
Aus dem Institut für Informationssysteme
der Universität zu Lübeck

Direktor:
Prof. Dr. rer. nat. Volker Linnemann

Efficient XML Data Management and Query Evaluation
in Wireless Sensor Networks

Inauguraldissertation
zur

Erlangung der Doktorwürde
der Universität zu Lübeck

- Aus der Sektion für Informatik/Technik und Naturwissenschaften -

vorgelegt von
Nils Höller

aus Zell am See, Österreich

Lübeck, Oktober 2010

Nils Höller
Institut für Informationssysteme
Universität zu Lübeck
Ratzeburger Allee 160
D-23538 Lübeck
E-Mail: hoeller@ifis.uni-luebeck.de

Dissertation zur Erlangung des akademischen Grades
Doktor der Ingenieurwissenschaften (Dr.-Ing.)
der Sektion für Informatik/Technik und Naturwissenschaften
der Universität zu Lübeck
Vorsitzender der Sektion: Prof. Dr. Jürgen Prestin
Vorsitzender des Prüfungsausschusses: Prof. Dr. Stefan Fischer
1. Berichterstatter: Prof. Dr. Volker Linnemann
2. Berichterstatter: Prof. Dr. Thilo Pionteck
Tag der mündlichen Prüfung: 07.12.2010
Zum Druck genehmigt. Lübeck, den 07.04.2011

Abstract

With the advancing development in the field of microprocessor technology tiny wireless
computing devices for sensory tasks denoted as wireless sensor nodes have been intro-
duced. Large scale networks of these devices, denoted as wireless sensor networks, are
deployed for long term location monitoring and typically collect large sets of sensor data
over months or years. Managing sensor data in networks consisting of hardware resource
limited sensor node devices brings up many challenges for database research. Moreover,
integrating wireless sensor networks in heterogeneous networks is a complex task. A
reason is the absence of a standardized data exchange format that is supported in all
participating sub networks.

In the last decade, XML has become the defacto standard for data exchange in the World
Wide Web (WWW). The positive benefits of data exchangeability to support system and
software heterogeneity on application level and easy WWW integration make XML an
ideal data format for many other application and network scenarios like wireless sensor
networks. Moreover, the usage of XML encourages using standardized techniques like
SOAP to adapt the service oriented paradigm to sensor network engineering. Nevertheless,
integrating XML usage in wireless sensor network data management is limited by the
low hardware resources that require efficient XML data management strategies suitable to
bridge the general resource gap.

This dissertation introduces approaches for integrating efficient XML usage in wireless
sensor networks. This includes the integration of XML in the engineering process, energy
and memory efficient data management strategies, efficient solutions for XML data acqui-
sition and general optimization strategies for handling XML queries and result messages
in large scale sensor networks.

In detail, this work introduces the programming framework XOBESensorNetwork which
provides the direct use of XML in a sensor network programming language while ensuring
stable and space, time and energy efficient programs handling XML data. To allow flexible
XML data management on sensor node devices with strict hardware resource limitations,
XOBESensorNetwork includes two separate strategies on integrating compressed XML data
management in wireless sensor networks that both have been implemented and are running

4

on today’s sensor node platforms. In this dissertation, it is shown how this compressed
XML data can be further processed and how XPath queries can be evaluated dynamically.
In an extended evaluation we compare the performance of both strategies concerning the
memory and energy efficiency and show that both solutions have application domains and
are fully applicable on today’s sensor node products.

In summary, XOBESensorNetwork offers a complete XML solution for wireless sensor
networks from application engineering to in-field data management. As part of the DFG
project AESOP’s TALE, the presented XML data management solutions are the future
basis for integrating SOAP support in wireless sensor networks.

While the previous aspects cover the field of data management and application engineering,
this dissertation also includes further optimizations in the field of communication. Gener-
ally, saving energy in wireless sensor networks is essential to extend the lifetime of in-field
deployments. Previous research has shown that communication is generally the most en-
ergy consuming task and needs to be reduced in order to build resource-efficient long-term
applications. This dissertation therefore additionally introduces optimizations for process-
ing high amounts of unique queries by using a dynamic approximative caching scheme:
DACS. In DACS, query results can be retrieved from caches that are placed nearer to the
query source instead of sending queries deep into the network. The communication demand
can be significantly reduced and the entire network lifetime is extended. To verify cache
coherence in sensor networks with non-reliable communication channels, an approxima-
tive update policy is used. To localize the adequate cache adaptively, model-driven queries
including a degree of demanded result quality can be defined. The entire logic is thereby
processed by DACS and hidden to the user. The significant energy conservation is proven
in evaluations that include real sensor node deployments.

Acknowledgements

I would like to thank the entire IFIS staff for their support over the last years of finishing this
thesis and for the great exam celebration: Angela König, Jana Neumann, Nils Fussgänger,
Sven Groppe, Christoph Reinke and Prof. Volker Linnemann. Thanks to Dirk Kukulenz
for introducing me to the field of database systems research and showing me how to write
interesting papers. I especially thank my advisor Prof. Volker Linnemann for giving me
the opportunity of working and researching at the Institute of Information Systems, helping
me with his research experience, supporting all of my plans, conference trips and ideas and
giving me advise for my future career. Also special thanks go to my colleague and friend
Christoph for working as an unbeatable team over nearly 10 years in university and sharing
so many unforgettable memories. I thank the exam committee Prof. Thilo Pionteck and
Prof. Stefan Fischer for reviewing my work and chairing my exam.
During the last years I worked on the project AESOP’s TALE of the Institute of Informa-
tion Systems and the Institute of Telematics. Many fruitful discussions have influenced my
work and gave me new ideas. I therefore thank all ITM members of the AESOP’s TALE
team for their cooperation: Prof. Stefan Fischer, Nils Glombitza, Martin Lipphardt and
Christian Werner. I also greatly appreciate the help of many student workers that worked
for me and the AESOP’s TALE team over the last years. I hereby especially thank (in
alphabetic order): Daniel Böckmann, Julia Bulygina, Florian Frischat, David Gregorczyk,
Dirk and Lutz Hansen, Fabian Kausche, Claudia Möller, Björn Schütt and Stefan Werner.

Lastly, I deeply thank my family for their support. I thank my mother Ilka and my father
Friedrich for bringing me up with love and care, for always teaching me that education is
a precious good and not to forget for supporting me financially and mentally over all of
the years. I thank my sister Ann-Kathrin for being the best sister I can imagine. I thank
my German and Austrian grandparents for always supporting me, being proud of me and
providing me a peaceful childhood. Finally, I thank Karo for being always beside me and
guiding me how to be successful.

Lübeck, March 2011 Nils Höller

II

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 XML Usage in Wireless Sensor Networks 3
1.1.2 Adapting the Service Oriented Paradigm to Sensor Network Appli-

cation Engineering . 4
1.2 Goals and Organization of this Work . 6

2 Basics and Related Work 9
2.1 Wireless Sensor Networks . 9

2.1.1 Historical Overview . 10
2.1.2 Application Scenarios . 13
2.1.3 Existing Technical Solutions and Resource Constraints 15
2.1.4 Research Domains . 25

2.2 Data Management and Query Processing in WSNs 27
2.2.1 Query Languages and Data Models 27
2.2.2 Query Optimization . 34
2.2.3 Limitations of Existing Data Management Approaches 37

2.3 Complex Data Models and Data Management 39
2.3.1 XML: History and Concept of the eXtensibleMarkup Language . . 39
2.3.2 XML Schema Definition . 44
2.3.3 XML Query Processing and XPath 48
2.3.4 Benefits of XML Integration in Wireless Sensor Networks 55
2.3.5 Limitations and Goals of XML Integration in Wireless Sensor Net-

works . 55
2.3.6 Related Work to XML Data Binding and XML Compression 56

2.4 Service Oriented Architectures and AESOP’s TALE 57
2.4.1 Introduction to Service Oriented Architecture (SOA) and Web Ser-

vices . 58
2.4.2 Programming Web Services Using SOAP 61
2.4.3 Related Work to Middleware and SOA for Wireless Sensor Networks 63

IV CONTENTS

2.4.4 Adapting the Service Oriented Paradigm to Sensor Network Engi-
neering . 64

3 XOBE SensorNetworks 69
3.1 TheXOBESensorNetworks Programming Framework 69

3.1.1 Architecture . 71
3.2 Transparency . 73
3.3 Stability . 74
3.4 Efficiency . 75

4 The XML Template Compression Scheme 77
4.1 The XML Template Compression Scheme 77
4.2 XML Template Objects (XTOs) . 83

4.2.1 XTO Implementation Data Model 84
4.2.2 XTO Transformation Process . 88
4.2.3 XTO Transformation in Example 92
4.2.4 The Benefits of the XTO Concept 97

4.3 XML Template Streams (XTSs) . 97
4.3.1 XTS Implementation Data Model 98
4.3.2 XTS Transformation Process . 99
4.3.3 Encoding of XML Data as an XML Template Stream (XTS) 101
4.3.4 Binary encoding of the XTS . 104
4.3.5 Processing compressed XML documents using PDAs 104
4.3.6 The Benefits of the XTS Concept 110

4.4 Evaluation of XML Data Binding Techniques in WSNs 110
4.4.1 Evaluation Test Setup . 110
4.4.2 Evaluation Criteria . 111
4.4.3 Data Management Memory Efficiency 112

5 XML Query Evaluation in WSNs 117
5.1 XML Query Processing on XTOs . 117

5.1.1 Data Access . 119
5.1.2 Representing Results . 120
5.1.3 Evaluation Strategies . 123

5.2 XML Query Processing on XTSs . 124
5.3 XML Query Dissemination and Optimizations 126

5.3.1 Query Dissemination . 127
5.3.2 Processing and Transmitting Query Results in the Network using

Template Caches . 127
5.3.3 XML Query In-Network Aggregation Support 128
5.3.4 Bounded Continuous XML Queries 129

CONTENTS V

5.3.5 Data Caching . 131
5.4 Evaluation . 131

5.4.1 Functionality Test . 132
5.4.2 XPath Result Transmission . 136
5.4.3 XPath Result Aggregation . 137

6 DACS: A Dynamic Approximative Caching Scheme 139
6.1 Related Work . 141
6.2 The DACS Framework . 142

6.2.1 Cache Placement and Network Model 142
6.2.2 Cache Coherence . 143
6.2.3 Cache Localization . 145

6.3 DACS Implementation . 151
6.3.1 Implementation Architecture . 151
6.3.2 Message Delivery . 153
6.3.3 Localization Algorithm . 155

6.4 Evaluation . 157
6.4.1 Energy and Communication Efficiency 157
6.4.2 Query per Update Trade-off . 158
6.4.3 Validity and Robustness . 160

7 Conclusion and Future Work 163
7.1 Conclusion . 163
7.2 Future Work . 165

A List of Publications and Awards 167

Bibliography 172

VI CONTENTS

List of Figures

1.1 Heterogeneous Data in Wireless Sensor Networks 4
1.2 Sensor Network < − >WWW Integration 5
1.3 AESOP’s TALE System Architecture and Network Example 6

2.1 SOSUS Deployment Overview [174] . 11
2.2 Smart Dust Desired Form Factor [115] . 12
2.3 Smart Dust Currently Reached 5mm Form Factor [115] 12
2.4 Structural Health Monitoring of the Golden Gate Bridge [125] 14
2.5 General Hardware Architecture of Wireless Sensor Nodes 15
2.6 Wireless Sensor Nodes (from left): BTnode v3, CrossBow MICA2, Telos . 17
2.7 Wireless Sensor Nodes II (from left): Pacemate, Coalesenses iSense Core . 19
2.8 WSN Platform Comparison Technical Specification 24
2.9 The Sensor Network as a Database . 28
2.10 TAG Aggregation Process . 37
2.11 Tree Represenation of the XML Document of Example Listing 2.3 43
2.12 Overview on XPath Axes . 51
2.13 Web Service Stack Architecture [21] . 60
2.14 Web Service Architecture Triangle . 62
2.15 AESOP’s TALE Sensor Node Architecture 65
2.16 SOAP Usage in Wireless Sensor Networks Corn Farming Application Sce-

nario . 67

3.1 XOBESensorNetworks Architecture . 72

4.1 Result of the XML Template Scheme after 2 Iterations 79
4.2 The XML Document produced by Listing 4.1 80
4.3 Graphical Representation of an XTO . 86
4.4 XML to XML Template Object (XTO) Transformation Process 93
4.5 Resulting XML Template Object for Listing 4.13 95
4.6 Resulting XML Template Object for Listing 4.14 96
4.7 Structure of XML variable Report . 104
4.8 PDA for Processing Template Streams . 105

VIII LIST OF FIGURES

4.9 Structure of a Bintype . 106
4.10 XTS PDA Flowchart . 109
4.11 Evaluation Sensor Nodes: Pacemate [153] and iSense Core Module [45] . . 111
4.12 Monitoring Application Memory Usage 113
4.13 XMark XML Memory Usage . 114

5.1 XML Template Object for Example Listing 5.1 119
5.2 Mealy Machine for Child Axis Evaluation 120
5.3 Representing Results by using Markers 121
5.4 Using Parent Pointers in Result Markers 124
5.5 Memory Demand of XPathMark Tasks . 133
5.6 XPathMark Energy Consumption Results for Pacemate Nodes 134
5.7 XPathMark Energy Consumption Results for ISense Core Modules 135
5.8 Transmission Optimization . 136
5.9 XML Aggregation Results . 137

6.1 Overview DACS Simple Network Model Example 140
6.2 Forward If Updated Error Intolerance . 146
6.3 Network Node Distribution Density f(x) on Hop Layer 147
6.4 Network Error Distribution for Cache Layer 0: g(0, ex) 148
6.5 Error Distribution in Network for Cache Layer 3 150
6.6 Statistical Node Distribution for uniform randomized Deployments 151
6.7 DACS Architecture Component Diagram 152
6.8 DACS Message Forwarding Policy . 154
6.9 DACS Pacemate Indoor Deployment . 158
6.10 Message Demand for varying Error Function Update Policies 159
6.11 Update per Query Trade-Off . 160
6.12 Validity of the Update Policy for a 10% per Hop Error Function 161
6.13 Validity of the Update Policy for a 5% / 20% per Hop Error Function 161

List of Tables

2.1 Sensor Node Platform Comparison of Technical Specifications 17
2.2 Dimensions of the Sensor Network Design Space according to [201] 21
2.3 Example TinyDB sensors Table for Bird Observation 31
2.4 DTD Markup Declarations . 44
2.5 Attribute Types . 46
2.6 Restriction Rules . 48
2.7 XPath Node Types . 50
2.8 XPath Axes . 50
2.9 Node Test Functions . 51
2.10 Simplified XPath Grammar . 52
2.11 XPath Expression Examples . 53

4.1 Parts of the C Struct _xmlTemplate . 85
4.2 XTO Element Content Types . 85
4.3 Encoding the XTO Instantiation Operation Sequence 91
4.4 Overview on Encoding Marker and their Function 102

5.1 Program Memory Demand of XTO and XTS 135

6.1 DACS Packet Header Structure . 155
6.2 Point of Efficiency: Query per Update . 159

X LIST OF TABLES

Listings

2.1 TinyDB Query Grammar . 32
2.2 TinyDB Example Query . 32
2.3 Example XML Document . 42
2.4 Example DTD . 45
2.5 Example XML Document with embedded DTD 45
2.6 Example XSD . 47
2.7 XPathMark Evaluation Document . 52
2.8 Transforming TinyDB to XML . 54
2.9 Transforming TinySQL to XPath . 54
2.10 A SOAP Request . 62
2.11 A SOAP Response . 63
3.1 XOBESN Example Code . 73
4.1 XML Template Compression Scheme Example Code 78
4.2 Resulting XML Template for Example Code Listing 4.1 79
4.3 XML Query Rewriting after Identifier Optimization 81
4.4 Generic String Representation of XML Templates 82
4.5 Generic XML Template Tree Structure Representation in Embedded C . . . 84
4.6 DTD File for BTstatus Examples . 86
4.7 Identifier Array Implementation . 87
4.8 XML Assignment to XTO Instantiation Example 89
4.9 Definition and Instantiation of an XML Template Object 89
4.10 Direct Transformation of XML into C Operations for XTO Instantiation . . 90
4.11 Instantiation Loop for Adding Elements to an XTO 90
4.12 Resulting Code for the XTO Instantiation 91
4.13 XTO Transformation Example Code 1 . 94
4.14 XTO Transformation Example Code 2 . 96
4.15 XTS Data Model . 99
4.16 XML Fragment and resulting XTS Identifier Array Implementation 100
4.17 XOBESN XTS Example Code . 101
4.18 XTS Encoding Grammar . 102
4.19 XTS Bintype Implementation . 106
4.20 XTS Bintype Example . 107

XII LISTINGS

5.1 Example XML Document . 118
5.2 Template 2 for sensor . 119
5.3 XTO XPath Evaluation Node . 122
5.4 XTO XPath Context Node List . 122
6.1 Estimation of the Optimal Cache Layer in Java 156

Chapter 1

Introduction

With the rapidly advancing development in the field of microprocessor technology, which
results into smaller and more powerful microprocessors, networked sensing systems be-
came an increasing research topic throughout many fields of computer science in the last
years. Large scale wireless sensor networks consist of single sensor nodes that combine
regular computing devices with different sensors for monitoring environmental conditions
and events. Unlike traditional sensor deployments, the new kind of resource constrained
tiny sensor nodes/motes are deployed to not only sample and analyze real world processes
but also further process the sensor data in-network, e.g. filter, analyze, combine and share
sensor data. Typical deployment scenarios range from geological environment monitoring
to ubiquitous applications [108, 157, 246]. The general hardware limitations, e.g. low
energy and memory capacity and limited computational power, open up new challenges
for data management research in order to find an efficient solution for sensor network data
management and retrieval. The following section gives a detailed motivation for and de-
scription of the application scenario and strategies of this thesis.

1.1 Motivation
The evolving techniques of microprocessor and communication technology led to a new
form of highly distributed, wireless large scale networks consisting of tiny sensory pro-
cessing units denoted as wireless sensor networks (WSNs). These networks further coin
the terms of Ubiquitous and Pervasive Computing which have evolved to autonomous re-
search fields in computer science. The sensor nodes combine the traditional sensory tasks
and further process the data in-network. Hereby, they are limited by the hardware resources
of their components, e.g. the microcontroller, memory and radio unit.
In the recent years, the processing power of integrated circuits like central processing units
(CPUs) could be significantly increased. The transistor density was hereby nearly doubled
every two years following the prediction of Gordon E. Moore from 1965 [167]. On the
other hand, the latest microcontrollers used for platforms like sensor nodes have been de-

2 CHAPTER 1. INTRODUCTION

veloped with the main goal of significantly reducing the size and the energy consumption
to allow long term autonomous deployments. As a result, the processing capabilities of
today’s sensor nodes are not comparable to existing workstation CPUs or graphic proces-
sors. The memory configuration of the sensor nodes is also highly limited in comparison
to workstations and other mobile devices, e.g. smartphones, due to the designated small
form-factor of the nodes, which leaves no space for high memory configurations.
Beside the processing and memory infrastructure, the most important hardware limitation
is the energy supply of the sensor nodes. Typically, sensor nodes are equiped with non-
rechargeable energy supplies that limit the lifetime of in-field deployments like described
in [108, 157, 246]. The lifetime of each single sensor node is determined by its battery.
The network’s application lifetime can be even shorter due to failing communication
bridges and network separation. Hence, a main research goal in the field of sensor network
research is efficient energy conservation. The most energy consuming task and hence
most serious limitation in sensor networks is communication. Early results have shown
that the communication energy demand is significantly higher than the energy demand for
processing tasks, e.g. sending 1 byte via radio consumes the same energy as up to 1000
processing cycles [156]. Reducing the in-network communication demand and pushing
data management processing steps deep into the network is therefore one of the main
research goals in many fields of sensor network data management.

In summary, the mentioned general hardware restrictions of today’s sensor node platforms
bring up new challenges especially for complex data management in WSNs, e.g. pro-
cessing large sets of structured and unstructured sensor data in the network and providing
simple data acquisition solutions to acquire this information from outside the network.
Today’s complex data management techniques are not directly applicable without further
adaptation to the constraints. Moreover, sensor network programming is a highly complex
and error-prone task. The absence of supporting development frameworks like for tradi-
tional platforms and a development abstraction layer that requires working close to the
hardware layer result in a tedious engineering process, especially when complex data has
to be handled during application engineering. Finding simplified development solutions
that also take care of data integration into the engineering process is crucial to improve the
usability of sensor networks for non expert users, e.g. researchers from other domains than
computer science.

Previous work in WSN data management has been focused on supporting simple relational
data models like one table per network [156, 253]. In this thesis we discuss the need and
dynamical usage of complex data structures like XML in WSNs. While the simple one
table per network approach or other simple data models can reduce the exchangeability,
complex data structures are required for handling large heterogeneous data sets efficiently.
Generally, complex data models like XML enable using heterogeneous data and network
components by providing an independent, well structured data model in the application

1.1. MOTIVATION 3

layer of the OSI Reference Model [257]. Hence, different types of sensors and systems can
exchange their data and deployed networks can be extended continuously in-field. While
managing more complex data structures on the sensor nodes is a challenge concerning
the hardware and energy limitations, we present strategies that are especially designed to
bridge these resource gaps. The results of this thesis show that complex data management
is possible even on highly constrained sensor node platforms.
Furthermore, using XML is a key feature to support standardized protocols in the field of
service oriented architectures. In detail, the project AESOP’s TALE has been introduced to
adapt the service oriented paradigm to sensor network application engineering to simplify
the tedious and error prone task of traditional application development and open up applica-
tion development to non experts. Additionally, to support the service developers, handling
XML during the engineering process has been simplified by integrating native and stati-
cally type checked XML usage in the programming phase [96]. The following subsections
clarify the motivation of this thesis by giving examples for the introduced topics.

1.1.1 XML Usage in Wireless Sensor Networks
As described before, in this thesis we suggest the usage of XML as a central data format in
WSNs. From the data management perspective, the usage of XML supports interconnect-
ing heterogeneous sensor networks and encourages the interchangeability of different types
of WSNs with other systems by using a standardized data exchange format, e.g. making it
easy to interconnect a sensor network to the WWW.
In Figure 1.1 we give a simple example for using XML on the application layer of the
WSN to enhance the network heterogeneity. In detail, the example network includes
three sub networks I, II, III, that differ in their provided data. This scenario is typical
for sub networks that are deployed autonomously and do overlap because often a precise
placement can not be guaranteed, e.g. deploying out of air over the target area. We assume
a scenario where a WSN I has been deployed in the past. Now new sensor nodes with
different sensor configurations need to be deployed, forming the sub network II and hence
extending the entire WSN. As mentioned before, the positional placement of single nodes
during deployment is often not precise. Hence, the two sub networks can overlap. While
the overlapping sub networks may exist independently from each other, forming a third
sub network III, that includes both data structures and thus has to support heterogeneous
data on the application layer, can be an efficient option. By sharing and exchanging data
between sub networks WSNs can be optimized e.g. concerning failure robustness and load
balancing. Using XML enables the data exchange between these sub networks by support-
ing standardized transformation languages like XSLT [231] and standardized data query
languages like XPath [234] and XQuery [235]. Furthermore, heterogeneous networks can
be combined on higher level (e.g. sensor network interconnection) following the approach
of the global sensor network (GSN) [2].

4 CHAPTER 1. INTRODUCTION

<data>

 <sensor1>

 <light>...</light>

 <humidity>...</humidity>

 </sensor1>

 <sensor2>

 <radiation>..</radiation>

 </sensor2>

</data>

<sensor>

 <temp>...</temp>

 <time>...</time>

</sensor>

Figure 1.1: Heterogeneous Data in Wireless Sensor Networks

The positive benefits of XML usage in WSNs for interconnecting the WSN to other net-
works like the WWW are shown in Figure 1.2. In this example, a sensor network can
directly be queried using XML query languages like XPath [234] and XQuery [235] by
any client that is able to process XML. The XML result can be further processed, e.g.
in order to present it on a webpage using XSLT [231]. No explicit transformation step
is needed which enhances the usability of the network and simplifies data acquisition for
non expert users. The example further shows one of the main contributions of this thesis,
as the major application features are programmed by directly using XML data within the
target sensor network programming language which simplifies sensor network application
engineering for the developers.

1.1.2 Adapting the Service Oriented Paradigm to Sensor Network Ap-
plication Engineering

While the previous subsection introduced examples from the data management perspective,
there are positive benefits from the engineering perspective. Using XML is a key feature
to support standardized protocols in the field of service oriented architectures. The project

1.1. MOTIVATION 5

Figure 1.2: Sensor Network < − >WWW Integration

AESOP’s TALE focusses on adapting the service oriented paradigm to sensor network
application engineering [149]. The complex, traditional application development process
is simplified by introducing services that encapsulate sensor network functionalities and
can be combined to create more powerful applications. This engineering process opens
up application development to non-expert engineers. Additionally, to support the service
developers, handling XML during the engineering process can be simplified by integrating
native and statically type checked XML usage in the programming phase, as described in
the previous example in Figure 1.2. In Figure 1.3 we give an overview on the project’s
system architecture. On the one hand we show the combination of service oriented aspects
and on the other hand we present how XML simplifies the handling of heterogeneous data
and enhances the interoperability of heterogeneous networks.

The key target of AESOP’s TALE’s system architecture is the user/developer that should
be supported in developing applications by providing a standardized method of combining
existing services to high level applications. Each service in the sensor network provides a
basic functionality and is described by a unique service description. Additionally, external
applications can consist of heterogeneous services, e.g. traditional web services outside the
sensor network and services that are provided by the wireless sensor networks. To verify
the exchangeability the project relies on standardized protocols, e.g. SOAP [232]. The
support of such a protocol is a significant benefit of the XML support, which is the major
contribution of this thesis.

6 CHAPTER 1. INTRODUCTION

Figure 1.3: AESOP’s TALE System Architecture and Network Example

1.2 Goals and Organization of this Work
The main goal of this thesis is to integrate XML data management in the engineering
process of wireless sensor network applications. Therefore, we discuss an extension of the
sensor node programming language C that enables native XML usage within the program
code. The extension is denoted as XOBESensorNetworks and acts as a precompiler that
transforms plain, type checked XML data [122] to data models that are compilable with
the standard sensor node C compilers, e.g. gcc , ba-elf-gcc and avr-gcc [75].

To meet the general hardware restrictions of the nodes, e.g. low memory capacity, we
introduce different approaches for compressed XML data models that can be processed
dynamically, e.g. for evaluating XML queries in deployed sensor networks.

Beside the limitations of memory and processing power the main limitation of sensor
nodes is the energy capacity. Communication has been shown to be one of the main energy
consumers limiting the lifetime of the entire network. Using and transmitting complex data
models like XML hence requires strategies for data delivery in the network. We therefore
present approaches for optimizing the transmission of queries and results using XML data

1.2. GOALS AND ORGANIZATION OF THIS WORK 7

caches.

We summarize the goals and contributions of this work in particular:

• Integration of plain XML data in the Embedded C programming language and devel-
opment of a precompiler to process the XML data.

• Development of XML data binding strategies for resource restricted sensor node de-
vices and transformation of the embedded XML data in compressed data models and
structures.

• Development of a sensor node runtime framework to process compressed XML data
and XML queries on the compressed data dynamically.

• Introduction of communication strategies and query optimizations for XML sensor
networks to extend the lifetime of deployed wireless sensor networks.

The contributions presented in this thesis have also been published in the following refereed
publications [84, 85, 95, 96, 97, 98, 99, 100, 101, 102, 132, 133, 154, 171, 172, 198, 199,
200].

Structure of this Work

The remainder of this thesis is structured as follows:

In the next chapter, we introduce the basics that are required to understand the strategies
and approaches of this thesis. In detail, the chapter gives a technical introduction into
the field of wireless sensor networks and introduces the concepts of XML, XML query
languages, XML data binding solutions and existing XML compression techniques. Fur-
thermore, we describe fundamentals of service oriented architectures and the AESOP’s
Tale project as an application scenario for XML usage in wireless sensor networks.

In the following chapters, we discuss the contributions of this thesis in detail. Chapter
3 introduces the XOBESensorNetworks precompiler that enables the integration of XML
data in the WSN engineering process. We give a detailed overview on the precompiling
cycle from parsing the embedded XML data to transforming the embedded XML data in
compressed data models that are processable by the standard C compiler.

In Chapter 4, we discuss the transformation and XML data binding process in detail. We
introduce the XML Template Compression Scheme that allows to significantly reduce the
memory usage of XML data in order to enable dynamic XML data management on the
sensor nodes. We hereby present two separate implementations of the XML Template
Compression Scheme that are optimized for a high compression ratio (XTS) and a fast

8 CHAPTER 1. INTRODUCTION

processing speed (XTO) respectively. We evaluate these implementations and compare
them to existing applicable XML data binding solutions.

Data acquisition is one of the main tasks of wireless sensor networks. Hence, in Chapter
5 we give a detailed introduction on how to evaluate XML queries on compressed XML
structures in wireless sensor networks dynamically. XPath evaluation algorithms for both
XML Template Compression Scheme implementations are presented and the memory and
energy efficiency of the evaluation process is compared for both solutions. We further
discuss the dissemination and optimizations of XML queries.

After giving an overview on query optimizations in wireless sensor networks, we introduce
a dynamic caching scheme for extending the lifetime of XML sensor networks in Chapter
6. We hereby discuss cache placement, cache coherence and cache localization in highly
dynamic ad-hoc sensor networks. The caching approach is evaluated to show the significant
energy efficiency when used for data acquisition. We finalize this thesis by summarizing
the contributions and show possible fields of future work in Chapter 7.

Chapter 2

Basics and Related Work

In this chapter, we summarize related and previous work in the area of wireless sensor
networks and especially in the area of integrating complex data management in wireless
sensor networks by using XML. While the complex programming of sensor nodes requires
efficient XML data binding solutions and the programming language integration of XML
data in the sensor network engineering process, the general hardware constraints require
optimized compression and processing techniques. Nevertheless, wireless sensor networks
are deployed for data acquisition. Hence, the need of processing, updating and querying
sensor network XML data dynamically is essential. We finally give references to possible
application scenarios like data storage and communication in conjunction with service-
oriented architectures in wireless sensor networks.

2.1 Wireless Sensor Networks
In the recent decades the computer science and technology has significantly evolved. In
the early years, computers were mostly used for scientific, military and financial computa-
tion, controlled by a limited number of expert users following the usage paradigm of one
computer for many users. With the development of the Home Personal Computer in the
beginning of the 1980s which was favored by the advances in electric circuitry resulting
into size reduced and affordable hardware the new paradigm of one computer per user
became true. Still following Moore’s Law, with the miniaturization and integration process
in the recent years many computing devices like mobile phones and notebooks became
part of the daily life, which finally initiated the era of many computers per user.

In his work The Computer of the 21st Century from 1991 [243], Marc Weiser forecasted
this significant move from the one computer per user to the many computer per user era.
In his work he coined the term of Ubiquitous Computing, denoting the integration of
information processing devices and functionalities in everyday objects and activities. The
process is also often denoted as Pervasive Computing. The integration process reaches to

10 CHAPTER 2. BASICS AND RELATED WORK

the point where the ubiquitous technologies disappear and are not longer distinguishable
from the everyday objects [243]. This transition is currently in process and wireless sensor
networks that are discussed in this thesis are one important trend in ubiquitous computing.

In detail, the significant miniaturization of electronic circuitry and new techniques in
wireless communication and efficient, economic power management enable wireless, tiny,
autonomous mobile devices denoted as sensor nodes / motes. These sensor nodes are typi-
cally equipped with diverse sensors to analyze the environment and build up autonomous
ad-hoc wireless sensor networks. They contain computational hardware (e.g. microcon-
trollers), wireless communication hardware (e.g. radio controllers) and sensing devices
(e.g. temperature sensors). As denoted in the introduction of this thesis, sensor networks
are deployed for long term applications. Hence, the limitations in energy supply and
memory configuration of the nodes bring up new challenges for different research areas,
e.g. communication techniques, electrical engineering and information management. This
thesis hereby covers strategies on integrating energy efficient XML data management in
wireless sensor networks and optimizing the tedious task of sensor network application
engineering.

For better understanding of the target application platform, we summarize the history of
sensor node technology, research and development in this section. We further introduce the
latest technologies and products in Section 2.1.3. We finally show the general hardware
and development limitations of the platforms and define challenges for database research.

2.1.1 Historical Overview
The origin of today’s wireless sensor networks is the military surveillance. One of first
named projects is the Sound Surveillance System (SOSUS) [77], which has been introduced
and used by the United States Navy during the cold war for tracking soviet submarines at
different strategic locations around the world. SOSUS is hereby historically part of the
United States Navy’s Integrated Undersea Surveillance Systems (IUSS) network. The de-
velopment started in 1949 with the first research phase at the MIT and the beginning of the
installation of the first prototype in mid 1950. Unlike today’s wireless sensor network ap-
proaches that are reviewed in this thesis, SOSUS consisted of bottom mounted hydrophone
arrays that were connected by undersea communication cables to base stations at facilities
on shore. The only wireless connection was between different base stations via satellite.
The sensor nodes itself were deployed as dedicated nodes with only one function: sam-
ple the hydrophone data and send it to the base station in order to process the tracking
algorithms. To improve the detection rate, the deployment was done deterministically, e.g.
placing the hydrophone nodes on continental slopes and seamounts to improve the signal
quality. In contrast, today’s large scale networks are often deployed out of air, whereby
the exact position of a node can only be estimated. In Figure 2.1, we show an example

2.1. WIRELESS SENSOR NETWORKS 11

overview on the SOSUS deployment, illustrating the satellite interconnection of the base
stations that retrieve the sensor sample data from the hydrophone sensors.

Figure 2.1: SOSUS Deployment Overview [174]

Until the 1960s, SOSUS was significantly extended to a world wide interconnected deploy-
ment, which can be denoted as one of the first very large scale sensor network multi-hop
networks. In 1961, SOSUS tracked the USS George Washington from CONUS to the UK.
During the next decades SOSUS was mainly used for tracking soviet strategically move-
ment in field. Nevertheless, there were several documented rescue and science operations
during that time [77], e.g. earthquake measurements [174]. With the end of the cold war
in the beginning of the 1990s the SOSUS project was officially declassified, only parts of
the deployment remain operational and former secret information got into public which
can be used to improve future civil projects. The system is currently used by the National
Oceanographic and Atmospheric Administration (NOAA) for detecting events in the ocean
concerning seismic and animal activity.
Beside SOSUS, a milestone in the evolution of modern wireless sensor networks was the
initiation of the first Distributed Sensor Nets (DSN) Workshop (CMU) in 1978 which was
sponsored by Defence Advanced Research Projects Agency (DARPA). The research at that
time was focussed on large scale networks of low-cost sensor nodes with the technical
focus on sensing, communication and distributed data processing.
With the technical development of Micro Electro-Mechanical Systems (MEMS) and
integrated circuits in conjunction with the predictions of Moore’s law, the technical re-
quirements for today’s wireless sensor networks have been reached. It enabled very
compact, autonomous and mobile nodes, each containing one or more sensors, compu-
tation and communication capabalities as demanded in the previous projects [115]. In
1999, Deborah Estrin et al. [66] and Joe Kahn et al. [115] published the vision of very
large scale wireless sensor networks and the new challenges when operating these systems.
These vision papers can be seen as the initial work for the type of sensor networks that

12 CHAPTER 2. BASICS AND RELATED WORK

are currently researched and are reviewed in this thesis. The corresponding development
of the wireless sensor nodes started in 1998 with the Smart Dust project [115] and in
1997 with the NASA Sensor Webs project [23]. Both projects coin the terms of mote and
pods respectively, denoting tiny wireless sensor node units, which are used in many areas
of wireless sensor network research. The Smart Dust project is often referred to as the
initial movement of the today’s sensor network research community. Since then, various
hardware platforms and software solutions in the field of wireless sensor networks have
been developed and been influenced by this initial work. Hence, we give a more detailed
introduction to the Smart Dust project in this paragraph. For extended information related
to the NASA Sensor Webs project, we refer to [23] and [40].

The main research goal of the Smart Dust project was the development of autonomous
sensing and communication devices in a cubic millimeter form factor. The milimeter-scale
nodes are denoted as Smart Dust, forsaying the future possibility of mobile nodes remaining
suspended in the air like flying dust, sensing and communicating for very long time [115].
Figure 2.2 and 2.3 show the future demanded scale and the currently reached scale of smart
dust nodes.

Figure 2.2: Smart Dust De-
sired Form Factor [115] Figure 2.3: Smart Dust Cur-

rently Reached 5mm Form
Factor [115]

The basic technology of Smart Dust motes corresponds to today available sensor node
platforms. Consisting of signal-processing and control circuitry, optical receivers, thick-
film power sources with limited energy supply and various sensors, the Smart Dust motes
define the challenges of wireless sensor nodes that have been researched in the recent years.
The major challenge of extending the lifetime of the energy limited sensor networks hereby
has been the key motivation. The Smart Dust project particularly defines challenges for
various research domains:

• The demanded form factor requires new techniques in designing batteries for long
life energy supply.

2.1. WIRELESS SENSOR NETWORKS 13

• Due to the size limitations the processing capabilities are relatively small.

• The energy demand of the communication interface is the most significant aspect for
the node’s lifetime and hence the key goal for optimizations. The project defined
further problems like the communication challenges concerning the line-of-sight and
link directionality.

• The energy efficient interaction of a a huge variety of sensor devices is one design
challenge.

The official Smart Dust Project ended early. However, it was the birth of the sensor network
research, like the TinyDB data acquisition framework [43, 156] and TinyOS [141], that also
influenced this thesis.

2.1.2 Application Scenarios
Wireless sensor networks are deployed for a wide range application fields ranging from
military and civil surveillance, monitoring and automation areas. They are deployed for
application tasks where former fixed wired sensor systems are too costly or not even ap-
plicable due to the application range. While there have been several deployments reported
in the past, we introduce some of the most significant deployments and applications in this
section.

Great Duck Island Habitat Monitoring

One of the most important and most referenced wireless sensor network deployments is the
Great Duck Island habitat monitoring [33, 157, 222, 223]. This project has been done by
the UC Berkeley starting in 2002 with the distribution of about 150 sensor nodes on the
Great Duck Island in order to observe the nesting behaviour of local birds. The goal of the
project was to develop a habitat monitoring kit that enables researchers worldwide to en-
gage in the non-intrusive and non-disruptive monitoring of sensitive wildlife and habitats.
The deployed sensor nodes were equipped with a microcontroller, low-power radio, mem-
ory and batteries. They collected sensor readings from sensors for temperature, humidity,
barometric pressure and mid-range infrared. From the data management point of view,
the system was deployed as a push system, sending the data periodically to a base station
on the island where it was forwarded to the research lab via satellite. The data was made
available as real-time environmental data in the WWW. This process has been introduced
in the introduction of this thesis and is one of the main key features of the XML support
for wireless sensor networks.
Other deployments for monitoring and tracking animals have been reported in [6, 113, 256].
Comparable studies on tracking animals like birds are discussed in [38, 112]. The ZebraNet
deployment [113, 256] hereby differs from the static wireless sensor network deployments

14 CHAPTER 2. BASICS AND RELATED WORK

as the sensor nodes are attached to a collar around the zebras necks and hence are mobile,
which opens up new research domains and design issues [6].

Structural Health Monitoring of the Golden Gate Bridge

Another application scenario for wireless sensor network deployments is the structural
health monitoring of buildings and other physical infrastructure. Wireless sensor networks
are especially useful in scenarios where wiring is not possible or too costly, e.g. monitoring
large buildings over many floors. One of the largest wireless sensor networks deployments
for structural health monitoring has been reported in [124, 125, 180, 181]. In a project
cooperation between the University of Berkeley and the sensor node vendor Crossbow,
a wireless sensor network has been designed, implemented, deployed and tested on the
4200ft long main span and the south tower of the Golden Gate Bridge [125]. As shown in
Figure 2.4, sensor nodes have been distributed over the main span and the tower to collect
ambient vibrations without interfering with the operation of the bridge. The sampled data is
collected reliably over a 46-hop network and compared to theoretical models and previous
studies of the bridge [125]. Deployments like this are especially important in areas with
high probability of natural disasters, e.g. earthquakes, to prevent buildings of structural
damage.

Figure 2.4: Structural Health Monitoring of the Golden Gate Bridge [125]

Beside the Golden Gate Bridge Project, extended descriptions on other sensor network de-
ployments for building and process control and automation can be found in [249]. Deploy-
ment and application reports on building security are described in [68, 69, 94]. Reports on
intelligent building sensing and control can be found in [203, 205, 211]. Building sensing
and control enables pervasive homes which are often defined as Smart Spaces and Smart
Homes [90, 177, 221]

Other Deployments Scenarios

As denoted previously, in the recent years there have been several deployments in civil
and military application domains. Most of these deployments have been summarized in
recent survey papers [5, 9, 17, 41, 119, 254]. As far as military application reports, e.g. on
vehicle tracking and shooter localization, are published, different tracking and surveillance
reports can be found in [92, 163, 214]. Sensor network deployments for monitoring the

2.1. WIRELESS SENSOR NETWORKS 15

environment are described in [52, 53, 62, 81, 219]. A recent discussion of integrating
wireless sensor networks in enterprise systems is given in [105, 161, 162]

2.1.3 Existing Technical Solutions and Resource Constraints
In this section, we discuss the general architecture of sensor nodes and give an overview
on the specific parts of the technical configurations. We further discuss the limitations of
today’s sensor node platforms and the corresponding challenges and solutions for each
layer of the OSI reference model [257].

In Figure 2.5, we show the general technical architecture of a sensor node. A sensor node
basically consists of four components: a microcontroller, a power source, a transceiver and
a sensor controller that acts as an interface to various sensor devices.

Figure 2.5: General Hardware Architecture of Wireless Sensor Nodes

The microcontroller is the processing unit of the sensor node that processes the data and
controls the communication and other components of the device. In the recent years, sensor
node platforms have been equipped with several types of microcontrollers and digital signal
processors (DSPs) of various manufacturers. Hereby, the state-of-the-art microcontrollers
provide energy efficient processing power while remaining small sized and hence suffice
the tiny form factor demand. Typical sensor node microcontroller manufacturers are Atmel
(e.g. Atmega128L), Phillips (e.g. LPC 2136) and Texas Instruments (e.g. MSP430). The
microcontroller is directly attached to external memory. Following the Harvard Architec-
ture most RISC-based sensor nodes hereby are equipped with physically separate storage
and signal pathways for instructions and data [92].
Sensor nodes that are build as Application Specific Integrated Circuits (ASICSs) can be the
most energy efficient platforms [189]. However, due to the limited flexibility of these nodes
after deployment, they have been only discussed for very specific application scenarios.
The usage of Field Programmable Gate Arrays (FPGAs) [160] as dynamic coprocessors on
the sensor node has been discussed in the recent years [13, 176, 228].

16 CHAPTER 2. BASICS AND RELATED WORK

They provide energy efficient reconfigurable circuitry to enhance the lifetime of the sensor
node when processing large amounts of sensor data continuously. However, due to the
miniaturization demand that conflicts with the size of existing FPGAs the integration
process is still in early stages and today’s sensor node platforms absent from using FPGAs.

Due to the general large scalability of wireless sensor networks, sensor node transceivers
mostly use the Industrial, Scientific andMedical (ISM) Band which is globally available. In
the recent years various transmission concepts like infrared and optical communication or
using general radio frequencies have been discussed. The state-of-the-art communication
is radio frequency (RF) based communication working on frequencies from 433 MHz to
2.4 GHz. For long term deployments energy efficient transceivers and protocols have been
investigated. They include energy efficient wake-up-sleep cycles and energy conservation
on higher layers of the corresponding protocol stack.
Typical radio hardware manufacturers are Chipcon AF (e.g. CC1000 an CC2420), RFM
(e.g. TR1001868) and Semtech (e.g. XE1205). A widespread energy efficient commu-
nication protocol stack is hereby the ZigBee standard [12, 126] which includes the IEEE
802.15.4 standard. Besides, the usage of Bluetooth technology has also been discussed in
[17, 140, 169]. Other radio technologies like Wifi (IEEE 802.11) are not used frequently
due to the lower energy efficiency.

Wireless sensor nodes are typically equipped with batteries providing a limited power
supply. Active power supply like solar panels has been also discussed in [27, 47, 242].
Recharging the batteries by using environmental conditions has been discussed in [202].
Nevertheless, typical sensor node platforms and deployments work with limited power
supplies and require additional concept for energy conservation to extend the network life-
time.
The sensor controller attaches various sensor devices to the sensor node, ranging from
temperature sensors to complex chemical sensors. Based on the complexity of the sensor,
frequently sensing the environment leads to a high energy demand and significantly re-
duces the network lifetime. While the sensors themselves do not provide processing logic,
additional concepts over all system layers are required to support energy efficient sensing,
e.g. adapting the sensing rate to data requirements [156].

In the following part of this section, we give a more detailed introduction on typical sensor
node platforms and their technical constraints and design space.

Sensor Node Platforms

In the recent years, several sensor node platforms have been introduced by university
project groups and electronics-specialized companies. One of the first sensor node designs
following the Smart Dust target specifications was the UC Berkeley sensor node platform

2.1. WIRELESS SENSOR NETWORKS 17

MICA [92]. The sensor nodes have been denoted as Motes. This platform has been com-
mercialized by the company Crossbow Inc. (http://www.xbow.com/) and various types of
MICA motes have been presented. Today, Crossbow is one of the leading manufacturers of
wireless sensor nodes. Beside the MICA mote platform, other sensor node platforms have
been designed by university research groups like Eyes [88], Tmote [246], Pacemates [153],
Telos [187], BTnodes [17] and iSense nodes [45]. In Table 2.1, we give an overview on
existing sensor node platforms and their technical specifications.
We show the most important of these sensor nodes in Figure 2.6 and 2.7. A complete
historical overview on existing sensor node platforms can be found in The Sensor Network
Museum at http://www.snm.ethz.ch. The approaches that are presented in this thesis have
been developed and implemented and evaluated for the BTnodes, Pacemate and iSense
Core platforms. Nevertheless, they are fully adaptable and applicable on all presented
sensor node platforms. In the following paragraphs, we discuss a selection of the most
important sensor node platforms.

