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1. Zusammenfassung

Ein wichtiges Problem der sensorischen Informationsverarbeitung im allgemeinen und

der visuellen Informationsverarbeitung im speziellen, ist die Frage, wie sich das Gehirn

an drastisch sich verändernde äußere Bedingungen anpasst. Folgerichtig spielt die Un-

tersuchung der, der Kontextintegration zugrunde liegenden Mechanismen eine wichtige

Rolle bei der Erforschung der sensorischen Systeme der Säugetiere. In dieser Arbeit wurde

das Problem der Kontextintegration im visuellen System auf zwei komplementären Ebe-

nen behandelt: der neuronalen und der perzeptuellen.

Auf der neuronalen Ebene wurde ein detailliertes, biologisch inspiriertes neuronales

Netzwerkmodell der Eingangsschicht des primären visuellen Kortex entwickelt und im-

plementiert. Dieses Modell wurde anhand von anatomischen und elektro-physiologischen

Daten erstellt und umfangreich mittels Daten experimenteller Tierstudien validiert. Es

zeigte ’centre-surround suppression’, eine bestimmte Form der Kontextintegration im

visuellen System, in guter Übereinstimmung elektro-physiologischen und psychophysis-

chen Experimenten. Das Modell wurde dazu benutzt, die der ’centre-surround suppres-

sion’ zugrunde liegenden Mechanismen zu untersuchen und es konnte gezeigt werden,

dass die lokale, laterale Inhibition maßgeblich zur ’centre-surround suppression’ beiträgt.

Das Modell unterstützt die Theorie, dass ’centre-surround suppression’ möglicherweise

ausreichend durch lokale, laterale Inhibition erklärt werden kann. Obwohl es nicht im

Fokus dieser Arbeit lag, ermöglichte das Modell außerdem eine Erforschung der Mecha-

nismen, die den klassischen Eigenschaften der rezeptiven Felder zugrunde liegen. Auch

hier konnte ein maßgeblicher Einfluss lokaler, lateraler Inhibition nachgewiesen werden.

Auf der perzeptuellen Ebene wurde die ’centre-surround suppression’ und ihre neuro-

chemischen und neuronalen Korrelate in einer Studie untersucht, die psychophysische

Messungen, Magnetresonanzspektroskopie und funktionelle Magnetresonanztomogra-

phie umfasste. Zusätzlich zu den gesunden Probanden wurden in dieser Studie auch

Patienten mit Schizophrenie untersucht, da bei diesen Defizite in der Kontextintegration

und speziell in der ’centre-surround suppression’ bekannt sind. Die Studie konnte eine

signifikant reduzierte ’centre-surround suppression’, wie sie in vorangegangen Studi-

en für Untergruppen von Patienten nachgewiesen wurden, in der heterogenen Patien-
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tengruppe nicht bestätigen, obwohl sowohl signifikant reduzierte GABA (ein wichitger

inhibitorischer Neurotransmitter) Konzentrationen als auch BOLD Aktivierungen gefun-

den wurden. Darüber hinaus wurden, entgegen vorangegangener Befunde, keinerlei Ko-

rrelationen zwischen ’centre-surround suppression’, Neurotransmitter-Konzentrationen

und BOLD Aktivierungen gefunden, was darauf schließen lässt, dass die perzeptuelle

’centre-surround suppression’ auf komplexere Weise von den lokalen, neuronalen Schalt-

kreisen abhängt, als bisher angenommen.

Die Modellierungsresultate und die experimentellen Ergebnisse dieser Arbeit tragen

zu einem besseren Verständnis der ’centre-surround suppression’ bei. Darüber hinaus

bietet diese Arbeit eine exzellente Basis für die modellbasierte Erforschung aller Aspekte

der klassischen und nicht-klassischen Eigenschaften rezeptiver Felder.
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2. Abstract

One major issue in sensory information processing and, particularly, in visual informa-

tion processing is the question of how the brain adapts to drastically differing external

conditions. Consequently, the exploration of the mechanisms of context or surround in-

tegration plays a key role in the quest for an eventual understanding of mammalian sen-

sory systems. In this work, the problem of context integration in the visual system was

approached on two complementary scales: the neural, microcircuit scale and the percep-

tual scale.

On the neural, microcircuit scale, a detailed, biologically inspired, neural network

model of the input layer of the primary visual cortex was designed and implemented.

The model was based on anatomical and electrophysiological data, and was extensively

validated against experimental animal studies. It showed centre-surround suppression,

a particular form of context integration in the visual system, well in accordance with

electrophysiological and psychophysical experiments. The model was used to explore

the mechanisms underlying centre-surround suppression and could identify short-range,

lateral inhibition as a factor crucially contributing to centre-surround suppression. There-

fore, the model supported the theory that centre-surround suppression might be suffi-

ciently explained in terms of local, lateral inhibition. Although not of primary interest,

the model also enabled an exploration of the mechanisms underlying classical receptive

field properties, that is, basic response properties of neurons in the primary visual cor-

tex. Again, local, lateral inhibition was identified as a major factor contributing to these

phenomena.

On the perceptual scale, centre-surround suppression and its neurochemical and neu-

ral correlates were investigated in a study combining psychophysical measurements,

magnetic resonance spectroscopy and functional magnetic resonance imaging. Partici-

pants in the study not only included healthy subjects, but also patients suffering from

schizophrenia, because of their known deficits in context integration and, particularly,

centre-surround suppression. The study found that reduced centre-surround suppres-

sion in schizophrenic patients, previously demonstrated for certain subgroups of pa-

tients, did not generalise to a heterogeneous patient group, although significantly re-
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duced GABA (an important inhibitory neurotransmitter) levels and BOLD activations

were found for the patient group. Furthermore, for both groups, previously established

correlations between centre-surround suppression, neurotransmitter levels and BOLD

activations could not be replicated, suggesting a more complex dependence of perceptual

centre-surround suppression on the underlying neural circuits than previously thought.

The model and experimental results presented in this work contribute to a better un-

derstanding of centre-surround suppression. Furthermore, this work provides an excel-

lent basis for a model-based investigation of all aspects of classical and extra-classical

receptive field phenomena.
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3. Introduction and Motivation

This chapter explains the development of a detailed, biologically inspired neural network

model of the primary visual cortex, as well as neuroimaging and psychophysical exper-

iments to examine the neural basis of centre-surround suppression in the visual system.

It begins delineating the purpose of this work, describing the necessity for and the po-

tential of such a network model to aid understanding the neural mechanisms of classical

and, especially, of centre-surround suppression. The possibilities offered by neuroimag-

ing and psychophysical methods for this topic are also covered . Such an understanding

might not only advance the knowledge of the human visual system, but could also help

to identify pathophysiological mechanisms in severe neurological and psychiatric disor-

ders such as schizophrenia.

3.1. Purpose of this Work

The mammalian visual system has been studied extensively over the past decades, and

an enormous amount of experimental and theoretical work has been accomplished [149].

However, a full understanding of visual processing is not on the horizon.

In his seminal work [138], David Marr describes vision as an information processing

task:

“The study of vision must therefore include not only the study of how to

extract from images the various aspects of the world that are useful to us, but

also an inquiry into the nature of the internal representations by which we

capture this information... .”

This task consists of two aspects: the extraction of useful information and the inter-

nal representation of this information. At the heart of his analysis was the distinction

between three levels of understanding [138]:

• The computational level: what does the system do and why?

• The algorithmic/representational level: how does the system do what it does?
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• The physical level: how is the system physically realized?

Although, a good understanding of the computational level has been reached, both the

algorithmic and the physical level and especially their correspondence remains elusive

[149].

One approach to understand the algorithmic level is to analyse the simple features

and properties of the building blocks of the system, that is, for the visual system, the sin-

gle neurons, and from there, move to more and more complex features. Starting with the

discoveries of Hubel and Wiesel [98], a great variety of features and properties of single

neurons in the visual cortex have been discovered [e.g. 54, 59, 98, 99, 195]. The emergence

of these so-called classical receptive field properties, that is, the specificity of a neuron to

stimuli within a distinct spatial region of the visual field, is one important first step in the

cortical processing of information. It is thought that these properties build the foundation

for all higher-level processing in the visual system, such as object recognition, face recog-

nition, motion detection and colour perception [46]. However, there is still no coherent

theory including all features and the neural mechanisms implementing this processing

are still under debate [166, 187]. That is, neither the algorithmic nor the physical level are

understood sufficiently well.

Even less understood are the mechanisms underlying the so-called extra-classical re-

ceptive field properties of neurons in primary visual cortex [3, 97, 99, 222]. These prop-

erties result from a stimulation outside of the classical receptive field, which leads to a

modulation of the neurons response to stimulation of the classical receptive field. An im-

portant example is the so-called (neural) centre-surround suppression, i.e. the suppres-

sion of neural activity in response to a stimulus, by a simultaneously applied stimulus in

the surround of the neuron’s classical receptive field [43].

Since experimental methods to investigate extra-classical receptive field properties

are still challenging and centre-surround suppression can only be inferred indirectly

[222], rigorous computational support for theories of extra-classical field properties is

crucial in electrophysiological and psychological studies. However, to the author’s knowl-

edge, no biologically inspired, detailed model for centre-surround suppression exists so

far and only a few simplified, more abstract models exist [198, 222]. There is a clear de-

mand for such models, especially keeping in mind that the timing of inhibition and also

spatial location of the inhibitory input might play an important role, as will be explained

later (see Chapter 5). The proposed network model provides a starting point for more

realistic and biophysically constraint modelling of centre-surround suppression, that is,

a deeper investigation of the physical level.

Therefore, the objectives of this work were threefold. The first objective was to de-
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velop a detailed, neural network model of the V1 input layer, grounded on anatomical

and physiological data, which could be used to investigate the intracortical mechanisms

of classical and extra-classical receptive field properties of V1 neurons. The proposed

network model was developed to reproduce not just one but a multitude of classical

properties, making it closer to data from electrophysiological recordings. Furthermore, a

highly flexible, extensible and simulator-independent design was also a high priority, so

that the model could be changed, exchanged and extended very easily.

The second objective was to use the model to show that neural centre-surround sup-

pression phenomena can be produced by short-range intracortical mechanisms without

long-range interactions and extrastriate feedback, as recent studies suggest [161, 222].

Moreover, the role of intracortical inhibition in the emergence of neural centre-surround

suppression sought to be investigated and the influence of different factors governing

inhibition on neural centre-surround suppression was to be tested.

The third and last objective was to explore neural substrates of perceptual centre-

surround suppression combining psychophysical and neuroimaging methods.

3.2. Scientific Motivation

Visual Processing Sensory perception, in general, and visual perception, in particu-

lar, massively depends on gain control, i.e. the ability to adapt to drastically differing

surround conditions [119]. In the visual system, this surround adaptation leads to a high

responsiveness to changes in the stimulus and thus to an increased detection of salient

features. The integration of surround information in the visual system takes place at dif-

ferent stations along the visual pathway and has diverse effects on different modalities

such as luminance, contrast, orientation and motion. However, on the algorithmic level,

in all cases gain control can be explained theoretically by some form of suppression (sub-

tractive or divisive) [19, 86, 176]. Nonetheless, the biophysical mechanisms, that is, the

physical level, underlying this suppression remain poorly understood. Several candidate

mechanisms, local and multi-stage, have been proposed, such as lateral inhibition, feed-

forward mechanisms or feed-back mechanisms, which have been shown to contribute

to gain control in specific cases at some stage of the visual processing [65, 98, 166, 187]. A

comprehensive theory explaining gain control at all stages along the pathway of visual

information processing is still to be developed and several questions remain unanswered:

Do different mechanisms work at different scales (from the scale of single neurons/small circuits

up to the perceptual/behavioural scale) of the processing? Are different mechanisms responsible

for gain control at different modalities? Do they work at different stages along the pathway? How

3
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are they implemented computationally and neurochemically?

Furthermore, several neurological and psychiatric disorders are associated with deficits

in visual gain control, for example, schizophrenia, major depressive disorder, photosen-

sitive epilepsy, and migraine [51, 78, 142, 164]. Since the mechanisms of gain control in

the healthy brain are not fully understood, it also remains elusive how these mechanisms

change with disorder: whether they express a fundamental change in information pro-

cessing, whether they appear as epiphenomena or whether they point to compensatory

mechanisms.

Finally, surround suppression as a form of gain control is an ubiquitous principle

in information processing in the brain [119]. Thus, a theory of the neural mechanisms

implementing surround suppression in the visual system might easily be generalized to

a theory of surround suppression for the whole brain. Similarly, a comprehension of the

visual deficits in disorders like schizophrenia might contribute to an understanding of

the more general disorder’s mechanisms.

Suppression Mechanisms in the Visual System V1 neurons are sensitive to a specific

spatial region within the visual field, the classical receptive field (CRF), meaning that a

stimulus presented in this region elicits a neural response [e.g. 98]. Many properties or

feature selectivities have been shown to exist for V1 neurons, such as orientation, direc-

tion, spatial frequency and temporal frequency selectivity [54, 98, 99, 174]. These feature

selectivities are restricted to the CRF in the sense that the elicited response is maximal if

the stimulus exactly covers the CRF, and are thus referred to as classical receptive field

properties. However, although a stimulus beyond the CRF does not elicit a spike re-

sponse, V1 neurons are not ’blind’ to stimuli beyond their CRF. How is this possible?

V1 neurons integrate information from a large region outside the CRF in a modulatory

way, that is, if a stimulus is presented in the CRF simultaneously with a second stimu-

lus beyond it, this surround stimulus modulates the response of the neuron [e.g. 182].

In most cases this modulation is suppressive and is known as neural centre-surround

suppression or simply centre-surround suppression. Since this phenomenon is based

on stimulation outside the CRF it is termed an extra-classical receptive field property.

The phenomenon of centre-surround suppression is also known on the perceptual/be-

havioural level, where the perception of a centred stimulus is changed by a surrounding

stimulus [e.g. 43], and it is known for different modalities such as luminance, contrast,

orientation or size of the stimulus [43, 150, 161]. In order to avoid confusion with neural

centre-surround suppression, it will be referred to as perceptual centre-surround sup-

pression. Obviously, neural and perceptual centre-surround suppression are related to

4
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each other, since perception is based on neural activity. Thus, perceptual centre-surround

suppression is an emergent property of neural centre-surround suppression, such as any

change of the neural network properties potentially results in a change on the perceptual

level. However, it is still not clear what mechanisms are responsible for both phenomena,

and how centre-surround suppression on the neural level translates to centre-surround

suppression on the perceptual level. Nevertheless, it seems to be a close relation, since

the same type of response functions are employed to fit experimental data from single cell

recordings of neural centre-surround suppression as to fit experimental data from human

psychophysical studies investigating perceptual centre-surround suppression [226].

