Röntgenkristallographische Untersuchungen zu Kdo-Aktivierung und -Transfer in *Aquifex aeolicus*

Inauguraldissertation zur Erlangung der Doktorwürde der Universität zu Lübeck - Aus der Technisch-Naturwissenschaftlichen Fakultät -

> vorgelegt von Helgo Schmidt aus Bad Hersfeld Lübeck 2010

Vorsitzender: Prof. Dr. Ulrich Schaible

- Berichterstatter: Prof. Dr. Dr. h.c. Rolf Hilgenfeld Berichterstatter: Prof. Dr. Thomas Peters 1.
- 2.

Tag der mündlichen Prüfung: 27.08.2010

Zum Druck genehmigt. Lübeck, den 30.08.2010

gewidmet

Reinhold Schmidt (*06.03.1949 - †12.09.2005)

und

Erich Schmidt (*11.04.1946 - †15.04.2008)

Inhaltsverzeichnis

Abkürzungsverzeichnis

1.1 Lipopolysaccharide11.1.1 Die bakterielle Zellbegrenzung11.1.2 Auf Dau und Funktion der Lipopolysaccharide11.1.2.1 Das Lipoid-A21.1.2.1 Das Lipoid-A21.1.2.3 Das O-Polysaccharid41.1.3 Die Biosynthese der Lipopolysaccharide51.1.3.1 Der konstitutive Lipoid-A-Weg51.1.3.2 Die Biosynthese der Lipopolysaccharide51.1.3.1 Der konstitutive Lipoid-A-Weg51.1.3.2 Die Biosynthese des O-Polysaccharides121.2 Aquifex aeolicus151.3 Der Nukleotidyltransfer161.4 Der Glykosyltransfer161.4 Der Glykosyltransfer222.1 Materialien222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.1 Verwendete Geräte242.2.1 Lekombinante Proteinproduktion und – aufreinigung242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.2.1 Bestimmung der Proteine in Lösung282.2.3.1 Bestimmung der Proteinkonzentration282.2.3.2.2.3.2.1 Typtischer Verdau und masenspektrometrische Analyse von Peptidfragmenten312.2.3.3.1 Identifizierung von initialen Kristallisationsbedingungen322.3.3.2 Nervelau und masenspektrometrische Analyse von Peptidfragmenten312.2.3.3.2 Nervelau und masenspektrometrische Analyse von Peptidfragmenten332.2.3.3.1 Gen-Verdau und masenspektrometrische Analyse von Peptidfragmenten332.2.3.3.2 Sequenzierung von Pitasmiden332.2.3.3.3.	1. Einführung	1
1.1.1 Die bakterielle Zellbegrenzung11.1.2 Aufbau und Funktion der Lipopolysaccharide21.1.2 1 Das Lipoid-A21.1.2.2 Die Kernregion31.1.2.3 Das O-Polysaccharid41.1.3 Die Biosynthese der Lipopolysaccharide51.1.3.1 Der konstitutive Lipoid-A-Weg51.1.3.2 Die Biosynthese und Aktivierung des Kdo91.1.3.3 Die LPS-Kernregion111.1.3.4 Die Synthese des O-Polysaccharides121.2 Aquifex aeolicus151.3 Der Nukleotidyltransfer161.4 Der Glykosyltransfer181.5 Zielsetzung212. Materialien222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.2.1 Rekombinante Proteinien in Lösung282.2.2.2 Charakterisierung der Proteine in Lösung282.2.3.3 Optimierung der Proteinkonzentration282.2.3.1 Identifizerung von initialen Kristallisationsbedingungen302.2.3.2 Optimierung der Overlänchenentropie von WaaAAAR302.2.3.3.1 Tryptischer Verdau von WaaAAAR312.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.4 Transformation von Plasmiden332.2.3.3.7 Agarosegelelektrophorese342.2.4 Bestimmung von Proteinkristallstrukturen332.2.3.3.7 Agarosegelelektrophorese342.2.4 Detrinkorizerung von Plasmiden <td>1.1 Lipopolysaccharide</td> <td>1</td>	1.1 Lipopolysaccharide	1
1.1.2.1 Das Lipoid-A2 $1.1.2.1$ Das Lipoid-A2 $1.1.2.2$ Dic Kernregion3 $1.1.2.3$ Das O-Polysaccharid4 $1.1.3.1$ Die Biosynthese der Lipopolysaccharide5 $1.1.3.1$ Der konstitutive Lipoid-A-Weg5 $1.1.3.2$ Dic Biosynthese und Aktivicrung des Kdo9 $1.1.3.3$ Die LPS-Kernregion11 $1.1.3.4$ Die Synthese des O-Polysaccharides12 1.2 Aquifex aeolicus15 1.3 Der Nukleotidyltransfer16 1.4 Der Glykosyltransfer18 1.5 Zielsetzung21 2. Materialien und Methoden 22 $2.1.1$ Vervendete Geräte22 $2.1.2$ Verbrauchsmaterialien23 $2.1.3$ Chemikalien und Enzyme24 $2.2.2$ Materialien und Enzyme24 $2.2.3$ Z.1.1 KdsB _{AAE} 24 $2.2.2.1.2$ Verbrauchsmaterialien28 $2.2.2.3$ Dieprüfung der Proteinreinheit28 $2.2.2.3$ Uberprüfung der Proteine in Lösung28 $2.2.3.3$ Uberprüfung der Proteinneinheit28 $2.2.3.3$ Uberprüfung der Honogenität28 $2.2.3.3$ Uberprüfung der Honogenität29 $2.2.3.3$ I Identifizierung von initialen Kristallisationsbedingungen30 $2.2.3.3.4$ Transformation von Poteinen29 $2.3.3.5$ Sequenzierung von Plasmiden33 $2.2.3.3.4$ Transformation von Plasmiden33 $2.2.3.3.5$ Sequenzierung von Plasmiden33 $2.2.3.3.4$ Transformation von Plasmiden33 $2.2.3.3.5$ Sequenzierung von Plasmiden33 $2.2.3.3$	1.1.1 Die bakterielle Zellbegrenzung	1
1.1.2.1 Das Lipoid-A21.1.2.2 Dic Kernregion31.1.2.3 Das O-Polysaccharid41.1.3 Die Biosynthese der Lipopolysaccharide51.1.3.1 Die Konstitutive Lipoid-A-Weg51.1.3.1 Der Konstitutive Lipoid-A-Weg51.1.3.2 Die Biosynthese und Aktivierung des Kdo91.1.3.3 Die LPS-Kernregion111.1.3.4 Die Synthese des O-Polysaccharides121.2 Aquifex aeolicus151.3 Der Nukleotidyltransfer161.4 Der Glykosyltransfer181.5 Zielsetzung212. Materialien und Methoden222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.2 Charaktersiserung der Proteine in Lösung282.2.2 Lestimmung der Proteinenine292.3.3 Uberprüfung der Homogenität282.2.3.3 Uberprüfung der Homogenität282.2.3.3 Itdentifizierung von initialen Kristallisationsbedingungen302.2.3.3 In Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3 Ped-Virigerung von Pitaidfrakenenee312.2.3.3 Tryptischer Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3 Troptischer Verdau und massenspektrometrische Analyse von Peptidfragmenten332.2.3.3 Tryptischer Verdau und massenspektrometrische Analyse von Peptidfragmenten33<	1.1.2 Aufbau und Funktion der Lipopolysaccharide	2
1.1.2.2 Die Kernregion31.1.2.3 Das O-Polysaccharid41.1.3.1 Die Biosynthese der Lipopolysaccharide51.1.3.1 Der konstitutive Lipoid-A-Weg51.1.3.2 Die Biosynthese und Aktivierung des Kdo91.1.3.3 Die LPS-Kernregion111.1.3.4 Die Synthese des O-Polysaccharides121.2 Aquifex aeolicus151.3 Der Nukleotidyltransfer161.4 Der Glykosyltransfer181.5 Zielsetzung212. Materialien und Methoden222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2.1.1 KdsB _{AAE} 262.2.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1.1 KdsB _{AAE} 262.2.2.2 Charakterisierung der Proteine in Lösung282.2.3.3 Uberprüfung der Proteinen282.2.3.4 Uberprüfung der Proteinen292.3.3.5 Detwirzung der Proteinen292.3.3.1 Tryptischer Verdau von WaaA _{AAE} 302.3.3.2 Optimierung der Oberflächenentropie von WaaA _{AAE} 312.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung won Pitialen Kristallisationsbedingungen322.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Pitasmiden332.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.4.4 Transformation von Plasmiden332.2.3.3.5 Keutnerung von Proteinkristallisationsbedingungen34<	1.1.2.1 Das Lipoid-A	2
$\begin{array}{cccc} 1.1.2.3 \ {\rm Das}\ {\rm O-Polysaccharid} & 4 \\ 1.1.3 \ {\rm Die}\ {\rm Biosynthese}\ {\rm der}\ {\rm Lipopolysaccharide} & 5 \\ 1.1.3.1 \ {\rm Die}\ {\rm Konstitutive Lipoid-A-Weg} & 5 \\ 1.1.3.2 \ {\rm Die}\ {\rm Biosynthese}\ {\rm und}\ {\rm Aktivierung}\ {\rm des}\ {\rm Kdo} & 9 \\ 1.1.3.3 \ {\rm Die}\ {\rm LPS-Kennegion} & 11 \\ 1.1.3.4 \ {\rm Die}\ {\rm Synthese}\ {\rm des}\ {\rm O-Polysaccharides} & 12 \\ 1.2 \ {\rm Aquifex\ acedicus} & 15 \\ 1.3 \ {\rm Der}\ {\rm Nukleotidyltransfer} & 16 \\ 1.4 \ {\rm Der}\ {\rm Glykosyltransfer} & 18 \\ 1.5 \ {\rm Zielsetzung} & 21 \\ \hline {\rm 2.1 \ Materialien} & 22 \\ 2.1 \ {\rm Materialien} & 22 \\ 2.1.1 \ {\rm Verwendete}\ {\rm Geräte} & 22 \\ 2.1.2 \ {\rm Verbrauchsmaterialien} & 23 \\ 2.1.3 \ {\rm Chemikalien\ und\ Enzyme} & 24 \\ 2.2 \ {\rm Methoden} & 24 \\ 2.2.1 \ {\rm Rekombinante\ Proteinproduktion\ und\ -aufreinigung} & 24 \\ 2.2.1 \ {\rm Rekombinante\ Proteinproduktion\ und\ -aufreinigung} & 24 \\ 2.2.1 \ {\rm Rekombinante\ Proteinproduktion\ und\ -aufreinigung} & 28 \\ 2.2.2 \ {\rm Charakterisierung\ der\ Proteine\ in\ Lösung} & 28 \\ 2.2.2 \ {\rm Destimmung\ der\ Proteinreinheit} & 28 \\ 2.2.2 \ {\rm Destimmung\ der\ Proteinreinheit} & 28 \\ 2.2.3 \ {\rm Uberprüfung\ der\ Homogenität} & 28 \\ 2.2.3 \ {\rm Uberprüfung\ der\ Homogenität} & 28 \\ 2.2.3 \ {\rm Uberprüfung\ der\ Homogenität} & 28 \\ 2.2.3 \ {\rm Retarisierung\ der\ Oberlächenentropie von\ WaaA_{AAE} & 31 \\ 2.2.3.3 \ {\rm Reduzierung\ der\ Oberlächenentropie von\ WaaA_{AAE} & 31 \\ 2.2.3.3 \ {\rm Reduzierung\ der\ Oberlächenentropie von\ WaaA_{AAE} & 31 \\ 2.2.3 \ {\rm Artistallisation\ von\ Proteinfacmenten \ 33 \\ 2.2.3 \ {\rm Artistallisation\ von\ Proteinalisen \ 33 \\ 2.2.3 \ {\rm Artistallisedin\ Sechenentropie von\ WaaA_{AAE} & 31 \\ 2.2.3 \ {\rm Artistallisetion} von\ Proteinen \ 33 \\ 2.2.3 \ {\rm Artistallisetion\ von\ Plasmiden \ 33 \\ 2.2.3 \ {\rm Artistallisetion\ von\ Plasmiden \ 33 \\ 2.2.3 \ {\rm Artistallisetion\ von\ Plasmiden \ 33 \\ 2.2.3 \ {\rm Artistallisetion\ von\ Plasmiden \ 33 \\ 2.2.3 \ {\rm Artistallisetion\ von\ Plasmiden \ 33 \\ 2.2.4 \ {\rm Bestimmung\ von\ Proteinkristallstruturen \ 35 \\ 2.2.4 $	1.1.2.2 Die Kernregion	3
1.1.3 Die Biosynthese der Lipopolysaccharide51.1.3.1 Die konstitutive Lipoid-A-Weg51.1.3.2 Die Biosynthese und Aktivierung des Kdo91.1.3.3 Die LPS-Kernregion111.1.3.4 Die Synthese des O-Polysaccharides121.2 Aquifex aeolicus151.3 Der Nukleotidyltransfer161.4 Der Glykosyltransfer181.5 Zielsetzung212. Materialien und Methoden222.1 Materialien222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2.1.1 KdsBAAE262.2.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1.1 KdsBAAE262.2.2.2 Destimmung der Proteinreinheit282.2.2.3 Uberprüfung der Proteinkonzentration282.2.3.3 Uberprüfung der Proteinkonzentration282.2.3.3 In-Gel-Verdau und massenspektrometrische Analys von Peptidfragmenten302.2.3.3 Eduzierung der Oberflächenentropie von WaaAAAE302.2.3.3 Equzierung von Plasmiden332.2.3.3 Dr-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten332.2.3.3 Equzierung von Plasmiden332.2.3.3 Sequenzierung von Plasmiden332.2.3.3 Churktionelle <i>in vivo</i> -Charakterisierung342.2.3.3 Churktionelle <i>in vivo</i> -Charakterisierung342.2.4.1 Ekstimmung von Proteinkristallistufonsbedingungen302.2.3.3 Sequenzierung von Plasmiden332.2.3.3 Churktionelle <i>in vivo</i> -Charakteris	1.1.2.3 Das O-Polysaccharid	4
1.1.3.1 Der konstitutive Lipoid-A-Weg51.1.3.2 Die Biosynthese und Aktivierung des Kdo91.1.3.3 Die LPS-Kernregion111.1.3.4 Die Synthese des O-Polysaccharides121.2 Aquifex aeolicus151.3 Der Nukleotidyltransfer161.4 Der Glykosyltransfer181.5 Zielsetzung21 2. Materialien und Methoden 222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1 Rekombinante Proteinerineineit282.2.2.2 Bestimmung der Proteinerinheit282.2.2.3 Überprüfung der Homogenität282.2.3.3 I deutifizierung von initialen Kristallisationsbedingungen302.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Pasmiden332.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Keukterisierung von Pasmiden332.2.3.3.4 Transformation von Plasmiden332.2.3.4 Transformation von Plasmiden332.2.3.3.5 Keukterisierung von Poteinkristallistruberes342.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Keukterisierung von Pasmiden332.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Keuktionelle <i>in vivo-</i> Charakterisierung342.2.4.	1.1.3 Die Biosynthese der Lipopolysaccharide	5
1.1.3.2 Die Biosynthese und Aktivierung des Kdo91.1.3.3 Die LPS-Kernregion111.1.3.4 Die Synthese des O-Polysaccharides121.2 Aquifex aeolicus151.3 Der Nukleotidyltransfer161.4 Der Glykosyltransfer181.5 Zielsetzung212. Materialien und Methoden222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2.1.3 Chemikalien und Enzyme242.2.1.4 Kekombinante Proteinproduktion und – aufreinigung242.2.1.5 Charakterisierung der Proteine in Lösung282.2.2.1 Rekombinante Proteinproduktion und – aufreinigung282.2.2.2 Charakterisierung der Proteine in Lösung282.2.3 Überprüfung der Homogenität282.2.3 Uberprüfung der Homogenität282.2.3.3 I I dentifizierung von Proteinkonzentration282.2.3.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 302.3.3.3 PCR-Mutagenese302.2.3.3.4 Transformation von Plasmiden312.2.3.3.5 Sequenzierung von Potidifragmenten312.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Guuktionelle <i>in vivo-</i> Charakterisierung342.2.3.3.4 Enkterisierung von Plasmiden332.2.3.3.5 Guuktionelle <i>in vivo-</i> Charakterisierung342.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Cuuktionelle <i>in vivo-</i> Charakterisierung342.2.3.3.4 Enktionelle <i>in vivo-</i> Charakterisierung342.2.3.3.5 Autorie der R	1.1.3.1 Der konstitutive Lipoid-A-Weg	5
1.1.3.3 Die LPS-Kernregion111.1.3.4 Die Synthese des O-Polysaccharides121.2 Aquifex aeolicus151.3 Der Nukleotidyltransfer161.4 Der Glykosyltransfer181.5 Zielsetzung21 2. Materialien und Methoden 222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.2 Charakterisierung der Proteine in Lösung282.2.2.1 Bestimmung der Proteinkonzentration282.2.2.3 Überprüfung der Homogenität282.2.3.1 Identifizierung von initialen Kristallisationsbedingungen302.2.3.3 PCR-Mutagenese322.3.3 PCR-Mutagenese322.3.3.3 PCR-Mutagenese322.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.7 Agarosegelelektrophorese342.2.4.1 Theorie der Röntgenstreuung durch Kristalli352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	1.1.3.2 Die Biosynthese und Aktivierung des Kdo	9
1.1.3.4 Die Synthese des O-Polysaccharides121.2 Aquifex aeolicus151.3 Der Nukleotidyltransfer161.4 Der Glykosyltransfer181.5 Zielsetzung21 2. Materialien und Methoden 222.1 Materialien222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1.1 KdsBaAE262.2.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.2.1 WataAAAE262.2.2.3 Uberprüfung der Proteine in Lösung282.2.2.3 Uberprüfung der Proteinereinheit282.2.3.3 Uberprüfung der Homogenität282.2.3.3 Uberprüfung der Oberflächenentropie von WaaAAAE302.2.3.3 Lin-Gel-Verdau von WaaAAAE302.2.3.3.1 Tryptischer Verdau von WaaAAAE312.2.3.3.3 PCR-Mutagenese322.3.3.3 PCR-Mutagenese322.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	1.1.3.3 Die LPS-Kernregion	11
1.2 Aquifex aeolicus15 $1.3 Der Nukleotidyltransfer$ 16 $1.4 Der Glykosyltransfer$ 18 $1.5 Zielsetzung$ 21 2. Materialien und Methoden 22 $2.1 Materialien222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2.1.1 KdsBAAE242.2.1.1 KdsBAAE242.2.1.1 KdsBAAE242.2.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1.2 WaaAAAE262.2.2 Charakterisierung der Proteinerinheit282.2.2.2 Bestimmung der Proteinerinheit282.2.3.2 Uberprüfung der Homogenität282.2.3.3 Kristallisation von Proteinen292.2.3.2 Optimierung der Oberflächenentropie von WaaAAAE302.2.3.3.2 In-Gel-Verdau und massenspektrometrischeAnalyse von Peptidfragmenten312.2.3.3.3 PCR-Mutagenese322.3.3.4 Transformation von Plasmiden332.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallogangshisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37$	1.1.3.4 Die Synthese des O-Polysaccharides	12
1.3 Der Nukleotidyltransfer161.4 Der Glykosyltransfer181.5 Zielsetzung21 2. Materialien und Methoden 222.1 Materialien222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1.1 KdsB _{AAE} 262.2.2.2 Charakterisierung der Protein in Lösung282.2.2.2 Bestimmung der Proteinkonzentration282.2.3 Überprüfung der Homogenität282.2.3 Uberprüfung der Homogenität282.2.3 Loptimierung der Operlächenentropie von WaaA _{AAE} 302.2.3 J. Identifizierung von initialen Kristallisationsbedingungen302.2.3 J. Tryptischer Verdau von WaaA _{AAE} 312.2.3 J. Tryptischer Verdau von WaaA _{AAE} 312.2.3 J. Gel-Verdau und massenspektrometrische Analyse von Pelasmiden332.2.3 J. Grunktionelle <i>in vivo</i> -Charakterisierung342.2.3 J. Arasformation von Plasmiden332.2.3 J. Argarosegelelektrophorese342.2.4 Bestimmung von Proteinkristallstrukturen352.2.4 Bestimmung von Proteinkeitserung durch Kristalle352.2.4 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.3 Lösungsansätze	1.2 Aquifex aeolicus	15
1.4 Der Glykosyltransfer181.5 Zielsetzung212. Materialien und Methoden222.1 Materialien222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2 Methoden242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1.1 KdsBAAE262.2.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1.2 WaaAAAE262.2.2.2 Charakterisierung der Proteinreinheit282.2.2.3 Überprüfung der Proteinkonzentration282.2.3 Uberprüfung der Homogenität282.2.3 Uberprüfung der Homogenität282.2.3 Lötsitallisation von Proteinen292.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE302.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE312.2.3.3.4 CR-Mutagenese312.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.4 Bestimmung von Proteinkistallistrukturen332.2.3.3.7 Agarosegelelektrophorese342.2.4 Bestimmung von Proteinkistallstrukturen352.2.4 Bestimmung von Proteinkistallstrukturen352.2.4 Bestimmung von Proteinkistallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	1.3 Der Nukleotidyltransfer	16
1.5 Zielsetzung212. Materialien und Methoden222.1 Materialien222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2 Methoden242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1.2 WaaAAAE262.2.2 Charakterisierung der Proteine in Lösung282.2.2.1 Bestimmung der Proteinkonzentration282.2.2.3 Überprüfung der Homogenität282.2.3 Kristallisation von Proteinen292.2.3 Lidentifizierung von initialen Kristallisationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE302.2.3.3 PCR-Mutagenese322.2.3.3 PCR-Mutagenese322.2.3.3 PCR-Mutagenese322.2.3.3 Chruktionelle <i>in vivo</i> -Charakterisierung342.2.3.3 A garosegelelektrophorese342.2.4 Bestimmung von Proteinkristallstrukturen332.2.4.1 Theorie der Röntgenstreuung durch Kristall352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	1.4 Der Glykosyltransfer	18
2. Materialien und Methoden222.1 Materialien222.1.1 Verwendete Geräte232.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2 Methoden242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1.1 KdsBAAE262.2.2 Charakterisierung der Proteine in Lösung282.2.2.1 Bestimmung der Proteinkonzentration282.2.2.3 Überprüfung der Homogenität282.2.2.3 Überprüfung der Homogenität292.2.3.1 Identifizierung von initialen Kristallisationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE302.2.3.3 In-Gel-Verdau und massenspektrometrischeAnalyse von Peptidfragmenten312.2.3.3 PCR-Mutagenese322.2.3.3 Forkutionelle <i>in vivo</i> -Charakterisierung342.2.3.3.4 Transformation von Plasmiden332.2.3.3 Churktionelle <i>in vivo</i> -Charakterisierung342.2.4 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	1.5 Zielsetzung	21
2. Materialien und Methoden222.1 Materialien222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2 Methoden242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1.2 WaaA _{AAE} 262.2.2 Charakterisierung der Proteine in Lösung282.2.2 Destimmung der Proteinkonzentration282.2.2.3 Überprüfung der Homogenität282.2.3.3 Uberprüfung der Homogenität282.2.3.4 Kristallisation von Proteinen292.2.3.2 Optimierung der Initialen Kristallisationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 312.2.3.3.3 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37		
2.1 Materialien222.1.1 Verwendete Geräte222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2 Methoden242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.2 Charakterisierung der Proteine in Lösung282.2.2.2 Bestimmung der Proteinkonzentration282.2.2.3 Überprüfung der Homogenität282.2.3.3 Überprüfung der initialen Kristallisationsbedingungen292.2.3.2 Optimierung von initialen Kristallisationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE312.2.3.3.4 Transformation von Pasmiden312.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.3.3.7 Agarosegelektrophorese342.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2. Materialien und Methoden	22
2.1.1 Verwendete Gerate222.1.2 Verbrauchsmaterialien232.1.3 Chemikalien und Enzyme242.2 Methoden242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1.1 KdsB _{AAE} 262.2.1.2 WaaA _{AAE} 262.2.2 Charakterisierung der Proteine in Lösung282.2.2.1 Bestimmung der Proteinreinheit282.2.2.2 Bestimmung der Proteinkonzentration282.2.3 Überprüfung der Homogenität282.2.3 Uberprüfung der Homogenität282.2.3 Lidentifizierung von initialen Kristallisationsbedingungen292.2.3.2 Optimierung der initialen Kristallisationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 312.2.3.3.1 Tryptischer Verdau von WaaA _{AAE} 312.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.1 Materialien	22
2.1.2 Verbrauchsmaterialien252.1.3 Chemikalien und Enzyme242.2 Methoden242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1.1 KdsB _{AAE} 242.2.1.2 WaaA _{AAE} 262.2.2 Charakterisierung der Proteine in Lösung282.2.2.1 Bestimmung der Proteinreinheit282.2.2.2 Bestimmung der Proteinkonzentration282.2.2.3 Überprüfung der Homogenität282.2.3 Kristallisation von Proteinen292.2.3.1 Identifizierung von initialen Kristallisationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 312.2.3.3.1 Tryptischer Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem37	2.1.1 Verwendete Gerate	22
2.1.3 Chemikalien und Enzyme242.2 Methoden242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1.2 WaaAAAE242.2.1.2 WaaAAAE262.2.2 Charakterisierung der Proteine in Lösung282.2.2.1 Bestimmung der Proteinkonzentration282.2.2.3 Überprüfung der Homogenität282.2.3.4 Kristallisation von Proteinen292.2.3.1 Identifizierung von initialen Kristallisationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE302.2.3.3.1 Tryptischer Verdau von WaaAAAE312.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.7 Agarosegelelektrophorese342.2.4 Bestimmung von Proteinkristallstrukturen352.2.4 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.1.2 Verbrauchsmaterialien	23
2.2 Methoden242.2.1 Rekombinante Proteinproduktion und – aufreinigung242.2.1.1 KdsB _{AAE} 242.2.1.2 WaaA _{AAE} 262.2.2 Charakterisierung der Proteine in Lösung282.2.2.1 Bestimmung der Proteinreinheit282.2.2.3 Überprüfung der Proteinkonzentration282.2.3.3 Überprüfung der Homogenität282.2.3.3 Lidentifizierung von initialen Kristallisationsbedingungen292.2.3.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 302.2.3.3.1 Tryptischer Verdau von WaaA _{AAE} 312.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.7 Agarosegelektrophorese342.2.4 Bestimmung von Proteinkristallstrukturen352.2.4 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem37	2.1.3 Chemikalien und Enzyme	24
2.2.1 Recombinante Proteinproduktion und – aufreinigung242.2.1.1 KdsB _{AAE} 242.2.1.2 WaaA _{AAE} 262.2.2 Charakterisierung der Proteine in Lösung282.2.2.1 Bestimmung der Proteinkonzentration282.2.2.2 Bestimmung der Proteinkonzentration282.2.3 Überprüfung der Homogenität282.2.3 Kristallisation von Proteinen292.2.3.1 Identifizierung von initialen Kristallisationsbedingungen302.2.3.2 Optimierung der Oberflächenentropie von WaaA _{AAE} 302.2.3.3.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 312.2.3.3.1 Tryptischer Verdau von WaaA _{AAE} 312.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.7 Agarosegelelektrophorese342.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem37	2.2 Methoden	24
2.2.1.1 KdsBAAE242.2.1.2 WaaAAAE262.2.2 Charakterisierung der Proteine in Lösung282.2.2 Destimmung der Proteinkonzentration282.2.2.3 Überprüfung der Homogenität282.2.3 Überprüfung der Homogenität282.2.3 Lidentifizierung von initialen Kristallisationsbedingungen292.2.3.2 Optimierung der Oberflächenentropie von WaaAAAE302.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE302.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE312.2.3.3.1 Tryptischer Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.7 Agarosegelelektrophorese342.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.1 Recombinance Proteinproduction und – aufreinigung	24
2.2.1.2 WatAAAE202.2.2 Charakterisierung der Proteine in Lösung282.2.2.1 Bestimmung der Proteinreinheit282.2.2.2 Bestimmung der Proteinkonzentration282.2.2.3 Überprüfung der Homogenität282.2.3 Kristallisation von Proteinen292.2.3.1 Identifizierung von initialen Kristallisationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE302.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE312.2.3.3.1 Tryptischer Verdau von WaaAAAE312.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.7 Agarosegelelektrophorese342.2.4 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	$2.2.1.1 \text{ KdSB}_{AAE}$	24
2.2.2 Charakteristering der Proteine in Lösting282.2.2.1 Bestimmung der Proteinreinheit282.2.2.2 Bestimmung der Proteinkonzentration282.2.2.3 Überprüfung der Homogenität282.2.3 Kristallisation von Proteinen292.2.3.1 Identifizierung von initialen Kristallisationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE302.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE302.2.3.3.1 Tryptischer Verdau von WaaAAAE312.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.1.2 WaaA _{AAE}	20
2.2.2.1 Bestimmung der Proteinkennen282.2.2.2 Bestimmung der Proteinkonzentration282.2.2.3 Überprüfung der Homogenität282.2.3 Kristallisation von Proteinen292.2.3.1 Identifizierung von initialen Kristallisationsbedingungen302.2.3.2 Optimierung der initialen Kristallisationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE302.2.3.3.1 Tryptischer Verdau von WaaAAAE312.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.3 PCR-Mutagenese322.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.2 Charakteristerung der Proteine in Losung	28
2.2.2.3 Essemining der Proteinkonzentration282.2.2.3 Überprüfung der Homogenität282.2.3 Kristallisation von Proteinen292.2.3.1 Identifizierung von initialen Kristallisationsbedingungen302.2.3.2 Optimierung der initialen Kristallisationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 302.2.3.3.1 Tryptischer Verdau von WaaA _{AAE} 312.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.2.1 Bestimmung der Proteinkenzentration	28
2.2.2.5 Oberpfulting der Höhlogenhaft262.2.3 Kristallisation von Proteinen292.2.3.1 Identifizierung von initialen Kristallisationsbedingungen302.2.3.2 Optimierung der initialen Kristallisationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 302.2.3.3.1 Tryptischer Verdau von WaaA _{AAE} 312.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.3 PCR-Mutagenese322.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.2.2 Destimining der Proteinkonzentration	20
2.2.3 Kristanisation von Proteinen252.2.3.1 Identifizierung von initialen Kristallisationsbedingungen292.2.3.2 Optimierung der initialen Kristallisationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 302.2.3.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 312.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.3 PCR-Mutagenese322.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.4 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.2.3 Oberprutting der Homogenität	20
2.2.3.1 Ruchthizierung von initiaten Kristallisationsbedingungen292.2.3.2 Optimierung der initialen Kristallisationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 302.2.3.3.1 Tryptischer Verdau von WaaA _{AAE} 312.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.3 PCR-Mutagenese322.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.4 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.5 Kristanisation von Frotenien 2.2.3 1 Identifizierung von initialen Kristallisationsbedingungen	29
2.2.3.2 Optimierung der Initialen Kristansationsbedingungen302.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE302.2.3.3.1 Tryptischer Verdau von WaaAAAE312.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.3 PCR-Mutagenese322.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.4.8 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.3.1 Identifizierung von initialen Kristallisationsbedingungen	30
2.2.3.3 Reduzierung der Obernachentoppe von WaaA _{AAE} 30 2.2.3.3.1 Tryptischer Verdau von WaaA _{AAE} 31 2.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten 31 2.2.3.3.3 PCR-Mutagenese 32 2.2.3.3.4 Transformation von Plasmiden 33 2.2.3.3.5 Sequenzierung von Plasmiden 33 2.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung 34 2.2.3.3.7 Agarosegelelektrophorese 34 2.2.4 Bestimmung von Proteinkristallstrukturen 35 2.2.4.1 Theorie der Röntgenstreuung durch Kristalle 35 2.2.4.2 Kristallographisches Phasenproblem 36 2.2.4.3 Lösungsansätze für das Phasenproblem 37	2.2.3.2 Optimierung der Oberflöchenentronie von WaaA	30
2.2.3.3.1 Tryptisener Verdad von WaarAAE312.2.3.3.2 In-Gel-Verdau und massenspektrometrische Analyse von Peptidfragmenten312.2.3.3.3 PCR-Mutagenese322.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.3.3.7 Agarosegelelektrophorese342.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	$2.2.5.5$ Reduzierung der Oberhachenentopie von Waa A_{AAE}	31
Analyse von Peptidfragmenten312.2.3.3.3 PCR-Mutagenese322.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.3.3.7 Agarosegelelektrophorese342.2.4.8 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.5.5.1 Tryptischer Verdau und massensnektrometrische	51
2.2.3.3.3 PCR-Mutagenese322.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.3.3.7 Agarosegelelektrophorese342.2.4 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	Analyse von Pentidfragmenten	31
2.2.3.3.4 Transformation von Plasmiden332.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.3.3.7 Agarosegelelektrophorese342.2.4 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2 2 3 3 3 PCR-Mutagenese	32
2.2.3.3.5 Sequenzierung von Plasmiden332.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.3.3.7 Agarosegelelektrophorese342.2.4 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.3.3.4 Transformation yon Plasmiden	33
2.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung342.2.3.3.7 Agarosegelelektrophorese342.2.4 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.3.3.5 Finalsformation von Plasmiden	33
2.2.3.3.7 Agarosegelelektrophorese342.2.4 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.3.3.6 Funktionelle <i>in vivo</i> -Charakterisierung	34
2.2.4 Bestimmung von Proteinkristallstrukturen352.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2 2 3 3 7 Agarosegelelektrophorese	34
2.2.4.1 Theorie der Röntgenstreuung durch Kristalle352.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.4 Bestimmung von Proteinkristallstrukturen	35
2.2.4.2 Kristallographisches Phasenproblem362.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.4.1 Theorie der Röntgenstreuung durch Kristalle	35
2.2.4.3 Lösungsansätze für das Phasenproblem37	2.2.4.2 Kristallographisches Phasenproblem	36
	2.2.4.3 Lösungsansätze für das Phasenproblem	37
2.2.4.4 Elektronendichtemodifikationen und Phasenausdehnung 39	2.2.4.4 Elektronendichtemodifikationen und Phasenausdehnung	; 39

 2.2.4.6 Herstellung der WaaA_{AAE}-Schwermetallderivate 2.2.4.7 Herstellung von WaaA_{AAE}-CMP-Komplexes 2.2.4.8 Herstellung des WaaA_{AAE}-CMP-Komplexes 2.2.4.9 Überprüfung der Streuqualität von Kristallen 2.2.4.10 Durchführung von Diffraktionsdatensammlungen 2.2.4.11 Verwendete kristallographische Software 3. Ergebnisse und Diskussion 3.1 KdsB_{AAE} 3.1.1 Neue Kristallisationsbedingung 3.1.2 Strukturbestimmung von KdsB_{AAE} 3.1.3 Qualität des erhaltenen Modells 3.1.4 Oligomerisierung und Proteinfaltung 3.1.5 Vergleich mit homologen Proteinstrukturen 3.1.6 Substrat-/ Kofaktorbindungsstellen 3.1.6.2 CTP-Mg²⁺ 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA_{AAE} 3.2.1 Neue Kristalligariphische Charakterisierung der neuen Kristallform 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Réduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5 2 Experimentelle Phasierung 3.2.6 Initialer Modells 3.2.9 Analyse des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.12.1.1 Ktrukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Vergleich mit der homologen Sialytransferase PM0188
2.2.4.7 Herstellung von WaaA _{AAE} -Xenonderivaten 2.2.4.8 Herstellung des WaaA _{AAE} -CMP-Komplexes 2.2.4.9 Überprüfung der Streuqualität von Kristallen 2.2.4.10 Durchführung von Diffraktionsdatensammlungen 2.2.4.11 Verwendete kristallographische Software 3. Ergebnisse und Diskussion 3.1 KdsB _{AAE} 3.1.1 Neue Kristallisationsbedingung 3.1.2 Strukturbestimmung von KdsB _{AAE} 3.1.3 Qualität des erhaltenen Modells 3.1.4 Oligomerisierung und Proteinfaltung 3.1.5 Vergleich mit homologen Proteinstrukturen 3.1.6 Substrat-/ Kofaktorbindungsstellen 3.1.6.1 katalytische Mg ²⁺ -Bindungsstelle 3.1.6.2 CTP-Mg ²⁺ 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA _{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modells 3.2.9 Analyse des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
2.2.4.8 Herstellung des WaaA _{AAE} -CMP-Komplexes 2.2.4.9 Überprüfung der Streuqualität von Kristallen 2.2.4.10 Durchführung von Diffraktionsdatensammlungen 2.2.4.11 Verwendete kristallographische Software 3. Ergebnisse und Diskussion 3.1 KdsB _{AAE} 3.1.1 Neue Kristallisationsbedingung 3.1.2 Strukturbestimmung von KdsB _{AAE} 3.1.3 Qualität des erhaltenen Modells 3.1.4 Oligomerisierung und Proteinfaltung 3.1.5 Vergleich mit homologen Proteinstrukturen 3.1.6 Substrat-/ Kofaktorbindungsstellen 3.1.6.1 katalytische Mg ²⁺ -Bindungsstelle 3.1.6.2 CTP-Mg ²⁺ 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA _{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.6 Initialer Modellba 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9 Analyse des finalen Modells 3.2.9 Lillgemeine Aspekte 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Vergleich mit der homologen Sialytransferase PM0188
2.2.4.9 Überprüfung der Streuqualität von Kristallen 2.2.4.10 Durchführung von Diffraktionsdatensammlungen 2.2.4.11 Verwendete kristallographische Software 3. Ergebnisse und Diskussion 3.1 KdsB _{AAE} 3.1.1 Neue Kristallisationsbedingung 3.1.2 Strukturbestimmung von KdsB _{AAE} 3.1.3 Qualität des erhaltenen Modells 3.1.4 Oligomerisierung und Proteinfaltung 3.1.5 Vergleich mit homologen Proteinstrukturen 3.1.6 Substrat- <i>K</i> Kofaktorbindungsstellen 3.1.6.1 katalytische Mg ²⁺ -Bindungsstelle 3.1.6.2 CTP-Mg ²⁺ 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WataA _{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WataA _{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellba 3.2.9 Analyse des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Mlgemeine Aspekte 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung
2.2.4.10 Durchführung von Diffraktionsdatensammlungen 2.2.4.11 Verwendete kristallographische Software 3. Ergebnisse und Diskussion 3.1 KdsB _{AAE} 3.1.1 Neue Kristallisationsbedingung 3.1.2 Strukturbestimmung von KdsB _{AAE} 3.1.3 Qualität des erhaltenen Modells 3.1.4 Oligomerisierung und Proteinfaltung 3.1.5 Vergleich mit homologen Proteinstrukturen 3.1.6 Substrat-/ Kofaktorbindungsstellen 3.1.6.1 katalytische Mg ²⁺ -Bindungsstelle 3.1.6.2 CTP-Mg ²⁺ 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA _{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5 Phasierung 3.2.6 Initialer Modellba 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.8 Qualität des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.9.2 Gebundene Liganden 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
2.2.4.11 Verwendete kristallographische Software 3. Ergebnisse und Diskussion 3.1 KdsB _{AAE} 3.1.1 Neue Kristallisationsbedingung 3.1.2 Strukturbestimmung von KdsB _{AAE} 3.1.3 Qualität des erhaltenen Modells 3.1.4 Oligomerisierung und Proteinfaltung 3.1.5 Vergleich mit homologen Proteinstrukturen 3.1.6 Substrat-/ Kofaktorbindungsstellen 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9 Analyse des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9 Capulität des finalen Modells 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziterung 3.2.12 Li CMP-Komplex 3.2.12 Li Strukturbestimmung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase 3.2.12.1.3 Vergleich mit der homologen Sialytransferase <
 3. Ergebnisse und Diskussion 3.1 KdsB_{AAE} 3.1.1 Neue Kristallisationsbedingung 3.1.2 Strukturbestimmung von KdsB_{AAE} 3.1.3 Qualität des erhaltenen Modells 3.1.4 Oligomerisierung und Proteinfaltung 3.1.5 Vergleich mit homologen Proteinstrukturen 3.1.6 Substrat-/ Kofaktorbindungsstellen 3.1.6.1 katalytische Mg²⁺-Bindungsstelle 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA_{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12 L1 CMP-Komplex 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
 3.1 KdsB_{AAE} 3.1.1 Neue Kristallisationsbedingung 3.1.2 Strukturbestimmung von KdsB_{AAE} 3.1.3 Qualität des erhaltenen Modells 3.1.4 Oligomerisierung und Proteinfaltung 3.1.5 Vergleich mit homologen Proteinstrukturen 3.1.6 Substrat-/ Kofaktorbindungsstellen 3.1.6.1 katalytische Mg²⁺-Bindungsstelle 3.1.6.2 CTP-Mg²⁺ 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA_{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
 3.1.1 Neue Kristallisationsbedingung 3.1.2 Strukturbestimmung von KdsB_{AAE} 3.1.3 Qualität des erhaltenen Modells 3.1.4 Oligomerisierung und Proteinfaltung 3.1.5 Vergleich mit homologen Proteinstrukturen 3.1.6 Substrat-/ Kofaktorbindungsstellen 3.1.6.1 katalytische Mg²⁺-Bindungsstelle 3.1.6.2 CTP-Mg²⁺ 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA_{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5.1 Molekularer Ersatz 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9.1 Allgemeine Aspekte 3.2.9.2 Gebundene Liganden 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase
 3.1.2 Strukturbestimmung von KdsB_{AAE} 3.1.3 Qualität des erhaltenen Modells 3.1.4 Oligomerisierung und Proteinfaltung 3.1.5 Vergleich mit homologen Proteinstrukturen 3.1.6 Substrat-/ Kofaktorbindungsstellen 3.1.6.1 katalytische Mg²⁺-Bindungsstelle 3.1.6.1 katalytische Mg²⁺-Bindungsstelle 3.1.6.2 CTP-Mg²⁺ 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA_{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwernetall- und Xenonderivate 3.2.5 Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9.1 Allgemeine Aspekte 3.2.9.2 Gebundene Liganden 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.12 Lin Strukturbestimmung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase
 3.1.3 Qualität des erhaltenen Modells 3.1.4 Oligomerisierung und Proteinfaltung 3.1.5 Vergleich mit homologen Proteinstrukturen 3.1.6 Substrat-/ Kofaktorbindungsstellen 3.1.6.1 katalytische Mg²⁺-Bindungsstelle 3.1.6.2 CTP-Mg²⁺ 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA_{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.11 Membranassoziierung 3.2.12 Li CMP-Komplex 3.2.12.1.1 Strukturbestimmung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
 3.1.4 Oligomerisierung und Proteinfaltung 3.1.5 Vergleich mit homologen Proteinstrukturen 3.1.6 Substrat-/ Kofaktorbindungsstellen 3.1.6.1 katalytische Mg²⁺-Bindungsstelle 3.1.6.2 CTP-Mg²⁺ 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA_{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9 Analyse des finalen Modells 3.2.9.0 Gebunden Liganden 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Komplex 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
 3.1.5 Vergleich mit homologen Proteinstrukturen 3.1.6 Substrat-/ Kofaktorbindungsstellen 3.1.6.1 katalytische Mg²⁺-Bindungsstelle 3.1.6.2 CTP-Mg²⁺ 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA_{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.9.2 Gebundene Liganden 3.2.12 Substratbindungsstellen 3.2.12.1 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
 3.1.6 Substrat-/ Kofaktorbindungsstellen 3.1.6.1 katalytische Mg²⁺-Bindungsstelle 3.1.6.2 CTP-Mg²⁺ 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA_{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.12 Substratbindungsstellen 3.2.12.1 CMP-Komplex 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
 3.1.6.1 katalytische Mg^{2²⁺}-Bindungsstelle 3.1.6.2 CTP-Mg²⁺ 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA_{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase
 3.1.6.2 CTP-Mg²⁺ 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA_{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwernetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.8 Qualität des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12.11 Strukturbestimmung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase
 3.1.6.3 Kdo 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA_{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
 3.1.7 Thermostabilität 3.1.8 Reaktionsmechanismus 3.2 WaaA_{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
 3.1.8 Reaktionsmechanismus 3.2 WaaA_{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.9.2 Gebundene Liganden 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
 3.2 WaaA_{AAE} 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.9.2 Gebundene Liganden 3.2.12 Substratbindungsstellen 3.2.12.1.1 Strukturbestimmung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
 3.2.1 Neue Kristallisationsbedingungen 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.8 Qualität des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.9.2 Gebundene Liganden 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
 3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.12 Substratbindungsstellen 3.2.12.1.1 Strukturbestimmung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
Kristallform 3.2.3 Reduzierung der Oberflächenentropie von WaaA _{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.8 Qualität des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12 Substratbindungsstellen 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
 3.2.3 Reduzierung der Oberflächenentropie von WaaA_{AAE} 3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.8 Qualität des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.9.2 Gebundene Liganden 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12.1 CMP-Komplex 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase
3.2.4 Schwermetall- und Xenonderivate 3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.8 Qualität des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.9.2 Gebundene Liganden 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12 Substratbindungsstellen 3.2.12.1 CMP-Komplex 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
3.2.5 Phasierung 3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.8 Qualität des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.9.2 Gebundene Liganden 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12 Substratbindungsstellen 3.2.12.1 CMP-Komplex 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
3.2.5.1 Molekularer Ersatz 3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.8 Qualität des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.9.2 Gebundene Liganden 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12 Substratbindungsstellen 3.2.12.1 CMP-Komplex 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
3.2.5.2 Experimentelle Phasierung 3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.8 Qualität des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.9.2 Gebundene Liganden 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12 Substratbindungsstellen 3.2.12.1 CMP-Komplex 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
3.2.6 Initialer Modellbau 3.2.7 Verfeinerung und Komplettierung des initialen Modells 3.2.8 Qualität des finalen Modells 3.2.9 Analyse des finalen Modells 3.2.9.1 Allgemeine Aspekte 3.2.9.2 Gebundene Liganden 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12 Substratbindungsstellen 3.2.12.1 CMP-Komplex 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
3.2.7 Verfeinerung und Komplettierung des initialen Modells83.2.8 Qualität des finalen Modells83.2.9 Analyse des finalen Modells83.2.9.1 Allgemeine Aspekte83.2.9.2 Gebundene Liganden83.2.10 Vergleich mit homologen Proteinstrukturen83.2.11 Membranassoziierung93.2.12 Substratbindungsstellen93.2.12.1 CMP-Komplex93.2.12.1.1 Strukturbestimmung93.2.12.1.2 CMP-Bindung93.2.12.1.3 Vergleich mit der homologen SialytransferasePM01889
3.2.8 Qualität des finalen Modells 8 3.2.9 Analyse des finalen Modells 8 3.2.9.1 Allgemeine Aspekte 8 3.2.9.2 Gebundene Liganden 8 3.2.10 Vergleich mit homologen Proteinstrukturen 8 3.2.11 Membranassoziierung 9 3.2.12 Substratbindungsstellen 9 3.2.12.1 CMP-Komplex 9 3.2.12.1.1 Strukturbestimmung 9 3.2.12.1.2 CMP-Bindung 9 3.2.12.1.3 Vergleich mit der homologen Sialytransferase 9 PM0188 9
3.2.9 Analyse des finalen Modells 8 3.2.9.1 Allgemeine Aspekte 8 3.2.9.2 Gebundene Liganden 8 3.2.10 Vergleich mit homologen Proteinstrukturen 8 3.2.11 Membranassoziierung 9 3.2.12 Substratbindungsstellen 9 3.2.12.1 CMP-Komplex 9 3.2.12.1.1 Strukturbestimmung 9 3.2.12.1.2 CMP-Bindung 9 3.2.12.1.3 Vergleich mit der homologen Sialytransferase 9 PM0188 9
3.2.9.1 Allgemeine Aspekte 3.2.9.2 Gebundene Liganden 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12 Substratbindungsstellen 3.2.12.1 CMP-Komplex 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
3.2.9.2 Gebundene Liganden 3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12 Substratbindungsstellen 3.2.12.1 CMP-Komplex 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
3.2.10 Vergleich mit homologen Proteinstrukturen 3.2.11 Membranassoziierung 3.2.12 Substratbindungsstellen 3.2.12.1 CMP-Komplex 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
3.2.11 Membranassoziierung 3.2.12 Substratbindungsstellen 3.2.12.1 CMP-Komplex 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
3.2.12 Substratbindungsstellen 3.2.12.1 CMP-Komplex 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
3.2.12.1 CMP-Komplex 3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
3.2.12.1.1 Strukturbestimmung 3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
3.2.12.1.2 CMP-Bindung 3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188
PM0188
1110100
3.2.12.2 Lipoid-A-Vorläufer
3.2.13 Thermostabilität
3.2.14 Reaktionsmechanismus
3.2.14.1 Biologisch aktive Form
3.2.14.2 WaaA _{AAE} -Donorsubstrat-Wechselwirkungen 10
3.2.14.3 WaaA _{AAE} -Akzeptorsubstrat-Wechselwirkungen 10
3.2.14.4 Geschlossene WaaA _{AAE} -Konformation 10

3.2.14.5 Übergangszustand der Reaktion	106
3.2.14.6 Stabilisierung der Abgangsgruppe	108
3.2.14.7 Strukturelle Basis für die Multifunktionalität der	
Kdo-Tranferasen	108
3.2.14.8 WaaA _{AAE} -Varianten	109
3.2.14.9 Zusammenfassende Betrachtung	111
4. Anhang	114
4.1 Kristallisationsscreens	114
4.2 Nachgewiesene Peptidfragmente von tryptisch verdautem WaaA _{AAE}	119
4.3 Daten- und Verfeinerungsstatistik	121
4.4 In-vivo Charakterisierung von WaaAAAE-Varianten	124
4.5 In-vitro Charakterisierung von WaaAAAE-Varianten	132
5. Referenzen	138
6. Zusammenfassung	152
7. Danksagung	153
8. Lebenslauf	154

Abkürzungsverzeichnis

AAE	Aquifex aeolicus			
Abe	Abequose			
ACP	Acylcarrierprotein			
ADP	Adenosindiphosphat			
Ara4N	4-Amino-4-desoxy-β-L-arabinose			
ASU	asymmetric unit, asymmetrische Einheit			
ATP	Adenosintriphosphat			
BESSY	Berliner Elektronen-Speicherring-Gesellschaft für			
	Synchrotronstrahlung			
CDP	Cytidindiphosphat			
CHAPSO	3-([3-Cholamidopropyl]-dimethylammonio)-2-hydroxy-1-			
	propansulfonat			
СМР	Cytidinmonophosphat			
CTD	C-terminale Domäne			
СТР	Cytidintriphosphat			
Cymal-6	6-Cyclohexyl-1-hexyl-β-D-maltosid			
DAG	2,3-Diamino-2,3-didesoxy-D-glucopyranose			
DEAE	Diethylaminoethyl			
DESY	Deutsches Elektronen Synchrotron			
DLS	Dynamische Lichtstreuung			
ECO	Escherichia coli			
ESI	Elektrosprayionisation			
FOM	Figure-of-merit			
Gal	Galactose			
GalA	Galacturonsäure			
GalN	Galactosamin			
GDP	Guanosindiphosphat			
Glc	Glucose			
GlcN	Glucosamin			
GlcNAc	Glucosamin			
GT-A	Glykosyltransferase A			
GT-B	Glykosyltransferase B			

HIN	Haemophilus influenza
hrem	High energy remote
infl	Inflection
IPTG	Isopropyl-β-D-thiogalactopyranosid
Kdo	2-Keto-3-desoxyoctonsäure oder 3-Desoxy-D-manno-oct-2-ulosonsäure
Ко	D-Glycero-D-talo-oct-2-ulosonsäure
L,D-Hep	L-Glycero-D-manno-Heptopyranose
LPS	Lipopolysaccharide
MAD	Multiple-wavelength anomalous dispersion
MALDI	Matrix assisted laser desorption/ionisation
Man	Mannose
MIR	Multiple isomorphous replacement
MIRAS	Multiple isomorphous replacement with anomalous scattering
MMU	Mus musculus
MR	Molecular replacement
NeuAc	N-Acetylneuraminsäure
NCS	Non-crystallographic-symmetry, nicht-kristallographische-Symmetrie
NME	Neisseria meningitidis
NOG	n-Octyl-β-D-glucopyranosid
NTD	N-terminale Domäne
OD	Optische Dichte
PAGE	Polyacrylamidgelelektrophorese
PBS	Phosphate buffered saline
PDB	Proteinstukturdatenbank
PEP	Phosphoenolpyruvat
PEtN	2-Amino-Ethanolphosphat
pk	Peak
Rha	Rhamnose
R-LPS	Rough-LPS
r.m.s.d.	Root mean square deviation
RT	Raumtemperatur
SAD	Single-wavelength anomalous dispersion
SDS-PAGE	Natriumdodecylsulfat-Polyacrylamidgelelektrophorese
SIR	Einfachen isomorpher Ersatz

SIRAS	Single isomorphous replacement with anomalous scattering
S-LPS	Smooth-LPS
ТСР	2,4,5-Trichlorphenol
TDP	Thymidindiphosphat
TLS	Translation-Liberation-Screw
TOF	Time-of-flight
UDP	Uridindiphosphat
UDP-2FGlc	Uridindiphosphat-2-deoxy-2-fluoro-glucose
Und-P	Undecaprenylphosphat

1. Einführung

1.1 Lipopolysaccharide

1.1.1 Die bakterielle Zellbegrenzung

Für die Aufrechterhaltung von Lebensvorgängen in Zellen ist die Abgrenzung zur Umwelt essentielle Voraussetzung. Nur dadurch ist ein regelbarer Stoffaustausch mit dem Lebensraum überhaupt denkbar. Darüber hinaus ist eine äußere Abschirmung wichtig für den Schutz gegen zellschädliche Moleküle, die Aufrechterhaltung des intrazellulären pH-Wertes, die Regulation osmotischer Vorgänge, die Assoziierung von Zellverbänden, die Ausbildung von Überdauerungsstadien bei ungünstigen Lebensbedingungen und die interzelluläre Kommunikation.

Die Zellbegrenzung der Bakterien besteht aus einer Lipiddoppelschicht, die das Cytoplasma umschließt und einer darauf aufgelagerten Zellwand aus Peptidoglykan. Je nach Stärke der Zellwand und der daraus resultierenden unterschiedlichen Empfindlichkeit im Gram-Färbetest können grampositive und gramnegative Bakterien unterschieden werden, wobei letztere als zusätzliche Zellbegrenzung eine die Zellwand umschließende, äußere Membran aufweisen.

Diese zweite Membran sorgt insbesondere bei Infektionsprozessen für die Abwehr des Komplementsystems und kationischer Peptide sowie die reduzierte Effizienz der Phagocytose durch Immunzellen [Nikaido & Vaara, 1985]. Die äußere Membran gramnegativer Bakterien ist asymmetrisch aufgebaut: der zur Zelle gerichtete Teil der Lipiddoppelschicht besteht vorwiegend aus Phospholipiden, während sich im nach außen gerichteten Teil vor allem Lipopolysaccharide (LPS) befinden (Abb. 1.1).