BTnode v3 MICA2 MICA2dot MICAz telos A tmote sky EYES Pacemate iSense Core
Manufacturer Art of Technology Crossbow Imote iv Univ. of Twente Univ. of Luebeck Coalesenses
Microcontroller Atmel Atmega 128L Texas Instruments MSP430 Phillips LPC 2136 Jennic JN5139
Architecture 8 Bit 16 Bit 32 Bit RISC
Speed 7,37 Mhz 4 Mhz 7,37 Mhz 8 Mhz 5 Mhz 8 Mhz 16 Mhz

Program Memory (ROM) 128 kB 128 kB 128 kB 128 kB 60 kB 48 kB 60 kB 256 kB 80 kB
Data Memory (RAM) 64 kB 4 kB 4 kB 4 kB 2 kB 10 kB 2 kB 32 kB 16 kB
Storage Memory (Flash) 180 kB 512 kB 512 kB 512 kB 256 kB 1024 kB 4 kB 0 kB 128 kB

Radio Chipcon CC1000 Chipcon CC2420 RFM TR1001868 Semtech XE1205 IEEE 802.15.4 compliant radio
Outdoor Range (m) 150-300 75-100

Size (mm2) 1890 1856 492 1856 2080 2621 3304 1350

Table 2.1: Sensor Node Platform Comparison of Technical Specifications

Figure 2.6: Wireless Sensor Nodes (from left): BTnode v3, CrossBow MICA2, Telos

The MICA platform, TinyOS and BTnodes
The Berkeley MICA mote platform is often introduced as the de facto standard sensor
node platform. Today, they are commercially produced and sold by the company Crossbow
Technology Inc. There exist different types of MICA motes with various hardware settings
and form factors. In Figure 2.6, we show the popular MICA2 sensor node. Other follow up
products include the MICAz platform, which operates on the 2.4GHz band, and the Intel-
designed IMOTE2 sensor node. Berkeley-style MICA nodes implement the TinyOS soft-

18 CHAPTER 2. BASICS AND RELATED WORK

ware framework [141], a component-based programming paradigm and application pro-
gramming interface (API) that has been particularly designed for wireless sensor networks
and is operated by an international consortium, the TinyOS Alliance.
The TinyOS API provides an efficient hardware abstraction layer to simplify the com-
plexity of sensor node platforms. TinyOS applications are written in the nesC (network
embedded systems C) programming language [74] which introduces component-based,
event-driven applications for the TinyOS platform. The nesC language is an extension
to the C programming language. Accordingly, all contributions of this thesis that have
been evaluated on Embedded C programmed sensor nodes are also applicable on nesC
programmed sensor nodes.

The BTnodes hardware platform has been introduced by the ETH Zuerich Computer Engi-
neering and Networks Laboratory (TIK) and the Research Group for Distributed Systems
[17]. In Figure 2.6, we show the BTnodes v3 sensor node that has been used for devel-
oping and evaluating the concepts of this thesis. The BTnodes architecture shares many
technical specifications with the Berkeley-style MICA platform as shown in Table 2.1. The
processing is done by a 8bit Atmel Atmega128l microcontroller. While the program mem-
ory equipment is equal, the BTnode sensor nodes are equipped with a larger amount of
data memory, representing the latest progress in the miniaturization of memory cells. The
communication specifications (baseband, MAC and link-layer protocols) is also common
for most of the presented architectures. However, one of the main interests in developing
the BTnode platform was the integration into other networks. Therefore, unlike the MICA
nodes, the BTnodes are equipped with a Bluetooth controller, letting them interact with any
Bluetooth-enable devices without the need to integrate further hardware or software [17].
This possibility of hardware interoperability was one reason for the selection of BTnodes
as a prototyping platform for the concepts of this thesis, e.g. supporting heterogeneous
sensor networks and integrating wireless sensor networks in the WWW. BTnodes are
programmed in standard Embedded C using the BTnut API that provides a hardware ab-
straction layer [16, 60]. Besides, the BTnodes hardware is also compatible to the TinyOS
API.

The iSense OS platforms (Pacemates and iSense Core nodes)
Other sensor node platforms that have been extensively used for implementing and evalu-
ating the concepts of this thesis are the Pacemate sensor nodes and iSense Core modules
that run the iSense OS. Like TinyOS and BTnut, iSense OS is a modular, flexible and con-
venient API that provides abstracted access to the node hardware and a broad variety of
networking protocols . Sensor nodes that run iSense OS are programmed in C++ and Em-
bedded C. The iSense OS framework also provides a built-in support for simulating iSense
applications using the simulator Shawn [131].
In Figure 2.7 (left), we show the Pacemate sensor node. The Pacemate sensor node platform
has been designed and developed for the MarathonNet project of the Institute of Telematics

2.1. WIRELESS SENSOR NETWORKS 19

Figure 2.7: Wireless Sensor Nodes II (from left): Pacemate, Coalesenses iSense Core

of the University of Luebeck [153]. The project goal was to design an application to track
marathon runners paths and vital values over a mobile ad-hoc network. Due to usability
reasons, the Pacemates have a larger form factor consisting of an ergonomically designed
case and a user interface that lets the runners access their data during the race. While
the technical specifications of the Pacemate nodes are comparable and representative to
other sensor node platforms like MICA motes, the ergonomic case, input interface and
display make them an ideal platform for fast debug and prototyping. As denoted previously,
the Pacemate nodes are programmed in C++ and Embedded C using the iSense OS API.
Besides, they have also been used for developing the service oriented operating system
SurferOS that is also part of the AESOP’s TALE project [152].
In Figure 2.7 (right), we show the iSense Core module. The iSense Core modules are a
higly flexible sensor node platform designed and developed by Coalesenses. Coalesenses is
a research spin-off of the Institute of Telematics of the University of Luebeck that officially
supports and develops the iSense OS API. The iSense Core modules are state-of-the-art
sensor nodes, equipped with the latest processing, communication and sensor technology.
While the actual iSense Core module only consists of a Jennic 32bit microcontroller and a
802.15.4 compliant radio device, it can be extended with various types of sensor devices,
ranging from temperature sensors to security modules. The iSense sensor node platform is
the reference platform for the iSense OS API. Furthermore they are supported by the iShell
programming, operating and analysis tool that provides a variety of functions for operating
and debugging iSense wireless sensor networks. The technical specifications and the form
factor of the nodes make the iSense Core platform the target reference platform for the
concepts of this thesis. Nevertheless, as denoted previously the results of this thesis can
be adapted for all sensor node platforms that support the C programming language and are
within the technical specifications that are discussed in the next paragraphs.

20 CHAPTER 2. BASICS AND RELATED WORK

Design Challenges

Wireless sensor networks are distributed ad-hoc networks / systems [247]. Accordingly,
they share many design and implementation concepts with previously existing mobile
ad-hoc networks (MANETs) [119]. Nevertheless, in [119] Karl and Willig introduce the
most important reasons that make wireless sensor networks different to existing MANETs.
In [201], Roemer and Mattern discuss the design space of sensor network applications
and show that applications deviate in various dimensions under various constraints. In the
following paragraph, we summarize the differences and key challenges for engineering
applications for wireless sensor networks. We hereby discuss technical limitations and
clarify the design space of sensor network applications.

Wireless sensor networks are deployed for a wide variety of application scenarios consist-
ing of various hardware and software configurations. The design of the sensor network has
to fulfil various requirements regarding hardware issues and software support [201] which
opens up a very large design space. In detail, a formal definition of the application require-
ments and the network conditions is often not possible due to the variety of issues in wire-
less sensor networks, e.g. network scale, communication technique, ad-hoc configuration
and hardware configuration. Many research papers in the past worked with assumptions of
the network model. However, in [201] Roemer and Mattern discuss that these assumptions
might often not be correct due to the various dimensions of the extensive sensor network
design space.
In Table 2.2, we show the various fields of the design space. Wireless sensor network
deployments can differ in their deployment type and network size, the usage of mobile
vs. immobile nodes, the hardware resource configurations that includes homogeneous and
heterogeneous configurations, the type of network infrastructure and network topology, the
coverage and the connectivity. Moreover, sensor networks are deployed for a dedicated
lifetime. This lifetime is most critical to be achieved and has deep impact on the selection
of network maintenance and communication algorithms.
The dimensions described in Table 2.2 can be applied to describe existing projects like the
Great Duck Island project that has been introduced in Section 2.1.2. The Great Duck Island
deployment was an one-time deployment whereby immobile nodes were manually placed
inside the bird burrows. The sensors where equipped with various sensors to measure the
humidity, light and temperature. The presence of the birds was detected with infrared sen-
sors [201]. According to Roemer andMattern the hardware resources of the used nodes can
be classified as matchbox [201] based on the physical dimensions. The technical specifica-
tions are comparable to the ones described in Table 2.1. While there are more dimensions
of the Great Duck Island deployment described in [201], these listed dimensions show that
there are several issues that need to be reviewed during engineering the sensor network
application.
As described in [15], for building generic applications one has to assume a worst case sce-

2.1. WIRELESS SENSOR NETWORKS 21

nario, e.g. assuming minimum node capabilities and highly mobile nodes. Nevertheless,
this approach does not explore the real design space of the application. A variety of hard-
ware and software solutions is indeed essential to explore even large portions of the design
space. The actual application design hence becomes a very complex and error prone task
that requires new concepts of software engineering and a critical discussion of the technical
constraints and metrics in sensor networks. This application scenario dependent adaptation
of the design space [15] is one key feature of the adaptation of the service oriented paradigm
to sensor network engineering as discussed in the introduction of this thesis.

Dimensions Property Classes
Deployment randomly vs. manually deployed; one-time vs. iterative deployments
Mobility active vs. passive mobility, occasional vs. continuously mobility of all or only selected nodes

Cost, Size, Resources and Energy unlimited resources vs. very restricted resources
Heterogeneity homogeneous vs. heterogeneous sensor node platforms

Communication Modality radio vs. light vs. inductive vs. capacitive vs. sound
Infrastructure fixed infrastructure vs. ad-hoc networks

Network Topology single-hop vs. star vs. networked stars vs. tree vs. graph
Coverage sparse vs. dense vs. redundant
Connectivity connected vs. intermittent vs. sporadic
Network Size few nodes vs. thousands of nodes vs. even more
Lifetime hours vs. days vs. years

Other QoS Requirements real-time demands, robustness and others

Table 2.2: Dimensions of the Sensor Network Design Space according to [201]

The challenges in designing software for sensor networks have been also discussed in the
early sensor networks projects. In their early work in the field of wireless sensor networks
Next Century Challenges: Mobile Networking for Smart Dust, Kahn et al. [115] were
predicting these challenges. The predicted key challenges can be summarized as:

• limited hardware resources of the highly integrated sensor nodes

• a large amount of devices in the network leading to a complex collaboration task

• a tight coupling of the application scenario and the sensor nodes

• a broad usage profile ranging from system-experts to non-expert users, e.g. biolo-
gists.

Many of the mentioned challenges also apply for general mobile ad-hoc networks
(MANETs). However, as Karl and Wittig describe in [119], there are significant differ-
ences in many fields of the application design. The most important differences are:

• the previously describedwider application design space, e.g. very different network
densities

• the environmental interaction, e.g. non-continuous expected data delivery rates
including unpredictable data bursts in event detection

• a higher scalability, e.g. up to hundred of thousands of distributed nodes

22 CHAPTER 2. BASICS AND RELATED WORK

• a scarce energy supply making the energy consumption the primary metric to be
considered

• the requirement for new energy efficient and robust self configuration concept due
to extended lifetime demand

• very different concepts of dependability and quality of service, e.g. a large variance
in delivery rate requirements

• data-centric network maintenance, e.g. the single node is not important, only the
data is important

• the limitation in hardware resources require much simpler operating and network-
ing software.

All of the presented surveys on design challenges in wireless sensor networks show the
complex task of application engineering. This is especially relevant when only algorithms
and concepts are designed that should be part of complex applications. Therefore in the
past, many concepts for wireless sensor networks, e.g. routing or data management algo-
rithms, have been designed using generic sensor network models that should describe a
large design space. The algorithms for these concepts have often been tested in simulators
that represent the network model. Kotz et al. and Kurkowski et al. claim in their work
[129, 134] the results of this simulations can often not been repeated or applied either in
simulation or especially in real sensor network deployments. To produce more representa-
tive results, the concepts of this thesis have therefore been implemented and tested on real
sensor node products considering all of the described challenges. Hereby, we noticed that
the largest design challenge are the technical constraints of sensor node platforms, e.g. the
limitations in the hardware resources. We therefore discuss these constraints in more detail
in the next paragraph.

Technical Constraints

Beside our own experiences in implementing and testing applications on sensor nodes,
almost all sensor network research publications claim that the actual greatest challenge in
wireless sensor network are the limited hardware resources. Most of the applications and
concepts of conventional (distributed) computing or even other mobile ad-hoc networks,
e.g. cell phones, are not applicable for wireless sensor networks due to the large resource
gap between these platforms. To explore the resource configuration space Beutel defines
metrics for wireless sensor networks in [15]. These metrics compare existing sensor node
platforms to find the actual limitations in all parts of hardware configurations. In summary,
wireless sensor networks are limited in the following hardware metrics:

• System Core

2.1. WIRELESS SENSOR NETWORKS 23

– CPU architecture
– CPU speed (clock frequency)
– Program memory

– Data memory
– External storage
– Energy conservation (idle, processing)
– Node size
– Amount of on-board sensors
– Amount of external IO channels

• Radio System

– Band frequency
– Channels
– Data rate
– Setup time
– Energy conservation (transmitting, receiving)
– Sensitivity
– Outdoor / Indoor range

All of the described metrics have different impact on design decisions for wireless sensor
applications. However, it has been shown that the power consumption and the limited
energy supply are the most challenging hardware metrics [15]. Different sensor node
platforms can vary in there general power consumption. Nevertheless, the power con-
sumption of today’s sensor nodes is significantly higher for communication. Therefore,
sensor network application should avoid extensive communication as far as possible, e.g.
in Chapter 6 we discuss a technique to significantly reduce the communication demand.
For the system core the processing power limitations, e.g. using energy efficient, but slow
microprocessors, and the memory capabilities, e.g. data memory of only up to 64 Kb, are
the most challenging metrics that require efficient programming concept.

While the early work of Beutel in [15] compares a limited number of sensor nodes and
various metrics that are of lower significance for the concepts of this work, we present
an updated comparison in Figure 2.8. We hereby include the three sensor node platforms
that have been used for evaluating the concepts of this thesis: BTnode v3, Pacemate and
iSense Core module. The comparison shows that all three platforms have been improved
in various dimensions compared to the older Mica platforms. Nevertheless, the hardware
configurations are highly limited compared to today’s personal computers or other mobile

24 CHAPTER 2. BASICS AND RELATED WORK

Figure 2.8: WSN Platform Comparison Technical Specification

devices. The CPU architectures range from 8bit microcontrollers as used on Atmel Atmega
based Mica nodes to 32bit systems, e.g. Jennic microcontrollers on iSense core modules,
with microprocessors clocked from 8 to 16 Mhz. Accordingly, the processing speed is
significantly lower than on existing mobile devices, e.g. smartphones with microprocessors
which are clocked up to 1 Ghz [194]. As denoted previously, other significant limitations
are the memory capabilities. This is even more important for data management and in-
network data storage concepts as presented in this thesis. The overall program memory is
limited by up to 96 Kb leaving a dynamic heap data memory of up to 64 Kb. Some nodes
are equipped with external flash memory of up to 512 Kb. Nevertheless, this memory
has limitations for random access write operations which can require additional paging
concepts for placing and updating sectors in the heap memory. Research results on the
efficiency of these operations on sensor nodes are yet not available.

To manifest challenges of the hardware limitations, we describe a generic state-of-the-art
sensor node hardware configuration as follows:

• CPU architecture: 8bit, 16bit, 32bit
• CPU speed (clock frequency): 8 Mhz

2.1. WIRELESS SENSOR NETWORKS 25

• Program memory: 96 Kb
• Data memory: 32 Kb
• External storage: 256 Kb (optional)

These sensor node hardware configurations are the recommended system requirements for
the concepts presented in this thesis. Nevertheless, as we will show in Chapter 5, the
minimum system requirements for the program frameworks of this thesis are even lower.

2.1.4 Research Domains
The recently gained publicity and importance of wireless sensor networks has motivated
researchers of several domains in working on these networks. Due to the deviated design
space many research areas have been opened up. Thereby most research is concentrated
on finding long life, energy efficient and robust networks concepts. In-network data ac-
quisition has been also discussed frequently. Recent approaches target usability issues for
sensor network developers and users.
The research areas in wireless sensor networks span across all layers of the OSI reference
model. Many approaches and concepts are thereby defined as cross layer approaches due to
the not clear separation for optimization issues. In this section we introduce some research
projects for the physical, network and transport layer of the OSI reference model. Due
to the wide range of research in sensor networks we can not cover all projects in this
introduction. Especially the application layer includes a huge variety of research work.
We therefore refer to recent survey papers published in [5, 6, 9, 12, 54, 119, 228, 254].
The research concepts of this thesis belong to the field of data acquisition, data management
and in-network storage. We discuss the research in the field of data management and query
processing in wireless sensor networks in detail in Section 2.2.

Physical Layer and Medium Access Control

Due to the large scalability of wireless sensor networks one of the crucial tasks is to choose
an adequate RF band which should be licence exempt. As a result, low data rate but en-
ergy efficient wireless communication standards such as IEEE 802.15.4 [165] have been
designated including the definition for the PHY and MAC layer [12]. A significant energy
efficiency can only be reached by optimizing across all layers as described in [66]. The
wide spread Zigbee standards hence extends the IEEE 802.15.4 standard on higher layers
[12] [126].
Wireless sensor network protocols are mostly designed to let the sensor node be left in a
sleep / doze mode. Staying in sleep mode significantly extends the life time as current
sensor nodes consume up to ten times the power in idle mode in relation to sleep mode. As
shown in the previous sections, the energy consumption for data transmission and commu-
nication is even worse. This is the reason why across all layers protocols and applications
try to send the less data as possible but instead tend to push pre-processing tasks deep in the

26 CHAPTER 2. BASICS AND RELATED WORK

network. MAC protocols as described in [54, 82, 91, 126] concentrate on sparse wakeup
schedules to maximize power saving. Nevertheless, this can result into latency that might
be unacceptable for time critical alert and event detection application scenarios which re-
quire adapted MAC protocols [110].

Networking and Transport

Wireless sensor networks are ad-hoc networks. Hence, achieving a network connection is a
distributed task on the network layer without additional aiding infrastructure [64, 92]. The
task is even more complex as wireless sensor networks are very dynamic networks. Single
nodes tend to fail, e.g. caused by energy depletion, which can result into separation of
the networks at communication bottlenecks. While single hop networks limit the network
size and are not likely for real deployments, multi hop networks have been researched in the
past. Moreover, the routing approaches can be divided in those that treat every node equally
and those that route via cluster heads that are representative for separate node groups.
Routing protocols need to be adapted to the scarce energy resources. As an example, energy
efficient unicast routing needs to use short paths in the network. Nevertheless, nodes on the
route that are already low in battery should be avoided, resulting in a longer but more robust
routing path [119]. One of the well known early approaches is the clustering approach
LEACH [89], other approaches are described in [3, 11, 36, 210]. Energy efficient multicast
routing algorithms are introduced in [32, 48].
The route selection protocols often impose a hierarchical topology that needs to be main-
tained by a topology control. Survey papers on this topic are published in [204, 241]. Wide
spread topology concepts are routing trees and geographic routing. Routing trees are often
used by data acquisition applications like TinyDB [156]. A well known concept is TAG
(Tiny AGgregation) [155] that uses a minimum spanning tree to route aggregates to a data
sink. However, other approaches like Synopsis Diffusion [170] claim that fixed tree struc-
tures can not be maintained in real deployment scenarios where nodes tend to fail at high
probability. Instead, these approaches suggest a ring-oriented multicast routing approach
that has been used in this work as described in Section 6. Another approach that has gained
a lot of attention is Directed Diffusion, where the routing topology is a directed acyclic
graph (DAG) rooted at the sink used for multipath data delivery. Geographic routing strate-
gies, also denoted as greedy routing, have been introduced in [130, 255]. The idea is to
forward packets based on geographic information, e.g. minimizing the absolute remain-
ing distance. Sensor nodes need to know their location, e.g. coordinates. In the past, this
approach has often been used for GPS equipped sensor nodes making it more applicable
for open air deployments. Nevertheless, the routing can fail resulting in endless packet
forwarding. Approaches e.g. described in [209] try to solve this problem.
Designing an efficient, robust transport protocol for wireless sensor networks is difficult to
the exterior influences, e.g. radio interference, and energy efficiency requirements. Com-
munication protocols therefore absent from setting up special transmission channels or data

2.2. DATA MANAGEMENT AND QUERY PROCESSING IN WSNS 27

paths. As a result, the transport is comparable to the User Datagram Protocol (UDP) [188].
Open questions are still which level of dependability and quality of service should or can
be reached in non robust wireless sensor networks. Some concepts have been discussed in
[4, 71, 218, 240].

Other Research Domains

Beside the described layers, there has been a lot of work in higher layers. One important
topic is security which has been discussed in [34, 185, 186, 215]. Another topic is time
synchronization. Time synchronization is of significant importance to synchronize sensor
measurements and sleeping cycles. Important work in the field of time synchronization can
be found in [63, 65]. Beside the data acquisition task, localization and event detection are
the most common applications. As denoted in the previous paragraph, localization is i.a.
important for geographic routing. For a detailed introduction we refer to [106, 137, 159].
Event detection has been discussed i.a. in [30, 37, 142, 143].

2.2 Data Management and Query Processing in Wireless
Sensor Networks

Wireless sensor networks are mainly deployed for data acquisition of measured environ-
mental data. Thereby, there exists a variety of concepts from in-network data storage and
analyzation to traditional push and pull applications. Data acquisition in wireless sensor
networks often follows the concept of data-centric routing. Data-centric routing has been
described as the core abstraction of wireless sensor networks [119]. Applications should
access data instead of addressing individual nodes using an in-network processing frame-
work. The actual routing process is up to the corresponding routing protocol as described
in the previous section. The data access is supported by specialized sensor network query
languages that combine a traditional query interface with energy efficient in-network query
evaluation as shown in the next subsection.

2.2.1 Query Languages and Data Models
Since data acquisition is a central aspect in sensor network data management there ex-
ists significant work on energy efficient query evaluation in wireless sensor networks
[97, 101, 102, 156, 253]. Data-centric query languages have been introduced and in-
network aggregation is used to support energy efficient result processing [43, 156, 253].
Surveys of the initial work in data management in wireless sensor networks are given in
[6, 31]. In the next paragraphs we discuss the idea of representing the sensor network as a
database and the idea of in-network storage. We further introduce the initial approaches for
data acquisition frameworks Cougar and TinyDB. The later represents the state-of-the-art

28 CHAPTER 2. BASICS AND RELATED WORK

data management solutions for many of today’s general application deployments. We give
a detailed overview on the query language and the corresponding data model to show the
limitations of these approaches in the next subsection.

The Sensor Network as a Database

As denoted for the data-centric query concept, the idea of effectively using wireless sensor
networks includes an abstraction of the actual network topology. The user is more inter-
ested in having simple data acquisition methods. Where the actual data is located, how the
query gets to the corresponding nodes and how results flow to the data sink is not of high
interest. The only important factor is that the required data is delivered to the query issuer
in an energy efficient way to maximize the network lifetime.

Figure 2.9: The Sensor Network as a Database

Following this theory, the wireless sensor network can be seen as a database that somehow
stores data in a distributed way and provides an efficient query interface and abstract views
on the data. This concept follows the ANSI-SPARC architecture [10, 111] of traditional
database systems as proposed in Figure 2.9. The external level (query layer) consists of the
queries and query results of the users. The user thereby not only queries for data, he actually
programs the sensor network through queries using a query-like declarative language, as
the data is only collected when queries are active in the network due to energy efficiency
[31].
The conceptual level includes a global representation of the distributed sensor data. This
is the actual abstraction as a global database hiding the real distribution. In the past, sev-
eral data models have been used for logically representing the distributed data in the net-

2.2. DATA MANAGEMENT AND QUERY PROCESSING IN WSNS 29

work. The TinyDB approach uses a simple global table to represent the distributed nodes
[156]. The global sensor network approach as described by Aberer et al. [1] tries to em-
bed the structure and hierarchy of distributed sensor networks in a structured global XML
document. While this approach represents the data outside the network, in this thesis we
introduce concepts for managing this representation in the network. This results into sig-
nificant improvements compared to simple data models like TinyDB as described in the
introduction of this thesis and in the following Section 2.2.3.
While many of the initial data management solutions view sensor network databases as a
continuous stream, in recent years, motivated by the evolution in flash memory technology,
storage-centric sensor networks have been discussed [58]. In these sensor networks a
high amount of data is stored on physical level over time to allow in-network analyzation
of long-term data. In detail, the physical level is responsible for storing the distributed
data persistently including the choice of the storage medium, e.g. flash memory or heap
memory, compression concepts and other physical optimizations. In this work, we discuss
a compressed distributed XML in-network storage scheme that can be used for heap and
flash memory storage. We therefore discuss the concept of in-network data storage in more
detail in the next paragraph.

In this paragraph, we showed that wireless sensor network database concepts and traditional
database systems have a great deal in common. Nevertheless, according to Carreras et al.
[31] there are three main differences that require new concepts in processing data:

• Streamed result data: the query results are often sent as a stream; queries are often
continuous.

• Communication errors: communication links are unreliable and a not delayed, reli-
able data delivery can not be guaranteed.

• In-network processing: while transmission energy costs are several orders of magni-
tude higher than in-network processing, processing query results, e.g. calculating the
average temperature, is pushed deep in the network.

In-Network Storage

According to Diao et al. [58], wireless sensor network applications can be differentiated
into live data and historical data applications. Live data applications like event detection
only require a conceptual scheme to access the data. The actual data is immediately
processed after sensing, either throwing an event or not. On the other side, there has
been a lot of long running environmental observations that require continuous data, e.g.
calculating the average temperature of the week. These application scenarios are the main
areas for the data acquisition frameworks Cougar and TinyDB that will be discussed in the
following paragraphs, although both approaches were initially designed for immediately

30 CHAPTER 2. BASICS AND RELATED WORK

processing data continuously [58]. A recent approach that has been designed exclusively
for in-network storage is StoneDB [58] that includes the energy efficient use of flash
memory and provides a query processing interface.

Delivering single sensor values continuously to the data sink is costly due to the high en-
ergy demand of data transmission. The idea of in-network processing includes pushing
algorithms that work on large windows of sensor data deep in the network to only send
global, final results back to the sink. These concepts require long-term in-network data
storage. The technology trends in miniaturization and capabilities of flash memory cells
have opened up new opportunities not only for just storing data in the network [72] but also
for other concepts like redundancy control, replication and data archiving.
In detail, data migration and redundant data storage in the network are discussed in
[118, 226]. The approach discussed by Lin et al. [148] includes an optimization of in-
network persistence by using XOR-combined data representations. The idea is to use a
minimal spanning tree, that is denoted interval tree, that covers all sensor nodes in the
network. Now the nodes perform a bitwise XOR operation in the tree from bottom to
top. Each node in the interval tree thereby XORs all the backup data sent from its direct
children along with its own data and stores this results as backup information and forwards
it to its parent. After recovering a failure node, the neighbour nodes restore the data out
of its XOR backup information. The advantage of this approach is that XOR operations
can be processed in an efficient way. Other approaches discussed in [76, 147, 197] also
describe replication concepts. In [197] a concept for replicating relevant data to cluster
heads for event detection is discussed. The approach described in [76] partitions the
network in geographic zones where each sensor node is responsible for a specific task, e.g.
storing replicated data or managing the replication process. In [147] two algorithms for
placing replicas via XOR combination and fragmentation in a tree topology are discussed.
Finally, in [252] the network scheduling issue for an energy efficient data archiving task is
discussed.

The concepts of this thesis include in-network storage concepts. The sensor nodes store
their data over long periods as XML documents, whereby the XML data is structured
chronologically ordering the sensor measurements. While the actual XML documents on
each sensor node represent a conceptual schema, multiple sensor nodes can be embedded
in a global hierarchical XML document following the global sensor network concept of
Aberer et al. [1]. The data can be accessed using standardized query languages like XPath.
We further discuss sensor network specific optimizations for the query evaluation. Never-
theless, many strategies of the early Cougar and TinyDB approaches are also applicable for
XML query evaluation. Hence, we discuss these approaches in the next paragraphs.

2.2. DATA MANAGEMENT AND QUERY PROCESSING IN WSNS 31

Cougar

The Cougar project [253] is a solution for efficient query processing in wireless sensor net-
work that has been designed by the Cornell University database group. It is often referred
to as the initial work on efficient data acquisition in wireless sensor networks. Cougar is a
clustering based evaluation mechanism that differentiates three types of sensor node roles:
Data is produced at source nodes. The source nodes route their data to intermediate nodes
which can be defined as cluster heads of a cluster of source nodes. These cluster leader
nodes route the data finally to the sink nodes that are often referred to as gateway nodes.
Cougar uses Directed Diffusion as a main routing protocol on network layer. Queries are
expressed in a high level declarative language that is based on SQL. Query optimization is
done on a PC that is connected to the sensor network. The resulting query execution plan
is translated to command calls of receiver functions on the nodes. The single sensor node
therefore is not able to completely process a given user query alone. Cougar provides op-
timizations for evaluating aggregation queries. Therefore, intermediate nodes are not only
responsible for forwarding results of the source nodes but also for processing aggregate
functions early deep in the network. The actual size of data that needs to be transmitted is
significantly reduced.

TinyDB

TinyDB is often referred to as the state-of-the-art data acquisition technique for wireless
sensor networks. It has been designed by Samuel Madden et al. and been described in [156]
for TinyOS-based sensor nodes. On the conceptual level the TinyDB approach supports a
simple relational data model as shown on the right side of Figure 2.9. The whole sensor
network is represented as one unstructured table, denoted sensors. The relational schema
consists of a sensor node id and an unlimited number of optional sensors. A sensor node is
represented as a row consisting of it’s id and all of it’s actual sensor values. If the sensor
node does not operate a sensor that is defined by the schema it includes a NULL value.
We give another example motivated by the Great Duck Island deployment in Table 2.3.
The table contains the information of the luminance in the bird nests. The epochs define a
chronological series of measurements.

Epoch NodeID NestNo Light
0 1 17 1455
0 2 27 1389
0 3 17 1422
0 4 25 1405
1 1 17 5
1 2 27 1389
1 3 17 8
1 4 25 1405

Table 2.3: Example TinyDB sensors Table for Bird Observation

The sensor data can be accessed using the TinySQL language that is designed in a SQL-

32 CHAPTER 2. BASICS AND RELATED WORK

style. TinySQL is designed as a high level data acquisition language to allow "program-
ming" applications in a data-centric way without the knowledge of real sensor network
programming, e.g. programming in Embedded C. We present the TinySQL grammar in
Listing 2.1.

Listing 2.1: TinyDB Query Grammar

1 SELECT <aggregates>, <attributes>
2 [FROM {sensors | <buffer>}]
3 [WHERE <predicates>]
4 [GROUP BY <exprs>]
5 [SAMPLE PERIOD <const> | ONCE]
6 [INTO <buffer>]
7 [TRIGGER ACTION <command>]

Given this grammar, the user can issue queries to the TinyDB system that are forwarded on
the minimal spanning network tree (TAG tree [155]) to all nodes.

Listing 2.2: TinyDB Example Query

1 SELECT nodeID, nestNo, light
2 FROM sensors
3 WHERE light < 1300
4 EPOCH DURATION 1s

In Listing 2.2, we show an example query to get the bird nests that have a luminance under
1300lx and hence are suspected to be protected by the mother bird at the moment. The
epoch durations is given in seconds. If the sampling rate is one hertz, we can denote this
query a non continuous query. In this example the sensor network sends the tuples of sensor
nodes 1 and 3 of epoch 1 to the data sink. Accordingly, the nest 17 should be protected
at the moment of the query. For other more complex examples we refer to Madden et al.
[156].
Comparing TinySQL to SQL, there are significant differences in the power of the query
languages, i.a.:

• TinySQL only allows to access only the table sensors.

• Arithmetic operations are limited to basic operations.

• Subqueries are not supported.

• The relational scheme can not be updated (no ALTER-Clause).

• No boolean operators or string comparison in HAVING- and WHERE-Clauses are
supported.

• TinySQL provides a SAMPLE-PERIOD-Clause as a basic continuous query concept,
that allows triggering sampling times.

2.2. DATA MANAGEMENT AND QUERY PROCESSING IN WSNS 33

• TinySQL provides a TRIGGER-Clause to trigger tasks on events and after receiving
results respectively.

• TinySQL provides materilization using the INTO-Clause.

As denoted previously, the TinyDB framework is known for efficiently evaluating aggre-
gation queries. The aggregation is done early in the network using the minimum spanning
tree of the TAG topology [155]. The approach is in general similar to the Cougar approach
but works on a tree topology rather than on clusters in the network. In the example query
in Listing 2.2 we absent from using aggregation queries for simplification. We discuss the
aggregation process in Section 2.2.2.

Other Data Acquisition Approaches

Beside the Cougar and TinyDB approach there has been other query interfaces or data-
centric programming concepts for wireless sensor networks presented. A complete
overview is out of the scope of this work. We therefore refer to the data management
survey papers published in [6, 31]. In this paragraph, we shortly introduce two well known
concepts SwissQM [168] and DSN [43].
SwissQM [168] has been introduced to allow using existing query languages for data acqui-
sition in wireless sensor networks. Moreover, it is a data-centric programming concept that
extends the capabilities of TinyDB by allowing data cleaning and virtualization. Therefore,
queries are translated into compact, optimized virtual queries. These are further translated
in network queries that are pushed into the network as byte code. This translation approach
has similarities with the Cougar translation approach as introduced previously. SwissQM
uses a tree topology like TinyDB to disseminate the queries in the network. The sensor
nodes are implemented as stack-based virtual machines. The instruction set is a subset of
the Java virtual machine that has been extended with more powerful operations to reduce
the actual program size. It contains 59 instructions/operations. Because of the indepen-
dence between programming and query language SwissQM does not define a real data
model. E.g. if a user uses XQuery to issue a query to the SwissQM deployment this does
not mean that real XML is accessed in the network. SwissQM only provides the capability
of using a standard query language and then translates the query according the instruction
and operation set of the virtual machine. As an entire framework, SwissQM is more a
programming concept than a query interface. Nevertheless, SwissQM also includes the
TinyDB aggregation capabilities as extensively introduced in [168].
Another approach that is related to data acquisition is the Declarative Sensor Network
(DSN) System [43]. Like SwissQM, this approach can be more classified as data-centric
programming concept rather than a traditional query language. DSN includes a pro-
gramming language, compiler and runtime system to support declarative specification of
wireless sensor network applications. The programmers should be encouraged to focus on
program outcomes (what a program should achieve) rather than implementation (how the

34 CHAPTER 2. BASICS AND RELATED WORK

program works) [43].

Both approaches show that in the past the concepts for programming sensor networks and
accessing sensor network data can not be exactly separated. There exist many cross layer
approaches and the boundaries between data-centric data acquisition and programming are
fluid. The XML data management concepts of this work are focussed on real data man-
agement and query evaluation. By using the frameworks of this work, we provide a query
layer and an in-network data storage layer that supports the idea of the sensor network as a
database. Hence, our approach is more related to TinyDB, Cougar and StoneDB. Neverthe-
less, as motivated in the introduction of this work, this thesis is part of the project AESOP’s
TALE that tries to apply the service oriented paradigm to sensor networks application engi-
neering. This idea, that is discussed in more detail in Section 2.4.4, targets a simplification
of the engineering process like the data-centric programming frameworks SwissQM and
DSN. Nevertheless, a complete evaluation of these concepts is not the topic of this work.
For an overview on the actual evaluation of these diverse programming concepts we refer
to [151].

2.2.2 Query Optimization
As denoted previously, evaluating queries in wireless sensor networks has to fulfil strict
efficiency rules to support a lifetime enhancement of the entire network. In the recent
years, several query optimization strategies to allow energy efficient evaluation have been
presented. Since the energy demand for communication is significantly higher than the
energy demand of a processing microcontroller, most concepts focus on avoiding extensive
communication. The general strategy is to push in-network data processing deep in the
network to reduce the actual size of result data that has to be transmitted to the data sink.
Besides, general optimization strategies known from traditional information systems are
applied, e.g. pushing high selective sub queries and projections in the network to reduce
the temporary result set. Traditional concepts on optimizing query evaluation are i.a.
discussed in [46, 83, 251]. New concepts that have been especially designed for wireless
sensor networks include i.a. acquisitional query processing, multi-query optimization,
in-network aggregation and model-driven queries. An overview on energy efficient query
processing in wireless sensor networks is hereby given i.a. in [5, 119]. In this section, we
shortly introduce the most important approaches. A recent approach is using data caches in
wireless sensor networks. In this thesis, we introduce a complete data caching framework
in Chapter 6. For better understandability, we discuss related work on data caching in that
chapter.

The term of acquisitional query processing has been coined by the TinyDB project [156].
The basic idea of acquisitional query processing is to control when and where and with
what frequency data is collected, as well as which data is delivered. This approach basi-

2.2. DATA MANAGEMENT AND QUERY PROCESSING IN WSNS 35

cally tries to optimize the energy demand for sensing. While this energy demand varies for
different types of sensors, e.g. complex chemical analyzations consume more energy than
simple temperature sensing, acquisitional query processing can result into a significant
energy conservation. This idea is in contrast to traditional database systems where data is
mainly provided a priori. Acquisitional query processing includes two main challenges:
How should the query be processed and the sampling rate be adapted and which samples
should be transmitted? In their approach, Madden et al. adapt the sampling rate by a given
sampling operator in the query [156]. Queries are moreover ordered in a power-optimal
way, e.g. a sampling frequency can determined by a query with the highest frequency. To
reduce the data that needs to be delivered to the data sink, the approach tries to exploit
spatio-temporal correlations between sensor samples. If two samples are highly correlated
only one needs to be sent.

A topic that is related to acquisitional query processing is model-driven query evaluation.
Model-driven queries embed stochastical assumptions and models that are used to estimate
or filter query results in order to reduce sampling for data or sending unnecessary query
results to the data sink. An initial approach for model-driven queries has been discussed
in [55]. A more complex approach on efficiently evaluating continuous queries in general
information systems and sensor networks has been introduced in our work published in
[97, 132]. We therefore give an extended overview on this approach in Section 5.3.4.

Many query approaches assume a dedicated gateway node that is used for inserting queries
into the sensor network. Multiple queries that are inserted into the network are managed
from outside with a given query id. For larger scale networks it is desirable to also accept
multiple gateway nodes where queries are inserted at different local positions. While the
problem of having duplicate ids can be solved by attaching the gateway id, a high amount
of active queries can significantly reduce the lifetime of the entire network. Since many
queries are correlated, e.g. multiple queries for retrieving the temperature over various time
spans, optimizing the evaluation by merging queries and query results can be an efficient
option. A critical discussion on this topic can be found in [225].

In-network aggregation can be denoted as the main research topic in sensor network query
optimization. According to the previously mentioned idea of optimizing the communica-
tion demand, in-network aggregation is used to significantly reduce the result set that needs
to be transmitted to the data sink by merging separate tuples deep in the network instead of
processing them outside at the data sink. The origin of the idea of in-network aggregation
can not be determined identically. However, it has been included in the next century chal-
lenges published by Estrin et al. in [66] early in 1999. The most important publications
in this area are Cougar [253] and TinyDB [156] and TAG [155] respectively. Beside these
approaches, till now there have been a multitude of publications on aggregation in wireless
sensor networks. A complete overview is therefore out of the scope of this paper. Recent

36 CHAPTER 2. BASICS AND RELATED WORK

approaches can be found i.a. in [116, 117, 193, 213, 250]. For the rest of this section, we
will however shortly introduce the in-network aggregation concept in more detail due to its
importance in the field of query processing in wireless sensor networks.

The basic problem of in-network aggregation is that preliminary results need to be aggre-
gated only once. Given a general network with broadcast communication, a preliminary
result, e.g. a temperature value, will be received by all neighbours. The neighbours are
now responsible to aggregate the value to reduce the amount of data that is sent to the
sink. They hereby need to coordinate in order to make sure that the temperature value is
not aggregated more than once. Besides, the aggregator needs to make sure that they keep
track of the number of participating nodes in a preliminary aggregation result to ensure
the correctness of the global aggregation result. Madden et al. denote these aggregation
functions as duplicate sensitive [156]. Examples for a duplicate sensitive function are AVG
(average) or COUNT.

As denoted previously, TAG uses a minimum spanning tree as a logical routing topology.
The positive benefit of this topology is that on the way from the leafs to the sink (root)
every child has only one father. This fact implicitly avoids duplicate aggregation. On the
other side having only one father node and hence only one route to the data sink produces
communication bottlenecks. To reduce the deviation of results in case of breaking commu-
nication links Madden et al. therefore introduce the TAGk concept where each node has k
fathers and the preliminary results are split in k parts. The aggregation functions are then
adapted to the number of fathers as described in [155].

In Figure 2.10, we show a simple example to visualize the efficiency of TAG in optimizing
the communication demand. For a given count query that demands the number of nodes
in the network every node sends a beacon (or one value) to participate. On the left side
the query is evaluated in a traditional way letting the gateway count the actual number
of nodes. Every node hereby just forwards the messages of the child nodes. The value
that a node itself sends is within the circle. This results in a high message demand of 14
messages. On the right side the query is evaluated using in-network aggregation. As a
result, the message demand is significantly lower as preliminary aggregation results are
sent to the father nodes without forwarding child messages.

Nath et al. [170] showed that TinyDB and TAG respectively do not perform well in real
deployments with non robust communication links as the overhead for recreating the tree
topology is very high. Active aggregation queries furthermore are evaluated including a
high error in the result due to the bottlenecks in case of a link error. Therefore, Nath et
al. introduce a ring oriented communication scheme that does not assume a fixed topology
and hence is robust against communication errors. This approach includes an aggregation
technique denoted as Synopsis Diffusion. A Synopsis is an alternative representation of

2.2. DATA MANAGEMENT AND QUERY PROCESSING IN WSNS 37

Figure 2.10: TAG Aggregation Process

a query result that is processed in a pseudo duplicate insensitive way. This approach is
not really duplicate insensitive in every case as the final result might include a smaller
error that can be estimated before. Nevertheless, the error is significantly smaller than
the error of TAG results in case of communication errors. Since the routing scheme of
Synopsis Diffusion provides a flexible and robust environment, we use this approach for
our concepts in Chapter 6.

The concepts on evaluating XML queries on the XML data in the sensor network that
are presented in Chapter 5 also include in-network aggregation. Beside the traditional
in-network aggregation like described for TAG [155], XML data management allows to
have multiple, hierarchical aggregation functions working on subsets of the entire XML
documents. In our work, we implemented these functions that provide a more complex
form of aggregation queries. The actual evaluation is thereby done using the concepts of
TAG [155] and Synopsis Diffusion [170]. Which evaluation protocol is processed can be
adapted to the expected robustness of the deployed network, e.g. Synopsis Diffusion for
non robust outdoor deployments.

2.2.3 Limitations of Existing Data Management Approaches
In the last sections, we introduced the most important existing concepts in wireless sensor
data management. However, as we denoted in the introduction of this thesis these concepts
have significant limitations when it comes to support heterogeneity and standardization on
application level, e.g. the TinyDB framework only supports a simple relational scheme and
a non standardized query interface.
We summarize the most important limitations of the existing data management approaches
as follows:

• Simple data models, e.g. one table per network or unstructured byte code.

38 CHAPTER 2. BASICS AND RELATED WORK

• Limited heterogeneity, e.g. different networks with different schemes need further
assistance to operate together.

• Limited interconnection to existing networks, e.g. direct embedding wireless sensor
network in the World Wide Web using standardized protocols.

• Non-standardized query language, e.g. new languages need to be learned, existing
program interfaces can not be used.

• Tedious programming, e.g. simple changes in the application often require complex
updates in the program of the sensor node.

According to these limitations and following the extended motivation in the introduction of
this work we suggest the usage of complex data models in wireless sensor networks. Due
to it’s distribution in existing applications and networks we suggest XML as a standardized
data format/model in wireless sensor networks. XML is the de-facto standard format for
data exchange in the World Wide Web and in many business applications. It has gained
awareness over the last decade. While we give a detailed introduction into XML in the next
section, we summarize the benefits of XML motivated by [217] as follows:

• Standardization: XML is a W3C standard.

• Self-description: XML documents are self descriptive and no additional schema
needs to be stored.

• Extensibility: XML Documents can be easily extended to new environments and
changes in the data scheme.

• Structured Nature: XML Documents are hierarchically structured and can embed
and represent the structure of a sensor network.

• Provides a ’one-server view’ for distributed data: Represent the sensor network data
following the global sensor network approach [2].

• Simplicity and Machine Readability: XML Documents can be easily understood by
both humans and machines. They can be directly processed in machine work flows
using machine-readable context information.

• Facilitates the comparison and aggregation of data: The tree structure of XML doc-
uments allows documents to be compared and enables the adaptation of aggregation
concepts element by element.

• Support of multilingual documents and Unicode: More heterogeneity by allowing
internationalization of applications.

2.3. COMPLEX DATA MODELS AND DATA MANAGEMENT 39

• Standardized Query Languages: E.g. XPath is already supported by many program-
ming frameworks and known to even non-expert users.

• SOAP is XML: XML is the basis for the Simple Object Access Protocol (SOAP) to
enable standardized service oriented architectures.

As a result, we believe that XML is the ideal standard data exchange format for general
wireless sensor networks. Nevertheless, there are limitations and problems that need to
be resolved when integrating XML data management in sensor networks that have scarce
resources. We discuss these limitations in detail in Section 2.3.5. This thesis provides con-
cepts and frameworks to meet these limitations and furthermore enhance the possibilities
of dynamic data acquisition in wireless sensor networks.

2.3 Complex Data Models and Data Management
As motivated in the introduction of this thesis, using complex data models in wireless
sensor networks optimizes the heterogeneity, exchangeability and integration between and
into other (sensor) networks. In the last section we shortly introduced XML as the de-facto
standard data exchange format that includes many benefits for wireless sensor networks.
To understand the concepts of this thesis for efficiently integrating XML data management
in wireless sensor networks, we discuss several aspects of XML in the subsequent sections.

