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1 Introduction

The importance of the Fast Fourier Transform (FFT) can hardly be overestimated. It is the foundation
of many signal and image processing procedures, like filtering or recognition; data analysis, like time
series encoding or correlation or used to solve partial differential equations. The best known algorithm
for the FFT is the one by Cooley and Tukey [20] from 1965, although its origins can be traced back
to Gauß in 1805. Today it is an omnipresent algorithm for the analysis and manipulation of all kinds
of digital or discrete data.
The FFT permits the fast computation of the discrete Fourier transform giving a decomposition of a
periodic function into a linear combination of complex exponentials. Depending of the user’s point
of view, the FFT either computes an approximation of the classical Fourier transform on the real
line, a function of a certain band-limit on the circle S1, or the expansion of a function defined on a
cyclic group. From here generalisations of the FFT scheme split in several branches, two of which
are important for the upcoming considerations in this thesis, namely the use of arbitrary, in particular
nonequispaced sampling points instead of uniformly distributed ones, and the application of the tech-
niques to other manifolds than the circle or to more general groups, than the cyclic, in particular to
non-abelian groups.
The need for using arbitrary samples in a variety of applications, like e.g. medical imaging with MRI
led to various works on the so-called nonequispaced fast Fourier transform amongst which we like to
point out the work by Potts, Steidl and Tasche on this transform, called the NFFT, that is summarised
in [71]. Other approaches include [12, 26]. In these algorithms, the complex exponentials of the
function’s expansions are efficiently evaluated with a previously chosen target accuracy. They all are
using different approximation schemes which trade run time for the precision of the approximation.
The other branch of generalisations is concerned with the restriction to expand functions in terms of
complex exponentials. These can be exchanged e.g. for orthogonal polynomials or spherical harmon-
ics, see [23, 65, 70, 77].
Even more generally, as functions defined on certain groups have expansions in terms of suitable basis
elements which generalise the complex exponentials in terms of group invariance. Therefore it seems
sensible to examine whether one can efficiently evaluated functions given in these generalised basis
functions. Indeed, fast algorithms exist for many classes of groups, see [62] for a review of the group
theoretic approach to the fast Fourier transform.
Of central interest in this thesis is the fast Fourier transform on the rotation group SO(3), which is
important for a number of applications from various fields. This includes texture analysis [43, 85],
protein-protein docking [15, 54, 76], robot workspace generation [17], or spherical image analysis
[60], to name just a few.
Motivated by these applications, several different techniques have been proposed for computing Fou-
rier transforms on the rotation group SO(3) during the past years. The algorithms to compute such
transforms are based on evaluating the so-called Wigner-D functions Dmn` for degree ` ∈ N and or-
dersm,n = −`, . . . , `. The Wigner-D functions yield an orthogonal basis of L2(SO(3)).
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Using these basis functions, we can approximate arbitrary functions f ∈ L2(SO(3)) by the finite sum

f ≈
L∑
`=0

∑̀
m=−`

∑̀
n=−`

f̂mn` Dmn` . (1.1)

The evaluation of this sum is called the discrete SO(3) Fourier transform of maximum degree L.
Such a degree-L transform atQ different function samples, or nodes, of f requires O(L3Q) arithmetic
operations in a direct calculation, too much computations under real-world conditions. Finding an
algorithm computing the same result only with less complexity, is the main result of this thesis. We
will introduce two different of them along with a generalisation and a promising application.
There have been previous works that derived fast algorithms for the computation of the above sum.
Most of them are based on rewriting (1.1) into a classical Fourier sum over complex exponentials.
Risbo [73] describes how the Wigner-D functions themselves are expanded into a Fourier sum and
thus evaluates a quadruple sum by means of an FFT leading to an algorithm with O(L4) arithmetic
operations. The algorithm as described there evaluates the SO(3) Fourier transform at O(L3) particu-
lar function samples.
Also, Kostelec and Rockmore [53] discuss an O(L4) algorithm for 8L3 particular nodes. There, the
acceleration is achieved by exploiting the tensor product character of the SO(3) basis functions and
the particular choice of nodes. They acknowledge that a variation of the Driscoll-Healy algorithm
[23] could improve this to O(L3 log2 L), but note doubts about its performance for realistic amounts
of data.
Nevertheless, their idea was pursued in conjuction with this work and combined, for the first time,
with the NFFT by Potts, Steidl, and Tasche from [71] to an approximate O(L3 log2 L +Q) algorithm
for Q nodes free of choice. This generalises a similar algorithm for the discrete Fourier transform on
the sphere S2 as presented by Kunis and Potts [57], as well as Keiner and Potts [51].
The comparison of the different approaches by Potts, Prestin, and Vollrath in [68] showed ambivalent
results. For relatively large transform sizes (roughly L > 512) the asymptotically faster Driscoll-
Healy-like algorithm outperforms the method of Kostelec and Rockmore in a synthetic test scenario.
But unfortunately, a stabilisation scheme that must be employed for numerical stability interferes with
the potential gain in performance under practical conditions. Further considerations, like different
memory requirements, their effect on performance, or the achieved accuracy of both methods, seem
to make it difficult to decide at this point whether one algorithm should be preferred over the other.
Motivated by these results, a new algorithm emerges here, proposing to replace the Driscoll-Healy-
like method with a different one. This approach thereby generalises results established by Rokhlin
and Tygert [77] for the discrete Fourier transform on the sphere S2. The outcome is a new type of
algorithm that, as we will demonstrate numerically, has the potential to remove some of the undesired
properties mentioned above.
This being the main scope of this work, we nevertheless examine two other interesting topics: gener-
alisations and applications of SO(3) Fourier transforms. For the first time, the algorithms for SO(3)
Fourier transforms will be adapted, or rather generalised, to compute Fourier transforms on the group
SU(2) of complex rotations of which SO(3) is a subgroup. The newly introduced SU(2) Fourier trans-
form has potential applications in particle physics [82], or in the computation with pseudodifferential
operators [78].
The applications that merit our special attention here are on one hand, the combination of the SO(3)
Fourier transform with kernel based approximation methods to compute kernel density estimations
from electron back scattering diffraction data, a problem relevant in texture analysis.
On the other hand, we will lay out how the nonequispaced SO(3) Fourier transforms can be used to
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1 INTRODUCTION

develop a new algorithm to handle the protein-protein docking problem, an automated procedure that
is widely used to predict how proteins might interact with each other. To understand these interac-
tions, it is essential to determine the three-dimensional structure of the participating proteins. Based
on the analysis on the known structure of proteins, docking procedures calculate the structure of new
formed protein complexes. An essential tool is the Protein Data Bank (PDB) which stores the struc-
ture of around 12000 proteins and protein complexes determined by NMR or X-ray techniques, [11].
Provided with this large collection of structural data single proteins, we formulate the protein-protein-
docking problem as the computation of atomic coordinates of a protein complex out of the atomic
coordinates of the component molecules.
The first automated docking algorithm has been described in 1978 by Wodak and Janin in [92]. Since
then many different approaches to tackle the problem have been proposed, see e.g. [27, 40]. The com-
mon aspect of these approaches is an optimisation problem. The solution space is the set of motions,
i.e. rotations and transformations the molecules can undertake upon formation of new complexes. The
according objective function evaluates the quality of the complex.
We will present a strict mathematical description of the problem including protein descriptions to
compact the textual approaches found in literature. We will demonstrate the non-convex behaviour
of the related objective functions hence motivating the need for a fast and efficient new global search
algorithm. Such an algorithm using the nonequispaced SO(3) Fourier transform and a comparison to
existing similar methods, completes this thesis.

Outline We start in Chapter 2 that is intended as a self-contained introduction to the rotation group.
We collect basic material about the rotation group SO(3) including basic notations, important prop-
erties concerning rotations and their representations by elements of SO(3). We compile different pa-
rameterisations of rotation and provide a convenient overview how these different parameterisations
can be transformed into each other. As an own aspect, we prove basis properties of the parameter-
isations in a constructive manner using the definition of the SO(3) as a group of matrices. We also
lay the foundation for the following chapter on harmonic analysis on the rotation group by relating its
elements to geometric objects and giving a suitable metric on SO(3).
Then Chapter 3 gives a short summary about harmonic analysis on the rotation group SO(3) followed
by the definition of the Fourier transform on SO(3) and its adjoint. We motivate the definition of
integration of rotation dependent functions by deriving of the Jacobian for different parameterisations
of rotations. In Section 3.2, we approach the Fourier transforms on the rotation group from a group
theoretic perspective. The key theorem to these considerations, the Peter-Weyl theorem, will be given
as well as the definition of the matrix elements of unitary, irreducible representations of SO(3). We
will show that they constitute an orthogonal basis in the space L2(SO(3)). By means of these func-
tions, called Wigner-D functions Dmn` , the SO(3) Fourier transform arises in Definition 3.2.9 and
consequently we give the discrete SO(3) Fourier transform (NDSOFT) in Definition 3.2.11. We will
then see that computing convolution and correlation by Fourier transforms follows the same lines on
the rotation group as it does in the standard settings.
In Section 3.3, we consider the Wigner-D functions and their decomposition into complex exponen-
tials and Wigner-d functions. Given the relation of the latter to classical orthogonal polynomials,
we are able to state important properties, of Wigner-d functions like three-term recurrence relation,
Rodrigues formula and symmetries. We then examine another close connection between the rotation
group and the two-dimensional sphere by using the SO(3) Fourier transform to compute convolution
and correlation of spherical functions.
A new application, the fast summation of functions on the rotation group is presented in Section 3.5.
The main result is the efficient computation of sums of rotation dependent functions by splitting them
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as in Equation (3.35). That way, they can be computed using an SO(3) Fourier transform preceded
by an adjoint SO(3) Fourier transform. In Lemma 3.5.3, we moreover give an error estimate for these
computations. This section’s algorithms have been applied to a problem from texture analysis and are
published in [43]. They have been implemented in C and tested on an Intel Core 2 Duo 2.66 GHz
MacBook Pro with 4GB RAM running Mac OS X 10.6.1 in double precision arithmetic.
Chapter 4 provides the central and most important part of the work as, we present new and efficient
methods to compute SO(3) Fourier transforms at arbitrarily sampled rotations, here. The crucial point
of the presented algorithms is to replace the Wigner-D functions by a product of complex exponentials
such that we can employ the well-analysed nonequispaced fast Fourier transform (NFFT) algorithm
for the computations. Its cost, O(L3 logL + Q), is that of a classical three-dimensional FFT plus a
term linear in the number of nodes Q, see e.g. [12, 26, 56, 71] and the references therein. Moreover,
a C subroutine library implementing the NFFT algorithm is available in [49].
In Section 4.1, we will develop two different ways to efficiently compute coefficients of a three-
dimensional standard Fourier series out of given SO(3) Fourier coefficients. Our first approach is
described in Section 4.1.1. It describes new algorithm for the fast evaluation of the so-called Wigner-
d functions at nonequispaced sampling points. It generalises the fast polynomial transform (FPT)
algorithm introduced by [23, 70] which uses a cascade summation based on the three-term recurrence
relations of the respective orthogonal polynomials. This approach will be adopted to the Wigner-d
functions yielding the extended three-term recurrence relation in Equation (4.5). This algorithm is a
first important step to improve the efficiency of the SO(3) Fourier transform. Its implementation in C
is available as a part of the public NFFT subroutine library [49]. We will refer to it as the FWT-C (the
fast Wigner transformation based on cascade summation). A more extensive discussion along with
numerical results and comparisons of this algorithm have been published in [68].
The second proposed approach is the fast transformation of Wigner-d functions based on semisep-
arable matrices (FWT-S) covered in Section 4.1.2. Essential to this algorithm is the transformation
of sums of arbitrary Wigner-d functions into those of Wigner-d functions of low orders m and n as
stated in Equation (4.6) and the application of the differential operator (4.8) to the Wigner-d functions.
There we replace the cascade summation scheme with an approximate technique that is a generalisa-
tion of the algorithms proposed by Rokhlin and Tygert in [77] for spherical harmonic expansions on
the sphere S2. We show that the matrix representation of this transformation is related to the eigende-
composition of certain semiseparable matrices in Lemma 4.1.3 and Lemma 4.1.5. This enables us to
employ a divide-and-conquer algorithm developed by Chandrasekaran and Gu [16] that we combine
with the well-known fast multipole method (FMM) [38] to the desired fast algorithm.
In Section 4.2, we state the central theorem about the nonequispaced fast SO(3) Fourier transform
(NFSOFT), Theorem 4.2.2. A schematic overview of all steps of the NFSOFT with corresponding
references within this thesis is provided in Figure 4.8.
Numerical results on the proposed new algorithms can be found in Sections 4.1.3 and 4.2.2. There we
also provide numerical results on the fast summation algorithm proposed in Section 3.5. Our conclu-
sion is that both of our methods offer distinct advantages over previous approaches as well as room
for further improvements.
The next big issue in this work, is the generalisation of SO(3) Fourier transforms. Section 5 starts
with the novel consideration of nonequispaced Fourier transforms on the complex rotation group
SU(2) which is motivated by the close relation of the groups SO(3) and SU(2). Again we determine
a set of basis functions for the space L2(SU(2)) which are a union of the already known Wigner-D
functions and Wigner-D functions for half-integer degrees and orders. We describe the modifications
and adaptions of the algorithms described in Section 4. The main results are the fast transform of half-
integer Wigner-d functions based on semiseparable matrices that is derived in Lemma 5.1.6 for the

7



1 INTRODUCTION

first time and the nonequispaced SU(2) Fourier transform (NFSUFT) itself given in Theorem 5.1.9.
The proposed new algorithm has been implemented in Mathematica.
Another promising generalisation is the Fourier transform on the three-dimensional motion group
SE(3), of which SO(3) is a subgroup. In contrast to SO(3) and SU(2) the motion group is not locally
compact bringing about new difficulties in computing Fourier transforms on this group. The SE(3)
Fourier transform is given in Definition 5.2.11. Its computation has an interesting application, which
we will discuss extensively in Chapter 6, the protein-protein docking.
Chapter 6 starts with a description of the protein-protein docking problem as the prediction of protein
interactions, a central task of structural biology. In this work, we shall focus on the first stage of dock-
ing and present two methods that can be categorised as Fourier-based rigid-body docking. This term
refers to the search strategy on one hand and to the design of the solution space of the underlying op-
timisation problem on the other hand. The textual literature on the protein-protein docking problem is
condensed to a strict mathematical description. We will introduce two choices of objective functions
(6.6) and (6.8). Then, we will demonstrate the difficulties of handling this highly non-convex prob-
lem first in a simplified setting, then in the realistic one. The occurrence of numerous local extrema
motivates the usage of search algorithm at discrete grid points of SE(3).
The application of our nonequispaced SO(3) Fourier transform to the problem is established in Lemma
6.5.4 and the corresponding new algorithm called fast rotational matching is described in Algorithm
2 of Section 6.5. The numerical cost to obtain a solution of the protein docking problem is drasti-
cally reduced here. We conclude our considerations of the docking problem by a suggestion for a
refinement step.
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2 Rotations and the Rotation Group SO(3)

In the first part of this introductory section, we compile some basic facts and introduce notations con-
cerning the group SO(3) of rotations in three dimensions. We will give a definition of both, rigid-body
rotations and the group consisting of such rotations. Moreover, we will introduce rotation matrices
and consider their eigenvalues and eigenvectors. A metric on the rotation group is presented. The
second part continues the observation of rotations by presenting different parameterisations of ele-
ments of SO(3) including axis-angle parameterisation, Euler angles and unitary 2 × 2 matrices. We
show how these different parameterisations can be transformed into each other and give an overview
on how rotations can be composed and inverted in these different parameterisations. We also briefly
consider integration of rotation-dependent functions. If not stated otherwise, most of this section will
be based on [17] or [84].

2.1 Three-Dimensional Rotations

Surely, everybody has an intuitive idea what a rotation is. This section aims to provide a mathematical
foundation of this intuitive idea that allows us to characterise and to compute with rotations. As stated
in the section’s title, we are interested in three-dimensional rotations.

Definition 2.1.1 (Rotation). A rotation of R3 around the origin 0 ∈ R3 is a linear map ρ : R3 → R3

with ρ(v) = Rv and an orthogonal matrix R ∈ R3×3 with det(R) = 1.

The composition ρ = ρ2 ◦ ρ1 of two rotations ρ1(v) = R1v and ρ2(v) = R2v is the map

ρ : v 7→ R2R1v.

This can be seen by ρ(v) = (ρ2 ◦ ρ1)(v) = ρ2(ρ1(v)) = R2R1v. The inversion ρ−1 of a rotation
ρ(v) = Rv is the map

ρ−1 : v 7→ R−1v

as composing ρ−1 and ρ gives v = id(v) = ρ−1(ρ(v)) = ρ−1(Rv). This is fulfilled for all v if
ρ−1(v) = R−1v.

Lemma 2.1.2. Given two different orthogonal matrices with determinant one, their corresponding
rotations are different as well, i.e. R1 6= R2 ⇒ ρ1 6= ρ2.

Proof. The two matrices R1, R2 satisfy R−1
2 R1 6= I, hence, there is a vector v such that

ρ−1
2 (ρ1(v)) = R−1

2 R1v 6= v

and therefore ρ−1
2 ◦ ρ1 6= id.

By means of this lemma, we will, from now on, identify a rotation ρ and a matrix R with each other
and refer to R as a rotation matrix.
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2 ROTATIONS AND THE ROTATION GROUP SO(3)

Theorem 2.1.3. The set M = {R ∈ R3×3 | det(R) = 1 and RTR = I} forms a group with respect to
matrix multiplication.

Proof. G1) Since det(R1R2) = det(R1)det(R2) = 1 and (R1R2)
T (R1R2) = RT2 (R

T
1 R1)R2) =

RT2 R2 = I, we have R1, R2 ∈ M ⇒ R1R2 ∈ M, i.e, closure with respect to matrix multiplica-
tion.

G2) Seeing that multiplication is associative in general, we have R1(R2R3) = (R1R2)R3.

G3) For all R ∈M, IR = R holds true. As I ∈M, it is the neutral element of M.

G4) The inverse element of M is given by R−1 ∈ M. This is due to det(R−1) = det(R)−1 and
(R−1)TR−1 = (RRT )−1 = I. As R is orthogonal, its inverse is R−1 = RT .

Definition 2.1.4. The group (M, ·) is called special orthogonal group SO(3).

Just like we call the matrices R rotation matrices, the group SO(3), which is constituted by rotation
matrices, is called the rotation group. Note also that the rotation group SO(3) is non-abelian. We shall
now consider some properties of rotations, from which we will then deduce some more properties of
SO(3).
Every linear map, and in particular a rotation, is completely described by its action on the vectors v of
length ||v|| = 1, with the Euclidean norm || · || . That is a simple consequence of linearity as v = ||v||e
with ||e|| = 1 with ρ(v) = ||v||ρ(e).

Lemma 2.1.5. Given three unit vectors u, v, w ∈ R3, a rotation preserves

i) the length of a vector v, i.e., ||ρ(v)|| = ||v||,

ii) the angle between two vectors v and w, i.e., v · w = ρ(v) · ρ(w),

iii) the orientation of three vectors u, v, w, i.e., det([u, v, w]) = det([ρ(u), ρ(v), ρ(w)]),

where [u, v, w] denotes a matrix, the columns of which are given by the three vectors, u, v, w.

Proof. We have for

i) ||ρ(v)|| = ||Rv|| =
√
(Rv)T (Rv) =

√
vTRTRv =

√
vTv = ||v||,

ii) ρ(v) · ρ(w) = (Rv)T (Rw) = vTRTRw = vTw = v · w,

iii) and finally

det([ρ(u), ρ(v), ρ(w)]) = det([Ru, Rv, Rw]) = det(R[u, v, w]) = det(R)det([u, v, w])

= det([u, v, w]).

The following lemma will show that the properties (i)-(iii) from Lemma 2.1.5 suffice for a linear map
ρ to be a rotation. Actually (i) is even an immediate consequence of (ii) when setting v = w.

Lemma 2.1.6. A linear map ρ fulfilling the properties (i) − (iii) of Lemma 2.1.5 for all unit vectors
u, v, w ∈ R3 is a rotation.
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2.1 THREE-DIMENSIONAL ROTATIONS

Proof. Let R ∈ R3×3 be the matrix of the linear map ρ. An angle preserving transformation described
by the matrix R satisfies

vTw = (Rv)T (Rw) = vTRTRw

for all w ∈ R3. Hence, vT = vTRTR must hold true for all v ∈ R3 which is only the case if RTR = I,
i.e., R is orthogonal.
If the matrix R, moreover, describes an orientation preserving transformation, it satisfies

det([u, v, w]) = det([Ru, Rv, Rw]) = det(R)det([u, v, w]).

Obviously, for arbitrary u, v, w ∈ R3, the equation only holds true for det(R) = 1.

Consider v to be an eigenvector of the rotation matrix R. By means of the length preservation (Lemma
2.1.5 i)), it fulfils ||Rv|| = ||v||. Therefore, we get by ||Rv|| = |λ|||v|| = ||v|| that all eigenvalues of R
have absolute value one, i.e., |λ| = 1. Since R is a real-valued 3×3 matrix with 1 = det(R) = λ1λ2λ3,
we get one real eigenvalue λ1 = 1, a pair of conjugate complex eigenvalues λ2 = λ̄3 and hence
λ2λ3 = 1. This yields λ2 = 1/λ3 = e±iω withω ∈ [0,π].
The eigenvalues of rotation matrices only vary in the argumentω, which can be uniquely determined
by the equation

tr(R) = 1 + eiω + e−iω = 1 + 2 cosω. (2.1)

Note that the case ω = 0 leads to λ1 = λ2 = λ3 = 1. Taking a closer look on this case, we find that

due to the normalisation of its columns, any orthogonal matrix R = (gij)i,j=1,2,3 satisfies
3∑
j=1

g2
ij = 1

for i = 1, 2, 3, and hence, |gi,j| 6 1. If its eigenvalues are equal to one, we conclude from

3∑
i=1

3∑
j=1

g2
ij = 3 =

3∑
j=1

λj = tr(R) =

3∑
j=1

gjj

that all non-diagonal elements of R are zero, while the diagonal elements are one, i.e., R = I.
Next, we shall use the angleω to transfer the concept of distance to SO(3).

Definition 2.1.7 (Distance on SO(3)). Given R ∈ SO(3), we denote the angle of the rotation R by
|R| = ω with

cosω =
tr(R) − 1

2
and 0 6 ω 6 π. The distance between two rotations R1, R2 ∈ SO(3) is defined as the angle of the
rotation R2R−1

1 that transforms R1 into R2, i.e.,
∣∣R2R−1

1

∣∣.
In literature, e.g. [14], we also find the angle of rotation to be called absolute value of the rotation.
Later on, in Lemma 2.2.9, we shall see that the just defined distance is indeed a metric on SO(3).
Using elements of SO(3) to represent three-dimensional rotations has several computational advan-
tages. Performing a rotation becomes a simple matrix-vector multiplication. By means of a matrix
multiplication we cannot only compute a sequence of several rotations, but also combine rotations
with other linear transformations like translation or scaling, which can be described by matrix-vector
multiplications, too.
But for the applications we have in mind, this representation is not always convenient. Therefore, we
introduce different ways to parameterise rotations in the next section. A central thought to this is that
any element of SO(3) can be uniquely described using three parameters which are, in case, the entries

11



2 ROTATIONS AND THE ROTATION GROUP SO(3)

of a rotation matrix.
A rotation matrix R = [g1, g2, g3] where each vector gi ∈ R3 for i = 1, 2, 3 represents a column of the
matrix, has nine entries. But they can not be chosen freely as we impose certain constraints on them.
As R is orthogonal, we have gi · gj = δi,j for i, j = 1, 2, 3. As the inner product is commutative we
have six constraints for the nine entries of R. This reduced the number of freely eligible entries of R
from nine to three. The condition det(R) = 1, will reduce the possible choices of the matrix elements
but not their total number. We will refer to the three eligible entries as the three degrees of freedom in
a rotation.
Just as the rotation matrices, the parameterisations of rotations in the following section also need to
have three degrees of freedom; they will just be described in a different way.

2.2 Parameterisations of Rotations

In this section, several parameterisations of rotations are reviewed from [84, Sect. 1.4] and [17, Sect.
5.4] and will be discussed in more detail.

Axis-Angle Parameterisation We start with the maybe most intuitive way to describe a rota-
tion, i.e., by means of a rotation axis around which the rotation takes place and a rotation angle that
describes how much the object is rotated.

Definition 2.2.1 (Axis of a Rotation). Let a rotation be described by the matrix R = (gjk)j,k=1,...,3 ∈
SO(3) with R 6= I. We define the axis of the rotation to be the normalised eigenvector r to the
eigenvalue λ = 1 of R.

Note that we excluded the case R = I in this definition. This is due to the fact that R = I has a three-
fold eigenvalue one and therefore no uniquely determined normalised eigenvector to this eigenvalue.
While Definition 2.1.7 gives a formula to retrieve the rotation angle out of a rotation matrix, we give
the following lemma for a computation of the rotation axis. Again the case R = I is excluded but still,
the rotation angle of this matrix can be determined and yieldsω = |I| = 0.

Lemma 2.2.2. Let r be the axis of the rotation R = (gjk)j,k=1,2,3 ∈ SO(3) with R 6= I and let v ∈ R3.
Then r is given by

r =
1
||v||

v with v =

g23 − g32
g31 − g13
g12 − g21

 .

Proof. Let u be an eigenvector of the rotation matrix R to λ = 1, we have Ru = u. Multiplying this
with RT we obtain u = RTu. Combining the two yields (R−RT )u = 0. Hence for u = (u1,u2,u3)

T ,
we have

u2(g12 − g21) − u3(g31 − g13) = 0,

u3(g23 − g32) − u1(g12 − g21) = 0,

u1(g31 − g13) − u2(g23 − g32) = 0.

This is solved for arbitrary multiples of u = (g23−g32,g31−g13,g12−g21)
T = v. By Definition 2.2.1

the rotation axis r is the normalised eigenvector to the eigenvalue λ = 1 and hence, normalisation of
v proves the lemma.

12



2.2 PARAMETERISATIONS OF ROTATIONS

Now, we investigate some special sets of rotations. We denote the set Z = {Z ∈ SO(3) | Zez = ez}
of all rotations conserving ez = (0, 0, 1)T.

Lemma 2.2.3. Every rotation Z ∈ Z fulfils

Z =

cosγ − sinγ 0
sinγ cosγ 0

0 0 1


for some γ ∈ [0, 2π).

Proof. Let Z = (zjk)j,k=1,2,3. As Zez = (z13, z23, z33)
T = ez, we immediately obtain z13 = z23 = 0

and z33 = 1. From ez = ZT ez, we additionally get z31 = z32 = 0.
Since now Z is orthogonal having determinant one, the matrix(

z11 z12
z21 z22

)
∈ R2×2

formed by the remaining entries of Z is an orthogonal matrix with determinant one, too. In fact, it is
an element of the group SO(2), defined completely analogous to the SO(3) as the group of orthogonal
2× 2 matrices having determinant one.
In the same manner elements of SO(3) describe rotations in three dimensions, an element of SO(2)
describes a planar rotation, and we have(

z11 z12
z21 z22

)
=

(
cosγ − sinγ
sinγ cosγ

)
∈ SO(2)

for some γ ∈ [0, 2π).

Note that, in fact, Z is a subgroup of SO(3) that is isomorphic to SO(2).

Remark 2.2.4. If we compute the rotation axis and angle of an element Z ∈ Z, we see that for
γ ∈ [0,π) we have r = ez andω = γ, while for γ ∈ [π, 2π) we have r = −ez andω = 2π− γ.

Remark 2.2.5. Analogously to Lemma 2.2.3, we can show that for ey = (0, 1, 0)T the set
Y = {Y ∈ SO(3) | Yey = ey} contains the rotations

Y =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ


for β ∈ [0, 2π).

Corollary 2.2.6. Given a rotation axis r, a fixed rotation matrix U ∈ SO(3) with Uez = r, then every
R ∈ SO(3) with Rez = r can be decomposed into R = UZ, for some Z ∈ Z.

Proof. A rotation R with Rez = r satisfies UTRez = ez and therefore Z = UTR ∈ Z. Thus, we have
R = UZ for some Z ∈ Z.

13



2 ROTATIONS AND THE ROTATION GROUP SO(3)

a)

j
H0,ΘL

r=Hj,ΘL

b)

Ω
Θ

H0,0L

H0,ΘL

c)

Ω

r=Hj,ΘL

Figure 2.1: In a) we see an arbitrary rotation axis r(ϕ, θ) ∈ S2 which is rotated about the angle ϕ
around the z-axis. The resulting new axis (0, θ) is rotated in b) around the y-axis to point
to the north pole of the sphere. The axis r has now been rotated to the z-axis. Then we
perform a rotation about ω around this axis. After this, the two rotations about θ and ϕ
will be reversed, leading, in c), to the actual rotation described by r andω. This gives the
formula from Lemma 2.2.8.

In fact, UZ is a left coset of the subgroup Z in SO(3). The set of all such cosets is isomorphic to the
two-dimensional unit sphere

S2 = {x ∈ R3 | ||x|| = 1}.

As a rotation axis r ∈ R3 satisfies ||r|| = 1, we have r ∈ S2. Any vector r ∈ S2, and in particular rota-
tion axes, with given Cartesian coordinates r = (r1, r2, r3)

T can be rewritten in spherical coordinates
r = (ϕ, θ) where the angles θ ∈ [0,π] and ϕ ∈ [0, 2π) denote the latitude and the longitude of the
point r on S2, respectively. For r2

1 + r
2
2 > 0, we have

ϕ =

arccos r1√
r2

1+r
2
2

for r2 > 0,

2π− arccos r1√
r2

1+r
2
2

for r2 < 0,
and θ = arccos r3.

If r1 = r2 = 0, the longitude ϕ of the point r is not uniquely determined. In reverse,r1
r2
r3

 =

sin θ cosϕ
sin θ sinϕ

cos θ


holds true.

Definition 2.2.7 (Axis-Angle Parameterisation). Given a rotation axis r = (ϕ, θ) ∈ S2 and a rotation
angleω ∈ [0,π], we define Rr(ω) ∈ SO(3) by

Rr(ω) = Rez(ϕ)Rey(θ)Rez(ω)RT
ey(θ)R

T
ez(ϕ).

In the notation of Definition 2.2.7, we can denote all elements of the set Z from Lemma 2.2.3 by
Rez(ω).

Lemma 2.2.8. Given a rotation axis r = r(ϕ, θ) and rotation angle ω, a rotation R ∈ SO(3) is
uniquely determined by R = Rr(ω).

14



2.2 PARAMETERISATIONS OF ROTATIONS

Proof. By Definition 2.1.7 and (2.1), the rotation angle ω uniquely determines the eigenvalues of R
as λ1 = 1 and λ2 = 1/λ3 = e±iω withω ∈ [0,π].
The matrix of a rotation with rotation axis r, satisfies Rr = r. By Corollary 2.2.6, the rotations UZ
with a fixed U satisfying Uez = r and an arbitrary Z ∈ Z are all rotations fulfilling r = UZez. Hence,
we have RUZez = UZez and ZTUTRUZez = ez.
The matrix A = ZTUTRUZ ∈ Z has the same eigenvalues as R. By Lemma 2.2.3, we get

A =

cosγ − sinγ 0
sinγ cosγ 0

0 0 1


with γ ∈ [0, 2π). Its spectral decomposition is given by A = VDVT . Since the eigenvectors of A are
known, we find with Remark 2.2.4 that

V =

 z z 0
−iz iz 0

0 0 1

 and D =

eiω 0 0
0 e−iω 0
0 0 1


with z =

1√
2

and the rotation angle ω. Note, that for γ ∈ [π, 2π), the rotation axis −ez is an

eigenvector as well as ez itself.
Since A ∈ Z, we have A = ZAZT and we can conclude

R = UZAZTUT = UAUT = U
(

VDVT
)

UT = (UV)D(UV)T

as U = U. We obtain the eigenvectors of R in UV independently of Z ∈ Z. Having the spectral
decomposition of R it is uniquely determined.

A geometric interpretation of Definiton 2.2.7 and Lemma 2.2.8 specifying the rotation axis is the
following. The rotation axis is invariant under rotation about this axis. Converting r into Cartesian
coordinates gives r = (sin θ cosϕ, sin θ sinϕ, cos θ)T . This vector satisfies RT

ey(θ)R
T
ez(ϕ)r = ez.

By Rez(ω)ez = ez, we can verify(
Rez(ϕ)Rey(θ)

)
Rez(ω)

(
RT

ey(θ)R
T
ez(ϕ)

)
r = Rr = r,

i.e., that r is the rotation axis of R. This idea is also depicted in Figure 2.1.
Let us now list a few more useful facts about the axis-angle parameterisation. Given two rotations
Rr1(ω1), Rr2(ω2) ∈ SO(3), the combined rotation Rr(ω) = Rr1(ω1)Rr2(ω2) is determined by

r = sin
ω1

2
cos

ω2

2
r2 + sin

ω2

2
cos

ω1

2
r1 + cos

ω1

2
cos

ω2

2
r1 × r2,

cos
ω

2
= cos

ω1

2
cos

ω2

2
− sin

ω1

2
sin
ω2

2
r1 · r2. (2.2)

This can be verified using Definition 2.2.7. For the identity element Rr(ω) = I of SO(3), we get by
Definition 2.1.7, ω = 0 for the rotation angle while the rotation axis is not uniquely defined. In fact,
Rr0(0) = I holds true for any rotation axis r0 ∈ S2.
The back rotation to Rr(ω), i.e., the inverse element, is given by R−r(ω).

The axis-angle parameterisation of rotations helps us to verify the following property of the rotation
group SO(3).

15



2 ROTATIONS AND THE ROTATION GROUP SO(3)

Lemma 2.2.9. The distance between two rotations, cf. Definition 2.1.7, defines a metric on SO(3).

Proof. Let R1, R2, R3 ∈ SO(3) describe rotations. Let the rotation angle and rotation axis of the
combined rotation RjR−1

i for i, j = 1, 2, 3 be denoted byωi,j and ri,j, respectively.

i) The identity of indiscernibles follows fromω1,2 = 0⇔ R2R−1
1 = I⇔ R1 = R2.

ii) As the trace of an orthogonal matrix and its inverse, i.e., its transposed, are equal, symmetry of
the distance is shown by tr(R2R−1

1 ) = tr((R2R−1
1 )T ) = tr(R1R−1

2 )⇔ ω1,2 = ω2,1.

iii) The rotation R3R−1
1 can be rewritten as the composition R3R−1

1 = (R3R−1
2 )(R2R−1

1 ). Its
rotation angleω1,3 is determined by

cos
ω1,3

2
= cos

ω1,2

2
cos

ω2,3

2
− sin

ω1,2

2
sin
ω2,3

2
r1,2 · r2,3,

cf. (2.2). As |r1,2 · r2,3| 6 1, we have

cos
ω1,3

2
> cos

ω1,2

2
cos

ω2,3

2
− sin

ω1,2

2
sin
ω2,3

2
= cos

ω1,2 +ω2,3

2

which proves the triangle inequalityω1,3 6 ω1,2 +ω2,3.

Euler Angle Parameterisation In the axis-angle parameterisation, we had three degrees of free-
dom to describe a rotation uniquely, the angle ω and the two spherical coordinates ϕ, θ to denote the
rotation axis r. Now, we use a different way to parameterise these three degrees of freedom, namely
we choose three successive rotations about independent axes and use their absolute values to charac-
terise a rotation. As any triplet of rotations about fixed axes can be used to uniquely describe arbitrary
rotations as long as two consecutive rotations have linear independent axes, there exist different con-
ventions for choosing those axes, e.g. [84, 91] use a rotation around ez followed by a rotation around
ey and another rotation around ez, while [17] use ex for the second rotation instead of ey. Here, we
shall define Euler angles as follows.

Definition 2.2.10 (Euler Angles). Given three angles α,γ ∈ [0, 2π) and β ∈ [0,π], a rotation matrix
R(α,β,γ) is given by

R(α,β,γ) = Rez(α)Rey(β)Rez(γ).

The three angles α,β and γ are called Euler angles of the rotation R(α,β,γ), (see Figure 2.2).

Throughout this work, we use this convention for the Euler angles. Whenever occurring, we set
α → α mod 2π and γ → γ mod 2π. Definition 2.2.10 assigns a rotation matrix to a given set of
Euler angles. In the following corollary, we describe a way how to compute the set of Euler angles
out of a given a rotation matrix.

Corollary 2.2.11. A rotation, specified by the rotation matrix G = (gjk)j,k=1,2,3 ∈ SO(3), is de-
scribed by the Euler angles α,β and γ for the following choices of Euler angles.
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a)

Α

b)

Α

Β

c)

Α

Β

Γ

Figure 2.2: The Euler angles, described in Definition 2.2.10, are three consecutive rotations around
the z-axis (a), the y-axis (b) and again the z-axis (c).

If |g33| 6= 1, then R(α,β,γ) with

β = arccosg33

α =

arccos g13√
g2

13+g
2
23

for g23 > 0,

2π− arccos g13√
g2

13+g
2
23

for g23 < 0,

γ =

arccos −g31√
g2

31+g
2
32

for g32 > 0,

2π− arccos −g31√
g2

31+g
2
32

for g32 < 0.

describes the same rotation as G. If g33 = 1 then R(α,β,γ) with β = 0 and

α+ γ =

{
arccosg11 for g21 > 0,
2π− arccosg11 for g21 < 0.

describes the same rotation as G.
Likewise, for g33 = −1, all Euler angels with β = π and

α− γ =

{
arccos(−g11) for g21 6 0,
2π− arccos(−g11) for g21 > 0.

specify the same rotation as G.

Proof. Given a matrix G = (gij) ∈ SO(3) for i, j = 1, 2, 3 and matrix

R(α,β,γ) =

cosα cosβ cosγ− sinα sinγ − cosγ sinα− cosα cosβ sinγ cosα sinβ
cosβ cosγ sinα+ cosα sinγ cosα cosγ− cosβ sinα sinγ sinα sinβ

− cosγ sinβ sinβ sinγ cosβ


given in Euler angles as in Definition 2.2.10. We are now examining how to choose α,β and γ such
that R(α,β,γ) = G. The comparison shows that β has to be chosen such that g33 = cosβ.

