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Zusammenfassung

Das Gehirn kann viele Problemstellungen meistern, die heutzutage noch nicht von

maschinellen Lernmethoden bewältigt werden können. Ein vielversprechender An-

satz, um Forschritte in der maschinellen Informationsverarbeitung zu erzielen, ist,

die Informationsverarbeitungsprozesse des Gehirns zu identifizieren und die gefun-

denen Mechanismen nachzuahmen.

Beobachtungen der Neurowissenschaften stützen die Hypothese, daß das Gehirn

spärliche Kodierungen für die interne Repräsentation von Reizen verwendet. Lineare

generative Modelle mit Spärlichkeitsrandbedingungen sind eine mathematische Ab-

straktion dieses Kodierungsprinzips. In vielen Problemstellungen, für deren Lösung

lineare generative Modelle verwendet werden können, möchte man die Modellpara-

meter aus gegebenen Daten erlernen, um das Modell optimal an die Aufgabenstel-

lung anzupassen.

Im Rahmen dieser Arbeit wurden unüberwachte Lernmethoden zur Bestimmung

optimaler Parameter eines linearen generativen Modells entwickelt: Sparse Coding

Neural Gas (SCNG) und Neural Gas for Dictionary Learning (NGDL). Zusätzlich

wurden verschiedene Anwendungen linearer generativer Modelle betrachtet: Daten-

repräsentation, Bildrekonstruktion, Bilddekonvolution, blinde Quellentrennung und

Merkmalsextraktion.

Anhand von Experimenten auf synthetischen Daten, die durch vorgegebene lineare

Modelle erzeugt wurden deren Eigenschaften bekannt sind, konnte gezeigt werden,

daß SCNG und NGDL die Modellparameter auf Basis der Trainingsdaten iden-

tifizieren können und dabei eine Verbesserung gegenüber dem Stand der Technik

darstellen [1,3,6,9].

Es wurde ferner gezeigt, daß die hier vorgestellten unüberwachten Lernmethoden

eine verbesserte Bildrekonstruktion und Bilddekonvolution ermöglichen [1,2,7]. In

Bildrekonstruktionsexperimenten konnte gezeigt werden, daß bei begrenzter Anzahl

an vorhandenen Trainingsdaten und begrenzter Lernzeit die Modellparameter, die

durch NGDL gelernt wurden, eine bessere Bildrekonstruktion erlauben, als Mo-

dellparameter, die mit dem bisherigen Stand der Technik gelernt wurden [2,7]. In
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Bilddekonvolutionsexperimenten konnte gezeigt werden, daß die Modellparameter

an unterschiedliche Bildklassen adaptiert werden können [1].

Untersuchungen zu SCNG haben gezeigt, daß diese Methode die blinde Trennung

linear gemischter Signale ermöglicht, insbesondere auch in übervollständigen Situ-

ationen, d.h., in Fällen, in denen mehr Quellensignale als observierte Mischsignale

vorhanden sind [4,10]. Weiterhin wurde gezeigt, daß unter gewissen Vorbedingung-

en die Quellentrennung auch möglich ist, wenn die Mischmatrix zeitlicher Variation

unterliegt [8].

Ferner wurde im Rahmen dieser Arbeit ein Ansatz für die Extraktion von Merk-

malen zur Lösung bildbasierter Klassifikationsprobleme entwickelt [5,11]. Der Merk-

malsextraktionsansatz wurde auf einem Benchmark-Datensatz für die Klassifika-

tion handgeschriebener Ziffern evaluiert. Es konnte gezeigt werden, daß eine sig-

nifikante Verbesserung der Klassifikationsleistung einer Support-Vektor-Maschine

erreicht werden kann. Die erreichte Klassifikationsleistung entspricht dem aktuellen

Stand der Technik bei der Erkennung handgeschriebener Ziffern, wobei der hier vor-

gestellte Ansatz leicht für andere visuelle Klassifikationsprobleme verwendet werden

kann.

Leistungsfähige Methoden für die Anpassung spärlicher linearer generativer Mo-

delle an gegebene Daten können auf weitere Anwendungsprobleme übertragen wer-

den und lassen auch dort interessante und vielversprechende Lösungsansätze er-

warten.
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1 Introduction

By three methods we may learn

wisdom: First, by reflection,

which is noblest; Second, by

imitation, which is easiest; and

third by experience, which is

the bitterest.

(Confucius)

In the scholastic tradition of mediaeval europe the principle of deduction dominated

scientific reasoning for several centuries. The majority of scientists at that time

were convinced that findings can only be obtained from the application of given

axioms to a particular question. There was a controversial debate if the principle

of induction, i.e., to derive a general rule from a particular observation, is a valid

scientific approach. Around the 17th century the situation changed when more and

more scientists such as for instance Galileo Galilei, Francis Bacon, or David Hume

began to support the empirical approach and the principle of induction in science.

Today, due to their success, the empirical approach and the principle of induction

are predominant. Researchers on the quest for new findings apply all sorts of data

analysis techniques to measurement data. In politics and economics, it is common

sense that decisions have to be supported by “objective” numbers that are derived

from measurements such as opinion polls, accounting data, or goverment statistics.

The amount of data that is analysed by the use of machine learning techniques is

growing fast. Digital devices such as cameras, microphones, or GPS-receivers are

ubiquitous and the internet enables us to efficiently access, distribute, and gather

information. Social networks offer access to behavioural patterns and social rela-

tionships of a large number of persons. The collection of customer information is

part of the business of many companies.

To perform specific observations in order to derive general postulations based on

information that has been extracted from the observations by some formula or data

model corresponds to the definition of categories of objects that can be described
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1 Introduction

in a particular way. If only a subset of all possible categorizations is considered,

a bias is inevitably introduced. Hence the question arises, if unbiased induction

can be performed simply by consideration of all categorizatons that are possible.

This question has been extensively studied by Satosi Watanabe. His “ugly duckling

theorem” states that all objects become equally similar or dissimilar in this case

[Watanbe, 1969]. Hence, induction is impossible without bias. A “natural“ or

“objective” answer to the question what is important cannot be given. In the end,

it is a descision that is made by men which determines the categories that are

considered to be important.

Often, scientists use classical statistical features, e.g., means, variances, or higher

order moments in order to extract information from a set of observations. A huge

library of scientific literature offers a broad range of more sophisticated methods

that enable us to study various aspects of a given set of measurements. In many

cases, users do not provide a justification, why a certain method has been preferred

over other possibilities. Why does one prefer the mean over the median? Why

does one perform a principal component analysis in order to determine directions

of large variance that are pairwise orthogonal instead of considering a different set

of directions? Of course, the availability of efficient algorithms guides the choice of

the user.

A principle of science that has been proven to be very useful is the law of parsi-

mony, i.e., Ockham’s Razor. It is often used in order to justify the choice of certain

features or models. According to this principle, among all models that can explain

an observation, one should choose the most simple one. The simpler a model or

feature is, the less bias is introduced by using it. However, what is simple in the

language and axiomatic framework of men might look complicated from a different

point of view.

Another factor that strongly influences decisions of scientists is experience. Those

approaches that have been successfully employed in the past are likely to be consid-

ered as a possible solution in the future, i.e., often the implicit reason to prefer the

mean over the median is that it performed well the last time. The more diverse the

set of tasks is that have been tackled successfully by a solution strategy, the more

confidence one has that it will perform well on a new problem.

During evolution, the information processing strategies of the brain have been

proven to be competitive and applicable to a broad range of problems. Still many

simple cognitive tasks that can be easily performed by humans or animals are out

of reach of todays machine learning methods. An example of such a simple task

2



1.1 Sparse Coding and the Brain

is the ability of humans to concentrate on a single voice out of several voices in a

conversation and to follow that voice even if background noise is present.

By identification and imitation of the strategies of information processing that

are used by the brain scientists might be able to benefit from the experience of

nature. The aim of this work is to make some progress in this direction. It studies a

mathematical abstraction of a principle of information processing that recently has

attracted a number of researchers due to some evidence that this principle is also

implemented in the brain: the principle of sparse coding.

1.1 Sparse Coding and the Brain

One of the classical approaches that was used in order to gain insight into the in-

formation processing principles of the brain are electro-physiological measurements.

Microelectrodes were placed in the brain tissue, then a stimulus, e.g., visual, accus-

tical, or other was presented and the firing rate of the cells close to the electrodes

were measured [Kuffler, 1953, Hubel, 1957].

Kuffler employed this method in order to study the properties of ganglion cells in

the cats retina. The stimulus was a spot of light that was placed on the receptive

field of a ganglion cell. In case of the ganglion cells he found the so-called center

on/off cells whose receptive field can be devided in a concentric excitatory region

where the firing rate of the cell increases if a spot of light is placed on it and a

concentric inhibitory region that causes the firing rate of the cell to decrease if light

falls on it [Kuffler, 1953].

Later, Hubel and Wiesel report on so-called simple [Hubel and Wiesel, 1959] and

complex cells [Hubel and Wiesel, 1962] in the cats striate cortex. The receptive

fields of the simple cells also can be divided in distinct excitatory and inhibitory

regions. In contrast to the center on/off cells these regions are not concentric but

possess a parallel arangement such that the firing of the cell can be triggered by

a slit of light that has the width and orientation of the excitatory regions and is

placed on their position whereas light that falls on the inhibitory regions causes a

decrease of the firing rate [Hubel and Wiesel, 1959].

The complex cells showed a much more diverse behaviour. Their receptive field

could not be clearly divided in distinct excitatory and inhibitory regions. For ex-

ample, among them there was a class of cells whose most effective stimuli were

vertically oriented edges that could be shifted horizontally over an unusually large
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1 Introduction

region whereas a slight variation of the orientation stopped the firing of the cell.

These cells did not respond to slits of light whether narrow or wide. Furthermore, it

was crucial whether the bright area was to the left or to the right [Hubel and Wiesel,

1962]. A few years later the so-called end-stopped or hyper-complex cells were dis-

covered that respond to termination of bars of light [Hubel and Wiesel, 1965]. While

the behaviour of center on/off cells and simple cells can be described by a linear

summation over the input, the behaviour of complex and hyper-complex cells can-

not be easily explained by a linear model [Zetzsche and Barth, 1990]. Olshausen

and Field [2004] argue that potentially only a small amount of all properties that

might be observable in the visual cortex (≈ 15%) have been properly documented

by the scientific community, though the visual cortex is a subject of research since

decades.

A long-standing hypothesis was that the simple cells remove redundancy from the

input by performing a decorrelation of the input signal [Daugman, 1989]. Though

this hypothesis explains the orientation and scale selectivity of the simple cells it

does not explain their spatial localization since decorrelation can be also achieved

by non-localized linear transformations such as the Fourier transformation or prin-

ciple component analysis. It also has been argued that the spatial redundancies of

natural images cannot be removed by decorrelation since they cannot be quantified

by second-order statistics but only by higher-order statistics [Field, 1989, Zetzsche

et al., 1993]. Furthermore, decorrelation can be performed by a linear mapping and

does not explain the broad range of non-linear behaviour that has been observed in

the visual cortex as for instance in case of complex and hyper-complex cells.

A hypothesis that could be used to derive the main properties of simple cells, e.g.,

spatial localization, ortientation selectivity, and selectivity with respect to different

scales from natural image data was proposed by Olshausen and Field [Field, 1994,

Olshausen and Field, 1995, 1996a,b]. Their assumption is that the output of the

visual system corresponds to the hidden variables a of a linear generative model

of natural images where each natural image x ∈ RN is obtained from a linear

combination of a basis matrix C:

x = Ca + ε, C ∈ RM×N . (1.1)

In the probabilistic framework that they use, the hidden coefficients a stem from a
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1.1 Sparse Coding and the Brain

prior density P (a). This joint density is assumed to be a factorial distribution, i.e.,

P (a) =

M∏

i=1

P ((a)i) . (1.2)

The coefficients are sparse since their marginal distributions P ((a)i) are considered

to be leptokurtic. The residual ε is assumed to be Gaussian [Olshausen and Field,

1997]. The model parameters C are determined by unsupervised learning such that

the probability of obtaining the training data x1, . . . ,xL , i.e., the data likelihood,

is maximized:

max
C

P (x1, . . . ,xL|C) . (1.3)

Olshausen and Field proposed the Sparsenet algorithm for this task [Olshausen and

Field, 1996b, 1997] (for details see Section 4.7) and have shown that the recep-

tive fields that correspond to the basis functions C that are learned using the the

Sparsenet algorithm on natural images of size 8× 8 pixels possess the properties of

simple cells that have been observed in the experiments mentioned before [Olshausen

and Field, 1996b] . It is important to note that though the generative model (1.1)

is linear, the mapping from the image x to its representation a that is implemented

in the model is not linear. Given a basis C that has been learned, the coefficients

are obtained by the maximization of the data likelihood:

max
a

P (x|C) . (1.4)

Since Olshausen and Field explicitly consider overcomplete settings, i.e., M � N

[Olshausen and Field, 1997] this cannot be solved by simply inverting C but leads to

a non-linear optimization problem. Even in case of M = N due the prior of a which

is non-uniform a has to be determined by a non-linear optimization process. Hence,

this model theoretically offers enough degrees of freedom to also account for non-

linear observations in the visual cortex. Due to the assumption (1.2) that the prior

density of the coefficients is a factorial distribution, the new representations, i.e., the

hidden variables a, are statistically independent which implicates decorrelation but

also extends to higher-order statistics. This shows that the probabilistic generative

model of the Sparsenet algorithm, i.e., (1.1), can also be interpreted in the framework

of independent component analysis (ICA). In Chapter 6, we show that the Olshausen

and Field model can be successfully employed in order to built a very well performing

technical solution for handwritten digit recognition [Labusch et al., 2008c].
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1 Introduction

ICA [Jutten and Herault, 1991, Bell and Sejnowski, 1995, Hyvärinen and Oja,

1997] is a another branch of research that provides an instructive view on the in-

formation processing principles that might be used in the brain. The model of

Olshausen and Field, which can be understood as an ICA model [Kreutz-Delgado

and Rao, 1999], assumes that the distributions of the hidden coefficients of the

model are leptokurtic and that the hidden coefficients are stochastically indepen-

dent. Another category of ICA approaches has been proposed which relies on weaker

assumptions on the properties of the distributions of the hidden coefficients. Similar

to the previously discussed approach of Olshausen and Field, in the ICA model of

Hyvärinen and Oja [1997] a probabilistic setting is considered. In this setting an

image x ∈ RN is obtained from a linear mixture of some hidden variables a:

x = Ca, C ∈ RN×N , a ∈ RN . (1.5)

Their sole hypothesis on the hidden variables a is that they are statistically inde-

pendent, i.e.,

P (a) =

M∏

i=1

P ((a)i) , (1.6)

and that the marginal distributions P ((a)i) are non-Gaussian. The distribution

of a random variable that is obtained from a linear mixture of a number of non-

Gaussian random variables tends towards a Gaussian distribution. The central limit

theorem describes this behaviour for statistically independent random variables that

are identically distributed and have finite means and variances (as discussed in detail

for instance in [Ross, 2002]). In practice, often the Gaussianity of a linear mixture of

a number of non-Gaussian random variables tends to be larger than the Gaussianity

of the original random variables even if these original variables do not possess all

poperties that are required by the central limit theorem, for instance, if the original

random variables are not identically distributed. Due to this observation, it has

been suggested [Hyvärinen and Oja, 1997] (see Section 5.1 for details) to estimate

the mixing matrix C by the maximization of the non-Gaussianity of the resulting

hidden variables a. In some cases the maximization of non-Gaussianity is equivalent

to the sparsification of the hidden variables a. In these cases the basis that is

obtained from Sparsenet and the mixing matrix that is obtained from these ICA

methods are quite similar. ICA based on maximization of non-Gaussianity has been

applied to natural images yielding receptive fields that are similar to the simple
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1.1 Sparse Coding and the Brain

cells in the visual cortex [Hateren and Schaaf, 1998]. However, in their original form

these approaches are limited to linear mappings. Hence, they do not offer a possible

explanation for non-linear receptive fields.

Apart from observations in the visual cortex there has been further evidence that

sparse representations might be used in other parts of the brain for instance in the

auditory cortex [Hromadka and Zador, 2008] or the olfactory bulb of mice [Rinberg

et al., 2006] and locusts [Jortner et al., 2007]. However, sparseness is not only

considered to be a principle that is used in the first stages of signal processing of

the brain but is also supposed to be present in higher level functions of the brain.

Recently, the representation of objects in the medial temporal lobe (MTL) of humans

has been studied by electrode measurements [Quian Quiroga et al., 2005, 2008].

This has been possible since the treatement of certain epilepsy patients requires the

implantation of electrodes in this region of the brain in order to localize seizures in

preparation of curative resection. In experiments that have been done with these

patients, it could be shown that in the MTL there are neurons that show a very

specific response to certain objects or persons such as actors or buildings which

correspond rather to abstract concepts or perceptions and are highly invariant. For

instance there are neurons that respond to the presentation of TV-actors that play in

the same TV-series [Quian Quiroga et al., 2005, 2008]. It has been argued that this

is a hint for a sparse representation in the brain, since in case of a “grandmother-

cell” like representation that uses a single cell in order to represent a person, an

object, or a concept, it would be very unlikely to find such a cell in the experiments

[Quian Quiroga et al., 2008]. On the other hand, a densely distributed code would

be contradictory to the very rare firing of neurons that has been observed in various

experiments in this and other regions of the brain [Földiák and Young, 1998, Shoham

et al., 2006]. Furthermore Valiant [2006] argues that the amount of time in which the

brain solves certain tasks, the mean synaptic connection strength, and metabolic

constraints such as wiring lengths and energetic constraints limit the number of

neurons that are active in order to solve a particular task. His quantitative theory

of neural computation predicts a neural representation that could be interpreted

as a sparse code that neither is a “grandmother cell” code nor a dense distributed

code.

7



1 Introduction

1.2 Soft-competitive sparse coding

In the past, many learning methods have been proposed that can be used to de-

termine an optimal basis or dictionary, i.e., the parameter C, in a linear generative

model such as (1.1). In Chapter 4, we review the Method of Optimal Directions

(MOD) [Engan et al., 1999], the method proposed in [Lee et al., 2007] which is quite

similar to MOD but based on the dual of a slightly different optimization problem,

the K-SVD algorithm [Aharon et al., 2006], and the Sparsenet algorithm [Olshausen

and Field, 1995, 1996b].

A common problem of all these methods is that in order to perform an update

step with respect to the dictionary, a fixed configuration of the hidden parameters of

the model, i.e., the coefficients a, has to be assumed. In the probabilistic interpre-

tation that has been suggested for some of the algorithms, due to this approach, the

maximization of the data-likelihood of the generative model, i.e., (1.3), is replaced

with the maximization of a rather coarse approximation of the data-likelihood. In

this approximation the maximal value of the likehood function is optimized instead

of the actual likelihood, since a maximization of the actual likelihood would involve

an intractable integration over the hidden parameters of the model. This aspect is

discussed in more detail in Section 4.7.

In contrast to these approaches, we suggest to use many configurations of the

hidden parameters instead of only a single one, in order to learn the dictionary.

In a probabilistic interpretation, this corresponds to a better approximation of the

data-likelihood that is considered in the optimization process by the use of many

configurations of the hidden parameters in each learning step where each used con-

figuration has a high likelihood according to the probabilistic generative model.

We use a mathematical abstraction of sparse coding that is not based on a certain

prior density of the coefficients, but that relies on the hypothesis that each given

observation X = (x1, . . . , xL), xi ∈ RN can overall be generated as a linear

combination of a few elements from an unknown dictionary C = (c1, . . . , cM ), cj ∈
RN

xi = Cai + εi. (1.7)

εi and ‖εi‖2 are termed residual and representation error of sample xi. The require-

ment that only a few elements of C are used in order to generate a given observation

xi means that the coefficients ai are sparse, i.e., they contain few non-zero entries

8



1.2 Soft-competitive sparse coding

compared to the dimensionality of the observations:

‖ai‖0 � N . (1.8)

‖a‖0 denotes the number of non-zero coefficients in a. The number of dictionary

elements M is a free model parameter. In case of overcomplete dictionaries, M > N

holds. Since in this case the number of columns of the matrix C, i.e., M , is larger

than the dimension of the observations, i.e., N , one has to introduce constraints

on the dictionary C and/or the coefficients ai in order to obtain a well-defined

representation. This can be achieved for instance by imposing sparsity constraints

on the coefficients. See also Chapter 2.3 for results on the stability and identifiability

of the representation (1.7). Apart from sparsity, we do not impose any further

constraints on the dictionary or the coefficients.

1.2.1 Contributions of this thesis

Within this work, we propose soft-competitive unsupervised learning algorithms in

order to tackle two different constrained optimization problems. Either we aim to

minimize the mean of the squared representation error and constrain the coeffi-

cients of the dictionary such that the maximum number of non-zero entries of each

coefficient vector ai is upper bounded:

min
C

1

L

L∑

i=1

‖xi − Cai‖22 subject to ‖ai‖0 ≤ k (1.9)

or we aim to minimize the mean number of non-zero entries of the coefficient vectors

such that the representation error of each given data sample is bounded by some

accuracy δ:

min
C

1

L

L∑

i=1

‖ai‖0 subject to ‖xi − Cai‖22 ≤ δ . (1.10)

In [Labusch et al., 2008a, 2009a] we have introduced the Sparse Coding Neural Gas

algorithm (SCNG) which can be applied to (1.9). The SCNG algorithm is first

introduced in Chapter 4.5 where it is also shown that it can be used in order to

learn a dictionary from natural image data that possesses the properties of spatial

localization, ortientation selectivity, and selectivity with respect to different scales.

It has been already mentioned that ICA and linear generative models are closely

related. Indeed, any algorithm that determines the basis or dictionary of a linear

9
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generative model using a regularization term for the hidden parameters that obeys

the property of separability can be understood as an ICA method [Kreutz-Delgado

and Rao, 1999]. This aspect is also discussed in Section 5.1. In a similar way the

SCNG algorithm is closely related to the domain of blind source separation. As it

was first suggested in [Labusch et al., 2008b, 2009c] and [Labusch et al., 2009b], a

slightly modified SCNG can be used to approach the optimization problem (1.10)

which makes it possible to apply it to the problem of overcomplete blind source

separation under the presence of noise and to the time dependent cocktail party

problem in a difficult overcomplete setting which is discussed in Section 5.2 and 5.3.

The SCNG algorithm can be understood as a sparse approximation method, based

on Optimized Orthogonal Matching Pursuit (OOMP), that modifies the dictionary

during the pursuit. Therefore it is not possible to use an arbitrary approxima-

tion method for the coefficients in the learning process. In order to obtain a so-

lution strategy for (1.9) that does not have this disadvantage, we have introduced

a hard-competitive and soft-competitive stochastic gradient method [Labusch and

Martinetz, 2010, Labusch et al., 2010] which we term Neural Gas for Dictionary

Learning (NGDL) that can be combined with an arbitrary approximation method

for the coefficients. NGDL provides significant performance improvements compared

to MOD and K-SVD in terms of reconstruction of the underlying dictionary and

minimization of the mean representation error as can be seen from the experiments

that are presented in Section 4.6.5. The improvements in comparison to other state-

of-the-art methods can also be seen in applications such as image reconstruction and

deconvolution [Labusch and Martinetz, 2010, Labusch et al., 2011a,b]. Experiments

that support these claims are presented in Chapter 4.6.7 and Chapter 4.6.8. Since

NGDL can be combined with an arbitrary approximation method for the hidden

parameters of the model, it is applicable whenever a probabilistic linear generative

model is considered where the additive noise is assumed to be Gaussian. This means

that it can also be applied if for instance a factorizable Laplacian prior is used for

the hidden parameters. Hence, it also can be seen as a soft-competitive approach

to noisy overcomplete ICA.

However, in order to employ NGDL for dictionary learning or ICA, one needs

a sparse approximation method that determines many good configurations of the

hidden parameters of the model. In the past, a number of approximation methods

have been proposed that can be applied to the following NP-hard combinatorial

10



1.2 Soft-competitive sparse coding

optimization problem [Davis et al., 1997]:

min
a
‖xi − Ca‖22 subject to ‖a‖0 ≤ k (1.11)

Here, C is a given fixed dictionary and k is a user-defined parameter. Among them

there are greedy methods such as Matching Pursuit(MP) [S.Mallat and Zhang, 1993],

Orthogonal Matching Pursuit(OMP) [Pati et al., 1993], and Optimized Orthogonal

Matching Pursuit(OOMP) [Rebollo-Neira and Lowe, 2002]. Yet, all these sparse

approximation methods provide only a single approximative solution for (1.11) and

are therefore not applicable for soft-competitive learning with NGDL. In [Labusch

and Martinetz, 2010] and [Labusch et al., 2010] we have proposed the Bag of Pursuits

method (BOP) which is derived from OOMP and provides many good solutions for

(1.11), which enables us to use NGDL for dictionary learning. The BOP method

as well as other sparse approximation methods, i.e., greedy methods and relaxation

methods, are discussed in Chapter 2.
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Linear generative models as (1.1) can be used in a broad range of applications.

For instance, they have been used for compression [Chang et al., 2000], reconstruc-

tion [Mairal et al., 2008], deconvolution [Figueiredo et al., 2007], denoising [Hoyer

and Oja, 2000, Elad and Aharon, 2006], blind source separation [Lee et al., 1999,

Zibulevsky and Pearlmutter, 2001], or feature extraction [Lee et al., 2000, Hyvärinen

and Hoyer, 2000, Labusch et al., 2007, 2008c] tasks. In these applications, one is

interested in the configuration of the hidden parameters of the model for given ob-

servations, once the dictionary C that is used in the model has been obtained either

from an analytic framework (see Chapter 3) or from a dictionary learning method

(see Chapter 4). Furthermore, most of the dictionary learning methods require to

determine the coefficients of the dictionary elements during the learning process.

To determine the configuration of the hidden parameters that is optimal according

to some criterion, yields a sparse approximation problem, if sparsity constraints are

imposed on the hidden coefficients of the dictionary. This chapter discusses two

categories of sparse approximation methods.

The first category, the greedy methods that are discussed in Section 2.1, either

tackle the problem of finding the best k-term approximation of a given sample

x ∈ RN in terms of a given dictionary C ∈ RN×M

min
a
‖x− Ca‖22 subject to ‖a‖0 ≤ k (2.1)

or the problem of finding the sparsest representation of a given sample x under the

constraint that the representation error is at most δ

min
a
‖a‖0 subject to ‖x− Ca‖22 ≤ δ . (2.2)

Both (2.1) and (2.2) are NP-hard optimization tasks [Davis et al., 1997]. The greedy

methods provide an approximative solution of these NP-hard tasks by an iterative

construction of the sample x out of the elements of the dictionary C. If (2.1) is to

13



2 Sparse approximation

be solved, the greedy methods stop after exactly k iterations have been performed,

while in case of (2.2) the methods proceed until the approximation error drops below

the user defined accuracy δ.

The second category, the relaxation methods that are discussed in Section 2.2,

can be used to solve a least squares approximation problem where a regularization

term has been added that enforces sparsity on the dictionary coefficients

min
a
‖x− Ca‖22 + λS(a) . (2.3)

Often S(a), the measure of sparsity of the coefficients, is a relaxition of the zero

norm such as the L1 norm. This can be seen as a replacement of the difficult NP-

hard optimization problem by an easier optimization task whose solution is under

certain conditions close to the solution of the original NP-hard optimization problem

[Donoho and Elad, 2003].

It is an important question whether the representation of given data in terms of a

sparse linear combination of an overcomplete dictionary is well-defined, i.e., unique.

This is indeed the case under certain conditions, which is discussed in Section 2.3,

where it is also discussed under which conditions approximative greedy approaches

can find these representations.

2.1 Greedy methods

This section refers to a class of greedy algorithms that are called pursuit methods.

They iteratively construct a given vector out of the columns of a given matrix. The

zero norm of the coefficient vector is equal to the number of approximation iter-

ations that have been performed. Here, we describe Matching Pursuit [S.Mallat

and Zhang, 1993], Orthogonal Matching Pursuit [Pati et al., 1993], Optimized Or-

thogonal Matching Pursuit [Rebollo-Neira and Lowe, 2002] and the Bag of Pursuits

[Labusch et al., 2010].