As mentioned above, several candidate mechanisms have been proposed to con-

tribute to neural centre-surround suppression. In 1994, DeAngelis et al. [56], proposed

that neural centre-surround suppression is the result of long-range horizontal connec-

tions and argued that the spatial extent of short-range intra-cortical connections would

be insufficient to produce the surround sizes observed experimentally. This theory was

further supported by other studies [61, 102, 202]. However, Sceniak et al. [182] argued

that even the range of horizontal connections (< 5 mm) did not suffice for the surround

sizes they found experimentally. They concluded that extrastriate feedback was neces-

sary to account for their results. This theory was supported by subsequent experimental

studies measuring surround sizes [37], but also from tracer injection [6] and timing ex-

periments [10], which concluded that intra-cortical suppression was not fast enough to

explain the onset times of suppression. Still, neither the theory of DeAngelis et al. nor

the theory of Sceniak et al. can account for one important experimental finding: Neu-

ral centre-surround suppression is found throughout all layers of the visual cortex, even

those layers that do not have long-range horizontal connections or that do not receive

extra-striate feedback [181, 182]. In addition, investigating neural centre-surround sup-

pression experimentally still poses an enormous challenge for the experimenter, and in-

ferences about surround sizes and timing can only be made indirectly [222]. Interestingly,

neural centre-surround suppression has been found to exist in thalamic nuclei, specifi-

cally in the lateral geniculate nucleus (LGN), which projects to V1. What is more, there is

evidence that V1 might partially inherit this property from LGN by simple feed-forward

mechanisms [161, 196]. In the same vein, a recent computational model has provided

support for the hypothesis that neural centre-surround suppression might be produced

by both partial inheritance from the LGN and short-range, recurrent connections [222].

To sum up, the exact mechanisms behind neural centre-surround suppression are

still incompletely understood. It is not clear whether extra-striate effects and horizon-

tal mechanisms are necessary for surround suppression to be observed or if they can be
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explained by local, lateral mechanisms alone. The current experimental techniques can

only indirectly measure the mechanisms behind neural and perceptual centre-surround

suppression. Therefore, building computational models is an essential step in the pro-

cess of understanding neural centre-surround suppression, its links to perceptual centre-

surround suppression and its impairments in neurological and psychiatric disorders on

the algorithmic level. Building biophysically detailed models additionally allows for an

investigation of the implementation of these mechanisms, that is, the physical level.
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3.3. Structure of this Work

3.3. Structure of this Work

The subsequent chapters of this work are organized as follows:

Chapter II (Computational Foundations) introduces the mathematical techniques needed

to build computational models of the visual system and reviews currently available soft-

ware packages for the simulation of such models.

Chapter III (Theories of Computation in the Primary Visual Cortex) introduces the cur-

rent theories of classical receptive field properties in detail. It describes the interdepen-

dence of classical receptive field properties with extra-classical field properties with a

focus on neural centre-surround suppression.

Chapter IV (A Computational Model of the Primary Visual Cortex) describes the com-

putational model developed in this work and presents the results of its validation. The

model is then used to investigate the neural mechanisms underlying orientation selectiv-

ity. Further, the results of the exploration of the model’s neural centre-surround suppres-

sion properties are presented and the influence of short-range, lateral inhibition on these

centre-surround suppression as well as on classical receptive field properties is studied.

Chapter V (Experimental Studies) describes the experimental studies performed to in-

vestigate perceptual centre-surround suppression and its neural basis. Results from psy-

chophysical experiments, proton magnetic resonance spectroscopy and functional mag-

netic resonance imaging are presented.

Chapter VI (Discussion) analyses the results presented in Chapters IV and V and their im-

plications for the current understanding of computational mechanisms underlying both

levels: neural and perceptual centre-surround suppression.

Chapter VII (Conclusion and Outlook) summarises the presented work and its contribu-

tions to the fields of visual and computational neuroscience. It delineates interesting and

promising possibilities for future research: Extensions and applications of the model in

new research scenarios as well as further options for the psychophysical and neuroimag-

ing methods used.
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4. Computational Foundations

This chapter provides an overview of the existing techniques to model networks of neu-

rons. Basically, two factors determine the computations in a neural network like the

brain. The first one is the basic units of computations, that is, the neurons. The second

one is the way these basic computational units are connected and how they transfer infor-

mation, in this case, the way neurons communicate via axons, dendrites and synapses.

Naturally, these two essential building blocks of the nervous system have to be math-

ematically modelled. However, a third question arises, when trying to build network

models of the brain, namely, how to solve the mathematical descriptions analytically or

numerically.

4.1. Electrical Properties of Neurons

Figure 4.1.: Depiction of the different units of a neuron (modified after [29]).

Neurons are the essential building blocks of the brain and can be seen as its compu-

tational units [46, 52]. A neuron is composed of a cell body or soma, a dendritic tree and

an axon (see figure 4.1). The neuron’s cell membrane is a bi-lipid layer which is almost

impermeable for charged particles. This insulation property makes the membrane act

like a capacitor. By convention, the electrical potential of the fluid surrounding the cell

membrane is 0 mV and thus the intracellular membrane potential at rest, the resting po-

tential, is negative, between −95 mV and −55mV [46]. Specific ion channels are found

throughout the membrane, which control the in- and out-flux of ions. Most of them

are voltage-dependent although other dependencies exist (e.g. Ca2+-dependent potas-

sium channels). Furthermore, the membrane has a lot of ion pumps that transport ions
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through it in order to sustain concentration gradients between the intra- and extracellular

space [23, 46, 52]. The most important ion types are sodium (Na+), potassium (K−), cal-

cium (Ca2+) and chloride (Cl−) [46]. The membrane potential can have different values

in different parts of the neuron, which causes ion flux in order to equalize these differ-

ences. The intracellular space of the neuron exhibits a longitudinal resistance to such ion

movements, often called the intracellular resistance (RL). As mentioned before, the neu-

ronal membrane acts like a capacitor having a specific capacitance Cm, which is coupled

to the voltage across the membrane V and the charge Q of the inside of the membrane

surface by

Q = CmV. (4.1)

The time derivative of this basic equation gives

Cm
dV

dt
=

dQ

dt
, (4.2)

which plays an important role in the modelling of neurons [52]. While the membrane ca-

pacitance determines the amount of current to change the membrane potential at a given

rate, themembrane resistance Rm defines the current needed to hold the membrane po-

tential at a value different from the resting value. The product of this resistance and the

membrane capacitance is called the membrane time constant, τm = RmCm. This con-

stant defines the basic time frame for changes in the membrane potential and typically

lies between 10ms and 100ms [52].

The two forces determining the flux of ions through the ion channels are electric

charges and diffusion. The current flow that is due to diffusion is conveniently charac-

terized by the so-called equilibrium potential, that is, the membrane potential at which

the current flow produced by electric charges cancels the flow produced by concentra-

tion gradients. The equilibrium potential E can be calculated using theNernst equation,

given by

E =
VT
z

ln

�
[outside]

[inside]

�

, (4.3)

where [outside] and [inside] are the ion concentrations outside and inside the cell, respec-

tively, z is the charge of the ion divided by the charge of a proton and VT is the potential

difference across the membrane (VT = kBT
q , q charge of a proton, T temperature and

kB the Boltzmann constant). Typical equilibrium potentials for ion channels are listed in

Table 4.1.

An ion channel with an equilibrium potential E produces a current flow that will

move the membrane potential towards E, that is, an outward flow of positive current

if V > E and inward flow of positive current if V < E. As can be seen in Table 4.1
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Table 4.1.: Equilibrium potentials for the four electrophysiologically most important ions:

sodium, potassium, chloride and calcium at their physiological concentrations.

Ion Sodium Potassium Chloride Calcium

Equilibrium 50 -70 to -90 -60 to -65 150

Potential (mV)

sodium and calcium have positive equilibrium potentials; hence, sodium and calcium

channels tend to depolarize a neuron. Potassium channels have negative equilibrium

potentials, which are below the resting membrane potential of most neurons and thus

tend to hyperpolarise neurons. Since the equilibrium potential of chloride channels is

very close to the resting membrane potential of most neurons, the net effect of these

channels is small.

The membrane current is the sum of all currents going through all channels of the

membrane. Since the neuron membranes vary in shape and size, themembrane current

per unit area (Im) needs to be defined, which is the membrane current divided by the sur-

face area of the cell. Since Im is the sum of all the currents flowing through the channels

of the membrane it can be written as

Im =
�

i

gi(V − Ei), (4.4)

where V is the membrane potential, gi is the conductance per unit area of channel i and

Ei is the equilibrium potential of channel i.

Neurons receive information via their dendritic tree, integrate this information on the

way to the soma and then produce action potentials that travel along the axon to other

neurons. The neuron’s electrophysiological properties, that is, how it reacts to incoming

information from its dendrites, are determined by its morphology and its ion channels,

which determine the ion flux through the membrane and the passive properties of the

neuron. All neuron models describe the flow of charged particles between the intra- and

extracellular space and their effects on the membrane potential.

Equation 4.2 shows that the rate of change of the neuron’s membrane potential is

proportional to the rate of charge accumulating on the inside of the cell’s membrane.

Again, this is proportional to the current entering the cell. Combined, this results in the

basic equation for a neuron model

cm
dV

dt
= −Im +

Ie
A
, (4.5)

where cm = Cm/A is the specific membrane capacitance, A is the total surface area of the

11



4. Computational Foundations

cell and Ie any external current entering the cell. This structurally resembles an electric

circuit, where the membrane is the capacitor, and different variable and non-variable re-

sistances corresponding to the different ion channels contribute to the membrane current

Im (Figure 4.2).

Figure 4.2.: Equivalent circuit representation of a neuron model comprising four ionic channels,

sodium (Na+), potassium (K+), chloride (Cl−) and calcium (Ca2+). Here the membrane current

Im from Equation 4.5 would be the sum of the four. The variable resistances illustrate the voltage-

dependence of these ion channels. ([94], License: GFDL).

Figure 4.3.: Depiction of a chemical synapse connecting two neurons (modified after [29]).

Synapses are the interface between an axon from one neuron and a dendrite from an-

other one. Since information flows from the axon to the dendrite, the pre-synaptic neu-

ron is the one sending information through its axon and the post-synaptic neuron is the

one receiving information at its dendrite (see Figure 4.3). Generally, the action potential

arriving at the synapse triggers ion channels that cause the release of neurotransmitters

into the synaptic cleft. The neurotransmitter travels to the receptors at the post-synaptic

dendrite and causes a so-called post-synaptic potential (PSP). There are two types of
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synapses: synapses that cause a depolarising PSP, called excitatory post-synaptic po-

tential (EPSP), and synapses that cause a hyperpolarising PSP, called inhibitory post-

synaptic potential (IPSP). Most of the time, but not always, an EPSP leads to facilitation

of the spiking in the post-synaptic neuron [109] and, hence, these synapses are called

excitatory synapses. Analogously, synapses that prevent spiking, mostly because they

create an IPSP, are called inhibitory synapses. This can also be described in terms of

equilibrium potentials as for the other ion channels in the membrane described earlier.

The two main neurotransmitter in cortical areas are glutamate and γ-amino-butyric acid

(GABA) [46]. Both bind to different kinds of receptors, 2-amino-3-(3-hydroxy-5-methyl-

isoxazol-4-yl)propanoic acid (AMPA) and N-methyl-D-aspartate (NMDA) being the two

most important glutamatergic receptors, and GABAA and GABAB the two most promi-

nent GABAergic ones.

4.2. Computational Units

In this section, state-of-the-art models of neuronal computation are reviewed starting

with abstract population models and gradually introducing more detailed models. Their

design is discussed, as well as their properties and drawbacks, based on their applicabil-

ity to the problems addressed in this work.

4.2.1. Firing-Rate Models

Firing-rate models put an emphasis on the overall activity of neurons and discard in-

formation on temporal interactions within populations of neurons. Firing-rate models,

therefore generalise distinct firing events of single neurons to the activity level of the

neuron under consideration.

Firing-rate models consider the activity level s of a neuron and describe its evolution

as the weighted sum of the activity levels ηk of all neurons connecting with this neuron

[149]:

s =
�

k

ηk · wk, (4.6)

where the weights wk describe the strength of the connection from the connecting neu-

rons k to this neuron. This activity level can still be interpreted as the neuron’s membrane

potential and is often further abstracted into a firing rate η depending on s. The abstrac-

tion is done using a sigmoid activation function σ [149]:

η = σ(s) =
1

1 + e−s
. (4.7)
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η is then limited between 0 and 1.

Firing-Rate models are computationally very efficient and are often used to simulate

large populations of neurons, up to whole neural systems. It is even possible to use

a piecewise linear approximation of the activation function σ, making the model even

more efficient. They are preferred in simulations of high-level behaviour such as lan-

guage processing, memory and reasoning [e.g. 4] and in simulations of developmental

and organisational processes [e.g. 149].

However, over the past few years years growing experimental evidence has accu-

mulated showing that the mean firing rate of a neuron might not be the only quantity

carrying information [27, 108]. For example, in many tasks, the reaction times of hu-

mans and animals are so short that a transmission of information via average firing rates

seems impossible regarding the many processing steps involved. Furthermore, studies

suggest temporal correlations between spikes of different neurons as well as stimulus-

dependent synchronisation of populations of neurons [e.g. 193]. These studies suggest

that the temporal information cannot be discarded without loosing valuable information

and the concept of coding by mean firing rates oversimplifies the computations in the

brain [27].