17



2 ROTATIONS AND THE ROTATION GROUP SO(3)

Let us assume for now that β 6∈ {0,π} and hence sinβ 6= 0. Considering the remaining entries of the
last row of R(α,β,γ) we can determine γ ∈ [0, 2π] from

cosγ = −
r31

sinβ
, sinγ =

r32

sinβ

using sinβ =
√

1 − g2
33 =

√
g2

31 + g
2
32 as

γ =

arccos −g31√
g2

31+g
2
32

for g32 > 0,

2π− arccos −g31√
g2

31+g
2
32

for g32 < 0.

In an analogous manner we obtain α using g13 and g23.
It remains to examine the cases in which |g33| = 1 and hence β ∈ {0,π}. If g33 = 1, due to the
normalisation of the rows and columns of a rotation matrix, we have gj3 = g3j = 0 for j = 1, 2. On
the other hand, a rotation matrix in Euler angles with the same third row and column is given by

R(α, 0,γ) =

cos(α+ γ) − sin(α+ γ) 0
sin(α+ γ) cos(α+ γ) 0

0 0 1

 .

If we now insert

α+ γ =

{
arccosg11 for g21 > 0,
2π− arccosg11 for g21 < 0,

into the matrix R(α, 0,γ) = (rij)i,j=1,2,3 we find that also r11 = g11. The equalities r12 = g12,
r21 = g21, r21 = g21 and consequently r21 = g21 follow from row normalisation, up to a sign. The
correct sign is established by the given case distinction. Consequently the matrices G and R(α, 0,γ)
are equal, and therefore, describe the same rotation. Note that the proof for g33 = −1 is completely
analogous and will be omitted.

Corollary 2.2.11 establishes a rule how to compute Euler angles out of an arbitrary rotation matrix.
The following lemma discusses the uniqueness of this assignment.

Lemma 2.2.12. Every rotation matrix R = (rjk)j,k=1,2,3 ∈ SO(3) with |r33| 6= 1 has uniquely
determined Euler angles.

Proof. Consider two triples of Euler angles (α,β,γ) and (α ′,β ′,γ ′) and a rotation R which can be
written in terms of Euler angles using Definition 2.2.10 as

R = Rez(α)Rey(β)Rez(γ) = Rez(α
′)Rey(β

′)Rez(γ
′).

Rewriting this as

Rez(α− α ′)Rey(β) = Rey(β
′)Rez(γ

′ − γ) (2.3)

and applying ez on both sides of the equation yields

Rez(α− α ′)Rey(β)ez = Rey(β
′)Rez(γ

′ − γ)ez = Rey(β
′)ez.

18



2.2 PARAMETERISATIONS OF ROTATIONS

Inserting the formula for a rotation around ez from Lemma 2.2.3 and for a rotation around ey from
Remark 2.2.5, we obtain sinβ cos(α− α ′)

sinβ sin(α− α ′)
cosβ

 =

sinβ ′

0
cosβ ′

 .

From the initial condition |r33| 6= 1, we get by Lemma 2.2.3 that R 6∈ Z and −R 6∈ Z. This restricts
the Euler angle β to the interval (0,π) and hence we have sinβ 6= 0.
Looking at the third component of the above vector, we see β = β ′, and as sinβ 6= 0, the equality for
the second component is only satisfied for sin(α− α ′) = 0, i.e., α− α ′ = kπ, k ∈ N.
Inserting this on the first component, we get sinβ cos(kπ) = sinβ. This however holds true only for
cos(kπ) = 1, i.e., for even k. Hence, we get α − α ′ = 2kπ which, by definition of the Euler angles
means that α = α ′. Now (2.3) gives Rez(γ

′ − γ) = I and hence γ ′ = γ.

Let us now list a few more useful facts about this representation. In contrast to the axis-angle rep-
resentation, a composed rotation can not conveniently be simplified in Euler angles. The explicit
formula is, therefore, omitted here. Instead, we give another useful formula which almost provides
the Euler angle representation of a combined rotation. Combining R(α1,β1,γ1) and R(α2,β2,γ2)
using Definition 2.2.10 yields

R(α1,β1,γ1)R(α2,β2,γ2) = Rey(β1)R(α2 + γ1,β2,α2 + γ1).

The identity element of SO(3), R(α,β,γ) = I, is not uniquely determined in Euler angles and can be
obtained by setting β = 0 and α± γ = 2πk for k ∈ N, see Corollary 2.2.11. The back rotation, i.e.,
the inverse element to R(α,β,γ) for β 6= 0 is given by R(2π − γ,β, 2π − α). The back rotation of
R(α, 0,γ) is given by Rez(−(α+ γ)).

Combining Lemma 2.2.2 and Lemma 2.2.12, it becomes obvious that one can also translate the axis-
angle representation into Euler angles and vice versa.
Given three Euler angles α,γ ∈ [0, 2π) and β ∈ [0,π], we have Rr(ω) = R(α,β,γ) with rotation
angle and axis

ω = 2 arccos
(

cos
β

2
cos

α+ γ

2

)

r = (ϕ, θ) =


(
π
2 + α, π2

)
, for α+ γ = 0,(

π
2 + α−γ

2 , arctan
(

tan β2
sin α+γ2

))
, otherwise.

(2.4)

This can be verified using Corollary 2.2.11 to compute a rotation matrix out of the Euler angles
followed by calculating the eigenvalues and eigenvectors of that matrix to obtain rotation axis and
angle, see also [84, p.26]. In case we are given Rr(ω), with ω ∈ (0,π) the Euler angles can be
computed by

α = arctan
(

cos θ tan
ω

2

)
+ϕ−

π

2
,

β = 2 arcsin
(

sin θ sin
ω

2

)
,

γ = arctan
(

cos θ tan
ω

2

)
−ϕ+

π

2
.
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This can be seen by using the Definitions 2.2.7 and 2.2.10. Note, taht we excludedω ∈ {0,π}. In that
case, we do not find unique Euler angles, but can only determine the sum α+ γ and β.
These transitions between Euler angles and axis-angle parameterisation will be especially useful in
Section 3.5.
The next parameterisation we will discuss gives a connection between the rotation group SO(3) and
another matrix group which is in some sense a generalisation of SO(3) and which we are going to
consider in Section 5.1.

Special unitary 2×2 matrices In the following, we present a way to characterise rotations using
special complex-valued 2× 2 matrices, rather than real-valued orthogonal 3× 3 matrices.

Theorem 2.2.13. The set N = {U ∈ C2×2 | det(U) = 1 and UTU = I} forms a group with respect to
matrix multiplication.

Proof. G1) Let U1, U2 ∈ N, since det(U1U2) = det(U1)det(U2) = 1 and (U1U2)
T (U1U2) =

U2
T
(U1

TU1)U2) = U2
TU2 = I, we see that U1U2 ∈ N, i.e, N is closed with respect to matrix

multiplication.

G2) As multiplication is associative, we have U1(U2U3) = (U1U2)U3 for U1, U2, U3 ∈ N.

G3) For all U ∈ N, IU = U holds true. As I ∈ N, it is the neutral element of N.

G4) The inverse element U−1 ∈ N is given by U−1 = UT .

Definition 2.2.14. The group (N, ·) is called special unitary group SU(2).

In correspondence to the rotation group SO(3), the special unitary group SU(2) is also called the
complex rotation group. It also shares the properties of length, angle and orientation preservation (cf.
Lemma 2.1.5) and that the eigenvalues of the matrix elements have absolute value one. Like elements
of SO(3), elements of SU(2) offer three real degrees of freedom, too. Due to their unitarity they can
be written as

U =

(
a b

−b a

)
with a,b ∈ C and aa + bb = 1 (see e.g. [64, Chap. 5-16]). Of the two components a,b ∈ C, we
may choose real and imaginary part. But the constraint det(U) = aā + bb̄ = 1 reduces these four
choices to three.
We, so far, dealt with arbitrary vectors u ∈ R3 which were to be rotated by applying an element of
SO(3) to them. To rotate three-dimensional objects by using elements of SU(2), we need to modify
their representation.

Lemma 2.2.15. Let x = (x1, x2, x3)
T ∈ R3 be given in Cartesian coordinates and let

X =

(
−x3 x1 + ix2

x1 − ix2 x3

)
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be a corresponding matrix. Computing Y = UXUT for an arbitrary U ∈ SU(2) with U =

(
a b

−b̄ ā

)
yields Y =

(
−y3 y1 + iy2

y1 − iy2 y3

)
with (y1,y2,y3)

T = Rx for

R = R(a,b) =
1
2

 a2 − b2 + ā2 − b̄2 i(a2 + b2 − ā2 − b̄2) 2(ab+ āb̄)
−i(a2 − b2 − ā2 + b̄2) a2 + b2 + ā2 + b̄2 2i(āb̄− ab)

−2(āb+ ab̄) 2i(āb− ab̄) 2(aā− bb̄)

 ∈ SO(3).

Proof. The matrix Y = UXUT takes the form

Y =

(
ab(x1 − ix2) + ab(x1 + ix2) + (bb− aa)x3 −b2(x1 − ix2) + a

2(x1 + ix2) + 2abx3

a2(x1 − ix2) − b
2
(x1 + ix2) + 2abx3 −ab(x1 − ix2) − ab(x1 + ix2) + (aa− bb)x3

)
.

We can now directly assign

y1 =
1
2

(
x1(a

2 − b2 + a2 − b
2
) + x2i(a2 + b2 − a2 − b

2
) + x3(2ab+ 2ab)

)
y2 =

1
2

(
x1i(−a2 + b2 + a2 − b

2
) + x2(a

2 + b2 + a2 + b
2
) + x3i(2ab− 2ab)

)
y3 = −(ab+ ab)x1 + i(ab− ab)x2 + (aa− bb)x3

which proves that (y1,y2,y3)
T = Rx with R given as in the lemma. One can also see by straight-

forward computations that this matrix is indeed a real-valued matrix. Exemplarily, we show that
ab+ ab ∈ R. We have

Im(ab+ ab) = Im(ab+ ab+ 1) = Im(ab+ ab+ aa+ bb) = Im((a+ b)(a+ b) = 0.

We can also see that R is orthogonal with determinant one.

Obviously we could also derive rotation axis and angle as well as Euler angles of a unitary rotation
matrix U ∈ SU(2).
Conversely, we can get the corresponding unitary matrix U from any of the previously mentioned
parameterisations of a rotation. Exemplarily, we state the relation between a rotation given in Euler
angles and U ∈ SU(2) as it is the most convenient. There are two unitary matrices U performing the
same rotation as a given rotation R(α,β,γ). They are

U(α,β,γ) = ±

(
e

i(α+γ)
2 cos β2 e−

i(α+γ)
2 sin β2

−e
i(α−γ)

2 sin β2 e
i(α−γ)

2 cos β2

)
. (2.5)

A more detailed description and proof of this representation can be found e.g. in [82].
Finally, we consider a category of parameterisations that will be very useful in the next Section 3 as it
gives a connection between the rotation groups SO(3), SU(2) and certain geometric objects.

Parameterisation of SO(3) Related to Geometric Objects Consider the set

B = {x ∈ R3 | x = ωr, forω ∈ [0,π], r ∈ S2}.

As ||r|| = 1, we see that all x ∈ B satisfy ||x|| = ω 6 π. We can identify ω and r with the rotation
angle and rotation axis of an element Rr(ω) ∈ SO(3). By doing so, we can uniquely identify rotations
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2 ROTATIONS AND THE ROTATION GROUP SO(3)

by elements from B. As for two points x, x ′ ∈ B and two rotations Rr(ω), Rr ′(ω
′) ∈ SO(3), we

have x = x ′ ⇔ Rr(ω) = Rr ′(ω
′), cf. Lemma 2.2.8.

At this point, we introduce the three-dimensional unit sphere S3 = {x ∈ R4 | ||x|| = 1} embedded in
R4. Points x ∈ S3 are given in spherical coordinates by

x =


sinω sin θ cosϕ
sinω sin θ sinϕ
sinω cos θ
cosω

 (2.6)

with θ,ω ∈ [0,π] andϕ ∈ [0, 2π). Note that for any fixed valueω ∈ (0,π), this parameterises a two-
dimensional sphere of radius | sinω|. If we restrictω to the interval [0,

π

2
], this mapping of x ∈ S3 to a

sphere with radius | sinω| will be unique. Otherwiseω and π−ωwill yield the same two-dimensional
sphere. In correspondence to this, we define the upper hemisphere S3

+ = S3 ∩ {x ∈ R4 | x4 > 0} of
S3. It is the set of all points x ∈ R4 satisfying

x =


sin ω2 sin θ cosϕ
sin ω2 sin θ sinϕ
sin ω2 cos θ
cos ω2

 . (2.7)

Considering only x ∈ S3
+, we have a bijective projection onto elements x ′ ∈ B, and hence, x uniquely

determines a rotation, as well.
The conversion (2.7) allows us to see a connection between the metric on S3

+ and the metric on SO(3)
from Lemma 2.2.9. If we compute the angle between two points x1, x2 ∈ S3

+ in spherical coordinates
(2.7) and compare the result with the combination of two rotations in axis-angle parameterisation from
(2.2), we see the equivalence of the two metrics.
Concerning the group of complex rotations, a point x ∈ S3 uniquely determines a complex rotation
U ∈ SU(2). This can be seen by converting (2.5) into its axis-angle parameterisation, which yields
(2.6).
We could consider even more parameterisations of rotations, like Rodrigues or Euler parameters,
skew-symmetric 3 × 3 matrices, or quaternions, to name just a few. But as we will not use these
parameterisations, we refer the reader to [17] for further information on this subject.
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3 Harmonic Analysis on the Rotation Group

This chapter gives a short summary about harmonic analysis on the rotation group SO(3). In the
first two sections we collect the ingredients that are needed to consider harmonic analysis on SO(3)
amongst which we find the definition of integration over the group SO(3), in Section 3.1. To actually
define the Fourier transform on SO(3) and its inverse in Section 3.2, we shall consider the space of
square integrable functions on SO(3) and its orthogonal basis functions, the Wigner-D functions. The
latter arise from group representations of SO(3), or to be more exact, from unitary, irreducible repre-
sentations of SO(3). We will find them to be matrix-valued functions, the matrix elements of which
constitute orthogonal basis functions on the rotation group, the so-called Wigner-D functions. The
key theorem to these considerations, the Peter-Weyl theorem, will be given as well as the definition of
Wigner-D functions resulting from it.
As the central aspect, the Fourier transform and its inverse will be defined. Moreover, we show how
the discrete versions of both transforms can be defined by sampling, on one hand, and by using quadra-
ture rules, on the other. We will then see that computing convolution and correlation follows the same
lines on the rotation group as it does in the standard settings.
To conclude the section, we get back to the various parameterisations of the rotation group and ex-
emplarily show in Section 3.3 for the Euler angles how explicit formulae for the Wigner-D functions
can be found, i.e., we look at homogeneous polynomials and the Laplace operator on SO(3). The
Wigner-D functions will arise as eigenfunctions of the latter.
Subsequently in Section 3.4, we will point out the relations between the SO(3) and the sphere S2 with
their respective orthogonal basis functions, the Wigner-D functions and the spherical harmonics; as
well as other connections between these two manifolds.
In the final Section 3.5, we consider an application of Fourier transforms on the rotation group, namely,
the fast summation of functions, and especially, radial basis functions on SO(3).

3.1 Integration of Rotation-Dependent Functions

In the previous section, we saw that the rotation group SO(3) corresponds to certain geometric ob-
jects, e.g. elements of SO(3) can be identified with points x ∈ S3

+ on the upper hemisphere of the
three-sphere. The standard metric on S3

+ provides a topology also for the rotation group SO(3), and
therefore, we can deal with SO(3) as a geometric object itself.
In fact, the rotation group is a locally, compact group which allows us to perform analysis on SO(3),
cf. [87]. Note that the same argument applies to SU(2).

Definition 3.1.1. Integration of a function f : SO(3)→ R defined on rotations R ∈ SO(3), which are
parameterised by rotation axis and rotation angle, reads as∫

SO(3)
f(R) dR =

1
4π2

∫ 2π

0

∫π
0

∫π
0
f(Rr(ϕ,θ)(ω))(cosω− 1) sin θ dω dθ dϕ

with the normalised volume element dR on SO(3) defined in terms of the axis-angle parameterisation

as dR =
1

4π2 (cosω− 1) sin θ dω dθ dϕ.
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3 HARMONIC ANALYSIS ON THE ROTATION GROUP

This definition originates from the parameterisation of the SO(3) by elements of S3
+. The surface area

of S3
+ is ∫

S3
+

dx =

∫ 2π

0

∫π
0

∫π
0

√
det(J JT ) dω dθ dϕ, (3.1)

by the transformation formula, with the Jacobian J ∈ R4×3 being the Jacobian of the coordinate
transform (2.7),

J =
∂x

∂(ω, θ,ϕ)
=

 1
2 cos ω2 cosϕ sin θ 1

2 cos ω2 sin θ sinϕ 1
2 cos ω2 cos θ −1

2 sin ω2
cos θ cosϕ sin ω2 cos θ sin ω2 sinϕ − sin ω2 sin θ 0
− sin ω2 sin θ sinϕ cosϕ sin ω2 sin θ 0 0

 .

(3.2)
As det(J JT ) = 1

4 sin4 ω
2 sin2 θ, we get∫
S3
+

dx =
1
4

∫ 2π

0

∫π
0

∫π
0
(cosω− 1) sin θ dω dθ dϕ = π2,

the surface area of one hemisphere of the S3. Hence, integration of f = 1 gives∫
SO(3)

dR =
1

4π2

∫ 2π

0

∫π
0

∫π
0
(cosω− 1) sin θ dω dθ dϕ =

1
π2

∫
S3
+

dx = 1.

Remark 3.1.2. The volume element dR from Definition 3.1.1 gives the Haar measure µ of SO(3) by
dR = dµ(R) . For a more extended overview on Haar measures, see e.g. [41] or [44].

Corollary 3.1.3. Integration of a function f : SO(3) → R depending on rotations R ∈ SO(3)
parameterised in Euler angles reads as∫

SO(3)
f(R) dR =

1
8π2

∫ 2π

0

∫π
0

∫ 2π

0
f(R(α,β,γ)) sinβ dα dβ dγ.

Proof. To determine the volume element of SO(3) in terms of its Euler angle representation, we again
use the coordinate transformation formula (3.1) and conclude∫

S3
dx =

∫ 2π

0

∫π
0

∫ 2π

0

√
det(J JT ) dα dβ dγ

with the Jacobian J =
∂x

∂(α,β,γ)
obtained by inserting the conversion formulae (2.4) into the Jacobian

(3.2). As det(JJT ) =
1

64
sin2 β holds true, we get dR =

1
8

sinβ dα dβ dγ by Definition 3.1.1. This
proves the corollary.

In an analogous way, we can also define the volume element on SU(2).

Definition 3.1.4. The normalised volume element dU on SU(2) is defined in terms of the Euler angle

parameterisation as dU =
1

16π2 sinβ dα dβ dγ.
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3.2 FOURIER TRANSFORMS AND CONVOLUTION ON SO(3)

Again this definition is consistent with the geometric interpretation of the SU(2) as points on S3. Its
surface area is double the area of the upper hemisphere used in the SO(3) case. The Euler angles for
complex rotations are from the interval [0, 2π) × [0,π) × [−2π, 2π), (cf. [17, p.294]). Hence, by
Corollary 3.1.3, we obtain∫

SU(2)
f(U) dU =

1
16π2

∫ 2π

−2π

∫π
0

∫ 2π

0
f(U(α,β,γ)) sinβ dα dβ dγ.

If we are able to integrate functions on SO(3) and SU(2), it may be natural to ask whether we might
also convolute functions on these groups. Indeed, this can be done if we restrict ourselves to functions
f ∈ L2(SO(3)) which is defined completely analogous to the standard consisting of equivalence

classes of functions f : SO(3) → C satisfying
∫

SO(3)
|f(R)|2 dR < ∞ and equipped with an inner

product of two functions f,g ∈ L2(SO(3)) given by

〈f,g〉 =

∫
SO(3)

f(R)g(R) dR. (3.3)

The convolution of two such functions f,g ∈ L2(SO(3)) is written as

(f ∗ g)(Q) =

∫
SO(3)

f(R)g(RTQ) dR. (3.4)

Completely analogously, we define L2(SU(2)), with an inner product

〈h,k〉 =

∫
SU(2)

h(U)k(U) dU (3.5)

for two functions h,k ∈ L2(SU(2)). The convolution of these two functions reads as

(h ∗ k)(V) =

∫
SU(2)

h(U)k(UTV) dU. (3.6)

3.2 Fourier Transforms and Convolution on SO(3)

In the following, we provide an analogue of the well-known Fourier transform and the Fourier series
for the rotation group SO(3). Most of the results presented in this section can be applied, not only
to the rotation group, but also in a more general context, to locally compact groups. The reader
interested in the general theory is referred to the books [44] or [87]. We will however provide a few
basic definitions.

Group Representations We start by giving a brief review on representation theory on groups.
Most of these results occur in the context of representation theory of finite groups. However, they can
be directly transferred to infinite groups, on the condition that a Haar measure can be defined on the
group. This is the case for the rotation group SO(3), cf. Remark 3.1.2 and Definition 3.1.1, and for the
complex rotation group SU(2), see Definition 3.1.4. Actually this is the case for all locally compact
groups, as e.g. [44] lay out in great detail. We begin with the central concept in harmonic analysis on
groups: representations.
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3 HARMONIC ANALYSIS ON THE ROTATION GROUP

Definition 3.2.1 (Representations). Let N ∈ N and V be an N-dimensional vector space, and let
{vi ∈ V | i = 1, . . . ,N} be some basis in V . Moreover, let G be a locally compact matrix group, the
elements of which act on vectors v ∈ V by the operation of composition, and let GL(V) denote the
set of all linear transformations over V . Then the group homomorphism D : G→ GL(V) is called a
representation of G on V .

Corollary 3.2.2. Consider the function f : V → V andD : G→ GL(V) with (D(G)f)(v) = f(G−1v)
where G ∈ G and v ∈ V . Then D is a representation of G on V .

Proof. For G1, G2 ∈ G, we have

D(G1G2)f(v) = f((G1G2)
−1v) = f(G−1

2 G−1
1 v) = (D(G2)D(G1)f)(v).

Therefore D : G→ GL(V) is indeed a homomorphism as specified in Definition 3.2.1.

Let V and W be n-dimensional vector spaces. Two representations DV : G → GL(V) and DW :
G → GL(W) are denoted as equivalent, or DV ∼= DW , if there is an isomorphism of the vector
spaces A : V →W such that we obtain A(DV(G)v) = DW(G)A(v), or equivalently

DV(G)v = A−1(DW(G)A(v)),

for any G ∈ G and v ∈ V .
This can be phrased differently. The representationsDV(G) andDW(G) as well as the isomorphism
A can be identified withN×N matrices and the above equation becomesDV(G) = A−1DW(G)A.
That means, the matrices of two equivalent representations are similar. Two equivalent representations
DV and DW give the same linear transformation but for different basis functions.

A subspace V1 ⊆ V satisfying D(G)V1 ⊆ V1 for all G ∈ G and a representation D : G → GL(V)
is called G-invariant. If the only G-invariant subspaces of V are {0} and V itself, the representation
D(G) is called irreducible. On the other hand, a representation D(G) is called reducible if there is a
nontrivial G-invariant subspace V1 of V .
A reducible representation D(G) satisfies

D(G) ∼=

(
D1(G) 0

0 D2(G)

)
for two representations D1(G) and D2(G), cf. [91, p.85]. This has two main consequences. On
one hand, any finite-dimensional reducible representation matrix can be decomposed by similarity
transforms until it is no longer block-diagonal, rendering the resulting representations irreducible.
On the other hand, if we can decompose V into a direct sum of G-invariant subspaces V = V1⊕ . . .⊕
Vn with n ∈ N, then the representation D(G) fulfils

D(G) ∼=

D1(G) 0
. . .

0 Di(G)

 .

Whenever the representationsDi(G) for i = 1, . . . ,n are irreducible,D(G) will be called completely
reducible.

We state the following important lemma without proof (for a proof, see e.g. [44, pp.7-8]). It tells us,
among others, that finite-dimensional irreducible representations result in invertible matrices.

26



3.2 FOURIER TRANSFORMS AND CONVOLUTION ON SO(3)

Lemma 3.2.3 (Schur’s Lemma). Let DV : G → GL(V) and DW : G → GL(W) be two irreducible
representations of a group G. Suppose there is a linear transformation A : V → W such that
(DW(G)A)(v) = A(DV(G)v) for any G ∈ G and v ∈ V . Then A is either zero or an isomorphism.
If V =W then A = λI for λ ∈ C.

The representationD : G→ GL(V) is called unitary if there is a G-invariant positive definite Hermi-
tian form 〈· , ·〉 on V , i.e., 〈v, w〉 = 〈D(G)v,D(G)w〉 = 〈Gv, Gw〉, ∀G ∈ G, ∀v, w ∈ V . A group
equipped with a Haar measure possesses such a Hermitian form as

〈v, w〉 =
∫
G

(D(G)v,D(G)w) dµ(G)

fulfils the required properties for any inner product (· , ·) on V .
One now shows that every unitary representation D of the compact group G on a finite-dimensional
vector space V is completely reducible. This can be seen by considering a nontrivial G-invariant
subspace V1 of V and its orthogonal complement V⊥1 . Using the above Hermitian form we can
conclude by

〈D(G)v⊥, v〉 = 〈v⊥,D(G)−1v〉 = 0 v ∈ V1, v⊥ ∈ V⊥1
that V⊥1 is G-invariant as well. Hence, we decomposed V into two G-invariant subspaces. Repeated
application of the same arguments will result in the sought decomposition.
Given a unitary representationD(G), a complex-valued functionD1,2(G) = 〈D(G)v1, v2〉 for v1, v2 ∈
V and G ∈ G is called representative function on the group G. We state the following lemma about
representative functions. Note that the representative functions are actually the matrix elements of a
represention.

Lemma 3.2.4. Let {vi | i = 1, . . . ,N} be an orthogonal basis of the N-dimensional vector space V
with respect to 〈·, ·〉. Then the representative functionsDij(G) = 〈D(G)vi, vj〉, i, j = 1, ...,N, G ∈ G
of the groupG with respect to the irreducible representationD(G) form a set of orthogonal functions.

Proof. On a locally compact group G, we can define an inner product by

〈f,h〉 =
∫
G

f(G)h(G) dG

with respect to the integration over the group, cf. Definition 3.1.1 and (3.3), for the SO(3) case as
well as Remark 3.1.2.
Let A : V → V be a linear transformation. By Corollary 3.2.2, we have (D(G)A)(v) = A(G−1v)
and thus (D(G−1)A)(G−1v) = A(v). By Lemma 3.2.3, the linear transformation A is described by

a multiple of the identity matrix A = λI. We obtain (D(G−1)A)(G−1v) =
tr(A)
N

v.
Taking the inner product with respect to vk on both sides of the equation and replacing v with v`, we
get ∫

G

〈D(G)A(G−1v`), vj〉 dG =
tr(A)〈v`, vj〉

N
. (3.7)

Now let A(v) = 〈v, vk〉vi. The trace of the corresponding matrix satisfies tr(A) = 〈vi, vk〉.
We can use this in the integral (3.7) to obtain

〈vi, vk〉〈v`, vj〉
N

=

∫
G

〈〈D−1(G)v`, vk〉D(G)vi, vj〉 dG

=

∫
G

〈D(G)vi, vj〉〈D−1(G)v`, vk〉 dG.
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3 HARMONIC ANALYSIS ON THE ROTATION GROUP

As D(G) is unitary, we have

〈vi, vk〉〈v`, vj〉
N

=

∫
G

〈D(G)vi, vj〉〈D(G)vk, v`〉 dG = 〈Di,j,Dk,`〉.

As vk for k = 1, . . . ,N are orthogonal basis vectors of V , we get

〈vi, vk〉〈v`, vj〉 =

{
〈vi, vi〉〈vj, vj〉 for i = k and j = `
0 otherwise.

This proves the orthogonality of the representative functions Di,j.

From the previous lemma it is clear that the representative functions depend not only on the represen-
tation itself but also on the choice of the basis in the space V . It would be, therefore, convenient to
study functions of representations that remain invariant under a change of basis. Such a function will
be called the character of a representation.
The character χ : G → C of a representation D of the group G on an N-dimensional vector space is
defined by

χD(G) =

N∑
i=1

Dii(G), G ∈ G. (3.8)

It is conjugate invariant, i.e. χD(GG ′G−1) = χD(G ′). If D and D ′ are irreducible, then we have

〈χD,χD ′〉 =

{
0 if D 6∼= D ′,
1 if D ∼= D ′.

(3.9)

We will examine characters of representations of SO(3) more closely in Section 3.5.

Now we have all ingredients to formulate the following theorem, which provides an analogue to
Fourier’s theorem for a locally compact group as it specifies the orthogonality relations of represen-
tative functions on a locally compact group G. For a proof and extended information of the theorem
see [90, pp. 157 ff.].

Theorem 3.2.5 (Peter-Weyl Theorem). The representative functions Di,j of all representations D of
the locally compact group G form a complete, orthogonal system in L2(G).

The following Lemma states that we do not need all representations of G to construct an orthogonal
basis.

Lemma 3.2.6. LetΛ = {D`} denote the set of all inequivalent, finite-dimensional, unitary, irreducible
representations of a compact group G and letDmn` be the representative functions on G with respect
to each representation D`. Then the set of functions

{Dmn` (G) | D` ∈ Λ; m,n = 1, . . .}

is an orthogonal basis of L2(G).

Proof. This follows by putting together Lemma 3.2.4 and the Peter-Weyl theorem.
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An Orthogonal Basis of L2(SO(3)) Now we apply these general results to the rotation group
SO(3) to characterise an orthogonal basis for it. The rotation group SO(3) is a locally compact group
which fits into the setting from the previous subsection. Recall that SO(3) possesses an integration
invariant Haar measure, cf. Section 3.1.
At first, we consider the 2-sphere S2 as it is a suitable vector space on which the elements of SO(3)
act transitively, i.e., for all ξ1, ξ2 ∈ S2, we can find an element R ∈ SO(3) such that ξ2 = Rξ1 . Let
ξ ∈ S2 and let (ϕ, θ) ∈ [0, 2π) × [0,π] be its coordinates. For any ` ∈ N0 and m = −`, . . . ` the
spherical harmonics of degree ` are defined as

Ym` (ξ) =

√
2`+ 1

4π

√
(`−m)!
(`+m)!

Pm` (cos θ)eimφ

where Pm` : [−1, 1] → R are associated Legendre polynomials, cf. [81], that arise as the derivatives
of ordinary Legendre polynomials P`(x) and are given by

Pm` (x) = (−1)m(1 − x2)
m
2

dm

dxm
P`(x) =

(−1)m

2``!
(1 − x2)

m
2

d`+m

dx`+m
(x2 − 1)`. (3.10)

Moreover, the spherical harmonics satisfy the orthogonality relation∫
S2
Ym` (ξ)Ym

′

` ′ (ξ) dξ = δ`` ′δmm ′ . (3.11)

The subspace Harm`(S2) = span{Ym` | m = −`, . . . , `} spanned by spherical harmonics with a
fixed degree ` ∈ N is called harmonic space of degree `. The harmonic spaces Harm`(S2) provide a
complete system SO(3)-invariant subspaces of L2(S2), i.e.,

L2(S2) = closL2

∞⊕
`=0

Harm`(S2). (3.12)

This has two main consequences. Firstly, as also (3.11) is fulfilled the set {Ym` | ` ∈ N0, |m| 6 `}

forms an orthonormal basis of L2(S2).
And secondly, the representationsD(R) for R ∈ SO(3) acting on functions f ∈ L2(S2) are completely
reducible. They decompose into irreducible representations D`(G) corresponding to the harmonic
subspaces Harm`(S2) in the sense that any function f ∈ Harm`(S2) satisfies

D`(G)f(ξ) = f(G−1ξ).

Having considered this, we take a closer look to the representative function resulting from the irre-
ducible representations D`(R).

Definition 3.2.7 (Wigner-D functions). Let D`(R) for any ` ∈ N and R ∈ SO(3) be a unitary,
irreducible representation of SO(3) on Harm`(S2). Then the representative functions on SO(3) given
by Dmn` (R) = 〈D`(R)Ym` , Yn` 〉 for m,n = −`, . . . , ` are called Wigner-D functions of degree ` and
ordersm and n.

Using Wigner-D functions of fixed degree ` ∈ N, we define the subspaces

Harm`(SO(3)) = span {Dmn` : m,n = −`, . . . , `} . (3.13)
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3 HARMONIC ANALYSIS ON THE ROTATION GROUP

Lemma 3.2.8. The set of Wigner-D functions

{Dmn` (R) | ` ∈ N0 , m,n = −`, . . . , `}

forms an orthogonal basis of L2(SO(3)).

Proof. Employing the set of spherical harmonics {Ym` | m = −`, . . . , `} as an orthonormal basis of
Harm`(S2), the proof follows directly from Lemma 3.2.6 and (3.12).

The Wigner-D functions Dmn` are not normalised with respect to the inner product (3.3), but they
satisfy the orthogonality conditions∫

SO(3)
Dmm

′
` (R)Dnn

′
` ′ (R) dR =

8π2

2`+ 1
δmnδm ′n ′δ`` ′ . (3.14)

We can conclude from Lemma 3.2.8 and (3.12) that L2(SO(3)) decomposes into the direct sum

L2(SO(3)) = closL2

∞⊕
`=0

Harm`(SO(3)).

Motivated by Lemma 3.2.8, we give the following Definition.

Definition 3.2.9 (SO(3) Fourier Expansion). The series expansion

f(R) =

∞∑
`=0

∑̀
m=−`

∑̀
n=−`

f̂mn` Dmn` (R),

of a function f ∈ L2(SO(3)) in terms of the Wigner-D functions Dmn` , for any R ∈ SO(3) is called
the SO(3) Fourier expansion with Fourier coefficients f̂mn` given by the inner product

f̂mn` =
2`+ 1

8π2 〈f,D
mn
` 〉. (3.15)

The Fourier expansion of functions f,g ∈ L2(SO(3)) allows convenient computation of their convo-
lution.

Lemma 3.2.10. Given the SO(3) Fourier expansions of f and g,

f(R) =

∞∑
`=0

∑̀
m=−`

∑̀
n=−`

f̂mn` Dmn` (R), g(R) =

∞∑
`=0

∑̀
m=−`

∑̀
n=−`

ĝmn` Dmn` (R),

we find the Fourier coefficients ĥmn` of their convolution h(R) = (f ∗ g)(R) to be

ĥmn` =
2`+ 1

8π2

∑̀
k=−`

f̂mk` ĝkn` .
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Proof. The Fourier coefficients ĥmn` of the convolution (f ∗ g)(R) are given by

ĥmn` =
2`+ 1

8π2 〈h(R),Dmn` 〉 = 2`+ 1
8π2

∫
SO(3)

h(R)Dmn` (R) dR.

Inserting the definition of convolution in SO(3) from (3.4), and rewriting g in terms of its Fourier
expansion, we get

8π2

2`+ 1
ĥmn` =

∫
SO(3)

∫
SO(3)

f(Q)g(QTR)Dmn` (R) dQ dR

=

∫
SO(3)

∫
SO(3)

f(Q)

∞∑
` ′=0

` ′∑
m ′=−` ′

` ′∑
n ′=−` ′

ĝm
′n ′

` ′ Dm
′n ′

` ′ (QTR)Dmn` (R) dQ dR.

By the addition theorem of Wigner-D functions,

Dmn` (QTR) =
∑̀
k=−`

Dmk` (QT )Dkn` (R), |m|, |n| 6 `,

cf. [84], we obtain

8π2

2`+ 1
ĥmn` =

∫
SO(3)

∫
SO(3)

f(Q)

∞∑
` ′=0

` ′∑
m ′,n ′,k ′=−` ′

ĝm
′n ′

` ′ Dm
′k

` ′ (QT )Dkn
′

` ′ (R)Dmn` (R) dR dQ.

As the Wigner-D functions satisfy the orthogonality relation (3.14), the expression simplifies to

ĥmn` =

∫
SO(3)

∑̀
m ′=−`

f(Q)ĝm
′n

` Dm
′m

` (QT ) dQ =

∫
SO(3)

∑̀
m ′=−`

f(Q)ĝm
′n

` Dmm
′

` (Q) dQ.

Now, we rewrite f in terms of its Fourier expansion and use the orthogonality of Wigner-D functions
once more,

ĥmn` =

∫
SO(3)

∑̀
m ′=−`

∞∑
` ′′=0

` ′′∑
m ′′,n ′′=−` ′′

f̂m
′′n ′′

` ′′ Dm
′′n ′′

` ′′ (Q)ĝm
′n

` Dmm
′

` (Q) dQ

=
2`+ 1

8π2

∑̀
m ′=−`

f̂mm
′

` ĝm
′n

`

which proves the lemma.

Note that the Wigner-D functions also allow us to conveniently compute convolutions of functions on
L2(S2). We will consider this in Section 3.4.

Discrete SO(3) Fourier Transforms In the preceding paragraphs, we saw how Fourier expan-
sions are defined on the rotation group SO(3). It is, therefore, quite natural to ask whether we can also
transfer the formulae for its well known variations, the Fourier partial sum and the discrete Fourier
transform, to SO(3). Especially the latter will be needed in order to construct algorithms for fast
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3 HARMONIC ANALYSIS ON THE ROTATION GROUP

Fourier transforms on SO(3) in Section 4.

For L ∈ N consider functions f ∈ L2(SO(3)) the Fourier coefficients of which fulfil fmn` = 0 for
` > L. We call these functions L-band-limited.
Moreover, we define the function spaces

DL =

L⊕
`=0

Harm`(SO(3))

for arbitrary L ∈ N the elements of which are the above mentioned band-limited functions. An
orthogonal basis of these spaces is given, due to (3.13), by

{Dmn` (R) | ` = 0, . . . ,L ; m,n = −`, . . . , `}.

