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Abstract

The careful consideration of blood vessels and the complete removal of the
tumor are essential in oncological liver surgery to preserve healthy liver tissue
and to minimize the probability for recurrent tumors. The enormous improve-
ments in medical imaging over the last 20 years enable an accurate computer
assisted 3D planning of the surgical intervention. The accurate transfer of
the preoperative plan to the patient on the operating table is not trivial as
the liver deforms due to intraoperative bedding and mobilization of the or-
gan. Intraoperative 3D ultrasound is a possibility to capture the current shape
and position of the liver during a surgical intervention. In the 3D ultrasound
volume a navigation system shows the accurate position of the surgical instru-
ment and its spatial relation to the vessels and the tumor.

The key problem for the transfer of the surgical plan is the compensation
of the deformations between preoperative images resp. planning models and
the intraoperative ultrasound data. Such problems have not yet been solved
satisfactory. The image processing technique to compensate this is called non-
rigid registration. Non-rigid registration is also needed for the postoperative
control based on a comparison between pre- and postoperative images.

The principle di�culty of non-rigid registration is the vast number of the-
oretically possible non-rigid transformations, of which only a small subset
compensates the present anatomical deformations. The fundamental hypoth-
esis, pursued by this thesis, is that the incorporation of a priori knowledge
about the image contents or about application-specific transformation prop-
erties significantly reduces the number of admissible transformations. We de-
velop a new distance measure which considers the tube-like shapes of vessels
by specific local filters, which give high responses, if the preoperative vessel
models fit the appearance of vessels at the same position in the intraopera-
tive image. A priori knowledge about anatomical corresponding landmarks
is a direct restriction on the transformation. An important property, which
sets our method apart from previous work, is that anisotropic tolerances to
compensate landmark localization uncertainties are consequently integrated
into pure landmark schemes as well as into schemes combining intensity and
landmark information. The developed registration methods are validated on
clinical image data by a new reference standard.
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Zusammenfassung

In der onkologischen Leberchirurgie sind die genaue Beachtung der Blut-
gefäße und die vollständige Entfernung des Tumors essentiell, um gesundes
Lebergewebe zu erhalten und die Wahrscheinlichkeit einer erneuten Tumor-
bildung zu minimieren. Die enormen Verbesserungen der medizinschen Bildge-
bung in den letzten 20 Jahren ermöglichen eine genaue computerassistierte 3D
Planung chirurgischer Eingri↵e. Die genaue Übertragung des präoperativen
Plans auf den Patienten im Operationssaal ist nicht trivial, da sich die Leber
bei der intraoperativen Lagerung und Mobilisierung deformiert. Intraopera-
tiver 3D Ultraschall ist eine Möglichkeit während des chirurgischen Eingri↵s
die aktuelle Form und Lage der Leber zu erfassen. Im 3D Ultraschallvolumen
zeigt ein Navigationssystem die genaue Lage eines chirurgischen Instruments
und dessen räumliche Beziehung zu den Gefäßen und dem Tumor.

Das Hauptproblem bei der Übertragung des chirurgischen Plans ist der
Ausgleich der Deformationen zwischen den präoperativen Bilddaten bzw. Pla-
nungsmodellen und den intraoperativen Ultraschalldaten, der als nicht-rigide
Registrierung bezeichnet wird. Dieses Problem wurde noch nicht zufrieden-
stellend gelöst. Für den Vergleich von prä- und postoperativen Bilddaten zur
postoperativen Kontrolle wird ebenfalls nicht-rigide Registrierung benötigt.

Die Schwierigkeit bei der Registrierung ist die riesige Zahl theoretisch mög-
licher nicht-rigider Transformationen, von denen nur wenige die anatomis-
chen Deformationen abbilden. Die grundlegende Idee dieser Arbeit ist, dass
durch die Einbindung von a priori Wissen über Bildinhalte oder Transforma-
tionseigenschaften die Anzahl von zulässigen Transformationen deutlich re-
duziert wird. Wir entwickeln ein neues Distanzmaß, das die Röhrenform von
Gefäßen durch lokale Filter berücksichtigt, die hohe Antworten geben, wenn
das präoperative Gefäßmodell zu den abgebildeten Gefäßen im intraoperativen
Bild passt. A priori Wissen in Form von anatomisch korrespondierenden Land-
marken stellt eine direkte Restriktion der Transformation dar. In unserem
Ansatz integrieren wir konsequent anisotrope Toleranzen für die Berücksich-
tigung von Lokalisierungsungenauigkeiten und zwar sowohl in reinen Land-
markenverfahren, als auch in Verfahren, die Intensitäts- und Landmarkenin-
formationen kombinieren. Die entwickelten Registrierungsverfahren werden
mit einem neuen Referenzstandard auf klinischen Bilddaten validiert.
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Lübeck. Very special thanks go to Dr. Nils Papenberg for the same reasons
and additionally for many explanations to the Lübecker image registration
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Chapter 1

Introduction

1.1 A Whole Greater Than the Sum of Its Parts

The enormous technical advances in medical imaging in recent years o↵er
improved diagnostics as well as precise and less invasive therapies for many
diseases. In particular regional cancer therapies like interventional radiother-
apy, radiofrequency thermal ablation, regional thermotherapy, and last but
not least surgical strategies benefit strongly from exact 3D medical images of
the individual anatomy, physiology and pathology of patients.

Based on those images 3D models of the relevant parts of the anatomy and
the tumor might be generated to support the therapy planning and decision.
Often simulations computed on those models such as temperature or radiation
dose distribution are an essential part of therapy planning. In surgery gen-
tle access paths and the impact resp. risk of di↵erent surgical strategies can
be analyzed and planned before the intervention using 3D models. In neuro-
surgery for example a careful consideration of structures traversed to reach a
target is required to avoid neurological deficits. In liver surgery the postoper-
ative blood supply and drainage of liver tissue depending on a planned tumor
removal can be determined in advance.

Besides this preoperative planning process the use of medical images as a
road-map for intraoperative localization of tumors and anatomical structures
at risk is nowadays an import and sometimes irreplaceable aid for the surgeon
or interventional radiologist. Such high-precision intraoperative navigation
systems would not have been possible without the increasing resolution, qual-
ity and acquisition speed of modern imaging devices.

With the increasing number of available medical images before, during and
after therapies the request and need of comparing and combining di↵erent im-
ages rises. The additional information gained by the combination of images
from di↵erent sources (imaging modalities) or from the quantitative compar-
ison of images from di↵erent points in time is often an important benefit for
diagnostics, therapy planning and intervention implementation.
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1. Introduction

Often structures or physiological e↵ects are only recognizable in one of the
modalities and vice versa. Prominent examples are the combination of Com-
puted Tomography (CT) and Positron Emission Tomography (PET) or CT
and Magnetic Resonance Imaging (MRI). For example, the high contrast of
bones in CT and the excellent representation of soft tissue in MRI are com-
bined for neurosurgical intervention planning and navigation to get a more
comprehensive understanding of the patient’s anatomy.

Next to these combinations of preoperative modalities for better treatment
planning the transfer of preoperative onto intraoperative images is also an
important issue for the guidance of the surgeon. The acquisition of images
during intervention is often indispensable due to tissue deformations like the
brain shift e↵ect in neurosurgery. As those intraoperative images are in general
of lower quality (e.g., 3D ultrasound) a transfer of high quality preoperative
images usually increases the information content for the surgeon significantly.
In addition surgery plans prepared on preoperative images can be combined
with intraoperative images.

To control the success of an intervention a quantitative comparison of pre-
and postoperative image data o↵ers a detailed evaluation method. Which
parts of an organ have exactly been removed? Has the preoperative plan been
implemented? And on a more general level does the use of a navigation system
improve the implementation of a preoperative plan?

For the combination and quantitative comparison of di↵erent medical im-
ages it is important to know exactly which point in one image corresponds to
which point in the other image. Each imaging device has its own coordinate
system and the positioning of the patient can not generally be reproduced
exactly. Even during an imaging session patients often move or at least parts
of the organs and tissue move due to respiration and heartbeat. Soft tissue
of organs like the liver usually deforms between di↵erent image acquisitions.
After surgery even whole parts of the anatomy are missing. To compensate
the movements and deformations mathematical algorithms have been devel-
oped to compute a transformation which maps each image point of one image
to its anatomically corresponding point in the other image. This process is
called image registration. Using the transformation the information content
of both images can be fused into one single image usually leading to an added
value as mentioned above. So, since two images are better than one, but one
combined image is even better than two solitary images, the whole is greater
than the sum of its parts.
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1.2 The Art of Applying Image Registration Methods to
Clinical Problems

Although for rigid structures like bones registration algorithms have been suc-
cessfully developed and validated the image registration of non-rigid structures
like liver tissue is still a challenge and an active field of research. The heart of
an image registration algorithm independently of rigid or non-rigid structures
is always a suitable distance measure, which measures the di↵erences of two
images. The hope is, that the transformation, which minimizes the distance
measure is the same transformation, which maps corresponding anatomical
points. As the number of theoretically possible non-rigid transformations is
huge transformations exist, which might minimize the distance measure, but
which do not describe plausible movements or deformations of human organs.
In image regions with no or weak image structures the distance measure might
not change for very di↵erent transformations resp. is driven mainly by image
noise. To get plausible transformations either a subset of transformations is
explicitly defined via parameterization or a regularizer is added to the distance
measure, which penalizes implausible transformations. This second approach
is also called non-parametric in contrast to parametric image registration.
Both approaches will be used in this work but for di↵erent tasks.

In summary the general non-rigid image registration problem can be mo-
deled as the minimization of a functional consisting of the weighted sum of
a distance measure, which measures the image di↵erences and a regularizer,
which usually penalizes non-smooth transformations. This general variational
non-parametric image registration framework has to be adapted to the image
classes used in a given medical application. There is no algorithm for all types
of medical image registration problems. However the distance measures and
assumptions on the transformations are usually quite general. In clinical data
sets a wide variety of image quality and image content occurs even for the
same modality. The image quality is degraded by noise and artifacts depend-
ing on the imaging modality. The imaging characteristics vary significantly
between di↵erent modalities, i.e. the same anatomy is mapped di↵erently to
the acquired images. This means the appearance of an anatomical structure
di↵ers. In particular the noise, artifacts and imaging characteristics of ultra-
sound techniques (sonography) are very challenging for medical image pro-
cessing procedures. Customized distance measures, which consider imaging
characteristics, are one way of coping with the challenges of di↵erent medical
modalities, especially with those of ultrasound imaging.

The consideration of the image content is also an important aspect for
the choice of a distance measure and a starting point for the development
of new measures. For example, if a characteristic geometry dominates the
image content like tubular vessels structures in the liver, a distance measure
emphasizing this geometry might lead to better and more robust registration

3



1. Introduction

results. Regarding registration of preoperative to intraoperative images there
might even be particular information available about the individual geometry
of anatomical structures of a specific patient, like the radii of vessels. Although
the use of a priori knowledge is a major direction of current research e↵orts
in non-rigid registration there are only very few approaches, which try to
incorporate a priori knowledge about the general or specific geometry of image
contents into the distance measure.

In addition to adapted distance measures another general possibility to in-
clude a priori knowledge is to define additional restrictions for the class of
transformations. The regularizer just penalizes non-smooth transformations,
but does not rule them out explicitly nor does it guarantee wanted properties
like volume preservation or local rigidity. For this purpose the variational
registration framework can be extended by adding penalizers or constraints to
restrict the possible transformations to a plausible class of transformations for
a given medical application. Again general as well as individual a priori know-
ledge about an image pair might be incorporated into the framework. Volume
preservation in the whole image domain is an example for general knowledge
and a given set of point correspondences or other geometric features an ex-
ample for individual knowledge about the image contents. If a set of point
correspondences is interactively or automatically provided, it means that at
certain points the transformation is already given. However, the correct detec-
tion and accurate localization of those features directly influences the accuracy
of the whole registration process. On the one hand intuitive tools and semi-
automatic support might help to detect and locate features accurately, on the
other hand a certain amount of localization uncertainty will always remain. In
many cases the uncertainty can be estimated and considered in the registra-
tion process. A few approaches incorporating the localization uncertainty of
point features have been published, but a systematic overview and assessment
of the used methods, as well as some consequent further developments are still
missing.

To summarize: the adaptation of a registration process to a specific medical
application can encompass the incorporation of geometric features into the
distance measure or explicit constraints on the transformation e.g., by given
point correspondences.

A major di�culty in the development of non-rigid registration approaches
is the determination of the accuracy of the registration results. A couple of
methods have been introduced, but up to now their is no generally accepted
gold standard.

1.3 Outline and Contributions

The thesis is split into three major parts: part I explains the used image
registration framework and its general solution; part II presents the main

4



1.3. Outline and Contributions

theoretical contributions of the thesis: the incorporation of geometrical fea-
tures into distance measures and explicit constraints on the transformations;
part III contains the application of the developed mathematical registration
techniques to computer assisted liver surgery and their evaluation.

Chapter 2 starts with a motivating introduction into computer assisted
surgery for the removal of tumors from the liver. Those removals are called
oncological liver resections. We will explain the anatomical and surgical back-
ground, the computer assistance for planning and implementation of surgical
interventions, and the necessary fundamentals of the involved medical imaging
modalities: computed tomography (CT) and 3D ultrasound (3D US).

Chapters 3 through 7 form Part I – Variational Image Registration. In
Chapter 3 the image registration problem is formalized as a variational opti-
mization problem. The defined registration functional is optimized by chang-
ing the continuous displacement function, which transforms a template image
to a reference image. A general solution for this continuous optimization
problem is the transformation to a finite dimensional optimization problem
by discretization (discretize-then-optimize approach). The discretization of
the images and the displacement field as well as multiscale and multiresolu-
tion strategies for fast and robust numerical solutions of the finite-dimensional
optimization problem are described in Chapter 4. Some basics and general
algorithms for optimization of finite dimensional problems are presented in
Chapter 5. An algorithm for constrained optimization is also included to
solve registration problems with a priori knowledge formulated as constraints.

There are two general approaches to restrict arbitrary transformations to
plausible classes of transformations. The first is presented in Chapter 6; it
uses regularization of the registration functional. This nonparametric frame-
work is very flexible and additional constraints can easily be incorporated.
The main ideas of the discretization and numerical solution of this framework
are described. The second approach to get plausible and smooth transforma-
tions is to define the class of transformations explicitly by a parameterization
described in Chapter 7. An important class of parametric transformations
are rigid and a�ne transformations. But there are also di↵erent spline based
schemes with higher degrees of freedom for non-rigid registration.

Chapters 8 through 12 make up Part II – Modeling Prior Knowledge in
Image Registration. In Chapter 8 general and specific distance measures are
reviewed. New distance measures are developed in Chapter 9 to incorporate
a priori knowledge about the shape of anatomical structures into the dis-
tance functionals. The measures are based on a geometric modeling of the
anatomical structures. The focus is on tube-like structures like vessels as we
have the registration of models from preoperative CT data to intraoperative
3D ultrasound images of the liver with its rich vasculature in mind. The
main question is how geometrical models can be compared with structures
contained in intensity data? The development and discussion of customized
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1. Introduction

distance measures which consider geometrical features is a novel contribution
to the field of non-rigid registration.

Chapter 10 gives an overview how constraints on the deformation field can
be incorporated into a variational registration framework. General approaches
using penalizers on the registration functional or explicit equality and inequal-
ity constraints are distinguished. In the following Chapter 11 a systematic
overview on parametric registration approaches based on corresponding point
landmarks is given. How can the landmark positions be weighted accord-
ing to their localization uncertainties, which solutions and new derivations
exist? In particular, we develop new schemes in this chapter which incorpo-
rate anisotropic localization uncertainties, as they occur in our liver surgery
applications.

If only information about corresponding landmarks are considered in the
registration process, a large amount of information provided by the intensities
of the images is not used. The combination of landmark and intensity infor-
mation in the nonparametric registration framework is a promising approach
and presented in Chapter 12. The consideration of landmark localization un-
certainties is a central topic of this chapter. The formulation as an inequality
constrained optimization problem is a new contribution to the field of non-
rigid registration in particular for anisotropic localization uncertainties.

Most of the contents of Part III – Applications to Liver Surgery (Chapters 13
through 15) have been published by the author and co-workers in di↵erent
peer-reviewed conference proceedings and journals (see citations below). Also
the new registration methods introduced in Part II have been described in
these publications.

The application part of the thesis starts in Chapter 13 with the challenging
problem of quantitative accuracy assessment of non-rigid registration results.
Only few papers address this issue for non-rigid registration. Here we give a
systematic overview on registration accuracy assessment in general and accu-
racy determination methods for non-rigid problems in particular. We intro-
duce a few new methods, which are suitable to our applications. The backbone
of the new methods are dense corresponding point sets defined on anatomi-
cal structures of real clinical image data in particular vessels [120]. Based on
these reference point sets we define accuracy metrics, which partly take into
account the inaccuracies involved in the point set determination.

In computer assisted liver surgery we are faced with di↵erent kinds of regis-
tration problems. It starts with the preoperative planning of liver resections,
where di↵erent phases of contrast agent enhancement have to be registered to
combine liver arteries, portal veins and hepatic veins into one precise 3D liver
model. We have investigated the non-rigidity of the transformation between
di↵erent phases [124, 125] but this is not part of this thesis.

After the resection planning the preoperative image and planning data have
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to be transferred to the patient in the OR via intraoperative 3D ultrasound
data. Due to deformations of the liver between pre- and intraoperative image
acquisition a non-rigid registration scheme is needed. This second registration
problem is asymmetric in a sense that preoperatively 3D geometrical models
of the liver surface, the vessels and tumors are available in addition to the
CT data. The challenge is the quality of the ultrasound data and the narrow
time window of approximately 10 minutes (the fewer the better) in the OR.
In Chapter 14 the performance of the new distance measures [119, 118] de-
fined in Chapter 9 and the new combined landmark and intensity registration
schemes [171, 122, 168, 172, 121, 123] introduced in Chapter 12 are analyzed.
The resulting accuracy is determined on clinical data sets using the newly
developed accuracy assessment methods explained in Chapter 13.

A third registration problem occurs, if an electromagnetic tracking system is
used to realize motions and deformations of the liver during the actual resec-
tion. Parametric landmark schemes incorporating localization uncertainties
as well as directional information provided by the electromagnetic tracking
system can be chosen to solve this problem. While schemes which consider
localization uncertainties are part of Chapter 11, the incorporation of direc-
tional information is not covered. No explicit section in the application part of
the thesis covers registration problems arising from electromagnetic navigation
systems.

The qualitative and quantitative comparison of pre- and postoperative im-
age data is an important possibility to validate computer assisted surgical
procedures [12]. Due to deformations after surgery caused be the removal
of tissue a non-rigid registration scheme is a prerequisite for a precise com-
parison. This fourth registration task is tackled in Chapter 15 by interac-
tive landmark-based schemes, which incorporate a priori knowledge about
the anatomical structures to be registered. In addition to using point land-
marks at vessel branchings, we introduce quasi landmarks at vessel segments
with anisotropic localization accuracy [126, 127] as described in Chapter ref-
sec:ParametricLandmarkRegistration. These quasi landmarks help to reduce
interaction time and improve accuracy. The accuracy of this challenging task
due to missing anatomical structures is investigated on clinical data sets.
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Chapter 2

Computer Assisted Liver Surgery

Liver surgery comprises various operations of the liver for di↵erent disorders.
The most common operation performed on the liver is a resection (removal of
a portion of the liver). The reason for a liver resection is usually the removal
of a malignant tumor, but also resections are performed on people willing to
donate a part of their liver to a person in need of a liver transplant. Although
living donor liver transplantations can benefit from computer assistance too
we will focus only on oncological resections here.

We will start with some facts about liver cancer, liver anatomy and possi-
ble therapies, before turning to medical imaging of the liver as the basis of
computer assisted planning and intraoperative navigation systems, which will
be covered in the last two sections.

2.1 Liver Cancer and Therapies

Liver tumors either originate in the liver (primary liver cancer) or develop
in another organ and spread into the liver (metastatic liver cancer). Hep-
atocellular carcinomas (HCC) are the most common form of primary liver
cancer, but the majority of liver lesions are metastases coming from the lung,
breast, colon, pancreas, or stomach, with the colon being the major origin
among them. Often multiple metastases are detected. The liver with its
capillary vessels is a blood filter and thus is relatively frequently a↵ected by
metastasis in particular for primary tumors in stomach, pancreas, colon and
rectum, which are connected to the liver via the portal vein system. Up to
50% of the patients with a colorectal carcinoma are developing liver metasta-
sis. Colorectal cancer is the second most common cancer site for men as well
as for women. The number of new cases (incidence) per year in Germany is
about 37,000 for men and 36,000 for women. Colorectal carcinoma are the
second leading cause of cancer-related death for both men and women in Ger-
many [232]. This means about 18,000 patients died due to colorectal cancer in
2007 in Germany. These are 2.2% of all deaths according to the “Statistisches
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Bundesamt Deutschland” – Federal Statistical O�ce Germany.

The treatment of liver cancer depends on the size, location, number and
type of the lesions or the primary tumor. Obviously there is a phase in the
development of liver related cancer where the location of metastases is limited
to the liver and no extrahepatic metastases can be detected. In this phase local
therapy principles – surgical as well as non-surgical – are e↵ective. That means
an accurate staging based on adequate imaging methods, surgical exploration
or biopsies is an important prerequisite for choosing the best therapy option.
Surgical resection is the gold standard for the treatment of liver metastases
with an achievable five years survival rate of 30% [204]. In the last decades
hepatic resection has improved to a safe and e�cient procedure due to re-
finement in diagnostic, anesthetic and operative techniques, like better tissue
dissection technologies. As modern cancer therapy is multidisciplinary usually
additional chemotherapy and/or radiation therapy is applied to either reduce
the number of tumor cells before surgery (adjuvant therapy) or to reduce the
risk of recurrent tumors after surgery (neoadjuvant therapy).

For the majority of patients with colorectal liver metastases resectional ther-
apy is not suitable because of multiple metastases in both liver lobes or extra-
hepatic disease. A potentially curative surgical intervention is possible only
in 10 � 15% of the patients with liver metastasis. Other therapy options are
available for those patients. Besides the local injection of chemical substances
(ethanol injection and chemoembolization), thermal ablation methods are an
important therapy possibility. The idea of thermal ablation techniques is to
heat (or cold for cryotherapy) a tumor locally in the range between 60 C and
100 C leading to a coagulation necrosis of the tumor tissue. The applica-
tion of thermoablative methods is limited to a small number of metastases
( 5) and the diameters of the lesions are ideally small (di↵erent specifica-
tions: smaller than 2.5 or 5.0cm). Di↵erent technologies exist to induce the
heat: laser-induced thermal therapy (LITT), radio-frequency ablation (RFA)
and high-intensity focused ultrasound (FUS or HIFUS). For LITT and RFA
an applicator needs to be placed under ultrasound, MRI or CT control either
through the skin (percutaneously) or directly into an organ during surgery.
For bigger lesions multiple applicators can be placed into the tumor. High-
intensity focused ultrasound [225, 49] is a promising thermal ablation variant
for certain applications, which is applied transcutaneously and hence is com-
pletely non-invasive.

Detailed information about regional and minimally invasive tumor therapies
can be found in the books of Schlag and Stein [205] and Stroszczynski [223].
We mention these forms of therapies, because they also benefit from similar
computer assisted planning and intraoperative navigation techniques as sur-
gical interventions, which we focus on and are explained in more detail in the
next section.
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2.2 Liver Surgery

2.2.1 Aims of Oncological Liver Surgery

For surgery of malignant liver tumors resection margins are important for long-
term outcome [67]. An R0 resection is defined as one in which all margins are
histologically free of tumor. On the contrary, an R1 resection is a resection
with microscopic residual tumor cells been left behind. An R2 resection is
defined as gross residual tumor. Even though the exact width of surgical
margins remains controversial [26, 173, 265] patients with a microscopically
positive margin (R1) have a worse prognosis than R0-resected. In conclusion
the oncological aim of a liver resection is the complete removal (R0 resection)
of the tumor with a safety margin of approximately 1 cm around the tumor.

But at the same time as much healthy tissue as possible should be be pre-
served to achieve a su�cient postoperative liver function. For this functional
aim the exact knowledge of the liver’s vessel system is crucial to assure the
blood supply and drainage of the remaining liver tissue. The size, location
or distribution of the tumors might be so disadvantageous, that a surgical
removal is not possible without loosing the liver function. It is the art of
surgery to decide, whether a tumor is resectable and to find a compromise
between required radicality and optimal preservation of liver tissue function.
To ascertain the best compromise the surgeon has to know the principal and
individual anatomy of the patient’s liver and the 3D location of the tumor in
relation to the liver vessels to perform a precise risk analysis and resection
planning.

2.2.2 Liver Anatomy

The specific characteristic of the liver vessel system is its dual blood supply
consisting of the portal vein and the hepatic arteries. The portal vein coming
from stomach and intestine supplies approximately 75% of the liver’s blood.
This blood has already delivered its oxygen to the organs of the gastrointesti-
nal tract before coming to the liver and therefore cannot supply the liver cells
with oxygen. The liver cells receive all of their oxygen from the 25% of blood
delivered by the hepatic arteries. The liver is drained by the hepatic veins,
which end at the vena cava. A further vessel system in the liver is the bile duct
system. Bile is excreted in the liver and required for the digestion of food.
Bile ducts transport the bile from the liver either directly into the duodenum
or for intermediate storage into the gall bladder.

Usually the portal vein divides immediately before reaching the liver into
a left and right branch supplying the left and right liver lobe. The portal
vein ramifies further inside the liver into smaller and smaller venous branches.
The hepatic arteries and the bile ducts usually run parallel to these portal
vein branches inside the liver forming independent functional units with their
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Figure 2.1 Schematic illustration of eight functional liver segments according
to Couinaud.

own blood supply and bile drainage. Such a functional unit can therefore be
surgically resected without jeopardizing the function of the remaining parts.
As the portal vein branches like a tree a hierarchy of self-contained functional
units exist. Similarily to the supply system the drainage by the hepatic veins
can also be divided into functional units. All parts of the liver tissue, which
drain into the same main hepatic vessel branch constitute a functional unit.
The supply and drainage units only partially overlap. The art of liver resection
planning is to find a good compromise between the damage to the supply and
drainage of the liver after resection.

Di↵erent vessel hierarchies have been introduced to get a non-intersecting
and complete division (partitioning) of the liver into so called liver segments.
The liver segment division of Couinaud[40] is the clinically most relevant.
According to Couinaud eight portal venous liver segments are distinguished,
which are numbered in clock-wise order starting with the caudate lobe as seg-
ment I (see Fig. 2.1). Each segment represents a functional unit, which is
supplied by a third-order branch of the portal vein, which leads theoretically
to 23 = 8 non-intersecting segments. Current anatomical and radiological in-
vestigations have shown, that the regularity of the vessel branchings described
by Couinaud is only given in few cases. Actually a multiplicity of portal and
hepatic venous branching variations with in some cases very di↵erent sizes of
supplied parenchyma regions exist [54]. The geometry and topology of the
vascular system is highly individual. There are even three di↵erent variations
of the first main branching [111]. Three very di↵erent branching patterns are
shown in Fig. 2.2.

Selle [214] tried to find an appropriate hierarchical order on the portal vein
tree, for which an automatic algorithm can be used and agrees with the as-
signed vessel parts (subtrees) to Couinaud’s segment partitioning by radio-
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Figure 2.2 Portal veins of three patients (column-wise) with di↵erent branch-
ing patterns. The first row shows a coronal view while the second row shows
a cranio-caudal view.

logical experts. Although he found a hierarchical order and corresponding
algorithm which reproduced the manual assignment by an expert quite well,
di↵erences still remained. The problem is that in medical practice the Couin-
aud scheme does not really define a hierarchy, because parallel branches can
also be assigned to one liver segment. Radiologists seem to have a regular
spatial partitioning of the liver in mind and try to assign vessel subtrees to
these spatial regions. From the functional view of the liver it has to be the
other way round: which are the biggest functional units, which then define
the spatial partitioning of the liver? According to Selle [214] it is a contradic-
tion to find functional independent segments, which are supplied by one main
vessel branch on the one hand and on the other hand to use a schematical
spatial partitioning in medical practice, where functional self-contained tissue
regions are separated and reordered to assign them to di↵erent Couinaud seg-
ments. In conclusion the spatial partitioning of Couinaud is only a (more or
less) standardized coordinate system of the liver to give a coarse orientation
in the radiological and surgical practice to describe the approximate position
of a lesion inside the liver. We are not aware of any studies which show how
reproducibly radiologists are able to partition individual livers exactly into the
Couinaud segments. In addition the Couinaud scheme is not su�cient for the
exact and reproducible division into functional units of an individual patient.
We will see, that with computer assisted modeling of the vessel tree, a general
scheme is even not necessary anymore.

13



2. Computer Assisted Liver Surgery

2.2.3 Open Liver Surgery

Resections based on the extent of the tumor only (including safety margin)
are called atypical. Only in the case of small tumors lying close beneath the
liver surface, atypical resections should be performed. In all other cases, the
spatial relation of the tumor to the vascular system of the liver has to be taken
into account (anatomical resection). As described in the previous section
whole functional units of the liver should be resected to ensure a su�cient
blood supply and drainage of the remaining liver tissue. This is also called a
segment oriented resection. Usually in conventional liver surgery this means
Couinaud segments, which ignore the before mentioned imprecisions induced
by anatomical variations. A precise comprehension and determination of a
segment considering the individual functional units can be achieved by modern
medical imaging, image processing and 3D modeling as described in more
detail in Sec. 2.3. For conventional as well as for computer assisted liver
surgery a risk analysis and determination of the resection volume based on
CT images has to be performed.

According to the preoperative imaging and planning, the surgeon aims to
resect a defined part of the liver with as little blood loss as possible. The
general surgical procedure starts with the opening of the abdomen (the access).
Before the actual liver tissue resection can be performed the liver is mobilized
and explored. This means the liver is separated from its ligaments, peritoneum
and the surrounding septum. Afterwards the liver is explored for additional
findings. Nowadays this exploration is often complemented by intraoperative
sonography. If the resection of the liver is still indicated, the liver hilum and
the vena cava at the junction of the hepatic veins are prepared. The hilum
is the central area of the liver, where the bile duct, the portal vein and the
hepatic artery enter the liver. The kind and necessity of the preparation of
hilum and vena cava depend on the kind and size of the resection. A wide-
spread technique to reduce the bleeding risk is to conduct a Pringle maneuver,
which occludes the liver hilus for maximally 30-60 minutes by a vessel clamp.
Also the occlusion of hepatic veins at the vena cava is performed in some cases.
After this preparation the actual organ tissue (parenchyma) dissection begins.
Di↵erent dissection technologies are available today to reduce the blood loss:
water jet dissectors, ultrasonic dissectors, stapler and diathermy. Small liver
vessels are ligated and big vessels are clipped. If the liver resection is finished
care of the resection surface and the closing of the abdominal cavity has to be
performed. The resected tissue is investigated by a pathologist to classify the
tumor and to see if a R0, R1 or R2 resection has been achieved. Instantaneous
section methods allow intraoperative pathological investigations. An excellent
and detailed German description of modern liver surgery has been published
by Lang [111, 112].
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2.2.4 Minimally Invasive Surgery

Minimally invasive surgery has become a viable alternative to conventional
surgery. Laparoscopic surgery is a minimally invasive technique in which op-
erations in the abdomen are performed through significantly smaller incisions
compared to traditional surgical procedures. A camera system, a so-called
laparoscope, is inserted through a tube (the trocar) into the abdominal cavity
and makes its organs visible on a monitor. Custom-build surgical instruments
are inserted to further incisions and the operation is performed under visual
control supplied by the camera system. The technical advantages of mini-
mally invasive surgery can be translated into clinical benefits for the patients,
i.e. less postoperative pain, better cosmetic results, shorter hospitalization,
and earlier convalescence. Laparoscopic operations have replaced a significant
proportion of open surgical procedures and are now routinely used. While the
role of laparoscopic surgery has been generally accepted for the management
of benign disorders, there is an ongoing debate regarding the adequacy of
this technique in surgical oncology. There is evidence that minimally invasive
surgery can reduce perioperative morbidity in cancer patients. However, def-
inite validation of these procedures for tumor surgery is not yet available due
to the lack of prospective randomized trials providing reliable long-term data
on disease-free survival and overall survival. It seems likely that minimally in-
vasive procedures will play an important role for the treatment of some kinds
of lesions and tumors of limited size.

There are some technical limitations of laparoscopic surgery. The degrees
of freedom for the instruments are limited due to the minimal invasive access
via the trocars. The absence of direct organ palpation and the lack of the
third dimension in the 2D video images are still limits of laparoscopy. The
surgeon’s orientation and the location of anatomical and pathological struc-
tures is therefore more di�cult than in open surgery. Modern image-guided
surgery systems have the potential to compensate these limitations.

2.3 Computer Assisted Surgery Planning

Although today’s imaging methods like multi-detector CT provide excellent
visualization of the intrahepatic vascular system, neither the number and dis-
tribution nor the extent of functional liver segments can be determined dis-
tinctly. Hence areas at risk for devascularization (or drainage loss) can be
identified only vaguely and the prediction of the remaining fully vascularized
liver parenchyma is inaccurate. With an accurate prediction an optimal surgi-
cal planning for an individual patient could be performed. A surgical planning
which considers a predicted postoperative function is also called functional
planning. On the basis of modern medical imaging the anatomy and function
of the liver can be modeled and simulated with computer software. For a gen-
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eral introduction to computer assisted planning and in particular functional
and model-based planning see also our according (German) book chapter [267].

Before reviewing computer assisted planning for liver surgery in Sec. 2.3.3
preoperative medical imaging of the liver is summarized in the following sec-
tions as a basis of the planning process.

2.3.1 Preoperative Medical Imaging

Traditionally the imaging of the liver concentrates on the detection and clas-
sification of lesions. The question is whether a lesion is benign or malignant.
The aim is to get a high contrast between lesion and surrounding liver tis-
sue. Usually contrast agents are applied in MR or CT imaging to improve
the contrast of the lesion, because its blood supply is higher or lower than the
surrounding tissue. In addition the contrast of liver vessels itself is increased
by the contrast agent such that the location of the lesion in relation to the
liver vessels can be displayed. The enormous technical advances in CT imag-
ing has led to high-resolution 3D volume images of the liver. Today CT is
the standard diagnostic imaging technique of the liver and will be presented
in more detail in the next section.

Contrast-enhanced Multiphase CT Data

We will not explain how computed tomography works in detail. We just
outline what is important to know about CT for building detailed 3D digital
models of the liver, its vessels and the tumor.

CT is very suitable for the generation of exact geometrical models, because
image distortions are very low compared to certain MRI sequences. Streak
artifacts caused by metallic objects like dental fillings or implants rarely occur
in the liver region. Instead the avoidance of motion artifacts caused by respi-
ration plays an important role in liver imaging. Despite the development of
di↵erent prospective and retrospective gating techniques, the easiest and most
e↵ective way to avoid respiratory motion artifacts is to ask the patient to hold
his/her breath during image acquisition. This means the image acquisition
has to be performed in a time interval of 30-60 seconds which is ambitious
for a scan of the whole liver because it is a relatively big organ measuring
approximately 15 cm in cranio-caudal direction.

The introduction of spiral or (mathematically more correct) helical CTs in
1989 allowed to acquire such large volumes of data very quickly while reach-
ing reconstructed slice intervals of 3-5 mm for liver imaging. In contrast to
conventional sequential CT helical CTs have a gantry, which rotates continu-
ously while the table with the patient is also moved continuously through the
gantry. The resulting trajectory of the X-rays has the shape of a helix. For the
reconstruction of planar slices perpendicular to the helix a linear interpolation
between adjacent scans is performed [99].
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Wang and Vannier [244] analytically investigated the influence of the three
most important geometrical imaging parameters (detector collimation width
D, table increment per gantry rotation T , reconstructed slice number per
collimation n) on the imaging characteristics (e↵ective slice thickness �, image
noise level ⌘, signal-to-noise ratio). Although based on a simplified imaging
model for helical CTs their results were consistent with empirical findings on
phantoms. The dimensionless ratio of the table feed per rotation of the X-
ray source T in mm to the collimated slice thickness D in mm is called the
pitch p = D/T . The e↵ective slice thickness � is assumed to be the standard
deviation of the slice sensitivity profile (SSP). The SSP is the convolution of
the original sensitivity profile induced by the collimator and the table motion
function, which is a triangular function in case of linear interpolation [98].
Ideally the collimation profile is a rectangular function.

The most important conclusions Wang and Vannier [244] got from their
analytical investigation of helical CT image quality are: 1. The optimal pitch
is equal to

p
2 ⇡ 1.4. With a pitch smaller than 1 some regions are not scanned

(gaps) and with a pitch close to 2 the image gets blurry. To avoid longitudinal
aliasing, at least 2–3 transverse slices should be reconstructed per collimation.

After the introduction of the first four-slice helical CT systems in 1998 an
evolution process in CT development started, which W. Kalender called: the
slice race. Today there are multi-slice (or multi-detector) CTs, which scan
up to 320 slices simultaneously. Multi-slice CTs enable significantly lower
scan times for the same scan volume compared to single-slice CTs. Thus it is
possible to get high image resolutions (below 0.5 mm) in a short period of time
allowing whole liver scans during a respiration rest. Motion artifacts are rare
in liver imaging today except for some artifacts in the upper left region of the
liver caused by heart motion. Due to the high resolution partial volume e↵ects
are decreased and vessels with quite a small diameter can also be detected.
The only disadvantage of the high resolution is the increase of image noise.
But with image smoothing and slight resampling to 1 or 2 mm slice resolution
we get high quality images.

Further and more detailed information about CT principles and technologies
with a special focus on modern single- and multi-detector helical CT imaging
can be found in the review of Kalender [97] and the books of Terrier [226],
Kalender [96] and most recently Buzug [24].

After showing how for a whole liver scan a high resolution in z direction
can be obtained during one apnea phase we will now turn towards the is-
sue of reaching a high contrast to depict small lesions and small vessels. As
mentioned above usually a contrast agent is applied enhancing the contrast
of lesions and vessels to the surrounding liver tissue significantly. Due to the
physiology of the liver the timing of the image acquisition phases after me-
chanical intravenous contrast agent injection is important. Today triphasic
liver CT imaging is performed, which means that scans are acquired at three
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Figure 2.3 Arterial, portal venous and late venous scans of a multiphase CT
scan after 18, 38 and 78 seconds of contrast agent injection.

di↵erent time delays after contrast agent injection (see Fig. 2.3). After ap-
proximately 18 seconds the contrast agent arrives in the liver arteries resulting
in a high contrast between arteries and liver tissue (Fig. 2.3 a). Some tumor
entities might be best detectable in this early arterial phase. Delays of 20 and
60 seconds from the beginning of the early arterial scan are used for the portal
venous (PV) and late venous phase scans, respectively.

In the portal venous phase the hepatic veins are usually not enhanced
(Fig. 2.3 b). However, in the hepatic venous (HV) phase, portal veins are
typically also visible, but with lower contrast as in the portal venous phase
(Fig. 2.3 c). PV as well as HV images are acquired during respiration hold,
which is usually at end-inspiration. Due to patient respiration between the
two acquisitions the position and shape of the liver sometimes cannot be re-
produced exactly. Thus if portal and hepatic veins from di↵erent phases are
intended to be integrated into a combined 3D liver model, the phases have to
be registered. We evaluated quantitatively 10 image pairs showing that the
portal veins move rigidly between 1.3 and 12.3 mm and on average 7.1 (+/-
4.2) mm, while the remaining non-rigid deformations are in the worst cases in
the range of 2-3 mm [124, 125]. In conclusion in most cases a rigid registra-
tion based on mutual information and on automatically generated liver masks
was su�cient. Non-rigid registration was successful, but necessary only in 3
out of 10 cases. Fig. 2.4 shows the portal veins of one case in PV and HV
phase in their original position, after masked rigid and non-rigid registration
of the HV phase. In summary with modern CT scanners very high resolution
preoperative 3D images of the whole liver can be obtained with high contrast
of the vessels and with no substantial artifacts.

2.3.2 Geometrical Modeling of Anatomical Structures

An important prerequisite for computer assisted liver resection planning is an
accurate geometric 3D model of tumor, vessels and liver surface. These struc-
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Figure 2.4 The first row shows 3D models of the portal veins in the portal
venous phase (transparent) and the hepatic venous phase (opaque). In the
second row one slice of the portal venous phase with intersection lines of the
liver surface (yellow), the portal veins (pink) and the hepatic veins (blue) from
the hepatic venous phase are shown. From left to right the original position of
the portal veins, after masked rigid and after non-rigid registration are shown.

tures are not easily extractable with simple image processing techniques even
from modern multi-slice CTs and contrast agent application. The 3D model-
ing process usually consists of two parts. At first each voxel (volume element)
of the image data is unambiguously assigned to an anatomical structure: liver
parenchyma, tumor tissue, portal or hepatic veins (sometimes also hepatic ar-
teries and bile ducts). The process and the result of this assignment is called
segmentation. In a second step a triangle mesh which represents the surface
of liver, vessels and tumor is automatically computed by the Marching Cubes
algorithm [137] and surface simplification resp. surface smoothing algorithms
are applied.

Segmentation is a major research area in medical image processing [110].
Although many di↵erent algorithms have been developed the comparison of
their performance on clinical relevant image data has hardly been possible until
some segmentation challenges started in 2007. The organizers of the challenges
provided a data base of clinical image data with reference segmentations where
radiological experts manually delineated the contour of the liver in a slice-by-
slice fashion. In addition they provided di↵erent error metrics, which quantify
di↵erences between results obtained from di↵erent segmentation methods with
the ground truth reference segmentations. The metrics have been summarized
into one score to be able to order the performance of the algorithms. The first
challenge called “3D Segmentation in the Clinic: A Grand Challenge” covered
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the segmentation of the liver surface [84].

Segmenting the liver surface is a challenge because even with contrast agent
application the contrast between liver tissue and surrounding tissue is often
low and the intensity of the liver varies. Therefore interactive segmentation
methods like intelligent scissors/ live wire [203] combined with shape-based
interpolation to save interaction time are in wide-spread use [203]. Recently
automatic approaches based on statistical shape models were significantly im-
proved [84] and we reached an accuracy (average surface distance) below 1
mm on average [95] with such a method.

In most cases liver tumors are segmented manually due to their low contrast
and intensity heterogeneity. But some liver tumors appear quite dark and ho-
mogeneous and can be segmented by volume growing based techniques [151].
Similarily to the liver surface segmentation contest, a contest for the segmen-
tation of liver tumors was arranged “3D segmentation in the Clinic, A Grand
Challenge II – Liver Tumor Segmentation (2008 MICCAI workshop)”. Most
approaches were semi-automatic, but also some automatic approaches were
shown.

Liver vessels are mostly segmented by volume growing techniques. Selle et
al. [215] presented a preprocessing strategy and a technique to find the thresh-
old for volume growing segmentation of liver vessels automatically. Depending
on the image quality, in some cases even an optimal global threshold is not
su�cient to segment smaller, but structural important vessels. Therefore we
used a volume growing segmentation technique. More sophisticated automatic
vessel segmentation algorithms have been presented in the literature, but the
application to liver vessels in contrast-enhanced CTs is very rare. A compre-
hensive review of vessel segmentation methods is given in [131]. An interesting
evaluation method for the segmentation of liver vessels has been presented by
Lehmann et al. [128]. They acquired CT scans of a porcine liver model and
then created in situ corrosion casts by filling the vessels with acrylic resin.
Afterwards CT scans of the corrosion cast were acquired. The segmented ves-
sel branches of the living liver and the corrosion cast were verified with the
physical corrosion cast.

From the segmented vessels, tumor(s) and liver parenchyma the accord-
ing surfaces are automatically generated with the marching cubes algorithm
and smoothed afterwards. For the generation of the vessel surfaces so-called
convolution surfaces [164] were used, which are more suitable for tube-like
structures with small radii [164]. Examples of vessel convolution surfaces are
shown in Fig. 2.2 and Fig. 2.5.

2.3.3 Risk Analysis and Resection Planning

Several systems have been developed for liver surgery planning in the last
couple of years which are based on 3D models generated from CT or MRI
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Figure 2.5 a) Vessel center lines computed from the segmented portal veins
and the tumor with a safety margin of 1 cm. The vessel center lines inside
the safety margin are shown in red. The cut-points of the center lines with
the safety margin are shown in green. b) The dependent vessels below the cut
points of the vessels with the safety margin. c) The part of the liver tissue
(15%) which is supplied by the dependent vessels.

data [221, 215, 144]. There is even a commercial service which o↵ers pro-
cessing of CT/MRI data for liver surgery planning (MeVis Medical Solutions
AG, Distant Services). These systems are applied for planning living donor
liver transplantations (LDLT) [69, 81] and oncological liver resections for in-
dividual patient anatomies [87, 166, 182, 111, 112]. The visualization of a
virtual 3D model of the liver is a valuable tool for the surgeon to get a better
imagination of the individual vessel anatomy and in oncological liver surgery
the spatial relation of a tumor to these vessels. The distance of the tumor
to the surrounding vessels can also be quantified. Anatomical variants such
as trifurcation of the portal vein or accessoric hepatic arteries are a common
finding and can be appropriately visualized for the surgeon.

For LDLT as well as for oncological resections it is important to know the
individual vascular territories as exactly as possible. A vascular territory
represents a part of the liver that is supplied or drained by a certain vascular
subtree. The root of the vascular subtree might be the cut of a security
margin around the tumor with the vascular tree or manually defined by the
surgeon. For the determination of the vessel branches which are below (in
blood flow direction for portal veins) this cut point, the center lines of the
vessels are automatically extracted by a skeletonization algorithm [201] from
the segmentation of the vessels (Fig. 2.5a). The center lines are transferred
into a directed graph. Now the vessel subtree below the cut point is computed
by a breadth-first (or depth-first) search on the directed graph (Fig. 2.5b). The
idea of computer-based vascular territory determination is that the closer a
liver tissue voxel is to a vascular branch the more likely is it for this voxel to
be supplied by the given branch. Although this is only a coarse approximation
of the underlying physiology good estimations are obtained [215]. For each
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liver tissue voxel the nearest vessel point is determined and for each point
on the vessel center lines a list of the liver tissue voxel is saved for which
this center line point is the nearest. Now for all points on a vessel subtree
the dependent (nearest) liver tissue voxel are collected defining the vascular
territory of this subtree (Fig. 2.5c). Then the portal venous supply and also
the venous outflow of a vascular territory are computed [81, 182, 113]. With
modern multi-detector scanners even hepatic arteries and bile ducts can be
incorporated [81].

Based on the vascular territories an automatic risk analysis of blood supply
and drainage can be performed according to the location of a tumor or an
interactively defined resection plane. By interactively changing the resection
plane the impact of di↵erent surgical strategies on the arterial devasculariza-
tion and venous congestion volumes can be predicted. Lang et al. [113] state
that computer assisted risk analysis can influence the operation planning of
liver resections compared to standard 2D CT. The consistency of the com-
puted virtual vascular territories and real territories has only be evaluated on
corrosion casts so far [215]. An evaluation for the liver in vivo is an important
task for further research.

2.4 Intraoperative Imaging and Navigation

Although further clinical studies are needed to prove the clinical benefit of
computer assisted liver resection planning the main technical di�culties seem
to have been solved and information about accurate individual vascular ter-
ritories have led to changes in the surgical strategy [113]. But to verify the
clinical benefit it has to be assured that the planned liver resection is really
implemented on the patient. The challenging task is to transfer the plan pre-
pared on preoperative CT data accurately and securely to the intraoperative
situation. Intraoperatively the location of the tumor and relevant vessels is
hidden underneath the liver surface and the correct location of the resection
line can only be estimated. Some tumors close to the surface might be pal-
pable by the surgeon, but deeper tumors where important vessels are usually
close by often are not palpable.

Intraoperative navigation systems support the surgeon by visualizing the
spatial relation of surgical instruments with respect to invisible anatomical
structures. Conventional navigation systems like in maxillofacial-, ENT- and
neurosurgery, which are based only on preoperative data, are not suitable for
liver surgery. The reason is that the liver significantly deforms between preop-
erative imaging and the surgical procedure. Even in neurosurgery significant
deformations of the brain occur due to gravitation after the opening of the
dura: the so called brain-shift [155, 160]. To solve this brain-shift problem
intraoperative imaging is used to measure the current shape and position of
the brain and its structures. For neurosurgery MRI is an option to acquire

22



2.4. Intraoperative Imaging and Navigation

high quality intraoperative images [162, 161]. But it is a challenge to im-
plement an intraoperative MRI and the costs are high. For open visceral
surgery intraoperative MRI is not suitable due to the bigger operation field.
But there are interventional applications like Laser Induced Thermal Therapy
(LITT), which have been used in conventional [241] and open MRI scanners.
Even first attempts to perform laparoscopic procedures inside an open MRI
scanner have been made [31]. The intraoperative use of CT is limited due to
radiation exposure and low soft tissue contrast.

A flexible, relatively cheap imaging modality which can easily be integrated
into the OR is ultrasound. Navigation systems based on intraoperative 2D or
3D ultrasound have successfully been developed for neurosurgery and recently
for liver surgery [15, 10, 11], too. We developed two navigation systems for
liver resections based on intraoperative 3D ultrasound. The first system uses
an optical tracking system and the ultrasound volume is updated from time to
time. This is also called an iterative system because the intraoperative imag-
ing is not continuously acquired. The problem is that the surgeon does not
know when to acquire a new ultrasound volume due to significant movements
or deformations. The second navigation system continuously measures the
position and orientation of some sensors inside the liver by an electromagnetic
tracking system. Before we explain both navigation systems in more detail we
will summarize some facts about general ultrasound imaging and explain 3D
ultrasound in particular.

2.4.1 Intraoperative Ultrasound Imaging

Ultrasound (also called sonography) is a widespread modality in diagnostics
and in particular for abdominal organs like the liver. As ultrasound is a
demanding imaging modality for image processing we give some fundamentals
about ultrasound image formation, image characteristics and typical artifacts.

Ultrasound Image Formation

For ultrasound imaging, sound waves at a high frequency of 1 to 15 MHz are
emitted from a handheld ultrasound probe (transducer) into the respective
body part. The sound waves penetrate into soft tissue at a speed of 1450
to 1580 m/s, but are partially reflected at interfaces between di↵erent tissue
types. This is due to the mismatch between the speed of sound and densities
in di↵erent tissues. The reflected sound waves are measured by sensors also
integrated into the transducer. This means the transducer is generator as
well as receiver of sound waves. As the traveled distance of the sound waves is
proportional to time, the traveling time is used to determine the position of the
acoustic interfaces. The greater the di↵erence between acoustic impedances
at the interface, the larger the echo is. The acoustic impedance of a material
is the product of the density and the propagation velocity of the ultrasound
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waves in this material. At interfaces to air and bone the density di↵erences are
so big, that almost all acoustic energy is reflected and no imaging beyond this
interface is possible. Thus the physical contact of the probe with the body is
essential to avoid air between transducer and body. Therefore coupling gels
between probe and body are used.

Not all of the transmitted energy is reflected. Most of the energy is absorbed
by the tissue. The higher the frequency is, the greater is the absorption and
the lower the penetration depth. Time-gain compensation (TGC) is used to
compensate absorption. With increasing time resp. distance the signal is
amplified by a pre-determined TGC profile provided by the manufacturer.
But the gain can also be changed manually for a set of distances.

The specular reflection is only one part of the returning waves, scattering
is another part. Scattering or speckle noise is caused by cellular structures,
which are much smaller than the wave length of the ultrasound wave. Speckle
results from the constructive and destructive interference of reflections from
the sub-resolution scatterers. The image appears grainy. The speckle pat-
tern is characteristic for the kind of tissue, which is used by physicians to
di↵erentiate tissue types.

The generation of the ultrasound waves is comparable to usual loudspeakers:
an electrical stimulus is transformed into mechanical vibrations in an elastic
medium by a transducer. The reverse piezoelectric e↵ect is used in ultrasound
probes, by exciting piezoelectric crystals by an electrical voltage. The summa-
tion of all waves generated by the piezoelectric crystals forms the ultrasound
beam. In pulse-echo imaging short ultrasound pulses with a frequency of 1-
15 MHz are emitted through the tissue and after a period of time, su�cient
for the previous echoes to return or die out, another burst of ultrasound is
emitted and the cycle is repeated. The returning sound wave vibrates the
transducer and the transducer turns the mechanical vibrations into electri-
cal pulses (piezoelectrical e↵ect). The ultrasound scanner then processes and
transforms the received signals into a digital image by analyzing the travel
time.

Four di↵erent modes of ultrasound exist: A-mode, B-mode, M-mode and
Doppler mode. We will explain B-mode and Doppler mode, because the are
the only relevant modes for the imaging of the liver. In the B-mode or bright-
ness mode, the resulting pixel represent the strength of the echoes at the
respective body parts. An array of transducers simultaneously scans a plane
through the body resulting in a 2D image.

