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Abstract

Image matching is an important problem in image processing and arises in such
diverse fields as video compression, optical character recognition, medical imag-
ing, watermarking and others. Given two digital images A and B, image matching
determines a transformation f for A such that it most closely resembles B. Con-
ventional approaches require either exponential time, or find only an approximate
solution, even when f has to consist of only rotations and scalings.

This thesis introduces the first known discretization technique for the class
Fp of projective transformations. Based on this, it shows a polynomial bound
on the cardinality of D(A), the set containing all different transformations of A
with f ∈ Fp. Accordingly, structural properties of D(A) lead to a polynomial
time algorithm that finds the exact solution to the projective image matching
problem by searching through the complete set D(A). The algorithm is applicable
for various natural subclasses of projective transformations, such as e. g. affine
transformations.

From a theoretical point of view providing a polynomial time algorithm for
projective image matching is not enough to completely characterize the complex-
ity of the problem. Accordingly, TCO, a class of problems deep in the hierarchy
within PTIME, is shown to exactly describe the complexity of image matching
with projective transformations. This relates the problem to a number of most
basic challenges in computer science, like integer multiplication, division and
sorting. Beyond this, the containment in TCO implies extremely efficient parallel
algorithms for image matching.
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Chapter 1

Introduction

Image matching is an important problem in image processing because it arises in
various practical applications. Given two digital images A and B, image matching
determines a transformation f for A such that it most closely resembles B. In
most settings f is required to be an invertible function R2 → R2 contained in a
given class F .

The research in image matching is motivated by a computational challenge
that occurs in many practical applications. In fact, finding the similarity between
objects embedded in digital images is a complex task which is often approached
by image matching methods. The reason for this is that objects in digital images
are often exposed to geometric distortions occurring when the image is created
or due to some subsequent image processing. Image matching can be used to
compensate such distortions.

MPEG video compression [42] provides a typical scenario of this kind. Videos
consist of many images representing projections of the same real world objects.
The challenge is to reduce the redundant representation by finding the similar-
ity between successive images A and B in the video stream. For this purpose
it is necessary to compensate distortions introduced due to object and camera
movements. See e. g. [42] and the references therein.

In computer vision, the problem is to detect the representations of a certain
object, like a Latin letter [29] or a human silhouette [38], in a given image B.
To realize this, it is possible to measure the similarity of B relative to reference
representations of these objects in another image A. Again, it is usually the case
that the object representations in B undergo geometric distortions that have to
be compensated.

One challenge in medical imaging is to correlate two images A and B of
the same medical object taken in different times or using different medical image
devices. The difficulty of realizing identical perspectives in both recordings makes
it necessary to compensate the accordingly introduced distortions. See e. g. [34].

Finally, image matching can be applied for robust digital watermarking [14,
43]. The goal of watermarking is to embed an imperceptible pattern A into an

1



2 CHAPTER 1. INTRODUCTION

image B to resolve certain legal issues. If B is exposed to geometric distortions,
e. g., by a removal attack or the print-and-scan-process, it still has to be pos-
sible to prove that it contains the pattern A. This purpose requires distortion
compensation before cross correlating B with a reference of A.

In such applications the class F models the specific set of possible distortions.
Often, it is a subclass of projective transformations Fp because they describe
natural geometric basic operations like scaling, rotating, translating and shearing.
This motivates research in image matching under projective transformations.

Despite the various fields of application the analysis of image matching under
projective transformations is virtually uncharted territory. Applying standard
image matching approaches for this class requires either exponential time or finds
only an approximate solution. Research in combinatorial pattern matching has
succeeded in solving the image matching problem in polynomial time only for
very small subsets of projective transformations like rotation or scaling [4, 5].
But there has been very little progress in understanding the discrete nature of
projective image transformations which ulteriorly form the foundation of the
subcase’s tractability.

This thesis pinpoints the computational complexity of finding the exact so-
lution of image matching under projective transformations. Particularly, the
problem belongs to TCO, a class that exactly captures the complexity of a vari-
ety of basic operations in computation, such as integer addition, multiplication
and sorting.

The complexity result builds on a new structural characterization of projective
image transformations. In fact, the class Fp of all projective transformations is
uncountable. On the other hand, all digital images with a designated size m×m
form a finite set. But, in image matching it is sufficient to consider only those
transformations f(A) of the given image A which have the same size m ×m as
the other given image B. Then, transforming the image A by all possible f ∈ Fp

results in a subset of images with size m × m. Consequently, A and m define
a partition of Fp into a finite amount of equivalence classes where every class
consists of transformations f with the same result image f(A).

The central achievement of this thesis is a discretization technique to identify
equivalence class representatives {f1, f2, . . . , fr}, which forms a finite subset of
Fp sufficient to generate all possible outcomes of transforming A into an image of
size m×m. This implies a solution to image matching instances that consist of
A and any given image B of size m×m, because the transformation of A which
is closest to B can be found in f1(A) to fr(A).

The value of r depends on m and the size of A. Based on the discretiza-
tion, combinatorial estimation shows that r grows polynomially in its arguments.
Subsequently, the newly discovered structural properties also lead to the first
polynomial time algorithm for the aforementioned class of projective transfor-
mations. Beside this class, the algorithm works for image matching under many
subclasses in a generic fashion, respectively in less time.
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The presentation in this thesis is structured as follows: The rest of this chapter
gives a short overview on previous work and an informal, yet more detailed,
discussion of the author’s contribution. Then, the next chapter provides the
preliminary notation needed to understand the used mathematical concepts and
to follow the ideas.

Chapter 3 presents structural properties of projective image transformations
and describes the equivalence class partition of Fp. Based on the new character-
ization of projective image transformations, Chapter 4 introduces a new generic
polynomial time image matching algorithm. This algorithm is not only applied
for projective image matching, but also for various subclasses which all introduce
their own technical difficulties.

Chapter 5 regards the complexity class of projective image matching. This
means that instead of concentrating only on time consumption, the chapter de-
termines the lowest class that contains the image matching problem. In fact,
this works in two steps. The first one shows that the problem is contained in
TCO and the second provides the completeness in this class, which means that
membership in a lower complexity class K implies K = TCO.

Finally, Chapter 6 extends the results to the closely related two-dimensional
pattern matching. Moreover, the chapter highlights future directions of work.

In all chapters technical proofs are moved to a separate section at the chapter’s
end to improve readability and understanding.

1.1 Previous Work

In many practical applications, especially in medical imaging [36], image matching
is solved by looking at the images A and B in an analogue way and interpreting
them as continuous mappings a : R2 → R and b : R2 → R over the real plane.
Typically a and b are derived from A and B by some spline interpolation. Subse-
quently, the function ∆(f, A,B) =

∫
(x,y)∈R2 ‖a(f(x, y))− b(x, y)‖ dx dy describes

the difference between the transformation of A and B for a given transformation
f ∈ F . The image match is found by arg minf∈F{∆(f, A,B)}, i. e., by minimiz-
ing ∆ over the set of transformations. In this technique, called image registration
[36], the problem is reformulated to fit the continuous nature of F and to be
solved by techniques based on continuous analysis.

Such methods have proven successful in applications. However, they guaran-
tee achieving only local optima. The disadvantage of this approach is the hardness
of finding the global optimum due to the continuous nature of the considered ob-
jects. This means also that analyzing this setting may not easily uncover the
discrete structural properties of projective transformations on digital images.

Another approach bases on feature matching techniques [7, 32]. Such methods
are used in computer vision and work in two steps. The first one extracts salient
features, geometrical objects like points, lines, regions etc., from the images A
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and B. The second step tries to find f ∈ F that transforms the features extracted
from A closest to those of B. Although being successfully applied in practical
settings, feature extraction complicates the analysis of the discrete nature of
image transformations like the previous approach.

Moreover, beside the technical difficulties introduced by feature extraction,
feature matching is a highly non-trivial task that remains difficult even for points.
A survey on this well studied problem, also called geometric point set matching, is
given by Indyk [27]. Kenyon et al. [30] and Papadimitriou et al. [41] present some
related problems. In fact, known algorithms for point set matching give only
approximate solutions and finding the global optimum is an involved task even
for simple classes of transformations as compositions of rotation and translation
[28]. Interestingly, Indyk et al. [28] give a discretization technique to reduce the
geometric point set matching problem to an image matching like problem.

There are various other continuous approaches applied in the image processing
community. An overview and discussions can be found in the books by Moder-
sitzki [36, 37] and in the survey by Brown [9] as well as in the references therein.

Motivated by the issues caused by modeling image matching with continu-
ous methods concentrating on discrete aspects of image transformations leads to
new insights into the combinatorial properties of the problem. In fact, research
in combinatorial pattern matching recently directs attention to the analysis of
discrete structures for the transformation sets F . The pattern matching problem
in focus is closely related to image matching although it has a different origin
[33]. Instead of searching for a best match between A and B, pattern match-
ing looks for a transformations f ∈ F such that f(A) occurs as an exact copy
in B. Despite some slight differences in problem formalization many results for
pattern matching can be easily transferred to the image matching problem and
vice versa. Accordingly, first polynomial time algorithms finding exact globally
optimal solutions to the image matching problem for some very small subclasses
of projective transformations are derived from results in combinatorial pattern
matching [3, 18]. Apart from these algorithmic achievements, improved tech-
niques for the analysis of image matching complexity have been developed.

In particular, the observation that there are transformations in F that, al-
though mathematically different, lead to the same transformed version of a given
image A, inspires the idea of computing the dictionary D[F ](A) containing all
images f(A) which result from applying all transformations f ∈ F to the image
A. Essentially, all algorithms computing an exact or globally best match f(A)
with B share the same basic idea, to perform exhaustive search of the entire
dictionary D[F ](A). The main challenge is to find a suitable discretization for
the set F .

Amir et al. [3] discovered the first discretization of the continuous space of
scalings Fs. Using purely combinatorial techniques, they show for all images A
with size n× n that the dictionary D[Fs](A) contains O(n2) transformed images
of the same size n × n. Based on their new discretization of Fs a simple O(n4)



1.1. PREVIOUS WORK 5

time algorithm solving image matching under scaling is easily found. First, this
algorithm computes all O(n2) scaled images of the dictionary and then it searches
for the best match with B, simply by evaluating the distortion between every
image A′ ∈ D[Fs](A) against B, which takes O(n2) time each. A fast algorithm
for image matching with scaling can immediately be derived from a result of Amir
and Chencinski [4] running in time O(n3).

Fredriksson and Ukkonen [18] are the first who find a discretization for rota-
tions Fr. For images A with size n× n they show that the dictionary D[Fr](A)
consists of O(n3) rotated images. This provides a straightforward O(n5) time
algorithm for image matching under rotations, simply by computing the whole
dictionary and comparing all O(n3) elements with B in O(n2) time each.

After a series of algorithmic improvements [5, 17] that base on the discretiza-
tion technique of Fredriksson and Ukkonen [18], Nouvel and Rémila [40] pro-
vide a technique to incrementally compute all images in D[Fr](A). Particularly,
D[Fr](A) can be ordered linearly such that computing an image from the preced-
ing one takes only very few updates. This means that, instead of first computing
the complete dictionary, they benefit from the similarity between succeeding im-
ages and iterate through D[Fr](A) comparing one image after the other against
B. Applying this incremental strategy image matching allowing rotations can be
done in O(n3 log n) time.

On the other hand, image matching was shown to be NP -complete for elastic
transformations by Keysers and Unger [31]. But, compared to scalings or ro-
tations, elastic transformation represent a considerably more complex class. It
remains a great open problem to describe the complexity of image matching for
transformations between these two cases.

Actually, it was even open how to generalize the discretizations for Fs and
Fr into a characterization for the set Fsr of all combinations of scaling and
rotation. Whereas the commutative concatenation of Fs and Fr leads to Fsr it
is the case that the sets

⋃
A′∈D[Fs](A)D[Fr](A

′) and
⋃
A′∈D[Fr](A)D[Fs](A

′) differ

essentially from D[Fsr](A). The problem is that the common foundation of the
discretizations for Fs and Fr have not been understood well enough.

Recently, the author and Maciej Lískiewicz [23, 24, 25] solve this open prob-
lem by giving a combinatorial geometric discretization for image transformations
combining scaling and rotation. Noticeably, combinatorial geometry as a tool
for problems like image matching was first used by by Amir et al. [2]. The new
characterization provides the fastest known algorithms for image matching with
Fsr and Fr, i. e., running in O(n3) time for Fr [25] and in O(n6) time for Fsr

[26].

Moreover, the author and Maciej Lískiewicz show, for the first time,
lower worst case bounds for the cardinalities of the dictionaries D[Fr](A)
and D[Fsr](A). In fact, they describe families An of images for which
|D[Fr](An)| ∈ Ω(n3) and |D[Fsr](An)| ∈ Ω(n6/ log n) [25]. This means that
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image matching by exhaustive search on dictionaries cannot be solved
essentially faster as performed by the algorithms introduced in [23, 24, 25, 26].

Then, the author and Maciej Lískiewicz [22] give polynomial time image
matching algorithms for the currently largest transformation classes, i. e., for
projective, affine and linear transformations. Moreover, beside the plain algo-
rithmic advances, the author [21] applies their characterization of D[Fa](A) to
describe the exact complexity of image matching under affine transformations.
He shows that affine image matching is TCO-complete. Hence, the complexity of
image matching can be compared to various most basic problems in computation
such as integer arithmetic.

1.2 Thesis Contribution

The main objective of this thesis is to introduce a general polynomial time frame-
work to image matching for projective transformations and its subclasses. In con-
trast to the unique methods presented in the individual papers [22, 23, 24, 25, 26]
the generic algorithm developed in Chapter 4 works out of the box for numerous
classes, like affine and linear transformations, translations, scalings, rotations,
their combinations and many others. This section gives a short outline of the
established methods and results.

The generic approach works on basis of a characterization of the parameter
space of projective transformations. Particularly, every transformation f ∈ Fp is
defined by

f(x, y) =

(
xp1 + yp2 + p3

xp7 + yp8 + 1
,
xp4 + yp5 + p6

xp7 + yp8 + 1

)
where (p1, . . . , p8)T ∈ R8. Vice versa, every point P = (p1, . . . , p8)T , that renders
the denominator in the equation non-zero, defines a projective transformation and
consequently, R8 can be seen as a parameter space for projective transformations.
Thus, considering an image A there is a natural correspondence between the point
P and the transformed image f(A) given by the transformation f defined by
P . According to the observation that the number of transformations, and thus,
points, is much bigger than the number of images, there have to be many points
P corresponding to the same transformation of A. The discretization describes
a partition of the parameter space R8 into a polynomial amount of subspaces
ϕ1, . . . , ϕr such that any pair of points P and P ′ of the same subspace ϕ are
related to the same transformed version of A.

Hence, selecting representative points P1, . . . , Pr from all r subspaces is equi-
valent to finding a polynomial size subset {f1, . . . , fr} of Fp that is sufficient to
render the complete dictionary D[Fp](A) of all images gained by transforming
A with projective transformations. Using D[Fp](A) it is possible to answer im-
age matching queries involving A and another image B simply by comparing all
images of the dictionary with B.



1.2. THESIS CONTRIBUTION 7

To be a feasible method for image matching, it is fundamental that the parti-
tion {ϕ1, . . . , ϕr} of the parameter space R8 can be computed efficiently. Chap-
ter 3 shows that the partition of the parameter space is determined by a set
{h1, . . . , ht} of hyperplanes. Because every hyperplane cuts R8 into two subspaces
the partition ϕ1, . . . , ϕr is formed by the intersections of the cuttings defined by
all hyperplanes h1, . . . , ht. Such a partition is called hyperplane arrangement in
combinatorial geometry and according to the practice in this field of research the
subspaces ϕ1, . . . , ϕr are called faces.

The proposed algorithm takes advantage of the geometric parameter space
characterization. In fact, every subset F of projective transformations forms a
point subspace χ in R8. Then, to solve image matching for F , it is possible to
enumerate the faces ϕ1, . . . , ϕr. For every face ϕi that intersects χ the algorithm
computes a representative point Pi to finally obtain all image fi(A) obtained by
transforming a given image A with transformations in F .

The polynomial running time of the proposed matching method is argued by
the help of geometrical properties of hyperplane arrangements. Precisely, it is
shown that the number r of faces {ϕ1, . . . , ϕr} in the hyperplane arrangement
is polynomial. Consequently, the number of enumerated transformed images is
polynomial for every subset F of projective transformations. Moreover, research
in combinatorial geometry provides efficient methods and data structures to com-
pute and represent all faces defined by the given hyperplanes.

Applying the straightforward image matching approach of preprocessing the
dictionary D[F ](A) for the subclass F and then comparing every transformed
version A′ in D[F ](A) against an image B of size m involves an O(m2) overhead
for the comparison operation. Similarly to Nouvel and Rémila’s characterization
[40], the analysis of projective transformations and their geometric properties
reveals a linear ordering of D[F ](A) that allows an incremental way of computing
a transformed image from the preceding one by only very few updates. In fact,
traversing the faces in an order implied by their geometrical incidence results in
minimal updates between successively iterated images.

The presented algorithm uses only integer arithmetic which means that no
numerical difficulties occur due to the use of floating point arithmetic.

The existence of a polynomial time algorithm for projective image matching alone
cannot answer the open question whether projective image matching belongs to a
complexity class that is structurally “easier” than the class PTIME of problems
decidable in polynomial time. Particularly, the question is whether it corresponds
to a complexity class in the hierarchy inside PTIME:

ACO ⊂ TCO ⊆ NC1 ⊆ LOGSPACE ⊆ PTIME.

Every class in the hierarchy implies a structural computational advantage against
the hardness in PTIME. Hence, the second objective of this thesis generalizes the
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author’s results in [21] and applies the new discrete parameter space character-
ization to exactly describe the complexity for image matching under projective
transformations. The problem is complete in TCO, which is a very natural com-
plexity class because it exactly expresses the complexity of a variety of basic
problems in computation, such as integer addition, multiplication, division and
sorting.

Basically, the challenge in establishing the problem’s membership in TCO

evolves from the open question of how to compute the data structure for dictio-
nary D[Fp](A) by the power of TCO. Chapter 3 shows that it is possible to select
a lattice of a polynomial amount of points in the parameter space R8 to find at
least one representative from every face in {ϕ1, . . . , ϕr}. This enables another
convenient way of obtaining a polynomial subset of projective transformations
eligible to compute the complete dictionary D[Fp](A) even without realizing the
complex data structure needed to represent {ϕ1, . . . , ϕr}. In this fashion the
computational complexity of image matching is decreased to fit the restrictions
of TCO.

From an algorithmic point of view, the containment of the projective image
matching in TCO ⊆ NC1 means that the problem can be solved efficiently in
a parallel fashion, i. e., in logarithmic time by circuits with bounded fan-in. In
fact, if the fan-in is unbounded, it even works in constant time. Moreover, on
single processor machines the containment in TCO ⊆ LOGSPACE causes very
low memory consumption.

Completeness in TCO states that image matching for projective transforma-
tions belongs to the most complex problems in that class. It is shown by reducing
the TCO-complete majority problem to image matching. More precisely, for ev-
ery binary string s there are images As and Bs such that s contains a majority of
positive bits if and only if there is a projective transformation f such that f(As)
resembles Bs with an exception of at most 0.5|s| pixels. Because image match-
ing is complete in TCO, computation formalisms of less expressive power are not
able to model the problems. In fact, there is no polynomially sized, uniformly
shaped family of Boolean formulas expressing projective image matching, since
this captures exactly ACO 6= TCO.



Chapter 2

Preliminaries

2.1 Mathematical Basic Notations

The aim of this section is to fix notations of some fundamental mathematical
concepts used in the thesis. Many details are omitted, but adequate references
are given to the reader not familiar with the field.

Algebraic Concepts

The text books of Courant et al. [11, 12, 13] provides a substantial and detailed
fund of knowledge about notions in this field. Subsequently, the important tools
are briefly specified to clarify the applied notation.

N, Z and R denote the common sets of natural, integer and real numbers with
the standard operations +, −, ·, | |, max, min,

√
, log and so forth. For real

numbers p let, as usual, bpc be the largest integer less or equal to p, [p] = bp+0.5c
and dpe be the smallest integer greater or equal to p.

Any k-dimensional vector spaces over the set of real numbers is denoted
by Rk, for k > 0. For every vector P = (p1, . . . , pk)

T define the length
‖P‖ =

√
p2

1 + . . .+ p2
k. Following the concept of [p] for real numbers let

[P ] = ([p1], . . . , [pk])
T . If p1 = . . . = pk = 0 then P is the zero vector.

A (k × k)-matrix M is an array of k2 real numbers. If

M =

x1,1 · · · x1,k

...
. . .

...
xk,1 · · · xk,k


then the real number det(M) =

∑
φ∈Φ(k)

(
sgn(φ)

∏k
i=1 xi,φ(i)

)
is the determinant

of M where Φ(k) contains all permutations φ of the numbers {1, . . . , k} and
sgn(φ) gives 1 if the number of mutual transpositions in φ is even and (−1)
otherwise. The inverse M−1 of M is a (k× k)-matrix with entries m̃i,j such that

9
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the value
∑k

n=1 mi,n·m̃n,j is one if i = j and zero otherwise, for all i, j ∈ {1, . . . , k}.
Clearly, the inverse has the property M−1 ·M ·P = P for all vectors P ∈ Rk. The
inverse M−1 can be found by the adjunct A, a (k × k)-matrix where each entry
ai,j = (−1)i+j · det(Mi,j), i, j ∈ {1, . . . , k} is determined by Mi,j, the submatrix
of M obtained by deleting the ith row and the jth column. Every regular matrix
M , i. e., when det(M) 6= 0, has an inverse M−1 = det(M)−1 · AT .

Polynomials ` : Rk → R are exactly the functions built by a finite number
of + and · operations. A special case are linear polynomials `. Every linear
polynomial is given by a nonzero vector (n1, . . . , nk)

T ∈ Rk and an additional
number nk+1 ∈ R such that for all P = (p1, . . . , pk)

T ∈ Rk it is true

`(p1, . . . , pk) = n1p1 + . . .+ nkpk + nk+1.

Such a linear polynomial can be multiplied by a real number r and then r` is the
linear polynomial with vector (rn1, . . . , rnk)

T and number rnk+1.

Computational Complexity Concepts

An introduction to computational complexity goes beyond the scope of this sec-
tion, even for very basic notions. For a convenient overview, see the text books
of Hopcroft et al. [20], Aho et al. [1] and Vollmer [45].

Binary strings s ∈ {0, 1}∗, i. e., sequences over {0, 1} are used to encode
numbers, graphs, images and so forth. Let |s| denote the number of bits in
s and if s is not the empty string, let s(i) be the bit at ith position for all
i ∈ {0, . . . , |s| − 1}. Moreover, let 0k and 1k be the strings of k sequent zero
bits, respectively positive bits, and if s and s′ are strings then let s|s′ be their
concatenation. If it is clear from the context that two strings are concatenated,
the short form ss′ is used.

Complexity measures depend on the used computation model. For sequential
models random access machines are applied because they describe real computers
most closely. Such a machineM encodes strings s as numbers stored in registers.
M processes a sequence of instructions to initiate, copy and modify its registers
and finally to represent the output number. The time complexity of M can
be measured by the relation between the length of input/output string and the
number of instruction performed by the machine. A machine runs in O(|s|k) time
if the calculation takes at most O(|s|k) instructions, where k is a fixed natural
number. If k = 1 then the machine runs in linear time.

The space complexity of M can be measured in terms of the number of bits
of memory used during calculation. An interesting class of functions are those
computable within O(log |s|) space because they form an important subset of the
functions calculated in polynomial time.

For many functions, calculation requires the execution of basic arithmetic
integer operations. Usually, the length of representations of numbers depend on
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|s|, but often only to some very small extend, like e. g. O(log |s|). Then it is
common practice to assume that the length of number representations has no
impact on integer operations and that they can be done in O(1) time. Merge
sort, e. g., is known to sort a list of n elements in O(n log n) time, but this is true
only if comparing integer values works in constant time. Complexity statements
about sequential algorithms in Chapters 4 apply this kind of measure which is
called arithmetic complexity. This means all basic integer operations are counted
as one step and consequently, the time complexity of algorithms refers to the
number of operations.

Another computation model used in the thesis are circuits which work es-
pecially as a measure for parallel computation complexity. Circuit complexity is
explained in detail in Section 5.1.

Decision problems Π ⊆ {0, 1}∗ are used to describe string properties, i. e., s
has the property if and only if s ∈ Π. A lot of complexity theory builds on decision
problems and hence, to describe the complexity of image matching, Chapter 5
formulates the problem as a decision problem.

Graph Concepts

In Chapter 4 some basic graph concepts are used. The text books of Brandstädt
et al. [8] and Golumbic [19] present a considerable overview on graph theoretic
and graph algorithmic notions. The new image matching algorithm operates just
on simple directed graphs G = (V,E) without loops. Hence, nodes V and edges
E are finite sets and E consists of ordered pairs uv with u, v ∈ V and u 6= v.

A graph G = (V,E) is connected if for every pair u, v of nodes there is a (not
necessarily directed) path u = w1, . . . , wp = v such that for all i ∈ {1, . . . , p− 1}
at least one edge wiwi+1 or wi+1wi is in E . The graph G is called acyclic if there
is no node set w1, . . . , wp with wpw1 ∈ E and wiwi+1 ∈ E for all i ∈ {1, . . . , p−1}.

Depth first search is a technique for random access machines to traverse a given
graph in O(|V |+ |E|) time visiting every node and edge. The search travels along
edges from one unvisited node to the next as long as finding unvisited neighbors.
Then it applies backtracking to return from dead ends to nodes with left unvisited
neighbors. On connected graphs the process stops after visiting all nodes and
backtracking to the start node.

2.2 Concepts for Digital Images

A digital image (just image, for short) is a finite two-dimensional array of color
values:

Definition 2.1. The set of the first C natural numbers

C = {0, 1, 2, 3, . . . , C − 1}
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are called colors. A digital image A of size n is a mapping A : Z2 → C with
support

z(n) =
{

(i, j)
∣∣∣ − n ≤ i ≤ n,−n ≤ j ≤ n

}
such that A(i, j) = 0 for all (i, j) 6∈ z(n).

Nearest Neighbor Interpolation

Considering only the definition in terms of arrays does not reflect the purpose
of digital images. In many real scenarios digital images A are used to represent
two-dimensional real valued functions R2 → R in a discrete fashion. But to
interpret A as a continuous function requires the definition of color values in
between indices (i, j) ∈ Z2, a mechanism called interpolation.

Definition 2.2. If A is an image of size n then let AI : R2 → C be the nearest
neighbor interpolation of A, i. e., for all (x, y) ∈ R2

AI(x, y) = A([x], [y]).

Nearest neighbor interpolation is commonly used in image processing. Although
nowadays higher-order interpolation methods are available, like linear or cubic in-
terpolation, they can be approximated in a nearest neighbor interpolation scheme
working on a larger image. Consequently, it is reasonable to concentrate on near-
est neighbor interpolation. The major advantage in a practical setting is the high
efficiency of nearest neighbor interpolation.

The mapping AI : R2 → C has the continuous domain of R2 but it maps to
the discrete color space C. Consequently, there are coherent regions separated by
discontinuous jumps where the color value changes abruptly. Let A be an image
of size n. Then AI defines color values for all points in the rectangular region

Z =
{

(x, y)
∣∣∣ − n− 0.5 ≤ x, y < n+ 0.5

}
⊂ R2

and for all (x, y) 6∈ Z it is true AI(x, y) = 0. Define a partition Pix[n] =
{pix(i, j) | (i, j) ∈ z(n)} of Z into squares

pix(i, j) =
{

(x, y)
∣∣∣ i− 0.5 ≤ x < i+ 0.5 and j − 0.5 ≤ y < j + 0.5

}
,

such that for all (i, j) ∈ z(n) and for all (x, y) ∈ pix(i, j) it is true that AI(x, y) =
A(i, j) . The regions pix(i, j) are called pixels (short for picture elements) of A.

Image Distortion

After filling digital images with color information at all points in R2 the next
question is how to compare two images A and B. The simplest way would be to
ignore the continuous interpretation of digital images:
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Definition 2.3. Let A be an image of size n and B be an images of size m. For
a color distortion measure ω : C × C → N let

δ(A,B) =
∑

(i,j)∈z(max{n,m})

ω(A(i, j), B(i, j))

be a distortion between A and B.

Such a notion fulfills the conditions

1. non-negativity (δ(A,B) ≥ 0),

2. definiteness (δ(A,B) = 0 if and only if A = B),

3. symmetry (δ(A,B) = δ(B,A)) and

4. the triangle inequality (δ(A,B) ≤ δ(A,X) + δ(X,B))

of a metric if the measure ω : C × C → N has these properties, too.
There are other reasonable ways to define the difference between images. For

example, sticking to the continuous interpretation of A and B leads to the idea
to measure the difference between two functions R2 → C. A common approach
would be to consider the integral

δ(A,B) =

∫∫
R2

ω(AI(x, y), BI(x, y)) dx dy

for some color distortion measure ω : C × C → N. Interestingly, for nearest
neighbor interpolation this leads to the same notion:

Lemma 2.4 (Proof in Section 2.6).∫∫
R2

ω(AI(x, y), BI(x, y)) dx dy =
∑

(i,j)∈z(max{n,m})

ω(A(i, j), B(i, j))

Image Transformations

Another concept for digital images introduced here are transformations R2 → R2.
According to definition transformations are continuous and cannot be straight-
forward applied for digital images. Consequently, image transformations apply
the notion of image interpolation:

Definition 2.5. A transformation is an invertible function f : R2 → R2. For
a digital image A of size n and an integer m ∈ N the image transformation
f(A)[m] of size m is a digital image such that

f(A)[m](i, j) = AI(f
−1(i, j))

for all (i, j) ∈ z(m) and f(A)[m](i, j) = 0 if (i, j) 6∈ z(m).
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Transformation f

(a)

Mapping [f−1]

(b)

a) f defines points f(x, y)
for all (x, y) ∈ R2.

b) f(A)[2] needs [f−1(i, j)]
for all (i, j) ∈ z(2).
For visual convenience
only five examples for
[f−1(i, j)] are shown.

c) Finally, every color
f(A)(i, j) is obtained by
A([f−1(i, j)]).

Result f(A)

(c)

Figure 2.1: Digital image A scaled by 0.83 and rotated by 35◦.
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The idea for image f(A)[m] is to approximate the continuous function f(A).
Notice that the existence of the inverse f−1 of a transformation f is crucial
to compute the image transformations f(A)[m]. Figure 2.1 demonstrates the
principles of image transformations. Particularly, it shows an image A that is
transformed with scaling by 0.83 and rotating by 35 degrees.

Due to constraints given by the application or the computational complexity
image matching is usually performed for a certain infinite set F of transformations
which forms some specific class, given by a unique representation or a shared
property.

Definition 2.6. A set F of transformations is called a transformation class
if for all f ∈ F it is true that f−1 ∈ F . A transformation class F is called
parameterized transformation class if there is a surjective (not necessarily
total) mapping P [F ] : Rk → F for some k ∈ N.

The advantage of parameterized transformation classes is that every element can
be represented by a parameter vector. The next section presents a list of well
known parameterized transformation classes.

Since transformations are continuous objects but images are discrete it follows
that not every pair f1 and f2 of distinct transformations can form different image
transformations f1(A)[m] and f2(A)[m]. Relative to a transformation class F and
an integer m there is always a finite set D[F ,m](A) of images of size m resulting
from transforming A according to transformations in F :

Definition 2.7. Let F be a set of transformations and m ∈ N be an integer. For
given image A, the set

D[F ,m](A) =
{
f(A)[m]

∣∣∣ f ∈ F}
is called the dictionary of A.

The dictionary D[F ,m](A) represents the search space of image matching al-
gorithms. In fact, a lot of analysis in the following chapters is focused on the
dictionary structure and the question of how to compute it.

An example of a dictionary can be found in Figure 2.2. It shows D[Fs, 2](A),
D[Fr, 2](A) and D[Fsr, 2](A), dictionaries of images with size two, given by trans-
forming the image A of Figure 2.1 with scalings Fs, rotations Fr and combinations
of scaling and rotation Fsr, transformation classes introduced in the next section.

2.3 Projective Transformation Classes

This section presents the covered transformation classes. Often, projective trans-
formations represent a superset of the supported transformation class in many
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Figure 2.2: Dictionary D[Fsr, 2](A) of all 862 transformations of the image A
given in Figure 2.1 by combinations of scaling and rotation. Using rotation only
results in the first 44 images which form D[Fr, 2](A). The last two are found by
scaling, too, and together with the next 14 images, they give D[Fs, 2](A). To
get the remaining 804 requires true combinations of scaling and rotation and the
double framed one is given by 0.83 scaling and 35◦ rotation like in Figure 2.1.

image processing applications. Consequently, it is reasonable to focus on image
matching with projective transformations and its natural subclasses.

Definition 2.8. Projective transformations Fp are a parameterized set of
functions f : R2 → R2 obtained by a surjective mapping P [Fp] : R8 → Fp. For
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all P = (p1, . . . , p8)T ∈ R8 with

p1p5 − p2p4 6= 0

and

p1p5 − p1p6p8 − p2p4 + p2p6p7 + p3p4p8 − p3p5p7 6= 0

let f = P [Fp] (P ) be the projective function defined as

f(x, y) =


undefined : if xp7 + yp8 + 1 = 0(
x′

z′
, y
′

z′

)
: otherwise, where

x′y′
z′

 =

p1 p2 p3

p4 p5 p6

p7 p8 1

 ·
xy

1

 .

Notice that points P where P [Fp] is undefined would lead to functions f which
are not invertible. In fact, the two inequalities guarantee that the (3× 3)-matrix
defining the transformation is invertible and that its inverse gives a proper projec-
tive transformation. However, the definition of projective transformations alone
cannot state that Fp is a transformation class at all. First it has to be shown
that all elements of Fp are invertible and that these inverse transformations are
in Fp.

Lemma 2.9 (Proof in Section 2.6). The set Fp is a parameterized transformation
class.

Projective transformations have the following capabilities: For eight given
points X1 to X4 and Y1 to Y4 in R2 there is one projective transformation f with
f(Xi) = Yi for i ∈ {1, 2, 3, 4}. On the other hand, for ten points X1 to X5 and
Y1 to Y5 a projective transformation f with f(Xi) = Yi for i ∈ {1, 2, 3, 4, 5} does
not necessarily exist. Moreover, projective transformations are line preserving :

Lemma 2.10 (Proof in Section 2.6). For any sx, sy, vx, vy ∈ R let

L =
{

(x, y)
∣∣∣ ∃t ∈ R ( xy ) = ( sxsy ) + t · ( vxvy )

}
be the straight line in R2 through (sx, sy)

T going along (vx, vy)
T . For every pro-

jective transformation f ∈ Fp it is true that

L′ =
{
f(x, y)

∣∣∣ (x, y) ∈ L
}

is a straight line, too.

Consequently, one can think of a projective transformation f as the alignment
of a quadrangle given by four points X1 to X4 to another quadrangle given by
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points Y1 to Y4. The rest of the points in R2 adapt to this alignment. Figure 2.3
demonstrates this.

The problem with the projective transformations is that, in general, they
are not total functions. According to Definition 2.8 a transformation
f = P [Fp] (p1, . . . , p8) is undefined for points (x, y) with p7x + p8y + 1 = 0
because then the result vector would go to infinity. This behavior is unpleasant
for the analysis of projective transformations and the following chapters invest
some effort to handle it.

Because projective transformations are the most powerful transformation class
considered, it is always assumed that notions are defined with respect to them,
unless marked differently. Consequently, the explicit reference to projective trans-
formations is mostly omitted. For example, the abbreviation D and P are applied
instead of D[Fp] and P [Fp].