1.1.2 Aufbau und Funktion der Lipopolysaccharide

LPS-Moleküle bestehen aus hydrophobem Lipoid-A und einem Polysaccharidanteil, der wiederum in eine innere und äußere Kernregion sowie sogenanntes O-Polysaccharid ein unterteilt werden kann (Abb. 1.2) [Raetz & Whitfield, 2002]. Bei einem Verlust der entsprechenden Biosynthesegene kann in gramnegativen Bakterien das O-Polysaccharid fehlen. In diesen Fällen spricht man auch von "rough-LPS" (R-LPS). Im Gegensatz dazu werden LPS-Moleküle mit O-Polysaccharid als "smooth-LPS" (S-LPS) bezeichnet.

1.1.2.1 Das Lipoid-A

Der typische Aufbau eines Lipoid-A-Moleküles soll im Folgenden am Beispiel von Escherichia coli und Salmonella enterica beschrieben werden (Abb. 1.3). Es besteht aus einem 1,4'-bisphosphorylierten, ß-1-6-glykosidisch verknüpften Glucosamin (GlcN)-Disaccharid (D-2,2-Diamino-2,2-didesoxyglucose), das an den Positionen 2,3 mit R-3-Hydroxymyristinsäure acyliert ist und an den Positionen 2'und 3' R-3-Hydroxymyristinsäure aufweist, die zusätzlich noch über ihre 3-Hydroxygruppe mit Laurinsäure bzw. Myristinsäure verestert ist. Modifikationen der 1- und 4'-Phosphatgruppen sind möglich durch Hydrolyse, Substituierung mit 4-Amino-4-desoxy-ß-L-arabinose (Ara4N) oder die Ausbildung von Phosphodiesterbindungen mit 2-Amino-Ethanolphosphat (PEtN). Darüberhinaus sind Variationen der Acylseitenketten beschrieben. So kann die Myristinsäure in Position 3 durch Palmitinsäure ersetzt werden, und die Laurinsäure in Position 2 durch einfach ungesättigte Palmitinsäure (16:1) [Holst & Müller-Loennies, 2007]. Wichtig ist Lipoid-A zum einen für die Verankerung der LPS-Moleküle in der äußeren Membran, zum anderen ist es entscheidend an deren Funktion als Permeabilitätsbarriere beteiligt. Eine reduzierte negative Nettoladung der Lipoid-A-Region, etwa durch die Substituierung der 1- und 4'-Phosphatgruppen mit Ara4N, führt in S. enterica Serovar Typhimurium und E. coli zu einem verstärkten Schutz gegenüber kationischen antimikrobiellen Peptiden wie z.B. Polymyxin [Peschel, 2002; Nummila et al., 1995]. Die unvollständige Acylierung des GlcN-Disaccharids führt dagegen zu einer erhöhten Empfindlichkeit gegenüber hydrophoben Molekülen [Holst &

Müller-Loennies, 2007]. Diese wichtigen Veränderungen der Lipoid-A-Struktur werden z.B. in *S. enterica* durch besondere Signalwege gesteuert. So kann das PhoP/PhoQ-Zweikomponentensystem in Abhängigkeit von den jeweiligen Umweltbedingungen die Substituierung der 4'-Phosphatgruppe mit Ara4N und die Veresterung der 2-Hydroxymyristinsäureseitenkette mit Palmitinsäure regulieren [Raetz, 2001]. Der Lipoid-A-Anteil des LPS bildet die mit dem "septischen Schock" assoziierte, bioaktive Verbindung (Endotoxin), wobei insbesondere das Acylierungsmuster des GlcN-Disaccharids von entscheidender Bedeutung ist [Seydel et al., 2003].

1.1.2.2 Die Kernregion

Die innere Kernregion ist im Vergleich zur äußeren Kernregion und dem variableren O-Polysaccharid innerhalb einer Bakteriengattung stärker konserviert. Im Falle von *E. coli* lassen sich die fünf Kerntypen K-12 und R1-R4 unterscheiden. Hier finden sich vor allem die Zuckermoleküle 3-Desoxy-D-*manno*-oct-2-ulosonsäure (auch 2-Keto-3-desoxyoctonsäure, Kdo) und L-Glycero-D-*manno*-heptopyranose (L,D-Hep). Nur sehr selten werden einzelne Kdo-Moleküle, die bei allen gramnegativen Bakterien vorhanden sind, durch D-Glycero-D*talo*-oct-2-ulosonsäure (Ko) ersetzt [Holst, 2002]. In der äußeren Kernregion finden sich bei *E. coli* und *S. enterica* die Zucker Glucose (Glc), Galactose (Gal), Galactosamin (GalN) oder GlcN. Die Verbindung zwischen dem Lipoid-A und dem Polysaccharidanteil wird in allen bisher strukturell bekannten Kernregionen durch den Kdo-Zucker bewerkstelligt. Kdo ist damit bis heute der einzig bekannte strikt konservierte Zucker [Holst, 2002]. Auch die Kernregion kann durch Glykosylierungen, Phosphorylierungen und durch PEtN modifiziert werden [Raetz & Whitfield, 2002]. So sind z.B. die beiden Heptosen der inneren K-12 Kernregion von *E. coli* in Position 4 phosphoryliert, wobei die erste Heptose noch zusätzlich durch das Anhängen von PEtN verändert sein kann [Yethon et al., 1998]. In manchen Bakteriengattungen, z. B. *Klebsiella*, findet sich statt der Phosphatgruppen Uronsäure [Raetz & Whitfield, 2002].

E. coli- und *S. enterica*-Mutanten, denen die Heptosen der inneren Kernregion fehlen, zeigen eine veränderte Hydrophilie der Oberfläche sowie eine damit verbundene Sensitivität gegenüber hydrophoben Antibiotika und Detergenzien. Außerdem werden Enzyme des periplasmatischen Raumes leichter in das umgebende Medium abgegeben [Raetz & Whitfield, 2002]. Es wird angenommen, dass die Phosphatgruppen des Lipoid-A und der inneren Kernregion divalente Kationen, wie z.B. Mg²⁺, komplexieren und auf diese Weise LPS-Moleküle zu einem geschlossenen Verbund vernetzt werden [Vaara, 1992]. Dieser Umstand hat entscheidenden Anteil an der Stabilität und Funktion der äußeren Membran. So führt der Verlust der Kernphosphorylierung im Falle von *S. enterica* Serovar Typhimurium trotz der reduzierten negativen Ladung zu einer erhöhten Empfindlichkeit gegenüber Polymyxin [Yethon et al., 2000a]. Die erhöhte Durchlässigkeit der äußeren Membran für Polymyxin, das seine eigentliche antibakterielle Wirkung erst an der cytosolischen Membran entfaltet [Vaara, 1992], übersteigt in diesem Fall den Effekt der verminderten elektrostatischen Anziehung.

1.1.2.3 Das O-Polysaccharid

Bakterien mit S-LPS heften ein so genanntes O-Polysaccharid an die Kernregion an. Es bildet den variabelsten Teil des LPS und besteht aus sich wiederholenden Einheiten von 2 - 8 Zuckermolekülen [Holst & Müller-Loennies, 2007]. Für die unterschiedlichen Serovare von S. enterica finden sich hier u. a. die Zucker Mannose (Man), Abequose (Abe), Rhamnose (Rha), Gal und Glc. Die Anzahl der sich wiederholenden Einheiten kann selbst innerhalb eines Bakterienstammes variieren. so dass es bei der Natriumdodecylsulfat-Polyacrylamidgelelektrophorese (SDS-PAGE) von S-LPS zu einem typischen Bandenmuster kommt, wobei der Abstand zwischen benachbarten Banden einer Wiederholungseinheit entspricht. In den meisten Fällen exprimiert ein Bakterienstamm nur eine Art von Wiederholungseinheit. Es gibt jedoch Ausnahmen, bei denen mehrere unterschiedliche Wiederholungseinheiten exprimiert und an die Kernregion angeheftet werden [Raetz & Whitfield, 2002]. Jedes O-Polysaccharid besitzt spezifische Epitope, die durch Antikörper

erkannt Die verschiedenen O-Polysaccharide jeweiligen werden können. der Bakterienstämme sind damit als diagnostische Marker von Bedeutung. Die Zucker des O-Polysaccharids können modifiziert werden Acetylierung, Methylierung, durch Phosphorylierung und Aminierung [Holst & Müller-Loennies, 2007].

Die Funktion des O-Polysaccharids besteht hauptsächlich in der Abwehr der Komplementkaskade und kationischer Peptide. So wird die Zusammenlagerung des membranangreifenden Komplexes des Komplementsystems durch die O-Polysaccharide gestört. Dieser Effekt ist dabei abhängig von den Modifizierungen und der Länge des O-Polysaccharids sowie dem Anteil der längerkettigen LPS-Moleküle [Joiner, 1988]. Um einen ausreichenden Schutz gegenüber dem Komplementsystem zu gewährleisten, muss das O-Polysaccharid bei *S. enterica* Serovar Typhimurium z.B. aus 4-15 Wiederholungseinheiten bestehen [Murray et al., 2006].

Durch Veränderungen des O-Polysaccharids nach dem Prinzip der "Molekularen Mimicry" können Bakterien die Immunantwort des Wirtes erschweren. So existieren im Falle von *Helicobacter pylori* Fucosyltransferasen, die die Wiederholungseinheiten modifizieren, um damit Lewis-Antigene zu erzeugen, die sich u.a. auch auf der Oberfläche von Erythrocyten und Epithelzellen befinden [Nilsson et al., 2008].

1.1.3 Die Biosynthese der Lipopolysaccharide

1.1.3.1 Der konstitutive Lipoid-A-Weg

Dieser Syntheseweg wurde sehr gut bei *E. coli* untersucht und soll im Folgenden näher beschrieben werden. Er konnte aber auch bei vielen anderen gramnegativen Bakterien gefunden werden und wird deshalb auch als "constitutive Lipid A pathway" bezeichnet [Raetz & Whitfield, 2002]. Die Biosynthese des Lipoid-A beginnt mit der Uridindiphosphat-(UDP)-N-Acetyl-Glucosamin-(GlcNAc) Acyltransferase LpxA, die die reversible Veresterung der 3– Hydroxygruppe des UDP-GlcNAc mit durch ein Acylcarrierprotein (ACP) aktivierter R-3-Hydroxymyristinsäure katalysiert (Abb. 1.4). LpxA besteht aus zwei Domänen, wobei die Nterminale Domäne (NTD) eine zehn Windungen umfassende, linksgängige Helix aus parallelen β-Faltblättern bildet [Raetz & Roderick, 1995]. Durch die kürzlich veröffentlichte Komplexstruktur mit dem Reaktionsprodukt UDP-3-O-(R-3-Hydroxymyristol)-GlcNAc konnten weitere Einblicke in die reaktionsmechanistischen Details gewonnen werden [Williams & Raetz, 2007]. Die für dieses Enzym beschriebende Spezifität für bestimmte Acylkettenlängen scheint über das Prinzip des sterischen Ausschlusses erreicht zu werden. Der nächste Schritt besteht in der Deacetylierung der Aminogruppe des UDP-3-O-(R-3-Hy-

-droxymyristol)-GlcNAc Produktes durch das Zn^{2+} Metalloenzym LpxC [Whittington et al., 2003] (Abb. 1.5). Durch die Aktivität dieses Enzyms wird die ungünstige Gleichgewichtslage des ersten Reaktionsschrittes auf die Seite des Acylierungsproduktes verschoben. Die Funktion des Zn^{2+} scheint in der Polarisierung eines Wassermoleküls zu bestehen, das auf diese Weise für den nukleophilen Angriff auf die Acetylgruppe aktiviert wird. Eine Reihe von Inhibitoren mit guter antimikrobieller Wirkung sind bereits bekannt [Kline et al., 2002; Barb et al., 2009]. Die Acyltransferase LpxD führt die zweite R-3-Hydroxymyristinsäure ein, so

dass UDP-2,3-Diacylglucosamin entsteht (Abb. 1.6). Auch in diesem Fall dient R-3-Hydroxymyristol-ACP als Substrat [Bartling & Raetz, 2008]. Die kürzlich veröffentlichte Kristallstruktur von LpxD aus Chlamydia trachomatis offenbarte für die lipidbindende Domäne starke Parallelen zu LpxA [Buetow et al., 2007]. Auch in diesem Fall existiert eine linksgängige ß-Helix mit zehn Windungen. Die Pyrophosphatase LpxH spaltet im nächsten Reaktionsschritt UMP ab [Babinski et al., 2002] (Abb. 1.7). Das entstehende 2,3-Diacylglu-

cosamin-1-Phosphat wird mit einem Molekül UDP-2,3-Diacylglucosamin unter Abspaltung von UDP durch LpxB zu einem β-1,6 verknüpften GlcN-Disaccharid kondensiert [Radika & Raetz, 1988] (Abb. 1.8). Die Kinase LpxK phosphoryliert im nächsten Schritt die 4'-Hydroxylgruppe des GlcN-Disaccharids [Garrett et al., 1997, 1998] (Abb. 1.9). Das entsteh-

ende Lipoid-IV_A wird in *E. coli* durch die bifunktionelle Kdo-Glykosyltransferase WaaA mit zwei Kdo-Zuckern modifiziert [Clementz & Raetz, 1991] (Abb. 1.10). Das erste Kdo ist hierbei a-2,6-glykosidisch mit dem nicht-reduzierenden GlcN des Lipoid-IV_A verbunden, wohingegen das zweite mit dem ersten Kdo über eine a-2,4-glykosidische Bindung verknüpft wird. Die beiden Zucker werden sukzessive in einer von Metallkofaktoren unabhängigen Re-

Abb. 1.10: Die von WaaA katalysierte Reaktion. Abbildung mit freundlicher Genehmigung von Dr. Uwe Mamat.

aktion angefügt, wobei der Transfer des zweiten Kdo schneller abläuft. Das Vorhandensein einer 4'-Monophosphatgruppe innerhalb des Lipidsubstrates ist für das katalytische Geschehen unabdingbar, während hinsichtlich der Anzahl der Acylsubstituenten geringere Restriktionen zu bestehen scheinen [Belunis & Raetz, 1992]. Die Fähigkeit, die Bildung von mehreren, unterschiedlichen glykosidischen Bindungen zu katalysieren, teilt WaaA mit wenigen anderen Glykosyltransferasen [Paulson & Colley, 1989]. Die Funktionalitäten der Kdo-Transferasen aus verschiedenen Organismen können sich voneinander unterscheiden. So sind z.B. die Kdo-Transferasen aus Haemophilus influenzae [White et al., 1997] und Bordetella pertussis [Isobe et al., 1999] monofunktionell, während die Kdo-Transferasen von C. trachomatis [Belunis et al., 1992] oder Chlamydophila psittaci [Holst et al., 1995; Rund et al., 2000] die Bildung von drei bzw. vier glykosidischen Bindungen katalysieren. Alle Kdo-Transferasen nutzen aber als Glykosyldonor Cytidinmonophosphat-(CMP)-aktiviertes Kdo und werden der invertierenden Glykosyltransferase-B-(GT-B)-Superfamilie zugeordnet (http://www.cazy.org/). Zur Komplettierung der Lipoid-A-Kdo₂-Region fügen die "späten" Acyltransferasen LpxL (Abb. 1.11) und LpxM (Abb. 1.12) in E. coli Laurin- bzw. Myristinsäure durch Veresterung mit den 3-Hydroxylgruppen der Acylseitenketten in der 2'

Abb. 1.12: Die von LpxM katalysierte Reaktion. C14-ACP steht für durch ein Acylcarrierprotein aktivierte Myristinsäure. Abbildung mit freundlicher Genehmigung von Dr. Uwe Mamat.

bzw. 3' Position ein [Brozek & Raetz, 1990; Six et al., 2008]. Die effiziente Acylierung des Lipoidakzeptorsubstrates ist von der Präsenz des Kdo-Disaccharids abhängig. Damit ist WaaA in *E. coli* indirekt für die Umwandlung des tetraacylierten Endotoxinantagonisten in das hexaacylierte Lipoid-A-Kdo₂ Endotoxin verantwortlich [Raetz & Whitfield, 2002]. LpxM und LpxL benutzten ebenso wie LpxA und LpxD ACP-aktivierte Substrate, zeigen jedoch keine Sequenzähnlichkeit zu LpxA oder LpxD. Die Enzyme LpxA, C und D sind cytosolische Proteine, während LpxB, LpxH, LpxK, WaaA, LpxL und LpxM mit der cytoplasmatischen Seite der inneren Membran assoziiert sind [Raetz et al., 2007].

Nach neueren Erkenntnissen reguliert die essentielle, membrangebundene und Adenosintriphosphat-(ATP)-abhängige Protease FtsH den konstitutiven Lipoid-A-Weg über den Abbau von WaaA und LpxC [Katz & Ron, 2008], dem "Schrittmacherenzym" dieses Biosyntheseweges. Von den Enzymen des konstitutiven Lipoid-A-Weges waren bisher nur LpxA, C und D Gegenstand röntgenkristallographischer Untersuchungen.

1.1.3.2 Die Biosynthese und Aktivierung des Kdo

Der oxidative Teil des Pentosephosphatweges liefert Ribulose-5-Phosphat, das durch die Ribosephosphat-Pyrophosphokinase zu dem für die Nukleotidbiosynthese wichtigen 5-Phosphoribosyl-1-Pyrophosphat umgesetzt werden kann. Ribulose-5-Phosphat dient aber auch als Ausgangssubstrat für die Kdo-Biosynthese, an deren Anfang die durch die D-Arabinose-5-Phosphat-Isomerase KdsD katalysierte Aldol-Keto-Isomerisierung von D-Ribu-

lose-5-Phosphat zu D-Arabinose-5-Phosphat steht [Meredith & Woodard, 2003] (Abb. 1.13). Der nächste Schritt besteht in der Kondensation von D-Arabinose-5-Phosphat und Phosphoenolpyruvat (PEP) zu Kdo-8-Phosphat und anorganischem Phosphat durch die Kdo-8-Phosphat-Synthetase KdsA (Abb. 1.14). Hier lassen sich metallabhängige und – unabhängige Klassen unterscheiden [Kona et al., 2007], deren Reaktionskoordinate jedoch in beiden Fällen über die offenkettige Kdo-8-Phosphatform verläuft [Kona et al., 2009; Asojo et al., 2001; Radaev et al., 2000]. Es folgt die Hydrolyse der Phosphatgruppe in einer von divalenten Kationen abhängigen Reaktion durch die Kdo-8-Phosphat-Phosphatase KdsC [Wu & Woodard, 2003] (Abb. 1.15). Das dabei entstehende Kdo liegt in Lösung in einem Gleich-

gewicht zwischen der α - und β -Kdo-Form vor, wobei letztere mit Cytidintriphosphat (CTP) durch die Mg²⁺-abhängige CMP-Kdo Synthetase KdsB unter Erhalt der β -Konfiguration zu CMP-Kdo und Pyrophosphat umgesetzt wird [Goldman & Kohlbrenner, 1985; Kohlbrenner & Fesik, 1985] (Abb. 1.16). In dieser aktivierten Form steht Kdo für die Glykosylierungsre-

aktionen zur Verfügung. Allerdings besitzt das entstehende CMP-Kdo bei 25 °C nur eine Halbwertszeit von ca. 30 min [Lin et al., 1997]. Die ungewöhnliche Aktivierung eines Zuckers in Form eines Nukleotidmonophosphates statt der eher üblichen Nukleotiddiphosphate findet sich ebenfalls bei der Bildung CMP-Nvon Acetylneuraminsäure-(NeuAc) [Gabriel, 1982].

1.1.3.3 Die LPS-Kernregion

Die Gene zur Synthese der Kernregion werden im Falle von *E. coli* K12 von den Operons *gmhD-waaL, waaQ-waaU* und *waaA-coaD* codiert [Heinrichs et al., 1998]. Das erste Operon kodiert die für die innere Kernregion wichtigen Heptosyltransferasen WaaF und WaaC, die für die Heptose Biosynthese wichtige Adenosindiphosphat-(ADP)-L-glycero-D-*mannno*-Heptose Isomerase GmhD sowie die für die Ligation des O-Polysaccharids verantwortliche Ligase WaaL. Im Operon *waaO-waaU* werden alle für die Assemblierung und Modifikation der äußeren Kernregion zuständigen Enzyme wie WaaG, WaaO, WaaR, WaaU und WaaD kodiert, während das *waaA-coaD* Operon für die bifunktionelle Kdo-Transferase WaaA und eine nicht an der LPS-Biosynthese beteiligte Phosphopantheine Adenylyltransferase kodiert [Geerlof et al., 1999]. Obwohl Kdo als Bestandteil der Kernregion geführt wird, ist die Aktivität der Kdo-Transferase WaaA Teil des konstitutiven Lipoid-A-Weges.

Die Biosynthese der inneren Kernregion beginnt mit der Glykosylierung des KdoI der Lipoid-A-Kdo₂ Region (Abb. 1.17). Die Heptosyltransferase WaaC verwendet hierzu ADP-L,D-Heptose, die a-1,5-glykosidisch mit KdoI verknüpft wird [Garrett et al., 1997; Grizot et al., 2006]. Die 4-Hydroxygruppe dieser Heptose wird durch die Mg²⁺-abhängige Kinase WaaP phosphoryliert [Yethon & Whitfield, 2001]. HepII wird durch WaaF über eine a-1,3glykosidische Bindung mit HepI eingeführt [Gronow et al., 2000]. Sowohl WaaC als auch WaaF bevorzugen ADP-L,D-Heptose gegenüber ADP-D,D-Heptose als Zuckerdonor [Zamyatina et al., 2000]. Die LPS-Kinase WaaY phosphoryliert die 4-Hydroxygruppe der HepII [Yethon et al., 1998]. Die Heptosylstruktur der inneren Kernregion wird durch die Glykosyltransferase WaaQ komplettiert, die die Bildung einer a-1,7-glykosidischen Bindung zwischen HepIII und HepII katalysiert. Die Enzymaktivitäten müssen in der Reihenfolge WaaP – WaaQ – WaaY erfolgen [Yethon et al., 1998]. WaaC, WaaF und WaaQ gehören ebenso wie WaaA zur invertierenden GT-B Superfamilie (http://www.cazy.org/).

Die Glucosyltransferase WaaG nutzt UDP-Glc zur a-1,3-glykosidischen Verknüpfung mit HepII und initiiert die Assemblierung der äußeren Kernregion [Creeger & Rothfield, 1979; Martinez-Fleites et al., 2006]. In dem *E. coli* Stamm F470 mit R1-Kerntyp führt die Inaktivierung des *waaG* Gens zu einem kompletten Verlust der HepII- und zu einer reduzierten HepI-Phosphorylierung, einhergehend mit einer Destabilisierung der äußeren Membran [Yethon et al., 2000b]. Die nachfolgenden Glykosylierungsschritte zum Abschluss der Biosynthese der äußeren Kernregion zeigen im Vergleich zur inneren Kernregion ein höheres Maß an Variationen zwischen den einzelnen *E. coli*-Kerntypen. Für den K12-Kerntyp führen die Aktivitäten der Glykosyltransferasen WaaO, WaaR, WaaU und WaaB zur Einführung von zwei Glucose- sowie je einem Heptose- und Galactosezucker [Whitfield et al., 2003]. Im Gegensatz zu den invertierenden GIykosyltransferasen der inneren Kernregion gehören WaaG und WaaB zur erhaltenden GT-B- und WaaR sowie WaaO zur erhaltenden GT-A-Superfamilie (http://www.cazy.org/).

1.1.3.4 Die Synthese des O-Polysaccharides

Die Synthese der einzelnen O-Polysaccharideinheiten bzw. des gesamten O-Polysaccharides beginnt auf der cytoplasmatischen Seite der inneren Membran durch lösliche oder membranassoziierte Glykosyltransferasen an einem membrangebundenen Undecaprenylphosphat-(Und-P)-Trägermolekül. Die Ligation mit der Lipoid-A-Kernregion erfolgt jedoch auf der periplasmatischen Seite, so dass ein Transport von der cytosolischen zur periplasmatischen Membranseite notwendig wird. Hier lassen sich der Wzy-abhängige-, der ABC-Transporter- und der Synthase-abhängige- Weg unterscheiden [Raetz & Whitfield, 2002].

Die Biosynthese der O-Polysaccharideinheiten beginnt im Falle von *E. coli* mit der Glykosyltransferase WecA, die GlcNAc-1-Phosphat auf das Trägermolekül transferiert und damit Und-PP-GlcNAc erzeugt [Alexander & Valvano, 1994]. WecA ist ein elf Transmembranhelices umfassendes, integrales Membranprotein, dessen katalytische Aminosäurereste auf der cytoplasmatischen Seite der inneren Membran lokalisiert sind [Lehrer et al., 2007]. Kürzlich wurde die erstmalige Aufreinigung und biochemische Charakterisierung von WecA aus *Thermotoga maritima* beschrieben [Al Dabbagh et al., 2008]. Diese Initiierungsreaktion ist bei der Bildung der O-Polysaccharideinheiten verschiedener *E. coli*-Stämme gut konserviert. In *S. enterica* wird die WecA-Startfunktion

12

von der Glykosyltransferase WbaP übernommen, die die Bildung von Und-PP-Gal katalysiert [Saldias et al., 2008]. Im Folgenden soll der häufig anzutreffende Wzy-abhängige Weg, weitgehend am Beispiel des gut untersuchten Stammes *S. enterica* Serovar Typhimurium Gruppe B, genauer beschrieben werden (Abb. 1.18 und 1.19). Nach der WbaP-

Initiierungsreaktion führen die Aktivitäten der Glykosyltransferasen WbaN, WbaU und WbaV zur vollständigen Synthese der O-Polysaccharidwiederholungseinheit [Raetz & Whitfield, 2002]. Die Translokation zur periplasmatischen Seite wird durch das integrale Membranprotein Wzx nach einem bis heute unverstandenen Mechanismus bewerkstelligt [Cunneen & Reeves, 2008]. Durch Wzy werden die einzelnen Wiederholungseinheiten auf der periplasmatischen Seite polymerisiert. Hierbei wird die entstehende Und-PP-Polymerkette

auf das nicht-reduzierende Ende einer an Und-PP gebundenen Wiederholungseinheit übertragen [Robbins et al., 1967]. Der ABC-Transporter MsbA verlagert die bereits synthetisierte Lipoid-A-Kernregion von der cytosolischen Seite der inneren Membran zur periplasmatischen [Zhou et al., 1998], an der die Ligation mit der O-Polysaccharidkette durch das integrale Membranprotein WaaL stattfindet [Heinrichs et al., 1998]. Die Anzahl der durch Wzy angefügten Wiederholungseinheiten wird durch Wzz kontrolliert [Batchelor et al., 1991]. Zur Wirkungsweise dieses Proteins gibt es bis heute nur Modelle, die bei der Wzz-Funktionsweise u. a. von einer Art "molekularer Uhr" ausgehen, die den Zeitpunkt der Ligation der wachsenden O-Polysaccharidkette mit der Lipoid-A-Kernregion festlegen könnte [Bastin et al., 1993]. Höchstwahrscheinlich bilden die an der Translokation der Wiederholungseinheiten, der Polymerisierung, der Regulation der O-Polysaccharidkettenlänge und der Ligation mit der Lipoid-A-Kernregion beteiligten Proteine einen Multi-Enzym-Komplex [Raetz & Whitfield, 2002; Marolda et al., 2006]. Nach neueren Erkenntnissen könnte eine periplasmatische Schleifenregion von WbaP mit Wzz interagieren [Saldias et al., 2008], so dass die Regulation der Kettenlänge durch Wzz auf der Kontrolle der Anzahl der für die Polymerisierungsreaktion zur Verfügung stehenden Wiederholungseinheiten beruhen könnte [Larue et al., 2009].

In den letzten Jahren wurden viele Proteinen identifiziert, die für den Transport der fertiggestellten LPS-Moleküle von der inneren zur äußeren Membran von Bedeutung sind. Gegenwärtig werden zwei Modelle für diesen Transportprozess diskutiert [Ruiz et al., 2009], wobei die Extraktion des LPS aus der inneren Membran durch LptC und den LptF-LptG-LptB ABC-Transporterkomplex sowie die Inkorporation in die äußere Membran durch LptD und LptE für beide Modelle gleich sind. Unterschiede bestehen in der Frage, wie das Periplasma überwunden wird. Eine wichtige Rolle scheint hierbei das Protein LptA zu spielen [Tran et al., 2008], das als Chaperon dienen und auf diese Weise LPS-Moleküle auf ihrem Weg durch das Periplasma abschirmen könnte. Diskutiert wird aber auch die Existenz eines Multiproteinkomplexes, der alle Lpt-Komponenten umfasst. Mehrere LptA-Proteine würden demnach das Periplasma durchspannen und die Stellen der LPS-Extraktion (LptC/LptF-LptG-LptB) bzw. Insertion (LptD/LptE) miteinander verbinden. LptA könnte hier als "Brücke" für LPS-Moleküle auf ihrem Weg von der inneren zur äußeren Membran fungieren.

1.2 Aquifex aeolicus

Bakterien der Gattung *Aquifex* gehören mit Wachstumstemperaturen von bis zu 95°C zur Gruppe der hyperthermophilen Organismen und besitzen einen chemolithoautotrophen Stoffwechsel, der es ihnen erlaubt, ihre Kohlenstoffversorgung durch die Fixierung von CO₂ zu sichern. Die Kultivierungsbedingungen im Labor bei einer Temperatur von 85°C bestehen aus einer Wasserstoff-Kohlendioxid-Sauerstoff-Atmosphäre zusammen mit einem Medium aus anorganischen Komponenten. Das komplette *A. aeolicus*-Genom wurde 1998 sequenziert und bestätigte das Vorhandensein wichtiger, an der LPS-Biosynthese beteiligter Gene, wie z.B. *lpxA*, *lpxB*, *lpxD*, *kdsA* oder *WaaA* [Deckert et al., 1998].

A. aeolicus gehört zur Gruppe der gramnegativen Bakterien und synthetisiert S-LPS [Mamat et al., 2009], dessen Lipoid-A-Anteil aus einem β-1,6 verknüpften 2,3-Diamino-2,3-didesoxy-D-glucopyranose-(DAG)-Disaccharid-Rückgrat besteht. Jeder DAG-Anteil ist über eine Amidbindung mit (R)-3-Hydroxymyristinsäure und (R)-3-Hydroxypalmitinsäure verknüpft. Statt der Phosphatgruppen befindet sich Galacturonsäure (GalA) an den 1- und 4'-Positionen des reduzierenden bzw. nicht-reduzierenden Endes. Die 3-Hydroxygruppe der (R)-3-Hydroxymyristinsäure des nicht-reduzierenden DAG ist zusätzlich noch mit Stearinsäure substituiert (Abb. 1.20). Im Polysaccharidanteil des LPS wurden Man, Glc, Gal, Hep, GalA, Rha und Kdo nachgewiesen. Der Kdo-Zucker wird durch eine monofunktionelle Kdo-Transferase auf den Lipoid-Akzeptor übertragen. Die genaue Natur des Lipoid-Akzeptors *in-vivo* ist noch unbekannt, jedoch kann WaaA aus *A. aeolicus* unter *in-vitro* Bedingungen auch Lipoid-IV_A glykosylieren [Mamat et al., 2009].

1.3 Der Nukleotidyltransfer

Alle Zuckermoleküle müssen für die vielfältigen Glykosylierungsreaktionen der LPS-Biosynthese in aktivierter Form vorliegen. Im Rahmen von Nukleotidyltransferreaktionen werden hierzu UDP, Guanosindiphosphat (GDP), ADP, Thymidindiphosphat (TDP), Cytidindiphosphat (CDP) oder CMP von den entsprechenden Nukleotidtriphosphaten auf die unterschiedlichen Zuckermoleküle übertragen. In Proteinen wird die Bindung der

Nukleotidtriphosphate häufig durch "Rossmann-Motive" bewerkstelligt. Die klassische "Rossmann-Faltung" ist bei Dehydrogenasen anzutreffen und beschreibt eine an der NAD(P)-Cofaktor-Bindung beteiligte Sekundärstrukturtopologie [Rossmann et al., 1974]. Diese besteht aus einer alternierenden β/α -Anordnung, die ein 6-stängiges, paralleles β -Faltblatt bildet, wobei sich jeweils zwei a-Helices auf einer Seite finden (Abb. 1.21).

Sie kann in zwei $\beta/\alpha/\beta/\alpha/\beta$ -Einheiten, die "Rossmann-Motive", unterteilt werden, die über eine 180°-Symmetrieachse miteinander in Beziehung stehen und jeweils für die Bindung des Adenin- bzw. Nicotinamidnukleotidanteils zuständig sind. Zwischen β 1 und α 1 findet sich eine Schleifenregion, die u.a. die als Erkennungsmerkmal der NAD(P)-bindenden Enzyme dienende Aminosäuresequenz G-X-G-X-X-G enthält [Schulz, 1992]. Die beiden ersten Glycinreste dieses Sequenzmotivs sind hierbei an der Bindung der Dinukleotidpyrophosphatgruppe beteiligt. Der letzte Glycinrest ist Teil von α 1, deren Dipolmoment mit der positiven Seite in Richtung der Pyrophosphatgruppe zeigt.

Diese Proteintopologie gehört neben der Triosephosphatisomerase-, der α/β-Hydrolase-, der Ferredoxin- und der P-Schleifen-NTP-Hydrolasen-Faltung zu den fünf häufigsten

Proteinarchitekturen [Hegyi & Gerstein, 1999]. Neben ihrer Funktion im Zusammenhang mit Oxidoreduktasen findet sich die Rossmann-Faltung u.a. aber auch bei Methyl- und Glykosyltransferasen [Goto-Ito et al., 2008; Lairson et al., 2008].

Der Übergangszustand der Nukleotidyltransferreaktion ist im Falle eines assoziativen Mechanismus durch eine trigonal-bipyramidale und bei einem dissoziativen Mechanismus durch eine trigonale Architektur gekennzeichnet (Abb. 1.22). An der Stabilisierung des Übergangszustandes können basische Aminosäurereste sowie divalente Kationen beteiligt sein [Matte et al., 1998].

1.4 Der Glykosyltransfer

Die in allen Reichen des Lebens weit verbreitete Proteinfamilie der Glykosyltransferasen katalysiert die Bildung kovalenter Bindungen zwischen aktivierten Zuckern einerseits und Proteinen, anderen Zuckermolekülen, Lipiden, Nukleinsäuren oder Antibiotika andererseits. Das aktivierte Zuckermolekül wird hierbei als Donorsubstrat bezeichnet, während das zu glykosylierenden Molekül Akzeptorsubstrat genannt wird. Obwohl insbesondere die Akzeptorsubstrate ein weites Spektrum physikochemischer Eigenschaften aufweisen und auf primärer Strukturebene deutliche Unterschiede zwischen Glykosyltransferasen verschiedener Familien zu finden sind, zeigen viele der bisher bekannten Proteinstrukturen einen ähnlichen Aufbau. Dieser Umstand hat zur Einführung verschiedener Superfamilien geführt, wobei die Glykosyltransferasesuperfamilien A und B mit Abstand die größte Verbreitung haben [Lairson et al., 2008; Breton et al., 2006; Liu & Mushegian, 2003; Hu & Walker, 2002] (Abb. 1.23).

Während der Transferreaktion kann die Konfiguration des anomeren Kohlenstoffatoms sowohl erhalten bleiben als auch invertiert werden. In diesem Zusammenhang spricht man von "invertierenden" bzw. "erhaltenden" Glykosyltransferasen, die sich jeweils in beiden großen Superfamilien finden lassen. Der Übergangszustand der Reaktion ist in beiden Fällen durch die Präsenz eines Oxocarbeniumions gekennzeichnet (Abb. 1.24). Während bei den invertierenden Glykosyltransferasen von einem S_N2-Mechanismus ausgegangen wird, werden für die erhaltenden Glykosyltransferasen sowohl ein doppelter S_N2-Mechanismus mit kovalentem Glykosylintermediat als auch ein S_Ni-ähnlicher Mechanismus (i für "internal return", da das anomere Kohlenstoffatom wieder zur Ausgangskonfiguration "zurückkehrt")

Reaktionsmechanismen bei Glykosyltransferasen. Abb. 1.24: \mathbf{R}_1 steht für das Akzeptorsubstrat, während R₂ den Nukleotidylrest des Donorsubstrates bezeichnet. Rote Pfeile symbolisieren einen nukleophilen Angriff, grüne Pfeile und Linien stehen für einen Protonentransfer. (A) S_N2-Reaktionsmechanismus der invertierenden Glykosyltransferasen. Eine funktionelle Gruppe des Enzyms deprotoniert eine OH-Gruppe des Akzeptorsubstrates und ermöglicht so den nukleophilen Angriff auf das anomere C-Atom, dessen Konfiguration hierbei invertiert wird. (B) Doppelter S_N2-Reaktionsmechanismus bei erhaltenden Glykosyltransferasen. Eine funktionelle Gruppe des Enzyms führt einen nukleophilen Angriff auf das anomere C-Atom aus. Es kommt zur Inversion der Konfiguration des anomeren Cder Ausbildung eines kovalenten Enzym-Substrat-Intermediats. Atoms und Der Nukleotidylrest deprotoniert im weiteren Verlauf eine OH-Gruppe des Akzeptorsubstrates, die dann den zweiten nukleophilen Angriff auf das anomere C-Atom ausführt. Auch hier kommt es wieder zur Inversion der Konfiguration des anomeren C-Atoms. Durch die zweimalige Inversion bleibt die Ausgangskonfiguration des anomeren C-Atoms beim Glykosyltransfer insgesamt erhalten. (C) S_Ni-Reaktionsmechanismus der erhaltenden Glycosyltransferasen. Die Deprotonierung der OH-Gruppe des Akzeptorsubstrates durch die Nukleotidylabgangsgruppe und der nukleophile Angriff auf das anomere C-Atom sind parallele Prozesse. Die Spaltung der Bindung zur Nukleotidylabgangsgruppe und die Ausbildung der neuen glykosidischen Bindung zum Akzeptorsubstrat erfolgen von derselben Seite, so dass die Konfiguration des anomeren C-Atoms erhalten bleibt.

diskutiert, bei dem Spaltung und Neubildung der glykosidischen Bindung auf derselben Seite des Zuckers erfolgen [Lairson et al., 2008]. Basierend auf Sequenzanalysen können gegenwärtig 91 Glykosyltransferasefamilien unterschieden werden (http://www.cazy.org/). Mitglieder der GT-A-Superfamilie zeichnen sich durch eine Zweidomänenfaltung aus, wobei die NTD aus einem Rossmann-Motiv besteht und beide Domänen räumlich eng zueinander angeordnet sind. Die NTD bindet den Nukleotidzucker, während die C-terminale Domäne (CTD) für die Bindung der Akzeptormoleküle zuständig ist [Unligil & Rini, 2000]. Die von dieser Enzymklasse katalysierten Transferasereaktionen sind Mn²⁺-abhängig, wobei sich das an der Mn²⁺-Koordinierung beteiligte, charakteristische DXD-Motiv in der nukleotidbindenden-Domäne befindet [Breton et al., 2006]. Die typische GT-A-Faltung wurde erstmals für die invertierende Glykosyltransferase SpsA aus *Bacillus subtilis* beschrieben, die der Glykosyltransferasefamilie 2 zugeordnet werden kann [Charnock et al., 1999].

Die Mitglieder der GT-B-Superfamilie besitzen ebenfalls zwei Domänen, wobei beide Domänen durch einen Peptidlinker deutlich voneinander getrennt sind und jeweils eine $\alpha/\beta/\alpha$ Rossmann-ähnliche Faltung aufweisen (Abb. 1.23). In allen Fällen existiert ein zentraler Spalt zwischen den Domänen. Die N- und C-terminalen Domänen sind für die Akzeptor- bzw. Donorsubstratbindung zuständig und binden ihr jeweiliges Substrat an der Innenseite des zentralen Spaltes zwischen den beiden Domänen. Oftmals besitzen die Proteine eine Cterminale α -Helix. Nach Substratbindung bewegen sich die beiden Domänen aufeinander zu, so dass Donor- und Akzeptorsubstrat in räumliche Nähe zueinander gebracht werden und der Spalt zwischen den Domänen, im dem der Glykosyltransfer stattfindet, geschlossen wird. Man kann also im Falle der GT-B-Superfamilie eine "offene" und eine "geschlossene" Konformation unterscheiden. Im Gegensatz zur GT-A-Superfamilie besitzen sie kein DXD-Motiv und benötigen im Allgemeinen keine Metallkofaktoren. Es ist auch eine größere Diversität im Hinblick auf die verschiedenen Akzeptorsubstrate vorzufinden. Dieser Umstand ist eventuell auf die Existenz einer eigens für die Akzeptorbindung zuständigen, räumlich deutlich von der CTD abgetrennten Domäne zurückzuführen [Lairson et al., 2008].

Die erste Proteinkristallstruktur der GT-B-Superfamilie wurde für die invertierende Glykosyltransferase BGT des T4 Bakteriophagen beschrieben (Abb. 1.23), die UDP-Glucose für die Glykosylierung von 5-Hydroxymethylcytosinen des viralen Genoms verwendet [Vrielink et al., 1994]. Weitere strukturelle Charakterisierungen invertierender Glykosyltransferasen mit GT-B-Faltung sind u.a. bekannt für die an der Biosynthese des Vancomycins beteiligten Glykosyltransferasen GtfA, GtfB und GtfD [Mulichak et al., 2001; Mulichak et al., 2004], die Terpen/Flavonoid-Glykosyltransferase

UGT71G1 [Shao et al., 2005], die Flavonoid-Glykosyltransferase VvGTI [Offen et al., 2006], die Makrolid-Glykosyltransferasen OleD und OleI [Bolam et al., 2007], die an Entgiftungsreaktionen beteiligte menschliche Glykosyltransferase UGT2B7 [Miley et al., 2007], die pflanzliche, bifunktionelle N- und O-Glykosyltransferase UGT72B1 [Brazier-Hicks et al., 2007], die in die LPS-Biosynthese involvierte Heptosyltransferase WaaC [Grizot et al., 2006], die Fucosyltransferase FucT [Sun et al., 2007], die an der Synthese der bakteriellen Zellwand beteiligte Glykosyltransferase MurG [Ha et al., 2000], die an der Xanthanbiosynthese beteiligte Glucuronosyltransferase GumK [Barreras et al., 2008] und die Sialyltransferase PM0188 aus *Pasteurella multocida* [Kim et al., 2008; Ni et al., 2006].

1.5 Zielsetzung

Der ubiquitäre und für die Funktion und Integrität der äußeren Membran essentielle Charakter des Kdo-Zuckers innerhalb der gramnegativen Bakterien und sein gleichzeitiges Fehlen in Säugetieren machen die für Kdo-Biosynthese, -Aktivierung und –Transfer zuständigen Enzyme zu potentiellen Angriffspunkten für die Entwicklung neuer Antibiotika [Hammond et al., 1987]. In diesem Zusammenhang sollen die Arbeiten an KdsB und WaaA aus *A. aeolicus* (KdsB_{AAE}, WaaA_{AAE}) zum einem molekularen Verständnis der für die LPS-Biosynthese unabdingbaren Vorgänge von Kdo-Aktivierung und –Transfer beitragen.

Durch die von Dr. Uwe Mamat und Dr. Jeroen R. Mesters geleisteten Vorarbeiten bezüglich der Kristallisation und initialen Phasierung der CTP-komplexierten KdsB_{AAE}-Form konnte bereits eine erste Elektronendichtekarte mit einer Auflösung von 2,5 Å erhalten werden. In diesem Fall bestand die Aufgabenstellung in der Anfertigung und Verfeinerung eines Strukturmodells, der strukturellen Interpretation des erhaltenen Modells sowie der Suche nach Kristallisationsbedingungen für CTP-freies KdsB_{AAE}.

Auch für die Kdo-Transferase Waa A_{AAE} waren bei Beginn der Doktorarbeit bereits verschiedene Kristallisationsbedingungen etabliert. Die besten Kristalle streuten an der X13-Beamline des "Deutschen-Elektronen-Synchrotron" (DESY) bis zu einer Auflösung von 6 Å. Das Ziel lag hier in der Herstellung von Waa A_{AAE} -Kristallen mit einem Streuvermögen von besser als 3,5 Å, der Phasierung der erhaltenen Strukturfaktoren, der Anfertigung und Verfeinerung eines Strukturmodells, der strukturellen Interpretation des erhaltenen Modells und der Herstellung von Waa A_{AAE} :Substrat-Komplexen.

2. Materialen und Methoden

2.1 Materialien

2.1.1 Verwendete Geräte

Gerät	Hersteller
AF20 Eismaschine	Scotsman
Äkta FPLC P-950	Amersham Pharmacia Biotech
Avanti J-26xP Zentrifuge	Beckman Coulter
Cryostream Cooler	Oxford Cryosystems
Concentrator 5301	Eppendorf
Excella E10 Platform Shaker	New Brunswick Scientific
French Pressure Cell Press	SLM Instruments
GeneAmp PCR System 9700	PE Applied Biosystems
Gene Pulser	Biorad
Hera Safe Flow Box	Heraeus Instruments
Heraus Tisch-Zentrifuge	Heraeus Instruments
Labor- und Analysenwaage	Sartorius
Laser Spectroscatter 201	RiNA
MBA 2000 Spektrometer	Perkin Elmer
Membran-Vakuumpumpe	Vacuubrand
Mighty Small SE 245 Dual Gel Caster	Hoefer
Mighty Small II SE 250 Elektrophorese –	Hoefer
Kammer	
Mikroskop SZX 12	Olympus
Mini-Sub Cell für Agarosegelelektrophorse	Biorad
MR-2002 Magnetrührer	Heidolph
pH-Meter Titrator TR156	Schott-Geräte
Phoenix-Kristallisationsrobotor	Art-Robbins-Instruments
pH 211 Microprocessor pH-Meter	HANNA Instruments
Pipetten	Eppendorf
Power PAC 300 Spannungsgerät	Biorad
RC-5B plus Zentrifuge	DuPont Sorvall
Satorius Universal Waage	Sartorius
Systec V 150 Autoklav	Systec

Gerät	Hersteller
Thermomixer comfort	Eppendorf
Trockenschrank	Thermo Scientific
Xcalibur PX Ultra Röntgendiffraktometer	Oxford Diffraction
Xenon-Chamber	Hampton Research

2.1.2 Verbrauchsmaterialien

Material	Hersteller
Amicon-Ultra Zentrifugenfilter	Millipore
Big-Dye Terminator Cycle Sequencing Ready	Applied Biosystems
Reaction Kit	
Cryschem Plate (Kristallisationsplatten)	Hampton Research
Crystal Clear Sealing Tape	Henkel
Crystallisation Basic Kit	Sigma-Aldrich
Crystallization Extension Kit	Sigma-Aldrich
DEAE Sepharose Fast Flow	GE-Healthcare
Dialyseschläuche Spectra/Por	Specrum Laboratories
Elektroportionsküvetten	Biorad
E.N.Z.A Plasmid Miniprep Kit I	Peqlab
EasyXtal DG-CrystalSupport X-Seal	Qiagen
(Kristallisationsplatten)	
Filteraufsätze zu Sterilfiltration (0,22 µm	Millipore
Porengröße)	
Filtermembran (0,45 µm Porengröße)	Millipore
HiTrap Heparin Sepharose High Performance	GE-Healthcare
Hi Load Superdex 200 pg	Pharmacia
HiTrap Q-Sepharose High Performance	GE-Healthcare
Intelli-Plate-96-Well (Kristallisationsplatten)	Art Robbins Instruments
Kryoloops	Hampton Research
Ni ²⁺ -Sepharose High Performance	GE-Healthcare
Phenyl Sepharose CL-4B	GE-Healthcare
UV-Küvetten	Sarstedt
Zellophanhüllen	MiTeGen

2.1.3 Chemikalien und Enzyme

Alle Chemikalien wurden von den Firmen Applichem, Alfa-Aesar, Fluka, Linde, Merck, Roth, Roche oder Sigma-Aldrich bezogen. Alle Enzyme wurden von den Firmen New-England Biolabs oder Promega geliefert. Falls es von besonderer Wichtigkeit sein sollte, wird der Hersteller separat angegeben.

2.2 Methoden

2.2.1 Rekombinante Proteinproduktion und -aufreinigung

2.2.1.1 KdsBAAE

Es wurde nach dem Protokoll von Dr. Uwe Mamat gearbeitet. Eine in LB-Medium (250 ml) angezogene, mit 100 μ g/ml Ampicillin sowie 30 μ g/ml Choramphenicol versetzte *E.coli*-BL21-Kultur (CodonPlus pRIL, pT7-KdsB) wurde auf dem Schüttler (150 rpm) bei 37°C über Nacht angezogen. 50 ml dieser Kultur wurden zur Inokulation von 2,5 l LB-Medium - versetzt mit den oben genannten Antibiotika - verwendet und bei 37°C auf dem Schüttler (250 rpm) inkubiert. Bei einer OD₆₀₀ zwischen 0,6 und 0,8 erfolgte die Zugabe von 25 ml einer 100 mM IPTG-Lösung. Anschließend wurde für weitere 3 h inkubiert.

Danach erfolgte die Zentrifugation bei 6000 rpm und 4°C für 20 min. Das Zellsediment wurde einmal in kaltem PBS-Puffer resuspendiert und abermals bei 6000 rpm und 4°C für 20 min zentrifugiert. Das Zellsediment von 4 x 2,5 l Kultur wurde in 195 ml Puffer KdsB-A gelöst und mit 2 ml Lysozymlösung behandelt. Anschließend folgte eine Inkubation bei RT für 30 min auf dem Magnetrührer. Vor Durchführung des Zellaufschlusses mittels "French-Press" wurde die Probe im Eisbad heruntergekühlt und jeweils 400 µl DNase- bzw. RNase-Lösung sowie vier Tabletten Protease Inhibitor (Complete Protease Inhibitor Cocktail Tablets, EDTA-free, Roche) gelöst in 8 ml Puffer KdsB-A zugegeben. Danach erfolgte der dreimalige Zellaufschluss mittels "French-Press". Der Proteinextrakt wurde von den Zelltrümmern durch Zentrifugation bei 4°C und 15000 rpm für 30 min abgetrennt. Der Überstand wurde für 20 min bei 90°C inkubiert und anschließend im Eisbad abgekühlt. Es folgte die Zentrifugation bei 4°C und 15000 rpm für 30 min sowie die Filtrierung mittels Filteraufsatz.

Danach wurde eine Ionenaustauschchromatograhpie an einer mit Puffer KdsB-A äquilibrierten DEAE-Sepharosesäule durchgeführt. Die Elution erfolgte durch einen linearen Gradienten über zehn Säulenvoumen bei 20% Puffer KdsB-B. Zu den vereinigten Fraktionen wurde festes (NH₄)₂SO₄ bis zu einer Konzentration von 20% (w/v) zugegeben. Es folgte eine hydrophobe Interaktionschromatographie an einer mit Puffer KdsB-C äquilibrierten CL-4B-Phenylsepharosesäule. Die Elution des Proteins erfolgte durch Puffer KdsB-A. Die vereinigten Hauptfraktionen wurden danach gegen 8 1 Puffer KdsB-A über Nacht im Kühlraum dialysiert. Anschließend wurde eine Ionenaustauschchromatographie an einer mit Puffer KdsB-A äquilibrierten HiTrap-Q-Sepharosesäule durchgeführt. Die Elution erfolgte durch einen linearen Gradienten über 40 Säulenvolumen bei 12% Puffer KdsB-B. Die erhaltenen Hauptfraktionen wurden mit Hilfe von Zentrifugenfiltern auf 7,5 ml eingeengt und anschließend gegen 8 l Puffer KdsB-D über Nacht im Kühlraum dialysiert. Die Probe wurde auf eine mit Puffer KdsB-D äqulibrierte Superdex-200-pg (HiLoad 26/100) Gelfiltrationssäule aufgetragen und eluiert. Die vereinigten Hauptfraktionen wurden ein weiteres Mal über Nacht im Kühlraum gegen Puffer KdsB-D dialysiert und anschließend bei 14000 rpm und 4°C für 10 min zentrifugiert. Der Überstand wurde für die Kristallisationsexperimente verwendet.

LB-Medium:	Trypton Hefeextrakt NaCl ad 2,5 1 A. bio	2 1 1 dest.	25,0 g 12,5 g 12,5 g	
IPTG-Lösung:	IPTG ad 125 ml A.	bidest.	3,0 g	
PBS-Puffer:	Lösung 1:	Na ₂ HPO NaCl ad 750 m	$P_4 \ge 2H_2O$ nL A. bidest.	6,7 g 6,0 g
	Lösung 2:	KH ₂ PO ₄ NaCl ad 250 m	nL A. bidest.	1,7 g 2,0 g
	Lösung 1 und 2 wurden am pH-Me		n am pH-Mete	er gemischt, bis ein pH-Wert von
	7,2 erreicht w	urde.		
Lysozymlösung:	Lysozym ad 2 ml A. bic	2 lest	0,0 mg	
DNase-Lösung:	1 mg/ml DNase in 10 mM Tris-HCl pH 7,5			
RNase-Lösung:	1 mg/ml RNase in 10 mM Tris-HCl pH 7,5			
KdsB-A:	20 mM Tris-HCl, pH 7,5 ; 10 mM MgCl ₂ ; 5 mM β-Mercaptoethanol			
KdsB-B:	20 mM Tris-HCl, pH 7,5 ; 10 mM MgCl ₂ ; 5 mM β -Mercaptoethanol, 1 M NaCl			
KdsB-C:	20 mM Tris-HCl, pH 7,5 ; 10 mM MgCl ₂ ; 5 mM β -Mercaptoethanol, 20% (w/v) (NH ₄) ₂ SO ₄			

KdsB-D:	20 mM Tris-HCl, pH 7,5 ;	2 mM MgCl ₂ ; 5 mM β-Mercaptoethanol,
	100 mM NaCl	

2.2.1.2 WaaA_{AAE}

Es wurde weitgehend nach dem Protokoll von Dr. Uwe Mamat gearbeitet. Eine *E. coli* BL21-SI-Kultur (pUM216) wurde in LBON-Medium, versetzt mit 50 µg/ml Carbenicllin, bei 30°C auf dem Schüttler (150 rpm) über Nacht angezogen. 50 ml dieser Kultur wurden zur Inokulation von 1,8 l LBON-Medium verwendet, das Carbenicillin in einer Konzentration von 50 µg/ml enthielt. Danach erfolgte die Inkubation der Kultur auf dem Schüttler (250 rpm) bei RT bis zu einer OD₆₀₀ zwischen 0,6 und 0,8. Die Induktion der Expression erfolgte durch Zugabe von 700 ml Induktionslösung. Anschließend wurde die Kultur auf dem Schüttler (250 rpm) bei RT über Nacht inkubiert.

Danach wurde die Kultur bei 6000 rpm und 4°C für 30 min zentrifugiert. Das erhaltene Zellsediment wurde einmal in eiskaltem PBS-Puffer (vergl. 2.2.1.1) resuspendiert und anschließend bei 6000 rpm und 4°C für 30 min zentrifugiert. Das Zellsediment von 4 x 2,5 l Kultur wurde in 190 ml Puffer WaaA-A gelöst. Es folgte die Zugabe von 2 ml Lysozymlösung (vergl. 2.2.1) und die Inkubation bei RT auf dem Magnetrührer für 30 min. Danach wurde das gelöste Zellpellet im Eisbad heruntergekühlt. Es folgte die Zugabe von je 500 µl DNase- bzw. RNase-Lösung und Protease Inhibitor Cocktail (vergl. 2.2.1.1, vier Tabletten gelöst in Puffer WaaA-A). Der Zellaufschluss mittels "French-Press" wurde 5x durchgeführt. Danach erfolgte die Zentrifugation des Proteinextraktes bei 18000 rpm und 4°C für 30 min. Der Überstand wurde ein zweites Mal unter identischen Bedingungen zentrifugiert.