2.3.1 XML: History and Concept of the eXtensible Markup Language
In this section, we give a historical overview and a brief technical introduction to the
eXtensibleMarkup Language (XML). In the following sections, we further introduce the
concepts of XML schema definitions, XML query processing and XML data binding.

History of XML

The history of XML reaches back to the end of the 1960s when the first concepts of a
descriptive markup language were introduced. In these years, companies started more and
more using workstations for processing large scale documents. While the first applications
used binary storage formats that could only be interpreted by the computer itself, there was
a need for a data representation format that was self-descriptive and human-legible.
This data format was introduced as the Generalized Markup Language (GML) that has been
developed by Charles Goldfarb, Edward Mosher and Raymond Lorie in the beginning of
the 1970’s at the IBM research labs.
The general concepts of a markup language are the annotation of textual information to
express meta-information about the semantic and structure of the text itself. The origin
of the term markup thereby goes back to traditional press where editors where marking

40 CHAPTER 2. BASICS AND RELATED WORK

up manuscripts in order to highlight errors and remarks on the text and to give typing and
layout instructions for the print phase.
In the following years, the Generalized Markup Language was adopted by IBM to be in-
cluded in the corporation own publishing systems to manage and produce technical doc-
umentations. The first standardization process of GML started in 1978 by the American
National Standards Institute (ANSI) to find a nationwide information exchange data for-
mat. Charles Goldfarb worked on this group and the first industry standard denoted as
GCA 101-1983 was adopted in 1983. This standard was further improved by the Interna-
tional Organization for Standardization (ISO) that joined the working group in 1984. In
1985, the first standardization reference draft was published and in 1986 the newly de-
noted Standardized Generalized Markup Language (SGML) became an ISO standard (ISO
8879) under the full name of "ISO 8879:1986 Information Processing - Text and Office
Systems - Standard Generalized Markup Language (SGML)". The naming of SGML is
often referred to be confusing, as SGML is not itself a markup language but a specification
to design markup languages. Well know markup languages are i.a. TeX (1977) [127] and
LaTeX (1980) [136].
With the development of the World Wide Web (WWW) and the idea of hypertext SGML’s
possibly most known application was introduced: HTML (Hypertext Markup Language)
[14]. HTML defines a set of markups / tags that are used for defining the representation of
web pages. The original idea was hereby to separate the content from the presentation. The
presentation tags need to be interpreted and rendered by the web browser. The problem is
and was that there is a large space for interpretation, so that the presentation of a HTML do-
cument could look totally different using different web browsers. Web designers however
did not like that their web pages are represented in different ways and therefore HTML
got extended with functions to force representations, e.g. the tag. This progress
however conflicts with the initial idea of separating content and presentation. Furthermore,
HTML was started to be used in a loose way, e.g. leaving closing tags out, as the web
browsers were anyway accepting the HTML documents. The unofficial introductions of
more functions, e.g. for multimedia and animation, which was often supported by the two
main competitors for web browsers Netscape and Microsoft finally broke the initial concept
of a simpler SGML version for web presentation.
These problems showed that HTML is too limited for many application fields and more-
over not strict enough. SGML however was always denoted to be too complex for non
expert users. Accordingly, in 1996 Jon Bosak from Sun, Tim Brag and Michael Sperberg-
McQueen and others introduced the eXtensible Markup Language that is analogously to
SGML rather a specification to define markup languages without being too complex. The
first specification (working draft) of XMLwas only 26 pages while the SGML specification
was more than 500 pages long. Finally, in 1998 XML was approved in Version 1.0 by the
World Wide Web Consortium (W3C) and became a standard. One of the first applications
of XML was the representation of HTML denoted as XHTML [184]. XML is today the
de-facto standard in many domains of data exchange and data management. It comes with

2.3. COMPLEX DATA MODELS AND DATA MANAGEMENT 41

many benefits for exchangeability and readability. The working group itself had announced
the goals of internet usability, SGML compatibility, stability, formality, conciseness, leg-
ibility, ease of authoring and minimization of optional features that were reached in the
version 1.0 specification [230]. With all the further benefits we introduced in Section 2.2.3
it is also the first choice of data format for wireless sensor networks. We therefore give an
introduction into the XML specification in the next paragraph.

Basic Concepts of XML

Due to the space limitations of this thesis, in this paragraph we only give a brief intro-
duction into XML. A formal extensive introduction can be found in the W3C’s XML
specification [230]. Besides, there exist many publications on XML, e.g. online tutorials
[49] and books [239].

The basic concept of eXtensible Markup Language (XML) is a standardized syntax to
enable data exchange between different applications and systems. XML documents are
represented in a textual form to support human readability. Furthermore, the data formats
of database systems and computer systems may be often incompatible. With its textual
representation, using XML enables storing data independently of the actual used software
and hardware. Exchanging data between different applications or incompatible systems
is simplified. XML documents can be used by their simple text format and their self-
describing appearance even when exchanging platforms where other data formats need to
be firstly converted. XML usage thus increases the availability of data since any hardware,
software and applications supports this language.

An XML document is structured starting with the document root followed by a variable
nesting of elements that themselves may include attributes. Thereby each element is always
enclosed by tags. The start of an element is marked with a start tag, e.g. <sensor>, and the
end of an element is represented with a closing tag, e.g. </sensor>. Unlike HTML, every
starting tag needs to have a corresponding closing tag. The spelling of the tag (element)
names is case sensitive. Elements can contain simple text or other elements (sub elements)
or a mixture of them. Correct nesting is mandatory, e.g. a closing tag of a sub element is
not allowed to appear after the closing tag of the surrounding element. Elements that do
not contain contents are empty elements that can be represented by an abbreviation, e.g.
<sensor/>. The name and the content of an element define its type. The type of elements
of the document is defined by the user using i.a. type definitions as described in Section
2.3.2.

As denoted previously, beside the textual and sub element content of an element, elements
can embed attributes that are defined within the starting tag after the element name. At-
tributes are used for specifying additional information about an element. They appear

42 CHAPTER 2. BASICS AND RELATED WORK

within the starting tag of an element, e.g. <sensor brand = "Pacemate">. An element
may have arbitrarily many attributes in arbitrary order. However, attributes of an element
may not have the same name. Attributes can always be replaced by elements, e.g. <sen-
sor><brand>Pacemate</brand></sensor>. This often makes it difficult to know when to
choose attributes because attributes do not really extend the expressiveness of XML docu-
ments. Nevertheless, they are a compact form of representation and can be compressed in
an even more compact form as we will discuss in the next chapters.
Finally, XML documents may include other content types, e.g. processing instructions
(<?Target-Name Parameter ?>) and comments (<!– comment text –>). Due to their lower
importance for representing the actual information, we refer to [230] for a complete intro-
duction.

In the following example in Listing 2.3 we present an example XML document that sum-
marizes all of the introduced concepts. The document represents a sensor network formed
by Btnode sensor nodes. Following the global sensor node approach every deployed Btn-
ode embeds itself with its current battery and sensor status.
While being a simple example, this document was actually used and produced in the eval-
uation of this work by a deployed Btnodes sensor network. It represents the result of the
common task of status delivery as described in Section 4.4.3. The XML document consists
of the root element <btnodes>. <btnodes> embeds the actual status notifications of the
Btnodes. Each Btnode is hereby represented by the tag <btsysinfo> including its id as an
attribute, e.g. <btsysinfo id="0"> identifies the status information of the Btnode with id 0.
The actual status information is given by the tags <bat> and <sens>, e.g. the Btnode with
id=0 has a battery level of 3 and a sensor measurement value of 21. While representing in-
formation, an XML document does not include any rules what to do with it. An application
to read the values and interpret them is therefore needed.

Listing 2.3: Example XML Document

1 <btnodes>
2 <btsysinfo id="0">
3 <bat>3</bat>
4 <sens>21</sens>
5 </btsysinfo>
6 <btsysinfo id="1">
7 <bat>5</bat>
8 <sens>18</sens>
9 </btsysinfo>
10 </btnodes>

Given the hierarchical structure of an XML document, we can define hierarchical condi-
tions for elements. If an element a is a sub element of element b, we call it child of b. In
this case b is the parent of a. In our example in Listing 2.3 <btsysinfo id="0"> is the child
of <btnodes> and analogously <btnodes> is the parent of <btsysinfo id="0">. Elements

2.3. COMPLEX DATA MODELS AND DATA MANAGEMENT 43

with the same parent are denoted as siblings, e.g. <btsysinfo id="0"> and <btsysinfo
id="1"> are siblings. A recursive child is defined a descendant, e.g. <bat> is a descendant
of <btnodes>. Vice versa, <btnodes> is a ancestor of <bat>. With this given hierarchical
structure every XML document can be represented as a tree. We show the resulting tree
representation of Listing 2.3 in Figure 2.11. The hierarchical ordering is very important for
processing the document, e.g. for evaluating XPath queries as described in Section 2.3.3.

Figure 2.11: Tree Represenation of the XML Document of Example Listing 2.3

For any given XML document there are conditions that need to be reviewed. An XML
document first may start with a correct prolog that was left out in Listing 2.3 for better
readability. A prolog is an optional component that appears before the root element and
consists of the XML declaration and a schema declaration which we will discuss in the
next section. The XML declaration embeds information about i.a. the character set and the
version regarding the XML specification, e.g. <?xml version=“1.0“ encoding=“iso-8859-
1“?>. The defined character set needs to be used and no special syntax characters, e.g.
"<,>, &, ...", are allowed except in the markup-delineation roles. Following the prolog only
one unique root element is allowed. As introduced previously, a root element and every
other element then may contain sub or child elements as well as text data in an arbitrary but
correct nesting. Attributes of an element have to be named unambiguously and their values
have to be textual / flat. Elements as attributes are not allowed. If all of the conditions
are fulfilled, the XML document is defined to be well-formed. The well-formedness rules
define the syntax of XML documents and exclude all violating text documents as being
not XML. The rules are the firsts to be checked by any XML processor, as used by the
programming framework XOBESensorNetworks which we introduce in the next chapter.

44 CHAPTER 2. BASICS AND RELATED WORK

2.3.2 XML Schema Definition
In the last subsection we introduced the well-formedness as a weak condition for syn-
tactical correct XML documents. However, application and networks that exchange XML
documents need more information about the structure and semantics of the processed XML
documents. Schema languages have therefore been introduced to define rules on the actual
semantic contents of XML documents. If an XML document is well-formed and follows
the rules and conditions defined by a certain schema, we denote this XML document to be
valid. In the following paragraphs we introduce the two most common schema languages
Document Type Definitions (DTDs) and XML Schema. While there exist other schema
languages, e.g. RelaxNG [44], for a complete overview we refer to the XML literature, e.g.
[138], due to their lower importance in the field of XML data management.

Document Type Definition (DTD)

A schema language that has been already introduced for SGML are Document Type Def-
initions (DTDs). DTDs allow to define a semantical structure of valid XML documents.
This includes the elements that are usable and the states and relation in what they may be
applied. While the original SGML DTDs are more complex, a reduced and simplified ver-
sion has been included in the official W3C XML specification [230]. With a given XML
document and the corresponding DTD a parser is able to check the semantic and structural
conditions to proof if a document is valid or not. DTDs can hereby be embedded within an
XML document or stored outside the XML document by using a reference in the document
prolog. A DTD consists of declarations of element types, attribute list, entities, notations,
comments and processing instructions, that reflect the general structure of XML documents
as introduced in the last subsection. Entities are hereby used for abbreviation purposes and
notations may be used to reference non-XML data in an XML document, e.g. associate
images with a system renderer. In Table 2.4, we summarize the key features of a DTD.

Markup Declaration Function
<!ELEMENT sensor ...> element type declaration
<!ATTLIST sensor ...> attribute list declaration

<!ENTITY % brand "Pacemate"> entity declaration
<!NOTATION exampleSVG SYSTEM "sensor1.svg"> notation declaration

<!-...-> comments
<? ... ?> processing instructions

Table 2.4: DTD Markup Declarations

2.3. COMPLEX DATA MODELS AND DATA MANAGEMENT 45

In Listing 2.4, we show an example DTD which describes valid XML documents like the
one in Listing 2.3.

Listing 2.4: Example DTD

1 <!ELEMENT btnodes (btsysinfo)*>
2 <!ELEMENT btsysinfo (bat, sens)>
3 <!ATTLIST btsysinfo id ID #REQUIRED>
4 <!ELEMENT bat (#PCDATA)>
5 <!ELEMENT sens (#PCDATA)>

If the DTD should be embedded within the XML document, it has to be placed in a DOC-
TYPE environment as shown in Listing 2.5.

Listing 2.5: Example XML Document with embedded DTD

1 <?xml version="1.0"?>
2 <!DOCTYPE btnodes [
3 <!ELEMENT btnodes (btsysinfo)*>
4 <!ELEMENT btsysinfo (bat, sens)>
5 <!ATTLIST btsysinfo id ID #REQUIRED>
6 <!ELEMENT bat (#PCDATA)>
7 <!ELEMENT sens (#PCDATA)>
8]>
9 <btnodes>
10 <btsysinfo id="0">
11 <bat>3</bat>
12 <sens>21</sens>
13 </btsysinfo>
14 <btsysinfo id="1">
15 <bat>5</bat>
16 <sens>18</sens>
17 </btsysinfo>
18 </btnodes>

Both examples include the key features of DTDs. The content models of elements can
be defined as shown in Listing 2.4 Line 1 using regular expressions. We here define the
element type <btnodes> and determine which and how many child elements are allowed
for the element type. The star operator * determines that an arbitrary number of children
of type <btsysinfo> are allowed. If at least one child element has to appear in a valid
document, we could signal this using the plus operator + instead. Using the question
mark operator ? would signal that non or exactly one child has to appear in the valid
document. If no additional operator is used like in Line 2, the child elements have to
appear exactly once. Furthermore this line shows how to define lists of child elements.
If two child elements are separated using | either the first or the second element has to
appear in a valid document. Additionally the content model definition of DTDs allows to
define empty content models, e.g. <!ELEMENT btnodes EMPTY>, and arbitrary content,

46 CHAPTER 2. BASICS AND RELATED WORK

e.g. <!ELEMENT btnodes ANY>. Like described before, elements can embed textual
information instead of child elements. This content model is defined using the #PCDATA
operator (ParsedCharacterData) like shown in Line 6. Parsed character data is processed
by any given parser which is important when using entity references. The opposite of
#PCDATA is #CDATA which signals that the textual information should be processed as
defined without any interpretation. Definition of textual content and child elements can be
furthermore mixed, e.g. <!ELEMENT btsysinfo #PCDATA | bat | sens)*>.
In Line 5, we introduce the definition of attributes. E.g. the attribute list of <btsysinfo>
is defined by naming the element followed by a list of possible attributes. Each attribute
in the list is defined by three parts: the name, the type and a standard value. We present
possible attribute types in Table 2.5. The standard value of attributes can be #REQUIRED,
signaling the duty to use the attribute in an element, #IMPLIED, signaling that the attribute
is optional and no standard value exists, or a fixed non-optional value starting with the
key operator #FIXED. Following our example in Listing 2.4, we define that the element
<btsysinfo> has to include a required ID.

Attribute Types Function
CDATA character data
(v1|v2|..) logical OR of attribute types v1, v2, ...

ID unique ID
IDREF a reference ID of another element
IDREFS a list of IDs of other elements

NMTOKEN a valid XML name
NMTOKENS a list of valid XML names

ENTITY an entity
ENTITIES a list of entities
NOTATION a notation

xml : a pre-defined xml value

Table 2.5: Attribute Types

As shown in this paragraph, DTDs easily allow to define languages for valid XML docu-
ments. In this thesis, DTDs are supported and used by theXOBESensorNetwork precompiler
to analyze the expressiveness of given XML documents and XML document generators as
discussed in the following chapters. By knowing the language of a given DTD and hence
the structure of possibly generated XML documents the actual task of XML data compres-
sion can be significantly optimized. This task can be even more optimized when further
information, e.g. types of values, is provided by the schema [244], e.g. knowing if a
parsed character data represents a string or just an integer number. While being a simple
and efficient schema language, DTDs show their drawbacks when it comes to complex
type systems and other features. As introduced before, DTDs only support two basic tex-
tual types: #PCDATA for elements and #CDATA for attributes. Another drawback is that
DTDs do not support scoped declarations, e.g. all definitions are global. We therefore

2.3. COMPLEX DATA MODELS AND DATA MANAGEMENT 47

introduce a more powerful schema language XML Schema in the next paragraph to give a
complete background on the discussed optimizations.

XML Schema

XML Schema is an XML-based alternative to DTDs to describe the structure and semantic
contents of XML documents. XML Schema was introduced as a working draft by the W3C
in the year 2000. It was approved as a W3C Recommendation in May 2001 and a second
edition incorporating many errata was published in late 2004 [233]. The strengths of XML
Schema are firstly that it is valid XML and secondly that it is more complex than DTDs
as discussed in the last paragraph. An XML Schema is also often referred to as an XML
Schema Definition (XSD). We will discuss some of these extensions in the following part
of this paragraph.
One of the biggest advantages of XSDs in contrast to DTDs is the more complex type
system. In global, there is a differentiation between ComplexTypes and SimpleTypes. Com-
plexTypes include the types Attribute and Element as known for DTDs. While in general
SimpleTypes and ComplexTypes are classes for new user defined types they can be com-
pared to the types of DTDs. SimpleTypes are the analogon to #PCDATA and #CDATA
including elements with values, attributes and restrictions. They further include a detailed
differentiation of the actual type of the content. XSD supports the following types of atomic
values: xs:string, xs:decimal, xs:integer, xs:boolean, xs:date, xs:time. Elements can be de-
fined using the xs:element markup followed by a name definition and the simple type def-
inition, e.g. <xs:element name="bat" type="xs:integer"/>. As denoted in the end of the
last paragraph, this extended type system i.a. allows to optimize data compression, e.g. a
16 digit number needs 128 bits in textual representation but only up to 64 bits in integer
representation. Like for DTDs, XSDs allow to define standard values and fixed values by
using the key words default and fixed in the xs:element markup. Attributes can be defined
analogously to elements, e.g. <xs:attribute name="id" type="xs:integer"/>.
The values of element can be restricted using the restriction rules of Table 2.6. In Listing
2.6 we give an example. We define the element <bat> that embeds an integer value that is
restricted from 0 to 5. Using the restriction rules can hereby optimize the compression of
this element.

Listing 2.6: Example XSD

1 <xs:element name="bat">
2 <xs:simpleType>
3 <xs:restriction base="xs:integer">
4 <xs:minInclusive value="0"/>
5 <xs:maxInclusive value="5"/>
6 </xs:restriction>
7 </xs:simpleType>
8 </xs:element>

48 CHAPTER 2. BASICS AND RELATED WORK

Restriction Rules Function
enumeration define an enumeration of allowed values
fractionDigits number (>= 0) of post-decimal positions

length number (>= 0) of allowed characters
maxExclusive maximum exclusive value
maxInclusive maximum inclusive value
maxLength maximum number (>= 0) of characters
minExclusive minimum exclusive value
minInclusive minimum inclusive value
minLength minimum number (>= 0) of characters
pattern define pattern of allowed characters

totalDigits exact number (>= 0) of digits
whiteSpace space handling

Table 2.6: Restriction Rules

After discussing the basic concepts of XML and introducing schema languages to define
valid XML documents concerning semantic and structure, in the next section we discuss
how data can be accessed. We therefore summarize available query languages and discuss
the XML query language XPath in detail.

2.3.3 XML Query Processing and XPath
Wireless sensor networks are deployed for data acquisition. Providing a flexible query layer
is therefore crucial for XML data management in wireless sensor networks. In the past,
many concepts and languages for XML query processing have been introduced. The most
important languages that have been recommended by the W3C are XPath [234], XQuery
[235] and XSLT [231]. While there exists a large set of publication on XML query lan-
guages and query evaluation, a complete introduction is out of scope of this thesis. We
therefore refer to surveys [19, 220] and books [26, 120, 158]. Besides, existing XPath and
XQuery engines like Galax, MonetDB/XQuery, Oracle, Saxon, Tamino XML Server and
Microsoft’s SQL Server 2005 Express [237] are limited in their usability in wireless sensor
networks. Either the program or runtime memory demand exceeds the capabilities of to-
day’s sensor nodes or they make use of non-supported object models like described in [98].
Theoretical studies on the complexity of XPath can be found in [79].
XQuery 1.0 and XSLT 2.0 use XPath 2.0 for navigating and accessing the XML document.
The term navigation is hereby related to moving through the tree representation of the XML
document and selecting nodes that represent the navigation (query) result. XQuery 1.0 is
a functional programming language. In contrast to XPath, XQuery allows user defined
functions, the transformation of nodes, the creation of new structures using XML templates,
libraries of functions and a way to bind values to variables. XQuery was designed to
provide for XML databases and document collections what SQL does for relational data
stores. It includes a FLWOR (for-let-where-order-by-return) clause that can be compared

2.3. COMPLEX DATA MODELS AND DATA MANAGEMENT 49

to the SELECT-FROM-WHERE clause of SQL. XQuery is a superset of XPath implying
that every valid XPath expression is also a valid XQuery expression.
On the other side, XSLT 2.0 has been introduced for transforming XML documents from
one format to another, e.g. to present XML data as an HTML document in a web browser.
As denoted previously, also XSLT 2.0 uses XPath to navigate the input document. XSLT
queries / programs are denoted stylesheet documents. In contrast to XQuery, XSLT
stylesheets are valid XML on their own. An XSLT processor processes a given XML do-
cument and a stylesheet and produces a new XML document as the transformation result.
How the input and the stylesheets are specified depends on the processor implementation.
XQuery and XSLT share a lot of functionalities. Approaches to transform XQuery to XSLT
and vice versa are discussed in [85]. A comparative analyzation is discussed in [19]. Gen-
erally, XSLT is preferable when most of the input is processed from one document and
when the output is generated for human consumption, e.g. presentation of data on a web
page. XQuery is preferable when processing multiple documents to collect data in one
document, which can then again be processed by XSLT for presentation.
Both languages are more complex than XPath but presume the correct and efficient eval-
uation of XPath queries. In this thesis, we focus on XPath queries because firstly it is
powerful enough to express common data acquisition queries and secondly can be easily
extended to both languages. In the next paragraph, we give a more detailed introduction to
XPath and the document navigation.

The Concepts of XPath

XPath is a specification for an expression language for navigation in XML documents rec-
ommended by the W3C [234]. In detail, XPath is used for expressing navigational steps
and conditions for selecting nodes in a tree representation of an XML document. XPath
1.0 was introduced in 1999 with a definition for the syntax and the semantics. The newer
version XPath 2.0 has been recommended in 2007 including optimizations and an extended
functionality. Nevertheless, the basic concepts for data acquisition are the same for both
versions. In this paragraph, we introduce these basic concepts and refer to [121] for a
complete overview on the extensions of XPath 1.0 and 2.0.
As denoted previously, XPath provides the ability to navigate through a tree representation
and selecting tree nodes of different types based on given criteria. The basic concept of
XPath includes a differentiation of node types as shown in Table 2.7.
An XPath expression is a syntactical construct that represents the following basic types:

• a node set (determined by a location path)
• a boolean value
• a number
• a string

The location path is the most important expression in XPath. It consists of a sequence of
location steps that traverse through the tree. Each location step consists of three compo-

50 CHAPTER 2. BASICS AND RELATED WORK

Node Type Explanation
root node the whole XML document (document root)

element node represent an element
attribute node represent an attribute
text node represent the textual element / attribute content (atomic values)

namespace node represent a namespace
processing instruction node represent a processing instruction

comment node represent a comment node

Table 2.7: XPath Node Types

nents: an axis, a node test and zero or more predicates. The general syntax of a location
step is Axis :: Node [Predicate]. The axis determines the direction of navigation. The
node test specifies the node type and the name of nodes selected by the location step. The
arbitrary predicates embed XPath expressions to filter the set of result nodes of the current
location step.
Location paths can recursively contain expressions to filter the nodes. A relative location
path / step is always evaluated in relation to an actual selected node, which is defined as the
context node. The result of a location path / step is a list of selected nodes, which is defined
as context list. A context list is then iterated for processing the next location step by testing
all nodes of the context list as context nodes. An absolute location path starting with a / is
always evaluated using the root node of the document.
The term axis denotes the relation of two nodes in the tree hierarchy. They are used to
determine the way which should be followed to traverse the tree representation. We sum-
marize the available axes in Table 2.8. The XPath syntax includes an abbreviated syntax
and a full syntax for XPath axis which is also summarized in Table 2.8.

Axis Selected Nodes Abbreviated Syntax
self context node .
child direct child elements (default, can be left out)
parent direct ancestor ..

descendant all descendant nodes (children and grandchildren etc.)
descendant-or-self context node and all descendant nodes //

ancestor ancestor nodes (parent and grandparents etc.)
ancestor-or-self context node and all ancestor nodes
following all nodes that follow the context node in document order

following-sibling all following nodes that are siblings of the context node
preceding all nodes that precede the context node in document order

preceding-sibling all preceding nodes that are siblings of the context node
attribute the attributes of the context node @
namespace the namespace of the context node

Table 2.8: XPath Axes

In Figure 2.12, we visualize the axes by using a graphical tree representation. The grey
node is the context node. Accordingly, it is also selected when following the self axis. The

2.3. COMPLEX DATA MODELS AND DATA MANAGEMENT 51

direct predecessor is selected when following the parent axis. All nodes on the direct path
to the document root are selected when following the ancestor axes and so on.

Figure 2.12: Overview on XPath Axes

After following the axis and selecting the corresponding nodes, they are filtered regarding
the node type and name by the node test. XPath provides six basic node test functions.
If a function results in true, the currently reviewed context node stays in the context list.
Otherwise it is dismissed. In Table 2.9, we summarize the basic node test functions.

Node Test Function Explanation
comment() filters comment nodes
text() filters text nodes

processing-instruction() filters processing instruction nodes
node() demands an arbitrary node type e.g. element or attribute
* wildcard operator

name filters all context nodes for a give name

Table 2.9: Node Test Functions

52 CHAPTER 2. BASICS AND RELATED WORK

The last part of an XPath expression is a predicate that can embed any XPath expression
to filter the current context node list. If the expression in the predicate evaluates true for
a given context node it is kept in the context node list, otherwise it is dropped. In the
application field of wireless sensor networks predicate expressions can be used to filter
results for measurement or attribute requirements, e.g. //sensornodes[@id>4] will return
all sensornodes with an id greater four. To summarize the XPath language, we define a
simplified grammar for XPath in Table 2.10. For a complete grammar in EBNF we refer to
the official W3C specification in [234].

location_path → relative_location_path
relative_location_path → step|relative_location_path ’/’ step
step → axis_specifier node_test predicate∗
axis_specifier → axis_name ’::’
axis_name → ancestor | ancestor-or-self | attribute

| child | descendant | descendant-or-self
| following | following-sibling | parent
| preceding | preceding-sibling | self

node_test → name_test|node_type ’(’’)’
predicate → ’[’ predicate_expression ’]’
predicate_expression → expression
name_test → ’∗’ | name
node_type → comment | text | node

Table 2.10: Simplified XPath Grammar

We end this paragraph by showing examples for the presented XPath concepts. We there-
fore take the XPathMark XML document shown in Listing 2.7 as a basis for the XPath
evaluation. XPathMark is a wide spread benchmark for XPath engines which was used in
the evaluation of the concepts of this work in Chapter 5. In Table 2.11, we present example
XPath queries, the meaning and the corresponding results.

Listing 2.7: XPathMark Evaluation Document

1
2 <B id="n2" post="3" pre="2">
3 <C id="n3" post="1" pre="3">clergywoman</C>
4 <D id="n4" post="2" pre="4">decadent</D>
5
6 <E id="n5" post="22" pre="5">
7 <F id="n6" post="6" pre="6">
8 <G id="n7" post="4" pre="7">gentility</G>
9 <H id="n8" idrefs="n17 n26" post="5" pre="8">happy-go-lucky man

</H>
10 </F>
11 <I id="n9" post="9" pre="9">
12 <J id="n10" post="7" pre="10">jigsaw</J>
13 <K id="n11" post="8" pre="11">kerchief</K>
14 </I>

2.3. COMPLEX DATA MODELS AND DATA MANAGEMENT 53

15 <L id="n12" post="15" pre="12">
16 <!--L is the twelve-th letter of the English alphabet-->
17 The letter L is followed by the letter:
18 <M id="n13" post="10" pre="13"></M>
19 which is followed by the letter:
20 <N id="n14" post="13" pre="14">
21 <O id="n15" post="11" pre="15">ovenware</O>
22 <P id="n16" post="12" pre="16">plentiful</P>
23 </N>
24 <?myPI value="XPath is nice"?>
25 <Q id="n17" idrefs="n8 n26" post="14" pre="17">quarrelsome</Q>
26 </L>
27 <R id="n18" post="18" pre="18">
28 <S id="n19" post="16" pre="19">sage</S>
29 <T id="n20" post="17" pre="20">tattered</T>
30 </R>
31 <U id="n21" post="21" pre="21">
32 <V id="n22" post="19" pre="22">voluptuary</V>
33 <W id="n23" post="20" pre="23">wriggle</W>
34 </U>
35 </E>
36 <X id="n24" post="25" pre="24">
37 <Y id="n25" post="23" pre="25">yawn</Y>
38 <Z id="n26" idrefs="n8 n17" post="24" pre="26" xml:lang="it">

zuzzurellone</Z>
39 </X>
40

XPath Query Meaning Result (Line)
//L/* All children of all descending-or-self L elements 18, 20, 25

//L/parent::* All parent nodes of all descending-or-self L elements 6
//*[parent::L] All nodes that have a parent L 18, 20, 25
//*[@id] All nodes with an id All lines with starting tags

//L/comment() All children of L nodes that of type comment node 16
//*[child::* and preceding::Q] All nodes that have at least a child and precede Q 27, 31, 36
//*[@pre > 12 and @post < 15] All nodes with an attribute pre greater 12 and post lower 15 18, 20, 21, 22, 25

Table 2.11: XPath Expression Examples

The Power of XPath for Sensor Network Data Management

After introducing the basic concepts of XPath, we show that the XML data model and the
XPath language are mighty enough to represent existing sensor network data management
approaches. We therefore give an example based on the previous TinyDB introduction as
it is often referred to be the state-of-the-art data management solution. In detail, in Table
2.3 we showed an extension of the one table per network approach of TinyDB. Any given
TinySQL query is evaluated on this table. In Listing 2.8, we show the corresponding XML

54 CHAPTER 2. BASICS AND RELATED WORK

document of this example. While we see that we can translate any TinyDB example to
XML, we point out that XML provides a more flexible data management solution. Accord-
ingly, XML documents can not be generally transferred into the TinyDB data model.

Listing 2.8: Transforming TinyDB to XML

1 <nodelist>
2 <node epoch="0" nodeID="1" nestNo="17">
3 <light>1455</light>
4 </node>
5 <node epoch="0" nodeID="2" nestNo="27">
6 <light>1389</light>
7 </node>
8 <node epoch="0" nodeID="3" nestNo="17">
9 <light>1422</light>
10 </node>
11 <node epoch="0" nodeID="4" nestNo="25">
12 <light>1405</light>
13 </node>
14 <node epoch="1" nodeID="1" nestNo="17">
15 <light>5</light>
16 </node>
17 <node epoch="1" nodeID="2" nestNo="27">
18 <light>1389</light>
19 </node>
20 <node epoch="1" nodeID="3" nestNo="17">
21 <light>8</light>
22 </node>
23 <node epoch="1" nodeID="4" nestNo="25">
24 <light>1405</light>
25 </node>
26 </nodelist>

In Listing 2.2, we gave an example for a TinySQL query selecting the bird nests that have
a luminance under 1300lx over the next second epoch. This query can be transformed into
XPath as shown in Listing 2.9.

Listing 2.9: Transforming TinySQL to XPath

1 //light[.<1300]/parent::node/*

While the actual data selection is the same for both representations, the TinySQL query
includes an operator for evaluating the query continuously, e.g. over epoch duration 1s.
Processing continuous queries in wireless sensor networks is crucial to avoid sending a
query over and over again. The existing XML query languages including XPath have no
support for continuous queries. However, extensions have been discussed in [22]. Further-
more, any XPath engine on the sensor nodes can repeat the query by attaching the epoch
operator to the XPath query. An energy efficient solution for wireless sensor networks has

2.3. COMPLEX DATA MODELS AND DATA MANAGEMENT 55

been discussed in our previous work in [97] which we summarize in Chapter 5. Other
acquisitional optimizations concerning the sampling of sensor nodes based on the inserted
queries [156] and query decomposition based on the localization of data are issues that are
currently addressed in our future research and hence out of scope of this thesis.

2.3.4 Benefits of XML Integration in Wireless Sensor Networks
There are three major application areas in the field of wireless sensor networks which may
benefit from the use of XML data management: heterogeneous networks, WWW integra-
tion and service oriented architectures.
As mentioned in the introduction of this thesis and shown in Figure 1.1, when wireless
sensor networks get larger, it is likely that different sensor nodes with different capabilities
and different properties are deployed to fulfil a common task. To enable the seamless
communication between different types of sensor nodes on application layer, XML is a
predestined data format because the developers do not have to think about proprietary data
formats or other technical issues like big endian or little endian representations anymore.
Using an XML data management in wireless sensor networks also facilitates the integra-
tion of these networks with the WWW because it allows the usage of standard query and
transformation languages like XQuery or XSLT to represent sensor data on a webpage. We
implemented an application to demonstrate the easy integration as described in [96].
The most sophisticated application of XML in wireless sensor networks is the implemen-
tation of a service oriented architecture (SOA) in a wireless sensor network. While there
exist several approaches claiming the implementation of a service oriented sensor network
[86, 139, 192], these do not use the same techniques known from common service oriented
architectures, e.g. SOAP. We discuss service oriented sensor networks in the subsequent
sections.

2.3.5 Limitations and Goals of XML Integration in Wireless Sensor
Networks

In the introduction of this thesis and in the last section, we motivated the usage of XML
data in wireless sensor networks. However, all the advantages of XML like support for
heterogeneity, standardization and others come at a price: the textual XML representation
of information can be up to 400% of the size of its binary representation [98]. This is espe-
cially a problem in wireless sensor networks where scarce resources demand for small data
sizes as described in the previous Section 2.1.3. Additionally, it has to be considered that
transmitting data is the most energy consuming task in wireless sensor networks. Trans-
mitting one bit can be 1000 times more expensive than computing one operation [155].
This may be one of the main reasons why XML programming and processing has not been
integrated into wireless sensor networks, yet.

56 CHAPTER 2. BASICS AND RELATED WORK

Another development limitation is the complex task of programming sensor nodes. This is
even more demanding for integrating XML in sensor network programming. While recent
sensor network applications use only simple data structures, e.g. only lists of sensor values
or simple table structures [156], using XML will require consolidated knowledge on how
to represent XML with the language constructs of sensor node programming languages
like Embedded C. Hence, besides solving the verbosity problem of XML, the XML pro-
gramming language integration should be transparent and usable without any consolidated
knowledge.
The goal of this thesis is to overcome these limitations by compressing the XML data in a
way that it is still dynamically processable and to facilitate the XML programming of sen-
sor nodes by employing a programming framework which can guarantee stable programs.

2.3.6 Related Work to XML Data Binding and XML Compression
In this thesis, we describe theXOBESensorNetwork framework that enables a seamless inte-
gration of XML data in the engineering process. Integrating XML within the programming
phase and transforming it to the target programming language is often referred to as XML
Data Binding. In this section, we summarize the related work in the area of XML Data
Binding and name the solutions that are applicable for integrating XML in sensor network
programming languages. Due to the space limitations of this thesis, we can not cover all
frameworks and solutions. Other solutions that are not applicable for integrating XML in
sensor network programming languages are introduced by Bourret in [24].

Existing XML Data Binding Solutions

Many XML data binding techniques to represent and handle XML data within program-
ming languages have been presented in the last decades. Most of these frameworks are de-
veloped for existing object-oriented programming languages like Java and C++ [8, 67, 179].
These frameworks are not applicable for sensor network programming, mainly because of
the choice of language, the compression ratio and the memory demand itself that is not
sufficient to overcome the hardware resource limitations in wireless sensor networks. For
the programming language C, as the main choice of language for sensor network engineer-
ing, the XML data binding framework autoXML [123] has been presented. However, our
previous results in [98] have shown that autoXML is also not applicable for sensor net-
work applications because of a steeply increasing memory demand and unstable runtime
behaviour. We will again discuss this behaviour in Chapter 4.

Existing XML Compression Frameworks

Compressing XML data in wireless sensor networks is essential because of its verbosity.
The memory limitation on todays sensor node products ranging from 16 kb to 128 kb make
an effective uncompressed usage impossible. Standardized textual compression techniques

2.4. SERVICE ORIENTED ARCHITECTURES AND AESOP’S TALE 57

like zip [87] are not applicable because they require entire XML documents before com-
pressing which can not be guaranteed for dynamically growing XML documents in active
wireless sensor networks. A more serious problem is that the documents need to remain
dynamically processable, e.g. for evaluating queries on them, which may not be possible
without a decompression step in case of regular textual compressors. These problems are
reasons why previous data management approaches absent from using complex data for-
mats in wireless sensor networks and remain using simple solutions like the one table per
network approach [43, 156, 168, 253]. In detail, in TinyDB [156], data is represented as a
table with one column for each attribute which is available in the network.
On the other hand, there exist special compressors for XML data that show the possibilities
of adapting complex data formats to resource constraints. They can be divided in the ones
that produce compressed XML, that can be queried and dynamically processed [29, 166,
173], and the simple compressors that produce non processable representations of the XML
documents [146, 244]. Besides, XML compression has been further discussed in [109, 146,
236]. However as previous investigations in [102] have shown, these compressors are not
applicable to sensor network data management because of their significant footprint that
easily exceeds the available program memory on sensor nodes and the processing power
constraints. The Xenia approach [245] is an exception. It reduces the problem of XML
compression to the execution of a deterministic pushdown automaton which is generated
from an XML Schema definition at compile time. Currently, there is no possibility to
evaluate XML queries directly on the Xenia-compressed XML document representations.
This makes Xenia mainly useful for an in-network data representation only. However, the
results that are presented in this paper can be adapted so that query processing on Xenia-
compressed documents will be investigated in the future.
While the presented work on XML compression was not targeted for sensor network usage,
the usage of more structured complex data formats in wireless sensor networks was firstly
discussed in our work published in [96] and [98]. As a result, using complex XML data
and supporting further XML-based application scenarios and protocols, e.g. SOAP [232],
is now possible. In Chapter 4, we describe all of our contributions in the field of XML com-
pression that are to the best of our knowledge the only approaches that are applicable for
wireless sensor networks. We further discuss the dynamic processability of the compressed
XML data and the evaluation of XPath queries on the compressed XML data in Chapter 5.

2.4 Service Oriented Architectures and AESOP’s TALE
While previous work has been concentrated on finding energy efficient algorithms for data
transmission, data routing and data acquisition in wireless sensor networks, the engineering
process has been only slightly researched. Developing sensor network applications remains
a tedious and error prone task which can be one of the reasons whywireless sensor networks
are often not used by non expert research teams, e.g. biologists.

58 CHAPTER 2. BASICS AND RELATED WORK

In detail, programming sensor network applications remains to expert users, e.g. computer
and network scientists, due to the specific conditions in sensor networks, e.g. resource
limitations, high communication and node failure probability as described in the previous
Section 2.1, which require special programming concepts and algorithms. Moreover, the
abstraction layer of the programming phase is often close to the hardware of the nodes.

A strategy for simplifying the engineering process can be the adaptation of the concept of
service oriented architectures (SOAs) for sensor networks applications which is described
in this section. Service oriented architectures have been introduced as a design principle for
the system development process of mostly distributed application scenarios within business
domains. They simplify and organize the development process by allowing a stepwise
composition of atomic, self-describing services into more complex applications, which
themselves can be defined as services.
By creating an abstract view on the system functionality and hiding complex implementa-
tions under the context of services, non expert users can create sensor network applications
without comprehensive knowledge of the target platform. Nevertheless the resource limi-
tations require an adaptation of the existing SOA concepts and standards. This adaptation
is the goal of the project AESOP’s TALE and this thesis. Hence, in this section we give an
extended introduction into service oriented sensor networks and present the contributions
of this thesis to the goals of AESOP’s TALE.

2.4.1 Introduction to Service Oriented Architecture (SOA) and Web
Services

With the introduction of Sun-RPC 20 years ago and the publishing of the RPC (remote pro-
cedure call) reference specification [164], middleware technologies to abstract and simplify
the engineering process of distributed systems have been widely used.
In detail, middleware describes a software solution to interconnect software components
and applications in a mostly distributed application scenario. Hereby, the communication
processes between the connected software components are organized and encased in an ab-
straction layer between the operating system and the actual application. As a result, com-
plex distributed applications that make use of various software components and services
in large scale networks can be efficiently developed. The engineering process is further
simplified by deriving application specific parts of the middleware from a given interface
description which is defined by an Interface Definition Language (IDL) [175]. One of the
widespread middleware technologies that includes the described concept is CORBA, which
exists for various programming languages [229].
The communication aspects of the remote procedure call that is provided by the middleware
are further hidden to the developer. The encapsulation and abstraction of the middleware
provides better failure detection and error debugging. As a result, using a middleware can

2.4. SERVICE ORIENTED ARCHITECTURES AND AESOP’S TALE 59

abstract from the complexity of a distributed system by providing an abstraction level that
makes the development process the same as for a non distributed application scenario.
While the ideas and strategies of the middleware technology exist and are used for over
20 years, the recent trends in distributed systems, software technologies and the evolving
world wide connection through theWorldWideWeb (WWW) introduces a newmiddleware
technology denoted as Web Services.
In detail, the Internet is the world largest application network and hence distributed system.
The internet describes the world wide interconnection of computers using the standardized
Internet Protocol Suite (TCP/IP) which serves billions of participants and interconnects
millions of sub-networks. The most common application of the Internet is the World Wide
Web (WWW) which describes the interconnection of Hypertext Documents using the stan-
dardized Hypertext Transfer Protocol (HTTP).
The large scale network size of the internet which exceeds all previous networks and the
loose coupling of client and server participants make existing middleware technologies like
CORBA not or only limited applicable for many domains and therefore require alternatives.
Hence, the new middleware solutions denoted as Web Services has been introduced in [42]
by the W3C. While there is a lack of a precise definition of the Web Service paradigm
itself, the difference in the Web Service concept to previous middleware technologies can
be summarized by high exchangeability, interoperability using Web document and protocol
standards and programming language independence.

In detail, the early middleware concepts and the concept of Web Services both allow imple-
mentations of the Service Oriented paradigm also denoted as Service Oriented Architec-
tures (SOAs). Hereby, a service comprises units of functionality and provides a description
of how to use it defined by metadata. Services are generally made accessible in order
to compose them to high level applications which are defined as consumer or clients of
services. This task is also referred to as orchestration. The communication between the
consumer and the service provider is defined by standardized protocols as denoted previ-
ously.
Previous middleware technologies like CORBA and Java-RMI [59] that allow implement-
ing SOAs use an object oriented data model with a strict coupling to dedicated object
oriented programming languages, e.g. C++ and Java. The life-cycle of a service is defined
as follows. A service is defined as interfaces in the Interface Definition Language (IDL).
In a next step the IDL is compiled to generate client stubs and server skeletons that rep-
resent the communication ends between the service provider and the service consumer.
The service is implemented on server side, associated with the generated skeletons and
published with a naming or trading service to make it available for the client. The client
contacts the naming service for the desired service and retrieves the appropriate object
reference which can be used transparently by the developer as if it would be a local ob-
ject reference. The presented life cycle shows the disadvantage of the early middleware
technologies. The strict relation between the data model (object model) and the target pro-

60 CHAPTER 2. BASICS AND RELATED WORK

gramming language (object oriented programming language) and the location transparency
(object references) make the previous approaches inflexible and reduce the exchangeability.

Web Services in contrast, as introduced by the W3C, are designed to support interopera-
ble machine-to-machine interaction over a network. A Web Service has an interface de-
scribed in a machine-processable format (specifically WSDL (Web Service Description
Language)). Other systems interact with the Web Service in a manner prescribed by its
description using Simple Object Access Protocol (SOAP) messages, typically conveyed
using HTTP with an XML serialization in conjunction with other web-related standards.
Services are used by sending and receiving messages following the standardized SOAP
message exchange model. In contrast to the previous approaches, a user does not need
to know anything about the implementation (object model, programming languages, etc.).
Only the rules of SOAP need to be taken care of.

Figure 2.13: Web Service Stack Architecture [21]

In Figure 2.13, we show the general Web Service Network Stack. While a complete intro-
duction is given in [21], we here discuss the general aspects and key features of the Web
Service technology. The core of the Web Service technology are SOAP messages that are
used for interacting with Web Services. A SOAP message uses the XML data format. It
consists of an envelope, an optional header and a body containing the data. Web Services
communication includes three types of SOAP messages: SOAP requests, SOAP responses
and fault messages. Information, e.g. complex objects and data, can be embedded in
SOAP messages in a serialized way, which is determined by the serialization rules for data
exchange. Beside these contributions, the W3C specification also includes conventions for
representing RPCs.

2.4. SERVICE ORIENTED ARCHITECTURES AND AESOP’S TALE 61

According to [78], the SOAP message exchange model can be defined as follows. In any
case of receiving a SOAP message, the local application must:

1. Identify the parts of the message intended for it.

2. Verify that these parts are supported by the local application and process them ac-
cordingly.

3. If the application is not the final destination, the parts of step 1 have to be removed
and the remaining message has to be forwarded to its final destination.

Like in the previous approaches, e.g. CORBA,Web Services need to be specified in order to
make them public. The Web Service stack includes the Web Service Description Language
(WSDL) that is an XML Schema language for describing the interface of a Web Service
instance [42]. An interface description i.a. includes the provided methods and parameter
types including both response messages and request messages. WSDL furthermore let you
describe where a service is located (address) and which protocols on lower layer are used.
WSDL hereby does not mandate a specific protocol as shown in the Web Service stack in
Figure 2.13. Nevertheless, it is common to use bindings like SOAP and HTTP.
Web Services are not only used in closed environments where every available Web Service
is known by all participants. In public networks public directories have to be available
to register and lookup services. Therefore UDDI (Universal Description, Discovery and
Integration) has been introduced as a registry service, that is actually itself a Web Service,
for supporting the publication, search and binding of Web Service instances [238]. UDDI
provides mechanisms for service providers to advertise for a service in a standardized form
and for service consumers to search for services of interest. We visualize these mechanisms
in Figure 2.14.
If UDDI finds a suitable Web Service, it is passed as a reference to the query issuer. The
user binds the Web Service instance, e.g. using the WSDL description. The information is
exchanged using SOAPmessages. While our concepts of this thesis are firstly motivated on
integrating plain XML data management in wireless sensor networks, we also support the
integration of SOAP messages as a data exchange model. We therefore discuss the SOAP
message exchange briefly in the next section.