2.1.1 Matching pursuit

Matching pursuit (MP) is a very simple sparse approximation method. An advan-

tage of MP is its computational efficiency.

Let CaMP denote the current approximation of x in MP, and let ε = x − CaMP

denote the current residual that still has to be encoded. Initially, aMP = 0 and
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2.1 Greedy methods

ε = x. MP iteratively selects k columns of C by performing the following steps:

1. Select clwin by clwin = arg maxcl(c
T
l ε)2

2. Set (aMP)lwin
= (aMP)lwin

+ (cTlwin
ε)

3. Obtain new residual ε = x− CaMP

4. Continue with step 1 until k iterations have been performed or ‖ε‖ ≤ δ

Even if we perform N iterations of MP, i.e., if we select as many columns of C as

there are dimensions, it is not guaranteed that we will obtain CaMP = x and ε = 0,

though the asymptotical convergence of MP for k → ∞ has been proven [S.Mallat

and Zhang, 1993].

2.1.2 Orthogonal matching pursuit

Let CaOMP denote the current approximation of x in Orthogonal Matching Pursuit.

In contrast to MP, this approximation fulfills CaOMP = x and ε = 0 after k ≤ N

iterations [Pati et al., 1993]. Let U denote the set of indices of those columns of C

that already have been used during Orthogonal Matching Pursuit. The number of

elements in U , i.e., |U |, equals the number of iterations that have been performed

so far. The columns of C that are indexed by U are denoted by CU . Initially,

aOMP = 0, ε = x and U = ∅. OMP works as follows:

1. Select clwin by clwin = arg maxcl,l/∈U (cTl ε)2

2. Set U = U ∪ lwin

3. Solve the optimization problem aOMP = arg mina ‖x− CUa‖22

4. Obtain current residual ε = x− CaOMP

5. Continue with step 1 until k iterations have been performed or ‖ε‖ ≤ δ

2.1.3 Optimized orthogonal matching pursuit

An improved variant of the OMP algorithm is Optimized Orthogonal Matching

Pursuit (OOMP) [Rebollo-Neira and Lowe, 2002]. In general, the columns of C

are not pairwise orthogonal. Hence, the criterion of OMP that selects the column

clwin , lwin /∈ U of C that is added to U is not optimal with respect to the minimization

of the residual that is obtained after the column clwin has been added. Therefore,
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2 Sparse approximation

Optimized Orthogonal Matching Pursuit uses a selection criterion that is optimal

with respect to the minimization of the norm of the residual obtained: the algorithms

runs through all columns of C that have not been used so far and selects the one

that yields the smallest residual. Optimized Orthogonal Matching Pursuit works as

follows:

1. Select clwin
such that clwin

= arg mincl,l/∈U mina ‖x− CU∪la‖

2. Set U = U ∪ lwin

3. Solve the optimization problem aOMP = arg mina ‖x− CUa‖22

4. Obtain current residual ε = x− CaOMP

5. Continue with step 1 until k iterations have been performed or ‖ε‖ ≤ δ

The selection criterion of the OOMP algorithm (step 1) involves M −|U | minimiza-

tion problems, one for each column of C that has not been used so far. In order to

reduce the computational complexity of this step, we use an implementation of the

OOMP algorithm that employs a temporary matrix R that has been orthogonalized

with respect to CU . R is obtained by removing the projection of the columns of C

onto the subspace spanned by CU from C and setting the norm of the residuals rl

to one. The residual εU is obtained in the same way, i.e., the projection of x to the

subspace spanned by CU is removed from x. Initially, R = (r1, . . . , rl, . . . , rM ) = C

and εU = x. In each iteration, the algorithm determines the column rl of R with

l /∈ U that has maximum overlap with respect to the current residual εU :

lwin = arg max
l,l/∈U

(rTl ε
U )2 . (2.4)

Then, in the construction step, the orthogonal projection with respect to rlwin
is

removed from the columns of R and εU :

rl = rl − (rTlwin
rl)rlwin , (2.5)

εU = εU − (rTlwin
εU )rlwin

. (2.6)

After the projection has been removed, lwin is added to U , i.e., U = U ∪ lwin. The

columns rl with l /∈ U may be selected in the subsequent iterations of the algorithm.

The norm of these columns is set to unit length. The stopping criterion is either

|U | = k or ‖ε‖ ≤ δ. The final entries of aOMP can be obtained by recursively
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2.1 Greedy methods

collecting the contribution of each column of C during the construction process,

taking into account the normalization of the columns of R in each iteration.

2.1.4 Bag of Pursuits

In order to perform soft-competitive dictionary learning with NGDL (see Section

4.6), we need a sparse approximation method that not only determines a single ap-

proximation of the best coefficients but that determines many good approximations

of a given sample. Here, we describe a method that has this property and which is

termed “bag of pursuits” (BOP), since it performs a sequence of optimized orthog-

onal matching pursuits. The number of solutions that are provided is equal to the

number of pursuits that are performed. The number of pursuits is a user-defined

parameter and in the following is denoted by Kuser.

The algorithm starts with U jn = ∅, Rj0 = (r0,j
1 , . . . , r0,j

M ) = C and εj0 = x. The set

U jn contains the indices of those columns of C that have been used during the j-th

pursuit with respect to x up to the n-th iteration. Rjn is a temporary matrix that

has been orthogonalized with respect to the columns of C that are indexed by U jn.

rn,jl is the l-th column of Rjn. εjn is the residual in the n-th iteration of the j-th

pursuit with respect to x.

In iteration n, the algorithm looks for that column of Rjn whose inclusion in the

linear combination leads to the smallest residual εjn+1 in the next iteration of the

algorithm, i.e., that has the maximum overlap with respect to the current residual.

Hence, with

yjn =

(
rn,j1

T
εjn

‖rn,j1 ‖
, . . . ,

rn,jl
T
εjn

‖rn,jl ‖
, . . . ,

rn,jM
T
εjn

‖rn,jM ‖

)
(2.7)

it looks for lwin(n, j) = arg maxl,l/∈Ujn
(
(yjn)l

)2
. Then, the orthogonal projection of

Rjn to rn,i,jlwin(n,i,j) is removed from Rjn

Rjn+1 = Rjn −
rn,i,jlwin(n,i,j)(R

j
n
T
rn,i,jlwin(n,i,j))

T

rn,i,jlwin(n,i,j)

T
rn,i,jlwin(n,i,j)

. (2.8)

Furthermore, the orthogonal projection of εjn to rn,i,jlwin(n,i,j) is removed from εjn

εjn+1 = εjn −
εjn
T
rn,i,jlwin(n,i,j)

rn,i,jlwin(n,i,j)

T
rn,i,jlwin(n,i,j)

rn,i,jlwin(n,i,j) . (2.9)
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Figure 2.1: The figure depicts the tree-like search procedure of the BOP method
for the constraint ‖a‖0 ≤ 3. In this example Kuser = 3 holds, i.e., the
method determines three different solutions. The method starts by sort-
ing the dictionary elements according to their overlap with respect to the
residual (root of the tree). The dictionary element that has the largest
overlap, i.e., element 5, is selected. All other dictionary elements as well
as the residual are orthogonalized with respected to dictionary element
5. This procedure is repeated (elements 2 and 3 are selected) until at
most three dictionaries elements have been used. Now, the second solu-
tion is determined. Among all overlaps that have been computed so far
the largest one is selected (element 1 at root level). Again a sequence
of orthogonalizations is performed until three dictionary elements have
been used (elements 2 and 3 are selected). The third solution is obtained
by repeating the entire procedure again. Solution 1: 5,2,3 Solution 2:
1,2,3 Solution 3: 5,4,2.
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The algorithm stops if ‖εjn‖ ≤ δ or n = k. The j-th approximation of the coefficients

of the best k-term approximation, i.e., aj , can be obtained by recursively tracking

the contribution of each column of C that has been used during the iterations of

pursuit j. In order to obtain a set of approximations a1, ...,aKuser , where Kuser is

chosen by the user, we want to conduct Kuser matching pursuits. To obtain Kuser

different pursuits, we implement the following function:

Q(l, n, j) =





0 :

If there is no pursuit (among all pursuits

that have been performed with respect to

x) that is equal to the j -th pursuit up to

the n-th iteration, where in that iteration

column l has been selected

1 : else .

(2.10)

Then, while a pursuit is performed, we track all overlaps yjn that have been computed

during that pursuit. For instance if a1 has been determined, we have y1
0, . . . ,y

1
n, . . . ,y

1
s1−1

where s1 is the number of iterations of the 1st pursuit with respect to x. In order

to find a2, we now look for the largest overlap in the previous pursuit that has not

been used so far

ntarget = arg max
n=0,...,s1−1

max
l,Q(l,n,j)=0

(
(y1
n)l
)2

(2.11)

ltarget = arg max
l

(y1
ntarget

)l . (2.12)

We replay the 1st pursuit up to iteration ntarget. In that iteration, we select column

ltarget instead of the previous winner and continue with the pursuit until the stopping

criterion has been reached. If m pursuits have been performed, among all previous

pursuits, we look for the largest overlap that has not been used so far:

jtarget = arg max
j=1,...,m

max
n=0,...,sj−1

max
l,Q(l,n,j)=0

(
(yjn)l

)2
(2.13)

ntarget = arg max
n=0,...,sjtarget−1

max
l,Q(l,n,jtarget)=0

(
(yjtargetn )l

)2
(2.14)

ltarget = arg max
l,Q(l,ntarget,jtarget)=0

(
(yjtargetntarget

)l

)2

. (2.15)

We replay pursuit jtarget up to iteration ntarget. In that iteration, we select column

ltarget instead of the previous winner and continue with the pursuit until the stopping
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criterion has been reached. We repeat this procedure until Kuser pursuits have been

performed. A schematic view of the BOP method is shown in Figure 2.1.

2.2 Relaxation methods

In general, the optimization problems (2.1) and (2.2) that involve the zero norm

as measure of sparsity are NP-hard [Davis et al., 1997]. Therefore, methods have

been proposed that do not solve these optimization problems but related easier

optimization problems, whose solution often is close to the solution of the primal NP-

hard problems [Donoho and Elad, 2003]. These methods consider the optimization

problem that is defined by (2.3) where the penalty or regularization term S(a) is a

relaxation of the zero norm. This means that it still enforces sparsity, but is not as

discontinuous as the zero norm. Many choices are possible for S(a), for instance:

S(a) =





‖a‖1
−e−‖a‖22

log(1 + a2) .

(2.16)

If the regularization term that is used is differentiable, as for instance in case of

S(a) = log(1 + a2), (2.3) can be approached by standard optimization methods

such as gradient descent. This has been done in the Sparsenet algorithm [Olshausen

and Field, 1995, 1996b]. However, if S(a) is not convex, which is the case for

S(a) = log(1 + a2), gradient optimization might run into local minima.

In the Basis Pursuit method [Chen et al., 1998], one chooses S(a) = ‖a‖1 and

obtains as optimization task

min
a
‖x− Ca‖22 + λ‖a‖1 , (2.17)

which has a target function that is convex but not differentiable. With Ĉ = (C,−C)

this can be converted to the following equivalent quadratic program

min
â

âT ĈT Ĉâ− (2xT Ĉ + λ1)â subject to (â)i ≥ 0 ∀i = 1, . . . , 2M , (2.18)

that can be approached with standard QP-solvers. (2.17) is closely related to the
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following minimization problem

min
a
‖a‖1 subject to ‖ x− Ca‖22 ≤ δ . (2.19)

The constrained minimization problem (2.19) can be solved by an equivalent un-

constrained maximization of its corresponding Lagrangian

max
β

min
a
‖a‖1 + β(‖ x− Ca‖22 − δ) subject to β ≥ 0 (2.20)

where β is the Lagrange parameter. Suppose that the optimal value for β, i.e., β∗,

is known, then (2.20) turns into

min
a

1

β∗
‖a‖1 + ‖ x− Ca‖22 . (2.21)

For any choice of λ in (2.17) there is some δ in (2.19) such that λ = 1/β∗. For any

δ in (2.19) there is some λ in (2.17) such that λ = 1/β∗.

A disadvantage of the Basis pursuit approach is that it leads to a quadratic

minimization problem of size 2M × 2M , which becomes intractable for very large

settings. Among the methods that are computationally more feasible and that

can be used to find a solution of (2.17) (for a comprehensive review see [Bruckstein

et al., 2009]) there are iteratively reweighted least squares methods [Rao et al., 2003],

stepwise methods as for instance the LARS-LASSO algorithm [Osborne et al., 2000],

iterative shrinkage methods [Daubechies et al., 2004], and related neuro-inspired

dynamical systems [Rozell and Baraniuk, 2008].

2.3 Stability and identifiability

In this section, we briefly discuss some results on the stability and identifiability

of the solution of the sparse approximization tasks (2.1) and (2.2). Here, stability

is a property of the optimization problem and describes how a change of the noise

level influences its domain of solutions. Identifiability describes the ability of some

sparse approximation method to find such a solution within a certain accuracy.

Hence, this property is only defined in connection with a specific approximation

algorithm. Since in this work the OMP algorithm or one of its derivatives, e.g.,

OOMP or BOP, are used in order to solve sparse approximation problems, we here

concentrate on results that were obtained for the OMP method.
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2 Sparse approximation

Of course, the choice of the dictionary C has a strong influence on stability and

identifiability. In particular, its mutual coherence has an impact on these properties.

The mutual coherence H(C) is defined as follows:

H(C) = max
1≤i,j≤M,i6=j

|cTi cj | . (2.22)

Identifiablility in the approximation domain: Let x∗ = Ca∗ be the best k-term

approximation of a given sample x in terms of a dictionary C:

a∗ = arg min
a
‖x− Ca‖ subject to ‖a‖0 ≤ k . (2.23)

It has been shown [Tropp, 2004] that if

k <
1

2

(
1 +

1

H(C)

)
(2.24)

holds, than OMP yields an xOMP = CaOMP with

‖x− xOMP‖ ≤
√

1 + 6k ‖x− x∗‖ . (2.25)

This also means that if (2.24) holds and x = x∗, OMP finds the exact solution of

(2.1), i.e., it identifies the best k-term approximation of x that is x∗.

Stability of the solution in the representation domain: The result on the stability

of the solution in the representation domain, as it is presented in the following, is

taken from [Bruckstein et al., 2009]. It was first reported in [Donoho et al., 2006].

Let a∗ be some vector for which ‖x− Ca∗‖ ≤ δ and

‖a∗‖0 <
1

2

(
1 +

1

H(C)

)
(2.26)

holds. Now, let a∗∗ be some solution of (2.2), i.e.,

a∗∗ = arg min
a
‖a‖0 subject to‖x− Ca‖ ≤ δ . (2.27)

Then

‖a∗ − a∗∗‖ ≤ 4δ2

1−H(C)(2‖a∗‖0 − 1)
(2.28)

holds. Therefore, if (2.26) holds and δ = 0, a∗ is the unique solution of (2.2).
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2.3 Stability and identifiability

Identifiablility in the representation domain: We here cite a result on the iden-

tifiability of the solution of (2.2) for OMP as it is presented in [Bruckstein et al.,

2009]. It was first reported in [Donoho et al., 2006].

Let a∗ be some vector for which ‖x− Ca∗‖ ≤ δ and

‖a∗‖0 <
1

2

(
1 +

1

H(C)

)
− δ

H(C) mina∗i 6=0 |a∗i |
(2.29)

holds. Let aOMP be an approximative solution of (2.2) that has been obtained from

the OMP algorithm. Then

‖a∗ − aOMP‖ ≤ δ2

1−H(C)(‖a∗‖0 − 1)
(2.30)

holds. Furthermore, aOMP contains only non-zeros that also appear in a∗. This also

means that if (2.29) holds and δ = 0, OMP identifies the exact solution of (2.2). For

δ > 0, local stability is given, as long as in (2.29) the absolute value of the smallest

non-zero entry in a∗, i.e., mina∗i 6=0 |a∗i |, is sufficiently large [Donoho et al., 2006].
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3 Analytic dictionaries

In some of the experiments that are part of this work analytic data representations

were used for comparison purposes. Analytic means in this case, that the dictionary

that is used for the representation of given data is not obtained from a learning

algorithm, but that the dictionary is defined by some mathematical framework. This

chapter provides an overview over those analytic representations that have been used

in the experiments. It is supposed to be a brief summary of the most important

aspects, since a comprehensive discussion of the methods that are presented here

would by far exceed the scope of this work. A comprehensive discussion of this

domain can be found for instance in [Mallat, 2009].

3.1 Discrete Fourier Transformation

Suppose you are given a vector x ∈ RN , x = (x1, . . . , xl, . . . , xN )T . By computing

its Fourier representation, it is implicitly considered to represent a discrete function

x(l) of period N

x(l) = x(l mod N)+1 l = −∞, . . . ,∞ l ∈ Z. (3.1)

The set of functions

cdft
m (l) = cos

(
2πml

N

)
+ i sin

(
2πml

N

)
m = 0, . . . , N − 1 (3.2)

is an orthogonal basis of the space of discrete functions of period N [Mallat, 2009].

Using a matrix CDFT ∈ CN×N with CDFT
l,m = cdft

m−1(l − 1) the coefficients of the

discrete Fourier transformation of x(l) are obtained from a = CDFTx. Given the

Fourier coefficients a, the vector representation of the function x(l) can be recon-

structed by applying the inverse discrete Fourier transformation x =
(
CDFT

)T
a.

The Fourier coefficients a = (a1, . . . , am, . . . , aN ) can be interpreted as the frequency

dependent discrete function a(m). The parameter l of the primal function has been
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3 Analytic dictionaries

replaced by the frequency parameter m of its Fourier transformation.

Even if x(l) is smooth in the interval [0, N −1], due to its periodicity the absolute

values of the high-frequency Fourier coefficients are large, if |x(0) − x(N − 1)| is

large. On the one hand this effect is somehow artificial, on the other hand it is even

detrimental, in particular in applications such as image compression where, due to

the blockwise processing of the images, N might be quite small. Therefore, in such

applications often the discrete cosine transformation is used instead.

3.2 Discrete Cosine Transformation

For the discrete cosine transformation, the following set of basis functions is used:

cdct
m (l) = fm

√
2

N
cos

(
mπ

N

(
l +

1

2

))
m = 0, . . . , N − 1 (3.3)

with

fm =

{
1√
2

: if m = 0

1 : else .
(3.4)

Considering the matrix CDCT ∈ RN×N with CDCT
l,m = cdct

m−1(l − 1), it follows from

(3.3) that its columns are pairwise orthogonal and, due to the normalization factor

fm

√
2
N , the norm of each column is equal to one [Mallat, 2009]. Hence, CDCT is an

orthonormal basis of RN . Therefore, the coefficients of the discrete cosine transfor-

mation are obtained from a = CDCTx. x can be reconstructed from the coefficients

by applying the inverse discrete cosine transformation, i.e., x =
(
CDCT

)T
a. In con-

trast to the discrete Fourier transformation, the discrete cosine transformation does

not suffer that strong from the problem of artificially introduced high-frequencies.

This can be seen as follows:

Let us consider a vector x̂ ∈ R2N with

x̂l =

{
xl : if l = 1, . . . , N

x2N−l+1 : if l = N + 1, . . . , 2N .
(3.5)

In the framework of the discrete Fourier transformation, this vector is implicitly

considered as discrete function of period 2N

x̂(l) = x̂(l mod 2N)+1 l = −∞, . . . ,∞ l ∈ Z. (3.6)
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3.2 Discrete Cosine Transformation

This function is symmetric at kN + (1/2), k ∈ Z. Applying a discrete fourier

transformation to this function that has been shifted by (1/2) one obtains Fourier

coefficients that can be used in order to reconstruct x̂(l) from the Fourier basis

functions as follows

x̂(l) =

2N−1∑

m=0

are
m cos

(
2πm

(
l + 1

2

)

2N

)
+ aim

m sin

(
2πm

(
l + 1

2

)

2N

)
. (3.7)

Here are
m and aim

m are the real and imaginary part of the Fourier coefficient am. Due

to the symmetry properties of x̂(l), the imaginary part of the Fourier coefficients is

equal to zero, i.e., aim
m = 0, ∀m. Furthermore, the discrete cosine basis functions

cdct
m (l), m = 0, . . . , N − 1, l = 0, . . . , N − 1 already provide an orthogonal basis

that can represent any x ∈ RN . Together with the symmetry properties of x̂(l)

and the symmetry properties of the shifted cosine functions in (3.7), it follows that

are
m = 0, ∀m > N − 1. Hence, apart from normalization factors, the discrete cosine

transformation can be understood as the discrete Fourier transformation of the

periodic function x̂(l). x̂(l) is much smoother than x(l) since x̂(0) = x̂(2N − 1) is

guaranteed.

One dimensional bases such as the Fourier basis (3.2) or the cosine basis (3.3)

can be extended to multiple dimensions by taking the pairwise tensor products

of the one-dimensional basis vectors [Mallat, 2009]. In this work we use the two-

dimensional discrete cosine transformation that uses a set of basis vectors that are

products of one-dimensional discrete cosine functions

cdct
h,v(lh, lv) = fhfv

2

N
cos

(
hπ

D

(
lh +

1

2

))
cos

(
vπ

D

(
lv +

1

2

))
(3.8)

h = 0, 1, . . . , D − 1, v = 0, 1, . . . , D − 1 .

and provides an orthonormal basis of the image patches x ∈ RD×D, D2 = N . Here,

lh and lv are the horizontal and vertical position in the image. Furthermore, we use

overcomplete cosine dictionaries that have M > D2 many elements. Such an over-

complete cosine dictionary is obtained by using a finer sampling of the frequencies
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3 Analytic dictionaries

(here
√
M is an integer number):

cdct
h,v(lh, lv) = fhfv

2

N
cos

(
hπ√
M

(
lh +

1

2

))
cos

(
vπ√
M

(
lv +

1

2

))
(3.9)

h = 0, 1, . . . ,
√
M − 1, v = 0, 1, . . . ,

√
M − 1,

√
M > D .

Note that in the overcomplete case the representation in terms of the dictionary

elements is not unique. Also the dictionary elements are not pairwise orthogonal any

more. In order to obtain a well-defined representation constraints on the coefficients

have to be imposed. The sparse approximation methods described in Chapter 2 can

be used in order to determine a representation of given data in terms of such an

overcomplete dictionary.

3.3 Gabor functions

In the Fourier representation the frequency resolution is maximal, whereas the de-

pendency of an observation on its primal parameters, as for instance time or space,

is completely removed. The more the basis functions of a new representation are

localized in one of the domains, i.e., either frequencies or primal parameters, the

higher the resolution is in that domain. High localisation is in this case equivalent

to small variance. The Fourier basis functions are maximally localized in the fre-

quency domain, since each of them represents negative and positive part of exactly

one frequency. This means that the variance of the Fourier representation of the

Fourier basis functions is equal to zero, whereas the variance of the Fourier basis

functions in the primal parameter domain is infinite.

In order to obtain a representation that enables a parallel analysis in terms of both

domains, i.e., frequencies and primal parameters, one needs basis functions whose

variance in both domains is as small as possible. The uncertainty principle provides

a lower-bound on the product of the variances of a function in its primal domain

and its Fourier representation [Weyl, 1931]. As a consequence of this principle the

maximum resolution in both domains cannot be achieved, but one has to trade

frequency resolution against resolution in the primal parameter domain. In order

to realize such a trade-off windowed Fourier transformations have been proposed

[Mallat, 2009]. One important example is the product of the Fourier basis functions

and a Gaussian, which localizes the infinite Fourier basis functions in the primal
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3.3 Gabor functions

parameter domain:

cgabor1D
m,l0,σ

(l) = exp

(
− (l − l0)

2

σ2

)[
cos

(
2πml

N

)
+ i sin

(
2πml

N

)]
. (3.10)

The product of the variances in both domains of the obtained basis functions is

equal to the theoretical minimum that is defined by the uncertainty principle [Ga-

bor, 1946]. The frequency resolution can be controlled by the parameter σ, i.e., the

larger σ is, the larger the frequency resolution becomes. The location in the primal

parameter domain is controlled by the parameter l0. Since this type of representa-

tion has been first analyzed and proposed by Gabor [Gabor, 1946] the resulting basis

functions are termed Gabor-chirps. Gabor functions possess a bandpass character-

istic and zero mean and are therefore also termed Gabor-wavelets. Gabor functions

have been generalized to two dimensions [Daugman, 1980, 1985]:

cgabor2D
h,v,l0,σ

(lh, lv) = exp

(
− (lh − lh0

)
2

σ2
h

+
(lv − lv0)

2

σ2
v

)
(3.11)

×
[
cos

(
2π

D
(h (lh − lh0

) + v (lv − lv0))

)

+ i sin

(
2π

D
(h (lh − lh0) + v (lv − lv0))

)]
.

The 2-dimensional Gabor functions can be controlled with respect to frequency

selectivity, spatial selectivity, and orientation selectitivity. It has been shown that

given an appropriate parameterization, the projections of image patches on these

Gabor functions are very similar to the responses of simple cells to the same visual

stimuli [Daugman, 1980, 1985]. Usually, the projection on the Gabor functions is

complex valued. Taking the real part is one of the valid approaches to obtain real

valued projections to work with [Gabor, 1946, Daugman, 1985]. Additionally, we

use a reparameterized version of (3.11). Considering a two-dimensional rotation of

degree α

Rα =

(
cosα − sinα

sinα cosα

)
(3.12)

the real part of a two-dimensional Gabor function that is determined by its orien-
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3 Analytic dictionaries

tation α, wavelength λ, phase φ, and center l0 = (lh0
, lv0)T is

c
RE(gabor2D)
l0,λ,σ,α,φ

(l) = exp

(
−‖Rα(l− l0)‖2

2σ2

)
cos

(
2π

λ
(1Rα(l− l0)) + φπ

)
. (3.13)

Here, l = (lh, lv)
T is the position in the image. Measurements in the visual cortex of

macaques have shown that the majority of the simple cells have a spatial bandwidth

of approximately one octave, which is independent from the wavelength λ [Valois

et al., 1982] . The spatial bandwidth of (3.13) is σ
λ [Kruizinga and Petkov, 1999].

If the wavelength λ and bandwidth in octaves b are considered as parameters to be

chosen by the user, the width σ of the Gaussian window is obtained according to

[Kruizinga and Petkov, 1999] as:

σ =
λ

π

√
ln 2

2

2b + 1

2b − 1
. (3.14)

The phase parameter φ controlls the type of receptive field that is obtained. φ = 0

leads to symmetric center on fields whereas φ = 1 leads to symmetric center-off

fields. For φ = 1
2 and φ = − 1

2 asymmetic receptive fields with oposite polarities are

obtained.

3.4 Orthogonal Wavelet Dictionaries

In the orthogonal wavelet framework data representations at different scales are

considered. In order to represent a given function x(t) ∈ L2(R) at a scale 2s a set

of basis functions is used that is obtained from dilations and translations of the

so-called scaling function φ:

φt0,s(t) =
1√
2s
φ

(
t− 2st0

2s

)
t0, s ∈ Z, t ∈ R. (3.15)

φ is chosen such that [Mallat, 2009]:

• the set of functions φt0,s(t) is an orthonormal basis of a subspace Vs ⊂ L2(R).

• the sequence of subspaces V0, V1, . . . , Vs, Vs+1 . . . is nested:

V0 ⊃ V1 ⊃ · · · ⊃ Vs ⊃ Vs+1, . . . . (3.16)

• proceeding from a finer scale to a coarser scale removes only details that are
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3.4 Orthogonal Wavelet Dictionaries

orthogonal to the structures that remain in the subsequent subspaces. If

Us⊥s+1 denotes a subspace of functions that is contained in Vs where its

elements are orthogonal to the functions contained in Vs+1:

Us⊥s+1 = {x(t) ∈ Vs |< x(t),y(t) >= 0 ∀y(t) ∈ Vs+1} (3.17)

then

Vs+1 = Vs \ Us⊥s+1 (3.18)

holds.