For convenience, we define an ordered set of indices

IL = {(`,m,n) : ` = 0, . . . ,L ; m,n = −`, . . . , `} (3.16)

corresponding to all sets of admissible indices (`,m,n) within the space DL. Throughout this work,
we keep the particular order of the indices fixed.
The dimension of the spaces DL is given by

dim(DL) = |IL| =

L∑
`=0

(2`+ 1)2 =
1
3
(L+ 1)(2L+ 1)(2L+ 3).

Now, any function f ∈ DL can be written as its unique finite Fourier partial sum

f(R) =
∑

(`,m,n)∈IL

f̂mn` Dmn` (R). (3.17)

Evaluating the Fourier partial sum (3.17) not for all R ∈ SO(3), but only for a finite choice of
rotations, i.e, a sampling set on SO(3) leads to the following definition.

Definition 3.2.11 (Discrete Fourier Transform on SO(3)). Let RQ = {Rj ∈ SO(3) | j = 1, . . . ,Q},
be an arbitrary finite set of rotations. Then

f(Rq) =
∑

(`,m,n)∈IL

f̂mn` Dmn` (Rq), q = 1, . . . ,Q,

with given Fourier coefficients f̂ = (f̂mn` )(`,m,n)∈IL evaluates a function f ∈ DL at the nodes
R1, . . . , RQ. The corresponding operator DL,RQ : C|IL| → CQ with f(Rq) =

[
DL,RQ f̂

]
q

is called
nonequispaced discrete SO(3) Fourier transform (NDSOFT).

As usual, the operator from Definition 3.2.11 will be identified with its corresponding matrix DL,RQ ∈
C|IL|×Q. Hence, the NDSOFT can be thought of as the matrix vector multiplication f = DL,RQ f̂ with
f = (f(Rq))q=1,...,Q ∈ CQ and f̂ as in Definition 3.2.11.
In general, the matrix DL,RQ is not squared. Thus, the NDSOFT is not readily inverted. But we can
immediately define the adjoint NDSOFT using the adjoint operator DHL,RQ by

[
DHL,RQf

]
(`,m,n) = f̃

mn
` =

Q∑
q=1

f(Rq)Dmn` (Rq), (3.18)
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for all admissible (`,m,n) ∈ IL. The coefficients f̃mn` we obtain will generally not be equal to the
SO(3) Fourier coefficients f̂mn` .
But since the Fourier coefficients f̂mn` are given by the inner product (3.15), i.e., by known integrals,
they can be recovered from the function values f(Rq) if a quadrature rule with weights wq, q =
1, . . . ,Q, and a sufficient order of exactness is available. In that case, we can compute the inverse
NDSOFT by

f̂mn` =

Q∑
q=1

wq f(Rq)Dmn` (Rq), (`,m,n) ∈ IL.

For a special set of nodes, we will consider the inverse NDSOFT in Section 4.2. But apart from that,
we are not going into more detail about it. For more information on how one could analyse the SO(3)
Fourier coefficients out of given samples by quadrature formulae and their corresponding sampling
sets, the reader is referred to [36]. For the cases where we do not have a matching quadrature rule,
e.g. if there are less function samples than Fourier coefficients, we refer to [35], where the authors
describe how to use the adjoint NDSOFT for interpolation.

Complexity of the SO(3) Fourier Transform We conclude this section with a few remarks
on the computational complexity of the NDSOFT, its adjoint and inverse. The application of the
operators DL,RQ and DHL,RQ takes O(QL3) operations, owing to the size of the matrix DL,RQ . The
discrete Fourier transform of a function f ∈ DL needs O(L3) Fourier coefficients as given input along
with Q rotations on which the function will be evaluated. This adds up to O(Q + L3) input values,
which gives a lower bound for the computational complexity any algorithm computing the NDSOFT
can have. One of the main aspects of this work is to find an algorithm for computing the NDSOFT
that has a lower complexity as the direct O(QL3) and which is as close as possible to the lower bound
of O(Q + L3). In Section 4.2, we will consider fast SO(3) Fourier transforms (NFSOFT) which are
fast algorithms to compute the same result as the NDSOFT. Their complexity will not reach the lower
bound. But we will approach it with two approximate algorithms, one of O(L3 logL + Q) and one
of O(L3 log2 L +Q) flops, in Sections 4.1.1 and 4.1.2, respectively. We shall also discuss the merits
and drawbacks of both algorithms. But before, we need to discuss some important properties of the
Wigner-D functions which are key to develop the NFSOFT algorithms.

3.3 Wigner-D and Wigner-d Functions

Definition 3.2.7 characterised the Wigner-D functions Dmn` as the matrix elements of the unitary
irreducible representations of the group SO(3) on S2 (cf. also Lemma 3.2.6). Due to this, they satisfy
the representation property

Dmn` (RS) =
∑̀
k=−`

Dmk` (R)Dkn` (S), R, S ∈ SO(3) (3.19)

as well as Dmn` (R) = Dmn` (R−1) as a consequence of unitarity, cf. Lemma 3.2.6.

Recall from Section 2.1 that the elements of SO(3) have three degrees of freedom. It has proven to
be a powerful idea to split up the Wigner–D functions according to these degrees of freedom. More
precisely, in the following, we will use the Euler angle parameterisation to give explicit expressions
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3 HARMONIC ANALYSIS ON THE ROTATION GROUP

for Wigner-D functions. It is, of course, also possible to give the Wigner-D functions in any other
parameterisation mentioned in Section 2.2 but the Euler angles are especially helpful as they will
provide a direct connection between the spherical harmonics and the Wigner-D functions.
To get a parameterisation of Wigner-D functions in Euler angles, we consider the Laplace-Beltrami
operator.

Definition 3.3.1 (Laplace-Beltrami operator). Let R(q1,q2,q3) ∈ SO(3) be given in a parameteri-
sation of SO(3). The Laplace-Beltrami operator on SO(3) acting on a function f ∈ C2(SO(3)) in the
given parameterisation is defined as

∆SO(3) =
1√

det(JJT )

3∑
i,j=1

∂f

∂qi

√
det(JJT ) (JJT )−1

i,j
∂f

∂qj

with the Jacobian J = ∂x
∂(q1,q2,q3)

of the coordinate transform of x ∈ S3
+ with respect to the given

parameterisation.

For the Jacobian of the coordinate transform in Euler angles J =
∂x

∂(α,β,γ)
, we get

JJT =

 1 0 cosβ
0 1 0

cosβ 0 1

 and (JJT )−1 =
1

sin2 β

 1 0 − cosβ
0 sin2 β 0

− cosβ 0 1

 .

Applying this to Definition 3.3.1 and using
√

det(JJT ) = sinβ, we find

∆SO(3) =
1

sin2 β

(
∂2

∂α2 − 2 cosβ
∂2

∂α∂γ
+
∂2

∂γ2

)
+
∂2

∂β2 + cotβ
∂

∂β
.

Note that the definition of the Laplace–Beltrami operator ∆SO(3) does not depend on a particular
choice of coordinate system which implies rotational invariance of ∆SO(3), cf. [41, Sect. 2.4.2.].
Due to the rotational invariance, we can see from ∆S2Ym` (ξ) = `(` + 1)Ym` (ξ), (cf, [31, Sect. 3.5])
that ∆SO(3)Y

m
` (R−1ξ) = `(` + 1)Ym` (R−1ξ) is satisfied. Employing Definition 3.2.7 of the Wigner-

D functions, we conclude that the Wigner-D functions are eigenfunctions of the Laplace-Beltrami
operator fulfilling

∆SO(3)D
mn
` = `(`+ 1)Dmn` , (3.20)

for ` ∈ N.
This allows us to find an explicit expression for Wigner-D functions in Euler angles using a separa-
tion of variables approach with Dmn` (R(α,β,γ)) = d1(α)d2(γ)d3(β). This yields three ordinary
differential equations with periodic boundary conditions;

d ′′1 +m2d1 = 0, d1(0) = d1(2π), d ′1(0) = d
′
1(2π),

d ′′2 + n2d1 = 0, d2(0) = d2(2π), d ′2(0) = d
′
2(2π),

(sinβd ′3)
′ +

(
`(`+ 1) sinβ−

n2 − 2mn cosβ+m2

sinβ

)
d3 = 0,

d3(0) = d3(π) d ′3(0) = d ′3(π).
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The solutions for d1 and d2 are given by d1(α) = e−imα and d2(γ) = e−inγ form,n ∈ Z. To solve
the equation for d3 we set x = cosβ and obtain the following differential equation, [86, p. 138],

(1 − x2)d ′′3 − 2xd ′3 +
(
`(`+ 1) −

(n−m)2

2(1 − x)
−

(n+m)2

2(1 + x)

)
d3 = 0. (3.21)

The solution of the differential equation for d3 is given by the Rodrigues formula

d3(x) =
(−1)`−n

2`

√
(`+m)!

(`− n)!(`+ n)!(`−m)!

√
(1 − x)n−m

(1 + x)m+n

d`−m

dx`−m
(1 − x)n+`

(1 + x)n−`
. (3.22)

This solution will be referred to as the Wigner-d function dmn` (x) = d3(x).
Putting Dmn` (R(α,β,γ)) = d1(α)d2(γ)d3(β) together again, we get an explicit expression for the
Wigner-D functions in terms of Euler angles. For |m|, |n| 6 ` ∈ N the Wigner-D functions are given
by

Dmn` (α,β,γ) = e−imαe−inγdmn` (cosβ). (3.23)

Hence, the Wigner-D functions factorise into an exponential function depending on α and γ and a
Wigner-d function depending on β only. We continue by laying out important properties of the latter.

Properties of Wigner-d Functions The Wigner-d functions dmn` are related to Jacobi polyno-
mials cf. [84, p. 78] and [81, pp. 58] as

dmn` (x) = ε

√(
`− µ+ν

2

)
!
(
`+ µ+ν

2

)
!(

`− µ−ν
2

)
!
(
`+ µ−ν

2

)
!
2−
µ+ν

2 (1 − x)
µ
2 (1 + x)

ν
2 P

(µ,ν)
`−µ+ν

2
(x), (3.24)

where µ = |n−m|, ν = |n+m| and

ε =

{
1 if n > m,
(−1)n−m if n < m.

From Equation (3.24) it can be seen that the Wigner-d functions dmn` are polynomials of degree ` if
m+ n, and therefore, also n−m are even. If n±m are odd,

√
1 − x2dmn` (x) will be a polynomial

of degree `. As distinguished from the degree `, we denote m and n as the orders of the Wigner-d
functions dmn` .
A variety of properties of Wigner-d functions is a consequence of the fact that they are matrix elements
of unitary, irreducible representations of SO(3) for special elements R ∈ SO(3), i.e., dmn` (cosβ) =
Dmn` (R(0,β, 0)). At first, Wigner-d functions form a complete system of orthogonal functions for
fixedm and n, with respect to the inner product

〈dmn` ,dmn` ′ 〉 =
∫ 1

−1
dmn` (x)dmn` ′ (x) dx =

2
2`+ 1

δ`,` ′ . (3.25)

Obviously, the Wigner-d functions are not normalised, therefore we introduce the normalised Wigner-

d functions which are given by d̃mn` =
√

2`+1
2 dmn` .

Lemma 3.3.2. Wigner-d functions fulfil certain symmetry relations including

dmn` (−x) = (−1)`+nd−m+n
` (x)

as well as
dmn` (x) = (−1)m+ndnm` (x) = (−1)m+nd−m−n

` (x) = d−n−m` (x).
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Proof. We set x = cosβ. By using the representation property (3.19) on dmn` (cosβ) = D(R(0,β, 0))
and the fact that dmn` (−1) = (−1)`+nδ−m+n, we can write

dmn` (− cos θ) = dmn` (cos(π− θ)) =
∑̀
k=−`

dmk` (cosπ)dkn` (cos θ)

=
∑̀
k=−`

(−1)`+kδ−mkdkn` (cos θ) = (−1)`+nd−mn` (cos θ).

Considering that the Dmn` are elements of a unitary matrix, we have

Dmn` (R−1) = Dnm` (R).

Setting R = R(0,β, 0), we get the back rotation R−1 = R(π,β,π). For the separated Wigner-D
functions, we have

Dmn` (R−1) = e−imπdmn` (cosβ)e−inπ = (−1)m+ndmn` (cos θ).

As the Wigner-d functions are real-valued functions, we get

Dnm` (R(0,β, 0)) = dnm` (cosβ).

Putting this together yields

(−1)m+ndmn` (cosβ) = dnm` (cosβ).

By repeated application of these two symmetries, the other symmetries from the lemma follow imme-
diately.

Wigner-d Functions of Different Orders and Degrees We will now examine a fundamental
property of the Wigner-d functions that are used for the algorithms in Section 4. That is, the possibility
to connect Wigner-d functions dmn` for given orders m and n, on one hand, to Wigner-d functions
dmn` ′ of lower degrees ` ′ < `, and on the other hand, to Wigner-d functions dm

′n ′
` of lower orders

m ′ < m and n ′ < n.
The first connection can be realised by a three-term recurrence relation that reads for |m|, |n| 6 ` as

dmn`+1(x) = (umn` x+ vmn` )dmn` (x) +wmn` dmn`−1(x), x = cos θ, (3.26)

with the recurrence coefficients given by

umn` =
(`+ 1)(2`+ 1)√

(`+m+ 1)(`−m+ 1)(`+ n+ 1)(`− n+ 1)
,

vmn` =
−mn(2`+ 1)

`
√
(`+m+ 1)(`−m+ 1)(`+ n+ 1)(`− n+ 1)

,

wmn` =
−(`+ 1)

√
(`2 −m2)(`2 − n2)

`
√
(`+m+ 1)(`−m+ 1)(`+ n+ 1)(`− n+ 1)

where we set dmn` (x) = 0 for all ` < max(|m|, |n|). This three-term recurrence relation results from
the fact that the Wigner-d functions dmn` are special cases of Jacobi polynomials (cf. (3.24)).

To formulate the second connection, we take into account that a finite linear combination of Wigner-d
functions dmn` , ` = max(|m|, |n|), . . . ,L, can be expressed in terms of Wigner-d functions dm

′n ′
` ,

` = max(|m ′|, |n ′|), . . . ,L, of certain lower ordersm ′ and n ′ given by the following lemma.
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Lemma 3.3.3. Let L ∈ N, andm,n ∈ Z with |m|, |n| 6 L. By DmnL we denote the space spanned by
the functions dmn` for ` = max(|m|, |n|), . . . ,L. If we define

m ′ =

{
1 ifm = ±n 6= 0,
0 else,

n ′ =


0 ifm = n = 0,
±1 ifm = ±n 6= 0,
2 ifm+ n even, |m| 6= |n|,
1 ifm+ n odd, |m| 6= |n|,

then we have DmnL ⊆ Dm ′n ′L .

Proof. The lemma provides five distinctions. These are

i) m = n = 0: In this case, we simply get D00
L = D00

L .

ii) m = n 6= 0 : Recalling Equation (3.24), the Wigner-d functions dmn` (x) are related to Jacobi
polynomials P(|n−m|,|m+n|)

`−max(|m|,|m|)
(x). Using this, we find the space DmmL to be spanned by functions

(1 + x)|m|P
(0,2|m|)
` (x) for ` = 0, . . . ,L− |m| multiplied with a scaling factor.

On the other hand, the space D11
L is spanned by the functions (1+x)P(0,2)

` with ` = 0, . . . ,L−1
multiplied by a factor. It follows that we have DmmL ⊆ D11

L , form 6= 0.

iii) m = −n 6= 0 : Analogously to the previous case, the space Dm−m
L is spanned by functions (1−

x)|m|P
(2|m|,0)
` (x) for ` = 0, . . . ,L−|m| multiplied with a scaling factor while the corresponding

space D1−1
L is spanned by the functions (1−x)P(2,0)

` with ` = 0, . . . ,L−1 multiplied by a factor.
Hence, it contains Dm−m

L form 6= 0.

iv) m+n odd: We set |m+n| = 2M+ 1 and |n−m| = 2N+ 1. In this notation, the space DmnL
is spanned by functions (1 + x)M(1 − x)N

√
1 − x2P

(N,M
` (x) for ` = 0, . . . ,L −M −N − 1

multiplied with a scaling factor.
The corresponding space D01

L is spanned by the functions
√

1 + x2P
(1,1)
` with ` = 0, . . . ,L − 1

multiplied by a factor. Hence, we get DmnL ⊆ D01
L .

v) m+ n even, |m| 6= |n| : Finally, we set |m+ n| = 2M and |n−m| = 2N. In this notation, the
space DmnL is spanned by functions (1 + x)M(1 − x)NP

(N,M
` (x) for ` = 0, . . . ,L −M − N

multiplied with a scaling factor.
The corresponding space D02

L is spanned by the functions P(2,2)
` with ` = 0, . . . ,L−2 multiplied

by a factor. So indeed, we get DmnL ⊆ D02
L .

Remark 3.3.4. The quantities m ′ and n ′ will always depend on given orders m and n of Wigner-
d functions, i.e., m ′ = m ′(m,n) and n ′ = n ′(m,n) . But in order to avoid these lengthy no-
tations, we will just write m ′ and n ′. Also, we introduce the notation L0 = max (|m|, |n|) and
L ′0 = max (|m ′|, |n ′|).

Now letm and n be fixed and let

f =

L∑
`=L0

f̂mn` dmn`
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be a finite expansion in Wigner-d functions dmn` , ` = L0, . . . ,L. Due to Lemma 3.3.3, f can be
expressed in Wigner-d functions dm

′n ′
` of low orders,

f =

L∑
`=L ′0

f̄mn` dm
′n ′

` (3.27)

where the sought transformation from coefficients f̂mn` to coefficients f̄mn` is linear. Therefore, there
exists a matrix Amn = (a`,k) ∈ R(L−L ′0+1)×(L−L0+1) such that the vectors f̂mn = (f̂`) ∈ CL−L0+1

and f̄mn = (f̄`) ∈ CL−L ′0+1 are related by the equation

f̄mn = Amn f̂mn. (3.28)

Due to the orthogonality of the Wigner-d functions, the entries of the matrix Amn are given by a`,k =√
(2`+1)(2k+1)

2 〈dm
′,n ′

` ,dm,n
k 〉.

Corollary 3.3.5. The matrices Amn obey the following symmetries for |m|+ |n| > 2;

Amn = (−1)m−nA−m−n, Amn = (−1)m−nAnm,

Amn = diag
(
(−1)`+m+δ|m|,|n|

)L
`=L ′0

A−mn diag
(
(−1)`

)L
`=L0

.

Moreover, for |m|+ |n| 6 2 we have

Amn =

{
−I for (m,n) = (0,−1) or (m,n) = (1, 0),
I else.

Proof. These are direct consequences of Lemma 3.3.2 and Lemma 3.3.3.

The efficient application of the matrix Amn to a vector will be discussed at length in Section 4.1.
To show how this can be done, we will derive properties of Amn that will enable us to apply some
well-known fast algorithms.

3.4 Rotations on the 2-Sphere S2

In Section 2.2, we already saw that there is a relation between the rotation group SO(3) and the sphere
S2. The connection was reflected e.g. in the axis-angle parameterisation which characterises a rotation
uniquely by an angle ω ∈ [0, 2π) and a unit vector r ∈ S2. Also the Euler angle parameterisation
gives a connection. Consider any point p ∈ S2 with spherical coordinates p = (α,β). It can be
written as p = Rez(α)Rey(β)ez, cf. Lemma 2.2.8 and its proof. This is consistent with the Euler
angles parameterisation of a rotation established in Definition 2.2.10 as p = Rez(α)Rey(β)Rez(γ) =
R(α,β,γ) is fulfilled for arbitrary γ ∈ [0, 2π). Yet another link was given in Definition 3.2.7 where
we defined the Wigner-D functions by means of spherical harmonics Ym` , an orthonormal basis of
L2(S2). This gives reason to collect some more properties that connect the sphere S2 and the rotation
group SO(3). By a reformulation of Definition 3.2.7, we get the representation property

Yn` (R
−1p) =

∑̀
m=−`

Ym` (p)Dmn` (R), for |m| 6 `, p ∈ S2, R ∈ SO(3), (3.29)
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reflecting the rotational invariance of the spherical harmonics.
Now, it comes as no surprise that Wigner-d as well as Wigner-D functions generalise functions that
are known from harmonic analysis on S2. In fact, by setting one order of the Wigner-d functions to
zero we get associated Legendre functions by

dm0
` (x) = d0−m

` (x) =

√
(`−m)!
(`+m)!

Pm` (x), (3.30)

cf. Equations (3.10) and (3.24). Due to (3.30), the Wigner-d functions are also called generalised
associated Legendre functions. We now obtain immediately another relation between Wigner-D func-
tions Dmn` and spherical harmonics Ym` as

Ym` (α,β) =

√
2`− 1

4π
eimαdm0

` (cosβ) =

√
2`− 1

4π
Dm0
` (R(α,β,γ))

=

√
2`− 1

4π
D0−m
` (R(γ,β,α))

where the Euler angle γ ∈ [0, 2π) can be chosen freely. Owing to this relationship, Wigner-D func-
tions are sometimes also called generalised spherical harmonics (e.g. [14]).
As a nice consequence of the above properties, one obtains the correlation between functions on
L2(S2) using SO(3)- Fourier transforms. Computing a rotation-dependent correlation C(R) of two
functions f,g ∈ L2(S2) leads to evaluate the integral

C(R) =

∫
S2
f(p)g(R−1p) dp, R ∈ SO(3). (3.31)

Being a basis of the L2(S2), we can use the spherical harmonics Ym` to expand the functions f and g
into

f(p) =

∞∑
`=0

∑̀
m=−`

am` Y
m
` (p), g(p) =

∞∑
`=0

∑̀
m=−`

bm` Y
m
` (p)

with Fourier coefficients am` and bm` .
Inserting these expansions into (3.31) using the representation property (3.29) yields

C(R) =

∫
S2

( ∞∑
`=0

∑̀
m=−`

am` Y
m
` (p)

)( ∞∑
` ′=0

` ′∑
n=−` ′

bn` ′Y
n
` ′(R−1p)

)
dp

=

∞∑
`=0

∞∑
` ′=0

∑̀
m=−`

` ′∑
k=−` ′

` ′∑
n=−` ′

Dkn` ′ (R)am` b
n
` ′

∫
S2
Ym` (p)Yk` ′(p) dp.

Knowing that the Ym` constitute an orthonormal basis in L2(S2) for different degrees ` and orders m
and considering the symmetries of Wigner-d functions from Lemma 3.3.2, we obtain the following
equation

C(R) =

∞∑
`=0

∑̀
m=−`

∑̀
n=−`

(−1)m+nam` b
n
` D

−m−n
` (R)

=

∞∑
`=0

∑̀
m=−`

∑̀
n=−`

(−1)m+na−m` b−n` Dmn` (R).

This perfectly fits into the setting of the NDSOFT from Definition 3.2.11.
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3.5 Summation of Functions on the Rotation Group

To conclude this chapter on harmonic analysis on the rotation group, we present in some detail an in-
teresting application of Fourier transforms on SO(3). That is, the fast summation of functions where
we especially focus on the summation of radial basis functions to be established in Definition 3.5.1.
The summation of radial basis functions is a key task in kernel based approximation methods, which
have proved to be a suitable tool for solving a large class of problems on the rotation group, e.g. in-
terpolation, least squares approximation, clustering or principle component analysis [29, 39, 85, 93].
Fast radial basis function algorithms that utilise fast Fourier techniques to find an approximation of
the function f, which then can be evaluated at arbitrary nodes, are well established in the Euclidean
and the spherical case. They have been discussed in [50, 69]. There, they come off well compared
to other algorithms like Moving Squares, Thin Plate Splines, partition of unity, or fast multipole (see
e.g. [28]). All this gave reason to establish a fast radial basis function algorithm for the rotation group
as well. This was initially done in [43] and shall be reviewed here.
We will show how to evaluate linear combinations of radial functions on the rotation group based on
the NDSOFT. This approach takes O(J + K) arithmetic operations for J and K arbitrarily distributed
source and target nodes, respectively. This is a significant improvement over a naive algorithm com-
puting the same result with complexity O(JK). We will also investigate a selection of radial functions
and give explicit error bounds.
For more extensive information on these issues, we refer the reader to [43] which also provides nu-
merical tests of runtime and errors of the presented algorithm along with more examples of kernel
functions and an application of the method, namely the kernel density estimation from electron back
scattering diffraction data, a problem relevant in texture analysis, see [2].

Radial Functions on SO(3) Using the distance measure from Definition 2.1.7, we define radial
functions on SO(3).

Definition 3.5.1. A function f : SO(3) → C is called a radial function with centre R0 ∈ SO(3) if it
depends only on the rotational distance to R0 ∈ SO(3). That means for all R1, R2 ∈ SO(3) that fulfil
|R1R−1

0 | = |R2R−1
0 | with respect to the metric on SO(3) (see Lemma 2.2.9), the function f satisfies

f(R1) = f(R2).

Note that a conjugate invariant function on SO(3) (cf. (3.8)) is automatically radial with centre R0 = I.
We already saw an example of such conjugate invariant function; the character χD(R) of a represen-
tation D (again, cf. (3.8)). Recall that it was defined to be the trace of a matrix representation of an
element R ∈ SO(3). So in case of the Wigner-D functions, we have

χ`(R) =
∑̀
m=−`

Dmm` (R).

Definition 2.1.7 established a connection between the rotational distance |R| and the axis-angle pa-
rameterisation, i.e., |Rr(ω)| = ω. Having this in mind, we formulate the following lemma.

Lemma 3.5.2. The character χ`(Rr(ω)) of a rotation R ∈ SO(3), with ` ∈ N0 given in terms of axis
r ∈ S2 and angleω ∈ [0,π], can be calculated by

χ`(Rr(ω)) = U2`

(
cos

ω

2

)
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where

U`(cosω) =
sin(`+ 1)ω

sinω
,

forω ∈ (0,π) and U`(1) = `+ 1 and U`(−1) = (−1)`(`+ 1) denote the Chebyshev polynomials of
second kind.

Proof. As χ`(Rr(ω)) is conjugate invariant, it satisfies χ`(Rr(ω)) = χ`(S−1Rr(ω) S) for S ∈
SO(3). By means of Definition 2.2.8, we can indeed find a rotation S such that S−1Rr(ω)S = Rez(ω).
In Euler angles this rotation is denoted by Rez(ω) = R(ω, 0, 0). Applying formula (3.23) for Wigner-
D functions separated in Euler angles, we get for the character

χ`(Rr(ω)) =
∑̀
m=−`

Dmm` (ω, 0, 0) =
∑̀
m=−`

e−imω = 1 + 2
∑̀
m=1

cosmω = U2`

(
cos

ω

2

)
.

Using the conversion (2.4) from axis-angle to Euler angle parameterisation, we obtain the character
for rotations given in arbitrary Euler angles by

χ`(R(α,β,γ)) = U2`

(
cos

β

2
cos

α+ γ

2

)
.

Lemma 3.5.2 motivates an alternate definition of radial functions, that is a definition via a Fourier
expansion in terms of Chebyshev polynomials of even degree. More precisely, we say, a function
f ∈ L2(SO(3)) is a radial function with centre R0 ∈ SO(3) if and only if its Fourier coefficients f̂mn`
fulfil

f̂mn` = f̂`D
mn
` (R0), ` ∈ N0, m,n = −`, . . . , `,

for certain coefficients f̂`. Specifically, we then get

f(R) =

∞∑
`=0

f̂`
∑̀
m=−`

∑̀
n=−`

Dmn` (R)Dmn` (R0) =

∞∑
`=0

f̂`U2`

(
cos

|RR−1
0 |

2

)
. (3.32)

We will use this formula to construct some examples of radial functions.
As a consequence of the orthogonality of the characters (3.9) and of the Peter-Weyl-Theorem, we
observe that the characters χ` for ` ∈ N are a basis of the subspace of conjugate invariant functions
on SO(3), cf. [44], that is why they are also called radial basis functions.
Let us now collect some radial functions on SO(3), which we denote by ψ(R) with R ∈ SO(3).

1. The Generating Function’s kernel: The generating function of the Chebyshev polynomials of
second kind is given by (cf. [5, Sec. 7])

∞∑
`=0

κ`U`(t) =
1

1 − 2κt+ κ2 , t ∈ [−1, 1], κ ∈ (0, 1). (3.33)

Employing (−1)`U`(−t) = U`(t), we construct a radial function ψ : SO(3)→ R based on the
generating function for any κ ∈ (0, 1) by

ψ(R) =

∞∑
`=0

κ2`U2`

(
cos

|R|

2

)
=

1
2

1 − 2κ cos |R|
2 + κ2

+
1
2

1 + 2κ cos |R|
2 + κ2

,

which is in correspondence to (3.32).
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3 HARMONIC ANALYSIS ON THE ROTATION GROUP

2. The Abel–Poisson Kernel: By differentiating the generating function (3.33) with respect to κ,
a second summation formula for the Chebyshev polynomials is obtained by

∞∑
`=0

(2`+ 1)κ`U`(t) =
1 − κ2

(1 − 2κt+ κ2)2 , t ∈ [−1, 1], κ ∈ (0, 1).

Again after symmetrisation, we get the Abel–Poisson kernel on SO(3) ([63, Sec. 17]),

ψ(R) =

∞∑
`=0

(2`+ 1)κ2`U2`

(
cos

|R|

2

)

=
1
2

(
1 − κ2

(1 − 2κ cos |R|
2 + κ2)2

+
1 − κ2

(1 + 2κ cos |R|
2 + κ2)2

)
.

3. The von Mises–Fisher Kernel: For any κ > 0, the von Mises–Fisher kernel on SO(3) is
defined as (cf. [42])

ψ(R) =

∞∑
`=0

I`(κ) − I`+1(κ)

I0(κ) − I1(κ)
U2`

(
cos

|R|

2

)
=

1
I0(κ) − I1(κ)

eκ cos|R|,

where In, n ∈ N0 denote the modified Bessel functions of first kind

In(κ) =
1
π

∫π
0
eκ cosω cosnω dω.

4. The Gauss-Weierstrass Kernel: For κ > 0 the Gauss-Weierstrass kernel on SO(3) is defined
by its Fourier series

ψ(R) =

∞∑
`=0

(2`+ 1)e−`(`+1)κU2`

(
cos

|R|

2

)
.

5. The de la Vallée Poussin Kernel: This kernel differs from the others given previously as it has
a finite Fourier-Chebyshev expansion

ψ(R) =

(2κ+1
κ

)
(2κ+ 1)22κ cos2κ |R|

2
=

1
(2κ+ 1)22κ

κ∑
`=0

(2`+ 1)
(

2κ+ 1
κ− `

)
U2`

(
cos

|R|

2

)
,

for any κ ∈ N. More details are provided in [10].

All these kernels ψ have in common that they define positive and monotonously decreasing radial
functions on SO(3). The parameter κ determines the sharpness of the peak of ψ, see Figure 3.1.
Furthermore, we have ψ(I)→∞ as κ→ 1.

Fast Summation of Radial Functions Let J,K ∈ N and let Sj = (S1, . . . , SJ), Sj ∈ SO(3) and
Tk = (T1, . . . , TK), Tk ∈ SO(3) be lists of rotations. Given a radial function ψ : SO(3) → C, and a
coefficient vector c = (c1, . . . , cJ) ∈ CJ, we are concerned with evaluating the sum

f(Tk) =
J∑
j=1

cjψ(TkS−1
j ), k = 1, . . . ,K, (3.34)
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Figure 3.1: From left to right, we see examples of the following kernels: the Abel-Poisson Kernel for
κ = 0.8, 0.85, 0.875, the von Mises-Fisher Kernel for κ = 8, 14, 20 and the de la Vallée
Poussin Kernel for κ = 20, 30, 40 plotted with dashed, solid and dotted lines, respectively.

for all rotations Tk ∈ TK. We will call the rotations Sj ∈ SJ source nodes and the rotations Tk ∈ TK
target nodes.
The function ψ can be approximated by its truncated Fourier series expansion as in (3.32);

ψ(TS−1) ≈ ψL(TS−1) =
∑

(`,m,n)∈IL

ψ̂`D
mn
` (T)Dmn` (S), S, T ∈ SO(3),

with a fixed cut-off degree L ∈ N0. Inserting this into the sum (3.34) leads to a separation of the
source nodes Sj, j = 1, . . . , J, and the target nodes Tk, k = 1, . . . ,K, as

f(Tk) ≈ fL(Tk) =
∑

(`,m,n)∈IL

ψ̂`

 J∑
j=1

cjD
mn
` (Sj)

Dmn` (Tk) (3.35)

is satisfied.
Based on this representation, our fast summation algorithm splits into three steps:

1. the calculation of the innermost sum which is an adjoint nonequispaced Fourier transform as in
(3.18),

2. the multiplication with the Fourier coefficients ψ̂`, and

3. the computation of the outer sums which is essentially a nonequispaced discrete SO(3) Fourier
transform evaluated at the target nodes Tk, k = 1, . . . ,K (cf. Definition 3.2.11).

By this separation, we achieved the reduction of the computational complexity as the first step has
O(J) arithmetic operations, while the third step is of complexity O(K). The second step does not
depend on the input nodes at all, but on the cut-off degree L of the Fourier sum only. Hence, it does
not contribute to the complexity in terms of nodes. In total, we get a O(J+K) algorithm compared to
the naive O(JK) one.
Of course, the cut-off degree L contributes to the complexity in all three steps but is neglected here.
We will get back to this aspect in Section 4.2 after introducing the algorithms for the fast computation
of the NDSOFT and its adjoint.
Expressing the original summation problem (3.34) as the matrix vector product f = Ψc with

f = (f(Tk))k=1,...,K ∈ CK, Ψ ∈ CK×J, Ψkj = ψ(TkS−1
j ) and c = (c1, . . . , cJ) ∈ CJ,
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the fast summation algorithm corresponds to a rank |IL| approximation ΨL ∈ CK×J of the matrix Ψ.
We obtain a reformulation of (3.35) in terms of a matrix-vector multiplication by fL = ΨLc, with

fL ≈ f(Tk)k=1,...,K ∈ CK, and ΨL ∈ CK×J, [ΨL]kj ≈ ψ(TkS−1
j ).

In particular, (3.35) allows a factorisation of the matrix ΨL into

ΨL = DL,TKΨ̂LDHL,SJ ,

where DL,TK , DL,SJ are the Fourier matrices as defined in Definition 3.2.11, and Ψ̂L ∈ C|IL|×|IL| is
given by

Ψ̂L = diag(ψ̂L), [ψ̂L]`,m,n = ψ̂`.

Fast Summation of Arbitrary Functions on SO(3) In case that the function ψ is not radial,
its truncated Fourier series expansion may be written using the representation property (3.19) of the
Wigner–D functions as

ψ(TS−1) ≈ ψL(TS−1) =
∑

(`,m,n)∈IL

ψ̂mn`

∑̀
h=−`

Dmh` (T)Dnh` (S), S, T ∈ SO(3).

Substitution in (3.34) and rearranging of the sums again yields a separation of source and target nodes

f(Tk) ≈ fL(Tk) =
∑

(`,m,n)∈IL

Dmn` (Tk)
∑̀
h=−`

ψ̂mh`

J∑
j=1

cjD
nh
` (Sj), k = 1, . . . ,K,

where the innermost sum is an adjoint Fourier transform and the outer most sum is a direct Fourier
transform. In contrast to the radial case, Step 2 now consists of L+ 1 matrix-matrix multiplications

f̂` = ψ̂`ĉ`, ` = 0, . . . ,L,

where matrices of Fourier coefficients f̂`, ψ̂`, ĉ` ∈ C(2`+1)×(2`+1) are defined as

[ψ̂`]mn = ψ̂mn` , [ĉ`]mn = [DL,SJc]`,m,n and [f̂`]mn = f̂mn` , m,n = −`, . . . , `.

In terms of nodes, again the complexity is reduced from O(JK) to O(J+ K).

Error Estimates Next we discuss the error introduced by the approximation of Ψ by ΨL. Obvi-
ously, this error depends on the decay rate of the Fourier coefficients ψ̂mn` .

Lemma 3.5.3. For a radial function ψ ∈ L∞(SO(3)), we have the error estimate

‖f− fL‖∞ 6 ‖c‖1

∑
l>L

(2`+ 1)
∣∣ψ̂`∣∣

while for a general ψ ∈ L∞(SO(3)), the error is bounded by

‖f− fL‖∞ 6 ‖c‖1

∑
`>L

√
2`+ 1 ‖ψ̂`‖F ,

where ‖ψ̂`‖F denotes the Frobenius norm of the matrix ψ̂` ∈ C(2`+1)×(2`+1).
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Proof. The first assertion follows from

‖f− fL‖∞ 6
J∑
j=1

∣∣cj∣∣ max
T∈SO(3)

∣∣∣∣∣∣
∑
`>L

∣∣ψ̂`∣∣U2`

cos

∣∣∣TS−1
j

∣∣∣
2

∣∣∣∣∣∣ .
For the second assertion, we rearrange the values of the Wigner-D functions at R ∈ SO(3) as matrices
D`(R) ∈ C(2`+1)×(2`+1) with

[D`(R)]mn = Dmn` (R).

Hence, we can write

‖f− fL‖∞ 6
J∑
j=1

∣∣cj∣∣ max
T∈SO(3)

∣∣∣∣∣∑
`>L

∑̀
m=−`

∑̀
n=−`

ψ̂mn` Dmn` (T)

∣∣∣∣∣
= ‖c‖1 max

T∈SO(3)

∣∣∣∣∣∑
`>L

tr(ψ̂H` D`(T))

∣∣∣∣∣ .
Applying the Cauchy-Schwarz inequality to the Frobenius inner product, we obtain

‖f− fL‖∞ 6 ‖c‖1 max
T∈SO(3)

∑
`>L

‖ψ̂`‖F
(
tr(D`(T)DH` (T))

)1/2

= ‖c‖1 max
T∈SO(3)

∑
`>L

‖ψ̂`‖FU2`(1)1/2

= ‖c‖1

∑
`>L

√
2`+ 1 ‖ψ̂`‖F .

Analogously to [50], one obtains immediately the following approximation error between the matrices
Ψ and ΨL with respect to the p-matrix norm.
For a radial function ψ ∈ L∞(SO(3)) and 1 6 p 6 ∞, we have the following condition on the
p-matrix norm

‖Ψ−ΨL‖p 6 J1−
1
pK

1
p

∑
`>L

(2`+ 1)
∣∣ψ̂`∣∣ .