2.4.2 Programming Web Services Using SOAP
As denoted in the previous section, using Web Services requires a standardized protocol
for accessing the Web Services and transmitting the corresponding data. For a detailed
introduction into programming Web Services using SOAP we refer to [216].
We give a short example to show how SOAP is used to use Web Services. The example
is derived from [49], for a complete introduction we refer to this tutorial and to the book
[216]. To use a Web Service, a client sends a SOAP request message as shown in Listing

62 CHAPTER 2. BASICS AND RELATED WORK

Figure 2.14: Web Service Architecture Triangle

2.10. Beside the header and envelope, the message contains the body including the Stock-
Name parameter and a Price parameter that will be returned in the SOAP response. The
namespace for this function is defined in "http://www.example.org/stock".

Listing 2.10: A SOAP Request

1 POST /InStock HTTP/1.1
2 Host: www.example.org
3 Content-Type: application/soap+xml; charset=utf-8
4 Content-Length: nnn
5

6 <?xml version="1.0"?>
7 <soap:Envelope
8 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
9 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
10

11 <soap:Body xmlns:m="http://www.example.org/stock">
12 <m:GetStockPrice>
13 <m:StockName>CORN</m:StockName>
14 </m:GetStockPrice>
15 </soap:Body>
16

17 </soap:Envelope>

After receiving the SOAP request the service provider calculates the current stock price for
corn market stocks. The price is then embedded in the body of the SOAP response message

2.4. SERVICE ORIENTED ARCHITECTURES AND AESOP’S TALE 63

as shown in Listing 2.11. This very simple example shows that SOAP messages are mostly
XML and gives a hint how XML data management in wireless sensor networks can help to
support SOAP. We discuss this aspect in the following sections.

Listing 2.11: A SOAP Response

1 HTTP/1.1 200 OK
2 Content-Type: application/soap+xml; charset=utf-8
3 Content-Length: nnn
4

5 <?xml version="1.0"?>
6 <soap:Envelope
7 xmlns:soap="http://www.w3.org/2001/12/soap-envelope"
8 soap:encodingStyle="http://www.w3.org/2001/12/soap-encoding">
9

10 <soap:Body xmlns:m="http://www.example.org/stock">
11 <m:GetStockPriceResponse>
12 <m:Price>34.5</m:Price>
13 </m:GetStockPriceResponse>
14 </soap:Body>
15

16 </soap:Envelope>

2.4.3 Related Work to Middleware and SOA for Wireless Sensor Net-
works

To simplify the complex engineering process of distributed sensor network applications,
some concepts have been introduced in the past. However, the majority of these concepts
are mainly targeted to simplify the data acquisition by providing a data-centric query lan-
guage as described in Section 2.2 and can be categorized as query interfaces rather than
programming interfaces [43, 156, 168, 253]. Other concepts like the module based engi-
neering as proposed for NesC [74] help to organize the engineering process and / or provide
abstraction layers from the actual used hardware, e.g. sensing and communication APIs or
concurrency control. However, these concepts are also mainly targeted for experienced de-
velopers and the usage for non experts remains questionable. The terms of service oriented
architecture or service centric applications have been used in [18, 50, 51, 104, 135, 162].
The goal of these works is the simplification of the engineering process by providing sen-
sor node functions as services in the network. Blumenthal et al.[18] discuss an approach
that is related to classic tight coupling of the participants of the distributed system using
a distributed middleware architecture. The sensor node application thereby consists of the
middleware, the operating system (node firmware) and device drivers. The operating sys-
tem controls the devices. The actual device driver controls sensory tasks. The middleware
organizes the interaction of the distributed sensor nodes in the network and manages the

64 CHAPTER 2. BASICS AND RELATED WORK

operation of local and globally shared (cooperative) services. The service oriented frame-
work OASiS [135] supports the encapsulation of program functionalities represented as
services on an abstraction layer. Services can be connected, forming a service graph that
represents the data flow. If a sensor node fails, the corresponding services are deleted from
the service graph if no response to a service request is received. In [51], Delicato et al. dis-
cuss a reflective middleware for wireless sensor nodes. This middleware provides global
services for accessing and delivering the sensor data in the network. Like in the Cougar ap-
proach [253], there exist dedicated sensor nodes (like cluster heads) that are responsible for
receiving, processing and answering service requests. These service directory nodes also
include the descriptions of the existing services in the network. The approaches discussed
in [104, 162] also discuss how service directories can be managed and used for finding
and binding services. All of the presented approaches discuss interesting ideas. However,
they are still theoretical concepts that have not been implemented for real sensor network
hardware and deployments. Moreover, the concepts are often discussed on network mod-
els that differ from the real metrics of wireless sensor networks as discussed in Section
2.1.3. A recent development in sensor network middleware research is the integration of
sensor networks in Cloud environments, e.g. [196]. While this is a promising approach
to optimize the integration of sensor networks in other networks and to simplify the usage
of sensor networks, these approaches are also still in their early phase and have not been
implemented yet.

2.4.4 Adapting the Service Oriented Paradigm to Sensor Network En-
gineering

In the last section, we gave an overview on related work in the field of middleware for
distributed wireless sensor networks. We pointed out, that though there exist several ap-
proaches on integrating the idea of service oriented architectures in wireless sensor net-
work, XML usage is the key feature for using standardized Web Service techniques. Fur-
thermore, the extension of the service oriented paradigm to sensor networks will also pro-
vide better connectivity to sensor networks and better integration of sensor network ser-
vices in web applications, e.g. data mining in sensor networks. For these reasons in recent
years, combining service-oriented architectures with wireless sensor networks has been an
important research area. The resulting approaches can be classified into two categories.
In the first category, the sensor network acts as a whole as service provider by querying,
processing and delivering data from sensor nodes [50, 191, 212]. In the second category,
single sensor nodes provide services which can be composed to more complex Web Ser-
vices using gateways for communication only [18, 135, 162]. Nearly all of them make
use of standard Web Service technologies SOAP and WSDL, based on XML, for exchang-
ing messages between the internet and the sensor network gateways or interfaces. Within
the sensor network other special message formats are used for communication [135, 162].
However, Delicato et al. [18] propose an XML based communication within the sensor

2.4. SERVICE ORIENTED ARCHITECTURES AND AESOP’S TALE 65

network, but this approach has not been realized on sensor nodes, yet. However, XML
support remains crucial for integrating standardized and transparent service integration in
wireless sensor network application engineering.

Applying and Extending the Service Oriented Paradigm to Sensor Network Applica-
tion Engineering (AESOP’s TALE)

As presented in the introduction of this thesis in Section 1.1.2, the adaptation of the service
oriented paradigm to sensor network engineering is the goal of the DFG project AESOP’s
TALE [149]. This thesis contributes significantly to the project’s goals as described in the
next paragraph.
The main idea of AESOP’s TALE is to integrate the standard web technologies for Web
Services in the sensor network application engineering cycle. The sensor network itself
should provide Web Services to outside clients but also be a service oriented architecture
itself, e.g. sensor network programs are composed of in-network services. This idea has
been visualized in the introduction in Figure 1.3.
From the technical point of view the AESOP’s TALE project defines a general architecture
for a sensor node that supports standardized Web Services as shown in Figure 2.15.

Figure 2.15: AESOP’s TALE Sensor Node Architecture

The architecture summarizes the main research goals of the project as follows:

• An energy efficient transport layer, e.g. GRAPE

• A compression scheme for SOAP and XML transport and data management

• A SOAP engine

66 CHAPTER 2. BASICS AND RELATED WORK

• A service interface for scheduling the service calls to the corresponding functionali-
ties

• Service migration and dynamic programming of migrated service program code

• An XML query engine for processing queries on compressed XML data

• Service replication

• Transaction support for atomic and isolated service migration

• A basic service oriented operating system

We discuss the impact of this thesis on these goals in the next paragraph.

Impact on AESOP’s TALE Project Goals

The work presented in this thesis provides the following contributions to the AESOP’s
TALE project goals [149]:

• IntroducingXOBESensorNetwork as a design framework to support developers using
XML data (Chapter 3).

• Providing an efficient XML data representation on the sensor nodes (Chapter 4).

• Providing an XML query layer to access dynamic XML data within the sensor net-
work using XPath (Chapter 5).

• Enabling the support of the Standardized Simple Object Access Protocol (Chapter
5).

• Providing various energy efficient optimizations for evaluating queries in the sensor
network to enhance the network lifetime, e.g. XML data caching (Chapter 6) and
Bounded Continous XML Queries (Chapter 5).

These contributions cover the following working packages of the project application (titles
extended for understandability):

• Description of Resources within the Sensor Network

• XML Processing on Sensor Nodes

• XML In-network Storage and Data Management (Shared XML Data Repository)

• SOAP on Sensor Nodes

• Query Language and Query Evaluation for Data Resources

2.4. SERVICE ORIENTED ARCHITECTURES AND AESOP’S TALE 67

Figure 2.16: SOAP Usage in Wireless Sensor Networks Corn Farming Application Sce-
nario

• Sensor Network Metrics (Estimating Resources)

• Demonstrator

Providing an efficient XML data representation is one of the key challenges of the AESOP’s
TALE project as it is the key feature for supporting the standardized Simple Object Access
Protocol (SOAP) that is based on XML as shown in Section 2.4.1. One possible scenario is
given in Figure 2.16. In this example, a mobile client is using an application that makes use
of a heterogeneous Web Service, e.g. located in either the WWW or provided by the near
sensor network. The communication should use standardized protocols for interoperability
and compatibility reasons. Therefore, the mobile client is using the described Web Service
technologies, e.g. SOAPmessages, to bind service from theWWW and the sensor network.
An application can be the mobile client of a farmer who is observing his corn field. The
services from the sensor network provide information about the environmental conditions,
e.g. humidity, solar radiation and nutritive value. Given this analyzation, the farmer can
estimate the corn market price progress and use this information for trading, which could
be also done using Web Services on the mobile client. On the other side, he can manipulate
the field condition given a condition on the corn market that is presented on the mobile
client, e.g. accelerate the corn growth using high speed fertilizer in case of an estimation
of high corn prices in the next days. This pervasive usage of the sensor network and the
WWW is the key feature of the AESOP’s TALE technology and the concepts of this thesis.

68 CHAPTER 2. BASICS AND RELATED WORK

Chapter 3

XOBESensorNetworks

In this chapter, we introduce the XOBESensorNetworks programming framework to enable
seamless XML data management support during the sensor network engineering phase and
the sensor network runtime phase.

3.1 The XOBESensorNetworks Programming Framework
As mentioned in the introduction of this thesis, handling data formats in the program-
ming phase of wireless sensor network applications is a tedious and error prone task. This
holds especially for handling complex data formats like XML as proposed in Section 2.3.4.
Firstly, the structured form of XML requires more complex concepts for representing the
structured XML data in the sensor node programming language, e.g. errors can be easily
overseen. Secondly, the scarce hardware resources demand of energy and memory efficient
representations that even aggravate the first challenge.
To support the developers of sensor network applications and services we introduce the
XOBESensorNetworks (XML Objects for Sensor Networks, XOBESN) programming
framework for integrating XML in sensor node applications and the development process.
XOBESN provides a seamless integration of XML in the programming language, e.g.
using XML variables in C and Embedded C [96]. It thereby hides the complex task of
specialized XML data binding in wireless sensor node programs. This includes the choice
of an energy and memory efficient data representation and the transformation task into
this representation. Furthermore, it provides a runtime framework to allow accessing the
represented XML data and further management tasks, e.g. XML data acquisition and XML
data updates.

The idea of integrating XML in the programming phase to support developers is derived
of the XOBE and XOBEDBPL framework which have been introduced for the Java
programming language in [150, 207]. These predecessor projects concentrated on the
integration of XML objects in Java to bind XML data that is included in the Java source

70 CHAPTER 3. XOBE SENSORNETWORKS

code. XML objects are plain Java objects that represent the XML data but desist from
using any further compression. XPath was used to provide access to the XML objects. The
most important feature of XOBE was that each XML data operation was statically type
checked against a given XML schema, e.g. DTD. XOBE was extended by XOBEDBPL

regarding the manipulation and management of XML objects. The focus of the initial
XOBE project was the development process with the ability of statically type checking
the XML data and the active manipulation of XML objects during runtime. The follow-up
project XOBEDBPL extended these concepts with a persistence layer that allows to deal
with persistent objects, e.g. storing XML objects transparently in a database without any
knowledge about the database connection. Furthermore, the data access possibilities were
extended by allowing XQuery queries and XML updates with dynamical type checking.

The predecessor projects hence clearly motivated the concepts of this thesis and the
XOBESN programming framework. All three approaches focus on XML as a central
de-facto standard data format for data exchange. The developer should be supported in
handling XML during the engineering phase by enabling the transparent usage of XML
constructs in the target programming language. The actual data binding is hidden to the
developer and completely processed by the XOBE framework autonomously.
Nevertheless, there are significant differences in the goals of the approaches. The main dif-
ference is that both predecessor projects were targeted for non-distributed systems without
any resource limitations. The transformation of the embedded XML data in representations
of the programming language resulted in a flexible object representation following the de-
sign guidelines of object oriented programming. In wireless sensor networks we have to
deal with very scarce resources. Moreover, beside the iSense operating system, sensor
network programming is not done in object oriented programming languages. Hence the
transformation process is more complex including the need for efficient memory alloca-
tion routines and efficient garbage collectors. Object representations have generally a high
memory demand. Hence, the representation of the XML data on the sensor nodes needs to
be further compressed without loosing the ability of dynamically accessing the XML data,
e.g. for evaluating queries.
For accessing the XML data in the sensor network, XPath can also be used. However,
as wireless sensor networks are large scale distributed systems, new concepts for query
dissemination and energy efficient result processing and delivery need to be introduced.
This includes an extension to support continuous XPath queries. Since sensor networks
are usually deployed in a target area without the ability to maintain applications in field,
the process of type checking is also very important. Statically type checking the XML
data in the programs supports finding errors that may have significant impact on deployed
applications, e.g. making it necessary to redeploy the entire network because an error can
not be corrected in field.
In summary, the target platform makes the integration of XML more difficult as for the
predecessor projects. XOBESN is mainly focussed on data acquisition and management.

3.1. THE XOBESENSORNETWORKS PROGRAMMING FRAMEWORK 71

Hence, it is more related to the first XOBE project. While the efficiency and safety of the
framework is essential for sensor network engineering, the creation of a persistence layer
is not a main design issue. The support of update languages has also not been discussed as
a requirement in the sensor network community. Nevertheless, it may become an extension
field for future work.
In the following parts of this section, we discuss the integration process in the field of
wireless sensor networks and the integration of XML data in the Embedded C programming
language in detail. The XML integration process consists of different phases which are
described in the subsequent sections.

3.1.1 Architecture
The entireXOBESN framework consists of a compile time part and a runtime environment.
The part for the compile time is responsible for handling any XML data that is used during
sensor network application engineering. The tasks during compile time can be summarized
as program parsing, type checking and transformation. XOBESN acts as a precompiler
and translates XML enriched C programs into code that is compilable with standard C
compilers. Thereby, it supports the following key features that are introduced in the fol-
lowing sections:

• Transparency: Direct and transparent XML usage in the engineering process.

• Stability: Static XML typechecking to ensure stable applications.

• Efficiency: Memory and energy efficient XML transformation in the target language.

The runtime environment provides methods for handling and managing transformed XML
data on running sensor nodes. This includes XML document access and the evaluation
of queries on the XML data. Furthermore, evaluation results need to be themselves com-
pressed to reduce the size of data that needs to be transmitted. Lastly, compressed data
that is received by any sensor node or the gateway needs to be uncompressed, e.g. in or-
der to process it outside the network. Hence, every sensor node running the XOBESN

framework also includes output routines.
We present the general architecture and the program flow of XOBESN in Figure 3.1.
XOBESN takes any sensor node program code, e.g. in Embedded C, and a given XML
schema, e.g. a DTD file, as an input. As introduced before, the source code may include the
usage of XML data, e.g. plain XML assignments and XML variables. We discuss this syn-
tactical extension in the next section. The source code is parsed to create an abstract syntax
tree that is used for the following processing steps. Besides, the schema file is also parsed to
store information about the type and structure of XML elements and attributes. The source
code parser is responsible for checking if the XML is well-formed. If not, XOBESN can-
cels the compiling task. The validity of the embedded XML data is checked in the next type

72 CHAPTER 3. XOBE SENSORNETWORKS

Figure 3.1: XOBESensorNetworks Architecture

checking phase that we discuss shortly in Section 3.3. The last phase during compile time
is the transformation which can also be denoted as data binding. As the source code needs
to be compiled by the standard C compiler all XML fragments need to be transformed in
compiler conform C code that needs to represent the XML in a compressed form to meet
the hardware restrictions on the sensor nodes. We discuss the efficient transformation step
in Section 3.4. The result code of XOBESN is now forwarded to the standard C compiler
chain. After compilation, the program can be loaded on the sensor nodes. The XOBESN

runtime environment then supports input and output routines of the XML code, e.g. seri-
alization for data transmission. It further enables evaluating XML queries using different
concepts as proposed in Chapter 5.

3.2. TRANSPARENCY 73

3.2 Transparency
As discussed before, the difficult programming phase of WSN applications may be even
more tedious when dealing with different data exchange formats, even with XML. The
native use of XML data in the program code can significantly simplify the programming
phase, because the developer can use XML in its natural form without thinking about in-
ternal representations in the target programming language. This idea is the basic feature of
XOBESN . XOBESN ensures transparency by integrating direct XML usage in the pro-
gram code, e.g. plain XML code can be used in declarations of dedicated XML variables
and assignments. The task of XOBESN is to parse the program code and additionally an-
alyze a given schema that restricts the XML usage within the program as shown in Figure
3.1.
We give an example for XOBESN code in Listing 3.1 that is also used throughout this
thesis in various forms to explain the concepts of XML compression and query evaluation.
Additional examples are given in the following sections in Listing 4.1, 4.13 and 4.14.

Listing 3.1: XOBESN Example Code

1 ...
2 xml<nodereport> ReportOne;
3 xml<nodereport> Report;
4 xml<sensors> Db[2];
5 ...
6 int i=0;
7 for(i=0; i<2; i++) {
8 Db[i] = <sensors rev="1" id={i}>
9 <id>{i}</id>
10 <bat>3</bat>
11 <sens>21</sens>
12 </sensors>;
13 }
14 ...
15 ReportOne = <nodereport>
16 {Db[0]}
17 </nodereport>;
18 ...
19 Report= <nodereport>
20 {xmlUnfold(Db,2)}
21 </nodereport>;
22 ...

The basic syntactical extension is the introduction of XML variables. XML variables
are declared using the marker xml followed by the type and a variable name, e.g.
xml<nodereport> Report. Additionally, it is possible to declare arrays / lists of XML
variables as shown in Listing 3.1 Line 4. Arrays are declared using standard C syntax,
e.g. defining the array length in brackets. XML variables are now used for XML as-

74 CHAPTER 3. XOBE SENSORNETWORKS

signments, e.g. assigning plain XML code to the XML variable: xml<type> varname =
<type>PCDATA</type>. While this simple example shows how to assign static XML
data, assignments may include references to other regular and XML variables as shown
for ReportOne, Report and Db in Listing 3.1. Any references in assignments are thereby
processed as call by value, e.g. a copy is placed in the data structure instead of a cross refer-
ence. Dynamic information like the loop index or actual sensor readings can be embedded
in the XML code.
In the assignment of the array entries Db we show how to embed the id of a node in
the XML fragment. Moreover, it is possible to embed other XML variables as shown
for the XML variable ReportOne where the first entry of the Db array is embedded. The
embedded XML variable can be the assignment variable itself, resulting into recursive
assignments, which are useful for storing historical information in chronological order. For
better handling of XML arrays, we introduce the xmlUnfold operator that takes any XML
array and an integer as a parameter. The xmlUnfold function then flattens the embedded
array by copying the given number of entries of the array in the XML data that is currently
assigned. In our example assignment of Report, the final variable will include the first two
entries of Db in the XML data as children of the element nodereport.
While we introduced the declaration of XML variables and assignments, following the
predecessor projects it is also possible to use XML queries, e.g. stated in XPath, in the
XOBESN source code, e.g. ReportOne = var(Db)/sensors[0]. However, due to the practi-
cal unimportance for sensor network applications, e.g. making this feature rather optional
syntactical sugar than essential syntax, this functionality was left out in the current release
for optimizing the program code size. Nevertheless, it can easily be integrated, if future
application fields make use of it.
Finally, the actual transformation in plain C code is hidden to the developer which simpli-
fies engineering and furthermore avoids errors during programming. This concept is de-
fined as transparent XML engineering or short transparency. The XOBESN precompiler
automatically transforms the assignments into correct C code using efficient transformation
rules that are described in the subsequent sections.

3.3 Stability
The next phase is a static type checking that is based on hedge grammars [122] to verify
static type correctness of the included XML code. This phase is of significant importance
to ensure more stable programs and avoid costly maintenance of deployed networks. In
general, if XML documents are managed it is often necessary that the documents are not
only well-formed but also valid concerning a given XML schema file, e.g. given by a DTD
or XML Schema document. To verify that a given program produces valid documents
it is normally necessary to perform comprehensive tests at runtime. This procedure is
denoted as dynamic type checking. To avoid runtime expensive validity tests in deployed

3.4. EFFICIENCY 75

networks, XOBESN instead offers the possibility of static type checking. A program
analysis at compile time decides if the given program produces a valid XML document or
not. As an example, XOBESN can decide for the assignment of Db the right hand side
of the assignment does not conform to the type of sensors. If not, the static type checking
procedure reports an error.
According to Kempa et al. [122] and Schuhart et al. [207], the type checking algorithm con-
sists of the following parts. First, the formalization phase translates a given XML schema
file into a formal representation based on regular hedge expressions. In Figure 3.1, we
introduce the schema parser that is responsible for building up this formal representation.
The next phase is type inference, that is given by the XML variable declaration. For a more
complex type inference, e.g. determing the type of query and update expressions, we refer
to [207] as it is currently not addressed by XOBESN .
Using the described type checking algorithm, it is possible to check if assigned XML data
is valid, if assigned XML data corresponds to the XML variable and if referenced XML
data conflicts with the type of the XML fragment where it should be embedded. In this
way even the return values of queries, e. g. formulated in XPath, can be guaranteed to be
valid. So the effort needed for testing a program is significantly reduced and more stable
programs are generated. This is especially important in the area of sensor networks because
programming and testing of sensor nodes is an error-prone and tedious process in itself. If
an error is not detected until all sensor nodes are deployed, in the worst case the whole
sensor network can become useless and a redeployment of the whole network may not be
profitable. Even if it is affordable to reprogram the whole sensor network, this often means
reprogramming each sensor node via a physical link, which is a time consuming procedure.

3.4 Efficiency
We previously denoted that the XOBESN precompiler is responsible for transforming the
XML assignments in plain C code for the sensor nodes. In Section 2.1.3, we introduced the
technical constraints in wireless sensor networks, e.g. low energy, processing and memory
resources. In Section 2.3.5, we pointed out that these scarce resources create strict limi-
tations for integrating XML usage in wireless sensor networks. These challenges may be
the reason why native XML support has not been proposed for wireless sensor networks.
The general verbosity of XML conflicts with the limited energy and memory capacities
of sensor nodes. For this reason, native XML support has to be based on efficient XML
data binding structures that save space, time and energy by eliminating the XML overhead.
Furthermore, sensor networks are typically deployed for data acquisition. Dynamical XML
processing, e.g. querying and updating, still has to be possible and XML data binding li-
braries have to be small sized, which limits the compression possibilities and makes XML
data binding a difficult task in sensor networks. The term efficiency therefore describes
the transformation of XML in a memory and energy efficient representation. Moreover, it

76 CHAPTER 3. XOBE SENSORNETWORKS

describes the efficient management and processing of transformed XML during runtime.
This includes an efficient transmission of XML queries and results.

XOBESN Compression and Data Holding Concepts

XOBESN therefore supports two separate compression and data holding concepts that are
introduced in the following sections. Both strategies are defined as template based com-
pression schemes as they first analyze the given XML data for repeating structures that will
be described by defined templates as described in Section 4.1. However, they differ in the
way the actual compressed data is further processed and stored in memory. We introduce
XML Template Objects (XTO) as the first implementation of the concept in Section 4.2,
whereby a light weight object model is used to preserve direct access to the XML data.
A more memory optimized implementation approach are XML Template Streams (XTSs)
that are discussed in Section 4.3. Hereby, the compressed encoding of XML documents
is kept in memory in a plain encoding format without explicit object model. While this
approach does not provide the direct access to the represented document, the absence of
object structure in memory results in a more efficient memory usage. We will show that
both approaches support dynamical evaluation of XML queries in the corresponding sec-
tions.

Transformation Requirements

In summary, an efficient XML data binding solution for sensor networks has to fulfil the
following criteria that define the requirements for the XOBESN transformation process:

• Memory Efficiency: Representing a high amount of XML data with a low amount of
allocated memory.

• Runtime Efficiency: Using only a minimal number of processing cycles for process-
ing XML data.

• Processability: Allowing to process XML data dynamically without an expensive
decompressing step.

• Communication Efficiency: Serializing XML in a compressed way for reducing the
transmission costs.

Following these requirements, we introduce the implemented transformation concepts of
XOBESN in the subsequent chapters. In detail, the next chapter includes strategies on
storing and managing transformed XML on the sensor nodes at a high memory and runtime
efficiency. In Chapter 5, we discuss the dynamical, runtime efficient evaluation of XPath
queries which includes representing XPath results at a high memory efficiency.

Chapter 4

The XML Template Compression
Scheme

In this chapter, we introduce a scheme for compressing XML data in wireless sensor net-
works based on XML templates. The general idea of this compression scheme is defined
in the next section. The compression scheme however only provides a general concept of
how XML data can be compressed. We therefore introduce two separate implementations
of this concept in the subsequent sections. Both implementations are focussed on special
requirements in the sensor network, e.g. either providing an efficient data access framework
or reaching the highest compression ratio. Nevertheless, they both are fully applicable on
today’s sensor node platforms and support a high memory efficiency, runtime efficiency
and processability as demanded in the last chapter. We finalize this chapter by comparing
both implementations and evaluating them by using common benchmarks.

4.1 The XML Template Compression Scheme
In Section 2.3.5, we pointed out that there are limitations on representing high amounts
of XML data on sensor nodes. Especially, if XML is used as a centralized data format in
wireless sensor networks where the size of data may become very high for long term mea-
surement applications. Traditional XML data binding techniques without any compression
are not suitable for representing XML in sensor node programs as described in Section
2.3.6. To take care of these hardware limitations and system requirements, in this section
we define a XML template compression scheme.

XML Templates

This template compression scheme is based on the idea of splitting up XML fragments
into dynamic and static parts, which can be encoded and compressed individually. Like in
the example in Listing 3.1, resulting XML documents often consist of repeating structures,

78 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

e.g. the structure of the sensors element. These repeating structures can be defined as static
parts, because they do not change over time. The other parts, like the id in Listing 3.1
are considered as dynamic parts and can be processed separately. The only consideration
that needs to be taken care of is to link static and dynamic parts for processing the entire
document, e.g. for output routines or query evaluation.

We engross this idea by giving another example for an XOBESN program that produces
rapidly growing XML documents by using recursive assignments. While the previous ex-
ample in Listing 3.1 included a non recursive structure, we explicitly use a recursive struc-
ture in this example because it clearly visualizes the idea of XML template compression.
Nevertheless, for both examples the results of the template compression scheme are the
same. The example is given in Listing 4.1. It describes the sensor data of a Btnode that
stores the current sensor data identified by an measurement id on the first level and embeds
the historic data in a recursive way.

Listing 4.1: XML Template Compression Scheme Example Code

1 xml<btsysinfo> sensor;
2 sensor = <btsysinfo>
3 <id>0</id>
4 <bat>10</bat>
5 </btsysinfo>;
6 for (int i=1; i <=n; i++) {
7

8 int battery = getBat();
9

10 sensor = <btsysinfo>
11 <id>{i}</id>
12 <bat>{battery}</bat>
13 {sensor}
14 </btsysinfo>;
15 }

For every iteration of the loop the program generates a new XML fragment with three
elements. If there are no optimizations for transferring this program into Embedded C
program code, there will be a high demand of memory and the memory of the processing
sensor node will be exhausted soon. Representing the XML with strings and char arrays
respectively without any further compression will result in a memory demand of 57 bytes
for the XML structure and 2 bytes for the dynamic integer values. The string representation
will therefore demand more than 1 kByte after 16 iterations. If only the dynamic integers
are stored, 250 iterations would be possible before 1 kByte of data is exceeded. This
reveals that XML data binding for sensor network programming is full of potential for
compression.
The proposed XML template compression scheme now defines an XML fragment sepa-

4.1. THE XML TEMPLATE COMPRESSION SCHEME 79

ration. The static part consists of the tags <btsysinfo>, <id> and <bat>. The dynamic
part is linked by placing insertion markers for the integer variables i, battery and the XML
element variable sensor. The resulting static template is shown in Listing 4.2.

Listing 4.2: Resulting XML Template for Example Code Listing 4.1

1 <btsysinfo>
2 <id>@0</id>
3 <bat>@1</bat>
4 @2
5 </btsysinfo>

During runtime, the program will produce a growing XML structure / document. How
dynamic parts and static parts are linked together is up to the corresponding implementa-
tion of the scheme. Nevertheless, in every implementation the XML template should be
stored only once. In Figure 4.1 we summarize the result of the XML template compression
scheme during runtime after two iterations. The corresponding XML document is shown
in Figure 4.2.

Figure 4.1: Result of the XML Template Scheme after 2 Iterations

As denoted previously, this recursive example clearly visualizes the benefits of XML tem-
plate compression. The previous example of Listing 3.1 that uses an XML array instead
of a recursive structure can be compressed in an identical way. An XML template can ei-
ther describe recursive embedded XML fragments or a list of fragments. The result of the
compression is the same as we will show in the following sections.

80 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

Figure 4.2: The XML Document produced by Listing 4.1

Optimizing XML Templates using Separated and External Identifiers

XML templates are generated during compilation of XML based applications. This brings
up the question if XML templates are needed during runtime. This answer depends on
the application. If XML is only used to store data in a structured format and then to
send it back to a gateway, the XML template can be stored outside the sensor network.
Dynamic data is nevertheless strictly related to the external XML templates and can be
used to generate XML documents at the gateway. However, if XML and XML queries are
processed dynamically on the sensor nodes, storing only the dynamic parts is not enough.
In this case, the XML structure needs to be accessed and therefore the XML templates need
to be within the sensor network. A compromise is achieved by storing XML identifiers
outside the network and the structure inside the network. This simple approach provides
significant compression results, since XML identifiers are the most verbose part of XML in
a considerable number of cases. However, the query engine needs to take care of rewriting
XML queries before sending them into the sensor network. Listing 4.3 shows this simple
but effective approach by an example.

The presented XML template compression was shown in theoretical manner. Nevertheless,
there are open questions on how to implement this scheme that we will discuss in the
following paragraph.

Implementation of the XML Template Compression Scheme

XOBESN generally implements the XML template compression scheme transformation
by performing three steps as shown in Figure 3.1:

1. In the first step identifiers are separated from the actual XML document. In detail,

4.1. THE XML TEMPLATE COMPRESSION SCHEME 81

Listing 4.3: XML Query Rewriting after Identifier Optimization
1 external array of identifiers:
2 name_array[1] = "btsysinfo";
3 name_array[2] = "id";
4 name_array[3] = "bat";
5

6 XML Template for <btsysinfo>:
7 <1>
8 <2>1</2>
9 <3>15</3>
10 <1></1>
11 </1>
12

13 Rewritten XPath Query
14 /btsysinfo/bat => /1/3

an array of identifiers is generated and identifiers within the XML are replaced by
references to the array.

2. The second step is a complex analyzation step in which XML assignments are col-
lected and evaluated to find repeating structures. These parts are denoted as tem-
plates and can be reused for describing the static XML data as proposed previously.
To adapt to dynamically changing XML structures due to the program flow, e.g.
if-else constructs, a dynamic analyzer needs to be implemented that manages tem-
plates, adapts them and checks and updates existing cross references to the changed
templates.

3. The last step is the actual transformation. The XML assignments need to be trans-
lated into code that is processable by the used standard C compilers. This step is
often referred to as data binding.

As discussed in Section 2.3.6, most of the existing XML data binding solutions are not
applicable. For example, a simple but transparent solution is to represent the dynamic and
static XML data as plain strings in memory. Insertion markers in the template strings are
used to link the template and the dynamic content. Generic C structs can be introduced for
combining template and dynamic content information to save further memory. A result is
shown in Listing 4.4. We denote the generic C struct an XmlObjectString that represents
XML data, e.g. an XML fragment, in the source code.
In the variable dE, the dynamic part of the XmlObjectString is saved, whereby the static
part (template) is stored in the char array variable template. The template is described
in a plain string format. The insertion markers are standard C operators, e.g. %s. Any
assignment will then be transformed to a constructor call as shown for the variable sensor.
The constructor newXmlObjectString stores the dynamic variables in the array dE, e.g. 1

82 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

Listing 4.4: Generic String Representation of XML Templates
1 struct XmlObjectString {
2 char * template;
3 void ** dE;
4 };
5 ...
6 // Example Assignment
7 char * template = "<btsysinfo>
8 <id>{%s}</id>
9 <bat>{%s}</bat>
10 </btsysinfo>";
11

12 XmlObjectStringType sensor = newXmlObjectString(template,1,32);

and 32, and assigns the template. However, by accessing the dynamic part during runtime,
a typecast from the original type of the dynamic variable and vice versa has to be done,
e.g. integer, string or another XmlObjectString to string, in order to embed the dynamic
part in the template at the insertion markers. The most memory efficient way to store
the original type would be to store it in the template together with the insertion marker.
On the other side, this would result into parsing the template string every time a typecast
has to be done. Moreover, by using strings to store the template, parsing is needed for
processing navigation steps of XML queries, e.g. XPath navigation. More parsing means
more computing, which results into higher energy consumption that should be avoided in
energy limited sensor networks. In conclusion, it is better to use alternative structures, e.g.
tree object structures, for representing the static template instead of uncompressed string
representations because:

• Subsequent parsing of the template for accessing dynamic elements should be
avoided.

• Accessing dynamic elements has to become faster.

• Dynamic element types should be stored within the template.

• Evaluating XML queries should be simple and more energy efficient.

In summary, this simple string based solution still suffers of high memory usage because
it desists from further textual compression techniques. Moreover, the overhead of parsing
the entire string to access dynamic elements reduces the usability.
Other data binding frameworks like autoXML [123] generate structs and functions for
every XML element according to a given schema. If the schema file is big, much memory
is spent for this transformation method including the function library overhead. Therefore,
they are not applicable for template encoding. Besides, they require a runtime environment
that mostly exceeds the available program memory of the sensor nodes as introduced in

4.2. XML TEMPLATE OBJECTS (XTOS) 83

Section 2.3.6.

As a solution that is applicable for wireless sensor network applications, in the following
sections we propose two separate data binding solutions that implement the XML tem-
plate compression scheme. Both solutions are fully applicable for wireless sensor network
engineering and have been evaluated on real deployed sensor nodes as presented in the
evaluation in Section 4.4. We present the first solution XML Template Objects (XTOs) in
the next section. In Section 4.3, we show how this solution can be further optimized for
application scenarios with strict memory limitations by introducing the second solution:
XML Template Streams (XTSs).

4.2 XML Template Objects (XTOs)
As denoted in the previous section, the basic concept of the XML template compression
scheme is to analyze given XML fragments in order to retrieve dynamic and static parts.
While this process is just a logical information separation to optimize the compression of
the XML data, the actual degree of compression depends on the implementation of this
concept. An implementation needs to take care of the following tasks:

• encoding templates

• linking dynamic content and static templates

• processing the entire represented document, e.g. output of the document

• providing access to the entire represented document, e.g. accessing parts of the do-
cument

In this section, we discuss the XML Template Object (XTO) framework as the first im-
plementation of the XML template compression scheme. This transformation is shown in
the left path of Figure 3.1. Templates that are retrieved during the analyzation phase are
represented as object structures. An XML variable, e.g. an XML fragment, is a structure
that consists of dynamic content, e.g. the battery (bat) value in Listing 4.1, and a pointer to
one or more representing templates. We denote this structure as an XML Template Object
(XTO). Templates can be reused within the same XTO or be shared by various XTOs. Us-
ing an optimized C struct representation of those objects in memory and sharing repetitive
information as templates results in a significant economy of memory as discussed in the
last section.
While details on the implementation of XTOs are given in the next subsection, we give
a practical introduction into the XTO transformation process and show how XTOs are
processed in memory in the subsequent subsections.

84 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

4.2.1 XTO Implementation Data Model
In Section 4.1, we introduced the XML template compression scheme that includes a sep-
aration of the XML data in dynamic and static parts that need to be linked together. The
XTO implementation maps this idea that is visualized by example in Figure 4.1 into an ob-
ject model in Embedded C using C structs. In Listing 4.5, we show the resulting C structs
that are the basis for further enhancements on XTOs.

Listing 4.5: Generic XML Template Tree Structure Representation in Embedded C

1 typedef struct _xmlObject xmlObject;
2 typedef xmlObject *xmlObjectPtr;
3 struct _xmlObject {
4 // static Part XML Template
5 xmlTemplatePtr t;
6 // dynamic Part
7 void ** el;
8 int noel; // #elements
9 };
10

11 typedef struct _xmlTemplate xO;
12 typedef xO *xmlTemplatePtr;
13 struct _xmlTemplate {
14 int name; // name marker
15 int atname; // attribute marker
16 struct _element** el; // elements
17 char ** attributes; // attributes
18 int noel; // number of elements
19 int noatt; // number of attributes
20 };
21

22 typedef struct _element elem;
23 typedef elem *elemPtr;
24 struct _element {
25 void * content;
26 int name; // name marker
27 char type; //type id
28 };

In detail, the object model consists of three C structs for generic elements, templates and
an XTO representation (xmlObject). An XTO (xmlObject) encapsulates a template t and
the dynamic content void** el. The void array only includes the addresses of allocated
memory without any types of the stored data. Hence, it can be used to store dynamic
data of various types simultaneously. This is important, because beside textual information
other embedded XTOs may need to be stored in this array. The pointer t references the
actual template that is described by the struct _xmlTemplate. In Table 4.1, we describe the
meaning of the parts of the template struct. Elements and attributes that are stored directly

4.2. XML TEMPLATE OBJECTS (XTOS) 85

in the template are static. Static elements of templates are represented by their value, name
and type as shown for the _element struct. The integer name is a number reference to the
array of identifiers that is created during identifier separation as proposed in Section 4.1.
We will discuss the implementation of this identifier array in the next paragraph.

Element Description
int name Pointer to the identifier array (identifier of the root element)
int atname Pointer to the identifier array (identifier of the first attribute of the root element)

struct _element** el Array of child elements of the root element
char** attributes Array of values for the root element attributes

int noel Number of child elements (length of el)
int noatt Number of attributes (length of attributes)

Table 4.1: Parts of the C Struct _xmlTemplate

The type of the element content is important because the actual values are stored type-less
in a void array. Processing the type char is therefore mandatory for typecasting the content
to its real type. The XTO implementation currently includes seven types as presented in
Table 4.2.

Type Value Description Resulting C Type
1 Static textual content char*
2 Static element node of a template xmlObjectPtr
3 Empty element void
4 Dynamic textual content char*
5 Dynamic element node (embedded XTO) xmlObjectPtr
6 Dynamic Array of element nodes (Array of embedded XTOs) xmlObjectPtr
7 Dynamic element node without template (embedded light XTO) xmlObjectPtr

Table 4.2: XTO Element Content Types

The integer type is not supported in the basic XTO implementation. Like the predecessor
projects XOBE and XOBEDBPL, this implementation is focussed on DTD usage where
content is defined by #PCDATA that is represented as a string. The type 7 represents an
embedded XTO that has no own template and rather uses the template specification of
the parent XTO. This concept is useful for optimizing the memory demand if templates
are only shared by children of XTOs and not by two separate XTOs (no existing cross-
references). Arrays of embedded XTOs (type 6) always share one template for the entire
array in this XTO implementation to improve the compression ratio.

In the following parts of this thesis, we use a graphical representation of XTOs to im-
prove the readability by avoiding long listings of source code. We therefore show the basic
graphical representation of an XTO in Figure 4.3. The representation is hereby motivated
by common graphical modelling languages, e.g. UML [20].

86 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

Figure 4.3: Graphical Representation of an XTO

DTD Analyzation and Generation of the Identifier Array

In Section 4.1, we discussed the separation of identifiers as the first compression step,
which is shown in Figure 3.1. Beside the introduced XTO data model, an implementation
of the XML template compression scheme needs to create a data structure that manages the
identifier separation. XOBESN therefore generates a separate routine that initializes an
array of identifiers that can be referenced by the templates as proposed in the last paragraph.
In detail, during the schema file analyzation that is shown in Figure 3.1, a methode void
xmlinit(void) is generated that embeds the initialization of an array that includes all element
and attribute names and the types of elements. The method is called during the boot process
of the sensor nodes to provide this array during runtime. References are realized using the
array position numbers as proposed in the last paragraph. As denoted previously, this array
can also be stored externally, e.g. outside the sensor network at the gateway, to improve the
memory demand. Nevertheless, this requires rewriting existing queries as shown in Listing
4.4.
In Listing 4.6, we show a possible DTD that corresponds to the previous example codes.

Listing 4.6: DTD File for BTstatus Examples

1 <!ELEMENT btnodes (btsysinfo)*>
2 <!ELEMENT btsysinfo (id, bat, btsysinfo*)>
3 <!ELEMENT id (#PCDATA)>
4 <!ELEMENT bat (#PCDATA)>

The DTD is analyzed and the xmlinit method as shown in Listing 4.7 is generated. This
method consists of the array tG for the identifiers and furthermore two variables dynamic-
Part and XMLTemplate that are used during the XTO instantiation process which we will
describe in the next subsection. The even array entries represent the identifiers. The un-
even array entries represent types that are further generated during the DTD analyzation
phase. They are used to optimize the memory demand of XTOs and signal if an element
that corresponds to an identifier contains textual information (type 1, e.g. #PCDATA) or
may embed other child elements (type 2). The reason for this preliminary type system is,
that less memory for textual element nodes can be reserved during initialization of XTOs.

4.2. XML TEMPLATE OBJECTS (XTOS) 87

In contrast, complex elements that may include child elements demand more memory, e.g.
for additional pointers. Hence, during runtime this type information is used to differentiate
between both types of element nodes.

Listing 4.7: Identifier Array Implementation

1 void xmlinit(void) {
2 tG = realloc(tG, 8*4);
3 tG[0]="btnodes";
4 tG[1]="2";
5 tG[2]="btsysinfo";
6 tG[3]="2";
7 tG[4]="id";
8 tG[5]="1";
9 tG[6]="bat";
10 tG[7]="1";
11 dynamicPart = malloc(2*sizeof(char));
12 dynamicPart[0] = ',';
13 dynamicPart[1] = '\0';
14 XMLTemplate = malloc(2*sizeof(char));
15 XMLTemplate[0] = ',';
16 XMLTemplate[1] = '\0';
17 }

XTO Generation and Template Sharing

In this thesis, we consider using XML during programming as proposed in the last chapter,
e.g. writing sensor network applications that make extensive use of XML documents,
like saving sensor values in them. While the XML data definition during runtime is also
considerable, we assume that the XML data is mostly defined at programming and compile
time. In this case, working with XML can be seen as assigningXML fragments to variables.

The generation of XTOs always depends on where and what XML fragments are used in
the program code. To avoid generating unnecessary XML templates XOBESN searches
for XML assignments during compile time to generate an XTO consisting of the static
XML template and the dynamic parts of the assignments. This approach generates an
XML template for every assignment and hence the instance of an XTO is stricly related to
an XML template. In the first step, this approach has no advantage over representing XML
as strings. A significant advantage results if XTO variables are used frequently within the
program code. This is even more true for loop constructs and recursive functions, as they
often result into rapidly growing data structures for the collection of data generated in each
iteration. The more the XTO is used in the application, the more the memory efficiency
becomes apparent.
However, generating XML templates for every assignment also misses further chances on

88 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

saving memory. In the case of a later assignment that differs from an assignment before in
a minimal way, XML templates should be adaptable, e.g. extended if the assigned XML
code is more complex and reduced in the opposite case. A first solution would be to create
a generic XML template that represents the whole or a significant part of the given schema
file. Obviously, even for DTDs it is not possible to create a generic XML template be-
cause of the freedom of expression of each schema. A schema consisting of many optional
elements will result into a generic XML template with a high overhead for small XML
documents consisting of only a few elements. Non used optional elements will therefore
be represented by empty pointers, which actually also need to be stored and hence require
memory space. In Listing 4.6, we show a DTD schema file that can represent the XML
fragments in Listing 4.1. During compile time it cannot be determined how many btsysinfo
elements will be inserted in each iteration. For this purpose a dynamic analyzer checks
for changing XML structures during runtime and adapts XML templates if changes are de-
tected, e.g. the size of the btsysinfo list is changed. To avoid destroying cross referenced
XML templates, the analyzer logs the number of assignments to each XML template. Only
if there is no other assignment the XML template is changed. Otherwise, a new XML tem-
plate is created for the actual assignment and the old XML template is left untouched for
the other references.

4.2.2 XTO Transformation Process
In the last paragraph of the previous subsection, we discussed the generation of templates
in general. In this subsection, we describe how to instantiate XTOs during runtime and
summarize the general XML to XTO transformation process.