• the union of all orthogonal complement spaces spans the entire function space

⋃

s∈Z
Us = L2(R) . (3.19)

Due to the subspace structure also


 ⋃

k∈Z, k<smax

Uk⊥k+1


⋃Vsmax

= L2(R) . (3.20)

An orthogonal basis for the orthogonal complement spaces Us⊥s+1 is obtained

from dilations and translations of the wavelet function ψ that complements the

scaling function φ:

ψt0,s(t) =
1√
2s
ψ

(
t− 2st0

2s

)
t0, s ∈ Z, t ∈ R. (3.21)

In this work, we consider finite dimensional vectors x ∈ RN . An orthogonal basis for

a finite dimensional vector space can be obtained from the continuous orthogonal

wavelet framework by considering:

c
Wav(φ,ψ)
l0,s

(l) = gφ,ψs (l − l0) (3.22)

s = 1, . . . , smax, l = 0, . . . , N l, s ∈ N0

l0 = k2s, k = 0, . . . ,
N

2s
− 1, k ∈ N0
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and

c
Scale(φ)
l0,smax

(l) = hφsmax
(l − l0) (3.23)

l = 0, . . . , N l ∈ N0

l0 = k2smax , k = 0, . . . ,
N

2smax
− 1, k ∈ N0

where smax is the maximum scale that is considered in the new representation and

gφ,ψs (l) =
〈
ψ̂s (t) , φ̂0(t− l)

〉
(3.24)

as well as

hφs (l) =
〈
φ̂s (t) , φ̂0(t− l)

〉
. (3.25)

φ̂s(t) and ψ̂s(t) are the periodized scaling function and the periodized wavelet:

φ̂s(t) =

∞∑

k=−∞

φ

(
t

2s
+ kN

)
(3.26)

ψ̂s(t) =

∞∑

k=−∞

ψ

(
t

2s
+ kN

)
s ∈ Z, t ∈ R. (3.27)

Note that there are other ways of handling the boundaries, as for instance folded

wavelets [Mallat, 2009].

hφ1 (l) and gφ,ψ1 (l) can be understood as coefficients of discrete filters which enable

a very efficient computation of the representation in the new basis by means of

a filter-bank which does not explicitly use the expanded basis vectors (3.22) and

(3.23) [Mallat, 2009]. However, in this work, the basis has been explicitly expanded

in order to employ sparse approximation algorithms for the coefficient estimation in

case of overcomplete bases.

A widely used orthogonal wavelet is the Haar-wavelet, that is defined as follows:

ψHaar(t) =





1 if 0 ≤ t < 1
2

−1 if 1
2 ≤ t < 1

0 else .

(3.28)
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3.4 Orthogonal Wavelet Dictionaries

The Haar-Wavelet complements a piece-wise constant scaling function

φHaar(t) =

{
1 if 0 ≤ t < 1

0 else .
(3.29)

A Haar-wavelet orthogonal basis for image patches of size D ×D is obtained from

the pairwise tensor products of one-dimensional Haar basis vectors

c
Wav(Haar)
l0,s

(l) = c
Wav(φHaar,ψHaar)
l0h,s

(lh) c
Wav(φHaar,ψHaar)
l0v,s

(lv) (3.30)

s = 1, . . . , smax, s ∈ N

l0h = k2s, k = 0, . . . ,
D

2s
− 1, k ∈ N0

l0v = k2s, k = 0, . . . ,
D

2s
− 1, k ∈ N0

and

c
Scale(Haar)
l0,smax (l) = c

Scale(φHaar)
l0h,s

max (lh) c
Scale(φHaar)
l0v,s

max (lv) (3.31)

l0h = k2s
max

, k = 0, . . . ,
D

2smax − 1, k ∈ N0

l0v = k2s
max

, k = 0, . . . ,
D

2smax − 1, k ∈ N0 .

Here, l = (lh, lv)
T is the position in the image patch. We used smax = log2D. In

a very similar way as in the discrete cosine case, one can define an overcomplete

Haar-wavelet dictionary. However, in this case overcompleteness is not introduced in

terms of frequency but in terms of localisation, i.e., an overcomplete Haar dictionary

is generated by smaller translation steps of the wavelet in the primal parameter

domain:

c
Wav(Haar)
l0,s

(l) = c
Wav(φHaar,ψHaar)
l0h,s

(lh) c
Wav(φHaar,ψHaar)
l0v,s

(lv) (3.32)

s = 1, . . . , smax, s ∈ N

l0h = 0, . . . , D − 1, l0h ∈ N0

l0v = 0, . . . , D − 1, l0v ∈ N0 .

If an overcomplete Haar-wavlet basis is used, again, the representation is not unique.

Therefore constraints on the coefficients have to be imposed in order to render the

representation unique. If sparseness constraints are imposed on the coefficients,
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3 Analytic dictionaries

again, the approximation methods described in Chapter 2 can be employed in order

to determine the coefficients of the dictionary elements.
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4 Dictionary Learning

This chapter discusses two general categorys of dictionary learning approaches that

can be combined with the sparse approximation methods that are described in Chap-

ter 2. The methods from the first category aim to minimize the representation error

where constraints on the zero norm of the coefficients are explicitly implemented

in the sparse approximation method, i.e., the constraint on the number of non-zero

coefficients is not part of the target function but is considered in the optimization

with respect to the coefficients. The zero norm as measure of the sparsity of the

coefficients is invariant against a scaling of the elements of the dictionary. Due to

the scaling invariant measure of sparsity, the methods from this category consider an

unconstrained optimization problem with respect to the dictionary. Methods from

this category are for instance vector quantization approaches, e.g., the k-means al-

gorithm [Hartigan and Wong, 1979], the LBG-algorithm [Linde et al., 1980], and the

Neural Gas algorithm [Martinetz and Schulten, 1991, Martinetz et al., 1993, Cottrell

et al., 2006]. Also the Method of Optimal Directions (MOD) [Engan et al., 1999],

the K-SVD algorithm (KSVD) [Aharon et al., 2006], the Sparse Coding Neural Gas

algorithm (SCNG) [Labusch et al., 2008a, 2009a] as well as the combination of the

Bag of Pursuits approach for sparse approximation (Section 2.1.4) and the Neural

Gas algorithm [Labusch et al., 2010] belong to this group.

The methods from the second category employ a sparse approximation method

in order to determine the dictionary coefficients that does not introduce explicit

constraints on the number of non-zero coefficients but incorporates some regulariza-

tion term in the target function in order to prevent trivial, i.e., non-sparse, solutions

from being selected. These dictionary learning methods employ relaxation methods,

as for instance those approaches discussed in Section 2.2 for the determination of

the coefficients. Many methods from this second category possess a probabilistic

interpretation in terms of a maximization of the data likelihood or the posteriori

probability of the learned dictionary. Since the regularization or penalty term usu-

ally is a relaxation of the zero norm such as for instance the L1 norm, it often is

not scaling invariant, i.e., its influence could be minimized by simply increasing the
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norm of the dictionary elements. In order to prevent this, one has to constrain

the norm of the dictionary elements to some fixed value. Hence, methods from

the second category have to solve a constrained optimization problem with respect

to the dictionary. In many cases, as for instance in the Sparsenet algorithm pro-

posed in [Olshausen and Field, 1996b], the improved algorithm proposed in [Lewicki

and Sejnowski, 1998, 2000], or the column normalized FOCUSS variant for dictio-

nary learning, i.e., FOCUSS-CNDL [Kreutz-Delgado et al., 2003], the update of

the dictionary is first performed as in an unconstrained optimization and than the

dictionary is projected to the constrained solution space by setting the norm of the

dictionary elements to a fixed value. Since this approach often leads to slow conver-

gence, improved optimization approaches have been proposed that directly tackle

the constrained optimization problem via the Lagrangian dual of the constrained

target function [Lee et al., 2007].

4.1 Vector quantization

One of the most basic approaches for dictionary learning is vector quantization.

In the domain of vector quantization the dictionary is termed codebook. Vector

quantization aims to find a codebook C that minimizes the mean of the squared

reconstruction error:

Eh =
1

L

L∑

i=1

‖xi − Cai‖22 (4.1)

subject to the constraint

(ai)k =

{
1 : k = arg minj ‖xi − cj‖22
0 : else .

(4.2)

Due to (4.2), vector quantization can also be understood as a model of maximum

sparsity.

4.1.1 k-means

The k-means algorithm [Hartigan and Wong, 1979] is a batch method that can be

used in order to determine a codebook that minimizes (4.1) constrained by (4.2). In

this algorithm, first for some given codebook C that has been intialized for example

with randomly selected data samples, for each given sample xi, the coefficients are
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4.1 Vector quantization

determined according to (4.2). Now let Ll be the number of given samples xi with

(ai)l = 1. Consider the derivative of (4.1) with respect to codebook vector cl

∂Eh
∂cl

=
∑

xi:(ai)l=1

2cl − xi = Llcl −
∑

xi:(ai)l=1

xi . (4.3)

A local minimum of (4.1) is obtained at

0 = Llcl −
∑

xi:(ai)l=1

xi

cl =
1

Ll

∑

xi:(ai)l=1

xi . (4.4)

After each element of the codebook has been subsequently updated according to

(4.4), new coefficients are determined according to (4.2). The order in which the

codebook vectors are updated is not relevant, since due to the constraint on the

coefficients, which ensures that each sample is encoded by only one codebook vector,

the update of one codebook vector does not influence the encoding performance

of those samples where it has not been used. The update of the codebook and

the determination of the coefficients are repeated until some stopping criterion is

met. In the most common implementation the algorithm stops if the change of the

codebook is lower than some threshold.

4.1.2 LBG-algorithm

The LBG-algorithm [Linde et al., 1980] is a pattern-by-pattern method for vector

quantization. In each iteration t, it considers one given sample xt whose coefficients

at with respect to some codebook C have been determined according (4.2). In

iteration t, only the codebook element cl with (at)l = 1 is updated. The update is

computed from the gradient of ‖xt − Cat‖22 with respect to cl:

cl = cl + α (xt − cl) (4.5)

where α is some learning rate. If the learning rate is slowly reduced over time, the

LBG algorithm performs a stochastic gradient descent on (4.1). Due to its stochastic

nature, it can be more robust against local minima of the target function.
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4.1.3 Neural Gas

Algorithms such as k-means or the LBG-algorithm consider only the winner for

learning, i.e., the codebook vector cl for which (ai)l = 1 holds. This hard-competitive

learning scheme often leads to a sub-optimal utilization of the codebook vectors

with respect to (4.1), i.e., bad quantization. Furthermore, the algorithms can be

initialization-sensitive and might exhibit slow convergence. Though the stochastic

gradient approach of the LBG-algorithm is more robust, depending on the topology

of the input data it can also run into these problems.

The Neural Gas algorithm [Martinetz and Schulten, 1991, Martinetz et al., 1993]

remedies these deficiencies by means of a soft-competitive learning scheme that fa-

cilitates robust convergence to close to optimal distributions of the codebook vectors

over the data manifold to be learned.

In the NG algorithm in each update step all possible configurations of the coeffi-

cients are considered, i.e.,

a1
i , . . . ,a

M
i , (ali)l = 1 . (4.6)

The configurations are sorted according to their reconstruction error and, in contrast

to hard-competitive approaches, used in order to update all the codebook vectors

cl, l = 1, . . . ,M in each learning iteration. The update is weighted according to the

rank of the configuration that uses the l-th codebook vector. Let rank(xi,a
l
i, C) = p

denote the number of configurations ami with

‖xi − Cami ‖ ≤ ‖xi − Cali‖ . (4.7)

Now, in the NG algorithm a neighborhood function hλt(v) = e−v/λt is introduced

and the following modified error function is considered

Es =

L∑

i=1

M∑

l=1

hλt(rank(xi,a
l
i, C))‖xi − Cali‖22 . (4.8)

It has been shown in [Martinetz et al., 1993] that the update

∆cl = αthλt(rank(xi,a
l
i, C)) (xt − cl) , (4.9)
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Algorithm 1 The Neural Gas algorithm
1 initialize C = (c1, . . . , cM ) using uniform random values

for t = 1 to tmax do
2 select random sample x out of X
3 calculate current size of neighbourhood and learning rate:

λt = λ0 (λfinal/λ0)t/tmax

αt = α0 (αfinal/α0)t/tmax

4 determine the sequence l0, . . . , lM−1 with:

‖x− cl0‖ ≤ · · · ≤ ‖x− clk‖ ≤ · · · ≤ ‖x− clM−1
‖

for k = 0 to M − 1 do
5 update clk according to clk = clk + αte−k/λt

(
x− clk

)
end for

end for

where αt is an exponentially decreasing learning rate

αt = α0

(
αfinal

α0

) t
tmax

, (4.10)

is equivalent to a stochastic gradient descent with respect to (4.8) where the coeffi-

cients are chosen according to (4.6). Here, α0 and αfinal denote the initial and final

learning rate. Also the neighborhood-size is exponentially decreasing

λt = λ0

(
λfinal

λ0

) t
tmax

. (4.11)

For λt → 0, (4.8) becomes equal to (4.1). Due to the soft-competitive learning

scheme, the NG algorithm shows robust convergence to close to optimal distributions

of the codebook vectors over the data manifold. A pseudo code implementation

of the NG method is shown in Algorithm 1. Complementary to the pattern-by-

pattern version of the algorithm that has been described so far, a batch version of

the algorithm has been proposed in [Cottrell et al., 2006].

4.2 Principle Component Analysis

While vector quantization can be understood as a model of maximum sparsity, the

framework of principle component analysis (PCA) does not enforce any sparsity on

the dictionary coefficients. PCA has been used in many applications [Fukunaga,

1990] and is often considered as a standard preprocessing step.
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PCA can be seen as a framework that considers a generative model in which

each given sample x ∈ RN stems from a linear combination of an orthogonal basis

C ∈ RN×M , M ≤ N plus residual

x = Ca + ε . (4.12)

The coefficients (a)j are pairwise decorrelated. The orthogonal basis C contains

the eigenvectors of the covariance matrix of x that is E[xxT ]. In case M < N ,

it contains those eigenvectors that correspond to the largest M eigenvalues of the

covariance matrix. Since C is an orthogonal basis, the new representation can be

obtained as:

a = CTx . (4.13)

Due to the choice of C, the following properties hold for the new representation a:

• PCA can be seen as a method which determines an orthogonal projection

that maps given data x into a new representation a in which all dimensions,

i.e., entries of a, are pairwise uncorrelated. If all the original dimensions are

Gaussian distributed, the new representation a is statistically independent,

since PCA removes all linear dependencies in the new representation. Hence,

PCA can be seen as a first step towards ICA. In ICA methods that are based

on the maximization of non-Gaussianity, PCA is used as a preprocessing step

(see also Section 5.1).

• PCA can be seen as a method that looks for a nested set of orthogonal pro-

jections into lower-dimensional subspaces such that the loss of information in

terms of the mean squared error is minimized.

• PCA can be seen as a method that looks for a nested set of orthogonal pro-

jections into lower-dimensional subspaces which maximize the mutual infor-

mation between the lower-dimensional representation and the original data

[Földiák, 1989].

In the past, a neural network adaptation rule has been proposed that enables a single

artificial neuron to learn the eigenvector that corresponds to the largest eigenvalue

of the covariance matrix of given data. This eigenvector is often called the direction

of maximum variance:
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4.3 Method of optimal directions

Oja’s rule: In Oja [1982] it is shown that c converges to the direction of maximum

variance in the input distribution of x, if it is iteratively updated according to

∆c = α y (x− y c) (4.14)

where x is randomly selected from the input data, y = cTx, and α is the learning

rate.

Furthermore, an update rule for a single layer network has been proposed that

learns those eigenvectors that correspond to the M largest eigenvalues of the covari-

ance matrix of given data:

Sanger’s rule: In [Sanger, 1989] it is shown that c1, . . . , cM converge to the eigen-

vectors that correspond to the M largest eigenvalues of the covariance matrix of x,

if each vector cj is iteratively updated according to

∆cj = αyj


x−

∑

l<j

ylcl − yjcj


 (4.15)

where x is randomly selected from the input data, yl = cTl x, and α is the learning

rate. Note, that (4.15) can be seen as an application of (4.14) where the input data

has been orthogonalized with respect to cl, l < j.

4.3 Method of optimal directions

The Method of Optimal Directions (MOD) [Engan et al., 1999] can be interpreted

as a generalization of the k-means algorithm. First, we discuss the case in which

the coefficients of the dictionary are chosen according to

ai = arg min
a
‖xi − Ca‖22 subject to ‖a‖0 ≤ k . (4.16)

Hence, we now consider data representations that encode a given sample as an

arbitrary linear combination of at most k dictionary elements.

4.3.1 Scaling invariant dictionary learning

In this case, we aim to minimize the representation error (4.1) where the coefficients

have been determined according to (4.16).
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In the first step of the MOD algorithm, dictionary coefficients A = (a1, . . . ,aL),

ai ∈ RM of a given set of training samples X = (x1, . . . ,xL), xi ∈ RN with respect

to a given dictionary C are determined with some sparse approximation method

such as for instance the greedy methods discussed in Section 2.1. The dictionary

can be initialized, for instance, with randomly selected data samples.

In order to improve the dictionary such that the representation error (4.1) is

reduced, the gradient of (4.1) with respect to the dictionary C is considered:

∂Eh
∂C

= −2(X − CA)AT . (4.17)

A local minimum is obtained at

∂Eh
∂C

= 0

0 = −2(X − CA)AT

C = XAT (AAT )−1 . (4.18)

After the dictionary has been updated according to (4.18), new coefficients are

determined according to (4.16). The update of the dictionary and the determination

of the coefficients are subsequently repeated, until some stopping criterion is met or

a maximum number of update steps has been performed.

4.3.2 Column normalized dictionary learning

MOD considers an unconstrained optimization problem with respect to the dictio-

nary, i.e., the minimization of (4.1). This requires a measure of sparsity for the

coefficients whose influence cannot be minimized by a simple increase of the norm

of the dictionary elements. The zero-norm used in the greedy methods possesses

this property. Of course, MOD can also be applied for dictionary learning, if the

method that determines the coefficients employs a measure of sparsity that is sen-

sitive to the scaling of the dictionary elements. This is the case, if, for instance,

the relaxation methods that are discussed in Section 2.2 are used to determine the

coefficients of the dictionary. In order to maintain the influence of the regularization

term in the coefficient estimation, the norm of the elements of the dictionary has

to be set to some constant value (one) once a new dictionary has been determined

according to (4.18). First, one looks for a solution of the unconstrained problem,

then this solution is projected to the constrained solution space.
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4.3 Method of optimal directions

A disadvantage of this projective approach is that it can cause slow convergence.

In order to overcome this disadvantage in [Lee et al., 2007] an update mechanism for

the dictionary has been proposed that directly solves the constrained optimization

problem by a maximization of the corresponding Lagrangian dual.

Let u > 0 be some constant, then the target function of the constrained optimiza-

tion problem is

ECNDL =

L∑

i=1

‖xi − Cai‖22 subject to ‖cj‖22 ≤ u . (4.19)

The corresponding Lagrangian is,

LCNDL =

L∑

i=1

‖xi − Cai‖22 +

M∑

j=1

λj(‖cj‖22 − u)

= trace((X − CA)2) + trace(Λ(C2 − uI)) . (4.20)

where λ = (λ1, . . . , λM ), Λ = diag(λ) are the Lagrangian parameters. The maxi-

mization of

min
C

trace((X − CA)2) + trace(Λ(C2 − uI)) (4.21)

with respect to λ is equivalent to the constrained minimization of (4.19) with respect

to C. In order to implement the minimization with respect to C in (4.21), we

consider its derivative

∂LCNDL

∂C
= 0

0 = −2(X − CA)AT + 2CΛ

0 = −XAT + CAAT + CΛ

XAT = CAAT + CΛ

XAT = C(AAT + Λ)

C = XAT (AAT + Λ)−1 . (4.22)

By insertion of (4.22) in (4.20), one obtains the Lagrangian dual which shall be
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maximized with respect to Λ

DCNDL = trace
(
XTX − 2XTCA+ (CA)2

)
+ trace

(
C2Λ− Λu

)

= trace
(
XTX − 2XTCA

)
+ trace

(
C(AAT + Λ)CT

)
− trace (Λu)

= trace
(
XTX − 2XTCA

)
+

trace
(
XAT (AAT + Λ)−1(AAT + Λ)CT

)
− trace (Λu)

= trace
(
XTX − 2XTCA

)
+ trace

(
XATCT

)
− trace (Λu)

= trace
(
XTX −XTCA

)
− trace (Λu)

= trace
(
XTX −XTXAT (AAT + Λ)−1A

)
− trace (Λu) . (4.23)

(4.23) can be maximized for instance with gradient descent. If the maximum of

(4.23) with respect to Λ has been determined by

Λ∗ = arg max
Λ

trace
(
XTX −XTXAT (AAT + Λ)−1A

)
− trace (Λu) , (4.24)

the dictionary is obtained as

C = XAT (AAT + Λ∗)
−1 . (4.25)

The determination of the coefficients and the update of the dictionary according to

(4.25) are subsequently repeated until some stopping criterion is met or a maximum

number of learning iterations has been performed.

4.4 K-SVD

The K-SVD algorithm is even more similar to the k-means algorithm and has been

proposed in order to improve on the MOD method. According to the authors

[Aharon et al., 2006], it provides better convergence speed and robustness against

problematic local minima compared to the MOD method. Given fixed coefficients

that have been determined by some method according to (4.16), in the K-SVD

approach a separate update of each dictionary element is subsequently performed.

Since in this case an update of a single dictionary element depends on those updates

that already have been performed, the order of the updates is chosen randomly.

For the update of the l-th dictionary element, those data samples are selected

where that element has been used in the encoding. Let Sl = {xi | (ai)l 6= 0} be
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the set of samples where the l-th dictionary element has been used. Now the rep-

resentation error is considered that is obtained for all xi ∈ Sl, if the l-th dictionary

element is removed from the encoding:

El =
∑

xi∈Sl

‖xi − Câi‖22 = ‖Rl‖2F (4.26)

where

(âi)m =

{
0 : if m = l

(ai)m : else.
(4.27)

Here Rl is a matrix that contains all the residuals that are obtained if the coefficients

of the l-th dictionary element are set to zero. In order to choose a better dictionary

element, i.e., to minimize El, a singular value decomposition of the matrix Rl is

performed

Rl = UlΣlVl . (4.28)

Σl is a diagonal matrix that contains the singular values ofRl. Let λl∗ be the singular

value that has the largest absolute value. The updated l-th dictionary element is

the column of Ul that corresponds in (4.28) to this largest singular value. After the

l-th dictionary element has been updated, also its coefficients have to be modified

since they are likely to be used in subsequent updates. The updated coefficients

of the l-th dictionary element are the entries of the l∗-th row of Vl multiplied by

the largest singular value λl∗ . In each iteration of the K-SVD algorithm all the

dictionary elements cl, l = 1, . . . ,M are updated this way. Then the coefficients are

re-determined using some sparse approximation method according to (4.16). This

is repeated until some stopping criterion is met or a maximum number of update

iterations has been performed.

4.5 Sparse Coding Neural Gas

All the methods for dictionary learning that have been discussed so far employ a

single fixed configuration of the coefficients in order to update the dictionary in the

learning process. However, often there are many configurations of the coefficients

that are almost equally good in terms of reconstruction performance, and it is not

clear why one configuration should be preferred for learning. Due to this shortcom-

ing, we introduce the Sparse Coding Neural Gas algorithm (SCNG), which enables

us to use many possible configurations of the coefficients in the dictionary learning
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process. The SCNG method is the first step on the way to translate the idea of soft-

competitive unsupervised learning, as it is implemented in the Neural Gas method,

into the domain of dictionary learning.

We start with a slight relaxation of the strict constraint on the coefficients that

is used in vector quantization. We use a new constraint on the coefficients ai in

(4.1) such that a sample xi can be represented in terms of an arbitrarily scaled

single element of the dictionary. In other words, we start by looking for a set of

one-dimensional subspaces that cover the data. Hence, we now want to determine

a set of data directions instead of data modes as it is done in vector quantization.

Furthermore, we require ‖cj‖22 = 1 without loss of generality. This leads to the

following optimization problem, which can also be seen as a model of maximum

sparseness:

min
c1,...,cM

L∑

i=1

‖xi − Cai‖22 subject to ‖ai‖0 ≤ 1 and ‖cj‖22 = 1 . (4.29)

First consider the marginal case of (4.29), where only one dictionary element is

available, i.e, M = 1. Now (4.29) becomes:

min
c

L∑

i=1

‖xi − cai‖22 =

L∑

i=1

xTi xi − 2aic
Txi + a2

i subject to ‖c‖22 = 1 . (4.30)

If xi and c are fixed, (4.30) becomes minimal in case of ai = cTxi. As final opti-

mization problem, one obtains:

max
c

L∑

i=1

(cTxi)
2 subject to ‖c‖22 = 1 . (4.31)

Hence, in this marginal case, the problem of finding the dictionary element that

minimizes (4.30) boils down to finding the direction of maximum variance. A well-

known learning rule that solves (4.31), i.e., that finds the direction of maximum

variance, is called Oja’s rule:

∆c = α y (x− y c) (4.32)

with y = cTx and learning rate α. See also Section 4.2 for a discussion of Oja’s rule.

Now consider the general case, where M > 1 holds. In this case, the optimization
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problem (4.31) turns into

max
c1,...,cM

L∑

i=1

max
l

(cTl xi)
2 subject to ‖cl‖22 = 1 . (4.33)

We can generalize to this case by first determining the dictionary element that has

maximum overlap with respect to the data:

lwin = arg max
l

(cTl x)2 . (4.34)

In order to minimize (4.29), we then update this dictionary element clwin according

to Oja’s rule. However, this approach suffers from the same problem as the k-means

algorithm. Due to hard-competitive selection of the dictionary element to be up-

dated, it may happen that the dictionary elements will be distributed sub-optimally

with respect to the target function (see also Figure 4.1 in the experiments section).

To prevent this, we modify the original Neural Gas algorithm (see Algorithm 1,

Chapter 4.1.3) to solve the general case of (4.29).

In the Neural Gas algorithm, soft-competitive learning is achieved by controlling

the update of each codebook vector by its rank in the sequence of distances of all

codebook vectors with respect to a given sample. These distances are computed

within the sample space (see Algorithm 1, steps 4 and 5). We replace the distance

measure and now consider the following sequence of distances (see Algorithm 2, step

4):

−
(
cTl0x

)2 ≤ · · · ≤ −
(
cTlkx

)2 ≤ · · · ≤ −
(
cTlM−1

x
)2

. (4.35)

The modified distance measure requires a new update rule to minimize the distances

between the codebook vectors and the current training sample x. By combination

of Oja’s rule with the soft-competitive update of the NG algorithm, we obtain (see

Algorithm 2, step 5):

∆clk = αte
−k/λty (x− yclk) . (4.36)

As in the NG algorithm, αt and λt are exponentially decreasing learning rate and

neighbourhood size:

αt = α0 (αfinal/α0)
t/tmax , (4.37)

λt = λ0 (λfinal/λ0)
t/tmax . (4.38)

For t → tmax, one obtains equation (4.14) as the update rule. Because of the opti-
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mization constraint ‖cj‖ = 1, we normalize the dictionary elements in each learning

step. The complete Sparse Coding Neural Gas algorithm is shown in Algorithm 2.