For a general function ψ ∈ L∞(SO(3)) one has

‖Ψ−ΨL‖p 6 J1−
1
pK

1
p

∑
`>L

‖ψ̂`‖F .

Let us now apply the error estimates for ‖f−fL‖∞‖c‖1
to the particular, previously defined kernels by

considering the sum ∞∑
`=L+1

(2`+ 1)
∣∣ψ̂`∣∣ .

We computed for the radial function derived from the generating function an error of
∞∑

`=L+1

(2`+ 1)κ2` = κ2L+2
(

2L
1 − κ2 +

3 − κ2

(1 − κ2)2

)
= O(Lκ2L) for fixed 0 < κ < 1.
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Analogously, for the Abel–Poisson kernel, we have

∞∑
`=L+1

(2`+ 1)2κ2` = κ2L+2
(

4L(L+ 1)
1 − κ2 +

8L+ 9 + κ4 − 2κ2

(1 − κ2)3

)
= O(L2κ2L) for fixed 0 < κ < 1.

For the Gauss-Weierstrass kernel, we have

∞∑
`=L+1

(2`+ 1)2e−`(`+1)κ <

∞∑
`=L+1

(2`+ 1)2e−(L+1)(`+1)κ

= e−(L+1)2κ

(
4L(L+ 1)

e(L+1)κ − 1
+

(8L+ 9)e2(L+1)κ + 1 − 2e(L+1)κ

(e(L+1)κ − 1)3

)
= O(L2e−(L+1)(L+2)κ) for fixed κ > 0.

For the von Mises-Fisher kernel, we use orthogonality of the cosine system. Under the condition
that we chose ` > κ + 2, the resulting sum can be approximated by the error estimate in the Leibniz
criterion. This yields

∣∣∣∣∣∣
∞∑
r=0

κr

πr!

π∫
0

cosrω(cos `ω− cos(`+ 1)ω) dω

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∞∑
r=`

κr

πr!

π∫
0

cosrω(cos `ω− cos(`+ 1)ω) dω

∣∣∣∣∣∣
=

∣∣∣∣∣
∞∑
r=`

κr

πr!

(
(−1)r2−`π

3
2 cos π2 (`+ r)Γ(1 + r)

Γ( 1+`−r
2 )Γ(1 − `+ r)Γ( 2+`+r

2 )
−

(−1)r2−`π
3
2 cos π2 (1 + `+ r)Γ(1 + r)

2Γ( 2+`−r
2 )Γ(−`+ r)Γ( 3+`+r

2 )

)∣∣∣∣∣
<

κ`

2``!
.

We first reckon

∞∑
`=L+1

(2`+ 1)
∣∣∣∣I`(κ) − I`+1(κ)

I0(κ) − I1(κ)

∣∣∣∣
=

1
I0(κ) − I1(κ)

∞∑
`=L+1

(2`+ 1)

∣∣∣∣∣∣
∞∑
r=0

κr

πr!

π∫
0

cosrω(cos `ω− cos(`+ 1)ω) dω

∣∣∣∣∣∣
<

1
I0(κ) − I1(κ)

∞∑
`=L+1

(2`+ 1)κ`

2``!
.
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This sum can be estimated by two geometric series. Thus, one obtains

1
I0(κ) − I1(κ)

∞∑
`=L+1

(2`+ 1)κ`

2``!

<
1

I0(κ) − I1(κ)

(
κL+1

2LL!

∞∑
s=0

(
κ

2(L+ 1)

)s
+

κL+1

2L+1(L+ 1)!

∞∑
s=0

(
κ

2(L+ 2)

)s)

=
κL+1

I0(κ) − I1(κ)

(
(L+ 1)

2L−1L!(2(L+ 1) − κ)
+

(L+ 2)
2L+1(L+ 1)!(2(L+ 2) − κ)

)
= O

(
κL

L!

)
for fixed κ > 0.

Since the de la Vallée Poussin kernel has a finite Fourier expansion, the approximation error becomes
exactly zero when choosing the cutoff degree L > κ. However, for very large κ truncating the Fourier
expansion at a cutoff degree L < κ might be desirable. Details on this can be found in [43].
For the sake of completeness, we also state the asymptotic estimate for the approximation error of the

de la Vallée Poussin kernel for λ→∞ and L = λ
√
κ+ 1

2 ∈ N. It is given by

‖f− fL‖∞
‖c‖1

=

(2κ+1
κ

)
(2κ+ 1)22κ

κ∑
`=L

(2`+ 1)2κ!(κ+ 1)!
(κ− `)!(κ+ `+ 1)!

=
4

2κ+ 1
2−2κ

κ−L∑
`=0

(κ+
1
2
− `)2

(
2κ+ 1
`

)
→ 4
∫∞
λ

`2 dN0,1(`).

where N0,1(`) is the normal distribution

Nµ,σ(x) =
1√
2πσ

e
− 1

2
(x−µ)2

σ2

with mean µ = 0 and standard deviation σ = 1. There is an upper bound for this approximation error
that does not depend on κ and decays exponentially in λ. It satisfies for κ ∈ N,

‖f− fL‖∞
‖c‖1

6
C

(κ+ 1
2)

3/2

∫−λ√κ+ 1
2

−∞ l2e
− 1

2
`2

(κ+ 1
2 )/2 d` 6 C

∫−λ
−∞(`+ 1)2e−

1
8 (`−1)2

d`

for some constant C > 0 that does neither depend on n nor on `. The proof of this error bound, can
be found in [43].

If we seek to compute the sum of radial basis functions as in (3.35), one type of error that will occur
is the one which depends on the polynomial cut-off of the kernel functions ψ. We just gave theoretic
error bounds for this kind of error for some kernel functions. Having in mind that we want to find
fast algorithms to perform the computation of (3.35), we will be dealing with another type of error,
namely the approximation error of the nonequispaced fast SO(3) Fourier transform algorithm.
We will provide more information on this type of error in Section 4.2. There we will also perform nu-
merical experiments on the runtime of the fast summation algorithms. But before this can be done, we
will introduce, describe and analyse the algorithms we need to compute the SO(3) Fourier transforms
in a fast manner.
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4 Algorithms for SO(3) Fourier Transforms

In this section, we present the most important part of the whole work, namely the fast algorithms
to compute SO(3) Fourier transforms at arbitrarily sampled rotations. Recall that we have already
introduced the foundations of harmonic analysis on SO(3) and in particular defined the discrete SO(3)
Fourier transform (NDSOFT) in Section 3.2. In this paragraph, we will outline the general strategy
to efficiently compute the NDSOFT by our nonequispaced fast SO(3) Fourier transform algorithm
(NFSOFT) before it will be described in detail in the upcoming subsections.
This algorithm is based on evaluating the Wigner-D functions Dmn` , which yield an orthogonal basis
of L2(SO(3)) as we stated in Lemma 3.2.8.
Let L ∈ N, by means of Definition 3.2.11 every function f ∈ DL has a unique series expansion in
terms of Wigner-D functions,

f =
∑

(`,m,n)∈IL

f̂mn` Dmn` ,

with SO(3) Fourier coefficients f̂mn` = 2`+1
8π2 〈f,Dmn` 〉. Moreover, we have a set RQ of Q arbitrary

rotations R given in their Euler angles

RQ = {R(αq,βq,γq) : q = 1, . . . ,Q}, with Q ∈ N.

If parameterised in Euler angles, we can rewrite their series expansion using Equation (3.23) as

f(R(αq,βq,γq)) =
∑

(`,mn)∈IL

f̂mn` e−imαqdmn` (cosβq)e−inγq (4.1)

where the SO(3) Fourier coefficients f̂mn` ∈ C are given by the integrals

f̂mn` =

∫ 2π

0

∫π
0

∫ 2π

0
f(R(α,β,γ))eimαdmn` (cosβ)einγ sinβ dγ dβ dα.

If we rearrange the triple sums of Equation (4.1) to

f(R(αq,βq,γq)) =
L∑

m=−L

L∑
n=−L

e−imαq e−inγq
L∑

`=max(|m|,|n|)

f̂mn` dmn` (cosβq), (4.2)

we will see the merit of the Euler angle representation. The sum (4.2) almost resembles

f(R(αq,βq,γq)) =
L∑

`=−L

L∑
m=−L

L∑
n=−L

ĥmn` e−imαqe−i`βqe−inγq , (4.3)

a standard three-dimensional Fourier sum, except for the sum over the degree `. But for us, the main
difference between the first and the second sum is that for the second one we know an algorithm
that can evaluate the sum fast, namely the NFFT algorithm. Its cost is that of a classical three-
dimensional FFT plus a term linear in the number of nodesQ, O(L3 logL+Q); see eg.; [12, 26, 56, 71]
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and the references therein. Moreover, a C subroutine library implementing the NFFT algorithm is
available; [49]. Of course, this is only helpful if we can efficiently compute the coefficients ĥmnl out
of the SO(3) Fourier coefficients f̂mnl (see Figure 4.1 for a schematic representation of the coefficient
transform).
Hence, the crucial point to replace the triple sum of Wigner-D functions by a triple sum with complex
exponentials is the modification of the sum over ` to

L∑
`=max(|m|,|n|)

f̂mn` dmn` (cosβ) =
L∑

`=−L

ĥmn` e−i`β.

Note that this replacement will not depend on the given rotation. Instead, it is a rotation-independent
transformation of coefficients. We take two main steps to do this. At first, we exchange expansions in
Wigner-d functions with expansions in Chebyshev polynomials of first kind

L∑
`=max(|m|,|n|)

f̂mn` dmn` (cosβ) =
L∑
`=0

ĝmn` T`(cosβ).

And secondly, in a far easier step, we obtain the sought expansion in complex exponential functions.
The transformation from Wigner-d function expansions to Chebyshev expansions will be considered
in Section 4.1 and we will refer to it as the discrete transformation of Wigner-d functions (DWT).
We will actually present two different ways to efficiently compute the Chebyshev coefficients ĝmn`
out of the SO(3) Fourier coefficients f̂mn` : the first approach is based on the fast polynomial trans-
form (FPT) algorithm introduced by [23, 70] which uses a cascade summation based on the three-term
recurrence relations of the respective orthogonal polynomials. This approach has been adopted to the
Wigner-d functions in [68, 89] where the previously mentioned three-term recurrence relation (3.26)
is used. The implementation of this approach is part of the NFFT subroutine library [49]. We will
refer to it as the FWT-C (the fast Wigner transformation based on cascade summation) and discuss it
in more detail in Section 4.1.1.
The second approach is the fast transformation of Wigner-d functions based on semiseparable matri-
ces (FWT-S). Essential to this approach are the transformation of arbitrary Wigner-d functions into
those of low ordersm and n (cf. (3.27)) and the application of a differential operator to the Wigner-d
functions. It will be covered in Section 4.1.2. There we replace the cascade summation scheme with
an approximate technique that is a generalisation of the algorithms proposed in [77] for spherical
harmonic expansions on the sphere S2. This technique is based on an efficient algorithm to compute
matrix-vector multiplications with semiseparable matrices. An application of this technique to Gegen-
bauer polynomials has been analysed in [48]. Here it will be used for Wigner-d functions for the first
time. We will complete the consideration on transformations of Wigner-d functions by comparing the
two approaches in terms of runtime and accuracy in Section 4.1.3.
After the central step of computing with Wigner-d functions, Section 4.2 returns to the bigger scope
of the SO(3) Fourier transform as we briefly explain how to replace Chebyshev polynomials with
complex exponentials to obtain

L∑
`=0

ĝmn` T`(cosβq) =
L∑

`=−L

ĥmn` e−i`βq .

Having finally obtained the three-dimensional Fourier sum (4.3) we were looking for, we can invoke
the NFFT algorithm. We are now able to compute fast SO(3) Fourier transforms (NFSOFT). We
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4 ALGORITHMS FOR SO(3) FOURIER TRANSFORMS

a) b) c) d)

Figure 4.1: This figure shows an overview of the four transitions of coefficients we perform to get
from Equation (4.2) to (4.3). The coordinates (`,m,n) of each cube represent the orders
m and n, and the degree ` of the corresponding coefficient.
In a) we see a schematic arrangement of the SO(3) Fourier coefficients, with which we
start our computations. When using the FWT-S, these coefficients will be transformed
into the coefficients seen in b), and then into the coefficients of c). The FWT-C omits this
step directly producing the Chebyshev coefficients depicted in c). Finally in d) we see
the coefficients from the standard three-dimensional Fourier sum from (4.3), on which we
perform the NFFT algorithm. We will explain these transforms in the following sections,
for a comprehensive overview, please see Figure 4.8.

will summarise the algorithm, derive its adjoint version and consider its complexity. Depending on
whether we use the FWT-C or the FWT-S we will get algorithms of O(L4 + Q), O(L3 log2 L + Q)
or O(L3 logL +Q) arithmetic operations where Q is the number of sampling nodes and L the cutoff
degree of the Fourier sum. This is a huge improvement over the O(L3Q) operations for the naive
computation of the NDSOFT.
In Section 4.2.2 we provide numerical tests on accuracy and runtime. In the course of that, we will
test the summation algorithms for radial and arbitrary functions on SO(3) that have been introduced
in Section 3.5. We will also test a quadrature rule in the adjoint transform for a special sampling
set on SO(3). This gives a brief example on how the evaluation of SO(3) Fourier coefficients from
function samples can be accomplished, although this is no direct focus of this work. However, readers
interested in the subject of the Fourier analysis of functions on SO(3) are recommended to consider
[35] and [79] where two different types of algorithms for the SO(3) Fourier analysis, i.e., the inverse
NDSOFT, in our terminology, are described. These Fourier analysis algorithms are based on our
NFSOFT algorithm as well as on its adjoint.
Also, there are other approaches to compute samples of functions on SO(3) at special, i.e., equispaced
sampling sets the NDSOFT, e.g. [53] and [73]. The authors of [53] use a similar approach to split
the Wigner-D functions but they divide their transform differently into a two-dimensional FFT and a
direct recursive evaluation of Wigner-d functions which depends on the chosen sampling set and in
contrast to our NFSOFT is no node-dependent but a coefficient transformation. In [73] it is described
how to expand the Wigner-d functions directly into a Fourier sum and thus evaluating a quadruple
sum by means of an FFT. Both works describe O(L4) algorithms although the authors of [53] point
out that their algorithm has the potential to be a O(L3 log2 L) one, as well. Note that the number of
source rotationsQ does not occur in the total complexity of these equispaced transforms as it depends
on L and is of order Q = O(L3). We see that our NFSOFT algorithm has favourable complexity over
these two and can moreover be applied to arbitrary sampling sets on SO(3).
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4.1 FAST TRANSFORMS OF WIGNER-D FUNCTIONS

f̂

Wigner-d functions
ĝ

Chebyshev polynomials

Cmn

Definition 4.1.1

Figure 4.2: The aim of the transform of Wigner-d functions is to turn expansions of these functions
with maximum degree L into expansions of Chebyshev polynomials of first kind. The
figure shows the input and output coefficients of the transform, in the sense that each cube
with coordinates (`,m,n) represents a coefficient of orders m and n, and degree `. The
transformation between these coefficients is a linear one and can, hence, be expressed as
a matrix. In this transform, the matrices Cmn for m,n = −L, . . . ,L realise the change of
basis.

4.1 Fast Transforms of Wigner-d Functions

The aim of this section is to find a transformation which turns linear combinations of Wigner-d func-
tions dmn` for a fixed set of ordersm,n ∈ N, with |m|, |n| 6 `, into linear combinations of Chebyshev
polynomials of first kind T`(x) = cos(` arccos x).
Recall Equation (3.24) which gave an expression of Wigner-d functions in terms of Jacobi polyno-
mials. From this equation, we saw that the Wigner-d functions dmn` are polynomials of degree ` if
m+n is even. If n+m is odd, the Wigner-d function dmn` (x) is almost a polynomial but multiplied
with the factor

√
1 − x2. In that case, it is a polynomial of degree `− 1.

Consequently, the task for this section is to find coefficients ĝmn` such that for any given set of orders
m and n and known coefficients f̂mn` , we get the series expansion

L∑
`=L0

f̂mn` dmn` (x) =



L∑
`=0

ĝmn` T`(x) ifm+ n even,

L−1∑
`=0

ĝmn`

√
1 − x2 T`(x) ifm+ n odd.

(4.4)

for x ∈ [−1, 1] and with L0 = max(|m|, |n|), see also Figure 4.2.

Definition 4.1.1. For given L ∈ N and fixed orders m and n, the change of basis, given in Equa-

tion (4.4), from SO(3) Fourier coefficients f̂mn =
(
f̂mnL0

, . . . , f̂mnL
)T

to the vector of Chebyshev

coefficients ĝmn = (ĝmn0 , . . . , ĝmnL )T is described by the matrix Cmn ∈ C(L+1)×(L−L0) through

ĝmn = Cmnf̂mn.

We will refer to the application of the matrix Cmn to a suitably sized vector as the discrete Wigner-d
functions transformation (DWT).

Let us take a closer look at the DWT. It is well known that polynomials of a certain degree ` can be
represented by their values in Chebyshev nodes τ`,k = cos

(
2k+1
2`+2π

)
. We will use these nodes for the
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4 ALGORITHMS FOR SO(3) FOURIER TRANSFORMS

computation of the DWT as we want to have the transition between the two types of basis function
in (4.4) independent of the actual source nodes x. We, hence, replace dmn` by

(
dmn` (τ`,k)

)`
k=0. In

terms of matrix-vector notation the basis transformation (4.4) is rewritten as

Dmnf̂mn =

{
Tĝmn form+ n even,
TSĝmn form+ n odd,

where the vectors f̂mn ∈ CL−L0+1, ĝmn ∈ CL+1 contain the SO(3) Fourier coefficients and Cheby-
shev coefficients, respectively; and we evaluate the occurring polynomials at their Chebyshev nodes
by

T =

(
cos

(2k+ 1)` π
2(L+ 1)

)
k,`=0,...,L

, S = diag
(

sin
(k+ 1)π
L+ 2

)
k=0,...,L

Dmn =

(
dmn`

(
cos

(2k+ 1)π
2(L+ 1)

))
k=0,...,L; `=L0,...,L

.

Thus, the whole transforms, i.e., the matrix Cmn given in Definition 4.1.1 can be separated into

Cmn =

{
T−1Dmn form+ n even,
S−1T−1Dmn form+ n odd

where we get by simple computations

T−1 =

(
2 − δ0k

L+ 1
cos

(2`+ 1)kπ
2(L+ 1)

)
k,`=0,...,L

,

S−1 = diag

((
sin

(k+ 1)π
L+ 2

)−1
)
k=0,...,L

.

The total complexity is determined by the matrix Dmn the application of which to the vector f̂mn costs
O(L2) operations. Neither the multiplication by T−1 which is realised by the discrete cosine transform
(DCT) from [8] in O(L logL) nor the multiplication by the diagonal matrix S−1 in O(L) steps will
increase the asymptotic complexity. In the forthcoming Section 4.1.1, we present an approach that
manages to split the matrix Cmn such that the multiplication with the new matrices can be done in
as little as O(L log2 L) steps. In Section 4.1.2, we will present another approach with a even more
favourable complexity of O(L logL).

4.1.1 The Fast Transform of Wigner-d Functions Based on Cascade
Summation

Our aim is the efficient computation of matrix-vector multiplications using the matrices Cmn for all
m,n = −L, . . . ,L. A more detailed description of the algorithm and its implementation, along with
extensive numerical tests, can be found in [68] but is summarised here.
The fast polynomial transform, such as the one to be outlined here, has been described in [57] and
[23] for the sphere S2. Our algorithm is a generalisation of the algorithm presented in [57] for the
associated Legendre functions on the two-dimensional sphere, in the sense that Wigner-d functions
are actually a generalisation of the associated Legendre functions (cf. Section 3.4).
The essential property of Wigner-d functions we are exploiting here is their three-term recurrence
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4.1 FAST TRANSFORMS OF WIGNER-D FUNCTIONS

relation given in (3.26). Based on this relation the Clenshaw algorithm [18] can evaluate a linear

combination of Wigner-d functions
L∑
`=L0

f̂mn` dmn` (x) at one node x at a time. This is not favourable

in our case as we seek to evaluate this sum for general x. For this, we first need a more general form
of the three-term recurrence (3.26). This generalisation is two-fold, it comprises an extension of the
three-term recurrence relation to Wigner-d functions for orders |m|, |n| > ` that have been previously
undefined, as well as the possibility to shift the degree ` of dmn` by an arbitrary c ∈ N, instead of only
one step. These steps have been described for the Wigner-d functions in [68]. At first, we modify the
three-term recurrence relation by defining the Wigner-d functions for |m|, |n| > ` as well. Note that
this is the important step which allows us to realise the fast Wigner-d transform in a fast and stable
way. We obtain for arbitrary L ∈ N, m,n = −L, . . . ,L and ` = 0, . . . ,L the extended three-term
recurrence formula

dmn`+1(x) = (αmn` x+ βmn` )dmn` (x) + γmn` dmn`−1(x), (4.5)

where the recurrence coefficients read as

αmn0 =


1 form = n,
0 form+ n odd,m 6= n,
−1 otherwise,

αmn` =


(−1)m+n+1 for 0 < ` 6 L0 − min(|m|, |n|),
mn
|mn| for L0 − min(|m|, |n|) < ` < L0,

umn` for L0 6 `,

βmn` =


1 for 0 6 ` < L0,
0 form = n = 0,
vmn` otherwise

and γmn` =

{
0 for ` 6 L0,
wmn` otherwise,

using umn` , vmn` and wmn` , the recurrence coefficients from (3.26). To start the recurrence for all

m,n = −L, . . . ,L, we set dmn−1 = 0; and with λmn =

√
(2 min(|m|,|n|))!

2min(|m|,|n|) min(|m|,|n|)! , we obtain

dmn0 (x) =

{
λmn form+ n even,
λmn
√

1 − x2 form+ n odd.

For the second modification of the three-term recurrence relation, we introduce associated Wigner-d
functions dmn` (·, c) with a shift parameter c ∈ N by

dmn−1 (x, c) = 0, dmn0 (x, c) = 1,

dmn`+1(x, c) = (αmn`+c x+ β
mn
`+c)d

mn
` (x, c) + γmn`+cd

mn
`−1(x, c).

One can prove that the sequence
{
dmn` (x, c)

}
`∈N is again orthogonal, cf. [88, Sect. 2].

Instead of only one step as in the modified recurrence (4.5), we will now shift the degree ` of dmn` by
c ∈ N steps by

dmn`+c(x) = d
mn
c (x, `)dmn` (x) + γmn` dmnc−1(x, `+ 1)dmn`−1(x).

This alone does not yet yield a faster algorithm. A serious drawback is that we still can only com-
pute the recurrence for one node at a time. Instead, we would like to make the computations node-
independent, i.e., compute with functions instead of numbers.
We know that Wigner-d functions dmn` are polynomials of either degree ` or ` − 1 if we neglect
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4 ALGORITHMS FOR SO(3) FOURIER TRANSFORMS

the occasionally occurring term
√

1 − x2. In fact we will not treat this term in the transformation
of Wigner-d functions but will include it later on the transformation from Chebyshev coefficients to
standard Fourier coefficients. It is well known that such polynomials can be represented by their
Chebyshev expansion

dmn` =
∑̀
k=0

αkTk, dmn` ∼ (αk)
`
k=0

or, as previously mentioned, by their values at Chebyshev nodes τ`,k with

dmn` (τ`,k) = d
mn
`

(
cos
(

2k+1
2`+2π

))
, dmn` ∼

(
dmn` (τ`,k)

)`
k=0.

Switching between both representations allows us to find an efficient algorithm to compute the Cheby-

shev representation of the linear combination
L∑
`=L0

f̂mn` dmn` (x) =

L∑
`=0

ĝmn` T`(x).

A basic step includes the treatment of the coefficients f̂mn` , not as numbers, but as polynomials of
degree zero. On them, we can employ the generalised Clenshaw procedure using the new three-term
recurrence.
The sum over the Wigner-d functions is split into consecutive blocks of four summands, of which the
respective Chebyshev expansion is known. To combine the four summands in each block, we make
use of the discrete cosine transforms, DCT-III and DCT-II, which are an efficient way to convert func-
tions in Chebyshev representation to their representation in Chebyshev nodes and back, see [8]. The
exact details on the theoretical background of this step can be found in [89]. After this, we get new
blocks, this time containing polynomials of degree at most 3, of which we just computed the Cheby-
shev expansion. This step is repeated until we are left with one single block of one single polynomial
of degree at most `. A graphic interpretation of this would lead to a cascade which becomes smaller
towards the end. The original algorithm [23] described the transposed version of this transform, i.e.,
the transition from Chebyshev expansions to an expansion in other polynomials. Hence, it had a ”clas-
sical”, growing cascade which initially led to the name cascade summation.
The described cascade has a depth of O(logL) layers. On each layer, except for the first and last, we
perform a DCT which takes O(L logL) operations, yielding a total O(L log2 L) for the whole compu-
tation.
This complexity is already an improvement over the one of O(L2) the DWT possesses. This gives rea-
son to call the described algorithm the fast transformation of Wigner-d functions (FWT). We specify
FWT-C (for cascade summation), not to confound this methods with the one from Section 4.1.2. But
we encounter a new problem here: numerical instabilities. When using exact arithmetic the FWT-C is
exact. But when computing in finite precision, small errors, introduced by the DCT algorithms in the
cascade, cause numerical instabilities (cf. [72]) when they are multiplied with large function values
of the associated Wigner-d functions dmnc (x, `). Those occur for function values |x| ≈ 1 at certain
admissible triples (c,m,n) ∈ IL. This already happens for comparatively small sizes of ` > 12.
An effective approach to improve the stability of this summation has been developed in [24, 72]. The
authors identify unstable multiplication steps in the cascade and replace them by a stabilisation step
whenever the functions to be transformed exceed a certain threshold κ at |x| ≈ 1. This corresponds to
removing the critical polynomial from the cascade, dealing with it separately and inserting it again at
the very end, on the last layer of the cascade. In a scenario where every single polynomial is removed
from the cascade, we would get back exactly the slow DWT algorithm.
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4.1 FAST TRANSFORMS OF WIGNER-D FUNCTIONS

The algorithmic details on this stabilisation method, as well as its implementation for associated Leg-
endre functions, can be found in [57] and [49], respectively. This method has been directly applied to
and implemented for the Wigner-d functions in [68].
Although we now have a method to improve the stability of our computation, its application will
increase the runtime of the algorithm. Each stabilisation step will cost O(L logL) operations. That
means, if we need for than O(logL) of them, the FWT-C will no longer be a O(L log2 L) algorithm.
So far, we do not know an upper bound for the number of stabilisation steps with respect to the band-
width L for a given threshold κ and thus the true asymptotical complexity of the stabilised FWT-C.
However, the numerical experiments conducted in [68] support the conjecture that, although, the sta-
bilised FWT is slower than the unstabilised version with O(L log2 L) flops, it is still asymptotically
faster than the DWT with O(L2) flops.
Apart from this, the numerical stability of this method has neither been proven. It is just more stable
than the unstabilised version. These drawbacks of the FWT-C lead to a new algorithm which will
be presented in the next section. It will overcome the problems of the stabilisation and yield a more
favourable complexity of O(L logL) instead of O(L log2 L).

4.1.2 The Fast Transform of Wigner-d Functions Based on Semiseparable
Matrices

The algorithm we present in this section is, like the cascade summation in Section 4.1.1 an approx-
imate technique the complexity of which increases with increase of accuracy. Furthermore, it is
a generalisation of the algorithm proposed in [77] for spherical harmonic expansions on the two-
sphere. Their technique is based on an efficient algorithm to compute matrix-vector multiplications of
semiseparable matrices. An application of this technique to Gegenbauer polynomials has been anal-
ysed in [48] already.
Again, we will show how to exchange expansions in Wigner-d functions with expansions in Cheby-
shev polynomials of first kind. Essential to this are the transformation of arbitrary Wigner-d functions
into those of low orders and the application of a differential operator to the Wigner-d functions. This
will yield specially structured matrices Gm,n that are semiseparable. Applying a divide-and-conquer-
type algorithm from [16] with a minor extension to our matrices of semiseparability rank one, we
compute the eigendecomposition of these matrices. The algorithm, called the fast transformation of
Wigner-d functions based on semiseparable matrices (FWT-S), has complexity O(L logL) if applied
to a L× L matrix.
Again, we are given a set of ordersm and n and coefficients f̂mn` , and we seek to find the coefficients
ĝmn` in

L∑
`=L0

f̂mn` dmn` (x) =



L∑
`=0

ĝmn` T`(x) ifm+ n even,

L−1∑
`=0

ĝmn`

√
1 − x2 T`(x) ifm+ n odd.

But this time we introduce an intermediate step in this transform:

1. Starting from the SO(3) Fourier coefficients f̂mn` for |m|, |n| > `, we consider the transform

L∑
`=L0

f̂mn` dmn` (x) =

L∑
`=L ′0

f̄mn` dm
′n ′

` (x), (4.6)
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wherem ′, n ′ are those low orders that have been defined in Lemma 3.3.3. Recall also Equation
(3.28) which defined the matrix Amn that realised the change of basis between Wigner-d func-
tions and Wigner-d functions of low orders. That is, Amn ∈ R(L−L ′0+1)×(L−L0+1) satisfied

f̄mn = Amn f̂mn

for f̂mn = (f̂`) ∈ CL−L0+1 and f̄mn = (f̄`) ∈ CL−L
′
0+1.

2. The next step is to replace the Wigner-d functions dm
′n ′

` by Chebyshev polynomials of first
kind T`, in order to get

L∑
`=L ′0

f̄mn` dm
′n ′

` (x) =



L∑
`=0

ĝmn` T`(x) ifm+ n even,

L−1∑
`=0

ĝmn`

√
1 − x2 T`(x) ifm+ n odd.

(4.7)

For the matrix-vector notation, we introduce the matrices Bmn ∈ R(L+1)×(L−L ′0+1), for fixed
m,n = −L, . . . ,L. They realise the change of basis in (4.7), i.e., they satisfy

ĝmn = Bmn f̄mn,

with ĝmn = (ĝmn` ) ∈ CL+1. An explicit formula for the matrices Bmn will be given in
Lemma 4.1.6.

Step 1: Computing the Matrices Amn: Let L ∈ N and the two orders m,n with |m|, |n| 6 L

be given. On account of Corollary 3.3.5, we can restrict the cases of orders we need to consider. In
fact, it is enough to assume 0 6 m 6 L, and 0 6 n 6 m. All remaining cases can be reduced to these
cases by using one or more of the respective symmetries from Corollary 3.3.5. Figure 4.3 illustrates
this fact.
Moreover, we will always compute with normalised Wigner-d functions d̃mn` =

√
2`+1

2 dmn` in this
section. While for the FWT-C the key property was the three-term recurrence relation of the Wigner-d
functions, we now revert to the differential equation from which the Wigner-d function arose. Putting
together (3.20) and (3.21), the Wigner-d functions are eigenfunctions of the differential operator

Dmn(y) = −(1 − x2)y ′′ + 2xy ′ +
(
|n−m|2

2(1 − x)
+

|m+ n|2

2(1 + x)

)
y (4.8)

to the eigenvalues λ` = `(`+ 1).
If we compare the differential operator Dmn for arbitrary orders and the differential operator Dm

′n ′

for the low orders from Lemma 3.3.3, we encounter a similarity between them. To be more precise,
we have

Dmn −Dm
′n ′ = D− +D+,

with the operators D− and D+ defined by

D−(y) =
|n−m|2 − |n ′ −m ′|2

2(1 − x)
y, D+(y) =

|n+m|2 − |n ′ +m ′|2

2(1 + x)
y.

Both operators are of much simpler structure than Dm,n. Note that although D− and D+ depend on
m and n we omit their indices here to improve readability.
Using the differential operator Dmn, we define a certain matrix.
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f̂

Wigner-d functions

a)

f̄

Wigner-d functions
of low orders

Amn

cf. (3.28)

L0-L
n

L

0

-L

m

b)

Figure 4.3: The figure depicts the transform between expansions in Wigner-d functions with maxi-
mum degree L and Wigner-d functions of low orders. Again, input and output coefficients
of orders m and n, and degree ` of the transform are represented by the cubes with coor-
dinates (`,m,n). In this step of the transform, the matrices Amn for m,n = −L, . . . ,L
realise the change of basis.
In b), we see the reduction of relevant matrices Amn (grey squares) due to the symmetries
from Corollary 3.3.5. If moreover m + n 6 2 holds true, the matrix Amn is the identity
matrix (black squares).

Definition 4.1.2. The matrix Gmn = (g`,k) ∈ R(L−L ′0+1)×(L−LL ′0
+1)

is defined by

g`,k = 〈d̃m ′n ′` ,Dmn(d̃m
′n ′

k )〉.

This will be very helpful in the development of our fast algorithm in the sense that, on one hand,
the matrix Amn comprises the eigenvectors of the matrix Gmn, and on the other hand, Gmn is a
specially structured matrix on which we can apply some well-known fast algorithms.

Lemma 4.1.3. Let ak = (aL ′0,k, . . . ,aL,k)
T ∈ RL−L ′0+1, L ′0 6 k 6 L, be the (k − L0 + 1)st

column of the matrix Amn. Then ak is a normalised eigenvector of the matrix Gmn to the eigenvalue
λk = k(k+ 1).

Proof. Recall that

d̃mnk =

L∑
`=L ′0

〈d̃m ′n ′` , d̃mnk 〉d̃m ′n ′` =

L∑
`=L ′0

a`,kd̃
m ′n ′
` .

Consider the (`− L ′0 + 1)st row of the matrix-vector product Gmn ak for L ′0 6 ` 6 L which satisfies

L∑
j=L ′0

g`,jaj,k =

L∑
j=L ′0

〈d̃m ′n ′` ,Dmn(d̃m
′n ′

j )〉aj,k = 〈d̃m ′n ′` ,Dmn

 L∑
j=L ′0

aj,kd̃
m ′n ′
j

〉
= 〈d̃m ′n ′` ,Dmn(d̃mnk )〉 = 〈d̃m ′n ′` , λkd̃mnk 〉 = 〈d̃m ′n ′` , λk

L∑
j=L ′0

aj,kd̃
m ′n ′
j 〉

= λk

L∑
j=L ′0

〈d̃m ′n ′` , d̃m
′n ′

j 〉aj,k = λka`,k.

The vectors ak are automatically normalised due to the use of the normalised Wigner-d functions.
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Now that we know the connection between the matrices Amn and Gmn, we move on examining the
structure of Gmn. The matrix Gm,n can be split into a sum of three matrices, each of which we can
analyse separately. This is achieved by using the operators D− and D+ to rewrite the entries g`,k of
Gm,n as

g`,k = 〈d̃m ′n ′` ,Dm
′n ′(d̃m

′n ′
k )〉+ 〈d̃m ′n ′` ,D−(d̃m

′n ′
k )〉+ 〈d̃m ′n ′` ,D+(d̃m

′n ′
k )〉.

This leads to a representation of the matrix Gm,n in terms of a sum of three (L−L ′0+1)×(L−L ′0+1)
matrices, Gmn = D + S− + S+ with

D = (d`,k), d`,k = 〈Dm ′n ′(d̃m ′n ′k ), d̃m
′n ′

` 〉,

S− = (s−`,k), s−`,k = 〈D−(d̃m
′n ′

k ), d̃m
′n ′

` 〉

S+ = (s+`,k), s+`,k = 〈D+(d̃m
′n ′

k ), d̃m
′n ′

` 〉.

(4.9)

The matrix D is actually a diagonal one as d̃m
′n ′

k is an eigenfunction of the differential operator
Dm

′n ′ to the eigenvalue λk = k(k+ 1), and we, therefore, obtain

d`,k = 〈Dm ′n ′(d̃m ′n ′k ), d̃m
′n ′

` 〉 = 〈λkd̃m
′n ′

k , d̃m
′n ′

` 〉 = λkδ`,k.

While the matrices S− and S+ do not have such a nice structure as D, their entries can also be given
explicitly. The quite extensive derivation of these formulae can be found in [52, Lemma 4.7]. We omit
this here, mainly due to the fact that Section 5.1 features a new proof of the corresponding formulae
for Wigner-d functions in half-integer orders (cf. Lemma 5.1.6) which follows a similar procedure as
the one in this case, but can not be found elsewhere. The entries of the matrices S− and S+ are given
by

s−`,k =

∫ 1

−1
d̃m

′n ′
k (x)

|n−m|2 − |n ′ −m‘|2

2(1 − x)
d̃m

′n ′
` (x) dx =(|n−m|2 − |n ′ −m ′|2)h ˜̀ ,k̃

s+`,k =

∫ 1

−1
d̃m

′n ′
k (x)

|n+m|2 − |m‘ + n‘|2

2(1 + x)
d̃m

′n ′
` (x) dx =(−1)`+k(|n+m|2 − |n ′ +m ′|2)h ˜̀ ,k̃

with ˜̀ = min{`,k}, k̃ = max{`,k} and

h`,k =

√
(`+ 1

2)(k+
1
2)

4



`(`+ 1)
k(k+ 1)

ifm = ±n,√
(`− 1)`(`+ 1)(`+ 2)
(k− 1)k(k+ 1)(k+ 2)

ifm+ n even,

2

√
`(`+ 1)
k(k+ 1)

ifm+ n odd.

Now we are ready to examine the special structure of the matrix Gm,n a bit closer.

Definition 4.1.4 (Semiseparable Matrix). An n × n matrix G is called semiseparable of rank R, if
there exist vectors d, ur, vr ∈ Rn, r = 1, . . . ,R, such that

G = diag(d) +
R∑
r=1

(
triu
(
ur vT

r

)
+ tril

(
vr uT

r

))
.

