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Kurzfassung

Das Paradigma der Serviceorientierten Architektur (SOA) kommt in Geschäftsanwendun-
gen bereits seit Jahren zum Einsatz. Es ermöglicht ein hohes Maß an Flexibilität und Ab-
straktion, da komplexe Anwendungen aus einfacheren Services zusammengestellt werden
können. In den letzten Jahren wurde SOA auch im Bereich der drahtlosen Sensornetze
ein Thema. Vor allem die Konzepte der Replikation und Migration von Services sind eine
wesentliche Voraussetzung für den erfolgreichen Einsatz von SOA in drahtlosen Sensor-
netzen.
In dieser Arbeit werden Anwendungsfälle für die Migration von Services in drahtlosen Sen-
sornetzen vorgestellt und es wird erläutert, warum Protokolle zur Transaktionsverarbeitung
eine wesentliche Voraussetzung für die Gewährleistung von konsistenter Servicemigration
sind.
Wir vergleichen das traditionelle Zwei-Phasen-Commit-Protokoll mit dem Cross-Layer-
Commit-Protokoll hinsichtlich ihrer Verwendbarkeit in drahtlosen Sensornetzen und stellen
unser eigenes Commit-Protokoll Zwei-Phasen-Commit mit Caching vor. Wir zeigen dessen
höhere Energieeffizienz sowohl in Experimenten mit dem Netzwerksimulator Shawn als
auch in einer Versuchsanordnung mit Sensorknoten vom Typ Pacemate.
Darüber hinaus werden traditionelle Protokolle zur Nebenläufigkeitskontrolle analysiert, an
drahtlose Sensornetze angepasst und implementiert. Wir zeigen in Simulationen, dass das
Zwei-Phasen-Sperrprotokoll am geeignetsten für den Einsatz in drahtlosen Sensornetzen
ist und beschreiben unsere Implementierung für Pacemate-Sensorknoten.
Außerdem wurde ein umfassendes Szenario zur Migration von Services implementiert
und in Shawn sowie auf mit dem serviceorientierten Betriebssystem Surfer OS program-
mierten Sensorknoten evaluiert, um die Funktionsweise der implementierten Protokolle zur
Transaktionsverarbeitung in der Praxis zu verifizieren.
Abschließend beschreiben wir die adaptive Auswahl von Commit-Protokoll und Routing-
Protokoll zur Laufzeit in Abhängigkeit von den vorherrschenden Bedingungen in einem
Sensornetz, wie beispielsweise Nachrichtenverlust oder Dichte. Wir zeigen, dass die adap-
tive Protokollauswahl das Übertragungsvolumen signifikant reduzieren und damit die Le-
bensdauer eines Sensornetzes erhöhen kann.
Insgesamt unterstützen die Beiträge dieser Arbeit den Einsatz von fortschrittlichen Anwen-
dungen mit erhöhten Anforderungen an Konsistenz und Koordination unter Berücksichti-
gung der knappen Ressourcen eines drahtlosen Sensornetzes.
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Abstract

In the last years service oriented architectures have made their way from business appli-
cations to wireless sensor networks. For the successful usage of service oriented architec-
tures, techniques like replication and migration of services are a prerequisite. We outline
use cases for service migration and show that transaction processing capabilities are nec-
essary for enabling stateful and consistent service migration in wireless sensor networks.
Additionally, transaction processing capabilities are needed for the extension of sensor net-
work databases like TinyDB and StonesDB and for wireless sensor and actor networks.
In this thesis we compare the Two Phase Commit protocol and the Cross Layer Commit
Protocol with regard to their usability in wireless sensor networks and infer our own atomic
commit protocol Two Phase Commit with Caching. We show in simulations and experi-
ments with the sensor node platform Pacemate, that our Two Phase Commit with Caching
protocol is the most efficient protocol for use in wireless sensor networks with regard to
energy consumption.
Further we implement and evaluate the traditional database concurrency control protocols
locking, validation and timestamp ordering for wireless sensor networks and show in sim-
ulations that locking outperforms validation and timestamp ordering in terms of efficiency.
We also report our implementation of locking for the Pacemate sensor nodes.
We describe a comprehensive service migration scenario, which enables service discovery
and consistent migration of stateful services and we outline our implementation for the
network simulator Shawn and Pacemates running Surfer OS.
Finally, we describe an adaptive selection of commit protocols and routing protocols in
dependency of the required consistency and the given network context to provide the most
efficient transaction processing for a given sensor network deployment.
This thesis supports the usage of sophisticated applications for wireless sensor networks
demanding increased coordination capabilities while taking the severe resource constraints
of wireless sensor networks into account.
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Chapter 1

Introduction

Wireless sensor networks can consist of a large number of tiny microcontrollers equipped
with radio interfaces, sensors and batteries. Sensor networks are mainly used to monitor
the environment and to provide the observations to the user so that they can be displayed,
analyzed and archived in a convenient way. While the vision of tiny wireless devices had
already emerged in the early nineties (see, for example, [200]), together with the paradigms
Ubiquitous Computing, Pervasive Computing and also Ambient Intelligence, wireless sen-
sor networks have become a reality in recent years. While wireless sensor networks were
firstly targeted for use in military environments, nowadays sensor networks have many ap-
plication domains, for example habitat monitoring, building automation or smart homes
[52].
The features of wireless sensor nodes have greatly increased in the last few years, but the
programming of sensor nodes is still very difficult for a user like a biologist or a meteorolo-
gist. Instead, a computer scientist or engineer is needed to adapt a wireless sensor network
to the needs of a natural scientist so that he does not have to deal with low-level issues like
event handling or routing algorithms.
We claim that service oriented architectures, which are already widely used in the area of
business applications, are also a convenient way of developing applications for wireless
sensor networks.

1.1 Service Migration

Indeed, service oriented architectures have gained interest in the broader sensor network
community lately [130, 188]. At our university, a prototype of a service oriented sensor
network [124] has also been implemented. It is called Surfer OS and enables the user to
migrate code into an already deployed sensor network which runs Surfer OS. A scheme of
this possibility is shown in Figure 1.1.
This gives the user maximum flexibility because even low level services like routing proto-
cols can be exchanged at runtime.
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InternetInternet

User Service Repository

Wireless Sensor
Network (WSN)
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1. Webservice request
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2. Request of the 
WSN to the Service 
Repository

3. Migration of 
demanded services
into the WSN

5. Result of the
request

4. Dynamic binding
of the services and
processing of the 
request

Figure 1.1: Our Service Oriented Wireless Sensor Network. We assume that a user, for
example, a biologist, queries the wireless sensor network via the internet (Step 1 and 2).
The services that are needed to answer his query are dynamically migrated into the wireless
sensor network and assigned to nodes (Step 3 and 4), which send the results back to the
user (Step 5).

To take even more advantage of the service oriented concept, we want the sensor network
to autonomously migrate services of nodes running out of energy to other sensor nodes in
the proximity. Service migration is especially useful when nodes are deployed iteratively,
i.e. the wireless sensor network starts to work with an initial subset of deployed nodes
and is later extended by additional nodes. Hence, service migration is vital to increase the
lifetime of a wireless sensor network. In recent years, many publications in the area of
wireless sensor networks have focused on the enhancement of the lifetime. An overview
is given by Dietrich et al. [46]. There exist various definitions of lifetime, for example,
the time until the first node fails, the time until all nodes fail, definitions that take coverage
into account and many more. Dietrich et al. [46] compare different definitions of sensor
network lifetime. Since we consider service oriented sensor networks, we are interested in
the time during which the network can perform its assigned task successfully. In the worst
case, the failure of one node performing a vital role can render the whole network useless,
depending on which services the failing node is running. Our approach to circumvent this
problem is the consistent and stateful migration of services from nodes about to fail due to
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depleted batteries to nodes with more energy.
While the idea of iterative deployments is not new, consistency demands have not yet been
considered comprehensively in this context. Different scenarios for service migration are
also described by Sommer et al. [188]. A need for consistent updates of data paths in a
transactional way is also stated. The demonstrator which is used by Sommer et al. is a wired
network of various devices building a smart home [32], but neglecting the challenging
constraints of wireless networks. We consider as an example the migration of a service S3

from node 1 to node 2 as shown in Figure 1.2.

Figure 1.2: Transactional migration of a service

We assume the existence of a service directory which contains a mapping of registered
services to the nodes which run the services. The transaction Tmigrate_Service is comprised
of the following three steps:

1. Replicate S3 including its state from node 1 to 2 (i.e. copy it physically).
2. Delete S3 on node 1.
3. Update the mapping on the service directory, so that nodes using this service can find

its new location.

All three operations of this transaction have to be performed in an atomic manner, i.e.
either all three steps are processed successfully or none of them. It is not always sufficient
to demand eventual consistency in this case since the migrated service might be used for
time critical tasks like alerts. Hence, a commit protocol for wireless sensor networks is
needed to ensure the atomicity of transactional service migrations. In the next section we
outline and motivate transactional issues of wireless sensor networks.
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1.2 Transaction Processing

Transaction processing not only means guaranteeing atomicity. Instead, a database system
is supposed to guarantee the following so called ACID-Properties [64]:

Atomicity. Either all operations of a transaction are performed or none of them. This
can become a complex task in wireless sensor networks due to the sheer number of
possibly failing nodes and message loss. We describe more use cases for atomic
commitment in wireless sensor networks in Section 1.3.

Consistency. If the database has been consistent before the execution of the transaction, it
also must be consistent after the execution. Real time wireless sensor networks may
also have additional timely constraints like temporal consistency, which we do not
particularly consider in this thesis.

Isolation. The executed transactions are isolated, i.e. they do not influence each other. For
wireless sensor networks, this means that management queries (updates), for exam-
ple, can be issued concurrently to continuous queries like described by Guergen et
al. [69]. It also means that a (possibly expensive) wireless sensor network deploy-
ment can be queried simultaneously by several research teams. We elaborate on these
demands in Section 1.4.

Durability. Changes made to the database are persistent after the transaction has commit-
ted. A logging system for wireless sensor networks, if at all feasible, has to be light
weighted and distributed. Since the sensor nodes used in our experiments only shut-
down but do not restart in case of failures, we cannot benefit from logs anyway and
hence do not consider durability in this thesis.

1.3 Atomic Commitment

In this section we outline several use cases for atomic commit protocols in wireless sensor
networks apart from service migration.

Rescue Scenarios. Obermeier et al. [149] state the need for atomic transactions in rescue
scenarios. They consider firetrucks that get instructions, act in different rescue teams
and have to perform operations according to plans. Atomicity and isolation have to
be guaranteed because recipients cannot perform different actions at a time and also
all units are needed to behave according to the same rescue plan.

Home Care. A system which is designed to assist nurses with care of patients at home
could be used, for example, to control the amount of drugs the patient needs to take
[149]. Transactions could be used if new drugs need to be ordered or the medication
has to be changed. An example transaction could look like this:
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Begin of transaction

Increase dose of drug A from 1 pill to 2 pills

Decrease dose of drug B from 5 pills to 0 pills

End of transaction

Sensor Actor Networks. Every time nodes not only measure their environment but also
perform actions based on their measurements, a transaction concept might be needed,
especially in a military environment but also in civil application domains. As an ex-
ample for distributed agreement, consider four unmanned vehicles crossing an inter-
section [12]. Somehow the cars must agree on an order for crossing the intersection
to prevent accidents. In general, the coordination of multiple actors can be required
in the following situations [4]:

• One actor may not be sufficient to perform the requested operation.
• It might be required that an action is performed by exactly one actor.
• If multiple actors perform an operation, this has possibly to be done simultane-

ous so that synchronization is required.
• If a region is covered by multiple actors, they might all have to cover their own

region, so that no overlaps occur. Hence, mutual exclusion must be guaranteed.
• Ordered execution of tasks might be relevant.

According to Akyildiz et al. [4], a task performed by actors is defined as an atomic
unit of computation and control. Also, it might be required that a certain task is by no
means executed by all possible actors at the same time, like in the case of disposers
of a tranquilizing gas which could lead to catastrophic events.

Several other use cases for atomic commit in wireless sensor networks exist, for example,
management queries in sensor database systems [69] and updates in caching systems [84].
We adapt approaches from the area of Mobile Ad hoc Networks (MANets) in this thesis
and we describe our results.

1.4 Concurrency Control

Wireless sensor networks also need concurrency control. If a deployment is used by several
scientists who pose different queries to the sensor network at the same time, it must be
defined which of the possibly conflicting queries are executed. If, for instance, the last
arriving query always stops all others, it is possible that none of the queries are successfully
executed. On the other hand, if no concurrency is allowed, for example, if a query has to
wait until a previous one has finished, the value of a deployment gets limited considering
that some deployments are extremely expensive (for instance mars robots).
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Hence, to achieve a well defined behavior, concurrency control for wireless sensor networks
is needed. The well-known serializability concept from the database area [16] is able to fill
this gap in order to enable more sophisticated sensor network applications. However, the
usage of well known algorithms like two-phase locking, timestamp ordering or validation
(formally introduced in Chapter 2) is not straight forward since wireless sensor networks
pose new challenges in terms of message loss and severe resource constraints. We adapt
and extend approaches from the area of Real Time Database Systems (RTDBS) in this
thesis and we describe our results.

1.5 Adaptive Protocol Selection

We claim that consistent service migration is needed for the realization of service oriented
wireless sensor networks. Transaction processing capabilities are a prerequisite for consis-
tent service migration and also for the coordination demands of wireless sensor actor net-
works. However, there is great diversity of possible wireless sensor network deployments
in terms of network size, connectivity, lifetime, heterogeneity and various other parameters
described by Römer et al. as sensor network design space [172, 173].
Our initial studies with different commit protocols have shown that the efficiency of these
protocols depends on the efficiency of the used routing protocol. In turn, the performance
of a routing protocol depends heavily on parameters of the wireless sensor network design
space, for example, the number of nodes and the presence or absence of mobility. So it is
very unlikely that one single algorithm is superior to others in every possible deployment.
Consequently, our approach is to determine influencing parameters at runtime to be able to
adaptively select the appropriate combination of commit protocol and routing protocol that
satisfies the consistency needs of a particular deployment. We demonstrate the feasibility
and the advantages of our approach in this thesis.

1.6 Contributions and Organization

The remainder of this work is structured as follows:

• In Chapter 2 we introduce the fundamentals of distributed transaction processing,
wireless sensor networks and service oriented architectures.

• Chapter 3 contains our analysis and comparison of different atomic commit protocols
and presents our own commit protocol Two Phase Commit with Caching. We show
in simulations and also with experiments with real nodes that our protocol is more
efficient for the use in wireless sensor networks than the compared protocols.

• Different traditional concurrency control protocols are compared with respect to their
usability in wireless sensor networks in Chapter 4. We report our experiences with
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adapting and implementing them and give evaluation results.

• The consistent replication and migration of services is described in depth in Chap-
ter 5. We report simulation results with a moderate number of nodes and also verify
our approach on real sensor nodes running a service oriented operating system.

• We describe our adaptive selection of commit protocol and routing protocol in Chap-
ter 6. The considered transaction parameters and properties of sensor nodes and the
network context are explained and various implemented protocol combinations are
introduced. We show that our adaptive approach is more efficient for transaction
processing in wireless sensor networks than using one single protocol.

• Chapter 7 concludes this thesis and gives an outlook on future work.

The major results of this thesis have also been published in the following reviewed articles:
[165, 166, 167, 168, 169].
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Chapter 2

Fundamentals

In this chapter we first give an overview of distributed transaction processing in Section 2.1.
Then we describe the fundamentals of wireless sensor networks in Section 2.2 and finally
we introduce the paradigm of service oriented architectures in Section 2.3.

2.1 Transaction Processing

A database (DB) is a collection of data, usually stored in a computer. The access to a
database is provided by a mostly modular software system called Database Management
System (DBMS). The unit of both, data and management system, build a database system
(DBS) [162]. The access to the database takes place inside of transactions, which consist
of one or more operations expressed in a query language. Typical database operations are
insertions, deletions, updates and queries. Among other things, it is the responsibility of
a DBS that successfully executed transactions leave the DBS in a consistent state and are
also persistent. Furthermore, the DBS makes sure aborted transactions have no effects and
undoes partial changes to guarantee the atomicity of a transaction.
These guarantees are part of the transaction concept introduced in the next subsection. We
describe distributed atomic commitment in Subsection 2.1.2 and distributed concurrency
control in Subsection 2.1.3. We also introduce replicated databases in Subsection 2.1.4.

2.1.1 Transaction Concept

A DBS is supposed to guarantee the following four ACID-Properties [64]:

Atomicity. Either all operations of a transaction are performed or none of them.

Consistency. If the database has been consistent before the execution of the transaction, it
must also be consistent after the execution.

Isolation. The transactions executed in parallel are isolated, i.e. they do not influence each
other.
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Durability. Changes made to the database are persistent after the transaction has commit-
ted.

The properties atomicity and durability are implemented with the help of logging and re-
covery techniques. To grant the isolation property in a multi user environment, an algorithm
for concurrency control must be implemented in the DBS to synchronize concurrent ac-
cesses [17]. The correctness criterion of a concurrency protocol is serializability, that is the
outcome of the concurrently executed transactions is the same as if all transactions would
have been executed in a serial order. While a wide range of concurrency protocols can
be found in the literature, commercial database systems use mostly the Strong Strict Two
Phase Locking (SS2PL) protocol also described by Bernstein et al. [17]. Data accessed
by a transaction is locked in the DBS to prevent concurrent access by another transaction,
the locks are released at the end of the transaction. We give more details on SS2PL in
Section 2.1.3.
When databases are not central but distributed, the data is either partitioned between several
database nodes in some way, or some portion of the data is replicated (see Subsection 2.1.4).
In both cases, the maintenance of the ACID properties gets more complex.

2.1.2 Distributed Atomic Commitment

Atomic commit protocols are needed when a set of distributed operations has to be per-
formed in an atomic manner. A common motivating example used in fundamental database
courses is the withdrawal of money. A cash dispenser must open its drawer and a probably
distant computer at a bank somewhere must debit the account of money withdrawn. The
performance of only one of these operations leaves either the bank or its client unsatisfied.
In distributed systems, a very related problem is distributed agreement, which is often
introduced by the problem of the two generals. The generals have a common objective
like a hill, which they will only conquer if they proceed simultaneously. If only one of
them proceeds, he is going to fail. Since the two generals are some distance apart, their
communication is through messengers, which are unfortunately unreliable.
The goal is to find some protocol which enables the generals to march together although
some messengers get lost, or in database terms, to commit a distributed transaction. Un-
fortunately, no protocol of fixed length exists. The proof is as follows: Let us assume the
existence of such protocols and let us consider the shortest of these called p. Now we as-
sume that the last messenger in p gets lost. Then the last message is either useless or one
of the generals does not get a crucial message. Since p is minimal, the message cannot be
useless, so one of the generals does not get the message and therefore does not march. So
it is proven by contradiction that no such protocol exists.
Fortunately, a solution is possible if the restriction of some finite fixed length protocol is
relaxed. In the following, we introduce the standard solution for distributed databases.
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Two Phase Commit (2PC)

The Two Phase Commit (2PC) protocol is presented by Gray in "Notes On Database Op-
erating Systems" [63] and is also described by Mohan et al. [136]. Gray’s original pseudo
code is shown in Listing 2.1 respective Listing 2.2. A graph of the protocol is also shown
in Figure 2.1.

1 COORDINATOR: PROCEDURE;
2 VOTE= ’COMMIT’ ; /∗ c o l l e c t v o t e s ∗ /
3 DO FOR EACH PARTICIPANT WHILE(VOTE= ’COMMIT’ ) ;
4 DO;
5 SEND HIM REQUEST COMMIT;
6 IF REPLY != ’AGREE’ THEN VOTE = ’ABORT’ ;
7 END;
8 IF VOTE= ’COMMIT’ THEN
9 DO; /∗ i f a l l a g r e e t h e n commit ∗ /

10 WRITE_LOG(PHASEI2_COMMIT) FORCE;
11 FOR EACH PARTICIPANT ;
12 DO UNTIL (+ACK) ;
13 SEND HIM COMMIT;
14 WAIT +ACKNOWLEDGE;
15 IF TIME LIMIT THEN RETRANSMIT ;
16 END;
17 END;
18 ELSE
19 DO; /∗ i f any a b o r t , t h e n a b o r t ∗ /
20 FOR EACH PARTICIPANT
21 DO UNTIL (+ACK) ;
22 SEND MESSAGE ABORT;
23 WAIT +ACKNOWLEDGE;
24 IF TIMELIMIT THEN RETRANSMIT ;
25 END;
26 END;
27 WRITE_LOG(COORDINATOR_COMPLETE) ; /∗ common e x i t s ∗ /
28 RETURN;
29 END COORDINATOR;

Listing 2.1: Two Phase Commit protocol run by the coordinator [63]

The protocol works as follows:

1. To initiate the voting process, the coordinator sends a Prepare (or BeginVote) mes-
sage to all participants (see lines 2 to 5 in Listing 2.1).

2. Upon the reception of a Prepare message, a participant executes the local subtrans-
action. If this could be done successfully, it logs the results and replies with a Ready
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(or Prepared or VoteCommit) message. If the subtransaction fails, the node replies
with a Failed (or VoteAbort) message and releases its locked data (see lines 2 to 7 in
Listing 2.2).

3. If the coordinator receives a Prepared message from every participant, it writes a
commit data set to the log and sends a Commit message to all participants (see lines
8 to 17 in Listing 2.1).

Note that we do not consider logging aspects in this thesis since the sensor nodes
used in our experiments only shutdown but do not restart in case of failures, which
makes recovery impossible.

If one of the participants has replied with Failed, the coordinator sends an Abort
message (see lines 18 to 26 in Listing 2.1).

4. Upon the reception of a Commit message, a participant writes the commit set to the
log and releases its data locks (see lines 9 to 13 in Listing 2.2). Upon the reception
of an Abort message, the transaction is undone. Finally, the participants send an
Acknowledge message to the coordinator.

1 PARTICIPANT : PROCEDURE;
2 WAIT_FOR REQUEST COMMIT; /∗ phase 1 ∗ /
3 FORCE UNDO REDO LOG TO NONVOLATILE STORE ;
4 IF SUCCESS THEN /∗ w r i t e s AGREE i n l o g ∗ /
5 REPLY ’AGREE’ ;
6 ELSE
7 REPLY ’ABORT’ ;
8 WAIT FOR VERDICT ; /∗ phase 2 ∗ /
9 IF VERDICT = ’COMMIT’ THEN

10 DO;
11 RELEASE RESOURCES & LOCKS;
12 REPLY +ACKNOWLEDGE;
13 END;
14 ELSE
15 DO;
16 UNDO PARTICIPANT ;
17 REPLY +ACKNOWLEDGE;
18 END;
19 END PARTICIPANT ;

Listing 2.2: Two Phase Commit protocol run by a participant [63]

The communication complexity of the protocol is 4 ∗ (N − 1), while N is the number of
nodes.
The protocol has been widely used in database management systems, but suffers from
blocking, since nodes block their locked resources while they are waiting for a decision.
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Other nodes willing to use these resources have to wait for the locks to be released. This is
especially serious if nodes fail or even the coordinator fails permanently, since some par-
ticipants can never resolve their transactions, causing their resources to be tied up forever.
To prevent this case, non-blocking commit protocols have been investigated.

Three Phase Commit (3PC) Protocol

The Three Phase Commit (3PC) protocol has been proposed by Skeen at al. [186, 187]. It
uses an additional Pre-Commit state to be able to recover from a coordinator failure, leading
to an additional message round. The comparison of 2PC and 3PC is shown in Figure 2.1.

Two Phase Commit (2PC) Three Phase Commit (3PC)

ParticipantsParticipantsCoordinator Coordinator

Begin Vote Begin Vote

Vote Commit Vote Commit

Prepare Commit

Acknowledge

Commit

Acknowledge

Commit

Acknowledge

Phase 2

Phase 1

Phase 3

Figure 2.1: Comparison of 2PC and 3PC, failure-free case

The first two steps of 3PC are analog to 2PC: the coordinator sends a BeginVote message
to the participants, the participants willing to commit reply with VoteCommit. Afterwards,
instead of already sending the Commit message, the coordinator sends a PrepareCommit
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message, which must be acknowledged by the participants. As soon as all participants have
acknowledged the PrepareCommit message, the coordinator sends the Commit message.
If a coordinator fails in 3PC, another coordinator can take over and complete the com-
mit protocol. Nevertheless, 3PC is still vulnerable to network partitioning. If participants
get isolated, their resources may be blocked. However, the protocol guarantees the non-
blocking execution of the commit process if no network partitioning occurs and the number
of failing nodes is limited.

