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To my Family.





I

Zusammenfassung

Biomarker ermöglichen die Klassifizierung von Patienten in vordefinierte Gruppen

und können somit Ärzten als Unterstüzung bei der Diagnose und der Therapie-

auswahl dienen. Im folgenden werden Biomarker als eine Menge von Variablen

verstanden, die als Prediktoren eine zuverlässige und robuste Entscheidungsregel

generieren, wobei die Anzahl der Variablen möglichst klein ist. Diese Arbeit um-

fasst im wesentlichen drei Hauptteile: Zunächst wird ein Biomarker mit statisti-

schen Lernverfahren bestimmt am Beispiel eines Tuberkulosedatensatzes. Der Mit-

telteil befasst sich mit dem Einfluss der Versuchsplanung auf die Biomarkersuche

im Fall von gepoolten Proben. Abschließend wird eine Erweiterung der Methode

Powered Partial Least Squares Discriminant Analysis (PPLS-DA) vorgeschlagen,

um die Fehlerrate der Klassifikation noch weiter zu verringern.

Im ersten Teil wird auf der Basis von Metabolitprofilen ein Biomarker bestimmt,

der zwischen Tuberkulose Patienten und infizierten, aber gesunden Personen unter-

scheidet. In diesem speziellen Fall werden mögliche Klassifizierungsmethoden ver-

glichen, eine Rangliste der Metaboliten erstellt und eine Menge von Metaboliten als

Biomarker-Kandidat bestimmt. Hierfür werden die zwei statistischen Lernverfahren

Random Forest (RF) and PPLS-DA eingesetzt. Es wird ein Kreuzvalidierungsansatz

zur Biomarkersuche vorgestellt, der auf einer validierten Rangliste von Merkmalen

basiert. Mit diesem Ansatz wird ein Biomarker bestehend aus 19 Metaboliten mit

der Klassifikationsmethode Random Forest (RF) bestimmt. Im Vergleich dazu hat
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die Klassifikationsmethode PPLS-DA einen Biomarker aus nur 8 Metaboliten gefun-

den, bei gleicher Fehlerrate der Klassifikation.

Im zweiten Teil wird die Bedeutung der Wahl des experimentellen Designs für

die Biomarkersuche auf Basis von Genexpressionsprofilen untersucht. Dazu wer-

den Pooling-Designs und Einzelproben-Designs in Klassifikationsstudien verglichen.

Anhand der Ergebnisse einer umfangreichen Simulationsstudie wird der Einfluss

von gepoolten Proben auf die Fehlerrate der Klassifikationsmethoden und die Wahl

möglicher Biomarker dargestellt. Darüber hinaus werden experimentelle Daten

nachträglich ”künstlich” gepoolt, um experimentelle Datensätze in die Untersuchung

mit einbeziehen zu können. Es kann die in der Literatur gegebene Empfehlung unter-

mauert werden, dass ein Einzelproben-Design für Klassifikationsstudien vorzuziehen

ist. In Abhängigkeit vom Genexpressions-Muster, dem Anteil von informativen

Genen für die Klassifikation, der Poolgröße, der technischen Variation und der Klas-

sifikationsmethode wird der Einfluss eines Pooling-Designs auf die Biomarkersuche

dargestellt. Es wird deutlich, dass die Klassifikationmethoden PPLS-DA, PLS-DA

und RF am wenigsten anfällig gegenüber Pooling bei der Biomarkersuche sind.

Die Klassifikationsmethode PPLS-DA hat sich in dieser Arbeit als besonders vorteil-

haft für die Biomarkersuche erwiesen, aufgrund dessen wird diese im dritten Teil

weiter entwickelt. Die ursprüngliche PPLS-DA bestimmt den Power-Parameter

über die Maximierung der Korrelation zwischen der Komponente und der Grup-

penzugehörigkeit. Es wird eine Erweiterung vorgestellt, die den Power-Parameter

in einem Optimierungsverfahren bestimmt, mit dem Ziel die Fehlerrate der LDA

im Klassifikationsschritt zu minimieren. Hierfür werden vier mögliche Varianten

vorgeschlagen. Die Fehlerrate wird untersucht für die Erweiterungen im Vergleich

zur Fehlerrate der ursprünglichen PPLS-DA und der von PLS-DA. Hierbei wird die

Datensatz-Struktur berücksichtigt. Die vorgeschlagene Erweiterung von PPLS-DA

bildet einen Beitrag zur methodischen Entwicklung in der Biomarkersuche.
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When you have excluded the impossible,

whatever remains, however improbable,

must be the truth.

Sherlock Holmes
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1 Introduction

Frequently the visit at the medical doctor includes the collection of a blood or

urine sample to confirm a diagnosis. For example, is there a patient suspected of

having diabetes mellitus, a blood sample might be taken to confirm the diagnosis.

The concentration of glycated hemoglobin (denoted by HbA1c) is used as a feature

(variable), that classifies patients into two groups, a patient with a concentration

measured equal or over 6.5% is classified to the group of patients with diabetes mel-

litus, patients with a concentration between 5.7 and 6.4% belong to the group with

increased diabetes risk (Deutsche Diabetes Gesellschaft, 2010). The HbA1c-value

is a biomarker for diabetes mellitus. Thus, a biomarker enables the discrimination

between groups using a decision rule. The HbA1c-value is an example of a biomarker

already established in practice. A particular advantage of this value for the diagnosis

of diabetes is that only one blood sample is needed; the determination is indepen-

dent of time of the day and does not require a fasting patient (Deutsche Diabetes

Gesellschaft, 2010). Furthermore the HbA1c has an outstanding status in practice

for the blood glucose control because it is a measure of the average blood glucose

concentration of the last 8 weeks. Therefore it allows a statement of the blood glu-

cose concentration over a longer time, which is very important for the treatment of

diabetics. If the HbA1c value lies within a given reference range, the patient is well

treated, otherwise the patient needs to be re-stabilized.

A further example for the application of a biomarker is a pregnancy test (Bracht,

2009). Based on the concentration of special hormones measured in a blood sample
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or a urine sample, an assessment is made whether a woman is pregnant or not. Al-

lergy tests (like a skin prick test) are also based on biomarkers (Boot et al., 2008).

The skin is incised on the forearm and brought into contact with various allergens.

The size of possible welts on the skin is measured and indicates the susceptibility to

an allergen.

Biomarkers such as cholesterol and blood fat level, are often non-specific and am-

biguous, therefore molecular biomarkers such as gene expression and metabolite con-

centration are preferred regarding their validity for the classification result (Jarasch,

2011). Because of this reason, this thesis focuses on molecular biomarkers.

The search for a biomarker starts with the goal of finding a single feature which is

easily measurable and allows a robust classification with respect to outer circum-

stances. It turns out that especially for complex disease pictures and in the case of

early diagnosis, such a single feature cannot be found. For multivariate diseases like

cancer, intuitively a biomarker is needed which bases on a combinations of features.

This combination of features results in more valid and meaningful decisions than a

single feature (Etzioni et al., 2003; Pfeiffer and Bur, 2008). Therefore a biomarker

can be considered as a set of features which allows decisions about group affiliation

with a low number of wrongly classified samples. However the number of features

should be small, so that the practical use (measurement of the features) is feasible.

In this thesis, this important aspect is taken into account and special focus is put

on the assembly of features to a biomarker.

In the last ten years the search for biomarkers has increased dramatically. Pharma-

ceutical research companies and public health authorities show an immense interest

in biomarker search (Gudenus and Granzer, 2010). For clinical management de-

cisions as in drug-development, risk assessment, diagnostic testing and treatment

selection towards individualized medicine, there is an urgent need for biomarkers

which are easy to measure and can replace invasive or expensive methods (Simon

et al., 2003).

The starting point of biomarker search are patients for which the group member-
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ships are known. First (to stay in the previous example), blood samples are collected

from these patients and the blood components (features) are measured. The goal

is to classify persons according to a feature or a set of features. In the diabetes

example, patients with diabetes mellitus have a clearly higher HbA1c-value than

healthy persons. Unfortunately, the search for biomarkers is not as simple like the

example suggested and statistical methods are required to detect biomarker candi-

dates. Statistical learning methods are widely and successfully applied to search for

biomarkers (Moler et al., 2000). With the help of importance values (measuring the

importance of a feature for the discrimination between groups) it is possible to select

features as possible biomarkers. Method development for biomarker search including

multivariate approaches is a major challenge to develop biomarkers also for complex

diseases. Nevertheless, the basis of each biomarker search is built by choosing an

appropriate design (Kerr, 2003). In the design choice, however, not only statistical

considerations are integrated, even outer circumstances play a role. For example,

financial resources often limit the cost-intensive sample preparation for microarray

studies and lead to a lower sample size. If more samples are collected than can

be measured, mixing the samples (pooling) is a solution to increase the statistical

power for detection of differentially expressed genes. Also pooling is applied if not

enough cDNA is available for the hybridization step (e.g. for the antennae of bees).

While biologists often apply pooling in microarray experiments, Kerr (2003) advised

against choosing a pooling design for classification studies like biomarker searches,

because the inference to the individual level suffers. This raises the question of how

strong the consequences of pooling are on the results of biomarker search. Which

statistical learning methods are most robust against pooling considering the per-

formance and the selection of biomarkers? Statisticians are confronted with these

fundamental questions.

In this thesis, different statistical aspects including design and choice of method

are analyzed, which are important for the search of biomarker candidates.
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This yields the following structure: In Chapter 2 statistical basics for the biomarker

search are presented. The existing definition of a biomarker is given, and statistical

aspects of a biomarker search are described. Also the statistical learning methods

investigated are briefly explained.

To illustrate the biomarker identification process, an example of a biomarker search

on the basis of metabolite profiles is given in Chapter 3. A biomarker which allows

the discrimination between tuberculosis patients and infected but healthy persons

is determined. The statistical learning method random forest is applied to detect a

biomarker in this practical example. To verify how strong this biomarker depends

on the method used, additionally a biomarker is identified with respect to Powered

Partial Least Squares Discriminant Analysis (PPLS-DA). The origin of this Chapter

based on work as a co-author for Weiner et al. (2011). In all following Chapters the

focus is on gene expression data, because these features have often proven to be a

good biomarker, and are particularly promising (Jarasch, 2011).

Chapter 4 describes the simulation of gene expression data and the publicly available

gene expression data sets used in this thesis. The main part of this thesis studies the

influence of the design choice in terms of pooled samples on the biomarker search

presented in Chapter 5. A simulation study builds a detailed analysis of pooling with

respect to linear and non-linear separable data. Biomarker candidates identified by

pooling designs are compared to corresponding candidates for single sample designs

to verify dependence of proposed biomarker candidates on the underlying design.

Also experimental data sets are considered to underline the results. Chapter 5 bases

on the publications Telaar et al. (2010),Telaar et al. (2012a).

In Chapter 3 PPLS-DA identifies a clearly lower number of features as biomarker

than random forest while the number of falsely classified samples is similar. Also in

Chapter 5, PPLS-DA comes out as applicable method for pooling designs, because

it is most robust against pooling regarding the prediction performance and the

important features for the classification. Furthermore the basic approach of this

method (to combine original features to new features) seems to be advantageous.
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Therefore in Chapter 6, PPLS-DA is extended to reduce the prediction error by

modifying the original optimization problem. The work described in this Chapter

shows an improvement of a promising method for biomarker search. A manuscript

summarizing the presented findings has been submitted by Telaar et al. (2012b).
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2 Statistical background for

biomarker search

This chapter describes the background of a biomarker search. Starting with the

official biomarker definition and a more theoretical definition in the context of this

thesis, statistical aspects of the biomarker search are introduced. A representa-

tion of the biomarker search as a classification problem is then explained. There-

after, selected statistical learning methods which are applied in this thesis to detect

biomarkers are briefly introduced.

2.1 Basics of biomarker

2.1.1 Definition of a biomarker

The Biomarkers Definition Workgroup (2001) defines a biomarker as “a character-

istic that is objectively measured and evaluated as an indicator of normal biological

processes, pathogenic processes or pharmacological responses to a therapeutic inter-

vention”.

In the context of this thesis: A biomarker is defined as a set of features M =

{M1, . . .Mb} 6= ∅ (with at least one feature, i.g. b ≥ 1) which enables a unique

assignment/mapping of an unknown object to an unique predefined group. There

are two main requirements:
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a) the cardinality of the set M (|M| = b) should be adequately small while

b) the assignment (classification rule) should be as accurate as possible.

Condition b) means that the number of wrongly classified objects should be as small

as possible. For the first condition, a small number of selected features, Liu et al.

(2002) state three reasons (in the mentioned publication |M| = 20). The first rea-

son is, that medical doctors and biologists prefer a small number of features because

otherwise the examining is not practicable. Secondly, a large number of features

can lead to very time-consuming calculations. Thirdly, the inclusion of additional

features does not lead to an improved prediction. Furthermore, for practical users

of a biomarker the interpretability of the features building the biomarker is often

important (Liggett et al., 2004).

2.1.2 Biomarker search - statistical point of view

Before a biomarker is used, many developmental steps have been made (Feng et al.,

2004). In this thesis, the focus is on the first three steps of biomarker search.

Baumgartner et al. (2011) describes these steps more in detail for metabolomic

biomarkers. Main aspects of these steps can also be adapted to genomic or proteomic

biomarker searches:

� definition of the hypothesis

� choice of study design and realization of the study

� sample preparation, analyses and biomarker identification.

A clear, pre-defined hypothesis is the beginning of every biomarker search. Next,

a proper experimental design is necessary to allow derivation of valid statistical

conclusions from the data (Kell, 2007; Kerr, 2003; Allison et al., 2006; Yang and

Speed, 2003). A good design minimizes the influence of disturbance factors like age,

gender and additional diseases. The mentioned influencing quantities contribute to
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the variation between the persons/samples, called biological variation. This kind

of variation can be reduced by sample pooling (mixture of samples) (Allison et al.,

2006). Moreover pooling lowers costs, if financial constrictions play a role in the

design choice.

After design selection, performing and evaluating the study yields a biomarker can-

didate. Whether or not it really becomes a biomarker is decided in further steps

Baumgartner et al. (2011) (independent validation of the biomarker). In this the-

sis, a biomarker candidate is simply called a biomarker, having in mind that the

biomarker has to be verified.

Case-control studies are frequently realized for biomarker search (Baumgartner et al.,

2011). This means, one group of persons which show the clinical indication (cases)

and another group of persons without the clinical indication (controls) are investi-

gated in the study. Often biomarker search is part of the analysis of clinical stud-

ies on unrelated end points, where additional molecular data have been measured.

These studies can be formulated as a classification problem.

Description of a classification problem

The basis of a classification problem is a data matrix X = [x1, . . . ,xg] ∈ Rn×g and

a response vector y. The data matrix has n rows for the n samples/objects mea-

sured and g columns for the g features investigated, these features are also called

predictors. The kth column of X is denoted by xk. The vector y = [y1, . . . , yn]t ∈ Gn

contains the group memberships for each object. The label of objects {1, . . . , n} can

be given as discrete variables or symbolics, here G is the set containing all labels

yi, i = 1, . . . , n.

Each sample belongs to a unique group ν and each group has a sample size of nν .

In this thesis, only two groups are considered and therewith n = n1 + n2. The prior

probability of group 1 is denoted by π1 and for group 2 by π2, with π1 +π2 = 1. The
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group information can also be given in form of a dummy coded matrix Y = (yiν)iν ,

(i = 1 . . . , n, ν = 1, 2) as follows: The entry yiν equals 1 if sample i belongs to

groups ν, otherwise the entry equals 0, (i = 1, . . . , n and ν = 1, 2).

The goal of a classification study is to determine a function C(x) : Rg −→ G, x 7→ y

which assigns a unique group coded by the group labels with the greatest possible

accuracy to each object given as a feature vector x (Indahl et al., 2007).

Now the biomarker search can be summarized in the following way: the aim is to find

a set M = {M1, . . .Mb} (the biomarker) which features can be used as predictors

instead of all g features with 1 ≤ b < g for a classification function CM : Rb −→ G

with good performance.

For the determination of function C, it is necessary to “learn” the properties of

the data (i.e. data structure, distribution) to classify new independent samples to

a predefined group. This can be done by statistical learning methods (presented

in Section 2.2) which base on two steps, the training step and the test step. A

classification rule/function C is built on the information of a partial data set Xtrain

(Hastie et al., 2009). The corresponding group labels are denoted by ytrain. The set

{Xtrain,ytrain} is called the training set. In this thesis, the objects of the training

set are randomly chosen with a ratio of φX on the n samples of the whole data set.

This procedure relates to the group size, since φX · nν samples of group ν, ν = 1, 2

contribute to the training set. The remaining samples build the test set {Xtest,ytest}

with Xtrain ∩ Xtest = ∅ and a sample size per group of (1 − φX) · nν . Therewith

the n objects are partitioned into a set containing objects for the training step and

objects for the test step. The samples of the test sets are used to verify the learned

classification function. These samples are assigned to a group label according to the

learned mapping C (test step). Because the true group memberships are known, the

prediction error (PE, the proportion of wrongly classified objects) can be calculated.
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Measuring biomarker performance

A further aspect of biomarker search is the evaluation of the biomarker. This is

already indicated in requirement b) of a biomarker in Section 2.1.1. A biomarker

often is assessed with respect to its prediction accuracy (the proportion of correctly

classified objects) or often by its PE. For the determination of these measures,

it is important to use new independent samples not used in the training set (Lai

et al., 2006). The test set can be used or new independently measured samples.

Therefore often so called cross-validation approaches are used to estimate the PE

considering the whole data set X (Dudoit and Fridlyand, 2003). Several forms of

cross-validation approaches exist (e.g. the classical leave-one-out cross-validation

(Hastie et al., 2009)). In this thesis the cross-validation approach is applied on the

n objects by partitioning the data into training set and test set by the ratios (φX,1-

φX). This partition can be repeated r ∈ N times. Let ntrain denote the number of

objects for the training set and ntest the corresponding number for the test set. With

this kind of partition, there are
(

n
ntrain

)
possible combinations for the objects of the

training set, in contrast to the leave-one-out cross-validation with only n repetitions.

Let r denote the number of resampling steps of the training set and the test set.

Calculating the PE for each test set, a vector z containing r PE values is obtained.

This enables the estimation of the PE by the mean value and the corresponding

95% confidence interval. A confidence interval is calculated as follows: the upper

bound of the confidence interval is u(z) = mean(z) + 1.96 · sd(z)/
√
r. The lower

bound is calculated likewise. If these confidence intervals overlap, no significant

differences are reported, if they are disjunct, the corresponding PEs are reported as

significantly different.

If parameters have to be optimized for classification methods, this is only done on

the training set by a similar cross-validation procedure as described above. Random

samples of the training set Xtrain are drawn with a ratio of φXtrain
to create an

inner training set, and the remaining samples build the inner test set analog to the
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training and test set described above. This step is repeated rinner times. This kind

of cross-validation is called inner-cross-validation. The training set and the test set

according to φX are called outer training and outer test set.

Once a candidate biomarker is identified, it should be checked for reproducibility

(Liggett et al., 2004). It is important to verify the biomarker and investigate the

robustness with respect to variation in the population. Therefore various statistical

methods should be compared for the identification of biomarkers (Feng et al., 2004).

2.2 Classification methods

In the previous Section 2.1.2, biomarker search is formulated as a classification

problem. In the following, classification methods are introduced which have already

shown great promise for finding biomarkers (Dettling and Buehlmann, 2003; Dudoit

and Fridlyand, 2003; Fan et al., 2011) and are applied throughout this thesis. The

open source statistical programming language R (R Development Core Team, 2011)

was used for implentations of these classification methods.

2.2.1 Linear discriminant analysis

The linear discriminant analysis (LDA) is a linear classification method which de-

termines a linear decision boundary based on a Bayes classification. The probability

for an object (determined by x) belonging to group ν is denoted by pν(x) and is

normally distributed with mean value µ(ν) and variance Σν . The decision rule of the

Bayes classification is now that the object with measured values x belongs to the

group with the largest posteriori probability (Indahl et al., 2007)

p(ν|x) =
πνpν(x)

p1(x) + p2(x)
.
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If no prior probabilities πν are known, the group proportions nν/n are used instead.

The following descriptions are based on Huberty (1994) and Ripley (1997). If the

groups have a common covariance structure Σν = Σ for all ν, the linear discriminant

function for group ν is defined as

δν(x) = xtΣ−1µ(ν) −
1

2
µt(ν)Σ

−1µ(ν) + log πν .

The final classification rule is then

G(x) = arg max
ν

δν(x),

the object with the feature values x is assigned to the group with the largest value

of the discriminant function. In the case of two-groups, the difference between δ1

and δ2 is

δ1(x)− δ2(x) = xtΣ−1(µ(1) − µ(2))−
1

2
(µt(1)Σ

−1µ(1) − µt(2)Σ
−1µ(2)) + log(

π1

π2

),

therefore the following classification rule is achieved:

δ1(x)− δ2(x)


≥ 0 ⇒ x 7→ group 1

otherwise⇒ x 7→ group 2.

The discriminant function δν (2.2.1) can be rewritten as

δν(x) = btνx + bν0 ,

with bν = µ(ν)Σ
−1 and a constant bν0 = −1

2
µt(ν)Σ

−1µ(ν) + logπν . The vector bν

contains the weights for each feature. Therewith the difference between the two

discriminant functions δ1 and δ2 can also be described by

δ1(x)− δ2(x) = btx + b0,
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with b = (b1 − b2) and b0 = (b10 − b20). The classification function/rule of LDA is

now

CLDA(x) := δ1(x)− δ2(x) : Rg → G.

Geometrically δ1(x)−δ2(x) = 0 describes the decision boundary, a (g−1)-dimensional

hyperplane (Bishop, 2006).

For such an LDA the R-function lda of the R-package MASS is applied and the pro-

portions of the groups πν = nν/n in the training set are used as prior probabilities.

One disadvantage of LDA is, that the required sample size for the group with the

minimal sample size is 3·g (3 times the number of genes) (Huberty, 1994). Especially

for gene expression data, this condition is not fulfilled, because often nν << 3 · g.

Therefore, in this thesis the top ten features are first selected according to the p-

value of the t-test (the t-test is described in Section 2.3.2). Here, the ten features

with the smallest p-values are chosen; they are the predictors of the LDA. These ten

features can be understand as possible biomarker candidates. How good they are as

biomarker, can be evaluated by the PE of the LDA. The classification using LDA

with features filtered according to the t-test is denoted by t−LDA.

2.2.2 Random forest

Random forest (RF) is described by its developer Breiman (2001) as follows: It grows

“an ensemble of trees and lets them vote for the most popular class”. Decision trees

are built, each on a random sample chosen with replacement on the objects. Breiman

(1996) called the remaining samples which are not considered for the creation of the

tree the “out-of-bag” samples (OOB). A decision tree is built in the following steps:

at each node, mtry of the g features are chosen. Among these features, the feature

with the best split (the greatest prediction performance) at this node is selected.

The trees are not pruned. In one random forest mtry is constant for each tree.
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Breiman (2002) recommended choosing mtry equal to the square root of the number

of features (
√
g) and ≥ 1000 for the number of trees (ntree). Classifying new samples

is done by dropping them down through all trees of the random forest. The group

with the majority of votes depicts the predicted group membership according to the

RF (Liaw and Wiener, 2002).

The classification rule of random forest is

CRF(x) : Rp → G.

with x belonging to group 1, if the majority of the trees classify x to group 1, oth-

erwise x belongs to group 2.

For RF in this thesis the R package randomForest (Liaw and Wiener, 2002) is ap-

plied. For the experimental data, a FORTRAN code available from http://www.stat.

berkeley.edu/˜breiman/RandomForests/cc software.htm is used with the same set-

tings as for the R Code. The FORTRAN code is used because the experimental data

sets have a large number of genes which lead to very time consuming calculations

in R. The results produced using R and FORTRAN are similar. This was checked

with simulated data.

2.2.3 Support vector machine

Support vector machines (SVM) were first proposed as a soft margin classifiers by

Vapnik (1995), theory development started with works of Vapnik and Chervonenkis

(1974) and Vapnik (1979). For a comprehensive introduction see Burges (1998). An

SVM is based on classification according to a linear hyperplane like for LDA. For the

introduction of SVM, the group memberships are assumed to be yi ∈ G = {1,−1}

for all samples i = 1, . . . , n. The explanations are deduced from Burges (1998).
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Linear SVM

The first case considered consists of two groups with data points linear separable

by a hyperplane. Analogous to the approach of LDA, a hyperplane defined by

btx + b0 = 0 is sought. The question is how to determine the vector b and the

constant b0, if several solutions are possible. Now the hyperplane with the largest

margin is selected, i.e. the hyperplane with the largest distance between the data

points on the positive and negative side. The underlying minimization problem of

the linear SVM is:

min
b,b0

1
2
btb (2.1)

subject to yi(b
txi + b0) ≥ 1.

The data vectors which lie on the hyperplanes defining the margin

({xj |btxj + b0 = 1} ∪ {xl |btxl + b0 = −1}) are called support vectors. If the

data is non-separable, slack variables ξi, i = 1, . . . , n, ξ = [ξ1, . . . , ξn] are introduced

to soften the conditions of the optimization problem (2.1). Additionally, a cost

constant C is established to penalize the softness of the conditions. The resulting

minimization problem is then

min
b,b0,ξ

1
2
btb + C

∑n
i=1 ξi

subject to yi(b
txi + b0) ≥ 1− ξi

ξi ≥ 0.

The sum
∑n

i=1 ξi is used so that the accumulated violations of the conditions are

minimal.

Therewith for linearly separable data, an optimization problem is given to determine

a hyperplane allowing weakened conditions if necessary.
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Nonlinear SVM

If the data are not linearly separable in the feature-space Rg, the so called “kernel

trick” (Aizerman et al., 1964) is used to project the data in a higher dimensional

space, where the data is linearly separable. The function ϕ maps the data in a higher

dimensional Euclidean space H, ϕ : Rg → H. The kernel function K should have

the following form K(xi,xj) = ϕ(xi) · ϕ(xj) such that only the dot product in H is

used and ϕ does not need to be known. A simple example of a nonlinear pattern is

shown in Figure 2.1(a). The red points illustrate the data points of group 1 and the

blue points indicate samples of group 2 in R. Figure 2.1(c) shows the data points

projected to a higher dimensional space H = R2 by the function ϕ : R → R2 with

ϕ(x1) = [x1, x
2
1]t. In the space R2 the samples are linearly separable by a hyperplane.
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Figure 2.1: Nonlinear data points (red data points belong to group 1, blue data
points to group 2) in R (panel left) and the same data points under the
mapping ϕ in R2 (panel right) (now linear separable).