4.2.2. Integrate-and-Fire Neurons

Leaky Integrate-and-Fire The integrate-and-fire model goes back to the early work

of Lapicque [122] and uses a single variable to describe neuronal dynamics. Neurons

are modelled with a basic circuit consisting of a capacitor C in parallel with a resistor

R driven by a current I(t) [201, 212] (see Equation 4.5). The potential variable v can be

regarded as the membrane potential and the model integrates incoming spikes until a

membrane threshold is reached, fires an action potential and resets the potential after-

wards. It can be formulated in the so-called standard form of the leaky integrate-and-fire

model [74]

τm ·
dv

dt
= −v(t) +R · I(t), (4.8)

where the variable v is regarded as the membrane potential, τm as the membrane time

constant, I(t) represents the incoming activity that builds up the membrane potential

over time and R is the resistance of the membrane [31, 74, 154]. Note that this model

does not explicitly generate action potentials. Instead, whenever the membrane potential

exceeds a ’spiking threshold’ θ, the formal event ’spike’ and its time are noted, and the

membrane potential is reset to a value vreset < θ. The simplicity of this model often

allows for analytical examinations of the problem at hand.
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Non-Linear Integrate-and-Fire A non-linear generalisation, the non-linear integrate-

and-fire neuron, can be formulated as follows

τ ·
dv

dt
= F (v) +G(v) · I(t), (4.9)

where F and G are nonlinear functions and, as above, the membrane potential is reset

after it reaches a certain threshold θ [74].

Quadratic Integrate-and-Fire One prominent example of the non-linear integrate-and-

fire neuron is the quadratic integrate-and-fire neuron. For the quadratic integrate-and-

fire neuron the function F in Equation 4.9 is set to be F (v) = v2. This results in

τ ·
dv

dt
= v2 +G(v) · I(t), (4.10)

with a reset of the membrane potential v whenever v = vpeak. Note that this model is able

to generate the upstroke of an action potential and that the membrane potential is reset

when a certain peak value of the action potential is reached.

The quadratic integrate-and-fire neuron has some advantages over the linear integrate-

and-fire neuron. First of all, as mentioned above, it is able to generate the upstroke of an

action potential, i.e. it really is a ’spiking’ neuron model. Furthermore, it has some dy-

namical properties which can also be found in mammalian neurons [74]. The quadratic

integrate-and-fire model often allows for analytical examinations [109].

However, the quadratic integrate-and-fire neuron has some severe limitations with

regard to capturing the biological diversity. Mammalian neurons do not only show

the behaviour of integrators but many of them have the property of being a resonator

with many functional consequences. The quadratic integrate-and-fire model is, for every

choice of parameters, an integrator and thus not able to capture the dynamics of res-

onator neurons. Moreover, the model is not able to capture another important feature of

some mammalian neurons, the so-called bursting, that is to say, the ability to fire pulses

or bursts of several spikes with a high frequency followed by a period of quiescence

[105, 109].

Simple Model of Izhikevich One of the two major disadvantages of the quadratic

integrate-and-fire neurons is its inability to produce burst firing, a property seen in many

mammalian neurons which is hypothesised to have important functional consequences

[106]. To overcome this shortcoming, Izhikevich [105] proposed a generalisation of the

quadratic integrate-and-fire model that has nearly the same computational efficiency but

is capable of producing biologically plausible firing patterns. At the heart of this model
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lies the fact that intrinsic burst firing, that is, resulting from intrinsic currents not from a

time-dependent input, is typically achieved by the interplay of time scales, fast spiking

and a slower modulation by a resonant current [109].

Therefore, Izhikevich [105] proposed the following model

dv

dt
= 0.04 · v2 + 5 · v + 140− u+ I (4.11)

du

dt
= a · (b · v − u), (4.12)

with a reset v ← c and u ← u+ d whenever

v ≥ 30 mV. (4.13)

Again, v describes the membrane potential and u is now the recovery variable enabling

burst firing. Furthermore, the model has four dimensionless parameters a, b, c, d which

determine the firing behaviour of the neuron. Note that both variables are dimensionless,

but the model is scaled (see Equation 4.11) so that the membrane potential has mV scale

and the time scale is ms. The model reproduces the most common firing behaviours seen

experimentally.

Adaptive Exponential Integrate-and-Fire Similar to the simple model of Izhikevich

discussed above, the adaptive exponential integrate-and-firemodel, introduced by Brette

and Gerstner [28], is a non-linear generalisation of the integrate and fire model. It is given

by
dv

dt
= −

1

C
(gL(v − EL) + gLΔT e

V −VT
ΔT − u+ I), (4.14)

du

dt
=

1

τu
(a(v − EL))− u, (4.15)

where C is the membrane capacitance, u is an adaptation variable, I the synaptic current,

EL is the resting potential, Δt is the slope factor and Vt is the threshold potential. Again,

if a threshold is reached, in this case Vpeak = 20mV, the model is said to fire a spike and

the membrane potential and the adaptation variable are reset to

v ← EL (4.16)

and

u ← u+ b, (4.17)

respectively.
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The behaviour of the adaptive exponential integrate-and-fire model is very similar to

the simple model of Izhikevich. It is also able to reproduce a large variety of different

firing behaviours of biological neurons, such as burst firing, sub-threshold oscillations

and spike-frequency adaptation, if the parameters are adapted reasonably [28].

4.2.3. Hodgkin-Huxley Type Neurons

The original model proposed by Hodgkin and Huxley in 1952 described the generation

of an action potential in the axon of the giant squid [91]. The original model is given by

C
dv

dt
= ḡL(v − EL) + ḡKn

4(v − EK) + ḡNam
3h(v − ENa) + I, (4.18)

where C is again the membrane capacitance, Ei and ḡi (i ∈ {L,K,Na}) are the reversal

potentials and maximum conductances for the ionic currents, respectively. The variables

m, n and h describe activation and inactivation of the ionic currents, sodium and potas-

sium in this case, and are called gating variables.

Hodgkin-Huxley (HH) type models use activation and inactivation variables as well

as maximum conductances, as in Equation 4.18, to describe the contributions of ionic

currents to the temporal evolution of the membrane potential [87]. Again, the evolution

of these gating variables, describing the influence of specific ionic currents, is described

by differential equations of the form

dn

dt
= αn(v)(1− n)− βn(v)n, (4.19)

where αn(v) describes the voltage-dependent transition of a channel from a closed to an

open state, and βn(v) the transition from open to closed. Another way of expressing these

relations is

τn(v)
dn

dt
= n∞(v)− n, (4.20)

where

τn(v) =
1

αn(v) + βn(v)
(4.21)

and

n∞(v) =
αn(v)

αn(v) + βn(v)
. (4.22)

Consequently, if the voltage v is fixed, n approaches the limit n∞(v) exponentially with

the time constant τn(v). The functions α and β, which play a key role in the description of

the ionic currents, are usually fit to experimental data. However, to get a feel for the form

these functions, it is useful to take a closer look at them. Thermodynamic arguments
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suggest that these functions are exponential, thus making the functions in Equation 4.22

a sigmoid function of the form:

n∞(v) =
1

1 + (Aβ/Aα)exp((Bα −Bβ)V/VT )
, (4.23)

where Aα, Aβ , Bα and Bβ are constants [74]. Still, in a lot of practical cases, the best fit

might not be a sigmoid function and other forms are used.

4.2.4. Multi-Compartment Neuron Models

Figure 4.4.: Depiction of an equivalent circuit model describing the coupling of a somatic, a den-

dritic and an axonal compartment.

So far, single-compartment neuron models have been presented, that is to say neu-

ron models that do not consider the structural morphology of the neurons. However,

in animal and human brains, neurons have evolved into complex and elaborate struc-

tures with intricate dendritic trees. It is obvious that such an evolution must have func-

tional implications and, in order to fully capture these consequences, more realistic neu-

ron models need to be investigated. Constructing morphologically more detailed neuron

models than single-compartment neurons requires splitting the neuronal morphology

into sections or compartments. For every compartment, the membrane potential along

it is assumed constant. The number of compartments used determines how realistic the
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representation of the neuron is. So for every compartment k, the temporal evolution of

the membrane potential is described by

C
dvk
dt

= −ik + Ik/Ak + gk,k+1(vk+1 − vk) + gk,k−1(vk−1 − vk), (4.24)

where ik is the total ionic current, Ik is the inward current, Ak is the surface area of the

compartment and the two last terms describe the current flow between compartment k

and its adjacent compartments k + 1 and k − 1 [52]. If the compartment only has one

neighbouring compartment, there is only one term in Equation 4.24. For a branch this

results in three terms in Equation 4.24. The constants gi,j determine the coupling strength

of two adjacent compartments and are calculated using Ohm’s law [52]. They depend on

the lengths Li and Lj and the radii ai and aj , respectively, of the two compartments and

are given by [52]:

gi,j =
aia

2
j

rLLi(Lia2j + Lja2i )
. (4.25)

Efficient ways to numerically integrate multi-compartment neurons are discussed in

Section 4.4.1.

4.2.5. Comparison and Evaluation

The choice of the model for the computational units strongly depends on the purpose

of the model and the type of the problem. The HH-type model is the best model to

study how neuronal behaviour depends on neurophysiological parameters because it is

the only type of model that combines biophysically meaningful parameters with a wide

variety of neurocomputational properties (Table 4.2, [109]). However, the main drawback

of the HH-type models is the computational complexity with an approximate number of

1200 floating point operations (FLOPS) to simulate the model for 1ms (see Table 4.2).

The simulation of large networks (> 1000 neurons) of these types of neurons has become

possible over the last decade, but is still very time-consuming [105, 106, 109].

Numerous more efficient models are available to simulate large networks of neurons,

which however sacrifice the physiological reference to the parameters. The most efficient

models are the simple and quadratic integrate-and-fire models (see Table 4.2). However,

neither can fully replicate fundamental properties of spiking neurons, the integrate-and-

fire model even failing to exhibit almost all of these properties [109]. The simple model

proposed by Izhikevich [105] gives a very good trade-off between rich neurocomputa-

tional properties and low computational costs, it can reproduce a wide variety of spik-

ing patterns and is only slightly more expensive than the integrate-and-fire model. The
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exponential integrate-and-fire model has similar properties as the simple model and a

comparable computational complexity [28].

Table 4.2.: Comparison of the computational properties and complexity of different neuron mod-

els (data from [106]). The integrate-and-fire model is the most commonly used neuron model and

the quadratic integrate-and-fire neuron the most commonly used generalisation. The Izhikevich

neuron model can reproduce these important features with little additional computational com-

plexity, but it still does not have biophysically meaningful parameters. The Hodgkin-Huxley type

neuron models do have meaningful parameters, while reproducing the important characteristics.

However, this comes at the expense of dramatically increased computational costs.

Quadratic Hodgkin-Huxley

Models Integrate-and-Fire Integrate-and-Fire Izhikevich Type

Biophysically NO NO NO YES

Meaningful

Regular YES YES YES YES

Spiking

Bursting NO NO YES YES

Spike Frequ. NO NO YES YES

Adaptation

Resonator NO NO YES YES

Integrator YES YES YES YES

Sub-threshold NO NO YES YES

Oscillations

FLOPS/ms 5 7 13 1200
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4.3. Modelling Networks

4.3.1. Connections in Rate-Based Models

In firing rate network models the activity of a computational unit is described by its firing

rate η. In order to connect these units, it has to be defined how the time-varying firing

rates ηpre of N pre-synaptic neurons determine the firing rate ηpost of one particular post-

synaptic neuron. Starting with one action potential from one pre-synaptic neuron b, the

synaptic current arriving at the post-synaptic neuron a at time t = 0 is defined by two

factors: the weight wba, which describes the strength of the connection between these

two neurons and the synaptic kernel Ks(t), which describes the current produced by a

single spike arriving at neuron a. For all pre-synaptic neurons b1 · · · bN projecting to the

neuron a, all the weights can be written into a single weight vector w. Furthermore, if

the linear summation of spikes at one synapse is assumed, the total synaptic current Is at

neuron a at time t for a sequence of spikes arriving at times tj is defined as:

Is =

N�

i=1

wbia
�

tj<t

Ks(t− tj) (4.26)

To find out the firing rate that results from this synaptic current, the temporal evolu-

tion of the synaptic input current can be written as

τs
dIs
dt

= −Is + w · ηpre (4.27)

with the firing rate ηpost = F (Is), where F is the steady-state firing rate as a function of

the somatic current (see [52]). Note that in equation 4.27, w and ηpre are vectors and the

· denotes the inner product between these vectors. This formulation, however, assumes

that the post-synaptic firing rate follows the synaptic current instantaneously. If it is

assumed that this is not the case, this results in the membrane potential being a low-pass

filtered version of the synaptic current (see [52]). Therefore, a low-pass filtered version of

the steady-state firing rate is often taken as the time-dependent firing rate, resulting in

τr
dηpost
dt

= −ηpost + F (Is(t)). (4.28)

Here, the time constant τr determines how the firing rate follows the fluctuations of the

synaptic current. If τr << τs, it can be approximated that equation 4.28 rapidly relaxes to

its equilibrium, and this model is reduced to the instantaneous steady-state firing model.

On the contrary, if τr >> τs, Is can be replaced by w · ηpre, resulting in

τr
dηpost
dt

= −ηpost + F (w · ηpre). (4.29)
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4.3.2. Connections in Spiking Models

In the brain, information is exchanged by neurons via axons and dendrites, which are

connected by synapses. Although there are other types of synapses, such as gap junc-

tions, this work focusses on chemical synapses, since only those play an important role

in the questions addressed here and were implemented in the models.

In most models, the axon is modelled as a delay line and, if the details of the synapse

properties are not relevant, a certain function is taken to relate the incoming of a spike to

a resulting post-synaptic potential.

A simple approach to model chemical synapses, is to increase the conductance g at a

synapse every time a spike arrives by a certain amount gmax and, in the absence of spikes,

letting the conductance g decay exponentially:

dg

dt
= −g/τ, (4.30)

where the time constant τ governs the time course of the decay and can vary as much

as from 3 − 5ms for fast glutamatergic synapses (e.g. AMPA receptors) to 150ms for

slow glutamatergic (e.g NMDA receptors), or slow GABAergic synapses (e.g. GABAB

receptors) [52, 107].

Instead of assuming an instantaneous effect as above, a slightly more realistic ap-

proach is modelling the changing conductance with a so-called alpha function given by

the equation

g(t) = gmax
t

τ
e(1−t/τ), (4.31)

where the peak of the conductance is not reached instantaneously, but at time t = τ after

the arrival of the spike.

Most of the available neural simulators use an even more general form, the so-called

double exponential function given by

g(t) =
Agmax
τ1 − τ2

(e−t/τ1 − e−t/τ2), (4.32)

for τ1 > τ2. A is a normalisation factor chosen so that the maximum of g is gmax. The two

time constants describe the rise and the decay time of the PSP.
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4.4. Implementation and Efficiency

This section deals with the analysis and simulation of networks of neurons. Existing

software packages for construction, simulation and analysis of network models are also

reviewed.