Paxos

An even more sophisticated approach is the usage of the Paxos Consensus algorithm [107,
108] for the commit decision [66]. Paxos differentiates between the three roles proposer,
acceptor and learner. The three different roles do not necessarily need to be performed by
distinct nodes. The algorithm works in two phases:

Phase 1. (a) A proposer chooses a proposal number n and sends a Prepare message to the
acceptors.

(b) If the proposal number n is larger than any proposal received previously, then each
acceptor sends a Promise message not to accept proposals less than n, and sends the
value it last accepted for this instance to the proposer.

Phase 2. (a) If the proposer receives replies from a majority of acceptors, it chooses the
highest value accepted and sends it to the acceptors with an Accept message. The
proposer may choose any value if none has been accepted.

(b) Upon the reception of an Accept message, an acceptor accepts the proposal unless
it has already responded to a Prepare message with a number greater than n. Finally,
the learners can be informed by the acceptors.

The idea to use Paxos as a commit protocol was published in "Consensus on Transaction
Commit" by Gray and Lamport [66]. The Paxos Commit protocol uses 2F+1 coordinators
running Paxos Consensus and comes to a decision if at least F+1 coordinators are working
for a sufficient long time. The algorithm is shown in Figure 2.2.
In contrast to 3PC, Paxos Consensus / Paxos Commit works correctly even if network
partitioning occurs, as long as a majority of participants can be reached. Several other
atomic commit protocols exist, for instance One Phase commit [65] and nested (linear)
Two Phase Commit [63].



2.1. TRANSACTION PROCESSING 15

RM1
Other
RMs

Commit
Leader Acceptors

XXXXXXXXXXXz

BeginCommit
PPPPPPPPPPPPPPPPPPq

2a Prepared

»»»»»»»9 PrepareXXXXXXXXXXXXXXz

2a Prepared

»»»»»»»9
2b Prepare

d
»»»»»»»9
³³³³³³³³³³³)

Commit
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sage flow for Paxos
Commit in the normal
failure-free case, where
RM1 is the first RM
to enter the prepared
state, and 2a Prepared
and 2b Prepared are
the phase 2a and 2b
messages of the Paxos
consensus algorithm.

large enough to find simple “coding” errors. Rigorous proofs of the Paxos
algorithm convince us that it harbors no subtle errors, and correctness of the
Paxos Commit algorithm seems to be a simple corollary of the correctness
of Paxos.

4.3 The Cost of Paxos Commit

We now consider the cost of Paxos Commit in the normal case, when the
transaction is committed. The sequence of message exchanges is shown in
Figure 3.

We again assume that there are N RMs. We assume a system that
can tolerate F faults, so there are 2F +1 acceptors. In the normal case, the
Paxos Commit algorithm uses the following potentially inter-node messages:

• The first RM to prepare sends a BeginCommit message to the leader.
(1 message)

• The leader sends a Prepare message to every other RM. (N − 1 mes-
sages)

• Each RM sends a ballot 0 phase 2a Prepared message for its instance
of Paxos to every acceptor. ((2F + 1)N messages)

• For each RM’s instance of Paxos, every acceptor sends a phase 2b
Prepared message to the leader. However, an acceptor can bundle
the messages for all those instances into a single message. (2F + 1
messages)

12

Figure 2.2: Failure-free case of the Paxos commit algorithm, from [66]

2.1.3 Distributed Concurrency Control

To make sure that the isolation property is also guaranteed for distributed systems, extended
concurrency control protocols are necessary. A classification of the most common protocols
for concurrency control is shown in Figure 2.3.
We explain the most important concurrency control protocols in the next subsections, be-
ginning with locking.

Locking

Traditionally, data items accessed by a transaction are locked during the access [53]. Read
and write locks exist. A transaction first acquires a read lock on a data item if it wants to
read the item, respective a write lock if the item is to be updated. If another transaction
wants to access an item which is already locked, the transaction has to wait or can be
aborted. While read locks on data items can be held by several transactions concurrently,
write locks are exclusive. When two or more transactions aiming at accessing the same
data items acquire their needed locks in different orders, deadlocks can occur, i.e. each
transaction is waiting for the other one to release its locks.
The standard Two Phase Locking (2PL) protocol was introduced by Eswaran et al. [53].
The idea is to first acquire locks needed for the execution of the transaction (phase 1, grow-
ing phase) and releasing them afterwards without acquiring new locks (phase 2, shrinking
phase). It guarantees serializability. The commercially widely used Strong Strict Two
Phase locking (SS2PL) described by Bernstein et al. [17] and also called Rigorousness by
Breitbart et al. [29] goes a step further. Here, all locks are held until end of transaction.
When using locking in a distributed environment, the management of the locks can be done
centralized or distributed. Although the centralized approach works analog to a centralized
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Distributed Concurrency Control

Pessimistic Optimistic

Locking Nonlocking Backward Oriented 
Optimistic Concurreny 

Control (BOCC)

Forward Oriented 
Optimistic Concurrency 

Control (FOCC)

Two Phase 
Locking (2PL)

Strong Strict Two Phase 
Locking (SS2PL)

Timestamp 
Ordering (TO)

Figure 2.3: Classification of common concurrency control protocols in pessimistic and
optimistic approaches, adapted from [162]

DBS and is straight forward to implement, its severe disadvantages are the communication
overhead and the single point of failure. Therefore, we consider only distributed manage-
ment of locks in the following. When SS2PL is implemented in a distributed environment,
global deadlocks due to locking generate automatically voting-deadlocks in 2PC, and are
thus resolved automatically by 2PC. This behavior has been generalized for other concur-
rency protocols by the principle of commitment ordering by Raz et al. [164].
In this thesis, all implemented concurrency control approaches are used in combination
with 2PC. Hence, we do not give details about deadlock detection or prevention and related
approaches like Wait / Die and Wound / Wait [174].

Timestamp Based Concurrency Control

Timestamp based concurrency control is also called Timestamp Ordering (TO) and has
been described by Bernstein et al. [17]. Using this technique, serializability is guaranteed
by timestamps assigned to data objects and transactions. The validation of timestamps
is performed at the location of the manipulated data, leading to an inherently distributed,
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deadlock free protocol [162].
A globally unique timestamp is assigned to every transaction at begin of transaction (BOT).
The timestamp can, for example, be determined by using the node’s id and its local time
[106]. Without synchronization, no monotonic increase of the timestamps is guaranteed,
which can lead to the unnecessary abort of transactions.
Using TO, the global execution order of transactions is predefined by their timestamps.
Conflicting operations must occur in the order of the transaction timestamps.
To be able to validate the transaction timestamps, a read timestamp (RTS) and a write
timestamp (WTS) is assigned to every data object. These timestamps are always updated
if the data object is accessed by a transaction. A read transaction T on an object x is
aborted, if ts(T ) < WTS(x) holds. A write transaction T on an object x is aborted, if
ts(T ) < max{WTS(x), RTS(x)} holds.
Although TO is deadlock free, blocking can occur. Assume T1 has successfully updated
data object x, but has not committed yet. Assume also, that T2 wants to read x. If T2’s
read access is allowed and T1 is aborted later, then T2 must also be aborted. This can lead
to cascades. So T2 must wait until T1 has committed, which is analogous to locking.

Optimistic Concurrency Control

Optimistic concurrency control (OCC) by validation is introduced by Kung et al. [103].
OCC protocols are based on the assumption that conflicts occur rarely, which makes lock-
ing an unnecessary overhead. We differentiate between the three phases read, validate and
write.

• Read phase: In this phase, a transaction reads its needed data objects and performs
its writes to an own private workspace.

• Validation phase: The validation phase is started at end of transaction (EOT). It is
checked, if conflicts between concurrent transactions have occurred. If this is the
case, the transaction is aborted. Neither blocking nor deadlocks can occur, but fre-
quent aborts can lead to the starvation of a transaction.

• Write phase: The updates stored in the private workspace are written to the log and
also to the actual database, becoming visible for other transactions.

To perform the validation, the objects to be accessed by transaction Ti are assigned to its
write set WS(Ti) respective read set RS(Ti). According to [71], two classes of OCC pro-
tocols can be distinguished: Backward Oriented Optimistic Concurrency Control (BOCC)
and Forward Oriented Optimistic Concurrency Control (FOCC).
BOCC validates transactions against already committed transactions (see Listing 2.3) while
FOCC validates transactions against concurrently running transactions (see Listing 2.4).
Both techniques guarantee serializability by making sure that a transaction has read all
changes written by all transactions validated successfully before.
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1 VALID : = TRUE;
2 FOR Ti = Tstart+1 TO Tfinish DO
3 IF RS (Tj ) ∩ WS(Ti ) 6= ∅ THEN
4 VALID : = FALSE ;
5 IF VALID THEN COMMIT
6 ELSE ABORT;

Listing 2.3: Backward Oriented Optimistic Concurrency Control (BOCC) [71]

1 VALID : = TRUE;
2 FOR Ti = Tact1 TO Tactn DO
3 IF WS(Tj ) ∩ RS (Ti ) 6= ∅ THEN
4 VALID : = FALSE ;
5 IF VALID THEN COMMIT
6 ELSE RESOLVE CONFLICT ;

Listing 2.4: Forward Oriented Optimistic Concurrency Control (FOCC) [71]

The advantage of FOCC is that only real conflicts lead to aborts. Also, FOCC is more
flexible. While BOCC always aborts the validating transactions in case of conflicts, FOCC
also allows to abort one of the conflicting transactions, possibly by taking priorities into
account.
When using distributed validation, every subtransaction is validated on the node it is ex-
ecuted on. Global transactions can be synchronized by means of the commit protocol
as follows: The Prepare message is also used as a request for validation. After a suc-
cessful validation, every subtransaction saves its changes in a local workspace and sends a
VoteCommit message. If the validation fails, the subtransaction sends VoteAbort and deletes
the workspace. If all local validations have been successful, the coordinator sends Commit
to the participants. These write the changes stored in their workspaces to the actual data.
This procedure is only sufficient for guaranteeing local serializability, because the vali-
dation order of global transactions can be different on different nodes. The problems of
distributed validation are described in detail by Schlageter [178]. One method for guaran-
teeing global serializability is to use timestamps and to make sure that the validation of all
global transactions is performed in the same order on all participating nodes. When the
local execution order on all nodes is identical, it is also the same as the global execution
order.
Globally unique timestamps are assigned to every transaction at end of transaction (EOT),
determining its position in the global execution order. Transactions arriving late (with a
smaller timestamp than that of the transaction already validated) are aborted.
An additional problem arises due to the time lag of local validation phase and write phase.
Since it is not guaranteed that transactions validated successfully locally are also committed
(unsure updates), the outcome of transactions reading the unsure updates is undetermined.
One possibility to prevent this is the locking of unsure updates.
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Several optimizations of the fundamental algorithms exist, many in relation to real time
databases where validation is more commonly used than locking. Haritsa et al. [74], for
example, describe a real-time optimistic concurrency control algorithm which monitors
transaction conflict states and gives precedence to urgent transactions, requiring that trans-
actions are annotated with deadlines.

2.1.4 Replicated Databases

When the data in distributed databases is not partitioned (either vertically or horizontally)
but duplicated data items exist, one speaks of replicated databases. Several approaches
exist to guarantee several kinds of consistency for replicated databases.

Write All Read Any

One copy serializability (1-SR) means that the replicated database system behaves like a
traditional database system consisting of one copy as far as the perception of the user is
concerned [17].
The implementation of this behavior is denoted as Write-All-Read-Any or Read-One-
Write-All (ROWA) strategy. It demands for a synchronous update of every replica before
an update transaction can be committed. Since it is guaranteed that a replica is up to date,
any replica can be chosen for a read operation. The advantage of this approach is that only
one replica has to be available for a read request.
The disadvantage is that the availability of every replica is needed for a successful write op-
eration. The overall update availability is even lower than without data replication because
every replica needs to be online and reachable for a successful update transaction. It also
leads to a significant amount of time to acquire all needed write locks and also a significant
communication overhead is caused, since all nodes have to be participants of the commit
protocol.
When using a two phase commit protocol, in the first phase, all updates have to be sent to
all replicas, before the replicas can be updated and the locks can be released in the second
phase.

Write All Available

To mitigate the problems of the ROWA technique, the Write-All-Available technique is
described by Bernstein et al. [17]. Using this technique, only available replicas are up-
dated and a log contains the updates missed by the unavailable replicas, which are used for
reconciliation if the replica is online again. However, this approach is only feasible if no
network partition occurs and if it can be guaranteed that no read access occurs before all
missed updates are executed.
The overhead can be reduced by integrating optimistic concurrency control protocols into
the commit protocol. The Principle of Commitment Ordering, which is a generalization
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of SS2PL, is introduced by Raz [164]. Several other approaches exist for the consistent
maintenance of replicated data, for instance weighted voting [61] and snapshot replication
[1].

2.2 Wireless Sensor Networks

In this section we describe the fundamentals of wireless sensor networks. Wireless sensor
networks are large networks of tiny, battery powered sensor nodes operated by a microcon-
troller, connected by a wireless interface in an ad hoc manner, mostly deployed to sense
their environment and to transfer their observations to the user. They are closely related to
Mobile Ad hoc Networks (MANets), which may consist of mobile phones, notebooks or
palms.
The differences of wireless sensor networks and MANets are, among others, outlined by
Karl et al. [95] and Römer [173]. Additional properties of wireless sensor networks include

• Greater diversity of application areas
• Larger networks
• Scarcer energy supply, mostly without opportunity to reload the battery
• Needed self configuration because of impossible human interaction
• Data-centric view of the network
• Much severer resource limitations in terms of memory capacities and processing

power

First and foremost, saving energy by reducing transmission costs is extremely important,
since sending a bit over the shared medium consumes as much energy as thousands of
operations, which is known as the R4 signal energy drop-off [62].
We survey common application scenarios in Subsection 2.2.1, sensor nodes in Subsec-
tion 2.2.2 and routing in wireless sensor networks in Subsection 2.2.3. We also introduce
general properties of wireless sensor networks (Subsection 2.2.4) and give an overview of
Sensor Network Database Systems (SDBS) in Subsection 2.2.5.

2.2.1 Application Scenarios

One of the first deployments was the Sound Surveillance System(SOSUS) [142]. Among
other things, it was used to monitor submarines, whales and earthquakes at the Atlantic
coast of the United States since 1950. While the sensors deployed in the ocean where
connected by undersea communication cables to the base station, wireless connection via
satellite was used for the connection with several base stations.
In the remainder of this subsection we outline some application scenarios for wireless sen-
sor networks, namely environmental monitoring, rescue applications, the military, health
care, vehicular networks and smart homes.
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Environmental Monitoring

One of the most popular and most cited deployment of wireless sensor nodes is the deploy-
ment on Great Duck Island (GDI) [192]. Szewczyk et al. describe their experiments with
150 Mica2Dot motes which were used for the monitoring of distribution and abundance of
sea birds. The architecture of the deployment is shown in Figure 2.4.

Figure 2.4: Architecture of the deployment on Great Duck Island [192]

In addition to the 150 sensor nodes, Figure 2.4 shows several gateways connected with a
transit network and also a base station for the connection with the internet. Two types of
nodes were deployed, burrow motes and weather motes. While the weather motes moni-
tored temperature, humidity and barometric pressure, the burrow motes monitored temper-
ature, humidity and occupancy of nesting burrows for 115 days, leading to over 650 000
data records.
The GDI deployment is a typical sense-and-send application, which is also called an ex-
ternal storage or dumb data collection sensor network [153], since the nodes only sample
their sensors and transmit their readings to the base station where the readings are stored.
Another deployment is ZebraNet, which is a mobile deployment since the nodes were di-
rectly attached to the animals [93]. Wireless sensor networks are also used for the monitor-
ing of vineyards for providing proactive agriculture [33], for glaciers [131] and might even
be used on mars (by now in the Antarctica, but the authors Delin et al. are aiming at similar
environmental conditions [43]).
A large worldwide deployment of wireless sensor networks is ARGO [7]. Over 3000 nodes
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have been deployed in the sea for allowing its continuous monitoring of the temperature,
salinity, and velocity of the upper ocean like shown in Figure 2.5.

Figure 2.5: Worldwide deployment of ARGO [7]

Rescue Applications

Obermeier et al. describe a rescue application for firefighters [150]. Such an application can
be used for the development of rescue plans, for the building of teams and for the location
of fire trucks. Sha et al. propose a special architecture for the support of firefighters called
FireNet [184].

Military

Since wireless sensor networks emerged from military research, there are a lot of applica-
tion domains in that area, including intrusion detection and tracking [75], counter sniper
systems [185], vehicle tracking with Unmanned Aerial Vehicles (UAVs) [15] and the de-
tection of seismic and acoustic signatures [191].

Health Care

Bauer et al. describe a three layered architecture for a telemedicine environment [14].
Patients are monitored with several wireless sensors, these communicate with one middle
tier per patient, which in turn transmits the patient data to a base station. Baldus et al. focus
on the reliable setup of a body sensor network for medical patient monitoring [13].
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Vehicular Networks

The European project CarTalk 2000 is an advanced driver assistance system based on
vehicle-to-vehicle communication [54]. Vehicles send warning messages when they de-
tect breakdowns, high traffic densities and such. These messages are forwarded by other
cars. The project FleetNet also applies ad hoc principles to vehicular networks to achieve
similar goals [57].

Smart Homes

While the automatic control of heat, doors and lights at home is already a reality [163], the
existing systems are mostly wired and could benefit from wireless sensor node technology
in terms of costs and flexibility.

2.2.2 Sensor Nodes

Wireless sensor networks consist of several tiny, autonomous devices which are battery
powered and equipped with a microcontroller, a transceiver, memory, sensors and possibly
actors. A schematic representation of a sensor node is shown in Figure 2.6. Sensor nodes
sense a broad range of physical conditions, for example temperature, vibration, sound,
humidity, pressure, motion and pollution.

Figure 2.6: Schematic representation of a sensor node (Telos [160])
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Wireless sensor networks are an interdisciplinary research area drawing from technologies
out of the areas distributed systems, ubiquitous computing, embedded systems, peer to peer
systems, signal processing and especially mobile ad hoc networks.
With the ongoing miniaturization of electronic components, the Smart Dust project was
envisioned by Kahn et al. [94]. They describe a mote containing micro fabricated sensors,
an optical receiver, passive and active optical transmitters, signal processing and control
circuitry, and a power source, on a millimeter scale.
The sensor nodes used in today’s deployments and research prototypes are not yet at mil-
limeter scale. Since mostly AA batteries are used, the limiting factor is the size of the
power source. A comparison of different sensor node platforms is shown in Table 2.1. It
can be seen that the amount of RAM varies from 4 kilobytes to 64 kilobytes, while the
amount of PROM varies from 48 kilobytes to 512 kilobytes.

Name Manufacturer RAM [kB] PROM [kB]

MICA2dot [192] Crossbow 4 128
MICAz Mote [40] Crossbow 4 128
Tmote Sky (Telos B) [160] Moteiv 10 48
Pacemate [122] University of Luebeck 32 256
IMote [138] Intel 64 512
BTnode [18] Art of Technology 64+180 128

Table 2.1: A comparison of common sensor nodes, sorted by RAM size

Different operating systems for sensor nodes exist. While the Mica motes are running
TinyOS [79] and are programmed using nesC [59], in this thesis we mostly used the Pace-
mate sensor node platform shown in Figure 2.7, which can be programmed using the iSense
middleware [35].
The main reasons for the selection of the Pacemate platform are as follows:

• The Pacemates are equipped with displays and buttons, significantly simplifying the
debugging of applications.
• The use of the iSense middleware allows to build the same code for the network

simulator Shawn [55], allowing the verification of algorithms prior to their real de-
ployment.
• High availability of nodes in our laboratory (over 100 nodes).

The usage of Shawn, compared to the widely used network simulator ns2 [90], has the ad-
ditional advantage that simulations are magnitudes faster. This is because Shawn simulates
only effects of phenomenons instead of the phenomenons itself. However, the used models,
for example for communication, can be extended to be as realistic as necessary.
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Figure 2.7: A Pacemate sensor node

2.2.3 Routing

Important for the intelligent and appropriate behavior of nodes is the idea of context. Dey
[44] defines context as any information that can be used to characterize the situation of an
entity.

Network Context

In RFC 2501 [38] various parameters making up the network context are named. We briefly
survey these parameters since they have a great influence on the effectiveness and efficiency
of a routing protocol.

• Network Size. The number of nodes varies greatly between different deployments.
While only a small number of nodes might be sufficient for specialized purposes,
like 6 deployed nodes for the monitoring of a glacier [131], a large number of nodes
(over 3000 deployed) is needed for worldwide monitoring of the ocean [7].

Also, the number of nodes simulated in published research papers varies greatly.
Kurkowski et al. [104] report a range from 10 nodes to 30,000 nodes in the MobiHoc
papers from 2000-2005.

• Connectivity and covered area. The area covered by real deployments varies be-
tween a few meters and worldwide. Kurkowski et al. report simulations using areas
from 25 m x 25 m to 5000 m x 5000 m, with a transmission range varying from 3 m
to 1061 m [104]. Network size, area and transmission range can be used to calculate
the average neighborhood size as
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Average neighborhood size =
π × r2

{w×h
n
}

while w=width, h=height, r=range and n=# of nodes. Hellbrueck and Fischer [78]
conclude that for a MANet with connecting probability of∼ 95% between two nodes,
an average number of neighbors per node between 5 and 15 is necessary. Xue et al.
[204] show that the needed density to prevent network partitioning grows with the
number of deployed nodes.

• Topology Change. Many circumstances can lead to topology changes. Examples are
failing nodes, additionally deployed nodes, sleeping nodes, mobile nodes, moving
nodes, moving obstacles and weather conditions. A routing protocol should be able
to take these changes into account in a timely and efficient manner.

• Link capacity. The maximum data rate of todays wireless sensor nodes is limited:
the Mica mots reach about 40 kilobytes per second while the Telos B reaches 250
kilobytes per second [160]. The effective link speed however is much less, after
accounting for losses due to multiple access, coding and framing.

• Fraction of unidirectional links. Kotz et al. [98] demonstrate that realistic deploy-
ments contain a significant amount of unidirectional links, that is node A can hear
node B but not vice versa. A routing protocol needs to be robust to this phenomenon.

• Traffic patterns. While simple sense-and-send applications exhibit a uniform be-
havior, event detection networks may show bursty traffic patterns, which a routing
protocol needs to be able to handle.

• Sleeping nodes. Since saving energy is very important in wireless sensor networks,
a routing protocol needs to be involved in the coordination of the duty cycling of
devices.

Routing protocols for wireless sensor networks should work under various contexts.

Classification of Routing Protocols

A classification of routing protocols can be done in, for instance, proactive, reactive and
hybrid protocols [5]. Proactive protocols compute routes before they are really needed,
reactive protocols compute routes on demand and hybrid protocols use a combination. The
efficiency of a protocol depends on the dynamic of a network, While in more static net-
works proactive approaches are more efficient, reactive approaches have benefits in more
dynamic networks.
The well known distance-vector routing protocols can be implemented in a proactive way
like in Destination-Sequenced Distance-Vector Routing (DSDV) [155] or in a reactive
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way like in Ad hoc On-Demand Distance Vector Routing (AODV) [156]. Distance-vector
routing protocol make use of the Bellman-Ford algorithm for finding a shortest path in a
weighted graph. In DSDV nodes maintain routing tables containing distances to destina-
tion nodes and also the neighbors used for reaching the destination. AODV uses the same
principle but creates routing tables only if and when they are really needed.
Since there are routing protocols which do not fall in one of these categories, like simple
flooding where no route is computed at all, we use one of the classifications of routing
protocols described by Al-Karaki et al. [5] and differentiate between the following types:

• Flat networks, where each node performs the same role,

• Hierarchical structured networks, where nodes perform different roles (for instance
cluster head vs. member), and

• Location based approaches, where the nodes positions are used to route data.