In this thesis, the following two basic kernels are included:

� linear: K(xi,xj) = xtixj

� radial basis function: K(xi,xj) = exp(−τ ||xi − xj||2), τ ≥ 0.
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The underlying minimization problem of the nonlinear SVM is :

min
b,b0,ξ

1
2
btb + C

∑n
i=1 ξi

subject to yi(b
tϕ(xi) + b0) ≥ 1− ξi

ξi ≥ 0.

If ϕ equals the identical function, this optimization problem corresponds to those of

the linear SVM.

The classification rule developed by linear and nonlinear SVM can be summarized

by

CSVM(x) : Rg → G.

with CSVM(x) := 1 if btϕ(x) + b0 ≥ 1 and CSVM(x) := −1 if btϕ(x) + b0 < 1.

The parameters C and τ (only for the radial basis function) have to be set by the

user. A large value for C punishes the breach of the constraint more than a small one.

For solving the optimization problem in the linear and non-linear case, the optimiza-

tion problem can be solved using Lagrange multipliers. Therewith the data points

are given in form of dot products between vectors, and in the non-linear case, the

function ϕ does not need to be known.

The R package e1071 (Dimitriadou et al., 2009) is applied for SVM and the parame-

ters C and τ are tuned within the interval [2−5, 24] and [2−10, 25], respectively, using

the R-function tune.svm with a cross-validation of 10 steps. The intervals for tuning

are chosen according to the suggestion of Dettling (2004). In this thesis, SVM with

the linear kernel is denoted by SVML and SVM with the radial basic function is

denoted by SVMR.
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2.3 Dimension reduction

2.3.1 Feature Extraction

The next section mainly bases on Barker (2010), Barker and Rayens (2003), Indahl

et al. (2007) and Nocairi et al. (2005). In this Section and without loss of generality,

let the columns of the data matrix X be centered (otherwise this can be easily done

by subtraction of the mean of the variable). A lot of features (genes) are often

measured for only a few objects/patients especially in gene expression experiments.

Classification methods like LDA cannot deliver good classification rules if the num-

ber of features g is much larger than the number of samples n. This problem is

known in the literature under the “large p small n” problem, where p denotes the

number of features (Hastie et al., 2009). Therefore, dimension reduction techniques

are often used before the final classification takes place. Feature extraction is a spe-

cial form of dimension reduction, based on transformation to a lower dimensional

subspace. The transformation can be linear or nonlinear. In this thesis only linear

feature extraction techniques, like principal component analysis (PCA) and partial

least squares (PLS), are considered.

These methods calculate components as a convex linear combination of the original

features in an iterative procedure. These components are called scores. The pro-

cedure can shortly be summarized as follows: Starting with X{0} = X, the vector

w{1} = [w1{1} , . . . , wg{1} ]
t containing the weight for each feature is determined and

the corresponding score vector t{1} = X{0}w{1} is calculated. Afterwards the already

explained information in the scores is reduced of X{0} resulting in the 1st residuum

X{1} of X. Then the next weight vector w{2} is determined to calculate the next

score vector t{2} and so on. This is a simplified representation of the procedure,

in detail there exist many variations to determine the weights and the residuum

(Indahl et al., 2009).

The main challenge is to determine the weights in such a way, that the important
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information of the data remains in the components and the number of components

(nc, the dimension of the subspace ) is lower than the original feature space (nc < g).

Because in this thesis the context is on classification, ideally the groups should be

better separable in the subspace. In the following, two feature extraction methods

are presented which base on linear transformations, partial least squares discrim-

inant analysis (PLS-DA) and powered partial least squares discriminant analysis

(PPLS-DA). In Section 2.3.1, PLS-DA is compared to other linear feature extrac-

tion methods.

Partial least squares discriminant analysis

PLS is a powerful approach often used in chemometrics (a statistical scientific dis-

cipline of model building and data analysis in chemistry) (Wold, 1995). It was

developed for solving regression problems. If the response is a vector, PLS is de-

noted by PLS1 and if the response is a matrix, the corresponding PLS procedure

is denoted by PLS2. In the PLS procedure, the weights of the linear combinations

are called loading weights. The basic idea is to create the loading weights in such a

way, that the covariance between X and y is maximized.

For classification, it is common to use PLS2 with the dummy matrix Y which

indicates the group memberships (sometimes this method is also called partial least

squares-discriminant analysis (PLS-DA) in the literature).

For PLS2 the first loading weights vector in the context of classification is the

dominant eigenvector of the matrix

H =

(
2∑

ν=1

nν
2x̄(ν)kx̄(ν)l

)
kl

,

here x̄(ν)k denotes the mean value of feature xk for group ν and k = 1 . . . , g, l =

1. . . . , g (Barker and Rayens, 2003). The groups with a higher sample size get

a higher weight in the calculation of the loading weights. Therefore Barker and

Rayens (2003) and Nocairi et al. (2005) propose to use the dominant eigenvector of
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the between-group covariance matrix B:

B =

(
2∑

ν=1

nν
n
x̄(ν)kx̄(ν)l

)
kl

,

with k = 1 . . . , g, l = 1. . . . , g. Nocairi et al. (2005) shows the mathematical proof

for this approach. Regarding classification problems, deflation of the response is not

reasonable, because the dummy matrix Y contains discrete variables. Therefore the

response should remain the same in each iterative step for the classification task.

In this thesis, the PLS procedure, based on the between-group covariance and with

fix response matrix Y, is denoted by PLS-DA.

In Figure 2.2 an example of coordinate transformation to a lower dimensional space

using PLS-DA is shown, the dimension is reduced from three genes to only one com-

ponent.
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Figure 2.2: Demonstration of coordinate transformation to a lower dimensional
space using PLS-DA (red data points belong to group 1, blue data points
to group 2). In the left panel the original feature space is shown. The
right panel shows the data in the new coordinate system, here the first
component already leads to a separation of the groups.

PLS-DA can be described as the following maximization problem:

Let [w{1}, . . . ,w{a−1}] be the matrix containing the already determined loading
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weights, then the ath loading weight is the vector w which maximizes the between-

group covariance of X{a−1}w with respect to Y. Therewith according to Nocairi

et al. (2005), w{a} is the dominant eigenvector of the between-group covariance ma-

trix B{a−1} and the corresponding score vector is t{a} = X{a−1}w{a}.

The main steps of a PLS-DA algorithm are:

� determination of the loading weights vector w{a} as dominant eigenvector of

the between-group covariance matrix B{a−1}

� normalization of w{a}: w{a} 7→
w{a}
||w{a}||

� calculation of the scores: t{a} = X{a−1}w{a}

� calculation of the loadings: q{a} = Xt
{a−1}t{a}

� deflation of X{a−1}: X{a} = X{a−1} − t{a}q
t
{a}.

Because all components are determined analogously, it is suffices to look at the first

loading weight vector.

PLS-DA is related to Fishers canonical discriminant analysis (FCDA) where the

loadings are calculated as the dominant eigenvector of T−1B, here T denotes the

total sum of squares and cross product matrix.

In this thesis, PLS-DA is applied as preprocessing step for dimension reduction. For

the final classification the components are used as predictors of a LDA, as suggested

for the final classification ( Indahl et al. (2007)).

An enhanced version of PLS-DA with inclusion of prior probabilities (πν) in the esti-

mation of B is recommended in Indahl et al. (2007). In this version, the importance

of each group does not longer depend on the empirical prior probabilities. Therewith

a direct opportunity is given to put more weight on special groups for the calculation

of the loading weights. Moreover X is transformed to a n×2 matrix Z = XW0, here

W0 = XtY
√

Π(YtY)−1 is the transformation matrix and Π = diag({πν |ν = 1, 2})
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is a diagonal matrix with the square root of the prior probabilities as diagonal en-

tries. Therewith a g × g eigenvalue problem (B ∈ Rg×g) is reduced to a 2 × 2

eigenvalue problem (2=number of groups), because the between-group covariance

matrix according to Z is considered. Afterwards the eigenvalue is transformed by

W0. This approach is implemented in the software R in own PLS-DA code.

Indahl et al. (2007) gives a comprehensive overview of PLS-DA, for deeper insight

Barker and Rayens (2003) and Nocairi et al. (2005) are recommended.

The advancement of PLS-DA presented in the following allows the concentration

on a smaller number of features. This reduces the influence of features with little

classification information.

Powered partial least squares discriminant analysis

PPLS-DA is a specialized version of PLS-DA and was introduced by Liland and

Indahl (2009). A power parameter is established to improve the calculation of the

loading weights for a better separation of the groups. Moreover, the maximization

of the covariance is replaced by the maximization of the correlation.

In the usual PLS-DA approach the loading weight of a feature is determined, upon

other terms, by the product of the correlation between the feature to the response

and the standard deviation of the feature. Hence, a balanced influence is given by

the correlation and the variance. This often makes models based on PLS stable

(Indahl, 2005). Now for prediction, dominance X-variance which is irrelevant does

not lead to optimal models, therefore Indahl (2005) propose Powered PLS (PPLS)

which allows the user to control the importance of the correlation part relative to

the standard deviation part by a power parameter γ in the regression context. The

power parameter γ enables a flexible different weighting of the correlation part and

the standard deviation part of loading weights, which will be explained in detail

now. The columns of the dummy matrix Y are denoted by y1 and y2. The matrix
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W0, containing possible loading weights vectors as columns, can be factorized into

three matrices: W0 = CSP.

Here the matrix C contains the correlation between X and Y, the matrix S contains

the standard deviation of X and the matrix P contains the standard deviation of

Y and the prior probabilities πν and group sizes nν :

C = (ζk · |corr(xk,yν)|)kν ,

with ζk the sign of corr(xk,yν), k = 1, . . . , g, ν = 1, 2,

S = diag({sd(xk)| k = 1, . . . , g})

and

P = diag({n · sd(yν)

√
πν
nν
| ν = 1, 2}).

Now, to the entries of the matrices C and S an exponent is added depending on the

so called power parameter γ ∈ U , resulting in C(γ) = (ζk · |corr(xk,yν)|
γ

1−γ )kν , k =

1, . . . , g, ν = 1, 2 and S(γ) = diag({sd(xk)
1−γ
γ | k = 1, . . . , g}). The power parameter

γ can be chosen from the open interval U = (0, 1). The matrix W0(γ) = C(γ)S(γ)P

contains the candidate loading weights as columns (depending on γ)

wν(γ) = Kν,γ · ων,γ,

with ων,γ =
[
ζ1 · |corr(x1,yν)|

γ
1−γ · sd(x1)

1−γ
γ . . . , ζg · |corr(xg,yν)|

γ
1−γ · sd(xg)

1−γ
γ

]t
and Kν = n · sd(y) · √πg/nν , ν = 1, 2.

If the power parameter γ tends towards 0 (γ ↘ 0⇒ 1−γ
γ
→∞, γ

1−γ → 0), the stan-

dard deviation part is mainly used for the calculation of the loading weights and

features with a large standard deviation get larger absolute weights than the remain-

ing ones. If the power parameter tends towards 1 (γ ↗ 1 ⇒ 1−γ
γ
→ 0, γ

1−γ → ∞),
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the correlation part is mainly used and features with a large correlation towards yν

get larger absolute weights. The end points of the interval U are checked in separate

steps in the PPLS-DA algorithm. If γ equals 1, only the feature(s) with the largest

correlation get a non-zero loading weight and if γ equals 0 only the feature(s) with

the largest standard deviation get a non-zero loading weight. The power parameter

γ enables different weighting of features with large correlation or standard deviation.

The determination of the loading weight of PPLS-DA could be summarized as fol-

lows (here reported for the first component for reasons of simplicity): First again

the transformation Z(γ) = XW{0}(γ) is performed to reduce the dimension. For

the transformed matrix Z(γ) the between group sum of squares and cross-product

matrix including prior probabilities can be calculated as follows

BΠ(γ) = nZ(γ)tY(YtY)−1Π(YtY)−1Z(γ) and the total variance matrix is ob-

tained as TΠ(γ) = nZ(γ)tVΠZ(γ) with Π = diag({π1, π2}) and VΠ = diag({vi|vi =

nπg/ng, i = 1, . . . , n}).

The maximization problem of PPLS-DA is then

arg max
γ∈[0,1]

atBΠ(γ)a

atTΠ(γ)a
. (2.2)

The solution of the optimization problem (2.2) is denoted by γmax. To avoid singular

matrices TΠ(γ) and to get a numerically more stable solution, Liland and Indahl

(2009) substitute the maximization problem (2.2) by the maximization problem

arg max
γ∈[0,1]

cca(Z(γ),Y), where cca denotes the canonical correlation. Indahl et al.

(2009) showed that these procedures are equivalent.

The power parameter γmax is determined by maximization of the canonical correla-

tion:

γmax = arg max
γ∈[0,1]

cca(Z(γ),Y).

In the algorithm of PPLS-DA in the R package pls, the R function optimize is
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used to search for the maximum. The final loading weight vector is then w =

W0(γmax)aγmax .

For each component, a power parameter is separately calculated as explained above.

For PPLS-DA used in this thesis, the R function cppls is applied with the parameters

lower=0 and upper=1, defining the range of the interval U = [lower, upper].

Analogous to PLS-DA, the components of PPLS-DA could be used as predictor for

a classification method. In this thesis, PPLS-DA components build the predictors

for an LDA, as suggested by (Liland and Indahl, 2009). For convenience PLS-DA

combined with LDA is abbreviated by PLS-DA and PPLS-DA combined with LDA

by PPLS-DA as in Liland and Indahl (2009).

Determination of the number of components

For PLS-DA and for PPLS-DA it is necessary to choose the number of components.

This is done in an inner cross-validation approach (on the training set, see Section

2.1.2) as recommended by e.g. Liland and Indahl (2009) and Boulesteix (2004).

Successively for component number a, a = 1 . . . , nc the corresponding models on

the inner training set are built and the PE of LDA for the inner test set is stored.

This step is repeated rinner times. Afterwards, the mean PE for each fix number of

components is calculated. Finally the number of components used, nc(opt), leads on

average to the smallest PE over all rinner repetitions.

In this work the PLS-DA and the PPLS-DA models are based on ten inner-cross-

validation steps (rinner = 10) to determine this optimal number of components.

Comparison to other feature extraction methods

In the following, four linear feature extraction methods are compared, PLS-DA,

PPLS-DA using γ = 0.5, PCA and CCA, corresponding to Borga (2001). All four
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methods are based on the following eigenvector problem for the determination of

the weights for the linear combination:

Let [w{1}, . . . ,w{a−1}] be the matrix containing the already determined (loading)

weights, then w{a} is the dominant eigenvector of E−1
{a−1}D{a−1}.

The dominant eigenvector of E−1
{a−1}D{a−1} maximizes the so called Rayleigh quotient

wtD{a−1}w

wtE{a−1}w
. The different methods investigate different forms of the matrices E{a−1}

and D{a−1}.

To simplify the comparison between the method PPLS-DA using γ = 0.5 to the

other methods, the transformation of the matrix X to Z is omitted, because it only

reduces the complexity of the eigenvalue problem (see Section 2.3.1).

Table 2.1 summarizes the matrices for the determination of the first (loading) weights

vector.

Table 2.1: Form of the matrices E and D

name E D
PLS-DA I B

PPLS-DA using γ = 0.5 T B
CCA T B
PCA I T

The identity matrix is denoted by I and the total covariance matrix of X by T. PCA

investigates only the variance of the data matrix X. Therefore PCA works only

for dimension reduction of classification problems if the “among-group variability

soundly dominates the within-group variability” (Barker and Rayens, 2003), because

then the maximization of the variance leads to a discrimination of the groups. If

the data structure shows a larger within-groups variability than that among groups,

PLS-DA is preferable to PCA. For all methods except PCA, the matrix D equals

the between-groups covariance matrix B. Therefore all other methods use the infor-

mation of the group memberships (supervised methods). Moreover PPLS-DA using
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γ = 0.5 corresponds to CCA.

2.3.2 Techniques to detect biomarkers

The identification of a biomarker can be understood as a dimension reduction pro-

cedure, because a subset of the g features is chosen as biomarker. Therefore a crite-

rion is needed to decide which features are important for discrimination between the

groups and which are not. This means the features need to be evaluated towards

their discrimination ability, resulting in an ordered list of the features according

their evaluation (ranking list). The evaluation can be done by univariate techniques

or multivariate techniques (Lai et al., 2006). The univariate method assesses each

feature separately, to determine an importance value for each feature. An example

of a univariate method is the t-test, where a p-value is calculated for each feature.

In contrast, multivariate methods focus on a combination of features. An example

is two features which separately are considered to have a low or no discrimination

ability between groups, but in combination the groups are linear separable (Guyon

and Elisseeff, 2003; Haynes and Rees, 2006).

Multivariate feature selection methods can especially be useful for complex classifica-

tion problems (e.g. Breast cancer patients with poor or good diagnostics) with large

collinearity among the features and where a single gene cannot build a biomarker.

Especially for biomarker studies dealing with early detection of disease, combination

of features can be advantageous (Etzioni et al., 2003; Han et al., 2009). Intuitively

a biomarker containing more than one feature is preferable in such cases, because a

combination of features is more robust than a single feature with respect to variation

in the data.

Often correlation is a measure of the multivariate methods to create a importance

value (Lai et al., 2006).

Summarizing, users should consider both univariate and multivariate methods, be-

cause the performance depends on the considered data set.
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In the following, a univariate method which is applied in this thesis is introduced to

determine a ranking list.

Univariate techniques

A first step to find a candidate biomarker could be a statistical test which detects

discriminating features between two or more groups. Liu et al. (2002) propose to

choose the features according to a ranking list created e.g. by the t-statistic or

the χ2-statistic. Also Hedenfalk et al. (2001) apply the t-statistic to select genes.

Dettling and Buehlmann (2003) suggest using Wilcoxon‘s rank sum statistic. In

this thesis the t-test is chosen, because this simple univariate method is known to

outperform more complex feature selection methods in some studies according to

prediction accuracy (Haury et al., 2011).

t-test The t-test goes back on the work of William Sealy Gosset (Student, 1908).

The assumptions for using a t-test are a normally distributed population and equal

variances for the groups ν = 1, 2. Considering a feature k as random variable (Xk),

differences in the mean values of the groups are tested for a realization xk of Xk. For

these case of a two-sided test, the null hypothesis is that the group’s mean values are

equal H0 : µ(1)k = µ(2)k and the alternative hypothesis (in which we are interested)

is that the group’s mean values are different H1 : µ(1)k 6= µ(2)k, where µ(ν)k denotes

the unknown mean of group ν for feature k. The t-statistic for a two-sided test is

(Sumpf and Moll, 2004)

T (xk) =
x̄(1)k − x̄(2)k

s

√
n1 · n2

n1 + n2

,

here x̄(ν)k denotes the mean value of xk for group ν, x(ν)k denotes the values of feature

xk for group ν and s =
(
(n1 − 1)var(x(1)k) + (n2 − 1)var(x(2)k)

)
/(n1 +n2− 2). Let

d denotes the test statistic of xk, d = T (xk). Then the p-value is the probability,

that for any other realization x
′

k of Xk the test statistic (denoted by d′) is equal
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or greater than the observed one d assuming the null hypothesis, (p = P (d′ ≥

d |H0))∪P (d′ ≥ −d |H0)). A feature ranking list based on the p-value, is constructed

as a top list containing the features with the smallest p-value first. That means, that

the probability of randomly finding a higher discrepancy than |d| is small for these

features. A small probability speaks against the null hypothesis (Bender and Lange,

2007).

Multiple testing The following descriptions are mainly conform with Bland and

Altman (1995). In the context of metabolite or gene expression studies not only the

mean value difference with respect to a single gene is interested, all genes measured

are considered. For each gene a test is applied (multiple testing). For g genes,

therewith g null hypotheses (H01 , . . . , H0g) are given with the same significance

level α. Considering each test separately, if H0j is correct, the probability to reject

H0j is α (called comparison-wise error) for j = 1 . . . , g. In the case that several

null hypotheses are correct at the level of α and assuming that the test statistics

are independent, the probability that more than one null hypothesis is rejected, is

larger than α namely (1 − (1 − α)g) (called family-wise error). Taking now the

number of multiple tests into account, the multiple tests are corrected towards the

described problem with respect to the significance level. One approach to control

the significance level α is the Bonferroni method: If the aim is that all of the correct

g null hypotheses are separately rejected with a probability of 0.05, than choose for

each single test α = 0.05/g. This easy way to control α has the disadvantage that the

statistical power (rejection of the null hypothesis when the null hypothesis is false)

is reduced. Therefore this Bonferroni method is an example of a too conservative

method. Benjamini and Hochberg (1995) propose the false discovery rate (FDR) as

expected value of the number of false positives (type I error) divided by the number

of false and true positives. This value should be smaller than α. In this context

“positive” denotes a significant result. If the divisor is zero the FDR is defined as

zero. Storey (2003) described the so called q-value as “the smallest FDR value for
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which the test is significant”. With the q-value choice, it is possible to control the

expected number of false positives.

In this thesis the R-package stats is applied for a t-test and an FDR correction

based on Storey (2003) ( R-package qvalue, Dabney et al. (2009)) is used.

Multivariate techniques

Multivariate techniques to build a ranking list are given, for example, by the im-

portance values available for the multivariate methods. In this thesis, the mean

decrease accuracy, the importance value of RF is applied and the absolute loading

weights of the first component of PLS-DA and PPLS-DA.

Mean decrease accuracy The RF mean decrease accuracy (MDA) is calculated

for a feature k as the proportion of correctly predicted samples in the OOB samples

subtracted by the proportion of correctly predicted samples of the OOB samples if

the values of feature k are permuted. This difference is averaged over each tree in

the forest and divided by the standard error. The MDA is an importance value for

each feature, which also depends on all other features. Therefore this importance

value is determined in a multivariate way.

Importance value of PLS-DA and PPLS-DA It is often stated, that feature ex-

traction methods like PLS-DA are helpful for the final classification, but that these

components are difficult to interpret especially for biologists and medicals. State-

ments about the importance of the original features are not so easy to make, because

for the final classification the components are used as predictors for classification

methods. Which original features are important for the classification can be decided

by considering the corresponding loading weights. Loading weights are weights for

the linear combination of the original features and the loading weights are suitable as

an importance value of the original features for the classification. In this thesis, the

absolute values of the loading weight for the first component is used as importance
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value of the methods PPLS-DA and PLS-DA.

Creating a biomarker

Once creating a ranking list, the next question is how to select the features which

form a biomarker?

In Liu et al. (2002) a fix number of the top 20 features of a ranking list is consid-

ered (e.g. χ2-statistics scores, t-statistics scores). Although they mentioned that

the optimal number of selected features depends on the data set, the classification

method and on the technique selecting the features used. The restriction to a fixed

number of features building a biomarker candidate can impair the establishment of a

classification rule. Including additionally one or two further features could improve

the prediction significantly. Moreover there exists not only a single set with the best

prediction performance. For sets with different cardinalities a similar prediction

performance could be achieved (Lai et al., 2006). Dudoit and Fridlyand (2003) sug-

gested selecting the first k features of the ranking list for k = 10, 50, 100, 500, 1000, g

(for data sets with g > 1000) to see how the reduction of the number of predictors

influences the performance of the classification. For a biomarker search with the

aim of a small number of features, more precise increments are preferential. There-

fore in this thesis the top k = 2, . . . , g features of the ranking list are successively

chosen (see Chapter 3). According to the second requirement of a biomarker, the

set corresponding to the lowest cardinality is chosen to build the biomarker.

In the literature many feature selection techniques are discussed see for example

Langley (1994); Inza et al. (2004), like filtering in a previous step features (which

correspond here to the t-test as filter method) and so-called wrapper approaches

which use a classifyer to evaluate the feature importance to select the feature subset

(Kohavi and John, 1997). On the one hand filter methods select feature subsets

independently of a classifier, which can be a drawback (Darzi and Asghari, 2011),

but on the other hand they are not so costly with respect to computational time.
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Wrapper approaches which are much more time consuming use as measure for the

feature importance the prediction accuracy which seems the best way to evaluate

the feature according to their importance for the classification (Das, 2001). There-

for wrapper approaches should result in a feature subset with a higher prediction

accuracy and are so advantageous for biomarker search.
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3 Example of biomarker discovery

with statistical learning methods in

the context of tuberculosis

3.1 Introduction

A practical example of biomarker search with statistical learning methods is intro-

duced to show the different steps of biomarker search and the statistical aspects

which should be considered. This example of biomarker search is in the context

of tuberculosis. Tuberculosis is an infection disease caused by Mycobacterium tu-

berculosis. Infection does, however, not necessary cause the active disease. Only a

few people come down with active tuberculosis (TB) (World Health Organization,

2011). Although the tuberculosis incidences, the tuberculosis cases and the number

of deaths from tuberculosis have been falling, tuberculosis is still a major health

problem with 8.8 million incident cases and 1.45 million deaths in 2010 (World

Health Organization, 2011). Therefore the development of new therapeutic options

is one point on the Stop TB Strategy established by the WHO in 2006 in the 2015

global targets for reductions in this disease. The Max-Planck Institute for Infection

Biology in Berlin is one of several institutes which study the disease tuberculosis.

The researchers are especially concerned with the development of biomarkers for

active tuberculosis (Jacobsen et al., 2008; Maertzdorf et al., 2011; Jacobsen et al.,
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2007). The focus is on the differences between the people remaining healthy after

an infection in contrast to the people developing the disease. A biomarker discrim-

inating between these persons is important for further developments of drugs and

vaccines (Maertzdorf et al., 2011).

The example of biomarker identification considered in this chapter bases on metabo-

lite profiles separating between patients with active tuberculosis and persons which

are infected but healthy.

3.2 Design and data

The design was given because all data were collected before the dissertation started

in the years 2006 and 2007. In general three groups of persons are distinguished.

