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-Pooh! Buck Mulligan said. We have
grown out of Wilde and paradoxes. It’s
quite simple. He proves by algebra that
Hamlet’s grandson is Shakespeare’s
grandfather and that he himself is the
ghost of his own father.

«ULYSSES», JAMES JOYCE

Abstract

Today, researchers and practitioners in diverse fields such as cancer classification, genome
analysis, or neuroscience are equipped with highly sophisticated data acquisition devices that
produce hard to analyse high-dimensional data. Due to practical or financial issues the number
of samples acquired by such systems remains comparatively low — seldom more than a few
hundred. Thus, dedicated methods for analysing high-dimensional small sample size data are
required. We analyse when and why standard machine learning methods such as the support
vector machine may fail to produce proper results on these datasets and motivate why reducing
the number of input features to a minimum is absolutely necessary. Therefore, we propose
the support feature machine (sFm) as an effective and efficient classifier with inherent feature
selection capabilities. The SEM relies on approximation of the zero-norm minimising weight
vector of a separating hyperplane by minimising the weight vector’s one-norm. A lower number
of features is obtained compared to support vector-based feature selection which can be shown
both theoretically and empirically. First, we evaluate the SeM’s capability to deal with high-
dimensional small sample size data and compare it to other methods using artificial data and
a genetic benchmark dataset. Then, we show that, with some extensions, the sFm is able to
decode brain states in a motor task and even emotional brain states from human functional
magnetic resonance imaging (fMr1) data across multiple participants. Further, with the sFm
it was possible to quantify the total number of voxels that are informative for discriminating
brain states. We found that affective states are represented in whole brain regions — in contrast
to classical neurological findings that propose local emotional regions. Additionally, affective
states spread over time, i.e. the redundancy of emotional information increases the longer
we express an emotion. In summary, we qualify the seM as a universal method for feature

selection — especially promising for advanced analysis of fMR1 data.
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- Ach was, sagte Buck Mulligan. Oscar
Wilde und die Paradoxa haben wir hinter
uns. Die Sache ist ganz einfach. Er weist
per Algebra nach, dass Hamlets Enkel
Shakespeares Grofsvater ist und er selber

der Geist seines eigenen Vaters.

«ULYSSES», JAMES JOYCE

Zusammenfassung

In der Krebsforschung, Genomanalyse oder in den Neurowissenschaften stehen Wissenschaft-
lern und Anwendern komplexe Messgerite zur Datenaufnahme zur Verfiigung — die Daten sind
stets hochdimensional und erfordern eine aufwendige Datenverarbeitung. Organisatorische,
technische und finanzielle Rahmenbedingungen begrenzen die Anzahl der gemessenen Proben
auf einige wenige und erfordern spezielle Methoden, um derartige hochdimensionale Daten
von geringem Stichprobenumfang zu analysieren. Wir zeigen, wann und warum maschinelle
Lernverfahren, wie die Support Vector Machine, nicht in der Lage sind, valide Vorhersagen
auf Basis derartiger Daten zu machen [KLEMENT et al., 2008]. Folglich sollte die Anzahl der
Merkmale eines Datensatzes stets auf ein Minimum reduziert werden. Dazu haben wir die
Support Feature Machine (seM) entwickelt, eine effektive und effiziente Methode zur Merk-
malsselektion. Die seM basiert auf der Approximation der Null-Norm des Normalenvektors
der trennenden Hyperebene durch Minimierung der Eins-Norm. Die Uberlegenheit dieses Ver-
fahrens gegeniiber Support Vector Verfahren lasst sich sowohl theoretisch wie auch empirisch
zeigen [KLEMENT and MARTINETZ, 2010b, KLEMENT and MARTINETZ, 20103, KLEMENT and
MARTINETZ, 2011]. Mit wenigen Erweiterungen ist die seM in der Lage, Bewegungen und sogar
emotionale Zustdnde probandeniibergreifend allein auf der Basis von funktioneller Magnetre-
sonanztomografie (fMRT) vorherzusagen [KLEMENT et al., 2013]. Weiterhin ist es mit der sSem
moglich, die Gesamtzahl von Voxeln zu bestimmen, die Information zur Unterscheidung von
Hirnzustdnden tragen. Damit lasst sich zeigen, dass emotionale Zustdnde in Mustern kodiert
sind, die iber das gesamte Gehirn verteilt sind — entgegen der klassischen Sicht von lokalen
Emotionsregionen. Auflerdem ist die Redundanz emotionaler Information zeitabhingig: Je
langer wir uns in einem emotionalen Zustand befinden, desto redundanter wird die Information
im Gehirn kodiert. Mit der sem haben wir eine universelle Methode zur Merkmalsselektion

entwickelt, die insbesondere zur Analyse von fMRT Daten geeignet erscheint.
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I 'am a man of constant sorrow

Ive seen trouble all my day.

I bid farewell to old Kentucky

The place where I was born and raised.

For six long years I've been in trouble
No pleasures here on earth I found
For in this world I'm bound to ramble

I have no friends to help me now.

FROM THE MOVIE
«O BROTHER, WHERE ART THOU?»

DIRECTED BY JOEL AND ETHAN COEN
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Tell me, O Muse, of that ingenious hero
who travelled far and wide after he had
sacked the famous town of Troy. Many
cities did he visit, and many were the
nations with whose manners and customs
he was acquainted; moreover he suffered
much by sea while trying to save his own

life and bring his men safely home; ...

«ODYSSEY », HOMER

TRANSLATED BY SAMUEL BUTLER

1 Introduction

How do we find the minimal set of features that best describes a certain behaviour when
there are countless distracting irrelevant features? This is one of the main questions arising
in artificial intelligence, machine learning, neural networks, support vector machines, and
statistics. Such learning from examples with many degrees of freedom but few examples is a
challenging, yet the most frequent scenario in real-world problems. Today, massively parallel
data acquisition systems are standard tools in biological and medical research. They are common
in diverse tasks such as tissue classification based on microarray gene data [GOLUB et al.,
1999, LOoCKHART and WINZELER, 2000], identification of disease-specific genome mutations
[SAMANI et al., 2007, MCPHERSON et al., 2007, RAELSON et al., 2007], or information based
neuroimaging [HAYNES, 2011]. All of them have in common, that practical or financial issues
restrict the number of samples to very few.

