∗ . Respecting (1.44), we write down

the terms appearing in (1.45):

τ(x)
d

dx
y(x) = Cn,µ,ν(1− x)µ/2(1 + x)ν/2τ(x)

×

(
1

2

(
ν

1 + x
− µ

1− x

)
ỹ(x) + ỹ′(x)

)
,

σ(x)
d2

dx2
y(x) = Cn,µ,ν(1− x)µ/2(1 + x)ν/2

×

(
1

4

(
µ(µ− 2)

1 + x

1− x
− 2µν + ν(ν − 2)

1− x
1 + x

)
ỹ(x)

+ (ν(1− x)− µ(1 + x))ỹ′(x) + σ(x)ỹ′′(x)

)
.

Plugging this into (1.45) and grouping terms after ỹ, ỹ′, and ỹ′′, we get

σ(x)y′′(x) + τ(x)y′(x) +
(
λn + fµ,ν(x)

)
y(x)

=(1− x)µ/2(1 + x)ν/2
(
σ(x)ỹ′′(x) +

(
τ(x) + ν(1− x)− µ(1 + x)

)
ỹ′(x) + γỹ(x)

)
,

(1.46)
where

γ = λn +
τ(x)

2

(
ν

1 + x
− µ

1 − x

)
+

1

4

(
µ(µ− 2)

1 + x

1 − x
− 2µν + ν(ν − 2)

1 − x

1 + x

)
+ fµ,ν(x).

The plan for the rest of the proof is to manipulate the second line of (1.46) to
identify terms appearing in the hypergeometric-like differential equation satisfied

by the polynomials ỹ = P
(α+µ,β+ν)
n−n∗ which reads

σ(x)ỹ′′(x) + τ̃(x)ỹ′(x) + λ̃n−n∗ ỹ(x) = 0, (1.47)

with

τ̃(x) = −(α+µ+β+ν+2)x+β+ν−α−µ, λ̃n−n∗ = (n−n∗)(n−n∗+α+µ+β+ν+1).

We start with the term τ(x) + ν(1− x)− µ(1 + x) which can be expanded to

τ(x) + ν(1− x)− µ(1 + x) = −(α+ µ+ β + ν + 2)x+ β + ν − α− µ = τ̃(x).
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Next, we recall that n∗ = µ+ν
2 and rewrite λn as

λn = n(n+ α+ β + 1)

=
(
n− n∗ + n∗

)(
n− n∗ + n∗ + α+ β + 1

)
= λ̃n−n∗ +

µ+ ν

2

(
µ+ ν

2
+ α+ β + 1

)
.

Then it can be verified by elementary manipulations that

µ+ ν

2

(
µ+ ν

2
+ α+ β + 1

)
+
τ(x)

2

(
ν

1 + x
− µ

1− x

)
+

1

4

(
µ(µ− 2)

1 + x

1− x
− 2µν + ν(ν − 2)

1− x
1 + x

)
+ fµ,ν(x) = 0.

This implies that (1.46) is equivalent to

σ(x)y′′(x) + τ(x)y′(x) +
(
λn + fµ,ν(x)

)
y(x)

= (1− x)µ/2(1 + x)ν/2
(
σ(x)ỹ′′(x) + τ̃(x)ỹ′(x) + λ̃n−n∗ ỹ(x)

)
.

The right-hand side vanishes by (1.47) which completes the proof. �
In the following, examples are given for the different families of associated func-
tions, including the corresponding Rodrigues-type formula, differential equation,
and three-term-recurrence. The reader may want continue with Section 1.6.4 and
return to this section as needed.

1.6.3 Examples.

Associated Laguerre functions

Laguerre polynomials {L(α)
n }n∈N0 are defined by the Rodrigues formula

L(α)
n (x) =

exx−α

Γ(n+ 1)

dn

dxn
(
xn+αe−x

)
,

and satisfy the differential equation

xy′′(x) + (1 + α− x)y′(x) + ny(x) = 0, with y = L(α)
n .

The associated Laguerre functions
{
L

(α),m
n

}
n∈N0,µ≤n

are defined by the Rodrigues-

type formula

L(α),m
n (x) =

(
Γ(n− µ+ 1)

Γ(n+ 1)

)1/2

xµ/2
dµ

dxµ
L(α)
n (x)

= (−1)µ
(

Γ(n− µ+ 1)

Γ(n+ 1)

)1/2

xµ/2L
(α+µ)
n−µ (x)

=
(−1)µexx−α−µ/2√

Γ(n+ 1)Γ(n− µ+ 1)

dn−µ

dxn−µ
(
xn+αe−x

)
.

Associated Laguerre functions are solutions to the associated Laguerre differential
equation

xy′′(x) + (1 + α− x)y′(x) +

(
n−

µ
(
2(x+ α) + µ

)
4x

)
y(x) = 0,

with y = L
(α),m
n . They satisfy the three-term recurrence and initial conditions

L
(α),m
n+1 (x) = (amn x− bmn )L(α),m

n (x)− cmn L
(α),m
n−1 (x), n = µ, µ+ 1, . . . ,

L
(α),m
µ−1 (x) = 0, L(α),m

µ (x) =
(−1)µxµ/2√

Γ(µ+ 1)
,
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where

amn = − 1√
(n+ 1)(n− µ+ 1)

,

bmn = − 2n+ α− µ+ 1√
(n+ 1)(n− µ+ 1)

,

cmn = (n+ α)

√
n− µ

n(n+ 1)(n− µ+ 1)
.

Associated Jacobi functions

The Jacobi polynomials
{
P

(α,β)
n

}
n∈N0

are defined by the Rodrigues formula

P (α,β)
n (x) =

(−1)n

2nΓ(n+ 1)
(1− x)−α(1 + x)−β

dn

dxn
(
(1− x)n+α(1 + x)n+β

)
,

and satisfy the differential equation

σ(x)y′′(x) + τ(x)y′(x) + λny(x) = 0,

with y = P
(α,β)
n , σ(x) = 1 − x2, τ(x) = −(α + β + 2)x + β − α, and λn =

n(n + α + β + 1). The associated Jacobi functions
{
P

(α,β),m
n

}
n∈N0,µ≤n

are thus

defined by the formula

P (α,β),m
n (x) = Cn,µ

(
1− x2

)µ/2 dµ

dxµ
P (α,β)
n (x),

with a certain normalising constant Cn,µ given by (1.41). The identity

dµ

dxµ
P (α,β)
n (x) =

Γ(n+ µ+ α+ β + 1)

2µΓ(n+ α+ β + 1)
P

(α+µ,β+µ)
n−µ (x)

can be obtained from (1.38) on page 35 using that the leading coefficient kn of the

polynomial P
(α,β)
n is given by

kn =
Γ(2n+ α+ β + 1)

2nΓ(n+ 1)Γ(n+ α+ β + 1)
.

This reveals that the associated Jacobi functions P
(α,β),m
n are a special case of

generalized associated Jacobi functions P
(α,β),m,m′

n , with m = 0 and m′ renamed
to m; cf. (1.44). Thus, the constant Cn,µ is

Cn,µ =

(
Γ(n− µ+ 1)Γ(n+ α+ β + 1)

Γ(n+ 1)Γ(n+ µ+ α+ β + 1)

)1/2

,

and the Rodrigues-type formula for the associated Jacobi functions P
(α,β),m
n reads

P (α,β),m
n (x) = 2−µ

(
Γ(n− µ+ 1)Γ(n+ µ+ α+ β + 1)

Γ(n+ 1)Γ(n+ α+ β + 1)

)1/2

× (1− x2)µ/2P
(α+µ,β+µ)
n−µ (x)

=
(−1)n−µ

2n

(
Γ(n+ µ+ α+ β + 1)

Γ(n− µ+ 1)Γ(n+ 1)Γ(n+ α+ β + 1)

)1/2

× (1− x)−α−µ/2(1 + x)−β−µ/2
dn−µ

dxn−µ
(
(1− x)n+α(1 + x)n+β

)
.

They satisfy the associated Jacobi differential equation

σ(x)y′′(x) + τ(x)y′(x) +

(
λn −

µ(2α+ µ)

2(1− x)
− µ(2β + µ)

2(1 + x)

)
y(x) = 0,
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with y = P
(α,β),m
n , and the three-term recurrence and initial conditions

P
(α,β),m
n+1 (x) = (amn x− bmn )P (α,β),m

n (x)− cmn P
(α,β),m
n−1 (x), n = µ, µ+ 1, . . . ,

P
(α,β),m
µ−1 (x) = 0,

P (α,β),m
µ (x) = 2−µ

(
Γ(2µ+ α+ β + 1)

Γ(µ+ 1)Γ(µ+ α+ β + 1)

)1/2 (
1− x2

)µ/2
,

where

amn =
(2n+ α+ β + 1)(2n+ α+ β + 2)

2
√

(n+ 1)(n− µ+ 1)(n+ α+ β + 1)(n+ µ+ α+ β + 1)
,

bmn =
2n+ α+ β + 1

2n+ α+ β

(β − α)(2µ+ α+ β)

2
√

(n+ 1)(n− µ+ 1)(n+ α+ β + 1)(n+ µ+ α+ β + 1)
,

cmn =
2n+ α+ β + 2

2n+ α+ β

(n+ α)(n+ β)√
n(n+ 1)(n+ α+ β)(n+ α+ β + 1)

×
(

(n− µ)(n+ µ+ α+ β)

(n− µ+ 1)(n+ µ+ α+ β + 1)

)1/2

.

Associated Gegenbauer functions

The associated Gegenbauer functions
{
C

(α),m
n

}
n∈N0,µ≤n

with α > −1/2 and α 6= 0

are a special case of associated Jacobi functions with a different normalization,

C(α),m
n (x) :=

Γ(α+ 1/2)Γ (n+ 2α)

Γ (n+ α+ 1/2) Γ(2α)
P (α−1/2,α−1/2),m
n (x).

The Rodrigues-type formula therefore is

C(α),m
n (x) =

(
Γ(n− µ+ 1)Γ(n+ 2α)

Γ(n+ 1)Γ(n+ µ+ 2α)

)1/2 (
1− x2

)µ/2 dµ

dxµ
C(α)
n (x)

=
(−1)n−µΓ(α+ 1/2)

2nΓ(2α)Γ(n+ α+ 1/2)

(
Γ(n+ 2α)Γ(n+ µ+ 2α)

Γ(n− µ+ 1)Γ(n+ 1)

)1/2

×
(
1− x2

)1/2−α−µ/2 dn−µ

dxn−µ

((
1− x2

)n+α−1/2
)
.

They satisfy the associated Gegenbauer differential equation(
1− x2

)
y′′(x)− (2α+ 1)xy′(x) +

(
n(n+ 2α)− µ(2α+ µ− 1)

1− x2

)
y(x) = 0,

with y = C
(α),m
n . The three-term recurrence and initial conditions are

C
(α),m
n+1 (x) = (amn x− bmn )C(α),m

n (x)− cmn C
(α),m
n−1 (x), n = µ, µ+ 1, . . . ,

C
(α),m
µ−1 (x) = 0,

C(α),m
µ (x) =

2−α

Γ(α)

(
2
√
π Γ(µ+ α)Γ(µ+ 2α)

Γ(µ+ α+ 1/2)

)1/2 (
1− x2

)µ/2
,

where

amn =
2(n+ α)(n+ 2α)1/2√

(n+ 1)(n− µ+ 1)(n+ µ+ 2α)
,

bmn = 0,

cmn =

√
(n+ 2α− 1)(n+ 2α)(n− µ)(n+ µ+ 2α− 1)

n(n+ 1)(n− µ+ 1)(n+ µ+ 2α)
.
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Generalized associated Gegenbauer functions

The generalized associated Gegenbauer functions
{
C

(α),m,m′

n

}
n∈N0,n∗≤n

with α >

−1/2 and α 6= 02 are a special case of generalized associated Jacobi functions with
a different normalization,

C(α),m,m′

n (x) :=
Γ(α+ 1/2)Γ(n+ 2α)

Γ(n+ α+ 1/2)Γ(2α)
P (α−1/2,α−1/2),m,m′

n (x)

= Cn,µ,ν(1− x)µ/2(1 + x)ν/2P
(α+µ−1/2,α+ν−1/2)
n−n∗ (x),

with

Cn,µ,ν :=
Γ(α+ 1/2)

2n∗Γ(2α)

(
Γ(n− n∗ + 1)Γ(n+ 2α)Γ(n+ n∗ + 2α)

Γ(n+ 1)Γ(n− n∗ + α+ µ+ 1/2)Γ(n− n∗ + α+ ν + 1/2)

)1/2

.

The Rodrigues-type formula is

C(α),m,m′

n (x) =

(
Γ(n− n∗ + 1)Γ(n+ 2α)Γ(n+ n∗ + 2α)

Γ(n+ 1)Γ(n− n∗ + α+ µ+ 1/2)Γ(n− n∗ + α+ ν + 1/2)

)1/2

× (−1)n−n
∗
Γ(α+ 1/2)

2nΓ(2α)Γ(n− n∗ + 1)
(1− x)−α−µ/2+1/2(x+ 1)−α−ν/2+1/2

× dn−n
∗

dxn−n∗

(
(1− x)n−n

∗+α+µ−1/2(1 + x)n−n
∗+α+ν−1/2

)
.

They satisfy the generalized associated Gegenbauer differential equation

(
1−x2

)
y′′(x)−(2α+1)xy′(x)+

(
n(n+ 2α) − µ(2α+ µ− 1)

2(1 − x)
− ν(2α+ ν − 1)

2(1 + x)

)
y(x) = 0,

with y = C
(α),m,m′

n . The three-term recurrence and initial conditions are

C
(α),m,m′

n+1 (x) = (am,m
′

n x− bm,m
′

n )C(α),m,m′

n (x)− cm,m
′

n C
(α),m,m′

n−1 (x),

with n = n∗, n∗ + 1, . . . , and

C
(α),m,m′

n∗−1 (x) = 0,

C
(α,),m,m′

n∗ (x) =
Γ(α+ 1/2)

2n∗Γ(2α)

(
Γ(n∗ + 2α)Γ(2n∗ + 2α)

Γ(n∗ + 1)Γ(α+ µ+ 1/2)Γ(α+ ν + 1/2)

)1/2

× (1− x)µ/2(1 + x)ν/2,

2The monic and normalized variants are well-defined even for α = 0.
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where

am,m
′

n =
(n+ α)(2n+ 2α+ 1)(n+ 2α)1/2√
(n+ 1)(n− n∗ + 1)(n+ n∗ + 2α)

× 1√
(n− n∗ + α+ µ+ 1/2)(n− n∗ + α+ ν + 1/2)

,

bm,m
′

n =
(ν − µ)(n+ α)(2n∗ + 2α− 1)(n+ 2α)1/2

(2n+ 2α− 1)
√

(n+ 1)(n− n∗ + 1)(n+ n∗ + 2α)

× 1√
(n− n∗ + α+ µ+ 1/2)(n− n∗ + α+ ν + 1/2)

,

cm,m
′

n =

(
(n+ 2α− 1)(n+ 2α)(n− n∗)(n+ n∗ + 2α− 1)

(n− n∗ + 1)n(n+ 1)(n+ n∗ + 2α)

)1/2

×
(

(n− n∗ + α+ µ− 1/2)(n− n∗ + α+ ν − 1/2)

(n− n∗ + α+ µ+ 1/2)(n− n∗ + α+ ν + 1/2)

)1/2
2n+ 2α+ 1

2n+ 2α− 1
.

Associated Legendre functions

The associated Legendre functions
{
Pmn
}
n∈N0,µ≤n

are a special case of associated

Jacobi functions P
(α,β),m
n for α = β = 0,

Pmn (x) := P (0,0),m
n (x) = Cn,µ

(
1− x2

)µ/2 dµ

dxµ
Pn(x),

with

Cn,µ =

(
Γ(n− µ+ 1)

Γ(n+ µ+ 1)

)1/2

.

The corresponding Rodrigues-type formula is

Pmn (x) =
(−1)n−µ

2n
√

Γ(n− µ+ 1)Γ(n+ µ+ 1)

(
1− x2

)−µ/2 dn−µ

dxn−µ

((
1− x2

)n)
.

Associated Legendre functions satisfy the associated Legendre differential equation

(1− x2)y′′(x)− 2xy′(x) +

(
n(n+ 1)− µ2

1− x2

)
y(x) = 0,

with y = Pmn . The three-term recurrence and initial conditions are

Pmn+1(x) = (amn x− bmn )Pmn (x)− cmn Pmn−1(x), n = µ, µ+ 1, . . . ,

Pmµ−1(x) = 0, Pmµ (x) =

√
Γ(2µ+ 1)

2µΓ(µ+ 1)

(
1− x2

)µ/2
,

where

amn =
2n+ 1√

(n− µ+ 1)(n+ µ+ 1)
, bmn = 0, cmn =

(
(n− µ)(n+ µ)

(n− µ+ 1)(n+ µ+ 1)

)1/2

.

Generalized associated Legendre functions

The generalized associated Legendre functions
{
Pm,m

′

n

}
n∈N0,n∗≤n

are generalized

associated Jacobi functions P
(α,β),m,m′

n with α = β = 0, that is,

Pm,m
′

n (x) := P (0,0),m,m′

n (x) = Cn,µ,ν(1− x)µ/2(1 + x)ν/2P
(µ,ν)
n−n∗(x), (1.48)

with

Cn,µ,ν :=2−n
∗

(
Γ(n− n∗ + 1)Γ(n+ n∗ + 1)

Γ(n− n∗ + µ+ 1)Γ(n− n∗ + ν + 1)

)1/2

.
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The corresponding Rodrigues-type formula is

Pm,m
′

n (x) =
(−1)n−n

∗

2n

(
Γ(n+ n∗ + 1)

Γ(n− n∗ + 1)Γ(n− n∗ + µ+ 1)Γ(n− n∗ + ν + 1)

)1/2

× (1− x)−µ/2(1 + x)−ν/2
dn−n

∗

dxn−n∗

(
(1− x)n−n

∗+µ(1 + x)n−n
∗+ν
)
.

Generalized associated Legendre functions satisfy the generalized associated Le-
gendre differential equation

(1− x2)y′′(x)− 2xy′(x) +

(
n(n+ 1)− µ2

2(1− x)
− ν2

2(1 + x)

)
y(x) = 0,

with y = Pm,m
′

n . The three-term recurrence and initial conditions are

Pm,m
′

n+1 (x) = (am,m
′

n x− bm,m
′

n )Pm,m
′

n (x)− cm,m
′

n Pm,m
′

n−1 (x), n = n∗, n∗ + 1, . . . ,

Pm,m
′

n∗ (x) = 0, Pm,m
′

n∗ (x) = 2−n
∗
(

Γ(2n∗ + 1)

Γ(µ+ 1)Γ(ν + 1)

)1/2

(1− x)µ/2(1 + x)ν/2,

where

am,m
′

n =
(n+ 1)(2n+ 1)√

(n− n∗ + 1)(n+ n∗ + 1)(n− n∗ + µ+ 1)(n− n∗ + ν + 1)
,

bm,m
′

n =
2n+ 1

2n

n∗(ν − µ)√
(n− n∗ + 1)(n+ n∗ + 1)(n− n∗ + µ+ 1)(n− n∗ + ν + 1)

,

cm,m
′

n =
n+ 1

n

(
(n− n∗)(n+ n∗)(n− n∗ + µ)(n− n∗ + ν)

(n− n∗ + 1)(n+ n∗ + 1)(n− n∗ + µ+ 1)(n− n∗ + ν + 1)

)1/2

.

Associated Chebyshev functions of first kind

Associated Chebyshev functions of first kind {Tmn }n∈N0,µ≤n are a special case of

associated Jacobi functions P
(α,β),m
n with a particular normalization,

Tmn (x) :=
Γ(1/2)Γ(n+ 1)

Γ(n+ 1/2)
P (−1/2,−1/2),m
n (x).

The Rodrigues-type formula is

Tmn (x) = Cn,µ
(
1− x2

)µ/2 dµ

dxµ
Tn(x)

=
(−1)n−µΓ(1/2)

2nΓ(n+ 1/2)

(
nΓ(n+ µ)

Γ(n− µ+ 1)

)1/2 (
1− x2

)1/2−µ/2
× dn−µ

dxn−µ

((
1− x2

)n−1/2
)
,

with

Cn,µ =

(
Γ(n− µ+ 1)

nΓ(n+ µ)

)1/2

.

They satisfy the associated Chebyshev differential equation of first kind

(1− x2)y′′(x)− xy′(x) +

(
n2 − µ(µ− 1)

1− x2

)
y(x) = 0,

with y = Tmn . The three-term recurrence and initial conditions are

Tmn+1(x) = (amn x− bmn )Tmn (x)− cmn Tmn−1(x), n = µ, µ+ 1, . . . ,

Tmµ−1(x) = 0, Tmµ (x) =

(
(1 + δn,0)Γ(1/2)Γ(µ+ 1)

2Γ(µ+ 1/2)

)1/2

(1− x2)µ/2,
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where

amn =
2

1 + δn,0

(
n(n+ 1)

(n+ µ)(n− µ+ 1)

)1/2

,

bmn = 0,

cmn =

(
(n+ 1)(n+ µ− 1)(n− µ)

(n− 1)(n+ µ)(n− µ+ 1)

)1/2

.

Generalized associated Chebyshev functions of first kind

The generalized associated Chebyshev functions of first kind
{
Tm,m

′

n

}
n∈N0,n∗≤n

are

a special case of generalized associated Jacobi functions P
(α,β),m,m′

n with a different
normalization,

Tm,m
′

n (x) :=
Γ(1/2)Γ(n+ 1)

Γ(n+ 1/2)
P (−1/2,−1/2),m,m′

n (x)

= Cn,µ,ν(1− x)µ/2(1 + x)ν/2P
(µ−1/2,ν−1/2)
n−n∗ (x), with n ≥ 1,

and

T 0,0
0 (x) := 1,

where

Cn,µ,ν :=
Γ(1/2)

2n∗

(
nΓ(n− n∗ + 1)Γ(n+ n∗)

Γ(n− n∗ + µ+ 1/2)Γ(n− n∗ + ν + 1/2)

)1/2

.

The Rodrigues-type formula becomes

Tm,m
′

n (x) =

(
nΓ(n+ n∗)

Γ(n− n∗ + 1)Γ(n− n∗ + µ+ 1/2)Γ(n− n∗ + ν + 1/2)

)1/2

× (−1)n−n
∗
Γ(1/2)

2n
(1− x)1/2−µ/2(1 + x)1/2−ν/2

× dn−n
∗

dxn−n∗

(
(1− x)n−n

∗+µ−1/2(1 + x)n−n
∗+ν−1/2

)
.

They satisfy the generalized associated Chebyshev differential equation of first kind

(
1− x2

)
y′′(x)− xy′(x) +

(
n2 − µ(µ− 1)

2(1− x)
− ν(ν − 1)

2(1 + x)

)
y(x) = 0,

with y = Tm,m
′

n . The three-term recurrence and initial conditions are

Tm,m
′

n+1 (x) = (am,m
′

n x− bm,m
′

n )Tm,m
′

n (x)− cm,m
′

n Tm,m
′

n−1 (x), n = n∗, n∗ + 1, . . . ,

Tm,m
′

n∗−1 (x) = 0,

Tm,m
′

n∗ (x) =

(
(1 + δn,0)Γ(1/2)Γ(n∗ + 1)Γ(n∗ + 1/2)

2Γ(µ+ 1/2)Γ(ν + 1/2)

)1/2

(1− x)µ/2(1 + x)ν/2,



50 1. ORTHOGONAL POLYNOMIALS

where

am,m
′

n =
2n+ 1

1 + δn,0

×
(

n(n+ 1)

(n+ n∗)(n− n∗ + 1)(n− n∗ + µ+ 1/2)(n− n∗ + ν + 1/2)

)1/2

,

bm,m
′

n =
(ν − µ)(2n∗ − 1)

(2n− 1)

×
(

n(n+ 1)

(n+ n∗)(n− n∗ + 1)(n− n∗ + µ+ 1/2)(n− n∗ + ν + 1/2)

)1/2

,

cm,m
′

n =
2n+ 1

2n− 1

(
(n+ 1)(n+ n∗ − 1)(n− n∗)
(n− 1)(n+ n∗)(n− n∗ + 1)

)1/2

×
(

(n− n∗ + µ− 1/2)(n− n∗ + ν − 1/2)

(n− n∗ + µ+ 1/2)(n− n∗ + ν + 1/2)

)1/2

.

Associated Chebyshev functions of second kind

The associated Chebyshev functions of second kind are a special case of associated

Jacobi functions P
(α,β),m
n with a particular normalization,

Umn (x) :=
Γ(3/2)Γ(n+ 2)

Γ(n+ 3/2)
P (1/2,1/2),m
n (x).

Thus, the Rodrigues-type formula is

Umn (x) = Cn,µ
dµ

dxµ
Un(x)

=
(−1)n−µΓ(3/2)

2nΓ(n+ 3/2)

(
(n+ 1)Γ(n+ µ+ 2)

Γ(n− µ+ 1)

)1/2

(1− x2)−1/2−µ/2

× dn−µ

dxn−µ

(
(1− x2)n+1/2

)
,

with

Cn,µ =

(
(n+ 1)Γ(n− µ+ 1)

Γ(n+ µ+ 2)

)1/2

(1− x2)µ/2.

They satisfy the associated Chebyshev differential equation of second kind

(1− x2)y′′(x)− 3xy′(x) +

(
n(n+ 2)− µ(µ+ 1)

1− x2

)
y(x) = 0.

The three-term recurrence and initial conditions are

Umn+1(x) = (amn x− bmn )Umn (x)− cmn Umn−1(x), n = n∗, n∗ + 1, . . . ,

Umµ−1(x) = 0, Umµ (x) =

(
Γ(3/2)Γ(µ+ 2)

Γ(µ+ 3/2)

)1/2

(1− x2)µ/2,

where

amn = 2

(
(n+ 1)(n+ 2)

(n− µ+ 1)(n+ µ+ 2)

)1/2

,

bmn = 0,

cmn =

(
(n+ 2)(n− µ)(n+ µ+ 1)

n(n− µ+ 1)(n+ µ+ 2)

)1/2

.
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Generalized associated Chebyshev functions of second kind

The generalized associated Chebyshev functions of second kind
{
Um,m

′

n

}
n∈N0,n∗≤n

are a special case of generalized associated Jacobi functions P
(α,β),m,m′

n with a
different normalization

Um,m
′

n (x) :=
Γ(3/2)Γ(n+ 2)

Γ(n+ 3/2)
P (1/2,1/2),m,m′

n (x)

= Cn,µ,ν(1− x)µ/2(1 + x)ν/2P
(µ+1/2,ν+1/2)
n−n∗ (x),

with

Cn,µ,ν :=
Γ(3/2)

2n∗

(
(n+ 1)Γ(n− n∗ + 1)Γ(n+ n∗ + 2)

Γ(n− n∗ + µ+ 3/2)Γ(n− n∗ + ν + 3/2)

)1/2

.

The Rodrigues-type formula becomes

Um,m
′

n (x) =

(
(n+ 1)Γ(n+ n∗ + 2)

Γ(n− n∗ + 1)Γ(n− n∗ + µ+ 3/2)Γ(n− n∗ + ν + 3/2)

)1/2

× (−1)n−n
∗
Γ(3/2)

2n
(1− x)−1/2−µ/2(1 + x)−1/2−ν/2

× dn−n
∗

dxn−n∗

(
(1− x)n−n

∗+µ+1/2(1 + x)n−n
∗+ν+1/2

)
.

They satisfy the generalized associated Chebyshev differential equation of second
kind (

1− x2
)
y′′(x)− 3xy′(x) +

(
n(n+ 2)− µ(µ+ 1)

2(1− x)
− ν(ν + 1)

2(1 + x)

)
y(x) = 0,

with y = Um,m
′

n . The three-term recurrence and initial conditions are

Um,m
′

n+1 (x) = (am,m
′

n x− bm,m
′

n )Um,m
′

n (x)− cm,m
′

n Um,m
′

n−1 (x), n = n∗, n∗ + 1, . . . ,

Um,m
′

n∗−1 (x) = 0,

Um,m
′

n∗ (x) =

(
Γ(3/2)Γ(n∗ + 2)Γ(n∗ + 3/2)

Γ(µ+ 3/2)Γ(ν + 3/2)

)1/2

(1− x)µ/2(1 + x)ν/2,

where

am,m
′

n = (2n+ 3)

×
(

(n+ 1)(n+ 2)

(n+ n∗ + 2)(n− n∗ + 1)(n− n∗ + µ+ 3/2)(n− n∗ + ν + 3/2)

)1/2

,

bm,m
′

n =
(ν − µ)(2n∗ + 1)

2n+ 1

×
(

(n+ 1)(n+ 2)

(n+ n∗ + 2)(n− n∗ + 1)(n− n∗ + µ+ 3/2)(n− n∗ + ν + 3/2)

)1/2

,

cm,m
′

n =
2n+ 3

2n+ 1

(
(n+ 2)(n+ n∗ + 1)(n− n∗)
n(n+ n∗ + 2)(n− n∗ + 1)

)1/2

×
(

(n− n∗ + µ+ 1/2)(n− n∗ + ν + 1/2)

(n− n∗ + µ+ 3/2)(n− n∗ + ν + 3/2)

)1/2

.
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1.6.4 Connection coefficients for associated functions. Somewhat similar to
the situation for orthogonal polynomials, associated functions can be represented
through other associated functions. But only conversions between associated func-
tions of different orders, say, m and m̂, that are derived from the same sequence
of orthogonal polynomials will be investigated. Such mapping does not exist for
every admissible pair of orders m and m̂, rather these parameters have to satisfy a
simple condition. Generally, the transformation works only from larger µ = |m| to
smaller µ̂ = |m̂|. The second condition is that m + m̂ has to be an even number,
that is, the orders m and m̂ have to share the same parity. The following Lemma
introduces this situation.

Lemma 1.90 Let {pmn }n∈N0,µ≤n and {pm̂n }n∈N0,µ̂≤n be two sequences of associated
functions, that are derived from the same sequence of orthogonal polynomials with
m, m̂ ∈ N0 such that m+ m̂ is even and |m̂| < |m|. Then every associated function
pmj with j ≥ µ can be represented as a linear combination of the form

pmj =

N∑
i=µ̂

κi,jp
m̂
i , where N = j − (µ− µ̂)(1− deg(σ)/2). (1.49)

Note that the upper limit of the sum is always an integer and thus well defined.

Proof. By definition, the space spanned by the functions {pmn }n∈N0,µ≤n contains

all functions that can be represented by σµ/2(x) times a polynomial in x of some
degree. In particular, the associated function pmj , with µ ≤ j, is identical to σµ/2(x)
times a polynomial of degree j − µ:,

pmj (x) = Cj,µσ
µ/2(x)p

(µ)
j (x),

with a certain normalization constant Cn,µ; cf. Definition 1.77. This can be written
as

pmj (x) = Cj,µσ
µ̂/2(x)

(
σ
µ−µ̂

2 (x)p
(µ)
j (x)

)
.

We observe that the expression in parentheses is a proper polynomial of degree
(µ− µ̂) deg(σ)/2 + j−µ. We expanded the expression into the associated functions{
pm̂n
}
n∈N0,µ̂≤n

. Using Lemma 1.79, we verify that only those functions up to n =

µ̂+ j + (µ− µ̂) deg(σ)/2− µ are needed. �
We call the coefficients κi,j in (1.49) the connection coefficients between the se-
quences of associated functions {pmn }n∈N0,µ≤n and {pm̂n }n∈N0,µ̂≤n. The following
definition is to formalize this denotation.

Definition 1.91 The associated functions
{
pmn
}
n∈N0,µ≤n

are called the source

functions and the associated functions
{
pm̂n
}
n∈N0,µ̂≤n

are called the target functions.

The coefficients κi,j are called the connection coefficients between
{
pmn
}
n∈N0,µ≤n

and
{
pm̂n
}
n∈N0,µ̂≤n

. For i < µ̂, j < µ, or j < i+ (µ− µ̂) (1− deg(σ)/2), we define

κi,j = 0.

Here are two versions of Lemma 1.6.4 that are specialized to the associated Laguerre
and the associated Jacobi functions, respectively.

Lemma 1.92 Let
{
L

(α),m
n

}
n∈N0,µ≤n

and
{
L

(α),m̂
n

}
n∈N0,µ̂≤n

be two sequences of

associated Laguerre functions with α > −1 and m, m̂ ∈ N0, such that m + m̂ is

even and |µ̂| < |µ|. Then every associated Laguerre function L
(α),m
j with j ≥ µ,

can be represented as a linear combination of the form

L
(α),m
j =

j−(µ−µ̂)/2∑
i=µ̂

κi,jL
(α),m̂
i .
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Lemma 1.93 Let
{
P

(α,β),m
n

}
n∈N0,µ≤n

and
{
P

(α,β),m̂
n

}
n∈N0,µ̂≤n

be two sequences

of associated Jacobi functions with α, β > −1 and m, m̂ ∈ N0, such that m + m̂ is

even and |µ̂| < |µ|. Then every associated Jacobi function P
(α,β),m
j with j ≥ µ, can

be represented as a linear combination of the form

P
(α,β),m
j =

j∑
i=µ̂

κi,jP
(α,β),m̂
i .

For generalized associated Jacobi functions, the situation is a bit more complicated
due to the increased number of parameters. But, the general principles remain
intact.

Lemma 1.94 Let
{
P

(α,β),m,m′

n

}
n∈N0,n∗≤n

and
{
P

(α,β),m̂,m̂′

n

}
n∈N0,n̂∗≤n

with α, β >

−1 and m,m′, m̂, m̂′ ∈ N0, be two sequences of generalized associated Jacobi func-
tions, such that m+ m̂+m′ + m̂′ is even and µ̂ < µ as well as ν̂ < ν. Then every

generalized associated Jacobi function P
(α,β),m,m′

j with j ≥ n∗ can be represented
as a linear combination of the form

P
(α,β),m,m′

j =

j∑
i=n̂∗

κi,jP
(α,β),m̂,m̂′

i .

Proof. The space spanned by the functions
{
P

(α,β),m,m′

n

}
n∈N0,n∗≤n

contains all

functions that can be represented by (1 − x)µ/2(1 + x)ν/2 times a polynomial of

some degree. In particular, the function P
(α,β),m,m′

j is given by

P
(α,β),m,m′

j (x) = Cj,µ,ν(1− x)µ/2(1 + x)ν/2P
(α+µ,β+ν)
n−n∗ (x),

with the normalization constant Cn,µ,ν from Definition 1.86. We can write this as

P
(α,β),m,m′

j (x) = Cj,µ,ν(1− x)µ̂/2(1 + x)ν̂/2

×
(

(1− x)(µ−µ̂)/2(1 + x)(ν−ν̂)/2P
(α+µ,β+ν)
j−n∗ (x)

)
,

and observe that (1− x)(µ−µ̂)/2(1 + x)(ν−ν̂)/2P
(α+µ,β+ν)
j−n∗ (x) is a proper polynomial

of degree (µ− µ̂+ ν − ν̂)/2 + j − n∗ = j − n̂∗, a fact that follows from µ+ ν = 2n∗

and µ̂+ ν̂ = 2n̂∗. This makes the function P
(α,β),m,m′

j (x) equivalent to a factor of

(1− x)µ̂/2(1 + x)ν̂/2 times a polynomial of degree j − n̂∗. This can be represented

using the functions {P (α,β),m̂,m̂′

n }n∈N0,n̂∗≤n where only those up to degree j are
needed. �
The connection coefficients between associated functions of different orders can be
identified with inner products of the form 〈 · , · 〉dλ, where dλ is the corresponding
measure of orthogonality. Note, that in contrast to plain orthogonal polynomi-
als, this measure of orthogonality is the same for all associated functions which
are derived from the same sequence of orthogonal polynomials. The connection
coefficients are clearly given by

κi,j =
〈pm̂i , pmj 〉dλ
〈pm̂i , pm̂i 〉dλ

, (1.50)

where pmj and pm̂i are the respective associated functions. A similar expression
holds for the generalized associated Jacobi functions. In this text, explicit expres-
sions for the connection coefficients between associated functions of different orders
will not be derived. The reason is that the resulting expressions are not simple
enough to be exploitable for numerical computations. This is different to the sit-
uation for classical orthogonal polynomials. Here, the respective expressions can
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(a) Non-symmetric measure.
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(b) Symmetric measure.

Figure 1.6: Schematic representation of the recurrence for the connection coeffi-
cients κi,j for classical associated functions. Non-shaded areas represent coefficients
that always vanish. Black squares represent entries given by the initial conditions;
these are κi,i, i = 0, 1, . . . , and κ0,1. Gray squares stand for the rest of the coeffi-
cients that are determined by the three-term recurrence. For the computation of
one of these coefficients κi,j (represented by ∗), the entries κi−1,j−1, κi,j−1, κi,j−2,
and κi+1,j−1 (represented by ) have to be known. In the case of a symmetric mea-
sure, the recurrence is simpler since the dependence on κi,j−1 is removed. Also, the
coefficient κ0,1 is known to be zero. The rest of the coefficients forms a checkerboard
pattern.

be efficiently evaluated. To show that the situation for associated functions still
bears similarity to the polynomial case, the following theorem shows that the con-
nection coefficients are be generated by a recurrence. This is similar to Theorem
1.35 for orthogonal polynomials. The situation for the connection matrices between
(generalized) associated functions is illustrated in Figure 1.6.

Theorem 1.95 Let {pmn }n∈N0,µ≤n be a sequence of associated functions that satisfy
the three-term recurrence and initial conditions

pmn+1(x) = (amn x− bmn )pmn (x)− cmn pmn−1(x), n = µ, µ+ 1, . . . ,

pmµ−1(x) = 0, pmµ (x) = Cµ,µσ
µ/2(x)k0,

(1.51)

with the leading coefficients kmn . Let
{
pm̂n
}
n∈N0,µ̂≤n

be another sequence of associ-

ated functions derived from the same sequence of orthogonal polynomials such that
m + m̂ is even and µ̂ < µ. Both sequences of associated functions are orthogonal
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with respect to a certain measure dλ which induces an inner product 〈 · , · 〉. De-

note by ĥm̂n = 〈p̂m̂n , p̂m̂n 〉 the squared norm of the function p̂m̂n and by k̂m̂n its leading
coefficient. Furthermore, let the corresponding three-term recurrence and initial
conditions be given by

pm̂n+1(x) = (am̂n x− bm̂n )pm̂n (x)− cm̂n pm̂n−1(x), n = µ̂, µ̂+ 1, . . . ,

pm̂µ̂−1(x) = 0, pm̂µ̂ (x) = Cµ̂,µ̂σ
µ̂/2(x)k̂0.

(1.52)

Then the connection coefficients κi,j in the formula

pmj =

N∑
i=µ̂

κi,jp
m̂
i , with N = j − (µ− µ̂)(1− deg(σ)/2),

satisfy the recurrence formula

κi,j = amj−1

(
1

am̂i

hm̂i+1

hm̂i
κi+1,j−1 +

bm̂i
am̂i

κi,j−1 +
cm̂i
am̂i

hm̂i+1

hm̂i−1

κi−1,j−1

)
− bmj−1κi,j−1 − cmj−1κi,j−2,

(1.53)

for µ̂ ≤ i, µ ≤ j, and i ≤ j − (µ− µ̂)(1− deg(σ)/2) with the initial conditions

κi,j =



1

hm̂µ̂

∫
R
pm̂µ̂ (x)pmµ+1(x) dλ(x), if i = µ̂ and j = µ+ 1,

1

hm̂i

∫
R
pm̂i (x)pmµ (x) dλ(x), if j = µ and µ̂ ≤ i ≤ µ̂+ (µ− µ̂) deg(σ)/2,

kmi+(µ−µ̂)(1−deg(σ)/2)

k̂m̂i
, if i = j − (µ− µ̂) (1− deg(σ)/2).

(1.54)

Proof. The proof is similar to that of Theorem 1.35. To prove the recurrence
formula (1.53) we use (1.50) and the three-term recurrence (1.51),

κi,j =
〈pm̂i , pmj 〉dλ

hm̂i
=

1

hm̂i

(
amj−1〈pm̂i , xpmj−1〉 − bmj−1〈pm̂i , pmj−1〉 − cmj−1〈pm̂i , pmj−2〉

)
.

(1.55)
With the shift property of the inner product, that is, 〈 · , x · 〉 = 〈x · , · 〉 and the
three-term recurrence (1.52), we obtain

〈xpm̂i , pmj−1〉 =
1

am̂i
〈pm̂i+1, p

m
j−1〉+

bm̂i
am̂i
〈pm̂i , pmj−1〉+

cm̂i
am̂i
〈pm̂i−1, p

m
j−1〉.

We combine this result with (1.55) and identify the remaining inner products with
the connection coefficients, e.g., 〈pm̂i , pmj−1〉 = hm̂i κi,j−1.

For the initial conditions (1.54), we assume j = i+γ with γ = (µ−µ̂)
(
1−deg(σ)/2

)
.

Then the coefficient κi,i+γ has the form

κi,i+γ =
1

hm̂i

∫
R
pm̂i (x)pmi+γ(x) dλ(x),

=
1

hm̂i

∫
R
Ci,µ̂σ

µ̂/2(x)p
(µ̂)
i (x)Ci+γ,µσ

µ/2(x)p
(µ)
i+γ(x) dλ(x)

=
1

hm̂i

∫
R
Ci,µ̂p

(µ̂)
i (x)Ci+γ,µp

(µ)
i+γ(x)σ(µ−µ̂)/2(x) dλ(µ̂)(x),

with the measure dλ(µ̂)(x) = σµ̂(x)dλ(x). Note that the polynomial p
(µ̂)
i (x) of

degree i−µ̂ is orthogonal to every polynomial of strictly smaller degree with respect
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to the measure dλ(µ). This allows to replace the expression

Ci+γ,µp
(µ)
i+γ(x)σ(µ̂−µ)/2(x)

which is a polynomial of degree i + γ − µ + (µ̂ − µ) deg(σ)/2 = i − µ̂ with the
polynomial

kmi+γ
km̂i

Ci,µ̂p
(µ̂)
i (x)

of same degree without changing the integral. Thus, we obtain

κi,i+γ =
kmi+γ

k̂m̂i

〈pm̂i , pm̂i 〉
hm̂i

=
kmi+γ

k̂m̂i
.

The rest of the initial conditions follows directly from the definition of the connec-
tion coefficients. �
In case that the measure dλ is symmetric, the recurrence formula is simplified.

Corollary 1.96 Let {pmn }n∈N0,µ≤n and
{
pm̂n
}
n∈N0,µ̂≤n

be two sequences of associ-

ated functions that satisfy the assumptions of Theorem 1.95 and that are orthogonal
with respect to a symmetric measure. Then the connection coefficients κi,j satisfy
the recurrence formula

κi,j = amj−1

(
1

am̂i

hm̂i+1

hm̂i
κi+1,j−1 +

cm̂i
am̂i

ĥm̂i−1

hm̂i
κi−1,j−1

)
− cmj−1κi,j−2, (1.56)

for µ̂ ≤ i, µ ≤ j, and i ≤ j − (µ− µ̂)(1− deg(σ)/2) with the initial conditions

κi,j =



1

hm̂i

∫
R
pm̂i (x)pmµ (x) dλ(x), if j = µ and µ̂ ≤ i ≤ µ̂+ (µ− µ̂) deg(σ)/2,

0, if i = µ̂ and j = µ+ 1,

kmi+(µ−µ̂)(1−deg(σ)/2)

k̂m̂i
, if i = j − (µ− µ̂) (1− deg(σ)/2).

(1.57)
This implies κi,j = 0 if i+ j is odd.

Proof. The proof is a direct consequence of Lemma 1.17 which implies bmn = bm̂n =
0 in (1.51), (1.52), and the proof of Theorem 1.95. �

1.7 Fast polynomial transforms

Fast polynomial transform are the main theme of this thesis and the techniques
developed in the following two chapters deliver algorithms that enable these type
of transforms. Still, fast polynomial transforms are more a consequence of these
algorithms rather than the primary object under investigation.
A discrete polynomial transform is a generalization of the usual discrete Fourier
transform to a more general set of basis functions. In our case, these are the
classical orthogonal polynomials or the classical (generalized) associated functions.
A fast polynomial transform is a fast algorithm to compute the same result. To
make this more precise, we give the following definition.

Definition 1.97 Let {pn}n∈N0,n≥µ with µ ∈ N0 be a set of functions, orthogonal

over an interval [a, b]. Furthermore, let f̂n for n = µ, µ+1, . . . , N , with N ∈ N0, be
given coefficients, possibly complex, and let xi for i = 1, 2, . . . , I be points in [a, b].
Then the evaluation of the sums

f(xi) =

N∑
j=µ

f̂jpj(xi), i = 1, 2, . . . , I, (1.58)
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is called a discrete polynomial transform. An algorithm to compute the same
result up to a given accuracy ε (in some sensible measure) with no more than
O
(
(N logN + I) log(1/ε)

)
arithmetic operations is called a fast polynomial trans-

form.

Typically, algorithms to evaluate the sums (1.58) need O(NI) arithmetic opera-
tions. Since the number of nodes I is usually comparable to N this would typically
need O(N2) arithmetic operations. For large N this must often be considered
too expensive. A fast polynomial transform, under the same circumstances, can
calculate, or at least approximate, the same result with asymptotically much less
operations. The methods developed in the following two chapters provide a way
to achieve this favorable cost by allowing one to efficiently replace the sums (1.58)
with an equivalent form

f(xi) =

N∑
j=µ

ĉje
ij arccos(xi), i = 1, 2, . . . , I,

with new coefficients ĉj . This is a plain Fourier sum that can be evaluated using
either the fast Fourier transform (FFT) or its non-equispaced variant (NFFT) with
not more thanO

(
N logN+I log(1/ε)

)
operations. If the first part, that is, replacing

the coefficients f̂j with the coefficients ĉj , can be carried out efficiently enough,
the result is a fast polynomial transform in the sense of Definition 1.97. In the
following two chapters, we will concentrate on this first step. Two applications
that demonstrate these principles are given in Chapter 4.





Chapter 2
Techniques based on semiseparable matrices

In this chapter, methods are developed for the efficient conversion between expan-
sions in different sequences of classical orthogonal polynomials or classical asso-
ciated functions, respectively. The algorithms introduced here have in common
that they rely on methods to efficiently compute the eigendecomposition of certain
semiseparable matrices. Before the actual algorithms are derived, a brief introduc-
tion to semiseparable matrices, the closely related banded matrices, and so-called
checkerboard-like matrices is given.
Generally, for any matrix with structure a number of elementary operations, like
matrix-vector multiplication or matrix inversion, can be carried out efficiently by
exploiting the structure found in the matrix. Perhaps the most intuitive exam-
ple are banded matrices which have their non-vanishing components confined to
a banded pattern. Semiseparable matrices, on the other hand, are usually fully
populated, but similarly have a reduced number of degrees of freedom. And there
is another variation of structured matrices that will be important, that is, the
class of checkerboard-like matrices. A matrix is said to be checkerboard-like if the
components that correspond to the white fields on a checkerboard vanish.
Sections 2.1 and 2.2 provide a brief introduction to basic notational conventions,
as well as the classes of banded, semiseparable, and checkerboard-like matrices.
Section 2.3 introduces an algorithm to efficiently compute the eigendecomposition
of triangular generator representable semiseparable matrices. In Section 2.4 we
show how this can be used to obtain fast algorithms to apply connection matri-
ces between different sequences of classical orthogonal polynomials. A number of
numerical results is given. A similar algorithm for the eigendecomposition of sym-
metric extended generator representable semiseparable matrices is given in Section
2.5. It is used in Section 2.6 to obtain an efficient method to apply connection
matrices between classical associated functions of different orders.

2.1 Notation

Analyzing the properties of structured matrices relies on a succinct regime for no-
tation. A convenient way is to use a Matlab1-like syntax. The following definition
introduces a couple of symbols to denote different parts of a matrix.

Definition 2.1 Let A be an n× n matrix and let k enumerate all diagonals of A,
from the (n−1)st subdiagonal (where k = −n+1) up to the (n−1)st super-diagonal
(where k = n− 1). Furthermore, denote by d an arbitrary column vector of length
n− |k|. Then we denote by

(i) diag(A, k) the column vector that contains the kth diagonal of A,
(ii) diag(d, k) the matrix whose kth diagonal contains the entries of d,
(iii) triu(A, k) the matrix with the part on and above the kth diagonal of A,
(iv) tril(A, k) the matrix with the part on and below the kth diagonal of A.

For example, triu(A, 1) is the matrix that has been obtained from the matrix A by
annihilating all components that are not contained in the strictly upper triangular
part. To further simplify the notation, we define the shortcuts

diag(A) := diag(A, 0), triu(A) := triu(A, 0), tril(A) := tril(A, 0).

Vectors and matrices that contain only zeros or ones are denoted 0 and 1, respec-
tively. It will be clear from the context whether this refers to a vector or a matrix.

1Matlab is a registered trademark of The MathWorks, Inc.
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To denote sub-matrices we use Matlab-style notation. For example, A(i : j, k : l)
denotes the sub-matrix formed by rows i to j and columns k to l of the matrix A.

2.2 Structured matrices

2.2.1 Banded matrices. In a banded matrix, the entries are confined to a band
of contiguous diagonals, usually comprising the main diagonal and a number of
diagonals on either side. These matrices are special cases of Hessenberg matrices
which can be regarded as “almost” triangular matrices. Let us make the definition
precise.

Definition 2.2 An n× n matrix A is called

(i) (strictly) upper (p)-Hessenberg, if tril(A,−p−1) = 0 (and diag(A,−p) 6= 0),
(ii) (strictly) lower (q)-Hessenberg, if triu(A, q + 1) = 0 (and diag(A, q) 6= 0),
(iii) (strictly) (p, q)-banded, if A is simultaneously (strictly) lower (q)-Hessenberg

and (strictly) upper (p)-Hessenberg,

with 0 ≤ p, q.
Note that the strict variants require that all entries on the diagonals adjacent to the
vanishing parts of A be non-zero. Noteworthy cases of banded matrices are those
with just one, two, or at most three non-vanishing diagonals. These are defined as
follows.

Definition 2.3 An n× n matrix A is called

(i) diagonal, if A is (0, 0)-banded or, equivalently, if A = diag(diag(A)),
(ii) lower bidiagonal, if A is (1, 0)-banded,
(iii) upper bidiagonal, if A is (0, 1)-banded,
(iv) tridiagonal, if A is (1, 1)-banded,
(v) lower triangular, if A is (n− 1, 0)-banded,

(vi) upper triangular, if A is (0, n− 1)-banded.

The matrix classes introduced in Definitions 2.2 and 2.3 are illustrated in Figure
2.1.

2.2.2 Semiseparable matrices. While banded matrices have been well-known
for some time, the class of semiseparable matrices has only recently become more
popular. A comprehensive introduction to the topic can be found in [79, 80]. His-
torically, semiseparable matrices had been investigated independently in a number
of different fields, e.g., in integral equations and statistics; see [78, 79, Chapter 3,
p. 109]. In some areas, semiseparable matrices had been known before the term
semiseparable was eventually coined. But, slight differences in the conventions used
over time have also been a cause for misunderstandings. Therefore, one has to be
careful with the definitions used, especially when referring to the literature. This
text follows [79, 80]. We will take a number of important results from there.
In the following, a number of definitions surrounding semiseparable matrices and
other similar classes of matrices will be given. We remind the reader that it is
important to note all subtle details found in the different definitions to avoid con-
fusion.

Definition 2.4 An n×n matrix A is called (p, q)-generator representable semisep-
arable, with 0 ≤ p, q, if the following two conditions are satisfied:

tril(A, p− 1) = tril
(
U VT, p− 1

)
,

triu(A,−q + 1) = triu
(
W ZT,−q + 1

)
,

with matrices U and V of size n×p and matrices W and Z of size n×q. This means
that the lower triangular part of the matrix A, up to and including the (p − 1)st
superdiagonal, stems from a rank-p matrix. Similarly, the upper triangular part of
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Figure 2.1: Schematic representation of population patterns for different types of
structured matrices. The non-shaded boxes represent vanishing entries.

A, starting from the (q − 1)st subdiagonal, has been taken from a rank-q matrix.
Thus, the matrix A might be represented as

A = tril
(
U VT, p− 1

)
+ triu

(
W ZT, p

)
.

Note that the definition requires that

triu
(

tril
(
U VT, p− 1

)
,−q + 1

)
= triu

(
tril
(
W ZT, p− 1

)
,−q + 1

)
,

so the overlapping parts must, of course, be identical. The matrices U, V, W,
and Z are called the generators of A, hence the name generator representable
semiseparable. There is a slightly different definition that describes the more general
class of extended generator representable semiseparable matrices.
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Definition 2.5 An n×n matrix A is called extended (p, q)-generator representable
semiseparable, with 0 ≤ p, q, if the following two conditions are satisfied:

tril(A) = tril
(
U VT

)
,

triu(A) = triu
(
W ZT

)
,

with matrices U and V of size n × p and matrices W and Z of size n × q. This
means that the lower triangular part of the matrix A is coming from a rank-p
matrix. Similarly, the upper triangular part of A is coming from a rank-q matrix.
Thus, the matrix A might be represented as

A = tril
(
U VT

)
+ triu

(
W ZT, 1

)
.