Flat Networks

In wireless sensor networks, communication is usually broadcast. All devices share a single
common channel with Carrier Sense Multiple Access (CSMA), but no Collision Detection
(CD) ability. Instead, Collision Avoidance (CA) is used. It works by listening for a random
period and starting to send if the medium is available. But with absent synchronization and
unavailable global network topology information, often simple flooding is used to dissem-
inate information across the network.
This can lead to the broadcast storm problem, which contains the three subproblems redun-
dancy, contention and collision according to [194]. First, since the transmission ranges of
several nodes overlap, rebroadcasts can be redundant, since a node receives the same mes-
sages from several nodes. Second, the contention of the medium can be high since only one
node can successfully broadcast at a time. Third, collisions are likely because unoptimized
rebroadcasts occur usually at roughly the same time.
Data centric approaches have been developed to prevent these problems. Early data centric
approaches include the Sensor Protocols for Information via Negotiation (SPIN) [101] and
directed diffusion [89]. SPIN bases the decision of sending data or not on negotiations
with other nodes considering metadata. Directed Diffusion exploits knowledge about the
application, caches and processes data inside the network and uses evaluated paths to save
energy. Braginsky et al. describe Rumor Routing [26], which delivers queries to events
in the network. It allows tradeoffs between the setup overhead and the delivery reliabil-
ity. Protocols using random walks are introduced by Servetto et al. [183]. Lipphardt
[121] claims that the usage of path information is generally problematic in wireless sensor
networks since links can get unusable anytime and introduces a gradient based routing pro-
tocol called Gradient based Routing for All Purpose (GRAPE). GRAPE overhears traffic
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and tries to forward packets only in the direction of the sink. Despite promising simulation
results, the performance of GRAPE on real sensor node deployments was poor [121].
Several other techniques to alleviate the broadcast storm problem are introduced by Tseng
et al. [194], some of them lead to hierarchical networks or location based approaches:

• Probabilistic technique: a host rebroadcasts only with a certain probability (also
called gossiping [70])

• Counter-based techniques: a node counts how often it already heard the message it
wants to send. This technique has also been proven to be efficient in the Trickle
algorithm by Levis et al. [113, 114]. If a certain threshold is met, the message is not
sent. This technique is sometimes called thinning.

• Distance based technique: uses the distance to compute the expected additional cov-
erage of an additional broadcast.

• Location based technique: works similar and more efficient than the distance based
technique but needs the not always available location information. If the information
is available, Tseng et al. [194] claim it to be more efficient than the counter based
technique.

• Cluster based technique: a clustering approach is used where only the cluster heads
rebroadcast, possibly together with one of the other techniques. This technique is
shown to have problems with reachability and also with the hidden terminal problem
[194].

Gossiping. We give more details on the probabilistic gossiping technique by Haas [70]
since we incorporated it in some of our own protocols. The basic idea is, contrary to
flooding, that messages are forwarded with a defined probability. A more sophisticated
gossiping approach uses two thresholds to decide if a message is forwarded or not: the
second threshold is considered if a node has less than a minimum number of neighbors, the
first threshold is used if the node has equal or more neighbors than a predefined constant.
Another parameter is the number of sure broadcasts in the beginning of a message dissem-
ination. To prevent a dying out of the message, it can be defined that a message is really
broadcasted for the first hops.
The scheme could look like the following:
GOSSIP (p1, k, p2, n), where p1 is the first forwarding probability, k is the number of
sure broadcasts in the beginning of a message dissemination, p2 is the second forwarding
probability and n is the minimum number of neighbors a node must have to use the first
broadcasting probability.
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Hierarchical Networks (Clustering)

Heinzelmann et al. describe Low-Energy Adaptive Clustering Hierarchy (LEACH) [76].
Their approach is used for data collecting wireless sensor networks with the goal to save
energy by electing nodes to cluster heads and cluster members, respectively. Several im-
provements have been introduced, like adaptive cluster head selection by Nam et al. [139].
Al-Karaki et al. apply a novel clustering scheme that results in fixed clusters and regular
virtual topology, called Virtual Grid Architecture (VGA), in combination with a scheme
for monitoring residual energy distributions at different parts of the network to be able to
perform Energy-Centric Routing (ECR) [6].
The COUGAR approach is explained in more detail in Subsection 2.2.5 [205].

Location Based Approaches (Geographical Routing / Georouting)

Location based approaches are usually called geographical routing or georouting. The first
algorithm which works in the presence of obstacles in the network is Geographical Routing
with Face Routing by Bose et al. [24]. Several optimizations were introduced in the last
years.
The experimental performance comparison of different protocols by Broch et al. [30] shows
that the selection of the appropriate protocol depends strongly on the application scenario,
for example the presence or absence of mobility.

2.2.4 General Properties

To describe some general properties of deployments of wireless sensor networks, we con-
sider the design space of wireless sensor networks and name helpful principles for the
design of protocols for wireless sensor networks.

Design Space

According to Römer et al. [172, 173], the design space for sensor networks comprises the
following issues:

• Deployment (random vs. manual, one-time vs. iterative)
• Mobility (immobile vs. partly vs. all, occasional vs. continuous, active vs. passive)
• Size (brick vs. matchbox vs. grain vs. dust)
• Heterogeneity (homogeneous vs. heterogeneous)
• Communication modality (radio vs. light vs. inductive vs. capacitive vs. sound)
• Infrastructure (infrastructure vs. ad hoc)
• Network topology (single-hop vs. star vs. networked star vs. graph)
• Coverage (sparse vs. dense vs. redundant)
• Connectivity (connected vs. intermittent vs. sporadic)



30 CHAPTER 2. FUNDAMENTALS

• Network size (few vs. thousands)
• Lifetime (some hours vs. several years)
• Quality of service requirements: real time, robustness, etc.

Römer lists several application examples for a variety of instances described by this design
space [173]. The goal is to show that there are not only applications for the so called tra-
ditional wireless sensor network which is one-time deployed in a relative randomly way,
stays unpartitioned and uses multi hop communication, but also applications for new de-
ployments not fitting into this scheme. Some of the parameters considered in this design
space can be used for the adaptive selection of protocol combinations described in Chap-
ter 6.

Design Principles

Also several design principles for the development of protocols for wireless sensor net-
works are inferred by Römer [173]:

• Adaptive tradeoffs (for instance response time vs. lifetime)
• Multi-Modality (apply two techniques for solving one problem)
• Data centricity (single nodes become replaceable, only their data is important)
• In network data processing (explained in detail in Subsection 2.2.5)
• Cross layer interaction (deviating from the OSI model)

We especially highlight the design principle cross layer interaction, because it is impor-
tant for the integration of commit protocol and routing protocol in this thesis. While tradi-
tional networks are layered according to the Open System Interconnection (OSI) Reference
Model [91], this is in many cases too costly for wireless sensor networks, since every layer
(data link, network, transport, session, presentation) introduces additional overhead for al-
lowing the communication of applications over the physical layer. Cross layer design can
make protocols more efficient, since acknowledgement messages normally considered to
be sent on the transport layer can be used to piggyback useful information for the applica-
tion layer and thus save transmissions costs.

2.2.5 Sensor Database Systems

Traditionally, the programming of sensor nodes has been performed in a procedural way,
i.e. the tasks of a node were specified on a low abstraction layer, which is error prone and
tedious. To alleviate the user from the peculiarities of coding a distributed application, a
number of data management systems have been presented for querying data in wireless
sensor networks.



2.2. WIRELESS SENSOR NETWORKS 31

TinyDB and Cougar

The two prominent approaches TinyDB [127] and Cougar [205] were introduced to allow
the user to pose queries in a convenient SQL-like manner. Descriptions of other SDBS
approaches are described by Guergen et al. [69] and Bonnet et al. [22]. Figure 2.8 shows
the architecture of a distributed in-network query processor connected to a base station.

Figure 2.8: Scheme of the Sensor Database Systems (SDBS) TinyDB and Cougar [60]

The source code in Listing 2.5 shows a simple example of a TinySQL query which can be
issued in TinyDB. The query specifies that each node should report its own id, light, and
temperature readings contained in the virtual table sensors once per second for 10 seconds.

1 SELECT nodeid , l i g h t , temp
2 FROM s e n s o r s
3 SAMPLE PERIOD 1 s FOR 10 s

Listing 2.5: Example query of TinyDB
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Much effort in the development of TinyDB was spent to expand the lifetime of the sensor
network by reducing the energy consumption. This was done by aggregating results and
synchronizing sleeping periods, among other techniques. To save as much energy as possi-
ble, in approaches like TinyDB data is only generated to answer particular queries, which
is often called live data querying.
While there were many efforts in the area of live data querying, there were only a few
publications in the area of querying historical sensor data. The term historical data often
implies that every measured sensor value has to be saved for later analysis. There are
different paradigms where this data should be saved that we explain in the following.

External Storage

The first sensor networks were mainly deployed as simple sense-and-send applications,
a paradigm which is also called external storage or dumb data collection sensor network
[153]. Each measured value is simply transmitted to the base station and stored there.
Although this approach is easy to implement and to deploy, its main disadvantage is the
potentially high energy consumption when data is sampled with a high frequency or reso-
lution. Computing complex aggregate functions at the base station over a set of N sensor
values will result into at least N messages. In reality, the amount of messages will be much
higher since it depends on the number of hops between the sensor node and the gateway
and also the used routing protocol.

Local Storage

The contrary approach is called local storage, which means that measured data is stored
directly on the sensor nodes. Using this approach for answering continuous queries within
sensor networks has the potential to save a high amount of energy. The idea is to push eval-
uation strategies deep into the sensor network, say to compute complex aggregate functions
over a set of sensor values directly on the sensor nodes, so that only the final result will be
delivered to the gateway. A typical scenario is a query that requests the mean of all sensor
values over a determined period.
While local storage has often been considered impractical because of the limited sensor
node resources in terms of computation power and storage capacity, Diao et al. [45] argue
that due to technology trends in the area of flash memories, the local storage approach has
the potential to save a high amount of energy compared with the external storage approach,
because storing data locally on lately developed flash memory is much cheaper than trans-
mitting it via radio.
Gaurav et al. [58] have shown for the MicaZ platform that storage on NAND flash memory
is two orders of magnitude cheaper than communication and comparable to cost in compu-
tation. So especially for querying historical data, local storage in sensor networks becomes
attractive. Evaluating aggregate functions like mean, for instance, over a set of N sensor
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values directly on the corresponding sensor node will then result only in a constant number
of messages.
Since measured data is stored locally, it becomes necessary to push the processing logic to
the sensor nodes. There are several possibilities to do so. While Diao et al. [45] propose
the design of a novel sensor database architecture emphasizing mainly local data archiving
and query processing at the sensor nodes, this thesis emerged from a project which applies
the paradigm service orientation to wireless sensor networks. We describe the details in the
next section.

2.3 Service Oriented Architectures

In the mid nineties, service oriented architectures emerged in the area of business applica-
tions to allow companies a more flexible way of programming.
In this section we first outline the service oriented paradigm in Subsection 2.3.1. Then
we explain the usage of service oriented architectures in wireless sensor networks (Sub-
section 2.3.2) and give an overview of the project AESOP’S TALE (Subsection 2.3.3).
Finally, we introduce the basics of the service oriented operating system Surfer OS in Sub-
section 2.3.4.

2.3.1 The Service Oriented Paradigm

After the Remote Procedure Call (RPC) has been introduced 1988 by Sun Microsystems
[189], in the mid nineties, the paradigm of service orientation emerged. The idea of service
oriented architectures is to provide functionalities as services that can be published, found
and used by other entities. The general service discovery triangle is shown in Figure 2.9.

Service
Provider

Service
Directory

Service
Consumer interact

find publish

Figure 2.9: Different roles in a service oriented architecture
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The three considered entities are a service provider, a service consumer and a service repos-
itory. The service provider publishes its service to the service directory, which contains a
mapping of services to nodes. A service consumer can perform service discovery, which
means it can ask the service directory where to find the service of interest. The service
directory then transmits the location of the service (the location of the provider) to the
consumer. Finally, the consumer can access the provided service. A reference model was
published by the Organization for the Advancement of Structured Information Standards
(OASIS) in 2006 [146].

2.3.2 Service Orientation in Wireless Sensor Networks

While service oriented architectures have been a well known and commonly used concept
in business applications for years, they have also gained interest in the broader sensor net-
work community [41, 42, 130]. Blumenthal et al. propose the service oriented coupling of
device drivers to the operating system [20]. Delicato et al. describe the usage of a service
oriented, reflective middleware for wireless sensor networks [41, 42]. The use of service
oriented architectures in the project Cerberus is outlined by Prinsloo et al. [161]. Hof et al.
introduce a secure overlay for service centric wireless sensor networks [87]. Marin-Perianu
et al. describe the prototyping of service discovery and usage in wireless sensor networks
[130]. Kushwaha et al. describe OASIS, a programming framework for service oriented
sensor networks [105].

2.3.3 AESOP’S TALE

This thesis emerged in the context of the project "AESOP’S TALE: Applying and Extend-
ing the Service Oriented Paradigm to Sensor Network Application Engineering" [123]. The
components of the system are shown in Figure 2.10. The transaction engine is in particular
used to migrate services but can also be used by any other service requiring transactional
guarantees.
The usage of a service oriented architecture in a wireless sensor network has two main
advantages. The first advantage of a service oriented architecture is a convenient pro-
gramming style, since simple services can be composed to more complex ones to fulfill
individual tasks.
The second advantage is that sophisticated techniques like replication and migration of
services can be used to make the sensor network self-organizing. These techniques require
a transaction model to guarantee consistency.
While there is already a Web Services Atomic Transaction standard defined by the Orga-
nization for the Advancement of Structured Information Standards [147], this specification
merely uses 2PC and does not take the unique properties of wireless sensor networks into
account.
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Figure 2.10: AESOP’S Tale: Components on one node

The transaction processing protocols developed in this thesis have also been partly imple-
mented for the service oriented operating system Surfer OS which is described in more
detail in the next subsection.

2.3.4 Surfer OS

The operating system Surfer OS realizes the paradigm of service orientation for embedded
systems [124]. Surfer OS is reduced to a minimum of code and functionality and provides
the following functionalities:

• Hardware Abstraction Layer (HAL)

• Task management

• Memory management

• Dynamic distribution, binding and invocation of services

Since all components of Surfer OS are considered as services, even the radio protocol
stack including the routing protocol can be exchanged at runtime, providing a maximum of
functionality. Hence, it can be determined at run time which nodes provide which services.
Surfer OS provides also a stateful service migration, that means a service can keep the
values of its local variables while migrating to another node. A demonstration of how
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services can be migrated to sensor nodes at runtime can be seen in Figure 2.11. The user
can load services from a repository, transfer loaded services to nodes or delete services on
nodes. Surfer OS has also been ported to the well known Telos B sensor node platform
[160].

Figure 1. Demonstration setup with pacemate sensor nodes and user interface for transferring services from the Service
Repository into the WSN through an arbitrary node

hardware interactions, are encapsulated in independent ser-
vices. These services are held outside the sensor network.
Distributed Service Repositories are used to store these ser-
vices and provide them to sensor network application devel-
opers. The Service Repositories hold different services as
well as different implementation for specific functionalities.

By using an easy-to-use interface, application developers
are capable of loading services from the Service Repositories
onto the sensor nodes dynamically. An arbitrary node from
the network is connected to a computer allowing a multihop
over the air migration of services. The application developer
is enabled to compose an individual application and adapt it
during the runtime by adding, removing and replacing ser-
vices.

The services itself are implemented by WSN experts.
Each service follows a service template and is compiled sep-
arately as an individual program. Through the template the
services can call other services that can be present on the
node via the interfaces of Surfer OS. In this way it is possi-
ble to realize composite services on a sensor node. When re-
ceived on a node the service code is relocated and executed.
The service is integrated into the running application.

3 Demonstration
The demonstration shows the applicability and the func-

tionality of Surfer OS and the according infrastructure. It
demonstrates how WSN applications can be composed from
a collection of services from the Service Repository, while
several pacemate sensor nodes [1] are deployed.

Conference attendees have the possibility to compose, de-
ploy and modify their own applications onto the pacemate
nodes. Using an intuitive graphical user interface, the user
can choose different services from the Service Repository as

shown in Figure 1. The services can be transferred onto the
nodes or removed. We will show how the different services
form an application. Additionally, we demonstrate how the
application can be modified and adapted to changing condi-
tions or new demands of the user during runtime. Services
can be added or replaced and updated by transmitting newer
versions tagged with the same service type id.

The composite applications include topology monitor-
ing applications, self-organizing service distribution appli-
cations, stateful service migration applications and others.
Furthermore, we allow the replacement of the radio stack by
transferring routing algorithms onto the nodes. The services
migration and execution can be monitored on the pacemates’
display and the integrated LED. This concept of regarding
everything as a service allows users with no WSN expertise
to easily try different algorithms that are crucial for the func-
tioning of their application in their specific scenario.
4 Conclusion

Using the presented scheme a user of WSN technology is
able to compose and modify a WSN application to his indi-
vidual demands after the nodes are deployed. The service-
oriented abstraction for application development makes the
complexity of the sensor network application more transpar-
ent to the user. With the concepts of the Surfer OS and the
given infrastructure we aim for cheap and easy WSN appli-
cation development.
5 References
[1] M. Lipphardt, H. Hellbrueck, D. Pfisterer, S. Ransom,

and S. Fischer. Practical experiences on mobile inter-
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International Conference on Body Area Networks (Bo-
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Figure 2.11: Demonstration of Surfer OS at SenSys 2009 [124]



Chapter 3

Atomic Commitment

The previously introduced database systems TinyDB and Cougar for wireless sensor net-
works do not support transaction processing. We are also not aware of any other research
project aiming at transaction processing in wireless sensor networks. Only Guergen et al.
[69] state a need for transaction processing concepts in wireless sensor networks and dis-
cusses the ACID properties with respect to wireless sensor networks. As already outlined
in the introduction, there are many use cases for atomic commit protocols in wireless sen-
sor networks and especially for use cases in the newer area of Wireless Sensor and Actor
Networks (WSANs).

Organization

• In this chapter, we first present initial studies of the applicability of the Two Phase
Commit (2PC) protocol in wireless sensor networks in Section 3.1.

• Then we review related work in the areas of fixed infrastructure wireless networks
and ad hoc wireless networks, particularly analyzing the protocols Partition-Tolerant
Atomic Commit (ParTAC) and Cross Layer Commit Protocol (CLCP) in Section 3.2.

• We present our own atomic commit protocol for wireless sensor networks called Two
Phase Commit with Caching (2PCwC) in Section 3.3.

• Section 3.4 contains a brief description of our implementation and Section 3.5 presents
the evaluation of the compared protocols.

3.1 Two Phase Commit in Wireless Sensor Networks

The Two Phase Commit (2PC) protocol is commonly used to achieve agreement in com-
mercial distributed databases. So it is an obvious approach to use it also in wireless sensor
networks. We briefly outline the changes needed to adapt the protocol for a wireless sensor
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network. Special attention is paid to the required memory needed to store status informa-
tion of running and finished transactions since memory is a scarce resource on wireless
sensor nodes.
The actors in the 2PC are a coordinator c and a set of P participants p1, .., pi with i < N ,
whileN is the number of sensor nodes. In the context of our currently implemented service
oriented sensor network, we allow that every node can play the role of the coordinator c and
we also allow concurrent transactions. Running concurrent transactions in general requires
measures to guarantee the prevention of read/write oder write/write conflicts. However, we
do not consider the isolation aspect here but instead focus on one particular transaction for
the description of the 2PC protocol. Concurrency control is discussed in Chapter 4.

3.1.1 Implementation

Our implementation of the 2PC protocol for the sensor node platform Pacemate is based on
the original protocol described in Section 2.1.2. However, the protocol has been adapted to
the wireless environment, there is, for example, only one Prepare message sent from the
coordinator to all participants. This is sufficient since this message is flooded and contains
the ids of all participants. We distinguish between the six message types:

BeginVote contains the transaction_id, coordinator_id and all participant_ids,

VoteCommit contains transaction_id, coordinator_id and participant_id,

VoteAbort contains transaction_id, coordinator_id and participant_id,

Commit contains transaction_id and coordinator_id,

Abort contains transaction_id and coordinator_id and

HelpMe contains transaction_id and coordinator_id.

The pseudo code of the implemented algorithm is shown in Listing 3.1. If the coordinator
c wants to initiate a transaction like the migration of a service, c starts a preparation phase
by sending BeginVote to the predefined participants of the transaction (lines 1 to 3). The
coordinator registers the transaction as running and also registers a timeout to check for the
outcome of the votes.
If a node pi receives a BeginVote message which includes the node as participant (see
lines 5 to 13), pi decides whether it wants to vote for abort (1) or for commit (2) for this
transaction:

1. If pi decides for abort, which could be the case if, for instance, a node has not enough
free memory to accept a replica of a service, it sends the corresponding VoteAbort
message and aborts.
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2. If pi decides for commit, it registers the transaction as pending, sends a
VoteCommit message and also registers a timeout to check for incoming decisions.

If the coordinator c receives a VoteCommit which is addressed to it (see lines 15 to 19), c
checks if all participants have voted for commit yet. If so, c sends a Commit message to
all participants and removes the transaction from its record of running transactions. Anal-
ogously, on receiving any VoteAbort message, it sends Abort and removes the transaction.
If a participant receives a Commit respective Abort message, it decides accordingly, if it has
registered the given transaction as pending (see lines 26 to 28 respective lines 30 to 32).
On receiving a HelpMe message (see lines 34 to 39), a node checks whether it has some
information about the state of the transaction. If it knows that the transaction has been
committed, it can send a Commit message. If it has heard a VoteAbort or Abort message
concerning this transaction, it can send an Abort message. Otherwise it can just forward
the HelpMe message.
On the firing of a timeout the coordinator checks if there are running transactions for which
it has not received all required VoteCommit messages to send Commit. These transactions
are aborted. Analogously, a participant checks if there are pending transactions for which
it has not received a Commit or Abort message. If this is the case the node sends a HelpMe
message.

1 ON SEND_BEGIN_VOTE :
2 r e g i s t e r _ r u n n i n g _ t r a n s a c t i o n ;
3 r e g i s t e r _ c h e c k _ v o t e s _ t i m e o u t ;

5 ON RECEIVE_BEGIN_VOTE :
6 i f ( i _ a m _ r e c e i v e r ) {
7 i f ( d e c i d e == a b o r t ) {
8 s e n d _ v o t e _ a b o r t ;
9 a b o r t ; }

10 e l s e {
11 r e g i s t e r _ p e n d i n g _ t r a n s a c t i o n ;
12 send_vo te_commi t ;
13 r e g i s t e r _ c h e c k _ d e c i s i o n s _ t i m e o u t ; } }

15 ON RECEIVE_VOTE_COMMIT :
16 i f ( i _ a m _ r e c e i v e r ) {
17 i f ( count_commit ) {
18 r e m o v e _ r u n n i n g _ t r a n s a c t i o n ;
19 send_commit ; } }

21 ON RECEIVE_VOTE_ABORT :
22 i f ( i _ a m _ r e c e i v e r ) {
23 r e m o v e _ r u n n i n g _ t r a n s a c t i o n ;
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24 s e n d _ a b o r t ; }

26 ON RECEIVE_COMMIT :
27 i f ( r e m o v e _ p e n d i n g _ t r a n s a c t i o n )
28 commit ;

30 ON RECEIVE_ABORT :
31 i f ( r e m o v e _ p e n d i n g _ t r a n s a c t i o n )
32 a b o r t ;

34 ON RECEIVE_HELP_ME :
35 i f ( r e c e i v e d _ c o m m i t ) {
36 send_commit ; }
37 i f ( r e c e i v e d _ v o t e _ a b o r t | | a b o r t ) {
38 s e n d _ a b o r t ; }
39 fo rward_he lp_me ;

41 ON CHECK_VOTES_TIMEOUT :
42 i f ( t i m e d _ o u t _ t r a n s a c t i o n s ) s e n d _ a b o r t ;

44 ON CHECK_DECISIONS_TIMEOUT :
45 i f ( t i m e d _ o u t _ t r a n s a c t i o n s ) send_help_me ;

Listing 3.1: Pseudo code of the Two Phase Commit protocol implemented for Pacemate
sensor nodes

3.1.2 Correctness

The 2PC guarantees correctness, that means a transaction which is committed on one par-
ticipant or coordinator can never be aborted on another participant and vice versa. However,
transactions can have an undecided state, if a Commit or Abort message sent by the coordi-
nator does not reach its destination. In this case, an uninformed participant sends a HelpMe
message after a timeout.