Some aspects of such high-dimensional small sample size scenarios are obvious. First, they can
neither be analysed manually nor be visualised in a well-arranged way. Second, the low number
of samples can certainly not capture the whole variability of the data. And third, practical issues
of automatic computer-based methods — enormous runtime and memory requirements — set
limits. Besides, other less obvious aspects make such scenarios hard to handle. The geometry
of high-dimensional small sample size data is unintuitive and may cause machine learning
methods to produce strange artefacts or to completely fail.

Due to their excellent generalisation capabilities, maximum margin methods such as the
support vector machine (svM) [VAPNIK, 1999] have shown to be a good choice for many clas-
sification problems in biological and clinical applications. However, these methods may fail
especially in high-dimensional small sample size scenarios. Massively parallel data acquisition

systems — such as microarrays or MR tomographs — provide many more signals than necessary



1 Introduction

to solve a particular task, e.g. deciding whether a specific sample is pathological. Moreover,
in biological and clinical applications the primary goal is often not to achieve high prediction
accuracy but to identify informative features. Thus, feature selection is not only needed to im-
prove runtime and to achieve proper prediction results, but also to allow meaningful inferences
about biologically significant features.

The contribution of this thesis is three-fold. First, we provide novel insight in high-dimen-
sional small sample size data. We show when and prove why the support vector machine may
fail to provide proper results. Additionally, we introduce theoretical bounds to measure how
likely a dataset may be classified correctly using only few features.

Second, we introduce the support feature machine (sem) as a novel method for feature selection
that addresses the above issues: It aims to find the smallest subspace (the least number of features)
in a dataset such that within this subspace two classes are linearly separable without error.
Thus, results on high-dimensional data become interpretable. And, due to its mathematical
formulation, it reduces the influence of high-dimensional artefacts to a minimum. Finally,
the engineering task, i.e. the implementation of an seM is simple and straight-forward — it
only requires linear programming solvers, which are available in a variety of flavours, both
commercially and free. Results on artificial data as well as real-world datasets demonstrate that
this method is able to identify relevant features very effectively and is in many cases superior to
svM-based feature selection approaches, particularly in high-dimensional small sample size
scenarios.

Third, the seM may contribute to some fundamental questions in cognitive neuroscience and
neuroimaging. Based on fmRI data it allows to distinguish human brain states, and, further, to
quantify the amount and distribution of discriminative information. Our approach supports a
recent hypothesis that claims affective information to be distributed in whole brain regions — in
contrast to the classical hypothesis of local emotional regions. Even a time-dependent diffusion
effect can be observed. Thus, we come closer to understand how affective information is
processed in the human brain, however, a universal mindreading device is far from being
teasible.

In total, this thesis addresses theoretical issues of high-dimensional data, it introduces and
evaluates a novel feature selection method, and it qualifies this method to analyse human brain

states.

Thesis Organisation The thesis is organised in five major parts as follows. First, the theoret-
ical basics, frameworks and algorithms are introduced — statistical learning theory, maximum
margin methods, feature selection, and statistical geometry. The unintuitive behaviour of high-

dimensional small sample size data is analysed in depth to provide insight in why machine



learning methods may fail and which artefacts they may produce. The second chapter introduces
the support feature machine as a novel method for feature selection. It covers the theoretical
and technical details on how to engineer a support feature machine in an efficient way. The third
chapter consists of numerous experiments to verify and compare the performance of the support
feature machine. With artificial data and real-world microarray datasets we demonstrate its
superiority and practical advantages with respect to support vector-based approaches. After the
exclusively machine learning-oriented chapters, we introduce an image processing method for
illumination correction based on Gaussian pyramids that is used as a supplementary method
in the analysis of volumetric fmMRI data. Finally, the fifth chapter describes how the skm may
contribute in understanding human brain activity — especially affective brain states. The thesis
concludes with a critical discussion of the results and the impact of the sem in machine learning

and neuroimaging.






The 9000 series is the most reliable
computer ever made. No 9ooo computer
has ever made a mistake or distorted
information. We are all, by any practical
definition of the words, foolproof and

incapable of error.

FROM THE MOVIE
«2001: A SPACE ODYSSEY»

DIRECTED BY STANLEY KUBRICK

2 Machine Learning and High-dimensional
Spaces

A strong mathematical theory is regarded as the best foundation for making any practical
apparatus, machinery, instrument, system or technique as foolproof and incapable of error
as possible. Because of this, machine learning as a research field has become so popular
and successful in recent years. Machine learning provides a variety of tools for classification,
regression, density estimation, feature selection, and model estimation, most of which are
based on statistical learning theory and structural risk minimisation. The probably most
prominent and most widely used method in machine learning is the support vector machine
(svm). Although it has been shown theoretically and empirically that the svm is well suited for
classification in many applications, there are also many practical scenarios where it may fail.
Especially in high-dimensional small sample size scenarios, which are common in medical and
biological applications, it is affected by the enormous amount of irrelevant noise features that
are included in the data. Therefore, feature selection methods have been designed to identify
relevant and irrelevant features. These feature selection methods come in a variety of flavours
mostly aiming to optimise the prediction capability.

This chapter is organised as follows. First, we introduce the mathematical notations that will
be used throughout this thesis and briefly introduce the basics of statistical learning theory,
structural risk minimisation and support vector learning. For assessing the accuracy of a
learning algorithm, we mention standard validation methods and accuracy measures. In the
second part, we give an overview of the unintuitive aspects of high-dimensional small sample
size scenarios, their geometry and why support vector machines in connection with cross-

validation may fail to produces adequate results. Additionally, we give estimates for a random



2 Machine Learning and High-dimensional Spaces

dataset being linearly separable in the original or a subspace. In certain circumstances, although
the data contains no information, we very likely find a low-dimensional subspace in which the

data is linearly separable.

2.1 Notations

Typesetting mathematical notations is a science in itself, and there is no universal consensus on
the optimal choice — except for not mixing notations. In this work, we use lowercase boldface
letters (e.g. x, y) for vectors and uppercase boldface letters for matrices (e.g. A). Sets are typeset
in uppercase calligraphic letters (e.g. D).