4.4.1. Numerical Solutions to Coupled Differential Equations

The numerical techniques to solve the systems of coupled differential equations arising

in the context of network models are described. For the sake of brevity, only methods that

are commonly used in neural network modelling and neural simulators are considered.

The differential equations arising in the context of modelling neurons and networks

of neurons, typically are of the following form (see 4.2,4.3):

dyi
dt

= f(t, y1, y2, . . . , yN ), i = 1, . . . , N. (4.33)

For the sake of simplicity, this subsequently will be abbreviated to

dy

dt
= f(t). (4.34)

There are various numerical methods to solve this kind of coupled equations [22, 89,

140], which can be divided into two categories: explicit and implicit methods. While

explicit methods only make use of old, previously calculated values, implicit methods

are formulated with the new values expressed in a function of the new value that still

has to be calculated. This implies that an additional method to solve these equations is

needed.

Explicit Methods

Explicit or Forward Euler The forward Eulermethod is a very simple numerical method

for the solution of Equation 4.34. For a time step Δt, the solution y at time t+Δt is given

by

y(t+Δt) = y(t) + f(t)Δt. (4.35)

This is equal to an approximation by a Taylor series expansion

y(t+Δt) = y(t) +
dy

dt
Δt+

1

2

d2y

dt2
(Δt)2 +

1

6

d3y

dt3
(Δt)3 + . . . , (4.36)

where the terms of higher order than 1 have been neglected. In Equation 4.35 only previ-

ously known values of y are used, hence, this is an explicit method.
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4. Computational Foundations

The advantages of the forward Euler method are its simplicity, making it very easy to

implement, and its low computational complexity, because no costly operations must be

performed [22, 89, 140]. However, the method suffers from instability and inaccuracy if,

the chosen time step Δt is too large [22, 89, 140]. This means that the time step has to be

chosen carefully and has to be quite small compared to other methods, thus reducing the

speed of the overall simulations.

Adams-Bashforth As explained above, the forward Euler method cuts a Taylor series

expansion after order one, which results in a coarse approximation, and leads to insta-

bility and inaccuracy. One way to approximate the truncated higher order derivatives is

to use past values of f(t). The Adams-Bashforth method does exactly this and can be

written as

y(t+Δt) = y(t) + Δt(c0f(t) + c1f(t−Δt) + c2f(t− 2Δt) + . . .+ cnf(t− nΔt)). (4.37)

The used number n of previous time steps determines the order of the Adams-Bashforth

method, that is, if n previous time steps are used then until the (n + 1)th derivative is

approximated in the Taylor series expansion. Thus, the Adams-Bashforth method is said

to be of (n + 1)th order. However, the coefficients ci in equation 4.37 have to be deter-

mined. This can be done by expanding f(t− iΔt) in a Taylor series and then comparing

equation 4.37 with equation 4.36. Higher order Adams-Bashforth methods reduce the

error introduced by the truncation of the Taylor series expansion and thus the error in-

troduced at each time step. Still, the overall cumulative error over many time steps may

be large because of the extrapolation from past values, which might not be related to the

future value. This strongly depends on the function f(t): If f(t) varies smoothly in time,

a higher order method usually gives more accurate results; but if f(t) changes rapidly

and sharply, an Adams-Bashforth method of lower order is more beneficial [22, 140].

Exponential Euler Another explicit integration method is the exponential Eulermethod

[133]. This is an efficient and accurate method, which relies on the fact that the typical

equations can be rewritten in the form

dy

dt
= A−By, (4.38)

where A and B might depend on y and t. Afterwards, the solution can be approximated,

for time step Δt, by

y(t+Δt) = y(t)D + (A/B(1−D), (4.39)
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4.4. Implementation and Efficiency

where D is defined as

D = e−BΔt. (4.40)

Equation 4.39 holds if A and B are constants [22]. However, if A and B are assumed

not to change much from t to t+Δt, the equation is an approximation of the solution even

for non-constant A and B. A rigorous analysis of the error introduced by the exponential

Euler scheme is difficult. Nonetheless, in practice, this method shows very accurate re-

sults for most types of models and allows for larger time steps than the above-mentioned

methods [22].

Implicit Methods In contrast to the explicit methods covered before, in implicit meth-

ods, the right-hand side of the equation not only depends on old function values, but also

on the new value that still has to be determined.

Backward Euler The backward Euler method is one example for an implicit method.

It uses

y(t+Δt) = y(t) + f(t+Δt)Δt. (4.41)

Since the right hand side of the equation does not explicitly give an expression that

can be evaluated, an additional method is needed to solve this equation. Furthermore,

the truncation error in 4.41 is the same of that from equation 4.35, except for the sign.

This leads to the question, why implicit methods should be used at all, if the error is the

same as for explicit methods, but an additional method is needed to solve it. However,

the cumulative error of implicit methods is usually considerably smaller [104].

Crank-Nicholson The Crank-Nicholson method exploits the trapezoidal rule of nu-

merical integration. This results in a mixture of the forward and backward Euler meth-

ods. Since the sign of the second order derivatives, neglected in forward and backward

Euler schemes, have opposite signs for these two methods, an average of both leads to a

cancellation of error terms. Hence, the Crank-Nicholsonmethod is given by

y(t+Δt) = y(t) + (f(t) + f(t+Δt))
Δt

2
. (4.42)
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4. Computational Foundations

4.4.2. Neural Simulators

Numerous different software programs and libraries exist for the construction, simula-

tion and analysis of networks of neurons at all different levels of abstraction.

The neuroConstruct software tool [76] was chosen to built the model and Neuron

[88, 89] was used to run the simulations. neuroConstruct is a software package specif-

ically dedicated to the design of biologically detailed, multi-compartment 3-D neuron

models and networks, but it is not a neural simulator, that is, it does not provide routines

to solve the system of differential equations to simulate a network of neurons. Never-

theless, it offers some distinct advantages over the use of a plain neural simulator for the

design and simulation of our network. Firstly, it has a powerful, yet user-friendly, graph-

ical user interface to design the network. Secondly, it offers a Python interface allowing

automation of parameter searches or large numbers of simulations, as it is the case for

the work presented here. Thirdly, it has a large pool of example projects to build on from.

Finally, most importantly, it offers the possibility to generate simulator code for most of

the generally used neural simulators, such as Genesis [22, 23], Neuron [88, 89] or Moose

[62, 169, 170], and a simulator-independent representation of the network model in neu-

roML [77]. All simulations presented in this work were performed using Neuron, with its

default numerical integration method, which is an optimisation of the Crank-Nicholson

method for branching cables [88].

26



5. Theories of Computation in the Primary

Visual Cortex

This chapter reviews the state-of-the-art of theories and models of the primary visual

cortex (V1). The chapter is subdivided into two sections. First, existing theories of the

emergence of classical receptive field properties are discussed, followed by theories of

extra-classical receptive field properties, with a focus on centre-surround suppression.

5.1. Classical Receptive Field Properties

Along the visual pathway there are two early, non-cortical processing stages (hereupon

early processing stages), the retina and the thalamic nuclei, until the signal reaches V1

(depicted in Figure 5.1 ). V1 is the first stage where highly selective cells are found and

conducts the basic pre-processing for the two fundamental questions in vision: what

(comprising object recognition) and where (comprising localisation and motion detec-

tion). These two features are then processed in higher visual areas segregated in two

streams, the ventral stream (what) and the dorsal stream (where), as shown in Figure 5.2.

However, since the models implemented in this work focus on V1, theories and models

of higher visual areas are not reviewed. Since the early processing stages in the pathway

provide the sensory input to V1, the concepts of early processing needed to understand

the processing of information in V1 are shortly reviewed. For further details on anatomy

and function of the visual system see Appendix A and [46, 138].

Early Processing Stages Photoreceptors transduce the incoming light to electrical ac-

tivity. The first processing of visual information then happens at the retinal ganglion

cells, where the so-called ON-centre and OFF-centre cells, along with other retinal nerve

cells, perform an edge detection by responding most strongly to changes in luminance.

An interesting point is that two distinct pathways emerge already in the retina, repre-

sented by magnocellular (M-type) and parvocellular (P-type) ganglion cells, which are

kept segregated throughout the visual system, which functionally divides thewhat from
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5. Theories of Computation in the Primary Visual Cortex

Figure 5.1.: The visual pathway from the eye to the cortex. Incoming light is converted in the

retina of both eyes. The signal travels along the optic nerve through the optic chiasm to the LGN

in the thalamus. Here it is relayed to the cortical visual areas, starting with the V1 ([93] License:

GFDL).

Figure 5.2.: The two streams in higher visual processing: the ventral stream, also called the what

stream, and the dorsal stream, also called the where stream ([95] License: GFDL).
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5.1. Classical Receptive Field Properties

thewhere information. Important for the scope of this work is the M-pathway. Therefore,

throughout this work, whenever retinal, thalamic or cortical processing is mentioned, it

refers to the processing within the M-pathway (see Appendix A for further details on the

anatomy and function of the retina).

The next stage, the thalamus, is mostly considered as relay station that transfers the

retinal signals to the cortex, namely layer 4C (4Cα for the M-pathway to be exact) of

V1. Similar to the retina, there are again ON-centre and OFF-centre cells. It is important

to note that cells in thalamus, that is, the LGN, have little or no selectivity regarding

orientation, spatial frequency and temporal frequency [54, 98, 99, 183, 184].

Processing in V1 V1 is the first stage in visual processing where highly selective cells

emerge. This appearance of specificity is thought to underlie many important visual

functions such as motion detection, edge detection and object recognition. This specificity

is also found in higher visual areas. However, there is still a debate about the exact

mechanisms underlying the emergence of feature selectivities [187].

The proposed theories and models explaining high selectivity in V1 can be cate-

gorised in two classes: theories attributing emergent selectivity to the convergence of a

weakly selective input from the thalamus (feed-forward models), and theories explain-

ing selectivity as a result of recurrent network activity (recurrent models).

The three main features of V1 neurons are: their specific response to moving stim-

uli (bars or gratings) of a given orientation, their specific response to stimuli with low

spatial frequencies, and their linear (simple) or non-linear (complex) response to moving

sinusoidal gratings.

Feed-Forward Model The division of cells into simple and complex cells dates back

to the seminal work of Hubel and Wiesel [98]. Hubel and Wiesel explained simple cells

as cells receiving a direct afferent input, which then converge onto a distinct class of

cells that show complex behaviour (as illustrated in Figure 5.3 (a)). Note that distinct

classes here means the cells have different computational functions or show different

functional behaviour arising from different embeddings in the network structure, which

does not necessarily mean different morphological and electrophysiological properties

of the neurons, to wit, different cell types. Thus, this theory falls into the category of a

feed-forward theory.

Similarly, the emergence of orientation and spatial selectivity can be explained by a

theory of this type. The spatial arrangement of LGN cells providing convergent input to a

simple cell (the receptive field of the cell), results in a preference for a certain orientation
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5. Theories of Computation in the Primary Visual Cortex

(a) (b) (c)

Figure 5.3.: Different models explaining the emergence of simple and complex cells in V1. (a)

Schematic representation of the feed-forward model of Hubel and Wiesel. (b) Schematic repre-

sentation of the model of Chance et al., where simple cells only receive feed-forward LGN input

and only complex cells have recurrent connections. (c) The model of Tao et al. where recurrent

connectivity is isotropic and the balance between recurrent and feed-forward drive determines

whether cells are simple or complex. (modified from [204].)

or for a certain spatial frequency. In case of orientation selectivity, it is the elongated

shape of the receptive field that generates preference for orientations perpendicular to its

main axis. In case of spatial frequency selectivity, the size and the arrangement of the ON

and OFF regions of the receptive field determines the preference. Directional preference

can also be explained by the position of the ON and OFF regions relative to the direction

of the movement. In addition to the Hubel and Wiesel data [98], there is experimental

support for this theory [40, 44, 66, 171].

Notwithstanding researchers agree that the orientation selectivity predicted by this

kind of architecture would be rather weak [144, 187, 210], and it does not reflect recent

experimental data [199, 210]. Especially the dramatic drop in firing rate of cells in re-

sponse to gratings orthogonal to their preferred orientation, seen in many neurons in

vivo [e.g. 173, 174], cannot be sufficiently explained by this theory [187]. Another factor

is that feed-forward models can be tuned to show high orientation selectivity [34], but

this is only possible for one contrast and produces broadly tuned cells at stimuli having

different contrasts [15, 199, 210]. Furthermore, new experiments on the dynamics of ori-

entation selectivity are also inconsistent with purely feed-forward models [187]. In the

same vein, it can be argued that the attenuation of response to not preferred spatial fre-

quencies seen in V1 neurons can also not be fully explained by the feed-forward model.

The feed-forward model also predicts a clear distinction of the two classes of simple and

complex cells, that is, a clear bimodal distribution. However, recent experiments point to

a continuum, which cannot be fully explained by the feed-forward model [174, 232].

A different model, depicted in Figure 5.3 (b), has been proposed by Chance et al. [39].
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5.1. Classical Receptive Field Properties

The distinction between simple and complex cells in this model stems from the differ-

ences in connectivity. Whereas simple cells only receive feed-forward LGN input, com-

plex cells receive feed-forward input from simple cells and also from recurrent connec-

tions from other complex cells. Therefore, this model is not a pure feed-forward model.

Nonetheless, since simple cells mostly show stronger selectivity than complex cells, the

explanation for the emergence of orientation and spatial frequency selectivity is the same

as for the Hubel and Wiesel type model, and hence the same objections hold.

Recurrent Model Many theories have been proposed that attribute the high selectivity

of cells mainly to recurrent network activity, be it either excitatory [e.g. 15, 197, 211] or

inhibitory [e.g. 64, 144, 210, 231, 232].

The idea behind inhibitory recurrent models is that inhibition is more broadly tuned

than the excitation, arising from feed-forward convergence, and thus a significant sharp-

ening at the preferred frequency is obtained. Two variations exist: phase-sensitive inhi-

bition (often also called push-pull inhibition, [210]) and phase-insensitive inhibition (also

called cross-orientation inhibition [144, 231, 232]). It could be argued that a broadly tuned

inhibition could also be fed forward from the LGN, but there is strong experimental evi-

dence that thalamo-cortical synapses are purely excitatory [30, 70], implying a cortical ori-

gin of inhibition. There is some experimental evidence for this theory from a study block-

ing inhibition pharmacologically (extracellularly) with bicuculline, a GABA-antagonist,

resulting in a significant loss of orientation selectivity [189]. More recent pharmacological

experiments using GABA antagonists have shown similar results [48, 126, 163, 179]. On

the other hand, Nelson et al. reported that inhibition on a single neuron did not affect its

orientation tuning, measured intra-cellularly, by blocking inhibitory currents [153].