Die Aufreinigung begann mit einer Ionenaustauschchromatographie an einer mit Puffer WaaA-A äquilibrierten DEAE-Sepharosesäule. *E.coli* Proteine binden unter diesen Bedingungen an die Säule, während sich WaaA_{AAE} im Durchlauf findet. Durchlauffraktionen, die WaaA_{AAE} enthielten, wurden mittels SDS-PAGE identifiziert und vereinigt. Es folgte die Zugabe von festem NaCl und Imidazol bis zu einer Endkonzentration von 1 M bzw. 10 mM. Anschließend wurde die Lösung bei 4°C auf dem Magnetrührer für 30 min inkubiert und danach bei 18000 rpm und 4°C für 30 min zentrifugiert. Der Überstand wurde durch eine 0,45 µm Membran filtriert. Es folgte eine Affinitätschromatographie an einer mit Puffer WaaA-B äquilibrierten Ni²⁺-Sepharose-Säule. Die Waschschritte bzw. Elution erfolgten mittels Stufengradienten gegen Puffer WaaA-C. Nach vier Waschschritten (0%, 2%, 14%, 18% WaaA-C) für je zehn Säulenvolumen wurde mit 100% Puffer WaaA-C eluiert. Die

vereinigten Hauptfraktionen wurden gegen 8 l Puffer WaaA-D über Nacht bei 4°C dialysiert, auf 80°C erhitzt und für 30 min im Wasserbad bei 80°C inkubiert. Anschließend wurde die Probe im Eisbad heruntergekühlt und bei 18000 rpm und 4°C für 30 min zentrifugiert. Es folgte eine Affinitätschromatographie an einer mit Puffer WaaA-D äquilibrierten Heparin-Sepharosesäule. Es wurden zwei Stufengradienten gegen Puffer WaaA-E durchgeführt, wobei die erste Stufe (26.7% WaaA-E) der Abtrennung von Verunreinigungen, die zweite (53.3% WaaA-E) der Elution diente. Die Hauptfraktionen wurden vereinigt und gegen 2 l Puffer WaaA-D über Nacht bei 4°C dialysiert. Der Detergenzaustausch erfolgte an einer 1 ml Heparin-Sepharosesäule. Dazu wurde in den Puffern WaaA-D und –E Triton-X100 durch das entsprechende Detergenz ersetzt. Im Allgemeinen lag die Konzentration des Detergenz bei dem doppelten der kritischen Micellenkonzentration. Die Säule wurde zunächst mit WaaA-D äquilibriert, bevor die dialysierte Probe aufgetragen wurde. Dann folgte der Austausch gegen den modifizierten WaaA-D Puffer und die Säule wurde mit zehn Säulenvolumen gewaschen. Die Elution erfolgte mittels Stufengradient gegen den modifizierten Puffer WaaA-E (53,3% WaaA-E). Die vereinigten Hauptfraktionen wurden über Nacht gegen den modifizierten Puffer WaaA-D dialysiert und bei 13000 rpm und 4°C zentrifugiert. Der Überstand wurde für die Kristallisationsexperimente verwendet. Je nach angestrebter Konzentration wurde die Proteinlösung gegebenenfalls noch mittels Zenrifugenfilter aufkonzentriert.

LBON-Medium:	Trypton Hefeextrakt ad 1,8 l A. bidest.	25,0 g 12,5 g
Induktionslösung:	20% (w/v) Glucose; (Carbenicillin; 1,4% (v),43 M NaCl; 0,5 M K-Phosphat pH 4,5; 50 μg/ml ν/v) Glycerol
Puffer WaaA-A:	50 mM Tris-HCl pH ol; 0,1% (v/v) Triton-	8,7; 10% (v/v) Glycerol; 5 mM β -Mercaptoethan-X100
Puffer WaaA-B:	25 mM Tris-HCl pH ol; 0,1%(v/v) Triton-2	8,7; 10% (v/v) Glycerol; 5 mM β-Mercaptoethan- K100; 1 M NaCl; 10 mM Imidazol
Puffer WaaA-C:	25 mM Tris-HCl pH ol; 0,1% (v/v) Triton-	8,7; 10% (v/v) Glycerol; 5 mM β-Mercaptoethan- X100; 1 M NaCl; 500 mM Imidazol
Puffer WaaA-D:	25 mM Tris-HCl pH ol; 0,1% (v/v) Triton-	8,7; 10% (v/v) Glycerol; 5 mM β -Mercaptoethan-X100; 100 mM NaCl
Puffer WaaA-E:	25 mM Tris-HCl pH ol: 0.1% (v/v) Triton-	8,7; 10% (v/v) Glycerol; 5 mM β-Mercaptoethan- X100 [.] 1 5 M NaCl
2.2.2 Charakterisierung der Proteine in Lösung

2.2.2.1 Bestimmung der Proteinreinheit

Zur Charakterisierung von Proteinlösungen wurden Polyacrylamidgelelektrophoresen [Laemmli, 1970] in 10%-igen SDS-Polyacrylamidgelen bei 120 V in einer Kammer mit Elektrodenpuffer durchgeführt. Die Proteinproben wurden in Auftragspuffer gelöst und vor dem Auftragen für 10 min bei 95°C inkubiert.

Auftragspuffer (2x):	0,5 M Tris HCl pH 6,8 SDS (10%) β-Mercaptoethanol Glycerol Bromphenolblau A. bidest.	1,25 ml 2,0 ml 0,5 ml 1,0 ml 0,2 mg 0,25 ml
Trenngel (13%):	Acrylamid/Bis (T 30%; C 0,8%) 1,5 M Tris/HCl , pH 8,8 A. bidest. SDS (10%) APS (10%) TEMED	1,82 ml 1,35 ml 2,30 ml 56,2 µl 28,1 µl 6 µl
Sammelgel (5%):	Acrylamid/Bis (T 30%; C 0,8%) 0,5 M Tris/HCl , pH 6,8 A. bidest. SDS (10%) APS (10%) TEMED	0,5 ml 0,75 ml 1,69 ml 30 µl 30 µl 4 µl
Elektrodenpuffer (5x):	Tris Glycin SDS (10%) ad 1 IA. bidest.; pH 8,4	15 g/l 72 g/l 50 ml

2.2.2.2 Bestimmung der Proteinkonzentration

Alle Proteinkonzentrationen wurden nach der Bradford-Methode [Bradford, 1976] mit Hilfe des Biorad-Protein-Assays gegen einen BSA-Standard bestimmt.

2.2.2.3 Überprüfung der Homogenität

Mit Hilfe der dynamischen Lichtstreuung wurde die Homogenität von Proteinlösungen bestimmt. Es wurde der Laser-Spectroscatter-201 der Firma RiNA verwendet. Alle untersuchten Proteinlösungen wurden vor der Messung bei 13000 rpm und 4°C für 10 min zentrifugiert. Für jede einzelne Bestimmung des hydrodynamischen Radius wurden zehn

Messungen durchgeführt. Die erhalten Daten wurden mit Hilfe der Photomeasure-Software der Firma RiNA analysiert.

2.2.3 Kristallisation von Proteinen

Die Kristallisation von Proteinen nach der Dampfdiffusionsmethode im "sitting-drop"- oder "hanging-drop"-Verfahren beruht auf der kontrollierten Verringerung der Proteinlöslichkeit. Zu diesem Zweck wird die Proteinlösung mit einem Fällungsmittel gemischt und über einen gewissen Zeitraum gegen eine Reservoirlösung äquilibriert. Das Kristallisationssytem bewegt sich während des Äquilibrierungsprozesses durch das Phasendiagramm bis in die Nukleations- bzw. Keimbildungszone, in der die Kristallbildung ermöglicht wird. Durch Kristallbildung und -wachstum wird die Proteinkonzentration abgesenkt, so dass ein Vordringen in die Präzipitatzone verhindert und der metastabile Bereich des Phasendiagramms erreicht wird (Abb. 2.1). Im Idealfall bilden sich dann nur wenige, große Kristalle. Im Gegensatz zur Dampfdiffusionsmethode kommt es beim "microbatch-underoil"-Verfahren nicht zu Wanderungsbewegungen des Kristallisationssystems im

Phasendiagramm. Der Mischung von Proteinlösung und Fällungsmittel folgt die Überschichtung mit Ölen. Auf diese Weise lassen sich bestimmte Regionen des Phasendiagramms gezielt auswählen [Chayen et al., 1992]. In der modifizierten Methode ermöglicht die Mischung von Ölen mit unterschiedlichen Dampfdiffusionseigenschaften, z.B. Praffinöl und Siliconöl, Wanderungsbewegungen innerhalb des Phasendiagramms [D'Arcy et al., 1996].

2.2.3.1 Identifizierung von initialen Kristallisationsbedingungen

Sowohl für KdsB_{AAE} als auch für WaaA_{AAE} wurde mit Hilfe eines Kristallisationsroboters mit der "sitting-drop"-Methode nach neuen Kristallisationsbedingungen gesucht. Es wurden Intelli-Platten der Firma Art-Robbins-Instruments verwendet. Vor dem Ansetzen der Kristallisationsexperimente wurde die Proteinlösung bei 13000 rpm und 4°C für 10 min zentrifugiert. Es wurden 288 Bedingungen (vergl. 4.1) bei verschiedenen Temperaturen

getestet, wobei jeweils 0,275 µl Proteinlösung mit 0,275 µl Fällungsmittel gemischt und gegen 80 µl Fällungsmittel äquilibriert wurden. Die Auswertung der Kristallisationsexperimente erfolgte unter dem Lichtmikroskop.

2.2.3.2 Optimierung der initialen Kristallisationsbedingungen

Es wurde versucht, die erhaltenen Kristallisationsbedingungen im Zuge der ersten Optimierungsbemühungen mit Hilfe des Kristallisationsroboters nach dem "Ceteris-Paribus"-Verfahren zu verbessern. Dabei wurde die Konzentration einer Fällungsmittelkomponente verändert, während die Konzentration der übrigen Komponenten konstant gehalten wurde. Bei Veränderungen des pH-Wertes wurden übliche biologische Puffer in identischen Konzentrationen verwendet. Die beste Kristallisationsbedingung nach diesen Maßnahmen wurde mit Hilfe des Kristallisationsroboters einem Additivscreening unterworfen. Dabei bestand das Reservoir aus 72 µl Fällungsmittel- und 8 µl Additivlösung. Zur Kristallisation wurden jeweils 0,275 µl Reservoirlösung mit 0,275 µl Proteinlösung gemischt, die zuvor bei 13000 rpm und 4°C für 10 min zentrifugiert worden war, und gegen die Reservoirlösung äquilibriert.

Erst nach diesen Schritten wurden die Optimierungsbemühungen durch das manuelle Ansetzen von 24-Well-Platten und durch die Anwendung alternativer Kristallisationsmethoden fortgeführt.

2.2.3.3 Reduzierung der Oberflächenentropie von WaaAAAE

Die Kristallisation von Proteinen ist auf die Änderung der freien Energie zurückzuführen, die wiederum aus zwei Komponenten besteht:

$$\Delta \mathbf{G} = \Delta \mathbf{H} - \mathbf{T} \left(\Delta \mathbf{S}_{\text{Protein}} + \Delta \mathbf{S}_{\text{Solvens}} \right)$$

Die enthalpischen Differenzen, die mit dem Transfer von Proteinmolekülen aus der Lösung das Kristallgitter verbunden sind, sind typischerweise klein, so dass den in Entropieänderungen von Protein und Solvens bei der Kristallisation eine entscheidende Rolle zukommt. Oberflächenexponierte, lange Aminosäurenseitenketten, deren konformationelle eingeschränkt Flexibilität aufgrund von Kristallkontakten wird, können dem Kristallisationsverhalten daher abträglich sein. Aus diesem Grund kann ein Austausch der betreffenden Aminosäurenseitenketten die Kristallisation begünstigen. Dieser Ansatz bildet die Grundlage der verbesserten Kristallisation von Proteinen durch Reduzierung der Oberflächenentropie [Derewenda, 2004]. Bei der praktischen Anwendung werden in der Primärstruktur dicht benachbarte Lysin- oder Glutamatreste, die sich mit hoher Wahrscheinlichkeit an der Oberfläche von Proteinen befinden, zu Alaninresten mutiert.

2.2.3.3.1 Tryptischer Verdau von WaaAAAE

Zur experimentellen Bestimmung von oberflächenexponierten Lysinresten wurde ein tryptischer Verdau durchgeführt. Festes Trypsin wurde bis zu einer Konzentration von 0,5 mg/ml in Puffer T1 gelöst. Danach erfolgte eine 1:10-Verdünnung mit WaaA_{AAE}-Proteinlösung, deren Konzentration 1,1 mg/ml betrug. Die Lösung wurde durch zweimaliges Auf- und Abpipettieren gemischt und bei 37°C inkubiert. In verschiedenen Zeitabständen wurde jeweils eine 10 μ l-Probe entnommen, mit 10 μ l SDS-Auftragspuffer (vergl. 2.2.2.1) gemischt und sofort in flüssigem Stickstoff gefroren. Alle entnommenen Proben wurden bis zur Durchführung der SDS-PAGE bei -20 °C gelagert.

Puffer T1:10% (v/v) Glycerol; 100 mM NaCl; 2 mM 6-Cyclohexyl-1-hexyl-β-D-maltosid(Cymal-6); 5 mM β-Mercaptoethanol; 25 mM Tris-HCl 8,5

2.2.3.3.2 In-Gel-Verdau und massenspektrometische Analyse von Peptidfragmenten

Es wurde nach dem Protokoll des Max-Planck-Institutes für Infektionsbiologie gearbeitet (Arbeitsgruppe Proteinanalytik, Dr. Peter Jungblut). Die Coomassie gefärbten Proteinbanden von Interesse wurden aus dem SDS-PAGE-Gel ausgeschnitten und durch die folgenden Waschschritte bei 30°C auf dem Thermoschüttler entfärbt:

- 1) 500 µl Wasch- und Schrumpfpuffer, 10 min
- 2) 500 µl Äquilibrierungspuffer, 10 min
- 3) 500 µl Wasch- und Schrumpfpuffer, 10 min
- 4) 500 µl Äquilibrierungspuffer, 10 min

Nach Entfernung des Überstandes wurden die Gelstücke in einem Eppendorfkonzentrator angetrocknet. Danach wurden 30 µl Spaltpuffer und 2 µl Trypsinlösung gemischt und zu den angetrockneten Gelstücken gegeben. Es folgte die Inkubation über Nacht bei 37°C auf dem Thermoschüttler. Zur Anreicherung und Entsalzung der erhaltenen Peptidfragmente wurde eine "ZipTip"-Aufkonzentrierung (Millipore) durchgeführt. Je 2 µl der erhaltenen Probe wurden mit 2 µl MALDI-Matrixlösung (einschließlich der Kalibrierpeptide Angiotensin I, II und ACTH 1-17) gemischt. 2 µl dieses 1:1-Gemisches wurden auf den MALDI-Probenblock aufgetragen. Die Durchführung der Messungen erfolgte am Bernhard-Nocht-Institut in Hamburg an einem MALDI-TOF-Biflex-II-Massenspektrometer (Bruker Daltonics). Die Detektierspannweite betrug 800 – 4000 Da, und die erhaltenen Daten wurden mit der Biotools- Software analysiert (Bruker BioSciences).

Wasch- und Schrumpfpuffer:	50% (v/v) Acetonitril; 100 mM Tris-HCl pH 8,5
Äquilibrierungspuffer:	5% (v/v) Acetonitril; 50 mM (NH ₄)HCO ₃ pH 7,8
Spaltpuffer:	5% (v/v) Acetonitril; 50 mM (NH ₄)HCO ₃ pH 7,8
Trypsinlösung:	Trypsin (Promega) 0,2 µg/µl in Spaltpuffer MALDI-
MALDI-Matrixlösung:	33% (v/v) Acetonitril; 0,1% (v/v) Trifluoressigsäure und
	α -Cyano-4-Hydroxy-Zimtsäure (gesättigt).

2.2.3.3.3 PCR-Mutagenese

Die pUM216-Plasmide wurden mit Hilfe des E.N.Z.A.-Plasmid-Miniprep-Kit-I (peqlab) nach den Angaben des Herstellers isoliert. Plasmidkonzentrationen wurden photometrisch bestimmt. Alle verwendeten Primer wurden von Dr. Uwe Mamat zur Verfügung gestellt. Bei der Durchführung der PCR-Mutagenese wurde nach dem "QuikChange-II-Site-Directed Mutagenesis"-Protokoll mit den entsprechenden Chemikalien gearbeitet. Nach Durchführung der PCR-Mutagenese wurde DpnI (New England Biolabs) bis zu einer Endkonzentration von 0,3 U/µl zugegeben. Anschließend wurde für 1h bei 37°C inkubiert.

PCR-Programm:
1) 95°C, 30 s, 1 Zyklus
2) 95°C, 30 s
55°C, 60 s
68°C, 480 s, 18 Zyklen
3) 4°C,∞

2.2.3.3.4 Transformation von Plasmiden

Mutierte Plasmide wurden mittels Elektroporation in kompetente *E. coli* XL-1-Blue-Zellen eingebracht. Dazu wurden je 50 μ l elektrokompetente Zellen mit 1 μ l Plasmidlösung für 1 min auf Eis inkubiert. Die Elektroporation wurde in vorgekühlten 2 mm Elektroporationsküvetten an einem Biorad-Gene-Pulser (200 Ω , 25 μ F, 2500 V) mit Entladungszeiten im Bereich von 4,4 – 4,8 ms durchgeführt. Anschließend wurde die Küvette mit 1 ml SOC-Medium ausgespült. Es folgte die Inkubation auf dem Schüttler für 1 h bei 150 rpm und 37°C. Danach wurden je 100 μ l der unverdünnten, 1:10, 1:100 sowie 1:1000 verdünnten Lösung auf LB-Agarplatten mit 100 μ g/ml Ampicillin ausplattiert.

Soc-Medium:	Hefeextrakt	0,5% (w/v)
	Trypton	2% (w/v)
	NaCl	10 mM
	KCl	2,5 mM
	MgCl ₂	10 mM
	MgSO ₄ x 7H ₂ O	10 mM
	Glucose	20 mM
	in A. bidest.	
LB-Agarplatten:	Hefeextrakt	5,0 g
	Trypton	10,0 g
	NaCl	10,0 g
	Agar	12,0 g
	ad 11 A. bidest.	

2.2.3.3.5 Sequenzierung von Plasmiden

Erhaltene Transformanten wurden in 5 ml LB-Medium, versetzt mit 100 µg/ml Ampicillin, über Nacht auf dem Schüttler bei 37°C und 150 rpm angezogen. Danach erfolgte die Plasmidisolation mit Hilfe des E.N.Z.A.-Plasmid-Miniprep-Kit-I (Peqlab). Bei der Sequenzierung der Plasmide wurde das "Big-Dye-Terminator-CycleSequencing-Ready-Reaction-Kit" (Applied Biosystems) verwendet. Die Auswertung der Sequenzierungs-reaktionen erfolgte am Forschungszentrum Borstel durch die Laborgruppe Stukturchemie. Alternativ wurden isolierte Plasmide und die entsprechenden Primer der Firma MWG zugesandt.

Big-Dye-reaction-mix:	4 µl	PCR-Programm:	
10 µM Primer:	1 µl	1) 95°C, 10 s	
Plasmidlösung (1 µg):	x µl	2) 55°C, 5 s	
H ₂ O:	<u>x µl</u>	3) 60°C, 4 min, 25 Zyklen	
	20 µl	4) 16°C, ∞	

2.2.3.3.6 Funktionelle in vivo-Charakterisierung

Die mutierten Plasmide wurden durch Elektroporation (vergl. 2.2.3.3.4) in *E. coli* Δ *WaaA*- Δ *WaaC*-KPM56-Zellen eingebracht [Mamat et al., 2009]. Die erhaltenen Transformanten wurden in 20 ml LB-Medium, versetzt mit 100 µg/ml Ampicillin, über Nacht auf dem Schüttler bei 150 rpm und 37°C inkubiert. Danach wurde die Übernachtkultur zur Inokulation von 2 l LB-Medium verwendet, das unter den oben genannten Bedingungen inkubiert wurde. Es erfolgte keine Induktion der Expression. Die Zellen wurden bei 6000 rpm abzentrifugiert und 1 x mit PBS-Puffer gewaschen. Danach erfolgte die LPS-Isolierung durch Phenol:Chloroform:Petroliumether-Extraktion [Galanos et al., 1969]. Die erhaltenen Proben wurden durch Elektrosprayionisation-(ESI)-Massenspektrometrie in der Laborgruppe Biophysik des Forschungszentrums Borstel untersucht.

2.2.3.3.7 Agarosegelelektrophorese

Um den Erfolg der PCR-Mutagenesen und Plasmidpräparationen zu überprüfen, wurden Agarosegelelektrophoresen durchgeführt. Hierzu wurden 0,8% ige Agarosegele in TBE-Puffer verwendet. Als Laufpuffer diente ebenfalls TBE-Puffer. Die Elektrophorese erfolgte bei 80 V. Die Gele wurden in einem Ethidiumbromidbad gefärbt und anschließend für 10 bis 20 min gewässert. Danach folgte die Auswertung der Gele unter UV-Licht.

TBE-Puffer:	Tris10,9Borsäure5,6ad 1 1 A. bidest.	g/l g/l
Gelload-Puffer (10x):	Glycerol Bromphenolblau Xylencyanol EDTA-Na ad 10 ml A. bidest.	5 ml 0,04 g 0,04 g 1 mM
Ethidiumbromid:	1 mg/l in A. bidest.	

2.2.4 Bestimmung von Proteinkristallstrukturen

2.2.4.1 Theorie der Röntgenstreuung durch Kristalle

Trifft ein Röntgenstrahl auf Elektronen in einem Kristallgitter, so werden diese wiederum selber zum Ausgangspunkt elektromagnetischer Strahlung. Bei der für die Proteinkristallographie maßgeblichen Thompson-Streuung erfolgen Absorption und Emission ohne Energieverlust, d.h. die Wellenlänge λ der primären und sekundären Röntgenstrahlung ist gleich. In Abhängigkeit der relativen Orientierung von primärem Röntgenstrahl zu Proteinkristall kommt es in bestimmten Richtungen zu konstruktiver Interferenz der von den angeregten Elektronen ausgehenden sekundären Röntgenstrahlung. Die Winkel α , unter denen diese konstruktive Interferenz auftritt, können durch das "Braggsche Gesetz" erklärt werden (Abb. 2.2). Danach entsteht die konstruktive Interferenz durch die Reflektion des primären

Röntgenstrahls an einer parallelen Ebenenschar, die durch die ganzzahligen "Millerschen Indices" h,k,l gekennzeichnet ist, wobei letztere die Anzahl der Schnittpunkte der Ebenenschar mit den Einheitszellachsen a, b und c wiedergeben. Der Abstand zwischen den einzelnen Ebenen wird als d_{hkl} bezeichnet. Der zu untersuchende Kristall wird üblicherweise im primären Röntgenstrahl gedreht, damit die Reflektionsbedingung für möglichst viele Ebenenscharen erfüllt wird und ein Streumuster zu erkennen ist. Eine graphische Interpretation des erhaltenen Streumusters erlaubt die Ewald-Konstruktion. Dazu werden senkrecht auf den verschiedenen Ebenenscharen stehende Vektoren der Länge $1/d_{hkl}$ von einem gemeinsamen Ursprung O aus abgetragen. Auf diese Weise entsteht das sogenannte

reziproke Gitter. Der zu untersuchende Kristall bildet den Ursprung einer Kugel, deren Durchmesser $1/\lambda$ beträgt. Wird der Kristall im Zentrum der Konstruktion rotiert, so wird diese Bewegung auf das reziproke Gitter übertragen. Berührt nun ein Gitterpunkt die Oberfläche der Kugel, so ist die Reflexionsbedingung für die entsprechende Ebenenschar erfüllt und der Vektor Kristall-Gitterpunkt definiert die Richtung der konstruktiven Interferenz (Abb 2.3). Die hierbei erzeugten Intensitäten I_{hkl} können mittels geeigneter Detektoren aufgefangen werden.

2.2.4.2 Kristallographisches Phasenproblem

Das Ziel der Proteinkristallographie besteht in der Rekonstruktion der Elektrondichtefunktion $\rho(x,y,z)$ der Einheitszelle mittels Fouriersynthese. Die Fouriersynthese entspricht einer Addition von Wellen, die durch Amplitude, Wellenlänge und Phase gekennzeichnet sind. Die einzelne, zu addierende Welle wird in der Proteinkristallographie auch als Strukturfaktor F_{hkl} bezeichnet, der durch die am Detektor gemessene Intensität I_{hkl} repräsentiert wird. Während die Amplituden der Strukturfaktoren aus den Intensitäten des Streumusters abgeleitet werden können, ermöglichen die "Millerschen Indices" in Kombination mit den Einheitszellenparametern die Berechnung der betreffenden Wellenlänge.

Es existiert jedoch keine Möglichkeit, die Phase α , die relativ zum Ursprung der Einheitszelle definiert wird und zu der alle Atome in der Einheitszelle beitragen, direkt aus dem detektierten Streumuster zu bestimmen. Deshalb kann die Elektronendichtefunktion

$$\rho(\mathbf{x},\mathbf{y},\mathbf{z}) = (1/\mathbf{V}) \sum_{\mathbf{h}} \sum_{\mathbf{k}} \sum_{\mathbf{l}} |F(\mathbf{h},\mathbf{k},\mathbf{l})| \propto \exp\left[-2\pi \mathbf{i} (\mathbf{h} \mathbf{x} + \mathbf{k}\mathbf{y} + \mathbf{l}\mathbf{z}) + \mathbf{i}\alpha (\mathbf{h},\mathbf{k},\mathbf{l})\right]$$
(1)

nicht rekonstruiert werden. Dieser Umstand wird auch als kristallographisches Phasenproblem bezeichnet.

2.2.4.3 Lösungsansätze für das Phasenproblem

Die in der Proteinkristallographie geläufigsten Methoden zur Überwindung des Phasenproblems sind experimentelle Phasierung und Phasierung mit Hilfe des molekularen Ersatzes.

Die Technik des molekularen Ersatzes ("molecular replacement", MR) ist auf eine Modellstruktur angewiesen, die gegenüber der zur bestimmenden Proteinstruktur ausreichend große Ähnlichkeit aufweist. Mit Hilfe einer Rotationsfunktion, die die rotierte Pattersonfunktion der Modellstruktur mit einer unveränderten Version der Pattersonfunktion, die aus den experimentellen $|F_{hkl}|$ berechnet werden kann, überlagert, kann die Orientierung der Modellstruktur in der Einheitszelle bestimmt werden. Die Modellstruktur in der neu bestimmten Orientierung wird nun durch die Einheitszelle translatiert und die Übereinstimmung mit den experimentellen $|F_{hkl}|$ bestimmt. Ein Maximum in der Übereinstimmung kennzeichnet die korrekte Position der Modellstruktur. Die von der Modellstruktur berechneten Phasen werden zusammen mit den $|F_{hkl}|$ für die Fouriersynthese zur Berechnung der Elektronendichtefunktion der Einheitszelle verwendet. Durch den Prozess der Modellverfeinerung wird die Modellstruktur iterativ verbessert bis von einer ausreichend großen Ähnlichkeit zur unbekannten Proteinstruktur ausgegangen werden kann.

Die experimentelle Phasierung von Proteinstrukturen beruht auf veränderten Strukturfaktoramplituden, die bei der Technik des isomorphen Ersatzes durch die Inkorporation von elektronenreichen Schwermetallatomen in das Proteinkristallgitter erzeugt werden können. Der Strukturfaktor der gebundenen Schwermetallatome F_{hkl} H wird dabei in einer Vektoraddition zum Strukturfaktor des Proteins F_{hkl} P hinzuaddiert, so dass sich daraus der Strukturfaktor des Schwermetallderivates F_{hkl} PH ergibt (Abb. 2.4):

F_{hkl} PH = F_{hkl} P + F_{hkl} H (2)

Existieren ein nativer Datensatz und der Datensatz eines Schwermetallderivates, so können $|F_{hkl} PH|$ und $|F_{hkl} P|$ zur Abschätzung der Strukturfaktoramplituden $|F_{hkl} H|$ genutzt werden. Mit Hilfe von Pattersonmethoden oder direkten Methoden kann aus den $|F_{hkl}H|$ die

Schwermetallsubstruktur der Einheitszelle bestimmt werden, so dass von den Positionen der Schwermetalle Phasen für die Strukturfaktoramplituden $|F_{hkl}H|$ berechnet werden können. Das Programm SHELXD [Schneider & Sheldrick, 2002] nutzt hierzu einen "dual-space direct methods"-Ansatz, der iterative Zyklen von Phasenverfeinerung im reziproken Raum und Schwermetallsubstruktur-Optimierung beinhaltet. Ist der Strukturfaktor $F_{hkl}H$ bekannt, so lässt sich unter Verwendung von Gleichung (2) die Harkerkonstruktion zur Phasenbestimmung von $F_{hkl}P$ aufstellen (Abb. 2.4). Im Falle des einfachen isomorphen Ersatzes ("singleisomorphous-replacement", SIR) existieren zwei Phasenwinkel für $F_{hkl}P$. Eine eindeutige Lösung kann durch Verwendung eines zweiten Schwermetallderivates oder durch Elektronendichtemodifikationen erzielt werden, die hinsichtlich der Phasen Restriktionen einführen und so die Identifizierung der korrekten Phase ermöglichen. Im ersten Fall spricht man von multiplen-isomorphem-Ersatz ("multiple isomorphous replacement", MIR).

Bei der Phasierung mittels "anomaler Dispersion" werden Unterschiede in den Strukturfaktoramplituden der Friedel-Paare ausgenutzt. Die anomale Dispersion tritt u.a. an

den Absorptionskanten elektronenreicher Elemente wie z.B. Schwermetallen auf. Die Energie der elektromagnetischen Strahlung ist hier groß genug, um ein Elektron der inneren Schalen herauszuschlagen. Unter Aussendung eines Photons fällt dann ein Elektron einer äußeren Schale wieder auf die innere Schale zurück. Die Absorption der betreffenden Atome reduziert die Strukturfaktoramplitude $|F_{hkl}H|$, während die ausgesendeten Photonen eine Phasendifferenz von 90° relativ zum verringerten $F_{hkl}H$ aufweisen und damit zur Verletzung der Friedel-Symmetrie führen. Diese anomalen Differenzen der Strukturfaktoramplituden zwischen Friedel-Paaren können analog zu der Situation beim isomorphen Ersatz für die Lokalisation der anomalen Streuzentren genutzt werden und damit zur Phasierung der Proteinstrukturfaktoren beitragen.

Im Gegensatz zur Technik des isomorphen Ersatzes, die mindestens zwei unterschiedliche Datensätze voraussetzt, kann die Phasierung mittels anomaler Dispersion im einfachsten Fall an einem einzigen, bei einer Wellenlänge an der betreffenden Absorptionskante vermessenen Kristall durchgeführt werden ("single anomalous dispersion", SAD). Die hierbei auftretenden Unsicherheiten bezüglich der Konfiguration der Substruktur einerseits und der korrekten Phase für F_{hkl} PH anderseits werden durch Elektronendichtemodifikationen aufgelöst.

Wird ein Kristall bei mehreren Wellenlängen vermessen, an denen die anomale Streuung auftritt, so spricht man von "multiple-wavelength anomalous dispersion" (MAD). Üblicherweise erfolgen die Messungen an der Spitze der Absorptionskante ("Peak", pk) zur Maximierung des anomalen Effektes, am Wendepunkt der Absorptionskante ("Inflection", infl) zur größtmöglichen Reduzierung von F_{hkl} H sowie an der Hochenergieseite der Absorptionskante ("High energy remote", hrem). Die Kombination mehrerer Datensätze ermöglicht die eindeutige Bestimmung der Phase. Isomorpher Ersatz und anomale Dispersion können auch kombiniert werden ("single isomorphous replacement with anomalous scattering", SIRAS; "multiple isomorphous replacement with anomalous scattering", MIRAS).

2.2.4.4 Elektronendichtemodifikationen und Phasenausdehnung

Fehler in den experimentell bestimmten initialen Phasen führen zu einer reduzierten Qualität der Elektronendichte in der Einheitszelle. Elektronendichtemodifikationen können in diesem Fall die Interpretierbarkeit steigern. Die verbesserte Qualität der Elektronendichte wird durch die Entfernung artifizieller Elektronendichtepeaks in Solvensregionen, die Mittelung äquivalenter Elektronendichteregionen oder durch die Veränderung des Elektronendichtehendichtehendichtehistogramms erreicht. Die in der Proteinkristallographie geläufigsten Modifikationsmethoden

Abb. 2.5: Schematische Darstellung der Wirkungsweise von Elektronendichtemodifikationen. Es ist jeweils die Situation vor und nach Elektronendichtemodifikation gezeigt. Die Strukturfaktoren werden als blaue Vektoren dargestellt. Bei allen hier gezeigten Beispielen wird die initiale Phase α 'F_{hkl} in die verbesserte Phase α F_{hkl} überführt. Die einzelnen atomaren Streufaktoren des Proteins, die durch Vektoraddition den Strukturfaktor bilden, sind in orange, braun, magenta, hellgrün, lila und grün dargestellt. A) Solvent-Flattening: Die Präsenz eines artifiziellen Elektronendichtepeaks in der Solvensregion der Einheitszelle führt zu einem zusätzlichen atomaren Streufaktor (rot). Wird die Elektronendichte der Solvensregion nun auf einen konstant niedrigen Wert gesetzt (null für das hier gezeigte Beispiel), so wird die Phase des Strukturfaktors wieder von den atomaren Streufaktoren der Proteinatome dominiert und es ergibt sich die verbesserte Phase aFhkl. B) Histogram-Matching: In Abhängigkeit von der Auflösung einer Proteinstuktur existiert eine Idealverteilung für die Elektronendichtewerte der Einheitszelle (Histogramm). Diese Idealverteilung wird im Rahmen des Histogram-Matchings hergestellt. Als Konsequenz ergibt sich eine Veränderung der Amplituden der atomaren Streufaktoren, so dass die verbesserte Phase aFhkl erhalten wird. C) NCS-Mittelung: Sind zwei oder mehr weitgehend identische Proteinmoleküle in der asymmetrischen Einheit (ASU) der Einheitszelle vorhanden, so kann deren Elektronendichte gemittelt werden. Dies beeinflusst wiederum die Phasen und Amplituden der atomaren Streufaktoren, so dass die verbesserte Phase αF_{hkl} erhalten werden kann.

sind "Solvent-Flattening", "Histogram-Matching" und nicht-kristallographische-Symmetrie (NCS)-Mittelung [Cowtan & Zhang, 1999] (Abb. 2.5).

Von der veränderten Elektronendichtekarte werden neue Phasen berechnet, die wiederum mit den experimentellen Phasen kombiniert und zur Berechnung einer neuen Elektronendichtekarte verwendet werden können. Auch diese Elektronendichtekarte kann wieder modifiziert werden. Dieser Zyklus kann über mehrere Runden bis zur Konvergenz fortgesetzt werden. Sind Teile der Proteinstruktur erkennbar, so lässt sich ein partielles Proteinmodell erstellen, von dem ebenfalls Phasen berechnet werden, die mit den experimentell erhaltenen Phasen kombiniert und durch Elektronendichtemodifikationen weiter verbessert werden können.

Ein weit verbreitetes Problem in der Proteinkristallographie ist die beschränkte Auflösung der anfänglichen Phaseninformation, z.B. wenn in einem MIR-Experiment ein nativer Datensatz bis zu einer Auflösung von 2,0 Å, Schwermetalldatensätze mit nutzbarem isomorphem Signal aber nur bis zu einer Auflösung von 3,5 Å zur Verfügung stehen. Die Auflösung der initialen Elektronendichtekarte ist in diesem Fall zunächst auf 3,5 Å beschränkt. Jedoch werden die über Elektronendichtemodifikationen eingeführten Restriktionen bezüglich der Elektronendichteverteilung in der Einheitszelle durch Fouriertransformation in den reziproken Raum übertragen, so dass die Phasen von Strukturfaktoren zueinander in Beziehung gesetzt werden. Dadurch lassen sich die Werte zuvor unbekannter Phasen abschätzen und man kann schrittweise auch Strukturfaktoren höherer Auflösung zur Berechnung der Elektronendichtefunktion heranziehen [Zhang et al., 2006].

2.2.4.5 Native PAGE für Schwermetallscreening

Um eine Vorauswahl von Schwermetallsalzen für Soaking- und Kokristallisationsexperimente zur Proteinstrukturphasierung zu treffen, wurden native Polyacrylamidgelelektrophoresen durchgeführt [Boggon & Shapiro, 2000]. Werden Schwermetallionen an ein Protein gebunden, so verändert sich dessen Ladungszustand und Laufverhalten während der nativen Gelelektrophorese. Es wurde nach einem Protokoll von Dr. Uwe Mamat gearbeitet. Dabei wurden Schwermetallsalzlösungen in einer Konzentration von 10 mg/ml in 10% (v/v) Glycerol, 100 mM NaCl, 2 mM Cymal-6 und 25 mM Tris-HCl pH 8,7 angesetzt. Waren Schwermetallsalze unter diesen Bedingungen nicht löslich, so wurde mit der gesättigten Lösung gearbeitet. Je 3 μ l der Schwermetallsalzlösung wurden mit 2 μ l WaaA_{AAE}-Proteinlösung in einer Konzentration von 2 mg/ml gemischt und für 30 min auf Eis inkubiert. Aus diesem Ansatz wurden 4 μ l entnommen und zusammen mit 1 μ l Lösungspuffer auf das Gel aufgetragen. Die Durchführung der Elektrophorese erfolgte unter Umkehrung der Polarität bei 250 V und 30 mA für 45 min.

Trenngel:	1,5 M KOH-Acetat, pH 4,2 50% (v/v) Glycerol 30% (w/v) Acrylamid, 0,8% (w/v) Bis-Acrylamid ddH ₂ O 10% (w/v) APS TEMED	1,34 1,20 1,76 0,84 64 8	ml ml ml μl μl
Sammelgel:	0,25 M KOH-Acetat, pH 6,8 30% (w/v) Acrylamid, 0,8% (w/v) Bis-Acrylamid ddH ₂ O 10% (w/v) APS TEMED	1,25 0,50 1,28 50 5	ml ml ml µl µl
Laufpuffer (1x):	β-Alanin18,7 gEssigsäure4,8 mlauf 600 ml mit ddH2OauffüllenpH-Wert auf 4,3 einstellen		
Lösungspuffer (5x):	50% (v/v) Glycerol1,45 ml0,25 M KOH-Acetat, pH 6,80,50 mlMethylgrünSpatelspitze		

2.2.4.6 Herstellung der WaaA_{AAE}-Schwermetallderivate

Die bei den Soakingexperimenten verwendeten Schwermetallsalzösungen wurden im Regelfall in Puffer S1 angesetzt. Die Konzentrationen lagen im Bereich von 1 - 50 mM. Bei Löslichkeitsproblemen wurde für alle anstehenden Experimente eine gesättigte Lösung verwendet. Für Schwermetallionen, deren Bindung an WaaA_{AAE} durch die Anwesenheit von Citrat gestört werden könnte, wurde Puffer S2, bei Bildung von unlöslichen Metallhydroxiden wurde Puffer S3 verwendet.

Kristalle wurden je nach angestrebtem Schwermetallderivat zunächst für 30 -180 min mit den Puffern S1, S2 oder S3 äquilibriert. Danach erfolgte die Überführung in die eigentliche Schwermetallsalzlösung. Die Soakingzeiten lagen im Bereich von 5 min bis mehreren Monaten.

Um insbesondere größere Kristalle (> 0,7 mm Kantenlänge) vor den mit mehrmaliger Kristallmanipulation verbundenen Stressituationen zu bewahren, wurden Schwermetallsoakingexperimente gelegentlich im Kristallisationstropfen durchgeführt. Dabei wurde sichergestellt, dass sich eventuell zuvor vorhandenes β -Mercaptoethanol verflüchtigt hatte. Es wurden entweder feste Schwermetallsalze oder 0,5 μ l einer konzentrierten Schwermetallsalze salzlösung (>50 mM, oder gesättigt) direkt in den Kristallisationstropfen eingebracht.

Für Kokristallisationsversuche wurden Schwermetallsalzlösungen im Konzentrationsbereich von 10 – 50 mM oder gesättigt mit Puffer S4 angesetzt, anschließend im Verhältnis 1 : 10 mit Proteinlösung verdünnt und über Nacht auf dem Schüttler bei 4°C inkubiert. Alternativ wurden 0,3 μ l der Schwermetallsalzlösung dem Kristallisationstropfen direkt zugegeben, der sich in diesem Fall aus je 1,5 μ l Protein- und Reservoirlösung zusammensetzte. Potentiell derivatisierte Kristalle wurden in flüssigem Stickstoff zur Vermessung bei 100 K

schockgekühlt.

<i>S1</i> :	33-38% (v/v) PEG 400, 200 mM NaCitrate, 100 mM Tris-HCl 8,5
<i>S2</i> :	33-38% (v/v) PEG 400, 200 mM NaCl, 100 mM Tris-HCl 8,5
<i>S3</i> :	33-38% (v/v) PEG 400, 200 mM NaCl, 100 mM Tris-HCl 7,5
<i>S4</i> :	10% (v/v) Glycerol, 100 mM NaCl, 2 mM Cymal-6, 25 mM Tris-HCl 8,5

2.2.4.7 Herstellung von WaaA_{AAE}-Xenonderivaten

Die Begasung von Kristallen erfolgte in der "Xenon-Chamber" der Firma Hampton Research entsprechend den Herstellerempfehlungen. Die Kristalle wurden vor Durchführung des Experimentes für 30 - 60 min mit Puffer S1 äquilibriert. Um eine Austrocknung der Kristalle während der Begasung zu vermeiden, enthielt die Druckkammer 200 µl Puffer S1 als Reservoir. Die Kristalle wurden bei einem Xenondruck von 30 bar für 5 – 15 min begast und anschließend in flüssigem Stickstoff zur Vermessung bei 100 K schockgekühlt.

2.2.4.8 Herstellung des WaaAAAE-CMP-Komplexes

Erhaltene Kristalle wurden zunächst für 3 d mit Puffer S1 äquilibriert, wobei sie nach 1 d in frische Lösung umgebettet wurden. Zur Durchführung der Soakingexperimente wurden die Kristalle für 4 d in eine mit Puffer S1 angesetzte 10 mM CMP-Lösung transferiert und direkt in flüssigem Stickstoff zur Vermessung bei 100 K schockgekühlt.

2.2.4.9 Überprüfung der Streuqualität von Kristallen

Die Streuung von erhaltenen Kristallen ausreichender Größe wurde zunächst bei RT getestet, um eventuelle Einbußen der Diffraktionseigenschaften durch das Schockkühlen von Kristallen auszuschließen. Dazu wurden 5 µl äquilibrierte Reservoirlösung in eine Zellophanhülle (MiTeGen) gegeben, die durch handelsübliche Knete mit einem Kryoloop luftdicht verbunden wurde, der den zu untersuchenden Kristall enthielt.

Die Überprüfung der Streuqualität unter Kryobedingungen erfolgte im Stickstoffkühlstrahl bei 100 K. Dazu wurde mit Hilfe eines Kryoloops eine geringe Menge an Flüssigkeit direkt aus dem Kristallisationstropfen aufgenommen und im Kühlstrahl auf Eisbildung untersucht. Konnte keine Eisbildung erkannt werden, so wurden Kristalle mittels Kryoloop direkt im Kühlstrahl gefroren. Bei Eisbildung wurde entweder die die Kristalle umgebende Flüssigkeit unter Siliconöl entfernt oder die Kristalle wurden schnell durch 50% (v/v) Glycerol gezogen und danach direkt in den Kühlstrahl gebracht. Alle Tests wurden an dem hauseigenen Xcalibur-PX-Ultra-Generator durchgeführt. Die erhaltenen Diffraktionsbilder wurden mit der CrysAlis-Software der Firma Oxford Diffraction ausgewertet.

2.2.4.10 Durchführung von Diffraktionsdatensammlungen

Alle Datensammlungen wurden an den Beamlines X12 oder X13 der EMBL-Außenstation des Deutschen-Elektronen-Synchrotrons (DESY) in Hamburg, den Beamlines I911-2 und I911-3 am MAXlab der Unversität Lund, Schweden, oder an der Beamline 14.2 der "Berliner Elektronen-Speicherring-Gesellschaft für Synchrotronstrahlung" (BESSY) im Stickstoffkühlstrahl bei 100 K mit MarCCD-165 oder -225 Detektoren durchgeführt.

An den Beamlines X12 (DESY), I911-3 (MAXlab) sowie 14.2 (BESSY) konnte die Wellenlänge der verwendeten Röntgenstrahlung über einen Bereich von 0,7 – 2,25 Å eingestellt werden. Um bei potentiellen Schwermetallderivaten geeignete Wellenlängen für SAD- oder MAD-Experimente zu bestimmen, wurden an diesen Beamlines Fluoreszenz-Scans durchgeführt.

2.2.4.11 Verwendete kristallographische Software

Die meisten der verwendeten Programme wurden im Rahmen der CCP4-Programmsuite genutzt [Collaborative Computing Project No. 4, 1994]. Die Prozessierung und Skalierung der erhaltenen Datensätze erfolgte mit den Programmen MOSFLM [Leslie, 1992] und SCALA [Evans, 2006] oder DENZO und SCALEPACK [Otwinowski & Minor, 1997]. TRUNCATE [French & Wilson, 1978] wurde zur Bestimmung von Strukturfaktoramplituden verwendet. Der Solvensgehalt der Einheitszelle wurde durch MATTHEWS_COEF [Matthews, 1968] berechnet, zur Analyse der Eigenrotationsfunktion wurde POLARFN [Collaborative Computing Project No. 4, 1994] oder MOLREP [Vagin & Teplyakov, 1997] verwendet.

Patterson-, Differenz-Patterson-, Elektronendichte-, Differenzelektronendichte- und anomale Differenzelektronendichtekarten wurden durch FFT [Ten Eyck, 1973] erstellt.

Die Datensätze von potentiellen Schwermetallderivaten wurden zu nativen Datensätzen mit Hilfe von FHSCALE [Howell & Smith, 1992] skaliert und analysiert. Die Analyse von anomalen Signalen anhand der anomalen Korrelationskoeffizienten (vergl. 4.3) innerhalb eines Datensatzes bzw. zwischen verschiedenen Datensätzen erfolgte durch SHELXC [Sheldrick, 2008]. Zur Bestimmung von Schwermetallsubstrukturen und Phasierung wurden die Programme SOLVE [Terwilliger & Berendzen, 1999] und autoSHARP [Vonrhein et al., 2007] verwendet. Elektronendichtemodifikationen wurden mit Hilfe der Programme DM [Cowtan, 1994], SOLOMON [Abrahams & Leslie, 1996] und SHELXE [Sheldrick, 2008] durchgeführt.

Der Modellbau erfolgte unter Verwendung von COOT [Emsley & Cowtan, 2004] und XTALVIEW [McRee, 1999]. Partielle oder vollständige Proteinstrukturen wurden durch LSQKAB [Kabsch, 1976] überlagert. Masken zur NCS-Mittelung wurden mit NCSMASK [Collaborative Computing Project No. 4, 1994] erstellt. Zur Verfeinerung von initialen NCS-Parametern wurde das Programm IMP [Kleywegt & Read, 1997] verwendet. Die Phasen von partiellen Modellen wurden mit Hilfe von SFALL [Collaborative Computing Project No. 4, 1994] berechnet. Die Wichtung dieser Phasen und die Kombination mit experimentellen Phasen erfolgten in SIGMAA [Read, 1986]. Für die Phasenausdehnung zu höheren Auflösungen wurde DM [Cowtan, 1994] genutzt. Die Programme REFMAC [Murshudov et al., 1997], CNS [Brunger et al., 1998] und PHENIX [Adams et al., 2002] wurden zur Modellverfeinerung verwendet. Das Programm PHASER [McCoy et al., 2005] wurde für MR-Ansätze verwendet.

Die stereochemische Analyse erfolgte mit PROCHECK [Laskowski et al., 1993] Sekundärstrukturelemente und Wasserstoffbrücken wurden mit DSSP [Kabsch & Sander, 1983] identifiziert und das Programm CONTACT [Collaborative Computing Project No. 4, 1994] wurde Analyse interatomaren Distanzen zur von verwendet. Die Oberflächenzugänglichkeit von Atomen und Proteinoberflächen wurde mit SURFACE [Lee & Richards, 1971) berechnet. Dimerisierungsinteraktionen wurden mit Hilfe des PISA-Servers analysiert [Krissinel & Henrick, 2007]. Bilder und Berechnungen des elektrostatischen Oberflächenpotentials wurden mit PYMOL [http://www.pymol.org] bzw. APBS [Baker et al., 2001] erstellt.

45

3. Ergebnisse und Diskussion

3.1 KdsB_{AAE}

3.1.1 Neue Kristallisationsbedingung

Initiale Kristalle für substratfreies KdsBAAE konnten mit der unter 2.2.3.1 beschriebenen Vorgehensweise bei 19°C erhalten werden (Abb. 3.1). Die Konzentration der verwendeten Proteinlösung lag bei 25 mg/ml. Fällungsmittel bestand aus 2 Das Μ (NH₄)₂SO₄ sowie 100 mM Na-Hepes pH 7,5. Durch den Gebrauch von "sitting-drop"-Platten mit 24 Feldern (Cryschem Plate, Hampton Research) und die Optimierung des Fällungsmittels zu 2 M (NH₄)₂SO₄, 100 mM Glycin pH 10,0 sowie 2% (v/v) PEG 400 gelang es, größere und qualitativ hochwertigere Kristalle zu erhalten (Abb. 3.1). Je 1,5 µl Proteinlösung wurden mit 1,5 μl Fällungsmittel gemischt und gegen 900 μl Fällungsmittel bei 19°C äquilibriert. Die kubischen Kristalle erschienen innerhalb von vier Wochen und wuchsen zu einer maximalen Kantenlänge von 0,3 mm heran. Die Streuung bei RT am institutseigenen Generator erreichte 7 Å (Abb. 3.1).

Unter Kryobedingungen kam es mit der unter 2.2.4.9 beschriebenen Vorgehensweise zu einem Komplettverlust der Streuung, so dass vor Durchführung von Datensammlungen zur Bestimmung der Einheitszellenparameter geeignete Kryolösungen identifiziert werden müssen. Das erhaltene Streumuster deutet jedoch auf die Existenz langer Einheits-

Abb. 3.1: (A) initiale Kristalle, (B) optimierte Kristalle, (C) Diffraktionsmuster bei RT.

zellachsen hin. Zur weiteren Steigerung der Kristallqualität sollten zunächst Impf- bzw. Dehydrierungsexperimente durchgeführt werden.

3.1.2 Strukturbestimmung von KdsBAAE

Die zur Verfügung gestellte initiale Elektronendichtekarte (vergl. 1.5) mit den Einheitszellenparametern a = 155,9 Å, b = 50,9 Å, c = 107,1 Å, β = 102,9° und der Raumgruppe C2 zeigte bei einer Auflösung von 2,5 Å klare Umrisse für zwei Proteinmoleküle in der asymmetrischen Einheit ("asymmetric unit", ASU). Weiterhin waren einzelne Peptidfragmente innerhalb der Proteinbegrenzungen erkennbar. Die Lage der Peptidfragmente erlaubte die Identifizierung homologer Bereiche in beiden Proteinmolekülen, die die Überlagerung der jeweiligen partiellen Modelle ermöglichte. Diese überlagerte Konsensusstruktur konnte zum Modellbau in beiden Proteinketten genutzt werden. Weitere Fortschritte ergaben sich unter Verwendung der homologen kapselspezifischen CMP:Kdo-Synthetase aus *E. coli* [Jelakovic & Schulz, 1996] als Leitstruktur.

Die mit Hilfe des Programms XTALVIEW [McRee, 1999] erzeugten symmetrie-verwandten Moleküle führten zu unrealistischen Lücken in der Kristallpackung und belegten damit das Fehlen weiterer Proteinmoleküle. Zu deren Identifizierung wurden Rotations- und Translationsfunktionen erstellt. Als Suchmodell wurde hierbei Monomer A verwendet. Jedoch konnten zunächst keine zusätzlichen Lösungen erhalten werden. Erst nachdem von Dr. Jeroen Mesters ein SmCl₃-Derivatdatensatz mit einer Auflösung von 2,0 Å und einer Vollständigkeit von 89,6% zur Verfügung gestellt wurde, konnte ein drittes Proteinmolekül in der ASU lokalisiert werden. Es folgte eine "ridgid body"-Verfeinerung der einzelnen Proteinmoleküle, gefolgt von einem "restrained refinement" mit REFMAC [Murshudov et al., 1997]. Es schlossen sich iterative Zyklen von manuellem Modellbau und -verfeinerung an. Nach der vollständigen Interpretation der Proteinregion wurde das Modell durch den Einbau von CTP, Mg²⁺- und Sm³⁺ -Ionen sowie Wassermolekülen komplettiert. Anschließend wurde mit den drei Monomeren eine "ridgid body"-Verfeinerung in REFMAC [Murshudov et al., 1997] gegen den nativen 2,5 Å-Datensatz durchgeführt, wobei jedes Monomer als separate Domäne definiert wurde. Es folgte ein "restrained refinement" in REFMAC [Murshudov et al., 1997]. Aufgrund der besseren Auflösung beziehen sich alle anschließenden Analysen - soweit nicht extra erwähnt - auf den 2,0 Å SmCl₃-Derivatdatensatz.

3.1.3 Qualität des erhaltenen Modells

Die finalen R_{work}- und R_{free}-Faktoren (zur Definition vergl. 4.3) liegen bei 21,7% bzw. 27,0%. Der auf dem R_{work}-Faktor basierende "Cruickshank-coordinate-error" [Cruickshank, 1960] beträgt ca. 0,2 Å. Nach der stereochemischen Analyse des finalen Modells befinden sich 92,1% aller ψ - und -Winkel in den erlaubten und 7,9% in den zusätzlich erlaubten Regionen des Ramachandran-Plots. Die Elektronendichte des Peptidrückgrates und der Seitenketten ist bis auf E55, D69, L84, Q93, K195, R156, K157, E179, E229 - für das gesamte Protein gut

definiert (Abb. 3.2). Von den insgesamt 234 Aminosäureresten konnten für die Monomere A, B und C die Bereiche 2-232, 2-234 sowie 3-231 zugeordnet werden. Die über die Monomere A, B und C gemittelten B-Faktoren betragen 29,2 Å², 23,1 Å² und 40,5 Å².