Here, diag (d) denotes the diagonal matrix with the entries of the vector d on its diagonal. Further-
more, triu

(
ur vT

r

)
and tril

(
vr uT

r

)
are the strictly upper and lower triangular parts of the rank-one

matrices ur vT
r and vr uT

r , respectively; see [83].
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4.1 FAST TRANSFORMS OF WIGNER-D FUNCTIONS

Lemma 4.1.5. The matrix Gmn from Definition 4.1.2 is semiseparable with semiseparability rank
R = 2, i.e.,

Gmn = diag(d) + triu
(
u1 vT

1
)
+ tril

(
v1 uT

1
)
+ triu

(
u2 vT

2
)
+ tril

(
v2 uT

2
)

, (4.10)

with d = (d`), u1 =
(
u1
`

)
, v1 =

(
v1
`

)
, u2 =

(
u2
`

)
, v2 =

(
v2
`

)
∈ RL−L ′0+1, for ` = L ′0, . . . ,L, where

d` = `(`+ 1) +
(
|n−m|2 − |n ′ −m ′|2 + |n+m|2 − |n ′ +m ′|2

) γ2(2`+ 1)
8

,

u1
` = w

1
`w`, v1

` = w
1
`w

−1
` , u2

` = w
2
`w`, v2

` = w
2
`w

−1
` ,

w1
` =

γ

2

√
(|n−m|2 − |n ′ −m ′|2)(`+ 1

2), w2
` = (−1)`

γ

2

√
(|n+m|2 − |n ′ +m ′|2)(`+ 1

2),

w` =


`(`+ 1) ifm = ±n,√

(`− 1)`(`+ 1)(`+ 2) ifm+ n even,√
`(`+ 1) ifm+ n odd,

γ =

{√
2 ifm+ n odd,

1 else.

Proof. Using the decomposition of matrices Gmn from (4.9), we get

S− = +triu
(
u1 vT

1
)
+ tril

(
v1 uT

1
)

and S+ = triu
(
u2 vT

2
)
+ tril

(
v2 uT

2
)

.

By separating the coefficients h`,k into a product of a term depending only on ` and a term depending
only on k, we obtain the proposed coefficients u1

` and v1
` for the matrix entries s−`,k and u2

` and v2
` for

the matrix entries s+`,k. The proof follows by straightforward computations.

Let us now consider some special cases of the matrix Gmn. If |m − n| 6 2 or |m + n| 6 2, Gmn
becomes semiseparable with rank one as either |m+ n|− |m ′ + n ′| = 0 or |m− n|− |m ′ − n ′| = 0
is fulfilled. This will eliminate one semiseparable part from the matrix Gmn in Lemma 4.1.5.
If m = 0 or n = 0, we have |m − n| = |m + n|, and |m ′ − n ′| = |m ′ + n ′|, and therefore, w1

` =
(−1)`w2

`. As a consequence, each element g`,k from G where `+k is odd is eliminated. This checker
board structured matrix Gmn can be rearranged such that the resulting matrix is block-diagonal with
two blocks, Ge, and Go, where each is a symmetric semiseparable matrix of semiseparability rank one.
Note that these are the transforms that are applied to the Wigner-d function d̃m0

` for m 6 ` which
are by (3.30) the normalised associated Legendre functions. An algorithm for the fast evaluation of
associated Legendre functions, based on semiseparable matrices of rank one, has been described in
[77].

Fast Algorithms for Semiseparable Matrices Now we know that the matrices Gmn are semi-
separable either of rank two or one and that the matrices Amn from (3.28) contain the eigenvectors
of the respective Gmn. But so far we did not discuss how such eigenvector matrix of a semiseparable
matrix can be efficiently applied to a vector. A method to do this for matrices with semiseparability
rank one is described in [16]. With a minor extension the same method can be applied to our matrices
with semiseparability rank two, too. We give a very brief outline of this method and refer the reader
to [16] for more specific details on the implementation.
The main idea for the divide-and-conquer approach of the algorithm is the fact that the matrix Gmn
can be written as

Gmn =

(
G1 0
0 G2

)
+ ρ1 w1 wT

1 + ρ2 w2 wT
2 ,
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4 ALGORITHMS FOR SO(3) FOURIER TRANSFORMS

where ρ1, ρ2 = ±1 are freely chosen scalars, w1, w2 ∈ Rn, and G1 and G2 are matrices of the same
type as Gmn and may, therefore, be decomposed recursively in the same manner as Gmn. This is
repeated until we can directly compute the eigendecomposition of the matrices. A proof of this can
be found in [52, Sec. 4.1.2].
After the divide phase, the eigendecompositions of those smaller matrices are combined, in the con-
quer phase, to eigendecompositions of the next bigger matrices, following the decomposition tree,
until the sought eigendecomposition of the original matrix is obtained. So, suppose that we have com-
puted the eigendecompositions Gj = AjΛjAT

j , with diagonal eigenvalue matricesΛj, and orthogonal
eigenvector matrices Aj for j = 1, 2. For the matrix Gmn, this implies the representation

Gmn =

(
A1 0
0 A2

)(
Λ+ ρ1 z1 zT

1 + ρ2 z2 zT
2
)(AT

1 0
0 AT

2

)
,

with

Λ =

(
Λ1 0
0 Λ2

)
, zj =

(
AT

1 0
0 AT

2

)
wj, j = 1, 2.

From this representation, it takes two steps to obtain the eigendecomposition of the matrix Gmn; the
solution of two rank-one modified diagonal eigenproblems. In the original algorithm from [16] only
one step is necessary. In this sense, our strategy is a generalisation of the original algorithm, but a
minor one as all its properties are preserved.
This way, we find(

Λ+ ρ1 z1 zT
1 + ρ2 z2 zT

2
)
= Ã1

(
Λ̃1 + ρ2 z̃2 z̃T

2
)

ÃT
1 = Ã1

(
Ã2 Λ̃2 ÃT

2
)

ÃT
1

with z̃2 = ÃT2 z2. The eigenvector matrix Amn of Gmn is, therefore, given by

Amn =

(
A1 0
0 A2

)
Ã1 Ã2.

It is important to note that we do not compute the Amn explicitly, but only its effect on a vector,
as the corresponding eigenvector matrices Ã1 and Ã2 can be efficiently applied with an approximate
algorithm at linear cost.
An analysis of the methods, found in [16], shows that if Amn is an L × L matrix, it can be applied
to any vector at cost O(L logL). It is important to note that the resulting algorithm also includes a
pre-computation part which computes O(L logL) values in advance.

Step 2: Computing the Matrices Bmn: The next step is to replace the Wigner-d functions
dm

′n ′
` by Chebyshev polynomials of first kind T` (cf. Figure 4.4). Here the main idea is to exploit

the relation between Wigner-d functions and Jacobi polynomials (3.24). As we reduced the occurring
orders of Wigner-d functions to the low coefficients m ′ and n ′ from Lemma 3.3.3, we only need to
consider five cases, namely,

d̃0,0
` =

√
2`+ 1

2
P
(0,0)
` , d̃0,2

` = b2
`,`P

(1,1)
` + b2

`−2,`P
(1,1)
`−2 ,

d̃0,1
` =

√
1 − x2 −

1
2

√
2`+ 1

2

√
`+ 1
`
P
(1,1)
`−1 , d̃1,1

` = b+`,`P
(0,1)
` + b+`−1,`P

(0,1)
`−1 ,

d̃1,−1
` = b−`,`P

(1,0)
` + b−`−1,`P

(1,0)
`−1
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with

b+k,` =
1√

2(2`+ 1)

{
` if k = `,
`+ 1 if k = `− 1,

b−k,` =
1√

2(2`+ 1)

{
−` if k = `,
`+ 1 if k = `− 1,

b2
k,` =

1
2
√

2(2`+ 1)

√
(`+ 1)(`+ 2)

(`− 1)`


−
`(`− 1)
(`+ 1)

if k = `,

` if k = `− 2.

These relations are a direct consequence of [1, p.782]. Note that only four different types of the Jacobi
polynomials occur that, moreover, have only two different choices for the parameters. Our next aim
is to transform them into a sum of Legendre polynomials Pj which satisfy Pj(x) = P

(0,0)
j (x). We use

the following identities

P
(0,1)
` =

∑̀
j=0

c01
j,`P

(0,0)
j , c01

`,j = (−1)j+`
2j+ 1
`+ 1

,

P
(1,0)
` =

∑̀
j=0

c10
j,`P

(0,0)
j , c10

`,j =
2j+ 1
`+ 1

,

P
(1,1)
` =

∑̀
j=0

c11
j,`P

(0,0)
j , c11

j,` =

{
0 if j+ ` odd,
2(2j+1)
`+2 else,

from [61] and [48]. Having arrived at a representation of the Wigner-d functions in terms of Leg-
endre functions one step remains to be done; the transition to Chebyshev polynomials which is now
described by

P
(0,0)
` =

∑̀
j=0

d0
j,`Tj, d0

j,` =
2 − δj,0
π

Γ
(
`−j

2 + 1
2

)
Γ
(
`−j

2 + 1
) Γ
(
`+j

2 + 1
2

)
Γ
(
`+j

2 + 1
) .

For a representation of the matrices Bm,n,m,n = −L, . . . ,L, we can now state the following lemma.

Lemma 4.1.6. The matrices Bmn, realising the change of basis from (4.7), are given by

Bm,n =



D0 B0 ifm ′ = n ′ = 0,
D0 C11 B1 ifm ′ = 0, n ′ = 1,
D0 C11 B2 ifm ′ = 0, n ′ = 2,
D0 C01 B+ ifm ′ = 1, n ′ = 1,
D0 C10 B− ifm ′ = 1, n ′ = −1,

where the corresponding matrices are defined as

B0 ∈ R(L+1)×(L+1), B1 ∈ RL×L, B2 ∈ R(L+1)×(L−1), B± ∈ R(L+1)×L,

C01 ∈ R(L+1)×(L+1), C10 ∈ R(L+1)×(L+1), C11 ∈ R(L+1)×(L+1), D1 ∈ R(L+1)×(L+1),
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f̄

Wigner-d func-
tions of low orders

ĝ

Chebyshev polynomials

Bmn

Lemma 4.1.6

Figure 4.4: The aim of the second step of the FWT-S is to turn expansions of Wigner-d functions of
low orders with maximum degree L into expansions of Chebyshev polynomials of first
kind. The figure shows the input and output coefficients of the transform, in the sense
that each cube with coordinates (`,m,n) represents a coefficient of orders m and n, and
degree `. In this transform, the matrices Bmn for m,n = −L, . . . ,L realise the change of
basis.

with

B0 = diag

(√
2`+ 1

2

)
`=0,...,L

, B1 = diag

(
−

1
2

√
2`+ 1

2

√
`+ 1
`

)
`=0,...,L

,

B2 =



b2
0,2
0 b2

1,3
b2

2,2 0 b2
2,4

b2
3,3 0

. . .

b2
4,4

. . .

. . .


, B± =



b±0,1

b±1,1 b±1,2

b±2,2
. . .

. . .

 ,

C01 =

c
01
0,0 . . . c01

0,L
. . .

...
c01
L,L

 , C10 =

c
10
0,0 . . . c10

0,L
. . .

...
c10
L,L

 ,

C11 =

c
11
0,0 . . . c11

0,L
. . .

...
c11
L,L

 , D0 =

d
0
0,0 . . . d0

0,L
. . .

...
d0
L,L

 .

Proof. The lemma follows by straightforward computations using the recurrence relations of Jacobi
polynomials found in [1, p.782].

Applying the diagonal and bi-diagonal matrices B0, B1, B2, B± is clearly an O(L) process. Due
to the separability of the entries c+`,j, c

−
`,j and d1

`,j, with respect to the indices ` and j, the matrices
C+, C−, and D1 can be applied at cost O(L), too. The remaining step, the transition from Legendre
polynomials to Chebyshev polynomials represented by D0 can also be computed efficiently. An O(L)
method has been described in [4] and [48] to apply this matrix to a suitable vector.
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A Short Summary on the FWT- S The matrix Cmn ∈ C(L+1)×(L−L0+1) established in Def-
inition 4.1.1 for all L,m,n ∈ N with |m|, |n| 6 L can be applied to a vector in O(L logL) steps by
splitting it into the product Cmn = AmnBmn. The matrices Amn, Bmn are defined in (3.28) and
Lemma 4.1.6, respectively. We saw that the application of Amn demands O(L logL) operations and
is based on the efficient computation with semiseparable matrices while the application of Bmn is
realised in O(L) steps, only. In contemplation of the step which takes the most effort, we call the
application of AmnBmn to a suitable vector, the fast transformation of Wigner-d functions based on
semiseparable matrices, FWT-S.
Compared to the naive O(L2) approach of the DWT and even the O(L log2 L) approach of the (un-
stabilised) FWT-C, this is an improvement in terms of runtime behaviour in any case. The following
section will analyse the bearings of the FWT-S a bit further as we take a look at stability and actual
runtime and compare it to the DWT and FWT-C.

4.1.3 Numerical Results

We have implemented and tested the fast transforms of Wigner-d functions in C on an Intel Core
2 Duo 2.66 GHz MacBook Pro with 4GB RAM running Mac OS X 10.6.1 in double precision
arithmetic. There we have used Apple’s gcc-4.2 compiler with the optimisation options -O3
-fomit-frame-pointer -malign-double -ffast-math -mtune=core2
-march=core2. In addition to our code, we used the FFTW 3.2.1 [32] and the NFFT 3.1.2 [49]
libraries that we compiled with the same compiler settings.
To test accuracy and time requirements of the fast transformation of Wigner-d functions, we computed
the sums

f(xi) =

L∑
`=0

L∑
`=L0

f̂mn` dmn` (xi) (4.11)

for given SO(3) Fourier coefficients f̂mn` at 1000 randomly chosen samples xi ∈ [−1, 1] and fixed
ordersm and n. On one hand, we computed this sum directly using the three-term recurrence relation
(4.5) of the Wigner-d functions together with the Clenshaw algorithm [18].
On the other hand we computed the sum (4.11) by the transforms described in the previous sections.
That means, we first computed Chebyshev coefficients gmn that satisfy

L∑
`=L0

f̂mn` dmn` (x) =

L∑
`=0

ĝmn` T`(x)

and only then applied the Clenshaw algorithm to evaluate the Chebyshev expansion

f(xi) =

L∑
`=0

ĝmn` T`(xi)

at the sampling nodes xi.
The following numerical tests examine the time requirements and accuracy of the transform of

Wigner-d function. For fixed orders m and n, we computed the vector of Chebyshev coefficients

gmn = (gmn0 , . . . ,gmnL )T from given SO(3) Fourier coefficients f̂mn =
(
f̂mnmax(|m|,|n|), . . . , f̂mnL

)T
by evaluating gmn = Cmnf̂mn using a matrix Cmn ∈ C(L+1)×(L−max(|m|,|n|)). We will consider
three different variations of the transform described by the matrix Cmn:
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L FWT-S FWT-C DWT
64 1.5e-6 4.4e-6 5.7e-6

128 5.1e-6 9.4e-6 1.8e-5
256 2.2e-6 2.6e-5 7.1e-5
512 1.9e-5 9.2e-5 3.0e-4
1024 1.4e-4 3.8e-4 1.3e-3
2048 3.9e-4 3.4e-3 5.6e-3
4096 9.9e-4 8.8e-3 2.1e-2

Figure 4.5: The plot shows the average times for evaluating a function f(xi) as in (4.11) out of ran-

domly chosen SO(3) Fourier coefficients f̂mn` ∈
[
−

1
2

,
1
2

]
at randomly chosen sampling

points xi ∈ [−1, 1] for i = 1, . . . , 1000 as a function of the degree L for L = 16, . . . , 2048.
Depicted are the time requirements of a single DWT (dotted line), a single FWT-C (dashed
line) and FWT-S (solid line). To emphasise the more favourable runtime of the FWT-S,
we added a table of absolute times for selected values of L. Especially for larger L the
improvement is apparent.

1. DWT: the transform corresponding to a direct multiplication with the matrix Cmn as described
in Definition 4.1.1

2. FWT-C: the same transform as above but using the concepts described in Section 4.1.1 including
cascade summation and stabilisation scheme.

3. FWT-S: the transform described in Section 4.1.2 that computes the multiplication with the ma-
trix Cmn in two steps, by rewriting Cmn = BmnAmn. This transform is based on a fast
algorithm to compute with semi-seperable matrices.

Due to the symmetry properties of Wigner-d functions from Lemma 3.3.2, we consider only trans-
forms of orders m = 0, . . . ,L and n = 0, . . . ,m for a given maximum degree L. For degrees L > 16,
we computed the Wigner-d function transform for 120 different pairs of orders per degree L. Figure
4.5 shows the average time for one transform as a function of the degree L.
It shows that the fastest of the three presented algorithms is the FWT-S while the DWT is the slowest.
This is in accordance with the asymptotic complexities of O(L logL) for the FWT-S and O(L2) for
the DWT, we discussed. Concerning the FWT-C, we should observe a O(L log2 L) behaviour. But
note that so far, we are not able to determine in advance the number of stabilisation steps needed
in the FWT-C and hence we can neither prove the asymptotic complexity of the stabilized FWT nor
predict at which orders this problem occurs. However, when looking at the absolute times we see that
the stabilised FWT is still a large improvement over the DWT especially for larger degrees. More
information on the stabilisation issue can be found in [68].
Another thing that can be observed in the FWT-C is the irregular behaviour. This is as well a result

of the stabilisation scheme discussed in Section 4.1.1. When the stabilisation scheme is used in a
transform for a certain set of orders the duration of a transform rises and from the plot in Figure 4.5 it
appears that the FWT-C becomes almost as slow as the DWT. This however is not the case as we see
in the right table of the figure and also in the results of [68].
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Figure 4.6: The figure shows the error E∞ that occurs at evaluating a function f(xi) out of randomly

chosen SO(3) Fourier coefficients f̂mn` ∈
[
−

1
2

,
1
2

]
at randomly chosen sampling points

xi ∈ [−1, 1] for i = 1, . . . , 1000 by means of the DWT (dotted line), FWT-C (dashed
line) or FWT-S (solid line). The error is plotted as a function of the degree L for L =
16, . . . , 1024.

The next test should shed light on the errors produced during the transform of Wigner-d functions.
Figure 4.6 shows the error

E∞ =
||f − fFWT||∞

||f||1

between the function samples f = (f(xi))i=1,...,1000 computed directly and the function samples com-
puted by one of the three variations of the Wigner-d transform. The norms || · ||1 and || · ||∞ are the
lp−norms of vectors.
We see that the FWT-S and DWT show basically the same error. Although the FWT-C has a slightly
higher error it will not exceed 10−7 for the degrees, we examined here. The Chebyshev coefficients
computed by the FWT-C algorithm show an error of about 10−12 compared to the exact coefficients.

4.2 Fast SO(3) Fourier Transforms

In this section, we return to the bigger scope of the SO(3) Fourier transform, i.e., from sums of
Wigner-d functions we return to sums of Wigner-D functions. Using one of the algorithms presented
in the last two sections to efficiently compute with expansions in Wigner-d functions, we are now left
with Chebyshev expansions that can be easily transformed into sums of complex exponentials. This
transition, just like the transform of Wigner-d functions, will be a coefficient transform which is done
for fixed ordersm and n.
But after this, we will, at last, incorporate the actual nonequispaced sampled rotations into our com-
putations. This completes the nonequispaced fast SO(3) Fourier transform, NFSOFT, which will be
finally described here. Subsequently, the adjoint NFSOFT will be given. We will obtain for both
variants algorithms of complexity, of at least, O(L3 logL + Q), where Q is the number of sampled
rotations and L the cutoff degree of the Fourier sum.
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ĝ

Chebyshev polynomials

ĥ

Complex exponentials

Emn

Definition 4.2.1

Figure 4.7: In the last step of the coefficient transform, we turn expansions of Chebyshev polynomials
with maximum degree L into expansions of complex exponentials. The figure shows the
input and output coefficients of the transform, in the sense that each cube with coordinates
(`,m,n) represents a coefficient of orders m and n, and degree `. The transformation
between these coefficients is expressed by the matrices Emn form,n = −L, . . . ,L.

4.2.1 The Nonequispaced Fast SO(3) Fourier Transform (NFSOFT)

After we generated Chebyshev coefficients ĝmn` from the SO(3) Fourier coefficients f̂mn` , one more
coefficient transform needs to be done. That is the transform that turns a Chebyshev expansion into a
Fourier sum. More specific, we seek the coefficients ĥmn` in

L∑
`=−L

ĥmn` e−i`β =



L∑
`=0

ĝmn` T`(cosβ) ifm+ n even,

L−1∑
`=0

ĝmn`

√
1 − cos2 βT`(cosβ) ifm+ n odd

for β ∈ [0,π]. Again, we find a schematic figure of this transform (cf. Figure 4.7).
Note that in contrast to Sections 4.1.1 and 4.1.2, we return to the Euler angle representation, in the
sense that, we replace x = cosβ. This also allows us a convenient representation of the Chebyshev
polynomials of first kind as

T`(x) = T`(cosβ) = cos(`β) =
1
2
(
ei`β + e−i`β)

and the non-polynomial part as√
1 − x2 =

√
1 − cos2 β = sinβ = −

i
2
(
eiβ − e−iβ) .

The following definition now gives the sought transform.

Definition 4.2.1. For given L ∈ N and fixed orders m and n with |m|, |n| 6 L, the change of basis,
given in Equation (4.2.1) from Chebyshev coefficients ĝmn =

(
ĝmn0 , . . . , ĝmnL

)T to the vector of
Fourier coefficients ĥmn = (ĥmn−L , . . . , ĥmnL )T , is described by the matrix Emn ∈ C(2L+1)×(L+1)

through
ĥmn = Emnĝmn.
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4.2 FAST SO(3) FOURIER TRANSFORMS

Depending on whetherm+ n is even or odd we have

Emn =

{
Emn1 ifm+ n even,
Emn2 Emn1 ifm+ n odd.

By means of the complex representation of the Chebyshev polynomials T`(cosβ), the matrix Emn1 is
written as

Emn1 =



1
2

. . .

1
2

1
1
2

. . .
1
2


∈ C(2L+1)×(L+1)

whereas due to

sinβT`(cosβ) = 1
2π sin(β) T`(cosβ) = − i

4

(
eiβ − e−iβ) (ei`β + e−i`β)

the matrix Emn2 reads as

Emn2 =
i
2


0 1

−1
. . . . . .
. . . . . . 1

−1 0

 ∈ C(2L+1)×(L+1).

Clearly, the application of Emn has a total cost of O(L) operations.
Now we have discussed all necessary transforms to turn the SO(3) Fourier coefficients into standard
Fourier coefficients.

Finalising the Nonequispaced Fast SO(3) Fourier Transform (NFSOFT) In Section 3.2,
we defined the SO(3) Fourier transform for nonequispaced sampled rotations, cf. Defintion 3.2.11.
We introduced the matrix DL,RQ = (Dmn` (Rq))(`,m,n)∈IL,q=1,...,Q that, applied to a vector of SO(3)
Fourier coefficients f̂ = (f̂mn` )(`,m,n)∈IL , computed function samples f = (f(Rq))q=1,...,Q ∈ CQ of
a function f ∈ DL at a sampling set RQ. The naive evaluation of

f = DL,RQ f̂

takes O(L3Q) operations, due to the size of DL,RQ . But owing to the previously considered coefficient
transformations, a factorisation of the matrix DL,RQ which allows its efficient application is now tan-
gible. The fast multiplication with the factorised matrix DL,RQ is called the NFSOFT. The following
theorem specifies the according algorithm.

Theorem 4.2.2. The matrix DL,RQ , representing the NDSOFT, can be split into the matrix product

DL,RQ = FL,RQ C

where
FL,RQ =

(
e−imαqe−i`βqe−inγq

)
q=1,...,Q;(`,m,n)∈IL
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is a rotation-dependent trivariate Fourier matrix and

C = diag (EmnCmn)m,n=−L,...,L

is the diagonal block matrix containing the rotation-independent coefficient transforms from Defini-
tions 4.2.1 and 4.1.1, though evaluated by either the FWT-C or FWT-S. The application of the matrix
product FL,RQ C to a suitably sized vector represents the NFSOFT and takes at least O(L3 logL+Q)
operations.

Proof. Considering their respective definitions, the subsequent multiplication of the matrices Cmn
and Emn, for fixed orders m and n, with the vector of SO(3) Fourier coefficients of the same orders
costs O(L logL) and O(L) operations (cf. Section 4.1.2 and Definition 4.2.1). If we seek to evaluate
the SO(3) Fourier sum

f(R(αq,βq,γq)) =

L∑
`=0

∑̀
m=−`

∑̀
n=−`

f̂mn` Dmn` (R(αq,βq,γq))

of a function f ∈ DL, for q = 1, . . . ,Q, we have (2L + 1)2 = O(L2) different pairs of orders m and
n.
First, we use formula (3.2.7) to split up the Wigner-D functions according to the Euler angles of
R(αq,βq,γq). Then, we may rewrite f(R(αq,βq,γq)) as

f(R(αq,βq,γq)) =

L∑
m=−L

e−imαq
L∑

n=−L

e−inγq
L∑
`=L0

f̂mn` dmn` (cosβq).

The matrices Cmn and Emn effect the computation of the coefficients ĥmn` from the coefficients
f̂mn` ; and we obtain

f(R(αq,βq,γq)) =

L∑
m=−L

e−imαq
L∑

n=−L

e−inγq
L∑

`=−L

ĥmn` e−i`βq

in O(L3 logL) operations.
Thus, we obtain a three-dimensional Fourier sum which can be represented by the trivariate Fourier
matrix FL,RQ and which can be computed by means of the NFFT algorithm in O(L3 +Q) steps (cf.
[71]). Putting this together yields the proposed complexity of O(L3 logL+Q).

There is a tabular overview in Figure 4.8 that gives a summary of the transforms performed during an
NFSOFT, along with references to their matrix representations and complexities.

Corollary 4.2.3. The adjoint NFSOFT, i.e., the matrix-vector multiplication with DHL,RQ as in (3.18)
reads in matrix-vector notation as

f̂ = DHL,RQf.

Corresponding to the matrix DL,RQ , we split up its adjoint in a similar way into

f̂ = CHFHL,RQf.

Hence, it has the same complexity as the NFSOFT.

We shall now present some numerical examples to demonstrate performance and accuracy of the
NFSOFT algorithm and its adjoint.
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f̂

Wigner-d functions

f̄

Wigner-d func-
tions of low orders

ĝ

Chebyshev polynomials

ĥ

Complex exponentials

f(R) for R ∈ RQ

SO(3) function samples

Transformation
Matrix
Complexity

References

NDSOFT
NFSOFT with FWT-C
NFSOFT with FWT-S

Amn

O(L3 logL)

Equation (3.28)

Bmn

O(L3)

Corollary 4.1.6

Cmn

O(L3 log2 L)

Definition 4.1.1

DL,RQ

O(QL3)

Definition 3.2.11

Emn

O(L3)

Definition 4.2.1

FL,RQ

O(Q+ L3 logL)

Theorem 4.2.2

Figure 4.8: The NFSOFT in a nutshell. This chart depicts the sequence of matrix-vector multi-
plications necessary to compute SO(3) Fourier transforms of a function f ∈ DL at Q
nonequispaced input rotations. Note that Amn actually means that all matrices Amn for
m,n = −L, . . . ,L need to be applied to suitably ordered coefficients.
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Figure 4.9: The left graph shows the runtime of an SO(3) Fourier transform as a function of the
degree L for L = 16, . . . , 128 for the three nonequispaced variations NDSOFT (dotted),
NFSOFT(FWT-C) (dashed) and NFSOFT(FWT-S) (solid).
In the right graph we see the runtime of the NFSOFT(FWT-S) as a function of the number
of input nodes Q = 10n for n = 2, 3, . . . , 6 and different bandwidths L = 32 (solid) and
L = 64 (dashed) as well as the runtime of the NDSOFT for bandwidth L = 32 with Q
nodes (dotted).

4.2.2 Numerical Results

We test our NFSOFT algorithm, and compare it to the NDSOFT, i.e., the naive evaluation of (3.2.11).
We chose the following three variations of our algorithm:

1. NFSOFT (FWT-C): the transform from Theorem 4.2.2 using FWT-C (see Section 4.1.1) with
stabilization and the NFFT,

2. NFSOFT (FWT-S): the transform as above but with FWT-S (see Section 4.1.2),

3. NDSOFT: the transform as above using the DWT and nonequispaced discrete Fourier transform
(NDFT) and thus directly evaluating Equation (3.2.11).

Like in Section 4.1.3 we tested the C-routines of the NFSOFT and NDSOFT on an Intel Core 2 Duo
2.66 GHz MacBook Pro with 4 GB RAM running Mac OS X 10.6.1 in double precision arithmetic.
There we have used Apple’s gcc-4.2 compiler with the optimisation options from Section 4.1.3. In
addition to our code, we used the FFTW 3.2.1 [32] and the NFFT 3.1.2 [49] libraries that we compiled
with the same compiler settings.

The first test examines the time requirements of the various nonequispaced variations of the SO(3)
Fourier transform mentioned above. From the vector f̂ = (f̂mn` )(`,m,n)∈IL of randomly gener-
ated SO(3) Fourier coefficients f̂mn` ∈

[
−1

2 , 1
2

]
, we computed the vector of function samples f =

(f(Rq))Rq∈RQ for Q randomly chosen rotations Rq ∈ SO(3).
This was done by evaluating the matrix-vector-product f = DL,RQ f̂ with the nonequispaced SO(3)
Fourier matrix DL,RQ = (Dmn` (Rq))Rq∈RQ;(`,m,n)∈IL .
In Figure 4.9 we show the time requirements for the NDSOFT, NFSOFT (FWT-C) and the NFSOFT

(FWT-S), respectively. The number of nodes is set to Q = 1000 while we test the algorithms for
different bandwidths. We see that the two NFSOFT algorithms outperform the NDSOFT for all band-
widths.
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Figure 4.10: This figure shows the accuracy as a function of the cut-off degree L where we used the
Abel–Poisson kernel with κ = 0.6. In the left graph we fixed the number of source nodes
M = 103 and plotted the accuracy for different choices of Q target nodes (Q = 103

(dashed), Q = 104 (solid), Q = 105 (dotted), Q = 106 (dot-dashed)). The solid, bold
line in the graph shows the theoretical error bound from Equation (3.36).
To give an idea about the localisation property of the used kernel functions the right
graphs give the error E∞ depending on the degree L of the Fourier expansion (3.35) for
the Abel–Poisson Kernelψκ for κ = 0.7 (solid), κ = 0.8 (dashed) and κ = 0.85 (dotted),
as depicted in Figure 3.1.

Comparing the two NFSOFT versions, we see that they do not show any significant differences. This
is not surprising considering that the NFFT algorithm dominates the runtime behavior completely.
In other words, after the improvement from O(L3Q) to O(L3 logL + Q) following the exchange
of the NDFT algorithm with the NFFT, the Q-independent FWT algorithms with complexities of
O(L3 log2 L) compared to O(L3 logL) effect only a small change considering the size of the degrees
L we used. The results from Section 4.1.3 suggest that for larger bandwidths an improved runtime
behaviour of the NFSOFT using the FWT-S should be seen. However, due to memory limitations we
are only able to compute the NFSOFT for Fourier expansions of maximum degree L 6 90. Surely,
we could try computing the NFSOFT on machines with more RAM, but as the memory requirements
depend cubicly on the degree L as well. Consider only the memory needed to store all Fourier coeffi-
cients for the final NFFT, doubling the maximum degree L means we need to store eight-times more
coefficients and hence at least eightfold memory.
The right plot of Figure 4.9 shows the runtime of the NFSOFT(FWT-S) as a function of the number
of input nodes for L = 32 (solid) and L = 64 (dashed) compared to the runtime of the NDSOFT at
L = 32. We see that up to Q = L3 nodes the runtime is almost constant, i.e., the bandwidth controls
the runtime of the NFSOFT. For larger number of nodes they become the dominant factor over the
bandwidth. We then see linear growth of runtime which verifies that the nodes only add linear to the
asymptotic complexity. If we computed these figures also for the NFSOFT (FWT-C), we would not
spot a difference in time between the NFSOFT (FWT-S) here. That is due to the fact that both Wigner
transforms, FWT-C and FWT-S, are independent of the input nodes (see Section 4.1).

To conclude our numerical tests, we like to show an example for the fast summation of radial functions
on SO(3) from Section 3.5. Following Lemma 3.5.3 we calculated the error

E∞ =
||f − fL||∞

||c||1
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and compared it to the theoretical estimate from the lemma. Here, the vector f = (f(Rq))q=1,...,Q ∈
CQ contains the directly computed values of f at the target nodes Rq ∈ SO(3), while we compute fL
from (3.35). Again the rotations, Rq for the Q target nodes, and Sm ∈ SO(3) with m = 1, . . . ,M,
for the M source nodes, were chosen randomly. Furthermore, the vector c = (cm)m=1,...,M ∈ CM
also contains random values. Figure 4.10 shows two error calculations for the Abel–Poisson kernel,
one comparing the theoretical error bound with the numerical determined for varying number of target
nodes, the other one showing the error for differently localised kernel fucntions. It can be seen that
the number of target nodes has no effect on the accuracy, and that the theoretical error bound is met
until it drops below the accuracy encountered by the NFSOFT algorithm at around 10−12. We also
see that for sharper, i.e. better localised kernels a higher maximum degree L of the Fourier expansion
is required to achieve the sought accuracy, as expected.
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5 Generalisations of SO(3) Fourier
Transforms

In the previous chapters we considered the group SO(3) from many perspectives. We reviewed rep-
resentation theory on the group, defined the Fourier transform of functions on SO(3) and developed
fast algorithms to compute these Fourier transforms and also sums of functions on SO(3).
Now we like to give two generalisations of Fourier transforms on the rotation group:

• Fourier Transforms on the complex rotation group

• Fourier Transforms on the motion group.

Recalling Section 2.2, we saw that there is another matrix group by which we can describe rotations,
namely, the special unitary group SU(2). The SU(2) is sometimes also called complex rotation group.
In fact, there is a two-to-one homomorphism from SU(2) to SO(3) (cf. [91, pp. 157–161]) and so
SU(2) and SO(3) share some nice properties, in particular, the unitary irreducible representations of
SO(3) are a subset of those from SU(2) (cf. e.g. [17]). We saw that unitary irreducible representations
are the key ingredient to define Fourier transforms on a group. The aim of the first section in this
chapter is to transfer the concept of the SO(3) Fourier transform to the SU(2) to obtain a fast algorithm
for its computation. Such a fast algorithm could be used in applications from particle physics [82],
or to compute with pseudodifferential operators on SU(2) [78]. While SO(3) is diffeomorphic to
the upper hemisphere of the 3-sphere S3, SU(2) is diffeomorphic to the S3. This means that by a
simple coordinate transform a fast algorithm for the computation of S3 Fourier transforms based on
the Fourier transformation on SU(2) would be at hand.
After that we would like to consider Fourier transforms on the three-dimensional motion group. Rigid-
body motion in three-dimensional space consists of translation and rotation. This leads to another
direction of generalising SO(3) Fourier transforms, though a more difficult one. The group of three-
dimensional rigid-body motions SE(3) does not share as much properties with SO(3) as SU(2) does.
In particular, SE(3) is not compact which leads to infinite-dimensional representation matrices of the
group. Hence, computing Fourier transforms on the group will become more challenging. On the
other hand the computation of SE(3) Fourier transforms has a vast field of applications, one of which
we will discuss extensively in Chapter 6.

5.1 SU(2) Fourier Transforms

The relation between the elements of the rotation group SO(3) (cf. Definition 2.1.4) and the special
unitary group SU(2) (cf. Definition 2.2.14) was established by (2.2.15) and (2.5) describing the two-
to-one homomorphism between the two groups.
A different way to express elements in SU(2) in Euler angles as in (2.5) is by enlarging the domain
of the third Euler angle γ from γ ∈ [0, 2π) to γ ∈ [−2π, 2π). Note, that we could also take the first
Euler angle, α. Therefore, Euler angles in in this section will always be α ∈ [0, 2π), β ∈ [0,π] and
γ ∈ [−2π, 2π).
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Let us now collect the main ingredients for defining Fourier transforms on SU(2). We have considered
the integration of SU(2) functions with a suitable integration invariant volume element in Definition
3.1.4. If using arguments parameterised in terms of Euler angles, the inner product of two functions
f,g ∈ L2(SU(2)) reads as

〈f,g〉SU(2) =

∫
SU(2)

f(U)g(U) dU =

∫ 2π

−2π

∫π
0

∫ 2π

0
f(U(α,β,γ))g(U(α,β,γ)) sinβ dα dβ dγ.

Now we still need a complete set of irreducible unitary representations of SU(2) to obtain an orthog-
onal basis on L2(SU(2)). But we are already half-way there since the representations of SO(3) are a
subset of those in SU(2). The matrix elements of irreducible unitary representations of SU(2) arise in
the same manner as they did on SO(3), as eigenfunctions of the Laplace-Beltrami operator (cf. Defini-
tion 3.3.1). Indeed, the sought orthogonal basis functions are the already known Wigner-D functions
Dmn` but defined for a different set of indices (`,m,n). The group SU(2) is a double cover of SO(3),
i.e., there is a two-to-one homomorphism from SU(2) to SO(3), which motivates the extention of the
Wigner-D functions to elements of SU(2). So in this chapter, Wigner-D functions will be functions
Dmn` : SU(2)→ C.

Definition 5.1.1 (Half-integer index set). Let N 1
2
= {2k+1

2 | k ∈ N} denote the set of all half-integer
numbers. Based on this, we define a set of indices JL = {(`,m,n) | ` ∈ N 1

2
; ` < L; m,n = −`, . . . , `}

for L ∈ N.

We state the following lemma without proof.

Lemma 5.1.2. The set of Wigner-D functions

{Dmn` (U) | ` ∈ N ∪ N 1
2

, m,n = −`, . . . , `}

forms an orthogonal basis of L2(SU(2)). The L2(SU(2)) decomposes into the direct sum

L2(SU(2)) = closL2

⊕
`=0, 1

2 ,1,...

Harm`(SU(2)),

where
Harm`(SU(2)) = span {Dmn` : m,n = −`, . . . , `} .