The definition implies

diag
(
U VT

)
= diag

(
W ZT

)
.

To the casual reader, extended (p, q)-generator representable semiseparable matri-
ces might appear as the more natural generalization of (1, 1)-generator representable
semiseparable matrices. But, the class of (p, q)-generator representable semisepa-
rable matrices as defined in Definition 2.4 is important for a number of reasons.
Unlike the extended variant, for example, it is closed under multiplication; see [79,
p. 432, Corollary 9.59].
So far, the definitions of semiseparable matrices have included the diagonal into
the upper and lower triangular rank structure. This is problematic for the han-
dling of triangular matrices with a semiseparable structure. For example, of the
following two matrices, the first one is (extended) (1, 1)-generator representable
semiseparable, but the second one is not:1 1 1

1 1 1
1 1 1

 ,

1 1 1
0 1 1
0 0 1

 . (2.1)

A solution to this issue would be to define more general classes of semiseparable
matrices by dropping the requirement of a generator representation. This gives the
class of (extended) (p, q)-semiseparable matrices; see [79, p. 300]. For our purposes,
however, we would like to keep the generator representation but at the same time
allow for triangular matrices with a semiseparable structure like the second matrix
in (2.1). The following definition is to provide that.

Definition 2.6 An n × n matrix A is called upper (p)-generator representable
semiseparable, with 0 ≤ p, if it satisfies

A = triu
(
U VT

)
,

with matrices U and V of size n × p. This means that the upper triangular part
of the matrix A stems from a rank-p matrix. Similarly, a lower (p)-generator
representable semiseparable matrix is given by

A = tril
(
U VT

)
.

We have seen upper (1)- and upper (2)-generator representable semiseparable ma-
trices in Chapter 1 as certain special cases of connection matrices between the
classical orthogonal polynomials; see Section 1.4.2. The following result is a spe-
cial case of Theorem 9.56 in [79, p. 431] and was needed in Chapter 1 to assert
the semiseparable structure of some connection matrices for larger semiseparability
rank p > 1; see Corollary 1.46, Corollary 1.55, Corollary 1.63, and Corollary 1.70.

Theorem 2.7 Suppose that A1 and A2 are, respectively, upper (p1)-generator
representable semiseparable and upper (p2)-generator representable semiseparable.
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Then the matrix A = A1A2 is upper (p1 + p2)-generator representable semisepa-
rable. The analogous result holds for lower generator representable semiseparable
matrices.

There are many classes of matrices that are closely related to semiseparable matrices
and one can easily change above definitions to come to slightly altered versions. One
such generalization is to allow for the addition of a diagonal free of choice.

Definition 2.8 A matrix A is called diagonal plus (extended) (p, q)-generator
representable semiseparable if it can be written as the sum of a diagonal matrix D
and an (extended) (p, q)-generator representable semiseparable matrix B,

A = D + B.

Similarly, a diagonal plus upper (lower) (p)-generator representable semiseparable
matrix can be represented as the sum of a diagonal matrix and an upper (lower)
(p)-generator representable semiseparable matrix.

2.2.3 Checkerboard-like matrices. The interest for structured matrices in this
work is driven by their importance for algorithms related to the connection prob-
lem for classical orthogonal polynomials and their associated functions. If these
are orthogonal with respect to a symmetric measure, then it is easily verified that
the connection matrix between two such sequences of polynomials or associated
functions has a checkerboard-like population pattern: in each row, every second el-
ement vanishes due to orthogonality. This behavior is made precise by the following
definition.

Definition 2.9 A matrix A = (ai,j) is called checkerboard-like if the following
condition is satisfied:

ai,j = 0, if i+ j odd. (2.2)

It is possible to impose this condition on every type of matrix discussed so far
to obtain their checkerboard-like counterparts. For example, Figure 2.2 shows
checkerboard-like versions of Hessenberg and banded matrices. Please note that
these are already contained in the original definition of Hessenberg and banded
matrices used so far, since the checkerboard-like structure here simply implies that
certain diagonals must vanish.
For semiseparable matrices the situation is more difficult, as there is the valid ques-
tion how the definitions from the previous section should be modified accordingly.
It is easy to see that simply removing all entries that vanish owing to (2.2) is in-
compatible with the original definition of semiseparability. Therefore, it is better
to take a different viewpoint and first investigate how checkerboard-like matrices
with a semiseparable structure can arise from semiseparable matrices that lack the
pattern. The key is the following observation: Take, for example, an upper (2)-
generator representable semiseparable matrix A = (ai,j) = triu

(
U VT

)
, with n×2

matrices U = (ui,j) and V = (vi,j). Now, suppose that the entries of the matrices
U and V are related by ui,2 = (−1)iui,1 and vi,2 = (−1)ivi,1. Then we have

ai,j = ui,1vj,1 + ui,2vj,2 = (1 + (−1)i+j)ui,1vj,1, with i ≤ j.

This evaluates to zero whenever i+j is odd, hence the matrix A has a checkerboard-
like structure. Moreover, the matrix clearly looks like one that had been obtained
from an upper (1)-generator representable semiseparable matrix by imposing the
checkerboard structure afterwards. The last interpretation is useful to understand
how this type of matrices typically arises in the first place. For a convenient no-
tation, we introduce the symbols trilc( · ) and triuc( · ) which are similar to tril( · )
and triu( · ), respectively, but also incorporate the checkerboard pattern.
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Definition 2.10 Let U and V be two n×p matrices, with 0 ≤ p. Then the matrix
trilc

(
U VT, k

)
is defined by

trilc
(
U VT, k

)
= tril

(
Ũ ṼT, k

)
,

where the n× 2p matrices Ũ = (ũi,j) and Ṽ = (ṽi,j) are defined by

ũi,2j = (−1)iũi,2j+1 =
ui,j
2
, ṽi,2j = (−1)iṽi,2j+1 =

vi,j
2
,

for i = 1, 2, . . . , n and j = 1, 2, . . . , p. Similarly, the matrix triuc
(
U VT, k

)
is

defined by

triuc
(
U VT, k

)
= triu

(
Ũ ṼT, k

)
.

The last definition is equivalent to defining the matrix trilc
(
U VT, k

)
and the ma-

trix triuc
(
U VT, k

)
as the matrices tril

(
U VT, k

)
and triu

(
U VT, k

)
, respectively,

with the addition of the checkerboard pattern.
There is yet another interpretation of checkerboard-like matrices that is particu-
larly useful from a computational point of view: every matrix with checkerboard
structure can be decomposed into two independent smaller matrices of the same
type that lack the checkerboard pattern. This can be achieved by appropriate per-
mutations of rows and columns. Figure 2.3 illustrates this procedure. The upshot
is that with these equivalent viewpoints, one and the same matrix can be seen as,
for example, a particular upper (2)-generator representable semiseparable matrix,
as an upper (1)-generator representable semiseparable matrix with checkerboard
structure, or as two independent upper (1)-generator representable semiseparable
matrices without the checkerboard structure. One is free to pick the most conve-
nient representation for a given purpose. This, of course, extends to all other types
of semiseparable matrices mentioned.

2.3 The eigendecomposition of triangular semiseparable matrices

This section is to introduce a method to compute the eigendecomposition of diago-
nal plus upper or lower generator representable semiseparable matrices. The proce-
dure has first been published by the author in [38]. It is similar to an earlier method
for diagonal plus symmetric (1, 1)-generator representable semiseparable matrices
from [9], but has subtle differences that should be noted. There are other methods,
for example the recursive expressions of Eidelman, Gohberg, and Olshevsky [20]
for the characteristic polynomial and the eigenvectors of quasiseparable matrices.
The algorithm presented in the following has the blessing property that it not only
allows one to compute eigenvalues and eigenvectors explicitly. It leads to an effi-
cient approximate method to compute the product of the eigenvector matrix, or
its inverse or transpose, with any vector. This way, the cost of setting up the full
eigenvector matrix can be avoided. A restriction that we must acknowledge, is that
the matrix at hand must have simple eigenvalues. This condition will later always
be satisfied when we employ the method for our purposes in Section 2.4.
We start with matrices that have semiseparability rank p = 1. Recall that diag-
onal plus lower or upper (1)-generator representable semiseparable matrices have,
respectively, the form

A = diag(d) + triu(u vT), or B = diag(d) + tril(u vT). (2.3)

We will only treat upper generator representable semiseparable matrices. The lower
triangular case can approached analogously. Moreover, we will represent a diagonal
plus upper (1)-generator representable semiseparable matrix A as

A = diag(d) + triu(u vT, 1),
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Figure 2.2: Schematic representation of population patterns for different types
of structured matrices with checkerboard-like structure. The non-shaded boxes
represent vanishing entries.

by absorbing the diag(u vT) part in (2.3) into the vector d. This is solely for
notational convenience. An upper (1)-generator representable semiseparable matrix
A has an eigendecomposition of the form

A = Q D Q−1,

with an invertible upper triangular eigenvector matrix Q and a diagonal eigenvalue
matrix D = diag(d). The method we propose to compute the eigendecomposition
of such matrix follows a divide-and-conquer approach. It is based on that the matrix
A can be divided into smaller matrices of the same type, say A1 and A2, and that
the eigendecompositions of these smaller matrices can be efficiently combined to
the eigendecomposition of A. This is established in the following.
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Â

A

Â
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Figure 2.3: Examples of checkerboard-like matrices A and how these can be rear-
ranged into two smaller counterparts without the checkerboard structure. These
are contained within a permuted matrix Â.

2.3.1 Divide-and-conquer method. The method is split into two phases. In
the divide phase, the matrix A is recursively divided into smaller matrices until
these are sufficiently small such that their eigendecompositions can be computed
with a standard algorithm free of choice. In the conquer phase, we seek a method
to efficiently combine these eigendecompositions.

Divide phase

Given a diagonal plus upper (1)-generator representable semiseparable matrix A =
diag(d) + triu(u vT, 1) of size n× n, we would like to write this using two smaller
matrices of same type. This can be done as follows. Split each of the vectors d,
u, v into two vectors, with the first bn/2c components in the first vector, and the
remaining components in the second vector. That is, define d1, d2, u1, u2, v1, and
v2 such that

d =

(
d1

d2

)
, u =

(
u1

u2

)
, v =

(
v1

v2

)
.

Also, define vectors û and v̂ as

û =

(
u1

0

)
, v̂ =

(
0
v2

)
.

The matrix A may then be decomposed as

A =

(
A1 0
0 A2

)
+ û v̂T,
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where A1 and A2 are defined to the diagonal plus upper (1)-generator representable
semiseparable matrices

A1 = diag(d1) + triu(u1 vT
1 , 1),

A2 = diag(d2) + triu(u2 vT
2 , 1).

These are submatrices of the original matrix A that may be decomposed in a
similar manner. Note that the vector d contains the eigenvalues of A and that the
components of the vectors d1 and d2 are the eigenvalues of A1 and A2, respectively.
The rank-one modification û v̂T is non-symmetric, but of a particular type, since
it modifies only a certain block in the strictly upper triangular part. Note that the
decomposition does not require the computation of any new quantities.

Conquer phase

Suppose that two diagonal plus upper (1)-generator representable semiseparable
matrices A1 and A2 have the eigendecomposition

A1 = Q1 D1 Q−1
1 , A2 = Q2 D2 Q−1

2 ,

with diagonal eigenvalue matrices D1 = diag(d1), D2 = diag(d2) and invertible
upper triangular eigenvector matrices Q1 and Q2. Then this implies the represen-
tation

A =

(
Q1 0
0 Q2

)(
D + w zT

)(Q1 0
0 Q2

)−1

,

where w and z are vectors defined by

w =

(
Q1 0
0 Q2

)−1

û =

(
Q−1

1 u1

0

)
, z =

(
Q1 0
0 Q2

)T

v̂ =

(
0

QT
2 v2

)
.

Suppose that we can compute the eigendecomposition of the non-symmetric rank-
one modified diagonal matrix D + w zT. This problem will be dealt with in the
next section. Let this eigendecomposition be written as

D + w zT = P D P−1. (2.4)

We can then write the eigendecomposition of A as

A =

(
Q1 0
0 Q2

)
P D P−1

(
Q1 0
0 Q2

)−1

and (
Q1 0
0 Q2

)
P

is the desired eigenvector matrix of A. Two problems remain to be solved. First,
the eigendecomposition of the rank-one modified matrix D + w zT needs to be
obtained efficiently. Second, the representation of the eigenvector matrix Q of the
matrix A via

Q =

(
Q1 0
0 Q2

)
P (2.5)

does not instantly constitute a fast algorithm to apply the matrix Q to a vector.
Both problems are addressed in the following two sections.
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2.3.2 Non-symmetric rank-one modified eigenproblem. We need to study
the eigendecomposition of a diagonal matrix with a particular rank-one modifica-
tion. The matrix has the form

D + w zT,

with a diagonal matrix D = diag(d) and vectors d, w, and z given by

d = (d1, d2, . . . , dn)
T
,

w = (w1, w2, . . . , wk, 0, 0, . . . , 0)
T
,

z = (0, 0, . . . , 0, zk+1, zk+2, . . . , zn)
T
,

with 1 ≤ k ≤ n. The rank-one modification w zT is non-symmetric, but has a
particular form since the last n−k entries of w and the first k entries of z are zero.
This implies that the matrix D + w zT can be written as

D + w zT =



d1 w1zk+1 w1zk+2 . . . w1zn
d2 w2zk+1 w2zk+2 w2zn

. . .
...

...
. . .

...
dk wkzk+1 wkzk+2 . . . wkzn

dk+1

dk+2

. . .

dn


.

Before the eigendecomposition of above matrix can be studied in more detail, the
following definition is needed.

Definition 2.11 A matrix C = (ci,j)
n,m
i,j=1 is called a Cauchy-like matrix, if the

following condition is satisfied:

ci,j =
wizj
yi − xj

,

with certain numbers yi, wi for i = 1, 2, . . . , n, and xj, zj for j = 1, 2, . . . ,m.

The following theorem, first established in [38], shows the detailed structure of the
eigendecomposition of the matrix D + w zT.

Theorem 2.12 Let D be an n×n diagonal matrix with pairwise distinct diagonal
entries d1, d2, . . . , dn, and w and z vectors defined by

w = (w1, w2, . . . , wk, 0, 0, . . . , 0)
T
, z = (0, 0, . . . , 0, zk+1, zk+2, . . . , zn)

T
,

with 1 ≤ k ≤ n. Then, for the matrix B = D + w zT the following statements hold:

(i) The eigenvalues of the matrices D and B are the numbers d1, d2, . . . , dn.
(ii) The matrix B has the eigendecomposition

B = P D P−1,

where an eigenvector matrix P that contains ‖ · ‖2-normalized eigenvectors
of B and its inverse P−1 have the form

P =

(
I C D̂

0 D̂

)
, P−1 =

(
I −C

0 D̂−1

)
. (2.6)

Here, I denotes the k× k identity matrix, D̂ is an (n− k)× (n− k) diagonal

matrix with non-zero entries d̂j, j = k + 1, k + 2, . . . , n, and C is a certain
k × (n− k) matrix.
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(iii) The entries of the diagonal matrix D̂ = (d̂j)
n
j=k+1 are given by

d̂j = ±

(
1 +

k∑
i=1

w2
i z

2
j

(di − dj)2

)−1/2

,

and the Cauchy-like matrix C = (ci,j)
k,n
i=1, j=k+1 has its entries defined by

ci,j = −wi zj d̂j
di − dj

.

Proof.

(i) It is clear that the diagonal entries d1, d2, . . . , dn of the diagonal matrix D
coincide with its eigenvalues. Since B = D + w zT is an upper triangular
matrix with the same main diagonal as D, this also holds for B.

(ii) The matrix B clearly has real eigenvalues and the eigendecomposition of B
reads B = P D P−1 with the invertible eigenvector matrix P. To show that
P has the form

P =

(
I C D̂

0 D̂

)
,

we first prove that the coordinate vectors ei, i = 1, 2, . . . , k, are eigenvectors
of B to the respective eigenvalues di. For this, note that zT ei = 0 which
implies

B ei = D ei + w zT ei = di ei, with 1 ≤ i ≤ k.

Thus, the first k columns of P may be taken as

P (1 : n, 1 : k) =

(
I
0

)
.

It remains to prove that

P (1 : n, k + 1 : n) =

(
C D̂

D̂

)
.

Now, assume that k+1 ≤ i, j ≤ n. It suffices to show that the ith component
of the jth column of P, denoted (pj)i, satisfies

(pj)i = δi,j d̂i, with d̂i 6= 0.

To verify this, fix an arbitrary index j. Since the vector pj is an eigenvector
of B, we have

B pj =
(
D + w zT

)
pj = dj pj .

Note that the last n− k rows of the matrix w zT vanish. This implies

dj (pj)i = di (pj)i .

Since di 6= dj while i 6= j by assumption, we have

(pj)i = δi,j d̂i,

with a certain number d̂i. This number cannot vanish since this would render
the eigenvector matrix P singular. The form of the inverse matrix P−1 can
be obtained from the well-known block matrix inversion formula; see [35, p.
18].
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(iii) We first show that the upper right block of the eigenvector matrix P has the

representation C D̂ with a Cauchy-like matrix C = (ci,j)
k,n
i=1, j=k+1 whose

components are

ci,j = −wi zj d̂j
di − dj

.

Assume that 1 ≤ i ≤ k and k + 1 ≤ j ≤ n. The vector pj and the diagonal
entry dj form an eigenpair of B, i.e., B pj =

(
D + wzT

)
pj = dj pj . By

subtracting dj pj and w zT pj on each side and after rearranging terms, we
obtain

(D− djI) pj = −wpT
j z.

For the ith component in this equation we can verify that(
(D− djI)pj

)
i

= (di − dj) (pj)i = −
(
wpT

j z
)
i
.

Since the first k components of the vector z and the last (n− k) components

of the vector pj , except for the entry (pj)j = d̂j , are zero, it is verified that

pT
j z = d̂jzj . This implies (di − dj) (pj)i = −wid̂jzj and finally

(pj)i = −wi zj d̂j
di − dj

.

We have thus proved the desired representation for the upper right part of
P,

P(1 : k, k + 1 : n) = C D̂.

To obtain the explicit expression for the values d̂j , recall that each eigenvector
pj is assumed to be normalized, i.e.,

‖uj‖22 =

k∑
i=1

(
wi zj
di − dj

d̂j

)2

+ d̂2
j =

(
k∑
i=1

(
wi zj
di − dj

)2

+ 1

)
d̂2
j = 1.

This implies

d̂j = ±

(
1 +

k∑
i=1

w2
i z

2
j

(di − dj)2

)−1/2

. (2.7)

�
The last theorem allows us to calculate the eigenvector matrix of the rank-one
modified diagonal matrix D + w zT. If one assumes that the eigenvectors are
normalized, then these are uniquely defined up to signedness; cf. (2.7). Note that
it would also be allowed to change the sign of individual columns in the identity
matrix I in (2.6).

Remark 2.13 In some cases that will be observed later, it might be favorable to use
a different normalization of the eigenvectors by requiring that the diagonal entries

of the eigenvector matrix P be equal to one. This implies d̂j = 1 for j = k+1, . . . , n.
Then the matrix P and its inverse P−1 take the form

P =

(
I C
0 I

)
, P−1 =

(
I −C
0 I

)
.

In the divide-and-conquer method, this can be used to ensure that the final eigen-
vector matrix Q will also have a unit diagonal; cf. (2.5).
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2.3.3 Efficient application of the eigenvector matrix. An efficient method
is needed to apply the matrices P and P−1, obtained from the rank-one modified
system D + wzT, to an arbitrary vector. As we have seen, these have the represen-
tation (2.6) with a Cauchy-like matrix C. While the matrices I, D̂, and D̂−1 are
easily applied to a vector, one also needs an efficient method to apply the Cauchy-
like matrix C. More precisely, calculating the matrix-vector product y = Cx, with
vectors x = (xj)

n
j=k+1 and y = (yi)

k
i=1, is equivalent to calculating the sums

yi = −
n∑

j=k+1

wi zj
di − dj

xj , with i = 1, 2, . . . , k.

Methods to efficiently compute such sums are available and commonly subsumed
under the name fast multipole method (FMM). The original algorithm was intro-
duced by Rokhlin and Greengard [28]. Variations are also described, for example,
in [18]. The principle common to all methods is that a Cauchy-like matrix can be
decomposed into tiles that are well approximated by low-rank matrices. This is
done by imposing a binary tree structure on the nodes di. An efficient organization
of the computation leads to an algorithm with O

(
n log(1/ε)

)
arithmetic operations

for an n×n matrix, where ε is the desired accuracy. The amount of memory needed
is in the same order.
It should be noted that direct application of the FMM requires that the nodes di be
ordered increasingly. This can be arranged for by column and row permutations to
the matrix D + wzT, if necessary. But this will not be needed for our purposes in
Section 2.4. Typically, the FMM is divided into two stages. In the first, all necessary
information that depends only on the matrix to be applied is pre-computed and
stored. Then, in the second stage, any number of matrix-vector products with any
vector can be carried out efficiently using the pre-computed information. Usually,
both stages need O

(
n log(1/ε)

)
arithmetic operations, but the former one with

a much larger constant hidden in the asymptotic notation. This justifies to pre-
compute as much information as possible in the first stage.

2.3.4 Complexity of the divide-and-conquer algorithm. We have seen that
each eigenvector matrix P and its inverse P−1, obtained from a rank-one modified
diagonal matrix in the divide-and-conquer method, can be applied efficiently to
any vector. Moreover, (2.5) explains how this can be used to apply the eigenvector
matrix Q (or the inverse) of an upper (1)-generator representable semiseparable
matrix A to a vector. As a result, a factorization of the matrix Q into a product
of block-diagonal matrices is obtained, for example,

Q =


Q000

Q001

. . .

Q111




P00

P01

P10

P11

(P0

P1

)
P, (2.8)

which corresponds to the exemplary decomposition shown in Figure 2.4. Here,
the original matrix has been decomposed to four levels. Using plain matrix-vector
multiplications, the divide-and-conquer method needs O(n2) arithmetic operations
and O(n2) of memory to explicitly compute the full eigendecomposition of the n×n
matrix A. This is asymptotically better than standard methods which have an
arithmetic cost of O(n3) to compute the same result; see [26, Chapter 7]. To apply
the matrix Q to a vector clearly takes O(n2) operations. Recall that our goal is
not to compute the eigendecomposition explicitly, but only to apply the eigenvector
matrix Q to a vector. If we use the FMM to accelerate the calculation of matrix-
vector products, then (2.8) makes clear that the matrix Q can be multiplied with
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A

A0

A00

A000 A001

A01

A010 A011

A1

A10

A100 A101

A11

A110 A111

A

P

A0

P0

A00

P00

A000

Q000

A001

Q001

A01

P01

A010

Q010

A011

Q011

A1

P1

A10

P10

A100

Q100

A101

Q101

A11

P11

A110

Q110

A111

Q111

Figure 2.4: Schematic representation of a decomposition in the divide-and-conquer
method for an upper or lower (1)-generator representable semiseparable matrix.
The initial matrix A is recursively divided into smaller matrices A0, A1 and so
forth. The eigenvector matrices Q000, Q001, . . . ,Q111 corresponding to the smallest
matrices A000,A001, . . . ,A111 are computed explicitly. Then, these are combined
to eigenvector matrices for larger matrices.

a vector using only O
(
n log n log(1/ε)

)
arithmetic operations. Moreover, one never

needs to set up the matrix Q explicitly. For example, in (2.8) only the information
needed to define the Cauchy-like matrices P, P0, P1, P00, P01, P10, P11, and the
full eigenvector matrices Q000,Q001, . . . ,Q111 need to be stored. Therefore, only
O
(
n log n log(1/ε)

)
memory is required to store all needed information.

2.3.5 Generalization to higher semiseparability ranks. We can modify the
divide-and-conquer method to handle diagonal plus upper (p)-generator repre-
sentable semiseparable matrices for arbitrary semiseparability rank p ≥ 1. The
matrix A can then be decomposed into

A = diag(d) + triu(UVT, 1),

with n× p matrices U and V. In the divide phase, this may be written as

A =

(
A1 0
0 A2

)
+ ÛV̂T,

with the matrics Û and V̂ defined by

Û =

(
U(1 : k, : )

0

)
, V̂ =

(
0

V(k + 1 : n, : )

)
.

For the conquer phase, assume that the eigendecompositions of A1 and A2 are

A1 = Q1D1Q
−1
1 , A2 = Q2D2Q

−1
2 .

This implies the representation

A =

(
Q1 0
0 Q2

)(
D + W ZT

)(Q1 0
0 Q2

)−1

,
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where the matrices W and Z are defined by

W =

(
Q1 0
0 Q2

)−1

Û =

(
Q−1

1 U(1 : k, : )

0

)
,

Z =

(
Q1 0
0 Q2

)T

V̂ =

(
0

QT
2 V(k + 1 : n, : )

)
.

Let the eigendecomposition of the upper triangular rank-p modified diagonal matrix
D + W ZT be written as

D + W ZT = P D P−1. (2.9)

Then the eigendecomposition of the matrix A can be written as

A =

(
Q1 0
0 Q2

)
P D P−1

(
Q1 0
0 Q2

)−1

.

The generalization to higher semiseparability ranks is straightforward but it re-
mains to efficiently compute the eigendecomposition of the upper triangular rank-p
modified diagonal matrix D + W ZT. This can be reduced to the case p = 1 as
follows. We write the matrix in the form

D + W ZT = D + (w1,w2, . . . ,wp) (z1, z2, · · · , zp)T

= D + w1 zT
1 + w2 zT

2 + · · ·+ wp zT
p .

(2.10)

Now we invoke Theorem 2.12 to cheaply obtain the eigendecomposition of the
matrix D + w1 zT

1 , i.e.,

D + w1 zT
1 = P1 D P−1

1 .

Then, (2.10) may be written as

D + w1 zT
1 + w2 zT

2 + · · ·+ wp zT
p = P1

(
D + w̃2 z̃T

2 + w̃3 z̃T
3 + . . .+ w̃p z̃T

p

)
P−1

1 ,

where the vectors w̃2, w̃3, . . . , w̃p and z̃2, z̃3, . . . , z̃p are defined by

w̃i = P−1
1 wi, z̃i = PT

1 zi, with i = 2, 3, . . . , p.

Thus, it remains to compute the eigendecomposition of the rank-(p − 1) modified
diagonal matrix D+ w̃2 z̃T

2 + w̃3 z̃T
3 + . . .+ w̃p z̃T

p which can be dealt with similarly.
Finally, the eigendecomposition

D + W ZT = P D P−1 = P1 ·P2 · · · · ·Pp ·D ·P−1
p ·P−1

p−1 · · · · ·P
−1
1

is obtained, where the matrices Pi for i = 1, 2, . . . , p, all stem from the eigendecom-
position of certain upper triangular rank-one modified diagonal matrices according
to Theorem 2.12. Each of these matrices can be applied efficiently with the FMM.

2.4 Classical orthogonal polynomials and semiseparable matrices

In this section, we will make use of the algorithms for the eigendecomposition of
diagonal plus upper (p)-generator representable semiseparable matrices from the
last section. This will allow us to obtain an efficient algorithm for applying connec-
tion matrices between sequences of classical orthogonal polynomials. To this end,
we will identify the corresponding connection matrices with the eigenvector matri-
ces of certain explicitly constructed upper generator representable semiseparable
matrices.
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2.4.1 Differentiated expressions of classical orthogonal polynomials. We
start with the expansion of differentiated classical orthogonal polynomials back into
the same basis. The following result shows that derivatives of monic Laguerre poly-

nomials L̄
(α)
n can be linked to an upper (1)-generator representable semiseparable

matrix.

Lemma 2.14 Let
{
L̄

(α)
n

}
n∈N0

be the monic Laguerre polynomials which are or-

thogonal with respect to an inner product 〈 · , · 〉 and which satisfy the derivative
identity

d

dx
L̄(α)
n (x) = Ān

n−1∑
i=0

B̄iL̄
(α)
i (x),

with certain numbers Ān and B̄i; cf. Theorem 1.75. Then the matrix G =
(gi,j)

n
i,j=0, defined by

gi,j =
〈L̄(α)

i , d
dx L̄

(α)
j 〉

〈L̄(α)
i , L̄

(α)
i 〉

, with i, j = 0, 1, . . . , n,

is diagonal plus upper (1)-generator representable semiseparable and may be written
as

G = diag(0) + triu(u vT, 1),

with the vectors u and v given by

u = (B̄0, B̄1, . . . , B̄n)T, v = (Ā0, Ā1, . . . , Ān)T.

Proof. By orthogonality, we verify that 〈L̄(α)
i , d

dx L̄
(α)
j 〉 = 0 whenever j < i + 1.

This implies that G must be a strictly upper triangular matrix. For j ≥ i+ 1, we
have

gi,j =
〈L̄(α)

i , d
dx L̄

(α)
j 〉

〈L̄(α)
i , L̄

(α)
i 〉

=
Āj
∑j−1
k=0 B̄k〈L̄

(α)
i , L̄

(α)
k 〉

〈L̄(α)
i , L̄

(α)
i 〉

= B̄iĀj
〈L̄(α)

i , L̄
(α)
i 〉

〈L̄(α)
i , L̄

(α)
i 〉

= B̄iĀj .

�
The following result establishes a similar link to semiseparable matrices for Jacobi
polynomials. After that, it is observed that the semiseparable structure is preserved
if the derivatives of Jacobi polynomials are multiplied by a linear term. We omit
the proof for the first result since it is very similar to that of the last.

Lemma 2.15 Let {P̄ (α,β)
n }n∈N0

be the monic Jacobi polynomials which are or-
thogonal with respect to an inner product 〈 · , · 〉, and which satisfy the derivative
identity

d

dx
P̄ (α,β)
n (x) = Ān

n−1∑
i=0

B̄iP̄
(α,β)
i (x) + C̄n

n−1∑
i=0

D̄iP̄
(α,β)
i (x), (2.11)

with certain numbers Ān, B̄i, C̄n, and D̄i; cf. Theorem 1.75. Then the matrix
G = (gi,j)

n
i,j=0, defined by

gi,j =
〈P̄ (α,β)
i , d

dx P̄
(α,β)
j 〉

〈P̄ (α,β)
i , P̄

(α,β)
i 〉

, with i, j = 0, 1, . . . , n,

is diagonal plus upper (2)-generator representable semiseparable and may be written
as

G = diag(0) + triu(u1 vT
1 , 1) + triu(u2 vT

2 , 1),

with the vectors u1, v1, u2, and v2 given by

u1 = (B̄0, B̄1, . . . , B̄n)T, v1 = (Ā0, Ā1, . . . , Ān)T.

u2 = (D̄0, D̄1, . . . , D̄n)T, v2 = (C̄0, C̄1, . . . , C̄n)T.
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Lemma 2.16 Let {P̄ (α,β)
n }n∈N0

be the monic Jacobi polynomials which are orthog-
onal with respect to an inner product 〈 · , · 〉, which satisfy the derivative identity
(2.11) and moreover have a three-term recurrence formula of the form

xP̄ (α,β)
n (x) = ā′nP̄

(α,β)
n+1 + b̄′nP̄

(α,β)
n (x) + c̄′nP̄

(α,β)
n−1 (x).

Then the matrix G = (gi,j)
n
i,j=0, defined by

gi,j =
〈P̄ (α,β)
i , (rx+ s) d

dx P̄
(α,β)
j 〉

〈P̄ (α,β)
i , P̄

(α,β)
i 〉

, with r, s ∈ R and i, j = 0, 1, . . . , n,

is diagonal plus upper (2)-generator representable semiseparable and may be written
as

G = diag(d) + triu(u1 vT
1 , 1) + triu(u2 vT

2 , 1),

with the vectors d, u1, v1, u2, and v2 given by

d =
(
r(ĀjB̄j−1ā

′
j−1 + C̄jD̄j−1ā

′
j−1)

)n
j=0

,

u1 =
(
r(B̄i−1ā

′
i−1 + B̄ib̄

′
i + B̄i+1c̄

′
i+1) + sB̄i

)n
i=0

, v1 = (Āj)
n
j=0,

u2 =
(
r(D̄i−1ā

′
i−1 + D̄ib̄

′
i + D̄i+1c̄

′
i+1) + sD̄i

)n
i=0

, v2 = (C̄j)
n
j=0.

Proof. By orthogonality, we verify that 〈P̄ (α,β)
i , (rx + s) d

dx P̄
(α,β)
j 〉 = 0 whenever

j < i. This implies that G must be an upper triangular matrix. For j ≥ i, we have

gi,j =
〈P̄ (α,β)
i , (rx+ s) d

dx P̄
(α,β)
j 〉

〈P̄ (α,β)
i , P̄

(α,β)
i 〉

=
Āj
∑j−1
k=0 B̄k〈P̄

(α,β)
i , (rx+ s)P̄

(α,β)
k 〉+ C̄j

∑j−1
k=0 D̄k〈P̄ (α,β)

i , (rx+ s)P̄
(α,β)
k 〉

〈P̄ (α,β)
i , P̄

(α,β)
i 〉

=
Āj
∑j−1
k=0 B̄k〈P̄

(α,β)
i , rā′kP̄

(α,β)
k+1 + (rb̄′k + s)P̄

(α,β)
k + rc̄′kP̄

(α,β)
k−1 )〉

〈P̄ (α,β)
i , P̄

(α,β)
i 〉

+
C̄j
∑j−1
k=0 D̄k〈P̄ (α,β)

i , rā′kP̄
(α,β)
k+1 + (rb̄′k + s)P̄

(α,β)
k + rc̄′kP̄

(α,β)
k−1 )〉

〈P̄ (α,β)
i , P̄

(α,β)
i 〉

=



r(ĀjB̄j−1ā
′
j−1 + C̄jD̄j−1ā

′
j−1), if i = j,

Āj
(
r(B̄j−2ā

′
j−2 + B̄j−1b̄

′
j−1) + sB̄j−1

)
+C̄j

(
r(D̄j−2ā

′
j−2 + D̄j−1b̄

′
j−1) + sD̄j−1

)
, if i = j − 1,

Āj
(
r(B̄i−1ā

′
i−1 + B̄ib̄

′
i + B̄i+1c̄

′
i+1) + sB̄i

)
+C̄j

(
r(D̄i−1ā

′
i−1 + D̄ib̄

′
i + D̄i+1c̄

′
i+1) + sD̄i

)
, if i < j − 1.

Observe that (1.39) implies

ĀjB̄j + C̄jD̄j = 0.

This allows us to absorb the second case into the third. Thus,

gi,j =


r(ĀjB̄j−1ā

′
j−1 + C̄jD̄j−1ā

′
j−1), if i = j,

Āj
(
r(B̄i−1ā

′
i−1 + B̄ib̄

′
i + B̄i+1c̄

′
i+1) + sB̄i

)
+C̄j

(
r(D̄i−1ā

′
i−1 + D̄ib̄

′
i + D̄i+1c̄

′
i+1) + sD̄i

)
, if i < j,

which proves the desired representation of the matrix G. �
The following result is for Gegenbauer polynomials. It can be obtained from Lemma
2.16, but for the sake of completeness, the proof is also given.
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Lemma 2.17 Let {C̄(α)
n }n∈N0

be the monic Gegenbauer polynomials which are or-
thogonal with respect to an inner product 〈 · , · 〉 and which satisfy the derivative
identity

d

dx
C̄(α)
n (x) = Ān

b(n−1)/2c∑
i=0

B̄2i+χC̄
(α)
2i+χ(x),

with certain numbers Ān and B̄2i+χ, cf. Corollary 1.76, where χ = χ(n) is given
by

χ =

{
1, if n even,

0, if n odd.

They also satisfy a three-term recurrence of the form

xC̄(α)
n (x) = ā′nC̄

(α)
n+1 + c̄′nC̄

(α)
n−1(x).

Then the matrix G = (gi,j)
n
i,j=0, defined by

gi,j =
〈C̄(α)

i , x d
dx C̄

(α)
j 〉

〈C̄(α)
i , C̄

(α)
i 〉

, with i, j = 0, 1, . . . , n,

is checkerboard-like diagonal plus upper (1)-generator representable semiseparable
and may be represented as

G = diag(d) + triuc(u vT, 1),

with the vectors d, u, and v given by

d =
(
ĀjB̄j−1ā

′
j−1

)n
j=0

, u1 =
(
B̄i−1ā

′
i−1 + B̄i+1c̄

′
i+1

)n
i=0

, v1 = (Āj)
n
j=0.

Proof. By orthogonality and the fact that Gegenbauer polynomials are orthogonal

with respect to a symmetric measure, we verify that 〈C̄(α)
i , x d

dx C̄
(α)
j 〉 = 0 whenever

j < i or j+i odd. This implies that G must be a checkerboard-like upper triangular
matrix. If j ≥ i and j + i even, we have

gi,j =
〈C̄(α)

i , x d
dx C̄

(α)
j 〉

〈C̄(α)
i , C̄

(α)
i 〉

=
Āj
∑b(j−1/2)c
k=0 B̄2k+χ〈C̄(α)

i , xC̄
(α)
2k+χ〉

〈C̄(α)
i , C̄

(α)
i 〉

=
Āj
∑b(j−1/2)c
k=0 B̄2k+χ〈C̄(α)

i , ā′2k+χC̄
(α)
2k+χ+1 + c̄′2k+χC̄

(α)
2k+χ−1〉

〈C̄(α)
i , C̄

(α)
i 〉

=

{
ĀjB̄j−1ā

′
j−1, if i = j,

ĀjB̄i−1ā
′
i−1 + ĀjB̄i+1c̄

′
i+1, if i < j.

This can be matched with the desired representation of the matrix G. �

2.4.2 Connection matrices and semiseparable matrices. We are now ready
to turn to the conversion of expansion coefficients between different families of clas-
sical orthogonal polynomials. This will be restricted to polynomials of the same
type, for example, from one sequence of Laguerre polynomials to another but not
from Laguerre polynomials to Jacobi polynomials. Suppose that a degree-n poly-
nomial f has been expanded into a sequence of orthogonal polynomials {pn}n∈N0

,

f =

n∑
j=0

xjpj ,
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with known expansion coefficients xj . Then we want to compute the coefficients yj
in the expansion

f =

n∑
j=0

yjqj ,

where {qn}n∈N0
is another sequence of orthogonal polynomials different from the

first one. If the coefficients xj and yj are collected in the two vectors x and y, i.e.,

x = (x0, x1, . . . , xn)T, y = (y0, y1, . . . , yn)T,

then y can be obtained from x via the matrix-vector product

y = K x,

where K = (κi,j)
n
i,j=0 is the connection matrix between the polynomial sequences

{pn}n∈N0
and {qn}n∈N0

; see Section 1.4. This can be verified by

n∑
j=0

κi,jxj =

n∑
j=0

〈qi, pj〉
〈qi, qi〉

xj =
〈qi,

∑n
j=0 xjpj〉
〈qi, qi〉

=
〈qi, f〉
〈qi, Qi〉

= yi

with i = 0, 1, . . . , n, where 〈 · , · 〉 is the inner product with respect to which the
target polynomials {qn}n∈N0

are orthogonal.
To handle the conversion efficiently, we need to devise an efficient method to apply
the connection matrix K to a vector. This will be done in two steps. First, a
matrix G will be defined that has its eigenvector matrix Q identical to the desired
connection matrix K, provided that the columns of Q have been properly scaled.
Second, it will be observed that the matrix G has a semiseparable structure that
allows the application of the divide-and-conquer method from Section 2.3. To this
end, we will calculate the entries of the matrix G explicitly. In total, we thus obtain
a practical method to cheaply apply the connection matrix K to any vector with
O
(
n log n log(1/ε)

)
arithmetic operations instead of the usual O(n2), where ε is the

desired accuracy.

Definition 2.18 Let {pn}n∈N0 be a sequence of classical orthogonal polynomials
which satisfy a differential equation of hypergeometric type,

σ(x)p′′n(x) + τ(x)p′n(x) + λnpn(x) = 0,

with the corresponding differential operator D given by

D = −σ d2

dx2
− τ d

dx
.

Let {qn}n∈N0 be a different sequence of classical polynomials, orthogonal with respect
to the inner product 〈 · , · 〉. Then the matrix

G = (gi,j)
n
i,j=0

is defined by

gi,j =
〈qi,D(qj)〉
〈qi, qi〉

. (2.12)

Note that here, the operator D belongs to the polynomial sequence {pn}n∈N0
, but

is applied to the polynomials qn. In the following, we will adopt the same notation
for the matrix G that was used for the connection matrices K when it comes to
concrete pairs of classical orthogonal polynomials. For example, the matrix G for

two sequences of monic Laguerre polynomials, {L(α)
n }n∈N0

and {L(β)
n }n∈N0

, will be
denoted ḠL,(α)→(β) or Ḡ(α)→(β), if it is clear from the context that we mean the
Laguerre polynomials. With the definition of the matrix G, we can now show that
the connection matrix K contains its eigenvectors.
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Lemma 2.19 Let {pn}n∈N0
and {qn}n∈N0

be two sequences of classical orthogonal
polynomials and let the matrix G be defined as before. Then for j = 0, 2, . . . , n, any
column κj of the connection matrix K between the two sequences is an eigenvector
of the matrix G to the eigenvalue λj.

Proof. Recall that we have pj =
∑j
i=0 κi,jqi. We denote by (Gκj)i the (i+ 1)st

component of the vector product Gκj , where κj = (κ0,j , κ1,j , . . . , κn,j)
T is the

(j + 1)st column of the connection matrix K. Then we have

(Gκj)i =

n∑
k=0

gi,kκk,j =

n∑
k=0

〈qi,D(qk)〉
〈qi, qi〉

κk,j =
〈qi,D

(∑j
k=0 κk,jqk

)
〉

〈qi, qi〉
=
〈qi,D(pj)〉
〈qi, qi〉

.

We know that the polynomial pj is an eigenfunction of the differential operator D
to the eigenvalue λj , that is, we can replace D(pj) = λjpj . Then we work backward
until we obtain

(Gκj)i = λj

n∑
k=0

gi,kκk,j = λj (κj)i .

�

Remark 2.20 It is clear that the eigenvalues λj of the matrix G are simple, since
these are distinct for all classical orthogonal polynomials. This was a requirement
for the application of the divide-and-conquer algorithm from Section 2.3.

Knowing that the columns of the connection matrix K are eigenvectors of the
matrix G does not readily yield a fast method to apply K to a vector. The idea to
get such a method is to invoke the divide-and-conquer algorithm from Section 2.3
on the matrix G. This allows to cheaply apply the eigenvector matrix of G, that
is, the connection matrix K, to any vector.
There are two issues left that need to be resolved before this can be used. First, we
need explicit expressions for the entries of the matrix G so that it can be fed to the
divide-and-conquer algorithm. Second, we must work out how the eigenvectors of
the matrix G should be scaled to make them coincide with the columns of the con-
nection matrix K. Of course, the entries of the matrix G depend on the parameters
associated with each of the sequences of polynomials, {pn}n∈N0

and {qn}n∈N0
. As

we will see, the particular scaling of the target polynomials qn is already encoded
in the matrix G. The scaling of the source polynomials pn, however, is reflected in
the appropriate scaling of the columns of the eigenvector matrix of G.

2.4.3 Examples. In the following, explicit expressions for the entries of the matrix
G for monic Laguerre, Jacobi, and Gegenbauer polynomials are given. For other
normalizations, see the Appendix A.

Laguerre polynomials

Theorem 2.21 Let {L̄(α)
n }n∈N0 and {L̄(β)

n }n∈N0 with α, β > −1 be two sequences of
monic Laguerre polynomials. Then the corresponding matrix Ḡ(α)→(β) is diagonal
plus upper (1)-generator representable semiseparable,

Ḡ(α)→(β) = diag(d) + (β − α) triu(u vT, 1),

with the vectors d, u, and v given by

d = (j)nj=0, u =

(
(−1)j

Γ(j + 1)

)n
j=0

, v =
(
(−1)j+1Γ(j + 1)

)n
j=0

.

Proof. The polynomials L̄
(α)
n satisfy the differential equation

xy′′(x) + (1 + α− x)y′(x) + ny(x) = 0, with y = L̄(α)
n ,
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and similarly the polynomials L̄
(β)
n satisfy

xy′′(x) + (1 + β − x)y′(x) + ny(x) = 0, with y = L̄(β)
n .

Thus, the corresponding differential operators are given by

D(α) = −x d2

dx2
− (1 + α− x)

d

dx
, D(β) = −x d2

dx2
− (1 + β − x)

d

dx
,

and we have

D(α) −D(β) = (β − α)
d

dx
.

This implies

gi,j =
〈L(β)

i ,D(α)(L
(β)
j )〉

〈L(β)
i , L

(β)
i 〉

=
〈L(β)

i ,D(β)(L
(β)
j )〉

〈L(β)
i , L

(β)
i 〉

+
〈L(β)

i , (D(α) −D(β))(L
(β)
j )〉

〈L(β)
i , L

(β)
i 〉

,

=
〈L(β)

i ,D(β)(L
(β)
j )〉

〈L(β)
i , L

(β)
i 〉

+ (β − α)
〈L(β)

i , d
dxL

(β)
j 〉

〈L(β)
i , L

(β)
i 〉

.

Since the polynomial L̄
(β)
j is an eigenfunction of the operator D(β) to the eigenvalue

λj = j, we get for the first summand in the last expression

〈L(β)
i ,D(β)(L

(β)
j )〉

〈L(β)
i , L

(β)
i 〉

= j
〈L(β)

i , L
(β)
j 〉

〈L(β)
i , L

(β)
i 〉

= jδi,j .

For the second summand, note that with the help of Lemma 2.14 and the derivative
identity from Theorem 1.75, it is clear that

〈L(β)
i , d

dxL
(β)
j 〉

〈L(β)
i , L

(β)
i 〉

=

(−1)i+j+1 Γ(j + 1)

Γ(i+ 1)
, if i < j.

0, else.

This proves the desired representation of the matrix Ḡ(α)→(β). �

Jacobi polynomials

Theorem 2.22 Let {P̄ (α,β)
n }n∈N0 and {P̄ (γ,δ)

n }n∈N0 with α, β, γ, δ > −1 be two
sequences of monic Jacobi polynomials. Then the corresponding matrix Ḡ(α,β)→(γ,δ)

is diagonal plus upper (2)-generator representable semiseparable,

Ḡ(α,β)→(γ,δ) = diag(d) + (α− γ) triu(u1 vT
1 , 1) + (β − δ) triu(u2 vT

2 , 1),

with the vectors d, u1, v1, u2, and v2 given by

d = (j(j + α+ β + 1))nj=0,

u1 =

(
Γ(2j + γ + δ + 2)

2jΓ(j + 1)Γ(j + δ + 1)

)n
j=0

, v1 =

(
2jΓ(j + 1)Γ(j + δ + 1)

Γ(2j + γ + δ + 1)

)n
j=0

,

u2 =

(
(−1)jΓ(2j + γ + δ + 2)

2jΓ(j + 1)Γ(j + γ + 1)

)n
j=0

, v2 =

(
2jΓ(j + 1)Γ(j + γ + 1)

(−1)jΓ(2j + γ + δ + 1)

)n
j=0

.

Proof. The Jacobi polynomials P̄
(α,β)
n satisfy the differential equation

(1− x2)y′′(x)−
(
(α+ β + 2)x+ α− β

)
y′(x) + n(n+ α+ β + 1)y(x) = 0,

with y = P̄
(α,β)
n , and similarly the Jacobi polynomials P̄

(γ,δ)
n satisfy

(1− x2)y′′(x)−
(
(γ + δ + 2)x+ γ − δ

)
y′(x) + n(n+ γ + δ + 1)y(x) = 0,
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with y = P̄
(γ,δ)
n . Thus, the corresponding differential operators are given by

D(α,β) = −(1− x2)
d2

dx2
+ ((α+ β + 2)x+ α− β)

d

dx
,

D(γ,δ) = −(1− x2)
d2

dx2
+ ((γ + δ + 2)x+ γ − δ) d

dx
,

and we have

D(α,β) −D(γ,δ) =
(
(α+ β − γ − δ)x+ α− β − γ + δ

) d

dx
.

This implies

gi,j =
〈P̄ (γ,δ)
i ,D(α,β)(P̄

(γ,δ)
j )〉

〈P̄ (γ,δ)
i , P̄

(γ,δ)
i 〉

=
〈P̄ (γ,δ)
i ,D(γ,δ)(P̄

(γ,δ)
j )〉

〈P̄ (γ,δ)
i , P̄

(γ,δ)
i 〉

+
〈P̄ (γ,δ)
i , (D(α,β) −D(γ,δ))(P̄

(γ,δ)
j )〉

〈P̄ (γ,δ)
i , P̄

(γ,δ)
i 〉

,

=
〈P̄ (γ,δ)
i ,D(γ.δ)(P̄

(γ,δ)
j )〉

〈P̄ (γ,δ)
i , P̄

(γ,δ)
i 〉

+
〈P̄ (γ,δ)
i ,

(
(α+ β − γ − δ)x+ α− β − γ + δ

)
d

dx P̄
(γ,δ)
j 〉

〈P̄ (γ,δ)
i , P̄

(γ,δ)
i 〉

.

Since the polynomial P̄
(γ,δ)
j is an eigenfunction of the operator D(γ,δ) to the eigen-

value λj = j(j + γ + δ + 1), we verify for the first summand that

〈P̄ (γ,δ)
i ,D(γ,δ)(P̄

(γ,δ)
j )〉

〈P̄ (γ,δ)
i , P̄

(γ,δ)
i 〉

= j(j + γ + δ + 1)
〈P̄ (γ,δ)
i , P̄

(γ,δ)
j 〉

〈P̄ (γ,δ)
i , P̄

(γ,δ)
i 〉

= j(j + γ + δ + 1)δi,j .

For the second part, we note that with the help of Lemma 2.14 and the derivative
identity from Theorem 1.75, it is clear that

〈P̄ (γ,δ)
i , ((α+ β − γ − δ)x+ α− β − γ + δ) d

dx P̄
(γ,δ)
j 〉

〈P̄ (γ,δ)
i , P̄

(γ,δ)
i 〉

=



j(α+ β − γ − δ), if i = j,

(α− γ)
2jΓ(j + 1)Γ(j + δ + 1)Γ(2i+ γ + δ + 2)

2iΓ(i+ 1)Γ(i+ δ + 1)Γ(2j + γ + δ + 1)
+

(−1)i+j(β − δ)2jΓ(j + 1)Γ(j + γ + 1)Γ(2i+ γ + δ + 2)

2iΓ(i+ 1)Γ(i+ γ + 1)Γ(2j + γ + δ + 1)
, if i < j.

0, else.

This proves the desired representation of the matrix Ḡ(α,β)→(γ,δ). �

Gegenbauer polynomials

Theorem 2.23 Let {C̄(α)
n }n∈N0

and {C̄(β)
n }n∈N0

, with α, β > −1/2, be two se-
quences of monic Gegenbauer polynomials. Then the corresponding matrix Ḡ(α)→(β)

is checkerboard-like diagonal plus upper (1)-generator representable semiseparable,

Ḡ(α)→(β) = diag(d) + 4(α− β) triuc(u vT, 1),

with the vectors d, u, and v given by

d =
(
j(j + 2α)

)n
j=0

,

u =

(
2jΓ(j + β + 1)

Γ(j + 1)

)n
j=0

, v =

(
Γ(j + 1)

2jΓ(j + β)

)n
j=0

.
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Proof. Theorem 2.22 for the Gegenbauer case yields

d =
(
j(j + 2α)

)n
j=0

,

u =

(
Γ(2j + 2β + 1)

2jΓ(j + 1)Γ(j + β + 1/2)

)n
j=0

, v =

(
2jΓ(j + 1)Γ(j + β + 1/2)

Γ(2j + 2β)

)n
j=0

.

The well known identity Γ(2z) = 22z−1Γ(z)Γ(z + 1/2)/
√
π implies the desired

representation. �
We omit construction the matrix G for the conversion between Chebyshev and
Legendre polynomials since these can be obtained as special cases that can be
obtained from the last result.

2.4.4 Scaling the eigenvectors. We have calculated the generator representa-
tion of the matrix G. As mentioned before, the scaling of the target polynomials
is already encoded in this representation, but we still need side conditions to en-
sure the desired scaling of the source polynomials {pn}n∈N0

. Clearly, changing the
scaling of the source polynomials is equivalent to rescaling the columns of the eigen-
vector matrix of G, that is, the desired connection matrix K. The following result
provides the condition that allows for the correct scaling of these columns.

Lemma 2.24 Let {pn}n∈N0
and {qn}n∈N0

be two families of orthogonal polynomials

that have, respectively, kn and k̂n as their leading coefficients. Then the diagonal
entries κi,i, for i = 0, 1, . . . , in the connection matrix K = (κi,j) between the
sequence {pn}n∈N0

and the sequence {qn}n∈N0
are given by

κi,i =
ki

k̂i
.

Proof. By Definition, we have

κi,i =
〈qi, pi〉
〈qi, qi〉

, with i = 0, 1, . . . ,

where 〈 · , · 〉 is the inner product with respect to which the target polynomials
{qn}n∈N0

are orthogonal. Since the polynomial qi is orthogonal to every polynomial
of strictly smaller degree, this can be rewritten as

κi,i =
〈qi, pi〉
〈qi, qi〉

=
ki

k̂i

〈qi, qi〉
〈qi, qi〉

=
ki

k̂i
.