4.5.1 On the convergence of Sparse Coding Neural Gas

Consider the following maximization problem:

max
c1,...,cM

L∑

i=1

M∑

l=1

hλt(k(cl,xi))(c
T
l xi)

2 subject to ‖cl‖22 = 1, (4.39)

with hλt(v) = e−v/λt . Let k(cl,x) denote the number of dictionary elements cj with

(cTj x)2 > (cTl x)2. Note that for λt → 0 this optimization problem is equivalent to

the optimization problem defined by (4.33). In order to maximize (4.39), we consider

the Lagrangian

L =

L∑

i=1

M∑

l=1

hλt(k(cl,xi))(c
T
l xi)

2 − βl(c2
l − 1), (4.40)

where we have introduced the Lagrangian multipliers βl. We obtain

∂L

∂cj
= 2

L∑

i=1

hλt(k(cj ,xi))(c
T
j xi)xi − 2βjcj +Rj (4.41)

with

Rj =

L∑

i=1

M∑

l=1

h
′

λt(k(cl,xi))
∂k(cl,xi)

∂cj
(cTl xi)

2 (4.42)

and h
′

λt
(v) =

∂hλt (v)

∂v . Due to the arguments presented in [Martinetz et al., 1993],

Rj = 0 holds. At the maximum we have

∂L

∂cj
= 0⇔ βj =

L∑

i=1

hλt(k(cj ,xi))(c
T
j xi)

2 . (4.43)

Using this, we finally obtain the gradient

∂L

∂cj
= 2

L∑

i=1

hλt(k(cj ,xi))(c
T
j xi)xi − (cTj xi)

2cj . (4.44)
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Algorithm 2 The Sparse Coding Neural Gas algorithm.
1 initialize C = (c1, . . . , cM ) using uniform random values

for t = 1 to tmax do
2 randomly select sample x out of X
3 set c1, . . . , cM to unit length
4 calculate current size of neighbourhood and learning rate:

λt = λ0 (λfinal/λ0)t/tmax

αt = α0 (αfinal/α0)t/tmax

determine l0, . . . , lM−1 with:

−(cTl0x)2 ≤ · · · ≤ −(cTlkx)2 ≤ · · · ≤ −(cTlM−1
x)2

for k = 0 to M − 1 do
5 with y = cTlk

x, update clk according to clk = clk + αte−k/λty(x− yclk )

end for

end for

Hence, for a randomly chosen x ∈ (x1, . . . ,xL) at time t with learning rate αt, the

update

∆cj = αthλt(k(cj ,x))
(
(cTj x)x− (cTj x)2cj

)
(4.45)

= αte
−k(cj ,x)/λty (x− ycj) (4.46)

performs a stochastic gradient descent with respect to (4.39) [Kushner and Clark,

1978]. Note that the multiplication of a dictionary element by −1 does not change

(4.39), therefore the sign of the dictionary elements cannot be recovered by mini-

mization of (4.39).

4.5.2 Generalized Sparse Coding Neural Gas

As in the MOD and K-SVD cases, the Generalized Sparse Coding Neural Gas

(GSCNG) algorithm uses a linear combination of k elements of C to represent a

given sample xi. Hence, it considers the same optimization problem:

min
c1,...,cM

L∑

i=1

‖xi − Cai‖22 subject to ‖ai‖0 ≤ k and ‖cj‖22 = 1 . (4.47)

In contrast to the MOD and K-SVD methods, in the GSCNG algorithm the coeffi-

cients are not considered to be fixed in order to compute an update of the dictionary.

Rather, they are subsequently determined in parallel to the computation of the dic-

tionary updates.

49



4 Dictionary Learning

The parallel computation of the dictionary coefficients and the dictionary update

is achieved by performing an OOMP step in each iteration of the GSCNG method.

The OOMP method is described in Section 2.1.3. In order to minimize (4.47), we

apply an update of R and C prior to the construction step (2.5) and (2.6) in each of

the k iterations of OOMP. The update step reduces the norm of the residual that is

obtained in the current iteration of the OOMP method. The norm of the residual

becomes small if

(rTlwin
εUi )2 (4.48)

is large where rlwin and εUi are the winning element of the dictionary and the current

residual in the current iteration of the OOMP algorithm. Hence, we have to consider

the optimization problem

max
r1,...,rM−|U|

L∑

i=1

max
l,l/∈U

(rTl ε
U
i )2 subject to ‖rl‖ = 1 . (4.49)

The optimization problem (4.49) is very similar to (4.33), but now the data εUi as

well as the dictionary elements rl have been orthogonalized with respect to those

dictionary elements CU that have already been used in the previous OOMP iter-

ations. As before, an optimization of (4.49) can be achieved by using Oja’s rule.

Instead of only the winning column of R, i.e, rlwin that is updated, we again employ

the soft-competitive learning approach of the NG algorithm in order to update each

column of R that may be selected in the next iteration of the OOMP algorithm.

Again, we determine a sequence of distances of the current training sample to the

current dictionary elements. But now, we only consider distances in the subspace

that is orthogonal to CU (see Algorithm 3, step 3):

−
(
rTl0ε

U
i

)2 ≤ · · · ≤ −
(
rTlkε

U
i

)2 ≤ · · · ≤ −
(
rTlM−|U|−1

εUi

)2

, lk /∈ U . (4.50)

As before, we combine Oja’s rule and the soft-competitive update of the NG al-

gorithm, but the update is now orthogonal to the subspace spanned by CU . On

the one hand, we apply the update to the temporary dictionary R; on the other

hand, we accumulate the updates of all subsequent OOMP iterations in the learned

dictionary C. Due to the orthogonal projection (2.5) and (2.6) performed in each

iteration, these updates are pairwise orthogonal (see Algorithm 3, step 4):

∆rlk = ∆clk = αte
−k/λty

(
εUi − y rlk

)
. (4.51)
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This update rule corresponds to a stochastic gradient descent with respect to (4.49),

because the arguments provided in Section 4.5.1 can be applied in the same way.

4.5.3 Computational time complexity

Each update step can be split into the following tasks:

• M − |U | distances with respect to the current residual have to be computed.

The time complexity of this operation is O(MN).

• The distances have to be sorted and the winning dictionary element has

to be determined. This can be accomplished with a time complexity of

O(M log(M)).

• The winning dictionary element as well as those M − |U | elements of the

dictionary that may be used in the subsequent steps have to be updated. This

can be performed in O(MN) operations.

• The residual and M − |U | remaining dictionary elements of size N that have

not been used so far, have to be orthogonalized with respect to the winning

element of the dictionary. The time complexity of this operation is O(MN).

Therefore, each update step has a computational time complexity of O(MN +

M log(M)). Each iteration of the Generalized Sparse Coding Neural Gas algorithm

performs k update steps, i.e., each iteration has a computational time complexity

of O(k(MN + M log(M))). Overall, tmax iterations are performed, therefore, the

overall time complexity of the algorithm is O(tmaxk(MN +M log(M))).

The entire Generalized Sparse Coding Neural Gas method is shown in Algorithm

3.

4.5.4 Experiments on synthetic data

We tested the Sparse Coding Neural Gas algorithm on synthetically generated sparse

linear combinations. We did not consider the task to determine M and k, i.e., the

size of the dictionary that was used to generate the samples and the number of

non-zero coefficients in each linear combination; instead, we assumed M and k to

be known.

The dictionaries and coefficients used to generate training samples were chosen

from a uniform distribution. We varied the mutual coherence of the dictionaries, i.e.,
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Algorithm 3 The Generalized Sparse Coding Neural Gas algorithm.
initialize C = (c1, . . . , cM ) using uniform random values
for t = 1 to tmax do

1 select random sample x out of X
2 set c1, . . . , cM to unit length

calculate current size of neighbourhood: λt = λ0 (λfinal/λ0)t/tmax

calculate current learning rate: αt = α0 (αfinal/α0)t/tmax

set U = ∅, εU = x and R = (r1, . . . , rM ) = C = (c1, . . . , cM )
for h = 0 to K − 1 do

3 determine l0, . . . , lk, . . . , lM−h−1 with lk /∈ U :

−(rTl0ε
U )2 ≤ · · · ≤ −(rTlkε

U )2 ≤ · · · ≤ −(rTlM−h−1
εU )2

for k = 0 to M − h− 1 do
4 with y = rTlk

εU , update clk = clk + ∆lk and rlk = rlk + ∆lk with

∆lk = αte
−k/λty(εU − yrlk )

set rlk to unit length
end for

5 determine lwin = arg max
l/∈U

(rTl ε
U )2

6 remove projection to rlwin
from εU and R:

εU = εU − (rTlwin
εU )rlwin

rl = rl − (rTlwin
rl)rlwin

, l = 1, . . . ,M ∧ l /∈ U

7 set U = U ∪ lwin

end for

end for

(2.22), in order to study its impact on the reconstruction performance. In order to

obtain a random dictionary with mutual coherence z, we repeatedly chose a matrix

from a uniform distribution in [−1, 1] until d100H(C)e = d100ze. Then, the norm

of the columns of the dictionary was normalized to unit length. The mean variance

of the training samples was normalized such that is equal to one. A certain amount

of uniformly distributed noise was added to the training samples.

We considered a two-dimensional toy example where each training sample is a

multiple of one of five dictionary elements, i.e., M = 5, k = 1, N = 2. The variance

of the additive noise was set to 0.01. Figure 4.1 shows the training samples, the

original dictionary Corig (dashed lines) and the dictionary C learn that was learned

from the data (solid lines). The left part of the figure shows the result obtained

by hard-competitive learning, i.e., λ0 = λfinal = 0. Note that some of the original

dictionary elements were not learned correctly due to the sub-optimal distribution of

the learned dictionary with respect to the given training data. The right part shows

the result obtained using soft-competitive learning, i.e., λ0 = 5/2, λfinal = 0.01.
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4.5 Sparse Coding Neural Gas

Figure 4.1: A two-dimensional toy example where each sample is a multiple of one of five
dictionary elements plus additive noise. Left: hard-competitive learning, i.e.,
λ0 = λfinal = 0. Some of the original dictionary elements (dashed lines) were not
learned correctly. Right: soft-competitive learning λ0 = 5/2, λfinal = 0.01. The orig-
inal dictionary was obtained except for the sign of its elements. Note that though
the data is radially arranged around the center of gravity in this toy example, this is
not required for the method to work.

Note that the original dictionary was obtained except for the sign of its elements.

In a second experiment, a dictionary Corig ∈ R40×100 was generated which consists

of M = 100 elements of dimension 40. Linear combinations x1, . . . ,x10000 of k

elements were computed. The coefficients in the linear combinations were chosen

uniformly distributed in [−1, 1]. We generated different dictionaries with mutual

coherence H(C) = 0.3, 0.4, 0.5, 0.6. The learned dictionary C learn was compared to

the original dictionary Corig that was used to generate the samples. This was done

by considering the maximum overlap of each original dictionary element corig
j and

the best matching learned dictionary element, i.e., maxi |clearn
i corig

j |. To assess how

many of the learned dictionary elements could be assigned unambiguously to the

original dictionary, we considered |Ĉ learn|, which is the size of the set

Ĉ learn = {clearn
k : k = arg max

i
|clearn
i corig

j |, j = 1, . . . ,M} . (4.52)

All experiments were repeated 10 times.

Figure 4.2 shows the impact of the mutual coherence of the dictionary on the

mean maximum overlap and on the mean of |Ĉ learn| for k = 1, . . . , 15. It can be
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seen that the smaller the mutual coherence of the underlying dictionary is, the better

the reconstruction performance becomes. The amplitude of the additive noise was

set to 0.1. Figure 4.3 shows the impact of the variance of the additive noise on the

mean maximum overlap and on the mean of |Ĉ learn|. An increasing noise level leads

to decreasing performance, as expected. Figure 4.2 and Figure 4.3 show that the less

sparse the coefficients are (the larger k is), the lower the quality of the dictionary

reconstruction becomes (see also Tropp [2004], Donoho et al. [2006]).

In the third experiment, we fixed k = 9 and evaluated the target function (4.47)

during the learning process while varying the noise amplitude and the mutual co-

herence of the dictionary. The coefficients used for reconstruction were determined

by Optimized Orthogonal Matching Pursuit with k steps. Figure 4.4 shows that

the reconstruction error decreases over time. The smaller the noise level is, the

smaller the remaining reconstruction error becomes. The mutual coherence of the

dictionary has only slight influence on the remaining reconstruction error.

Finally, in order to compare the performance of the algorithm to other meth-

ods, we repeated an experiment that has been described in [Aharon et al., 2006].

A dictionary Corig ∈ R20×50 was generated, consisting of M = 50 elements of di-

mension 20. Linear combinations x1, . . . ,x1500 of k = 3 elements were computed

using uniformly distributed coefficients. We added Gaussian noise to obtain data

with varying SNR. We obtained the learned dictionary by application of the Sparse

Coding Neural Gas algorithm to the data. In Aharon et al. [2006], the number of

learning iterations was set to 80 where each learning iteration uses the entire data.

Therefore, in the SCNG method, we set tmax = 80∗1500. As in [Aharon et al., 2006],

we compared the learned dictionary to the original one using the maximum overlap

between each original dictionary element and the learned dictionary, i.e, whenever

max
j

(
1− |corig

i clearn
j |

)
(4.53)

is smaller than 0.01, we counted this as a success. We repeated this experiment

50 times with a varying SNR of 10dB, 20dB and 30dB including zero noise. As

in [Aharon et al., 2006], for each noise level we sorted the 50 trials according to

the number of successfully learned dictionary elements and ordered them in groups

of ten experiments. Figure 4.5 shows the mean number of successfully detected

dictionary elements for each of the ten groups for each noise level. For comparison,

the results of the MOD method [Engan et al., 2000], the method of Kreutz-Delgado

(MAP) [Kreutz-Delgado et al., 2003] and for the K-SVD method [Aharon et al.,
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Figure 4.2: The impact of the mutual coherence H(C) on the performance of Sparse Coding
Neural Gas is shown. We used M = 100 dictionary elements of dimension 40. Left:
mean size of Ĉlearn. Right: mean maximum overlap between original and learned
dictionary. The larger the mutual coherence of the dictionary is and the less sparse the
linear combinations are, the more the performance decreases. Sparse Coding Neural
Gas parameters used: λ0 = M/2, λfinal = 0.01, α0 = 0.1, αfinal = 0.0001, tmax =
10 ∗ 10000. The noise variance was set to 0.1.

2006], taken from [Aharon et al., 2006], are shown in Figure 4.5.

It can be seen that the Sparse Coding Neural Gas method outperformed the MAP

method for all noise levels and performed as good as MOD for the 20dB and 30dB

SNR and noise-free settings. Surprisingly, the performance of SCNG degraded at the

10dB SNR setting. K-SVD outperformed Sparse Coding Neural Gas. It should be

noted that K-SVD and MOD are batch methods that use in each learning iteration

the entire data in order to obtain the next update of the dictionary C, whereas

Sparse Coding Neural Gas is a pattern-by-pattern online method that only uses one

data sample at a time.

4.5.5 Experiments on natural image data

We used the SCNG algorithm to learn an overcomplete representation of random

patches of natural images. The image patches of size 8× 8 pixels were chosen ran-

domly out of a number of landscape photographs published by Olshausen together

with the Sparsenet algorithm. In order to reduce the influence of low frequencies

on the reconstruction error, the images were bandpass filtered as described in [Ol-

shausen and Field, 1996b]. The learned representation is 6.25 times overcomplete,

i.e., it consists of 400 dictionary elements of size 8 × 8 = 64. k, the number of
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Figure 4.3: The impact of the noise level on the performance of Sparse Coding Neural Gas is
shown. We used M = 100 dictionary elements of dimension 40. Left: mean size
of Ĉlearn. Right: mean maximum overlap between original and learned dictio-
nary. The more noise is present and the less sparse the linear combinations are,
the more the performance decreases. Sparse Coding Neural Gas parameters used:
λ0 = M/2, λfinal = 0.01, α0 = 0.1, αfinal = 0.0001, tmax = 10 ∗ 10000. The coherence
of the dictionary was set to 0.4.

Figure 4.4: The mean reconstruction error over time is shown. We used M = 100 dictionary
elements of dimension 40 and set k = 9. Left: Impact of different noise levels on
the reconstruction performance. The mutual coherence of the dictionary was set to
0.4. Right: Impact of the mutual coherence of the dictionary on the reconstruction
performance. The noise variance was set to 0.1. The more noise is present, the larger
the remaining reconstruction error becomes. The mutual coherence has only slight
influence on the remaining reconstruction error.
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Figure 4.5: Comparison of the performance of Generalized Sparse Coding Neural
Gas (GSCNG) with respect to the reconstruction of the original dictio-
nary on synthetical data. The performance of MOD, K-SVD, MAP and
GSCNG in the same setting are shown. The results for MOD, K-SVD
and MAP were taken from Aharon et al. [2006]. GSCNG outperforms
MAP and performs as good as MOD except on the 10dB SNR setting.
K-SVD outperforms GSCNG.

non-zero entries per linear combination, was set to 30.

Similar experiments have been performed by a number of researchers. They report

the emergence of dictionary elements that, like Gabor wavelets, resemble properties

of simple cells in the visual cortex, i.e., they obtain bandpass-like basis functions

that are localized in space and orientiation [Olshausen and Field, 1996b, Bell and Se-

jnowski, 1997, Hyvärinen and Hoyer, 2000]. An overcomplete basis of these patches

of natural images obtained using the Sparse Coding Neural Gas algorithm is shown

in Figure 4.6. It can be seen that the results reported by other researchers could be

reproduced, i.e., we obtained bandpass-like structures ranging over different scales

and localized in space and orientation.

4.6 Neural Gas for Dictionary Learning

In the previous section, the SCNG method for dictionary learning was introduced. In

contrast to other dictionary learning methods it can use many configurations of the

coefficients in the learning process. However, compared to MOD or K-SVD it has the

disadvantage that it is directly derived from the OOMP method for sparse approxi-
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Figure 4.6: A 6.25-times overcomplete basis of patches of natural images of size
8 × 8 pixels that was obtained by applying Sparse Coding Neural Gas
to natural image data. The basis functions were arranged by mapping
the basis vectors to a 2D grid using a Kohonen map.

mation. Therefore, it cannot be combined with an arbitrary method for the estima-

tion of the configuration of the coefficients. In this section, we present the Neural

Gas for Dictionary Learning (NGDL), which translates the idea of soft-competitive

unsupervised minimization of the reconstruction error as it is implemented in the

Neural Gas even more directly into the domain of dictionary learning.

We again consider the mean squared reconstruction error (4.1) as target function.

We want to minimize this reconstruction error under the constraint that the coeffi-

cients of the dictionary have been determined by an arbitrary sparse approximation

method. For instance, one could use a greedy method which is based on the zero

norm as measure of sparsity or a relaxation method which is based on the L1-norm

as measure of sparsity.

4.6.1 Hard-competitive stochastic gradient dictionary learning

The approach we begin with is a very simple way to minimize (4.1). Suppose

that we are given coefficients at that have been estimated with an arbitrary sparse

approximation method with respect to a sample xt that is randomly selected from
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the training data in iteration t, t = 0, . . . , tmax. In each iteration, we update the

dictionary C according to the gradient of (4.1) with respect to C:

∆C = αt(xt − Cat)atT (4.54)

αt is the same exponentially decreasing learning rate, i.e. (4.10), that is also used

in the SCNG algorithm.

Once an update of the dictionary according to (4.54) has been performed, the

columns of the dictionary are renormalized to one. Then, a new training sample

xt+1 is selected, the coefficients at+1 are determined, and the next update of C can

be performed. This simple procedure is fast, since it does not involve a singular

value decomposition or a matrix inversion. Furthermore, it uses only one sample in

each learning step and is therefore even applicable for online-learning. It also does

not require to store a large set of training samples. Apart from the exponentially

decreasing learning rate, the update (4.54) can be understood as the pattern-by-

pattern variant of the update (4.86) which is used in the Sparsenet algorithm.

4.6.2 Experiments on hard-competitive stochastic gradient

descent

In the experiments we again used synthetic data that actually can be represented

as sparse linear combinations of some dictionary. We performed the experiments in

order to asses two questions: (i) How good is the target function (4.1) minimized?

(ii) Is it possible to obtain the true underlying dictionary only from the given data?

In the following Ctrue = (ctrue
1 , . . . , ctrue

50 ) ∈ R20×50 denotes a synthetic dictionary.

Each entry of Ctrue was uniformly chosen in the interval [−0.5, 0.5]. Furthermore,

we set ‖ctrue
l ‖ = 1. Using such a dictionary, we created a training set X = (x1, . . .

,x1500), xi ∈ R20 where each training sample xi is a sparse linear combination of

the columns of the dictionary:

xi = Ctruebi . (4.55)

We chose the coefficient vectors bi ∈ R50 such that they contain k non-zero entries.

We performed the selection of the position of the non-zero entries in the coefficient

vectors according to three different data generation scenarios:

• Random dictionary elements: In this scenario all combinations of k dic-
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tionary elements are possible. Hence, the position of the non-zero entries in

each coefficient vector bi was uniformly chosen in the interval [1, . . . , 50].

• Independent Subspaces: In this case the training samples are located in a

small number of k-dimensional subspaces. We achieved this by defining b50/kc
groups of dictionary elements, each group containing k randomly selected dic-

tionary elements. The groups do not intersect, i.e., each dictionary element

was at most member of one group. In order to generate a training sample, we

uniformly chose one group of dictionary elements and obtained the training

sample as a linear combination of the dictionary elements that belonged to

the selected group.

• Dependent subspaces: In this case, similar to the previous scenario, the

training samples are located in a small number of k-dimensional subspaces. In

contrast to the previous scenario, the subspaces do highly intersect, i.e., the

subspaces share basis vectors. In order to achieve this, we uniformly selected

k − 1 dictionary elements. Then, we used 50 − k + 1 groups of dictionary

elements where each group consists of the k − 1 selected dictionary elements

plus one further dictionary element. Again, in order to generate a training

sample, we uniformly chose one group of dictionary elements and obtained

the training sample as a linear combination of the dictionary elements that

belong to the selected group.

The value of the non-zero entries was always chosen uniformly in the interval

[−0.5, 0.5]. Finally the data was scaled such that the mean variance is equal to

1.

We applied MOD, K-SVD, and the hard-competitive variant of NGDL to the

training data. In case of MOD and K-SVD, we used the implementations that were

provided by the authors of [Aharon et al., 2006].

Let C learned = (clearned
1 , . . . , clearned

50 ) denote the dictionary that has been learned

by one of these methods on the basis of the training samples. In order to measure the

performance of the methods with respect to the minimization of the target function,

we considered

Eh =
1

1500

1500∑

i=1

‖xi − C learnedai‖22 (4.56)

where ai was obtained from the OOMP algorithm. In order to asses if the “true“

dictionary can be reconstructed from the training data, we considered the mean
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Figure 4.7: Experimental results for hard-competitive NGDL. See text for details. HC-NGDL:
hard-competitive NGDL (α0 = 0.1, αfinal = 10−3). MOD and K-SVD: 100 learning
iterations each using 1500 training samples. During learning for all methods the
coefficients were obtained from OOMP. All experiments were repeated 50 times.

maximum overlap between each element of the true dictionary and the learned

dictionary:

MMO =
1

50

50∑

l=1

max
k=1,...,50

|ctrue
l clearned

k | . (4.57)

k, the number of non-zero entries was varied from 1 to 11. For the hard-competitive

NGDL method, we performed 100×1500 update steps, i.e., 100 learning epochs. For

MOD and K-SVD, we performed 100 learning iterations each iteration using 1500

training samples. Note, that this yielded the same computational demand for all

the methods used. We repeated all experiments 50 times and report the mean result

over all experiments. For all dictionary learning methods, i.e., MOD, K-SVD, and

hard-competitive NGDL the dictionary coefficients were determined with OOMP

during learning.

The results of this experiment are depicted in Figure 4.7. In case of the random

dictionary elements scenario (see (a) and (d)) hard-competitive NGDL clearly out-

performed MOD and K-SVD. From the mean maximum overlap (see (d)), it can be

seen that almost all dictionary elements are well reconstructed with up to 6 non-zero

coefficients in the linear combinations. If the dictionary elements cannot be recon-
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Figure 4.8: Comparison of the mean reconstruction error on the data described in Section 4.6.2.
Both OOMP and BOP were provided with the true dictionary the data was generated
from. It can be seen that if the “true“ dictionary is known, OOMP finds the “true”
solution only for k = 1 whereas BOP with Kuser = 50 finds the correct solution up
to k = 5. For comparison purposes we also show the mean reconstruction error both
methods achieve with a random dictionary. All experiments were repeated 50 times.

structed any more, i.e., for k > 6, the mean representation error Eh starts to grow

(see (a)). In case of the independent subspaces ((b) and (e)) and dependent sub-

spaces scenario ((c) and (f)) the hard-competitive NGDL method also outperformed

MOD and K-SVD in terms of minimization of the representation error (see (b) and

(c)) whereas in terms of dictionary reconstruction performance only in the inter-

secting subspaces scenario a clear performance gain compared to MOD and K-SVD

can be seen (see (c) and (f)). This might be caused by the fact that in case of the

independent subspaces scenario it is sufficient to find dictionary elements that span

the subspaces where the data is located in order to minimize the target function,

i.e., the scenario does not force the method to find the true dictionary elements in

order to minimize the target function.

4.6.3 Evaluation of the Bag of Pursuits

In order to use NGDL in soft-competitive mode, we need a sparse approximation

method that provides many possible configurations of the coefficients that can be

used for learning. For this task, we proposed the Bag of Pursuits (BOP) method

which is described in Section 2.1.4.

We performed an experiment in order to evaluate how far BOP improves OOMP.

For that purpose, we again used our synthetical data from Section 4.6.2, however,

this time the dictionary was not learned but the “true“ dictionary was assumed to

be known. Then, only the best coefficients for reconstruction had to be determined.
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This was done with OOMP and, for comparison, with BOP. The result with respect

to the reconstruction error both methods achieve is shown in Figure 4.8. OOMP

succeeds in finding the correct coefficients only in case k < 2. Perfect reconstruction

for k = 1 can be expected from a theoretical result that was reported in [Tropp,

2004, Donoho et al., 2006] (see also Section 2.3), since the average mutual coherence

of our synthetical dictionaries is 0.7 ± 0.05. In contrast, BOP is able to obtain

perfect reconstruction even up to k = 4 or almost k = 5. Since the average mutual

coherence is the same in all three data generation scenarios, the performance of BOP

and OOMP is almost equal for all the scenarios, if the “true” dictionary was known

or a random dictionary was used for the coefficient estimation. This is in contrast

to the experiments where the dictionary had to be learned from the training data,

and where the scenario had an influence on the ability of the learning method to

determine the “true” dictionary (as can be seen for instance in Figure 4.7).

In Figure 4.9, we show the results of the experiment described in Section 4.6.2

that were obtained, if BOP was used to determine the coefficients instead of OOMP.

Now, for all dictionary learning methods the coefficients were obtained from the best

pursuit out of Kuser = 50 pursuits that were performed according to the “Bag of

Pursuits” approach described in Section 2.1.4. Compared to the results of the first

experiment (see Figure 4.7), it can be seen that the computationally more demand-

ing method for the approximation of the best coefficients leads to a significantly

improved performance of MOD, K-SVD and hard-competitive NGDL with respect

to the minimization of the reconstruction error (see (a)-(c)). The most obvious

improvement can be seen in case of the dependent subspaces scenario where also

the dictionary reconstruction performance significantly improves (see (c) and (f)).

In the random dictionary elements (see (a) and (d)) and independent subspaces

scenario (see (b) and (e)) there are only small improvements with respect to the

reconstruction of the true dictionary.

4.6.4 Soft-competitive stochastic gradient descent

In the experiments in Section 4.6.3, we have shown that the learning performance can

be significantly improved by using the best coefficients from the set of solutions that

are provided by the BOP method. So far, only the best pursuit from a set of Kuser

pursuits has been used in the stochastic gradient descent. If a sparse approximation

method such as BOP is used that subsequently improves on a set of intermediate

solutions towards the final solution, it is desireable not only to use the final solution

63



4 Dictionary Learning

Random
dictionary elements

Independent
subspaces

Dependent
subspaces

2 4 6 8 10
0

0.5

1

k

E
h

(a)

 

 

HC−NGDL(BOP)

K−SVD(BOP)

MOD(BOP)

2 4 6 8 10
0

0.5

1

k

E
h

(b)

 

 

HC−NGDL(BOP)

K−SVD(BOP)

MOD(BOP)

2 4 6 8 10
0

0.5

1

k

E
h

(c)

 

 

HC−NGDL(BOP)

K−SVD(BOP)

MOD(BOP)

2 4 6 8 10
0.6

0.7

0.8

0.9

1

k

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
) (d)

 

 

HC−NGDL(BOP)

K−SVD(BOP)

MOD(BOP)

2 4 6 8 10
0.6

0.7

0.8

0.9

1

k

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
) (e)

 

 

HC−NGDL(BOP)

K−SVD(BOP)

MOD(BOP)

2 4 6 8 10
0.6

0.7

0.8

0.9

1

k

m
e
a
n
 m

a
x
 o

v
e
rl
a
p
 (

M
M

O
) (f)

 

 

HC−NGDL(BOP)

K−SVD(BOP)

MOD(BOP)

Figure 4.9: Experimental results for MOD, K-SVD, and hard-competitive NGDL. All methods
employed the BOP algorithm with Kuser = 50 in order to estimate the dictionary
coefficients in the learning process. See text for details. HC-NGDL(BOP): hard-
competitive NGDL (α0 = 0.1, αfinal = 10−3). MOD and K-SVD: 100 learning
iterations, each iteration using 1500 training samples. During learning for all methods
the coefficient were obtained from the BOP method with Kuser = 50. All experiments
were repeated 50 times.
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in the learning process but also to employ the information that might be contained

in the set of intermediate solutions for the dictionary learning process. If possible,

this should be implemented such that the use of the intermediate solutions does not

introduce additional computational demand.