Three general types of transducers exist: linear, curvilinear and phased ar-
ray transducers. Linear array transducers produce parallel beams imaging a
rectangular area, curvilinear arrays generate radial beams imaging a sectional
(fan-like) area. Phased array transducers o↵er a high flexibility to form dif-
ferent wave fronts by certain phase delay patterns. This is also called beam
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forming and can be used to steer the wave front into a certain direction which
allows ultrasound probes with a small contact area or to focus the ultrasonic
pulses to one or several distances.

Doppler ultrasound measures blood flow using the Doppler e↵ect. This
means Doppler imaging measures movements of scatters. A series of pulses
(also called a wave train) is transmitted into the same direction. Echoes
from stationary tissue remain the same from pulse to pulse. For moving
scatterers the frequency di↵ers from pulse to pulse due to the Doppler e↵ect.
It can be measured whether the blood is moving towards or away from the
ultrasound probe, and its relative velocity. The direction (towards or away
from the probe) of the flow is colored with blue and red (Color Doppler).
But there is no standard which color represents which direction. Usually the
frequency shift is determined via the phase di↵erence. The phase di↵erences
between consecutive pulses are detected by autocorrelation. Power Doppler
di↵ers from conventional Color Doppler in the way the Doppler signals are
processed. Instead of estimating the mean frequency and variance, the integral
of the power spectrum is estimated. The colours in the power Doppler image
indicate only that blood flow is present. No information on flow direction and
velocity is given.

For liver surgery it is important to know where a vessel is located. The
flow velocity and direction in the vessels is not relevant. Thus power Doppler
ultrasound is suitable for intraoperative imaging of the liver vessels anatomy.
In Fig. 2.6 intraoperative images of the liver are shown. In B-mode imaging
the vessels appear dark and the reflections on the backside (diaphragm) of the
liver (lower part of the image) appear bright. The interface between liver and
diaphragm is large and smooth reflecting almost in normal direction. If the
angle between interface and beam direction is low, the ultrasound waves will
not be reflected back to the transducer and the bright curve will be interrupted.
Due to (periportal) fat tissue the region around the portal veins appear bright.
The tumor (upper left) also appears dark. The power Doppler image is shown
as a yellow overlay onto the B-mode image (Fig. 2.6a) and as an original
intensity image (Fig. 2.6b). If no significant flash-artifacts are present the
vessels can be directly visualized by 3D volume rendering of the power Doppler
image (Fig. 2.6c). In comparison the portal (pink) and hepatic (blue) veins
extracted from a preoperative CT of the same patient are shown from a similar
view direction (Fig. 2.6d). In particular two main branches of the hepatic veins
shown in the CT model can be identified well in the 3D volume rendering of
the intraoperative power Doppler image.

More details about the technical basics of ultrasound imaging can be found
for example in the books of Suri et al. [224] or Gibbs et al. [70] and the thesis
of Wein [248].
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Figure 2.6 Upper left: An intraoperative B-mode ultrasound image of the
liver with overlayed power Doppler image. Upper right: Intraoperative power
Doppler image without B-Mode. Lower left: 3D volume rendering of the
power Doppler image. Lower right: 3D model of the vessels extracted from
preoperative CT data of the same patient.

Ultrasound Imaging Characteristics

The axial resolution (in beam direction) of an ultrasound image is determined
by the frequency resp. wave length. The higher the frequency the shorter
the wavelength and the higher the resolution. The wavelength of a 5 MHz
ultrasound beam is approximately 0.3 mm. It would not be possible to re-
solve objects which are less than 0.3 mm apart. As already mentioned above
the drawback of higher frequencies is the decrease of depth penetration due
to stronger attenuation. The liver is imaged at lower frequencies of about 3-6
MHz to get a su�cient depth penetration. The lateral resolution (perpendic-
ular to the beam) depends on the beam width, which again is inversely related
to the frequency, but depends also on the beam forming and the aperture of
the probe (probe diameter). The width of the beam varies with the depth.
The smallest width and thus the highest resolution is reached in the depth of
the focal zone. It is therefore clinically important to focus the target struc-
ture in the focal zone. The ultrasound beam has also a width perpendicular
to the image plane which is in particular important in 3D ultrasound for the
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elevational resolution between image slices. The beam width perpendicular
to the image plane is the same as the beam width inside the image plane for
circular apertures, but may di↵er for transducers with rectangular apertures
like linear or phased array transducers.

Besides the image resolution contrast is the second most important im-
age characteristic. If we can not di↵erentiate relevant structures by di↵erent
intensities even high resolution images are useless. The contrast resolution
depends on the electrical and acoustical properties of the probe and the am-
plifier system as well as on the properties of the imaged object. If the acoustic
impedance di↵erence between neighboured tissues is low also the contrast will
be low. It is important to know that the original signal intensities are com-
pressed to the intensities on the display. The dynamic range between the
smallest and biggest signal intensity is 30-40 dB. This original range is re-
duced by logarithmic compression to match the smaller dynamic range (256
intensities) of the display and to emphasize objects with weak backscatter.

Even a high contrast can be substantially corrupted by noise. Usually the
signal- or contrast-to-noise ratio is used to quantify how much the image is
corrupted by noise. In addition to the usual noise of the electronic of the
system (e.g., the amplifier) we already mentioned speckle noise. Standard
smoothing filters (e.g., Gaussian smoothing) are not suitable to reduce speckle
noise. But anisotropic di↵usion filters have been developed which consider the
special structure and distribution of speckle noise [266, 107]. Speckle noise can
be modeled by a Rayleigh distribution [242] but the accurate description of
the speckle statistics is still an active field of research [107]. In addition the
logarithmic compression of the displayed ultrasound images has to be taken
into account leading to a log compressed Rayleigh distribution.

Ultrasound Artifacts

Many di↵erent types of artifacts exist for B-mode and power Doppler sonog-
raphy. We will focus on the most important artifacts with implications for
computer assisted liver surgery.

B-mode imaging is based on the following assumptions: the speed of sound
and the attenuation are constant in the imaged tissue, the axis of the ultra-
sound beam is straight, the ultrasound pulse travels only to objects that are
on the beam axis and directly back to the transducer. If one of these assump-
tions is significantly disturbed visible artifacts are likely to be present in the
image.

The geometry of the ultrasound image may be degraded by speed of sound
errors. Usually it is assumed that the ultrasound beam propagates at an
average speed of 1540 m/s but for fat the speed is 1450 m/s and for liver tissue
1550 m/s. In addition tissue is a non-homogeneous and imperfect transmission
medium. If the assumed speed and the actual speed di↵er the computed
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depth of a returning echo is incorrect leading to image distortions. A slightly
incorrect image geometry is usually no problem for diagnostic ultrasound,
but if ultrasound imaging is used as a basis of a navigation system this fact is
relevant for the accuracy of the whole system [135]. Refraction is another cause
for image distortions and loss of resolution. Starting with the skin surface at
each tissue interface refraction occurs and the e↵ects are cumulated such that
echoes from tissue parts, which do no lie in the direction of the ultrasound
beam, will appear in the image. This violates the assumption that a detected
echo comes from the shortest and straight sound path between reflector and
transducer. A similar problem arises from the fact that the ultrasound beam
is not an ideal line but has a width depending on the depth as described in the
above section about the lateral resolution. In addition the ultrasound beam
has weaker side lobes such that highly reflective object parts, which do not lie
in the main beam direction, can be present in the image.

Strongly reflecting interfaces (bone, calcifications) or attenuating structures
(solid tissue, malignant masses) lead to shadowing. The ultrasound beam can
not reach the tissue behind the interface or structure such that no echoes
will be received from this region and the region will be represented dark in
the image. Enhancement is the opposite e↵ect to shadowing. Cysts or other
liquid-filled structures are usually less attenuating as assumed for the normal
tissue. This means tissue behind such structures is enhanced by the usual
attenuation correction because the ultrasound beam has not been attenuated
inside the cyst as expected. But shadowing and enhancements are also di-
agnostically useful. The physician may di↵erentiate tissues or pathologies by
the occurance of shadowing or enhancement behind the structure in question.
Detailed physical explanations of reflection and refraction artifacts are given
by Robinson et al. [187].

Strong reflectors might cause a second artifact: reverberations or multiple
reflections. The sound waves (at least a part of them) are bouncing back
and forth between the tissue interface and the transducer. Bright bands of
decreasing intensity will appear in the image. Reverberations can also occur
between two strong parallel reflectors.

Now we come to artifacts of power Doppler ultrasound imaging. In general
power Doppler ultrasound is less sensitive to the angle between the ultra-
sound beam and the vessel direction than color Doppler but is still direction
dependent. If the blood flow direction is approximately the same as the beam
direction there will be no Doppler signal.

As power Doppler ultrasound measures blood motions with regard to a
static background additional motion of the tissue causes so called “flash ar-
tifacts”. The suppression of the vessel wall motion by high-pass filters is
standard. Those filters suppress low frequency tissue motion but may also
suppress low-velocity blood flow. Depending on the location of a tumor inside
the liver other tissue motion due to heart motion or respiration can cause flash
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Figure 2.7 Power Doppler flash artifacts in the liver caused by heart motion.
Left: B-mode image with overlaid power Doppler and severe flash artifacts in
the upper left corner and spurious artifacts inside the green circle. Middle:
B-mode image alone showing that there are no vessels inside the green circle.
Right: 3D volume rendering of the power Doppler volume with a severe flash
artifact inside the green circle.

Figure 2.8 Blooming artifacts: the vessels appear brighter in the power
Doppler image then they are. a) B-Mode with overlaid power Doppler signal
and b) the same image with power Doppler isolines compared to the appear-
ance of vessels in the corresponding B-mode image.

artifacts (see Fig. 2.7). A quite common power Doppler artifact is “bloom-
ing”; the Doppler signal spreads out from inside the vessel and appears outside
the vessel such that the vessel appears broader than it is (color bleeding, see
Fig.2.8 a, b). The reason may be multiple reflections back and forth between
blood cells similar to reverberation artifacts in B-mode imaging. In particular
if ultrasound contrast agents are applied very strong blooming e↵ects occur
soon after bolus injection and vanish after a while. Blooming can be reduced
by reducing the gain at the ultrasound device, but lower signals in smaller
vessels might vanish, too.

We observe a further power Doppler artifact which occurs with the motor-
driven 3D ultrasound probe of the Voluson system of General Electric (GE)
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Figure 2.9 a) 3D power Doppler artifacts: the signal is smeared out in the di-
rection of the transducer motion, b) power Doppler as color overlay on B-mode,
c) power Doppler intensities alone d) power Doppler signal if the acquisition
geometry is rectified. A clear direction dependence of the smoothing e↵ect
can be observed.

Healthcare and which to our knowledge has not been described in the literature
so far. The principles of 3D ultrasound will be explained in the next section.
In Fig. 2.9 the 3D power Doppler artifact is illustrated. A smoothing of the
power Doppler signal in the direction of the transducer motion is shown. The
reason might be, that not all signals have been returned to the transducer
when the next image slice is acquired. A possibility to restore the true signal
from the vessels is a deconvolution with an anisotropic point spread function
in the direction of the transducer motion.

More detailed descriptions of artifacts in B-mode and power Doppler imag-
ing can be found in the literature [83, 227, 197, 157, 159].

3D Ultrasound

In diagnostics usually conventional 2D ultrasound seems to satisfy the clinical
requirements. But with the increasing availability of 3D ultrasound machines
the number of publications increases, which investigate the potential of 3D
and even 4D (time series of 3D) ultrasound. In particular in obstetrics the
number of 3D ultrasound machines is dramatically increasing, but this seems
to be at least partially for marketing reasons as parents like to see their babies.
One obvious advantage of 3D ultrasound compared with 2D ultrasound is the
possibility to better quantify lengths and volumes in 3D. In the context of
computer assisted surgery 3D ultrasound is a basis for modeling anatomical
structures and even their dynamical behavior in case of time series. In par-
ticular 3D ultrasound can easily be integrated into interventional and surgical
procedures allowing intraoperative imaging as a prerequisite or extension of
navigation systems.

Four di↵erent principle 3D ultrasound technologies exist:

1. tracked 2D probes, also called freehand 3D ultrasound,
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2. 3D probes with mechanically (or electronically) steered 1D transducer
lines (like in 2D probes), also called wobbler,

3. 3D ultrasound probes consisting of a 2D transducer array,

4. sensorless techniques based on decorrelation of speckle noise.

Sensorless tracking is done by analyzing the speckle in the US images using
decorrelation [229] or linear regression [180]. Encouraging results are pre-
sented, but practical performance of in vivo imaging has to be further eval-
uated. In freehand 3D ultrasound [193, 181] a position sensor of a localizer
system is clamped to a conventional 2D US-transducer and the transducer is
manually swept over the volume of interest while the position and orientation
of the imaging planes are recorded by the localizer system. After scanning, the
2D image planes are composed to a 3D image volume. In contrast to freehand
3D ultrasound mechanically steered 3D probes do not rely on tracking sensors.
Instead a 2D probe with a 1D transducer array is swept by a motor contained
in a specific 3D ultrasound probe. One example of such a system using a mo-
tor is the Voluson system developed by Kretztechnik and now distributed by
General Electric (GE). A just recently commercially available alternative are
volumetric 3D probes containing a 2D array of transducer elements, such that
3D volumes can be directly measured. This is a very promising technology
and will be the future of 3D ultrasound, but until now the image quality is
not as high as with swept 1D transducer arrays.

Generally all 3D ultrasound technologies are suitable as a basis for intraoper-
ative navigation systems. We prefer mechanically steered 3D probes, because
they are very easily manageable in the OR. In open liver surgery the 3D probe
is held directly onto the liver for only a few seconds (see Fig. 2.10). The scan
time depends on the image resolution and scan angles. These 3D probes allow
for high quality volume acquisitions because a regular sampling of the volume
is guaranteed in contrast to freehand 3D ultrasound. In addition the export of
the volumetric ultrasound data is possible in original quality. On the contrary
freehand 3D ultrasound systems usually use the low resolution video output
to export the 2D scans. The abdominal 3D probe (RAB 4-8) of the Voluson
730 system contains a steered curvilinear 1D transducer array. The transducer
array lies in lateral direction and the ultrasound beams are emitted in axial
direction (see Fig. 2.10 for the nomenclature of the directions). A conventional
2D sector scan lying in the axial-lateral plane is acquired. By moving the scan
plane in elevational direction a 3D volume is swept. The shape of this volume
is a part of a torus, because the center of the sector in the scan plane and the
center of the movement of the image plane di↵er [105]. Hence, the original
image geometry is given in torus coordinates.

Usually the original data sampled on torus coordinates are reformatted to
isotropic cuboid-shaped voxel allowing the use of standard image processing
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Figure 2.10 3D ultrasound probe. Left: Intraoperative application of a
3D ultrasound probe (RAB 4-8) from a Voluson 730 system directly onto the
liver. The probe is covered by a sterile drape and equipped with an optical
tracker to determine the spatial position and orientation of the probe. Right:
Nomenclature of imaging directions. The axial and lateral directions define
the usual 2D scan plane. The elevational direction is perpendicular to the
scan plane and gives the sweep direction to acquire a 3D ultrasound volume.

and visualization techniques. But it is an interesting field of research to process
the originally sampled data (see for example [152]) to avoid a loss of quality
as sampling always smooths the data. For the resampling of the data one has
to know how torus coordinates can be transformed to Cartesian coordinates
and vice versa.

Torus Coordinates. We start with a parametric representation of a torus,
which directly leads to the definition of torus coordinates. Let the outer radius
from the center of the hole to the center line of the torus tube be R and the
inner radius of the tube be r. For a standard ring torus the outer radius R
is bigger than the inner radius r. The torus surface is generated by rotating
a circle �M with radius r around the z axis. This circle �M is drawn in a
(⇢, z) half plane M , which is perpendicular to the (x, y) plane (see Fig. 2.11
left). The position of this meridian plane M is parameterized by the angle
� between the x-axis and the plane. The circular center line of the torus
ring (the outer circle) is parameterized by the radius R 2 R+ and the angle
� 2 [�⇡,⇡):

x = R cos(�), (2.1)

y = R sin(�).

The circle �M is parameterized inside the meridian plane M by the angle
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Figure 2.11 Parameterization of a torus. The torus ring is parameterized
by the radius R (red) and the angle � (blue). The circular cross section �M
of the torus tube in the half plane M is parameterized by the radius r (green)
and the angle  (yellow). The half plane M is spanned by the z- and ⇢-axis,
which is shown in detail on the right.

 2 [�⇡,⇡) and the inner radius r 2 R+ (see also Fig. 2.11 right):

⇢ = R+ r cos( ), (2.2)

z = r sin( ).

Now the two parameterizations of the outer ( 2.1) and inner circle ( 2.2) can
be composed to the parameterization of the torus. A vector pointing onto the
surface of the torus can be divided into a vector v1 pointing onto the center
line of the torus ring (see red line in Fig. 2.11) and a second vector v2 from
the center line to the surface (see green line in Fig. 2.11). The first vector v1
has a length of R and the z coordinate is always 0. The x and y coordinates
are simply given by the parameterization 2.1 of the outer circle. The second
vector v2 has a length of r. The z coordinate is given by the parameterization
2.2 of the inner circle and depends only on the angle  and not on �. The
x and y coordinates of v2 in the (x, y) plane are (r cos(�), r sin(�)). In the
z direction with increasing angle  these coordinates are decreasing with a
factor of cos( ).
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Figure 2.12 Di↵erent Kinds of Tori. On the left a common ring and on
the right a self intersecting spindle torus is shown.

The resulting parametric representation of a torus by adding v1 and v2 is:
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with the parameters r 2 R+, � 2 [�⇡,⇡),  2 [�⇡,⇡) and the constant outer
radius R 2 R+.

For a point represented in torus coordinates (r,�, ) given by the ultra-
sound acquisition geometry the corresponding Cartesian coordinates (x, y, z)
are determined by formula 2.3.

Ultrasound Acquisition Geometry in Torus Coordinates. The to-
rus-shaped acquisition geometry results from the fact that the center of the
scan plane sector and the rotation center of the sweeping motor are not iden-
tical. In addition the radius of the torus ring R is smaller than even the
smallest radius coordinate rmin of the torus tube (R < rmin). This results in
a self-intersecting spindle torus instead of a standard ring torus (see Fig. 2.12)

We now describe the location of the 3D ultrasound volume (see Fig. 2.10)
in the torus coordinate system. The initial position of the ultrasound image
plane (2D scan) is associated to the (x, y) plane of the torus (see Fig. 2.11).
A point on a scan line is defined by the inner radius r of a torus and the
direction of a scan line in the image plane is determined by the angle �. The
image plane is then swept by the angle  in elevational direction. The image
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volume is delimited by minimal and maximal torus coordinates rmin, rmax,
�min,�max,  min, max.

The discrete 3D ultrasound image is then given on a torus grid inside this
bounded volume. Let m = (mr,m�,m ) 2 N3 be the number of grid points
in the coordinate directions r, � and  . The grid is uniformly sampled in
each coordinate direction leading to the following grid point distances in torus
coordinates:

hr =
1

mr � 1
(rmax�rmin), h� = 1

m
�

�1(�max��min), h = 1
m
 

�1( max� min).

(2.4)

In contrast to Cartesian grids the size and volume of the grid cells is not
uniform but is increasing with the radius r because the radial lines are running
apart with increasing r. The volume of a grid element or the whole scan volume
can be determined by the integral substitution rule for multiple variables. The
determinant of the Jacobian matrix of torus coordinates is

det J(r,�, ) =

����
@(x, y, z)

@(r,�, )

���� = r(R+ r cos( )) (2.5)

giving the volume of a torus part
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To get the volume of a single grid cell only the limits of the definite integral
have to be changed.

Conversion from Torus to Cartesian Grid. For reformatting an ul-
trasound volume originally given in torus coordinates onto a Cartesian grid,
we will use the inverse coordinate transformation, because for each Cartesian
grid point (x, y, z) its representation in torus coordinates (r,�, ) has to be
determined:
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�
 

1

A =

0

B@

p
(x2 + y2 �R)2 + z2

arctan( yx)
arctan zp

x2+y2�R

1

CA . (2.7)

Three steps are necessary to interpolate the ultrasound intensity value on a
Cartesian grid point (xi, yj , zk) from the given ultrasound intensity values on
the neighboured torus grid points:

1. Compute for each Cartesian grid point (xi, yj , zk) the corresponding
torus coordinates (r,�, ) via equation 2.7.

2. Determine the cell of the torus grid which contains the point (r,�, ).

3. Interpolate (linearly) the ultrasound intensity value at the torus coordi-
nate position (r,�, ) from the intensity values on the eight torus grid
points of the found torus grid cell.
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2.4.2 Iterative 3D Ultrasound-Based Navigation

In section 2.3 we explained how computer assisted modeling and planning
systems o↵er surgeons the possibility to perform detailed risk analysis and to
define optimal individual resection plans for liver surgery. The challenge is
to transfer the preoperative plan precisely and securely to the intraoperative
situation. The location of the tumor and relevant vessels is hidden underneath
the liver surface and the correct location of the resection line can only be esti-
mated. Intraoperative navigation systems support the surgeon by visualizing
the spatial relation of surgical instruments with respect to invisible anatomical
structures [154]. Conventional navigation systems based only on preoperative
data are not suitable for liver surgery, because the liver significantly deforms
between preoperative imaging and the surgical procedure. Thus, dedicated
navigation systems are based on either intraoperative liver surface informa-
tion acquired by range scanners [27] or intraoperative 2D [15, 167, 176] or 3D
ultrasound [10, 11].

Range scanners only capture the frontal part of the liver surface, yet signif-
icant features are rare on the surface. Furthermore, it is not clear how well
deformations deep inside the liver can be detected. This impedes the use of
range scanners for registration purposes. By contrast, 3D ultrasound directly
recovers volumetric regions, including tumors and important vessels.

First navigation systems based on 2D [19] and freehand 3D ultrasound [75,
235, 228] have been developed for neurosurgery to compensate brain-shift.
Commercial systems for 2D ultrasound (IGSonic from Brainlab and SonoNav
from Medtronic) and freehand 3D ultrasound (SonoWand from SONOWAND
AS, BrainNavigator from Localite) are available. The main di↵erence of our
novel system developed at the Charité [10, 11] to the SonoWand system is
the used 3D ultrasound technology. We use a mechanically steered 3D probe
instead of freehand 3D ultrasound. This 3D ultrasound technology and its
advantages are explained in section 2.4.1. The general principle of a 3D ultra-
sound based navigation system is similar to a conventional neuronavigation
system regarding instrument tracking and visualization. The di↵erence is
the use of intraoperative instead of preoperative image data and the kind of
registration to relate image space and physical patient space. No explicit reg-
istration is necessary. A position sensor is attached to the ultrasound probe
and the location of the probe during acquisition is measured. The location is
represented by a rigid transformation TS2, which describes the position and
the orientation of the sensor with respect to the global coordinate system of
the tracking camera (see Fig.2.13). If in addition the position and orientation
of the ultrasound image coordinate system is known in relation to the loca-
tion of the position sensor on the probe (TC2), also the spatial relationship
between image space and physical patient space is determined (see Fig. 2.13).
The process of computing the transformation (TC2) that converts the ultra-
sound image space into the coordinate system of the position sensor attached
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2.4. Intraoperative Imaging and Navigation

Figure 2.13 Principle of a navigation system based on intraoperative 3D ul-
trasound using a tracked 3D probe. On the left the di↵erent rigid transfor-
mations used in the system and on the right the principle assembly in the OR
are outlined.

to the probe is called calibration. As calibration is a time-consuming pro-
cess that has to be performed very precisely it is usually performed once and
a suitable mounting ensures a reproducible attachment of the position sen-
sor. A comprehensive overview of calibration techniques is given by Mercier
et al. [145]. Lindseth et al. [135] found that improper probe calibration was
the main contributor to the overall navigation inaccuracy of the SonoWand
system.

The location of the surgical instrument is measured (TS1) by a position
sensor attached to it. Again a rigid calibration transformation (TC1) is needed
to determine the tip of the instrument (see Fig. 2.13). Now the current location
of the instrument tip in the 3D ultrasound volume can be visualized to the
surgeon (see Fig. 2.14). Display techniques may be conventional orthogonal
slices oriented to the patient (axial, sagittal, coronal), from the surgeon’s view,
or only defined by the position and orientation of the surgical tool. In any
plane slicing, only one slice defined by the position and orientation of the
surgical tool is displayed from each 3D volume. In our system we usually use
two slices (see Fig. 2.14). The first slice is approximately sagittally oriented
and moves with the instrument tip from left to right. The second slice is
approximately coronally oriented and usually manually aligned to the location
of the tumor. It can also be tilted to adjust it to the direction of an important
vessel.

It is important to keep in mind that an intraoperatively acquired ultrasound
volume is only a snapshot of the anatomy at this point in time. If the liver
tissue is significantly deformed during tissue resection another 3-D update (ul-
trasound acquisition) has to be acquired. Such types of navigation systems
are also called iterative systems [134]. Until now we just visualize the preop-
erative 3D model separately to the intraoperative ultrasound slices. Oldhafer
et al. [167] rigidly registered the preoperative CT data and intraoperative 2D
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Figure 2.14 A photo of our 3D ultrasound-based navigation system in the OR
(left) and the intraoperative visualization (right) are shown.

ultrasound data via vascular landmark features. No information about the re-
sulting accuracy is given. Peterhans et al. [176] used external landmarks on the
liver surface for a rigid registration. They report a median root mean square
distance of 6.3 mm between corresponding landmarks. This is also called the
fiducial registration error (FRE), which does not allow a statement about the
more important target registration error (TRE). For a detailed discussion on
accuracy aspects concerning the FRE and TRE see chapter 13. There might
be cases where the tumor location is close to possible point landmarks for ex-
ample in the left liver lobe, but according to our experiences the registration
error after rigid registration based on external landmarks is higher than 1 cm
in many situations. Even if vessel center lines are used for rigid registration
significant deformations remain [115]. Due to the mentioned deformations of
the liver a reliable non-rigid registration algorithm is needed to transfer the
preoperative model and plan to the intraoperative 3D ultrasound data.

2.4.3 Continuous Navigation Based on Electromagnetic Tracking

The disadvantage of a navigation concept with an iterative intraoperative
imaging modality as described in the previous section is the lack of information
about organ movements and deformations in the time period between two
intraoperative image acquisitions. The surgeon does not know when it is
necessary to acquire a new image volume due to movements or deformations.
The ultimate solution would be a continuous 3D imaging, which is theoretically
possible with MRI, 3D C-Arms or 3D ultrasound, but only few attempts have
been undertaken to use it in clinical navigation [31]. A compromise is to
directly measure motion at some points (or even surface regions) on or inside
the liver. These measurements can then also be used to indicate to the surgeon
that significant deformations have occured. The movements and deformations
also might be compensated based on the measurements and a deformation
model.
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2.4. Intraoperative Imaging and Navigation

Figure 2.15 Principle of the electromagnetic navigation system. The gray
rectangles are the sensor coils; their positions and orientations are measured
by the electromagnetic tracking system Aurora (NDI inc.).

Possibilities for such a continuous monitoring are optical fiducial needles
introduced by Meier-Hein et al. [139] for percutaneous radiofrequency ablation
of liver lesions or needles with color-coded heads which can be tracked with an
endoscopic video camera for laparoscopic interventions [9]. The disadvantage
of such optical trackers is that they have to be placed outside the liver due to
line-of-sight restrictions of optical systems.

A promising direction to measure motion and deformations directly inside
an organ are electromagnetic tracking technologies. The standard tracking
technology for intraoperative navigation is optical tracking. This is due to the
high accuracy and reliability of such systems. The main disadvantage of op-
tical tracking systems is again the free line-of-sight issue. In contrast to that
electromagnetic systems also can measure locations inside the body, because
the used electromagnetic fields permeate tissue. Electromagnetic systems con-
sist of a control unit where a field generator emitting the electromagnetic fields
and sensor coils are connected via cables. The principle is that electromag-
netic fields with three di↵erent spatial directions are emitted which induce
currents in the sensor coils. By measuring the currents the 3D position and
orientation of the sensor coils can be determined.

The main limitations of electromagnetic systems are their smaller measure-
ment volume, lower accuracy and most importantly their higher interference
liability due to metallic instruments and other electromagnetic fields. Al-
though compensation strategies and redundancy control have been developed
this is still an active field of research. Further and more detailed information
about electromagnetic tracking systems can be found in [14]. Recently sensor
coils with ever smaller diameters below one mm have been developed enabling
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their insertion directly into the liver [269]. We developed an electromagnetic
navigation system for continuous movement and deformation detection [116].
A drawing of the developed electromagnetic navigation system is shown in
Fig. 2.15. The basis of the navigation system is the electromagnetic tracking
system Aurora from Northern Digital Inc.(NDI). The spatial position and ori-
entation of 5 and 6 degrees of freedom (DOF) sensor coils are measured by
the system. This means a 5 DOF sensor coil measures translations in three
directions and rotations about two axes. The rotation around the sensor axis
can not be determined, in contrast to a 6 DOF sensor coil. Like for the op-
tical navigation system in the previous section a 3D ultrasound machine (GE
Voluson 730 Expert) is again used for intraoperative imaging. The position
and orientation of the ultrasound probe is measured by a 6 DOF sensor coil
while the position and orientation of a surgical instrument are measured by
two 5 DOF sensor coils. We developed anchor sensor coils, which are inserted
and fixed in the liver tissue, can be sterilized and are biocompatible. A 5D
sensor coil with a diameter of 0.8 mm and a length of 11.0 mm has been inte-
grated into a shrinkable tubing together with a marker wire usually used for
the preoperative marking of breast lesions (Fig.2.16 left). This marker wire
has two wire tips which are anchored in the tissue (Fig.2.16 right). The anchor
sensor coil is inserted by a cannula and can also easily be pulled back into the
cannula to reposition or remove the anchor. At least two of the 5 DOF anchor
sensor coils have to be inserted into the liver to measure a translation (three
directions) and rotation (around three axes) of the tissue. We assume that in
clinical practice not more than four sensor coils will be inserted into the liver.
The anchor sensor coils are placed close to relevant anatomical structures like
important vessels or a tumor.

Each 5 DOF anchor sensor coil provides the position of a point inside the
liver and a direction at this point (rotation about two axes). When the intra-
operative ultrasound image is acquired the reference positions p1, . . . , pn and
directions d1, . . . , dn of the anchor sensor coils are also measured. After image
acquisition during the actual intervention the positions and directions of the
sensors are continuously measured. If the liver tissue in the surgical region of
interest moves without deforming significantly and the sensors are close to this
region the movement of the region can be measured by the sensors. For the
compensation of the movement a rigid transformation has to be determined
which transforms the ultrasound volume to the current position of the surgi-
cal region. This transformation can be computed by a landmark-based rigid
registration of the positions and directions of the sensors during image acquisi-
tion onto their current positions and directions. We have published a method
how to detect deformations from the sensor information [116]. Deformations
might be compensated by non-rigid registration schemes on landmarks with
directions, e.q., Rohr et al. [194] presented a thin-plate spline approach which
considers directional information.
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Figure 2.16 The size of a small anchor sensor coil compared to a one cent coin
(left) and inserted into the liver during a resection (right).

2.5 Conclusions

In summary rigid and non-rigid registration is needed for di↵erent tasks in
computer assisted liver surgery: in intraoperative navigation systems based
on 3D ultrasound to transfer the preoperative plan onto the patient, also
during the actual resection to track liver motions and detect deformations,
and last but not least for the quantitative postoperative control to validate
the navigation system and individual success of a liver resection.
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Variational Image Registration
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Chapter 3

The Registration Problem

3.1 Introduction

Although there are a large variety of registration methods, most of them are
based on similar principles. In the majority of cases a functional depend-
ing on a) the intensities or features of the involved images and b) on the
wanted transformation function is formulated, such that the minimum of the
functional is achieved for a transformation, which maps each point in the
one image to the corresponding anatomical point in the other image. The
topic of this chapter will be: How the registration problem is formalized to
an optimization problem, how the continuous problem can be discretized and
numerically solved and how multiscale and multiresolution strategies can help
to avoid local minima and accelerate the registration process. For the ease of
notation and understanding everything is formulated for 3D images, but 2D
and higher dimensions are also possible in most cases.

3.2 Problem Statement

We start with a formulation of the general registration problem of two images.

General Registration Problem. Let be given two images; a reference
image R and a template image T . Find a plausible mapping (transforma-
tion) y which transforms T onto R, such that T � y gets more similar to R.
Optionally some constraints on y might have to be fulfilled.

Although digital medical images are discrete data, we first define the used
registration approach in a continuous setting and than present suitable dis-
cretizations. We formalize R, T as compactly supported images on a usually
cube-shaped domain ⌦ ⇢ R3:

R, T : ⌦ ! R (3.1)

and let T be distorted by a transformation

y : R3 ! R3. (3.2)
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3. The Registration Problem

The main idea is to formalize registration as a variational problem, that means
an optimization over a functional. The modeling of this functional has to
answer the following questions:

What does plausible transformation mean?

What does similar mean?

How can constraints be incorporated?

We first give some general and intelligible answers, before a detailed mathe-
matically modeling is performed.

The first question concerns the comparison of images. Two images are said
to be similar, if spatial positions of corresponding image contents are close
to each other. To quantify this similarity we define distance (or similarity)
measures D which depend on the reference image R and the transformed
template image T � y. Those measures are functionals which return a single
value for the two image functions and a given transformation. This means
the distance measure depends on the transformation: D = D[y]. The distance
measures are either based on the original intensity data of the images or on
processed data emphasizing or extracting special image features. Distance
measures are presented in detail in Part II.

The second question concerns the transformation. The definition of a dis-
tance measure alone is not su�cient to ascertain a registration task, as the
class of transformations is huge and some really “ugly” ones are among them,
which might also give low distance measure values. A class of admissible
transformations y 2 M has to be defined, which includes only plausible trans-
formations for a given application from a function space M. For medical
images those transformations are usually smooth and abrupt changes might
only occur, if organs slip along other organs or surgical interventions have been
performed between both images. It is often assumed that the tissue behaves
approximately like an elastic material. The set of admissible transformations
might be explicitly defined by parameterization or implicitly by a so-called
regularizer S or additional constraints of desired properties of the transforma-
tion. The second approach is called the nonparametric registration approach.
Standard regularizers are defined in Chapter 6. Additional constraints on the
transformation y can be introduced as a penalizer P to the registration func-
tional J or as hard equality or inequality constraints on y. Constraints and
penalizers are explained in more detail in Chapter 10.

Now we assemble the distance measure D, the regularizer S and an optional
penalizer P to a general framework for registration. Let y0 2 M be a start or
pre-registration transformation which is part of the current overall transfor-
mation y but should not be considered by the regularizer. The scalar factors
↵,� 2 R+ weight the distance measure D, the regularizer S and the optional
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penalizer P. Additional equality or inequality constraints on y are described
by y belonging to some function subspace M fulfilling the constraints. Now
the joint registration functional J is defined as:

J [y] = D[T (y),R] + ↵S[y � y0] + �P[y]
y! min (3.3)

s.t. y 2 M (3.4)

Depending on the imaging properties and additional knowledge about the
image contents particular choices for the distance measure, the regularizer,
the penalizer and the function space are performed. Usually only a subset
of these building blocks is used and specified for a given application. For
example, in the standard nonparametric approach only the distance measure
and the regularizer are defined:

J [y] = D[T (y),R] + ↵S[y � y0]
y! min. (3.5)

Further and other specifications of the building blocks of the registration func-
tional will be presented in this work.

In some cases it may be advantageous to parameterize the transformation
y. This means y can be represented as a linear combination of p basis func-
tions qk(x) : R3 ! R3, k = 1, . . . , p and the linear coe�cients �k 2 R are
the parameters which are optimized. If the basis functions are collected into
a matrix Q(x) = [q1(x) . . . qp(x)] we get the compact representation of the
parameterized transformation y:

y(�;x) = Q(x)� with Q 2 R3⇥p, � 2 Rp. (3.6)

Typical parametric transformations are rigid, a�ne-linear and spline trans-
formations (see Sec. 7). Usually no regularizer is applied for parameterized
transformations. A simple parametric registration functional looks like:

J (�) = D[T (y(�)),R] + ↵S(�) �! min. (3.7)

Now the optimization is performed with respect to the parameters � and not
directly with respect to y.

3.3 General Solutions

Only few registration problems like rigid and some non-rigid landmark-based
schemes are analytically solvable. In most cases the continuous optimiza-
tion problems have to be solved numerically. Di↵erent general numerical ap-
proaches exist [36]. We will highlight two approaches to show their principal
di↵erences and will then concentrate on one of the approaches, which is used
in our work.
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Important questions are when and how to discretize the problem to get a
numerically solvable formulation. One possibility is to transfer the continuous
optimization problem into partial di↵erential equations (PDEs). These equa-
tions are also called Euler-Lagrange equations and their solution fulfills the
necessary optimality condition of the continuous problem. Then the PDEs
are discretized and the resulting linear systems solved [147]. This approach
is also called Optimize-Discretize approach. Fast solution methods for the
resulting highly structured linear systems have been developed for di↵erent
regularizers [147].

In this work we focus on an alternative approach which is called Discretize-
Optimize approach. First the continuous optimization problem is discretized
to a finite-dimensional optimization problem. Then the whole framework of
optimization algorithms for finite-dimensional problems can be applied. The
advantage of this approach is that by discretization the registration problems
can be transfered to quite general optimization problems, for which a lot of
theoretical and practical knowhow exists.

In the following, we will define discrete images and how they can be trans-
formed by discrete transformations, we will explain some basics and algo-
rithms for general unconstrained and constrained finite-dimensional optimiza-
tion problems. Then we will define some regularizers and how they are dis-
cretized and discuss a distance measure and its discretization exemplarily.
Distance measures are discussed in more detail in chapter 8. We then have all
ingredients to apply the general nonparametric registration framework devel-
oped by the registration group of Prof. Dr. Bernd Fischer at the University
of Lübeck. More details and examples about the framework can be found in
the PhD thesis of Dr. Nils Papenberg [170] and the book of Prof. Dr. Jan
Modersitzki [150].
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Chapter 4

Discrete Images and Transformations

4.1 Introduction

For the development of reliable and e�cient registration algorithms based
on numerical optimization schemes appropriate discretizations of the images
and the transformation are essential. Although the original images coming
from an imaging device are already discrete we will generate a continuous
imaging model and discretize the images again. This is because we have to
be able to transform the template image and to use resolutions which di↵er
from the original resolution e.g., in a multiresolution framework or just to
match di↵erent resolutions of reference and template image. The discrete
images and discrete transformations are defined on regular grids where each
grid point is assigned a scalar-valued intensity value (for images) or a vector
valued displacement vector (for transformations). The regular grids are the
basis of the finite di↵erences schemes used for discretization of the registration
problems. We start with the definition of regular cell-centered grids.

4.2 Cell-Centered Grids

4.2.1 Introduction

A grid is a partitioning of a part of the space (for example the image domain)
with a set of grid cells. The grid cells are defined by a set of grid points,
which are connected by a set of grid lines. Grids with di↵erent topology
and geometry exist. An example of a curvilinear grid results from the torus
imaging geometry of the 3D ultrasound probe (Sec. 2.4.1). Here we only
discuss regular grids. The grid cells of regular grids are identical as opposed
to the mentioned curvilinear grids where the size of the cells di↵ers. In our case
the grid cells are (anisotropic) cuboids and not cubes, because in tomographic
images the slice thickness is often bigger than the resolution in the slice. The
grid cells are called voxels (volume elements) in image processing. We identify
each image voxel with a cell-centered grid point.
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4. Discrete Images and Transformations

We will focus on cell-centered grids xcc because in addition to the discrete
images the distance functionals and most of the regularizers will also be dis-
cretized on cell-centered grids. For the discretization of the elastic regulariza-
tion functional it is important to use short di↵erences for the discretization
of the derivatives of the displacement vector field [78]. Short di↵erences are
able to capture high frequent oscillations and lead to numerically more sta-
ble discretization schemes. These short di↵erences are defined on points in
the middle between the cell-centered grid points. These intermediate points
can be interpreted as an own type of grid. This grid type is called staggered
grid (xstg) and will be defined in more detail in Chapter 6 when the elastic
registration functional is discretized.

4.2.2 Notations and Terms

Some notations and terms are introduced which are helpful for the definition
of three dimensional grids.

1. Let A 2 Rm⇥n be a matrix with m rows and n columns. Following the
MATLAB notation Ak,: denotes the k-th row and A:,l the l-th column
of the matrix A.

2. Let x 2 Rn be a n-dimensional column vector. Again in MATLAB
notation a subvector xm:l represents the elements m to l of the vector x
(with 1  m  l  n).

3. Let 1n 2 Rn denote a column vector where all entries are one: 1n =
(1, 1, . . . , 1)T .

4. For a matrix A 2 Rm⇥n and a matrix B 2 Rp⇥r their Kronecker
product C = A⌦B 2 Rmp⇥nr is defined as:

C = (aij ·B)i=1,...,m;j=1,...,n =

0

B@
a11B · · · a1nB
...

. . .
...

am1B · · · amnB

1

CA .

The Kronecker product is not commutative: A⌦B 6= B ⌦A.

4.2.3 One-Dimensional Grids

At first we will define one-dimensional cell-centered grids which can be used
to define three-dimensional cell-centered grids. If an interval (!1,!2) ⇢ R
is divided into m 2 N equally sized cells of size h = (!2 � !1)/m 2 R the
midpoints of the cells define a one-dimensional cell-centered grid. The
coordinates of the grid points will be stored in vectors. The according vector
for a cell-centered grid looks like

xcc 2 Rm with (xcc)k = !1 +

✓
k � 1

2

◆
h, k = 1, . . . ,m. (4.1)
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4.2.4 Three-Dimensional Grids

Let a rectangular cuboid ⌦ = (!1,!2) ⇥ (!3,!4) ⇥ (!5,!6) be the 3D image
domain and m = (m1,m2,m3) the number of cells/voxel in each coordinate
direction. Let the number of all grid cells be n = m1 ·m2 ·m3 and the size of
the cells in each coordinate direction be hl =

1
m

l

(!2l � !2l�1), l = 1, 2, 3. For
the cell (i, j, k) with i = 1, . . . ,m1, j = 1, . . . ,m2, k = 1, . . . ,m3 the midpoint
xi,j,k 2 R3 is:

xi,j,k =

✓
!1 + (i� 1

2
)h1,!3 + (j � 1

2
)h2,!5 + (k � 1

2
)h3

◆T

. (4.2)

If we traverse all cells (i, j, k) in lexicographical ordering: firstly increase the
index i in x1 direction, secondly the index j in x2 direction and lastly index k
in x3 direction, then we can represent the grid as a matrix x̄cc 2 Rm

1

m
2

m
3

⇥3

containing all cell midpoint coordinates. One row of the matrix looks like:

(x̄cc)i+m
1

j+m
1

m
2

k,: = xTi,j,k. (4.3)

For the optimization framework we need a representation of the grid as one
long vector. Therefore we write the matrix x̄cc column-wise in a vector xcc 2
R3m

1

m
2

m
3 by means of the vec-operator:

xcc = vec(x̄cc) =

0

@
x̄cc:,1
x̄cc:,2
x̄cc:,3

1

A . (4.4)

The long vector notation can be transfered back to the matrix (coordinate
vector) representation by:

x̄cc = (xcc
1:n xcc

(n+1):2n xcc
(2n+1):3n) (4.5)

with n = m1m2m3.

We illustrate this notation by a small example. Let a 2D grid with dimen-
sions m = (3, 2) be defined on the domain ⌦ = (0, 3) ⇥ (5, 7). In matrix
representation the cell-centered grid is given by:

x̄cc = ((0.5 5.5); (1.5 5.5); (2.5 5.5); (0.5 6.5); (1.5 6.5); (2.5 6.5)) (4.6)

and the corresponding long vector notation looks like:

xcc = (0.5 1.5 2.5 0.5 1.5 2.5 5.5 5.5 5.5 6.5 6.5 6.5)T . (4.7)

Three-dimensional grids can be constructed from one-dimensional grids using
the Kronecker product defined in the notation section 4.2.2. Let xcc

1 2 Rm
1

be a 1D cell-centered grid in x1-direction, xcc
2 2 Rm

2 in x2-direction and
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xcc
3 2 Rm

3 in x3-direction. Then a 3D cell-centered grid xcc 2 R3m
1

m
2

m
3

represented by one long vector can be constructed from these 1D grids by

xcc =

0

@
1m

3

⌦ 1m
2

⌦ xcc
1

1m
3

⌦ xcc
2 ⌦ 1m

1

xcc
3 ⌦ 1m

2

⌦ 1m
1

1

A . (4.8)

We explain this definition by the above 2D example. Let the one-dimensional
grids be xcc

1 = (0.5 1.5 2.5)T and xcc
2 = (5.5 6.5)T . Then the two-dimensional

grid is constructed by:

xcc =

✓
1m

2

⌦ xcc
1

xcc
2 ⌦ 1m

1

◆
=

0

@
✓
1
1

◆
⌦
0

@
0.5
1.5
2.5

1

A ;

✓
5.5
6.5

◆
⌦
0

@
1
1
1

1

A

1

A (4.9)

= (0.5 1.5 2.5 0.5 1.5 2.5 5.5 5.5 5.5 6.5 6.5 6.5) (4.10)

Be aware of the e↵ect if the 1n vector is Kronecker multiplied before or after
a 1D coordinate vector. In the first case the coordinate vector is repeated as
a whole while in the second case the single coordinates are repeated.

We define the notation xcc(⌦,m) for a cell-centered grid with dimensions
m on the domain ⌦ in vector notation and x̄cc(⌦,m) in matrix (coordinate
vectors) notation.

4.3 Continuous Images and their Multiscale Representation

In the introduction of this chapter we already mentioned that we need to
model continuous images from the original discrete images acquired by imaging
devices. A continuous image T is just a function which maps each point in
3D space (resp. in the image domain ⌦) to a scalar intensity value: T :
R3 ! R. A discrete image T 2 Rn is a vector which contains intensity
values of the continuous image model at the grid points of a cell-centered grid
x = xcc(⌦,m):

T := T (x) = T (x̄) = [T (x̄j,:)]
n
j=1. (4.11)

The dimension n = m1m2m3 of the vector matches the number of grid points
and the intensity values are sorted in the same ordering as the grid points.

The resolution of the cell-centered grid can theoretically be chosen arbitrar-
ily such that the resolution of an original discrete image Torig can be changed
by generating a continuous image model T based on the original image and
sample the continuous image on a grid with the new resolution. This makes it
possible to match the resolution of reference and template image. In addition
multi-resolution approaches are possible as will be discussed later.
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4.3. Continuous Images and their Multiscale Representation

In addition the intensity values of the transformed template image can be
computed. Therefore the grid of the reference image is transformed by a dis-
crete transformation y 2 R3n and the intensity values of the continuous tem-
plate image T at the transformed grid positions are evaluated. This means
for the reference and the template image the same number of grid points are
evaluated in the discrete distance measure as will be shown later. Before we
formalize the transformation of the template image we determine a discrete
transformation from the continuous transformation y : R3 ! R3. The dis-
crete transformation ȳ 2 Rn⇥3 defined on the grid x (see above) contains the
transformed position of each grid point by row:

ȳ = y(x̄) = [y(x̄j,:)
T ]nj=1. (4.12)

Like for the grids the (n⇥3) matrix x̄ is transfered into a long vector y 2 R3n

to fit to the general optimization framework by stacking the matrix column-
wise by the vec-operator:

y = vec(ȳ) =

0

@
ȳ:,1

ȳ:,2

ȳ:,3

1

A . (4.13)

Now we can express the transformed template image with the discrete trans-
formation y. The continuous model of the template image T is evaluated at
the transformed grid positions:

Ty := T (y) =

0

BBB@

T (y1,y1+n,y1+2n)
T (y2,y2+n,y2+2n)

...
T (yn,y2n,y3n)

1

CCCA
(4.14)

with the abbreviation Ty 2 Rn for the transformed discrete template image.

Because the registration functional has to be optimized with respect to
the transformation y the derivative (Jacobian) of the transformed template
image is important to enable e�cient optimization algorithms. Since the jth
component of Ty depends only on yj ,yj+n,yj+2n the (n⇥3n) Jacobian matrix
of Ty is a block matrix with diagonal blocks:

dTy =

✓
@Tj(y)

@yk

◆

j=1,...,n, k=1,...,3n

(4.15)

=
�
dy

1:n

Ty, dy
n+1:2n

Ty, dy
2n+1:3n

Ty
�

(4.16)

=
�
diag(@1T (y)), diag(@2T (y)), diag(@3T (y))

�
. (4.17)

Until now we can discretize continuous images and transformations onto arbi-
trary regular grids, determine a discrete transformed template image from the
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4. Discrete Images and Transformations

continuous template image and a transformation and compute the derivative
of the transformed template image with respect to the transformation.

The open question is how we can generate a good continuous image model
T from a given original discrete image T orig? Two ingredients are important
for a good image model: an interpolation (resp. approximation) method and
a scale-space approach. The interpolation method enables the computation of
image intensities at arbitrary points that do not lie on the grid of a discrete
image. In a scale-space an image is considered on di↵erent scales by represent-
ing the image as a one-parameter (the scale) family of smoothed images. The
higher the scale parameter the more details in the image are smoothed away.
A scale-space or multi-scale approach is important to find an adequate scale
for an aimed resolution defined by the grid onto which the image is sampled.
The adequate scale prevents undersampling and resulting aliasing artifacts.
In image registration di↵erent scales and resolutions are used to make the
optimization process more robust and faster. We will discuss multi-scale and
multi-resolution approaches in more detail.

In summary for the computation of a continuous image we first represent
an image on an adequate scale and then interpolate image intensities based
on this scale. We will start with the presentation of interpolation methods
for 3D images. Let the original discrete image T orig be defined on the original
grid xorig = xcc(⌦,morig) with the original number of voxels norig = morig

1 ·
morig

2 ·morig
3 and voxel sizes horig. To build a continuous image model T , we

usually look for a continuous interpolation function I : R3 ! R with:

I(x̄j,:) = T orig
j for j = 1, . . . , n. (4.18)

This means the image model agrees at the grid points with the intensity values
of the original discrete image.

Many di↵erent interpolation functions for 3D images can be found in liter-
ature [143]. Linear interpolation is a easy to implement and e�cient scheme
but the resulting interpolation function is not di↵erentiable at the grid points,
which is an important prerequisite for many e�cient optimization schemes.
Interpolation with cubic splines (piecewise polynomial functions) is a good
compromise between smoothness and e�ciency. Splines possess many out-
standing theoretical and practical properties. For a nice overview see the
work of Michael Unser [233]. Due to the noise in medical images an exact
fit by interpolating splines may not be desirable. In addition splines tend to
produce overshoots between grid points.

Therefore we relax the interpolation constraint to an approximation con-
straint:

I(x̄j,:) ⇡ T orig
j for j = 1, . . . , n. (4.19)

Smoothness conditions on the approximating function are added to get a well-
posed problem. Interestingly there are natural smoothness conditions, which
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4.3. Continuous Images and their Multiscale Representation

lead again to splines as solutions of the approximation problem. These splines
are also called smoothing splines and will be presented in the next section.

4.3.1 One-dimensional Splines

Splines are smooth piecewise polynomial functions. The paper of Schoenberg
[207] from 1946 is probably the first mathematical reference where the word
spline is used for such functions. The term spline stems from ship building.
A spline is a thin wooden strip which is fixed at some points and is bending
like a cubic spline with natural boundary conditions. The spline attempts to
minimize the inner strain by the bending.

The bending energy is approximated by integration over the square of the
second derivate of the interpolation function I : R ! R:

Sspline[I] =

Z

⌦
(I 00(x))2 dx. (4.20)

Given some data T orig 2 Rn on a one-dimensional grid x 2 Rn the solution of
the optimization problem constrained by the interpolation conditions

Sspline[I]
I! min subject to I(xj) = T orig

j for j = 1, . . . , n (4.21)

is a cubic spline (see for example [147]) and can be represented by a linear
combination of some basis functions:

Ispline(x) =
nX

j=1

cjb
j(x). (4.22)

In order to get an easy indexing of the basis functions we linearly map the
domain ⌦ = (!1,!2) onto the interval (0.5, n + 0.5) where x0 ! x = (x0 �
!1)/h+ 0.5. Thus the grid cell centers xj = !1 + (j � 0.5)h are mapped onto
j. Now the basis functions bj(x) are determined by shifting (bj(x) = b(x� j))
only one single basis function:

b(x) =

8
>>>>>><

>>>>>>:

(x+ 2)3, �2  x < �1,

�x3 � 2(x+ 1)3 + 6(x+ 1), �1  x < 0,

x3 + 2(x� 1)3 � 6(x� 1), 0  x < 1,

(2� x)3, 1  x < 2,

0, else.