Der im Vergleich zu den Monomeren A und B erhöhte B-Faktor von Monomer C, das bei Verwendung des ursprünglichen Datensatzes nicht lokalisiert werden konnte (vergl. 3.1.2), ist auf weniger stark ausgeprägte Kristallkontakte zurückzuführen.

3.1.4 Oligomerisierung und Proteinfaltung

Alle KdsB_{AAE}-Moleküle der ASU sind an der Bildung von Homodimeren beteiligt. Während die Monomere A und B direkt zu einem Homodimer (ca. 85 x 37 x 37 Å³) angeordnet sind (Abb. 3.4), erfolgt die Homerdimerbildung für Monomer C durch die zur b-Achse parallele, kristallographische 180°-Symmetrieachse. Die Dimerisierungsfläche von 1347 Å² pro Monomer wird hauptsächlich durch die Schleifenregionen c β 2-c β 3, c β 3-c β 4, die β -Stränge c β 2, c β 3 sowie die α -Helices c α 3 und c α 4 gebildet.

Jedes Monomer besitzt einen aus zwei eng assoziierten Domänen bestehenden, U-förmigen Aufbau, wobei die NTD aus einem klassischen Rossmann-Motiv besteht, während die CTD lediglich eine $\alpha/\beta/\alpha$ -Faltung ausbildet. Die NTD umfasst die Aminosäurereste 2-92 mit den Sekundärstrukturelementen n β 1-n β 4 sowie n α 1-n α 3 und c α 6 und bindet das CTP-Mg²⁺-Substrat, während die CTD, bestehend aus den Aminosäureresten 101-210 mit den

Sekundärstrukturelementen c β 1-c β 6 und c α 1-c α 5, in die Bindung des Kdo-Zuckers und die Dimerisierung involviert ist. Die Schleifenregionen n β 4-c α 1 und c α 5-c α 6 sowie die β -Faltblätter n β 4 und c β 5 verknüpfen die beiden Domänen. Die β -Faltblätter n β 1-n β 4 zusammen mit c β 1, c β 5 und c β 6 sorgen für die enge Assoziierung von NTD und CTD und formen zusammen ein vorwiegend paralleles, 7-strängiges β -Faltblätt, das von acht α -Helices umgeben wird. Die β -Stränge n β 4 und c β 5 sind hierbei antiparallel zueinander angeordnet (Abb. 3.3).

3.1.5 Vergleich mit homologen Proteinstrukturen

Die Faltung von KdsB_{AAE} weist große Ähnlichkeiten zu den LPS-spezifischen CMP:Kdo-Synthetasen aus *E. coli* (KdsB_{ECO}, PDB-ID: 1VH1) [Badger et al., 2005] und *Haemophilus influenza* (KdsB_{HIN}, PDB-ID: 1VH3) [Badger et al., 2005], der kapselspezifischen CMP:Kdo-Synthetase aus *E. coli* (KpsU_{ECO}, PDB-ID: 1GQ9) [Jelakovic et al., 1996] sowie den CMP:NeuAc-Synthetasen aus *Neisseria meningitidis* (CNS_{NME}, PDB-ID: 1EYR) [Mosimann et al., 2000] und *Mus musculus* (CNS_{MMU}, PDB-ID: 1QWJ) [Krapp et al., 2003] auf (Abb. 3.4, Tab. 3.1). Bis auf die tetramere CNS_{MMU} bilden alle anderen Strukturen Homodimere (Tab. 3.2).

 $KdsB_{AAE}$, $KpsU_{ECO}$, $KdsB_{ECO}$ und $KdsB_{HIN}$ besitzen nahezu identische N- und C-terminale Domänen, während im Falle von CNS_{NME} und CNS_{MMU} größere Abweichungen in den Dimerisierungsregionen festgestellt werden können. Dieser Sachverhalt weist auf eine stärkerere evolutionäre Konservierung der aktiven Zentren der CMP:Kdo- und CMP:NeuAc-Synthetasen hin und legt eine untergeordnete Bedeutung der Dimerisierungeregion für den katalytischen Mechanismus nahe.

Abb. 3.4: (A) KdsB_{AAE}-Homodimer (gebundenes CTP in orange), (B-F) Überlagerung von KdsB_{AAE} (grün) mit KpsU_{ECO}, KdsB_{HIN}, KdsB_{ECO}, CNS_{NME} und CNS_{MMU}.

Überlagerung von KdsB _{AAE} mit	Anzahl überlagerter Ca-Atome	rms dev. (Å)
KpsU _{ECO}	224	1,40
$\mathrm{KdsB}_{\mathrm{HIN}}$	214	1,44
$KdsB_{ECO}$	210	1,66
CNS _{NME}	177	1,86
CNS _{MMU}	173	1,79

Tab. 3.1: C α -Überlagerungen zwischen KdsB_{AAE} und KpsU_{ECO}, KdsB_{HIN}, KdsB_{ECO}, CNS_{NME} sowie CNS_{MMU}.

	Dimerisierungsfläche pro Monomer (Å ²)	$\Delta \boldsymbol{G}^{i}$ (kcal/mol)	N _{HB}	N _{SB}
KdsB _{AAE}	1347	-16,9	12	2
KdsB _{ECO}	1174	-18,8	7	0
KdsB _{HIN}	1386	-18,0	13	2
KpsU _{ECO}	1348	-17,3	16	0
CNS _{NME}	1344	-25,0	10	0

Tab. 3.2: Dimerisierungsinteraktionen verschiedener CMP:Kdo- und CMP:NeuAc-Synthetasen. Zusätzlich zur Dimerisierungsfläche pro Monomer sind die Änderung der freien Solvatationsenergie bei Dimerbildung (ΔG^i) sowie die Anzahl der Wassertstoff-(N_{HB}) und Salzbrücken (N_{SB}) im Dimerisierungsinterface angegeben. Alle Angaben wurden mit Hilfe des PISA-Servers berechnet [Krissinel & Henrick, 2007].

3.1.6 Substrat-/ Kofaktorbindungsstellen

3.1.6.1 katalytische Mg²⁺-Bindungsstelle

Eine kugelförmige Fo-Fc-Differenzelektronendichte (15 σ) in unmittelbarer Nähe der konservierten Reste D219 und D95 wies auf die Präsenz eines Metallions hin. Ausgehend von der Zusammensetzung der Kristallisationslösung und der anschließenden Behandlung der Kristalle zur Schwermetallderivatisierung wurde zunächst versucht, ein Mg²⁺-Ion einzupassen, was jedoch zu positiver Fo-Fc-Differenzelektronendichte sowie unrealistisch niedrigen B-Faktoren führte. Erst der Einbau eines Sm³⁺-Ions mit einem Besetzungsgrad von 50% oder die Deutung als kombinierte Sm³⁺/Mg²⁺-Bindungsstelle mit Besetzungsgraden von 30% bzw. 70% überwand die beschriebenen Probleme, lies aber andererseits keine eindeutige Interpretation zu. In der nativen Struktur konnte an der äquivalenten Stelle dagegen problemlos ein Mg²⁺-Ion eingebaut werden, dessen Kontakte zu D219, D95, dem CTP-Molekül und umgebenden Wassermolekülen zu der erwarteten oktaedrischen Koordinationssphäre führten (Abb. 3.5, Tab. 3.3).

Interaktionspartner in KpsU _{ECO}	Distanz (Â)	Interaktionspartner in KdsB _{AAE}	Distanz (Å)
D225/Oδ1	2,5	D219/Oδ2	1,9
D98/O82	2,4	D95/Oδ1	2,0
CTP/Oa3	2,2	CTP/Oa1	2,1
H ₂ O-1	1,9	H ₂ O-1	1,9
-	-	H ₂ O-2	2,1
-	-	H ₂ O-3	2,1

Tab. 3.3: Koordinationsdistanzen der katalytischen Mg^{2+} -Bindungsstellen in KpsU_{ECO} und KdsB_{AAE}. Jelakovic und Schulz präsentierten, ausgehend von der CTP- und Mg²⁺-komplexierten KpsU_{ECO}-Struktur, ein schwach gebundenes Mg²⁺-Ion, das für den Reaktionsmechanismus von entscheidender Bedeutung sein sollte [Jelakovic & Schulz, 2002]. D225, D98, das verbrückende Sauerstoffatom der α -Phosphatgruppe und ein Hydroxylion, das als katalytische Base fungieren und über die Deprotonierung der C₂-Hydroxylgruppe des Kdo den nukleophilen Angriff auf die α -Phosphatgruppe des CTP begünstigen sollte, bilden hier die Koordinationssphäre (Abb. 3.5). Die zu D225 und D98 äquivalenten Aminosäurereste in KdsB_{AAE} sind D219 und D95, so dass sich Parallelen zu KpsU_{ECO} bezüglich der zu erwartenden katalytischen Funktion ergeben. Der entscheidende Unterschied besteht jedoch in der Mg²⁺-Bindung, die im Falle der nativen KdsB_{AAE}-Struktur eindeutig stärker ausgeprägt ist. Ein Umstand, der eventuell auf den thermostabilen Charakter von KdsB_{AAE} und der damit verbundenen reduzierten Flexibilität der die wichtigen Aspartatreste beinhaltenden Schleifenregionen oder auf die Herstellungweise der jeweiligen CTP-Komplexe - Kokristallisation bei KdsB_{AAE}, nachträgliche Diffusion in der Proteinkristall bei KpsU_{ECO} - zurückzuführen sein könnte.

$3.1.6.2 \text{ CTP-Mg}^{2+}$

Fo-Fc-Differenzelektronendichte (7 σ), in die ein CTP-Molekül eingepasst werden konnte, fand sich zwischen den Schleifenregionen n β 1-n α 1, n β 3-n α 3 und n β 4-c α 1 an der Innenseite der zentralen Vertiefung zwischen NTD und CTD (Abb. 3.6). Für das in der *anti*-Konformation vorliegende Cytidin (Torsionswinkel O₄-C₁-N₁-C₂: -131.5°) bestehen hydrophobe Interaktionen mit den Aminosäureresten P71, S72, G73 und den C-Atomen der R10Seitenkette. Wasserstoffbrücken existieren mit der R76-Seiten- und der L70-Hauptkette (Tab.

3.4). Die C2'/C3'-Hydroxylgruppen der Ribose gehen Wasserstoffbrücken mit der P8-Carbonyl- sowie den R10- und G94-Hauptkettenamiden ein (Tab. 3.4), während sich für den Triphosphatanteil Interaktionen mit R10, T14, R15 und K19 finden (Tab. 3.4). Die Schleifenregion n β 1-n α 1 enthält die an der Triphosphatbindung beteiligten Aminosäurereste. Es findet sich jedoch - im Gegensatz zum klassischen "P-Loop" - keine Häufung von Glycinresten [Jelakovic & Schulz., 2001].

Zusätzlich CTP-Molekül existierte zum eine Fo-Fc-Differenzelektronendichte kugelförmige (7**σ**) zwischen den drei Phosphatgruppen des CTP. In Monomer A stellte diese Dichte über eine Interaktion mit dem $O\delta$ 1-Sauerstoffatom von N233 einen Kristallkontakt zu einer zu Monomer B symmetrieäquivalenten Proteinkette her. Versuche, ein Sm³⁺-Ion in diese Dichte einzupassen, waren nur mit einem Besetzungsgrad von 50% erfolgreich und damit nicht mit

Cytosin (Å)				
$KdsB_{AAE}$		$KpsU_{ECO}$		
R76/NE-O2	2,5	R79/ Nε-O2	2,6	
R76/Nn1-N3	3,0	R79/Nn2-N3	3,0	
L70/O-N4	2,8	H73/O-N4	2,5	
	Ribos	se (Å)		
$KdsB_{AAE}$		$KpsU_{ECO}$		
R10/N-O2'	2,9	R10/N-O2'	2,9	
P8/O-O3'	2,7	P8/O-O3'	2,4	
G94/N-O3'	3,1	G97/N-O3'	2,8	
		P9/O-O2'	3,3	
Tı	iphos	phat (Å)		
$KdsB_{AAE}$		$KpsU_{ECO}$		
R10/Nη1-Oβ1	2,6	R10/ Nn2-Oy1	2,8	
R10/Nε-Oβ2	2,7			
		S13/OG-Oy2	2,9	
T14/N-Oy2	2,6			
T14/OG1-Oy2	2,4	S14/OG-Oy3	2,8	
R15/N-Oy3	2,9	· · · · · · · · · · · · · · · · · · ·		
R15/NE-Oy3	2,9			
R15/ Nn2-Oy1	3.3			
Κ19/Νε-Οα3	3,0	K19/Nε-OB2	3,1	
		Wat104-Oy1	2.7	
		Wat101-Oa1	2.8	
		Wat101-Oa2	2,8	

Tab. 3.4: Wasserstoffbrückeninteraktionen des CTP in KdsBAAE und KpsU_{ECO}.

dem gut ausgeprägten Kristallkontakt vereinbar. Die Interpretation als Mg²⁺-Ion erwies sich dagegen als unproblematisch (Abb. 3.6). Diese zweite Mg²⁺-Bindungsstelle findet sich auch in der nativen KdsBAAE-Struktur. Die Koordinationssphäre besteht aus nicht-verbrückenden Sauerstoffatomen, Wassermolekülen und im Falle von Monomer A aus der N233-Seitenkette (Tab. 3.5).

Für einen detaillierten Vergleich der Protein-CTP-Interaktionen wurde KpsU_{ECO} ausgewählt, da dieses Enzym aus der Familie der CMP:Kdo-Synthetasen strukturell ausführlich

Interaktionspartner	Distanz (Å)		
CTP/Oa2	2,0		
CTP/Oβ1	2,2		
CTP/Oy1	2,2		
H ₂ O-1	2,1		
H ₂ O-2	2,3		
H ₂ O-3, N233/Oδ1 (Monomer A)	2,0; 2,1		

Tab. 3.5: Koordinationsdistanzen der CTP- Mg²⁺-Bindungsstelle.

charakterisiert wurde [Jelakovic & Schulz., 2002; Jelakovic & Schulz, 2001; Jelakovic et al., 1996]. KdsBAAE und KpsUECO binden die Cytosinbase des CTP in nahezu identischer Weise, während sich die Orientierung des Triphosphates deutlich unterscheidet (Abb. 3.7). Zwar kontaktieren R10, R15, K19 (KpsU_{ECO} und KdsB_{AAE}) und S14 (KpsU_{ECO}) oder T14 (KdsB_{AAE}) in beiden Fällen die γ - bzw. β - Phosphatgruppen des CTP, jedoch teilweise in recht unterschiedlicher Konformation. Besonders deutlich treten diese Unterschiede in Falle von R15 zu Tage. Während die Orientierung dieser Seitenkette gegenüber der γ -Phosphatgruppe im Falle von KpsU_{ECO} ausschließlich für elektrostatische Wechselwirkungen spricht, fungiert R15 mittels seiner Nɛ- bzw. Nη-Aminogruppen in KdsB_{AAE} eindeutig als Wasserstoffbrückendonor. Ein weiterer Unterschied betrifft die T14- bzw. R15-Hauptkettenamide, die im Gegensatz zu KpsU_{ECO} in KdsB_{AAE} als Wasserstoffbrückendonor gegenüber der γ -Phosphatgruppe auftreten. Interessanterweise existiert für die Wasserstoffbrücke zwischen der S13-Hydroxylund der γ -Phosphatgruppe in KpsU_{ECO} keine Entsprechung in KdsB_{AAE}, in der diese Seitenkette Teil eines Wasserstoffbrückennetzwerkes innerhalb der CTP-Bindungsschleife ist. S13 fungiert hier gegenüber der L16-Carbonylgruppe als Wasserstoffbrückendonor und akzeptiert gleichzeitig eine Wasserstoffbrücke vom K19-Hauptkettenamid (Abb. 3.7).

Die Anzahl der Salz- und Wasserstoffbrückeninteraktionen zwischen Triphophat und CTP-Bindungsschleife ist in KdsB_{AAE} höher als in KpsU_{ECO} (Tab. 3.4). Darüberhinaus besitzen die Phosphatgruppen in KdsB_{AAE} niedrigere B-Faktoren (KpsU_{ECO}: 50-60 Å², KdsB_{AAE}: 20-30 Å²), obwohl die Auflösung der beiden Strukturen ähnlich ist. Insgesamt finden sich in KdsB_{AAE} acht, in KpsU_{ECO} drei Wasserstoffbrücken.

Eine Triphosphatorientierung, die große Ähnlichkeit zu der Situation in KdsB_{AAE} aufweist, wurde z.B. auch für mesophile DNA-Polymerasen beschrieben [Doublie et al., 1998; Pelletier et al., 1994], so dass die unterschiedliche Orientierung des CTP-Triphosphatanteils in KdsB_{AAE} keine thermostabile Adaption darstellen sollte. Der CTP:KpsU_{ECO}-Komplex wurde durch Soakingexperimente erhalten, bei denen die MgCl₂-Konzentration 1,3 mM betrug [Jelakovic & Schulz., 2002], während eine MgCl₂-Konzentration von 1 mM bei den CTP:KdsB_{AAE}-Kokristallisationsexperimenten verwendet wurde. Die verschiedenen Triphosphatkonformationen sind damit nicht auf unterschiedliche MgCl₂-Konzentrationen zurückzuführen. Der detaillierte Vergleich der überlagerten KdsB_{AAE}- und KpsU_{ECO}-Strukturen offenbarte keine ungünstigen sterischen Interaktionen, die die Triphosphatgruppe in KpsU_{ECO} davon abhalten könnten, eine Orientierung ähnlich der Situation in KdsB_{AAE} einzunehmen. Die in KdsB_{AAE} und KpsU_{ECO} unterschiedliche Konformation der S13-Seitenkette sollte in diesem Zusammenhang keinen maßgeblichen Einfluß ausüben.

Die Gründe für die beobachteten Differenzen in der Bindung der Triphosphatgruppe könnten in der unterschiedlichen Herstellungsweise der jeweiligen CTP-Komplexe begründet sein. Die Gefahr der bei KpsU_{ECO} angewandten Technik besteht in einer durch Kristallkontakte verursachten, reduzierten Flexibilität von Proteinregionen, die an der Susbtratbindung

beteiligt sind. In der Tat ist die CTP-Bindungschleife des B-Monomers im Falle von KpsU_{ECO} in Kristallkontakte involviert [Jelakovic & Schulz, 2002], während diejenige des A-Monomers äußerst hohe B-Faktoren aufweist (z.B. R15: 100). Dadurch könnte es in beiden Monomeren durch eine reduzierte bzw. zu hohe Flexibilität zu einer suboptimalen CTP-Bindung gekommen sein. Zusammenfassend lässt sich sagen, dass der Triphosphatanteil des CTP in KdsB_{AAE} deutlich markanter gebunden wird und nicht durch vorgeformte Kristallkontakte oder eine zu hohe Flexibilität der CTP-Bindungsschleife beeinflusst wird. Damit sollte die Situation in $KdsB_{AAE}$ eher dem katalytischen CTP-Bindungsmodus entsprechen.

Die KdsB_{AAE}-Struktur wies eine zweite Mg^{2+} -Bindungsstelle auf, die durch nichtverbrückende Sauerstoffatome der α -, β - und γ -Phosphatgruppen gebildet wird. Die "eclipsed"-Konformation der Phosphatgruppen und die daraus resultierende starke elektrostatische Abstoßung sollte ohne die Präsenz dieses Mg^{2+} -Ions nicht stabil sein. In diesem Zusammenhang ist es mehr als wahrscheinlich, dass das CTP-Substrat bereits als CTP- Mg^{2+} -Komplex im aktiven Zentrum bindet und dass die durch die Interaktionen mit der CTP-Bindungschleife erforderliche Ausbildung der finalen Triphosphatkonformation und der zweiten Mg^{2+} -Bindungsstelle parallele Prozesse darstellen.

3.1.6.3 Kdo

Es war im Rahmen dieser Doktorarbeit leider nicht möglich, einen Komplex zwischen KdsB_{AAE} und β -Kdo oder CMP-Kdo zu erhalten. Durch die strukturellen Studien an KpsU_{ECO} und KdsB_{HIN} sind jedoch CMP-Kdo- bzw. β -Kdo-Komplexe bekannt [Yoon et al., 2008; Jelakovic & Schulz, 2002; Badger et al., 2005]. In dem CMP-Kdo:KdsB_{ECO}-Komplex waren die konservierten Aminosäurereste V140, R155, H172, Y176, L200, E201 und Q202 an der Bindung des Kdo-Zuckers beteiligt. Zusätzlich bestand noch eine über ein Wassermolekül vermittelte Wasserstoffbrücke zwischen der V140-Hauptkettenamidgruppe und der C₈-Hydroylgruppe des Kdo. Die entsprechenden Aminosäurereste in KdsB_{AAE} sind V134, R149,

Abb. 3.8: (A) Überlagerung der Kdo-Bindungsstellen in KpsU_{ECO} (blau) und KdsB (grün). Aminosäurereste sind nach der KdsB_{AAE}-Nomenklatur bezeichnet. (B) Zwei Kdo-Bindungsmodi in KdsB_{HIN}. In Konformation B existiert eine Salzbrücke zwischen der Kdo-Carboxylatgruppe im aktiven Zentrum von Monomer B und R164 des symmetrieverwandten Monomers A.

H166, Y170, L194, E195 sowie Q196 und zeigen bei der Überlagerung ihrer C α -Atome mit den KpsU_{ECO}-Homologen einen r.m.s.d-Wert von 0,28 Å. Auch viele der betreffenden Seitenketten besitzen in beiden Strukturen eine ähnliche Orientierung (Abb. 3.8). Nur R149, Q196 und E195, dessen Carboxylgruppe eine Wasserstoffbrücke von einer Serinsettenkette akzeptiert (S74 A-Monomer, S72 B-Monomer), bilden Ausnahmen. Im CMP-Kdo:KpsU_{ECO}-Komplex ist die zu E195 äquivalente Seitenkette, E201, an der Bindung der C₄- und C₅-Hydroxylgruppen des Kdo beteiligt. In der mit CTP komplexierten KpsU_{ECO}-Struktur ist diese Seitenkette dagegen – ähnlich der Situation in KdsB_{AAE} – in Wasserstoffbrückeninteraktionen mit Serinseitenketten involviert.

Die Kdo: bzw. CMP-Kdo:KdsB_{HIN}-Komplexe bestätigen die in KpsU_{ECO} beobachteten Protein-Kdo-Interaktionen. Allerdings zeigt der CMP-Kdo:KdsB_{HIN}-Komplex noch eine zweite Kdo Bindungsstelle im aktiven Zentrum von Monomer B (Abb. 3.8). In diesem Fall kontaktiert die Kdo-Carboxylatgruppe R164 in der Dimerisierungsregion von Monomer A. Zusätzlich könnten noch hydrophobe Wechselwirkungen zwischen V142 und dem C8-Kohlenstoffatom des Kdo bestehen. Darüberhinaus existieren Wasserstoffbrückeninteraktionen zwischen den K212- und N140-Hauptkettencarbonylgruppen und den C₄- bzw. C₇-Hydroxylgruppen des Kdo. Alle aufgeführten Interaktionen bezüglich der zweiten Kdo-Bindungsstelle könnten auch KdsB_{AAE} bestehen. Die entsprechenden in Aminosäureseitenketten wären E132, V134, R156 und G193.

Die Substratbindung in der ersten Kdo-Bindungsstelle sollte zu Konformationsänderungen der R149-, Q196- und E195-Seitenketten führen. Die Interaktion zwischen R149 und der Kdo-Carboxylatgruppe könnte in diesem Zusammenhang an der spezifischen Erkennung der Kdo-β-Konformation beteiligt sein. Die Wechselwirkungen der E195-Carboxylatgruppe mit S72 bzw. S74, die sich in der N-terminalen Region von nα3 befinden, könnten diese Seitenkette in einer "stand by"-Position halten, die die

für die initiale Kdo-Bindung notwendige Flexibilität des Substrates in seiner Bindungstasche erlaubt. Hat der Kdo-Zucker seinen idealen Bindungsmodus gefunden, so könnte die

konformationelle Umlagerung in Richtung der C₄- und C₅-Hydroxylgruppen des Kdo (Abb. 3.9) diesen bewahren und die für die Katalyse einer kovalenten Bindung notwendige, definierte Orientierung des Kdo-Substrates sicherstellen.

3.1.7 Thermostabilität

Da thermostabile Proteine einen erhöhten Anteil an geladenen Aminosäureresten aufweisen können [Sterner & Liebl, 2001], wurde ein Primärstrukturvergleich zwischen homologen CMP:Kdo-Synthetasen durchgeführt (Tab. 3.6). Weiterhin wurde die Zahl der ionischen Interaktionen in den bekannten CMP:Kdo-Synthetasestrukturen von KdsB_{AAE}, KdsB_{HIN}, KdsB_{ECO} und KpsU_{ECO} untersucht, wobei als Ausschlusskriterium für eine ionische Interaktion eine Distanz von ca. 4,0 Å verwendet wurde [Barlow & Thornton, 1983] (Tab. 3.7). Diese Vergleiche zeigen eindeutig, dass KdsBAAE die höchste relative Anzahl an geladenen Seitenketten und ionischen Wechselwirkungen aufweist, die zudem noch öfter innerhalb ionischer Netzwerke anzutreffen sind. In KpsU_{ECO} findet sich das zweitgrößte Ausmaß elektrostatischer Paarbildung. Um

	Anteil geladener Reste (%)
KdsB _{AAE}	34
KdsB _{ECO}	25
$KdsB_{HIN}$	23
KpsU _{ECO}	24
$\mathrm{KdsB}_{\mathrm{LPN}}$	21
KdsB _{CTR}	21
KdsB _{CPS}	22
$\mathrm{KdsB}_{\mathrm{ABA}}$	27

Tab. 3.6: geladener Anteil Aminosäurereste einigen in Abkürz-CMP:Kdo-Synthetasen. ungen: Legionella pneumophila (LPN), Chlamydia trachomatis (CTR), Chlamydophila psittaci (CPS), Acinetobacter baumanii (ABA).

möglichst gesicherte Aussagen bezüglich des Einflusses elektrostatischer Wechselwirkungen auf die Thermostabilität von Kds B_{AAE} treffen zu können, wurden die Kds B_{AAE} - und Kps U_{ECO} -Homodimere auf struktureller Ebene genauer untersucht, da sich bei diesem Vergleich die für die erhöhte Thermostabilität eventuell mitverantwortlichen Ionenpaare bzw. Ionenpaarnetzwerke deutlicher identifizieren lassen sollten.

	KdsB _{AAE}		KdsB _{HIN}		KdsB _{ECO}		KpsU _{ECO}	
Monomer	Α	В	Α	В	С	D	Α	В
Anzahl Ionenpaare	24	28	8	7	11	12	20	17
Paare pro A.S.	0.103	0.120	0.031	0.027	0.044	0.048	0.082	0.070
Durchschnitt	0.112		0.029		0.046		0.076	
Paare in Clustern*	10	12	1	1	1	2	5	2

Tab. 3.7: ionische Interaktionen in einigen CMP-Kdo Synthetasen. *Ein Ionenpaar wurde als "geclustert" gewertet, wenn einer der Partner in zusätzliche ionische Kontakte involviert war.

Durch eine visuelle Inspektion der überlagerten Strukturen wurde zunächst geklärt, welche ionischen Wechselwirkungen sowohl in Kds B_{AAE} als auch Kps U_{ECO} vorhanden sind. Hierbei wurde eine Interaktion als äquivalent betrachtet, wenn R-, K-, D- oder E-Aminosäurereste in homologen Proteinregionen gefunden wurden und Atome mit Ladung nicht weiter als 6 Å voneinander entfernt waren (Tab. 3.8). Die mit diesem Ansatz identifizierten 14 (Kds B_{AAE} , A-

KdsB _{AAE}							
A-Monomer			B-Monomer				
Ionenpaar	d (Å)	Ionenpaar in KpsU _{ECO}	d (Å)	Ionenpaar	d (Å)	Ionenpaar in KpsU _{ECO}	d (Å)
E18-R52	2,9	-	-	E18-R52	2,9	-	-
E35-R31	3,0	-	-	E35-R31	3,3	-	-
E35-K27	3,3	E35-K27	2,7	E35-K27	3,7	E35-K27	3,3
E42-R3	3,0	-	-	E42-R3	3,4	-	-
E42-K105	3,5	-	-	E42-K105	2,4	-	-
-	-	-	-	E51-K54	3,4	-	-
D59-R31	2,9	-	-	D59-R31	2,9	-	-
E62-R43	2,8	E45-K65	5,6	E62-R43	2,9	E45-K65	5,7
-	-	-	-	D83-R82	3,1	E82-K86	3,2
D85-R2	2,7	-	-	-	-	-	-
D87-R2	3,4	-	-	-	-	-	-
D95-K19	2,3	D98-K19	4,7	D95-K19	3,0	D98-K19	3,4
E101-K105	4,0	E108-R105	2,7	-	-	-	-
-	-	-	-	E102-R109	2,8	E108-R105	3,3
E110-K113	3,0	-	-	E110-K113	3,0	-	-
E110-K207	4,1	D117-R213	3,0	E110-K207	3,3	D117-R213	3,2
E112-R3	2,7	-	-	E112-R3	2,8	-	-
D124-K165	3,2	E133-K171	5,4	D124-K165	2,9	-	-
-	-	-	-	D124-R122	2,9	-	-
E126-R130	3,7	-	-	E126-R130	3,1	-	-
E132-R130	4,0	-	-	E132-R130	3,8	-	-
D133-R130	3,0	-	-	D133-R130	3,5	-	-
-	-	-	-	D133-K165	3,7	-	-
E179-R116	3,6	-	-	E179-R116	2,9	-	-
E189-R198	3,0	E195-R204	2,7	E189-R198	2,9	E195-R204	3,1
-	-	-	-	E195-R198	4,1	E201-R204	3,5
E212-K123	2,7	-	-	-	-	-	-
D219-R15	3,4	D225-R15	2,6	D219-R15	3,7	D225-R15	5,0
D219-K19	2,6	D225-K19	3,4	D219-K19	3,0	D225-K19	4,6
-	-	-	-	E221-K22	2,7	-	-
E221-K225	3,6	E231-R234	3,6	-	-	-	-
-	-	-	-	E222-R130	3,7	-	-
-	-	-	-	E229-K232	3,8	-	-

Tab. 3.8: Ionenpaarbeziehungen für die jeweiligen Monomere des KdsB_{AAE} –Homodimers und äquivalente elektrostatische Interaktionen in KpsU_{ECO}.

Monomer) bzw. 18 (KdsB_{AAE}, B-Monomer) Ionenpaare, die spezifisch für KdsB_{AAE} sind, finden sich vorwiegend auf der Proteinoberfläche und akkumulieren zu Ionenpaarnetzwerken in der Nähe des N-Terminus (Netzwerk 1), der Region 123-135 (Netzwerk 2) und der CTP-Bindungsschleife mit den benachbarten Helices n α 1 und n α 2 (Netzwerk 3).

Netzwerk 1 besteht aus K105, E42, R3, E112, R2, D87 sowie D85. Wasserstoffbrücken existieren zwischen den Ionenpaaren E112-R3 und E42-R3. Im KdsB_{AAE}-B-Monomer ist dieses Netzwerk nicht ganz so weit ausgedehnt, da hier die Seitenkette von R3 eine andere Orientierung einnimmt. Die entsprechende Region in KpsU_{ECO} hat demgegenüber deutlich weniger ionische Interaktionen. Hier könnten elektrostatische Beziehungen zwischen D90 und S1 bestehen. Darüberhinaus fungiert die Hauptkettencarbonyylgruppe von S1 als Wasserstoffbrücke zwischen E45 und K2 (Abb. 3.10).

Netzwerk 2, in der Nähe der Dimerisierungsschleife, die die β -Stränge c β 3 und c β 4 verbindet, besteht aus D124, E126, E129, R130, E132, D133 und K165. Wasserstoffbrücken finden sich zwischen R130-D133 (A-Monomer) und D124-R122 (B-Monomer). Die homologe KpsU_{ECO} Region besitzt demgegenüber deutlich weniger geladene Aminosäurenseitenketten. Dem Ionenpaar E124-K165 in KdsB_{AAE} entspricht E133-K171 in KpsU_{ECO} (Abb. 3.10).

Netzwerk 3 besteht aus den Aminosäureresten K27, E35, R31 und D59 und verbindet die Helices n α 1 und n α 2, die sich in unmittelbarer Nachbarschaft zur CTP-Bindungsschleife befinden. Helix n α 1 ist zusätzlich über das Ionenpaar E18-R52 direkt mit der CTP-Bindungsschleife verbunden. In KpsU_{ECO} finden sich für diese Region bis auf das Ionenpaar K27-E35 keine äquivalenten elektrostatischen Wechselwirkungen (Abb. 3.10).

Neben den Untersuchungen bezüglich der elektrostatischen Interaktionen wurden noch die hydrophobe Packung der Kohlenstoffatome durch die Berechnung ihrer jeweiligen Oberflächenzugänglichkeit und die Anzahl aller Wasserstoffbrücken in KdsB_{AAE} sowie KpsU_{ECO} untersucht. Schließlich wurden noch die Dimerisierungsflächen pro Monomer für beide Strukturen berechnet (Tab. 3.9).

	Oberflächenzugänglichkeit	Anzahl Wasse	erstoffbrücken	Dimerisierungsfläche
	aller Kohlenstoffatome (\AA^2)	Innerhalb Monomer	Dimerisierungs- interface	$(Å^2)$
$KdsB_{AAE}$	6297 Å ²	156	14*	1347
$KpsU_{ECO}$	6462 Å ²	167	16	1348

Tab. 3.9: Oberflächenzugänglichkeit aller Kohlenstoffatome, Wasserstoffbrücken und Dimerisierungfläche in $KdsB_{AAE}$ und $KpsU_{ECO}$. * enthält zwei Salzbrücken D159 (A-Monomer)-K187(B-Monomer), D159(B-Monomer)-K187(A-Monomer)

Die Thermostabilität von Proteinen lässt sich auf viele Arten erhöhen, u. a. durch eine Verkleinerung von an der Proteinoberfläche befindlichen Schleifenregionen, eine stärkere hydrophobe Packung des Proteininneren oder durch vermehrt auftretende ionische Wechselwirkungen [Sterner & Liebl, 2001]. Die erstmalige Aufklärung einer CMP:Kdo-Synthetase-Struktur aus einem hyperthermophilen Bakterium erlaubt nun - durch den Vergleich mit einem ihrer mesophilen Homologen - Einblicke in die strukturellen Grundlagen

der erhöhten Thermostabilität. Obwohl ionische Wechselwirkungen ein Protein unter bestimmten Umständen destabilisieren können [Hendsch & Tidor, 1994], sind sie gleichwohl in der Lage, zur Thermostabilität eines Proteins beizutragen. Für einen in dieser Hinsicht positiven Beitrag muss der verfügbare Betrag der freien Energie beim Übergang von der ungefalteten in die gefaltete Proteinform erhöht werden. Da die geladenen Aminosäurereste in ungefalteten Proteinform von Wassermolekülen umgeben sind, muss der diese Hydratationshülle zunächst abgestreift werden, bevor zwei unterschiedlich geladene Seitenketten eine Salzbrücke in der gefalteten Proteinform ausbilden können ("Desolvatationsstrafe"). Nicht immer übersteigt der Beitrag der freien Energie der Salzbrückenbildung denjenigen der Dehydratation. Positive Beiträge sind jedoch möglich, wenn Salzbrücken in solvenszugänglichen Proteinregionen oder in Ionenpaarnetzwerken ausgebildet werden, da sie in diesen Fällen nicht vollständig von Wassermolekülen befreit werden müssen (keine "Desolvatationsstrafe") bzw. kompensierende Wechselwirkungen mit anderen Ionenpaaren möglich sind [Goldman, 1995; Xiao & Honig, 1999]. Die für KdsBAAE spezifischen Ionenpaare befinden sich auf der Proteinoberfläche und sind in Netzwerken angeordnet, so dass sie grundsätzlich zur erhöhten Thermostabilität beitragen sollten.

Aufgrund der offenkundigen strukturellen Ähnlichkeiten zwischen KdsB_{AAE} und KpsU_{ECO} ist es nicht verwunderlich, ähnliche Ergebnisse für die hydrophobe Packung der Kohlenstoffatome und das Ausmaß der Wasserstoffbrückenbildung innerhalb der Monomere zu finden. Darüberhinaus sind sowohl die Dimersierungsflächen als auch die Anzahl der Wasserstoffbrücken zwischen den jeweiligen Dimerisierungsregionen fast identisch, jedoch sind im Falle von KdsB_{AAE} zwei zusätzliche Salzbrücken vorhanden.

Die initialen Schritte der Hitzedenaturierung eines Proteins beginnen sehr oft in weniger stabilen Proteinregionen, die sich durch eine erhöhte Flexibilität auszeichnen, wie z.B. an langen, an der Proteinoberfläche befindlichen Schleifenregionen oder den N- und C-terminalen Enden. Daher sollte eine Stabilisierung derartiger Regionen zu einer erhöhten Thermostabilität führen [Eijsink et al., 2004]. In diesem Kontext könnte Netzwerk 1 die N-terminale KdsB_{AAE}-Region vor dem Entfalten bei der für *A. aeolicus* optimalen Wachstumstemperatur von 95 °C bewahren.

Netzwerk 2 befindet sich in der Nähe der Dimerisierungsschleife und könnte an der Stabilisierung der Monomerform beteiligt sein. Auch die monomere $KdsB_{AAE}$ -Form muss thermostabil sein, da es ansonsten zur Denaturierung und einer damit verbundenen Verschiebung des Monomer-Dimer Gleichgewichts kommen könnte. Die lange Dimerisierungsschleife zwischen c β 3 und c β 4 sollte ohne die entsprechenden Homodimer-

62

interaktionen flexibel sein und könnte damit als Ausgangspunkt für Denaturierungsprozesse dienen. An der Spitze dieser Schleifenregion befinden sich die geladenen Aminosäurereste R156, K157 und D159, die teilweise an Monomer-Monomer-Kontakten beteiligt sind. So bildet D159 ein wasserstoffbrückengebundenes Ionenpaar mit K187 im symmetrieverwandten Monomer (Tab. 3.9). Zusätzlich weist das negative Ende des Dipolmoments von c α 4 des symmetrieverwandten Monomers auf R156 und K157. In Abwesenheit eines Partnermoleküls könnte diese Schleifenregion möglicherweise derart umgestaltet werden, dass R156, K157 und D159 Teil von Netzwerk 2 werden, um damit die monomere Proteinform vor Hitzedenaturierung zu schützen. Obwohl es fast keinen Unterschied in der Dimerisierungsfläche und der Anzahl der Wasserstoffbrücken innerhalb der Dimerisierungsregion gibt, existieren im Falle von KdsB_{AAE} zwei exponierte Salzbrücken, K187 (A-Monomer) - D159 (B-Monomer) sowie deren Symmetrieäquivalente, die keine Entsprechungen in KpsU_{ECO} haben. Sie könnten zu stärkeren Homodimerkontakten führen und dadurch ebenfalls einen Beitrag zur erhöhten Thermostabilität leisten.

Netzwerk 3 sollte die relativen Bewegungen von n α 1 und n α 2 zueinander beschränken und damit zu stärkeren Interaktionen der hydrophoben Aminosäurenseitenketten V38, V34, I30, V57 und L60 führen, die sich zwischen diesen beiden Helices befinden. Eine verminderte Flexibilität sollte auch die hydrophoben Wechselwirkungen dieser Helices mit der CTP-Bindungsschleife, hauptsächlich vermittelt durch P28, P20, L21, I30, V56, V53 und L11 stärken. Darüber hinaus könnte das an der Proteinoberfläche befindliche, wasserstoffbrückengebundene Ionenpaar E18-R52 ebenso wie die ionische Interaktion zwischen E221 und K22 zur Stabilität und Funktionsfähigkeit der CTP-Bindungschleife unter den extremen Temperaturbedingungen beitragen. In KpsU_{ECO} dagegen scheint diese "Extrastabilisierung" nicht notwendig zu sein.

3.1.8 Reaktionsmechanismus

Basierend auf dem beobachteten CTP-Bindungsmodus und durch den Vergleich mit den CMP-Kdo- bzw. Kdo-komplexierten KpsU_{ECO}- und KdsB_{HIN}-Strukturen sowie dem kürzlich veröffentlichten ternären CTP-2-deoxy-Kdo:KdsB_{ECO} Komplex [Heyes et al., 2009] sollen nun im Folgenden die von Jelakovic und Schulz [2002] und Heyes et al. [2009] vorgeschlagenen Reaktionsmechanismen um alternative Aspekte erweitert werden.

Eine CMP:Kdo-Synthetase sollte nicht nur die Neubildung einer kovalenten Bindung zwischen der C₂-Hydroxylgruppe des Kdo und der α -Phosphatgruppe des CTP katalysieren, sondern auch die unproduktive Hydrolyse verhindern. Während die β - und γ -Phosphat-
gruppen bereits durch ihre Interaktionen mit der zweiten Mg²⁺-Bindungsstelle (vergl. 3.1.6.2) und der CTP-Bindungsschleife gut gegenüber umgebenden Wassermolekülen abgeschirmt sind, sollten Schutzmechanismen vorhanden sein, die sicherstellen, dass nur die C2-Hydroxylgruppe des Kdo den nukleophilen Angriff auf die α-Phosphatgruppe ausführen kann. In dieser Betrachtung weist der von Jelakovic und Schulz vorgeschlagende Reaktionsmechanismus [Jelakovic & Schulz, 2002] Schwächen auf, da er die Präsenz eines Mg^{2+} -gebundenen Hydroxylions in unmittelbarer Nachbarschaft zur α -Phosphatgruppe vorschlägt (vergl. 3.1.6.1), das selbst als Nukleophil dienen oder ein Wassermolekül für den nukleophilen Angriff aktivieren könnte. Ein kürzlich veröffentlichter alternativer Reaktionsmechanismus geht davon aus, dass die katalytische Mg²⁺-Bindungsstelle (3.1.6.1) nur in Anwesenheit des Kdo-Substrates ausgebildet werden kann, so dass im CTP:Enzym-Substratkomplex keine Hydrolyse stattfinden sollte [Heyes et al., 2009]. In der KdsBAAE-Struktur wurde eine klare und gut definierte CTP-Elektronendichte beobachtet, ohne die geringsten Anzeichen einer unproduktiven Hydrolysereaktion, obwohl die Mg²⁺-Bindung bereits stattgefunden hatte. Offenbar ist das CTP-Molekül in der vorliegenden KdsBAAE-Struktur auch in Abwesenheit des Kdo-Substrates bestens gegen eine Hydrolyse geschützt. Es existieren keinerlei Interaktionen zwischen Aminosäureresten und der a-Phosphatgruppe, die

diese gegenüber Wassermolekülen vollständig abschirmen würden. Damit sollte der beobachtete Hydrolyseschutz ein intrinsischer Bestandteil des CTP-Mg²⁺-Substrates selbst sein. Betrachtet man die Position der zweiten Mg²⁺-Bindungsstelle und die van-der-Waals Oberfläche der C₅'-Methylengruppe des CTP-Furanoserings (Abb. 3.11), so wird die nahezu perfekte Abschirmung der α -Phosphatgruppe gegenüber umgebenden Wassermolekülen und Hydroxylionen deutlich. Insbesondere die Position der C₅'- Methylengruppe relativ zur

 α -Phosphatgruppe sollte einen bedeutenden Beitrag zum Hydrolyseschutz leisten. Kleinere Nukleophile, wie z.B. Wassermoleküle oder Hydroxylionen, sollten die bei einem nukleophilen Angriff auf die α -Phosphatgruppe entstehenden, ungünstigen Wechselwirkungen mit dieser Methylengruppe nicht durch kompensierende Interaktionen mit der Proteinumgebung ausgleichen können, wie es für das größere und reguläre Kdo-Substrat ohne Zweifel möglich ist.

Nach der Bindung des CTP-Mg²⁺ und des Kdo-Substrates sollten die durch die Kdo-Bindungstasche vermittelten Interaktionen genug freie Energie zur Kompensierung der ungünstigen Wechselwirkungen zwischen der C₅'-Methylengruppe des CTP und der C₂-Hydroxylgruppe des Kdo bereitstellen. Eine Bewegung der N- und C-terminalen Domänen ist notwendig, wie die Distanz von 4,5 Å zwischen dem α -Phosphat und der C₂-Hydroxylgruppe des Kdo zeigt, das durch Überlagerung mit der Kdo-komplexierten KdsB_{HIN}-Struktur in das aktive Zentrum von

KdsB_{AAE} modelliert wurde (Abb. 3.12).

Die C₂-Hydroxylgruppe des Kdo muss nun vor dem nukleophilen Angriff auf die α -Phosphatgruppe des CTP deprotoniert werden. Während diese Aufgabe nach Jelakovic und Schulz [2002] einem mit dem ersten Mg²⁺-Ion koordinierenden Hydroxylion zukommt, postulieren Heyes et al. [2009], dass die C₂-Hydroxylgruppe durch direkte Koordinierung mit dem ersten Mg²⁺-Ion aktiviert und dann durch ein umgebendes Wassermolekül deprotoniert wird. Eine interessante Alternative zu diesen Vorschlägen eröffnet die nun vorliegende KdsB_{AAE}-Struktur. Nach der oben beschriebenen Modellierung (Abb. 3.12) ist es durchaus vorstellbar, dass die C₂-Hydroxylgruppe des Kdo im Verlauf der Reaktion mit Wasserliganden von beiden Mg²⁺-Ionen wechselwirkt. Die Wasserstoffbrücke mit einem Wasserliganden des ersten Mg²⁺-Ions könnte in diesem Zusammenhang für die korrekte Orientierung der C₂-Hydroxylgruppe unmittelbar vor dem nukleophilen Angriffs auf die α -Phosphatgruppe sorgen, während die Wasserstoffbrücke zu einem Wasserliganden des zweiten Mg²⁺-Ions die Deprotonierung und einen hierauf folgenden Protonentransport zur entstehenden Pyrophosphat-Abgangsgruppe ermöglichen könnte (Abb. 3.13).

Nach erfolgter Deprotonierung findet der nukleophile Angriff auf die α -Phosphatgruppe des CTP statt und der Übergangszustand der Reaktion wird erreicht. Nach Schulz und Jelakovic [2002] polarisiert das erste Mg²⁺-Ion das α -Phosphatatom des CTP und erleichtert so die Bindungsspaltung zur β -Phosphatgruppe und die Neubildung einer einer kovalenten Bindung

zum Kdo-Zucker. Demgegenüber schlagen Heyes et al. [2009] einen "two-metal-ion"-Mechanismus vor, bei dem neben dem ersten noch ein weiteres Mg²⁺-Ion an der Stabilisierung des Übergangszustandes beteiligt ist. Dieses zweite Mg²⁺-Ion sollte – analog zu der Situation in KdsB_{AAE} – durch die Triphosphatgruppe des CTP gebunden werden (Abb. 3.13). Zusätzlich könnte die Ausbildung des Übergangszustandes ihrer Ansicht nach durch eine Lysinseitenkette unterstützt werden. Obwohl paramagnetische Elektronenresonanz-Spektroskopie die Existenz von zwei Mg²⁺-Bindungsstellen im ternären CTP-2-deoxy-Kdo:KdsB_{ECO}-Komplex nahelegt [Heyes et al., 2009] konnte in der entsprechenden KdsB_{ECO}-Struktur [Heyes et al. ,2009] nur das zweite Mg²⁺-Ion nachgewiesen werden. In der nun vorliegenden KdsBAAE-Struktur konnten erstmals beide Mg2+-Ionen gleichzeitig beobachtet werden, ein starkes Indiz für den von Heyes et al. [2009] vorgeschlagenen "two-metal-ion"-Mechanismus. Entgegen der Ansicht von Heyes et al. [2009] demonstriert der CTP:KdsBAAE-Komplex jedoch eindeutig, dass die Ausbildung der ersten Mg²⁺-Bindungsstelle unabhängig von der Präsenz des Kdo-Substrates ist. Die Positionen der Mg²⁺-Ionen scheinen ideal für die Stabilisierung eines pentakovalenten Übergangszustandes zu sein, was gleichzeitig für einen assoziativen Mechanismus beim Nukleotidyltransfer spricht.

Die negative Ladung der deprotonierten C₂-Hydroxylgruppe wird im Verlauf der Reaktion auf das verbrückende Sauerstoffatom zwischen der α - und β -Phosphatgruppe übertragen. Jelakovic und Schulz [2002] schlagen vor, dass diese zusätzliche Ladung durch elektrostatische Interaktionen mit basischen Seitenketten neutalisiert wird. Nach Heyes et al. [2009] könnte diese Rolle dem zweiten Mg²⁺-Ion zukommen, das die β - und γ -Phosphatgruppen des CTP kontaktiert. Die Art und Weise in der die Deprotonierung der C₂-Hydroxylgruppe in KdsBAAE ablaufen könnte (siehe oben) würde direkt dafür sorgen, dass die β - und γ -Pyrophosphat-Abgangsgruppe keine zusätzliche negative Ladung aufweist. Es wurde bereits diskutiert, dass die Protonierung der β-Phosphatgruppe eines Nukleosidtriphosphates zu einer Umlagerung des assoziierten Mg^{2+} -Ions in Richtung der γ -Phosphatgruppe führen und damit zur Stabilisierung der Pyrophosphat-Abgangsgruppe beitragen kann [Cowan, 1998, 2002]. Solch eine Umlagerung dürfte auch im Falle des CMP:Kdo-Synthetasemechanismus benötigt werden, da die Inversion des α-Phosphates zu einem Zusammenstoß zwischen den α-Phosphatsauerstoffatomen und dem zweiten Mg²⁺-Ion führen sollte. Die Umlagerung des Mg²⁺-Ions würde auch eine Veränderung der Konformation der Pyrophosphat-Abgangsgruppe erzwingen und dadurch deren optimale Kontakte mit der CTP-Bindungsschleife aufbrechen. Zusammen mit der Protonierung des ß-Phosphatsauerstoffatoms, die zu einer Verringerung der elektrostatischen Interaktionen mit den positiv geladenen Seitenketten der

CTP-Bindungsschleife führen sollten, würde dies die Dissoziation der Pyrophosphat-Abgangsgruppe begünstigen, höchstwahrscheinlich im Komplex mit dem zweiten Mg²⁺-Ion. Nach der Bildung des CMP-Kdo-Reaktionsproduktes sollte dieses in die Umgebung freigesetzt werden. Möglicherweise verläuft die Freisetzung des CMP-Kdo über die in KdsB_{HIN} beobachtete alternative Kdo-Bindungsstelle (vergl. Abb. 3.8).

In einem "two-metal-ion"-Mechanismus [Steitz & Steitz, 1993; Brautigam & Steitz, 1998], der sich auch bei DNA-Polymerasen findet, ist das erste Metallion sowohl an der Aktivierung und korrekten Positionierung des Nukleophils als auch an der Polarisierung des α -Phosphates beteiligt, während das zweite Metallion, das Koordinierungskontakte zu Sauerstoffatomen der α -, β und γ -Phosphatgruppen ausbilden kann, für die Stabilisierung der sich entwickelnden negativen Ladung an der β -Phosphatgruppe zuständig ist (Abb.

3.14). Beide Metallionen stabilisieren den Übergangszustand über die Koordinierung desselben α -Phosphatgruppensauerstoffatoms und beide interagieren mit Aminosäureresten des Proteins. Nicht alle diese Merkmale treffen auf die Situation in KdsB_{AAE} zu, so dass es sich hierbei um eine Variation des klassischen "two-metal-ion"-Mechanismus handeln könnte. Während das erste Mg²⁺-Ion sowohl an der Orientierung des angreifenden Nukleophils als auch der Polarisierung des α -Phosphates beteiligt sein dürfte, kann das zweite Mg²⁺-Ion die Ausbildung der negativen Ladung an der β -Phosphatgruppe nicht durch einen direkten Kontakt unterstützen. Darüberhinaus kontaktieren die beiden Metallionen nicht dasselbe α -Phosphatgruppensauerstoffatom während des Übergangszustandes und nur das erste Mg²⁺-Ion interagiert mit den D95- und D219-Seitenketten des Proteins, während die Koordinationssphäre der zweiten Mg²⁺-Bindungsstelle ausschließlich aus Sauerstoffatomen des CTP und zusätzlichen Wassermolekülen besteht. Insbesondere die letztere Beobachtung könnte die vielfältigen Funktionen des zweiten Mg²⁺-Ions während der Katalyse unterstreichen. Es wird dazu benötigt, die α -Phosphatgruppe zu stabilisieren, könnte indirekt am

Protonentransfer von der C₂-Hydroxylgruppe des Kdo hin zum verbrückenden Sauerstoff der β -Phosphatgruppe beteiligt sein und im Komplex mit der Pyrophosphat-Abgangsgruppe das aktive Zentrum verlassen.

3.2 WaaA_{AAE}

3.2.1 Neue Kristallisationsbedingungen

Ausgehend von der kritischen Rolle der Detergenzien bei der Kristallisation von membranassoziierten Proteinen wurde mit Hilfe der unter 2.2.1.2 und 2.2.3.1 beschriebenen Vorgehensweisen zunächst der Einfluss von n-Octyl-β-D-glucopyranosid (NOG), n-Heptyl-β-D-glucopyranosid, Dodecyl-β-D-maltosid, 3-([3-Cholamidopropyl]-dimethylammonio)-2-hydroxy-1-propansulfonat (CHAPSO) sowie 6-Cyclohexylhexyl-β-D-maltosid (Cymal-6) auf

das Kristallisationsverhalten untersucht. Interessanterweise war WaaA_{AAE} auch bei Elution mit detergenzfreiem Puffer stabil. Durch diesen Ansatz konnten mehrere initiale Kristallisationsbedingungen identifiziert werden (Abb 3.15). Die unter 2.2.4.9 beschriebene Methode zur Überprüfung der Kristallqualität ergab keine Streuung bzw. Streuung im niedrigen Auflösungsbereich. Die anschließend nach 2.2.3.2 durchgeführten Optimierungsbemühungen erzielten jedoch in keinem Fall signifikante Verbesserungen der Kristallqualität.

Die bis dahin beste Kristallisationsbedingung ergab sich mit 25 mM Tris-HCl pH 8,7, 10% (v/v) Glycerol, 5 mM β -Mercaptoethanol, 100 mM NaCl sowie 2 mM Cymal-6 (Sigma-Aldrich) als Proteinpuffer und 200 mM NaCitrat, 30% (v/v) PEG 400 sowie 100 mM Tris-HCl pH 8,5 als Fällungsmittel. Einige der erhaltenen Kristalle, mit Dimensionen von 0.1 x 0.05 x 0.05 mm³, streuten bereits bis zu einer Auflösung von 9 Å unabhängig davon, ob bei RT oder 100 K gemessen wurde.