A detailed derivation of the Wigner-D functions as matrix elements of the irreducible unitary repre-
sentations of SU(2) can be found in [17, pp. 281-296]. We will omit this and continue giving SU(2)
Fourier transforms.
Any function f ∈ L2(SU(2)) has a unique series expansion in terms of the Wigner-D functions, the
SU(2) Fourier expansion

f(U) =
∑

`∈N∪N 1
2

∑̀
m=−`

∑̀
n=−`

f̂mn` Dmn` (U),

for any U ∈ SU(2) and with Fourier coefficients f̂mn` given by the inner product

f̂mn` =
2`+ 1
16π2 〈f,D

mn
` 〉L2(SU(2)). (5.1)
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Note the factor 2`+1
16π2 which is due to the normalisation of Wigner-D functions with respect to the inner

product on SU(2). Using the seperation of Wigner-D functions into components with only one Euler
angle, (3.23) and considering the normalisation of Wigner-d functions dmn` from (3.25) we get

〈Dmn` ,Dm
′n ′

` ′ 〉SU(2) =

∫ 2π

−2π

∫π
0

∫ 2π

0
e−i(mα+nγ)ei(m ′α+n ′γ)dmn` (β)dm

′n ′

` ′ (β) sinβ dα dβ dγ

=
16π2

2`+ 1
δ`,` ′δm,m ′δn,n ′ .

For L ∈ N consider functions f ∈ L2(SU(2)) the Fourier coefficients of which fulfil fmn` = 0 for
` > L. In correspondence to the SO(3) case, we define the function spaces

DSU(2)
L =

⊕
`=0, 1

2 ,1,...,L

Harm`(SU(2))

for arbitrary L ∈ N the elements of which are the above mentioned band-limited functions. An
orthogonal basis of these spaces is given by

{Dmn` (U) | (`,m,n) ∈ IL ∪ JL}

where U ∈ SU(2) and IL is the index set defined in (3.16).
The dimension of the spaces DSU(2)

L is given by

dim(DSU(2)
L ) = |IL|+ |JL| =

L∑
`=0

(2`+ 1)2 +

L∑
`=0

(2`)2 =

2L+1∑
`=0

`2 =
1
3
(L+ 1)(2L+ 1)(4L+ 3).

For functions on these spaces we now define the discrete Fourier transform.

Definition 5.1.3 (Discrete Fourier Transform on SU(2)). Let UQ = (U1, . . . , UQ), Uq ∈ SU(2)
define an arbitrary sampling set on SU(2). Then

f(Uq) =
∑

(`,m,n)∈IL∪JL

f̂mn` Dmn` (Uq), q = 1, . . . ,Q,

with given Fourier coefficients f̂ = (f̂mn` )(`,m,n)∈IL∪JL evaluates a function f ∈ DSU(2)
L at a set of

nodes UQ = {Uq ∈ SU(2) | q = 1, . . . ,Q}. The corresponding operator DL,UQ : C|IL∪JL| → CQ

with f(Uq) =
[
DL,RQ f̂

]
q

is called nonequispaced discrete SU(2) Fourier transform (NDSUFT).

The operator DL,UQ corresponds to a matrix DL,UQ ∈ C|IL∪JL|×Q. Hence, the NDSUFT can be
thought of as the matrix vector multiplication f = DL,UQ f̂ with f = (f(Uq))q=1,...,Q ∈ CQ and f̂ as in
Definition 5.1.3.
Most conveniently, for the efficient computation of the NDSUFT, we can reuse the NFSOFT algo-
rithms by splitting the sum from Definition 5.1.3 into

f(Uq) =
∑

(`,m,n)∈IL

f̂mn` Dmn` (Uq) +
∑

(`,m,n)∈JL

f̂mn` Dmn` (Uq), q = 1, . . . ,Q.
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5 GENERALISATIONS OF SO(3) FOURIER TRANSFORMS

The sum over the index set IL can be computed by the NFSOFT algorithm. In the following, it remains
to show how the sum over the half-integer Wigner-D functions

h(Uq) =
∑

(`,m,n)∈JL

f̂mn` Dmn` (Uq), q = 1, . . . ,Q; (5.2)

can be efficiently computed using various modifications of the NFSOFT.
Again, we will try to convert the sum (5.2) into a three-dimensional standard Fourier sum to employ
the NFFT algorithm for its computation. Let us start by separating the sums according to the Euler
angles as we did in the SO(3) case

h(Uq) = h(U(αq,βq,γq) =
∑

(`,m,n)∈JL

f̂mn` e−i(mα+nγ)dmn` (βq).

While it is quite clear how the complex exponentials behave for ` ∈ N 1
2

and m,n = −`, . . . , `,
respectively, the behaviour of half-integer Wigner-d functions needs further examination; and we also
need to show that we can efficiently compute the coefficients ĥmn` from f̂mn` .

The Fast Transformation of Wigner-d Functions of Half-Integer Orders and Degree
The aim of the following paragraphs is to convert Wigner-d functions of half-integer orders and de-
gree into Chebyshev polynomials. Recall the definition of Wigner-d functions in terms of Jacobi
polynomials from (3.24) as

dmn` (x) = ε

√(
`− µ+ν

2

)
!
(
`+ µ+ν

2

)
!(

`− µ−ν
2

)
!
(
`+ µ−ν

2

)
!
2−
µ+ν

2 (1 − x)
µ
2 (1 + x)

ν
2 P

(µ,ν)
`−L0

(x), (5.3)

where µ = |n−m|, ν = |n+m|, L0 = max(|m|, |n|) and

ε =

{
1 if n > m,
(−1)n−m if n < m.

If we insert orders and degree from the half-integer index set (`,m,n) ∈ JL, we find µ,ν ∈ N.
Moreover, if µ is odd then ν will be even, and the other way around. This conveniently yields ` ±
µ+ν

2 ∈ N to define the x-independent factorials and by `− L0 ∈ N we obtain an integer degree of the
Jacobi polynomials.
The Wigner-d functions dmn` for (`,m,n) ∈ JL are no polynomials. But by dividing them by either√

1 − x or
√

1 + x, depending on whether µ or ν is odd, they become polynomials of degree ` − 1
2 ,

for ` ∈ N 1
2
.

Therefore, it is possible to perform a change of basis to Chebyshev polynomials such that

L− 1
2∑

`=L0

f̂mn` dmn` (x) =

L− 1
2∑

`= 1
2

ĝmn` T`− 1
2
(x)

{√
1 + x ifm+ n even,
√

1 − x ifm+ n odd,
(5.4)

for x ∈ [−1, 1] and for fixed m and n holds true. The coefficients ĝmn` can, again, be obtained in
different ways. E.g., we could exploit the three-term recurrence relation 3.26 to modify the FWT-C
algorithm to the Wigner-d functions of half integer orders. We shall not examine this here but instead
consider the necessary modifications to the FWT-S to compute the fast transformation of Wigner-d
functions of half-integer orders and degree. We formulate a lemma similar to Lemma 3.3.3 to identify
the necessary low orders into which the Wigner-d functions will be transformed first.

76



5.1 SU(2) FOURIER TRANSFORMS

Lemma 5.1.4. Let L, |m|, |n| ∈ N 1
2
, |m|, |n| 6 L, and denote by DmnL the space spanned by the

functions dmn` , ` = L0, . . . ,L. Moreover, define

m ′ :=

{
1
2 if |m| = |n| = 1

2 ,
3
2 if |m| > 1

2 .
n ′ :=


± 1

2 ifm = ±n = 1
2 ,

± 3
2 ifm = ±n, |m| > 1

2 ,
1
2 ifm+ n even,m 6= n,
−1

2 ifm+ n odd,m 6= n.

(5.5)

Then we have DmnL ⊆ Dm ′n ′L .

Proof. The proof follows the same lines as the proof from Lemma 3.3.3. While for m ′ = 1
2 , and

hence m ′ = |n ′| the proof is immediate, we examine the cases form ′ = 3
2 . The space DmnL for even

m + n is spanned by the functions dmnL0
, . . . ,dmnL which can be expressed as Jacobi polynomials

P
(1,2)
`− 3

2
, . . . ,P(1,2)

L multiplied by
√

1 − x(1 + x) and a normalising factor. These functions span D
3
2 , 1

2
L .

Analogously, the P(2,1)
`− 3

2
, . . . ,P(2,1)

L multiplied with
√

1 + x(1 − x) span D
3
2 ,− 1

2
L , the space of Wigner-d

functions with oddm+n; while the P(0,3)
`− 3

2
, . . . ,P(0,3)

L or P(3,0)
`− 3

2
, . . . ,P(3,0)

L multiplied with
√

(1± x)3

span D
3
2 ,± 3

2
L , the spaces of Wigner-d functions withm = ±n.

Let L ∈ N and m,n with |m|, |n| ∈ N 1
2

be fixed and let f be a finite expansion in Wigner-d functions

dmn` , ` = L0, . . . ,L− 1
2 . By Lemma 5.1.4 we see that, like in the integer order case, f can be expressed

in Wigner-d functions dm
′n ′

` of low orders,

f =

L− 1
2∑

`=L0

f̂mn` dmn` =

L− 1
2∑

`=L ′0

f̄mn` dm
′n ′

`

where the sought transformation from coefficients f̂mn` to coefficients f̄mn` is linear. Therefore, there
exists a matrix Amn = (a`,k) ∈ R(L−L ′0+

1
2 )×(L−L0+

1
2 ) such that the vectors f̂mn = (f̂`) ∈ CL−L0+

1
2

and f̄mn = (f̄`) ∈ CL−L ′0+ 1
2 are related by the equation

f̄mn = Amn f̂mn. (5.6)

The entries of the matrix Amn are given by a`,k =

√
(2`+1)(2k+1)

2 〈dm ′n ′` ,dmnk 〉.
Again for Wigner-d functions dmn` of half-integer orders |m|, |n| ∈ N 1

2
and degree, L ∈ N 1

2
we can

formulate some special cases and symmetries.

Lemma 5.1.5. For |m|, |n| ∈ N 1
2

it holds true that Amn = I if (m,n) is one of ( 1
2 ,± 1

2), (
3
2 ,± 1

2) or

(− 3
2 , 1

2), and Amn = −I if (m,n) is either (− 3
2 ,−3

2) or (− 1
2 , 1

2). Also, the known symmetries

Amn = (−1)m−nA−m−n, Amn = (−1)m−nAnm

hold true. Additionally, we have

Amn = diag
(
(−1)`+m

)L− 1
2

`=L ′0
A−mn diag

(
(−1)`−

(−1)m+n

2

)L− 1
2

`=L0

which slightly differs from the case of integer orders and degree cf. Corollary 3.3.5.
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Proof. These are direct consequences of Lemma 3.3.2 and Lemma 5.1.4.

The symmetries from this lemma allow us to restrict our considerations of the matrices Amn tom,n ∈
N 1

2
with n 6 m 6 L − 1

2 as the remaining cases can be deduced from them. Note that from now we

use the normalised Wigner-d functions, denoted by d̃mn` , again. Recall the approach of the FWT-S in
Section 4.1.2. The fast algorithm developed there was based on the realisation that the matrices Amn
are composed of the eigenvectors of the matrices Gmn, cf. Definition 4.1.2 and Lemma 4.1.3. After
showing that the matrices Gmn are semiseparable of rank at most two, we employed a fast algorithm
that applies eigenvectors of semiseparable matrices to other suitably sized, arbitrary vectors.
Consider the matrices Gmn, from Definition 4.1.2 for |m|, |n| ∈ N 1

2
. The explicit entries of these

matrices for half integer orders and degree vary from the integer cases. We shall derive them in the
following lemma.

Lemma 5.1.6. Let L ∈ N and |m|, |n| ∈ N 1
2

be given such that the pair (m,n) does not belong to
the set of special cases from Lemma 5.1.5. The matrix Gmn, from Definition 4.1.2 can be split into
Gmn = D + S− + S+ with D, S−, S+ as defined in (4.9). For `,k = 3

2 , . . . ,L − 1
2 the entries of the

matrix D = (d`,k) are given by d`,k = `(`+ 1)δ`,k, while S− = (s−`,k) and S+ = (s+`,k) satisfy

s−`,k = (µ2 − µ ′2)

√
(`+ 1

2)(k+
1
2)

8
×



0 form = n,

(`+ 1
2)

3(k+ 1
2)

(`− 1
2)(`+

3
2)

(k− 1
2)(k+

3
2)

form = −n,

2

√
(`− 1

2)(`+
3
2)

(k− 1
2)(k+

3
2)

form+ n even,

(`+ 1
2)

(k+ 1
2)

√
(`− 1

2)(`+
3
2)

(k− 1
2)(k+

3
2)

form+ n odd,

s+`,k = (−1)`+k+1 (ν2 − ν ′2)

√
(`+ 1

2)(k+
1
2)

8
×



(`+ 1
2)

3(k+ 1
2)

(`− 1
2)(`+

3
2)

(k− 1
2)(k+

3
2)

form = n,

0 form = −n,

(`+ 1
2)

(k+ 1
2)

√
(`− 1

2)(`+
3
2)

(k− 1
2)(k+

3
2)

form+ n even,

2

√
(`− 1

2)(`+
3
2)

(k− 1
2)(k+

3
2)

form+ n odd,

where ˜̀ := min{`,k}, k̃ := max{`,k}.

Proof. We will sketch the proof only for the entries s−`,k. The procedure for s+`,k is completely analo-
gous; and the entries d`,k are the same as in the integer order case. Note that owing to the symmetry
s−`,k = s−k,` we assume, without loss of generality, k > `. First we expand the expressions for s−`,k (cf.
(4.9)) to

s−`,k =
µ2 − µ ′2

2

√
(`+ 1

2)(k+
1
2)

∫ 1

−1

1
1 − x

dm
′n ′

k (x)dm
′n ′

` (x)dx.
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Expressing the Wigner-d functions in terms of Jacobi polynomials as in (3.24), and using L ′0 = m ′,
µ ′ = m ′ − n ′ and ν ′ = m ′ + n ′, we get

s−`,k =
µ2 − µ ′2

16

√
(k−m ′)!(k+m ′)!
(k− n ′)!(k+ n ′)!

(`−m ′)!(`+m ′)!
(`− n ′)!(`+ n ′)!

√
(`+ 1

2)(k+
1
2)

×
∫ 1

−1
(1 − x)m

′−n ′−1(1 + x)m
′+n ′P

(m ′−n ′,m ′+n ′)
k−m ′ (x)P

(m ′−n ′,m ′+n ′)
`−m ′ (x) dx.

Let us examine the four occurring cases ofm and n.

i) Form+ n even, we havem ′ = 3
2 , n ′ = 1

2 . The coefficients now read as

s−`,k =
µ2 − µ ′2

32

√
(k+ 3

2)

(k− 1
2)

(`+ 3
2)

(`− 1
2)

√
(`+ 1

2)(k+
1
2)

∫ 1

−1
(1 + x)2P

(1,2)
k− 3

2
(x)P

(1,2)
`− 3

2
(x) dx.

By [1, 22.7.16]

(1 + x)P
(1,2)
n (x) = P

(1,1)
n (x) +

n+ 1
n+ 2

P
(1,1)
n+1(x)

holds true which we apply twice on our above expression. This leads to evaluating the integral∫ 1

−1
P
(1,1)
m (x)P

(1,1)
n (x) dx =

2
m+ 2

[P
(1,1)
n (x)P

(0,0)
m+1(x)]

1
−1 −

n+ 3
n+ 2

∫ 1

−1
P
(0,0)
m+1(x)P

(2,2)
n−1 dx,

by partial integration. The integral over the interval [−1, 1] of a Legendre polynomial P(0,0)
m+1

times any polynomials of smaller degree evaluates to zero. As we consider only orders with
n 6 m the integral on the right side of the equation vanishes and we have∫ 1

−1
P
(1,1)
m (x)P

(1,1)
n (x) dx = 4

m+ 1
n+ 2

.

Inserting this in the formula for s−`,k, we obtain the s−`,k as stated in the lemma by∫ 1

−1
(1 + x)2P

(1,2)
k− 3

2
(x)P

(1,2)
`− 3

2
(x) dx = 8

`− 1
2

k+ 3
2

.

ii) Form+ n odd, we havem ′ = 3
2 , n ′ = −1

2 . The coefficients satisfy

s−`,k =
µ2 − µ ′2

32

√
(k+ 3

2)

(k− 1
2)

(`+ 3
2)

(`− 1
2)

√
(`+ 1

2)(k+
1
2)

∫ 1

−1
(1 − x)(1 + x)P

(2,1)
k− 3

2
(x)P

(2,1)
`− 3

2
(x) dx.

Using almost the same idea as in the m + n even case, here we are applying [1, 22.7.15] only
once to get

(1 − x)P
(2,1)
n (x) = P

(1,1)
n (x) −

n+ 1
n+ 2

P
(1,1)
n (x)

but also use partial integration by which we obtain∫ 1

−1
(1 − x)(1 + x)P

(2,1)
k− 3

2
(x)P

(2,1)
`− 3

2
(x) dx = 4

(`− 1
2)(`+

1
2)

(k+ 1
2)(k+

3
2)

in an analogous manner as in i). From this, the assertion in the lemma follows.
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iii) Form = n we getm ′ = n ′ = 3
2 ; and as µ2 − µ ′2 = 0 we obtain immediately s−`,k = 0.

iv) Form = −n, and hence,m ′ = 3
2 , n ′ = −3

2 the coefficients simplify to

s−`,k =
µ2 − µ ′2

32

√
(`+ 1

2)(k+
1
2)

∫ 1

−1
(1 − x)2P

(3,0)
k− 3

2
(x)P

(3,0)
`− 3

2
(x) dx.

The proof of this part is the most lengthy one and can be done by induction over ` and k to show
that

I`− 2
3 ,k− 2

3
=

∫ 1

−1
(1 − x)2P

(3,0)
k− 3

2
(x)P

(3,0)
`− 3

2
(x) dx =

4
3
(`− 1

2)(`+
1
2)(`+

3
2)

(k− 1
2)(k+

1
2)(k+

3
2)

(5.7)

is satisfied and we will get the coefficients from the lemma.

If ` = L ′0 = 3
2 , then formula [34, p. 228, 7.391, 4.] gives the induction base by

I 3
2 ,k− 3

2
=

∫ 1

−1
(1 − x)2P

(3,0)
k− 3

2
(x) dx =

16
(k− 1

2)(k+
1
2)(k+

3
2)

, k =
3
2

,
5
2

, . . . .

For the inductive step, we fix ` > 5
2 and assume that (5.7) holds true for ` replaced by ` − 1

and all k > ` − 1. We now calculate the integral I`,k by induction over k. The corresponding
induction bases are obtained by setting k = ` on one hand. Then formula [34, p. 228, 7.391, 5.]
asserts that

I`− 3
2 ,`− 3

2
=

∫ 1

−1
(1 − x)2

(
P
(3,0)
`− 3

2
(x)
)2

dx =
4
3

.

On the other hand by setting k = ` + 1, we obtain the second base by using the three-term
recurrence for Jacobi polynomials [81, p. 71] which eventually gives

I`− 3
2 ,`− 1

2
=

∫ 1

−1
(1 − x)2P

(3,0)
`− 3

2
(x)P

(3,0)
`− 1

2
(x) dx =

4
3
(`− 1

2)

(`+ 5
2)

.

Let us examine why. By the three-term recurrence formula [81, p. 71], we obtain

P
(3,0)
`− 1

2
(x) =

(
9(`+ 1

2)

2`(`− 1
2)(`+

5
2)

+
2(`+ 1)(`+ 1

2)

(`− 1
2)(`+

5
2)
x

)
P
(3,0)
`− 3

2
(x)

−
(`− 3

2)(`+ 1)(`+ 3
2)

(`− 1
2)(`+

5
2)`

P
(3,0)
`− 5

2
(x),

which we insert into I`− 3
2 ,`− 1

2
yielding

I`− 3
2 ,`− 1

2
=

1
(`− 1

2)(`+
5
2)

(
9(`+ 1

2)

2`

∫ 1

−1
(1 − x)2

(
P
(3,0)
`− 3

2
(x)
)2

dx

+ 2(`+ 1)(`+
1
2
)

∫ 1

−1
x(1 − x)2

(
P
(3,0)
`− 3

2
(x)
)2

dx

−
(`− 3

2)(`+ 1)(`+ 3
2)

`

∫ 1

−1
(1 − x)2P

(3,0)
`− 3

2
(x)P

(3,0)
`− 5

2
(x) dx

)
.
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The first and the third integral are in fact equal to I`− 3
2 ,`− 3

2
and I`− 5

2 ,`− 3
2
, respectively, so we

can apply the induction base and assumption. Using x(1 − x)2 = (1 − x)2 − (1 − x)3 and the
orthogonality relation of the Jacobi polynomials, the second integral may be rearranged to∫ 1

−1
x(1 − x)2

(
P
(3,0)
`− 3

2
(x)
)2

dx =
∫ 1

−1
(1 − x)2

(
P
(3,0)
`− 3

2
(x)
)2

dx−
∫ 1

−1
(1 − x)3

(
P
(3,0)
`− 3

2
(x)
)2

dx.

= I`− 3
2 ,`− 3

2
−

4
2`+ 1

Now, all quantities for I`− 3
2 ,`− 1

2
are known and we get by straight forward computation the

sought expression for I`− 3
2 ,`− 1

2
. To finalise the induction we now need to consider the term

I`− 3
2 ,k− 3

2
for k > `+ 2 and use once more the three-term recurrence formula of Jacobi polyno-

mials to obtain

I`− 3
2 ,k− 3

2
=

1
(k− 3

2)(k+
3
2)

(
9(k− 1

2)

2(k− 1)

∫ 1

−1
(1 − x)2P

(3,0)
`− 3

2
(x)P

(3,0)
k− 5

2
(x) dx

+ 2k(k−
1
2
)

∫ 1

−1
x(1 − x)2P

(3,0)
`− 3

2
(x)P

(3,0)
k− 5

2
(x) dx

−
(k− 5

2)(k+ 1)(k+ 1
2)

k

∫ 1

−1
(1 − x)2P

(3,0)
`− 3

2
(x)P

(3,0)
k− 7

2
(x) dx

)
.

Assuming Equation (5.7) is satisfied for I`− 3
2 ,`− 5

2
and I`− 3

2 ,`− 7
2
, we get

I`− 2
3 ,k− 2

3
=

4
3
(`− 1

2)(`+
1
2)(`+

3
2)

(k− 1
2)(k+

1
2)(k+

3
2)

for k and have thus proven the lemma. Note that we omitted writing down the inductive step,
as it is rather lengthy and was conveniently done in Mathematica.

Corollary 5.1.7. The matrix Gmn from Definition 4.1.2 is symmetric semiseparable for m,n ∈ N 1
2

with semiseparability rank R = 2, i.e.,

Gmn = diag(d) + triu
(
u− vT

−

)
+ tril

(
v− uT

−

)
+ triu

(
u+ vT

+

)
+ tril

(
v+ uT

+

)
, (5.8)

with d = (d`), u− =
(
u−`
)
, v− =

(
v−`
)
, u+ =

(
u+`
)
, v+ =

(
v+`
)
∈ RL−L ′∗+1, for ` = L ′∗, . . . ,L,

where

d` = `(`+ 1) +
`+ 1

2
4
·


2
(
µ2 − µ ′2

)
+
(
ν2 − ν ′2

)
form+ n even,(

µ2 − µ ′2
)
+ 2

(
ν2 − ν ′2

)
form+ n odd,

2
3

(
µ2 − µ ′2

)
+ 2

3

(
ν2 − ν ′2

)
for |m| = |n|

and
u−` := w−

` W
−
` , v−` := w−

` /W
−
` , u+` := w+

` W
+
` , v+` := w+

` /W
+
` ,

with

w−
` :=

γ−

2

√
(µ2 − µ ′2)(`+ 1

2), w+
` := (−1)`+

1
2
γ+

2

√
(ν2 − ν ′2)(`+ 1

2),
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for

γ+ =



√
2 ifm+ n odd,

1 ifm+ n even,√
2
3 ifm = n,

0 ifm = −n,

γ− =



√
2 ifm+ n even,

1 ifm+ n odd,
0 ifm = n,√

2
3 ifm = −n,

and

W−
` =

√
(`− 1

2)(`+
3
2)×


1 ifm+ n even,

(`+ 1
2) ifm+ n odd,

(`+ 1
2)
√

(l− 1
2)(l+

3
2) if |m| = |n| ,

W+
` =

√
(`− 1

2)(`+
3
2)×


(`+ 1

2) ifm+ n even,

1 ifm+ n odd,

(`+ 1
2)
√

(l− 1
2)(l+

3
2) if |m| = |n| .

Now we see that the same divide and conquer approach used for the FWT-S in Section 4.1.2 can be
applied here and we obtain the coefficients f̄mn` for (`,m,n) ∈ JL of the expansion in low order
Wigner-d functions,

L− 1
2∑

`=L0

f̂mn` dmn` =

L− 1
2∑

`=L ′0

f̄mn` dm
′n ′

` .

The next step is now to convert the low order Wigner-d functions into Chebyshev polynomials,

L− 1
2∑

`=L ′0

f̄mn` dm
′n ′

` (x) =

L− 1
2∑

`=0

ĝmn` T`− 1
2
(x)×


√

1 + x ifm+ n even,

√
1 − x ifm+ n odd.

(5.9)

We need to consider the following identities which are consequences of (3.24) and [1, 22.7.15-
22.7.17]. We have

d
1
2 , 1

2
` (x) =

√
1 + x

√
2l+ 1

2
P
(0,1)

`−
1
2
(x), d

1
2 ,−1

2
` (x) =

√
1 − x

√
2l+ 1

2
P
(1,0)

`−
1
2
(x),

d
3
2 ,± 1

2
` (x) =

√
1∓ x

(
b21
`,`P

(1,1)

`−
3
2
(x)± b21

`+1,`P
(1,1)

`−
1
2
(x)

)
,

d
3
2 , 3

2
` (x) =

√
1 + x

(
b30
`,`P

(0,2)

`−
3
2
(x) + b30

`+1,`P
(0,2)

`−
1
2
(x)

)
,

d
3
2 ,−3

2
` (x) =

√
1 − x

(
b30
`,`P

(2,0)

`−
3
2
(x) − b30

`+1,`P
(2,0)

`−
1
2
(x)

)
,

with

b21
k,` =

√
`+ 3

2
8
×



√
`+ 1

2

`− 1
2

if k = `,√
`− 1

2

`+ 1
2

if k = `+ 1,

b03
k,` =

1
2
√

2`+ 1
×

(`+ 3
2) if k = `,

(`− 1
2) if k = `+ 1,
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and

P
(2,0)
` =

∑̀
j=0

b20
`,jP

(1,0)
j with b20

`,j =
(j+ 1)(2j+ 2)
(`+ 1)(`+ 2)

,

P
(0,2)
` =

∑̀
j=0

b02
`,jP

(0,1)
j with b02

`,j =(−1)j+1 (j+ 1)(2j+ 2)
(`+ 1)(`+ 2)

,

to facilitate the change of basis (5.9). To express (5.9) in matrix-vector notation, we introduce the
matrices Bmn ∈ RL×(L−L ′0+ 1

2 ), form,n = −L+ 1
2 , . . . ,L− 1

2 . They satisfy

ĝmn = Bmn f̄mn,

with ĝmn = (ĝmn` ) ∈ CL and f̄mn = (f̄mn` ) ∈ CL−L ′0+ 1
2 .

Corollary 5.1.8. The above mentioned matrices Bmn are given by

Bm,n =



D0 C01 B01 ifm ′ = n ′ = 1
2 ,

D0 C10 B01 ifm ′ = −n ′ = 1
2 ,

D0 C01 B02 B03 ifm ′ = n ′ = 3
2 ,

D0 C10 B20 B03 ifm ′ = −n ′ = 3
2 ,

D0 C11 B12 ifm ′ = 3
2 , n ′ = 1

2 ,
D0 C11 B21 ifm ′ = 3

2 , n ′ = −1
2 ,

where C10, C01, C11 and D0 are given as in Corollary 4.1.6 and

B12 =



b21
1,0

b21
1,1 b21

2,1

b±2,2
. . .

. . .

 , B21 =



−b21
1,0

b21
1,1 −b21

2,1

b±2,2
. . .

. . .

 ,

B03 =



b03
1,0

b03
1,1 b03

2,1

b03
2,2

. . .

. . .

 , B30 =



−b03
1,0

b03
1,1 −b03

2,1

b03
2,2

. . .

. . .

 ,

B20 =

b
20
0,0 . . . b20

0,L
. . .

...
b20
L,L

 , B02 =

b
02
0,0 . . . b02

0,L
. . .

...
b02
L,L

 .
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The NFSUFT Setting x = cosβ, recall that the change of basis

L∑
`=0

ĝmn` T`(cosβ) =
L∑

`=−L

ĥmn` e−i`β

was described by the matrix Emn (cf. Definition 4.2.1) which in this case is given by Emn = Emn1 .
By employing these matrices, we finalise the node-independent coefficient transforms for the half-
integer Wigner-d functions, i.e., we can compute the coefficients ĥmn` in

L∑
`=L0

f̂mn` dmn` (cosβq) =

L− 1
2∑

`=−L+ 1
2

ĥmn` r(βq)e−i(`− 1
2 )βq (5.10)

where

r(βq) =


√

1 + cosβq ifm+ n even,√
1 − cosβq ifm+ n odd.

Inserting this into (5.2), we get

h(Uq) =
∑
JL

f̂mn` Dmn` (U(αq,βq,γq)) =
L− 1

2∑
m,n=−L+ 1

2

L−1∑
`=−L

ĥmn
`+ 1

2
r(βq)e−imαqe−i`βqe−inγq .

Note that we did not get rid of the factors
√

1± cosβq. We can handle this by splitting the Fourier
transform into two transforms of half size, one for the coefficients where m + n even, and one for
the coefficients with m+ n odd. This will not change the total asymptotic complexity. We shall now
resume the algorithm to compute the NFSUFT and consider the complexity of its steps.

The Nonequispaced Fast SU(2) Fourier Transform (NFSUFT) We have defined the SU(2)
Fourier transform for nonequispaced sampled rotations in Defintion 5.1.3 and introduced the matrix
DL,UQ = (Dmn` (Uq))(`,m,n)∈IL∪JL,q=1,...,Q that, applied to a vector of SU(2) Fourier coefficients
f̂ = (f̂mn` )(`,m,n)∈IL∪JL , computed function samples f = (f(Uq))q=1,...,Q ∈ CQ of a function

f ∈ D
1
2
L at a sampling set UQ. The naive evaluation of

f = DL,UQ f̂

takes O(L3Q) operations, due to the size of the matrix DL,UQ . But owing to the previously considered
coefficient transformations, a factorisation of the matrix DL,UQ which allows its efficient application
is tangible. The fast multiplication with the factorised matrix DL,UQ is called the NFSUFT. The
following theorem specifies the according algorithm which is based on the NFSOFT algorithm (cf.
Theorem 4.2.2).

Theorem 5.1.9. The matrix DL,UQ , representing the NDSUFT, can be rearranged and split into a
block diagonal matrix consisting of three blocks of matrix products,

DL,UQ =

Fe
L,UQ

Ce 0
Fo
L,UQ

Co

0 Fi
L,UQ

C
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with

Fe
L,UQ =

√
1 + cosβq

(
e−imαqe−i`βqe−inγq

)
q=1,...,Q;(`,m,n)∈JL∧m+n even,

Fe
L,UQ =

√
1 − cosβq

(
e−imαqe−i`βqe−inγq

)
q=1,...,Q;(`,m,n)∈JL∧m+n odd,

Fi
L,UQ =

(
e−imαqe−i`βqe−inγq

)
q=1,...,Q;(`,m,n)∈IL

and

Ce = diag (Emn1 BmnAmn)−L+ 1
26m,n6L− 1

2∧m+n even,

Ce = diag (Emn1 BmnAmn)−L+ 1
26m,n6L− 1

2∧m+n odd,

Ci = diag (EmnBmnAmn)−L6m,n6L.

The matrices Emn, Emn1 are given in Definition 4.2.1, while Bmn is given in the Corollaries 4.1.6
and 5.1.8 and Amn is defined in (3.28) and (5.6).
The application of the rearranged matrix DL,UQ to a suitably sized vector represents the NFSUFT
and takes at least O(L3 logL+Q) operations.

Proof. If we seek to evaluate the SU(2) Fourier sum

f(Uq) =
∑

(`,m,n)∈IL∪JL

f̂mn` Dmn` (Uq), q = 1, . . . ,Q,

of a function f ∈ DL, for q = 1, . . . ,Q, we encounter 8L2 + 4L+ 1 = O(L2) different pairs of orders
m and n.
Applying coefficients f̂mn` for fixed m,n, sorted in vectors, to the suitable matrices Amn costs
O(L logL) operations per set of orders. The subsequent application of Bmn as well as Emn or Emn1
costs O(L). Putting this together it takes O(L3 logL) operations to perform the change of basis,

∑
(`,m,n)∈IL∪JL

f̂mn` Dmn` (Uq) =
L∑

`,m,n=−L

ĥmn` e−imαqe−i`βqe−inγq

+

L−1∑
`=−L

L− 1
2∑

m,n=−L+ 1
2

m+n even

ĥmn
`+ 1

2

√
1 + βqe−imαqe−i`βqe−inγq

+

L−1∑
`=−L

L− 1
2∑

m,n=−L+ 1
2

m+n odd

ĥmn
`+ 1

2

√
1 − βqe−imαqe−i`βqe−inγq .

We obtained three three-dimensional Fourier sums which can be represented by a matrix vector prod-
uct of the trivariate Fourier matrices Fi

L,UQ , Fe
L,UQ

and Fo
L,UQ

with the vectors ĥi ∈ C(2L+1)3
,

ĥe ∈ C4L3
and ĥo ∈ C4L3

. Each of these three evaluations takes O(L3 logL + Q) operations and
as they are independent from each other, this is also the total complexity of the algorithm.
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5.2 SE(3) Fourier Transforms

Like in case of the rotations surely everyone has an intuitive idea what a motion is. We shall start
this section by briefly giving a mathematical description of this idea. We will define the group of
rigid-body motions in three dimensions and consider integration of functions that take motions as
arguments. Like on SO(3) we will use unitary irreducible representations of the group to define a set
of orthogonal basis functions by means of which we define the Fourier transform on the group.

Definition 5.2.1 (Rigid-body Motion). A rigid-body motion in R3 with respect to the origin 0 ∈ R3 is
a linear map ρ : R3 → R3 with ρ(v) = Rv + t where t ∈ R3 and R ∈ SO(3).

The composition ρ = ρ2 ◦ ρ1 of two rigid-body motions ρ1(v) = R1v + t1 and ρ2(v) = R2v + t2 is
the map

ρ : v 7→ R2R1v + R2t1 + t2. (5.11)

This can be seen by ρ(v) = (ρ2 ◦ ρ1)(v) = ρ2(ρ1(v)) = R2ρ1(v) + t2. The inversion ρ−1 of a
rigid-body motion ρ(v) = Rv + t is the map

ρ−1 : v 7→ R−Tv − RT t

as composing ρ−1 and ρ gives v = id(v) = ρ−1(ρ(v)) = ρ−1(Rv + t). This is fulfilled for all v if
ρ−1(v) = RTv − RT t.

Lemma 5.2.2. Given two pairs (R1, t1) and (R2, t2) where t1, t2 ∈ R3 and R1, R2 ∈ SO(3), their
corresponding rigid-body motions are different as well, i.e. (R1, t1) 6= (R2, t2)⇒ ρ1 6= ρ2.

Proof. Let the two matrices R1, R2 satisfy R−1
2 R1 6= I hence, there is a vector v such that

ρ−1
2 (ρ1(v)) = RT2 R1v + RT2 (t1 − t2) 6= v

for any t1, t2 ∈ R3. On the other hand there is also a vector v such that for t1 6= t2 and arbitrary
R1, R2 ∈ SO(3), we have

ρ−1
2 (ρ1(v)) = RT2 R1v + RT2 (t1 − t2) 6= v

and therefore ρ−1
2 ◦ ρ1 6= id.

By means of this lemma, we will, from now on, identify a rigid-body motion ρ and a tupel (R, t) with
each other.
It also follows that every rigid-body motion can be decomposed into a rotation followed by a trans-
lation with (R, t) = (I, t) ◦ (R, 0). Note, that this decomposition is not commutative as we have
(R, 0) ◦ (I, t) = (R, Rt).

Theorem 5.2.3. The set M = {(R, t) ∈ (SO(3),R3)} forms a group with respect to the composition ◦
defined in (5.11).

Proof. G1) We immediately see that the composition (R1, t1)◦(R2, t2) = (R1R2, R1t2+t1) is again
an element of M.

G2) Associativity ((R1, t1) ◦ (R2, t2)) ◦ (R3, t3) = (R1, t1) ◦ ((R2, t2) ◦ (R3, t3)) follows as

(R1R2, R1t2 + t1) ◦ (R3, t3) = (R1R2R3, R1R2t3 + R1t2 + t1) = (R1, t1) ◦ (R2R3, R2t3 + t2).
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G3) For (R, t) ∈M, we have (I, 0) ◦ (R, t) = (R, t). As (I, 0) ∈M, it is the neutral element of M.

G4) The inverse element of M is given by (RT ,−RT t) ∈M as (RT ,−RT t) ◦ (R, t) = (I, 0).

Definition 5.2.4. The group (M, ◦) is called special Euclidean group SE(3).

Remark 5.2.5. The set R = {(R, 0) ∈ SE(3) | R ∈ SO(3)} is a subgroup of SE(3) isomorphic to the
rotation group. Similarly, the set T = {(I, t) ∈ SE(3) | t ∈ R3} is a subgroup of SE(3).

Lemma 5.2.6. Any motion (R, t) ∈ SE(3) satisfies (R, t) = (R, zUez) where z ∈ R and U ∈
SO(3)\Z.

Proof. By Corollary 2.2.6 every rotation S ∈ SO(3) can be expressed as S = UZ for Z ∈ Z and
U ∈ SO(3)\Z. Using the Euler angle decomposition from Definition 2.2.10 and Lemma 2.2.12, we
can write U = Rz(α)Ry(β) for α ∈ [0, 2π) and β ∈ [0,π].
On the other hand, we can express a translation vector t ∈ R3 in spherical coordinates obtaining the
coordinate transform

t =

r cosϕ sin θ
r sinϕ sin θ
r cos θ

 = rRz(ϕ)Ry(θ)ez

where ϕ ∈ [0, 2π), θ ∈ [0,π] and r > 0. Identifying z = r, α = ϕ and β = θ, proves the lemma.