(4.23)

The coe�cients c = [c1; . . . ; cn] can easily be computed by solving the linear
system

Pn
j=1 cjb

j(xk) = T orig
j or with the tridiagonal matrix B = [bj(xk)] 2

Rn⇥n in matrix notation: Bc = T orig.

The coe�cients are computed once and then for each point x in the domain
the spline interpolation function can be e�ciently evaluated. At first the grid
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4. Discrete Images and Transformations

cell, which contains the point x, is determined. It is assumed that the domain
has been linearly mapped onto (0.5, n+ 0.5) (see above). The point x is split
into an integer part p = bxc and a remainder ⇠ = x� p leading to: x = p+ ⇠.
At most four basis functions are nonzero for x because b(x) = 0 for x /2 (�2, 2).
Thus the evaluation of the spline interpolation function reduces to:

Ispline(x) = cp�1b(⇠ + 1) + cpb(⇠) + cp+1b(⇠ � 1) + cp+2b(⇠ � 2). (4.24)

Approximative Smoothing Splines

As we mentioned already in the previous section relaxing the interpolation
conditions to an approximative scheme enables the consideration of noise and
prevents overshoots. Therefore a data-fitting term is defined which measures
how well the continuous model function I : R ! R fits the given data T orig 2
Rn on the grid points x 2 Rn:

D[I] =
���I(xj)� T orig

j

���
2
. (4.25)

Now a model function is needed, which is smooth on the one hand and fits
the data as well as possible on the other hand:

D[I] + ✓Sspline[I]
I! min (4.26)

where Sspline is again an approximation to the bending energy of I. A smooth
function I has a low value of Sspline. With the weighting factor ✓ > 0 the
smoothing is weighted against the data fitting term. For big values of ✓ the
resulting model function will be smooth but the approximation of the data
points will be low. For small values of ✓ the approximation of the data will
be better but the model function will be less smooth. This is illustrated in
Fig. 4.1 compared to the interpolating cubic spline. The overshooting (os-
cillations of polynomials) of the interpolating spline between data points is
recognizable. For the smoothing splines the overshooting is decreased with
increasing ✓. For ✓ ! 1 the smoothing splines degrade to a straight line the
smoothest possible model function. Interestingly the solution of the approx-
imation problem is again a cubic spline which is again parameterizable like
above. Those approximating splines are also called smoothing splines. The
solution can be found by rewriting the approximation problem such that it
depends on the coe�cients c 2 Rn. Then the bending energy Sspline can be
written as:

Sspline(I) =

Z

⌦
(I 00(x))2 dx =

Z

⌦

0

@
nX

j=1

cjb
00
j (x)

1

A
2

dx (4.27)

=
nX

i=1

nX

j=1

cicj

Z

⌦
b00i b

00
j (x)dx = cTMc = kckM (4.28)
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4.3. Continuous Images and their Multiscale Representation

Figure 4.1 Smoothing splines approximating the black dots with smoothing
weights ✓ = 2 (dashed-dotted line), ✓ = 10 (dashed line) and ✓ = 100 (dotted
line). The interpolating cubic spline is plotted as a solid line.

with I(x) =
Pn

j=1 cjbj(x) and Mij =
R
⌦ b00i b

00
j (x)dx.

Now the approximation problem 4.26 can be written depending on the spline
coe�cients using the model matrix B defined for the interpolating splines:

��Bc� T orig
��2 + ✓cTMc

c! min. (4.29)

The solution of this minimization problem can be found via the following
normal equations:

(BTB + ✓M)c = BTT orig. (4.30)

We see that the matrix M acts as a regularizer compared to the pure inter-
polation problem which we get for ✓ = 0.

4.3.2 Three-dimensional Splines

One-dimensional splines can be extended quite easily to multivariate splines.
Here we only consider the case of three-dimensional splines. Three-dimen-
sional spline basis functions bijk : R3 ! R can be written as a product of
one-dimensional spline basis functions bi, bj , bk : R ! R:

bijk(x) = bi(x1) · bj(x2) · bk(x3) (4.31)

with x = (x1, x2, x3). For each coordinate direction a one-dimensional basis
function is applied.
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4. Discrete Images and Transformations

Now the three-dimensional spline function Ispline : R3 ! R can be written
as a linear combination:

Ispline(x) =
m

1X

k=1

m
2X

j=1

m
3X

i=1

cijkbijk (4.32)

where m1,m2,m3 are the number of grid points in the respective coordinate
directions.

The n = m1 · m2 · m3 coe�cients c 2 Rn for an interpolating three-
dimensional spline are again computed via a linear system of equations

Bc = T orig. (4.33)

The system matrix B 2 Rn⇥n is constructed from the system matrices B1 2
Rm

1

⇥m
1 , B2 2 Rm

2

⇥m
2 , B3 2 Rm

3

⇥m
3 of the one-dimensional splines. We ex-

plain the basic idea for the 2D case. First the coe�cients for the interpolation
in x1-direction are determined by the system matrix B1 for each of the m2 grid
lines. This can be expressed by the Kronecker product: (Im

2

⌦B1). Then the
resulting coe�cients are interpolated in x2-direction for each of the m1 grid
lines, which again can be expressed by the Kronecker product: (B2⌦Im

1

). At
the end we get for the 2D case:

(B2 ⌦ Im
1

)(Im
2

⌦B1)c = T orig. (4.34)

The matrix product of the two Kronecker products can be simplified using
(A⌦B)(C ⌦D) = AC ⌦BD leading to the 2D system matrix

B2D = B2 ⌦B1. (4.35)

The derivation of the system matrix B3D for the 3D case is straight forward
and leads to: B3D = (B3⌦Im

2

⌦Im
1

)(Im
3

⌦B2⌦Im
1

)(Im
3

⌦Im
2

⌦B1) (see also
in Papenberg [170]). Again the term can be simplified (see Modersitzki [150])
and we get:

B3D = B3 ⌦B2 ⌦B1. (4.36)

The determination of the coe�cients for approximating 3D splines is also car-
ried out by means of Kronecker products and can be found in Papenberg [170]
and Modersitzki [150].

Derivatives of 3D Splines

The partial derivatives of a 3D spline function can be computed quite easily
because only one of the three one-dimensional splines depends on the given
coordinate direction:

@1I
spline(x) =

m
1X

k=1

m
2X

j=1

m
3X

i=1

cijkb
0
1(x1)b2(x2)b3(x3). (4.37)
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4.3. Continuous Images and their Multiscale Representation

The derivative b01(x1) can be computed from the definition of the one-dimen-
sional spline basis function (see Eq. 4.23). The derivatives with respect to the
coordinate directions x2 and x3 are computed in the same fashion.

4.3.3 Multiscale Representation of Images

Lindeberg expressed the importance of the scale concept in the introduction
of a review paper [132]:

We perceive objects in the world as meaningful entities only over
certain ranges of scale. A simple example is the concept of a
branch of a tree, which makes sense only at a scale from, say,
a few centimeters to at most a few meters. It is meaningless to
discuss the tree concept at the nanometer or the kilometer level.
At those scales it is more relevant to talk about the molecules that
form the leaves of the tree, or the forest in which the tree grows.
[...]

This fact, that objects in the world appear in di↵erent ways de-
pending on the scale of observation, has important implications if
one aims at describing them. It shows that the scale concept and
the notion of multi-scale representation are of crucial importance.

A nice example for the need of multiscale representations are maps. In car-
tography maps are produced at di↵erent levels of abstraction. A map of the
whole world only contains countries, big islands and some of the major cities.
In a regional map towns, small villages, streets and small rivers are shown.
In a city guide even buildings might be mapped. On Google maps the scale
slider is an important feature to adjust the needed level of detail.

In image processing multiscale representations of images are a fundamental
concept to extract information from the images on a reasonable level of detail
or to find an appropriate model of the image as a basis of image processing
algorithms for segmentation or registration. The theory of multiscale repre-
sentations is called scale-space theory [255, 102, 133]. The term scale-space
has been introduced by Witkin [255]. A multiscale representation of an im-
age is a family of continuous models L(x, t) of the image with the continuous
spatial scale parameter t 2 R+

0 . The bigger the parameter t the smoother the
image and the less details are recognizable. For t = 0 one gets the original
image L(x, 0) = T orig.

The most prominent scale-space is the linear (di↵usion) scale-space [255].
The linear scale-space is generated by convolution of an image with Gaussian
kernels of increasing width (variation �2). The resulting scale-space family
is equivalent to the solution of the linear di↵usion equation. We will use the
Gaussian scale-space to model vessel trees and define a new distance measure
in Chapter 9.
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4. Discrete Images and Transformations

The intuitive properties a scale-space should possess have been formalized
into di↵erent scale-space axiom systems [132]. Koenderink [102] introduced
the concept of causality, which means that new level sets must not appear
with increasing scale parameter. This formalizes the crucial requirement that
structures at coarse scales should be simplifications of corresponding struc-
tures at finer scales. No new structures should accidentally appear on coarser
scales by the smoothing operation. If causality is combined with isotropy and
homogeneity Koenderink [102] showed that such a scale-space representation
must satisfy the di↵usion equation and thus leads uniquely to a Gaussian
scale-space. Isotropy means that all spatial positions and homogeneity that
all scale levels must be treated in a similar manner. Other properties (axioms)
like decreasing number of local extrema, semi-group structure and scale in-
variance are described by Lindeberg [132]. Combinations of these alternative
axioms lead also to a Gaussian scale-space.

An alternative scale-space to the Gaussian scale-space can be constructed
from approximating splines as defined in the previous section. In this case the
weighting factor ✓ is the scale parameter and the continuous image is modeled
by a smoothing spline: L(x, t) = T spline(x, ✓). For a detailed discussion of
a scale-space derived from splines see also the paper of Wang and Lee [246].
Splines are good approximations of the Gaussian kernel. They converge to
the Gaussian function if the order of the spline tends to infinity. This fol-
lows from the central limit theorem [234]. Thus many good properties of the
Gaussian kernel are inherited. In particular the important causality property
is shared by the spline scale-space at least in a discrete sense [246]. Even ad-
vantages of the spline scale-space over the Gaussian scale-space like a higher
computational e�ciency are listed by Wang and Lee [246].

In the next section a multiscale representation based on approximative
splines in comparison to a multiresolution representation of a 2D slice of a
liver CT is shown in Fig. 4.2. A combination of a multiscale and multireso-
lution representation will be used for our nonparametric image registration
approach as described in Chapter 6.

4.4 Multiresolution Images and Transformations

In the previous section we showed how images can be represented on di↵erent
scales enabling a focus on coarse and important features if necessary. Starting
with reference and template images on coarser scales and switching to ever
finer scales leads to more robust registration processes because the number
of local minima is reduced at the beginning and on finer scales the current
transformation is already close to the ’correct’ local minimum.

However, in a discrete multiscale representation of an image the resolution
of the underlying grid is not changed. If in addition multiresolutions are also
used the registration process can be accelerated significantly. On a coarse scale
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4.4. Multiresolution Images and Transformations

also a coarse resolution is su�cient. The idea is to start on a coarse resolution
where each optimization iteration is e�ciently computable. Then on finer
levels only few iterations have to be performed, because only corrections to the
solutions on the coarser resolutions have to be found. For a visual impression
of multiscale and multiresolution images see Fig. 4.2.

A multilevel registration algorithm based on multiscale and multiresolution
representations of the images and the transformation will be described in
section 6.5. In principle the algorithm uses a small number of finite levels
where on each level a di↵erent discretization of the registration functional is
optimized. The resulting transformation of a coarser level serves as an initial
transformation on the next finer level. For the implementation of such a
strategy two questions have to be answered:

1. how to restrict the fine original images to coarser images, and

2. how to prolongate a coarse transformation to a finer one?

An image pyramid with images of di↵erent resolutions is computed before the
actual optimization iterations start. The prolongation of the transformation
is performed at the end of each level. The images and the transformation
are based on the same grid resolution on each level. We will only consider
resolution changes by the factor 2. If h is the resolution on a fine level then the
resolution on the next coarser level is H = 2h. We formalize the restriction by
an operator P h

H which acts on a fine image: TH = P h
HT h and the prolongation

by an operator PH
h which acts on a coarse transformation: yh = PH

h yH .

4.4.1 Restriction of Fine to Coarse Image

The restriction of a fine to a coarse 3D image just means averaging 8 neigh-
boured voxel to one coarse voxel. We will explain and define the averaging
operator P h

H first for 1D and 2D images and show how the 3D and 2D oper-
ators are constructed from the 1D operator. For a compact description the
MATLAB notation T1:k:n is used to extract certain elements from the image
vector T . The notation means starting from index 1 take every k-th element
until n is reached: 1, 1+k, 1+2k, . . . , n�k, n, if n can be divided by k without
rest. Now the averaging of two neighboured voxels of a 1D image T h 2 Rm to
a coarser image TH 2 Rm/2 can be described with this notation as:

TH =
1

2
(T h

1:2:m�1 + T h
2:2:m) (4.38)
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where m can be divided by 2 without rest. This can also be expressed by an
averaging operator:

P h
H(m) =

1

2

0

BBB@

1 1
1 1

. . .
. . .

1 1

1

CCCA
2 Rm/2⇥m (4.39)

leading to TH = P h
H(m)T h. In 2D the image T h 2 Rm

1

m
2 is first averaged

in x1-direction and then the resulting values are averaged in x2-direction (see
Fig. 4.3). Based on the 1D operator P h

H(m1) the averaging of them2 horizontal
lines in x1-direction is computed by the operator:

Im
2

⌦ P h
H(m1) 2 Rm

1

/2m
2

⇥m
1

m
2 (4.40)

and the averaging of the resulting m1/2 vertical lines in x2-direction is per-
formed by the operator:

P h
H(m2)⌦ Im

1

/2 2 Rm
1

/2m
2

/2⇥m
1

/2m
2 (4.41)

leading to the 2D averaging operator:

P 2D
avg = (P h

H(m2)⌦ Im
1

/2) · (Im
2

⌦ P h
H(m1)) 2 Rm

1

m
2

/4⇥m
1

m
2 (4.42)

with TH = P 2D
avgT

h. The derivation of the averaging operator P 3D
avg in 3D is

straight forward:

P 3D
avg = (P h

H ⌦ Im
2

/2⌦ Im
1

/2) · (Im
3

⌦P h
H ⌦ Im

1

/2) · (Im
3

⌦ Im
2

⌦P h
H). (4.43)

4.4.2 Prolongation of Coarse to Fine Transformation

The transformation computed on one level has to be transferred (prolongated)
to the next finer level. The transformation is given on the same grid as the
images except the case where for the discretization of the regularizer a so-called
staggered grid is needed (see discussion in sec. 6.3.2).

In contrast to the restriction of the previous section where information is in-
tegrated to fewer grid points now information has to be distributed onto more
grid points. Transformation values at new grid points are interpolated from
the values on the coarse grid points. We only consider the displacements u
instead of the whole transformation because each transformation can be writ-
ten as the sum of the identity represented by the grid and the displacement:
yH = uH + xcc(⌦,m). The prolongation of the grid to a higher resolution
h = 2H is straight forward; the number of voxels m = (m1,m2,m3) is just
doubled: xcc(⌦, 2m). Thus we only have to prolongate the displacements uH

to a finer resolution uh = PH
h uH and get the whole finer transformation by

yh = uh + xcc(⌦, 2m). (4.44)
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Again we start with the 1D case to define and explain the prolongation matrix
PH
h . Let u = uh and U = uH be the fine and coarse displacement values. Since

the new grid node xh
i
1

+0.25 is closer to xH
i
1

than to xH
i
1

+1 the corresponding finer
displacement value is a weighted average (linear interpolation) of both coarse
displacement values (see fig. 4.4, left):

ui
1

+0.25 = 0.75Ui
1

+ 0.25Ui
1

+1 (4.45)

ui
1

+0.75 = 0.25Ui
1

+ 0.75Ui
1

+1 (4.46)

with ui
1

+0.25 = u(xi
1

+ 0.25h) and ui
1

+0.75 = u(xi
1

+ 0.75h).

The linear interpolation can be expressed by the operator

PH
h (m) =

1

4

0

BBBBBBBBBBBB@

4
3 1
1 3

3 1

1 3
. . .

3
. . .

1

1

CCCCCCCCCCCCA

2 R2m⇥m (4.47)

with uh = PH
h UH .

Now we can construct the 2D prolongation operator P 2D
pro from the 1D op-

erator PH
h . The two displacement components u1 and u2 are sequentially put

into one big displacement vector u = (u1,u2). Like for the restriction operator
first the new values on the finer grid are interpolated in x1-direction and then
the resulting intermediate values are interpolated in x2-direction (see Fig. 4.4,
right). The 1D operator PH

h (m1) is applied on each of the m2 horizontal lines
of the 2D grid. This results in 2m1 intermediate values on each line (black
squares in Fig. 4.4) which are further split by applying PH

h (m2) in the vertical
direction on them. Then the 2D prolongation operator looks like:

P 2D
pro = (PH

h (m2)⌦ I2m
1

)(Im
2

⌦ PH
h (m1)) (4.48)

where uh = (P 2D
proP

2D
pro)u

H , one operator P 2D
pro for each of the two components

u1 = u1:n,u2 = un+1,2n with n = m1m2.

The construction of the 3D operator P 3D
pro is straight forward:

P 3D
pro = (PH

h ⌦ I2m
2

⌦ I2m
1

)(Im
3

⌦ PH
h ⌦ I2m

1

)(Im
3

⌦ Im
2

⌦ PH
h ) (4.49)

where uh = (P 3D
proP

3D
proP

3D
pro)u

H .

If the elastic regularizer is used and the transformation is given on a stag-
gered grid, the prolongation of staggered grids is described in detail in Papen-
berg [172] and for the 2D case in [150].
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Figure 4.2 In the first column one 2D slice of the liver on di↵erent scales
(multiscale) with weighting factors ✓ = 0, 10, 100, 1000, 10000, in the second
column the same slice with di↵erent resolutions (multiresolution) on the levels
l = 8, 7, 6, 5, 4 with 2 ⇤ 2l ⇥ 2l voxel is shown. The first row contains in both
columns the original image for ✓ = 0 and the original resolution 512⇥ 256.
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Figure 4.3 Restriction of a fine image T h 2 Rm
1

m
2 (upper left) to a coarser

image TH 2 Rm
1

m
2

/4 (lower right). At first voxel value pairs are averaged in
x1-direction (horizontal arrows) and then the resulting values (upper right)
are averaged in x2-direction (vertical arrows).

Figure 4.4 A transformation U given on a 1D (left) or a 2D (right) cell-centered
grid is linearly prolongated to a finer transformation u. The big black dots are
the points of the coarse grid and the gray small dots of the finer grid. In the
2D case intermediate values v are determined on points illustrated as black
squares.
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Chapter 5

Optimization

The key for fast registration are e�cient optimization algorithms. Here, we
will present some basic facts and the optimization algorithms which have been
used for this thesis. We will discuss the advantages of the used algorithms and
will distinguish di↵erences to other well known approaches. The optimization
algorithms are used as a tool, but not as a research topic of their own. The
focus is on the choice of suitable existing optimization techniques for image
registration problems. The optimization algorithms are generally formulated.
An important work of the previous and following chapters is to reformulate
the registration problems such that they fit to the generally formulated opti-
mization techniques. The optimization algorithms and notations are primar-
ily taken from the standard book on Numerical Optimization of Nocedal and
Wright [163]. This is also a good book for more details and further reading.
All optimization problems will be formulated as minimization problems.

5.1 Basic Definitions

Two types of optimization problems have to be solved in the registration
framework: unconstrained and constrained problems.

Unconstrained Optimization

Let f : Rn ! R be a smooth objective function. We are looking for a vector
x⇤ 2 Rn is searched, which solves the following minimization problem:

f(x)
x! min. (5.1)

For image registration it is of particular importance to di↵erentiate between
local and global minimizers. Generally we are interested in the global mini-
mizer. A point x⇤ is a global minimizer if f(x⇤)  f(x) for all x 2 Rn (or at
least in the domain ⌦ ⇢ Rn of interest). Such a global minimizer is usually
di�cult to find, because we do not have a good picture of the overall shape
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of f . Since optimization algorithms only sample f , there may be global min-
imizers in regions, which have not been sampled. Most algorithms are able
to find only local minimizers. A point x⇤ is a local minimizer if there exists
a neighborhood N of x⇤ such that f(x⇤)  f(x) for all x 2 N . A point x⇤
is a strict local minimizer if there exists a neighborhood N of x⇤ such that
f(x⇤) < f(x) for all x 2 N with x 6= x⇤.

In general the optimization algorithms presented here are only guarenteed
to find one of the local minimizer. However when f is convex or the start-
ing point of the algorithm is close enough to the global minimizer the local
minimizer found by the algorithm is also a global minimizer. In image regis-
tration optimization algorithms often get trapped in local minima and do not
reach the global minimum because the registration functional is not smooth
and convex or the starting transformation is to far from the globally optimal
transformation. Therefore it will be important to use multiscale approaches
and regularizers to make the registration functional convex or at least more
convex.

Constrained Optimization

The optimization problem might be extended by constraints on the variables.
These constraints might be equalities or inequalities in the variables. Although
in the most general case both kinds of constraints might occur in the same
optimization problem, we here define two separate problems, because only
those are needed for the registration problems in this thesis.

Let c : Rn ! Rm be the constraints function and f : Rn ! R the objective
function. The equalities constrained problem is defined as:

f(x)
x! min s.t. c(x) = 0 (5.2)

and the inequalities constrained problem as:

f(x)
x! min s.t. c(x) � 0. (5.3)

For optimization problems which are constrained by equality as well as in-
equality constraints we introduce the index set I ✓ 1, . . . ,m for the inequality
constraints ci(x) � 0, i 2 I and the index set E = 1, . . . ,m I for the equality
constraints ci(x) = 0, i 2 E .
Important for constrained optimization are the terms: feasible and active

set (or region). The feasible set (or region) F is the set of points which
satisfies the constraints: F = {x|c(x) = 0} or F = {x|c(x) � 0}. The active
set A(x) at any feasible point x are the indices of the inequality constraints
ci(x) � 0, i 2 I for which equity holds: A(x) = {i 2 I|ci(x) = 0}. For equality
constraints ci(x) = 0, i 2 E the active set is the whole index set A(x) = E
because x is feasible by definition. If equality and inequality constraints exist
the active set is the union of both active sets.
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5.2 Characterizing Solutions

It is helpful to know the analytical characteristics of a smooth objective func-
tion f at a local minimum because some algorithms depend on this knowledge.

Unconstrained Optimization

Necessary and su�cient conditions for local minimizers of smooth functions
are known from basic analysis. Their proof is based on Taylor’s theorem,
which will also be central for some of the optimization algorithms.

Let f : Rn ! R be a continuously di↵erentiable function and x, p 2 Rn.
Then f can be approximated at a point x + p by the function value and the
gradient at the point x by:

f(x+ p) = f(x) +rf(x)T p+O(kpk2). (5.4)

The approximation by a second order model is even better. Therefore let f
be a twice continuously di↵erentiable function. Then f can be approximated
by the function value, the gradient and the Hessian at the point x:

f(x+ p) = f(x) +rf(x)T p+
1

2
pTr2f(x)p+O(kpk3). (5.5)

A (first-order) necessary condition for a local minimizer is: If f is continuously
di↵erentiable and x⇤ is a local minimizer of f , then the gradient vanishes at
x⇤: rf(x⇤) = 0. This means the only candidates for local minimizers are the
stationary points with rf(x⇤) = 0. To guarantee that x⇤ is a local minimizer
the following (second-order) su�cient condition can be used. Let f be a twice
continuously di↵erentiable function. If rf(x⇤) = 0 and r2f(x⇤) is positive
definite, then x⇤ is a strict local minimizer of f .

Constrained Optimization

For constrained optimization the gradient of the constraints plays a central
role. If we consider an optimization problem with equality constraints and
follow the contour line (level set) of the constraints function for c(x) = 0, then
the value of the objective function f will usually vary along the constraint
contour line. This means the contour line of c usually intersects the contour
lines of f . Only if the contour line c(x) = 0 meets the contour lines of f
tangentially, the value of f does not change any longer locally. Since the
gradient of a function is perpendicular to the contour lines, saying that the
contour lines meet tangentially is equivalent to saying that the gradients are
parallel. This means that at a local minimum x⇤ there are scalars � such that
rf(x⇤) = �rc(x⇤) holds.

To formalize the necessary conditions for local minimizers the Lagrangian
function is used. Let f : Rn ! R be the objective function and c : Rn !
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Rm the equality constraints. The Lagrangian function L : Rn+1 ! R with
Lagrange multipliers � 2 Rm is defined as:

L(x,�) = f(x)� �T c(x). (5.6)

The gradient of the Lagragian function is rxL(x,�) = rf(x) � �Trc(x),
representing the parallelism condition of the gradients of objective function
and constraints if set to 0. Thus at a local minimum x⇤, there are scalars �⇤,
such that rxL(x⇤,�⇤) = 0.

By means of the Lagrangian function we can formulate the Karush-Kuhn-
Tucker (KKT) first order necessary conditions for constrained optimization
problems. At first the KKT conditions are presented for equality constraints.
Let f and c be continuously di↵erentiable. If x⇤ is a local minimizer then
there exist constants �⇤ 2 Rm such that

rxL(x⇤,�⇤) = 0, (5.7)

c(x⇤) = 0. (5.8)

We explained the first (parallelism) condition already above. Since the gradi-
ents might also be parallel at points not located on the zero contour line of the
constraints, the second condition ensures that the constraints hold (feasibility
condition).

For constrained optimization problems with inequality constraints the KKT
conditions look like:

rxL(x⇤,�⇤) = 0, (5.9)

c(x⇤) � 0, (5.10)

�⇤ � 0, (5.11)

�i⇤ci(x⇤) = 0, for i = 1, . . . ,m. (5.12)

Again the parallelism of the gradients and the feasibility is required (Eq. 5.9
and Eq. 5.10) like for equality constraints. In addition the Lagrange multipliers
have to be positive to ensure that the singular point lies on the correct side
of the constraints or in other words the gradients point in the same direction
(Eq. 5.11). The last condition (Eq. 5.12) implies that a Lagrange multiplier
is 0, if the corresponding inequality is inactive (ci(x⇤) > 0). In this case
the inactive inequalities theoretically can be omitted. This equation is also
called complementary (slackness) condition. For the complex proof and a more
detailed description see Nocedal and Wright [163]. For mixed constraints both
sets of KKT conditions are combined.

For a minimum x⇤ to satisfy the KKT conditions, some regularity con-
ditions (constraint qualification) have to hold to exclude degenerated cases.
For example the linear independence constraint qualification (LICQ) ensures
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that the gradient of the active inequalities (resp. the gradient of the equality
constraints) are linearly independent at x⇤.

Su�cient conditions for a local minimum of a constrained optimization
problem consist of a) the KKT conditions and b) the second order deriva-
tive of the Lagrangian function rxxL has to be positive definite on a certain
set of directions (see Nocedal and Wright [163] for details).

5.3 Algorithms for Unconstrained Optimization

All presented optimization algorithms are iterative, i.e., starting from a point
x0 2 Rn a series of points x0, x1, . . . , xk 2 Rn is generated which converge to
a local minimizer x⇤. The values of the objective function are monotonically
decreasing (f(xk) � f(xk+1)). We will call the point xk in iteration step k
the ‘iterate’ of this step.

There are two fundamental strategies to find the next iterate xk+1 from the
last one xk: line search and trust-region strategies. In the line search strategy,
in each iteration step k a search direction pk 2 Rn and a step length ↵ 2 R+

is chosen, such that the new iterate is determined by

xk+1 = xk + ↵pk. (5.13)

Di↵erent methods exist to determine the search direction. If and how they
use derivatives of f and the last search directions makes them di↵erent. We
will present the important Netwon resp. Gauß-Newton search direction in
Sec. 5.3.1. The objective of the step length computation is to solve the one-
dimensional minimization problem along the given search direction pk:

f(xk + ↵pk)
↵! min. (5.14)

Practically this minimization is solved only approximately (inexact line search)
because each evaluation of f (or rf) is computationally expensive, in partic-
ular, in image registration of large 3D images. Therefore only few candidate
values for ↵ are tried out to reduce the computational costs. How the candi-
dates can be chosen to get an adequate reduction in f is shown in Sec. 5.3.2.

In the trust-region optimization strategy, at the current point xk the ob-
jective function f is approximated by a model function mk and an optimizer
of this model function is computed. Usually, the model function behaves
like f only near xk. Thus the search for a step pk, such that xk + pk mini-
mizes mk is restricted to some region around xk. Often the region is a sphere
(kpk  � 2 R+) but may also be elliptical or box-shaped. � is also called the
trust region radius. For a spherical region, the following optimization problem
on mk is solved in each iteration step instead of the original problem:

mk(xk + p)
p! min, where kpk  �. (5.15)
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If the determined solution does not decrease the value of f su�ciently, the
model function is a bad approximation for the whole trust region of the given
size. In this case the trust region is diminished and the optimization problem
on the model mk is computed again.

The model function mk is usually quadratic. A natural choice is the Taylor
approximationmk(xk+p) = fk+pTrfk+

1
2p

Tr2fkp, but often approximations
to the Hessian r2fk are used instead of the full Hessian to save computation
time.

The line search and trust-region strategies di↵er in the order they use to
compute the direction and the distance of the next iteration point is computed.
Line search first identifies a search direction and then determines the distance
in this direction. In the trust-region approach first a maximal distance (the
trust-region radius) is computed and then a direction and step size inside the
trust region.

As we will use only line search strategies for the optimization of the regis-
tration functional, we will explain line search optimization in more detail in
the following sections. But trust-region optimization has also been used for
registration purposes , e.g., by Henn [85].

5.3.1 Search Directions for Line Search Optimization

Steepest (or gradient) descent optimization uses the most natural search di-
rection for a line search algorithm: pk = �rf(xk). Steepest descent is quite
popular in image registration because it is easy to implement and requires
only gradient computation and no second order derivatives. In gradient di-
rection, the variation of the objective function is strongest. But this greedy
strategy is often not e�cient because of the high number of iterations resulting
from zig-zag in the search directions. Nocedal and Wright [163] show that the
steepest descent line search algorithm converges to a local optimum, but the
convergence rate even for exact step length choices may be unacceptable low.

Newton Search Direction

The aim of Newton search direction is to use more information (second order
derivatives) about the objective function to find search directions leading to
more e�cient optimization schemes (better convergence rate).

Like for the trust-region approach we consider the second-order Taylor series
approximation of the objective function:

f(xk + p) ⇡ mk(xk, p) = f(xk) + pTrf(xk) +
1

2
pTr2f(xk)p. (5.16)

If we assume that r2fk is positive definite, we can find the vector p that
minimizes mk(p) by setting the derivative of mk(p) with respect to p to 0.
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The Newton direction follows from Dpmk(p) = rf(xk) +r2f(xk)p = 0 as a
minimum direction of the model mk(p):

pk = �(r2f(xk))
�1rf(xk). (5.17)

The search direction is computed by solving the symmetric linear system:
r2f(xk)pk = �rf(xk).

If r2fk is positive definite, the Newton direction is a descent direction.
A line search optimization algorithm based on the Newton search direction
has a fast local quadratic convergence rate. The disadvantage of the Newton
direction is that the Hessian r2fk may not always be positive definite, or is
close to being singular. In this case the Newton direction may not be defined
or is not necessarily a descent direction. In nonparametric image registration,
the Hessian contains information from the noisy image data and the distance
measures are not convex for all possible image pairs. Thus the Hessian of
the registration functional can not be assumed to be positive definite even
with a regularizer. In addition, the computation of the full Hessian is usually
expensive in particular for large 3D image data.

There are two general strategies to ensure optimization steps of good quality
and to reduce the computational e↵ort. In both strategies an approximative
Newton direction is used. The first strategy is to use the exact full Hessian,
but to solve the linear system only approximately. This is called ths inexact
Newton approach. If an iterative linear system solver is applied, the iterations
can be terminated before the exact solution is reached. This is also called the
truncated Newton method [156, 44]. The iterations can also be stopped if
negative curvature is encountered (Newton-CG method [163]). The second
general strategy for the computation of an approximative Newton direction is
to approximate or modify the Hessian matrix. For a simple modification of
the Hessian we add a positive diagonal matrix or a full matrix to the Hessian
to get a su�ciently positive definite matrix (modified Newton method [163]).
To avoid the computation of the full Hessian an approximation of the Hessian
can be used. Quasi-Newton methods [163] are typical members of this class
of optimization techniques. They are based only on gradient information
from the current and previous iterations to approximate the inverse of the
Hessian. Another approximation strategy for the Hessian is to exploit a special
structure of the objective function and hence of the Hessian. Least squares
problems are an example for such special objective functions which lead to
the Gauß-Newton search direction presented in the next section.

Gauß-Newton Search Direction

The structure of non-linear least squares problems with the objective function
f(x) = kr(x)k2 , r : Rn ! Rm allows an e↵ective approximation of the Hessian.
Modersitzki [150] and Papenberg [170] extended the formulation of the least
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squares objective function such that it fits to the general form of the distance
measures defined in sec. 6.2. He considers objective functions f : Rn ! R of
the form:

f(x) = �(r(x)) with � : Rm ! R, r : Rn ! Rm. (5.18)

The function r is called the residual function and � the outer function. The
least squares function is a special case of this more general formulation where
the outer function is the Euclidean norm.

The gradient and the Hessian of the special objective function f are

rf(x) = d�(r(x)) · dr(x), (5.19)

r2f(x) = dr(x)Td2�(r(x)) · dr(x) + d�(r(x)) · d2r(x). (5.20)

If � is a simple and smooth function whose second derivative d2� is easy to
compute we only need to know the first derivative dr of the residual function
to compute the first part of the Hessian r2f(x). The first part is often more
important than the second summation term if the residuals are small or the
model is close to linearity near the solution, i.e., d2r is small. In image regis-
tration, the residuals also contain the noise of the images, such that the second
derivative of the residuals does not provide much information. Therefore we
get a good approximation of the Hessian by neglecting the second summation
term:

r2f(x) ⇡ HGN (x) = dr(x)Td2�(r(x)) · dr(x). (5.21)

Instead of solving the standard Newton equations r2p = �rf now the Gauß-
Newton equations with the Hessian approximation HGNp = �rf are solved
to get the Gauß-Newton search direction:

pk = �H�1
GN (xk)rf(xk). (5.22)

5.3.2 Step Length Determination for Line Search Optimization

If we have determined a search direction, we need to choose a step length
which actually reduces the objective function value. An ideal choice would be
the global minimizer along the search direction which means to minimize the
univariate function  (↵) = f(xk+↵pk) with respect to the step length ↵ > 0.
Usually an inexact line search is performed to determine a step length that
provides a good reduction in f at low computational costs. Di↵erent candi-
dates on the search direction (di↵erent ↵) are checked for a su�cient decrease
of the objective function value. For each candidate the objective function value
and often the gradient value have to be computed which is computationally
expensive for large optimization problems like 3D image registration. Often,
the simple condition on ↵k to provide a reduction in f : f(xk +↵kpk) < f(xk)
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does not lead to a su�cient decrease. The Armijo condition is a standard
criterion to define a su�cient decrease:

f(xk + ↵pk)  f(xk) + c↵rfT
k pk, c 2 (0, 1). (5.23)

The standard choice of the tolerance is c = 10�4. We can interpret the Armijo
condition to mean the reduction to be proportional to the step length ↵k and
the directional derivative rfT

k pk in the search direction pk.

Unfortunately the Armijo condition is always satisfied for su�ciently small
step lengths ↵. To avoid an unacceptable small step length the Wolfe or Gold-
stein conditions (see [163]) or a backtracking line search approach is chosen
together with the su�cient decrease Armijo condition. The backtracking algo-
rithm works as follows: Start with an initial step length ↵. The natural choice
for a Newton (or Gauß-Newton) scheme is ↵ = 1. Now the Armijo condition
is tested for the ↵. If the reduction is su�cient (the condition is satisfied),
we are done and let ↵k = ↵. If not, the step length ↵ is iteratively shortened
by a factor ⇢ 2 (0, 1): ↵ = ⇢↵ until the Armijo condition is satisfied. We
use a shortening factor ⇢ = 1

2 . As a safeguard, the line search (and the whole
optimization iteration) is terminated, if the step length gets too small.

5.3.3 Gauß-Newton Scheme

Now we have all ingredients for a line search optimization algorithm based on
the Gauß-Newton search direction and the Armijo backtracking step length
computation. If an implementation of the objective function f , its gradient
rf and the approximation to the Hessian H is provided the Gauß-Newton
algorithm works as follows:

Algorithm 5.1. (Gauß-Newton Algorithm)

1. Set k = 0, let xk = x0 be the starting value

2. Compute f(xk),rf(xk), H(xk)

3. Determine search direction pk by solving H(xk)pk = �rf(xk)

4. Find the step length ↵k by Armijo line-search on xk in direction pk

5. Break if line search fails

6. Update current value to: xk+1 = xk + ↵kpk

7. Set k = k + 1

8. If stopping rules (see below) are not satisfied continue with step 2

We use the following established stopping criteria introduced by Gill, Mur-
ray and Wright [71]:
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1. kf(xk�1 � f(xk)k < ⌧(1 + kf(xk)k), (relative change in objective func-
tion value)

2. kxk�1 � xkk <
p
⌧(1 + kxkk), (relative change in parameters)

3. krf(xk)k < 3

p
⌧(1 + kf(xk)k), (length of the gradient)

4. krf(xk)k < ✏, (gradient below machine precision)

5. k > kmax, (maximal number of iterations)

The factor ⌧ 2 R+ is defined by the user. If the objective function value at
the minimum is close to zero (f(x⇤) ⇡ 0), the criterion kf(xk)� f(xk+1k 
⌧ kf(xk)k can not be satisfied (see [71]). Therefore an additional summand ⌧
is introduced to the first criterion. A similar argument holds for the second
and third criterion. The parameter ✏ 2 R+ represents the machine precision
and kmax 2 N the maximal number of iterations.

The iterations are stopped if all of the first three criteria or if one of the
two safeguard criteria (4 or 5) are met. For more details see [71].

5.4 Algorithms for Constrained Optimization

There are two main categories of algorithms for constrained optimization. Ei-
ther the original problem is replaced by a sequence of unconstrained problems
or a sequence of simpler (quadratic) subproblems. On possible choice for the
first category is to transfer the constraints to a quadratic penalty term which
is added to the objective function. The quadratic term penalizes violations
of the constraints. This approach is called quadratic penalty method [163],
p.490. The iterates may violate the constraints (are not feasible) during the
optimization process, but with a severe weighting of the penalty term it can
be ensured that the optimizer fulfills the constraints at the end of the process.

An alternative are log-barrier methods [163], p.498. In contrast to the
penalty approach each iterate is feasible during the whole optimization pro-
cess. The algorithm starts in the feasible region and logarithmic penalty terms
make sure that the iteration points stay away from the boundary of the feasible
region.

The third main group of algorithms which replace the original constrained
problem to a sequence of unconstrained problems are augmented Lagrangian
methods [163], p.511. Augmented Lagrangian methods are similar to quadra-
tic penalty methods, but the subproblems are in general better conditioned. In
contrast to log-barrier methods the iterates do not have to be feasible during
the optimization process but are feasible at the end.

Besides penalty, barrier, and augmented Lagrangian methods, another cate-
gory of important approaches for constrained optimization problems is sequen-
tial quadratic programming (SQP). The idea of SQP methods is to model the
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constrained problem in each iteration by a quadratic (constrained) subprob-
lem which is easier to solve. The search direction pk is the solution of the
subproblem. The step length is determined by a so-called merit function,
which measures the progress of the optimization. The merit function has to
find a balance between a reduction of the objective function and satisfying the
constraints.

We will present a SQP method, which uses a Gauß-Newton approximation
to the Hessian and is also called generalized Gauß-Newton method. In addi-
tion, the generalized Gauß-Newton approach is combined with an Augmented
Lagrangian method.

5.4.1 Sequential Quadratic Programming

At first we will focus only on equality constrained problems. Sequential
quadratic programming can be motivated by applying Newton’s method onto
the KKT conditions for equality constrained problems (Eq. 5.8). We formulate
the KKT conditions as a nonlinear function F which is set to 0:

F (x,�) =

✓
F1(x,�)
F2(x,�)

◆
=

✓rxL(x,�)
c(x)

◆
= 0 (5.24)

where rxL(x,�) = rf(x)��Trc(x) is the gradient of the Lagrangian. New-
ton’s method for solving these non-linear equations is defined by the iterations
xk+1 = xk + pk,�k+1 = �k + qk where the next Newton step (pk, qk) is deter-
mined by solving the linear Newton equations:

JF (xk,�k)(pk, qk) = �F (xk,�k), (5.25)

where the Jacobian JF of F is:

JF =

✓rxF1 r�F1
rxF2 r�F2

◆
=

✓rxxL �rxcT

rxc 0

◆
. (5.26)

Hence, we get the Newton equations:
✓rxxL(xk,�k) �rxcT (xk)

rxc(xk) 0

◆✓
pk
qk

◆
=

✓�rf(xk) +rcT (xk)�k
�c(xk)

◆
. (5.27)

If we subtract rcT (xk)�k from the first equation we obtain the equivalent
system:

✓rxxL(xk,�k) �rxcT (xk)
rxc(xk) 0

◆✓
pk

�k + qk

◆
=

✓�rf(xk)
�c(xk)

◆
. (5.28)

With xk+1 = xk + pk �k+1 = �k + qk we get the next iterate which defines
the new search direction (xk+1,�k+1) of the original constrained optimization
problem.
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We will now show that the solution of this Newton system can be identified
with the solution of a quadratic approximation of the constrained optimization
problem leading to the SQP framework. Therefore we define the following
sequence of quadratic optimization problems with linear constraints to find a
new search direction and new Lagrangian multipliers at an iterate (xk,�k):

1

2
pTHkp+rfT

k p
p! min,

s.t. Ckp+ ck = 0.
. (5.29)

The quadratic optimization problem has a unique solution (pk, zk) (under
certain assumptions on Ck and Hk):

Hkpk +rfk � CT
k zk = 0,

Ckpk + ck = 0.
(5.30)

Let Hk be Hk = rxxL(xk) and Ck = rc(xk), then we get exactly the Newton
equations 5.28 from above where zk = �k+1 = �k + qk. This linear system is
also called a KKT system because it is derived from the KKT conditions.

Now we can formulate the (local) SQP algorithm:

Algorithm 5.2. (Sequential Linear Programming (SQP))

1. Set k = 0

2. Determine fk,rfk, Hk, ck, Ck

3. Solve the KKT system (Eq. 5.30) to get pk and zk

4. Set xk+1 = xk + pk,�k+1 = zk

5. Set k = k+1

6. If convergence test is not satisfied, continue with step 2

The algorithm is called local, because it converges only if the iterates are
close to the solution. As in unconstrained problems the algorithm also con-
verges from remote starting points and for nonconvex problems if a line-search
or trust-region strategy is added. Again we will focus only on a line-search
variant. Two ingredients are important for a practical line-search SQP ap-
proach: a) A modification of the Hessian Hk to get a positive definite approx-
imation leading to a convex problem and b) a merit function which guides the
algorithm to the solution. Therefore we combine the SQP framework with an
augmented Lagrangian and a generalized Gauß-Newton approach in the next
sections.
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5.4.2 Augmented Lagrangian and SQP

The idea of the augmented Lagrangian method is to convert a constrained
into an unconstrained optimization problem for which algorithms are already
available by adding a quadratic penalizer term 1

2µc(x)
T c(x) to the Lagrangian

function instead to the objective function like in the quadratic penalty method.
We get the following augmented Lagrangian function LA which is parameter-
ized by the penalty weight µ:

LA(x,�;µ) = f(x)� �c(x) +
1

2µ
c(x)T c(x). (5.31)

The violation of the constraints is measured by the penalty term, which is just
the norm of the constraints. The penalty weight µ 2 R+ is decreased during
the iterations to ensure feasibility at the end of the optimization process. If the
violation of the constraints cannot su�ciently be reduced during an iteration,
the penalty weight is decreased in the next iteration (µk+1 = 1

2µk). Because
the KKT conditions require that rxL(x⇤,�⇤) = 0 and c(x⇤) = 0, the term
c(x)T c(x) vanishes at the optimum (x⇤,�⇤) and the augmented Lagrangian LA

coincides with the Lagrangian L. Then the penalty weight µ no longer needs
to be small as in the quadratic penalty method leading to fewer ill conditioned
subproblems.

The necessary condition (rxLA(x⇤,�⇤),r�LA(x⇤,�⇤) = 0 for the uncon-
strained augmented Lagrangian function at the optimum (x⇤,�⇤) leads to a
very similar linear system compared to the KKT system of the SQP frame-
work (Eq. 5.28). With rxLA = rxL+ 1

µ(rxc)T c and r�LA = r�L = �c we
get:

✓rxxLA(xk,�k) �rxcT (xk)
rxc(xk) 0

◆✓
pk

�k + qk

◆
=

✓�rf(xk)� 1
µ(rxc)T c

�c(xk)

◆
.

(5.32)

There are only two di↵erences to the usual SQP system 5.28: a) the Hes-
sian of the augmented Lagrangian rxxLA = rxxL + 1

µ(rc)Trc and b) the

additional summand 1
µ(rxc)T c on the right hand side of the first equation.

The additional term 1
µ(rc)Trc in the Hessian yields a stabilization by adding

positive curvature (see also [163], p. 540). The theoretical justification for
the augmented Lagrangian approach can be found in the book of Nocedal and
Wright [163], p. 517. They proof that when the exact Lagrange multipliers
�⇤ are known, the solution x⇤ of the original constrained problem is a min-
imizer of the augmented Lagrangian LA(x,�⇤;µ) for all µ su�ciently small.
Although we do know only a resonable estimate of the exact �⇤ in practice
they show in a second theorem that we still obtain a good estimate of x⇤.

As in the previous section an alternative derivation leads to the same system
by using the SQP framework. The quadratic approximation of the equality
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constrained optimization problem was already defined in Eq. 5.29:

1

2
pTHkp+rfT

k p
p! min,

s.t. Ckp+ ck = 0.
(5.33)

If we formulate the augmented Lagrangian L̃A for this quadratic problem, we
get:

L̃A(p,�;µ) = fk+rfT
k p+

1

2
pTHkp��T (ck+Ckp)+

1

2µ
(ck+Ckp)

T (ck+Ckp).

(5.34)

For ease of notation we ignore the index k for a moment. With H = r2f ,
C = rc the necessary conditions for a minimum (p⇤,�⇤) of this augmented
Lagrangian

rpL̃A(p,�;µ) = rfT +Hp� �TC +
1

µ
CT (c+ Cp) = 0, (5.35)

r�L̃A(p,�;µ) = c+ Cp = 0 (5.36)

lead to the same KKT system as above:

✓
H + 1

µC
TC �CT

C 0

◆✓
p
�

◆
=

✓�rf � 1
µ(C

T c

�c

◆
. (5.37)

If we add µ� to the second equation and rearrange the whole system, we derive
the following iteration step for the determination of the next search direction:

(Hk +
1

µ
CT
k Ck)pk+1 = CT

k �k+1 �rfT
k � 1

µ
CT
k ck, (5.38)

�k+1 = �k � 1

µ
(ck + Ckpk) (5.39)

Now the equations are independent of each other. We can update �k+1 by the
second equation and then solve the first equation for pk+1 using the update
�k+1. On this new search direction (pk+1,�k+1) a strong Wolfe line search
strategy (see [163]) using a merit function is applied to find the step length
↵k leading to the next iterate xk+1 = xk + ↵kpk+1.

Now we motivate the use of a merit function. For unconstrained optimiza-
tion problems the optimization progress can directly be measured by the objec-
tive function (f(xk+1) < f(xk)). In constrained optimization there is a conflict
in each iteration between a reduction in the objective function and satisfying
the constraints. Therefore we need a measure to find the best compromise
between these two objectives. Merit functions quantify the compromise and
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control the algorithm: a new search direction pk+1 is only accepted if a su�-
cient decrease in the merit function can be reached. As a merit function we
use the augmented Lagrangian function itself which is also called ‘Fletcher’s
augmented Lagrangian merit function’ in the literature [163].

Until now we have described the determination of the search direction and
a step length detemination strategy by means of a merit function for a fixed
penalty weight factor µ. At the end, we will sketch when and how the penalty
weight factor µk is changed in an iteration step k. The violation of the con-
straints in step k + 1 is compared to the previous step k:

 kckk < kck+1k (5.40)

with  2 (0, 1), e.g.,  = 0.5. If no su�cient decrease is reached the penalty
weight µ is decreased by µk+1 =

1
2µk.

Extension to Inequality Constraints

Until now, we only considered equality constrained optimization problems.
Now, we extend the augmented Lagrangian approach to inequality constraints.
For simplicity suppose that only inequality and no equality constraints are
given. Again two derivations are possible: either we take the augmented La-
grangian of the original inequality constrained problem or we formulate a se-
quential quadratic program for inequality constraints and setup an augmented
Lagrangian for this quadratic program. In both cases so-called slack variables
s 2 Rm are introduced to convert the inequality constraints into equality con-
straints plus bound constraints on the slack variables. The bound constraints
are later eliminated resulting in a transformed augmented Lagrangian which
can be treated like the augmented Lagrangian of the equality constrained prob-
lem. The first derivation can be found in Nocedal and Wright [163], p.514.
We will sketch the second derivation here.

At first the inequality constrained optimization problem is approximated
by a sequential quadratic model:

1

2
pTHkp+rfT

k p
p! min,

s.t. Ckp+ ck � 0.
(5.41)

This problem can be converted into an equality constrained problem by in-
troducing slack variables s = s1, . . . , sm 2 Rm and replacing the inequality
constraints

Ckp+ ck � 0 by Ckp+ ck � s = 0, s � 0. (5.42)
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We now have an equality constrained problem with additional bound con-
straints (s � 0):

1

2
pTHkp+rfT

k p
p! min,

s.t. Ckp+ ck � s = 0, s � 0.
(5.43)

The bound constraints are either treated explicitly by special algorithms, e.g.,
the LANCELOT package, or are eliminated to get a pure unconstrained prob-
lem. We use the second variant and formulate an augmented Lagrangian
function LI

A for the equality and bound constraint problem 5.43. The index
I indicates that the augmented Lagrangian is used to optimize the originally
inequality constrained problem. For a simpler notation we leave out the index
k. Let the model of the objective function be mf (p) = (rfk)T p + 1

2p
THkp

and let the new equality constraints be c̃(p, s) = c+ Cp� s, then we get the
following subproblem:

LI
A(p,�;µ, s) = mf (p)� �T c̃(p, s) +

1

2µ
c̃(p, s)T c̃(p, s)

p! min,

s.t. s � 0.
(5.44)

The slack variables si appear in just two summands of the augmented La-
grangian LI

A. Since the augmented Lagrangian is convex with respect to the
slack variables a solution with respect to s can be computed explicitly. By
setting rsLI

A = 0 one gets the minimum of the augmented Lagrangian with
respect to s: s = c + Cp � �µ. If a component si of this unconstrained
minimizer is smaller than 0, the optimal value of this component for the
whole bound constraint problem 5.44 is 0 because of the bound constraint
si � 0, i = 1, . . . ,m and the convexity of LI

A with respect to s. This means
the solution s⇤ of Eq. 5.44 with respect to the slack variables s is given by:

s⇤i = max((c+ Cp)i � µ�i, 0). (5.45)

Now the slack variables s can be substituted if we di↵erentiate for each com-
ponent si two cases. If (c+Cp)i�µ�i > 0 we substitute si by (c+Cp)i�µ�i
in the augmented Lagrangian LI

A else si is substituted by 0. This leads to
an augmented Lagrangian which no longer depends explicitly on the slack
variables and bound constraints (for further details see [163]):

LI
A(p,�;µ) = mf (p) + 1Tm (p,�;µ) (5.46)

with 1m = (1, . . . , 1) and

 i(p,�;µ) =

⇢ ��i(c+ Cp)i +
1
2µ(c+ Cp)2i , if(c+ Cp)i � µ�i  0,

�µ
2�

2
i , else

(5.47)
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As in the equality constrained problem, a new search direction is now defined
by the KKT system of the augmented Lagrangian LI

A(p,�;µ) using its gra-
dients rpLI

A and r�LI
A. The update strategy for the Lagrangian multipliers

di↵ers slightly from the equality constraints case (see [163], p.514). We update
by setting:

�k+1 = max

✓
�k � 1

µ
(c+ Cp), 0

◆
. (5.48)

Afterwards the new search direction pk+1 is computed based on �k+1 and a
line search strategy is applied similarirly to the equality constrained case in
the previous section.