According to theXOBESN architecture in Figure 3.1 the transformation process works on
XML assignments that have been already type checked in the previous phase. The plain
XML data needs to be translated into the C code that is compilable with standard C com-
pilers. According to the XTO data model that we introduced in the previous subsection,
this transformation results into XTO instantiations based on the C structs presented in List-
ing 4.5. In the next paragraph we describe how to create / instantiate XTOs consisting
of the XML templates and the dynamic parts that represent the assigned XML data. The
last paragraph summarizes the entire transformation process including the management of
XTOs during runtime.

XML Assignment to XTO Instantiation Transformation

For better understanding of the XML assignment to XTO instantiation transformation pro-
cess, we refer again to the example code given in Listing 4.1. For simplification, we will
leave the loop construct out. We assume that all generic template structures from Listing
4.5 have been generated.

4.2. XML TEMPLATE OBJECTS (XTOS) 89

For the transformation of the code that is shown in Listing 4.1 the XML variable declaration
needs to be processed first. We therefore define a new XTO sensor as follows:

xmlObjectPtr sensor = newXmlObject();

The function newXmlObject() is a constructor that returns a pointer on an empty XTO
that has been allocated in memory. The actual memory demand of an XTO is adapted
dynamically when adding new elements. The remaining part of the assignment is the right
part as shown in Listing 4.8. This part represents the actual XML fragment that is parsed
by XOBESN two times.

Listing 4.8: XML Assignment to XTO Instantiation Example

1 sensor = <btsysinfo>
2 <id>{i}</id>
3 <bat>{battery}</bat>
4 {sensor}
5 </btsysinfo>;

As a result, the parser generates two internal representations. The first is the XML template,
which is the static structure of the assigned XML fragment, the second is the dynamic part
of the XTO. For both parts, we use an internal representation to let the XTO be initialized
by a central constructor during runtime to save unnecessary program code. The resulting
code in an abbreviated form is shown in Listing 4.9.

Listing 4.9: Definition and Instantiation of an XML Template Object

1 sensor = (xmlObjectPtr)generateXTO(dynamicPart, sensor, 0);
2 sensor->t = (xmlTemplatePtr)generateXTO(XMLTemplate, sensor,1);

The parameter 0 determines that the dynamic part will be defined, while the static part
is marked with a 1. As mentioned before, this code only displays the first instantiation
of the XML variable sensor. Further reassignments may result into adaptation or even
regeneration of XML templates.

As denoted previously, the usage of the internal representation strings dynamicPart and
xmlTemplate that are parsed by the function generateXTO is motivated by the significant
reduction of program code. Rather than embedding the complete instantiation sequence of
the XTO in the program code, the function generateXTO parses both strings and derives the
XTO structure and instantiates the XTO accordingly. This concept has been co-designed
with the encoding concepts of the XTS approach which we discuss in the next section.
In detail, if the XML fragment will be transformed directly into a sequence of C operations
to instantiate an XTO and to add elements to this XTO, the result is a significant longer
program code. We give a short example for the direct transformation into C operations in
Listing 4.10. Hereby, we leave the construction of the template out and concentrate on the

90 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

Listing 4.10: Direct Transformation of XML into C Operations for XTO Instantiation
1 xmlObjectPtr sensor = newXmlObject();
2 ...
3 // Add dynamic content
4 addEl(i, '1');
5 addEl(battery, '1');
6 addEl(sensor, '2');
7 ...

Listing 4.11: Instantiation Loop for Adding Elements to an XTO
1 xmlObjectPtr sensor = newXmlObject();
2 ...
3 for (int i = 0; i < elements ; i++) {
4 addEl(content[i], '1');}
5 ...

instantiation of the dynamic part. In this example, we use a method addEl that adds static
and dynamic elements to the previously declared sensor variable. The parameters are the
actual values of the elements id and bat and the embedded sensor value of the previous loop
iteration. The second parameter of the addEl function determines the type as introduced
previously, e.g. #PCDATA or another XML fragment.
If a high amount of elements needs to be added during runtime, the addEl function call has
to be repeated over and over again. In this case it is desirable to put the actual information
that needs to be added as an element in an array. This array is then processed in a loop and
every entry is added as an element using only one program code line. An example is given
in Listing 4.11.
Nevertheless, this example shows a significant drawback. The type information about the
content that needs to be added gets lost. Hence, the element sensor will not be added cor-
rectly. Moreover, the number of elements that determines the length of the loop is variable
during runtime. Hence, it has to be determined before this loop. In our XOBESN XTO
implementation we therefore introduce the usage of encoded representations for XTOs that
need to be instantiated. As shown in Listing 4.9, we define two strings that separately en-
code the template and dynamic content of the XTO that is instantiated. The function gener-
ateXTO now implements a parser that parses both strings and processes them analogously
to the example loop in Listing 4.11. Both encoding strings (dynamicPart and xmlTemplate)
encode the sequence of C operations that is needed to generate the XTO that represents the
current XML fragment. For every possible part of an XTO instantiation there is a corre-
sponding code as shown in Table 4.3. In example, a new static element in a template can be
encoded by using the (emarker followed by a name reference to the element name followed
by the static value. We use the markers (oVar, (oVarArray and (o for describing special el-

4.2. XML TEMPLATE OBJECTS (XTOS) 91

ement types. (oVar signals that another XTO is embedded, whereby the reference to this
XTO is stored in the array of dynamic elements as proposed previously. The (oVarArray
represents an array of (oVars with shared template. The (o marker introduces an element
that may include attributes and embeds other elements, e.g. children. We denote this kind
of element as an complex element. The marker attributes is an integer that defines the
number of attributes that should be added to the XTO that is currently generated.

Encoding Description
(e , name, value New static element value
(e_d , name New dynamic element value
(oVar New dynamic XTO

(oVarArray New array of dynamic XTOs or elements
(o , name, attributes New static element that is parent of other elements

(complex static element)
(* End of static XML fragment

(a , name, value New static attribute value
(a_d , name New dynamic attribute value

Table 4.3: Encoding the XTO Instantiation Operation Sequence

Finally, in Listing 4.12 we show the resulting code that instantiates the representing XTO
for the XML fragment of Listing 4.8.

Listing 4.12: Resulting Code for the XTO Instantiation

1 void ** elemArrays;
2 ...
3 elemArrays = realloc (elemArrays, 1*4)
4 elemArrays[0] = sensor // old sensor value
5

6 // define the dynamic part of the XTO
7 sprintf(dynamicPart, ",(e,%d,(e,%d,(oVar,",i,bat);
8 // define the template of the XTO
9 sprintf(XMLTemplate, "(o,0,0,(e_d,1,(e_d,2,(oVar,");
10

11 // instantiate the XTO during runtime
12 sensor = (xmlObjectPtr)generateXTO(dynamicPart, sensor, 0);
13 sensor->t = (xmlTemplatePtr)generateXTO(XMLTemplate, sensor,1);

The void array elemArray is generally used in the XTO implementation to store embedded
dynamic XTOs (e.g. (oVar and (oVarArray). It corresponds to the el array in the XTO
struct description. During instantiation the entries of the elemArray will be copied to the el
array of the corresponding XTO. The dynamic content dynamicPart is defined as values of
the elements id and bat and a reference to the elemArray where the embedded XTO sensor
can be found. The XMLTemplate is defined as the complex root element btsysinfo followed

92 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

by a dynamic element id, a dynamic element bat and a dynamic XTO sensor. During
runtime the method generateXTO will now instantiate the XTO as proposed previously.

Summary of the XML Template Object Transformation Process

In the last two subsections, we discussed when and how to generate XTOs. Beyond the
scope of initial instantiation of new XTOs, every reassignment of these types of variables
during the program flowwill result into an XML template update process. In this paragraph,
we propose the complete transformation process for transforming XML to XTOs that is
summarized in Figure 4.4.
Starting with the assigned XML fragment and a given XML schema file, the Schema An-
alyzer separates XML identifiers as described in Section 4.1. The next step is to generate
the generic XML template structs, which have been introduced in the previous subsection.
This includes the integration of further header files including the XML template object
framework. For all XML assignments the transformator will then define XTOs and rewrite
the assignment as shown in the previous paragraphs. The result of these compile time
processes is a compilable Embedded C program.
During runtime, blocks using the XTOs will be reached and the constructor of them is
initiated like described in the previous paragraph. This process is called Assignment Inter-
preting, because the constructor interprets the internal representations of XML templates
and dynamic XML parts before instantiating the XTO. As also mentioned in the previous
paragraph, the interpreter is used to avoid repeating function calls and hence to minimize
the program code. At this moment, the system knows a variable of the proposed XML
template type representing an XML fragment and document respectively. Reassignments
are then observed continuously. If the new assigned XML can be represented by the XML
template, only the dynamic parts are assigned. Otherwise we need to change the template.
If there are cross references, it is not allowed to change the template, because this may end
up in an unstable system status. In this case, generating a new XML template is the only
alternative. Nevertheless existing XML templates can be referenced to store the new XML
template in an optimized way. If there are no further cross references, we are able to adapt
the XML template directly without any consequences for other assignments. With XTOs
the system is always able to produce the represented XML in its native form. Furthermore,
it integrates into heterogeneous networks like the WWW and is accessible by a native XML
query engine.

4.2.3 XTO Transformation in Example
We engross the theoretical background on XTO transformation by giving practical transfor-
mation examples in this subsection. The first example is given for the XOBESN example
code in Listing 4.13.
First, we declare three XML variables Report, Db, NodeInfo. As a special case, Db is

4.2. XML TEMPLATE OBJECTS (XTOS) 93

Figure 4.4: XML to XML Template Object (XTO) Transformation Process

an array of XML data of type sensors. The current status of the node is then assigned to
NodeInfo. In detail, the XML variable NodeInfo consists of static attributes id and rev and
a dynamic attribute battery, which is calculated by a function remainingEnergy() to insert
the remaining energy of the node.
In a repeated task, new sensor data is then assigned toDb that acts as a ring buffer for sensor

94 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

Listing 4.13: XTO Transformation Example Code 1
1 ...
2 xml<nodereport> Report;
3 xml<sensors> Db[] = new xml<sensors>[100];
4 xml<nodeinfo> NodeInfo;
5 NodeInfo = <nodeinfo id='1' rev='0.1'
6 battery={remainingEnergy()}/>;
7 ...
8 // Repeated Sensory Task
9 // t and l are the current sensor values
10 // i is the next insertion place in a ring buffer
11 Db[i] = <sensors>
12 <temp>{t}</temp>
13 <light>{l}</light>
14 </sensors>;
15 ...
16 // Task in case of query for full report
17 Report = <nodereport>
18 {NodeInfo}
19 {XMLUnfold(Db,100)}
20 </nodereport>;

data. In case of a report query, the entire sensor data is summarized in the XML variable
Report. For the Db array this means that it has to be flattened into the resulting XML report
document. As introduced previously, the XOBESN programming environment provides
the integrated XMLUnfold() operator, that lets the developer determine how many entries
should be inserted into the variable Report. Each Db entry thereby consists of dynamic
elements temp and light to include current temperature and light values into the XML
fragment sensors. As a special case Report includes complex XML data. First, the assigned
variableNodeInfo and then the flattened complex array objectDb. In summary, the example
shows how we assign XML data to three separate XML variables, by directly writing plain
XML on the right side of the assignment.
We show the corresponding XTOs that are generated by XOBESN in Figure 4.5.
The variables Db, NodeInfo and Report are transformed into XTOs that consist of dynamic
content and a pointer to a representing template. In detail, for the variable Report the
dynamic content consists of two included complex XTOs NodeInfo and Db. The dynamic
content of the XTO Db consists of a list of two doubles for the sensor values t and l,
each pair representing an entry of the array. As denoted previously, a template of an XTO
represents the static part of an XML fragment and describes how the dynamic content
is related to this initially assigned XML fragment. By sharing common template struc-
tures like the template of Db for each entry that is also used by the recursively included
old version of XVar, XML data is initially compressed. The templates and the dynamic
content can then be further compressed, e.g. using the SAX event serialization, identifier

4.2. XML TEMPLATE OBJECTS (XTOS) 95

Figure 4.5: Resulting XML Template Object for Listing 4.13

separation, automata transformation and standardized binary compression. This approach
is comparable to coding SAX events like presented in [39]. However, the key feature of
XTOs is that each complex element that is represented is directly accessible. As we will
show in Chapter 5, this feature can be used to store context node lists as a list of pointers,
which makes the XPath evaluation efficient.

The second example in Listing 4.14 shows thatXOBESN is not only able to process direct
assignments of simple variables, arrays or lists of XML data, but also supports recursive
insertion of XML variables. In detail, the XML variable XVar consists of dynamic elements
temp and light to include current temperature and light values into the XML fragment
sensors. Again as a special case XVar also includes the variable NodeInfo as complex XML
data. First, the assigned variable NodeInfo and then the variable XVar with its values before
the assignment are included recursively. The corresponding XTOs is shown in Figure 4.6.
The variables are transformed into XTOs and the dynamic content of the XTO XVar in-
cludes its values before the assignment recursively. The template remains shared among
all instances of XVar. The two given examples are a simplified demonstration of the in-

96 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

Listing 4.14: XTO Transformation Example Code 2
1 ...
2 NodeInfo = <nodeinfo id='1' rev='0.1'
3 battery={remainingEnergy()}/>;
4 XVar = <data>
5 {NodeInfo}
6 <sensors>
7 <temp>{t}</temp>
8 <light>{l}</light>
9 </sensors>
10 <previous>{XVar}</previous>
11 </data>;
12 ...

Figure 4.6: Resulting XML Template Object for Listing 4.14

ternals of XOBESN . Nevertheless, they show the benefits of the XTO concept which we
summarize in the following subsection.

4.3. XML TEMPLATE STREAMS (XTSS) 97

4.2.4 The Benefits of the XTO Concept
The benefits of the XTO concept can be summarized as follows:

• Significant XML compression by separating the dynamic content from the static
XML structure.

• The structure of the original XML fragment is conserved.

• Providing direct access to the represented XML by building up a tree-like object
model and allowing to place pointers in this object model.

• Efficient XML processing by traversing the XTOs object tree, e.g. using existing tree
navigation algorithms.

• During traversing the XTO, regular SAX events can be thrown to be used for query
evaluation.

However, the built-up object structure requires an overhead of memory for the initiated
XTO objects and used pointers. We therefore discuss another implementation of the XML
template compression scheme in the next section.

4.3 XML Template Streams (XTSs)
In the previous section, we presented the XTO approach as a first implementation of the
XML template compression scheme. The XTO approach in general is an efficient solution
for integrating XML data management and XPath query evaluation in wireless sensor net-
works. The biggest advantage of this solution is a high compression ratio while the direct
access to XML content is retained.
In this section, we discuss an optimized implementation of the XML template compression
scheme to store more complex, larger XML fragments in wireless sensor networks. The
new approach hereby relies on processing binary streams instead of instantiating an object
model during runtime. By omitting the possibility of directly accessing XML content, the
compression ratio can be further optimized. Furthermore, in the next chapter we show that
the evaluation of XPath queries on stream-based template objects is possible and applicable
in wireless sensor networks.

Limitation of the XTO Concept

The previous XTO approach follows the strategy to build up objects that conserve a tree
structure. For each complex object element, e.g. embedded XTO or attribute, an own tree-
like instance is generated that is connected to the other elements by using pointer structures.
This approach basically simplifies processing the entire XML document and searching for

98 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

sub elements using existing tree navigation algorithms. However during the compression
step of large and complex XML document representations, an overhead of instances and
pointers may be generated for each element resulting in a non optimal memory usage on the
sensor nodes. Moreover, instantiated XTOs need to be serialized first in order to transmit
the represented XML data in the network.

Introducing the XTS Approach

In contrast to this previous approach, we introduce the XML Template Stream (XTS) ap-
proach that desists from using an object structure. The basic idea is to use binary encodings
for the template and the dynamic part of the XML fragment. This idea is related to the
idea of using encoding representations before object instantiation for reducing the program
memory demand as proposed in the previous section. The template and content encoding
are encapsulated in a data model that is denoted an XTS as described in the next subsection.
Rather than instantiating an XTS like an XTO, during runtime the XTS is left in its encoded
form. If the represented data needs to be processed, e.g. for evaluating XPath queries, the
XTS is processed directly as a stream using a pushdown automaton (PDA) without instanti-
ating sub parts of the XTS. This approach requires special concepts that will be introduced
in the subsequent subsections.

4.3.1 XTS Implementation Data Model
In this section, we introduce the implementation of the XTS approach data model that
implements the XML template compression scheme. As denoted previously, in this new
solution we desist from using an object model and rely to process the encoded XML frag-
ments and the included templates as a stream. As a result, no objects need to be instantiated
during runtime, as shown for the XTO approach in the left path of Figure 3.1, resulting in
a significant memory economy if the encoded documents are large and complex.
The XTS data model is represented by a struct encapsulating the dynamic part of an XML
fragment and the template structure. We present the XTS struct in Listing 4.15. Unlike
the previous XTO approach, this struct representation is only a container for both encoding
strings. It does not represent any parts of a tree structure. The structure consists of two
encoding strings. The string t represents the template. The string array d represents the
dynamic content. The integer noDyn defines the number of elements in the array d. The
dynamic content d is explicitly represented as an array because it is used for encapsulating
separate XTS with the same template. Accordingly, each XTS will store its dynamic con-
tent in array d and use the shared template description t. The final encapsulation product
is again an XTS. The array of xmlTSObjectPtr includes all embedded complex XTS with
own template, e.g. similar to the (oVar and (oVarArray types in the XTO implementation.
After introducing the XTS data model, we discuss the XML fragment to XTS transforma-

4.3. XML TEMPLATE STREAMS (XTSS) 99

Listing 4.15: XTS Data Model
1 typedef struct _xmlTSObject xmlTSObject;
2 typedef xmlTSObject *xmlTSObjectPtr;
3 struct _xmlTSObject {
4 char *t;
5 char **d
6 int noDyn;
7 xmlTSObjectPtr * elem;
8 };

tion process in the next subsections. This especially includes how the template and the
dynamic content of XTSs are encoded.

4.3.2 XTS Transformation Process
The XML to XTS transformation process consists of the following four steps as also shown
in the right path of Figure 3.1:

1. Identifier Separation

2. Template Identification

3. Encoding of XML data as an XML Template Stream (XTS)

4. An optional binary encoding of the XTS

As denoted in Section 4.2, the first two steps can be considered as common for every
implementation of the XML template compression scheme. For the sake of completeness,
we describe these two steps again:

1. Identifier Separation
Like in the previous XTO approach, the first step of the transformation is to separate
identifiers, e.g. element and attribute names, from the actual XML data. Identifiers
are stored in program and flash memory or can even be stored outside the network.
Storing identifiers outside the network requires translating queries to use references
instead of the identifiers. Unlike the XTO implementation, the XTS implementation
optimizes the implementation of the identifier array by separating element and at-
tribute identifiers as shown in Listing 4.16. Attributes are always defined as values.
Hence, a differentiation between different types like for elements, e.g. complex el-
ements vs. #PCDATA elements, is not needed. By separating the identifiers of the
attributes into an additional array the memory demand can be significantly optimized.

100 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

2. Template Identification
The second step is also common to the previous approach as the XML data is ana-
lyzed to find shared repeating structures and to derive templates for representing these
structures. Hereby, the static and dynamic content, e.g. id in the example Listing 3.1,
are separated to allow dynamic processing of the XML contents. Together they form
a unit that we denote XML Template Stream (XTS) as proposed before. In this XTS
the static parts are replaced by references to the derived templates. Templates are
shared and even reused within the same XTS to save memory on the nodes.

Listing 4.16: XML Fragment and resulting XTS Identifier Array Implementation

1 <btnodes>
2 <btsysinfo att1="1" att2="2">
3 <id>2</id>
4 <bat>3</bat>
5 <sens>21</sens>
6 </btsysinfo>
7 </btnodes>
8

9

10 void xmlinit(void){
11 tG = (char**) realloc(tG, 10*4);
12 tG[0] = "btnodes";
13 tG[1] = "2";
14 tG[2] = "btsysinfo";
15 tG[3] = "2";
16 tG[4] = "id";
17 tG[5] = "1";
18 tG[6] = "bat";
19 tG[7] = "1";
20 tG[8] = "sens";
21 tG[9] = "1";
22 tAttG = (char**) realloc(tAttG, 3*4);
23 tAttG[0] = "Elem:btsysinfo";
24 tAttG[1] = "att1";
25 tAttG[2] = "att2";
26 }

The last two steps are the actual transformation of the XML fragment into an internal
representation that can be processed dynamically on the sensor nodes. This internal rep-
resentation needs to implement the template compression scheme to optimize the memory
demand of the represented XML data. We discuss these parts of the XTS implementation
in the next subsections.

4.3. XML TEMPLATE STREAMS (XTSS) 101

4.3.3 Encoding of XML Data as an XML Template Stream (XTS)
To optimize the memory demand, XTSs need to be compressed. We denote this step as
XTS encoding. Unlike the previous XTO approach, we desist from using an object model
and encode XTSs in a way that they can be processed by a pushdown automaton as a stream
during runtime.

Listing 4.17: XOBESN XTS Example Code

1 ...
2 xml<nodereport> Report;
3 xml<sensors> Db[2];
4 ...
5 int i=0;
6 for(i=0; i<2; i++) {
7 Db[i] = <sensors rev="1" id={i}>
8 <id>{i}</id>
9 <bat>3</bat>
10 <sens>21</sens>
11 </sensors>;
12 }
13 ...
14 Report= <nodereport>
15 {xmlUnfold(Db,2)}
16 </nodereport>;
17 ...

We define an XTS as a structure consisting of a template t, dynamic content d and an array
of embedded XTSs elem as introduced in Section 4.3.1. To explain the encoding concepts,
we will refer to the example XOBESN code shown in Listing 4.17. For this example we
retrieve two XTSs: Report and Db. Encoding an XTS is done by encoding the templates
and the dynamic content. In the following, we present the stream encoding for templates.
The dynamic content is encoded analogously.

To support memory efficient template encoding of the static XML data we distinguish
between the structure of different node types, e.g. dynamic or static attributes, simple
dynamic or static elements or complex elements, e.g. other embedded XTSs. We denote
these distinct rules as encoding tuples. Each encoding tuple consists of encoding tokens
and contains information about the node type through a marker, a reference to the array of
identifiers and the value of the actual XML document. Based on the node type, additional
meta information, e.g. the element type or references to identifiers, is attached to the tuple.
Each encoding token is separated by the token delimiter ’,’.
In summary, templates are encoded using the grammar in Listing 4.18 and the code markers
from Table 4.4.
The grammar includes the following terminal values:

102 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

Marker Description Element Node Type Encoding Huffman Encoding
(o complex element (XTS) incl. sub-elements/attributes 111
(a static attribute 100
(b dynamic attribute 1101
(e static element -1 atomic value 001

-2 comment node
-3 text node
-4 processing instructions

(d dynamic element 1100
(v referenced complex element (embedded XTS) 0001
(w array of referenced complex elements (array of XTS) 00001
(∗ end of complex element (end of (o) 101
(n empty element 00000
, token delimiter 01

Table 4.4: Overview on Encoding Marker and their Function

Listing 4.18: XTS Encoding Grammar
1 T ::= "," id "," "0" "," TC
2 TC ::= ((O | E | D | V | W)",")*
3 O ::= "(o" "," id "," aido "," ((A | B)",")*
4 (O | E | W | V) "," "(*"
5 E ::= "(e" "," id "," value
6 D ::= "(d" "," id
7 A ::= "(a" "," value
8 B ::= "(b"
9 W ::= "(w" "," number
10 V ::= "(v"

• id is a reference to the identifier array.

• aido is an attribute identifier offset used to reference the identifier of the first attribute.
The following attributes can be found by incrementing this offset continuously.

• value is the actual value of the node in the XML fragment.

• number is an integer value determining the number of elements in an array of XTSs.

A template encoding starts with the root node (T). Hereby, a reference to the identifier (id)
is defined. The following token determines the number of attributes, whereby standard is
0.
As denoted previously, the now following grammar rules depend on the actual node type:

• Attributes and Elements
Rule A and B describe static and dynamic attributes. A dynamic attribute is marked
by (b. The value of this attribute can be found in the dynamic content of the current
XTS. For a static attribute marked by (a the value can be included in the template.
Rule E and D describe element nodes without attributes and sub elements. Hereby, E

4.3. XML TEMPLATE STREAMS (XTSS) 103

describes a static element that can be included in the template whereby the value ofD
is found in the dynamic content. Both rules include a reference id to the identifier of
the element. We further introduce additional node types for static elements to support
values (#PCDATA), comment nodes, processing instructions and text nodes as shown
in Table 4.4. These element types are referenced using negative values instead of the
reference id.

• Complex Elements
Rule O introduces a complex element that can include other elements of various
types and attributes. Complex elements are introduced by (o followed by the identi-
fier reference id and an attribute identifier offset aido. Next, there is a list of static
and dynamic attributes followed by a free selection of sub elements, sub complex
elements and embedded XTSs or arrays of XTSs. Complex elements are closed to
keep track of the recursion depth on the processing PDA stack.

• Embedded XTSs and Arrays of XTSs
A significant benefit of the stream-oriented encoding is to embed external XTSs or
even arrays of XTSs in XTSs. As shown in Figure 4.7 for the XTS Report, an XTS
structure includes an array of XTSs elem. Entries of this array are referenced in the
template stream by the rules V and W. Rule V describes an embedded XTS. If an
embedded XTS occurs in a template stream marked by (v it is looked up in the elem
array and processed separately under the usage of its own external template encoding.
After processing the embedded XTS the enclosing XTS is continued to be processed.
Rule W describes an embedded array of XTSs with number elements. Each entry of
this array, will be processed stepwise like single embedded XTSs under the usage of
one shared external template. Using embedded XTSs results in a significant memory
usage optimization since templates can be reused. The compression optimizer in the
analyzation phase is therefore trying to use as many embedded XTSs as possible.

XTS Transformation Example

We explain the encoding rules by example based on Listing 4.17. In this example two XTS
Db and Report are encoded. The XOBESN precompiler analyzes both XML fragments
and generates two separate template encodings to describe the static structure. The tem-
plate of Db is encoded as follows:

Db.t = ",2,0,(a,1,(b,(d,4,(e,6,3,(e,8,21"

This template will be shared among both entries of the Db array. Beside the identifier
reference (2: sensor), it consists of a static attribute with value 1, a dynamic attribute that
will be described in the dynamic content Db.d, a dynamic element (4: id) and two static

104 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

elements with values 3 and 21 (6: bat; 8: sens). The usage of a complex embedded XTS is
shown for Report:

Report.t = ",1,0,(w,2,"

Beside the identifier reference, it consists of an array of 2 embedded XTS ((w,2,) that are
defined by the dynamic content Report.t. In this example, these XTS are both of type Db.
Hereby the previously derived template encoding for Db is shared by both embedded XTS.
The final transformation result is shown in Figure 4.7. We hereby show the resulting dy-
namic content d that is encoded during runtime analogously to a template encoding.

Report

+elem: xmlObject**

",1,0,(w,2,"

",0,0"

",1,1"

Db

 elem: xmlObject**

",2,0,(a,1,(b,(d,4,(e,6,3,(e,8,21,"

t: char*
d: char**

t: char*
d: char**

Figure 4.7: Structure of XML variable Report

4.3.4 Binary encoding of the XTS
In the last step of the transformation process we further optimize the template stream by
using a binary encoding for the structure markers. In Table 4.4 we show the huffman
encoding [107] we used for the evaluation of our approach. This encoding is representative
and optimal for the general usage as no assumptions of the used XML code are made.
However, the huffmann encoding can be adapted for special purpose scenarios where back-
ground information about the estimated XML document structure is present or runtime
adaptation is possible [128].

4.3.5 Processing compressed XML documents using PDAs
Unlike the XTO implementation, the XTS implementation desists from using an instan-
tiated object model. Hence, common tree algorithms can not be used for processing the
represented XML data during runtime. For processing an XTS during runtime we use a
pushdown automaton (PDA) with 5 input tapes and two output tapes. The input consists of
the actual XTS that represents the XML data (one tape per template, dynamic content and
elem array), an XPath query (see next section) and a binary stream which is used to select

4.3. XML TEMPLATE STREAMS (XTSS) 105

dedicated sub elements in an XTS. If an XML fragment needs to be processed, the repre-
senting XTS is loaded to the input tapes. If the XML needs only to be read, this will be the
only input. If a query needs to be evaluated additionally, the XPath query is loaded to the
XPath Query input tape. The Bintype input tape is initialized as we describe later. During
processing the XTS, several actions are possible. Beside realizing the context sensitivity of
the grammar in Listing 4.18, the stack of the PDA is used whenever embedded XTS, e.g.
introduced by the encoding marker (v, are processed.
These embedded XTS are loaded to the working tape and processed directly on it while the
enclosing XTS is saved in its current processing state on the stack. The Bintype output tape
is used for processing and encoding the results of XPath queries as we will discuss in the
next chapter. The output tape is used for debug purposes to show the uncompressed XML
fragment.

Template t

Dynamic Content d

embedded/referenced XTS

pushdown automaton

Output

Bintype
(context list)

XML Template Stream (XTS)

XPath Query

Bintype
(resulting context list)

Figure 4.8: PDA for Processing Template Streams

106 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

Listing 4.19: XTS Bintype Implementation
1 typedef struct _binTypeObject binTypeObject;
2 typedef binTypeObject *binTypePtr;
3 struct _binTypeObject {
4 int* bitsArray;
5 int quant;
6 };

Binary Encoding of Node Lists

Selecting only sub parts of an entire XML document is important for output routines and
especially for evaluating XPath queries. In detail, we therefore define a binary encoding of
node lists, e.g. a context list in an XPath evaluation. The previous approach uses pointers
within the object model to select elements. The XTS encoding desists from using pointers.
Instead, we count the state transitions of the PDA when processing an XTS. A context node
is uniquely determined by an automaton state transition id and the current stack content /
height. We realize a memory efficient representation of the context lists by using a bit
array (Bintype) that is shifted with each state transition. If the actual bit of the Bintype is
one, the current state transition represents the start of the next context node. In the XTS
implementation, we use integers instead of a binary type in Embedded C as they provide up
to 32 bits. If the number of elements exceeds the 32 bit boundary, we concatenate another
integer. The introduced C type Bintype represents this concept as shown in Listing 4.19.
The variable quant determines how many integers are in the bitsArray that represents an
concatenated binary stream. The bitsArray hence is the actual implementation of the Bin-
type as shown in Figure 4.9. The XOBESN framework includes an API for handling the
Bintype type, e.g. functions for checking whether a bit is set or not or cloning functions
that are used during the XPath evaluation process.

Figure 4.9: Structure of a Bintype

Finally, in Listing 4.20 we give an example for setting a Bintype to represent context nodes.
In this example, we show an XML fragment whereby the elements id and sens should be
selected by a Bintype. The XML fragment includes five elements and three atomic values.
Hence, for selecting parts of the fragment at least 8 bits are needed if we assume a stepwise
processing of the encoding XTS by the PDA. Additionally, we reserve the first bit (bit 0)
for selecting all elements which results in a bit demand of 9 bits. If we assume that the

4.3. XML TEMPLATE STREAMS (XTSS) 107

Listing 4.20: XTS Bintype Example
1 <btnodes>
2 <btsysinfo att1="1" att2="2">
3 <id>2</id>
4 <bat>3</bat>
5 <sens>21</sens>
6 </btsysinfo>
7 </btnodes>

elements id and sens should be selected, we can define that the third bit and the seventh bit
should be set to one. Accordingly, the integer of the bitsArray will be set to 23 +27 = 136.
Since only one integer is needed, quant will be set to 1.
This example simplifies the Bintype concept by assuming that every new node in an XML
fragment is represented by the next bit of the Bintype. In the actual XTS deployment this
is only partly correct, as the next bit of the Bintype always represents the next state of the
processing PDA. Accordingly, which bit needs to be set depends on the processing steps of
the PDA which we will discuss in the next paragraph.

PDA Processing Action

The XTS PDA is constructed using the grammar rules of Listing 4.18. Hence, the PDA
accepts the language defined by template encoding grammar. The stack of the PDA is used
to save temporary contexts and keep track of the recursion depth of the represented XML
document. A recursion happens if the XTS template encoding includes an embedded XTS
or an embedded array of XTSs as defined by the markers (v and (w. The PDA processes a
different action for every encoding marker in the template stream. In detail, the PDA acts
as follows:

• Attributes and Elements
Static attributes and elements are processed according to the encoding grammar
under the unexceptional usage of the corresponding template. Dynamic attributes
and elements require processing the dynamic content of the XTS. Therefore the
PDA switches to the corresponding tape after reading the template information and
switches back to the template tape after reading the dynamic content encoding. Both
actions require keeping track of the head positions on both tapes.

• Complex Elements
Processing complex elements requires storing the current context as a returning point
on the PDA stack. This action is mainly used for query evaluation as described in the
next subsection. When leaving the complex element the context is popped from the
stack.

108 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

• Embedded XTSs and Arrays of XTSs
When an embedded XTS or array of XTSs occurs in the template stream, the current
state is stored in an extra stack buffer and the XTS is loaded to the three additional
working tapes including the external referenced template. The embedded XTS is now
processed as described before. For recursive embedded XTSs the extra stack buffer is
used to store additional states. The maximum depth of recursively embedded XTSs
can be limited by a definable maximum context stack size for optimization purposes.

We summarize the program flow of the XTS PDA in Figure 4.10.
The markers t, d and elem define if the template tape, dynamic content tape or elem tape is
read. According to the XTS grammar, the PDA starts reading the template tape for getting
the identifier and the attribute identifier offset of the XML data root element. In the trivial
case of an XML fragment consisting just of the root element, e.g. <sensor/>, the PDA
will finish afterwards. In general, we expect larger and more complex XML fragments and
hence XTS representations. While the XTS template stream still has markers, the PDA will
continuously analyze the next marker and perform the actions depending on the marker type
as described before. We hereby point out the occurrence of the complex element markers
(o, (v and (w. In case of a complex element marker (o, the PDA additionally pushes the (*
marker on the stack to keep track of correct element nesting and to keep information about
the hierarchical structure of the read stream. This information is needed during XPath query
evaluation as we will describe in the next chapter. The embedded XTSs, e.g. introduced by
the markers (v and (w, require pushing the current state of the enclosing XTS on the stack.
This action is represented by the recursive call of the PDA as shown in Figure 4.10. Hereby,
the embedded XTS is used as a parameter and processed analogously. After processing the
state of the enclosing XTS will be popped from the stack and the processing action will be
continued.

XTS Processing Example

For better understanding of the XTS PDA processing action, we give a short example.
When the PDA processes the variable Report from Listing 4.17 it loads the template Re-
port.t and dynamic content Report.d to the working tapes. First the identifier reference is
resolved (1: nodereport) and the information that no attributes occur is processed. In the
following, the token (v,2 is read signalizing an embedded array of XTSs of the length 2.
The PDA reads the Report.d tape in order to find the corresponding XTSs, e.g. the array of
two Db XTSs.
The current context of Report is stored on the stack and the XTS Db is loaded to the
working tapes. In the following, the PDA will load the dynamic contents of each embedded
XTS (e.g. DB[i].d) to the working tape and process these streams separately following the
previously denoted actions. After finishing the array the old Report context is popped from
the stack and the PDA finishes processing the entire XTS.

4.3. XML TEMPLATE STREAMS (XTSS) 109

Figure 4.10: XTS PDA Flowchart

110 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

4.3.6 The Benefits of the XTS Concept
The benefits of the XTS concept can be summarized as follows:

• Significant XML compression by separating the dynamic content from the static
XML structure.

• Further optimizing the compression ratio by avoiding costly pointer structures and
object models during runtime.

• Providing navigational access to the represented XML data using a PDA.

• Preserving SAX events that can be recognized by the PDA in order to evaluate
queries.

• Introducing the Bintype concept for efficient XML node selection.

• Implicit serialization for efficient XML data transmission.

While we proof the memory efficiency of XTS in the evaluation in the next section, we
discuss the drawback when processing the represented XML data in contrast to XTO in the
next chapter.

4.4 Evaluation of XMLData Binding Techniques inWire-
less Sensor Networks

In this section, we present the evaluation results for the presented XTO and XTS imple-
mentations. In detail, this evaluation covers tests and comparisons of the data management
efficiency of both solutions. Efficiency is evaluated regarding the memory demand, the
processability and the energy demand for data processing.

4.4.1 Evaluation Test Setup
All of the following tests and evaluations have been made on real sensor node products.
We hereby use Pacemate nodes [153], based on a Philips LPC 2136 Processor, and iSense
core modules, based on a Jennic 32bit RISC Controller [45] as shown in Figure 4.11. The
available RAM of the iSense OS was 96kByte shared for program and data (heap memory
was ≈15kByte, program memory was ≈81kByte). The evaluation test setup therefore
conforms to the sensor node metrics that we introduced in Section 2.1.3. The results are
transferable to other sensor node platforms that can be programmed in standard C. For
example, the XTO implementation tests have also been repeated on the BTnode sensor
node platform [28] which is related to the Mica platform [93]. In the following subsections,
we present the main evaluation results.

4.4. EVALUATION OF XML DATA BINDING TECHNIQUES IN WSNS 111

Figure 4.11: Evaluation Sensor Nodes: Pacemate [153] and iSense Core Module [45]

4.4.2 Evaluation Criteria
As proposed in Section 2.1.3, sensor network programs have to satisfy the criteria of limited
hardware resources to be applicable for long time running sensor network deployments.
Hence, in this evaluation we test different XML representation techniques including the
XTO and XTS implementations for the criteria that have been introduced in Section 3.4:

• Data Management Memory Efficiency: We evaluate the memory efficiency of the
presented solutions for managing large scale XML data in memory. Hereby, an XML
representation is memory efficient if for a fixed amount of allocated heap memory
a high amount of native XML is represented. Less allocated memory also means a
reduction of energy consumption for memory operations and data transmission.

• Runtime Efficiency: The energy consumption in wireless sensor networks not only
depends on transmission but also on processing cycles. Therefore, a runtime effi-
cient representation is defined by using a minimal number of processing cycles for
processing a certain XML usage scenario. A minimal number of processing cycles
results into less power consumption and thus extends the lifetime of the whole sen-
sor network. Moreover, the runtime efficiency is crucial for time-critical application
scenarios. In the next chapter, we concentrate mainly on the runtime efficiency when
evaluating XPath queries in the network.

• Processability: We point out that both solutions (XTO and XTS) have been devel-
oped to support highest processability during runtime. The represented XML data is
fully accessable and a plain output can be directly generated. XML data will change
over time, e.g. sensor data will be updated, and whole XML fragments have to be
accessible for the query engine. Thus, it is important that the representation tech-
niques compress XML in a sufficient way but always allow to process XML data
dynamically without an expensive decompressing step.

112 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

4.4.3 Data Management Memory Efficiency
In this section, we evaluate the XML Template Object approach (XTO) and the XML Tem-
plate Stream approach (XTS) for the data management memory efficiency criteria. The
evaluation results cover XML data representations for typical sensor network application
scenarios, e.g. environment monitoring, and the wide spread XML Benchmark XMark. As
denoted in the previous subsection, for an evaluation of the energy efficiency we refer to
the XPath evaluation in the next chapter.

The results cover a comparison of the XTO approach, the XTS approach and other ap-
plicable XML data binding solutions. In detail, we compare different XML data binding
techniques for their capability of representing XML on the sensor nodes:

• XML string representation: Representing XML in a native form as a string has been
discussed in Section 4.1. The processability of this approach is limited due to the
need of parsing the whole XML representation for every access. There is no com-
pression of XML, which makes the native size of XML a lower bound for the memory
efficiency of this approach.

• libXML2 DOM API: A DOM API can be used for representing XML. This is an ap-
proach with a high processability because single parts of the XML can be accessed
using the DOM tree. We chose the libXML2 DOM implementation [227] for evalu-
ation.

• autoXML: As presented in Section 2.3.6, autoXML [123] is a state-of-the-art C data
binding framework. However, no compression is supported so that it is to expect that
this approach is not memory efficient.

• XML Template Objects (XTO): The previously announced XML template compress-
ing scheme whereby an object model is initiated during runtime that enables a high
processability using tree navigation algorithms.

• XML Template Stream (XTS): The stream based XML template compression ap-
proach as described in Section 4.3 whereby the processability is limited to the ca-
pacities of the processing XTS PDA.

As discussed before, the evaluationwas done directly on the sensor nodes. Wemeasured the
heap memory demand. This makes our results representive for today’s most used sensor
node platforms. However, the libXML2 DOM and the autoXML framework demand so
much program memory themselves that they are not applicable for today’s sensor nodes
hardware. We therefore evaluated these techniques by using the AVR simulator [208].

4.4. EVALUATION OF XML DATA BINDING TECHNIQUES IN WSNS 113

Monitoring Benchmark

The first test case was a typical monitoring scenario. Each sensor node is running an
application where current sensor data is embedded in an XML fragment. Historical data
is stored continuously within the same document. The related source code examples are
shown in Listing 3.1 and 4.1. We hereby point out that the actual implementation requires
scheduled tasks using component based programming as usual for sensor node programs.
Hence, the loop in the example listings is just there for simplification and is replaced in the
actual sensor node program by iteratively scheduled sensory tasks.
The XML fragment grows with every iteration. The results are shown in Figure 4.12.
Hereby, the x-axis denotes the actual native size of xml data that needs to be represented.
The y-axis denotes the actual memory consumption on the sensor nodes for managing that
data.

Figure 4.12: Monitoring Application Memory Usage

As a result, the optimized XTS approach and XTO approach perform similar. This minor
optimization was supposed due to the less complex XML data structure. However both
solutions outperform the competitors by having a significant lower memory usage. They
are the most memory efficient way to represent XML within this application. By using
XTOs or XTSs we reach a compression factor of 33% of the native XML documents.
Representing XML by using strings consumes twice as much memory as the native XML
document. The reason is, that by reassigning the XML variable to itself the application

114 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

needs a temporary variable. This is always necessary when XML variables are embedded
in others and shows up another problem of representing XML by strings in C.
Using libXML2 DOM in the application leads to a high memory demand. This is not
unusual since libXML2 DOM is not a typical data binding application and is more related
to simplify accessing XML.
Using autoXML for this sensor node application during tests caused a stack overflow early
during runtime. However, we managed to measure autoXML’s results until the native XML
size reached 6 kByte. The increasing size of the autoXML representation was the most
memory consuming one in our tests. The memory demand was steeply increasing, making
this data binding framework not applicable for sensor network programming. Besides,
autoXML proved to be not stable in real runtime deployments.

XMark Benchmark

To verify our results we use a sensor network application based on the XMark Bench-
mark data generator [206]. This data generator produces capacious XML documents and
is controlable by a scaling factor sf. Because even the size of the native XML documents
generated with a scaling factor greater than 0.006 excesses the memory restrictions of the
BTnode platform, we tested this application with scaling factors less than 0.006. The re-
sults are shown in Listing 4.13.

Figure 4.13: XMark XML Memory Usage

As a result, the XTS and XTO approaches also outperform the competitors. The interesting

4.4. EVALUATION OF XML DATA BINDING TECHNIQUES IN WSNS 115

questions in this evaluation was how the XTS approach performs in relation to the XTO
approach. The XTS approach is mainly targeted for large scale, complex XML data that
occurs in in-network storage or service oriented achitectures. For very complex XML
data we expected an overhead memory demand caused by the XTO pointer structures. As
a result, the optimized XTS approach significantly outperforms even the previous XTO
approach by an absolute compression ratio of 35%.
In summary for the data memory efficiency, the XTS approach is fully applicable for large
scale complex documents. It reduces the memory usage within the sensor network signif-
icantly. Even for simple applications it performs better or at least equal than the previous
announced XTO approach. The positive benefits like direct query evaluation, result opti-
mization and template caching remain. However, we point out that processing documents
is slower due to the need of the pushdown automaton evaluation. We will show in the
next chapter that the higher memory efficiency can also be achieved for evaluating XPath
queries on the data representation. This again comes at cost of runtime efficiency.

116 CHAPTER 4. THE XML TEMPLATE COMPRESSION SCHEME

Chapter 5

XML Query Evaluation in Wireless
Sensor Networks

In the introduction of this thesis, we pointed out that wireless sensor networks are mainly
deployed for data acquisition. Accordingly, data management solutions for integrating
XML in wireless sensor networks need to provide query interfaces to retrieve dynamic
sensor node data during runtime. In this chapter, we therefore introduce concepts for eval-
uating XPath queries on XML fragments that have been compressed using the concepts of
the previous chapter.

5.1 XML Query Processing on XTOs
Processing XML queries natively on sensor nodes is limited by the general hardware re-
strictions, e.g. memory and energy resources. To the best of our knowledge there is no
existing XPath query engine for existing sensor nodes or comparable devices.
The main reasons are the limited memory capabilities. First, the engine itself has to be
stored in program memory. However, the program size of existing engines exceeds the
memory of today’s sensor nodes. Omitting parts of the query engine like the parser is no
solution for scenarios, where the nodes run autonomously. This includes to be able to pro-
cess the entire query from parsing over optimization to evaluation. The second drawback
of existing query engines is the dynamic memory demand. The query evaluation itself has
to be memory optimized by avoiding the creation of unnecessary temporary results and by
creating memory optimized representations of necessary temporary results.

In the following parts of this chapter, we will discuss our design decisions for memory and
energy optimized XPath evaluation on sensor nodes. In detail, three main aspects have to
be considered:

• How to access XML data for evaluation ?

118 CHAPTER 5. XML QUERY EVALUATION IN WSNS

Listing 5.1: Example XML Document
1 // Template 3
2 <nodereport>
3 // Template 1
4 <nodeinfo id='1' rev='0.1' battery='0.89'/>
5 // Template 2
6 <sensors>
7 <temp>21</temp>
8 <light>10</light>
9 </sensors>
10 // Template 3
11 <sensors>
12 <temp>20.2</temp>
13 <light>0</light>
14 </sensors>
15 </nodereport>

• How to store XPath results?

• How to optimize the XPath evaluation?

This discussion is based on using XTOs as an implementation of the XML template
compression scheme as introduce in the previous chapter. In Section 4.3 we presented an
optimized implementation denoted as XML Template Streams (XTSs). This optimization
requires additional logic for evaluating XPath queries. We therefore discuss special design
decisions for this implementation in Section 5.2 that are nevertheless based on the follow-
ing strategies.