The non-infected persons (TST−), the infected but healthy persons (TST+) and

the persons with active tuberculosis (TB), see Table 3.1. In this study 136 blood

samples are measured, each sample belongs to one of the three groups. All persons

are HIV negative and all TB patients have not received a therapy at the time of

sample collection. The TST− and the TST+ group are divided into 17 men and

29 women with a mean age of 27.7 years in the TST− group and of 27.3 years in

the TST+ group. The TB group contains 19 men and 25 women and have a mean

age of 26.3 years. In total 389 metabolites are measured by the mass spectrometry

analysis.

Table 3.1: Overview of the metabolites study

group infection status sample size
TB tuberculosis patients 44

TST+ healthy, infected persons 46
TST− healthy, non-infected persons 46

Normalized data are used, provided by the Max Planck Institute for Infection Bi-

ology, Berlin. Block normalization (the median value of each run-day block is cal-
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culated as reference size) has been applied to minimize the inter-day instrument

variation. Missing values are only replaced if 50% of the values for the metabolite

considered are reported, then the missing value is substituted by the minimum of the

values. The experimental procedure including description of the specimens, sample

preparation, mass spectrometry analysis and data curation, are in detail described

in Weiner et al. (2011).

3.3 Comparison of classification methods

The aim is to discriminate between the TB and the TST+ samples, only these two

groups are concerned for all further steps of the identification of a biomarker, re-

sulting in a 90× 389 data matrix X. All shown results in this chapter are based on

r = 500 resampling steps of the outer training and outer test set. As a kind of a

pre-study, the six classification methods introduced in Chapter 2 (SVML, SVMR,

RF, PLS-DA, PPLS-DA and t-LDA) are compared, to find out which method fits

best to the metabolite data, like it is suggested by Feng et al. (2004). To enable

comparable results, all classification methods use the same training and test sets.

A ratio of φX = 0.7 is chosen as ratio of the training set on the whole data set X

and also for PPLS-DA and PLS-DA the ratio of the inner training set on the outer

training set (φXtrain
) is set to 0.7. As classification error the mean PE results and

the corresponding 95% confidence intervals are investigated, Figure 3.1 shows the

results for r = 500 resampling steps of the training and test set. RF shows the

lowest PE around 0.050, SVML, SVMR and PPLS-DA have a similar PE around

0.070 and t-LDA and PLS-DA show the largest PE around 0.082. The method RF

is chosen for further applications for the search of a biomarker, because this method

seems to be the most adequate for this metabolite data set and the discrimination

between the TB and the TST+ persons.
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Figure 3.1: Mean PEs (height of the bars) and 95% confidence intervals for the
metabolite data for six different classification methods.

3.4 Biomarker search using random forest

Before the actual selection of a biomarker started, the influence of the parameters

φX and mtry on the PE of RF and the reproducibility of the ranking list are studied

for different resampling steps of the training set (Section 2.1.2).

3.4.1 Influence of the parameters φX and mtry on the prediction

For φX (the ratio of the objects chosen for the training set out off all 90 objects) the

following different parameter settings are investigated φX = 0.5, 0.6, 0.7, 0.8, 0.9, 0.95.

Table 3.2 gives an overview of the parameter φX and the corresponding sample sizes

of the training and the test set. For φX = 0.9, the test sets contain only 9 ob-

jects for the calculation of the PE. Therewith if l subjects are classified wrongly,

the PE for this run is l/9. For φX = 0.95 the proportion of wrongly classified ob-

jects is even larger, because the step size of the possible error rates is 1/4. Hence,

the PE depends on the sample size of the test set. Also for mtry (the number
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of features chosen at each node to find the best split) different values are chosen,

mtry = 10, 15, 20, 25, 30, 50, 70, 100, 200. The rule of thumb (mtry =
√
g ≈ 20

with g = 389) equals therewith 20. For all possible combination of the parameters

φX and mtry, the results are illustrated in Figure 3.2. All 95% confidence inter-

vals are overlapping except for mtry = 100, 200. These intervals are not shown

to preserve clarity in Figure 3.2. No great differences in the mean PE are found

for different choices of φX in combination with different choices of mtry except for

mtry = 100, 200. A very high number of features (100 or 200) to choose at each

node of the trees grown in RF, results in a higher error than for smaller choices of

mtry for all different φX. The mean PE is the lowest for φX = 0.8 for mtry between

20 and 30. Because mtry = 20 equals the rule of thumb, this value is chosen for all

further considerations. For the ratio φX of the training set on the whole data set

0.8 is chosen, because this value shows the lowest mean PE.

Table 3.2: Overview of parameter φX and resulting sample size of the training set

φX 0.5 0.6 0.7 0.8 0.9 0.95
ntrain 45 54 63 72 81 86
ntest 45 36 27 18 9 4

3.4.2 Determining the biomarker

The aim is to find a biomarker discriminating between TST+ and TB persons. This

set as predictor should result in a minimal PE and its cardinality should be minimal.

For the determination of the biomarker, the MDA (mean decrease accuracy, the im-

portance value of RF) is applied (see Section 2.3.2).

In a first step, according to MDA a ranking list is created. Figure 3.3 shows this

metabolite ranking (y-axis) in dependency on the mean MDA (x-axis). The red

points depict the mean value of the MDA for 500 resampling steps of the objects

for the training and the test set. The red lines represent the corresponding 95%

confidence intervals. The black points illustrate exemplarily the value of MDA for
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Figure 3.2: Mean PE of RF plotted against mtry for different choices of φX =
0.5, 0.6, 0.7, 0.8, 0.9, 0.95.

one single run of RF (one partition of the data set in a training and a test set).

The metabolite with number 250 is the most important one for the classification.

For the next 12 metabolites of the ranking list, large overlapping of the 95% confi-

dence intervals are seen. Therewith these features have similar importance for the

classification. Overall, the more the importance value decreases, the more the range

of the 95% confidence intervals decreases. Regarding the black points, it can be

seen how strong the ranking list can vary between different partitions of the objects

into training and test set. Therefore it is preferable to repeat the calculation of the

importance value several times to get a more robust (against varying individuals)

and a more reproducible ranking list. In the following, a procedure is proposed for

the determination of a feature set as candidate biomarker according to a ranking

list. Figure 3.4 shows a simplified scheme illustrating the steps for determination of

a feature list for a candidate biomarker.

The calculation of the metabolite ranking list according to the MDA is based on
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Figure 3.3: Plot of the mean MDA (red points) with 95% confidence intervals for the
metabolite ranking (only the first 200 features are shown) averaged over
500 repetitions. The black points depict the MDA of a single random
forest.
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inner cross-validation steps (see Section 2.1.2) to determine a ranking list for the

underlying outer training set. Thus for an outer training set a ranking list (M1,. . .,

M389) is created based on rinner repetitions of the sampling for the inner training and

inner test set. Each set {M1,. . ., Mk} of the top k = 2 . . . , 389 metabolites of the

ranking list, build the predictors for RF. The corresponding PEs of the outer test

set are calculated, resulting in 388 PE values. The resampling of the outer training

and outer test set is repeated r = 500 times. Resulting in a matrix with 388 rows

and 500 columns, each entry determines the PE for a certain number of metabolites

used and a special choice of the outer training and the outer test set.

Then the set with the lowest cardinality, leading to a PE which could not be im-

proved by adding further metabolites, is identified as biomarker.

partition of X in training set and
test set by a ratio of )1,( XX φφ −

partition of the training set in inner training set
and inner test set by a ratio of )1,(

traintrain XX φφ −

train RF on the inner training set and 
calculate the MDA for each metabolite

for each metabolite sum up the
MDA value with the previous stepCVn

final ranking list                         
based on        repetitions

3891 M ,...,M
CVn

innerr repetitions
of the inner-cross-
validation

use the first metabolites
as predictiors for a RF, k=2,…389

thk { }k1 M ,...,M 

calculate the PE of the test set for
these different RF models

repetitions of the
resampling of the outer
training and outer test set

candidate biomarker set contains the smallest number of metabolites which show
no significantly larger PE than a set of metabolites with a higher cardinality

r

Figure 3.4: Simplified scheme for the determination of a biomarker with RF.

As an example the mean PE for each number of metabolites used and the correspond-

ing 95% confidence intervals are shown in Figure 3.5 using rinner = 100. The mean

PE clearly decreased for the first 6 sets of top ranked metabolite ({M1,M2}, . . . ,

{M1, . . . ,M7}). For a certain cardinality of the metabolite set, no improvement is
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Figure 3.5: Mean PEs and corresponding 95% confidence intervals of RF plotted
against numbers of metabolites used.

shown, all 95% confidence intervals are overlapping. The mean PE, belonging to

a predictor set containing the first 19 top ranked metabolites, lies in all 95% con-

fidence intervals of the PEs for predictor set with a higher cardinality (see Figure

3.6). Therefore a predictor set is proposed containing these first 19 metabolites.

The corresponding mean PE to this biomarker is 0.046 with a 95% confidence in-

terval of [0.042, 0.050].
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Figure 3.6: Mean PEs and corresponding 95% confidence intervals of RF for up to
40 metabolites used.
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Summarizing the introduced approach to determine a biomarker, the prediction

ability is compared for stepwise rising cardinalities of metabolite sets. Successively,

additional features are added which is a kind of forward selection (Langley, 1994).

Therewith a gapless observation of the PE in dependency on the number of predic-

tors used is possible. In the literature similar procedures are proposed. For example,

Dudoit and Fridlyand (2003) proposed to consider sets of features also according to

a ranking list, but with a fix cardinality of k = 10, 50, 100, 500, 1000, g (in their

study g > 1000). These ranking lists are calculated according to the t-statistic

and the Wilcoxon statistic without inner cross-validation and the final classification

methods used are e.g. RF, SVMR and SVML. Borgia et al. (2009) use also the

MDA value to select a biomarker, but first they filtered the features by the p-value

of the Mann-Whitney test. Therefore first a univariate importance value is applied

to select features which have even alone a good discrimination ability. Hence, fea-

tures which lead only in combination with other features to group separation are

potentially excluded from the study, and a loss of valuable features for biomarker

candidates is possible.

Influence of rinner

Additionally the influence of the number of inner cross-validation steps rinner to

create the ranking list is studied. For rinner five different values are considered:

20, 50, 100, 150, 200. Only small differences in the PE of the outer test set are found

for the different choices of rinner and for k, k = 1, . . . , 50 metabolites used (see Figure

3.7), and there are no significant differences. Comparing the ranking lists (data not

shown), for more than 50 repetitions (rinner ≥ 50) the first 20 metabolites of the

ranking list are equal. The metabolites of lower positions differ more than the top

20 metabolites. This is not surprising, when Figure 3.3 is in mind. Especially for

the metabolites more at the bottom of the ranking list, the MDA values are very

similar. A choice of rinner = 100 is suggested, which is a compromise between

prediction accuracy of the position of the ranking list (estimation of the importance
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value) and running time (number of repetitions of the inner cross-validation).

Similar results are found by using the mean decrease Gini index instead of the MDA

value, which is also an importance value of RF for each feature (data not shown).
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Figure 3.7: Mean PEs and corresponding 95% confidence intervals of RF depending
on up to 50 metabolites for different choices of rinner.

Summarizing the results, the parameter choice of φX and mtry shows no great

influence on the PE except for extreme values of mtry like 100 or 200. Breiman

(2002) reports also no great influences of mtry in a moderate range around the rule

of thumb. Moreover, the ranking list according to the MDA can vary if only separate

single runs are considered. The dependence of the ranking list on the training set

is in agreement to the findings of Ein-Dor et al. (2004). Therefore an inner-cross-

validation approach is applied to determine the ranking list. This ranking list is the

basis for the biomarker specification. A biomarker is identified comprising the first

top ranked 19 metabolites resulting in a mean PE of 0.046 for the discrimination

between TB and TST+ samples.

3.4.3 Comparison of the feature ranking list produced by RF

and PPLS-DA

RF is selected for the determination of a biomarker, because this method shows

the lowest mean PE (Figure 3.1). For PPLS-DA the PE is only slightly higher.

Can this small differences in the PE, lead to larger differences in the ranking list?

To answer this question, a ranking list created by PPLS-DA in an analogous way

is used to check for correspondences. Thus it is possible to study how stable the
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ranking list of RF is with respect to a different variable importance value of an-

other method. The absolute loading weights of the first component are used as

importance value according to PPLS-DA (see Section 2.3.2). Analogous to the pro-

cedure for RF, the parameters are φX=0.8 and rinner = 100 for PPLS-DA. The

findings for PPLS-DA are illustrated in Figure 3.8 which shows the mean PE in

dependency on the number of metabolites used as predictors. For the first three

sets (({M1,M2}, . . . , {M1, . . . ,M4})) the mean PE clearly decreases. Comparing to

the results of RF (Figure 3.6), for PPLS-DA already the first two metabolites as

predictors achieve a lower PE.

A set with the top 8 metabolites, leads to a mean PE of PPLS-DA which is inside the

95% confidence interval corresponding to a larger number of predictors. According

to PPLS-DA, a biomarker is proposed with the top 8 metabolites of the ranking list

of PPLS-DA (see Figure 3.9). A mean PE of 0.059 is achieved for this set with the

95% confidence interval [0.055, 0.064]. In comparison, the biomarker specified by RF

leads to a significantly lower PE. However for φX=0.8, the outer test set contains

18 objects (see Table 3.2). This means if one person is classified wrongly a PE of

1/28 ≈ 0.056 is caused. Considered over the 500 repetitions (r=500), there is no

large loss in prediction accuracy for PPLS-DA in comparison to RF (with a PE of

0.046) and PPLS-DA needs less than half of the features used with RF for optimal

prediction.

Considering the underlying ranking list more in detail, Figure 3.10 shows the impor-

tance values corresponding to the ranking lists with respect to RF and PPLS-DA

(the green lines belong to the top 19 metabolites for RF and top 8 for PPLS-DA).

For each method, the metabolite 250 shows an importance value which is nearly

twice as large as for the remaining metabolites. For RF the top 19 metabolites

correspond to a cut-off value of 0.0020 for the MDA, all metabolites with a lower

importance value do not further improve the PE of RF. The corresponding value

for PPLS-DA is 0.0748.
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Figure 3.8: Mean PEs and corresponding 95% confidence intervals of PPLS-DA plot-
ted against numbers of metabolites used.
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Figure 3.9: Mean PEs and corresponding 95% confidence intervals of PPLS-DA for
up to 40 metabolites used.
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Figure 3.10: Averaged importance value for the metabolites according to RF (a)
and according PPLS-DA (b), the green lines belong to the proposed
biomarkers.

Comparing the ranking lists more in detail, Table 3.3 opposes the ranking lists based

on RF for the first 19 metabolites and for PPLS-DA for the first 8, based on the

importance values shown in Figure 3.10.

Table 3.3: Biomarker determined with respect to RF and PPLS-DA

position
method 1 2 3 4 5 6 7 8 9 10 11 12

RF 250 350 256 216 41 13 59 245 213 235 75 49
PPLS-DA 250 13 41 350 59 256 49 234

position
method 13 14 15 16 17 18 19

RF 230 25 234 271 121 257 17

Regarding the first 3 metabolites of the ranking lists, metabolite 250 is in both lists

on the top, the next 3 positions differ. All 8 metabolites of the biomarker detected

by PPLS-DA can also be found in the biomarker detected by RF. Although both

importance values base on different approaches, the features on the top positions of

the ranking lists almost coincide, only the positions differ.
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Summarizing the results, a candidate biomarker set is determined according to RF

with 19 metabolites for the discrimination between TB and TST+ persons. For

PPLS-DA a candidate biomarker set is created containing only 8 metabolites with a

similar PE than for RF. The ranking lists do not differ much on the top positions for

PPLS-DA and RF for this metabolite data set. This leads to the assumption, that

the top 8 metabolites of PPLS-DA are robust with respect to a different importance

measure and build a promising biomarker, which has to be validated further.

In this chapter a biomarker is identified, first different classification methods are

compared to choose the one which fits best to the data. Then the variable importance

value of this classification method is applied to create a ranking list building the

basis for the determination of a biomarker. These main steps are further considered

in dependency on the choice of the experimental design in Chapter 5.





51

4 Description of microarray data

This chapter describes the simulated data and the publicly available experimental

data sets which are used in the following chapters.

First covariance measures are explained then the simulation study and the experi-

mental data sets are introduced and the covariance structure is studied.

Covariance structure

For detailed description of the covariance structure of the data, two measures are

applied analogous to Saebø et al. (2008). These are the condition index, first used

in Belsley et al. (1980), and the absolute value of the covariances between the prin-

cipal components and the response vector as used in Helland and Almøy (1994).

The condition index κk =
√
λ1/λk, k = 1, . . . , g is a measure for the linear de-

pendence between the features, with λk being the kth eigenvalue of cov(X) and

λ1 ≥ λ2 ≥ · · · ≥ λg. The increase of the first five condition indexes (κ1, κ2, κ3, κ4, κ5)

reflects the collinearity of the features (Saebø et al., 2008). A rapid increase of the

first five condition indexes indicates, that the features have a strong linear depen-

dence, a weak increase implies a weak dependence. Considering now the principal

components of X, like in Saebø et al. (2008), the relevance of a component is mea-

sured by means of the absolute value of the covariances (|cov(zk,y)|) between the

This chapter describes the simulated data and the experimental data sets used in Telaar et al.
(2010), Telaar et al. (2012a), Telaar et al. (2012b). Therefore this chapter bases on these
publications.
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principal component zk = X ek and the class vector y. Here yi equals 1 if sample i

belongs to group ν = 1, otherwise yi equals -1, i = 1, . . . , n. The eigenvector belong-

ing to the kth largest eigenvalue is denoted by ek. Helland and Almøy (1994) infer,

that data sets with relevant components which have small eigenvalues are difficult

to predict.

4.1 Gene expression data simulation

Gene expression data are often measured by means of microarrays (Malone and

Oliver, 2011). For microarray data two data scales are considered, the original scale

(measured intensities) and the log-scale (after normalization). The values for a gene

k, k = 1, . . . , g on the scale of measured intensities can be understood as realizations

uk of a random variable. For the data analysis during the normalization process the

data are transformed to the log scale (Irizarry et al., 2003), here normally distributed

random variables log(uk) are assumed (Quackenbush, 2002). Then the gene expres-

sion can be modeled on the log scale as log(uik) = µk+εbi+εti , i = 1, . . . , n (n number

of single samples) with mean gene expression level µk, biological variation εbi and

technical variation εti which are independently, identically and normally distributed

with mean zero and biological variance σ2
b and technical variance σ2

t respectively

(Zhang et al., 2007). On the log scale the gene expression values are denoted by

Xik = log(uik). Therefore on the original scale the random variables are lognormally

distributed with mean value eµk+
σ2b+σ

2
t

2 and variance e2µk+σ2
b+σ2

t · (eσ2
b+σ2

t−1).

Considering a two group classification problem, 60 single samples are simulated per

class (n1 = n2 = n/2 = 60) and 1000 genes partitioned in an informative part and

a non-informative part for the classification, because some genes show group infor-

mation in their expression data and others do not.
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The non-informative part of the data matrix consists of normally distributed ran-

dom variables with mean µk = 8, a biological variance σ2
b = 0.04 and a technical

variance σ2
t . As mean value µk = 8 is chosen, because it is usually the modal value

of experimental gene expression data and σ2
b is set equal to 0.04, which occurred in

analyses of microarray data (Rudolf, 2011). For the technical noise, three levels are

investigated σ2
t ∈ {0, 1/4σ2

b , σ
2
b}.

Four scenarios for the informative part of the data matrix are simulated, which are

illustrated in Figure 4.1:

(a) Scenario 1: Differentially expressed features with a mean class difference of ∆,

∆ = {[0.1, 0.5], 0.2, 0.5} (Figure 4.1(a)).

(b) Scenario 2: A pattern by threshold, one group with values inside a defined

interval and the other group with values lying outside the interval. However,

both classes have the same mean value (Figure 4.1(b)).

(c) Scenario 3: Each two-dimensional linear pattern with of two linear dependent

features (Figure 4.1(c)).

(d) Scenario 4: Each two-dimensional “circular” pattern with the values of one

group inside a circle and the values of the other group outside the circle (Figure

4.1(d)).

The scenarios are examples for possible biomarkers which could occur in real data.

Scenario 1 refers to the well known type of differentially expressed genes, where for

example the class of disease subjects has a higher mean value of gene expression for

a gene than the group of healthy subjects.

A feature of the form of scenario 2 can also be a biomarker: the gene expression for

the non-infected subjects lies in a special reference range and the gene expression

for the infected subjects lies outside the range. An example (not for gene expres-

sion biomarker but in general) is also the HbA1c (see Chapter 1): Patients with a
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Figure 4.1: Simulated pattern scenarios for the gene expression data with σ2
t = 0.

Upper part the two one-dimensional patterns: (a) scenario 1 and (b)
scenario 2, lower part the two 2−dimensional patterns: (c) scenario 3
and (d) scenario 4.

HbA1c in a reference interval are well threated, if the HbA1c lies outside the interval,

the patient needs to be re-stabilized. Scenario 4 is a specialized two-dimensional

form of scenario 2, one group with a clearly lower variance than the other group.

Two linearly dependent features (scenario 3) represent a set of correlated features.

Scenario 3 is an example, where each gene of the pattern individually considered,

cannot clearly separate the groups, but the combination of these two genes leads to

a separation of the groups.

On the one hand, the two classes are linearly separable if the underlying data is of

the form of scenario 1 or 3, and therefore easier to classify with linear classification

methods like t-LDA, PLS-DA, PPLS-DA and SVML. On the other hand, scenario

2 and 4 are more complex patterns which can not be separated in a linear way.
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The separation of the two classes of a circular pattern, as in scenario 4, is already

mentioned in Russel and Norvig (2009).

The features belonging to the informative part are denoted as informative simu-

lated features (ISF). The informative part is simulated in different ratios to the

non-informative part by choosing proportions of 1%, 10% and 20% ISF. The dif-

ferent proportions represent a small, middle and high information content for the

separation of the groups.

Simulation of scenario 1 The differentially expressed features of scenario 1 are

simulated with a mean class difference δ ∈ ∆, ∆ = {[0.1, 0.5], 0.2, 0.5}.

For a gene k, the mean µ(1)k of group 1 is randomly chosen according to the uniform

distribution from the interval [6, 10]. The gene expression values which belong to the

subjects of group 1 are chosen from N(µ(1)k, σ
2
b + σ2

t ). The gene expression values

of the group 2 individuals are drawn from N(µ(1)k + δ, σ2
b + σ2

t ).

Five cases are taken into account for the value combination of δ and σ2
t . For case 1,

2 and 3, δ is chosen according to the uniform distribution from the interval [0.1, 0.5]

and only the technical variance differs. Case 1 has a technical variance of zero,

case 2 of one-quarter of the biological variance (σ2
t = 1

4
σ2
b ), and case 3 is simulated

with a technical variance of the same size as the biological variance (σ2
t = σ2

b ).

The differentially expressed features of case 4 have a mean class difference δ = 0.2

and σ2
t = σ2

b . The simulated data of case 5 also have the large technical variation

(σ2
t = σ2

b ), and a higher mean class difference δ = 0.5.

Considering the data structure of case 3 as example, the condition indexes are shown

in Figure 4.2. The first 5 condition indexes are 1.00 1.01 1.04 1.05 1.06. As expected,

this increase is the weakest for all data sets considered, because of the described

simulation procedure. Figure 4.3(a) illustrates also the weak linear dependency

among the features, but there are irrelevant components (low absolute covariance)

with large eigenvalues. This can impair the prediction using (P)PLS-DA. For all
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other cases also a weak dependence is found (data not shown).

Simulation of scenario 2 For a feature k of scenario 2 (the threshold pattern)

n = n1 + n2 single sample values are drawn from normally distributed random

variables with variance σ2
b + σ2

t and a mean µk randomly chosen (according to the

uniform distribution) from the interval [6, 10] for each feature. After ordering these

random numbers, the first 1
2
n1 values are assigned to group 1, the next n2 to group

2 and the last 1
2
n1 belong again to group 1.

Accounting for the condition index, as example for 1% and σ2
t = 0, the sequence is

1.00, 1.13, 1.15, 1.15, 1.16 and again a weak increase is found. Also the eigenvalue

plot (data not shown) supports this.

Simulation of scenario 3 Without loss of generality, let k and l be the features

which build the pattern of scenario 3. Then Xik(1) for sample i in group 1, and

Xjk(2) for sample j in group 2, i 6= j are simulated as normally distributed random

variables with mean µk = c and variance σ2
b + σ2

t . The value c is chosen randomly

(according to the uniform distribution) from the interval [6,10]. The second feature,

l, is calculated as follows Xil(1) = Xik(1) + εi for group 1 and Xjl(2) = Xjk(2) + δ+ εj

for group 2, with δ = 0.1 and N(0, 0.012)-distributed εi and εj. These two features

(l, k) are linearly dependent and therefore strongly correlated. For every pair of

features (l, k) a new mean value and new random variables are chosen.

Again the dependence among the features is considered for σ2
t = 0 and with 1%

ISF, the first five condition indexes are : 1.00, 1.08, 1.10, 1.11, 1.12 (Figure 4.2).

Analog to scenario 2, the features show a weak linear dependence which is also

illustrated by Figure 4.3(b), but many components are found with large eigenvalues

in combination with low covariances. Therefor the prediction using (P)PLS-DA is

even more difficult than for scenario 1 where this combination occurres rarely (see

Figure 4.2).
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Figure 4.2: Condition index κk for the first five eigenvalues of the 5 experimental
data sets and for the simulated data for two scenarios as example (sce-
nario 1 with 1% ISF for case 3 and scenario 3 with 1% ISF and σ2

t = 0).

Simulation of scenario 4 The circle pattern, scenario 4, is simulated for features

k and l as follows for group 1: The value di is uniformly drawn from the interval

[0, 360] for each sample i of group 1 and Xik(1) and Xil(1) are calculated as Xik(1) =

r1cos(di) + εik and Xil(1) = r1sin(di) + εil with r1 = 0.1 and εit ∼ N(0, 0.0004),

t = k, l. Analogously for class 2 the gene expression is simulated for the genes k

and l with r2 = 0.25. With a randomly chosen value m according to the uniform

distribution from the interval [6, 10], the values X.k and X.l are shifted by adding

m. Then the mean values of the features k and l are m. The variances of group 1
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Figure 4.3: Plot of the first 50 largest eigenvalues ek of cov(X) (bars) and of the
absolute covariance between zk and y (dots) for the simulated data.

and group 2 differ. For gene k and l the variance is
r21
2

+ σ2
ε = 0.0054 for group 1

and
r22
2

+ σ2
ε = 0.0316 for group 2 (see Appendix B).