5.4.3 Generalized Gauss-Newton

As in the unconstrained case, calculating the Hessian of the original objective
function may lead to high computational costs. Therefore we again use a
Gauss-Newton type approximation of the Hessian r2f ⇡ HGN as described in
equation 5.21 of section 5.3.1. For equality constrained least squares problems
the use of the Gauss-Newton approximation was described by Bock et al. [18]
and Olesch [169]. They call it the generalized Gauss-Newton approach because
the Gauss-Newton iteration rule determines a search direction (xk,�k) for the
Lagrangian function L(x,�) instead of the original objective function f(x).
Here we use the Gauss-Newton approximation HGN of the Hessian in the
augmented Lagrangian framework for equality and inequality constraints.
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Chapter 6

Nonparametric Image Registration

6.1 Introduction

The general nonparametric registration problem has been already modeled as
a minimization problem on functionals of continuous functions in Chapter 3.
We omit additional penalizers for soft constraints and also hard constraints
on the deformation here. They will be discussed in Chapter 10. This means
we concentrate on nonparametric image registration defined by a functional
J consisting of a distance measure D on the images T ,R and a regularizer S
on the deformation y : R3 ! R3:

J [y] = D[T (y),R] + ↵S[y � yref]
y! min (6.1)

where yref is a reference transformation for the regularizer, which is explained
more detail in Chapter 6.3. To solve this problem numerically, it has to
be discretized such that the Gauß-Newton optimization scheme as described
in Sec. 5 can be applied. The discretization of the images R = R(xcc), T =
T (xcc) and the transformation y = y(xcc) on a cell-centered grid xcc have been
shown in Chapter 4. Now the distance measures and the regularizers have to
be defined and discretized to get a discrete version of the whole registration
functional:

J(y)h = Dh(Ty, R) + ↵Sh(y� yref) (6.2)

where the spatial discretization h corresponds to the grid resolution. For ease
of presentation, we will often omit h in the notation. Based on the discrete
functional and the Gauß-Newton optimization scheme, we define a non-rigid
nonparametric image registration algorithm on a fixed discretization level.
Since the distance functional is usually non-convex there might be several local
minima. Thus multi-level strategies are necessary which also substantially
improve the e�ciency of the registration. The main idea of a multi-level
strategy is to solve the minimization problem first on a coarse discretization
where only the most important features are considered. The probability to
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get trapped in a local minimum is lower on a coarse level. If no further
improvements can be achieved the coarse solution is prolongated to a finer
discretization and used as a good starting guess for the finer level. On the
finer level, usually fewer iterations have to be executed because the coarse
solution was already close to the optimum and only corrections have to be
computed.

6.2 Distance Measures

Distance measures are a key part of registration methods. In each iteration
step they determine how similar the transformed template image looks to the
reference image. A review of general and special-purpose as well as some new
distance measures are presented in detail in the chapters 8 and 9. Here we
define only the simple ‘sum of squared di↵erences’ distance measure to show
how a distance measure is discretized in general and what the derivative of a
discrete distance measure looks like.

The sum of squared di↵erences distance measure DSSD is defined by:

DSSD[T ,R, y] =
1

2

Z

⌦
(T (y(x))�R(x))2dx. (6.3)

Chapter 8 gives an overview for which types of image pairs this distance mea-
sure is suitable, what its properties ware and compares it to other measures.

The sum of squared di↵erences measure is an example of a distance measure
where for each image point in the reference image a kind of di↵erence (in this
case the Euclidean distance) to the transformed template image is computed
(by the function  ) and then all the di↵erences are integrated. All of the
distance measures defined in this thesis will be of this integrated di↵erences
type. We formalize them by

D[T ,R] =

Z

⌦
 (T (x),R(x)) dx. (6.4)

6.2.1 Discretization of Distance Measures

Distance measures are discretized by a numerical integration method also
called quadrature for one-dimensional functions. Many di↵erent numerical
integration schemes exist. For our purposes the simple and robust midpoint
quadrature is adequate. Let f : ⌦ ! R be an integrable function and xj the
cell centers of a one-dimensional cell-centered grid xcc([!1,!2],m). The cell
size is h = (!2 � !1)/m. Then the integral of f can be approximated by:

Z

⌦
f(x)dx = h

mX

j=1

f(xj) +O(h2). (6.5)
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The approximation error is of the order h2. With h small enough the inte-
gration error will be below any given error tolerance resp. with h ! 0 the
approximation equals the continuous formulation. For image registration a
natural choice for h is the original image resolution, but we will see that also
other choices are possible and reasonable.

By means of the midpoint quadrature rule we are now able to discretize the
SSD distance measure (and all other measures):

DSSD[T ,R, y] =
1

2

Z

⌦
(T (y(x))�R(x))2dx (6.6)

⇡ DSSD(Ty, R) =
1

2
· h̄ · kTy �Rk2 (6.7)

where h̄ = h1 · h2 · h3 is the product of the voxel sizes in each coordinate
direction. Due to the already mentioned special form (integrated di↵erences)
of all distance measures used in this thesis a discrete distance measure can be
decomposed into an inner (residual) and an outer function. For a discretized
distance measure D : R3n ! R this can be phrased as:

D(y) = �(r(y)) (6.8)

with � : Rñ ! R being the outer function and r : R3n ! Rñ being the
residual or inner function. For the sum of squared di↵erences measure we get:
�(r(y)) = h̄

2 kr(y)k and r(y) = Ty �R. In this case ñ = 1 holds, but ñ might
be bigger than one.

6.2.2 Derivatives of Discrete Distance Measures

To enable fast optimization schemes, we determined the analytical first order
derivative and an analytical approximation of the second order derivative of
a discrete distance measure D(y) = D(Ty, R) = �(r(y)) with respect to the
transformation y. The derivatives of the decomposed distance measure can
be computed based on the chain and product rule:

dD(y) = d�(r(y)) · dr(y), (6.9)

d2D(y) = dr(y)Td2�(r(y)) · dr(y) + d�(r(y)) · d2r(y). (6.10)

For the Gauß-Newton optimization scheme we only use an approximation of
the Hessian d2D. The second summand including the second order derivatives
of the residual function r is neglected because the residual depends on the noisy
image data while the outer function � is usually smooth:

d2D(y) ⇡ dr(y)Td2�(r(y)) · dr(y). (6.11)

This means for each distance measure we only need to determine the outer
and inner functions � and r as well as their first derivatives d�, dr and the
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second derivative d2� of the generally simple and smooth outer function �.
For example, the inner and outer functions of the sum of squared di↵erences
measure are

r(y) = Ty �R, �(r) =
h̄

2
rT r (6.12)

and the derivatives of the inner and outer function

dr(y) = dTy, d�(r) = h̄r, d2�(r) = h̄ (6.13)

lead to the derivatives of the distance measure

dD(y) = h̄ · (Ty �R)T · dTy, d2D(y) ⇡ dT T
y · h̄ · dTy. (6.14)

The transformed template image Ty and its derivative dTy are given in sec. 4.3.
The derivative dTy uses the derivative of the 3D spline model function deter-
mined in sec. 4.3.2.

6.3 Regularizers

The task of a regularizer is to alter the registration functional to get a well-
posed problem with a unique solution. Adding a regularizer on the transfor-
mation y to the registration functional tries to get a convex objective function
for the optimization process. Most regularizers are L2-norms on derivatives of
the transformation y or more precisely of the displacements u = y� yref. The
reference transformation yref might be simply the identity yref(x) = x or an
initial transformation computed by a landmark- or parametric intensity-based
registration.

6.3.1 Continuous Formulation

First we will define the regularizers in a continuous setting before their dis-
cretization is discussed. Three di↵erent regularizers are presented for three-
dimensional transformations y.

Di↵usion Regularizer

The di↵usion regularizer has been introduced by Horn and Schunck [91] to
image processing (optical flow) and by Fischer and Modersitzki [56] in partic-
ular for image registration. The simple idea of the regularizer is to penalize
high gradients of y to get a smooth transformation:

Sdi↵[y] =
1

2

Z

⌦

3X

j=1

���r(yj � yrefj )
���
2
dx. (6.15)
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The coordinate directions are independently regularized. A deformation in one
coordinate direction does not imply a deformation in other directions. This
is an important di↵erence to the elastic regularizer which we will consider in
the next section.

Elastic Regularizer

The term elastic registration is sometimes used for non-rigid registration in
general. We use the term ‘elastic registration’ for an approach based on the
regularizer introduced by Broit [22]. The regularizer is physically motivated
and represents the linear elastic potential measuring the energy resulting from
deforming an elastic material:

Selas[y] =
1

2

Z

⌦

3X

j=1

µ
���r(yj � yrefj )

���
2
+ (µ+ �)div2(y � yref)dx (6.16)

where the divergence of a function f : R3 ! R3 is defined by div = @1f1 +
@2f2+@3f3. The divergence operator indicates a change of volume. Materials
with di↵erent elastic properties are modeled by the material constants �, µ � 0
which are also called Lamé constants.

The elastic potential is also used for landmark registration based on Gaus-
sian Elastic Body Splines (see sec. 11.9).

Curvature Regularizer

The curvature regularizer introduced by Fischer and Modersitzki [59] is based
on the second order derivatives:

Scurv[y] =
1

2

Z

⌦

3X

j=1

����(yj � yrefj )
���
2
dx (6.17)

with the Laplace operator �f = @11f+@22f+@33f for a function f : R3 ! R.
The name of the regularizer is due to the fact that each of the summands
�yj is an approximation to the curvature of the function component yj . The
curvature regularizer leads to smoother transformations than the other two
regularizers. In addition, the curvature regularizer has the property that lin-
ear parts of the deformation do not influence the value of the regularizer:
Scurv[y] = 0 for y = Ax+ b resp. �yj = 0.

6.3.2 Discretization

The two most important ingredients for the discretization of the regularizers
are the discretizations for the first and second order partial derivatives and the
numerical computation of the integral. For numerical integration again the
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Figure 6.1 One-dimensional cell-centered and staggered grid on (!1,!2).

midpoint quadrature rule is applied on a cell-centered grid like for the distance
measures (see Sec. 6.2.1). For the divergence term of the elastic regularizer,
central short finite di↵erences are recommended as a discretization of the first
order derivatives [150, 170]. The derivatives have to be evaluated on a cell-
centered grid to match the discretization of the distance measure. But short
finite di↵erences use function values at points on the cell boundaries. We will
define so-called staggered grids which are defined on the cell boundaries. The
function values on the staggered grids can be interpolated from the values on
the cell-centered grids and vice versa.

The discretization of the di↵usion regularizer is treated as a special case of
the elastic regularizer. Since the curvature regularizer is based only on second
order derivatives no short finite di↵erences and therefore no staggered grids
are needed.

Discrete First Derivatives in the One-Dimensional Case

Let a cell-centered grid xcc(⌦,m) on ⌦ = (!1,!2) with m cells of size h =
(!2 � !1)/m be given. For a one-dimensional function f : R ! R the first
derivative at a grid point xcc

j can be approximated by the short central finite
di↵erence

@f(xcc
j ) =

f(xcc
j + 0.5h)� f(xcc

j � 0.5h)

h
+O(h2). (6.18)

The approximation order O(h2) follows from Taylor’s theorem for a twice
continuously di↵erentiable function f .

The problem is that we have to evaluate the function f at points on the
boundaries of the cells (xcc

j +0.5h,xcc
j �0.5h) and not at the cell centers of the

given grid. The points on the cell boundaries can be interpreted as a grid type
of their own. Modersitzki [150] and Papenberg [170] call them nodal grids,
but they can also be seen as one-dimensional staggered-grids which are defined
by Modersitzki and Papenberg only for two and three dimensions. The grid
points of a one-dimensional staggered-grid xstg(⌦,m) 2 Rm+1 are defined as

(xstg)j = !1 + jh, j = 0, . . . ,m. (6.19)
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The relation of a staggered to a cell-centered grid is illustrated in Fig. 6.1.
Note that there is one more cell boundary point than cell center points such
that there are m cell-centered grid points and m+ 1 staggered grid points.

The short finite di↵erences can be written in terms of the staggered grid:

@f(xcc
j ) =

f(xstg
j )� f(xstg

j�1)

h
+O(h2) (6.20)

because xcc
j + 0.5h = xstg

j and xcc
j � 0.5h = xstg

j�1.

Now we introduce discrete derivation operators in matrix form. They allow
compact descriptions and an extension to three dimensions by combining them
with matching identity matrices via Kronecker products (⌦). But the matrices
are not explicitly generated in program code because they would consume to
much memory even if coded as sparse matrices.

Let xstg = xstg(⌦,m) be the staggered grid and xcc = xcc(⌦,m) be the
corresponding cell-centered grid. The first derivative of f at the positions xcc

of the one-dimensional cell-centered grid can be rephrased as

@f(xcc) ⇡ D · f(xstg) (6.21)

with

D(h,m) =
1

h

0

B@
�1 1

. . .
. . .

�1 1

1

CA 2 Rm⇥(m+1). (6.22)

The operator is a (m⇥ (m+1)) matrix because the staggered grid has m+1
and the cell-centered grid m grid points.

Discrete First Derivatives in the Three-Dimensional Case

The 3D discrete derivatives are again based on staggered grids. Thus, at first,
we construct 3D staggered grids from 1D grids. In 3D, there is one staggered
grid for each of the three coordinate directions. We first explain and illustrate
staggered grids in 2D for an easier understanding.

The two 2D staggered grids xstg
1 and xstg

2 for the x1- and x2-direction
are defined on the boundaries of the rectangluar cells. The grid points of
xstg

1 lie on the vertical rectangle sides and the grid points of xstg
2 on the

horizontal rectangle sides (see Fig. 6.2). Both staggered grids can easily be
generated from the one-dimensional staggered grids. If we consider xstg

1 , the
x1 coordinates of the grid points are exactly the grid points xstg

1 2 Rm
1

+1 of
a 1D staggered grid and the x2 coordinates are the grid points xcc

2 2 Rm
2

of a cell-centered grid. As the values xstg
1 stay the same for each of the

m2 horizontal cell boundary lines they have to be repeated m2 times in the
description of the grid. The same holds for the values xcc

2 which stay the same
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Figure 6.2 Two-dimensional cell-centered (gray dots) and staggered grids
(black squares) in x1-direction on the left and in x2-direction on the right.

for each of the m1+1 vertical cell boundary lines (see Fig. 6.2). For the formal
description of the whole grid as one vector the repetitions can be expressed
by the Kronecker product:

xstg
1 =

✓
1m

2

⌦ xstg
1

xcc
2 ⌦ 1m

1

+1

◆
2 R2(m

1

+1)m
2 . (6.23)

1n the column vector where all n elements are equal to 1. For the x2 coor-
dinates the order of the factors has to be changed to get an analog vector
notation like for the cell-centered grids (see Sec. 4.2.4).

The second staggered grid xstg
2 is similarily derived:

xstg
2 =

✓
1m

2

+1 ⌦ xcc
1

xstg
2 ⌦ 1m

1

◆
2 R2m

1

(m
2

+1). (6.24)

For the discrete derivatives of the transformation y we need a mix of both
staggered grids: the x1 components of xstg

1 and the x2 components of xstg
2 .

We define the mixed components as their own staggered grid:

xstg =

✓
1m

2

⌦ xstg
1

xstg
2 ⌦ 1m

1

◆
2 R(m

1

+1)m
2

+m
1

(m
2

+1). (6.25)

Like in the 1D and 2D case three-dimensional staggered grids live on the cell
boundaries. In 3D, the grid cells are cuboids and the staggered grid points
lie on the centers of the cuboid’s faces. For each spatial direction a staggered
grid exists and for our purpose we combine components of them to a special
staggered grid like in the 2D case:

xstg =

0

@
1m

3

⌦ 1m
2

⌦ xstg
1

1m
3

⌦ xstg
2 ⌦ 1m

1

xstg
3 ⌦ 1m

2

⌦ 1m
1

1

A . (6.26)
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6.3. Regularizers

Since the one-dimensional staggered grids have one grid point more than the
cell-centered grids and the number of grid pointsm1,m2,m3 might be di↵erent
in the three coordinate directions, we get di↵erent sizes for the three compo-
nents of the 3D staggered grid. The sizes n1, n2, n3 for the three components
are:

n1 = (m1+1)m2m3, n2 = m1(m2+1)m3, n3 = m1m2(m3+1). (6.27)

The overall length of the staggered grid vector xstg is then n1 + n2 + n3 =
3m1m2m3 +m1m2 +m1m3 +m2m3.

As in the one-dimensional case, we now define matrices as discrete di↵er-
ential operators on the transformation y : R3 ! R3 with y = (y1, y2, y3)T .
Let Dij be the discrete operator for the first derivative of the i-th component
function yi with respect to the spatial direction xj . We give two examples:

@2y1(x
cc) ⇡ D12y

stg
1:n

1

and @1y2(x
cc) ⇡ D21y

stg
(n

1

+1):n
1

+n
2

. (6.28)

The discrete transformation ystg has to be given on a staggered grid but the
derivatives are evaluated at grid points of the according cell-centered grid.
The transformation on the staggered grid is defined as:

ystg = (ystg
1:n

1

,ystg
n
1

+1:n
1

+n
2

,ystg
n
1

+n
2

+1:n
1

+n
2

+n
3

)T (6.29)

= (y1(x
stg

1), y2(x
stg

2), y3(x
stg

3))T . (6.30)

As for the grids, the discrete di↵erential operators in 3D are constructed from
the 1D operators (see eq. 6.22) by means of Kronecker products. Below we
list all staggered grid-based discrete derivative operators in three dimensions:

D11 = Im
3

⌦ Im
2

⌦ D(h1,m1)
D12 = Im

3

⌦ D(h2,m2 � 1) ⌦ Im
1

+1

D13 = D(h3,m3 � 1) ⌦ Im
2

⌦ Im
1

+1

D21 = Im
3

⌦ Im
2

+1 ⌦ D(h1,m1� 1)
D22 = Im

3

⌦ D(h2,m2) ⌦ Im
1

D23 = D(h3,m3 � 1) ⌦ Im
2

+1 ⌦ Im
1

D31 = Im
3

+1 ⌦ Im
2

⌦ D(h1,m1� 1)
D32 = Im

3

+1 ⌦ D(h2,m2 � 1) ⌦ Im
1

D33 = D(h3,m3) ⌦ Im
2

⌦ Im
1

. (6.31)
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Discretization of Elastic Regularizer

The continuous elastic regularizer can be rewritten in operator form as:

Selas[y] =
1

2

Z

⌦

3X

j=1

µ
���r(yj � yrefj )

���
2
+ (µ+ �)div2(y � yref)dx (6.32)

=
1

2

Z

⌦
|B[y]|2 dx (6.33)

where the di↵erential operator B is defined as

B[y] =

0

BB@

p
µr p

µr p
µrp

µ+ �@1
p
µ+ �@2

p
µ+ �@3

1

CCA

0

@
y1
y2
y3

1

A . (6.34)

At first we discretize the di↵erential operator B. The partial derivatives of
the gradient and the summands of the divergence term are approximated by
the 3D di↵erential operators defined in equation 6.31:

Belas =

0

BBBBBBBBBBBBBB@

p
µD11p
µD12p
µD13 p

µD21p
µD22p
µD23 p

µD31p
µD32p
µD33p

µ+ �D11
p
µ+ �D22

p
µ+ �D33

1

CCCCCCCCCCCCCCA

. (6.35)

The discrete elastic regularizer can now be approximated by the midpoint
integration rule:

Selas[y] =
1

2

Z

⌦
|B[y]|2 dx (6.36)

⇡ h̄

2

���Belas(ystg � yref
stg)

���
2
= Selas(ystg � yref

stg)) (6.37)

Discretization of Di↵usive Regularizer

The di↵usive regularizer is just a special case of the elastic one with the
physically meaningless material constants � = 1, µ = �1. Thus the divergence
term vanishes and for the discrete representation of the di↵usive regularizer
we get:

Sdi↵(y) =
h̄

2

���Bdi↵(y� yref)
���
2

(6.38)
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with

Bdi↵ =

0

BBBBBBBBBBBB@

D11

D12

D13

D21

D22

D23

D31

D32

D33

1

CCCCCCCCCCCCA

. (6.39)

Discretization of the Curvature Regularizer

The curvature regularizer exclusively uses second derivatives. The discretiza-
tion is based on cell-centered grids. Staggered grids are not needed because
no divergence term is involved.

For the discretization of the Laplace operator (�f = @11f + @22f + @33f),
the second order derivatives in all three spatial directions xj are needed. Using
central finite di↵erences leads to the standard discrete second derivative op-
erator for the one-dimensional case in xj-direction:

Dcurv
j =

1

h2j

0

BBBBB@

�1 1
1 �2 1

. . .
. . .

. . .

1 �2 1
1 �1

1

CCCCCA
2 Rm

j

⇥m
j . (6.40)

As for the elastic regularizer, we discretize the curvature di↵erential operator
B = I3 ⌦� by means of the one-dimensional second derivative operators and
apply the midpoint integration rule again:

Scurv(y) =
h̄

2

���Bcurv(y� yref)
���
2

(6.41)

with

Bcurv =

0

@
Im

3

⌦ Im
2

⌦Dcurv
1

Im
3

⌦Dcurv
2 ⌦ Im

1

Dcurv
3 ⌦ Im

2

⌦ Im
1

1

A .

(6.42)

6.3.3 Derivatives of Discrete Regularizers

We have seen that all discrete regularizers have the format:

S(y) =
h̄

2

���B(y� yref)
���
2

(6.43)
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6. Nonparametric Image Registration

with B being Belas, Bdi↵ or Bcurv. The gradient and Hessian of such L2-norm
based regularizers are simply:

dyS(y) = h̄BTB(y� yref) (6.44)

d2yS(y) = h̄BTB (6.45)

6.4 Nonparametric Image Registration on a Fixed Level

Now all the described ingredients can be composed into a numerical algorithm
for nonparametric image registration (NPIR) on a fixed level. We use a dis-
cretization based on a grid with a fixed resolution. This algorithm will be
the main building block in the next section for a multilevel approach. The-
oretically, the fixed level approach can also be applied without a multilevel
strategy, but in practice this is not recommendable as we will explain in the
multilevel section.

The core of the NPIR algorithm consists of a Gauß-Newton-type optimiza-
tion algorithm (see Sec. 5.3) applied to an objective function defined by the
discretized registration functional Jh(T h, Rh,yh).

We define a function object JobjFctn with an initialization and an evalu-
ation method which is provided to the Gauß-Newton algorithm. The initial-
ization method is called only once, before the actual Gauß-Newton routine is
applied, and stores some static objects which do not change during the whole
iteration process as they are members of the function object. The objects to
be stored are the input of the routine:

JobjFctn.init(xcc, R0, T
coe↵,yref). (6.46)

xcc(⌦,m) is the cell-centered grid on which the discretization of the registra-
tion functional is based. This means the transformation and the images have
to be sampled on this grid. If the reference image is not already given on xcc,
it has to be resampled once at the beginning leading to the image R0. For
given interpolation coe�cients Rcoe↵ the sampled image R0 is determined by
the interpolation routine R0 = interpolate(Rcoe↵). The template image has
to be resampled in each iteration of the registration process according to the
current transformation. But the interpolation coe�cients can also only be
determined once at the beginning. For the computation of the interpolation
coe�cients T coe↵ (or Rcoe↵) of the original template image T orig (or Rorig) we
define the routine: T coe↵ = computeInterCoe↵(T orig). Remember that the
regularizer does not smooth the whole transformation y, but the displace-
ments y � yref. Usually the reference image is set to the identity yref = xcc,
but also a special reference transformation yref might be given, for example
coming from a manual or parametric pre-registration.

The evaluation method

[Jk, dJk, Hk] = JobjFctn.evaluate(yk) (6.47)
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6.4. Nonparametric Image Registration on a Fixed Level

returns the objective function value Jk = J(yk) 2 R, its derivative dJk =
dyJ(yk) 2 Rn and an approximation HJ

k = HJ(yk) to its Hessian for the
current transformation yk in iteration k. This routine is used by the Gauß-
Newton optimization scheme.

The NPIR algorithm computes an optimal transformation yopt with respect
to the registration functional J , the given images T orig, Rorig on the image
domain ⌦ and a resolution m = (m1,m2,m3) on which the discretization is
based on.

Algorithm 6.1. (Nonparametric Image Registration (NPIR))

1. Determine xcc(⌦,m) for given ⌦ and m

2. T coe↵ = computeInterCoe↵(T orig), Rcoe↵ = computeInterCoe↵(Rorig)

3. R0 = interpolate(xcc, Rcoe↵)

4. Set y0 = yref = xcc (or to given start and reference transformation)

5. JobjFctn.init(xcc, R0, T coe↵, yref)

6. yopt = GaußNewton(JobjFctn, y0)

Now we shortly explain what the evaluation routine JobjFctn.evaluate does
internally. The value of the functional and its derivatives are computed based
on the corresponding values of the distance measure (Dk, dDk, HD

k ) and the
regularizer (Sk, dSk, d2Sk):

Jk = Dk + ↵Sk, dJk = dDk + ↵dSk HJ
k = HD

k + ↵d2Sk. (6.48)

First, we consider the determination of the value and derivatives of the dis-
tance measure. Remember that we only cover discrete distance measures
of the form D(y) = �(r(y)). General properties of distance measures and
a simple example are given in section 6.2. Further distance measures are
described in the Chapters 8 and 9. The distance measure needs the trans-
formed image Tk = Ty = T (yk) and the reference image R0. Therefore
at first the transformed template image Tk is computed by interpolation on
the current transformation using the pre-determined interpolation coe�cients:
Tk = interpolate(yk, T

coe↵). Be aware that the current transformation is rep-
resented by the transformed grid yk = yk(xcc). For the computation of dDk we
also need the derivative dTy of the transformed template image (see sec. 4.3)
as part of the derivative of the residual function dr(y). Now the value and
the derivatives of the distance measure are determined as:

Dk = D(Tk, R0),
dDk = d�(r(yk)) · dr(yk), d2Dk ⇡ HD

k = dr(yk)
Td2�(r(yk)) · dr(yk)

(6.49)
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6. Nonparametric Image Registration

One possibility to accelerate the computations further is to take the diagonal
of the distance measure Hessian matrix: HD ⇡ diag(drTd2 · dr).
The determination of the current value Sk = S(yk) of the discrete regular-

izer is just based on the current transformation yk and the reference yref. The
images are not involved in the regularization. The analytic derivative dyS and
Hessian d2yS for the regularizers can be found in Section 6.3:

S(y) =
h̄

2

���B(y� yref)
���
2
, dyS(y) = h̄BTB(y�yref), d2yS(y) = h̄BTB

(6.50)

where B is the discrete di↵erential operator of the regularizer. No approx-
imative Hessian is used here but the full analytic second derivative of the
regularizer.

If the elastic regularizer is used, the transformation has to be discretized on
a staggered grid, but the images and thus the distance measure are discretized
on the respective cell-centered grid. To get an overall discretization on a cell-
centered grid the staggered grid has to be interpolated on the cell-centered grid
by ycc = Pystg where the matrix P is an averaging operator which averages
each two neighboured staggered grid points to one cell-centered grid point:

Pm =
1

2

0

B@
1 1

. . .
. . .

1 1

1

CA 2 Rm⇥(m+1). (6.51)

The three-dimensional averaging operator is constructed by means of the Kro-
necker product:

P =

0

@
Im

3

⌦ Im
2

⌦ Pm
1

Im
3

⌦ Pm
2

⌦ Im
1

Pm
3

⌦ Im
2

⌦ Im
1

1

A . (6.52)

For a concrete practical implementation of the presented NPIR algorithm
matrix-free computations are performed (see [170, 150]) because storing the
matrices is a waste of memory, even if sparse matrices are used. For testing
purposes the presented matrix version of the algorithm can be used on small
problems because it can be straight forwardly implemented, for example in
MATLAB.

6.5 Multilevel Image Registration

The basic idea of a multilevel image registration approach was already sketched
in the introduction of this chapter: instead of using one fixed discretization of
the registration functional as in the previous section the multilevel algorithm

98



6.5. Multilevel Image Registration

runs on a sequence of discretizations Jh
1 , Jh

2 , . . . running from coarse to fine
(hi are decreasing) of the continuous registration functional J . The resulting

transformation yh of one level is a good starting point yh/2
0 for the next finer

level h/2.

There are four di↵erent possibilities to incorporate multiscale (Sec. 4.3.3)
and multiresolution (Sec.4.4) approaches into image registration. The first
possibility is to use multiscale representations of the images alone [170, 150].
There are no theoretical disadvantages for this strategy but the computational
costs are impractically high for 3D medical images as the computations are
performed on all scales with the same (fine) resolution. The second possibility
is to apply a multiresolution (also multilevel) strategy for the images and the
transformation alone [170, 150]. This leads to much faster computations com-
pared to the first multiscale strategy but features like vessels are not smeared
over a broader range on coarser levels (Fig. 6.3, left column) which would lead
to a smoother distance functional.

The remaining two possibilities are a combination of multiscale and multire-
solution strategies potentially using the advantages of both methods. The first
alternative for a combination is to start applying a multiresolution approach
and then to compute di↵erent scales of the images for each resolution [170].
But this is not a good strategy because information might already be de-
stroyed by the resolution reduction as in the pure multi-resolution approach
from above. A better strategy is to determine a multiscale representation of
the original images first and then to compute di↵erent resolutions on each
scale [170]. This o↵ers the possibility to choose a resolution which fits the
current scale. We do not use the whole space spanned by di↵erent scales and
di↵erent resolutions but only one appropriate resolution per scale (see Fig. 6.3,
right column). For this combination of multi-scale and multiresolution strate-
gies we need three additional subroutines (compared to the NPIR algorithm):
one for the multiscale image interpolation, one for the image restriction of the
multiresolution approach, and one for the prolongation of the transformation.

The multiscale interpolation by approximating splines is explained in sec-
tion 4.3.3. The interpolation is separated into two steps like in the single
level NPIR registration method in the previous section: the computation of
the interpolation coe�cients and the actual interpolation based on these co-
e�cients. Thus we replace the routine T coe↵ = computerInterCoe↵(T orig) by
T coe↵ = computeInterCoe↵MultiScale(T orig, ✓) where the smoothing factor ✓
is added as an input. It is not necessary to replace the actual interpolation
routine T = Interpolate(xcc, T coe↵) because the approximation is already con-
tained in the computed coe�cients T coe↵.

Now on each level l, the reference and template image on a scale with
weighting factor ✓l are determined and the resolution of the images is reduced
to the resolution of this level (see Sec. 4.4). We assume that the number of
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voxels in each dimension are a power of 2: ml = (2l, 2l, 2l) where the exponent
defines the level number l. The original image is given on the finest level
lmax with T l

max = T orig, Rl
max = Rorig defined on the grid xcc(⌦,ml). The

original image might also be interpolated to this finest level. The routine
T l = Restrict(T l

coe↵, l) interpolates an image onto the finest grid based on
the interpolation coe�cients T l

coe↵ and restricts the resulting discrete image
to the resolution ml of the current level l. The restriction operator P 3D

avg (see

sec. 4.4.1) is applied several times until the desired coarser resolution ml is
reached.

The prolongation of a transformation yl�1
opt computed on level l � 1 to an

initial transformation yl
0 in the next finer level l is performed by the sub-

routine Prolongate. As explained in section 4.4.2 only the displacements
yl�1 � xl�1 are prolongated leading to the following update formula: yl

0 =
xl + Prolongate(yl�1

opt � xl�1).

By means of the three defined subroutines computeInterCoe↵MultiScale,
Restrict and Prolongate now the multilevel image registration (MLIR) algo-
rithm using di↵erent image scales and resolutions can be formulated. The
algorithm is similar to the NPIR algorithm on a fixed level, but now we have
a loop over the di↵erent scales resp. resolutions. The initialization of the
registration and an initialization step in each iteration. The initialization of
the objective function and the Gauß-Newton optimization algorithm remain
the same as in the fixed level algorithm (see step 9 and 10). The inputs of
the algorithm are the original template and reference images T orig, Rorig, a
minimal (coarsest) and maximal (finest) level lmin, lmax and for each level a
smoothing factor for the approximating spline representation of the images ✓l.

Algorithm 6.2. (Multilevel Image Registration (MLIR))

1. Set l = l
min

(coarsest resolution)

2. Set ml = (2l, 2l, 2l);xl = xcc(⌦,ml)

3. (Rl
coe↵

, T l
coe↵

) = computeInterCoe↵MultiScale(Rorig, T orig, ✓l)

4. (Rl
0, T

l
0) = Restrict(Rl

coe↵

, T l
coe↵

, l) (contains interpolation)

5. T̃ l
coe↵

= computeInterCoe↵(T l
0)

6. If l = l
min

then yl0 = y(xl)

7. If l 6= l
min

then yl0 = xl + Prolongate(yl�1
opt

� xl�1)

8. yl
ref

= xl (or determined for given parametric ref. transformation).

9. JobjFctn.init(xl, Rl
0, T̃

l
coe↵

, yl
ref

)

10. yl
opt

= Gauß-Newton(JobjFctn, yl0)
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11. If l = l
max

stop, else increment l = l + 1 and go back to step 2.

If a staggered grid for the regularizer is needed in step 2, a staggered grid is
generated xl = xstg(⌦,ml). Step 7 is changed to an appropriate prolongation
step for staggered grids (Sec. 4.4.2). The staggered grid and the staggered grid
based transformation are interpolated onto a corresponding cell-centered grid
resp. cell-centered grid based transformation (see operator P defined at the
end of Sec. 6.4) for the evaluation of the distance measure. For the regularizer
the staggered grid based transformation is used.
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Figure 6.3 The first column shows one 2D slice of the liver with di↵erent
resolutions based on the original image. In the second column first images
on di↵erent scales with ✓ = 0; 10; 100; 1000; 10, 000 are generated and then
the resolution is reduced to the same levels as in the first column. The levels
l = 8, 7, 6, 5, 4 with (2⇤2l)⇥2l voxel are shown. The first row contains in both
columns the original image for ✓ = 0 and the original resolution 512⇥ 256.
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Chapter 7

Parametric Image Registration

7.1 Introduction

Instead of characterizing the registration transformation y by a smoothing
functional the space of admissible transformations can be defined directly.
The registration functional is then optimized over this space. Usually the
function spaces used for image registration are parameterizable via a linear
combination of some basis functions. We already defined the parameterized
transformation y (see Sec. 3.2):

y(�, x) = Q(x)� with Q 2 R3⇥p, � 2 Rp (7.1)

where p 2 N is the number of basis functions. Now the registration functional
for the parametric registration problem depends on the parameters � 2 Rp and
not directly on the transformation y (see Section 3.2). Image-based parametric
registration will not be a part of this thesis but can be found in [170, 150].
Nevertheless parametric transformations will be presented because they are
needed for landmark-based registration schemes discussed in Chapter 11. The
parametric transformations are defined on a collection of points which might
be a regular grid but also a list of landmark points.

Typical low-dimensional function spaces are the spaces of rigid and a�ne
transformations. High-dimensional spaces allowing local deformations are usu-
ally spline-based transformations where the basis functions are defined accord-
ing to irregular points (Thin-plate Splines) or on regular grids (B-Splines).
Usually intensity-based schemes are defined on regular grids of control points
and feature-based schemes on irregular points located at the features. In this
thesis, we will only use spline-based transformations on irregular points.

7.2 A�ne-Linear Transformations

We start with a�ne-linear transformations because they are quite easy to de-
fine and to treat numerically. No constraints on the linear mapping like for
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rigid transformations are needed. Compared to rigid transformations, a�ne-
linear transformations can also have di↵erent scalings in di↵erent spatial di-
rections and shearing. An a�ne-linear transformation is defined as

y(x) = Ax + v (7.2)

with an arbitrary matrix A 2 R3⇥R3 and v, x 2 R3. We assume A to be full-
rank to exclude projections. The 9 degrees of freedom (number of parameters)
of A describe three rotations, three scalings and three shearings one for each
coordinate direction. The vector v describes a translation.

For the minimization of a given registration functional J [y] the optimal
parameters A and v have to be computed. To be able to use the generic
optimization framework defined in Chapter 5 we need one common parameter
vector � for the matrix A and the vector v. Therefore we show how an a�ne-
linear transformation can be rewritten to fulfill this requirement. Each matrix
and translation vector element is assigned an element of the 12-dimensional
parameter vector � 2 R12.

The discrete transformation y 2 R3n is defined on the same grid as the
discrete reference image. Thus let x̄ = x̄cc(⌦,m) be a cell-centered grid in
matrix representation and the number of grid points be n = m1 ·m2 ·m3. As
mentioned in the introduction all transformations can also be defined on an
arbitrary collection of points instead of the cell-centered grid, e.g., a list of
landmark points. For one a�ne linearly transformed grid point (or landmark)
xj = x̄j,: (one row of matrix) holds:

y(xj) =

0

@
�1 �2 �3
�5 �6 �7
�9 �10 �11

1

AxTj +

0

@
�4
�8
�12

1

A =

0

@
xj , 1

xj , 1
xj , 1

1

A

0

B@
�1
...
�12

1

CA . (7.3)

The last term allows to write all transformed vectors y(xj) in one big vector
in the special ordering (first all coordinates in x-, than in y- and z-direction).
Therefore let the matrix Q 2 R3n⇥12 be defined as:

Q(x̄) = I3 ⌦ (x̄,1n) =

0

@
x̄,1n

x̄,1n
x̄,1n

1

A (7.4)

with 1n being a n-dimensional vector where all entries are 1. For ease of nota-
tion, we will replace Q(x̄) by Q(x) in the following formulas. The matrix (x̄)
and long vector (x) notations of the cell-centered grid can easily be converted
into each other (see Sec. 4.2.4).

Now we can express an arbitrary discrete a�ne-linear transformation ya↵ 2
R3n on a discrete grid x = xcc(⌦,m) by a parameter vector �a↵ 2 R12 using
the matrix Q(x):

ya↵(�a↵,x) = Q(x)�a↵. (7.5)
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For e�cient optimization schemes the derivative of the discrete a�ne-linear
transformation ya↵ regarding the parameters �a↵ is needed:

d�y : R12 ! Rn⇥12 (7.6)

� 7! d�y = Q (7.7)

7.3 Rigid Transformations

Rigid transformations play an important role in computer assisted surgery.
For example, the mechanical properties of bones can be well approximated as
rigid bodies. This means they are translated and rotated, but their shape and
volume do not change. The rigidity property of the rotation can be described
by an orthogonal matrix Qrot 2 R3⇥3 with det(Qrot) = 1. Together with the
translation vector v 2 R3 a rigid transformation yrig : R3 ! R3 on a point
x 2 R3 is defined by:

yrig(x) = Qrotx+ v. (7.8)

The main di�culty with rigid registrations is the treatment of the rotation.
Many ways exist to describe rotations mathematically: rotation matrices, one
axis and one angle, unit quaternions and Euler angles. These representations
have di↵erent characterizations concerning ease of use, numerical stability
and compactness. The already described matrix representation has the disad-
vantage that the orthogonality constraint has always to be considered. The
matrix has 9 elements, but there are only 3 degrees of freedom. Leonhard
Euler investigated the properties of rigid transformations and found two im-
portant representations. Every rigid transformation can be represented by an
axis and an angle around this axis. Euler proved this in his work in 1776:
Formulae generales pro translatione quacunque corporum rigidorum (General
formulas for the translation of arbitrary rigid bodies). The original citation
in Latin is:

Quomodocunque sphaera circa centrum suum conuertatur, semper
assignari potest diameter, cuius directio in situ translato conueniat
cum situ initiali.

This can be translated as: ‘In whatever way a sphere is turned about its cen-
ter, it is always possible to assign a diameter, whose direction in the translated
state agrees with that of the initial state.’ This representation possesses 4 pa-
rameters: 3 for the axis and 1 for the angle. Quaternions are a closely related
representation which are usually used today due to the reduction of necessary
calculations by the quaternion algebra and numerical precision. Nevertheless
we use Euler angles because they are a very compact parameterization (3
instead of 4 parameters), which leads to a smaller search space for optimiza-
tion. Leonhard Euler introduced what we now call Euler angles in his book:
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Figure 7.1 Text part of the original publication of Euler’s: ’Theory of the
motion of solid or rigid bodies’. The text part describes the Euler angles.

Theroria motus corporum solidorum seu rigidorum [53], Chapter IX, De prima
motus generatione in corporibus rigidis, problema 59, Theory of the motion
of solid or rigid bodies. Part of the original publication is shown in Fig. 7.1.
According to Euler’s Rotation theorem, any rotation can be represented by
three angles, which are now called Euler angles. These Euler angles describe
three subsequent rotations around three axes. Since rotations do not com-
mute, the order in which they are applied is important. There are at least
24 standard Euler angles conventions [217] depending on the chosen axes, the
order of the applied rotations and the extrinsic or intrinsic interpretation of
the angles (frame of reference). We use a convention where the axes are in
right-hand rule order, the rotations are first around the z-axis, then around
the y-axis and then around the x-axis and the reference coordinate system is
fixed and not rotating (extrinsic). The range of the angle around the y-axis
has to be restricted to [0,⇡] or [�⇡/2,⇡/2]. The rotations around the x-,y-,z-
axis can be described by matrices depending on the corresponding Euler angle
�1, �2, �3:

R1(�1) =

0

@
1

c1 �s1
s1 c1

1

A , R2(�2) =

0

@
c2 s2

1
�s2 c2

1

A , R3(�3) =

0

@
c3 �s3
s3 c3

1

1

A

with the abbreviations: cj = cos �j , sj = sin �j , j = 1, 2, 3. Be aware that
for the rotation about the y-axis the signs of the sines have been changed
such that the right-hand rule holds. Applying the rotations about the axes
subsequently is the same as multiplying the corresponding matrices leading to
the rotation matrix:

Qrot(�1, �2, �3) = R1(�1)R2(�2)R3(�3)

=

0

@
c2c3 �c2s3 s2

s1s2c3 + c1s3 �s1s2s3 + c1c3 �s1c2
�c1s2c3 + s1s3 c1s2s3 + s1c3 c1c2

1

A
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We are searching for a parameterization of the rigid transformation based on
one parameter vector �rig = (�1, . . . , �6) 2 R6 and not a rotation matrix and
a translation vector. The first three parameters �1, �2, �3 represent the Euler
angles and the second three �4, �5, �6 the translations in x-,y-,z-direction.

We define the non-linear function q : R6 ! R12 which maps the parameter
vector �rig to the (row-wise) entries of the rotation matrix Qrot and keeps the
translation entries:

q(�rig) =

0

BBBBBBBBBBBBBBBBBBB@

c2c3
�c2s3
�s2
�4

�s1s2c3 + c1s3
s1s2s3 + c1c3

�s1c2
�5

s1s3 + c1s2c3
s1c3 � c1s2s3

c1c2
�6

1

CCCCCCCCCCCCCCCCCCCA

. (7.9)

Now the rigid transformation yrig on a cell-centered grid x can be written as:

yrig(�rig,x) = Q(x)q(�rig) (7.10)

where Q(x) = I3⌦ (x̄,1n) is the same matrix as for the a�ne transformation.
The significant di↵erence to the a�ne transformation is the non-linearity in-
troduced by the function q.

The derivative of the rigid transformation yrig with respect to the parame-
ters �rig is:

d�y
rig(�,x) = Q(x)d�q(�) = Q(x)

0

B@

@q
1

@�
1

· · · @q
1

@�
6

...
. . .

...
@q

12

@�
1

· · · @q
12

@�
6

1

CA . (7.11)

The explicit computation of the partial derivatives @q
i

@�
j

is straight forward.

7.4 Spline-based Transformations

The degrees of freedom of a rigid or an a�ne transformation are very low:
6 for the rigid and 12 for the a�ne transformation in 3D space. Thus only
global transformation e↵ects can be modeled. For the consideration of local
deformations a larger number of parameters is necessary. Splines are an e�-
cient and flexible possibility to get a theoretically arbitrarily high number of
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7. Parametric Image Registration

degrees of freedom. The spline coe�cients are the parameters of a continuous
parametric transformation. For each coordinate direction one spline-based
transformation function is defined. The spline basis functions are either given
on a regular grid (one basis function for each grid point) or on irregularly
distributed points. The first variant using spline functions as defined in sec-
tion 4.3.2 is quite popular in image based parametric non-rigid registration.
Details can be found in [199, 109, 192] but will not be described further in this
thesis. The second variant is usually used for landmark-based non-rigid reg-
istration schemes. Most popular is the thin-plate spline approach, which will
be explained in more detail in Section 11.8. An interesting alternative to thin-
plate splines are Gaussian elastic body splines which will also be discussed in
section 11.9.
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Chapter 8

Review of Distance Measures

8.1 Introduction

Distance measures are a very important building block of rigid as well as non-
rigid intensity-based registration methods. There are many di↵erent distance
measures and their number is still increasing. We will explain the main prin-
ciples of the most important distance measures. Most of the other measures
are more or less variations of these basic measures. They di↵er mainly in the
kind of dependency they assume between the intensities of the reference and
template image: identity, linear, functional or stochastic. Another important
aspect, in particular for non-rigid registration, is whether a measure evaluates
the intensity values globally or compares a local neighborhood for each image
point.

What is considered a reasonable choice for a distance measure depends
highly on the given application. Although some distance measures can be
used in most applications, e.g., mutual information, they all have some advan-
tages and disadvantages for particular applications, which will be discussed.
Instead of choosing suitable general distance measures, specifically designed
distance measures for given applications might lead to better registration re-
sults. Specific distance measures can take a priori information about the
imaging modalities or even on the image content like geometrical properties
of imaged structures into account.

Existing general and specific distance measures are reviewed and new mea-
sures incorporating shape information on image contents are introduced. We
will only consider distance measures on scalar-valued images, no vector-valued
(like color images) or tensor-valued images (like di↵usion tensor images). A
general introduction into distance measures, their discretization and deriva-
tives is given in section 6.2.

111



8. Review of Distance Measures

8.2 Properties of Distance Measures

The performance of a distance measure depends on the image classes of the
reference and template image. Thus an essential classification of distance
measures is their suitability for images from the same (monomodal) or di↵er-
ent (multimodal), e.g., CT and MRI, imaging modalities. Another important
property of a distance measure is the kind of dependency assumed between
template and reference image: identity, linear, functional, statistical. A dis-
tance measure can be based directly on the intensity values of the images
or on their morphology, for example based on gradient information or other
di↵erential operators. A further discrimination of distance measures is their
locality. Often for each image point in the reference image some di↵erence
to the template image is computed and then we integrate over all di↵erences.
There are distance measures which use instead of single points a whole lo-
cal neighborhood. There will be an own section about such local distance
measures.

Besides the properties of a distance measure concerning the image contents
also the e�ciency of a measure is important because in each iteration step of
the optimizer the distance measure and its derivative have to be computed.
This means the distance measure is part of the objective function and hence
should be also di↵erentiable. As we use the Gauß-Newton resp. the general-
ized Gauß-Newton optimization algorithm for all registration problems in this
thesis we only need first order derivatives of the residual function and second
order derivatives of the outer function. The special form of the (discrete) dis-
tances measures considered here is: D(y) = �(r(y)) (see Sec. 6.2). We will
define the outer and inner functions � and r for all distance measures as well
as their first derivatives d�, dr and the second derivative d2� of the generally
simple and smooth outer function �.

8.3 General Purpose Distance Measures

Roche et al. [188] classified the most important general purpose measures ex-
cept morphological measures by the implicit assumptions on which the mea-
sures rely on. They enumerate di↵erent specific functional relationships be-
tween the intensities of template and reference image: identity, a�ne-linear,
functional and statistical. The functional dependency f : R ! R of the im-
age intensities of the reference R and template T for the ideal transformation
yideal is formalized as

R(x) = f(T (yideal(x))) + ✏(x) (8.1)

where ✏ is some additive noise.

In addition Roche et al. [188] casted the search for an optimal distance
measure for a class of images into a maximum likelihood estimation problem.
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The image intensities are treated as random variables. They derive two pop-
ular measures (correlation ratio and mutual information) from the modeling
assumptions on the images in the maximum likelihood framework. Wein [248]
showed that also the normalized cross correlation is consistent with the maxi-
mum likelihood framework. This important approach o↵ers the possibility to
make the implicit assumptions explicit and helps to understand which distance
measure is the most suitable for a class of images.

In the following we will present distance measures for the most important
functional dependencies f . The formal derivation of the according distance
measures from the functional dependencies is left to the paper of Roche et
al. [188].

8.3.1 Identity Relationship

If the reference and template image di↵er only by Gaussian noise, the optimal
measure in the likelihood sense is the sum of squared di↵erences (SSD) measure
already defined in Section 6.2. Also the discretization and the residual and
outer function are given there. It is a simple measure which can be computed
very e�ciently.

The assumed functional dependency of the reference and template image
intensities is the identity (f = id) leading to:

R ⇡ f(T (yideal)) = id(T (yideal)) = T (8.2)

for the ideal transformation yideal. This assumption is very restrictive in the
sense that the SSD measure is only suitable for monomodal registration prob-
lems. Even for images from the same modality the intensity variations of
di↵erent acquisitions can be too high.

One advantage of the SSD measure is the local error contribution of every
single voxel pair compared to the mutual information measure which will be
explained in Section 8.3.4. Thus the SSD measure is particularly suitable for
non-rigid registration problems.

One of the disadvantages of the SSD measure is its sensitivity to outliers.
To reduce this sensitivity outer functions from robust statistics such as �(x) =

x2

�2+x2

with a sensitivity parameter � can be used (see for example [190]). In
robust statistics, estimators are investigated which are not unduly a↵ected
by small deviations from model assumptions like the assumption of Gaussian
distributed image noise for the SSD measure.

8.3.2 A�ne-Linear Relationship

If the contrast ↵ and/or the brightness � between the reference and template
image is di↵erent there is no identity relationship between the intensity values
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anymore, but the intensities might still be a�ne-linearly related:

R ⇡ f(T (yideal)) = ↵T (yideal) + �. (8.3)

The according optimal distance measure in the maximum likelihood sense [248]
is based on the normalized cross-correlation (NCC) of reference and template
image, also denoted as correlation coe�cient:

NCC[T ,R] =
Cov(T ,R)p

Var(T )
p
Var(R)

(8.4)

with the expectation value E(T ) = |⌦|�1 R
⌦ T (x)dx, the variance Var(T ) =

E((T �E(T ))2) and the covariance Cov(T ,R) = E
�
(T � E(T ))T (R� E(R))

�
.

The value of the normalized cross-correlation is between -1 and 1. Its abso-
lute value is high if the images are well registered and low if not. If the sign
is negative the intensities in one image are inverted compared to the other
images. As we like to get a minimum for well registered images we define the
(squared) normalized cross-correlation distance measure as:

DNCC[T ,R, y] = 1�NCC2[T (y),R]. (8.5)

The NCC distance measure is very useful for monomodal images but hardly
for multi-modal images. But if it is computed locally for each image point it
is also applicable to multi-modal image pairs (see Sec. 8.3.6).

Discretization and Derivatives

The discretization of DNCC is straightforward based on the numerical integra-
tion scheme presented in Section 6.2. Let R and Ty be the discretized reference
and transformed template image on the same grid with n grid points. Then
the expectation value E(R) can simply be approximated by the mean of the
intensities on the grid points:

E(R) ⇡ 1

n

nX

i=1

Ri =: R̄. (8.6)

Let be R̂ := (R� R̄)/
��R� R̄

�� and T̂y := (Ty� T̄ )/
��Ty � T̄

�� the normalized
reference and template image, then the NCC can be discretized by:

NCC(Ty,R) ⇡ R̂T T̂y := NCC(Ty, R). (8.7)

It follows the discrete version of the NCC distance measure:

DNCC(Ty, R) = 1�NCC2(Ty, R). (8.8)
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Now we define the residual function r and the outer function � for the use of
the distance measure in a Gauß-Newton optimization scheme:

r(y) = Ty � T̄ , �(r) = 1� (rT R̄)2

rT r
(8.9)

where the normalized reference image R̂ has to be computed only once at the
beginning of the optimization process.

The derivatives r and � needed for the Gauß-Newton optimization scheme
are:

dr(y) = dTy � 1n, d� = �2
R̂T r

rT r
R̂T +2

 
R̂T r

rT r

!2

rT , d2� =
2

rT r
.

(8.10)

8.3.3 General Functional Relationship

In the previous section we assumed a linear relation between the intensity
values of the reference and template image. Roche et al. [189] introduced a
distance measure which is capable of handling also a general (but unknown)
functional dependency f between the intensity values of reference and tem-
plate image:

R ⇡ f(T (yideal)). (8.11)

The idea of the distance measure is that in well registered images all image
points with a certain intensity in the template image are mapped to image
points with a corresponding (possible very di↵erent) intensity in the reference
image. But this holds only if the images are correctly registered. Thus, the
degree of functional dependence is a possible distance measure for registration.