The difference between the two types of models, push-pull and cross-orientation re-

current inhibition, is that, in the former, inhibition only occurs in phase with the drifting

grating, whereas in the latter inhibition is phase-insensitive. Still, the phase-sensitivity

in the push-pull model seems unnecessary from a theoretical point of view, and recent

experimental and modelling studies indicate that the inhibition arriving at one neuron

is the sum of many inhibitory neurons with different phase-sensitivities, resulting from

their spatial distribution, and thus phase-insensitive [20, 187, 220].
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5.2. Neural Centre-Surround Suppression

Neurons in V1 however, do not remain ’blind’ to stimulation outside of their CRF, even

though a stimulation does not directly elicit action potentials. Neurons do integrate in-

formation from a large area surrounding their CRF and this information modulates the

neuron’s behaviour in response to a stimulation of its CRF. These modulatory effects are

called extra-classical receptive field properties since they originate from a stimulation

outside of the CRF. One important example of an extra-classical receptive field property

is neural centre-surround suppression, that is to say, the suppressive modulation of the

response to a sinusoidal grating in the CRF by a sinusoidal grating placed in the surround

(strongest suppression for parallel oriented gratings).

The neural mechanisms behind these extra-classical receptive field properties are less

understood than those of classical receptive field properties. On the one hand, they pose

greater challenges to experimenters to be reliably measured and, on the other hand they

depend on the incompletely understood classical phenomena.

Currently, there are three main hypotheses for the emergence of extra-classical recep-

tive field properties, which will be reviewed here, with a focus on neural centre-surround

suppression.

Long-Range Intra-Cortical Connections Probably the oldest theory for the emergence

of centre-surround suppression phenomena was formulated by DeAngelis et al. in 1994

[56]. They proposed that centre-surround suppression was produced by a pool of in-

hibitory neurons connecting to one excitatory, which had spatially offset receptive fields

that surrounded the excitatory neuron and thus created the surround suppression. They

argued that horizontal long-range connections were a plausible candidate for this intra-

cortical inhibition (see Figure 5.4 (a)). This theory gained further support by studies re-

porting that lateral short-range connections might not have the spatial extent to produce

experimentally observed surround field sizes. Furthermore, studies have argued against

extrastriate feedback, and thus in favour of horizontal connections, as the origin of sur-

round suppression by excluding significant influences of visual area V2 on surround sup-

pression [102, 202]. However, these ignore that feedback might also come from visual

areas V3 or MT and also they do not consider the possibility that lateral inhibition might

underlie surround suppression. Another important point is, that centre-surround sup-

pression is even seen in layers that do not receive horizontal connections at all [60, 222].
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(a)

(b)

(c)

Figure 5.4.: Theories of the emergence of centre-surround suppression. (a) The suppression is

mediated by long-range horizontal connections from different hypercolumns. (b) The suppres-

sion is provided by feed-back projections from extra-striate visual areas, such as V2 or V5. (c) The

suppression comes from local, short-range connections within the same hypercolumn.
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Extrastriate Feed-back Another theory for the emergence of extra-classical receptive

field phenomena and, especially, for neural centre-surround suppression is fast feed-back

from higher visual areas, such as V2, V3 or MT (see Figure 5.4 (b)). There is some exper-

imental evidence for this theory as well. Firstly, it is argued that the short-range lateral

connections, but also long-range horizontal connections, cannot fully account for the re-

ported sizes of the suppression fields [6]. Furthermore, strong suppression seems to act

as fast − sometimes also faster than − feed-forward excitation and thus long-range hori-

zontal connections are most likely not delivering this early strong suppression [10]. Sup-

pression propagates for up to 6-8mm at a high velocity of 1m/s, which exceeds both the

length of horizontal connections (3.5-4mm [202]) and also the typical speed of horizon-

tal connections (up to 0.4m/s [79]), but is comparable to feed-back velocities from, for

example, area MT (1m/s [103]). Furthermore, feed-back from higher visual areas is spa-

tially aligned with the feed-forward input from the LGN, and blocking feed-back from

area MT results in reduced suppression strengths [101].

However, there is also experimental evidence against this theory. For example, for

iso-orientation suppression, horizontal and even short-range lateral connections can ac-

count for most of the experimentally observed data [6]. Another factor is that mono-

synaptic, inhibitory feed-back to V1 is very rare, at least in rats [143], making it unlikely

to be the main factor in centre-surround suppression. Moreover, it has been shown that

centre-surround suppression is partially inherited from the LGN [161], and thus the fast

suppression component could merely be a misinterpretation of this forwarded suppres-

sion, keeping in mind that experimental techniques are not yet fully able to distinguish

the different contributions to the centre-surround suppression phenomenon. Also, Webb

et al. [218] have reported centre-surround suppression at spatial and temporal frequen-

cies outside of the preferred range, which is unlikely to elicit responses, and thus feed-

back, in higher areas. Additionally, the studies of Hupe et al. [102] and of Stettler et

al. [202] argue against extrastriate feed-back, as mentioned above. They reported that

centre-surround suppression does not depend on V2 feed-back, and that V2 feed-back

connections do not connect domains of similar orientation preference, thus contradicting

the orientation-dependence of centre-surround suppression seen experimentally. Finally,

probably the most important point is that centre-surround suppression is seen through-

out all layers of V1 including those that do not receive extra-striate feed-back [60, 222].

Short-Range Intra-cortical Connections Recently, the long ignored hypothesis that

centre-surround phenomena might be the result of lateral, short-range, intra-cortical con-

nections has gained more attention (see Figure 5.4 (c)). Wielaard and Sajda [222] showed
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5.2. Neural Centre-Surround Suppression

with an integrate-and-fire model that centre-surround suppression can be explained by

lateral, recurrent connections and a partial inheritance of surround suppression from the

LGN. This is in accordance with centre-surround suppression being present in all layers

of V1. Furthermore, centre-surround suppression is also present in the LGN [161]. This

theory explains centre-surround suppression in a similar way as the recurrent model for

classical receptive field properties explained above. V1 inherits centre-surround suppres-

sion partially from the LGN and afterwards recurrent, lateral, short-range mechanisms

refine the suppression.
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6. A Computational Model of the Primary

Visual Cortex

6.1. Introduction

The network model presented in this work was built around three main design princi-

ples. First, whenever possible, the model should be founded on anatomical and electro-

physiological data. Second, Hodgkin-Huxley (HH) type neuron models were chosen, de-

spite their computational complexity, since the model was designed to serve as a starting

point for a detailed, biophysically plausible community model of the primary visual cor-

tex. Third, high flexibility and extensibility are necessary in order to be the starting point

for a community model. Therefore, the model was designed with neuroConstruct, which

allows for the use of all common neural simulators as well as a simulator-independent

description of the model.

The presented model builds on two already existing models of primary visual cortex

(V1) [160, 204, 205, 231, 232]. The modelling of the lateral geniculate nucleus (LGN) in-

put and its convergence pattern onto V1 cells was adopted from a previously developed

model [204, 205, 231, 232]. The pattern of intra-cortical connections was taken from the

model of Oliveira and Roque [160]. Both of these models have similar intra-cortical con-

nectivity profiles, such that the lateral connectivity is isotropic and there is no explicit

distinction between simple and complex cells with regard to the connectivity profile. The

latter model differs from the former in that the connections from excitatory to inhibitory

cells are not primarily local short-range but rather in rings of mid-range connections.

This connectivity scheme was adopted due to its important role in the centre-surround

suppression, something that was not addressed in either of the mentioned models. The

ring shaped connectivity leads to higher transfer of inhibition between centre and sur-

round. Thus, the influence of the surround on the centre activity increases. However, the

number of connections used by Oliveira and Roque [160] was adapted to match recent

anatomical data on cortical connectivity [17].

With regard to the design principles mentioned above, the presented model also ex-

tends the two existent models of Zhu et al. [232] and of Oliveira and Roque [160]. The
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neuron models used here are structurally and dynamically more complex than in the pre-

vious models, which use integrate-and-fire point neurons and simpler multi-compartment

HH-type neurons, respectively. In comparison with the integrate-and-fire point neurons,

the neuron model used here has the advantage of having biophysically meaningful pa-

rameters and is thus more strongly constraint by experimental data. In comparison with

the simpler HH-type neurons, the inclusion of more active ion channels allows for more

realistic neuronal dynamics and a better extensibility of the neurons. Furthermore, the

use of neuroConstruct and thus the possibility to generate code for different simulator

systems, as well as a simulator-independent description, makes it possible to exchange

the model between different research groups, simplifying result replication and valida-

tion. What is more, it is uncomplicated to exchange the neuron model used in this net-

work within the neuroConstruct environment allowing for both the incorporation of more

anatomical or electrophysiological details, and the incorporation of more abstract neuron

models.

6.2. Methods

6.2.1. A Detailed Multi-Compartment Neural Network Model of the Primary

Visual Cortex

6.2.1.1. Single Cell Models

Two different types of neurons were implemented in the model: an excitatory spiny stel-

late cell, typically found in layer 4 of V1, and an inhibitory basket cell, found throughout

all layers of V1. The spiny stellate neuron was chosen because layer 4 serves as a first

cortical stage of visual information processing [132]. So, strictly speaking, the present

model represents the input layer of V1. The basket cell was chosen because it is the

predominant inhibitory interneuron in V1 [46]. Both single neuron models are multi-

compartment HH-type with twelve and eight compartments, respectively. Figure 6.1

shows a schematic depiction of the two neuron models.

Ion Channels All model neurons were equipped with a set of 11 active ion channels,

as implemented in the neuroConstruct model of Traub et al. [209] (developed in [208] and

[50]). These ion channels were chosen over other types [e.g. 160] since they represent

a generic set, which is found throughout cortex, and they allow for a wide variety of

different firing behaviours [209], thus making the single cell models easily generalisable.
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(a) (b)

Figure 6.1.: Schematic view of the two model neurons. (a) The inhibitory basket cell consisted

of eight compartments in total, divided into two somatic, four dendritic and two axonal com-

partments. NMDA receptors target soma and dendrites. (b) The excitatory spiny stellate cell

consisted of 12 compartments in total, divided into two somatic, eight dendritic and two axonal

compartments. AMPA and GABA receptors target soma and dendrites.

These 11 active conductances were the following:

1. Sodium conductances

• Fast, transient sodium (gNa(F ))

• Persistent sodium (gNa(P ))

2. Potassium conductances

• Delayed rectifier potassium (gK(DR))

• Transient, inactivating A-type potassium (gK(A))

• Slow after-hyper-polarising potassium (gK(AHP ))

• Fast voltage- and calcium-dependent potassium (gK(C))

• M-type potassium (gK(M))

3. Calcium conductances

• High-threshold calcium (gCa(T ))

• Low-threshold calcium (gCa(L))
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4. Mixed conductances

• Anomalous rectifier conductance (gAR)

Electrotonic Parameters and Reversal Potentials The membrane resistivities for the

soma and the dendrites were 50,000 Ω/cm2 and 25,000 Ω/cm2 for spiny stellate neu-

rons and basket cells, respectively. Axonal membrane resistivity was smaller, with 1,000

Ω/cm2 for both cell types. Internal resistivity was also the same for soma and dendrites,

and was set to 250Ω/cm and 200Ω/cm for spiny stellate neurons and basket cells, respec-

tively. Again, internal resistivity was lower for the axons and set to 100 Ω/cm in both cell

types [209]. The reversal potentials for the different ionic conductances are summarised

in table 6.1.

Spiny Stellate Neurons Layer 4 spiny stellate cells were modelled to be regular spik-

ing (RS) neurons with spike frequency adaptation, although some of these neurons may

have intrinsic bursting (IB) properties [47]. Nevertheless, the majority of spiny stellate

neurons in layer 4 are RS [14]. Firing rate adaptation was achieved by an adjustment

of the muscarinic KM and the afterhyperpolarising KAHP current. Table 6.2 shows the

membrane conductance densities for the spiny stellate neuron in soma, dendrite and

axon compartments.

Basket Cell The basket cell was chosen as the model cortical inhibitory neuron because

it represents the predominant interneuron type found in layer 4 [46]. These cells show

so-called fast spiking (FS) behaviour, that is, basket cells respond to an activating input

with a very regular high frequency train of spikes [47]. Table 6.3 shows the membrane

conductance densities for the basket cells in soma, dendrite and axon compartments.

Table 6.1.: Reversal Potentials for the different ions: sodium (Na), calcium (Ca), potas-

sium (K), as well as the anomalous rectifier (AR) and the leakage (L).

VNa VCa VL VAR VK

-65

Reversal (basket cells)

Potential 50 125 -40 -100

(mV) -70

(spiny stellate cells)
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Table 6.2.: Membrane conductance densities for the RS spiny stellate neuron (mS/cm2).

gNa(F ) gNa(P ) gK(DR) gK(C) gK(A) gK(M) gK2

Soma 562.5 0.15 375.0 40.0 65.0 4.5 0

Dendrites 28.125 0.075 281.25 40.0 65.0 0.45 0

Axon 1500.0 0.4 1500.0 0 4.33 0 0

gK(AHP ) gCa(L) gCa(T ) gAR

Soma 0.575 0.5 0.1 0.05

Dendrites 0.575 0.5 0.1 0.05

Axon 0 0 0 0

Table 6.3.: Membrane conductance densities for the FS basket cell (mS/cm2).

gNa(F ) gNa(P ) gK(DR) gK(C) gK(A) gK(M) gK2

Soma 65.0 0 1100.0 71.2 0.6 0 0

Dendrites 65.0 0 1105.0 71.2 0.6 0 0

Axon 390.0 0 275.0 0.6 4.33 0 0

gK(AHP ) gCa(L) gCa(T ) gAR

Soma 0 0.1 0 0

Dendrites 0 0.1 0 0

Axon 0 0 0 0
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6.2.1.2. Network Structure and Synaptic Connections

Network Architecture The network model consisted of Ne = 1024 excitatory spiny

stellate neurons and Ni = 256 inhibitory basket cells arranged in a two-dimensional

grid (see Figure 6.2), corresponding to the anatomically found 4:1 ratio of excitatory to

inhibitory cells [17]. A visualisation of the three-dimensional network is shown in Fig-

ure 6.3 and a visualisation of different states of network activity can be found in Figure

6.4. Excitatory cells connected to other excitatory cells in their first, second and third

surrounding rings via α-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)

synapses, and to inhibitory cells in their third, fourth and fifth surrounding rings via

N-Methyl-D-aspartic acid (NMDA) synapses. Inhibitory cells connected to excitatory

cells in their first, second, third and fourth surrounding rings via γ-Amino-butyric acid

synapses of type A (GABAA). The probability of a connection depended on the distance

of the post-synaptic cell from the pre-synaptic cell. For further reference, the number of

excitatory-to-excitatory connections shall be denoted with nee, the number of excitatory-

to-inhibitory connections with nei and the number of inhibitory-to-excitatory connections

with nie and their respective weights with wee, wei and wie. The number of connections

for each type of cell was chosen to match the experimental data presented in [17].