We now propose a soft-competitive dictionary learning strategy which uses a set

of approximations of a training sample. Given the configurations of the hidden

coefficients that correspond to the approximations, we aim to minimize the rep-

resentation error (4.1). Generally, the approximations can be obtained from an

arbitrary approximation algorithm that determines a set of approximations. In the

following, we consider approximation methods that determine configurations of the

coefficients that have at most k non-zero entries. However, the dictionary learning

method does not depend on this measure of sparseness and could also be used with

other constraints on the coefficients.

We want to directly apply the ranking approach of the Neural Gas algorithm to

the learning of sparse codes. Similar to the NG algorithm, for each given sample

xi, we consider all K possible coefficient vectors aji . In contrast to the NG setting,

now the coefficients have at most k non-zero entries. Note that K, the number

of configurations of the coefficients that have at most k non-zero entries, grows

exponentially withM and k. The elements of each aji are chosen such that ‖xi−Caji‖
is minimal. We order the coefficients according to the representation error that is

obtained by using them to approximate the sample xi

‖xi − Caj0i ‖ < · · · < ‖xi − Ca
jp
i ‖ < · · · < ‖xi − CajKi ‖ . (4.58)

If there are coefficient vectors that lead to the same reconstruction error

‖xi − Cam1
i ‖ = ‖xi − Cam2

i ‖ = · · · = ‖xi − CamVi ‖ , (4.59)

we randomly pick one of them and do not consider the others. Note that we need

this due to theoretical considerations while in practice this situation almost never

occurs. Let rank(xi,a
j
i , C) = p denote the number of coefficient vectors ami with

‖xi − Cami ‖ < ‖xi − Caji‖. Introducing the neighborhood hλt(v) = e−v/λt , we

consider the following modified error function

Es =

L∑

i=1

K∑

j=1

hλt(rank(xi,a
j
i , C))‖xi − Caji‖22 (4.60)
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which becomes equal to (4.1) for λt → 0. In order to minimize (4.60), we consider

the gradient of Es with respect to C, which is

∂Es
∂C

= −2

L∑

i=1

K∑

j=1

hλt(rank(xi,a
j
i , C))(xi − Caji )aji

T
+R (4.61)

with

R =

L∑

i=1

K∑

j=1

h
′

λt(rank(xi,a
j
i , C)) (4.62)

·∂rank(xi,a
j
i , C)

∂C
‖xi − Caji‖22 .

In order to show that R = 0, we adopt the proof given in [Martinetz et al., 1993] to

our setting. With eji = xi − Caji , we write rank(xi,a
j
i , C) as

rank(xi,a
j
i , C) =

K∑

m=1

θ((eji )
2 − (emi )2) (4.63)

where θ(x) is the Heaviside step function. The derivative of the Heaviside step

function is the delta distribution δ(x) with δ(x) = 0 for x 6= 0 and
∫
δ(x)dx = 1.

Therefore, we can write

R = 2

L∑

i=1

K∑

j=1

h
′

λt(rank(xi,a
j
i , C))(eji )

2 (4.64)

·
K∑

m=1

((emi )(ami )T − (eji )(a
j
i )
T )δ((eji )

2 − (emi )2)

Each term of (4.64) is non-vanishing only for those aji for which (eji )
2 = (emi )2

is valid. Since we explicitly excluded this case, we obtain R = 0. Hence, we

can perform a stochastic gradient descent on (4.60) with respect to C by applying

t = 0, . . . , tmax updates of C using the gradient based learning rule

∆C = αt

K∑

j=1

hλt(rank(xi,a
j
i , C))(xi − Caji )aij

T
(4.65)

66



4.6 Neural Gas for Dictionary Learning

for a randomly chosen xi ∈ X where

λt = λ0

(
λfinal

λ0

) t
tmax

(4.66)

is an exponentially decreasing neighborhood-size. Again, αt is an exponentially

decreasing learning rate (see equation (4.10)). After each update has been applied,

the column vectors of C are renormalized to one. Then the aji are re-determined

and the next update for C can be performed.

So far, for each training sample xi, all possible coefficient vectors aji , j = 1, . . . ,K

with ‖aji‖0 ≤ k have been considered. K grows exponentially with M and k.

Therefore, this approach is not applicable in practice. However, since in (4.60) all

those contributions in the sum for which the rank is larger than the neighborhood-

size λt can be neglected, we actually do not need all possible coefficient vectors. We

only need the first best ones with respect to the reconstruction error. These are

directly provided by the BOP method, at least approximately.

4.6.5 Experiments on soft-competitive NGDL

In an experiment, we used soft-competitive NGDL for dictionary learning. The

configurations of the coefficients were obtained from the BOP with Kuser = 50.

Each of the configuration was used in the update step according to (4.65) with

initial neighbourhood-size λ0 = 50 and final neighbourhood-size λfinal = 0.1. We

again used our synthetical data from Section 4.6.2. The results of this experiment

are depicted in Figure 4.10. It can be seen that for less sparse scenarios, i.e. k >

6, the soft-competitive learning further improves the performance. Particularly

in case of the dependent subspaces scenario a significant improvement in terms

dictionary reconstruction performance can be seen for k > 4 (see (f)). For very

sparse settings, i.e. k ≤ 4, the hard-competitive approach seems to perform better

than the soft-competitive variant. Again, in case of the independent subspaces only

the representation error decreases (see (b)), whereas no performance gain for the

dictionary reconstruction can be seen (see (e)). Again this might be caused by the

fact that in case of the subspace scenario learning dictionary elements that span the

subspaces is sufficient in order to minimize the target function.

Finally, we evaluated the influence of both, the number of given training data

and performed training iterations/epochs, on the ability of the methods to estimate

the underlying ”true” dictionary. We again applied the soft-competitive NGDL
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Figure 4.10: Experimental comparison of hard- and soft-competitive NGDL. See text for details.
HC-SGD(BOP): hard-competitive NGDL (α0 = 0.1, αfinal = 10−3). SC-SGD:
soft-competitive NGDL (α0 = 0.1, αfinal = 10−3, λ0 = 50, λfinal = 0.1). All
experiments were repeated 50 times. In the random dictionary elements and de-
pendent subspaces scenarios further performance improvements with respect to the
dictionary reconstruction can be observed in the soft-competitive case. For k > 6
a significant decrease of the mean reconstruction error was obtained. In the de-
pendent and independent subspace scenarios, for k > 8 the mean reconstruction
error obtained from the soft-competitive approach is even smaller than the mean
reconstruction error obtained by using the “true” dictionary. This indicates that in
these scenarios the methods are not forced to learn the true dictionary but learn
a dictionary that spans the subspaces where the data is located. Obviously, there
is a solution that is more incoherent than the true dictionary and still spans these
subspaces.
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and K-SVD to the synthetic data, but now we varied the number of given training

samples and the number of training iterations/epochs. We only used K-SVD for the

comparison, since it performed best among the non-gradient methods in the previous

experiments. The number of non-zero coefficients in the linear combinations was

set to 5. The results of the experiments are shown in Figure 4.11. In the random

dictionary elements scenario and the dependent subspaces scenario, the dictionary

reconstruction performance of NGDL can be significantly improved by an increase

of the number of given training samples (see (a) and (c)). In contrast to this, the

performance of the K-SVD method increases only marginally in these cases (see

(d) and (f)). Furthermore, in the random dictionary elements scenario with 1000

training samples, with NGDL the dictionary is obtained after approximately 40

training epochs. For NGDL, convergence to the “true” solution can be seen even if

only 500 training samples are given (see (a)). In contrast to that, K-SVD did not

converge at all to the “true“ solution (see (d)).

In the independent subspaces scenario, the dictionary reconstruction performance

of NGDL can also be improved by an increase of the number of given training

samples (see (b)). However, in this case, the results indicate that it is not possible

to estimate the dictionary with arbitrary accuracy, i.e., due to the structure of the

subspaces, at some point, the method has learned a set of dictionary elements that

span the subspaces and a further increase of the number of training samples does

not lead to a better estimation of the “true” dictionary. Again, convergence to the

“true“ solution could not be seen for the K-SVD method as well (see (e)).

4.6.6 Application to image encoding

We studied the influence of the soft-competive update of the dictionary in combina-

tion with the BOP method on the performance of the learned dictionary in an image

encoding experiment under the condition of a limited number of training samples

and limited time being available for learning. The measure of performance was the

representation error obtained on unknown data.

We randomly extracted 6000 image patches of size 8× 8 from a set of 11 images

of size 400×600. Most of the training images are photographs of the city of Brugge.

They are depicted in Figure 4.12. The training patches were selected randomly but

with a variance within each patch of at least 0.1. We divided the set of random

patches in a training and test part, each of size 3000. In a first experiment, we
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Figure 4.11: Experimental results for soft-competitive NGDL and K-SVD. The figures show the
mean maximum overlap between the learned and the “true“ underlying dictionary.
k, the number of non-zero entries, was set to 5 in all three scenarios. Both methods
employed the BOP algorithm with Kuser = 50 in order to estimate the dictionary
coefficients in the learning process. We varied the size of the given training set
and the number of training iterations/epochs. It can be seen that soft-competitive
stochastic gradient descent is able to determine the ”true“ dictionary even for small
training sets. In all scenarios SC-NGDL convergences significantly faster to signif-
icantly better results than K-SVD. SC-NGDL: soft-competitive NGDL (α0 = 0.1,
αfinal = 10−3, λ0 = 50, λfinal = 0.1). All experiments were repeated 50 times.
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Figure 4.12: The set of images where the training and test patches were extracted
from.

evaluated the test error

ETEST =
1

3000

3000∑

i=1

‖xi − Cai‖22. (4.67)

where xi are the elements of the test set. The coefficients ai were determined by

the BOP method with Kuser = 1, . . . , 17, and C was either an overcomplete DCT

dictionary of size 441 or an overcomplete Haar dictionary of size 441. The number

k of permitted non-zero coefficients was varied between k = 3 and k = 13. The

results are shown in Figure 4.13. It can be seen that the DCT dictionary performed

better than the Haar dictionary, and that the reconstruction error remained constant

though the number of BOP-trials was increased. Hence, in this case, there is only

a slight performance gain obtained by use of the BOP method instead of OOMP

for the determination of the coefficients. Note, that for Kuser = 1 BOP is equal to

OOMP.

Next, we evaluated the performance that was obtained on the test set if the

dictionary was learned on the training set. In this evaluation, we included the soft-

competitive approach proposed in this section (NGDL plus BOP soft), the scaling
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invariant methods for dictionary learning MOD and K-SVD that have been dis-

cussed in Chapter (4), and the simple gradient descent update rule of the Sparsenet

algorithm (4.86) (GRAD), which was discussed in Section 4.7. In order to evalu-

ate whether soft-competitive learning actually makes a difference, we also learned

a dictionary where the neighborhood-size used in the NGDL+BOP method was

practically zero (denoted by NGDL plus BOP hard, λ0 = λfinal = 10−10), which

corresponds to hard-competitive learning. Again, the parameter Kuser was varied

from Kuser = 1 to Kuser = 17 and the number of non-zero coefficients was varied

between k = 3 and k = 13.

As already mentioned, we wanted to evaluate the best performance that can be

obtained when both, the number of training samples and the available computation

time, are limited. We used the training set consisting of 3000 samples of size 8× 8

that has been introduced above. The computational demand of all the methods for

dictionary learning that have been compared is dominated by the computational ef-

fort for the estimation of the coefficients of the dictionary. Therefore, for all methods

we fixed the computation time by permitting 30000 estimations of the coefficients.

In case of the pattern-by-pattern method NGDL+BOP this corresponds to 10 runs

over the entire training set, i.e., 10 training epochs. All the other approaches are

batch methods. For a fixed number of estimations of the coefficients, the number of

updates of the dictionary is equal to 30000/B where B is the batch size. Of course,

the batch size is upper-bounded by the number of training samples that are given.

The use of all the training data in each update step would correspond to only 10

updates of the dictionary, due to the limited number of estimations of the coeffi-

cients. Since such a small number of dictionary updates might be suboptimal, the

batch size B was varied and 30000/B updates of the dictionary were performed. We

report the results for the best trade-off between number of updates of the dictionary

and batch size. Apart from the batch size, further parameters had to be chosen for

some of the methods. This was done in the following way:

• Simple gradient (GRAD): For a fixed learning rate η = 0.1 the batch size

was varied in 10 steps between 1 and 3000 and the obtained error on the

test set was evaluated. For each tested batch size, 30000/B updates of the

dictionary were performed. The batch size was set to the value that yielded

the smallest error on the test set. Using the optimal batch size, the learning

rate was varied in 10 steps between 0.01 and 1.0. We report the error on the

test set for the optimal batch size and learning rate.
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• NGDL+BOP soft: For λ0 = Kuser, α0 = 1.0, αfinal = 0.01 the final neighbor-

hood-size was varied in 10 steps between λfinal = 0.001 and λfinal = Kuser.

Using the optimal final neighborhood-size with respect to the error on the test

set the initial neighborhood-size was varied in 10 steps between λ0 = λfinal and

λ0 = Kuser. Using the optimal initial and final neighborhood-sizes the final

learning rate was varied in 10 steps between αfinal = 0.01 and αfinal = 1.0.

Using the optimal initial and final neighborhood-sizes and the optimal final

learning rate, the initial learning rate was varied in 10 steps between α0 = αfinal

and α0 = 1.0. We report the error on the test set that is obtained for optimal

initial and final learning rate and neighborhood-size. Note that for k > 3

the optimal final neighborhood-size was always the largest tested value, i.e.,

λfinal = Kuser. This was also the case for k = 3 for Kuser < 17, while in case

of k = 3 and Kuser = 17 as optimal final neighborhood-size λfinal = 11.9 was

selected.

• NGDL+BOP hard: The same initial and final learning rates were used that

were optimal in the soft-competitive case. The initial- and final neighborhood-

sizes were set to λ0 = λfinal = 10−10.

• MOD: The batch size B was varied in 10 steps between 442 and 3000. For

each tested batch size, 30000/B updates of the dictionary were performed. We

report the smallest error on the test set over all tested batch sizes.

• K-SVD: The batch size was varied in 10 steps between 442 and 3000. For

each tested batch size, 30000/B updates of the dictionary were performed. We

report the smallest error on the test set over all tested batch sizes.

For all methods except NGDL+BOP, only the coefficients of the best solution pro-

vided by BOP were used for learning. In order to remove the DC-component from

the image patches, for all methods the first dictionary element was set to
√

1/64

and kept constant during learning. It was also forced to participate in each linear

combination that was determined by the BOP method.

The results for the learned dictionaries are shown in Figure 4.14. It can be

seen that in contrast to the DCT and Haar dictionaries the performance could

be improved by increasing the number of BOP trials (Kuser). NGDL+BOP in soft-

competitive mode performed best while K-SVD performed second best. NGDL+BOP

in hard-competitive mode performed as good as the standard gradient descent ap-

proach when using a constant learning rate (GRAD+BOP). We tested whether the
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Figure 4.13: Mean squared representation error of the 3000 patches of size 8 × 8
of the test set that were randomly extracted from the images that are
depicted in Figure 4.12. Either an overcomplete DCT dictionary or an
overcomplete Haar dictionary were used for the encoding. In this case,
the BOP method provides only a slight improvement. Note, that for
Kuser = 1 BOP is equal to OOMP.

performance gap between K-SVD+BOP and NGDL+BOP in soft-competitive mode

could be reduced by performing 10× more learning iterations. Therefore, also re-

sults for 100 learning epochs with Kuser = 17 for K-SVD+BOP and NGDL+BOP

in soft-competitive mode are reported. It can be seen from Figure 4.14 that the gap

was reduced but still noticeable.

4.6.7 Application to image reconstruction

Suppose, we are given an image that is incomplete. Our task is to reconstruct the

original image, i.e., determine its missing pixel values from the the remaining pixels.

Among other approaches, Wavelet representations have been successfully used to

tackle this task [Antonini et al., 1992, Starck et al., 1994]. They have also been

applied to the closely related problem of image denoising [Chang et al., 2000]. A

key property for the success of certain Wavelet bases in these tasks is that natural

image patches can be represented as a sparse linear combination of the Wavelets

[Mallat, 2009]. Recently, for instance in [Aharon et al., 2006, Mairal et al., 2008],
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Figure 4.14: Mean squared representation error of the 3000 patches of size 8× 8 of
the test set. Results for varying number of permitted non-zero coeffi-
cients k = 3, . . . , 13 are shown. MOD+BOP: Dictionary learned with
the Method of Optimal directions. K-SVD+BOP: Dictionary learned
with the K-SVD algorithm. NGDL+BOP(soft-competitive): Method
proposed in this section in soft-competitive mode. NGDL+BOP(hard-
competitive): Method proposed in this section in hard-competitive
mode. GRAD+BOP: Gradient descent with constant learning rate
combined with BOP. Note, that for Kuser = 1 BOP is equal to OOMP.
It can be seen that for all methods the performance improves if Kuser

is increased. NGDL+BOP in soft-competitive mode performed best,
K-SVD second best. For all methods the user-defined parameters were
optimized (see text for details). All methods used a separate training
set.
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it has been proposed to use dictionaries that have been learned from image data

in order to solve this task. A possible advantage of the learned dictionaries is that

they can be adapted to the specific properties of a subclass of images which is not

always possible in case of Wavelet bases. However, in order to actually exploit this

advantage, one needs a method for dictionary learning that is able to extract the

subclass specific information from the training images.

In order to formalize the problem of image reconstruction, we consider a set of

vectors p1, . . . ,pP , pi ∈ RD. Each vector pi contains the remaining pixels of a

patch of size n×n at position i in the given image, where P is the number of all the

patches of size n× n of the original image. If some of the image pixels are missing,

this can be written as

pi = Siqi , i = 1, . . . , P (4.68)

where Si is a matrix that describes a projection to a lower-dimensional subspace.

qi ∈ RN contains the pixels of a patch of size n × n, n2 = N at position i in

the original image. The operator Si might differ for each position of the image,

depending on the pixels that are missing.

In order to obtain the original image, one has to invert the mapping Si. Since

in the given image certain pixels are missing, D < N holds, i.e., in this case linear

algebra tells us that, in general, Si cannot be inverted. A common hypothesis is that

the patches of the original image can be represented as a sparse linear combination

of some dictionary C plus additive noise:

qi = Câi + εi ⇒ pi = SiCâi + Siεi . (4.69)

C = (c1, . . . , cM ), cj ∈ RN , where ‖âi‖0 ≤ k � D and ‖Siεi‖ ≤ δ. Based on this

hypothesis, it has been proposed (see Bruckstein et al. [2009] for review) to invert

the mapping (4.69) by the solution of a sparse approximation problem

al0i = arg min
a
‖a‖0 subject to ‖pi − SiCa‖2 ≤ δ (4.70)

where Cal0i is the best approximation of qi according to (4.70). Section 2.3 presents

a result from [Donoho et al., 2006, Gribonval et al., 2006, Bruckstein et al., 2009],

i.e., equation (2.28), which states that ‖al0i − âi‖22 is upper-bounded by a constant

that is proportional to the square of the noise level δ under the condition that al0i
is sparse enough. How sparse al0i has to be depends on the mutual coherence of the

projected dictionary. On the one hand a smaller mutual coherence H(SiC) permits
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a larger number of non-zero entries in al0i , one the other hand a smaller number of

non-zero entries ‖al0i ‖0 permits a larger mutual coherence of the projected dictionary.

The more pixels are missing, i.e., the lower-dimensional the subspace obtained from

the projection Si is, the larger the mutual coherence of the projected dictionary is

expected to be.

We evaluated the influence of the soft-competitive learning on the performance

in an image reconstruction task where the previously described approach based on

sparse approximation is used in order to invert the projection to a lower dimensional

subspace. In this experiment, we used those methods that performed best in the

previous experiments, i.e., K-SVD+BOP and NGDL+BOP.

We created a larger training set, which better resembles the statistics of the

images to be reconstructed. This larger set consists of 150000 image patches that

were extracted randomly from the images that are depicted in Figure 4.12. For

all methods, we used the optimal parameters that were determined in the previous

experiment on image encoding, except for K-SVD where we increased the batch

size by a factor of 3. We performed only 1 learning epoch, which means that each

training sample was presented exactly once to the learning algorithm. However, due

to the much larger training set, this corresponds to an increase of the number of

dictionary updates by a factor of ≈ 2 in case of the K-SVD algorithm. Again, the

number of permitted non-zero coefficients was varied between k = 3 and k = 13.

We set Kuser to the value that performed best in the previous experiment which is

17, as can be seen from Figure 4.14. The computation time for each k and method

are shown in Table 4.5.

We used 78 test images of size 400×600, which are similar to the images depicted

in Figure 4.12. From each test image, we removed certain percentages of pixels

(0%, 30%, 50%, 70%, 90%). Then, for each 8 × 8 patch of the incomplete images

we computed the coefficients with respect to a given dictionary using the BOP

method (Kuser = 17). Only the remaining pixels were used, i.e., the dimensions of

the dictionary elements that correspond to the missing pixels were not considered.

This approach corresponds to the solution of (4.70), where Si is a projection into a

low-dimensional subspace.

The minimum norm of the residual for the BOP stopping criterion, δ (noise

level parameter), was varied between 0.00032 = ‖0.00004 · 1‖, 0.0032 = ‖0.0004 ·
1‖,0.032 = ‖0.004 · 1‖,1 ∈ R64 which corresponds to an average error of approxi-

mately ±0.01, ±0.1, and ±1 in 8-bit grayscale images. Note that δ was dynamically

adjusted according to the number of pixels that are actually present in an image
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patch, i.e., a patch that contains n pixels was approximated such that the norm of

the residual was less or equal to δn = δ
√

64/n. In order to reconstruct the image

patch, we took the linear combination of the complete dictionary elements using the

coefficients that minimize the norm of the residual. We performed the estimation

of the coefficients only for non-overlapping patches, since this is computationally

more efficient. Of course, the reconstruction can be improved by estimation of the

coefficients of each possible patch of the image and use of the mean value of all

estimated patches at a certain position as final estimator of the pixel value at that

position. However, this is not required for the comparison of the performance of

different methods for dictionary learning.

For each setting of the number of permitted non-zero coefficients k, each choice

of the noise level parameter δ, and for each method, we computed the mean PSNR

value over all 78 test images. In Table 4.1, the best mean PSNR value for different

percentages of missing pixels and different methods is shown.

It can be seen that for all percentages of missing pixels the NGDL+BOP soft-

competitive approach provided the best mean PSNR value for a certain choice of k

and δ. Which k and δ the best choices are, can be seen from Table 4.3 and Table 4.4.

From Table 4.3, which lists the best choice for the permitted number of non-zero

entries, it can be seen that the more pixels are missing, the less coefficients should

be estimated. From Table 4.4 it follows that the noise level δ should be chosen

smaller as more pixels are available for the estimation of the coefficients.

The test images are quite different. Therefore, the standard deviation of the

PSNR values over the 78 test images is around 4. Also the differences of the mean

PSNR values are not that large. Therefore, we took a closer look at the results and

counted for each percentage of missing pixels how often each method provided the

best PSNR value over all 78 test images. The result is shown in Table 4.2. The best

k and δ values were not selected for each image separately, but are exactly the same

over all images according to Table 4.3 and Table 4.4. It can be seen from Table 4.2

that the soft-competitive approach not only provided the best mean PSNR value but

that its performance is best for the majority of the test images. The more pixels are

missing, the less clear the result is. For 90% missing pixels all methods performed

equally bad. Those dictionaries learned with NGDL+BOP and K-SVD+BOP that

performed best in the image encoding task, i.e., where no pixels are missing, are

depicted in Figure 4.15.
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percent DCT Haar NGDL+BOP NGDL+BOP K-SVD
missing (soft) (hard)
0% 37 36.3 39.6 38.9 39.1
30% 31 28.4 32.9 32.5 32.4
50% 27.8 25.6 29.7 29.6 29.6
70% 24.6 23.4 26.8 26.7 26.6
90% 17.5 17.9 18.1 18.1 18.1

Table 4.1: Best mean PSNR values over 78 test images for a certain choice of k,
the number of permitted non-zero entries, and δ, the noise level pa-
rameter used as stopping criterion in the reconstruction of the images.
Which choices of k and δ correspond to these mean PSNR values can
be seen from Table 4.3 and Table 4.4. The dictionaries obtained with
NGDL+BOP(hard/soft) and K-SVD+BOP that performed best in case
of 0% missing pixels are depicted in Figure 4.15.

percent DCT Haar NGDL+BOP NGDL+BOP K-SVD+BOP
missing (soft) (hard)
0% 0 0 77 0 1
30% 0 0 69 9 0
50% 0 0 52 21 5
70% 0 0 57 15 6
90% 0 13 11 36 18

Table 4.2: For each percentage of missing pixels, the table shows how often a certain
method provided the best PSNR value over the 78 test images. Note, that
the best k and δ values were not chosen separately for each image, but
are exactly the same over all images according to Table 4.3 and Table
4.4.

percent DCT Haar NGDL+BOP NGDL+BOP K-SVD+BOP
missing (soft) (hard)
0% 13 13 13 13 13
30% 11 13 11 11 11
50% 5 3 5 5 5
70% 3 3 3 3 3
90% 5 7 3 3 3

Table 4.3: Best choice for k, the number of permitted non-zero entries in the esti-
mation of the dictionary coefficients. For instance, in case of 30% missing
pixels NGDL+BOP(soft) achieves the best mean PSNR value over all 78
test images with k = 11 non-zero coefficients.
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percent DCT Haar NGDL+BOP NGDL+BOP K-SVD+BOP
missing (soft) (hard)
0% 0.00004 0.0040 0.00004 0.00004 0.00004
30% 0.0004 0.0040 0.00004 0.00004 0.0004
50% 0.0004 0.0040 0.0004 0.0004 0.0004
70% 0.0040 0.0040 0.0040 0.0040 0.0040
90% 0.0040 0.0040 0.0040 0.0040 0.0040

Table 4.4: Best choice for δ, the noise level parameter that is used as stopping crite-
rion in the estimation of the coefficients for reconstruction of the images.
For instance, in case of 70% missing pixels NGDL+BOP(soft) achieves
the best mean PSNR value over all 78 test images with δ = 0.004 and
k = 3 (see Table 4.3).

k NGDL+BOP NGDL+BOP K-SVD+BOP
(soft) (hard)

3 20 19.5 21.8
5 37.7 36.7 38.3
7 54.6 53.4 56.4
9 75 72.4 74.7

11 92 97.4 99.8
13 120.7 115.1 120.5

Table 4.5: Computation time in minutes on a recent desktop computer for each
number of permitted non-zero coefficients and method. For all meth-
ods, 150000 coefficient estimations were performed. For all methods, the
coefficients were determined with BOP (Kuser = 17)

Figure 4.15: The dictionaries for the image reconstruction obtained with Kuser = 17
and k = 13. Left: NGDL+BOP soft-competitive (λ0 = λfinal = 17),
Center: NGDL+BOP hard-competitive (λ0 = λfinal = 10−10), Right:
K-SVD+BOP. The dictionary size is 441. The training set consisted of
150000 randomly extracted image patches of size 8 × 8. The patches
were extracted from 11 images of size 400 × 600, which are shown in
Figure 4.12.