The functional dependence can be measured by the correlation ratio dis-
tance measure [189]:

DCR[T (y),R] = 1� ⌘(R | T (y)) = 1� Var(E(R | T (y)))

Var(R)
. (8.12)

If R is completely independent of T , then the expectation E(R | T (y)) is
constant and its variance is zero. Thus ⌘ is zero and DCR is one. If every
value of R can be predicted from T (y) (complete functional dependency), the
expectation is E(R | T (y)) = R resulting in ⌘ = 1 and DCR is zero. Note that
the Correlation Ratio is not symmetric because ⌘(R | T (y)) 6= ⌘(T (y) | R).
The correlation ratio distance measure is not very popular and we do not use
it in this thesis. Therefore we refer to Roche et al. [189] for its discretization
and implementation.
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8.3.4 Statistical Relationship

The assumption of an explicit intensity mapping f as in the previous section
is often too restrictive for multi-modal image registration. A more general ap-
proach is to assume only statistical dependencies between the intensity values
of the reference and template image. A very popular distance measure suitable
for this general assumption is based on mutual information MI. This measure
from information theory was introduced into the field of image registration
both by Collignon et al. [37] and Viola and Wells [239, 240, 251]. Pluim et
al. [178] give a comprehensive survey on mutual information used for medical
image registration methods.

The main idea of mutual information is that accurately registered images
minimize the amount of information in a shared representation of the images.
If the intensity values of the reference image can be well explained by the
intensity values of the registered template image, the information content of
a shared representation is as low as for the reference image alone.

A very common measure for the information content of an image T : ⌦ ! R
on ⌦ ⇢ R3 is the Shannon entropy. Therefore let the intensity value dis-
tribution of the image be described by the continuous probability density
⇢T : R ! R with ⇢T � 0 and

R
R ⇢T (t)dt = 1. Then the Shannon entropy H

of the density is defined by:

H[⇢T ] = �
Z

R
⇢T (t)log(⇢T (t))dt. (8.13)

An image with almost a single intensity value has a very low entropy value
(H = 0 for a constant image). It contains very little information. An image
with many di↵erent intensities, which occur more or less equally in the image
yields a high entropy value. The image contains a high amount of informa-
tion. Hence, the entropy is also a measure for the dispersion of a probability
distribution. If the distribution has a single sharp peak, the entropy is low.
A dispersed distribution yields a high entropy value.

The same properties hold for the entropy of the joint density ⇢T ,R : R2 ! R
of the reference and template image intensity pairs (t, r) 2 R2:

H[⇢T ,R] =

Z

R2

⇢T ,R(t, r)log(⇢T ,R(t, r))d(t, r). (8.14)

If we find a transformation that minimizes the joint entropy, the two images
should be well aligned. But the joint entropy also decreases, if the entropy
of one of the images decreases. Therefore also the information content of
the single images should be considered in a distance measure. The mutual
information relates the information content of the single images to the joint
information content of both images:

MI[⇢R, ⇢T ] = H[⇢R] +H[⇢T ]�H[⇢T ,R]. (8.15)
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The mutual information is zero, if the images are stochastically independent.
Therefore we use the negative mutual information for the definition of the
distance measure to get a minimum for well aligned images:

DMI[R, T , y] = �MI[⇢R, ⇢T (y)]. (8.16)

Implementation

The main challenge for the implementation of mutual information is the de-
termination of the joint probability distribution ⇢R,T . There are two main
methods for estimating the joint (and also the marginal) probability densities:
histogram-based [191] and Parzen-window-based [240] estimation. The use of
histograms is widespread because they can easily be implemented [191, 178]
by sorting intensity values into a number of bins. The problem with histogram
estimators is that they depend on several parameters, e.g.,number of bins, bin
width, and lead to a non-di↵erentiable distance measure. The idea of the alter-
native Parzen-window-based estimator is to approximate the intensity value
distribution by the sum of shifted copies of a continuous and compactly sup-
ported kernel function, e.g., a cubic spline. In contrast to the histogram-based
estimator the Parzen-window estimator [240] is smooth and di↵erentiable, but
it depends also on di↵erent parameters. The width of the kernel is comparable
to the bin width of a histogram. In addition the number of kernel copies and
the number of image samples is crucial and lead to di↵erent estimations.

Based on the estimation of ⇢R,T the integral in Eq. 8.14 is approximated
by a midpoint quadrature rule (see Sec. 6.2.1). A detailed derivation of the
discretization, the reformulation of the mutual information measure into a
residual and an outer function and the derivatives can be found in [170].

Besides the mentioned implementational di�culties a main drawback of the
mutual information distance measure is that the dependence of intensity values
of neighboring voxels is ignored. Only the intensity distributions of reference
and template image are considered, not the intensity di↵erences for each single
image point as the SSD measure does. Pluim et al. [177] try to improve
this weakness of mutual information by combining mutual information with
gradient information. This leads us to morphological distance measures.

8.3.5 Morphological Measures

The aim of morphological (shape and structure) distance measures is to get
independent of the actual intensities which might vary across the image do-
main or between di↵erent modalities for the same anatomical structures. This
means the focus is on image features and structures (image morphology) and
not on intensities. The idea is that image contents are mainly represented
by intensity changes. Thus morphological distance measures are suitable for
multimodal image registration.
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The image gradient is a simple morphological feature measuring the magni-
tude and direction of intensity changes representing edges of objects. As the
magnitude depends on the modality only the direction information should be
used to define a morphological distance measure. Therefore Haber and Mod-
ersitzki [80] introduce the normalized gradient field (NGF) n[T ] of an image
T :

n[T , ⌘] =
rTq

|rT |2 + ⇠2
(8.17)

with an edge sensitivity parameter ⇠ 2 R+. Ignoring ⇠ for a moment the
normalization leads to gradient vectors of length one. The strength of the
intensity change does not matter anymore. The problem is that due to noise
even in regions with constant intensity small gradient vectors occur which are
scaled up to length one by the normalization. The parameter ⇠ determines
which gradients are considered as an edge (|T | > ⇠) and which gradients are
considered resulting from noise (|T |  ⇠).

For well registered images the intensity changes approximately point in the
same direction and so do the normalized gradients: n[T ](x) ⇡ ±n[R](x). In
this case the gradients are maximally linear dependent (zero angle). The scalar
product quantifies the linear dependency of the gradients. If the gradients are
linear dependent, the scalar product is one, if the gradients are perpendicular
to each other the scalar product is zero. The scalar product is also zero, if
one of the normalized gradients is zero. In a registration process the aim is to
maximize the scalar product or to minimize its negative value. To get positive
values we add additionally a one:

d(n[T ](x), n[R](x)) = 1� ((n[T ](x))Tn[R](x))2. (8.18)

If we integrate this measure over all image points we get the NGF distance
measure:

DNGF[T ,R, y] =

Z

⌦
d(n[T (y)](x), n[R](x)) dx. (8.19)

A detailed derivation of the residual r and outer function �, the discretization
and the derivatives of the NGF measure can be found in [80, 150, 170].

Also distance measures based on more complex di↵erential operators than
the gradient operator have been published. Maintz et al. [140] generate feature
images from the original reference resp. template image and determine the
cross correlation of the feature images. They determine the feature images by
fuzzy edgeness and rigdeness operators. Holden et al. [88] use multi-channel
mutual information incorporating derivatives of linear scale space into the
di↵erent channels. Droske et al. [48] introduce a distance measure based on
very general morphological features considering the image level sets M[T , c] =
{x 2 ⌦|T (x) = c}.

118



8.3. General Purpose Distance Measures

8.3.6 Local Distance Measures

Local distance measures are an alternative approach to morphological mea-
sures concerning intensity inhomogeneities across the image domain. They
are based on the assumption that the intensity variation is low inside a local
window region.

For example, one localized version of the mutual information distance mea-
sure has been published (see [178]). One problem with the local determination
of mutual information is that the results can su↵er from the small number of
samples. It is a statistical measure and if the number of samples are too
small, the statistics will be bad. Therefore relatively large subimages have to
be used. A detailed discussion can be found in [178].

Here we will focus on the local correlation coe�cient (LCC) distance mea-
sure, which will be used in Sec. 9.3 to incorporate shape information into the
registration process. The LCC distance measure is even suitable for multi-
modality registration as explained by Weese et al. [247]. First, we define the
local mean, local variance and local covariance at an image point x 2 R3.
The locality is reached by a convolution with a kernel function (also called a
window or weighting function) K : R3 ! R. For example the local mean at
x 2 R3 for an image T can be determined by:

EK(T )(x) = |⌦|�1
Z

⌦
K(s� x)T (s)ds. (8.20)

The kernel function can be a simple spherical (or cubic) binary function with
KS

r

(x) = 1 if x 2 Sr = {x| kxk  r} and 0 elsewhere, as in [247] or a Gaussian
function, as in [25, 174]. The local version of the covariance of a reference R
and a template image T at a point x 2 R3 looks like:

CovK(T ,R)(x) = |⌦|�1
Z

⌦
K(s�x)(T (s)�EK(T )(x))

T (R(s)�EK(R)(x))ds.

(8.21)

Now with VarK(R) := CovK(R,R) the local correlation coe�cient at x 2 R3

can be defined as:

NCCK[T ,R](x) =
CovK(T ,R)(x)p

VarK(T )(x)
p

VarK(R)(x)
(8.22)

and the (squared) local correlation distance measure as:

DLCC[R, T , y] = 1� |⌦|�1
Z

⌦
NCC2

K[T (y),R](x) dx. (8.23)

The discretization is the same as for the global NCC distance measure DNCC

(see Sec. 8.3.2). The only di↵erence is the convolution and the additional
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integral over all local correlation coe�cients. Their discretization is straight
forward, but the convolution leads to significantly higher computational costs
compared to the global distance measure. To accelerate the computation
Weese et al. [247] evaluate the local correlations only on 10% of the image
volume and Cachier et al. [25] exploit the fact that a 3D Gaussian function
can be separated into three 1D Gaussian functions for each spatial direction
one.

8.4 Specific Distance Measures

Although general distance measures are successful in many applications, spe-
cific distance measures, which incorporate a priori knowledge about the imag-
ing process or image contents, potentially improve registration results. In
particular ultrasound imaging is a challenging modality for image registra-
tion. Any information about the imaging process and the image contents in a
given application should be used to improve the registration process. We will
give di↵erent examples of specific distance measures and lay a special focus
on measures for ultrasound images.

8.4.1 Consideration of Image Content

Masking of image regions is a simple method to incorporate knowledge about
unwanted image content or to enhance image content with low contrast. For
example if we want to register an individual patient image data set containing
a brain lesion to an atlas of healthy subjects the registration method might try
to shrink the lesion to make the patient data look more similar to the healthy
subjects. Masking the region of the lesion can improve the registration results.

Henn et al. [86] introduce a SSD measure which ignores an image region
A ⇢ ⌦:

D[y] =
1

2

Z

⌦\A
(T (y(x))�R(x))2dx (8.24)

=
1

2

Z

⌦
�A(x)(T (y(x))�R(x))2dx (8.25)

where �A(x) is the characteristic function of A:

�A(x) =

⇢
1 if x 2 ⌦\A,
0 if x 2 A.

(8.26)

A more general masking approach is formulated by Schuhmacher et al. [211,
212]. They introduce combinations of weighting masks instead of a single
binary mask to enhance the intensities of low contrasted structures or to reduce
intensities, for example to hide lesions or di↵erent rectum fillings.
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Another possibility to incorporate structural knowledge about the image
content into the distance measure are corresponding anatomical structures
(landmarks) like points, curves, surfaces or volumes in reference and template
image. Hömke [89] calls those corresponding structures shape constraints and
introduces distance measures which are based on distance functions on the
shapes. He adds the shape distance measure to the SSD intensity distance
measure. We interpret such additional distance measures as penalizers which
constrain the displacement field. In Chapter 10 we present such penalizers
and direct possibilities to constrain the displacement field by corresponding
structures.

Masking and shape constraints usually require the identification of masks
resp. structures in template and reference image. In Chapter 9 we will intro-
duce distance measures for the case where an explicit model of structures in
one of the images is available. The distance measures compare the model with
the intensity values of the other image.

8.4.2 Consideration of Imaging Characteristics

The incorporation of knowledge about the imaging process and the appear-
ance of anatomical structures in the particular imaging modalities is a further
direction for application specific distance measures. All presented specific dis-
tance measures are of a common type. For the definition of this distance
measure type we introduce the general operators �R and �T which perform
some processing on the reference R : ⌦ ! R resp. template image T : ⌦ ! R
and yield vector-valued images �R[R] : ⌦ ! Rn resp. �T [T ] : ⌦ ! Rm on the
same domain ⌦ ⇢ R3 as the original images. A suitable multi-signal distance
measure DMS is applied to the resulting vector-valued images:

D[R, T , y] = DMS[�R[R],�T [T (y)]]. (8.27)

Now we will show di↵erent instances of this distance measure type.

Often imaging artifacts like MRI inhomogeneities or ultrasound shadowing
disturb the registration process significantly. Di↵erent methods to compen-
sate imaging artifacts for registration purposes have been published. Penney
et al. [175] for example suggest shadow removal for ultrasound registration.
In some cases also the image noise is reduced before registration, in par-
ticular speckle noise in ultrasound imaging ([130]; Sec. 2.4.1). The aim of
such pre-processing operations is to make the application of general distance
measures possible. The pre-processing operators yield scalar-valued images
�R[R],�T [T ] : ⌦ ! R on which conventional (single-signal) distance mea-
sures can be applied. For one of the images the operator can be the identity
operator �[T ] = T .

Besides specific pre-processing also the imaging characteristics of the modal-
ities can be considered. For example, ultrasound imaging consists mainly of
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tissue specific attenuations (speckle, tissue echogenicity) and reflections at
tissue interfaces (see Sec. 2.4.1). MR images do not contain such reflections,
but high gradient magnitudes indicate tissue interfaces. Therefore Roche et
al. [190] combine intensity and gradient magnitude information for the regis-
tration of MRI and ultrasound. They use a bivariate correlation ratio based
on a function f : R2 ! R which maps the intensities and gradient magnitudes
of the CT image T to the intensities containing attenuations and reflections
of the ultrasound image R. In this case the operators are �T [T ] = (T , krT k)
and �R[R] = R.

A more general approach to compensate di↵erent appearances of the same
anatomical structure in di↵erent modalities is the use of pseudo-modalities.
Either both original modalities are converted to a common pseudo-modality [1,
175] or a pseudo-modality is simulated from one modality which looks similar
to the other modality [236, 130, 248]. Then instead of a distance measure
for multimodal images like mutual information a measure for single modality
images like the cross correlation coe�cient can be used.

An example for a common pseudo-modality is introduced by Penney et
al. [175]. They convert the intensity values of an MRI image T and an ultra-
sound image R into vessel probability images �T [T ] = PT : ⌦ ! [0, 1] resp.
�R[R] = PR : ⌦ ! [0, 1] and register these probability images by means of
the normalized cross correlation distance measure DNCC[PR, PT ].

On the other hand Wein et al. [248, 249, 250] simulate ultrasound images
from CT (T ) to enable the registration of an ultrasound-like pseudo-modality
with an original ultrasound image R. The simulation is based on the as-
sumption that the acoustic impedance of tissue is proportional to its density
(and a constant speed of sound in the tissue). The tissue density is related
to the intensity values of the CT (Hounsfield units). The strength of ultra-
sonic reflections T1 : ⌦ ! R at tissue interfaces including shadowing e↵ects
is simulated by integrating reflections and transmissions along each ultrasonic
scanline. In addition the echogenicity T2 : ⌦ ! R is simulated by a heuristic
mapping of a narrow CT soft tissue intensity range onto echogenicities. As
they do not know how much reflections and echogenicities contribute to the
ultrasound intensities the coe�cients of a linear combination of both physical
e↵ects are implicitly estimated by a bivariate correlation ratio distance mea-
sure on �T = (T1, T2) and �R = R. Therefore they call their measure linear
correlation of linear combinations (LC2).
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Chapter 9

Distance Measures Incorporating Shape
Information

9.1 Introduction

In the previous chapter we gave two examples how a priori knowledge about
image contents (masking and shape constraints) can be incorporated into a
distance measure. Here we propose “image content aware” distance measures
for the special case of registration of pre- to intraoperative data. This intra-
operative registration problem is asymmetric: preoperative time constraints
for preprocessing the data are not tight, yet intraoperative scheduling is. The
idea is to preprocess the preoperative data to get a precise model of impor-
tant structures with special shapes and then register this model with the raw
intensity data of the intraoperative ultrasound. We put the focus on tube-like
vessel structures, which are locally cylindrical, but structures like organ sur-
faces, which are locally plate-like, are also possible. Such distance measures
which incorporate shape information, are often hybrid measures in the sense
that features/shapes are compared to intensities.

Aylward et al. [6] proposed a hybrid approach of fitting extracted features
(vessels) from preoperative data rigidly and directly to ultrasound intensity
data. Our approach is similar to the one of Aylward et al. [6] and we will
show how their approach can be formulated in our framework.

The aim of these hybrid approaches is to increase the robustness of the
registration process by incorporating model knowledge. In addition, the reg-
istration process can be accelerated significantly by reducing the evaluation
of a distance measure to the location of relevant structures. The aim of this
chapter is to define distance measures which are suited to compare vessel mod-
els and ultrasound intensity data robustly and more e�ciently than common
intensity-based distance measures.

At first we will model vessels geometrically by their center lines and radii.
We also generate intensity models of the vessels to get an image that only con-
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9. Distance Measures Incorporating Shape Information

tains the vessels. The first class of distance measures compares these intensity
models with the intraoperative ultrasound data by means of local correlation.
The idea of the second class of distance measures is to generate filter kernels
adapted to the center lines model of the vessels and then to transform the
other image such that the filter responses are maximized. We will use ideas
from visualization of vessels (convolution surfaces) to generate the intensity
model resp. a global filter kernel model and image processing techniques for
the filtering of tube-like structures.

9.2 Vessels Intensity Models

Vessels are tube-like structures, which may have non-circular cross sections but
in particular liver vessels can be well approximated by circular cross-sections.
Thus the vessels are well characterized by vessel center line points and a radius
for each center line point. We assume to have reliable information on the center
lines and local radii of the vessels extracted from the preoperative CT data
by segmentation and skeletonization in the preoperative planning process (see
Sec. 2.3.2 and Sec. 2.3.3).

The center lines are a set of n space curves ci : Ii ! R3, Ii ⇢ R between
branching points or end points of the vessels. The curves do not intersect
themselves or other curves. The branching points are left such that each
center line point lies exactly on one curve. Let

Cv =
[

i

{ci(s)|s 2 Ii} (9.1)

be the set of points on all vessel curves ci parameterized by open intervals Ii.
The index v stands for vessels. The function rv : Cv ! R+ denotes the radius
and tv : Cv ! R3 the tangential direction of the vessel center line points Cv.
The tangents are computable via the center line curves ci. We omit the index
v for as long as there is no confusion with reference or template landmarks (r
and t), resp. linear constraints C appears.

The curve model with radii information describes the geometry of the ves-
sels. To describe the appearance of vessels in a 3D image we will generate
an intensity model of the vessels. We will focus on the bright appearance of
vessels on a totally black background like in power Doppler ultrasound, but
the concept can be adapted easily to dark appearing vessels like in B-mode
ultrasound or bright vessels on a background with constant intensity as seen
in contrast-enhanced CT images. First we model the intensity profile of a ves-
sel cross-section and then extrude this intensity profile along the vessel center
lines to get the whole 3D model.
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9.2. Vessels Intensity Models

Figure 9.1 2D Gaussian (left) and Gaussian convolved cylinder (middle) inten-
sity profile of a vessel cross-section. On the right: Gaussian (dark gray) and
Gaussian convolved cylinder (light gray) profile compared to the real vessel
profile in power Doppler ultrasound data (black dots).

9.2.1 2D Vessel Intensity Profiles

In an ideal image of the locally cylindrical vessel geometry a vessel cross-
section is just a circular disc with a constant intensity. We ignore the actual
intensity and define a more abstract model where the intensity is one and the
background zero. For registration distance measures like the local correlation
coe�cient measure or the normalized gradient field measure the actual inten-
sity does not matter. Thus the 2D intensity profile of a vessel cross-section
with a radius parameter r in an ideal image can be defined by a binary disk
function:

gdisk(x1, x2, r) =

⇢
1 if R  r
0 else

with R =
q
x21 + x22. (9.2)

Real imaging systems do not have ideal imaging properties. For example, they
have only a limited resolution. The point spread function (PSF) describes the
response of an imaging system to a point object [74]. The point is blurred by
the system and appears as a blob in the image. Mathematically the image is
the convolution of objects with the point spread function.

Often Gaussians are used to approximate the intensity profiles of vessel
cross-sections. As pointed out by several authors [262, 106] a Gaussian con-
volved cylinder profile is a better approximation for the appearance of vessels,
in particular for vessels with bigger diameter (Fig. 9.1). This follows from
the above assumption of an ideal disc-like intensity profile convolved with a
Gaussian point spread function. The intensity profile generated by a Gaussian
convolved cylinder is defined by:

gconvcyl(x1, x2, r,�) = gdisk(x1, x2, r) ⇤G2D
� (x1, x2) (9.3)

where the function gdisk is defined as above and the 2D Gaussian function
G2D
� (x1, x2) = G�(x1)G�(x2) is defined by a product of two 1D Gaussian

functions with G�(x1) = (
p
2⇡�)�1e�x2

1

/2�2

due to the separability property
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9. Distance Measures Incorporating Shape Information

Figure 9.2 Left: Vessel center lines with color-coded radius information
(red=large radii, blue = small radii). Middle: Volume rendering visualization
of the intensity model. Right: Isosurface of the intensity model (convolution
surface).

of the Gaussian function. Unfortunately there is no analytical closed form
solution of the convolution integral, but Wörz et al. [261] give a suitable
approximation.

As the 2D Gaussian is rotationally symmetric: G�(x1, x2) = G̃�(R) =
(2⇡�2)�1e�R2/2�2

with R =
p
x21 + x22 and also gdisk(x1, x2), it follows that

also gconvcyl is rotationally symmetric .

9.2.2 3D Intensity Model Based on Convolution

Now we have an intensity model of a vessel cross-section. The question re-
mains how these 2D cross-section models at each center line point can be
extruded to an overall 3D generalized cylinder model of the vessels. We were
inspired by the approach used for the visualization of structures by convo-
lution surfaces [17, 164]. A convolution surface Sc ⇢ R3 is an isosurface
Sc =

�
x 2 R3 | F (x) = c

 
for a certain isovalue c 2 R of a scalar (implicit)

function F : R3 ! R. The scalar function is generated by a convolution
F (x) = (K ⇤C)(x) =

R
C K(s�x)ds of a set C ⇢ R3 of geometrical primitives

(points, curves, polygons) with a kernel function K : R3 ! R. The exact
meaning of the convolution integration over the set C will be explained below.
The set C is also called the “skeleton” of the visualized object. Convolution
surfaces are in particular suitable for the visualization of tubular structures
like vessels (see Fig. 9.2) because they are smooth and in particular smooth
at the branchings of vessels [164].

In our case the vessel center lines are the skeleton of the vessels. As the
center lines are infinitesimally thin, we describe them by Dirac delta func-
tions � like Bloomenthal [16] to get non-zero integrals when convolving them
with the kernel function K. Bloomenthal [16] utilize a 3D Gaussian function
as the kernel function K = G3D

� (x1, x2, x3) because of its symmetry and its
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9.2. Vessels Intensity Models

separability property: G3D
� (x1, x2, x3) = G�(x1)G�(x2)G�(x3). He gives a dis-

cretization and e�cient implementation of the convolution integral. The idea
is to approximate the curves by linear line segments. Due to the superposition
property of the convolution integral: K ⇤ (C1 [C2) = (K ⇤C1)+ (K ⇤C2), the
convolution integral for each line segment can be computed and summed up to
the overall convolution integral. Without loss of generality let a line segment
with length a lie on the x1-axis and be defined as a product of 1D Dirac delta
functions: l(x1, x2, x3) = lx

1

(x1)�(x2)�(x3) with lx
1

(x1) = 1 for 0  x1  a
and lx

1

(x1) = 0 otherwise. In distribution theory the delta function is defined
more exactly by its e↵ect onto another function if the product of both func-
tions is integrated. Now the convolution integral of the line segment with a
3D Gaussian kernel can be written as:

FG
l (x) =

Z

l
G3D
� (s� x)ds =

Z

R3

l(y)G3D
� (y � x)dy. (9.4)

Bloomenthal [16] showed that this convolution integral can be reduced to a
product of a scalar distance filter term G2D

� (x2, x3) and an integration filter
term

R a
0 G�(y1 � x1)dy1:

FG
l (x) = G2D

� (x2, x3)

Z a

0
G�(y1 � x1)dy1. (9.5)

The first term is called the distance filter because the value depends on the
distance of the point x to the line segment. The integration filter smoothes
the line segment along the line direction.

We use the same integration filter term as Bloomenthal, but extent the
distance filter in two directions to get a better intensity modeling of real
vessels. We consider the di↵erent radii along the vessels and use the Gaussian
convolved cylinder intensity profile from Sec. 9.2.1 instead of the Gaussian
profile leading to the kernel:

K̃convcyl(x, r,�) = gconvcyl(x2, x3, r,�)G�(x1). (9.6)

The respective convolution integral for the line segment l is then:

F convcyl
l (x) =

Z

l
K̃convcyl(s� x, r(s),�)ds (9.7)

= gconvcyl(x2, x3, r,�)

Z a

0
G�(y1 � x1)dy1. (9.8)

Now the line segment has to be transformed to the position and orientation
of the part of the vessel center lines it approximates. Therefore we define
a local coordinate system at each center line point s 2 Cv by two normal
directions n1, n2 : Cv 7! R3, n1(s)?n2(s), perpendicular to the tangential
direction t(s). Due to the rotational symmetry of the kernel the exact choice
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Figure 9.3 Left: Preoperative intensity model. Middle: Original intraopera-
tive power Doppler ultrasound image. Right: For each center line point the
normalized correlation coe�cient (NCC) is computed for a local neighborhood.

of the normal directions n1 and n2 does not matter. The normal directions can
be constructed from the tangential direction by means of the cross product.
We choose a rotation T rot = [t(s), n1(s), n2(s)] for rotating the kernel onto a
tangential direction t(s) and introduce the abbreviation:

Kconvcyl(s�x, r(s), t(s),�) = K̃convcyl([t(s), n1(s), n2(s)](s�x), r(s),�). (9.9)

A vessel intensity model Rmod : R3 ! R based on the Gaussian convolved
cylinder profile can now be defined by:

Rmod(x) =

Z

C
v

Kconvcyl(s� x, r(s), t(s),�)ds. (9.10)

In Fig. 9.2 the intensity model of liver vessels based on a center lines skele-
ton with radius information and an isosurface of this model representing a
convolution surface is shown.

9.3 Correlation Measure Based on the Vessel Intensity Model

Template matching is an image processing method where we look for an object
resp. a small part of an image which matches a small template image [23]. The
template is moved over the image and the position is determined where the
image region is most similar to the template. Some of the distance measures
we introduced for image registration are also used to quantify the similarity of
template and image region. For example, the correlation coe�cient is utilized,
if the contrast and brightness between the template and the searched image
region di↵ers.

We transfer the idea of template matching to the registration of the intensity
model generated in the previous section to intraoperative ultrasound data. We
take a local region of each part of the vessel model (a template) and compare
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its intensities with the intensities of the ultrasound image in the same region.
As we only modeled the relative intensity distribution of the vessels, but not
the absolute intensities as they appear in the ultrasound data the correlation
coe�cient is a suitable measure for the comparison, because it is invariant
against a�ne-linear intensity di↵erences (see Sec. 8.3.2). Hence, all the local
correlation coe�cients along the vessel model are summed up to get a distance
measure for the intensity model and ultrasound data (see Fig. 9.3). This means
we get a local correlation coe�cient distance measure DLCC like in Sec. 8.3.2,
but the reference image R is exchanged by the intensity model image Rmod

and the local correlation coe�cients are not computed on the whole image,
but only along the vessel center lines Cv:

DLCC [Rmod, T , Cv, y] = 1� |⌦|�1
Z

C
v

NCC2
K(T (y),Rmod)(s)ds. (9.11)

The kernel functionK : R3 ! R can simply be a binary function representing a
spherical region as shown in Fig. 9.3. The size of the spherical region is adapted
to the vessel radius at the vessel center line point. From the application’s view
the intraoperative ultrasound data make up the reference image, but for the
evaluation of the distance measure it is more e�cient to take the preoperative
intensity model as the reference image, such that the regions defined by the
kernel function do not have to be transformed. In this case the transformation
needed for the application can be computed by local inversion [41].

An interesting variant of the local correlation measure is to weight the more
important vessels with a large diameter higher than those with a small one.
The diameters are known from the model. The application of a multilevel
strategy on the intensity model and intraoperative image data is straightfor-
ward.

9.4 Convolution Based Measures

The general idea of this class of distance measures is to use local filters, which
are adapted to the size and direction of the preoperative vessel model at a
given point s 2 Cv on a vessel center line. These filters give a high response, if
a tube-like structure with similar radius and direction lies at the same point in
the intraoperative intensity data (see Fig. 9.4). We restrict ourselves to linear
filters defined by a convolution with a kernel function K(s, r(s), t(s)) : R3 ! R
depending on s 2 R3. The kernel function is parameterized by the radius
r(s) 2 R+ and the tangential direction t(s) 2 R3 of the vessel model at the
center line point s 2 Cv as for the vessel intensity model defined in Sec. 9.2.

Now a distance measure can be defined by integrating all local filter re-
sponses of di↵erent points s on the vessel skeleton Cv:

DCONV[Rmod, T , y] = �
Z

C
v

Z

⌦
T (y(x))K(s� x, r(s), t(s))dxds (9.12)
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Figure 9.4 Local vessel filter kernels on vessel center lines (red) overlaid on
the intraoperative image (left Fig.). Global 3D filter kernel with positive
(white) and negative (black) values in a 2D slice (middle Fig.) and 3D volume
rendering visualization (right Fig.)

where T : ⌦ ! R with ⌦ ⇢ R3 is the intraoperative 3D ultrasound image.
The intensity model Rmod is implicitly represented by the kernel function
K(s, r(s), t(s)). As in Sec. 9.3 the preoperative intensity model is chosen as
reference image, to avoid transforming the filter kernels.

If the kernel function K is a 3D Gaussian function we get the distance
measure of Aylward et al. [6] in the case that the standard deviation � is set
to the radius of the vessel model.

Note that the convolution with a filter kernel can be interpreted as the
correlation between the mirrored filter kernel and an image. The di↵erence to
the correlation coe�cient lies in the local normalization.

Although we apply our method to tube-like features, the framework is gen-
eral and we expect that it works also for other features, e.g., with a locally
plate-like shape [45] like the surface of the liver.

9.4.1 Reformulation to a Global Filter Kernel

Since for each point on the vessel center lines a 3D convolution has to be per-
formed the run-time for a straightforward evaluation of the distance measure
might be similar to common intensity-based distance measures. But fortu-
nately the convolutions for each center line point with local filter kernels can
be combined to one convolution with a global filter kernel by exchanging the
order of the integration:

DCONV [T ,Rmod, y] = �
Z

C
v

Z

⌦
T (y(x))K(s� x, r(s), t(s))dxds

= �
Z

⌦
T (y(x))

Z

C
v

K(s� x, r(s), t(s))dsdx. (9.13)
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The global filter kernel P (x) =
R
C

v

K(s � x, r(s), t(s))ds can be determined
preoperatively (see Fig. 9.4). During the intraoperative registration process
only the cross correlation

R
⌦ T (y(x))P (x)dx of the global kernel and the in-

traoperative data T has to be computed. This is an essential conclusion for
the e�cient use of the distance measure in the context of our intraoperative
registration method. As the global kernel is almost zero at a certain distance
to the vessel center lines, the distance measure does not need to be evaluated
for those parts.

We only consider kernel functions which are rotationally symmetric around
the vessel axis and Gaussian along the axis. Therefore we define a local coor-
dinate system u = [t, n1, n2](x�s) similar to the intensity model in Sec. 9.2.2.
The kernels can be written in the new coordinate system as

K(u) = Kdist

✓q
u21 + u22

◆
G� (u3) . (9.14)

The structure of the kernels is the same as for the intensity model in Sec. 9.2.2.
The global kernel function P can be e�ciently implemented exactly like the
vessel intensity model by a piecewise linear approximation of the center lines
(see Sec. 9.2.2).

9.4.2 Vessel Filters Kernels

Now we are searching for local filter kernels, which give high responses at a
vessel center line point in the reference image if at this same point in the
currently transformed template image a tube-like structure is present with a
similar radius and direction as the vessel model in the reference image. Sev-
eral filter kernels have been published which rely on di↵erential operators to
calculate partial derivatives. To make the numerical determination of deriva-
tives more robust to noise the images are usually smoothed by a Gaussian
filter (Gaussian convolution) before di↵erential operators are applied. Due
to the commutative property between the derivative operators and the Gaus-
sian convolution the image can equivalently be convolved by derivatives of
Gaussians.

Laplacian Kernel

A well-known vessel filter which is based on second derivatives of Gaussians
was published by Frangi et al. [68]. They analyze the eigenvalues |�1|  |�2| 
|�3| of the Hessian matrix H for each voxel. The eigenvector v1 corresponds
to �1 points in the direction of the vessel. For bright vessels on a dark back-
ground the eigenvalues have the property: �1 ⇡ 0 and �1 ⌧ �2 ⇡ �3. Frangi
et al. [68] define a scalar valued “vesselness” function depending on this prop-
erty. Because the radii of the vessels are unknown, the vesselness response is
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Figure 9.5 Left: Gaussian second derivative resp. profile of 3D Laplacian
kernel. Right: Isosurface visualization of 3D Laplacian kernel with positive
values (yellow) inside the vessel and negative values (red) outside the vessel.

calculated at multiple scales by computing the Hessian with Gaussian deriva-
tives at multiple scales. At every voxel the vesselness value with the highest
response is selected and the corresponding scale represents the radius of the
vessel.

In the registration setting however, radii and directions of the vessels are
already known from the preoperative model. Instead of computing the direc-
tion and radius via the Hessian matrix the filter kernel can directly be steered
by the known parameters. Motivated by the vesselness filters of Frangi et al.
we define a filter kernel based on the sum of the Gaussian second derivatives
in the two normal directions (see Fig. 9.5). This results in a Laplacian filter
in the normal plane which is Gaussian weighted in the vessel direction. The
second Gaussian derivative in the x1 direction at a point x = (x1, x2, x3) is:

Gx
1

x
1

(x,�) =

✓
x21
�4

� 1

�2

◆
G(x,�). (9.15)

The kernel has to be transformed to the position of a center line point y and
orientation of the local coordinate system u = [t, n1, n2] (x � y). This yields
the following filter kernel:

KL(u,�) = Gn
1

n
1

(u,�) +Gn
2

n
2

(u,�) = L(
q

u21 + u22,�)G(u3,�) (9.16)

where L(r,�) = 1
2⇡�2

e�
r

2

2�

2 ( r
2

�4

� 2
�2

) shows rotational symmetry. The kernel
KL is of the general form defined in Eq. 9.14. It is important to note that such
kinds of filters have to be normalized appropriately to reach scale invariance
and � has to be chosen correctly such that the response is maximal for a given
radius r. Because the Laplacian kernel has a zero level set at

p
u21 + u22 =

p
2�

the correct choice is � = (
p
2)�1r. In addition, the distance measure (not the

kernel) is set to 0 for values  0 to avoid negative correlations.
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Figure 9.6 Left: Profile of Laplacian kernel KL (dark gray) and di↵erence of
Gaussian first derivatives KD (light gray). Right: Di↵erence of Gaussian first
derivatives kernel KD (black) compared to kernel KK of Krissian (dark gray)
and Laplacian of convolved cylinder (light gray).

Di↵erence of Gaussian First Derivatives Kernel

Frangi et al. [68] assumed a vessel model with a Gaussian intensity profile for
the cross-sections. As we discussed in Sec. 9.2.1 a better model is a Gaussian
convolved cylinder. The following kernels are better suited for this vessel
model.

Krissian et al. [106] propose a more radius-sensitive kernel based on Gaus-
sian first derivatives Gv

↵

in all radial directions v↵ 2 R3, kv↵k = 1 in the
normal plane of a vessel integrated on a circle with radius r: KK(u, r,�) =
1
2⇡

R 2⇡
↵=0

R
Gv

↵

(u+ rv↵,�)d↵.

Since there is no analytical closed form for this integral we suggest a similar
and easily computable kernel by rotating first derivatives of 1D Gaussians
instead of 2D Gaussians, which is of the type defined in Eq. 9.14:

KD(u, r,�) =


G0

✓q
u21 + u22 + r,�

◆
�G0

✓q
u21 + u22 � r,�

◆�
G(u3,�).

(9.17)

Normalizing the kernel to
R
KD(u, r,�)du = 0 yields a similar kernel to the

one of Krissian et al. (Fig. 9.6). Compared to the Laplacian filter the kernel
is concentrated more on the boundary of a vessel (see Fig. 9.6) leading to a
higher radius sensitivity steerable by the parameter �. Note, that the kernel
KD is similar to the Laplacian of a Gaussian convolved cylinder (Fig. 9.6).

9.4.3 Conclusion

In the last sections we show how a priori knowledge about the shape of anatom-
ical structures can be incorporated into the distance functional. The main idea
is to use local filter kernels, which fit the local shape of anatomical structures
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in the reference image and give a high filter response in the presence of the
same shape in the template image. We focus on tube-like shapes like ves-
sels and present di↵erent filter kernels for such structures. We show that the
kernels can be devided into two classes. The first class (Laplacian kernels)
assume a Gaussian intensity profile of the vessels the second class (di↵erence
of first derivatives) a Gaussian convolved cylinder intensity profile. Although
we developed the convolution based distance measure DCONV in particular
for tube-shaped vessels the idea of the measure is quite general and can for
example also be adapted to the locally plate-like shaped liver surface, which
is partially imaged in B-mode ultrasound data.

Positive properties of DCONV are that its evaluation is e�cient and that
in all filter kernels the standard deviation of the Gaussian can be used for a
multi-scale approach. A first validation of DCONV is performed in Chapter 14
for the registration of preoperative data and intraoperative 3D ultrasound
data of the liver.
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Chapter 10

Possibilities of Constraining Displacement
Fields

10.1 Introduction

In the preceding parts, di↵erent possibilities were shown and developed how
a priori knowledge about the image classes and contents can be incorporated
into the distance measure D comparing two images. Another starting point
for prior knowledge incorporation is to restrict the admissible transformations
y by known additional properties, such as volume preservation, rigidity of
anatomical structures or known anatomically corresponding points, so-called
landmarks. The next two sections explain how to deal with such additional
constraints in the given variational framework and give some important ex-
amples of such constraints. The focus in the following chapters will be on
landmark constraints.

10.2 Constraints in Variational Image Registration

There are three general possibilities to add constraints to the variational image
registration framework (3.4). The most used and often easiest to implement is
to add a penalizing term P to the registration functional, which only depends
on the transformation y and not directly on the images R and T :

J [y] = D[T (y), R] + ↵S[y � yref] + �P[y]
y! min. (10.1)

For example, let P be PVP[y] =
R
⌦ |det(ry)� 1| dx, to enhance volume

preservation. The Jacobian determinant det(ry) gives the local volume chan-
ge of y. The term PVP[y] penalizes deviations of the Jacobian determinant
from unity. A Jacobian determinant of one means complete volume preser-
vation. The drawback of this kind of constraint is that all local changes are
integrated in one single value and globally weighted to the rest of the func-
tional via the parameter �. This means that there is no local control on the
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10. Possibilities of Constraining Displacement Fields

volume change and significant changes might occur in some regions. In addi-
tion, the choice of � depends on the particular image pair and is not intuitive.
These kinds of constraints can be called soft constraints or global constraints
.

An alternative possibility is to formulate an optimization problem with
equality constraints C depending on y:

J [y] = D[T (y), R] + ↵S[y � yref]
y! min,

subject to C[y] = 0.
(10.2)

For the volume preservation example, the constraints C might be defined as:
CVP[y](x) = det(ry(x)) � 1 = 0, for all x 2 ⌦. These constraints ensure
volume preservation in any part of the image domain. Instead of penaliz-
ing unwanted solutions the constraints rule them out completely. Thus the
constraints are also called hard constraints or local constraints.

This kind of exact equality constraints is often too restrictive for many appli-
cations. Usually there is only an estimate of quantitative properties available.
Instead of equality constraints, inequality constraints can also be used:

J [y] = D[T (y), R] + ↵S[y � yref]
y! min,

subject to C[y] � 0.
(10.3)

In case of the volume preservation example, the volume might be allowed to
change locally in a given range: m(x)  CVP[y](x)  M , for all x 2 ⌦ and
with non-negative compressibility functions m  M . These constraints can
be reformulated into CVP[y]� m � 0 and M � CVP[y] � 0 to fit the generic
formulation in equation 10.3. Using equality or inequality hard constraints is
a powerful tool to incorporate additional knowledge about the transformation
into the registration process, although the numerical solution is demanding.
For example, in the case of local equality volume constraints there is one
constraint for each voxel.

10.3 Examples for Constraints

Registration methods with constraints are an active field of research, moti-
vated by prior knowledge about the mechanical behavior of anatomical struc-
tures or user supplied additional information on the transformation like cor-
responding landmarks.

The volume preservation constraint discussed in the previous section re-
flects the incompressible behavior of soft tissue for small deformations and
short time periods. In particular in non-rigid registration of pre- and postcon-
strast MR images of the breast it is indispensable to enforce volume preser-
vation. Without this constraint the volume of contrast-enhancing lesions
would significantly shrink after registration, because the optimizer would try
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to get rid of a contrast-enhanced lesion, which is not visible in the precon-
trast image resulting in strong di↵erences in the distance measure. A global
penalizer approach using parametric B-spline based registration has been in-
vestigated by Rohlfing et al. [192]. Instead of the above mentioned penal-
izer PVP[y] =

R
⌦ |det(ry)� 1| dx the logarithm of the Jacobian PVPlog[y] =R

⌦ |log(det(ry))| dx was used to symmetrically weight a local expansion and
compression. Guaranteed local volume preservation and guaranteed limited
volume change in a nonparametric constrained registration framework was
introduced by Haber et al. [78, 79].

Another important property of anatomical structures is their elasticity resp.
rigidity. Bones are very rigid, organs and other soft tissues less so; they behave
approximately like elastic materials. One way to handle images containing
structures with di↵erent elasticities is to assign spatially varying Lamé param-
eters into the elastic regularizer (see Sec. 6.3.1, based on a segmentation of the
structures [94]. A more direct way to ensure the rigidity on given structures
is kept under y is to penalize the local deviations from linearity, orthogonality
and orientation preservation of y [149]. Soft constraints approaches using such
a penalizer have been published for parametric [136, 222] as well as nonpara-
metric [148, 149] image registration. In addition a formulation with equality
constraints has been introduced by Haber et al. [76].

If the deformation fields y are analyzed further, e.g., in deformation-based
morphometry [4] or for the construction of statistical shape models [39], it
is particularly important to have smooth and invertible (bijective) deforma-
tion fields. Such smooth and invertible transformations are called di↵eomor-
phisms. For di↵eomorphic deformation fields every point in one image has
exactly one corresponding point in the other image. Although many registra-
tion techniques try to determine smooth deformation fields foldings might and
actually do occur. In particular, for inter-patient registration with large de-
formation fields explicit control or avoidance of folding is often implemented.
For example Christensen et al. [34] estimate the forward (y) and reverse (ŷ)
transformation while constraining these transforms to be inverse to each other
(y = ŷ�1). Another solution is to compose a large di↵eomorphic transforma-
tion from small di↵eomorphic transformations (y = yn � · · · � y1) such as
Rueckert et al. [198] proposed for free-form deformations based on B-splines.
A good starting point to ensure transformation regularity and bijectivity is the
local Jacobian determinant (det(ry)). Some registration algorithms monitor
the size of the Jacobian determinant and re-initialize or stop the registration
process, if its value gets to small [32, 147]. A way to avoid the incidence of
small values for the Jacobian determinant is to add inequality constraints on
the Jacobian determinant as introduced in the context of volume preservation
(see 10.2 and [79]).

An obvious possibility to incorporate a priori knowledge about the defor-
mation field y is to directly ascertain some deformation vectors based on in-
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teractively or automatically defined corresponding points or other geometrical
features. Such landmark-based registration approaches are the focus of the
next two chapters.

138



Chapter 11

Parametric Landmark Registration

11.1 Introduction

A simple yet important and widely used way to constrain the possible trans-
formations y is to provide some prominent points, so called point landmarks,
in one image and the corresponding points in the other image which have to
be mapped onto each other by y. This means that the transformation (dis-
placement vectors) on those points is already known. The registration task
is to compute the displacements at locations between the landmarks. In case
of rigid registration in 3D the whole transformation is already determined by
three corresponding pairs of points, but for non-rigid registration a suitable
deformation behavior on regions without landmarks has to be modeled. The
well-known thin-plate spline approach models deformations as the bending of
a thin-plate. Besides the thin-plate spline approach a more realistic model for
human tissue based on linear elasticity theory is used here (Gaussian elastic
body splines). The rigid and a�ne-linear as well as both mentioned non-rigid
transformations can be parameterized allowing e�cient registration schemes.

In clinical practice the interactive or semi-automatic localization of anatom-
ical landmarks is always prone to errors. We show and develop ways how to
deal with those uncertainties and give a more flexible and general landmark
concept. Quasi-landmarks, which are precisely defined only in some direc-
tions extend the point landmark concept. For example, corresponding vessel
segments can be identified, where the landmark position is clearly defined
perpendicular to the vessel, but not in the direction of the vessel. To provide
methods using such application specific landmarks allows for more intuitive
and e�cient interactive landmark definition.

Conventional landmark registration only use distance measures DLM[y, r, t]
determining the deviations between corresponding landmark positions, which
are presented by r and t. No distance measure D[T (y),R], depending di-
rectly on the underlying image data, is considered. This strong reduction of
information to only some points of the whole image data sets only leads to
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satisfactory non-rigid registration results in dedicated applications. Combina-
tions of landmark and intensity information are presented in the subsequent
chapter.

In the following two chapters we assume that landmark locations and un-
certainty estimations are already given. In part IV - Applications to Liver
Surgery, we give examples how those localizations and estimations can be
defined in clinical applications.

11.2 Point Landmarks in Clinical Applications

Point landmarks are in widely used in computer assisted surgery. They are
an alternative possibility to register two image data sets as well as to register
a preoperative image data set to a patient on the operating table [51]. Point
data arise from two sources: prominent anatomical points and artificial fiducial
markers. The first approach is also called markerless pair-point registration
and the second marker-based pair-point registration [51]. A non-invasive way
to define point landmarks is to use exterior or interior anatomical points like
the tip of the nose, the corners of the eyes, the ear cartilage or interior points
like the tips of the frontal, temporal and occipital horns of the ventricular
system in the brain or branchings of vessels. The accurate extraction of such
anatomical points is a challenging image processing task and often interac-
tively supported. In addition, in the region of interest a su�cient number of
anatomical points have to be available. In marker-based registration, markers
are attached to the patient before preoperative imaging. This is a logistic
challenge in clinical routine. They are designed to be clearly identifiable in
images of di↵erent modalities (see for example [142] and references in [51]).
In addition, they can be located precisely with navigated pointers on the pa-
tient. Di↵erent types of markers have been developed to solve the problem
of attaching the markers to the patient: skin-markers using adhesives, bone-
mounted markers and special fixtures like splints attached to the dentition.
Skin-markers are easy to use, but their accuracy is limited due to skin mo-
bility or swelling of the underlying tissue. The highest accuracies are reached
with bone-mounted markers like titanium screws drilled into the cranium un-
der local anesthesia. An attempt to achieve the accuracy of bone-mounted
markers without their invasiveness are assemblies holding all fiducial mark-
ers, which are rigidly attached to the patient at the dentition for instance.
A more detailed description and discussion of artificial markers can be found
in [51]. Here we will concentrate on anatomical landmarks, because for ab-
dominal applications artificial landmarks are only applicable with a big e↵ort.
Some attempts to use skin-markers have been reported ([153] and [158]), but
compared to neurosurgery exterior landmarks on the abdomen provide only
coarse information about displacements inside the body due to deformability
of the inner organs.
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The extraction of anatomical landmarks can be divided into the detection
and the localization process [196]. Detection means, a (point-like) feature
has to be found in an image. The localization implies the estimation of the
accurate position of the feature. An elaborate overview and analysis on the
performance of detection and localization operators by means of geometric
and intensity-based landmark models is given by Rohr [196]. For clinical ap-
plications the automatic detection of corresponding landmark pairs is seldom
feasible. A suitable strategy is to perform the detection interactively and to
refine the position by means of automatic localization operators. Wörz et
al. [259] for example present parametric intensity models for a precise local-
ization of a landmark inside a given region of interest. A more detailed view
on the extraction of landmarks in the liver is given in the clinical application
Chapters 14 and 15.

11.3 Notations

In this section we define general landmark registration schemes and stipulate
the notation. Let rj , tj 2 ⌦ ⇢ R3, j = 1, . . . , NLM be corresponding point
landmarks in the reference resp. template image. NLM is the number of
landmark pairs. The aim of the registration is to find a transformation y,
which maps corresponding points onto each other:

y(rj) = tj , j = 1, . . . , NLM . (11.1)

The role of reference and template landmarks is exchanged here (it might be
expected y(tj) = rj) to be consistent with the definition of y in the Eule-
rian framework (see Chapter 3). As y maps from the domain of R to the
domain of T also the landmarks as parts of the particular domains have to be
mapped in this direction. The equations 11.1 can be interpreted as interpo-
lation conditions. We are looking for a transformation y, which interpolates
the displacement vectors defined at the landmark positions.

As the localization of point landmarks is always a✏icted with uncertainties
the interpolation conditions should be modified to approximation conditions:

y(rj) ⇡ tj , j = 1, . . . , NLM . (11.2)

The quality of an approximation is usually quantified by an adequate norm
resp. a distance measure for the landmark pairs. Before going into more detail
we first clarify some notations.

11.3.1 Representation of Landmarks

For the numerical treatment of landmark registration problems it is important
to have suitable notations and representations of the landmark pairs.
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The first possibility is to arrange the landmarks in matrices r̄, t̄ 2 RN
LM

⇥3,
where the j-th row contains the coordinates of landmark rj 2 R3 respectively
tj 2 R3:

r̄ =

0

B@
rT1
...

rTN
LM

1

CA and t̄ =

0

B@
tT1
...

tTN
LM

1

CA . (11.3)

This representation is often used for rigid landmark registration as we will
show later.

The second possible notation is to stack all landmark positions one after
the other into one big vector r̂, t̂ 2 R3N

LM . Formally this stacking can be
described by the vec-operator applied to the landmark matrix r̄, t̄ 2 RN

LM

⇥3,
which stacks the elements of a matrix column-wise. Therefore for our purpose
the vec-operator has to be applied to the transposed landmark matrix:

r̂ = vec(r̄T ) and t̂ = vec(t̄T ). (11.4)

This notation is used, e.g., by Rohr et al. for interpolating and approximating
thin-plate spline landmark registration [195].

The third possibility is to stack all landmark coordinates again into one big
vector r, t 2 R3N

LM , but in order to be consistent with Chapter 4.2 first all
x1-coordinates of all landmarks than all x2- and x3-coordinates are stacked
into the big vector. Formally this stacking is described by the vec-operator
again:

r = vec(r̄) and t = vec(t̄). (11.5)

This is a particularly helpful representation, because it can directly be used in
the general optimization framework (see 5.1) and is consistent to the notations
of the discrete grids in Chapter 4.2.

We will use the third notation (Eg. 11.5) predominately in the following
sections and chapters, but at some places the matrix notation will be advan-
tageous (11.3) for rigid registration and the second representation (11.4) for
the derivation of some weighted schemes.

The two big vector notations can easily be transformed to each other by
permutation matrices. To transform r̂ into r a permutation matrix Pr̂!r 2
R3N

LM ⇥ R3N
LM is applied:

r = Pr̂!rr̂ with Pr̂!r

0

@
IN

LM

⌦ �
1 0 0

�

IN
LM

⌦ �
0 1 0

�

IN
LM

⌦ �
0 0 1

�

1

A (11.6)

where IN
LM

is the identity matrix of dimension RN
LM and ⌦ the Kronecker

product operator. For the inverse transformation from r to r̂ just the inverse
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of the permutation matrix has to be applied:

r̂ = Pr!r̂r with Pr!r̂ = P�1
r̂!r = P T

r̂!r. (11.7)

We specify for both vector representations, how the notations y(r̄) and y(r)
for the transformed reference landmarks have to be interpreted. Let y(r̂) be
defined as:

y(r̂) := (y(r1)
T , . . . , y(rN

LM

)T )T (11.8)

and y(r) as:

y(r) = (y1(r1), . . . , y1(rN
LM

), y2(r1), . . . , y2(rN
LM

), y3(r1), . . . , y3(rN
LM

))T .

(11.9)

11.4 Principle Landmark Registration Schemes

Corresponding landmark pairs can be seen as constraints at some points of
the sought deformation field. All three possibilities of constraint variational
image registration as presented in Chapter 10 are also suitable for landmark
registration and will be explained in the next subsections: global constraints
by a penalizer, equality constraints and inequality constraints. Rigid land-
mark registration takes on a special position because no constraints on the
landmarks but on the allowed transformations (rigidity) are defined.