�

2.4.5 Other normalizations. The expressions provided in this section are for
the matrix Ḡ which corresponds to the monic variants of the respective orthogo-
nal polynomials. To obtain the expressions for the standard and the normalized
variants, we can use that

ḡi,j =
〈q̄i,D(q̄j)〉
〈q̄i, q̄i〉

=
k2
i

kikj

〈qi,D(qj)〉
〈qi, qi〉

=
ki
kj
gi,j ,

gi,j =
〈qi,D(qj)〉
〈qi, qi〉

=

√
hihj

hi

〈q̃i,D(q̃j)〉
〈q̃i, q̃i〉

=

√
hj
hi
g̃i,j .

This gives

gi,j =
kj
ki
ḡi,j , g̃i,j =

√
hi
hj
gi,j .

Here, as before, ki and hi denote the leading coefficients and squared norms, re-
spectively, of the polynomials {qn}n∈N0

in the standard normalization.
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2.4.6 Numerical results. We are ready to test the divide-and-conquer method
from Section 2.3 for the computation of the connection between classical orthogonal
polynomials. To this end, we evaluate several test cases for which we take as
input the coefficients xj from an expansion in a sequence of classical orthogonal
polynomials {pn}n∈N0

of the form

f =

n∑
j=0

xjpj .

Then we compute as output the coefficients yj in the expansion

f =

n∑
j=0

yjqj ,

with a different sequence of classical orthogonal polynomials {qn}n∈N0
. This is

done by applying the appropriate connection matrix K = (κi,j)
n
i,j=0 to the vector

x = (xj)
n
j=0 to obtain the vector y = (yj)

n
j=0, i.e.,

y = K x.

We have a choice of different methods, for example the divide-and-conquer method
from Section 2.3 which uses the results on the matrix G from the last section.
All methods have been implemented in C and tested on an Intel Core 2 Duo 2.66
GHz MacBook Pro with 4GB RAM running Mac OS X 10.6.3 in double precision
arithmetic. We have used Apple’s llvm-gcc-4.2 compiler with the optimization
options -O3 -fomit-frame-pointer -malign-double -ffast-math -mtune=core2

-march=core2. Time spans were measured using the CPU cycle counters interface
from the popular FFTW library; see [22]. The input coefficients xi were drawn
from a uniform quasi-random distribution in the interval [−1, 1] using the standard
C function drand48().
To assess the accuracy of the numerical results, we used the component-wise error
measure Ec

∞ and the relative infinity norm E∞ which are given by

Ec
∞ := max

i=0,...,n

|y∗i − yi|
|ya
i |

, E∞ :=
‖y∗ − y‖∞
‖y∗‖∞

, (2.13)

with the vectors

y∗ = (y∗i )
n
i=0 , y = (yi)

n
i=0 , and ya = (ya

i )
n
i=0 .

The vector y∗ stands for reference results which we computed on a PowerBook
G4 which supports a quadruple precision datatype. Compared to double precision,
this means roughly 16 additional significant decimal figures in the calculation which
should be enough to provide correctly rounded results in double precision for the
tests conducted. We computed the reference values by calculating the entries of
each connection matrix K using the explicit expressions found in Chapter 1. We
then applied the matrix K directly to the input coefficients x. Therefore, this will
be called the direct method (in quadruple precision). The vector y contains the
results computed in double precision with any algorithm that was tested. For the
error measure Ec

∞, we also need the values

ya
i :=

i∑
j=0

|κi,j ||xj |

that are defined according to the results yi given by

yi =

i∑
j=0

κi,jxj . (2.14)
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The error Ec
∞ thus reflects the standard error bound that holds for the computation

of the values yi according to (2.14); see [34]. Ideally, we would have Ec
∞ ≈ ε, where

ε is the machine epsilon, typically ε ≈ 2× 10−16 in double precision. In detail, the
tested algorithms were the following:

The direct method : Each connection matrix K = (κi,j)
n
i,j=0 is calculated in full

using the expressions for its entries κi,j derived in Chapter 1. Then the
matrix K is applied to the input vector x, that is, we compute y = K x the
usual way.

The usmv-direct method : Each connection matrix K is calculated in full as
the properly scaled eigenvector matrix of the corresponding upper gener-
ator representable semiseparable matrix G as derived in Section 2.4.2. To
compute this eigendecomposition, a C-translated version of the LAPACK
routine dgeev, which uses the QR algorithm, is used. Then the matrix K is
applied to the input vector x, that is, we compute y = K x the usual way.

The usmv-fmm method : The matrix-vector product y = K x is computed using
the FMM-accelerated divide-and-conquer method for the eigendecomposition
of upper generator representable semiseparable matrices from Section 2.3,
applied to the corresponding matrix G as derived in Section 2.4.2. That
is, all data necessary for the hierarchical representation of the matrix K,
see, e.g., (2.8), is calculated and stored beforehand. Then the matrix K is
applied using the FMM for all Cauchy-like matrices that appear. All other
matrix-vector products are carried out the usual way. The parameters were
chosen to maximize performance on the system used for testing, that is,
for matrices with dimensions smaller than 256× 256 the eigendecomposition
was computed with the routine dgeev as in the usmv-direct method, and the
desired accuracy ε of the FMM was chosen to be comparable to the machine
epsilon ε.

Each of the algorithms has a pre-computation stage where data is stored that
needs to be calculated only once. The actual transformation consists of the steps
that depend on the input coefficients. In the following, we analyze the different
arithmetic cost and memory requirements of the various methods. This is also
summarized in Table 2.1.

direct method : For a transform of size n, the direct method needs for the pre-
computation stage O(n2) arithmetic operations and an amount of memory
in the same order. The transformation is computed with O(n2) arithmetic
operations.

usmv-direct method : The usmv-direct method has a higher arithmetic cost than
the direct method, as one needs O(n3) operations to calculate the necessary
eigendecomposition of the matrix G. This led to unacceptable time require-
ments for the pre-computation stage whenever n > 4096. In other terms,
this method is equivalent to the direct method.

usmv-fmm method : The usmv-fmm method needs O(n2) arithmetic operations
for pre-computation, but the amount of memory needed is only in the order
O
(
n log n log(1/ε)

)
. The arithmetic cost of the pre-computation stage could

be lowered to O
(
n log n log(1/ε)

)
with the help of the FMM. This acceler-

ation, however, was not implemented since this possibly requires some care
to guarantee the desired accuracy of the pre-computed values. Otherwise,
the error observed in the actual calculation of the transformation could be
polluted by errors in the pre-computation. The transformation needs only
O
(
n log n log(1/ε)

)
arithmetic operations. Again, ε denotes the desired ac-

curacy which can be controlled by the user.
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Table 2.1: Summary of arithmetic cost and memory requirements of the tested
algorithms.

direct usmv-direct usmv-fmm

Cost (pre-computation) O(n2) O(n3) O(n2) or O
(
n log n log(1/ε)

)
Cost (transformation) O(n2) O(n2) O

(
n log n log(1/ε)

)
Memory (both) O(n2) O(n2) O

(
n log n log(1/ε)

)
We should note that we did not attempt to optimize the pre-computation stage, so
the times observed there should be taken with care. The time needed to compute
the actual transformation, however, should give a good indication of the different
performance among the tested algorithms.
Tests were conducted for Laguerre, Jacobi, and Gegenbauer polynomials, where we
note that the latter are just a special case of Jacobi polynomials. For each type,
we selected a number of representative test cases, that is, different combinations
of the respective parameters carried by the polynomials. For Jacobi polynomials

{P (α,β)
n }n∈N0 , we considered only changes to the parameter α. Changes to the

second parameter β are entirely equivalent by Lemma (1.49) and would give sim-
ilar results. Changes to both parameters could be computed by combining the
two cases, or, by working with the corresponding matrix G directly, that has its
semiseparability rank p = 2. Both variants, however, have the same arithmetic
cost.

Test results

Figure 2.5 reports time measurements for the pre-computation stage and the actual
transformation for Laguerre, Jacobi, and Gegenbauer polynomials for a single test
case. The results numerically confirm the expected asymptotic bounds, perhaps not
entirely for the usmv-fmm method when applied to Gegenbauer polynomials (last
row), which still seems to be influenced by other factors. The usmv-fmm method is
attractively fast at any stage, with a visible advantage when n is larger than 512.
More detailed results for a number of representative test cases can be found in
Tables 2.2 through 2.13. Shown there are also the error measures Ec

∞ and E∞.
The general conclusion that can be drawn is that these are close to the theoretical
optimum in double precision for all tested methods. The methods based on the
eigendecomposition of upper generator representable semiseparable matrices show
very competitive results.
Closer inspection, however, reveals that there are one or two test cases for each
type of orthogonal polynomials where the error is substantially larger for the usmv-
fmm method compared to the rest. Notably, this occurs when the “distance” be-
tween the parameters of source and target polynomials is relatively large. This
motivates closer investigation of the relationship between this “distance” and the
accuracy achieved by the usmv-fmm method. Of course, it is no problem to split a
single transformation into a suitable number of other transformations that realize
“smaller” steps to together compute the same result. For example, instead of trans-

forming from, say, the polynomials {L(9.7)
n }n∈N0 to the polynomials {L(5.5)

n }n∈N0 ,

we can equally first transform from {L(9.7)
n }n∈N0

to the intermediate polynomials

{L(7.5)
n }n∈N0

, and then from there to the target polynomials {L(5.5)
n }n∈N0

. This
is easily implemented, but changes the asymptotic behavior of the usmv-fmm
method. For Laguerre polynomials, for example, the transformation from the

polynomials {L(α)
n }n∈N0

to the polynomials {L(β)
n }n∈N0

is then be computed with
O(|α − β|n log n log(1/ε)) arithmetic operations instead of O(n log n log(1/ε)), if
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the “distance”, in terms of the involved parameters, between the source and target
polynomials for a single transformation is kept below a fixed upper bound s > 0.
The amount of memory needed rises analogously. But the splitting of a single larger
step into many smaller steps indeed improves the achieved accuracy and makes it
comparable again to the other methods. This is evident from the results in Tables
2.5, 2.9, and 2.13 compared to those in Tables 2.4, 2.8, and 2.12. We found a value
of s = 1 to provide the optimal balance between numerical stability and perfor-
mance in our tests. See Figure 2.6 for a comparison of the error measure Ec

∞ and
the time to compute the transformation versus the step size s for the mentioned
scenario. The splitting provides an instant remedy for the infelicities observed for
larger steps, but this comes at the expense of linearly more arithmetic operations
and memory as the step size grows.
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Figure 2.5: Shown from top to bottom are time measurements for Laguerre ((a)
and (b)), Jacobi ((c) and (d)), and Gegenbauer polynomials ((e) and (f)), each of
which correspond to the first test case reported in Tables 2.2 to 2.13, respectively.
Left side: The times tp for the pre-computation stage as a function of the transform
length n. Shown are the direct method (solid), the usmv-direct method (dotted),
and the usmv-fmm method (dashed) with accuracy controlling parameter p = 18
and arbitrarily large step size s. The gray lines are to facilitate recognition of
the asymptotic behavior. Right side: Times tt for the computation of the actual
transformation as a function of the transform length n. Shown are the direct
method (solid) and the usmv-fmm method (dashed).
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α β n tp tp/n
2 tt tt/n

2 Ec
∞ E∞

-0.5 -0.7 256 3.7E-02 5.6E-07 1.4E-04 2.1E-09 7.9E-16 1.2E-15

-0.5 -0.7 512 1.2E-01 4.4E-07 5.9E-04 2.3E-09 1.3E-15 1.7E-15

-0.5 -0.7 1024 4.2E-01 4.0E-07 3.1E-03 3.0E-09 1.7E-15 3.2E-15

-0.5 -0.7 2048 1.7E+00 4.0E-07 1.0E-02 2.4E-09 2.3E-15 4.3E-15

-0.5 -0.7 4096 6.6E+00 3.9E-07 4.8E-02 2.9E-09 3.1E-15 6.6E-15

-0.5 -0.7 8192 2.6E+01 3.9E-07 1.6E-01 2.4E-09 4.4E-15 1.1E-14

-0.5 -0.7 16384 1.1E+02 3.9E-07 6.2E-01 2.3E-09 6.2E-15 1.5E-14

-0.5 0.2 256 4.6E-02 7.0E-07 1.4E-04 2.1E-09 1.6E-15 1.6E-15

-0.5 0.2 512 1.5E-01 5.8E-07 5.8E-04 2.2E-09 2.7E-15 1.8E-15

-0.5 0.2 1024 5.6E-01 5.3E-07 2.9E-03 2.8E-09 3.4E-15 2.7E-15

-0.5 0.2 2048 2.2E+00 5.2E-07 1.0E-02 2.5E-09 5.9E-15 3.7E-15

-0.5 0.2 4096 8.7E+00 5.2E-07 4.0E-02 2.4E-09 9.0E-15 6.3E-15

-0.5 0.2 8192 3.5E+01 5.2E-07 1.5E-01 2.3E-09 1.7E-14 1.0E-14

-0.5 0.2 16384 1.4E+02 5.2E-07 6.2E-01 2.3E-09 2.1E-14 1.5E-14

0.2 -0.5 256 3.6E-02 5.5E-07 1.5E-04 2.3E-09 3.4E-16 9.5E-16

0.2 -0.5 512 1.2E-01 4.4E-07 6.0E-04 2.3E-09 2.8E-16 1.2E-15

0.2 -0.5 1024 4.2E-01 4.0E-07 3.1E-03 3.0E-09 2.7E-16 2.0E-15

0.2 -0.5 2048 1.7E+00 4.0E-07 1.0E-02 2.5E-09 2.6E-16 3.9E-15

0.2 -0.5 4096 6.6E+00 3.9E-07 3.9E-02 2.3E-09 3.6E-16 4.3E-15

0.2 -0.5 8192 2.6E+01 3.9E-07 1.5E-01 2.3E-09 4.0E-16 9.7E-15

0.2 -0.5 16384 1.0E+02 3.8E-07 6.2E-01 2.3E-09 4.4E-16 1.5E-14

0.2 1.1 256 4.6E-02 7.1E-07 1.6E-04 2.4E-09 1.5E-15 8.2E-16

0.2 1.1 512 1.5E-01 5.5E-07 6.9E-04 2.6E-09 2.2E-15 2.0E-15

0.2 1.1 1024 5.5E-01 5.2E-07 3.2E-03 3.1E-09 4.2E-15 3.2E-15

0.2 1.1 2048 2.2E+00 5.1E-07 1.5E-02 3.5E-09 6.1E-15 4.0E-15

0.2 1.1 4096 8.6E+00 5.1E-07 3.9E-02 2.3E-09 1.1E-14 6.7E-15

0.2 1.1 8192 3.4E+01 5.1E-07 1.5E-01 2.3E-09 1.8E-14 1.0E-14

0.2 1.1 16384 1.4E+02 5.1E-07 6.1E-01 2.3E-09 2.4E-14 1.3E-14

5.6 7.8 256 4.3E-02 6.6E-07 1.3E-04 2.0E-09 5.7E-15 4.0E-15

5.6 7.8 512 1.4E-01 5.2E-07 5.6E-04 2.1E-09 6.2E-15 4.1E-15

5.6 7.8 1024 5.2E-01 5.0E-07 3.0E-03 2.9E-09 7.1E-15 4.8E-15

5.6 7.8 2048 2.1E+00 4.9E-07 1.3E-02 3.0E-09 8.4E-15 5.3E-15

5.6 7.8 4096 8.2E+00 4.9E-07 3.9E-02 2.3E-09 1.2E-14 8.8E-15

5.6 7.8 8192 3.3E+01 4.9E-07 1.5E-01 2.3E-09 1.4E-14 8.6E-15

5.6 7.8 16384 1.3E+02 4.9E-07 6.1E-01 2.3E-09 2.2E-14 1.3E-14

9.7 5.5 256 3.6E-02 5.5E-07 1.3E-04 1.9E-09 4.7E-16 3.3E-15

9.7 5.5 512 1.2E-01 4.4E-07 6.1E-04 2.3E-09 1.5E-15 3.7E-15

9.7 5.5 1024 4.4E-01 4.2E-07 3.3E-03 3.1E-09 6.5E-16 5.7E-15

9.7 5.5 2048 1.7E+00 4.0E-07 1.2E-02 2.7E-09 1.0E-15 6.3E-15

9.7 5.5 4096 6.7E+00 4.0E-07 3.9E-02 2.3E-09 1.0E-15 7.2E-15

9.7 5.5 8192 2.7E+01 4.0E-07 1.5E-01 2.3E-09 3.8E-16 1.3E-14

9.7 5.5 16384 1.1E+02 4.0E-07 6.1E-01 2.3E-09 3.8E-16 2.2E-14

Table 2.2: Test results for the connection between the Laguerre polynomials

{L(α)
n }n∈N0 and {L(β)

n }n∈N0 computed with the direct method for different trans-
form sizes n. Shown are the times for pre-computation tp and for the computation
of the actual transform tt. Both are also shown after division through the ex-
pected asymptotic expression in terms of the transform size n. Furthermore, the
component-wise error Ec

∞ and the relative infinity norm error E∞ are reported.
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α β n tp tp/n
3 tt tt/n

2 Ec
∞ E∞

-0.5 -0.7 256 9.9E-02 5.9E-09 1.6E-04 2.5E-09 7.9E-16 1.2E-15

-0.5 -0.7 512 6.9E-01 5.1E-09 1.0E-03 3.9E-09 1.1E-15 1.9E-15

-0.5 -0.7 1024 8.1E+00 7.5E-09 2.7E-03 2.6E-09 1.8E-15 3.4E-15

-0.5 -0.7 2048 6.8E+01 7.9E-09 1.0E-02 2.4E-09 2.1E-15 4.1E-15

-0.5 -0.7 4096 5.5E+02 7.9E-09 5.2E-02 3.1E-09 3.0E-15 6.7E-15

-0.5 -0.7 8192 - - - - - -

-0.5 -0.7 16384 - - - - - -

-0.5 0.2 256 1.1E-01 6.8E-09 1.9E-04 2.8E-09 1.6E-15 1.3E-15

-0.5 0.2 512 6.8E-01 5.1E-09 1.2E-03 4.4E-09 2.7E-15 1.8E-15

-0.5 0.2 1024 8.1E+00 7.6E-09 2.9E-03 2.8E-09 3.2E-15 2.5E-15

-0.5 0.2 2048 6.8E+01 7.9E-09 1.0E-02 2.5E-09 6.1E-15 3.7E-15

-0.5 0.2 4096 5.4E+02 7.9E-09 4.5E-02 2.7E-09 9.0E-15 6.4E-15

-0.5 0.2 8192 - - - - - -

-0.5 0.2 16384 - - - - - -

0.2 -0.5 256 9.9E-02 5.9E-09 1.6E-04 2.4E-09 2.1E-16 1.1E-15

0.2 -0.5 512 6.8E-01 5.1E-09 1.1E-03 4.1E-09 2.9E-16 1.3E-15

0.2 -0.5 1024 8.1E+00 7.5E-09 2.9E-03 2.8E-09 1.9E-16 2.6E-15

0.2 -0.5 2048 6.8E+01 7.9E-09 1.0E-02 2.5E-09 2.8E-16 4.2E-15

0.2 -0.5 4096 5.5E+02 8.0E-09 5.2E-02 3.1E-09 4.8E-16 3.5E-15

0.2 -0.5 8192 - - - - - -

0.2 -0.5 16384 - - - - - -

0.2 1.1 256 1.1E-01 6.6E-09 1.6E-04 2.4E-09 1.4E-15 8.2E-16

0.2 1.1 512 6.8E-01 5.1E-09 1.1E-03 4.2E-09 2.0E-15 1.8E-15

0.2 1.1 1024 8.1E+00 7.5E-09 2.9E-03 2.8E-09 4.0E-15 3.1E-15

0.2 1.1 2048 6.8E+01 7.9E-09 1.0E-02 2.4E-09 6.1E-15 4.0E-15

0.2 1.1 4096 5.4E+02 7.9E-09 5.2E-02 3.1E-09 1.1E-14 6.5E-15

0.2 1.1 8192 - - - - - -

0.2 1.1 16384 - - - - - -

5.6 7.8 256 1.0E-01 6.2E-09 1.7E-04 2.7E-09 1.7E-15 1.3E-15

5.6 7.8 512 6.8E-01 5.1E-09 1.1E-03 4.1E-09 2.4E-15 1.5E-15

5.6 7.8 1024 8.1E+00 7.5E-09 2.9E-03 2.8E-09 4.1E-15 2.2E-15

5.6 7.8 2048 6.8E+01 7.9E-09 1.0E-02 2.5E-09 6.1E-15 3.6E-15

5.6 7.8 4096 5.5E+02 8.0E-09 4.6E-02 2.7E-09 9.6E-15 6.5E-15

5.6 7.8 8192 - - - - - -

5.6 7.8 16384 - - - - - -

9.7 5.5 256 1.0E-01 6.1E-09 1.7E-04 2.6E-09 4.7E-16 3.0E-15

9.7 5.5 512 6.8E-01 5.1E-09 1.1E-03 4.1E-09 1.6E-15 4.3E-15

9.7 5.5 1024 8.1E+00 7.6E-09 2.9E-03 2.7E-09 3.9E-16 5.9E-15

9.7 5.5 2048 6.8E+01 7.9E-09 1.0E-02 2.4E-09 1.0E-15 8.5E-15

9.7 5.5 4096 5.5E+02 7.9E-09 4.6E-02 2.7E-09 9.7E-16 7.5E-15

9.7 5.5 8192 - - - - - -

9.7 5.5 16384 - - - - - -

Table 2.3: Test results for the connection between the Laguerre polynomials

{L(α)
n }n∈N0 and {L(β)

n }n∈N0 computed with the usmv-direct method for different
transform sizes n. Shown are the times for pre-computation tp and for the compu-
tation of the actual transform tt. Both are also shown after division through the
expected asymptotic expression in terms of the transform size n. Furthermore, the
component-wise error Ec

∞ and the relative infinity norm error E∞ are reported.
For sizes n > 4096 the transformation was not computed due to unacceptably large
computation times in comparison to the direct method; see Table 2.2.
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α β n tp tp/n
2 tt tt/(n logn) Ec

∞ E∞

-0.5 -0.7 256 4.5E-02 6.8E-07 1.9E-04 1.4E-07 5.2E-16 6.8E-16

-0.5 -0.7 512 8.7E-02 3.3E-07 4.5E-04 1.4E-07 6.2E-16 6.8E-16

-0.5 -0.7 1024 1.8E-01 1.7E-07 1.1E-03 1.6E-07 2.0E-15 1.9E-15

-0.5 -0.7 2048 4.2E-01 1.0E-07 2.3E-03 1.5E-07 1.1E-15 1.7E-15

-0.5 -0.7 4096 1.1E+00 6.5E-08 5.1E-03 1.5E-07 2.7E-15 4.2E-15

-0.5 -0.7 8192 3.1E+00 4.6E-08 1.1E-02 1.4E-07 4.8E-15 1.0E-14

-0.5 -0.7 16384 9.6E+00 3.6E-08 2.3E-02 1.5E-07 5.1E-15 1.0E-14

-0.5 0.2 256 4.8E-02 7.3E-07 2.2E-04 1.6E-07 1.6E-14 3.3E-15

-0.5 0.2 512 8.7E-02 3.3E-07 4.3E-04 1.3E-07 2.1E-14 5.4E-15

-0.5 0.2 1024 1.7E-01 1.6E-07 9.6E-04 1.4E-07 1.8E-14 6.0E-15

-0.5 0.2 2048 4.3E-01 1.0E-07 2.3E-03 1.5E-07 2.6E-14 7.9E-15

-0.5 0.2 4096 1.1E+00 6.5E-08 5.1E-03 1.5E-07 3.9E-14 6.9E-15

-0.5 0.2 8192 3.1E+00 4.6E-08 1.1E-02 1.4E-07 4.1E-14 1.2E-14

-0.5 0.2 16384 9.5E+00 3.6E-08 2.3E-02 1.5E-07 6.0E-14 4.2E-14

0.2 -0.5 256 4.4E-02 6.7E-07 1.9E-04 1.3E-07 9.2E-16 4.1E-15

0.2 -0.5 512 9.0E-02 3.4E-07 4.0E-04 1.2E-07 1.3E-15 7.4E-15

0.2 -0.5 1024 1.8E-01 1.7E-07 9.9E-04 1.4E-07 1.8E-15 1.4E-14

0.2 -0.5 2048 4.2E-01 1.0E-07 2.3E-03 1.5E-07 1.5E-15 1.4E-14

0.2 -0.5 4096 1.1E+00 6.5E-08 5.1E-03 1.5E-07 1.6E-15 1.3E-14

0.2 -0.5 8192 3.1E+00 4.6E-08 1.1E-02 1.4E-07 2.3E-15 1.3E-14

0.2 -0.5 16384 9.6E+00 3.6E-08 2.3E-02 1.5E-07 1.5E-15 1.2E-14

0.2 1.1 256 4.6E-02 7.1E-07 1.9E-04 1.4E-07 4.9E-14 8.5E-15

0.2 1.1 512 8.3E-02 3.2E-07 4.0E-04 1.2E-07 5.0E-14 2.0E-14

0.2 1.1 1024 1.8E-01 1.8E-07 1.0E-03 1.4E-07 8.3E-14 1.6E-14

0.2 1.1 2048 4.3E-01 1.0E-07 2.3E-03 1.5E-07 1.5E-13 1.9E-14

0.2 1.1 4096 1.1E+00 6.5E-08 5.1E-03 1.5E-07 2.2E-13 2.5E-14

0.2 1.1 8192 3.1E+00 4.6E-08 1.2E-02 1.6E-07 3.8E-13 2.6E-14

0.2 1.1 16384 9.6E+00 3.6E-08 2.3E-02 1.5E-07 2.4E-13 5.1E-14

5.6 7.8 256 4.8E-02 7.3E-07 2.3E-04 1.6E-07 1.3E-11 5.4E-12

5.6 7.8 512 8.4E-02 3.2E-07 4.2E-04 1.3E-07 7.0E-10 1.4E-10

5.6 7.8 1024 1.9E-01 1.8E-07 1.1E-03 1.5E-07 2.9E-09 1.4E-09

5.6 7.8 2048 4.2E-01 1.0E-07 2.3E-03 1.5E-07 1.5E-08 6.0E-09

5.6 7.8 4096 1.1E+00 6.5E-08 5.0E-03 1.5E-07 3.2E-08 1.7E-08

5.6 7.8 8192 3.1E+00 4.6E-08 1.1E-02 1.4E-07 3.2E-07 1.4E-07

5.6 7.8 16384 9.6E+00 3.6E-08 2.3E-02 1.5E-07 3.7E-07 1.5E-07

9.7 5.5 256 4.6E-02 7.0E-07 1.9E-04 1.4E-07 4.3E-07 4.1E-06

9.7 5.5 512 8.4E-02 3.2E-07 4.2E-04 1.3E-07 6.5E-06 4.9E-05

9.7 5.5 1024 1.7E-01 1.6E-07 1.0E-03 1.4E-07 1.6E-05 2.8E-04

9.7 5.5 2048 4.3E-01 1.0E-07 2.3E-03 1.5E-07 3.0E-04 9.0E-03

9.7 5.5 4096 1.1E+00 6.5E-08 5.2E-03 1.5E-07 1.9E-01 1.3E+01

9.7 5.5 8192 3.1E+00 4.6E-08 1.1E-02 1.4E-07 1.9E+02 2.9E+04

9.7 5.5 16384 9.5E+00 3.6E-08 2.3E-02 1.5E-07 6.5E+09 2.3E+12

Table 2.4: Test results for the connection between the Laguerre polynomials

{L(α)
n }n∈N0

and {L(β)
n }n∈N0

computed with the usmv-fmm method with accuracy
controlling parameter p = 18 and arbitrarily large step size s for different trans-
form sizes n. Shown are the times for pre-computation tp and for the computation
of the actual transform tt. Both are also shown after division through the ex-
pected asymptotic expression in terms of the transform size n. Furthermore, the
component-wise error Ec

∞ and the relative infinity norm error E∞ are reported.
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α β n tp tp/n
2 tt tt/(n logn) Ec

∞ E∞

-0.5 -0.7 256 4.5E-02 6.9E-07 1.9E-04 1.4E-07 5.2E-16 6.8E-16

-0.5 -0.7 512 8.9E-02 3.4E-07 4.1E-04 1.3E-07 6.2E-16 6.8E-16

-0.5 -0.7 1024 1.8E-01 1.7E-07 9.6E-04 1.4E-07 2.0E-15 1.9E-15

-0.5 -0.7 2048 4.3E-01 1.0E-07 2.3E-03 1.5E-07 1.1E-15 1.7E-15

-0.5 -0.7 4096 1.1E+00 6.5E-08 5.1E-03 1.5E-07 2.7E-15 4.2E-15

-0.5 -0.7 8192 3.1E+00 4.6E-08 1.0E-02 1.4E-07 4.8E-15 1.0E-14

-0.5 -0.7 16384 9.5E+00 3.6E-08 2.3E-02 1.5E-07 5.1E-15 1.0E-14

-0.5 0.2 256 4.4E-02 6.8E-07 2.0E-04 1.4E-07 1.6E-14 3.3E-15

-0.5 0.2 512 8.4E-02 3.2E-07 4.1E-04 1.3E-07 2.1E-14 5.4E-15

-0.5 0.2 1024 1.8E-01 1.7E-07 9.7E-04 1.4E-07 1.8E-14 6.0E-15

-0.5 0.2 2048 4.2E-01 1.0E-07 2.4E-03 1.5E-07 2.6E-14 7.9E-15

-0.5 0.2 4096 1.1E+00 6.5E-08 4.9E-03 1.4E-07 3.9E-14 6.9E-15

-0.5 0.2 8192 3.1E+00 4.6E-08 1.0E-02 1.4E-07 4.1E-14 1.2E-14

-0.5 0.2 16384 9.5E+00 3.6E-08 2.3E-02 1.5E-07 6.0E-14 4.2E-14

0.2 -0.5 256 4.8E-02 7.4E-07 2.3E-04 1.6E-07 9.2E-16 4.1E-15

0.2 -0.5 512 8.3E-02 3.2E-07 3.8E-04 1.2E-07 1.3E-15 7.4E-15

0.2 -0.5 1024 1.7E-01 1.6E-07 9.6E-04 1.4E-07 1.8E-15 1.4E-14

0.2 -0.5 2048 4.2E-01 1.0E-07 2.3E-03 1.5E-07 1.5E-15 1.4E-14

0.2 -0.5 4096 1.1E+00 6.6E-08 5.0E-03 1.5E-07 1.6E-15 1.3E-14

0.2 -0.5 8192 3.1E+00 4.6E-08 1.0E-02 1.4E-07 2.3E-15 1.3E-14

0.2 -0.5 16384 9.6E+00 3.6E-08 2.3E-02 1.5E-07 1.5E-15 1.2E-14

0.2 1.1 256 4.8E-02 7.3E-07 2.2E-04 1.6E-07 4.9E-14 8.7E-15

0.2 1.1 512 8.4E-02 3.2E-07 3.9E-04 1.2E-07 5.0E-14 2.0E-14

0.2 1.1 1024 1.7E-01 1.7E-07 1.0E-03 1.4E-07 8.3E-14 1.6E-14

0.2 1.1 2048 4.2E-01 1.0E-07 2.3E-03 1.5E-07 1.5E-13 1.9E-14

0.2 1.1 4096 1.1E+00 6.5E-08 5.0E-03 1.5E-07 2.2E-13 2.5E-14

0.2 1.1 8192 3.1E+00 4.6E-08 1.1E-02 1.5E-07 3.8E-13 2.6E-14

0.2 1.1 16384 9.5E+00 3.6E-08 2.3E-02 1.5E-07 2.4E-13 5.1E-14

5.6 7.8 256 7.7E-02 1.2E-06 5.6E-04 4.0E-07 2.7E-14 9.1E-15

5.6 7.8 512 1.5E-01 5.7E-07 1.4E-03 4.5E-07 1.4E-13 2.9E-14

5.6 7.8 1024 3.2E-01 3.0E-07 3.1E-03 4.4E-07 9.3E-14 2.2E-14

5.6 7.8 2048 8.7E-01 2.1E-07 6.6E-03 4.2E-07 4.1E-13 5.5E-14

5.6 7.8 4096 2.3E+00 1.4E-07 1.4E-02 4.1E-07 2.6E-13 6.3E-14

5.6 7.8 8192 6.9E+00 1.0E-07 3.1E-02 4.1E-07 2.3E-13 7.0E-14

5.6 7.8 16384 2.2E+01 8.3E-08 6.8E-02 4.3E-07 1.2E-12 7.8E-14

9.7 5.5 256 1.8E-01 2.7E-06 8.8E-04 6.2E-07 7.1E-16 6.0E-15

9.7 5.5 512 3.7E-01 1.4E-06 2.3E-03 7.3E-07 1.9E-15 1.4E-14

9.7 5.5 1024 7.9E-01 7.5E-07 4.8E-03 6.8E-07 2.2E-15 3.7E-14

9.7 5.5 2048 2.0E+00 4.7E-07 1.0E-02 6.6E-07 2.8E-15 8.3E-14

9.7 5.5 4096 4.9E+00 2.9E-07 2.4E-02 7.0E-07 2.8E-15 1.7E-13

9.7 5.5 8192 1.3E+01 2.0E-07 5.1E-02 6.9E-07 1.9E-15 2.3E-13

9.7 5.5 16384 4.0E+01 1.5E-07 1.1E-01 7.1E-07 1.9E-15 3.6E-13

Table 2.5: Test results for the connection between the Laguerre polynomials

{L(α)
n }n∈N0

and {L(β)
n }n∈N0

computed with the usmv-fmm method with accuracy
controlling parameter p = 18 and maximum step size s = 1 for different transform
sizes n. Shown are the times for pre-computation tp and for the computation of the
actual transform tt. Both are also shown after division through the expected asymp-
totic expression in terms of the transform size n. Furthermore, the component-wise
error Ec

∞ and the relative infinity norm error E∞ are reported.
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α β γ δ n tp tp/n
2 tt tt/(n logn) Ec

∞ E∞

-0.7 2.0 -0.9 2.0 256 1.0E-01 1.6E-06 1.4E-04 2.2E-09 1.0E-15 1.1E-15

-0.7 2.0 -0.9 2.0 512 3.8E-01 1.4E-06 6.1E-04 2.3E-09 7.4E-16 1.2E-15

-0.7 2.0 -0.9 2.0 1024 1.5E+00 1.4E-06 3.0E-03 2.8E-09 8.9E-16 1.1E-15

-0.7 2.0 -0.9 2.0 2048 5.9E+00 1.4E-06 1.0E-02 2.4E-09 7.2E-16 1.0E-15

-0.7 2.0 -0.9 2.0 4096 2.3E+01 1.4E-06 3.9E-02 2.3E-09 6.1E-16 1.2E-15

-0.7 2.0 -0.9 2.0 8192 9.3E+01 1.4E-06 1.7E-01 2.5E-09 6.2E-16 1.3E-15

-0.7 2.0 -0.9 2.0 16384 3.7E+02 1.4E-06 6.5E-01 2.4E-09 7.4E-16 1.4E-15

-0.7 2.0 0.0 2.0 256 1.0E-01 1.5E-06 1.4E-04 2.2E-09 1.3E-15 7.4E-16

-0.7 2.0 0.0 2.0 512 3.7E-01 1.4E-06 6.1E-04 2.3E-09 1.2E-15 9.8E-16

-0.7 2.0 0.0 2.0 1024 1.4E+00 1.4E-06 2.7E-03 2.6E-09 9.9E-16 7.5E-16

-0.7 2.0 0.0 2.0 2048 5.8E+00 1.4E-06 1.0E-02 2.5E-09 1.0E-15 7.6E-16

-0.7 2.0 0.0 2.0 4096 2.3E+01 1.4E-06 3.9E-02 2.3E-09 1.1E-15 9.3E-16

-0.7 2.0 0.0 2.0 8192 9.2E+01 1.4E-06 2.0E-01 3.0E-09 1.1E-15 8.6E-16

-0.7 2.0 0.0 2.0 16384 3.7E+02 1.4E-06 6.5E-01 2.4E-09 1.2E-15 8.1E-16

0.0 2.0 -0.7 2.0 256 9.3E-02 1.4E-06 1.3E-04 2.0E-09 5.0E-16 6.9E-16

0.0 2.0 -0.7 2.0 512 3.4E-01 1.3E-06 6.1E-04 2.3E-09 4.4E-16 1.2E-15

0.0 2.0 -0.7 2.0 1024 1.3E+00 1.3E-06 3.0E-03 2.9E-09 7.2E-16 1.0E-15

0.0 2.0 -0.7 2.0 2048 5.2E+00 1.3E-06 1.0E-02 2.4E-09 4.0E-16 2.1E-15

0.0 2.0 -0.7 2.0 4096 2.1E+01 1.2E-06 3.9E-02 2.3E-09 3.5E-16 3.1E-15

0.0 2.0 -0.7 2.0 8192 8.2E+01 1.2E-06 1.7E-01 2.5E-09 4.1E-16 3.0E-15

0.0 2.0 -0.7 2.0 16384 3.2E+02 1.2E-06 6.1E-01 2.3E-09 4.1E-16 3.2E-15

0.0 2.0 0.9 2.0 256 9.9E-02 1.5E-06 1.3E-04 2.0E-09 1.1E-15 8.5E-16

0.0 2.0 0.9 2.0 512 3.7E-01 1.4E-06 6.9E-04 2.6E-09 1.7E-15 1.1E-15

0.0 2.0 0.9 2.0 1024 1.4E+00 1.4E-06 3.0E-03 2.9E-09 1.3E-15 9.4E-16

0.0 2.0 0.9 2.0 2048 5.8E+00 1.4E-06 1.0E-02 2.4E-09 1.5E-15 1.0E-15

0.0 2.0 0.9 2.0 4096 2.3E+01 1.4E-06 3.9E-02 2.3E-09 1.6E-15 9.8E-16

0.0 2.0 0.9 2.0 8192 9.2E+01 1.4E-06 2.0E-01 3.0E-09 2.1E-15 1.2E-15

0.0 2.0 0.9 2.0 16384 3.7E+02 1.4E-06 6.4E-01 2.4E-09 1.7E-15 1.1E-15

5.4 2.0 7.6 2.0 256 1.1E-01 1.7E-06 1.4E-04 2.1E-09 1.7E-15 1.6E-15

5.4 2.0 7.6 2.0 512 4.1E-01 1.6E-06 6.6E-04 2.5E-09 2.0E-15 1.0E-15

5.4 2.0 7.6 2.0 1024 1.6E+00 1.5E-06 3.0E-03 2.8E-09 2.3E-15 1.3E-15

5.4 2.0 7.6 2.0 2048 6.4E+00 1.5E-06 1.0E-02 2.4E-09 2.0E-15 1.6E-15

5.4 2.0 7.6 2.0 4096 2.6E+01 1.5E-06 3.9E-02 2.3E-09 1.8E-15 1.5E-15

5.4 2.0 7.6 2.0 8192 1.0E+02 1.5E-06 2.0E-01 3.0E-09 2.2E-15 1.4E-15

5.4 2.0 7.6 2.0 16384 4.1E+02 1.5E-06 6.4E-01 2.4E-09 2.3E-15 1.8E-15

8.6 2.0 4.3 2.0 256 1.1E-01 1.6E-06 1.4E-04 2.1E-09 1.3E-15 1.4E-15

8.6 2.0 4.3 2.0 512 3.9E-01 1.5E-06 6.1E-04 2.3E-09 2.0E-15 8.3E-15

8.6 2.0 4.3 2.0 1024 1.5E+00 1.4E-06 3.0E-03 2.8E-09 2.0E-15 6.4E-15

8.6 2.0 4.3 2.0 2048 6.0E+00 1.4E-06 1.0E-02 2.5E-09 2.7E-15 5.0E-15

8.6 2.0 4.3 2.0 4096 2.4E+01 1.4E-06 4.2E-02 2.5E-09 1.8E-15 1.3E-14

8.6 2.0 4.3 2.0 8192 9.5E+01 1.4E-06 2.1E-01 3.1E-09 1.4E-15 6.5E-15

8.6 2.0 4.3 2.0 16384 3.8E+02 1.4E-06 6.4E-01 2.4E-09 1.2E-15 1.1E-14

Table 2.6: Test results for the connection between the Jacobi polynomials

{P (α,β)
n }n∈N0

and {P (γ,β)
n }n∈N0

computed with the direct method for different trans-
form sizes n. Shown are the times for pre-computation tp and for the computation
of the actual transform tt. Both are also shown after division through the ex-
pected asymptotic expression in terms of the transform size n. Furthermore, the
component-wise error Ec

∞ and the relative infinity norm error E∞ are reported.
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α β γ δ n tp tp/n
2 tt tt/(n logn) Ec

∞ E∞

-0.7 2.0 -0.9 2.0 256 9.7E-02 5.8E-09 1.6E-04 2.4E-09 4.5E-15 1.8E-15

-0.7 2.0 -0.9 2.0 512 6.7E-01 5.0E-09 9.9E-04 3.8E-09 4.3E-15 3.8E-15

-0.7 2.0 -0.9 2.0 1024 8.0E+00 7.5E-09 2.8E-03 2.7E-09 1.4E-14 8.1E-15

-0.7 2.0 -0.9 2.0 2048 6.8E+01 7.9E-09 1.0E-02 2.4E-09 1.7E-14 1.8E-14

-0.7 2.0 -0.9 2.0 4096 5.5E+02 7.9E-09 3.9E-02 2.3E-09 5.3E-14 3.2E-14

-0.7 2.0 -0.9 2.0 8192 - - - - - -

-0.7 2.0 -0.9 2.0 16384 - - - - - -

-0.7 2.0 0.0 2.0 256 9.5E-02 5.7E-09 1.6E-04 2.5E-09 8.9E-15 4.8E-15

-0.7 2.0 0.0 2.0 512 6.7E-01 5.0E-09 1.1E-03 4.1E-09 1.7E-14 1.1E-14

-0.7 2.0 0.0 2.0 1024 8.0E+00 7.5E-09 2.9E-03 2.7E-09 3.9E-14 2.4E-14

-0.7 2.0 0.0 2.0 2048 6.8E+01 7.9E-09 1.0E-02 2.4E-09 8.7E-14 4.6E-14

-0.7 2.0 0.0 2.0 4096 5.4E+02 7.9E-09 3.9E-02 2.3E-09 1.9E-13 1.0E-13

-0.7 2.0 0.0 2.0 8192 - - - - - -

-0.7 2.0 0.0 2.0 16384 - - - - - -

0.0 2.0 -0.7 2.0 256 9.5E-02 5.7E-09 1.8E-04 2.8E-09 6.2E-16 1.4E-15

0.0 2.0 -0.7 2.0 512 6.7E-01 5.0E-09 1.0E-03 3.9E-09 5.8E-16 1.5E-15

0.0 2.0 -0.7 2.0 1024 8.0E+00 7.5E-09 2.8E-03 2.7E-09 7.9E-16 1.6E-15

0.0 2.0 -0.7 2.0 2048 6.7E+01 7.8E-09 1.0E-02 2.4E-09 6.4E-16 3.4E-15

0.0 2.0 -0.7 2.0 4096 5.5E+02 7.9E-09 4.2E-02 2.5E-09 8.0E-16 5.9E-15

0.0 2.0 -0.7 2.0 8192 - - - - - -

0.0 2.0 -0.7 2.0 16384 - - - - - -

0.0 2.0 0.9 2.0 256 1.0E-01 6.0E-09 1.6E-04 2.4E-09 2.6E-15 1.3E-15

0.0 2.0 0.9 2.0 512 6.7E-01 5.0E-09 1.1E-03 4.1E-09 2.8E-15 1.7E-15

0.0 2.0 0.9 2.0 1024 8.0E+00 7.4E-09 2.9E-03 2.8E-09 2.3E-15 1.7E-15

0.0 2.0 0.9 2.0 2048 6.7E+01 7.8E-09 1.0E-02 2.4E-09 2.8E-15 1.8E-15

0.0 2.0 0.9 2.0 4096 5.5E+02 7.9E-09 3.9E-02 2.3E-09 3.0E-15 1.5E-15

0.0 2.0 0.9 2.0 8192 - - - - - -

0.0 2.0 0.9 2.0 16384 - - - - - -

5.4 2.0 7.6 2.0 256 9.5E-02 5.7E-09 1.7E-04 2.6E-09 1.8E-14 1.1E-14

5.4 2.0 7.6 2.0 512 6.7E-01 5.0E-09 1.1E-03 4.0E-09 3.6E-14 2.0E-14

5.4 2.0 7.6 2.0 1024 8.0E+00 7.5E-09 2.8E-03 2.7E-09 8.9E-14 4.4E-14

5.4 2.0 7.6 2.0 2048 6.8E+01 7.9E-09 1.0E-02 2.4E-09 1.5E-13 9.1E-14

5.4 2.0 7.6 2.0 4096 5.5E+02 7.9E-09 3.9E-02 2.3E-09 4.5E-13 1.8E-13

5.4 2.0 7.6 2.0 8192 - - - - - -

5.4 2.0 7.6 2.0 16384 - - - - - -

8.6 2.0 4.3 2.0 256 1.0E-01 6.2E-09 1.6E-04 2.5E-09 8.4E-15 3.2E-15

8.6 2.0 4.3 2.0 512 6.8E-01 5.0E-09 1.0E-03 4.0E-09 1.6E-14 4.2E-14

8.6 2.0 4.3 2.0 1024 8.0E+00 7.5E-09 2.9E-03 2.7E-09 3.7E-14 1.1E-13

8.6 2.0 4.3 2.0 2048 6.8E+01 7.9E-09 1.0E-02 2.4E-09 1.3E-13 4.1E-14

8.6 2.0 4.3 2.0 4096 5.5E+02 7.9E-09 3.9E-02 2.3E-09 1.8E-13 5.7E-13

8.6 2.0 4.3 2.0 8192 - - - - - -

8.6 2.0 4.3 2.0 16384 - - - - - -

Table 2.7: Test results for the connection between the Jacobi polynomials

{P (α,β)
n }n∈N0

and {P (γ,β)
n }n∈N0

computed with the usmv-direct method for dif-
ferent transform sizes n. Shown are the times for pre-computation tp and for the
computation of the actual transform tt. Both are also shown after division through
the expected asymptotic expression in terms of the transform size n. Furthermore,
the component-wise error Ec

∞ and the relative infinity norm error E∞ are reported.
For sizes n > 4096 the transformation was not computed due to unacceptably large
computation times in comparison to the direct method; see Table 2.6.
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α β γ δ n tp tp/n
2 tt tt/(n logn) Ec

∞ E∞

-0.7 2.0 -0.9 2.0 256 5.0E-02 7.6E-07 1.7E-04 1.2E-07 4.3E-15 1.8E-15

-0.7 2.0 -0.9 2.0 512 8.7E-02 3.3E-07 3.7E-04 1.2E-07 4.4E-15 3.5E-15

-0.7 2.0 -0.9 2.0 1024 1.8E-01 1.8E-07 9.7E-04 1.4E-07 1.4E-14 7.7E-15

-0.7 2.0 -0.9 2.0 2048 4.4E-01 1.1E-07 2.5E-03 1.6E-07 1.7E-14 1.9E-14

-0.7 2.0 -0.9 2.0 4096 1.1E+00 6.6E-08 5.7E-03 1.7E-07 5.3E-14 3.5E-14

-0.7 2.0 -0.9 2.0 8192 3.1E+00 4.7E-08 1.3E-02 1.8E-07 1.8E-13 6.4E-14

-0.7 2.0 -0.9 2.0 16384 9.7E+00 3.6E-08 2.7E-02 1.7E-07 1.7E-13 1.3E-13

-0.7 2.0 0.0 2.0 256 5.0E-02 7.6E-07 1.6E-04 1.1E-07 8.9E-15 4.8E-15

-0.7 2.0 0.0 2.0 512 8.8E-02 3.3E-07 3.7E-04 1.2E-07 1.9E-14 1.0E-14

-0.7 2.0 0.0 2.0 1024 1.8E-01 1.7E-07 9.9E-04 1.4E-07 3.8E-14 2.4E-14

-0.7 2.0 0.0 2.0 2048 4.4E-01 1.1E-07 2.5E-03 1.6E-07 8.8E-14 4.6E-14

-0.7 2.0 0.0 2.0 4096 1.1E+00 6.6E-08 5.6E-03 1.7E-07 1.9E-13 9.8E-14

-0.7 2.0 0.0 2.0 8192 3.1E+00 4.6E-08 1.3E-02 1.7E-07 3.8E-13 1.8E-13

-0.7 2.0 0.0 2.0 16384 9.7E+00 3.6E-08 2.6E-02 1.6E-07 7.3E-13 3.9E-13

0.0 2.0 -0.7 2.0 256 4.6E-02 7.1E-07 1.4E-04 9.8E-08 8.1E-16 3.1E-15

0.0 2.0 -0.7 2.0 512 8.7E-02 3.3E-07 3.6E-04 1.1E-07 8.8E-16 3.6E-15

0.0 2.0 -0.7 2.0 1024 1.8E-01 1.7E-07 1.0E-03 1.4E-07 7.9E-16 3.3E-15

0.0 2.0 -0.7 2.0 2048 4.4E-01 1.1E-07 2.5E-03 1.6E-07 8.9E-16 4.0E-15

0.0 2.0 -0.7 2.0 4096 1.1E+00 6.6E-08 5.6E-03 1.7E-07 8.7E-16 6.1E-15

0.0 2.0 -0.7 2.0 8192 3.1E+00 4.6E-08 1.3E-02 1.8E-07 1.1E-15 9.4E-15

0.0 2.0 -0.7 2.0 16384 9.7E+00 3.6E-08 2.6E-02 1.6E-07 2.0E-15 2.0E-14

0.0 2.0 0.9 2.0 256 4.5E-02 6.9E-07 1.4E-04 9.6E-08 6.8E-15 2.0E-15

0.0 2.0 0.9 2.0 512 8.8E-02 3.3E-07 3.9E-04 1.2E-07 1.6E-14 4.9E-15

0.0 2.0 0.9 2.0 1024 1.8E-01 1.7E-07 9.4E-04 1.3E-07 2.8E-14 7.5E-15

0.0 2.0 0.9 2.0 2048 4.4E-01 1.0E-07 2.4E-03 1.6E-07 5.2E-14 9.7E-15

0.0 2.0 0.9 2.0 4096 1.1E+00 6.6E-08 5.8E-03 1.7E-07 3.8E-14 2.1E-14

0.0 2.0 0.9 2.0 8192 3.1E+00 4.6E-08 1.3E-02 1.8E-07 7.4E-14 3.0E-14

0.0 2.0 0.9 2.0 16384 9.7E+00 3.6E-08 2.6E-02 1.6E-07 2.2E-13 4.5E-14

5.4 2.0 7.6 2.0 256 4.7E-02 7.2E-07 1.4E-04 9.6E-08 3.4E-13 3.0E-14

5.4 2.0 7.6 2.0 512 8.9E-02 3.4E-07 3.8E-04 1.2E-07 3.2E-12 1.4E-12

5.4 2.0 7.6 2.0 1024 1.8E-01 1.7E-07 9.9E-04 1.4E-07 1.8E-11 1.1E-11

5.4 2.0 7.6 2.0 2048 4.5E-01 1.1E-07 2.5E-03 1.6E-07 6.5E-10 3.0E-10

5.4 2.0 7.6 2.0 4096 1.1E+00 6.7E-08 5.6E-03 1.7E-07 1.2E-09 6.9E-10

5.4 2.0 7.6 2.0 8192 3.1E+00 4.7E-08 1.3E-02 1.8E-07 8.2E-09 2.7E-09

5.4 2.0 7.6 2.0 16384 9.7E+00 3.6E-08 2.6E-02 1.6E-07 1.2E-08 4.1E-09

8.6 2.0 4.3 2.0 256 4.9E-02 7.5E-07 1.5E-04 1.0E-07 3.1E-08 6.5E-09

8.6 2.0 4.3 2.0 512 9.0E-02 3.4E-07 3.9E-04 1.2E-07 1.9E-07 2.7E-06

8.6 2.0 4.3 2.0 1024 1.8E-01 1.7E-07 9.9E-04 1.4E-07 3.9E-06 3.5E-05

8.6 2.0 4.3 2.0 2048 4.5E-01 1.1E-07 2.5E-03 1.6E-07 2.1E-04 1.9E-03

8.6 2.0 4.3 2.0 4096 1.1E+00 6.7E-08 5.6E-03 1.6E-07 6.6E-03 4.8E-01

8.6 2.0 4.3 2.0 8192 3.1E+00 4.7E-08 1.2E-02 1.7E-07 4.6E+00 1.9E+01

8.6 2.0 4.3 2.0 16384 9.7E+00 3.6E-08 2.6E-02 1.6E-07 1.6E+10 7.5E+09

Table 2.8: Test results for the connection between the Jacobi polynomials

{P (α,β)
n }n∈N0

and {P (γ,β)
n }n∈N0

computed with the usmv-fmm method with ac-
curacy controlling parameter p = 18 and arbitrarily large step size s for different
transform sizes n. Shown are the times for pre-computation tp and for the compu-
tation of the actual transform tt. Both are also shown after division through the
expected asymptotic expression in terms of the transform size n. Furthermore, the
component-wise error Ec