Zur weiteren Optimierung wurde zunächst versucht, das Kristallisationsverfahren von "sitting-drop" zu "hanging-drop" und "microbatch" zu ändern. Die Methode des "hangingdrop" stellte sich hierbei als äußerst günstig für Größenwachstum und Kristallqualität heraus. Es wurden EasyXtal-DG-CrystalSupport-X-Seal-Platten (Qiagen) verwendet. Das Fällungsmittel besaß die oben beschriebene Zusammensetzung mit der Ausnahme, dass die verwendeten PEG-400 Konzentrationen im Bereich von 32-39% (v/v) lagen. Je 1,5 µl der

Proteinlösung (10-18 mg/ml), die zuvor bei 13000 rpm und 4°C zentrifugiert wurde, wurden mit je 1,5 µl Fällungsmittel gemischt und gegen 900 µl Fällungsmittel bei 19°C äquilibriert. Die Kristalle wuchsen nun zu maximalen Dimensionen von $0,3 \times 0,2 \times 0,05 \text{ mm}^3$ heran. Weitere Kristallisationsversuche wurden bei 4°C, 12°C, 37°C sowie 60°C unternommen. Die bei 37°C bzw. 60°C durchgeführten Kristallisationsversuche führten nicht zur Kristallbildung und die Kristalle, die bei 4°C und 12°C wuchsen, waren von der Qualität

ähnlich den bei 19°C erhaltenen. Zusammen mit der Verwendung von 50 mM β -Mercaptoethanol als Fällungsmitteladditiv war es möglich, anisotrope Streuung bis zu einer Auflösung von 3,5 Å am institutseigenen Xcalibur-PX-Ultra-Röntgendiffraktometer zu erhalten. Die Vermessung eines Kristalls an der X13-Beamline des DESY lieferte einen ersten nativen Datensatz mit einer Auflösung von 3,2 Å, einer Vollständigkeit von 99,8% und einem R_{merge} von 12,8% (vergl. 4.3).

Als problematisch für die angestrebte Schwermetallderivatisierung erwies sich die Menge an Kristallen, deren Diffraktion die 3,5 Å-Marke überschritt. Um genauere Aussagen über die Homogenität der Proteinlösung machen zu können, wurden dynamische Lichtstreuungsmessungen (DLS-Messungen) durchgeführt (Abb. 3.16). Nach diesen Ergebnissen war die verwendete Proteinlösung monodispers, so dass hier kein Optimierungsbedarf bestand. Weiterhin wurden Modifikationen des unter 2.2.1.2 beschriebenen Aufreinigungsprotokolls durchgeführt. Die Verwendung höherer Waschvolumina zur Entfernung des Triton-X100 (50-statt 10-Säulenvolumen) wirkten sich günstig auf das Größenwachstum aus, so dass nun Kristalle mit maximalen Dimensionen von 0.7 x 0.4 x 0.2 mm³ gezüchtet werden konnten. Auch die Menge an Kristallen, die die für röntgenkristallographische Untersuchungen notwendige Qualität aufwiesen, konnte so gesteigert werden. Die Vermessung des besten

Kristalls an der I911-3 Beamline des MaxLab der Universität Lund lieferte einen 2,0 Å-Datensatz mit einer Vollständigkeit von 99,6% und einem R_{merge} von 5,9% (Abb. 3.17, vergl. 4.3).

3.2.2 Röntgenkristallographische Charakterisierung der neuen Kristallform

Die röntgenkristallographische Charakterisierung des Diffraktionsmusters führte zur Zuordnung zum monoklinen Kristallsystem mit den Einheitszellenparametern a = 132,28 Å, b = 45,92 Å, c = 144,03 Å und α = 90°, β = 97,08°, γ = 90°. Die Frage der in diesem Kristallsystem möglichen Raumgruppen P2, C2 und P21 wurde durch die Analyse der gemessenen Intensitäten entlang der 0k0- und h00-Achsen des reziproken Gitters untersucht. Entlang der 0k0-Achse fanden sich Intensitäten nur für k = 2n, während entlang der h00-Achse kein besonderes Muster zu erkennen war. Dieses Ergebnis war unvereinbar mit Raumgruppe C2 und gab Raumgruppe P21 den Vorzug gegenüber P2. Die Analyse der Pattersonkarte im Auflösungbereich von 20 bis 4 Å erbrachte keinen Hinweis auf eine eventuelle vorliegende Pseudotranslation, da kein Peak mehr als 7,6 % des Ursprungpeaks ausmachte. Die Berechnung der entsprechenden Eigenrotationsfunktion im Auflösungsbereich von 8 bis 3,5 Å innerhalb eines Radius von 15 Å sprach für die Existenz einer zur c-Achse parallelen, 180°-NCS-Achse. Dieses Ergebnis deckte sich mit von Dr. Uwe Mamat durchgeführten Gelfiltrationsstudien, nach denen WaaAAAE in Lösung sowohl Dimere als auch Trimere bilden kann, so dass von einem WaaAAAE-Homodimer als Kristallgrundbaustein ausgegangen werden konnte. Der Matthews-Koeffizient [Matthews, 1968] und der sich daraus ableitende Wassergehalt wurde für 2, 4, 6 sowie 8 WaaAAAE-Moleküle und Raumgruppe P21 berechnet. Nach diesen Analysen waren 1 - 3 Homodimere in der ASU vorstellbar. Die größte Wahrscheinlichkeit bestand hierbei für zwei WaaAAAE-Homodimere mit einem Matthews-Koeffizienten [Matthews, 1968] von 2,49 und einem Wassergehalt von ca. 50% (v/v).

3.2.3 Reduzierung der Oberflächenentropie von WaaAAAE

Die unter Punkt 2.2.3.3.1 beschriebene Vorgehensweise führte zu gut auswertbaren Gelbanden (Abb. 3.18). Durch die anschließende massenspektrometrische Analyse der ausgeschnittenen und trypsinverdauten Gelbanden (vergl. 4.2) konnte ein Szenario für den zeitlichen Verlauf des WaaA_{AAE}-Trypsinverdaus abgeleitet werden (Abb. 3.18). Demnach erfolgt relativ schnell, innerhalb der ersten Minuten, ein Schnitt in der Nähe des N-Terminus, so dass der 21 Aminosäurereste umfassende His-Tag abgespalten wird (Bande I). Danach verlangsamt sich der Abbau und es folgt die proteolytische Spaltung in der Region 150-172

(Banden III + IV) oder, alternativ, zunächst ein Schnitt in Region 41-47 (Bande II) und dann erst die Spaltung zwischen 150-172 (Banden III + VI). Das verzögerte Erscheinen von Bande V relativ zu demjenigen von Bande IV weist darauf hin, dass ein Schnitt in Region 41-47 den Abbau in Region 150-172 verzögert. Obwohl die gefundenen Peptidfragmente für die Banden III und V nahezu identisch sind (vergl. 4.2), besteht ein Unterschied für die entsprechenden Molekularmassen, der sich am besten durch einen Schnitt bei K326 und den damit verbundenen Verlust des C-Terminus erklären lässt. Bei Bande VI wurden Peptidfragmente gefunden, die einen Proteinbereich mit einer Molekularmasse von 26 kD umfassen und damit unvereinbar mit der Position von Bande VI auf dem Gel sind. Diese Bande sollte daher die Abbauprodukte der Banden II, IV und V enthalten (vergl. 4.2).

Zusammenfassend lässt sich sagen, dass die Lysin- und Argininseitenketten in den Proteinregionen 9 – 19, 41-47, 150-172 sowie der Region um 326 besonders empfänglich gegenüber dem proteolytischen Verdau durch Trypsin sind. Ausgehend von dem bekannten Zweidomänenaufbau der GT-B-Enzyme bietet sich für den Bereich 150-172 die Interpretation als Linkerregion an. Die sich anschließende Analyse der Lysinreste innerhalb der erwähnten Regionen, unter Berücksichtigung der innerhalb der Familie der Kdo-Transferasen konservierten Primärstrukturbereiche, führte zum Design von acht Waa A_{AAE} -Varianten (Tab. 3.10)

Die Mutationen K12A und E13A für die Varianten 1, 2 und 3, K153A für die Variante 6, K167A und K169A für die Varianten 7 und 8, K40A und E41A für die Variante 4 sowie K43A und E45A für die Variante 5 wurden durch PCR-Mutagenese eingeführt. Die erfolgreiche Einführung der Mutationen wurde durch Sequenzierung des gesamten WaaA_{AAE}-Gens überprüft. Es wurde in allen Fällen der unter 2.2.3.3.6 beschriebene *in vivo*-Aktivitätstest durchgeführt. Die Varianten K12A/E13A, K40A/E41A und K153A waren immer noch katalytisch aktiv, während für die Varianten K43A/E45A und K167A/K169A keine Aktivität mehr festzustellen war (vergl. 4.4).

Die Variante K40A/E41A wurde unter den unter 2.2.1.2 beschriebenen Bedingungen rekombinant produziert und aufgereinigt. Leider konnte die Aufreinigung nicht erfolgreich abgeschlossen werden, da das gesamte Protein während des 80°C-Inkubationsschrittes ausfiel. Es ist damit davon auszugehen, dass die Einführung der Mutationen K40A/E41A zu einem Verlust der Thermostabilität führt. Vor dem Hintergrund der unter 3.2.1 beschriebenen, erfolgreichen WaaA_{AAE}-Kristallisation wurde von weiteren Bemühungen abgesehen.

Variante	Mutationen				
1	K12A, E13A, K16A				
2	K12A, E13A, K19A				
3	K12A, E13A, K16A, K28A				
4	K40A, E41A				
5	K43A, E45A				
6	K153A, K167A, K169A				
7	K167A, K169A, K172A				
8	K167A, K169A, K172A, K174A, E176A				

Tab 3.10: Geplante WaaAAAE-Varianten zurVerbes-serung der Kristallqualität.

3.2.4 Schwermetall- und Xenonderivate

Aufgrund der Ergebnisse der nativen Gelelektrophoresen (Abb. 3.19) wurden zuerst UO₂(NO₃)₂, K₃IrCl₆ und K₂PtI₆ entsprechend der unter 2.2.4.6 aufgeführten Vorgehensweise getestet. Zusätzlich wurde die Derivatisierung mit den Schwermetallverbindungen HgCl₂, KAuCl₄, 5-Hg-CTP, (UO₂)(CH₃COO)₂, NaC₇H₅HgO₃, K₂PtCl₄, KAu(CN)₂, (CH₃)₃PbCl, (C₂H₅)HgCl, Ta₆Br₁₂, K₂OsO₄ und dem Edelgas Xe angestrebt. Wann immer es möglich war, wurden potentielle Schwermetallderivate

bei Wellenlängen vermessen, die die Auswertung eines anomalen Signals ermöglichten. Durch diese Vorgehensweise sollte eine erfolgreiche Schwermetallderivatisierung auch bei nicht isomorphen Einheitszellenparametern noch erkennbar sein. Die Auswertung aller erhaltenen Datensätze (vergl. 4.3) ergab lediglich für die K₃IrCl₆- und K₂PtI₆-Derivate, die durch direkte Zugabe der entsprechenden festen Schwermetallsalze erhalten wurden, Hinweise auf gebundene Schwermetallionen (Abb. 3.20).

Im Falle des K₂PtI₆-Derivates wurde der Kristall bei drei Wellenlängen vermessen (pk: 1,07123 Å, infl: 1,07159 Å, hrem: 1,06662 Å, vergl. 4.3), während für das K₃IrCl₆-Derivat nur zwei Datensätze gesammelt werden konnten (pk: 1,1056 Å, infl: 1,1059 Å, verl. 4.3), wobei der zweite Datensatz (infl) deutliche Anzeichen für Strahlungsschäden aufwies, wie z.B. eine reduzierte Auflösung, erhöhte B-Faktoren, und abnehmende Spotqualität. Die allgemein akzeptierte Grenze für das Vorliegen eines anomalen Signals liegt bei einem anomalen Korrelationskoeffizienten von 30%, der für das K₂PtI₆-Derivat bei einer Auflösung von ca. 4,5 Å, beim K₃IrCl₆-Derivat jedoch erst bei 3,5 Å erreicht wurde (Abb. 3.20). Die Berechnung einer anomalen Differenz-Pattersonkarte für die ASU zeigte lediglich für den pk-Datensatz des K₃IrCl₆-Derivates sechs Peaks auf der Harkersektion v = 0,5, was auf sechs gebundene Ir³⁺-Ionen schließen ließ. Möglicherweise stammte das anomale Signal des K₂PtI₆-Derivates von schwach gebundenen Metallionen, deren Präsenz sich nicht deutlich genug in einer anomalen Differenz-Pattersonkarte zeigte. Um neben den anomalen auch isomorphe Differenzen zur Phasierung auszunutzen, wurden alle Schwermetall- zu den nativen Datensätzen skaliert und die entsprechenden Differenz-Pattersonkarten berechnet. Die

visuelle Inspektion der Harkersektion v = 0,5 ergab jedoch keinen Hinweis auf gebundene Schwermetallionen. Dieser Umstand könnte auf die teilweise nicht-isomorphen Einheitszellenparameter, insbesondere die b-Achse, zurückzuführen sein (verl. 4.3).

3.2.5 Phasierung

3.2.5.1 Molekularer Ersatz

Mit Hilfe des Programms PHASER [McCoy et al., 2005] wurden mehrere Versuche zur Phasierung des ersten nativen WaaA_{AAE}-Datensatzes nach der Methode des MR (vergl. 2.2.4.3) unternommen. Die Sequenzidentitäten bzw. –ähnlichkeiten zu WaaA_{AAE} der in der Proteindatenbank zu dieser Zeit verfügbaren Glykosyltransferasen mit GT-B-Faltung beliefen sich auf maximal 18% bzw. 43%. Aus dieser Gruppe wurde, aufgrund der höchsten

Sequenzidentität, die Struktur der Trehalose-6-Phosphat-Synthase OtsA aus *E. coli* [Gibson et al., 2002] als Suchmodell ausgewählt. Dazu wurde zunächst ein Polyalaninmodell erstellt, bevor die Phasierung mittels MR versucht wurde. Aufgrund der unter 3.2.2 beschriebenen Ergebnisse wurde nach 2, 4 oder 6 Molekülen in der ASU gesucht. Mit den erhaltenen Lösungen wurde eine "ridgid-bdoy"-Verfeinerung in REFMAC [Murshudov et al., 1997] durchgeführt. Die R_{work}- und R_{free}-Faktoren waren jedoch niemals besser als 54%.

Unter Berücksichtigung eventueller Unterschiede zwischen OtsA und WaaA_{AAE} hinsichtlich der Orientierung der beiden Domänen zueinander wurde das OtsA-Polyalaninsuchmodell in die NTD und CTD getrennt und beide Domänen einzeln als Suchmodell verwendet. Auch dieser Ansatz brachte im Hinblick auf die Phasierungsbemühungen keine Verbesserungen.

Als Alternative zu OtsA wurde die an der Biosynthese der LPS-Kernregion beteiligte Heptosyltransferase WaaF aus *E. coli* als Suchmodell verwendet (PDB-ID:1PSW, noch keine Publikation vorhanden). Es wurde die gleiche Strategie wie im Falle von OtsA angewandt. Auch mit diesem Suchmodell konnte keine Lösung erhalten werden.

3.2.5.2 Experimentelle Phasierung

Der nach der unter 3.2.4 beschriebenen Auswertung beste Schwermetalldatensatz war K₃IrCl₆-pk. Die Bestimmung seiner Phasierungsstärke im SAD- bzw. SIRAS-Ansatz in Kombination mit dem nativen 2,0 Å-Datensatz erfolgte mit Hilfe der autoSHARP

Programmsuite [Vonrhein et al., 2007]. Durch das Programm SHELXD [Schneider & Sheldrick, 2002] (vergl. 2.2.4.3), das innerhalb der autoSHARP [Vonrhein et al., 2007] Programmsuite genutzt wurde und das sogenannte "direkte Methoden" nutzt (vergl. 2.2.4.3), konnten sechs Schwermetallionen in der ASU lokalisiert werden. Die Positionen dieser Schwermetallionen waren mit der unter 3.2.2 erwähnten NCS-Achse vereinbar. Im SAD-Ansatz betrug die figure-of-merit (FOM) nach Verfeinerung der Schwermetallsubstruktur 0.31 für den Auflösungsbereich 25 - 3,2 Å. Die nach Elektronendichtemodifikation erhaltene Elektronendichtekarte der Einheitszelle zeigte klare Umrisse für acht Proteinmoleküle, die sich zu vier Homodimeren anordneten (Abb. 3.21). Die ASU umfasst vier Proteinmoleküle mit zwei Homodimeren. Darüberhinaus waren bereits verschiedene, rechtsgängige α -Helices zu erkennen.

Um eine Verbesserung der Phasenqualität zu erreichen, wurde der SIRAS-Ansatz verfolgt. Die FOM nach Verfeinerung der Schwermetallsubstruktur betrug 0,35 bzw. 0,19 (azentrisch/zentrisch) bei einer Auflösung von 3.2 Å. Die nach Elektronendichtemodifikation erhaltene Elektronendichtekarte wies jedoch im Vergleich zu derjenigen des SAD-Ansatzes keinerlei Qualitätsunterschiede auf.

SAD/MAD-Ansätze mit den drei K₂PtI₆-Datensätzen (pk, infl, hrem) in SOLVE [Terwilliger & Berendzen, 1999] und autoSHARP [Vonrhein et al., 2007] führte zu uninterpretierbaren Elektronendichtekarten. Auch die zusätzliche Verwendung der nativen Datensätze im SIRAS/MIRAS-Ansatz konnte die Situation nicht verbessern.

Für das weitere Vorgehen wurde der K₃IrCl₆-SIRAS-Ansatz gewählt, da er die Phasenausdehnung hin zu höheren Auflösungen während des initialen Modellbaus erlaubte.

3.2.6 Initialer Modellbau

Der Einbau mehrerer idealisierter α-Helices in die einzelnen Monomere erlaubte die grobe Berechnung von NCS-Operatoren durch Überlagerung. Die beiden Domänen der einzelnen Monomere wurden in der Folge unter Verwendung einer bekannten GT-B Struktur [Vrielink et al., 1994] (PDB-ID: 1BGT) und unabhängig voneinander maskiert. Die Verfeinerung der groben NCS-Operatoren erfolgte getrennt für die beiden Domänen. Auf diese Weise wurde eventuell bestehenden Unterschieden zwischen den vier Proteinmolekülen der ASU bezüglich der Orientierung der beiden Domänen zueinander Rechnung getragen. Die verfeinerten NCS-Operatoren zeigten die erwartete Parallelität zur c-Achse. Die nach autoSHARP [Vonrhein et al., 2007] erhaltene Elektronendichtekarte wurde durch NCS-Mittelung weiter verbessert (Abb. 3.22). In diese Elektronendichtekarte wurde ein erstes, partielles Modell eingebaut. Von diesem partiellen Modell wurden Phasen berechnet, gewichtet und mit den experimentellen Phasen kombiniert (vergl. 2.2.4.11). Die mit Hilfe dieser kombinierten Phasen berechnete Elektronendichtekarte wurde in der Folge durch "Histogram Matching", "Solvent-Flattening" sowie NCS-Mittelung (vergl. 2.2.4.4) verändert, so dass ein besseres partielles Modell angefertigt werden konnte. Das angepasste Modell wurde dann wiederum zur Phasenberechnung und -kombination verwendet. Dieser Zyklus wurde mehrere Male wiederholt, bis sich deutliche Verbesserungen hinsichtlich der Qualität der Elektronendichte

ergaben, so dass die Phasenausdehnung bis 2,8 Å in die Elektronendichtemodifikationsprozedur eingefügt werden konnte. Durch die beschriebene Vorgehensweise konnte nahezu die gesamte Elektronendichte der Hauptkette sichtbar gemacht werden. Fast alle durch verschiedene Programme vorhergesagten Sekundärstrukturelemente konnten zugeordnet werden. Darüberhinaus war es möglich, 60% der Seitenketten einzubauen. Ein "restrainedrefinement" in REFMAC [Murshudov et al., 1997] mit starken NCS-Beschränkungen ergab R_{work}- bzw. R_{free}-Werte von 31,5% und 37,8%. In der NTD war die Elektronendichte im Vergleich zur CTD besser definiert.

3.2.7 Verfeinerung und Komplettierung des initialen Modells

Das initiale Modell wurde zunächst einer "simulated annealing"-Verfeinerung in CNS [Brunger et al., 1998] unterzogen. Anschließend wurde der Modellbau, ausgehend von der nach Phasenausdehnung erreichten Auflösung von 2,8 Å, unter Einhaltung starker NCS-Beschränkungen in REFMAC [Murshudov et al., 1997] bis zur Konvergenz vorangetrieben. Danach wurden Daten bis 2,4 Å für die Verfeinerung des Modells und den manuellen Modellbau genutzt. Auch in diesem Stadium wurde mit starken NCS-Beschränkungen gearbeitet und bis zur Konvergenz verfeinert. In den späteren Verfeinerungsrunden wurden Daten bis zur höchsten verfügbaren Auflösung von 2,0 Å verwendet und mit mittel-starken NCS-Beschränkungen gearbeitet. Die Nutzung der "Translation-Liberation-Screw"-(TLS)-Verfeinerungsoption [Winn et al. 2001] in REFMAC [Murshudov et al., 1997] ließ sowohl R_{work}- als auch R_{free}-Werte deutlich sinken (vor TLS: 28,2%/32,8%, nach TLS:

24,5%/28,5%). Hierbei wurde jede Domäne als seperate TLS-Gruppe definiert. Nach Einbau von Wassermolekülen und mehreren, unerwarteten Liganden (vergl. 3.2.9.2) ergaben sich die besten Rwork/Rfree-Werte mit 21,0%/25,7% bei der TLS-Verfeinerung ohne NCS-Beschränkungen in PHENIX [Adams et al., 2002] (vergl. 4.3). Zur Überprüfung des finalen Proteinmodells wurde mit Hilfe von CNS [Brunger et al., 1998] eine "compositeomit"-Elektronendichtekarte erstellt, bei der in jedem Zyklus 7% der Aminosäurereste aus dem Proteinmodell gelöscht wurden, und die das erhaltene Proteinmodell bestätigte (Abb. 3.23).

3.2.8 Qualität des finalen Modells

Die Elektronendichte der Hauptkette ist für alle vier Monomere der ASU gut definiert. In den Regionen 152-154, 214-238 und 246-249 findet sich teilweise nur schwache Elektronendichte für die Seitenketten. Von den insgesamt 353 Aminosäureresten können für alle vier Monomere der ASU die Bereiche 1-352 zugeordnet werden. Aufgrund gut etablierter Kristallkontakte besitzt die NTD einen B-Faktor von 43,6 Å² verglichen mit 55,2 Å² für die

CTD. 99,4% der ψ - und ϕ -Winkel der Hauptkette befinden sich in erlaubten Regionen des Ramachandran-Plots. Lediglich R99 (Monomer C), E100 (Monomer B), R154 (Monomere A, B und D) sowie E 235 (alle Monomere der ASU) liegen in unerlaubten Regionen. Die verbotenen Winkel im Falle von E235 sollten auf die Position an der Spitze eines Typ-II- β -Turns zurückzuführen sein. Der auf dem R_{work}-Faktor basierende "Cruikshank-coordinateerror" [Cruickshank, 1960] beträgt ca. 0,2 Å.

3.2.9 Analyse des finalen Modells

3.2.9.1 Allgemeine Aspekte

WaaA_{AAE} zeigt die erwartete GT-B-Faltung. Die NTD umfasst die Aminosäurereste 1-157 und 331-352, bestehend aus den Sekundärstrukturelementen n β 1-n β 7 und n α 0-n α 6 sowie c α 7, einschließlich einer 3₁₀-Helix, die von den Aminosäurenresten 13-18 gebildet wird, während die CTD aus den Aminosäurereste 177-330 mit den Sekundärstrukturelementen c β 1–c β 7 und c α 1-c α 6 besteht (Abb. 3.24 und 3.25). Beide Domänen weisen eine Rossmann-ähnliche $\alpha/\beta/\alpha$ -Faltung auf und bilden eine Einkerbung, deren Boden von der die beiden Domänen verbindenden Schleifenregion n β 7-c β 1 gebildet wird, die die Aminosäurereste 158-176 umfasst. Die Tiefe dieser Einkerbung von 23 Å und Breite von 20 Å zwischen den am weitesten voneinander entfernten Punkten weisen daraufhin, dass WaaA_{AAE} in der offenen Konformation kristallisiert wurde. Die Topologien der zentralen β -Faltblätter von NTD und CTD unterscheiden sich mit 3214567 bzw. 3421567 (Abb. 3.24). Die Überlagerung der C α -Atome der beiden Domänen ergibt einen r.m.s.d-Wert von 2,9 Å und belegt damit die

strukturelle Ähnlichkeit der Domänen. Die sechs Cysteinreste eines jeden Proteinmoleküls bilden drei intramolekulare Disulfidbrücken: C18-C70, C158-C341 und C165-C279. Durch die 180°-NCS-Achse orientieren sich die entsprechenden N- und C-terminalen Domänen im Homodimer zueinander gegenüberliegend an (Abb. 3.23). Die vorwiegend hydrophobe Dimerisierungsfläche von 1463 Å² pro Monomer wird hauptsächlich durch die beiden N-terminalen Domänen erzeugt (1092 Å² pro Monomer, einschließlich Liganden, vergl. 3.2.9.2). Es gibt keine auffälligen strukturellen Unterschiede zwischen den vier Proteinmolekülen der ASU, wie die geringen r.m.s.d-Werte im Bereich von 0.41 Å – 0.63 Å für die Überlagerungen ihrer C α -Atome nahelegen. Die höchsten Werte ergeben sich für die Überlagerung von Monomer B mit den Monomeren A, C und D (im Bereich von 0,6 Å). Sie sind auf die im Vergleich zu den anderen Monomeren leicht geschlossene Konformation zurückzuführen. Die Analyse mit Hilfe des "Dyndom-Servers" (http://fizz.cmp.uea.ac.uk/dyndom/) [Hayward & Berendsen, 1998] ergab für Monomer B eine "ridgid body"-Schließbewegung der beiden Domänen von 4,8°, wobei die Angelpunkte in den Regionen 165-166 (Schleifenregion n β 7-c β 1) und 322-331 (Schleifenregion c α 6-c α 7) liegen.

Der zwischen den Kdo-Transferasen am stärksten konservierte Bereich liegt in der Schleifenregion c β 5-c α 4 (Abb. 3.25). Interessanterweise lieferte die Suche mit der Konsensussequenz GG(S/T)-X₅GXNXLE (für *A. aeolicus*: V₂₆₂GGTFVNIGGHNLLE₂₇₆) in der BLAST-Datenbank (http://blast.ncbi.nlm.nih.gov/Blast.cgi) fast ausschließlich Kdo-Transferasen, so dass von einem spezifischen Sequenzmotiv auszugehen ist. Die Glycinreste dieses Motivs bilden ein kleines, antiparalleles β -Faltblatt, indem Wasserstoffbrückeninteraktionen zwischen G263O-H272N, G264O-G270N und G264O-G271N bestehen (Abb. 3.26). Weiterhin existieren Interaktionen zwischen G263N/G264N und der konservierten E187-Seitenkette. Die Hydroxylgruppe der T265-Seitenkette interkaliert zwischen die Cterminalen Spitzen von c β 5 und c β 6 durch Wasserstoffbrückenbildung mit V262O und G287N, ein innerhalb der Kdo-Transferasen strikt konservierter Aminosäurerest (Abb. 3.25).

An der Spitze dieser Schleifenregion befindet sich der Aminosäurerest F266, der mit einer hydrophoben Höhlung interagiert, die von den Aminosäureresten I190, I191, I261, I285, V309 und L315 gebildet wird, und auf diese Weise die c β 5-c α 5-Schleifenregion zusammen mit den durch T265 vermittelten Wasserstoffbrücken an der CTD fixiert (Abb. 3.34). In n α 1 existiert ein 45°-Knick, der durch die Präsenz des konservierten Aminosäurerestes P37 hervorgerufen wird. Ein durch einen Prolinrest verursachter Knick in n α 1 findet sich ebenfalls für die GT-B-Mitglieder WaaC [Grizot et al., 2006], OleD [Bolam et al., 2007] und OleI

					n Q 0	310	
AAE					-MQFEVLK <mark>R</mark> FFF	PKESLKN-	17
BPE	MGRG	VYTLALRGL ?FWYNFLLTCL	APLIWLWMWRR. KPLYRWKIKQR	ARRAGGQWEI AESDAI	JFAPARFG R AGA JYQQECVE R FGF	RAPAP PFQPPK	50 54
ECO	MLE	ELLYTALLYLI	QPLIWIRLWVR	GRKAPA	AYRKRWGE <mark>R</mark> YGF	YRHPL	46
KPN	MH	ELLYTTLLYLI FFYTSLLLIC	QPLVWLRLLLR OPLILCFIGLL	SRKAPA SVKSPF	YRKRWAERYGF	TCQNKV	45 48
LPN	MF	REVYSELMYLL	TPYLLFRLWRK	GRKLPA	AYRQRIGERFCL	LGIQEN	45
CTR	MIRRWLTS	SRLYDAFLVCA	FFVSAPRIFYK	VFFHGk	YIDSWKI <mark>R</mark> FGV	QKPFVKG	53
HPY	MFF	KFFYLLFLTLG	HLLGAPFIFFW	SFKEK	-YRHSLKARFFI	KKPEVPG KDNFLK-	46
	nβı	n	0(1	nβ2	nta 1		
							212
AAE	CKGALWVHTAS	SIGEFNTFLPI LGETRAAOPL	LKELKREH	RILLTYFSPF PVLLTHTTAT	AREYLKTKSD- GRAEGERLEGA	ATGRGOL	69 108
AHA	NLATIWFHVVS	VGETNAAQPL	IEHYLKLGH	PVLV <mark>T</mark> NTTKI	GQARAKSLFLK	APYLDLF	112
ECO	KPGGIMLHSVS	VGETLAAI PL	VRALRHRYPDL.	PITVTTMTPI	GSERVQSAFG-	KDV	101
HIN	PPQGIFIHAAS	VGETLAAIPL VGEVIAATPL	VRQLQQDYPHL	SITETTET	GSERVKATFG-	DSV	100
LPN	APVDVWL <mark>H</mark> AV <mark>S</mark>	SL <mark>GE</mark> VIAAT <mark>PL</mark>	IDAMLNKHW	SVLV <mark>T</mark> TM <mark>T</mark> PI	GSERVKSRFG-	HKV	98
CTR	TGPVAWFHGAS	VGEVSLLAPL	LNRWREEFPEWI LKRFMKEYPEWI	REVVTTCSEA	GVHTARRLYES	SLGA	109
HPY	SEPVFWFHAC	YGEVKSLEPI	IHALKEP	-ILISVTTNI	GFELAAQTYQH	ISKHI	98
	.* *	* * * * :	: .	.: :	•		
	n D3	n Q 3	nβ4	nΩ4	n	35	
AAE	n D3 CLHPEPLDNPH	nQ3 FSVKRFEELSK	nB4	nQL4	n VPKI <mark>L</mark> VN	<u>35</u>	117
AAE BPE	CLHPLPLDNPH QQAWLPYDFPC	nQ3 FSVKRFEELSK GATRRFLARHA	pKALIVVEREF PRCGLLMEREV	nC4	n VPKILVN AQGVPMALVSAR	B5	117 168
AAE BPE AHA ECO	CLHPLPLDNPH QQAWLPYDFPC QAVYLPVDQKS QHVYLPYDLPI	nQ3 FSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD	nB4 PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVLIMETEL	nCl4 PSLIIFTK- PNLLAAARA PNLIAEARQ PNLIAALHA	n VPKIIVN AQGVPMAIVSAR QQQIPCIILNAR (RKIPLVIANAR	B5 RFSASSLR RLSEKSAK RLSARSAA	117 168 172 161
AAE BPE AHA ECO KPN	n D3 CLHPLPLDNPH QQAWLPYDFPC QAVYLPVDQKS QHVYLPYDLPI HHVYLPYDLPC	nQ3 FSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD GAMNRFLNKVD	nB4 PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVLIMETEL PKLVIVMETEL	nCl4 PSLIIFTK- WPNLLAAARA WPNLIAEARO WPNLIAALHA WPNMVAALHA	n AQGVPMALVSAR QQQIPCILLNAR KRKIPLVIANAR	B5 RFSASSLR RLSEKSAK RLSARSAA RLSARSAA	117 168 172 161 160
AAE BPE AHA ECO KPN HIN LPN	n D3 CLHPLPLDNPH QQAWLPYDFPC QAVYLPVDQKS QHVYLPYDLPH HHVYLPYDLPC FHYYLPLDLPH AHOYLPYDLHH	nQ3 FSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD GAMNRFLNTVQ FSIHRFINFVQ RVLRRFYKRTE	nB4 PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVLIMETEL PKLVIVMETEL PKLCIVMETEL PRVGIIMETEL	nCL4	n AQGVPMALVSAR QQIPCILLNAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR ASGVALFIANGR	B5 RFSASSLR RLSEKSAK RLSARSAA RLSERSAK RLSARSAH RLSDRSLO	117 168 172 161 160 163 158
AAE BPE AHA ECO KPN HIN LPN CTR	CLHPLPLDNPH QQAWLPYDFPC QAVYLPVDQKS QHVYLPYDLPI HHVYLPYDLPC FHYYLPLDLPH AHQYLPYDLHH TVFVLPLDLSC	nQ.3 FSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD GAMNRFLNTVQ FSIHRFINFVQ RVLRRFYKRTE CIIKSVVRKLA	PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVLIMETEL PKLVIVMETEL PKLCIVMETEL PRVGIIMETEL PDIVIFSEGDC	nCl4 PSLIIFTK- PNLLAAARA PNLIAEARQ PNLIAALHA PNNVAALHA PNLIHQLFI PNLIKQAHA LHFLTESKA	n AQGVPMALVSAR QQUPCILLNAR KRKIPLVIANAR KRKIPLVIANAR LRNIPFVIANAR ASGVALFLANGR ALGAKAFLINGK	B5 RFSASSLR RLSEKSAK RLSARSAA RLSERSAK RLSARSAH RLSDRSLQ KLSEHSCK	117 168 172 161 160 163 158 169
AAE BPE AHA ECO KPN HIN LPN CTR CPS HPY	n D3 CLHPLPLDNPH QQAWLPYDFPC QAVYLPVDQKS QHVYLPYDLPH HVYLPYDLPC FHYYLPLDLPH AHQYLPYDLHH TVFVLPLDLSS TTFILPLDLS3 EVRYLPEET-1	nQJ FSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD GAMNRFLNTVQ FSIHRFINFVQ RVLRRFYKRTE CIIKSVVRKLA IIKPVVRAIS LEAWKKNLKE	PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVLIMETEL PKLCIVMETEL PRVGIIMETEL PDIVIFSEGDC PSLLVFSEGDC	nCL4 PSLIIFTK- PNLLAAARA PNLIAEARQ PNLIAALHA PNLIA	n AQGVPMALVSAR QQIPCILLNAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (LGAKAFLINGK (LGAKAFLINGK) (LGAKTMIINAR	B5 RFSASSLR RLSEKSAK RLSARSAA RLSARSAH RLSDRSLQ KLSANSCK RLSANSCK RLSANSCK	117 168 172 161 160 163 158 169 172
AAE BPE AHA ECO KPN HIN LPN CTR CPS HPY	CLHPLPLDNPH QQAWLPYDFPC QAVYLPVDQKS QHVYLPYDLPD HHVYLPYDLPC FHYYLPLDLPC FHYYLPLDLPC TVFVLPLDLSC TTFILPLDLSC EVRYLPFET-I ** :	nQ.3 FSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD GAMNRFLNTVQ FSIHRFINFVQ KVLRRFYKRTE CIIKSVVRKLA LIIKPVVRAIS LLFAWKKNLKR	PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVIVMETEL PKLCIVMETEL PRVGIIMETEL PDIVIFSEGDC PSLLVFSEGDC LKTLVVTEAEL	nCL4 PSLIIFTK- PNLLAAARA PNLIAEARC PNLIAALHA PNLIAALHA PNLIHQLFI PNLIKQAHA PNLIKQAHA LHFLTESKF NFNVFDTAQA	n AQGVPMALVSAR QQIPCILLNAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR SGVALFLANGR (LGAKAFLINGK (LGAKTMLINAR	B5 RFSASSLR RLSEKSAK RLSARSAA RLSARSAH RLSARSAH RLSDRSLQ KLSEHSCK KLSANSCK RLSVRSYP	117 168 172 161 160 163 158 169 172 157
AAE BPE AHA ECO KPN HIN LPN CTR CPS HPY	n D3 CLHPLPLDNPH QQAWLPYDFPC QAVYLPVDQKS QHVYLPYDLPH HHVYLPYDLPO FHYYLPLDLPO FHYYLPLDLPO TVFVLPLDLSO TTFILPLDLSO EVRYLPFET-I ** :	nQ3 FSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD GAMNRFLNVQ FSIHRFINFVQ RVLRRFYKRTE CIIKSVVRKLA LIFAWKKNLKR Δ5 nβ6	nB4 PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVIVMETEL PKLCIVMETEL PRVGIIMETEL PRVGIMETEL PDIVIFSEGDC PSLLVFSEGDC LKTLVVTEAEL * :	nCL4 PSLIIFTK- PNLLAAARA PNLIAEARQ PNLIAEARQ PNLIAALHA PNLIAALHA PNLIAALHA PNLIAALHA PNLIAALHA PNLIAALHA PNLIAALHA PNLIAALHA PNLIAALHA PNLIAALHA PNLIAALHA PNLIAAAAA PNLIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA	n AQGVPMALVSAR QQIPCILLNAR RKIPLVIANAR RKIPLVIANAR RKIPLVIANAR SGVALFLANGR RLGAKAFLINGK RLGAKAFLINGK (LGAKTMLINAR	B5 RFSASSLR RLSEKSAK RLSARSAA RLSARSAA RLSARSAA RLSARSLQ RLSARSLQ RLSANSCK RLSANSCK RLSANSCK	117 168 172 161 160 163 158 169 172 157
AAE BPE AHA ECO KPN HIN LPN CTR CPS HPY	n D3 CLHPLPLDNPH QQAWLPYDFPC QAVYLPVDQKS QHVYLPYDLPC HHVYLPYDLPC FHYYLPLDLPC FHYYLPLDLPC TVFVLPLDLSC TTFILPLDLS3 EVRYLPFET-1 ** :	nQ3 FSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD GAMNRFLNTVQ FSIHRFINFVQ RVLRRFYKRTE CIIKSVVRKLA LIKPVVRAIS LFAWKKNLKR	PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVIMETEL PKLVIVMETEL PKLCIVMETEL PRVGIIMETEL PDIVIFSEGDC PSLLVFSEGDC LKTLVVTEAEL * :	nCL4 PSLIIFTK- PNLLAAARA PNLIAEARQ PNLIAALHA PNLIAALHA PNLIAALHA PNLIAALHA PNLIKQAHA NLHFLTESKA NLHFLTESKA NLNFIEEAKA FNVFDTAQA *	n AQGVPMALVSAR QQUPCILLNAR KRKIPLVIANAR KRKIPLVIANAR KRKIPLVIANAR ASGVALFLANGR ALGAKAFLINGK KLGAKTMLINAR	B5 RFSASSLR RLSEKSAK RLSERSAK RLSARSAH RLSARSAH RLSDRSLQ KLSEHSCK KLSANSCK RLSVRSYP	117 168 172 161 160 163 158 169 172 157
AAE BPE AHA ECO KPN HIN LPN CTR CPS HPY	n D3 CLHPLPLDNPH QQAWLPYDFPC QAVYLPVDQKS QHVYLPYDLPH HHVYLPYDLPC FHYYLPLDLPH AHQYLPYDLHH TVFVLPLDLSC TTFILPLDLSI EVRYLPFET-I ** : n AYAKGSLIEK	nQ3 FSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD GAMNRFLNVQ FSIHRFINFVQ RVLRRFYKRTE CIIKSVVRKLA LIFAWKKNLKR LFAWKKNLKR 1 LFAWKKNLKR	nB4 PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVIVMETEL PKLCIVMETEL PKLCIVMETEL PRVGIIMETEL PDIVIFSEGDC LKTLVVTEAEL * : nC6	nCL4	n AQGVPMALVSAR QQIPCILLNAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (LGAKAFLINGK (LGAKAFLINGK (LGAKTMLINAR : .	BS RFSASSLR RLSEKSAK RLSARSAA RLSARSAA RLSARSAA RLSARSAA RLSARSLQ RLSANSCK RLSANSCK RLSANSCK RLSANSCK RLSANSCK	117 168 172 161 160 163 158 169 172 157
AAE BPE AHA ECO KPN HIN LPN CTR CPS HPY AAE BPE AHA	n D3 CLHPLPLDNPH QQAWLPYDFPC QAVYLPVDQKS QHVYLPYDLPC HHVYLPYDLPC FHYYLPLDLPI AHQYLPYDLHH TVFVLPLDLSS EVRYLPFET-I **: n AYAKGSLIEK QAGWLGQALRI GYGKVSRLTR	nQ3 FSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD GAMNRFLNTVQ FSIHRFINFVQ RVLRRFYKRTE CIIKSVVRKLA LIKSVVRKLA LIKSVVRKLA LIKSVFDLIIM EALAGLDRVLA PMLQQLTWLLA	nB4 PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVIMETEI PKLCIVMETEI PRVGIIMETEI PRVGIMETEI PUVIFSEGDC LKTLVVTEAEI *: nCC6 RTQEDVEKFKT OTDEDGARLCQ ODKATOORYIE	nCl4 PSLIIFTK- PNLLAAARA PNLIAEARQ PNLIAALHA PNLIAALHA PNLIAQLAA PNLIKQAHA PNLIKQAHA PNLIKQAHA NLHFLTESKA NLHFLTESKA FRVFDTAQA FRVFDTAQA FGAKRVFS AGANAYTY LGLDRTKSOV	n AQGVPMALVSAR QQUPCILLNAR KRKIPLVIANAR KRKIPLVIANAR KRKIPLVIANAR KRKIPLVIANAR KIGAKAFLINGK KLGAKAFLINGK KLGAKTMLINAR CGNLKFICQKO VTGSLKFDVALE	BS RFSASSLR RLSEKSAK RLSERSAK RLSARSAH	117 168 172 161 160 163 158 169 172 157 175 226 232
AAE BPE AHA ECO KPN HIN LPN CTR CPS HPY AAE BPE AHA ECO	n D3 CLHPLPLDNPH QQAWLPYDFPC QAVYLPVDQKS QHVYLPYDLPH HHVYLPYDLPC FHYYLPLDLPH AHQYLPYDLHH TVFVLPLDLSC TTFILPLDLSI EVRYLPFET-I ** : nC AYAKGSLIEK: QAGWLGQALRI GYGKVSRLTRI GYAKLGKFVRI	nQ3 FSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD GAMNRFLNTVQ FSIHRFINFVQ RVLRRFYKRTE CIIKSVVRKLA IIKPVVRAIS LIFAWKKNLKR MB6 ILSKKFDLIIM EALAGLDRVLA PMLQQLTWLLA RLLRRITLIAA	nB4 PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVIVMETEL PKLCIVMETEL PRVGIIMETEL PRVGIMETEL PRVGIMETEL PRVGIMETEL PRVGIMETEL RTQEDVEKFKT OTDEDGARLCQ QDKATQQRYIE QNEEDGARFVA	nCL4	n AQGVPMALVSAR QQIPCILLNAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPL) (RKIPLVIANAR (RKIPLVIANAR (RKIPL) (RKI	BS RFSASSLR RLSEKSAK RLSEKSAK RLSARSAH RLSARSAH RLSDRSLQ RLSARSAH	117 168 172 161 160 163 158 169 172 157 175 226 232 221
AAE BPE AHA ECO KPN HIN LPN CTR CPS HPY AAE BPE AHA ECO KPN	n D3 CLHPLPLDNPH QQAWLPYDFPC QAVYLPVDQKS QHVYLPYDLPC HHVYLPYDLPC FHYYLPLDLPC FHYYLPLDLSC TTFILPLDLSC TTFILPLDLSC TTFILPLDLSC AYAKGSLIEK: QAGWLGQALRI GYAKLGKFVRI GYAKLGGFMRI PYGKLKAHLO	nQ3 FSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD GAMNRFLNTVQ FSIHRFINFVQ RVLRRFYKRTE CIIKSVVRKLA LIKSVVRKLA LIKSVVRLA LISKKFDLIIM EALAGLDRVLA PMLQQLTWLLA RLLRRITLIAA RLLSRITLIAA	nB4 PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVIMETEL PKLCIVMETEL PRVGIIMETEL PRVGIMETEL PRVF PRVF PRVF PRVF PRVF PRVF PRVF PR	nCL4	n AQGVPMALVSAR QQUPCILLNAR CRKIPLVIANAR CRKIPLVIANAR CRKIPLVIANAR CRKIPLVIANAR CRKIPLVIANAR CRKIPLVIANAR CRKIPLVIANAR CRKIPLVIANAR CRKIPLVIANAR CRKIPLVIANAR CRKIPLVIANAR CRCSLKFDISVI CRSLKFDISVI	BS RFSASSLR RLSEKSAK RLSERSAK RLSARSAA RLSARSAH RLSDRSLQ RLSANSCK	117 168 172 161 160 163 158 169 172 157 175 226 232 221 220 223
AAE BPE AHA ECO KPN HIN CTR CPS HPY AAE BPE AHA ECO KPN HIN LPN	n D3 CLHPLPLDNPH QQAWLPYDFPC QAVYLPVDQKS QHVYLPYDLPH HHVYLPYDLPO FHYYLPLDLPH AHQYLPYDLHH TVFVLPLDLSS EVRYLPFET-I ** : n AYAKGSLIEKS QAGWLGQALRJ GYGKVSRLTRI GYAKLGKFVRI GYAKLGFMRI RYGKIKAHLQ' GYLKLKFLFKI	nQ3 SSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD GAMNRFLNTVQ SSIHRFINFVQ RVLRRFYKRTE CIIKSVVRKLA IIKPVVRAIS LIFAWKKNLKR MB6 ILSKKFDLIIM EALAGLDRVLA PMLQQLTWLLA RLLRRITLIAA IMWSQISLIAA PVLNQFSRILT	PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVLIMETEL PKLVIVMETEL PKLCIVMETEL PRVGIIMETEL PRVG	nCL4	n AQGVPMALVSAR QQIPCILLNAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPL) (BS RFSASSLR RLSEKSAK RLSERSAK RLSARSAH RLSDRSLQ RLSDRSLQ RLSDRSLQ RLSARSAH RLSDRSLQ RLSARSAH RLSDRSLQ RLSARSAH RL	117 168 172 161 160 163 158 169 172 157 175 226 232 221 220 223 218
AAE BPE AHA ECO KPN HIN LPN CTR CPS HPY AAE BPE AHA ECO KPN HIN LPN CTR	n D3 CLHPLPLDNPH QQAWLPYDFPC QAVYLPVDQKS QHVYLPYDLPI HHVYLPYDLPC FHYYLPLDLPH AHQYLPYDLHH TVFVLPLDLSS EVRYLPFET-I ** : n AYAKGSLIEK QAGWLGQALRI GYGKVSRLTRI GYAKLGKFVRI GYAKLGKFVRI GYLKLKFLFKI RYSFLKRLGRI	nQ3 SSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD GAMNRFLNTVQ FSIHRFINFVQ RVLRRFYKRTE CIIKSVVRKLA LIFAWKKNLKR LISKKFDLIIM EALAGLDRVLA PMLQQLTWLLA RLLRRITLIAA RLLSRITLIAA PWSQISLIAA PVLNQFSRILT NYFAPLDLII	nB4 PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVIMETEL PKLCIVMETEL PRVGIIMETEL PRVGIMET	nCL4	n QQVPMALVSAR QQVPMALVSAR QQVPCILLNAR CRKIPLVIANAR CRKIPLVIANAR CRKIPLVIANAR SGVALFLANGR LGAKAFLINGK LGAKAFLINGK LGAKAFLINGK LGAKAFLINGK LGAKTMLINAR :	BS RFSASSLR RLSEKSAK RLSERSAK RLSARSAA RLSARSAH RLSDRSLQ CLSEHSCK CLSANSCK RLSANSCK RISVRSYP BKGIKLKG PQQFVEQA PQLAAKA PPELAARA NDELLRKI DSVDSSQY SLATNRRD	117 168 172 161 160 163 158 169 172 157 175 226 232 221 220 223 218 229
AAE BPE AHA ECO KPN HIN CTR CPS HPY AAE BPE AHA ECO KPN HIN LPN CTR CPS HPY	n D3 CLHPLPLDNPH QQAWLPYDFPC QAVYLPYDQKS QHVYLPYDLPC HHVYLPYDLPC FHYYLPLDLPC FHYYLPLDLSC TTFILPLDLSC TTFILPLDLSC TTFILPLDLSC EVRYLPFET-I **: nC AYAKGSLIEK: QAGWLGQALRI GYGKVSRLTR: GYAKLGKFVRI GYAKLGKFVRI GYAKLGKFVRI GYLKLKFLFKI RFFILKREGRI RFTILKRFGRI KYORFSFFYAI	nQ3 SSVKRFEELSK GATRRFLARHA SLLKQFFELYQ DALNRFLNKVD GAMNRFLNTVQ SSIHRFINFVQ RVLRRFYKRTE CIIKSVVRKLA IIKPVVRAIS LIFAWKKNLKR MB6 ILSKKFDLIIM EALAGLDRVLA PMLQQLTWLLA RLLRRITLIAA RLLSRITLIAA PMSQISLIAA PVLNQFSRILT NYFAPLDLLII NYFSPVDGFLI LLFKRIDLILA	PKALIVVEREF PRCGLLMEREV PKFLALVETEI PKLVIMETEL PKLVIMETEL PKLCIVMETEL PRVGIIMETEL PRVGIM	nCL4	n AQGVPMALVSAR QQIPCILLNAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPL) (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR (RKIPLVIANAR) (RKIPL)	BS RFSASSLR RLSEKSAK RLSEKSAK RLSARSAH RLSDRSLQ RLSDRSLQ RLSDRSLQ RLSARSAH RLSDRSLQ RLSARSAH RLSDRSLQ RLSARSAH RL	117 168 172 161 160 163 158 169 172 157 175 226 232 221 220 223 218 229 232 216

		cβı	c Q 1		cβ2	c Ω 2	
AAE BPE AHA ECO KPN HIN LPN CTR CPS HPY	HAWAG/ EQLKQDWN VTLRR-QW/ VTLRR-QW/ DSLRT-LWI RELKS-HWO FWRAKLQI YWREKLQL/ PSALN	EFIVAGSIH ATGRPVIALASTR LLGRQIITLASTH APHRPVWIATSTH KQDRPIWIAASTH GEDRLTVIAASTH SSQDRLIVLGSMH AQDTELLVLGSVH IVLASTH * :	TGEVEIILKAFK- EGE DAMFIEAIGA APE EENLLKQL EGEESVVIAAH DGEEQIILQAH NGE DEIILKSH DDE ESQILSQL PKDVEVWAEVVS- PKDVEVWAEVVS- PKDVEVWLPVVR- EGEEELGLKAFL- :	EIKKTYS ALQAHRAATP -QQYLNSNP -QALLQQFP -RALLAKYP -PRLQEAIP -PRLQEAIP HFHNS ELR-R	SLKLILV PRH RPLILLI PRH HLLCIVV PRH NLLLILV PRH NLLLILV PRH STVLLIAPRH STKILWV PRH NLKVLWV PRH NARLIVV PRH	IIENAKIF IPQRFDEA IPERFEEV IPERFPDA IPERFPDA IPERFNVV IPERFQTV ILEKLKEH IIERSKEL IPERFKSV	220 283 289 277 276 279 274 284 286 264
		cβ3	cβ4	c Q 3	cB5		
AAE BPE AHA ECO KPN HIN LPN CTR CPS HPY	EKKARDFG AAQLQAAG YKACQSLN INLVRQAG REMVQKAG ADLLKKEK YQLSVQAG AKLLEKAG EALLSKEN QDLLQNTL	FKTSFFENL LAYARRSAGS-GE LNTQRRSLKQM LSYITRSSGEV MSFTLRSTGEI FQFIRRSTNEI FNTGCRSNLDT ILFGLWSQGA ISYGLWSKEA KTTPFSWECFSSK	EGDVILVDRH PGPHIDVLLGDTI IQADTQVFLADSN PSTSTQVVVGDTN PSSSTQVVIGDTN PNENTQVILGDSN ISRENEVVILDSI SFRQYNSLIMDAN TFAQHDAIIVDAI GFVECDILLVDSI	FGILKELYPV LGEMPFYYAA 4GELMLLYGI 4GELMLLYGI 4GELMLMYGI LGELLGFYQI 4GVLKDIYSA 1GWLKQLYSA LGELNNFYQI 2GELNNFYQI 2 * : *	GKIAIVGGT ADVAIVGGS SQACFVGGS ADLAFVGGS ADLAFVGGS SDIAFVGGS ADIAFVGGT ADLAFVGGT ADLAFVGGT ADIVILGGS	FVNIGG-H FARLGG-Q LNEPGGGH LVERGG-H LVERGG-H LVFHGG-H FDPSVGGH FDDRIGGH FVKMGG-H : * :	272 341 334 333 336 331 341 343 323
	с Q 4	cB6	cQ1.5 c	β7	с Q 6		
AAE BPE AHA ECO KPN HIN LPN CTR CPS HPY	NLLEPTCWO NLIEACAAO NPLEAAAHA NPLEPAAHA NPLEPAAHA NPLEPLAFI NVLEPLQKI NLLEPLQCO NPLEPAFFI	GIPVIYGPYTHKV GTPVIVGPHTFNF DVPTVIGPRYFNF AIPVLMGPHTFNF KMPVITGKHTFNF NVPVLSGNQVHNF EVPLMFGPYIYSQ GVPLIFGPHIQSQ NARLITGEYIFNQ	NDLKEFLEKEGAG KDAARDAIAAGAA QTIVDEFVAERAI KDICARLEQASGI KDICAKLQQDDGI PEIFRMLVEVQGV KSICRELKEAQAI SVLAEKLREKEAG SDLAERLLSMGAG VALFELVKPYKIV	GFEVK-NETE LIGE-NAEQ LITVT-DATT LITVT-DATS LITVT-DADS LEVNSTADA LLVN-HANE GCCLDKTN VEED	LVTKLTELLS ALDWALQLLA VTAQLLNCLM LAKEVSSLL LVREVSTLL LERAVEALLM LVDAIIKLY LLDVVTDLL IVKVITFLLM	SVKK AEPARRQA NDSTQRQQ IDADYRSF IDEDYRLW NSKESRER QDKESQST QNEKNRQA DHPEERAA DYKN	327 400 393 392 396 390 399 401 371
	* :*.	: * . cΩ7					
AAE BPE AHA ECO KPN HIN LPN CTR CPS HPY	EIKVI MSEAARAW LIEQAQVV YGRHAVEV YGRHAVEV LGNAGYEV MVANASSV YIEKGKSF YIQKGAMF	EEKSREIKGCYLE IAAHAGATRRTLD LQRNQGSLQKHIQ LYQNQGALQRLLQ LHQNQGALSRLLQ LMENRGALQRLLD LESNKGSVVRYLQ LKQEENSFQQTWE LHEEKVAFDRTWE FLENGHDLNELLA	KLREFLRGL ALEDWLG LLDHYLKQTDLS LLEPYLPPKTH- LLQPYLPQRSH- LLKPYLERNV KIESVLGY ILKSQITCMKI- SFKRYIPCVKI- FIKH :	353 428 439 425 424 427 419 431 433 393			
Ab Bor	b. 3.25: Sordetella peti	equenzalignment ussis (BPE), Ac	t der Kdo-Trar <i>einetobacter Ha</i>	nsferasen vo <i>emolyticus</i>	on A. aeol (AHA), E.	icus (AA coli (EC	E),)),

Bordetella petussis (BPE), Acinetobacter Haemolyticus (AHA), E. coli (ECO), Klebsiella pneumoniae (KPN), Haemophilus influenzae (HIN), Legionella pneumophila (LPN), Chlamydia trachomatis (CTR), Chlamydophila psittaci (CPS) und Helicobacter pylori (HPY). Die Sekundärstrukturelemente wurden anhand der WaaA_{AAE}-Struktur zugeordnet. Konservierte und homologe Aminosäurereste sind in rot bzw. violett gekennzeichnet.