As well for this scenario with σ2
t = 0 and 1% ISF the first five condition indexes

show a weak increase (1.00, 1.06, 1.07, 1.08, 1.09).

Summarizing, the patterns of the simulation study have attributes concerning the

convex hull (set of all convex linear combinations). All four simulated patterns can

be divided into two types, for scenario 1 and 3, the convex hull of the one class is

not a cover of the other class (pattern type I) and for scenario 2 and 4, the convex

hull of the one class is a cover of the other class (pattern type II). Moreover the sim-

ulated data sets show for each scenario a weak linear dependence among the features.

For the training and test set of the simulated data, 30 single samples per group are

randomly chosen for the training set and the remaining 30 single samples per group

build the test set. Therefore for the simulated data Xtrain and Xtest are 60 × 1000

matrices with 60 samples and 1000 genes.
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4.2 Experimental data

Additionally, five publicly available experimental microarray data sets are used in

this thesis. The experimental data sets are summarized in Table 4.1 containing

informations about the group size, number of genes, proportion of differentially

expressed genes and original publication. For the determination of the number of

differentially expressed genes (NDEGs) a t-test and an FDR correction is used (see

Section 2.3.2). Only genes are accepted as differentially expressed with a q-value

below 0.05 (Storey, 2003) and differentially expressed genes are abbreviated with

DEGs.

Analogous to the description of the covariance structure of the simulated data, the

condition indexes are illustrated for the first five largest eigenvalues (scaled to the

first eigenvalue) in Figure 4.2 and the plot of the first 50 largest scaled eigenvalues

and the corresponding scaled covariances between zk and y (Figure 4.4).

Table 4.1: Overview of the experimental data sets

name n1/n2 g NDEGs NDEGs in % original publication
Leukemia 47/25 3571 1445 40.46 Golub et al. (1999)

Lymphoma 58/19 7129 1739 24.39 Shipp et al. (2002)
Breast Cancer 44/34 4997 54 1.08 van’t Veer (2002)

Prostate 1 50/52 6033 2393 35.26 Singh et al. (2002)
Prostate 2 41/62 42129 595 1.40 Lapointe et al. (2004)

Leukemia

The Leukemia data were downloaded from the Whitehead Institute website. The

training set and the test set are merged to get a higher sample size and sam-

ple from these are drawn to get new proportions 0.7 and 0.3 for the training

and test set. The R code for data preprocessing from http://svitsrv25.epfl.ch/R-

doc/library/multtest/doc/golub.R is used, which was developed according to Dudoit

et al. (2002). The data set consists of two groups, 25 patients with acute myeloid

leukemia and 47 patients with acute lymphoblastic leukemia and the gene expression
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values for 3571 genes.

The condition indexes show a weak increase for this data set (1.00, 1.31, 1.49, 1.537,

1.83). This and the plot of the eigenvalues (Figure 4.4(a)) lead to the assumption

of a weak linear dependency between the genes, but not so weak like for scenario 1

of the simulated data where the genes are simulated independently from each other.

For the Leukemia data set, the more relevant components have the largest eigen-

values (Figure 4.4(a)) which implies potential for good prediction performance of

(P)PLS-DA . Moreover, this data set has the highest proportion of DEGs (40.46%,

Table 4.1).

Lymphoma

This data set was downloaded from the website http://www.broadinstitute.org/mpr/

lymphoma/. The data are GC-RMA (robust multi-array average) normalized. Two

groups are considered, 58 patients with diffuse large B-cell lymphomas and 19 pa-

tients with B-cell lymphoma, follicular lymphoma. Only genes with a non-zero

variance are used in our analysis, which leads to 7129 genes.

The between-variable dependencies are comparable to the Leukemia data set (con-

dition indexes: 1.00, 1.10, 1.40, 1.50, 1.84). The covariance structure (Figure 4.4(b))

is also comparable to those of the Leukemia data set and the total number of DEGs

is marginally higher than for the Leukemia data set, but the proportion on the total

number of genes is clearly lower (24.3%, Table 4.1).

Breast Cancer

This normalized and filtered data set was downloaded from http://homes.dsi.unimi.it

/˜valenti/DATA/MICROARRAY-DATA/R-code/Do-Veer-data.R. The normaliza-

tion was performed according to van’t Veer (2002). In this data set, only the two

groups with the highest sample size are included: 34 patients with distant metas-

tases within 5 years and 44 patients without, after at least 5 years. The total number
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Figure 4.4: Plot of the first 50 largest eigenvalues ek of cov(X) (bars) and of the
absolute covariance between zk and y (dots) for the experimental data
sets.
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of genes is 4997.

The condition indexes increases weakly for the first five eigenvalues (1.00, 1.42, 1.77,

1.90 and 1.91), but slightly faster than for the Leukemia and Lymphoma data set

(Figure 4.2). The eigenvalue plot (Figure 4.4(c)) illustrates also a weak linear depen-

dence between the features and many components which low eigenvalues and large

covariance which indicates a difficult prediction using P(PLS-DA). The proportion

of DEGs is the lowest for all experimental data sets (1.08%, see Table 4.1).

Prostate 1

This data set contains 52 tumor and 50 non-tumor cases and was downloaded from

http://stat.ethz.ch/˜dettling/bagboost.html. The preprocessing is described in Det-

tling and Buehlmann (2003) and the final data set contains 6033 genes.

This data set shows a rapid increase of the condition index from κ1 to κ5 (1.00, 2.96,

3.24, 5.046, 5.397), describing a strong linear dependency of the genes (Figure 4.2).

This property is also indicated by the plot of the eigenvectors (Figure 4.4(d)) and

most of the components with low eigenvalues have also a low covariance. This data

set has a high proportion of DEGs (32.26%, Table 4.1).

Prostate 2

The normalized data set was downloaded, from http://bioinformatics.mdanderson.o

rg/TailRank/. A description of the normalization can be found at http://bioinformat

ics.mdanderson.org/TailRank/tolstoy-new.pdf. In this data set, only the two groups

with 41 patients with normal prostate tissue and the 62 patients with primary tu-

mors are included.

The condition index shows a rapid increase (1.00, 1.71, 2.10, 2.56, 2.93) for the first

five eigenvalues (Figure 4.2), but more moderate than for the Prostate 1 data set.

Figure 4.4(e) illustrates that also relevant components have small eigenvalues which

makes the prediction using P(PLS-DA) more difficult. The proportion of DEGs is
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very low (1.4%, Table 4.1) and similar to those of the Breast Cancer data set, but

the total number of genes is the largest (42129) for all experimental data sets.
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5 Pooling design for biomarker

search

This Chapter concerns the influence of a pooling design used for biomarker search

in comparison to a single sample design and is based on work published in Telaar

et al. (2010) and Telaar et al. (2012a).

5.1 Motivation

Pooling, the combination of single samples, is a common procedure in microarray

technology, because the biological variation is reduced and less arrays are needed in

comparison to a single sample design. If fewer arrays are needed, the financial cost

are reduced with respect to the acquisition and to the sample preparation. Further-

more if not enough cDNA for the hybridization step for the microarray experiment

exists, pooling is a solution to accomplish the experiment anyway (Simon et al.,

2002).

In the literature, pooling is studied in detail only for searching for differentially

expressed genes. In a simulation study, Peng et al. (2003) opined that “pooling bio-

logical samples appropriately is statistically valid” and cost-effective for microarray

experiments if group level differences are the objective. Kendziorski et al. (2005)

concluded that pooling is advantageous for designs with only one or two arrays per

group (with the aim to identify differentially expressed genes), but not for designs
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with a large number of arrays. The drawbacks of pooling are discussed e.g. in the

technical note of Affymetrix (2004). For example individual sample information

like age and gender get lost if individuals in the pools are not perfectly matched.

Moreover outliers or misclassified samples cannot be identified after pooling. It is

known that sample pooling leads to biases. Mary-Huard et al. (2007) divide this

bias into log bias, caused by the log transformation, and pooling bias which reflects

the different proportions of the samples on a pool.

In the literature only a few statements are found concerning pooling and biomarker

search. Kerr (2003) stated that the design of a classification study, like for biomarker

search, should not consist of pooled samples, because data is required at the ”in-

dividual level”. Allison et al. (2006) point out more precisely why pooling should

be avoided for biomarker search: ”pooling interferes with the ability to accurately

assess inter-individual variation and covariation”. This is based on the fact that vari-

ance and covariance structure is changed by pooling. Moreover, Sadiq and Agranoff

(2008) mentioned that the use of pooled samples may lead to a loss of features which

ca build a biomarker. From the statistical point of view, pooling should be avoided

for biomarker search. Nevertheless, this aspect of design choice is not widely known,

and sometimes the circumstances do not allow to follow the advise. It is common

practice to use pooled samples to search for biomarkers in animal experiments, like

Searfoss et al. (2003), who pooled samples of rat ileum tissue for a microarray analy-

sis. Jacobsen et al. (2007) also apply pooled samples for finding possible biomarkers

discriminating patients infected with tuberculosis but healthy and those who suffer

under tuberculosis.

In the literature no clear statements have been found concerning the influence on the

validity of the experiment if a pooling design is used for biomarker search. Therefore

a study was started to allow statements about the consequences of a pooling design

in comparison to a single sample design for classification.
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Now the total number of (available) single samples is denoted by ntotal, the number

of samples used for the single sample arrays by nS and the number of single samples

used for the pools by nSP (clearly ntotal ≥ nS, nSP ). The number of arrays for the

single sample design is denoted by aS and the number of arrays for the pooling

design by aP . The total number of arrays which can be financed is called atotal.

Comparing a single sample design and a pooling designs, two possible concepts

are distinguished. Concept I is the comparison of a single sample design with a

pooling design in which the number of single sample arrays is higher than the num-

ber of pooling arrays (aS > aP ), but the number of single samples used is equal

(nS = nSP ). The main focus is on concept I because this case frequently occurs

in practice. The pooling design is often chosen because microarray experiments

are cost-intensive (especially the labeling and amplification steps). Therefore the

number of single samples is often higher than the number of arrays which can be

financed (ntotal > atotal), but the aim is to use as many single samples as possible.

Concept II is the comparison of a single sample design with a pooling design with

the same number of arrays (aS = aP ). That means nS < nSP , not all single samples

used for the pools are measured in the single sample design. Concept II is analyzed

to study the influence of reduced sample size.

In this Chapter, at first some theoretical basics of pooling are described. For analyz-

ing the effect of pooled samples on biomarker search, a simulation study is carried

out to study the influence on the PE of different patterns of informative features,

the proportion of informative features and different technical variation levels for con-

cept I and concept II. Moreover, for concept I sets of important features (possible

biomarkers) are compared detected by the pooling design and the single sample de-

sign. Furthermore, four experimental data sets are pooled artificially and analyzed

regarding concept I and concept II.
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5.2 Pooling design

5.2.1 Statistical modeling of pooling

Pooling, the combination of several RNA samples, takes place before measuring gene

expression of these RNA samples. Therefore, first the gene expression of the single

samples are considered without technical variation, uik(b) = µk+εbi denotes the gene

expression of sample i, i = 1, . . . , nSP for gene k without technical variation with µk

as mean value of gene k and biological variation εbi , analogous to the notation in

Section 4.1. The gene expression upjk of a pool pj, 1 ≤ j ≤ nP , is a convex linear

combination of the single samples which form the pool, weighted with an individual

proportion of these single samples:

upjk =

mp·j∑
i=mp(j−1)+1

ωiuik(b) + εtpj ,

where 1 ≤ mp ≤ nSP is the number of mixture components within a pool and nP =

nSP
mp

is the total number of pools. The objects 1, . . . , nSP are assumed to be ordered

in a sequence how they are used to from the pools. Here ωi denotes the proportion

of the i-th sample in a pool with
mp·j∑

i=mp(j−1)+1

ωi = 1. The technical variation of pool

pj is denoted by εtpj , which is independently, identically and normally distributed

with mean zero and technical variance σ2
t . The deviation of weight ωi from 1

mp
is the

pooling bias, caused by different proportions of the single samples on a pool (Mary-

Huard et al., 2007). The size of a pool is determined by mp. The pools are built on

the original scale, afterwards the gene expression values of the pools are transformed

to the log-scale. The Jensen’s inequality for convex linear combinations of convex

functions (Jensen, 1906) adapted to the pooling situation describes the log bias. The

gene expression of a pool pj on the log scale is then log(upjk) = Xpjk. The resulting

bias is called log bias (Mary-Huard et al., 2007). Therewith, assuming single samples

drawn from a normal-distributed population with mean µk and variance σ2
b +σ2

t , the

corresponding pools underlie a normal-distributed population with a mean µk + εlog
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(added to a term describing the log bias) and variance
σ2
b

mp
+ σ2

t . Pooling reduces

the biological variance from σ2
b to

σ2
b

mp
. Here two main conditions are assumed for

pooling designs:

(i) each individual sample contributes only to one pool and

(ii) the pool size mp is the same for all pools, as recommended in the literature

for pooling designs (Zhang et al., 2007).

In this thesis only ideal pools are considered where each sample contributes with the

same weight ωi = ω, for i = 1, . . . , nSP . Therewith the pooling bias is disregarded.

5.2.2 Comparison of concept I and concept II for a single

sample design and a pooling design

To study the influence of a pooling design for biomarker search, it is necessary to

compare the properties of pooling designs and single sample designs. Considering a

classification task with two groups, the pools are randomly built inside the groups.

Figure 5.1 illustrates a single sample design (upper part) in comparison to a pool-

ing design (bottom part) for one group in general. The single samples are sepa-

rately analyzed, each on a single array. Resulting from the expression measurement,

the data are considered on the original scale as mentioned above. After the log-

transformation, the data are approximately normally distributed on the log-scale

(Geller et al., 2003). For the pooling design, first the samples are mixed to pools

with a pool size mp and then these pools are analyzed on an array.

Constant number of samples - concept I

In concept I, all single samples used for the single sample design contribute to the

pools (nS = nSP ).
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Figure 5.1: Single sample design and pooling design as example (simplified scheme).

Pooling with a pool size mp > 1 therefore leads to a reduced number of arrays

comparing a single sample design and a pooling design: aS > aP because aS = nS >

nSP
mp

= aP . The different designs of concept I are chosen such that the statistical

power of the t-test to detect differentially expressed features is nearly equal for all

designs. The reduced sample size (nS >
nSP
mp

) for the pools is compensated by the

diminished biological variance (
σ2
b

mp
) while all other conditions are kept constant (as

for example the difference of the group mean and level of significance).

Constant number of arrays - concept II

The basis of concept II is to consider equal numbers of arrays for the single sample

design and the pooling designs (aS = aP ). It follows that nS < nSP for a pool

size mp > 1, because nS = aS < aP ·mp = nSP . This means more single samples

contribute to the pooling design than to the single sample design for concept II.
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Moreover, the statistical power of a t-test to detect differentially expressed genes

for the pooling designs is higher than for the single sample design. This advantage

grows with increasing pool size (because
σ2
b

mp
is decreasing).

5.3 Simulation study

For the comparison of concept I and concept II with respect to the classification

task, a simulation study is performed. The single sample design and the pooling

designs are evaluated by the PE (prediction error, see Section 2.1.2) and possible

biomarkers, using concept I or concept II.

5.3.1 Concept and implementation

At first the approach of the simulation study is introduced which describes the

training and test set for the single sample design and the pooling design. Then the

results are presented for concept I and concept II, first for data without technical

variation and finally for data with technical variation.

Simulation of the pooling procedure

The data of the single sample design are simulated as described in Section 4.1.

Because pooling takes place on the original scale, first the single sample data are

simulated without technical variation. For the simulation of the pooling procedure,

first the normally distributed data (the single samples) are transformed to the orig-

inal scale (by taking the values as exponent to basis 2). Then, the pools are built

gene-wise as the mean of the samples which form the pool. This procedure accounts

for the group memberships and pool size mp = 2, 3, 5. Finally, pool values are

back-transformed to the log scale. Afterwards the technical variation is added to
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the single sample data and the pooled data. Because pooling is most advantageous

if the technical variance is smaller than the biological variance (Kendziorski et al.,

2003), the technical variation is chosen according to three levels σ2
t ∈ {0, 1/4σ2

b , σ
2
b}

as described in Section 4.1.

Description of the training and the test set In this simulation study the total

number of available samples is n = 60 + 60 = 120. For concept I, the training set

of the single sample design consists of nS = nSP = 2 · 30 samples (30 per class). A

design with pool size mp = 2(3, 5) leads to a sample size nP = 2 · 15 (2 · 10, 2 · 6)

of the training set. For concept II, the training set for the single sample design has

nS = 2 · 30, 2 · 15, 2 · 10, 2 · 6 samples. These samples are randomly chosen without

replacement out of the corresponding nSP = 2 · 30 single samples, which are the

basis for the corresponding pooling designs. The same test set is used for all designs

for both concepts, containing 30 samples per group which are single samples. This

takes into account the practical application, because the biomarker should classify

a new single object into a group. This is one important aspect for the comparison

of a single sample design and a pooling design for biomarker search.

The simulation of the data was repeated 500 times for each parameter setting.

5.3.2 Results

To find out which method is most robust against pooling with respect to the PE,

the six introduced classification methods (SVML, SVMR, RF, PPLS-DA, PLS-DA

and t-LDA, see Chapter 2 for an introduction ) are compared. At first the four

scenarios, the two one-dimensional feature patterns (scenario 1 and scenario 2) and

two two-dimensional feature patterns (scenario 3 and scenario 4) (see Section 4.1 for

a detailed description), are analyzed without technical variation to study the raw

pooling effect for concept I and for concept II. Furthermore, for concept I the sets
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of features which are important for the classification using the methods PPLS-DA

and RF are compared between the single sample and the pooling designs, because

these sets can contain possible biomarkers. Additionally, the important features for

PPLS-DA and PLS-DA are compared for scenario 1 without technical variation. All

results presented for scenario 1 without technical variation used δ = [0.1, 0.5], which

corresponds to case 1 (see Section 4.1).

Finally the results for simulated data with different choices of technical variation

are shown for concept I and concept II exemplarily for scenario 1 with δ = [0.1, 0.5]

and scenario 4.

Classification results using concept I for the simulated data without technical

variation

Prediction error results for scenario 1 Figure 5.2 shows the mean PEs for case 1

of scenario 1 for the methods: SVML, SVMR, RF, PPLS-DA, PLS-DA and t-LDA

in dependence of the designs with pool sizes mp = 1, 2, 3, 5.
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Figure 5.2: Mean PEs for scenario 1 for 1% ISF (a), 10% ISF (b) and 20% ISF (c)
with 95% confidence intervals.

In Figure 5.2(a) it is presented that PPLS-DA and PLS-DA show a constant PE for

all designs, for PPLS-DA the PE is around 0.08 and for PLS-DA around 0.1. All

remaining methods show a clearly increasing PE with increasing pool size. RF and
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t−LDA show a PE below 0.1 for a design with a pool size smaller or equal to 3, but

a high increase of the PE from pool size 3 to 5. In comparison to the single sample

design (mp = 1), the PE of the design with pool size 5 is 12 times higher for t-LDA

(0.25) and 8 times higher for RF (0.12). SVMR and SVML show similar and very

large PEs for all designs, for the single sample design these PEs are around 0.22 and

increase to 0.4 for a design with a pool size of mp = 5.

The results for 10% ISF are similar to those of 20% (Figure 5.2(b) and 5.2(c)). The

methods PPLS-DA, PLS-DA, RF and SVML show no pooling effect on the PE while

the PE is nearly zero for all pool sizes. For 10%, a PE below 0.02 is found for t-LDA

and SVMR for a pool size smaller or equal to 3, the PEs for pool size 5 increased to

0.15 for t-LDA and to 0.05 for SVMR. The method t-LDA shows nearly the same

PE result for 20% ISF which was expected, because the t-LDA based only on 10

features. For SVMR and 20% ISF, now all pools sizes lead to a PE close to zero.

Prediction error results for scenario 2 For scenario 2 (the threshold pattern)

without technical variation the PE results are shown in Figure 5.3 which are com-

pletely different from the results of scenario 1.
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Figure 5.3: Mean PEs for scenario 2 for 1% ISF (a), 10% ISF (b) and 20% ISF (c)
with 95% confidence intervals.

For 1% ISF the PEs lie around 0.5 for all methods, except for RF. For the latter,
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the PE is around 0.02 for the single sample design and increases to between 0.45

and 0.49 for the pooling designs (Figure 5.3(a)).

For higher proportion of informative features with 10% and 20% ISF, only the

methods RF and SVMR show a change in the PE (Figure 5.3(b) and Figure 5.3(c)).

The method RF shows a decreasing PE for pool sizes 2 and 3 for an increasing

proportion of informative features. The PE for SVMR decreased only for the single

sample design for increasing proportion of ISF, from 0.5 for 1% ISF to 0.11 for 20%

ISF.

Prediction error results for scenario 3 The PE results for scenario 3 (two linearly

dependent features) are displayed in Figure 5.4. For this scenario, all methods show

PEs between 0.4 and 0.5 for 1% ISF and no or only a minor pooling effect of a higher

PE for an increasing pool size (Figure 5.4(a)).

For 10% ISF the PE results are clearly lower than for 1% ISF for all methods.
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Figure 5.4: Mean PEs for scenario 3 for 1% ISF (a), 10% ISF (b) and 20% ISF (c)
with 95% confidence intervals.

For PLS-DA and PPLS-DA the PEs are constant around 0.11 for all pool sizes mp.

Also SVML shows only a minor increase of the PE from 0.12 for the single sample

design to 0.16 for the pooling design with pool size mp = 5 (Figure 5.4(b)). This is

similar for RF, but here with a generally higher PE around 0.2. SVMR and SVML
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show a similar PE for the single sample design, but slightly different PEs for a pool

size of mp = 5. The PE of t-LDA extends from 0.12 for the single sample design to

0.38 for the design with pool size mp = 5. For 20% ISF (Figure 5.4(c)), the PEs for

all methods decrease and show similar shapes with increasing pool size compared to

10% ISF.

Prediction error results for scenario 4 Figure 5.5 shows the PE results of sce-

nario 4 (the circle pattern) these results are very similar to those of scenario 2 (the

threshold pattern).
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Figure 5.5: Mean PEs for scenario 4 for 1% ISF (a), 10% ISF (b) and 20% ISF (c)
with 95% confidence intervals.

Considering 1% ISF, the PEs are between 0.48 and 0.5 for the methods SVMR,

SVML, PPLS-DA, PLS-DA and t-LDA for all designs. The PE of RF is very low

(around 0.05) for the single sample design mp = 1, then the PE increases up to

8-times higher for the design with pool size mp = 2. For a design with pool size

mp = 3, the PE of RF increases to 0.43, followed by a lower increase to 0.48 for the

design with pool size mp = 5.

For 10% versus 1% ISF the main differences are that the PE of SVMR is around

0.025 for the single sample design (for mp > 1 the PEs are still over 0.48) and the

PE of RF decreases further for designs with pool size mp > 1. For 20% ISF the
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PEs of SVML, SVMR, PPLS-DA, PLS-DA and t-LDA are similar to the results for

10% ISF for all designs. The PEs of RF decrease for all pool sizes mp = 2, 3, 5 in

comparison to 10% ISF.

Summarizing the results for the simulated data without technical variation for con-

cept I, for pattern type I PPLS-DA and PLS-DA show a constant PE for increasing

pool size. All other methods show an increasing PE for an increasing pool size

especially for a low proportion of ISF. For pattern type II with 1% ISF, only RF

has a low PE for the single sample design, but clearly higher PEs for the pooling

designs. All other methods perform weaker with PEs around 0.5 for all designs.

For increasing proportion of ISF, also SVMR shows a decreasing PE for the single

sample design, but not for the pooling designs.

Comparison of important features declared of RF and PPLS-DA for concept I

for the simulated data without technical variation

Now the ranking list of important features for the classification are considered which

are the basis for the identification of a biomarker. On the top are features important

for the discrimination between the groups. Here only the methods RF and PPLS-DA

are investigated, because the PE results in the preceding Section 5.3.2 clearly shows

that PPLS-DA and RF outperform the other methods. PPLS-DA shows almost no

pooling effect (on the PE) for all scenarios and for patterns of type I additionally

a low PE. RF indicates the lowest PE for all designs (mp = 1, 2, 3, 5) for patterns

of type II. The used importance value of RF is the mean decrease accuracy (see

Section 2.3.2) and of PPLS-DA the absolute loading weights of the first component

(see Section 2.3.2). An importance value for each feature and each scenario and

proportion of ISF is calculated. Thus, a ranking list can be created to sort the

features according to their importance for classification which can build the basis

to compose a biomarker (see Section 2.3.2). Hence, if the term important feature
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sets is used, a set of important features is indicated depending on the method used,

the observed scenario and the proportion of ISF. For 1% (10%) ISF of the one-

dimensional patterns, only the top 10 (100) features are investigated and for the

two-dimensional patterns the top 20 (200) features. The set of important features

for the classification with method M (from now on M denotes PPLS-DA or RF)

is denoted by D
M

mp
for a design with pool size mp = 1, 2, 3, 5 and the set of ISF

is denoted by D
sim

. Only such features of D
M

mp
which are simulated as informative

are of interest, because only these are good possible biomarkers. Therefore, finally

the intersections I
M

1
:= D

M

1
∩D

sim
are analyzed for the single sample design and the

intersections I
M

1:mp
:= I

M

1
∩D

M

mp
, mp = 2, 3, 5 for the pooling designs. The cardinality

of I
M

1
is the number of ISF which are important for the classification using the single

sample design. Hence, the intersections I
M

1:mp
consist of important ISF which are

identical for a single sample design and a design with a pool size of mp. Viewing the

cardinalities of these intersections, the effects of pooling on the biomarker search

are assessed in comparison to single samples. The cardinality of I
M

1
is taken as a

reference value.

In the following, the mean cardinality values of the intersections I
M

1:mp
, mp = 1, 2, 3, 5

of 500 repeated classification tasks are considered for the methods PPLS-DA and

RF. Only the results for 1% and 10% ISF are shown, because in Section 5.3.2 the

PE results turn out to be very similar for 10% and 20% ISF.