3.1.3 Blocking

The problematic case is the blocking of participants if a coordinator of a running transac-
tion fails before it has received any Abort message or all Commit messages. In this case, the
transaction is blocked on all participants until the coordinator recovers. In this thesis we
do not try to solve this case which can, for example, be done by using Three Phase Com-
mit (3PC) protocols [187] or Paxos [107, 108], which increase the number of transmitted
messages. When a participant does not receive the decision sent by the coordinator due to
repeated message loss, the resources on this node remain also blocked.
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3.1.4 Memory Consumption

To be able to manage a set of running and finished transactions, these have to be stored
in the memory of the nodes. Although the needed memory is minimal, since only trans-
action_id, coordinator_id, participant_ids, a timestamp and the decision itself have to be
stored, we limited the list of records of finished transactions to the number of nodes in the
network to be scalable.
Since sensor nodes are equipped with only small RAM (about 32 kilobytes to 128 kilo-
bytes), a node cannot keep track of all finished transactions and messages it overhears.
Older entries are overwritten. The draw-back is that HelpMe messages concerning older
transactions might remain unanswered. Apart from a ring buffer to manage message for-
warding and the records of running and finished transactions, no significant amount of
memory for status information is needed.

3.1.5 Message Complexity

In a wired network the corresponding complexity of one transaction is 4(P − 1) while P is
the number of participants. Since we do not assume a certain topology, each message has
to be flooded, so in the worst case, for every BeginVote, N − 1 messages have to be send to
reach any of the P participants while N is the number of nodes. So in a wireless network
without a certain presumed topology, the corresponding complexity can be estimated as
follows:
Every node has to send the BeginVote message (N ), the decision message (N ), the vote of
each participant (PN ) and the acknowledge of each participant (PN ). We implemented
the protocol with HelpMe messages instead of acknowledgments to save transmission costs,
but this is only efficient as long as a majority of decisions messages is received successfully.
Hence, if we neglect this difference, the corresponding complexity of 2PC is because of
message forwarding in the worst case:

N + PN +N + PN = (2 + 2P )N

One way to decrease the corresponding complexity is the generation of a tree, which re-
duces the number of messages to flood an information fromN to log(N). The draw-back is
the amount of messages caused by topology maintenance to ensure a stable tree in case of
node and link failures. It could also be considered if and how transactional guarantees could
be integrated into routing protocols. We describe our deployment and our experiments in
this section.

3.1.6 Deployment

We implemented 2PC on the Pacemate [122] sensor node platform shown in Figure 2.7.
A pacemate has a Phillips LPC 2136 processor with 32 kilobytes RAM, 256 kilobytes



42 CHAPTER 3. ATOMIC COMMITMENT

Figure 3.1: The deployment of 20 Pacemates on our corridor

Programmable Read Only Memory (PROM) and a 868 MHz radio transceiver. It is also
equipped with a 128 x 64 dots display and three buttons allowing human interaction during
runtime. We placed 20 Pacemates on the corridor of our institute as shown in Figure 3.1.
Out of our 20 nodes we chose seven coordinators which initiated a transaction by sending a
BeginVote message to two participants every two seconds for 20 times, so 140 transactions
were started during our experiments in total. All messages were flooded. To be able to
verify the correctness of the results, the selection of the coordinators and the participants
was constant. A node was either coordinator, participant of one or more transactions, or
both. The experiments were started by pressing a button on one of the Pacemates. The
other Pacemates were activated by the first message received. During the 40 seconds of
our experiment, where at any time about seven transactions were running concurrently, we
measured the following parameters:

• number of started transactions (BeginVote messages sent),
• number of BeginVote messages received,
• number of transactions committed,
• number of transactions aborted,
• number of messages transmitted (including message forwarding)

We repeated the experiment several times with different intervals (1 second, 2 seconds, 5
seconds) between the starts of two consecutive transactions and obtained similar results.
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The decisions for sending a VoteCommit or a VoteAbort message were done by a pseudo-
random-function, which uses the system id of the particular node as seed, so the decisions
were the same in each run of the experiment. The probability to commit was set to 90%.
Aborts are more likely than in traditional DBMS, where 3-5% is considered as an average
abort rate (see [68] and [64]). We did not use message retransmission.

3.1.7 Results

In this subsection we discuss the results of a typical run of the experiment with a transaction
sending interval of 2 seconds for the 2PC protocol.
Since the qualitative results of the experiments were quite similar and differed only slightly
in the number of received BeginVote messages (167 to 198 out of 280 possible BeginVote
messages were received), we chose a particular run to discuss the results of our exper-
iments. Of course, for 140 transactions only 140 BeginVote messages were sent by the
coordinating nodes, but since we had two participants in each transaction, we had also a
maximum of two reception events per BeginVote message sent, one at each participant.
In this particular run 191 out of 280 possible BeginVote messages were received, which
equals about 68%. Madden [126] has shown for the ChipCon radio used on Mica2 motes a
message loss of 20% to 30% is reported for the distance of 10 meters, which is quite similar
to our results.
Detailed analysis have shown that these 191 messages belonged to 96 transactions, while
95 transactions were complete, that means both participants received a message, while in
the 96th transaction, only one participant received a BeginVote message. That means that
45 transactions were aborted due to lost BeginVote messages.
As shown in Figure 3.2, out of the successfully started 95 transactions, 90 reached agree-
ment on the coordinator and all participants (43 committed and 47 aborted), 5 transactions
had the state undecided at the end of the 40 seconds on the side of the participants. That
means they were waiting for a commit (4 transactions) or an abort (1 transaction).
The average number of transmitted messages per node was 380. This is a significant lower
number of messages than estimated for the worst case after the estimation given.
Calculating the corresponding complexity after (2 + 2P )N with N = 20 nodes and P = 2

participants, we get 6 ∗ 20 = 120 messages per transaction and

120 ∗ 140 transactions

20 nodes
= 840 messages per node

The difference is caused by message loss, in particular by loss of 45 BeginVote messages.
To sum up, the results of the experiments show that the applicability of 2PC to enable
transaction processing in wireless sensor networks is limited, since although agreement
was achieved for 135 out of 140 transactions in the first attempt, the commit rate was low
(∼ 30%). Alone 45 transactions were aborted because of lost BeginVote messages, leaving
much room for improvement of the protocol for wireless sensor networks.
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Figure 3.2: Outcome of 140 started transactions with the 2PC protocol

In the next section we discuss related work about atomic commitment in the area of wireless
networks with fixed and also with ad hoc infrastructure.

3.2 Related Work

To the best of our knowledge, the only work dealing with transactions in sensor networks
apart from our own work is [69], which focuses mainly on the isolation property of trans-
actions and does not propose a specific commit protocol. Instead, an algorithm for the
concurrent processing of continuous queries and one time queries is proposed. Also, the
authors focus on wired networks and do not pay special attention to the properties of wire-
less networks. Consequently, we focus on related work in fixed infrastructure networks and
also Mobile Ad hoc Networks (MANets) in this section.

3.2.1 Relaxing ACID Properties

Since wireless networks and mobile nodes pose challenges for traditional transaction pro-
cessing protocols, several researchers considered the relaxation of the ACID properties.
One possibility of relaxation is the extension of the traditional flat transaction approach by
nested transactions [137]. A nested transaction is a transaction that contains subtransac-
tions, which, in turn, may also contain subtransactions. Subtransactions can be classified
according to the following properties [195]:

Open vs. Closed The results of an open subtransaction are visible to other transactions
while the results of closed subtransactions are only visible to the parent transaction.

Vital vs. Non-Vital If a non-vital subtransaction is aborted, the parent transaction may
still be allowed to commit.
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Dependent vs. Independent A depended subtransaction must be aborted if the parent
transaction is aborted.

Compensatable vs. Non-Compensatable For a compensatable transaction [2], always an-
other transaction called compensating transaction exists which semantically undoes
its changes. This is not the case for every transaction in general, for example the
withdrawal of money from a cash dispenser cannot be undone easily.

Substitutable vs. Non-substitutable A transaction is substitutable if there exists another
transaction which can be executed on its behalf.

We assume closed, vital, dependent, non-compensatable and non-substitutable subtransac-
tion in our work to make it widely applicable.

3.2.2 Fixed Infrastructure Networks

Early research projects in the area of mobile databases emerged about 10 years ago. The
Moflex Transaction Model for Mobile Heterogeneous Multidatabase Systems is introduced
by Ku et al. [99]. The characteristics of this model have been adopted by several re-
searchers. The considered mobile computing environment is shown in Figure 3.3. It con-
sists of Mobile Host (MHs), which are in the focus of this model, that are connected to
traditional Fixed Hosts (FHs) by the means of Mobile Support Stations (MSS), also called
base stations (BSs).
An overview of mobile transaction processing is given by Serrano-Alvarado et al. [181] and
Tuerker and Zini [195]. A plethora of contributions exist, we name a few in the following.

Clustering outlined by Pitoura and Bhargava [158, 159] is sometimes also called weak-
strict transactions. A fully distributed, clustered environment is assumed, where a
disconnected MH becomes a cluster by itself. Every object exists in two versions:
a strict version which is globally consistent, and a weak version, which can tolerate
some degree of global inconsistency but is at least locally consistent. Transactions
are also divided in strict and weak, while strict transactions access strict versions and
weak transactions access weak versions of objects. If disconnected MHs connect
again to the database, the weak versions are synchronized. Distributed transactions
are only processed as strict transactions, and MHs can only participate while con-
nected.

Two-tier Replication proposed by Gray et al. [67] is a lazy replication mechanism where
participants can get occasionally disconnected. For each data object, one master
version and several replicas exist. Transactions are divided into base transactions
and tentative transactions, while base transactions access master objects and tentative
transactions access the replicas, even when the MHs are disconnected. If an MH



46 CHAPTER 3. ATOMIC COMMITMENT

that covers the cell via wireless communication networks.

When an MH moves across cell boundaries, the MSS of

the departing cell hands over the MH to the MSS of the

entering cell.

The fixed hosts operate local database systems

(LDBSs) to provide various types of information to users.

These local database systems are logically integrated into

a heterogeneous multidatabase system in order to support

mobile applications. The users on MHs can have access to

information as a unit of mobile transaction from the het-

erogeneous multidatabase system. Hence, mobile transac-

tion model should include not only the features for hetero-

geneous multidatabase systems but also those for mobile

computing environment.

To support the particularities of the mobile comput-

ing environment, there have been several research results

on mobile transaction model: Clustering Transaction

Model[4], Reporting and Co-Transaction Model[7], Kan-

garoo Transaction Model[8], Semantic-Based Mobile

Transaction Model[9] and MDSTPM(Multidatabase

Transaction Processing Manager) Model[10]. They relax

or redefine the strict ACID properties of traditional trans-

action model[5] in order to fit to mobile computing envi-

ronment. Furthermore, they support transaction relocation

to minimize the response time and to use efficiently the

limited bandwidth of wireless communication[7,8]. How-

ever, some of the previous transaction models do not con-

sider the heterogeneity of mobile heterogeneous multida-

tabase systems[7,9]. Moreover, as far as we know, none of

them supports the flexibility in the definition and the ex-

ecution of transaction[4,7,8,9,10]. Up to the date, hence,

none of the previous mobile transaction models is com-

pletely suited to mobile heterogeneous multidatabase

environment.

3. Moflex Transaction Model

3.1 Flexible Transaction Model

The Flexible Transaction Model[6] was previously

proposed for heterogeneous multidatabase systems. A

Flexible Transaction is a collection of subtransactions

related by a set of execution dependencies among them.

Each subtransaction is a logical unit of work that performs

some operations at a particular site. Associated with each

Flexible Transaction, a set of acceptable states defining

success of the global transaction is declared by the user.

Therefore, success of all subtransactions may not be ne-

cessary for success of the global transaction. Each sub-

transaction of a Flexible Transaction is either compen-

sable or non-compensable. The user is able to declare the

intra-transaction execution dependencies such like the

success-dependency, the failure-dependency, and the ex-

ternal-dependency to provide the intra-transaction paral-

lelism[6]. The Flexible Transaction Model is known that it

has several distinguished useful features for multidatabase

systems. A comprehensive explanation of Flexible Trans-

action Model is in [6].

3.2 The Definition of Moflex Transaction Model

A Moflex Transaction for mobile heterogeneous

multidatabase systems is formally defined as follows:

<Definition 1> A Moflex Transaction T is a 7-tuple 

(M, S, F, Π, H, J, G)

M  : {t1, t2, ... , tn}, the set of all subtransactions of T

where ti is either compensable(C) or non-

compensable(NC).

S :  the set of success-dependencies in M

F :  the set of failure-dependencies in M

Π :  the set of external-dependencies(P, Q, L) on M

H :  the set of hand-over control rules on M

J :  the set of acceptable join rules on M

G :  the set of all acceptable goal states of T

M is the set of all subtransactions of T. Each sub-

transaction can be either compensable(C) or non-

compensable(NC). If a subtransaction is of compensable,

then, there is the compensating transaction that can se-

mantically undo the effects of the subtransaction after the

subtransaction has been committed. S is the set of success-

dependencies between subtransactions. Subtransaction tj

has a success-dependency on subtransaction ti if tj can be

executed only after ti is successfully completed. The suc-

cess-dependency is represented by ti s tj. Similarly, F is

the set of failure-dependencies between subtransactions.

Subtransaction tj has a failure-dependency on subtransac-

tion ti if tj can be executed only after ti is failed. The fail-

ure-dependency is represented by ti f tj. Π is the set of

external-dependencies of subtransactions. The subtransac-

tion ti can be executable only when the external predicates

are satisfied. The external-dependencies might be con-

cerned on time(P), cost(Q), and location(L). H is the set of

hand-over control rules determining the execution policies

for subtransactions when hand-over occurs. As the hand-

over control rule, subtransaction ti can have one among

continue(ti), restart(ti), split_resume(ti), and split_restart(ti)

Figure 1. The Mobile Computing Environment
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Figure 3.3: Mobile computing environment considered for MOFLEX [99]

reconnects, its tentative transactions are re-executed as base transactions to achieve
global consistency.

High Commit Mobile (HiCoMo) is described by Lee et al. [110]. The protocol also
differentiates between two transactions classes like the approaches described previ-
ously: base transactions and mobile HiCoMo transactions. HiCoMo transactions are
executed on disconnected MHs and are transformed into base transactions at recon-
nection. However, semantic properties of the transactions are exploited, thus restrict-
ing the allowed operations only to additions and subtractions, severely limiting the
applicability of this approach.

Isolation Only Transactions (IOT) by Lu and Satyanaranyanan [125] also considers two
transaction classes to allow disconnections: first class transactions which are exe-
cuted if all accessed resources are reachable and second class transactions which are
executed under disconnections. Second class transactions are not committed imme-
diately after execution but go into a pending state and are validated on reconnection,
making resolution strategies or even user interaction necessary.

Pro-motion introduced by Walborn and Chrysanthis [197] considers the complete mobile
system as one very large long-lived transaction executed on the FH.

Prewrite is described by Madria and Bhargava [128]. Here, the transactions execution is
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also divided between sever (FH) and mobile client. While the transaction manager at
the MH may execute the transaction, permanent writes are exclusively done by the
server.

Reporting and Co-Transactions in a system of open and nested transactions are intro-
duced by Chrysanthis [36]. While reporting transactions delegate their state to an-
other transaction during execution, co-transactions are reporting transactions where
the control is passed to the transaction receiving that report. The considered co-
transaction is then suspended until receiving the report.

Semantics-based transaction processing is proposed by Walborn and Chrysanthis [196].
It makes use of semantic information about objects to improve the autonomy of MHs
while being disconnected. Exclusive master copies of objects can be given entirely
to MHs and then transactions can be directly executed on them. However, a recon-
ciliation process is initiated by the server on reconnection.

Unilateral Commit Protocol for Mobile and Disconnected computing (UCM) is a One
Phase Commit protocol introduced by Bobineau et al. [21]. To be able to come to a
commit decision in just one phase, the authors make strong assumptions, for example
in terms of reliable message delivery.

Transaction Commit on Timeout (TCOT) described by Kumar et al. [102] is based on
2PC but uses timeouts to save message transmission. Instead of sending
VoteCommit messages, a coordinator implicitly commits a transaction if no VoteAbort
message is received within a timeout. It provides only semantic atomicity and relies
on compensating transactions.

Kangaroo Transactions outlined by Dunham et al. [50] is a mobile transaction model
that focuses on the movement of MHs. However, transactions are coordinated by the
base stations to which the MHs are assigned during transaction execution.

The Multi Database System Transaction Processing Manager (MDSTPB) is proposed
by Zaslavsky et al. [208]. It runs on a FH and works as a proxy for MHs, allowing
the MHs to submit a transaction and then disconnect without having to wait for the
transaction to commit.

Pre-serialization (or Toggle Transactions) are described by Dirckze and Gruenwald [47,
48]. They use a set of global transaction coordinators located at each base station to
verify the global serializability in advance.

Mobile 2PC is introduced by Nouali-Taboudjemat et al. [143] and compared with several
other commit protocols [144]. Although the special requirements of mobile partic-
ipants are considered, it is mandatory that the transaction coordinator resides on a
fixed host.
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CO2PC proposed by Serrano-Alvarado [180] provides semantic atomicity as it allows uni-
lateral optimistic local commit for compensatable subtransactions. The coordinator
must also be a FH that is chosen at the initiation of the transaction.

self-Adaptive Component-based cOmmit Management (ACOM) also described by
Serrano-Alvarado [182] chooses either the presumed-commit 2PC or the presumed-
abort 2PC [135] depending on the actual commit rate of the application.

Partial Validation with Timestamp Ordering (PVTO) is a protocol proposed by Lee et
al. working on the application layer and relying on guaranteed message delivery
[112], requiring also a fixed host for transaction execution.

Mobile Agents for Distributed Transactions of a Distributed Heterogeneous Database Sys-
tem are described by Ye et al. [206]. This approach also relies on a fixed infrastruc-
ture and bridges to traditional DBMS.

Argos Transaction Layer. Arntsen et al. introduce the Argos Transaction Layer in [9].
It allows the simultaneous deployment of several concurrently running transaction
services providing different transactional guarantees. However, Arntsen et al. target
their approach at standard transactions and long running business transaction in the
web service environment and do not consider resource constraints.

CATran. An adaptive and context aware transaction model for ubiquitous environments
is described by Tang et al. [193]. It considers mobile phones and mobile notebooks
as devices, but the phones are only allowed to initiate transactions, not to execute
subtransactions.

The previously described approaches rely on fixed networks including servers. Therefore,
they are not directly applicable to wireless sensor networks.

3.2.3 Mobile Ad Hoc Networks (MANets)

Transactions have been an area of significant research in the area of Mobile and Ad hoc
Networks (MANets) in recent years. Contrary to fixed networks, MANets communicate in
an ad hoc manner, without using servers or any kind of infrastructure, and thus are more
related to wireless sensor networks.
But there are also several differences between MANets and wireless sensor networks. Wire-
less sensor networks normally consist of a higher number of nodes, these are distributed
with a higher density and in varying topologies. Wireless sensor networks suffer from
higher failure rates and also from more severe restrictions in terms of storage capacity and
processing power. Another major difference is that sensor nodes are seldom recharged, in
contrast to MANet devices like mobile phones or palms. So most of the applications for
wireless sensor networks have to take a limited lifetime into account, which is restricted by
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the used battery. Therefore, in wireless sensor networks it is much more important to save
energy. Since transmitting and receiving consumes the most power in sensor networks,
most energy can be saved by reducing the number of messages and the transferred volume
of data. We describe related approaches in the following.

Group Based Transaction Commit Protocol. Xie [202] describes distributed transaction
processing over mobile and heterogeneous platforms. Especially partitioned net-
works are considered. The author assumes that every mobile node knows all the
members of the partition it belongs to. Inside every partition, 2PC is used to come
to a tentative decision and the decision is broadcasted inside the partition. If par-
ticipants join other partitions, they communicate the tentative decision there. The
work relies on stable storage and does not consider the severe resource restrictions
of wireless sensor networks. Also neither an implementation nor a comparison with
other protocols is given.

Bi-State Termination is described by Obermeier et al. [149]. The idea is to tentatively
terminate a transaction as committed and also as aborted to reduce the time of re-
source blocking. When the data written by a tentatively terminated transaction is
accessed by another transaction T, several possibilities exist:

• T is aborted completely.
• T is committed and deals with multiple possible results. This might not be

possible in all application scenarios.
• Only certain parts of T are committed or aborted.
• T waits.

For this protocol, it is necessary to store all possible commit/abort combinations of
dependent transactions, posing difficulties for severely resource constraint wireless
sensor nodes.

Integrated / Failure Tolerating Commit Protocol. An integrated commit protocol is de-
scribed by Bose et al. [23] and [31]. A failure tolerating commit protocol is described
by Böttcher et al. [25]. Both protocols use several coordinators to avoid blocking in
case one coordinator fails. First, a main coordinator is selected to run the 3PC pro-
tocol. If this fails due to coordinator failure or due to a partitioning of the network,
Paxos Consensus [107] is used to select a new coordinator. The authors assume that
the participants of a transaction are situated in a one-hop environment during trans-
action execution, limiting the applicability of their approaches.

ParTAC. Ayari et al. describe the Partition-Tolerant Atomic Commit (ParTAC) protocol
[10, 11, 12] for the use in mobile ad hoc networks. They demonstrate their approach
on four Lego Mindstorm cars equipped with HTC PDAs running their ParTAC algo-
rithm implemented in Java. The application scenario of the four cars is to agree on
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the order of crossing an intersection [12]. Although very interesting, the work has
some limitations:

• No comparison with other protocols has been done in the evaluation.
• The papers give the approximate number of messages exchanged per partici-

pant, but not the exact number of bytes sent.
• The authors do not state which routing protocol was used for the execution of

the experiments, they only state that flooding or ad hoc on demand distance
vector routing could be used depending on the relation of participating nodes to
nodes in the network.
• In ParTAC, coordinators send beacons periodically, but it is neither stated how

long a period is nor if and how the beacons are taken into account in the evalu-
ation.

But the most important limitation considering our application scenario is that the
severe resource constraints of wireless sensor networks have not been considered.

Cross Layer Commit Protocol (CLCP). The Cross Layer Commit Protocol proposed by
Obermeier et al. [148, 151] uses all participants as coordinators and uses consensus
to ensure fault tolerance. It is described in more detail in Subsection 3.2.4.

While all of the previously describe protocols yield interesting ideas, they do not take
characteristic properties of wireless sensor networks into account. These are in particular:

• A much higher number of nodes. The protocols described previously have only been
evaluated with small node numbers (7 nodes (CLCP) to 10 nodes (ParTAC)).
• Low bandwidth wireless radio and message sizes.
• Small ROM and RAM sizes.
• Distant transaction participants.

3.2.4 Cross Layer Commit Protocol

The Cross Layer Commit Protocol (CLCP) [148, 151] has been developed for the use in
Mobile and Ad hoc Networks (MANets). The protocol is an advantage over Paxos Commit
[66] in terms of message transmissions. Paxos is an advancement of the Three Phase Com-
mit Protocol (3PC) [186] because it can also come to a decision if network partitioning
occurs.
CLCP has been evaluated in MANet scenarios, but only in quite specific ones since the
authors assume that all participants of a transaction are direct neighbors when a transaction
is started. This allows them to use flooding restricted to a one hop distance (bounded
flooding). For our use case, this is an unrealistic assumption since we want our services to
be distributed over the whole network like shown in Figure 3.4. It shows an example of
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Figure 3.4: Distant participants of a transaction

distantly distributed nodes, namely source node Node 1, target node Node 2 and three
service directories which are all participants of one transaction.
We briefly outline the function of CLCP in the following, for a more detailed description
see [148, 151]. CLCP consists of two phases. In the first phase, the decentralized com-
mit phase, the participants of a transaction vote concurrently whether a transaction should
commit or abort.

Decentralized Commit Phase (DCP)

The key idea of the DCP is to use the knowledge of each participant about the ongoing vot-
ing process via a so called commit matrix. After an initial Prepare message of a transaction
initiator, a commit matrix is broadcasted as a reply and contains the information each par-
ticipant has about its own vote and about every other participant. We give an example for a
commit matrix for three participants in Figure 3.5. The size of the commit matrix increases
in square with the number of participants. With more than 10 participants, messages are
becoming too large for wireless sensor networks, as these are collision-prone even at mes-
sage sizes of about 50 Bytes [126]. The commit matrix contains the information that P1

knows that itself and P3 voted for commit and that P3 knows that itself voted for commit.
Other possible entries are (ordered by priority): empty < voteCommit < voteT imeOut <

timeOutAck < voteAbort. Upon the reception of a commit matrix, it is merged with the
information a node already has and then broadcasted again as an acknowledgement until a
decision is found or the termination phase starts due to a timeout. Three cases which lead



52 CHAPTER 3. ATOMIC COMMITMENT


Knowledge of→

about↓ P1 P2 P3

P1 voteCommit empty empty
P2 empty empty empty
P3 voteCommit empty voteCommit


Figure 3.5: An example of a commit matrix in CLCP

to a decision can occur:

1. All nodes voted for commit and a majority of nodes knows that, i.e. each row in
the commit matrix contains a majority of voteCommit entries. Then the decision is
commit.