[Bolam et al., 2007], der dadurch - wie auch im Falle von Waa A_{AAE} - Platz für das Hindurchfädeln der die beiden Domänen verbindenden Schleifenregion schafft.

Das erhaltene WaaA_{AAE}-Strukturmodell zeigt gute Übereinstimmung mit den Ergebnissen des tryptischen Verdaus (vergl. 3.2.3). Die proteolytisch empfindlichen Regionen 9-19, 41-47, 150-172 und die Region um 326 liegen ganz oder teilweise in Schleifenregionen auf der Proteinoberfläche und damit in zugänglichen Bereichen. Sie sind nicht an der WaaA_{AAE}-Homodimerisierung beteiligt. Der im Vergleich zu den anderen Abbauwegen schnelle Verlust des N-Terminus durch einen Schnitt im Bereich 9-19, der die Schleifenregionen n α 0-3₁₀ und 3₁₀-n β 1 sowie die 3₁₀-Helix umfasst, lässt sich durch eine Analyse der Kristallstruktur nicht erklären. Die hier auftretenden B-Faktoren liegen im Bereich 30 – 60 Å² und sind damit nicht höher als in den übrigen Regionen. Allerdings bestehen van-der-Waals-Kristallpackungs-kontakte mit umgebenden Proteinmolekülen, so dass unter *in-vivo*-Bedingungen - gerade auch im Hinblick auf den in der Nähe befindlichen N-terminalen His-Tag - von einer erhöhten Flexibilität dieser Region auszugehen ist, die die beobachtete Empfindlichkeit gegenüber tryptischer Spaltung erklären könnte. Wie angenommen, beinhaltet der Bereich 150-172 die die beiden Domänen verbindende Schleifenregion (vergl. 3.2.3).

3.2.9.2 Gebundene Liganden

Im Verlauf des Verfeinerungsprozesses der WaaA_{AAE}-Struktur wurden mehrere, unerwartete Fo-Fc-Differenzelektronendichten sichtbar. So wurde eine kugelförmige Differenzelektronendichte in der Nähe von n α 3 als Chloridion interpretiert (Abb. 3.27), da NaCl Bestandteil der für die Kristallisation verwendeten Proteinlösung war (vergl. 2.2.1.2). Versuche, an dieser Stelle ein Wassermolekül einzubauen, führten zu positiver Fo-Fc- Differenzelektronendichte. In diesem Gebiet treffen die n α 3-Helices von vier Proteinmolekülen aufeinander, wobei die positiven Enden der Helixdipolmomente in Richtung des Chloridions zeigen, das auf diese Weise zum "Capping" der entsprechenden α -Helices beitragen könnte. Ohne die kompensierende Wirkung des Chloridions sollten sich die positiven Enden der Helixdipol-momente abstoßen und damit der Bildung von Kristallkontakten entgegenwirken.

Eine zunächst unerklärbare, kugelförmige Fo-Fc-Differenzelektronendichte in der Nähe von H213 (12 σ) wurde aufgrund der Distanz zwischen dem N ϵ 2-Atom des Histidins und dem Zentrum der Differenzdichte (2,5 Å) als schwach gebundenes Metallion interpretiert. Zur näheren Charaktersierung wurde ein nativer Kristall an der I911-3 Beamline des MaxLabs einer Röntgenfluoreszenzanalyse im Bereich von 0 – 20 keV unterzogen, die die Präsenz von Ni²⁺-Ionen belegte. Daraufhin wurde ein Fluoreszenz-Scan in der Nähe der Ni²⁺-Absorptionskante durchgeführt und der Kristall bei der entsprechenden Peakwellenlänge (1,48482 Å) vermessen. Die anschließende Berechnung einer anomalen Differenzelektronendichtekarte zeigte ein klares Signal bei der erwarteten Position (Abb. 3.27). Wahrscheinlich handelt sich hier um eine Verunreinigung, die noch von der unter 2.2.1.2 beschriebenen Ni⁺²-Affinitätschromatographie herrühren könnte.

der N-terminalen Dimerisierungsregion zeigte In sich eine längliche Fo-Fc-Differenzelektronendichte, die sich in unmittelbarer Nähe zu den hydrophoben Aminosäureresten W102, F101, F53, R8, F3 und V5 befand. Der Versuch, diese Dichte durch den Einbau von Cymal-6 oder Triton-X100 abzudecken, führte zu nicht akzeptablen Ergebnissen. Der Einbau eines kleinkettigen Polyethylenglykolmoleküls zeigte dagegen weder positive noch negative Fo-Fc-Differenzelektronendichte. Durch von Dr. Uwe Mamat am Forschungszentrum Borstel durchgeführte massenspektrometrische Untersuchungen ist inzwischen klar, dass sich kleinkettige Polyethylenglykolmoleküle in der für die Kristallisation verwendeten Proteinlösung befinden. Höchstwahrscheinlich handelt es sich hier um Syntheseintermediate des für die Proteinaufreinigung verwendeten Triton-X100, die während der Aufreinigung aufgrund der Interaktionen mit den Proteinmolekülen aufkonzentriert wurden. Es ist aber nicht auszuschließen, dass die Polyethylengylkolmoleküle aus dem für die Kristallisation verwendeten Fällungsmittel stammen (vergl. 3.2.1).

Interessanterweise wurde kein Cymal-6-Molekül gefunden, obwohl Kristalle von ausreichender Qualität für röntgenkristallographische Untersuchungen nur in Gegenwart dieses Detergenz erhalten werden konnten. Möglicherweise beruht der Effekt von Cymal-6 auf dem effizienten Auswaschen von Triton-X100 während des Detergenzaustauschschrittes der Proteinaufreinigung (vergl. 2.2.1.2), das ansonsten aufgrund seines inhomogenen Charakters eine erfolgreiche Kristallisation verhindert haben könnte. Dies könnte auch den unter 3.2.1 beschriebenen Effekt erklären, wonach höhere Waschvolumina zur Entfernung des Triton-X100 zu einer gesteigerten Qualität der erhaltenen Kristalle führten.

3.2.10 Vergleich mit homologen Proteinstrukturen

Mit Monomer A wurde ein Strukturvergleich gegen die Proteinstukturdatenbank (PDB) mit Hilfe des "DALI-Servers" [Holm et al., 2008] durchgeführt. Die größten strukturellen Homologien bestehen demnach mit der UDP-N-Acetylglucosamin-2-Epimerase aus *Thermus thermophilus* (PDB-ID:1V4V, keine Publikation vorhanden), der Phosphatidylinositol-Mannosyltransferase aus *Mybobacterium smegmatis* (PDB-ID: 2GEK) [Guerin et al., 2007], der UDP-N-Acetylglucosamin-N-Acetylmuramyl-Pyrophosphoryl-Undecaprenol-N-Acetylglucosamin-Transferase MurG aus *E. coli* (PDB-ID: 1NLM) [Hu et al., 2003] und der in die LPS-Kernbiosynthese involvierten Glucosyltransferase WaaG (PDB-ID: 2IV7) [Martinez-Fleites et al., 2006], die alle die typische GT-B-Faltung aufweisen. Interessanterweise handelt es sich bei 1V4V um eine Epimerase und nicht um eine Glykosyltransferase. Jedoch weist die Geometrie des Übergangszustands der katalysierten Reaktion Homologien zum Übergangszustand der Glykosyltransferasen auf [Velloso et al., 2008].

Für einen genaueren Vergleich wurde WaaA_{AAE} in seine N- und C-terminale Domäne getrennt und mit den entsprechenden Domänen strukturell und funktionell gut charakterisierter Glykosyltransferasen verglichen (Tab. 3.11 und Abb. 3.28). Durch ein solches Vorgehen sollten von den relativen Orientierungen der beiden Domänen zueinander unabhängige Ergebnisse erzielt werden. Mit Hilfe des Programms LSQKAB [Kabsch, 1976] erfolgte die Überlagerung äquivalenter Sekundärstrukturelemente. Es zeigen sich die erwarteten Homologien mit r.m.s.d.-Werten im Bereich von 2,1 bis 3,2 Å.

Glykosyltransferase	PDB-ID	NTD	CTD
BGT	1IXY	2,84 Å / 97	2,53 Å / 98
UGT71B1	2ACW	3,14 Å / 127	2,52 Å / 103
UGT72B1	2VCE	3,19 Å / 123	2,90 Å / 115
GumK	2Q6V	2,43 Å / 109	2,62 Å / 111
WaaC	2H1H	2,94 Å / 105	2,48 Å / 109
MurG	1NLM	2,56 Å / 120	2,12 Å / 119
WaaF	1PSW	2,28 Å / 100	2,52 Å / 116
OtsA	1GZ5	2,66 Å / 107	3,44 Å / 102

Tab. 3.11: Überlagerungen von Waa A_{AAE} mit den N- bzw. C-terminalen Domänen von BGT, UGT71B1, UGT72B1, GumK, WaaC, MurG, WaaF und OtsA. Es sind jeweils die r.m.s.d.-Werte angegeben sowie die Anzahl der überlagerten C α -Atome.

Vor dem Hintergrund der ausgeprägten Ähnlichkeiten ist der gescheiterte Phasierungsansatz mittels MR zunächst erstaunlich (vergl. 3.2.5.1). Neben den durch die unterschiedliche Orientierung und das Fehlen bzw. den Einschub von einzelnen Sekundärstrukturelementen verursachten strukturellen Inhomogenitäten zwischen Modell- und Zielstruktur sollte darüberhinaus die Flexibilität der beiden Domänen mit einer offenen bzw. geschlossenen Konformation und einer Vielzahl an möglichen "Zwischenstufen" problematisch sein. Wird mit den einzelnen Domänen gesucht, um dieses Problem zu umgehen, so verschlechtert sich das Signal-zu-Rausch-Verhältnis der Rotationsfunktion. Im Falle der WaaA_{AAE}-Kristalle mit vier Proteinmolekülen in der ASU hätten z.B. bei einem "Zwei-Domänen"-Ansatz die Orien-

tierungen von acht identischen bzw. sehr ähnlichen Domänen über die Rotationsfunktion identifiziert werden müssen. Wie bei der überwiegenden Mehrheit der derzeit in der Proteindatenbank verfügbaren Glykosyltransferasen mit GT-B-Faltung waren daher auch für WaaA_{AAE} experimentelle Phasierungsansätze letztendlich unumgänglich.

3.2.11 Membranassoziierung

Da Waa_{AAE} die Glykosylierung eines Lipoid-A-Vorläufers katalysiert, muß die N-terminale, akzeptorsubstratbindende Domäne dieses Enzyms mit der cytoplasmatischen Seite der inneren Membran assoziiert sein. Die strukturelle Charakterisierung ergab keine Hinweise auf eventuell vorliegende Transmembranhelices, so dass es sich bei WaaAAAE nicht um ein integrales Membranprotein handeln sollte. Die Berechnung eines theoretischen pI-Wertes von 9,7 sprach in diesem Zusammenhang für eine wichtige Rolle elektrostatischer Interaktionen bei der Membranassoziierung. Für die invertierenden GT-B-Mitglieder MurG und GumK wird ein pheripherer Membranbindungsmodus angenommen [Ha et al., 2000; Barreras et al., 2008], bei dem ein Cluster von hydrophoben Aminosäureresten mit den Acylketten der Phospholipide wechselwirkt, während gleichzeitig ein diesen Cluster umgebender Kranz von basischen Aminosäureresten mit den negativ geladenen Kopfgruppen der Phospholipide interagiert. Die Berechung des elektrostatischen Oberflächenpotentials für WaaAAAE enthüllte die Existenz eines hydrophoben Clusters, bestehend aus F3, L6, F9, F10, F53, P55, L76, P79, F80, F101, W102, P103, I107, F108, L124, I125 und I128, der hufeisenförmig von den basischen Aminosäureresten K7, K12, K16, K19, R56, R58, K62, R84, K90, R99, K110, K121, K127, K131 und K132 begrenzt wird (Abb. 3.29). Die Aminosäureseitenketten der

potentiellen Membranassoziierungsregion befinden sich in den Helices n α 0, n α 2, n α 3, n α 4, n α 5 und den Schleifenregionen n β 2-n α 2, n β 3-n α 3, n β 4-n α 4 und n β 5-n α 5. Die Aminosäurereste F10, F80, F108, I107, F9, L124 und I128 treten klar aus der durch die Anordnung der basischen Seitenketten definierten Ebene hervor und sollten die WaaA_{AAE}-Orientierung in der Membran festlegen (Abb. 3.29). R56 sowie K121 markieren die Öffnung des "Hufeisens", an die sich die strikt konservierten Aminosäurereste E31, E98, E100 und K162 anschließen.

Verglichen mit MurG und GumK besitzt die Membranassoziierungregion in WaaA_{AAE} ganz eindeutig den größten Cluster an hydrophoben Aminosäureresten. Da dieses Gebiet nicht nur mit den Phospholipiden der inneren Membran, sondern auch mit dem membrangebundenen Akzeptorsubstrat in Wechselwirkung treten muss, lässt sich dieser Sachverhalt möglicherweise auf den ausgeprägteren hydrophoben Charakter des Lipoid-A-Vorläufers zurückführen, der eine entsprechend große "Gegenfläche" innerhalb der NTD erfordern könnte. Weite Bereiche des hydrophoben Clusters, wie z.B. F3, F53 sowie W102 sind Teil der N-terminalen Dimerisierungsregion und stehen in dieser Form nicht für die Wechselwirkung mit der Membran zur Verfügung, so dass sich die Frage nach der biologischen Relevanz der in der ASU beobachteten Homodimerisierung stellt (vergl. 3.2.9.2 u. 3.2.11.1)

3.2.12 Substratbindungsstellen

3.2.12.1 CMP-Komplex

3.2.12.1.1 Strukturbestimmung

Mit dem entsprechend 2.2.4.8 behandelten Kristall wurde an der I911-2 Beamline am MaxLab ein 2,4 Å-Datensatz mit einem R_{merge} von 4,3% und einer Vollständigkeit von 97,2% gesammelt (vergl. 4.3). Die Phasierung der Struktur erfolgte mittels MR, wobei der unter 3.2.7 beschriebene Proteinanteil der ASU als Suchmodell verwendet wurde. Mit der mit Hilfe des Programms PHASER [McCoy et al., 2005] erhaltenen Lösung wurde eine "ridgid-body"-Verfeinerung in REFMAC [Murshudov et al., 1997] durchgeführt, bei der jedes Proteinmolekül als Einheit definiert wurde. Die in diesem Stadium erhaltenen R_{work} - und R_{free} -Werte lagen bei 28,6% bzw. 32,2%. Die Inspektion der Fo-Fc-Differenzelektronendichtekarte belegte die Existenz eines gebundenen CMP-Moleküls (5 σ). Die in der Nähe befindlichen Proteinregionen wurden anschließend gelöscht und es folgten iterative Zyklen von Modellanpassung und "restrained-refinement" in COOT [Emsley et al., 2004] bzw. REFMAC [Murshudov et al., 1997], wobei aufgrund des ungünstigen Verhältnisses von einzigartigen Reflexen zu Parametern (56496/45996) mit starken NCS-Beschränkungen gearbeitet wurde. Die finalen R_{work} - und R_{free} -Werte betrugen 21,5% bzw. 27,8% (vergl. 4.3).

3.2.12.1.2 CMP-Bindung

Die Interaktionen zwischen WaaA_{AAE} und CMP werden hauptsächlich durch Bereiche in den Schleifenregionen c β 2-c α 2 (Reste 211-214), c β 4-c α 3 (Reste 247-249) und c β 5-c α 4 (Reste 272-276) sowie den N-Termini der Helices c α 3 (Rest 250) und c α 4 (Rest 276) vermittelt (Abb. 3.30), die sich an der von der CTD gebildeten Seite der zentralen Einkerbung zwischen den beiden Domänen befinden und innerhalb der Kdo-Transferasen stark konserverviert sind (Abb.3.25). Die Region c β 5-c α 4 enthält das für die Kdo-Transferasen spezifische GG(S/T)- X₅GXNXLE Primärstrukturmotiv (vergl. 3.2.9.1). In Übereinstimmung mit allen bisher strukturell charakterisierten GT-B-Mitgliedern erfolgt die Bindung des Nukleotidanteils des Donorsubstrates in der CTD. Die Konformationsänderungen aufgrund der CMP-Bindung sind gering, wie die r.m.s.d.-Werte im Bereich von 0.28 Å – 0.77 Å für die überlagerten Cα-Atome der nativen und CMP-komplexierten WaaA_{AAE}-Monomere in der ASU nahelegen. Die einzig deutliche Konformationsänderung findet sich für Aminosäurerest F247, dessen aromatische Seitenkette " π -stacking"-Wechselwirkungen mit der Cytosinbase ausbildet (Abb. 3.30).

V210, I214, V244, F247, I249 und L250 bilden eine hydrophobe Tasche, die die Cytosinbase gegen umgebende Wassermoleküle abschirmt. Zusätzlich bestehen noch Wasserstoffbrückenbindungen zwischen der C₄-Amino- und der P211-Carbonylgruppe sowie der C₂-Carbonylund der G248- sowie I249-Hauptkettenamidgruppe. Im Gegensatz zur Cytosinbase sind Ribose und Phosphatgruppe des CMP exponiert. Wasserstoffbrückeninteraktionen bestehen zwischen den C₂'- und C₃'-Hydroxylgruppen und der E276-Carboxylatgruppe sowie zwischen den O₁ α - und O₂ α -Phosphatgruppensauerstoffatomen und den C ζ -Aminogruppen von R212. Darüberhinaus besteht ein hydrophober Kontakt zwischen dem C ζ -Kohlenstoffatom von R212 und der C₅'-Methylengruppe der Ribose. Die Orientierung der R212- und H272-Seitenketten relativ zueinander spricht für die Existenz einer Kation- π - Wechselwirkung. Angesichts des bei der WaaA_{AAE}-Kristallisation verwendeten basischen pH-Wertes von 8,5 sollte H272 deprotoniert sein, so dass diese Art der Wechselwirkung prinzipiell möglich ist. Darüberhinaus findet sich eine Wasserstoffbrücke zwischen dem $O_2\alpha$ -Phosphatgruppensauerstoffatom und der N273-Hauptkettenamidgruppe. Die wasservermittelten Kontakte zwischen CMP und der Proteinumgebung variieren innerhalb der vier Proteinmoleküle in der ASU. In allen Fällen besteht jedoch eine durch ein Wassermolekül vermittelte Wasserstoffbrücke zwischen dem $O_2\alpha$ -Phosphatgruppensauerstoffatom und der konservierten S182-Hydroxylgruppe. Zusätzliche wasservermittelte Wasserstoffbrücken existieren zwischen der K251-Hauptkettenamidgruppe und der C₂-Carbonylgruppe der Cytosinbase (Monomere A und B) sowie der R246-Hauptkettencarbonylgruppe (Monomer D) bzw. der I249-Hauptkettenamidgruppe (Monomer B) und dem N₃-Atom der Cytosinbase. Darüber hinaus bestehen Interaktionen zwischen Wassermolekülen und dem O₃ α - (Monomere D und C) bzw. O₁ α -Phosphatgruppensauerstoff (Monomer C).

Die kürzlich veröffentlichte biochemische Charakterisierung zeigte keine Affinität von WaaA_{AAE} zu AMP-, TMP-, UMP- oder GMP-Substraten [Mamat et al., 2009]. Die Größe der Cytidinbindungstasche sollte hierbei eine Diskriminierung gegenüber den sterisch anspruchs-volleren Purinbasen ermöglichen. Der Ausschluss von UMP oder TMP könnte durch die P211-Hauptkettencarbonylgruppe erfolgen, die für den C₄-Substituenten der Pyrimidinbase einen Wasserstoffbrückendonor voraussetzt. Eine ähnliche Diskussion wurde für die Sialyl-transferase PM0188 geführt, die CMP-NeuAc als Donorsubstrat verwendet [Ni et al., 2006]. Interessanterweise war die auf Ni²⁺ zurückgeführte Fo-Fc-Differenzelektroendichte in der Nähe von H213 nicht mehr zu sehen. Möglicherweise lässt sich diese Beobachtung auf die unter 2.2.4.8 beschriebene Kristallbehandlung mit mehreren Transferschritten zurückführen, die zu einem Verlust des Ni²⁺-Ions geführt haben könnte.

3.2.12.1.3 Vergleich mit der homologen Sialytransferase PM0188

Der erhaltene CMP:WaaA_{AAE}-Komplex wurde mit der CMP-3FNeuAc komplexierten Sialytransferase PM0188 aus *Pasteurella multocida* [Kim et al., 2008] verglichen. Sowohl WaaA_{AAE} als auch PM0188 gehören zur invertierenden GT-B-Superfamilie und beide nutzen ein CMP-aktiviertes Donorsubstrat. Darüberhinaus bestehen zwischen den Kdo- und NeuAc-Zuckermolekülen große Ähnlichkeiten, insbesondere im Hinblick auf das carboxylierte anomere C-Atom. Die CTD der Proteinmoleküle zeigen einen r.m.s.d.-Wert von 2.9 Å für 94 überlagerte C α -Atome. Das CMP bzw. der CMP-Anteil wird in beiden Strukturen in homologen Proteinregionen gebunden. Die Schleifenregionen auf der C-terminalen Seite der β-Stränge cβ1, cβ2 und cβ3 in PM0188 bzw. cβ1, cβ2 und cβ4 in WaaA_{AAE} einschließlich der angrenzenden α-Helices sind an der Substratbindung beteiligt, wobei die dem letzten β-Strang folgende α-Helix den Beginn des in die Donorzuckerbindung involvierten $\alpha/\beta/\alpha$ Supersekundärstrukturmotivs markiert (cα3-cβ5-cα4 in WaaA_{AAE}, cα3-cβ4-cα4 in PM0188) (Abb. 3.31) [Hu et al., 2003]. Die Länge der entsprechenden Schleifenregionen ist in beiden Fällen fast identisch. Lediglich für cβ1-cα1 (PM0188 und WaaA_{AAE}) und cβ5-cα4 (WaaA_{AAE}) bzw. cβ4-cα4 (PM0188) ergeben sich Abweichungen. Sowohl in WaaA_{AAE} als auch in PM0188 liegt der Cytidinanteil des CMP in der Anti-Konformation vor (Torsionswinkel O₄'-C₁'-N1-C2: -108.8° (WaaA_{AAE}), -170,1° (PM0188)) (Abb. 3.31). Die Cytosinbasen werden in

beiden Fällen in einer Vertiefung gebunden und interkalieren mit den hydrophoben Aminosäureresten P312/L357 (PM0188) bzw. F247/L250 (WaaA_{AAE}). In WaaA_{AAE} liegen diese Seitenketten in c α 3 und der vorhergehenden Schleifenregion. Im Gegensatz hierzu finden sich die entsprechenden PM0188- Aminosäurereste in c α 4, die der zweiten α -Helix des $\alpha/\beta/\alpha$ -Motivs entspricht, und der Schleifenregion c β 2-c α 2. In PM0188 fungiert die C₄-Aminogruppe der Cytosinbase als zweifacher Wasserstoffbrückendonor gegenüber den K309/G226-Hauptkettencarbonylgruppen, während im Falle von WaaA_{AAE} nur eine Wasserstoffbrücke mit der P211-Hauptkettencarbonylgruppe besteht. Für die C₂-Carbonylgruppe der Cytosinbase finden sich in PM0188 zwei Wasserstoffbrückeninteraktionen mit der F337-Hauptkettenamidgruppe bzw. K309-Seitenkettenaminogruppe. Auch im Falle von WaaA_{AAE} existieren hier zwei Wasserstoffbrücken (Abb. 3.31). Wie in fast allen Nukleotid-Glykosyltransferase-Komplexen fungieren die C₃'- und C₂'- Ribosehydroxylgruppen als Wasserstoffbrückendonoren gegenüber einer Glutamatseitenkette (E338 in PM0188 bzw. E276 in WaaA_{AAE}), die Teil des $\alpha/\beta/\alpha$ -Motivs ist (Abb. 3.31). Die wichtige Rolle dieser Interaktion wurde durch kinetischer Untersuchungen an den entsprechenden Alaninmutanten bestätigt [Bolam et al., 2007; Hu et al., 2003]. In PM0188 ist E338 jedoch Bestandteil der ersten α -Helix, während E276 in WaaA_{AAE} Element der zweiten α -Helix des $\alpha/\beta/\alpha$ -Motivs ist. Um optimale Wasserstoffbrückenbindungen mit den Hydroxylgruppen der Ribose zu gewährleisten, weist die Ribose in PM0188 die C₂'-endo/C₃'-exo-Konformation, in WaaA_{AAE} jedoch die C₂'-exo/C₃'-endo-Konformation auf.

Die Interaktionen zwischen der Phosphatgruppe und dem Protein werden hauptsächlich durch die Schleifenregion vermittelt, die zwischen β -Strang und zweiter α -Helix des $\alpha/\beta/\alpha$ -Motivs liegen ($c\beta5$ - $c\alpha4$ in Waa_{AAE}, $c\beta4$ - $c\alpha4$ in PM0188). In PM0188 finden sich in dieser Region zwei Wasserstoffbrücken zwischen dem O₃ α -Phosphatgruppensauerstoffatom und der S356-Hauptkettenamidgruppe bzw. O γ -Hydroxylgruppe. Demgegenüber gibt es nur eine Wasserstoffbrückeninteraktion zwischen der N273-Hauptkettenamidgruppe und dem O₂ α -Phosphatgruppensauerstoffatom in WaaA_{AAE} (Abb. 3.31). Weder in WaaA_{AAE} noch in PM0188 existiert das häufig in der GT-B-Superfamilie anzutreffende H-X₇-E Motiv [Kapitonov & Yu, 1999], dessen Glutamatseitenkette Wasserstoffbrücken mit den Ribosehydroxylgruppe beteiligt ist [Ha et al., 2001]. Im Falle von WaaA_{AAE} liegen zwischen H272 und dem an der Bindung der Ribose beteiligten E276 lediglich drei Aminosäurereste und H272 interagiert nicht mit der Nukleotidphosphatgruppe. Möglicherweise lässt sich die Abwesenheit des H-X₇-E Motivs mit der Verwendung von Nukleotidmonophosphat-aktivierten Zuckern erklären.

Insgesamt bestehen große Ähnlichkeiten hinsichtlich der für die CMP-Bindung verantwortlichen Proteinregionen und der Art der bei diesen Interaktionen verwendeten Seitenketten in PM0188 und WaaA_{AAE}. Kleinere Unterschiede sind erkennbar für das Interkalieren der aromatischen Cytosinbase zwischen hydrophobe Seitenketten. Während die F247-Orientierung in WaaA_{AAE} für die Existenz von " π - π stacking"-Wechselwirkungen spricht, könnte es sich bei der Wechselwirkung zwischen P312 und der Cytosinbase in

PM0188 um eine "CH- π "-Interaktion handeln. Auch die Anzahl der Wasserstoffbrücken zwischen der Cytosinbase und der Proteinumgebung ist in PM0188 höher als in WaaA_{AAE}. Die Position bestimmter Aminosäurereste ist innerhalb der an der CMP-Bindung beteiligten Sekundärstrukturelemente variabel, sofern die angestrebte Bindungsinteraktion weiter bestehen kann. Dieser Umstand zeigt sich ganz deutlich bei den äquivalenten Aminosäureresten F247 (WaaA_{AAE})/P312 (PM0188) und E276 (WaaA_{AAE})/E338 (PM0188).

3.2.12.2 Lipoid-A-Vorläufer

Die NTD der GT-B-Mitglieder ist meist für die Bindung des Akzeptorsubstrates verantwortlich. Die potentielle Bindungsstelle des Lipoid-A-Vorläufers sollte durch die Häufung der konservierten Aminosäurereste H25, S28, E31, T51, S54, L74, P75, D77, E98, E100 und W102 in einer flachen Vertiefung auf der C-terminalen Seite des zentralen, parallelen β -Faltblattes in den Schleifenregionen n β 1-n α 1, n β 2-n α 2, n β 3-n α 3 und n β 4-n α 4 gekennzeichnet sein (Abb. 3.32). Während die Helices n α 0 und n α 1-n α 5 den Rand dieser Vertiefung bilden,

die bis zur zentralen Einkerbung zwischen den beiden Domänen verläuft, besteht der Boden aus der Schleifenregion n β 4-n α 4, die E98, E100 sowie W102 beinhaltet. Interessanterweise existiert ein Wasserstoffbrückennetzwerk zwischen T51, H25 und E100, das den Boden der Vertiefung mit der inneren Region der NTD verbindet. Auf der Höhe von E98 trifft die Vertiefung auf die zentrale Einkerbung zwischen den beiden Domänen und es besteht eine Salzbrückeninteraktion zwischen E98 und dem konservierten Aminosäurerest K162, der sich in der die beiden Domänen verbindenden Schleifenregion n β 7-c β 1 befindet. Wie angesichts des membrangebundenen Charakters des Akzeptorsubstrates zu erwarten ist, überschneidet sich die konservierte Region mit der potentiellen Membranbindungsstelle (vergl. 3.2.11).

3.2.13 Thermostabilität

Da bisher keine andere Kristallstruktur einer Kdo-Transferase existiert, scheiden strukturelle Vergleiche - ähnlich der unter 3.1.7 beschriebenen Vorgehensweise - zur Diskussion der Thermostabilität aus. Die Analyse der WaaA_{AAE}-Primärstruktur und ihr Vergleich mit einigen anderen Kdo-Transferasen (Tab. 3.12) legen jedoch nahe, dass auch hier, wie schon bei KdsB_{AAE}, elektrostatische Wechselwirkungen eine Rolle spielen. Da WaaA_{AAE} über eine relativ kurze Aminosäuresequenz verfügt, könnten in Anbetracht der konservierten GT-B-Faltung gekürzte Schleifenregionen einen zusätzlichen Beitrag zur Thermostabilität leisten.

Die sechs Cysteinreste in Waa A_{AAE} sind alle an der Ausbildung von Disulfidbrücken beteiligt, die sich am N- und C-Terminus sowie in der die beiden Domänen verbindenden Schleifenregion n β 6-c β 1 befinden (Abb. 3.33). Damit sollten kritische Proteinregionen stabilisiert werden. Die Tatsache, dass die Positionen der Cysteine in den mesophilen Kdo-Transferasen nicht konserviert sind (Abb. 3.25), unterstützt diese Interpretation.

	K (%)	R (%)	E (%)	D (%)	Gesamt (%)
Aquifex aeolicus (353)	13.3	4.2	10.3	2.5	30.3
Haemophilus influenzae (427)	4.9	6.6	5.9	3.3	20.7
Vibrio Cholerae (439)	5.2	5.7	5.2	3.0	19.1
Bordetella pertussis (428)	0.5	10.0	4.7	3.7	18.9
Escherichia coli (425)	3.8	7.5	4.7	3.3	19.3
Chlamydia trachomatis (431)	7.7	5.6	6.5	3.9	23.7
Chlamydophila psittaci (411)	7.1	5.8	7.1	4.1	24.1
Yersinia pestis (425)	3.8	7.8	5.4	3.3	20.3

Tab. 3.12: realtive Häufigkeit geladener Aminosäurereste in den Kdo-Transferasen einiger Bakterien. In Klammern wird jeweils die Gesamtanzahl der Aminosäurereste angegeben.

Nach der unter 3.2.3 beschriebenen Beobachtung war die Waa A_{AAE} -Doppelmutante K40A/E41A nicht mehr thermostabil. Die Position dieser Aminosäurereste in der C-terminalen Region von n α 1 ist äußerst interessant. Sie sind Teil eines ionischen Netzwerkes, bestehend aus K40, E41, R43, E45, E344, K345, E348 und R351, das c α 7 mit n α 1 verbindet und damit einen Beitrag zur Stabilisierung dieser Region leisten sollte (Abb. 3.33). Möglicherweise werden die elektrostatischen Interaktionen innerhalb dieses Netzwerkes

durch die Einführung der Mutationen K40A und E41A gestört, so dass dieser Bereich bei erhöhten Temperaturen als Entfaltungsstartpunkt dienen könnte.

3.2.14 Reaktionsmechanismus

3.2.14.1 Biologisch aktive Form

Obwohl WaaAAAE in Lösung sowohl Dimere als auch Trimere bilden kann [Mamat et al., 2009], ist es doch mehr als fraglich, ob das in der ASU beobachtete Homodimer die biologisch aktive Form darstellt. Eine Homodimerisierung in der ASU wurde zwar für eine Reihe von GT-B-Mitgliedern beschreiben [Hu et al., 2003; Grizot et al., 2006; Sun et al., 2007], aber nur im Falle von FucT aus Helicobacter pylori ist sie auch von biologischer Bedeutung, da sie anscheinend das LPS-Fucosylierungsmuster beeinflussen kann [Nilsson et al., 2006]. Die Existenz von gut definierten Polyethylenglykolmolekülen in der N-terminalen Dimerisierungsregion (Abb. 3.27) weist auf die mangelnde Komplementarität der entsprechenden Proteinoberflächen in dieser Proteinregion hin. Durch die Dimerisierung wird zudem die potentielle Membranassoziierungs- bzw. Akzeptorbindungsregion maskiert (vergl. 3.2.11 und 3.2.12.2). Darüberhinaus ist es mehr als unwahrscheinlich, dass die beobachteten Dimerisierungswechselwirkungen mit der durch die Susbtratbindung ausgelösten Schließbewegung der beiden Domänen vereinbar sind. Die Homodimerisierung sollte die hydrophoben Membranbindungs- bzw. Akzeptorbindungsstellen der NTD vor umgebenden Wassermolekülen abschirmen und als Folge der Proteinaufreinigung auftreten, wenn WaaAAAE aus der Membran extrahiert wird. Dies könnte auch erklären, warum WaaAAAE in detergenzfreien Puffern in Lösung gehalten werden konnte (vergl. 3.2.1).
3.2.14.2 WaaA_{AAE} -Donorsubstrat-Wechselwirkungen

Zusätzlich zu den unter 3.2.12.1.2 gemachten Ausführungen müssen auch Interaktionen zwischen WaaA_{AAE} und Kdo bestehen. Da der Kdo-Anteil im CMP-Kdo Susbstrat kovalent an die Phosphatgruppe gebunden ist, markiert der CMP:WaaA_{AAE}-Komplex zumindest teilweise die potentielle Kdo-Bindungsregion in WaaA_{AAE}. Die dem CMP direkt benachbarte Schleifenregion c β 5-c α 4 sollte demzufolge an der Kdo-Bindung beteiligt sein, zumal sie das für Kdo-Transferasen spezifische GG(S/T)-X₅GXNXLE-Konsensusmotiv enthält. Die Ausbildung des kleinen, anti-parallelen β -Faltblattes zwischen den glycinreichen Abschnitten der Schleifenregion und die durch T265 und F266 vermittelten Interaktionen mit der CTD (vergl. 3.2.9.1) scheinen die Schleifenregion aufzufalten und in einer für die Kdo-Bindung beteiligt sind, sind ein weit verbreitetes Phänomen innerhalb der Glykosyltransferasen [Qasba et al., 2005]. Eine ähnliche Situtation wurde für die Sialyltransferase PM0188 beschrieben [Ni et al., 2007] (Abb. 3.34). In der offenen GT-B-Konformation kontaktiert eine Tryptophan-

Donorsubstratbindung. In hellblau native, in braun CMP-3FNeuAc komplexierte PM0188-Struktur. Die Verlagerung von W270 beträgt 13 Å. (B) Die für die Kdo-Transferasen spezifische c β 5-c α 4-Schleifenregion (orange) in Waa A_{AAE} weist Parallelen zur Situation in der nativen PM0188-Struktur auf.

seitenkette der Schleifenregion c β 1-c α 1 einen hydrophoben Cluster, wenn PM0188 jedoch bei Donorsubstratbindung in die geschlossene GT-B-Konformation übertritt, kommt es zu einer Reorientierung dieses Aminosäurerestes, so dass der 3FNeuAc-Anteil abgeschirmt wird. In ähnlicher Weise könnte F266 an der Spitze der c β 5-c α 4 Schleifenregion (vergl. 3.2.9.1) bei der CMP-Kdo-Bindung umgelagert werden, um das labile CMP-Kdo-Donorsubstrat [Lin et al., 1997] vor Hydrolyse zu schützen, wobei gleichzeitig das Wasserstoffbrückennetzwerk um T265 aufgelöst werden sollte. Möglicherweise kommt es danach zu einer direkten Wasserstoffbrückeninteraktion zwischen V262 und G287. Die glycinreichen Abschnitte der c β 5-c α 4 Schleifenregion könnten die zur Umlagerung notwendige Flexibilität vermitteln. Der Phenylalaninrest in Position 266 ist nicht strikt konserviert, jedoch finden sich hier immer sterisch anspruchsvolle, hydrophobe Seitenketten (Abb. 3.25). Über die konkreten Wechselwirkungen, die zwischen dem Kdo-Zucker und der c β 5-c α 4-Schleifenregion bestehen könnten, kann zum derzeitigen Zeitpunkt nur spekuliert werden, da der CMP-Kdo:WaaA_{AAE} -Komplex noch nicht vorliegt.

Im Gegensatz zum Nukleotidphosphatanteil, dessen Bindung innnerhalb der GT-B-Superfamilie durch die CTD erfolgt, interagiert der Zuckeranteil in der geschlossenen GT-B-Konformation in einigen Fällen mit beiden Domänen. Auch für PM0188 bestehen wichtige Wechselwirkungen mit der NTD. So existiert z.B. eine Salzbrücke zwischen R63 und der 3FNeuAc-Carboxylatgruppe. Es ist deshalb nicht auszuschließen, dass sich der vollständige Kdo-Bindungsmodus auch für Waa A_{AAE} erst in der geschlossenen Konformation ausbildet.

3.2.14.3 WaaA_{AAE}-Akzeptorsubstrat-Wechselwirkungen

Die strukturelle Charakterisierung mehrerer invertierender GT-B-Mitglieder offenbarte Histidin-, Aspartat- oder Glutamatseitenketten, die als katalytische Base fungieren und für die Deprotonierung des Akzeptorsubstrates verantwortlich sind. Dieser wichtige Aminosäurerest befindet sich entweder in einer Helix, die zu na1 in WaaAAAE äquivalent ist [Grizot et al., 2006; Brazier-Hicks et al., 2007], oder in dieser Helix räumlich benachbarten Schleifenregionen [Kim et al., 2008; Lariviere et al., 2003], so dass im Falle von WaaA_{AAE} die konservierten Aminosäurereste E31 und E98 in Frage kamen. Liegt die katalytische Base jedoch im nαl-Äquivalent, so ist der vorhergehende Rest oftmals ein Glycin [Grizot et al., 2006; Hu et al., 2003; Bolam et al., 2007; Brazier-Hicks et al., 2007; Shao et al., 2005]. Dieser Sachverhalt konnte durch die ternären Donorsubstratanalog-/Akzeptorsubstrat komplexe von UGT72B1 [Brazier-Hicks et al., 2007], UGT71B1 [Shao et al., 2005], OleI [Bolam et al., 2007], GtfD [Mulichak et al., 2004] und GtfA [Mulichak et al., 2003] in der geschlossenen Konformation genauer untersucht werden. Die Präsenz einer Seitenkette in der Position vor der katalytischen Base hätte zu einem sterischen Konflikt mit dem in der Nähe befindlichen Donorsubstrat geführt (Abb. 3.35). Aus dem gleichen Grund könnte bei den Kdo-Transferasen die Position G30 vor E31 konserviert sein (Abb. 3.25), was gleichzeitig für E31 die Funktion als katalytische Base nahe legt.

Da in unmittelbarer Nähe zur katalytischen Base der Übergangszustand der Reaktion erreicht wird, sollten wichtige Funktionen für die E31 benachbarten und konservierten Aminosäurereste E98 und K162 bestehen, die sich in der katalytisch wichtigen Grenzregion zwischen NTD und zentraler Einkerbung befinden (vergl. 3.2.12.2). Zur Deprotonierung der 6'-Hydroxylgruppe des Akzeptorsubstrates sollte sich die E31-Carboxylatgruppe in Wasserstoffbrückenreichweite befinden. Die E31 unmittelbar benachbarten konservierten Reste S28 und S54 könnten dann zusammen mit dem positiven Ende des Dipolmoments von n α 1 an der Bindung der 4'-Phosphatgruppe beteiligt sein (Abb. 3.36), der bereits durch die biochemischen Charakterisierungen von WaaA_{AAE} und WaaA_{ECO} [Mamat et al., 2009; Belunis & Raetz, 1992] eine Rolle bei der Akzeptorsubstraterkennung zugeschrieben wurde.

Die Präsenz der 3-, 2'- oder 3'-Akzeptorsubstratacylseitenkette scheint für die *in vitro*-Aktivität von WaaA_{AAE} von untergeordneter Bedeutung zu sein [Mamat et al., 2009]. Damit stellt sich die Frage, ob es überhaupt zu spezifischen Wechselwirkungen zwischen WaaA_{AAE} und den Acylseitenketten des Akzeptorsubstrates kommt oder nur unspezifische, hydrophobe Kontakte mit der Membranassoziierungsregion bestehen (vergl. 3.2.11). Obwohl das gebundene Polyethylenglykolmolekül in die biologisch irrelevante WaaA_{AAE}-Homo-dimerisierung involviert ist (vergl. 3.2.14.1), kontaktiert es interessanterweise den strikt konservierten W102-Aminosäurerest. Es ist deshalb nicht auszuschließen, dass eine der hydroxylierten Acylketten des Akzeptorsubstrates in ähnlicher Weise mit W102 interagiert.

Abb. 3.36: Akzeptorsubstrat in der Nähe von $n\alpha 1$. Das Akzeptorsubstrat wurde manuell eingepasst. Prinzipiell könnten Wasserstoffbrückeninteraktionen zwischen E31 und der 6'-Hydroxylgruppe sowie zwischen S28 und S54 und der 4'-Phosphatgruppe bestehen (notwendige Konformationsänderungen vorausgesetzt). Als Akzeptorsubstrat ist Lipoid-IV_A gezeigt.

Die Orientierung der W102- und F101-Seitenketten scheint wie geschaffen für die Erkennung aliphatischer Ketten (Abb. 3.37). Im Gegensatz zur Position 102 ist das Phenylalanin in Position 101 nicht strikt konserviert, jedoch finden sich hier immer Seitenketten mit ausgeprägt hydrophobem Charakter (Abb. 3.25). Interessanterweise beträgt der Abstand zwischen dem Polyethylenglykolmolekül und E100 nur ca. 4,5 Å. Dieser Rest könnte damit als Wasserstoffbrückenakzeptor gegenüber der 3-Hydroxygruppe einer Acylseitenkette fungieren und unter *in vivo*-Bedingungen, neben der durch die 4'-Phosphatgruppe und dem Disaccharidanteil vermittelten Spezifität, zur Diskriminierung von Phosphatidylethanolamin, Phosphatidylglycerol und Cardiolipin beitragen, die die Hauptbestandteile der inneren

Membran bilden und über nicht hydroxylierte Acvlseitenketten verfügen [van Voorst & de Kruijff, 2000]. Das konservierte Wasserstoffbrückennetzwerk T51-H25-E100 sollte in diesem Zusammenhang für die korrekte Orientierung von E100 sorgen. Aufgrund der Flexibilität des Akzeptorsubstrates lässt sich zum gegenwärtigen Zeitpunkt nicht eindeutig sagen, welche der vier möglichen Acylketten erkannt werden könnte. Ausgehend von dem unter 3.2.11

NTD. Es besteht räumliche Nähe zum konservierten Wasserstoffbrückennetzwerk T51-H25-E100.

vorgestellten Membranassoziierungsmodell sollte das Akzeptorsusbtrat die NTD durch die von R56 und K121 gebildete Öffnung der hufeisenförmigen Anordnung basischer Aminosäurereste erreichen.

Zusammenfassend betrachtet könnten in der WaaA_{AAE}-NTD drei Ebenen existieren, die mit dem Akzeptorsusbtrat interagieren und die notwendige Spezifität vermitteln. Die "unterste" Ebene könnten die hydrophoben Wechselwirkungen zwischen W102 und einer Acylseitenkette bilden. Es folgt die "mittlere" Ebene, bestehend aus dem strikt konservierten Wasserstoffbrückennetzwerk T51-H25-E100, das Spezifität über die Erkennung einer Hydroxylgruppe vermitteln könnte. Die "oberste" Ebene wird von E31, S28 und S54 gebildet, die mit dem Disaccharidanteil des Akzeptorsubstrates in Wechselwirkung treten sollten.

3.2.14.4 Geschlossene WaaA_{AAE}-Konformation

Bei MurG [Hu et al., 2003], BGT [Morera et al., 2001] und PM0188 [Ni et al., 2006] sowie vielen anderen GT-B-Mitgliedern führt schon die Bindung des Nukleotides zur Ausbildung der geschlossenen Konformation, die die zentrale Einkerbung zwischen den Domänen schließt und wichtige Seitenketten in das aktive Zentrum verlagert, so dass die Bildung einer glykosidischen Bindung katalysiert werden kann. Es ist deshalb davon auszugehen, dass dieser Vorgang auch bei WaaA_{AAE} erfolgt. Da der CMP:WaaA_{AAE}-Komplex durch Soaking-Methoden erhalten wurde, könnten die schon bestehenden Packungsinteraktionen, vor allem die in der ASU beobachtete Homodimerisierung und ein durch die Scharnierregion c α 6- α 7 (vergl. 3.2.9.1) vermittelter Kristallkontakt, die erwartete Schließbewegung verhindert haben. Es existieren zwar auch GT-B-Mitglieder [Grizot et al., 2006], bei denen der Übergang in die geschlossene Konformation erst durch die Akzeptorbindung ausgelöst werden könnte, jedoch ist die durch das Nukleotid bzw. das vollständige Donorsubstrat ausgelöste Schließbewegung das bei weitem häufigere Szenario.

Es gibt bis heute nur grobe Vorstellungen darüber, wie Nukleotidbindung und Annäherung der beiden Domänen gekoppelt sind. Oftmals sind die positiven Seiten der Dipolmomente der zweiten Helix des $\alpha/\beta/\alpha$ -Motivs (vergl. 3.2.12.1.3) und n α 1 auf die Phosphatgruppe(n) gerichtet [Ni et al., 2006; Brazier-Hicks et al., 2007; Mulichak et al., 2003, 2004; Shao et al., 2005] oder die Präsenz der Phosphatgruppen induziert die Bildung von Interdomänensalzbrücken- bzw. Wasserstoffbrückennetzwerken, die die Ausbildung der geschlossenen Konformation begünstigen [Morera et al., 1999; Ni et al., 2006].

Grundsätzlich betrachtet, macht der durch die Phosphatgruppe(n) des aktivierten Donorzuckers vermittelte Übergang in die geschlossene GT-B-Konformation viel Sinn, da damit die katalytisch wichtige Konformationsänderung der konservierten GT-B-Struktur von der Natur der physikochemisch stark unterschiedlichen Akzeptorsubstrate entkoppelt wird.

Um die geschlossene GT-B-Konformation des WaaA_{AAE}:CMP-Komplexes zu simulieren, wurde der ternäre UGT72B1 Komplex [Brazier-Hicks et al., 2007] als Vorlage verwendet, da sich die katalytische Base sowohl in WaaA_{AAE} als auch in UGT72B1 in identischen Regionen befindet und die in UGT72B1 anzutreffende Situation eindeutig dem Zustand kurz vor Bildung der neuen glykosidischen Bindung entspricht, so dass hier keine "fast-geschlossene" oder "halb-geschlossene" GT-B-Konformation vorliegen kann. Hierzu wurden die Scharnierregionen 165-166 und 322-331 gelöscht, das WaaA_{AAE}-Modell in die NTD und CTD getrennt und mit den entsprechenden Domänen der UGT72B1-Struktur überlagert (Abb. 3.38 und 3.39). Bis auf die Aminosäurereste L250 und F163/K162, die sich bei der simu-

lierten Schließbewegung sehr nahe kommen, sind keinerlei sterische Konflikte erkennbar. Die Situation in der Nähe von F163/K162 lässt auf konformationelle Umlagerungen der nβ7-cβ1 Schleifenregion in diesem Bereich beim Übergang in die geschlossene GT-B-Konformation schließen. Obwohl sich der Abstand zwischen den am weitesten entfernten Punkten der Einkerbung zwischen den beiden Domönen auf ca. 14 Å verringert hat, ist die geschlossenen Konformation noch nicht ganz erreicht. Das CMP-Molekül wurde dennoch 6,6 Å näher an die katalytische Base E31 herangebracht, die zusammen mit den konservierten Seitenketten E98 und K162 das aktive Zentrum markieren sollte. Die Orientierung der beiden Domänen zueinander spricht für eine hydrophobe Interaktion zwischen F247 und I29 sowie eine Salzbrückenbildung zwischen D295 und K121 als potentielle Interdomänenkontakte.

Es ist zum gegenwärtigen Zeitpunkt unklar, wie bei Waa A_{AAE} die Bindung von CMP mit der Ausbildung der geschlossenen Konformation gekoppelt sein könnte. Während das $\alpha/\beta/\alpha$ -Motiv der CTD die erwartete Orientierung aufweist, wurde für n α 1 eine Rolle bei der Bindung der 4'-Phosphatgruppe des Akzeptorsubstrates angenommen (vergl. 3.2.14.3), so dass n α 1 nicht für Wechselwirkungen mit der Phosphatgruppe des CMP zur Verfügung stehen sollte. Auch in der hier simulierten Situation ist das positive Ende des Dipolmoments von n α 1 eindeutig nicht auf die Phosphatgruppe gerichtet. Darüberhinaus ist nicht erkennbar, wie durch CMP-Bindung induzierte Salzbrücken eine Annäherung von NTD und CTD begünstigen könnten.

3.2.14.5 Übergangszustand der Reaktion

Die Reaktion der invertierenden und erhaltenden Glykosyltransferasen verläuft allgemein über eine Oxocarbeniumion-Zwischenstufe, die durch eine zwischen anomerem C-Atom und Ringsauerstoff delokalisierte, positive Ladung gekennzeichnet ist (Abb. 1.24). Die Hybridisierung des anomeren Kohlenstoffatoms wechselt hierbei von *sp3* zu *sp2*, so dass alle seine Substituenten in einer Ebene liegen. Um die Ausbildung dieses Übergangszustandes zu begünstigen, wurden bisher verschiedene Konzepte diskutiert, u. a. die elektrostatische Stabilisierung durch Seitenketten mit negativer Ladung [Sun et al., 2007] oder durch Dipolwechselwirkungen zwischen einer Hauptkettencarbonylgruppe und dem anomeren Kohlenstoffatom [Sheng et al., 2009]. Die von den Kdo- und Sialyltransferasen verwendeten Zucker verfügen am anomeren Kohlenstoffatom über eine Carboxylatgruppe, die die Ausbildung der Übergangszustandsgeometrie durch Wasserstoff-/Salzbrückenbildung unterstützen könnte.

In der Tat scheinen bei der Sialyltransferase PM0188 elektrostatische Wechselwirkungen zwischen R63 und der Carboxylatgruppe des Donorsubstrates die Ausbildung des planaren Übergangszustandes zu begünstigen [Kim et al., 2008] [Ni et al., 2007]. Interessanterweise wurden ähnliche Interaktionen auch für die Neuraminidase des Influenza-B-Virus beschrieben, deren Aufgabe in der Hydrolyse von Sialylzuckern besteht. Der Übergangszustand der Reaktion ist identisch zu demjenigen der Sialyltransferasen und es wird angenommen, dass eine Salzbrücke zwischen R373 und der NeuAc-Carboxylatgruppe die Ausbildung der Übergangszustandsgeometrie erleichtert [Burmeister et al., 1993].

In der Nähe der vermuteten katalytischen Base E31, die die ungefähre Lage des aktiven Zentrums markieren sollte, finden sich die strikt konservierten Aminosäurereste K162 und E98, die in der offenen GT-B-Konformation eine Salzbrücke bilden. Die unter 3.2.14.4 simulierte, geschlossene WaaA_{AAE}-Konformation deutet jedoch auf eine Reorientierung von K162 hin, so dass dieser Aminosäurerest für Wechselwirkungen mit den Substraten zur Verfügung stehen könnte. Auch zwei der drei WaaA_{AAE}-spezifischen Disulfidbrücken (C158-C348 und C165-C295) befinden sich in Nähe zu K162 und unterstreichen damit die Bedeutung dieser Region, die angesichts der hohen Wachstumstemperaturen von *A. aeolicus* offensichtlich einer besonderen Stabilisierung bedarf (vergl. 3.2.13). Möglicherweise erfüllt K162 die Funktion von R63 in PM0188 oder R373 in der Neuraminidase des Influenza-B-Virus und leistet durch Salzbrückenbildung mit der Kdo-Carboxylatgruppe "Hilfestellung" beim Erreichen des Übergangszustandes.

Die Funktion von E98 könnte in der elektrostatischen Stabilisierung des Oxocarbeniumions bestehen. Dieses Konzept wurde in FucT bereits für den Rest E249 diskutiert, dessen Wichtigkeit durch die nicht nachweisbare Enzymaktivität der Proteinvarianten E249A, E249D sowie E249Q eindrucksvoll bestätigt wurde [Sun et al., 2007]. Die Überlagerung dieser Struktur mit WaaA_{AAE} zeigt jedoch, dass die entsprechenden Seitenketten in unterschiedlichen Regionen - in FucT in der CTD, in WaaA_{AAE} in der NTD - lokalisiert sind. Eventuell könnte dieser Umstand der unterschiedlichen Natur der Akzeptorsubstrate geschuldet sein.

3.2.14.6 Stabilisierung der Abgangsgruppe

Bei vielen Glykosyltransferasen spielt die Stabilisierung der im Verlauf der Reaktion entstehenden, zusätzlichen negativen Ladung der Nukleotidabgangsgruppe eine wichtige Rolle im katalytischen Geschehen. Mitglieder der GT-B-Superfamilie verfügen meist über basische Aminosäurereste, die diese Funktion übernehmen und deren wichtige Rolle durch die entsprechenden Mutationen bestätigt wurde [Grizot et al., 2006; Kim et al., 2008; Barreras et al., 2008]. Diese Seitenketten befinden sich in den Schleifenregionen c β 1-c α 1 (WaaC), c β 2-c α 2 (PM0188) oder in der zweiten Helix des $\alpha/\beta/\alpha$ -Motivs im Rahmen des H-X₇-E-Sequenz (vergl. 3.2.12.1.3). Im Falle von WaaC [Grizot et al., 2006] sollte K192 an der Stabilisierung der Nukleotidabgangsgruppe beteiligt sein. Die entsprechende K192A-Mutante besaß eine deutlich reduzierte, aber immer noch vorhandene katalytische Aktivität. Demgegenüber war für die entsprechende H311A-Mutante in PM0188 [Kim et al., 2008] keine α 2,3-Sialytransferaseaktivität mehr nachweisbar.