The discussions in this chapter will not cover general issues on implementing an XPath
evaluator. Algorithms for efficiently evaluating XPath queries in general have been intro-
duced in [73, 80, 183]. Theoretical upper bounds of XPath query evaluation have been
discussed by Gottlob et al. [79]. In this chapter we explicitly investigate practical solutions
and design issues to enable native, energy efficient XPath evaluation in WSNs.

To give examples for the design decisions for evaluating XPath queries on XTOs, we will
refer to the XML document in Listing 5.1 that has been assigned to the variable Report
according to Listing 4.13.
We review the representation of this XML fragment as an XTO. According to Section 4.2
and Figure 4.5, Report is a variable of type XTO and the entire XML document is com-
posed of the complex XTOs NodeInfo and Db. Each complex XTO consists of its dynamic
content, e.g. temperature and light values, and a self-descriptive template. We marked
the corresponding templates in the comments in Listing 5.1. As described in Chapter 4,

5.1. XML QUERY PROCESSING ON XTOS 119

Listing 5.2: Template 2 for sensor
1 startElement("sensors",[]) //<sensors>
2 startElement("temp",[]) // <temp>
3 @1 // @1
4 endElement("temp") // </temp>
5 startElement("light",[]) // <light>
6 @2 // @2
7 endElement("light") // </light>
8 endElement("sensors") //</sensors>

XOBESN automatically conserves the SAX event structure of templates of XTOs. In
Listing 5.2 we show the resulting representation of the Template 2 as SAX events. The
dynamic content is referenced with @1 and @2. The final XML template object represen-
tation of Report is shown in Figure 5.1.

Figure 5.1: XML Template Object for Example Listing 5.1

5.1.1 Data Access
Evaluating XPath queries requires not only parsing the query but also parsing and accessing
all parts of the XML document on which the query should be processed. While an extended
object model like DOM provides random access to the entire XML document and therefore

120 CHAPTER 5. XML QUERY EVALUATION IN WSNS

does not require an additional parser, simple string and binary representations of XML data
require parsing the document for every step in the query evaluation process.
The evaluation presented in the previous chapter showed that a simple DOM implementa-
tion is too complex and memory inefficient to be applied in WSNs. Nevertheless, the XTO
compression approach creates a pre-parsed compressed structure, consisting of serialized
SAX events that represent the XML document.
Processing the XML by using the template structures of XTOs implicitly invokes events
for every element, sub-element, attribute and included complex XML object and hence
acts like an inherent event based parser, e.g. SAX, without the need of a separate parser in
program memory. As a result, the axes evaluator acts like a mealy machine with the SAX
events as input, working on the corresponding XTO. We give an example for the child
axis evaluation in Figure 5.2. The mealy machine consists of three states. The transition
descriptions are described by (Input, Output). Hereby, ’-’ denotes No Output ,’Hit’ denotes
Child Found and ’*’ denotes Any Other Input. A transition is followed iff the corresponding
SAX event has been read in the template description. Starting at the root node, the machine
will accept all elements that start directly under the hierarchy of the root element until
the endElement event of the root node is read. The evaluation of the other axes is done
analogously following general algorithms for efficiently evaluatingXPath axes as discussed
in [73, 80, 183].

Figure 5.2: Mealy Machine for Child Axis Evaluation

5.1.2 Representing Results
Evaluating XPath queries requires storing temporary and final results. Storing these results
separately is a waste of memory since redundant information might be stored. To avoid
storing redundant information, we propose the usage of marker structures that include
pointers to templates, to mark parts of the XTO that the template represents. The overhead
of storing each result separately is avoided by using the existing template.

In detail, a pointer is set to a single SAX event in the XTO template representation like
described in Section 4.2. For example, by setting a pointer to an element event, we can

5.1. XML QUERY PROCESSING ON XTOS 121

explicitly identify an XML sub-fragment with the element as root. Entire complex elements
and root elements are accordingly selected by pointing at the entire corresponding XTO.
In Figure 5.3, we show a marker object that marks the sensors node. This example also
shows a list structure to represent the context node list. In this example we furthermore
save the position of the represented node in the marker structure. The memory demand
of representing results depends on the granularity of the used marker structures, e.g. how
many pointers are used. Thus, the overall memory demand for evaluating XPath queries
depends on the memory demand of the marker structures and the maximum number of
results. An upper bound is given for the descendant-or-self axis (//*), because it selects each
node in the entire XML subtree. For this case we can only optimize the memory demand
by using small marker structures, which has consequences for the evaluation strategies, like
described in the following.

Figure 5.3: Representing Results by using Markers

The marker objects shown in Figure 5.3 are implemented using generic C structs. In Listing
5.3 we show the corresponding representation of an XPath node in the evaluation tree.
The representation conforms to the official specification in [234]. XPath is a language
for selecting elements of XML data. Updates are not supported in XPath. Hence the
XPath nodes must not include the actual content of the XTO but just references to the XTO
elements itself. The elements of the node struct are:

1. elemPtr node: A pointer to the template of the selected XTO

122 CHAPTER 5. XML QUERY EVALUATION IN WSNS

2. int arrayOffset: If the selected node is dynamic content of the XTO, the arrayOffset
determines its position in the elem array

3. char type: The XPath node type

4. xmlObjectPtr arrayObj: A pointer to an embedded selected XTO

5. nodePtr parent: An optional pointer to allow direct evaluation of the parent axis as
proposed in the next subsection.

Listing 5.3: XTO XPath Evaluation Node

1 struct _node {
2 elemPtr node;
3 int arrayOffset;
4

5 // Types
6 // 1 = Element Node
7 // 2 = Text Node
8 // 3 = Attribute Node
9 // 4 = Dynamic Attribute Node
10 char type;
11

12 xmlObjectPtr arrayObj;
13 nodePtr parent; // Optional
14 }

A context node list is represented using the structs presented in Listing 5.4.

Listing 5.4: XTO XPath Context Node List

1 typedef nodeSet *nodeSetPtr;
2 struct _nodeSet {
3 nodePtr * node;
4 int noel; // number of elements
5

6 }
7 typedef contextNodeList *cnPtr;
8 struct _contextNodeList{
9 nodeSetPtr cnList;
10 int pos;
11 }

An XPath location path is processed by evaluating the axis, the node test and the predicate
for all nodes in the context node list. Selected elements will be stored in a result node
list of type nodeSet as shown in Listing 5.4. This list hence also acts as a temporary
result list during the evaluation. The next node to be processed is always selected using
the position marker pos in the context node list. If all nodes in the context node list have

5.1. XML QUERY PROCESSING ON XTOS 123

been processed, the actual global context node list of type contextNodeList will be updated
before processing the next location path.

5.1.3 Evaluation Strategies
XPath evaluation strategies can be focused on the processor usage and hence energy con-
servation or the memory demand. As benefit of our template approach we can choose
the granularity of the used marker structures and hence decide for one of the strategies.
As an example, we assume that we only use small marker structures consisting only of
pointers to current results without pointers to the result’s ancestors, like shown in Figure
5.3. Accordingly, we desist from using the nodePtr parent in Listing 5.3.

If the XPath query now includes finding the parent of the current context nodes, we have
to reevaluate the location step from the root of the document until we find an element that
includes the context node as a child. In other words for a context node A we have to rewrite
the XPath query, e.g. //A/parent::*, to a new query that looks for a node A as a child,
e.g. //*[A]. The strategy of reformulating XPath parent axes was discussed by Olteanu
et al. [178]. In contrast to this general approach, to save memory we let the evaluator
reevaluate the axes step by step instead of generally reformulating the XPath query and
finally evaluating the new query without parent steps.
Following this evaluation strategy we see a trade-off between energy consumption and
memory utilization. While including pointers to ancestors like shown in Figure 5.4 extends
the memory demand of the marker structure it will save computation steps.
On the other side using small marker structures results into reevaluating temporary results
and hence consumes more energy. Depending on the sensor nodes in use, the developer
has to choose the optimal strategy. However, as the results in Section 5.4 will show, for
today’s sensor nodes saving memory can be crucial when it comes to processing XML data.

Another problem during the evaluation process is the support of filter predicates. The XPath
1.0 reference [237] includes unlimited nesting of predicates. As each predicate is evaluated
for the entire context node list, an upper bound for the memory utilization is twice the size
of the largest possible context list. This might be reached for the descendant-or-self axis
(query: //*[.descendant::*]). Due to the low memory capacity of today’s sensor nodes,
deep nesting leads to high usage of memory exceeding the memory limit. Currently our
XTO and XTS implementations can support unlimited nesting but we limit it to one step
nesting to ensure stable programs. We believe that one step nesting should be enough for
most application scenarios.

124 CHAPTER 5. XML QUERY EVALUATION IN WSNS

Figure 5.4: Using Parent Pointers in Result Markers

5.2 XML Query Processing on XTSs
The previously discussed XTO approach implicitly contains an object model that is com-
parable to a tree model like DOM. XPath queries can be directly evaluated using tree
navigation algorithms. Using the stream-based template compression approach requires
additional functionality because the compressed XML document does not include an object
model. Hence, a special concept for evaluating XPath queries on XTS has to be developed.

To allow dynamic data acquisition, we implemented an XPath Engine that evaluates queries
on the XTS. To process XPath queries, we enhanced the functionality of the PDA as shown
in Figure 4.8 by the tapes for Bintypes and XPath queries. The query evaluation uses a
context list, e.g. a given Bintype, and the actual query and outputs an additional result
Bintype. The engine supports forward and backward axes. In the following we will discuss
the forward axes for a simple introduction. For the backward axes the PDA works in a
reverse processing mode which is a significant benefit of the XTS encoding.

5.2. XML QUERY PROCESSING ON XTSS 125

We describe the PDA action for the XPath axes as follows:

• Self Axis
The PDA checks the actual identifier (node test). The current state is marked in the
Bintype if this test is successful.

• Child Axis
The PDA stores the actual stack height h. Possible result candidates are static ele-
ments (marker = (e), complex elements ((o, (v, (w), whereby the candidates are
only allowed to be processed at stack height h or h+1, e.g. they are on the child level
of the context node. Each of these possible candidates is checked for a node test and
included in the output Bintype in case of success. The axes evaluation ends when the
stack height drops to h-1.

• Descendant Axis
The descendant and descendant-or-self axes are evaluated using calls of the previ-
ously described self and child routines. In detail, the child routine is called recur-
sively and the global result Bintype is constructed by calculating a logical OR of the
Bintypes from all recursion levels. The descendant-or-self evaluation simply adds a
self call at the end.

• Parent Axis
The XTS is processed backwards. The PDA stores the actual stack height h. Possible
result candidates are complex elements ((o, (v, (w), whereby the candidates are
only allowed to be processed at stack height h-1, e.g. they are on the parent level of
the context node. Each of these possible candidates is checked for a node test and
included in the output Bintype in case of success. The axes evaluation ends when the
XTS is read to its beginning.

• Ancestor Axis
The ancestor and ancestor-or-self axes are evaluated using calls of the previous de-
scribed self and parent routines. In detail, the parent routine is called recursively and
the global result Bintype is constructed by calculating a logical OR of the Bintypes
from all recursion levels. The ancestor-or-self evaluation simply adds a self call at
the end.

• Preceding Axis
The PDA processes the XTS backwards. Dynamic elements and static elements, e.g.
(d and (e, that are retrieved are possible result candidates. Because the XTS is always
encoded depth first, these types of nodes appear preceding to the context node. If a
complex element (o is found, it is also added to the list of possible result candidates if
this element has been closed on the way by an (* marker. The PDA now only checks
these candidates for the node test. The preceding-sibling evaluation simply checks if

126 CHAPTER 5. XML QUERY EVALUATION IN WSNS

the results are on the same layer in the virtual XPath tree, e.g. have the same stack
height.

• Following Axis
The following axis is the most complex axis for XTS XPath axis evaluation. The
reason is the implicit order in the XTS encoding, that represents a depth first tree
order. We implemented this axis using separate calls of descendant, preceding and
ancestor-or-self. The resulting Bintypes are processed with a logical AND. Finally
the logical NOT is processed and the resulting Bintype is the result of the following
Axis. The PDA then processes the node tests and predicates. The following-sibling
axis is directly processed by processing the stream like for the child axis but only
accepting (e and (d and (o before the stack drops to h-1. Accordingly, we can use
the query reformulation rules as introduced in [61], e.g. following::n is equivalent to
ancestor-or-self::node()/following-sibling::node()/descendant-or-self::n.

In Section 5.1.2, we introduced the marker concept to represent context nodes in the XTO
XPath implementation. For XTSs we use the Bintype concept as introduced in Section
4.3.5. For every qualifying node during XPath location path evaluation, the bit of the
corresponding state transition of this node is set in the Bintype. For details, how to set a bit
in the Bintype we refer to our previous discussion in Section 4.3.5. Using this concept has
the following benefits:

1. The Bintype is the most compact representation of a context node list. We discuss
this benefit in the evaluation in Section 5.4.

2. The Bintype is already serialized and ready to be transmitted directly in the network.
A transmitted Bintype can be used e.g. for applying the XPath evaluation result on
replicated XTSs in the network without reevaluation.

Nevertheless, we point out that the Bintype concept requires processing the entire XTS
every time a single context node is required.

After presenting practical solutions and concepts for evaluating XPath queries on XTOs
and XTSs, we introduce XML query dissemination techniques and optimizations concepts
in the next section. These approaches are fully applicable for the XTO and XTS implemen-
tations and have been evaluated as shown in Section 5.4.

5.3 XML Query Dissemination and Optimizations
In this section we discuss howXML queries are inserted intoWSNs and how the processing
of queries and results can be further optimized for energy efficiency.

5.3. XML QUERY DISSEMINATION AND OPTIMIZATIONS 127

5.3.1 Query Dissemination
The previous aspects affect the efficient dynamical evaluation of XPath queries on single
sensor nodes. Besides, XPath query dissemination and decomposition bring up new open
issues and optimization possibilities. In general, in our work XPath queries are injected
into the network via a gateway that can be located anywhere in the entire WSN. Like in
previous approaches [156] the queries are then routed to each sensor node. This can be
done by using a fixed topology, like described in [156], or by using full broadcast commu-
nication and hence avoid communication bottlenecks. By remembering active query ids,
answering single queries multiple times is avoided. Furthermore, we can support multi-
queries in our approach. While this approach is straight forward, further optimizations
can be done by supporting adaptive query decomposition with the help of indexing and
caching structures. We give an example in Figure 1.3. The importance of using indexing
and caching structures in XML WSNs stems from the fact that a WSN comprise sensors
sensing different data in different regions, as already described in the introduction of this
paper. Thus, spatial location and type of physical phenomena specified in the query could
be a query decomposition criteria. In detail, in Figure 1.3 the subnetworks I, II, III include
different data and data structures. To optimize the query dissemination and avoid sending
queries to parts of the entire network that can not fulfill the query criteria, we target using
caching and indexing nodes for subnetworks in the entire WSNs. For example, the nodes
of region I in Figure 1.3 have the ability of caching subnetwork data to avoid inserting the
query in the corresponding subnetwork. Besides, these nodes can be used for indexing the
distribution of XML data and hence optimize the query dissemination. While these opti-
mizations are still in development and a detailed description is out of scope of this thesis,
we already tested the main functionality as a prototype and gained promising first results.
Furthermore, we discuss a fully implemented caching feature for query results in the next
chapter.

5.3.2 Processing and Transmitting Query Results in the Network us-
ing Template Caches

One of the main aspects in previous work about data management in WSNs was to lower
the communication demand for delivering query results to the gateway [156, 253]. Eval-
uating XPath queries might result into large sets of XML documents. As denoted previ-
ously, evaluating the descendant-or-self axis for the root node without filtering resulting
elements by name (e.g. //*) results into a set consisting of the document itself and all sub-
documents. By using the XOBESN XML template compression approach, we can adapt
the marker evaluation strategy by sending a template for the surrounding documents and
mark included qualifying sub-documents. The remaining part of the result transmission, is
to serialize the result templates before transmission. We consider a template consisting of
different possible parts:

128 CHAPTER 5. XML QUERY EVALUATION IN WSNS

1. static attributes or static elements

2. dynamic attributes or dynamic elements

3. dynamic XML template objects, e.g. separate complex XML fragments included in
the XML document

While for case 1 and 2 the result template is a plain copy out of the template of the reviewed
document, for case 3 we have to flatten the template, since we deal with a complex object
with an own template that is not included in the document’s template. At the end of this step
the result template can be further compressed using standardized compression techniques
and is then ready to be sent together with the dynamic content to the source of the query,
e.g. gateway. For querying large WSNs it is most likely to assume that the result template
of each node will be partly or fully equal. In these cases, we suggest a further optimization
step that tries to avoid sending redundant information like early in-network aggregation. In
our approach each sensor node acts like a global template cache. For the query source it is
only important to have exactly one template once all results have arrived. This template can
be used together with each dynamic content part to produce every node’s own result XML
document. Especially for very large networks, this idea promises good results on lowering
the communication demand. An open issue is which nodes (template caches) should be
responsible for sending the query. We suggest three different strategies:

1. randomized template transmission that depends on a demanded probability of receiv-
ing at least one template at the query source

2. distributed template caching with explicit cache data retrieval

3. template estimation at the query source

While we investigate the first solution in Section 5.4, to analyze the general communication
optimization possibilities, the solutions 2. and 3. are out of scope of this thesis. They are
currently addressed in our ongoing and future work.

5.3.3 XML Query In-Network Aggregation Support
Previous work has shown that in-network aggregation is a means towards energy optimized
query evaluation. This is even more true for handling large sets of XML results. Although
XPath supports general aggregation through functions, an extended aggregation method
to support heterogeneous aggregation on complex XML data would be desirable. There-
fore, we suggest supporting complex aggregation by sending multiple aggregation rules for
query result templates. While the rules can be expressed in the return statement with the

5.3. XML QUERY DISSEMINATION AND OPTIMIZATIONS 129

support of XQuery, for now these aggregation rules are separately attached to the XPath
query and gradually applied to the query result. In this way different aggregation functions
can be applied to different simple and complex elements and attributes of the query result.
The aggregation itself is organized using existing techniques, e.g. TAG [155] or Synopsis
Diffusion [170]. However, having multiple different aggregation functions in different hier-
archies of the resulting XML document, duplicate sensitive aggregation requires additional
coordination. A simple solution is the aggregate-all approach, where the aggregator has to
process the entire result. A more complex solution is to distribute the aggregation, so that
the aggregator processes only parts of the preliminary result. This shows up new possibil-
ities of energy conservation and failure tolerant result processing by having multiple ports
for computing complex aggregation functions. However, due to the limited space of this
thesis, we leave a detailed description of this work in progress out for future work.

5.3.4 Bounded Continuous XML Queries
As denoted in Section 2.2.2, model-driven queries have been introduced for wireless sensor
networks to further reduce the communication demand using stochastical estimation and
filtering. One important kind of model-driven queries are bounded continuous queries that
have been introduced in our previous work for efficiently evaluating queries in the world
wide web [132, 133].

Bounded continuous search queries (BCSQ) are queries that include a quality demand that
needs to be respected to reduce the number of query results that are presented to the query
issuer. One example are top-k queries which restrict the result delivery to the best k results
in respect to a given quality degree, e.g. result scoring. The idea of bounded continuous
queries can be extended for wireless sensor networks. While a user is often interested in
sensor values and analyzation results that suffice a given quality degree, the previous ap-
proaches on evaluating such bounded continuous queries can be used to filter unnecessary
temporary results deep in the network and therefore reduce the communication demand
significantly.

In detail, in wireless sensor network deployments the user is often interested in continuous
information, e.g. measured data, over a long period. Therefore, in [156, 182] queries are
mostly continuous. For real-time sensor network deployments like the ALERT deployment
[7] and other forecast scenarios it is especially important that measured data is checked
immediately to trigger events in case of an emergency and sensitive situations respectively.
An approach to support alert and event sensor networks is an external storage or so called
dumb data collection sensor network [182]. By using an existing sensor network query
engine each measured value is simply transmitted to the base station and evaluated imme-
diately. Although this could be a reliable approach, its main disadvantage is the potentially
high energy consumption when data is sampled with a high frequency or resolution. Hence,

130 CHAPTER 5. XML QUERY EVALUATION IN WSNS

we argue that data should be filtered within the sensor network.

BCSQ are a newmeans towards energy efficient evaluation within wireless sensor networks
especially for alert and event based queries. Analogous to the requirements of an optimal
continuous query system in the WWW, alert and event based queries in wireless sensor
networks have two basic requirements:

1. A notification about important sensor data has to be immediate (real-time notifica-
tion).

2. The limited energy capacity of wireless sensor networks requires only to send mes-
sages if something important happens, e.g. the best sensor value to a given criteria.

While the first requirement is the same for either BCSQ in the WWW as in sensor net-
works, the second requirement has also similarities to the search in the WWW. While for
evaluating queries in the WWW a result set should not become unbounded to avoid user
message filtering, in sensor networks we want to avoid sending unimportant messages to
save energy and hence extend the networks lifetime.

To point out the possibilities of BCSQ in wireless sensor networks we discuss an extension
of the XPath query evaluator to allow bounded continuous XPath queries like:

forcon trigger=1TimeUnit start=now end=100
estimated greatest 1 in
//sensors/temp

This example query, that is given in a BCSQ extension of the XPath [13] query language
with forcon signalizing a new BCSQ, has the purpose to extract the maximum temperature.
It has a duration of 100 time units (i.e. hours), which correspond to 100 temperature sensor
values. For simplification we only want to find the maximum temperature in this period.
Besides, it is important that sensor nodes process any measured data immediately. An
extension to find the greatest k>1 temperature values immediately has been discussed in
our previous work [5, 6]. As described before, the standard approach to evaluate this query
is to send each temperature value to the base station to calculate the maximum temperature
after 100 time units (retrospective analysis). Another approach is to estimate the maximum
temperature randomly. However, in [97] we showed that both approaches have drawbacks,
e.g. either in energy demand or result quality.

In our previous work [132, 133], we further showed that our BCSQ strategies are able to
find a high percentage of maximum ranking scores, which motivates its usage in a sensor
network scenario where the task is to find the maximum temperature. While the kSSP
approach [132] works without any further knowledge of a distribution of the sensor values,

5.4. EVALUATION 131

the distribution based methods [133] require this knowledge. However in typical sensor
network scenarios like [248] historical data is often present (static distribution) or the query
duration is long and the distribution learning strategy (dynamic distribution) is applicable.
As a result, the introduced bounded continuous XPath queries will significantly reduce the
communication demand if the concepts of our previous work [132, 133] are applied for
evaluation. We therefore discussed a fundamental evaluation in our paper in [97]. Due to
the space limitations of this thesis, we refer to the paper for this topic. Nevertheless, we
again point out that the introduction of BCSQs in wireless sensor networks has a lot of
benefits regarding the energy efficient query evaluation and should be investigated in more
detail for future work.

5.3.5 Data Caching
The evaluation of queries in-network can be significantly optimized by using data caches
on the route from the gateway to the actual data source as proposed in [156]. By letting the
data cache answer the query the query transmission distance is limited and hence the over-
all communication demand reduced. Previous approaches as presented in [57, 156, 190]
presume dedicated network topologies and are very limited in their practical applicability.
Open questions in the area of data caching in wireless sensor networks are:

• How are data caches placed?

• How can data caches be kept consistent? How are they updated?

• How are data caches localized and used respectively?

Due to the complexity of this topic, we discuss data caching in wireless sensor networks
separately in the next chapter. We further introduce a dynamic approximative caching
scheme that includes optimized concepts for cache coherence and localization.

5.4 Evaluation
To evaluate our XTO and XTS strategies on evaluating XPath queries on sensor nodes, we
have implemented an XPath engine that is capable of a large subset of XPath 1.0 [237].
This includes support for all element and attribute axis, filter support, operators and node
tests. Due to their low importance for sensor network applications, we left out support for
comments and processing instructions.
There is a subset of built-in XPath functions, e.g. contains and position, which we have
implemented. However, implementing other functions in our query engine is straightfor-
ward and left for future work. The XPath engine has been implemented in C running on
sensor nodes that make use of the iSense operating system [45]. To verify the functionality
of the XPath engine we have used the common XPathMark benchmark [70]. We ran the

132 CHAPTER 5. XML QUERY EVALUATION IN WSNS

XPathMark queries directly on the sensor nodes platforms (Pacemate and iSence Core
Modules) and evaluate the functional test. The available RAM was again 96kByte shared
for program and data (heap memory was ≈15kByte, program memory was ≈81kByte).

As proposed in Section 4.4, we explicitly tested the following evaluation criteria:

• Query EvaluationMemory Efficiency: The memory efficiency can also be verified for
evaluating queries dynamically on the sensor nodes. Hereby as in [102] we evaluate
the size of memory needed during dynamically evaluating XPath benchmarks.

• Query Evaluation Runtime Efficiency: The runtime demand for evaluating queries
needs to be evaluated as it is directly linked to the runtime energy consumption of
the nodes. As sensor nodes are devices with strict energy limitation, saving as much
energy as possible is a design issue to guarantee long term network deployments.

In the following subsection, we present the main evaluation results for the memory effi-
ciency and the runtime efficiency of evaluating the queries of the functional test of the
XPathMark [70].

5.4.1 Functionality Test
The first test covers the functionality of our XPath engine implementation. Therefore we
ran the XPathMark benchmark on a sensor node and evaluated the functional test cases,
that are described in detail in [70] for both solutions (XTO and XTS). The test cases
evaluate if the engine and the data binding framework are able to process all possible
XPath queries, e.g. all axes.

In Figure 5.5, we show the dynamic memory demand of evaluating the XPathMark axis
tests which were measured by the iSense memory profiler. The x-axis denotes the test case
and the y-axis denotes the memory demand in byte.
As a result, every test delivered a valid result. For both presented approaches the memory
demand is still far under the limitation of the sensor nodes.

Next, we were explicitly interested in a performance comparison between both approaches.
For the XTO approach we get the following results: the child axis evaluation (e.g. A1)
needed less memory than the descendant axis (e.g. A4). The backward axis needed more
memory due to temporary results, whereby we see a difference between the parent axis (e.g.
A5) and the preceding/following axis (e.g. A9). Due to the limited memory resources, we
reevaluated forward axes to evaluate backward axes like described in Section 4.2. Using
complex marker structures like parent pointers resulted into a memory demand that was
more than twice as large than the demand shown in Figure 5.5. On the other side, caused
by the memory energy trade-off, we expected the backward evaluation to be slower and

5.4. EVALUATION 133

Figure 5.5: Memory Demand of XPathMark Tasks

more energy consuming. Like described in Section 4.2, we have to repeat the evaluation of
the forward axis at least by the number of ancestors.
In Figure 5.5, we also included the XTS results for evaluating the functional tests of the
XPathMark. We see that the memory efficiency of the XTS approach that has been shown in
the previous section for the general data management is also given for the XPath evaluation.
By using the Bintype concept that has been introduced in Section 4.3.5, XPath results, e.g.
context node lists, can be stored with nearly constant memory that is significantly lower
than using lists of pointers in the XTO approach. Furthermore, we can directly evaluate
backward axis due to the pushdown automaton that is capable of processing the encoding
streams in both directions.
The positive memory efficiency for evaluating XPath queries in the XTS approach comes
at a price of higher runtime demand. Preliminary results can often not be adressed directly
without letting the pushdown automaton process the entire stream to the corresponding
context node. We evaluated this fact according to our previous evaluation in [102]. In Fig-
ure 5.6 and 5.7 we see the evaluation results for the energy consumptions for the test cases
that show the prognosed runtime efficiency of both solutions. We measured the processing
cycles and put them into relation to the upper bound of energy consumption per cycle [45].
Figure 5.6 shows the results for the Pacemate platform, while Figure 5.7 shows the results
for the iSense Core Modules. Both results are relatively comparable. They differ mostly in
the absolute energy consumption depending on the corresponding platform.
Evaluating backward axes in a memory efficient way consumes more than three times the
energy of evaluating forward axis. Besides, we see that in contrast to the memory demand
there is no difference in the results between parent and preceding/following axis.

134 CHAPTER 5. XML QUERY EVALUATION IN WSNS

Figure 5.6: XPathMark Energy Consumption Results for Pacemate Nodes

When comparing with the XTS approach, we see that the XTS approach’s energy con-
sumption is up to five times the XTO approach when evaluating the functional test of
XPathMark. Thereby we only see a slight difference between performing the different
tasks. This is caused by the extensive runtime demand of the pushdown automaton that
is similar for all tasks based on processing preliminary results and the absence of direct
access over pointers. This trade-off has to be accepted based on the memory efficient data
storage of this approach.

Detailed Engine Memory Demand

We evaluated the program memory demand of the XTS approach and compared it to our
previous XTO approach. It is shown in Table 5.1. The actual XML Framework is only
given for the XTO approach as it includes generic object structs and help routines for
handling pointers and objects. As the XTS approach is based on processing plain encoding
strings no further help routines are provided. The entire work is done by the pushdown
automaton during evaluation. This pushdown automaton is included in the Debug Routines
as it is needed for processing an XML output. For the XTO approach the Debug Routines
are much more simpler as only one depth first search like tree algorithm is needed for
processing the tree like XTO structure. The XPath Engine itself has been improved for the
XTS approach.

5.4. EVALUATION 135

Figure 5.7: XPathMark Energy Consumption Results for ISense Core Modules

It now needs approximately 8Kbyte less memory and also uses the generic pushdown au-
tomaton of the Debug Routines. However, we point out that the XTO XPath Engine could
also be improved, e.g. up to 30% memory saving by reusing shared components, that have
not been yet optimized. We left this for future work. The actual XPathMark Program size
for the XPathMark function test is only minimal different between both approaches.

Program Functionality XTO Memory Demand in bytes XTS Memory Demand in bytes
XML Framework 7744 0
XPath Engine 18734 11236

XPathMark Program 704 820
Debug Routines 668 3098

Sum 27850 14390

Table 5.1: Program Memory Demand of XTO and XTS

In summary, we show that both solutions provide an XML data management framework
that is fully applicable for today’s sensor node products, while keeping enough space for
extended applications. By reviewing the results of the data management tests and the XPath
engine evaluation we show that both solutions (XTO and XTS) have their application do-
mains. The benefit of the XTO approach is the direct access to sub elements of the XML
data. If this is a design issue than this approach can be considered as optimal.

136 CHAPTER 5. XML QUERY EVALUATION IN WSNS

It further provides a very good memory efficiency. However, this memory efficiency is
further optimized by the XTS approach which is the best solution for sensor networks with
strict memory limitations when processing and storing large scale XML data. We point
out that the XTS approach does generally need more energy when processing XML data
or XML queries. However, the energy consumption should be significantly lower than
during communication as shown in [155]. This can be an issue for XTS when it comes
to transmitting XML in the network without further optimizations as described in the next
section.

5.4.2 XPath Result Transmission
In Section 4.2, we present a strategy for processing XML results in the network that ben-
efits from the template-based XML compression approach. In Figure 5.8, we show the
evaluation results.

Figure 5.8: Transmission Optimization

We tested different application scenarios, e.g. XPathMark result documents and result doc-
uments, that are based on typical sensor data measurements like the example in Listing
4.13. The x-axis of Figure 5.8 denotes the number of nodes that were participating in the
query evaluation. The y-axis denotes the energy for the overall communication until the
result was received by the gateway. The energy is related to the bits that have been sent and
is an upper bound for the maximum transmission range [45]. We compared different strate-
gies: first the transmission of the plain XML string, second the transmission of serialized

5.4. EVALUATION 137

XML template objects, like described in Section 4.2. Hereby, we varied the probability of
sending the template and the dynamic content or only the dynamic content (from 0% to
100%).
As a result, the template-based approach outperforms the string based approach. Further-
more, it becomes obvious that the more it can be avoided to send templates the more the
compression ratio increases. While in large networks we can assume that sending only a
small number of templates might suffice to process the results at the gateway correctly, the
0% approach assumes that we can estimate the template as described in Section 4.2. It is
therefore a lower bound for the results. The results are a motivation for further investigating
template estimation and caching strategies for templates.

5.4.3 XPath Result Aggregation
We further investigated XML data in-network aggregation like described in Section 4.3.
We chose an application like the example in Listing 4.13 and extended it by the number
of measured sensor values. We issued several queries on the data generated by the ap-
plication each including heterogeneous aggregation strings like described in Section 4.3.
The results in Figure 5.9 show that in-network aggregation can reduce the communication
demand by a factor of three. It is shown that a combination of the template-based result
transmission as described in Section 4.2 and in-network aggregation can further optimize
the communication demand.

Figure 5.9: XML Aggregation Results

138 CHAPTER 5. XML QUERY EVALUATION IN WSNS

Chapter 6

DACS: A Dynamic Approximative
Caching Scheme for Wireless Sensor
Networks

The previously presented data acquisition optimization strategies presume the query result
retrieval from deep within the network at the data sources. Nevertheless, the communica-
tion demand can be further reduced by using only a limited part of the entire network to
evaluate the query. One possible approach is to use data caches instead of sending queries
to each data source. As a result, the communication demand can be significantly reduced.
In this chapter, we introduce the Dynamic Approximative Caching Scheme: DACS.
Previous work on data caching in wireless sensor networks require the usage of hierar-
chical communication topologies with deterministic data routes, e.g. [155]. Unlike these
approaches, DACS works without topology assumptions and is robust against communi-
cation limitations. The framework consists of a dynamic distribution of data caches in
the sensor network. In order to extend the lifetime of the network and take care of the
unreliable communication channels, a weak cache coherence is discussed that is based
on an approximative update policy. By attaching a result quality requirement to a query,
DACS automatically retrieves query results from caches nearer to the data sink and further
ensures that the degree of result quality is not violated. As a result, queries do not need
to be sent to all sensor nodes deep within the network which reduces the communication
overhead. Evaluations show that by using DACS and by accepting a minimal deviation in
the query result the network’s lifetime can be significantly enhanced.

In Figure 6.1, we give a simplified example for a network running DACS. In a uniform dis-
tributed network data source nodes are cached throughout multiple layers. Gateway nodes
are used to send queries into the network. In this example, we define a data source node
(SN) and four gateway nodes (GW). Every other node is a possible cache node. However,
unlike this simplified example, DACS supports unlimited, randomly placed data source

140 CHAPTER 6. DACS: A DYNAMIC APPROXIMATIVE CACHING SCHEME

nodes, gateways and cache nodes, e.g. each data source node is cached separately by
DACS and each data source node acts also as a cache for other nodes.

Figure 6.1: Overview DACS Simple Network Model Example

The basic concept of DACS is to use cache nodes instead of the actual data source nodes
for retrieving information, e.g. temperature values. Hereby, the communication demand
can be significantly reduced by using caches that are layered nearer to the gateway than
the actual data source, e.g. using the caches C1, C2 or C3 instead of the data source SN.
However, cache nodes need to be kept coherent. Sensor node communication in wireless
sensor networks is generally unreliable. As a result, strict coherence or even consistency
is not possible. Besides, keeping every cache node coherent comes at high communication
costs for rapidly changing data at the data sources. To overcome these limitations, DACS
uses an approximative update policy. As shown in Figure 6.1, the cached data can deviate
from the actual source data based on the distance between cache and data source. For
a simplified example, we can define a maximum deviation of the cache value for each
source-cache distance as shown in Figure 6.1, e.g. using a linear increasing deviation of
10% per hop.
As a result, the estimated communication demand for cache updates decreases with in-
creasing distance from the data source as highlighted by the number of arrows. In this
chapter, we introduce how DACS implements this approximative cache coherence. Using
approximative caches requires using model-driven queries since it is not obvious how deep
queries should be sent in the network to accordingly reach caches with lower deviation.
DACS hides the cache localization process to the user by allowing to issue queries with ad-
ditional demand of result quality, e.g. get temperature values that might include an overall

6.1. RELATED WORK 141

maximum deviation / error of 30%. In this chapter, we discuss this localization approach
for unlimited data sources and data caches.
The remaining parts of the chapter are organised as follows: In the next section, we give
an overview on important previous and related work. In Section 6.2, we give a detailed
introduction into DACS covering issues of Cache Placement (Section 6.2.1), Cache Coher-
ence (Section 6.2.2) and Cache Localization (Section 6.2.3). In Section 6.3, we discuss the
general architecture of DACS and give details on its implementation. Finally, in Section
6.4 we evaluate the framework and show results on the communication efficiency and the
robustness of the framework.

6.1 Related Work
In this section, we present previous work related to data caching and data management in
wireless sensor networks. As proposed in Chapter 2, previous work in data management
in wireless sensor networks was initially focussed on deep in-network aggregation and
data acquisition optimizations to save energy during processing query results [156, 253].
Using caching structures to optimize in-network query processing in wireless sensor net-
works was firstly discussed for the query engine TinyDB in [155]. While there has been
a clear recommendation for using caches to evaluate queries closer to the actual data sink
and hence to save energy, the used strategies provide only a simple round-based caching
scheme.
In this approach, in a static aggregation tree aggregation values of child nodes are cached
by their parents for a determined number of rounds. The actual aggregation values are not
regarded and the caching scheme is strictly connected to the TAG tree topology. Beside
this approach, other caching strategies for wireless sensor networks have been presented
in [35, 144, 145, 190, 195]. Most of these approaches require the usage of hierarchical
communication topologies with deterministic data routes, e.g. TAG [155]. Hence, we
denote them as hierarchical caching strategies. The strategies can be further divided in
non-approximative and approximative approaches. In detail, Shashi et al. [190] describe
an optimal cache placement strategy in tree topologies by finding nodes in Steiner Data
Cashing Trees in a scenario where multiple subscribers are receiving data from one source.
Multi-source scenarios like described in this work are left out for future work. Chand et
al. [35] describe a cooperative caching scheme to improve data access performance and
availability in mobile ad-hoc networks. Their work is focused on a new utility based cache
replacement strategy in contrast to a usage based policy. However, this approach is not
optimized for energy constrained wireless sensor networks and therefore seems not to be
applicable in the presented way. In [195], Rahman et al. propose strategies for improv-
ing the energy efficiency of wireless sensor networks. The presented caching strategy is
focussed on avoiding unnecessary sensing by estimating the data change frequency, com-
parable to the acquisitional data processing strategy of TinyDB. Strategies for in-network

142 CHAPTER 6. DACS: A DYNAMIC APPROXIMATIVE CACHING SCHEME

caching to optimize query evaluation like described in this thesis are not presented. Jung
et al. [114] focus on an external cache-based sensor network bridge to avoid querying
the entire wireless sensor network by using cached results. The approach works for non-
constrained external devices (e.g. gateways) and hence is not applicable for in-network
query optimization.

6.2 The DACS Framework
In this section, we give a detailed description of the DACS Framework. The basic concept
of DACS is to provide a general data cache solution that does not rely on any given topology
assumptions. The design goal of DACS is to reduce the communication overhead by letting
queries be evaluated by data caches on the route to the actual data source. Reducing the
communication overhead increases the lifetime of the network significantly.
For setting up a general caching scheme for wireless sensor networks, the following issues
need to be reviewed:

• Cache Placement (Section 6.2.1): A general strategy on where to place data caches
on the communication routes needs to be resolved. A general network model is the
basis of this strategy.

• Cache Coherence (Section 6.2.2): Data caches need to be updated when new data
occurs at the data source.

• Cache Localization (Section 6.2.3): Queries need to be redirected to adequate data
caches for evaluation. The localization process should be hidden to the user, e.g. by
a black box behaviour.

6.2.1 Cache Placement and Network Model
Wireless sensor networks are highly dynamic networks. The exact position of nodes af-
ter deployment, e.g. out of a plane, is often not precise and the lack of communication
robustness does not guarantee fixed data routes in general. As a result, the placement of
data caches cannot be verified before deployment and the caching structure needs to be set
up during runtime autonomously. DACS is able to adapt the distribution and placement
of data caches dynamically in case of changing network conditions. Additionally, no as-
sumptions on the network topology are made. The organization of the cache structure is a
collaborative decision of the network itself.
The following general network model is defined to make DACS suitable for most applica-
tion scenarios:

• A network consists of a uniform distribution of N nodes.

6.2. THE DACS FRAMEWORK 143

• In the network each node except the gateway nodes can produce data, e.g. measure
environmental information. Measurements are taken on predefined intervals contin-
uously.

• The general DACS approach supports multiple gateways, whereby each gateway is
managed separately in identical manner. However, in the following discussion we
assume the network to have one dedicated gateway for better understanding.

• To avoid bottlenecks on the routing path, DACS relies on using broadcast commu-
nication. We desist from using fixed topologies to improve failure tolerance and to
support a maximum number of deployment scenarios. However, to avoid energy in-
efficient flooding of the network we use ring-oriented, directed communication as
proposed in [170].

In DACS we desist from using dedicated cache placements. Instead, every node besides its
own measurement task is a potential cache for other nodes. Thereby, nodes decide which
data they cache based on their distance to the data source that is determined by the hop
count of update messages. Nodes can then be classified concerning their membership to
distance layers. We therefore define two different layers:

1. Cache Layer: The cache layer defines the distance between the gateway and a cache
node, denoted by dGC . For example, in Figure 6.1 C1 is on cache layer 1 for Gateway
GW1.

2. Update Layer: The update layer defines the distance between the data source and a
cache node, denoted by dSC . For example, in Figure 6.1 C1 is on update layer 3 for
the source node SN.

As denoted previously, we use a ring-oriented broadcast communication as proposed in
[170], e.g. cache results are sent to the corresponding gateway over decreasing cache layer
and update messages are sent to the caches over increasing update layer. The actual place-
ment of the cache is now adjustable by placement rules, e.g. caches are placed every second
or third layer, depending on the memory and energy resources of the application scenario.
The actual update logic is defined by the cache coherence protocol that is described in the
next section. Finally, by avoiding dedicated caches and instead using cache layers we fur-
ther introduce an implicit data replication which optimizes the node failure tolerance and
makes the networks more stable concerning communication path failures. For using ded-
icated replication techniques we refer to our previous work in [171, 172] which is out of
scope of this thesis.

6.2.2 Cache Coherence
Cache consistency predefines that for each point in time the cache is consistent to the data
source whereas cache coherence demands that the cache is consistent to the data source

144 CHAPTER 6. DACS: A DYNAMIC APPROXIMATIVE CACHING SCHEME

during the evaluation of queries. Cache coherence therefore significantly reduces the effort
of keeping the cache up-to-date and hence the communication demand. However, both
claims can mostly not be satisfied in wireless sensor networks because of the unreliable
communication and the energy demand of continuous cache updating that conflicts with
the general hardware restrictions in wireless sensor networks. In detail, the times when
queries have to be evaluated are generally not predictable resulting in a continuous updating
process of the caches which significantly reduces the lifetime of the entire wireless sensor
network due to the communication overhead.
To overcome these problems, DACS introduces an approximative cache update policy.
Each cache node does not store the actual value of the data source but rather stores a value
for that a maximum deviation / error is guaranteed. An update is only processed if the
maximum deviation is exceeded. The maximum deviation for each cache item is set based
on its distance to the actual data source.
In Figure 6.1, we give an example for an approximative update policy with linear increasing
error (10% per hop on distance dSC). In the following, we give a detailed description on
how DACS supports this policy.
As described in the previous section, nodes are classified based on their membership to
cache and update layers. Each logical update layer consists of nodes with the same distance
dSC to the data source and includes a maximum deviation / error regarding the cached
values and the values of the actual data sources.
This error is defined by a function Υ(dSC) → ex that calculates the maximum error ex for
a given cache data source distance x = dSC . The function is initially known to all nodes
based on the application scenario and the efficiency predefinitions. For Figure 6.1 it can be
defined asΥ(dSC) =dSC/10. In general, the higher the steepness of the function, the lower
the estimated communication demand in general for updates. The high impact of choosing
the error function according to efficiency predefinitions that can result into significantly
lower communication demand is also shown in the evaluation of this work in Section 6.4.
Moreover, the function can be adjusted concerning the estimated number of queries per
update as also shown in Section 6.4.
On incoming update messages, nodes decide based on the function Υ(dSC) whether an
update message needs to be processed, e.g. the value needs to be cached and the message
needs to be forwarded to higher update layers.
DACS currently supports three forward policies, that can easily be extended for future
work:

1. Decision at Source Node: The source node tracks the progress of cache values based
on a virtual layer scheme and determines itself how many hops an update needs to be
sent in order to verify the update policy. This approach prevents policy violation and
is denoted as stable approach.

2. Forward If Updated: Cache nodes forward as long as the update policy results into
cache updates. The forward process is a dynamical decision on the update layer path.

6.2. THE DACS FRAMEWORK 145

However, monotonic changes in source values can produce temporary violation of
the demanded deviation gradation, e.g. higher update layers exceeding the maxi-
mum deviation temporary. It can be shown that the maximum error can be nearly
squared. Nevertheless, this simple solution performs well in average without policy
guarantees.

3. Weighted Forward If Updated: The problem of the error policy violation of the For-
ward If Updated forward strategy can be solved by dynamically weighting the func-
tion Υ(dSC). With increasing distance from the data source to the data cache the
function weight is increased to smooth out the squared error. However, this will re-
sult into more updates and is therefore less energy efficient due to the communication
overhead

In the experiments of this work we have used the forward policies 1. and 2. which both
ensure a stable performance. The forward policy 3. is only needed if monotonic sensor
values are likely to occur. We give an example for this scenario in Figure 6.2. The source
node continuously samples new temperature data. We assume a monotonic increase of
2 degree Celsius per sample. In Phase I all nodes are updated due to the initial start of
DACS. Hence, no errors exist and the cache nodes are consistent. In Phase II all nodes are
weakly consistent as the cache a value that deviates from the source node within the error
tolerance. In Phase III the nodes on update layer 1 (ahc = 1) need to be updated. However,
the nodes on update layer 2 decide not to update due to the not violated tolerance and do
not forward the message. In Phase IV the problem of monotonic sensor values appears
for the first time. The nodes on update layer 1 do not update and hence do not forward the
update message. Accordingly, the nodes on update layer 2 are not updated even though they
should. In this situation we define these cache nodes as out of error tolerance and hence
inconsistent. Nevertheless, the error will be corrected with the next update cycle as shown
for Phase V. This example shows the problems that may occur for monotonic sensor values
when using the Forward If Updated policy. However, for natural measurements monotonic
sensor values are not a common behaviour, so that the Forward If Updated policy produces
good enough results. Nevertheless, if inconsistent states are not allowed, the Decision at
Source Node and Weighted Forward If Updated policies represent alternative strategies.
In summary, we have shown in this section how cache coherence can be guaranteed by
allowing an average error gradient in the network based on an adjustable error function. In
the next section, we discuss how caches can be localized for given user queries.