PPLS-DA and RF declared important feature sets for scenario 1 and scenario

2 with 1% ISF The results of the methods PPLS-DA and RF for scenario 1 and

2 are displayed in Figure 5.6. It contains the cardinalities of I
M

1
, the set of impor-

tant ISF for the single sample design and of I
M

1:mp
, mp = 2, 3, 5, the intersections of

this set with the set of important features for the pooling designs, for the methods

PPLS-DA and RF.

For scenario 1, the cardinalities for PPLS-DA of I
PPLS-DA

1:mp
are nearly equal, with 7.1

for all pool sizes mp = 2, 3, 5, while the cardinality for the single sample designs is
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slightly higher with 7.5 (Figure 5.6(a)). This means, over 93% of the important ISF

detected by PPLS-DA are equal for the single sample design and the pooling design.

In comparison, for RF 7.9 ISF are detected as important for the single sample design

and between 7.3 (for mp = 2) and 6 (for mp = 5) are identical with those of the

important features for the pooling designs. This means 76% of the important ISF

coincide between a pooling and a single sample design for pool size 5 and 92% for a

pool size of 2.

For scenario 2, the threshold pattern, PPLS-DA detected no features which are

informative simulated and important for the single sample design (|IPPLS-DA

1
| = 0).

Therewith, no important ISF could be found which coincide with the important

features of the pooling designs. For RF, there are only few important ISF coinciding

for the single sample and the pooling designs, even though all top ten important

features for the single sample design are simulated as informative.

If now the results for scenario 1 and scenario 2 are compared, the cardinalities of the

intersections I
M

1:mp
, mp = 2, 3, 5, are lower for scenario 2 than for scenario 1 for both

methods PPLS-DA and RF. For RF only for the single sample design the cardinality

of I
RF

1
is larger for scenario 2 than for scenario 1.

The above results match to the PE results, for scenario 1. PPLS-DA shows nearly

no influence of pooling on the PE (see Figure 5.2(a)) (nearly an equal number of

features is detected as informative), but for RF the PE increases (the number of

coinciding features decreases) for increasing pool size. As well for scenario 2, the

results are consistent to the PE results (see Figure 5.3(a)). PPLS-DA shows a

PE around 0.5 for all pooling designs (mp = 1, . . . , 5) and detects no informative

simulated feature as important for the classification. RF results only for the single

sample design in a low PE and also only for this design almost all ISF are identified

as important.
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Figure 5.6: The mean cardinalities for the single sample design of I
M

1
(white bars)

and for the pooling designs I
M

1:mp
, mp = 2, 3, 5 are shown for scenario 1

and scenario 2 for 1% ISF (a) and 10% ISF (b) for M=PPLS-DA, RF.
The first group depicts results for the method PPLS-DA (with three
light gray bars). The second group depicts those for RF (with three gray
bars). The numbers above the bars are the mean values rounded to one
decimal place. 95% confidence intervals are shown. The lower separated
hatched bars in (b) represent the mean cardinality if only the top ten
important features are accounted for in the feature sets.
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PPLS-DA and RF declared important feature sets for scenario 1 and scenario 2

with 10% ISF Figure 5.6(b) displays the results for scenario 1 with 10% ISF (this

means 100 ISF). Considering PPLS-DA for the single sample design, in average 90.1

features are declared as important and are simulated as informative. The numbers

of ISF, which are important for the single sample design and the pooling designs,

are only slightly lower with |IPPLS-DA

1:2
| = 88.9, |IPPLS-DA

1:3
| = 88.4 and |IPPLS-DA

1:5
| = 88.4.

For RF, the corresponding cardinalities are lower (between 70.2 and 60) than for

PPLS-DA for all pool sizes. Although both methods have similar average PEs for

all different designs (see Figure 5.2(b)), for PPLS-DA more important ISF are equal

between the single sample design and the pooling designs and no great dependency

on the pool size is found.

Comparing only the top ten important features for PPLS-DA for the single sample

design with the ISF, ten of ten possible features are equal (Figure 5.6(b), separated

hatched bars). Summarizing, the proportion of identical important ISF between

pooling designs and the single sample design is between 98.6% (mp = 2) and 98.1%

(mp = 5) for PPLS-DA and between 93.87% (mp = 3) and 85.47% (mp = 2) for RF.

Investigating only the top ten important features, especially for RF only between

51% and 14% of the features are equal, between 87% and 84% of the features coincide

for PPLS-DA.

For scenario 2 with 10% ISF less than two features are simulated as informative

and detected as important for the single sample design (I
PPLS-DA

1
= 1.5) concerning

PPLS-DA. The intersection with the important features for the pooling designs

are lower with less than 0.3 coinciding features. Different results are shown for

RF. The number of identical important ISF is very large for the single sample

design (|IRF

1
|=95.6). However, the comparison with the pooling designs shows low

similarities (less than one tenth of |IRF

1
|).

If exclusively the top ten important features are investigate for the intersection I
RF

1
,

for RF a high cardinality (9.8) is calculated. The cardinalities of the remaining



82 5 Pooling design for biomarker search

intersections I
PPLS-DA

1
, I

PPLS-DA

1:mp
, mp = 2, 3, 5 and I

RF

1:mp
, mp = 2, 3, 5, are near to zero.

PPLS-DA and RF declared important feature sets for scenario 3 and scenario

4 with 1% ISF Figure 5.7 shows the mean values of |IM
1
| and |IM

1:mp
|, mp = 2, 3, 5,

for scenario 3 (two linearly dependent features), and scenario 4 (the circle pattern)

for the methods PPLS-DA and RF. For these two-dimensional patterns 20 features

are simulated as informative for the classification.
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Figure 5.7: The mean cardinalities for the single sample design of I
M

1
(white bars)

and for the pooling designs I
M

1:mp
, mp = 2, 3, 5 are shown for scenario 3

and scenario 4 for 1% ISF (a) and 10% ISF (b) for M=PPLS-DA, RF.
The first group depicts results for the method PPLS-DA (with three
light gray bars). The second group depicts those for RF (with three gray
bars). The numbers above the bars are the mean values rounded to one
decimal place. 95% confidence intervals are shown. The lower separated
hatched bars in (b) represent the mean cardinality if only the top 20
important features are accounted for in the feature sets.

For scenario 3, the cardinalities are alike for both methods PPLS-DA and RF, with

2.5 features which are ISF and important for the classification for the single sample

design, and between 1.6 and 1.2 of these features are identical to the important

features for the pooling designs (Figure 5.7(a)). The proportion of identically im-

portant ISF lies between 48% and 64% for the intersections of the sets for the single

sample design and the pooling designs.
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For scenario 4, the number of important ISF is nearly zero for the single sample

design considering PPLS-DA and hence no feature is identical to the important

features of the pooling designs. In contrast to RF, this methods detect nearly 15

features as important which are informative simulated for the single sample design

(|IRF

1
| = 14.9), but the proportion of important ISF between the single sample design

and the pooling designs lies only between 10% (for a pool size mp = 2) and 4.4%

(for a pool size mp = 5).

PPLS-DA and RF declared important feature sets for scenario 3 and scenario

4 with 10% ISF Increasing the proportion of ISF to 10% (this means 200 ISF) for

scenario 3, nearly 74 of 200 ISF are identified as important using PPLS-DA for the

single sample design (Figure 5.7(b)). For the pooling design between 57 (for pool

size 2) and 60 (for pool size 5) important features coincide to the important ISF for

a single sample design. That means between 78% and 81% of the features detected

by PPLS-DA for the single sample design are also identified for a pooling design.

For RF between 44.3 (for a pool size of 5) and 47.9 (for a pool size of 2) important

features are equal to the 71.6 important ISF of the single sample design. Therewith

the proportion of coinciding detected features by a single sample and a pooling

design lies between 61% and 67% for the method RF.

Investigating only the top twenty features, for PPLS-DA an average between 8.1

and 8.3 important features of the pooling design coincide with the 13.4 important

ISF of the single sample design. For RF, between six (for a pool size of 5) and 8.6

(for a pool size of 2) important features for the pooling design coincide with the 10.9

important ISF for the single sample design.

For scenario 4 (the circle pattern) the number of important ISF for a single sample

design is minor for PPLS-DA, with |IPPLS-DA

1
| = 22.3 of maximal 200, the intersections

with the corresponding sets of all pooling designs have similar cardinalities (≈13.4).
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Comparing to RF, a generally larger absolute number of coinciding features are

found. However, the differences between the single sample design and the pooling

designs are much larger than those for PPLS-DA, similar to scenario 2.

Considering only the top twenty important features, for RF between 4 and 2 features

coincide for the single sample design and the pooling designs with a pool size of two

and five. However, for the single sample design, almost all 20 possible ISF are

identified as important by RF. For PPLS-DA and for the single sample design only

one of the 20 important features is simulated as informative, and therefore the mean

numbers of coinciding important ISF are low (between 0.5 and 0.4).

PLS-DA and PPLS-DA declared important feature sets for concept I Because

PLS-DA shows no pooling effect of the PE for all scenarios and only a slightly

higher PE than PPLS-DA for patterns of type I, important ISF are now compared

for PPLS-DA with those of PLS-DA exemplarily for scenario 1. Moreover the PLS-

DA loading weights of a single sample design are theoretically compared with those

of a pooling design.

Figure 5.8 shows the mean cardinalities of I
M

1
and I

M

1:mp
, mp = 2, 3, 5 for the methods

PPLS-DA and PLS-DA. For 1% ISF the cardinalities are similar for each intersec-

tion, see Figure 5.8(a). Specifically for 10% ISF, the cardinalities for PLS-DA are

larger than for PPLS-DA for all considered intersections (Figure 5.8(b)). Moreover,

if only the top ten features are accounted (Figure 5.8(b), hatched bars), the coin-

cidence of the important ISF for the single sample design and the pooling designs

lies between 97% (for mp = 2) and 96% (for mp = 5) for PLS-DA, in comparison

to PPLS-DA the corresponding coincidence lies between 87% and 84%. This large

coincidence is caused by similar loading weights for the first component of PLS-DA

for the single sample and the pooling design. If the log bias (see Section 5.2.1) is

omitted, the equality of the loading weights can be proved which is shown in the

following.
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Figure 5.8: The mean cardinalities for the single sample design of I
M

1
(white bars)

and for the pooling designs I
M

1:mp
, mp = 2, 3, 5 are shown for scenario 1 for

1% ISF (a) and 10% ISF (b) for M=PPLS-DA, PLS-DA. The first group
depicts results for the method PPLS-DA (with three light gray bars).
The second group depicts those for PLS-DA (with three gray bars). The
numbers above the bars are the mean values rounded to one decimal
place. 95% confidence intervals are shown. The lower separated hatched
bars in (b) represent the mean cardinality if only the top ten important
features are accounted for in the feature sets.
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Loading weights of PLS-DA Now it is shown, that the loading weights vectors

for a single sample and pooled sample design are equal for the first component of

PLS-DA if the log bias is dropped. Because the R code used of PLS-DA, was im-

plemented according to Indahl et al. (2007), this proof based on the corresponding

PLS-DA approach. The absolute values of these loading weights are applied for the

calculation of the feature ranking list. Thereby the same ranking lists are produced

for both designs.

For each gene k ∈ {1, . . . , g}, a corresponding column vector xk (with length n1 +

n2 = n) contains the gene expression of gene k for each sample. Here it can be

assumed, that the elements xik, i = 1, . . . , n and k = 1, . . . , g are centered. The

complete data set of the single sample design is the sample matrix X ∈ Rn×g and

the dummy matrix Y ∈ Rn×2 which coded the group memberships for each sample.

The ( n
m
× g) sample matrix of the pooling design with pool size m is denoted by Xp

and by Yp ∈ R n
m
×2 the dummy matrix of the pooling design.

First a transformation matrix W0 = XtY
√

Π(YtY)−1 is defined to simplify the

calculation (later only the dominant eigenvector of a quadratic matrix with dimen-

sion equal to the number of groups has to be calculated). Here Π is the (2 x 2)

diagonal matrix with the prior probabilities for each group as diagonal elements. Of

the transformed data X0 = XW0 the matrix of group meansX
0

= (YtY)−1YtX0 is

calculated. Then the between groups covariance matrix of X0 is B0
Π = n (X

0
)tΠX

0
.

The PLS-DA loading weight vector w is the first dominant eigenvector a0 of the

between groups covariance matrix B0
Π, transformed by W0: w = W0a0.

In this thesis, no information on prior probabilities is assumed and so the empirical

prior probabilities are used, for the single sample design π1 = n1/n and π2 = n2/n

and for the pooling design π1 = n1(P )/(n1(P ) + n2(P )) and π2 = n2(P )/(n1(P ) + n2(P ))

with nν(P ) is the number of pools of group ν, ν = 1, 2. Assuming pooling takes place

on the log scale, the matrix for group means X and Xp are the same. Therefore

the transformation matrices W0 ∈ Rg×2 are equal for both designs, because this
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matrix consists of the group means for each feature weighted with the square root

of the related prior probabilities. It follows that B0,p
Π = 1

m
B0

Π where B0,p
Π denotes

the between groups covariance matrix for Xp. Therefore the same dominant eigen-

vector a0 for both designs is achieved. Note for an eigenvector x of D and M = cD,

then x is also an eigenvector of M: Mx = cDx = cλx. Clearly if x is a dominant

eigenvector for D, then also for M. This means an equivalent eigenvector problem

is found for the single sample and the pooling design.

Finally, the loading weights are equal for the single sample design and the pooling

design for the first component, under the assumption of no log bias.

Classification results using concept II for the simulated data without

technical variation

In the following PE results for concept II (comparison of a single sample design and

pooling designs with equal number of arrays, aP = aS) are exemplarily presented

for pattern type I for scenario 1 with 1% ISF and scenario 3 with 1% ISF and 10%

ISF and for pattern type II for scenario 2 and scenario 4 both with 10% ISF. The

results of the remaining cases (data not shown) are similar to the presented results.

In the figures regarding the results of concept II, for 30 arrays per group for the

pooling design a pool size of 1 is used. For 15 arrays per group a pool size of two

is applied to build the pools, for 10 arrays per group a pool size of three and for 6

arrays per group a pool size of five.

Pattern type I Figure 5.9 shows the mean PE for scenario 1 (differentially ex-

pressed genes) in dependence on equal number of arrays for pooling designs and

corresponding single sample designs with 1% ISF. For all methods, except for SVMR

and SVML, the PE for the pooling design is clearly lower than for the single sample

design with equal number of arrays. Furthermore, the differences between the PEs

increase with a decreasing number of arrays for these methods. For all pooling de-

signs, the PEs of PPLS-DA and PLS-DA are nearly constant for both methods, but
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Figure 5.9: Mean PEs for scenario 1 for 1% ISF with 95% confidence intervals for
concept II (aP = aS).
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Figure 5.10: Mean PEs for scenario 3 for 1% ISF with 95% confidence intervals for
concept II (aP = aS).
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Figure 5.11: Mean PEs for scenario 3 for 10% ISF with 95% confidence intervals for
concept II (aP = aS).
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Figure 5.12: Mean PEs for scenario 2 for 10% ISF with 95% confidence intervals for
concept II (aP = aS).
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Figure 5.13: Mean PEs for scenario 4 for 10% ISF with 95% confidence intervals for
concept II (aP = aS).
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the PE increases with decreasing sample size for the single sample designs. For the

methods SVML and SVMR the pooling designs show equal or slightly lower PEs

than the single sample design for all number of arrays.

The PE results for scenario 3 with 1% ISF are illustrated in Figure 5.10. All clas-

sification methods show similar PEs (greater 0.4) for the single sample design and

the pooling design with the same number of arrays.

For scenario 3 with 10% ISF the results are shown in Figure 5.11. Comparing 10%

ISF to 1% ISF, all PEs are lower for the single sample and the pooling designs and

number of arrays for all classification methods. Moreover for 10% ISF, the PE of the

pooling design is lower than for the single sample design for all methods and each

number of arrays, except for t-LDA. Only for t-LDA, the PEs are nearly equal for

the single sample designs and the pooling designs. While for the pooling designs the

PEs of RF, PPLS-DA and PLS-DA are nearly constant with decreasing number of

arrays, the PEs for the single sample design clearly increase with decreasing number

of arrays.

Pattern type II The PE results for concept II are similar for scenario 2 and sce-

nario 4 of pattern type II. Figure 5.12 shows the results for scenario 2 (the threshold

pattern) with 10% ISF. Only for the two methods, RF and SVMR, differences in

the PEs are found comparing a single sample design and a pooling design with the

same number of arrays (Figure 5.12). For these methods, the single sample designs

have lower PEs than the pooling designs, but the differences in the PE decrease with

decreasing number of arrays.

For scenario 4 (the circle pattern) with 10% ISF, only SVMR and RF have low

PEs for the single sample design with 30 arrays per group. Therefore differences

are shown between the single sample design and the pooling design with the same

number of arrays (Figure 5.13) for these methods only. In contrary to scenario 1, the

PE of RF is lower for the single sample designs than for the pooling designs. The
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differences between the PE are very large for SVMR. For the single sample designs,

the PE of SVMR increases from 0.02 to 0.101 with decreasing sample size per group

(from 30 to 6). For all pooling designs (mp ≥ 2), the PE of SVMR is around 0.5. A

reason for this high PE can be that this pattern type seems to be destructed after

pooling.

Classification results for the simulated data with technical variation

In this Section, technical variance is simulated for the gene expression values. For

concept I, the result are exemplarily illustrated for scenario 1 (pattern type I) and

scenario 4 (pattern type II) with the two technical variance levels σ2
t = 1/4σ2

b and

σ2
t = σ2

b . For concept II, scenario 1 and scenario 4 with σ2
t = σ2

b is studied. The two

scenarios 2 and 3 show similar results for concept I and concept II to scenario 1 and

scenario 4, respectively.

First, concept I is considered for the differences between the single sample design

and the pooling designs according to the PE and important ISF. Then concept II

is analyzed to study the differences in the PE between the single sample design and

pooling designs for equal number of arrays.

Concept I Figure 5.14 illustrates the mean PEs and corresponding 95% confidence

intervals for scenario 1 for a technical variance σ2
t = 1/4σ2

b and σ2
t = σ2

b . For 10%

ISF and 20% ISF, the results are similar to those without technical variance (Figure

5.2(b) and Figure 5.2(c)). If the results for 1% ISF with the two technical variation

levels are compared to the results without technical variation, for all classification

methods the increase in the PE is larger with increasing pool size than for scenario

1 without technical variation, as expected. Especially for RF and t-LDA, the largest

increase is found from mp = 1 to mp = 5, but for the pool sizes mp = 1, 2, 3 the PEs

are the lowest. PPLS-DA has the lowest increase of the PE with increasing pool

size. In comparison to the results without technical variation, PLS-DA does not
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Figure 5.14: Mean PEs and 95% confidence intervals for scenario 1, in the first row
for σ2

t = 1/4σ2
b with 1% ISF (a), 10% ISF (b) and 20% ISF (c) and in

the second row for σ2
t = σ2

b with 1% ISF (d), 10% ISF (e) and 20% ISF
(f).
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longer show a constant PE. A clearly higher increase of the PLS-DA PE is found,

especially between the single sample design and the pooling design with pool size 2.
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Figure 5.15: Mean PEs and 95% confidence intervals for scenario 4, in the first row
for σ2

t = 1/4σ2
b with 1% ISF (a), 10% ISF (b) and 20% ISF (c) and in

the second row for σ2
t = σ2

b with 1% ISF (d), 10% ISF (e) and 20% ISF
(f).

Figure 5.15 summarizes the PE results for scenario 4 if technical variation is addi-

tionally simulated in two levels. In contrast to the results without technical variation

(Figure 5.5), for both technical variation levels even for the single sample design, the

method SVMR is not able to discriminate between the two groups. Like expected,

RF shows larger PEs for increasing technical variation, especially for the pooling

designs, but with a higher number of ISF this seems to be compensated to some

degree.

Summarizing the PE results for concept I with technical variation, for scenario 1

also the PE of PPLS-DA is almost not influenced by an increasing pool size like in
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the case without technical variation. For the gene expression data set with scenario

1 and technical variation, the classification method PLS-DA has now a clearly in-

creasing PE.

For scenario 4 with and without technical variation, also RF shows the lowest PE

for the single sample and the pooling design. In contrast to the results of scenario

4 without technical variation, for the single sample design and all pooling designs,

the classification method SVMR has now larger PEs around 0.5 even for 10% ISF

and 20% ISF.
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Figure 5.16: The mean cardinalities for the single sample design of I
M

1
(white bars)

and for the pooling designs I
M

1:mp
, mp = 2, 3, 5 are shown for scenario 1

for 1% ISF for M=PPLS-DA, RF. The first group depicts results for
the method PPLS-DA (with three light gray bars). The second group
depicts those for RF (with three gray bars). The numbers above the
bars are the mean values rounded to one decimal place. 95% confidence
intervals are shown.

PPLS-DA and RF declared important feature sets for case 3 of scenario 1 with

1% ISF Now for scenario 1 with 1% ISF and a technical variance of σ2
t = σ2

b , the

important ISF are compared for the single sample design and the pooling designs
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(Figure 5.16). For PPLS-DA and RF the number of important ISF which coincide

between the single sample and the pooling design decreases for increasing pool size.

This decrease in the number of coinciding important ISF is larger for the method

RF than for PPLS-DA. For example for RF only 26 % of the important ISF are

equal between the single sample design and a pooling design with pool size 5. In

comparison, for PPLS-DA still up to 42 % important ISF are equal for the same

comparison between the single sample design and a pooling design with pool size 5.

If now the described results for scenario 1 with technical variation are compared to

the corresponding results without technical variation (Figure 5.8(a)), for PPLS-DA

and RF the differences between the cardinalities of the sets of important ISF for

the single sample design and the pooling designs are larger for the results based

on technical variation, as expected. Still PPLS-DA shows clearly a larger number

of important ISF which coincide between the single sample design and the pooling

design than RF.

Concept II For concept II (equal number of arrays of a single sample design and a

pooling design (aP = aS)), also scenario 1 (pattern type I) and scenario 4 (pattern

type II) are studied.

For scenario 1, the results are illustrated in Figure 5.17, only for 1% ISF and a tech-

nical variance of σ2
t = σ2

b , because for 10% ISF and 20% ISF the results are similar to

the corresponding results without technical variance (Figure 5.9). The methods RF,

PPLS-DA, PLS-DA and t-LDA show lower PEs for the pooling design than for the

single sample design. SVML has nearly equal PEs comparing the pooling designs

and the single sample design with the same number of arrays. The same is found for

SVMR, only for six arrays per group the PE of the pooling design is slightly larger

than the PE for the single sample design. For all methods, the differences between

the PE of the pooling design and the single sample design with equal number of

arrays are equal or smaller than the corresponding differences for scenario 1 with-

out technical variation. The reason is, that for the gene expression data without
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technical variation, the reduction of the biological variance has a greater effect on

the total variance. For the single sample design, the total variance is σ2
b + σ2

t and

for a pooling design σ2
b/mp + σ2

t (see Section 5.2.1), hence for σ2
t = 0, a pool size

mp =5 leads to a variance reduction of 80% of the total variance. In comparison for

σ2
t = σ2

b the variance is only reduced by 40% of the total variance, because pooling

has only an effect on the biological variance.
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Figure 5.17: Mean PE for scenario 1 with σ2
t = σ2

b for 1% ISF with 95% confidence
intervals for concept II (aP = aS).

Now for scenario 4 with 20% ISF and σ2
t = σ2

b , the results of concept II are illus-

trated in Figure 5.18. Analogously to the results without technical variation with

1% ISF, only for RF differences are shown between the single sample design and

the pooling design. However now for all number of arrays, the single sample design

shows a larger PE than the pooling design. The reason can be the high technical

variation, which leads to no clear separation between the groups even for single
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Figure 5.18: Mean PE for scenario 4 with σ2
t = σ2

b for 20% ISF with 95% confidence
intervals for concept II (aP = aS).
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samples (see Figure A.2). All other methods have similar and large PEs between

the single sample design and the pooling design.

Now the results are summarized for the simulated gene expression data with techni-

cal variation. Regarding concept I for scenario 1 (pattern type I), PPLS-DA shows

an almost constant PE with increasing pool size. Also PPLS-DA has a larger number

of important ISF which coincide between the single sample design and the pooling

design than for RF. However, these numbers of coinciding important ISF are larger

for the simulated data without technical variation. For scenario 4 (patterns of type

II), RF shows the lowest PE for all designs, but with a strong increase for increasing

pool size like for the simulated data without technical variation. All other classifica-

tion methods have large PEs around 0.5. Hence, even for the single sample design,

SVMR has a large PE for scenario 4 with 10% ISF and 20% ISF, which is in contrast

to scenario 4 without technical variation.

Considering concept II, the differences in the PE between the single sample design

and the pooling design with the same number of arrays are lower than for the

corresponding results without technical variation.

5.4 Artificial pooling of experimental data

To the best author’s knowledge there is no experimental data set publically available

which allows the comparison of a single sample design and pooling designs according

to concept I and concept II. To be able to incorporate experimental data, publicly

available experimental data sets (see Section 4.2) are theoretically pooled; this is

called artificial pooling.
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5.4.1 Approach and implementation

Approach of artificial pooling

The publicly available data sets are chosen according to two criteria:

(1) the number of samples per group has to be large enough to allow artificial

pooling with pool size 2, 3 and 5 and

(2) already normalized data have to be available.

Therefore the Leukemia, the Prostate 1, the Prostate 2 and the Breast Cancer data

set (see Section 4.2) are included. The Lymphoma data set is disregarded, because

the group size of the one group is too small with 19. For the training sets of the

pooling designs, the samples are randomly chosen, gene wise the mean values are

calculated as pool value. For three of four data sets (Prostate 1, Prostate 2 and

Breast Cancer data set) nSP = 30 single samples per group are randomly drawn to

build the training set of the single sample design. Hence, 30 pools are calculated for

mp = 2 and 20 pools for a pool size 3 and 12 pools for a pool size 5 respectively. Be-

cause of the smaller number of available single samples (47 and 25 per group) in the

Leukemia data set, the following numbers of pools are calculated: For mp = 2, (5)

there are 10 pools (4 pools) per group, and 7 pools per group for mp = 3.