2. At least one node voted for abort. Then the decision is abort.

3. There exists a majority of timeOutAck entries in at least one row. This means one
participants was not reachable for a determined time. In this case, the decision is
abort.

If neither a voteAbort nor a majority is found the termination phase is started after a time-
out.

Termination Phase (TP)

In the case of a timeout, maybe due to a network partitioning, the second phase of CLCP,
the so called termination phase begins. The TP works similar to Paxos Commit and marks
a participant as a special leader which makes sure that the commit decision is accepted by
a majority of nodes. Every time this does not work, a new coordinator is selected based on
increasing version numbers.

3.3 Two Phase Commit with Caching

In this section we present our own variant of 2PC called Two Phase Commit protocol with
Caching (2PCwC). It was inspired by the Cross Layer Commit Protocol (CLCP) and also
takes advantage of broadcast communication, but has a significant lower communication
cost than CLCP.
We first describe the key idea behind our protocol and then explain the two optimizations
we applied to the Two Phase Commit protocol (2PC) to increase its commit rate and to
save message transmissions. Finally, we give some details about the synchronization of
our protocol.
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Figure 3.6: 2PC: if a request (or a vote) gets lost, an additional request phase is needed

3.3.1 The Idea

If a node P1 sends a message M to P2, P2 sends an acknowledge message Mack back to
P1 if P1 needs a confirmation for the reception of M by P2. Generally, acknowledgement
messages are processed on the communication layer of the OSI-7 model, unnoticed by the
overlying application.
On the contrary, in CLCP, acknowledgement messages are implicitly used to communicate
information about the commit decisions of other participants of a transaction. Information
about the votes of other participants are stored (cached) in order to be processed later to
speed up the commit decision.
This approach motivates the question to what extent the 2PC protocol could benefit from
the caching of information about other participants. Since the used communication in a
wireless sensor network is broadcast, nodes can hear each others messages without extra
effort if they are in a certain neighborhood. The question is which messages are useful to
be cached.
Therefore, we take a closer look at message loss in the 2PC protocol and consider the voting
phase which is shown in Figure 3.6. First, the coordinator C sends a request for votes to
the participants P1 and P2. While P1 receives the request, P2 does not due to message
loss. Consequently, only P1 votes and after a timeout, C requests the vote of P2 again,
which replies successfully at this time. The same sequence could occur if the vote message
of P2 had been lost instead of the request message of C.
So we let all nodes cache the votes of other participants, extend the votes by the ids of the
other participants and then distinguish between two cases:

1. The vote of participant P2 gets lost before it is received by the coordinator. Then,
another participant, let us say P1, can forward the cached vote of P2 in order to
prevent it gets lost again. This case is explained in Subsection 3.3.2.

2. The request message of C is not received by participant P2, but P2 hears the vote of
P1. In this case, P2 can also send its own vote message. This case is described in
Subsection 3.3.3.
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Figure 3.7: 2PCwC: P1 replies in place of P2 because the vote of P2 got lost

3.3.2 Replying in Place of Other Participants

We explain in this subsection how our 2PCwC protocol makes it possible that one partici-
pant can reply to the coordinators request in place of another participant.
We assume that both participants P1 and P2 received the request message of the coordina-
tor C (see Figure 3.7).
While the vote of P1 is received by C, the vote of P2 is lost on its way to C, but is cached
by participant P1. P2 is not aware of that. After a timeout, the coordinator C misses the
vote of P2 and sends his request again. The request is lost on its way to P2, but is received
by P1, and since P1 cached the vote of P2, P1 can reply to C in place of P2 and the
coordinator receives the missing vote.

3.3.3 Replying Without Having Received a Request

In this subsection we describe how a participant can send his vote without having received
the request of the coordinator. We assume that the request of the coordinator C is only
received by participant P1 and not by participant P2 (see Figure 3.8). So, only P1 sends
its vote message and P2 does not. However, as soon as P2 hears the vote message of P1, it
infers that the coordinator must have sent a request and can also send its own vote message
to C. Consequently, a second request phase is unnecessary and message transmissions are
saved.

3.3.4 Synchronization and Other Technical Details

In both variants, 2PC and 2PCwC, the coordinator sends requests only addressed to the
nodes which votes are missing. The requests are flooded nevertheless to reach every par-
ticipant, and since all messages are broadcasted, they can be heard by all other nodes.
The important point is that the participants whose votes were already received do not re-
ply again. Additionally, we used flooding with message extinction, so nodes only forward
messages which are new to them.
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Figure 3.8: 2PCwC: a participant votes without having received the request of the coordi-
nator

Another important implementation detail is that participants in 2PCwC have to wait and
listen for other replies for a randomized interval before they reply to requests in place of
other nodes. This is necessary in order to prevent the case that too many nodes reply to a
repeated request of the coordinator.
Moreover, transactions are deleted from the cache after a determined time since memory is
a limited resource on wireless sensor nodes.
Evaluation results obtained from simulations and also from experiments with our sensor
node platform Pacemate are given in Section 3.5.

3.4 Implementation

To be able to perform experiments with the three commit protocols 2PC, CLCP and 2PCwC,
we implemented the Adaptive Transaction-based Management of Services (ATMoS) for the
iSense middleware [37] and built the code for the sensor network simulator Shawn [55].
This allows us to build the same code for the sensor node platform Pacemate [122] to per-
form more realistic experiments during the course of our study. An overview about ATMoS
is shown in Figure 3.9.

3.5 Evaluation

In this section, we present the experiments we performed to compare the three commit
protocols Two Phase Commit (2PC), Cross Layer Commit Protocol (CLCP) and Two Phase
Commit with Caching (2PCwC). First, we present the simulation environment we used for
the sensor network simulator Shawn, then we specify the measured variables and finally
describe our results.
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Figure 3.9: Overview of our Adaptive Transaction-based Management of Services (AT-
MoS) framework

3.5.1 Simulations

In the following, we describe the setup and outcome of our simulations.

Experimentation

We performed experiments with each of the three commit protocols (2PC, 2PCwC and
CLCP) and varied the number of participants and the message loss. The constant simulation
parameters are shown in Table 3.1. We randomly distributed 100 nodes in an area of 500 x
500 field units (see Figure 3.10) and started 1000 transactions.

Width of area (field units) 500 FU
Height of area (field units) 500 FU
Number of nodes 100
Number of started transactions 1000
Average neighborhood size 9.84
Maximum range (field units) 100 FU

Table 3.1: Constant simulation parameters for the comparison of 2PC, 2PCwC and CLCP

Each node started 10 transactions and the participants were chosen randomly. This means
the participants could be located anywhere in the network. We varied the number of partic-
ipants from 2 participants to 10 participants for each run of our experiments. All messages
were flooded in the whole network and participants always vote for commit. This makes an
evaluation of the protocols easier, since no empirical values exist for common local commit
/ abort rates in wireless sensor networks. In each experiment with 2PC and 2PCwC, the
coordinator was allowed to ask up to 6 times for missing votes that got lost.
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Figure 3.10: Our used topology: 100 randomly distributed nodes where an edge between
two nodes means that the distance between them is smaller than the maximum transmission
range

While the nodes always had a maximum range rmax of 100 field units we varied the guar-
anteed range rmin between 100 field units (no loss) and 1 field unit. Then we determined
the actual range by using the Quasi Unit Disc Graph Model (QUDM), which is proposed
by Kuhn et al. [100], and also described by Zunig et al. [211]. The probability p that a
node at a distance of d receives a message is 1 if d < rmin, 0 if d > rmax and decreases
linearly from 1 to 0 if rmin ≤ d ≤ rmax.
The QUDM was also used by Obermeier et al. [148, 152]. The probability for the reception
of a message in a one hop neighborhood and the probability for the distribution of a message
in the whole network are shown in Table 3.2.
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Max. range Min. range p (one hop) p (network)

100 1 37.76% 63.25%
100 10 40.00% 70.47%
100 100 100.00% 100.00%

Table 3.2: Behavior of the Quasi Unit Disc Graph Model Model (QUDM) when varying
the minimal transmission range in the network simulator Shawn

Measured Variables

We were mainly interested in the performance of the protocols in terms of the commit rate
and the costs of each transaction measured in number of transmitted bytes. The trade off
between these two measures can be expressed as number of transmitted bytes per commit
decision. Since memory is a limited resource in wireless sensor networks, we also analyzed
the memory consumption of the three commit protocols.

Results

In the following we present the results of our experiments. We begin with a comparison
of the commit rates, show the transmitted bytes per commit decision and conclude with a
comparison of the memory consumption of the three commit protocols.
Commit rates. The commit rates for the three protocols are shown in Figure 3.11. QUDM-
10 means we used a minimum range of 10 field units and QUDM-1 means we used a
minimum range of one field unit. It can be seen that with increasing message loss, the
commit rates of all protocols decrease. However, this is most severe for 2PC: the commit
rate drops here from 40% to 20% and for 2PCwC the commit rate drops from 71% to 53%
while CLCP stays nearly the same (89% instead of 95%). But we will see in the following
that these commit rates for CLCP come at a high price. Figure 3.11 shows also that an
increasing number of participants leads to a better commit rate for CLCP while the commit
rates for 2PC and 2PCwC decrease.
Transmitted bytes per commit. Now we look at the price for the achieved commit rates.
The transmitted bytes per commit decision are shown for the three protocols in Figure 3.12.
It can be seen that CLCP performs worst at QUDM-10 and 2PC performs worst at QUDM-
1 while 2PCwC has the best ratio of transmitted bytes to commit rate at both transmission
models. In fact, 2PCwC needed only ∼50% of the transmitted bytes compared to 2PC or
CLCP.
So our results differ decisively from the results of Obermeier et al. [148, 151]. The reasons
for this are twofold:

1. We do not assume the usage of IEEE 802.11 (Wi-Fi), where Obermeier et al. assume
that point-to-point communication is much more expensive than broadcast.
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Figure 3.11: With increasing message loss, the commit rates of the 2PC protocols decrease

2. We allow our participants to be distributed over the whole network instead of restrict-
ing them to a nearby area. So our experiments are more tailored to wireless sensor
networks instead of ad hoc networks and also more general.

Impact on energy consumption and lifetime. Our Two Phase Commit with Caching
(2PCwC) protocol needed only∼ 50% of the transmitted bytes compared to 2PC or CLCP,
at a guaranteed range of 10 field units with 100 nodes, ∼ 50 kilobytes were transmitted in
the whole network compared to ∼ 100 kilobytes for CLCP and 2PC. So on average, every
single node sent 500 bytes respective 1000 bytes per committed transaction. Since we had
an average neighborhood size of 9.84 in our simulated example topology, we assume that
every message sent was received by ∼ 10 nodes.
In the following we calculate the energy needed to execute one transaction and relate the
result to the available energy on our sensor node platform pacemate. Therefore, we first
determine how long it takes the Pacemates to send 500 bytes respective 1000 bytes. Then
we simply divide the energy available by the energy consumed by sending and receiving
this particular time.
The Xemics XE1205 transceiver used in our sensor node platform Pacemate has the fol-
lowing power consumption and data transmission rate:

• Power consumption when receiving: 15 mA
• Power consumption when transmitting: 75 mA (15dBm)
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Figure 3.12: 2PC with Caching outperforms 2PC and CLCP at different message losses

• Maximum data rate: 152.3 kilobits per second

The Pacemates are equipped with 2500 mAh rechargeable batteries. If we assume a node
would just transmit data until its battery is depleted, then the node could transmit for
2500/75 = 33.3̄ hours. In the following we calculate how long it takes a Pacemate approxi-
mately 500 bytes needed for one transaction with the Two Phase Commit with Caching pro-
tocol (respective sending the 1000 bytes needed for one transaction with CLCP or 2PC).
The maximum data rate is 152.3 kilobits/s = 19.0375 kilobytes/s, so the cumulative
transmission periods take

• 0.025 s for Two Phase Commit with Caching and
• 0.05 s for CLCP or 2PC.

Consequently, we get for the power consumption of one transaction per node

• 0.025s ∗ 75mA+ 0.025s ∗ 10 listeners ∗ 15mA = 5.625mAs (2PCwC)
• 0.05s ∗ 75mA+ 0.05s ∗ 10 listeners ∗ 15mA = 11.25mAs (2PC or CLCP)

This means if we only perform transactions and do not run an application also, the power
of the batteries is sufficient for running approximately 800,000 transactions with 2PC or
CLCP or for running approximately 1,600,000 transactions with 2PCwC (2, 500mAh =

150, 000mAmin = 9, 000, 000mAs and 9, 000, 000mAs/5.625mAs = 1, 600, 000).
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So what do these numbers mean? Of course the chosen protocol does not matter in terms
of energy consumption, if only a very low number of transactions are performed during
the lifetime of the application. So the need for efficiency strongly depends on the appli-
cation and the required lifetime of the deployment. But we have to keep in mind that the
usage of CLCP for a moderate number of participants (more than ten) is not even feasible
when energy consumption can be neglected because (a) CLCP requires a large footprint
(∼ 30 kB) and (b) the message sizes grow in square with the number of participants. This
is a problem in wireless sensor networks since exceeding a message size of ∼ 50 Bytes
increases the probability of collisions on the MAC layer [126].
Memory consumption. The memory consumption of a protocol for the processing of
a transaction is important because the memory of sensor nodes is limited and so is the
maximal number of transactions that can be processed concurrently.
The dynamic memory consumption for the transaction data structures for CLCP, 2PCwC
and 2PC is shown in Figure 3.13.
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Figure 3.13: Due to the used commit matrices, the memory consumption of CLCP grows
with the square of the number of participants while the memory consumption of 2PCwC
grows only linearly

While for 5 participants, we have a memory consumption of 336 bytes for CLCP and 200
bytes for 2PCwC, for 10 participants we already have 484 bytes for CLCP and only 228
bytes for 2PCwC. So it is obvious that the memory consumption for CLCP grows in square
of the number of participants while the memory consumption of 2PC and 2PCwC only
grows linearly with the number of participants.
If we consider the Pacemate sensor node platform with 32 kilobytes memory and assume
that 2 kilobytes are reserved for transactions, then we can process 13 transactions con-
currently with 2PC, 8 with 2PCwC but only 4 transactions with CLCP when we have 10
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participants. The memory available for the transaction management is obviously deter-
mined by the memory usage of the general application which is running in the wireless
sensor network.
We elaborate on the memory demands of the program code of the three protocols in Sub-
section 6.2.3.

3.5.2 Real Node Deployment

To confirm the simulation results, we deployed 20 Pacemates on the corridor of our institute
like shown in Figure 3.1. We started 25 transaction with 2PC and 25 transactions with
2PCwC. The coordinator could repeat its request for vote six times. We repeated both test
runs 25 times.
As shown in Table 3.3, with 2PC, a mean of 53.44% of the started transactions committed,
with our 2PCwC, 83.84% transactions committed. The costs were on the average 4988
bytes per commit for 2PC and only 3997 bytes per commit for our protocol 2PCwC. This
is 249.4 bytes per node for 2PC and 199.9 bytes per node for 2PCwC. So our 2PCwC
protocol performs significantly better in real world environments.

2PC 2PCwC
Commit Rate 53.44% 83.84%
Transmitted Bytes per Commit per Node 249.4 199.9

Table 3.3: The results on the Pacemates approve the results obtained by simulations



Chapter 4

Concurrency Control

A number of sensor network databases (SDBS) have emerged in recent years. The most
prominent ones are TinyDB [127], SwissQM [133, 134] and StonesDB [45]. While TinyDB
is mainly an abstraction layer for simplifying the querying of wireless networks measuring
live data by providing an SQL-like interface, StonesDB makes use of a node’s flash mem-
ory to store historic data. In StonesDB the measured data is then processed directly on the
node and only relevant items are forwarded to the gateway in order to save transmission
costs.
What has been missing in sensor databases compared to traditional databases until now is
the capability of transaction processing. This has mainly two reasons: On the one hand,
the severe resource constraints of wireless sensor networks make the implementation of
complex protocols complicated. On the other hand, until now exclusively read-only queries
have been considered in sensor network databases. However, as Guergen et al. [69] point
out, the variety of emerging sensor networks applications also demands for update queries,
for example, system management queries which allow the alteration of a data model at
runtime.
Consider as an example a continuous query that asks for the average temperature in Celsius
in each section of a factory. The result is used to trigger a fire alarm if a certain threshold is
met. Now consider a concurrent update query which modifies the measuring unit of section
A to Fahrenheit. If no concurrency control is present which guarantees the isolation of both
transactions, a false alarm might be triggered.
System management queries are not only needed for changing a measuring unit, but also,
for example, when nodes are relocated and the position information needs to be changed
at runtime. Another application domain for concurrency control protocols and also atomic
commit protocols in wireless sensor networks are sensor and actor networks.
Whenever nodes not only measure their environment but also perform actions based on
their measurements, a transaction concept might be needed, especially in a military envi-
ronment, but also in civil application domains. As an example for distributed agreement,
consider four unmanned vehicles crossing an intersection [12]. Somehow the cars must
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agree on an order for crossing the intersection to prevent accidents. In general, the coordi-
nation of multiple actors can be required in the following situations [4]:

• One actor may not be sufficient to perform the requested operation.
• It might be required that an action is performed by exactly one actor.
• If multiple actors perform an operation, this has possibly to be done simultaneously

so that synchronization is required.
• If a region is covered by multiple actors, they might all have to cover their own

region, so that no overlaps occur. Hence, mutual exclusion must be guaranteed.
• Ordered execution of tasks might be relevant.

According to Akyildiz et al. [4], a task performed by actors is defined as an atomic unit of
computation and control. Also, it might be required that a certain task is by no means exe-
cuted by all possible actors at the same time, like in the case of disposers of a tranquilizing
gas, which could lead to catastrophic events.
Hence, to achieve a well defined behavior, concurrency control for wireless sensor networks
is needed, which is neither considered by Ayari et al. [12] nor by Akyildiz et al. [4]. We
believe that the well-known serializability concept from the database area [16] is able to fill
this gap in order to enable more sophisticated sensor network applications. However, the
usage of well known algorithms like two-phase locking, timestamp ordering or validation
is not straight forward since wireless sensor networks pose new challenges in terms of
message loss and severe resource constraints.
In this chapter we analyze the mentioned concurrency control protocols with regard to their
usage in wireless sensor networks and integrate an adapted version of each protocol in the
well known Two Phase Commit (2PC) protocol [16]. Evaluation results of 2PC obtained
from simulation and experiments with real sensor nodes can be found in [165, 166, 167,
168, 169].

Organization

The remainder of this chapter is structured as follows:

• In Section 4.1, we outline related work on concurrency control in wireless sensor
networks, mainly on sensor network databases and concurrency control protocols in
mobile ad hoc networks.

• We describe in Section 4.2 how we adapted the traditional concurrency protocols
locking, timestamp ordering and validation for wireless sensor networks with respect
to their severe resource constraints.

• We evaluate and compare the implemented protocols by performing experiments
with the network simulator Shawn in Section 4.3. We also describe our implementa-
tion of locking for the sensor node platform Pacemate. To the best of our knowledge
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this is the first work reporting an implementation of a database concurrency control
protocol for real sensor nodes.

• Section 4.4 concludes this chapter.

4.1 Related Work

In this section we briefly outline related work in the areas of sensor network databases and
concurrency control in mobile and ad hoc networks.

4.1.1 Sensor Network Databases

The existing sensor network databases TinyDB [127] and StonesDB [45] do not provide
any transaction processing capabilities. Levent et al. [69] claim that these capabilities are
needed and describe an algorithm for the concurrent processing of continuous queries in
a wired sensor network. The algorithm is not implemented and the unique properties of
wireless networks are not considered in depth by the authors. Therefore, we review related
work in the area of mobile and ad hoc networks.

4.1.2 Concurrency Control in Mobile Ad Hoc Networks

There are significant differences between Mobile and Ad hoc Networks (MANets) on one
hand and wireless sensor networks on the other hand. Common examples of MANet de-
vices are mobile phones or palms. Wireless sensor networks are considered to be a subset
of MANets. They often consist of a higher number of nodes which are distributed with a
higher density and in varying topologies. Wireless sensor networks can also suffer from
higher failure rates and also from more severe restrictions in terms of storage capacity and
processing power. Another important difference is that sensor nodes are seldom recharged,
in contrast to devices like mobile phones or palms. Therefore, it is much more important
to save energy in wireless sensor networks. Since transmitting and receiving consumes
the most power in sensor networks, most energy can be saved by reducing the transferred
volume of data.
Lee et al. [111] consider MANets and introduce a protocol for broadcast environments
where read only transactions can be validated on clients only. Since we do not differentiate
between clients and servers, we need a more general kind of concurrency control.
Brayner et al. define the correctness criterion Mobile Semantic Serializability [28] and de-
scribe SESAMO [27], a concurrency control algorithm which relaxes global serializability
and provides mobile semantic serializability instead.
Xing et al. [203] propose an optimistic concurrency control algorithm for MANets called
Sequential Order with Dynamic Adjustment (SODA) which relies on a clustering algo-
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rithm. Although using clustering could also be beneficial for our implementation, the au-
thors do not consider the severe resource constraints of wireless sensor nodes.

4.2 Adapting Traditional Concurrency Control Protocols

As outlined in the introduction, emerging applications for wireless sensor networks demand
for concurrency control. Examples are update queries in sensor network databases like
system management queries and wireless sensor and actor networks. In this section, we
outline our implementation of traditional concurrency control protocols for wireless sensor
networks. Every protocol was integrated in the Two Phase Commit (2PC) protocol to
provide atomicity and serializability.
One major difference between traditional distributed database environments and wireless
sensor network databases are the missing logging capabilities. Traditional database systems
provide the possibility to recover from a crash of a participant by writing temporary data
to a stable storage which can be accessed after the failed node has been restarted. We did
not implement logging in our protocols since contrary to database server, crashed sensor
nodes are considered to be either damaged our out of power. Hence, they do not restart and
cannot recover.
Another major challenge are the severe resource constraints of sensor nodes. We describe
how we have taken them into account in the next subsections.

4.2.1 Locking - Strong Strict Two Phase Locking (2PL)

The widely used Strong Strict Two Phase Locking (SS2PL) is described by Gray et al.
[63]. It guarantees serializability by first acquiring locks on all accessed resources (phase
1), performing the requested operations if all locks were granted and releasing the locks
afterwards (phase 2). Since our application domain is a distributed sensor network, we
also implemented a distributed management of locks. This means each participating sen-
sor node locks the accessed resources (if not already locked) when receiving a begin vote
message and unlocks the resources when receiving the commit or abort decision from the
coordinator. Global deadlocks due to locking generate automatically voting-deadlocks in
2PC, and are thus resolved automatically by 2PC when the respective coordinator timeout
expires. This behavior was generalized by the principle of commitment ordering by Raz
[164]. If a node does not receive the commit or abort message from the coordinator, the
respective resource remains locked. To prevent this blocking, our participants broadcast
a HelpMe message if they do not receive the decision message. While this decreases the
number of blocked resources, it cannot guarantee that no resources remain locked since
coordinating nodes can fail and message loss can occur repeatedly.
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4.2.2 Timestamp Ordering (TO)

As outlined in Section 2.1, timestamp based concurrency control is also called Timestamp
Ordering (TO) and is described by Bernstein et al. [17]. Using this technique, serializabil-
ity is guaranteed by timestamps assigned to data objects and transactions. The validation
of timestamps is performed at each sensor node participating in the transaction, leading to
an inherently distributed, deadlock free protocol. A globally unique timestamp is assigned
to every transaction at begin of transaction (BOT). A globally unique timestamp can for
instance be determined by using the node ID and its local time [106]. Without synchro-
nization, no monotonic increasing of the timestamps is guaranteed, which can lead to the
abort of transactions. Using timestamp ordering, the global execution order of transaction
is predefined by their timestamps. Conflicting operations must occur in the order of the
transaction timestamps. Although time synchronization in wireless sensor networks is pos-
sible and a lot of publications deal with this topic (see, for instance, Römer et al. [171]), it
induces a significant overhead and it is hard to guarantee globally unique timestamps in a
timely manner under message loss.
To be able to validate the transaction timestamps, a read timestamp (RTS) and a write
timestamp (WTS) are assigned to every data object. These timestamps are always updated
if the data object is accessed by a transaction. A read transaction T on an object x is
aborted, if ts(T ) < WTS(x) holds. A write transaction T on an object x is aborted,
if ts(T ) < max{WTS(x), RTS(x)} holds. Although timestamp ordering is deadlock
free, blocking can occur. Assume T1 has successfully updated data object x, but has not
committed yet. Assume also, that T2 wants to read x. If T2’s read access is allowed and
T1 is aborted later, then T2 must also be aborted. This can lead to cascades. So T2 must
wait until T1 has committed, which leads to a blocking situation analogous to locking.
We decided to abort transactions in this case, because on the one hand, there may be timely
constraints due to the application and on the other hand, because the used 2PC would abort
the transaction anyway when the respective coordinator timeout expires.