A consequence of this lemma is that we can parameterise a motion by five rotation angles α,β,γ,ϕ, θ
and a one-dimensional translation zez.

Definition 5.2.7 (Metric on SE(3)). A metric on SE(3) can be constructed using the distance on
SO(3) from Definition 2.1.7 and the Euclidean norm || · ||. Given (t1, R1), (t2, R2) ∈ SE(3), a metric
on SE(3) is specified by

|(t1, R1), (t2, R2)| = |R2R−1
1 |+ ||t2 − t1||.

Next, we consider some aspects of harmonic analysis on the motion group.

Definition 5.2.8. Integration of a function f : SE(3) → R defined on rigid-body motions (R, t) ∈
SE(3) reads as ∫

SE(3)
f((R, t)) d(R, t) =

∫
SO(3)

∫
R3
f((R, t)) dR dt)

where the normalised volume element d(R, t) on SE(3) is defined as d(R, t) = dR dt where dR is
the volume element of SO(3) from Defintion 3.1.1 and dt is a volume element of the R3.

By these definitions, we can express integration of a function f : SE(3) → R in various parameteri-
sations of rotations and translations, e.g., integration of a function f(R, t) with rotations R ∈ SO(3)
parameterised in Euler angles and translation vectors t ∈ R3 in Cartesian coordinates reads as∫

SE(3)
f((R, t)) d(R, t) =

1
8π2

∫
R3

∫ 2π

0

∫π
0

∫ 2π

0
f(R(α,β,γ), t) sinβ dα dβ dγ dt. (5.12)

Regarding the above integration, we define the space L2(SE(3)) completely analogous to the standard
by

L2(SE(3)) =
{
f : SE(3)→ C |

∫
SE(3)

|f((R, t))|2 d(R, t) <∞}
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with an inner product of two functions f,g ∈ L2(SE(3)) given by

〈f,g〉 =

∫
SE(3)

f((R, t))g((R, t)) d(R, t). (5.13)

The convolution of two such functions f,g ∈ L2(SE(3)) is written as

(f ∗ g)((Q, s)) =
∫

SE(3)
f((R, t))g((R, t)−1 ◦ (Q, s)) d(R, t). (5.14)

Next, we shall consider Fourier transforms of functions f(R, t) ∈ L2(SE(3)). To define Fourier
transforms on the motion group, we need to use an orthogonal basis for functions on this group.
Like on SO(3), this basis of SE(3) is made up of the matrix elements of the unitary irreducible
representations of group that act on subspaces invariant under the application of group elements. In
Section 3.2 we characterised an orthogonal basis for the rotation group SO(3) by means of Lemma
3.2.6. We shall use the same reasoning for SE(3).
It is important to note that in case of the motion group these invariant subspaces have infinite many
basis elements and hence infinite-dimensional representation matrices. This is because the motion
group, in contrast to the rotation group, is not compact. A method to construct representations for
certain noncompact groups can be found e.g. in [87]. An extensive description how to obtain the
matrix elements of the representations can be found in [17]. Here we simply give their definition and
describe very briefly how these representations arise, as the study of harmonic analysis on noncompact
groups is not within the scope of this work.
At first, we need to consider a vector space on which the elements of SE(3) act transitively. This will
be the R3, i.e., for all x1, x2 ∈ R3, we can find an element (R, t) ∈ SE(3) such that x2 = Rx1 + t.
The subgroup of rotations from Remark 5.2.5 acts on R3 though not transitively. Instead, it divides
the space into spheres of radius r,

S2
r = {x ∈ R3 | x = ru, r > 0, u ∈ S2}.

We define the following functions.

Definition 5.2.9 (Modified spherical harmonics). For any ` ∈ N0 and m,n = −`, . . . ` we define
functions

hmn` (u) = hmn` (ϕ, θ) = e−imϕdmn` (cos θ)einϕ u ∈ S2.

Note that hmn` (ϕ, θ) = Dmn` (ϕ, θ,−ϕ) holds true.

Definition 5.2.10 (Unitary representations of SE(3)). The unitary representations of SE(3) that act
on L2(S2

r) are denoted by Us((R, t), r) for s ∈ Z. By

U
(`,m)(` ′,m ′)
s ((R, t), r) =

∫
S2

e−iruT t h`ms (u)
∑̀
n=−`

Dnm
′

` ′ (R)h`
′n
s (u) du (5.15)

we denote the matrix elements of the unitary representations of SE(3).

The functions U(`,m)(` ′,m ′)
s satisfy the orthogonality relation

I =

∫
SE(3)

U
(`1,m1)(`

′
1,m ′1)

s1 ((R, t),p1)U
(`,m)(` ′,m ′)
s ((R, t),p) d(R, t)

=
2π2

p2 δ`,`1δ` ′,` ′1δm,m1δm ′,m ′1δs,s1δp,p1 ,

see [17]. This leads to the following Definition.
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Definition 5.2.11 (SE(3) Fourier Transform). The SE(3) Fourier transform of functions f ∈ L2(SE(3))
is defined as

f((R, t)) =
∞∑

s=−∞
∞∑
`=|s|

∞∑
` ′=|s|

∑̀
m=−`

` ′∑
m ′=−` ′

∫∞
0
f̂
(`,m)(` ′,m ′)
s (p)U

(`,m)(` ′,m ′)
s ((R, t),p)p2 dp

where we denote the SE(3) Fourier coefficients by f̂(`,m)(` ′,m ′)
s (p) with

f̂
`,m)(` ′,m ′
s (p) =

∫
SE(3)

f((R, t))U(`,m)(` ′,m ′)
s ((R, t),p) dR dt.

By this definition and Equation (5.15) we see that the Fourier transform of functions on the motion
group can be computed using fast Fourier transforms for S2, R+ and the rotation group SO(3). This
has been described in [17, Sec. 11.3] in the context of computing convolution of functions f,g ∈
L2(SE(3)). Similar to that, in the upcoming Chapter, we will explain an interesting application in
which we encounter functions on L2(SE(3)) and describe how SE(3) Fourier transforms could be
employed to compute convolution or correlation of functions on R3.
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6 Protein-Protein Docking

6.1 Overview

The activities of a living cell are manifold, ranging from signal promotion in intra- and extracellular
communication to enzyme catalysis and gene expression. Yet they all have a common purpose: trans-
fer of biological information. A central role in these processes is played by proteins, which bring out
their respective functions by interacting with each other, i.e., by forming complexes. These complexes
may be transient assemblies as in case of enzyme catalysis or stable assemblies like transcriptions fac-
tors, ion channel proteins or cell surfaces.
Due to their enormous importance protein-protein interactions have been in focus of molecular biol-
ogy research for several years now. In vivo proteomics methods like two-hybrid and tandem affinity
purification experiments provide extensive information about interaction networks within the living
cell. To cope with this vast amount of data on structure, sequences and interactions computational
methods are essential to process and combine information. Methods like gene fusion analysis or
phylogenetic profiling determine which proteins might interact (for a review, see e.g. [45]).
In contrast to that, the approach we are about to discuss here, protein docking, aims to predict how
proteins interact. To understand these interactions, it is essential to determine the three-dimensional
structure of the participating proteins. This is a central task of structural biology and is accomplished
via X-ray crystallography, NMR spectroscopy or electron microscopy. Based on the analysis on
the known structure of proteins determined by the mentioned methods, protein docking procedures
calculate the structure of new formed protein complexes. This is particularly useful if we wish to
examine transient protein complexes, which are too short-lived for crystallography or spectroscopy,
[40]. But also for stable assemblies this computational approach is beneficial.
It has been estimated that the number of natural protein folds is of order of 1000 where each of
them has about nine specific interaction partners to constitute one or several of the around 10000 basis
types of interaction depending on the mutual binding site and resulting internal conformation [3]. This
yields an immense number of possible protein complexes of which many thousands are yet uncovered.
Determining all of them experimentally is far from feasible. Thus the prediction of possible protein
complex conformations by computational docking methods is highly useful.
An essential tool is the Protein Data Bank (PDB) which stores the structure of around 12000 pro-
teins and protein complexes determined by NMR or X-ray techniques, [11]. Provided with this large
collection of structural data single proteins, we formulate the protein-protein-docking problem as the
computation of atomic coordinates of a protein complex out of the atomic coordinates of the compo-
nent molecules. Thus docking procedures identify the binding sites and predict the conformation of
the molecules in the complex.
The first automated docking algorithm has been described in 1978 in [92]. Since then many different
approaches to tackle the problem have been proposed, see e.g. [27, 40] for current reviews or very
recently [75], and the references therein. The common aspect of these approaches is an optimisation
problem. The solution space is the set of motions and transformations the molecules can undertake
upon complex formation whereas the objective function evaluates the quality of the complex. From
this common initial point a vast variety of docking approaches emerged, differing in either the choice
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of instances incorporated in the solution space, or the way the molecules are described, the solution
space is searched or the quality of the different complexes is evaluated.
With respect to the type of input data, we can distinguish bound and unbound docking problems. For
bound docking, we start with a molecule complex and split it into two molecules, which then provide
input data for the docking procedure. In contrast to that, the approach where the molecule’s atomic
coordinates are determined individually is called unbound docking. Naturally, the latter problem is
the one we are eventually interested in. But as most molecules change their structure whilst forming
a complex, it is also harder to solve as the solution space is much larger. Despite being an artificial
setting bound docking is useful for testing and evaluating new docking methods.
According to the objective function of the optimisation problem we can also distinguish two main
types of approaches. Methods of the first category are looking for complexes, in which the free
energy is minimised. Central to these so-called thermodynamic or direct approaches are different
approximations of the enthalpy and entropy of the protein complexes. The other category comprises
empirical methods which use chemical or structural complementary of the proteins. These methods
also exploit thermodynamics of intermolecular actions but in contrast to the direct methods they do
not analyse energy minimisation itself but rather pseudo-energy, i.e., other objective functions related
to energy minimisation. That is why these methods are also called indirect methods. Our algorithms,
that we will present in Section 6.4 and 6.5 will use such pseudo-energy functions.
An example for such an indirect method is based on so-called shape complementary. Although the
atoms, of which a protein is composed of, do not have a defined boundary, there exist various models
to describe the shape of a protein, or rather its area of influence. In Section 6.2, we will consider
some exemplary descriptors of the area of influence, e.g., the van der Waals radius which is half
the distance between the nuclei of two atoms that are bound in two different molecules. We will
give a new mathematical description of molecules in this context which we present in the paragraph
Molecule Regions of Section 6.2. Using the van der Waals radius, an atom can be described as a
solid ball of this radius, and hence a protein can be described as the union of such balls. This idea is
incorporated e.g. in the calotte model of molecules [21]. That way we modelled a geometric shape
describing the protein and we also defined its surface. In this setting the most desirable arrangement
of the two molecules is the one in which the resulting complex has the smallest surface area under the
constraint that the two input molecules do not overlap. The amount of surface burial gives an estimate
on the volume of water forced out of the molecules upon complex formation and is as such a measure
for the stability of the complex, see e.g. [22]. Other indirect criteria for good docking orientations,
originating from the proteins structure are the avoidance of large cavities or the formation of hydrogen
bonds.
The objective function and constraints that will be used in this work, will be explained in Section 6.3.
After a suitable representation of the constituent proteins has been found the typical docking procedure
consists of two stages. The first stage is the actual optimisation problem, i.e., a search within a solution
space. This search consists of a huge amount of calculations, as the objective function in general is
highly non-convex possessing several local maxima and minima as we will show in Figure 6.4 in
Section 6.3. That being the case we need to consider suitable search strategies. For practical purposes
it is therefore beneficial if the computation of the objective function can be done relatively fast or if
we restrict the size of the search space. By the search we produced a rather extensive list of about a
thousand putative protein complexes sorted according to the objective function. As mentioned before,
geometric shape complementary has turned out to be the dominant descriptor in docking processes
[46] and hence a good choice for the objective function. Yet other criteria can be used to improve the
ranking like models of desolvation, hydrophobicity, charge complementary or the formation of a high
number of polar-polar contacts.
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Amongst the complexes in the list the near-native complex is often observed. This will be the one we
are interested in. It is not necessarily the global maximum or minimum of the objective function, but
might as well be a local one or even just an instance with a high or low value, respectively. So we
face the problem how to distinguish this good solution from false positives, i.e., other arrangements
of two proteins showing a high energy minimisation. These false positives may occur due to the
restriction of the search space, the empirical objective function or chemical constraints that have not
been incorporated yet.
That is why most docking procedures have a second stage, the so-called refinement where the list from
the first stage is re-ranked by incorporating additional information from previously known protein
interfaces, biochemical experiments or in the simplest case visual inspection. This is the so-called
data-based and data-driven docking, see e.g. [59] for more information on this stage of docking.
Characteristically for this stage are time-consuming heavy-weight calculations. Due to its importance
however, there are a variety of free or commercially available programs that facilitate the docking
procedure. All of them incorporate more steps to evaluate the quality of a protein complex using
various scoring criteria or more experimentally determined data. So far, there is no known method
which can list a near native candidate complex within the top ranks in almost all cases tested. From
this point of view the field of computational docking is still in its developing phase.

Fourier-Based Rigid-Body Docking In this work, we shall focus on the first stage of docking
and present two methods that can be categorised as Fourier-based rigid-body docking. This term
refers to the search strategy on one hand and to the design of the solution space of the optimisation
problem on the other hand. As mentioned before the objective function is highly non-convex, hence
we need to think of a way to faciliate the huge amount of computation. Realistically proteins underlie
conformational changes when binding to each other, i.e, they not only move with respect to each
other but also deform, shear or bend. But as in the setting of bound docking, we will neglect the
latter types of transformation. That means we assume that the input coordinates of a single protein
remain unchanged with respect to each other, i.e., the proteins are treated as rigid bodies. That way,
the only motions the proteins can perform are rigid-body motions as in Definition 5.2.1, combinations
of translations and rotations. Rigid-body motions in R3 have six degrees of freedom. Hence, we
drastically reduced the size of our search space such that it becomes six-dimensional. Rigid-body
docking is sometimes called ab initio docking, as we incorporate no other experimental structural data
than the position of the atomic nuclei of the proteins.
The advantage of rigid-body docking clearly is the reduced size of the search space. The downside is
that we have to tolerate some geometric mismatch in comparision to the actual protein complex as in
our setting the conformations of the docked molecules can not be changed. However, this neglect of
the real setting can be overcome by incorporating protein flexibility in the second stage of docking.
In this work, we will not discuss protein flexibility which belongs to the field of molecular dynamics.
A comprehensive review on molecular dynamics in protein docking procedures can be found e.g. in
[75].
Concerning possible strategies by which we can search the solution space of three-dimensional mo-
tion, we can, again, distinguish many different approaches. They fall into three main categories.
Methods of the first group use directed search, i.e., discrete features of the protein description are
extracted. An example is the extraction of concaves and convexes (knobs and holes) of the molecule’s
surface which are then matched in a geometric hashing, a maximal clique algorithm, [30] or by fast
bit-wise arithmetic operations [67]. Another example are triangulated surfaces, [66]. Characteris-
tically these methods are very fast especially if the number of feature points is kept low. However
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they are also likely to miss the right complex conformation if inadequate features are chosen. As the
objective function highly depends on the chosen feature points and the evaluation of the quality of the
found complexes can not be easily adjusted.
The second group comprises pseudo-random search strategies like genetic algorithms, simulated an-
nealing or Monte-Carlo methods, e.g. [37].
And finally in the third category, the Fourier-based search, we collect methods that use convolutions
for searching the solution space and hence employing the fast Fourier transform or one of its varia-
tions to efficiently compute the quality of a complex. Most docking procedures actually fall into this
category. They not only introduce a certain freedom in designing a scoring function but also provide
a desirable precision. The only drawback is that due to the nature of their brute-force search strategy
they are usually slower than the directed search methods from the other two categories.
Many, if not most, existing Fourier-based docking algorithms use a regular discrete three-dimensional
cartesian grid onto which the molecules are projected. Then a weighting function is used to divide the
grid cells into two groups depending on whether or not the underlying atom belongs to the molecules
surface. The correlation of the discretised and weighted atoms serves as objective function for the
optimisation problem. The correlation between pairs of grid cells is computed via fast Fourier trans-
forms thus implicitly searching over the space of 3D - translation. The remaining rotational degrees
of freedom however need to be searched in a brute force global search. Such an approach has been
first published by [47] in 1992. Since then, this approach has been adapted and improved many times.
An overview on these grid-based docking approaches can be found in [27].
More recently, a set of methods arose that omit the regular equispaced grid, replacing it with a non-
equispaced Cartesian one as in [7, 15] or a spherical one as in [55, 76, 80]. The docking algorithm we
will consider in Section 6.4 is based on the one from [15]. We will summarise their method and use
it for different choices of objective functions and protein models. We will also modify the original
algorithm to fit to our descriptions.
The new approach which we present in Section 6.5 starts by following the lines of [76] and [80] using
spherical harmonic functions and classical orthogonal polynomials to model molecular shapes. For the
first time, we employ the fast SO(3) Fourier transform algorithms to solve the docking problem. We
can thus overcome the limitiations of the algorithms mentioned as they use only spherical harmonics
of low orders due to computational complexity. We will also show the connection between the docking
procedure and Fourier transforms on the motion group SE(3) and model proteins using expansions in
terms of the unitary representations of the motion group.
In any approach, we construct an objective function that takes three-dimensional motions as input
and that is evaluated by global search, not for all possible motions but for sampled motions on a grid
on the motion group SE(3). As a result of a Fourier-based docking procedure, we obtain local and
possibly global minima and maxima of the objective function on this grid. After this step however
the evaluation of the objective function may be locally refined by a directed search. A suggestion for
local refinement concludes our considerations of protein-protein docking in Section 6.6.

6.2 Protein Modelling

The input data for the protein-protein docking are the coordinates of the atomic kernels a molecule
is comprised of. In this section, we explain how to obtain a description of the molecule’s area of
influence out of these coordinates, as well as a description of the molecule’s surface.
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The molecules, we use in the docking procedure will be called molecule A and molecule B. When-
ever we derive some expression or function depending on A, we assume an analogous definition for
molecule B, unless otherwise stated.

Areas of Influence of Atoms As the first step in modelling molecules, we describe the area of
influence of a single atom. In a typical description, the atom is considered as a ball of certain radius.
This radius, the van der Waals radius, is half the distance between two atoms of the same chemical
element, at which the repulsive van der Waals force equals the attractive van der Waals force between
the two. The van der Waals radius is determined by measuring how close the nuclei of two atoms,
bound in two different molecules, can move towards each other. A typical choice of r would be the
van der Waals radius of hydrogen atoms which is about r = 1.2Å, see [13].
Without loss of generality, we consider an atom positioned at the point of origin. We examine three
different choices of functions κ(x) describing the influence of the atom to its neighbourhood. They
are all based on empirical descriptions of the energy density of an atom and are rough approximations
for the interaction energy of two atoms. We denote the closed ball around z ∈ R3 with radius r by
Br(z) = {x ∈ R3 | ||x − z|| 6 r}. The first choice of κ(x) = κW(x) approximates the energy density
by a characteristic function of a closed ball Br(0) of van der Waals radius r.
Next, κ(x) = κG(x) is a Gaussian-like kernel approximation of the electron density distribution of a
single atom. Finally, κ(x) = κL(x) is derived from the Lennard-Jones potential. In addition to the
term which describes the van der Waals forces, it also contains a term describing repulsion at short
ranges from the atomic kernel due to overlapping electron orbitals, e.g. [6, p. 470]. These are in
particular:

i) Using the van der Waals ball Br(0), we can write

κW(x) = χBr(0)(x) (6.1)

with the characteristic function χ.

ii) The second choice is

κG(x) = eβ(1− ||x||2

r2 ) (6.2)

for some parameter β. The parameter β controls the sharpness of the kernel’s peak. A typical
choice from literature is β = 2.3 (see [25, 33]).

iii) The third choice is given by

κL(x) = −

(
r

||x||

)12

+

(
r

||x||

)6

, (6.3)

as the so-called (12,6)-Lennard-Jones potential.

The next step is to describe molecules composed by single atoms.

Modelling Molecular Surfaces Consider a molecule A that consists of IA different atoms. We
define an index set A = {k | k = 1, . . . , IA} to number the atoms that are part of A. The centre
of the k-th atom will be denoted by xk ∈ R3. These xk for k ∈ A are the input coordinates of the
protein-protein docking procedure. Every atom centre xk for k ∈ A is assigned a ball Br(xk), where
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(a) (b) (c)

Figure 6.1: Examples of surface types for a cross section of an example molecule. The interior of the
molecule is coloured in grey while the surface layer is coloured yellow. The boundary line
between the red region and the white coloured exterior of the molecule describe ∂Wcon in
(a), ∂Wiso in (b) and ∂WSAS in (c).

in general r depends on k.
Let us remark that this ball can be described by

Br(xk) = {x ∈ R3 | κW(x − xk) > c} with c ∈ (0, 1],

Br(xk) = {x ∈ R3 | κG(x − xk) > 1} or by

Br(xk) = {x ∈ R3 | κL(x − xk) > 0}.

Now, the union
WA =

⋃
k∈A

Br(xk)

is regarded as the domain filled by the atoms of the molecule, or the area of influence of all atoms of
the molecule, [21]. It can be considered as the rigid-body description of the molecule. For the docking
procedure we are especially interested in the boundary of the domain WA, as this is the part of the
molecules that is exposed to other molecules.
The concept of the surface of a molecule is not mathematically precise. In particular since the
molecule described by WA is a porous cavernous union of balls and the surface ∂WA of the do-
main WA in a mathematical sense has nothing to do with the surface a chemist would have in mind.
Therefore, a common approach, found in [58], uses only a verbal description of a surface, called van
der Waals surface, which is the molecular surface accessible to water in a practical chemical sense.
The atoms accessible to water are called the surface layer. Here we present three more mathematical
surface concepts.

i) Connolly surface:
The concept of this surface as been introduced in [19], in a constructive manner. Here, we
introduce our own description of the Connolly surface in terms of a mathematical definition.
The domain WA is enlarged by all points which never are reached by a ball of fixed radius r
rolling alongWA. That is

W̃con = {x ∈ R3 | x 6∈ Br(y) for all y with Br(y) ∩WA = ∅},

which is identical to

W̃con = R3\
⋃
y∈R3

{Br(y) | Br(y) ∩WA = ∅}.
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The domain W̃con may have inner cavities, which are completely surrounded by W̃con. These
cavities are not reachable for reagents, and they have to be considered as part of the interior of
the molecule. Hence the Connolly domain is

Wcon =
⋂
V⊆R3

{V | W̃con ⊆ V ,∂V simply connected }.

Now, the Connolly surface is ∂Wcon, see Figure 6.1(a).

ii) Isovalue surface:
Here, the domainWA is replaced by sub-level sets of the sum of influence functions, i.e.,

W̃iso = {x ∈ R3 |
∑
k∈A

κG(x − xk) > c}.

Analogously to the Connolly domain, inner cavities of W̃iso are filled to Wiso. The actual
isovalue surface is now defined by ∂Wiso, see Figure 6.1(b).
More generally, κG can be replaced by non-continous functions of influence like κW or non-
monotonous functions like κL, but this is suitable for particular applications only.

iii) Solvent accessible surface:
While the Connolly surface used the contact areas between a molecule and an artificially added
ball of radius r rolling along the surface, the solvent accessible surface (SAS) uses the centre of
this ball to define the molecule’s surface. Consider the set

WSAS = {x ∈ R3 | there is an y ∈Wcon : ||x − y|| 6 r}.

The actual SAS is now given by ∂WSAS. The SAS is depicted in Figure 6.1(c).
Note that, we omitted the definition of W̃SAS, that is a surface still containing inner cavities. By
using Wcon instead of W̃con to define the solvent accessible surface, we already got rid of these
inner cavities.

Molecule Regions The domain WA is now divided into two regions with respect to the just de-
fined surfaces: the surface layer or skin SA, described by the outermost layer of atoms of the molecule
and the core CA, the interior part of the molecule. Furthermore, we distinguish the surrounding of
the molecule between the exterior skin EA, an additional layer around the skin SA, and the exterior.
Based on our descriptions of molecular surface, we give new formal descriptions of these molecular
regions.
The indices of the atoms touching the Connolly surface ∂Wcon are combined in

∂A = {k | Br(xk) ∩ ∂Wcon 6= ∅}.

Now, the skin is defined by
SA =

⋃
k∈∂A

Br(xk).

The core is the rest of the molecule
CA =WA\SA.

The exterior is given by
EA =

⋃
y∈∂WSAS

Br(y).
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We can infer some more properties like

SA ⊆WA, CA ⊆
⋃

k∈A\∂A

Br(xk), EA ∩WA = ∂Wcon.

If we consider a molecule in which the atomic areas of influence Br(xk) do not overlap for any xk
with k ∈ A then, due to their definitions, SA and CA are unions of a finite number of separated balls
while EA resembles a layer, i.e., a union of infinitely many overlapping balls. We will get back to this
issue in Section 6.3.
In the next step, we will define functions that assign different weights to the molecule regions. These
functions will be called affinity functions and they are needed in the next section to construct a ob-
jective function for the optimisation problem of protein-protein docking. We provide two different
approaches to define affinity functions.

i) Symmetric affinity functions:
Consider the characteristic function χSA of the molecule’s skin and the characteristic function
χEA of the exterior skin. The affinity functions QχSA : R3 → R and QχEA : R3 → R are
defined as the sums

QχSA (x) =
∑
k∈A

χSA(xk)κ(x − xk)

QχEA (x) =

∫
EA

χκ(x − y) dy (6.4)

where xk denote the coordinates of the atomic centres, χ denotes a scaling factor and κ can be
set to any of the functions (6.1) or (6.2), (6.3) describing the area of influence of a single atom.
We define analogous functions for molecule B. This approach is called symmetric as it will
yield the same results after exchanging the two molecules with each other. In contrast to that
the outcome of the second approach depends on the order of the molecules.

ii) Asymmetric affinity functions:
Instead of the characteristic functions used in the symmetric approach, we define two functions
that assign different values to the respective regions depending on the molecule by

γA(x) =


ρi if x ∈ CA,
1 if x ∈ SA,
0 otherwise

and γB(x) =


ρi if x ∈ CB ∪ SB,
1 if x ∈ EB,
0 otherwise

where ρ� 1. Based on the γA and γB, we establish the affinity functions QγA : R3 → C and
QγB : R3 → C as the sums

QγA(x) =
∑
k∈A

γA(xk)κ(x − xk)

QγB(x) =
∑
k∈B

γB(xk)κ(x − xk) (6.5)

where xk denote the coordinates of the atomic centres and κ is again set to a functions describ-
ing the area of influence of a single atom.
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6.3 Docking Procedure

We already discussed that the protein-protein docking problem can be thought of as an optimisation
problem. With respect to this, we will now consider ways to construct an objective function which will
be, in this case, maximised. This function will allow us to determine arrangements of two proteins
in which their two areas of influence will have little overlap while the circumference of the resulting
area is kept small as well.
To arrange two molecules A and B, they need to be moved. The assumption molecules are rigid
bodies, restricts the motion to rotations and translations in three-dimensional space. Recall from
Section 5.2 that any rigid-body motion, i.e., the application of an element (t, R) ∈ SE(3) to a vector
x ∈ R3 can be written as a rotation followed by a translation. Hence,

f((R, t) ◦ x) = f(RTx − t)

describes a three-dimensional rigid-body motion. We formulate the protein-protein docking problem
depending on the classification of the molecule regions as follows.
Let xk, for k ∈ A and yj, for j ∈ B be the coordinates of the atomic centres of two molecules A and
B.

i) For the symmetric classification of the molecule regions, we give an objective function

C((R, t)) =

∫
QχSA (x)QχEB (RTx − t) dx +

∫
QχEA (x)QχSB (RTx − t) dx

− ρ

∫
QχSA (x)QχSB (RTx − t) dx (6.6)

with (R, t) ∈ SE(3) and ρ � 1. This function computes the convolution of the fixed molecule
A and the molecule B which is moved and rotated. Positions x ∈ R3 where the skin of one
molecule overlaps the exterior skin of the other one contribute positive values to the integral.
These are favourable arrangements, as the actual molecules are close together without over-
lapping each other. In contrast to that, positions that are part of the skins of both molecules
contribute negative values to the objective function to penalise molecular overlaps.
Hence, the solution of the protein docking problem is defined as the pair (Rmax, tmax) with

C((Rmax, tmax)) = max
(R,t)∈SE(3)

C((R, t)). (6.7)

ii) For the asymmetric classification of the molecule regions, we give an objective function

C((R, t)) = Re
(∫
QγA(x)QγB(RTx − t) dx

)
(6.8)

with (R, t) ∈ SE(3). Again, molecule A is kept fix, while the motion is applied to B. For an
understanding of the function C((R, t)), we examine the product

γA(xk)γB(xk) =


1 if xk ∈ SA ∩ EB

ρi if xk ∈ SA ∩ (CB ∪ SB)

ρi if xk ∈ CA ∩ EB

−ρ2 if xk ∈ CA ∩ (CB ∪ SB).
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The arrangements we are interested in are those where the skin of A overlaps the exterior skin
of B while overlaps of the core of A with the molecule B are penalised. The remaining cases of
overlaps are of no interest here. The solution of the protein-protein docking problem is again
the pair (Rmax, tmax) from (6.7).

To solve the docking problem, we need to compute C((R, t)) for a certain number of different mo-
tions. The search space for the solution of the protein-protein docking problem is six-dimensional as a
rigid-body motion has six degrees of freedom. For that reason, we denote the total number of motions
used in the computation by M6, i.e., for each of the six parameters of a motion M different values
are inserted. Moreover, the number of atoms in the molecules A and B are given by the size of the
respective index sets as |A| and |B|.
In a straight-forward attempt to compute C((R, t)) for all given motions we would have to evaluate
the affinity functionQ(x) for moleculeA which takes O(|A|) flops. The same holds true for the evalu-
ation ofQ(RTx− t) for one motion (R, t) ∈ SE(3). As we examineM6 different motions, this yields
O(|A||B|M6) flops in total. Finding the maximum value among all C((R, t)) will not contribute to the
asymptotic complexity.
In a realistic setting the molecules A and B consist of a few thousand atoms, while we might want to
compute 50 different choices per parameter of a rigid-body motion. Considering this, the complexity
of a direct computation is too high for a feasible computation and a fast algorithm is needed. On the
other hand, a lower bound for number of computation steps is given by the number of input values
of the problem which is |A| + |B| +M6. Although, we will not reach this lower bound, we shall
introduce fast algorithms to solve the docking problem in Sections 6.4 and 6.5 which have a much
more favourable complexity than the naive O(|A||B|M6) flops.

But first, to gain more insight into the problem of protein-protein docking, we examine a simplified
scenario of the problem.

Simplified Docking Example Consider two molecules A and B of which we cut out one slice
each. Phrased differently, we want to analyse the protein-protein docking procedure for two-dimen-
sional molecules instead of three-dimensional ones. Moreover, their atomic kernels satisfy xk ∈ Z2

for k ∈ A ∪ B and have van der Waals radius r =
1
2

. As possible motions of the proteins we only
consider integer-valued translations.
Figure 6.2 presents a visualisation of this model for the two molecules, we are using in this example.
With these restrictions the domainWA is sufficiently described by the grid pointsWA,Z2 =WA∩Z2.
Now, let

N(xk) = {xk, xk + (1, 0)T , xk − (1, 0)T , xk + (0, 1)T , xk − (0, 1)T }

describe the five-point stencil of xk, i.e. it contains all neighbours of xk and xk. Using N we can
easily identify the boundary of the molecule and consequently assign the atoms either to the skin SA
or the core CA which in this case are completely described by

CA,Z2 = {x ∈WA,Z2 | N(x) ⊆WA}, and SA,Z2 =WA,Z2\CA,Z2 .

Recall, that the exterior skin EA, was defined as a layer of infinite many balls that cover the skin. In
this setting here however, we can conveniently describe the exterior skin EA = EA,Z2 as a finite union
of balls, as well, by

EA,Z2 = {x ∈ Z2\WA | N(x) ∩WA 6= ∅}.
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(a) Two example molecules A and B. (b) The new formed complex has the smallest possible
border avoiding overlap of the two molecules.

Figure 6.2: Simplified Docking Example.

(a) The symmetric approach: A favourable arrangement
of the molecules has overlaps between atoms of the
exterior skin (white) and atoms of the skin (grey).

(b) The asymmetric approach: A favourable arrange-
ment has many overlaps between white coloured
atoms, i.e, atoms with γA(xk) = 1 and little or no
overlaps of grey coloured atoms with γA(xk) = ρi.

Figure 6.3: Region classification of the molecules.

We can assign the molecule regions of B analogously.
The objective functions C((R, t)), we defined in (6.6) and (6.8) to solve the docking problem (6.7)
will also be slightly modified to exploit the chosen simplifications. On one hand the integrals are
exchanged for sums over Z2 and on the other hand we shall omit rotations. This yields

C(t) =
∑
x∈Z2

QχSA (x)QχEB (x − t) +
∑
x∈Z2

QχEA (x)QχSB (x − t)

− ρ
∑
x∈Z2

QχSA (x)QχSB (x − t), for t ∈ Z2 (6.9)

for the symmetric approach, and

C(t) = Re

∑
x∈Z2

QγA(x)QγB(x − t)

 , for t ∈ Z2 (6.10)

for the asymmetric approach. Note that the choice of function κ describing the atomic area of influ-
ence, has no influence on the solution of the docking problem, in this particular setting. In Figure
6.3 we show the classification of the molecule regions, for both the symmetric and the asymmetric
approach.
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(a) The objective function in the symmetric approach. (b) The objective function in the asymmetric approach.

(c) The resultant complex with symmetric region clas-
sification.

(d) The resultant asymmetric region classification.

Figure 6.4: The plots show the values of the normalised correlation function
C(t)

C(tmax)
for the two

molecules from Figure 6.2 and the resultant protein complex after applying the translation
tmax which is the solution of the docking problem. In (a) and (b), we computed 441 trans-
lations t ∈ Z2 and interpolated the remaining data. Both region classification approaches
find the same translation to produce the best arrangement, shown in (c) and (d). The red
coloured grid cells are contributing positively to the function C(t). In this example, there
are no undesired overlaps.

The objective functions C(t) from (6.10) and (6.9) have been computed for t ∈ Z2 with t ∈ [−10, 10]2

and are displayed in Figure 6.4 (a), (b). These plots demonstrate the highly non-convex behaviour of
the objective functions. The function values have been plotted for C(t) > 0 only, which leads to the
crater in the middle of the plot that occurs when the two proteins have large overlaps. All minima
of the objective function are contained in this area. This negative crater containing highly indesired
translations is directly bounded by a ring-like structure on which numerous local maxima of the ob-
jective function are located. These are translations leading to favourable arrangements. Among the
translations positioned on the ring, lies the one we are eventually interested in. Moving away from the
ring the objective function becomes zero. At these positions the molecules will not overlap at all.
These plots illustrate why it is sensible to perform a global search for the maxima of the objective
function, even in this very simple example. If we employed a directed search instead, we would
hardly find the correct value among the tremendous amount of local maxima encountered.
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One might interject that, we could use search at least the ring only to find the maxima. But recall, that
we are in a simplified setting here. In the realistic protein-protein docking, when four more degrees of
freedom are introduced, the objective function would exhibit even more local maxima rendering the
directed search even more difficult. Cast in this light, it seems sensible to employ a global search over
the whole space of possible molecule motions.
The translation t that maximises the function C(t) leading to the arrangement of molecules depicted
in Figure 6.4 (c),(d). This figure also illustrates the different overlaps.
This very simple example also gives us an understanding of some more of the problems, we will
encounter during the docking procedure other then the non-convex objective function. Among these
problems are occurring errors and unfavourable complexity, the latter surely a consequence of the
global search. Errors or inaccuracies arise in different situation here, for example from considering the
atoms only positions xk ∈ Z2. In realistic molecules however, atoms are not positioned equispaced.
We will consider this in the next section. Note that already the input data from the Protein Data Base
may be defective due to errors of measurement but we will neglect this type of error here.
Although, so far we have not exploited the convolution-like nature of the objective function. The
direct approach used in this example is computationally expensive despite the simplifications made.
For the molecule’s motion we analysed two degrees of freedom, that leads to evaluating M2 times
the objective function C(t) and therefore to a total complexity of O(|A||B|M2) flops. Already for
the small example in Figure 6.2 computing the correlations in Figure 6.4 is expensive. For the actual
docking problem we have to add one more dimension to the proteins and include one more direction
of translation, as well as three-dimensional rotations. Computing this with the direct evaluation of the
objective function is far from feasible.

6.4 Fast Translational Matching

In this section, we introduce an algorithm to efficiently solve the protein-protein docking problem
from (6.7) by means of fast Fourier transforms. The presented algorithm, called fast translational
matching has been introduced by [15], and newly extended in [7]. There the asymmetric affinity
functions (6.5) were used to describe the molecule regions. The resulting objective function

C((R, t)) = Re
(∫
QγA(x)QγB(RTx − t) dx

)
(6.11)

is computed for a set of translations t ∈ R3 and a set of rotations R ∈ SO(3) by using the NFFT
algorithm and its adjoint [71]. We shall briefly summarise this method and apply it to our own protein
descriptions. Moreover, we will adapt the algorithm to the symmetric region classification for the first
time and propose improvements of the algorithm from [15].
The key idea, we are using to efficiently compute the integral (6.11), is the following elementary
property of a correlation.