We make use of the common notations used in classification and feature selection frameworks,
i.e.a dataset D = {x;, y; }_, consists of feature vectors, samples, patterns or data points x; € R?
and corresponding class labels y; € {1, +1}. The dimensionality of a vector is denoted by d,
while # refers to the cardinality of the set, i.e. the number of data points. For simplicity, we
define z; = y;x;and Z = (zy, ..., z,). The vectors 0 and 1 are vectors with all their entries being
zero or one, respectively. For reasons of readability, we omit the length of these vectors where
possible. The identity matrix 1 is a square matrix containing ones on the main diagonal and
zeros elsewhere, and the zero matrix 0,, 4 has n rows and d columns all set to zero.

A classifier C defines a mapping from the input space to the space of labels. An inducer or
induction algorithm I builds a classifier C from a dataset D. A new, unlabelled sample x is
classified by

I(D,x) == (Z(D))(x) = C(x) = y.

The Kronecker delta is used to compare whether two variables i and j are equal or not, i.e.

o 1 ifi=j
dij = 0(i, ) = e
0 ifi#j

Exceptions to the above rules are used, if a specific notation is more convenient or due to

historical reasons.

2.2 Basics in Statistical Learning Theory

Machine learning, a major branch in artificial intelligence, deals with methods to construct
machines with the ability to learn from examples. The statistical learning theory — mainly
promoted by VAPNIK [VAPNIK, 1999] — is a general framework that describes the requirements

of successful learning, expected learning performances and appropriate learning strategies.



2.2 Basics in Statistical Learning Theory

\

Generator Supervisor

\

Learning machine (——————

Figure 2.1: VAPNIK’s model of learning from examples. Generator and supervisor supply
the learning machine with the training patterns x and the desired answer y. The
learning machine minimises the difference between the supervisor’s answer y
and the learning machine’s answer y’.

VAPNIKs function estimation model consists of three components — the generator, the supervisor
and the learning machine itself (see Figure 2.1). The generator samples vectors x € X ¢ R drawn
from an unknown but fixed probability distribution function P(x). The supervisor returns for
each input value x an output value y € ) according to the unknown conditional distribution
function P(y|x). The learning machine implements a set of functions f(x,a) € F with
parameters & € A. The joint density P(x, y) is expressed in terms of the marginal density P(x)
and the conditional density P(y|x) by P(x, y) = P(y|x)-P(x). The ideal estimator f* € F

minimises the expected error, i.e. the risk functional

R(@) = [ Ly f(x,)) dP(x.)

if it fulfils

(%)= f(x,a”) with a" = argrf\linR((x).

Here, the loss function L(y, f(x, «)) describes the difference between the supervisor’s and the
learning machine’s answer. The function space F is arbitrary, however, it directly controls
the generalisation capabilities of the machine and choosing an appropriate function space is
a crucial step in machine learning. Depending on the loss function, VAPNIK discriminates
three machine learning tasks — classification, regression estimation and density estimation. In
classification, the task is to discriminate a finite set of classes. The estimated functions f(x, )
can only take discrete values — in two-class classification scenarios they are commonly either

-1 or +1, however, other values are possible. Then, the loss function

0 ify=f(xa)

Ly fera)) =1
1 ify+ f(x,a)
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indicates whether a pattern was correctly classified by the estimated function or not. In re-
gression estimation, an arbitrary function has to be learned, and the supervisor’s answer can
take real numbers. A least-squares regression approach uses the loss function L(y, f(x,a)) =
(y - f(x, «))?, while in density estimation the loss function L( f(x, &)) = —log f(x, &) is com-

monly used. In the following sections the focus will be exclusively on classification.

Empirical Risk Minimisation In practise, the distribution function P(x) is not known
explicitly but needs to be approximated by a finite set of sample points. Thus, the risk functional
R(a) is replaced by the empirical risk functional

Remp(a) = % ZHEL()/i,f(xi’“))-

According to the law of large numbers, Remp converges to the expectation R with increasing
sample size n. However, the arguments that minimise R and Remyp are not necessarily the same.
In order to find &* only by minimising Renp, the principle of empirical risk minimisation must

be consistent, i.e. R and Remp must uniformly converge:

lim P(sup |[R(&) — Remp(a)| <€) = 0.
n—oo acl

Vapnik-Chervonenkis Dimension Necessary and sufficient conditions for uniform con-
vergence, i.e. consistency, have been derived based on the Vapnik-Chervonenkis dimension
(vc-dimension) [VAPNIK and CHERVONENKIS, 1982]. This measure describes the expressive
power of a family of classification functions. Each dataset D with » training patterns can be
labelled in 2" different ways, however, not every family of classification functions may correctly
separate the two classes for all labellings. Let N(D, F) be the number of dichotomies — i.e. sep-
arations into two classes — for the dataset D that can be realised by a family F of classification

tunctions. Then, the growth function
Gr(n) = mDaxN(D,]:) <2"

is a measure of the maximum number of different labellings for an arbitrary set of size n. The
vc-dimension of a function family F is the maximum number £ of patterns, such that these
patterns can be separated correctly for each arbitrary labelling. In other words, C is shattered by
F. The vc-dimension is infinite if G (n) = 2" for all n. Thus, for any sample size n a particular
dataset exists such that the function family can discriminate all different labellings of this dataset.

If the vc-dimension is bounded, the growth function is bounded by a polynomial function as
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Error

Guaranteed risk

Confidence interval

Training error

» vc-dimension, h

o <hy g <hy<hyg <o

e C fn—l Cfn Cj:n+l C e

Figure 2.2: Trade-off between training error and confidence interval. The guaranteed risk is
an upper bound for the sum of both learning performance measures. Choosing
a function class with vc-dimension h* will yield the smallest guaranteed risk
( [HAYKIN, 1998], slightly modified).

soon as the number of samples exceeds the threshold / (Sauer’s lemma, see e.g. [SAUER, 1972]).
In this case, no dataset with more than h data points can be shattered. A finite vc dimension is
necessary and sufficient for uniform convergence and will guarantee fast convergence [VAPNIK
and CHERVONENKIS, 1971, VAPNIK and CHERVONENKIS, 1982]. Thus, learning by minimising

the empirical risk will be successful, as the empirical risk converges to the expected risk.