6.2.3 Cache Localization
In DACS, caches can be localized using model-driven approximative queries [56]. The
query issuer defines a quality demand that needs to be resolved by DACS autonomously.
DACS estimates the distribution of the nodes in the network and derives the error distribu-
tions of the caches in the network. Based on the distributions DACS extrapolates the next

146 CHAPTER 6. DACS: A DYNAMIC APPROXIMATIVE CACHING SCHEME

Figure 6.2: Forward If Updated Error Intolerance

cache layer that fulfils the quality requirements. This entire process is hidden to the query
issuer which makes DACS an optimal solution for non expert sensor network users.
As described in the previous section, cache nodes are classified by their membership to
cache layers, e.g. the distance dGC between a gateway and the cache nodes. In DACS,
the user defines an overall maximum average error requirement ε along his query, e.g. get
all temperature values with an overall maximum average error of ε. DACS automatically
retrieves a corresponding cache layer, e.g. the maximum hop for the query messages, so
that the requirement can be satisfied.

6.2. THE DACS FRAMEWORK 147

We therefore define a function C(ε) → c ∈ N that looks up a corresponding cache layer
c that fulfils ε. The resulting cache layer guarantees that the overall average error of the
results does not exceed ε. Hereby, it is important that not only the maximum deviation
of the cache layer is relevant to the overall average error but also the amount of nodes
between the cache layer and the gateway that will send exact results. On the other side,
DACS chooses the cache layer as close as possible to the gateway without violation of the
requirement ε to optimally reduce the communication overhead.
The localization of the cache nodes depends on two factors:

1. the error function Υ(dSC)

2. the distribution F (X) of the nodes on the hop layers of the network starting from the
gateway. The distance from the gateway to a node is defined by dGN . The density
function is denoted as f(X). In Figure 6.3 we show a possible gaussian distribution
which will be used throughout this section as an example and is, as we show later in
this section, representative for many network scenarios.

Figure 6.3: Network Node Distribution Density f(x) on Hop Layer

Localization based on Node and Error Distributions

The function C(ε) can be derived inductively over the used cache layers as shown in the
following cases:

CASE 1: Cache Layer C = 0

In this initial case, we assume that the gateway acts as a cache. By using the approx-
imative update policy the maximum error of the cached value of a node n with distance
x = dSC = dGN is defined by ex = Υ(dSC) = Υ(dGN). In example, a node that is 5 hops
away from the gateway will be cached by allowing a maximum deviation of Υ(5).

148 CHAPTER 6. DACS: A DYNAMIC APPROXIMATIVE CACHING SCHEME

Accordingly, by reviewing all nodes in the network we can derive an error distribution for a
given cache layer C denoted asG(C, ex) (with density g(C, ex)) that determines the amount
of nodes that are cached by the cache layer C allowing a maximum error ex. For the present
case (C=0) the error distribution is now directly determined by the given node distribution
density f(X):

g(0, ex) = f(Υ−1(ex)) (6.1)

In detail, the amount of nodes that are cached with a maximum error of ex is the amount of
nodes that are on a layer with distance dGN and for that the equation Υ(dGN) = ex is true.
We can retrieve this layer by resolving the function Υ−1(ex) and get the amount of nodes
on this layer from the density function f(Υ−1(ex)).
As shown in Figure 6.4, this theoretical derivation means that for the initial case (C = 0)
we can directly determine the amount of nodes that are cached with a certain error ex from
the general node distribution.

Figure 6.4: Network Error Distribution for Cache Layer 0: g(0, ex)

The estimation value of the derived error distribution for cache layer 0 is the worst case
overall average error of DACS. As denoted previously, we now have to review the case
that we retrieve results from cache layer deeper in the network whereby nodes between the
gateway and the cache will answer with exact results without error.

CASE 2: Cache Layer C > 0

We continue the inductive derivation of C(ε) by reviewing the usage of caches deeper
in the network (C > 0). The overall average error of a query result can again be deter-
mined by the expectancy value of an error distribution g(C, ex). Nevertheless, we have to

6.2. THE DACS FRAMEWORK 149

take care of the nodes that are positioned between the cache layer C and the gateway, as
they will send exact results.
We give an example in Figure 6.3. By using cache layerC = 3, all nodes on previous layers
will answer with exact results. These nodes are marked by the red area and the number of
these nodes is directly determined by F (3).
In general, by using cache layer C, F (C) nodes send exact results (ex = 0) and hence we
can derive

g(C, 0) = F (C) (6.2)

In the following, we need to determine the error distribution of the rest of the nodes with
error ex > 0 that are actually cached by the cache layer C, e.g. the nodes from layer
C + 1. As shown previously, the amount of nodes on layer C + 1 is determined by the
node distribution f(C +1). Accordingly, because these nodes are only one hop away from
the cache layer the maximum error e1 of the cached values is Υ(1). Based on the node
distribution, we then retrieve the density of error e1 as

g(C, e1) = f(Υ−1(e1) + C) (6.3)

By reviewing all layers of cached nodes, we retrieve the general error distribution for a
used cache layer C (C > 0):

g(C, ex) =

{

F (C) , for ex = 0

f(Υ−1(ex) + C) , for ex > 0
(6.4)

In other words, we retrieve the actual error distribution for a cache layer C (C > 1) by
left shifting the error distribution of Equation 6.1 by C. In example, we show the resulting
error distribution for the usage of cache layer C = 3 in Figure 6.5.
Equation 6.1 and Equation 6.4 now form the general error distribution of DACS for variable
cache layer C:

g(C, ex) =

f(Υ−1(ex)) , for C = 0

F (C) , for ex = 0 ∧ C > 0

f(Υ−1(ex) + C) , for ex > 0 ∧ C > 0

(6.5)

As denoted previously, we can now retrieve the overall average error by calculating the
expectancy value E of the error distribution: E(g(C, ex)).

150 CHAPTER 6. DACS: A DYNAMIC APPROXIMATIVE CACHING SCHEME

Figure 6.5: Error Distribution in Network for Cache Layer 3

Finally, C(ε) is defined as

C(ε) = min(C|(ε−E(g(C, ex))) ; ∀ C : E(g(C, ex)) > ε) (6.6)

This function retrieves the cache layer C whereby the overall average error of this layer
(E(g(C, ex))) is as close as possible to the error requirement ε without violating it. In
DACS the function C(ε) is solved using interval-valued approximation.

Remarks on the Distribution of Nodes

In the derivation of C(ε) we assume the knowledge of the general node distribution F (X).
This distribution of nodes can be known for dedicated deployments, e.g. square deploy-
ments with equidistant nodes. However, for general deployments, e.g. deployments out of
air, the exact position of nodes and their relative position to each other can not be fully ver-
ified. For this purpose, we have investigated the node distribution of randomly distributed
networks to find distribution classes that can be used in DACS. We therefore randomly
placed nodes of large scale networks consisting of n nodes (n>1000) and issued an ana-
lyzation query from a gateway to retrieve the amount of nodes on each hop layer.
As a result, we retrieved that randomly deployed networks tend to be gaussian distributed.
In Figure 6.6, we show a histogram of the distribution of randomly placed nodes based on
an average of 100 evaluations for 100 nodes. The red curve denotes the density function
of the gaussian distribution with a mean / median of 17 and a variance of 8. The gaussian
distribution was verified running statistical verifications, e.g. the Kolmogorow-Smirnow
Test [25]. The previous described localization strategy in general is independent of the
actually used distribution. However, based on these statistical tests, a gaussian distribution
can be assumed as a general case. Only an estimation of the network diameter has to be
done before using DACS.

6.3. DACS IMPLEMENTATION 151

Figure 6.6: Statistical Node Distribution for uniform randomized Deployments

6.3 DACS Implementation
In this section, we discuss the DACS implementation. The actual implementation was
done for iSense-based sensor nodes. Nevertheless, we present a general implementation
architecture and communication protocol in the following sections. Hence, DACS can
easily be adapted on other sensor node platforms.

6.3.1 Implementation Architecture
In Figure 6.7, we show the component diagram of the DACS architecture. The diagram is
hereby simplified for better readability. The DACS implementation basically consists of 5
components:

1. Communication: A component for analyzing packets that are received and to create
result packets and sending them into the network.

2. Query Engine: The query engine evaluates queries and cache update messages.

3. Cache Update Validation: This component checks if a cache needs to be updated and
further decides if an update needs to be forwarded.

4. Sensing: The sensing unit collects the sampled sensor data, provides the current data
and stores it for historic archiving.

5. Cache Management: This component is the central implementation of the data cache
including cache lookup routines and a cache write interface.

Like any other sensor network application, DACS is a highly parallel application, e.g.
the single components are running autonomously in parallel time. However, for better

152 CHAPTER 6. DACS: A DYNAMIC APPROXIMATIVE CACHING SCHEME

Figure 6.7: DACS Architecture Component Diagram

understanding we discuss the general program flow in a pseudo serialized way in the
following. The communication component is responsible for processing query messages,
result messages and cache update messages that have been classified for DACS by the
central receive function of the sensor node. If one of these message types arrives, it is
transformed in an internal query format and forwarded to the query engine. Any query
messages that are forwarded by the communication component are clearly targeted for
the current sensor node. E.g. the sensor node is responsible for answering the query with
cached data representative for other nodes due to its query hop count as proposed by the
localization algorithm. The query engine is now responsible for evaluating the query. If
the query is targeted for the sensor node itself, the query engine will request either current
sensor data from the sensor unit or historical data from the data cache by using the direct
required interface. If the query targets another sensor node that is cached by the current
sensor node, the query engine also looks the data directly up using the cache management
component. In both scenarios, the query engine component will create the query result and
send it back to the data sink using the communication component. If the query contains a
cache update, the query engine verifies it by forwarding it to the cache update verification
component. This component processes the cache coherence algorithm as proposed in Sec-
tion 6.2.2. If the forward policies demand to forward the query update, the cache update
verification component will notify the query engine which forwards the update using the
communication unit. As denoted previously, this is just a pseudo serialized program flow.
The sensing component and cache management component work in parallel as they sample
data continuously.

6.3. DACS IMPLEMENTATION 153

After discussing the general program flow and architecture of DACS, we will introduce the
message protocol and communication strategies, e.g. message dissemination, in the next
section

6.3.2 Message Delivery
As proposed previously, DACS desists from using a fixed network topology. According to
Nath et al. [170] the ring oriented communication is the most flexible and robust form of
data transmission in wireless sensor networks. It uses broadcast communication but avoids
endless flooding by directing messages based on rings around the data sink, e.g. messages
are attracted by the data sink like a magnet attracts metal. A message hence is routed over
several ways analogously which avoids communication bottlenecks like known from fixed
topology approaches like TAG [155]. In the following paragraph, we will discuss this in
more detail. In the subsequent paragraph we will then introduce the DACS packet structure
that is used by the communication component in Figure 6.7 to classify the type of message.

Message Flow

As denoted, DACS uses ring oriented communication according to Synopsis Diffusion by
Nath et al. [170]. Thereby the following assumptions are made:

• All sensor nodes use broadcast message delivery.

• Sensor nodes have no further information about their position and their neighbours.

• The only information that is known is the query hop count which signals the esti-
mated distance to the gateway.

• Messages include header information about the progress of the dissemination (for the
full header see next paragraph):

– The query hopcount qhc defines the distance between the receiver and the query
issuer (gateway). It is increased as long the active query is forwarded for every
hop.

– The answer hopcount ahc defines the distance between the data source (result /
answer source) and the receiver. The answer hopcount will be increased as long
as the answer of a query is forwarded to the data sink (gateway).

The ring oriented communication assumes a full broadcast communication that can result
in endless flooding. As denoted previously, to avoid this problem the message number is
reduced by using forward rules that represent attraction phenomena. We extended this rule
by allowing a message with a unique id to be only forwarded once by a sensor node. We
summarize the message forwarding strategy as follows:

154 CHAPTER 6. DACS: A DYNAMIC APPROXIMATIVE CACHING SCHEME

1. Forward only once
A sensor node can identify a message uniquely by the packet header. To avoid an
endless circulation of messages, each sensor node only forwards a query once. If a
query appears for the first time, the query id is stored and marked as forwarded. For
every additional time the same query is received as an active unanswered query it
is dismissed. Result messages are processed in similar way. To uniquely identify a
result message a combination of query id and answer id has to be reviewed.

2. Forward result messages in attraction of the gateway
The forwarding rule, that is an extended form of the Synopsis Diffusion forward pol-
icy, demands that an answer message is only forwarded if it is received from an ad-
jacent sensor node with a query hopcount that is one hop higher than the forwarding
node. In that way, the answer message is attracted by the gateway using a decreasing
query hopcount as the attraction.

We give three examples for the second forward policy in Figure 6.8. K1 and K2 have
the same query hopcount after receiving the active query with the same query hopcount
and are defined to be on the same ring. K3 is one ring nearer to the gateway and K5
is one ring further away from the gateway. We now review the case that the query has
been disseminated and result (answer) messages are sent towards the gateway. An answer
message is only allowed to be forwarded if it is received from a ring with higher query
hopcount and hence one hop further away from the gateway. We define nhc as the query
hopcount of the node that needs to decide if to forward. The forward decision is now based
on whether the equation qhc - ahc = nhc is true. In our example K1 is sending an answer

Figure 6.8: DACS Message Forwarding Policy

message via broadcast. K2, K3 and K5 receive this message. K2 is on the same ring than

6.3. DACS IMPLEMENTATION 155

K1. Hence, K2 will not forward since 2-1 != 2. The message will be dismissed. The
second case occurs for K3. This sensor node is one ring nearer to the gateway and hence
responsible for forwarding the message. The equation is satisfied (2-1=1) and the message
will be forwarded. The last case shows how the problem of endless flooding in the wrong
direction is avoided. As K5 is deeper in the network it is not desirable to let the node
forward a packet. The forwarding policy takes care of it, as the equation is not satisfied
(2-1!=3) and the message will be dismissed.

DACS Packet Structure

In the previous paragraph, we defined the general ring oriented message forward policy.
Given this message forward policy, a sensor node accepts and forwards or dismisses a mes-
sage based on the query id, query hopcount and the sensor node’s own hopcount. Finally,
we summarize the entire DACS packet header in Table 6.1.

Position Field Name Size Description
0 - 1 qid 2 Byte (uint16) Queryid of the current packet
2 - 3 qhc 2 Byte (uint16) Hopcount of the active query

4 - 5 aid 2 Byte (uint16) Id of the origin node of the query result (An-
swerId)

6 - 7 ahc 2 Byte (uint16) Hopcount of the query result (AnswerHop-
count)

8 options 1 Byte (uint8)
Additional packet information determing the
type of packet(Init Packet, Result Packet, Up-
date Packet, Cache Query)

9 length 1 Byte (uint8) Length of the data payload
10 - ... Payload Variable E.g. result data, sensor data

Table 6.1: DACS Packet Header Structure

As denoted in the previous paragraph, the queryid, query hopcount, answer id and answer
hopcount are needed to decide if a message needs to be forwarded or not. The optional
byte is used for additional packet information. This includes a definition of the packet type
and can be extended for quality of service (QoS) purposes. The payload includes the actual
sensor data for a query result.

6.3.3 Localization Algorithm
As shown in Section 6.2.3 the localization of the optimal cache layer depends on four
factors:

• The error function which is used for forwarding cache update messages as shown in
Section 6.2.2.

156 CHAPTER 6. DACS: A DYNAMIC APPROXIMATIVE CACHING SCHEME

• The node distribution in the network.

• The maximum deviation in the global result the user is willing to accept.

• The maximum query hop distance (network diameter).

A technical and theoretical calculation of the optimal cache layer has been introduced in
Section 6.2.3. As also proposed in Section 6.2.3, the distribution of nodes in general net-
work, e.g. with randomly placed nodes and randomly chosen gateway, can be estimated as
the gaussian distribution. The implemented localization of the optimal cache layer hence
is shown for the gaussian distribution. Since all of the factors are known from outside the
network, the optimal cache layer can be calculated on user side. This process saves energy
for processing the estimation and memory that is needed for the distribution approximation
represented by tables. We therefore implemented a tool in Java that estimates the opti-
mal cache layer for any given error function, network diameter and maximum deviation
demand as parameters. In Listing 6.1, we show the program code of the estimation func-
tion. The class NormalDistributionImpl is thereby given by the org.apache.commons.math
framework [224].

Listing 6.1: Estimation of the Optimal Cache Layer in Java

1 private static int getOptimalCacheLevel(NormalDistributionImpl
distribution, double failure,int maxLevel){

2 double[] results = new double[maxLevel+1];
3 for(int j = 0;j<results.length;j++){
4 results[j] = 0.0;
5 }
6 // Calculate estimated error for every cache layer
7 for (int c=0;c<=maxLevel;c++){
8 // all layers deeper equal the cache layer
9 //(that include an error)
10 for(int i=1;i<=(maxLevel-c);i++){
11 results[c] = results[c] +
12 (distribution.density(new Double(c+i))*errorfunction(i)

);
13 } }
14 // Choose the avg error that is the closest to the deviation

demand
15 int optcachelayer = maxLevel;
16 for(int k=0;k<results.length;k++){
17 if((results[k] <= failure) && (results[k] > results[

optcachelayer])){
18 optcachelayer = k;
19 } }
20 return optcachelayer;
21 }

6.4. EVALUATION 157

In detail, the function first iterates through all possible scenarios, e.g. choices of cache
layers, and calculates the average error according to the cache coherence protocol in Section
6.2.2. As denoted previously, the error only depends on the nodes that are equal or deeper
the cache layer. After checking all cache layers and getting all errors, we find the optimal
cache layer by comparing the error to the deviation (and hence error) demand of the user.
The algorithm proposes a brute force technique to find the optimal cache layer for better
understanding. Nevertheless, it can be extended by using computation over nested intervals.
After discussing the implementation aspects and the architecture of DACS, we show how
DACS performs in simulation and real deployments in the next section.

6.4 Evaluation
In this section, we give an extended overview on evaluation results of running DACS in
wireless sensor networks. Hereby, DACS has been evaluated in real sensor node deploy-
ments and simulations to test the scalability for very large deployments. The measure-
ment data is based on real temperature measurements in Friedberg, Germany. As proposed
throughout this work, the intention of DACS is to save energy on the communication path.
Hereby, it is not only important that DACS actually reduces the communication overhead
but also that the error requirement ε of a given query is never violated. Therefore, the
evaluation covers the following most important aspects:

1. Communication Efficiency: The impact on the communication demand of using var-
ious error functions is shown in Section 6.4.1.

2. Query per Update Trade-off : The evaluation in Section 6.4.2 covers aspects on when
to use DACS in relation to the ratio between expected updates and queries.

3. Validity and Robustness: The error requirement of a given query has to always be
guaranteed. Therefore the deviation gradiation on the update layer path that is defined
by the used error function needs to be adhered. An evaluation for this aspect is given
in Section 6.4.3.

As sensor node hardware we use Pacemate nodes [153], based on a Philips LPC 2136
Processor, and iSense core modules, based on a Jennic 32bit RISC Controller [45]. The
available RAM was 96kByte shared for program and data (heap memory was ≈15kByte,
program memory was ≈81kByte). We hereby point out that DACS is fully applicable on
real sensor nodes and has been tested in an indoor application scenario as shown in Figure
6.9 whereby each node sends measurements continuously and one node acts as a gateway.

6.4.1 Energy and Communication Efficiency
We first test the communication efficiency of DACS based on two quarter temperature
measurements and different error functions. The results are shown in Figure 6.10. Hereby,

158 CHAPTER 6. DACS: A DYNAMIC APPROXIMATIVE CACHING SCHEME

Figure 6.9: DACS Pacemate Indoor Deployment

the x-axis shows the chosen linear error function for the coherence protocol and the y-axis
denotes the communication demand in update messages. As a result, linearly increasing
the error function significantly reduces the communication demand. Both measurements
show a logarithmic decrease. Using DACS in the network therefore significantly reduces
the update demand if the user can accept a higher deviation in the cache results.

6.4.2 Query per Update Trade-off
In the next evaluation, the usability of DACS in relation to the expected amount of queries
was tested. As denoted previously, the usability of a caching scheme depends on the amount
of unique queries that are sent in the network. Generally, caching becomes interesting if
a high amount of independent queries is estimated and the update rate is lower. In this
evaluation, we show how this trade-off can be determined for DACS. Thereby, we have
to compare the cache layers that are actually used. In Figure 6.11, we show the trade-
off results for the message demand for the temperature evaluation scenario based on a
network of 100 nodes with a diameter of 6 hops over 91 update cycles (one quarter). The
x-axis hereby denotes the numer of queries that occur during the 91 update cycles (query
per update ratio). The y-axis denotes the overall communication demand in messages. The
message demand for direct querying acts as a reference, where all nodes need to be reached

6.4. EVALUATION 159

Figure 6.10: Message Demand for varying Error Function Update Policies

without using caches and hence the results need to be forwarded through the entire network.
The different curves show the usage of cache layer one to six. The higher the cache layer
the deeper it is in the network. As a result, the intersection between the direct querying
curve and the cache layer curve determines the point of inflection at which caching reduces
the communication demand. We show the inflection points of this scenario in Table 6.2.
For caches closer to the gateway the trade-off is significantly small, e.g. for cache layer 1
there are 0.14 queries per update, which shows the benefits of approximative data caching
in wireless sensor networks.

Cache Layer Ratio Query per Update
1 0,14
2 0,16
3 0,23
4 0,38
5 0,98
6 36,6

Table 6.2: Point of Efficiency: Query per Update

160 CHAPTER 6. DACS: A DYNAMIC APPROXIMATIVE CACHING SCHEME

Figure 6.11: Update per Query Trade-Off

6.4.3 Validity and Robustness
In Section 6.2.2, we introduced the approximative cache coherence protocol. We defined
an approximative update policy that is also used for localizing an optimal cache layer as
proposed in Section 6.2.3. In this evaluation we show that by using DACS the update
policy is never violated. Again, this evaluation is based on the temperature scenario in a
network with diameter 10, non-robust communication and randomly placed nodes. A linear
increasing error function was used (10% per layer) for cache updates. Figure 6.12 shows
the actual cache errors based on this linear deviation update policy for the two quarter
measurements. Hereby, because of the update policy a maximum deviation of 10% per
hop distance from the actual data source is allowed. As a result, the DACS update policy
adheres all failure guarantees making it a stable and reliable caching scheme. For the
2nd quarter we tested the Forward if Updated forward policy. Hereby, it can be seen that
because of non-predictable, monotonic sensor data the error gradiation tends to be more
non-linear. Nevertheless, the error reference is never violated which shows that the non
stable forward policy can also be used in practice.
To verify the results, we show the corresponding experimental results for using a 5% and a
20% error function in Figure 6.13 whereby an average of both quarters is shown.

6.4. EVALUATION 161

Figure 6.12: Validity of the Update Policy for a 10% per Hop Error Function

Figure 6.13: Validity of the Update Policy for a 5% / 20% per Hop Error Function

Again, the update policy can be guaranteed for both error functions. Hence, DACS pro-

162 CHAPTER 6. DACS: A DYNAMIC APPROXIMATIVE CACHING SCHEME

vides a flexible stable update management with stable error gradiation which ensures the
correctness of the cache localization process.

Chapter 7

Conclusion and Future Work

7.1 Conclusion
In this dissertation, we presented the XOBESensorNetworks framework for efficiently in-
tegrating XML data management and query processing in the wireless sensor network
development and lifetime cycle. Integrating XML data management into wireless sensor
networks is a means towards supporting extended heterogeneity on the application layer
and adapting the service oriented paradigm to sensor network application engineering
using standardized SOA techniques.

The XOBESensorNetworks framework provides transparent XML usage during the sensor
network application development by extending the Embedded C programming language
with XML constructs. This concept enables a high-level and transparent XML usage for
sensor network developers. Moreover, XML data can be statically type checked to ensure
more stable programs and to avoid costly maintenance of deployed networks.
The most important limitations of XML usage in wireless sensor networks are the scarce
resources of the sensor nodes. Strict limitations in energy supply and memory configura-
tion require new techniques in handling XML data during runtime in the network. This can
be a reason why XML data management has not been reviewed in the early sensor network
data management approaches.

To bridge the limitation gap, we introduced the XML template compression scheme that
is suitable for using XML in sensor networks with strict limitations of energy and mem-
ory. XOBESensorNetworks includes two separate implementations of the XML template
compression scheme. While the first implementation (XTO) relies on using a light weight
object model to allow direct access to the represented XML data the second implementa-
tion (XTS) desists from using a dedicated object model and rather processes the encoding
as a stream by using a special pushdown automaton on the nodes. Our evaluation of
the concepts of this thesis covered a comparison of both implementations concerning the

164 CHAPTER 7. CONCLUSION AND FUTURE WORK

compression ratio and hence the efficiency of in-memory storage. As a result, we showed
that both solutions have their application domain. While the XTO approach is used in
application scenarios where fast access to the document is more important than highest
compression the XTS approach is applicable for sensor networks with strict memory
limitations. Nevertheless, both approaches outperform other possible XML data binding
solutions and are currently the only concepts that enable dynamic XML data management
in wireless sensor networks.

Wireless sensor networks are mainly deployed for data acquisition. Data management so-
lutions therefore need to provide a data centric query evaluation layer. Accordingly, we
showed that both compression implementations are feasible to evaluate XPath queries dur-
ing runtime on the sensor nodes. While the XTO approach uses traditional tree navigation
techniques, the XTS approach uses an extended PDA including a new concept for storing
query results in a compressed form. We evaluated both approaches using the widespread
XPathMark. As a result, the XTO approach is more energy efficient by requiring less pro-
cessing cycles. While the XTS approach requires extended processing using the PDA, it
is the most memory efficient implementation by using the compressed BinType concept.
Hence, these results again show the different application domains of both approaches.
Regarding the in-network processing of XML queries, we further discussed the dissem-
ination of XML queries, the in-network aggregation of XML data and the optimized
transmission of templates. We pointed out that XPath queries can be syntactically extended
to enable continuous query processing.

In the last part of this thesis, we discussed the optimization of dynamic data acquisition
using data caches. In Chapter 6, we therefore proposed the dynamic approximative caching
scheme DACS for wireless sensor networks to optimize model driven query evaluation. An
approximative update policy has been introduced to support weak cache coherence. Based
on a deviation tolerance a query is issued to the network and the corresponding caches are
used adaptively. Evaluations have shown that this concept performs significantly better
than traditional query evaluation when a minimal deviation in the query results can be
accepted. The lifetime of networks using DACS can therefore be significantly extended.

In summary, the concepts of this thesis have significant impact on handling complex data
formats in wireless sensor networks. The support of XML data management in an energy
and memory efficient way opens up many benefits like heterogeneity and the integration in
the WWW using standardized XML based protocols. XOBESensorNetworks encapsulates
all concepts to provide developers and users a transparent framework. We believe that this
dissertation is a great contribution to inspirit and realize the idea of Smart Dust.

7.2. FUTURE WORK 165

7.2 Future Work
Although the concepts of this work show promising results and had significant impact
in the sensor network research community, the XML integration process is still in early
stages and can be optimized and extended in various work. In the last chapters, we already
pointed out interesting future topics to further optimize the XML data management in
wireless sensor networks. We finally summarize and give more detail on these areas of
future work.

We pointed out that the XTS approach is currently reviewed as the state-of-the-art XML
data management solution. Beside optimizing the processing of XTSs, we imagine a dy-
namic co-processor for handling XTSs on the sensor nodes. Using integrated circuitry or
FPGAs to realize the XTS PDA will optimize the runtime and energy efficiency signifi-
cantly. Nevertheless, this requires profound technical knowledge and further results in the
miniaturization process of electronic circuitry to fulfil the size requirements of Smart Dust.
The presented XML support is the vehicle for enabling standardized protocols like SOAP.
For future work, we therefore consider the implementation of a SOAP engine for the XTS
approach as a next step on adapting the service oriented paradigm for sensor network
engineering. We already extended the XTS PDA to be ready for processing and eval-
uating SOAP headers and bodies. Moreover, we see great potential for optimizing the
compression by extending the XTS encoding language to support SOAP based encoding
types. What parts of SOAP messages can be represented as XML templates is still an
open question. We imagine that great parts of SOAP are not necessary in sensor networks
and can therefore been left out for further optimization or be cached as proposed in our
introduction into template caching.

Beside the actual management of XML data in wireless sensor networks, we see many
areas of optimization and future work in our concepts for evaluating XML queries on com-
pressed XML data. Firstly, the support of other languages like XQuery and XSLT can be
realized. Secondly, the support of continuous XML queries should be extended. We already
discussed the BCSQ approach as one option. Handling complex data in the network also
opens up many new opportunities like heterogeneous in-network aggregation and XML
index structures.
Additionally, we see many benefits for related approaches. The Xenia approach has been
introduced as one of the most efficient compression techniques for XML data [244]. How-
ever, the absence of direct query evaluation on fully compressed documents restricts the
usage of Xenia [244] in wireless sensor networks. With the introduction of the Bintype
concept and the stream oriented PDA XPath evaluation strategy in this dissertation, we
showed possible methods that may be adapted to enhance the dynamic processability of
Xenia encoded documents. We currently have implemented a prototype that proves this

166 CHAPTER 7. CONCLUSION AND FUTURE WORK

possibility and are looking confidently into the future that XPath queries can be evaluated
on Xenia encoded documents.
Finally, our integrated dynamic approximative caching scheme DACS can be optimized
in the area of cache coherence. We already pointed out that other message forward poli-
cies can be reviewed and introduced to avoid temporary unstable cache conditions. We
also point out that the concepts of DACS have significant impact on realizing XML index
structures and index coherence. This is an important field that should be reviewed in the
future.

Appendix A

List of Publications and Awards

All publications of the author of this work are listed here in chronological order. The work
published in [95, 100, 102] hereby has been explicitly awarded in the conference proceed-
ings. Beside the following publications, the author of this work has also contributed to
[84, 85, 132, 133, 154, 171, 172, 198, 199, 200].

Title: Xobe Sensor Networks: Integrating XML in Sensor Network Programming
Authors: Nils Hoeller, Christoph Reinke, Sven Groppe and Volker Linnemann
Abstract: Communication in and with sensor networks often lacks of exchangeability. Further-
more handling communication data formats during sensor node programming is often complex and
programming errors can result in unstable programs. In this poster we introduce the easy to use
programming framework XOBESensorNetwork, which provides the direct use of XML in a sensor
node programming language, while ensuring stable and space-, time- and energy-efficient programs
handling XML data.
Published: in [96]

Title: Efficient XML Usage within Wireless Sensor Networks
Authors: Nils Hoeller and Christoph Reinke and Jana Neumann and Sven Groppe and
Daniel Boeckmann and Volker Linnemann
Abstract: Integrating wireless sensor networks in heterogeneous net- works is a complex task.
A reason is the absence of a standardized data exchange format that is supported in all partici-
pating sub networks. XML has evolved to the de facto standard data exchange format between
heterogeneous net- works and systems. However, XML usage within sensor networks has not been
introduced because of the limited hardware resources. In this paper, we introduce XML template
objects making XML usage applicable within sensor networks. This new XML data binding tech-
nique provides significant high compression results while still allowing dynamic XML processing
and XML navigation. This is a step towards more complex but exchangeable data management in
sensor networks and the extension of the service-oriented paradigm to sensor network application
engineering.

168 APPENDIX A. LIST OF PUBLICATIONS AND AWARDS

Published: in [98]

Title: smartCQ: Answering and Evaluating Bounded Continuous Search Queries within
the WWW and Sensor Networks
Authors: Nils Hoeller, Christoph Reinke, Dirk Kukulenz and Volker Linnemann
Abstract: Continuous Queries (CQ) can be used to keep track of relevant information in the
World Wide Web and Sensor Networks over a period of time. However, result sets may become
unbounded and notifications can be delayed. A special form of CQ are Bounded Continuous Search
Queries (BCSQ), where results are processed immediately and a bounding condition for the number
of user notifications may be defined to limit the result set. Based on a theoretical background for
answering BCSQ we present smartCQ, a web application for processing BCSQ and evaluating the
query results. Based on a transparent search engine a user may execute and evaluate new strategies
and methods for continuous search queries. Furthermore because of the positive results of BCSQ
we encourage its use for querying Wireless Sensor Networks to reduce the communication demand
and hence reduce the energy consumption to enhance the lifetime of a sensor network.
Published: in [97]

Title: Towards Energy Efficient XPath Evaluation in Wireless Sensor Networks
Authors: Nils Hoeller and Christoph Reinke and Jana Neumann and Sven Groppe and
Christian Werner and Volker Linnemann
Abstract: Using XML as a standardized data exchange format in wireless sensor networks is a
means to support more complex data management and heterogeneous networks. Moreover, XML
is a key feature towards service-oriented sensor networks. Recent work has shown that XML can
be compressed to meet the general hardware restrictions of sensor nodes while still supporting
updates. In this work we outline the vision and benefits of XML usage in wireless sensor networks.
We further present first evaluation results of an implemented XPath query engine, that is able to
evaluate a large set of XPath queries dynamically on XML using sensor nodes.
Published: in [101]

Title: XML Data Management and XPath Evaluation in Wireless Sensor Networks
Authors: Nils Hoeller and Christoph Reinke and Jana Neumann and Sven Groppe and
Christian Werner and Volker Linnemann
Abstract: XML is the defacto standard for data exchange applications like those in the WWW.
However, due to the limited hardware resources, wireless sensor networks abstain from using
verbose data formats like XML. Nevertheless, XML as a standardized data exchange format in
wireless sensor networks is a means to support more complex data management and heterogeneous
networks. Moreover, XML is a key feature towards service-oriented sensor networks that exchange
structured information by using SOAP. Recent work has shown that XML can be compressed to
meet the general hardware restrictions of sensor nodes while still supporting updates. In this work
we outline the vision and benefits of XML usage in wireless sensor networks, show how to evaluate
XML queries in wireless sensor networks and how query results can be compressed to lower the

169

comunication overhead. We therefore present an XPath engine on updateable compressed XML
data for sensor nodes and an experimental evaluation showing that the performance of our XPath
engine fulfills the requirements of today’s applications even on sensor nodes.
Published: in [102]
Note: This paper received the MoMM 2009 Best Paper Award

Title: Dynamic Approximative Data Caching in Wireless Sensor Networks
Authors: Nils Hoeller
Abstract: Communication in Wireless Sensor Networks generally is the most energy consuming
task. Retrieving query results from deep within the sensor network therefore consumes a lot of
energy and hence shortens the network’s lifetime.
In this work optimizations for processing queries by using adaptive caching structures are discussed.
Results can be retrieved from caches that are placed nearer to the query source. As a result the
communication demand is reduced and hence energy is saved by using the cached results. To verify
cache coherence in networks with non-reliable communication channels, an approximative update
policy is presented. A degree of result quality can be defined for a query to find the adequate cache
adaptively.
Published: in [95]
Note: This paper received the MDM 2010 Best PHD Forum Paper Award

Title: DACS: A Dynamic Approximative Data Caching in Wireless Sensor Networks
Authors: Nils Hoeller and Christoph Reinke and Jana Neumann and Sven Groppe and
Florian Frischat and Volker Linnemann
Abstract: Saving energy in Wireless Sensor Networks is essential to extend the lifetime of in-
field deployments. Previous research has shown that communication is generally the most energy
consuming task and needs to be reduced in order to build resource-efficient long-term applications.
The communication demand for retrieving query results from deep within the sensor network is
typically high. As a result, frequent non-continuous data acquisition consumes a lot of energy and
shortens the lifetime of the sensor network significantly. In this work we discuss optimizations for
processing high amounts of unique queries by using a dynamic adaptive caching scheme: DACS.
In DACS query results can be retrieved from caches that are placed nearer to the query source
instead of sending queries deep into the network. The communication demand can be significantly
reduced and the entire network lifetime is extended. To verify cache coherence in sensor networks
with non-reliable communication channels, an approximative update policy is used. To localize the
adequate cache adaptively, model-driven queries including a degree of demanded result quality can
be defined. The entire logic is thereby processed by DACS and hidden to the user. The significant
energy conservation is proven in evaluations that include real sensor node deployments.
Published: in [99]

Title: Stream-based XML Template Compression for Wireless Sensor Network Data
Management

170 APPENDIX A. LIST OF PUBLICATIONS AND AWARDS

Authors: Nils Hoeller and Christoph Reinke and Jana Neumann and Sven Groppe and
Martin Lipphardt and Björn Schütt and Volker Linnemann
Abstract: Using structured data formats like XML in wireless sensor networks to support
exchangeability and heterogeneity on application level has become an important research topic in
the area of large scale networked sensing systems. Besides, the usage of XML encourages the
adaptation of service oriented programming techniques to simplify sensor network application
engineering. While the sensor nodes still have significant resource limitations in terms of energy
and memory capacity and computational power, recent data management approaches show positive
results to bridge this resource gap. Nevertheless, further optimizations are needed to enhance the
application range to support larger sets of data within the networks. In this work we present an
optimization for a template object compression scheme that is based on a stream-oriented XML
compression and supports dynamic data management and query evaluation on the compressed data.
We hereby present a complete solution for XML compression, data processing and query evaluation
that can be further embedded in the engineering process to support developers. The presented solu-
tions are evaluated and result into significant improvements in comparison to previous approaches,
when processing complex large scale XML documents.
Published: in [100]
Note: This paper received the MUE 2010 Best Paper Award

Title: Efficient XML Data and Query Integration in the Wireless Sensor Network Engi-
neering Process
Authors: Nils Hoeller, Christoph Reinke, Jana Neumann, Sven Groppe, Christian Werner,
Volker Linnemann
Structured Abstract: Purpose of this paper In the last decade, XML has become the defacto
standard for data exchange in the World Wide Web. The positive benefits of data exchangeability to
support system and software heterogeneity on application level and easy WWW integration make
XML an ideal data format for many other application and network scenarios like wireless sensor
networks. Moreover, the usage of XML encourages using standardized techniques like SOAP to
adapt the service oriented paradigm to sensor network engineering. Nevertheless, integrating XML
usage in wireless sensor network data management is limited by the low hardware resources that
require efficient XML data management strategies suitable to bridge the general resource gap.
Design/methodology/approach In this work we therefore present two separate strategies on inte-
grating XML data management in wireless sensor networks that both have been implemented and
are running on today’s sensor node platforms. We further show how XML data can be processed
and how XPath queries can be evaluated dynamically. In an extended evaluation we compare
the performance of both strategies concerning the memory and energy efficiency and show that
both solutions have application domains and are fully applicable on today’s sensor node products.
Findings This work shows that dynamic XML data management and query evaluation is possible on
sensor nodes with strict limitations in terms of memory, processing power and energy supply. What
is original/value of paper In this work we show an optimized stream-based XML compression
technique and how XML queries can be evaluated on compressed XML bit streams using generic

171

pushdown automata. To the best of our knowledge and beside our own preparatory work on XML
compression, this is the first complete approach on integrating dynamic XML data management
into wireless sensor networks.
Published: in [103]

172 APPENDIX A. LIST OF PUBLICATIONS AND AWARDS

Bibliography

[1] K. Aberer, M. Hauswirth, and A. Salehi. A middleware for fast and flexible sensor
network deployment. In Proceedings of the 32nd international conference on Very
large data bases, page 1202. VLDB Endowment, 2006.

[2] K. Aberer, M. Hauswirth, and A. Salehi. Infrastructure for data processing in large-
scale interconnected sensor networks. In MDM ’07: Proceedings of the 2007 In-
ternational Conference on Mobile Data Management, pages 198–205, Washington,
DC, USA, 2007. IEEE Computer Society.

[3] S. Agarwal, R. Katz, S. Krishnamurthy, and S. Dao. Distributed power control in
ad-hoc wireless networks. In 2001 12th IEEE International Symposium on Personal,
Indoor and Mobile Radio Communications, volume 2, 2001.

[4] O. Akan and I. Akyildiz. Event-to-sink reliable transport in wireless sensor net-
works. IEEE/ACM Transactions on Networking (TON), 13(5):1016, 2005.

[5] I. Akyildiz, T. Melodia, and K. Chowdhury. A survey on wireless multimedia sensor
networks. Computer Networks, 51(4):921–960, 2007.

[6] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor net-
works: a survey. Computer Networks, 38(4):393–422, 2002.

[7] ALERT Systems Organization. Alert history. 2010. http://www.alertsystems.org.

[8] Altova. XMLSpy - XML editor. 2010. http://www.altova.com.

[9] T. Arampatzis, J. Lygeros, and S. Manesis. A survey of applications of wireless
sensors and wireless sensor networks. In Mediterrean Conference on Control and
Automation Intelligent Control, 2005. Proceedings of the 2005 IEEE International
Symposium on, pages 719–724, 2005.

[10] C. Bachman. Summary of current work ANSI/X3/SPARC/study group: database
systems. ACM SIGMOD Record, 6(3):39, 1974.

[11] S. Banerjee and A. Misra. Minimum energy paths for reliable communication in
multi-hop wireless networks. In Proceedings of the 3rd ACM international sympo-
sium on Mobile ad hoc networking & computing, page 156. ACM, 2002.

174 BIBLIOGRAPHY

[12] P. Baronti, P. Pillai, V. Chook, S. Chessa, A. Gotta, and Y. Hu. Wireless sensor
networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards.
Computer Communications, 30(7):1655–1695, 2007.

[13] S. Bellis, K. Delaney, B. O’Flynn, J. Barton, K. Razeeb, and C. O’Mathuna. Devel-
opment of field programmable modular wireless sensor network nodes for ambient
systems. Computer Communications, 28(13):1531–1544, 2005.

[14] T. Berners-Lee and D. Connolly. Hypertext markup language. Internet Working
Draft, 13, 1993.

[15] J. Beutel. Metrics for sensor network platforms. In Proc. ACM Workshop on Real-
World Wireless Sensor Networks (REALWSN06), 2006.

[16] J. Beutel, P. Blum, M. Dyer, C. Moser, and P. Stadelmann. BTnode Programming-
An Introduction to BTnut Applications. Computer Engineering and Networks Lab,
ETH Zuerich, Switzerland, 1, 2007.

[17] J. Beutel, O. Kasten, F. Mattern, K. Roemer, F. Siegemund, and L. Thiele. Prototyp-
ing wireless sensor network applications with BTnodes. Wireless Sensor Networks,
pages 323–338, 2004.

[18] J. Blumenthal, M. Handy, F. Golatowski, M. Haase, and D. Timmermann. Wireless
sensor networks - new challenges in software engineering. In Proceedings of the
ETFA ’03. IEEE Conference, volume 1, 2003.

[19] A. Bonifati and S. Ceri. Comparative analysis of five XML query languages. ACM
Sigmod Record, 29(1):79, 2000.

[20] G. Booch, I. Jacobson, and J. Rumbaugh. Unified Modeling Language (UML).
Rational Software Corporation, Santa Clara, CA, version, 1, 1997.

[21] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Ferris, and D. Or-
chard. Web Services Architecture, W3C Working Group Note 11 February 2004.
World Wide Web Consortium, article available from: http://www. w3. org/TR/ws-
arch, 2004.

[22] I. Botan, D. Kossmann, P. M. Fischer, T. Kraska, D. Florescu, and R. Tamosevicius.
Extending xquery with window functions. In VLDB ’07: Proceedings of the 33rd
international conference on Very large data bases, pages 75–86. VLDB Endowment,
2007.

[23] M. Botts and A. Robins. Bringing the sensor web together. Géosciences, 6:46–53,
2007.

[24] R. Bourret. XML data binding resources. 2002. http://www. rpbourret. com/xm-
l/XMLDataBinding.htm.

BIBLIOGRAPHY 175

[25] I. N. Bronshtein and K. A. Semendyayev. Handbook of mathematics (3rd ed.).
Springer-Verlag, London, UK, 1997.

[26] M. Brundage. XQuery: the XML query language. Pearson Higher Education, 2004.

[27] D. Brunelli, L. Benini, C. Moser, and L. Thiele. An efficient solar energy harvester
for wireless sensor nodes. In Proceedings of the conference on Design, automation
and test in Europe, pages 104–109. ACM, 2008.

[28] BTnode Project @ ETH Zurich. BTnodes - A Distributed Environment for Prototyp-
ing Ad Hoc Networks. 2007. http://www.btnode.ethz.ch/.

[29] P. Buneman, M. Grohe, and C. Koch. Path queries on compressed xml. In vldb’2003:
Proceedings of the 29th international conference on Very large data bases, pages
141–152. VLDB Endowment, 2003.

[30] Q. Cao, T. Abdelzaher, T. He, and J. Stankovic. Towards optimal sleep scheduling
in sensor networks for rare-event detection. In Proceedings of the 4th international
symposium on Information processing in sensor networks, page 4. IEEE Press, 2005.

[31] K. C. Carreras I., De Pellegrini F. and C. i. Data Management in Wireless Sensor
Networks. IOS P, 2006.

[32] J. Cartigny, D. Simplot, and I. Stojmenovic. Localized minimum-energy broadcast-
ing in ad-hoc networks. In IEEE Societies INFOCOM 2003. Twenty-Second Annual
Joint Conference of the IEEE Computer and Communications, pages 2210–2217,
2003.

[33] A. Cerpa, J. Elson, D. Estrin, L. Girod, M. Hamilton, and J. Zhao. Habitat monitor-
ing: Application driver for wireless communications technology. ACM SIGCOMM
Computer Communication Review, 31(2 supplement):41, 2001.

[34] H. Chan and A. Perrig. Security and privacy in sensor networks. Computer,
36(10):103–105, 2003.

[35] N. Chand, R. C. Joshi, andM.Misra. Cooperative caching in mobile ad hoc networks
based on data utility. Mob. Inf. Syst., 3(1):19–37, 2007.

[36] J. Chang and L. Tassiulas. Energy conserving routing in wireless ad-hoc networks. In
IEEE INFOCOM 2000. Nineteenth Annual Joint Conference of the IEEE Computer
and Communications Societies. Proceedings, volume 1, 2000.

[37] C. Charalambous and S. Cui. A bio-inspired distributed clustering algorithm for
wireless sensor networks. In WICON ’08: Proceedings of the 4th Annual Inter-
national Conference on Wireless Internet, pages 1–8, ICST, Brussels, Belgium,
Belgium, 2008. ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering).

176 BIBLIOGRAPHY

[38] B. Charny. Wireless research senses the future. ZDNet News, pages 2100–1105,
2002.