Subclasses of Projective Transformations

Beside projective transformations there are a number of natural subclasses sup-
ported by applications:

Definition 2.11. The following list defines subsets of Fp, sets of functions
f : R2 → R2, by name, parameter and representation:

Name Parameter Representation

Scaling
Fs

P [Fs] : R→ Fs

∀s ∈ R : P [Fs] (s) =
P [Fp] (s, 0, 0, 0, s, 0, 0, 0)

f(x, y) =

(
s 0
0 s

)
·
(
x
y

)

Rotation
Fr

P [Fr] : R→ Fr ∀α ∈ R : P [Fr] (α)
= P [Fp] (cα, sα, 0,−sα, cα, 0, 0, 0)
with cα = cosα and sα = sinα

f(x, y) =(
cα sα
−sα cα

)
·
(
x
y

)

Scaling and
Rotation

Fsr

P [Fsr] : R2 → Fsr

∀p, q ∈ R : P [Fsr] (p, q) =
P [Fp] (p, q, 0,−q, p, 0, 0, 0)

f(x, y) =

(
p q
−q p

)
·
(
x
y

)

Translation
Ft

P [Ft] : R2 → Ft

∀t1, t2 ∈ R : P [Ft] (t1, t2) =
P [Fp] (1, 0, t1, 0, 1, t2, 0, 0)

f(x, y) =(
1 0 t1
0 1 t2

)
·

xy
1



Linear Trans-
formation

F`

P [F`] : R4 → F` ∀l1, l2, l3, l4 ∈ R :
P [F`] (l1, l2, l3, l4) =
P [Fp] (l1, l2, 0, l3, l4, 0, 0, 0)

f(x, y) =

(
l1 l2
l3 l4

)
·
(
x
y

)
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Affine Trans-
formation

Fa

P [Fa] : R6 → Fa

∀a1, a2, a3, a4, a5, a6 ∈ R :
P [Fa] (a1, a2, a3, a4, a5, a6) =
P [Fp] (a1, a2, a3, a4, a5, a6, 0, 0)

f(x, y) =(
a1 a2 a3
a4 a5 a6

)
·

xy
1



According to definition, all sets Fs, Fr, Fsr, Ft, F`, and Fa, contain projective
transformations. Notice that the parameters of scalings and rotations are p, q ∈
R. A more natural pair of parameters would be given by a scaling factor s ∈ R
and an angle α ∈ R. It is easy to see that these parameters are encoded in
p = s cosα and q = s sinα. This way establishes a better relationship between
the parameters of Fsr and Fp.

Notice that not all combinations of l1, l2, l3, l4 ∈ R give a linear transformation
with matrix

(
l1 l2
l3 l4

)
. Particularly, if l1l4 = l2l3 then the matrix is not regular and

P [Fp] (l1, l2, 0, l3, l4, 0, 0, 0) is undefined. The same holds for affine transforma-
tions, scalings and rotations as well as solely scalings where the parameters fulfill
a1a5 = a2a4 or p = q = 0 or respectively s = 0.

After defining these sets of functions it remains to answer whether all of them
are classes of transformations:

Lemma 2.12 (Proof in Section 2.6). The sets Fs, Fr, Fsr, Ft, F`, and Fa are
transformation classes.

Because the classes Fs, Fr, Fsr, Ft, F`, and Fa are subsets of Fp they can be
understood as restrictions to the transformation capabilities of Fp. For example,
translation are the transformations which can align only one point P to another
point Q. Figure 2.3 demonstrates the capabilities of each class.

2.4 Formalizing the Image Matching Problem

Although it has already been abstractly motivated in Chapter 1 the following
formalizes the image matching problem.

Problem 2.13. Image Matching

Input: Digital image A of size n and image B of size m.

Constraints:
Image distortion measure ω : C × C → N.
Subclass F of projective transformations with P [F ] : Rd → F and d ≤ 8.

Output: A Parameter P ∈ Rd such that the transformation f−1 = P [F ] (P )
minimizes δ(f([m]A), B).
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X1 X2

X3X4

Y1 Y2

Y3Y4

f ∈ Fs

Y1

Y2

Y3

Y4

f ∈ Fr

Y1
Y2

Y3
Y4

f ∈ Fsr

Y1 Y2

Y3Y4

f ∈ Ft

Y1 Y2

Y3Y4

f ∈ F`
Y1 Y2

Y3Y4

f ∈ Fa

Y1 Y2

Y3Y4

f ∈ Fp

Figure 2.3: Four points X1, X2, X3, X4 ∈ R2 and the ways how a transformation
f ∈ Fs,Fr,Fsr,Ft,F`,Fa, and Fp maps to points Yi = f(Xi), 1 ≤ i ≤ 4.

Roughly speaking, image matching is a optimization problem to find a trans-
formation in F that modifies A such that it looks as similar to B as possible.
For complexity analysis, however, it is sometimes favorable to analyze decision
problems:

Problem 2.14. Image Matching (Decision Variant)

Input: Digital image A of size n and image B of size m and a threshold T ∈ N.

Constraints:
Image distortion measure ω : C × C → N.
Subclass F of projective transformations with P [F ] : Rd → F and d ≤ 8.

Question: Is there a transformation f ∈ F such that δ(f(A)[m], B) ≤ T .

Chapter 5 describes the complexity of the above decision problem by pinpoint-
ing TCO as the corresponding complexity class. Clearly, solving Problem 2.13 is
at least as complex as deciding Problem 2.14. But actually it is the case that
the computational costs needed to solve both problems are nearly the same. In
particular, the main result states that, to find the best transformation f , it is suf-
ficient to consider a polynomial amount of projective transformations f1, . . . , fr.
Moreover, all these transformations have a very efficient representation.
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2.5 Algebraic and Computational Geometry

This section describes an important tool used in the thesis, namely a partition of
the parameter space R8 of projective transformations into appropriate subspaces.
The notion subspace does not refer to classical spaces but denotes connected
subsets of R8, in most cases affine spaces. The complete definition of the partition
is divided into parts, including the definition of simple subspaces in Definitions
2.15, slices in Definition 2.16, faces in Definition 2.18, and finally arrangements
in Definition 2.20. To represent the space partition, incidence graphs are used –
a well known data structure that allows efficient manipulation of arrangements.
A formal description of incidence graphs is given in Definition 2.23.

To describe the partitions of R8 consider as a first step the following definition:

Definition 2.15. For any polynomial ` : R8 → R the following subsets of R8 are
called simple subspaces:

h0(`) = {(p1, . . . , p8)T ∈ R8 | `(p1, . . . , p8) = 0},
h+(`) = {(p1, . . . , p8)T ∈ R8 | `(p1, . . . , p8) > 0} and

h−(`) = {(p1, . . . , p8)T ∈ R8 | `(p1, . . . , p8) < 0}.

The subspace h0(`) is called hypersurface and the subspaces h+(`) and h−(`)
are called positive, respectively negative half space. If ` is linear, then call
h0(`) a hyperplane. Moreover, the sets

H+(`) = h0(`) ∪ h+(`) and

H−(`) = h−(`)

are also simple subspaces and they are called half spaces.

An example of a half space is the 8-ball with center (0, . . . , 0)T and radius
r. It is defined by the polynomial `(p1, . . . , p8) = p2

1 + . . . + p2
8 − r2. The 8-ball

h−(`) consists of all points with an Euclidean distance of less then r to its center
point. The boundary of the 8-ball is given by the hypersurface h0(`), also called
hypersphere, that describes all points with exact distance r to the ball’s center
point.

Subsequently, it is mostly the case that the polynomials `, used to define
subspaces h0(`), h+(`), h−(`) and so on, are linear. For such hyperplanes h0(`) it
is very simple to get the distance to a given point. In fact, if the linear polynomial
` is determined by a nonzero vector N ∈ R8 and a number in R, then the distance
between h0(`) and a point P ∈ R8 is given by |`(P )|

‖N‖ .
The following describes subspaces by the help of linear polynomials:

Definition 2.16. Let E = {`1, . . . , `w} be a (possibly empty) set of linear poly-
nomials R8 → R. The nonempty intersection of hyperplanes

χ =
⋂
`∈E

h0(`) 6= ∅
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is called slice. If E = ∅ then it is assumed that
⋂
`∈E h

0(`) = R8. A slice χ is k-
dimensional for some k ∈ {0, . . . , 8} if the minimum number of linear polynomials
sufficient to define χ is 8− k. In that case, χ is called k-slice for short.

Slices are used to define linear subspaces isomorphic to Rk ⊆ R8 with k ∈
{0, . . . 8}, i. e., affine spaces. For example the polynomials `1(p1, . . . , p8) = p8− 5
and `1(p1, . . . , p8) = p6−p7 define the slice χ = h0(`1)∩h0(`2) which spans an R6

within R8 where only the parameters p1 to p6 can be chosen arbitrarily and where
p7 = p6 and p8 = 5. All subsequent geometric structures are introduced relative
to slices. In this way it is possible to generalize their definition to subspaces of
R8. Trivially, R8 is a slice defined by the empty set of polynomials. For every
statement on geometric structures that does not explicitly define the relative slice
χ, it is assumed that χ = R8.

Based on slices it is possible to introduce a common measure for the complex-
ity of subspaces. Particularly, a subspace is k-dimensional, if it is contained in a
k-slice but not in any (k − 1)-slice. The measure of dimension is also connected
to linear (in)dependence. Particularly, a set P1, . . . , Pw of points is said to be
linearly dependent if there exists a k-slice χ such that (1) P1, . . . , Pw ∈ χ and (2)
1 ≤ k < w − 1. Otherwise, P1, . . . , Pw are called linearly independent.

Linear independence is also easily generalized to sets of linear polynomials
and hyperplanes:

Definition 2.17. A set E = {`1, . . . , `w} of linear polynomials is called linearly
independent relative to a k-slice χ with k ∈ {0, . . . , 8}, if the slice

χ′ = χ ∩

(⋂
`∈E

h0(`)

)
6= ∅

is (k −w)-dimensional. Then, the set {h0(`1), . . . , h0(`w)} of hyperplanes is also
called linearly independent in χ.

Linearly independent polynomials do not describe parallel or collinear hyper-
planes. That linear independence of polynomials and hyperplanes depends on
the considered slice χ can be observed in Figure 2.4.

The basic building blocks for the partitions of R8 and moreover for partitions
of slices in R8 are higher order subspaces given by the intersection of hyperplanes
and half spaces:

Definition 2.18. Let χ be a slice and E = {`1, . . . , `w} be a set of linear polyno-
mials. For signs s1, . . . , sw ∈ {+, 0,−} the (non-empty) convex subspace

χ ∩

(
w⋂
i=1

hsi(`i)

)
6= ∅



2.5. ALGEBRAIC AND COMPUTATIONAL GEOMETRY 23

is called an open face in χ. Similarly, for signs s′1, . . . , s
′
w ∈ {+,−} the (non-

empty) intersection

χ ∩

(
w⋂
i=1

Hs′i(`i)

)
6= ∅

is called an closed face in χ. For short, a (open/closed) face ϕ is called k-face
for some k ∈ {0, . . . , 8}, if it is k-dimensional.

The notions open and closed are known in topology. The whole space of a k-slice
χ is the most basic example of an open k-face because it is defined by the empty
set of polynomials. Hyperplanes h0(`) are also open faces and they are (k − 1)-
dimensional and defined by a single polynomial `. The half spaces H+(`) and
H−(`) are two examples for closed k-faces given by a single polynomial `. Another
remarkable kind of faces are 0-faces, the ones that that consist of only one point.
Figure 2.4 shows a number of example faces contained in a two-dimensional slice.

A more complex open face, that is important for the thesis, is the hypercube
Qr of radius r, i. e., a subspace that consists of all points (p1, . . . , p8)T with |pi| < r
for all i ∈ {1, . . . , 8}. Since the absolute values of the coordinates have to be less
than r, the hypercube is described by polynomials

`+
i (p1, . . . , p8) = pi + r and `−i (p1, . . . , p8) = pi − r

for all i ∈ {1, . . . , 8}. That means,

Qr =

(
8⋂
i=1

h+(`+
i ) ∩ h−(`−i )

)
.

Open faces ϕ represent a generalization of open intervals on the real line. This
means for all `i ∈ E with si 6= 0 that ϕ ⊆ hsi(`i) but all points P at the infinitely
thin border h0(`i) do not belong to face. Closed faces, on the other hand, are
not necessarily closed on all sides. Depending on the specific polynomials in E ,
individual borders may or may not belong to the face. The following definition
of the boundary simplifies statements about bordering points of faces:

Definition 2.19. Let χ be a slice and E = {`1, . . . , `w} be a set of linear poly-
nomials. If ϕ is a (open/closed) face given by E and signs s1, . . . , sw, then the
interior of ϕ, denoted as ↓ϕ, is the open face

↓ϕ = χ ∩

(
w⋂
i=1

hsi(`i)

)
and the boundary of ϕ, denoted as ϕ̂, is defined by

ϕ̂ = χ ∩

(
w⋂
i=1

Hi

)
\ ↓ϕ
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where for all i ∈ {1, . . . , w}

Hi =


h0(`i) : if si = 0
H+(`i) : if si = +
H+(−`i) : if si = −.

The interior of a given face ϕ is the largest open face contained in ϕ. Clearly,
if ϕ is already an open face, then ↓ϕ = ϕ. On the other hand, the boundary
ϕ̂ of a face ϕ consists of the infinitely thin film of points around ϕ. For open
faces and many closed faces it not true that ϕ̂ ⊆ ϕ. The announced partitions
of a slice χ, particularly of the slice R8, that are used in the new algebraic
characterization of image transformations, are the following sets H of closed faces
which are called closed arrangements in the thesis. However, to use this structure
efficiently in algorithms the following defines also a finer partition of χ called open
arrangement.

Definition 2.20. Let χ be a slice and E = {`1, . . . , `w} be a (possibly empty) set
of linear polynomials. Then, the closed arrangement in χ defined by E is the
set

Hχ[E ] =

{
ϕ = χ ∩

(
w⋂
k=1

Hsk(`k)

) ∣∣∣∣∣ ∃s1, . . . ,∃sw ∈ {+,−}, ϕ 6= ∅

}

and the open arrangement in χ is the set

Aχ[E ] =

{
ϕ = χ ∩

(
w⋂
k=1

hsk(`k)

) ∣∣∣∣∣ ∃s1, . . . ,∃sw ∈ {+, 0,−}, ϕ 6= ∅

}

For short, let H[E ] = HR8 [E ] and A[E ] = AR8 [E ].

The arrangements Hχ[E ] and Aχ[E ] consist of all closed, respectively open, faces
that can be defined by the polynomials in E . Clearly, if χ is a k-slice then Aχ[E ]
contains k′-faces for all k′ in {0, . . . , k}. For the dimensions k′ = 0, k′ = 1 or
k′ = 2 it is usual that k′-faces have special names that describe there appearance.
Particularly, 0-faces are called vertices or points, 1-faces are called (straight)
line segments and 2-faces are plane segments. Figure 2.4 illustrates the two
arrangement within a two-dimensional slice.

It is evident that both sets define partitions of the slice χ:

Lemma 2.21 (Proof in Section 2.6). For every slice χ and every set E of linear
polynomials it is true that Aχ[E ] and Hχ[E ] are partitions of χ.
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Figure 2.4: (a) A two-dimensional slice χ with p3 = . . . = p8 = 0 containing an
open arrangement Aχ[E ] defined by a set of linear polynomials E = {`1, `2, `3, `4}
and (b) the incidence graph Gχ[E ] of the arrangement. The polynomials

`1(p1, . . . , p8) = −4p1 − 8p2 + 17,

`2(p1, . . . , p8) = 4p1 − 4p2 − 1,

`3(p1, . . . , p8) = 4p1 + p3 − 3 and

`4(p1, . . . , p8) = 8p1 − p3 − 6

define only three hyperplanes in χ because, although linearly independent in R8,
the polynomials `3 and `4 are linearly dependent in χ. The gray arrows indicate
the positive half spaces with respect to all hyperplanes. The incidence graph Gχ[E ]
is three-partite, with one partition for plane segments ϕ1, . . . , ϕ7, one for line
segments ϕ8, . . . ϕ16, and one for vertices ϕ17, ϕ18, ϕ19. The closed arrangement
Hχ[E ] = {ϕ′1, ϕ′2, ϕ′3, ϕ′4, ϕ′5, ϕ′6, ϕ′7} defined by E consists of the seven closed faces

ϕ′1 = ϕ1 ∪ ϕ8 ∪ ϕ10 ∪ ϕ17, ϕ′2 = ϕ2 ∪ ϕ11, ϕ′3 = ϕ3 ∪ ϕ12,
ϕ′4 = ϕ4 ∪ ϕ9 ∪ ϕ13 ∪ ϕ14 ∪ ϕ18 ∪ ϕ19, ϕ′5 = ϕ5 ∪ ϕ15,
ϕ′6 = ϕ6 ∪ ϕ16, ϕ′7 = ϕ7.
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Incidence Graphs

An important property of arrangements is that they can be nicely represented in
data structures. Moreover, such representation can be computed very efficiently.
Regard the following property of open arrangements:

Definition 2.22. For a slice χ and a set E = {`1, . . . , `w} of linear polynomials
let

ϕ = χ ∩

(
w⋂
i=1

hsi(`i)

)
and ϕ′ = χ ∩

(
w⋂
i=1

hs
′
i(`i)

)
be two faces in Aχ[E ] given by signs s1, . . . , sw, s

′
1, . . . , s

′
w ∈ {+, 0,−}. Then ϕ

and ϕ′ are called incident if there is an i ∈ {1, . . . , w} with si ∈ {+,−} and
s′i = 0 and for all k ∈ {1, . . . , w} with k 6= i the signs sk and s′k fulfill

1. sk = s′k if `i and `k are linearly independent relative to χ and otherwise

2. χ ∩ hsk(`k) = χ ∩ hsi(`i) and s′k = 0.

Moreover, ϕ is a superface of ϕ′ and ϕ′ is a subface of ϕ.

Incidence describes the property of ϕ′ being a (k−1)-face in the boundary of the
k-face ϕ. Moreover, since every boundary separates two faces of equal dimension,
the incidence is also a way of describing geometrical adjacency. For example, in
Figure 2.4 the faces

ϕ1 = χ ∩

(
4⋂
i=1

hsi(`i)

)
and ϕ10 = χ ∩

(
4⋂
i=1

hs
′
i(`i)

)

given by the signs s1 = +, s2 = −, s3 = s4 = + and s′1 = +, s′2 = −, s3 = s4 = 0
are incident because s3 = + and s′3 = 0 and (1) for the polynomials `1 and `2,
which, relative to χ, are linearly independent of `3, it is true s1 = s′1 and s2 = s′2
and (2) for the polynomial `4, which, relative to χ, is linearly dependent of `3, it
is true that χ ∩ hs4(`4) = χ ∩ hs3(`3) and s′4 = 0.

The incidence of faces can be encoded into a so-called incidence graph:

Definition 2.23. For a k-slice χ with k ∈ {0, . . . , 8} and a set E of linear
polynomials, a directed graph Gχ[E ] = (V,E) to encode the incidence between
faces of the open arrangement Aχ[E ] is called incidence graph if

1. there is a bijection ϕ : V → Aχ[E ] between the nodes V and the faces in
Aχ[E ],

2. for all u, v ∈ V there is a directed edge uv if and only if ϕ(u) is a superface
of ϕ(v),
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3. for all v ∈ V the neighborhood is partitioned into superface neighbors
Ein(v) = {u | uv ∈ E} and subface neighbors Eout(v) = {u | vu ∈ E},

4. every node v ∈ V is labeled by P (v), a point contained in ϕ(v) and

5. every node v ∈ V is labeled by `(v), the set of polynomials ` ∈ E describing
hyperplanes containing ϕ(v), i. e., with ϕ(v) ⊆ χ ∩ h0(`).

Incidence graphs have a number of useful properties. For example, they are
connected. If χ is a k-slice then Gχ[E ] = (V,E) is a (k + 1)-partite graph. This
means that V is partitioned into the sets V0, containing all nodes of 0-faces, V1,
the nodes of 1-faces and so forth to Vk, the set of k-face nodes, such that if
u, v ∈ Vi, i ∈ {0, . . . , k} then uv 6∈ E. Additionally, every edge uv fulfills that
u ∈ Vi−1 and v ∈ Vi for some i ∈ {1, . . . , k}. An example incidence graph can be
seen in Figure 2.4.

Edelsbrunner et al. [15, 16] shows that the computation of Gχ[E ] on basis of
E takes O(|E|k) time, if χ is a k-slice with k > 1. Actually, they show that the
incidence graph G[E ] of an arrangementA[E ] in Rk defined by n linear polynomials
of the form Rk → R can be computed in O(nk) time. According to definition it
is true that the linear polynomials in E are of the form R8 → R independent of
the dimension k of subspace χ in which they define the arrangement. But it is
easy to project the polynomials to the space χ and obtain in O(|E|) time linear
polynomials of the form Rk → R. For example, if χ is the 2-slice with p7 = p6

and p8 = 5 then any polynomial

`(p1, . . . , p8) = c1p1 + . . .+ c8p8 + c9

can be projected to

`′(p1, . . . , p6) = c1p1 + . . .+ (c6 + c7)p6 + (5c8 + c9).

In this way E can be efficiently transformed into a suitable input of Edelsbrunner’s
algorithm and the incidence graph of the arrangement Aχ[E ] can be computed
just in the announced time bound.

Moreover, the original algorithm of Edelsbrunner et al. [15, 16] computes `(v)
only for a subset of nodes v ∈ V . In fact, if χ is a k-slice then `(v) is available
only for nodes v representing (k − 1)-faces. Clearly, for k-face nodes v it is true
`(v) = ∅. The following lemma states that it is possible to label all remaining
nodes in the same fashion with asymptotically no additional effort.

Lemma 2.24 (Proof in Section 2.6). Let χ be a k-slice in R8 with 1 < k ≤ 8 and
E be a set of polynomials R8 → R. It is possible to compute `(v) for all nodes
v ∈ V of the incidence graph Gχ[E ] = (V,E) in O(|E|k) time.
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Accordingly, it is convenient to assume that `(v) is computed for all nodes v ∈ V
during the construction of the incidence graph Gχ[E ] = (V,E) by the algorithm
of Edelsbrunner et al. [15, 16].

Once established, the incidence graph can be used to solve a number of compu-
tational problems in arrangements. In the following image matching algorithms
incidence graphs are traversed by depth first search. Since incidence graphs
are directed it is sometimes necessary to distinguish between directed depth first
search and undirected depth first search. In the first case it is only possible to
traverse along the direction of an edge and in the second case the directions are
simply ignored which makes bidirectional traversing possible.

2.6 Technical Proofs

The Proof of Lemma 2.4

Proof.∫∫
R2

ω(AI(x, y), BI(x, y)) dx dy =
∑

(i,j)∈Z2

j+0.5∫
j−0.5

i+0.5∫
i−0.5

ω(A([x], [y]), B([x], [y])) dx dy

=
∑

(i,j)∈Z2

ω(A(i, j), B(i, j)) ·
j+0.5∫
j−0.5

i+0.5∫
i−0.5

1 dx dy =
∑

(i,j)∈z(max{n,m})

δ(A(i, j), B(i, j)).

The Proof of Lemma 2.9

Proof. Every f ∈ Fp is defined by a (3 × 3)-matrix M =
( p1 p2 p3
p4 p5 p6
p7 p8 1

)
given by

some parameter point P = (p1, . . . , p8)T ∈ R8. By definition it is true that
p1p5 + p2p6p7 + p3p4p8 − p1p6p8 − p2p4 − p3p5p7 6= 0 and thus, the inverse

M−1 =

q1 q2 q3

q4 q5 q6

q7 q8 q9


of matrix M exists. Moreover, from definition follows that q9 = p1p5−p2p4

det(M)
6= 0.

Now consider the projective function f ′ = P [Fp] (Q) given by the parameter
point Q = q−1

9 · (q1, . . . , q8)T . Firstly, as det(M−1) = det(M)−1 6= 0 it is true that

q1

q9

q5

q9

+
q2

q9

q6

q9

q7

q9

+
q3

q9

q4

q9

q8

q9

6= q1

q9

q6

q9

q8

q9

+
q2

q9

q4

q9

+
q3

q9

q5

q9

q7

q9

and
q1

q9

q5

q9

6= q2

q9

q4

q9

.



2.6. TECHNICAL PROOFS 29

Hence, f ′(x′, y′) = (x′′/z′′, y′′/z′′) is a projective function with (x′′, y′′, z′′) = q−1
9 ·

M−1 · (x′, y′, 1). Moreover, f ′ is the inverse of f by the following argumentation:
If (x′, y′) = f(x, y) then there is z′ ∈ R such that (z′x′, z′y′, z′)T = M · (x, y, 1)T .
Now let (x′′, y′′) = f ′(x′, y′). Then there is z′′ ∈ R such that (z′′x′′, z′′y′′, z′′)T =
q−1

9 ·M−1 · (x′, y′, 1)T andx′′y′′
1

 =
1

z′′
·

z′′x′′z′′y′′

z′′

 =
1

z′′q9

·M−1 ·

x′y′
1

 =
1

z′′q9z′
·M−1 ·

z′x′z′y′

z′


=

1

z′′q9z′
·M−1 ·M ·

xy
1

 =
1

z′′q9z′
·

xy
1

 =

xy
1

 .

Hence, f ′(f(x, y)) = (x, y).

The Proof of Lemma 2.10

Proof. Assume that

M =

p1 p2 p3

p4 p5 p6

p7 p8 1


is the projection matrix of f . Then for every t ∈ R with t 6= −p7sx+p8sy+1

p7vx+p8vy
it is

true
f (( sxsy ) + t · ( vxvy )) =

(
s′x
s′y

)
+ t′ ·

(
v′x
v′y

)
with

s′x =
p1vx + p2vy
p7vx + p8vy

,

s′y =
p4vx + p5vy
p7vx + p8vy

,

v′x =
(p1p8 − p2p7)(sxvy − syvx) + (p3p7 − p1)vx + (p3p8 − p2)vy

p7vx + p8vy
,

v′y =
(p4p8 − p5p7)(sxvy − syvx) + (p6p7 − p4)vx + (p6p8 − p5)vy

p7vx + p8vy
and

t′ =
1

t(p7vx + p8vy) + (p7sx + p8sy + 1)
.

Hence, every (but one) point (x, y) of L is transformed onto the line

L′ =
{
f(x, y)

∣∣∣ ∃t′ f ( xy ) =
(
s′x
s′y

)
+ t′ ·

(
v′x
v′y

)}
But also, every point (x′, y′) on L′ is the mapping destination of a point (x, y)
on L, i. e., f(x, y) = (x′, y′). The point (x′, y′) is defined by a parameter t′. But



30 CHAPTER 2. PRELIMINARIES

then

t =
t′−1 − (p7sx + p8sy + 1)

p7vx + p8vy

defines the point (x, y) on L.

The Proof of Lemma 2.12

Proof. Since the elements of the sets are projective transformations their invert-
ibility follows. It remains to show that the inverses remain in the particular
set.

In each case except Ft and Fa the transformation f has the form f(x, y) =
M ·(x, y) withM being a two-by-two-matrix. The inverse f−1(x, y) = M−1·(x, y)T

is obtained by M−1, the inverse matrix of M . The following shows for each case
that f−1 belongs to the specific class.

Scaling: The inverse is

f−1(x, y) =

(
s−1 0
0 s−1

)
·
(
x
y

)
,

the scaling f−1 = P [Fs] (s−1).

Rotation: The inverse is

f−1(x, y) =

(
cos−α sin−α
− sin−α cos−α

)
·
(
x
y

)
,

the rotation f−1 = P [Fr] (−α).

Combinations of scaling and rotation: The inverse is

f−1(x, y) =

( p
p2+q2

−q
p2+q2

q
p2+q2

p
p2+q2

)
·
(
x
y

)
,

the combination of scaling and rotation f−1 = P [Fsr]
(

p
p2+q2

, −q
p2+q2

)
.

Linear transformation: The inverse is

f−1(x, y) =

( l4
l1l4−l2l3

−l2
l1l4−l2l3

−l3
l1l4−l2l3

l1
l1l4−l2l3

)
·
(
x
y

)
,

the linear transformation f−1 = P [F`]
(

l4
l1l4−l2l3 ,

−l2
l1l4−l2l3 ,

−l3
l1l4−l2l3 ,

l1
l1l4−l2l3

)
.

In the remaining cases, Ft and Fa, a transformation f has the form f(x, y) =
M · (x, y)T + t, where M is a (2 × 2)-matrix and t is a vector in R2. If M−1 is
the inverse of M then f−1(x, y) = M−1 · (x, y)T −M−1 · t is the inverse of f .
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Translation: The inverse is

f−1(x, y) =

(
1 0 −t1
0 1 −t2

)
·

xy
1

 ,

the translation f−1 = P [Ft] (−t1,−t2).

Affine transformation: The inverse is

f−1(x, y) =

( a5
a1a5−a2a4

−a2
a1a5−a2a4

a6a2−a3a5
a1a5−a2a4−a4

a1a5−a2a4
a1

a1a5−a2a4
a3a4−a6a1
a1a5−a2a4

)
·

xy
1

 ,

the affine transformation

f−1 = P [Fa]
(

a5
a1a5−a2a4 ,

−a2
a1a5−a2a4 ,

a6a2−a3a5
a1a5−a2a4 ,

−a4
a1a5−a2a4 ,

a1
a1a5−a2a4 ,

a3a4−a6a1
a1a5−a2a4

)
.

The Proof of Lemma 2.21

Proof. The proof works by induction over w, the number of polynomials in E =
{`1, . . . , `w}. If w = 0 then Aχ[E ] = Hχ[E ] = {χ}.

Otherwise, if w ≥ 1 then the statement is true for E ′ = E \ {`w}, i. e., every
point P of χ belongs to exactly one face ϕ′ ∈ Aχ[E ′]. Then every face ϕ in Aχ[E ]
is an intersection of a face ϕ′ in Aχ[E ′] and exactly one of the pairwise disjoint
spaces h+(`w), h0(`w) or h−(`w). Consequently, if a point P is in ϕ′ then it falls
into exactly one subspace ϕ′ ∩ h+(`w), ϕ′ ∩ h0(`w) or ϕ′ ∩ h−(`w). Hence, every
point P ∈ χ belongs to exactly one face of Aχ[E ].

The proof works analogously for Hχ and the two disjoint spaces H+(`w) and
H−(`w).

The Proof of Lemma 2.24

Proof. If χ is k-dimensional then set `(v) = ∅ for every node v of a k-face ϕ(v).
For (k− 1)-face nodes v the set `(v) is already computed correctly during the

construction of Gχ[E ]. To get `(v) for the remaining nodes v insert temporary
nodes w(`), one for every polynomial ` in E . Then add directed edges w(`)v if
and only if v is a (k − 1)-face node with ` ∈ `(v). This takes O(|E|k) time since
there are at most O(|E|k) many (k − 1)-face nodes.

Every node u, visited in a directed depth first search starting from a temporary
node w(`), fulfills ϕ(u) ⊆ h0(`). Consequently, the polynomial ` belongs to `(u).
Hence, to compute `(u) for every k′-face node u with k′ < k − 1 it is sufficient
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to perform directed depth first search from every temporary node w(`) and add
` to the annotation of all visited nodes.

There are |E| temporary nodes w(`). Moreover, by [15, 16] there are at most
O(|E|k−1) faces in the sub arrangement Aχ′ [E ] given by the (k − 1)-dimensional
slice χ′ = χ ∩ h0(`). Hence, there are O(|E|) calls to directed depth first search
each visiting O(|E|k−1) nodes and O(|E|k−1) edges. Consequently, the process of
computing `(v) for all nodes v ∈ V takes O(|E|k) time.



Chapter 3

Algebraic Parameter
Characterization

Projective transformations constitute a parameterized transformation class ac-
cording to Definition 2.8. This means, e. g., that points P in the uncountable set
R8 describe projective transformations.

On the other hand, the dictionary D[m](A) of all size m transformations of a
digital image A is finite. To obtain the transformed image f(A)[m] for a projective
transformation f , every index (i, j) in z(m) is transformed to (x, y) = f−1(i, j)
and then interpolation c = AI(x, y) = A([x], [y]) is evaluated to assign the color
value f(A)[m](i, j) = c. It is plain that every point (x, y) falls into the area
of exactly one of the pixels in Pix[n] of image A. Imagine some very small
perturbation put on f−1 resulting in f ′−1. The points f−1(i, j) and f ′−1(i, j)
differ only slightly for all (i, j) causing that f−1(i, j) and f ′−1(i, j) fall into the
same pixel of Pix[n] for all (i, j) ∈ z(m). But then it is still the case that
f(A)[m] = f ′(A)[m].

Consequently, there are classes of points in the parameter space responsible
for the same transformation of A and this chapter describes their structure. The
convenient structure of Pix[n], the pixels of A which are simple square areas
bounded by vertical and horizontal lines, forms the basis of the parameter space
partition. Based on the linear pixel boundary the chapter introduces a set E
of linear polynomials to partition the parameter space R8 into a finite number
of subspaces ϕ1, ϕ2, . . . , ϕr. Then ϕ1, ϕ2, . . . , ϕr are shown to form exactly the
mentioned classes of points in the parameter space. In fact, points P and P ′,
which fall into the same subspace ϕk for some k ∈ {1, . . . , r}, correspond to
transformations f and f ′ that transform the image A in the same way, i. e.,
f(A)[m] = f ′(A)[m].

The chapter concludes by providing a number of properties for the classes
ϕ1, ϕ2, . . . , ϕr.

33
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3.1 A Parameter Space Partition

This section describes conditions for projective transformations f−1 and f ′−1 that
are responsible for different transformed images f(A)[m] and f ′(A)[m]. Hence, if
there is an index (i, j) ∈ z(m) with

AI(f
−1(i, j)) 6= AI(f

′−1(i, j))

the ambition of the section is to explain how the parameters P and P ′ of the
transformations f and f ′ are differentiated.

A necessary condition for the above inequality is that f−1(i, j) and f ′−1(i, j)
fall into different pixels pix(i′, j′) and pix(i′′, j′′) of Pix[n], where n is the size of
A. In that case AI(f

−1(i, j)) 6= AI(f
′−1(i, j)) if and only if A(i′, j′) 6= A(i′′, j′′),

i. e., if the colors of the pixels pix(i′, j′) and pix(i′′, j′′) differ. However, the aim
is to find a natural property that is independent of specific color values of A and
consequently, the focus remains just on the necessary condition:

Question 3.1. Let m,n ∈ N be natural numbers, (i, j) be an index in support
z(m) and pix(i′, j′) ∈ Pix[n] be a pixel given by (i′, j′) in the support z(n). Which
points P ∈ R8 describe an inverse projective transformation f−1 = P (P ) with
f−1(i, j) ∈ pix(i′, j′)?

To answer the question consider for all i′, j′ ∈ {−n, . . . , n+ 1}

v+
i′ =

n⋃
j=−n

n⋃
i=i′

pix(i, j) and v−i′ =
n⋃

j=−n

i′−1⋃
i=−n

pix(i, j),

h+
j′ =

n⋃
i=−n

n⋃
j=j′

pix(i, j) and h−j′ =
n⋃

i=−n

j′−1⋃
j=−n

pix(i, j),

subspaces of R2 that describe the vertical and horizontal borders of pixels Pix[n].
Every space v+

i′ contains all pixels pix(i, j) with i ≥ i′ and v−i′ the pixels pix(i, j)
with i < i′. Accordingly, h+

j′ and h−j′ describe the horizontal partition of Pix[n]
into pix(i, j) with j ≥ j′ and j < j′, respectively. Clearly, it is true that pix(i, j) =
v+
i ∩ v−i+1 ∩ h+

j ∩ h−j+1.
The following characterizes parameters P = (p1, . . . , p8)T of inverse projective

transformations f−1 = P (P ) with respect to the location of transformed points
f−1(i, j) within the grid of spaces described by v+

i′ , v
−
i′ and h+

j′ , h
−
j′ .