∞ and the relative infinity norm error E∞ are reported.
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α β γ δ n tp tp/n
2 tt tt/(n logn) Ec

∞ E∞

-0.7 2.0 -0.9 2.0 256 4.5E-02 6.9E-07 1.4E-04 9.6E-08 4.3E-15 1.8E-15

-0.7 2.0 -0.9 2.0 512 9.2E-02 3.5E-07 3.6E-04 1.1E-07 4.4E-15 3.5E-15

-0.7 2.0 -0.9 2.0 1024 1.8E-01 1.7E-07 1.1E-03 1.6E-07 1.4E-14 7.7E-15

-0.7 2.0 -0.9 2.0 2048 4.4E-01 1.0E-07 2.5E-03 1.6E-07 1.7E-14 1.9E-14

-0.7 2.0 -0.9 2.0 4096 1.1E+00 6.7E-08 5.7E-03 1.7E-07 5.3E-14 3.5E-14

-0.7 2.0 -0.9 2.0 8192 3.1E+00 4.7E-08 1.3E-02 1.7E-07 1.8E-13 6.4E-14

-0.7 2.0 -0.9 2.0 16384 9.7E+00 3.6E-08 2.6E-02 1.7E-07 1.7E-13 1.3E-13

-0.7 2.0 0.0 2.0 256 4.7E-02 7.2E-07 1.3E-04 9.4E-08 8.9E-15 4.8E-15

-0.7 2.0 0.0 2.0 512 8.6E-02 3.3E-07 3.7E-04 1.2E-07 2.0E-14 1.0E-14

-0.7 2.0 0.0 2.0 1024 1.9E-01 1.8E-07 9.8E-04 1.4E-07 3.8E-14 2.4E-14

-0.7 2.0 0.0 2.0 2048 4.4E-01 1.0E-07 2.5E-03 1.6E-07 8.8E-14 4.6E-14

-0.7 2.0 0.0 2.0 4096 1.1E+00 6.6E-08 5.6E-03 1.6E-07 1.9E-13 9.8E-14

-0.7 2.0 0.0 2.0 8192 3.1E+00 4.6E-08 1.3E-02 1.8E-07 3.8E-13 1.8E-13

-0.7 2.0 0.0 2.0 16384 9.6E+00 3.6E-08 2.7E-02 1.7E-07 7.3E-13 3.9E-13

0.0 2.0 -0.7 2.0 256 4.5E-02 6.8E-07 1.4E-04 1.0E-07 8.1E-16 3.1E-15

0.0 2.0 -0.7 2.0 512 9.1E-02 3.5E-07 3.5E-04 1.1E-07 8.8E-16 3.6E-15

0.0 2.0 -0.7 2.0 1024 1.8E-01 1.7E-07 9.9E-04 1.4E-07 7.9E-16 3.3E-15

0.0 2.0 -0.7 2.0 2048 4.4E-01 1.1E-07 2.5E-03 1.6E-07 8.9E-16 4.0E-15

0.0 2.0 -0.7 2.0 4096 1.1E+00 6.7E-08 5.9E-03 1.7E-07 8.7E-16 6.1E-15

0.0 2.0 -0.7 2.0 8192 3.1E+00 4.6E-08 1.3E-02 1.8E-07 1.1E-15 9.5E-15

0.0 2.0 -0.7 2.0 16384 9.7E+00 3.6E-08 2.6E-02 1.6E-07 2.0E-15 2.0E-14

0.0 2.0 0.9 2.0 256 4.7E-02 7.2E-07 1.4E-04 9.6E-08 6.8E-15 2.0E-15

0.0 2.0 0.9 2.0 512 8.7E-02 3.3E-07 3.6E-04 1.1E-07 1.6E-14 4.9E-15

0.0 2.0 0.9 2.0 1024 1.8E-01 1.7E-07 9.8E-04 1.4E-07 2.8E-14 7.5E-15

0.0 2.0 0.9 2.0 2048 4.4E-01 1.1E-07 2.5E-03 1.6E-07 5.2E-14 9.7E-15

0.0 2.0 0.9 2.0 4096 1.1E+00 6.6E-08 5.8E-03 1.7E-07 3.7E-14 2.1E-14

0.0 2.0 0.9 2.0 8192 3.1E+00 4.7E-08 1.3E-02 1.8E-07 7.4E-14 3.0E-14

0.0 2.0 0.9 2.0 16384 9.6E+00 3.6E-08 2.6E-02 1.6E-07 2.2E-13 4.5E-14

5.4 2.0 7.6 2.0 256 1.1E-01 1.7E-06 4.5E-04 3.1E-07 1.7E-14 1.2E-14

5.4 2.0 7.6 2.0 512 2.3E-01 8.9E-07 1.4E-03 4.4E-07 3.0E-14 1.7E-14

5.4 2.0 7.6 2.0 1024 5.0E-01 4.8E-07 3.4E-03 4.7E-07 6.2E-14 4.7E-14

5.4 2.0 7.6 2.0 2048 1.3E+00 3.1E-07 7.4E-03 4.7E-07 1.3E-13 7.6E-14

5.4 2.0 7.6 2.0 4096 3.3E+00 2.0E-07 1.6E-02 4.8E-07 3.6E-13 1.5E-13

5.4 2.0 7.6 2.0 8192 9.3E+00 1.4E-07 3.6E-02 4.9E-07 1.2E-12 3.5E-13

5.4 2.0 7.6 2.0 16384 2.9E+01 1.1E-07 7.8E-02 4.9E-07 1.3E-12 6.4E-13

8.6 2.0 4.3 2.0 256 1.8E-01 2.7E-06 9.2E-04 6.5E-07 7.6E-15 5.1E-15

8.6 2.0 4.3 2.0 512 3.8E-01 1.4E-06 2.4E-03 7.6E-07 1.5E-14 2.8E-14

8.6 2.0 4.3 2.0 1024 8.3E-01 8.0E-07 5.3E-03 7.5E-07 3.9E-14 6.0E-14

8.6 2.0 4.3 2.0 2048 2.1E+00 5.1E-07 1.2E-02 7.4E-07 1.3E-13 3.6E-14

8.6 2.0 4.3 2.0 4096 5.5E+00 3.3E-07 2.6E-02 7.7E-07 1.2E-13 2.7E-13

8.6 2.0 4.3 2.0 8192 1.6E+01 2.3E-07 6.0E-02 8.1E-07 5.4E-13 2.0E-13

8.6 2.0 4.3 2.0 16384 4.8E+01 1.8E-07 1.3E-01 8.1E-07 6.3E-13 1.1E-12

Table 2.9: Test results for the connection between the Jacobi polynomials

{P (α,β)
n }n∈N0

and {P (γ,β)
n }n∈N0

computed with the usmv-fmm method with ac-
curacy controlling parameter p = 18 and maximum step size s = 1 for different
transform sizes n. Shown are the times for pre-computation tp and for the compu-
tation of the actual transform tt. Both are also shown after division through the
expected asymptotic expression in terms of the transform size n. Furthermore, the
component-wise error Ec

∞ and the relative infinity norm error E∞ are reported.
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α β n tp tp/n
2 tt tt/n

2 Ec
∞ E∞

-0.2 -0.4 256 4.5E-02 6.9E-07 6.3E-05 9.6E-10 5.7E-16 7.2E-16

-0.2 -0.4 512 1.5E-01 5.6E-07 2.9E-04 1.1E-09 6.5E-16 5.9E-16

-0.2 -0.4 1024 5.6E-01 5.4E-07 1.3E-03 1.2E-09 7.1E-16 7.2E-16

-0.2 -0.4 2048 2.2E+00 5.3E-07 5.3E-03 1.3E-09 6.6E-16 5.7E-16

-0.2 -0.4 4096 8.8E+00 5.2E-07 2.1E-02 1.2E-09 6.5E-16 6.9E-16

-0.2 -0.4 8192 3.5E+01 5.2E-07 7.6E-02 1.1E-09 6.1E-16 1.0E-15

-0.2 -0.4 16384 1.4E+02 5.2E-07 3.0E-01 1.1E-09 6.5E-16 9.7E-16

-0.2 0.5 256 5.0E-02 7.6E-07 6.5E-05 9.9E-10 9.2E-16 8.0E-17

-0.2 0.5 512 1.6E-01 6.2E-07 2.6E-04 9.8E-10 8.5E-16 2.2E-16

-0.2 0.5 1024 6.1E-01 5.8E-07 1.4E-03 1.3E-09 8.5E-16 1.2E-16

-0.2 0.5 2048 2.4E+00 5.7E-07 5.2E-03 1.2E-09 1.0E-15 8.0E-16

-0.2 0.5 4096 9.6E+00 5.7E-07 2.1E-02 1.2E-09 9.1E-16 1.7E-16

-0.2 0.5 8192 3.8E+01 5.7E-07 7.6E-02 1.1E-09 9.0E-16 1.2E-16

-0.2 0.5 16384 1.5E+02 5.7E-07 3.0E-01 1.1E-09 8.9E-16 5.2E-16

0.5 -0.2 256 4.4E-02 6.7E-07 6.2E-05 9.4E-10 3.8E-16 4.6E-16

0.5 -0.2 512 1.5E-01 5.7E-07 3.1E-04 1.2E-09 3.5E-16 8.0E-16

0.5 -0.2 1024 5.6E-01 5.4E-07 1.7E-03 1.7E-09 4.7E-16 9.2E-16

0.5 -0.2 2048 2.2E+00 5.3E-07 5.2E-03 1.2E-09 4.7E-16 1.1E-15

0.5 -0.2 4096 8.8E+00 5.2E-07 2.1E-02 1.2E-09 5.8E-16 1.0E-15

0.5 -0.2 8192 3.5E+01 5.2E-07 7.6E-02 1.1E-09 3.3E-16 1.2E-15

0.5 -0.2 16384 1.4E+02 5.1E-07 3.0E-01 1.1E-09 3.1E-16 1.6E-15

0.5 1.4 256 5.2E-02 8.0E-07 6.6E-05 1.0E-09 8.9E-16 2.3E-16

0.5 1.4 512 1.7E-01 6.3E-07 2.6E-04 9.8E-10 1.3E-15 8.0E-16

0.5 1.4 1024 6.3E-01 6.0E-07 1.4E-03 1.3E-09 1.1E-15 3.0E-16

0.5 1.4 2048 2.5E+00 6.0E-07 5.0E-03 1.2E-09 1.1E-15 2.1E-16

0.5 1.4 4096 1.0E+01 5.9E-07 1.9E-02 1.1E-09 1.0E-15 1.5E-16

0.5 1.4 8192 4.0E+01 5.9E-07 7.5E-02 1.1E-09 1.2E-15 3.0E-16

0.5 1.4 16384 1.6E+02 5.9E-07 3.0E-01 1.1E-09 1.0E-15 2.7E-16

5.9 8.1 256 5.0E-02 7.6E-07 6.1E-05 9.3E-10 8.5E-16 9.4E-16

5.9 8.1 512 1.7E-01 6.5E-07 2.6E-04 9.9E-10 9.7E-16 3.4E-16

5.9 8.1 1024 6.5E-01 6.2E-07 1.4E-03 1.3E-09 8.7E-16 4.5E-16

5.9 8.1 2048 2.6E+00 6.1E-07 5.3E-03 1.3E-09 1.1E-15 1.0E-15

5.9 8.1 4096 1.0E+01 6.1E-07 1.9E-02 1.1E-09 1.0E-15 2.2E-16

5.9 8.1 8192 4.1E+01 6.1E-07 9.3E-02 1.4E-09 1.1E-15 2.5E-16

5.9 8.1 16384 1.6E+02 6.0E-07 3.0E-01 1.1E-09 1.3E-15 4.9E-16

9.0 4.8 256 5.0E-02 7.6E-07 6.4E-05 9.8E-10 1.1E-15 1.0E-15

9.0 4.8 512 1.6E-01 6.0E-07 2.5E-04 9.4E-10 1.1E-15 7.1E-15

9.0 4.8 1024 6.0E-01 5.7E-07 1.5E-03 1.4E-09 9.7E-16 2.3E-15

9.0 4.8 2048 2.4E+00 5.6E-07 5.3E-03 1.3E-09 9.5E-16 1.7E-15

9.0 4.8 4096 9.4E+00 5.6E-07 2.0E-02 1.2E-09 1.2E-15 3.6E-15

9.0 4.8 8192 3.7E+01 5.6E-07 7.7E-02 1.1E-09 1.1E-15 2.2E-15

9.0 4.8 16384 1.5E+02 5.6E-07 3.0E-01 1.1E-09 1.0E-15 4.5E-15

Table 2.10: Test results for the connection between the Gegenbauer polynomials

{C(α)
n }n∈N0 and {C(β)

n }n∈N0 computed with the direct method for different trans-
form sizes n. Shown are the times for pre-computation tp and for the computation
of the actual transform tt. Both are also shown after division through the ex-
pected asymptotic expression in terms of the transform size n. Furthermore, the
component-wise error Ec

∞ and the relative infinity norm error E∞ are reported.
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α β n tp tp/n
3 tt tt/n

2 Ec
∞ E∞

-0.2 -0.4 256 3.6E-02 2.1E-09 6.7E-05 1.0E-09 2.4E-15 1.3E-15

-0.2 -0.4 512 1.8E-01 1.4E-09 4.3E-04 1.6E-09 4.5E-15 2.4E-15

-0.2 -0.4 1024 1.4E+00 1.3E-09 1.6E-03 1.5E-09 4.5E-15 4.3E-15

-0.2 -0.4 2048 1.6E+01 1.9E-09 5.2E-03 1.2E-09 1.1E-14 7.7E-15

-0.2 -0.4 4096 1.4E+02 2.0E-09 1.9E-02 1.1E-09 3.1E-14 1.6E-14

-0.2 -0.4 8192 - - - - - -

-0.2 -0.4 16384 - - - - - -

-0.2 0.5 256 3.8E-02 2.3E-09 6.7E-05 1.0E-09 4.8E-15 2.1E-16

-0.2 0.5 512 1.9E-01 1.4E-09 4.2E-04 1.6E-09 9.5E-15 2.2E-16

-0.2 0.5 1024 1.4E+00 1.3E-09 1.6E-03 1.5E-09 2.6E-14 2.0E-16

-0.2 0.5 2048 1.6E+01 1.9E-09 5.1E-03 1.2E-09 4.6E-14 7.8E-16

-0.2 0.5 4096 1.4E+02 2.0E-09 1.9E-02 1.1E-09 9.1E-14 5.3E-16

-0.2 0.5 8192 - - - - - -

-0.2 0.5 16384 - - - - - -

0.5 -0.2 256 3.6E-02 2.2E-09 6.9E-05 1.0E-09 7.8E-16 8.7E-16

0.5 -0.2 512 1.8E-01 1.3E-09 4.2E-04 1.6E-09 5.8E-16 1.4E-15

0.5 -0.2 1024 1.4E+00 1.3E-09 1.6E-03 1.5E-09 6.2E-16 9.9E-16

0.5 -0.2 2048 1.6E+01 1.9E-09 5.2E-03 1.2E-09 8.2E-16 2.4E-15

0.5 -0.2 4096 1.4E+02 2.0E-09 1.9E-02 1.2E-09 9.9E-16 2.2E-15

0.5 -0.2 8192 - - - - - -

0.5 -0.2 16384 - - - - - -

0.5 1.4 256 3.5E-02 2.1E-09 7.5E-05 1.1E-09 1.6E-15 3.2E-16

0.5 1.4 512 1.8E-01 1.4E-09 4.2E-04 1.6E-09 2.4E-15 1.2E-15

0.5 1.4 1024 1.4E+00 1.3E-09 1.6E-03 1.5E-09 2.2E-15 4.0E-16

0.5 1.4 2048 1.6E+01 1.9E-09 5.1E-03 1.2E-09 2.0E-15 4.2E-16

0.5 1.4 4096 1.4E+02 2.0E-09 1.9E-02 1.1E-09 2.5E-15 4.0E-16

0.5 1.4 8192 - - - - - -

0.5 1.4 16384 - - - - - -

5.9 8.1 256 3.5E-02 2.1E-09 6.2E-05 9.5E-10 1.1E-14 1.0E-14

5.9 8.1 512 1.8E-01 1.4E-09 4.3E-04 1.6E-09 2.2E-14 5.9E-15

5.9 8.1 1024 1.4E+00 1.3E-09 1.5E-03 1.5E-09 4.9E-14 6.4E-15

5.9 8.1 2048 1.6E+01 1.9E-09 5.0E-03 1.2E-09 9.1E-14 1.2E-14

5.9 8.1 4096 1.4E+02 2.0E-09 1.9E-02 1.1E-09 2.3E-13 4.6E-15

5.9 8.1 8192 - - - - - -

5.9 8.1 16384 - - - - - -

9.0 4.8 256 3.8E-02 2.2E-09 7.8E-05 1.2E-09 1.6E-15 2.7E-15

9.0 4.8 512 1.8E-01 1.4E-09 4.2E-04 1.6E-09 1.3E-15 1.6E-14

9.0 4.8 1024 1.4E+00 1.3E-09 1.6E-03 1.5E-09 1.4E-15 4.0E-15

9.0 4.8 2048 1.6E+01 1.9E-09 5.2E-03 1.2E-09 1.8E-15 5.3E-15

9.0 4.8 4096 1.4E+02 2.0E-09 1.9E-02 1.1E-09 1.8E-15 6.7E-15

9.0 4.8 8192 - - - - - -

9.0 4.8 16384 - - - - - -

Table 2.11: Test results for the connection between the Gegenbauer polynomials

{C(α)
n }n∈N0 and {C(β)

n }n∈N0 computed with the usmv-direct method for different
transform sizes n. Shown are the times for pre-computation tp and for the compu-
tation of the actual transform tt. Both are also shown after division through the
expected asymptotic expression in terms of the transform size n. Furthermore, the
component-wise error Ec

∞ and the relative infinity norm error E∞ are reported.
For sizes n > 4096 the transformation was not computed due to unacceptably large
computation times in comparison to the direct method; see Table 2.10.
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α β n tp tp/n
2 tt tt/(n logn) Ec

∞ E∞

-0.2 -0.4 256 2.5E-02 3.8E-07 1.7E-04 1.2E-07 2.4E-15 1.4E-15

-0.2 -0.4 512 5.0E-02 1.9E-07 3.8E-04 1.2E-07 4.0E-15 2.3E-15

-0.2 -0.4 1024 1.0E-01 9.7E-08 9.9E-04 1.4E-07 4.4E-15 4.2E-15

-0.2 -0.4 2048 2.7E-01 6.3E-08 3.8E-03 2.4E-07 1.1E-14 7.5E-15

-0.2 -0.4 4096 6.6E-01 4.0E-08 6.9E-03 2.0E-07 3.1E-14 1.6E-14

-0.2 -0.4 8192 1.9E+00 2.9E-08 2.1E-02 2.8E-07 7.4E-14 3.5E-14

-0.2 -0.4 16384 6.1E+00 2.3E-08 3.3E-02 2.1E-07 1.4E-13 6.1E-14

-0.2 0.5 256 2.4E-02 3.7E-07 1.5E-04 1.1E-07 1.1E-14 4.3E-16

-0.2 0.5 512 4.7E-02 1.8E-07 3.7E-04 1.2E-07 1.1E-14 2.0E-15

-0.2 0.5 1024 1.0E-01 9.6E-08 1.0E-03 1.4E-07 2.8E-14 3.7E-16

-0.2 0.5 2048 2.5E-01 6.0E-08 3.8E-03 2.5E-07 4.9E-14 2.0E-15

-0.2 0.5 4096 6.6E-01 4.0E-08 9.1E-03 2.7E-07 9.2E-14 2.8E-15

-0.2 0.5 8192 1.9E+00 2.9E-08 2.1E-02 2.8E-07 2.2E-13 1.4E-15

-0.2 0.5 16384 6.1E+00 2.3E-08 3.3E-02 2.1E-07 4.1E-13 5.5E-15

0.5 -0.2 256 1.9E-02 2.9E-07 1.4E-04 9.8E-08 2.1E-15 4.0E-15

0.5 -0.2 512 4.8E-02 1.8E-07 3.8E-04 1.2E-07 7.6E-16 2.1E-15

0.5 -0.2 1024 1.0E-01 9.9E-08 1.0E-03 1.4E-07 1.3E-15 5.1E-15

0.5 -0.2 2048 2.5E-01 6.1E-08 3.7E-03 2.4E-07 1.3E-15 3.2E-15

0.5 -0.2 4096 6.7E-01 4.0E-08 8.9E-03 2.6E-07 1.4E-15 1.2E-14

0.5 -0.2 8192 1.9E+00 2.9E-08 2.0E-02 2.8E-07 1.9E-15 8.7E-15

0.5 -0.2 16384 6.1E+00 2.3E-08 3.3E-02 2.0E-07 2.4E-15 1.0E-14

0.5 1.4 256 2.4E-02 3.7E-07 1.6E-04 1.2E-07 1.2E-14 9.1E-16

0.5 1.4 512 4.9E-02 1.9E-07 3.6E-04 1.1E-07 8.2E-14 2.3E-15

0.5 1.4 1024 1.0E-01 9.7E-08 9.9E-04 1.4E-07 9.8E-14 6.1E-16

0.5 1.4 2048 2.5E-01 6.0E-08 3.8E-03 2.4E-07 9.8E-14 7.7E-16

0.5 1.4 4096 6.6E-01 3.9E-08 9.1E-03 2.7E-07 9.2E-14 1.9E-15

0.5 1.4 8192 1.9E+00 2.9E-08 2.1E-02 2.8E-07 1.6E-13 1.5E-15

0.5 1.4 16384 6.1E+00 2.3E-08 3.3E-02 2.1E-07 1.5E-13 5.7E-15

5.9 8.1 256 2.4E-02 3.7E-07 1.7E-04 1.2E-07 4.3E-13 3.7E-13

5.9 8.1 512 5.0E-02 1.9E-07 3.9E-04 1.2E-07 7.4E-12 1.5E-13

5.9 8.1 1024 1.0E-01 1.0E-07 1.1E-03 1.6E-07 1.3E-10 1.3E-12

5.9 8.1 2048 2.6E-01 6.1E-08 3.9E-03 2.5E-07 4.8E-10 1.7E-12

5.9 8.1 4096 6.6E-01 3.9E-08 6.7E-03 2.0E-07 1.5E-09 2.6E-13

5.9 8.1 8192 1.9E+00 2.9E-08 1.6E-02 2.1E-07 6.9E-09 6.3E-13

5.9 8.1 16384 6.1E+00 2.3E-08 3.3E-02 2.1E-07 1.0E-07 1.5E-11

9.0 4.8 256 2.5E-02 3.8E-07 1.8E-04 1.3E-07 5.6E-09 6.4E-09

9.0 4.8 512 4.8E-02 1.8E-07 3.8E-04 1.2E-07 4.9E-09 1.6E-07

9.0 4.8 1024 1.1E-01 1.1E-07 1.1E-03 1.6E-07 2.1E-07 2.5E-06

9.0 4.8 2048 2.6E-01 6.3E-08 3.8E-03 2.5E-07 1.2E-04 3.3E-04

9.0 4.8 4096 6.6E-01 4.0E-08 6.8E-03 2.0E-07 4.5E-03 2.7E-02

9.0 4.8 8192 1.9E+00 2.9E-08 2.0E-02 2.8E-07 4.4E-01 3.1E+00

9.0 4.8 16384 6.1E+00 2.3E-08 3.3E-02 2.1E-07 1.5E+02 3.3E+03

Table 2.12: Test results for the connection between the Gegenbauer polynomials

{C(α)
n }n∈N0

and {C(β)
n }n∈N0

computed with the usmv-fmm method with accuracy
controlling parameter p = 18 and arbitrarily large step size s for different trans-
form sizes n. Shown are the times for pre-computation tp and for the computation
of the actual transform tt. Both are also shown after division through the ex-
pected asymptotic expression in terms of the transform size n. Furthermore, the
component-wise error Ec

∞ and the relative infinity norm error E∞ are reported.
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α β n tp tp/n
2 tt tt/(n logn) Ec

∞ E∞

-0.2 -0.4 256 2.4E-02 3.7E-07 1.7E-04 1.2E-07 2.4E-15 1.4E-15

-0.2 -0.4 512 5.2E-02 2.0E-07 4.6E-04 1.4E-07 4.0E-15 2.3E-15

-0.2 -0.4 1024 1.1E-01 1.0E-07 1.0E-03 1.5E-07 4.4E-15 4.2E-15

-0.2 -0.4 2048 2.5E-01 6.0E-08 3.8E-03 2.4E-07 1.1E-14 7.5E-15

-0.2 -0.4 4096 6.7E-01 4.0E-08 8.9E-03 2.6E-07 3.1E-14 1.6E-14

-0.2 -0.4 8192 1.9E+00 2.9E-08 2.1E-02 2.8E-07 7.4E-14 3.5E-14

-0.2 -0.4 16384 6.1E+00 2.3E-08 4.5E-02 2.8E-07 1.4E-13 6.1E-14

-0.2 0.5 256 2.5E-02 3.7E-07 1.7E-04 1.2E-07 1.1E-14 4.3E-16

-0.2 0.5 512 4.8E-02 1.8E-07 5.3E-04 1.7E-07 1.1E-14 2.0E-15

-0.2 0.5 1024 1.0E-01 9.8E-08 1.0E-03 1.4E-07 2.8E-14 3.7E-16

-0.2 0.5 2048 2.5E-01 6.0E-08 2.9E-03 1.9E-07 4.9E-14 2.0E-15

-0.2 0.5 4096 6.7E-01 4.0E-08 9.0E-03 2.6E-07 9.2E-14 2.8E-15

-0.2 0.5 8192 1.9E+00 2.9E-08 1.6E-02 2.1E-07 2.2E-13 1.4E-15

-0.2 0.5 16384 6.1E+00 2.3E-08 4.5E-02 2.8E-07 4.1E-13 5.5E-15

0.5 -0.2 256 2.4E-02 3.7E-07 1.6E-04 1.2E-07 2.1E-15 4.0E-15

0.5 -0.2 512 4.7E-02 1.8E-07 5.4E-04 1.7E-07 7.6E-16 2.2E-15

0.5 -0.2 1024 1.0E-01 9.7E-08 1.0E-03 1.5E-07 1.3E-15 5.1E-15

0.5 -0.2 2048 2.6E-01 6.2E-08 3.7E-03 2.4E-07 1.3E-15 3.2E-15

0.5 -0.2 4096 6.6E-01 4.0E-08 6.7E-03 2.0E-07 1.4E-15 1.2E-14

0.5 -0.2 8192 1.9E+00 2.9E-08 2.3E-02 3.1E-07 1.9E-15 8.7E-15

0.5 -0.2 16384 6.1E+00 2.3E-08 4.5E-02 2.8E-07 2.4E-15 9.9E-15

0.5 1.4 256 2.5E-02 3.8E-07 1.6E-04 1.1E-07 1.2E-14 9.1E-16

0.5 1.4 512 4.8E-02 1.8E-07 5.4E-04 1.7E-07 8.3E-14 2.3E-15

0.5 1.4 1024 1.0E-01 9.9E-08 1.0E-03 1.4E-07 9.8E-14 6.1E-16

0.5 1.4 2048 2.5E-01 6.0E-08 3.8E-03 2.4E-07 9.8E-14 7.7E-16

0.5 1.4 4096 6.6E-01 4.0E-08 9.0E-03 2.6E-07 9.2E-14 1.9E-15

0.5 1.4 8192 1.9E+00 2.9E-08 2.1E-02 2.8E-07 1.6E-13 1.5E-15

0.5 1.4 16384 6.1E+00 2.3E-08 4.5E-02 2.8E-07 1.5E-13 5.7E-15

5.9 8.1 256 5.5E-02 8.4E-07 3.4E-04 2.4E-07 1.1E-14 1.1E-14

5.9 8.1 512 1.2E-01 4.4E-07 1.2E-03 3.7E-07 3.5E-14 5.9E-15

5.9 8.1 1024 2.8E-01 2.6E-07 3.5E-03 4.9E-07 8.0E-14 6.4E-15

5.9 8.1 2048 7.2E-01 1.7E-07 1.1E-02 7.1E-07 6.3E-14 1.1E-14

5.9 8.1 4096 1.9E+00 1.2E-07 1.9E-02 5.5E-07 1.7E-13 2.5E-15

5.9 8.1 8192 5.7E+00 8.5E-08 5.9E-02 7.9E-07 4.9E-13 6.6E-15

5.9 8.1 16384 1.8E+01 6.8E-08 1.3E-01 8.2E-07 7.8E-13 4.3E-15

9.0 4.8 256 7.8E-02 1.2E-06 6.0E-04 4.2E-07 1.1E-15 1.3E-15

9.0 4.8 512 1.9E-01 7.1E-07 2.1E-03 6.6E-07 1.6E-15 1.5E-14

9.0 4.8 1024 4.5E-01 4.3E-07 5.5E-03 7.8E-07 1.3E-15 5.8E-15

9.0 4.8 2048 1.2E+00 2.8E-07 1.8E-02 1.1E-06 1.1E-15 6.5E-15

9.0 4.8 4096 3.2E+00 1.9E-07 4.2E-02 1.2E-06 1.8E-15 2.1E-14

9.0 4.8 8192 9.6E+00 1.4E-07 9.7E-02 1.3E-06 1.9E-15 3.3E-14

9.0 4.8 16384 3.0E+01 1.1E-07 2.2E-01 1.4E-06 2.1E-15 6.5E-14

Table 2.13: Test results for the connection between the Gegenbauer polynomials

{C(α)
n }n∈N0

and {C(β)
n }n∈N0

computed with the usmv-fmm method with accuracy
controlling parameter p = 18 and maximum step size s = 1 for different transform
sizes n. Shown are the times for pre-computation tp and for the computation of the
actual transform tt. Both are also shown after division through the expected asymp-
totic expression in terms of the transform size n. Furthermore, the component-wise
error Ec

∞ and the relative infinity norm error E∞ are reported.
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Figure 2.6: Error measure Ec
∞ versus the step size s (a) and computation time

tt for a single transformation versus the step size s (b) for the last test case for
Laguerre polynomials reported in Tables 2.2 to 2.5, that is, for the conversion from

the polynomials {L(9.7)
n }n∈N0

to the polynomials {L(5.5)
n }n∈N0

, at transform size
n = 16384. Shown are the usmv-fmm method with accuracy controlling parameter
p = 18 (solid, black) and the corresponding errors and times for the direct method
(solid, dark gray).
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2.5 The Eigendecomposition of symmetric semiseparable matrices

In this section a divide-and-conquer method to compute the eigendecomposition of
extended symmetric diagonal plus generator representable semiseparable matrices
is reviewed. It is similar to the method for diagonal plus upper or lower generator
representable semiseparable matrices from Section 2.3. Historically though, the
method described in this section was developed earlier by Chandrasekaran and Gu
[9] for symmetric block-diagonal plus (1, 1)-generator representable semiseparable
matrices. Similar techniques also appeared in [60]. In addition to describing the
original algorithm, we also give a simple extension to higher semiseparability ranks.
As before, the divide-and-conquer method will not only allow us to compute eigen-
decompositions explicitly, but also to efficiently pre-compute enough data that al-
lows to apply an n × n eigenvector matrix to any vector with O

(
n log n log(1/ε)

)
arithmetic operations, instead of the usual O(n2). The reason for this is the same
as before, that is, usage of the fast multipole method to accelerate the calculation
of certain matrix-vector products.
Among the differences to the triangular case is that the divide-and-conquer method
for extended symmetric diagonal plus generator representable semiseparable matri-
ces requires a few extra considerations. To guarantee numerical stability, some
modifications to otherwise straightforward procedures are necessary. We will men-
tion these below as we walk through the procedure.
Any symmetric matrix, and in particular, any extended symmetric diagonal plus
generator representable semiseparable matrix, has real eigenvalues. The spectral
theorem [26, Theorem 8.1.1, p. 393] asserts that a symmetric eigendecomposition
of the form

A = Q Λ QT (2.15)

exists, with an orthogonal eigenvector matrix Q and a real diagonal eigenvalue
matrix Λ. In the following, we describe the divide-and-conquer method from [9] to
compute the desired eigendecomposition.

2.5.1 Divide-and-conquer method. We first describe the divide-and-conquer
method for symmetric diagonal plus (1, 1)-generator representable matrices A. As
before, in the divide phase, the matrix A is recursively divided into smaller matrices
until these are sufficiently small. In the conquer phase, the eigendecompositions of
these small matrices are successively recombined to obtain the eigendecomposition
of the full matrix A.

Divide phase

Given a symmetric diagonal plus (1, 1)-generator representable semiseparable ma-
trix A = diag d + triu(uvT, 1) + tril(uvT,−1), we would like to write this in the
form of several smaller matrices of the same type. This can be done in the following
way. Take δ = ±1 to be a freely chosen scalar. Split each of the vectors d, u, v into
two vectors with the first bn/2c components in the first vector, and the remaining
components in the second vector. That is, define d1, d2, u1, u2, v1, v2 and w such
that

d =

(
d1

d2

)
, u =

(
u1

u2

)
, v =

(
v1

v2

)
, w =

(
δ u1

v2

)
.

We can now write A in the form

A =

(
Â1 0

0 Â2

)
+ δwwT,
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where Â1 and Â2 are defined to the symmetric diagonal plus (1, 1)-generator rep-
resentable semiseparable matrices

Â1 = diag
(
d1 − δdiag(u1u

T
1 )
)
+ triu

(
u1(v1 − δu1)T, 1

)
+ tril

(
(v1 − δu1)uT

1 ,−1
)
,

Â2 = diag
(
d2 − δdiag(v2v

T
2 )
)

+ triu
(

(u2 − δv2)vT
2 , 1
)

+ tril
(
v2(u2 − δv2)T,−1

)
.

This result can be easily verified. Each of the matrices Â1 and Â2 may now be
decomposed into a similar pattern.

Conquer phase

In the conquer phase we regroup the subproblems into larger problems. Suppose
that two symmetric diagonal plus (1, 1)-generator representable semiseparable ma-

trices Â1 and Â2, obtained from the divide phase, have the eigendecomposition

Â1 = Q1Λ1Q
T
1 and Â2 = Q2Λ2Q

T
2 ,

with the real, diagonal eigenvalue matrices Λ1 and Λ2 and the orthogonal eigen-
vector matrices Q1 and Q2, then the matrix A has the representation

A =

(
Q1 0
0 Q2

)
(Λ + δ z zT)

(
Q1 0
0 Q2

)T

,

where δ is defined as it was for the divide phase and Λ is the diagonal matrix and
z a vector defined by

Λ =

(
Λ1 0
0 Λ2

)
and z =

(
Q1 0
0 Q2

)T

w.

Suppose that we can efficiently compute the eigendecomposition of the symmetric
rank-one modified diagonal matrix Λ + δ zzT which we write as

Λ + δ z zT = P Ω PT.

Then we can write the eigendecomposition of the full matrix A as

A =

(
Q1 0
0 Q2

)
P Ω PT

(
Q1 0
0 Q2

)T

= Q Ω QT, with Q =

(
Q1 0
0 Q2

)
P.

Similar to the triangular case, it remains to explain how the eigendecomposition
of the symmetric rank-one modified diagonal matrix Λ + δ z zT can be computed,
and how the eigenvector matrix P can be applied efficiently. This is done in the
following.

2.5.2 Symmetric rank-one modified eigenproblem. The problem of deter-
mining the eigendecomposition of a symmetric rank-one modified diagonal ma-
trix Λ + δ z zT was formulated by Golub [25] and subsequently investigated in
[8, 14, 15, 30, 37, 71]. It is valid to assume that all diagonal entries of the diagonal
matrix Λ are numerically distinct and that all entries in the vector z are bounded
away from zero. If not, one can use the deflation procedure described in [15], e.g.,
with the criterion used in [30], to arrange this. This is an important detail for a
successful implementation, as deflation is often necessary in practical situations.
Moreover, we require that, by permutations, we have ordered the diagonal entries
of Λ increasingly. The following theorem, restating results found in [25] and [8],
characterizes the structure of the desired eigendecomposition.

Theorem 2.25 Let Λ be a diagonal matrix with entries λ1 < λ2 < · · · < λn,

z = (z1, z2, . . . , zn)
T

a vector with non-zero entries, and δ 6= 0. Then for the
symmetric rank-one modified diagonal matrix B = Λ + δ z zT the following results
hold:
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(i) The eigenvalues ω1, ω2, . . . , ωn of the matrix B satisfy the interlacing property{
λ1 < ω1 < λ2 < ω2 < · · · < λn < ωn < λn + δ zTz, if δ > 0,

λ1 + δ zTz < ω1 < λ1 < ω2 < λ2 < · · · < ωn < λn, if δ < 0.

(ii) The eigenvalues ω1, ω2, . . . , ωn of the matrix B are solutions to the secular
equation

1 + δ

n∑
j=1

z2
j

λj − ω
= 0. (2.16)

(iii) For each eigenvalue ωj, the two corresponding unit-length eigenvectors pj
are given by

pj = ±

(
n∑
i=1

z2
i

(λi − ωj)2

)−1/2

×
(

z1

λ1 − ωj
,

z2

λ2 − ωj
, . . . ,

zn
λn − ωj

)T

.

The eigenvalues ω1, ω2, . . . , ωn of the matrix B can be efficiently obtained as the
zeros of the rational equation (2.16) by using iterative methods; these are described,
e.g., in [8, 57]. The popular subroutine library LAPACK implements the method
described in [57]. A modified C translation was adopted by our own implementation.
The eigenvectors p1,p2, . . . ,pn, have explicit expressions in terms of the entries of
the vector z, the diagonal entries λj and the eigenvalues ωj for j = 1, 2, . . . , n.

2.5.3 Efficient application of the eigenvector matrix. Again, an efficient
method is needed to apply the eigenvector matrices P and P−1 = PT, obtained
from the symmetric rank-one modified diagonal matrix D + zzT, to an arbitrary
vector. As before in Section 2.3.3, we can observe that the matrices P and PT are
Cauchy-like matrices. This allows us to use the FMM to accelerate the calculation
of matrix-vector products to O

(
n log(1/ε)

)
arithmetic operations, where ε is the

desired accuracy. The last statement should be taken with care as the usual imple-
mentation of the FMM can poorly fail to provide acceptable accuracy. To see this,
notice that the diagonal entries λ1, λ2, . . . , λn and the eigenvalues ω1, ω2, . . . , ωn
can be very close to each other, and that all these quantities can contain rounding
errors. This issue is usually not present in the triangular case. It implies that the
calculation of differences of the form

λj − ωj or λj+1 − ωj

can be subject to catastrophic cancellations. Therefore, a modification to the FMM
was proposed in [29]. The iterative methods used to find the eigenvalues ωj can be
reformulated to return a representation of the form ωj = λj +µj or ωj = λj+1−µj ,
respectively. That is, each eigenvalue ωj is written as one of the enclosing diagonal
entries, λj or λj+1, plus a possibly small perturbation µj . For the FMM, this
representation is then used to compute all required differences of the form c − ωj
with any number c to high relative accuracy. For example, if c = ωj+1 = λj+1+µj+1

and ωj = λj+1 − µj , then the difference ωj+1 − ωj can be obtained as

ωj+1 − ωj = µj+1 + µj

to high relative accuracy. For the details, we refer the reader to [29].

2.5.4 Complexity of the divide-and-conquer algorithm. The cost analysis
for the whole divide-and-conquer method is identical to that for triangular diagonal
plus generator representable semiseparable matrices; see Section 2.3.4. A factor-
ization of the eigenvector matrix Q into a product of block-diagonal matrices is



2.5. THE EIGENDECOMPOSITION OF SYMMETRIC SEMISEPARABLE MATRICES 103

obtained, for example,

Q =


Q000

Q001

. . .

Q111




P00

P01

P10

P11

(P0

P1

)
P.

The divide-and-conquer method needs O(n2) arithmetic operations and an amount
of memory in the order O(n2) to explicitly compute the full eigendecomposition
A = Q Λ QT of the n × n matrix A with plain matrix-vector computations. To
apply the eigenvector matrix Q to a vector takes O(n2) operations. With FMM-
accelerated matrix-vector products, the matrix Q can be multiplied with any vector
using only O

(
n log n log(1/ε)

)
arithmetic operations and an amount of memory in

the same order. Recall also that we never need to setup the matrix Q explicitly.

2.5.5 Generalization to higher semiseparability ranks. We can general-
ize the discussed divide-and-conquer method for symmetric diagonal plus (1, 1)-
generator representable semiseparable matrices to higher semiseparability ranks.
The modifications are similar to the triangular case. Any extended symmetric di-
agonal plus (p, p)-generator representable semiseparable matrix A can be written
as

A = diag(d) + triu(UVT, 1) + tril(VUT,−1),

with n×p matrices U and V. The right-hand side may be decomposed into smaller
matrices of the same type. To this end, take a diagonal matrix ∆ = diag(δ), built
from a vector δ = (δ1, δ2, . . . , δp)

T with freely chosen entries δi = ±1, i = 1, 2, . . . , p,
and define vectors d1, d2, and matrices U1, U2, V1, V2, and W similarly such
that

d =

(
d1

d2

)
, U =

(
U1

U2

)
, V =

(
V1

V2

)
, W =

(
∆ U1

V2

)
.

Then the matrix A may be written as

A =

(
Â1 0

0 Â2

)
+ W ∆ WT,

where Â1 and Â2 are defined to the extended symmetric diagonal plus (p, p)-
generator representable semiseparable matrices

Â1 = diag
(
d1 − diag(U1 ∆ UT

1 )
)

+ triu
(
U1(V1 −∆ U1)T, 1

)
+ tril

(
(V1 −∆ U1)UT

1 ,−1
)
,

Â2 = diag
(
d2 − diag(V2 ∆ VT

2 )
)

+ triu
(
(U2 −∆ V2)VT

2 , 1
)

+ tril
(
V2(U2 −∆ V2)T,−1

)
.

In the conquer phase, we assume that the eigendecompositions of Â1 and Â2 are

Â1 = Q1Λ1Q
T
1 and Â2 = Q2Λ2Q

T
2 .

This implies the representation

A =

(
Q1 0
0 Q2

)
(Λ + Z ∆ ZT)

(
Q1 0
0 Q2

)T

,

where ∆ is defined as it was for the divide phase and Λ is a diagonal matrix and
Z is a matrix defined by

Λ =

(
Λ1 0
0 Λ2

)
and Z =

(
Q1 0
0 Q2

)T

W.
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Let the eigendecomposition of the symmetric rank-p modified diagonal matrix Λ +
Z ∆ ZT be written as

Λ + Z ∆ ZT = P Ω PT.

Then we can write the eigendecomposition of A as

A =

(
Q1 0
0 Q2

)
P Ω PT

(
Q1 0
0 Q2

)T

= Q Ω QT, with Q =

(
Q1 0
0 Q2

)
P.

(2.17)
It remains to efficiently compute the eigendecomposition of the symmetric rank-p
modified diagonal matrix Λ + Z ∆ ZT. We write this in the equivalent form

Λ + Z ∆ ZT = Λ + δ1z1 zT
1 + δ2z2 zT

2 + · · ·+ δrzp zT
p , (2.18)

and use Theorem 2.25 to cheaply obtain the eigendecomposition of the symmetric
rank-one modified diagonal matrix Λ + δ1z1 zT

1 as

Λ + δ1z1 zT
1 = P1 Ω1 P1.

Then, (2.18) can be recast into

Λ + δ1z1 zT
1 + δ2z2 zT

2 + · · ·+ δrzp zT
p

= P1(Ω1 + δ2z̃2 z̃T
2 + δ3z̃3 z̃T

3 + · · ·+ δrz̃p z̃T
p )PT

1 ,

where the vectors z̃2, z̃3, . . . , z̃p are defined by

z̃i = PT
1 zi, with i = 2, 3, . . . , p.

Now it remains to compute the eigendecomposition of the symmetric rank-(p− 1)
modified diagonal matrix Ω1 + δ2z̃2 z̃T

2 + δ3z̃3 z̃T
3 + · · ·+ δrz̃p z̃T

p which can be dealt
with recursively. Finally, the eigendecomposition

Λ + Z ∆ ZT = P Ω PT = P1 P2 · · · Pp Ωp PT
p PT

p−1 · · · PT
1

is obtained, where all the matrices P1,P2, . . . ,Pp stem from the eigendecomposition
of successively obtained symmetric rank-one modified diagonal matrices. Each of
these matrices can be applied efficiently with the FMM.

2.6 Classical associated functions and semiseparable matrices

The divide-and-conquer method for the eigendecomposition of extended symmet-
ric diagonal plus (p, p)-generator representable semiseparable matrices from the
last section can be used for the connection problem between classical associated
functions of different orders. Basic results about this problem have already been
observed in Section 1.6.4. More precisely, we can obtain an efficient algorithm to
apply the connection matrices between sequences of (generalized) associated func-
tions of different orders derived from the same sequence of classical orthogonal
polynomials. To this end, the corresponding connection matrices will be shown
to contain eigenvectors of certain explicitly known matrices with a semiseparable
structure.

2.6.1 Connection matrices and semiseparable matrices. Recall that our
goal is to find an efficient algorithm to convert between (generalized) associated
functions of different orders. For example, assume that a function f has a finite

expansion in associated Laguerre functions {L(α),m
n }n∈N0,µ≤n of a certain order m,

i.e.,

f =

n∑
j=µ

xjL
(α),m
j ,
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with known coefficients xj . We want to compute the coefficients yj in the expansion

f =

n−(µ−µ̂)/2∑
j=µ̂

yjL
(α),m̂
j ,

where {L(α),m̂
n }n∈N0,µ̂≤n is another sequence of associated Laguerre functions that

satisfies m + m̂ even and |µ̂| < |µ|; cf. Lemma 1.92. The situation for generalized
associated Jacobi functions is analogous. There, one seeks to compute from an
expansion of the form

f =

n∑
j=n∗

xjP
(α,β),m,m′

j ,

with known coefficients xj , the coefficients yj in the expansion

f =

n∑
j=n̂∗

yjP
(α,β),m̂,m̂′

j ,

where {P (α,β),m,m′

n }n∈N0,n∗≤n and {P (α,β),m̂,m̂′

n }n∈N0,n̂∗≤n are two sequences of gen-
eralized associated Jacobi functions such that m+ m̂+m′ + m̂′ is even, |µ̂| < |µ|,
and |ν̂| < |ν|; see Lemma 1.94.
Note that associated Laguerre functions and generalized associated Jacobi functions
cover all cases of associated functions treated in this work. Therefore, it is enough
to state results only for these two types of associated functions. All other cases can
be obtained from there. Again, we collect the coefficients xj and yj in two vectors
x and y,

x = (xµ, xµ+1, . . . , xn)T, y = (yµ̂, yµ̂+1, . . . , yn−(µ−µ̂)/2)T,

or

x = (xn∗ , xn∗+1, . . . , xn)T, y = (yn̂∗ , yn̂∗+1, . . . , yn)T,

respectively. Then the vector y can be obtained from the vector x by calculating
the matrix-vector product

y = K x,

where K is the rectangular connection matrix between the two respective sequences
of associated functions. For the efficient handling of this conversion, we rely on an
approach similar to that used in Section 2.4 for the connection problem between
classical orthogonal polynomials. A matrix G will be defined that has its properly
scaled eigenvector matrix Q contain the desired connection matrix K as a subma-
trix. It will shown that the matrix G has a semiseparable structure which in turn
allows us to apply the divide-and-conquer method from Section 2.5. This implies a
fast algorithm to apply the (n− µ+µ̂

2 +1)× (n−µ+1) or (n− n̂∗)× (n−n∗+1) ma-

trix K, respectively, to any vector with O
(
n log n log(1/ε)

)
arithmetic operations

instead of O(n2). The matrix G is defined in the following for associated Laguerre
as well as for generalized associated Jacobi functions.

Definition 2.26 Let {L(α),m
n }n∈N0,µ≤n be a sequence of associated Laguerre func-

tions with α > −1 which satisfy the hypergeometric-like differential equation

xy′′(x) + (1 + α− x)y′(x) +

(
n−

µ
(
2(x+ α) + µ

)
4x

)
y(x) = 0, with y = L(α),m

n

and which have the corresponding differential operator D(α),m given by

D(α),m = −x d2

dx2
− (1 + α− x)

d

dx
+
µ
(
2(x+ α) + µ

)
4x

.
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Let {L(α),m̂
n }n∈N0,µ̂≤n be a different sequence of associated Laguerre functions. Fur-

thermore, denote by 〈 · , · 〉 the inner product with respect to which both sequences

of associated functions are orthogonal, and by h
(α)
n = h

(α),m
n = h

(α),m̂
n the respective

squared norms. Then the matrix

G(α),m→m̂ =
(
g

(α),m→m̂
i,j

)n−(µ−µ̂)/2

i,j=µ̂

is defined by

g
(α),m→m̂
i,j =

〈L(α),m̂
i ,D(α),m(L

(α),m̂
j )〉√

h
(α)
i h

(α)
j

. (2.19)

Definition 2.27 Let {P (α,β),m,m′

n }n∈N0,n∗≤n with α, β > −1 be a sequence of gen-
eralized associated Jacobi functions which satisfy the hypergeometric-like differential
equation

σ(x)y′′(x) + τ(x)y′(x) +
(
λn + fµ,ν(x)

)
y(x) = 0, with y = P (α,β),m,m′

n ,

and which have the corresponding differential operator D(α,β),m,m′ defined by

D(α,β),m,m′ = −σ(x)
d2

dx2
− τ(x)

d

dx
− fµ,ν(x).

Let {P (α,β),m̂,m̂′

n }n∈N0,n̂∗≤n be a different sequence of generalized associated Jacobi
functions. Furthermore, denote by 〈 · , · 〉 the inner product with respect to which
both sequences of generalized associated functions are orthogonal, and by hn =

h
(α,β),m,m′

n = h
(α,β),m̂,m̂′

n the respective squared norms. Then the matrix

G(α,β),m,m′→m̂,m̂′ =
(
g

(α,β),m,m′→m̂,m̂′
i,j

)n
i,j=n̂∗

is defined by

g
(α,β),m,m′→m̂,m̂′
i,j =

〈P (α,β),m̂,m̂′

i ,D(α,β),m,m′(P
(α,β),m̂,m̂′

j )〉√
h

(α,β)
i h

(α,β)
j

. (2.20)

As before, we drop superscripts whenever they are clear from the context. The
matrix G can be shown to have eigenvectors that are the columns of the connection
matrix K between the respective two sequences of associated functions. The proof
of the following Lemma is omitted since it is almost identical to that of Lemma
2.19.

Lemma 2.28 Assume that the preconditions of Definition 2.26 or Definition 2.27
hold. Then the columns of the connection matrix K = (κµ,κµ+1, . . . ,κn) or
K = (κn∗ ,κn∗+1, . . . ,κn), respectively, between the two sequences of (generalized)
associated functions are eigenvectors of the respective matrix G, i.e.,

Gκj = λjκj ,

where λj are the eigenvalues from the corresponding hypergeometric-like differential
equation of the target polynomials.

Remark 2.29 Note that the columns of the connection matrix K cannot span all
eigenspaces of the matrix G. This is true since the matrix G is quadratic of size
(n− (µ+ µ̂)/2 + 1)× (n− (µ+ µ̂)/2 + 1) or (n− n̂∗+ 1)× (n− n̂∗+ 1), respectively,
while the matrix K is generally rectangular of size (n − µ̂ + 1) × (n − µ + 1) or
(n − n̂∗ + 1) × (n − n∗ + 1), respectively. Therefore, the matrix K has fewer
columns than the matrix G. Missing from the matrix K are the eigenvectors to the
eigenvalues λµ̂, λµ̂+1, . . . , λµ−1 or λn̂∗ , λn̂∗+1, . . . , λn∗−1, respectively.
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Remark 2.30 Lemma 2.28 implies that the matrix G has simple eigenvalues, since
for all associated functions, the values λn, n = 0, 1, . . . , from the hypergeometric-
like differential equation are simple. This is, however, not a requirement for the
divide-and-conquer method from Section 2.5.1.

It remains to derive the explicit expressions for the entries of the matrix G in each
case. Also, the correct scaling of its eigenvectors needs to be determined. The
scaling of the target sequence of associated functions is already encoded in the
matrix G, while the scaling of the source sequence is reflected in the scaling of the
columns of the eigenvectors of G.

2.6.2 Examples. In the following, explicit expressions for the entries of the matrix
G are given for all cases of (generalized) associated functions.

Associated Laguerre functions

Theorem 2.31 Let {L(α),m
n }n∈N0,µ≤n and {L(α),m̂

n }n∈N0,µ̂≤n with α > −1 be two
sequences of associated Laguerre functions such that m+ m̂ is an even number and

µ̂ ≤ µ. Then the corresponding matrix G = (gi,j)
n−(µ−µ̂)/2
i,j=µ̂ is symmetric diagonal

plus (1, 1)-generator representable semiseparable,

G = diag(d) +
µ− µ̂

4

(
2 +

µ− µ̂
α+ µ

)(
triu(u vT, 1) + tril(v uT,−1)

)
,

with the vectors d, u, and v given by

d =

(
j +

µ− µ̂
4

(
4 +

µ− µ̂
α+ µ̂

))n−(µ−µ̂)/2

j=µ̂

,

u =

(√
Γ(j + α+ 1)

Γ(j − µ̂+ 1)

)n−(µ−µ̂)/2

j=µ̂

,

v =

(√
Γ(j − µ̂+ 1)

Γ(j + α+ 1)

)n−(µ−µ̂)/2

j=µ̂

.