11.4.1 Distance Measures for Landmarks

Before coming to the three general landmark registration schemes we define a
distance measure determining the deviations between corresponding landmark
positions. Usually the sum of the Euclidean distances of the landmark pairs is
used for that purpose. But since in clinical practice localization of landmarks
is always prone to errors, we use a more general distance measure:

DLM[y, r, t] = ky(r)� tk2LM =
N

LMX

j=1

ky(rj)� tjk2LM (11.10)

where k.kLM denotes a suitable norm. In the simplest case this is the Euclidean
norm k.k2, but also a weighted norm k.kLM considering the aforementioned
localization uncertainties will be presented in the following section 11.5.

If the landmark distance measure is applied as a penalizer in the integral
registration functional J [y] a slightly di↵erent formulation using the point
evaluation or Dirac � functional is needed:

PLM[y, r, t] =
N

LMX

j=1

���r
j

[y]� tj
��
LM

(11.11)

with �r
j

[y] = y(rj) (for details, see [147]).
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11.4.2 Equality Landmark Constraints

As mentioned at the beginning of this section, landmark registration can be
seen as an interpolation problem. To get a smooth transformation function y :
R3 ! R3, which interpolates the vector-valued template landmark positions
tj 2 R3 at the given nodes rj 2 R3, a regularizer S is optimized subject to the
interpolating equality landmark constraints:

J [y] = S[y] y! min,
subject to y(r)� t = 0.

(11.12)

Parametric solutions of the optimization problem exist for particular regular-
izers S. Two di↵erent regularizers S will be presented in the following chapters
leading to interpolating thin-plate (iTPS; 11.8.1) and interpolating Gaussian
elastic body splines (iGEBS; 11.9.1) as analytical solutions of the optimization
problem.

11.4.3 Approximative Landmark Registration with Explicit Transformation
Constraints

In clinical practice, the localization of the landmarks is given only approx-
imately (landmarks with localization uncertainties). This means no exact
matching of corresponding landmarks can be expected and therefore exact
interpolation conditions are too strict. In particular, interpolation conditions
for rigid and a�ne registration can generally only be fulfilled for very few
landmarks with uncertainties, because there are only few degrees of freedom.
For example, in the case of rigid transformations three landmarks can the-
oretically be mapped exactly onto each other although their localization is
inexact. In the case of non-rigid transformations the number of degrees of
freedom is usually high enough to find interpolating transformations. But
nevertheless localizations of the landmarks are uncertain, here approximative
solutions, which consider the localization uncertainty, are more suitable.

By means of the landmark distance measure (11.10) approximative land-
mark registration schemes can be developed. The search space for the trans-
formation y is restricted to a parametric space M, typically of low dimension.
The transformations are explicitly defined by linear combinations of some ba-
sis functions qk: y(x) =

P
�kqk(x). Suitable choices for M are based on rigid,

a�ne linear or spline transformations. We define an approximative landmark
registration scheme to be minimizing the landmark distance measure over the
restricted transformation space M:

J [y, r, t] = DLM[y, r, t]
y! min,

subject to y 2 M.
(11.13)

On the restricted transformation search space the distance measure does usu-
ally not drop to zero.
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11.4.4 Landmark Distances as a Global Penalizer

Instead of defining an explicit search space the transformations can be charac-
terized by a regularizer S. The regularizer and the landmark distance penalizer
PLM (11.11) can be summed up to a registration functional:

J [y] = PLM[y, r, t] + �AS[y] y! min (11.14)

with a weighting parameter �A 2 R+, which controls the relation between
the smoothness of the transformation y via S and the approximation qual-
ity induced by the penalizer P. Interestingly, for some regularizers S there
are again analytical solutions of the optimization problem: for example ap-
proximating thin-plate (aTPS; Sec. 11.8.2) and Gaussian elastic body splines
(aGEBS; Sec. 11.9.2).

11.4.5 Inequality Landmark Constraints

A further possibility to relax landmark interpolation to approximation condi-
tions are inequality hard constraints:

J [y] = S[y] y! min,
subject to ky(rj)� tjk2LM  tol2j , j = 1, . . . , NLM

(11.15)

with tolj 2 R+ being the tolerances defined as radii of distance spheres around
the landmarks. A solution of the optimization problem is only feasible, if the
deformed landmark y(rj) is inside a sphere of radius tolj around the corre-
sponding template landmark tj . If we use a weighted landmark norm k.kLM,
this sphere is deformed to an ellipsoid leading to anisotropic tolerances. Such
a weighted landmark distance norm will be presented in the next section 11.5.

The constrained optimization problem can be reformulated to the generic
constrained optimization problem presented in Chapter 5:

J [y] = S[y] y! min,
subject to tol2j � ky(rj)� tjk2LM � 0 , j = 1, . . . , NLM .

(11.16)

We are not aware of any publication suggesting such a landmark constrained
registration scheme. In Chapter 12 we will show how it can be numerically
solved as a special case of the more general combined landmark and intensity
registration approach.

11.5 Landmark Localization Uncertainties

The localization of landmarks is always prone to errors no matter if they are
defined manually or semi-automatically. There are two general ways how to
deal with such localization uncertainties. The first one is to analyze the re-
sulting registration accuracy from the localization uncertainties. Localization
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uncertainty for landmarks is also called the ”‘fiducial landmark error”’ (FLE).
The seminal work of Fitzpatrick et al. [65] establishes the statistical relation-
ship between the expected squared errors in the localization of landmarks
(FLE) and the target registration error (TRE) at an arbitrary point. This
error estimation is explained in more detail in Chapter 13.

The second approach is to consider the uncertainties already in the registra-
tion process by weighting the influence of certain landmarks or in particular
directions. The hope is, that higher uncertainties in some regions can be
compensated by trusted information from other regions. This means the aim
is to deal with the localization uncertainties such that as much information
as possible can be used. This approach will be the focus for the rest of the
chapter.

The idea is to consider the covariance of landmark localization errors in a
weighted distance measure (Mahalanobis distance) as described by Rohr [196].
It is assumed that the covariance of each landmark is at least approximately
known. The main problem is to combine the covariances of reference and cor-
responding template landmarks into one common weighting. In the general
case of anisotropic covariances their orientation has also to be transformed
by y to combine the uncertainty informations of reference and template land-
marks in a common coordinate space. We will see that by introducing as-
sumptions on the anisotropies and transformations y the weighted landmark
distance measures can be defined, such that they are su�cient for many prac-
tical applications. We start with an examination of the landmark covariance
combination and then introduce the weighted landmark distance measure.

11.5.1 Combining Covariances of Landmark Uncertainties

Usually, we can assume additive noise on the landmark localization. Let t̃j , r̃j
be the true landmark positions and �tj ,�rj the errors. Then the measured
landmark position is:

tj = t̃j +�tj , rj = r̃j +�rj (11.17)

where the errors are assumed to have zero mean E(�tj) = 0,E(�rj) = 0 and
are independent and identically distributed with covariance matrices Var(tj) =
E(�tj�tTj ) = ⌃t

j

2 R3 ⇥ R3,Var(tj) = E(�rj�rTj ) = ⌃r
j

2 R3 ⇥ R3.

Covariance matrices are positive semi-definite symmetric matrices and ev-
ery positive semi-definite symmetric matrix defines a covariance matrix. We
assume positive definite instead of semi-positive definite matrices because in
practical situations there is no direction where the localization uncertainty is
exactly 0.

In the following we will call landmarks with localization uncertainties “Qua-
si-Landmarks” [195], because they are not point landmarks with an exact
position.
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Figure 11.1 The landmark uncertainties are described by the covariances
⌃r

j

,⌃t
j

in di↵erent coordinate systems. In the general case, the orientation
of the covariance of the reference landmark is changed by the transformation
y.

Definition 11.1 (Quasi-Landmark). A Quasi-Landmark is a point p 2 ⌦ ⇢
R3 with a semi-positive definite matrix ⌃p 2 R3⇥3 describing the localization
uncertainty of the point p.

Generally localization errors occur on the template as well as on the refer-
ence landmarks. This means the two covariance matrices for each landmark
pair have to be combined. Inserting the measured template (tj = t̃j + �tj)
and transformed measured reference landmark position (y(r̃j +�rj)) into the
landmark interpolation condition (tj = y(rj)) leads to

tj = y(r̃j +�rj) +�tj . (11.18)

The problem is, that the covariance matrices of reference and template land-
mark rely on di↵erent coordinate systems. After transformation by y the
orientation of the covariance of the reference landmark ⌃r

j

is changed (see
Fig. 11.1). If we take a rotation matrix Q 2 R3⇥3 as a simple example for
y (leading to tj = Qrj), the Gauss-Markov theorem states that the best lin-
ear unbiased estimator (BLUE) for Q is given by the minimization of the
Mahalanobis distance [52, 165]:

D[Q] =
N

LMX

j=0

(tj �Qrj)
T (Q⌃r

j

QT + ⌃t
j

)�1(tj �Qrj) (11.19)

with the covariance matrices ⌃t
j

,⌃r
j

for the landmarks tj and rj . We have
to minimize with respect to the group of rotations SO(3). Only iterative
solutions have been published for this problem [52, 165].

We will now show that the general case where the reference covariance
matrix has to be transformed is not needed in the applications we do have in
mind. The following derivation is mainly taken from the book of Rohr [196].
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First we assume the artificial case, where no transformation (y = id) be-
tween reference and template landmarks is necessary, i.e., they have been
measured in the same coordinate system. Then the noisy landmark condi-
tions 11.18 read as:

tj = id(r̃j +�rj) +�tj = r̃j +�j (11.20)

where �j = �rj +�tj is the joint error of reference and template landmark.
The corresponding joint covariance matrix reads as:

⌃j = E(�j�
T
j )

= E
�
(�rj +�tj)(�rj +�tj)

T
�

= E(�rj�rTj ) + E(�tj�rTj ) + E(�rj�tTj ) + E(�tj�tTj )

= E(�rj�rTj ) + E(�tj�tTj )

= ⌃r
j

+ ⌃t
j

(11.21)

where we used E(�tj�rTj ) = E(�rj�tTj ) = 0 because the noise of the land-
marks has been assumed to be uncorrelated. So the combined covariance
matrix ⌃ is just the sum of the covariance matrices of corresponding reference
and template landmarks.

Next, we consider the case where the covariance matrices have been mea-
sured in di↵erent coordinate systems but are related by an a�ne-linear trans-
formation y(x) = Ax + v with A 2 R3 ⇥ R3, v 2 R3. If we replace y in the
general interpolation equation 11.18 by the a�ne-linear transformation we
get:

tj = A(r̃j +�rj) + v +�tj . (11.22)

The joint error is then �j = A�rj+�tj and it follows for the joint covariance
matrix:

⌃j = E(�j�j)
T

= E
�
(A�rj +�tj)(A�rj +�tj)

T
�

= E
�
A�rj(A�rj)

T
�
+ E(�tj�tTj )

= AE(�rj�rTj )A
T + E(�tj�tTj )

= A⌃r
j

AT + ⌃t
j

. (11.23)

Thus the covariance matrices of the reference landmarks have to be trans-
formed first (A⌃r

j

AT ) and then added to the covariance matrices of the cor-
responding template landmarks to get the combined covariance matrices.

If a general non-rigid registration transformation y is sought, this formula
can be applied. First, the unknown a�ne-linear transformation is approx-
imately determined based on the landmark pairs ignoring the localization
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11.5. Landmark Localization Uncertainties

uncertainty information. Second, the a�ne part A is used to compute the
combined covariance matrices ⌃j and third, the combined matrices are in-
cluded into a non-rigid landmark registration scheme, for example by using
the weighted landmark distance measure from above.

If an approximate calculation of the a�ne-linear transformation is not accu-
rate enough or a rigid registration transformation y is sought directly, which
considers the localization uncertainties, the combination formula from above
cannot be applied. For general covariance matrices the reference covariance
matrices have to be transformed by the sought transformation y leading to
challenging registration problems (see 11.19). Fortunately, in many practical
problems the shapes of the error ellipsoids of a corresponding landmark pair
are very similar. The reason for that is that usually the directions of the
eigenvectors and the shape of the covariances correspond to the geometry of
the underlying structures. For example, the localization uncertainty of land-
marks at vessel segments is high in the direction of the vessel segments and
low perpendicular to the segments. This holds for the reference and the corre-
sponding template landmark because they are located at the same anatomical
structure. After rigid registration even the orientations of the error ellipsoids
resp. the directions of the eigenvectors of the covariance matrices are similar.
Therefore we will neglect the covariance matrices of the reference landmarks
more or less and only take the covariance matrices of the template landmarks
into account. The global size resp. the eigenvalues of the reference covari-
ance matrices can be added to the template covariance matrices if needed. In
Chapter 15, the choice of the covariance matrices in a concrete application
will be presented. Exceptions are scenarios where an additional error source
is present in one of the landmark sets, which is not caused by the geometry of
the underlying anatomical structure. Image to patient registration is an exam-
ple where in one landmark set the additional localization uncertainty caused
by the tracking system is present. This changes the shape of the covariance
matrices for this set.

11.5.2 Weighted Landmark Distance Measure

In the previous section we showed how covariance matrices for the joined lo-
calization uncertainties of reference and template landmarks can be computed
by combining the single covariance matrices of corresponding landmarks. The
uncertainty information can be considered in a weighted landmark distance
measure. The Mahalanobis distance known from statistics and introduced by
Mahalanobis in 1936 [138] is an obvious weighted distance measure:

DWLM[y] =
N

LMX

j=1

ky(rj)� tjk2W
j

=
N

LMX

j=1

(y(rj)� tj)
TWj(y(rj)� tj) (11.24)
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with Wj = ⌃�1
j being the inverse of the combined covariance matrix of the

corresponding landmarks tj and rj . This means the higher the location un-
certainty (high error variance) the lower the weighting. By definition the
covariance matrix is at least positive semi-definite. For the covariances of our
landmarks we assume positive definite matrices. Thus the weighting matrices
are also positive definite, because the inverse of a positive definite matrix is
again positive definite.

Rohr et al. [195] introduced a notation of the weighted landmark distance
measure, where all landmarks are stacked successively into big vectors r̂ and
t̂ (see 11.4). They put the weight matrices Wj 2 R3⇥R3 onto the diagonal of
a big block-diagonal weight matrix Ŵ 2 R3N

LM ⇥ R3N
LM :

Ŵ =

0

B@
W1 0

. . .

0 WN
LM

1

CA (11.25)

with

Wj =

0

@
w11j w12j w13j

w21j w22j w23j

w31j w32j w33j

1

A . (11.26)

This notation can be converted into our vector notation r and t of landmarks
sorted by spatial coordinate directions (see Eq. 11.5) by the permutation ma-
trix P defined in Equation 11.6. With the abbreviation P = Pr!r̂ and x̂ = Px
we get

x̂T Ŵ x̂ = (Px)T Ŵ (Px) = xTP T ŴPx = xTWx. (11.27)

This means the weighted scalar product x̂T Ŵ x̂ can be rewritten by xTWx.
The weight matrix Ŵ is converted intoW by multiplying the permutation ma-
trix from left and right: W = P T ŴP . The resulting matrixW 2 R3N

LM

⇥3N
LM

looks like:

W =

0

BBBBBBBBBBBBBBBBBBBBBBB@

w111 0 w121 0 w131 0
. . .

. . .
. . .

0 w11N
LM

0 w12N
LM

0 w13N
LM

w211 0 w221 0 w231 0
. . .

. . .
. . .

0 w21N
LM

0 w22N
LM

0 w23N
LM

w311 0 w321 0 w331 0
. . .

. . .
. . .

0 w31N
LM

0 w32N
LM

0 w33N
LM

1

CCCCCCCCCCCCCCCCCCCCCCCA

.

150



11.5. Landmark Localization Uncertainties

Figure 11.2 Three di↵erent types of landmark uncertainties: isotropic (er-
ror spheres), anisotropic in coordinate direction (arrow) and arbitrarily
anisotropic (error ellipsoids).

The weighted landmark distance measure (11.24) can be rewritten with this
notation as:

DWLM[y, r, t] = (y(r)� t)TW (y(r)� t). (11.28)

This is a suitable notation for the general optimization framework and will be
used for example in chapter 12.

The localization uncertainties can be classified into di↵erent types of un-
certainty (see Fig. 11.2): isotropic in all spatial directions (error spheres),
anisotropic in coordinate directions and general anisotropic concerning the
local coordinate system of each landmark (error ellipsoids).

We begin with a special isotropic case. If the covariance matrices are all
identity matrices ⌃j = I3, j = 1, . . . , NLM the weight matrix is also an identity
matrix W = I3N

LM

and the landmark distance measure is just the Euclidean
distance. In the general isotropic case there is one weight for each landmark
pair: a1, . . . , aN

LM

. The covariance matrices are di↵erent diagonal matrices
for di↵erent landmarks, but with all values on the diagonal identical: ⌃j =
1
a
j

I3, aj 2 R+, j = 1, . . . , NLM . In this case the landmarks are weighted

relative to each other. The big weight matrixW is also diagonal with elements:
w111 = w221 = w331 = a1, . . . , w11N

LM

= w22N
LM

= w33N
LM

= aN
LM

.

In the general anisotropic case, the errors in di↵erent coordinate directions
are correlated, i.e., the covariance matrices ⌃j are not diagonal. But it is
assumed that there is no correlation between di↵erent landmark pairs leading
to a block diagonal weight matrix W (see equation 11.25). This is the case we
will use most frequently. Anisotropic localization uncertainties in coordinate
directions (di↵erent weights for di↵erent spatial coordinates) is a special case
for anisotropic weighting. For each coordinate direction in 3D space one weight
a1, a2, a3 is determined. The weights are distributed on the diagonal of W :
w111 = . . . w11N

LM

= a1, w221 = . . . w22N
LM

= a2, w331 = . . . w33N
LM

= a3.
All other elements of W are zero.

In the next sections we will present unweighted rigid and non-rigid landmark
based registration schemes and their weighted extensions.
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11. Parametric Landmark Registration

11.6 Rigid Landmark Registration

Landmark registration with rigid transformations is widely used in computer
assisted surgery. As the shape of bones does not change between di↵erent
image acquisitions of the same patient rigid transformations are suitable to
transform preoperative images in neurosurgery or orthopedics to the real-
world patient geometry in the OR. The big advantage of such low-dimensional
transformations is that only few landmarks are needed to determine a rigid
transformation unambiguously. Theoretically only three landmark pairs define
a unique rigid transformation. Di↵erent representations of rigid transforma-
tions exist mainly for the rotation (see section 7.3). Usually the rotation and
translation are computed separately.

For the conventional unweighted rigid landmark registration there is a closed
form solution, but for the weighted case only heuristics and iterative solutions
have been published. We introduce a straight forward numerical algorithm
based on a parameterization of the rigid transformation and a Gauss-Newton
optimization.

11.6.1 Unweighted Rigid Landmark Registration

The first formulations and solutions of the rigid landmark registration prob-
lem can be found in Psychometrics (quantitative Psychology). They call it
the ”‘Orthogonal Procrustes Problem”’ and, at first, only the rotational part
of a rigid transformation was taken into account. The terminology 1 is due
to Hurley and Cattell [92]. There, the rotation is represented as an orthog-
onal (3 ⇥ 3) matrix, hence the term Orthogonal Procrustes problem. The
Orthogonal Procrustes problem is a constrained optimization problem or to
be more precise a constrained least squares problem. In vector norm notation
the problem reads as:

P
j

��Qrotrj + v � tj
��2
2

Qrot,v! min,
subject to Qrot 2 SO(3)

(11.29)

with Qrot 2 R3 ⇥ R3 a matrix representing the rotation and v 2 R3 the
translation. The rot tag is left for ease of notation: Q = Qrot. SO(3) is the
special orthogonal group, meaning Q is an orthogonal matrix (QTQ = I3) and
det(Q) = +1.

In psychometrics, they usually prefer a formulation in matrix norm notation

1

Procrustes (the stretcher) is a figure from Greek Mythology, who had an iron bed, on

which he invited passerby to lie down. Then he fitted his victim into his bed by either

stretching him, if he was too short or chopping o↵ his legs if he was too tall.

152



11.6. Rigid Landmark Registration

is preferred:

��r̄Q+ 1N
LM

vT � t̄
��2
F

Q,v! min,
subject to QTQ = I3,

det(Q) = 1

(11.30)

with r̄, t̄ being the matrices containing the landmarks row-wise as defined in
section 11.3 and 1N

LM

= (1, 1, . . . , 1)T being a vector with all elements being
ones. The used Frobenius matrix norm is defined as kAkF =

p
tr(AAT ) where

tr is the matrix trace.

Hurley and Cattell only introduced the unconstrained linear least squares
problem (no orthogonality constraint, no translation and scaling), which is
equivalent to an a�ne landmark registration. The first solutions for the or-
thogonal Procrustes problem where given by Green [73] for full rank matrices
and by Schönemann [208, 209] for general matrices, which may be also rank-
deficient. Farrel and Stuelbnagel fixed the problem of reflections. Schönemann
and Carrol [210] extended the orthogonal Procrustes problem also to transla-
tions and global scaling and called it Extended Orthogonal Procrustes Prob-
lem. They described the centering of the data to separate the determination
of rotation and translation as will be described below. The Orthogonal Pro-
crustes Problem was rediscovered by Horn [90] and Arun et al. [2] for applica-
tions in photogrammetry. In this community the problem is called ”‘Absolute
Orientation Problem”’. The general solution considering the reflection prob-
lem was rediscovered by Umeyama [231].

Here we give the common closed-form solution by means of centering the
data like Schönemann and the singular value decomposition (SVD). One de-
rivation can be found for in [238]. At first, the means of the reference and
template landmark sets are translated onto each other. Therefore let A =
r̄ � 1N

LM

rTm and B = t̄ � 1N
LM

tTm be the centered landmark sets where rm
and tm are the mean vectors of rj and tj , j = 1, . . . , NLM . Now the rotation
matrix Q is given by solving

min
Q

kAQ�Bk2F subject to Q 2 SO(3). (11.31)

The Frobenius norm can be rewritten to

kAQ�Bk2F = tr((AQ�B)T (AQ�B)) (11.32)

= tr(QTATAQ)� 2tr(AQBT ) + tr(BTB) (11.33)

= kAk2F � 2tr(AQBT ) + kBk2F (11.34)

because tr(QTATAQ) = tr(AQQTAT ) and QTQ = I3. Since the first and last
term are constant with regard to Q, the term tr(AQBT ) = tr(BTAQ) has
to be maximized to minimize the whole expression. Let USV T be a singular
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Figure 11.3 Anisotropic landmark uncertainties at vessel segments. Before
registration (left) and after (right).

value decomposition of BTA, then

tr(BTAQ) = tr(USV TQ) = tr(SV TQU) = tr(SZ) =
3X

i=1

�iizii (11.35)

where Z = V TQU . Since Z is orthonormal, any zij  1 for all i, j = 1, 2, 3.
This means the sum in equation 11.35 is maximized, if Z = I3 leading to
Z = I3 = V TQU and the solution Q⇤ is given by Q⇤ = V UT . To ensure that
Q⇤ is a rotation and not a reflection a positive determinant has to be enforced:

Q⇤ = V · diag([1, 1, det(V · UT )]) · UT . (11.36)

As we centered the landmarks to get the optimal rotation Q⇤, the translation
v is determined by:

v = tm �Q⇤ · rm. (11.37)

11.6.2 Weighted Rigid Landmark Registration

There are di↵erent applications, where anisotropic landmark localization un-
certainties occur motivating the use of weighted rigid landmark registration
techniques: a) the anisotropic position error of CRFs (Coordinate Reference
Frames) used in navigation systems [7, 254], b) the pre-registration of weighted
non-rigid TPS and GEBS schemes (see sections 11.8 and 11.9), and c) inter-
active initial registration of liver vessels. The last application concerning the
interactive landmark registration is motivated by the fact that vessel segments
can often be identified easier and can better be localized than the branching
points resp. that the number of identifiable corresponding segments is higher
than the number of identifiable corresponding branching points. The high

154



11.6. Rigid Landmark Registration

localization uncertainty of segment landmarks in the direction of the vessels
has to be taken into account in the registration process. In Fig. 11.3 rigid
segment landmark registration with anisotropic uncertainties is illustrated.

In section 11.5 we explained that we can di↵erentiate between anisotropic
localization uncertainties of the coordinates and the general anisotropic local-
ization uncertainty for each single landmark.

Coordinates with Anisotropic Localization Uncertainties

Rigid registration with anisotropic coordinate uncertainties is equivalent to the
Weighted Orthogonal Procrustes Problem (WOPP) from Psychometrics. The
weighting matrix is just a 3⇥ 3 matrix describing the confidence in the three
spatial coordinates. In contrast to the weighted landmark distance introduced
in Section 11.5.2, now the weighting matrix W̃ 2 R3⇥3 is multiplied from the
right instead from the left to the di↵erence between template and transformed
reference landmarks:

���(r̄Qrot + 1N
L

MvT � t̄)W̃
���
2

F

Qrot,v! min subject to Qrot 2 SO(3). (11.38)

We choose to use the matrix norm notation from psychometrics again be-
cause it is commonly used in the literature (see for example [8]). There is
no known closed-form solution like in the unweighted case and only two it-
erative algorithms, one by Koschat and Swayne [104] and one by Chu and
Trendafilov [35]. Batchelor and Fitzpatrick [8] propose a modified version of
the iterative algorithm of Koschat and Swayne. In contrast to Koschat and
Swayne who only cover rotations, they also consider translations and showed,
that by translating the centroids of the landmarks onto each other first the
rotation can be determined and then the translation is computable by means
of the resulting rotation like in the unweighted case.

We already showed in Section 11.5.2 that the anisotropic coordinate weight-
ing can be formulated as a special case of the general anisotropic weighted
landmark problem, which will be discussed in the next section. It will be
presented an iterative algorithm, which actually also solves this special case.

General Anisotropic Localization Uncertainties for Single Landmarks

If each single landmark features an individual anisotropic localization uncer-
tainty, a more general weighted landmark registration scheme is needed. Let
the weighting matrix W be defined as in Section 11.5.2 and let the localization
uncertainty covariance matrices of corresponding landmark pairs already be
combined as discussed in Section 11.5.1. We use the parameterized form of a
rigid transformation: y(�rig, r) = Q(r)q(�rig) with Q(r) 2 R3N

LM

⇥9, �rig 2 R6

and the non-linear mapping q(�rig) 2 R9⇥1 defined in Equation 7.9. The
matrix Q(r) = I3 ⌦ (r̄,1N

LM

) is defined like the matrix Q(x) for a grid x in-
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troduced in Section 7.3. We omit the tag rig at the parameter vector � = �rig

for ease of notation.

Then the weighted rigid landmark registration problem is defined by the
following optimization problem

DWLM(�) =
1

2
kQ(r)� � tk2W =

1

2
((Q(r)� � t)T W (Q(r)� � t)

�! min.

(11.39)

Balachandran et al. [7] call it the ”‘Anisotropic Orthogonal Procrustes Prob-
lem”’. For this problem, too, no closed-form solution has been published so
far. Balachandran et al. solve the problem only approximately with a heuris-
tic algorithm. First they determine an approximative rotation based on the
unweighted formulation, then the weighted centroids are computed and the
actual rotation is solved for the demeaned version using the weighted cen-
troids. At last the translation is computed be means of the rotation and the
weighted centroids. There is a quite complicated iterative algorithm (see [165])
for solving the anisotropic orthogonal Procrustes problem.

In the following we present our own straight forward iterative solution by
a Gauß-Newton optimization scheme. Therefore the weighted registration
problem is represented by an outer function � and a residual function r̃:

DWLM(�) =
1

2
kQ(r)q(�)� tk2W = �(r̃(�))

�! min (11.40)

where �(x) = 1
2x

Tx and r̃(�) = Q(r)q(�)� t. Since the residual function r̃ is
nonlinear in � a numerical (iterative) optimization approach is taken. For a
Gauß-Newton method the analytical derivatives of residual and outer function
with respect to the parameters � are needed:

d� r̃(�) = Q(r) · d�q(�), d��(r̃(�)) = r̃(�), d2��(x) = 1. (11.41)

The derivative d�q(�) of the non-linear parameter mapping q has already been
given in Sec. 7.3.

For the determination of the Gauß-Newton search direction pk in iteration
k the linear system HGf(xk)pk = �rf(xk) has to be solved (see Sec. 5.3).
Here the approximative Hessian and the gradient of the objective function are:

HG = dr̃Td2�(r̃)dr̃, rDWLM = dr̃T r̃. (11.42)

Now the Gauß-Newton equations for the weighted rigid registration problem
can be set up:

dr̃(�k)
Tdr̃(�k)pk = �dr̃(�k)

T r̃(�k) (11.43)

where �k is the parameter vector from the last iteration. More details concern-
ing the Gauß-Newton optimization algorithm can be found in the Section 5.3
about unconstrained optimization.
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An alternative to the unconstrained optimization problem based on a pa-
rameterization of the rigid transformation is to directly optimize the con-
strained optimization problem with respect to the rigid transformation y(x) =
Qrotx+ v:

DWLM(y)
y! min subject to Qrot 2 SO(3). (11.44)

Fig. 11.4 shows the landmark based registration result using an unweighted
(conventional) and a weigthed landmark distance measure for a simulated
situation. The optimization is based on a SQP-algorithm for constrained
problems (see Sec. 5.4). The orthogonality constrained QTQ = I3 was used
instead ofQ 2 SO(3). The determinant condition det(Q) = +1 is only checked
at the end of the optimization process.

11.7 A�ne Linear Landmark Registration

If besides rotation and translation scaling and shearing in a landmark regis-
tration problem have to be considered, the sought transformation y is modeled
by an a�ne linear function y = Ax+ v as defined in section 7.2. A�ne linear
landmark registration is much easier to solve than rigid registration because
the orthogonality constraint can be omitted.

11.7.1 Unweighted A�ne Linear Landmark Registration

Let ya↵(�a↵, r) = Q(r)�a↵ with �a↵ 2 R12 be the parameterized a�ne linear
function as defined in Section 7.2. We omit the a↵ tag at the parameters and
just write � = �a↵. Then the unweighted a�ne linear landmark registration
problem can be formulated as:

DLM(�) =
1

2
kQ(r)� � tk2 = 1

2
((Q(r)� � t)T (Q(r)� � t)

�! min. (11.45)

The unweighted a�ne linear landmark registration problem is just an un-
constrained linear least squares problem. By di↵erentiation of the objective
function with respect to � and setting this derivative to zero we get the normal
equations:

d�DLM (�) = Q(r)T ((Q(r)� � t) = 0, (11.46)

() Q(r)TQ(r)� = Q(r)T t. (11.47)

By solving this linear system we get the parameters �⇤ minimizing the ob-
jective function and thus the landmark registration problem is solved by the
a�ne linear transformation ya↵⇤ = Q(r)�⇤.
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Figure 11.4 Let the true positions of the landmarks Qtrue be exactly the same
as the landmark P (blue stars). The landmarks Qtrue are now disturbed by
simulated anisotropic localization uncertainties illustrated by the ellipses. The
resulting landmarks are denoted by Q (red stars). Then a rigid transformation
with the translation (�1.0, 0.5) and a rotation about the origin of 30 degrees is
simulated and applied to the landmarks P (not illustrated). Now the transfor-
mation which transforms the landmarks P back to the landmarks Q is deter-
mined by the unweighted and weighted rigid landmark registration methods.
Due to the localization uncertainties the landmarks P cannot be mapped back
to their original position (blue stars) by the unweighted approach (bright blue
circles). But if the uncertainties are considered by a weighted approach the
original positions can be reproduced almost exactly (dark blue circles). The
original positions of P are exactly the same positions as Qtrue.

11.7.2 Weighted A�ne Linear Landmark Registration

Like in rigid landmark registration anisotropic localization uncertainties of the
landmarks can also be considered by a weighted landmark distance measure
in a�ne linear landmark registration. Let the weighting matrix W be defined
as in Section 11.5.2 and the a�ne linear transformation be parameterized as
in the previous section. Then the weigthed a�ne linear landmark registration
problem is defined as:

DWLM(�) =
1

2
kQ(r)� � tk2W =

1

2
((Q(r)� � t)T W (Q(r)� � t)

�! min.

(11.48)
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We omit the dependence from the reference landmarks r of the matrix Q =
Q(r) for ease of notation. As in the unweighted case the first derivative of
the distance measure is determined and set to zero. For the computation of
d�DWLM the distance measure is rearranged to

1

2
(Q� � t)TW (Q� � t) =

1

2

�
�TQTWQ� � 2tTWQ� + tTWt

�
. (11.49)

By setting the derivative of the weighted distance measure to zero we now get
the weigthed normal equations:

d�DWLM (�) = QTWQ� � tTWQ = 0, (11.50)

() QTWQ� = QTWt. (11.51)

The matrix QTWQ is symmetric, because the weight matrix W is symmetric:
(QTWQ)T = QTW TQ = QTWQ. This property was used for the first term
of the derivative to get: (QTWQ)T� = QTWQ�. By solving the weighted
normal linear equations we get the parameters �⇤ minimizing the objective
function as in the unweighted case and thus the landmark registration problem
is solved by the a�ne linear transformation ya↵⇤ = Q(r)�⇤.

11.8 Thin-Plate Splines (TPS)

A�ne-linear transformations possess six degrees of freedom more than rigid
transformations and thus o↵er global non-rigid transformations. But the de-
grees of freedom are still quite few and local non-rigidities can not be handled.
Thin-plate splines are a well-known class of locally non-rigid transformations
often used for landmark-based registration of soft-tissues in computer assisted
surgery. We will briefly summarize interpolating thin-plate splines and show
how they can be extended to approximating thin-plate splines enabling the
incorporation of anisotropic landmark localization uncertainties. In addition,
the penalizer-based approximating thin-plate splines are further extended to
a novel approach based on inequality landmark constraints.

Thin-plate splines [50, 243] are smooth functions where the smoothness is
controlled by a functional (energy) on the derivatives of the spline function
similar to the regularizers on the transformation in nonparametric image reg-
istration. In fact, the thin-plate spline energy is closely related to the curva-
ture regularizer (see [150], p.123). The thin-plate spline functional smoothes
each coordinate function yi of an arbitrary (but di↵erentiable) transformation
y = (y1, y2, y3)T : R3 ! R3 separately:

STPS[y] =
3X

i=1

Stps[yi]. (11.52)
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The functionals on the coordinate functions yi : R3 ! R are defined as:

Stps[yi] =

Z

R3

tr(r2yi ·r2yi)dx (11.53)

where tr(A) is again the trace of a matrix A and r2yi the Hessian matrix of
yi. The functional can be expanded to:

Stps[yi] =

Z

R3

(@11y)
2+(@22y)

2+(@33y)
2+2((@12y)

2+(@13y)
2+(@23y)

2) dx.

(11.54)

The TPS-functional STPS[y] describes the linearized version of the bending
energy of a thin plate. In principle the TPS-functional can be formulated for
arbitrary dimensions and also higher order [195]. Here the order is 2 because
only second derivatives are involved.

11.8.1 Interpolating TPS

Interpolating thin-plate splines were introduced by Bookstein [20] to describe
non-rigid deformations (warps). He minimized the thin-plate spline functional
with respect to the transformation y : R3 ! R3 while ensuring the landmark
interpolation conditions by equality constraints:

J iTPS[y] = STPS[y]
y! min subject to y(r)� t = 0. (11.55)

This means we are looking for the smoothest function with respect to the TPS-
functional, which exactly maps each reference landmark to its corresponding
template landmark.

A nice property of this constrained minimization problem is that its solu-
tion is representable by a parameterization ytps(�tps) of the transformation.
The parameters �tps = (�1, �2, �3)T 2 R3(N

LM

+4) are the solutions of three
independent linear systems. For a detailed derivation see [147].Since the co-
ordinate functions yi are separately smoothed by the thin-plate spline func-
tional, the corresponding parameters �i can be determined independently to
get yi = yi(�i). The parameterization is given by a linear combination of
shifted radial basis functions (RBF) ⇢j(x) = kx� rjk around the reference
landmarks rj and a polynomial term describing the a�ne-linear part of the
transformation:

yi(x) =
N

LMX

k=1

cik kx� rkk+ ai0 + ai1x1 + ai2x2 + ai3x3 (11.56)

where x = (x1, x2, x3)T 2 R3.
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11.8. Thin-Plate Splines (TPS)

Now this parameterization of yi is inserted into the landmark interpolation
condition tj = y(rj) for landmark j:

tij = yi(rj) =
�krj � r1k . . . krj � rN

LM

k�
0

B@
ci1
...

ciN
LM

1

CA+
⇣
1 rj1 rj2 rj3

⌘
0

BB@

ai0
ai1
ai2
ai3

1

CCA

(11.57)

where ti are the components of the template landmarks in coordinate direction
i resp. the i-th column of the landmark matrix ti = t̄:,i.

The parameters �ic = (ci1, . . . , c
i
N

LM

)T , �ia = (ai0, a
i
1, a

i
2, a

i
3)

T are now sum-

marized to one parameter vector �i = (�ic, �
i
a). Together with the matrix

A = (1N
LM

r̄) for the a�ne part and the matrix B = [krj � rkk]j,k for the
locally non-rigid part the interpolation condition for all landmarks can be
written as:

ti = B�ic +A�ia. (11.58)

If we add the boundary conditions AT�ic = 0 to the interpolation conditions
we get the linear system:

Qtps(r)�i =

✓
B A
AT 0

◆✓
�ic
�ia

◆
=

✓
ti

0

◆
(11.59)

where the system matrix Qtps(r) depends on the reference landmarks r but is
equivalent for all components yi. The boundary conditions AT�ic = 0 ensure
that the locally non-rigid part of the transformation is zero at infinity.

The solution of this linear system provides the parameters �i = (�ic, �
i
a) for

the i-th component function yi of the transformation of an arbitrary point
x 2 R3 (see Eq. 11.56).

In 3D the minimal number of landmarks needed to determine a thin-plate
spline transformation is NLM = 5. The null space of the thin-plate spline
functional STPS is spanned by the a�ne linear part of the parameterized
transformation because only second derivatives are considered by the func-
tional. For an a�ne linear transformation the minimal number of landmarks
is n = 4. This means for a thin-plate spline registration at least one additional
landmark is needed compared to an a�ne linear registration. In addition not
all landmarks may lie on a single line or plane.

The popularity of thin-plate spline registration is due to the facts that the
resulting transformation function is smooth and derivatives of any order exist,
that no free parameters are involved, which need tuning, that there is a closed-
form solution and that a physical interpretation is given.
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11. Parametric Landmark Registration

11.8.2 Approximating TPS

Instead of formulating an interpolation problem based on the thin-plate spline
functional STPS[y] and equality constraints for the matching of the landmarks
we can formulate an approximation problem based on an unconstrained pe-
nalizer approach:

J aTPS[y] = DLM[y] + ✓STPS[y]
y! min. (11.60)

Now the reference landmarks are not exactly mapped to their corresponding
template landmarks anymore but the sum of the distances between them is
kept as small as possible. The landmark distance measure:

DLM[y] = ky(r)� tk2LM (11.61)

was already defined in Equation 11.10. The weighting parameter ✓ can be
tuned by the user to emphasize the smoothing functional STPS against the
landmark distance penalizer DLM. It turns out that the higher ✓ the smoother
the resulting transformation but the lower the approximation quality at the
landmark pairs.

Interestingly, there is a very similar analytic solution for this approximative
thin-plate spline problem as for the interpolating thin-plate spline problem.
The same type of parameterized transformation yi(�i) as defined in Equa-
tion 11.56 solves the approximation problem [50, 243, 147, 117]. The only
di↵erence is the additional term ✓IN

LM

in the resulting linear system:

Qtps(r)�i =

✓
B + ✓IN

LM

A
AT 0

◆✓
�ic
�ia

◆
=

✓
ti

0

◆
. (11.62)

Until now we used Euclidean distances for corresponding landmarks in the
landmark distance measure DLM. But in contrast to interpolating thin-plate
splines also weighted distances can reasonably be used in the approximative
formulation leading to the weighted distance measure (see Sec. 11.5.2):

DWLM = ky(r)� tkW = (y(r)� t)TW (y(r)� t). (11.63)

This distance measure allows the incorporation of landmark localization un-
certainties into the registration scheme.

A separation into independent linear systems for the transformation com-
ponents yi is not possible anymore. Nevertheless the derivation of an analytic
solution for the weighted approximative TPS registration problem is still pos-
sible [245]. First we show the analytic solution using the landmark and weight
matrix notation of Rohr et al. [195, 194] and then we convert this notation to
our standard notation.

Rohr et al. [195, 194] stacked the landmarks into long vectors r̂, t̂ 2 R3N
LM

and defined the block diagonal weight matrix Ŵ 2 R3N
LM

⇥3N
LM where each
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11.8. Thin-Plate Splines (TPS)

of the blocks is an individual weight matrix Wj 2 R3⇥3 for each pair of
landmarks (see Sec. 11.3). In addition they stacked the searched parame-
ters into long vectors: �̂c = (c11, c

2
1, c

3
1, . . . , c

1
N

LM

, c2N
LM

, c3N
LM

) 2 R3N
LM and

�̂a = (a10, a
2
0, a

3
0, . . . , a

1
3, a

2
3, a

3
3). Then they replaced the matrices A and B

in the linear system for the solution of the unweighted approximating TPS
problem (Eq. 11.62) by the matrices:

AŴ = (Aij · I3) = A⌦ I3 and BŴ = (Bij · I3) = B ⌦ I3. (11.64)

Now the parameters �̂c, �̂a for the analytic solution of the weighted approxi-
mating TPS problem are determined by the linear system:

✓
B̂W + ✓Ŵ ÂW

ÂT
W 0

◆✓
�̂c
�̂a

◆
=

✓
t̂
0

◆
. (11.65)

The notation and solution by Rohr et al. can be converted easily to our
preferred notation. Let the landmarks be put coordinate-wise into the long
vectors t and r like in Sec. 11.3, and the weighting matrix W be defined as
in Sec. 11.5.2. Let the parameters also be ordered coordinate-wise like for
interpolating TPS (see Sec. 11.8.1): �c = (�1c , �

2
c , �

3
c ) and �a = (�1a, �

2
a, �

3
a).

Then the matrices A and B have to be replaced by:

AW = I3 ⌦A and BW = I3 ⌦B (11.66)

where the order of the factors in the Kronecker products is exchanged com-
pared to the notation of Rohr et al. Now the solution of the weighted ap-
proximating TPS problem for the converted notation is the solution of the
following linear system:

✓
BW + ✓W AW

AT
W 0

◆✓
�c
�a

◆
=

✓
t
0

◆
. (11.67)

11.8.3 Inequality Constrained TPS

Instead of constraining the transformation by equality constraints as for in-
terpolating TPS or by using a penalizer as for approximating TPS it is also
possible to define an approximative scheme by inequality constraints:

J [y] = STPS[y]
y! min

s.t. CisoLM[y]  tolLM

with

CisoLM[y] =

0

B@
ky(r1)� t1k2

...
ky(rN

LM

)� tN
LM

k2

1

CA
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11. Parametric Landmark Registration

Figure 11.5 A single landmark is displaced horizontally resulting in di↵erent
deformation fields using TPS (left) as well as GEBS for Poisson’s ratios of
⌫ = 0 (middle) and ⌫ = 0.49 (right). It can be seen that for TPS deformations
occur in horizontal direction only whereas for GEBS horizontal and vertical
deformations are recognizable (courtesy of Stefan Wörz, Biomedical Computer
Vision Group, DKFZ Heidelberg).

and

tolLM = (tol21, . . . , tol
2
N

LM

)T , tolj 2 R+
0 . (11.68)

The idea of this approach is to determine the smoothest transformation with
respect to the TPS functional STPS which keeps the transformed landmarks
rj inside error spheres around the corresponding landmarks tj . This is a
more intuitive approach than the weighting between the TPS functional and
a landmark distance penalizer where the weighting factor cannot be intuitively
chosen as in the approximating TPS scheme from the previous section. The
practical disadvantage of the inequality constrained approach is that no an-
alytical solution is known. But the constrained optimization problem can be
solved by a numerical scheme presented in a later chapter about a combined
landmark and image intensity registration approach (see Chap. 12). If the
image distance measure is left in this combined approach, only the regularizer
and the constraints remain, which leads exactly to the above inequality con-
strained TPS problem. In addition, we also consider anisotropic localization
uncertainties in Chapter 12.

11.9 Gaussian Elastic Body Splines (GEBS)

The TPS functional represents a relatively coarse deformation model, because
transverse contraction does not lead to longitudinal dilation (see also [264]). In
comparison, Gaussian elastic body splines (GEBS) introduced by Kohlrausch
et al. [103] are derived from the Navier-Lamé equation, which describes the
deformation of homogeneous elastic materials and takes cross-e↵ects between
contraction and dilation into account (see Fig. 11.5):

µ�u+ (�+ µ)r(divu) + f = 0 (11.69)
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11.9. Gaussian Elastic Body Splines (GEBS)

where u : R3 ! R3 is only the displacement field and not the whole trans-
formation y(x) = x + u(x). The parameters �, µ 2 R+, also called Lamé
constants, describe the material properties. The Lamé constants are related
to Poisson’s ratio ⌫ = �/(2� + 2µ). The Navier-Lamé equation models the
deformation u of an elastic body resulting from the application of some forces
f : R3 ! R3. Some insights into the physical properties of an elastic body
modeled by the Navier equations are given in [147].The Navier equations are
the Euler-Lagrange equations of the linearized elastic potential Selas intro-
duced in Sec. 6.3.1 and used as the elastic regularizer for nonparametric reg-
istration. In case of nonparametric image registration the forces in the Navier
equation stem from the distance measure for image pairs. In the following we
will show how these forces can be generated by distances between landmark
point pairs. For landmark registration with Gaussian elastic body splines,
Gaussian smoothed forces around the template landmarks are used. At first,
we assume the simple case of a Gaussian force field f : R3 ! R3 around the
origin:

f(x) = cg(kxk) = c
1

(
p
2⇡�)3

e�
kxk2

2�

2 (11.70)

where c 2 R3 represents the strength and the direction of the forces and the
standard deviation � 2 R+ of the Gaussian function g : R ! R controls the
spatial influence of the forces.

For such a force field f an analytic solution of the Navier equation can be
derived [103]:

u(x) = G(x)c (11.71)

where c 2 R3 and G : R3 ! R3⇥3 is a matrix-valued function defined as:

G(x) =

 
↵2 + �2f

r3
erf(r̂)� �

e�r̂2

r2

!
I3

+

 
r2 � 3�2f

r5
erf(r̂) + 3�

e�r̂2

r4

!
xxT (11.72)

with r̂ = r/(
p
2�f ),↵ = 3 � 4⌫,� = �f

p
2/⇡ and the error function erf(x) =

2p
⇡

R x
0 e�⇠

2

d⇠. I3 denotes the 3 ⇥ 3 identity matrix and ⌫ is Possion’s ratio

⌫ = �/(2�+ 2µ), 0  ⌫  0.5.

In the next section we will shift the matrix-valued function G from the ori-
gin to the landmarks and use the resulting functions as basis functions for a
parameterized displacement field which solves the interpolating and approxi-
mating Gaussian elastic body splines registration problem.

Interestingly, thin-plate splines can be motivated similarly if we use Dirac
point forces instead of Gaussian forces for the biharmonic partial di↵erential
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11. Parametric Landmark Registration

equation (PDE) instead for the Navier-Lamé PDE. Then the basis functions
of the thin-plate splines are fundamental solutions of the biharmonic equa-
tion [196].For a mathematically precise formulation the theory of distribu-
tions is needed to define the Dirac points forces. Fundamental solutions are
solutions of the resulting distributional PDE.

11.9.1 Interpolating GEBS

In the previous section, we considered only a single Gaussian force f(x) =
cg(kxk). Now we associate each landmark pair with a Gaussian force fj(x) =

cjg(kxk) and superpose all forces to an overall force field
PN

LM

j=1 fj(x). Due
to the linearity of the Navier-Lamé equation the solution of the Navier-Lamé
equation for this superposed force field is a superposition of NLM GEBS basis
functions [103, 264]. Therefore we define the parametric GEBS transformation
as:

yGEBS(x) = x+
N

LMX

k=1

G(x� rk)ck (11.73)

where rk 2 R3 are the reference landmarks and ck 2 R3 are the coe�cients
we are looking for. In contrast to thin-plate splines there is no a�ne part in
this transformation. Therefore an a�ne linear transformation is determined
and applied first and then the GEBS transformation only compensates the
nonlinear displacements.

Substituting the transformation yGEBS in the interpolation conditions
y(rj) = tj yields the following linear system:

yGEBS(rj) = rj +
N

LMX

k=1

G(rj � rk)ck = tj , j = 1, . . . , NLM (11.74)

()
N

LMX

k=1

G(rj � rk)ck = tj � rj , j = 1, . . . , NLM (11.75)

With � = (cT1 , . . . , c
T
N

LM

)T and the landmark notation t̂, r̂ 2 R3N
LM we rewrite

this linear system in matrix notation:

QGEBS(r̂)(�) = t̂� r̂ (11.76)

where the system matrix QGEBS 2 R3N
LM

⇥3N
LM is defined as:

QGEBS(r̂) =

0

B@
G(r1 � r1) · · · G(r1 � rN

LM

)
...

. . .
...

G(rN
LM

� r1) · · · G(rN
LM

� rN
LM

)

1

CA . (11.77)

The solution of this system provides the coe�cients for the parametric trans-
formation yGEBS which solves the interpolating GEBS registration problem.
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11.9.2 Approximating GEBS

As for thin-plate splines an approximating approach has also been introduced
for Gaussian elastic body splines, which allows the consideration of landmark
localization uncertainties [264]. The approximating GEBS landmark registra-
tion is represented by the following optimization problem:

J aGEBS[y] = DGWLM[y] + ✓Selas[y]
y! min (11.78)

where ✓ 2 R+ weights the regularizer Selas against the landmark distance
measure DGWLM[y], which is defined below. The elastic potential Selas is
exactly defined as in Sec. 6.3.1, where it is used as the elastic regularizer in
nonparametric registration. We already mentioned in the introduction about
GEBS that the Navier-Lamé equation is the associated PDE to the elastic
potential.

Wörz et al. [264] propose the following weighted landmark distance measure:

DGWLM[y] =

Z N
LMX

j=0

g(kx� rjk)(tj � y(x))TWj(tj � y(x)) dx (11.79)

where g : R ! R is again the Gaussian function and Wj are the weight
matrices resulting from the localization uncertainties of the landmarks (see
Sec. 11.5.2).

The interesting point is that Wörz et al. [264] determined that the trans-
formation y which minimizes the optimization problem (Eq. 11.78) can be
represented by exactly the same parametric transformation as for the inter-
polating GEBS problem based on the same matrix-valued basis functions G
(Eq. 11.72):

y(x)GEBS = x+
N

LMX

k=1

G(x� rk)ck. (11.80)

Although both interpolating and approximating GEBS rely on the same basis
function G the resulting linear system of equations to determine the linear
coe�cients ck of the parametric transformation di↵ers. In contrast to interpo-
lating GEBS, the linear system for approximating GEBS includes additional
sums of Gaussian forces weighted by the weight matrices Wj . For a detailed
description of the linear system see [264].

11.9.3 Inequality Constrained GEBS

As for thin-plate splines we introduce an inequality landmark constraints reg-
istration scheme, which is related to GEBS:

J [y] = Selas[y]
y! min, (11.81)

s.t. CisoLM[y]  tolLM (11.82)
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with CisoLM[y] and tolLM exactly defined as for TPS (see Sec. 11.8.3).

The main idea of this approach is the same as for the inequality con-
strained TPS: the determination of the smoothest transformation which keeps
the transformed landmarks rj inside error spheres around the corresponding
landmarks tj . But here the smoothness is defined with respect to the elastic
functional Selas instead of the TPS functional STPS. The advantages (more
intuitive, no additional weighting parameter) are the same as for the TPS
approach. The practical disadvantage is that no analytical solution is known.
But the constrained optimization problem can be solved with an approach
similar to the TPS by a numerical scheme presented in a later chapter about
a combined landmark and intensity registration approach (see Chap. 12).
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Chapter 12

Combining Landmarks and Intensity-based
Registration

12.1 Introduction

All parametric landmark registration schemes presented in the previous Chap-
ter 11 have one disadvantage in common. The original images are used only to
define the landmarks (features). The actual registration process is based ex-
clusively on those landmarks meaning that all image contents not represented
in those landmarks are completely ignored.

There are di↵erent possibilities to combine landmark and intensity informa-
tion to a joint registration formulation leading to unconstrained (with penal-
izer), equality constrained and inequality constrained optimization problems.
The main idea is to minimize the (image) distance measure while controlling
the distances of corresponding landmarks.

12.2 Landmark Distances Penalizer

An obvious possibility to combine landmark and intensity information is to
add a penalizer PLM[y] measuring the distances between corresponding land-
marks to the standard registration functional consisting of the distance mea-
sure D and the smoother S:

J [y] = D[R, T (y)] + ↵S[y � y0] + �PLM[y, r, t]
y! min

with an additional weighting factor � 2 R+.