But first recall that by Definition 2.8 the mapping P [F ] is not defined on
points P = (p1, . . . , p8)T with p1p5 = p2p4 or p1p5 + p2p6p7 + p3p4p8 = p1p6p8 +
p2p4+p3p5p7. Moreover, some projective transformations are undefined on certain
indices (i, j) ∈ z(m). Particularly, this happens for points P = (p1, . . . , p8)T with
ip7+jp8+1 = 0. Confronted with the subsequent analysis of the parameter space,
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points that fulfill one of the three conditions exhibit some unpleasant difficulties.
Accordingly, such points are called invalid:

Definition 3.2. A point P ∈ R8 is called invalid for a support z(m),m ∈ N if
P is a root of at least one of the polynomials

e1(p1, . . . , p8) = p1p5 − p2p4,

e2(p1, . . . , p8) = p1p5 − p1p6p8 − p2p4 + p2p6p7 + p3p4p8 − p3p5p7

or

e[i, j](p1, . . . , p8) = ip7 + jp8 + 1, (i, j) ∈ z(m),

i. e., if e1(P ) = 0 or e2(P ) = 0 or e[i, j](P ) = 0 for some (i, j) ∈ z(m). Otherwise
P is called valid for z(m).

If the support z(m) is clear from the context an (in)valid point for z(m) is called
(in)valid for short. Clearly, every invalid point is contained in one of the hyper-
surface h0(e1) or h0(e2) or h0(e[i, j]) for some (i, j) ∈ z(m). For a start, this
section disregards such exceptional points to make arguments easier to follow.
Later, Section 3.2 demonstrates a convenient approach of handling the difficul-
ties introduced by them.

The following definition provides the set of linear polynomials that define the
partition of the parameter space:

Definition 3.3. For natural numbers m,n ∈ N and for all (i, j) ∈ z(m), all
i′ ∈ {−n, . . . , n+ 1}, respectively all j′ ∈ {−n, . . . , n+ 1}, the linear polynomials

`viji′(p1, . . . , p8) = ip1 + jp2 + p3 + (0.5i− ii′)p7 + (0.5j − ji′)p8 + (0.5− i′) and

`hijj′(p1, . . . , p8) = ip4 + jp5 + p6 + (0.5i− ij′)p7 + (0.5j − jj′)p8 + (0.5− j′)

are collected in the set

E [m,n] = {`viji′ | (i, j) ∈ z(m),−n ≤ i′ ≤ n+ 1} ∪
{`hijj′ | (i, j) ∈ z(m),−n ≤ j′ ≤ n+ 1}.

For ? ∈ {v, h} each of these linear polynomials `?ijk ∈ E [m,n] describes a partition
of the parameter space R8 into two half spaces H+(`?ijk) and H−(`?ijk). Clearly,
every point P in the parameter space R8 is either in the one or the other subspace
for every polynomial. It turns out that these locations describe the complete
behavior of f−1, i. e., for all (i, j) ∈ z(m) they determine the pixel in Pix[n] that
contains f−1(i, j). The following lemma makes this connection formal:
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Lemma 3.4. Let m,n ∈ N be natural numbers to define the support z(m) and
the pixels Pix[n]. Furthermore let P ∈ R8 be a valid point for support z(m). If
(i, j) is an index in z(m) and k1, k2 are integers with −n ≤ k1 < k2 ≤ n+ 1 then
it is true that the inverse projective transformation f−1 = P (P ) ∈ Fp represented
by P maps (i, j) to a point f−1(i, j) in the vertical pixel band v+

k1
∩v−k2 if and only

if
P ∈

(
H+(`vijk1) ∩H

−(`vijk2)
)
∪
(
H+(−`vijk1) ∩H

−(−`vijk2)
)
.

Analogously, the point f−1(i, j) falls into the horizontal pixel band h+
k1
∩h−k2 if and

only if

P ∈
(
H+(`hijk1) ∩H

−(`hijk2)
)
∪
(
H+(−`hijk1) ∩H

−(−`hijk2)
)
.

Proof. This proof shows only that f−1(i, j) is a point in the given vertical band
of pixels. That f−1(i, j) falls also into the horizontal band works analogously.

If P = (p1, . . . , p8)T is the parameter of f−1 = P (P ) then let (x, y) = f−1(i, j)
be the transformed point of (i, j). By Definition 2.8 this means

x =
ip1 + jp2 + p3

ip7 + jp8 + 1
.

Since P is valid it is true that the denominator e[i, j](P ) of the above fraction is
not zero and thus, let q = ip7 + jp8 + 1 6= 0.

It is true that x ∈ v+
k1
∩ v−k2 if and only if k1 − 0.5 ≤ ip1+jp2+p3

q
< k2 − 0.5. By

multiplying with q this is true if and only if q > 0 and

q(k1 − 0.5) ≤ ip1 + jp2 + p3 < q(k2 − 0.5),

which is equivalent to

ip1 + jp2 + p3 + (0.5i− ik1)p7 + (0.5j − jk1)p8 + (0.5− k1) ≥ 0 and

ip1 + jp2 + p3 + (0.5i− ik2)p7 + (0.5j − jk2)p8 + (0.5− k2) < 0,

or if q < 0 and

q(k1 − 0.5) ≥ ip1 + jp2 + p3 > q(k2 − 0.5),

which is equivalent to

−ip1 − jp2 − p3 − (0.5i− ik1)p7 − (0.5j − jk1)p8 − (0.5− k1) ≥ 0 and

−ip1 − jp2 − p3 − (0.5i− ik2)p7 − (0.5j − jk2)p8 − (0.5− k2) < 0.

In other words, x ∈ v+
k1
∩ v−k2 if and only if q > 0 and P ∈ H1 = H+(`vijk1) ∩

H−(`vijk2) or if q < 0 and P ∈ H2 = H+(−`vijk1) ∩H
−(−`vijk2).
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The proof is completed by showing that q > 0 if P ∈ H1 and q < 0 if P ∈ H2.
For this reason notice that `vijk1(P ) − `vijk2(P ) = kq with k = k2 − k1 being a
positive number. In case of P ∈ H1, i. e., if `vijk1(P ) ≥ 0 and `vijk2(P ) < 0, then
kq > 0 which implies q > 0. Reversely, if P is in H2 where `vijk1(P ) ≤ 0 and
`vijk2(P ) < 0, then trivially q < 0.

The lemma helps to answer the question raised earlier in this section. Re-
member, for every (i′, j′) ∈ z(n) the pixel pix(i′, j′) ∈ Pix[n] is exactly the
intersection

pix(i′, j′) = v+
i′ ∩ v

−
i′+1 ∩ h

+
j′ ∩ h

−
j′+1,

the overlapping of a vertical and a horizontal band of pixels. The question,
whether f−1(i, j) falls into the pixel pix(i′, j′) can be answered positively if and
only if the point P determining f−1 = P (P ) is contained in both intersections(

H+(`viji′) ∩H−(`viji′+1)
)
∪

(
H+(−`viji′) ∩H−(−`viji′+1)

)
and(

H+(`hijj′) ∩H−(`hijj′+1)
)
∪

(
H+(−`hijj′) ∩H−(−`hijj′+1)

)
.

Next, Lemma 3.4 enables a complete characterization of the parameter space
partition into the subspaces ϕ1, . . . , ϕr, such that any two points P and P ′ in
the same subspace ϕk, k ∈ {1, . . . , r} give f−1 = P (P ) and f ′−1 = P (P ′) with
f(A)[m] = f ′(A)[m]. In particular, ϕ1, . . . , ϕr are defined by the polynomials
E [m,n]:

Corollary 3.5. For given natural numbers m,n ∈ N let E [m,n] be the set of
linear polynomials of Definition 3.3 and let H[E [m,n]] be the corresponding ar-
rangement and ϕ ∈ H[E [m,n]] be any contained face. Furthermore, let P and P ′

be two valid points in ϕ. Then it is true that the inverse projective transforma-
tions f−1 = P (P ) and f ′−1 = P (P ′) fulfill

f−1(i, j) ∈ pix(i′, j′)⇔ f ′−1(i, j) ∈ pix(i′, j′).

for every (i, j) ∈ z(m) and all (i′, j′) ∈ z(n).

Proof. The statement follows directly from Lemma 3.4. Let P and P ′ be points
in R8 and let them represent f−1 = P (P ) and f ′−1 = P (P ′).

If P and P ′ are contained in the same face ϕ ∈ H[E [m,n]],
then for all (i, j) ∈ z(m) and all i′ ∈ {−n, . . . , n + 1} (all
j′ ∈ {−n, . . . , n + 1}) it is true that P and P ′ are either both contained in(
H+(`viji′) ∩H−(`viji′+1)

)
∪

(
H+(−`viji′) ∩H−(−`viji′+1)

)
(respectively, in(

H+(`hijj′) ∩H−(`hijj′+1)
)
∪
(
H+(−`hijj′) ∩H−(−`hijj′+1)

)
) or both are not

contained in this subspaces.
Particularly, this means that f−1(i, j) falls into the pixel band intersection

pix(i′, j′) = v+
i′ ∩ v

−
i′+1 ∩ h

+
j′ ∩ h

−
j′+1 if and only if f ′−1(i, j) does.
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For short, the arrangement H[E [m,n]] is simply denoted by H[m,n]. Then,
the corollary gives a strong connection between the faces of the arrangement
H[m,n] and the dictionary D[m](A) for any given image A of size n. It states that
two points P and P ′ coming from the same face correspond to the same image in
D[m](A), because they represent inverse projective transformations f−1 and f ′−1

with f(A)[m] = f ′(A)[m]. An impression of H[m,n] can be revealed from Figure
3.1 that shows Hχ[2, 2], a cut of the arrangement H[m,n] with m = n = 2 in the
slice χ =

⋂6
i=1 h

0(`i), the intersection of hyperplanes given by the polynomials

`1(p1, . . . , p8) = p3, `2(p1, . . . , p8) = p4 + p2, `3(p1, . . . , p8) = p5 − p1,
`4(p1, . . . , p8) = p6, `5(p1, . . . , p8) = p7, `6(p1, . . . , p8) = p8.

In fact, χ is formed by all points P describing projective transformations that
consist of scaling and rotation only. Hence χ is the same slice as χsr defined in
the next chapter.

3.2 Properties of Faces

Before the next chapter develops algorithms for image matching by the use of the
new parameter space characteristic, this section studies some structural proper-
ties of H[m,n]. This means, a bunch of useful properties of the faces in H[m,n]
are discussed to be used in algorithmic approaches to projective image matching.
The first part lists a number of face characteristics which imply that every face
in H[m,n] has at least a small amount of volume in R8. Then the second part
provides the existence of at least one valid point in every face of H[m,n]. Finally
the last part combines the results to provide a very simple manner of enumerat-
ing the transformed images in the dictionary D[m](A) for arbitrary images A of
size n.

3.2.1 Faces have Volume

To provide a lower bound on the faces volume the next lemma shows, as an
intermediate step, that all faces in H[m,n] have a positive volume at all. This
is not at once clear from the definition. For example, if E [m,n] contains two
polynomials `1 and `2 with `1(P ) = −`2(P ) for all P ∈ R8 then the intersection
H+(`1) ∩ H+(`2) coincides with the hyperplane h0(`1), a space of zero volume.
Consequently, all faces of H[m,n] situated in the intersection H+(`1) ∩ H+(`2)
would have zero volume, too. There are even more complex cases of possible
half space intersection that leads to zero volume faces in H[m,n]. The following
lemma proves all of them impossible:

Lemma 3.6 (Proof in Section 3.3). Let m,n be natural numbers, H[m,n] be the
arrangement of parameter space R8 and let ϕ be any face in H[m,n]. There is a
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1-1

1
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2-2

2
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Figure 3.1: A slice χ given by p4 = −p2, p5 = p1, p3 = p6 = p7 = p8 = 0 which
exactly describes all combinations of scaling and rotation. The figure shows the
arrangement Hχ[2, 2] given by the polynomials E [2, 2]. For an image A of size
two, like the one in Figure 2.1, each face corresponds to one element of dictionary
D[Fsr, 2](A) shown in Figure 2.2. Particularly, the black face corresponds to the
double-framed transformation of A Figure 2.2 because it contains the (white)
point representing the inverse of a scaling of 0.83 and a rotations with 35◦.

point P ∈ ϕ and a real radius r > 0 such that every point Q with ‖P − Q‖ < r
belongs to ϕ, too. Consequently, every face in H[m,n] has a positive volume.

Providing a lower bound on the faces volume still requires a number of further
intermediate steps. The following establishes a bounding box in R8 that contains
at least a fraction of any face inH[m,n]. The idea is to choose a box that contains
all vertices defined by the intersection of hyperplanes given by polynomials in
E [m,n]. Every face that is incident to some vertex is then intersected by the box.
That such a bounding box intersects every face would follow from the following
lemma:
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Lemma 3.7 (Proof in Section 3.3). Let m,n ∈ N be natural numbers, H[m,n] be
the arrangement of the parameter space and let ϕ be any face in H[m,n]. Then
there is a set {`1, . . . , `8} of eight linearly independent polynomials in E [m,n],
such that the intersection

h0(`1) ∩ . . . ∩ h0(`8)

is a vertex contained in the boundary ϕ̂ of ϕ.

Because all faces are incident to some vertex defined by hyperplane intersec-
tion, there exists a hypercube that serves as a bounding box, i. e., which intersects
every face of H[m,n]. The hypercube just makes sure that it contains a little
more than every vertex. This gives the first structural property of E [m,n]:

Theorem 3.8 (Bounding-Box Property, Proof in Section 3.3). Let m,n ∈ N
be natural numbers and H[m,n] be the arrangement of parameter space R8 given
by m and n. If r = 1.5 · 107m6n3 then the hypercube Qr of radius r centered at
the origin contains at least one point from every face in H[m,n].

By the theorem it is reasonable to restrict further constructions to the hypercube,
which is subsequently denoted by Qm,n, i. e., Qm,n = Q1.5·107m6n3 . Accordingly, it
is possible to consider a bounded version of the arrangement:

HQm,n [m,n] = {ϕ ∩Qm,n | ϕ ∈ H[m,n]}.

The setHQm,n [m,n] contains at least a fraction of every face inH[m,n]. However,
all faces of HQm,n [m,n] are of finite volume because Qm,n has finite volume. That
means they must be bounded by hyperplanes from all sides. The faces that have
been of infinite volume inH[m,n] are now limited by the hyperplanes which define
Qm,n. This fact implies a certain regular structure of the faces in HQm,n [m,n]
which will be used to infer the lower bound on the faces volume. In particular,
the extremal points of every face are vertices. Because of the dimension of R8

this in turn means that the boundary of every face has a minimum number of
nine vertices:

Lemma 3.9 (Proof in Section 3.3). Let m,n ∈ N be natural numbers, HQm,n [m,n]
be the bounded arrangement and ϕ be any face in HQm,n [m,n]. There are at
least nine linearly independent vertices V1, . . . , V9 defined by the intersection of
hyperplanes given by the polynomials in E [m,n] and the polynomials that describe
Qm,n such that the boundary ϕ̂ of ϕ contains V1 to V9.

The following proves a lower positive bound on the volume of the faces con-
tained in HQm,n [m,n]:

Lemma 3.10 (Proof in Section 3.3). Let m,n ∈ N be natural numbers,
HQm,n [m,n] be the bounded arrangement and ϕ be any face in HQm,n [m,n].
Then ϕ contains an 8-ball with radius

r ≥ 1

4.5 · 108m7n3
.
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Since the faces in HQm,n [m,n] are subspaces of those in H[m,n] the above bound
can simply be transfered to the faces of H[m,n]. This gives the second funda-
mental structural property:

Corollary 3.11 (Volume Property, Without proof). Let m,n ∈ N be natural
numbers, H[m,n] be the arrangement of the parameter space and ϕ be any face
in H[m,n]. Then ϕ contains an 8-ball with radius

r ≥ 1

4.5 · 108m7n3
.

3.2.2 Faces have Valid Points

The question in focus of this part is which faces of H[m,n] are relevant for
the dictionary D[m](A) of projective image transformations of a given image
A. Theoretically it would be possible that there are faces ϕ which contain only
points P = (p1, . . . , p8)T that are invalid according to Definition 3.2. Such a face
ϕ would not contribute a meaningful projective transformation of A.

This part of the section shows that each face in H[m,n] has a valid point P
for support z(m). The idea behind that statement is simple. Remember that
every ϕ ∈ H[m,n] has a positive volume. But any surface in R8 has zero volume.
Consequently, a finite number of surfaces can never eat up the whole volume of
ϕ and there remain points which fulfill neither e1(P ) = 0 nor e2(P ) = 0 nor
e[i, j](P ) = 0 for any (i, j) ∈ z(m). The following lemma states this formal:

Lemma 3.12 (Proof in Section 3.3). Let m,n ∈ N be natural numbers, H[m,n] be
the arrangement of the parameter space and ϕ be any face in H[m,n]. Moreover,
let {q1, . . . , qu} be a finite set of arbitrary (not necessarily linear) polynomials.
Then there is a point P ∈ ϕ such that P 6∈ h0(qk) for all k ∈ {1, . . . , u}.

The general condition stated in the lemma can now be used to conclude the third
basic structural property of faces in H[m,n]:

Corollary 3.13 (Valid-Points Property, Without proof). Let m,n ∈ N be
natural numbers, H[m,n] be the arrangement of the parameter space and ϕ be
any face in H[m,n]. Then there is a valid point P ∈ ϕ.

The corollary means that every face contains a point P which represents an
inverse projective transformation f−1 that is defined on all indices (i, j) ∈ z(m).
This means that there is a natural connection between the faces in H[m,n] and
the dictionary D[m](A) of image transformations for a given image A of size n. In
the next chapter this connection is formalized and applied to design polynomial
time projective image matching algorithms. Figure 3.2 (a) shows valid points for
all faces in a small subspace of R8.
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Figure 3.2: (a) Valid points for all faces of Hχ[2, 2] in the slice χ of Figure 3.1.
(b) The lattice L[2, 2] restricted to χ. Despite the regular structure, every face
is hit by at least one lattice point. For visual convenience, parameters have been
changed to L = 1 and d = 0.05.

3.2.3 Sampling Representative Points

The last part of this section affiliates the previous three structural properties of
faces in H[m,n] to design a mathematical tool to be applied in projective image
matching algorithms. It provides a lattice L such that every face ϕ ∈ H[m,n] is
hit by at least one valid point P ∈ L. The structure of the lattice is demonstrated
in Figure 3.2 (b).

Definition 3.14. For given natural numbers m,n ∈ N let L = 3 · 1016m13n6 and
d = (1.5 · 109m7n3 + 0.5)−1. Then L[m,n] is the lattice that exactly contains all
points 

p1

p2

p3

p4

p5

p6

p7

p8


= d ·



t1 + 0.125L−2

t2
t3
t4

t5 + 0.5
t6
t7
t8


for combinations of integers t1, . . . , t8 ∈ {−L, . . . , L}. For all such integer com-
binations t1, . . . , t8 let L[m,n](t1, . . . , t8) denote the point P given by t1, . . . , t8.
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The points in L[m,n] have the following properties:

Theorem 3.15 (Lattice Property, Proof in Section 3.3). Let m,n ∈ N. Then

1. for every face ϕ ∈ H[m,n] there is a point P ∈ L[m,n] with P ∈ ϕ,

2. all points P ∈ L[m,n] are valid for support z(m) and

3. the cardinality of L[m,n] is less than 10132 ·m104n48.

3.3 Technical Proofs

The Proof of Lemma 3.6

Proof. Begin with the following property: For every point P ∈ ϕ there is a
vector V (P ) = (0, 0, r(P ), 0, 0, s(P ), 0, 0) with r(P ), s(P ) ∈ R+ such that for all
t ∈ [0, 1) every point

Q = P + t · V (P )

belongs to ϕ.
By definition ϕ is the intersection Hs1(`1) ∩ . . . ∩Hsw(`w) of the half spaces

defined by the polynomials `1, . . . , `w ∈ E [m,n] and the signs s1, . . . , sw ∈ {+,−}.
For every k ∈ {0, . . . , w} let ϕk be the face which is given by the intersection
Hs1(`1) ∩ . . . ∩ Hsk(`k) of only k hyperplanes. Clearly, ϕ ⊆ ϕk for all k ∈
{0, . . . , w}. Then, the above statement is shown via induction over the number
k:

k = 0: Then ϕ0 = R8 is the whole parameter space and thus, choose for every
point P simply r0(P ) = s0(P ) = 1.

k > 0: Assume the validity of the argument for the face ϕk−1. Hence, for every
point P in ϕk−1 there are values rk−1(P ), sk−1(P ) > 0 such that all points
Q defined as above are also in ϕk−1.

Adding the half space Hsk(`k) gives ϕk = ϕk−1 ∩ Hsk(`k) by excluding a
(possibly empty) set of points from ϕk−1. But since ϕ 6= ∅ and ϕ = ϕw ⊆ ϕk
there are points in ϕk. The proof shows for every point P in ϕk that the
claimed condition still holds. So assume that P = (p1, . . . , p8)T and that
rk−1(P ) is the value defined for k − 1 hyperplanes.

First assume that `k = `viji′ .

sk = +: Then P ∈ H+(`k) which means

0 ≤ ip1 + jp2 + p3 + (0.5i− ii′)p7 + (0.5j − ji′)p8 + (0.5− i′).

But since every point Q = P+t·V (P ) has an even larger p3-component
it follows that Q ∈ H+(`k) as well and subsequently it follows that
Q ∈ ϕk. Consequently, let rk(P ) = rk−1(P ) and sk(P ) = sk−1(P ).
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sk = −: It is true that P ∈ H−(`k) which means

0 > ip1 + jp2 + p3 + (0.5i− ii′)p7 + (0.5j − ji′)p8 + (0.5− i′).

In this case define

rk(P ) = min{rk−1(P ),

− ip1 − jp2 − p3 − (0.5i− ii′)p7 − (0.5j − ji′)p8 − (0.5− i′)}

and let sk(P ) = sk−1(P ). Clearly, rk(P ) > 0 and all points Q obtained
by the new rk(P ) and sk(P ) are also in H−(`k) and by that in ϕk.

The case of `k = `hijj′ works analogously with sk(P ).

The claim holds also for ϕ = ϕw. Since ϕ is not empty, consider any contained
point P . If there is a number r > 0 such that every point Q with ‖P − Q‖ < r
is in ϕ, then the argument is complete.

Otherwise consider

Q1 = P + 0.5 · V (P ) and

Q2 = P + 0.75 · V (P ).

By the above argumentation it is true that Q1, Q2 ∈ ϕ. Assume that even for
Q1 there is no number r > 0 such that all points Q with ‖Q1 −Q‖ < r are in ϕ.
Then, there must be a polynomial `k with k ∈ {1, . . . , w} such that `k(Q1) = 0.

Assume again that `k = `viji′ for some (i, j) ∈ z(m) and −n ≤ i′ ≤ n + 1.
Then

0 = ip1 + jp2 + (p3 + 0.5r(P )) + (0.5i− ii′)p7 + (0.5j − ji′)p8 + (0.5− i′)

and thus, `k(P ) < 0 and `k(Q2) > 0. This means P ∈ H−(`k) and Q2 ∈ H+(`k).
But then P and Q2 are in different half spaces with respect to `k although they
both belong to ϕ. This is a contradiction. Analogously, one can show that `k
cannot be `hijj′ for any (i, j) ∈ z(m) and −n ≤ j′ ≤ n+ 1. Thus, an environment
of positive volume around Q1 belongs to ϕ.

The Proof of Lemma 3.7

Proof. Assume the contrary, i. e., that there is a face ϕ, which has no such vertex
in its boundary. The face ϕ is separated from other faces by hyperplanes. Con-
sider χ, an intersection of a maximum number k of linearly independent hyper-
planes in the boundary of ϕ. According to Definition 2.17 χ = h0(`1)∩. . .∩h0(`k)
is a (8− k)-slice. The slice χ is at least a single hyperplane if k = 1. Because χ
is not a vertex it follows also that k < 8. This means that χ is either a line, a
plane, or a slice of higher dimension.
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If there is a hyperplane h0(`) linearly independent from h0(`1), . . . , h0(`k)
then h0(`) intersects χ. Even if h0(`) does not belong to the boundary of ϕ
its existence implies another linearly independent hyperplane h0(`′) which is a
boundary hyperplane of ϕ. This in turn would imply that k is not the maximum
cardinality and thus a contradiction to the assumption that ϕ̂ contains no vertex.

The following will show the existence of h0(`). Because 1 ≤ k < 8 it is true
that the intersection χ contains a point S = (s1, . . . , s8)T and a line L = {P | P =
S+tV, t ∈ R} that starts at S and follows some non-zero vector V . If there exists
a hyperplane h0(`) defined by ` ∈ E [m,n] that intersects the line L in exactly
one point then h0(`) is linearly independent to h0(`1), . . . , h0(`k).

Let V = (v1, . . . , v8)T . If at least one of v1, v2, v3, v7, v8 is non-zero, then
consider the hyperplane h0(`) defined by ` = `viji′ with

`viji′ = ip1 + jp2 + p3 + (0.5i− ii′)p7 + (0.5j − ji′)p8 + (0.5− i′)

for random −m ≤ i, j < m and −n ≤ i′ ≤ n + 1. The intersection between L
and h0(`viji′) is defined by t with

t = −N
D

= −is1 + js2 + s3(0.5i− ii′)s7 + (0.5j − ji′)s8 + (0.5− i′)
iv1 + jv2 + v3 + (0.5i− ii′)v7 + (0.5j − ji′)v8

.

If this fraction has a non-zero denominator D and thus, determines t to one value
of R, then t describes the intersection point P = S + tV . This is certainly the
case if only v3 6= 0.

Otherwise, if D = 0 then L is either a subspace of the hyperplane h0(`) or
they do not intersect at all. However, in that case at least one v1, v2, v7 or v8 is
non-zero and then there is another hyperplane which intersects L. Particularly,
if

• v1 6= 0 or v7 6= 0 then h0(`v(i+1)ji′)] or if

• v2 6= 0 or v8 6= 0 then h0(`vi(j+1)i′)]

represents a hyperplane which surely intersects L in a unique point.
If all, v1 = v2 = v3 = v7 = v8 = 0, then at least one v4, v5 or v6 is not zero.

Consider the polynomials

` = `hijj′ = ip4 + jp5 + p6 + (0.5i− ij′)p7 + (0.5j − jj′)p8 + (0.5− j′)

for random −m ≤ i, j < m and −n ≤ j′ ≤ n + 1. The intersection points are
determined by

t = −N
D

= −is4 + js5 + s6 + (0.5i− ij′)s7 + (0.5j − jj′)s8 + (0.5− j′)
iv4 + jv5 + v6

.

Again, if D 6= 0 then the fraction determines t. Otherwise, if D is zero, then
at least one v4 or v5 is not zero. Consequently, either h0(`h(i+1)jj′) or h0(`hi(j+1)j′)
gives an intersecting hyperplane.
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The Proof of Theorem 3.8

Proof. Let ϕ ∈ H[m,n]. By Lemma 3.7 it is true that ϕ’s boundary contains at
least one vertex V defined by hyperplane intersection. If V is not part of ϕ, then
every ε-environment around V with ε > 0 intersects ϕ. Hence, if the hypercube of
the lemma contains only an ε more than every vertex defined by the intersection
of hyperplanes given by polynomials in E [m,n], than the lemma is true.

According to Definition 2.17 every vertex V = (p1, . . . , p8)T is the intersec-
tion of eight linearly independent hyperplanes h0(`1), . . . , h0(`8) of polynomials
`1, . . . , `8 ∈ E [m,n]. Consequently, `k(V ) = 0 for all 1 ≤ k ≤ 8. This remains true
if multiplied by two, i. e., 2`k(V ) = 0. Hence, if `k = `viji′ for some (i, j) ∈ z(m)
and i′ ∈ {−n, . . . , n+ 1} then

0 = 2ip1 + 2jp2 + 2p3 + (i− 2ii′)p7 + (j − 2ji′)p8 + (1− 2i′).

Clearly, the above equation has the form

m9 = m1p1 +m2p2 +m3p3 +m4p4 +m5p5 +m6p6 +m7p7 +m8p8

for some integer coefficients m1 to m9. The same holds if `k = `hijj′ for some
(i, j) ∈ z(m) and j′ ∈ {−n, . . . , n + 1}. Hence, for all k ∈ {1, . . . , 8} there are
integers mk,1, . . . ,mk,9 such that it is true

mk,9 = mk,1p1 +mk,2p2 +mk,3p3 +mk,4p4 +mk,5p5 +mk,6p6 +mk,7p7 +mk,8p8.

Consequently, V fulfills

m1,9

m2,9

m3,9

m4,9

m5,9

m6,9

m7,9

m8,9


=



m1,1 m1,2 m1,3 m1,4 m1,5 m1,6 m1,7 m1,8

m2,1 m2,2 m2,3 m2,4 m2,5 m2,6 m2,7 m2,8

m3,1 m3,2 m3,3 m3,4 m3,5 m3,6 m3,7 m3,8

m4,1 m4,2 m4,3 m4,4 m4,5 m4,6 m4,7 m4,8

m5,1 m5,2 m5,3 m5,4 m5,5 m5,6 m5,7 m5,8

m6,1 m6,2 m6,3 m6,4 m6,5 m6,6 m6,7 m6,8

m7,1 m7,2 m7,3 m7,4 m7,5 m7,6 m7,7 m7,8

m8,1 m8,2 m8,3 m8,4 m8,5 m8,6 m8,7 m8,8


·



p1

p2

p3

p4

p5

p6

p7

p8


,

hence N = M ·V with integer vector N and integer matrix M . Solving this system
of equations gives that p1 = u1

det(M)
, . . . , p8 = u8

det(M)
are fractions of integers u1 to

u8 and integer det(M), the determinant of M . For all 1 ≤ k ≤ 8 the form of uk
is

uk = m1,9m̃k,1 + . . .+m8,9m̃k,8

where every m̃ is an entry of M ’s adjunct and by definition a seven by seven
sub determinant of M . Consequently, m̃ is a sum of 5040 products of each seven
integer entries of M . Thereby each product fixes seven of M ’s eight columns and
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selects one entry from each fixed column. Thus, for all k ∈ {0, . . . , 8} it is true
that

|mk,1| ≤ 2m,

|mk,2| ≤ 2m,

|mk,3| ≤ 2,

|mk,4| ≤ 2m,

|mk,5| ≤ 2m,

|mk,6| ≤ 2,

|mk,7| ≤ m(2n+ 1) and

|mk,7| ≤ m(2n+ 1).

For n ≥ 4 every m̃ is an integer with absolute value bounded from above by
106m6n2. Because |mk,9| ≤ 2(n+ 1) it follows that |uk| ≤ 1.5 · 107m6n3.

The absolute value of V ’s coordinates is not larger than 1.5 ·107m6n3 because
(1) the coordinates of V are uk

det(M)
, (2) an upper bound on |uk| is known and (3)

det(M) ≥ 1.

The Proof of Lemma 3.9

Proof. By the Bounding-Box Property 3.8 the volume of ϕ is finite. It is also not
zero by Lemma 3.6. Since ϕ is an eight-dimensional polyhedron the lemma is im-
plied by the following simple property: A two-dimensional polyhedron is a poly-
gon, e. g., it is bounded by at least three lines which share at least three vertices.
A three-dimensional polyhedron is bounded by at least four two-dimensional poly-
hedron which share at least four vertices. The continued argumentation gives that
an eight-dimensional polyhedron is bounded by at least nine seven-dimensional
polyhedron which share nine vertices.

Alternatively, notice that any combination of eight linearly independent ver-
tices V1, . . . , V8 are contained in an eight-dimensional hyperplane h0(`) given by
a polynomial

`(p1, . . . , p8) = m1p1 + . . .+m8p8 +m9

with m1 to m9 being the solution of the following system of linear equations

−m9

−m9

−m9

−m9

−m9

−m9

−m9

−m9


=



p1,1 p1,2 p1,3 p1,4 p1,5 p1,6 p1,7 p1,8

p2,1 p2,2 p2,3 p2,4 p2,5 p2,6 p2,7 p2,8

p3,1 p3,2 p3,3 p3,4 p3,5 p3,6 p3,7 p3,8

p4,1 p4,2 p4,3 p4,4 p4,5 p4,6 p4,7 p4,8

p5,1 p5,2 p5,3 p5,4 p5,5 p5,6 p5,7 p5,8

p6,1 p6,2 p6,3 p6,4 p6,5 p6,6 p6,7 p6,8

p7,1 p7,2 p7,3 p7,4 p7,5 p7,6 p7,7 p7,8

p8,1 p8,2 p8,3 p8,4 p8,5 p8,6 p8,7 p8,8


·



m1

m2

m3

m4

m5

m6

m7

m8


,
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where Vk = (pk,1, . . . , pk,8) for all k ∈ {1, . . . , 8}. Hence, if the boundary of ϕ had
at most eight or less linearly independent vertices it would have zero or infinite
volume.

The Proof of Lemma 3.10

Proof. Let V1, . . . , V9 be a subset of linearly independent vertices in ϕ’s boundary
ϕ̂ which exist by Lemma 3.9. According to Definition 2.17 this subset spans an
eight-dimensional space. Every vertex Vk with 1 ≤ k ≤ 9 is on eight boundary
hyperplanes of ϕ defined by some linear polynomials `1, . . . , `8 which are either
in E [m,n] or belong to the hypercube Qm,n. In either case it is true for all
k′ ∈ {1, . . . , 8} that 2`k′(Vk) = 0. By a similar argumentation as in the proof of
the Bounding-Box Property 3.8 it follows that Vk = (pk,1, . . . , pk,8) fulfills

mk,1,9

mk,2,9

mk,3,9

mk,4,9

mk,5,9

mk,6,9

mk,7,9

mk,8,9


=



mk,1,1 mk,1,2 mk,1,3 mk,1,4 mk,1,5 mk,1,6 mk,1,7 mk,1,8

mk,2,1 mk,2,2 mk,2,3 mk,2,4 mk,2,5 mk,2,6 mk,2,7 mk,2,8

mk,3,1 mk,3,2 mk,3,3 mk,3,4 mk,3,5 mk,3,6 mk,3,7 mk,3,8

mk,4,1 mk,4,2 mk,4,3 mk,4,4 mk,4,5 mk,4,6 mk,4,7 mk,4,8

mk,5,1 mk,5,2 mk,5,3 mk,5,4 mk,5,5 mk,5,6 mk,5,7 mk,5,8

mk,6,1 mk,6,2 mk,6,3 mk,6,4 mk,6,5 mk,6,6 mk,6,7 mk,6,8

mk,7,1 mk,7,2 mk,7,3 mk,7,4 mk,7,5 mk,7,6 mk,7,7 mk,7,8

mk,8,1 mk,8,2 mk,8,3 mk,8,4 mk,8,5 mk,8,6 mk,8,7 mk,8,8


·



pk,1
pk,2
pk,3
pk,4
pk,5
pk,6
pk,7
pk,8


,

i. e., Nk = Mk ·Vk with integer vector Nk and integer matrix Mk. Solving this sys-
tem of equations gives that pk,1 =

uk,1
det(Mk)

, . . . , pk,8 =
uk,8

det(Mk)
fractions of integers

uk,1 to uk,8 and determinant det(Mk).
Consider V = V1+...+V9

9
, which is a point of ϕ. Moreover, consider any linear

polynomial ` ∈ E [m,n] and the corresponding hyperplane h0(`). Again 2` is
given by an integer vector N = (n1, . . . , n8)T and some integer number n9 and
still it describes the same hyperplane h0(`) = h0(2`). The distance z between
V = (p1, . . . , p8)T and h0(`) can be measured by

z =

∣∣∣∣p1n1 + . . .+ p8n8 + n9

‖N‖

∣∣∣∣ .
Since V is the weighted sum of V1 to V9 it follows

z =

∣∣∣∣∣∣
(

u1,1
det(M1)

+ . . .+ u9,1
det(M9)

)
n1 + . . .+

(
u1,8

det(M1)
+ . . .+ u9,8

det(M9)

)
n8 + n9

9‖N‖

∣∣∣∣∣∣
≤
∣∣∣∣(u1,1 + . . .+ u9,1)n1 + . . .+ (u1,8 + . . .+ u9,8)n8 + det(Mmax)n9

9 · det(Mmax) · ‖N‖

∣∣∣∣
where det(Mmax) is the determinant of det(M1) to det(M9) with largest absolute
value.
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The numerator of the fraction is obviously integer. But since V is not situated
on any hyperplane, it cannot be zero. Hence, the smallest possible value for the
numerator is one.