Proof. The associated Laguerre functions L
(α),m
n satisfy the differential equation

xy′′(x) + (1 + α− x)y′(x) +

(
n−

µ
(
2(x+ α) + µ

)
4x

)
y(x) = 0, with y = L(α),m

n ,

and similarly the associated Laguerre functions L
(α),m̂
n satisfy

xy′′(x) + (1 + α− x)y′(x) +

(
n−

µ̂
(
2(x+ α) + µ̂

)
4x

)
y(x) = 0, with y = L(α),m̂

n .

Thus, the corresponding differential operators are given by

D(α),m = −x d2

dx2
− (1 + α− x)

d

dx
+
µ
(
2(x+ α) + µ

)
4x

,

D(α),m̂ = −x d2

dx2
− (1 + α− x)

d

dx
+
µ̂
(
2(x+ α) + µ̂

)
4x

,

and we have

D(α),m −D(α),m̂ =
(µ− µ̂)

(
2(x+ α) + µ+ µ̂

)
4x

.
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This implies

gi,j =
〈L(α),m̂

i ,D(α),m(L
(α),m̂
j )〉(

h
(α)
i h

(α)
j

)1/2

=
〈L(α),m̂

i ,D(α),m̂(L
(α),m̂
j )〉(

h
(α)
i h

(α)
j

)1/2
+
〈L(α),m̂

i , (D(α),m −D(α),m̂)(L
(α),m̂
j )〉(

h
(α)
i h

(α)
j

)1/2

=
〈L(α),m̂

i ,D(α),m̂(L
(α),m̂
j )〉(

h
(α)
i h

(α)
j

)1/2
+
〈L(α),m̂

i , (µ−µ̂)(2(x+α)+µ+µ̂)
4x L

(α),m̂
j 〉(

h
(α)
i h

(α)
j

)1/2
.

Since the associated Laguerre function L
(α),m̂
j is an eigenfunction of the operator

D(α),m̂ to the eigenvalue λj = j, we verify for the first summand that

〈L(α),m̂
i ,D(α),m̂(L

(α),m̂
j )〉(

h
(α)
i h

(α)
j

)1/2
= j
〈L(α),m̂

i , L
(α),m̂
j 〉(

h
(α)
i h

(α)
j

)1/2
= jδi,j .

For the second summand, recall the definition of the associated Laguerre functions
(1.6.3), i.e.,

L
(α),m̂
i = (−1)µ̂

(
Γ(i− µ̂+ 1)

Γ(i+ 1)

)1/2

xµ̂/2L
(α+µ̂)
i−µ̂ (x)

which gives

〈L(α),m̂
i ,

(µ− µ̂)(2(x+ α) + µ+ µ̂)

4x
L

(α),m̂
j 〉

=
1

4

(
Γ(i− µ̂+ 1)

Γ(i+ 1)

Γ(j − µ̂+ 1)

Γ(j + 1)

)1/2

×
∫ ∞

0

L
(α+µ̂)
i−µ̂ (x)

(
(µ− µ̂)(2(x+ α) + µ+ µ̂)

)
L

(α+µ̂)
j−µ̂ (x)xα+µ̂−1e−x dx.

This shows, that the second summand is symmetric and therefore the matrix G
must be symmetric. To calculate the last integral, we split it into two pieces∫ ∞

0

L
(α+µ̂)
i−µ̂ (x)

(
(µ− µ̂)(2(x+ α) + µ+ µ̂)

)
L

(α+µ̂)
j−µ̂ (x)xα+µ̂−1e−x dx

= 2(µ− µ̂)

∫ ∞
0

L
(α+µ̂)
i−µ̂ (x)L

(α+µ̂)
j−µ̂ (x)xα+µ̂e−x dx

+ (µ− µ̂)(2α+ µ+ µ̂)

∫ ∞
0

L
(α+µ̂)
i−µ̂ (x)L

(α+µ̂)
j−µ̂ (x)xα+µ̂−1e−x dx

= 2(µ− µ̂)
Γ(i+ α+ 1)

Γ(i− µ̂+ 1)
δi,j

+ (µ− µ̂)(2α+ µ+ µ̂)

∫ ∞
0

L
(α+µ̂)
i−µ̂ (x)L

(α+µ̂)
j−µ̂ (x)xα+µ̂−1e−x dx.

For the remaining integral, we assume i ≤ j without loss of generality. We can

use the connection coefficients κ
L,(α+µ̂)→(α+µ̂−1)
i,j = 1 to expand the polynomials
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L
(α+µ̂)
i−µ̂ (x) and L

(α+µ̂)
j−µ̂ (x) in the Laguerre polynomials {L(α+µ̂−1)

n }n∈N0
. By orthog-

onality, this gives ∫ ∞
0

L
(α+µ̂)
i−µ̂ (x)L

(α+µ̂)
j−µ̂ (x)xα+µ̂−1e−x dx

=

i−µ̂∑
k=0

∫ ∞
0

(
L

(α+µ̂−1)
k (x)

)2

xα+µ̂−1e−x dx

=

i−µ̂∑
k=0

Γ(k + α+ µ̂)

Γ(k + 1)

=
Γ(i+ α+ 1)

(α+ µ̂)Γ(i− µ̂+ 1)
.

Finally, we use

h
(α)
i =

Γ(i+ α+ 1)

Γ(i+ 1)
,

and obtain

〈L(α),m̂
i , (µ−µ̂)(2(x+α)+µ+µ̂)

4x L
(α),m̂
j 〉√

h
(α)
i h

(α)
j

=
1

4

(
Γ(i+ α+ 1)Γ(j − µ̂+ 1)

Γ(j + α+ 1)Γ(i− µ̂+ 1)

)1/2(
2 +

µ− µ̂
α+ µ̂

+ 2δi,j

)
.

This proves the desired representation of the matrix G. �

Generalized associated Jacobi functions

Theorem 2.32 Let {P (α,β),m,m′

n }n∈N0,n∗≤n and {P (α,β),m̂,m̂′

n }n∈N0,n̂∗≤n be two se-
quences of generalized associated Jacobi functions, with α, β > −1, such that m +
m̂+m′ + m̂′ is an even number, µ̂ ≤ µ and ν̂ ≤ ν. Then the corresponding matrix
G = (gi,j)

n
i,j=n̂∗ is extended symmetric diagonal plus (2, 2)-generator representable

semiseparable,

G = diag(d) +
(µ− µ̂)(2α+ µ+ µ̂)

4(α+ µ̂)

(
triu(u1 vT

1 , 1) + tril(v1 uT
1 ,−1)

)
+

(ν − ν̂)(2β + ν + ν̂)

4(β + ν̂)

(
triu(u2 vT

2 , 1) + tril(v2 uT
2 ,−1)

)
,

with the vectors d, u1, v1, u2, and v2 given by

d =
(
j(j + α+ β + 1)

+ (2j + α+ β + 1)

(
(µ− µ̂)(2α+ µ+ µ̂)

4(α+ µ̂)
+

(ν − ν̂)(2β + ν + ν̂)

4(β + ν̂)

))n
j=0

,

u1 =

((
(2j + α+ β + 1)Γ(j − n̂∗ + α+ µ̂+ 1)Γ(j + n̂∗ + α+ β + 1)

Γ(j − n̂∗ + 1)Γ(j − n̂∗ + β + ν̂ + 1)

)1/2
)n
j=n̂∗

,

v1 =

((
(2j + α+ β + 1)Γ(j − n̂∗ + 1)Γ(j − n̂∗ + β + ν̂ + 1)

Γ(j − n̂∗ + α+ µ̂+ 1)Γ(j + n̂∗ + α+ β + 1)

)1/2
)n
j=n̂∗

,
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u2 =

((
(2j + α+ β + 1)Γ(j − n̂∗ + β + ν̂ + 1)Γ(j + n̂∗ + α+ β + 1)

(−1)jΓ(j − n̂∗ + 1)Γ(j − n̂∗ + α+ µ̂+ 1)

)1/2
)n
j=n̂∗

,

v2 =

((
(−1)j

(2j + α+ β + 1)Γ(j − n̂∗ + 1)Γ(j − n̂∗ + α+ µ̂+ 1)

Γ(j − n̂∗ + β + ν̂ + 1)Γ(j + n̂∗ + α+ β + 1)

)1/2
)n
j=n̂∗

.

Proof. The generalized associated Jacobi functions P
(α,β),m,m′

n satisfy the differ-
ential equation

σ(x)y′′(x) + τ(x)y′(x) +
(
λn + fµ,ν(x)

)
y(x) = 0, with y = P (α,β),m,m′

n ,

where

σ(x) = 1− x2, τ(x) = −(α+ β + 2)x+ β − α, λn = n(n+ α+ β + 1),

and

fµ,ν(x) = −µ(2α+ µ)

2(1− x)
− ν(2β + ν)

2(1 + x)
.

Similarly the generalized associated Jacobi functions P
(α,β),m̂,m̂′

n satisfy the differ-
ential equation

σ(x)y′′(x) + τ(x)y′(x) +
(
λn + fµ̂,ν̂(x)

)
y(x) = 0, with y = P (α,β),m,m′

n .

Thus, the corresponding differential operators are given by

D(α,β),m,m′ = −σ(x)
d2

dx2
− τ(x)

d

dx
− fµ,ν(x),

D(α,β),m̂,m̂′ = −σ(x)
d2

dx2
− τ(x)

d

dx
− fµ̂,ν̂(x),

and we have

D(α,β),m,m′ −D(α,β),m̂,m̂′

= fµ̂,ν̂(x)− fµ,ν(x)

=
µ(2α+ µ)

2(1− x)
+
ν(2β + ν)

2(1 + x)
− µ̂(2α+ µ̂)

2(1− x)
− ν̂(2β + ν̂)

2(1 + x)

=
(µ− µ̂)(2α+ µ+ µ̂)

2(1− x)
+

(ν − ν̂)(2β + ν + ν̂)

2(1 + x)
.

With n̂∗ ≤ i, j, this implies

gi,j =
〈P (α,β),m̂,m̂′

i ,D(α,β),m,m′(P
(α,β),m̂,m̂′

j )〉√
h

(α,β)
i h

(α,β)
j

=
〈P (α,β),m̂,m̂′

i ,D(α,β),m̂,m̂′(P
(α,β),m̂,m̂′

j )〉√
h

(α,β)
i h

(α,β)
j

+
〈P (α,β),m̂,m̂′

i , (D(α,β),m,m′ −D(α,β),m̂,m̂′)(P
(α,β),m̂,m̂′

j )〉√
h

(α,β)
i h

(α,β)
j

=
〈P (α,β),m̂,m̂′

i ,D(α,β),m̂,m̂′(P
(α,β),m̂,m̂′

j )〉√
h

(α,β)
i h

(α,β)
j

+
〈P (α,β),m̂,m̂′

i ,
(

(µ−µ̂)(2α+µ+µ̂)
2(1−x) + (ν−ν̂)(2β+ν+ν̂)

2(1+x)

)
P

(α,β),m̂,m̂′

j 〉√
h

(α,β)
i h

(α,β)
j

.
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Since the generalized associated Jacobi function P
(α,β),m̂,m̂′

j is an eigenfunction of

the operator D(α,β),m̂,m̂′ to the eigenvalue λj = j(j + α+ β + 1), we verify for the
first summand that

〈P (α,β),m̂,m̂′

i ,Dm̂,m̂′(P (α,β),m̂,m̂′

j )〉√
h

(α,β)
i h

(α,β)
j

= j(j + α+ β + 1)δi,j .

For the second part, we recall the definition of the generalized associated Jacobi
functions (1.44),

P (α,β),m̂,m̂′

n (x) = Cn,µ̂,ν̂(1− x)µ̂/2(1 + x)ν̂/2P
(α+µ̂,β+ν̂)
n−n̂∗ (x),

with

Cn,µ̂,ν̂ =2−n̂
∗

(
Γ(n+ α+ 1)Γ(n+ β + 1)

Γ(n+ 1)Γ(n+ α+ β + 1)

× Γ(n− n̂∗ + 1)Γ(n+ n̂∗ + α+ β + 1)

Γ(n− n̂∗ + α+ µ̂+ 1)Γ(n− n̂∗ + β + ν̂ + 1)

)1/2

.

This gives

〈P (α,β),m̂,m̂′

i ,

(
(µ− µ̂)(2α+ µ+ µ̂)

2(1− x)
+

(ν − ν̂)(2β + ν + ν̂)

2(1 + x)

)
P

(α,β),m̂,m̂′

j 〉

= Ci,µ̂,ν̂Cj,µ̂,ν̂

∫ 1

−1

P
(α+µ̂,β+ν̂)
i−n̂∗ (x)

(
(µ− µ̂)(2α+ µ+ µ̂)

2(1− x)
+

(ν − ν̂)(2β + ν + ν̂)

2(1 + x)

)
× P (α+µ̂,β+ν̂)

j−n̂∗ (x) (1− x)α+µ̂(1 + x)β+ν̂ dx,

and shows that this is symmetric. Therefore the matrix G must be symmetric.
Without loss of generality we assume that i ≤ j and start by calculating the integral,

Ii,j :=

∫ 1

−1

P
(α+µ̂,β+ν̂)
i−n̂∗ (x)

1

1− x
P

(α+µ̂,β+ν̂)
j−n̂∗ (x) (1− x)α+µ̂(1 + x)β+ν̂ dx

=

∫ 1

−1

P
(α+µ̂,β+ν̂)
i−n̂∗ (x)P

(α+µ̂,β+ν̂)
j−n̂∗ (x) (1− x)α+µ̂−1(1 + x)β+ν̂ dx.

If i = n̂∗, then the formula 7.391 4. in [27, p. 228] gives

I0,j =

∫ 1

−1

P
(α+µ̂,β+ν̂)
0 (x)P

(α+µ̂,β+ν̂)
j−n̂∗ (x) (1− x)α+µ̂−1(1 + x)β+ν̂ dx

= 2α+µ̂+β+ν̂Γ(α+ µ̂)
Γ(j − n̂∗ + β + ν̂ + 1)

Γ(j + n̂∗ + α+ β + 1)
,

where we have used that µ̂+ ν̂ = 2n̂∗. This will be used repeatedly throughout the
rest of this proof. Similarly, if i = j then formula 7.391 5. in [27, p. 228] gives

Ii,i =

∫ 1

−1

(
P

(α+µ̂,β+ν̂)
i−n̂∗ (x)

)2

(1− x)α+µ̂−1(1 + x)β+ν̂ dx

=
2α+µ̂+β+ν̂

α+ µ̂

Γ(i− n̂+ α+ µ̂∗ + 1)

Γ(i− n̂∗ + 1)

Γ(i− n̂∗ + β + ν̂ + 1)

Γ(i+ n̂∗ + α+ β + 1)
.



112 2. SEMISEPARABLE MATRICES

This motivates the hypothesis that Ii,j may be written as

Ii,j =

∫ 1

−1

P
(α+µ̂,β+ν̂)
i−n̂∗ (x)P

(α+µ̂,β+ν̂)
j−n̂∗ (x) (1− x)α+µ̂−1(1 + x)β+ν̂ dx

=
2α+µ̂+β+ν̂

α+ µ̂

Γ(i− n̂∗ + α+ µ̂+ 1)

Γ(i− n̂∗ + 1)

Γ(j − n̂∗ + β + ν̂ + 1)

Γ(j + n̂∗ + α+ β + 1)
, (2.21)

which we prove by double induction. For an arbitrary but fixed value of i, assume
that (2.21) is true for all integrals Ii′,j′ with i′ < i and j′ ≥ i′. The value Ii,i is
already known, so we calculate Ii,i+1 by using the three-term recurrence

P
(α+µ̂,β+ν̂)
i−n̂∗+1 (x) = (ai−n̂∗x− bi−n̂∗)P (α+µ̂,β+ν̂)

i−n̂∗ (x)− ci−n̂∗P (α+µ̂,β+ν̂)
i−n̂∗−1 (x),

with the coefficients

ai−n̂∗ =
(2i+ α+ β + 1)(2i+ α+ β + 2)

2(i− n̂∗ + 1)(i+ n̂∗ + α+ β + 1)

bi−n̂∗ = − (2i+ α+ β + 1)(α+ µ̂+ β + ν̂)(α+ µ̂− β − ν̂)

2(i− n̂∗ + 1)(i+ n̂∗ + α+ β + 1)(2i+ α+ β)

ci−n̂∗ =
(i− n̂∗ + α+ µ̂)(i− n̂∗ + β + ν̂)(2i+ α+ β + 2)

(i− n̂∗ + 1)(i+ n̂∗ + α+ β + 1)(2i+ α+ β)
,

satisfied by the Jacobi polynomials {P (α+µ̂,β+ν̂)
n (x)}n∈N0

; cf. (1.22). Thus,

Ii,i+1 =

∫ 1

−1

P
(α+µ̂,β+ν̂)
i−n̂∗ (x)P

(α+µ̂,β+ν̂)
i+1−n̂∗ (x) (1− x)α+µ̂−1(1 + x)β+ν̂ dx

=

∫ 1

−1

P
(α+µ̂,β+ν̂)
i−n̂∗ (x)

×
(

(ai−n̂∗x− bi−n̂∗)P (α+µ̂,β+ν̂)
i−n̂∗ (x)− ci−n̂∗P (α+µ̂,β+ν̂)

i−n̂∗−1 (x)
)

× (1− x)α+µ̂−1(1 + x)β+ν̂ dx

= − ai−n̂∗
∫ 1

−1

(
P

(α+µ̂,β+ν̂)
i−n̂∗ (x)

)2

(1− x)α+µ̂(1 + x)β+ν̂ dx

+ (ai−n̂∗ − bi−n̂∗)
∫ 1

−1

(
P

(α+µ̂,β+ν̂)
i−n̂∗ (x)

)2

(1− x)α+µ̂−1(1 + x)β+ν̂ dx

− ci−n̂∗
∫ 1

−1

P
(α+µ̂,β+ν̂)
i−n̂∗ (x)P

(α+µ̂,β+ν̂)
i−n̂∗−1 (x)(1− x)α+µ̂−1(1 + x)β+ν̂ dx

= − ai−n̂∗
2α+µ̂+β+ν̂+1Γ(i− n̂∗ + α+ µ̂+ 1)Γ(i− n̂∗ + β + ν̂ + 1)

(2i+ α+ β + 1)Γ(i− n̂∗ + 1)Γ(i+ n̂∗ + α+ β + 1)

+ (ai−n̂∗ − bi−n̂∗)Ii,i − ci−n̂∗Ii−1,i.

For the last identity, we have used that

h
(α+µ̂,β+µ̂)
i−n̂∗ =

∫ 1

−1

(
P

(α+µ̂,β+ν̂)
i−n̂∗ (x)

)2

(1− x)α+µ̂(1 + x)β+ν̂ dx

=
2α+µ̂+β+ν̂+1Γ(i− n̂∗ + α+ µ̂+ 1)Γ(i− n̂∗ + β + ν̂ + 1)

(2i+ α+ β + 1)Γ(i− n̂∗ + 1)Γ(i+ n̂∗ + α+ β + 1)
.

With in the expressions for the coefficients ai−n̂∗ , ai−n̂∗ − bi−n̂∗ , and the integrals
Ii,i, and Ii−1,i, this can be simplified to

Ii,i+1 =
2α+µ̂+β+ν̂

α+ µ̂

Γ(i− n̂∗ + α+ µ̂+ 1)

Γ(i− n̂∗ + 1)

Γ(i− n̂∗ + β + ν̂ + 2)

Γ(i+ n̂∗ + α+ β + 2)
.
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The general case for a fixed i but arbitrary j ≥ i can be proved by induction. To
this end, fix an arbitrary j > i+ 1. Then

Ii,j =

∫ 1

−1

P
(α+µ̂,β+ν̂)
i−n̂∗ (x)P

(α+µ̂,β+ν̂)
j−n̂∗ (x) (1− x)α+µ̂−1(1 + x)β+ν̂ dx

= − aj−n̂∗−1

∫ 1

−1

P
(α+µ̂,β+ν̂)
i−n̂∗ (x)P

(α+µ̂,β+ν̂)
j−n̂∗−1 (x)(1− x)α+µ̂(1 + x)β+ν̂ dx

+ (aj−n̂∗−1 − bj−n̂∗−1)

×
∫ 1

−1

P
(α+µ̂,β+ν̂)
i−n̂∗ (x)P

(α+µ̂,β+ν̂)
j−n̂∗−1 (x)(1− x)α+µ̂−1(1 + x)β+ν̂ dx

− cj−n̂∗−1

∫ 1

−1

P
(α+µ̂,β+ν̂)
i−n̂∗ (x)P

(α+µ̂,β+ν̂)
j−n̂∗−2 (x)(1− x)α+µ̂−1(1 + x)β+ν̂ dx

= (aj−n̂∗−1 − bj−n̂∗−1)Ii,j−1 − cj−n̂∗−1Ii,j−2.

Using the induction hypothesis for the integrals Ii,j−1 and Ii,j−2, this can be sim-
plified to the desired expression

Ii,j =
2α+µ̂+β+ν̂

α+ µ̂

Γ(i− n̂∗ + α+ µ̂+ 1)

Γ(i− n̂∗ + 1)

Γ(j − n̂∗ + β + ν̂ + 1)

Γ(j + n̂∗ + α+ β + 1)
.

The proof of the formula for the integral Ii,j is completed by the outer induction
over i. We obtain the formula

Ci,µ̂,ν̂Cj,µ̂,ν̂

∫ 1

−1

P
(α+µ̂,β+ν̂)
i−n̂∗ (x)

(µ− µ̂)(2α+ µ+ µ̂)

2(1− x)

× P (α+µ̂,β+ν̂)
j−n̂∗ (x) (1− x)α+µ̂(1 + x)β+ν̂ dx

= 2α+β−1 (µ− µ̂)(2α+ µ+ µ̂)

α+ µ̂

×
(

Γ(i+ α+ 1)Γ(i+ β + 1)Γ(i− n̂∗ + α+ µ̂+ 1)Γ(i+ n̂∗ + α+ β + 1)

Γ(i+ 1)Γ(i+ α+ β + 1)Γ(i− n̂∗ + 1)Γ(i− n̂∗ + β + ν̂ + 1)

)1/2

×
(

Γ(j + α+ 1)Γ(j + β + 1)Γ(j − n̂∗ + 1)Γ(j − n̂∗ + β + ν̂ + 1)

Γ(j + 1)Γ(j + α+ β + 1)Γ(j − n̂∗ + α+ µ̂+ 1)Γ(j + n̂∗ + α+ β + 1)

)1/2

.

(2.22)
It remains to calculate the integral

Ci,µ̂,ν̂Cj,µ̂,ν̂

∫ 1

−1

P
(α+µ̂,β+ν̂)
i−n̂∗ (x)

(ν − ν̂)(2β + ν + ν̂)

2(1 + x)

× P (α+µ̂,β+ν̂)
j−n̂∗ (x) (1− x)α+µ̂(1 + x)β+ν̂ dx

= (−1)i−jCi,µ̂,ν̂Cj,µ̂,ν̂

∫ 1

−1

P
(β+ν̂,α+µ̂)
i−n̂∗ (x)

(ν − ν̂)(2β + ν + ν̂)

2(1− x)

× P (β+ν̂,α+µ̂)
j−n̂∗ (x) (1− x)α+µ̂(1 + x)β+ν̂ dx,
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where we have used the identity P
(α,β)
n (x) = (−1)nP

(β,α)
n (−x); cf. (1.21). This is

obviously analogous to (2.22), so that we obtain

(−1)i−jCi,µ̂,ν̂Cj,µ̂,ν̂

∫ 1

−1

P
(β+ν̂,α+µ̂)
i−n̂∗ (x)

(ν − ν̂)(2β + ν + ν̂)

2(1− x)

× P (β+ν̂,α+µ̂)
j−n̂∗ (x) (1− x)α+µ̂(1 + x)β+ν̂ dx

= (−1)i−j2α+β−1 (ν − ν̂)(2β + ν + ν̂)

β + ν̂

×
(

Γ(i+ α+ 1)Γ(i+ β + 1)Γ(i− n̂∗ + β + ν̂ + 1)Γ(i+ n̂∗ + α+ β + 1)

Γ(i+ 1)Γ(i+ α+ β + 1)Γ(i− n̂∗ + 1)Γ(i− n̂∗ + α+ µ̂+ 1)

)1/2

×
(

Γ(j + α+ 1)Γ(j + β + 1)Γ(j − n̂∗ + 1)Γ(j − n̂∗ + α+ µ̂+ 1)

Γ(j + 1)Γ(j + α+ β + 1)Γ(j − n̂∗ + β + ν̂ + 1)Γ(j + n̂∗ + α+ β + 1)

)1/2

.

Finally, we have

〈P (α,β),m̂,m̂′

i ,
(

(µ−µ̂)(2α+µ+µ̂)
2(1−x) + (ν−ν̂)(2β+ν+ν̂)

2(1+x)

)
P

(α,β),m̂,m̂′

j 〉√
h

(α,β)
i h

(α,β)
j

=
(µ− µ̂)(2α+ µ+ µ̂)

4(α+ µ̂)

×
(

(2i+ α+ β + 1)Γ(i− n̂∗ + α+ µ̂+ 1)Γ(i+ n̂∗ + α+ β + 1)

Γ(i− n̂∗ + 1)Γ(i− n̂∗ + β + ν̂ + 1)

)1/2

×
(

(2j + α+ β + 1)Γ(j − n̂∗ + 1)Γ(j − n̂∗ + β + ν̂ + 1)

Γ(j − n̂∗ + α+ µ̂+ 1)Γ(j + n̂∗ + α+ β + 1)

)1/2

+ (−1)i−j
(ν − ν̂)(2β + ν + ν̂)

4(β + ν̂)

×
(

(2i+ α+ β + 1)Γ(i− n̂∗ + β + ν̂ + 1)Γ(i+ n̂∗ + α+ β + 1)

Γ(i− n̂∗ + 1)Γ(i− n̂∗ + α+ µ̂+ 1)

)1/2

×
(

(2j + α+ β + 1)Γ(j − n̂∗ + 1)Γ(j − n̂∗ + α+ µ̂+ 1)

Γ(j − n̂∗ + β + ν̂ + 1)Γ(j + n̂∗ + α+ β + 1)

)1/2

,

which completes the proof. �
In the following, we give analogous results for the remaining classes of (generalized)
associated functions. THe proofs are omitted since these can all be derived as
special cases from the results for generalized associated Jacobi functions.

Generalized associated Gegenbauer functions

Theorem 2.33 Let {C(α),m,m′

n }n∈N0,n∗≤n and {C(α),m̂,m̂′

n }n∈N0,n̂∗≤n with α >
−1/2 and α 6= 0 be two sequences of generalized associated Gegenbauer functions
such that m + m̂ + m′ + m̂′ is an even number, µ̂ ≤ µ and ν̂ ≤ ν. Then the
corresponding matrix G = (gi,j)

n
i,j=n̂∗ is extended symmetric diagonal plus (2, 2)-

generator representable semiseparable,

G = diag(d) +
(µ− µ̂)(2α+ µ+ µ̂− 1)

2α+ 2µ̂− 1

(
triu(u1 vT

1 , 1) + tril(v1 uT
1 ,−1)

)
+

(ν − ν̂)(2α+ ν + ν̂ − 1)

2α+ 2ν̂ − 1

(
triu(u2 vT

2 , 1) + tril(v2 uT
2 ,−1)

)
,
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with the vectors d, u1, v1, u2, and v2 given by

d =
(
j(j + 2α)

+ (j + α)

(
(µ− µ̂)(2α+ µ+ µ̂− 1)

2α+ 2µ̂− 1
+

(ν − ν̂)(2α+ ν + ν̂ − 1

2α+ 2ν̂ − 1

))n
j=0

,

u1 =

((
(j + α)Γ(j − n̂∗ + α+ µ̂+ 1/2)Γ(j + n̂∗ + 2α)

Γ(j − n̂∗ + 1)Γ(j − n̂∗ + α+ ν̂ + 1/2)

)1/2
)n
j=n̂∗

,

v1 =

((
(j + α)Γ(j − n̂∗ + 1)Γ(j − n̂∗ + α+ ν̂ + 1/2)

Γ(j − n̂∗ + α+ µ̂+ 1/2)Γ(j + n̂∗ + 2α)

)1/2
)n
j=n̂∗

,

u2 =

((
(−1)j

(j + α)Γ(j − n̂∗ + α+ ν̂ + 1/2)Γ(j + n̂∗ + 2α)

Γ(j − n̂∗ + 1)Γ(j − n̂∗ + α+ µ̂+ 1/2)

)1/2
)n
j=n̂∗

,

v2 =

((
(−1)j

(j + α)Γ(j − n̂∗ + 1)Γ(j − n̂∗ + α+ µ̂+ 1/2)

Γ(j − n̂∗ + α+ ν̂ + 1/2)Γ(j + n̂∗ + 2α)

)1/2
)n
j=n̂∗

.

Generalized associated Legendre functions

Theorem 2.34 Let {Pm,m′n }n∈N0,n∗≤n and {P m̂,m̂′n }n∈N0,n̂∗≤n be two sequences of
generalized associated Legendre functions such that m + m̂ + m′ + m̂′ is an even
number, µ̂ ≤ µ and ν̂ ≤ ν. Then the corresponding matrix G = (gi,j)

n
i,j=n̂∗ is

extended symmetric diagonal plus (2, 2)-generator representable semiseparable,

G = diag(d) +
µ2 − µ̂2

4µ̂

(
triu(u1 vT

1 , 1) + tril(v1 uT
1 ,−1)

)
+
ν2 − ν̂2

4ν̂

(
triu(u2 vT

2 , 1) + tril(v2 uT
2 ,−1)

)
,

with the vectors d, u1, v1, u2, and v2 given by

d =
(
j(j + 1)

+ (2j + 1)

(
µ2 − µ̂2

4µ̂
+
ν2 − ν̂2

4ν̂

))n
j=0

,

u1 =

((
(2j + 1)Γ(j − n̂∗ + µ̂+ 1)Γ(j + n̂∗ + 1)

Γ(j − n̂∗ + 1)Γ(j − n̂∗ + ν̂ + 1)

)1/2
)n
j=n̂∗

,

v1 =

((
(2j + 1)Γ(j − n̂∗ + 1)Γ(j − n̂∗ + ν̂ + 1)

Γ(j − n̂∗ + µ̂+ 1)Γ(j + n̂∗ + 1)

)1/2
)n
j=n̂∗

,

u2 =

((
(−1)j

(2j + 1)Γ(j − n̂∗ + ν̂ + 1)Γ(j + n̂∗ + 1)

Γ(j − n̂∗ + 1)Γ(j − n̂∗ + µ̂+ 1)

)1/2
)n
j=n̂∗

,

v2 =

((
(−1)j

(2j + 1)Γ(j − n̂∗ + 1)Γ(j − n̂∗ + µ̂+ 1)

Γ(j − n̂∗ + ν̂ + 1)Γ(j + n̂∗ + 1)

)1/2
)n
j=n̂∗

.

Generalized associated Chebyshev functions of first kind

Theorem 2.35 Let {Tm,m′n }n∈N0,n∗≤n and {T m̂,m̂′n }n∈N0,n̂∗≤n be two sequences of
generalized associated Chebyshev functions of first kind such that m+m̂+m′+m̂′ is
an even number, µ̂ ≤ µ and ν̂ ≤ ν. Then the corresponding matrix G = (gi,j)

n
i,j=n̂∗
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is extended symmetric diagonal plus (2, 2)-generator representable semiseparable,

G = diag(d) +
(µ− µ̂)(µ+ µ̂− 1)

4µ̂− 2

(
triu(u1 vT

1 , 1) + tril(v1 uT
1 ,−1)

)
+

(ν − ν̂)(ν + ν̂ − 1)

4ν̂ − 2

(
triu(u2 vT

2 , 1) + tril(v2 uT
2 ,−1)

)
,

with the vectors d, u1, v1, u2, and v2 given by

d =
(
j2 + 2j

(
(µ− µ̂)(µ+ µ̂− 1)

4µ̂− 2
+

(ν − ν̂)(ν + ν̂ − 1)

4ν̂ − 2

))n
j=0

,

u1 =

((
2jΓ(j − n̂∗ + µ̂+ 1/2)Γ(j + n̂∗)

Γ(j − n̂∗ + 1)Γ(j − n̂∗ + ν̂ + 1/2)

)1/2
)n
j=n̂∗

,

v1 =

((
2jΓ(j − n̂∗ + 1)Γ(j − n̂∗ + ν̂ + 1/2)

Γ(j − n̂∗ + µ̂+ 1/2)Γ(j + n̂∗)

)1/2
)n
j=n̂∗

,

u2 =

((
(−1)j

2jΓ(j − n̂∗ + ν̂ + 1/2)Γ(j + n̂∗)

Γ(j − n̂∗ + 1)Γ(j − n̂∗ + µ̂+ 1/2)

)1/2
)n
j=n̂∗

,

v2 =

((
(−1)j

2jΓ(j − n̂∗ + 1)Γ(j − n̂∗ + µ̂+ 1/2)

Γ(j − n̂∗ + ν̂ + 1/2)Γ(j + n̂∗)

)1/2
)n
j=n̂∗

.

Generalized associated Chebyshev functions of second kind

Theorem 2.36 Let {Um,m′n }n∈N0,n∗≤n and {U m̂,m̂′n }n∈N0,n̂∗≤n be two sequences
of generalized associated Chebyshev functions of second kind such that m + m̂ +
m′ + m̂′ is an even number, µ̂ ≤ µ and ν̂ ≤ ν. Then the corresponding matrix
G = (gi,j)

n
i,j=n̂∗ is extended symmetric diagonal plus (2, 2)-generator representable

semiseparable,

G = diag(d) +
(µ− µ̂)(µ+ µ̂+ 1)

4µ̂+ 2

(
triu(u1 vT

1 , 1) + tril(v1 uT
1 ,−1)

)
+

(ν − ν̂)(ν + ν̂ + 1)

4ν̂ + 2

(
triu(u2 vT

2 , 1) + tril(v2 uT
2 ,−1)

)
,

with the vectors d, u1, v1, u2, and v2 given by

d =
(
j(j + 2) + (2j + 2)

(
(µ− µ̂)(µ+ µ̂+ 1)

4µ̂+ 2
+

(ν − ν̂)(ν + ν̂ + 1)

4ν̂ + 2

))n
j=0

,

u1 =

((
(2j + 2)Γ(j − n̂∗ + µ̂+ 3/2)Γ(j + n̂∗ + 2)

Γ(j − n̂∗ + 1)Γ(j − n̂∗ + ν̂ + 3/2)

)1/2
)n
j=n̂∗

,

v1 =

((
(2j + 2)Γ(j − n̂∗ + 1)Γ(j − n̂∗ + ν̂ + 3/2)

Γ(j − n̂∗ + µ̂+ 3/2)Γ(j + n̂∗)

)1/2
)n
j=n̂∗

,

u2 =

((
(−1)j

(2j + 2)Γ(j − n̂∗ + ν̂ + 3/2)Γ(j + n̂∗ + 2)

Γ(j − n̂∗ + 1)Γ(j − n̂∗ + µ̂+ 3/2)

)1/2
)n
j=n̂∗

,

v2 =

((
(−1)j

(2j + 2)Γ(j − n̂∗ + 1)Γ(j − n̂∗ + µ̂+ 3/2)

Γ(j − n̂∗ + ν̂ + 3/2)Γ(j + n̂∗)

)1/2
)n
j=n̂∗

.
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Associated Jacobi functions

Theorem 2.37 Let {P (α,β),m
n }n∈N0,µ≤n and {Pα,β),m̂

n }n∈N0,µ̂≤n, with α, β > −1,
be two sequences of associated Jacobi functions such that m+ m̂ is an even number
and µ̂ ≤ µ. Then the corresponding matrix G = (gi,j)

n
i,j=µ̂ is extended symmetric

diagonal plus (2, 2)-generator representable semiseparable,

G = diag(d) +
(µ− µ̂)(2α+ µ+ µ̂)

4(α+ µ̂)

(
triu(u1 vT

1 , 1) + tril(v1 uT
1 ,−1)

)
+

(µ− µ̂)(2β + µ+ µ̂)

4(β + µ̂)

(
triu(u2 vT

2 , 1) + tril(v2 uT
2 ,−1)

)
,

with the vectors d, u1, v1, u2, and v2 given by

d =
(
j(j + α+ β + 1)

+ (2j + α+ β + 1)(µ− µ̂)

(
2α+ µ+ µ̂

4(α+ µ̂)
+

2β + µ+ µ̂

4(β + µ̂)

))n
j=0

,

u1 =

((
(2j + α+ β + 1)Γ(j + α+ 1)Γ(j + µ̂+ α+ β + 1)

Γ(j − µ̂+ 1)Γ(j + β + 1)

)1/2
)n
j=µ̂

,

v1 =

((
(2j + α+ β + 1)Γ(j − µ̂+ 1)Γ(j + β + 1)

Γ(j + α+ 1)Γ(j + µ̂+ α+ β + 1)

)1/2
)n
j=µ̂

,

u2 =

((
(−1)j

(2j + α+ β + 1)Γ(j + β + 1)Γ(j + µ̂+ α+ β + 1)

Γ(j − µ̂+ 1)Γ(j + α+ 1)

)1/2
)n
j=µ̂

,

v2 =

((
(−1)j

(2j + α+ β + 1)Γ(j − µ̂+ 1)Γ(j + α+ 1)

Γ(j + β + 1)Γ(j + µ̂+ α+ β + 1)

)1/2
)n
j=µ̂

.

Associated Gegenbauer functions

Theorem 2.38 Let {C(α),m
n }n∈N0,µ≤n and {C(α),m̂

n }n∈N0,µ̂≤n with α > −1/2 and
α 6= 0 be two sequences of associated Gegenbauer functions such that m + m̂ is an
even number and µ̂ ≤ µ. Then the corresponding matrix G = (gi,j)

n
i,j=µ̂ is sym-

metric checkerboard-like diagonal plus (1, 1)-generator representable semiseparable,

G = diag(d) + 2(µ− µ̂)
2α+ µ+ µ̂− 1

2α+ 2µ̂− 1

(
triuc(u vT, 1) + trilc(v uT,−1)

)
,

with the vectors d, u, and v given by

d =
(
j(j + 2α) + 2(j + α)(µ− µ̂)

2α+ µ+ µ̂− 1

2α+ 2µ̂− 1

)n
j=µ

,

u =

((
(j + α)Γ(j + µ̂+ 2α)

Γ(j − µ̂+ 1)

)1/2
)n
j=µ̂

,

v =

((
(j + α)Γ(j − µ̂+ 1)

Γ(j + µ̂+ 2α)

)1/2
)n
j=µ̂

.

Associated Legendre functions

Theorem 2.39 Let {Pmn }n∈N0,µ≤n and {P m̂n }n∈N0,µ̂≤n be two sequences of associ-
ated Legendre functions such that m+ m̂ is an even number and µ̂ ≤ µ. Then the
corresponding matrix G = (gi,j)

n
i,j=µ̂ is symmetric checkerboard-like diagonal plus
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(1, 1)-generator representable semiseparable,

G = diag(d) +
µ2 − µ̂2

µ̂

(
triuc(u vT, 1) + trilc(v uT,−1)

)
,

with the vectors d, u, and v given by

d =
(
j(j + 1) + (j + 1/2)

µ2 − µ̂2

µ̂

)n
j=µ

,

u =

((
(j + 1/2)Γ(j + µ̂+ 1)

Γ(j − µ̂+ 1)

)1/2
)n
j=µ̂

,

v =

((
(j + 1/2)Γ(j − µ̂+ 1)

Γ(j + µ̂+ 1)

)1/2
)n
j=µ̂

.

Associated Chebyshev functions of first kind

Theorem 2.40 Let {Tmn }n∈N0,µ≤n and {T m̂n }n∈N0,µ̂≤n be two sequences of asso-
ciated Chebyshev functions of first kind such that m + m̂ is an even number and
µ̂ ≤ µ. Then the corresponding matrix G = (gi,j)

n
i,j=µ̂ is symmetric checkerboard-

like diagonal plus (1, 1)-generator representable semiseparable,

G = diag(d) + 2(µ− µ̂)
µ+ µ̂− 1

2µ̂− 1

(
triuc(u vT, 1) + trilc(v uT,−1)

)
,

with the vectors d, u, and v given by

d =
(
j2 + 2j(µ− µ̂)

µ+ µ̂− 1

2µ̂− 1

)n
j=µ

,

u =

((
jΓ(j + µ̂)

Γ(j − µ̂+ 1)

)1/2
)n
j=µ̂

,

v =

((
jΓ(j − µ̂+ 1)

Γ(j + µ̂)

)1/2
)n
j=µ̂

.

Associated Chebyshev functions of second kind

Theorem 2.41 Let {Umn }n∈N0,µ≤n and {U m̂n }n∈N0,µ̂≤n be two sequences of associ-
ated Chebyshev functions of second kind such that m + m̂ is an even number and
µ̂ ≤ µ. Then the corresponding matrix G = (gi,j)

n
i,j=µ̂ is symmetric checkerboard-

like diagonal plus (1, 1)-generator representable semiseparable,

G = diag(d) + 2(µ− µ̂)
µ+ µ̂+ 1

2µ̂+ 1

(
triuc(u vT, 1) + trilc(v uT,−1)

)
,

with the vectors d, u, and v given by

d =
(
j(j + 2) + 2(j + 1)(µ− µ̂)

µ+ µ̂+ 1

2µ̂+ 1

)n
j=µ

,

u =

((
(j + 1)Γ(j + µ̂+ 2)

Γ(j − µ̂+ 1)

)1/2
)n
j=µ̂

,

v =

((
(j + 1)Γ(j − µ̂+ 1)

Γ(j + µ̂+ 2)

)1/2
)n
j=µ̂

.
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2.6.3 Scaling the eigenvectors. The divide-and-conquer method for the eigen-
decomposition of extended symmetric diagonal plus generator representable semisep-
arable matrices is now ready to be applied to the matrices G given in the last
section. But we need to ensure that the columns of the corresponding eigenvec-
tor matrix Q which should be identical to the connection matrix K, are properly
scaled. Recall that from the matrix Q only a certain number of the columns forms
the actual connection matrix K; see Remark 2.29. The rest can be ignored. Unlike
the case for classical orthogonal polynomials, the divide-and-conquer method for
symmetric semiseparable matrices does not allow easy control over specific entries
in the connection matrix. This means that we cannot use the same procedure
to achieve the desired scaling of the eigenvectors that was used in Section 2.4.5.
Therefore, we propose two different methods.
Let us assume, for simplicity, that we want to compute the connection between the

associated Laguerre functions {L(α),m
n }n∈N0,n≥µ and {L(α),m̂

n }n∈N0,n≥µ̂. Then the
connection matrix K = (κi,j) has its entries

κi,j =
1

h
(α)
i

∫ ∞
0

L
(α),m̂
i (x)L

(α),m
j (x)xαe−x dx.

The submatrix Q̂ of the eigenvector matrix Q, obtained from the divide-and-
conquer method applied to the corresponding matrix G, should be identical to
the connection matrix K, provided that the columns have been scaled properly.
Since we can efficiently compute matrix-vector products involving the matrix Q̂, or
its transpose Q̂T, we calculate the product

z = Q̂T e1

where e1 is the first coordinate vector e1 = (1, 0, 0, . . . , 0)T. If Q̂ is scaled correctly,
then the vector z satisfies

z = (κµ̂,µ, κµ̂,µ+1, . . .)
T.

Therefore, if the content of the vector z is known, we can obtain correction factors
that must be applied to each column of the matrix Q̂ to make it identical to
the connection matrix K. This can be easily incorporated into the divide-and-
conquer method at no additional cost for the actual transformation. Analogous
thoughts apply to the generalized associated Jacobi functions and, thus, to all
other remaining types of associated functions.
It remains to show how the connection coefficients κµ̂,µ, κµ̂,µ+1, . . . may be calcu-
lated. Here is the result for the associated Laguerre functions.

Lemma 2.42 Let {L(α),m
n }n∈N0,µ≤n and {L(α),m̂

n }n∈N0,µ̂≤n, with α > −1, be two
sequences of associated Laguerre functions such that m+ m̂ is an even number and
µ̂ ≤ µ. Then the connection coefficients κµ̂,j for j = µ, µ+ 1, . . . are given by

κµ̂,j =

√
Γ(µ̂+ 1)

Γ(µ−µ̂2 )

Γ(α+ µ̂+µ
2 + 1)

Γ(α+ µ̂+ 1)

Γ(j − µ̂+µ
2 )√

Γ(j + 1)Γ(j − µ+ 1)
.
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Proof. Observing that even µ̂, µ imply (−1)µ̂+µ = 1, we have

κµ̂,j =
1

h
(α)
µ̂

∫ ∞
0

L
(α),m̂
µ̂ (x)L

(α),m
j (x)xαe−x dx

=
1

h
(α)
µ̂

(−1)µ̂+µ

(
Γ(j − µ+ 1)

Γ(µ̂+ 1)Γ(j + 1)

)1/2 ∫ ∞
0

L
(α+µ)
j−µ (x)xα+ µ̂+µ

2 e−x dx

=
h

(α+ µ̂+µ
2 )

µ̂

h
(α)
µ̂

(
Γ(j − µ+ 1)

Γ(µ̂+ 1)Γ(j + 1)

)1/2

κ
(α+µ)→(α+ µ̂+µ

2 )
0,j−µ

=
h

(α+ µ̂+µ
2 )

0

h
(α)
µ̂

(
Γ(j − µ+ 1)

Γ(µ̂+ 1)Γ(j + 1)

)1/2

κ
(α+µ)→(α+ µ̂+µ

2 )
0,j−µ

=

√
Γ(µ̂+ 1)

Γ(µ−µ̂2 )

Γ(α+ µ̂+µ
2 + 1)

Γ(α+ µ̂+ 1)

Γ(j − µ̂+µ
2 )√

Γ(j + 1)Γ(j − µ+ 1)
.

�
A similar result for the generalized associated Jacobi functions can be given, but it
turns out that the resulting expression still contains a sum. This makes it inefficient
and possibly unstable to apply the discussed method of scaling. Therefore, we
propose another method to achieve the same result. It is based on the observation
that the columns of the connection matrix K have unit euclidean length if the
corresponding sequences of associated functions are normalized. This can be seen as
follows. Assume that we want to compute the connection between the two sequences

of normalized generalized associated Jacobi functions {P (α,β),m,m′

n }n∈N0,n≥n∗ and

{P (α,β),m̂,m̂′

n }n∈N0,n≥n̂∗ . We define the vectors

x = (P
(α,β),m,m′

n∗ , P
(α,β),m,m′

n∗+1 , . . . ), and y = (P
(α,β),m̂,m̂′

n̂∗ , P
(α,β),m̂,m̂′

n̂∗+1 , . . . ),

and the outer product

x� y := (〈xi, yj〉),

where 〈 · , · 〉 is the inner product with respect to which both sequences of associated
functions are orthogonal. Using that the vectors x and y are related by

y = Kx

and that

x� xT = I, and y � yT = I,

we find that

KTK = KTyyTK = KTKxxTKTK = KTKKTK.

This implies KTK = I and the matrix K must have orthogonal columns of unit
euclidean length. The columns of the eigenvector matrix Q can be normalized
at almost no cost in the divide-and-conquer algorithm by normalizing accordingly
every eigenvector matrix that appears during the pre-computation phase. If the
actual sequence of generalized associated Jacobi functions that we want to use is
not normalized, then a final column and/or row scaling to the obtained matrix Q̂
achieves the desired result. This comes entirely at no additional cost for the actual
transformation.
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2.6.4 Other normalizations. It should be noted that the matrix G as it was
defined for the classical associated functions is not affected by a change to one of
the three normalizations (standard, monic, or normalized) in the involved sequences
of functions. This is contrary to the case for the classical orthogonal polynomials.
The reason for this is that we are only concerned with the connection between
associated functions of different orders that have been derived from the same se-
quence of classical orthogonal polynomials. And these sequences are normalized
with respect to the same norm. For example, the matrix Ḡ for the monic associ-

ated Laguerre functions {L̄(α),m
n }n∈N0,n≥µ and {L̄(β),m̂

n }n∈N0,n≥µ̂ is the same matrix

G for the associated Laguerre functions {L(α),m
n }n∈N0,n≥µ and {L(β),m̂

n }n∈N0,n≥µ̂.
What changes is only the scaling.

Remark 2.43 Our implementation of the divide-and-conquer method for the con-
nection between classical associated functions of different orders represents work in
progress. However, the method developed in this section may be able to circum-
vent some numerical issues that have been observed in other methods developed
for the same transformation. A more detailed discussion of this topic is beyond the
scope of this text, but two applications where the newly developed method might
be useful are described in Chapter 4.





Chapter 3
Techniques based on the fast multipole method

In the previous chapter techniques were introduced to efficiently compute the con-
nection between classical orthogonal polynomials or classical associated functions.
These were based on the observation that the corresponding connection matrix K
can be represented as the properly scaled eigenvector matrix of a known (triangu-
lar) generator representable semiseparable matrix. Employing divide-and-conquer
methods to compute this eigendecomposition enabled us to apply the connection
matrix K efficiently. The reason for this is that a hierarchical representation of the
connection matrix K is obtained that contains Cauchy-like matrices. These can be
applied efficiently to any vector using the fast multipole method (FMM).
In this chapter, we provide a potentially even more efficient alternative to this
technique. It is based on an FMM-like method that will be applied directly to the
connection matrix K to compute the desired transformation. To enable and justify
this procedure, smoothness results about the entries of the connection matrix K are
needed. This will be restricted to the classical orthogonal polynomials as the explicit
expressions for the connection coefficients between classical associated functions
are too complicated to handle with our methods. For the classical orthogonal
polynomials however, we have explicit expressions which are amenable to a detailed
analysis. More precisely, when two sequences of classical orthogonal polynomials
are “close enough”, we will prove approximation results that will allow the FMM-
like method to be used. For example, to compute the connection between the

Laguerre polynomials {L(α)
n }n∈N0

and {L(β)
n }n∈N0

, we will prove that the desired
approximation result holds whenever |α−β| < 1. Similar results will be established
for Jacobi and Gegenbauer polynomials. For larger “distances”, that is, when |α−
β| > 1, we can still combine the new method with other results for the connection
coefficients from Chapter 1 to maintain the efficiency of the method. This will be

done by first computing a transformation from the polynomials {L(α)
n }n∈N0 to an

intermediate sequence {L(α′)
n }n∈N0

. Then, the transformation from {L(α′)
n }n∈N0

to

the actual target {L(β)
n }n∈N0 is calculated. The parameter α′ is judiciously chosen

such that α− α′ becomes an integer and, at the same time, |α′ − β| < 1 holds.
For the first part of this two-step approach, we can use a number of results from
Chapter 1 to efficiently compute the result, since the respective connection matrices
will be either banded or triangular generator representable semiseparable and can
thus be applied efficiently. Since the bandwidth or semiseparability rank, respec-
tively, depend on the how large |α − α′| is and since α′ is chosen such that the
quantities α − β and α − α′ are comparable, the arithmetic cost for this step will
be O

(
|α− β|n

)
, where n is the length of the transformation.

For the second part, the approximation results let us apply the FMM-like method
resulting in an O

(
n log(1/ε)

)
algorithm. In total, an O

(
n(|α − β| + log(1/ε))

)
method is obtained to compute both parts. With respect to the transform length
n, this is asymptotically faster than the method from Chapter 2, which generally
has a cost of O

(
|α− β|n log n log(1/ε)

)
.

The rest of this chapter is structured as follows. In Section 3.1 a number of auxiliary
results from approximation theory is given that is needed for the actual analysis.
Section 3.2 shows two ways to obtain the desired approximation results for the
connection coefficients κi,j between Gegenbauer polynomials. This is motivated by
historical reasons. The first technique was employed to compute the connection
between Legendre and Chebyshev polynomials of first kind in [1]. Both sequences

123
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of polynomials can be seen as special cases of Gegenbauer polynomials. These
results were extended by the author in [39] to Gegenbauer polynomials. There,
the original method was modified to fit the more general setting. In addition, a
more powerful and arguably more elegant technique was used to obtain a stronger
approximation result. While this certainly simplified the task of proving similar
results for other types of classical orthogonal polynomials, the actual efficiency of
the numerical method remains unaffected. The stronger theoretical results just put
the numerical method on more solid ground. The analogous results for Laguerre
and Jacobi polynomials are given in Section 3.3. The chapter is concluded by a
number of numerical tests in Section 3.5, that mirror those conducted with the
other methods on the same set of test cases in Section 2.4.6.

3.1 Preliminaries

3.1.1 Chebyshev approximation. A principal method used in this chapter is to
find a good approximation to a function defined on the interval [−1, 1]. An efficient
way to do this is polynomial interpolation at the Chebyshev points.

Definition 3.1 For n ∈ N0 and 0 ≤ i ≤ n, the degree-n Chebyshev points ti and
the corresponding Lagrange polynomials ui(t) on the interval [−1, 1] are defined by

ti = cos

(
(2i+ 1)π

2(n+ 1)

)
, ui(t) =

n∏
j=0
j 6=i

t− tj
ti − tj

.