Figure 6.2.: 2-D network structure. Excitatory spiny stellate and inhibitory basket cells are ar-

ranged in a regular two-dimensional grid with the basket cells placed in between the spiny

stellate neurons. Connectivity ranges are illustrated for all three different types of connections:

excitatory-to-excitatory (blue), excitatory-to-inhibitory (cyan) and inhibitory-to-inhibitory (red).

Synaptic Connections Spiny stellate neurons are excitatory and glutamatergic, thus

activate AMPA and NMDA receptors on post-synaptic cells. Basket cells are inhibitory

interneurons and therefore activate GABAA synapses. Activation of GABAB receptors

was not modelled here.
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Figure 6.3.: Visualisation of the network: arrangement of excitatory (green) and inhibitory (red)

neurons.

Synapses were taken from neuroConstruct and were generally modelled as double

exponential functions, where the synaptic conductance g followed

g(t) = max cond ·A · (e
− t

τdecay − e
− t

τrise )

with the normalisation factor A given by

A = e
−

τpeak
τdecay − e

−
τpeak
τrise

and the time τpeak to reach the maximum conductance max cond given by

τpeak =
τdecay · τrise
τdecay − τrise

· ln

�
τdecay
τrise

�

.

Here, τrise and τdecay were the time constants for the rise and the decay of the synaptic

conductance, respectively.

AMPA receptor kinetics were modelled with a maximum conductance max cond =

0.18393972 · 10−6 mS and time constants τrise = 2 ms = τdecay for connections within the

population of excitatory spiny stellate neurons, as provided within the neuroConstruct

simulation environment.
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(a)

(b)

Figure 6.4.: Visualisation of the network in (a) inactive and (b) active states (membrane potential

is colour coded: blue=-90mV to red=+40mV).
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GABAA synapses were modelled as single exponentials, which can be obtained with

the above-mentioned formulas by formally setting the rise time τrise = 0 ms, that is

cancelling the second exponential term. As provided within neuroConstruct, maximum

conductance was set to max cond = 1.04 · 10−5 mS and the decay time constant was

τdecay = 8 ms.

NMDA receptor kinetics were modelled according to Maex et al.[134], together with

the parameters provided with the neuroConstruct package. Importantly, the time con-

stants for rise and decay were chosen to be 1 ms and 133.33 ms, respectively.

6.2.1.3. Input Modelling

Sensory Input The thalamic processing of the input gratings was performed by virtual

LGN units (arranged in a 44 × 44 regular grid) and choosing elongated receptive fields

within these LGN units for every V1 neuron. The works of Zhu et al.[231] and Tao et al.

[204] were followed closely with respective numbers scaled to fit the network size of the

model.

Specifically, 4 × 4 clusters were constructed, having receptive fields with the same

width, that is, either one, two or four. These clusters were randomly distributed across

the network. As in Zhu et al. [231], one-sixth of the V1 cells had width one, one third had

width two and one half had width four. Furthermore, receptive fields were randomly

chosen to have even or odd symmetry, that is, to have ON-OFF-ON/OFF-ON-OFF sub-

regions or ON-OFF/OFF-ON subregions (see Figure 6.5).

The preferred orientation of a given neuron determined the axis along which the

receptive field of the neuron was aligned. This preferred orientation (between 0◦ and

180◦) was drawn from an artificial orientation map, similar to those previously used

[204, 223, 231]. Having assigned an array of LGN cells as ON- and OFF-input for each V1

neuron, as well as a preferred orientation, the input to one V1 neuron was calculated as

follows [231]:

R±
k (t) =

�

RB ±

� t

0
ds

�

R2

dxG(t− s)A(|xk − x|)I(x, s)

�+
, (6.1)

where ± stood for ON and OFF, respectively. [. . .]+ stood for rectification, to wit, if R

was below zero, it was set to zero. The background firing rate FB was set to 15 Hz [231].

I(x, t) corresponded to the grey value of the presented grating. The temporal (G(t)) and

spatial (A(x)) kernel of the LGN processing were again taken from Zhu et al. [231] and

were as follows:

G(t) =
t5

τ60

�

exp

�

−
t

τ0

�

−

�
τ0
τ1

�6

exp

�

−
t

τ1

��

, (6.2)
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(a) (b) (c)

(d) (e)

Figure 6.5.: Examples illustrating the various receptive field configurations for the V1 cells: (a)

width=1 (b) width=2 and symmetry=odd (c) width=4 and symmetry=odd (d) width=2 and sym-

metry=even (e) width=4 and symmetry=even. The V1 cell is depicted by a black cross and the

black line shows the main axis of the elongated receptive field. Green and red circles represent

LGN cells contributing to the receptive field in ON and OFF blocks, respectively. The cells’ orien-

tation selectivity was approximately orthogonal to the main axis of its receptive field. The width

of the receptive field strongly influenced the spatial frequency preference of the cell.
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A(x) =
a

πσ2
a

exp

�

−

�
�
�
�
x

σa

�
�
�
�

2
�

−
b

πσ2
b

exp

�

−

�
�
�
�
x

σb

�
�
�
�

2
�

. (6.3)

The constants τ0 = 3 ms, τ1 = 5 ms, σa = 0.066, σb = 0.093, a = 1.0, and b = 0.74 were

chosen as in [231] to reflect experimental data.

Background Noise Background noise was introduced as random spike trains arriving

at synapses of both excitatory and inhibitory neurons. The random spike trains were

based on a Poisson process with a given rate. The rate was chosen such that the resulting

spontaneous firing rate in the network, that is, the firing rate when only the noise input

was present, resembled experimentally measured spontaneous activity [75, 174].

6.2.2. Single Neurons - Validation I

The correct functioning of the single neuron models was tested. To this end, current

pulses were injected into the soma of each model neuron type and the responses were

recorded. A variety of different parameters were calculated, based on Nowak et al. [156],

to characterise the neuron’s behaviour and were compared to their biological counter-

parts to validate the models.

Inter-spike Interval Histogram In the classification between bursting and non-bursting

neurons, the inter-spike interval histogram (ISIH) has proven to be very accurate [156].

As can be expected, non-bursting neurons show a unimodal ISIH, because the time differ-

ence between consecutive spikes is roughly similar. In contrast, bursting neurons show

bimodal ISIHs: the inter-spike intervals during a burst are very small, whereas the inter-

spike interval between two bursts is rather long, resulting in two ISIHs peaks. How-

ever, Nowak et al. [156] reported that they could improve the classification by means

of the histograms of the logarithmic values of the inter-spike intervals (the log inter-

spike interval histogram, logISIH). logISIHs show similar distributions as ISIHs for

non-bursting and bursting neurons, but the distinction between both types is more ap-

parent for the logISIHs [156]. Therefore, logISIHs was used as a classification parameter

for non-bursting/bursting and calculated for all cortical model neurons.

Spike Frequency Adaptation Parameter Non-bursting neurons mainly present two

types of firing behaviour: RS and FS. Whereas regular spiking neurons often show an

adaptation of spike frequency in response to prolonged stimulation, fast spiking neurons

hardly show any adaptation.
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The adaptation index Ada50 was calculated in order to quantify the adaptation prop-

erties of neurons [156]. It was defined as

Ada50 =
F50

F100
, (6.4)

where F50 was the number of spikes in the first half of the stimulation period and F100

the number of spikes in the whole period [156]. Neurons without adaptation have an

Ada50 of .5, whereas neurons with stronger adaptation have an Ada50 closer to 1.

Spike Width at Half Height Another parameter that distinguishes between regular and

fast spiking cells is the spike width at half height [156]. While regular spiking cells

have broader spikes, fast spiking neurons usually show much narrower spikes and thus

have a lower spike width at half height [156]. In the model at hand, spike width was

computed for different strengths of stimulation currents and averaged over several action

potentials. Spike width at half heightwas calculated for both cortical model neurons.

f-I Curve The f-I curve, which relates the spike rate (total number of spikes per pulse

normalised by pulse duration) to the strength of the injected current, is another param-

eter used to differentiate between fast from RS cells. Whereas the f-I curve of FS cells

shows a steep slope, RS cells mostly display far less steep f-I curves [156]. In the current

model, the slope of a linear regression to the curve was used as a measure for the current

frequency relationship of the model neuron.

6.2.3. Classical Receptive Field Properties of Network Model Neurons -

Validation II

The first validation section covered essential but basic functions of single cell models.

This section goes one step further and contains the main part of the validation of the

network model.

The validation of the network model covers a variety of features, which are essential

for a model of V1 and which highly discriminate this model from models of other cor-

tical areas. The features investigated in detail are well-known features of V1 neurons,

to wit, simple and complex cells, orientation and direction selectivity, spatial frequency

selectivity, and temporal frequency selectivity. The simulated results were compared to

experimental data as well as simulated data from other models. The network parame-

ters, namely the number of the synaptic connections and their weights, were varied so

that the responses best fit the experimental data. This issue is essential, since the model
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(a) (b) (c) (d)

Figure 6.6.: Sinusoidal grating with an orientation of 0◦ and a spatial frequency of

2
3
2 c/deg at a contrast of (a) .25 (b) .50 (c) .75 (d) 1.0.

was tuned to show these features, so that these are not results from the model, strictly

speaking, but a validation step. In contrast, the results presented subsequently on centre-

surround suppression and on the influence of different aspects of recurrent inhibition,

were obtained with fixed parameters and hence show features resulting from the model,

which predict how the visual system should behave, if the model’s assumptions hold.

These predictions can be used to test the presented model and to explain the mechanism

behind the predictions.

In all analyses of receptive field properties, all cells showing a maximum response

of less than 8Hz throughout the stimulations were excluded from further analysis, as in

empirical studies. This typically led to an exclusion of around 30% of the cells.

6.2.3.1. Simple and Complex Cells

Neurons were divided into simple and complex cells according to their F1/F0 ratio

[195], where F0 was the mean firing rate in response to a drifting sinusoidal grating with

optimal parameters, and F1 was the first harmonic. A cell was classified as simple if

F1/F0 ≥ 1 and as complex if F1/F0 < 1.

6.2.3.2. Orientation and Direction Selectivity

The network was stimulated with sinusoidal gratings of different orientations of move-

ment, ranging from 0◦ to 330◦ in steps of 30◦, to measure the neurons’ preference for a

specific orientation and direction.

The preference for a specific orientation can then be expressed by the orientation

reaction index (ORI)

ORI =
(max− orth)

max
, (6.5)
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where max was the response to the optimal orientation, that is, the orientation to which

the neuron responded strongest, and orth the response to the orientation orthogonal to the

optimal one [75]. An ORI ≥ .7 was considered to characterise an orientation selectivity,

whereas .5 ≤ ORI < .7 was considered to characterise an orientation bias [75]. Note that

sometimes the ratio between orth and max is reported in experimental studies, although

this is merely 1−ORI .

Another parameter that has been proposed to characterise orientation selectivity is

the circular variance (CV) [135]. To calculate this, the spike rate responses r(θi), (i =

1, . . . , 12), were obtained and then the CV was defined as

CV =
|
�2π

0 r(θi) exp(2iθi)|
�2π

0 r
. (6.6)

A cell with high selectivity has a CV around 0, whereas a cell without preference has

a CV= 1 [232]. CV and ORI are highly correlated measures. Still, both were computed in

order to be able to compare the results to different experimental and modelling studies.

ORI and CV give global measures of orientation preference. Additionally, the orien-

tation tuning bandwidth (OBW) can be used to investigate the local behaviour around

the peak and it was calculated as follows

OBW = (θhigh − θlow)/2, (6.7)

where θhigh and θlow were the orientations on both sides of the peak of the linearly in-

terpolated orientation tuning curve, where the response dropped below half the peak

response [232].

The preference for a specific direction was measured by the direction reaction index

(DRI)

DRI =
(max− opp)

max
, (6.8)

where max was the response to the optimal orientation and opp the response to the orien-

tation opposite to the optimal one [75]. Again, if a neuron had a DRI≥.7 it was considered

to be direction selective, and for .5 ≤ DRI < .7 it was considered to have a direction bias.

As argued in Chapter 5, one basic feature of orientation selectivity in V1 neurons is the

independence of the contrast of the presented stimuli. Therefore, the oriented gratings

were presented with three different levels of contrast .25, .5 and .75, to test contrast-

invariance. Examples for a grating at different levels of contrast are shown in Figure

6.6.

Furthermore, it was also tested whether the obtained results were independent from

the random choice of the connections and the random choice of the LGN cells contribut-

ing to receptive fields. Therefore, the random seeds for both choices were changed and
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(a) (b) (c)

Figure 6.7.: A sinusoidal input grating with an orientation 0◦, a contrast of 1.0 and a spa-

tial frequency of (a) 0.125c/deg (b) 0.5c/deg and (c) 2c/deg.

the orientation selectivity test described above was simulated for the generated seeds.

ORI, OBW and CV were computed for these data.

6.2.3.3. Spatial Frequency Selectivity

The spatial tuning of the model neurons within the network was examined using mov-

ing sinusoidal gratings with varying spatial frequency (orientation, direction, temporal

frequency, grating size and contrast stayed fixed) as shown in Figure 6.7.