For all data sets, the remaining single samples build the test set. Therewith the sam-

ple size of the test sets differs between the data sets. The classification is performed

analogously to the simulated data. The artificial pooling procedure is repeated 100

times to estimate the PE for each classification method and corresponding 95%

confidence intervals for the means are calculated.

5.4.2 Results

In the following the PE results are presented for the four publicly available data sets

for a single sample design and pooling designs with artificial pools for concept I and

for three data sets for concept II.
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Classification result of concept I using experimental data

In the following, for the experimental data sets the PE results are described for

concept I. The PE results can only be compared for the single sample designs to

published PE results, because only the single sample design is used in the literature

for these experimental data sets. However not exactly the same normalized data set,

implementations and parameters for the classification methods were used. For the

functions used and for parameter settings chosen by the cited authors, the mentioned

papers are given as reference.

For all four experimental data sets the PE results for the single sample design and

the three pooling designs are illustrated in Figure 5.19.

Leukemia data set (Figure 5.19(a)) For the single sample design, the PE of all

methods is very low (below 0.06). For the methods SVML, RF, PLS-DA and PPLS-

DA, the PE remains below 0.09 also for all pooling designs. For t-LDA the PE

increases to 0.15 for pooling designs with a pool size larger than 2. Considering the

pooling designs separately, the largest PEs are found for designs with a pool size

smaller than 3 (mp ≤ 3) for t-LDA and for designs with a pool size mp = 5, SVMR

has the largest PE. Moreover for the method SVMR, the largest increase of the PE

is found from 0.033 (for a single sample design) to 0.25 (for a design with pool size

5).

Comparing these PE results for the Leukemia data set to the results of the simulated

data, most similarities are found to scenario 1 with 10% ISF. This can be caused by

the high proportion of differentially expressed genes in the Leukemia data (40.5%,

see Table 4.1). Only t-LDA shows larger PEs for mp = 2, 3 than in the simulated

data.

If now the PEs of the single sample design are compared to published PE results,

similar PE results of RF (0.019-0.051), SVMR (0.018), SVML (0.014) and a fur-

ther PLS-algorithm (0.02-0.03) are reported in Dettling (2004), Dı́az-Uriarte and

de Andrés (2006) and Boulesteix (2004).
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Figure 5.19: Mean PEs for the designs of concept I for the experimental data sets
with 95% confidence intervals, estimated for 100 runs.
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Prostate 1 data set (Figure 5.19(b)) For the single sample design, all methods

show similar PEs equal or less than 0.1. The PE of PPLS-DA increases only slightly

with increasing pool size from 0.08 (for a pool size mp = 1) to 0.12 (for a pool size

mp = 5). PLS-DA and SVML show a similar increase of the PE, up to 0.17 for a

pool size mp = 5. For a pool size greater than 3, the PE of t-LDA increases strongly,

for example for a pool size of 5 the PE is 4-times larger than for a single sample

design. RF and SVMR show similar PEs for all designs, which increase linear from

a single sample design to a design with pool size 5.

In comparison to the simulated gene expression data, the PE results of the Prostate

1 data set show most resemblance to the PE results of pattern type I. Considering

published PE results for the single sample design, the PE results of Dı́az-Uriarte

and de Andrés (2006) for SVML are equal to our result (0.064), for RF the PE is

slightly lower with 0.077. Dettling (2004) reported a PE of RF (0.09) which lies in

the 95% confidence intervals of the results presented in this thesis and for SVMR

a PE (0.0788) which is outside the 95% confidence interval of the mean PE shown

here. Boulesteix (2004) calculated also a PE of 0.078 of a PLS-algorithm for the

single sample design which corresponds to our results of PLS-DA.

Prostate 2 data set (Figure 5.19(c)) For the Prostate 2 data set, the PE results

differ more between the methods than for the other data sets. SVML and t-LDA

show a PE below 0.13 for the single sample design. For the pooling designs, these

PEs increases up to 0.34 for a pool size mp = 5. The PE of RF is nearly constant

(around 0.21) for pool sizes smaller or equal to 3, but for a pool size of 5 the PE

increases to 0.28. For all designs, PLS-DA shows a slightly higher PE than SVML.

PPLS-DA clearly shows the lowest PE for all designs. These PE increases from

0.09 for the single sample design to 0.16 for a pool size of 5. For SVMR the PE is

between 0.33 and 0.37 for all designs. That PE is estimated out of 50 runs, because

the calculations are very time-consuming.
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Now in contrast to the simulated gene expression data, the PE results of the Prostate

2 data set differ most to the results of the simulation study. The reason can be the

much higher number of genes (42129) in the experimental data instead of 1000 which

were considered in simulated data. For this data set, the results of the single sample

data cannot be compared to other published results, because different classification

methods are applied.

Breast Cancer data set (Figure 5.19(d)) For all pool sizes and all methods, the

PEs are larger than 0.3. For all designs, the PE is between 0.32 and 0.36 for the

methods PLS-DA, PPLS-DA, RF, SVMR and SVML. For the single sample design,

the PE of t-LDA is the lowest (0.31) and increases to 0.42 for a pool size mp = 5.

Comparing these results to the results of the simulated data, scenario 3 with 1%

ISF shows also for the single sample design, that t-LDA has the lowest PE, but

increases more than RF, SVML, SVMR, PLS-DA and PPLS-DA. Now for RF and

SVML, the PE of the single sample design is compared to published PE results for

these classification methods. For RF, a PE of 0.342 and for SVML a PE of 0.325 are

reported in Dı́az-Uriarte and de Andrés (2006) for the single sample design. For RF

the PE is covered by the estimated 95% confidence intervals for the single sample

design shown here, the PE of SVML is only slightly higher.

Classification result of concept II using experimental data

The mean PE results for the experimental data sets are illustrated for the Leukemia

data set, the Prostate 1 data set and the Breast Cancer data set for concept II

(comparison of a single sample design and pooling designs with equal number of

arrays, aP = aS). The Prostate 2 data set show similar results (data not shown).

For all designs for the Leukemia data set, Figure 5.20 shows the PE results for

concept II. Comparing the pooling designs and the single sample design with equal
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number of arrays, the pooling design has a lower PE than the single sample design

for every classification method except for SVMR, which has nearly identical PE

results for both designs. For a decreasing number of arrays the differences between

the PEs of the single sample and the pooling designs increase. The differences are

particularly small, for the methods PLS-DA and SVML for 10 arrays per group.

However, for 4 arrays per group, the PEs of these two methods are twice as large

for the single sample design than for the pooling design. The maximum difference

in the PE between the single sample and the pooling design is found for RF for 6

arrays per group, with a PE nearly three times larger than for the pooling design.

For t-LDA and PPLS-DA the differences are comparable between a single sample

design and a pooling design.

The results for the Prostate 1 data set are shown in Figure 5.21. The differences

between the single sample design and the pooling design with the same number of

arrays are similar to the corresponding differences for the Leukemia data set. SVMR

and RF have similar results for both designs. In general, the PE for the single sam-

ple design is larger than for the pooling design and this difference increases with

decreasing number of arrays. Especially for PPLS-DA, the PE for the single sample

design is larger than that of the pooling design for 6 arrays per group (over two

times larger).

For the Prostate 2 data set, the results of concept II (data not shown) are very

similar to the results of the simulated data for scenario 3 with 10% ISF, for all

classification methods except for t-LDA. The PE of t-LDA is also clearly larger for

the single sample designs than for the corresponding pooling designs.

Analyzing the Breast cancer data set with respect to concept II (Figure 5.22), if

differences in the PE are found between the single sample and the pooling design

they are comparable small, even for only 6 arrays per group. The findings for the

Breast cancer data set are analog to those of scenario 3 with 10% ISF (Figure 5.10).
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The PEs for the single sample designs start around 0.35 instead of 0.45 for scenario 3.

Summarizing PE results for concept II and all data sets, for the single sample designs,

the PE generally increases with a decreasing number of arrays more than for the

pooling designs with decreasing number of arrays.

SVML

number of arrays per group

m
ea

n 
pr

ed
ic

tio
n 

er
ro

r

20 10 7 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(a)

SVMR

number of arrays per group

m
ea

n 
pr

ed
ic

tio
n 

er
ro

r

20 10 7 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(b)

RF

number of arrays per group

m
ea

n 
pr

ed
ic

tio
n 

er
ro

r

20 10 7 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(c)

PPLS−DA

number of arrays per group

m
ea

n 
pr

ed
ic

tio
n 

er
ro

r

20 10 7 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(d)

PPLS−DA

number of arrays per group

m
ea

n 
pr

ed
ic

tio
n 

er
ro

r

20 10 7 4

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(e)

f)                                                       t−LDA                                                                  

number of arrays per group

m
ea

n 
pr

ed
ic

tio
n 

er
ro

r

30 15 10 6

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(f)

pooled samples single samples

number of arrays per group

m
e

a
n

p
re

d
ic

ti
o

n
e

rr
o

r

30 15 10 6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

a) SVML

number of arrays per group

m
e

a
n

p
re

d
ic

ti
o

n
e

rr
o

r

30 15 10 6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

b) SVMR

number of arrays per group

m
e

a
n

p
re

d
ic

ti
o

n
e

rr
o

r

30 15 10 6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

c) RF

number of arrays per group

m
e

a
n

p
re

d
ic

ti
o

n
e

rr
o

r

30 15 10 6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

d) PPLS-DA

number of arrays per group

m
e

a
n

p
re

d
ic

ti
o

n
e

rr
o

r

30 15 10 6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

e) PLS-DA

number of arrays per group

m
e

a
n

p
re

d
ic

ti
o

n
e

rr
o

r

30 15 10 6

0
.0

0
.1

0
.2

0
.3

0
.4

0
.5

f) t-LDA

Figure 5.20: Mean PE for the Leukemia data set with 95% confidence intervals for
concept II (aP = aS).
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Figure 5.21: Mean PE for the Prostate 1 data set with 95% confidence intervals for
concept II (aP = aS).
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Figure 5.22: Mean PE for the Breast Cancer data set with 95% confidence intervals
for concept II (aP = aS).
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5.5 Discussion

Summary of main results

Pooling is known to affect performance of statistical learning, however, it is not

always avoidable. In the presented study the pooling effect is considered by regard-

ing the PE and important ISF for biomarker search in microarray gene expression

experiments with the help of a simulation study. Furthermore the results are ex-

tended to publicly available data sets which are pooled artificially. The main focus

is on concept I, with a lower number of arrays for the pooling designs than for a

single sample design (aP < aS), but based on the same number of single samples

(nSP = nS).

The simulation approach employs six statistical learning methods, tested for four

patterns differentiating between two groups, and with three different settings for

numbers of ISF (1%,10% and 20%) and three technical variation levels (σ2
t ∈

{0, 1/4σ2
b , σ

2
b}). Each combination is analyzed for the single sample design as well

as for three pooling designs with increasing pool sizes.

Overall, looking at concept I there is no method which outperforms all other meth-

ods with respect to pooling designs regarding PE and important ISF independent

of the other parameters for the simulated data. However, remarkable differences

are found between the methods. Generally, if the technical variation increases, the

differences between the single sample design and the pooling design increases con-

sidering the PE.

A pooling effect on the prediction error can only be assessed for cases in which sta-

tistical learning results in low PEs. For PPLS-DA and PLS-DA this is mostly the

case for patterns of type I, where these methods show no pooling effect on the PE if

no technical variation is simulated. If technical variation is simulated (Figure 5.14),

PPLS-DA is the only methods which shows a nearly constant PE for increasing pool

size. For patterns of type II, without and with technical variation, only RF mainly
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shows the lowest PE, but with a strong pooling effect. The methods PPLS-DA and

RF are further examined to analyze pooling effects on sets of important ISF. For

patterns of type I and II, PPLS-DA shows a large proportion of important ISF which

coincide between the single sample design and the pooling design. However, for RF

and patterns of type II, much larger numbers of important ISF which coincide in

absolute values have been found.

Regarding concept I for two of the four experimental data sets (Prostate 1 and

Prostate 2), only PPLS-DA shows a minor pooling effect with respect to PE and

also the lowest PE for all designs. PLS-DA shows the lowest and a nearly constant

PE for all designs for the Leukemia data set. The Breast cancer data set seems more

complicated for classification, because all classification methods and all designs lead

to PEs over 0.3. Moreover, this data set has the lowest proportion of differentially

expressed genes compared to the other experimental data sets.

Considering concept II (equal number of arrays for the single sample design and the

pooling design, aS = aP ), the influence of small sample sizes on the classification

methods is studied. The PEs increase with decreasing number of arrays for the single

sample design for all methods which are able to separate the classes with small PEs

(Figure 5.9 - Figure 5.13, Figure 5.20 and Figure 5.21). For the pooling design and

pattern type I, the PE increases slower for decreasing number of arrays per group

than for the single sample design. In contrast for pattern type II, the PE of the

pooling design increases strongly for decreasing numbers of arrays for classification

method which show a low PE for the single sample design.

For the experimental data sets, the findings of concept II are analog to those of the

simulated data for pattern type I.
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Statistical learning methods and pooling

Pooling has different effects on the results of the statistical learning methods used. In

general, pooling leads to a reduced biological variance. Therewith for pooling designs

different variance structures are found in the training and the test set, because the

training set consists of pooled samples and the test set always of single samples.

Using concept I for a pooling design, pooling is accompanied by a reduced sample

size. Carefully the design is chosen in such a way that the statistical power of the t-

test to detect differentially expressed genes remains similar for all designs in concept

I.

Simulated data Regarding the performance of classification methods for pooling

designs for the simulated data, it should be distinguished between pattern type I

and pattern type II.

Considering concept I and patterns of type I, the pooling effect measured by means

of the PE of a classification task, depends on the chosen learning method, but is

in general lower than for pattern type II. The reason is, that patterns of type I

remain stable after pooling. For scenario 1 which is based on the group mean val-

ues, the group mean values of the pooled samples are only slightly biased by the

log-transformation compared to those of the single samples if no technical variation

is simulated. Moreover the biological variance is reduced, this affects particularly

the simulated data without technical variation. For patterns of type II, the patterns

are destructed after pooling (see Figure A.2). This causes the clearly higher PEs of

the pooling designs compared to those of the single sample design in classification

problems. For the case of low proportion of ISF (1%) and no technical variation,

PPLS-DA and PLS-DA show no pooling effects. Their PEs are mainly low for pat-

terns of type I, but larger for pattern type II (see Figure 5.3 and Figure 5.5). The

large number of important ISF which coincide between the single sample design

and the pooling design, especially for PLS-DA, is caused by nearly identical loading
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weights for both designs (see Section 5.3.2).

Regarding concept II, it is possible to compare the pooling effect to the effect of

decreasing sample size on the PE. For patterns of type I without technical variation,

the PE results of PPLS-DA and PLS-DA for the pooling designs are constant al-

though the sample size decreases while for the single sample design the PE increases

(see Figure 5.9, Figure 5.10 and Figure 5.11). For RF and t-LDA, the pooling effect

on the PE curve is similar to the PE curve of single sample designs for decreasing

number of arrays). Nevertheless, for pattern type I the PEs of the classification

methods are mainly lower for the pooling designs. This can be explained by the

reduced biological variance using pooling designs (see Section 5.2.2). For patterns

of type I with technical variation, all methods show an increasing PE for the single

samples and the pooling design. Like already mentioned, simulating technical vari-

ation reduces the influence of the reduced biological variance (σ2
b/mp), especially if

technical variance is larger than biological variance (σ2
t < σ2

b ).

Considering pattern type II with 10% and 20% ISF without technical variation (Fig-

ure 5.12 and Figure 5.13), only RF and SVMR have PEs below 0.5, because these

two methods deal best with the more complex pattern structures. For RF a higher

number of ISF seems to compensate the technical variation influence on the PE. In

contrast to SVMR, where also for the larger proportion of ISF large PE values are

shown. Moreover, the PE results of RF and SVMR for the pooling design clearly

show higher PEs because of the mentioned destruction of the pattern after pooling.

It can be speculated in general, that for pattern type II, the reduced variance does

not have the same effect as for patterns of type I.

Experimental data Overall, for the experimental data sets, PPLS-DA and PLS-

DA are weakly influenced by pooling with respect to the PE. Therefore especially

these methods are considered. For concept I, and for two experimental data sets,

Prostate 1 and Prostate 2, the classification method PPLS-DA clearly shows lower
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PEs than PLS-DA, especially for the pooling designs. Hence, the optimization of

the power parameter of PPLS-DA leads to a great difference in the PEs between

PPLS-DA and PLS-DA for these two data sets (for more details see subsection 5.5).

PLS-DA shows nearly no pooling effect for the Leukemia data set and a low PE, a

reason could be the large number of differentially expressed genes, which can also

explain the similar results to the simulated cases with patterns of type I.

Regarding concept II, the Leukemia data set and the Prostate 1 data set show

that the reduced biological variance leads to smaller PEs of PPLS-DA, PLS-DA,

t-LDA and RF for the pooling designs than for the single sample design with the

same number of arrays. The same results are found for the Breast Cancer data set,

but the differences in the PEs are smaller. For SVMR no differences between the

single sample design and the pooling design are found for all data sets, the reduced

biological variance has no effect on the PE.

Comparison of the results for experimental data and simulated data Most

probably experimental data do not contain only one pattern type. Experiences with

simulated data on this thesis have shown that statistical learning methods mostly

use differentially expressed genes even when more complex patterns are included in

the data. Therefore, the results of the experimental data show most similarities to

patterns of type I. So the same methods are identified as most robust against pooling

like for the simulated data for patterns of type I, namely PLS-DA and PPLS-DA.

Therewith the pooling effect on the PE is relatively small, because the mean class

values are maintained in the data after pooling (Figure A.1). Comparing with the

results of the simulation study, the method SVML shows a low to moderate increase

and SVMR a more considerable increase for increasing pool size. For none of the

four experimental data sets, RF shows such a high difference between the PE of

single sample designs and pooling designs as for patterns of type II in the simulated

data. Overall, PPLS-DA and PLS-DA show the lowest pooling effect on the PE.

The results of the Leukemia data set and the Prostate 1 data set for concept II are
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very similar to the corresponding results for scenario 1. The corresponding results

of the Breast cancer data set and the Prostate 2 data set are similar to the findings

of scenario 3 with 1% ISF and 10% ISF.

Overall, for all four experimental data sets, the artificial pooling results mostly

correspond to the results of the simulated data concerning scenario 1, especially for

the Leukemia data set and for the Prostate 1 data set. For these two data sets, the

reason for the similarity is the high number of differentially expressed genes in the

Leukemia data set (32%) and in the Prostate 1 data set (39.6%) (see Table 4.1).

PPLS-DA and PLS-DA in the context of pooling

A closer look is taken at the methods PPLS-DA and PLS-DA because of their good

performances for differentially expressed features (scenario 1). In general, for the

pooling design, the optimal numbers of components for PPLS-DA and PLS-DA are

lower than for the single sample design (results not shown). For scenario 1 with 1%

ISF without technical variation (Figure 5.2), the PEs are slightly lower for PPLS-

DA than for PLS-DA. The corresponding cardinalities of important ISF set for the

single sample design (I
M

1
) and of the intersections of these set with the important

features of the pooling designs (I
M

1:mp
, mp = 2, 3, 5) displays no great differences for

M=PPLS-DA and M=PLS-DA (Figure 5.8).

Moreover, in Section 5.3.2 it is shown that the PLS-DA loading weights for the first

component are equal for all designs under the assumption of negligible log deviation

and no technical variation. As mentioned in Section 5.2.1, pooling takes place on the

original scale, so the mean value of a class for the single sample data is not exactly

the mean value of the class for the pooling data on the log scale (Jensen’s inequality,

Jensen (1906)). Therefore, this assumption does not hold in our simulation study,

however the comparison of important ISF for the single sample design (I
PLS-DA

1
) and

the important features for the pooling designs (D
PLS-DA

mp
) (Figure 5.8) does not show

large differences between the different designs with pool size mp = 2, 3, 5 (for ex-

ample Figure 5.8). This leads to the supposition that this log bias has no great
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impact (on PLS-DA) and hence is very small. For higher technical variation levels

the difference between the loading weights of the single sample design and the pool-

ing design increases. Therefore also the PEs differ more for e.g. scenario 1 with 1%

and σ2
t ∈ {1/4σ2

b , σ
2
b} (Figure 5.14(d) and Figure 5.14(a)).

Summarizing, the influence of pooling designs on biomarker search with respect to

the PE and important feature sets for the methods PLS-DA, depends also highly on

the technical variation. For data sets with very low technical variation, PLS-DA is

robust against pooling. However, increasing technical variation, leads to larger PEs

for the pooling designs than for the single sample design. Regarding PPLS-DA and

especially the power parameter γ, it can be observed that with increasing pool size

the average γ value increases and also with increasing technical variation level the

power parameter increases (see Table 5.1).

Table 5.1: Mean γ-value for scenario 1with 1% ISF.

pool size mp

σ2
t 1 2 3 5

0 0.51 0.53 0.55 0.59
1/4σ2

b 0.51 0.55 0.57 0.63
σ2
b 0.51 0.58 0.59 0.64

For the experimental data, the PE results of PPLS-DA and PLS-DA differ more than

those of the simulated data. The reason seems to be the influence of γ on the loading

weights calculation (see Section 2.3.1). The parameter γ is determined such that

the canonical correlation of XW0(γ) and Y is maximal, with a g×2 transformation

matrix W0(γ), which contains possible loading weight vectors (see Section 2.3.1).

The optimal γ value is between 0.51 (for mp = 1) and 0.59 (for mp = 5) for the

simulated data without technical variation (Table 5.1). This range increases with

increasing technical variation to [0.51,0.64] for σ2
t = σ2

b . This means that especially

the calculated loading weights with γ close to 0.5 are similar to the loading weights
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of PLS-DA. However, the optimal γ-value for the experimental data deviates further

from γ = 0.5 than for the simulated data. (For γ-values near 1, the correlation part

has a greater impact to the calculation of the loading weights. For γ-values near 0,

the standard deviation part has a greater impact to the calculation of the loading

weights.) Therefore, for the experimental data, the loading weights differ more

between PLS-DA and PPLS-DA. It follows, that the components from PLS-DA and

PPLS-DA which are applied as predictors for a LDA, also differ. Moreover for γ-

values near 1 or near 0, a lower number of features contribute to the loading weights

of PPLS-DA. This is especially an advantage for data sets with a large number

of features, like for the Prostate 2 data set and can explain the large differences

between the PEs of PLS-DA and PPLS-DA for this data set. Because for data sets

with such a high number of features, a lot of features may not contain information

for the discrimination between the groups and can be considered as noise (Saebø

et al., 2008). Therefore it is advantageous to set their loading weights to zero.

Constraints and benefits of methods

The reported results are based on the chosen pattern scenarios, proportions of ISF,

the statistical learning methods used and pool sizes, therefore they cannot easily be

generalized. Only small pool sizes are investigated (mp = 2, 3, 5), and so one can

expect that for mp > 5 the results between single sample design and pooling design

deviate much more. Simulating gene expression of a pool on the original scale, the

mean values of the samples forming the pool is calculated. This exact pool value

will not occur in experimental data, but pooling weights can be interpreted as an

additional technical variation (Zhang et al., 2007). Furthermore, the test set of a

statistical learning method consists of new single sample data, because biomarker

classification is applied on single samples with a much more sensitive technique

(PCR vs. microarray technique).

Two types of patterns, type I (scenario 1 and scenario 3) and type II (scenario 2 and

scenario 4) are investigated. For type I, the convex hulls of the one class is not a
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cover of the other class. (For scenario 3 the convex hulls are always disjunct, for sce-

nario 1 only for large mean class differences.) The similarities in the results between

these two patterns of type I occur also because one of the two linearly dependent

features of scenario 3 is based on the construction of a differentially expressed fea-

ture with a mean class difference of 0.1. For a higher mean class difference (> 0.1),

the classification information is dominated by the differentially expressed gene in

the pattern. The patterns of type I are linearly separable which is advantageous for

methods like LDA. For type II, the convex hulls of the one class cover the other.

This means the pattern structure after pooling depends on the individual samples

chosen, which form the pool and the parameters for the simulation of the pattern.

For example, considering the circle pattern (scenario 4, Figure 4.1d), if the radius

of the inner circle is much smaller than the outer one, the intersection of the convex

hulls of the two classes is smaller and the probability of disjunct classes is also larger

after pooling. Moreover the scenarios of pattern type II are based on the same mean

values and different variances for the two classes, this may cause the similar results

for this pattern type.

For the experimental data, pools are artificially built by choosing mp = 2, 3, 5 sam-

ples randomly and calculating the mean value. For choosing samples for the pools,

the group memberships are taken into account. Therefore possible subgroups could

be mixed.

In general the experimental data have a higher number of genes as our simulated

data. Hence, the differences between the PE of the Prostate 2 data and the simulated

data can possibly be explained by this discrepancy.

Summarizing the differences between the experimental data and simulated data, the

experimental data sets have a clearly higher number of genes g, a higher number of

differentially expressed genes, more than one pattern scenario and maybe subgroups

in a group.



120 5 Pooling design for biomarker search

Significance of results

The presented results illustrate which consequences can be expected if a pooling

design is used instead of a single sample design in the context of biomarker search

and point out how important it is to choose an adequate design with respect to the

underlying questioning.

If only differentially expressed features are presented in the data and only little

technical variation, PPLS-DA and especially PLS-DA show the highest (relative and

absolute) coincidence of important features with those also simulated as informative.

For high technical variation, PPLS-DA outperforms PLS-DA. Investigating more

complex patterns (scenario 2 and scenario 4) simulated without technical variance,

it can be seen that, the PE increases even for small sizes of pools (mp = 2) to nearly

0.5 if only few ISF (1%) are available (Figure 5.3 (a), Figure 5.5 (a)).

For practical reasons, a biomarker signature should not consist of too many features.

For example, for quantitative PCR, more components of a biomarker signature lead

to increased cost and work. Moreover, less features lead to better possibilities for

biological interpretation of the biomarker in terms of understanding regulatory mech-

anism (see Section 2.1.1).