For functions on an arbitrary interval [a, b], we define a linear mapping φ and its
inverse φ−1 to transplant these functions from the interval [a, b] to the interval
[−1, 1] and vice versa. For technical reasons, the mappings are defined over the
complex numbers.

Definition 3.2 Let [a, b] be an arbitrary non-empty interval on the real line. Then
the linear mappings φ : C→ C and φ−1 : C→ C are defined by

φ(t) := 1
2 (b− a)(t+ 1) + a, φ−1(x) := 2

x− a
b− a

− 1.

Note that φ
(
[−1, 1]

)
= [a, b] and φ−1

(
[a, b]

)
= [−1, 1]. Whenever we use the map-

pings φ and φ−1 later, it will be clear from the context what the borders a and
b are. We are now ready to introduce approximations based on interpolation at
Chebyshev points.

Definition 3.3 Let f : [a, b] → R be an arbitrary function. Then the degree-n
Chebyshev approximation fn : [a, b]→ R to the function f is defined by

fn(x) =

n∑
i=0

f
(
φ(ti)

)
ui
(
φ−1(x)

)
.

This type of Lagrangian interpolation and the error involved are well understood.
The proof of the following Theorem can be found in [5, p. 120].

Theorem 3.4 Let f : [a, b] → R be a function with n + 1 continuous derivatives.
Then

‖f − fn‖∞ ≤
2(b− a)n+1

4n+1 (n+ 1)!
sup
x∈[a,b]

∣∣f (n+1)(x)
∣∣. (3.1)

The norm on the left hand side is taken over the interval [a, b]. A practical way to
use Theorem 3.4 for a concrete function is provided by the following result. It is
an immediate consequence of the well-known Cauchy integral formula.
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Lemma 3.5 Let z ∈ C be an arbitrary point in the complex plane and let D be a
closed disc around the point z with radius r. If f : D → C is continuous on D and
analytic in its interior, then∣∣f (n)(z)

∣∣ ≤ Γ(n+ 1)

rn
sup

θ∈[0,2π)

∣∣f(z + reiθ)
∣∣ . (3.2)

The last result reveals that knowledge about the function f in the complex plane
can be useful although the approximation happens on the real line. Here is a
further classical result for Chebyshev approximations where the complex plane is
rather essential.

Theorem 3.6 Let f : [a, b] → R be analytic in a neighbourhood of the interval
[a, b]. Then ‖f − fn‖∞ = O(Cn) for some constant C < 1. In particular, if f ◦ φ
is analytic in the ellipse with foci ±1 and semi-major and semi-minor axis length
K ≥ 1 and k ≥ 0, we may take C = 1/(K + k).

Proofs are found in [5, p. 121], [58, p. 297] and [7, p. 49]. In particular, if f ◦ φ
has poles in the complex plane, then the rate of convergence of the Chebyshev ap-
proximations is determined by the largest ellipse with foci ±1 in which the function
f ◦ φ is still analytic. Figure 1(a) shows several ellipses of this type. The following
corollary explains how the exponential rate C can be calculated if the poles of f
are known explicitly.

Corollary 3.7 Continuing the notation of Theorem 3.6, let (µj , ηj) ∈ [0,∞) ×
[0, 2π), for j = 1, 2, . . . be elliptical coordinates so that zj = cosh(µj + i ηj) are the
poles of the function f ◦φ. If z∗ is the point that corresponds to µ∗ := minj µj then
‖f − fn‖∞ = O(Cn) and the constant C can be taken as

C =
(
α+

√
α2 − 1

)−1

, where α = 1
2 (|z∗ + 1|+ |z∗ − 1|) . (3.3)

Proof. Exponential convergence follows directly from Theorem 3.6. The rate C is
obtained from the sum of the semi-major and semi-minor axis lengths K = coshµ∗

and k = sinhµ∗ of the convergence limiting ellipse,

C = 1/(K + k) = 1/(coshµ∗ + sinhµ∗).

Here, coshµ∗ is obtained from z∗ by using coshµ∗ = (r1+r2)/2s, where r1 = |z∗+1|
and r2 = |z∗ − 1| are the respective distances to the foci, and where 2s = 2 is the
distance between the foci. The semi-minor axis length k = sinhµ∗ is calculated via

sinhµ∗ =
√

cosh2 µ∗ − 1. �
Theorem 3.4 and Lemma 3.5 were used in [1] to prove approximation results for the
connection coefficients between Chebyshev and Legendre polynomials. Theorem 3.6
opens another way to determine the rate of convergence C of Chebyshev approx-
imations. It was used for the first time in [39] to prove stronger approximation
results for the connection coefficients between Gegenbauer polynomials.

3.1.2 An auxiliary function. In this section, we define and analyse a function
Λ(z,∆) that will appear throughout the remainder of this chapter.

Definition 3.8 For z ∈ C and ∆ ∈ R, the function Λ(z,∆) is defined by

Λ(z,∆) =
Γ(z + ∆)

Γ(z + 1)
.

Unless ∆ is an integer, the function Λ(z,∆) is meromorphic with simple poles at
z = −∆,−(∆ + 1), . . . and zeros at the negative integers. We will only need to
evaluate Λ(z,∆) in its region of analyticity. Figure 1(b) shows the function Λ(z,∆)
for ∆ ∈ (0, 1) which will be an important restriction in the analysis to follow.
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Figure 3.1: (a) Ellipses with foci ±1 enclosing the interval [−1, 1] in the complex
plane for semi-major axis length coshµ = 1.2, 1.3, . . . , 2.0. (b) The function Λ(z,∆)
for z ∈ [0, 25] and ∆ ∈ (0, 1). The special case ∆ = 1

2 is shown as a thick black line.

Let us establish upper and lower bounds on the modulus |Λ(z,∆)|. We follow the
rationale in [1] in a more general setting. First, we need the following result on the
logarithm of the Gamma function Γ(z). A proof is found in [56, p. 11].

Lemma 3.9 Let z ∈ C, Re z > 0. Then

ln Γ(z) =
(
z − 1

2

)
ln z − z +

ln 2π

2
+ I(z),

where

I(z) =

∫ ∞
0

(
1

et − 1
− 1

t
+

1

2

)
1

t
e−tz dt.

Moreover, one has |I(z)| ≤ 1
6|z| .

The last result enables us to obtain the desired bounds on the modulus |Λ(z,∆)|.
Lemma 3.10 Let z ∈ C, Re z > 1

4 −∆ with ∆ ∈ (0, 1). Then

e−1/(6|Re z+∆|)

|z + 1|1−∆
< |Λ(z,∆)| < e1/(6|Re z+∆|)+1−∆

|z + 1|1−∆
. (3.4)

Proof. We prove the equivalent inequalities

− 1

6|Re z + ∆|
< ln |Λ(z,∆)|+ (1−∆) ln |z + 1| < 1

6|Re z + ∆|
+ 1−∆.

Lemma 3.9 allows us to write the expression ln |Λ(z,∆)| as

ln |Λ(z,∆)| = Re(F (z,∆)) + (1−∆)(1− ln |z + 1|) + Re(Q(z,∆)),

where

F (z,∆) :=
(
z + ∆− 1

2

)
ln

(
z + ∆

z + 1

)
, Q(z,∆) := I(z + ∆)− I(z + 1).
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Taking a closer look at the function Q(z,∆), we note that 0 < 1 − e−t(1−∆) < 1
and 0 <

(
1

et−1 −
1
t + 1

2

)
1
t for every t > 0. The latter inequality is true since(

1

et − 1
− 1

t
+

1

2

)
1

t
= 2

∞∑
k=1

1

t2 + 4π2k2

as shown in [47, p. 378]. We conclude that

|Re(Q(z,∆))| ≤ |Q(z,∆)| = |I(z + ∆)− I(z + 1)|

=

∣∣∣∣∫ ∞
0

(
1

et − 1
− 1

t
+

1

2

)
1

t
e−t(z+∆)

(
1− e−t(1−∆)

)
dt

∣∣∣∣
<

∫ ∞
0

(
1

et − 1
− 1

t
+

1

2

)
1

t
e−t(Re z+∆) dt

= I (Re z + ∆)

≤ 1

6|Re z + ∆|
.

Our second goal is now the estimate −1 + ∆ ≤ Re(F (z,∆)) ≤ 0. First, we write

ln

(
z + ∆

z + 1

)
= − ln

(
z + 1

z + ∆

)
= − ln

(
1 +

1−∆

z + ∆

)
= −

∫
L

1

1 + w
dw,

where L denotes the straight line connecting the origin with the point z0 := 1−∆
z+∆ in

the complex plane. Since Re z0 = (1−∆) Re(z+ ∆)/|z+ ∆|2 > 0, we can estimate∣∣∣∣(z + ∆− 1
2

)
ln

(
z + ∆

z + 1

)∣∣∣∣ ≤ |z + ∆|
∫
L

∣∣∣∣ 1

1 + w

∣∣∣∣ d|w| ≤ |z + ∆| 1−∆

|z + ∆|
= 1−∆,

where we have used |z+∆− 1
2 | ≤ |z+∆|, |(1+w)−1| ≤ 1 and |L| = |z0|. It remains

to show that the real part of F (z,∆) is negative. This follows from

Re(F (z,∆)) = −
(
Re(z) + ∆− 1

2

)
ln |1 + z0|︸ ︷︷ ︸

≤0

+ Im(z) arg (1 + z0)︸ ︷︷ ︸
≤0

,

using that sign(arg z) = − sign(arg(1 + z0)). �
Under a moderate restriction, a somewhat simpler bound is obtained.

Corollary 3.11 Under the assumptions of Lemma 3.10 and if further Re z ≥ 1
2 ,

it is true that

e−
1
3

|z + 1|1−∆
< |Λ(z,∆)| < e

4
3−∆

|z + 1|1−∆
. (3.5)

For ∆ = 1
2 the estimate is slightly tighter than Lemma 2.4 in [1, p. 161].

3.2 Gegenbauer polynomials

By Theorem 1.65 on page 30, the connection coefficients between the monic Gegen-

bauer polynomials {C̄(α)
n }n∈N0

and {C̄(β)
n }n∈N0

are given by

κ̄
(α)→(β)
i,j =

1

Γ(α− β)

2i

2j
Γ(i+ β + 1)

Γ(i+ 1)

Γ(j + 1)

Γ(j + α)

Γ
(
j−i
2 + α− β

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + α

)
Γ
(
j+i
2 + β + 1

) ,
with i+ j even and i ≤ j, and κ̄i,j = 0 otherwise. By using that

C̄(α)
n =

1

k
(α)
n

C(α)
n =

Γ(α)Γ(n+ 1)

2nΓ(n+ α)
C(α)
n ,
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we obtain the connection coefficients κi,j for the standard normalisation,

κ
(α)→(β)
i,j =

Γ(β)(j + β)

Γ(α)Γ(α− β)

Γ( j−i2 + α− β)

Γ( j−i2 + 1)

Γ( j+i2 + α)

Γ( j+i2 + β + 1)

=
Γ(β)(j + β)

Γ(α)Γ(α− β)
Λ

(
j − i

2
, α− β

)
Λ

(
j + i

2
+ β, α− β

)
.

(3.6)

In the following, we will analyse the expression for the Gegenbauer polynomials
in the standard normalisation. This, however, does not mean that the following
results in their entirety would only apply to this particular normalisation. Apart
from a number of rather unimportant multiplicative constants, the results have
counterparts for any other normalisation.

3.2.1 Smoothness of the connection coefficients. From (3.6) it can be seen

that the connection coefficients κ
(α)→(β)
i,j can be interpreted as samples at the pos-

itive integers x = i and y = j of a bivariate function f (α)→(β) : R2 → R that is
defined by

f(x, y)(α)→(β) =
Γ(β)(y + β)

Γ(α)Γ(α− β)
Λ

(
y − x

2
, α− β

)
Λ

(
y + x

2
+ β, α− β

)
. (3.7)

An important observation is that the function f (α)→(β) may be split into the prod-
uct of a number of expressions that either depend only on one of the two arguments,
x and y, or on both. For example, in above formula, the expression

Γ(β)(y + β)

Γ(α)Γ(α− β)

only depends on y, but not on x. For reasons to become clear in the next section,
the approximation results that we need are only required for the parts where both,
x and y, enter together. Therefore, in the following, the function f̃ (α)→(β) : R2 → R
defined by

f̃(x, y)(α)→(β) = Λ

(
y − x

2
, α− β

)
Λ

(
y + x

2
+ β, α− β

)
(3.8)

will be considered instead of the function f (α)→(β). Let us now assume that |α−β| <
1. In this case, the connection matrix K(α)→(β) = (κ(α)→(β)) has its non-vanishing
entries in the upper right triangular part which do not vary much among rows

and columns. More precisely, these entries κ
(α)→(β)
i,j are samples of the function

f (α)→(β)(x, y), which contains the part given by the function f̃ (α)→(β)(x, y) that is
smooth whenever y− x is bounded away from zero by a certain constant. This can
be quantified and exploited numerically. If the function f̃ (α)→(β)(x, y) is smooth,
it is well approximated by interpolation a Chebyshev nodes. To handle the smooth
regions, we need the following definition.

Definition 3.12 A square S ⊂ R × R, defined by the formula S = [x0, x0 + c] ×
[y0, y0 + c] with a constant c > 0, is said to be well-separated if y0 − x0 ≥ 2c.

We prove now a generalised form of Theorem 3.2 from [1, p. 164] which Alpert
and Rokhlin used as the principal tool to analyse approximations to the function
f (α)→(β)(x, y) (or f̃ (α)→(β)(x, y)) for the case α = 1

2 , β = 0, and vice versa. Since
the cases where α = 0 or β = 0 are undefined in the standard normalisation of
Gegenbauer polynomials, this needs rescaling. Here, we stick with the standard
normalisation and note that a different scaling of source and target polynomials
can be incorporated later. This is also briefly explained in the next section. The
assertion of the following result is that the function f̃ (α)→(β)(x, y) can be well
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approximated by a Chebyshev approximation in x or y on any well-separated square
S.

Theorem 3.13 Let S = [x0, x0+c]×[y0, y0+c] with c ≥ 4 be a well-separated square
with x0, y0 ≥ 0 and let (x, y) be an arbitrary point in S. Furthermore, denote by

f̃
(α)→(β)
n ( · , y) and f̃

(α)→(β)
n (x, · ) the degree-n approximations to the slice functions

f̃ (α)→(β)( · , y) and f̃ (α)→(β)(x, · ) on the intervals [x0, x0 + c] and [y0, y0 + c] based
on interpolation at Chebyshev points, respectively. If 0 < α− β < 1, then

‖f̃ (α)→(β)( · , y)− f̃ (α)→(β)
n ( · , y)‖∞ <

2

3n+1
e2/3

(
2e

3

)2(1+β−α)

,

‖f̃ (α)→(β)(x, · )− f̃ (α)→(β)
n (x, · )‖∞ <

2

3n+1
e2/3

(
2e

3

)2(1+β−α)

.

Similarly, if 0 < β − α < 1, then

‖f̃ (α)→(β)( · , y)− f̃ (α)→(β)
n ( · , y)‖∞ <

2

3n+2
e2/3

(
2e

3

)2(β−α)

,

‖f̃ (α)→(β)(x, · )− f̃ (α)→(β)
n (x, · )‖∞ <

2

3n+2
e2/3

(
2e

3

)2(β−α)

,

where the norm ‖ · ‖∞ is taken over the intervals [x0, x0 + c] and [y0, y0 + c],
respectively.

Proof. We prove only the first estimate since the reasoning for the other cases is
virtually identical. Take θ ∈ [0, 2π) and consider (3.7) which gives∣∣∣∣f̃ (α)→(β)

(
x+

3

4
(y − x)eiθ, y

)∣∣∣∣
=

∣∣∣∣Λ(y − x2
− 3

8
(y − x)eiθ, α− β

)∣∣∣∣ ∣∣∣∣Λ(y + x

2
+

3

8
(y − x)eiθ + β, α− β

)∣∣∣∣ .
Now, notice that since x0, y0 ≥ 0, and y0 − x0 ≥ 2c ≥ 8, we have

y ≥ y0 ≥ 2c ≥ 8 and y − x ≥ c ≥ 4.

Therefore, with β > −1/2, we get

Re

(
y − x

2
− 3

8
(y − x)eiθ

)
≥ y − x

8
≥ 1

2
,

Re

(
y + x

2
+

3

8
(y − x)eiθ + β

)
≥ y + 7x

8
+ β >

1

2
.

The assumption that 0 < α − β < 1 then allows to apply the inequality (3.5) to
obtain ∣∣∣∣f̃ (α)→(β)

(
x+

3

4
(y − x)eiθ, y

)∣∣∣∣
<

e
2
3 +2(1+β−α)((

y−x
8 + 1

)(
y+7x

8 + β + 1
))1+β−α .

< e2/3

(
4e2

9

)1+β−α

.
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The Cauchy integral estimate (3.2) used in conjunction with the last expression
and the fact that y − x ≥ c gives∣∣∣∣∣∂n+1f̃ (α)→(β)( · , y)

∂xn+1

∣∣∣∣∣ < (n+ 1)!4n+1

3n+1cn+1
e2/3

(
4e2

9

)1+β−α

. (3.9)

Finally, the inequality (3.1) leads to the estimate

‖f̃ (α)→(β)( · , y)− f̃ (α)→(β)
n ( · , y)‖∞ <

2

3n+1
e2/3

(
2e

3

)2(1+β−α)

.

This proves the first inequality. Similarly, one can show that∣∣∣∣f̃ (α)→(β)

(
x, y +

3

4
(y − x)eiθ

)∣∣∣∣
<

e
2
3 +2(1+β−α)((

y−x
8 + 1

) (
y+7x

8 + β + 1
))1+β−α

< e2/3

(
2e

3

)2(1+β−α)

,

and by the same reasoning as before we get

‖f̃ (α)→(β)(x, · )− f̃ (α)→(β)
n (x, · )‖∞ <

2

3n+1
e2/3

(
2e

3

)2(1+β−α)

.

If 0 < β − α < 1, we write the function f̃ (α)→(β)(x, y) in the equivalent form

f̃ (α)→(β)(x, y) =
1(

y−x
2 + α− β

) (
y+x

2 + β
)

× Λ

(
y − x

2
, 1 + α− β

)
Λ

(
y + x

2
+ β, 1 + α− β

)
.

Then we get ∣∣∣∣f̃ (α)→(β)

(
x+

3

4
(y − x)eiθ, y

)∣∣∣∣
<

∣∣∣∣ 1

(2 + α− β)(4 + β)

∣∣∣∣ e
2
3 +2(β−α)((

y−x
8 + 1

) (
y+7x

8 + β + 1
))β−α

<
1

3
e2/3

(
2e

3

)2(β−α)

and ∣∣∣∣f̃ (α)→(β)

(
x, y +

3

4
(y − x)eiθ

)∣∣∣∣
<

∣∣∣∣ 1

(2 + α− β)(4 + β)

∣∣∣∣ e
2
3 +2(β−α)((

y−x
8 + 1

) (
y+7x

8 + β + 1
))β−α .

<
1

3
e2/3

(
2e

3

)2(β−α)

,

which in conjunction with (3.1) imply the desired error estimates. �
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Are the bounds of Theorem 3.13 the best we can get? Numerical results indi-
cate that this might not be the case: Alpert and Rokhlin [1, p. 165, Remark 3.3.]
state for their theorem: “Estimates (3.1)-(3.4) in Theorem 3.2 are quite pessimistic.
Numerical experiments indicate that the errors in those estimates all decay approx-
imately as 5−k, as opposed to 3−k.” We can give a new theorem that allows us to
obtain the optimal rate. The rate is optimal in the sense that a better rate cannot
hold uniformly for all admissible choices of α, β, x0, y0 and c.

Theorem 3.14 Let S = [x0, x0 + c] × [y0, y0 + c] be a well-separated square with
x0, y0 ≥ 0 and c ≥ 1. Furthermore, let (x, y) be an arbitrary point in S and assume
that 0 < α− β < 1. Then

‖f̃ (α)→(β)( · , y)− f̃ (α)→(β)
n ( · , y)‖∞ = O

((
3 +
√

8
)−n)

,

‖f̃ (α)→(β)(x, · )− f̃ (α)→(β)
n (x, · )‖∞ = O

((
3 +
√

8
)−n)

.

Similarly, if 0 < β − α < 1 and c ≥ 4, then

‖f̃ (α)→(β)( · , y)− f̃ (α)→(β)
n ( · , y)‖∞ = O

((
2 +
√

3
)−n)

,

‖f̃ (α)→(β)(x, · )− f̃ (α)→(β)
n (x, · )‖∞ = O

((
2 +
√

3
)−n)

.

Proof. Let us first assume 0 < α−β < 1. The plan is to invoke Theorem 3.6 for the
function f̃ (α)→(β)( · , y) on the interval [x0, x0+c] and for the function f̃ (α)→(β)(x, · )
on the interval [y0, y0 + c], respectively. It can be seen from (3.8) that the function

f̃ (α)→(β)( · , y) has poles at the points

x = y + 2k + 2(α− β) and x = −y − 2k − 2α,

where k ∈ N0. Consequently, the function g : [−1, 1]→ R defined by

g( · ) = f̃ (α)→(β)
(
φ( · ), y

)
has poles at the points

z = φ−1
(
y + 2(k + α− β)

)
= 2

y + 2(k + α− β)− x0

c
− 1 ≥ 3 + 4

k + α− β
c

> 3,

z = φ−1
(
− y − 2(k + α)

)
= −2

y + 2(k + α) + x0

c
− 1 ≤ −5− 4

k + α

c
< −3.

The first bound is sharp since y may be equal to y0 and c can be taken arbitrarily
large. The second bound is also sharp, since k might be zero and α can also
be taken arbitrarily close to −1/2. Therefore, the points z = ±3 determine the
convergence limiting ellipse. Using (3.3), the convergence rate C of Chebyshev

approximations to the function g is then calculated as C = 3 +
√

8 ≈ 5.83. The
estimate for the function f̃ (α)→(β)(x, · ) can be proved analogously. Now we assume
that 0 < β − α < 1 and c ≥ 4. The poles of the function g(·) remain the same, but
need to be estimated differently,

z = φ−1(y + 2(k + α− β)) = 2
y + 2(k + α− β)− x0

c
− 1 ≥ 3 + 4

k + α− β
c

> 2,

z = φ−1(−y − 2(k + α)) = −2
y + 2(k + α) + x0

c
− 1 ≤ −5− 4

k + α

c
< −9

2
.

The point z = 2 determines the convergence limiting ellipse and the convergence
rate C of Chebyshev approximations to the function g is C = 2 +

√
3 ≈ 3.73. The

estimate for the function f̃ (α)→(β)(x, · ) can be obtained analogously. �
The bounds for the case 0 < β − α < 1 look worse than those for the case 0 <
α−β < 1, but it must be realised that these depend crucially on the minimum side
length c of the well-separated square S. For an actual implementation, the length
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c typically satisfies c ≥ 32. The following result uses this assumption to obtain
stronger approximation results.

Corollary 3.15 Under the assumptions of Theorem 3.14 and if 0 < β−α < 1 and
c ≥ 32, we may take the convergence rate

C =
1

8
(23 +

√
528) ≈ 5.75

to obtain

‖f̃ (α)→(β)( · , y)− f̃ (α)→(β)
n ( · , y)‖∞ = O

((1

8
(23 +

√
528)

)−n)
,

‖f̃ (α)→(β)(x, · )− f̃ (α)→(β)
n (x, · )‖∞ = O

((1

8
(23 +

√
528)

)−n)
.

The last result is useful because it asserts that we can get almost the same conver-
gence rate that we found for the case 0 < α− β < 1, provided that the side length
c of the well-separated square S is large enough. The value c = 32 was used in our
numerical examples in Section 3.5.

3.2.2 Fast approximate matrix-vector multiplication. The results obtained
in the last section can be exploited to devise a fast algorithm for computing the
connection between two sequences of Gegenbauer polynomials, that is, for applying
any connection matrix K(α)→(β) that satisfies |α−β| < 1. The method is a variant
of the fast multipole method, essentially the one described in [1]. It is applicable
to the more general case here “as is”. The key principle is that smoothness of the
function f̃(x, y) = f̃ (α)→(β)(x, y) on well-seperated squares enables us to replace it
by an approximation based on interpolation at Chebyshev nodes. Suppose that

K
(α)→(β)
S = (κi,j)

i0+c,j0+c
i=i0,j=j0

is a submatrix of the connection matrix K(α)→(β) so that the square S = [i0, i0+c]×
[j0, j0+c] is well-separated. Let us also assume for simplicity that the matrices were

fully populated and that the function f̃(x, y) was identical to the function f(x, y),
that is, the latter would not contain any parts where x and y can be separated.
The standard way to compute the matrix-vector product

y = K
(α)→(β)
S x,

with vectors x = (x0, . . . , xc)
T and y = (y0, . . . , yc)

T, is to evaluate the sums

yi =

c∑
j=0

κ
(α)→(β)
i0+i,j0+jxj =

c∑
j=0

f(j0 + j, i0 + i)xj , for i = 0, 1, . . . , c. (3.10)

This takes O(c2) operations. But if the function f (α)→(β)(x, y) is well approximated
by an interpolant of degree, say, p in x and y, we may justify the approximation

f(x, y) ≈
p∑
r=0

p∑
s=0

f
(
φ1(tr), φ2(ts)

)
ur
(
φ−1

1 (x)
)
us
(
φ−1

2 (y)
)
.

Thus, we get

yi ≈
c∑
j=0

p∑
r=0

p∑
s=0

f(φ1(tr), φ2(ts))ur(φ
−1
1 (i0 + i))us(φ

−1
2 (j0 + j))xj .

=

p∑
r=0

(
ur(φ

−1
1 (i0 + i))

( p∑
s=0

f(φ1(tr), φ2(ts))

( c∑
j=0

us(φ
−1
2 (j0 + j))xj

)))
.

The triple sum should be evaluated in the order indicated by the parentheses. This
takes O(p c) operations for the innermost sum. The cost for the remaining sums
is O(p2) and O(p c), respectively. If p is fixed then the total cost is O(c). The
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error can be controlled by the choice of p. To apply this principle to the whole
matrix K(α)→(β), a suitable decomposition of the latter into well-separated squares
is needed; this is shown in Figure 2(b). The region near the diagonal that is not
covered by squares is handled directly as in (3.10). The total cost is O

(
n log(1/ε)

)
arithmetic operations for a single application of the matrix K(α)→(β). Further
details can be found in [1] and [19]. This method can be seen as a variant of the
original fast multipole method (FMM) that was introduced in [28].
It remains to explain how situations where the function f(x, y) has parts that are
separable, i.e., multiplicative expressions that depend only either on x or on y,
but not on both, should be handled. We encountered this situation already for
the Gegenbauer polynomials and proved the approximation results that enable the
FMM only for the function f̃(x, y) that had been freed from these parts. So let us
assume that the function f(x, y) can be written as the product

f(x, y) = f1(x)f̃(x, y)f2(y),

where the functions f1 and f2 depend only on x and y, respectively. To apply the
FMM-like method, we only need approximation results for the function f̃(x, y).
This is because the functions f1 and f2 can be applied to the input and output
coefficients of the computation directly. For the example given above, the output
coefficients yi for i = 0, 1, . . . , c are then approximated by

yi ≈
p∑
r=0

(
f2(i0 + i)ur(φ

−1
1 (i0 + i))

(

×
p∑
s=0

f(φ1(tr), φ2(ts))

(
c∑
j=0

us(φ
−1
2 (j0 + j)) f1(j0 + j)xj

)))
.

The incorporation of the separable parts f1(x) and f2(y) of the function f(x, y)
can also be used to account for different normalizations of the polynomials. As
seen from Lemma 1.37, rescaling the source and target polynomials is equivalent to
a scaling, separable with respect to i and j, applied to the connection coefficients
κi,j . This can be directly incorporated into the FMM-like method at no extra cost.

3.3 Laguerre and Jacobi polynomials

We are now ready to extend the previous results to Laguerre and Jacobi polynomi-

als. From Theorem 1.42, we get the connection coefficients κ̄
(α)→(β)
i,j for the monic

Laguerre polynomials,

κ̄
(α)→(β)
i,j =

(−1)i+j

Γ(α− β)

Γ(j + 1)

Γ(i+ 1)

Γ(j − i+ α− β)

Γ(j − i+ 1)
, with 0 ≤ i ≤ j.

Using that the leading coefficients of the Laguerre polynomials {L(α)
n }n∈N0

are given
by

k(α)
n =

(−1)n

Γ(n+ 1)
,

we may write the connection coefficients in the standard normalisation,

κ
(α)→(β)
i,j =

1

Γ(α− β)
Λ(j − i, α− β), with 0 ≤ i ≤ j.

Again, we can interpret the connection coefficients κ
(α)→(β)
i,j as samples of a function

f (α)→(β) : R2 → R defined by

f (α)→(β)(x, y) =
1

Γ(α− β)
Λ(y − x, α− β).
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Figure 3.2: (a) Error of Chebyshev approximations to the function f̂ (α)→(β)( · , 192)
for α = 4/3 and β = 1/2 on the interval [64, 128] for increasing degree n (solid)
together with the bound from Theorem 3.13 (dashed) and the bound from Theo-
rem 3.14 (dotted), where the unknown constant was assumed to be equal to one.
The error E∞ is the decimal logarithm of the maximum absolute error over 1.000
uniformly distributed random nodes in the interval [64, 128]. The computations
were carried out in Mathematica. (b) Subdivision scheme for the upper trian-
gular connection matrix K. The squares shown in light grey are well-separated
and become smaller as they get closer to the diagonal. The darker parts near the
diagonal need to be handled directly. The rest of the entries is zero.

Here is the analog of Theorem 3.14 for Laguerre polynomials. The proof is omitted
because it is entirely similar.

Theorem 3.16 Let S = [x0, x0 + c] × [y0, y0 + c] be a well-separated square with
x0, y0 ≥ 0 and c ≥ 1. Furthermore, let (x, y) be a point in S and assume that
0 < α− β < 1. Then

‖f (α)→(β)( · , y)− f (α)→(β)
n ( · , y)‖∞ = O

(
(3 +

√
8)−n

)
,

‖f (α)→(β)(x, · )− f (α)→(β)
n (x, · )‖∞ = O

(
(3 +

√
8)−n

)
.

Similarly, if 0 < β − α < 1 and c ≥ 2, then

‖f (α)→(β)( · , y)− f (α)→(β)
n ( · , y)‖∞ = O

(
(2 +

√
3)−n

)
,

‖f (α)→(β)(x, · )− f (α)→(β)
n (x, · )‖∞ = O

(
(2 +

√
3)−n

)
.

The results for the case 0 < β − α < 1 can be made stronger by requiring a larger
lower bound on the side length c of the well-separated square S.

Corollary 3.17 Under the assumptions of Theorem 3.16 and if 0 < β−α < 1 and
c ≥ 16, we may take the convergence rate

C =
1

8

(
23 +

√
528
)
≈ 5.75

to obtain

‖f (α)→(β)( · , y)− f (α)→(β)
n ( · , y)‖∞ = O

((
1
8 (23 +

√
528)

)−n)
,

‖f (α)→(β)(x, · )− f (α)→(β)
n (x, · )‖∞ = O

((
1
8 (23 +

√
528)

)−n)
.
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Now for the Jacobi polynomials. We consider the connection between the Jacobi

polynomials {P (α,β)
n }n∈N0

and {P (γ,β)
n }n∈N0

. Remark 3.20 below explains how this
can be used for the symmetric situation where the second parameter of the Jacobi

polynomials is changed. The connection coefficients κ̄
(α,β)→(γ,β)
i,j for monic Jacobi

polynomials are obtained from Theorem 1.50,

κ̄
(α,β)→(γ,β)
i,j =

1

Γ(α− γ)

2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(j + β + 1)

Γ(i+ β + 1)

Γ(2i+ γ + β + 2)

Γ(2j + α+ β + 1)

× Γ(j + i+ α+ β + 1)

Γ(j + i+ γ + β + 2)

Γ(j − i+ α− γ)

Γ(j − i+ 1)
,

with 0 ≤ i ≤ j. With the leading coefficients k
(α,β)
n of the Jacobi polynomials

{P (α,β)
n }n∈N0

given by

k(α,β)
n =

Γ(2n+ α+ β + 1)

2nΓ(n+ 1)Γ(n+ α+ β + 1)
,

the connection coefficients κ
(α,β)→(γ,β)
i,j for the standard normalization are calcu-

lated to

κ
(α,β)→(γ,β)
i,j =

2i+ γ + β + 1

Γ(α− γ)
Λ(i+ β, 1 + γ)Λ(j + α+ β, 1− α)

× Λ(j − i, α− γ)Λ(j + i+ γ + β + 1, α− γ).

The connection coefficients κ
(α,β)→(γ,β)
i,j can thus be interpreted as samples of a

function f (α,β)→(γ,β) : R2 → R that is defined by

f (α,β)→(γ,β)(x, y) = f
(α,β)→(γ,β)
1 (x)f̃ (α,β)→(γ,β)(x, y)f

(α,β)→(γ,β)
2 (y),

with

f
(α,β)→(γ,β)
1 (x) =

2x+ γ + β + 1

Γ(α− γ)
Λ(x+ β, 1 + γ),

f̃ (α,β)→(γ,β) = Λ(y − x, α− γ)Λ(y + x+ γ + β + 1, α− γ),

f
(α,β)→(γ,β)
2 (y) = Λ(y + α+ β, 1− α).

Here is the corresponding approximation result for the function f̃ (α,β)→(γ,β).

Theorem 3.18 Let S = [x0, x0 + c] × [y0, y0 + c] be a well-separated square with
x0, y0 ≥ 0 and c ≥ 1. Furthermore, let (x, y) be a point in S and assume that
0 < α− γ < 1. Then

‖f̃ (α,β)→(γ,β)( · , y)− f̃ (α,β)→(γ,β)
n ( · , y)‖∞ = O

(
(3 +

√
8)−n

)
,

‖f̃ (α,β)→(γ,β)(x, · )− f̃ (α,β)→(γ,β)
n (x, · )‖∞ = O

(
(3 +

√
8)−n

)
.

Similarly, if 0 < γ − α < 1 and c ≥ 2, then

‖f̃ (α,β)→(γ,β)( · , y)− f̃ (α,β)→(γ,β)
n ( · , y)‖∞ = O

(
(2 +

√
3)−n

)
,

‖f̃ (α,β)→(γ,β)(x, · )− f̃ (α,β)→(γ,β)
n (x, · )‖∞ = O

(
(2 +

√
3)−n

)
.

We complete the series of approximation results with the following corollary that
obtains a stronger approximation result for the case 0 < γ−α < 1, similar to what
we have seen already for Gegenbauer and Laguerre polynomials.

Corollary 3.19 Under the assumptions of Theorem 3.18 and if 0 < γ−α < 1 and
c ≥ 16, we may take the convergence rate

C =
1

8
(23 +

√
528) ≈ 5.75
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to obtain

‖f̃ (α,β)→(γ,β)( · , y)− f̃ (α,β)→(γ,β)
n ( · , y)‖∞ = O

(
( 1

8 (23 +
√

528))−n
)
,

‖f̃ (α,β)→(γ,β)(x, · )− f̃ (α,β)→(γ,β)
n (x, · )‖∞ = O

(
( 1

8 (23 +
√

528))−n
)
.

Remark 3.20 We can use Lemma 1.49, that is, the identity

κ̄
(α,β)→(γ,δ)
i,j = (−1)i+j κ̄

(β,α)→(δ,γ)
i,j

to obtain analogous results for the connection between the Jacobi polynomials

{P (α,β)
n }n∈N0 and {P (α,δ)

n }n∈N0 . Here, the second parameter is changed. This is
true since the (−1)i+j = (−1)i(−1)j part can be incorporated into the functions

f
(α,β)→(γ,β)
1 and f

(α,β)→(γ,β)
2 . Therefore, the approximation results for the function

f̃ (α,β)→(γ,β) can be used right-away to enable the FMM-like method.

The following section shows how the obtained results can be extended to efficiently
compute the connection between classical orthogonal polynomials with arbitrary
choices of the respective parameters.

3.4 Transforms for arbitrary indices

In this brief section, we describe how transformations between two sequences of clas-
sical orthogonal polynomials with arbitrary indices can be computed. We will ex-

plain this for two sequences of Gegenbauer polynomials {C(α)
n }n∈N0

and {C(β)
n }n∈N0

.
The same idea can then also be applied to Laguerre and Jacobi polynomials.
Let us assume that the parameters α and β do not satisfy |α − β| < 1, that is,
the distance between α and β is too large to apply the FMM-like method on the
basis of our theoretical results. To efficiently compute the transformation between
the two families of Gegenbauer polynomials, we split the transformation into two
steps. First, we chose the parameter α′ to be the number between α and β such
that |α−α′| is an integer and as large as possible (for example, for α = 1

2 and β = 3,

we would choose α′ = 5
2 ). We can now compute the transformation from α to β

by first transforming from the polynomials {C(α)
n }n∈N0

to the proxy polynomials

{C(α′)
n }n∈N0

, then from there to the target {C(β)
n }n∈N0

.
The first step can be handled efficiently because the results about the corresponding
connection matrices K that were obtained in Section 1.4.2 show that these have ei-
ther a banded or a semi-separable structure. The bandwidth or the semiseparability
rank, respectively, are directly proportional to |α−α′| and so are are comparable to
|α−β|. Consequently, for such an n×n connection matrix K we need O(n|α−β|)
arithmetic operations to calculate a matrix-vector multiplication.
The second step can also be handled efficiently because we have |α′−β| < 1 and the
results of the last section enable us to apply the FMM-like method to this case. The
cost for this step is accordingly O

(
n log(1/ε)

)
. In total, the number of arithmetic

operations to compute both steps together is O
(
n
(
|α− β|+ log(1/ε)

))
.

3.5 Numerical results

The details of the implementation are described in Section 2.4.6, were the FMM
was already employed. It is the same variant that was used for the tests conducted
in this section. Our implementation is flexible enough to handle different kernels,
checkerboard-like matrices, and also triangular matrices. We call the method that
was introduced in this section the fmm method. The results shown in Table 3.1 to
Table 3.3 correspond to the test cases seen in Section 2.4.6. It can be observed that
the fmm method is slightly faster than the usmv-fmm method. This is also obvious
from Figure 3.3 which compares all proposed methods, with the exception of the
usmv-direct method, for selected test cases.
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Figure 3.3: Shown from top to bottom are time measurements for Laguerre ((a)
and (b)), Jacobi ((c) and (d)), and Gegenbauer polynomials ((e) and (f)), each of
which correspond to the first test case reported in Tables 2.2 to 2.13 (and Tables
3.1 to 3.3), respectively. Left side: Times tp for the pre-computation stage as a
function of the transform size n. Shown are the direct method (solid), the usmv-
fmm method (dashed), and the fmm method (dotted), with accuracy controlling
parameter p = 18 and arbitrarily large step size s. The grey lines are to facilitate
recognition of the asymptotic behavior. Right side: Times tt for the computation of
the actual transformation as function of the transform size n. Shown are the direct
method (solid), the usmv-fmm method (dashed), and the fmm method (dotted).
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α β n tp tp/n
2 tt tt/n Ec

∞ E∞

-0.5 -0.7 256 2.8E-02 1.1E-04 1.2E-04 4.7E-07 6.4E-16 6.0E-16

-0.5 -0.7 512 5.2E-02 1.0E-04 2.3E-04 4.5E-07 6.5E-16 7.6E-16

-0.5 -0.7 1024 1.0E-01 1.0E-04 5.1E-04 4.9E-07 5.8E-16 7.6E-16

-0.5 -0.7 2048 1.9E-01 9.5E-05 1.2E-03 5.9E-07 4.9E-16 8.3E-16

-0.5 -0.7 4096 3.8E-01 9.4E-05 4.3E-03 1.0E-06 6.7E-16 1.1E-15

-0.5 -0.7 8192 7.7E-01 9.4E-05 8.8E-03 1.1E-06 8.4E-16 9.4E-16

-0.5 -0.7 16384 1.5E+00 9.3E-05 1.7E-02 1.0E-06 5.6E-16 9.8E-16

-0.5 0.2 256 3.2E-02 1.2E-04 1.1E-04 4.2E-07 6.4E-16 5.8E-16

-0.5 0.2 512 5.9E-02 1.1E-04 2.3E-04 4.5E-07 8.8E-16 5.5E-16

-0.5 0.2 1024 1.2E-01 1.1E-04 5.1E-04 5.0E-07 8.8E-16 5.3E-16

-0.5 0.2 2048 2.3E-01 1.1E-04 1.2E-03 5.7E-07 2.0E-15 6.4E-16

-0.5 0.2 4096 4.4E-01 1.1E-04 4.2E-03 1.0E-06 2.5E-15 5.0E-16

-0.5 0.2 8192 9.0E-01 1.1E-04 8.9E-03 1.1E-06 1.5E-15 6.3E-16

-0.5 0.2 16384 1.8E+00 1.1E-04 1.7E-02 1.0E-06 1.9E-15 6.2E-16

0.2 -0.5 256 2.8E-02 1.1E-04 9.7E-05 3.8E-07 3.4E-16 8.3E-16

0.2 -0.5 512 5.3E-02 1.0E-04 2.3E-04 4.5E-07 2.8E-16 7.2E-16

0.2 -0.5 1024 1.0E-01 9.8E-05 5.1E-04 5.0E-07 2.5E-16 9.2E-16

0.2 -0.5 2048 1.9E-01 9.5E-05 1.2E-03 5.6E-07 2.0E-16 1.4E-15

0.2 -0.5 4096 3.8E-01 9.3E-05 4.2E-03 1.0E-06 2.3E-16 1.1E-15

0.2 -0.5 8192 7.6E-01 9.3E-05 8.9E-03 1.1E-06 4.0E-16 1.4E-15

0.2 -0.5 16384 1.5E+00 9.3E-05 1.9E-02 1.1E-06 1.9E-16 1.7E-15

0.2 1.1 256 3.2E-02 1.2E-04 1.2E-04 4.7E-07 1.2E-15 7.0E-16

0.2 1.1 512 6.0E-02 1.2E-04 2.3E-04 4.5E-07 1.0E-15 7.3E-16

0.2 1.1 1024 1.2E-01 1.2E-04 5.1E-04 5.0E-07 1.2E-15 7.2E-16

0.2 1.1 2048 2.3E-01 1.1E-04 1.1E-03 5.6E-07 1.3E-15 9.7E-16

0.2 1.1 4096 4.5E-01 1.1E-04 4.2E-03 1.0E-06 1.4E-15 8.2E-16

0.2 1.1 8192 8.9E-01 1.1E-04 8.9E-03 1.1E-06 1.4E-15 8.2E-16

0.2 1.1 16384 1.8E+00 1.1E-04 1.6E-02 1.0E-06 1.5E-15 8.1E-16

5.6 7.8 256 3.0E-02 1.2E-04 1.0E-04 4.0E-07 6.3E-16 4.4E-16

5.6 7.8 512 5.7E-02 1.1E-04 2.4E-04 4.7E-07 6.5E-16 3.6E-16

5.6 7.8 1024 1.1E-01 1.1E-04 5.3E-04 5.2E-07 8.2E-16 4.4E-16

5.6 7.8 2048 2.2E-01 1.1E-04 1.3E-03 6.2E-07 1.5E-15 4.2E-16

5.6 7.8 4096 4.3E-01 1.1E-04 4.3E-03 1.0E-06 1.6E-15 4.1E-16

5.6 7.8 8192 8.7E-01 1.1E-04 1.0E-02 1.3E-06 1.3E-15 5.0E-16

5.6 7.8 16384 1.7E+00 1.0E-04 1.9E-02 1.1E-06 1.4E-15 5.0E-16

9.7 5.5 256 2.8E-02 1.1E-04 1.1E-04 4.3E-07 3.9E-16 3.0E-15

9.7 5.5 512 5.2E-02 1.0E-04 2.6E-04 5.1E-07 1.4E-15 3.5E-15

9.7 5.5 1024 1.0E-01 9.9E-05 5.6E-04 5.5E-07 2.3E-16 3.6E-15

9.7 5.5 2048 1.9E-01 9.4E-05 1.3E-03 6.5E-07 8.6E-16 3.8E-15

9.7 5.5 4096 3.8E-01 9.4E-05 4.1E-03 1.0E-06 6.2E-16 5.8E-15

9.7 5.5 8192 8.0E-01 9.7E-05 9.3E-03 1.1E-06 1.2E-16 5.8E-15

9.7 5.5 16384 1.5E+00 9.4E-05 2.0E-02 1.2E-06 1.2E-16 1.5E-14

Table 3.1: Test results for the connection between the Laguerre polynomials

{L(α)
n }n∈N0

and {L(β)
n }n∈N0

computed with the fmm method with accuracy con-
trolling parameter p = 18 for different transform sizes n. Shown are the times for
precomputation tp and for the computation of the actual transform tt. Both are
also shown after division through the expected asymptotic expression in terms of
the transform size n. Furthermore, the component-wise error Ec

∞ and the relative
infinity norm error E∞ are reported.
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α β γ δ n tp tp/n
2 tt tt/n Ec

∞ E∞

-0.7 2.0 -0.9 2.0 256 4.3E-02 1.7E-04 1.2E-04 4.7E-07 1.2E-15 1.8E-15

-0.7 2.0 -0.9 2.0 512 8.5E-02 1.7E-04 2.3E-04 4.4E-07 1.6E-15 2.2E-15

-0.7 2.0 -0.9 2.0 1024 1.9E-01 1.8E-04 6.5E-04 6.3E-07 1.7E-15 2.5E-15

-0.7 2.0 -0.9 2.0 2048 3.1E-01 1.5E-04 1.1E-03 5.6E-07 2.8E-15 5.3E-15

-0.7 2.0 -0.9 2.0 4096 6.2E-01 1.5E-04 4.0E-03 9.7E-07 3.3E-15 7.2E-15

-0.7 2.0 -0.9 2.0 8192 1.2E+00 1.5E-04 1.0E-02 1.3E-06 4.1E-15 1.1E-14

-0.7 2.0 -0.9 2.0 16384 2.5E+00 1.5E-04 1.7E-02 1.0E-06 4.4E-15 1.3E-14

-0.7 2.0 0.0 2.0 256 4.5E-02 1.8E-04 9.7E-05 3.8E-07 2.0E-15 1.5E-15

-0.7 2.0 0.0 2.0 512 8.6E-02 1.7E-04 2.3E-04 4.4E-07 2.2E-15 1.4E-15

-0.7 2.0 0.0 2.0 1024 1.7E-01 1.7E-04 5.0E-04 4.9E-07 3.7E-15 2.4E-15

-0.7 2.0 0.0 2.0 2048 3.4E-01 1.7E-04 1.1E-03 5.6E-07 5.6E-15 4.8E-15

-0.7 2.0 0.0 2.0 4096 6.9E-01 1.7E-04 3.9E-03 9.6E-07 8.7E-15 8.1E-15

-0.7 2.0 0.0 2.0 8192 1.4E+00 1.7E-04 1.0E-02 1.2E-06 1.5E-14 9.1E-15

-0.7 2.0 0.0 2.0 16384 2.8E+00 1.7E-04 1.6E-02 1.0E-06 2.1E-14 1.6E-14

0.0 2.0 -0.7 2.0 256 4.1E-02 1.6E-04 9.6E-05 3.8E-07 3.7E-16 1.1E-15

0.0 2.0 -0.7 2.0 512 7.9E-02 1.5E-04 2.3E-04 4.5E-07 5.5E-16 2.3E-15

0.0 2.0 -0.7 2.0 1024 1.6E-01 1.5E-04 5.1E-04 4.9E-07 7.2E-16 1.7E-15

0.0 2.0 -0.7 2.0 2048 3.1E-01 1.5E-04 1.2E-03 5.7E-07 3.5E-16 3.7E-15

0.0 2.0 -0.7 2.0 4096 6.2E-01 1.5E-04 3.9E-03 9.4E-07 7.2E-16 6.6E-15

0.0 2.0 -0.7 2.0 8192 1.2E+00 1.5E-04 1.1E-02 1.3E-06 4.7E-16 1.0E-14

0.0 2.0 -0.7 2.0 16384 2.4E+00 1.5E-04 1.7E-02 1.0E-06 6.2E-16 1.8E-14

0.0 2.0 0.9 2.0 256 4.7E-02 1.8E-04 1.1E-04 4.2E-07 2.1E-15 1.7E-15

0.0 2.0 0.9 2.0 512 9.2E-02 1.8E-04 2.3E-04 4.5E-07 2.9E-15 1.5E-15

0.0 2.0 0.9 2.0 1024 1.7E-01 1.6E-04 5.1E-04 5.0E-07 4.5E-15 2.9E-15

0.0 2.0 0.9 2.0 2048 3.4E-01 1.7E-04 1.2E-03 5.8E-07 6.9E-15 3.7E-15

0.0 2.0 0.9 2.0 4096 6.9E-01 1.7E-04 4.1E-03 9.9E-07 1.1E-14 7.8E-15

0.0 2.0 0.9 2.0 8192 1.4E+00 1.7E-04 1.0E-02 1.2E-06 1.5E-14 9.9E-15

0.0 2.0 0.9 2.0 16384 2.8E+00 1.7E-04 1.7E-02 1.0E-06 2.3E-14 1.2E-14

5.4 2.0 7.6 2.0 256 4.7E-02 1.8E-04 1.0E-04 4.0E-07 8.5E-15 5.6E-15

5.4 2.0 7.6 2.0 512 1.0E-01 2.0E-04 3.0E-04 5.8E-07 8.8E-15 6.4E-15

5.4 2.0 7.6 2.0 1024 1.7E-01 1.7E-04 5.3E-04 5.2E-07 9.9E-15 7.5E-15

5.4 2.0 7.6 2.0 2048 3.5E-01 1.7E-04 1.2E-03 6.0E-07 1.1E-14 8.1E-15

5.4 2.0 7.6 2.0 4096 7.0E-01 1.7E-04 4.1E-03 1.0E-06 1.3E-14 8.0E-15

5.4 2.0 7.6 2.0 8192 1.4E+00 1.7E-04 1.1E-02 1.3E-06 1.5E-14 1.1E-14

5.4 2.0 7.6 2.0 16384 2.8E+00 1.7E-04 1.7E-02 1.0E-06 2.2E-14 1.5E-14

8.6 2.0 4.3 2.0 256 4.3E-02 1.7E-04 1.1E-04 4.3E-07 7.5E-15 1.6E-15

8.6 2.0 4.3 2.0 512 8.7E-02 1.7E-04 2.6E-04 5.0E-07 5.2E-15 1.3E-14

8.6 2.0 4.3 2.0 1024 1.7E-01 1.6E-04 5.6E-04 5.4E-07 1.7E-15 8.0E-15

8.6 2.0 4.3 2.0 2048 3.3E-01 1.6E-04 1.3E-03 6.4E-07 3.4E-15 3.6E-15

8.6 2.0 4.3 2.0 4096 6.5E-01 1.6E-04 4.1E-03 1.0E-06 3.8E-15 1.3E-14

8.6 2.0 4.3 2.0 8192 1.3E+00 1.6E-04 9.9E-03 1.2E-06 1.7E-15 8.1E-15

8.6 2.0 4.3 2.0 16384 2.6E+00 1.6E-04 1.8E-02 1.1E-06 1.5E-15 1.4E-14

Table 3.2: Test results for the connection between the Jacobi polynomials

{P (α,β)
n }n∈N0

and {P (γ,β)
n }n∈N0

computed with the fmm method with accuracy
controlling parameter p = 18 for different transform sizes n. Shown are the times
for precomputation tp and for the computation of the actual transform tt. Both are
also shown after division through the expected asymptotic expression in terms of
the transform size n. Furthermore, the component-wise error Ec

∞ and the relative
infinity norm error E∞ are reported.
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α β n tp tp/n
2 tt tt/n Ec

∞ E∞

-0.2 -0.4 256 3.8E-02 1.5E-04 6.6E-05 2.6E-07 1.8E-15 7.2E-16

-0.2 -0.4 512 7.3E-02 1.4E-04 1.8E-04 3.5E-07 1.2E-15 1.2E-15

-0.2 -0.4 1024 1.6E-01 1.5E-04 4.2E-04 4.1E-07 1.7E-15 2.3E-15

-0.2 -0.4 2048 3.0E-01 1.5E-04 9.5E-04 4.6E-07 3.3E-15 2.0E-15

-0.2 -0.4 4096 6.1E-01 1.5E-04 3.1E-03 7.7E-07 4.9E-15 3.4E-15

-0.2 -0.4 8192 1.2E+00 1.5E-04 8.3E-03 1.0E-06 4.6E-15 5.8E-15

-0.2 -0.4 16384 2.4E+00 1.5E-04 1.6E-02 9.6E-07 1.2E-14 8.3E-15

-0.2 0.5 256 3.2E-02 1.3E-04 6.6E-05 2.6E-07 1.4E-15 1.1E-15

-0.2 0.5 512 8.0E-02 1.6E-04 1.8E-04 3.5E-07 2.2E-15 8.7E-16

-0.2 0.5 1024 1.6E-01 1.5E-04 4.2E-04 4.1E-07 2.9E-15 5.6E-16

-0.2 0.5 2048 3.1E-01 1.5E-04 9.4E-04 4.6E-07 5.5E-15 2.0E-15

-0.2 0.5 4096 6.3E-01 1.5E-04 3.2E-03 7.8E-07 6.6E-15 2.5E-15

-0.2 0.5 8192 1.3E+00 1.6E-04 9.7E-03 1.2E-06 9.9E-15 1.7E-15

-0.2 0.5 16384 2.6E+00 1.6E-04 1.6E-02 9.7E-07 1.7E-14 5.7E-15

0.5 -0.2 256 3.8E-02 1.5E-04 6.6E-05 2.6E-07 2.0E-15 7.5E-16

0.5 -0.2 512 7.5E-02 1.5E-04 1.8E-04 3.5E-07 1.2E-14 1.1E-15

0.5 -0.2 1024 1.6E-01 1.5E-04 4.2E-04 4.1E-07 6.4E-15 1.2E-15

0.5 -0.2 2048 3.0E-01 1.5E-04 9.4E-04 4.6E-07 6.7E-15 2.2E-15

0.5 -0.2 4096 6.1E-01 1.5E-04 3.2E-03 7.7E-07 2.5E-14 2.8E-15

0.5 -0.2 8192 1.2E+00 1.5E-04 9.7E-03 1.2E-06 2.2E-14 3.9E-15

0.5 -0.2 16384 2.4E+00 1.5E-04 1.6E-02 9.6E-07 6.0E-14 5.4E-15

0.5 1.4 256 4.1E-02 1.6E-04 6.6E-05 2.6E-07 2.1E-15 5.5E-16

0.5 1.4 512 8.0E-02 1.6E-04 1.8E-04 3.5E-07 2.5E-15 1.0E-15

0.5 1.4 1024 1.6E-01 1.6E-04 4.3E-04 4.2E-07 3.1E-15 6.1E-16

0.5 1.4 2048 3.2E-01 1.6E-04 9.5E-04 4.6E-07 4.6E-15 5.6E-16

0.5 1.4 4096 6.5E-01 1.6E-04 3.1E-03 7.6E-07 6.6E-15 1.9E-15

0.5 1.4 8192 1.3E+00 1.6E-04 8.4E-03 1.0E-06 1.1E-14 1.8E-15

0.5 1.4 16384 2.7E+00 1.6E-04 1.5E-02 9.2E-07 1.7E-14 5.6E-15

5.9 8.1 256 4.2E-02 1.6E-04 7.0E-05 2.7E-07 7.1E-15 1.1E-14

5.9 8.1 512 8.3E-02 1.6E-04 1.9E-04 3.6E-07 7.6E-15 6.1E-15

5.9 8.1 1024 1.7E-01 1.6E-04 4.3E-04 4.2E-07 8.4E-15 6.1E-15

5.9 8.1 2048 3.3E-01 1.6E-04 9.8E-04 4.8E-07 9.7E-15 1.1E-14

5.9 8.1 4096 6.6E-01 1.6E-04 3.2E-03 7.7E-07 1.1E-14 3.3E-15

5.9 8.1 8192 1.3E+00 1.6E-04 1.0E-02 1.3E-06 1.4E-14 6.1E-15

5.9 8.1 16384 2.7E+00 1.7E-04 1.6E-02 1.0E-06 1.7E-14 4.9E-15

9.0 4.8 256 4.0E-02 1.6E-04 8.5E-05 3.3E-07 1.4E-15 1.8E-15

9.0 4.8 512 7.5E-02 1.5E-04 2.0E-04 3.9E-07 1.5E-15 1.3E-14

9.0 4.8 1024 1.6E-01 1.5E-04 4.6E-04 4.5E-07 1.4E-15 3.6E-15

9.0 4.8 2048 3.1E-01 1.5E-04 1.0E-03 5.1E-07 3.0E-15 2.8E-15

9.0 4.8 4096 6.2E-01 1.5E-04 3.6E-03 8.7E-07 2.7E-15 5.1E-15

9.0 4.8 8192 1.3E+00 1.5E-04 1.0E-02 1.2E-06 4.6E-15 4.5E-15

9.0 4.8 16384 2.5E+00 1.5E-04 1.8E-02 1.1E-06 3.7E-15 6.9E-15

Table 3.3: Test results for the connection between the Gegenbauer polynomials

{C(α)
n }n∈N0

and {C(β)
n }n∈N0

computed with the fmm method with accuracy con-
trolling parameter p = 18 for different transform sizes n. Shown are the times for
precomputation tp and for the computation of the actual transform tt. Both are also
shown after division through the expected asymptotic expression in of the trans-
form size n. Furthermore, the component-wise error Ec

∞ and the relative infinity
norm error E∞ are reported.
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3.5.1 Stability issues. It was already observed in Section 2.4.6 that the usmv-
fmm method can show an unacceptably large error in the results when transforma-
tions are computed with step sizes that are too large. As a remedy, we had split
each transformation into many ones so that each has its step size bounded by a
certain constant free of choice. The fmm method does not seem to have similar
problems but the results shown so far can lead to the perception that computing
the connection between any two families of classical orthogonal polynomials of the
same type is a perfectly stable process in the sense of numerically stable on a ma-
chine with the usual floating-point arithmetic. This section is devoted to show that
this is only true to a certain extent. To this end, we define in the following a test
scenario that will demonstrate problematic effects that we must be aware of. This
will again be done exemplarily for Gegenbauer polynomials, but also applies to the
rest of the classical orthogonal polynomials as well.
Let us start with a function f that has been expanded into a finite linear combina-

tion of Gegenbauer polynomials {C(α)
n }n∈N0

, that is,

f ≈
n∑
j=0

xjC
(α)
j .