A total of 17 spatial frequencies were tested ranging from 2−4 = 1/16 c/deg to 24 =

16 c/deg in logarithmic steps of one-half order of magnitude. Two measures to describe

the spatial frequency tuning properties of the cells were calculated: as a local measure,

the spatial frequency tuning bandwidth (SBW), and as a global measure, the low spatial

frequency variance (LSFV) [224, 231]. A difference of Gaussians (DoG) was first fitted for

both measures:

R(r) = r0 + k1e

�

−
(r−µ1)

2

2σ2
1

�

− k2e

�

−
(r−µ2)

2

2σ2
2

�

(6.9)

to the spike responses r, where all parameters were kept free [182, 224, 232].

The SBW was defined, similarly to the case of orientation tuning curves, as

SBW = log2(sfhigh)− log2(sflow), (6.10)

where again sfhigh and sflow were the spatial frequencies around the peak, where the

response dropped below half the peak response in the fitted response function.

Following Zhu et al. [232], the LSFV was computed using the following equation,
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introduced by Xing et al. [224],

LSFV =

�sfopt
sfopt/16

r(sf)(log16(sf)− log16(sfopt))
2

�sfopt
sfopt/16

r(sf)
. (6.11)

The LSFV is close to 0 for highly selective cells, whereas it is approximately .3 for non-

selective, low-pass cells. LSFV shows a high correlation with another measure of low spa-

tial frequency attenuation: the low spatial frequency suppression ratio (LSFSR), which is

the ratio between the response at the lowest spatial frequency and the response at the

optimal spatial frequency [e.g. 224]. However, the LSFV takes into account all data of the

lower limb of the tuning function, whereas the LSFSR only relies on two values and thus

does not fully reflect the attenuation at low frequencies. Therefore, only the LSFV was

calculated for the spatial frequency tuning data.

6.2.3.4. Temporal Selectivity

The temporal tuning properties of the network neurons was investigated using mov-

ing sinusoidal gratings with varying temporal frequency (orientation, direction, spatial

frequency, grating size and contrast stayed fixed). A range of 15 temporal frequencies

between 1-15 Hz in steps of 1 Hz was tested.

6.2.3.5. Contrast Response

Another important issue in the validation of the network model was the cells’ contrast

response, since centre-surround suppression was later investigated for different levels of

contrast.

Moving sinusoidal gratings of varying contrasts were used and the contrast response

functions of the single cells were calculated and then compared to experimental data.

Centred gratings of size 10 × 10 cells with standard orientation (0◦), spatial frequency

(23/2 c/deg) and temporal frequency (3Hz) were used at four different levels of contrast,

namely .1, .2, .4 and .8 (as in [226]).

The responses R(C), where C ∈ {.1, .2, .4, .8} represented the level of contrast, were

normalised so that the maximum response equalled 1. This normalisation allowed for

a better comparability to physiological and psychophysical data. A standard contrast

response function:

R(C) =
k · Cp

(1 + a · Cq)
, (6.12)
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Table 6.4.: Summary of the different parameter sets for the sinusoidal gratings used to

test the classical receptive field property stimuli.

Orientation Spatial Temporal Contrast Size

Frequ. Frequ.

Orientation 0◦ - 330◦ fixed at fixed at 1.0 44× 44

& Direction Sel. 12 steps 23/2 c/deg 3Hz

Test

Spatial fixed at 2−4 - 24 c/deg fixed at 1.0 44× 44

Frequency Sel. 0◦ 17 logarithmic steps 3Hz

Test of
√
2

Temporal fixed at fixed at 1-15Hz 1.0 44× 44

Frequency Sel. 0◦ 23/2 c/deg 15 steps

Test

Contrast 0◦ - 330◦ fixed at fixed at .25− .75 44× 44

Dependence 12 steps 23/2 c/deg 3Hz 3 steps

Test

was fitted, where the parameters k, a, p and q were chosen within the ranges reported

in physiological and psychophysical studies (see [68, 226]). Boynton et al. proposed a

different contrast response function given by

R(C) =
c · Cx+y

(Cy + ·σy)
, (6.13)

However, as Figure 6.8 shows, both functions are very similar for parameter ranges used

in these studies. The ranges are summarised in Table 6.5. This permitted direct compari-

son between model and experimental data.

6.2.4. Neural Centre-Surround Suppression

After a thorough validation of the network model as described in the previous sections,

all model parameters were subsequently fixed in order to explore the emerging centre-

surround interactions.

6.2.4.1. Centre-Surround Suppression for Sinusoidal Gratings

The centre-surround suppression properties emerging in response to drifting sinusoidal

gratings were explored here. To this end, a moving sinusoidal grating of varying con-
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Table 6.5.: Parameter ranges used for the fitting of the contrast response function in 6.12

to the contrast responses. Ranges were taken from physiological and psychophysical

studies [68, 226].

Parameter Range

k 0.5-2

a 0.005-0.05

p 2.2-2.6

q 1.6-2.2

Figure 6.8.: Standard contrast response functions from Equations 6.12 (red) and 6.13 (black). Both

are expansive for low contrasts and saturate for higher contrasts. (Parameters: k = 1, a = 0.01,

p = 2.3 and q = 1.9 for Equation 6.12; c = 1, x = 0.4, y = 1.9 and σ = 0.15 for Equation 6.13.)
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trast (.1, .2, .4 and .8) and fixed orientation (0◦), spatial frequency (23/2) and temporal

frequency (3Hz) was presented, to a centred patch of size 10× 10 cells. In the surround,

an additional drifting sinusoidal grating was presented with the same parameters as the

centre grating except for the contrast. The surround grating could have either a low (.2

or .4) or a high contrast value (.8 or .95). An additional baseline condition with only the

centre patches at the four different contrasts was also acquired. The suppression index

(SI) for each cell was calculated to quantify the suppression effect:

SI =
Rsurround
Rbaseline

, (6.14)

where Rsurround was the firing rate at a certain surround contrast, and Rbaseline was the

firing rate at the same centre contrast but without a surround grating. An SI< 1 indicated

suppression whereas, an SI> 1 indicated facilitation.

However, suppression indices were only calculated for a small fraction of the network

population. The reason for this was twofold. In the first place, since the main interest lay

in centre-surround suppression, only a centre patch of 8 × 8 cells was selected, because

their respective receptive fields lay entirely within the centre grating. This meant that

centre-surround effects were only observed for those cells, whereas all others neurons

covered parts of the surround grating with their receptive fields and thus did not qual-

ify for the study of centre-surround effects. In the second, since the orientation of the

gratings was fixed at 0◦, only cells that lay in a 4 × 4 region around 0◦ of the artificial

orientation map (from which the orientation preference was drawn) were included in the

final analysis. This ensured that the orientation of the grating was close to the preferred

orientation of the cell.

Summarising, 20 simulations (four baseline simulations at contrasts of .1, .2, .4 and .8;

16 = 4 × 4 surround simulations, for each centre contrast of .1, .2, .4 and .8, and every

surround contrast of .2, .4, .8 and .95) were performed and, for each surround simulation,

suppression indices were acquired for the above-mentioned 4× 4 region.

6.2.4.2. Centre-Surround Suppression for Contrast Texture Patterns

Furthermore, in order to compare the behaviour of the model with the experimental data

from the study presented in Chapter 7, contrast texture patterns as those used in psy-

chophysical measurements were used here [e.g. 43, 51]. Centre-only texture patterns were

used as depicted in Figure 6.9 (b) and (c), the contrast of the patterns was varied, starting

from .05 going up to .6 in steps of 0.025. Additionally, centre-surround texture patterns

(Figure 6.9 (a)) with a fixed centre contrast of .4 and a fixed surround contrast of .95 were
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(a) (b) (c)

Figure 6.9.: Example centre-surround and centre-only contrast texture pattern stimuli. (a)

Centre-surround stimulus with a centre contrast of .4 and surround contrast of .95. (b)+(c) Centre-

only stimuli with a contrast of .05 and .6, respectively.

presented in two conditions: a small surround condition, where the surround region was

six times larger than the centre region, which encompassed a circle with a diameter of six

cells, and a large surround condition, where the surround region was seven times larger.

These ratios of surround sizes to centre sizes matched psychophysical experiments [51].

The texture patterns consisted of dark and bright regions, where the dark regions and

the bright regions had one specific grey value each, giving the texture a certain contrast.

The average intensity, however, was always constant regardless of the contrast of the

texture pattern, thus guaranteeing that global intensity differences did not confound the

responses.

Here, again, a typical contrast response function was first fitted to the responses of

individual neurons, given by

R(C) =
k · Cp

(1 + a · Cq)
, (6.15)

where R was the firing rate, k a constant and a, p and q were free parameters. From this

fitted response function, the predicted firing rate at C = .4 was calculated and compared

to the actual values in the two surround conditions (’large’ and ’small’). Furthermore,

the fitted response function was used in order to compute the contrast Cm at which the

predicted response equalled the actual response in each of the two conditions. These con-

trasts were termed matching contrasts for the ’large surround condition’ and the ’small

surround condition’, respectively.
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6.2.5. Mechanisms of Emergent Classical Receptive Field Properties

The issues of how strongly the feature selectivity in the model depended on lateral inhi-

bition (i.e. recurrent activity) and how strongly it depended on input tuning (i.e. feed-

forward projection) were also of importance. Due to the computational complexity of the

model, analysis was restricted to the most important case: orientation selectivity.

In order to calculate the tuning of the input arriving at one excitatory cell, the rate

r was calculated from the rates of all LGN cells contributing to this cells receptive field,

either ON or OFF. However, adding biophysically detailed models of the LGN cells to

the network would have substantially increased the computational complexity and was

therefore beyond the scope of this work. Hence, the rate r was translated into spike trains

using a simple inhomogeneous Poisson process. A spike train with this time-varying rate

r(t) as a firing rate was then simulated by using an inhomogeneous Poisson process λ(t).

The inhomogeneous Poisson process with time-dependent rate r(t) was implemented by

simulating a homogeneous Poisson process λ�(t) of rate rmax with

rmax = max
t

r(t), (6.16)

that is, the maximum rate over time t. Having simulated this homogeneous Poisson

process λ�(t), a spike train with a constant instantaneous firing rate rmax was obtained. A

spike in this spike train occurring at time t was then accepted with the probability p(t) =

λ(t)/λ�(t). This resulted in an inhomogeneous Poisson process with a time-dependent

rate r(t), a procedure called the thinning algorithm [125]. Having constructed spike

trains based on the LGN input received by one cell, the same measures for orientation

selectivity could be calculated as for the excitatory cell output spike trains. This allowed

for the comparison of orientation tuning before and after recurrent network activity.

Additionally, the influence of the two different types of network inhibition was in-

vestigated: feed-forward and feed-back inhibition. The effect of feed-forward inhibition,

namely the inhibition triggered by the LGN input to inhibitory neurons, only depended

on the weight of inhibitory connections onto excitatory cells. The effect of feed-back in-

hibition, that is, the inhibition caused by the activation of inhibitory neurons by lateral

connections from excitatory neurons, also depended on the weight of the connections

from these excitatory cells onto the inhibitory neurons. These different kinds of inhibi-

tion were disentangled by varying the weights of both types of connections. Firstly, the

weight wie of inhibitory neurons on excitatory cells was varied, using the values 0.1, 0.2,

0.3, 0.4 and 0.5. The simulations described in Section 6.2.3.2 to test the orientation selec-

tivity of the network cells were repeated. Secondly, the weight wei of excitatory neurons

on inhibitory cells was varied using the values 0.005, 0.01, 0.02, 0.05 and 0.1. The simu-
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lations described in Section 6.2.3.2 were then repeated with these changed parameters to

test the orientation selectivity of the network cells. Furthermore, the tuning properties of

the inhibitory cells were calculated analogously to the case of excitatory neurons.

6.2.6. The Role of Recurrent Inhibition in Classical Receptive Field

Properties and Centre-Surround Suppression

To explore the role of recurrent inhibition in classical receptive field properties and centre-

surround suppression, different parameters governing recurrent inhibition were system-

atically varied. Essentially, seven parameters governed the amount of inhibition excita-

tory cells received in the network model:

1. The weight wie of inhibitory connections to excitatory cells

2. The weight wei of excitatory connections to inhibitory cells

3. The number Ni of inhibitory cells

4. The number nie of inhibitory connections to excitatory cells

5. The number nei of excitatory connections to inhibitory cells

6. The time constants τ of the GABAA synapses, that is, the inhibitory synapses on

excitatory cells

7. The time constants η of the NMDA synapses, that is, the excitatory synapses on

inhibitory cells

Note that, since the weight was multiplied with the maximal conductance in order

to calculate the effect on the post-synaptic cell, changing the weight was equivalent to

changing the maximal conductance. Furthermore, the NMDA synapse in the model had a

long decay time, so that small, physiologically plausible variations thereof were unlikely

to have any effect. Therefore, the time constants of the NMDA synapses were not varied.

Otherwise, the above-mentioned parameters were systematically varied to explore

their influence on orientation selectivity, as an important CRF property, on contrast re-

sponse properties and on centre-surround suppression properties (both in response to

sinusoidal gratings and contrast texture patterns). The methods used were analogous

to those explained in Sections 6.2.3.2, 6.2.3.5, 6.2.4.1 and 6.2.4.2, respectively. However,

in the case of orientation selectivity, orientation of the grating was varied at four spatial

frequencies and at seven different sizes. The variation of parameters is detailed in Table

6.6.
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Table 6.6.: Variations of the six parameters governing inhibition in the network model. The dif-

ferent parameter values tested are shown. Note that in each case only a single parameter was

varied while the other parameters were fixed at the standard value.

Range of Variation Standard Value

Inhibitory-to-Excitatory Weight wie 0.1, 0.2, 0.3, 0.4 and 0.5 0.275

Excitatory-to-Inhibitory Weight wei 0.005, 0.01, 0.02, 0.05 and 0.1 0.01

# Inhibitory Cells Ni 100, 88 and 77% 100%=256

# Inhibitory-to-Excitatory Connections nie 100, 88 and 64% 100%=21, 752

# Excitatory-to-Inhibitory Connections nei 100, 82 and 62% 100%=49, 900

Decay Time Constant GABAA τ 15, 20, 25, 30 and 50ms 8ms

6.3. Results 1

6.3.1. Single Neurons - Validation I

6.3.1.1. Spiny Stellate Neuron

Spiny stellate neurons were modelled to have RS type with frequency adaptation. Fig-

ure 6.10 shows the response of a spiny stellate neuron to an injection current of 0.167 nA

and 0.333 nA, respectively. The RS behaviour as well as the adaptation of the spike fre-

quency is clearly visible. Moreover, quantitative measures were calculated to categorise

the model neurons based on the approach presented in [156]. To this end, 11 simulations

were made with varying input currents ranging from 0.1 to 1.1nA in steps of 0.1nA.