This aspect is taken into account by assessing only the top ten (top 20) important

features of the 10% ISF cases. For the influence of pooling with respect to a possible

biomarker created by a ranking list, variable importance values of RF, PPLS-DA

and PLS-DA are taken into account, because these methods show the best PE re-

sults. The intersection of these reduced sets of considered important features is

lower than for the higher number of important feature sets, except for PPLS-DA

and PLS-DA. Even if pooling does not lead to an increase in PEs for RF (scenario 1

for 10% ISF, Figure 5.2(b), less than half of the important ISF, of the single sample

design coincide with the sets of RF-declared important features for the designs with

pool size mp = 2, 3, 5 (see Figure 5.6 (a), lower separated bars). Hence, searching

for biomarkers with a pooling design leads to a different choice of biomarkers as with
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a single sample design. The size of the discrepancies depends on the pool size, the

scenario, the proportion of ISF, the technical variation in the data, and the learn-

ing method used. Altogether, the assumption of Sadiq and Agranoff (2008) can be

verified, that “pooling serum samples may lead to loss of potential biomarkers”. If

pooling can not be avoided and differentially expressed genes can be expected in the

data, and considering the results of the simulation study and the experimental data,

PPLS-DA and PLS-DA should be preferred for biomarker search. Mainly low PEs

are found, and the sets of the important features for the classification using PLS-DA

for the single sample design and the pooling design nearly coincide for the simulated

data. Moreover, if the structure of the informative data is unknown, additionally

RF should be investigated, because RF shows the lowest PEs for all designs and

pattern type II. Furthermore the highest cardinality of the intersection of important

ISF is found by RF.

Regarding the results of concept II: On the one hand, if the number of arrays used

is fix and the number of single samples available is higher (ntotal > atotal), a pooling

design seems to be preferable, if lots of differentially expressed genes are present in

the data (Figure 5.9, Figure 5.11, Figure 5.20 and Figure 5.21). However, in this

case only patterns of type I, could be detected. On the other hand, if the data con-

tain most probably low numbers of differentially expressed genes, a single sample

design is preferable.

Feng et al. (2004) state that different methods should be compared to find the best

approach for the underlying data set according to the lowest prediction error for the

identification of biomarkers. Concluding, it is suggested to start with the methods

PPLS-DA, PLS-DA and RF if the samples are pooled.

What are the consequences of pooling regarding decrease of prediction accuracy or

increasing problems to find biomarker candidates?

Pooling leads to larger or equal PE depending on the classification method used, the

pool size and technical variation. Especially for RF the loss of possible biomarkers
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is high already for the simple case of differentially expressed genes. For PPLS-DA

and PLS-DA this loss is much smaller.
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6 Extension of the method PPLS-DA

for improved classification

In this Chapter, an extension of the method PPLS-DA is proposed to improve the

prediction results. It is based on a manuscript submitted by Telaar et al. (2012b).

6.1 Motivation

In Chapter 3, the method PPLS-DA turns out to be especially suitable for biomarker

search. There, the biomarker obtained by PPLS-DA contains only half of the num-

ber of features compared to the biomarker identified by RF, while a similar PE is

reported for both methods. Therewith particularly requirement b), a small cardi-

nality, of a biomarker, is fulfilled, (Section 2.1.1). Further in Chapter 5, PPLS-DA

is most robust against pooling with respect to the PE and important features. In

addition, it could be seen that the power parameter γ has a substantial influence on

the PE (Section 5.5).

This Chapter examines the possibilities of improving the PE of PPLS-DA with re-

gard to the choice of the parameter γ. The theoretical backgrounds of PPLS-DA

are described in Section 2.3.1.

In the ordinary PPLS-DA, the power parameter γ is optimized over the interval

U = [0, 1] such that the correlation is maximized between Z = XW and Y. The

corresponding γ is denoted by γmax. To analyze the influence of the power parame-
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ter on the PE, first the usual interval for the determination of the power parameter

[0,1] is decomposed in 20 sub-intervals Ut = [0.05 · (t− 1), 0.05 · t] with t = 1, . . . , 20.

Figure 6.1 shows the mean PE results for scenario 1 with 1% ISF and σ2
t = 0 (case

1) plotted against the intervals Ut used for the optimization of γ. The displayed

PE curve is of wavy shape. Starting at a PE of 0.07 for the interval U1 = [0, 0.05],

the PE first decreases to a minimum PE of 0.05 for the interval U2 = [0.05, 0.1],

increases then to a maximum of 0.17 for the interval U6 = [0.25, 0.3], followed by a

decrease to a global minimum for the PE of 0.014 for the interval U17 = [0.8, 0.85]

and finally increases to 0.05 for the interval U20 = [0.95, 0.1]. The smallest PE is

achieved with a power parameter optimized with respect to the correlation inside

the interval [0.8, 0.85]. The usual optimization of the power parameter γ inside the

whole interval U = [0, 1] with respect to correlation leads to an average γ of 0.51

(see Table 5.1) with a mean PE of 0.1. It follows that for scenario 1 with 1% ISF

and σ2
t = 0 a clearly lower PE can be achieved by optimizing the power parameter

only inside the interval [0.8, 0.85].

Therefore in the following, four alternative versions to optimize the power parameter

of PPLS-DA are introduced which optimize the power parameter towards predic-

tion accuracy by taking a cross-validation approach to avoid over-fitting. In three

versions (A, A1 and A2), the power parameter and the number of components are

determined according to the lowest PE of a LDA using the PPLS-DA components

as predictors. In a fourth version (B) the mean squared deviation of the posterior

probabilities of the LDA from the dummy response matrix is applied as objective

function. Furthermore, all results of the four extensions of PPLS-DA are compared

to PLS-DA with respect to the PE for simulated data sets and five publicly available

experimental data sets, already described in Chapter 4.
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Figure 6.1: Mean PEs and corresponding 95% intervals for scenario 1 with 1% ISF
and σ2

t = 0 plotted against different intervals Ut for the optimization of
γ.

6.2 Proposal of a new optimization

For improvement of the classification using PPLS-DA, the power parameter γ is

optimized with respect to the prediction accuracy of LDA in an inner cross-validation

approach. For such an inner cross-validation, the data set X is first splitted according

to a proportion of (φX, 1 − φX) in an outer training set and outer test set (see

Section 2.1.2). Using only the outer training set to optimize the γ-value, this set is

additionally partitioned randomly into an inner training set and an inner test set

by the proportion of φXtrain
and 1-φXtrain

of the outer training set. This partition

is randomly repeated rinner times. The outer test sets serve to validate the learned

classification function by LDA based on the components calculated according to the
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optimized power parameter.

Moreover as possible γ-values, equidistant fixed values in [0,1] are taken into account

with a step size sγ. Therewith a sequence of γ-values is obtained (γ1, . . . , γ 1
sγ

+1).

Four versions are examined for optimizing γ and the number of PPLS-DA compo-

nents to be used as input for the LDA. For all versions, the optimization of the

power parameter γ depends on the choice of the parameters rinner and sγ.

Short overview of the optimization schemes: In version A all components are used

to find the optimal γ which minimizes the PE, while version A1 only uses the

first component to determine the optimal γ. Version A2 successively optimizes each

component separately. Finally, version B optimizes like version A2, but with respect

to the posterior probabilities of the LDA.

The final number of components used is determined in an additional cross-validation

step for versions A1, A2 and B. Only in version A, the number of components and

the power parameter are optimized in the same step.

In the following a one up to five component model of PPLS-DA is taken into ac-

count, nc = {1, . . . , 5}. Therewith one up to five components of PPLS-DA are used

as predictors for the final classification with a LDA.

The following notations are used:

PE t l denotes a PE of the inner test set of the tth partition of the outer training

set, calculated for PPLS-DA based on a parameter with level l

PE · l denotes a mean PE over all inner test sets calculated for PPLS-DA

based on a parameter with level l

6.2.1 Version A

For each fixed γ-value (γi, i = 1, . . . , 1
sγ

+ 1) the optimal number of components of

PPLS-DA is determined as follows (see Figure 6.2): For the rinner different inner test
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sets, the PE for a one up to five component model is calculated (nc = 1, . . . , 5). For

a fix γi all components are determined according to this γi. Therewith over all rinner

repetitions a matrix (PE t nc)tnc , t = 1, . . . , rinner, nc = 1, . . . , 5 is obtained. Each

entry corresponds to the PE of a inner test set and a certain number of components.

Then for each γi the average PE of the inner test sets is separately calculated for the

five different numbers of components (PE ·nc(γi)) (nc = 1, . . . , 5). Hence for each

γi, the optimal number of components (nci(opt)) is selected according to the smallest

mean PE over the rinner test sets: nci(opt) = arg min
{nc|1,...,5}

(PE ·nc(γi)). Now the final

optimal γ of version A denoted by γAopt, corresponds to the minimal mean PE of the

inner test sets γAopt := arg min
{γi|1,..., 1

sγ
+1}

(PE ·nci(opt) (γi)) and the corresponding optimal

number of components of version A is than denoted by nAc(opt) . So nAc(opt) PPLS-DA

components are calculated of the outer training set all with the power parameter

γAopt. These components are then the predictors of a LDA, which is used to predict

the outer test set.
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Figure 6.2: Illustration of the algorithm to find γAopt and nAc(opt) of the extension of

PPLS-DA according to version A with sγ = 0.1.
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6.2.2 Version A1

Opposite to version A, now only the first component is optimized (see Figure 6.3).

In a first step, an rinner × ( 1
sγ

+ 1) matrix (PE t γi) t γi , with t = 1, . . . , rinner, γi =

γ1, . . . , γ 1
s γ

+1 is evaluated regarding the PE of an inner test set according to a one

component model (nc = 1). Analogous to Version A, γA1
opt is the γ-value which leads

to the smallest average PE over all inner test sets (γA1
opt = arg min

{γi|1,..., 1
sγ

+1}
(PE · γi)). In

a second step, the optimal number of components (nA1
c(opt)

) is determined in an inner

cross-validation with 10 repeats of the resampling of the inner training set and inner

test set. In this step all components are calculated according to γA1
opt. Finally for each

of the nA1
c(opt)

components based on the outer training set the loading weights vector

is calculated according to γA1
opt. Then, the PE for the outer test set is calculated, like

in version A.
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Figure 6.3: Illustration of the algorithm to find γA1
opt and nA1

c(opt)
of the extension of

PPLS-DA according to version A1 with sγ = 0.1.

6.2.3 Version A2

In version A and version A1, every loading weights vector is calculated with the

same optimal γ. Now, the power parameter γ is optimized for each single com-

ponent resulting in five optimal γ-values γA2
opt = (γA2

opt,1, . . . , γ
A2
opt,5) ∈ [0, 1]5. This is
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illustrated in Figure 6.4. In a first step, a rinner × ( 1
sγ

+ 1) matrix (PE t γi)ti, with
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Figure 6.4: Illustration of the algorithm to find γA2
opt and nA2

c(opt)
of the extension of

PPLS-DA according to version A2 with sγ = 0.1.

t = 1, . . . , rinner, γi = 1, . . . , 1
sγ

+ 1 is achieved with PE entries for each component

separately. For the first loading weights vector, the optimal γ-value is calculated

according to the lowest average PE of all inner test sets based on a one component

model (nc = 1). Next, the optimal γ is determined for the second component in a

two component model with a first component calculated using γA2
opt,1. This means,

γA2
opt,2 is the γ value leading to the minimal mean PE of the inner test sets based on

a two component model using γA2
opt,1 and γA2

opt,2.

The following three loading weights are calculated analogously. Therewith, five op-
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timal γ-values (γA2
opt = (γA2

opt,1, . . . , γ
A2
opt,5) ∈ [0, 1]5) are selected, one for each of the

five components. In a second step, the optimal number of components (nA2
c(opt)

) in an

inner cross-validation of the outer training set with 10 repeats is determined. The

nA2
c(opt)

components are calculated for the outer training set using the correspond-

ing optimal power parameter values of γA2
opt. Finally the PE of the outer test set is

calculated.

6.2.4 Version B

The R-function predict.lda, which is used to predict group memberships for new sam-

ples according to their feature values, yields among other values the posterior proba-

bilities pi,1, pi,2 for the groups ν = 1, 2 for each sample i of the corresponding test set.

A mean squared deviation of these posterior probabilities from the corresponding

dummy vector (yiν is one if sample i belongs to group ν, otherwise yiν is zero) is used

as a new measure for optimization: z = 1
2

∑ntest
i=1 ((pi,1 − yi1)2 + (pi,2 − yi2)2) /ntest,

where ntest is the number of samples of the considered test set. All further steps are

analogous to Version A2, but the optimization problem is to minimize z instead of

the PE to find the optimal power parameter γBopt.

6.3 Results

The results for the simulated data for scenario 1 are based on 100 repeated simula-

tions, and for the experimental data r = 100 different outer training and outer test

sets are sampled. In the following the mean PE values and the corresponding 95%

confidence intervals are calculated for the outer test sets. The optimal number of

components is also calculated as average over the 100 repetitions.

In this Section, the results of PPLS-DA using γmax and the extensions (A, A1, A2

and B) of PPLS-DA are described and compared among each other, followed by a

comparison with the ordinary PLS-DA.
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6.3.1 Results for the simulated data

Choice of optimization settings rinner and sγ

At first more in detail scenario 1 with 1% ISF, a mean group difference of δ =

[0.1, 0.5] and a technical noise of σ2
t = σ2

b (case 3) is considered. This scenario of dif-

ferentially expressed features is chosen with a mean class difference between [0.1, 0.5]

and a large technical noise level, because this is most realistic for experimental data.

The dependency of γ on the optimization of the step size sγ, and on the number of

internal cross-validation steps rinner is shown exemplarily for version A.

Figure 6.5 illustrates the mean PE results for case 3 of scenario 1. Figure 6.5(a)

shows the results for a step size (sγ) of 0.05 plotted against the number of inner

cross-validation steps (rinner) and Figure 6.5(b) shows the corresponding findings

for sγ = 0.1. The straight line at 0.217 depicts the PE of PPLS-DA using γmax

and the corresponding 95% confidence interval. For this case, the influence of rinner

and sγ can be neglected, because all confidence intervals for PPLS-DA using γAopt

overlap. Therefore, all further results of the simulated data are shown with following

parameters of the optimization: sγ = 0.1 and rinner = 50.

PE results for simulated data

Table 6.1 summarizes the PE results for the simulated data and Table A.1 in Ap-

pendix A shows the corresponding 95% confidence intervals. The corresponding

optimal numbers of components are shown in Table 6.2. Only scenario 1 is consid-

ered with 1% ISF, different mean class differences δ and different technical variance

σ2
t ∈ {0, 1

4
σ2
b , σ

2
t }. PPLS-DA using γmax shows significantly larger PEs than PPLS-

DA for all four extensions for the optimization of γ, except for case 4 of scenario 1
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Figure 6.5: Mean PE of PPLS-DA for simulated data using γAopt plotted against rinner
for sγ = 0.1 (a) and sγ = 0.05 (b) .

(with 1% ISF, δ = 0.2 and σ2
t = σ2

b ). Especially for DEGs with δ ∈ [0.1, 0.5], the PE

of PPLS-DA with γAopt is only one-tenth of the PE for PPLS-DA using γmax in the

case without noise, one-fifth for a minor noise level (σ2
t = 1

4
σ2
b ) and still one-third

for a large noise level with σ2
t = σ2

b .

Comparing all extensions among each other, the PEs are equal. Only for case 4 of

scenario 1 with 1% ISF, with the low mean class difference (δ = 0.2), equal PEs are

found for PPLS-DA using γAopt, γ
A1
opt and γA2

opt. And they are significantly lower than

the PE of PPLS-DA using γBopt.

For all simulated data, for all extensions of PPLS-DA it is optimal to use between

1.5 and 3.1 components. While PPLS-DA using γmax leads to optimal numbers of

components between 2.4 and 2.9.

Table 6.1: Mean PE for scenario 1 with 1% ISF for rinner = 50 and sγ=0.1

scenario 1 PE of PPLS-DA with PE of PLS-DA
case σ2

t δ γmax γAopt γA1
opt γA2

opt γBopt γ = 0.5

1 0 [0.1,0.5] 0.097 0.018 0.016 0.017 0.017 0.102 0.102
2 1

4
σ2
b [0.1,0.5] 0.121 0.027 0.028 0.027 0.028 0.134 0.136

3 σ2
b [0.1,0.5] 0.217 0.076 0.075 0.073 0.073 0.234 0.231

4 σ2
b 0.2 0.377 0.326 0.338 0.317 0.403 0.388 0.385

5 σ2
b 0.5 0.059 0.006 0.006 0.006 0.007 0.060 0.059
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Table 6.2: The mean number of components used for simulated data for rinner = 50
and nγ=0.1

simulated data PPLS-DA with PLS-DA
case σ2

t δ γmax γAopt γA1
opt γA2

opt γBopt γ = 0.5

1 0 [0.1,0.5] 2.6 1.85 2 2.1 2.9 2.7 2.7
2 1

4
σ2
b [0.1,0.5] 2.8 2.0 2 2.1 3 2.7 2.9

3 σ2
b [0.1,0.5] 2.9 2.0 2.4 2.6 2.5 2.8 2.9

4 σ2
b 0.2 2.7 2.5 2.6 2.7 2.3 2.7 2.7

5 σ2
b 0.5 2.4 1.7 1.6 1.5 3.1 2.5 2.5

Considering the frequency distributions of the γ-values for γAopt, Figure 6.6(c) shows

the corresponding histograms for case 3 of scenario 1 with 1% ISF. For version A

a modal value of 0.8 is shown. This is in contrast to PPLS-DA using γmax which

delivers values between 0.38 and 0.65 with similar frequencies (Figure 6.6(a)).
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Figure 6.6: Histograms of γmax and γAopt for case 1 of scenario 1.

Figure 6.7 illustrates the dependency of the choice of the optimal power parameter

on the loading weights. For rinner=50 and sγ=0.1 for scenario 1 with 1% ISF and

case 3, the loading weights of the first component with γmax and γAopt are shown.

The first 10 genes, which are simulated as differentially expressed, receive the high-

est absolute loading weight values for PPLS-DA using γmax (Figure 6.7(a)) and γAopt

(Figure 6.7(b)). For γAopt, these loading weights of the informative genes are in-

creasing in absolute values, and especially the non-informative genes receive loading

weight values closer to zero in comparison to the loading weights induced by γmax.
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Figure 6.7: Average loading weights of the first component for scenario 1 with 1%
ISF and σ2

t = σ2
b and δ = [0.1, 0.5] (case 3). Loading weights for the

first component as calculated by PPLS-DA are shown with the power
parameter γmax (a) and γAopt (b) using 50 inner cross-validation steps and
a step size of sγ = 0.1. The basis are the results of 100 choices of the
outer training and outer test set.

Comparing PLS-DA and PPLS-DA using γ = 0.5 or γmax (Table 6.1), equal PEs

are found for all cases of the simulated data. Therewith the extensions show signif-

icantly lower PEs than PLS-DA, except for case 4 and PPLS-DA using γBopt. The

number of components used for PLS-DA is equal to the corresponding number of

components used for PPLS-DA using γmax or γ = 0.5. Considering the number of

components, mostly it is a little larger for PLS-DA than for the extentions, except

for extension B (Table 6.2).

6.3.2 Results for the experimental data sets

Now the results for the experimental data sets are shown which base on a cross-

validation approach (see Section 2.1.2) with r = 100 repetitions of the sampling into

the outer training set and outer test set.
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Influence of rinner

As for the simulated data, first the influence of the step size (sγ) and the number

of inner cross-validation steps (rinner) for the determination of the optimal power

parameter are tested prior to analyzing the experimental datasets.

Figure 6.8 shows the mean PE plotted against rinner and sγ = 0.1 for the Leukemia

data set. Analogous to the simulated data, the 95% confidence intervals for the

PEs of the outer test sets overlap for all considered numbers of rinner, so that again

rinner = 50 is chosen. Because the 95% confidence intervals for the PE for sγ = 0.1

and sγ = 0.05 overlap (data not shown), the step size is set to sγ = 0.1 as for the

simulated data.
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Figure 6.8: Mean PE of PPLS-DA for the Leukemia data using γAopt plotted against
rinner with step size sγ = 0.1.

Influence of the proportion of the inner training set and inner test set

For the proportion of the outer training set on the whole experimental data set,

φX = 0.7 is applied. Therewith the mean PE results of the outer test set base on

the same sample size for all different choices of φXtrain
. As a consequence, any bias

due to different sample sizes of the outer test set is avoided.

For the experimental data sets, the effect of the proportion of the inner training

set and inner test set is studied for the values φXtrain
∈ {0.5, 0.6, 0.7, 0.8, 0.9}. For
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Version A, the effect of the choice of φXtrain
on the outer test set PE is shown

only exemplarily for the Leukemia data set (Figure 6.9), because this method is

most time-consuming compared to the other extensions. For this data set, the 95%

confidence intervals overlap for φXtrain
= 0.5, 0.6, 0.7, 0.8, only for φXtrain

= 0.9 a

significant larger outer test set PE is shown.
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Figure 6.9: Mean PE of PPLS-DA using γAopt with 95% confidence intervals for dif-
ferent φXtrain

values for the Leukemia data set.

The findings for version A1 are shown in Figure 6.10, for different choices of φXtrain

all experimental data sets show no significant differences in the outer test set PEs.

For the Lymphoma data set the outer test set PE varies most for the different

proportions of the inner training set on the outer training set (φXtrain
). Especially

for the Prostate 2 data set, nearly constant PEs are found for different φXtrain
choice.

For version A2 and the Leukemia, Lymphoma, Prostate 1 and Prostate 2 data set,

the influence of φXtrain
is illustrated in Figure 6.11. Also for this version no significant

differences in the outer test set PEs are shown between different choices of φXtrain
.

For version B, Figure 6.12 presented the dependency of the PE for the outer test

set on the choice of φXtrain
for the Prostate 1 data set and the Prostate 2 data set.

Only very few differences are found for the Prostate 1 data set, but they are not

significant. For the Prostate 2 data set, the PE decreases slightly for φXtrain
= 0.7

to φXtrain
= 0.9, but no significant differences are shown.

Summarizing, for the versions A1, A2 and B no significant differences are shown
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Figure 6.10: Mean PE of PPLS-DA using γA1
opt with 95% confidence intervals for

different φXtrain
values for the five experimental data sets.
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Figure 6.11: Mean PE of PPLS-DA using γA2
opt with 95% confidence intervals for

different φXtrain
values for four experimental data sets.

50 60 70 80 90

0.
0

0.
1

0.
2

0.
3

0.
4

Prostate 1

φXtrain

m
ea

n 
pr

ed
ic

tio
n 

er
ro

r

(a)

50 60 70 80 90

0.
0

0.
1

0.
2

0.
3

0.
4

Prostate 2

φXtrain

m
ea

n 
pr

ed
ic

tio
n 

er
ro

r

(b)

Figure 6.12: Mean PE of PPLS-DA using γBopt with 95% confidence intervals for
different φXtrain

values for two experimental data sets.
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regarding the PE of the outer test set for different choices of φXtrain
. Considering

the Leukemia data set, for version A and for values of φXtrain
= 0.5, 0.6, 0.7, 0.8 also

no significant differences are found, but in comparison for φXtrain
= 0.9 a significant

higher PE is shown. Therefore all further results are calculated with φXtrain
= 0.7.

PE results using the parameter rinner = 50, sγ = 0.1 and φXtrain
= 0.7

Table 6.3 contains the mean PE results for all five experimental data sets for all

considered methods, and corresponding 95% confidence intervals are shown in Table

A.2 in Appendix A. For these results, the average numbers of components used are

shown in Table 6.4.

Table 6.3: Mean PE for experimental data with rinner = 50 and nγ=0.1

PE of PPLS-DA using PE of PLS-DA
data set γmax γAopt γA1

opt γA2
opt γBopt γ = 0.5

Leukemia 0.056 0.037 0.034 0.037 0.038 0.028 0.032
Lymphoma 0.044 0.029 0.033 0.034 0.033 0.033 0.029

Breast Cancer 0.346 0.382 0.370 0.372 0.365 0.380 0.374
Prostate 1 0.089 0.084 0.100 0.093 0.106 0.081 0.080
Prostate 2 0.076 0.079 0.078 0.077 0.082 0.213 0.216

Table 6.4: The mean number of components used for the experimental data sets

PPLS-DA using PLS-DA
data set γmax γAopt γA1

opt γA2
opt γBopt γ = 0.5

Leukemia 2.2 2.2 2.3 2.3 3.1 1.8 2.2
Lymphoma 2.5 3.3 3.0 2.9 3.2 2.4 2.8

Breast Cancer 2.4 2.2 1.9 2.6 2.5 2.3 2.4
Prostate 1 2.5 3.4 1.8 3.0 3.1 4.0 4.1
Prostate 2 2.9 3.7 2.9 3.5 3.5 4.2 4.3

Leukemia data set

For this data set, the PE of PPLS-DA using γmax (0.056) is significantly larger than

for the extensions A, A1 and A2 of PPLS-DA with PEs between 0.034 and 0.037.

The PE of PPLS-DA using γBopt is not significantly different to the PE of PPLS-DA
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using γmax. The extensions show no significant differences among each other with

respect to the PE. PPLS-DA using γmax and all extensions use a similar number of

components (in average between 2.2 and 2.3), except for PPLS-DA using γBopt, which

uses more components (in average 3.1). The histogram of γAopt-values is shown in
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Figure 6.13: Histograms of γmax and γAopt for the Leukemia data set. Values of γmax
detected by PPLS-DA for the first component (a) and for all compo-
nents (b). In panel (c) the γ-values are shown, detected for γAopt of
version A for the extension of PPLS-DA.

Figure 6.13(c) with a modal value of 0.5. In comparison, in the histogram of γmax-

values (Figure 6.13 (a) and (b)), there are two accumulations points of γmax-values

for the first component, one around 0.3 and the other around 0.9. The same is true

for most γmax-values of all components.

Comparing the PE results of the extensions to those of PLS-DA, no significant

differences are found. The PE of PPLS-DA using γmax is significantly larger than

the PEs of PPLS-DA using γ = 0.5 and PLS-DA. PPLS-DA with γ = 0.5 uses also

in average the lowest number of components (1.8).