The penalizer P can be the (unweighted) squared Euclidean distance pe-
nalizer PLM[y, r, t] =

PN
LM

j=1

���r
j

[y]� tj
��
2
(see Eq. 11.11), but also a scheme

using a weighted penalizer has been published [263]. We still have an un-
constrained optimization problem. An optimize-then-discretize approach via
Euler-Lagrange equations was published in [58, 57]. For a discretize-then-
optimize strategy we only have to discretize the penalizer as the discretization
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of the distance measure and the regularizer are already known. Then the
combined landmark registration problem can be solved by the same Gauß-
Newton optimization scheme as for the standard nonparametric registration
problem [171]. The discretization of the penalizer will be presented in sec-
tion 12.5.

12.3 Equality Landmark Constraints

As the landmark misfit is controlled by the sum of the individual landmark
distances in the penalizer approach, the distance of individual landmarks can
still be high after optimization. In addition, the penalizer approach su↵ers
from parameter tuning (weighting factor �). Therefore we formulate the com-
bined landmark and intensity registration problem as an equality constrained
optimization problem:

J [y] = D[y] + ↵S[y � y0]
y! min, (12.1)

s.t. CeqLM[y] = 0 (12.2)

where CeqLM = y(r) � t represents the landmark interpolation constraints
y(r) = t. This equality constrained formulation guarantees that correspond-
ing landmarks are exactly mapped onto each other while the minimal value
for the intensity distance measure D and the regularizer S is sought. An in-
terpretation of this registration approach is that the deformation y is known
and fixed on the landmarks while the deformations in the space between the
landmarks are smoothed by the regularizer and driven by the intensity infor-
mation measured by the distance measure. By omitting the distance measure
D = 0 and setting the regularizer to the thin-plate spline functional S = STPS

we get exactly a thin-plate spline registration problem, which is based on the
landmarks alone.

Numerical solutions for the equality landmark constrained optimization
problem will be proposed in section 12.6.1.

12.4 Inequality Landmark Constraints

The equality landmark constraints introduced in the previous section are of-
ten too restrictive because interactive landmark definition is always prone
to errors. Thus we are now presenting a new approach by considering in-
dividual landmark localization inaccuracies. Isotropic landmark localization
uncertainties can be modeled by error spheres around the landmarks. The
equality constraints are loosened to inequality constraints, which enables the
landmarks to move inside the error spheres but guarantees that correspond-
ing landmarks have only a restricted distance to each other defined by some
tolerances, e.g. the radius of the error spheres. Then the error spheres can be
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interpreted as tolerance spheres. The landmark constraint registration prob-
lem with isotropic tolerances for the landmarks distances [172] is formulated
as

J [y] = D[y] + ↵S[y � y0]
y! min,

s.t. CisoLM[y]  tolLM

with

CisoLM[y] =

0

B@
ky(r1)� t1k2

...
ky(rN

LM

)� tN
LM

k2

1

CA

and

tolLM = (tol21, . . . , tol
2
N

LM

)T , tolj 2 R+
0 . (12.3)

The constraints are reformulated to tolLM � CisoLM[y] � 0 to match the con-
straints formulation of the general inequality constrained optimization prob-
lem 5.3 with c(x) � 0. Choosing tolLM as a zero vector leads to the same
solution as the equality constraint problem from the previous section.

As the localization uncertainty of a landmark might deviate in di↵erent
directions (anisotropic errors) we extent the tolerance spheres to ellipsoidal
tolerance volumes for each landmark pair by the weighted norm (see also
Sec. 11.5.2):

ky(rj)� tjk2W
j

= (y(rj)� tj)
TWj(y(rj)� tj). (12.4)

As the weighting matricesWj already contain the tolerances as a global scaling
we formulate the inequality constraints as:

CWLM[y]  1N
LM

(12.5)

with

CWLM[y] =

0

B@

ky(r1)� t1k2W
1

...
ky(rN

LM

)� tN
LM

k2W
N

LM

1

CA .

Again the inequality constraints have to be rewritten to match the general
inequality constraints c(x) � 0 leading to the following inequality landmark
constraint registration problem with anisotropic tolerances:

J [y] = D[y] + ↵S[y � y0]
y! min,

s.t. 1N
LM

� CWLM[y] � 0.
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For the determination of the weighting matrices Wj see the discussion in sec-
tion 11.5.1 on how to combine covariance matrices representing the localization
uncertainties of corresponding landmark pairs and see section 14.4 on how to
set the covariance matrices in a practical application. Setting Wj = I3 for all
j = 1, . . . , NLM leads to the isotropic case from above.

12.5 Discretization of Landmark Constraints

The discretization of the distance measures and regularizers has already been
described. Only the discretization of the equality and inequality landmark
constraints is left.

12.5.1 Equality Landmark Constraints

The main problem of the discretization of the landmark constraints (or the
penalizer) is that we have a discrete transformation y given on a grid x(⌦,m)
for the evaluation of the distance measure and regularizer. But the landmarks
do not necessarily lie on grid points. Thus the transformed positions y(rj) of
the landmarks rj are approximated by tri-linear interpolation of the discrete
transformation values on neighboured grid points.

Linear interpolation in the 1D case of a scalar value y(x0) at the position x0

from the values yp and yp+1 on two neighboured grid points xp  x0 < xp+1

is just a weighted averaging of these two neighboured values:

y(x0) ⇡ (1� ⇠) · yp + ⇠ · yp+1 (12.6)

where ⇠ = x0 � xp. This means with a vector containing just two non-zero
elements cj = (0, . . . , 0, (1 � ⇠), ⇠, 0, . . . , 0) we can approximate the transfor-
mation y at the position x0 = rj by y(rj) ⇡ cTj y where y is the discrete
transformation.

In three dimensions three linear interpolations (tri-linear) are performed,
one in each coordinate direction for each of the three components of the trans-
formation y = (y1, y2, y3)T . Due to the order of the coordinates in the long
vector notation of the grid x(⌦,m) and the transformation y (see Sec. 4.2)
the two non-zero elements of the interpolation coe�cient vector cj 2 Rn are at
according positions (n = m1 ·m2 ·m3). Then each transformation component
yi is approximated by yi(rj) ⇡ cTj y(i�1)n+1:i·n for i = 1, 2, 3 where the inter-
polation coe�cients cj for each component yi(rj) stay the same. Remember
that first all y1-components, then all y2- and y3-components are stored in the
discrete transformation vector y 2 R3n. As each of the three components of
the transformation y = (y1, y2, y3)T has to be interpolated we get the following
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approximation of the transformation y for a single landmark rj :

y(rj) ⇡ (I3 ⌦ cTj )y =

0

@
cTj

cTj
cTj

1

Ay 2 R3. (12.7)

Now the interpolation coe�cients c1, . . . , cN
LM

2 Rn for all NLM transformed
landmarks r1, . . . , rN

LM

are collected into one matrix C̃ with

C̃ =

0

B@
cT1
...

cTN
LM

1

CA 2 RN
LM

⇥n. (12.8)

Together with equation 12.7 the transformation of all landmarks can be ap-
proximated by means of the coe�cient matrix C = (I3 ⌦ C̃) 2 R3N

LM

⇥3n:

y(r) ⇡ Cy = (I3 ⌦ C̃)y =

0

@
C̃

C̃
C̃

1

Ay 2 RN
LM . (12.9)

Now the landmark equality constraints can be approximated by the following
discrete (linear) constraints:

CeqLM = y(r)� t ⇡ Cy� t =: CeqLM. (12.10)

Note that the coe�cient matrix C depends on the location of the landmarks
r and that Cy describes the location of the transformed landmarks y(r).

For the SQP strategy for constrained optimization problems (see Sec. 5.4.1)
the first derivative of the discrete constraints with respect to the the transfor-
mation y is needed:

ryC
eqLM(y) = C. (12.11)

12.5.2 Inequality Landmark Constraints

Now we discretize the inequality landmark constraints. The unweighted and
weighted case are derived in parallel. The discretization of the constraints
vectors CisoLM, CWLM 2 RN

LM consists of two main steps: first the constraints
are rewritten such that the long vector notation of the landmarks (r, t) can
be used consistently and then the discretization of the transformed reference
landmarks y(rj) from the previous section is used again.

If we define the di↵erence vectors vj = y(rj) � tj 2 R3 the constraints
vectors look like:

CisoLM =

0

B@
kv1k2

...
kvN

LM

k2

1

CA 2 RN
LM , CWLM =

0

B@

kv1k2W
1

...
kvN

LM

k2W
N

LM

1

CA 2 RN
LM .
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Now the di↵erence vectors are stacked into one long vector v = y(r) � t =
(v1x, . . . , v

N
LM

x , v1y , . . . , v
N

LM

y , v1z , . . . , v
N

LM

z )T 2 R3N
LM . The constraints vec-

tors have a special structure: They take the di↵erence vector v 2 RN
LM and

summarize three elements of the vector at a time to one value by determining
the weighted or unweighted scalar product of the three elements. This means
a vector of dimension 3NLM is reduced to a vector of dimension NLM . This
reduction is performed by the matrix

A =
�
IN

LM

IN
LM

IN
LM

� 2 RN
LM

⇥3N
LM . (12.12)

As we need the squared components of v we set up the term:

diag(v) · v 2 R3N
LM (12.13)

where diag(v) is a (3NLM ⇥3NLM )-matrix with v on the main diagonal. Now
the constraints vectors can be rewritten to:

CisoLM = A diag(v)·v 2 RN
LM , CWLM = A diag(v)·W ·v 2 RN

LM . (12.14)

The di↵erence vector v = y(r)� t is discretized like in the previous section by
v ⇡ Cy� t leading to the discrete (weighted) constraints vector:

CWLM [y] ⇡ CWLM(y) = A diag(Cy� t) ·W · (Cy� t). (12.15)

The discretization of the unweighted inequality constraints CisoLM looks the
same with W = I3N

LM

.

Again the first derivative of the constraints with respect to y is needed for
the optimization scheme:

ryC
WLM(y) = 2A diag(Cy� t) ·W · C. (12.16)

12.6 Algorithms for Landmark Constraint Registration

12.6.1 Equality Landmark Constraints

Registration with equality landmark constraints can be solved by either elim-
inating the constraints and solving an unconstrained problem or directly solv-
ing the constrained problem.

Due to the linearity of the constraints, we are able to eliminate the con-
straints and reformulate problem 12.2 as an unconstrained minimization prob-
lem [170, 121, 77]. The main idea is to decompose the displacement into a
special part yspec that fulfills the constraint function Cyspec = t and a homo-
geneous part yhom that fulfills Cyhom = 0. One possible specific solution is a
Thin-Plate Spline yspec = yTPS, which interpolates the landmarks. Thus yTPS

satisfies the landmark constraints. Furthermore, each homogeneous solution
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can be represented as a linear combination of a basis of the Null space of C.
Thus yhom = Zw, with Z containing the basis vectors of the Null space of C
and w the coe�cient vector. Hence we get a parameterization of y in terms
of the parameters w:

y(w) = yhom + yspec = Zw + yTPS. (12.17)

Henceforth, the optimization is performed via varying the parameters w and
the resulting unconstrained optimization problem reads:

min
w

J(w) = D(w) + ↵S(w)

= D(R, T (y(w))) + ↵S(y(w)� yref).

For the solution of the unconstrained problem again a standard Gauß-Newton
scheme can be applied.

As an alternative to the presented constraint elimination a direct method
has also been proposed using the SQP algorithm [170] for constrained opti-
mization problems. Here we will use the augmented Lagrangian method with
a Gauß-Newton type approximation of the Hessian as described in Section 5.4.
The objective function is defined like in the unconstrained registration prob-
lem (see Sec. 6.4) and again a multi-level strategy is used (see Sec. 6.5). The
only additional ingredient besides the optimization scheme are the discretized
constraints, which are already linear and their derivatives.

12.6.2 Inequality Landmark Constraints

There is no essential di↵erence between the unweighted and weighted inequal-
ity landmark constrained registration problem. Like for the equality con-
straint case in the previous section the objective function is given as in the
unconstrained problem and a multi-level strategy is used. Again the discrete
constraints are the only additional ingredient and also linear. The algorithm
for the general inequality constrained optimization problem is described in
section 5.4.2.
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Chapter 13

Assessment of Registration Algorithms

Before we present three di↵erent scenarios in computer assisted liver surgery
(Chapters 14 and 15) where the developed registration techniques can be
applied reasonably we will discuss the assessment of registration algorithms
and introduce new methods for the measurement of the accuracy, which are
particularly suitable for the registration of the liver with its interior vessel
structures.

The achievable accuracy is the outstanding criterion for the assessment of
registration methods. A high registration accuracy is essential for the precise
multi-modal surgery planning, as well as for the generation of exact atlases and
contributes significantly to the overall accuracy of intraoperative navigation
and mechatronic assistance systems. The resulting alignment of reference and
template image does not have to be perfect, but has to be adequate for the
medical question. Often a high accuracy implies a long runtime and partially
additional e↵ort for the interactive incorporation of expert knowledge like the
definition of landmark positions or parameter tuning. The criteria runtime
and e↵ort are of particular importance for time critical registration tasks like
the transfer of preoperative to intraoperative image data. A further criterion
closely associated with accuracy is the robustness of a method. A method
is called robust, if it is possible to reach reliably high accuracy despite a
changed starting point or artifacts in the image data. While accuracy and
robustness concern the e↵ectiveness of a registration algorithm, runtime and
e↵ort concern its e�ciency.

In the following sections we will define and discuss these assessment criteria
more precisely: accuracy, robustness, runtime and e↵ort. We will also present
concepts and quantitative methods for the assessment. The aspect of accuracy
will be most elaborated, because without su�cient accuracy the other aspects
are of less importance.
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13.1 What Exactly is Accuracy and How Can It Be
Determined?

At first it is indispensable to discuss the meaning of the term registration
accuracy. A clear definition is necessary for a fair comparison of di↵erent
approaches and to accomplish trust into registration methods resp. to under-
stand their limits.

Besides the definition of the term accuracy also the reason for the accuracy
determination is important. Fitzpatrick [66] di↵erentiates, if the accuracy
is investigated for a class of image pairs or for one concrete image pair. In
the first case the intention is, whether a registration method is successfully
applicable for a particular clinical problem in general. As even in a class of
similar images the variations are complex between the images, this will be
statistical investigations. This means the registration accuracy for a future
image pair is predicted based on a well defined class of image pairs. Such
claims are prone to statistical uncertainties, which can sometimes be estimated
themselves. In the second case considering the accuracy of one concrete image
pair it is intended to assure the safety of an individual patient. The clinician
wants to know, if the registration accuracy is below a given threshold. In
clinical routine this information can usually only be captured by visual control
or indirect measurements. For example, for navigation systems the coincidence
of real positions of a navigated pointer tip at anatomical landmarks and the
corresponding positions of the virtual tip visualized in the image data on the
screen can be checked.

13.1.1 Target Registration Error (TRE)

Now we come back to the question of how the accuracy concerning registration
results can be defined. A registration algorithm produces an optimal trans-
formation with regard to an objective function. This transformation usually
consists of a distance measure and a smoothing term. Although the transfor-
mation is optimal with respect to the objective function, this does not mean
it is ideal with respect to the underlying anatomical structures. An ideal
transformation maps every point of the template image onto its correspond-
ing anatomical point in the reference image. It is perfectly accurate. The
computed optimal transformation is the best guess given the available infor-
mation, but it is rarely ideal. This means with an ideal transformation an
anatomical target point in the template image is exactly mapped on to its
location in the reference image. If the computed optimal transformation is
not ideal, the anatomical target point will be displaced some distance from
the actual location in the reference image. This displacement is called target
registration error (TRE). The TRE is the commonly accepted measure of
the registration accuracy [142, 66, 62]. We now give a mathematical formu-
lation of the important TRE. Let yideal, yopt : R3 ! R3 be the ideal and the

180



13.1. What Exactly is Accuracy and How Can It Be Determined?

computed optimal transformation. Then the TRE at a point x 2 R3 is given
by a vector-valued function TRE : R3 ! R3. The error vector TRE(x) is
given by

TRE(x) = yopt(x)� yideal(x) for all x 2 R3. (13.1)

In many publications not the individual error components in all three spatial
directions are reported, but only the absolute value kTRE(x)k of the error
vector (magnitude of the vector field). A high registration accuracy is given
by a low TRE.

The TRE vector field can be visualized directly or characterized by descrip-
tive statistics. For example, the average error and the standard deviation of
the error magnitude over the whole image or partly in clinically relevant re-
gions like the surgical target structures or regions of risk can be determined.
Typically the statistical description of the TRE is restricted to points inside or
on the rim of lesions, which are intended to be surgically removed or to regions
of functional brain activity, which are investigated for diagnostic purposes.

In some applications, e.g., intraoperative navigation systems, it is impor-
tant for the surgeon to know that the registration error is below a critical
limit of about 2-3 mm, i.e., we need to know the maximal error. The specifi-
cation of such extreme values is di�cult and often not meaningful, because the
maximum and minimum of a statistical distribution are hardly reproducible
in particular in small sample sets. In contrast to the mean or the standard
deviation, which converge to a reliable value with increasing sample size (law
of large numbers), the value of the maximum is monotonously increasing with
the number of samples. While above a certain sample size there are only
minor changes in the value of the mean, the maximum depends on and fur-
ther increases with the sample size. A stable alternative to the maximum are
quantiles, for example, the 95% quantile gives the error value for which 95%
of all sample values are smaller than this error value.

In general it is important to be aware that the registration accuracy varies
considerably over the image region as Woods [258] pointed out. This has to be
kept in mind, if the whole accuracy vector field or distribution is summarized
by a few parameters by descriptive statistics. For a local region around the
surgical target structure such a summarization might useful, but for the whole
image region it is often not.

In most cases registration results are presented in a joint visualization of
reference and transformed template image (image fusion) to enable a direct
comparison of the image contents. This visual control does not allow a quanti-
tative determination of the accuracy but even small deviations at the borders
of anatomical structures are noticed by human observers as Wong et al. [256]
and also Fitzpatrick et al. [63] have shown.

The visualization of the displacement field or parameter images from this
field, e.g., magnitude of local volume change, are at least as important as the
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image fusion visualization. It is possible to get identically transformed images,
which have been achieved by totally di↵erent displacement fields. The reason
is that di↵erences can only by recognized at transitions between structures and
not in homogeneous image regions. Thus the plausibility of the displacement
field should be checked in all cases.

13.1.2 Methods to Determine the TRE

The big problem with determining the registration accuracy is that the ideal
transformation, which is needed to compute the TRE, is never actually known
for clinical data. This ideal displacement field is also named the ground truth
transformation. The term “ground truth” originates from remote sensing to
detect and classify objects on Earth. Informations directly gathered at the
ground by terrain sensing like soil samples, vegetation etc. are used to evaluate
a classification achieved by images from the surface of the earth taken from
planes or satellites.

Simulations

Computer simulations are an exception, where the ideal transformation for
the determination of the registration accuracy is known. Artificial movements
or deformations of structures are simulated, applied to an image and the reg-
istration algorithm has to find back its way to the starting position and shape
of the structures. The deviations of the computed image point locations to
their original locations can be evaluated. In this case the ideal transformation
is just the inverse of the simulated transformation yideal = (ysim)�1. That
means the target registration error is TRE = yopt � yideal = yopt � (ysim)�1.
The TRE can be rewritten by applying first the simulated transformation:
TRE � ysim = yopt � ysim � (ysim)�1 � ysim = yopt � ysim � id. Hence the in-
verse of the simulated transformation has not to be computed. We simply
determine the deviation from the identity.

Either real clinical image data or artificial structures (so-called software or
digital phantoms) are deformed by ysim. Some methods for generating defor-
mations are presented in Sec. 13.2.3. The degree of realism of the simulated
deformation is vague while the modeling of rigid transformations is straight
forward. Care has to be taken only for the generation of a set of random rigid
transformations with an intended distribution. How we can generate uniformly
distributed rigid transformation samples and rigid transformation samples dis-
tributed in a region around a given reference transformation, will be described
in Sec. 13.3. Although general properties of the registration method can be
investigated very well using simulations under controlled conditions, the direct
transfer of the results to real clinical data is often problematic. To increase
the degree of realism it is possible to use estimated real deformations instead
of complete artificial deformations. The estimation can be performed by a
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registration based on manually defined anatomical landmarks in clinical data
pairs [186]. These estimated deformations are applied to an image in the same
manner as the purely artificially generated ones above.

The estimated deformations from clinical data pairs are potentially realistic,
but the image contents and characteristics of the deformed image are identical
(up to the deformations) to the original image. Images in clinical routine
which are acquired at di↵erent time points or even with di↵erent modalities
feature significantly di↵erent image characteristics and even contents in some
regions due to noise, artifacts, other acquisition parameters or other imaging
properties in di↵erent modalities. The registration is more complicated in
such cases compared to deformed but identical images. One possibility to get
more realistically deformed images (even simulating di↵erent modalities) is to
simulate the images themselves and not only the deformation. The idea is
to deform only the geometry (a model) of the anatomical structures and to
simulate the appearance of the geometry for a given imaging modality. A well-
known example is the Digital Brain Phantom of the database BrainWeb [38,
5], which contains realistically simulated MRI image data of this phantom.
BrainWeb has already been used in hundreds of publications. Also other
imaging modalities like PET and SPECT can be computed on this digital
phantom by means of simulators like PET-SORTEO [184] or SimSET [82].
For ultrasound the simulation software Field II [93] is available.

Physical Phantoms

Physical phantoms are one possibility to consider real imaging properties like
image distortions or noise. These phantoms range from simple cube-like plas-
tic blocks to simplified anatomical models. Usually metal balls or screws
(depending on the imaging modality) are mounted as reference points at or in
the physical phantom such that a reference transformation yref can be deter-
mined which approximates the ideal transformation yideal quite accurately if
the number of reference points is high enough. The disadvantage of physical
phantoms is that like in the case of simulations and digital phantoms realistic
non-rigid transformations, as they occur in clinical applications, are di�culty
to achieve. Another disadvantage of physical phantoms is that the contrast
of the phantom image is often higher and imaging artifacts are rare resp. less
strong. A special class of physical phantoms are animal or human prepara-
tions, which enjoy a certain popularity in the accuracy evaluation of surgical
navigation systems, because they seem to be close to medical reality. How-
ever, the physiological changes after the death must not be underestimated.
For instance a perfused organ possesses a di↵erent elastic behavior than an
anatomical speciman. The use of specimen makes sense in the context of bony
structures. An alternative are experiments on living animals. Theoretically it
is possible to implant reference markers also in living animals, but the e↵ort
of animal trails is high and the anatomy is often not su�ciently comparable
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to humans.

Reference Structures on Real Clinical Images

Registration accuracies, which are determined on simulations and phantoms,
have only a limited validity for the accuracies on real patient data. Simula-
tions and phantoms are always a model of reality where it might happen that
exactly those factors, which limit the registration accuracy, were not modeled.
The realism from simulations over physical phantoms to clinical patient data
increases, but the verifiability decreases (see Fig. 13.1). Questions about the
sensitivity of registration methods regarding particular aspects of the images
(like noise etc.) can be investigated in a dedicated manner with simulations
and partially with phantoms. Though the complexity and realism is limited
the ideal transformation yideal (ground truth) is known perfectly or in the case
of phantoms an accurate approximation of the ideal transformation can be de-
termined at least at some points. In contrary, for clinical image data realistic
properties and a realistic complexity are given, but the ideal transformation
yideal is usually not or only approximately known on some regions or points.

Thus we are looking for possibilities to determine the accuracy of registra-
tion results on real clinical patient data without knowing the ground truth.
That means we need references which approximate the ground truth well. The
reference with the highest known accuracy yet is denoted as the gold standard.
The generation and establishment of a gold standard on patient data is a chal-
lenge. Only in rare cases images with artificial landmarks as references are
available. One example how such a gold standard can be determined, which
is based on bone implanted screws, will be described in Sec. 13.2.2. In most
cases, anatomical landmarks or structures defined by experts are the gold
standard for the evaluation of the registration accuracy on patient data. We
will discuss such gold standards in more detail in Sec. 13.2.3 and introduce a
reference standard based on vessel trees in Sec. 13.4.

13.1.3 Analytical Estimation of the TRE

Until now there is only one registration scenario where the TRE has been esti-
mated analytically: rigid landmark registration. Further details for rigid land-
mark registration are presented in Sec. 13.2.1. The problem with intensity-
based registration is that for an analytical determination of the TRE a good
model for the image pairs is needed, but the variations of medical images are
high and complex. For non-rigid registration a feasible deformation model has
to be known for the computation of the TRE.
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Figure 13.1 Assessment of di↵erent general approaches to determine the reg-
istration error.

13.2 Previous Work

13.2.1 Accuracy of Rigid Landmark Based Registration

For rigid landmark registration there is an analytically derived estimation of
the target registration error (TRE) for all image points. The accuracy of
landmark based registration depends of course on the localization accuracy of
the landmarks. The localization inaccuracy is also called fiducial localization
error (FLE) [65]. For image-to-patient registration the highest localization
accuracy is reached with special artificial markers, which are screwed into the
bone and are very well discriminable in di↵erent modalities [142].

Due to the localization inaccuracies of the landmarks (FLE) the probabil-
ity is very low that there is a rigid registration, which maps corresponding
landmarks exactly onto each other. Instead, the landmark registration algo-
rithms we presented in Section 11.6 determine a rigid transformation, which
minimizes the squared distance between corresponding landmark pairs. The
remaining sum of squared distances at the end of the minimization process is
also called fiducial registration error (FRE) and is often reported as the reg-
istration “accuracy” of navigation systems. But Fitzpatrick [61] showed that
FRE and TRE are uncorrelated. Theoretically the FRE can be small while
the important TRE is big.

Fitzpatrick et al. derived the expected value of the TRE squared analyti-
cally [65] as well as the whole distribution of the TRE [64] for each space point
depending on the FLE, the number of the landmark pairs N and the geomet-
rical configuration of the landmarks. They assumed that the FLE statistics
for all points are identical, isotropic, and have a zero-mean normal distribu-
tion. They used the standard unweighted landmark distance measure for their
derivation (see Sec. 11.6). Danilchenko and Fitzpatrick [43] treated the case of
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non-identical, anisotropic, but still zero-mean normally distributed fiducial lo-
calization errors. For further information and literature references about TRE
for general FLE distributions see the introduction of [213]. Danilchenko and
Fitzpatrick additionally derived the expected FRE squared and TRE squared
for a weighted landmark distance measure (see Sec. 11.6) incorporating in-
formation about anisotropic landmark localization uncertainties (FLE). They
also provide a MATLAB code for the computation of FRE and TRE.

The TRE varies over the image region. The registration error is smallest
in the center of the landmarks and is increasing with increasing distance to
the center. The increase is not the same in each direction, but ellipsoidal.
The three main axes of the ellipsoid are determined by the spatial landmark
configuration, which is a very significant influencing factor on the accuracy.
West et al. show the spatial distribution of the TRE for di↵erent landmark
configurations in neurosurgery in their publication [253].

13.2.2 Accuracy of Rigid Intensity Based Registration

There is no analytical estimation of the TRE for rigid intensity based registra-
tion, but a very accurate gold standard based on bone-implanted screws [142,
252]. The accuracy of this gold standard was analyzed very accurately by
Maurer et al. [142]. The gold standard was used in The Retrospective Im-
age Registration Evaluation Project (RIRE) of the Vanderbilt university
(often abbreviated as the Vanderbilt project). In this project, image data of
the three modalities CT, MRI and PET were used from patients, which un-
derwent navigated neurosurgery. Bone markers were implanted in all patients
before image acquisition. Afterwards the appearance of the markers was re-
moved from the images to enable a blind study. Important brain regions were
identified by neurosurgeons and the centers of those volumes of interest (VOI)
were used for the error analysis. The TRE was computed by determining the
deviations between the positions of the VOI center points after application
of the computed rigid transformations and the gold standard transformation
based on the bone markers. Unfortunately such databases like the one at the
Vanderbilt university are very rare.

The accuracy and robustness of a registration method depends on several
factors, such as image content, imaging modality, imaging artifacts, image
noise, distance measure, optimization algorithm, implementation details, etc.
Even if a perfect accuracy determination method is available, it is di�cult to
identify the influence of a particular factor on the accuracy due to the com-
plex interdependences between the numerous factors. The distance measure
is one of the factors that highly influences the registration accuracy. Often
the performance of a distance measure is evaluated by the resulting registra-
tion accuracy including the influences of all the other factors or by plotting
distance measure values for transformations in the neighborhood of a gold
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standard reference transformation [80]. Ideally, the plot of the distance mea-
sure shows that the optimal value of the distance measure occurs exactly and
distinctively for the reference transformation, no local minima are near the
optimal value where an optimizer can be trapped, and capture range is big.
If an initial transformation lies inside the capture range around the reference
transformation the optimization process will find the reference transformation
(see also Sec. 13.5.1).

For a set of clinical data the plot of the distance measure values will usually
not be ideal. The question is how this qualitative evaluation can be transfered
to an objective quantitative evaluation. Skerl et al. [218] propose a protocol
for the quantitative evaluation of distance measures. They sample the space
of possible transformations by a set of N randomly selected lines passing the
reference transformation. On each line the distance measure is evaluated for
M uniformly spaced sample transformations. The length of the lines is defined
by a maximal distance R from the reference transformation. Methods for the
generation of uniformly distributed directions for the definition of the lines are
presented in Sec. 13.3. Skerl et al. use three translation and three Euler angle
parameters to define a rigid transformation. This means the space of rigid
transformations has six dimensions and each sample point is represented by a
six-dimensional parameter vector. The template image is transformed by each
of the N⇥M sample transformations (including the reference transformation)
and the distance measure between the transformed template image and the
reference image is computed. The resulting distance measure values are the
basis for the quantification of five di↵erent properties of the distance measure:
accuracy (ACC), distinctiveness of global minimum (DO), capture range (CR),
number of maxima (NOM), risk of nonconvergence (RON). The mathematical
definition of the properties is given in [218].

The protocol of Skerl et al. o↵ers the possibility to investigate the perfor-
mance of a distance measure (and its implementation) without the influences
of a concrete registration process.

13.2.3 Accuracy of Non-Rigid Registration

As described in Section 13.2.1 and 13.2.2 for rigid landmark based resp. rigid
intensity based registration there are already accepted methods for the de-
termination of the accuracy. The accuracy analysis of non-rigid registration
algorithms is significantly more complicated. Di↵erent evaluation methods
have been proposed, but until now no established gold standard exists.

Often artificial deformations are simulated to show that an algorithm is able
to compensate at least certain deformations [194, 109]. Those deformations
usually have only little in common with real anatomical deformations. A lit-
tle bit more realistic deformations are generated by manually moving single
landmarks and computing landmark based registration results to get artifi-
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cially transformed points for all image points [186]. Schnabel et al. [206] try
to increase the degree of realism by means of biomechanical simulations.

The construction of deformable physical phantoms is significantly more dif-
ficult than rigid phantoms. In addition, more landmarks have to be inserted
into the phantom as references for the accuracy determination. For rigid
transformations only three landmarks are theoretically enough to compute
the transformation at any point. One example for an elastic phantom is the
truth cube [100]. The truth cube is a cube made of silicone rubber with edges
of 8 cm length filled with 343 teflon spheres of 1.6 mm in diameter. CT scans
of the truth cube with and without deformations induced by pressing a plate
resp. a sphere onto the upper side are available in the internet [100]. The
identification of the sphere landmarks is also available. The cube is intended
as a physical standard for modeling soft tissue, but it is also suitable for ac-
curacy analysis of non-rigid registration methods [260]. Cash et al. [28] have
built an artificial liver phantom, which is also made from silicone rubber and
contains teflon spheres. Real porcine livers with embedded sphere landmarks
are also imaginable, but they are not long-living and reproducible.

The determination of the registration accuracy on real clinical image data
is inevitable as discussed in Sec. 13.1.2. Usually anatomical point landmarks
are defined manually in reference and template image by medical experts to
determine the registration accuracy. Such points are, for example, branchings
of vessels [185, 237, 200]. The problem is that the position of the point land-
marks can only be set and reproduced with a restricted accuracy by the same
expert at di↵erent time points (intra-rater reliability) as well as by di↵erent
experts (inter-rater reliability). In addition, the accuracy evaluation is only
possible in areas where reference landmarks can be identified. Despite those
potential di�culties this is currently the most convincing strategy for the val-
idation of non-rigid registration methods at least in areas near the reference
landmarks.

Corresponding curves on organ boundaries, surfaces or whole regions are
representing a bigger part of the images than single anatomical points. The
matching of corresponding segmented regions can be measured with the same
methods as used in the accuracy assessment of segmentation algorithms [33].
Curves and surfaces are sometimes easier and more accurately identifiable than
points. However the information which point on one curve/surface corresponds
to which point on the other curve/surface is missing. Simply taking the nearest
point underestimates the real distance and thus the registration error. In
Sec. 13.4 we will present a validation method where point correspondences
on vessel center lines (curves) between vessel branching points and metrics,
which consider the localization uncertainties of the points, will be defined.

As in the case of rigid registration the direct investigation of distance mea-
sures is important to identify the potentials to decrease registration errors and
to assess their performance. Non-rigid transformations possess significantly
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higher degrees of freedom compared to rigid transformations. Therefore a
qualitative visualization of distance function values in the neighborhood of the
optimum as in the rigid case (see Sec. 13.2.2) is di�cult. Skerl et al. [219] have
extended their protocol for a quantitative analysis of distance measures from
rigid to non-rigid transformations. They measure exactly the same five dif-
ferent properties as in the rigid case: accuracy, distinctiveness, capture range,
number of maxima, risk of nonconvergence. The only di↵erence is that the
sample points in the high-dimensional parameter space represent simulated
non-rigid transformations. Skerl et al. [219] simulate local deformations by
systematically displacing a set of control points of B-spline transformations.
For each control point a set of N probing lines with randomly selected dis-
placement directions is generated. Each line is sampled on M points leading
to N ⇥M di↵erent displacement vectors for each control point. The resulting
non-rigid transformations are applied to the template image and the distance
measure values of the transformed template images to the reference image are
computed. A detailed description can be found in [219].

13.3 Simulating Rigid Transformations

Simulations are a suitable approach to study the behavior of registration algo-
rithms as well as to compare di↵erent algorithms. We discussed the advantages
and disadvantages of simulations in Sec. 13.1.2. Here we deal with the simu-
lation of rigid transformations. Rigid transformations can easily be generated
by one of the parameterizations presented in Sec. 7.3. The challenge is to
generate random rigid transformations with a given distribution, which will
be usually a uniform distribution. While uniformly distributed translations
are fairly easy to produce, rotations are not. We will use some ideas from
sphere point picking and directional statistics to generate random transla-
tions and rotations. We often only need random translations and rotations in
a given restricted range, for example around a known ground truth transfor-
mation. We will use the von Mises-Fisher distribution, which is an analogon
of the Gaussian distribution on the sphere, to generate rigid rotations around
a given ground truth rotation.

There are two general approaches to generate random samples from a given
distribution: a regular deterministic sampling of the configuration space and a
random sampling according to a given distribution. Rigid transformations can
be described by a parameterization with a 6D parameter space. Therefore, a
regular deterministic sampling would create a very high number of samples
(N6) even for a small number of sample points (N) in each of the 6 coordinate
directions. Therefore we prefer random sampling to get a good overview of
the configuration space.
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13.3.1 Sampling from a Given Distribution

In this section, two methods are shown to generate values of a random vari-
able X : ⌦ ⇢ RN ! R, which are distributed according to a given probability
distribution. Usually only uniformly distributed numbers are provided by
pseudo-random number generators on the computer. From this simple distri-
bution more complex distributions can be obtained by the following general
methods.

Inverse Transform Sampling. A general possibility is the Inverse Trans-
form Sampling also called the inverse probability integral transform [46]. The
main idea is to invert the cumulative distribution function (cdf) of a random
variable X analytically or numerically. The inverse cdf is also called quantile
function.

The sampling method is based on the following theorem. Let FX = P [X 
x] 8x 2 R be the cumulative distribution function (cdf) of the continuous
random variable X : ⌦ ⇢ RN ! R with an inverse F�1. If U is a random
variable uniformally distributed on [0, 1], then F�1(U) has the distribution
function F . The proof is straightforward:

P [F�1(U)  x]

=P [U  F (X)] (monotonic F applied on both sides)

=F (X), since P [U  y] = y if U is uniformly distributed.

Now we generate uniformally distributed samples, apply the inverse cumula-
tive distribution function F�1 and get samples, which are distributed accord-
ing to F . If no analytical inverse is known, the non-linear equation F (X) = U
has to be solved numerically leading to an approximate sampling instead of
an exact sampling method.

The inverse transform sampling strategy will be used to sample the von
Mises-Fisher distribution to generate anisotropic random directions (13.3.2)
and uniformly distributed rotations (13.3.3).

Rejection Sampling. An alternative general sampling method is rejection
sampling also called acceptance-rejection or accept-reject method [46]. Instead
of sampling directly from a distribution an envelope distribution is used, where
sampling is easier and samples outside the envelope are rejected.

Let X be a random vector with density f : ⌦ ⇢ RN ! R, and let U be
an independent, uniformally distributed, scalar random variable on [0, 1]. We
assume that a dominating density g : ⌦ ⇢ RN ! R and a constant c 2 R+

exist such that f(x)  cg(x) for all x 2 ⌦. Then random variates with density
f can be obtained by the following algorithm:

1. Generate random variables X with density g on RN and U with uniform
distribution on [0, 1].
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2. Check if U < f(X)/(cg(X)). If this holds, X is a sample of the distri-
bution f . If not, reject X and try another sample (step 1).

We give a short explanation that the algorithm works. The (N+1)-dimension-
al random variable (X,Ucg(X)) is uniformly distributed in the area below the
curve/graph of cg in RN+1. Then (X, cUg(X)) is also uniformly distributed
below the graph of f and the N -dimensional projection X of the samples must
have density f . Detailed proofs are given by Devroye [46]. The challenge of
rejection sampling is to find an e�cient envelope function. E�cient means
that the rate of rejected samples is preferably low in particular in higher
dimensions.

We will use this sampling strategy in the next section for uniformly sampled
translations.

13.3.2 Random Translations and Directions

We introduce two methods to generate uniformly distributed translations in-
side a box and inside a sphere. Each translation will have a random direction
and a random (but constrained) length. In addition, we will present methods
providing uniformly and non-uniformly distributed random directions with a
fixed given length.

Uniformly Distributed Translations Inside a Box. A very simple
method to generate uniformly distributed translations inside a box (cuboid)
of size (Xsize, Ysize, Zsize) is described by Ku↵ner [108]. Assume we have a
pseudo-random number function rand() which returns uniformly distributed
values on the interval [0, 1). Independent random values along each axis scaled
by the size of the box in the respective direction lead to uniformly distributed
translations inside the given box:

(x, y, z) = (Xsizerand(), Ysizerand(), Zsizerand()). (13.2)

Uniformly Distributed Translations Inside a Sphere. As the corners
of a box are further away than the centers of the faces of the box some di-
rections are over-represented. A box is not rotation-invariant in contrast to
a sphere. Therefore translations sampled inside a sphere are not biased to
certain directions. To generate uniformly sampled translations inside a sphere
the described rejection sampling method is used.

The idea is to take uniformly distributed points inside a unit cube and reject
all points which are outside a unit sphere. The e�ciency of the sampling
method is ⇡/6 independent of the radius (VSphere(d) =

⇡
6d

3).

This sampling technique is also applicable to higher dimensions with sam-
ples inside hypercubes and hyperspheres, but with increasing dimension the
probability of rejection also increases and the e�ciency decreases.
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Uniformly Distributed Random Directions. The motivation for gen-
erating random directions is to get translations with a defined length. Random
directions are also needed by some methods for the generation of random ro-
tations (see Sec. 13.3.3).

A field where random directions are implicitly generated is sampling on the
surface of a sphere, which is also called sphere point picking. Each random
point on the sphere represents a random direction. We briefly describe three
of the many di↵erent sphere point picking methods:

1. The first sphere point picking method is simple. At first uniformly dis-
tributed samples inside a sphere are generated by rejection sampling as
described above and the samples are projected from inside the sphere
onto its surface by normalizing the length of the sample directions.

2. An elegant method for sphere point picking is to use 3D Gaussian ran-
dom variables and divide each resulting random vector by its length.
This leads to a uniform distribution on the unit sphere because the
Gaussian distribution is spherical symmetric. It is also a simple method
for hypersphere picking in higher dimensions [141]. In particular for
higher dimensions this is more e�cient than rejection sampling.

3. An obvious method to get random points on the unit sphere is to take
the spherical parameterization x = cos ✓ sin�, y = sin ✓ sin�, z = cos�,
for the two angles ✓ and � uniformly distributed on [0, 2⇡) resp. [0,⇡].
The problem is that the resulting points are not uniformly distributed on
the sphere. The reason is that the infinitesimal area element on the unit
sphere is dA = sin�d✓d�. This means the area element depends on the
angle � leading to a higher point density at the poles compared to the
equator. A similar e↵ect occurs for random rotations parameterized by
Euler angles (see Sec. 13.3.3 and Fig. 13.3). It is possible to correct this
e↵ect. To get uniformly distributed points the joint probability p(✓,�) =
p✓(✓)p�(�) has to be the product of the independent probability densities
for ✓ and �: p✓(✓) = 1

2 sin ✓ and p�(�) = 1
2⇡ [21]. We use inverse

transform sampling (Sec. 13.3.1) to generate point samples according to
this distribution. The cumulative distribution function (cdf) F for ✓ is:

F (✓) =
1

2

Z ✓

0
sin(x)dx =

1

2
(1� cos(✓)). (13.3)

The inverse of the cdf is F�1(y1) = cos�1(2y1 � 1). In Sec. 13.3.1 we
showed that if y1 is uniformly distributed on [0, 1), then ✓ = F�1(y1) is
distributed according to F . A similar derivation for � leads to � = 2⇡y2,
where y2 is uniformly distributed on [0, 1).

Non-Uniformly Distributed Random Directions. We need often sam-
ples from a region around a given reference direction rather than from the
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Figure 13.2 Points on the sphere sampled from three di↵erent von Mises-
Fisher distributions with  = 1 (green),  = 10 (blue),  = 100 (red) and the
mean direction (0,0,1).

whole space of possible directions (whole sphere surface). We mentioned
in the introduction that the von Mises-Fisher distribution can be seen as a
Gaussian-like distribution on a sphere (see Fig.13.2). It is an isotropic distri-
bution around a mean direction µ with a concentration parameter  leading
to circular contours on the sphere surface. The concentration parameter  is
comparable to the standard deviation parameter � of a Gaussian distribution.
The von Mises-Fisher probability function on the 2D sphere S2 in 3D space
is:

f3(x;µ,) = C3() exp(µ
Tx) (13.4)

with  � 0, kµk = 1 and the normalization constant C3() is equal to

C3() =


4⇡ sinh
=



2⇡(e � e�)
. (13.5)

The bigger the concentration parameter , the higher the concentration of the
distribution (the lower the dispersion). The distribution is unimodal for  > 0
and uniform for  = 0.

Now we show how to sample from this density to get points on the sphere
which are von-Mises-Fisher distributed. Ulrich [230] derived a general result,
but for the 3D case an easier solution is available [60]. A three-dimensional
random vector X has von Mises-Fisher distribution if and only if

X = ((1�W 2)
1

2V,W )T (13.6)

where V is a uniformly distributed two-dimensional unit vector and W is a
scalar random variable in the range [�1, 1] with the density f(!) = c�1

 e!.
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The normalizing constant is given by c = 2
 sinh() = 2


e�e�

2 . The uni-
formly distributed vector V can be easily obtained by parameterizing V =
(cos ✓, sin ✓) and ✓ uniformly distributed on the interval (0, 2⇡].

We use inverse transform sampling (see Sec. 13.3.1) to sample W . The
cumulative distribution function FW of W with density f is given by:

FW (t) = P [W  t] = c�1



et


� e�t



�
. (13.7)

The inverse F�1
W of the distribution function (quantile function) is given by

F�1
W (y) =

1


log(e� + cy). (13.8)

If we take a uniformly distributed random variable Y ⇠ U [0, 1], then is W ⌘
F�1
W FW . Now we have all the ingredients to sample the von Mises-Fisher

distribution by using Equation 13.6 and the described distributions for V and
W .

Wood [257] improved the algorithm of Ulrich [230]. See also [268] for an
application in probabilistic white matter fiber tracking based on DTI.

13.3.3 Random Rotations

For the validation of rigid registration methods often random rotations are
generated simply by uniformly distributed Euler angles over the whole or a
restricted angle range. But the resulting random rotations are not uniformly
distributed over the space SO(3) of rotations or a restricted part of the space
(see Fig. 13.3). We will show how the Euler angles have to be distributed to
get uniformly distributed random rotations and present alternative methods
for the generation of such random rotations. We will also explain how non-
uniformly unimodally distributed random rotations can be simulated around
a given reference rotation.

Uniformly Distributed Random Rotations

In Chapter 7.3 we have seen that there are several representations of rotations
in 3D by di↵erent parameterizations. Based on three of these parameteriza-
tions we will present methods to generate uniformly distributed rotations. A
fourth method, called Arvo’s method, will also be sketched.

Axis and Angle Method. One would think that uniformly distributed
random rotation axes with corresponding uniformly distributed random rota-
tion angles lead to uniformly distributed random rotations. Brannon [21] gives
a qualitative reason and illustration why this is not the case. A simple stan-
dard criterion for uniformity is that the distribution is invariant under arbi-
trary rotations. Miles [146] derives an invariant probability density, which pro-
duces uniformly distributed rotations. This probability density implies that
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Figure 13.3 Rotations are visualized as a rotated sphere with a rotated tan-
gent on the sphere [146, 108]. The left figure shows non-uniformly distributed
(biased against poles) rotations generated by uniformly distributed Euler an-
gles and the right figure shows uniformly distributed rotations generated by
an improved Euler angle method.

the rotation axis has to be uniformly distributed on the sphere S2 which can be
achieved by the methods presented in Sec. 13.3.2 and the rotation angle ↵ has
to be distributed according to p↵(↵) =

2
⇡ sin

2 ↵
2 . The distribution for the rota-

tion angle can be sampled by inverse transform sampling (see Sec. 13.3.1). The
cumulative distribution function is F↵(↵) =

R ↵
0 p↵(x) dx = 1

⇡ (↵� sin↵) = y.
Unfortunately the inverse F�1(y) cannot be analytically determined. Thus
the equation y = 1

⇡ (↵ � sin↵) has to be solved numerically for ↵, which is
the drawback of the method. If y is uniformly sampled on [0, 1), then ↵ is
distributed according to p↵(↵).

Euler Angles Method We mentioned in the introduction that uniformly
sampled Euler angles (see Sec. 7.3) do not lead to uniformly distributed ro-
tations (see Fig. 13.3). Similar to the axis and angle method a distribution
for the Euler angles has been derived which leads to uniformly distributed
rotations [146, 21]: p(✓,�,�) = p✓(✓)p�(�)p�(�) =

1
2⇡

1
2 sin�

1
2⇡ = 1

8⇡2

sin�. This
distribution can be sampled by inverse transform sampling. The cumulative
distribution function F�(�) =: y for � and its inverse F�1

� (y) = cos�1(2y�1))
are the same as for the uniform sampled directions in Sec. 13.3.2. The other
two angles ✓ and � have to be distributed uniformly on [0, 2⇡). A detailed
algorithm for uniform sampling of rotations based on Euler angles is described
by Ku↵ner [108].

Quarternion Method. Shoemake [216] introduced a sampling method
based on quaternions which is also used by Ku↵ner [108]. The main idea is
to generate uniformly distributed points on the unit hypersphere S3 in four
dimensions leading to unit quaternions which are uniformly distributed on the
space of rotations SO(3). Shoemake [216] presents a method for the generation
of uniformly sampled points on S3. Some of the sphere picking methods for
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S3 in Sec. 13.3.2 can easily be extended to S3. It is also possible to use a non-
uniform distribution on S3 to generate random rotations around a reference
rotation. For example the von Mises-Fisher distribution is also available for
n-dimensional spheres.

Arvo’s Method. The idea of Arvo [3] is to rotate an object vertically at
the north pole of a sphere about a uniformly random amount and than rotate
the axis of the north pole to a random position on the sphere. Arvo gives a
method for the random rotation of the axis. The resulting rotation samples
are uniformly distributed within SO(3) [3]. If we restrict the range of the
random input variables, we get uniformly distributed rotations within given
limits.

Non-Uniformly Distributed Rotations

An extension of the von Mises-Fisher distribution for non-uniformly distri-
buted directions is the von MisesFisher matrix distribution [47, 101] which
can be used to construct non-uniform distributions over the space SO(3) of
rotation matrices. It has been shown by Prentice [183] that the von Mises-
Fisher matrix distribution on SO(3) is equivalent to the Bingham distribution
on S3, which is defined in [13]. The points on S3 can again be interpreted as
quaternions. A sampling method for the Bingham distribution can be found
in [257].

13.4 Reference Standard Based on Vessel Trees

We discussed the importance of corresponding reference structures in clinical
images for the accuracy determination of (non-rigid) registration methods in
Sec. 13.1.2 and Sec. 13.2.3. In particular for non-rigid registration problems
it is not possible to identify for each point in a clinical template image its
corresponding point in the clinical reference image. Thus the validation is
restricted to some important anatomical structures that can be identified in
real clinical data.

What are the potential anatomical structures in CT and ultrasound images
of the liver which can be used for defining the corresponding reference stan-
dard features? The first possibility is to take the target structure directly,
e.g., the tumor in oncological liver resections. But tumors are usually only
rough references because tumor boundaries are often di�cult to delineate in
particular in ultrasound images. The centers of small and good discriminable
tumors might be suitable references. The liver surface is a second possibility
to define reference standard features. The liver surface is quite smooth with
only very few point-like features and some curve features. In preoperative
CT data the whole liver surface is imaged and explicitly given from operation
planning. In intraoperative ultrasound images only parts of the posterior liver
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Figure 13.4 Reference T and template tree T̂ are minors of the underlying
anatomical supertree (gray).

surface are identifiable. In postoperative CT data parts of the original surface
are missing due to the resection. In addition the liver surface is clinically less
important than the vessels which are good identifiable features and clinically
very important. Thus we focus on the vessels.

Usually corresponding anatomical landmarks on vessels manually identi-
fied be experts are used [186, 237, 200] as reference points for the evaluation
of the registration accuracy. We present a method, which also uses manu-
ally identified corresponding vessel branchings in both modalities, but where
an automatic algorithm then determines whole corresponding substructures
(graph minors) of the vessel trees while verifying their consistency [120].

To evaluate a non-rigid registration result the vessels in the template data
are deformed with the computed transformation and a metric measures how
close corresponding vessel parts are in the reference data after the transfor-
mation. We define four di↵erent evaluation metrics for vessel structures. The
main challenge is to consider the inaccuracies of the defined vessel correspon-
dences in the metrics.

We will use the vessel tree correspondence method and the metrics for the
evaluation of non-rigid liver registration in Chapter 14 and Chapter 15.

13.4.1 Definition of Vessels Correspondences

We assume that a segmentation and center line extraction of the vessel trees
from two di↵erent data sets (e.g. CT and 3D ultrasound) is available (see
also Sec. 2.3.2). In our case the center lines consist of linearly interpolated 3D
node point sequences. Based on those nodes the vessels can be represented
as a tree (Fig. 13.4). Let T = (V,E) and T̂ = (V̂ , Ê) be directed trees for
the reference resp. model data. All edges point in the direction of the given
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Figure 13.5 Caused by inaccuracies: a) edges might be contracted near very
close branching nodes, or b) the order of very close branching nodes might be
exchanged.

root nodes r 2 V and r̂ 2 V̂ . The node subsets B ✓ V and B̂ ✓ V̂ contain
all branching nodes (node degree �(v) > 2). Let P (v, w) be the unique path
from node v to node w. We call a path between two branching nodes or a
branching and an end node (�(v) = 1) a (vessel) segment path.

The trees T, T̂ are not identical and only parts of the underlying anatomical
vessel tree (supertree) can be identified in both modalities. There is neither
a subtree isomorphism of T, T̂ to a common supertree nor a homeomorphism.
Due to missing branches a segment path in T might be represented by several
segment paths in T̂ and vice versa (see Fig. 13.5a). In addition the order of
branching points or other topological changes might occur (see Fig. 13.5b)
caused by inaccuracies in the image processing pipeline. To get a subtree
isomorphism the contraction of some segment paths to one single node is
necessary. This means a supertree contains T and T̂ as a minor (see Fig. 13.4).
Intuitively, a graph G is a minor of a graph H, if G can be obtained from H
by a series of vertex/edge deletions and edge contractions.