The denominator is 9 · det(Mmax) · ‖N‖ with

‖N‖ =
√
n2

1 + n2
2 + n2

3 + n2
4 + n2

5 + n2
6 + n2

7 + n2
8 and

det(Mmax) =
∑
φ∈Φ(8)

(
sgn(φ)

8∏
k=1

mmax,k,φ(k)

)

where Φ(8) contains all permutations of the numbers {1, . . . , 8} and mmax,k,φ(k)

are the entries of the matrix Mmax.
Consider the following cases: If ` is a boundary of Qm,n then ‖N‖ = 4 because

all but one of the values from {n1, . . . , n8} are zero and the remaining one is
two. Moreover, if Mmax contains a row mmax,k,1, . . . ,mmax,k,8 representing a linear
polynomial given by the boundary of Qm,n, then | det(Mmax)| ≤ 289m6n2 because
all but one value from {mmax,k,1, . . . ,mmax,k,8} are zero which implies that only
one of the 40320 elements of sum in det(Mmax) is non-zero. Both cases give a
relatively low estimate. Consequently, it is sound to neglect them for the upper
bound on the denominator.

For all k ∈ {1, . . . , 9} and all k′ ∈ {1, . . . , 8} it is true that

|n1|, |mk,k′,1| ≤ 2m,

|n2|, |mk,k′,2| ≤ 2m,

|n3|, |mk,k′,3| ≤ 2,

|n4|, |mk,k′,4| ≤ 2m,

|n5|, |mk,k′,5| ≤ 2m,

|n6|, |mk,k′,6| ≤ 2,

|n7|, |mk,k′,7| ≤ m(2n+ 1) and

|n8|, |mk,k′,7| ≤ m(2n+ 1).

As a consequence, one easily obtains that

‖N‖ ≤
√

16m2 + 2m2(2n+ 1)2 + 8

≤ 4m+ 3mn ≤ 4mn for n ≥ 4 and

| det(Mmax)| ≤ 40320 · 64m6 · (2n+ 1)2

≤ 40320 · 289m6n2 for n ≥ 8

≤ 1.2 · 107 ·m6n2.

The product gives an upper bound on the denominator’s absolute value. This
implies a lower bound on the minimum distance of V to any hyperplane and thus,
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to the boundary of ϕ. Hence, every face of HQm,n [m,n] contains an 8-ball with
radius

r ≥ 1

4.32 · 108m7n3
.

The Proof of Lemma 3.12

Proof. The face ϕ is the intersection Hs1(`1) ∩ . . . ∩Hsw(`w) of the hyperplanes
defined by the polynomials `1, . . . , `w and the signs s1, . . . , sw. By Lemma 3.6
there is a point P ∈ ϕ and a radius r > 0 such that all points Q with ‖P−Q‖ < r
are also in ϕ.

Induction over z, the number of intersecting surfaces, shows the existence of
Bz, a volumetric subset of ϕ, solely built of points not part of any surface defined
by the polynomials q1, . . . , qz. For z = 0 one obtains B0 = ϕ. Then, for z > 0
assume the existence of a valid subspace Bz−1 ⊆ ϕ for z − 1 surfaces. Consider
the surface defined by qz. If there is no intersection between h0(qz) and Bz−1 then
keep Bz = Bz−1 because all contained point are even not on h0(qz). Otherwise,
if Bz−1 is intersected by h0(qz) then at least one of the sets (h+(qz) ∩ Bz−1) or
(h−(qz) ∩ Bz−1) contains a smaller volumetric subspace. Set Bz to this set and
obtain a volume of valid points.

The Proof of Theorem 3.15

Proof. 1. Let ϕ ∈ H[m,n] be any face. By the Bounding-Box Property 3.8
ϕ is at least partially contained in the hypercube Qm,n with lateral length
2 · 107m6n3. By definition it is true that L[m,n] samples the complete
hypercube with points such that in any of the eight dimensions two points
have a distance of d. Consequently, for every point Q ∈ Qm,n there is a
point P ∈ L[m,n] such that ‖P −Q‖ <

√
8d.

By Lemma 3.10 the face ϕ contains an 8-ball of radius r ≥ (4.5 ·108m7n3)−1

which is also entirely contained in Qm,n. If Q is the center point of this ball,
then a lattice point P ∈ L[m,n] within distance less than

√
8d is found.

Because
√

8d < r, this lattice point belongs to ϕ.

2. Let P = L[m,n](t1, . . . , t8) be the lattice point for some
t1, . . . , t8 ∈ {−L, . . . , L}. The following argues that
P = (d(t1 + 0.125L−2), dt2, dt3, dt4, d(t5 + 0.5), dt6, dt7, dt8)T does not
belong to the forbidden surfaces: Firstly, it is true that

e1(P ) = (2t1t5 − 2t2t4 + t1) · 0.5d2 + (t5 + 0.5) · 0.125L−2d2.

Hence, the value e1(P ) is the sum of an integer multiple of 0.5d2 and d′ =
(t5 + 0.5) · 0.125L−2d2. Obviously, d′ 6= 0, because t5 is integer. Moreover,
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|t5 + 0.5| < L2 implies that |d′| < 0.125d2. Consequently, e1(P ) cannot
be zero because an integer multiple of 0.5d2 cannot compensate the much
smaller amount d′.

Then, it is true that

e2(P ) = (−2t1t6t8 + 2t2t6t7 + 2t3t4t8 − 2t3t5t7 − t3t7) · 0.5d3 +

(2t1t5 − 2t2t4 + t1) · 0.5d2 + ((t5 + 0.5)d−1 − t6t8) · 0.125L−2d3.

This is the sum of an integer multiple of 0.5d3, an integer multiple of 0.5d2

and d′ = ((t5 + 0.5)d−1 − t6t8) · 0.125L−2d3. However, d′ cannot be zero,
because t6t8 is always integer and (t5 +0.5)d−1 never. Nevertheless, it is the
case that |d′| < 0.25d3 because |(t5 + 0.5)d−1 − t6t8| ≤ 2L2. Consequently
e2(P ) 6= 0 by a similar argumentation as above. The sum of integer mul-
tiples of 0.5d3 and 0.5d2 cannot compensate a number with absolute value
as small as d′.

Finally, for all (i, j) ∈ z(m) it is true that

e[i, j](P ) = d(it7 + jt8) + 1.

In case of P on h0(e[i, j]), i. e., when e[i, j](P ) = 0, one obviously finds that

(it7 + jt8) =
−1

d
= −1.5 · 109m7n3 + 0.5,

which would imply that the integer (it7 + jt8) equals the rational number
on the right side. Thus, e[i, j](P ) 6= 0.

3. The bound is trivially obtained by the choice of t1, . . . , t8 in {−L, . . . , L}.
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Chapter 4

Generic Image Matching

This chapter presents the main result of the thesis – a new image matching
technique under projective transformations and nearest neighbor interpolation.
The foundation of the new technique is the discretization of Fp provided by the
previous chapter.

Particularly, to solve the image matching problem under Fp for given images A
and B and distortion measure ω, algorithms can now be constructed to compute
representative transformations f1 to fr, one for every possible image transforma-
tion of A. Determining f1 to fr can basically be done by selecting a set of valid
points P1, . . . , Pr from the faces ϕ1, . . . , ϕr in the arrangement H[m,n]. Using
these transformations, images in the dictionary D[m](A) can be searched and the
distortions ω(f1(A)[m], B), . . . , ω(fr(A)[m], B) can be computed to finally find
an optimal solution.

Such an approach is eligible not only for projective image matching. This
chapter introduces a generic image matching algorithm applicable for many sub-
classes of projective transformations as well, in particular for Fs, Fsr, Ft, F` and
Fa. To build such a general framework, the next section shows how slices in the
parameter space R8 can be used as a way to describe parameter space partitions
for the particular subclasses.

4.1 Parameter Spaces of Projective Subclasses

Section 3.1 provided a partition of R8 in terms of the arrangement H[m,n].
This partition induces for any pair of points P, P ′ ∈ R8 whether the described
projective transformations f−1 = P (P ) and f ′−1 = P (P ′) lead to the same
transformation f(A)[m] = f ′(A)[m] of a given image A of size n.

Recall that the classes Fs, Fr, Fsr, Ft, F` and Fa are included in projective
transformations. Consequently, for each of these classes there exists a subspace of
R8 containing exactly the points representing the transformations in this subclass.
It is clear that the property of the space partition remains the same even for

53
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subspaces of R8. Hence, according to Corollary 3.5, points P, P ′ representing two
transformations from the same subclass, correspond to the same transformation
of A if they belong to the same face in H[m,n].

The parameter subspaces for the classes Fs, Fr, Fsr, Ft, F` and Fa are not
very complex. In all but one case they can be described as one of the slices in R8

introduced in the definition below:

Definition 4.1. Let `1, . . . , `8 be the linear polynomials

`1(p1, . . . , p8) = p1 − 1, `2(p1, . . . , p8) = p2, `3(p1, . . . , p8) = p3,
`4(p1, . . . , p8) = p4 + p2, `5(p1, . . . , p8) = p5 − p1, `6(p1, . . . , p8) = p6,
`7(p1, . . . , p8) = p7, and `8(p1, . . . , p8) = p8.

Based on the polynomials let

χa = h0(`7) ∩ h0(`8),

χ` = h0(`3) ∩ h0(`6) ∩ h0(`7) ∩ h0(`8),

χt = h0(`1) ∩ h0(`2) ∩ h0(`4) ∩ h0(`5) ∩ h0(`7) ∩ h0(`8),

χsr = h0(`3) ∩ h0(`4) ∩ h0(`5) ∩ h0(`6) ∩ h0(`7) ∩ h0(`8) and

χs = h0(`2) ∩ h0(`3) ∩ h0(`4) ∩ h0(`5) ∩ h0(`6) ∩ h0(`7) ∩ h0(`8)

be slices in R8.

Each slice consists of points P in the parameter space R8 representing inverse
projective transformations f−1 = P (P ). But as a slice is only a subspace of
R8 it follows that the subsumption of all such points define a certain subclass
of projective transformations. The following lemma connects the slices with the
respective transformation classes:

Lemma 4.2 (Proof in Section 4.5).

Fa = {f | ∃P ∈ χa such that f−1 = P (P )},
F` = {f | ∃P ∈ χ` such that f−1 = P (P )},
Ft = {f | ∃P ∈ χt such that f−1 = P (P )},
Fsr = {f | ∃P ∈ χsr such that f−1 = P (P )},
Fs = {f | ∃P ∈ χs such that f−1 = P (P )}.

Hence, there is a close connection between natural subclasses of projective trans-
formations and slices in R8. To make this concept more general consider the
following definition:

Definition 4.3. If χ is a slice in R8 then

Fχ =
{
f ∈ Fp

∣∣∣ ∃P ∈ χ such that f−1 = P (P )
}
,

contains all projective transformations corresponding to a point in χ.
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Hence, Fa = Fχa , F` = Fχ`
and so forth. Notice that Fχ is not a transformation

class for every slice χ in R8, e. g., if Fχ is not closed under taking inverses.
One exception that does not fit into this framework are rotations. Although

the parameter points in R8 that represent rotations form a subspace, it is not
possible to describe them simply by a slice. The reason for this is a non-linear
subspace shape. In particular, it is true for the quadratical polynomial

`(p1, . . . , p8) = p2
1 + p2

2 − 1

that the parameter subspace of rotations can be described by

λ = h0(`) ∩ χsr.

Naturally, as rotations are a subset of Fsr their parameter subspace is a one-
dimensional subset of the two-dimensional plane χsr, i. e., a circle of unit radius.

Although the parameter space cannot be described as a slice, most of the
results in this chapter work for λ or can be modified to fit. In [25, 26] the author,
Maciej Lískiewicz and Ragnar Nevries describe the exact proceeding to enable
the generic algorithm of Section 4.3 to work for image matching under rotations.
However, in the given framework the case of rotations is omitted for the generality
of presentation. Only the conclusion of this chapter gives some statements about
the complexity of image matching under Fr.

4.2 A First Polynomial Time Approach

This section develops the polynomial time image matching algorithm for subsets
of projective transformations. This provides the first known polynomial time
algorithm for projective, affine, and linear transformations. The correctness of
the presented approach bases on the following theorem which formulates the
announced connection between H[m,n] and D[m](A). In fact, the mentioned
correspondence between the two sets can be expressed for many subclasses of
projective transformations:

Theorem 4.4. Let m,n ∈ N be natural numbers and A be an image of size n.
Moreover, let χ be any slice in R8 that describes a subset (not necessarily class)
Fχ of projective transformations. Then there is a surjective mapping

Γχ : Hχ[m,n]→ D[Fχ,m](A).

Proof. If D[Fχ,m](A) is empty, then Γχ is undefined for all arguments. Otherwise
let A0 be any image contained in D[Fχ,m](A). Now consider for all faces ϕ ∈
Hχ[m,n] a valid point Pϕ ∈ ϕ if such a point exists. It is straightforward that
Pϕ ∈ χ since ϕ ⊆ χ. Moreover, by definition it is true that (P (Pϕ))−1 ∈ Fχ.
Then let f−1

ϕ = P (Pϕ) and fϕ be the projective transformation with inverse f−1
ϕ .
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For all images A of size n let Γχ be the following mapping:

∀ϕ ∈ Hχ[m,n] : Γχ(ϕ) =

{
fϕ(A)[m] : if Pϕ exists,
A0 : otherwise.

It remains to show that such a Γχ is surjective. For that assume the contrary.
Then there is a transformation f ∈ Fχ such that no face ϕ gives Γχ(ϕ) = f(A)[m].
However, f−1 is a projective transformation represented by a point P in χ and
by Lemma 2.21 and by definition there must be a face ϕ ∈ Hχ[m,n] containing
that point. Thus, the face ϕ contains both P and Pϕ, which implies that the
points are not separated by any hyperplane given by the polynomials in E [m,n].

Under the given assumption that f(A)[m] 6= fϕ(A)[m] there exists (i, j) ∈
z(m) with different colors f(A)[m](i, j) and fϕ(A)[m](i, j).

• Firstly, if neither the point f−1(i, j) nor the point f−1
ϕ (i, j) hit a pixel in

Pix[n], then both f(A)[m](i, j) = 0 and fϕ(A)[m](i, j) = 0. Consequently,
at least one of the points must hit a pixel.

• Secondly, if f−1(i, j) ∈ pix(i′, j′) with pix(i′, j′) ∈ Pix[n] consider the four
polynomials

`viji′ `vij(i′+1) `hijj′ and `hij(j′+1).

By Lemma 3.4 it must be the case that P is either in the space H+(`viji′)∩
H−(`vij(i′+1)) or in H+(−`viji′)∩H−(−`vij(i′+1)). Since P and Pϕ are not sepa-
rated by hyperplanes it follows that Pϕ has to be in one of these subspaces,
too. But then Lemma 3.4 implies that f−1

ϕ (i, j) ∈ v+
i′ ∩ v

−
i′+1.

Analogously, since P is in H+(`hijj′) ∩ H−(`hij(j′+1)) or in

H+(−`hijj′) ∩ H−(−`hij(j′+1)) it must be that Pϕ is in these, too. Again

Lemma 3.4 implies that f−1
ϕ (i, j) ∈ h+

j′ ∩ h
−
j′+1. Hence, f−1

ϕ (i, j) ∈ pix(i′, j′)
which means that both f−1(i, j) and f−1

ϕ (i, j) fall into the same pixel of
Pix[n]. Thus, again f(A)[m](i, j) = fϕ(A)[m](i, j).

• Finally, the case when f−1
ϕ (i, j) hits a pixel pix(i′, j′) in Pix[n] works anal-

ogously.

Thus, the assumption fails and Γχ has to be surjective.

The theorem is applicable to a variety of subsets of projective transformations.
In particular, it can be applied for nearly all cases considered in Section 2.3:

Corollary 4.5 (Without proof). Let m,n ∈ N be natural numbers and A be an
image of size n. Then there is a surjective mapping

Γ : H[m,n]→ D[m](A)
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for projective transformations. Moreover, for all χ ∈ {χa, χ`, χt, χsr, χs} there is
a surjective mapping

Γχ : Hχ[m,n]→ D[Fχ,m](A)

for the subclass Fχ of projective transformations.

The central result presented in Theorem 4.4 can be applied as a toolkit for
an image matching algorithm under subsets of projective transformations. For
example, assume that images A and B of size n respectively m are given. Then
Theorem 4.4 enables a very convenient way to compute the whole dictionary
D[Fχ,m](A). Instead of trying every transformation in Fχ, which is impossible,
an algorithm can simply enumerate all faces ϕ ∈ Hχ[m,n] to obtain A′ = Γχ(ϕ).
Following this procedure, the algorithm yields the whole setD[Fχ,m](A). Finally,
holding D[Fχ,m](A) enables image matching simply by computing δ(A′, B) for
every image A′ in D[Fχ,m](A). This generic approach to the image matching
Problem 2.13 is provided by the abstract algorithm in Figure 4.1, which exploits
the surjectivity of mapping Γχ. The problems with the generic approach are the

Algorithm Abstract Generic Image Matching

Input: Image A of size n and image B of size m.
Parameter: A slice χ in R8, a distortion measure ω : C × C → N.
Output: P ∈ χ with f−1 = P [Fp] (P ) such that δ(f(A)[m], B) is the minimum
over all f ∈ Fχ.

1. Initialize P and δ =∞;
2. for all faces ϕ ∈ Hχ[m,n] do
3. if ϕ contains a valid point then
4. compute a valid point Pϕ ∈ ϕ;
5. get the inverse projective transformation f−1ϕ = P (Pϕ);
6. obtain the transformed image A′ = fϕ(A)[m] by f−1ϕ ;
7. if δ > δ(A′, B) then update P = Pϕ and δ = δ(A′, B);
8. end if
9. end for

10. return parameter P ;

Figure 4.1: An abstract generic image matching algorithm.

unhandled algorithmic challenges to compute exactly all faces ϕ in Hχ[m,n] and
then to obtain valid points Pϕ which are in ϕ. The next section shows how the
faces and its representative points can be found algorithmically. For an example
Figure 3.2 presents a set of points eligible for the subspace χsr of R8 that contains
all combinations of scaling and rotation.

For the case of projective transformations there is, however, a very convenient
way to avoid the challenge of computing faces and contained valid points. Par-
ticularly, by the existence of the lattice L[m,n] it is not necessary to deal with
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faces in such an exact fashion. It is also possible to guarantee the processing of
at least one valid point from every face by sampling the parameter space R8 with
the points in L[m,n]. See Figure 3.2 for an impression of the lattice L[m,n].
Then, according to Lattice Property 3.15, the abstract algorithm can be modi-
fied to a concrete projective image matching algorithm in the fashion presented
in Figure 4.2. The new algorithm is a polynomial time approach to projective

Algorithm Exhaustive Search Projective Image Matching

Input: Image A of size n and image B of size m.
Parameter: A distortion measure ω : C × C → N.
Output: P ∈ R8 with f−1 = P (P ) such that δ(f(A)[m], B) is the minimum over
all f ∈ Fp.

1. Initialize P and δ =∞;
2. for all integer combinations t = (t1, . . . , t8)T ∈ {−L, . . . , L}8 do
3. compute Pt = d · (t1 + 0.125L−2, t2, t3, t4, t5 + 0.5, t6, t7, t8)T ;
4. get the inverse projective transformation f−1 = P (Pt);
5. obtain the transformed image A′ = f(A)[m] by f−1;
6. if δ > δ(A′, B) then update P = Pt and δ = δ(A′, B);
7. end for
8. return parameter P ;

Figure 4.2: A projective image matching algorithm searching exhaustively the
set L[m,n]. Here L = 3 · 1016m13n6 and d = (1.5 · 109m7n3 + 0.5)−1 are defined
as in Section 3.2.

image matching. Note, however, that the algorithm works for projective trans-
formations and it is not obvious how it can be modified e. g. for affine or linear
transformations.

Theorem 4.6. The image matching Problem 2.13 under projective transforma-
tions can be solved in polynomial time.

Proof. Problem 2.13 under projective transformations can be solved by the use
of the algorithm in Figure 4.2. Its correctness follows trivially from the Lattice
Property 3.15 and Corollary 4.5. It remains to show that it works in polynomial
time with respect to n and m, the sizes of given images A and B.

By definition the for-loop iterates (2L+1)8 times which is roughlyO(m104n48).
The time complexity of the steps within the loop is dominated by the computation
of A′ and δ(A′, B) and thus, it is O(m2) · T , where T is the time needed for the
computation of the function ω : C × C → R. However, since C is a finite set T
is a constant. Consequently, the time complexity of computing projective image
matching is in O(m106n48) which is polynomial in m and n.
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Since the time complexity of the algorithm in Figure 4.2 is very high, the next
section will return to the abstract generic approach to image matching. Instead
of avoiding the algorithmic challenges, the next algorithm is equipped with a
sophisticated data structure for Hχ[m,n] that makes it possible to rigorously
improve the running time.

4.3 A Generic Algorithm

This section presents a new generic polynomial time algorithm for image matching
under specific subsets of projective transformations. For the class of projective
transformations themselves the algorithm runs in O(m16n8) time. This massive
acceleration with respect to the given O(m106n48) time algorithm of the previous
section can be achieved by the help of a data structure for Hχ[m,n] that is built
in a preprocessing step. After this preprocessing, the algorithm uses the data
structure to simply enumerate all faces in the parameter space. For every face
ϕ obtained by this procedure the algorithm computes the image A′ = Γχ(ϕ) and
compares it to B by the given distance measure ω. This approach corresponds
roughly to the abstract algorithm given in Figure 4.1 of Section 4.2.

4.3.1 Data Structure

Before going into the details, this section presents the data structure for
Hχ[m,n]. Research in combinatorial geometry focuses on the arrangement
Aχ[E [m,n]] rather then on Hχ[m,n] and thus, provides an incidence graph
Gχ[E [m,n]] only for Aχ[E [m,n]]. For a short notation the set Aχ[E [m,n]] and
the graph Gχ[E [m,n]] are subsequently denoted by Aχ[m,n] and Gχ[m,n],
respectively.

The following develops a notion that makes it possible to apply the incidence
graph Gχ[m,n] of Aχ[m,n] to use it as a data structure for Hχ[m,n]. Because
the nodes of Gχ[m,n] correspond to faces in Aχ[m,n], its application for Hχ[m,n]
needs a translation mechanism between the elements of the two arrangements. It
is comprehensible that the translation needs a certain overhead and thus, implies
a loss in efficiency. On the other hand, in this way it is not necessary to develop a
new data structure and the image matching algorithm can access well understood
subroutines for Gχ[m,n].

The following introduces a translation method, denoted here as τ , that con-
verts faces from Aχ[m,n] into faces of Hχ[m,n]. The basic idea is to make sure
that the geometric properties of a given face ϕ ∈ Aχ[m,n] are kept as well as
possible by τ(ϕ). Hence, to roughly preserve the location of ϕ the translation τ
selects the face τ(ϕ) in Hχ[m,n] that completely contains ϕ:

Definition 4.7. Let m,n ∈ N be natural numbers and let E [m,n] = {`1, . . . , `w}
be the set of linear polynomials of Definition 3.3. Moreover, let χ be any slice
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in R8. Then τχ : Aχ[m,n] → Hχ[m,n] is the following mapping between the
respective arrangements: For every face

ϕ = χ ∩

(
w⋂
k=1

hsk(`k)

)
6= ∅,

which is given by a specific choice of signs s1, . . . , sw ∈ {+, 0,−}, let

τχ(ϕ) = χ ∩

(
w⋂
k=1

Hs′k(`k)

)
where for all k ∈ {1, . . . , w} the new sign s′k ∈ {+,−} is defined as

s′k =


+ : if sk = +,
+ : if sk = 0,
− : if sk = −.

For χ = R8, let for convenience, τ be an abbreviation for τR8.

For an example for the translation of faces in Aχ[m,n] into faces of Hχ[m,n] see
Figure 2.4 (a) and the corresponding description below the figure. Particularly, in
the given example it would be the case that e. g. τχ(ϕ1) = ϕ′1 and τχ(ϕ14) = ϕ′4.

The translation τχ has the following useful property:

Lemma 4.8 (Proof in Section 4.5). Let m,n ∈ N be natural numbers and χ be any
slice in R8. Then τχ is a surjective mapping such that for all faces ϕ ∈ Aχ[m,n]
it is true ϕ ⊆ τχ(ϕ).

Via the translation method, Gχ[m,n] can be used as a data structure for
Hχ[m,n]. By traversing all nodes of Gχ[m,n] one enumerates all faces inAχ[m,n].
This provides one face ϕ′ = τχ(ϕ) of Hχ[m,n] for every encountered face ϕ. Since
τχ is surjective this process enumerates all faces of Hχ[m,n], too. Consequently,
for given image A of size n and image B of size m the approach of the previous
section can be reformulated as in Figure 4.3. Although the new algorithm intro-
duces a particular way of enumerating the faces in Hχ[m,n] it remains abstract
because it still does not solve the challenge of finding valid points.

However, first impressions on time complexity can be found. In fact, the time
needed to build the graph Gχ[m,n] and also the corresponding space consumption
depend on the cardinality of E [m,n] and the dimension k of slice χ. Building
on Edelsbrunner et al. [15, 16] Section 2.5 shows that Gχ[m,n] can be computed
in O(|E [m,n]|k) time. Hence, the following lemma gives an upper bound on
|Aχ[m,n]|.

Lemma 4.9 (Proof in Section 4.5). Let m,n ∈ N be natural numbers and χ be
any k-slice in R8 with 0 ≤ k ≤ 8. The cardinality of Aχ[m,n] grows by O(m2knk).
This implies that |Hχ[m,n]| is in O(m2knk), too.
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Algorithm Abstract Generic Depth First Search Image Matching

Input: Image A of size n and image B of size m.
Parameter: A slice χ in R8, a distortion measure ω : C × C → N.
Output: P ∈ χ with f−1 = P [Fp] (P ) such that δ(f(A)[m], B) is the minimum
over all f ∈ Fχ.

1. Initialize P and δ =∞;
2. Compute Gχ[m,n] and traverse it with undirected depth first search;
3. for every encountered node v do
4. determine ϕ′ = τχ(ϕ(v));
5. if ϕ′ contains a valid point then
6. compute a valid point Pϕ′ ∈ ϕ′;
7. get the inverse projective transformation f−1ϕ′ = P (Pϕ′);

8. obtain the transformed image A′ = fϕ′(A)[m] by f−1ϕ′ ;
9. if δ > δ(A′, B) then update P = Pϕ and δ = δ(A′, B);

10. end if
11. end for
12. return parameter P ;

Figure 4.3: An abstract generic image matching algorithm traversing all faces in
Hχ[m,n] by depth first searching the incidence graph Gχ[m,n] of Aχ[m,n].

Consequently, the time complexity of the algorithm in Figure 4.3 is O(m2knk)
times O(max{m2, T}), where O(m2) describes the cost of computing A′ = Γχ(ϕ)
and δ(A′, B) in the for-loop and O(T ) the maximum time to find a valid point
in a visited face.

This means that, provided that the computation of valid points can be done
fast, the use of the incidence graph implies a crucial speed up. But there is still
a bit potential left to decrease time complexity. In fact, the rest of this section
shows how to omit the O(m2) time factor needed to compute A′ = Γχ(ϕ) and
δ(A′, B).

On the other hand, it is left as an open problem to find a generic approach
of determining valid points of visited faces. Consequently, it is necessary to give
a specific technique for every special case of given slice χ. Section 4.4 introduces
constant time methods of computing valid points for all considered subclasses
of projective transformations. Hence, for Fs, Fsr, Ft, F`, Fa and Fp image
matching is shown to be solvable in O(m2knk) time where k is the dimension of
the respective slice χs, χsr, χt, χ`, χa or R8, respectively.

4.3.2 Incremental Enumeration of D[Fχ,m](A)

So far the algorithm in Figure 4.3 computes A′ = Γ(ϕ) from scratch in every
loop iteration. In this way, a lot of time is wasted because every A′ can also
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be computed by very few update operations. Before giving the structural prop-
erty needed for this speed-up, consider another connection between Hχ[m,n] and
Aχ[m,n]:

Theorem 4.10 (Proof in Section 4.5). Let m,n ∈ N be natural numbers and
consider E [m,n] = {`1, . . . , `w}, the set of linear polynomials of Definition 3.3.
Moreover, let χ be any slice in R8. Take two incident faces

ϕ1 = χ ∩

(
w⋂
k=1

hsk(`k)

)
6= ∅ and ϕ2 = χ ∩

(
w⋂
k=1

hSk(`k)

)
6= ∅

of Aχ[m,n], which are determined by the specific choice of signs
s1, . . . , sw, S1, . . . , Sw ∈ {+, 0,−}.

Respectively, consider the faces

ϕ′1 = τχ(ϕ1) and ϕ′2 = τχ(ϕ2)

of Hχ[m,n].
If there are valid points P1 ∈ ϕ′1 and P2 ∈ ϕ′2, then it is true for f−1

1 = P (P1)
and f−1

2 = P (P2) and for all (i, j) ∈ z(m): If f−1
1 (i, j) and f−1

2 (i, j) fall into
different pixels of Pix[n] then there is an index q ∈ {1, . . . , w} with sq 6= Sq and
`q = `vijk′ or `q = `hijk′ for some k′ ∈ {−n, . . . , n+ 1}.

The value of Theorem 4.10 depends heavily on the existence of valid points P1 and
P2. Although there are slices for which their existence cannot be guaranteed, the
Valid-Points Property 3.13 states that for χ = R8 every face of Hχ[m,n] contains
a valid point. Section 4.4 shows that for the considered subclasses of projective
transformations valid points exist for all faces in the restricted arrangements
Hχ[m,n].

Thus, the theorem states that two faces ϕ1 and ϕ2, which are adjacent in the
parameter space, give ϕ′1 = τχ(ϕ1) and ϕ′2 = τχ(ϕ2) that correspond to similar
images A1 = Γχ(ϕ′1) and A2 = Γχ(ϕ′2). Particularly, if ϕ1 and ϕ2 are incident,
then A1 and A2 differ at an index (i, j) ∈ z(m) only if the separating hyperplane
is given by a polynomial `?ijk′ in E [m,n] defined by the index (i, j) and for an
arbitrary ? ∈ {v, h} and arbitrary k′ ∈ {−n, . . . , n+ 1}.

This means, e. g., if two nodes u and v of Gχ[m,n] are connected by an edge uv
then they represent two incident faces ϕ(u) and ϕ(v). In that case it may happen
that the undirected depth first search on Gχ[m,n] has just finished processing of
the node u corresponding to a face ϕ′1 = τχ(ϕ(u)) and thus, the algorithm has
the image A1 = Γχ(ϕ′1) in memory. Traversing towards node v leads to a face
ϕ′2 = τχ(ϕ(v)) which is either the same ϕ′1 = ϕ′2 by Lemma 4.8 or an adjacent
face of ϕ′1. In the second case, Theorem 4.10 states that A1 and A2 = Γχ(ϕ′2)
differ at most at indices (i, j) given by hyperplanes separating ϕ(u) and ϕ(v).
Hence, it is sufficient to update A1 on such indices to get A2. Altogether, this
bears the possibility to save O(m2) time consumption.



4.3. A GENERIC ALGORITHM 63

Recall the sets `(u) and `(v) introduced in Definition 2.23. To find the indices
(i, j) to be updated, it is sufficient to trace the polynomials `(u) and `(v). In
particular, the following defines Update(uv) labels for edges uv containing all
information needed to compute A2 from A1:

Definition 4.11. Let m,n ∈ N be natural numbers and E [m,n] be the set of
linear polynomials in Definition 3.3. Moreover, let χ be any slice in R8, let
Gχ[m,n] = (V,E) be the incidence graph of the arrangement Aχ[m,n], let uv ∈ E
be any edge with ϕ(u) and ϕ(v) being two incident faces of Aχ[m,n] and let
ϕ1 = τχ(ϕ(u)) and ϕ2 = τχ(ϕ(u)) be the corresponding (not necessarily different)
faces of Hχ[m,n].

If P1 ∈ ϕ1 and P2 ∈ ϕ2 are valid points then

Update(uv) =
{

(i, j, i′, j′)
∣∣ `?ijk ∈ `(u) ∪ `(v) such that [f−1

2 (i, j)] = (i′, j′)
}

and

Update(vu) =
{

(i, j, i′, j′)
∣∣ `?ijk ∈ `(u) ∪ `(v) such that [f−1

1 (i, j)] = (i′, j′)
}
,

are Update sets where ? ∈ {v, h} and f−1
1 = P (P1) and f−1

2 = P (P2).

Again, the definition of Update(uv) and Update(vu) works only if ϕ1 and ϕ2

contain valid points P1 and P2. However, the functionality of Update(uv) is
simple: If A1 = Γχ(τχ(ϕ(u))) is in memory and the algorithm traverses to v,
then Update(uv) consists of tuples (i, j, i′, j′) to tell the algorithm to update the
color at index (i, j) by setting its value to A(i′, j′). The following lemma states
the correctness of Definition 4.11, i. e., that processing all tuples in Update(uv)
changes A1 to the A2 = Γχ(τχ(ϕ(v))):

Lemma 4.12 (Proof in Section 4.5). Let m,n ∈ N be natural numbers, E [m,n] =
{`1, . . . , `w} be the set of linear polynomials in Definition 3.3, let χ be any slice
in R8 and Gχ[m,n] = (V,E) be the incidence graph of the arrangement Aχ[m,n].
Moreover, let uv ∈ E be an edge that connects the nodes u and v of the incident
faces

ϕ(u) = χ ∩

(
w⋂
k=1

hsk(`k)

)
and ϕ(v) = χ ∩

(
w⋂
k=1

hSk(`k)

)
,

which are determined by the specific choice of signs s1, . . . , sw, S1, . . . , Sw ∈
{+, 0,−}.

If there is a valid point P ∈ τχ(ϕ(v)) and if the signs sq 6= Sq differ for the
polynomial `q = `?ijk′, then (i, j, i′, j′) ∈ Update(uv) with (i′, j′) = [P (P ) (i, j)].

Hence, the set Update(uv) covers at least all indices (i, j, i′, j′) which belong to
separating hyperplanes. According to Theorem 4.10 it follows that the complete
update can be performed by considering such indices. It happens for several
reasons that Update(uv) identifies (i, j, i′, j′) to be updated although A1(i, j) =
A2(i, j). However, although an update can be superfluous, it cannot cause an
error.
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4.3.3 Preprocessing

The preprocessing step computes Gχ[m,n] = (V,E), the incidence graph of
Aχ[m,n], to serve as a data structure for Hχ[m,n]. According to Section 2.5 it is
known from Theorem 7.6 in [15] that the graph can be constructed in O(m2knk)
time for k-slices χ since E [m,n] contains 2(2m + 1)2(2n + 1) = O(m2n) polyno-
mials.

Beside computing Gχ[m,n], the preprocessing is also used to label the nodes
and edges of the graph with additional information needed for the matching
process. Particularly, according to [15, 16] the computation of Gχ[m,n] provides
already a label P (v) for every node v. Each label P (v) stands for a point in R8

which is contained in ϕ(v). But this point is not necessarily valid. Consequently,
an additional preprocessing step has to compute valid points P ′(v) for all nodes
of the incidence graph.

Definition 4.13. Let m,n ∈ N be natural numbers, let χ be any k-dimensional
slice in R8 and consider Gχ[m,n] = (V,E), the incidence graph of Aχ[m,n].
Then P ′ : V → R8 is a node label assigning every node v ∈ V a valid point
P ′(v) ∈ τχ(ϕ(v)), if such a point exists.

As stated above, a generic approach to this challenge has not been found yet, and
thus, this particular step of preprocessing has to be solved individually for every
given slice χ. Section 4.4 provides methods to obtain valid points P ′(v) for every
node v when χ is one of the slices χs, χsr, χt, χ`, χa or R8 representing subclasses
of projective transformation.