Lymphoma data set

The PE of PPLS-DA using γAopt is significantly lower than the PE of PPLS-DA using

γmax. For all other extensions (A1, A2, B) the PEs are equal to the PE of PPLS-

DA using γmax. The averaged numbers of components used for all extensions are

between 2.9 and 3.3. PPLS-DA with γmax uses in average 2.5 components.
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Considering PLS-DA, the PE is equal to the PEs of all extensions and of PPLS-DA

using γ = 0.5, and also significantly lower than for PPLS-DA using γmax. PPLS-DA

with γ = 0.5 used the smallest average number of components (2.4), which is similar

to the number of components used by PPLS-DA with γmax.

Breast Cancer data set

For this data set, PPLS-DA using γmax and the extensions A1, A2 and B show equal

PEs, in average between 0.346 (PPLS-DA using γmax) and 0.372 (PPLS-DA using

γA2
opt). For extension A the PE is even larger than for PPLS-DA using γmax. The

number of components used is between 1.9 (PPLS-DA using γA1
opt) and 2.6 (PPLS-DA

using γA2
opt).

Also PLS-DA shows a similar PE compared to PPLS-DA using γmax or γ = 0.5 and

to all extensions of PPLS-DA. The same is true for the number of components.

Prostate 1 data set

PPLS-DA using γmax shows nearly an equal PE to PPLS-DA using γAopt, γ
A1
opt and

γA2
opt. For the extension B the PE is even larger than for PPLS-DA using γmax. For all

extensions, the optimal number of components is between 1.8 and 3.4 components

while PPLS-DA using γmax uses 2.5 components. Comparing the histogram of γAopt

and γmax (Figure 6.14), nearly equal modal values are found which fits to the similar

PE results.

Investigating PLS-DA, the PE is equal to the PE of PPLS-DA using γmax or γ = 0.5.

Compared to the PEs of the extensions, PLS-DA has an equal or lower PE. PPLS-

DA using γ = 0.5 and PLS-DA show significantly lower PEs than PPLS-DA using

γA1
opt and γBopt. However PLS-DA and PPLS-DA using γ = 0.5 use the largest average

number of components (4.1 and 4).
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Figure 6.14: Histograms of γmax and γAopt for the Prostate 1 data set.

Prostate 2 data set

The PEs of the extensions of PPLS-DA are all equal to the PE of PPLS-DA using

γmax. Moreover, between 2.9 and 3.7 components are used.

PPLS-DA using γ = 0.5 and PLS-DA show equal PEs, but they are significantly

higher than for PPLS-DA using γmax and for all extensions. Considering the num-

ber of components used, PPLS-DA with γ = 0.5 and PLS-DA use more components

(in average 4.2 and 4.3) in comparison to all extensions, and to PPLS-DA using γmax.

Number of features with non-zero loading weights

Now the number of features which are really used for the calculation of the com-

ponents is considered. Table 6.5 summarizes the mean number of features with a

non-zero loading weight for PPLS-DA using γmax, all proposed extensions of PPLS-

DA, PPLS-DA using γ = 0.5 and PLS-DA. The second column of this table contains

the total number of features (g). Over all data sets, most features have non-zero

loading weights for PLS-DA. For the Leukemia and the Lymphoma data set no

great differences are found in the number of features with non-zero loading weights

between the extensions, PPLS-DA using γ = 0.5 and PLS-DA. For these data sets,

PPLS-DA using γmax leads to between 200 and 300 more features which have no
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influence on the calculation of the components. Considering the Breast Cancer data

set, only PPLS-DA using γ = 0.5 include all 4997 genes for the calculation of the

components and extension A leads to the lowest number of features used (3881).

For the Prostate 1 data set, great differences are shown in the number of used fea-

tures for the calculation of the components between all methods. Version B used in

average only around 842 features of 6033, in contrast PLS-DA and PPLS-DA with

γ = 0.5 use all 6033 features. Also for the Prostate 2 data set with the large total

number of genes (g=42129), in relation to that total number the power parameter

does not lead to a clearly lower number of features with non-zero loading weights.

Table 6.5: The mean number of features with non-zero loading weight

g PPLS-DA using PLS-DA
data set γmax γAopt γA1

opt γA2
opt γBopt γ = 0.5

Leukemia 3571 3266 3535 3533 3496 3533 3571 3571

Lymphoma 7129 6368 6685 6677 6681 6674 6685 6685

Breast Cancer 4997 4483 3881 4738 4879 4095 4997 4497

Prostate 1 6033 5556 5307 1022 3738 842 6033 6033

Prostate 2 42129 41015 41643 40462 42052 41034 42129 41015

6.4 Discussion

Comparison between PPLS-DA using γmax and the extensions

The optimization criterion for the power parameter γmax in the ordinary PPLS-DA

is towards canonical correlation, and does not need to be best for prediction. The

four extensions of PPLS-DA introduced optimize γ with respect to prediction using

an inner cross-validation.

The PEs of the outer test sets for PPLS-DA using γmax are improved or showed

at least equal values by optimizing the power parameter with respect to prediction

using LDA for at least three of the four versions of the extensions, for all simulated

data and the experimental data sets (Table A.1 and Table A.2).
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Simulated data Comparing the histograms of the optimal γ-values found by the

extensions and PPLS-DA using γmax, the reason for the lower PE for the extensions

can be traced back to the down-weighting of the non-informative features for the

simulated data (see Figure 6.6 and Figure 6.7). For the extensions, the loading

weights for these features are near or equal to zero. The influence of the features,

which are not informative for the discrimination (and can be interpreted as noise),

is reduced, because the impact on the calculation of the components is lower for

the extensions than for PPLS-DA using γmax. Values of γ near to one lead to a

preference of features which show a high correlation to the dummy response (in

the simulation study these features are the differentially expressed genes). For the

simulated data, the PEs for all PPLS-DA extensions are very similar, except for the

simulated data with the low mean class difference (case 4: δ = 0.2 and σ2
b = σ2

t ).

Changing the optimization criterion from correlation towards prediction also leads

to a lower average number of components for the simulated data, except for case 1

and case 2 for version B, which uses posterior probabilities of the LDA as objective

function.

Experimental data For the experimental data, the γ-values determined by max-

imization of the canonical correlation (γmax) are larger than the γ−values detected

by the extensions of PPLS-DA. However, even if the analyses of simulated data show

lower PE values for larger choices of γ, for the Leukemia data set and the Lymphoma

data set the extension A shows a significantly lower PE than PPLS-DA using γmax.

For the Leukemia data set also the extensions A1 and A2 lead to significantly lower

PEs.

For the Prostate 1 data set, PPLS-DA using γmax shows a significantly lower PE than

extension B. Extensions A, A1, A2 show equal PEs to those observed for PPLS-DA

using γmax. The PEs of PPLS-DA using γmax and of three out of the four extensions

are equal for the Breast Cancer set (except for extension A). For the Prostate 2
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data set, all PEs of PPLS-DA using γmax and the extensions are equal. Comparing

the optimal power parameters γA1
opt, γ

A2
opt and γBopt among each other for the Prostate

1 and the Prostate 2 data set, the γ-values for the first components are similar, as

expected, but for all further components the optimal γ−values differ much more

than for the Leukemia data set and the Lymphoma data set (data not shown).

Summarizing, the findings for the simulated data are equal for all extensions and

show significantly lower PEs than PPLS-DA using γmax, except for case 4 (∆ = 0.2

and σ2
b = σ2

t ). For the experimental data, the results are also significantly lower or

equal for the extensions considering the PE, except for the Prostate 1 data set for

extension B and the Breast Cancer data set for extension A of PPLS-DA.

Comparing only PPLS-DA using γmax and PPLS-DA with the extensions, for the

experimental data, it can be concluded that the extensions only lead to smaller PEs

than for PPLS-DA using γmax, if the increase of the condition index (see Chapter

4) κk, k = 1 . . . , 5 is weak and the proportion of DEGs is large (Leukemia and Lym-

phoma data sets). This is in contrast to the simulated data. The only explanations

considered are the noise and the dependencies of the features in the experimental

data which could not be adequately simulated.

Note, that the true informative genes for the experimental data are not known, and

the proportion of differentially expressed genes most likely is much larger than for

the simulated data, therefore the comparison of the results for simulated and experi-

mental data is not straightforward. Moreover simply simulating a higher proportion

of DEGs, leads not to similar results (data not shown). The part of reality which

could not be modeled in the simulated data might be a sort of noise or a data struc-

ture that cannot be improved, regardless our choice of γ. If this part of the noise

could be removed from the real data, the relative improvements might be just as

good as with the simulated data.
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Comparison between PPLS-DA using γmax, γ = 0.5 and PLS-DA

The development of PPLS-DA followed the development of PPLS as a natural ex-

tension of the power methodology to handle discrete responses. Several factors

motivated this advancement to PLS-DA. First, the application of powers enables fo-

cusing on fewer explanatory variables in the loading weights, smoothing over some

of the noise in the remaining variables. Second, focus can be shifted between the

correlation and standard deviation parts of the loading weights, which is even more

important for discrete responses. Finally, the maximization criterion is moved from

the between-group variation matrix (B) to the product of the between group varia-

tion matrix and the inverse of the within-group variation matrix (W−1B = T−1B).

This has the effect of moving from covariance maximization to a correlation maxi-

mization.

In our study, PPLS-DA with γ = 0.5 (applying no power parameter) and PLS-DA

show always equal PEs for the simulated and the experimental data sets. Hence,

for this case the different optimization tasks show no great differences with respect

to the PEs of the outer test sets, which can be understood because all data sets are

standardized. Including a power parameter, the PE of PPLS-DA using γmax is equal

to the PE of PLS-DA for all simulated data. However, the number of components

used is in average lower or equal for PPLS-DA using γmax than for PLS-DA.

For two of the five experimental data sets (Leukemia and Lymphoma), the PEs of

PPLS-DA using γmax are significantly higher than the PEs of PLS-DA. For these

data sets, the proportions of differentially expressed genes are large (24.4% and

40.5%) and the genes are only weakly linear dependent (considering the condition

indexes κk, k = 1, . . . , 5 ). Otherwise, for the Prostate 2 data set the PE of PPLS-DA

using γmax is significantly lower than for PLS-DA, and the number of components

used is also in average lower. This data set contains only a low proportion of differ-

entially expressed genes (1.4%), and the total number of genes is very high (42129).

Moreover, for this data set, the genes show a stronger linear dependency (rapid in-
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crease of the condition index) than for the Leukemia or the Lymphoma data set.

Summarizing, data sets with a weak increase of κk, k = 1 . . . , 5 indicate no improve-

ment for the PE when using PPLS-DA using γmax instead of PLS-DA. Concerning

percentage of DEGs, the PE of PPLS-DA using γmax is equal to the PE of PLS-DA

only for a small percentage of DEGs (Breast Cancer data and the simulated data

with scenario 1 with 1% ISF and case 3). For a weak increase of κk, k = 1 . . . , 5 and

a high percentage of DEGs, the PE for PPLS-DA using γmax is even larger than for

PLS-DA (Leukemia and Lymphoma data sets).

A rapid increase of the condition index κk, k = 1 . . . , 5 and a large proportion of

DEGs (Prostate 1), using PPLS-DA with γmax instead of PLS-DA does not improve

the PE. On the contrary, for a rapid increase of the condition index κk and the case

of a small percentage of DEGs (Prostate 2), the PE can be improved by employing

PPLS-DA using γmax instead of PLS-DA.

Comparison between PLS-DA and the extensions of PPLS-DA

Considering the simulated data, the PEs of the extensions A, A1 and A2 are sig-

nificantly lower than the PE of PLS-DA, except for case 4. For the experimental

data, for three of the five data sets (Leukemia, Lymphoma and Breast Cancer), the

PEs of PLS-DA and the extensions of PPLS-DA are equal. The PEs are also equal

for the Prostate 1 data set for PLS-DA and PPLS-DA using γAopt and γA2
opt. The PEs

of PPLS-DA using γA1
opt and γBopt are significantly larger than for PLS-DA, for the

Prostate 1 data set. For the Prostate 2 data set, the PEs of all extensions are clearly

lower than for PLS-DA.

First it is concluded, that equal PEs between PLS-DA and the extensions of PPLS-

DA are caused by a weak between-feature dependence (weak increase of κk), inde-

pendent of the proportion of DEGs. Second, a data set with a strong collinearity

between the features and a low number of DEGs, in contrary shows a clearly lower

PE for the extensions than for PLS-DA.
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Comparison between PPLS-DA using γ = 0.5 and PLS-DA

The PEs for PLS-DA and PPLS-DA using γ = 0.5 are equal for all simulated

and all experimental data sets investigated. Maximization of the covariance or

maximization of the correlation without the power parameter, results in equal PEs

of the outer test set.

Conclusions and Outlook

Data sets with a high proportion of differentially expressed gens and a weak linear

dependency (like the Leukemia data set and the Lymphoma data set) most prob-

ably show good prediction results for PLS-DA. There is no gain using PPLS-DA

with powers (γmax or extensions) here. On the contrary, for a rapid increase of the

condition index, a low proportion of differentially expressed genes and a large total

number of genes, using PPLS-DA with γmax clearly improves the prediction error

compared to PLS-DA. In cases where PPLS-DA using γmax gives no advantages

over PLS-DA, using the extensions of PPLS-DA (optimizing the power parame-

ter) for prediction can be advantageous. One aspect of future work is to validate

these conclusions by additional experimental data sets as well as further simulations

implementing a more complex covariance structure.
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7 Summary and Outlook

The aim of this thesis was to study aspects of classification studies with regard to

biomarker search. Biomarker search has become very important in the last years.

Especially in cancer research the hope is to identify promising molecular biomarkers

based on gene expression and metabolite concentration. It is an important task to

choose the right design, here a distinction was made between single sample design

and pooling design. Also the application of statistical learning methods towards

biomarker search is a major challenge. These areas are reflected in the three parts

of this thesis.

In the first part, an example of biomarker search is given in the context of tuber-

culosis to demonstrate the course of identification of a biomarker (Chapter 3). The

goal is to identify a biomarker which enables the classification between metabolites

profiles of tuberculosis patients and persons infected but still healthy. Comparing

different classification methods by their PEs on the metabolite data set, the method

RF shows the lowest PE and is therefore chosen for analyzing the importance of the

metabolites for the classification. In detail, the mean decrease accuracy, a variable

importance value of RF, is used to order all metabolites in a ranking list. Taking

a cross-validation approach, a biomarker is determined containing 19 metabolites.

To check the resulting biomarker with an other method, the classification method

with the second lowest PE, PPLS-DA, is also used to determine a biomarker. The

result is a biomarker containing only 8 metabolites. The PEs achieved with both
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biomarkers are similar, even so PPLS-DA needs less than half of the features. More-

over the biomarker detected by PPLS-DA is a subset of the biomarker detected by

RF. The specialness of the proposed approach is, that the influence of the mixture

of the training set is taken into account. The variable importance values are calcu-

lated for different samples of the inner training set, and then the mean value of each

importance value is used to create the final ranking list. In the case of this data set,

RF and especially PPLS-DA turn out to be very promising for successful biomarker

search with respect to a low PE and a small cardinality of the biomarker. In a next

step the biomarker needs to be verified with independently measured new samples.

One main aspect of biomarker search is the design choice. This essential decision for

the experiment is discussed in detail in the second part of Chapter 5. Here the con-

sequences of pooling for classification studies are investigated. In practice biologists

or medical doctors often apply pooled samples, because of financial restrictions or

insufficient amount of cDNA for a single sample hybridization. The consequences

of pooling designs are always presented in comparison to a single sample design for

simulated data and experimental data which are artificially pooled. In this work it

is distinguished between feature patterns, for which the convex hull of one group is

not a cover of the other group (pattern type I) and feature patterns for which it is a

cover (pattern type II). The influence of a pooling design depends on the underly-

ing data structure, the pool size and the classification method used. For simulated

data with pattern type I, such as differentially expressed genes, PLS-DA and espe-

cially PPLS-DA are most robust against pooling with respect to the PE and the

set of important features. In contrast for patterns of type II, presented in form of

a threshold pattern, pooling leads to clearly higher PEs especially for a larger pool

size. Moreover the intersection of important features sets for a single sample design

and a pooling design contains only a few features. That means in pooling designs

features forming a threshold are difficult to identify as a biomarker. The method

RF shows the best results for pattern type II, but overall a strong dependence from
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the pool size is visible.

Additionally experimental data are artificially pooled and the PEs of classification

methods are used to decide which classification method is most robust against pool-

ing. For the four experimental data sets investigated the lowest pooling effect on

the PE is found using PPLS-DA and PLS-DA.

As recommendation for praxis, a single sample design should be preferred for biomarker

search like suggested in the literature. If pooling cannot be avoided, pool sizes as

small as possible should be chosen and the statistical learning methods PPLS-DA

or RF should be considered first for the detection of biomarkers.

A main point of future work is to analyze experiments where (both) single sample

and pooled sample data are available from the same objects. Such an analysis was

unfortunately not possible because no suitable experimental data for this compari-

son have been found.

In Chapter 3 it turns out, that PPLS-DA delivers a biomarker for the discrimina-

tion of tuberculosis patients and infected but healthy persons with a few features.

Further in Chapter 5 this method shows the lowest pooling effect, considering sim-

ulated and experimental data sets. Therefore PPLS-DA is refined to improve the

prediction accuracy in a third part of this thesis (Chapter 6). A wrapper approach is

proposed in four different versions to include the classification method LDA into the

optimization of the power parameter γ. For simulated data a great improvement of

the PE is achieved with the extensions. For the experimental data sets investigated,

the reduction of the PE also succeeded, but not for all data sets and the differences

are smaller. A R-package including the extensions of PPLS-DA is in work.

In this thesis only the method LDA is applied as final classification method. Of

course other classification methods can be used, like SVM. The extensions can also

be adapted for PPLS for regression, only the objective function has to be changed

for example towards minimizing the root mean square error. Moreover the presented
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four extensions of PPLS-DA can be used as starting point of further modifications

of this method. For example, the optimization problem can be changed to further

reduce the influence of features without information for the discrimination between

the groups. One possibility is to add a cut-off value, that means that absolute load-

ing weights smaller than this value are set to zero. Hence features with a small

absolute loading weight which can be considered as noise, have no longer impact

on the components. Another direction for further improvement is the modification

of the measure of variable importance. In this thesis the absolute loading weight

value is used exclusively as variable importance measure for PPLS-DA using γmax.

If instead as variable importance measure the absolute loading weight value aver-

aged over the components and weighted with the coefficients b of the LDA is used,

no improvement can be achieved (data not shown). However for PPLS-DA with

the optimization of the power parameter with respect to prediction, this approach

might improve the results.

PPLS-DA is a linear feature extraction technique, therefore pattern in form of a

threshold pattern cannot be identified for the discrimination of the groups. To en-

able also the detection of this kind of pattern, applying first a kernel trick can be a

solution. In the whole thesis only two-group classification problems are discussed.

However the investigations can be extended to more than two groups. Of course

the pattern types considered for the choice of the experimental design can also be

formulated for three groups and similar conclusions are expected. The extensions

of PPLS-DA can also be used in this case, because PPLS-DA and LDA work for

more than two groups. Only the number of components considered in the extended

versions of PPLS-DA should be increased, for an increasing number of groups.

Further metabolite data and mainly microarray data are investigated. However in

the last years, sequencing of DNA molecules (the sequence of the nucleotide bases

are determined), becomes more and more popular. This kind of method has several

advantages, but until now it is very expensive and microarray analysis is still an

alternative method with similar performance. It remains for further work to check



153

if for sequencing data also the use of RF and PPLS-DA is advantageous.

Moreover for specialized questions of prediction, it can be advantageous to split the

prediction error into two measures. Considering a classification between infected

and non-infected persons, then a measure accounts for both the infected patients

classified as non-infected (false negative rate) and non-infected persons declared as

infected (false positive rate). Also other more detailed measures like sensitivity (true

positive rate) and specificity (true negative rate) can be applied. Then it can be

checked if among the new prediction measures the methods, RF and PPLS-DA, are

still preferable.

In this thesis three aspects of biomarker search are considered to point out the

importance of statistical approaches in this research area. The presented results

suggest the two classification methods, PPLS-DA and RF as promising for biomarker

search.
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Additional Figures
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Figure A.1: Illustration of scenario 3 (two linear dependent features) before pooling
and after pooling.
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Figure A.2: Illustration of scenario 4 (circle pattern) before pooling and after pool-
ing.
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Comments on the circle pattern

In this section, abs(a) is define as the absolute value of the real number a. The

distribution function of Xk = r · cos(ϕ) + ε for r > 0 is calculated. Let ϕ be

randomly chosen according to the uniform distribution from the interval [−π, π].

Therewith the density of ϕ is fϕ(φ) = 1/2π if −π ≤ φ ≤ π and zero otherwise.

First the gene k is considered. Because Xk is the sum of independent random

variables, first the density of r · cos(ϕ) := Y is calculated.

P (Y ≤ y0) = P (r · cos(ϕ) ≤ y0)

= P (cos(ϕ) ≤ y0

r
).

Three cases exist: 1) y0 ≥ r ⇒ P (Y ≤ y0) = 1. 2)y0 < −r ⇒ P (Y ≤ y0) = 0 and

3) else. For case 3) it can be calculated with r > 0 and with respect to properties
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of the cosine function:

P (Y ≤ y0) = P (cos(ϕ) ≤ y0

r
)

= P (abs(ϕ) ≥ arccos
y0

r
)

= 1− P (abs(ϕ) ≤ arccos
y0

r
)

= 1−
2arccos

y0
r

2π

= 1−
arccosy0

r

π
.

Thus as density in case 3) we get

∂

∂y0

(P (Y ≤ y0)) =
1

π

1√
r2 − y2

0

.

For case 1) and 2) the density is zero. The expectation is zero because the function

is symmetric. As variance it is received

V (Y ) =
1

π

∫ r

−r
y2

0

1√
r2 − y2

0

dy0

=
1

π
(−
∫ r

−r
y0

y0√
r2 − y2

0

dy0)

=
1

π
[− (y0

√
r2 − y2

0)︸ ︷︷ ︸
=0

+

∫ r

−r

√
r2 − y2

0dy0)]

=
1

π

∫ r

−r

√
r2 − y2

0dy0)

=
r2

2
.

Therefore the variance of Xk = r ·cos(ϕ)+ε is V (Xk) = r2

2
+0.004. Hence, for group

A the variance is 0.12/2 + 0.004 = 0.0054 and for group B 0.252/2 + 0.004 = 0.0316.

Analogously the variance and the mean value for gene l can be calculated.
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C List of Abbreviations and

Notations

M set, containing the features building a biomarker

|I| cardinality of a set I

X n× g data matrix with n objects and g features

xk kth column vector of X

G set containing all group labels

y response vector, containing the group memberships

nν sample size of group ν

πν prior probability of group ν

Y dummy matrix of group memberships (according to y)

{Xtrain,ytrain} training set

{Xtest,ytest} test set

ntrain number of objects of the training set

ntest number of objects of the test set

φX ratio of ntrain on n

φXtrain
ratio of the number of objects for the inner training set on ntrain

r number of cross-validation steps of the whole data set

rinner number of inner cross-validation steps of the training set

sd standard deviation

PE(s) prediction error(s)

LDA linear discriminant analysis
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t-LDA LDA with ten filtered features according to the t-test as predictors

pν(x) probability for an object (determined by x) belonging to group ν

µ(ν) mean value of group ν

Σν variance of group ν

δν linear discriminant function for group ν

RF random forest

OOB out-of-bag

mtry number of features to choose at each node to built a decision tree in RF

ntree number of tress in a RF

SVM Support vector machine

ξi ith slack variable

C cost constant

SVML support vector machines with linear kernel

τ tuning constant of the radial basis function

SVMR support vector machines with radial kernel

PCA principal component analysis

PLS partial least squares

X{i} ith residuum of X

nc number of components

PLS1 PLS with a vector as response

PLS2 PLS with a matrix as response

PLS-DA partial least squares discriminant analysis

B between-group covariance matrix

T total sum of squares and cross product matrix

w loading weight vector

t score vector

q loading vector

FCDA Fishers canonical discriminant analysis

Π diagonal matrix of prior probabilities of the group
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diag({a1, . . . , al}) diagonal matrix with a1, . . . , al as diagonal elements

PPLS-DA power partial least squares discriminant analysis

corr correlation

γ power parameter

nc(opt) optimal number of components

var variance

µ(ν)k mean of group ν for feature k

CCA canonical correlation analysis

MDA mean decrease accuracy

TB tuberculosis

TST tuberculin skin test

TST+ TST positive

TST− TST negative

κk condition index

cov covariance

uik gene expression of gene k for sample i on the original-scale

σb biological variance

σt technical variance

ntotal total number of available single samples

Xik gene expression of gene k for sample i on the log-scale

δ mean class difference

Xik(ν) gene expression of gene k for sample i on the log-scale for group ν

ISF informative simulated feature(s)

sin sinus

cos cosine

DEGs differentially expressed genes

NDEGs number of differentially expressed genes

nS number of samples used for the single sample arrays

nSP number of samples used for the pools
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aS number of arrays for the single sample design

aP number of arrays for the pools

atotal total number of arrays which can be financed

uik(b) gene expression of gene k for sample i on the original-scale without technical variation

upjk gene expression of gene k for pool pj on the original-scale

µk mean gene expression level of gene k

ωi proportion of the i−th sample in a pool

D
sim

informative simulated features

D
M

mp
important features for classification using method M in a design with

pool size mp

I
M

1
= D

M

1
∩D

M

sim

I
M

1:mp
= I

M

1
∩D

M

mp
for method M important informative simulated features

which coincide in the single sample design and in a design with pool size mp

γAopt optimal power parameter of version A, respectively for version A1, A2,B

nAcopt optimal number of components for version A, respectively for version A1, A2,B

sγ step size for equidistant fixed values in [0,1]

abs(a) absolute value of the real number a
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Wapnik und Tschervonenkis, Theorie der Mustererkennung, 1979).

Vapnik, V. (1979). Estimation of dependences based on empirical data [in russian].

Nauka (English translation Springer Verlag, 1982).

Vapnik, V. (1995). The Nature of Statistical Learning Theory . Springer, New York,.

Weiner, J., Padrida, S. K., Maertzdorf, J., Black, G. F., Repsilber, D., Telaar, A.,

Robert, P. M., Arndt-Sullivan, C., Ganoza, C. A., Faé, K. C., Walzl, G., and
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