Structural Risk Minimisation  According to the vc-theory, the challenge is to define a
proper function family that is limited to achieve a low vc dimension but large enough to contain
a function that well separates the data. VAPNIK proved the generalisation error to be upper
bounded by the guaranteed risk, which is the sum of the training error and the confidence interval.
The confidence interval is a measure for the probability that a function, taken from the given
function family, with small generalisation error can be found at all. The confidence interval
increases with increasing vc dimension while the training error decreases (see Figure 2.2). Now,
the question is how to determine the function family that yields the least guaranteed risk. The

idea of structural risk minimisation [VAPNIK, 1999] is to define a series of nested hypothesis spaces
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Fic F, c - c F, with increasing vc-dimension, i.e. h; < hy < --- < hy,. The learning machine
aims to choose the hypothesis space F* with the smallest guaranteed risk. In practice, this
can be implemented by increasing / until the guaranteed risk does not decrease significantly

anymore.

2.3 Support Vector Machines

The family of support vector machines aims to minimise the structural risk by a classifier
that maximises the distance — the margin — between two classes for a given training dataset
D = {x;, yi}+,. In the most simple case, the classification border is described by a hyperplane
defined by a normal vector w and a bias b, i.e. the distance of the hyperplane to the origin. The
minimal distance y from the hyperplane to a pattern is called geometric margin (see Figure 2.3).
The maximum margin classifier selects that hyperplane among the set of all separating hyper-
planes with the largest margin. It can be shown that maximising the margin while enforcing

correct classification is equivalent to

minimising wlw
. T . (2.1)
subject to y,-(w xi+b)21, i=1,...,n.

This primal problem — a linearly constrained convex optimisation problem — may be solved
by quadratic programming. The mathematical formulation has a series of advantages over
classical neural networks. Assuming linear separability of the input data, it has a single unique
solution — neural networks generally have multiple solutions and may therefore get stuck in
local minima during optimisation. Further, the separating hyperplane is exclusively defined
by support vectors. They are obtained by transforming (2.1) into a dual formulation using the
Lagrangian function that combines objective function and linear constraints and introduces

Lagrangian parameters a; for weighting the constraints:
Lr < T
L(w,b,a) = i w— ai(yi(w'x;+b) —1) .
i=1

Thus, the dual problem is to

i,j=
n

Yaiyi = 0
subject to i=1 g4

n n
maximise Y a;— 1 Y yiyjmiaxlx;
i=1 1

v
(=)
I
=
B

4%}

10



2.3 Support Vector Machines
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Figure 2.3: Maximum margin classifier. The classifier is defined by a normal vector w and
the bias b. Points with geometric margin y are called support vectors.

The optimal w* and b* for the primal problem are obtained from the optimum «* in the

dual representation:

1 1
* * * T, * . T, *
w' = ja;x; and b =-——| max (x;w )+ min (x;w )] .
;y, P 2(i,y,~—1( ) i,y,-=+1( : ))
Only those «; differ from 0 that have a functional margin of +1 or —1. Hence, the corresponding
patterns x; are called support vectors, and all other patterns do not contribute as their Lagrangian

parameters are 0:

f(x) = Zn: (yiaixix)+b* = Y (yiajxix)+b".
i-1 i€S={s|as>0}
Besides, the dual representation provides a way to introduce the concept of kernels, which allow
more complicated decision borders to overcome the limitation to linear separable classes. The
basic idea of kernels is to transform the low-dimensional input space into a high-dimensional
feature space by a mapping @ (x). As dimensionality increases, a linear hypothesis more likely
separates the two classes. In practise, this is achieved by substituting all scalar products x! x j
by a suitable kernel function K(x;,x;) = ®(x;)"®(x;). Thus, the transformation ®(x) into a

higher-dimensional space is not done explicitly, but implicitly via the kernel function.

11



2 Machine Learning and High-dimensional Spaces

The above hard-margin classifier may be strongly affected by outliers — one single outlier
may avoid linear separation. Thus, soft-margin approaches are favoured in practise. For the
one-norm soft-margin approach, the dual representation remains the same as in the hard-margin
case except for the second constraint, which is now additionally upper bounded by the softness
parameter C, ie. 0 < a; < C. In contrast, the two-norm soft-margin svMm [CRISTIANINI and

SHAWE-TAYLOR, 2000] is implemented using the kernel
T T 51’1‘
K(xi,xj) = @(x:1)" @(x)) = x %+ =

instead of the dot product in the dual representation. In both approaches, large values of C pro-

vide a hard-margin solution, while decreasing the softness parameter allows misclassifications.

As mentioned before, the primal and the dual problem both can directly be solved by quadratic
optimisation. However, by taking advantage of the particular structure of the optimisation prob-
lem, dedicated methods have been developed, such as sequential minimal optimisation [PLATT,
1999] or variants of the MinOver algorithm [KrRAUTH and MEZARD, 1987, MARTINETZ et al.,
2005], which are extensions to the perceptron [ROSENBLATT, 1958], one of the first artificial
neural networks. The SoftDoubleMinOver algorithm (see Figure 2.4) implements a two-norm

soft-margin svM by iteratively increasing the weights of those patterns with minimal residual

Input :Feature vectors x;, class labels y;, number of iterations fy,,x
Output: Weight vector a, bias b

1 <0

2 fort < 1,..., tha do

3 fori<1,...,ndo

4 T Yi X Yj%; (K(xi)xj) + 5_5)
5 end

6 i" < argmin, 7

7 im <« argmini’yi}1 T

8 air < o+ +1

9 ai- < ai- +1

10 end

1 Recalculate residuals r; as above
1
12 b« 2 (Tif - 1’,’+)

Figure 2.4: SoftDoubleMinOver algorithm.
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2.4 Validation Methods

margin from both classes. Either, these are the strongest misclassified patterns, or, if all pat-
terns are correctly classified, the patterns that are closest to the decision border. The solution
obtained by SoftDoubleMinOver converges with O(1/¢) to the exact solution [MARTINETZ,
2004, MARTINETZ et al., 2005].