Nach den unter 3.2.12.1.2 gemachten Beobachtungen sollte das strikt konservierte R212 in der Schleifenregion c β 2-c α 2 in WaaA_{AAE} die Funktion der Abgangsgruppenstabilisierung übernehmen. Die zu R212 homologe Position in *C. trachomatis* ist R276 (Abb. 3.25) und war bereits Gegenstand von Mutageneseexperimenten, die die Bedeutung dieser Seitenkette belegten. So konnte für die Mutante R276A keinerlei katalytische Aktivität mehr festgestellt werden [Ekpo & Nanao, 1992]. Es daher anzunehmen, dass R212 die zusätzliche negative Ladung der CMP-Abgangsgruppe stabilisiert.

3.2.14.7 Strukturelle Basis für die Multifunktionalität der Kdo-Transferasen

WaaA_{ECO} war die erste biochemisch charakterisierte Kdo-Transferase. Die Fähigkeit dieses Enzyms zur Bildung von zwei verschiedenen glykosidischen Bindungen wurde auf die Existenz mehrerer aktiver Zentren zurückgeführt [Belunis & Raetz 1992]. Die Arbeiten an der mindestens trifunktionellen Kdo-Transferase aus *C. trachomatis* [Belunis et al., 1992] ließen Zweifel an dieser Hypothese aufkommen, da WaaA_{CTR} im Vergleich zu WaaA_{ECO} um 24 Aminosäurreste kürzer ist, so dass eine Korrelation zwischen der Anzahl der glykosidischen Bindungen und der Anzahl der aktiven Zentren unwahrscheinlich erschien.

Um Hinweise auf innerhalb der bifunktionellen Kdo-Transferasen konservierte Primärstrukturbereiche zu erhalten, wurden anhand der Struktur der LPS-Kernregion [Holst, 2007] die Kdo-Transferasen aus *Klebsiella pneumonia*, *Proteus mirabilis*, *Yersinia enterocolitica*, *Plesiomonas shigelloides*, *Neisseria meningitidis*, *Haemophilus somnus*, *Pseudomonas aeruginosa*, *Burkholderia caryophylli*, *Helicobacter pylori* und *Rhizobium etli* als bifunktionell identifiziert und zusammen mit den bereits als bifunktionell charakterisierten Enzymen Waa A_{ECO} [Belunis & Raetz, 1992] sowie Waa A_{LPN} [Brabetz et al., 2000] einem Sequenzalignment unterzogen. Es wurden jedoch keine zusätzlichen, konservierten Bereiche gefunden.

Bifunktionalität findet sich auch für die Sialytransferase PM0188 aus *P. multocida*, die die Bildung von α -2,3- und α -2,6-glykosidischen Bindungen katalysieren kann [Yu et al., 2005]. Kristallographische Studien an diesem Enzym [Ni et al., 2006] und der monofunktionellen α -2,6-Sialytransferase aus *Vibrionaceae photobacterium*, die ebenfalls der invertierenden GT-B-Superfamilie zuzuordnen ist, begründeten die beobachtete Bifunktionalität mit flexiblen Bindungsmodi des Akzeptorsubstrates in der NTD [Kakuta et al., 2008].

In ähnlicher Art und Weise könnte die Flexibilität der Akzeptorbindungsstelle bei den bifunktionellen Kdo-Transferasen die Katalyse unterschiedlicher glykosidischer Bindungen ermöglichen. Demnach würde z. B. für Waa A_{ECO} die Plastitzität der Akzeptorbindungsstelle sowohl die Bindung von Lipoid-IV_A also auch Kdo-Lipoid-IV_A ermöglichen. Im ersten Fall würde die 6'-Hydroxygruppe des distalen Glucosamins, im zweiten Fall die 4-Hydroxygruppe des KdoI in Wasserstoffbrückenreichweite zur generellen Base platziert und für den nukleophilen Angriff auf das anomere C-Atom des CMP-Kdo Substrates deprotoniert. Die unter 3.2.12.2 beschriebenen, konservierten Aminosäurereste sollten an der Bindung des primären Akzeptorsubstrates beteiligt sein. Demgegenüber könnten die nicht-konservierten Aminosäurereste in den Schleifenregionen n β 1-n α 1, n β 2-n α 2, n β 3-n α 3 und n β 4-n α 4 die notwendige Flexibilität im Hinblick auf die Bindung des bereits mit einem Kdo-Zucker derivatisierten Akzeptorsubstrates vermitteln.

3.2.14.8 WaaA_{AAE}-Varianten

Zur Überprüfung der aufgestellten Hypothesen wurden von Dr. Uwe Mamat am Forschungszentrum Borstel WaaA_{AAE}-Alaninvarianten hergestellt, die nach der unter 2.2.1.2 beschriebenen Vorgehensweise rekombinant produziert und aufgereinigt wurden. Die aufgereinigten Varianten wurden von Dr. Uwe Mamat nach einer bereits beschriebenen Methode [Mamat et al., 2009], die aus einem gekoppelten KdsB_{AAE}-WaaA_{AAE}-Enzymassay bei 60°C mit anschließendem massenspektrometrischen Nachweis des Kdo-Lipoid-IV_A-Endprodukts bestand, auf ihre enzymatische Aktivität getestet. Je Variante wurden zwei Aktivitätstests durchgeführt mit Inkubationszeiten von 75 s bzw. 1 h. Es wurden bisher folgende WaaA_{AAE}-Varianten getestet: H25A, E31A, E98A, E100A, K162A, R212A, H272A/N273A und E276A (vergl. 4.5).

Nach den vorliegenden Ergebnissen müssen die Aminosäurereste E31, E98 und K162 besonders kritisch für das katalytische Geschehen sein, da die enzymatische Aktivität sowohl bei kurzer als auch langer Inkubationszeit deutlich reduziert ist. Sie sollten damit das aktive Zentrum markieren. Die für E31 unter 3.2.14.3 vorgeschlagene Rolle als katalytische Base kann damit als gesichert gelten. Die genauen Funktionen von E98 und K162 bleiben aber weiterhin unklar. Die erhaltenen Ergebnisse unterstützen aber die unter 3.2.13.5 aufgestellten Vermutungen hinsichtlich der Stabilisierung des Übergangszustandes.

Für R212A und E276A ergibt sich ein uneinheitliches Bild. Bei kurzer Inkubationszeit findet sich eine deutlich reduzierte katalytische Aktivität, bei längerer Inkubationszeit ist praktisch kein Effekt mehr festzustellen. Damit sind R212 und E276 für das katalytische Geschehen weit weniger wichtig als E31, E98 oder K162. Ein solches Ergebnis ist mit einer Rolle bei der CMP- bzw. CMP-Kdo-Bindung vereinbar. Diese Varianten würden demnach zu einer reduzierten Affinität gegenüber dem Donorsubstrat führen, die im Aktivitätstest durch längere Inkubationszeiten ausgeglichen werden kann. Dieser Effekt konnte für E276 erwartet werden (vergl. 3.2.12.1.2) und wäre für R212, selbst wenn dieser Aminosäurerest noch zusätzlich in die Stabilisierung der Nukleotidylabgangsgruppe involviert sein sollte, nicht ungewöhnlich (vergl. 3.2.14.6). Möglicherweise ist R212 aber auch nicht alleine an der Stabilisierung der zusätzlichen negativen Ladung der CMP-Abgangsgruppe beteiligt. Im CMP:WaaAAAE-Komplex besteht noch eine Wasserstoffbrücke zwischen der Phosphatgruppe und der N273-Hauptkettenamidgruppe (vergl. 3.2.12.1.2), die eventuell in Kombination mit R212 am katalytischen Geschehen teilnehmen könnte. Eine auch bei längeren Inkubationszeiten reduzierte Enzymaktivität würde sich möglicherweise erst dann zeigen, wenn beide Interaktionen nicht mehr bestehen könnten. Das Ergebnis für R212A ist jedoch im Hinblick auf die Inaktivität der homologen R276A Mutante in WaaA_{CTR} erstaunlich (vergl. 3.2.14.6). Allerdings erfolgte der Aktivitätstest an der trifunktionellen WaaA_{CTR} durch Antikörpernachweis gegen das chlamydienspezifische Kdo-Trisaccharid in der LPS-Kernregion [Ekpo & Nano, 1992], so dass hier keine Aussage darüber getroffen werden konnte, ob die von WaaA_{AAE} und WaaA_{CTR} katalysierte α-2,6-Verknüpfung mit dem Akzeptorsubstrat noch möglich ist.

Die Mutante H25A hat weder bei kurzer noch bei langer Inkubationszeit einen Effekt auf die WaaA_{AAE}-Enzymaktivität, während der Lipoid-IV_A-Umsatz für E100A bei kurzer Inkubationszeit nur minimal beeinflusst wird, obwohl beide Aminosäurereste Teil des strikt konservierten T51-H25-E100 Wasserstoffbrückennetzwerkes sind. Dieser Sachverhalt legt die Vermutung nahe, dass auch das gesamte Netzwerk, einschließlich T51, für die WaaA_{AAE}- Aktivität entbehrlich ist. Die unter 3.2.14.3 aufgestellten Hypothesen bezüglich der *in vivo* - Funktion des T51-H25-E100-Netzwerkes sind mit diesem Ergebnis aber weiterhin vereinbar.

Da es sich bei H272A/N273A um eine Doppelmutante handelt, ist die Vergleichbarkeit mit den übrigen Varianten nicht gegeben. Gleichwohl unterstreicht die sowohl bei kurzer als auch bei langer Inkubationszeit reduzierte Enzymaktivität die Bedeutung der c β 5-c α 4 Schleifenregion als potentielle Kdo-Bindungsstelle (vergl. 3.2.14.2).

Die unter 3.2.3 beschriebene *in vivo*-Inaktivität der WaaA_{AAE}-Doppelmutanten K167A/K169A und K43A/E45A lässt sich mit den bisher entwickelten Modellvorstellungen nicht erklären.

3.2.14.9 Zusammenfassende Betrachtung

Die WaaA_{AAE}-NTD assoziiert mit der cytosolischen Seite der inneren Membran über einen ausgedehnten Cluster hydrophober Aminosäurereste, der hufeisenförmig von basischen Seitenketten umgeben ist (vergl. 3.2.11). Die Öffnung des "Hufeisens", zwischen R56 und K121, sollte die Stelle sein, an der das Akzeptorsubstrat in das durch E31, E98 und K162 markierte aktive Zentrum eintritt, wobei der Disaccharidanteil und die 4'-Phosphatgruppe des Akzeptorsubstrates mit der katalytischen Base E31 bzw. S28 und S54 wechselwirken (Abb. 3.40). Hydrophobe Interaktionen könnten zwischen einer Acylseitenkette und W102 bestehen. Zusätzliche Spezifität im Hinblick auf die Akzeptorsubstraterkennung könnte über die Ausbildung einer Wasserstoffbrücke zwischen E100 und der 3-Hydroxygruppe einer Acylseitenkette werden (3.2.14.3).

Die Bindung des CMP-Kdo sollte zu einer Konformationsänderung der F247-Seitenkette führen (vergl. 3.2.12.1.2). Darüberhinaus könnte es zur Umlagerung der für die Kdo-Transferasen spezifischen Schleifenregion c β 5-c α 4 kommen, so dass das labile CMP-Kdo vor Hydrolyse geschützt wird (vergl. 3.2.14.2). Die Wechselwirkungen mit dem CMP-Anteil sollten über P211, R212, F247, G248, I249, L250, N273 und E276 vermittelt werden (vergl. 3.2.12.1.2).

Es ist zum gegenwärtigen Zeitpunkt unklar, wie im Falle von WaaA_{AAE} der Übergang in die geschlossene GT-B-Konformation ausgelöst werden könnte. In der überwiegenden Mehrzahl der bisher bekannten GT-B-Strukturen ist jedoch die Präsenz des Donorsubstrates bzw. seines Nukleotidylanteils ausreichend für die Ausbildung der geschlossenen GT-B-Konformation. Es ist deshalb wahrscheinlich, dass dies auch für WaaA_{AAE} zutrifft (vergl. 3.2.14.4). Möglicherweise sind die Umlagerung der für Kdo-Transferasen spezifischen Schleifenregion, die Ausbildung der geschlossenen GT-B-Konformation ausgelöst.

auch gekoppelte Prozesse, wie im Falle der Sialytransferase PM0188 [Ni et al., 2007]. Demnach würde die CMP-Kdo-Bindung zum Übergang in die geschlossenen GT-B-Konformation und zur Umlagerung der Schleifenregion $c\beta5-c\alpha4$ führen, wobei die Umlagerung auch für die vollständige Ausbildung der Akzeptorbindungsstelle notwendig wäre.

Die Ausbildung des Übergangszustandes könnte durch die Aminosäurereste E98 und K162 begünstigt werden und R212 sowie die N273-Hauptkettenamidgruppe sind eventuell an der Stabilisierung der in Verlauf der Reaktion auf die CMP-Gruppe übertragenen negativen Ladung beteiligt (Abb. 3.40).

4. Anhang

4.1 Kristallisationsscreens

Zusätzlich zu den unter 2.1.2 erwähnten kommerziell erhältlichen Kristallisationscreens "Crystallisation Basic Kit" und "Crystallization Extension Kit" (Sigma-Aldrich) wurden die auf den folgenden Seiten aufgeführten Lösungen angesetzt und für die Suche nach initialen Kristallisationsbedingungen verwendet.

No.	Precipitant 1	Ĭ	Conc	•	recipitant 2	Unit	Conc.	Buffer	Unit	Conc.	Ha	Additive	Unit	Conc.
-	PEQ 400	Nin 26		S	Glycerol	∧/M %	15	10EPES Sodium Salt	МШ	100	7.5	Calcium Chloride	ММ	200
2	PEG 400	N/M 96	લ	0	adium chioride	Мm	001	Sodium Citrate	ШШ	100	5,6	Magnesium Chloride	Мш	20
•	PEG 400	214.56	.4	Ş	None		0	Sodium Acetate	ШM	50	4.6	Magnesium Acetate	WШ	50
4	PEC 400	V/W 86	ñ	0	iodium Sulfate	Mm	50	Tris-HCI	Mm	20	8,5	Lithium Sulfate	ММ	50
10	PEC 400	N/M 86	4	8	None		0	HEPES Sodium Salt	Mm	100	7,5	Calcium Chloride	Mm	200
	PIND 550 MMIS	Alim 46	ন		None		0	Tris-ICI	MШ	10	7.5	None		0
7	PIND 550 MMR	Ajan 46	ň		None		0	Tris-1(C)	ШM	50	8,5	Magnesium Chloride	M.M.	100
8	PIX3 600	N/M %	m	S	None		0	None		0		None		0
	PHG 1000	AMA %	ส		Glycerol	∧/M %	10	Tricine	Mm	100	8.0	Sodium Chloride	m:M	350
9	PHCP 1500	N/W 96	=	0	fathanol	∿w/∿	5	Sodium Chloride	МШ	100		Magnesium Chloride	ММ	100
1	PEG 1500	N/W 96	ñ	0	None		0	None		0		None		0
4	PEG 2000	N/M 96	- •	s	None		0	None		0		None		a
ţ	PEC 2000	N/M %6	1	0	None		0	Tris-HCl	Mm	50	8,5	Magnesium Chloride	ШM	500
4	PEC 2000	N/M 86	-	5	None		0	None		a		Lithium Chloride	Mm	100
9	PEC 2000	V/W 84	-	5	None		D	Sodium Phosphate	ШM	100	6,2	Sodium Citrate	ШM	20
16	PI3C 2000	Alver #6	7	S	None		0	Sodium Phosphate	Mm	100	6,8	Sodium Chloride	ММ	500
11	PI3C 2000	Alver \$6	7	S	None		0	Bis-Tris	Mш	20	7,0	None		0
8	PRG 2000	A/M %		5	None		0	1IEPES Sodium Salt	Mil	50	7.5	Magnesium Chloride	ММ	100
9	PHG 2000	A/M %	ন		CIAIM	∧/M %	2	Tris-IICI	Мщ	100	8,0	Magnesium Nitrate	ММ	300
20	PEG 2000	A/M 56	đ	S	Glycerol	∧/M %	15	Bicine	ШM	100	0'6	Magnesium Chloride	Мш	300
21	PEG 2000	N/M 56	ñ		None		0	Sodium Phosphate	Μm	200	6,2	Sodium Chloride	ММ	500
22	PEG 2000 MME	V/M %6	-	-	None		0	Sodium Acetate	Mm	100	4,6	None		0
23	PEG 2000 MIME	VW 86	Ĩ	0	Glycerol	N/M %	20	Sodium Citrate	Mm	100	5,6	PEG 200	V/V %	n
z	PI3Q 2000 MMIS	N/W %	-	7	None		00"0	Tris-IICI	Mm	50	7.5	Sodium Chloride	ММ	500
	PPICE 3350	Alm X	~ ` -		None			Sodium Citrate	Mm	8	5,6	Sodium Chloride	N X	150
		Alm E		~	Chessel	0.7 ml		MEC Code Sold	M	- ç	27	Poulsesium Chiloride		an t
28	PEG 4000	A/m 56		ח יה	None	A/M 62	<u> </u> 0	sodium Phosohate	Me Me	8 9	6.7	Southin Chloride None	1A-11	ont O
12	PEC 4000	74 W/V	Ĩ	0	None		0	Tris-HCl	Man	50	8,5	Sodium Chloride	ШM	500
30	PRG 4000	A/M %	÷	13	None		0	ADA	Wm	100	6.5	Lithium Sulfate	ШM	100
ž	PHC 4000	AVA %	-	2	None		0	Sodium Phosphate	МШ	50	6,8	None		0
8	PIX0 4000	AMA %	≓ ì		Glycerol	N/M %	8	SdOW	Me ;	8	7,0	Potassium Chlorido	м Уш	500
83		V/M %	č	n .	None			I rus-HCJ Tale Tale	N N	1 001		Lathum Chloride		001
5 13	PEC 4000		ন ব		None			Sodium Phosphate	We	001	2.0	Sodium Chloride	N N	200
貨	PEG 4000	74 W/V	শ	0	Zine Acetate	Мпа	150	Tris-HCI	Mm	50	7.5	Zine Chloride	Мщ	50
37	PRG 4000	Viv X	ا م	61	None		a	Trizine	Мщ	50	8.0	None		0
Ħ	PHG 4000	A/A %		2	None		0	Trik-HCI	Мш	20	8.5	Sodium Chloride	ММ	500
8	PI3C3 4000	AMA Y			None		0	None		•		None		0
ŧ	PEG 5000 MIME	VW %			None			Sodium Citrate	Mm	<u>6</u>	5,6	Magnesium Acetate	Mu	001
Ş i		NW S		•	None			None		- 6		Magnesium Sultate		8
3 5	DEC KNO	2010	÷ř		Kune Mone	ШW		Ins-nut Sedium Sussingle		2 5	Ċ, Ĉ	Zine Chionae None	IN THE	20
7 4	DOUG BOT	Now M			CIDIM	0% varia	, <u>5</u>	Petessium dihydrosen Phesehate	A Mu	8 8	3	None		
1	PEG 10000	Viw X		1 010	None		ja	Sodium Citrate	Wu	<u>8</u>	5.6	Magnesium Acctate	М.Ш	001
\$	Ammenium Sulfate	Mm	1001		None		00"0	Sodium / Potassium Phosphate	Mm	100	7.5	None		0
4	Ammonium Sulfate	Mm	10001		None		00"0	MI:S Sodium Sait	МШ	50	6,5	Zine Accuate	M.m.	001
4	Ammonium Sulfate	Ma	1400		2-Propenol	V/W %	4,00	None		D		Ammonium Acetate	Mu	100

No.	Precipitant 1	Ĭ	Conc.	Precipitant 2	Unit	Conc.	Buffer	Unit	Conc.	Hd	Additive	Unit	Conc.	
49	Ammonium Sulfato	шM	2000,0	Nonc		00'0	None		0		None		0	
8	Amponium Sulfate	Mm	2000,0	None		00'0	Sodium Citrate	Mm	001	5,6	None		0	
5	Armonium Sulfate	Mm	2500,0	PEG 5000 MME	V/W 0%	2,00	HEPES Sodium Salt	Mm	100	7.5	None		0	
62	Amnonium Sulfate	ШШ	3000.0	None		00.0	None		0		None		0	
53	Amponium Sulfate	Me	3500.0	None		00.0	None		0		None		0	
5	Ammonium Sulfate	шM	3500,0	None		00'0	Sodium / Potassium Phosphate	Mm	50	7,5	Sodium Chloride	Mm	250	
65	CIGM	A/M %	25.0	None		00'0	Bis-Tris	Мm	001	7,0	None		0	
66	CIAM	VW %	30,0	Nonc		00'0	Sodium Citrate	Мш	300	5,6	None		0	
67	Trictivione Giycol	NW %	25,0	Nonc		00'0	Glycine	mM	100		Ammonium Sulfate	Mm	100	
89	2-Propenal	V/W %	30,06	(Discerol	∿/w %	20	Sodium Acetate	Mm	100	4,6	Calcium Chloride	Mm	200	
69	Polassium Phosphate	Mm	1000.0	None		00.0	None		0		Dioxane	V/W %	-	
60	Sodium Citrate	Mm	1000.0	None		000	None		0		None		0	
61	Sodium Citrate	m	0,0001	Nonc		00'0	None		0	5,6	Lithium Chloride	Mm	500	
6 2	Sodium Chlorida	шM	1500,0	None		00'0	Sodium Acetate	Mm	100	4.6	None		0	
23	Potassium Phosphate	шM	1500,0	None		00'0	None		0	7,0	None		0	
3	Litthum Sulfate	αnM	1500,0	Nonc		00°0	IttePtes Sodium Salt	Mur	100	7,5	None		0	
85	Sodium Chloride	Mm	2000.0	None		00"0	None		00'0		Sodium Formate	Mm	100	
99	Neme		0,00	Ammenium Sulfate	шМ	2000,00	Na acctatc	Mm	100,00	4,6	None		0	
67	Neme		0,00	Autmonium Sulfate	МШ	1000,00	ADA	Mm	100,00	6,5	None		0	
89	None		00'0	Ammonium Sulfate	МШ	2000,00	Tris HCI	Man	100,00	8,6	None		0	
69	Nane		00'0	Magnesium sulphate	Μш	1000,000	Na acetate	Мш	100,00	4,6	None		0	
2	None		00'0	Magnesium sulphate	ММ	1000,00	Sodium Citrate	mM	100,00	5,6	None		0	
7	Lithium Sulphate	Мm	100,001	Magnesium sulphate	Мm	1000,00	VDV	Man	100,00	6,5	None		0	
72	Nann		000	dl-Ammonlum hydrogen phosphate	ШМ	1000,00	Ammonium dihydrogen Phosphate	Mm	100,00	6,5	None		0	
2	Nette		0.00	Potassium phosphate	ММ	500.00	Ammonium Sulfate	Mm	100.00	7.5	None		0	
74	Lithium sulphate	Me	100,00	Ammenium dihydrogen phosphate	Мш	1000,00	Na acctate	Mm	100,00	4.6	Sodium phosphate	Mm	500,00	
75	Name		00.0	Ammonium dihydrogen phosphate	ММ	1000,00	Sodium Citrato	Mm	100.00	5.6	None		0	
76	None		000	Ammonium dibydrogen phosphate	Жш	2000.00	Tris HCl	Mm	100.00	8.6	None		0	
17	Note		000	None	Min	00'0	Sodium formate	Mm	2000.00	4.6	None		0	
78	None		00.00	Sodium formate	M.M.	4000.00	None	ШM	100.00	-	None		0	
61	Name		0.00	Sodium acciate	M	1400.00	MHS	Mm	100.00	8.5	None		0	
80	Netto		000	Sodium citrate	ММ	1400.00	LIEPES Sodium Salt	Mm	100.00	7.5	None		0	
<u>9</u>	None		0.0	Potasehum sodium tartrate	ММ	1000,00	III@PES Sodium Salt	Mm	100,00	7.5	None		0	
82	Nanc		0,0	Ammonium Sulfate	шМ	2000,00	111:PPS Sodium Salt	Mm	100,00	7.5	PEG 400	viv	2,00	
83	Magnesium Chloride	шM	100,00	007 DEd	V/V	30,00	Na acetate	Man	100,00	4,6	None		0	
2	sodium chicride	шM	100,00	PEG 400	A/A	30,00	Sodium Citrate	Μœ	100,00	6,6	None		0	
65	Luhum sulphup	ШШ	100,00	PEO 400	v/v	30,00	Sodium Citrate	Μш	100,00	5,6	None		0	
98	Lithium sulphate	Min	300.00	PEG 400	V/V	30,00	VDA	Мш	100,00	6,5	None		0	
87	Magnesium Chloride	Mm	100,00	PE:O 400	VIV	30,00	LIEPES Sodium Salt	Мш	100,00	7,5	None		0	
88	Ammonium Sulfato	Mm	100,00	P1:0 400	V/V	30,00	[III:PF:S Sodium Salt	Мm	100,00	7,5	None		0	
88	Sodium citum	шM	200,00	P1:G 400	1/A	30,00	Tris HC1	Мш	100,00	8,5	None		0	
00	Zinc acctato	MIN	00,001	PEC 4000	N/M	12,00	Na acctate	Мm	100,00	4,6	None		0	
2	Ammonium Sulfate	mM	200,00	PEC 4000	N/M	12,00	Na acetate	Мш	100,00	4,6	None		0	
82	Lithium sulphate	шM	100,001	PEG 4000	v/w	12,00	Sodium Citrate	ШM	100,00	5,6	None		0	
83	sodium chiaride	Ш	100,00	PEG 4000	n/m	12,D0	Sodium Citrate	Мш	100,00	5,6	None		0	
3	Ammonium Sulface	M	100.00	PEC 4000	∧/m	12,00	IIEPES Sodium Salt	Mm	100,00	7,5	None		0	
5	Magnesium Chloride	Мш	200,00	PEC 4000	~/~	12,00	Tris HCI	Мm	100,00	7,5	None		0	
98	Lithium sulphate	Mm	200,00	PBC 4000	∧/m	12,00	Tris HCI	Mm	100,00	8,5	None		0	

Ň.	Precipitant 1	Unit	Conc.	Precipitant 2	Unit	Conc.	Buffer	Unit	Conc.	Hq	Additive	Unit	Conc.
25	Amenonium Sulfate	ШM	200,00	PEG 4000	N/M	12,00	None	Ш	100,00	8,5	Nonc		0
88	sodium chloride	ШM	100,00	PEG 6000	Μ	12.00	Ne acctate	m:M	100.00	4,6	Nonc		0
68	Magnesiun: Chloride	МM	100,00	PEG 6000	N/M	12,00	Na acctate	n:M	100,00	4,B	None		c
8	Magnesium Chloride	Мш	100,00	0000 FFG	N/M	12,00	ADA	n:M	100,00	6,5	None		0
101	di-Ammonium hydrogen phosphate	Мп	100,00	PFIC: 6000	v/w	12,00	Tris IICI	шM	100,00	8,6	None		0
102	Lithium sulphate	Мп	1000,000	EG 8000	v/w	2,00	None	ш:М	100,00		None		0
103	Sodium acctate	Мш	200,00	PEG 8000	N/M	10.00	MES	n:M	100,00	6,5	Nonc		0
ģ	Zine acetate	Μш	200,00	PEC 8000	NW	10,00	MES	M:N	100,00	ពុភ	None		C
105	Calcium acetate	ШM	200,00	PEG \$000	NΜ	10,00	MES	n:M	100,00	6,5	None		0
106	None	Мш	0,00	PHG 8000	A/M	10,00	Tris HCI	n:M	100,00	8,5	None		0
107	Ammonium Sulfate	Мш	200,00	PEG 8000	N/M	10,00	None	шM	100,00		None		0
108	Lithium sulphate	Мп	500,00	PF/G 8000	N/M	10,00	None	ш:М	100,00		Nonc		0
109	None	Mn	00,0	Ammonium Sulfate	Mn	2500,00	Sodium Citrate	ш:М	100,00	6'B	None		0
110	sodium chloride	Μш	100,001	PEG 400	VV	30,00	Sodium Citrate	W.Ш	100,00	3,5	L l'rium sulphale	Wш	100,00
111	sodium chloride	ШM	100,00	PEG 400	v/v	30,00	Sodium Citrate	n:M	100,00	5,5	Nanc		C,00
112	sodium chloride	шM	100,001	PEG 400	v/v	30,00	Sodium Citrate	pr:M	100,00	5,6	L trium sulphate	ШM	100,00
113	sodium chloride	Mm	100,00	PEG 400	v/v	30,00	Sodium Citrate	n:M	100,00	6,5	Magnesium Chloride	Mm	100,00
114	None	Мп	00*0	Ammonium Sulfate	Mut	2500.00	MES	ш:М	100.00	C,5	None		00'0
115	None	Μш	0,00	PEG 400	V/V	30,00	MES	Щ	100,00	6'2	None		00'0
116	sodium chloride	Мп	100,00	PI:G 400	V/V	30,00	MES	ш:М	100,00	6,5	Nane		0,00
117	sodium chloride	Мш	100,00	PEG 400	v/v	30,00	MES	M:N	100'001	6,5	L trium sulphate	МШ	100,00
118	sodium chloride	Мш	100,001	PEG 400	V/V	30,00	MES	n:M	100,00	6,5	Magnosium Chlorido	Мm	100,00
119	None	Μш	000	PEG 400	۸/۸	30.00	MOPS	n:M	100,00	7,0	Nonc		00'0
120	sodium chloride	Мш	100,00	PEG 400	v/v	30,00	MOPS	n:M	100,00	7,N	Nonc		00'0
121	None	Мm	0,00	PEG 400	v/v	30,00	11HPHS Sodium Salt	n:M	100,00	2'2	None		00'0
122	sodium chloride	Mn	100,00	PI:G 400	^/	30,00	III:PI:S Sodium Szlt	шM	100,00	7,6	None		00'0
123	sodium chloride	Mu	100,00	PI:G 400	۸/۸	30,00	III:PI:S Sodium Salt	шM	100,00	7,6	L trium sulphate	Mm	100.00
124	sodium chloride	Мш	100,00	PEG 400	V/V	30,00	HEPES Sodium Selt	Ш	100,00	7,5	Magnesium Chloride	МШ	100,00
125	None	Μш	0,00	Lithium sulphate		1500,00	Tris HCI	n:M	100,00	8'2	None		00'0
126	sodium chloride	МM	100.00	PEG 400	V/V	30,00	Tris HCI	шM	100,00	8' 5	None		00,0
127	sodium chloride	Мm	100,00	PEG 400	v/v	30,00	Tris HCI	n:M	100,00	e, B	L trium sulphate	ШM	100,00
128	sodium chloride	Мш	100,00	PEG 400	٨/٨	30,00	Tris HCI	шM	100,00	8'E	Magnesium Chloride	Мm	100,00
6 2 1 28	sodium chloride	Мш	100,00	PEG 400	٧/٧	30,00	CAPSO	n:M	100,00	6,5	L trium sulphate	Mm	100,00
130	sodium chloridc	Мп	100,00	PEG 400	٨/٨	30.00	CAPSO	п:М	100.00	6.5	Magnesium Chloride	Mm	100,00
131	None	МШ	0,00	Sodium phosphate		1500,00	Sodium Citrate	W.Ш	100,00	E,5	None		00'0
132	sodium chloride	Mm	100,00	PEG 4000	N/M	12,00	Sodium Citrate	M:n	100,00	3,5	Miagna slum Chloride	Мш	100,00
133	sodium chloride	ШM	100,001	PEG 4000	v/w	12,00	Na acelate	n:M	100,00	4,6	L trium sulphate	МШ	100,00
34	sodium chloride	ШM	100,00	PEG 4000	A/M	12,00	Sodium Citrate	n:M	100,00	5,5	Magnesium Chloride	ШM	100,00
135	None	Mm	00*0	Sodium phosphate	Mm	1500.00	MES	n:M	100.00	e,5	None		00'0
136	sodium chloride	МM	100,00	PEG 4000	N/N	12,00	MES	Ш	100,00	6,5	L liium sulphale	Mm	100,00
137	sodium chloride	Мп	100,00	PI3C 4000	A/M	12,00	MOPS	ш	100,00	0'Z	Nane		0,00
138	Nane	Mii	00'0	PFiG 4000	V/W	12,00	1114PISS Sodium Salt	шM	100,00	7,6	None		00'0
139	sodium chloride	МШ	100,001	PEG 4000	Y/W	12,00	HEPES Sodium Salt	ШW	100,00	7,6	Magnosium Chlorido	M.m	100,00
140	None	МШ	0000	Potassium phosphate	ШM	1500,00	Tris HCI	n:M	100,00	8,5	Nore		00'0
141	sodium chloride	Мm	100,00	PEG 4000	N/M	12,00	Tris HCI	n:M	100,00	B,5	L trium sulphate	Мm	100,00
142	sodium chloride	Мл	100,00	PH:G 4000	N/M	12,GD	CAPSO	n:M	100,00	5' 2	Magnasium Chloride	Мт	100,001
143	sodium chloride	Mm	100.0	CIAIM	N/Nº%	12	sodium acetate	n:M	100,00	4,6	None		00'0
144	sodium chloride	Mu	0'001	iso-propanol	N/Nº/2	12	sodium acctate	ш:М	100,00	4,6	None		00'0

No.	Precipitant 1	Unit	Conc.	Precipitant 2	<u>C</u> nit	Conc.	Buffer	Unit	Conc.	Ŧ	Additive		Conc.
145	None	Μш	0.0	Antmortium Sulfate	Мш	TOCO	suchturn auptaite	ηcΜ	100 00	4,8	None		0'00
146	None	Μш	0.0	Magnesium sulphate	Me	toco	socient acretato	щN	100 00	6 . †	None		0,00
147	Magnesium Chloride	Мш	100,0	PH:G 400	yhuvy.	18	socjiurp acoteto	щ	100 00	4,8	None		0,00
148	sodium chloride	Мm	100,0	PI:G 400	Nv%	18	Sodhum Citrate	ШШ	100 00	40 90	None		0'00
149	Sodium Citrate	Мm	100,0	isto-propertol	Nv%	10	Sodhum Climate	ШШ	100 00	9 Ş	Nkine		0,00
150	sodium chloride	МШ	100.0	CIAIM	1/296	5	Sodium Citrate	Man	100 00	40 107	None		0,00
151	lithium sulfate	Мш	100.0	PEC 6000	N/MN	12	Sodium Citrate	щ	100 00	400 943	Nane		0'00
152	Magnesium Chloride	Мт	100.0	CUIM	A/A96	4	Sodium Citrate	шM	100 00	8 2	None		0'00
153	None	Мт	0.0	sodium chloride	Мm	100	Sodium Citrate	шŅ	100 00	8 g	None		0,00
154	lithium sulfate	Мш	100,0	PH:G 400	Nhw∕v	+	Sodium Citrate	n-M	100 00	5.0	None		0,00
155	None	Мт	0'0	CIMM	Mav/v	12	AUA	nchí	100 00	6.5	None		0,00
156	lithium sulfate	Мш	300,0	PN:03 400	N/N%;	4	ADA	шM	100 00	9 P	Nune		0,00
167	Ammonium Sulfate	ММ	100,0	di-sodium hydrogen phosphate	Мш	500	HEPES Sodium Salt	шM	100 00	2.5	ci-potassium hydrogen ohosphate	Mar	503
168	Magnesium Chloride	ММ	100,0	PEG 400	7/A96	9 <u>1</u>	HEPES Sodium Salt	n:M	100 00	7.5	Nanc		0'00
159	Annonium Sulfate	Мт	100.0	PEG 400	2/296	18	HEPES Sodium Sal:	щ	100 00	7.5	None		0'00
160	Sodium Citrate	Мт	100.0	CUM	2/296	51	HEPES Sodium Sal:	щ	100 00	7,5	None		0,00
161	None	Мm	0'0	Spelium Citrate	Wш	1000	IIHPHS Sodium Sal:	шM	100 00	3.5	None		0,00
162	magnesium sulfate	Мm	600,0	PH:G 400	V/N96	4	IIHPHS Sodium Sal:	шM	100 00	3.5	None		0'00
163	magnesium sulfate	Мп	600,0	CIAM	N/N%	4	HIPPES Sodium Sal:	Ма	100 00	10	None		0'00
164	lithium sulfate	УE	100,0	potassium soditam tartrate tetrahydrate	шM	100	III.PI:S Sodium Sal:	шM	100 00	9 1-	None		0,00
165	lithium sulfate	Мт	100,0	CIAIM	1/296	5	Tris-HCl	Man	100 00	40. 00	None		0,00
166	di-ammonium hydroger.	Мт	100,0	di-sodium hydrogen phosphate	МШ	500	Tris-HCl	шM	100 00	40 97	cl⊧potas∎ium hydrogen ohosphats	Mm	202
167	None	Мт	0.0	sodium acclate	МM	100	Tris-HCI	юM	100 00	40 47	None		0,00
168	None	Мш	0.0	sodium chloride	m.M	00	Tria-HC1	n-M	100 00	19. 19.	None		0,00
169	potassium sodium tartrate	Мm	100,0	magnesium sulfate hydrate	ММ	4 00	Tria-HCI	n-M	100 00	10. 10.	None		0,00
170	None	Мп	0.0	lithium sulfate menohydrate	шM	200		ц.М.	100 00	10 10	Nune		0'CG
171	None	Мш	0'0	Ammerium Sulfate	шM	500	Tris-HCI	n-M	100 00	10 10	Nune		0,00
172	Sodium Citrate	Мп	100.0	PEG 400	9/ev/v	ŝ	Tris-HCI	ш	100 00	ю. Ф	Naac		0,00
173	PEG 400	1/00/j	18.00	Ammentium Sulfate	Мш	100.00	HEPES Sodium Salt	шM	100 00	5. L	Naac		0,00
174	MPD	V'2V'2	12.00	Net-styleride	Me	100.00	TRISHCI	ηcM	100 00	8.0	None		0,00
175	PEG 400	A;/A9/j	20,G0	Calcian apotato	Wш	100.00	HEPES Sodium Sait	щ	100 00	7.0	None		0,00
176	PEG 3350	Vaw/v	15,00	Amanulum Sulfate	ШM	100.001	HEPES Sodium Salt	щ	100 00	7.5	None		0'00
177	PEG 4000	V/wo%	15,00	Calcium chieride	шM	100.001	MES	шM	100 00	å 0	None		0'00
178	PEG 6000	Mow/v	10,00	sodium chloride	шM	100.00	HEPES Sodium Salt	шM	100 00	70	None		0,00
179	PEG 8000	V/w0%	12.60	Ammanium Sulfate	Мш	100.00	HEPES Sodium Salt	Man	100 00	10. P-	Nana		0,00
180	None		0.00	Ammonium Sulfate	Me	1600.00	Sodium Citrate	M:n	100 00	40) 407	None		0'00
181	PEG 3350	Vww%	20,00	sodium chloride	шM	100.00	TRISHCI	шŅ	100 00	8.0	None		0,00
182	PEC 4000	V/WD%	15,C0	None	ММ	00'0	HEPES Sodium Salt	шM	100 00	0.7	2-Propeno	27.2	10,00
183	PEG 6000	Viwb?	10,00	Calciam acetate	m.M	100.00	HEPES Sodium Salt	n-M	100 00	19. 1-	Nane		0,00
184	PEG 8000	∧/m‰	12,00	None	ММ	00'0	TRISHCI	ц.М.	100 00	80	Nune		0,00
185	Nonc		0,00	Ammonium Sulfate	шM	1600,00	Sodium cacoclyiste	ч	100 00	10 10	Nune		0,00
186	PEG 1000	v/wo%	20,00	None	Mu	00.0	MES	шN	100 00	n U	Nanc		0,00
187	PEG 3350	V/wb%	20,G0	Magnesium Chloride	Мш	100.001	MOPS	шN	100 00	7,0	Naac		0 ⁰ 0
188	PEC 4000	Viwp??	15,00	sodium chlarido	Me	100.001	TRISHCI	щ	100 00	8.0	None		0,00
189	PEG 6000	V/Wp%	15,00	Хоне	Мm	0,00	TRISHCI	ηcΜ	100 00	8,0	None		0,00
190	PEG 8000	V/wp/6	12,00	Magnesium accepto	ШM	100.001	TRISHCI	шM	100 00	â,5	None		0,00
191	None		0.0	Armannium Sulfate	Wш	1800,00	HEPES Sodium Salt	шM	100 00	7.5	None		0'00
192	2-Propanol	A/A9/i	12.00	Narchlorido	щM	100.00	N &-acctate	шM	120 00	4 8	None		0,00

4.2 Nachgewiesene Peptidfragmente von tryptisch verdautem Waa A_{AAE}

Die aufgeführten Sequenzen beinhalten den N-terminalen HisTag. Die eigentliche Waa A_{AAE} -Sequenz beginnt bei Aminosäurerest 22. Nachgewiesene Peptidfragmente sind in rot hervorgehoben.

Vollänge

10	20	30	40	50	60	70	80	90	100	110	120
мсниннини	HHSSGHIEGR	HMQFEVLKRF	FPKESLKNCK	GALWVHTASI	GEFNTFLPIL	KELKREHRIL	LTYFSPRARE	YLKTKSDFYD	CLHPLPLDNP	FSVKRFEELS	KPKAL IVVER
130	140	150	160	170	180	190	200	210	220	230	240
EFWPSLIIFT	KVPKILVNAY	AKGSLIEKIL	SKKFDLIIMR	TQEDVERFRT	FGAKRVFSCG	NLKFICQKGK	GIKLKGEFIV	AGSINTGEVE	IILKAFKEIK	KTYSSLKLIL	VPRHIENAKI
250	260	270	280	290	300	310	320	330	340	350	3 60
250 FEKKARDFGF	260 KTSFFENLEG	270 DVILVDRFGI	280 LKELYPVGKI	290 AIVGGTFVNI	300 GGHNLLEPTC	310 WGIPVIYGPY	320 THKVNDLKEF	330 LEKEGAGFEV	340 K <mark>NET</mark> ELVTKL	350 TELLSVKKEI	360 KVEEKSREIK
250 FEKKARDFGF 370	260 KTSFFENLEG 380	270 DVILVDRFGI	280 LKELYPVGKI	290 AIVGGTFVNI	300 GGHNLLEPTC	310 WGIPVIYGPY	320 THKVNDLKEF	330 Lekegagfev	340 K <mark>NET</mark> ELVTKL	350 TELLSVKKEI	360 KVEEKSREIK

Bande I

10	20	30	40	50	60	70	80	90	100	110	120
мснининии	HHSSGHIEGR	HMQFEVLKRF	FPKESLKNCK	GALUVHTASI	GEFNTFLPIL	KELKREHRIL	LTYFSPRARE	YLKTKSDFYD	CLHPLPLDNP	FSVKRFEELS	KPKAL IVVER
130	140	150	160	170	180	190	200	210	220	230	240
EFWPSLIIFT	KVPKILVNAY	AKGSLIEKIL	SKKFDLIIMR	TQEDVEKFKT	FGAKRVFSCG	NLKFICQKGK	GIKLKGEFIV	AGSIHTGEVE	IILKAFKEIK	KTYSSLKLIL	VPRHIENAKI
250	260	270	280	290	300	310	320	330	340	350	3 60
250 FEKKARDFGF	260 KTSFFENLEG	270 DVILVDRFGI	280 LKELYPVGKI	290 AIVGGTFVNI	300 GGHNLLEPTC	310 WGIPVIYGPY	320 THKVNDLKEF	330 LEKEGAGFEV	340 KNETELVTKL	350 TELLSVKKEI	360 KVEEKSREIK
250 FEKKARDFGF	260 KTSFFENLEG	270 DVILVDRFGI	280 LKELYPVGKI	290 AIVGGTFVNI	300 GGHNLLEPTC	310 WGIPVIYGPY	320 THKVNDLKEF	330 LEKEGAGFEV	340 K <mark>NET</mark> ELVTKL	350 TELLSVKKEI	360 KVEEKSREIK
250 FEKKARDFGF 370	260 KTSFFENLEG 380	270 DVILVDRFGI	280 LKELYPVGKI	290 AIVGGTFVNI	300 GGHNLLEPTC	310 WGIPVIYGPY	320 THKVNDLKEF	330 Lekegagfev	340 K <mark>NET</mark> ELVTKL	350 TELLSVKKEI	360 KVEEKSREIK

Bande II

10	20	30	40	50	60	70	80	90	100	110	120
nghhhhhhhhh	HHSSGHIEGR	HMQFEVLKRF	FPKESLKNCK	GALWVHTASI	GEFNTFLPIL	KELKREHRIL	LTYFSPRARE	YLKTKSDFYD	CLHPLPLDNP	FSVKRFEELS	KPKAL IVVER
130	140	150	160	170	180	190	200	210	220	230	240
EFUPSLIIFT	KVPKILVNAY	AKGSLIEKIL	SKKFDLIIMR	TQEDVEKFKT	FGAKRVFSCG	NLKFICQKGK	GIKLKGEFIV	AGSIHTGEVE	IILKAFKEIK	KTYSSLKLIL	VPRHIENAKI
			· · · · · ·				L				Ľ
250	2.60		200	200	200	310	220	220	340	3.50	3.60
200	200	270	200	290	300	310	320	330	540	330	500
FEKKARDFGF	KTSFFENLEG	DVILVDRFGI	LKELYPVGKI	AIVGGTFVNI	GGHNLLEPTC	UGIPVIYGPY	THEVNDLEEF	LEKEGAGFEV	KNETELVTKL	TELLSVKKEI	KVEEKSREIK
FEKKARDFGF	KTSFFENLEG	270 DVILVDRFGI	LKELYPVGKI	AIVGGTFVNI	GGHNLLEPTC	UGIPVIYGPY	THEVNDLEEF	LEKEGAGFEV	KNETELVTKL	TELLSVKKEI	KVEEKSREIK
FEKKARDFGF	KTSFFENLEG 380	DVILVDRFGI	LKELYPVGKI	AIVGGTFVNI	GGHNLLEPTC	VGIPVIYGPY	THKVNDLKEF	LEKEGAGFEV	KNETELVTKL	TELLSVKKEI	KVEEKSREIK

Bande III

10	20	30	40	50	60	70	80	90	100	110	120
мснининии	HHSSGHIEGR	HMQFEVLKRF	FPKESLKNCK	GALWVHTASI	GEFNTFLPIL	KELKREHRIL	LTYFSPRARE	YLKTKSDFYD	CLHPLPLDNP	FSVKRFEELS	KPKALIVVER
130	140	150	160	170	180	190	200	210	220	230	240
EFWPSLIIFT	KVPKILVNAY	AKGSLIEKIL	SKKFDLIIMR	TQEDVEKFKT	FGAKRVFSCG	NLKFICQKGK	GIKLKGEFIV	AGSIHTGEVE	IILKAFKEIK	KTYSSLKLIL	VPRHIENAKI
							r				
250	2 60	270	280	290	300	310	320	330	340	350	3 60
250 FEKKARDFGF	260 KTSFFENLEG	270 DVILVDRFGI	280 LKELYPVGKI	290 AIVGGTFVNI	300 GGHNLLEPTC	310 WGIPVIYGPY	320 THKVNDLKEF	330 Lekegagfev	340 KNETELVTKL	350 TELLSVKKEI	360 KVEEKSREIK
250 FEKKARDFGF	260 KTSFFENLEG	270 DVILVDRFGI	280 LKELYPVGKI	290 AIVGGTFVNI	300 GGHNLLEPTC	310 WGIPVIYGPY	320 THKVNDLKEF	330 Lekegagfev	340 K <mark>NET</mark> ELVTKL	350 TELLSVKKEI	360 KVEEKSREIK
250 FEKKARDFGF	260 KTSFFENLEG 380	270 DVILVDRFGI	280 LKELYPVGKI	290 AIVGGTFVNI	300 GGHNLLEPTC	310 WGIPVIYGPY	320 THKVNDLKEF	330 Lekegagfev	340 K <mark>NET</mark> ELVTKL	350 TELLSVKKEI	360 KVEEKSREIK

Bande IV

10	20	30	40	50	60	70	80	90	100	110	120
nghhhhhhhh	HHSSGHIEGR	HMQFEVLKRF	FPKESLKNCK	GALWVHTASI	GEFNTFLPIL	KELKREHRIL	LTYFSPRARE	YLKTKSDFYD	CLHPLPLDNP	FSVKRFEELS	KPKAL IVVER
130	140	150	160	170	180	190	200	210	220	230	240
EFWPSLIIFT	KVPKILVNAY	AKGSLIEKIL	SKKFDLIIMR	TQEDVEKFKT	FGAKRVFSCG	NLKFICQKGK	GIKLKGEFIV	AGSIHTGEVE	IILKAFKEIK	KTYSSLKLIL	VPRHIENAKI
250	2 60	270	280	290	300	310	320	330	340	350	360
FEKKARDFGF	KTSFFENLEG	DVILVDRFGI	LKELYPVGKI	AIVGGTFVNI	GGHNLLEPTC	WGIPVIYGPY	THKVNDLKEF	LEKEGAGFEV	K <mark>NET</mark> ELVTKL	TELLSVKKEI	KVEEKSREIK
370	380										
CONT DUI DEE	LDCI										

Bande V

10	20	30	40	50	60	70	80	90	100	110	120
nghhhhhhhhh	HHSSGHIEGR	HNQFEVLKRF	FPKESLKNCK	GALWVHTASI	GEFNTFLPIL	KELKREHRIL	LTYFSPRARE	YLKTKSDFYD	CLHPLPLDNP	FSVKRFEELS	KPKAL IVVER
130	140	150	160	170	180	190	200	210	220	230	240
EFWPSLIIFT	KVPKILVNAY	AKGSLIEKIL	SKKFDLIIMR	TQEDVEKFKT	FGAKRVFSCG	NLKF ICQKGK	GIKLKGEFIV	AGSIHTGEVE	IILKAFKEIK	KTYSSLKLIL	VPR HIENAKI
250	260	270	280	290	300	310	320	330	340	350	3 60
250 FEKKARDFGF	260 KTSFFENLEG	270 DVILVDRFGI	280 LKELYPVGKI	290 AIVGGTFVNI	300 GGHNLLEPTC	310 WGIPVIYGPY	320 THKVNDLKEF	330 LEKEGAGFEV	340 K <mark>NET</mark> ELVTKL	350 TELLSVKKEI	360 KVEEKSREIK
250 FEKKARDFGF	260 KTSFFENLEG	270 DVILVDRFGI	280 LKELYPVGKI	290 AIVGGTFVNI	300 GGHNLLEPTC	310 WGIPVIYGPY	320 THKVNDLKEF	330 LEKEGAGFEV	340 KNETELVTKL	350 TELLSVKKEI	360 KVEEKSREIK
250 FEKKARDFGF 370	260 KTSFFENLEG 380	270 DVILVDRFGI	280 LKELYPVGKI	290 AIVGGTFVNI	300 GGHNLLEPTC	310 WGIPVIYGPY	320 THKVNDLKEF	330 LEKEGAGFEV	340 K <mark>NET</mark> ELVTKL	350 TELLSVKKEI	360 KVEEKSREIK
250 FEKKARDFGF 370 GCYLEKLREF	260 KTSFFENLEG 380 LRGL	270 DVILVDRFGI	280 LKELYPVGKI	290 AIVGGTFVNI	300 GGHNLLEPTC	310 WGIPVIYGPY	320 THKVNDLKEF	330 LEKEGAGFEV	340 K <mark>NET</mark> ELVTKL	350 TELLSVKKEI	360 KVEEKSREIK

Bande VI

	10	20	30	40	50	60	70	80	90	100	110	120
MGHHHHHH	HH H	HSSGHIEGR	HMQFEVLKRF	FPKESLKNCK	GALWVHTASI	GEFNTFLPIL	KELKREHR IL	LTYFSPRARE	YLKTKSDFYD	CLHPLPLDNP	FSVKRFEELS	KPKAL IVVER
13	30	140	150	160	170	180	190	200	210	220	230	240
EFWPSLII	FT K	VPKILVNAY	AKGSLIEKIL	SKKFDLIIMR	TQEDVEKFKT	FGAKRVFSCG	NLKFICQKGK	GIKLKGEFIV	AGSIHTGEVE	IILKAFKEIK	KTYSSLKLIL	VPRHIENAKI
23	50	260	270	280	290	300	310	320	330	340	350	360
FEKKARDF	GF K	TSFFENLEG	DVILVDRFGI	LKELYPVGKI	AIVGGTFVNI	GGHNLLEPTC	WGIPVIYGPY	THEVNDLEEF	LEKEGAGFEV	K <mark>NET</mark> ELVTKL	TELLSVKKEI	KVEEKSREIK
31	70	380										
GCYLEKLR	EF L	RGL										

4.3 Daten- und Verfeinerungsstatistik

Die nachfolgenden Seiten enthalten Angaben über alle gesammelten Datensätze. Falls vorhanden sind zusätzlich die Ergebnisse der Strukturverfeinerung angegeben. Werte in Klammern beziehen sich auf den höchsten Auflösungsbereich. Folgende Angaben werden genauer definiert:

•
$$R_{merge} = \frac{\sum |I_{obs} - I_{avg}|}{\sum I_{avg}}$$

• R = $\frac{\sum [|F_{obs}| - |F_{calc}|]}{\sum |F_{obs}|}$, wobei R_{free} für 5% der Reflexionen berechnet wird, die zufällig

ausgewählt und nicht für die Verfeinerung der Struktur verwendet wurden. Die restlichen Reflexionen wurden dann zur Berechnung von R_{work} verwendet.

• anomaler Korrelationskoeffizient =
$$\frac{\sum (\Delta I_{hkl}^{a} - \overline{\Delta I_{hkl}}^{a}) * (\Delta I_{hkl}^{b} - \overline{\Delta I_{hkl}}^{b})}{\sqrt{\sum (\Delta I_{hkl}^{a} - \overline{\Delta I_{hkl}}^{a})^{2} * \sum (\Delta I_{hkl}^{b} - \overline{\Delta I_{hkl}}^{b})^{2}}}, \text{ wobei } \Delta I_{hkl}$$

für die anomalen Differenzen und $\overline{\Delta I_{hkl}}$ für den empirischen Mittelwert der anomalen Differenzen stehen. Die Buchstaben a und b symbolisieren die verschiedenen Wellenlängen (z. pk und infl), die für die Datensammlung genutzt wurden. Bezieht sich der anomale Korrelationskoeffizient nur auf einen Datensatz, so erfolgte die Aufteilung in zwei zufällig gewählte Halbdatensätze. In diesem Fall stehen a und b für die Halbdatensätze.