4.2.3 Forward Oriented Optimistic Concurrency Control (FOCC) by
Validation

Optimistic concurrency control (OCC) by validation is introduced by Kung et al. [103].
OCC protocols are based on the assumption that conflicts occur rarely, which makes lock-
ing, for instance, an unnecessary overhead. We differentiate between the three phases:
read, validate and write.
i) Read phase: In this phase a transaction reads its needed data objects and performs its
writes to its own private workspace.
ii) Validation phase: The validation phase is started at EOT. It is checked if conflicts be-
tween concurrent transactions have occurred. If this is the case, the transaction is aborted.
Neither blocking nor deadlocks can occur, but frequent aborts can lead to starvation of a
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transaction.
iii) Write phase: The updates stored in the private workspace are written to the log and
update the actual database, becoming visible for other transactions.
To perform the validation, the objects to be accessed by transaction Ti are assigned to its
write setWS(Ti) respectively read setRS(Ti). According to [71], two classes of OCC pro-
tocols can be distinguished: Backward Oriented Optimistic Concurrency Control (BOCC)
and Forward Oriented Optimistic Concurrency Control (FOCC). BOCC validates transac-
tions against already committed transactions, while FOCC validates transactions against
concurrently running transactions (see Listing 4.1). Both techniques guarantee serializabil-
ity by making sure that a transaction has read all changes written by all previous success-
fully validated transactions.
The advantage of FOCC is that only real conflicts lead to aborts and that in mobile environ-
ments, nodes can work autonomously when temporary disconnected. Also, FOCC is more
flexible. While BOCC always aborts the validating transactions in case of conflicts, FOCC
also allows to abort the other conflicting transaction. When using distributed validation,
every sub transaction is validated on the node it is executed on. Global transactions are
synchronized by means of 2PC as follows: The prepare message is also used as a request
for validation. After a successful local validation, every sub transaction saves its changes
in a local workspace and sends a vote commit. If the validation fails, the sub transaction
sends vote abort and deletes the workspace. If all local validations have been successful
and all vote commit messages have been received by the coordinator, the coordinator sends
commit to the participants. These write the changes stored in their private workspaces to
the actual data.
The disadvantage of FOCC is normally that read set and write set have to be known in
advance. While this is a restriction for some application use cases, it is no problem in our
application scenario.

VALID : = TRUE;
FOR Ti = Tact1 TO Tactn DO

IF WS(Tj ) ∩ RS (Ti ) 6= ∅ THEN
VALID : = FALSE ;

IF VALID THEN COMMIT
ELSE ABORT TRANSACTION WITH LOWER PRIORITY ;

Listing 4.1: Priority based Forward Oriented Optimistic Concurrency Control (FOCC)
adapted from [71]; the currently validated transaction Tj is validated against all other active
transactions

This procedure is only sufficient for guaranteeing local serializability because the validation
order of global transactions can be different on different nodes. The problems of distributed
validation are described in detail by Schlageter [178]. One method for guaranteeing global
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serializability is to use timestamps and to make sure that the validation of all global trans-
actions is performed in the same order on all participating nodes. When the local execution
order on all nodes is identical, it is also the same as the global execution order.
The problem is that this can easily fail in wireless sensor networks due to message loss
and differing hop counts. Therefore, we used a short time interval (10 ms) to guarantee
the arrival of the begin vote message at all participating nodes of one transaction. Then we
sorted the transactions to be validated by their priorities to make sure that the transaction
with the highest priority is executed first.
Transactions arriving late (with a smaller timestamp than that of the transaction already
validated) are aborted. The same difficulties concerning time synchronization arise as with
timestamp ordering.
An additional problem arises due to the time lag of local validation phase and write phase.
Since it is not guaranteed that transactions validated successfully locally are also committed
(unsure updates), the outcome of transactions reading the unsure updates is undetermined.
One possibility to prevent this is the locking of unsure updates, which again leads to a
blocking situation analogous to locking and timestamp ordering. Since sensor nodes are
severely resource constrained devices, we again decided to abort depending transactions in
this case. Our implemented version of FOCC is called validation in the following sections
to improve the readability. In the next section we present our evaluation results.
Several optimizations of the fundamental algorithms exist, many in relation to real time
databases where validation is more commonly used than locking. Haritsa et al. [74],
for example, describe the real-time optimistic concurrency control algorithm WAIT-50.
It monitors transaction conflict states and gives precedence to urgent transactions.

4.3 Evaluation

In this section we compare the concurrency control protocols locking, timestamp order-
ing and validation in simulations performed with the network simulator Shawn [55] with
respect to their usability in wireless sensor networks.

4.3.1 Criteria

We compare the implemented protocols with regard to the criteria commit rate, which is
the number of committed transactions divided by the number of started transactions and
the costs expressed in transmitted bytes per committed transaction. Our goal is to find the
most efficient protocol for concurrent transaction processing in wireless sensor networks to
prolong their lifetime.
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4.3.2 Simulation Setup

We used the network simulator Shawn to create a simulation scenario. In this scenario,
we started 1000 transactions with each protocol for comparison matters. The constant
parameters used in our simulations with Shawn are shown in Table 4.1.

Simulation Parameter Value
Width of area (field units) 500 FU
Height of area (field units) 500 FU
Number of nodes 100
Number of simulation runs 20
Number of iterations per run 1030
Number of transactions per run 1000
Average neighborhood size 9.84
Maximum range (field units) 100 FU

Table 4.1: Constant parameters used in the simulations performed with the network simu-
lator Shawn [55]

To vary the loss rate, we simulated the Quasi Unit Disk Graph Model [100] with a max-
imum range rmax of 100 field units and varied the guaranteed minimal range rmin. The
probability p that a node at a distance of d receives a message is 1 if d < rmin, 0 if d > rmax
and decreases linearly from 1 to 0 if rmin ≤ d ≤ rmax. We also varied the number of par-
ticipants of each transaction and the ratio between read-only and writing transactions. We
repeated every experiment 20 times and report the averaged values with 95% confidence
intervals in the next subsection.

4.3.3 Results

The outcome of our protocol comparison is shown in Figure 4.1 respective Figure 4.2. The
diagrams compare the commit rates at a guaranteed range of 100 field units (this means
without message loss) in the upper diagram and a guaranteed range of 10 field units (this
means with about 63.25% message loss) in the lower diagram. We simulated all three
protocols with 10 participants and varied the percentage of write transactions from 0%,
which means exclusively read-only transactions were performed, to 100%, which means
every transaction performed a write operation.
No message loss and exclusively read-only transactions and hence no conflicts is the ideal
scenario, which is shown in the upper diagram. When performed with 0% write transac-
tion, all three protocols committed over 99% of the started transactions. The missing 1% of
the transactions have been aborted due to timeouts caused by a partly partitioned network
in one out of our 20 simulation repetitions. When the percentage of write transactions is
increased also the probability of a conflict between two transactions increases and conse-
quently, the commit rate decreases. It can be seen that validation is superior when simulated
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Figure 4.1: Experimental results from comparing the implemented concurrency control
protocols with 10 participants
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without message loss, while locking has the second highest commit rate and timestamp or-
dering performs worst. With message loss, there is a tremendous drop of the commit rate
and locking becomes superior.
The same can be said about the costs. The results are shown in Figure 4.2. While validation
is most efficient without message loss, locking is most efficient with a guaranteed range of
10 field units.
The averaged commit rates and costs are shown in Table 4.2. Figure 4.3 shows the outcome
of all three different protocols at different loss rates. Without message loss, the average
commit rate of validation was 87%, locking 56% and timestamp ordering 43%. With the
guaranteed ranged reduced to 10 field units, the average commit rate of validation was
only 31%, locking 50% and timestamp ordering 38%. So while timestamp ordering and
locking lose each about 10%, validation loses more than 50% of the commit rate. This is
because the collection of begin vote message and sorting by priorities does not perform
well if message loss occurs.

Protocol Commit Rate Costs in Bytes
No Loss Lossy No Loss Lossy

rmin 100 10 100 10
Validation 87% 31% 29907 82449
Locking 56% 50% 52685 61676
Timestamp Ordering 43% 38% 78196 92705

Table 4.2: Commit rates and costs averaged over all write ratios

We used a relatively fast timing and the simulation used perfectly synchronized clocks as
well as immediate message delivery, both of which are advantages for the timestamp order-
ing and validation. Nevertheless, locking outperformed the other protocols when simulated
with message loss. Since message loss is typical for wireless sensor networks, we consider
locking the best concurrency control protocol for this environment. The added advantage
of locking is that no work is done in vain: a significant advantage because it further extends
the lifetime of sensor nodes.
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Figure 4.2: Experimental results from comparing the implemented concurrency control
protocols with 10 participants
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4.3.4 Memory Demands

The memory demands of the implemented concurrency control protocols for the network
simulator Shawn including the simulation scenario are shown in Table 4.3. The whole code
is comprised of 3320 statements. Since each of the concurrency control protocols is inte-
grated in 2PC, the code has roughly the same size, which is 513 statements for locking, 566
statements for timestamp ordering and 603 statements for validation. Locking is obviously
the protocol which consumes the least resources.

Code Statements
Resource management 609
Validation 603
Message forwarding 587
Timestamp Ordering 566
Locking 513
Simulation scenario 442

Table 4.3: Code size of the implemented concurrency control protocols, the whole code
contains 3320 statements

4.3.5 Experiments with Real Sensor Nodes

Simulations give only limited insight into the real world behavior of algorithms due to their
simplifications of reality. Oftentimes a flat world is simulated, resource consumptions are
not taken into account or one of many other potential simplifications is calculated. Our
simplified simulation environment is an advantage for timestamp ordering and validation
because we provided perfect time synchronization, which is not available in real wireless
sensor networks. Nevertheless, the results show the advantage of locking and consequently,
we did only implement locking for real sensor nodes.
We implemented two phase locking integrated in 2PC for the sensor node platform Pace-
mate [122], to prove the feasibility of the protocol. With a Philips LPC 2136 processor, 32
kByte RAM and 256 kByte flash ROM it has roughly the same resources as common sensor
nodes, like Mica2 nodes, but offers a display and buttons for easier debugging of applica-
tions. In the experiments performed with the Pacemate sensor nodes, we gained commit
rates similar to the simulation results. There are several ways to improve the commit rate.
On the one hand, the acknowledgement of messages can be used and messages can be sent
until they are finally received. This is a problem in the presence of node failures, since
messages are often sent infinitely because node failures cannot be detected. Another way
of improving the commit rate is the usage of more sophisticated commit protocols than
2PC.
We recommend the usage of our variant of 2PC called Two Phase Commit with Caching
(2PCwC) which has been introduced in the last chapter. In 2PCwC, participants of a trans-
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action cache messages from other participants to be able to reply in place of them if their
messages get lost. We have shown in experiments with 20 Pacemate sensor nodes that our
protocol can increase the commit rate from 53% to 84% and also significantly lowers the
costs. In large sensor networks containing more than about 200 nodes, one should abstain
from flooding and use routing protocols with better scalability properties like georouting
[169].

4.4 Results

In this chapter we outlined our implementations of traditional concurrency control proto-
cols for resource constrained wireless sensor networks. We have shown that traditional
locking is superior to timestamp ordering and validation when considering the commit rate
and the efficiency. Beyond that, locking does not require time synchronization like times-
tamp ordering and validation. The additional advantage of locking is that no work is done
in vain in the highly resource constrained sensor networks, which saves energy. We also
implemented locking integrated in 2PC for the sensor node platform Pacemate to validate
the feasibility of the protocol for resource constrained wireless sensor networks.



Chapter 5

Service Migration

In recent years, service oriented architectures have made their way from business applica-
tions to wireless sensor networks (see for example [105, 129, 130]). While the advantage
of service oriented architectures is mainly a greater flexibility, they also allow non com-
puter scientists easy development of applications for wireless sensor networks by offering
a graphical user interface that can be used to combine simple services to complex services
as implemented in the service oriented operating system Surfer OS [124].
One example of the increased flexibility offered by service orientation is the concept of
service migration. It allows to deploy a general network running Surfer OS without assign-
ing a task to the network yet and migrating later services into the network to perform their
tasks. It is also possible to migrate services including their states from nodes about to run
out of energy to other nodes.
Service migration has been implemented and evaluated several times, for example using
the Trickle algorithm described by Levis et al. [113, 114], and also in our working group
for Surfer OS, where a migration of a service including its state is already possible [124].
What is still missing is the consideration of the consistency of the service migration. If a
service is migrated only with eventual consistency like in Trickle, there is a certain period
called the inconsistency window during which inconsistencies can arise. These inconsis-
tencies can lead to undesired application behavior, like alarms which are not triggered or
results of long running measurements getting lost.
Our approach is to use atomic commit protocols to achieve strict consistency when migrat-
ing a service from one node to another. In particular, we implemented service migration
with strict consistency using either the Two Phase Commit (2PC) protocol [63] or our own
atomic commit protocol Two Phase Commit with Caching (2PCwC) [168], which exploits
broadcast communication to increase the commit rate in the presence of message loss.
Special attention must be paid to events happening during the migration or messages sent
during the migration of a service. This is because migrating and installing a new service in
the operating system takes time, for example for writing the code to the flash. During these
operations, the node receiving the new service cannot yet receive messages intended for the
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new service. Our approach is to cache these messages and / or events by another node in
the proximity, and transfer these to the destination as soon as the migration is finished.

Organization

The remainder of this chapter is structured as follows:

• An overview of related work in the areas of service discovery and service migration
in wireless sensor networks is given in Section 5.1.

• We describe our consistent service migration in the context of a complete service
discovery scenario for wireless sensor networks in Section 5.2. We take into account
the transactional reconfiguration of data paths and buffer messages and events during
the service migration. The strict consistency of the service migration is implemented
by using atomic commit protocols.

• In Section 5.3, we describe our implementation for the network simulator Shawn
[55], where the commit protocols used for service migration also incorporate gossip-
ing [70] to save transmission costs. We also outline our implementation of service
migration for the sensor node platform Pacemate [122] running the service oriented
operating system Surfer OS [124].

• In Section 5.4, we compare our transactional service migration using different atomic
commit protocols, either 2PC or 2PCwC, each implemented using either flooding or
gossiping, with service migration guaranteeing only eventual consistency utilizing
Trickle. We show that transactional service migration offers a higher degree of con-
sistency since 100% to 30% fewer messages are lost during migration. We also show
that our approach is feasible in practice by providing results obtained from experi-
ments with Pacemate sensor nodes.

• We conclude this chapter in Section 5.5.

5.1 Related Work

In this section, we briefly sketch related work in the areas of service discovery and service
migration in wireless sensor networks and mobile ad hoc networks.

5.1.1 Service Discovery

Service discovery in wireless sensor networks can be done in many different ways, de-
pending on the characteristics of the particular deployment in terms of size, mobility, het-
erogeneity and other aspects.
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Mian et al. [132] give a survey of service discovery protocols in multi hop mobile ad hoc
networks. The authors discuss service description, registration, discovery, routing and also
aspects of mobility support. Figure 5.1 shows the design space of service discovery proto-
cols with the parameters network size and mobility. The basic message of Figure 5.1 is that
a large number of nodes demands for an infrastructure to enable efficient service discovery,
while high mobility makes it hard to use an infrastructure. Considering a moderate network
size (100 to 200 nodes) and limited mobility, our scenario corresponds to a directory based
one without the support of an overlay network (framed in Figure 5.1).

Small Medium Large
     Network Size

High

Medium

Low

M
ob

ili
ty

Directory-less
without 
overlay
support

Directory-based 
without overlay support 
or directory-less with 

overlay support

Directory-based 
with overlay 

support

Figure 5.1: Design space of service discovery protocols with the parameters network size
and mobility adapted from Mian et al. [132]

Several approaches for service discovery in wireless sensor networks or mobile ad hoc
networks exist, for example by Marin-Perianu et al. [130], Li et al. [115] and Sailhan et al.
[176], but none of the referenced approaches considers service migration or even consistent
service migration.
A trajectory based discovery protocol for convex wireless sensor networks is described by
Kaur et al. [97] for TinyOS.
Costa et al. [39] adapt Jini to wireless sensor networks. They develop an own Java Vir-
tual Machine (JVM) and realize Remote Method Invocation (RMI) through Transmission
Control Protocol (TCP).
Schiele et al. [177] describe energy efficient service discovery for ubiquitous devices. The
idea is to use clustering so that the nodes other than the cluster heads can sleep, which can
save 66% of the power. The evaluation parameters are not appropriate for wireless sensor
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networks, since a bandwidth from 1 mbps to 10 mbps and message sizes of 1 kilobyte to
20 kilobytes are used in simulations with ns2.
Zhou et al. [210] compare the Service Location Protocol (SLP), Jini, Bluetooth’s Service
Discovery Protocol (SDP), Salutation, and Universal Plug and Play (UPnP) and state that
they are not applicable for wireless sensor networks since they do not consider the specific
requirements like large number of nodes.
A taxonomy of self-configuring service discovery systems is introduced by Sundramoorthy
et al. [190].

5.1.2 Service Migration

Trickle

Levis et al. [113, 114] propose Trickle, an algorithm for propagating and maintaining code
updates in wireless sensor networks. Trickle uses polite gossiping techniques where motes
periodically broadcast code summaries to local neighbors but do not broadcast if they have
recently heard a broadcast of their own code summary. Table 5.1 shows the parameters and
variables used by Trickle, and Trickle’s pseudo code is shown in Table 5.2.

τ Communication interval length
t Timer value in range [ τ

2
, τ ]

c Communication counter
k Redundancy constant
τl Smallest τ
τh Largest τ

Table 5.1: Trickle parameters and variables (from [114])

τ expires Double τ , up to τh. Reset c, pick a new t.
t expires If c < k, transmit.
Receive consistent data Increment c.
Receive inconsistent data Set τ to τl. Reset c, pick a new t.

t is picked from the range [ τ
2
, τ ]

Table 5.2: Trickle pseudo code (from [114])

While Trickle has been proven to be efficient as scale with the density of the network, only
eventual consistency is provided. Since the Trickle algorithm evolved to a basic networking
primitive in wireless sensor networks, we compare it with our approach in Section 5.4. The
description of the determination of Trickle’s parameters for our application scenario can be
found in Appendix A.
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Other Approaches

An overview of several reprogramming approaches has been published by Wang et al.
[199]. Consistency demands are not considered explicitly.
Yu et al. describe Melete [207], which works like Trickle but uses dissemination restricted
to a defined hop count to limit the flood.
Deluge, described by [88], extends Trickle by allowing the dissemination of code with
bigger size by splitting messages and using pipelined dissemination.
Lee et al. [109] propose the use of the Electrically Erasable Programmable Read-Only
Memory(EEPROM) of a sensor node when disseminating new code, but also do not con-
sider consistency demands.
Riva et al. [170] describe the implementation of mobile services which can migrate from
node to node to accomplish their tasks. The application scenario is migration from vehicle
to vehicle, but without the use of service discovery or service consumers.
Fok et al. [56] describe Agilla, an adaptive middleware approach for wireless sensor net-
works. It uses the cloning of services, but without consideration of consistency guarantees.
Sommer et al. [188] describe different scenarios for service migration. The general appli-
cation scenario is a network of various devices building a smart home. They state a need for
consistent updating of data paths in a transactional way, but the authors do not give details
about an implementation of consistent service migration.
We describe our approach for consistent and stateful service migration in the next section.

5.2 Consistent Service Migration

In this section, we first describe our service discovery scenario and state our assumptions.
Then we compare consistency demands of different services and describe our approach for
consistent service migration using message buffering.

5.2.1 Service Discovery Scenario

We select a service discovery approach which uses a non structured and non overlay net-
work with service directories. Figure 5.2 shows the interaction of nodes performing differ-
ent roles in our service oriented sensor network.
Instead of using only one service directory as in the traditional service discovery triangle,
our publish-subscribe approach uses several service directories to achieve better scalability
in service discovery and also fault tolerance. The service directories maintain mappings of
service to the nodes that run these services. In Figure 5.2, Service X is located on Service
Provider A, for example.
If a requester intends to use Service X, it can get its location by querying one of the service
directories, which deliver the location. In our example in Figure 5.2, Service X running on
Service Provider A is then bound at runtime to the requester.
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Figure 5.2: We consider different roles in our service oriented sensor network: Service
directories, service requesters, service providers and sensors. Directories are used by re-
questers to locate services running on providers. Providers receive data streams from sen-
sors, process these streams and offer services.
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5.2.2 Service Migration

To clarify our service migration scenario, we assume that Service Provider A runs out of
energy. To allow the whole sensor network to continue its task, Service X is migrated to
Service Provider B. To keep the information maintained on the service directories consis-
tent, this has to be done in the form of an atomic transaction.
This transaction Tmigrate_Service contains the following three steps:

1. Replicate Service X including its state from Service Provider A to Service Provider
B (i.e. copy it physically).

2. Delete Service X on Service Provider A.
3. Update the mapping on the service directories, so that nodes using this service can

find its new location.

In the following, we differentiate between simple service migration, where code is moved
or copied from one node to another without any consistency guarantees, and consistent
service migration, where we assume that either the service is successfully migrated or no
sub steps take place (copy the service to the new node, delete the service on the old node,
update the service directory). Our approach is to use atomic commit protocols to achieve
strict consistency when migrating a service from one node to another. Atomicity is not
only needed for the consistent maintenance of several service directories, but also if the
services to be migrated have a status that has to be kept consistent. We clarify this in the
next subsection.

5.2.3 Consistency

We consider consistency in two aspects: service discovery and the state of the migrated
service.

Consistency of the Service Discovery Process

Since any of the existing service directories can be used by a requester for locating a service
provider, it is necessary to maintain a strict consistent mapping of services to their nodes on
each service directory. We use the term strict consistency with the meaning of one copy se-
rializability in the database area, which means that the replicated database system behaves
like a traditional database system consisting of one copy as far as the perception of the user
is concerned [17]. If the service directories can only guarantee eventual consistency, it can
happen that service discovery fails repeatedly because false locations are delivered to the
requesters. Figure 5.3 shows an example, where messages get lost due to migration with
only eventual consistency using Trickle.
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Figure 5.3: At first, S1 and S2 send their data to P1. After the migration, both should send
to P2, but since S1 has not received the update, it still sends to P1.

Consistency of the Migrated Service

First we distinguish between stateless and stateful services. Traditionally, simple state-
less services are migrated with eventual consistency, so no transaction concept is needed.
Examples for simple services are queries or plain functions like data converters or logic op-
erators like described in [188]. The migration of these services can be done in an efficient
way via Trickle [113, 114], since these services do not even require any state.
More complex services like an alarm service or a data aggregation service can have a de-
fined state. When the service migrates, the state of the service also has to be transferred in
a transactional way, for example with the Two Phase Commit (2PC) protocol. Otherwise,
a false alarm could be triggered in case of an alarm service, or no alarm could be triggered
when needed, which can have severe consequences.
Consider a long term deployment where a large number of sensor nodes have been dropped
over a huge forest and no gateway is present. In this case, consistent service migration
could be used to transfer a service, which has already aggregated important data items over
a long period of time, from a node with a nearly depleted battery to a fresh node.
Table 5.3 shows a comparison of services needing strict or eventual consistency when being
migrated. The table shows that for the consistent migration of stateful services, additionally
to the mere migration of the code, also messages sent and events occurring during the
migration have to be buffered and data paths have to be reconfigured in a transactional
way. We explain the buffering of messages during a service migration in the following
subsection.