80



4.6 Neural Gas for Dictionary Learning

4.6.8 Application to image deconvolution

Image deconvolution is another application domain of sparse linear generative mod-

els. In this section, we demonstrate how to deconvolve a given image by sparse

approximation with dictionaries that have been learned from a set of training im-

ages that are similar to the image that is to be deconvolved.

The problem of image deconvolution can be formalized in a very similar way as it

was done in the image reconstruction task. Let a vector pi from the set of vectors

p1, . . . ,pNp , pi ∈ RD be a patch of size d× d, d2 = D at position i in the convolved

image. Np denotes the number of valid patches of size d× d of the convolved image

that has been obtained by application of a known convolution operator Q to the

original image:

pi = Qqi i = 1, . . . , Np . (4.71)

For computational reasons, in the experiments, we considered only those patches

that are located at even coordinates. Q is a matrix that describes the convolution

operator. A vector qi ∈ RN is a patch of size n × n, n2 = N at position i in the

original image that is to be reconstructed. In order to compute the original image

from the convolved image, the operator Q has to be inverted. Again, linear algebra

tells us that if D < N holds, generally, Q cannot be inverted. Nevertheless, the

problem can be approached in a sparse approximation framework by exploitation of

the underlying sparse representation of the patches qi of the original image.

The hypothesis that enables us to convert the problem into a sparse approximation

problem is the same as in the image reconstruction task, namely that the patches

of the original image can be represented as a sparse linear combination of some

dictionary C plus some additive noise:

qi = Cai + εi ⇒ pi = QCai +Qεi (4.72)

with C ∈ RN×M and ‖ai‖0 ≤ k � D. In order to estimate qi on the basis of pi, we

consider the following sparse approximation problem

âi = arg min
a
‖a‖0 subject to ‖pi −QCa‖2 ≤ δ (4.73)

where q̂i = Câi is the approximation of qi.

In the experiments, we considered two images that have been blurred by a Gaus-

sian convolution kernel of size 7 × 7 with standard deviation 2.33. The first image
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depicts a mediaeval building of the city of Brugge (see Figure 4.16). It is also termed

house image in the following. The second image depicts a closeup photograph of

a flower (see Figure 4.18). It is termed flower image in the following. The blurred

versions of the images are also depicted in Figure 4.16 and 4.18.

As already mentioned above, we used dictionaries that were learned from image

data. In order to obtain suitable dictionaries, we took training sets of images that

are similar to the convolved images. The first training set, which is termed town

set in the following, consists of photographs of the city of Brugge (see Figure 4.17).

These images mainly depict mediaeval buildings. The second training set, which is

termed flowers set in the following, is a collection of closeup photographs of flowers

(see Figure 4.19).

All images were linearly scaled such that the pixel values are in the interval [0, 1].

From the training images of each image class, we extracted a set of training patches

that consists of 150.000 patches of size 16 × 16, i.e., x1, . . . ,x150000 xi ∈ R256.

The training patches were selected randomly, but with a variance within each patch

of at least 0.1. Then we applied the hard- and soft-competitive NGDL (Sections

4.6.1 and 4.6.4) in order to learn overcomplete dictionaries C ∈ R256×1681 that are

optimized in order to encode the images of the training set with at most k non-

zero entries per sample. In the hard- and soft-competitive case, we used the BOP

method with Kuser = 10 in order to determine the linear combination of the elements

of the dictionary. We evaluated different choices of k, i.e., k = 12, 14, 16, 18, 20. We

performed only one learning epoch, i.e., a one-pass run over the entire training set.

For comparison purposes the deconvolution experiments were repeated using an

overcomplete Haar-wavelet frame, which is depicted in Figure 4.20.

In order to solve the optimization problem (4.73), we first applied the (known)

convolution operator Q to the learned dictionary C. Each element of the dictionary

can be interpreted as a 2-dimensional patch. These dictionary patches were blurred

using the same operator that was applied to the house and flower image. The

learned dictionary elements correspond to 16 × 16 image patches. The application

of a 7× 7 Gaussian filter to these dictionary elements leads to convolved dictionary

elements of size 10×10 (it does not make sense to add a padding region). Hence, the

estimation of the coefficients took place with blurred image patches and dictionary

patches of size 10 × 10. The coefficients were determined with the BOP method

(Kuser = 10). As stopping criterion, we used an accuracy of δ = 0.0004 and a

maximum value for the number of dictionary elements in the linear combination.

Due to the stopping criterion, the iteration of the BOP algorithm stopped, if the
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reconstruction error became smaller than 0.0004 or if the maximum number of

dictionary elements in the linear combination had been reached. Since we used

the BOP method for approximation, we obtained for each tile qi of the original

image a set of approximations, i.e., q̂ji = Caji j = 1, . . . ,Kuser. We did not use the

solution that provided the smallest reconstruction error but we selected from the

set of approximations q̂j∗i that approximation which interferred the least with the

estimation of the original image in the neighbourhood of position i.

The interference of an approximation q̂ji with respect to its neighbourhood was

computed on the basis of the set of approximations of those tiles of the original image

that overlap position i. The tiles of the original image that overlap with position i are

denoted as qk ∈ N(i) in the following. Furthermore, let q̂lk, l = 1, . . . ,Kuser, qk ∈
N(i) denote the set of approximations of these tiles that have been obtained from

the BOP method. Additionally, let O(i, k) and O(k, i) be matrices that implement

two mappings into a lower dimensional subspace such that the vector representations

of the two tiles at position i and k only contain the corresponding pixels of the tiles

that are located in the their overlapping region after the mapping has been applied.

Now, I(i, j), i.e., the interference of the j-th approximation at position i, is defined

as the sum of the distances of the closest approximations of all overlapping tiles in

the neighbourhood of position i:

I(i, j) =
∑

qk∈N(i)

min
l=1,...,Kuser

‖O(i, k)q̂ji −O(k, i)q̂lk‖2 . (4.74)

For each tile, we swept through the set of its approximations and selected the one

that led to the smallest interference:

j∗ = arg min
j
I(i, j) . (4.75)

The final estimation of the pixel value of the primal image at position i is the

mean of the approximations of all tiles that overlap with position i. For each tile,

from the set of approximations that was obtained from the BOP method, the least

interferring one was chosen accoding to (4.75).

4.6.9 Deconvolution results

The deconvolution results for the house and flower images are depicted in Figure

4.16 and 4.18 respectively. In order to compute a PSNR with respect to the original
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image, all results were linearly scaled to the interval [0, 1] and centered such that

the PSNR was maximized. Furthermore, the images were cut such that artifacts at

the borders did not influence the PSNR measurement.

In both cases, i.e., house and flower, the PSNR of the sparse reconstruction im-

proves compared to the PSNR of the blurred image. In case of the house image, it

can be improved from 23.3dB to 26.3dB whereas in case of the flower image it can

be improved from 25.6dB to 33.3dB. Figure 4.16 depicts the PSNR values for the

house image that were obtained with k = 12, 14, 16, 18, 20 and dictionaries learned

by hard-competitive as well as soft-competitive stochastic gradient descent. Figure

4.16 also depicts results that were obtained if a dictionary that was learned on the

flowers training set was used in order to reconstruct the house image. In Figure 4.18

the same kind of results for the flower image are depicted. Additionally, both figures

show the results that were obtained with an overcomplete Haar-wavelet frame.

It can be seen that for both images the learned dictionaries outperformed the

Haar-wavelet frame. The larger the number of non-zero entries in the linear com-

bination becomes, the better the obtained performance is. Both figures show that

the obtained performance depends on the set of training images that were used in

order to learn the dictionaries. In both cases the dictionaries that were obtained

from the set of images that are similar to the image that is subject to deconvo-

lution outperformed those dictionaries that were learned from images that do not

look similar to the convolved image. Due to computational reasons the number of

pursuits performed by the BOP method was small (Kuser = 10) given the size of

the dictionary and the number of non-zero coefficients. Hence, the hard-competitive

and soft-competitive method were quite similar in this application. Therefore, also

the performance of hard-competitive and soft-competitive learning is rather simi-

lar though the soft-competitive version more often slightly outperformed the hard-

comeptitive approach than the other way around.

The dictionaries that performed best and were learned from the town- and the

flowers training set are depicted in Figure 4.17 and 4.19, respectively. It can be

seen that there is a clear difference between the two dictionaries, e.g., the dictionary

obtained from the town set contains more higher frequency components.
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Figure 4.16: Top Left: primal image, Top middle: blurred image (PSNR:
23.3dB), Top right: best deconvolution result (PSNR: 26.3dB, SC-
SGD, k = 20, training set town, dictionary is depicted in table 4.17).
Bottom: PSNR of deconvoluted image with respect to primal image
for different choices of k and methods. The larger k is, the better the
deconvolution becomes. Best results were obtained if the town set (see
table 4.17) was used for dictionary training instead of the flowers set.
See text for details.
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Figure 4.17: Top: Town training set. Bottom: Dictionary obtained from this set
of images that performed best in the experiments depicted in Figure
4.16 (SC-SGD, Kuser = 10, α0 = 10−1, αfinal = 10−3, λ0 = 50, λfinal =
0.1, k = 20). The dictionary consists of 1681 elements of size 16× 16.
The 2D-arrangment was obtained from a Kohonen-Map.
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Figure 4.18: Top left: primal image, Top middle: blurred image (PSNR: 25.6dB),
Top right: best deconvolution result (PSNR: 33.3dB, SC-SGD, k =
20,α0 = 10−1, αfinal = 10−2, λ0 = 10, λfinal = 10−2, training set
flowers). Bottom: PSNR of deconvoluted image with respect to primal
image for different choices of k and methods. Best results were obtained
if the flowers set (see Figure 4.19) was used for dictionary training
instead of the town set. See text for details.
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Figure 4.19: Top: Flowers training set. Bottom: Dictionary obtained from this
set of images that performed best in the experiments depicted in Figure
4.18 (SC-SGD, Kuser = 10, α0 = 10−1, αfinal = 10−2, λ0 = 10, λfinal =
10−2, k = 20). The dictionary consists of 1681 elements of size 16×16.
The 2D-arrangment was obtained using a Kohonen-Map.
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Figure 4.20: The Haar-wavelet frame that was used for comparison purposes.
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4.7 The probabilistic point of view

In the probabilistic framework for dictionary learning that is discussed in this section

and that has been used to motivate well-known algorithms such as the Sparsenet

[Olshausen and Field, 1996b, 1997] and the algorithm proposed by Lewicki and

Sejnowski [Lewicki and Sejnowski, 2000], one postulates that a given set of observa-

tions x1, . . . ,xL, xi ∈ RN stems from an unknown but fixed probability distribution

with density P ∗(x). Furthermore, one considers a class of linear generative models

that possess a likelihood of P (x|C) to generate a sample x. The C is the parameter

of the linear generative models that is to be determined.

4.7.1 Maximum likelihood methods

In order to find the best choice for the model parameters C, the similarity between

the unknown “true“ density P ∗(x) and the data likelihood P (x|C) of the model

shall be maximized. The similarity of these two distributions is measured by their

Kullback-Leibler divergence

KL[P ∗(x), P (x|C)] =

∫
P ∗(x) log

P ∗(x)

P (x|C)
dx . (4.76)

The minimization of (4.76) corresponds to the maximization of the expectation value

of the log-likelihood of the model, i.e.,

∫
P ∗(x) log(P (x|C)dx = E (log(P (x|C)) , (4.77)

since P ∗(x) cannot be influenced by the choice of C.

According to the data model that is used in the probabilistic methods, a sample x is

obtained from a linear combination of the model parameters C plus additive noise

x = Ca + ε . (4.78)

The coefficients a are hidden variables that are sparsely distributed with density

P (a). Sparsely distributed means that their marginal densities P (ai) are leptocurtic.

Furthermore, the joint density P (a) is modeled as a factorial density, i.e., the hidden
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variables ai are assumed to be statistically independent

P (a) =

M∏

i=1

P (ai) . (4.79)

One possible choice of a leptocurtic marginal density is the Laplacian

P (ai) =
1

2β
e−
|ai|
β . (4.80)

Usually, the noise ε is considered to be normally distributed

P (x|C,a) =
1

σ
√

2π
e−
‖x−Ca‖22

2σ2 . (4.81)

The log-likelihood of a given sample x according to the model (4.78) where coeffi-

cients and noise are distributed according to (4.80) and (4.81) is

log

(∫

a

P (x|C,a)P (a)da

)
= log

(
1

Nσ,β

∫

a

e−
‖x−Ca‖22

2σ2
−M2β ‖a‖1da

)
(4.82)

where Nσ,β is some normalization constant. In order to maximize the log-likelihood,

the integration over the hidden parameter a in (4.82) has to be performed. Since

the integration with respect to a in (4.82) is intractable, an approximation of the

integral is used. In the Sparsenet algorithm the likelihood function of the model is

simply evaluated at its maximum [Olshausen and Field, 1997] which corresponds to

the following approximation

log

(∫

a

e−
‖x−Ca‖22

2σ2
−M2β ‖a‖1da

)
≈ max

a
−‖x− Ca‖

2
2

2σ2
− M

2β
‖a‖1 . (4.83)

An improved approximation based on the Gaussian integral has been proposed in

[Lewicki and Sejnowski, 2000]. In this approach the function that is to be integrated

is replaced by a Gaussian which is located at its maximum.

Both soft-competitive dictionary learning methods that have been presented in

this work, i.e., SCNG which is presented in Section 4.5, and NGDL which is pre-

sented in Section 4.6, can be seen as approaches that use a better approximation

of the intractable integral (4.82) in order to estimate the best parameters of the

model. These methods consider for learning a large set of configurations of the hid-

den variables a that are sparse and lead to a small representation error with respect

91



4 Dictionary Learning

to x, instead of only a single one as it is done in (4.83). In the SCNG algorithm

this idea is implemented implicitly while in the NGDL approach the configurations

are explicitly determined by the BOP method for sparse approximation.

A maximization of the expectation value of the data likelihood of the model is not

possible, since the ”true” distribution of the observations x is unknown. Instead,

given a finite set of observations, a maximization of the empirical mean of the data

likelihood is performed which corresponds, in case of statistical independence of the

observations, to a maximization of

max
C

log (P (x1, . . . ,xL|C)) = max
C

log

(
L∏

i=1

∫

a

P (xi|a, C)P (a)da

)
. (4.84)

If the approximation (4.83) of the data likelihood is used, this finally leads to the

following nested optimization problem

min
C

l∑

i=1

(
min
a
‖xi − Ca‖2 + λ‖a‖1

)
. (4.85)

In the Sparsenet algorithm, the nested optimization problem (4.85) is tackeled by

a two-fold optimization process. First, the dictionary C is considered fixed and

the dictionary coefficients are determined by gradient descend with respect to the

coefficients (see Chapter 2.2). Then the coefficients are considered fixed and a

gradient descent with respect to the dictionary is performed. With learning rate η,

the update of the dictionary is

∆C = η (X − CA)AT (4.86)

where A = (a1, . . . ,aL) are the coefficients that have been determined for C.

The measure of sparsity used by the Sparsenet algorithm is not scaling invariant, i.e.,

the influence of the regularization term in (4.85) can be minimized by an increase of

the norm of the dictionary elements. In order to prevent this undesired effect, in the

Sparsenet algorithm the elements of the dictionary are normalized after the update

of the dictionary has been performed. This normalization scales the elements of the

dictionary such that a desired variance of the hidden variables a is obtained.
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4.7.2 Maximum a posteri methods

In order to avoid the problematic integration in (4.84) with respect to the coefficients

of the dictionary, Kreutz-Delgado et al. [2003] proposed the column normalized

version of the FOCUSS algorithm for dictionary learning (FOCUSS-CNDL), which

jointly maximizes the posterior probabilities of the model parameters C and a

max
C,a1,...,aL

P (C,a1, . . . ,aL|x1, . . . ,xL) . (4.87)

This is equivalent to

max
C,a1,...,aL

P (x1, . . . ,xL|C,a1, . . . ,aL)P (a1, . . . ,aL)P (C) . (4.88)

Theoretically, the introduction of a prior with respect to C allows to directly in-

corporate constraints on the dictionary into the probabilistic setting. However, the

learning rule of the FOCUSS-CNDL algorithm that is derived in [Kreutz-Delgado

et al., 2003] is based on the assumption of a uniform prior in the solution space. The

joint optimization with respect to C and a is performed by a parallel update of these

variables. This means that initially a rather coarse optimization with respect to the

coefficients is performed which is successively refined while being interrupted by op-

timization steps with respect to the dictionary. Similar to the Sparsenet algorithm,

also in the FOCUSS-CNDL algorithm the column normalization is performed after

the dictionary update has been applied.

All the probabilistic methods that have been presented in this section impose a

regularization or penalty on the dictionary coefficients that is not scaling invari-

ant. Hence, in order to obtain a feasible solution, a constraint on the norm of the

dictionary elements is given. In all these algorithms the constrained optimization

with respect to the dictionary is implemented by an unconstrained update of the

dictionary that is supplemented by a projection to the constrained solution space. A

disadvantage of this projective approach is that it can cause slow convergence. The

update mechanism proposed in [Lee et al., 2007], which was discussed in Section

4.3, overcomes this disadvantage. It directly solves the constrained optimization

problem by a maximization of the corresponding Lagrangian and could be used in

some of the methods.
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5 Blind source separation

A central task in the domain of blind source separation is the so-called “Cock-

tail Party Problem” that is to follow party conversations, i.e., to separate several

speakers from noise and to focus on a single voice. A comprehensive review on the

difficulties associated with this problem is provided in [Haykin and Chen, 2005].

The “Cocktail Party Problem“ has been tackled by a number of researchers in a

mathematical framework that is closely related to the generative linear models that

have been considered for dictionary learning in Chapter 4. We are given a sequence

of observations x(1),. . . ,x(t), . . . with x(t) ∈ RN and according to the hypothesis

that is used in this framework, these observations stem from a linear mixture of a

number of unknown sources a(1), . . . ,a(t), . . . with a(t) ∈ RM :

x(t) = Ca(t) . (5.1)

In this chapter, we present solution strategies for two different scenarios. In the first

scenario, called batch scenario, the sequence of observations is finite x(1),. . . , x(t),

. . . , x(L) and the mixing matrix C ∈ RN×M is considered to be time invariant. In

the second scenario, called online scenario, the sequence of observations is infinite

and the mixing matrix C(t) ∈ RN×M is considered to be time dependent. We may

regard the observations x(t) as what we hear and the sources a(t) as the voices of

M speakers at time t. The sequence sj = a(1)j , . . . , a(t)j , . . . is the voice track

of speaker j. Now, the central question is, if it is possible to blindly separate the

sources sj from the mixtures x(t) without knowledge about the mixing matrix C.

This task involves two sub-tasks. First, one has to determine the mixing matrix C

from the observations and second, one has to estimate the sources on the basis of

this matrix.

Among the methods that have been proposed to estimate the statements sj and

the matrix C, there are those methods for independent component analysis that

solely rely on the statistical independence of the sources [Bell and Sejnowski, 1995,

Hyvärinen and Oja, 1997, Hyvärinen, 1999a]. These methods require only the mix-
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tures x(t) to be known and that one can assume M = N , i.e., that we are given

as many observations as sources. An advantage of these methods is that they only

impose weak constraints on the distributions of the sources, on the other hand

statistical independence of the sources is not always given, as for instance, within

music or human conversations where the sources can be highly dependent. Section

5.1 provides a brief discussion on some aspects of a method which is called FastICA

that belongs to this category of methods. It has been proposed in [Hyvärinen and

Oja, 1997, Hyvärinen, 1999a] and is used for comparison purposes in some of the

experiments that are presented in this chapter.

In many situations, the number of sources is not equal to the number of obser-

vations, i.e., often M > N holds. Humans have two ears but a large number of

persons may be present at a party. In this overcomplete case stronger assumptions

on the sources such as sparsity have to be introduced in order to enable a success-

full identification of the mixing matrix and the sources [Hyvärinen et al., 1999, Lee

et al., 1999, Theis et al., 2004, Davies and Mitianoudis, 2004]. Due to the presence

of a certain amount of additional background noise the problem may become even

more difficult. A model that accounts for a certain amount of additive noise,

x(t) = Ca(t) + ε(t) ‖ε(t)‖ ≤ δ, (5.2)

has also been considered in the past [Hyvärinen, 1999b]. The SCNG algorithm which

already has been introduced for the application of dictionary learning in Section 4.5

can also be applied to (5.2) if it is slightly modified. How this is done is discussed

in Section 5.2. This application of the SCNG algorithm has been proposed first in

[Labusch et al., 2008b] and has been applied to demixing of music in [Labusch et al.,

2009c].

An even more realistic setting is obtained by the introduction of a mixing matrix

that is time dependent:

x(t) = C(t)a(t) + ε(t) ‖ε(t)‖ ≤ δ C(t) = (c1(t), . . . , cM (t)), cj(t) ∈ RN . (5.3)

For instance, in the case of the cocktail party, (5.3) can account for party guests who

change their position during conversation. In [Labusch et al., 2009b], we have shown

that the SCNG algorithm can also be applied to (5.3). This application of the SCNG-

BSS variant is described in Section 5.3. In this application the SCNG method can be

used to process an infinite sequence of observations, since the observations are used
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5.1 Independent component analysis

for learning in an online pattern-by-pattern mode, i.e., each observation is presented

only once to the learning algorithm and the sources are estimated immediately. We

do not make assumptions regarding the type of noise but require that the underlying

sources sj are sufficiently sparse, in particular, we require that the a(t) are sparse,

i.e., only a few persons talk at the same time, which is desireable in a conversation.

The noise level δ and the number of sources M have to be known. For the time

dependent mixing matrix, we require ‖cj(t)‖ = 1 without loss of generality.

5.1 Independent component analysis

Due to the amount of work that has been done in the domain of Independent

Component Analysis (ICA), a comprehensive discussion of this domain is out of the

scope of this work. For a good overview of the field, we refer to [Hyvärinen et al.,

2001].

Here, we concentrate on FastICA, since it was used as a reference in our experi-

ments, it is also refered to in the introduction, and it is one of the most often used

approaches. Initially, it has been proposed in [Hyvärinen and Oja, 1997, Hyvärinen,

1999a]. It considers the setting of (5.1) where no additive noise is present and the

number of observed mixtures is equal to the number of underlying sources, i.e.,

M = N :

x(t) = Ca(t) (5.4)

with x(t) ∈ RN and C ∈ RN×N . FastICA solely relies on the assumption that the

hidden variables a(t) are statistically independent and non-Gaussian.

FastICA looks for model parameters C, which maximize the non-Gaussianity of

the estimated sources. This is due to the empirical observation that the Gaussianity

of a random variable, that is a linear combination of a number of statistically inde-

pendent random variables, tends to be larger than the Gaussianity of the original

random variables. In case of original random variables that are statistically indepen-

dent, identically distributed, and have finite means and variances, this observation

is explained by the central limit theorem (which is discussed in detail for example

in [Ross, 2002])). However, empirically this observation seems to be true even if

some of the preconditions of the central limit theorem do not hold, for instance,

if the original random variables do not have the same distribution. Hence, it has

been proposed to perform ICA by the maximization of the non-Gaussianity of the

estimated original random variables [Hyvärinen and Oja, 1997, Hyvärinen et al.,
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5 Blind source separation

2001].

As it is discussed in Section 4.2, PCA, i.e., decorrelation, can be seen as a first

step of ICA. Therefore a preprocessing step of FastICA is the decorrelation and

scaling of the observations such that the obtained variables are white, i.e., have unit

variance:

y(t) = Λ−1V x(t) . (5.5)

V is a matrix which contains the eigenvectors of the covariance matrix E[x(t)x(t)T ]

of the data which, in practice, is estimated by avaraging. Λ is a diagonal matrix

that contains the standard deviation of the corresponding principal components

(square root of the eigenvalues) on its main diagonal. FastICA now looks for an

additional linear mapping W = (w1, . . . ,wN )T ,wj ∈ RN such that C−1 = WΛ−1V

and therefore

a(t) = WΛ−1V x(t) = Wy(t) . (5.6)

The assumption that the hidden variables a(t) are statistically independent means

in particular that they are white, i.e., their covariance matrix is equal to the unit

matrix

E[a(t)a(t)T ] = diag(1) . (5.7)

The whitening operation (5.5) ensures that the matrix W is constrained to being

just an additional rotation, i.e., it is an orthonormal matrix:

E[a(t)a(t)T ] = E
[
WΛ−1V x(t)

(
WΛ−1V x(t)

)T ]

= WE
[
Λ−1V x(t)

(
Λ−1V x(t)

)T ]
WT

= WWT = diag(1) .

FastICA now looks for a rotation W such that the non-Gaussianity of each source

a(t)j is maximized. Since W is an orthonormal matrix, each of the sources can be

considered separately, which is equivalent to a subsequent estimation of a single row

of W . In order to determine a row of W , the observations x(t) are orthogonalized

with respect to those rows of W that already have been obtained. The negentropy

of a random variable is a good measure of its non-Gaussianity (as it is discussed for

example in [Hyvärinen et al., 2001]). Hence, FastICA maximizes the negentropy of

the source a(t)j in order to determine wj . Since the negentropy of a random variable

is difficult to compute, an approximation of the negentropy is maximized, the so-

called contrast function. The contrast function is chosen such that its maximization
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can be efficiently performed within a fixed-point iteration.

5.2 Sparse Coding Neural Gas for the Separation of

Noisy Overcomplete Sources

Suppose that we determine the parameter C of the mixture model (5.2) for given

mixtures x(1), . . . ,x(L) so that it is the solution of the following minimization prob-

lem

min
C

L∑

t=1

(
min
a
‖x(t)− Ca‖+ λS(a)

)
. (5.8)

This can be interpreted as independent component analysis [Kreutz-Delgado and

Rao, 1999], if the regularization term S(a) that is used in (5.8), fulfills the following

conditions:

1. S(a) has the property of separability:

S(a) =

M∑

j=1

f(aj) (5.9)

2. f(aj) can be understood as the negative logarithm of some prior density of

the source aj .

For instance in the Sparsenet method, which is discussed in Section 4.7, both above

conditions, 1 and 2, are fulfilled. (5.8) can be seen as the Lagrangian dual of the

following optimization problem

min
C

L∑

t=1

(
min
a

S(a) subject to ‖x(t)− Ca‖ < δ
)

(5.10)

as explained in Section 2.2 for the case S(a) = ‖a‖1. This means that the determi-

nation of the solution of (5.10) is equivalent to the determination of the solution of

(5.8) if δ and λ are appropriately chosen.

Here, we use S(a) = ‖a‖0 as measure of sparsity, which yields

min
C

L∑

t=1

(
min
a
‖a‖0 subject to ‖x(t)− Ca‖ < δ

)
. (5.11)
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Due to

‖a‖0 =

M∑

j=1

‖aj‖0 , (5.12)

this regularization term has also the property of separability. However, it cannot be

interpreted as the negative logarithm of some prior density. Therefore, the method

that is proposed in this section is closely related to ICA but cannot be interpreted

in a probabilistic framework.

We begin with the batch case where a finite sequence of observations x(1), . . . ,x(L)

is given and the mixing matrix is time independent. We want to determine the mix-

ing matrix C = (c1, . . . , cM ) in (5.2) from the mixtures x(t) provided that we know

the noise level δ and the number of underlying sources M . In this section, for

simplicity, we denote x(j) as xj . We tackle this task with a variant of the SCNG

algorithm that is modified so that it provides an approximative solution to (5.11).

In the SCNG algorithm the estimation of the configuration of the hidden variables

a is obtained from the OOMP approximation method which is an improved variant

of OMP (details of OMP and OOMP are discussed in Section 2.1.3). Donoho et al.

[2006] have reported results which show that the sources actually can be identified

with OMP given that they are sparse enough and that the mixing matrix C is

incoherent enough. Details of these results can be found in Section 2.3.