Every edge uv ∈ E should be labeled by Update(uv), the set that contains all
information on which indices are to be updated when traversing from face ϕ(u)
to face ϕ(v). The difficulty of computing Update(uv) for all edge uv ∈ E is that
it probably consumes too much time. Although the node degree in Gχ[m,n] is
constant on average, there may be nodes with an excessive amount of neighbors.
Especially for such nodes v the incident edges uv have large Update(uv) sets.
Whether it is possible to compute Update(uv) for all edges uv in O(|E [m,n]|k)
time if χ is a k-slice remains open.

However, the use of Gχ[m,n] is to perform depth first search in the set of
faces. The following shows that it is enough to preprocess Update(uv) only for
a small subset of edges making sure that the spanned graph remains connected.
This task is in particular accomplishable in constant time for every edge of the
reduced graph. The proof of the following lemma presents a convenient approach.

Lemma 4.14. Let m,n ∈ N be natural numbers, let χ be any k-dimensional
slice in R8 and consider Gχ[m,n] = (V,E) being the incidence graph of Aχ[m,n].
Moreover, let e ≥ 1 be a constant. The computation of a set Ee

in(v) ⊆ Ein(v) and
Ee
out(v) ⊆ Eout(v) for every node v ∈ V such that

1. |Ee
in(v)| ≤ e and
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2. the edge set Ee =
⋃
v∈V

⋃
u∈Ee

in(v){uv} spans a connected subgraph of

Gχ[m,n] that connects every pair of nodes in V

can be accomplished in O(|E [m,n]|k) time. If every node v ∈ V corresponds
to a face ϕ = τχ(ϕ(v)) that contains a valid point P , then the computation of
Update(uv) for all uv ∈ Ee can be done in O(|E [m,n]|k) · T time, where T is the
worst case time to compute P .

Proof. The set Ee is constructed in a recursive fashion. Firstly, since χ is k-
dimensional, the set of k-face nodes u will have Ee

in(u) = ∅. Because (k− 1)-face
nodes v have exactly two superface nodes, such nodes have simply Ee

in(v) =
Ein(v). It is clear that the subgraph built only on k-face nodes u and (k−1)-face
nodes v is connected only due to the edges uv given by Ee

in(v).

The rest of the construction idea is to attach every remaining layer of k′-face
nodes with k′ < k − 1 to e superfaces nodes. Then it follows from the recursive
building scheme that the spanned graph is connected. This aim is achieved by a
directed depth first search from every (k−1)-face node w. For every visited node
u the search continues to a subface node v only as long as the set Ee

in(v) has not
reached the limit of e elements. In this case the node u is added to Ee

in(v).

Since every node is visited at most e times, the process finishes after O(|V |+
|E|) operations. This quantity is at most O(|E [m,n]|k) by Theorem 7.6 in [15]
and thus, it is true that Ee

in(v) and Ee
out(v) can be computed in O(|E [m,n]|k)

time.

Every set Ee
in(v) describe a number of edges directing from nodes u ∈ V to v.

This defines implicitly a set Ee
out(u) for every node u ∈ V containing exactly all

edges directing from u to another node v ∈ V that has uv ∈ Ee
in(v). Obviously,

Ee
out(u) can be computed along with Ee

in(v) without additional effort.

To compute the Update sets, the remaining edges of Gχ[m,n] are enumerated
once more. Whenever an edge uv is in Ee

in(v), the set Update(uv) is computed
according to its definition. Computing all Update sets takes time proportional
to e · T ·

∑
v∈V |`(v)|, since every node is processed at most e times. Since e

is a constant and because it is possible to compute `(v) for all nodes v ∈ V in
O(|E [m,n]|k) time according to Lemma 2.24, this lemma is true.

The choice of e is discretionary. In fact e = 1 would give a tree-like subgraph
of Gχ[m,n]. Larger e lead just to more alternatives for traversal in depth first
search. Moreover, the cardinality of the sets Ee

out(v) are not necessarily bounded
by a constant. However, for the time complexity of the algorithm it is sufficient
that the sets Ee

in(v) cannot be arbitrarily large. The algorithm in the next part
performs undirected depth first search on Ee, the edge set

Ee =
⋃
v∈V

⋃
u∈Ee

in(v)

{uv} =
⋃
u∈V

⋃
v∈Ee

out(u)

{uv} ⊆ E.
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Concluding, the preprocessing is made up from three steps, the computation of
(1) the incidence graph Gχ[m,n], (2) the P ′(v)-labels for nodes and (3) the Update
labels for edges. The following sections show that, based on the Update labels,
the algorithm is able to save an O(m2) factor in its time complexity because it
processes every label at most twice.

4.3.4 Implementation

The following introduces the generic image matching algorithm in detail. In
principle, the algorithm sticks to the simple depth first search approach of the
algorithm in Figure 4.3, but traverses along edges in Ee instead of E. The main
difference, however, is the procedure of incrementally computing A2 = Γχ(ϕ′)
during the processing of a node v with ϕ′ = τχ(ϕ(v)) in the depth first search.
Instead of constructing A2 from scratch by the use of f−1

ϕ′ , the algorithm applies
A1 = Γχ(τχ(ϕ(u))), the image which belongs to the predecessor node u of v in the
depth first traversal. By the help of the update information Update(uv) stored
in Gχ[m,n] for the edge uv ∈ Ee, the algorithm performs a number of update
operations on A1 to obtain the correct image A2 for node v. The same update
operations are also performed on the distortion measure δ. In this fashion the
algorithm obtains A2 and the distortion δ(A2, B) by essentially fewer operations.
Figure 4.4 lists a detailed description of the new projective image matching al-
gorithm. The algorithm starts by performing all necessary preprocessing steps
described in the previous subsection. As discussed earlier, the success of prepro-
cessing, especially the computation of valid points, depends heavily on χ. For
the considered subclasses of projective image matching the computation of valid
points is demonstrated in Section 4.4.

For the traversal of an edge uv during the undirected depth first search the
algorithm fetches update sets (i, j, i′, j′) from Update(uv) to recognize which in-
dices (i, j) have to be updated. But instead of using a valid point P ∈ τχ(ϕ(v))
to compute [P (P ) (i, j)] to obtain (i′, j′) the algorithm gets (i′, j′) directly from
Update. This makes the graph searching component of the algorithm indepen-
dent of the actual transformations represented in the subspace χ. Instead the
application of transformations is restricted to the preprocessing. In this way the
algorithm becomes generic and applicable for image matching under different sets
of transformations given by slices χ in R8.

The same concept of reusability is aspired by the use of a RETURNVALUE
procedure which keeps the algorithm robust against small changes in the problem
specification. For example, if the algorithm should solve Problem 2.13 then the
procedure RETURNVALUE returns P ′(vopt), the valid parameter point of the
optimal face τχ(ϕ(vopt)) with f−1 = P (P ′(vopt)) that minimizes δ(f(A)[m], B).
By exchanging the RETURNVALUE procedure to a simple Yes/No-output it is
possible to solve also the decision Problem 2.14.
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Algorithm Generic Image Matching

Input: Image A of size n and image B of size m.
Parameter: A slice χ in R8, a distortion measure ω : C × C → N and a constant
e ≥ 1.
Output: P ∈ χ with f−1 = P [Fp] (P ) such that δ(f(A)[m], B) is the minimum
over all f ∈ Fχ.

1. Procedure SEARCH(u, v) /* undirected depth first searching */
2. mark v as seen;
3. for all (i, j, i′, j′) in Update(uv) do /* compute Γ(τχ(ϕ(v))) */
4. δ = δ − ω(A′(i, j), B(i, j));
5. A′(i, j) = A(i′, j′);
6. δ = δ + ω(A′(i, j), B(i, j));
7. end for
8. if δ < δopt then /* memorize better image match */
9. δopt = δ;

10. vopt = v;
11. end if
12. for all vw ∈ Ee do
13. if w is unseen then call SEARCH(v, w); /* continue DFS */
14. end for
15. for all (i, j, i′, j′) in Update(vu) do /* restore Γ(τχ(ϕ(u))) */
16. δ = δ − ω(A′(i, j), B(i, j));
17. A′(i, j) = A(i′, j′);
18. δ = δ + ω(A′(i, j), B(i, j));
19. end for

20. Procedure MAIN() /* Main Program */
21. call PREPROCESS(m,n, e); /* construct Gχ[m,n], Ee, labels P ′ and Update */
22. vopt = vid; /* select identity transformation */
23. mark vid as seen;
24. for all (i, j) ∈ z(m) do /* prepare A′ as identity transformation of A */
25. A′(i, j) = A(i, j);
26. end for
27. δopt = δ = δ(A′, B);
28. for all vidw ∈ Ee do
29. if w is unseen then call SEARCH(vid, w); /* start DFS */
30. end for
31. return RETURNVALUE(vopt); /* compute return value (P ′(vopt)) */

Figure 4.4: The generic image matching algorithm. The main procedure prepares
the undirected depth first search on Ee. The search itself is realized recursively
by the SEARCH procedure. With each call one face ϕ becomes seen, that means
it is processed by updating indices and estimating the new distortion.
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4.3.5 Analysis

The last step for this section is the analysis of the new image matching algorithm’s
performance:

Theorem 4.15. Let A be an image of size n, B be an image of size m and let
χ be any k-dimensional slice in R8. If every face ϕ in Hχ[m,n] contains a valid
point P , then the algorithm in Figure 4.4 determines in O(|E [m,n]|k) · T time a
point P ∈ χ such that f−1 = P (P ) minimizes δ(f(A)[m], B) over all f ∈ Fχ,
where T is the worst case time to compute P .

Proof. The correctness of the algorithm in Figure 4.4 follows straight from

• Lemma 4.8, because traversing all nodes of Gχ[m,n] enumerates all faces
ϕ of Aχ[m,n] and consequently also all faces ϕ′ = τχ(ϕ) of Hχ[m,n], and
from

• Theorem 4.4, because for Fχ the computation Γχ : Hχ[m,n]→ D[Fχ,m](A)
in the traversal supplies all elements of the dictionary D[Fχ,m](A).

For the running time of the algorithm consider first the preprocessing of the
incidence graph Gχ[m,n] with edges Ee for some e ≥ 1. According to Lemma
4.14 the preprocessing needs O(|E [m,n]|k) · T time.

The worst case running time of the core algorithm is in O(|E [m,n]|k). For
that notice that the MAIN procedure runs in O(m2) time if the preprocessing
and the call to SEARCH are ignored. Hence, in comparison to O(|E [m,n]|k),
this time amount is negligible. Then, because Gχ[m,n] has O(|E [m,n]|k) nodes
(according to Theorem 7.6 in [15]), the procedure SEARCH is called O(|E [m,n]|k)
times. Moreover, since the SEARCH procedure applies the Update(uv) set of
every edge in Ee at most two times, once for forward traversing and once for
backtracking, it follows that the subsumption of all calls to SEARCH consumes
running time proportional to

∑
uv∈Ee |Update(uv)| + |Update(vu)|. According to

Lemma 4.14 it is possible to compute all Update sets in O(|E [m,n]|k) time and
thus,

∑
uv∈Ee |Update(uv)| + |Update(vu)| ≤ O(|E [m,n]|k). This completes the

proof.

4.4 Specific Transformation Classes and Valid

Points

This section concludes Chapter 4 by applying the generic algorithm in Figure 4.4
to solve image matching for projective transformations and the specific subclasses
Fs, Fsr, Ft, F` and Fa. This needs in particular specific techniques to compute
valid points for all faces in the respective arrangements.
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4.4.1 Projective Image Matching

For projective transformations it is known from the Valid-Points Property 3.13
that every face in H[m,n] has a valid point. The efficient computation of valid
points for the faces ϕ = τ(ϕ(v)) of all nodes v in the incidence graph G[m,n]
is technically involved but possible, as the following theorem states. The idea
behind the theorem is to select points that are in ϕ and at the same time in
L[m,n].

Theorem 4.16 (Proof in Section 4.5). Let m,n ∈ N be natural numbers and
G[m,n] = (V,E) be the incidence graph of A[m,n]. The computation of a valid
point P ′(v) ∈ τ(ϕ(v)) for all nodes v of G[m,n] can be done in a total time of
O(m16n8).

The proof of Theorem 4.16 works on basis of the idea to use the P labels computed
by the algorithm of Edelsbrunner et al. [15, 16] to find nine linearly independent
vertices in the boundary of ϕ = τ(ϕ(v)) for every node v. These vertices, in
turn, can be used to obtain a point which is roughly in the center of ϕ and thus,
has a certain minimum distance to its boundary. The computation of P ′(v) is
realized by rounding the center point in a certain fashion. Then P ′(v) is a point
in L[m,n] and thus, it can be represented very efficiently, i. e., by O(logm + n)
bits.

Based on the computation of valid points the generic image matching al-
gorithm can be applied for projective transformations. The following corollary
shows its running time for this particular case:

Corollary 4.17. The image matching Problem 2.13 under projective transfor-
mations can be solved in O(m16n8) time for given image A of size n and image
B of size m.

Proof. For the 8-slice χ = R8 the computation of valid points P ′(v) can be done
in O(m16n8) time for all nodes v of G[m,n] according to Theorem 4.16. Since
G[m,n] has O(m16n8) nodes and edges this means that on average every valid
point is computed in constant time T . Then, by Theorem 4.15 the running time
of the whole algorithm is O(m16n8), too.

4.4.2 Image Matching for Projective Subclasses

Again, providing techniques to compute valid points basically solves the problem
for all subclasses Fs, Fsr, Ft, F` and Fa. The class of scalings represents the
only exception which needs a little more effort. In fact, one problem with the
use of Edelsbrunner’s algorithm [15, 16] to compute the incidence graph is that
it works only in k-dimensional slices with k ≥ 2. Hence, for the slices χa, χ`, χt

and χsr the application of the construction algorithm to compute Gχ[m,n] in
O(|E [m,n]|k) time is valid since the dimension k of each slice is at least two. But
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χs has only dimension one. However, the input set of polynomials E [m,n] is not
arbitrary and thus, Gχs [m,n] can be computed in output linear time.

Lemma 4.18 (Proof in Section 4.5). Let m,n ∈ N be natural numbers. The
graph Gχs [m,n] = (V,E) can be computed in O(|E [m,n]|) time.

The main issue with the generic approach applied to projective subclasses
is that, contrary to projective transformations, it is not at once clear whether
every face of the respective arrangement Hχ[m,n] contains a valid point. But the
preprocessing depends on this property and thus, the following theorem provides
this necessary condition as well as constant time techniques to compute all valid
points.

Theorem 4.19 (Proof in Section 4.5). Let m,n ∈ N be natural numbers and χ
be any slice in {χt, χsr, χs}.

1. All faces in Aχ[m,n] contain a valid point and consequently, all faces in
Hχ[m,n] contain a valid point.

2. For k ≥ 1 all k-faces ϕ ∈ Aχ`
[m,n] contain a valid point and consequently,

all k-faces ϕ′ ∈ Hχ`
[m,n] contain a valid point.

3. All faces in Hχa [m,n] contain a valid point.

Let Gχ[m,n] = (V,E) be the incidence graph of Aχ[m,n] for any slice χ ∈
{χa, χ`, χt, χsr, χs}. Moreover let k be the dimension of slice χ. The computation
of valid points P ′(v) for all nodes v ∈ V representing faces ϕ = τχ(ϕ(v)) ∈
Hχ[m,n] containing valid points can be done in O(|E [m,n]|k) time.

Notice that Theorem 4.15 demands the existence of a valid point P ′(v) for
every node v in the incidence graph. As Theorem 4.19 states, this is not nec-
essarily the case in the slice χ`. However, the only exceptions are some 0-face
nodes. Such nodes v can be tested in constant time, simply by checking if P (v)
is valid. In case not, it is easy to prune v from Gχ`

[m,n] such that it is never
visited in the generic depth first traversal.

As the labels P ′(v) can be computed in O(|E [m,n]|k) time with k the dimen-
sion of χ, it is possible to apply the generic algorithm in Figure 4.4 to solve the
image matching problem for all the transformation classes Fs, Fsr, Ft, F` and
Fa. In particular, the Theorems 4.15 and 4.19 imply the following:

Corollary 4.20 (Without proof). Let A be an image of size n, B be an image
of size m and let χ be a slice in {χa, χ`, χt, χsr, χs}. The algorithm in Figure 4.4
determines in O(|E [m,n]|k) time a point P ∈ χ such that f−1 = P (P ) minimizes
δ(f(A)[m], B) over all f ∈ Fχ, where k is the dimension of χ.

Since χa has six dimensions, χ` has four dimensions, χt and χsr have two dimen-
sions and χs has one dimensions the corollary has the following implication:
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Corollary 4.21 (Without proof). For given image A of size n and image B of
size m the image matching Problem 2.13 can be solved in

• O(m12n6) time under affine transformations,

• O(m8n4) time under linear transformations,

• O(m4n2) time under translations,

• O(m4n2) time under combinations of scalings and rotations and

• O(m2n) time under solely scalings.

Corollary 4.20 gives an impression on the general applicability of the image
matching algorithm proposed in this chapter and the techniques used therein.
However, there are natural subclasses of projective transformations that are not
covered by the given approach. Rotations Fr are a basic example for this. As
mentioned before, this is basically caused by keeping the notion of slices simple,
which makes them strictly linear. In fact, it is easy to transfer the essential ideas
to the quadratical subspace λ ⊂ R8 representing rotations. The generic algorithm
applied for rotations yields:

Theorem 4.22 (Christian Hundt and Maciej Lískiewicz [24, 25]). For given
image A of size n and image B of size m the image matching Problem 2.14 can
be solved in O(n3) time under solely rotations.

Notice that the theorem changes the image matching problem to the decision
version. Although it is true that all presented techniques work for λ, i. e., there
is a subdivision Hλ[m,n] of the subspace λ into faces ϕ containing valid points
and an incidence graph Gλ[m,n] = (V,E) representing this subdivision, it is
not generally possible to compute the valid points P ′(v) for all nodes v ∈ V .
In particular, there are faces ϕ in Hλ[m,n] containing only one point, which,
although being valid, has irrational components and thus, cannot be computed
explicitly. Thus, if ϕ leads to the optimal solution, then it would not be possible to
return a proper parameter point P ∈ ϕ. However, using the presented techniques,
the algorithm can decide if there is a point P that represents a rotation f such
that δ(f(A)[m], B) ≤ T for a given threshold T .

4.5 Technical Proofs

The Proof of Lemma 4.2

Proof. The proof works similarly on all cases and the following considers only the
first case: affine transformations. Let P = (p1, . . . , p8)T be a point in χa. Then,
since P is in h0(`7) it follows that p7 = 0 and from P ∈ h0(`8) follows p8 = 0.
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This means for f = P (P ) with f(x, y) =
(
x′

z′
, y
′

z′

)
and

(
x′

y′

z′

)
=
( p1 p2 p3
p4 p5 p6
p7 p8 1

)
·
(
x
y
1

)
that z′ = 1 and thus, it follows that f(x, y) = ( p1 p2 p3p4 p5 p6 ) · ( xy ), which is an affine
transformation by Definition 2.11.

The Proof of Lemma 4.8

Proof. Let

ϕ′ = χ ∩

(
w⋂
k=1

Hs′k(`k)

)
6= ∅

be any face in Hχ[m,n] given by a specific choice of s′1, . . . , s
′
w ∈ {+,−}. Then

↓ϕ′ = χ ∩

(
w⋂
k=1

hs
′
k(`k)

)

is in Aχ[m,n] and trivially τχ(↓ϕ′) = ϕ′. Thus, τχ is surjective.

Now consider any face

ϕ = χ ∩

(
w⋂
k=1

hsk(`k)

)
6= ∅

in Aχ[m,n] given by s1, . . . , sw ∈ {+, 0,−}. That ϕ ⊆ τχ(ϕ) is obtained by
showing that even for all z ∈ {0, . . . , w} the face

ϕz = χ ∩

(
r⋂

k=1

hsk(`k)

)
⊆ τχ(ϕz).

This is clearly true for z = 0 where ϕ0 = χ and τχ(ϕ0) = χ.

For every z > 0 the argument is true for ϕz−1 by induction hypothesis. Hence,
ϕz−1 ⊆ τχ(ϕz−1). Then ϕz = ϕz−1 ∩ hsz(`z). Consequently, it is true ϕz ⊆
τχ(ϕz−1) and ϕz ⊆ hs

′
z(`z) which implies that ϕz is a subset of τχ(ϕz) = τχ(ϕz−1)∩

hs
′
z(`z).

The Proof of Lemma 4.9

Proof. This challenge is studied in combinatorial geometry. Bounding this cardi-
nalities needs the value of |E [m,n]| which is trivially 2(2m+1)2(2n+1) = O(m2n).
Consequently, from Theorem 1.3 in [15] follows that Aχ[m,n] ∈ O(m2n)k =
O(m2knk). From Lemma 4.8 follows |Hχ[m,n]| ≤ |Aχ[m,n]| and thus, the state-
ment follows.
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The Proof of Theorem 4.10

Proof. The faces

ϕ′1 = τχ(ϕ1) = χ∩

(
w⋂
k=1

Hs′k(`k)

)
and ϕ′2 = τχ(ϕ2) = χ∩

(
w⋂
k=1

HS′k(`k)

)

are given by the signs s′1, . . . , s
′
w, S

′
1, . . . , S

′
w ∈ {+,−} according to Lemma 4.8.

If there are valid points P1 ∈ ϕ′1 and P2 ∈ ϕ′2 then assume for f−1
1 = P (P1) and

f−1
2 = P (P2) and some (i, j) ∈ z(m) that the points f−1

1 (i, j) and f−2
1 (i, j) fall

into different pixels pix(i′1, j
′
1) and pix(i′2, j

′
2) of Pix[n].

If i′1 6= i′2 then there exists i′ ∈ {−n, . . . , n + 1} such that without loss of
generality f−1

1 (i, j) ∈ v+
i′ ∩ v

−
(n+1) and f−1

1 (i, j) ∈ v+
(−n) ∩ v

−
i′ . Let

1. H1,1 = H+(`viji′) ∩H−(`vij(n+1)),

2. H1,2 = H+(−`viji′) ∩H−(−`vij(n+1)),

3. H2,1 = H+(`vij(−n)) ∩H−(`viji′) and

4. H2,2 = H+(−`vij(−n)) ∩H−(−`viji′).

By Lemma 3.4 it is the case that either P1 ∈ H1,1 or P1 ∈ H1,2 and either
P2 ∈ H2,1 or P2 ∈ H2,2.

If P1 ∈ H1,1 and P2 ∈ H2,1 or P1 ∈ H1,2 and P2 ∈ H2,2, then the hyperplane
defined by polynomial `viji′ separates P1 and P2. This implies s′q 6= S ′q for the
index q of the polynomial `q = `viji′ . It follows that sq 6= Sq because s′q and S ′q are
defined on the basis of sq and Sq.

Now let P1 ∈ H1,1 and P2 ∈ H2,2. Clearly, by definition, it is true `vij−n(P2) ≤ 0

and `viji′(P2) > 0. If P2 = (p1, . . . , p8)T it follows from 2n+1
n+i′

> 0 and n+1−i′
2n+1

> 0
that

0 <

(
2n+ 1

n+ i′

)
·
(
`viji′(P2)−

(
n+ 1− i′

2n+ 1

)
· `vij−n(P2)

)
= ip1 + jp2 + p3 + (0.5i− i(n+ 1))p7 + (0.5j − j(n+ 1))p8 + (0.5− (n+ 1)).

Hence, `vij(n+1)(P2) > 0. Since `vij(n+1)(P1) < 0 it follows that the hyperplane

h0(`vij(n+1)) separates P1 and P2. Then `q = `vij(n+1) and again s′q 6= S ′q which
implies sq 6= Sq.

Finally, let P1 ∈ H1,2 and P2 ∈ H2,1. Since `vij−n(P2) ≥ 0 and `viji′(P2) < 0
it follows in a similar fashion as above that `vij(n+1)(P2) < 0. Because this time

`vij(n+1)(P1) > 0 the hyperplane defined by polynomial `q = `vij(n+1) separates P1

and P2 again. Consequently, sq 6= Sq.
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The Proof of Lemma 4.12

Proof. Update(uv) is defined properly only if the point P exists in τχ(ϕ(v)). As-
sume that sq 6= Sq for some polynomial `q = `?ijk′ and that [f−1(i, j)] = (i′, j′).
Without loss of generality it is true that ϕ(v) is a subface of ϕ(u) and conse-
quently ϕ(u) is either subset of h+(`q) or of h−(`q) whereas ϕ(v) is subset of
h0(`q). Consequently, ϕ(v) is a subset of h0(`?ijk′). By definition Update(uv)
contains (i, j, i′, j′) as `?ijk′ ∈ `(v).

The Proof of Theorem 4.16

Proof. Let v be any node in V and ϕ′ = τ(ϕ(v)). There is an 8-face ϕ in A[m,n]
such that ↓ϕ′ = ϕ. To compute P ′(v) the given approach determines nine linearly
independent vertices in the boundary of ϕ and takes their average to obtain an
interior point which is then also an interior point of ϕ′. Then this point is rounded
to a lattice point in L[m,n] that remains in ϕ′.

The approach requires the computation of ↓τ(ϕ(v)) for all v ∈ V . To realize
this the whole node set of the incidence graph is labeled with Λ : V → V where
for all u, v ∈ V it is true that Λ(v) = u if and only if ↓τ(ϕ(v)) = ϕ(u), i. e., ϕ(u)
is the same 8-face as specified by ↓τ(ϕ(v)).

Clearly, for all nodes v ∈ V representing an 8-face ϕ(v) it is simply the case
that Λ(v) = v. Moreover, for 7-face nodes v there are only two superfaces ϕ(u1)
and ϕ(u2) incident to ϕ(v) and the decision if Λ(v) = u1 or Λ(v) = u2 can be
done in constant time by the help of `(v). Consequently, computing Λ for all
7-face and all 8-face nodes is done in O(m16n8) time.

For k-face nodes with k < 7 the computation of Λ is technically involved. The
difficulty is that a k-face may have a large number of superface nodes v and it is
complicated to decide which Λ(v) contains the correct link.

To overcome these difficulties, the process computes additional directed edge
sets E1, . . . , E7 for the incidence graph such that for all k ∈ {1, . . . , 7} it is
true that Ek is a set of edges between k-face nodes. Particularly, uv ∈ Ek for
some k ∈ {1, . . . , 7} if and only if there is a (k + 1)-face ϕ ⊆ τ(ϕ(u)) such
that ϕ(u) and ϕ(v) are incident to ϕ. Notice that uv ∈ Ek does not mean that
τ(ϕ(u)) = τ(ϕ(v)). This happens if and only if uv ∈ Ek and vu ∈ Ek.

The sets Ek and the labels Λ are computed recursively. Particularly, for all
k ∈ {7, 6, . . . , 1} the label Λ(v) on k-face nodes v is used to first compute the set
Ek and secondly, based on Ek, the labels Λ(u) for (k − 1)-nodes are determined.

To be precise, Ek is obtained, by taking every k-face node u and adding an
edge uv to all k-face node v which have a common superface node w with u that
fulfills Λ(u) = Λ(w). Traversing to all superface nodes of k-face nodes touches
every edge in E between (k + 1)-face nodes and k-faces nodes at most once. To
find all edges of Ek the edges in E between (k + 1)-face nodes and k-faces nodes
are touched once again. Hence, Ek is computed in O(|E|) time and |Ek| ≤ |E|.



4.5. TECHNICAL PROOFS 75

To compute Λ(v) for all (k − 1)-faces involves the computation of directed
cycles in Ek. Consider the set neighborhood Ein(v) of superface nodes of v. Then,
Λ(v) = w if and only if u1, . . . , ur ∈ Ein(v) is a directed cycle, i. e., uru1 ∈ Ek
and uiui+1 ∈ Ek for all i ∈ {1, . . . , r − 1}, and Λ(u1) = . . . = Λ(ur) = w.

This can be seen as follows: If Λ(v) = w, consider all superface nodes
u1, . . . , ur ∈ Ein(v) with ϕ(ui) ⊆ τ(ϕ(v)), i ∈ {1, . . . , r}. Clearly, Λ(ui) = w
as τ(ϕ(ui)) = τ(ϕ(v)). Without loss of generality, ϕ(ur) and ϕ(u1) as well as
ϕ(ui) and ϕ(ui+1) for all i ∈ {1, . . . , r − 1} are adjacent. The common superface
ϕ of two adjacent faces ϕ(ui) and ϕ(uj) for i, j ∈ {1, . . . , r} has the property
ϕ ∈ τ(ϕ(v)) and consequently, uiuj ∈ Ek and ujui ∈ Ek. This yields the directed
cycle u1, . . . , ur.

Reversely, if u1, . . . , ur ∈ Ein(v) is a directed cycle then ϕ′ = τ(ϕ(u1)) =
. . . = τ(ϕ(ur)). If τ(ϕ(v)) 6= ϕ′ then there is a polynomial ` ∈ `(v) such that
ϕ′ ⊆ H+(`) and ϕ(v) ⊆ H−(`). But since h0(`) does not intersect ϕ′ and because
ϕ(v) is in the boundary of ϕ′ it follows that ϕ(v) is not an 8-face. A contradiction
to the Volume Property 3.11.

Finding all directed cycles in Ek can be done in O(|Ek|) time using Tarjan’s
algorithm [44] for the strongly connected components in Ek. The result are labels
i for k-face nodes u identifying that u in the ith cycle. Then, Λ can be computed
in O(V ) time for all (k − 1)-face nodes v by using the labels to search for the
cycle in Ein(v).

Consequently, computing Λ(v) for all nodes v ∈ V takes O(|V | + |E|) time.
Hence, if every 8-face v had a valid point P ′(v) then computing P ′(u) for all
remaining nodes would work simply by taking P ′(Λ(u)).

The computation of a valid point for every 8-face can be done in O(|V |+ |E|)
time by depth first search, providing a set V(v) of nine linearly independent
vertices in the boundary of every 8-face ϕ(v). For V(v) = {P1, . . . , P9} a point
P = 1

9
(P1 + . . .+ P9) can be computed in constant time. According to the proof

of Lemma 3.10 the point P is the center of an 8-ball with radius r ≥ 1
4.5·108m7n3

entirely contained in ϕ. To obtain P ′(v) the point P = (v1, . . . , v8)T is rounded
to a lattice point of L[m,n]. The computation of

t1
t2
t3
t4
t5
t6
t7
t8


=


d−1 ·



v1 − 0.125dL−2

v2

v3

v4

v5 − 0.5d
v6

v7

v8




.

for L = 3 · 1016m13n6 and d−1 = 1.5 · 109m7n3 + 0.5 takes constant time. Then
L[m,n](t1, . . . , t8) is the lattice point closest to P . Incident lattice points have
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a mutual distance of less than
√

8d < r and thus, P ′(v) = L[m,n](t1, . . . , t8) is
in ϕ. Since G[m,n] has O(m16n8) nodes and edges it follows that P ′(v) can be
computed in constant time for every node v and thus, the whole process takes
O(m16n8) time.

The Proof of Lemma 4.18

Proof. All points P = (p1, . . . , p8)T in the slice χs have p1 = p5 and p2 = p3 =
p4 = p6 = p7 = p8 = 0. Consequently, for χs the polynomials of E [m,n] have a
simpler form, i. e., E [m,n] contains

`viji′(p1, . . . , p8) = ip1 + (0.5− i′) and `hijj′(p1, . . . , p8) = jp5 + (0.5− j′)

for all (i, j) ∈ z(m) and all i′, j′ ∈ {−n, . . . , n+ 1}.
Then, Gχs [m,n] is simply a chain u1v1u2v2 . . . urvrur+1 of nodes where

u1, . . . , ur+1 represent 1-faces and v1, . . . , vr represent 0-faces. Clearly, every
0-face ϕ(v) is an intersection of χ with h0(`) for some polynomial ` ∈ E [m,n],
i. e., ϕ(v) contains only the point

P (v) =

(
i′ − 0.5

i
, 0, 0, 0,

i′ − 0.5

i
, 0, 0, 0

)T
for some i′ ∈ {−n, . . . , n+ 1} and some i ∈ {−m, . . . ,−1, 1, . . . ,m}. In this case
`(v) contains `viji′ and `hjii′ for all j ∈ {−m, . . . ,m}.

Then, since for all k ∈ {1, . . . , r−1} it is true that the nodes vk and vk+1 have
points P (vk) = (p1, . . .)

T and P (vk+1) = (p′1, . . .)
T with p1 < p′1, it follows that

the computation of Gχs [m,n] needs to determine and sort all possible fractions
i′−0.5
i

for i′ ∈ {−n, . . . , n+ 1} and i ∈ {−m, . . . ,−1, 1, . . . ,m}.
By the limits of i′ and i, there are O(mn) fractions and sorting them takes

O(mn logmn) time. This is less than O(|E [m,n]|) = O(m2n) time unless n is
exponentially larger than m.

In the second case notice that points P (vk) = (p1, . . .)
T and P (vk+1) =

(p′1, . . .)
T of nodes vk and vk+1 for all k ∈ {1, . . . , r−1} have 1

2m2 ≤ |p1−p′1| ≤ 2mn.
Hence, just to decide the relation between two fractions it is enough to represent
them as a fractional binary number of 2 log(m) + 1 + log(mn) + 1 ≤ 5 log(mn)
bits. Based on this representation it is possible to bucket sort the fractions using
mn buckets. According to the approximate representation this takes only five
iterations and thus, the whole sorting runs in O(mn) time.

By the observation about `(v), the computation of this set takes O(m) time
for every combination of i′ and i. Since `(u) = ∅ for all 1-face nodes u, it follows,
that the sets `(v) for all nodes v ∈ V can be computed in O(m2n) time.

Finally, after the order of faces has been determined, P (v) can be computed in
full precision for all 0-face nodes v in O(mn) time. Afterwards, the computation
of P (u) for 1-face nodes u is simply taking the mean of P (v) for the two neighbor
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0-face nodes. This takes O(mn) time, too. For the extremal nodes u1 and ur+1

the points P (u1) = P (v1)− 1 and P (ur+1) = P (vr) + 1 are computed in constant
time.

The Proof of Theorem 4.19

Proof. Notice first that for all slices χ ∈ {χa, χ`, χt, χsr, χs} it is true that all
contained points P = (p1, . . . , p8)T ∈ χ have p7 = p8 = 0. It follows that
h0(e1)∩χ = h0(e2)∩χ and h0(e[i, j])∩χ = ∅ for all (i, j) ∈ z(m). Consequently,
all invalid points to be considered are in h0(e1) ∩ χ.

It is straightforward that both χsr and χs contain only one invalid point
P0 = (0, . . . , 0)T and that χt does not contain invalid points at all. Hence, if
there was a face in Aχsr [m,n] or in Hχs [m,n] without valid points then it must
be a 0-face with P0 being the only contained point. However, since P0 does not
belong to the hyperplane h0(`) for any ` ∈ E [m,n] this is impossible.

This means that for χ ∈ {χt, χsr, χs} it is possible to compute P ′(v) simply by
computing the center point of ϕ(v). This is clearly a point contained in τχ(ϕ(v)).
If it happens that the center is P0, then let r = max{m,n}. It is convenient to
select the point P ′(v) in a very close environment around P0, say in a distance
of 1

r1000
. This means that the computation of P ′(v) for all v ∈ V can be done in

O(|Aχ[m,n]|) = O(|E [m,n]|k) time.

Now consider the 4-slice χ` of linear transformations. It is easy to find 0-faces
in Aχ`

[m,n] where the only contained point is part of h0(e1). Consequently, there
may also be 0-faces in Hχ`

[m,n] with an invalid point. Hence, for every 0-face
node v ∈ V it easy to check whether e1(P (v)) 6= 0 and in this case one sets
P ′(v) = P (v).