5.2.4 Message Buffering

A simple example of a service migration considering the data paths is also shown in Fig-
ure 5.2. When Service X is migrated from Service Provider A to Service Provider B, the
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Strict Consistency Eventual Consistency
Actions -Transactional migration of code Replication of Code

-Buffering of messages and
events during migration
-Transactional reconfiguration
of data paths

Examples Alarm service Data converter
Data aggregation Logic operator
... ...

Table 5.3: Consistency Demands of Different Services

sensor needs to start sending its data temporarily to both Service Providers, A and B. When
the migration is done and the status of Service Provider A also has been transfered to Ser-
vice Provider B, the data messages buffered during the migration by node B have to be
processed and the status of Service X on Service Provider B must be updated before the re-
quester can get a new bind to Service Provider B. A feasible implementation of transaction
processing capabilities is the prerequisite for this.

5.2.5 Cost Function for Service Destination

One open question is how to select the appropriate destination when migrating a service to
a new node. For the experiments executed for this chapter, we selected a random node in
the proximity of the source of the service to be migrated. A more sophisticated approach
would be to take the remaining battery capacity, available RAM and other characteristics
into account.

5.2.6 Outlook on Adaptivity

Based on the characteristics of a particular deployment of wireless sensor networks, and
especially to the consistency demands of the service to be migrated, the best protocol can
be selected at runtime. One could start with looking at the consistency demand of the
service to be migrated and then select Trickle or transactional migration. If transactional
migration was chosen, the next step would be to choose the appropriate commit protocol for
example depending on the number of participants or the current message loss. The adaptive
selection of commit protocol in combination with routing protocol has been outlined in
[167], Chapter 6 contains a comprehensive report.
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5.3 Implementation

The implementation of our transactional service migration approach is outlined in this sec-
tion. On the one hand, we implemented our solution for the network simulator Shawn
[55] to be able to evaluate the behavior of our protocol with a large number of nodes (100
to 200). On the other hand, we implemented a part of our solution for the sensor node
platform Pacemate [122] running the service oriented operating system Surfer OS [124] to
validate the feasibility of our approach.

5.3.1 Shawn Network Simulator

We implemented 2PC and 2PCwC for the network simulator Shawn [55]. Both protocols
were implemented using either flooding, gossiping [70] or georouting [96] as shown in
Figure 5.4.

«interface»
Routing

RoutingManager

Flooding Gossiping GeoRouting

«interface»
TransmissionModell

QUDM Random

Figure 5.4: Our implemented routing protocols and transmission models in addition to
Shawn

We also implemented the Trickle algorithm [113, 114] (see Section 5.1.2). The determina-
tion of Trickle’s parameter for our application scenario is described in Appendix A.
Gossiping is a technique that can be used in dense networks to alleviate the broadcast storm
problem outlined in Section 2.2.3. It means that, in contrast to flooding, each node forwards
a message only with some probability, to reduce the overhead of the routing protocols. In
summary, we implemented the following protocol combinations:

• 2PC using flooding

• 2PC using gossiping

• 2PCwC using flooding

• 2PCwC using gossiping

• Trickle
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Additionally, we implemented the services needed for our service discovery scenario de-
scribed in Figure 5.2, namely a Service Directory, Service Provider, Sensor, Service Re-
quester and Service Manager.
Listing 5.1 shows a part of the interface of the Service-class. The interface offers meth-
ods for serializing and de-serializing a service, and also for starting, stopping and destroy-
ing the service. The method fillDependentTo is used to define other dependent ser-
vices which need to be participants of a possible transactional migration.

1 class Service {

2 public:
3 [...]

4 virtual void serialize(uint8* state, uint8 size) = 0;

5 virtual void deserialize(const uint8* state, uint8 size)

= 0;

6 virtual uint8 getSerializedSize() = 0;

7 virtual void start() = 0;

8 virtual void stop() = 0;

9 virtual void destroy() = 0;

10 virtual void fillDependentTo(isense::stl::list<uint16>&

list) = 0;

11 [...]

12 };

Listing 5.1: Part of the service interface

Figure 5.5 shows the code size of our implemented system. It can be seen that the commit
protocols and the routing algorithms are the lion’s share of the implemented scenario.

5.3.2 Pacemate Sensor Nodes

To validate our approach on real sensor nodes, we used the sensor node platform Pacemate
[122] running the service oriented operating system Surfer OS [124]. Basically, we im-
plemented the atomic commit protocols 2PC and 2PCwC (in the services Coordinator and
Participant), an aggregation service to be migrated and a service for buffering messages
during the migration of the aggregation service. We omitted the implementation of service
directories for now and focused on the migration in a one hop neighborhood. A summary
of the implemented services for a scenario of four nodes is shown in Table 5.4.
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Figure 5.5: The code size of our service discovery and migration scenario implemented for
the network simulator Shawn [55]; the entire code contains 2291 statements (semicolons)

Node (Role) Service Size in bytes
2PCwC 2PC

Node A Coordinator 6560 5692
(Old Service Migration 2072 2100
Provider) Aggregation 1488 1488

10120 9280
Node B Participant 7836 5832
(Sensor) Data Stream 1448 1448

Vote Handling 1804 1804
11088 9084

Node C Participant 7836 5832
(Message Buffer) Vote Handling 1804 1804

Message Buffer 2036 2276
11676 9912

Node D Participant 7836 5832
(New Service Aggregation 1488 1488
Provider) 9324 7320

Table 5.4: Implemented services for the operating system Surfer OS [124]
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5.4 Evaluation

In this section we first outline the used evaluation criteria. Then we describe the simulations
with the network simulator Shawn and the experiments we performed with the Pacemate
sensor node platform and report our results.

5.4.1 Criteria

The criteria chosen for comparison of the implemented protocols are the costs in transmit-
ted bytes per service migration and the degree of consistency in number of missed mes-
sages. In the simulation scenarios, we basically executed a number of service migrations
and compared the costs. The scenarios are explained in more detail in the following sub-
sections.

5.4.2 Simulations

We describe the experimental setup for Shawn and the results of our simulations in the
following subsections.

Experimental Setup

To perform the simulations, we used Shawn to create a scenario according to Figure 5.2
and initialized it as follows. Before the start of the simulation, the service providers were
attached to nodes, and to sensor services. The service directories were started with consis-
tent views of the deployed services. The requester node only has a certain intention which
service it wants to find, but has to do service discovery first.
When the simulation started, the sensors sent their data streams to the service providers ev-
ery five seconds. The service discovery itself is not embedded in a transaction. That means
the service directories are not aware of bindings. The service providers sent the average
of the last five received sensor values every five seconds to the requesters. The provider
service was then migrated to a new destination chosen in the neighborhood. Between two
migrations there is a pause of 2.5 seconds, which leads to a migration of each service every
12.5 seconds. Each service migration had nine to ten transaction participants: five service
directories, two sensors, two providers and in some cases a service requester. The constant
parameters used in our simulations are shown in Table 5.5.
We also used different communication models (Unit Disk Graph [100] and Radio Irregular-
ity Model [209]) and either used a perfect MAC layer and varied the message loss from 0%
to 60%, or simulated a Carrier Sense Multiple Access / Collision Avoidance (CSMA/CA)
Medium Access Control (MAC) layer with the standard parameters of Shawn [55]. We
repeated the experiments 20 times. A comparison of the disk communication model and
the Radio Irregularity Model (RIM) is shown in Figure 5.6. RIM is more realistic and also
yields unidirectional links.
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General Width of area (field units) 500 FU
Height of area (field units) 500 FU
Number of nodes 100
Number of simulation runs 20
Number of iterations per run 1000
Sum of migrations over all runs 7486 - 7860
Average neighborhood size 9.84
Maximum range (field units) 100 FU

Services Number of service directories 5
Number of service requesters 3
Number of service providers 5
Number of sensor per provider 2 (=10 in total)

Trickle [113, 114] τlow 100 ms
(see Appendix A) τhigh 60000 ms

Redundancy constant k 6
Gossiping [70] Hops for sure broadcast 4

Broadcast probability 1 0.6
Broadcast probability 2 1.0
Neighbor threshold 6

Table 5.5: Constant parameters used in the simulations performed with the network simu-
lator Shawn [55]

(a) Unit Disk Graph ("Disk Model") (b) Radio Irregularity Model(RIM)

Figure 5.6: Comparison of communication models (from [157])
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Results

In the following, we compare the implemented service migration protocols considering
achieved consistency and costs. The consistency is expressed as number of missed mes-
sages and the costs are expressed as the number of transmitted bytes per service migration,
respectively per transaction commit.
Figure 5.7 shows the number of missed messages per protocol. It can be seen that the
transactional service migration performed with the Two Phase Commit (2PC) or the Two
Phase Commit with Caching (2PCwC) protocol leads to a lower number of missed mes-
sages, and therefore to a higher degree of data consistency. Depending on the loss rate, the
number of missed messages using transactional service migration is only 0% to 77% com-
pared to the message loss using Trickle. The gossiping variants missed a high number of
messages at a loss rate of more than 40%. Note that the message loss that occurred within
the transactional service migration is only caused by the simulated message loss because
of interference and not due to the service migration itself. The transactional service migra-
tion also has the additional advantage of ensuring strict consistency of the mapping on the
service directories. Thus, the discovery of a service is more likely to be successful.
Figure 5.8 shows the number of transmitted bytes per commit. The transactional service
migration via an atomic commit protocol is more expensive than Trickle, especially at
message loss higher than 40%. But we believe that this is a reasonable effort for increased
consistency in many use cases.
We also evaluated all protocols with Shawn’s more realistic CSMA/CA MAC layer. The
results are shown in Figure 5.9 and Figure 5.10. They support our thesis that the higher
degree of consistency achieved by the use of an atomic commit protocol is affordable in
many use cases.
Gossiping improved the consistency and the costs only in parts of the experiments, in par-
ticular when simulating CSMA/CA on the Unit Disk Model like shown in Figure 5.9 and
Figure 5.10. This is due to the higher average number of neighbors in the experiments
with the Unit Disk Model compared to the experiments using the RIM. The behavior of
gossiping is analyzed in more detail in the next chapter.
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5.4.3 Experiments with Pacemate Sensor Nodes

We also performed experiments with the Pacemate sensor nodes [122] to prove the feasi-
bility of our transactional service migration approach on real nodes.

Experimental Setup

We performed a service migration with four sensor nodes like described in Subsection 5.3.2
as a proof of concept. The nodes were deployed in a one hop distance and 20 service
migrations were started with the 2PC and also with the 2PCwC protocol. Figure 5.11
shows the simple deployment of the Pacemate sensor nodes used in our experiments. We
measured the time needed for the service migration.

Figure 5.11: The deployment of four Pacemate sensor nodes [122] used for prototyping
our consistent service migration technique. The nodes performed the roles A) Old Ser-
vice Provider B) Sensor C) Message Buffer and D) New Service Provider as described in
Subsection 5.3.2.

Experimental Results

In our experiments, 19 of the started 20 migrations were committed when using 2PCwC.
When using 2PC, 18 transactions could be committed. The total time needed for the trans-
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actional migration of a data aggregation service in our experiments was 11.2 seconds on
average for 2PCwC and 13 seconds for 2PC. This time is the sum of the time needed for
writing the new service to the flash and the timeouts of the used commit protocols. The
timeouts used to check the successful update of the flash memory were 8 seconds for both
protocols, so the migration time could probably be reduced to about 3 seconds.
The flash memory of the Pacemate sensor node controlled by the operating system Surfer
OS is structured into sectors of different sizes (4 kilobytes to 32 kilobytes) [121]. The node
needs 1 ms for writing 256 bytes to the flash and 400 ms for erasing a sector, so writing 32
kilobytes takes 32 kilobytes×1024

256bytes
= 128ms. So theoretically, it then takes 1056 ms to change

a 32 kilobytes sector A, performing the following operations: Writing A to B (128 ms),
erasing A (400 ms), writing B in a modified way to A (128 ms) and erasing B (400 ms).
In our experiments, the time needed for updating the flash was 1334 ms on average. Since
90% of the migrations performed with 2PC and 95% of the migrations performed with
2PCwC were successful, we claim that consistent service migration in a transactional way
is not only feasible in simulations but also applicable in real world scenarios.

5.5 Results

In this chapter we have outlined our concept for consistent service migration and have
shown in simulations as well as in experiments with real sensor nodes that transactional
service migration along with message buffering during the migration increases the avail-
ability and consistency of services.
We believe that the ability of consistent service migration broadens the application spec-
trum of wireless sensor and actor networks.



96 CHAPTER 5. SERVICE MIGRATION



Chapter 6

Adaptive Protocol Selection

Wireless Sensor Networks are deployed in various application scenarios under a variety
of conditions. Roemer [173] gives a comprehensive comparison of several prototypical
applications deployed in various contexts.
There are small deployments with only a few nodes and large deployments with more than
1000 nodes. Some networks are deployed very densely. That means a node has many
neighbors within the range of its communication interface, while in other networks, a node
might have only a few neighbors. The features of sensor nodes can also vary. Some are
equipped with a GPS module to provide location awareness, while other simpler nodes are
not.
Some of these characteristics also change at runtime. For instance, the node density in-
creases abruptly if additional nodes are added to an existing deployment by being dropped
out of a plane. Afterwards, while the deployed nodes perform their tasks and their batteries
deplete, the density is reduced as nodes run out of energy. There are many other examples.
Instead of providing just one algorithm for a problem or task, our approach is to provide
several algorithms for one problem and choose the appropriate algorithm at runtime. Our
experiments in the last chapters have shown that different protocols have advantages in
different environments. For instance, the Two Phase Commit with Caching (2PCwC) is
more efficient than the Two Phase Commit (2PC) protocol at high loss rates, while the
opposite is the case at low loss rates (see Figure 3.12). In this chapter we again consider the
problem of service migration and propose a schema for the adaptive selection of a commit
protocol in combination with a routing protocol to guarantee efficient service migration and
a longer system lifetime.

Organization

The remainder of this chapter is structured as follows:

• In Section 6.1, we outline related work on adaptive transaction processing and adap-
tive routing protocols.
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• Section 6.2 surveys candidate parameters for our adaptive protocol selection.

• We explain the flow of our adaptive protocol selection in Section 6.3 and describe,
how optimal thresholds are determined for the considered parameters.

• Our implementation is outlined in Section 6.4 and the evaluation is reported in Sec-
tion 6.5

• We summarize our results in Section 6.6.

6.1 Related Work

We briefly review related work on adaptive protocol selection in this section and divide it
into adaptivity in transaction processing and adaptivity in routing.

6.1.1 Adaptive Transaction Processing

The approaches by Arntsen et al. [8, 9], Serrano-Alvarado et al. [182] and Tang et al.
[193] considering adaptivity used in atomic commitment have already been mentioned in
Section 3.2. Arntsen et al. [8, 9] describe an adaptive transactional middleware frame-
work for Web Service environments. It is explained how different transaction services with
different strictnesses can be run concurrently, while the strictness has to be specified man-
ually. Serrano-Alvarado et al. [182] and Rouvoy et al. [175] describe a transaction system
which adapts to the current commit rate and uses either the 2PC-Presumed-Commit or the
2PC-Presumed-Abort protocol to reduce messages. Tang et al. [193] describe an adap-
tive context-aware transaction model for mobile and ubiquitous computing but does not
consider the specific properties of wireless sensor nodes.
Other approaches not only or not directly related to atomic commitment are described in
the following.
An approach by Payton et al. [154] computes the achieved consistency of a transaction in
the domain of query issuing in wireless ad hoc networks and attaches it to the result of a
query but does not allow to perform a transaction with a given consistency. Nuno et al.
[145] propose the use of transaction policies to support adaptive transactions to be able to
take varying properties of mobile networks into account. These policies have to be specified
manually by the user. Helal et al. [77] describe how transactions can be scheduled adaptive
to parameters like size of the transaction, number of operations, conflicts, aborts etc. These
approaches do not take the characteristics of sensor networks into account but provide
useful ideas for the application of adaptivity in sensor networks. All of these contributions
in the area of mobile wireless networks rely on a scenario where transactions run on a
network of mobile hosts where fixed hosts and mobile support stations are mandatory [50].
In these scenarios it is assumed that coordinators of transactions have to be fixed hosts that
can communicate with mobile hosts only with the help of mobile support stations. This
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enables more resource consuming techniques like logging, etc. Therefore, these approaches
are not directly applicable in wireless sensor networks.

6.1.2 Adaptive Routing

To the best of our knowledge there are no approaches where different routing protocols
are provided by sensor nodes and then chosen adaptively at runtime. Therefore, we briefly
review routing protocols that adapt to certain parameters at runtime. Wang et al. [198] de-
scribe AdaR, a routing scheme that uses a least squares reinforcement learning technique to
adapt to the properties of a wireless sensor network at runtime. Adaption in this case means
choosing an optimal route. Dube et al. [49] propose the Signal Stability-Based Adaptive
Routing (SSA) approach which finds and maintains stable routes at runtime. Several other
algorithms exist [3, 92, 116, 201]. While these approaches are adaptive to parameters of the
network context, none of these approaches take the parameters of transactions or properties
of sensor nodes into account.

6.2 Considered Parameters

There are several parameters that can be considered for the selection of the appropriate
commit protocol and routing protocol. We have already mentioned the parameters message
loss, number of nodes, density and location awareness in the introduction to this chapter.
In this section we discuss several parameters from the areas transaction properties, wireless
network context and properties of sensor nodes to identify the optimal parameters to be
considered for the adaptive protocol selection.

6.2.1 Transaction Properties

Consistency. Probably the most obvious parameter to consider when migrating a service
is the required consistency. If the service to be migrated is very simple, such as a logic
function or a data converter, and does not even require any state, there is no need for
migrating the service in a transactional way as outlined in Subsection 5.2.3, and the service
can be migrated with eventual consistency instead. This can be done by using Trickle
[113, 114] or Deluge [88].
If we do not exclusively consider service migration, but instead have a broader range of ap-
plications in mind which need transaction processing capabilities, we can consider different
properties of a transaction.
Priorities. In real time systems for instance, transactions with a shorter deadline can be
prioritized. Then a more expensive but more reliable commit protocol like 2PCwC can be
chosen for these transactions at runtime.
Number of participants. The number of participants influences the efficiency of not only
the commit protocol but also of the underlying routing protocol. Our Two Phase Commit
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with Caching (2PCwC) protocol caches the votes of other participants. This is more ef-
fective if there are more participants. At some loss rates, georouting is more efficient than
flooding. As the number of participants approaches the number of nodes in total, flood-
ing becomes more efficient. Consequently, it makes sense to determine the appropriate
protocol combination at runtime for each transaction when the number of participants is
known.
In the following, we discuss how the parameters of the wireless sensor network as a whole
can be considered for adaptive protocol selection.

6.2.2 Wireless Network Context

The parameters belonging to the network context according to RFC 2501 [38] have already
been described in the introduction of this thesis. We review them with regard to our adaptive
protocol selection.
Network Size. As Roemer [173] points out, the number of sensor nodes in existing sensor
network deployments varies strongly. While the small number of nine nodes is sufficient
for the monitoring of a glacier [131], the worldwide deployment of wireless sensor nodes
ARGO [7] contains more than 3000 nodes. In the publications that have appeared in the
2000-2005 proceedings of the ACM International Symposium on Mobile Ad Hoc Network-
ing and Computing (MobiHoc), a similar range from 10 to 30000 nodes has been simulated
(surveyed by Kurkowski et al. [104]).
While flooding is feasible in a small network of 10 nodes, flooding does not scale to a large
network, and more sophisticated routing techniques like georouting or DSDV have to be
used in this case.
Connectivity and covered area. The area covered by real deployments also varies between
a few meters and worldwide. Kurkowski et al. report areas used in simulations from 25 m
x 25 m to 5000 m x 5000 m, with a transmission range varying from 3 m to 1061 m [104].
Hellbrueck and Fischer [78] conclude, that for a MANet with connecting probability of
∼95% between two nodes, an average number of neighbors per node between 5 and 15 is
necessary.
In the last chapter we used gossiping to improve the efficiency of our commit protocols
when using flooding. Haas et al. [70] claim that gossiping gets more effective when the
network contains at least 150 nodes. We consider the number of nodes and also the con-
nectivity for our adaptive protocol selection in this chapter.
Another possibility to cope with an increased density and an increased collision probability
is the reduction of the transmission power. However, this is not possible on all sensor
nodes.
Topology Change. Examples of topology changes are failing nodes, additionally deployed
nodes, sleeping nodes, mobile nodes, moving nodes, moving obstacles and weather con-
ditions. These events can dramatically influence the connectivity inside a wireless sensor
network and must be considered by our adaptive protocol selection.



6.2. CONSIDERED PARAMETERS 101

Link capacity. The limited data rate of todays wireless sensor nodes is regarded to be
constant, although the effective data rate can vary due to interference and is not directly
considered in our adaptive protocol selection. However, it is considered indirectly because
the loss caused by interference is indeed detected.
Fraction of unidirectional links. Since Kotz et al. [98] demonstrate that realistic deploy-
ments contain a significant amount of unidirectional links, we take this into account for our
evaluation of the adaptive protocol selection but do not exploit the fraction of unidirectional
links directly.
Traffic patterns. While the variety of sensor network applications exhibit different traffic
patterns, from constant in simple sense and send applications to bursty in event detection
systems, we do not consider this parameter for our adaptive protocol selection.
Sleeping nodes. Since conserving energy is very important in wireless sensor networks, a
routing protocol needs to take the duty cycling of devices into account. We believe that the
appropriate duty cycling depends more on the actual application and do not consider this
parameter further.
The characteristics of an application are also very important for the appropriate selection of
the most efficient routing algorithm. A classification and comparison of routing protocols
with respect to different application scenarios and network topologies can be found in [19].

6.2.3 Sensor Node Properties

Since a variety of sensor nodes exist today, varying in size, sensing capabilities and re-
sources, it is also important to take these parameters into account for adaptive protocol
selection.
Location awareness. If the sensor nodes in a deployment are equipped with a Global
positioning System (GPS), a geographical routing algorithm can be used. It may be enough
to have only some of the nodes (anchor nodes) in a network equipped with the GPS since
the other nodes can determine their position in relation to the anchor nodes. There are many
other techniques for building location awareness. An overview can be found in [173] or
[34].
It is also possible that GPS could fail at runtime, for instance, if there is no satellite re-
ception anymore due to obstacles in the line of sight. In this case, nodes can switch from
georouting to flooding or other routing algorithms at runtime.
Code size. The amount of Programmable Read Only Memory (PROM) varies from 48 kilo-
bytes in the Tmote Sky (Telos B) [160] to 512 kilobytes in the Intel IMote [138]. Our target
sensor node platform Pacemate contains 256 kilobytes PROM.
The PROM available for the deployment of alternative commit and routing protocols is
determined by the footprint of the application. In the following, we outline the resource
consumption of our implemented protocols. The needed PROM of the atomic commit
protocols compared in Chapter 3 is shown in Table 6.1.
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Protocol(s) Code Size (Bytes)
2PC 210438
2PCwC 215638
2PC and 2PCwC 227206
CLCP 258678

Table 6.1: Protocol code sizes compiled for Pacemate sensor nodes

Atmos 12%

2PCwC 6%

2PC 4%

GeoRouting 3%

Application 7%

CLCP 17%

Middleware 36%

Thunks, Vtables, etc. 15%

Figure 6.1: Proportionate code size of different modules

Considering the maximum code size for our used sensor node platform Pacemate [122] of
256 kilobytes (262144 bytes), an example application containing a basic service migration
scenario compiled with CLCP needs nearly all of the available PROM. The code size of
our application compiled with CLCP is 258678 bytes, while 17% of this size are needed for
the protocol itself. The sizes of the other modules are shown in Figure 6.1. The protocols
2PC and 2PCwC can be run at the same time on our sensor nodes.
Figure 6.1 shows that the iSense middleware itself is with 36% the lion’s share of the code.
The second biggest part is CLCP, while non-virtual thunks and virtual tables used for multi-
ple inheritance in C++ are 15% of the binary code. The Atmos Middleware [167], used for
the concurrent processing of transactions with different commit protocols (see Section 3.4),
needs 12% of the code. The code size of the application itself (7%) comprises the imple-
mented services for our example service discovery and migration scenario described in the
last chapter. We use simple defines to set the available and used protocols as shown in
Listing 6.1.
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1 # i f n d e f SETTINGS_H_
2 # d e f i n e SETTINGS_H_

4 / / # d e f i n e PROTOCOL_CLCP 0
5 # d e f i n e PROTOCOL_TWO_PC 1
6 # d e f i n e PROTOCOL_TWO_PCWC 2

8 # d e f i n e PROTOCOL PROTOCOL_TWO_PC

10 # d e f i n e TWOPC_WITH_GEO

12 # e n d i f /∗ SETTINGS_H_ ∗ /

Listing 6.1: Static selection of available and used protocols in settings.h at compile
time

The shown settings define exemplarily that CLCP is not compiled, 2PC and 2PCwC are
compiled, and 2PC is used with georouting. The user can choose a setting like this if the
geographical positions are known and he needs the remaining PROM for his application.
So the number of available transaction processing protocols to be selected at runtime is
limited by the available PROM minus the application code.
Since CLCP not only needs considerably more PROM than the other commit protocols and
does not scale with the number of participants, we only consider 2PC and 2PCwC for the
experiments in the remainder of this chapter.
The important fact is that all of the implemented protocols to be selected at runtime fit into
the PROM of our Pacemate sensor node platform at once.