This is a typical situation that occurs in practice. Usually, the parameter n is large
enough such that the ≈ sign is justified to a desired accuracy. With the connection

coefficients κ
(α)→(β)
i,j , we can compute the coefficients yj in the expansion

f ≈
n∑
j=0

yjC
(β)
j .

Both representations are equivalent, but in finite precision arithmetic there can be
substantial differences when it comes to the accuracy to which each value xj or yj

can be computed. For example, if we use the connection coefficients κ
(β)→(α)
i,j to

recover the coefficients xj from the computed coefficients yj , then the result can
be very different, indeed off by a large margin, compared to the original values xj
that we started with; this will be shown in detail in Section 3.5.2 below. The key
observation that can be made from numerical results is that this happens whenever
|α− β| is large.
An informal explanation for this behavior, without the aspirations of being an actual
proof, is that whenever |α− β| is large, both sequences of Gegenbauer polynomials
show such different behavior that the distribution of the expansion coefficients xj
and yj over the different orders of magnitude will also be totally different. As an
extreme example, we can have all xj = 1 on one hand (so one order of magnitude
is spanned) and observe that the coefficients yj span several orders of magnitude,
e.g., from 10−10 to 1010 or more. This observation rings a bell to anyone familiar
with the properties of floating-point arithmetic.
For example, if we need to compute an expansion coefficient yj ≈ 10−10 from other
expansion coefficients xj = 1, then the calculation usually incurs a large relative
error in the result; see [34]. And even if the result can be computed to high relative
accuracy, the recovery of the coefficients xj from the freshly computed coefficients
yj can still fail with large errors. Let us make this more precise with a practical
example.
We consider the functions f1 : R→ R and f2 : R→ R defined by

f1(t) = |t− 0.1|2 and f2(t) = |t− 0.1|.
While the function f1 is continuously differentiable, the function f2 is only contin-
uous, but not differentiable at t = 0.1. This choice was made to ensure that we do
not compute with expansion coefficients that essentially vanish for yet moderate
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Table 3.4: Combined projection and evaluation procedure applied to the functions
f1 and f2. Shown is the relative infinity error E∞ for increasing expansion degree
n and different indices β.

E∞

f n β = 1 β = 3 β = 5 β = 7

f1

100 3.6E−16 3.6E−16 3.6E−16 3.6E−16
1.000 5.5E−16 5.5E−16 5.5E−16 5.5E−16

10.000 1.0E−15 1.0E−15 1.2E−15 1.9E−10
100.000 5.1E−15 6.3E−15 2.5E−11 3.4E−03

f2

100 7.0E−16 2.6E−15 1.4E−13 1.0E−11
1.000 6.0E−16 7.2E−14 1.8E−10 1.4E−06

10.000 1.6E−15 3.2E−12 2.7E−06 2.6E+00
100.000 5.4E−15 6.4E−11 3.0E−03 1.2E+05

degrees. For both functions, we repeat the following procedure for different degrees
n. First, we compute approximated expansion coefficients xj for the respective
function f such that

f ≈
n∑
j=0

xjTj .

This was done with a Gauss-Chebyshev quadrature rule to discretize, i.e., approx-
imate the respective inner products. A classical result by Erdős and Turán [21]
asserts that the L2-error of the approximation is within a constant factor of the
best uniform approximation by polynomials of degree at most n. Fast discrete
cosine transforms can be used to compute this step efficiently. Then, from the
coefficients xj we computed the expansion coefficients yj in

f ≈
n∑
j=0

yjC
(β)
j

for different positive integer values β. This requires the application of different
connection matrices K. These, however, have a banded structure owing to the
particular choice of the parameter β. Therefore, these matrices were applied the
usual way so that errors must be caused by properties of floating-point arithmetic.
After that, we tried to recover the coefficients xj by applying the inverse of the
connection matrix K from before. Since this matrix is always semiseparable, it
was again applied cheaply without any systematic error involved. The resulting
expansion is evaluated at the Chebyshev points in [−1, 1] that correspond to the
degree n. Finally, the result is compared in the relative infinity vector norm to the
initial function values taken at the same sites. Table 3.4 shows the relative infinity
error E∞ for increasing degree n and different values β. For both functions, f1 and
f2, it can be observed that results get more inaccurate for larger β. At the same
combination of degree n and parameter β, the function f2, which has more slowly
decreasing expansion coefficients, shows results worse than for the function f1, who
has its expansion coefficients decay quicker. This behavior can be explained with
catastrophic cancellations in the numerical computation as shown in the following.

3.5.2 A word on feasibility. The previous example has numerically shown that

transformations between families of Gegenbauer polynomials {C(α)
n }n∈N0

and {C(β)
n }n∈N0

can be subject to numerical instabilities. This might render the procedure infeasible
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Table 3.5: The Condition number cond2(K) and the lower bound λmax(K)/λmin(K)
from (3.11) for the 51× 51 matrix K(1)→(β) for different values β. As β increases,
the condition number quickly grows beyond acceptable levels.

β 11 21 31 41 51

λmax(K)/λmin(K) 8.9E+06 8.9E+09 6.3E+11 1.2E+13 1.0E+14

cond2(K) 2.2E+15 4.1E+23 3.1E+29 1.2E+34 6.8E+37

in some cases. Apparently, errors in the computation grow the larger the distance
between the parameters α and β gets.
An often used measure for a problem’s amenability to digital computation is the
condition number. For example, the condition number associated with a system of
linear equations Ax = b gives a bound on the relative accuracy of an approximate
solution when compared to relative errors in A and b.
The usual 2-norm condition number cond2(A) for a non-singular matrix A is de-
fined as cond2(A) = ‖A‖2‖A−1‖2. A lower bound is obtained from the inequality
λmax(A) ≤ ‖A‖2, where λmax(A) is the largest modulus of any eigenvalue of A.
Since λmax

(
A−1

)
= λmin(A)−1, one obtains the inequality

λmax(A)

λmin(A)
≤ cond2(A). (3.11)

It is not trivial to work out the actual condition number cond2(K) for the connection
matrices K that were used, but an explicit expression for the lower bound can be
readily obtained. Since each connection matrix K is triangular, its eigenvalues
coincide with the entries on the main diagonal. For example, when 0 < α < β the
largest eigenvalue is λmax(K) = κ0,0 = 1 and the smallest is given by λmin(K) =
κn,n; cf. (3.6). This leads to the estimate

Γ(α)Γ(n+ β)

Γ(β)Γ(n+ α)
≤ cond2(K).

This bound can grow quite large as β−α grows. Table 3.5 shows an example for the
matrix K(1)→(β) and different values β. While the condition number is associated
with solving a linear system, it is also an indicator of numerical instabilities in our
situation. This is because a large condition number tell us that small errors in the
computed coefficients yj can cause the recovered coefficients xj to contain a large
relative error. For example, consider for n ≥ 1016 the computation of the coefficient
y1000 from the coefficients xj = 1. The result, computed with a precision of 100
decimal digits is

x1000 = 3.5 . . .× 10−19 − 2.8 . . .× 10−18 + 9.6 . . .× 10−18 − 1.9 . . .× 10−17

+ 2.3 . . .× 10−17 − 1.9 . . .× 10−17 + 9.2 . . .× 10−18 − 2.6 . . .× 10−18

+ 3.2 . . .× 10−19

≈ 1.6062271959049573× 10−34.

Computing the same sum in double precision gives a value x1000 = −3.9341703542077499×
10−32 which is wrong in every digit. The upshot is that the above computation
is correct in exact arithmetic but is subject to catastrophic cancellations in finite
precision arithmetic. These occur when the result of the subtraction of two nearby
numbers, say a and b, is much smaller in magnitude than a and b themselves. Can-
cellations become catastrophic when a and b already contain small perturbations,
e.g., as the result of a previous computation. In this case, the computed result
can have a large relative error compared to the correctly rounded result; see [24].
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The above computation is prone to catastrophic cancellations since the connection
coefficients κj,k in K will already contain rounding errors in any practical situation.
There does not seem to be an obvious way to circumvent this.



Chapter 4
Applications

4.1 Non-equispaced fast spherical Fourier transform

Discrete Fourier analysis in euclidean space plays an important role in a wide range
of applications, for example, signal processing, image processing, computed tomog-
raphy, and a lot more. However, in many fields of interest, data naturally arises
on a geometry that can be identified with the surface of the two-dimensonal unit
sphere

S2 =
{
x ∈ R3 : ‖x‖2 = 1

}
that is embedded into the three-dimensional euclidean space R3. Such data occurs
quite naturally when measurements are taken relative to the surface of the earth
which can be roughly identified with a sphere. In similar ways to euclidean space,
one considers analyzing or processing the data by expanding into a Fourier series
or finite Fourier sum.
For Fourier analysis on the sphere S2 the corresponding basis of choice are the
spherical harmonics Y m` (a precise definition is given in Section 4.1.4 below). A
finite expansion of a function f in spherical harmonics in spherical coordinates
(ϑ, ϕ) may look like

f(ϑ, ϕ) =

L∑
`=0

∑̀
m=−`

f̂m` Y
m
` (ϑ, ϕ), with L ∈ N0, (4.1)

where ϑ ∈ [0, π] and ϕ ∈ [0, 2π) are the co-latitude and longitude, respectively.
From a computational point of view, there are two basic tasks to consider. First,

if the expansion coefficients f̂m` are known, then one would like to evaluate the ex-
pansion (4.1) on a given finite set of nodes (ϑi, ϕi) for i = 1, 2, . . . , I. Second, given
function values f(ϑi, ϕi) at these sites, one would like to calculate the expansion

coefficients f̂ml . This section is devoted to propose a method that can be used to
achieve both.

4.1.1 Existing algorithms for particular nodes. Discrete Fourier transforms
on the sphere S2 have been of interest at least since the work of Driscoll and
Healy [16] who introduced what is today often called the Driscoll-Healy algorithm.
They developed an O(L2 log2 L) algorithm to compute from I = O(L2) function

samples f(ϑi, ϕi), taken at specific sites, the expansion coefficients f̂m` for any L-

bandlimited function, that is, a function that satisfies f̂m` = 0 for l > L. This is
more efficient than theO(L3) arithmetic operations that would be needed otherwise.
It is, however, later observed in [17] that the calculation of the expansion coefficients

f̂m` may be subject to numerical problems that undermine the stability of the
procedure. It is therefore noted that the algorithm might need a modification to
improve the accuracy. Some modifications to the original algorithm appeared in
[31], arguably without providing a totally satisfactory solution to the problems.
The first modification to the Driscoll-Healy algorithm that specifically addressed the
numerical instabilities was proposed in [67] where unstable parts in the computation
were identified and circumvented. The authors did this for the transposed version
of the Driscoll-Healy algorithm. This is the one that allows to calculate from known

expansion coefficients f̂m` the function values f(ϑi, ϕi) for i = 1, 2, . . . , I; see (4.1).
The modifications nevertheless also apply to the original variant. Similar ideas
appeared later also in [32].

145
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Another method to compute discrete spherical Fourier transforms that relies on
certain matrix compression techniques was introduced in [61]. The author obtains
O(L5/2 logL) and O(L2 log2 L) algorithms for a grid of I = O(L2) specific points
on the sphere.
A more recent method was proposed in [72]. It is similar to the Driscoll-Healy
algorithm and the one from [67], but avoids the primary source of numerical in-
stabilities in a new way. Instead of modifying the algorithm on a large scale, a
new method for approximate polynomial multiplication, based on the fast multi-
pole method (FMM), is used. This replaces the discrete cosine transforms that
were used before and provides some flexibility in the choice of certain interpolation
nodes. This way, numerically delicate calculations can be tamed. The result is an
approximate O

(
L2 logL log(1/ε)

)
algorithm, where ε is the desired accuracy.

Yet another method was developed in [70]. It uses a new approach that is entirely
different than the Driscoll-Healy algorithm. The method is essentially based on the
observation that the associated Legendre functions Pm` of different orders m (they
appear in the definition of the spherical harmonics Y m` below) are solutions to very
similar differential equations. A matrix is constructed that has eigenvectors that
appear in the matrix-representation of the conversion between associated Legendre
functions of (possibly large) orders m to a set of low orders m̂ ∈ {1, 2}. This can
be used to modify the original expansion (4.1) by efficiently replacing all associated
Legendre functions of orders m with those of low orders m̂. The task of evaluating
the resulting expansion is reduced. Thus, an approximate O

(
L2 logL log(1/ε)

)
method for I = O(L2) specific points on the sphere is obtained. The method to
be described in this section is very similar. The details are found in Section 4.1.6
below.
More recently, a modified version of these techniques appeared in [76]. The method
is somewhat different in how the original expansion is modified but the key step is
carried out using very similar techniques.

4.1.2 Existing algorithms for arbitrary nodes. While all algorithms men-
tioned so far have been described for specific sets of nodes on the sphere, an algo-
rithm for arbitrary nodes was described in [55] for the first time. The stabilized
algorithm from [67] is therein combined with the non-equispaced fast Fourier trans-
form (NFFT), a modification to the original fast Fourier transform (FFT) for arbi-
trary nodes. The resulting algorithm was the first to decouple the expansion degree
L and the number of nodes I to give an O(L2 log2 L + I log2(1/ε)) algorithm for
any set of points on the sphere. The transposed version was described and analyzed
in [44] and can be seen as an analogue of the Driscoll-Healy algorithm. In other
aspects, the possibility of using the FMM for polynomial multiplication is already
mentioned, but not implemented, in [55]. Moreover, it should be acknowledged
that it is possible to combine nearly all existing algorithms for specific nodes with
the NFFT to algorithm for arbitrary nodes. This is, for example, mentioned by the
authors in [70].

Remark 4.1 The term “non-equispaced” is nowadays conventional to describe any
set of points free of choice, but might be a source of confusion for the casual reader.
In one dimension, a set of non-equispaced points can be equivalently described as
a set of arbitrary points. The NFFT algorithm provides a fast Fourier transform
algorithm for these arbitrary points. The terminology becomes arguably more
problematic for multi-dimensional transforms and non-euclidean manifolds. In R3,
a set of equispaced points usually means a set of points that has been obtained
by regularly sampling the coordinate axes. This enables the use of the FFT. Any
other point configuration requires the NFFT or other techniques. On manifolds
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(a) (b)

Figure 4.1: (a) Clenshaw-Curtis points on the sphere. They are obtained by a
regular sampling of the spherical coordinate axes and therefore cluster at the poles.
(b) Almost evenly distributed points on the sphere.

like the sphere, equispaced points might be equally defined as those obtained from
a sampling of the axes of the spherical coordinate system. This, however, does even
remotely lead to an equispaced set of points; see Figure 1(a). In the following, we
will use the term non-equispaced as a synonym for arbitrary.

4.1.3 Why arbitrary nodes are important. At first glance, the possibility
to extend the fast algorithms to arbitrary nodes on the sphere seems just like a
nice extra to have. But as it turns out, this is a rather essential requirement for
the realization of efficient algorithms on the sphere. Some problems are just more
amenable to computation if the nodes on the sphere can be distributed arbitrarily,
often meaning more evenly distributed. Other algorithms that are restricted to
specific point sets can fail at this point. Figure 4.1 shows two point sets on the
sphere. The first one is typical for those that have been used over the years. It is
obtained by sampling the sphere at regular intervals along the spherical coordinate
axes (i.e., the longitudinal and latitudinal directions). It can be seen that nodes
cluster near the poles. This is, in many ways, an undesirable feature. The spherical
coordinate system carries some sense of arbitrariness since on a perfect sphere why
would one want to distinguish two points, that is, the poles, from the rest? Most
often, an approximately even distribution of nodes is desirable. Such is shown in
the second image. In most cases, the distribution of the nodes, more precisely, the
size of gaps between the nodes, is tightly coupled to numerical stability; see for
example [42, 54] for a number of theoretical results on this subject.

The following text is structured as follows. In Section 4.1.4, we collect some basic
material on Fourier analysis on the sphere S2. Section 4.1.5 gives a formal defini-
tion of the discrete Fourier transform on the sphere and introduces a convenient
matrix-vector notation. Our fast Fourier transform algorithm for arbitrary nodes
is described in Section 4.1.6. Finally, some numerical results are given in Section
4.1.7.
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4.1.4 Fourier analysis on the two-sphere. In spherical coordinates, we identify
each point x ∈ S2 with a tuple (ϑ, ϕ) ∈ [0, π]× [0, 2π) of two angles ϑ and ϕ. The
space L2

(
S2
)

is the Hilbert space of square integrable functions on the sphere S2

with the usual inner product given by

〈f, g〉 =

∫ 2π

0

∫ π

0

f(ϑ, ϕ)g(ϑ, ϕ) sinϑ dϑ dϕ.

With the orthogonal basis of spherical harmonics Y m` , any function f from the
space L2

(
S2
)

can be developed into an infinite orthogonal expansion

f(ϑ, ϕ) =

∞∑
`=0

∑̀
m=−`

f̂m` Y
m
` (ϑ, ϕ), (4.2)

where equality holds in the L2-sense. The expansion is finite and of degree L if
the function f can be represented by an algebraic polynomial of degree at most
L in three-dimensions, that has been restricted to the unit sphere. Each spherical
harmonic Y m` can be represented as an algebraic harmonic homogeneous polynomial
of degree ` in three dimensions (restricted to the unit sphere) and is defined by

Y m` (ϑ, ϕ) = Pm` (cosϑ)eimϕ. (4.3)

The functions Pm` are the associated Legendre functions; see Section 1.6.3.

Remark 4.2 The spherical harmonics Y m` satisfy

‖Y m` ‖2 = 〈Y m` , Y m` 〉 =
4π

2`+ 1
.

It is also common to use the normalized spherical harmonics Ỹ m` which are defined
by

Ỹ m` = (−1)m
√

2`+ 1

4π
Y m` .

We have here included the factor (−1)m, the so-called Condon-Shortley phase, which
can be omitted. This is merely a matter of convention.

4.1.5 Discrete Fourier transform on the two-sphere. We recall that for L ∈
N0, our goal is the evaluation of the sums

f(ϑi, ϕi) =

L∑
`=0

∑̀
m=−`

f̂m` Y
m
` (ϑi, ϕi), with i = 1, 2, . . . , I, (4.4)

for some given points (ϑi, ϕi). This is called a non-equispaced discrete spherical
Fourier transform (NDSFT) and represents a linear transformation. Therefore, we
may also wish to calculate the sums

f̃m` =

I∑
i=1

f(ϑi, ϕi)Y m` (ϑi, ϕI), with ` = 0, 1, . . . , L and m = −`, . . . , `, (4.5)

which is the corresponding adjoint transformation, hence adjoint NDSFT. Note

that this adjoint transform usually does not recover the coefficients f̂m` from (4.4),
i.e., it is not the inverse transformation. To obtain these, we need weights wi from
a suitable quadrature rule, based on the given nodes, to compute

f̂m` =

I∑
i=1

wif(ϑi, ϕi)Y m` (ϑi, ϕi), with ` = 0, 1, . . . , L and m = −`, . . . , `. (4.6)



4.1. NON-EQUISPACED FAST SPHERICAL FOURIER TRANSFORM 149

The weights wi need to be chosen such the sums in (4.6) become discretized versions
of the inner product integrals

f̂m` =

∫ 2π

0

∫ π

0

f(ϑ, ϕ)Y m` (ϑ, ϕ) sin(ϑ) dϑ dϕ,

with ` = 0, 1, . . . , L and m = −`, . . . , `. The value L ∈ N0 is called the bandwidth
of the function f which is likewise said to be an L-bandlimited function on the

sphere S2. The complex expansion coefficients f̂m` ∈ C are the spherical Fourier
coefficients of the function f . The index ` is called the degree and m is called the
order. A set of arbitrary nodes

X =
{

(ϑi, ϕi)
}I
i=1

on the sphere S2 is called a sampling set. For notational convenience, we may also
work with the index set

IL :=
{

(`,m) : ` = 0, 1, . . . , L; m = −`, . . . , `
}

that specifies the allowed range for the indices l and m.
From a linear algebra point of view, evaluating the L-bandlimited function f on a
sampling set X amounts to calculating the matrix-vector product

fX = YL,X f̂L

with

fX :=
(
f(ϑi, ϕi)

)I
i=1
∈ CI ,

YL,X :=
(
Y m` (ϑi, ϕi)

)
i=1,...,I;(`,m)∈IL

∈ CI×(L+1)2 ,

f̂L :=
(
f̂m`
)

(`,m)∈IL
∈ C(L+1)2 .

We write fX , YL,X and f̂L to emphasize the dependence of these quantities on the
concrete sampling set X and the bandwidth L. The computation of the adjoint
transformation reads

f̃L = YH
L,X fX .

4.1.6 Fast Fourier transform for arbitrary nodes on the two-sphere. Be-
fore we start describing our algorithm in more detail, let us briefly discuss how an
efficient algorithm for the evaluation of a finite expansion like (4.4) at a given num-
ber of nodes (ϑi, ϕi) can be realized in principle. The enabling idea is to perform a
change of basis such that the function f in (4.4) is represented as an expansion of
the form

f(ϑ, ϕ) =

L∑
`=−L

L∑
m=−L

ĉm` ei`ϑeimϕ. (4.7)

This is an ordinary two-dimensional Fourier sum with new coefficients ĉm` and
it will take O

(
L2 logL log(1/ε)

)
arithmetic operations to perform this change of

basis, that is, to compute from the coefficients f̂m` the new coefficidents ĉm` up to
some accuracy ε. The evaluation of the function f at the given nodes (ϑi, ϕi)
may then be realized using the non-equispaced fast Fourier transform (NFFT)
which needs another O

(
L2 logL + log2 I(1/ε)

)
arithmetic operations. In total, we

arrive at O
(
L2 logL log(1/ε) + I log2(1/ε)

)
arithmetic operations for the complete

transformation.
Since this complex transformation is linear, it is possible to mechanically derive
the corresponding adjoint algorithm. The first step that we have described is a
real linear transformation (that may nevertheless be applied to complex data) and
since the second step is a true complex linear transformation, the former has a
transposed counterpart and the latter has an adjoint counterpart. For the NFFT,
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that is, the second part, the process of obtaining the adjoint algorithm is described,
for example, in [68]; see also the references therein. For the first step, we note
that while we do not describe the transposed algorithm in detail, it is easy to
derive it. This is because we will see that it consists of a number of matrix-vector
multiplications that need to be performed sequentially. For these matrices the same
methods as before can be used to apply their respective transpose.
We are now ready to describe the fast evaluation of the L-bandlimited function f
on an arbitrary sampling set X =

(
(ϑi, ϕi) : i = 1, 2, . . . , I

)
on the sphere S2, or

equivalently, the fast evaluation of the matrix-vector product fX = YM,X f̂M . To
this end, we define x = cosϑ and rearrange the spherical Fourier sum (4.4),

f(ϑ, ϕ) =

L∑
`=0

∑̀
m=−`

f̂m` Y
m
` (ϑ, ϕ)

=

L∑
m=−L

L∑
`=|m|

f̂m` Y
m
` (ϑ, ϕ)

=

L∑
m=−L

eimφ
L∑

`=|m|

f̂m` P
m
` (cosϑ)

=

L∑
m=−L

eimφhm(x),

(4.8)

where

hm(x) =

L∑
`=|m|

f̂m` P
m
` (x).

The first step consists in replacing the whole expansion (4.8) with an ordinary two-
dimensional Fourier sum. For this, we apply individually to each inner sum hm(x)
a series of transformations. So assume that we have fixed an order m. The goal
is to replace the associated Legendre functions Pm` in hm(x) with the associated
Legendre functions P m̂` where m̂ satisfies 0 ≤ m̂ ≤ 2. We define in accordance with
Lemma 1.93 the index

m̂ = m̂(m) :=


0, if m = 0,

2, if m even and m 6= 0,

1, if m odd.

Then each sum hm(x) may be written as

hm(x) =

L∑
`=m̂

âm` P
m̂
` (x).

To compute the coefficients âm` , we can use the divide-and-conquer algorithm from
Section 2.5 in combination with the findings in Section 2.6. For a single sum
hm(x) this takes O

(
L logL log(1/ε)

)
arithmetic operations. In total, we need

O
(
L2 logL log(1/ε)

)
operations to compute for m = −L, . . . , L the new coefficients

âm` .
Now that we have replaced associated Legendre functions of high orders m by asso-
ciated Legendre functions of low orders m̂, the remaining sums can be manipulated
further. There, we have to distinguish the three cases m̂ = 0, m̂ = 1 and m̂ = 2.



4.1. NON-EQUISPACED FAST SPHERICAL FOURIER TRANSFORM 151

The case m̂ = 0

This is the simplest case of all three. There is only one sum hm(x) for which m̂ = 0,
namely the one for m = 0. After the first step, we have

h0(x) =

L∑
`=0

â0
`P

0
` (x) =

L∑
`=0

â0
`P`(x),

that is, a finite linear combination of Legendre polynomials. With the fast algo-
rithms for the connection between classical orthogonal polynomials found in Chap-
ters 2 and 3, this can be recast into

h0(x) =

L∑
`=0

b̂0`T`(x),

which is a finite linear combination of Chebyshev polynomials of first kind. With the
methods from Chapter 3, for example, we need O

(
L log(1/ε)

)
arithmetic operations

to compute the coefficients b̂0` . To further replace the obtained linear combination
with an ordinary Fourier sum, we observe that

T`(x) = T`(cosϑ) = cos(`ϑ) =
1

2

(
ei`ϑ + e−i`ϑ

)
,

Therefore, we can easily compute the coefficients

ĉ0` =

b̂
0
0, if ` = 0,

1
2 b̂

0
|`|, else,

in the Fourier sum

h0(x) =

L∑
`=−L

ĉ0`e
i`ϑ

with O(L) arithmetic operations.

The case m̂ = 1

This case implies that m is an odd integer. After the first step, we have obtained
the sum

hm(x) =

L∑
`=1

âm` P
1
` (x) =

√
1− x2

L−1∑
`=0

âm`+1

1

2

√
`+ 2

`+ 1
P

(1,1)
` (x).

This representation is obtained by using the definition of the associated Legendre
functions. Similar to before, we can replace the sum with a linear combination of
Chebyshev polynomials

hm(x) =
√

1− x2

L−1∑
`=0

b̂m` T`(x)

with O
(
L log(1/ε)

)
arithmetic operations. Again, we can replace this with an

ordinary Fourier sum by using that√
1− x2T`(x) = sin(ϑ)T`(cosϑ)

= sin(ϑ) cos(`ϑ)

=
1

2i
(eiϑ − e−iϑ) · 1

2
(ei`ϑ + e−i`ϑ)

=
1

4i

(
ei(`+1)ϑ − ei(`−1)ϑ + e−i(`−1)ϑ − e−i(`+1)ϑ

)
.
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Thus, we compute the coefficients

ĉm` = sign(`)


0, if ` = 0,

1
4i

(
b̂m|`|−1 − b̂

m
|`|+1

)
, if 0 < |`| < L− 1,

1
4i b̂

m
|`|−1, if |`| = L− 1, L,

in the Fourier sum

hm(x) =

L∑
`=−L

ĉm` ei`ϑ

with O(L) arithmetic operations.

The case m̂ = 2

This case implies that m is an even integer. After the first step, we have obtained
the sum

hm(x) =

L∑
`=2

âm` P
2
` (x) = (1− x2)

L−2∑
`=0

âm`+2

1

4

√
(`+ 3)(`+ 4)

(`+ 1)(`+ 2)
P

(2,2)
` (x).

Now, we replace this by a linear combination of Chebyshev polynomials of first kind

hm(x) = (1− x2)

L−2∑
`=0

b̂m` T`(x)

with O
(
L log(1/ε)

)
arithmetic operations. Then with

(1− x2)T`(x) = sin2(ϑ)T`(cosϑ)

= sin2(ϑ) cos(`ϑ)

=
1

2i

(
eiϑ − e−iϑ

)
· 1

2i

(
eiϑ − e−iϑ

)
· 1

2

(
ei`ϑ + e−i`ϑ

)
=

1

8

(
− ei(`+2)ϑ + 2ei`ϑ − ei(`−2)ϑ − e−i(`+2)ϑ + 2e−i`ϑ − e−i(`−2)ϑ

)
,

we compute the coefficients

ĉm` = sign(`)



1
4

(
2b̂m0 − b̂m2

)
, if ` = 0,

1
8

(
2b̂m|`| − b̂

m
|`|+2

)
, if |`| = 1,

1
8

(
−b̂m|`|−2 + 2b̂m|`| − b̂

m
|`|+2

)
, if 1 < |`| < L− 2,

1
8

(
−b̂m|`|−2 + 2b̂m|`|

)
, if |`| = L− 3, L− 2,

− 1
8 b̂
m
|`|−2, if |`| = L− 1, L,

in the Fourier sum

hm(x) =

L∑
`=−L

ĉm` ei`ϑ

with O(L) arithmetic operations.
We have now obtained the ordinary two-dimensional Fourier sum

f(ϑ, ϕ) =

L∑
m=−L

L∑
`=−L

ĉm` ei`ϑeimϕ.

This double sum can be evaluated by the NFFT algorithm on an arbitrary sampling
set X with I nodes using O

(
L2 logL+ I log2(1/ε)

)
arithmetic operations, where ε
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is the desired accuracy. We can also write complete procedure as a matrix-vector
multiplication,

fX = FL,X CL BL AL f̂L. (4.9)

Here, the block-diagonal matrix AL represents the step where we replace associated
Legendre functions of high orders m with those of low orders m̂, that is, we com-

pute the coefficients âm` from the coefficients f̂m` . Then, the matrix BL replaces

the several occurrences of Jacobi polynomials P
(0,0)
` , P

(1,1)
` , and P

(2,2)
` with the

Chebyshev polynomials of first kind T`. This is the step where we compute the

coefficients b̂m` from the coefficients âm` . The matrix CL computes the coefficients

ĉm` from the coefficients b̂m` to obtain the two-dimensional Fourier sum. Finally, the
matrix FL,X denotes the application of the NFFT algorithm. In total, this is an

O
(
L2 logL log(1/ε) + I log2(1/ε)

)
algorithm.

Remark 4.3 It is important to notice that only the last step, that is, the appli-
cation of the NFFT algorithm, actually depends on the nodes X . Therefore, we
might easily replace this step with a usual FFT if we are working with particular
sampling sets X . This, for example, is possible for points based on Clenshaw-Curtis
quadrature rules, but not for those based on Gauss-Legendre quadrature rules.

4.1.7 Numerical results. We have implemented the described method on the
same system that was used for the other tests; see 2.4.6. For the second step of the
algorithm, we employed the NFFT 3.1 library [40] with the Kaiser-Bessel window
function and the cut-off parameter m = 8. We compared our new method to the
one described in [55]. An implementation of this method is already available in
the NFFT library. For a set of I = L2 randomly chosen nodes on the sphere S2,
we computed the discrete spherical Fourier transform for a range of bandwidths L

with both algorithms. The spherical Fourier coefficients f̂m` were chosen randomly
from the square [−1/2, 1/2]× [1/2, 1/2]i. We compared the obtained results against
reference values computed by evaluating the double sum (4.4) via the respective
three-term recurrences. Note that this was also done in double precision. We
compared the results of both algorithms against the reference values in the relative
infinity norm E∞. We also compared the time in seconds needed to compute the
transformation. The results are shown in Figure 4.2. From there it is evident that
the method developed in this section offers comparable speed and an improved error
behavior when compared to the method from [55]. Still, it should be noted that
this represents work in progress.



154 4. APPLICATIONS

log2 L

log10 tt

2 3 4 5 6 7 8 9
−6

−4

−2

0

2

4

(a)

log2 L

log10 E∞

2 3 4 5 6 7 8 9

−16

−14

−12

−10

−8

−6

−4

−2

0

(b)

Figure 4.2: Comparison of algorithms to compute the discrete spherical Fourier
transform: direct evaluation of the expansion via the three-term recurrence (solid),
the method from [55] (dotted), and the method described in this section (dashed).
Shown are for different degrees L and I = L2 randomly chosen nodes the relative
infinity error E∞ with respect to reference values and the time in seconds needed

to compute a transformation. The spherical Fourier coefficients f̂m` were chosen
randomly.
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4.2 Non-equispaced fast SO(3) Fourier transform

We have seen in the previous section how methods for the efficient conversion be-
tween expansions in different classical orthogonal polynomials or their associated
functions enabled the development of an efficient algorithm for a fast Fourier trans-
form on the sphere S2. This section is devoted to describing a similar algorithm
for the closely related rotation group SO(3). FFT-like algorithms for the rotation
group SO(3) have applications in fields like texture analysis [77], protein-protein
docking [53, 69] or robot workspace generation [11]. Other related work is also
found in [33]. Very similar to the spherical case, one is here interested in evaluating
sums of the form

f(αi, βi, γi) =

L∑
`=0

∑̀
m=−`

∑̀
m′=−`

f̂m,m
′

` Dm,m′

` (αi, βi, γi), with i = 1, 2, . . . , I.

This is a finite expansion in Wigner-D functions; they are defined in Section 4.2.2
below. The corresponding adjoint transform is the calculation of the sums

f̃m,m
′

` =

I∑
i=1

f(αi, βi, γi)D
m,m′

` (αi, βi, γi),

with ` = 0, 1, . . . , L and m,m′ = −`, . . . , `.

4.2.1 Existing algorithms. Apart from the approach we are going to present
here, there are other algorithms for fast SO(3) Fourier transforms. Kostelec and
Rockmore [52] consider an algorithm that needs O(L4) arithmetic operations for
a particular choice of I = O(L3) points on SO(3). It is based on the Driscoll-
Healy algorithm [16], although the authors do not implement the method in a way
such that the theoretically attainable asymptotic cost of O(L3 log2 L) arithmetic
operations is realized. This was done in [66] where the algorithm was also gener-
alized to arbitrary nodes using the NFFT. The result is an algorithm that needs
O
(
L3 log2 L+ I log(1/ε)3

)
arithmetic operations.

The rest of this section is structured as follows. Section 4.2.2 covers basic material
on Fourier analysis on the rotation group SO(3). In Section 4.2.3 we formally
introduce discrete Fourier transforms on the rotation group SO(3) together with a
convenient notation. Our new algorithm for a fast Fourier transform on the rotation
group SO(3) for arbitrary nodes is developed in Section 4.2.4.

4.2.2 Fourier analysis on the rotation group SO(3). An orthogonal 3 × 3
matrix with unit determinant represents a rotation in R3. The special orthogonal
group SO(3) is the set of all such matrices,

SO(3) :=
{
R ∈ R3×3 : RTR = I, |R| = 1

}
,

equipped with the usual group action, the neutral element I, and the respective
inverse elements R−1. We call the members of this group rotations. There are
many conceivable ways to describe the group SO(3). For our purposes, we use the
well-known Euler angle decomposition; see [81].

Definition 4.4 Given angles α, γ ∈ [0, 2π), and β ∈ [0, π], a rotation R ∈ SO(3)
is uniquely defined by

R = R(α, β, γ) = RZ(α) RY (β)RZ(γ),

with the Y -axis and Z-axis rotation matrices

RY (θ) :=

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 , RZ(θ) :=

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 .
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This representation is called Euler angle decomposition.

We denote by L2
(
SO(3)

)
the space of square integrable functions on the rotation

group SO(3). Any of these functions f : SO(3) → C can be represented in Euler
angles, hence we may write

f(α, β, γ) := f
(
R(α, β, γ)

)
.

The standard inner product in L2
(
SO(3)

)
is given by

〈f, g〉 =

∫
SO(3)

f(R)g(R) dµ(R) =

∫ 2π

0

∫ π

0

∫ 2π

0

f(α, β, γ)g(α, β, γ) sinβ dγ dβ dα.

A convenient orthogonal basis for L2
(
SO(3)

)
are the Wigner-D functions Dm,m′

`

which can be represented in Euler angles by

Dm,m′

` (α, β, γ) = e−imα dm,m
′

` (cosβ) e−im′γ ,

where dm,m
′

n are the Wigner-d functions (see below). Any function f from the space
SO(3) can be developed into an infinite expansion

f(α, β, γ) =

L∑
`=0

∑̀
m=−`

∑̀
m′=−`

f̂m,m
′

` Dm,m′

` (α, β, γ).

Wigner-D functions satisfy

‖Dm,m′

` ‖2〈Dm,m′

` , Dm,m′

` 〉 =
8π2

2`+ 1
,

hence the normalized Wigner-D functions D̃m,m′

` are given by

D̃m,m′

` =
1

2π

√
2`+1

2 Dm,m′

` .

The Wigner-d functions are defined by

dm,m
′

` (x) = ω 2−`
∗

√
Γ(`− `∗ + 1)Γ(`+ `∗ + 1)

Γ(`− `∗ + µ+ 1)Γ(`− `∗ + ν + 1)
(1− x)

µ
2 (1 + x)

ν
2 P

(µ,ν)
`−`∗ (x),

where

ω = ω(m,m′) :=

{
1, if m > m′,

(−1)`−m, if m ≤ m′,
and

µ := |m′ −m|, ν := |m′ +m|, `∗ := max{|m|, |m′|} =
µ+ ν

2
.

This shows that these are, up to the factor ω, identical to the generalized associated

Legendre functions Pm,m
′

` ; see (1.48).

4.2.3 Discrete Fourier transform on the rotation group SO(3). We recall
that for L ∈ N0 our goal is the evaluation of the sums

f(αi, βi, γi) =

L∑
`=0

∑̀
m=−`

∑̀
m′=−`

f̂m,m
′

` Dm,m′

` (αi, βi, γi), with i = 1, 2, . . . , I.

(4.10)
We call this the non-equispaced discrete SO(3) Fourier transform (NDSOFT). The
adjoint NDSOFT is accordingly defined as the calculation of the sums

f̃m,m
′

` =

I∑
i=1

f(αi, βi, γi)D̃
m,m′

` (αi, βi, γi),
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with ` = 0, 1, . . . , L and m,m′ = −`, . . . , `. To recover the SO(3) Fourier coefficients

f̂m,m
′

` , we again need a suitable quadrature rule with weights wi to discretize the
inner products

f̂m,n` =

∫ 2π

0

∫ π

0

∫ 2π

0

f(α, β, γ)Dm,m′

` (α, β, γ) sinβ dγ dβ dα.

Similar to the spherical case, we work with sampling sets of arbitrary nodes

X =
{

(αi, βi, γi)
}I
i=1

,

and define the index set

IL :=
{

(`,m,m′) : ` = 0, 1, . . . , L;m,m′ = −`, . . . , `
}
.

In matrix-vector notation, we can write the calculation of an NDSOFT as

fX = DL,X f̂L

with

fX :=
(
f(αi, βi, γi)

)I
i=1
∈ CI ,

DL,X :=
(
Dm,m′

` (αi, βi, γi)
)
i=1,2,...,I;(`,m,m′)∈IL

∈ CI×
1
3 (L+1)(2L+1)(2L+3),

f̂L :=
(
f̂m,m

′

`

)
∈ C

1
3 (L+1)(2L+1)(2L+3).

Then the adjoint NDSOFT reads

f̃L = DH
L,X fX .

4.2.4 Fast Fourier transform for arbitrary nodes on SO(3). The chief idea
for our fast Fourier transform algorithm on the rotation group SO(3) is very similar
to that for the sphere S2. We first rewrite (4.10) as a three-dimensional Fourier
sum,

f(α, β, γ) =

L∑
`=−L

L∑
m=−L

L∑
m′=−L

ĉm,m
′

` e−imαei`βe−im′γ . (4.11)

The coefficients ĉm,m
′

` therein will be computed with O
(
L3 logL log(1/ε)

)
arith-

metic operations. Then we can use the NFFT to evaluate the obtained expansion
with another O

(
L3 logL+I log(1/ε)3

)
arithmetic operations. In total, this gives an

O
(
L3 logL log(1/ε) + I log(1/ε)3

)
algorithm to calculate the whole transformation.

Equation (4.10) can be rearranged to

f(α, β, γ) =

L∑
`=0

∑̀
m=−`

∑̀
m′=−`

f̂m,m
′

` Dm,m′

` (α, β, γ)

=

L∑
m=−L

L∑
m′=−L

L∑
`=`∗

f̂m,m
′

` Dm,m′

` (α, β, γ)

=

L∑
m=−L

L∑
m′=−L

e−imα e−im′γ
L∑

`=l∗

f̂m,m
′

` dm,m
′

` (cosβ)

=

L∑
m=−L

L∑
m′=−L

e−imα e−im′γ hm,m′(x),

where

hm,m′(x) =

L∑
`=l∗

f̂m,m
′

` dm,m
′

` (x).
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The first step consists in replacing the rearranged expansion by an ordinary three-
dimensional Fourier sum. Similar to the spherical case, we apply to each individual
sum hm,m′(x) a number of transformations. We therefore assume now that a pair
of orders m,m′ has been fixed. First, we want to replace the Wigner-d functions

dm,m
′

` by those of low orders dm̂,m̂
′

` . Lemma 1.94 motivates us to define

m̂ = m̂(m,m′) :=


0, if m = m′ = 0,

1, if m = ±m,

0, else,

m̂′ :=


0, if m = m′ = 0,

±1, if m = ±n,

2, if m+m′ even,

1, if m+m′ odd.

(4.12)
With the help of the divide-and-conquer algorithm from Section 2.5 and the results
found in Section 2.6, we can write the sum hm,m′(x) as

hm,m′(x) =

L∑
`=l̂∗

âm,m
′

` dm̂,m̂
′

` (x).

For the computation of the coefficients âm,m
′

` from the known coefficients f̂m,m
′

` we

need O
(
L logL log(1/ε)

)
arithmetic operations, where ε is the desired accuracy. In

total, we needO
(
L3 logL log(1/ε)

)
arithmetic operations to calculate all coefficients

âm,m
′

` for all orders m and m′.
It remains to manipulate the obtained sum hm,m′(x) until we have obtained an
ordinary Fourier sum. To this end, we must distinguish five different cases with
respect to the orders m̂ and m̂′. Three of them, namely the cases (m̂, m̂′) =
(0, 0), (0, 1), (0, 2), are entirely equivalent to the three cases that have been described
for the fast spherical Fourier transform; see Section 4.1.6. Therefore, we only
describe the remaining two cases here, which might be succinctly handled together
as follows.

The case m̂ = 1, m̂′ = ±1

This case implies that m = ±m′. After the first step, we obtain the sum

hm(x) =

L∑
`=1

âm,m
′

` P 1,±1
` (x) = (1± x)

L−1∑
`=0

âm,m
′

`+1

1

2
P

(1∓1,1±1)
` (x).

Now, we replace this by a linear combination of Chebyshev polynomials of first kind

hm(x) = (1 + x)

L−1∑
`=0

b̂m,m
′

` T`(x),

and with

(1± x)T`(x) = ± 1 + δ0,`
2

T`+1(cosβ) + T`(cosβ)± 1− δ0,`
2

T`−1(cosβ)

= ± 1 + δ0,`
2

cos((`+ 1)β) + cos(`β)± 1− δ0,`
2

cos((`− 1)β)

= ± 1 + δ0,`
4

(e(`+1)β + e−(`+1)β) +
1

2
(e`β + e−`β)

± 1− δ0,`
4

(e(`−1)β + e−(`−1)β).
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we compute the coefficients

ĉm` =



1
2

(
2b̂m,m

′

0 ± b̂m,m
′

1

)
, if ` = 0,

1
4

(
± 2b̂m,m

′

0 + 2b̂m,m
′

1 ± b̂m,m
′

2

)
, if |`| = 1,

1
4

(
± b̂m,m

′

|`|−1 + 2b̂m,m
′

|`| ± b̂m,m
′

|`|+1

)
, if 1 < |`| < L− 1,

1
4

(
± b̂m,m

′

L−2 + 2b̂m,m
′

L−1

)
, if |`| = L− 1,

± 1
4 b̂
m,m′

L−1 , if |`| = L,

in the Fourier sum

hm(x) =

L∑
`=−L

ĉm,m
′

` ei`γ

with O(L) arithmetic operations. After these transformations, we obtain the ordi-
nary three-dimensional Fourier sum

f(α, β, γ) =

L∑
m=−L

L∑
m′=−L

L∑
`=`∗

ĉm,m
′

` e−imαei`βe−im′γ . (4.13)

This triple sum can be evaluated with the NFFT algorithm on an arbitrary sampling
set X with I nodes using O

(
L3 logL+ I log3(1/ε)

)
arithmetic operations, where ε

is the desired accuracy. We can also write complete procedure as a matrix-vector
multiplication,

fX = FL,X CL BL AL f̂L. (4.14)

Here, the block-diagonal matrix AL represents the step where we replace gener-
alized associated Legendre functions of high orders m and m′ with those of low

orders m̂ and m̂′, that is, we compute the coefficients âm,m
′

` from the coefficients

f̂m,m
′

` . Then, the matrix BL replaces the several occurrences of Jacobi polyno-

mials P
(0,0)
` , P

(1,1)
` , P

(2,2)
` , P

(0,2)
` , and P

(2,0)
` with the Chebyshev polynomials of

first kind T`. This is the step where we compute the coefficients b̂m,m
′

` from the

coefficients âm.m
′

` . The matrix CL computes the coefficients ĉm,m
′

` from the co-

efficients b̂m,m
′

` to obtain the three-dimensional Fourier sum (4.13). Finally, the
matrix FL,X denotes the application of the NFFT algorithm. In total, this is an

O
(
L3 logL log(1/ε) + I log3(1/ε)

)
algorithm.

The implementation of the described method is work in progress, but first tests
indicate that it does not suffer from some negative effects that were observed in
[66] for a competing method based on a different algorithm. Future work includes
more detailed investigations about this subject.





Appendix A
Formula reference

A.1 Classical orthogonal polynomials

A.1.1 Laguerre polynomials.

Symbol

L(α)
n : R→ R, n ∈ N0, −1 < α.

Inner product and weight function

〈f, g〉 =

∫
I

f(x)g(x)w(x) dx, I = [−1, 1], w(x) = xαe−x.

Differential equation

σ(x)y′′(x) + τ(x)y′(x) + λny(x) = 0, y = L(α)
n ,

σ(x) = x, τ(x) = −x+ α+ 1, λn = n.

Differential operator

D = −x d2

dx2
+ (x− α− 1)

d

dx
.

Rodrigues formula

L(α)
n (x) =

x−αex

Γ(n+ 1)

dn

dxn
(
xn+αe−x

)
,

dm

dxm
L(α)
n (x) = (−1)m

x−(α+m)ex

Γ(n−m+ 1)

dn−m

dxn−m
(
xn+αe−x

)
= (−1)mL

(α+m)
n−m (x).

Leading coefficients

kn =
(−1)n

Γ(n+ 1)
, k̄n = 1, k̃n =

(−1)n√
Γ(n+ 1)Γ(n+ α+ 1)

.

Squared norms

hn =
Γ(n+ α+ 1)

Γ(n+ 1)
, h̄n = Γ(n+ 1)Γ(n+ α+ 1), h̃n = 1.

161
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Three-term recurrence

an = − 1

n+ 1
, a′n = −n− 1,

bn = −2n+ α+ 1

n+ 1
, b′n = 2n+ α+ 1,

cn =
n+ α

n+ 1
, c′n = −n− α,

ān = 1, ā′n = 1,

b̄n = 2n+ α+ 1, b̄′n = 2n+ α+ 1,

c̄n = n(n+ α), c̄′n = n(n+ α),

ãn = − 1√
(n+ 1)(n+ α+ 1)

, ã′n = −
√

(n+ 1)(n+ α+ 1),

b̃n = − 2n+ α+ 1√
(n+ 1)(n+ α+ 1)

, b̃′n = 2n+ α+ 1,

c̃n =

√
n

n+ 1

n+ α

n+ α+ 1
, c̃′n = −

√
n(n+ α).