Lemma 6.4.1. Let
f(x) =

∑
k∈Z3

f̂ke2πixTk, g(x) =
∑
k∈Z3

ĝke2πixTk

be given. Then their correlation C(t) =
∫
R3
f(x)g(t + x) dx for t ∈ R3 has the Fourier expansion

C(t) =
∑
k∈Z3

f̂kĝke2πitTk.
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Recall that a motion (R, t) ∈ SE(3) can be separated into a rotation followed by a translation,
i.e., we have (R, t) = (I, t) ◦ (R, 0), cf. Definition 5.2.1. That, on the other hand, means that
for fixed R ∈ SO(3) the function C((R, t)) in (6.11) is a correlation of the two affinity functions
QγA ,QγB : R3 → C and we can compute it by means of fast Fourier transforms applying Lemma
6.4.1.
Unfortunately, we need to recalculate the correlation for all desired choices of rotations R ∈ SO(3).
As only the different translations will be computed by fast algorithms, this docking procedure is called
fast translational matching.
To describe a motion, we are using the Euler angles for the rotation R ∈ SO(3) and Cartesian co-
ordinates for the translation t ∈ R3. For each of the six parameters we choose M different values.
The motions that result from all possible combinations of these choices make up the set M. More
specifically

M = {(R(αi1 ,βi2 ,γi3), (xi4 ,yi5 , zi6)
T ) ∈ SE(3) | i1, . . . , i6 = 1, . . . ,M}. (6.12)

Hence, M contains M6 motions for which we compute the correlation C((R, t)). These motions are
put together fromM3 rotations andM3 translations.
Consider two molecules A and B. In contrast to the example in Section 6.3, their atom centres are not
positioned on an equispaced grid. Furthermore, by choosing the functions κG from (6.2) to describe
the atomic area of influence, the affinity functions of the molecules will be of unbounded support.
This needs to be considered for the expansion into a Fourier sum that is needed to employ Lemma
6.4.1. In the following, we shall describe the necessary modifications of the affinity functions in the
fast translational matching approach. Exemplarily, we are using the Gaussian-like kernel function
(6.2) to describe the atomic area of influence.
First, we relocate and scale the molecules such that their domains WA and WB fit into the unit cube[
−1

2 , 1
2

]3
. To do this, we compute the diameters

pA = max
j,k∈A

||xj − xk|| and pB = max
j,k∈B

||yj − yk||

of the molecules and the molecule centres

cA =
1
|A|

∑
k∈A

xk and cB =
1
|B|

∑
k∈B

yk.

We also need to consider a certain margin w that depends on parameters chosen in the function κG.
By adding w to the molecules’ diameter, we will ensure that the areas of influence of the outermost
atoms are still included in the unit cube. Consequently, we calculate the modified atomic centres by

zk =
xk − cA

2p
, k ∈ A and z̃k =

yk − cB
2p

, k ∈ B

with p = max{pA,pB}+w. A suggestion to compute the margin w is given by

w =

√
r2

(
1 −

ln 10−16

β

)
where r is the van der Waals radius of the atom and the parameter β controls the sharpness of the peak
of κG. Using the above formula, we cut off the area of influence of the outermost atom for at most
κG 6 10−16.
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6 PROTEIN-PROTEIN DOCKING

Having relocated the modified atomic centres, we need to adjust the area of influence of the atoms

as well, namely by scaling the van der Waals radii by the factor
1

2p
. Now, we can approximate the

influence function of an atom by the Fourier sum

κG(x) ≈ κ̃G(x) =
∑
`∈In

h`e
2πixT ` (6.13)

for a set of indices In = {` ∈ Z3 | ` ∈ [−n2 , n2 )
3 for n ∈ N} and with Fourier coefficients

h` =

∫
[− 1

2 , 1
2 ]

3
κG(x)e−2πixT `dx. (6.14)

A symmetry property we will be using later on is given by h` = h−`. This follows easily from
κG(x) = κG(−x) as we have

h` =

∫
[− 1

2 , 1
2 ]

3
κG(x)e−2πixT `dx =

∫
[− 1

2 , 1
2 ]

3
κG(−x)e−2πixT `dx = h−`. (6.15)

Inserting (6.13) into the affinity function QγA , we get

QγA(x) ≈ Q̃γA(x) =
∑
k∈A

γA(zk)κ̃G(x − zk)

=
∑
k∈A

γA(zk)
∑
`∈In

h`e
2πi(x−zk)T `

=
∑
`∈In

h`e
2πixT `

∑
k∈A

γA(zk)e−2πizTk`. (6.16)

Note that in this approximated affinity function we separated the function into a molecule dependent
sum and a molecule independent one. We shall denote the molecule dependent terms by

α` =
∑
k∈A

γA(zk)e−2πizTk`. (6.17)

The sums α` are in fact three-dimensional standard Fourier sums and as the atomic centres are not
necessarily equispaced, we will employ the NFFT algorithm [71] for its computation, or to be more
precise its adjoint. The computation will take O(|A| + n3 logn) flops. Next, we consider the effect
of a motion (R, t) ∈ SE(3) on the affinity function, i.e., we examine QγB((R, t) ◦ x) and its Fourier
approximation. Recall from Lemma 2.1.5 that a rotation R ∈ SO(3) preserves lengths of vectors,
hence

κG(RTx − zk) = eβ(1− ||RT x−zk||
2

r2 ) = eβ(1− ||R(RT x−zk)||
2

r2 ) = κG(x − Rzk)

is satisfied. This can be used to rewrite

κ̃G((R, t) ◦ x) = κ̃G(RTx − t − zk) = κ̃G(x − t − Rzk)

=
∑
`∈In

h`e2πi(x−t−Rzk)T ` =
∑
`∈In

h`e2πi(x−t)T `e−2πiRzTk`.

Inserting this into the affinity function yields

Q̃γB((R, t) ◦ x) =
∑
k∈B

γB(zk)κ̃G((R, t) ◦ x)

=
∑
`∈In

h`e2πi(x−t)T `
∑
k∈B

γB(zk)e−2πiRzTk`. (6.18)
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Again, we separated the affinity function into a molecule dependent sum and a molecule independent
one. Corresponding to (6.17), we denote the molecule dependent sum

βR
` =

∑
k∈B

γB(xk)e−2πiRzTk`. (6.19)

Note, that the sums βR
` depend on the rotation R ∈ SO(3). Again, we can use the adjoint NFFT

algorithm to compute the coefficients. Due to the dependency on the rotation R, we might need to
evaluate βR

` for allM3-many rotations and the computational cost is raised to O((|B|+n3 logn) ·M3)
flops.
Finally, the approximated affinity functions (6.16) and (6.18) are put in the objective function (6.11)
which yields

C((R, t)) = Re

(∫
[− 1

2 , 1
2 ]

3
QγA(x)QγB(RTx − t) dx

)

= Re

∫
[− 1

2 , 1
2 ]

3

∑
`∈In

h`e
2πixT `α`

∑
` ′∈In

h`′e2πi(x−t)T ` ′βR
` ′ dx


= Re

∑
`∈In

∑
` ′∈In

h`h`′α`β
R
` ′

∫
[− 1

2 , 1
2 ]

3
e2πixT `e2πi(x−t)T ` ′ dx


= Re

∑
`∈In

∑
` ′∈In

h`h`′α`β
R
` ′e

−2πitT ` ′
∫
[− 1

2 , 1
2 ]

3
e2πixT `e2πixT ` ′ dx

 .

As the integral satisfies
∫
[− 1

2 , 1
2 ]

3
e2πixT `e2πixT ` ′ dx = δ`,−` ′ and by exploiting the symmetry from

(6.15), we simplify the term to

C((R, t)) = Re

∑
`∈In

h2
`α`β

R
−` e2πitT `

 .

For given, or rather precomputed, coefficients h`,α` and βR
` this sum represents a three-dimensional

Fourier sum that can be evaluated by either the FFT from [32] or the NFFT from [49]. We consider
M3-many translations here, and therefore the total cost of this step is O((M3 +n3 logn) ·M3) flops.

Recall, that finding (Rmax, tmax) ∈ SE(3) with

C((Rmax, tmax)) > C((R, t))

for all (R, t) ∈ SE(3) would solve the docking problem. However, we compute the correlation only
for a set of motions M ⊂ SE(3). By choosing sufficiently many different motions, we still might
encounter the solution or at least a motion that almost leads to the solution. In the numerical tests
from Section 6.6 we will comment on this aspect. But, to conclude this section, we summarise the
algorithm for the docking procedure using fast translational matching from Algorithm 1.
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The advantages of the fast translational matching in comparison to the straightforward approach men-
tioned in the previous section is the separation of molecule dependent parts and molecule indepen-
dent part of the function and the computation of the correlation integral with respect to the transla-
tions by means of fast Fourier transforms. The computational complexity is improved from previous
O(|A| · |B| ·M6) necessary steps to O((|A|+ |B|+M3) ·M3).

6.5 Fast Rotational Matching

In the fast translational matching algorithm from the previous section we were able to improve the
computational complexity of the docking procedure by accelerating the computation of the objective
function (6.11) for the three translational degrees of freedom encountered in a motion. Key to the fast
translational matching was the realisation that for fixed rotations R the objective function is a corre-
lation integral and can be computed by fast Fourier transforms. Thus we obtained a fast algorithm to
search for the maximum of the objective function with respect to the different translations. On the
other hand, we still have to repeat the computation of the correlation for the different rotations.
The idea of the new algorithm, we are presenting here is to use correlation again, but instead of cor-
relating functions defined on the unit cube as previously, we will use functions defined on R3 but

Algorithm 1: Fast Translational Matching

Input:
In : a set of n3 indices ;
A,B : two index sets of atomic coordinates;
M ⊂ SE(3) : a set of motions as in (6.12);

foreach xk with k ∈ A ∪B do
Calculate the coordinates zk of the relocated atoms

end
foreach ` ∈ In do

Calculate the coefficients h` from (6.14);
Calculate the coefficients α` from (6.17) by means of an adjoint NFFT;
foreach R with (R, t) ∈M do

Calculate βR
` from (6.19) by means of an adjoint NFFT;

end
end
foreach (R, t) ∈M do

Calculate C((R, t)) =
∑

`∈In h
2
`α`β

R
−`e

2πitT ` by means of an NFFT or FFT;
end
foreach (R, t) ∈M do

Find the maximum value of C((R, t)) ;
end

Output: the solution of the docking problem (6.7)
Complexity: O((|A|+ |B|+M3)M3) flops
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split into R+ × S2. In Section 3.4 we already discussed how to compute correlations of functions in
L2(S2) (see (3.31)) by means of Fourier transforms on the rotation group. This way, we will be able
to accelerate the computation of the objective function for the rotational degrees of freedom instead
of the translational degrees of freedom. Although not immediately appearent, the idea of exploiting
the rotational invariance (3.29) of the spherical harmonics that serve as basis functions in the Fourier
expansion of a functions in L2(S2) instead of the translation-invariant Fourier expansion from Section
6.4 has some advantages. By means of Lemma 5.2.6 a translation t ∈ R3 can be uniquely expressed as
t = rRz(ϕ)Ry(θ)ez for ϕ ∈ [0, 2π), θ ∈ [0,π] and r ∈ R+. Phrased differently a three-dimensional
translation can be expressed as a translation along the z-axis followed by two rotations, one about the
y-axis and one about the z-axis. Hence, it has two rotational degrees of freedom and one translational.
Combining, this in a motion (R, t) ∈ SE(3), we have five rotation angles that describe a motion and
one absolute value of a translation along one axis. If we are able to speed up the computation for the
rotations by correlating functions on the sphere, we get an improved complexity for five of the six
degrees of freedom instead of the previous three.
This approach has been suggested in [54] in a context similar to the protein-protein docking, called
proteinmatching. The term matching refers to evaluating the similarity of two molecules, rather than
their complementary in which we are interested in. Although the tasks seem similar, protein matching
only looks for maximal overlaps and does not include an additional constraint as the protein docking
which seeks minimal overlaps while also minimising the resulting boundary of the molecule complex’
domain. In the following, we will see that this approach for matching can be used for protein docking
as well, after adapting it to our protein descriptions. The algorithm, we are about to present, combines
for the first time the molecule descriptions in terms of the affinity function (6.5) using non-equispaced
atom centres and the accelerated computation of the rotations.

The starting point of this approach is a coordinate transform of vectors x ∈ R3 from Cartesian to
spherical coordinates, i.e., we rewrite any x ∈ R3 as x = ru with r = |x| and u ∈ S2. The inner
product of two square-integrable functions f,g : R3 → C parameterised in spherical coordinates is
given by

〈f,g〉L2(S2,R+) =

∫
R+

∫
S2
f(ru)g(ru)r2dudr. (6.20)

While we already introduced an orthogonal basis of the L2(S2), namely the spherical harmonics Ym` ,
cf. (3.11) and (3.12), we need to consider a set of basis functions for the positive real axis R+. For
k ∈ N and α ∈ R the Laguerre polynomials, are given as

Lαk (x) =
exx−α

k!
dk

dxk
(
e−xxk+α

)
,

cf. [81]. The Laguerre polynomials Lαk (x) constitute an orthogonal basis of L2([0,∞)) with respect
to the weighting function e−xxα. We have∫∞

0
Lαk (x)L

α
` (x)e

−xxα dx =
Γ(k+ α+ 1)

k!
δk,`. (6.21)

For an orthogonal basis suitable to our protein docking procedure, we introduce a weighted version
of the Laguerre polynomials, denoted by R`k(r). These functions are used to describe the radial part
of the orbitals of hydrogenic atoms and are also known as radial wavefunctions, see [6, pp. 368ff]
for general informations. In [74] these functions have been employed in the protein-protein docking
procedure.
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Definition 6.5.1. For r ∈ R+
0 , `,k ∈ N0, k > `, we define the functions R`k : R+ → R by

R`k(r) = βk`e
− r2

2 r`L
`+ 1

2
k−`−1

(
r2)

with

βk` =

√
2(k− `− 1)!
Γ(k+ 1

2)
.

Lemma 6.5.2. For r ∈ R+
0 , `,k ∈ N0, k > `, the functions R`k(r) satisfy∫∞

0
R`k(r)R

l
n(r)r

2dr = δk,n.

Proof. We have∫∞
0
R`k(r)R

`
n(r)r

2dr = βk`βn`

∫∞
0

e−r
2
r2`L

`+ 1
2

k−`−1

(
r2)L`+ 1

2
n−`−1

(
r2) r2dr.

By substituting first r2 = x, and then α = `+ 1
2 ,k ′ = k− `− 1 and n ′ = n− `− 1 , we get∫∞

0
R`k(r)R

`
n(r)r

2dr = βk`βn`

∫∞
0

e−xx`L`+
1
2

k−`−1(x)L
`+ 1

2
n−`−1(x)

x

2
√
x

dx

=
1
2
βk`βn`

∫∞
0

e−xxαLαk ′(x)L
α
n ′(x)dx.

By the orthogonality relation (6.21) and back substitution of k ′ and n ′ this simplifies to∫∞
0
R`k(r)R

`
n(r)r

2dr =
1
2
βk`βn`

Γ(k ′ + α+ 1)
k ′!

δk ′n ′ =
1
2
βk`βn`

Γ(k+ 1
2)

(k− `− 1)!
δkn

= β2
k`

Γ(k+ 1
2)

2(k− `− 1)!
δkn = δkn

after inserting βk` from Definition 6.5.1.

Based on the previous lemma and the orthogonality relation from (3.11), we see that the functions
R`k(r)Y

m
` (u) for k, ` ∈ N, k > l > |m| are orthonormal with respect to the inner product from (6.20).

This follows immediately by

〈R`k(r)Ym` (u),R`
′

k ′(r)Y
m ′

` ′ (u)〉 =

∫∞
0
R`k(r)R

` ′

k ′(r)r
2dr
∫
S2
Ym` (u)Ym ′` ′ (u)du

= δk,k ′δ`,` ′δm,m ′ .

Moreover, these products of functions constitute an orthogonal basis of the space of square-integrable
functions on R3. Therefore, we find a unique series expansion of functions f : R3 → R as in the
following definition.
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Definition 6.5.3. Any square-integrable function f : R3 → R can be expanded into

f(x) = f(ru) =

∞∑
k=1

k−1∑
`=0

l∑
m=−`

f̂k`mR
`
k(r)Y

m
` (u)

with coefficients

f̂k`m =

∫∞
0

∫
S2
f(ru)Rk` (r)Y

m
` (u)r2dudr.

Now, we will apply Definition 6.5.3 to approximate the affinity functions QγA and QγB by the finite
sum

QγA(ru) ≈ QγAN (ru) =
N∑
k=1

k−1∑
`=0

∑̀
m=−`

hAk`mR
`
k(r)Y

m
` (u) (6.22)

for N ∈ N and coefficients

hAk`m =

∫∞
0

∫
S2
Q
γA
N (r, u)R`k(r)Ym` (u)r2dudr.

=

∫∞
0

∫
S2

∑
j∈A

γA(rjuj)κ(ru − rjuj)R`k(r)Ym` (u)r2dudr (6.23)

where xj = rjuj denote the centres of the molecule’s atoms. The coefficients hk`m consist of
molecule dependent and molecule independent terms. As in the fast translational matching, we seek
to separate them. But due to the coordinate transform to spherical coordinates, this is not conveniently
done. Expressing κ(ru − rjuj) = κG(ru − rjuj) in spherical coordinates with u = (ϕ, θ) leads to

κG(ru − rjuj) = e
β

v2 (v
2−r2+r2

j−2rrj(cos(ϕ−ϕj) sinθ sinθj+cosθ cosθj),

where v denotes the van der Waals radius of the atom. Owing to the term

K = −2rrj
(
cos(ϕ−ϕj) sin θ sin θj + cos θ cos θj

)
which is a product of molecule dependent and independent parts the function κG cannot be separated
in the same manner as in the fast translational matching. Still, it is possible to find a way how this can
be done. We find a detailed derivation of the separation along with the description of a method how to
compute the coefficients (6.23) in [9, pp. 45-52]. The approach presented there is based on a power
series expansion of the critical term eK as

eK =

∞∑
p=0

Kp

p!
=

∞∑
p=0

p∑
q=0

q∑
s=0

q∑
u=0

p−q∑
v=0

(
p

q

)(
q

s

)(
q

u

)(
p− q

v

)
(−1)p+q−u

(2r)p

p!
(6.24)

× eiθ(p−2(u+v))eiϕ(q−2s) r
p
j

(
i
2

sin θj

)q
(cos θj)p−qe−iϕj(q−2s).

The seperation of molecule dependent and independent parts of the coefficients hAk`m follows by
inserting (6.24) into (6.23). We get

hAk`m =

∞∑
p=0

p∑
q=0

q∑
s=0

q∑
t=0

p−q∑
v=0

(
p

q

)(
q

s

)(
q

t

)(
p− q

v

)
(−1)p+q−t

(2β)p

vpp!
αqsp

×
∫∞

0

∫ 2π

0

∫π
0

eβ(1− r2

v2 )eiθ(p−2(t+v))eiϕ(q−2s) R`k(r)Y
m
` ((ϕ, θ))r2+p sin θ dθdϕdr
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with

αqsp =
∑
j∈A

γA(rj(ϕj, θj))e
βr2
j

v2 r
p
j

(
i
2

sin θj

)q
(cos θj)p−qe−iϕj(q−2s)

denoting the molecule dependent terms.
The approach from [9] continues by cutting the series expansion at a certain degree and computing
only terms for p 6 P, expanding the whole integral into a power series and then integrating every
term separately. The work also discusses complexity and accuracy of these computations depending
on the cut-off P.

Having considered a possible method to compute the coefficients hk`m of the expansion (6.22), we
return to the bigger scope of the fast rotational matching.
As in the previous section, we seek to evaluate the objective function (6.11) to find the best arrange-
ment of two molecules. This time however, we will not keep molecule A fixed while only moving
molecule B.

Lemma 6.5.4. The motion (Rmax, tmax) ∈ SE(3) in

(Rmax, tmax) = (Rmax, zmaxUmaxez) = max
(R,zUez)∈SE(3)

Re
(∫
QγA(UTx − zez)QγB(RTx) dx

)
for R ∈ SO(3), U ∈ SO(3)\Z and z ∈ R is a solution of the docking problem (6.7) when using the
asymmetric approach, i.e, the objective function (6.8).

Proof. Suppose (S, t) to be the solution of the docking problem (6.7) the resulting molecule complex
is described by the product of affinity functions

QγA∪B(x) = QγA(x)QγB(STx + t).

By means of Lemma 5.2.6, we can replace t = zUez to get

QγA∪B(x) = QγA(x)QγB(STx + zUez)

Applying the rotation UT to the whole complex yields

QγA∪B(UTx) = QγA(UTx)QγB(UTSTx + zez).

We continue by applying the translation −zez to the whole complex. This yields

QγA∪B(UTx − zez) = QγA(UTx − zez)QγB(RTx)

where we set R = SU. As we maintained the position of the molecules with respect to one another,
this proves the lemma.

Note that the objective function (6.8) can easily be replaced with the objetive function (6.6) of the
symmetric approach.
We shall now examine how an affinity function expanded as in Definition 6.5.3 behaves under the
application of a rotation. Recall the representation property (3.29) of spherical harmonics

Yn` (R
Tu) =

∑̀
m=−`

Ym` (u)Dmn` (R), for |m| 6 `, u ∈ S2, R ∈ SO(3).
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showing their rotational invariance. Due to this, we have

QγB(RTx) = QγB(rRTu) =

N∑
k=1

k−1∑
`=0

∑̀
m,n=−`

hk`nD
mn
` (R)R`k(r)Y

m
` (u).

Note that the rotation does not affect the radial parts of the function as a rotation preserves distance,
see Lemma 2.1.5.
Next, we need to consider the translation along the z-axis. In spherical coordinates a translation of the
vector x about zez is given by

x − zez = rzuz

with rz =
√
r2 + 2rz cos θ+ z2 and uz = (arccos

(
r

rz
sin θ

)
,ϕ). We point out that the longitude

ϕ does not change during a translation along the z-axis. Now we have all ingredients to compute the
modified objective function from Lemma 6.5.4. We get

C((R, Uzez)) =

∫
QγA(UTx − zez)QγB(RTx) dx

=

∫
R+

∫
S2

N∑
k=1

k−1∑
`=0

∑̀
m,n=−`

hk`nD
mn
` (U)R`k(rz)Y

m
` (uz)

×
N∑
k ′=1

k ′−1∑
` ′=0

` ′∑
m ′,n ′=−` ′

hk ′` ′n ′D
m ′n ′

` ′ (R)R`
′

k ′(r)Y
m ′

` ′ (u)r
2 du dr.

By extracting the rotation dependent terms from the integral, this can be rearranged to

C((R, Uzez)) =

N−1∑
`,` ′=0

∑̀
m,n=−`

` ′∑
m ′,n ′=−` ′

Jmm
′nn ′

`` ′ (z)Dmn` (U)Dm
′n ′

` ′ (R)

with

Jmm
′nn ′

`` ′ (z) =

∫
R+

∫ 2π

0

∫π
0

N∑
k=`+1

N∑
k ′=` ′+1

hk`nhk ′` ′n ′R
`
k(rz)R

` ′

k ′(r)

× Ym` ((ϕ, θz))Ym
′

` ′ ((ϕ, θ))r2 sin θ dθ dϕ dr.

Consider the following equation∫ 2π

0

∫π
0
Pm

′
` (cos θ)Pm` (cos θz)eimϕeim ′ϕ sin θ dθ dϕ =

∫π
0
Pm` (cos θ)Pm` (cos θz) sin θ dθ.

Inserting the above equation into Jmm
′nn ′

`` ′ (z) for the spherical harmonics Ym` , we conclude that the
integral Jmm

′nn ′

`` ′ (z) evaluates to zero for all m ′ = −m. Note that this property originates from the
orthogonality relation (3.11).
The correlation C((R, Uzez)) can hence be computed by

C((R, Uzez)) =
N∑

`,` ′=0

∑̀
n=−`

` ′∑
m ′,n ′=−` ′

J−m
′m ′nn ′

`` ′ (z)D−m ′n
` (U)Dm

′n ′

` ′ (R). (6.25)

To compute the integrals J−m
′m ′nn ′

`` ′ (z), we refer to two different approaches, in [9] an approach
is presented which expands them into a power series, followed by component-wise integration. The
other approach, found in [74] computes the integral by means of a spherical Bessel transform.
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6 PROTEIN-PROTEIN DOCKING

Computing all necessary J−m
′m ′nn ′

`` ′ (z) takes O((|A| + |B|)M) operations where M refers to the
number of one-dimensional translation that we perform, and |A|, |B| are the number of atoms in the
two molecules A and B.
We shall now simply assume that we are given the precomputed values of J−m

′m ′nn ′

`` ′ , as we are more
interested in the application of the SO(3) Fourier transform here.
Writing the Wigner-D functions in terms of their Euler angles by (3.23), we get

C((R, Uzez)) =
N∑

`,` ′=0

∑̀
n=−`

` ′∑
m ′,n ′=−` ′

J−m
′m ′nn ′

`` ′ (z)e−inϕe−im ′αe−in ′γdm
′n ′

` ′ (cosβ)d−m
′n

` (cos θ)

for R = R(α,β,γ) ∈ SO(3) and U = U(0, θ,ϕ) ∈ SO(3)\Z. By rearranging the sums in (6.25), we
see that we can employ two consecutive SO(3) Fourier transforms here. First we compute

J̃m
′n ′

` ′ =

N∑
`=0

∑̀
n=−`

J−m
′m ′nn ′

`` ′ e−inϕd−m
′n

` (cos θ).

This is actually not a complete SO(3) Fourier transform as we are missing one Euler angle. Hence
this sum can be computed by a Wigner-d transform followed by a two-dimensional standard Fourier
transform, in contrast to the three-dimensional one in the NFSOFT algorithm. Another nice feature
of this sum is, that it resembles a sum over the modified spherical harmonics hmn` (u) introduced in
Definition 5.2.9.
The next step is to compute the sum

C((R, Uzez)) =
N∑
` ′=0

∑̀
m ′=−`

` ′∑
n ′=−` ′

J̃m
′n ′

` ′ e−im ′αe−in ′γdm
′n ′

` ′ (cosβ)

which can be conveniently computed by the NFSOFT algorithm. As we need to compute the objective
function C((R, Uzez)) for five rotational degrees of freedom, i.e., O(M5) different Euler angles, the
computational complexity yields O((|A| + |B| +M5)M). We summarise the whole procedure in
Algorithm 2.

A docking example To conclude the section, we present an example result of the docking proce-
dure. We used the so-called cAMP-dependent protein kinase (2CPK) and its catalytic subunit to test
the docking procedures. We performed a bound docking procedure. That is, we extracted the sub-
unit from the experimentally determined protein complex and computed the overlaps to reproduce the
molecular arrangement.
The 2CPK molecule we used consists of 2666 atoms while the sub-unit is made up by 158 atoms. By
adding an artificial exterior skin to the sub-unit its size grew to 1818 atoms.
For each degree of freedom we computed 24 different values, leading to 246 different analysed mo-
tions. Both, the fast translational matching and fast rotational matching list the experimentally de-
termined arrangement of the complex among the twenty highest values of the objective function
C((R, t)).
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6.5 FAST ROTATIONAL MATCHING

Algorithm 2: Fast Rotational Matching

Input:
P,N : the cut-offs;
A,B : two index sets of atomic coordinates;
M ⊂ SE(3) : a set of motions as in (6.12);

foreach xk with k ∈ A ∪B do
Calculate the centres cA and cB of the molecules and compute the relocated atoms
zk = xk − cA/B

end
foreach (p,q, s) with s 6 q 6 p 6 P do

Calculate the coefficients αqsp and βqsp ;
end
foreach (k, `,m) with |m| 6 ` 6 k 6 N do

Calculate the coefficients hAk`m and hBk`m ;
end
foreach z ∈ R+ in (R, zUez) ∈M, (`, ` ′,m ′,n,n ′) with |m ′|, |n ′| 6 ` ′ 6 N and
|n| 6 ` 6 N do

Calculate the integrals J−m
′m ′nn ′

`` ′ (z) ;
end
foreach U in (R, zUez) ∈M do

Calculate J̃m
′n ′

` ′ by means of an reduced NFSOFT;
end
foreach R in (R, zUez) ∈M do

Calculate C((R, zUez)) by means of an NFSOFT;
end
foreach (R, t) ∈M do

Find the maximum value of C((R, zUez));
end

Output: the solution of the docking problem
Complexity: O((|A|+ |B|+M5)M) flops

Figure 6.5 shows the two proteins and the docked complex. The cross-section of the molecule in Fig-
ure 6.5(c) demonstrates nicely how the catalytic sub-unit is positioned in an open pocket of the 2CPK
protein.
A problem encountered upon producing the list of putative arrangements is that for a finer grid of
motions. the list exhibits certain clusters of high ranked motions which lead to almost identical ar-
rangements. For a ranking or re-ranking it might be helpful to identify these as belonging to the same
molecular arrangement. As we mentioned in Section 6.1, to distinguish the right complex from the
false positives is a widely discussed issue in protein-protein docking and beyond the scope of this
work. However it would be interesting to re-score the results from the fast rotational and translational
matching using other functions to construct the objective function than the area of influence of the
proteins presented here.
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6 PROTEIN-PROTEIN DOCKING

(a) The cAMP-dependent protein kinase (2CPK) with-
out the catalytic subunit.

(b) The catalytic subunit has been previously extracted
from the protein.

(c) A cross-section of the resultant protein complex. (d) The resultant complex. We also marked a plane at
which we sliced the protein in (c).

Figure 6.5: An example for a docking procedure.

6.6 Refinement

For the docking procedures we defined a finite set of rigid-body motion for which we calculated
the objective function of the docking problem. Given the fact that we are actually looking for the
maximum of this function, we might not have completed the task after performing the fast matching
procedures as the maximising motion might not be in the given sampling set. But surely one can think
of different strategies to overcome this flaw. Having found a motion (R, t) ∈ SE(3) which yields a
high value of the objective function, we could examine more motions (S, u) such that ||t − u||, and
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6.6 REFINEMENT

|RST | (cf. Definition 2.1.7) are sufficiently small. One idea would be to simply compute the objective
function for these additional motions by one of the fast matching procedures from Sections 6.4 and
6.5. Another idea is a refinement step based on Taylor expansions which will provide convenient
results providing sufficiently small motions.
Given a function Q : R3 → C as in (6.4) or (6.5), we can approximate Q((R, t) ◦ x), (R, t) ∈ SE(3)
for small R ∈ SO(3) and small t ∈ R3 by

Q(RTx − t) = Q(x + (RT − I)x − t)

≈ Q(x) +∇Q(x)
(
(RT − I)x − t

)
+

1
2
(
(RT − I)x − t

)T ∇∇Q(x)
(
(RT − I)x − t

)
.

Consequently, the objective function for two molecules A and B becomes

C((t, R)) =

∫
QA(x)QB((t, R) ◦ x) dx

≈
∫
QA(x)QB(x) +QA(x)∇QB(x)

(
(RT − I)x − t

)
+
QA(x)

2
(
(RT − I)x − t

)T ∇∇QB(x)
(
(RT − I)x − t

)
dx.

Setting∇tC = 0, we have

0 = ∇tC ≈ −

∫
QA(x)∇QB(x) +QA(x)∇∇QB(x)

(
(RT − I)x − t

)
dx,

and obtain by∫
QA(x)∇QB(x) +QA(x)∇∇QB(x)

(
(RT − I)x

)
dx =

(∫
QA(x)∇∇QB(x) dx

)
t

a linear system of equations for t depending on R. For C((R, t)) = C((R, t(R))) the maximum of the

objective function can be found by solving the 3 × 3 system of equations
∂

∂R
C((R, t(R))) = 0 for

small Euler angles.
Either way, we are now left with a list of putative protein-protein complexes, ranked according to their
values of the objective function. As mentioned in Section 6.1 also the correct complex might be in the
list, it may well not be the one with the highest score. To refine the ranking in this sense, we would
need to incorporate more biological information. Although, geometric surface complementary is the
dominant descriptor in docking processes and hence a good choice for the scoring function it is not
the only one. Other criteria can be used to design affinity functions like models of desolvation, hy-
drophobicity, hydrogen bonds or electrostatics. Our fast matching procedures will conveniently work
on any of them. Using such a new affinity function one could hence simply reuse the fast matching
procedures and re-rank the current list of complexes accordingly.
Note, that truly identifying the near native complex in the ranked list is beyond the scope of the Fourier
based matching procedures. One main fact being that they consider molecules to be rigid-bodies. In-
corporation of additional information from previously known protein interfaces, biochemical experi-
ments or even visual inspection will be helpful for this, as well. This is the so-called data-based and
data-driven docking, see e.g. [47] for more information on this stage of docking. Characteristically
for this stage are time-consuming heavy-weight calculations.
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7 Conclusion

This thesis presented a broad investigation of Fourier transforms on the rotation group. We introduced
the approximation of arbitrary functions f ∈ L2(SO(3)) by finite sums

f(Rq) ≈
L∑
`=0

∑̀
m=−`

∑̀
n=−`

f̂mn` Dmn` (Rq)

for Q different arbitrary rotations Rq ∈ SO(3) with q = 1, . . . ,Q as the nonequispaced discrete
SO(3) Fourier transform, NDSOFT. The naive computation of the above sum by the NDSOFT has a
high computational complexity of O(L3Q) operations in contrast to only O(L3+Q) input values. With
the NFSOFT, we developed strategies for a faster computation of the SO(3) Fourier transform. The
general concept of exploiting the Euler angle representation of elements of SO(3) and the possible
separation of the Wigner-D functions Dmn` (R) according to these angles in

f(R(αq,βq,γq)) =

L∑
m=−L

e−imαq
L∑

n=−L

e−inγq
L∑
`=L0

f̂mn` dmn` (cosβq).

Complete Name Complexity Reference
FFT Fast Fourier transform O(Ld logL) [32]
NFFT Nonequispaced fast Fourier O(Q+ Ld logL) [49]

transform
SOFT (Equispaced) SO(3) Fourier O(L4), Q = 8L3 [53]

transform
NFSOFT Nonequispaced fast SO(3) O(Q+ L3 logL) Theorem 4.2.2

Fourier transform
NDSOFT Nonequispaced discrete SO(3) O(QL3) Definition 3.2.11

Fourier transform
NFSUFT Nonequispaced fast SU(2) O(Q+ L3 logL) Theorem 5.1.9

Fourier transform
NDSUFT Nonequispaced discrete SU(2) O(QL3) Definition 5.1.3

Fourier transform
FWT-C Fast Wigner transform based on O(L log2 L) Section 4.1.1

cascade summation
FWT-S Fast Wigner transform based on O(L logL) Section 4.1.2

semiseparable matrices
DWT Discrete Wigner transform O(L2) Definition 4.1.1

Table 7.1: A list of the transforms mentioned in this work with references, implementation and their
asymptotic complexities depending on the bandwidth L and the number of input nodes Q.
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was explained. We suggested how to handle the innermost sum of the term, by proposing two algo-
rithms for transforming the sum over Wigner-d functions into Chebyshev polynomials independent of
the sampled rotations R(αq,βq,γq). The first algorithm, newly presented here, the one based on the
cascade summation had the complexity O(L log2 L). The second one introduced in this work, based
on semiseparable matrices has an even more favourable complexity of O(L logL). And indeed the
numerical results showed that this second algorithm is an improvement over the previously one with
the cascade summation even though both of them outperform the previously existing ones.
Moreover it does not seem reasonable trying to improve the asymptotical complexity of this trans-
form further then the achieved O(L logL). The remaining step necessary to compute an NFSOFT,
the rotation dependent application of the three-dimensional NFFT has complexity of O(L3 logL+Q)
operations. Hence, improving the Wigner-d transform in terms of asymptotical complexity would
not have an effect on the overall complexity of the algorithm. Still it would be interesting to con-
sider further developments of the NFSOFT, like a derivation of an inverse algorithm. Comparing our
NFSOFT to the naive evaluation of a discrete SO(3) Fourier sum, our numerical tests verified the
improved complexity.
The examination of the NFSOFT is the central aspect of this work. To conclude the thesis, we look
back on its title and summarise the contributions made with respect to this topic.

i) The Nonequispaced Fast SO(3) Fourier transform: The main part of this thesis was devoted
to the development of an efficient algorithm to evaluate the above sum. In Theorem 4.2.2
we stated such an algorithm, called the nonequispaced fast SO(3) Fourier transform, in short,
NFSOFT. The NFSOFT is able to compute the above sum with O(L3 logL + Q) operations
instead of O(L3Q) needed in a naive attempt. The implementation of the NFSOFT using the
cascade summation for the transform of Wigner-d functions has been incorporated in the public
available NFFT library [49].

ii) Generalisations: Motivated by the good results of the NFSOFT, it seemed natural to examine
whether the concepts used for SO(3) Fourier transforms are applicable to other, similar groups.
This was done in Chapter 5. There we saw that indeed, an almost immediate generalisation
are the nonequispaced Fourier transforms on the complex rotation group SU(2), NDSUFT. We
provided the theoretical background and a first implementation of the necessary routines in
Mathematica for a fast algorithm, called the NFSUFT and stated it in Theorem 5.1.9. It would
be an interesting future work to use this transform, the NFSUFT, in suitable applications.
Not that immediate, arose the possibility for computing Fourier transforms on the motion group,
which we briefly discussed, pointing out the difficulties in defining Fourier transforms and
especially their inverse. Nevertheless, this is a promising generalisation which would be useful
also for the application, we discussed in Section 6.

iii) Applications: A direct application was presented with the fast summation of radial functions
on SO(3). By splitting sums of rotation dependent functions as in Equation (3.35), we were
able to compute them by means of the NFSOFT and its adjoint. The theoretical error estimates
in Lemma 3.5.3, as well as the numerical tests demonstrated the advantageous runtime while
maintaining good accuracy.
As laid out in Section 6, the protein-protein docking is a much regarded problem from biochem-
istry. Here, we formalised the search process as a first stage of docking focusing on a sound
mathematical description of proteins and the formulation of the underlying non-convex optimi-
sation problem. The objective functions we introduced in (6.6) and (6.8) exhibit various extrema
justifying the application of a global search scheme. The evaluation of the objective functions
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7 CONCLUSION

at discrete grid points of SE(3) have been carried out by the fast translational matching from
Algorithm 1 and by the new fast rotational matching from Algorithm 2. The application of our
nonequispaced SO(3) Fourier transform was established in Lemma 6.5.4. This way we are now
able to solve the Docking problem in O((|A| + |B| +M5)M) arithmetic operations instead of
O(|A||B|M6).
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Basel, 2009.

[79] D. Schmid. Marcinkiewicz-Zygmund inequalities and polynomial approximation from scattered
data on SO(3). Numer. Funct. Anal. Optim., 29:855 – 882, 2008.

[80] K. Sumikoshi, T. Terada, S. Nakamura, and K. Shimizu. A fast protein-protein docking algo-
rithm using series expansions in terms of spherical basis functions. Genome Informatics, 16:161
– 193, 2005.
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