Every 1-face ϕ ∈ Aχ`
[m,n] is contained in the intersection of three linearly

independent hyperplanes h0(`1), h0(`2) and h0(`3) defined by three polynomials
`1, `2 and `3 in E [m,n]. Notice that the polynomials become simpler since every
point P = (p1, . . . , p8)T in χ` has p3 = p6 = p7 = p8 = 0. Then there remain two
kinds of polynomials, one with non-zero coefficients for p1 and p2 and one with
non-zero coefficients for p4 and p5. Since every choice of three polynomials from
one kind are linearly dependent, it follows without loss of generality that

`1(p1, . . . , p8) = i1p1 + j1p2 + (0.5− i′1),

`2(p1, . . . , p8) = i2p1 + j2p2 + (0.5− i′2) and

`3(p1, . . . , p8) = i3p4 + j3p5 + (0.5− j′)

for some (i1, j1), (i2, j2), (i3, j3) ∈ z(m) and i′1, i
′
2, j
′ ∈ {−n, . . . , n + 1}. If i3 =

j3 = 0 then `3 would not define a hyperplane h0(`3) and thus, without loss of
generality let i3 6= 0. From the linear independence it follows that i1j2− i2j1 6= 0
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and every point P = (p1, . . . , p8)T in ϕ has

p1 =
j2(i′1 − 0.5)− j1(i′2 − 0.5)

i1j2 − i2j1

,

p2 =
i1(i′2 − 0.5)− i2(i′1 − 0.5)

i1j2 − i2j1

and

p4 =
(j′1 − 0.5)− j3p5

i3
,

i. e., the coordinates p1 and p2 are fixed and the coordinates p4 and p5 are variable,
but depend on each other.

Now assume that ϕ does not contain a single valid point, hence, for all P =
(p1, . . . , p8)T ∈ ϕ it is true that p1p5 − p2p4 = 0. Since

0 = p1p5 − p2p4

= p5 ·
i3(j2(i′1 − 0.5)− j1(i′2 − 0.5)) + j3(i1(i′2 − 0.5)− i2(i′1 − 0.5))

i3(i1j2 − i2j1)
+

(j′ − 0.5)(i2(i′1 − 0.5)− i1(i′2 − 0.5)

i3(i1j2 − i2j1)

it follows that

p5 =
(j′ − 0.5)(i1(i′2 − 0.5)− i2(i′1 − 0.5)

i3(j2(i′1 − 0.5)− j1(i′2 − 0.5)) + j3(i1(i′2 − 0.5)− i2(i′1 − 0.5))
.

If the denominator of the fraction was not zero then p4 and p5 would be deter-
mined. This implies that only one point in the intersection of χ`∩h0(`1)∩h0(`2)∩
h0(`3) is invalid. Since ϕ contains more than one point this is a contradiction.
Consequently, the denominator is zero and by multiplying i1j2− i2j1 one obtains
that

0 = i3(j2(i′1 − 0.5)− j1(i′2 − 0.5)) + j3(i1(i′2 − 0.5)− i2(i′1 − 0.5))

= i3p1 + j3p2.

This implies that

0 = p1p5 − p2p4

= −j3

i3
p2p5 − p2

(j′1 − 0.5)− j3p5

i3

= −p2
j′1 − 0.5

i3

which can be true only if p2 = 0. Since p1p5 = p2p4 it follows that at least one of
p1 and p5 is zero, too. If p5 = 0 then p4 is fixed and again, only one point in the
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intersection of χ` ∩ h0(`1) ∩ h0(`2) ∩ h0(`3) is invalid. This is a contradiction to
the assumption of all points in ϕ being invalid.

Hence, p1 must be zero. But since p2 = 0 it follows that j2(i′1− 0.5)− j1(i′2−
0.5) = i1(i′2 − 0.5) − i2(i′1 − 0.5) = 0 which implies i1j2 − i2j1 = 0. This is
impossible by the linear independence of h0(`1) and h0(`2) and consequently, the
first assumption of ϕ containing only invalid points must be false. Consequently,
if v is the 1-face node then P ′(v) is simply the center point of ϕ(v). Only if the
center is invalid P (v′) is chosen in the near environment by slightly modifying p5

and thus, p4.

In the rest of cases a valid point is chosen similarly. For a first attempt P ′(v)
is set to the center P = (p1, . . . , p8)T of ϕ(v). If this point is invalid then it is
altered slightly in the following fashion:

For 2-faces ϕ(v), which are contained in the intersection of two linearly inde-
pendent hyperplanes h0(`1) and h0(`2) of two polynomials from different kind it
is true that

i1p1 + j1p2 = i′ − 0.5 and i2p4 + j2p5 = j′ − 0.5

for some (i1, j1), (i2, j2) ∈ z(m) and i′, j′ ∈ {−n, . . . , n+ 1}. Clearly, every point
(p′1, . . . , p

′
8)T ∈ ϕ(v) is defined by

p′1 = p1 + w1j1,

p′2 = p2 + w1(−i1),

p′3 = p3 = 0,

p′4 = p4 + w2j2,

p′5 = p5 + w2(−i2),

p′6 = p6 = p′7 = p7 = p′8 = p8 = 0

for some w1, w2 which implies that

p′1p
′
5 − p′2p′4 = w1(i1p4 + j1p5)− w2(i2p1 + j2p2) + w1w2(i1j2 − i2j1).

The point P ′(v) is found by choosing w1 and w2 appropriately. If (i1p4 +j1p5) 6= 0
set w1 to a small value, say 1

r1000
and let w2 = 0. Otherwise, if (i2p1 + j2p2) 6= 0

then let w1 = 0 and w2 be the small value. If both, (i1p4 + j1p5) and (i2p1 + j2p2)
are zero but (i1j2 − i2j1) 6= 0 then set both w1 and w2 to small values. Finally,
if all (i1p4 + j1p5), (i2p1 + j2p2) and (i1j2 − i2j1) are zero, then p1p4 + p2p5 = 0
follows. Since p1p5−p2p4 = 0 this works only if p1 = p2 = 0 or p4 = p5 = 0 which
is impossible by (p1, . . . , p8)T being part of h0(`1) and h0(`2).

If h0(`1) and h0(`2) are of the same kind or if v stands for a 3- or 4-face, then
without loss of generality p1 and p2 may be fixed but p4 and p5 are free without
depending on each other. In this case an invalid center point P on h0(e1) can be
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fixed by choosing P ′(v) = (p′1, . . . , p
′
8) by

p′1 = p1, p
′
2 = p2, p

′
3 = p3 = 0,

p′4 = p4 + εp2,

p′5 = p5 + εp1,

p′6 = p6 = p′7 = p7 = p′8 = p8 = 0

for some small number ε, say ε = 1
3r1001

. Then P ′(v) remains in ϕ(v) since

‖P − P ′(v)‖ = ε
√
p2

1 + p2
2 ≤ 1

r1000
and p′1p

′
5 − p′2p′4 = ε2(p2

1 + p2
2) > 0.

Hence, all nodes v of Gχ`
[m,n] can be P ′(v)-labeled in constant time. This

means that the whole operation takes O(|Aχ`
[m,n]|) = O(|E [m,n]|4) time.

Finally, for the 6-slice χa of affine transformations the proof works just as for
projective transformations. In particular the author [21] shows that every face
in Hχa [m,n] has a positive volume and that χa admits a lattice La[m,n] of valid
points that hit every face in Hχa [m,n]. Then, the computation of P ′(v) for all
nodes v of the incidence graph Gχa [m,n] can be done analogously as in the proof
of Theorem 4.16. This works in O(|Aχa [m,n]|) = O(|E [m,n]|6) time.



Chapter 5

Complexity Aspects and
Parallelism

Chapter 3 analyzes the structure of projective image transformations. The central
property revealed is a partition of the parameter space into polygonal faces such
that points within each face correspond to equal projective transformations. This
structure is applied to find a sequential polynomial time algorithm to enumerate
all projective transformations D[m](A) of a given image A of size n. Then, the
dictionary D[m](A) is used to compute the best match against another given
image B of size m.

The aim of this chapter is to locate the projective image matching problem in
the structure of complexity classes. This does not mean the search for a better
time bound but instead it aims at locating the problem relative to the hierarchy
of complexity classes

ACO ⊂ TCO ⊆ NC1 ⊆ LOGSPACE ⊆ . . . ⊆ PTIME,

inside PTIME, the set of problems decidable in polynomial time. According to
Chapter 4 it is clear that the decision Problem 2.14 of projective image matching
is in PTIME.

However, the other classes in the hierarchy imply structural computational
advantages against the hardness of PTIME. If, e. g., the image matching problem
was in LOGSPACE then it would by solvable by the use of just a logarithmic
amount of space. The time improved algorithm in Figure 4.4 of the previous
chapter involves the preprocessing of an enormously big data structure, G[m,n],
which cannot be established in logarithmic space in a straightforward fashion.
But the simple algorithm in Figure 4.2 is independent of G[m,n] and can in fact
be regarded as a deterministic logarithmic space algorithm for projective image
matching.

This chapter provides an even more general result. The relation of the im-
age matching problem to the classes ACO, TCO, NC1 would also mean that it
could be solved very efficiently in a parallel fashion, i. e., in sub-polynomial time

81
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by the usage of at most polynomially many processors. Particularly, ACO and
TCO contain problems that can be decided in constant parallel running time
by unbounded fan-in processors and NC1 consists of decision problems solvable
in poly-logarithmic time by processors with at most two input ports. But the
computation of G[m,n] seems to be a challenge also for a parallel model of com-
putation. Moreover, it is not clear how to transform the sequential algorithm in
Figure 4.2 into a parallel one.

In this chapter the decision Problem 2.14 of projective image matching is
shown to be TCO-complete. This result has no direct effect for the complexity
of the search version but it is also shown that a best transformation can be
computed by equal means of computational expense. Interestingly, TCO is a very
natural complexity class, because it exactly expresses the complexity of a variety
of most basic problems in computation, such as integer addition, multiplication,
comparison and division. Even sorting integers is a TCO-complete problem.

However, regarding the practical importance of the results in this chapter it is
indispensable to mention that they rather have to be seen as an attempt to gain
insight into the structural properties of the problem. The presented approach
reveals a circuit that is far too big to be realized in a practical setting which
is partially caused by the use of a very weak model of TCO. Although being
a natural choice for complexity analysis more powerful models produce much
smaller circuits.

The next section starts with an introduction to the necessary concepts of par-
allel computation and a useful connection between the complexity classes ACO,
TCO and logic. Secondly, Section 5.2 presents a parallel approach of solving the
search version of projective image matching and in this way it shows also that
the decision version is in TCO. Then, Section 5.3 substantiates that TCO is the
natural complexity class for image matching by showing the TCO-completeness
of the decision problem.

5.1 Concepts of TCO

The complexity class UD-TCO was originally described as a generalization of
UD-ACO, a class of decision problems that can be computed by circuits. A circuit
N can be imagined as a directed acyclic graph where nodes, also called gates,
compute Boolean functions. Gates gain input truth values from predecessor gates
and distribute computation results to all their successor gates. If N has n sources
and m sinks, then it computes a function g : {0, 1}n → {0, 1}m, i. e., N computes
for every input string of length n an output string of length m. This makes
circuits weaker than other computational models, which can compute functions
{0, 1}∗ → {0, 1}∗. Consequently one considers families N = {N0, N1, N2, . . .} of
circuits to compute f for every input length n with an individual circuit Nn. On
the other hand, such families can be surprisingly powerful because they may not
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necessarily be finitely describable in the traditional sense. A usual workaround is
a uniformity model which demands that every circuit Nn of N can be described
by a Turing machine MN with resource bounds related to n. Usually MN is
chosen much weaker than the computational power of N to avoid the obscuration
of N ’s complexity. This chapter considers only DLOGTIME-uniform families N
where MN has to verify in O(log n) time whether Nn fulfills a given structural
property. This means, the machine can answer in O(log n) time questions like,
e. g., Gate i computes the And-function or Gate i is a predecessor of gate j. The
following gives a short definition of the complexity classes ACO and TCO. For a
substantial overview, see the text book of Vollmer [45].

Definition 5.1. The class DLOGTIME-uniform FACO, denoted as
UD-FACO, contains all functions {0, 1}∗ → {0, 1}∗ which can be computed by
constant-depth, polynomial-size families N of DLOGTIME-uniform
circuits, i. e., where (1) every gate computes an And-, Or- or Not-function,
(2) all circuits Nn can be verified by a Turing machine MN that runs in
O(log n)-time, (3) the number of gates in Nn grows only polynomially in n and
(4) regardless of n, the length of any path in Nn from input to output is not
longer than a constant.

The function class UD-FACO induces the class UD-ACO of decision problems.
It contains all problems Π which can be specified by a function g ∈ UD-FACO,
i. e., g : {0, 1}∗ → {0, 1} is a function with g(s) = 1⇔ s ∈ Π.

If gates can also compute the threshold-functions Tk which returns true if
at least k inputs are true, then the generated function class is called
DLOGTIME-uniform FTCO and is denoted as UD-FTCO. Accordingly,
UD-TCO is the class of decision problems decidable by a function in UD-FTCO.

By definition, UD-ACO and UD-FACO are subsets of UD-TCO and UD-FTCO,
respectively. Consequently, UD-FACO-reductions are suited well to define com-
pleteness in the class UD-TCO:

Definition 5.2. A problem Π is UD-TCO-complete if Π belongs to UD-TCO

and if for all Π′ ∈ UD-TCO there is a function r in UD-FACO such that for all
s ∈ {0, 1}∗ it is true s ∈ Π′ ⇔ r(s) ∈ Π.

Clearly, since UD-FACO-reductions are transitive, it is sufficient for UD-TCO-
completeness to find another problem Π′ known to be UD-TCO-complete and then
provide a function r in UD-FACO such that Π′ is reducible to Π via r. UD-TCO-
completeness states that a problem belongs to the hardest in that class. A canon-
ical UD-TCO-complete problem is MAJ , containing all strings over {0, 1}∗ with
a majority of positive bits [10].

First Order Logic

The complexity classes UD-ACO and UD-TCO can be characterized by first order
logic. Particularly, both classes can be defined as languages Π ⊆ {0, 1}∗ that can
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be described by certain first order formulas. A comprehensive introduction to
first order logic and in particular the connection to circuit families is given by
Vollmer [45]. This chapter applies the following fragment of first order logic:

Definition 5.3. Let V be the set of variables, i. e., an infinite set of strings over
some alphabet, and let 0 and (|s|−1) be constant symbols. Then X[v], Bit[u, v]
and <[u, v] are (atomic) first order formulas for all u, v ∈ V ∪ {0, (|s| − 1)}.
If v is a variable then it is a free variable of X[v] and if u or v are variables then
they are free variables of Bit[u, v] and <[u, v]. The three atomic formulas contain
no bound variables.

Let φ1 be a first order formula with free variables V(φ1) and bound vari-
ables B(φ1) and let φ2 be a first order formulas with free variables V(φ2) and
bound variables B(φ2). Without loss of generality let (1) B(φ1) ∩ B(φ2) = ∅, (2)
V(φ1) ∩ B(φ1) = ∅ and (3) V(φ2) ∩ B(φ2) = ∅. Otherwise, replacing all bound
variables in φ1 and φ2 by new variables achieves these properties. Then

1. the conjunction (φ1 ∧ φ2) and the disjunction (φ1 ∨ φ2) are first order for-
mulas with free variables V(φ1)∪V(φ2) and bound variables B(φ1)∪B(φ2),

2. the negation (¬φ1) is a first order formula with free variables V(φ1) and
bound variables B(φ1) and

3. on condition that v ∈ V(φ1) is a free variable (∀v φ1) and (∃v φ1) are first
order formulas with free variables V(φ1) \ {v} and bound variables B(φ1) ∪
{v}.

A first order formula φ without free variables, i. e., with V(φ) = ∅, is called a
sentence.

First order formulas with majority quantifier are an extension of the con-
cept which is built on the recursive construction scheme above. If φ is a first order
formula with a free variable v then (Qv φ) is a first order formula with ma-
jority quantifier over free variables V(φ) \ {v} and bound variables B(φ)∪{v}.

The interpretation of a formula φ is defined recursively over its construction:

Definition 5.4. Let φ be a first order formula with free variables V(φ). A
structure for φ is given by a string s ∈ {0, 1}∗ together with an assignment
a : V(φ)→ {0, . . . , |s| − 1}. For convenience let

a′(v) =


a(v) : if v is a free variable,
0 : if v is the constant 0 and
|s| − 1 : if v is the constant (|s| − 1).

Then (s, a) is a model of φ, denoted by (s, a) |= φ, if and only if

φ = X[v] and s(a′(v)) = 1,
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φ = Bit[u, v] and b(a′(v)) = 1 for the binary representation b of the value a′(u) 1,

φ = <[u, v] and a′(u) < a′(v),

φ = (φ1 ∧ φ2) and it is true that (s, a1) |= φ1 and (s, a2) |= φ2 where a1 and a2

are the restrictions of assignment a to the free variables in φ1, respectively
φ2,

φ = (φ1 ∨ φ2) and it is true that (s, a1) |= φ1 or (s, a2) |= φ2 and a1 and a2 are
defined as above,

φ = (¬φ1) and (s, a) 6|= φ1,

φ = (∀v φ1) and for all i ∈ {0, . . . , |s| − 1} it is true that (s, ai) |= φ1 where
ai : V(φ) ∪ {v} → {0, . . . , |s| − 1} is the assignment defined as

ai(u) =

{
i : if u = v
a(u) : otherwise

for all u ∈ V(φ) ∪ {v} or

φ = (∃v φ1) and there is at least one i ∈ {0, . . . , |s| − 1} such that (s, ai) |= φ1

where the assignment ai is defined as above.

The interpretation of first order formulas with majority quantifier works similarly.
A string s and assignment a model φ = (Qv φ1) if and only if there are at least⌈
|s|
2

⌉
choices of i ∈ {0, . . . , |s| − 1} such that (s, ai) |= φ1 where the assignment

ai is defined as above.

For the sake of straightforwardness the definition does not resolve the interpre-
tation of formulas with respect to an empty string s. Particularly, in that case
the universe is the empty set and there is no proper way of assigning values
to variables and constants or interpreting the predicate symbols X, Bit and <.
These difficulties can be overcome if a formula can identify a structure with an
empty string by using an additional predicate. However, such an exception is
never necessary for the formulas in this thesis and thus, it is simply assumed that
structures consist of nonempty strings.

The meaning of a sentence φ, i. e., a formula without free variables, is defined
relative to the string s only. This is denoted either by s |= φ or by s 6|= φ. The
next definition shows how to apply this property to use first order sentences for
the description of decision problems.

1Notice that the value a′(u) needs at most log2|s| bits. Nevertheless, by the use of leading
zeros the string b consists of |s| bits.
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Definition 5.5. If φ is a first order sentence (with majority quantifier) then
Πφ ⊆ {0, 1}∗ is the set of binary strings defined as

Πφ =
{
s
∣∣∣ s |= φ

}
.

The class of all sets Πφ that can be described by a first order sentence φ is denoted
as FO. Moreover, FO[Q] is the class of all sets Πφ describable by first order
sentences φ with majority quantifier.

The reason why first order logic can be applied in connection with circuit
design is formulated by the following theorem:

Theorem 5.6 (Mix-Barrington, Immerman, Straubing [35]). FO = UD-ACO

and FO[Q] = UD-TCO.

By the use of these equalities it is possible to show the membership of a decision
problem in UD-ACO or UD-TCO by expressing the problem in an appropriate
logic.

The descriptions of problems, however, may involve very long formulas. To
improve readability of such formulas this chapter applies a modular design prin-
ciple.

Definition 5.7. Let φ be a first order formula with free variables
V(φ) = (v1, . . . , vn) and bound variables B(φ). Moreover let u1, . . . , un be n
arbitrary variables in V \ B(φ). Then φ[u1, . . . , un] is the formula gained by
replacing in φ every occurrence of vi by ui for all i ∈ {1, . . . , n}.

Hence, now the free variables of φ can be used as input (and output) parameters.
This means that φ can be applied as a sub formula in a sentence that replaces
v1, . . . , vn from outside to pass arguments to φ. To demonstrate this technique
consider the formula Plus[u, v,w] described by Vollmer [45], which contains three
free variables u, v,w. Using Plus as a sub formula it is convenient to express more
complex settings in shortened formulas, like

∃x ∃y X[x] ∧ Plus[x, x, y] ∧X[y].

The relation between the values of the variables u, v,w expressed in Plus are now
true for the arguments x and y because they replace all occurrences of u, v,w.
Hence, every model s of this sentence contains at least two zero bits s(x) =
s(y) = 0 such that 2x = y.

Enhancing First Order Logic

In certain cases it is hard to find compact sentences to describe a problem. To
resolve such difficulties this subsection discusses some known techniques used in
first order logic. To remain self contained some of the statements are proven.
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Firstly, this chapter applies the standard notation of ⇒, i. e., for formulas φ
and φ′ the formula ¬φ ∨ φ′ can be replaced by φ ⇒ φ′. Moreover, if φ′′ is a
formula, too, then the formula

(φ⇒ φ′) ∧ (¬φ⇒ φ′′)

expressing the meaning of if-then-else, can be shortened as

φ⇒ φ′ 6⇒ φ′′.

Secondly, first order formulas can express calculations involving the four ba-
sic integer operations. To use this efficiently the following notation is applied
frequently:

Definition 5.8. Every variable v and all constants k ∈ N are called terms. If
t1 and t2 are terms with variables V(t1) and V(t2) then (t1 + t2), (t1− t2), (t1 · t2)

and
⌊
t1
t2

⌋
are terms with variables V(t1)∪V(t2) and (t1 < t2), (t1 ≤ t2), (t1 = t2),

(t1 6= t2), (t1 ≥ t2) and (t1 > t2) are arithmetic formulas with free variables
V(t1) ∪ V(t2).

Let φ = (t1 ? t2) be an arithmetic formula for ? ∈ {<,≤,=, 6=,≥, >} where
t1, t2 are terms over variables V(φ). Moreover let s be a string and a : V(φ) →
{0, . . . , (|s| − 1)} be an assignment. The value a(t) of a term t ∈ {t1, t2}
relative to (s, a) is

a(t) =



a(v) : if t = v is a variable,
min{k, |s| − 1} : if t = k is a constant,
min{a(t′) + a(t′′), |s| − 1}: if t = (t′ + t′′) for terms t′, t′′,
max{a(t′)− a(t′′), 0} : if t = (t′ − t′′) for terms t′, t′′,
min{a(t′) · a(t′′), |s| − 1} : if t = (t′ · t′′) for terms t′, t′′,⌊
a(t′)
a(t′′)

⌋
: if t =

⌊
t′

t′′

⌋
for terms t′, t′′ and a(t′′) 6= 0,

|s| − 1 : if t =
⌊
t′

t′′

⌋
for terms t′, t′′ and a(t′′) = 0.

Then (s, a) |= φ if and only if a(t1) and a(t2) are related as described by ?.

Theorem 5.9 (Proof in Section 5.4). Every arithmetic formula φ can be equiv-
alently expressed as a first order formula.

This chapter applies additional notation for terms, like for example computing
the maximum max{·, ·}, the absolute value | · | etc. which are easily reduced to
the basic cases introduced in the theorem.

In some cases it is difficult to express certain relations in first order sentences
just because the values of variables are restricted to {0, . . . , |s|−1}. This difficulty
can be overcome by the use of long variables:
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Definition 5.10. Long variables are an extension of the notion of variables in
first order formulas given in Definition 5.3. If φ is a first order formula with a
free long variable v, denoted bold faced, and (s, a) is a structure for φ then a(v)
is a value ranging in {−|s|k + 1, . . . , |s|k − 1} for some sufficiently large but fixed
k ∈ N. Universal and existential quantification over v as well as the interpretation
of <[·, ·] works in a straightforward fashion. To define the meaning of X[v] let
any structure (s, a) be a model for the formula if and only if a(v) ∈ {0, . . . , |s|−1}
and s(a(v)) = 1. Moreover, if u is another long variable then any model (s, a)
of a formula Bit[u, v] fulfills a(v) ≥ 0 and b(a(v)) = 1 where b is a binary string
with |s|k − 1 bits representation the value |a(u)| by inserting leading zeros.

The justification of using long variables is related to the common practice of
ignoring constant factors in computational complexity. In fact, long variables can
be established by using a constant number of standard variables to represent a
value ranging in {−|s|k + 1, . . . , |s|k − 1} for some fixed k ∈ N. Consequently, it
is a standard technique to assume that variables in first order variables can take
long values:

Theorem 5.11 (Without proof). Formulas φ containing long variables are first
order expressible.

The proof of the theorem works by encoding the value of a long variable into
the values of multiple standard variables. Hence, according to the theorem it
would be justified to use standard variables and assume them to take long values
whenever necessary. However, to make this chapter’s proofs easier to follow,
formulas use the notion of bold faced long variables to indicate the expression of
long or negative values. The values of standard variables remain in {0, . . . , |s|−1}.

Clearly, Theorem 5.9 and Theorem 5.11 can be combined to obtain that first
order formulas can express the four basic integer operations even on long values.
Notice however that Theorem 5.11 does not allow majority quantification over
long variables.

A further inconvenience occurs by the use of the majority quantifier. To
improve the usability the following definition introduces an additional quantifier:

Definition 5.12. Let φ be a first order formula (with majority quantifier) and let
V(φ) and B(φ) be the corresponding sets of free and bound variables. Moreover
let t, n and v be free variables of φ. Then φ′ = (Qt

nv φ) is a first order formula with
counting quantifier over free variables V(φ′) = V(φ) \ {v} and bound variables
B(φ′) = B(φ) ∪ {v}.

A string s and an assignment a : V(φ′) → {0, . . . , |s| − 1} are a model of φ′,
i. e., (s, a) |= φ′, if and only if

1. a(n) <
⌊
|s|
2

⌋
,

2. a(t) ≤ a(n) + 1 and
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3. for exactly a(t) choices of i ∈ {0, . . . , |s|−1} it is true that (s, ai) |= φ where
ai : V(φ)→ {0, . . . , |s| − 1} is the assignment defined as

ai(u) =

{
i : if u = v
a(u) : otherwise

for all u ∈ V(φ).

Theorem 5.13 (Proof in Section 5.4). Formulae with counting quantifier can be
equivalently expressed by formulas with majority quantifier.

5.2 Membership in TCO

To show that Problem 2.13 is in UD-FTCO this section gives a first order formula
with majority quantifier. The difficulty with this approach is that FO[Q] contains
decision problems whereas Problem 2.13 is an optimization problem. To overcome
this the section proceeds in three steps.

Firstly, the image matching Problem 2.13 is described as a function IMu, map-
ping unary encodings of two images A and B to strings encoding a transformation
f that minimizes the distortion between f(A)[m] and B. In the second step, the
problem to decide if a given bit in the output of IMu is positive is expressed using
a FO[Q] sentence. This implies that such a decision problem is in UD-TCO. The
third step introduces the same function IM for a binary encoding of A and B and
reduces the problem to decide output bits of IM to the unary version, showing
that the problem is in UD-TCO, too. This makes the proof that Problem 2.13 is
in UD-FTCO possible.

5.2.1 Image Matching with Unary Encoded Color Values

The following definition describes the unary encoding:

Definition 5.14. Let Πu
in ⊆ {0, 1}∗ be the set of binary strings

s = encu(n) | encu(m) | encu(A) | encu(B)

encoding two digital images A and B unary by

• encu(n) = 1n0 and encu(m) = 1m0, the encoding of two numbers n and m
giving the supports z(n) and z(m) of A and B,

• encu(A), the encoding of image A’s color information as the Little Endian
C · (2n+ 1)2 bits binary representation of the number

2n∑
j=0

2n∑
i=0

2C·(j(2n+1)+i)+A(i−n,j−n),
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(possibly with leading zeros) where every block of C bits encodes one of the
colors C = {0, . . . , C − 1} unary by setting the cth bit positive and all other
bits zero, and

• encu(B), the analogous encoding of B as the Little Endian C · (2m + 1)2

bits binary representation of the number

2m∑
j=0

2m∑
i=0

2C·(j(2m+1)+i)+B(i−m,j−m).

Moreover, let Πout ⊆ {0, 1}∗ be the set of binary strings

z = encb(t1) | . . . | encb(t8),

encoding eight integer numbers t1, . . . , t8 ∈ {−L, . . . , L} with L = 3 · 1016m13n6

such that for all r ∈ {1, . . . , 8} it is true that encb(tr) is the 70dlog2mne bit
two’s complement representation of ti. Notice that 70dlog2mne bits are enough
to encode a number in {−L, . . . , L}, since

log2 L = log2 3 · 1016 + 13 log2m+ 6 log2 n ≤ 55 + 13 log2mn ≤ 68dlog2mne.

Based on Πu
in and Πout and for any given distortion measure ω : C × C → N

projective image matching can be described as the function IMu
ω : Πu

in → Πout,
where every input string s ∈ Πu

in encodes an image A of size n and an image B
of size m and the output string z = IMu

ω(s) encodes eight integers t1, . . . , t8 that
define an inverse projective transformation f−1 = P (L[m,n](t1, . . . , t8)) which
minimizes δ(f(A)[m], B).

But there may be multiple transformations f that minimize the distortion.
To make IMu

ω a function it is necessary to fix one of them. Consequently, IMu
ω

returns an encoding z of eight integers t1, . . . , t8 that, secondary to representing
an optimal transformation, give the smallest number

8∑
i=1

(ti + L)(2L+ 1)i−1.

Hence, IMu
ω chooses the transformation with minimum parameter t8. If this leaves

ambiguity IMu
ω selects from the remaining transformations the one with minimum

parameter t7 and so forth. This function leads to the following decision problem:

Problem 5.15. Unary Projective Image Matching kth Bit

Input: A string s ∈ {0, 1}∗.

Constraints:
Image distortion measure ω : C × C → N.
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Question: Is string s of the form s′1k with s′ ∈ Πu
in and k ∈ N such that the kth

bit in string z = IMu
ω(s′) is positive?

One can think of a family N of DLOGTIME-uniform constant depth polyno-
mial size threshold circuits taking strings s as input by providing an input line
for every bit in s and giving a single output line to decide Problem 5.15. To show
the existence of such a family N this section develops a first order sentence with
majority quantifiers.

Lemma 5.16. For any distortion measure ω : C × C → N Problem 5.15 can be
expressed as a first order sentence φ with majority quantifiers. Thus, the problem
is in UD-TCO.

Proof. The central idea behind the proof is that all the points P from the lattice
L[m,n] can be described by the sentence φ. For each lattice point P the sen-
tence φ can also represent the transformed image f(A)[m] given by the inverse
projective transformation f−1 = P (P ) corresponding to P . According to Corol-
lary 4.5 and the Lattice Property 3.15 this gives the whole dictionary D[m](A).
Finally φ formalizes for all elements of D[m](A) the notion δ(f(A)[m], B) and
the conditions to find a minimum. The sentence φ is of the following form

φ = ∃n ∃m ∃k
(

(DecodeParam[n,m, k]) ∧
(ImageMatch[n,m, k]))

where DecodeParam[n,m, k] decodes the values n, m and k from the string s into
variables n, m and k of φ and ImageMatch[n,m, k] describes the essential part of
the image matching procedure.

The main task of DecodeParam is to check whether s properly encodes a
string s′ ∈ Πu

in and a natural number k ∈ N. This means in particular that for all
pairs (s, a) of strings s and assignments a with a(n) = n, a(m) = m and a(k) = k
it is true

(s, a) |= DecodeParam[n,m, k] ⇐⇒
s = encu(n) | encu(m) | encu(A) | encu(B) | 1k

for some image A of size n and image B of size m. The first task of DecodeParam
is to make sure that the value of n equals the number of positive bits before the
first zero and that the value of m is equal to the number of positive bits between
first and second zero. After this check, DecodeParam has the values of m and n
and based on them it is possible to find out if the length of s is sufficiently large,
i.e., if s encodes images A and B of size n, respectively m, then it must be the
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case that |s| ≥ n+m+2+C · ((2n+1)2 +(2m+1)2). Hence, after DecodeParam
has validated the length of s it is able to locate 1k in the string s by the values
of n and m which are used to determine the encoding lengths of A and B and to
skip encu(A) and encu(B). This enables the formula to check if the value of k is
equal to the number of positive bits at the end of the string. Finally, the formula
tests by the use of two sub formulas ImageA and ImageB, if every block of C bits
in the representation of A and B properly encodes a color value from C:

DecodeParam[n,m, k] = ∃u ∃v ∀x ∀i ∀j ∃a ∃b
(

(¬X[n]) ∧
(x < n ⇒ X[x]) ∧
(¬X[u]) ∧
(n < x < u ⇒ X[x]) ∧
(m = u− n− 1) ∧(

v = m + n + 2 + C · ((2n + 1)2 + (2m + 1)2)
)
∧

(v ≤ (|s| − 1) + 1) ∧
(v ≤ x ≤ (|s| − 1) ⇒ X[x]) ∧
(k = (|s| − 1)− v + 1) ∧
((|i| ≤ n) ∧ (|j| ≤ n) ⇒ ImageA[n,m, i, j, a]) ∧
((|i| ≤ m) ∧ (|j| ≤ m) ⇒ ImageB[n,m, i, j, b]))

If s is a model of sentence φ then (s, a) is a model of DecodeParam where a is an
assignment with a(n) = n, a(m) = m and a(k) = k and s is of the form s = s′1k

with
s′ = encu(n) | encu(m) | encu(A) | encu(B)

for some image A of size n and image B of size m. This implies that s has
|s| = n+m+ 2 +C · ((2n+ 1)2 + (2m+ 1)2) + k bits. Since m,n ≥ 0 this means
that |s| ≥ C which implies also that the values of basic variables can describe all
color values in C. Moreover, |s| ≥ |z(m)| and |s| ≥ |z(n)| and thus, long variables
can represent positive and negative numbers of absolute values polynomially in
m and n.

The verification of a proper encoding of A and B is described by the help of
ImageA and ImageB. In fact it is true that these sub formulas provide access to
all color values of A and B. Particularly, if s is a model of φ and a an assignment
giving n and m the values n and m encoded in s then ImageA fulfills

(s, a) |= ImageA[n,m, i, j, c] ⇐⇒ A(a(i), a(j)) = a(c).

The use of long variables i and j results from the existence of negative pixel
coordinates. It would be possible to omit the usage of long variables at this point
but they make the formula easier to follow. Then, based on the information on m
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and n, the sub formula ImageA provides the above functionality by determining
the offset of the color information about A((a(i), a(j)) in the string s. Finally, the
formulas makes sure that the color value encoded at the corresponding position
equals a(c):

ImageA[n,m, i, j, c] = ∃u ∃v ∀x
(

(|i| > n ⇒ c = 0) ∧
(|j| > n ⇒ c = 0) ∧
(u = m + n + 2 + ((j + n) · (2n + 1) + (i + n)) · C) ∧
(|i| ≤ n ∧ |j| ≤ n) ⇒

(
(u ≤ v < u + C) ∧
(X[v]) ∧
(u ≤ x < v ⇒ ¬X[x]) ∧
(v < x < u + C ⇒ ¬X[x]) ∧
(c = v− u)))

Note that the formula does not only check whether the block in s encoding
A((a(i), a(j)) contains a positive bit at position a(c) but also that it contains
zero bits at all other positions. In this way it is checked whether the respective
block has a proper unary encoding of a color value. Consequently, all blocks
of encu(A) are verified by the application of ImageA in DecodeParam for all
possible assignments a giving i and j a value in z(n). Additionally, if the value
of i or of j goes beyond support z(n) then the formula ImageA expresses that the
corresponding pixel value is zero.

Similar statements are true for the following sub formula ImageB:

ImageB[n,m, i, j, c] = ∃u ∃v ∀x
(

(|i| > m ⇒ c = 0) ∧
(|j| > m ⇒ c = 0) ∧(

u = m + n + 2 + C(2n + 1)2 + ((j + m) · (2m + 1) + (i + m)) · C
)
∧

(|i| ≤ m ∧ |j| ≤ m) ⇒
(

(u ≤ v < u + C) ∧
(X[v]) ∧
(u ≤ x < v ⇒ ¬X[x]) ∧
(v < x < u + C ⇒ ¬X[x]) ∧
(c = v− u)))
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After the verification formalisms above the development of sub formula
ImageMatch will follow a top-down approach of describing the essential part of
the matching process. This means that for every pair (s, a) of a string s = s′1k

with s′ = encu(n)|encu(m)|encu(A)|encu(B) and an assignment a(n) = n,
a(m) = m and a(k) = k it is true

(s, a) |= ImageMatch[n,m, k] ⇐⇒ z = IMu
ω(s′) ∧ z(k) = 1.