As a consequence of the fact that the SCNG algorithm employs the OOMP

method in order to estimate the configuration of the hidden variables a, we are

looking for a mixing matrix C that minimizes the number of non-zero entries of

aOOMP
j , i.e., the number of iteration steps of the OOMP algorithm, given a noise

level δ

min
C

L∑

j=1

‖aOOMP
j ‖0 subject to ∀j : ‖xj − CaOOMP

j ‖ ≤ δ . (5.13)

In order to solve (5.13), we perform an update of R and C prior to the construction

step (2.5) and (2.6) in each iteration of the OOMP algorithm with respect to the

currently used sample xj . The total number of OOMP iterations is reduced by

minimization of the norm of the residual that is going to be obtained after the

update has been performed. The norm of the residual becomes small if

(rTlwin
εUj )2 (5.14)

100



5.2 Sparse Coding Neural Gas for the Separation of Noisy Overcomplete Sources

is large where rlwin
and εUj are the winning column in the current iteration of the

OOMP method and the current residual with respect to the observation xj (see

Section 2.1.3 for details). Hence, we have to consider the optimization problem

max
R

L∑

j=1

max
l,l/∈U

(rTl ε
U
j )2 subject to ‖rl‖ = 1 . (5.15)

The method which minimizes (5.15) in order to determine the mixing matrix is

allowed to iterate as often as necessary through the entire set of observations. We

perform t = 1, . . . , tmax, tmax ≥ L learning iterations and in each iteration a new

sample xt is selected from the set observations. Then, as it was already discussed

in Section 4.5, the maximization problem (5.15) can be approached with Oja’s rule,

which is

rlwin
= rlwin

+ α y(εUt − y rlwin
) (5.16)

with y = rTlwin
εUt and learning rate α. Instead of a sole update of the winning

column of R, i.e., rlwin
, we again employ the soft-competitive learning approach of

the “Neural Gas” (NG) algorithm (see also Section 4.1.3) in order to update each

column of R that might be selected in the next iteration of the OOMP algorithm.

Hence, we determine the sequence

−
(
rTl0ε

U
t

)2 ≤ · · · ≤ −
(
rTlkε

U
t

)2 ≤ · · · ≤ −
(
rTlM−|U|ε

U
t

)2

, lk /∈ U (5.17)

and combine Oja’s rule with the soft-competitive update of the NG algorithm. We

update the columns of the mixing matrix according to

∆rlk = ∆clk = αte
−k/λty

(
εUt − y rlk

)
. (5.18)

Again, αt and λt are the exponentially decreasing learning rate and neighborhood

size at time t:

λt = λ0 (λfinal/λ0)
t/tmax (5.19)

αt = α0 (αfinal/α0)
t/tmax . (5.20)
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In Section 4.5.1, we have shown that this update rule corresponds to a stochastic

gradient descent with respect to

max
R

L∑

j=1

M∑

l=1

hλt(k(rl, εj))(r
T
l εj)

2 subject to ‖rl‖22 = 1, (5.21)

with hλt(v) = e−v/λt . Here k(rl, εj) denotes the number of columns of the tempo-

rary matrix R with (rTj εj)
2 > (rTl εj)

2. Note that for λt → 0, (5.21) is equivalent

to (5.15). For t → tmax one obtains equation (5.16) as update rule. Note that

(5.18) accumulates the updates of all iterations in the learned mixing matrix C.

Due to the orthogonal projections (2.5) and (2.6) performed in each iteration of the

OOMP algorithm, these updates are pairwise orthogonal. Furthermore, note that

the columns of the original mixing matrix emerge in random order in the learned

mixing matrix. The sign of the columns of the mixing matrix cl cannot be deter-

mined because multiplication of cl by −1 corresponds to multiplication of rl by −1,

which does not change (5.21). The entire SCNG method for blind source separation

is shown in Algorithm 4.

5.2.1 Experiments

In order to evaluate the performance of the SCNG algorithm with respect to the

reconstruction of the underlying sources, we performed a number of experiments

on synthetical data. We generated sparse underlying sources S = (s1, . . . , sM )T =

(a1, . . . ,aL), si ∈ RL,aj ∈ RM . This was done by setting up to k entries of the aj

to uniformly distributed random values in [−1, 1]. For each aj the number of non-

zero entries was obtained from a uniform distribution in [0, k]. We added Gaussian

distributed noise εj such that

xj = Caj + εj . (5.22)

The noise parameter δ was obtained as

δ =
1

L

L∑

j=1

‖εj‖ . (5.23)

We scaled S and thereby the aj so that var(CS) = 1. Then, the amplitude of the

values in εj was chosen such that the desired SNR was obtained. Again, in order
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Algorithm 4 The sparse coding neural gas algorithm for source separation.
initialize C = (c1, . . . , cM ) using uniform random values
for t = 0 to tmax do

select random sample x out of X
set c1, . . . , cM to unit length

calculate current size of neighborhood: λt = λ0 (λfinal/λ0)t/tmax

calculate current learning rate: αt = α0 (αfinal/α0)t/tmax

set U = ∅, εU = x and R = (r1, . . . , rM ) = C = (c1, . . . , cM )
while ‖εU‖ > δ do

determine l0, . . . , lk, . . . , lM−|U| with lk /∈ U :

−(rTl0ε
U )2 ≤ · · · ≤ −(rTlkε

U )2 ≤ · · · ≤ −(rTlM−|U|ε
U )2

for k = 1 to M − |U | do
with y = rTlk

εU update clk = clk + ∆lk and rlk = rlk + ∆lk with

∆lk = αte
−k/λty (εU − y rlk )

set rlk to unit length
end for
determine lwin = arg maxl/∈U (rTl ε

U )2

remove projection to rlwin
from εU and R:

εU = εU − (rTlwin
εU )rlwin

rl = rl − (rTlwin
rl)rlwin

, l = 1, . . . ,M

set U = U ∪ lwin

end while

end for
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Figure 5.1: The figure shows the convergence of the SCNG algorithm. Top left:
The mean norm of the residual εUj of the last iteration of the OOMP
algorithm. Top right: Mean number of iterations performed by the
OOMP algorithm until εUj ≤ δ. Bottom: Logarithmic plot of the mean

squared distance between the estimated sources sOOMP
i and the true

sources si. We used M = 100, N = 50, H(C) = 0.4, k = 15 and
SNR = 5dB which corresponds to δ = 3.96. The fraction of non-zero
entries in the sources was 7.5%, i.e., the avarage number of non-zero
entries of the vectors aj was 7.5.
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to obtain a random mixture matrix C ∈ RN×M with coherence z, we repeatedly

chose a matrix from a uniform distribution in [−1, 1] until d100H(C)e = d100ze.
The norm of the columns of the mixture matrix was normalized to unit length.

In our experiments, we studied the error on the representation level. This means

that for each observation xj , we evaluated the difference between the original con-

tributions of the underlying sources, i.e., aj to xj , and the contributions aOOMP
j

that were estimated by the OOMP algorithm on the basis of the mixing matrix C

that was learned by the SCNG algorithm:

1

L

L∑

j=1

‖aj − aOOMP
j ‖22 =

1

L

M∑

i=1

‖si − sOOMP
i ‖22. (5.24)

Here SOOMP = (sOOMP
1 , . . . , sOOMP

M )T = (aOOMP
1 , . . . ,aOOMP

L ) are the underlying

sources that were obtained from the OOMP algorithm. In order to evaluate (5.24),

we had to assign the entries in aOOMP
j to the entries in aj , which is equivalent to

assignment of the original sources si to the estimated sources sOOMP
i . This problem

arises due to the random order in which the columns of the original mixing matrix

appear in the learned mixing matrix. For the assignment, we performed the following

procedure:

1. Set Iorig : {1, . . . ,M} and Ilearned : {1, . . . ,M}.

2. Find and assign si and sOOMP
j with i ∈ Iorig, j ∈ Ilearned such that

|sOOMP
j sTi |

‖si‖‖sOOMP
j ‖ is maximal.

3. Remove i from Iorig and j from Ilearned.

4. If sOOMP
j sTi < 0 set sOOMP

j = −sOOMP
j .

5. Proceed with (2) until Iorig = Ilearned = ∅.

For all experiments, we used L = 20000 observed mixtures, an initial learning

rate α0 = 0.1, a final learning rate αfinal = 0.0001, an initial neighborhood-size

λ0 = M/2, and a final neighborhood-size λfinal = 10−7. We repeated all experiments

10 times and report the mean result over the 10 runs. The number of learning

iterations of the SCNG algorithm was set to tmax = 15 ∗ 20000.
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In our first experiment, we evaluated the convergence of the SCNG algorithm

over time in case of N = 50 observations of M = 100 underlying sources with up to

k = 15 non-zero entries. The result is shown in Figure 5.1. We chose a SNR of 5dB,

which corresponds to δ = 3.96. The norm of the residual of the final iteration εUj
of the OOMP algorithm converged to a value close to δ. The number of iterations

of the OOMP algorithm decreased over time and converged to a value close to the

fraction of non-zero entries in the entire sources, which is 7.5%. Since the number of

non-zero entries was uniformly chosen between 0 and 15 and M = 100 sources were

used, the fraction of non-zero entries is equal to the average number of non-zero

entries of the vectors aj . At the same time, also the error on the representation

level is minimized. The 5 underlying sources that were estimated best as well as

one of the mixtures from which they were obtained are shown in Figure 5.2.

In the next experiment, we used N = 20 observed mixtures, M = 40 underlying

sources, and a SNR of 10dB. We varied the coherence H(C) of the mixing matrix

and k, the number of non-zero entries of the underlying sources. The result is

shown in Figure 5.4. The sparser the sources are and the smaller the coherence of

the mixing matrix is, the better the obtained performance becomes. Then, we fixed

H(C) = 0.6, SNR = 20dB, and k = 5 and varied the overcompleteness by setting

M = 20, . . . , 80. In Figure 5.4, it can be seen that only slightly varying performance

was obtained though the overcompleteness strongly increases. Furthermore, we

varied N from 10 to 50, chose M = 2N , and k = dN/10e. Figure 5.4 shows that

almost the same performance was obtained, i.e., the obtained performance does not

depend on the number of sources and observations if the fraction N/M as well as

the sparseness of the sources remains constant.

The results that are shown in Figure 5.5 were obtained by choosing N = 20,

M = 40, H(C) = 0.6, and varying the noise level as well as the sparseness of the

sources. As expected, the more noise was present and the less sparse the sources

were, the lower the obtained performance is. Finally, we set k = 5 and studied

the obtained reconstruction performance depending on the coherence of the mixing

matrix and the noise level. The result is also shown in Figure 5.5. It can be seen that

in our experimental setting the noise level has a strong impact on the performance.

The influence of the noise cannot be compensated by a smaller mutual coherence of

the mixing matrix.
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the mixtures is shown in Figure 5.3. The solid line depicts si whereas
the crosses depict the estimated sources sOOMP

i that were obtained by
applying the OOMP to the mixtures using the mixing matrix that was
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ence of the mixing matrix with respect to the reconstruction error is
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and k = 5. Bottom right: The obtained reconstruction error for
N = 10, . . . , 50 with M = 2N ,k = dN/10e and SNR = 20dB.
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5.2.2 An application to real world data: Demixing Jazz music

So far, we only have considered synthetical data in our experiments. In order to

show that the SCNG algorithm can also be applied successfully to more realistic

data, we applied the algorithm to audio data in a difficult setting.

Let us assume that we are given a recording of a piece of Jazz-music. The given

piece is arranged for five instruments, vibraphone, piano, trumpet, percusion and

bass. It is recorded with two microphones. Unfortunately, some additive noise is

also present during the recording. Now, we want to reconstruct the part of each

single instrument given only the recordings of the microphones.

In order to implement the setting described above, we took a Jazz midi-file and

extracted the five instruments from that file. The obtained five audio tracks each

containing a single instrument were used as ground truth. We obtained the sim-

ulated two-channel recording by applying a 2 × 5 mixing matrix to the five audio

tracks and added some Gaussian noise to the mixture. Figure 5.6 shows the two

recorded channels that were obtained. Then, we applied the SCNG algorithm to

the recordings in order to estimate the mixing matrix.

In the same way as already described before, we then used the OOMP algorithm

in order to estimate the original audio track of each instrument from the record-

ings. Figure 5.7 shows the original audio tracks and the estimated track for each

instrument. It can be seen that one can clearly assign estimated and original part

of each instrument. The auditory impression of the estimated parts is quite noisy

but one can clearly assign each part to an instrument. However, periods of silence

are estimated rather badly as can be seen for example from the percussion track.

The result in this very difficult setting is promising and it might be improved by

employing computationally more demanding methods such as basis pursuit using

the mixing matrix provided by the SCNG method in order to reconstruct the tracks

of the instruments.

5.2.3 Comparison to FastICA

Finally, we wanted to compare our method to a well-known method that also has

been used to perform blind source separation, the FastICA algorithm which is briefly

introduced in Section 5.1. The standard FastICA algorithm is not applicable in

case of an overcomplete setting. Therefore, in our experiment, there are as many

mixtures as sources, i.e., the mixing matrix is invertible. We wanted to study what

the impact of additive noise on the performance of both methods with respect to
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Figure 5.6: The figure shows the two recorded channels that have been obtained
by applying a 2× 5 mixing matrix to the tracks of the instruments that
are shown in Figure 5.7. Gaussian noise has been added to the recorded
channels. The coherence of the mixing matrix was set to 0.5. The SNR
was set to 10dB.

the determination of the mixing matrix is.

We randomly chose a mixing matrix Corig ∈ R20×20 with mutual coherence 0.5.

As described before, we generated sparse sources aj ∈ R20 where the maximum

number of non-zero entries of the sources aj was set to 5. We applied the mixing

matrix to the sources in order to obtain the mixtures xj ∈ R20. We employed the

SCNG algorithm and the FastICA algorithm in order to obtain the estimated mixing

matrices CSCNG and CFICA. We then compared the estimated mixing matrix to the

original mixing matrix by computing the maximum overlap between each column

of the original mixing matrix and the learned mixing matrix. For instance, in case

of the solution provided by the SCNG algorithm, we computed

max
j

(
1− |corig

i cSCNG
j |

)
. (5.25)

Whenever (5.25) was smaller than some accuracy level, we counted this as a success.

We repeated this experiment 9 times with varying SNR including zero noise.

For each noise level, we sorted the 9 trials according to the number of successfully

learned columns of the mixing matrix and ordered them in groups of 3 experiments.

Figure 5.8 shows the mean number of successfully detected columns for each of the

3 groups for each noise level. We performed the experiment twice using accuracy
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Figure 5.7: The figure shows the original audio track of each instrument as well as
the estimated audio track that has been obtained by application of the
OOMP algorithm to the two-channel recording that is shown in Figure
5.6 using the mixing matrix that was learned by the SCNG algorithm.
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Figure 5.8: The figure shows the reconstruction performance of SCNG and FastICA
on synthetically generated data, i.e., the number of successfully learned
columns of the mixing matrix up to an accuracy of 0.01 and 0.05 respec-
tively. We set M = 20, N = 20 and k = 5. The coherence of the mixing
matrix was set to 0.5. We varied the SNR. In particular in case of the
presence of strong noise SCNG outperforms FastICA.

levels of 0.01 and 0.05. In Figure 5.8, it can be seen that the SCNG algorithm is

not sensitive to the additive noise, whereas the performance of the FastICA method

degrades with increasing noise level.

In the next experiment, we set the noise level to 10dB and varied the number of

non-zero entries of the sources aj . The results are shown in Figure 5.9. Though the

performance of the SCNG algorithm degrades for k = 9, it outperforms the FastICA

method on this noisy data.

In the last experiment, we used the audio data described in Section 5.2.2. For the

audio data, a randomly chosen mixing matrix Corig ∈ R5×5 with mutual coherence

0.5 was used. The results on the audio data are shown in Figure 5.10. It can be

seen that for an accuracy level of 0.01 FastICA outperforms the SCNG method. The

opposite result is obtained for accuracy 0.05. The audio data are less sparse than the

data used in the synthetical setting, which might explain the reduced performance

of the SCNG algorithm.

112



5.2 Sparse Coding Neural Gas for the Separation of Noisy Overcomplete Sources

1 3 5 7 9
12

14

16

18

20

k

d
e

te
c
te

d
 b

a
s
is

 e
le

m
e

n
ts

 

 

SCNG (accuracy 0.01)

FICA (accuracy 0.01)

SCNG (accuracy 0.05)

FICA (accuracy 0.05)

Figure 5.9: The figure shows the reconstruction performance of SCNG and FastICA
on synthetically generated data, i.e., the number of successfully learned
columns of the mixing matrix up to an accuracy of 0.01 and 0.05, re-
spectively. We set M = 20, N = 20 and SNR = 10dB. The coherence
of the mixing matrix was set to 0.5. We varied the parameter k which
controls the sparseness of the underlying sources. The larger k is, the
less sparse the sources are. Again SCNG outperforms FastICA. For large
k the performance of SCNG degrades.
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Figure 5.10: The figure shows the reconstruction performance of SCNG and Fas-
tICA on the audio data that is described in Section 5.2.2, i.e., the
number of successfully learned columns of the mixing matrix up to an
accuracy of 0.01 and 0.05, respectively. We set M = 5, N = 5. The
coherence of the mixing matrix was set to 0.5. We varied the SNR. For
accuracy 0.01 FastICA outperforms SCNG. For accuracy 0.05 one ob-
tains the opposite result. In case of strong noise (SNR = 5dB) SCNG
performs better than FastICA.
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5.3 Approaching the Time Dependent Cocktail Party

Problem

In Section 5.2, the mixing matrix was considered to be time invariant. Now, we want

to estimate a mixing matrix that is time dependent, i.e., C(t) where C(t) ∈ RM×N .

C(t) is estimated from a potentially infinite sequence of mixtures x(1), . . . ,x(t), . . .

under the assumption that the noise level δ is constant and known and that the

number of underlying sources M is known. Furthermore, we assume that the mixing

matrix changes only slowly over time such that C(t) is approximately constant for

some time interval [t− T, t].

As in the time invariant case, we look for a mixing matrix that minimizes the

number of iteration steps required by the OOMP algorithm to approximate an

observation x(t) up to the noise level δ. However, now we do not consider all

observations but only the time interval [t− T, t]:

min
C(t)

t∑

t′=t−T
‖a(t′)OOMP‖0 subject to ‖x(t′)− C(t)a(t′)OOMP‖ ≤ δ . (5.26)

Again, a small norm of the current residual ε(t′)U reduces the number of OOMP

iterations that have to be performed until the stopping criterion ‖ε(t′)U‖ ≤ δ has

been reached, which is equivalent to a small ‖a(t′)OOMP‖0. In order to minimize

the norm of the residuals in each iteration of the OOMP algorithm and thereby the

expression (5.26), we have to maximize (rlwinε(t′)U )2. Therefore, we consider the

following optimization problem

max
r1,...,rM

t∑

t′=t−T
max
l,l/∈U

(rTl ε(t′)U )2 subject to ‖rl‖ = 1 , (5.27)

which is the same as (5.15) except for the time interval that is considered. Again,

we maximize (5.27) by updating R and C(t) prior to the construction step of the

OOMP algorithm, i.e., (2.5) and (2.6). This is done with the SCNG update rule for

blind source separation (5.18). Again, we use a exponentially decreasing learning

rate

α(t) = α0 (αfinal/α0)
t/tmax , (5.28)
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and neighbourhood-size

λ(t) = λ0 (λfinal/λ0)
t/tmax . (5.29)

What happens for t > tmax? Assuming that after tmax learning steps have been

performed the current learned mixing matrix is close to the true mixing matrix, we

track the slowly changing true mixing matrix by setting α(t) = αfinal and λ(t) =

λfinal.

5.3.1 Experiments

We performed a number of experiments on synthetical data in order to study whether

the underlying sources can be reconstructed from the mixtures in an online setting.

We considered sequences

x(t) = C(t)a(t) + ε(t), t = 1, . . . , L, (5.30)

where ‖ε(t)‖ ≤ δ, x(t) ∈ RN , a(t) ∈ RM . The true mixing matrix C(t) slowly

changes from state Ci−1 to state Ci in P time steps. We randomly chose a sequence

of true mixing matrices Ci, i = 1, . . . , dL/P e with entries taken from a uniform

distribution. The columns of these mixing matrices were normalized to unit norm.

At time t with (i−1)P ≤ t ≤ iP , the true mixing matrix C(t) was chosen according

to

C(t) =

(
1− (t− (i− 1)P )

P

)
Ci−1 +

(t− (i− 1)P )

P
Ci . (5.31)

The norm of the columns of each true mixing matrix C(t) was then again normalized

to unit norm. The sources a(t) were obtained by setting at most k entries of the

a(t) to uniformly distributed random values in [−1, 1]. For each a(t), the number

of non-zero entries was obtained from a uniform distribution in [0, k]. Uniformly

distributed noise e(t) ∈ RM in [−1, 1] was added such that

x(t) = C(t)(a(t) + e(t)) = C(t)a(t) + ε(t) . (5.32)

We wanted to assess the error that is obtained with respect to the recontruction of

the sources. Hence, we evaluated the difference between the sources a(t) and the

estimation a(t)OOMP that was obtained from the OOMP algorithm on the basis of
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the mixing matrix Clearn(t) that was provided by the SCNG algorithm:

‖a(t)− a(t)OOMP‖2 . (5.33)

With (sOOMP
1 , . . . , sOOMP

M )T = (a(1)OOMP, . . . ,a(L)OOMP), we denote the estimated

underlying sources obtained from the OOMP algorithm. Similar to the time-invariant

setting, we had to assign the entries in a(t)OOMP to the entries in a(t) in order to

evaluate (5.33). This is equivalent to assigning the true sources sj to the estimated

sources sOOMP
j . This problem arises due to the random order in which the columns

of the true mixing matrix appear in the learned mixing matrix. Due to the time

dependent mixing matrix, the assignment may change over time. In order to obtain

an assignment at time t, we considered a window of size sw:

(w1(t)OOMP, . . . ,wM (t)OOMP)T = (a(t−sw/2)OOMP, . . . ,a(t+sw/2)OOMP) (5.34)

and

(w1(t), . . . ,wM (t))T = (a(t− sw/2), . . . ,a(t+ sw/2)). (5.35)

We obtained the assignment by performing the following procedure:

1. Set Itrue : {1, . . . ,M} and Ilearned : {1, . . . ,M}.

2. Find and assign wi(t) and wj(t)
OOMP with i ∈ Itrue, j ∈ Ilearned such that

|wj(t)
OOMPwi(t)

T |
‖wi(t)‖‖wj(t)OOMP‖ is maximal.

3. Remove i from Itrue and j from Ilearned.

4. If wj(t)
OOMPwi(t)

T < 0 set wj(t)
OOMP = −wj(t)

OOMP.

5. Proceed with (2) until Itrue = Ilearned = ∅.

In all experiments an overcomplete setting was used that consisted of M = 30

underlying sources and N = 15 observed mixtures. At most k = 3 underlying

sources were active at the same time. For all experiments, we used L = 20000

observed mixtures, an initial learning rate α0 = 1, an initial neighborhood-size

λ0 = M/2, a final neighborhood-size λfinal = 10−10, and tmax = 5000. We repeated

all experiments 20 times and report the mean result over the 20 runs. For the
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Figure 5.11: Left: Mean distance between a(t) and a(t)OOMP for different noise
levels and different change rate of the mixing matrix (P ). Right: Best
performing final learning rate for each P and SNR. See text for details.
Note that in case of a known or random mixing matrix the performance
does not depend on P .

evaluation of the reconstruction error, the window size sw was set to 30 and the

reconstruction error was only evaluated in the time interval tmax < t < L.

In the first experiment, we varied the SNR and the parameter P which controls the

change rate of the true mixing matrix. The final learning rate αfinal was optimized

for each combination of P and SNR such that the minimal reconstruction error

was obtained. For comparison purposes, we also computed the reconstruction error

that was obtained by using the true mixing matrix as well as the error that was

obtained by using a random matrix. The results of the first experiment are shown

in Figure 5.11. On the left side, the mean distance between a(t) and a(t)OOMP is

shown for different values of SNR and P . It can be seen that the larger the change

rate of the true mixing matrix (the smaller P ) is and the stronger the noise is, the

more the reconstruction performance degrades. But even for strong noise and a fast

changing true mixing matrix, the estimation provided by SCNG clearly outperforms

a random matrix. Of course, the best reconstruction performance is obtained by

using the true mixing matrix. On the right side of the figure, the best performing

final learning rate for each P and SNR is shown. It can be seen that the optimal

final learning rate depends on the change rate of the true mixing matrix but not on

the strength of the noise.
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Figure 5.12: The figure shows the mean number of successfully detected columns of
the mixing matrix for each of the five groups. We sorted the 20 trials
according to the number of successfully learned columns of the mixing
matrix and order them in groups of five experiments.

In order to assess how good the true mixing matrix was learned, we performed

an experiment that is similar to an experiment that has been used to evaluate the

performance of the K-SVD algorithm with respect to the learning of the true mixing

matrix. This experiment was already introduced in batch settings in Section 4.5.4

and 5.2.1. Due to the time dependent mixing matrix which was given in the online-

learning experiments, batch methods such as K-SVD or MOD which are discussed

in Chapter 4 cannot be applied. We compared the learned mixing matrix to the

true mixing matrix using the maximum overlap between each column of the true

mixing matrix and each column of the learned mixing matrix. Whenever

max
j

(
1− |ci(t)clearn

j (t)|
)

(5.36)

was smaller than 0.05, we counted this as a success. We repeated the experiment

20 times with a varying SNR including zero noise. For each SNR, we sorted the

20 trials according to the number of successfully learned columns of the mixing

matrix and ordered them in groups of five experiments. Figure 5.12 shows the mean

number of successfully detected columns of the mixing matrix for each of the five

groups for each SNR and P . The smaller the SNR and the change rate of the true

mixing matrix are, the more columns are learned correctly. If the true mixing matrix

changes very fast (P = 100), almost no column can be learned with the required
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accuracy.
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recognition

A common approach to solve a visual pattern recognition problem such as digit

recognition is to divide the solution into the two parts of feature extraction and

classification. A preliminary preprocessing step may be regarded as part of the

feature extraction. In general it is not clear how learning methods can be used

to obtain features that are optimal for a given task. Hence, methods for feature

extraction are often selected according to heuristic principles based on experience

and problem-specific knowledge.

In order to tackle the problem of object recognition one can match the unknown

object against some reference [Keysers et al., 2007]. The matching result is then

used to perform the recognition task. Though matching methods perform well in a

number of tasks they are often complex and associated with a number of difficulties.

For example they require to solve the computationally expensive correspondence

problem [Keysers et al., 2007].

PCA or Gabor wavelets [Daugman, 1988] belong to another group of feature ex-

traction methods. These methods do not perform an explicit matching but provide

a new representation of the data. It is assumed that the new representation is

advantageous with respect to recognition tasks. Based on the new representation

a classifier is trained. However, it is not clear that the new representation is ad-

vantageous, since it is not guaranteed that it provides invariances adapted to the

recognition problem.

It has been discussed in the introduction that there is evidence which supports

the hypothesis that the visual system has adapted to the statistical properties of

natural images by use of a linear generative model where objects are represented in

terms of sparsely distributed coefficients of learned dictionary elements. Here, we

present a method for learning visual features that is motivated by this hypothesis

since the empirical observation that the brain performs very well in a broad range of

pattern recognition tasks suggests that a sparse representation might be a feasible
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method of feature extraction in many settings. The method that is presented in this

section is based on the Sparsenet approach, which has been discussed in Section 4.7.

Additionally, our method is motivated by advanced models of the visual system

which postulate that the output of simple cells is fed to a class of neurons which

exhibit a maximum-selection behaviour [Riesenhuber and Poggio, 1999, Lampl et al.,

2004].

Though the problem of digit recognition has been intensively investigated [LeCun

et al., 1998, Decoste and Schölkopf, 2002, Simard et al., 2003], the improvement of

digit recognition performance is still a major issue in a number of industrial appli-

cations, e.g. parcel sorting. We here describe a novel method for digit recognition

that employs biologically inspired principles, i.e., a learned sparse representation

and a local maximum operation. We evaluate the performance of our method for

handwritten-digit recognition on the MNIST data set, being a very competitive

benchmark for which many different methods already have been evaluated. In the

same framework, we compare our results using a sparse code that was learned by

the Sparsenet algorithm [Olshausen and Field, 1996b] against those obtained with

more common feature-extraction methods such as PCA and Gabor wavelets.