Finally, we address the issue of unbalanced datasets, where one class is represented by sig-
nificantly more samples than the other class. A standard soft-margin svm would be biased
towards the smaller class — independent of the actual implementation — as the svm implicitly
assumes equal misclassification costs for each data point. In the limit for very soft scenarios,
the svM behaves like a majority classifier and assigns all samples to the larger class. Several
concepts have been proposed to deal with this artefact, e.g. undersampling the majority class,
synthetic sample generation for oversampling the minority class [CHAWLA et al., 2002, AKBANI
et al., 2004], one-class classifiers [RAskuTTI and KOWALCZYK, 2004], or class-specific softness
parameters [VEROPOULOS et al., 1999]. In the latter approach, each data point is associated with
a softness value C* or C~ depending on the class label. Equal overall misclassification costs for

each class are ensured if C*n* = C”™n™ holds for classes of size n* and n~, respectively.

2.4 Validation Methods

When it comes to comparing the quality of a classifier, we basically need two things. First, a loss
function to compare the predicted and the true outcome of the learning algorithm. And second,
a validation scheme, i.e. a method to derive the accuracy not only for a single sample but for
a whole dataset. In classification tasks, the loss is commonly defined to be 0 if the classifier
predicts the correct class and 1 otherwise. The three widely used validation schemes are holdout
estimate, cross-validation and bootstrapping.

The holdout method partitions the input data into a training set D; and a holdout or test set
Dy, of size h. The inducer 7 is trained on the training set and its accuracy is determined by

classifying all samples of the holdout set, i.e.

accy, = % - Y L(Z(Dyxi), yi)
(xi,y1)€Dy
with L as the loss function. A large proportion of the data is never used for training, so the
inducer cannot gain any information although the data is present. So, the holdout estimate
is often too pessimistic. Random subsampling, i.e. splitting the input data several times and
averaging the accuracies, takes more data into account.
In k-fold cross-validation, the input data is randomly partitioned into k equally sized subsets

(folds) D, ..., Dy. In each training run, all subsets except for one are used for training, while

13



2 Machine Learning and High-dimensional Spaces

the accuracy is estimated on the left-out subset:

k
accey = % Z( 3 L(I(D\Dt,x,-),y,»)) .

t=1 \ (x;,y;)eD;

The extreme case where k = n is called leave-one-out cross-validation. If the subsets D; are
sampled in a naive way, the class ratios may differ significantly for each fold — especially if the
sample size is low — and might bias the accuracy estimate. Such balancing artefacts are avoided
by using stratified cross-validation, i.e. all folds are sampled to contain the same proportion of

class labels.

In bootstrapping, the training set is selected by randomly sampling # instances from the
input data of size n with replacement. Thus, the probability of a sample not to be chosen is
(1- %)” ~ e~ ~ 0.368. The accuracy for a bootstrap sample D; is estimated by a weighted sum

of training accuracy and test accuracy:

ACChoot = 0.632-aCCtest + 0.368-aCCirain  With
ACCtest = z L(I(D\Dt)xi)’yi) and
(x,-,y,-)eD[

aCCtrain =y, L(Z(D1, x:), i) -
(xi,yi)eDt

Commonly, this measure is averaged over several runs. Bootstrapping was originally introduced
in [EFRON, 1979]; an overview on various bootstrapping variants can be found in [EFRON and

TIBSHIRANI, 1993].

In practise, we seek for an accuracy estimator with low bias and low variance. However,
each estimator may fail in certain scenarios, e.g. when a simple majority voting rule is used
for classification [KoHAVI, 1995] or if an svM is used in high-dimensional small sample size
scenarios (see Section 2.5.5). Stratified ten-fold cross-validation [KoHAVI, 1995] has been found
to be well suited for a variety of real-world scenarios and for different induction methods.

Bootstrapping seems to have lower variance but a large bias in some scenarios.

Some attempts have been made to give bounds on the accuracy of these estimates, e.g. in
[KEARNS and RON, 1997]. According to [VAPNIK, 1982], the difference between true and esti-
mated error will be at most O (\/h_n) for a dataset of size n drawn from an arbitrary input
distribution and any learning algorithm with vc-dimension 4. Note, the O-notation — some-
times called soft-O — ignores logarithmic factors as the big-O notation ignores constants,
i.e. O(g(n)) is shorthand for O(g(n)(logg(n))*).
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2.5 Geometry of High-Dimensional Small Sample Size Scenarios

Alternative Performance Measures The receiver operating characteristic (ROC) curve is a
method in signal detection theory to choose optimal parameters for a classifier. Depending on
a single parameter — e.g. the bias of a support vector machine — it relates false positive and
talse negative rates. The area under the curve (auc) quantifies the overall performance of the
classifier. Assume a test set with n* and n~ data points from each class, respectively. First, the
decision values obtained from the classifier are sorted in ascending order. Let r; denote the

rank of the ith data point from class +1. Then the Auc is estimated as [HAND and TiLL, 2001]

This measure is independent of the decision threshold and the distribution of the class labels
[BRADLEY, 1997]. Formally, it has been shown that using the Auc measure is indeed statistically
consistent and better suited for discriminating performance than the classifier’s accuracy [LING

et al., 2003].

2.5 Geometry of High-Dimensional Small Sample Size

Scenarios

Convergence proofs and asymptotic bounds in statistical learning theory require sufficiently
large datasets that properly represent the data distribution. However, in practise this is gener-
ally not the case. Real-world datasets are high-dimensional, but only a few samples may be
acquired. Such high-dimensional small sample size scenarios are essentially different from
their low-dimensional counterparts. As we do not have an intuition of how a two-thousand-
and-one-dimensional space looks like, we tend to characterise it in the same way as two or
three-dimensional spaces. But these spaces are totally different and their unintuitive aspects
distract learning and validation methods in several ways. The fact that machine learning al-
gorithms do not scale well with the number of features is often referred to as the curse of

dimensionality [BELLMAN, 1961].

2.5.1 Empty Space Phenomenon

The most obvious aspect of the curse of dimensionality is that the number of data points
required to uniformly cover the whole input space increases exponentially with the number of
dimensions [BELLMAN, 1961]. Given a grid with m points in each direction. The 3-dimensional
cube has m® grid points, a 4-dimensional hypercube has m* grid points and so on. A state-

of-the-art microarray chip for analysing human genome expression levels contains 54676
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2 Machine Learning and High-dimensional Spaces

probes (Affymetrix, Inc., GeneChip Human Genome U133 Plus 2.0 Array). A hypercube with

the same dimensionality as this microarray dataset and with m = 2 has 23476 » 101654

grid
points. For comparison, estimates about the size of the observable universe are in the range
of 1080 atoms (Wikipedia. Retrieved on August 30, 2011 from http://en.wikipedia.org/
wiki/Observable_universe). So, any dataset in this space can only cover a vanishing small

proportion of the whole space.