To achieve this behavior ImageMatch formalizes the sampling of the whole lattice
L[m,n]:

ImageMatch[n,m, k] = ∃L ∃t1 . . . ∃t8 ∃T ∀t′1 . . . ∀t′8 ∀T′
((

L = 3 · 1016m13n6
)
∧

((|t1| ≤ L) ∧ . . . ∧ (|t8| ≤ L)) ∧
(TestMatch[n,m, L, t1, . . . , t8, T]) ∧
((|t′1| ≤ L) ∧ . . . ∧ (|t′8| ≤ L) ∧ TestMatch[n,m, L, t′1, . . . , t′8, T′]) ⇒

(
(T ≤ T′) ∧
(T = T′) ⇒

(
(t8 ≤ t′8) ∧
(t8 = t′8) ⇒

(
(t7 ≤ t′7) ∧
...

(t2 = t′2 ⇒ t1 ≤ t′1)
...)))

∧
(TestBit[n,m, k, t1, . . . , t8]))

The formula needs the sampling limit L = 3 · 1016m13n6 from Section 3.2. Since
L is polynomial in m and n a long variable L has to be used to represent the
value. Then, according to the Lattice Property 3.15 and Corollary 4.5 sam-
pling all integer tuples within the limits L enables ImageMatch to specify all
projective transformations needed to compute the dictionary D[m](A) of image
A . The matching against image B, however, is described in another sub for-
mula TestMatch. The correct minimum tuple is found by testing every candidate
against all competitor tuples. Finally, sub formula TestBit is used to describe
the output string of z = IMu

ω(s′) by the values of t1, . . . , t8 and to test whether
z(k) = 1.
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First consider the sub formula TestMatch[n,m, L, t1, . . . , t8, T]. The use of
TestMatch is to represent the image f(A)[m] that is given by the inverse projec-
tive transformation f−1 = P (P ) with P = L[m,n](a(t1), . . . , a(t8)). The main
challenge realized in TestMatch is to measure δ(f(A)[m], B). Hence, for every
pair (s, a) with string s = encu(n)|encu(m)|encu(A)|encu(B)|1k and assignment
a with a(n) = n, a(m) = m, a(L) = 3 · 1016m13n6 and a(tr) ∈ {−L, . . . , L} for all
r ∈ {1, . . . , 8} the formula fulfills

(s, a) |= TestMatch[n,m, L, t1, . . . , t8, T] ⇐⇒
δ(f(A)[m], B) = a(T) with f−1 = P (L[m,n](a(t1), . . . , a(t8))) .

To measure δ(f(A)[m], B) means to compute f(A)[m](i, j) for all (i, j) ∈ z(m)
and then to determine

∑
(i,j)∈z(m) δ(f(A)[m](i, j), B(i, j)). It is not possible to

evaluate the sum simply by a repeated application of Plus because then φ would
not remain of constant length. The solution to this issue is the only point that
actually needs the application of the majority quantifier.

Expressing the sum of integers as a first order formula with majority quantifi-
cation is still an involved task. Note first that for all (i, j) ∈ z(m) it is true that
δ(f(A)[m](i, j), B(i, j)) is a natural number between zero and a constant Υ ∈ N.
Hence, all possible outcomes can be represented using υ = dlog2 Υe bits. The
sum can be reformulated as follows:

δ(f(A)[m], B)) =
∑

(i,j)∈z(m)

δ(f(A)[m](i, j), B(i, j))

=
∑

(i,j)∈z(m)

20bit(δ(f(A)[m](i, j), B(i, j)), 0) + . . .+

2υ−1bit(δ(f(A)[m](i, j), B(i, j)), υ − 1)

=

20 ·
∑

(i,j)∈z(m)

bit(δ(f(A)[m](i, j), B(i, j)), 0)

+ . . .+

2υ−1 ·
∑

(i,j)∈z(m)

bit(δ(f(A)[m](i, j), B(i, j)), υ − 1)

 ,

where bit(w, r) gives the rth bit in the binary representation of w for all w, r ∈ N.
The advantage of this reformulation is that for all r ∈ {0, . . . , υ−1} the sum zr =∑

(i,j)∈z(m) bit(δ(f(A)[m](i, j), B(i, j)), r) can be interpreted as counting positive

bits. Moreover, zr is a value in {0, . . . , (2m+1)2} which can be easily represented
by a basic variable. The value δ(f(A)[m], B)), however, needs the long variable
T. Nevertheless, δ(f(A)[m], B)) can be obtained from a constant number of
arithmetic operations on the numbers z0 to zυ−1. This implies that TestMatch
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can be realized as follows:

TestMatch[n,m, L, t1, . . . , t8, T] = ∃z0 . . . ∃zυ−1
(

(Count0[n,m, L, t1, . . . , t8, z0]) ∧
...

(Countυ−1[n,m, L, t1, . . . , t8, zυ−1]) ∧(
T = 20 · z0 + . . .+ 2υ−1 · zυ−1

))
For all r ∈ {0, . . . , υ − 1} the function of sub formula Countr[n,m, L, t1, . . . , t8, zr]
is to represent the value zr, i. e., for every pair (s, a) with string
s = encu(n)|encu(m)|encu(A)|encu(B)|1k and assignment a with a(n) = n,
a(m) = m, a(L) = 3 · 1016m13n6 and a(t1), . . . , a(t1) ∈ {−L, . . . , L} it is true

(s, a) |= Countr[n,m, L, t1, . . . , t8, zr] ⇐⇒

a(zr) =
∑

(i,j)∈z(m)

bit(δ(f(A)[m](i, j), B(i, j)), r) with f−1 = P (L[m,n](a(t1), . . .)) .

The counting of single bits can be realized with majority quantification, particu-
larly, in the form of the convenient counting quantifier. For all r ∈ {0, . . . , υ− 1}
the sub formula is defined as follows:

Countr[n,m, L, t1, . . . , t8, zr] = Qzr
|z(m)|x ∃i ∃j ∃a ∃b ∃c

(
(i = (x mod (2m + 1))− m) ∧(

j =
⌊

x
2m+1

⌋
− m

)
∧

(ImageATrans[n,m, L, t1, . . . , t8, i, j, a]) ∧
(ImageB[n,m, i, j, b]) ∧
(ω[a, b, c]) ∧
(Bit[c, r]))

Since 2zr ≤ 2(2m + 1)2 = 2|z(m)| ≤ |s| the counting quantifier is used correctly
according to Theorem 5.13. The idea for Countr is to accept if and only if the
rth bit in the value of the distortion is positive for exactly zr times.

To describe the distortion the formula needs access to the color values of the
transformation of image A. This is realized by the sub formula ImageATrans.
The sub formula ω[a, b, c] accepts a pair (s, a) if and only if ω(a(a), a(b)) = a(c).
Since ω : C × C → N maps from a finite domain, it is obvious that ω[a, b, c] can
be expressed as a first order formula.

The sub formula ImageATrans fulfills for every pair (s, a) with string s =
encu(n)|encu(m)|encu(A)|encu(B)|1k and assignment a with a(n) = n, a(m) = m,
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a(L) = 3 · 1016m13n6 and a(t1) . . . a(t8) ∈ {−L, . . . , L} that

(s, a) |= ImageATrans[n,m, L, t1, . . . , t8, i, j, c] ⇐⇒
A([f−1(a(i), a(j))]) = a(c) with f−1 = P (L[m,n](a(t1), . . . , a(t8))) .

Hence, the formula provides access to the color value A([f−1(a(i), a(j))]) of
image A determined by the inverse transformation f−1 of the lattice point
L[m,n](a(t1), . . . , a(t8)). This functionality is realized as follows:

ImageATrans[n,m, L, t1, . . . , t8, i, j, c] = ∃u ∃x ∃y ∃z ∃i′ ∃j′
((

u = 12 · 109m7n3 · L2 + 4 · L2
)
∧x

y
z

 =

8t1L2 + 1 8t2L2 8t3L2

8t4L2 8t5L2 + 4L2 8t6L2

8t7L2 8t8L2 u

 ·
 i

j
1

 ∧(
i′ =

[
x
z

])
∧(

j′ =
[ y

z

])
∧

(ImageA[n,m, i′, j′, c]))

The sub formula prepares the projective matrix of f−1 and then transforms the
point (a(i), a(j)) to obtain the corresponding index (a(i′), a(j′)) = [f−1(a(i), a(j))].
To reduce the matrix multiplication to integer arithmetic the whole projective
matrix is multiplied with the factor 8L2d−1 for the value d = (1.5·109m7n3+0.5)−1

defined in Section 3.2. Due to the use of homogeneous coordinates, however, this
factor is eliminated by the division described in i′ =

[
x
z

]
and j′ =

[
y
z

]
. Neverthe-

less, all values are polynomial in n and m and thus, can be represented by long
variables. Notice that a(z) is never zero which follows from the Lattice Property
3.15. Finally, sub formula ImageA is applied to find the color value A(a(i′), a(j′)).

It remains to specify the sub formula TestBit used in ImageMatch. The
function of the formula is to accept every pair (s, a) with an assignment a
having a(n) = n, a(m) = m and a(k) = k if and only if the string
z = encb(a(t1)) | . . . | encb(a(t8)) ∈ Πout fulfills z(k) = 1. Clearly, z is the
concatenation of eight binary two’s complement numbers each of 70dlog2mne
bits. It is easy to see that 70dlog2mne bits are enough to encode a number in
{−L, . . . , L} and thus, z has 560dlog2mne bits. The formula first determines
dlog2mne as the value of log and then the index r ∈ {1, . . . , 8} of the parameter
with the encoding encb(a(tr)) containing the bit k. Afterwards the encoding of
this parameter is described and the bit k is queried:

TestBit[n,m, k, t1, . . . , t8] = ∃log ∃p ∃k′ ∃e
(

(2log ≥ mn) ∧(
2log−1 < mn

)
∧
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(k < 560 · log) ∧(
p = 270·log

)
∧

(0 ≤ k < 70log) ⇒
(

(k′ = k) ∧
(t1 ≥ 0 ⇒ e = t1) ∧
(t1 < 0 ⇒ e = p− t1) ∧
(Bit[e, k′]))

∧
...

(490 · log ≤ k < 560 · log) ⇒
(

(k′ = k− 490 · log) ∧
(t8 ≥ 0 ⇒ e = t8) ∧
(t8 < 0 ⇒ e = p− t8) ∧
(Bit[e, k′])))

This completes the proof.

5.2.2 Encoding Color Values in Binary

That the unary decision version of image matching is in UD-TCO implies a cor-
responding DLOGTIME-uniform family N of constant depth polynomial size
circuits using threshold gates. However, natural image matching instances have
binary encoded color values. Consequently, this section provides translation cir-
cuits to convert binary representations of images to unary encodings to make the
natural problem solvable by the help of N .

The encoding of n and m is kept unary because their lengths are negligible
with respect to the image sizes. For the encoding of color values the following
presents the same decision problem building on a binary encoding scheme:

Definition 5.17. Let Πin ⊆ {0, 1}∗ be the set of binary strings

s = encu(n) | encu(m) | encb(A) | encb(B)

encoding two digital images A and B by

• encu(n) = 1n0 and encu(n) = 1m0, giving the supports z(n) and z(m) of A
and B and

• encb(A) and encb(B), the encoding of color information as Little Endian



5.2. MEMBERSHIP IN TCO 99

binary representation of the two numbers

2n∑
j=0

2n∑
i=0

2dlog2 Ce·(j(2n+1)+i)A(i− n, j − n) and

2m∑
j=0

2m∑
i=0

2dlog2 Ce·(j(2m+1)+i)B(i−m, j −m)

using dlog2Ce·(2n+1)2, respectively dlog2Ce·(2m+1)2, bits and consisting
of dlog2Ce bit blocks each encoding a color of C.

Based on Πin and Πout and for any given distortion measure ω : C×C → N define
the function IMω : Πin → Πout, where for all s ∈ Πin the string z = IMω(s) en-
codes eight integers t1, . . . , t8 which primary define f−1 = P (L[m,n](t1, . . . , t8))
that minimizes δ(f(A)[m], B) for the images A and B encoded by s and secondary
minimize the value

8∑
i=1

(ti + L)(2L+ 1)i−1.

This leads to the following decision problem:

Problem 5.18. Projective Image Matching kth Bit

Input: A string s ∈ {0, 1}∗.

Constraints:
Image distortion measure ω : C × C → N.

Question: Is string s of the form s′|encb(k) with s′ ∈ Πin and k ∈ N encoded
as a binary number encb(k) such that the kth bit in string z = IMω(s′) is
positive?

The following lemma states that even this aggravated version of the decision
problem is in UD-TCO:

Lemma 5.19. For any distortion measure ω : C × C → N Problem 5.18 is in
UD-TCO.

Proof. By Lemma 5.16 it is known that the image matching problem can be
decided in UD-TCO if the color values of A and B and the integer k are
encoded unary. Consequently, there is a DLOGTIME-uniform family N of
constant-depth, polynomial-size threshold circuits deciding Problem 5.15.
Because UD-FTCO is transitive a simple way to prove the statement is to
provide a translation DLOGTIME-uniform family N ′ of constant-depth,
polynomial-size threshold circuits that transforms input strings s, encoding
color values of A and B as well as the integer k in binary, into their unary



100 CHAPTER 5. COMPLEXITY ASPECTS AND PARALLELISM

counterparts, denoted here by encu(s). Afterwards the application of N on
encu(s) provides the correct answer also for s.

The translation circuit N ′ works on every part of s individually. For the
representations of n and m the translation simply copies input bits to the output.
Translating the images encb(A) and encb(B) in s to their unary representations,
encu(A) and encu(B), can be done easily by N ′, too. Both, binary and unary
representation, store a sequence of color values, each of constant length, either
dlog2Ce or C bits. For every color in the sequence the translation works by simply
using the binary value to index the positive bit in the unary representation.

For encb(k) however, the growth of encu(k) may be exponential and by that
infeasible. Anyway, if the absolute value of k is less than 560dlog2mne, then
encu(k) contains only a polynomial number of bits with respect to |s|. Thus,
it can be translated by N ′. Otherwise, if |k| ≥ 560dlog2mne, then s does not
belong to the decision Problem 5.18 independent of the actual contents of A and
B. Consequently, in this case the value of k is simply translated to the unary
representation of 560dlog2mne.

5.2.3 Solving Image Matching in UD-FTCO

Based on Lemma 5.19 it is possible to state a complexity result for the optimiza-
tion Problem 2.13:

Theorem 5.20. The optimization version of the image matching Problem 2.13
for projective transformations is in UD-FTCO.

Proof. A precise definition of the optimization problem’s input and output can
be obtained by considering the sets Πin and Πout. Then the solution for a given
string s ∈ Πin is given by the string z = IMω(s).

By Lemma 5.19 it is known that the image matching Problem 5.18 can be
decided in UD-TCO if A, B and k are naturally encoded in binary form. Conse-
quently, there is a DLOGTIME-uniform family N of constant-depth, polynomial-
size threshold circuits deciding Problem 5.18.

Using N , the image matching solution for a given string s ∈ Πin can be found
by computing every bit k of z = IMω(s) by the help of the circuit N|s|+dlog2 ke ∈
N deciding the string s|encb(k). This means, a family N ′ of constant-depth,
polynomial-size threshold circuits computing IMω is found by combining suitable
circuits from N .

Moreover, N ′ is DLOGTIME-uniform since every circuit N ′|s| ∈ N ′ can be

verified by a O(log |s|) time Turing machine MN ′ that uses MN as a subroutine.
In particular, if a circuit N ′|s| ∈ N ′ consists of the sub circuits Nr1 , . . . , Nrk ∈ N
with k = 560dlog2mne then MN ′ works as follows: It first detects the circuit Nri

that is affected by the query. This is possible in O(log |s|) time since |s| ≤ ri ≤
|s| + 560dlog2mne ≤ 2|s|. Then it starts MN ′ as a subroutine with the query
translated for Nri which finishes in O(log ri) = O(log |s|) time.



5.3. COMPLETENESS IN TCO 101

Since the optimization Problem 2.13 is at least as hard as the decision Problem
2.14 the containment in UD-TCO follows also for this problem:

Corollary 5.21. The decision Problem 2.14 for projective image matching is in
UD-TCO.

Proof. Again a precise definition of input can be obtained by considering the set
Πin. Particularly, for any distortion measure ω : C × C → N let Πt

ω be the set of
strings s of the form s = s′|encb(T ) with s′ ∈ Πin and T ∈ N such that the string
z = IMω(s′) encodes (t1, . . . , t8) that define an inverse projective transformation
f−1 = P (t1, . . . , t8) with δ(f(A)[m], B) ≤ T where A and B are the images of
size n, respectively m, encoded by s′. The rest of the proof shows that Πt

ω can
be decided in UD-TCO.

Firstly, by the existence of sub formula DecodeParam[n,m, T] described in the
proof of Lemma 5.16 and the binary-to-unary translation described in the proof
of Lemma 5.19 it is possible to decode a given string s to s′ ∈ Πin and T ∈ N by
a DLOGTIME-uniform family N1 of constant-depth, polynomial-size threshold
circuits. Moreover, according to Theorem 5.20 there is a DLOGTIME-uniform
family N2 of constant-depth, polynomial-size threshold circuits that is able to
compute the string z = IMω(s′). Then, by the sub formula TestBit there is a
threshold circuit family N3 to decode z into transformation parameters t1, . . . , t8
simply by taking the two’s complement. And finally, sub formula TestMatch
enables a threshold circuit family N4 that computes T ′ = δ(f(A)[m], B) by f−1 =
P (t1, . . . , t8). It is straight that the test of T ′ ≤ T can be done by a very simple
circuit family N5.

By a similar argumentation as in the proof of Theorem 5.20 a DLOGTIME-
uniform family N of constant-depth, polynomial-size threshold circuits deciding
Πt
ω can be obtained by a series connection of N1 to N5.

The technique presented in this section can be easily transferred to the case
of affine transformations as shown by the author in [21]. For linear transfor-
mations, rotations, scalings and combinations of scaling and rotation the case is
more complicated. Although proper subclasses, their structure is geometrically
harder than in the projective case. This results basically from the fact that the
arrangements Hχ[m,n] under χ ∈ {χl, χr, χs, χsr} contain faces that have no
volume. Consequently, it is likely that they are missed during a sampling process
as applied in this section. Although the author believes that image matching
under each of these classes can be done in TCO, it remains open whether this is
true.

5.3 Completeness in TCO

This section shows that the decision Problem 2.14 is complete in UD-TCO. Recall
the UD-TCO-complete majority problem, i. e., the set MAJ ⊆ {0, 1}∗ of strings
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which contain at least d0.5|s|e positive bits. This section gives a UD-FACO-
reduction r of MAJ to the set of strings s encoding two images A, B over the
color set C = {0, . . . , C − 1} and T such that the minimum ω(f(A)[m], B) over
all projective transformations f is at most T . Hence, r : {0, 1}∗ → {0, 1}∗ is a
function which maps strings s ∈ {0, 1}∗ to a binary encoding of images A and
B and an integer T such that s ∈ MAJ if and only if there is a transformation
f ∈ Fp such that δ(f(A)[m], B) ≤ T .

The foundation of the reduction is given by the following observation: Con-
sider any string s ∈ {0, 1}∗. Then define images As and Bs, both of size
n = m = max{30|s|, 60}, where As(i, j) = Bs(i, j) = 3 for all indices (i, j) ∈ z(n)
with j 6= 0. Additionally set

As(i, 0) =

{
s(i), if 0 ≤ i < |s|
2, otherwise

and Bs(i, 0) =

{
1, if 0 ≤ i < |s|
2, otherwise

for all i ∈ {−n, . . . , n} and let Ts = b0.5|s|c. Obviously, As represents a copy of
s and Bs a row of positive bits. Moreover Ts describes the maximum number of
zero bits that s can contain to be still in MAJ . Then the majority of bits in s is
positive if and only if δ(As, Bs) ≤ Ts for the distortion measure ω(a, b) = |a− b|.
Hence, if transformations were not allowed on As this approach would already be
successful.

However, image matching allows any projective transformation to be applied
on As before evaluating the distortion against Bs. This means that there may be
transformations f ∈ Fp with δ(f(As)[n], Bs) < δ(As, Bs). Hence, f may destroy
the synchronization between As and Bs and then the distortion value between
f(As)[n] and Bs does not necessarily allow inference on the containment of string
s in MAJ . Particularly, this happens if the distortion does not count the number
of zero bits in s. For example, if f describes a vertical shifting of As by at least one
pixel then it happens that the synchronization of the centerlines in f(A)[n] and
Bs is lost and consequently, their mutual distortion allows no statement about
s ∈MAJ .

To still use a similar approach As and Bs are extended in such a way that the
transformations that lead to the optimal match are close to identity and thus,
still count the number of zeros in s. For this end, in As and Bs as specified before
define now for all k ∈ {−n+ 14, . . . , n− 14}

As(k,−n+ 13) = 4, As(k, n− 13) = 5, As(−n+ 13, k) = 6, As(n− 13, k) = 7

and for all k ∈ {−n− 1, . . . , n+ 1}

Bs(k,−n) = 4, Bs(k, n) = 5, Bs(−n, k) = 6, Bs(n, k) = 7,

i. e., draw a multiple colored frame in As and a little bigger frame in Bs. An
impression of both images is given in Figure 5.1. Clearly, As and Bs contain only
C = 8 different colors, i.e, the cardinality of C = {0, 1, . . . , 7} is a power of two.
Consider the following lemma:
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Lemma 5.22 (Proof in Section 5.4). Let s ∈ {0, 1}∗ and As and Bs be as defined
above. Moreover, consider the projective transformation fs with the following
projection matrix Ms:

Ms =

v 0 0
0 v 0
0 0 1


where v = n

n−13
. If ω(a, b) = |a− b| then δ(fs(As)[n], Bs) =

∑|s|−1
k=0 1− s(i).

The transformation fs guarantees that (1) the representation of string s remains
unaltered and (2) the rest of fs(As)[n] looks like Bs. This means δ(fs(As)[n], Bs)
equals the number of zero bits in s. Then s contains a majority of positive bits
if and only if δ(fs(As)[n], Bs) ≤ Ts.

A big challenge is to show that the transformation fs is indeed the best one,
i. e., that there is no transformation f ∈ Fp that performs a better match of
f(As)[n] to Bs. Otherwise the solution of image matching would rather go with
f than with fs.

Lemma 5.23 (Proof in Section 5.4). For all s ∈ {0, 1}∗ it is true that
δ(fs(As)[n], Bs) is minimum over all projective transformations in Fp if
ω(a, b) = |a− b|.

The basic idea behind the lemma’s proof is that the frames in f(As)[n] and Bs

have to be aligned if f performs a good match of f(As)[n] against Bs. Together
with the necessary alignment of the row j = 0 this enforces f to be very similar
to fs. The smaller frame in As guarantees that f has to scale As up to match
Bs’s frame. This results in the effect that every index (I, 0) in the center line of
As is represented by at least one index (i, 0) in f(As)[n], i. e., (I, 0) = [f−1(i, 0)].
Consequently, since all zero bits in s are represented in the center line of As they
are copied to f(As)[n]. Thus, the distortion between f(As)[n] and Bs counts all
zero bits of string s. The concept behind the two lemma is presented in Figure
5.1.

The rest is to argue that for any string s ∈ {0, 1}∗ the computation of r(s),
providing a string that encodes As, Bs and the threshold Ts, can be accomplished
in UD-FACO. However, the hardest part of computing As and Bs is copying and
filling in constants, namely, inserting the string s in As and preparing the frames
in both images.

The proof of r ∈ UD-FACO is again provided by expressing r as a first order
sentence. This means that again r is described as a decision problem, just like
the function IMω in the previous section.

Definition 5.24. Let Πout ⊆ {0, 1}∗ be the set of binary strings

z = encu(n) | encu(m) | encb(A) | encb(B) | encb(T )
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As Bs

f(As)

f(x, y) ≈(
v 0
0 v

)
·
(
x
y

)
v =

n

n− 13

δ(f(As), Bs) =

|s|−1∑
i=0

1− s(i)

Figure 5.1: Images As and Bs for s = 0010. For perceivability, size and frame
padding have been reduced. Every optimal f has to be nearly a v-scaling and
consequently, distortion counts zeros in s.

encoding two digital images A and B of size n, respectively m, exactly like Πin in
Section 5.2 and an integer T ∈ N.

Then r : {0, 1}∗ → Πout is the function that maps every string s to the string
z = r(s) encoding the images As and Bs of size n = m = max{30|s|, 60} described
above and the integer Ts = b0.5|s|c.

According to this consider the following decision problem:

Problem 5.25. Majority to Projective Image Matching kth Bit
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Input: A string s ∈ {0, 1}∗.

Question: Is string s of the form 1k0s′ with k ∈ N such that the kth bit in string
z = r(s′) is positive?

To show the existence of a DLOGTIME-uniform family N of constant depth
polynomial size circuits this section develops a first order sentence for Problem
5.25. This implies that the function r is in UD-FACO by combining circuits of N
to compute every output bit.

Lemma 5.26. Problem 5.25 can be expressed as a first order sentence φ. Thus,
the problem is in UD-ACO.

Proof. The sentence φ has a simply structure. First it makes sure that every
model s is of the form s = 1k0s′ with k ∈ N. Then the sentence binds the value
k to the variable k.

Afterwards φ consists of sub formulas to describe encu(n), encu(m), encb(As),
encb(Bs) and encb(Ts) for n = m = max{30|s|, 60}, the images As and Bs of size
n and the integer Ts = b0.5|s|c. Based on the value of k, sentence φ knows the
starting position of s′ and also its length. Then the truth value of φ depends only
on the sub formula responsible for the part of r(s′) which contains the kth bit:

φ = ∃k ∃n ∃T ∃log ∃u ∃v ∃w
(

(DecodeParam[k]) ∧
(n = max{30((|s| − 1)− k), 60}) ∧
(T = b0.5((|s| − 1)− k)c) ∧
(2log ≥ T ) ∧
(2log-1 < T ) ∧(

k ≤ 2n + 2 + 6 · (2n + 1)2 + log
)
∧

(0 ≤ k ≤ n ⇒ EncodeN[k, n]) ∧
(u = 2n + 2) ∧
(n < k < u ⇒ EncodeN[k− n− 1, n]) ∧(

v = u + 3(2n + 1)2
)
∧

(u ≤ k < v ⇒ EncodeA[k− u, n, k]) ∧(
w = v + 3(2n + 1)2

)
∧

(v ≤ k < w ⇒ EncodeB[k− v, n]) ∧
(w ≤ k < w + log ⇒ EncodeT [k− w, T ]))

The variables n, u, v and w have to be long because their values may be large
compared to |s′|. The variable n for instance can take a maximal value of
max{30(|s′| − i − 1), 60}. Notice that φ checks if k ≤ |r(s′)| by explicitly com-
puting the length of r(s′), which depends only on the value of n and the value of



106 CHAPTER 5. COMPLEXITY ASPECTS AND PARALLELISM

T . To parse the string s and to represent the value of k the sentence applies the
following sub formula:

DecodeParam[k] = ∀x
(

(¬X[k]) ∧
(x < k ⇒ X[x]))

Next, to describe the encodings encu(n) and encu(m) the sentence applies the
following very simple sub formula:

EncodeN[i, n] =
(

(i < n))

Hence, in every model (s, a) with a(n) = n it is true that a(i) < n which states
that in the encoding encu(n) of n only the bits starting at index n, i. e., only the
last one, are positive.

A more complex part of the sentence describes the encoding encb(As):

EncodeA[i, n, k] = ∃i′ ∃j′ ∃bit ∃c
((

i′ =
⌊

i mod 3(2n+1)
3

⌋
− n
)
∧(

j′ =
⌊

i
3(2n+1)

⌋
− n
)
∧

(bit = i mod 3) ∧
(|i′| ≤ n− 12 ∧ j′ = −n + 13 ⇒ c = 4) ∧
(|i′| ≤ n− 12 ∧ j′ = n− 13 ⇒ c = 5) ∧
(i′ = −n + 13 ∧ |j′| ≤ n− 12 ⇒ c = 6) ∧
(i′ = n− 13 ∧ |j′| ≤ n− 12 ⇒ c = 7) ∧
(|i′| = n− 13 ∧ |j′| = n− 13 ⇒ c = 3) ∧
((|i′| > n− 13 ∨ |j′| > n− 13) ∧ (j′ 6= 0) ⇒ c = 3) ∧
(|i′| < n− 13 ∧ |j′| < n− 13) ∧ j′ 6= 0 ⇒ c = 3) ∧
(j′ = 0) ⇒

(
(−n ≤ |i′| < −n + 13 ⇒ c = 2) ∧
(−n + 13 < |i′| < 0 ⇒ c = 2) ∧
(0 ≤ i′ ≤ (|s| − 1)− k ∧X[i′] ⇒ c = 1) ∧
(0 ≤ i′ < (|s| − 1)− k∧ 6= X[i′] ⇒ c = 0) ∧
((|s| − 1)− k ≤ i′ < n− 13 ⇒ c = 2) ∧
(n− 13 < i′ ≤ n ⇒ c = 2) ∧)
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(Bit[c, bit]))

Hence, if (s, a) is a model, then the formula describes the index of the pixel en-
coded at the offset a(i) with (i’, j’). Moreover, since every color value is built from
three bits, the offset a(i) gives also the queried bit in the respective pixel block,
which is described by the variable bit. Afterwards, EncodeA describes conditions
for the pixel being contained in As’s frame, the centerline, the representation
of s or somewhere else. Based on this it describes values for c being a color in
C = {0, . . . , 7}. Finally, the formula makes sure that the value of bit describes
a positive bit in the binary representation of the color value of c. Notice that
the constant 3 in many arithmetic sub formulas comes from the number of bits,
needed to encode a color value in C.

Similarly, the sub formula EncodeB describes the encoding encb(Bs):

EncodeB[i, n] = ∃i′ ∃j′ ∃bit ∃c
((

i′ =
⌊

i mod 3(2n+1)
3

⌋
− n
)
∧(

j′ =
⌊

i
3(2n+1)

⌋
− n
)
∧

(bit = i mod 3) ∧
(|i′| < n ∧ j′ = −n ⇒ c = 4) ∧
(|i′| < n ∧ j′ = n ⇒ c = 5) ∧
(i′ = −n ∧ |j′| < n ⇒ c = 6) ∧
(i′ = n ∧ |j′| < n ⇒ c = 7) ∧
(|i′| = n ∧ |j′| = n ⇒ c = 3) ∧
(|i′| < n ∧ 0 < |j′| < n ⇒ c = 3) ∧
(−n < i′ < 0 ∧ j′ = 0 ⇒ c = 2) ∧
(0 ≤ i′ < (|s| − 1)− k ∧ j′ = 0 ⇒ c = 1) ∧
((|s| − 1)− k ≤ i′ < n ∧ j′ = 0 ⇒ c = 2) ∧
(Bit[c, bit]))

Finally, the encoding of Ts is described by the following simple sub formula:

EncodeT [i, T ] =
(

(Bit[T , i]))

Hence, in ever model (s, a) it is true that a(i) is the index of a positive bit in the
binary representation of a(T ).
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From Problem 5.25 being in UD-ACO it follows now that r is in UD-FACO

and thus, that it is justified to argue that the decision Problem 2.14 is complete
in UD-TCO.

Lemma 5.27. The function r : {0, 1}∗ → Πout translating any string s ∈ {0, 1}∗
into the encoding z = r(s) of the instance (As, Bs, Ts) for the projective image
matching Problem 2.14 is in UD-FACO.

Proof. By Lemma 5.26 it is known that Problem 5.25 is in UD-ACO. Conse-
quently, there is a DLOGTIME-uniform family N of constant-depth, polynomial-
size circuits deciding whether the kth bit in the output of r is positive.

Using N , the function r can be evaluated for any given string s′ ∈ {0, 1}∗
by computing every bit k of z = r(s′) by the help of the circuit N|k|+1+|s′| ∈ N
deciding the string 1k0s′. This means, a familyN ′ of constant-depth, polynomial-
size circuits computing r is found by combining suitable circuits from N .

Moreover, N ′ is DLOGTIME-uniform by a similar argumentations as in the
proof of Theorem 5.20.

The following is a straight implication of Corollary 5.21 and Lemma 5.27:

Corollary 5.28 (Without proof). Problem 2.14, the decision version of projec-
tive image matching, is UD-TCO-complete.

Corollary 5.21 describes a reduction of the image matching Problem 2.14 for
projective transformations to Problem 5.18, Projective Image Matching
kth Bit, which implies that this problem is UD-TCO-complete, too. This in
turn allows to infer that the optimization Problem 2.13 belongs to the hardest
in UD-FTCO, i. e., that every problem in this function class can be expressed in
terms of projective image matching.

According to the previous section, showing the membership of projective sub-
classes in TCO is not always trivial and, in fact, an open problem for linear
transformations and its subclasses. However, the problem’s hardness in TCO fol-
lows easily for all considered subclasses of projective transformations, even for
scalings or rotations, because the reduction builds mainly on δ and benefits from
a restriction on the class of transformations.

5.4 Technical Proofs

The Proof of Theorem 5.9

Proof. Firstly, Vollmer [45] shows in his book that beside < predicates for ≤, =,
6=, ≥ and > can be expressed in first order formulas, too.

Moreover, he also shows that first order formulas can express the addition of
variable values. Consequently, there is a first order predicate Plus[u, v,w] which
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accepts if and only if the values of u and v add up to the value of w. This im-
plies straight the existence of Sub[u, v,w] = Plus[w, v, u]. Furthermore Plus[u, v,w]
enables the representation of arbitrary constant values. Particularly,

Constk[v] = ∃u1 ∀w ∃u2 . . . ∃uk−1
(

(<[0, u1]) ∧
(<[0,w] ⇒ ≤[u1,w]) ∧
(Plus[u1, u1, u2]) ∧
(≤[u2, (|s| − 1)]) ∧
...

(Plus[uk−1, u1, v]))

binds the constant k to a given variable v.

Afterwards Vollmer [45] proves that first order formulas can express bit count-
ing for variables, i. e., that there is a predicate BitCount[u, v] which is true if and
only if the value of v determines the number of positive bits in the binary rep-
resentation of u’s value. Due to Chandra et al. [10] it is true that multiplication
reduces to bit counting and thus, it can be assumed that the predicate Mul[u, v,w],
which is true if the value of u times the value of v equals the value of w, can be
expressed in a first order formula. Again, this implies the existence of

DivF[u, v,w] = ∃u′ ∃u′′
(

(Mul[w, v, u′]) ∧
(Plus[u′, v, u′′]) ∧
(≤[u′, u]) ∧
(<[u, u′′]))

expressing that rounding down the amount of dividing the values of u and v
results in the value of w. Hence, a formula φ= (t1 ? t2) with terms t1 and t2 and
? ∈ {<,≤,=, 6=,≥, >} can be translated into a first order formula.

The Proof of Theorem 5.13

Proof. The counting quantifier is realized in three steps. Firstly, the following
formula introduces the quantifier ψ = Qnv ψ′. The formula ψ has a model (s, a)

if and only if (s, ai) |= ψ′ for at least
⌈
a(n)

2

⌉
assignments ai giving v values i in
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{0, . . . , a(n)}:

Qnv ψ′ = ∃u Qv
((

Bit[n, 0] ⇒ u = n +
⌊
(|s|−1)−n

2

⌋
6⇒ u = n +

⌈
(|s|−1)−n

2

⌉)
∧

(v ≤ n ⇒ ψ′) ∧
(n < v ≤ u ⇒ v = v) ∧
(u < v ≤ (|s| − 1) ⇒ v 6= v))

For all i ∈ {0, . . . , a(n)} the formula simply queries ψ′. Then it devides the
remaining assignments ai(v) with i ∈ {a(n) + 1, . . . , |s| − 1} into two equal parts
and makes sure that one half becomes a model of ψ and the other not. In this
way, the formula realizes that the needless assignments have no impact.