As the consistent assignment of branching nodes and segment paths is
only heuristically solvable based on geometric properties [29], we interac-
tively define a subset of corresponding branching points (bi, b̂i), i = 1, . . . , n,
bi 2 B, b̂i 2 B̂. Let Bcorr, B̂corr contain all bi resp. b̂i. To ease the interac-
tion, a mouse click can be set onto the branching of the vessel surface and the
nearest branching point on the center line graph is determined automatically.

Determination of Corresponding Segment Paths

For two given vessel center line trees T, T̂ and a subset of corresponding
branching node pairs (bi, b̂i), i = 1 . . . n the “CorrespondingPaths” algorithm
(see Fig. 13.6) determines corresponding path pairs (Pi, P̂i). As the directed
path to the root is unique, the algorithm starts from each of the n correspond-
ing branching point pairs and ends, if another corresponding branching point
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Figure 13.6 CorrespondingPaths Algorithm.

or a point, which has already been visited, has been reached. The second
termination criterion is necessary because not all branching points might have
been interactively assigned. It is important to check, if the points reached are
an assigned branching point pair in order to detect topological or assignment
errors. Most of the inconsistencies can be resolved by automatic contraction
of very short segment paths. Remaining problems are eliminated interactively.
Based on the resulting path pairs each model path P̂i is reparameterized ac-
cording to the reference path Pi. This means the relative distances between
successive reference nodes are transfered to the length of the model path.
Now each node on a reference line corresponds to a point on the model line.
Let (pj , p̂j), j = 1, . . . ,m be the resulting corresponding point pairs on all
segments. The correspondences produced by this algorithm are much better
than simple closest point correspondences as illustrated in Fig. 13.7. An al-
ternative algorithm for correspondence determination on vessel center lines
(coronary arteries) was introduced by Schaap et al. [202]. They sample the
center lines equidistantly and introduce valid correspondences defined by or-
dered sets of connections. Then they search a valid correspondence minimizing
the Euclidean length of all connections by means of Dijkstra’s algorithm.

13.4.2 Evaluation Metrics on the Vessel Reference Standard

Until now we have defined corresponding point sets on the vessel center lines
in reference and template image. For the evaluation of a registration result
we need metrics which quantify the di↵erences of corresponding vessel parts
after registration. Some of the metrics will be used on liver reference vessels
in Chapter 14 and 15.
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Figure 13.7 The proposed parametrization between branching points pro-
duces much better correspondences (left) than common closest point corre-
spondences (right).

Distance of Corresponding Points on Center Lines: The simplest
metric is the average distance between corresponding point pairs:

Mdist(T, T̂ ) :=
1

m

mX

j=1

kpj � p̂jk . (13.9)

Weighted Point Distance: The corresponding center line points are gen-
erated with some location uncertainties. The uncertainties along the lines are
usually higher than perpendicular to the lines. In particular location uncer-
tainties of the branching points lead to translations of the correspondences
along the lines. Let ⌃j be an estimated covariance matrix of the anisotropic
localization uncertainty for the point pair (pj , p̂j). Based on these weighting
matrices a weighted point distance measure can be defined (see Sec. 11.5.2):

Mweighted(T, T̂ ) :=
1

m

mX

j=1

(pj � p̂j)
T⌃�1

j (pj � p̂j). (13.10)

Directional Deviation Metric: From the vessel center lines in each cor-
responding point pair (pj , p̂j) (except in the branching points) a normalized

tangential vector pair (dj , d̂j) can be computed. The sine of the angle between
the direction vectors is a measure for the deviation of the two directions. As
the cross product (⇥) is related to the sine an evaluation metric can be defined
by:

Mdir(T, T̂ ) =
1

m

mX

j=1

���dj ⇥ d̂j
��� . (13.11)
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Segment-Wise Relative Volume Overlap: A metric that is less de-
pendent on the center line extraction is the relative volume overlap of cor-
responding vessel segments. Such overlap measures are very popular in the
evaluation of segmentation methods [84]. Each vessel voxel is assigned to the
closest segment path point. For all points on corresponding segment paths
Pi, P̂i the assigned voxels define the volumes Vi, V̂i of the particular segments.
The the relative overlap measure ist defined as:

Mvol(T, T̂ ) :=
1

n

nX

i=1

✓
1� |Vi \Wi|

|Vi [Wi|
◆
. (13.12)

This measure is only sensitive to small deviations, but does not di↵erentiate
bigger deviations. In particular for small corresponding vessels which do not
overlap there is no di↵erence in the metric whether the vessels are very close
to or very far from each other. Therefore Crum et al. [42] introduced a corre-
spondence tolerance parameter ⌧ 2 R+

0 . Regions are considered overlapping
if they lie within a distance of ⌧ . A further interesting variant is presented by
Schaap et al. [202]. They consider only the overlap of clinically relevant parts
of the vessels. An easy measure for the relevance is the diameter of a vessel;
the bigger the diameter the more important the vessel.

13.5 Further Assessment Criteria

13.5.1 Robustness

It is expected that an image processing method produces reliable results with
an acceptable accuracy at least for a given image class. Hence a registration
method has to be tested for a significant number of clinical image data sam-
ples, where artifacts and image qualities are contained, which typically occur
in clinical practice. The sensitivity of the resulting registration accuracy to
disturbances like noise and artifacts may be investigated explicitly by sim-
ulations. Also the sensitivity of the results to starting position and chosen
parameters needs to be considered.

13.5.2 E↵ort and Runtime

The ultimate aim of the development and application of a registration algo-
rithm is an automatic method. On clinical images this is often not feasible
without decreasing the accuracy and robustness. Thus it may be better to
reach a su�ciently accurate result with a higher interactive e↵ort than an
inaccurate result with a fully automatic method. Interactive specification of
prior knowledge or the manual adjustment of parameters is only reasonable
for medical experts and acceptable in clinical routine, if the interaction is
intuitive resp. a needed parameter change is easily understandable.
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A frequently occuring question is how long a registration process lasts and
it is equally often answered with “it depends”. Most of the optimization
algorithms are iterative methods (see Chapter 5). They are performed until
a stop criterion is reached. This means the runtime of a registration process
depends on these stopping criteria. The runtime of registration methods, for
which closed-form solutions exist, is usually significantly shorter. The used
hardware is of course crucial. The processor performance as well as the size of
the main memory have an influence on the runtime. Most of the registration
algorithms can at least in parts be parallelized, which results in significant
runtime reduction. No expensive special parallel computers are necessary
for this as modern standard PCs already feature multicore processors. With
the e�cient implementation of a registration method, which considers the
potential of multicore processors, the runtime can be improved accordingly.

In general, rigid registration methods are very fast because only few pa-
rameters have to be optimized. The runtime of schemes which are based on
corresponding landmarks depends on the number of landmarks which is typ-
ically low (between 4 and 10). Thus very low runtimes of few seconds are
possible. The runtime for the application of the determined transformation
depends on the number of voxels in the template image because the transfor-
mation has to be applied to every single voxel (interpolation). But usually
the computation is below one minute. This is basically also true for non-rigid
landmark registration where the application of the transformation is more
computationally expensive but still between one and two minutes.

The main computation time for intensity-based registration methods is
needed for the evaluation of the objective function (with derivatives) and
the solution of large linear systems for the computation of the search direc-
tion for the next optimization step. With the presented multi-level strategies
(see Sec. 6.5) and e�cient optimization algorithms (see Sec. 5) very significant
accelerations can be achieved even for non-rigid registration problems.
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Chapter 14

Transfer of Preoperative Models to
Intraoperative 3D Ultrasound Data

14.1 Introduction

An important issue in computer-assisted surgery of the liver is a fast and
reliable transfer of preoperative resection plans (see Sec. 2.3.3) to the in-
traoperative situation. We already presented navigation systems based on
intraoperative 3D ultrasound which display the position and orientation of
surgical instruments in relation to liver vessels and tumors imaged in the ul-
trasound data (see Sec. 2.4.2 and Sec. 2.4.3). The problem is to match the
planning data, derived from preoperative CT images, with these intraoperative
3D ultrasound images. As the liver deforms significantly in the intraoperative
situation non-rigid registration is necessary.

There are only few works published regarding CT/MRI-to-ultrasound reg-
istration. Rigid methods have been presented, which are either intensity-
[190, 220] or feature-based [179, 175]. Usually the liver vessels serve as fea-
tures, because of their easy identification in CT/MRI and ultrasound data,
in particular in power Doppler ultrasound. Extensions of such vessel-based
approaches to non-rigid transformations are described in [115, 114, 186, 185].
These methods, however, su↵er from the problem that vessels cannot be ex-
tracted automatically from ultrasound data with high accuracy and at high
speed. Alternatively, hybrid approaches [6] fit preoperatively extracted fea-
tures directly to the intraoperative image data. In liver surgery those features
are already available from surgery planning. The new distance measures we
presented in Sec. 9 allow an extension of these hybrid methods to non-rigid
transformations [118].

Non-rigid landmark registration using thin-plate splines (see Sec. 11.8) has
been applied to MRI-ultrasound registration [72]. We already argued in Sec. 12
that pure landmark schemes only take into account information at the land-
mark positions and ignore the complete intensity information of all other image
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points. In Chapter 12 we presented di↵erent possibilities to combine intensity
based registration and some interactively chosen landmark pairs.

At first we add landmark interpolation conditions as equality constraints to
the non-parametric registration problem to guarantee that the corresponding
landmarks are exactly mapped onto each other (see Sec. 12.3). We apply the
approach to clinical data. As the interactive localization of point landmarks
is always prone to errors, we apply the inequality constrained optimization
scheme from Sec. 12.4, which guarantees corresponding landmarks to be at
most a given distance apart from each other after registration, in a second
experiment. We use isotropic tolerances for landmarks at vessel branchings
and anisotropic tolerances at vessel segments between branchings as the lo-
calization uncertainties deviate in di↵erent directions at vessel segments. We
start with a description of the clinical data.

14.2 Specification of Clinical Image Data

14.2.1 Preoperative CT Data

A detailed description of CT imaging of the liver is given in Sec. 2.3.1. Here we
specify the imaging parameters of the used clinical CT data. For each patient
a triphasic helical single-source 64-slice multidetector computed tomography
(MDCT) scan of the abdomen (LightSpeed VCT; General Electric Medical
Systems, Milwaukee, WI) was acquired. The MDCT was performed after in-
travenous mechanical injection of 120 ml nonionic iodinated contrast medium
(iodine, 370 mg/ml; Ultravist 370; Schering, Berlin, Germany) at a flow rate of
4 ml/s. Bolus tracking was used for an early arterial phase (upper abdomen)
to optimize contrast filling of the vessels. This resulted in a scan delay of
approximately 18 seconds. Delays of 20 and 60 seconds from the beginning of
the early arterial scan were used for the portal venous (upper abdomen) and
late venous phase (entire abdomen) scans, respectively. The collimation was
set to 64 ⇥ 1.25 mm, with a gantry rotation time of 0.7 seconds. The table
feed was 13.75 mm/rotation for the arterial and portal venous phase and 35.0
mm/rotation for the venous phase. Tube current and voltage were set to 350
mA and 120 kV for the arterial and portal venous phase, and to 280 mA and
120 kV for the venous phase, respectively. Images were reconstructed with a
slice thickness of 1.25 mm.

14.2.2 3D Ultrasound

The intraoperative 3D ultrasound images were acquired directly on the liver in
the open abdomen by the Voluson 730 machine already described in Sec. 2.4.1.
A mechanically swept 3D probe containing a curved array transducer for ab-
dominal applications was used which was wrapped in a sterile drape. The
original image geometry is given in torus coordinates (see Sec. 2.4.1). The
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original data are transferred to the navigation computer via DICOM and
reformatted to 0.5 mm isotropic voxels (see Sec. 2.4.1). B-mode and power
Doppler ultrasound images are acquired synchronously. Thus both ultrasound
modalities are naturally registered.

14.3 Non-Rigid Registration with Equality Landmark
Constraints

The non-rigid registration approach with landmark interpolation conditions
was formulated in Sec. 12.3. We use the distance measure normalized gradient
(NGF) field distance measure (see Sec. 8.3.5) and the elastic regularizer (see
Sec. 6.3).

The discretization of the resulting equality constrained optimization prob-
lem is given in Sec. 12.5.1. The discretized optimization problem is solved by
the algorithm described in Sec. 12.6.1, which eliminates the constraints and
solves the resulting unconstrained optimization problem by a standard Gauß-
Newton scheme. Finally, to avoid local minima and to speed up convergence
we also use a multilevel approach via the parameter of a smoothing spline as
described in Sec. 6.5.

The approach and the evaluation on clinical data is based on our publication
Lange et al. [121].

14.3.1 Landmark Identification at Vessel Branchings

Only a small number of corresponding point landmarks (usually five to six,
rarely up to ten) can be identified interactively in the available time window
in the OR. Thus, e�cient and intuitive interaction mechanisms are required to
support landmark placement. For contrast-enhanced CT and power Doppler
ultrasound images of the liver corresponding vessel branchings are a natu-
ral choice for point landmarks. In the preoperative CT data all branching
points are computed in advance, based on the center lines of the segmented
vessels. In order to interactively select a point landmark in CT data, the
vessels are visualized as surfaces. When the user clicks on the surface near
a vessel branching, then the nearest predetermined branching point is chosen
automatically.

Unfortunately, reliable vessel segmentation from US images has not yet
been achieved in a robust and accurate fashion. Therefore, landmarks in
the intraoperative US data have to be identified interactively in the intensity
data. One way to improve the definition of the intraoperative landmarks could
be to click only approximately near the corresponding vessel branching and
then automatically fit a vessel branching model to the intensity data at this
location [261]. This, however, is subject to future research.
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Figure 14.1 Selected corresponding landmarks at vessel branchings from CT
data (left Fig.) and ultrasound data (right Fig.).

14.3.2 Results

A qualitative and quantitative validation on clinical liver data sets (Sec. 14.2)
of three di↵erent patients has been performed. Only the portal venous phase
of the preoperative CTs was used for registration. The portal veins are of high
contrast in all cases, but the hepatic veins were hardly visible in case one and
three and significantly lower in case two compared to the portal veins. Only
the power Doppler ultrasound images were considered, the B-mode images
were ignored. Eight landmarks at branching points of the portal veins were
chosen interactively (Fig. 14.1) lasting five to ten minutes.

In all three cases a rigid registration was performed first to get a better
initialization for the non-rigid registration and to show improvements by non-
rigid compared to rigid registration. Next, a thin-plate spline (TPS) registra-
tion (see Sec. 11.8) was performed based on the eight landmark pairs. Finally,
the combined approach was applied starting with the TPS displacement vector
field as a specific solution of the landmark constraints (see Sec. 12.6.1).

The combined approach started with a grid spacing for the displacement
vector field of 6 mm and ended with a finest spacing of 3 mm and 323 grid
points. The resulting displacement field was interpolated to the original res-
olution of 0.5 mm. The run time of the optimization was approximately 10
min on an Intel Core Duo processor, with 1.83 GHz and 2 GB RAM using
MATLAB 7.6. The algorithm has not yet been optimized for runtime.

The maximal landmark di↵erence after combined registration is below
0.3 mm (reached for case one). These di↵erences are due to the linear in-
terpolation of the displacements at the landmarks from the neighboring grid
points (see Sec. 12.5) with a grid spacing of 3 mm. At the same time the
distance measure reduces by 73% compared to TPS registration.

In Fig. 14.3 three di↵erently oriented image planes illustrate the perfor-
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Table 14.1 Mean (std) distance between corresponding points on vessel center
lines (in mm).

Rigid TPS Combined

Case 1 4.4(±1.8) 2.5(±2.0) 2.6(±2.0)
Case 2 4.6(±1.9) 4.6(±3.4) 3.6(±3.4)
Case 3 4.7(±2.3) 5.1(±4.2) 4.9(±4.3)

Table 14.2 Ratio of corresponding points on vessel center lines above 3 mm
distance (in %).

rigid TPS Combined

Case 1 82% 27% 30%
Case 2 76% 61% 41%
Case 3 75% 59% 54%

mance of the combined landmark-intensity registration approach in compar-
ison to a rigid transformation and a TPS warping based on the landmarks
alone. It is clearly visible that a rigid transformation is not satisfactory thus
justifying a non-rigid method. The combined method improves the TPS warp-
ing.

For the quantitative validation we used dense corresponding points on center
lines of portal and hepatic veins (see Sec. 13.4 for detailed information). The
distribution of the distances on the center lines are visualized in Fig. 14.2.
The statistics of the distances is summarized in Tab. 14.1 and 14.2.

The mean distances between corresponding points after rigid registration
are in the range of 4.4 to 4.7 mm and 75% to 82% of the points are above
3 mm distance. This means there are significant deformations left after rigid
registration. For case one, TPS as well as the combined method reduce the
distances considerably, but there is virtually no di↵erence between TPS and
combined method. In this case, however, the TPS registration already leads
to good results. There is only little space left for improvements in this case.
For case two, TPS only slightly improves upon the rigid registration, yet the
combined method improves significantly. For case two, TPS and combined
method do not improve the rigid registration if looking at the mean distance,
but the ratio of distances above 3 mm reduces, for the combined method more
as for the TPS. Looking at the visualizations of the distances some vessel
parts are very close (below 1 mm) after combined registration although the
registration is based on the intensity images and not on the center lines. In
case two, there are two parts of the hepatic veins, whose distance is large after
rigid registration and still increases after TPS registration. It seems that the
combined approach cannot compensate the large deviations that exist after
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Figure 14.2 Distribution of distances for corresponding points on vessel center
lines. The distances are color-coded onto the registered model center lines.
The thin white lines represent the reference center lines. Each row illustrates
one clinical case. The first column shows the distributions after rigid, the
second column after TPS and the last column after combined registration.

TPS warping or are even induced by it.
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Figure 14.3 Registration results for case one. First row: Position of three
di↵erent slice orientations in relation to liver model from CT data. The second,
third and fourth row illustrate the transformed CT data as isolines in the B-
Mode ultrasound data. Second row: After rigid registration. Third row:
After thin-plate spline registration. Fourth row: After combined nonlinear
landmark-intensity registration.
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14.3.3 Discussion and Conclusion

The main di�culties in our specific application are the quality of the US
data with low contrast, high noise and artifacts, like shadowing in B-Mode
ultrasound or motion artifacts in power Doppler ultrasound. In addition, the
contrast of the hepatic veins is low in the portal venous phase of the CTs, and
the contrast of the portal veins is low in the hepatic venous phase.

We have applied a combined landmark-intensity registration approach to
clinical image pairs of portal venous phase CT and 3D power Doppler ultra-
sound data. The advantage of the method is that a priori knowledge – provided
in terms of few landmarks – guides the registration process, and reduces the
number of local minima. In contrast to incorporating the landmarks via a
penalizer term no additional parameter has to be tuned in this constrained
optimization formulation. The landmarks are guaranteed to match each other
for each landmark pair. In case of a penalizer, however, the sum of the land-
mark distances is minimized through a trade-o↵ with the distance measure
and the regularizer. Thus, the distances of single landmark pairs might still
be high after registration.

Although the qualitative and quantitative validation results are promising,
some challenges remain. The first challenge is the low – or often non-existing
– contrast of hepatic veins in the portal venous phase of the CTs. A pos-
sible solution is to generate high contrast intensity models containing portal
and hepatic veins (see Sec. 9.2 and [118]). In a preliminary experiment we
used such intensity models for cases one and three. In both cases we got an
improved mean distance (case 1: 2.5(±1.5) mm, case 3: 4.4(±3.9) mm).

A second challenge are inaccuracies in the localization of the landmarks.
In the presented approach no landmark errors are assumed. This leads to
distorted vessels in some regions, because the endpoints of the vessels are
forced to the inaccurate landmark positions. Incorporating landmarks as soft
constraints is not an adequate solution to this problem, because the distance
of corresponding landmarks is minimized only globally and not locally, as
mentioned above. A better solution is the introduction of local tolerances as
will be explained in the next section.

The third challenge has been revealed in section 14.3.2. TPS might provide
a bad starting value in regions far away from landmarks. The combined reg-
istration process might not be able to compensate the initial displacements
in these regions. Other interpolating functions like GEBS (see Sec. 11.9.1 or
[103]) are promising alternatives.

210



14.4. Non-Rigid Registration with Inequality Landmark Constraints

14.4 Non-Rigid Registration with Inequality Landmark
Constraints

As the interactive localization of point landmarks is always prone to errors,
we generalize the combined landmark and intensity approach to an inequality
constrained optimization scheme, which guarantees corresponding landmarks
to be at most a given distance apart from each other after registration. As the
localization uncertainties might deviate in di↵erent directions we introduce a
landmark constrained registration scheme with anisotropic tolerances (error
ellipsoids), which can be used for the registration of vascular structures.

The continuous formulation of the landmark constrained approach with
anisotropic tolerances, its discretization and the optimization algorithm are
described in Sec. 12.4, Sec. 12.5.2 and Sec. 12.6.2. This approach yields a
higher flexibility in defining landmark pairs. For example instead of using
point landmarks at corresponding liver vessel branchings, which are usually
di�cult to identify in 3D, also landmarks between two corresponding branch-
ings (vessel segments) can be used, which are often easier to identify. With
the latter landmarks the localization uncertainty is high along the vessel, but
low perpendicular to it (see Fig. 14.4). Thus in addition to landmarks at
vessel branchings with isotropic localization uncertainties we will integrate
landmarks at segments with anisotropic localization uncertainties into the
nonrigid registration framework. In the following the two types of landmarks
are called branching and segment landmarks.

14.4.1 Determination of Weighting Matrices

The covariance of the anisotropic localization uncertainty can be modeled via
their eigenvalues and eigenvectors. The first eigenvector vj1 2 R3 points in
the direction of the corresponding vessel at the position of the landmark, the
other two eigenvectors vj2, v

j
3 2 R3 are perpendicular to it. As the localization

uncertainty is high in the direction of the vessel and low perpendicular to it
depending on the area of the vessel cross section the eigenvalues are chosen as
�j1 = 5r2j ,�

j
2 = r2j ,�

j
3 = r2j , with rj being a radius estimation of the vessel at

landmark j. The radii are already available due to the preoperative modeling
of the vessels for the surgery planning process. With Dj = diag(�j1,�

j
2,�

j
3)

and Vj = (vj1, v
j
2, v

j
3) the uncertainty matrices are defined as:

⌃j = V T
j DjVj . (14.1)

The weighting matrices are then the inverse of the covariance matrices: Wj =
⌃�1
j . The approach can be seen as a generalization of the isotropic tolerance

method described in [172]. To handle such isotropic tolerances the matrix ⌃ is
chosen as ⌃j = a2jI3, with aj 2 R+ being the radius of an error sphere around
landmark j.
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(a) (b)

Figure 14.4 a) Di↵erent types of landmarks at vessel branchings (isotropic
error spheres) and segments (anisotropic error ellipsoids). b) A detailed view
with two segment and one branching landmark. The eigenvectors v1, v2, v3 of
the anisotropic error ellipsoid of one segment landmark are shown.

It is assumed, that after a rigid pre-registration corresponding vessel seg-
ments approximately point in the same direction, such that the two covariance
matrices of corresponding landmarks can be added to one joint covariance ma-
trix for each landmark pair. The inverse of the joint covariance matrix is the
weighting matrix. An elaborated discussion of this issue can be found in
Sec. 11.5.1.

14.4.2 Results

We show the e↵ectiveness of the proposed registration scheme on an illustrative
example, which is a simplified geometry of portal veins in a real liver CT con-
taining only the biggest vessels. We determine a realistic deformation based
on a combined intensity and landmark registration with equality constraints
of clinical CT and 3D ultrasound data. The landmarks have been defined on
vessel branchings. This deformation is applied to the example image to get an
artificial template. The first row of Fig. 14.5 shows the vessels extracted from
the template and reference image as well as the landmarks and vessel center
lines. The points on the center lines are displaced by 5±2 mm. Six landmark
pairs have been chosen interactively on the vessel segments. Landmark 3 has
been moved by 10 mm in the direction of the vessel.

We chose the curvature regularizer Scurv (see Sec. 6.3) with yref being the
initial displacement field and the sum of squared di↵erences DSSD distance
measure (see Sec. 6.2) because in our example the vessels appear bright com-
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pared to the background in template and reference image. We used a multi-
level and multi-resolution strategy for the images T,R and the displacement
field y. We started on a grid with 7.5 mm spacing and refined twice to a final
spacing of 1.9 mm. The original resolution of the images was 1⇥ 1⇥ 1 mm3.

As can be seen in the second and third row of Fig. 14.5 the isotropic tolerance
at landmark three is too restrictive to compensate the displacement of the
landmark, but the anisotropic tolerance is suitable for compensation while
keeping the restrictive tolerance perpendicular to the vessel.

14.4.3 Discussion and Conclusion

The contribution of this work is a modeling of a combined landmark and in-
tensity registration approach as an inequality constrained optimization prob-
lem guaranteeing that each reference landmark lies within an error ellipsoid
around the corresponding template landmark at the end of the registration
process. In contrast to Wörz et al. [263] the anisotropically weighted land-
mark di↵erences are not added as a penalizer to the registration functional,
but as hard inequality constraints. In addition a direct optimization scheme
has been implemented instead of an alternating optimization scheme.

Vessel segment landmarks with anisotropic localization uncertainties are a
promising alternative and/or extension to vessel branching landmarks with
isotropic localization uncertainties. They o↵er an additional flexibility for the
interactive definition of landmarks on vessel trees allowing for an intuitive and
e�cient registration workflow. The first results on an illustrative but realistic
example are promising to an extent that the next step will be a thorough and
quantitative investigation on a significant number of clinical data sets from
patients, which underwent computer assisted liver surgery.

213



14. Transfer of Preoperative Models to Intraoperative 3D
Ultrasound Data

Figure 14.5 In the first column reference (gray beige) and template (red)
vessels are shown. The second row shows the error ellipsoids around tem-
plate landmarks, the position of reference landmarks and the vessel center
lines. In the first row the original deformed vessels and landmark positions
are presented. Landmark 3 is displaced in the direction of the vessel. In the
second row we present registration results using isotropic tolerances around
the landmarks and in the third row results using anisotropic tolerances.
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14.5 Non-Rigid Registration with Shape Distance Measure

In the Sections 14.3 and 14.4 we incorporated a priori knowledge about the
sought registration transformation by constraining the transformation at some
landmark pairs on vessel segments or branchings. Now we apply the shape
distance measure based on a global filter kernel, which we defined in Sec. 9.4, to
incorporate a priori knowledge about the image content. The liver vessel center
lines and their radii extracted during the planning process from preoperative
CT data (see Sec. 2.3.2) represent a priori knowlegde about the image content,
which we also expect in the intraoperative 3D ultrasound data. Based on
this information a global filter kernel (see Sec. 9.4.1) is generated using local
Laplacian vessel filter kernels KL defined in Eq. 9.16. The distance measure
DCONV defined in Eq. 9.13 is the response of this global filter applied to the
intraoperative ultrasound data. The better the transformed ultrasound data
fit the structures modeled into the global filter kernel the higher the filter
response and the lower the distance measure.

In the following we summarize first results, which were published in [118,
119].

14.5.1 Results

In order to qualitatively validate the proposed distance measure DCONV we use
it in a multilevel B-spline scheme [199, 191] (without e↵ective multi-resolution
strategy) to register artificially deformed data. Vessel center lines are ex-
tracted with radii from real intraoperative 3D power Doppler ultrasound data.
These center lines are deformed by a realistic B-spline deformation generated
by a feature-based registration approach [115, 114] and thereby the center
line points are shifted by 4.5(±2.9) mm on average and maximally 9.6 mm
(see Fig. 14.6 a). The global kernel is determined on the deformed center
lines and rigidly (Fig. 14.6 b) resp. nonrigidly (Fig. 14.6 c) registered. The
deformation is substantially reduced and the original state is recovered well
from a visual point of view. We quantify the resulting deviations from the
original and the registered vessels by computing the distance of corresponding
center line points. After rigid registration a deviation of 3.3 (+/-0.2) mm on
average and a maximum of 7.7 mm is left. After non-rigid registration the
deviation is reduced to 1.0 (+/- 0.4) mm on average and a maximum of 2.3
mm. It cannot be expected that the original state can be perfectly reproduced
by the registration algorithm, since segmentation, skeletonization and radius
computation lead to certain inaccuracies.
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Figure 14.6 Power Doppler ultrasound data of liver vessels with a) artificially
deformed, b) rigidly and c) non-rigidly registered vessels.

14.5.2 Discussion and Conclusion

The shape distance measure DCONV based on a global vessel filter kernel has
been sucessfully applied to the non-rigid registration of a realistic vessel tree
model to a clinical 3D power Doppler ultrasound data set of the liver. But
the result is very preliminary. Instead of using the parametric B-spline ap-
proach we will integrate this measure and the local correlation based measure
described in Sec. 9.3 into the non-parametric image registration framework we
introduced in Sec. 6.4.

For a detailed evaluation the properties of the distance measure will first be
investigated directly by the protocols of Skerl et al. [218, 219] for simulated
rigid and non-rigid transformations, which we discussed in Sec. 13.2.2 and
Sec. 13.2.3. The simulation of rigid transformations is explained and discussed
in Sec. 13.3.

Then the whole registration process including distance measure, regularizer
and optimization algorithm will be evaluated on simulated rigid and non-rigid
transformations (Sec. 13.1.2). The advantage of the registration of models
and image data is that also changes of the model geometry and topology can
easily be simulated by changing radii or by removing vessel branches. The
sensitiviy of the distance measure to such changes occuring in real data can
then be investigated.

In a final step the distance measure and registration process have to be
evaluated on clinical image data pairs. Therefore we will use the reference
standard based on dense corresponding vessel center line points, which was
defined in Sec. 13.4 and proved its value already in Sec. 14.3, Sec. 14.4 and
Chap. 15.

In conclusion we showed that the distance measure works in principle and
we have developed all tools for a thorough investigation and evaluation.
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Chapter 15

Quantitative Postoperative Control

15.1 Introduction

The validation of new computer-assisted surgical procedures in oncological
liver surgery like preoperative planning (Chapter 2.3) and intraoperative nav-
igation (Chapter 2.4) is challenging. The main question is, how accurate a
resection plan has been implemented in the operating room. Besides complete
tumor removal it is very important to resect exactly the planned parts of the
liver vessels to ensure blood supply and drainage of the remaining liver tissue.
The comparison of planned (virtual) and resected (real) tissue volumes [129]
is a popular, but only coarse and unspecific validation possibility, because on
the one hand the determination of the resected volume is imprecise due to
blood loss and on the other hand equal volumes do not imply that virtual
and real parts of the liver correspond. In an extreme case the volumes might
be exactly equal, but the liver parts do not overlap at all. A more detailed
validation can be obtained by determining the remaining vessel parts based
on 3D models extracted from pre- and postoperative CT data (see Fig. 15.1).

The aim is to visualize and quantify those vessel parts, which have been
resected as planned and those, which should have been preserved, but have
been removed nevertheless [12] (Fig. 15.2). Due to deformations of the liver
between pre- and postoperative CT acquisitions non-rigid registration algo-
rithms are needed. The challenge of this intra-patient registration task is due
to the fact that significant parts of the liver are missing in the postoperative
images. Although some publications exist dealing with liver registration (see
Chapter 14) only few articles have been published on non-rigid registration of
pre- and postoperative image data. In some publications image data of the
brain before and during resp. after resection of tumors [55, 103] is used. In the
case of the liver only the evolution of tumors of the same patient based on two
di↵erent image acquisitions, but not the resection of tumors has been consid-
ered [30]. The algorithm of Charnoz et al. [30] finds corresponding liver vessel
center lines via tree matching, but until now the method has been validated
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(a) (b)

(c) (d)

Figure 15.1 A preoperative (a) and postoperative (b) contrast-enhanced CT
slice of the liver. The portal and hepatic veins appear bright, the tumor on
the left and the resected part appear dark. Around the resected part bright
spots are observable indicating clips. In c) a 3D surface model of the liver
vessels and the tumor extracted from preoperative CT data is shown; d) the
according 3D surface model after tumor resection.
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(a) (b)

Figure 15.2 a) Again the preoperative 3D model is shown, but the parts of
the vessels, which have been resected as planned (green) and unnecessarily
(red) have been determined by a registered postoperative 3D model. In b) a
closer look around the tumor can be seen.

only on one clinical data set. Our approach is based on interactively chosen
corresponding point landmarks using di↵erent interpolation and approxima-
tion schemes based on splines. Besides the natural choice of landmarks at
vessel branchings we introduce a special kind of landmarks adapted to ves-
sel segments. This is a joint work with Stefan Wörz and Karl Rohr and has
partially been published elsewhere [126, 127]. The used landmark registration
methods are explained in detail in Chap. 11.

15.2 Interactive Vessel Registration

The task is to register preoperative with postoperative CT data. This is
a monomodal application and the CT data are of high quality. The issue is,
that the liver and the surrounding tissue are not only deformed, but also parts
of the liver are missing after the resection. This means some image parts of
the preoperative image data are missing in the postoperative data.

The main structures which are identifiable inside the liver are vessels. The
vessels (portal veins and hepatic veins) were segmented semi-automatically
in pre- and postoperative image data. Thereafter their center lines and local
radii have been computed automatically.

As in Sec. 14.4 we iteractively identify point landmark pairs with isotropic
localization errors and segment landmarks along vessels between two branch-
ings. With the latter landmarks the anisotropic localization uncertainty is
high along the vessel, but low perpendicular to it (see Fig. 14.4). The covari-
ance matrices and the resulting weighting matrices Wj for the branching and
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segment landmarks are defined as in Sec. 14.4.1. The interactively defined
landmark pairs with specified isotropic and anisotropic localization uncertain-
ties are used to register non-rigidly the pre- and postoperative 3D models with
interpolating thin-plate splines (iTPS) described in Sec. 11.8.1, interpolating
Gaussian elastic body splines (iGEBS) described in Sec. 11.9.1 and approxi-
mating Gaussian elastic body splines (aGEBS) described in Sec. 11.9.2.

15.3 Results

The di↵erent registration methods were compared on clinical pre- and post-
operative contrast-enhanced CT data sets of 13 di↵erent patients, which have
undergone oncological liver resections. In Fig. 15.3 pre- and postoperative 3D
models of five out of the 13 patients are shown. If possible resected volumes
are marked in red in the postoperative models. In the last column a compari-
son of pre- and postoperative vessels is shown on the preoperative model. The
color scheme is the same as used in the introduction 15.1 and Fig. 15.2.

For validation we used dense point correspondences on the vessel center
lines and a weighted validation metric as described in Section 13.4 and [120].
In the last column of Fig. 15.4 dense point correspondences for five out of
the 13 patients are shown on the preoperative vessel center lines. The used
vessel center line points are marked in red and the corresponding points of the
postoperative vessels are marked in green and connected by yellow lines. The
location of the postoperative (green) points are shown after rigid registration.
It can be seen that significant di↵erences are left after rigid registration. For
the quantitative evaluation we used a weighted Euclidean distance between
corresponding points, where the weighting in the direction of the vessels is set
to zero such that only the distance perpendicular to the vessels is measured.

Five sets of landmarks for each patient were interactively chosen as follows:

1. as many as possible branching landmark pairs (rBj , t
B
j ),

2. a comparable number of segment landmarks on vessel segments between
the branching landmarks (rSj , t

S
j ),

3. a combination of the branching and segment landmarks (rCj , t
C
j ),

4. a reduced number of 12 branching landmark pairs (rB12

j , tB12

j ) and

5. a reduced number of 12 segment landmark pairs (rS12

j , tS12

j ).

In Fig. 15.4 the used branching and segment landmarks on the portal veins
of five out of 13 patients are shown. On average over all 13 patients 32(±16)
branching and 65(±32) segment landmarks were used.
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The iTPS and iGEBS non-rigid registration approaches have been applied
to landmark sets 1 and 4 which only include branching landmarks, but the
aGEBS approximation was applied to all five landmark sets. The resulting
average weighted Euclidean distances for each patient are shown in Fig. 15.5.
We obtained a weighted distance of 4.9 mm after rigid registration averaged
over all patients. iGEBS and aGEBS using branching landmarks decrease the
average distance down to 1.7 and 1.5 mm, resp. aGEBS using segment land-
marks and iTPS using branching landmarks yield comparable results and lead
to 1.4 mm average distance. By using a combination of segment and branch-
ing landmarks the best results of 1.0 mm average distance were achieved. In
Fig. 15.6 for one patient the remaining di↵erences after rigid (4.7 mm on
average), iTPS on branching landmarks (1.5 mm on average) and aGEBS
registration on branching and segment landmarks (1.0 mm on average) are
visualized.

Because interactive determination of landmarks is tedious and time-con-
suming we like to define only a necessary number of landmarks. Therefore
we also performed a validation based on a reduced set of 12 landmarks (see
Fig. 15.5). In this case we obtained 2.5 mm for iGEBS, the same distance
of 2.3 mm for iTPS and aGEBS on branching landmarks and the best result
of 2.0 mm for aGEBS on segment landmarks. A combination of the twelve
branching and the twelve segment landmarks was not investigated, because
doubling such a small number of landmarks would not be a fair comparison.

15.4 Conclusions

Interpolating and approximating landmark-based schemes were presented for
non-rigid registration of pre- and postoperative CTs of the liver. Besides point
landmarks at vessel branchings, where the localization uncertainties were as-
sumed to be zero (exact localization) resp. ,to be isotropic, also landmarks
along tube-like vessel segments with anisotropic localization uncertainties (er-
ror ellipsoids) were introduced. Five di↵erent sets of landmarks were validated
on 13 clinical image data pairs using interpolating TPS, interpolating GEBS,
and approximating GEBS. With both types of landmarks (branchings and
segments) comparable registration accuracies can be obtained and a combina-
tion of both improves the accuracy. For a low number of landmarks segment
landmarks are even superior. Segment landmarks with anisotropic localiza-
tion uncertainties are a promising alternative and/or extension to branching
landmarks. They o↵er an additional flexibility in interactive landmark regis-
tration allowing an intuitive and e�cient registration workflow. Based on the
registration results an automatic algorithm can be developed to identify parts
of the vessel trees, which have been removed during the surgical procedure.
This allows a visual (see Fig. 15.3) and quantitative [12] assessment of liver
resections.
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Figure 15.3 A 3D model from preoperative (first column) and postoperative
(second column) CT data from five out of 13 patients are shown. In the last
column the vessels are marked on the preoperative model according to their
status after resection with the color scheme described in Fig. 15.2.
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Figure 15.4 The chosen branching (first column) and segment (second column)
landmarks on the portal veins of five out of 13 overall patients as well as the
parts of the vessel center lines used for validation are illustrated (last column).
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Figure 15.5 Mean weighted Euclidean distances (in mm) at vessel center lines
of all 13 patients for all (upper row) and a reduced set (lower row) of 12
landmark pairs after registration.

Figure 15.6 Color-coded di↵erences on corresponding vessel center line points
of case seven after rigid (left), non-rigid iTPS on branching landmarks (mid-
dle), and non-rigid aGEBS registration on branching and segment landmarks
(right). Di↵erences of 0 mm are white, between 0 and 3 mm are yellow resp.
orange and of 3 mm and above are red.
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Conclusions

In the Chapters 14 and 15 we have presented solutions for two important
types of non-rigid image registration problems arising in computer assisted
liver surgery:

the transfer of preoperative images and planning models onto intraop-
erative 3D ultrasound data needed for the accurate implementation of a
preoperative planning by means of a navigation system,

the comparison of pre- and postoperative vessel models for the quanti-
tative assessment of computer assisted planning and intraoperative nav-
igation systems.

We have shown that the solutions fulfill the requirements necessary for be-
ing used in a clinical environment in the future. First validation trails are
already under way. On a small sample set of image data from a real clinical
setting intraoperative registration with a clinically relevant accuracy was al-
ready reached. The registration of pre- and postoperarative vessel models was
proved to be very accurate on a significant number of clinical data sets.

These non-rigid registration problems are so demanding that general regis-
tration algorithms are likely to fail. We do not think that even in the future
there will only one excellent algorithm which solves all registration problems
arising from very di↵erent applications. One result of this thesis is that the
modeling of a priori application specific knowledge into a general and flexible
registration framework is a successful strategy. Such a priori knowledge is or
can be made available in di↵erent forms. For example, if explicit anatomical
models with certain shapes like the liver vessels are on hand this knowledge
about the image content can be considered in the registration distance mea-
sure. Explicit application specific information about the registration transfor-
mation is another form of a priori knowledge.

The basic challenge is to model the a priori knowledge mathematically con-
sistent into a non-parametric image registration framework while ensuring
that the registration process stays e�cient which is in particular important
for intraoperative registration.
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We developed a distance measure which evaluates the response of a local
vessel filter at each point on the vessel center lines extracted from preopera-
tive data. The sum of all these filter responses is maximized assuming a high
response in the presence of a vessel in the intraoperative data. This basic idea
can be extended to other shapes like plates or corners by means of according
filter kernels. We discovered that the distance measure can be reformulated
such that the local vessel filter kernels can be integrated preoperatively and
then the resulting global kernel just has to be multiplied with the intraopera-
tive data. This allows an e�cient computation of the distance measure during
the intraoperative registration process. A byproduct of this development is a
mathematical model of realistic vessel intensities, which can be used directly
in a distance measure or for simulations in the evaluation process.

Another starting point for prior knowledge incorporation is to restrict the
admissible transformations by known additional properties, such as anatom-
ically corresponding points. In clinical practice the interactive or semi-auto-
matic localization of anatomical landmarks is always prone to errors. There-
fore we show and develop ways how to deal with these uncertainties and use
a more flexible and general landmark concept, which also contains landmark
types at structures with no point-like shapes. The focus is on landmarks at
tube-shaped vessel segments with anisotropic localization uncertainties. We
systematically show how for di↵erent classes of transformations anisotropic
landmarks can be integrated into pure landmark registration schemes. In par-
ticular we establish a higher flexibility and accuracy of non-rigid algorithms
for the registration of pre- and postoperative images.

We also combine intensity and landmark information by incorporating land-
mark constraints into the non-parametric image registration framework. The
landmarks are integrated as hard constraints ignoring localization uncertain-
ties as well as constraints with anisotropic tolerances for the consideration of
localization uncertainties. This is mathematically modeled as equality resp. in-
equality constrained optimization problems and solved by the according e�-
cient algorithms. The e↵ectiveness of both schemes is shown for the non-rigid
registration of preoperative data to intraoperative 3D ultrasound images of
the liver. From a methodological point of view the combined approach has a
lot of potential for di↵erent clinical applications by o↵ering the possibility to
incorporate additional a priori knowledge provided by a human expert into a
non-rigid registration process.

Fully automatic CT/MRI to 3D US registration as well as fully automatic
pre- to postoperative liver CT registration is still an open problem and only
few papers have been published concerning these issues. In order to progress
towards a better understanding of the associated problems as well as to provide
intermediate clinical solutions, additional manual interaction can be helpful
to provide a priori knowledge, as we have shown in this thesis. This in-
teraction may be considered a drawback, because it is time-consuming and
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user-dependent. However, for the practical integration into the intraoperative
navigation system the interaction will be reduced to a minimum through addi-
tional image processing and intuitive interaction techniques for the landmark
definition.

As all available data sets (CT portal venous, CT late venous, B-Mode ul-
trasound, power Doppler ultrasound) provide complementary information, a
consideration of all sets might further improve the registration process. We
already integrated the portal and late venous phase in the shape distance
measure by using extracted portal resp. hepatic veins from di↵erent phases.
The integration of both ultrasound modes requires the development of multi-
signal distance measures. Additional information can be incorporated intra-
operatively into the registration process by a navigated instrument. With the
tip of the instrument it is possible to acquire points and curves on the liver
surface which can be used as landmarks in addition to vessel branching and
segment landmarks. The extension of the proposed registration schemes to
these plate-like and line-like features is possible.

Clinical validation of non-rigid registration is a challenging and application-
specific problem in itself. Another important contribution of this thesis is the
systematic review of methods for the determination of the resulting registra-
tion accuracy and of simulation techniques for uniformly resp. non-uniformly
distributed rigid transformations for validation purposes. In addition a ref-
erence standard was introduced for computing the registration accuracy on
clinical data containing vessel trees. The reference standard is based on dense
corresponding point sets on the vessel center lines and proved its value for the
validation of our registration methods for computer assisted liver surgery.

Overall we have developed innovative components for medical image regis-
tration and embedded them mathematically and algorithmically into an ex-
isting flexible framework for non-rigid registration.
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[171] N Papenberg, T Lange, J Modersitzki, PM Schlag, and B Fischer. Image
registration for CT and intra-operative ultrasound data of the liver. In
Proc. of SPIE Medical Imaging: Visualization, Image-guided Procedures,
and Modeling, volume 6918, page 691808, 2008.

[172] N Papenberg, J Olesch, T Lange, PM Schlag, and B Fischer. Landmark
constrained non-parametric image registration with isotropic tolerances.
In Bildverarbeitung für die Medizin (BVM), pages 122–126, 2009.

[173] TM Pawlik, CR Scoggins, D Zorzo, and et al. E↵ect of surgical mar-
gin status on survival and site of recurrence after hepatic resection for
colorectal metastases. Ann Surg, 241:715–722, 2005.

[174] X Pennec, P Cachier, and N Ayache. Tracking brain deformations in
time sequences of 3D US images. Pattern Recogn Lett, 24(4-5):801–813,
2003.

[175] GP Penney, JM Blackall, MS Hamady, T Sabharwal, A Adam, and
DJ Hawkes. Registration of freehand 3D ultrasound and magnetic res-
onance liver images. Med Imag Anal, 8(1):81–91, 2004.

[176] M Peterhans, A vom Berg, B Dagon, D Inderbitzin, C Baur, D Candi-
nas, and S Weber. A navigation system for open liver surgery: design,
workflow and first clinical applications. Int J Med Robot Comp, 7:7–16,
2011.

[177] JP Pluim, JB Maintz, and MA Viergever. Image registration by max-
imization of combined mutual information and gradient information.
IEEE T Med Imaging, 19(8):809–814, 2000.

[178] JP Pluim, JB Maintz, and MA Viergever. Mutual-information-based
registration of medical images: a survey. IEEE T Med Imaging,
22(8):986–1004, 2003.

[179] BC Porter, DJ Rubens, JG Strang, J Smith, S Totterman, and
KJ Parker. Three-dimensional registration and fusion of ultrasound
and MRI using major vessels as fiducial markers. IEEE T Med Imaging,
20(4):354–359, 2001.

[180] RW Prager, AH Gee, GM Treece, and L Berman. Sensorless freehand 3D
ultrasound using regression of the echo intensity. Ultrasound in Medicine
and Biology, 29(3):437–446, 2003.

243



Bibliography

[181] RW Prager, RN Rohling, AH Gee, and L Berman. Rapid calibration for
3-D freehand ultrasound. Ultrasound Med Biol, 24(6):855–869, 1998.

[182] B Preim, H Bourquian, D Selle, HO Peitgen, and KJ Oldhafer. Resection
proposals for oncologic liver surgery based on vascular territories. In
Proc. of Computer Assisted Radiology and Surgery (CARS), pages 353–
358. Springer, 2002.

[183] MJ Prentice. Orientation statistics without parametric assumptions. J
Roy Stat Soc B Met, 48(2):214–222, 1986.

[184] A Reilhac, C Lartizien, N Costes, S Sans ans C Comtat, R Gunn, and
A Evans. PET-SORTEO: a Monte Carlo-based simulator with high
count rate capabilities. IEEE T Nucl Sci, 51(11):46–52, 2004.

[185] I Reinertsen, M Descoteaux, K Siddiqi, and DL Collins. Validation of
vessel-based registration for correction of brain shift. Med Imag Anal,
11(4):374–388, 2007.

[186] I Reinertsen, F Lindseth, G Unsg̊ard, and DL Collins. Clinical validation
of vessel-based registration for correction of brain-shift. Med Imag Anal,
11(6):673–684, 2007.

[187] DE Robinson, LS Wilson, and G Kosso↵. Shadowing and enhancement
in ultrasonic echograms by reflection and refraction. J Clin Ultrasound,
9:181–188, 1981.

[188] A Roche, G Malandain, and N Ayache. Unifying maximum likeli-
hood approaches in medical image registration. Int J Imag Syst Tech,
11(1):71–80, 2000.

[189] A Roche, G Malandain, X Pennec, and N Ayache. The correlation
ratio as a new similarity measure for multimodal image registration. In
Proc. of Medical Image Computing and Computer Assisted Intervention
(MICCAI), volume 1496, pages 1115–1124, 1998.

[190] A Roche, X Pennec, G Malandain, and N Ayache. Rigid registration of 3-
D ultrasound with MR images: A new approach combining intensity and
gradient information. IEEE T Med Imaging, 20(10):1038–1049, 2001.

[191] T Rohlfing. Multimodale Datenfusion für die bildgesteuerte Neu-
rochirurgie und Strahlentherapie. PhD thesis, Technische Universität
Berlin, Fachbereich Informatik, 2000.

[192] T Rohlfing, CR Maurer, DA Bluemke, and MA Jacobs. Volume-
preserving nonrigid registration of MR breast images using free-form
deformation with an incompressibility constraint. IEEE T Med Imag-
ing, 22(6):730–741, 2003.

244



Bibliography

[193] RJ Rohling. 3D Freehand Ultrasound: Reconstruction and Spatial Com-
pounding. PhD thesis, University of Cambridge, Department of Engi-
neering, 1998.

[194] K Rohr, M Fornefett, and H Stiehl. Spline-based elastic image registra-
tion: integration of landmark errors and orientation attributes. Comput
Vis Image Und, 90:153–168, 2003.

[195] K Rohr, H Stiehl, R Sprengel, T Buzug, J Weese, and M Kuhn.
Landmark-based elastic registration using approximating thin-plate
splines. IEEE T Med Imaging, 20(6):526–534, 2001.

[196] Karl Rohr. Landmark-Based Image Analysis. Springer, 2001.

[197] DJ Rubens, S Bhatt, S Nedelka, and J Cullinan. Doppler artifacts and
pitfalls. Ultrasound Clinics, 1:79–109, 2006.

[198] D Rueckert, P Aljabar, R Heckemann, J Hajnal, and A Hammers. Dif-
feomorphic registration using b-splines. In Proc. of Medical Image Com-
puting and Computer-Assisted Intervention (MICCAI), volume 4191 of
LNCS, pages 702–709. Springer-Verlag, 2006.

[199] D Rueckert, LI Sonoda, C Hayes, DL Hill, MO Leach, and DJ Hawkes.
Nonrigid registration using free-form deformations: application to breast
MR images. IEEE T Med Imaging, 18(8):712–721, 1999.

[200] D Sarrut, V Boldea, S Miguet, and C Ginestet. Simulation of four-
dimensional CT images from deformable registration between inhale and
exhale breath-hold CT scans. Med Phys, 33(3):605–617, 2006.

[201] M Sato, I Bitter, M Bende, A Kaufmann, and M Nakajima. TEASAR:
Tree-structure extraction algorithm for accurate and robust skeletons.
In Proc. of the 8th Pacific Graphics Conference on Computer Graphics
and Application (PACIFIC GRAPHICS-00), pages 281–289, 2000.

[202] M Schaap, CT Metz, T van Walsum, AG van der Giessen, AC Weustink,
NR Mollet, and et al. Standardized evaluation methodology and refer-
ence database for evaluating coronary artery centerline extraction algo-
rithms. Med Imag Anal, 13(5):701–714, 2009.

[203] A Schenk, G Prause, and HO Peitgen. E�cient semiautomatic seg-
mentation of 3D objects. In Proc. of Medical Image Computing and
Computer-Assisted Intervention (MICCAI), volume 1935 of LNCS,
pages 186–195. Springer-Verlag, 2000.

[204] PM Schlag, T Benhidjeb, and C Stroszczinski. Resection and local ther-
apy for liver metastases. Best Pract Res Clin Gastroenterol, 16(2):299–
317, 2002.

245



Bibliography

[205] PM Schlag and U Stein, editors. Regional Cancer Therapy. Humana
Press, 2007.

[206] JA Schnabel, C Tanner, AD Castellano-Smith, A Degenhard, MO Lea-
ch, DR Hose, DL Hill, and DJ Hawkes. Validation of nonrigid image
registration using finite-element methods: application to breast MR im-
ages. IEEE T Med Imaging, 22(2):238–247, 2003.

[207] IJ Schoenberg. Contributions to the problem of approximation of
equidistant data by analytic functions. Quart Appl Math, 4:45–99, 1946.

[208] PH Schönemann. A solution of the orthogonal Procrustes problem with
applications to orthogonal and oblique rotation. PhD thesis, University
of Illinois, 1964.

[209] PH Schönemann. A generalized solution of the orthogonal procrustes
problem. Psychometrika, 31(1):1–10, 1966.

[210] PH Schönemann and RM Carroll. Fitting one matrix to another un-
der choice of a central dilation and a rigid motion. Psychometrika,
35(2):245–255, 1970.

[211] H Schumacher, B Fischer, and A Franz. Weighted non-rigid image reg-
istration. Technical Report, Institute of Mathematics, University of
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