2.5.2 Distance Concentration

Another well-known effect is that if dimensionality is increased towards infinity, a finite set of
points takes a specific deterministic topology. In the limit, the points are located on the vertices
of a regular simplex [HALL et al,, 2005], i.e. all samples have nearly the same distances to the
origin as well as among each other, and they are pairwise orthogonal. This is referred to as
distance concentration. Additionally, zero-mean samples taken from a Gaussian distribution are
commonly not located near the origin. These properties were shown for multivariate standard
normal distributions with zero mean and identity covariance matrix but hold under much
weaker assumptions as shown in [AHN et al., 2007]. Here, the authors derive a condition such
that a fixed size dataset behaves as if it was drawn from a distribution with identity covariance
matrix for d — oo. This condition is based on the sphericity measure

(zhih)”

T avd )2
d Yia A
where 1; denotes the ith eigenvalue of the covariance matrix. If the eigenvalues are sufficiently
diffused, i.e. it

d 4 \?
lim d-&= lim —(Z’EIAI)

-0
d—oo d— oo Zliil Alz

then the dataset will show the same unintuitive behaviour as datasets with the identity covariance
matrix (see Figure 2.5 for an example using random normal distributed data with identity
covariance matrix). Thus, any method that relies on measuring distances between data points
may become meaningless. Nearest neighbour based methods have been analysed with respect
to such distance concentration with application to high-dimensional databases [AGGARWAL
et al., 2001a, BEYER et al., 1999]. In such applications, we seek for a given query data point the
data point with minimum distance. However, as dimensionality increases the distance to the
nearest and to the farthest data point become more and more equal [BEYER et al., 1999] due to
distance concentration — even in cases where the dimensions are correlated or the variance of

the newly added dimensions converges to zero. Thus, nearest neighbour methods may become
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Figure 2.5: Distance concentration in high-dimensional spaces. The effects of distance
concentration can be reproduced in a very simple way. Here we sampled »n = 10
data points normally distributed from low to high-dimensional spaces and
plotted the mean (solid) and the extreme values (dashed) for various properties
averaged over 100 runs. The distances to the origin (top left) as well as the
pairwise distances (top right) concentrate, all pairwise angles (bottom left)
converge to 90°, and the eigenvalues of the covariance matrix (bottom right)
converge to 1. Thus, distances, angles, and eigenvalues all become the same,
although the data was sampled randomly.

meaningless or unstable from 10 to 20 dimensions upwards.
Most nearest neighbour methods apply the Euclidean norm as the distance measure, however,
other metrics are possible and influence the meaningfulness in high-dimensional spaces [AG-

GARWAL et al., 2001a]. The Lp-norm

|—

p

d
||pr:Lp(x): Z’xi\p with peR, p>1
i=1
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2 Machine Learning and High-dimensional Spaces

is more susceptible to distance concentration for large values of p. Thus, the best choice with
respect to meaningfulness in high-dimensional spaces would be p = 1, often referred to as the
Manhattan metric. Even values between 0 and 1 could be used, however, such fractional distance
measures are no longer a metric in the strict mathematical sense as the triangle inequality is
not fulfilled. However, theoretical and empirical results show, that using fractional distance
measures improves the performance of nearest neighbour methods significantly at least on
uniformly distributed data [AGGARWAL et al., 2001a]. Distance concentration in fractional
distance measures may be quantified in terms of relative concentration. Let x be a random vector

with each feature drawn from some distribution F. Then,

var(||x||p)
Fpr~ " o/ 1\

E(|lxlp)

is a measure of the relative concentration of the norm. Low values indicate a high degree of
concentration, high values correspond to a wider distribution of distances. Thus, all distributions

and L, metrics are prone to distance concentration [FRANGOIS et al., 2007] as

y/var ((lllp)
im ————<— =

d-eo E(lx[|,)
However, the impact depends on the distribution F, and the choice of p needs to be validated for
each dataset individually. In total, nearest neighbour methods are prone to the phenomenon of
distance concentration, however, there is some evidence that using the L;-norm for measuring

distances relaxes this phenomenon to some extend.

2.5.3 Hubness

Distance concentration is closely related to hubness — another high-dimensional artefact that
may affect machine learning methods. Hubness refers to the effect that in high-dimensional
spaces some data points occur more frequently among the nearest neighbours than others.
Given a dataset D, Ny (x) refers to the number of times x is among the k nearest neighbours
of all other points in D. In low-dimensional scenarios, N converges to a Poisson distribution
with mean k, while in the high-dimensional case the distribution of N becomes skewed with
a long tail to the right [RApDovANOVIC et al., 2010]. Thus some data points — hubs — occur
much more frequent in the list of the k nearest neighbours than others. Hubs have a high
tendency to be close to the mean of the data distribution, in multimodal distributions they

appear close the mean of the unimodal distribution components. Hubness may occur even after
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2.5 Geometry of High-Dimensional Small Sample Size Scenarios

dimensionality reduction if a distance preserving method is used and the number of features
exceeds the intrinsic dimensionality. Bad hubs, i.e. hubs with a high probability not having
the same class label as the query point, describe the boundary of the classes and thus have
a significant impact on classification performance. However, their contribution depends on
the induction algorithm. A k-nearest-neighbour classifier can significantly be improved if the
contribution of these bad hubs is downweighted as the classifier aims to describe the interior
of a class and not its borderline. In contrast, a support vector machine models the separation
surface between the classes and, thus, removing bad hubs causes a significant performance

drop.

2.5.4 Incidental Separability

In general, a two-class scenario with less samples than features is separable by a linear hyperplane.
However, random datasets with more samples than features may be separable by chance. The
probability of a dataset being separable by chance depends on the data distribution, the sample
size and the dimensionality. In case of rotationally symmetric distributions this probability
can be given explicitly — but not for arbitrary distributions. Let P; ,, denote the probability of
n data points drawn from a d-dimensional distribution to be linearly separable without bias,
i.e. the solution needs to pass through the origin. This is equivalent to the probability that all
data points are located within the same half-space. For rotationally symmetric distributions,

such as the multidimensional standard normal distribution [WENDEL, 1962]

n+l dil (H*I) f d
2- orn >
Py, = K=o K
1 otherwise .