Derivative identities
d

dx
L(α)
n (x) = −L(α+1)

n−1 (x),

dm

dxm
L(α)
n (x) = (−1)mL

(α+m)
n−m (x),

d

dx
L(α)
n (x) = An

n−1∑
j=0

BjL
(α)
n (x), An = −1, Bj = 1,

d

dx
L̄(α)
n (x) = nL̄

(α+1)
n−1 (x),

dm

dxm
L̄(α)
n (x) =

Γ(n+ 1)

Γ(n−m+ 1)
L̄

(α+m)
n−m (x),

d

dx
L̄(α)
n (x) = Ān

n−1∑
j=0

B̄jL̄
(α)
j (x), Ān = (−1)n+1Γ(n+ 1), B̄j =

(−1)j

Γ(j + 1)
,

d

dx
L̃(α)
n (x) = −

√
nL̃

(α+1)
n−1 (x),

dm

dxm
L̃(α)
n (x) = (−1)m

√
Γ(n+ 1)

Γ(n−m+ 1)
L̃

(α+m)
n−m (x),

d

dx
L̃(α)
n (x) = Ãn

n−1∑
j=0

B̃jL̃
(α)
j (x), Ãn = −

√
Γ(n+ 1)

Γ(n+ α+ 1)
, B̃j =

√
Γ(j + α+ 1)

Γ(j + 1)
.

Connection coefficients{
L

(α)
n

}
n∈N0

→
{
L

(β)
n

}
n∈N0

:

κi,j =
1

Γ (α− β)

Γ (j − i+ α− β)

Γ(j − i+ 1)
,

κ̄i,j =
(−1)i+j

Γ (α− β)

Γ(j + 1)

Γ(i+ 1)

Γ (j − i+ α− β)

Γ(j − i+ 1)
,
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κ̃i,j =
(−1)i+j

Γ (α− β)

√
Γ(j + 1)

Γ(i+ 1)

Γ (i+ β + 1)

Γ(j + α+ 1)

Γ (j − i+ α− β)

Γ(j − i+ 1)
.

{
L

(α)
n

}
n∈N0

→
{
L

(β)
n

}
n∈N0

, β − α ∈ N0:

κi,j =

(−1)i+j
(
β − α
j − i

)
, if i ≤ j ≤ i+ β − α,

0, else,

κ̄i,j =


Γ(j + 1)

Γ(i+ 1)

(
β − α
j − i

)
, if i ≤ j ≤ i+ β − α,

0, else,

κ̃i,j =


√

Γ(j + 1)

Γ(i+ 1)

Γ(i+ β + 1)

Γ(j + α+ 1)

(
β − α
j − i

)
, if i ≤ j ≤ i+ β − α,

0, else.{
L

(α)
n

}
n∈N0

→
{
L

(α+1)
n

}
n∈N0

:

κi,j =


1, if j = i,

(−1)i+j , if j = i+ 1,

0, else,

κ̄i,j =


1, if j = i,

j, if j = i+ 1,

0, else,

κ̃i,j =



√
j + α+ 1, if j = i,

j

√
Γ(i+ 1)

Γ(j + 1)
, if j = i+ 1,

0, else.{
L

(α)
n

}
n∈N0

→
{
L

(α−1)
n

}
n∈N0

:

κi,j = 1, κ̄i,j = (−1)i+j
Γ(j + 1)

Γ(i+ 1)
, κ̃i,j = (−1)i+j

√
Γ(j + 1)

Γ(i+ 1)

Γ(i+ α)

Γ(j + α+ 1)
.

The matrix G

{
L

(α)
n

}N
n=0
→
{
L

(β)
n

}N
n=0

:

G = diag(d) + (α− β) triu(u vT, 1) ∈ R(N+1)×(N+1),

d = (dj)
N
j=0, dj = j,

u = (uj)
N
j=0, uj = 1,

v = (vj)
N
j=0, vj = 1.
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Ḡ = diag(d̄) + (α− β) triu(ū v̄T, 1) ∈ R(N+1)×(N+1),

d̄ = (d̄j)
N
j=0, d̄j = j,

ū = (ūj)
N
j=0, ūj = (−1)j

1

Γ(j + 1)
,

v̄ = (v̄j)
N
j=0, v̄j = (−1)jΓ(j + 1).

G̃ = diag(d̃) + (α− β) triu(ũ ṽT, 1) ∈ R(N+1)×(N+1),

d̃ = (d̃j)
N
j=0, d̃j = j,

ũ = (ũj)
N
j=0, ũj =

√
Γ(j + β + 1)

Γ(i+ 1)
,

ṽ = (ṽj)
N
j=0, ṽj =

√
Γ(j + 1)

Γ(j + β + 1)
.
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A.1.2 Jacobi polynomials.

Symbol

P (α,β)
n : R→ R, n ∈ N0, −1 < α, β.

Inner product and weight function

〈f, g〉 =

∫
I

f(x)g(x)w(x) dx, I = [−1, 1], w(x) = (1− x)α(1 + x)β .

Differential equation

σ(x)y′′(x) + τ(x)y′(x) + λny(x) = 0, y = P (α,β)
n ,

σ(x) = 1− x2, τ(x) = −(α+ β + 2)x+ β − α, λn = n(n+ α+ β + 1).

Differential operator

D = −(1− x2)
d2

dx2
+
(
(α+ β + 2)x+ β − α

) d

dx
.

Rodrigues formula

P (α,β)
n (x) =

(−1)n

2nΓ(n+ 1)
(1− x)−α(1 + x)−β

dn

dxn
(
(1− x)n+α(1 + x)n+β

)
,

dm

dxm
P (α,β)
n (x) =

(−1)n−mΓ(n+m+ α+ β + 1)

2nΓ(n+ α+ β + 1)Γ(n−m+ 1)
(1− x)−(α+m)(1 + x)−(β+m)

× dn−m

dxn−m
(
(1− x)n+α(1 + x)n+β

)
=

Γ(n+m+ α+ β + 1)

2mΓ(n+ α+ β + 1)
P

(α+m,β+m)
n−m (x).

Leading coefficients

kn =
Γ(2n+ α+ β + 1)

2nΓ(n+ 1)Γ(n+ α+ β + 1)
,

k̄n = 1,

k̃n =
Γ(2n+ α+ β + 1)

2n+(α+β+1)/2

√
(2n+ α+ β + 1)

Γ(n+ 1)Γ(n+ α+ 1)Γ(n+ β + 1)Γ(n+ α+ β + 1)
.

Squared norms

hn =
2α+β+1Γ(n+ α+ 1)Γ(n+ β + 1)

(2n+ α+ β + 1)Γ(n+ 1)Γ(n+ α+ β + 1)
,

h̄n = 22n+α+β+1 Γ(n+ 1)Γ(n+ α+ 1)Γ(n+ β + 1)Γ(n+ α+ β + 1)

Γ(2n+ α+ β + 1)Γ(2n+ α+ β + 2)
,

h̃n = 1.
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Three-term recurrence

an =
(2n+ α+ β + 1)(2n+ α+ β + 2)

2(n+ 1)(n+ α+ β + 1)
, a′n =

2(n+ 1)(n+ α+ β + 1)

(2n+ α+ β + 1)2
,

bn =
(β2 − α2)(2n+ α+ β + 1)

2(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
, b′n =

β2 − α2

(2n+ α+ β)(2n+ α+ β + 2)
,

cn =
(n+ α)(n+ β)(2n+ α+ β + 2)

(n+ 1)(n+ α+ β + 1)(2n+ α+ β)
, c′n =

2(n+ α)(n+ β)

(2n+ α+ β)(2n+ α+ β + 1)
,

ān = ā′n = 1,

b̄n = b̄′n =
β2 − α2

(2n+ α+ β)(2n+ α+ β + 2)
,

c̄n = c̄′n =
4n(n+ α+ β)(n+ α)(n+ β)

(2n+ α+ β − 1)(2n+ α+ β)(2n+ α+ β)(2n+ α+ β + 1)
,

ãn =
(2n+ α+ β + 2)

2

√
(2n+ α+ β + 1)(2n+ α+ β + 3)

(n+ 1)(n+ α+ β + 1)(n+ α+ 1)(n+ β + 1)
,

b̃n =
β2 − α2

2(2n+ α+ β)

√
(2n+ α+ β + 1)(2n+ α+ β + 3)

(n+ 1)(n+ α+ β + 1)(n+ α+ 1)(n+ β + 1)
,

c̃n =
2n+ α+ β + 2

2n+ α+ β

√
n(n+ α)(n+ β)(n+ α+ β)(2n+ α+ β + 3)

(n+ 1)(n+ α+ 1)(n+ β + 1)(n+ α+ β + 1)(2n+ α+ β − 1)
,

ã′n =
2

(2n+ α+ β + 2)

√
(n+ 1)(n+ α+ β + 1)(n+ α+ 1)(n+ β + 1)

(2n+ α+ β + 1)(2n+ α+ β + 3)
,

b̃′n =
β2 − α2

(2n+ α+ β)(2n+ α+ β + 2)
,

c̃′n =
2

2n+ α+ β

√
n(n+ α)(n+ β)(n+ α+ β)

(2n+ α+ β − 1)(n+ α+ β + 1)
.

Derivative identities

d

dx
P (α,β)
n (x) =

n+ α+ β + 1

2
P

(α+1,β+1)
n−1 (x),

dm

dxm
P (α,β)
n (x) =

Γ(n+m+ α+ β + 1)

2mΓ(n+ α+ β + 1)
P

(α+m,β+m)
n−m (x),

d

dx
P (α,β)
n (x) = An

n−1∑
j=0

BjP
(α,β)
j (x) + Cn

n−1∑
j=0

DjP
(α,β)
j (x),

An = (−1)n+1 Γ(n+ α+ 1)

2Γ(n+ α+ β + 1)
, Bj = (−1)j(2j + α+ β + 1)

Γ(j + α+ β + 1)

Γ(j + α+ 1)
,

Cn =
Γ(n+ β + 1)

2Γ(n+ α+ β + 1)
, Dj = (2j + α+ β + 1)

Γ(j + α+ β + 1)

Γ(j + β + 1)
,
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d

dx
P̄ (α,β)
n (x) = nP̄

(α+1,β+1)
n−1 (x),

dm

dxm
P̄ (α,β)
n (x) =

Γ(n+ 1)

Γ(n−m+ 1)
P̄

(α+m,β+m)
n−m (x),

d

dx
P̄ (α,β)
n (x) = Ān

n−1∑
j=0

B̄jP̄
(α,β)
j (x) + C̄n

n−1∑
j=0

D̄jP̄
(α,β)
j (x),

Ān = (−1)n+1 2n−1Γ(n+ 1)Γ(n+ α+ 1)

Γ(2n+ α+ β + 1)
, B̄j = (−1)j

2jΓ(2j + α+ β + 1)

Γ(j + 1)Γ(j + α+ 1)
,

C̄n =
2n−1Γ(n+ 1)Γ(n+ β + 1)

Γ(2n+ α+ β + 1)
, D̄j =

2jΓ(2j + α+ β + 1)

Γ(j + 1)Γ(j + β + 1)
,

d

dx
P̃ (α,β)
n (x) =

√
n(n+ α+ β + 1)P̃

(α+1,β+1)
n−1 (x),

dm

dxm
P̃ (α,β)
n (x) =

√
Γ(n+ 1)Γ(n+m+ α+ β + 1)

Γ(n−m+ 1)Γ(n+ α+ β + 1)
P̃

(α+m,β+m)
n−m (x),

d

dx
P̃ (α,β)
n (x) = Ãn

n−1∑
j=0

B̃jP̃
(α,β)
j (x) + C̃n

n−1∑
j=0

D̃jP̃
(α,β)
j (x),

Ãn = (−1)n+1 1

2

√
2n+ α+ β + 1ẼnF̃n, B̃j = (−1)j

√
2j + α+ β + 1Ẽ−1

j F̃−1
j ,

C̃n =
1

2

√
2n+ α+ β + 1ẼnF̃

−1
n , D̃j =

√
2j + α+ β + 1Ẽ−1

j F̃j ,

Ẽn =

√
Γ(n+ 1)

Γ(n+ α+ β + 1)
, F̃n =

√
Γ(n+ α+ 1)

Γ(n+ β + 1)
.

Connection coefficients

{
P

(α,β)
n

}
n∈N0

→
{
P

(γ,β)
n

}
n∈N0

:

κi,j =
(2i+ γ + β + 1)

Γ (α− γ)

Γ(j + β + 1)

Γ(i+ β + 1)

Γ (i+ γ + β + 1)

Γ(j + α+ β + 1)

Γ (j − i+ α− γ)

Γ(j − i+ 1)

× Γ(j + i+ α+ β + 1)

Γ (j + i+ γ + β + 2)
,

κ̄i,j =
2j−i

Γ(α− γ)

Γ(j + 1)

Γ(i+ 1)

Γ(j + β + 1)

Γ(i+ β + 1)

Γ(2i+ γ + β + 2)

Γ(2j + α+ β + 1)

Γ(j − i+ α− γ)

Γ(j − i+ 1)

× Γ(j + i+ α+ β + 1)

Γ(j + i+ γ + β + 2)
,

κ̃i,j =
2(γ−α)/2

Γ(α− γ)

Γ(2i+ γ + β + 2)

Γ(2i+ γ + β + 1)

Γ(j − i+ α− γ)

Γ(j − i+ 1)

Γ(j + i+ α+ β + 1)

Γ(j + i+ γ + β + 2)

×

√
2j + α+ β + 1

2i+ γ + β + 1

Γ(j + 1)

Γ(i+ 1)

Γ(j + β + 1)

Γ(i+ β + 1)

Γ(i+ γ + 1)

Γ(j + α+ 1)

Γ(i+ γ + β + 1)

Γ(j + α+ β + 1)
.
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P

(α,β)
n

}
n∈N0

→
{
P

(α,δ)
n

}
n∈N0

:

κi,j = (−1)i+j
(2i+ α+ δ + 1)

Γ(β − δ)
Γ(j + α+ 1)

Γ(i+ α+ 1)

Γ(i+ α+ δ + 1)

Γ(j + α+ β + 1)

Γ(j − i+ β − δ)
Γ(j − i+ 1)

× Γ(i+ j + α+ β + 1)

Γ(i+ j + α+ δ + 2)
,

κ̄i,j = (−1)i+j
2j−i

Γ(β − δ)
Γ(j + 1)

Γ(i+ 1)

Γ(j + α+ 1)

Γ(i+ α+ 1)

Γ(2i+ α+ δ + 2)

Γ(2j + α+ β + 1)

Γ(j − i+ β − δ)
Γ(j − i+ 1)

× Γ(j + i+ α+ β + 1)

Γ(j + i+ α+ δ + 2)
,

κ̃i,j = (−1)i+j
2(δ−β)/2

Γ(β − δ)
Γ(2i+ α+ δ + 2)

Γ(2i+ α+ δ + 1)

Γ(j − i+ β − δ)
Γ(j − 1 + 1)

Γ(j + i+ α+ β + 1)

Γ(j + i+ α+ δ + 2)

×

√
(2j + α+ β + 1)

(2i+ α+ δ + 1)

Γ(j + 1)

Γ(i+ 1)

Γ(j + α+ 1)

Γ(i+ α+ 1)

Γ(i+ δ + 1)

Γ(j + β + 1)

Γ(i+ α+ δ + 1)

Γ(j + α+ β + 1)
.

{
P

(α,β)
n

}
n∈N0

→
{
P

(γ,β)
n

}
n∈N0

, γ − α ∈ N:

κi,j =



(−1)i+j(2i+ γ + β + 1)

(
γ − α
j − i

)
×Γ(j + β + 1)

Γ(i+ β + 1)

Γ(i+ γ + β + 1)

Γ(j + α+ β + 1)

×Γ(j + i+ α+ β + 1)

Γ(j + i+ γ + β + 2)
, if i ≤ j ≤ i+ γ − α,

0, else,

κ̄i,j =


(−1)i+j2j−i

(
γ − α
j − i

)
Γ(j + 1)

Γ(i+ 1)

Γ(j + β + 1)

Γ(i+ β + 1)

×Γ(j + i+ α+ β + 1)

Γ(j + i+ γ + β + 2)
,

Γ(2i+ γ + β + 2)

Γ(2j + α+ β + 1)
, if i ≤ j ≤ i+ γ − α,

0, else,

κ̃i,j =



(−1)j+i2(γ−α)/2

(
γ − α
j − i

)√
Γ(j + β + 1)

Γ(i+ β + 1)

×

√
Γ(i+ γ + 1)

Γ(j + α+ 1)

Γ(j + 1)

Γ(i+ 1)

×

√
(2j + α+ β + 1)

(2i+ γ + β + 1)

Γ(i+ γ + β + 1)

Γ(j + α+ β + 1)

×Γ(j + i+ α+ β + 1)

Γ(j + i+ γ + β + 2)

Γ(2i+ γ + β + 2)

Γ(2i+ γ + β + 1)
, if i ≤ j ≤ i+ γ − α,

0, else.
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P

(α,β)
n

}
n∈N0

→
{
P

(α,δ)
n

}
n∈N0

, δ − β ∈ N:

κi,j =


(2i+ α+ δ + 1)

(
δ − β
j − i

)
Γ(j + α+ 1)

Γ(i+ α+ 1)

× Γ(i+ α+ δ + 1)

Γ(j + α+ β + 1)

Γ(j + i+ α+ β + 1)

Γ(j + i+ α+ δ + 2)
, if i ≤ j ≤ i+ δ − β,

0, else,

κ̄i,j =


2j−i

(
δ − β
j − i

)
Γ(j + 1)

Γ(i+ 1)

Γ(j + α+ 1)

Γ(i+ α+ 1)

× Γ(2i+ α+ δ + 2)

Γ(2j + α+ β + 1)

Γ(i+ j + α+ β + 1)

Γ(i+ j + α+ δ + 2)
, if i ≤ j ≤ i+ δ − β,

0, else,

κ̃i,j =



2δ−β/2
(
δ − β
j − i

)√
Γ(j + α+ 1)

Γ(i+ α+ 1)

×

√
Γ(i+ δ + 1)

Γ(j + β + 1)

Γ(j + 1)

Γ(i+ 1)

×

√
(2j + α+ β + 1)

(2i+ α+ δ + 1)

Γ(i+ α+ δ + 1)

Γ(j + α+ β + 1)

×Γ(i+ j + α+ β + 1)

Γ(j + i+ α+ δ + 2)

Γ(2i+ α+ δ + 2)

Γ(2i+ α+ δ + 1)
, if i ≤ j ≤ i+ δ − β,

0, else.

{
P

(α,β)
n

}
n∈N0

→
{
P

(α+1,β)
n

}
n∈N0

:

κi,j =



j + α+ β + 1

2j + α+ β + 1
, if i = j,

−(j + β)

2j + α+ β + 1
, if j = i+ 1,

0, else,

κ̄i,j =


1, if j = i,

−2j(j + β)

(2j + α+ β)(2j + α+ β + 1)
, if j = i+ 1,

0, else,

κ̃i,j =



√
2(j + α+ 1)(j + α+ β + 1)

(2j + α+ β + 1)(2j + α+ β + 2)
, if i = j,

−

√
2j(j + β)Γ(i+ 1)

(2j + α+ β)(2j + α+ β + 1)Γ(j)
, if j = i+ 1,

0, else.
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P

(α,β)
n

}
n∈N0

→
{
P

(α,β+1)
n

}
n∈N0

:

κi,j =



j + α+ β + 1

2j + α+ β + 1
, if i = j,

j + α

2j + α+ β + 1
, if j = i+ 1,

0, else,

κ̄i,j =


1, if j = i,

2j(j + α)

(2j + α+ β)(2j + α+ β + 1)
, if j = i+ 1,

0, else,

κ̃i,j =



√
2(j + β + 1)(j + α+ β + 1)

(2j + α+ β + 1)(2j + α+ β + 2)
, if i = j,√

2j(j + α)Γ(i+ 1)

(2j + α+ β)(2j + α+ β + 1)Γ(j)
, if j = i+ 1,

0, else.{
P

(α,β)
n

}
n∈N0

→
{
P

(α+1,β+1)
n

}
n∈N0

:

κi,j = 2i−j
Γ(i+ 1)

Γ(j + 1)

Γ(i+ α+ β + 3)

Γ(j + α+ β + 1)

Γ(2j + α+ β + 1)

Γ(2i+ α+ β + 3)

×


1, if j = i,

2j(α− β)

(2j + α+ β)(2j + α+ β + 2)
, if j = i+ 1,

−4(j − 1)j(j + α)(j + β)

(2j + α+ β − 1)(2j + α+ β)2(2j + α+ β + 1)
, if j = i+ 2,

κ̄i,j =


1, if j = i,

2j(α− β)

(2j + α+ β)(2j + α+ β + 2)
, if j = i+ 1,

−4(j − 1)j(j + α)(j + β)

(2j + α+ β − 1)(2j + α+ β)2(2j + α+ β + 1)
, if j = i+ 2,

κ̃i,j =
2i+1

2j
Γ(2j + α+ β + 1)

Γ(2i+ α+ β + 3)

√
Γ(i+ 1)

Γ(j + 1)

Γ(i+ α+ 2)

Γ(j + α+ 1)

Γ(i+ β + 2)

Γ(j + β + 1)

×

√
Γ(i+ α+ β + 3)

Γ(j + α+ β + 1)

(2j + α+ β + 1)

(2i+ α+ β + 3)

×


1 if i = j,

2j(α− β)

(2j + α+ β)(2j + α+ β + 2)
, if j = i+ 1,

−4(j − 1)j(j + α)(j + β)

(2j + α+ β − 1)(2j + α+ β)2(2j + α+ β + 1)
, if j = i+ 2.
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P

(α,β)
n

}
n∈N0

→
{
P

(α−1,β)
n

}
n∈N0

:

κi,j = (2i+ α+ β)
Γ(j + β + 1)

Γ(i+ β + 1)

Γ(i+ α+ β)

Γ(j + α+ β + 1)
,

κ̄i,j =
2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(j + β + 1)

Γ(i+ β + 1)

Γ(2i+ α+ β + 1)

Γ(2j + α+ β + 1)
,

κ̃i,j =
2i+ α+ β√

2

√
Γ(j + 1)

Γ(i+ 1)

Γ(i+ α)

Γ(j + α+ 1)

Γ(j + β + 1)

Γ(i+ β + 1)

×

√
Γ(i+ α+ β)

Γ(j + α+ β + 1)

(2j + α+ β + 1)

(2i+ α+ β)
.

{
P

(α,β)
n

}
n∈N0

→
{
P

(α,β−1)
n

}
n∈N0

:

κi,j = (−1)i+j(2i+ α+ β)
Γ(j + α+ 1)

Γ(i+ α+ 1)

Γ(i+ α+ β)

Γ(j + α+ β + 1)
,

κ̄i,j = (−1)i+j
2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(j + α+ 1)

Γ(i+ α+ 1)

Γ(2i+ α+ β + 1)

2j + α+ β + 1)
,

κ̃i,j = (−1)i+j
2i+ α+ β + 1√

2

√
Γ(j + 1)

Γ(i+ 1)

Γ(j + α+ 1)

Γ(i+ α+ 1)

Γ(i+ β)

Γ(j + β + 1)

×

√
Γ(i+ α+ β)

Γ(j + α+ β + 1)

(2j + α+ β + 1)

(2i+ α+ β)
.

(α, β)→ (α− 1, β − 1):

κi,j =
(
(−1)i+jΓ(j + α+ 1)Γ(i+ β) + Γ(i+ α)Γ(j + β + 1)

)
× (2i+ α+ β − 1)Γ(i+ α+ β − 1)

Γ(i+ α)Γ(i+ β)Γ(j + α+ β + 1)
,

κ̄i,j =

(
(−1)i+j

Γ(j + α+ 1)

Γ(i+ α)
+

Γ(j + β + 1)

Γ(i+ β)

)
2j

2i
Γ(j + 1)

Γ(i+ 1)

Γ(2i+ α+ β)

Γ(2j + α+ β + 1)
,

κ̃i,j =

(
(−1)i+j

√
Γ(j + α+ 1)

Γ(j + β + 1)

Γ(i+ β)

Γ(i+ α)
+

√
Γ(j + β + 1)

Γ(j + α+ 1)

Γ(i+ α)

Γ(i+ β)

)

×

√
Γ(j + 1)

Γ(i+ 1)

(2j + α+ β + 1)

(2i+ α+ β − 1)

Γ(i+ α+ β − 1)

Γ(j + α+ β + 1)

Γ(2i+ α+ β)

2Γ(2i+ α+ β − 1)
.
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The matrix G{
P

(α,β)
n

}N
n=0
→
{
P

(γ,δ)
n

}N
n=0

:

G = diag(d) + (α− γ) triu(u vT, 1) + (β − δ) triu(w zT, 1) ∈ R(N+1)×(N+1),

d = (dj)
N
j=0, dj = j(j + α+ β + 1),

u = (uj)
N
j=0, uj = (2j + γ + δ + 1)

Γ(j + γ + δ + 1)

Γ(j + δ + 1)
,

v = (vj)
N
j=0, vj =

Γ(j + δ + 1)

Γ(j + γ + δ + 1)
,

w = (wj)
N
j=0, wj = (−1)j(2j + γ + δ + 1)

Γ(j + γ + δ + 1)

Γ(j + γ + 1)
,

z = (zj)
N
j=0, zj = (−1)j

Γ(j + γ + 1)

Γ(j + γ + δ + 1)
.

Ḡ = diag(d̄) + (α− γ) triu(ū v̄T, 1) + (β − δ) triu(w̄ z̄T, 1) ∈ R(N+1)×(N+1),

d̄ = (d̄j)
N
j=0, d̄j = j(j + α+ β + 1),

ū = (ūj)
N
j=0, ūj =

Γ(2j + γ + δ + 2)

2jΓ(j + 1)Γ(j + δ + 1)
,

v̄ = (v̄j)
N
j=0, v̄j =

2jΓ(j + 1)Γ(j + δ + 1)

Γ(2j + γ + δ + 1)
,

w̄ = (w̄j)
N
j=0, w̄j = (−1)j

Γ(2j + γ + δ + 2)

2jΓ(j + 1)Γ(j + γ + 1)
,

z̄ = (z̄j)
N
j=0, z̄j = (−1)j

2jΓ(j + 1)Γ(j + γ + 1)

Γ(2j + γ + δ + 1)
.

G̃ = diag(d̃) + (α− γ) triu(ũ ṽT, 1) + (β − δ) triu(w̃ z̃T, 1) ∈ R(N+1)×(N+1),

d̃ = (d̃j)
N
j=0, d̃j = j(j + α+ β + 1),

ũ = (ũj)
N
j=0, ũj =

√
(2j + γ + δ + 1)

Γ(j + γ + δ + 1)Γ(j + γ + 1)

Γ(j + 1)Γ(j + δ + 1)
,

ṽ = (ṽj)
N
j=0, ṽj =

√
(2j + γ + δ + 1)

Γ(j + 1)Γ(j + δ + 1)

Γ(j + γ + δ + 1)Γ(j + γ + 1)
,

w̃ = (w̃j)
N
j=0, w̃j = (−1)j

√
(2j + γ + δ + 1)

Γ(j + γ + δ + 1)Γ(j + δ + 1)

Γ(j + 1)Γ(j + γ + 1)
,

z̃ = (z̃j)
N
j=0, z̃j = (−1)j

√
(2j + γ + δ + 1)

Γ(j + 1)Γ(j + γ + 1)

Γ(j + γ + δ + 1)Γ(j + δ + 1)
.
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A.1.3 Gegenbauer polynomials.

Symbol

C(α)
n : R→ R, n ∈ N0, −1/2 < α.

Inner product and weight function

〈f, g〉 =

∫
I

f(x)g(x)w(x) dx, I = [−1, 1], w(x) = (1− x2)α−1/2.

Differential equation

σ(x)y′′(x) + τ(x)y′(x) + λny(x) = 0, y = C(α)
n

σ(x) = 1− x2, τ(x) = −(2α+ 1)x, λn = n(n+ 2α).

Differential operator

D = −(1− x2)
d2

dx2
+ (2α+ 1)x

d

dx
.

Rodrigues formula

C(α)
n (x) =

(−1)nΓ(α+ 1/2)Γ(n+ 2α)

2nΓ(n+ 1)Γ(n+ α+ 1/2)Γ(2α)
(1− x2)1/2−α dn

dxn
(
(1− x2)n+α−1/2

)
,

dm

dxm
C(α)
n (x) =

(−1)n−mΓ(α+ 1/2)Γ(n+ 2α+m)

2nΓ(n−m+ 1)Γ(n+ α+ 1/2)Γ(2α)
(1− x2)1−2α−m

× dn−m

dxn−m
(
(1− x2)n+α−1/2

)
= 2m

Γ(α+m)

Γ(α)
C

(α+m)
n−m (x).

Leading coefficients

kn =
2n

Γ(α)

Γ(n+ α)

Γ(n+ 1)
,

k̄n = 1,

k̃n =
2n+α

√
2π

Γ(n+ α+ 1)√
Γ(n+ 1)(n+ α)Γ(n+ 2α)

.

Squared norms

hn =
21−2απ

Γ(α)2

Γ(n+ 2α)

(n+ α)Γ(n+ 1)
,

h̄n =
2π

22(n+α)

Γ(n+ 1)Γ(n+ 2α)

Γ(n+ α)Γ(n+ α+ 1)
,

h̃n = 1.

Three-term recurrence

an =
2(n+ α)

n+ 1
, a′n =

n+ 1

2(n+ α)
,

bn = 0, b′n = 0,

cn =
n+ 2α− 1

n+ 1
, c′n =

n+ 2α− 1

2(n+ α)
,
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ān = 1, ā′n = 1,

b̄n = 0, b̄′n = 0,

c̄n =
n(n+ 2α− 1)

4(n+ α− 1)(n+ α)
, c̄′n =

n(n+ 2α− 1)

4(n+ α− 1)(n+ α)
,

ãn = 2

√
(n+ α)(n+ α+ 1)

(n+ 1)(n+ 2α)
, ã′n =

1

2

√
(n+ 1)(n+ 2α)

(n+ α)(n+ α+ 1)
,

b̃n = 0, b̃′n = 0,

c̃n =

√
n(n+ α+ 1)(n+ 2α− 1)

(n+ 1)(n+ α− 1)(n+ 2α)
, c̃′n =

1

2

√
n(n+ 2α− 1)

(n+ α− 1)(n+ α)
.

Derivative identities

d

dx
C(α)
n (x) = 2αC

(α+1)
n−1 (x),

dm

dxm
C(α)
n (x) = 2m

Γ(α+m)

Γ(α)
C

(α+m)
n−m (x),

d

dx
C(α)
n (x) = An

n−1∑
j=0

BjC
(α)
j (x) + Cn

n−1∑
j=0

DjC
(α)
j (x) = A′n

⌊
n−1

2

⌋∑
j=0

B′2j+χC
(α)
2j+χ(x),

An = (−1)n+1, Bj = (−1)j(j + α),

Cn = 1, Dj = j + α,

A′n = 2, B′j = j + α,

d

dx
C̄(α)
n (x) = nC̄

(α+1)
n−1 (x),

dm

dxm
C̄(α)
n (x) =

Γ(n+ 1)

Γ(n−m+ 1)
C̄

(α+m)
n−m (x),

d

dx
C̄(α)
n (x) = Ān

n−1∑
j=0

B̄jC̄
(α)
j (x) + C̄n

n−1∑
j=0

D̄jC̄
(α)
j (x) = Ā′n

⌊
n−1

2

⌋∑
j=0

B̄′2j+χC̄
(α)
2j+χ(x),

Ān = (−1)n+12−n
Γ(n+ 1)

Γ(n+ α)
, B̄j = (−1)j2j

Γ(j + α+ 1)

Γ(j + 1)
,

C̄n = 2−n
Γ(n+ 1)

Γ(n+ α)
, D̄j = 2j

Γ(j + α+ 1)

Γ(j + 1)
,

Ā′n = 21−n Γ(n+ 1)

Γ(n+ α)
, B̄′j = 2j

Γ(j + α+ 1)

Γ(j + 1)
,
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d

dx
C̃(α)
n (x) =

√
n(n+ 2α)

sign(α)
C̃

(α+1)
n−1 (x),

dm

dxm
C̃(α)
n (x) = sign(α)

√
Γ(n+ 1)Γ(n+m+ 2α)

Γ(n−m+ 1)Γ(n+ 2α)
C̃

(α+m)
n−m (x),

d

dx
C̃(α)
n (x) = Ãn

n−1∑
j=0

B̃jC̃
(α)
j (x) + C̃n

n−1∑
j=0

D̃jC̃
(α)
j (x) = Ã′n

⌊
n−1

2

⌋∑
j=0

B̃′2j+χC̃
(α)
2j+χ(x),

Ãn = (−1)n+1

√
(n+ α)Γ(n+ 1)

Γ(n+ 2α)
, B̃j = (−1)j

√
(j + α)Γ(j + 2α)

Γ(j + 1)
,

C̃n =

√
(n+ α)Γ(n+ 1)

Γ(n+ 2α)
, D̃j =

√
(j + α)Γ(j + 2α)

Γ(j + 1)
,

Ã′n = 2

√
(n+ α)Γ(n+ 1)

Γ(n+ 2α)
, B̃′j =

√
(j + α)Γ(j + 2α)

Γ(j + 1)
.

Connection coefficients

{
C

(α)
n

}
n∈N0

→
{
C

(β)
n

}
n∈N0

:

κi,j =
Γ(β)(i+ β)

Γ(α)Γ(α− β)

Γ
(
j−i
2 + α− β

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + α

)
Γ
(
j+i
2 + β + 1

) ,
κ̄i,j =

1

Γ(α− β)

2i

2j
Γ(j + 1)

Γ(i+ 1)

Γ(i+ β + 1)

Γ(j + α)

Γ
(
j−i
2 + α− β

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + α

)
Γ
(
j+i
2 + β + 1

) ,
κ̃i,j =

√
(i+ β)(j + α)

Γ(α− β)

√
Γ(j + 1)Γ (i+ 2α̂)

Γ(i+ 1)Γ(j + 2α)

2α

2β
Γ
(
j−i
2 + α− β

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + α

)
Γ
(
j+i
2 + β + 1

)
{
C

(α)
n

}
n∈N0

→
{
C

(β)
n

}
n∈N0

, β − α ∈ N:

κi,j =

(−1)(i+j)/2 Γ(β)(i+ β)

Γ(α)

(
β − α
j−i
2

)
Γ
(
j+i
2 + α

)
Γ
(
j+i
2 + β + 1

) , if i ≤ j ≤ i+ 2(β − α),

0, else,

κ̄i,j =



(−1)(i+j)/2 2i

2j
Γ(j + 1)

Γ(i+ 1)

Γ(i+ β + 1)

Γ(j + α)

(
β − α
j−i
2

)

×
Γ
(
j+i
2 + α

)
Γ
(
j+i
2 + β + 1

) , if i ≤ j ≤ i+ 2(β − α),

0, else,
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κ̃i,j =



(−1)(i+j)/2 2α

2β

√
(i+ β)(j + α)

(
β − α
j−i
2

)

×
Γ
(
j+i
2 + α

)
Γ
(
j+i
2 + +β + 1

)√Γ(j + 1)

Γ(i+ 1)

Γ (i+ 2β)

Γ(j + 2α)
, if i ≤ j ≤ i+ 2(β − α),

0, else.{
C

(α)
n

}
n∈N0

→
{
C

(α+1)
n

}
n∈N0

:

κi,j =



α

j + α
, if j = i,

− α

j + α
, if j = i+ 2,

0, else,

κ̄i,j =


1, if j = i,

−1

4

j − 1

j + α− 1

j

j + α
, if j = i+ 2,

0, else,

κ̃i,j =



1

2

√
j + 2α

j + α

j + 2α+ 1

j + α+ 1
, if j = i,

−1

2

1√
(j + α− 1)(j + α)

, if j = i+ 2,

0, else.{
C

(α)
n

}
n∈N0

→
{
C

(α−1)
n

}
n∈N0

:

κi,j =
i+ α− 1

α− 1
,

κ̄i,j =
2i

2j
Γ(j + 1)

Γ(i+ 1)

Γ(i+ α)

Γ(j + α)
,

κ̃i,j =

√
(i+ α− 1)(j + α)

2

√
Γ(j + 1)

Γ(i+ 1)

Γ(i+ 2α− 2)

Γ(j + 2α)
.

The matrix G

{
C

(α)
n

}N
n=0
→
{
C

(β)
n

}N
n=0

:

G = diag(d) + 4(α− β) triuc(u vT, 1) ∈ R(N+1)×(N+1),

d = (dj)
N
j=0, dj = j(j + 2α),

u = (uj)
N
j=0, uj = j + β,

v = (vj)
N
j=0, vj = 1.
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Ḡ = diag(d̄) + 4(α− β) triuc(ū v̄T, 1) ∈ R(N+1)×(N+1),

d̄ = (d̄j)
N
j=0, d̄j = j(j + 2α),

ū = (ūj)
N
j=0, ūj =

2jΓ(j + β + 1)

Γ(j + 1)
,

v̄ = (v̄j)
N
j=0, v̄j =

Γ(j + 1)

2jΓ(j + β)
.

G̃ = diag(d̃) + 4(α− β) triu(ũ ṽT, 1) ∈ R(N+1)×(N+1),

d̃ = (d̃j)
N
j=0, d̃j = j(j + 2α),

ũ = (ũj)
N
j=0, ũj =

√
(j + β)

Γ(j + 2β)

Γ(j + 1)
,

ṽ = (ṽj)
N
j=0, ṽj =

√
(j + β)

Γ(j + 1)

Γ(j + 2β)
.
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A.1.4 Legendre polynomials.

Symbol

Pn : R→ R, n ∈ N0.

Inner product and weight function

〈f, g〉 =

∫
I

f(x)g(x)w(x) dx, I = [−1, 1], w(x) = 1.

Differential equation

σ(x)y′′(x) + τ(x)y′(x) + λny(x) = 0, y = Pn,

σ(x) = 1− x2, τ(x) = −2x, λn = n(n+ 1).

Differential operator

D = −(1− x2)
d2

dx2
+ 2x

d

dx
.

Rodrigues formula

Pn(x) =
(−1)n

2nn!

dn

dxn
(
(1− x2)n

)
,

dm

dxm
Pn(x) =

(−1)n−m(n+ 1)m
2n(n−m)!(1− x2)m

dn−m

dxn−m
(
(1− x2)n

)
=

Γ(n+m+ 1)

2mΓ(n+ 1)
P

(m,m)
n−m (x).

Leading coefficients

kn =
2n√
π

Γ(n+ 1/2)

Γ(n+ 1)
, k̄n = 1, k̃n =

√
2n+ 1

2

2n√
π

Γ(n+ 1/2)

Γ(n+ 1)
.

Squared norms

hn =
2

2n+ 1
, h̄n =

Γ(n+ 1)2

22nΓ(n+ 1/2)Γ(n+ 3/2)
, h̃n = 1.

Three-term recurrence

an =
2n+ 1

n+ 1
, a′n =

n+ 1

2n+ 1
,

bn = 0, b′n = 0,

cn =
n

n+ 1
, c′n =

n

2n+ 1
.

ān = 1, ā′n = 1,

b̄n = 0, b̄′n = 0,

c̄n =
n2

(2n− 1)(2n+ 1)
, c̄′n =

n2

(2n− 1)(2n+ 1)
.

ãn =

√
(2n+ 1)(2n+ 3)

n+ 1
, ã′n =

n+ 1√
(2n+ 1)(2n+ 3)

b̃n = 0, b̃′n = 0,

c̃n =
n

n+ 1

√
2n+ 3

2n− 1
, c̃′n =

n√
(2n− 1)(n+ 1)

.
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Derivative identities

d

dx
Pn(x) =

n+ 1

2
P

(1,1)
n−1 (x),

dm

dxm
Pn(x) =

Γ(n+m+ 1)

2mΓ(n+ 1)
P

(m,m)
n−m (x),

d

dx
Pn(x) = An

n−1∑
j=0

BjPj(x) + Cn

n−1∑
j=0

DjPj(x) = A′n

⌊
n−1

2

⌋∑
j=0

B′2j+χP2j+χ(x),

An = (−1)n+1 1

2
, Bj = (−1)j(2j + 1),

Cn =
1

2
, Dj = 2j + 1,

A′n = 1, B′j = 2j + 1,

d

dx
P̄n(x) = nP̄

(1,1)
n−1 (x),

dm

dxm
P̄n(x) =

Γ(n+ 1)

Γ(n−m+ 1)
P̄

(m,m)
n−m (x),

d

dx
P̄n(x) = Ān

n−1∑
j=0

B̄jP̄j(x) + C̄n

n−1∑
j=0

D̄jP̄j(x) = Ā′n

⌊
n−1

2

⌋∑
j=0

B̄′2j+χP̄2j+χ(x),

Ān = (−1)n+1 1

2n+1

Γ(n+ 1)

Γ(n+ 1/2)
, B̄j = (−1)j2j

Γ(j + 1/2)

Γ(j + 1)
,

C̄n =
1

2n+1

Γ(n+ 1)

Γ(n+ 1/2)
, D̄j = 2j

Γ(j + 1/2)

Γ(j + 1)
,

Ā′n =
1

2n
Γ(n+ 1)

Γ(n+ 1/2)
, B̄′j = 2j

Γ(j + 1/2)

Γ(j + 1)
,

d

dx
P̃n(x) =

√
n(n+ 1)P̃

(1,1)
n−1 (x),

dm

dxm
P̃n(x) =

√
Γ(n+ 1)Γ(n+m+ 1)

Γ(n−m+ 1)Γ(n+ 1)
P̃

(m,m)
n−m (x),

d

dx
P̃n(x) = Ãn

n−1∑
j=0

B̃jP̃j(x) + C̃n

n−1∑
j=0

D̃jP̃j(x) = Ã′n

⌊
n−1

2

⌋∑
j=0

B̃′2j+χP̃2j+χ(x),

Ãn = (−1)n+1 1

2

√
2n+ 1, B̃j = (−1)j

√
2j + 1,

C̃n =
1

2

√
2n+ 1, D̃j =

√
2j + 1,

Ã′n =
√

2n+ 1, B̃′j =
√

2j + 1.
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Connection coefficients{
Pn
}
n∈N0

→
{
Tn
}
n∈N0

:

κi,j =
2− δi,0
π

×
Γ
(
j−i
2 + 1

2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + 1

2

)
Γ
(
j+i
2 + 1

) ,
κ̄i,j =

1√
π

2i

2j
Γ(j + 1)

Γ
(
j + 1

2

) × Γ
(
j−i
2 + 1

2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + 1

2

)
Γ
(
j+i
2 + 1

) ,
κ̃i,j =

√
2− δi,0

2

2j + 1

π
×

Γ
(
j−i
2 + 1

2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + 1

2

)
Γ
(
j+i
2 + 1

) .
{
Pn
}
n∈N0

→
{
Un
}
n∈N0

:

κi,j = − i+ 1

2π
×

Γ
(
j−i
2 −

1
2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + 1

2

)
Γ
(
j+i
2 + 2

) ,
κ̄i,j = − i+ 1

2
√
π

2i

2j
Γ(j + 1)

Γ
(
j + 1

2

) × Γ
(
j−i
2 −

1
2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + 1

2

)
Γ
(
j+i
2 + 2

) ,
κ̃i,j = − i+ 1

4

√
2j + 1

π
×

Γ
(
j−i
2 −

1
2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + 1

2

)
Γ
(
j+i
2 + 2

) .
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A.1.5 Chebyshev polynomials of first kind.

Symbol

Tn : R→ R, n ∈ N0.

Inner product and weight function

〈f, g〉 =

∫
I

f(x)g(x)w(x) dx, I = [−1, 1], w(x) =
1√

1− x2
.

Differential equation

σ(x)y′′(x) + τ(x)y′(x) + λny(x) = 0, y = Tn,

σ(x) = 1− x2, τ(x) = −x, λn = n2.

Differential operator

D = −(1− x2)
d2

dx2
+ x

d

dx
.

Rodrigues formula

Tn(x) =
(−1)n

2n

√
π(1− x2)

Γ
(
n+ 1

2

) dn

dxn

(
(1− x2)n−1/2

)
,

dm

dxm
Tn(x) =

(−1)n−m
√
πnΓ(n+m)(1− x2)

1
2−m

2nΓ(n−m+ 1)Γ(n+ 1/2)

dn−m

dxn−m

(
(1− x2)n−

1
2

)
.

Leading coefficients

kn =

{
1, if n = 0,

2n−1, else,
k̄n = 1, k̃n =

{
π−1/2, if n = 0,

π−1/22n−1/2, else.

Squared norms

hn =

{
π, if n = 0,

π/2, else,
h̄n =

{
π, if n = 0,

21−2nπ, else,
h̃n = 1.

Three-term recurrence

an =

{
1, if n = 0,

2, else,
a′n =

{
1, if n = 0,

1/2, else,

bn = 0, b′n = 0,

cn = 1, c′n = 1/2,

ān = 1, ā′n = 1,

b̄n = 0, b̄′n = 0,

c̄n =

{
1/2, if n = 1,

1/4, else,
c̄′n =

{
1/2, if n = 1,

1/4, else,

ãn =

{
2, if n = 0,√

2, else,
ã′n =

{
1/2, if n = 0,

1/
√

2, else,

b̃n = 0, b̃′n = 0,

c̃n =

{√
2, if n = 1,

1, else,
c̃′n =

{
1/
√

2, if n = 1,

1/2, else.
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Derivative identities

d

dx
Tn(x) =

√
π

2

Γ(n+ 2)

Γ(n+ 1/2)
P

(1/2,1/2)
n−1 (x) = nUn−1(x),

dm

dxm
Tn(x) =

√
π

2m
nΓ(n+m)

Γ(n+ 1/2)
P

(m−1/2,m−1/2)
n−m (x),

d

dx
Tn(x) = An

n−1∑
j=0

BjTj(x) + Cn

n−1∑
j=0

DjTj(x) = A′n

⌊
n−1

2

⌋∑
j=0

B′2j+χT2j+χ(x),

An = (−1)n+1

{
1
2 , if n = 0,

n, else,
Bj = (−1)j ,

Cn =

{
1
2 , if n = 0,

n, else,
Dj = 1,

A′n =

{
1, if n = 0,

2n, else,
B′j = 1,

d

dx
T̄n(x) = nP̄

(1/2,1/2)
n−1 (x) = nŪn−1(x),

dm

dxm
T̄n(x) =

Γ(n+ 1)

Γ(n−m+ 1)
P̄

(m−1/2,m−1/2)
n−m (x),

d

dx
T̄n(x) = Ān

n−1∑
j=0

B̄j T̄j(x) + C̄n

n−1∑
j=0

D̄j T̄j(x) = Ã′n

⌊
n−1

2

⌋∑
j=0

B̃′2j+χT̄2j+χ(x),

Ān = (−1)n+1 n

2n
, B̄j = (−1)j2j ,

C̄n =
n

2n
, D̄j = 2j ,

Ā′n =
2n

2n
, B̄′j = 2j ,

d

dx
T̃n(x) = nP̃

(1/2,1/2)
n−1 (x) = nŨn−1(x),

dm

dxm
T̃n(x) =

√
nΓ(n+m)

Γ(n−m+ 1)
P̃

(m−1/2,m−1/2)
n−m (x),

d

dx
T̃n(x) = Ãn

n−1∑
j=0

B̃j T̃j(x) + C̃n

n−1∑
j=0

D̃j T̃j(x) = Ã′n

⌊
n−1

2

⌋∑
j=0

B̃′2j+χT̃2j+χ(x),
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Ãn = (−1)n+1

{
1√
2
, if n = 0,

n, else,
B̃j = (−1)j ,

C̃n =

{
1√
2
, if n = 0,

n, else,
D̃j = 1,

Ã′n =

{√
2, if n = 0,

2n, else,
B̃′j = 1.

Connection coefficients{
Tn
}
n∈N0

→
{
Un
}
n∈N0

:

κi,j =


1, if j = i = 0,
1
2 , if j = i,

− 1
2 , if j = i+ 2,

κ̄i,j =

{
1, if j = i,

− 1
4 , if j = i+ 2,

κ̃i,j =


1√
2
, if j = i = 0,

1
2 , if j = i,

− 1
2 , if j = i+ 2.{

Tn
}
n∈N0

→
{
Pn
}
n∈N0

:

κi,j = −j(2i+ 1)

8
×

Γ
(
j−i
2 −

1
2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2

)
Γ
(
j+i
2 + 3

2

) ,
κ̄i,j = − j

2
√
π

2i

2j
Γ
(
i+ 3

2

)
Γ(i+ 1)

×
Γ
(
j−i
2 −

1
2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2

)
Γ
(
j+i
2 + 3

2

) ,
κ̃i,j = − j

4

√
2i+ 1

π
×

Γ
(
j−i
2 −

1
2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2

)
Γ
(
j+i
2 + 3

2

) .
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A.1.6 Chebyshev polynomials of second kind.

Symbol

Un : R→ R, n ∈ N0.

Inner product and weight function

〈f, g〉 =

∫
I

f(x)g(x)w(x) dx, I = [−1, 1], w(x) =
√

1− x2.

Differential equation

σ(x)y′′(x) + τ(x)y′(x) + λny(x) = 0, y = Un,

σ(x) = 1− x2, τ(x) = −3x, λn = n(n+ 2).

Differential operator

D = −(1− x2)
d2

dx2
+ 3x

d

dx
.

Rodrigues formula

Un(x) =
(−1)n

2n+1

(n+ 1)

Γ
(
n+ 3

2

)√ π

1− x2

dn

dxn

(
(1− x2)n+1/2

)
,

dm

dxm
Un(x) =

(−1)n−m
√
πΓ(n+m+ 2)

2n+1Γ(n−m+ 1)Γ
(
n+ 3

2

)
(1− x2)m+1/2

dn−m

dxn−m

(
(1− x2)n+ 1

2

)
.

Leading coefficients

kn = 2n, k̄n = 1, k̃n =

√
2

π
2n.

Squared norms

hn =
π

2
, h̄n =

π

2
2−2n, h̃n = 1.

Three-term recurrence

an = 2, a′n = 1/2,

bn = 0, b′n = 0,

cn = 1, c′n = 1/2,

ān = 1, ā′n = 1,

b̄n = 0, b̄′n = 0,

c̄n = 1/4, c̄′n = 1/4,

ãn = 2, ã′n = 1/2,

b̃n = 0, b̃′n = 0,

c̃n = 1, c̃′n = 1/2.



188 A. FORMULA REFERENCE

Derivative identities

d

dx
Un(x) =

√
π

4

Γ(n+ 3)

Γ
(
n+ 3

2

)P (3/2,3/2)
n−1 (x),

dm

dxm
Un(x) =

√
π

2m+1

Γ(n+m+ 2)

Γ
(
n+ 3

2

) P
(m+1/2,m+1/2)
n−m (x),

d

dx
Un(x) = An

n−1∑
j=0

BjTj(x) + Cn

n−1∑
j=0

DjTj(x) = A′n

⌊
n−1

2

⌋∑
j=0

B′2j+χU2j+χ(x),

An = (−1)n+1, Bj = (−1)j(j + 1),

Cn = 1, Dj = j + 1

A′n = 2, B′j = j + 1,

d

dx
Ūn(x) = nP̄

(3/2,3/2)
n−1 (x),

dm

dxm
Ūn(x) =

Γ(n+ 1)

Γ(n−m+ 1)
P̄

(m+1/2,m+1/2)
n−m (x),

d

dx
Ūn(x) = Ān

n−1∑
j=0

B̄jŪj(x) + C̄n

n−1∑
j=0

B̄jŪj(x) = Ā′n

⌊
n−1

2

⌋∑
j=0

B̄′2j+χŪ2j+χ(x),

Ān = (−1)n+12−n, B̄j = (−1)j2j(j + 1),

C̄n = 2−n, D̄j = 2j(j + 1),

Ā′n = 21−n, B̄′j = 2j(j + 1),

d

dx
Ũn(x) =

√
n(n+ 2)P̃

(3/2,3/2)
n−1 (x),

dm

dxm
Ũn(x) =

√
Γ(n+m+ 2)

(n+ 1)Γ(n−m+ 1)
P̃

(m+1/2,m+1/2)
n−m (x),

d

dx
Ũn(x) = Ãn

n−1∑
j=0

B̃jŨj(x) + C̃n

n−1∑
j=0

D̃jŨj(x) = Ã′n

⌊
n−1

2

⌋∑
j=0

B̃′jŨ2j+χ(x),

Ãn = (−1)n+1, B̃j = (−1)j(j + 1),

C̃n = 1, D̃j = j + 1,

Ã′n = 2, B̃′j = j + 1.
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Connection coefficients{
Un
}
n∈N0

→
{
Tn
}
n∈N0

:

κi,j =


1, if i = 0 and j even,

2, if i+ j even,

0, else,

κ̄i,j =

{
2i−j , if i+ j even,

0, else,

κ̃i,j =


√

2, if i = 0 and j even,

2, if i+ j even,

0, else.{
Un
}
n∈N0

→
{
Pn
}
n∈N0

:

κi,j =
2i+ 1

2
×

Γ
(
j−i
2 + 1

2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + 1

)
Γ
(
j+i
2 + 3

2

) ,
κ̄i,j =

1√
π

2i

2j
Γ
(
i+ 3

2

)
Γ(i+ 1)

×
Γ
(
j−i
2 + 1

2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + 1

)
Γ
(
j+i
2 + 3

2

) ,
κ̃i,j =

√
2i+ 1√
π
×

Γ
(
j−i
2 + 1

2

)
Γ
(
j−i
2 + 1

) Γ
(
j+i
2 + 1

)
Γ
(
j+i
2 + 3

2

) .
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