[39] J. Cheney. Compressing xml with multiplexed hierarchical ppmmodels. In Proceed-
ings of DCC ’01, page 163, Washington, DC, USA, 2001. IEEE Computer Society.

[40] S. Chien, B. Cichy, A. Davies, D. Tran, G. Rabideau, R. Castano, R. Sherwood,
D. Mandl, S. Frye, S. Shulman, J. Jones, and S. Grosvenor. An autonomous earth-
observing sensorweb. IEEE Intelligent Systems, 20(3):16–24, 2005.

[41] C. Chong, S. Kumar, and B. Hamilton. Sensor networks: Evolution, opportunities,
and challenges. Proceedings of the IEEE, 91(8):1247–1256, 2003.

[42] E. Christensen, F. Curbera, G.Meredith, and S. Weerawarana. Web service definition
language (WSDL). W3C, http://www. w3. org/TR/wsdl, Accessed, 18(2):2005, 2001.

[43] D. C. Chu, L. Popa, A. Tavakoli, J. M. Hellerstein, P. Levis, S. Shenker, and I. Stoica.
The design and implementation of a declarative sensor network system. Technical
Report UCB/EECS-2006-132, University of California, Berkeley, Oct 2006.

[44] J. Clark, M. Murata, et al. Relax NG specification. OASIS Committee Specification,
3, 2001.

[45] Coalesenses. Coalesenses iSense Core Module. 2010. http://www.coalesenses.com.

[46] R. Cole and G. Graefe. Optimization of dynamic query evaluation plans. In Pro-
ceedings of the 1994 ACM SIGMOD international conference on Management of
data, pages 150–160. ACM, 1994.

[47] P. Corke, P. Valencia, P. Sikka, T. Wark, and L. Overs. Long-duration solar-powered
wireless sensor networks. In Proceedings of the 4th workshop on Embedded net-
worked sensors, page 37. ACM, 2007.

[48] A. Das, R. Marks, M. El-Sharkawi, P. Arabshahi, and A. Gray. Minimum power
broadcast trees for wireless networks: integer programming formulations. In IEEE
INFOCOM 2003. Twenty-Second Annual Joint Conference of the IEEE Computer
and Communications Societies, volume 2, 2003.

[49] R. Data. W3Schools Online Web Tutorials. Online Document available on:
http://www. w3schools. com, Last visited: 23rd July, 2008.

[50] F. C. Delicato, P. F. Pires, L. Pirmez, and L. F. Carmo. A service approach for
architecting application independent wireless sensor networks. Cluster Computing,
8(2-3):211–221, 2005.

[51] F. C. Delicato, P. F. Pires, L. Pirmez, and L. F. R. da Costa Carmo. A flexible web
service based architecture for wireless sensor networks. International Conference
on Distributed Computing Systems Workshops, 00:730, 2003.

BIBLIOGRAPHY 177

[52] K. Delin. The Sensor Web: A macro-instrument for coordinated sensing. Sensors,
2(1):270–285, 2002.

[53] K. Delin, S. Jackson, D. Johnson, S. Burleigh, R. Woodrow, J. McAuley, J. Dohm,
F. Ip, T. Ferré, D. Rucker, et al. Environmental studies with the sensor web: Princi-
ples and practice. Sensors, 5(1-2):103–117, 2005.

[54] I. Demirkol, C. Ersoy, and F. Alagoz. MAC protocols for wireless sensor networks:
a survey. IEEE Communications Magazine, 44(4):115–121, 2006.

[55] A. Deshpande, C. Guestrin, S. Madden, J. Hellerstein, and W. Hong. Model-driven
data acquisition in sensor networks. In Proceedings of the Thirtieth international
conference on Very large data bases-Volume 30, page 599. VLDB Endowment,
2004.

[56] A. Deshpande, C. Guestrin, S. R. Madden, J. M. Hellerstein, and W. Hong. Model-
driven data acquisition in sensor networks. In VLDB ’04: Proceedings of the Thir-
tieth international conference on Very large data bases, pages 588–599. VLDB En-
dowment, 2004.

[57] A. Deshpande, S. Nath, P. B. Gibbons, and S. Seshan. Cache-and-query for wide
area sensor databases. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD
international conference on Management of data, pages 503–514, New York, NY,
USA, 2003. ACM.

[58] Y. Diao, D. Ganesan, G. Mathur, and P. Shenoy. Rethinking data management for
storage-centric sensor networks. In Proceedings of the Third Biennial Conference
on Innovative Data Systems Research (CIDR). Citeseer, 2007.

[59] T. Downing and R. Java. Remote Method Invocation. Foster City, Calif.: IDG Books
Worldwide, 1998.

[60] F. Dressler, M. Struebe, R. Kapitza, and W. Schroeder-Preikschat. Dynamic Soft-
ware Management on BTnode Sensors. In 4th IEEE/ACM International Con-
ference on Distributed Computing in Sensor Systems (IEEE/ACM DCOSS 2008):
IEEE/ACM International Workshop on Sensor Network Engineering (IWSNE 2008),
Santorini Island, Greece (June 2008), pages 9–14. Citeseer, 2008.

[61] M. Droop, M. Flarer, J. Groppe, S. Groppe, V. Linnemann, J. Pinggera, F. Santner,
M. Schier, F. Schoepf, H. Staffler, and S. Zugal. Embedding XPATH Queries into
SPARQL Queries. In J. Cordeiro and J. Filipe, editors, Proceedings of the 10th
International Conference on Enterprise Information Systems, Volume DISI, (ICEIS
2008), pages 5–14, Barcelona, Spain, June 12 - 16 2008. INSTICC.

[62] M. Dubinin, A. Lushchekina, and V. Radeloff. Performance and accuracy of Ar-
gos transmitters for wildlife monitoring in Southern Russia. European Journal of
Wildlife Research, 56(3):459–463, 2010.

178 BIBLIOGRAPHY

[63] J. Elson and D. Estrin. Time synchronization for wireless sensor networks. In
Proceedings of 2001 International Parallel and Distributed Processing Symposium
(IPDPS), San Francisco, CA, USA, 2001. Published by the IEEE Computer Society.

[64] J. Elson, L. Girod, and D. Estrin. Fine-grained network time synchronization using
reference broadcasts. ACM SIGOPS Operating Systems Review, 36(SI):147–163,
2002.

[65] J. Elson and K. Roemer. Wireless sensor networks: A new regime for time synchro-
nization. ACM SIGCOMM Computer Communication Review, 33(1):154, 2003.

[66] D. Estrin, R. Govindan, J. Heidemann, and S. Kumar. Next century challenges: Scal-
able coordination in sensor networks. In Proceedings of the 5th annual ACM/IEEE
international conference on Mobile computing and networking, page 270. ACM,
1999.

[67] ExoLab Group. The Castor Project. 2010. http://www.castor.org/.

[68] C. Fok, G. Roman, and C. Lu. Mobile agent middleware for sensor networks: An
application case study. In Proceedings of the 4th international symposium on Infor-
mation processing in sensor networks, page 51. IEEE Press, 2005.

[69] C. Fok, G. Roman, and C. Lu. Rapid development and flexible deployment of adap-
tive wireless sensor network applications. In 25th IEEE International Conference on
Distributed Computing Systems, 2005. ICDCS 2005. Proceedings, pages 653–662,
2005.

[70] M. Franceschet. XPathMark: An XPath Benchmark for the XMark Generated Data.
2005.

[71] Z. Fu, P. Zerfos, H. Luo, S. Lu, L. Zhang, and M. Gerla. The impact of multihop
wireless channel on TCP throughput and loss. In IEEE INFOCOM, volume 3, pages
1744–1753. Citeseer, 2003.

[72] D. Ganesan, B. Greenstein, D. Estrin, J. Heidemann, and R. Govindan. Multireso-
lution storage and search in sensor networks. ACM Transactions on Storage (TOS),
1(3):315, 2005.

[73] J. Gao, D. Yang, S. Tang, and T. Wang. Tree automata based efficient XPath evalu-
ation over XML data stream. Ruan Jian Xue Bao(J. Softw.), 16(2):223–232, 2005.

[74] D. Gay, P. Levis, R. Von Behren, M. Welsh, E. Brewer, and D. Culler. The nesC
language: A holistic approach to networked embedded systems. In Proceedings of
the ACM SIGPLAN 2003 conference on Programming language design and imple-
mentation, page 11. ACM, 2003.

[75] GCC. GCC, the GNU Compiler Collection. 2010. http://gcc.gnu.org/.

BIBLIOGRAPHY 179

[76] A. Ghose, J. Grossklags, and J. Chuang. Resilient data-centric storage in wireless
ad-hoc sensor networks. InMobile Data Management, pages 45–62. Springer, 2003.

[77] GlobalSecurity.org. Sound surveillance system (sosus), 2005.

[78] A. Gokhale, B. Kumar, and A. Sahuguet. Reinventing the wheel? CORBA vs. Web
services. In International WWW Conference, 2002.

[79] G. Gottlob, C. Koch, R. Pichler, and L. Segoufin. The complexity of xpath query
evaluation and xml typing. J. ACM, 52(2):284–335, 2005.

[80] G. Gou and R. Chirkova. Efficient algorithms for evaluating XPath over streams. In
Proceedings of the 2007 ACM SIGMOD international conference on Management
of data, pages 269–280. ACM, 2007.

[81] W. Gould. From Swallow floats to Argo–the development of neutrally buoyant
floats. Deep Sea Research Part II: Topical Studies in Oceanography, 52(3-4):529–
543, 2005.

[82] R. Govindan, J. Hellerstein, W. Hong, S. Madden, M. Franklin, and S. Shenker. The
sensor network as a database. Technical report, Citeseer, 2002.

[83] G. Graefe. Query evaluation techniques for large databases. ACM computing Sur-
veys, 25(2):73–170, 1993.

[84] S. Groppe, J. Groppe, V. Linnemann, D. Kukulenz, N. Hoeller, and C. Reinke. Em-
bedding SPARQL into XQuery / XSLT. In R. L. Wainwright and H. Haddad, editors,
Proceedings of the 23rd ACM Symposium on Applied Computing (ACM SAC 2008),
pages 2271–2278, Fortaleza, Ceara, Brasilien, March 16 - 20 2008. ACM.

[85] S. Groppe, J. Groppe, C. Reinke, N. Hoeller, and V. Linnemann. Open and novel
issues in XML database applications: future directions and advanced technologies,
chapter XSLT: Common Issues with XQuery and Special Issues of XSLT, pages
108–135. IGI Global, Information Science Reference, USA/UK, 2009.

[86] L. Gurgen, C. Roncancio, C. Labbé, A. Bottaro, and V. Olive. Sstreamware: a
service oriented middleware for heterogeneous sensor data management. In Pro-
ceedings of ICPS ’08, pages 121–130, New York, NY, USA, 2008. ACM.

[87] Gzip. 2010. http://www.gzip.org/.

[88] V. Handziski, J. Polastre, J. Hauer, C. Sharp, A. Wolisz, and D. Culler. Flexible
hardware abstraction for wireless sensor networks. In Proceeedings of the Second
European Workshop on Wireless Sensor Networks, 2005, pages 145–157, 2005.

[89] W. Heinzelman, A. Chandrakasan, and H. Balakrishnan. Energy-efficient commu-
nication protocol for wireless microsensor networks. In Proceedings of the 33rd
Annual Hawaii International Conference on System Sciences, 2000, page 10, 2000.

180 BIBLIOGRAPHY

[90] S. Helal, W. Mann, H. El-Zabadani, J. King, Y. Kaddoura, and E. Jansen. The gator
tech smart house: A programmable pervasive space. Computer, pages 50–60, 2005.

[91] J. Hill and D. Culler. A wireless embedded sensor architecture for system-level
optimization. Technical report, 2001.

[92] J. Hill, R. Szewczyk, A.Woo, S. Hollar, D. Culler, and K. Pister. System architecture
directions for networked sensors. ACM Sigplan Notices, 35(11):104, 2000.

[93] J. L. Hill and D. E. Culler. Mica: A wireless platform for deeply embedded networks.
IEEE Micro, 22:12–24, 2002.

[94] R. Hills. Sensing for danger. Sci. Technol. Rep, 2001.

[95] N. Hoeller. Dynamic Approximative Data Caching in Wireless Sensor Networks.
In Proceedings of the 11th International Conference on Mobile Data Management
(MDM 2010), pages 291–292, Kansas City, Missouri, USA, May 23 - 26 2010.
IEEE. This paper received the BEST PHD FORUM PAPER AWARD MDM 2010.

[96] N. Hoeller, C. Reinke, S. Groppe, and V. Linnemann. Xobe Sensor Networks:
Integrating XML in sensor network programming. In Proceedings of INSS 2008,
Kanazawa, Japan, June 17 - 19 2008. IEEE.

[97] N. Hoeller, C. Reinke, D. Kukulenz, and V. Linnemann. smartCQ: Answering and
Evaluating Bounded Continuous Search Queries within the WWW and Sensor Net-
works. In Fifth International Conference on Innovations in Information Technology
(Innovations 2008), pages 160–164, Al Ain, United Arab Emirates, December 16 -
18 2008. IEEE.

[98] N. Hoeller, C. Reinke, J. Neumann, S. Groppe, D. Boeckmann, and V. Linnemann.
Efficient XML Usage within Wireless Sensor Networks. In X. Wang and N. B.
Shroff, editors, Proceedings of the Fourth International Wireless Internet Confer-
ence (WICON 2008), ACM International Conference Proceeding Series (AICPS),
page Article No: 74, Maui, Hawaii, USA, November 17 - 19 2008. ACM.

[99] N. Hoeller, C. Reinke, J. Neumann, S. Groppe, F. Frischat, and V. Linnemann.
DACS: A Dynamic Approximative Data Caching in Wireless Sensor Networks. In
Proceedings of the 5th International Conference on Digital Information Manage-
ment (ICDIM 2010), pages 339–346, Thunder Bay, Canada, July 5 - 8 2010. IEEE.

[100] N. Hoeller, C. Reinke, J. Neumann, S. Groppe, M. Lipphardt, B. Schütt, and V. Lin-
nemann. Stream-based XML Template Compression for Wireless Sensor Network
Data Management. In Proceedings of the 4th International Conference on Multi-
media and Ubiquitous Engineering (MUE 2010), Cebu, Philippines, August 11 - 13
2010. IEEE. This paper received the BEST PAPER AWARD MUE 2010.

[101] N. Hoeller, C. Reinke, J. Neumann, S. Groppe, C. Werner, and V. Linnemann. To-
wards Energy Efficient XPath Evaluation in Wireless Sensor Networks. In ACM

BIBLIOGRAPHY 181

International Conference Proceeding Series - Proceedings of the 6th International
Workshop on Data Management for Sensor Networks (DMSN 2009), pages 1–2,
Lyon, Frankreich, August 24 - 28 2009. ACM.

[102] N. Hoeller, C. Reinke, J. Neumann, S. Groppe, C. Werner, and V. Linnemann. XML
Data Management and XPath Evaluation in Wireless Sensor Networks. In G. Kotsis,
D. Taniar, E. Pardede, and I. Khalil, editors, Proceedings of the 7th International
Conference on Advances in Mobile Computig & Multimedia (MoMM 2009), held in
conjunction with iiWAS 2009 conference, pages 218–227, Kuala Lumpur, Malaysia,
December 14 - 16 2009. ACM. This paper received the BEST PAPER AWARD
MoMM 2009.

[103] N. Hoeller, C. Reinke, J. Neumann, S. Groppe, C. Werner, and V. Linnemann. Ef-
ficient xml data and query integration in the wireless sensor network engineering
process. International Journal of Web Information Systems, 6(4), 2010.

[104] H. Hof, E. Blaß, and M. Zitterbart. Secure overlay for service centric wireless sensor
networks. Security in Ad-hoc and Sensor Networks, pages 125–138, 2005.

[105] C. Hsu, D. Levermore, C. Carothers, and G. Babin. Enterprise collaboration: On-
demand information exchange using enterprise databases, wireless sensor networks,
and RFID systems. IEEE Transactions on Systems, Man and Cybernetics, Part A,
37(4):519–532, 2007.

[106] L. Hu and D. Evans. Localization for mobile sensor networks. In Proceedings of the
10th annual international conference on Mobile computing and networking, pages
45–57. ACM, 2004.

[107] D. Huffman. A method for the construction of minimum-redundancy codes. Pro-
ceedings of the IRE, 40(9):1098–1101, 1952.

[108] M. hun Lee, K. bok Eom, H. joong Kang, C. sun Shin, and H. Yoe. Design and
implementation of wireless sensor network for ubiquitous glass houses. icis, 0:397–
400, 2008.

[109] International Telecommunication Union (ITU). Recommendation x.891: Generic
applications of asn.1 – fast infoset, May 2005.

[110] K. Jamieson, H. Balakrishnan, and Y. Tay. Sift: A MAC protocol for event-driven
wireless sensor networks. Wireless Sensor Networks, pages 260–275, 2006.

[111] D. Jardine. The ansi/sparc dbms model. North-Holland, 1977.

[112] D. Jensen. SIVAM: Communication, navigation and surveillance for the Amazon.
Avionics Mag, 2002.

[113] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein. Energy-
efficient computing for wildlife tracking: Design tradeoffs and early experiences
with zebranet. ACM SIGOPS operating systems review, 36(5):96–107, 2002.

182 BIBLIOGRAPHY

[114] E.-H. Jung and Y.-J. Park. Tinyonet: A cache-based sensor network bridge enabling
sensing data reusability and customized wireless sensor network services. Sensors,
8(12):7930–7950, 2008.

[115] J. M. Kahn, R. H. Katz, and K. S. J. Pister. Next century challenges: mobile network-
ing for “smart dust”. InMobiCom ’99: Proceedings of the 5th annual ACM/IEEE in-
ternational conference on Mobile computing and networking, pages 271–278, New
York, NY, USA, 1999. ACM.

[116] K. Kalpakis, K. Dasgupta, and P. Namjoshi. Efficient algorithms for maximum
lifetime data gathering and aggregation in wireless sensor networks* 1. Computer
Networks, 42(6):697–716, 2003.

[117] K. Kalpakis and S. Tang. A combinatorial algorithm for the maximum lifetime data
gathering with aggregation problem in sensor networks. Computer Communications,
32(15):1655–1665, 2009.

[118] A. Kamra, V. Misra, J. Feldman, and D. Rubenstein. Growth codes: Maximizing
sensor network data persistence. In Proceedings of the 2006 conference on Applica-
tions, technologies, architectures, and protocols for computer communications, page
266. ACM, 2006.

[119] H. Karl and A. Willig. A short survey of wireless sensor networks. Telecommunica-
tion Networks group, Technical Report, 2003.

[120] H. Katz and D. Chamberlin. XQuery from the experts: a guide to the W3C XML
query language. Addison-Wesley Professional, 2004.

[121] M. Kay. XPath 2.0 programmer’s reference. Wrox, 2004.

[122] M. Kempa and V. Linnemann. Towards Valid XML Applications. In V. Milutinovic,
editor, Proceedings of the Third International Conference on Advances in Infras-
tructure for Electronic Business, Education, Science, and Medicin on the Internet,
SSGRR 2002w, L’Aquila, Italien, January 2002. Morgan Kaufmann. nur erhältlich
als CD mit ISBN: 88-85280-62-5.

[123] J. Kent and H. Brumbaugh. autosql and autoxml: code generators from the genome
project. Linux J., 2002(99):1, 2002.

[124] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon. Wire-
less sensor networks for structural health monitoring. In Proceedings of the 4th
international conference on Embedded networked sensor systems, page 428. ACM,
2006.

[125] S. Kim, S. Pakzad, D. Culler, J. Demmel, G. Fenves, S. Glaser, and M. Turon. Health
monitoring of civil infrastructures using wireless sensor networks. In Proceedings
of the 6th international conference on Information processing in sensor networks,
page 263. ACM, 2007.

BIBLIOGRAPHY 183

[126] P. Kinney et al. Zigbee technology: Wireless control that simply works. In Commu-
nications design conference, volume 2, 2003.

[127] D. Knuth. Computers & Typesetting. Addison-Wesley Reading, MA, 1984.

[128] D. Knuth. Dynamic huffman coding. Journal of Algorithms, 6(2):163–180, 1985.

[129] D. Kotz, C. Newport, and C. Elliot. The mistaken axioms of wireless-network re-
search. Technical report, Dartmouth College Computer Science, 2003.

[130] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric networks. In
Proc. 11th Canadian Conference on Computational Geometry, pages 51–54, 1999.

[131] A. Kroeller, D. Pfisterer, C. Buschmann, S. Fekete, and S. Fischer. Shawn: A new
approach to simulating wireless sensor networks. Arxiv preprint cs.DC/0502003,
2005.

[132] D. Kukulenz, N. Hoeller, S. Groppe, and V. Linnemann. Optimization of Bounded
Continuous Search Queries based on Ranking Distributions. In Proceedings 8th
International Conference on Web Information Systems Engineering (WISE 2007),
volume 4831 of Lecture Notes in Computer Science (LNCS), pages 26–37, Nancy,
Frankreich, December 3 - 7 2007. Springer-Verlag.

[133] D. Kukulenz, C. Reinke, and N. Hoeller. Web Contents Tracking by Learning of
Page Grammars. In Proceedings of the Third International Conference on Internet
and Web Applications and Services (ICIW 2008), pages 416–425, Athens, Greece,
June 8 - 13 2008. IEEE.

[134] S. Kurkowski, T. Camp, and M. Colagrosso. Manet simulation studies: the incredi-
bles. SIGMOBILE Mob. Comput. Commun. Rev., 9(4):50–61, 2005.

[135] M. Kushwaha, I. Amundson, X. Koutsoukos, S. Neema, and J. Sztipanovits. Oasis:
A programming framework for service-oriented sensor networks. In In IEEE/Create-
Net COMSWARE 2007, January 2007.

[136] L. Lamport. LATEX: A document preparation system. User’s guide and reference
manual. Addison-Wesley Publishing Company, Reading, Ma, 1994.

[137] K. Langendoen and N. Reijers. Distributed localization in wireless sensor networks:
a quantitative comparison. Computer Networks, 43(4):499–518, 2003.

[138] D. Lee and W. Chu. Comparative analysis of six XML schema languages. ACM
Sigmod Record, 29(3):87, 2000.

[139] J. Leguay, M. Lopez-Ramos, K. Jean-Marie, and V. Conan. Service oriented archi-
tecture for heterogeneous and dynamic sensor networks. In Proceedings of DEBS
’08, pages 309–312, New York, NY, USA, 2008. ACM.

184 BIBLIOGRAPHY

[140] M. Leopold, M. Dydensborg, and P. Bonnet. Bluetooth and sensor networks: A
reality check. In Proceedings of the 1st international conference on Embedded net-
worked sensor systems, page 113. ACM, 2003.

[141] P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo, D. Gay,
J. Hill, M. Welsh, E. Brewer, et al. Tinyos: An operating system for sensor networks.
Ambient Intelligence, pages 115–148, 2005.

[142] D. Li, K. Wong, Y. Hu, and A. Sayeed. Detection, classification and tracking of
targets in distributed sensor networks. IEEE signal processing magazine, 19(2):17–
29, 2002.

[143] S. Li, Y. Lin, S. Son, J. Stankovic, and Y. Wei. Event detection services using
data service middleware in distributed sensor networks. Telecommunication Systems,
26(2):351–368, 2004.

[144] Y. Li, M. V. Ramakrishna, and S. W. Loke. Approximate query answering in sensor
networks with hierarchically distributed caching. Advanced Information Networking
and Applications, International Conference on, 2:281–285, 2006.

[145] Y. Li, M. V. Ramakrishna, and S. W. Loke. An optimal distribution of data reduction
in sensor networks with hierarchical caching. In EUC, pages 598–609, 2007.

[146] H. Liefke and D. Suciu. Xmill: an efficient compressor for xml data. In SIGMOD
’00: Proceedings of the 2000 ACM SIGMOD international conference on Manage-
ment of data, pages 153–164, New York, NY, USA, 2000. ACM.

[147] S. Lin, B. Arai, and D. Gunopulos. Reliable hierarchical data storage in sensor
networks. In 19th International Conference on Scientific and Statistical Database
Management, 2007. SSBDM’07, pages 26–26, 2007.

[148] Y. Lin, B. Liang, and B. Li. Data persistence in large-scale sensor networks with
decentralized fountain codes. In IEEE INFOCOM 2007. 26th IEEE International
Conference on Computer Communications, pages 1658–1666, 2007.

[149] V. Linnemann, S. Fischer, and C. Werner. Aesop’s tale - applying and extending
the service-oriented paradigm to sensor network application engineering. Technical
report, University of Luebeck, 2006.

[150] V. Linnemann and M. Kempa. XML-Objekte: das Projekt XOBE. Schriftenreihe
der Institute für Informatik/Mathematik A-02-10, Technisch-Naturwissenschaftliche
Fakultät, Medizinische Universität zu Lübeck, Mai 2002.

[151] M. Lipphardt. Service-orientierte Infrastrukturen und Algorithmen fuer praxis-
taugliche Sensornetzanwendungen. Institute of Telematics, University of Luebeck,
2010.

BIBLIOGRAPHY 185

[152] M. Lipphardt, N. Glombitza, J. Neumann, and C. Werner. A service-oriented oper-
ating system and an application development infrastructure for wireless sensor net-
works. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor
Systems, pages 309–310. ACM, 2009.

[153] M. Lipphardt, H. Hellbrück, D. Pfisterer, S. Ransom, and S. Fischer. Practical expe-
riences on mobile inter-body-area-networking. In BodyNets ’07, pages 1–8. ICST,
2007.

[154] M. Lipphardt, J. Neumann, N. Hoeller, C. Reinke, S. Groppe, V. Linnemann, and
C.Werner. XML und SOA als Wegbereiter fuer Sensornetze in der Praxis. Praxis der
Informationsverarbeitung und Kommunikation (PIK), 31(3):146–152, Juli - Septem-
ber 2008.

[155] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tag: a tiny aggregation
service for ad-hoc sensor networks. SIGOPS Oper. Syst. Rev., 36(SI):131–146, 2002.

[156] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. Tinydb: an acqui-
sitional query processing system for sensor networks. ACM Trans. Database Syst.,
30(1):122–173, 2005.

[157] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk, and J. Anderson. Wireless
sensor networks for habitat monitoring. In WSNA ’02: Proceedings of the 1st ACM
international workshop on Wireless sensor networks and applications, pages 88–97,
New York, NY, USA, 2002. ACM.

[158] S. Mangano and S. Laurent. XSLT cookbook. O’Reilly & Associates, Inc. Se-
bastopol, CA, USA, 2002.

[159] G. Mao, B. Fidan, and B. Anderson. Wireless sensor network localization tech-
niques. Computer Networks, 51(10):2529–2553, 2007.

[160] P. Marchal. Field-programmable gate arrays. Communications of the ACM, 42(4):59,
1999.

[161] M. Marin-Perianu, N. Meratnia, P. Havinga, L. de Souza, J. Muller, P. Spiess,
S. Haller, T. Riedel, C. Decker, and G. Stromberg. Decentralized enterprise systems:
a multiplatform wireless sensor network approach. IEEE Wireless Communications,
14(6):57–66, 2007.

[162] R. Marin-Perianu, H. Scholten, and P. Havinga. Prototyping service discovery and
usage in wireless sensor networks. IEEE Conference on Local Computer Networks
(LCN), 0:841–850, 2007.

[163] M. Maroti, G. Simon, A. Ledeczi, and J. Sztipanovits. Shooter localization in urban
terrain. Computer, 37(8):60–61, 2004.

[164] S. Microsystems. Rpc: Remote procedure call protocol specification, 1988.

186 BIBLIOGRAPHY

[165] E. Miluzzo, X. Zheng, K. Fodor, and A. Campbell. Radio characterization of 802.15.
4 and its impact on the design of mobile sensor networks. In Proceedings of the 5th
European conference on Wireless sensor networks, pages 171–188. Springer-Verlag,
2008.

[166] J.-K. Min, M.-J. Park, and C.-W. Chung. Xpress: a queriable compression for xml
data. In SIGMOD ’03: Proceedings of the 2003 ACM SIGMOD international con-
ference on Management of data, pages 122–133, New York, NY, USA, 2003. ACM.

[167] G. E. Moore. Cramming more components onto integrated circuits. Electronics,
38(8), April 1965.

[168] R. Mueller, G. Alonso, and D. Kossmann. Swissqm: Next generation data process-
ing in sensor networks. In CIDR, pages 1–9. www.crdrdb.org, 2007.

[169] L. Nachman, R. Kling, R. Adler, J. Huang, and V. Hummel. The Intel® Mote plat-
form: a Bluetooth-based sensor network for industrial monitoring. In Proceedings
of the 4th international symposium on Information processing in sensor networks,
page 61. IEEE Press, 2005.

[170] S. Nath, P. B. Gibbons, S. Seshan, and Z. R. Anderson. Synopsis diffusion for robust
aggregation in sensor networks. In Proceedings of SenSys ’04, pages 250–262, New
York, NY, USA, 2004. ACM.

[171] J. Neumann, N. Hoeller, C. Reinke, and V. Linnemann. Redundancy Infrastructure
for Service-oriented Wireless Sensor Networks. In Proceedings of the 9th Inter-
national Symposium on Network Computing and Applications (NCA 2010), pages
269–274, Cambridge, Massachusetts, USA, July 15 - 17 2010. IEEE.

[172] J. Neumann, C. Reinke, N. Hoeller, and V. Linnemann. Adaptive Quality-Aware
Replication in Wireless Sensor Networks. In Communication and Networking, Pro-
ceedings of the 2009 International Workshop on Wireless Ad Hoc, Mesh and Sen-
sor Networks (WAMSNET09), held in conjunction with the 2009 International Con-
ference on Future Generation Communication and Networking(FGCN 2009), vol-
ume 56 of Communications in Computer and Information Science (CCIS), pages
413–420, Jeju Island, Korea, Dezember 10 - 12 2009. Springer.

[173] W. Ng, W.-Y. Lam, P. T. Wood, and M. Levene. Xcq: A queriable xml compression
system. Knowl. Inf. Syst., 10(4):421–452, 2006.

[174] C. Nishimura and D. Conlon. IUSS dual use: Monitoring whales and earthquakes
using SOSUS. Marine Technology Society Journal, 27:13–13, 1994.

[175] Object Management Group. OMG Interface Definition Language (IDL) specifica-
tion. OMG, United States, 1991.

[176] B. O’Flynn, S. Bellis, K. Delaney, J. Barton, S. O’mathuna, A. Barroso, J. Ben-
son, U. Roedig, and C. Sreenan. The development of a novel minaturized modular

BIBLIOGRAPHY 187

platform for wireless sensor networks. In Proceedings of the 4th international sym-
posium on Information processing in sensor networks, page 49. IEEE Press, 2005.

[177] T. Okoshi, S. Wakayama, Y. Sugita, S. Aoki, T. Iwamoto, J. Nakazawa, T. Nagata,
D. Furusaka, M. Iwai, A. Kusumoto, et al. Smart space laboratory project: Toward
the next generation computing environment. In IEEE Third Workshop on Networked
Appliances (IWNA 2001). Citeseer, 2001.

[178] D. Olteanu, H. Meuss, T. Furche, and F. Bry. XPath: looking forward. In XML-
Based Data Management and Multimedia Engineering—EDBT 2002 Workshops,
pages 892–896. Springer, 2002.

[179] E. Ort and B. Mehta. Java architecture for xml binding (jaxb), 2010.
http://java.sun.com/developer/earlyAccess/xml/jaxb/.

[180] S. Pakzad, G. Fenves, S. Kim, and D. Culler. Design and implementation of scalable
wireless sensor network for structural monitoring. Journal of infrastructure systems,
14:89, 2008.

[181] S. Pakzad, S. Kim, G. Fenves, S. Glaser, D. Culler, and J. Demmel. Multi-Purpose
Wireless Accelerometers for Civil Infrastructures Monitoring. Structural health
monitoring, 2005: advancements and challenges for implementation, page 125,
2005.

[182] J. Paradiso, G. Borriello, L. Girod, and R. Han. Applications: Beyond dumb data
collection (panel). EmNets, 2006.

[183] P. Parys. XPath evaluation in linear time with polynomial combined complexity. In
Proceedings of the twenty-eighth ACM SIGMOD-SIGACT-SIGART symposium on
Principles of database systems, pages 55–64. ACM, 2009.

[184] S. Pemberton et al. XHTML (TM) 1.0 The Extensible HyperText Markup Language.
2000.

[185] A. Perrig, J. Stankovic, and D. Wagner. Security in wireless sensor networks. Com-
munications of the ACM, 47(6):53–57, 2004.

[186] A. Perrig, R. Szewczyk, J. Tygar, V. Wen, and D. Culler. SPINS: Security protocols
for sensor networks. Wireless networks, 8(5):534, 2002.

[187] J. Polastre, R. Szewczyk, and D. Culler. Telos: enabling ultra-low power wireless
research. In Fourth International Symposium on Information Processing in Sensor
Networks, 2005. IPSN 2005, pages 364–369, 2005.

[188] J. Postel et al. User datagram protocol, 1980.

[189] G. J. Pottie and W. J. Kaiser. Wireless integrated network sensors. Commun. ACM,
43(5):51–58, 2000.

188 BIBLIOGRAPHY

[190] K. S. Prabh and T. F. Abdelzaher. Energy-conserving data cache placement in sensor
networks. ACM Trans. Sen. Netw., 1(2):178–203, 2005.

[191] J. M. Prinsloo, C. L. Schulz, D. G. Kourie, W. H. M. Theunissen, T. Strauss, R. V. D.
Heever, and S. Grobbelaar. A service oriented architecture for wireless sensor and
actor network applications. In SAICSIT ’06, pages 145–154, , Republic of South
Africa, 2006. South African Institute for Computer Scientists and Information Tech-
nologists.

[192] B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao. Tiny web services for sensor
device interoperability. In Proceedings of IPSN ’08, pages 567–568, Washington,
DC, USA, 2008. IEEE Computer Society.

[193] B. Przydatek, D. Song, and A. Perrig. SIA: Secure information aggregation in sen-
sor networks. In Proceedings of the 1st international conference on Embedded net-
worked sensor systems, page 265. ACM, 2003.

[194] QUALCOMM, CDMA Technologies GmbH. Snapdragon - Technical Specifica-
tions. 2010.

[195] M. A. Rahman and S. Hussain. Effective caching in wireless sensor network. Ad-
vanced Information Networking and Applications Workshops, International Confer-
ence on, 1:43–47, 2007.

[196] V. Rajesh, J. Gnanasekar, R. Ponmagal, and P. Anbalagan. Integration of Wireless
Sensor Network with Cloud. In Proceedings of the 2010 International Conference
on Recent Trends in Information, Telecommunication and Computing, pages 321–
323. IEEE Computer Society, 2010.

[197] S. Ratnasamy, B. Karp, L. Yin, F. Yu, D. Estrin, R. Govindan, and S. Shenker. GHT:
a geographic hash table for data-centric storage. In Proceedings of the 1st ACM in-
ternational workshop on Wireless sensor networks and applications, page 87. ACM,
2002.

[198] C. Reinke, N. Hoeller, and V. Linnemann. Adaptive Atomic Transaction Support
for Service Migration in Wireless Sensor Networks. In Proceedings of the Seventh
IEEE and IFIP International Conference on Wireless and Optical Communications
Networks (WOCN2010), Colombo, Sri Lanka, September 6 - 8 2010. IEEE.

[199] C. Reinke, N. Hoeller, M. Lipphardt, J. Neumann, S. Groppe, and V. Linnemann.
Integrating Standardized Transaction Protocols in Service Oriented Wireless Sensor
Networks. In Proceedings of the 24th ACM Symposium on Applied Computing (ACM
SAC 2009), pages 2202–2203, Honolulu, Hawaii, USA, March 8 - 12 2009. ACM.

[200] C. Reinke, N. Hoeller, J. Neumann, S. Groppe, S. Werner, and V. Linnemann. Anal-
ysis and Comparison of Atomic Commit Protocols for Adaptive Usage in Wireless
Sensor Networks. In Proceedings of the 2010 IEEE International Conference on
Sensor Networks, Ubiquitous and Trustworthy Computing (SUTC 2010), pages 138–
145, Newport Beach, California, USA, June 7 - 9 2010. IEEE.

BIBLIOGRAPHY 189

[201] K. Roemer and F. Mattern. The design space of wireless sensor networks. IEEE
Wireless Communications, 11(6):54–61, 2004.

[202] S. Roundy, P. Wright, and J. Rabaey. A study of low level vibrations as a power
source for wireless sensor nodes. Computer Communications, 26(11):1131–1144,
2003.

[203] J. Sandhu, A. Agogino, A. Agogino, et al. Wireless sensor networks for commercial
lighting control: decision making with multi-agent systems. In AAAI workshop on
sensor networks, pages 131–140. Citeseer, 2004.

[204] P. Santi. Topology control in wireless ad hoc and sensor networks. ACM Computing
Surveys (CSUR), 37(2):194, 2005.

[205] T. Schmid, H. Dubois-Ferriere, and M. Vetterli. Sensorscope: Experiences with a
wireless building monitoring sensor network. In Workshop on Real-World Wireless
Sensor Networks, 2005.

[206] A. Schmidt, F. Waas, M. L. Kersten, M. J. Carey, I. Manolescu, and R. Busse.
Xmark: A benchmark for xml data management. In VLDB, pages 974–985, 2002.

[207] H. Schuhart, D. Pietzsch, and V. Linnemann. Framework of the XOBE Database
Programming Language. In Proceedings of the IADIS International Conference Ap-
plied Computing (IADIS-AC 2005), volume I, pages 193–200, Carvoeiro, Portugal,
February 22-25, 2005. IADIS Press.

[208] M. Schwabl-Schmidt. Programmiertechniken fuer AVR-Mikrocontroller. Aachen:
Elektor-Verlag, 2007.

[209] K. Seada, M. Zuniga, A. Helmy, and B. Krishnamachari. Energy-efficient forward-
ing strategies for geographic routing in lossy wireless sensor networks. In Proceed-
ings of the 2nd international conference on Embedded networked sensor systems,
pages 108–121. ACM, 2004.

[210] V. Shankar, A. Natarajan, S. Gupta, and L. Schwiebert. Energy-efficient protocols
for wireless communication in biosensornetworks. In 2001 12th IEEE International
Symposium on Personal, Indoor and Mobile Radio Communications, volume 1,
2001.

[211] S. Sharples, V. Callaghan, and G. Clarke. A multi-agent architecture for intelligent
building sensing and control. Sensor Review, 19(2):135–140, 1999.

[212] J. Shi and W. Liu. A service-oriented model for wireless sensor networks with
internet. In CIT ’05: Proceedings of the The Fifth International Conference on
Computer and Information Technology, pages 1045–1049, Washington, DC, USA,
2005. IEEE Computer Society.

190 BIBLIOGRAPHY

[213] N. Shrivastava, C. Buragohain, D. Agrawal, and S. Suri. Medians and beyond: new
aggregation techniques for sensor networks. In Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 239–249. ACM, 2004.

[214] G. Simon, M. Maróti, A. Lédeczi, G. Balogh, B. Kusy, A. Nádas, G. Pap, J. Sal-
lai, and K. Frampton. Sensor network-based countersniper system. In SenSys ’04:
Proceedings of the 2nd international conference on Embedded networked sensor
systems, pages 1–12, New York, NY, USA, 2004. ACM.

[215] F. Sivrikaya and B. Yener. Time synchronization in sensor networks: a survey. IEEE
network, 18(4):45–50, 2004.

[216] J. Snell, D. Tidwell, and P. Kulchenko. Programming Web services with SOAP.
O’Reilly Media, 2002.

[217] Software AG. XML Benefits. 2010. www.softwareag.com.

[218] F. Stann and J. Heidemann. RMST: Reliable data transport in sensor networks.
In Proceedings of the First International Workshop on Sensor Net Protocols and
Applications, pages 102–112. Citeseer, 2003.

[219] D. Steere, A. Baptista, D. McNamee, C. Pu, and J. Walpole. Research challenges
in environmental observation and forecasting systems. In Proceedings of the 6th
annual international conference on Mobile computing and networking, page 299.
ACM, 2000.

[220] M. Steffen and I. UiO. XML Query Languages. 2007.

[221] P. Steggles and S. Gschwind. The Ubisense smart space platform. In Adjunct Pro-
ceedings of the Third International Conference on Pervasive Computing, volume
191, 2005.

[222] R. Szewczyk, A. Mainwaring, J. Polastre, J. Anderson, and D. Culler. An analysis of
a large scale habitat monitoring application. In Proceedings of the 2nd international
conference on Embedded networked sensor systems, pages 214–226. ACM, 2004.

[223] R. Szewczyk, E. Osterweil, J. Polastre, M. Hamilton, A. Mainwaring, and D. Estrin.
Habitat monitoring with sensor networks. Commun. ACM, 47(6):34–40, 2004.

[224] The Apache Software foundation. Math Framework. 2003. http://jakarta. apache.
org/bsf.

[225] N. Trigoni, Y. Yao, A. Demers, J. Gehrke, and R. Rajaraman. Multi-query optimiza-
tion for sensor networks. Distributed Computing in Sensor Systems, pages 307–321,
2005.

[226] M. Tubaishat and S. Madria. Sensor networks: an overview. IEEE potentials,
22(2):20–23, 2003.

BIBLIOGRAPHY 191

[227] D. Veillard. The XML C parser and toolkit of Gnome: libxml. System Home page
at http://xmlsoft. org, 2010.

[228] M. Vieira, C. Coelho Jr, D. da Silva Jr, and J. da Mata. Survey on wireless sensor net-
work devices. In IEEE Conference Emerging Technologies and Factory Automation,
2003. Proceedings. ETFA’03, pages 537–544, 2003.

[229] S. Vinoski. CORBA: Integrating diverse applications within distributed heteroge-
neous environments. IEEE Communications Magazine, 35(2):46–55, 1997.

[230] W3C. Xml specification W3C recommendation, 1998.

[231] W3C. Xsl transformations (xslt) version 1.0, 1999. http://www.w3.org/TR/xslt.

[232] W3C. Soap version 1.2 part 1: Messaging framework, 2001.
http://www.w3.org/TR/soap/.

[233] W3C. W3C XML Schema. W3C Recommendation, 2001.

[234] W3C. Xml path language (xpath) 2.0, 2007. http://www.w3.org/TR/xpath20/.

[235] W3C. Xquery 1.0: An xml query language, 2007. http://www.w3.org/TR/xquery/.

[236] W3C. Working draft: Efficient xml interchange (exi) format 1.0, Sept. 2008.

[237] W3C. Technical reports and recommendations, 2010. http://www.w3.org/TR.

[238] A. Walsh. UDDI, SOAP, and WSDL: The Web Services Specification Reference
Book. 2002.

[239] N. Walsh. A technical introduction to XML. World Wide Web Journal, 1998.

[240] C. Wan, A. Campbell, and L. Krishnamurthy. PSFQ: a reliable transport protocol for
wireless sensor networks. In Proceedings of the 1st ACM international workshop on
Wireless sensor networks and applications, page 11. ACM, 2002.

[241] Y. Wang. Topology control for wireless sensor networks. Wireless Sensor Networks
and Applications, pages 113–147, 2008.

[242] B. Warneke, M. Scott, B. Leibowitz, L. Zhou, C. Bellew, J. Chediak, J. Kahn,
B. Boser, and K. Pister. An autonomous 16 mm3 solar-powered node for distributed
wireless sensor networks. In Proc. IEEE Sensors, volume 1, pages 1510–1515. Cite-
seer, 2002.

[243] M. Weiser. The computer for the 21st century. Scientific American, 272(3):78–89,
1991.

[244] C. Werner, C. Buschmann, Y. Brandt, and S. Fischer. Compressing soap messages
by using pushdown automata. icws, 0:19–28, 2006.

192 BIBLIOGRAPHY

[245] C. Werner, C. Buschmann, Y. Brandt, and S. Fischer. XML Compression for Web
Services on Resource-Constrained Devices. International Journal of Web Services
Research, 5(3), 2008.

[246] G. Werner-Allen, K. Lorincz, M. Welsh, O. Marcillo, J. Johnson, M. Ruiz, and
J. Lees. Deploying a wireless sensor network on an active volcano. IEEE Inter-
net Computing, 10(2):18–25, 2006.

[247] J. Wu and I. Stojmenovic. Ad hoc networks. IEEE COMPUTER SOCIETY,
37(2):29–31, 2004.

[248] N. Xu. A survey of sensor network applications. IEEE Communications Magazine,
40(8):102–114, 2002.

[249] N. Xu, S. Rangwala, K. Chintalapudi, D. Ganesan, A. Broad, R. Govindan, and
D. Estrin. A wireless sensor network for structural monitoring. In Proceedings
of the 2nd international conference on Embedded networked sensor systems, pages
13–24. ACM, 2004.

[250] Y. Yang, X.Wang, S. Zhu, and G. Cao. SDAP: A secure hop-by-hop data aggregation
protocol for sensor networks. ACMTransactions on Information and System Security
(TISSEC), 11(4):18, 2008.

[251] S. Yao. Optimization of query evaluation algorithms. ACM Transactions on
Database Systems (TODS), 4(2):133–155, 1979.

[252] Y. Yao, S. Alam, J. Gehrke, and S. Servetto. Network scheduling for data archiv-
ing applications in sensor networks. In Proceedings of the 3rd workshop on Data
management for sensor networks: in conjunction with VLDB 2006, page 25. ACM,
2006.

[253] Y. Yao and J. Gehrke. The cougar approach to in-network query processing in sensor
networks. SIGMOD Rec., 31(3):9–18, 2002.

[254] J. Yick, B. Mukherjee, and D. Ghosal. Wireless sensor network survey. Computer
Networks, 52(12):2292–2330, 2008.

[255] Y. Yu, R. Govindan, and D. Estrin. Geographical and energy aware routing: A
recursive data dissemination protocol for wireless sensor networks. UCLA Computer
Science Department Technical Report, UCLA-CSD TR-01-0023, 2001.

[256] P. Zhang, C. Sadler, S. Lyon, and M. Martonosi. Hardware design experiences in ze-
branet. In Proceedings of the 2nd international conference on Embedded networked
sensor systems, pages 227–238. ACM, 2004.

[257] H. Zimmermann. OSI reference model—The ISO model of architecture for open
systems interconnection. Artech House, Inc., Norwood, MA, USA, 1988.