The sample size n needs to be twice as large as the number of features d to let the probability
drop to 0.5 (see Figure 2.6). In practise, the above equation allows to estimate whether a linear
hard-margin classifier may succeed in finding a solution or not. However, real-world datasets
may contain irrelevant noise features and may be separable in less than d dimensions. Again,
a purely random dataset may show the same behaviour. Let P;+4 , be the probability that a
d*-dimensional subspace with d* < d exists where all data points are linearly separable or,
in other terms, located in the same half-space. As there are ( dd*) possible ways to choose the

d*-dimensional subspace, the following upper bound holds [KLEMENT and MARTINETZ, 2010a]:
a1,
P44, < min (1, (;*) Pd*,n) < min (1, (;*) 27 ]Z;) (n ' 1)) . (2.2)
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Figure 2.6: Probability of a normal distributed d-dimensional dataset to be located all in
the same half-space or being linearly separable without bias.

Additionally, Py« , < Py, holds, because if the dataset is separable in any subspace, it is also
separable in the original space. If it is not separable in the original space, it will never be in any
subspace. Further, P;«; , is lower bounded by P+, which can be illustrated as follows: Assume,
the dataset to be restricted to d* dimensions, then obviously P;«;«, = P;«,. Adding further
dimension may only increase the probability of finding a d *-dimensional subspace where the
data points are separable. In total, the following bounds hold for the probability of a random

dataset to be linearly separable in a subspace of dimension d*:

_ d
Pgsn < Pgsg,n < min (1, Pa,n» (d*) Pd*,n) . (23)

These are very rough estimates and they are constrained to rotationally symmetric distributions.
However, if the upper bound is low in an arbitrary scenario, it is very unlikely that a random

dataset with the same parameters is separable by chance.

Unfortunately, P;«; ,, cannot be written in closed form except for the special case d* = 1. Let

E; denote the event that the dataset is separable within dimension i. Now, the probability P, 4 ,
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Figure 2.7: Probability of a normal distributed d-dimensional dataset to be linearly separa-
ble without bias in any 1-dimensional subspace.

derives to

d
Pl,d,n = P(UEI)
i=1

= P(E))+...+P(E;)-P(E;nEy)) —...— P(E;1nEy)

d
+P(E,nE;nEs)+...(-1)%'P (ﬂ E,-)
i=1
i+l (d) P
)P

i+l (d) i+ (-n+l)
; .

Here, we use the fact that all events E; are pairwise statistically independent, i.e. P(E; N E;) =

d
2D
‘
2D

P(E;)P(E;) forall i # j. The probability P, 4, drops much faster towards zero (see Figure 2.7)
than P;,. Nevertheless, a dataset with 4 samples in 50 dimensions will have at least one
dimension in which it is separable with probability 1. Such a ratio of about 1 to 10 may be
considered extraordinary large in high-dimensional biological or medical datasets, i.e. high-
dimensional real-world data is very likely prone to such behaviour.

Finally, we empirically approximated P+, , to give an impression of its general behaviour in
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various scenarios. Therefore, we sampled d-dimensional datasets with n data points from the
standard normal distribution, partitioned them into two balanced classes and tested whether
the dataset was separable without bias in any d *-dimensional subspace. Thus, for each dataset at
most ( d‘i) subsets had to be evaluated. As soon as we found a separable subspace, we skipped the
remaining subsets. Besides this combinatorial issue, the question arises which method to choose
for testing separability. A non-exhaustive list includes methods based on linear programming,
convex hulls, neural networks and quadratic programming [MANGASARIAN, 1965, ELIZONDO,
2006]. For sake of simplicity, we chose a method that is as close to the definition of linear

separability as possible and does not require any parameters or assumptions. Therefore, we

minimise &
subjectto y; (wlx;)+&>1 foralli
£>0.

The dataset is separable if and only if £ = 0 in the optimum [YOGANANDA et al., 2007]. Of course,
we could also train a neural network such as the perceptron and stop the training as soon as
separation is achieved. However, the termination criterion, i.e. the number of iterations after

which the dataset is classified as inseparable, is hard to choose and highly data dependent.

The empirical results illustrate that in case of low dimensional datasets (e.g., d = 5, see
Figure 2.8, left column) the bounds are quite close to the empirical probability — for P, 5, the
upper bound almost matches the empirical measurements. In high-dimensional small sample
size scenarios, we know that no more than n dimensions are necessary to separate two classes
without bias. In general, we do not have an intuition of how likely a separation within very few
dimensions may exist. Empirical estimates for medium-sized datasets (see Figure 2.8, right
column) are time consuming and become infeasible for arbitrary high-dimensional datasets

due to combinatorial issues.

In [LAVINE et al., 1988], chance classification has been evaluated empirically depending on
the number of data points, the number of features, the class membership distribution and the
covariance structure of the data. Based on Monte Carlo simulations, they analysed how likely
a certain degree of separability can be achieved on random data. These simulations lead to a
simple, yet effective, plausibility check: They suggest to sample multiple instances of random
data having the same properties as the original dataset — i.e. the same cardinality, dimensionality,
distribution and class balance. The classification results obtained on these random datasets
are compared to those of the original dataset, i.e. to the chance level of comparable scenarios.
However, this procedure is time consuming as many instances of random data need to be

sampled and the classification procedure needs to be executed multiple times to get valid results.
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Figure 2.8: Probability of normally distributed d-dimensional data to be linearly separable
without bias in any d*-dimensional subspace. Shown are the empirical proba-
bilities after 1000 repetitions (dots) and the lower and upper bounds (dashed).
In the left column, the overall dimension was fixed (d = 5) and P;«; , was
evaluated for all possible choices of d*. For d* = 1 and d* = 5 empirical mea-
surements match the bounds, while in all other cases the empirical results are
within the bounds. In the right column, various other combinations of d* and
d are shown. However, due to combinatorial issues only those combinations

with small ( dd*) are included.
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2.5.5 Reliability of Cross-Validation

In this section, we analyse when and why cross-validation for support vector machines may
be unreliable on high-dimensional small sample size data. Typically, when using the svm
there is a tendency to increase the dimensionality as higher-dimensional datasets are more
likely separable. Due to runtime considerations, leave-one-out cross-validation is in general
only feasible in small sample size scenarios. So, high dimensionality and small sample size
meet if svMs are validated by leave-one-out cross-validation. The dimensionality of any real-
world scenario is finite, however, even comparatively low-dimensional data behaves as if being
infinitely dimensional [KLEMENT et al., 2008]. So, infinity is rather small in small sample size

scenarios.