6.1 Feature extraction

Pattern-recognition systems that are inspired by the neurosciences often tend to

become quite complex. Is there a convenient, i.e., simple, way for practitioners

to employ findings from vision research to actually solve a technical problem? An

example of such a complex multi-stage recognition system being inspired by the

neurosciences can be found in [Serre et al., 2007].

In this section, we propose a simple two-stage model for feature extraction. First,

a number of coefficient images are computed. In order to determine the coefficients,

a task specific dictionary is used that has been learned from image patches of the

training data of the pattern-recognition task. Second, a local maximum operation

is performed in order to obtain translation invariant features (see Figure 6.1).

We do not operate on the raw pixel values but apply a preprocessing to the

image patches. This is required for the PCA and to improve the convergence of the

Sparsenet algorithm. In the following, I denotes an entire image, whereas for an

odd number N p̂x,y denotes a vector that contains all N2 pixel values of an image

patch of size N ×N centered at position (x, y) arranged in an appropriate scheme.
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MNIST image
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Figure 6.1: A schematic view of the proposed feature extraction method. First,
the coefficients are extracted either by convolution of the input image
with the elements of the dictionary or by solving (6.5). At each position
in the image that is to be classified, coefficients are computed for each
element of the dictionary. Second, each coefficient image is divided into
regular non-overlapping regions, and for each region the minimal and
maximal entry (indicated by the circles) are selected. These extrema
are the features for the subsequent classification step.
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The mean of the pixel values of a patch vector p̂x,y is denoted by p̂x,y. Removal of

the mean pixel value of the patch vector leads to

p̃x,y = p̂x,y − p̂x,y . (6.1)

With p we refer to the mean of a large number of such p̃x,y that were obtained

from many training images with p̃x,y placed at random positions. By removing p

we finally obtain the centered vectors px,y:

px,y = p̃x,y − p . (6.2)

In the first stage of the feature extraction, a new representation of each patch vector

px,y of a given image I is computed. This new representation is based on a dictionary

C = (c1, . . . , cM ), cj ∈ RN2

. The way the new representation is determined depends

on the framework that was used to obtain the dictionary.

6.1.1 Learning of data specific dictionaries

We want to learn a new representation of the centered patch vectors px,y that is

adapted to the statistics of the image data that is used in the pattern-recognition

task. In order to obtain such an adapted representation, we consider a linear gen-

erative model where each patch px,y is obtained from a linear combination of the

columns of the dictionary matrix C plus some additive noise:

px,y = Cax,y + εx,y . (6.3)

ax,y is the new adapted representation of the patch px,y whereas εx,y is the residual,

which depends on the method that is used in order to determine the new representa-

tion. The dictionary C is either obtained from the analytic framework of the Gabor

wavelets, which are discussed in Section 3.3, or it is learned from the training data of

the pattern recognition task. In order to learn a task specific dictionary we employ

either PCA (see Section 4.2) or the Sparsenet algorithm (see Section 4.7).

6.1.2 Computation of coefficient images

The coefficient images F j contain the coefficients (ax,y)j of the dictionary columns

cj for all positions in the input image. In order to obtain coefficient images that

have the same size as the initial image I, it is is required to enlarge I by setting
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the value of pixels outside the image to a fixed value. The method of obtaining the

coefficients differs depending on the method that was used to learn the corresponding

dictionary. In case of PCA and Gabor wavelets the coefficients are obtained by a

convolution operation, i.e., for each centered patch vector px,y of the input image I

we compute

F jx,y =
pTx,ycj

‖cj‖
, j = 1, . . . ,K. (6.4)

The Sparsenet coefficients are obtained by minimizing the objective function that

was used to learn the basis:

(F 1
x,y, . . . , F

K
x,y)T = arg min

a
‖px,y − Ca‖2 + λS(a) . (6.5)

As in the Sparsenet algorithm the minimization of (6.5) is performed via gradient

descent. For a more detailed discussion of other methods that can be used to tackle

(6.5) see also Chapter 2 and in particular Section 2.2.

6.1.3 Local maximum operation

The elements of the dictionaries are considered to represent relevant attributes of

the image patches they were learned from since it is possible to reconstruct the

image patches by a linear combination of only few elements. In case of sparse linear

combinations only few elements of the dictionary are required to “explain” a certain

image patch. A certain attribute is present at a certain location if the coefficient

of the dictionary element that represents the attribute has a large absolute value.

The absolute value of the coefficient can be interpreted as the similarity of the

image at a certain position with respect to the element of the dictionary. Due to

the nature of visual recognition tasks, some uncertainty with respect to the exact

localisation of important attributes remains. Hence, we would like to allow for

some spatial uncertainty to obtain local shift invariance. Assuming that those basis

functions that are highly expressed, i.e., have large absolute coefficient values, are

important, computing the maximum, as well as the minimum, in a local region

localises the important attributes and achieves the desired local shift invariance.

The attributes are considered independent, i.e. the positions where the minimum

and maximum values are obtained differ for each element of the dictionary. There is

some experimental evidence that the behaviour of complex cells in the visual cortex

can be described by a local maximum operation [Lampl et al., 2004], and that human
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6 Feature learning for visual pattern recognition

observers might account for position uncertainty by using the same principle [Barth

et al., 1999]. The principle has been used recently in technical applications [Serre

et al., 2007].

We implement this principle in a very simple way. Thereby we divide the input

image into a set of regular, non-overlapping regions Ri, i = 1, ...,M2 and take as local

features the maximum and minimum of each region with respect to each coefficient

image (see Figure 6.1):

F jmax(Ri) = max
x,y∈Ri

F jx,y . (6.6)

F jmin(Ri) = min
x,y∈Ri

F jx,y . (6.7)

The final feature vector (that is given as input to the classifier) of each input

image consists of the maximum and minimum values of all regions with respect to

all coefficient images:

fI = (F 1
max(R1), . . . , F 1

max(RM2), . . . , (6.8)

FKmax(R1), . . . , FKmax(RM2),

F 1
min(R1), . . . , F 1

min(RM2), . . . ,

FKmin(R1), . . . , FKmin(RM2)) .

Note, that in general the final feature vector fI is not sparse. The coefficients of each

patch are sparse but due to the maximum and minimum operation large positive or

negative values are accumulated in the final feature vector.

6.2 Experiments

We tested Sparsenet, PCA, and Gabor dictionaries on the well-known MNIST

benchmark of handwritten digit images. The MNIST benchmark consists of 60000

training and 10000 test images of handwritten digits of size 28× 28 pixels.

The PCA and Sparsenet dictionaries were obtained by determining the parameter

C of a linear generative model as it is described in Section 6.1.1. The patch vectors

that were used in order to determine the dictionaries were extracted at random

positions from randomly chosen training images. The noise level parameter (λ) of

the Sparsenet algorithm was chosen such that the best mean validation error was

obtained. Additionally, as mentioned before, the performance of a simple set of

Gabor wavelets as basis functions was evaluated. We did not optimize the param-
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6.2 Experiments

eters of the Gabors explicitly but took the best parameters out of a limited set we

experimented with.

We obtained the features for the classifier as described in Section 6.1. The size of

the elements of the dictionaries was 13 × 13 pixels (N = 13). Though the number

of dictionary elements may be optimized with respect to recognition performance,

for simplicity we chose as many dictionary elements as the number of pixels in the

image patches, i.e. 169. The set of Gabor wavelets that provided the best results

on the digit benchmark in our experiments consists of 160 filters, which is close to

the number of dictionary elements used in the Sparsenet and PCA setting (We also

tried larger Gabor sets). We used a layout of 9 minmax-operator regions of size 9×9

pixels as shown in Figure 6.1. Since the size of the coefficient images F j equals the

size of the input images, we did not select entries from the bottom row and the last

column of the coefficient images, which corresponds to dropping the last row and

column of each input image.

As classifier we used a standard 2-norm soft margin Support-Vector-Machine

(SVM) with Gaussian kernels [Vapnik, 1995, Christianini and Shawe-Tylor, 2003].

In order to train the SVM, the SoftDoubleMaxMinOver learning algorithm [Mar-

tinetz et al., 2009] was used. We normalized the training data such that the mean

norm of the feature vectors fI was set to one. The hyperparameters of the SVM

were optimised using a validation scheme where seven realisations of test and train-

ing data were considered. In each realisation the training and test set are disjoint

and consist of 10000 samples that were randomly chosen from the entire training set.

We took the hyperparameters providing the best mean classification error on the

validation test sets in a grid search over the trade-off parameter, which controls the

softness of the classification and the Gaussian kernel parameter γ. The search uses

a logarithmic grid and proceeds recursively from a coarse grid to a fine grid. The

start range was [1, 104] for the trade-off parameter and [1, 103] for the parameter γ

of the Gaussian kernel K(x, z) = exp(−γ‖x − z‖2). The best hyperparameters are

shown in Table 6.1. Using the best hyperparameters, each final classifier is trained

γ trade-off
parameter

raw data 21.5 1291.5
PCA 5.5 31.5
Gabors 5.5 75
Sparsenet 2.5 93

Table 6.1: The best SVM hyperparameters .
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6 Feature learning for visual pattern recognition

on the entire set of feature vectors of all training samples.

Due to the multiple minmax-regions and the number of dictionary elements, the

dimensionality of the data increases from 784 to 9×169×2 = 3042 resp. 9×160×2 =

2880 feature dimensions. We had to solve a ten-class problem since we have to

differentiate ten digit classes (0-9). To accomplish this task using a SVM we trained

45 two-class classifiers, each of which separates two different digits (one against one).

The decisions of all the two-class classifiers were then counted and finally the class

with the majority of votes was selected. We used the same hyperparameters for all

the 45 two-class classifiers.

6.3 Digit recognition results

The MNIST data set is quite popular and results obtained with many state-of-the-

art methods are available for comparison [LeCun et al., 1998, Decoste and Schölkopf,

2002, Simard et al., 2003]. Currently, the best results reported on the MNIST data

set were obtained with convolutional neural networks plus elastic distortions (0.4%

error rate [Simard et al., 2003]) and Virtual SVM with deskewing and jittering

preprocessing (0.56% error rate [Decoste and Schölkopf, 2002]). A recent approach

that uses sparse representations and elastic distortions obtains an error rate of 0.39%

[Ranzato et al., 2007]. In [Lauer et al., 2007] a method is proposed where a LeNet5

[LeCun et al., 1995] is used to train a feature extraction layer that is fed to a set of

SVMs. Using elastic distortions these authors report an error rate of 0.54%.

We consider the use of an extended training set that was generated using a prob-

lem specific distortion model as data specific knowledge. Our method belongs to

the class of methods that do not use such additional knowledge. In an evaluation

of several matching methods that also belong to this class of methods an error rate

of 0.52% is obtained [Keysers et al., 2007]. In [Belongie et al., 2002] an error rate

of 0.63% is reported using a shape matching approach. In [Steinert et al., 2006]

the authors report a positive influence of sparseness on the recognition performance

with the MNIST set, though they cannot obtain state-of-the-art performance.

The different types of dictionaries obtained from and used on the MNIST set of

handwritten digits are shown in Figure 6.2. Both Table 6.2 and Table 6.3 refer to

the final results that were obtained by using these dictionaries for feature extraction

as explained in Section 6.1 and training a SVM on these features where the optimal

hyperparameters according to Table 6.1 were used. Table 6.2 shows the mean

128



6.3 Digit recognition results

Figure 6.2: Subset of dictionaries used on the digit benchmark. From top to bottom:
PCA dictionary, Gabor wavelets, dictionary that was obtained from the
Sparsenet algorithm applied to a large set of randomly extracted patches
of the digit images.

mean validation
error rate

error rate on
MNIST test
set

raw data 2.95%(±0.17) 1.42%
PCA 1.29%(±0.08) 0.80%
Gabors 1.24%(±0.10) 0.71%
Sparsenet 1.00%(±0.09) 0.59%

Table 6.2: SVM results: The second column of the table shows mean and standard
deviation of the test error obtained with the best hyperparameters that
were determined by validation on the 7 realisations of 10000 training and
10000 test samples. In the last column, the error on the MNIST test set
is shown.
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#SVs per digit class
0 1 2 3 4 5 6 7 8 9

raw data 9785 5994 13241 13244 10976 12989 9842 10429 14015 12033
PCA 3293 2293 4580 4731 4041 4223 3676 3747 5246 4930
Gabors 4298 2970 5959 5690 4647 5371 4527 4986 6582 5630
Sparsenet 2698 1812 3667 3650 2833 3505 2770 3089 4216 3610

Table 6.3: SVM results: The columns refer to the classifiers that were obtained
by using the optimal hyperparameters from table 6.1 to train a SVM
with the SoftDoubleMaxMinOver algorithm with the complete MNIST
training set. This training set consists of 60000 samples. The sum of the
number of SVs of all classifiers of a particular digit class are shown.

validation error of the best hyperparameter combination as well as the final error

on the MNIST test set. The mean validation error is worse than the final test error,

since only 10000 instead of 60000 training samples were used for training. Table 6.3

shows the number of support vectors (SVs) that are used by the classifiers of each

digit class (note that we use a one-against-one scheme, therefore we have 9 classifiers

per digit class and the number of support vectors is the sum over all 9 SVMs).

All methods significantly outperformed the direct classification of the raw data.

Gabor Wavelets clearly outperformed PCA. In the PCA experiment a complete basis

was used. This means that for each image-patch vector an error free representation

was obtained. The PCA result shows on the one hand that some performance gain

can be attributed to the minimum and maximum operation since without it error

free PCA yields the same result as the raw data. On the other hand the Gabor and

Sparsenet results show that a sparse representation further improves performance.

The result using a learned sparse code is significantly better than the results

obtained with Gabor wavelets and PCA. The number of support vectors of the best

method using a learned sparse code is reduced by about a factor of three compared

to the result on raw data, indicating that the feature extraction that we perform

successfully implements invariances of the task. Note also that compared to earlier

SVM results, for instance the virtual SVM reported in [Decoste and Schölkopf, 2002],

our method uses significantly less support vectors (about a factor of four).

If a dictionary is used that has been obtained from a dictionary learning method

that imposes sparseness constraints on the coefficients, the proposed feature ex-

traction requires to solve the optimization problem of equation (6.5) via gradient

descent for each patch of a given input image. Therefore PCA and Gabor wavelet

feature extraction is more efficient from a computational complexity point of view.

However, a number of more recent algorithms that can be used in order to determine
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6.3 Digit recognition results

the coefficients are available (see Chapter 2). Some of these methods could be used

to determine the coefficients in a computationally more efficient way.
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7 Discussion

Within this work, we have considered some domains in which the concept of sparse

linear generative models, which is a mathematical abstraction of the principle of

sparse coding, can be deployed. In Chapter 4, we have considered optimal repre-

sentations of data in terms of representation error, image reconstruction, and image

deconvolution. In Chapter 5, we have employed these models for blind source sepa-

ration. Finally, in Chapter 6, we have described an approach that uses sparse linear

generative models for feature learning in visual pattern recognition tasks.

In order to use a linear generative model in an application, one has to determine

its parameters, i.e., the dictionary, that is used in the model. Some well-known

mathematical frameworks that can be used to derive dictionaries for certain common

signal classes have been discussed in Chapter 3. A more recent approach is, to derive

a dictionary from given observations so that it is adapted to the data that is used

in a particular task. In Chapter 4, we have reviewed many of the algorithms that

have been proposed by other researchers in order to learn an appropriate dictionary

on the basis of given training data.

A central limitation of all these methods is, that they use only one out of many

possible configurations of the hidden parameters of the model, i.e., the coefficients,

in order to learn the dictionary or mixing matrix. In the maximum likelihood in-

terpretation that has been proposed for some of the methods (see Section 4.7), this

corresponds to an approximation of the data likelihood of the model by its maxi-

mum value in order to avoid an intractable integration over the hidden coefficients.

Improved methods that try to use a better approximation of the data-likelihood

in order to avoid the intractable integration over the hidden parameters have been

proposed, and have been briefly discussed in Section 4.7.

Within this work, we have introduced new soft-competitive methods that can be

used to learn the free parameters of a linear generative model with additive noise

from given data that can be seen as a novel way of dealing with this problem. These

new methods are termed Sparse Coding Neural Gas (SCNG) and Neural Gas for

Dictionary Learning (NGDL). In contrast to all the state-of-the-art methods, within
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these new methods, the number of possible configurations of the hidden parameters

that can be included in each learning step, is only limited by the computational

resources that are available.

Sparse Coding Neural Gas (SCNG): The SCNG algorithm is a new soft-competitive

method that learns an overcomplete dictionary for the sparse encoding of given train-

ing data such that the mean representation error with respect to the given data is

minimized. SCNG has been introduced in Section 4.5. In the experiments that have

been described in Section 4.5.4, we used synthetic data that were actually generated

from a sparse linear combination of a given dictionary. We assessed the performance

of the SCNG method with respect to the reconstruction of that original dictionary.

We evaluated the influence of additive noise, and the mutual coherence of the orig-

inal dictionary on the reconstruction performance. The experiments show that the

obtained performance depends on the sparsity of the coefficients, the strength of

the additive noise, and on the mutual coherence (degree of non-orthogonality) of

the underlying dictionary. The sparser the coefficients are, the smaller the mutual

coherence of the dictionary is, and the lower the noise level is, the better the original

dictionary can be reconstructed. On a synthetic set of data that has been used by

others as a benchmark problem, we have obtained with SCNG similar results as

with other state-of-the-art methods. In this experiment, though SCNG is an online

method that learns pattern-by-pattern, it performed as well as state-of-the art batch

methods although the batch methods could use the entire training data within each

learning iteration.

In Section 4.5.5, we have shown that if the SCNG algorithm is applied to natural

image data, bandpass-like dictionary elements are obtained that are localized in

space and orientation. This reproduces results that have been reported by others

for the sparse encoding of natural images and shows that the SCNG algorithm works

robustly on real data. A further benefit of the algorithm, which can be seen from

the experiment on natural image data, is that it converges even in the case of highly

overcomplete dictionaries.

Sparse Coding Neural Gas for Blind Source Separation: Linear generative models

are closely related to the domain of blind source separation as it has been discussed

in the Introduction and in Chapter 5. A central problem in the domain of blind

source separation is the “Cocktail Party Problem“.

In Section 5.2, we have described how a variant of the SCNG algorithm can be
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used to tackle the “Cocktail Party Problem“ in a realistic and therefore difficult

setting, where one has to blindly estimate the underlying sources of a linear mixture

in a overcomplete situtation, i.e., where more sources than recorded mixtures are

given, and additive noise is present. We have shown that SCNG can be successfully

applied in this situation. An advantage of our method is that it does not rely on

strong assumptions regarding the distribution of the sources or the distribution of

the noise. However, it requires that the sources are sparse and that the noise level

as well as the number of the underlying sources are known or can be estimated.

Based on the mixing matrix that was learned by the SCNG algorithm, we evalu-

ated the performance on the representation level by employing the OOMP algorithm

in order to obtain the sources from the observations. We analyzed the performance

that can be achieved with respect to the reconstruction of the original sources. We

studied the influence of the coherence of the mixing matrix, the noise level, and the

sparseness of the underlying sources. We also evaluated the influence of the over-

completeness with respect to the obtained performance. These experiments and

results have been presented in Section 5.2.1. If the sources are sufficiently sparse

and the coherence of the mixing matrix and the noise level are sufficiently small,

the SCNG algorithm is able to learn the mixing matrix and the sources can be re-

constructed. The results show that sufficiently sparse sources can be reconstructed

even in highly overcomplete settings.

In Section 5.2.2, we have reported on an experiment, which shows that SCNG

also can be successfully applied to more realistic data. We considered the difficult

setting of a piece of Jazz music that is played by five instruments and recorded by

two microphones. Given only the recordings of the two microphones the track of

each single instrument can be reconstructed even in the presence of some additive

Gaussian noise.

Moreover, we have compared the performance of SCNG with FastICA in an ex-

periment that has been presented in Section 5.2.3. For the comparison, we used the

synthetical data as well as the more realistic audio data. In case of the syntheti-

cally generated data, we could show that SCNG outperforms FastICA and is more

resistent to additive noise. In case of the audio data and a low noise level, SCNG

does not outperform FastICA but if strong additive noise is present, SCNG provides

better results.

In Section 5.2, the mixing matrix has been considered to be time invariant. Fur-

thermore, a finite sequence of observed mixtures has been used. The learning of the

mixing matix has been performed in batch mode, i.e., the learning algorithm could
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iterate several times over the entire mixture data in order to determine the mixing

matrix.

An even more realistic model of the “Cocktail Party Problem” has been considered

in Section 5.3. This more realistic model allows for more sources than observations,

additive noise, and a mixing matrix that is time dependent, which corresponds

to speakers that change their position during the conversation. Furthermore, the

sequence of observed mixtures is infinite, which means that the SCNG algorithm

works in a pattern-by-pattern mode. The estimation of the underlying sources is

provided immediately once a new learning step with respect to the mixing matrix

has been performed. From the experiments in Section 5.3.1, it can be seen that the

sources have to be sparse enough, the mixing matrix must not change too quickly,

and that the additive noise must not be too strong in order to enable a successfull

estimation of the mixing matrix and the underlying sources.

Neural Gas for Dictionary Learning (NGDL): The SCNG algorithm performs the

learning updates in a sequence of orthogonal subspaces, since it implements an Op-

timized Orthogonal Matching Pursuit (OOMP) that modifies the dictionary during

the pursuit. Due to this methodology, it can only be applied if the sparsity con-

straint on the coefficients is the zero norm. In Section 4.6, we have introduced

NGDL, which also is a new soft-competitive method for dictionary learning and

is even more directly linked to the Neural Gas (NG) vector quantization method.

NGDL is more versatile since it can be combined with different sparse approxima-

tion methods. This makes it applicable, for instance, whenever a probabilistic linear

generative model is considered where the additive noise is assumed to be Gaussian.

NGDL is powerful because it avoids matrix inversion or singular value decompo-

sition and, due to its stochastic nature, is not so easily trapped in local minima.

Results in Section 4.6.2 and 4.6.5 that have been obtained with typical synthetic

benchmark data show that the simple and fast NGDL is competitive, and in many

cases even superior to computationally more intensive state-of-the-art methods such

as Method of Optimal Directions (MOD) or K-SVD, both in terms of how well the

representation error is minimized and how well the dictionary is reconstructed.

In order to apply NGDL, one needs a sparse approximation method that does

not provide only one possible configuration of the coefficients but rather a set of

possible configurations. We have proposed the novel bag of pursuits (BOP) method

for sparse approximation, which is derived from OOMP. BOP determines a set of

good configurations of the coefficients with respect to a given dictionary instead of
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just a single configuration. BOP has been described in detail in Section 2.1.4. BOP

can be computationally expensive, but in Section 4.6.3 we have shown on synthetic

data that it can significantly improve both the approximation of the data and the

reconstruction of the original dictionaries.

Sparse approximation for image reconstruction and deconvolution: Inverse prob-

lems such as image reconstruction and image deconvolution can be tackeled within a

sparse approximation framework as it has been discussed in Section 4.6.7 and 4.6.8.

In order to successfully solve these tasks in a sparse approximation framework, one

needs a dictionary that provides a sparse representation of the image that is to be

reconstructed or deconvolved. An advantage of learned dictionaries is that they can

be adapted to a particular sub-class of images, which might lead to better results.

In Section 4.6.7, we have reported on image-reconstruction experiments. In these

experiments from a set of 78 test images a certain percentage of pixels was set

to ∅. Then, all the 78 test images were reconstructed by application of BOP as

sparse approximation method. The experiment was repeated for a number of dif-

ferent dictionaries. We have shown that a dictionary that has been learned by the

NGDL+BOP method can outperform dictionaries that have been obtained from a

number of state-of-the-art methods in terms of reconstruction performance. Lim-

ited training data and limited computation time were available for the dictionary

learning task. The learned dictionaries also outperformed dictionaries that were

obtained from an analytical framework, e.g., an overcomplete Haar dictionary and

an overcomplete DCT dictionary.

In Section 4.6.8 we have presented experiments that illustrate the potential use-

fulness of dictionaries that have been learned with NGDL+BOP in an image-

deconvolution task. The deconvolution experiment was performed for two differ-

ent classes of images, namely buildings and flowers. Dictionaries have been learned

separately for each class. We then blurred two test images, i.e., an image that de-

picts a flower and another image that depicts a building. We have then used both

dictionaries to invert the image blur, with known blurring kernel.

When using the buildings dictionary for deblurring the buildings, results were

significantly better than when using the flowers dictionary. Conversely, the flowers

dictionary yielded better results on the flower images. We have therefore shown that

our method is able to learn dictionaries that adapt to a particular class of images.

Moreover, all results that were obtained with the learned dictionaries are clearly

better than those obtained with the Haar wavelets that we used as a reference.
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Feature extraction for visual pattern recognition: In order to show that sparse

linear models can be successfully applied to visual pattern recognition tasks, we have

proposed a simple feature extraction method for visual pattern recognition. The

feature extraction is based on unsupervised learning of sparse data representations.

A detailed description of this method has been provided in Chapter 6. As an example

of a visual pattern recognition task, the problem of handwritten digit recognition

has been considered in the experiments.

In our feature extraction method, the Sparsenet algorithm is employed in order

to learn a dictionary that provides a sparse representation of patches of the training

images of the pattern recognition task. Then, for each training and test image,

the sparse coefficients of its patches are determined with respect to the learned

dictionary. A new representation of the training and test images is thus obtained,

where within a certain region the minimum and maximum values of the coefficients

of each dictionary element are used.

We trained a Support Vector Machine (SVM) on the features of the training

images and tested its classification performance on the features of the test images.

In the experiments, we used the training and test images of the MNIST handwritten

digit benchmark. The results of the SVM training show that the number of support

vectors is significantly reduced compared to training on the raw data. This indicates

that our new learned representation incorporates invariances of handwritten digits.

The classification performance improves significantly, even though the final feature

vector used for classification is not sparse in general and the dimensionality of the

data increases. We compared a representation based on a dictionary that was learned

with the Sparsenet algorithm with more traditional representations based on PCA

and Gabor wavelets. Gabor wavelets can be seen as a sparse basis of natural images.

According to our experiments, a better performance could be achieved by using a

sparse code that was obtained by unsupervised learning from the MNIST training

data.

Despite its simplicity, our approach performs as well as state-of-the-art meth-

ods that do not use prior knowledge specific to the handwritten digit recognition

problem. The classification performance of our method is comparable with the per-

formance of the image matching methods as evaluated in [Keysers et al., 2007]. For

example, methods proposed in [Decoste and Schölkopf, 2002, Simard et al., 2003,

Ranzato et al., 2007, Lauer et al., 2007] employ an elastic deformation modell for

digits to boost their performance, while our method implicitly extracts deformation

invariances by the unsupervised learning of a sparse code.
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We have shown that a sparse feature representation, combined with a biologically

plausible maximum operation leads to highly competitive classification performance.

Since our method does not employ task specific prior knowledge and is simple, it

can be applied to a broad range of visual pattern recognition problems. In cases

where a specific image distribution is given that deviates significantly from natural

images, a learned sparse feature representation may lead to a significant increase in

classification performance.

Conclusion

In the Introduction, we have presented state-of-the-art results that support the

hypothesis that the principle of sparse coding is an information processing strategy

used by the brain. Since the information processing strategies of the brain have been

proven useful and competitive during evolution, it is sensible to use similar strategies

in machine learning algorithms. Within this work, we have shown that this principle

can be used to make significant progress in a number of machine learning tasks.

Sparse linear generative models are a powerful framework that implements the

principle of sparse coding. To adapt the unknown parameters of such a model

to particular observations is an induction step that involves a difficult non-convex

optimization problem.

We have proposed new powerful methods for dictionary learning that enable us to

tackle this difficult learning problem. We demonstrated in experiments that these

new methods are able to identify the underlying ground truth of given observations

under conditions where other state-of-the-art methods fail. We presented results

that show that the domains of data representation, denoising, deconvolution, blind

source separation, and feature extraction can benefit from these new approaches.

Due to the versatility of sparse linear models, we think that in the future a broad

range of application domains can utilize the approaches that have been proposed in

this work.
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