Datensatz	Nativ-1	Nativ-2	CMP	Xe	K ₃ Ii	$\cdot CI_6$	$HgCl_2$	(UO2)(CH3COO)2
Wellenlänge (Å)	0,80800	1,25500	1,03790	0,80800	1,10584 (infl)	1,10584 (nk)	0,97000	1,03790
Raumgruppe	$P2_1$	$P2_1$	$P2_1$	$P2_1$	P21	P21	$P2_1$	P21
Auflösung (Å)	3,20	2,00	2,42	3,22	3,50	3,08	3,20	3,22
Einheitszellen-Parameter(Å, °)	a: 132,47	a: 132,42	a: 131,77	a: 132,39	a: 132,65	a: 132,62	a: 132,98	a: 132,09
	b: 45,33	b: 45,59	b: 44,67	b: 45,16	b: 44,39	b: 44,87	b: 43,48	b: 44,53
	c: 143,87	c: 144,00	c: 143,64	c: 143,30	c: 143,73	c: 144,31	c: 143,24	c: 144,13
	β: 97,19	β: 97,29	β: 97,15	β: 97,05	β: 97,43	β: 97,27	β: 97,11	β: 97,60
I/σ	9,5(3,0)	14,4 (2,4)	21,3 (6,8)	18,5 (4,3)	15,8 (5,6)	20,5 (5,3)	12,2 (3,0)	14,7 (2,7)
Vollständigkeit (%)	99,8 (99,3)	99,6 (99,1)	97,2 (88,3)	98,3 (95,7)	99,1 (95,8)	93,9 (58,8)	76,8 (70,8)	93,8 (62,8)
Multiplizität	3,2(3,0)	3,7(3,6)	3,6(3,0)	3,1(2,8)	5,5(4,3)	6,8(5,5)	6,2 (6,4)	3.9(3.1)
R_{merge} (%)	12,3 (37,3)	5,9 (44,1)	4,3 (13,7)	5,2 (21,8)	9,7 (17,0)	8,4 (25,3)	14,0 (57,7)	7,8 (45,8)
anomale Vollständigkeit (%)					95,2 (80,4)	92,7 (52,4)	72,0 (66,6)	87,5 (43,9)
anomale Multiplizität					3,0(2,5)	3,6(3,1)	3,4(3,5)	2,1 (1,9)
anomaler					54	8,	1 1	15
Korrelationskoeffizient (%)					(infl	-pk)	-1,4	<i>د</i> ,1-
R_{work} (%)		21,0	21,5					-
R _{free} (%)		25,7	27,8					-
r.m.s.d.								
Bindungslängen (Å)		0,008	0,020				-	-
Bindungswinkel (°)		1,188	1,878				-	-

Datensatz		K_2PtI_6		$KAuCl_4$	Ta ₆	Br ₁₂	5-Hg-CTP	$(CH_3)_3PbCl$	_
Wellenlänge (Å)	1,07159 (infl)	1,07123	1,06662 (hrem)	0,96000	1,25465 (infl)	1,25413 (mb)	0,99480	1,03790	
Quimerinne	(1111) D7.	D7.	D7.	D7.	D7.	D7.	D7.	D7.	
Aufläung (Å)	3 30	3 30	3 30	3 50	3 00	3 00	3 70	3 33	
	2006	0000	00%	0.0.6	0,00	0,5	2,10	00,0	
Einheitszellenparameter(A, °)	a: 131,95	a: 132,02	a: 132,12	a: 131,34	a: 132,55	a: 132,75	a: 131,51	a: 132,44	
	b: 44,46	b: 44,43	b: 44,41	b: 44,76	b: 44,70	b: 44,86	b: 44,28	b: 43,71	
	c: 143,74	c: 143,86	c: 143,85	c: 142,61	c: 143,88	c: 144,43	c: 142,34	c: 143,80	
	β: 97,41	β: 97,41	β: 97,42	β: 97,17	β: 97,30	β: 97,23	β: 97,38	β: 97,57	
[/σ	16,5 (4,4)	16,0(4,0)	15,5 (3,7)	20,0 (9,4)	19,6 (11,9)	22,3 (11,6)	13,5 (3,5)	16,0 (4,0)	-
Vollständigkeit (%)	(6, 66, 96, 90)	99,9 (100,0)	99,9 (100,0)	66,8 (60,4)	94,0 (96,1)	99,4 (99,7)	99,5 (100,0)	97,1 (87,3)	
Multiplizität	3,6(3,5)	3,6(3,5)	3,6(3,5)	6,4(6,7)	3,2(3,1)	3,6(3,7)	3,6(3,6)	3,8(3,3)	
R _{merge} (%)	5,8 (20,4)	6,2 (22,7)	6,4 (26,3)	7,7 (18,0)	4,3 (7,0)	4,3 (9,5)	7,7 (24,2)	7,7 (18,0)	
anomale Vollständigkeit (%)	99,2 (96,7)	99,2 (97,1)	99,3 (97,6)	61,3 (57,0)	71,4 (68,1)	95,7 (93,9)	99,0 (98,9)	94,2 (68,6)	
anomale Multiplizität	1,8 (1,8)	1,8(1,8)	1,8 (1,8)	3,6 (3,7)	1,9 (1,9)	1,9(1,9)	1,9(1,8)	2,0(1,9)	
anomaler	34,4	35,6	39,9	<u>د ا</u>	21	,6	00	11.0	
Korrelationskoeffizient (%)	(hrem-pk	c), (hrem-infl), (pk-infl)	-0,1	(infl-	-pk)	-9,0	-11,9	
R_{work} (%)	'	1							
R_{free} (%)		•							
r.m.s.d.									
Bindungslängen (Å)									
Bindungswinkel (°)	-	-							-

4.4 In-vivo Charakterisierung von WaaA_{AAE}-Varianten

Auf den folgenden Seiten sind jeweils die ESI-Massenspektren der isolierten LPS-Proben gezeigt (vergl. 2.2.3.3.6). Ctrl steht für die *E.coli*-KPM56- Δ *WaaA*- Δ *WaaC*-Negativkontrolle und WaaA_{AAE}-WT (WaaAA_{AE}-Wildtyp) für den mit dem Plasmid pUM216 transformierten Stamm. Alle anderen Bezeichungen stehen für *E.coli*-KPM56- Δ *WaaA*- Δ *WaaC*-Stämme, in die ein entsprechend mutiertes pUM216-Plasmid eingebracht wurde. Der Peak bei 1527 m/z ist auf mit PEtN substituiertes Lipoid-IV_A zurückzuführen. Der gestrichelte Pfeil steht für eine Massendifferenz, die durch den Transfer eines Kdo-Moleküls begründet werden kann.

4.5 In-vitro Charakterisierung von WaaA_{AAE}-Varianten

Die folgenden Seiten enthalten Abbildungen der Massenspektren der Waa A_{AAE} *in-vitro* Experimente und wurden freundlicherweise von Dr. Uwe Mamat zur Verfügung gestellt. Die Abkürzungen "Ctrl" und "WT" stehen für die Negativkontrolle bzw. Wildtyp. Als Akzeptorsubstrat wurde Lipoid-IV_A (Peak bei 1404 u) verwendet. Der gestrichelte Pfeil entspricht einer Massendifferenz, die auf den Transfer eines Kdo-Moleküls zurückzuführen ist.

5. Referenzen

- Adams, P.D., Grosse-Kunstleve, R.W., Hung, L.W., Ioerger, T.R., McCoy, A.J., Moriarty, N.W., Read, R.J., Sacchettini, J.C., Sauter, N.K. & Terwilliger, T.C. (2002): PHENIX: building new software for automated crystallographic structure determination. *Acta Cryst* D58, 1948-1954.
- Abrahams, J.P. & Leslie, A.G.W. (1996): Methods used in the structure determination of bovine mitochondrial F1 ATPase. *Acta Cryst* **D52**, 30-42.
- Al Dabbagh, B., Mengin-Lecreulx, D. & Bouhss, A. (2008): Purification and characterization of the bacterial UDP-GlcNAc:undecaprenyl-phosphate GlcNAc-1-phosphate transferase WecA. *J Bacteriol* **190**, 7141-7146.
- Alexander, D.C. & Valvano, M.A. (1994): Role of the rfe gene in the biosynthesis of the *Escherichia coli* O7-specific lipopolysaccharide and other O-specific polysaccharides containing N-acetylglucosamine. *J Bacteriol* **176**, 7079-7084.
- Asojo, O., Friedman, J., Adir, N., Belakhov, V., Shoham, Y. & Baasov, T. (2001): Crystal structures of KDOP synthase in its binary complexes with the substrate phosphoenolpyruvate and with a mechanism-based inhibitor. *Biochemistry* **40**, 6326-6334.
- Babinski, K.J., Kanjilal, S.J. & Raetz, C.R. (2002): Accumulation of the lipid A precursor UDP-2,3-diacylglucosamine in an *Escherichia coli* mutant lacking the lpxH gene. *J Biol Chem* 277, 25947-25956.
- Badger, J., Sauder, J.M., Adams, J.M., Antonysamy, S., Bain, K., Bergseid, M.G., Buchanan, S.G., Buchanan, M.D., Batiyenko, Y., Christopher, J.A., Emtage, S., Eroshkina, A., Feil, I., Furlong, E.B., Gajiwala, K.S., Gao, X., He, D., Hendle, J., Huber, A., Hoda, K., Kearins, P., Kissinger, C., Laubert, B., Lewis, H.A., Lin, J., Loomis, K., Lorimer, D., Louie, G., Maletic, M., Marsh, C.D., Miller, I., Molinari, J., Muller-Dieckmann, H.J., Newman, J.M., Noland, B.W., Pagarigan, B., Park, F., Peat, T.S., Post, K.W., Radojicic, S., Ramos, A., Romero, R., Rutter, M.E., Sanderson, W.E., Schwinn, K.D., Tresser, J., Winhoven, J., Wright, T.A., Wu, L., Xu, J. & Harris, T.J. (2005): Structural analysis of a set of proteins resulting from a bacterial genomics project. *Proteins* 60, 787-796.
- Baker, N.A., Sept, D., Joseph, S., Holst, M.J., & McCammon, J.A. (2001): Electrostatics of nanosystems: application to microtubules and the ribosome. *Proc Natl Acad Sci USA* 98, 10037-10041.
- Barb, A.W., Leavy, T.M., Robins, L.I., Guan, Z., Six, D.A., Zhou, P., Bertozzi, C.R. & Raetz, C.R. (2009): Uridine-based inhibitors as new leads for antibiotics targeting *Escherichia coli* LpxC. *Biochemistry* 48, 3068-3077.
- Barlow, D.J. & Thornton, J.M. (1983): Ion-pairs in proteins. J Mol Biol 168, 867-885.

- Barreras, M., Salinas, S.R., Abdian, P.L., Kampel, M.A. & Ielpi, L. (2008): Structure and mechanism of GumK, a membrane-associated glucuronosyltransferase. *J Biol Chem* 283, 25027-25035.
- Bartling, C.M. & Raetz, C.R. (2008): Steady-state kinetics and mechanism of LpxD, the N-acyltransferase of lipid A biosynthesis. *Biochemistry* **47**, 5290-5302.
- Bastin, D.A., Stevenson, G., Brown, P.K., Haase, A. & Reeves, P.R. (1993): Repeat unit polysaccharides of bacteria: a model for polymerization resembling that of ribosomes and fatty acid synthetase, with a novel mechanism for determining chain length. *Mol Microbiol* **7**, 725-734.
- Batchelor, R.A., Haraguchi, G.E., Hull, R.A. & Hull, S.I. (1991): Regulation by a novel protein of the bimodal distribution of lipopolysaccharide in the outer membrane of *Escherichia coli*. J Bacteriol **173**, 5699-5704.
- Belunis, C.J., Mdluli, K.E., Raetz, C.R. & Nano, F.E. (1992): A novel 3-deoxy-D-mannooctulosonic acid transferase from *Chlamydia trachomatis* required for expression of the genus-specific epitope. *J Biol Chem* **267**, 18702-18707.
- Belunis, C.J. & Raetz, C.R. (1992): Biosynthesis of endotoxins. Purification and catalytic properties of 3-deoxy-D-manno-octulosonic acid transferase from Escherichia coli. *J Biol Chem* **267**, 9988-9997.
- Boggon, T.J. & Shapiro, L. (2000): Screening for phasing atoms in protein crystallography. *Structure* **8**, R143-R149.
- Bolam, D.N., Roberts, S., Proctor, M.R., Turkenburg, J.P., Dodson, E.J., Martinez-Fleites, C., Yang, M., Davis, B.G., Davies, G.J. & Gilbert, H.J. (2007): The crystal structure of two macrolide glycosyltransferases provides a blueprint for host cell antibiotic immunity. *Proc Natl Acad Sci USA* **104**, 5336-5341.
- Brabetz, W., Mamat, U., Alexander, C., & Rietschel, E. T. (1999): Bacterial lipopolysaccharides: chemical constitution, endotoxic activity, and biological neutralization. In: *Symposium in Immunology VIII* (Eibl, M.M., ed.), Springer, Berlin, 1999, 89-123.
- Brabetz, W., Schirmer, C.E. & Brade, H. (2000): 3-Deoxy-D-manno-oct-2-ulosonic acid (Kdo) transferase of Legionella pneumophila transfers two kdo residues to a structurally different lipid A precursor of *Escherichia coli*. J Bacteriol 182, 4654-4657.
- Bradford, M.M. (1976): A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Anal Biochem* **72**, 248-254.
- Brautigam, C.A. & Steitz, T.A. (1998): Structural and functional insights provided by crystal structures of DNA polymerases and their substrate complexes. *Curr Opin Struct Biol* **8**, 54-63.
- Brazier-Hicks, M., Offen, W.A., Gershater, M.C., Revett, T.J., Lim, E.K., Bowles, D.J., Davies, G.J. & Edwards, R. (2007): Characterization and engineering of the

bifunctional N- and O-glucosyltransferase involved in xenobiotic metabolism in plants. *Proc Natl Acad Sci USA* **104**, 20238-20243.

- Breton, C., Snajdrova, L., Jeanneau, C., Koca, J. & Imberty, A. (2006): Structures and mechanisms of glycosyltransferases. *Glycobiology* **16**, 29R-37R.
- Brozek, K.A. & Raetz, C.R. (1990): Biosynthesis of lipid A in *Escherichia coli*. Acyl carrier protein-dependent incorporation of laurate and myristate. *J Biol Chem* **265**, 15410-15417.
- Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.S., Kuszewski, J., Nilges, M., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T. & Warren, G.L. (1998): Crystallography & NMR system: A new software suite for macromolecular structure determination. *Acta Cryst* D54, 905-921.
- Buetow, L., Smith, T.K., Dawson, A., Fyffe, S. & Hunter, W.N. (2007): Structure and reactivity of LpxD, the N-acyltransferase of lipid A biosynthesis. *Proc Natl Acad Sci USA* **104**, 4321-4326.
- Burmeister, W.P., Henrissat, B., Bosso, C., Cusack, S. & Ruigrok, R.W. (1993): Influenza B virus neuraminidase can synthesize its own inhibitor. *Structure* **1**, 19-26.
- Charnock, S.J. & Davies, G.J. (1999): Structure of the nucleotide-diphospho-sugar transferase, SpsA from *Bacillus subtilis*, in native and nucleotide-complexed forms. *Biochemistry* **38**, 6380-6385.
- Chayen, N. E., Shaw-Stewart, P. D. & Blow, D. M. (1992): Microbatch crystallization under oil – a new technique allowing many small-volume crystallization trials. J *Cryst Growth* **122**, 176-180.
- Clementz, T. & Raetz, C.R. (1991): A gene coding for 3-deoxy-D-manno-octulosonic-acid transferase in *Escherichia coli*. Identification, mapping, cloning, and sequencing. *J Biol Chem* **266**, 9687-9696.
- Collaborative Computing Project, No. 4 (1994): The CCP4 suite: programs for protein crystallography. *Acta Cryst* **D50**, 760-763.
- Cowan, J.A. (1998): Metal activation of enzymes in nucleic acid biochemistry. *Chem Rev* **98**, 1067-1088.
- Cowan, J.A. (2002): Structural and catalytic chemistry of magnesium-dependent enzymes. *Biometals* 15, 225-235.
- Cowtan, K. D. (1994): DM density modification package. *Jnt CCP4/ESF-EACBM Newsl Protein Crystallogr* **31**, 34-38.
- Cowtan, K.D. & Zhang, K.Y. (1999): Density modification for macromolecular phase improvement. *Prog Biophys Mol Biol* **72**, 245-270.
- Creeger, E.S. & Rothfield, L.I. (1979): Cloning of genes for bacterial glycosyltransferases. I. Selection of hybrid plasmids carrying genes for two glucosyltransferases. J Biol Chem 254, 804-810.

- Cruickshank, D.W.J. (1960): The required precision of intensity measurements for singlecrystal analysis. *Acta Cryst* **13**, 774-777.
- Cunneen, M.M. & Reeves, P.R. (2008): Membrane topology of the Salmonella enterica serovar Typhimurium Group B O-antigen translocase Wzx. FEMS Microbiol Lett 287, 76-84.
- D'Arcy, A., Elmore, C., Stihle, M. & Johnston, J. E. (1996): A novel approach to crystallising proteins under oil. J *Cryst Growth* **168**, 175-180.
- Deckert, G., Warren, P.V., Gaasterland, T., Young, W.G., Lenox, A.L., Graham, D.E., Overbeek, R., Snead, M.A., Keller, M., Aujay, M., Huber, R., Feldman, R.A., Short, J.M., Olsen, G.J. & Swanson, R.V. (1998): The complete genome of the hyperthermophilic bacterium *Aquifex aeolicus*. *Nature* **392**, 353-358.
- Derewenda, Z.S. (2004): Rational protein crystallization by mutational surface engineering. *Structure* **12**, 529-535.
- Doublie, S., Tabor, S., Long, A.M., Richardson, C.C. & Ellenberger, T. (1998): Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution. *Nature* **391**, 251-258.
- Eijsink, V.G., Bjork, A., Gaseidnes, S., Sirevag, R., Synstad, B., van den, B.B. & Vriend, G. (2004): Rational engineering of enzyme stability. *J Biotechnol* **113**, 105-120.
- Ekpo, P. & Nano, F.E. (1992): Arg276 of GseA, a Chlamydia trachomatis Kdo transferase, is required for the synthesis of the chlamydial genus-specific epitope in Escherichia coli. FEMS Microbiol Lett 75, 49-53.
- Emsley, P. & Cowtan, K. (2004): Coot: model-building tools for molecular graphics. *Acta Cryst* **D60**, 2126-2132.
- Evans, P. (2006): Scaling and assessment of data quality. Acta Cryst D62, 72-82.
- French, G.S. & Wilson K.S. (1978): On the treatment of negative intensity observations. *Acta Cryst* A34, 517-525.
- Gabriel, O. (1982): Isolation and synthesis of sugar nucleotides. *Methods Enzymol* **83**, 332-353.
- Galanos, C., Luderitz, O. & Westphal, O. (1969): A new method for the extraction of Rlipopolysaccharides. *Eur J Biochem* **9**, 245-249.
- Garrett, T.A., Kadrmas, J.L. & Raetz, C.R. (1997): Identification of the gene encoding the *Escherichia coli* lipid A 4'-kinase. Facile phosphorylation of endotoxin analogs with recombinant LpxK. *J Biol Chem* **272**, 21855-21864.
- Garrett, T.A., Que, N.L. & Raetz, C.R. (1998): Accumulation of a lipid A precursor lacking the 4'-phosphate following inactivation of the *Escherichia coli* lpxK gene. J Biol Chem 273, 12457-12465.

- Geerlof, A., Lewendon, A. & Shaw, W.V. (1999): Purification and characterization of phosphopantetheine adenylyltransferase from *Escherichia coli*. *J Biol Chem* **274**, 27105-27111.
- Gibson, R.P., Turkenburg, J.P., Charnock, S.J., Lloyd, R. & Davies, G.J. (2002): Insights into trehalose synthesis provided by the structure of the retaining glucosyltransferase OtsA. *Chem Biol* **9**, 1337-1346.
- Goldman, A. (1995): How to make my blood boil. Structure 3, 1277-1279.
- Goldman, R.C. & Kohlbrenner, W.E. (1985): Molecular cloning of the structural gene coding for CTP:CMP-3-deoxy-manno-octulosonate cytidylyltransferase from *Escherichia coli* K-12. *J Bacteriol* **163**, 256-261.
- Goto-Ito, S., Ito, T., Ishii, R., Muto, Y., Bessho, Y. & Yokoyama, S. (2008): Crystal structure of archaeal tRNA(m(1)G37)methyltransferase aTrm5. *Proteins* **72**, 1274-1289.
- Grizot, S., Salem, M., Vongsouthi, V., Durand, L., Moreau, F., Dohi, H., Vincent, S., Escaich, S. & Ducruix, A. (2006): Structure of the *Escherichia coli* heptosyltransferase WaaC: binary complexes with ADP and ADP-2-deoxy-2-fluoro heptose. *J Mol Biol* 363, 383-394.
- Gronow, S., Brabetz, W. & Brade, H. (2000): Comparative functional characterization *in vitro* of heptosyltransferase I (WaaC) and II (WaaF) from *Escherichia coli*. *Eur J Biochem* **267**, 6602-6611.
- Guerin, M.E., Kordulakova, J., Schaeffer, F., Svetlikova, Z., Buschiazzo, A., Giganti, D., Gicquel, B., Mikusova, K., Jackson, M. & Alzari, P.M. (2007): Molecular recognition and interfacial catalysis by the essential phosphatidylinositol mannosyltransferase PimA from mycobacteria. J Biol Chem 282, 20705-20714.
- Ha, S., Walker, D., Shi, Y. & Walker, S. (2000): The 1.9 A crystal structure of Escherichia coli MurG, a membrane-associated glycosyltransferase involved in peptidoglycan biosynthesis. *Protein Sci* **9**, 1045-1052.
- Ha, S., Gross, B. & Walker, S. (2001): *E. coli* MurG: a paradigm for a superfamily of glycosyltransferases. *Curr Drug Targets Infect Disord* **1**, 201-213.
- Hammond, S.M., Claesson, A., Jansson, A.M., Larsson, L.G., Pring, B.G., Town, C.M. & Ekstrom, B. (1987): A new class of synthetic antibacterials acting on lipopolysaccharide biosynthesis. *Nature* 327, 730-732.
- Hayward, S. & Berendsen, H.J.C. (1998): Systematic analysis of domain motions in proteins from condormational change; new results on citrate synthase and T4 lysozyme. *Proteins* 30, 144-155.
- Hegyi, H. & Gerstein, M. (1999): The relationship between protein structure and function: a comprehensive survey with application to the yeast genome. *J Mol Biol* **288**, 147-164.
- Heinrichs, D.E., Monteiro, M.A., Perry, M.B. & Whitfield, C. (1998): The assembly system for the lipopolysaccharide R2 core-type of *Escherichia coli* is a hybrid of those

found in *Escherichia coli* K-12 and *Salmonella enterica*. Structure and function of the R2 WaaK and WaaL homologs. *J Biol Chem* **273**, 8849-8859.

- Hendsch, Z.S. & Tidor, B. (1994): Do salt bridges stabilize proteins? A continuum electrostatic analysis. *Protein Sci* **3**, 211-226.
- Heyes, D.J., Levy, C., Lafite, P., Roberts, I.S., Goldrick, M., Stachulski, A.V., Rossington, S.B., Stanford, D., Rigby, S.E.J., Scrutton, N.S & Leys, D. (2009): Structurebased mechanism of CMP-2-keto-3-deoxymanno-octulonis acid synthetase: convergent evolution of a sugar-activating enzyme with DNA/RNA polymerases. *J Biol Chem* 284, 35514-35523.
- Holst, O., Bock, K., Brade, L. & Brade, H. (1995): The structures of oligosaccharide bisphosphates isolated from the lipopolysaccharide of a recombinant *Escherichia coli* strain expressing the gene gseA [3-deoxy-D-mannooctulopyranosonic acid (Kdo) transferase] of *Chlamydia psittaci* 6BC. *Eur J Biochem* 229, 194-200.
- Holst, O. (2002): Chemical structure of the core region of lipopolysaccharides an update. *Trends Glycosci Glycotechnol* **14**, 87-103.
- Holst, O. (2007): The structures of core regions from enterobacterial lipopolysaccharides an update. *FEMS Microbiol Lett* **271**, 3-11.
- Holst, O. & Müller-Loennies, S.: Microbial Polysaccharide Structures. In: *Comprehensive Glycoscience* (Kempling, J.P., ed.), Elsevier, Amsterdam, 2007, pp. 123-178.
- Holm, L, Kaariainen, S., Rosenstrom, P. & Schenkel, A. (2008): Searching protein structure databases with DaliLite v.3. *Bioinformatics* **24**, 2780-2781.
- Howell, P. L. & Smith, G. D. (1992): Identification of heavy-atom derivatives by normal probability methods. *J Appl Cryst* **25**, 81-86.
- Hu, Y. & Walker, S. (2002): Remarkable structural similarities between diverse glycosyltransferases. *Chem Biol* **9**, 1287-1296.
- Hu, Y., Chen, L., Ha, S., Gross, B., Falcone, B., Walker, D., Mokhtarzadeh, M. & Walker, S. (2003): Crystal structure of the MurG:UDP-GlcNAc complex reveals common structural principles of a superfamily of glycosyltransferases. *Proc Natl Acad Sci USA* 100, 845-849.
- Isobe, T., White, K.A., Allen, A.G., Peacock, M., Raetz, C.R. & Maskell, D.J. (1999): Bordetella pertussis waaA encodes a monofunctional 2-keto-3-deoxy-Dmanno-octulosonic acid transferase that can complement an Escherichia coli waaA mutation. J Bacteriol 181, 2648-2651.
- Jelakovic, S., Jann, K. & Schulz, G.E. (1996): The three-dimensional structure of capsulespecific CMP: 2-keto-3-deoxy-manno-octonic acid synthetase from Escherichia coli. *FEBS Lett* **391**, 157-161.
- Jelakovic, S. & Schulz, G.E. (2001): The structure of CMP:2-keto-3-deoxy-manno-octonic acid synthetase and of its complexes with substrates and substrate analogs. *J Mol Biol* **312**, 143-155.

- Jelakovic, S. & Schulz, G.E. (2002): Catalytic mechanism of CMP:2-keto-3-deoxy-mannooctonic acid synthetase as derived from complexes with reaction educt and product. *Biochemistry* **41**, 1174-1181.
- Joiner, K.A. (1988): Complement evasion by bacteria and parasites. *Annu Rev Microbiol* **42**, 201-230.
- Kabsch, W. (1976): A solution for the best rotation to relate two sets of vectors. *Acta Cryst* A32, 922-923.
- Kabsch, W. & Sander, C. (1983): Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features. *Biopolymers* 22, 2577-2637.
- Kakuta, Y., Okino, N., Kajiwara, H., Ichikawa, M., Takakura, Y., Ito, M. & Yamamoto, T. (2008): Crystal structure of *Vibrionaceae* Photobacterium sp. JT-ISH-224 alpha2,6-sialyltransferase in a ternary complex with donor product CMP and acceptor substrate lactose: catalytic mechanism and substrate recognition. *Glycobiology* 18, 66-73.
- Kapitonov, D. & Yu, R.K. (1999): Conserved domains of glycosyltransferases. *Glycobiology* **9**, 961-978.
- Katz, C. & Ron, E.Z. (2008): Dual role of FtsH in regulating lipopolysaccharide biosynthesis in *Escherichia coli*. *J Bacteriol* **190**, 7117-7122.
- Kim, D.U., Yoo, J.H., Lee, Y.J., Kim, K.S. & Cho, H.S. (2008): Structural analysis of sialyltransferase PM0188 from *Pasteurella multocida* complexed with donor analogue and acceptor sugar. *BMB Rep* **41**, 48-54.
- Kleywegt, G.J. & Read, R.J. (1997): Not your average density. Structure 5, 1557-1569.
- Kline, T., Andersen, N.H., Harwood, E.A., Bowman, J., Malanda, A., Endsley, S., Erwin, A.L., Doyle, M., Fong, S., Harris, A.L., Mendelsohn, B., Mdluli, K., Raetz, C.R., Stover, C.K., Witte, P.R., Yabannavar, A. & Zhu, S. (2002): Potent, novel in vitro inhibitors of the Pseudomonas aeruginosa deacetylase LpxC. J Med Chem 45, 3112-3129.
- Kohlbrenner, W.E. & Fesik, S.W. (1985): Determination of the anomeric specificity of the *Escherichia coli* CTP:CMP-3-deoxy-D-manno-octulosonate cytidylyltransferase by ¹³C NMR spectroscopy. *J Biol Chem* **260**, 14695-14700.
- Kona, F., Xu, X., Martin, P., Kuzmic, P. & Gatti, D.L. (2007): Structural and mechanistic changes along an engineered path from metallo to nonmetallo 3-deoxy-D-manno-octulosonate 8-phosphate synthases. *Biochemistry* **46**, 4532-4544.
- Kona, F., Tao, P., Martin, P., Xu, X. & Gatti, D.L. (2009): Electronic structure of the metal center in the Cd²⁺, Zn²⁺, and Cu²⁺ substituted forms of KDO8P synthase: implications for catalysis. *Biochemistry* **48**, 3610-3630.
- Krapp, S., Münster-Kühnel, A. K., Kaiser, J. T., Huber, R., Tiralongo, J., Gerardy-Schahn, R.,
 & Jacob, U. (2003): The crystal structure of murine CMP-5-Nacetylneuraminic acid synthetase. *J Mol Biol* 334, 625-637.

- Krissinel, E. & Henrick, K. (2007): Inference of macromolecular assemblies from crystalline state. *J Mol Biol* **372**, 774-797.
- Laemmli, U.K. (1970): Cleavage of structural proteins during the assembly of the head of bacteriophage T4. *Nature* **227**, 680-685.
- Lairson, L.L., Henrissat, B., Davies, G.J. & Withers, S.G. (2008): Glycosyltransferases: structures, functions, and mechanisms. *Annu Rev Biochem* **77**, 521-555.
- Lariviere, L., Gueguen-Chaignon, V. & Morera, S. (2003): Crystal structures of the T4 phage β-glucosyltransferase and the D100A mutant in complex with UDP-glucose: glucose binding and identification of the catalytic base for a direct displacement mechanism. *J Mol Biol* **330**, 1077-1086.
- Larue, K., Kimber, M.S., Ford, R. & Whitfield, C. (2009): Biochemical and structural analysis of bacterial O-antigen chain length regulator proteins reveals a conserved quaternary structure. *J Biol Chem* 284, 7395-7403.
- Laskowski, R. A., MacArthur, M. W., Moss, D. S. & Thornton, J. M. (1993): PROCHECK: a program to check the stereochemical quality of protein structures. *J Appl Cryst* **26**, 283-291.
- Lee, B. & Richards, F.M. (1971): The interpretation of protein structures: estimation of static accessibility. *J Mol Biol* 55, 379 400.
- Lehrer, J., Vigeant, K.A., Tatar, L.D. & Valvano, M.A. (2007): Functional characterization and membrane topology of *Escherichia coli* WecA, a sugar-phosphate transferase initiating the biosynthesis of enterobacterial common antigen and O-antigen lipopolysaccharide. *J Bacteriol* **189**, 2618-2628.
- Leslie, A.G.W., (1992): Recent changes to the MOSFLM package for processing film and image plate data. *Jnt CCP4/ESF-EACBM Newsl. Protein Crystallogr* **26**, 27-33.
- Lin, C.H., Murray, B.W., Ollmann, I.R. & Wong, C.H. (1997): Why is CMPketodeoxyoctonate highly unstable? *Biochemistry* **36**, 780-785.
- Liu, J. & Mushegian, A. (2003): Three monophyletic superfamilies account for the majority of the known glycosyltransferases. *Protein Sci* **12**, 1418-1431.
- Mamat, U., Schmidt, H., Munoz, E., Lindner, B., Fukase, K., Hanuszkiewicz, A., Wu, J., Meredith, T.C., Woodard, R.W., Hilgenfeld, R., Mesters, J.R. & Holst, O. (2009): WaaA of the hyperthermophilic bacterium *Aquifex aeolicus* is a monofunctional 3-deoxy-D-*manno*-oct-2-ulosonic acid transferase involved in lipopolysaccharide biosynthesis. *J Biol Chem* 284, 22248-22262.
- Marolda, C.L., Tatar, L.D., Alaimo, C., Aebi, M. & Valvano, M.A. (2006): Interplay of the Wzx translocase and the corresponding polymerase and chain length regulator proteins in the translocation and periplasmic assembly of lipopolysaccharide o antigen. J Bacteriol 188, 5124-5135.

- Martinez-Fleites, C., Proctor, M., Roberts, S., Bolam, D.N., Gilbert, H.J. & Davies, G.J. (2006): Insights into the synthesis of lipopolysaccharide and antibiotics through the structures of two retaining glycosyltransferases from family GT4. *Chem Biol* 13, 1143-1152.
- Matte, A., Tari, L.W. & Delbaere, L.T. (1998): How do kinases transfer phosphoryl groups? *Structure* **6**, 413-419.
- Matthews, B.W. (1968): Solvent content of protein crystals. J Mol Biol 33, 491-497.
- McCoy, A.J., Grosse-Kunstleve, R.W., Storoni, L.C. & Read, R.J. (2005): Likelihoodenhanced fast translation functions. *Acta Cryst* D61, 458-464.
- McRee, D.E. (1999): XtalView/Xfit A versatile program for manipulating atomic coordinates and electron density. *J Struct Biol* **125**, 156-165.
- Meredith, T.C. & Woodard, R.W. (2003): *Escherichia coli* YrbH is a D-arabinose 5-phosphate isomerase. *J Biol Chem* **278**, 32771-32777.
- Miley, M.J., Zielinska, A.K., Keenan, J.E., Bratton, S.M., Radominska-Pandya, A. & Redinbo, M.R. (2007): Crystal structure of the cofactor-binding domain of the human phase II drug-metabolism enzyme UDP-glucuronosyltransferase 2B7. J Mol Biol 369, 498-511.
- Morera, S., Imberty, A., Aschke-Sonnenborn, U., Ruger, W. & Freemont, P.S. (1999): T4 phage β-glucosyltransferase: substrate binding and proposed catalytic mechanism. *J Mol Biol* **292**, 717-730.
- Morera, S., Lariviere, L., Kurzeck, J., Aschke-Sonnenborn, U., Freemont, P.S., Janin, J. & Ruger, W. (2001): High resolution crystal structures of T4 phage βglucosyltransferase: induced fit and effect of substrate and metal binding. J Mol Biol 311, 569-577.
- Mosimann, S. C., Gilbert, M., Dombroswki, D., To, R., Wakarchuk, W., & Strynadka, N. C. J. (2000): Structure of a sialic acid-activating synthetase, CMP-acylneuraminate synthetase in the presence and absence of CDP. J Biol Chem 276, 8190-8196.
- Mulichak, A.M., Losey, H.C., Walsh, C.T. & Garavito, R.M. (2001): Structure of the UDPglucosyltransferase GtfB that modifies the heptapeptide aglycone in the biosynthesis of vancomycin group antibiotics. *Structure* **9**, 547-557.
- Mulichak, A.M., Losey, H.C., Lu, W., Wawrzak, Z., Walsh, C.T. & Garavito, R.M. (2003): Structure of the TDP-epi-vancosaminyltransferase GtfA from the chloroeremomycin biosynthetic pathway. *Proc Natl Acad Sci USA* **100**, 9238-9243.
- Mulichak, A.M., Lu, W., Losey, H.C., Walsh, C.T. & Garavito, R.M. (2004): Crystal structure of vancosaminyltransferase GtfD from the vancomycin biosynthetic pathway: interactions with acceptor and nucleotide ligands. *Biochemistry* **43**, 5170-5180.

- Murshudov G.N., Vagin, A.A. & Dodson, E.J. (1997): Refinement of macromolecular structures by the maximum-likelihood method. *Acta Cryst* **D53**, 240-255.
- Murray, G.L., Attridge, S.R. & Morona, R. (2006): Altering the length of the lipopolysaccharide O antigen has an impact on the interaction of Salmonella enterica serovar Typhimurium with macrophages and complement. *J Bacteriol* **188**, 2735-2739.
- Ni, L., Sun, M., Yu, H., Chokhawala, H., Chen, X. & Fisher, A.J. (2006): Cytidine 5'monophosphate (CMP)-induced structural changes in a multifunctional sialyltransferase from *Pasteurella multocida*. *Biochemistry* **45**, 2139-2148.
- Ni, L., Chokhawala, H.A., Cao, H., Henning, R., Ng, L., Huang, S., Yu, H., Chen, X. & Fisher, A.J. (2007): Crystal structures of *Pasteurella multocida* sialyltransferase complexes with acceptor and donor analogues reveal substrate binding sites and catalytic mechanism. *Biochemistry* 46, 6288-6298.
- Nikaido, H. & Vaara, M. (1985): Molecular basis of bacterial outer membrane permeability. *Microbiol Rev* **49**, 1-32.
- Nilsson, C., Skoglund, A., Moran, A.P., Annuk, H., Engstrand, L. & Normark, S. (2006): An enzymatic ruler modulates Lewis antigen glycosylation of *Helicobacter pylori* LPS during persistent infection. *Proc Natl Acad Sci USA* **103**, 2863-2868.
- Nilsson, C., Skoglund, A., Moran, A.P., Annuk, H., Engstrand, L. & Normark, S. (2008): Lipopolysaccharide diversity evolving in Helicobacter pylori communities through genetic modifications in fucosyltransferases. *PLoS One* **3**, e3811.
- Nummila, K., Kilpelainen, I., Zähringer, U., Vaara, M. & Helander, I.M. (1995): Lipopolysaccharides of polymyxin B-resistant mutants of *Escherichia coli* are extensively substituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A. *Mol Microbiol* 16, 271-278.
- Offen, W., Martinez-Fleites, C., Yang, M., Kiat-Lim, E., Davis, B.G., Tarling, C.A., Ford, C.M., Bowles, D.J. & Davies, G.J. (2006): Structure of a flavonoid glucosyltransferase reveals the basis for plant natural product modification. *EMBO J* 25, 1396-1405.
- Otwinowski, Z. & Minor, W. (1997): Processing of X-ray diffraction data collected in oscillation mode. *Methods Enzymol* **276**, 307-326.
- Paulson, J.C. & Colley, K.J. (1989): Glycosyltransferases. Structure, localization, and control of cell type-specific glycosylation. *J Biol Chem* **264**, 17615-17618.
- Pelletier, H., Sawaya, M.R., Kumar, A., Wilson, S.H. & Kraut, J. (1994): Structures of ternary complexes of rat DNA polymerase β, a DNA template-primer, and ddCTP. *Science* 264, 1891-1903.
- Peschel, A. (2002): How do bacteria resist human antimicrobial peptides? *Trends Microbiol* **10**, 179-186.
- Qasba, P.K., Ramakrishnan, B. & Boeggeman, E. (2005): Substrate-induced conformational changes in glycosyltransferases. *Trends Biochem Sci* **30**, 53-62.

- Radaev, S., Dastidar, P., Patel, M., Woodard, R.W. & Gatti, D.L. (2000): Structure and mechanism of 3-deoxy-D-manno-octulosonate 8-phosphate synthase. J Biol Chem 275, 9476-9484.
- Radika, K. & Raetz, C.R. (1988): Purification and properties of lipid A disaccharide synthase of *Escherichia coli*. *J Biol Chem* **263**, 14859-14867.
- Raetz, C.R. & Roderick, S.L. (1995): A left-handed parallel β-helix in the structure of UDP-N-acetylglucosamine acyltransferase. *Science* **270**, 997-1000.
- Raetz, C.R. (2001): Regulated covalent modifications of lipid A. J Endotoxin Res 7, 73-78.
- Raetz, C.R. & Whitfield, C. (2002): Lipopolysaccharide endotoxins. *Annu Rev Biochem* **71**, 635-700.
- Raetz, C.R., Reynolds, C.M., Trent, M.S. & Bishop, R.E. (2007): Lipid A modification systems in gram-negative bacteria. *Annu Rev Biochem* **76**, 295-329.
- Read, R.J. (1986): Improved fourier coefficients for maps using phases from partial structures with errors. *Acta Cryst* A42, 140-149.
- Robbins, P.W., Bray, D., Dankert, B.M. & Wright, A. (1967): Direction of chain growth in polysaccharide synthesis. *Science* **158**, 1536-1542.
- Rossmann, M.G., Moras, D. & Olsen, K.W. (1974): Chemical and biological evolution of nucleotide-binding protein. *Nature* **250**, 194-199.
- Ruiz, N., Kahne, D. & Silhavy, T.J. (2009): Transport of lipopolysaccharide across the cell envelope: the long road of discovery. *Nat Rev Microbiol* **7**, 677-683.
- Rund, S., Lindner, B., Brade, H. & Holst, O. (2000): Structural analysis of the lipopolysaccharide from *Chlamydophila psittaci* strain 6BC. *Eur J Biochem* 267, 5717-5726.
- Saldias, M.S., Patel, K., Marolda, C.L., Bittner, M., Contreras, I. & Valvano, M.A. (2008): Distinct functional domains of the *Salmonella enterica* WbaP transferase that is involved in the initiation reaction for synthesis of the O antigen subunit. *Microbiology* 154, 440-453.
- Schneider, T.R & Sheldrick, G.M. (2002): Substructure solution with SHELXD. Acta Cryst **D58**, 1772-1779.
- Schulz, G.E. (1992): Binding of nucleotides by proteins. Curr Opin Struct Biol 2, 61-67.
- Seydel, U., Hawkins, L., Schromm, A.B., Heine, H., Scheel, O., Koch, M.H. & Brandenburg, K. (2003): The generalized endotoxic principle. *Eur J Immunol* **33**, 1586-1592.
- Shao, H., He, X., Achnine, L., Blount, J.W., Dixon, R.A. & Wang, X. (2005): Crystal structures of a multifunctional triterpene/flavonoid glycosyltransferase from *Medicago truncatula*. *Plant Cell* 17, 3141-3154.
- Sheldrick, G.M. (2008): A short history of SHELX. Acta Cryst A64, 112-122.

- Sheng, F., Jia, X., Yep, A., Preiss, J. & Geiger, J.H. (2009): The crystal structures of the open and catalytically competent closed conformation of *Escherichia coli* glycogen synthase. *J Biol Chem* 284, 17796-17807.
- Six, D.A., Carty, S.M., Guan, Z. & Raetz, C.R. (2008): Purification and mutagenesis of LpxL, the lauroyltransferase of *Escherichia coli* lipid A biosynthesis. *Biochemistry* **47**, 8623-8637.
- Steitz, T.A. & Steitz, J.A. (1993): A general two-metal-ion mechanism for catalytic RNA. *Proc Natl Acad Sci USA* **90**, 6498-6502.
- Sterner, R. & Liebl, W. (2001): Thermophilic adaptation of proteins. *Crit Rev Biochem Mol Biol* **36**, 39-106.
- Sun, H.Y., Lin, S.W., Ko, T.P., Pan, J.F., Liu, C.L., Lin, C.N., Wang, A.H. & Lin, C.H. (2007): Structure and mechanism of *Helicobacter pylori* fucosyltransferase. A basis for lipopolysaccharide variation and inhibitor design. *J Biol Chem* 282, 9973-9982.
- Ten Eyck, L. F. (1973): Crystallographic fast Fourier transforms. Acta Cryst A29, 183-191.
- Terwilliger, T.C. & Berendzen, J. (1999): Automated MAD and MIR structure solution. *Acta Cryst* **D55**, 849-861.
- Tran, A.X., Trent, M.S. & Whitfield, C. (2008): The LptA protein of *Escherichia coli* is a periplasmic lipid A-binding protein involved in the lipopolysaccharide export pathway. *J Biol Chem* 283, 20342-20349.
- Unligil, U.M. & Rini, J.M. (2000): Glycosyltransferase structure and mechanism. *Curr Opin Struct Biol* **10**, 510-517.
- Vaara, M. (1992): Agents that increase the permeability of the outer membrane. *Microbiol Rev* 56, 395-411.
- Vagin, A. & Teplyakov, A. (1997): MOLREP: an automated program for molecular replacement. *J Appl Cryst* **30**, 1022-1025.
- van Voorst, F. & de Kruijff, B. (2000): Role of lipids in the translocation of proteins across membranes. *Biochem J* 347, 601-612.
- Velloso, L.M., Bhaskaran, S.S., Schuch, R., Fischetti, V.A. & Stebbins, C.E. (2008): A structural basis for the allosteric regulation of non-hydrolysing UDP-GlcNAc 2-epimerases. *EMBO Rep* 9, 199-205.
- Vonrhein, C., Blanc, E., Roversi, P. & Bricogne, G. (2007): Automated structure solution with autoSHARP. *Methods Mol Biol* **364**, 215-230.
- Vrielink, A., Ruger, W., Driessen, H.P. & Freemont, P.S. (1994): Crystal structure of the DNA modifying enzyme beta-glucosyltransferase in the presence and absence of the substrate uridine diphosphoglucose. *EMBO J* **13**, 3413-3422.

- White, K.A., Kaltashov, I.A., Cotter, R.J. & Raetz, C.R. (1997): A mono-functional 3-deoxy-D-manno-octulosonic acid (Kdo) transferase and a Kdo kinase in extracts of *Haemophilus influenzae*. J Biol Chem 272, 16555-16563.
- Whitfield, C., Kaniuk, N. & Frirdrich, E. (2003): Molecular insights into the assembly and diversity of the outer core oligosaccharide in lipopolysaccharides from *Escherichia coli* and *Salmonella*. *J Endotoxin Res* **9**, 244-249.
- Whittington, D.A., Rusche, K.M., Shin, H., Fierke, C.A. & Christianson, D.W. (2003): Crystal structure of LpxC, a zinc-dependent deacetylase essential for endotoxin biosynthesis. *Proc Natl Acad Sci USA* **100**, 8146-8150.
- Williams, A.H. & Raetz, C.R. (2007): Structural basis for the acyl chain selectivity and mechanism of UDP-N-acetylglucosamine acyltransferase. *Proc Natl Acad Sci* USA 104, 13543-13550.
- Winn, M.D., Isupov, M.N. & Murshudov, G.N. (2001): Use of TLS parameters to model anisotropic displacements in macromolecular refinement. *Acta Cryst* **D57**, 122-133.
- Wu, J. & Woodard, R.W. (2003): *Escherichia coli* YrbI is 3-deoxy-D-manno-octulosonate 8-phosphate phosphatase. *J Biol Chem* **278**, 18117-18123.
- Xiao, L. & Honig, B. (1999): Electrostatic contributions to the stability of hyperthermophilic proteins. *J Mol Biol* **289**, 1435-1444.
- Yethon, J.A., Heinrichs, D.E., Monteiro, M.A., Perry, M.B. & Whitfield, C. (1998): Involvement of waaY, waaQ, and waaP in the modification of *Escherichia coli* lipopolysaccharide and their role in the formation of a stable outer membrane. *J Biol Chem* 273, 26310-26316.
- Yethon, J.A., Gunn, J.S., Ernst, R.K., Miller, S.I., Laroche, L., Malo, D. & Whitfield, C. (2000): Salmonella enterica serovar typhimurium waaP mutants show increased susceptibility to polymyxin and loss of virulence in vivo. Infect Immun 68, 4485-4491.
- Yethon, J.A., Vinogradov, E., Perry, M.B. & Whitfield, C. (2000): Mutation of the lipopolysaccharide core glycosyltransferase encoded by waaG destabilizes the outer membrane of *Escherichia coli* by interfering with core phosphorylation. J Bacteriol 182, 5620-5623.
- Yethon, J.A. & Whitfield, C. (2001): Purification and characterization of WaaP from *Escherichia coli*, a lipopolysaccharide kinase essential for outer membrane stability. *J Biol Chem* **276**, 5498-5504.
- Yoon, H.J., Ku, M.J., Mikami, B. & Suh, S.W. (2008): Structure of 3-deoxy-mannooctulosonate cytidylyltransferase from *Haemophilus influenzae* complexed with the substrate 3-deoxy-manno-octulosonate in the beta-configuration. *Acta Cryst* D64, 1292-1294.
- Yu, H., Chokhawala, H., Karpel, R., Yu, H., Wu, B., Zhang, J., Zhang, Y., Jia, Q. & Chen, X. (2005): A multifunctional Pasteurella multocida sialyltransferase: a powerful tool for the synthesis of sialoside libraries. *J Am Chem Soc* 127, 17618-17619.

- Zhang, K. Y. J., Cowtan, K. D. & Main P.: Density modification and phase combination. In: International Tables for Crystallography Volume F (Rossmann, M. G. & Arnold, E., eds), Springer, 2006, pp. 311-324.
- Zamyatina, A., Gronow, S., Oertelt, C., Puchberger, M., Brade, H. & Kosma, P. (2000): Efficient chemical synthesis of the two anomers of ADP-L-glycero- and Dglycero-D-manno-heptopyranose allows the determination of the substrate specificities of bacterial heptosyltransferases. *Angew Chem Int Ed Engl* 39, 4150-4153.
- Zhou, Z., White, K.A., Polissi, A., Georgopoulos, C. & Raetz, C.R. (1998): Function of *Escherichia coli* MsbA, an essential ABC family transporter, in lipid A and phospholipid biosynthesis. *J Biol Chem* 273, 12466-12475.

6. Zusammenfassung

Die Zellbegrenzung gramnegativer Bakterien besteht aus einer inneren Membran, einer darauf aufgelagerten Zellwand aus Peptidoglykan und einer äußeren Membran. Der zur Zelle gerichtete Anteil der Lipiddoppelschicht der äußeren Membran besteht vorwiegend aus Phospholipiden, während sich im nach außen gerichteten Anteil vor allem Lipopolysaccharide (LPS) befinden. LPS-Moleküle sind wichtig für die Stabilität der äußeren Membran, die vor allem als Permeabilitätsbarriere dient, z.B. gegenüber Antibiotika. LPS-Moleküle sorgen darüber hinaus für die Abwehr des Komplementsystems und stellen daher insgesamt einen wichtigen Pathogenitätsfaktor dar.

Entscheidenden Anteil an dieser Rolle als Pathogenitätsfaktor hat der an den Membrananker Lipoid-A angeheftete Polysaccharidanteil des LPS. Der Glykosylierung eines Lipoid-A-Vorläufers mit dem Zucker 2-Keto-3-desoxyoctonsäure (Kdo) kommt bei der Herstellung dieses Polysaccharidanteils eine Schlüsselrolle zu, so dass die an Kdo-Biosynthese, -Aktivierung und -Tranfer beteiligten Enzyme attraktive Ziele für die Entwicklung neuer Antibiotika darstellen.

In dieser Arbeit wurden die für Kdo-Aktivierung zuständige CMP-Kdo-Synthetase KdsB und die für die Glykosylierung des Lipoid-A-Vorläufers verantwortliche membranassoziierte CMP-Kdo-Transferase WaaA aus Aquifex aeolicus mittels Röntgenstrukturanalyse untersucht. Im Falle von KdsB gelang es, eine kürzlich aufgestellte Hypothese zu unterstützen, nach der KdsB bei der Synthese des CMP-Kdo einem "two-metal-ion-mechanism" folgt, der auch bei DNA-Polymerasen anzutreffenden ist. Weiterhin konnten neue Ideen zu reaktionsmechanistischen Details entwickelt werden. Die Arbeiten an WaaA bildeten den Hauptgegenstand der vorliegenden Doktorarbeit. Die erfolgreiche Kristallisation dieser Glykosyltransferase und die sich anschließende experimentelle Phasierung der Kristallstruktur erlaubten erstmalig Einblicke in strukturelle Aspekte des Kdo-Transfers. Die Existenz eines Clusters hydrophober Aminosäurereste, der von basischen Seitenketten umgeben ist, ermöglichte die Identifizierung des WaaAAAE-Membranassoziierungsmodus. Weiterhin konnten Vorstellungen darüber entwickelt werden, welche Aminosäurereste wichtig für die spezifische Bindung des Lipoid-A-Vorläufers und des CMP-Kdo sind. Durch strukturelle Vergleiche mit anderen Glykosyltransferasen sowie von externen Kooperationspartnern durchgeführten Mutageneseexperimenten konnten katalytisch wichtige Aminosäurereste identifiziert und ein Modell für den Reaktionsmechanismus entwickelt werden.

7. Danksagung

An erster Stelle möchte ich mich bei Herrn Prof. Dr. Dr. h.c. Rolf Hilgenfeld für die Möglichkeit bedanken, meine Doktorarbeit am Institut für Biochemie der Universität zu Lübeck anzufertigen. Die mir zugewiesene Aufgabenstellung war sehr interessant und eröffnete mir die Möglichkeit, mich mit allen relevanten Aspekten der Proteinkristallographie vertraut zu machen. Ausdrücklich danken möchte ich ihm auch für die weitere Finanzierung nach Beendigung des DFG-Projektes und die Zurverfügungstellung einer exzellenten Infrastruktur.

Dr. Uwe Mamat und Prof. Dr. Otto Holst möchte ich für die Unterstützung meiner Arbeiten am Forschungszentrum Borstel danken. Die Zusammenarbeit mit Dr. Mamat fand stets in äußerst freundschaftlicher Atmossphäre statt und gab mir in Phasen der Frustration die notwendige Motivation.

Dr. Jeroen Mesters und Dr. Guido Hansen danke ich für hilfreiche Gespräche und ihre Bereitschaft, mich in wichtige kristallographische Programme und Techniken einzuführen.

Mein Dank gilt insbesondere auch Dipl.-Ing. Hans Joachim Kraus, der mir bei allen Software-Problemen stets kompetent weiterhelfen konnte.

Monarin Uervirojnangkoorn, Robert Wrase, Rajesh Ponnusamy, Raspudin Salem-Batcha, Yvonne Piotrowski, Anna Hanuszkiewicz, Kay Vogel, Walter Verheyen, Hans Joachim Kraus, Ksenia Pumpor, Krishna Nagarajan und Mirko Hoffmann möchte ich für die ausgezeichnete Atmossphäre in Lübeck und Borstel danken, die mir die Kraft gegeben hat, auch nach Misserfolgen weiterzumachen.

Nicht zuletzt danke ich der deutschen Forschungsgemeinschaft (DFG) für die dreijährige Finanzierung meiner Arbeit.

8. Lebenslauf

Name:	Helgo Schmidt
Geburtstag:	30.01.1979
Geburtsort:	Bad Hersfeld
1985 – 1989:	Grundschule Neuenstein
1989 – 1995:	Gesamtschule Geistal in Bad Hersfeld
1995 – 1998:	Modellschule Obersberg in Bad Hersfeld, Abschluss: Abitur
1998 – 1999:	Zvildienst in der Unfallambulanz des Kreiskrankenhauses Bad Hersfeld
1999 – 2005:	Studium der Biochemie an der Friedrich-Schiller-Universität in Jena, Wahlpflichtfach: molekulare Strukturbiologie, Diplomarbeit: "Kristallographische Studien zu Reaktionsmechanismus und Aktivierung der Carboanhydrase"
2005 – 2010:	Doktorarbeit am Institut für Biochemie der Universität zu Lübeck in Kooperation mit dem Forschungszentrum Borstel, Thema: "Röntgenkristallographische Studien zu Kdo-Aktivierung und –Transfer in Aquifex aeolicus"