The next step realizes the quantifier ψ = Gt
nv ψ

′. Such a formula ψ has a
model (s, a) if and only if 2a(t) ≤ 2a(n) + 2 < |s| and (s, ai) |= ψ′ for at least a(t)
assignments ai giving v values i in {0, . . . , a(n)}:

Gt
nv ψ′ = ∃u

((
n ≤

⌊
|s|−1

2

⌋)
∧

(t ≤ n + 1) ∧(
t ≤
⌈

n
2

⌉)
⇒
(

(u = 2(n− t) + 1) ∧(
Quv

(
(v ≤ n)⇒ ψ′

)))
6⇒
(
(u = 2t− 1) ∧(
Quv

(
(v ≤ n)⇒ ψ′ ∧ (u ≤ n)

))))

In this formula the majority is shifted to a specific value a(t), simply by forcing
the formula to be true or false for values of v beyond a(n). The last step applies
the G-quantifier to establish counting:

Qt
nv φ′ = ∃u

((
n ≤

⌊
|s|−1

2

⌋)
∧

(t ≤ n + 1) ∧
(Gt

nv φ′) ∧(
Gn+1−t

n v ¬φ′
))
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Clearly, the number of models (s, ai) with i ∈ {0, . . . , a(n)} is exactly a(t) if at
least a(t) of them model φ′ and (a(n) + 1− a(t)) do not model φ′.

The Proof of Lemma 5.22

Proof. The following shows first that for all (i, j) ∈ z(n) with j 6= 0 it is true
fs(As)[n](i, j) = Bs(i, j). Consider the inverse transformation f−1

s given by the
inverse projection matrix M−1

s :

M−1
s =

v−1 0 0
0 v−1 0
0 0 1


where v−1 = 1− 13

n
. An index (i, j) is matched whenever fs(As)[n](i, j) = Bs(i, j).

Clearly

[f−1
s (k,−n)] = (I, J) =

[(
k − 13k

n
,−n+ 13

)]
for all k ∈ {−n, . . . , n}. Then fs(As)[n](−n,−n) = As(−n+ 13,−n+ 13) = 3 =
As(n− 13,−n+ 13) = fs(As)[n](n,−n). Moreover, since n > 26 it is true for all
k ∈ {−n + 1, . . . , n − 1} that −n + 14 ≤ I ≤ n − 14 and J = −n + 13 which
implies fs(As)[n](k,−n) = As(I, J) = 4 = B(k,−n). Hence, all indices in the
frame side with color 4 are matched. It is easily shown in an analogous way that
the remaining indices of the frame are matched, too.

Notice for all i ∈ {−n+ 1, . . . , n− 1} and j ∈ {|s|+ 1, . . . , n− 1} that

[f−1
s (i, j)] = (I, J) =

[(
i− 13i

n
, j − 13j

n

)]
.

Because n > 26 and n ≥ 30|s| it follows −n+14 ≤ I ≤ n−14 and |s| < J ≤ n−14
which means again fs(As)[n](i, j) = As(I, J) = 3 = B(i, j). The same holds
trivially for all j ∈ {−n+ 1, . . . ,−|s| − 1}.

For i ∈ {|s|+ 1, . . . , n− 1} and j ∈ {−|s|, . . . , |s|} it is true that [f−1
s (i, j)] =

(I, j) with |s| < I ≤ n − 14 and analogously for i ∈ {−n + 1, . . . ,−|s| − 1}
the similar statement of [f−1

s (i, j)] = (I, j) with −|s| > I ≥ −n + 14 is true.
Consequently, with the exception of indices (i, j) with i, j ∈ {−|s|, . . . , |s|} all
indices in z(n) have been matched.

In this remaining square it is clearly true that [f−1
s (i, j)] = (i, j). This means

for all such (i, j) with j 6= 0 that fs(As)[n](i, j) = As(i, j) = 3 = B(i, j).

Moreover a representation of the string s is exactly contained in fs(As)[n] and
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compared against a representation of positive bits in Bs and thus,

δ(fs(As)[n], Bs) =
∑

(i,j)∈z(n)

ω(fs(As)[n](i, j), Bs(i, j))

=
n∑

k=−n

|fs(As)[n](k, 0)−Bs(k, 0)|

=

|s|−1∑
k=0

|s(k)− 1|,

which implies the lemma’s statement.

The Proof of Lemma 5.23

Proof. Notice first that δ(fs(As)[n], Bs) ≤ |s|, i.e, extremely small compared to
the number of indices (> 3600|s|2). Even every side of the frame in Bs has roughly
60|s| indices. Hence, the idea behind the proof is that every good transformation
f has to transform the frame in As such that it is approximately matched against
the frame in Bs. Then, this approximate frame matching implies the image As
to be spanned in such a way that the representation of s in f(As)[n] is exactly
positioned on row j = 0. This means that s is matched against a string of positive
bits to count the number of zero bits in s, which actually realizes the idea of the
reduction.

Assume the existence of a transformation f ∈ Fp, with δ(f(As)[n], Bs) <
δ(fs(As)[n], Bs) ≤ |s|, i. e., one that performs a better match than fs. According
to the proof of Lemma 5.22 it is true that fs(As)[n](i, j) = Bs(i, j) for all (i, j) ∈
z(n) with the exception of indices (i, 0) fulfilling i ∈ {0, . . . , |s| − 1}. Clearly, f
cannot beat fs in these regions. Consequently, f(As) has to match the indices
(i, 0) with i ∈ {0, . . . , |s| − 1} better than fs possibly by tolerating additional
costs in other parts.

Since Bs(i, 0) contains color 2 for all i ∈ {−n, . . . ,−1, }∪{|s|, . . . , n} a shifting
along the i-coordinate gives no possibility for f to generate essential differences
in row j = 0. Particularly, there are only two ways for f to change row j = 0
such that

|s|−1∑
i=0

|f(As)[n](i, 0)− 1| 6=
|s|−1∑
i=0

|fs(As)[n](i, 0)− 1| ,

i. e., to realize a difference in the distortions between f(As) and Bs and between
fs(As) and Bs restricted to the small part of row j = 0. Firstly, it is possible
to alter the j-coordinate of at least one index to make it map outside the center
row of As, i. e., such that there is i ∈ {0, . . . , |s| − 1} with f−1(i, 0) = (i′, j′)
and j′ 6= 0. In that case the color f(As)[n](i, 0) is artificially changed to 3, 4,
. . . or 7. However, since Bs(i, 0) = 1 this introduces higher costs compared to
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δ(fs(As)[n], Bs). This means that f has to identify the center rows of As and
Bs, i. e., at least for the indices (i, 0) with i ∈ {0, . . . , |s| − 1} it is true that
f−1(i, 0) = (i′, j′) has j′ = 0.

The other way of modification is to change the scaling within row j = 0.
Particularly, fs realizes an identity mapping in the essential parts of the center
row containing the representation of s. That means, for all i ∈ {0, . . . , |s|−1} it is
true that [f−1

s (i, 0)] = (i, 0). In this way fs makes sure that fs(As)[n] contains an
exact copy of the representation of s. However, in terms of global costs it could
be profitable for f to skip or repeat parts of the representation of s in f(As)[n].
Clearly, just repeating things cannot help improving the distortion because it
leads to multiple counting of zero bits.

But skipping zero bits could save costs. In fact, it could be the case that there
are indices (I, 0) in As with I ∈ {0, . . . , |s| − 1} that are missed by the transfor-
mation f−1. Hence, it may happen that no index (i, 0) with i ∈ {−n, . . . , n} has
[f−1(i, 0)] = (I, 0). In this case f(As)[n] would no longer contain a proper copy
of the string s, particularly it lacks As’s information at index (I, 0). Especially, if
As(I, 0) = s(I) = 0 then f(As)[n] would miss this zero bit of s. As a consequence,
the distortion computation between f(As)[n] and Bs could not perform a correct
counting of the number of zero bits in s.

The following shows that a skipping as described above has to be payed by
inadequately high costs introduced by distortion in other parts of f(As)[n]. For
this purpose assume actually that there is I ∈ {0, . . . , |s| − 1} such that for all
i ∈ {−n, . . . , n} it is true that [f−1(i, 0)] = (i′, j′) with i′ 6= I.

The following argumentation builds basically on the line preserving property
of projective transformations. Particularly, according to the discussion in
Lemma 2.10 it is true for the transformation f and for every straight line L in
R2 that L′ = {f−1(x) | x ∈ L} is a straight line, too. Notice that the indices
(−n,−n), (−n + 1,−n), . . . , (n,−n), matching against the frame side in
Bs with color 4, are situated on a line. Consequently, it is true that
f−1(−n,−n), f−1(−n + 1,−n), . . . , f−1(n,−n) are a set of points on another
line L′. The same happens at the other three sides of the frame.

If I’s existence implies that [f−1(i,−n)] = (i′, j′) with (i′, j′) being outside the
frame side in As with color 4, i. e., if i′ ∈ {−n+13, . . . , n−13} implies j′ 6= −n+13,
it follows from the line preservation that either all k ∈ {−n, . . . , i − 1} or all
k ∈ {i + 1, . . . , n} give indices [f−1(k, n)] not being part of that frame side in
As, too. Hence, if |i| is not too close to n, then quite a number of frame indices
remain unmatched and cause distortion. The same is true for the other three
sides of the frame.

Consequently, consider the eight indices

c1 = (−0.5n,−n), c2 = (0.5n,−n), c3 = (−0.5n, n), c4 = (0.5n, n),
c5 = (−n,−0.5n), c6 = (−n, 0.5n), c7 = (n,−0.5n), c8 = (n, 0.5n)

where c1, c2 correspond to the frame side with color 4, c3, c4 to the frame side
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with color 5, c5, c6 to the side with color 6 and c7, c8 to the side with color 7.
Moreover, let

f−1(c1) = (X1, Y1), f−1(c2) = (X2, Y2),
f−1(c3) = (X3, Y3), f−1(c4) = (X4, Y4),
f−1(c5) = (X5, Y5), f−1(c6) = (X6, Y6),
f−1(c7) = (X7, Y7), f−1(c8) = (X8, Y8).

Assume that, although skipping the index (I, 0), f maps all eight indices into the
correct frame sides. In fact, regard the following weaker assumption:

−n+ 12.5 ≤ Y1, Y2, X5, X6 ≤ −n+ 13.5 and
n− 13.5 ≤ Y3, Y4, X7, X8 ≤ n− 12.5.

The remainder of the proof shows that this leads to a contradiction with the
precondition of f skipping (I, 0). For this purpose remember that f−1 ∈ Fp.

Consequently, for all (x, y) ∈ R2 it is true that f−1(x, y) =
(
x′

z′
, y
′

z′

)
withx′y′

z′

 =

p1 p2 p3

p4 p5 p6

p7 p8 1

 ·
xy

1


for some p1, . . . , p8 ∈ R8. If the values of Y1, Y2, X5, X6 and Y3, Y4, X7, X8 were
known exactly then p1 to p8 would be precisely determined by the following
system of linear equations:

p1

p2

p3

p4

p5

p6

p7

p8


=



−n −0.5n 1 0 0 0 nX5 0.5nX5

−n 0.5n 1 0 0 0 nX6 −0.5nX6

n −0.5n 1 0 0 0 −nX7 0.5nX7

n 0.5n 1 0 0 0 −nX8 −0.5nX8

0 0 0 −0.5n −n 1 0.5nY1 nY1

0 0 0 0.5n −n 1 −0.5nY2 nY2

0 0 0 −0.5n n 1 0.5nY3 −nY3

0 0 0 0.5n n 1 −0.5nY4 −nY4



−1

·



X5

X6

X7

X8

Y1

Y2

Y3

Y4


.

Particularly, it is true that

p1 = X5(X6(−Y1+3Y2+Y3−3Y4)+X8(3Y1−5Y2+5Y3−3Y4))+X7(X8(3Y1−Y2−3Y3+Y4)+X6(−5Y1+3Y2−3Y3+5Y4))
n(X7−X6)(5Y1−3Y2+3Y3−5Y4)+n(X5−X8)(3Y1−5Y2+5Y3−3Y4)

p3 = X8(X7(3Y1−Y2−3Y3+Y4)+X6(−6Y1+6Y2−2Y3+2Y4))+X5(X7(2Y1−2Y2+6Y3−6Y4)+X6(Y1−3Y2−Y3+3Y4))
(X7−X6)(5Y1−3Y2+3Y3−5Y4)+(X5−X8)(3Y1−5Y2+5Y3−3Y4)

p7 = 2(X5−X7)(Y1−Y2+3Y3−3Y4)+2(X8−X6)(3Y1−3Y2+Y3−Y4)
n(X7−X6)(5Y1−3Y2+3Y3−5Y4)+n(X5−X8)(3Y1−5Y2+5Y3−3Y4)

.

However, instead of exact values for Y1, Y2, X5, X6 and Y3, Y4, X7, X8 the proof
assumes only narrow bounds, i. e., −n + 12.5 ≤ Y1, Y2, X5, X6 ≤ −n + 13.5 and
n − 13.5 ≤ Y3, Y4, X7, X8 ≤ n − 12.5. Based on this bounds it is possible, yet
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technically involved, to derive the following worst case estimations for p1, p3 and
p7:

p1 ≤ 1− 64n2−1930n+14375
8n(n−13.5)(n−15)

≤ 1− 7
n

for n ≥ 29,

|p3| ≤ 8n2−208n+1353
8n(n−13.5)(n−15)

≤ 2
n

for n ≥ 31 and

|p7| ≤ 2n−27
n(n−13.5)(n−15)

≤ 3
n2 for n ≥ 58.

Hence, p1 is close, yet below, one and p3 and p7 have absolute values close to
zero.

The idea works as follows. If f skips (I, 0) then there is i ∈ {−n, . . . , n} such
f−1(i, 0) = (i′1, j

′
1) and f−1(i+ 1, 0) = (i′1, j

′
1) fulfills i′1 < I < i′2. This means that

(i, 0) is the rightmost index in the center row of f(As)[n] mapping left of I and
already (i + 1, 0) maps right of I. Clearly, as i1, I and i2 are integer it follows
that f−1(i+ 1, 0)− f−1(i, 0) ≥ 1.

Since the two indices belong to the center row j = 0 and based on the esti-
mations on p1, p3 and p7 it is also true that

f−1(i+ 1, 0)− f−1(i, 0) =
(i+ 1)p1 + p3

(i+ 1)p7 + 1
− ip1 + p3

ip7 + 1

=
p1 − p3p7

((i+ 1)p7 + 1)(ip7 + 1)

≤
1− 7

n
+ 6

n3

(1− 3n
n2 )(1− 3(n−1)

n2 )
for n ≥ 58

≤ n3 − 7n2 + 6

n3 − 6n2 + 9n

< 1 for n ≥ 1.

This is a contradiction. Hence, if f skips (I, 0) then the weak assumption of
−n+ 12.5 ≤ Y1, Y2, X5, X6 ≤ −n+ 13.5 and n− 13.5 ≤ Y3, Y4, X7, X8 ≤ n− 12.5
fails. Consequently, at least one of the eight indices c1 to c8 is mapped outside
the corresponding frame side. Without loss of generality let c1 = (−0.5n,−n)
be that index and thus, either Y1 < −n + 12.5 or Y1 > −n + 13.5. But then it
follows from the line preservation of f−1 that all indices (i1,−n) with i < −0.5n
or all indices (i2,−n) with i2 > −0.5n do not match with the 4-colored frame side
either. This means, at least 14|s| indices do not match which causes a distortion
of more than |s|.

Equivalently, c2 to c8 falling out of the frame implies inadequately high costs.
Consequently, f cannot pay the advantage of skipping (I, 0) which finally con-
tradicts the assumption of f being better than fs.
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Chapter 6

Conclusions and Further
Research

The intention of this last chapter is to draw a wider picture of image matching.
Section 6.1 extends the results of Chapter 4 to a related computational problem,
two-dimensional pattern matching. Results for one problem can often be trans-
ferred to the other and accordingly some results for image matching are extended
to the two-dimensional pattern matching problem.

Afterwards, Section 6.2 gives an overview on further research results and on-
going work. Particularly, one open problem is to determine eligible lower bounds
on the cardinality of dictionaries because their values essentially determine the
running times of the presented algorithms. This recent question has been an-
swered by the author and Maciej Lískiewicz for small transformation classes like
rotation and scaling. Progress has also been made in implementing parts of the
introduced algorithm which demonstrated its practical relevance. Moreover, lat-
est studies provide evidence that image matching is not only feasible for nearest
neighbor interpolation, which, although being a standard technique, is a bit out-
dated. Linear and higher order interpolation do not seem to make efficient image
matching impossible.

Finally, Section 6.3 summarizes and concludes the findings of of the four
previous chapters.

6.1 Pattern Matching via Generic Image

Matching

Section 1.1 states that, when concentrating on the discrete nature of image trans-
formations, two-dimensional combinatorial pattern matching [2, 3, 4, 5, 17, 18,
33, 40] is the origin of research in image matching. In fact, both settings are very
closely related and many results can easily be transfered. The combinatorial
pattern matching problem can be formally described as follows:
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Problem 6.1. Two-dimensional Pattern Matching

Input: Digital image A of size n and image B of size m.

Constraints:
Subclass F of projective transformations with P [F ] : Rd → F and d ≤ 8.

Output: All translation vectors (t1, t2) ∈ z(m) which admit parameters P ∈ Rd

such that for f−1 = P [F ] (P ) and for all (i, j) in support z(m) with (i′, j′) =
[f−1(i− t1, j − t2)] ∈ z(n) it is true that A(i′, j′) = B(i, j).

Hence, instead of searching for the best match between A and B, pattern match-
ing looks for all positions (t1, t2) in B that contain an exact copy of A under some
transformations f ∈ F .

According to Section 1.1 previous work on this problem leads to combinatorial
image matching algorithms for some very small subclasses of projective transfor-
mations, such as solely scalings or solely rotations. However, results for image
matching can be led back to the two-dimensional pattern matching problem, too.
In fact, it is possible to solve the problem for the same repertoire of transformation
classes as for image matching, i. e., up to projective transformations. However,
since the problem statement involves already integer translations, it would be
superfluous to consider transformation classes involving continuous translations.

In principle the solution to two-dimensional pattern matching is simply found
by calling the image matching algorithm in Figure 4.4 of Section 4.3 as a subrou-
tine for every meaningful translation vector (t1, t2). Figure 6.1 shows an efficient
polynomial time approach. The algorithm works as follows. First, it makes sure
that A and B do not contain color zero. More precisely, color zero is used only to
identify background indices, i. e., for transformations f , background indices (i, j)
in f(A)[2m] give f−1(i, j) 6∈ z(n). Then, it prepares a distortion measure that
actually tolerates the background color zero. This way makes sure that the back-
ground of any image f(A)[2m] has no impact on the distortion δ(f(A)[2m], B′).
Finally, it calls the image matching algorithm for all translations (t1, t2) using
the background tolerant distortion measure. The translation (t1, t2) is realized in
the copy B′ of B. If δ(f(A)[2m], B′) = 0 then, clearly, B contains an exact copy
of a transformation of A at position (t1, t2).

The following theorem summarizes the results:

Theorem 6.2. Let A be an image of size n, B be an image of size m and let χ
be any k-dimensional slice of R8. If every face ϕ in Hχ[m,n] contains a valid
point P that can be computed in at most T time, then the algorithm in Figure
6.1 determines in O(|E [m,n]|k) · O(m2) · T time a list L of translations (t1, t2)
which admit transformations f ∈ Fχ such that for all (i, j) ∈ z(m) it is true
that (i′, j′) = [f−1(i− t1, j − t2)] ∈ z(n) gives A(i′, j′) = B(i, j).
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Algorithm Generic Two-dimensional Pattern Matching

Input: Image A of size n and image B of size m.
Parameter: A slice χ in R8 and a constant e ≥ 1.
Output: List L of translations (t1, t2) which admit a transformation f ∈ Fχ where
all (i, j) ∈ z(m) with (i′, j′) = [f−1(i− t1, j − t2)] ∈ z(n) give A(i′, j′) = B(i, j)

1. Procedure MAIN() /* Main Program */
2. L = ∅; /* initialize solution */
3. determine c, largest color in A and B; /* preserve zero for background */
4. for all (i, j) ∈ z(n) do if A(i, j) = 0 then set A(i, j) = c+ 1;
5. for all (i, j) ∈ z(m) do if B(i, j) = 0 then set B(i, j) = c+ 1;

6. let δ(a, b) =

{
0 : if a = 0, b = 0, a = b,
1 : otherwise

; /* set background tolerant distortion */

7. for all (t1, t2) ∈ z(m) do /* iterate over all translations */
8. for all (i, j) ∈ z(2m) do B′(i, j) = B(i− t1, j − t2); /* double size copy of B */
9. call Generic Image Matching with (A,B′) and parameter χ, δ and e;

10. store result in P and let f = (P[Fp] (P ))−1;
11. if δ(f(A)[2m], B′) = 0 then add (t1, t2) to L; /* verify exact copy */
12. end for
13. return L;

Figure 6.1: The projective two-dimensional pattern matching algorithm. The
matching is realized by the projective image matching algorithm.

In particular, the algorithm solves the two-dimensional pattern matching prob-
lem in time

O(m10n4) for linear transformations F`,

O(m6n2) for scalings and rotations Fsr and

O(m4n) for scalings Fs.

Proof. Since A is of size n and B′ of size 2m it follows from Theorem 4.15 that a
single call to the projective image matching subroutine takes O(|E [2m,n]|k) ·T =
O(|E [m,n]|k) · T time. But there are (4m+ 1)2 = O(m2) calls to the subroutine
and thus, the first part of the theorem follows.

According to this, the estimations for the concrete examples F`, Fsr and Fs

are a straight implication of Corollary 4.21.

Similar to the discussion in the previous section it is true that the proposed
technique can also be used to solve two-dimensional pattern matching under
rotations Fr. In fact, the author and Maciej Lískiewicz [26] show that this
approach runs in O(m2n3).
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The exact complexity of two-dimensional pattern matching remains an open
question. It is straightforward that the problem is in TCO for the class of pro-
jective transformations. The same is true for affine transformations. However,
considering the pattern matching problem under this classes of transformations
is not very meaningful as they feature translations. For such classes it is either
the case that L is empty or that L consists of all possible translation vectors
(t1, t2). However, as for image matching, the complexity of two-dimensional pat-
tern matching remains open for other subclasses of projective transformations.
In fact, it is reasonable to assume the containment of both problems in TCO for
all considered projective subclasses but a proof of the assumption remains future
work.

6.2 Overview on Work Progress

This section gives an overview on other completed and ongoing research for the
image matching problem. Firstly, analysis in Chapter 3 to 4 provided only upper
bounds, on the cardinality of dictionaries. However, to get a realistic impression
on the structure of D[Fχ,m](A) it is necessary to obtain lower bounds for all
χ ∈ {R8, χa, χ`, χt, χsr, χs}.

Remember that upper bounds on |D[Fχ,m](A)| for subclasses Fχ of projec-
tive transformations defined by a slice χ are deduced from upper bounds on the
number of faces in Hχ[m,n]. But this does not take into account the color infor-
mation of A. For this reason, concluding lower bounds for |D[Fχ,m](A)| directly
from lower bounds on |Hχ[m,n]| is not correct. Particularly, it could by the case
that many faces in Hχ[m,n] stand for the same transformation of A. This may
happen for example if A is uniformly colored.

However, Amir et al. [2] show for the setting of rotations that Hλ[m,n], the
partition of the non-linear subspace λ of R8, contains at least Ω(n3) faces. To-
gether with the upper bound of O(n3) this gives an exact impression of the cardi-
nality of Hλ[m,n]. But, this does not mean for any image A that |D[Fr,m](A)| ∈
Θ(n3). Moreover, the author and Maciej Lískiewicz [24, 25] provide that the set
Hχsr [n, n] has a cardinality of at least Ω(n6/ log n) which is close to the upper
bound |Hχsr [n, n]| ∈ O(n6). But again, this bound has no direct implication for
the cardinality of D[Fsr, n](A), the set of all combined scalings and rotations with
size-n of any given image A of the same size n.

The author and Maciej Lískiewicz [24, 25] were the first who provide lower
bounds by showing that there is a family An, n ∈ N of images for which
|D[Fr,m](An)| ∈ Ω(n3) and |D[Fsr, n](An)| ∈ Ω(n6/ log n). This means, in
worst case, e. g., for an image An, it happens that upper and lower bounds on
the cardinalities of D[Fr,m](A) and D[Fsr, n](A) are nearly the same.
Consequently, the standard approach of enumerating all images in the
dictionary cannot lead to essentially faster algorithms and to obtain really
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improved running times requires completely new ideas. Remarkably, it is
possible to deduce a lower worst case bound of Ω(n12/ log2 n) for |D[F`, n](A)|,
the dictionary of linear transformations, by the use of the lower bound on
|D[Fsr, n](A)|. However, it remains future work to reveal lower tight bounds on
the dictionary cardinalities for higher transformation classes, like affine or
projective transformations.

Another aspect of supplementary work are implementations of the proposed
image matching algorithms. First impressions on the algorithm’s performance
have been gained by Ragnar Nevries’ diploma thesis [39]. However, in addition
to that, its JavaTM implementation revealed new insights into the structural prop-
erties of Hχsr [m,n]. Particularly, it was possible to determine some exact values
of |Hχsr [m,n]| by the use of his program. The following table gives an impression
of how |Hχsr [m,n]| grows with respect to m and n:

n/m 0 1 2 3 4 5 6 7 8 9
0 1 89 665 2537 7017 15497 30313 54105 88537 138313
1 1 321 2609 8697 25489 59169 107129 197041 334129 495193
2 1 697 5865 20721 60137 131841 247521 455801 769145 1164017
3 1 1217 10353 37737 108817 239657 455177 817017 1375617 2104857
4 1 1881 16121 56265 164537 369569 685529 1245073 2110793 3177961
5 1 2689 23201 82753 240769 540041 1011457 1832281 3092209 4683697
6 1 3641 31481 114105 330793 741441 1398233 2526929 4252105 6466329
7 1 4737 41073 144889 423473 943601 1759529 3213753 5440305 8210905
8 1 5977 51977 185825 541321 1206153 2262801 4123089 6960265 10541905
9 1 7361 64081 231625 672929 1499409 2826617 5139385 8656241 13148617

The fast growth demonstrates the high worst-case time complexity of image
matching and also two-dimensional pattern matching.

Moreover, Joe Bandenburg [6] demonstrates the applicability of the new
image matching technique in real applications. In his master thesis he uses the
image matching algorithm to realize rotation aware motion compensation in
MPEG video compression.

The last aspect of ongoing research presented in this section are extended
methods of interpolation. Current polynomial time algorithms for image match-
ing or similar problems model image transformations by the help of nearest
neighbor interpolation, an out-dated standard notion of image processing. But,
although it is possible to approximate image matching for nicer interpolation
schemes by the use of nearest neighbor interpolation it is still worthy to look for
exact algorithms working with the higher standards. The topic of Florian Wend-
land’s master thesis [46] are some first perspectives of extending the approaches
in this thesis to fit the demands of linear interpolation.
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6.3 Summary

The main result of the thesis is a structural analysis of the image matching
problem with respect to projective transformations and a number of interesting
subclasses such as affine and linear transformations, translations, rotations, scal-
ings and combinations of scaling and rotation. Taking advantage of the search
space structure common among the covered classes of transformations a generic
polynomial time image matching algorithm is introduced.

To provide precise bounds for the running time of the algorithm the complex-
ity of the search space structure is examined for each class of transformations.
Polynomial upper bounds are provided for all considered classes but it remains
a challenging task to find corresponding lower bounds for affine and projective
transformations. Implementations of the proposed algorithm show the potential
of the new method but it still needs a lot of effort to make it practically relevant.

Afterwards, the structural complexity of projective image matching is ana-
lyzed. The existence of a first order sentence using the majority quantifier, that
expresses this problem, is used to argue that projective image matching is con-
tained in UD-TCO. Moreover, the problem is even complete in UD-TCO which
follows from an UD-FACO-reduction from majority.

Altogether, the author presents first step towards general image matching in
real applications and hopes that it helps to initiate future work on the practical
aspects of image matching.
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List of Symbols

<[u, v] atomic first order formula; satisfied by (s, a) if a(u) < a(v) p. 84

‖ · ‖ Euclidean norm p. 9

[ · ] rounding vector components to integers p. 9

Γχ surjective mapping Hχ[m,n] → D[Fχ,m](A) for given
image A of size n

p. 55

δ distortion between images A and B of size n, resp. m, by
δ(A,B) =

∑
(i,j)∈z(max{m,n}) ω(A(i, j), B(i, j))

p. 13

λ parameter subspace for rotations p. 55

Π decision problem; subset of {0, 1}∗ p. 11

τχ geometry preserving mapping Aχ[m,n]→ Hχ[m,n] p. 60

φ first order formula; φ without free variables is a sen-
tence; modular formula φ[u1, . . . , un] with free variables
u1, . . . , un used for in- and output

p. 84

ϕ face, a convex subspace of R8 defined by half space in-
tersection; open if defined by h0(·), h+(·) and h−(·) and
closed if defined by H+(·), H−(·); interior ↓ϕ is largest
contained open face and ϕ̂ is the boundary of ϕ

p. 23

χ slice, a linear subspace of R8 defined by hyperplane inter-
section; χa, χ`, χt, χs, χsr describe parameter subspaces
for affine, linear transformations, translations, scalings
and combinations of scaling and rotation

p. 21

ω distortion between color values C × C → N p. 13

A, B digital images p. 12

AI nearest neighbor interpolation w. r. t. an image A p. 12

Aχ[E ] open arrangement given by a set E of linear polynomials;
for short Aχ[m,n] = Aχ[E [m,n]]

p. 24

B(φ) set of bounded variables w. r. t. first order formula φ p. 84

Bit[u, v] atomic first order formula; satisfied by (s, a) if the a(v)th
bit in binary representation of a(u) is positive

p. 84
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C colors, a set {0, . . . , C−1} of the first C natural numbers p. 11

det(M) determinant of matrix M p. 9

D[F ,m](A) dictionary of A, a set {f(A)[m] | f ∈ F} of all transfor-
mations of A by f ∈ F

p. 15

e1, e2, e[i, j] invalid polynomials; points P with e1(P ) = 0, e2(P ) = 0
or e[i, j](P ) = 0 are invalid

p. 35

encu, encb unary and binary encoding functions for image matching
instances to binary strings

p. 89

E a set of linear polynomials; E [m,n] contains `viji′ and `hijj′
for all (i, j) ∈ z(m) and i′, j′ ∈ {−n, . . . , n+ 1}

p. 35

Ein(v),
Eout(v)

neighborhood of v in incidence graphs; Ee
in(v), Ee

out(v) are
the restricted neighborhood of v w. r. t. constant e

p. 27

f transformation R2 → R2 p. 13

f(A)[m] image transformation of size m w. r. t. transformation f
and image A

p. 13

F set of transformations; Fχ is the transformation set rep-
resented by points in χ

p. 15

FO set of decision problems described by first order formulas;
FO = UD-ACO

p. 86

FO[Q] set of decision problems described by first order formulas
with majority quantifier Q; FO[Q] = UD-TCO

p. 86

Fp class of projective transformations; Fa, F`, Ft, Fs, Fr,
Fsr are the subclasses of affine, linear transformations,
translations, scalings, rotations and combinations of scal-
ing and rotation

p. 16

Gχ[E ] incidence graph of open arrangement Aχ[E ], for short
Gχ[m,n] = Gχ[E [m,n]]

p. 26

h0(`) surface in R8 defined by polynomial `; subspace of all P
with `(P ) = 0

p. 21

h+(`),h−(`) half spaces in R8 defined by polynomial `; subspace of all
P with `(P ) > 0, resp. < 0

p. 21

h+
j′ , h

−
j′ subspaces of R2 that consist of all pixels pix(i, j) ∈ Pix[n]

with j ≥ j′, resp. j < j′
p. 34

H+(`), H−(`) half spaces in R8 defined by polynomial `;
H+(`) = h0(`) ∪ h+(`), H−(`) = h−(`)

p. 21

Hχ[E ] closed arrangement given by a set E of linear polynomials;
for short Hχ[m,n] = Hχ[E [m,n]] and
HQm,n [m,n] = {ϕ ∩Qm,n | ϕ ∈ H[m,n]}

p. 24



IMω image matching function w. r. t. a distortion ω; IMu
ω for

unary encoding, IM b
ω for binary encoding

p. 90

` polynomial; mostly linear like `viji′ , `
h
ijj′ in Definition 3.3 p. 10

`(v) subset of linear polynomials in E [m,n], labels for every
node v in the incidence graph

p. 27

LOGSPACE set of problems decidable in logarithmic space p. 81

L[m,n] lattice of points in R8; for L = 3 · 1016m13n6 and d =
(1.5 · 109m7n3 + 0.5)−1 there are 2L + 1 points in every
dimension with a mutual distance of d

p. 42

M (square) matrix over R p. 9

M random access machine p. 10

MAJ subset of {0, 1}∗ that consists of all strings s with at least
d0.5|s|e positive bits

p. 83

N circuit; Nn is a circuit with n input gates p. 82

N family {N0, N1, N2, . . .} of circuits, one for every input
length

p. 82

N set {0, 1, 2, . . .} of nonnegative integers p. 9

NC1 set of problems decidable in logarithmic time by a poly-
nomial size family of circuits of gates with fan-in two

p. 81

pix(i, j) pixel at (i, j), a unit square area in R2 with center (i, j) p. 12

P vector in parameter space R8 p. 9

P (v), P ′(v) points of R8, labels for every node v in the incidence
graph; P ′(v) is a valid point in ϕ(v)

p. 27

P [F ] surjective mapping Rk → F p. 15

Pix[n] set of pixels pix(i, j) for all (i, j) ∈ z(n) p. 12

PTIME set of problems decidable in polynomial time p. 81

Q majority quantifier; Qt
n is the related counting quantifier p. 84

Qr hypercube in R8 with center (0, . . . , 0)T and diameter r;
Qm,n = Q1.5·107m6n3

p. 23

R set of real numbers; Rk forms sets of real vectors like the
plane R2 and the projective parameter space R8

p. 9

s string over {0, 1}∗; s has length |s|, s(i) gives ith bit and
s|s′ is concatenation of two strings s and s′

p. 10

(s, a) structure for formula φ; s is a string and a an assignment
a : V → {0, 1, . . . , |s| − 1}; (s, a) |= φ if it satisfies φ

p. 84

T worst case time for computation of a valid point p. 61

T threshold for image matching p. 20



UD-ACO set of problems decidable in constant time by a polyno-
mial size DLOGTIME uniform family of unbounded fan-
in circuits

p. 83

UD-FACO set of functions computable in constant time by a poly-
nomial size DLOGTIME uniform family of unbounded
fan-in circuits

p. 83

UD-TCO set of problems decidable in constant time by a polyno-
mial size DLOGTIME uniform family of unbounded fan-
in circuits using threshold gates

p. 83

UD-FTCO set of functions computable in constant time by a poly-
nomial size DLOGTIME uniform family of unbounded
fan-in circuits using threshold gates

p. 83

Update(uv) set of tuples (i, j, i′, j′), labels for edges uv ∈ Ee in the
incidence graph; traversing from u to v involves an update
of pixel (i, j) with color A(i′, j′)

p. 63

v+
i′ , v

−
i′ subspaces of R2 that consist of all pixels pix(i, j) ∈ Pix[n]

with i ≥ i′, resp. i < i′
p. 34

V set of variables in first order formulas p. 84

V(φ) set of free variables w. r. t. first order formula φ p. 84

X[v] atomic first order formula; satisfied by (s, a) if s(a(v)) = 1 p. 84

z(n) support with size n; images A of size n have A(i, j) = 0
for all (i, j) 6∈ z(n)

p. 12

Z set of integers; Z2 forms the set of integer pairs p. 9