6.2.4 Parameters Chosen to be Considered at Runtime

In summary, we consider the following parameters for our adaptive protocol selection:

1. Consistency demands

2. Message loss

3. Location awareness

4. Number of transaction participants

5. Density (neighborhood size)

We explain in the next section how each of these parameters is interpreted to select the
most efficient protocol combination at runtime.
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6.3 Adaptive Protocol Selection

In this section, we first explain the flow of our algorithm for adaptive protocol selection.
Then we describe how the used thresholds were determined for each considered parameter.
We used the parameters given in Section 5.4.2 for the execution of our experiments if not
stated otherwise.

6.3.1 Algorithm Flow

We explain the flow of the adaptive protocol selection considering service migration as use
case, but apart from the first step, the algorithm is also applicable for any other transaction.
The protocol selection process is shown in the flowchart in Figure 6.2. First, the consistency
needed for the migration of a specific service is considered. If strict consistency is required
for the migration of the considered service, a transactional migration is started.
The first criterion that is determined is the loss rate. If the loss rate is high (above 20%), the
next parameter considered is the density. If the loss rate is low (20% or less), the availability
of georouting is checked as well as the possibility of a low number of participants.
If georouting is available and the number of participants is below 30 (in a network of 100
total nodes), then georouting is selected as routing protocol. Since the only implemented
atomic commit protocol that works with georouting is 2PC, the adaptively selected protocol
combination is 2PC with georouting.
If the loss rate is higher than 20% or georouting is not available or the number of partici-
pants is higher than 30 in a network of 100 nodes, the next parameter to be considered is
the density.
If the density is low, meaning the average number of neighbors is below 10, flooding is
used. At this stage, the loss rate, which is higher than 20%, is considered again. If it
is higher than 65%, 2PCwC is used, otherwise 2PC is used, both in combination with
flooding.
If the density is high, meaning the average number of neighbors per node is 10 or greater,
gossiping is used. If the loss rate is higher than 65%, gossiping is used with 2PCwC,
otherwise gossiping is used in combination with 2PC.
If the loss rate is lower than 65%, flooding is used with 2PCwC, otherwise flooding is used
in combination with 2PC.
The Cross Layer Commit Protocol (CLCP) is not considered in the remainder of this chap-
ter since its resource consumption is too high for resource constrained wireless sensor net-
works. In the next subsections, we explain how we determined the thresholds given in this
subsection.
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6.3.2 Determining the Threshold for Loss

Although various deployments of sensor networks exist today, reliable numbers about mes-
sage loss in multi-hop networks are hard to find. At least Szewczyk et al. [192] provide a
detailed report of 150 nodes deployed over 4 months on Great Duck Island. The authors
report medium loss rates of 42% depending on the node type. We assume that loss can also
dynamically change in deployments, for instance, due to the application behavior when an
increasing communication leads to a higher number of collisions, or due to environmental
factors such as changing weather conditions. Consider for instance a sensor network de-
ployed for environmental monitoring. If there are several regular times a day when animals
enter the monitored area, maybe in the morning and in the evening to drink from a river,
there is an increase of reported events. This can lead to a higher amount of communication
in the network and therefore to a higher probability for collisions on the MAC layer. The
current loss can be determined by using a simple ping-function as outlined in Section 6.4
Consequently, we believe that it is promising to select the appropriate protocol at runtime.
We simulated different thresholds and compare the results in Section 6.5.

6.3.3 Determining the Threshold for the Number of Participants for
the Selection of the Commit Protocol

The number of the transaction participants varies depending on the actual application. It is
considered for our adaptive protocol selection twice: first for selecting the commit protocol
and second for selecting the routing protocol.
Our intuition was that 2PCwC, which caches votes on participants, is more effective when
there are more participants. To determine the appropriate participant threshold, we per-
formed experiments with the parameters given in the last Chapter. Figure 6.3 shows our
results obtained from simulating 2PC and 2PCwC at a constant loss rate of 65% with a
varying number of participants. It can be seen that 2PCwC has a lower cost when the num-
ber of transaction participants rises over 14. So the selected threshold for choosing 2PCwC
is 14 participants.
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Figure 6.3: Impact of number of participants on commit protocol

6.3.4 Determining the Threshold for the Number of Participants for
the Selection of the Routing Protocol

The number of participants is also considered for the selection of the routing protocol,
namely flooding or georouting. Figure 6.4 shows that for a loss rate of 40%, flooding is
more efficient than georouting.
Consequently, we compare flooding and georouting at a loss rate of only 20% and vary the
the number of nodes from 50 over 100 to 150 and also vary the number of participants. The
comparison is shown in Figure 6.4. It can be seen that flooding becomes less expensive
than georouting when the number of participants of a transaction gets greater than 30. So
we selected a threshold of 30 participants for the adaptive selection of georouting.
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Figure 6.4: Impact of number of participants on routing protocol

6.3.5 Determining the Threshold for the Neighborhood Size

According to Haas et al. [70], gossiping becomes more efficient if the number of nodes in
the network exceeds 150. It is obvious that standard flooding leads to many superfluous
messages if the network is very dense.

Density

By varying the area of our simulation environment from 200 x 200 field units to 600 x
600 field units with a constant number of 100 nodes, we simulated average neighborhood
sizes from 5.52 neighbors to 45.92 neighbors. The comparison of 2PCwC and different
gossiping variants is shown in Figure 6.5.
The gossiping variants differ in the number of sure broadcasts in the beginning of a message
dissemination. In the last chapter, only 4 hops have been used for sure broadcast (see the
diamond graph in Figure 6.5). In this experiment, we can see that gossiping with only 2
sure broadcasts yields even higher cost savings.
At a very high density the advantage of gossiping decreases. This is due to the smaller
simulation area. The maximum hop is only 3. In this case, there is no difference between
flooding and gossiping, except from the larger header for broadcasting, which makes gos-
siping even more expensive than flooding at an average neighborhood size of 45.92.
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Figure 6.5: Comparison of 2PCwC with and without gossiping when varying the simulation
area

Network Size

We also increased the number of nodes in the network along with the simulation area,
which lead to a nearly constant number of average neighbors (9.48 to 10.99). Figure 6.6
shows that gossiping saves a significant amount of messages for network sizes greater than
50 nodes. Consequently, the threshold chosen for the adaptive selection of gossiping is 10
neighbors per node.
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40% Loss - Bytes/Commit (total)
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Figure 6.6: Comparison of 2PCwC with and without gossiping when varying the simulation
area and the number of nodes

6.4 Implementation

In this section, we briefly outline how the dynamic protocol selection is implemented adapt-
ing to the criteria loss rate, number of participants and density (number of neighbors).

6.4.1 Loss Rate

We have shown that different protocols have advantages under different circumstances. For
example, 2PC can only be used efficiently if only low message loss occurs. A source code
snippet clarifying the adaptive protocol selection is shown in Listing 6.2.

1 void c r e a t e _ m i g r a t e _ t r a n s a c t i o n
2 ( u i n t 1 6 i n i t i a t o r , u i n t 1 6 d e s t , S e r v i c e ∗ sv ) {
3 i n t l o s s = p ing ( ) ; / / l e a r n c u r r e n t l o s s i n %
4 i f ( l o s s < t h r e s h o l d )
5 p r o t o c o l = PROTOCOL_2PC ;
6 e l s e
7 p r o t o c o l = PROTOCOL_2PCWC;
8 T r a n s a c t i o n ∗ t = tm_−> c r e a t e _ t r a n s a c t i o n
9 ( i n i t i a t o r , d e s t , sv , p r o t o c o l ) ;

10 t . s t a r t ( ) ;
11 }

Listing 6.2: Adaptive protocol selection based on current message loss
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In line 3 a ping to all neighbors is used to learn the probability that a message is lost. It is
calculated by

p(loss) = 1− |received_pongs|
|sent_pings|

while the number of pings sent to each node was set to 10. If loss is less than 65%, 2PC is
selected, otherwise 2PCwC is selected. The loss is detected first for every started transac-
tion. The additional overhead for this is taken into account in the evaluation in Section 6.5.

6.4.2 Number of Participants

Another criterion is the number of participants. Georouting is only efficient as long as
the number of participants remains below a certain threshold, otherwise flooding becomes
more energy efficient.
An example for a use case where a high number of participants is involved in a transaction
is the alteration of metadata. If we assume all nodes in the wireless sensor network mea-
sure their environmental temperature in Celsius and we want them to change the unit to
Fahrenheit, then we need all nodes to take part in that transaction. In these cases, flooding
can be more energy efficient. In the case of service migration, we have only a small number
of participants: the source node, the target node and a number of service directories (2,..,n)
depending on how much redundancy is required.
Since we consider the transaction participants to be known at the start of a transaction, the
appropriate protocol can be chosen when the transaction is started.

6.4.3 Density

Each node counts its neighbors and broadcasts the value periodically. These messages are
not flooded to save energy. When such a message is received by a node, it it can calculate
the average number of neighbors. This is an estimate for the local density. The additional
costs for this are taken into account when comparing the overall costs for the adaptive
protocol selection with the static selection of one protocol combination. The question is
how accurately the global density can be estimated by considering the local density. This
is analyzed in the next section.

6.5 Evaluation

In this section we report the results of our adaptive protocol selection considering the pa-
rameters loss, number of participants and density.
To evaluate our adaptive protocol selection we performed again simulations with the net-
work simulator Shawn with the service migration scenario outlined in Figure 5.2. We also
compare the costs in terms of transmitted bytes per service migration and the degree of
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consistency expressed in number of missed messages. In the simulation scenarios, we ba-
sically executed a number of service migrations and compared the costs as described in
Section 5.4.2. Contrary to the last chapter, we also varied the number of transaction partic-
ipants, the area and the number of nodes and the parameters used for gossiping.
We again used different communication models (Unit Disk Graph [100] and Radio Irreg-
ularity Model [209]) and either used a perfect MAC layer and varied the message loss or
simulated a CSMA/CA MAC layer with the standard parameters of Shawn [55] and re-
peated every experiment 20 times for statistical soundness.

6.5.1 Loss

We varied the loss rate during our experiments from 40% to 80% as shown in Figure 6.7.
The underlying assumption is that there are peak times when more events occur in the
network than in other periods, leading to a higher probability of message collisions and
consequently more loss.
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Figure 6.7: Simulation of a variable loss rate

Figure 6.8 shows a comparison of 2PC, 2PCwC and our adaptive protocol selection with
different thresholds regarding the commit rate and costs in transmitted bytes per commit.
"Adaptive 70" means, for instance, that a threshold of 70% message loss has been used
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to select the atomic commit protocol. It can be seen that "Adaptive 85" to "Adaptive 95"
significantly save transmission costs and also increase the commit rate compared with 2PC.

Comparison of Commit Rates at Different Thresholds
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6.5.2 Participants

Selection of Commit Protocol

We randomly varied the number of participants from 9 to 16 and started service migrations
a described earlier. The selected threshold was 14. The results are shown in Figure 6.9. We
used the following four metrics:

• Transmitted bytes per commit in total, denoted as B
C

(total).

• Transmitted bytes per commit and legitimate abort in total, denoted as B
C+A

(total).
This metric takes into account that some aborts called legitimate aborts are due to
vote abort messages caused by the application and not caused by message loss or the
atomic commit protocol.

• Transmitted bytes per commit only for the atomic commit protocol, denoted as B
C

(protocol). In this metric, the bytes transmitted by the example services are excluded.

• Transmitted bytes per commit and legitimate abort only for the atomic commit pro-
tocol, denoted as B

C+A
(protocol).

It can be seen that the adaptive selection of the atomic commit protocol leads to a reduction
of transmission costs from 5% to 10% when compared with the exclusive usage of 2PC or
2PCwC. This holds regardless of the calculation of the costs.

Selection of Routing Protocol

We randomly varied the number of participants from 9 to 40 and started again the migration
of services like described in the last chapter. The results are shown in Figure 6.10. It can
be seen that our adaptive selection of 2PC with flooding or 2PC with georouting leads to a
reduction of message costs from 11% to 13% compared to the exclusive usage of 2PC with
flooding.
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Adaptive Selection of Commit Protocol
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6.5.3 Density

The last parameter we considered for our adaptive protocol selection is the average number
of neighbors, which can also be expressed as density. The motivation behind this is that
gossiping is only effective if the density is high. We focused on the 2PCwC protocol to an-
alyze the adaptive protocol selection based on the density since the experiments performed
with 2PC using either flooding or gossiping were quite similar at a loss rate of 40% or less.
To evaluate the benefits of using 2PCwC adaptively with flooding or with gossiping we
simulated an iterative deployment. Therefore, an existing deployment was extended at
runtime by additional nodes. We started by performing our simulation with 100 nodes as
shown in Figure 6.11 (a). After the first half of the simulation, we deployed 100 additional
nodes and got the network topology shown in Figure 6.11 (b). In other words, the density
is increased from an average of 7.1 neighbors per node to an average of 14.33 neighbors.
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Figure 6.11: Example network before and after increasing the number of nodes

The results are shown in Figure 6.12 (a). We compare 2PCwC using either exclusively
flooding or exclusively gossiping with 2PCwC using adaptively flooding or gossiping.
"2PCwC Adaptive" denotes an (unrealistic) adaptive protocol selection using global knowl-
edge. This means that it was defined that flooding is used during the first half of the simula-
tion for the scenario with 100 nodes and gossiping is used for the scenario with 200 nodes
in the second half. "2PCwC Adaptive 14", for instance, means that 14 neighbors were used
as a threshold to select either gossiping (>14 neighbors) or flooding otherwise. The number
of neighbors was estimated only locally in the perimeter of the node by broadcasting the
node’s number of neighbors and averaging the received numbers to save transmission costs.
When considering the transmitted bytes per commit regardless of the used metric, it can be
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seen that the adaptive protocol selection saves a significant number of transmitted bytes.
While for the number of transmitted bytes per commit in total, the unrealistic adaptive
protocol selection using global knowledge saved 16% compared to the exclusive use of
2PCwC with flooding, the realistic adaptive protocol selection using 12 neighbors as a
threshold could still save 13%.
We also performed the experiment using 300 instead of 200 nodes (see Figure 6.12 (b) ).
In this case, the savings using the realistic adaptive protocol selection depending on local
estimations were 21% of the transmitted bytes per commit using a threshold of 12.
The experiments have been repeated using the CSMA/CA transmission model. The results
shown in Figure 6.13 confirm the results obtained from the experiments with the random
transmission model. Here, the savings are 10% compared to the exclusive use of 2PCwC
with gossiping at a threshold of 10 neighbors in the experiment with 200 nodes and 15% in
the experiment with 300 nodes. It is interesting that when using CSMA/CA in this experi-
ment, 2PCwC using exclusively gossiping is more efficient than 2PCwC using exclusively
flooding, contrary to the results obtained from experiments with the random transmission
model and 40% loss. This is due to collisions on the MAC layer which are significantly
reduced by using gossiping.
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Costs at 40% Loss
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Costs with CSMA/CA and Radio Irregularity Model (RIM)

1
6

6
5

5
2

1
6

0
3

5
4

1
5

0
5

3
3

1
4

4
9

3
21

7
0

3
1

6

1
6

3
1

7
8

1
5

4
8

6
3

1
4

8
3

7
31

7
3

4
6

9

1
6

6
0

5
0

1
5

8
0

8
6

1
5

1
3

2
51

7
2

9
3

9

1
6

5
6

0
0

1
5

7
6

0
4

1
5

0
9

1
5

2
1

1
6

9
2

2
0

3
3

5
5

1
9

2
0

2
8

1
8

4
4

6
5

1
9

9
9

3
0

1
8

9
1

0
0

1
8

0
1

6
4

1
7

0
4

0
4

50000

70000

90000

110000

130000

150000

170000

190000

210000

230000

B/C (total) B/C+A (total) B/C (protocol) B/C+A (protocol)

B
y
te

s

2PCwC Adaptive 2PCwC Adaptive 10 2PCwC Adaptive 12

2PCwC Adaptive 14 2PCwC Flood 2PCwC Gossip(0.6,2,1,6)

(a) 100 to 200 nodes

Costs with CSMA/CA and Radio Irregularity Model (RIM)

1
4

0
2

1
0

1
3

4
4

7
9

1
2

7
0

9
2

1
2

1
8

9
8

1
4

4
6

5
8

1
3

7
8

4
4

1
3

1
5

1
0

1
2

5
3

1
5

1
4

5
1

7
0

1
3

9
1

3
4

1
3

1
6

6
7

1
2

6
1

9
2

1
4

5
1

4
5

1
3

7
1

7
1

1
3

2
1

0
6

1
2

4
8

4
8

1
7

1
9

0
7

1
6

2
4

1
8

1
5

3
9

5
0

1
4

5
4

5
2

1
6

0
8

4
3

1
4

9
1

8
2

1
4

4
9

8
3

1
3

4
4

7
2

100000

110000

120000

130000

140000

150000

160000

170000

180000

B/C (total) B/C+A (total) B/C (protocol) B/C+A (protocol)

B
y
te

s

2PCwC Adaptive 2PCwC Adaptive 10 2PCwC Adaptive 12

2PCwC Adaptive 14 2PCwC Flood 2PCwC Gossip(0.6,2,1,6)

(b) 100 to 300 nodes

Figure 6.13: Comparison of costs of adaptive protocol selection adaptive to density with
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6.6 Results

In the following, we summarize the benefits of our adaptive protocol selection process.
Protocol selection adaptive to the loss rate leads to a reduction of costs by 5-6% with the
random transmission model.
Adaptivity sensitive to the number of participants reduces the transmission costs by 5-
10% at a 65% loss rate when selecting the commit protocol at runtime and 11-13% when
selecting the routing protocol at runtime.
The adaptive protocol selection with regard to the density can save up to 21% of the trans-
mitted bytes per commit.
These savings correspond directly to an increased lifetime of the sensor network deploy-
ment since most of the energy consumption in sensor networks is due to message trans-
mission. Consequently, the adaptive selection of commit protocol and routing protocol at
runtime can increase the lifetime of wireless sensor network deployments.



Chapter 7

Conclusion

7.1 Summary

This thesis has outlined use cases for service migration and shown that transaction pro-
cessing capabilities are necessary for enabling stateful and consistent service migration in
wireless sensor networks.
We have shown in simulations and experiments with the sensor node platform Pacemate,
that our Two Phase Commit with Caching protocol is the most efficient protocol for the
use in wireless sensor networks. Compared to Two Phase Commit, we have shown in
experiments with 20 Pacemate sensor nodes that the commit rate is increased from 53% to
84% and that the costs are reduced from 249 to 200 transmitted bytes per commit per node.
Further, we have shown in simulations with Shawn that traditional Strict Two Phase Lock-
ing outperforms validation and timestamp ordering regarding efficiency when simulated
with message loss. We have also reported our implementation of locking for the Pacemate
sensor nodes.
We have described a comprehensive service migration scenario which enables service dis-
covery and consistent migration of stateful services and have outlined our implementation
using our Two Phase Commit with Caching protocol for the network simulator Shawn and
Pacemate sensor nodes running Surfer OS. We could prove that consistent service migra-
tion is feasible on the resource constrained wireless nodes. These results can be generalized
since Surfer OS has also been ported to the well known Telos B sensor node platform [160].
Finally, we have described our adaptive selection of commit protocol and routing protocol
in dependency of the required consistency and the given network context to provide the
most efficient transaction processing for a given sensor network deployment. We have
shown that the parameters loss, density and number of participants can be estimated or
detected at runtime to select the appropriate protocol combination. We have shown in
simulations with Shawn that the adaptive protocol selection can save 5% to over 20% of the
transmitted data volume. Adaptivity could also be easily integrated in our service migration
scenario for Surfer OS, but the evaluation is very tedious because a large number of nodes
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(100 to 150) would be necessary to see most of the benefits.
In summary, this thesis supports the usage of sophisticated applications for wireless sensor
networks demanding increased coordination capabilities while taking the severe resource
constraints of wireless sensor networks into account. Application areas that can benefit
from this work are not only service oriented sensor sensor networks but also sensor network
databases like TinyDB and StonesDB and the emerging wireless sensor and actor networks.

7.2 Future Work

The following topics are part of our future work.

Adaptivity. We are investigating how different concurrency control protocols can be used
in an adaptive manner. The usage could be done adaptive to the current message loss,
but also to conflicts and type of transactions. For instance, validation could be used
if the message loss is really low, otherwise locking could be used.

Cost function. We plan to develop a sophisticated cost function for the selection of the
optimal target node for service migration. Possible parameters to be considered are
the remaining battery capacity, the available RAM and other properties.

Integration in iSense and Surfer OS Transaction processing capabilities could be directly
integrated into iSense and Surfer OS. The usage could also be done via a pre-compiler
like in the XOBESensorNetwork project [80] as shown in the following listing:

begin of transaction

do x

do y

end of transaction

Logging. Sophisticated logging mechanisms for wireless sensor networks are also miss-
ing. These could be implemented using our replication strategies for wireless sensor
networks [140, 141], where neighbor nodes are used to replicate important data in a
consistent way.

Until now, replication in wireless sensor networks has been mostly considered in
standard data gathering scenarios [72, 73], and not in service oriented scenarios or in
relation to transaction processing.

Persistence in wireless sensor networks has been researched in the context of im-
proving data availability by using special codes when transmitting data from sources
to the sink [117, 118, 119, 120], but not in a database context.

This has also been described in [179]. The authors implement a language abstraction
for a software transactional memory for a self developed Java middleware and use
3PC to achieve distributed commit.
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Mobility. Another important aspect of emerging wireless sensor network deployments is
mobility. While this aspect has already been considered in the context of transaction
processing in mobile ad hoc networks by Ayari et al. [10, 11, 12], mobile transaction
processing has not yet been researched in wireless sensor networks.

Multi-tier deployment. Instead of running the implemented transaction processing proto-
cols directly on the sensor nodes, proxies could be used to run the protocols to release
this work from the resource constrained sensor nodes as considered by Guergen et
al. [69].

Relaxed consistency. Another open question is, if the consistency could be relaxed in
some application domains for wireless sensor networks. This could be done with
the help of more flexible transaction models like nested transactions [51].

Transactions on compressed XML data structures. Several approaches for processing
transactions on compressed XML datasets inside the sensor network can be investi-
gated (see [80, 81, 82, 83, 85, 86]).

Various service discovery approaches. Another open question is how consistency can be
enforced if service discovery is done without designated service directories or over-
lay approaches [132].
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Appendix A

Parameters for Trickle

A.1 Determined Parameters for Trickle

The parameters that have been used for Trickle in the simulations of our service migration
scenario with Shawn as outlined in Table 5.5 are explained in this section.
The redundancy constant k is used to determine how many consistent Trickles a node needs
to hear before he transmits when counter t expires. If k is large, the probability that the node
transmits is higher. Figure A.1 shows a comparison of missed messages and transmitted
bytes per migration when varying k. On the one hand, it can be seen that the bytes per
migration increases when k is increased. On the other hand, the number of missed messages
is minimal when selecting k = 6.
The interval tlow is used as a lower bound for the transmission frequency. Figure A.2
shows a comparison of missed messages and transmitted bytes per migration when varying
t. It can be seen that the costs decrease when tlow increases and the number of messages
increases.
Consequently, the selected parameters for Trickle are tlow = 100 ms and k = 6.
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