First, we show that the leave-one-out cross-validation error for hard-margin svms converges
to 1in high-dimensional feature spaces for equal-sized classes drawn from the same distribution.
The expected chance level of 0.5 is only obtained in low dimensions. In the general case — two
classes from different distributions — a hard-margin svm will vote along the majority rule alone
for a dimension towards infinity [HALL et al., 2005]. Not only simple hard-margin svms are
prone to overfitting; soft-margin approaches make things even worse. The margin is increased
to reduce the fat-shattering dimension. This is supposed to reduce overfitting by allowing
training errors. Unfortunately, this does not increase the generalisation performance, again due
to the counterintuitive geometric properties of only few samples in high-dimensional space
and the asymmetries of a resampling scheme such as leave-one-out cross-validation. In the
soft-margin case, infinity becomes even smaller. These properties are proven in the following

section.

Random Data Assume a random balanced two-class dataset, i.e. samples drawn from an
arbitrary distribution with randomly assigned class labels. The best classifier for completely
random datasets is simply the majority voting rule [KoHaAv1, 1995]. Unfortunately, leave-one-out
cross-validation will indicate poor performance, since the originally balanced dataset becomes
unbalanced in each and every validation step. As the left-out pattern reduces the size of one
class, a majority classifier will always vote for the other larger class, but the left-out pattern
belongs to the smaller class. Thus, the classifier will always make the wrong decision. This
behaviour is independent of the dimensionality or training set size.

Such an imbalancing artefact is no particular deficiency of naive classifiers. In case of high-
dimensional scenarios, a linear support vector machine will show the same behaviour. Assume
an unlearnable scenario where each feature is independently drawn from the standard normal

distribution and the class labels are balanced but randomly assigned. Without loss of generality
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we may assign the class labels

because the support vector machine is independent of the order of the training samples. For
high-dimensional small sample size data, d > n holds, and therefore, in general, the data is
linearly separable, except for cases with three or more collinear data points having alternating
class labels. However, the probability of this pathological case is 0. The leave-one-out cross-
validation error is determined by training an svM n times, each time on a different subset of
size n — 1. The obtained classification functions f;(x) are then used to classify the remaining

pattern, and the leave-one-out error E is determined by
1 n
E = — (x;) — A
n ; \fi(xi) = yil

Intuitively, we would expect an average error of 0.5 as the left-out pattern was drawn randomly
and is independent of the training data. This is indeed the case in low-dimensional scenarios.
However, as dimensionality increases, the error rate converges to 1 for any fixed sample size
n (see Figure 2.9). To explain such unintuitive error rates for small sample sizes, we consider

datasets with infinite dimensionality.

Theorem 2.5.1 For any dataset D = {x;, y;}}, with x; € R? drawn from the multivariate
standard normal distribution, with y, = ... = yu =+l and Yrag=...=yn=-1 and n fixed, the

leave-one-out error rate of a hard-margin svm is 1 for d — oo.

Proof The proof [KLEMENT et al., 2008] relies on the geometry of high-dimensional datasets
as described in Chapter 2.5.2. Namely, for d — oo all x; € D lie on the vertices of a regular
n-simplex, as well as all pairwise angles are orthogonal. Assuming the data to be drawn from the
standard normal distribution with identity covariance matrix, the mean vector length converges
to \/d as d — oo [HALL et al.,, 2005]. The total variability of D is provided in the rotation of this
simplex. So, without loss of generality, we may rotate the simplex such that the edges are parallel
to the coordinate system, i.e we set x; = Vd e;. Here, the vectors e; form the standard basis
of the Euclidean space: The ith entry is 1 while all others are 0. Thus, the following properties
hold for d — oo:

Vd o Vi

il =
lxi—xjll = llei—ejlb=Vv2d  Vi#j
x,-ij = e,-Tej:O Vi#j.
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2 Machine Learning and High-dimensional Spaces
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Figure 2.9: Leave-one-out cross-validation error of a hard-margin svM on normally dis-
tributed data with random class labels. Obviously, the error rate converges to 1
for any fixed sample size as the dimensionality goes towards infinity. Only those
scenarios were evaluated where d > n to ensure separability. Smooth curves
were obtained by averaging 1000 runs.

So indeed, all data points have the same length, the same pairwise distance and they are orthog-
onal. Again without loss of generality, we select x1, .. ., x,,_; for training. We can analytically

determine the maximum margin classifier

f(x) = sgn (wa+b)

that minimises wiw

subject to Vi (wai + b) >1 Vi

with simple vector algebra. As all samples are pairwise orthogonal, also the centroids of both

classes
1

3 n-1
i \/Ee,- and x = Z Vd e;
i=1

n_
2 i=5+1

RIS| —

are orthogonal. Thus, the normal vector of the support vector solution points from the centroid
of the negative class to the centroid of the positive class (see Figure 2.10), i.e. w = a (x* —x7).
The scaling factor a and the bias are set according to the constraints as follows: Let x; and x;

be arbitrary support vectors from the positive and the negative class, respectively. As they are
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2.5 Geometry of High-Dimensional Small Sample Size Scenarios

Negative class

Positive class

Separating hyperplane

Figure 2.10: Geometry of high-dimensional small sample size data. Here, a schematic
view of an infinite dimensional dataset drawn from the multivariate standard
normal distribution with 7 data points is shown. The samples from the larger

class form a 4-simplex while those from the smaller class form a 3-simplex.

The centroids of both simplices are denoted by x* and x™, respectively. The
separating hyperplane with maximum margin has the normal vector w and

points from the centroid of the negative class to the centroid of the positive class.

However, none of the unintuitive properties of high-dimensional small sample
size data can be visualised. For instance, the angle between the segments that
join the centre and the vertices of the tetraeder (the 3-dimensional simplex)
is # 109.47°, however for d — oo it is 90°.

support vectors, both fulfil the separability constraint with equality:

yi(xiTWer):l
yj(x]Tw+b):1 .

By substituting the weight vector w and