From this data, spike width at half height, the adaptation measure Ada50 and the slope

of the f-I-curve were calculated (see Section 6.2.2). Table 6.7 summarises the results of

the quantitative analysis for the spiny stellate neuron. The average spike width, approx-

imately 0.27ms, and the gradual slope of the f-I-curve, approximately 104Hz/nA, fit

well with experimental data [156]. The Ada50 of approximately .7 showed that the spiny

stellate neurons’ spike-frequency adaptation was in agreement with experimental values

[156].

6.3.1.2. Basket Cell

This cell type has FS firing properties in vivo[47]. Figure 6.13 shows the response of a bas-

ket cell to an injection of 0.1nA and 0.3nA respectively. The fast spiking (FS) behaviour

without adaptation was clearly visible. Again, quantitative measures were calculated on

1Parts of this section have been published in [146], [147] and [148].
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(a) (b)

Figure 6.10.: Firing behaviour of the spiny stellate neurons in layer 4 demonstrating RS be-

haviour with frequency adaptation. Response of a spiny stellate neuron to somatic input currents

of (a) 0.167nA and (b) 0.333nA. The onset of the input current is marked in red.

Figure 6.11.: Histogram of the log values of the inter-spike interval of the RS spiny stellate neu-

ron. The distribution in the histogram is clearly unimodal suggesting a non-bursting neuron, as

expected for an RS cell.
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Table 6.7.: Quantitative parameters characterising this model neuron as an RS cell and compari-

son with experimental data [156].

Model Experimental Range (Nowak et al. [156])

Spike width (ms) 0.2629 (± 0.0076) 0.18 - 1.33

Ada50 .6925 (± .1387) .41 - .73

f-I slope (Hz/nA) 104.37 45 - 375

Figure 6.12.: f-I curve of the spiny stellate cell showing RS behaviour. Dots represent firing rates

at different input currents and the solid line is a linear fit calculated to estimate the f-I slope in

Table 6.7. (Note that, although an exponential fit seemed more appropriate for the data, a linear

fit was performed in order to be comparable to the experimental data from Nowak et al. [156].)

61



6. A Computational Model of the Primary Visual Cortex

(a) (b)

Figure 6.13.: Firing behaviour of a basket cell demonstrating fast spiking (FS) type. The response

of a basket cell to different input currents: (a) somatic input current of 0.1nA. (b) somatic input

current of 0.3nA. The onset of stimulation is marked in red.

the basis of eleven simulations with input currents ranging from 0.1nA to 1.1nA in steps

of 0.1nA (see 6.2.2). The results are shown in Table 6.8. The spike width was smaller

than for the RS type spiny stellate cell and the slope of the f-I curve much steeper, overall

indicating a fast spiking type neuron. Furthermore, there is no adaptation, as indicated

by the adaptation index of approximately 0.51.

Table 6.8.: Quantitative parameters characterising this model neuron as an FS cell. As a reference

parameter ranges from experimental data are shown [156]

Model Experimental Range (Nowak et al. [156])

Spike width (ms) 0.1913 (±0.0085) 0.16 - 0.48

Ada50 .5147 (± .0241) .39 - .58

f-I slope (Hz/nA) 595.25 106 - 783

6.3.2. Classical Receptive Field Properties of Network Model Neurons -

Validation II

After a validation of the single cell models, the network properties of the neurons were

investigated. This meant that, contrary to the previous section, the following properties

did not depend solely on the intrinsic properties of the neurons, but crucially depended
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Figure 6.14.: Histogram of the log values of the inter-spike interval of the FS interneuron. The

distribution in the histogram is clearly unimodal, suggesting a non-bursting neuron, as expected

for an FS cell.

Figure 6.15.: f-I curve of the basket cell showing fast spiking behaviour. Dots represent firing

rates at different input currents and the solid line is a linear fit calculated to estimate the f-I slope

in Table 6.8.
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on the embedding of the neurons in the network. In all subsequent sections of this chap-

ter network properties were tested and explored. Since most experiments only report

network properties for excitatory neurons [e.g. 174], all modelling studies mainly inves-

tigate network properties for these. Therefore, in the following sections of this chapter all

reported parameters describing network properties are for the population of excitatory

neurons, unless stated otherwise.

6.3.2.1. Simple and Complex Cells

All cells that showed only weak responses (responses < 8Hz for all stimulation condi-

tions) to the stimuli were excluded, resulting in an exclusion of approximately 30 % of

the cells.

Cells were divided into simple and complex, based on the F1/F0 ratio, where F1

was the fundamental of their response to drifting sinusoidal gratings and F0 the mean

response [195]. Note that this is not related to the firing behaviour of the neurons dis-

cussed in the previous section. Showing simple or complex behaviour is a network prop-

erty of the neuron and, hence, was only calculated for the excitatory neurons, which were

all modelled to show RS firing behaviour.

Figure 6.16 shows the distribution of the ratios in the network model. More simple

(70.97%) than complex cells (29.03%) were found, which is in agreement with experi-

mental data (e.g. 69.32% simple cells [190]). However, recent experimental data suggest

a slightly larger number of complex cells [174, 232]. Furthermore, a relatively large num-

ber of cells with a ratio close to 1 was found, which is not seen experimentally.

6.3.2.2. Orientation and Direction Selectivity

Again the same exclusion criteria for weakly responding cells were used as above.

Orientation selectivity comparable to experimental studies [174, 232] and to other

models [160, 232] was found. The results are summarised in Table 6.9. As reported in

previous studies, ORI and CV strongly correlated with each other (r = −.71, p < .0001).

Therefore, focus was subsequently mainly set on CV, which is also primarily used by

experimentalists and has a broader dynamic range (see [174]). Figure 6.18 shows an ex-

ample tuning curve of a cell which was sharply tuned, as shown by the high ORI, the low

CV and the low OBW. Figure 6.17 shows a comparison of the average CV of the model

with the experimental data from Ringach et al. [174]. Both local (OBW) and global mea-

sures (ORI and CV) were in good agreement with the experimental data. Furthermore,

the average firing rates of the model neurons were also comparable to experimental data.
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Figure 6.16.: Histogram of the distribution of F1/F0 ratios of the neurons. A ratio < 1 indicated

a complex cell whereas a ratio ≥ 1 indicated a simple cell. The distribution was similar to experi-

mentally measured distributions in layer 4Cα [190]. However, the current model had a relatively

large proportions of neurons with an F1/F0 ratio around 1.

Further, orientation selectivity was investigated in the model, presenting orientation

stimuli at four different spatial frequencies 2−
1
2 , 2

1
2 , 2

3
2 and 2

5
2 c/deg (note that the dis-

tribution of preferred spatial frequencies was very broad, peaking at 2
1
2 c/deg, as seen in

Figure 6.25) and at seven different sizes (10 × 10 to 40 × 40) of the grating. The trial at

the preferred spatial frequency and size of each cell was then chosen, thus resembling

experimental procedures. Furthermore, this procedure was very similar to the approach

used for the modelling part in Zhu et al. [232]. This procedure led to an increase in se-

lectivity measures in the model, matching experimental data even more closely. 72.32%

of the cells showed a selective response and a further 12.20% showed a biased response.

Furthermore, mean ORI (.77± .25) and CV (.52± .24) were well in agreement with exper-

imental data (see Table 6.9).

52.76% of cells with a bias for orientation also showed a selectivity (DRI ≥ .7) and

another 27.73% had a bias ( DRI ≥ .5) for the direction of the moving sinusoidal grating,

which fit well with experimentally determined values (49.10% selective cells and 21.62%

biased cells [55]) . Slightly more selective and biased cells were found in the model com-

pared to previous experiments. However, as can be seen in Figure 6.19, the model had
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(a) (b)

(c) (d)

Figure 6.17.: Histogram of the CV of cells in (a) the present network model compared to

(b) the model of Zhu et al. [232], (c) the experimental data from Zhu et al. [232], and (d)

the experimental data from Ringach et al. [174]. (Images (b) and (c) modified from [232])
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(a)

(b)

Figure 6.18.: (a) Example orientation tuning curve for a selective cell in the network model with

a preferred orientation of 150◦. The cell ORI=.96, CV=.44 and OBW=12.23◦. The cell also showed

a bias for direction with DRI=.5. (b) Reference orientation tuning curve from a selective cell

(CV=.37) of the network model of Zhu et al. [232]. Note that in both curves the angle of rotation

covers a full circle, that is 0-360◦, which means that each orientation between 0-180◦ is presented

again in the range 180-360◦ but with the sinusoidal grating moving in opposite direction. Con-

sequently, the tuning curve shows to peaks at approximately the same orientation. (Image (b)

modified from [232].)
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Table 6.9.: Summarised orientation selectivity data (mean± std) and comparison to other studies

and models. The data were compared to an experimental study of Ringach et al. [174], an experi-

mental study from Gur et al. [81], and an experimental and modelling study from Zhu et al. [232].

Note that only the data from layer 4Cα from the Ringach et al. study were used. Unfortunately,

no standard deviation is given in the work of Gur et al.

Model Ringach et al. Gur et al. Zhu et al. Zhu et al.

(experiment) (model)

ORI .63 ± .30 .71 ± .25 - - -

CV .74±.21 .58 ± .27 .48 ± - .54 ± .24 .73 ± .13

Maximum Firing 36.5 ± 53.1 45.8 ± 30.0 - - -

Rate (Hz)

OBW 23.7 ± 35.7 34.4 ± 29.0 29.0 ± - - -

(a) (b)

Figure 6.19.: Histogram of the DRI in (a) the network model compared to (b) experimen-

tal data from DeValois et al. [55]. Both histograms show that a large part of the cells

were direction selective or biased, but that there was a continual strength distribution of

preference for a direction.
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approximately 10% of cells with a direction bias with a DRI only slightly above .5. Figure

6.19 shows the distribution of DRI in the network model compared to the experimental

data from DeValois et al. [55].

The network model was tested for the contrast-dependence of orientation selectivity

using oriented sinusoidal gratings at three different contrasts: .25, .50 and .75. Again, the

orientation was varied from 0◦ to 330◦ in steps of 30◦, and the global selectivity measures

ORI and CV, as well as the local measure OBW were calculated, as before. Figure 6.20

shows the results from the orientation selectivity test at the three different levels of con-

trast. The selectivity increased with increasing contrast for the two global measures ORI

and CV, as well as for the OBW. Importantly, as shown in the example in Figure 6.21, the

preference for a specific orientation did not strongly change with contrast for most of the

cells.

(a) (b)

Figure 6.20.: Orientation selectivity for three different levels of contrasts: .25, .5 and .75. (a)

Global measures for orientation selectivity (ORI and CV). (b) Local measure for orientation selec-

tivity (OBW). Mean values and standard errors are shown.

Since the cortical network connectivity of the model, as well as the formation of re-

ceptive fields depended on random choices, it was tested whether the specific choice of

connectivities and receptive fields, respectively, influenced the results. However, run-

ning all the simulations for all feature selectivities and centre-surround suppression tests

for different choices of random seeds was not feasible. Thus, exemplary, the influence of

the random seed choice on the orientation selectivity, the most important property of our

network, was tested. Two additional configurations were chosen for each: the cortical

network connectivity and the receptive field mapping, respectively. Figure 6.22 sum-
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Figure 6.21.: An example orientation tuning curve at three different levels of contrast (.25, .50

and .75). In this cell, the preferred orientation did not change and the tuning strength increased

with increasing contrast.
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marises the results from this test, showing that both global (a) and local (b) measures did

not considerably differ in all four cases and were similar to the standard configuration.

(a) (b)

Figure 6.22.: Orientation selectivity for different random seeds. 1 and 2 depict the variation of the

random seed for the cortical connections, 3 and 4 depict the two variations for the random seed

in the formation of receptive fields, and 5 depicts the standard configuration. (a) Global measures

of orientation selectivity (CV and ORI). (b) Local measure of orientation selectivity (OBW). Mean

values and standard errors are shown.

6.3.2.3. Spatial Frequency Selectivity

The spatial frequency selectivity properties of the network model were tested using mov-

ing sinusoidal gratings with fixed standard parameters while varying the spatial fre-

quency (see Section 6.2.3.3). Seventeen different spatial frequencies were used, ranging

from 2−4 = 1/16 to 24 = 16 in logarithmic steps of one-half order of magnitude. From

those data, the LSFV and SBW were calculated, which described the global and the local

attenuation at low frequencies as explained in Section 6.2.3.3. Again, all cells showing

only weak responses (< 8Hz for all stimulation conditions) to the stimuli were excluded

(approximately 30 %). Figure 6.23 displays the spatial frequency selectivity of the model,

and compares them to experimental and modelling data from other studies [231, 232].

It shows that the model matched well with experimental data and outperformed other

modelling studies with respect to the global tuning measured with the LSFV. An example

for a spatial tuning curve and a comparison to the model of Zhu et al. [232] is given in

Figure 6.24. Furthermore, a high correlation between SBW and LSFV was found (Pear-

71



6. A Computational Model of the Primary Visual Cortex

son’s correlation; r = .69, p < .0001), as in experimental studies [224]. This correlation

further underpinned the validity of the model, because it showed that the local measure

of tuning around the peak (the SBW) agreed with the more global measure (the LSFV).

Similar to animal experiments [e.g. 224], about 20% of the cells had no measurable SBW.

However, the model’s SBW (3.34 ± 2.39 octaves) was higher and more diverse than in

experimental data (experimental data 1.56 ± 0.19 octaves; estimated from [54], Figure 7)).

Another interesting matter was, that the firing rate at optimal parameters (32.90 ± 18.69

Hz) again agreed with experimental data [231]. Figure 6.25 shows the distribution of

preferred spatial frequencies in the network model and compares it to experimental data

from DeValois et al. [54]. It can be seen that both distributions covered the same range of

spatial frequencies and peaked at approximately the same frequency.

Figure 6.23.: Comparison of the spatial frequency selectivity (the mean LSFV; error bars repre-

sent standard deviation) of (1) the network model with (2) experimental and (3) model data from

Zhu et al. [231].

6.3.2.4. Temporal Frequency Selection

The temporal frequency selectivity properties of the network neurons were explored us-

ing moving sinusoidal gratings with fixed standard parameters (orientation 0◦, spatial

frequency 23/2 c/deg, contrast 100% and size 44 × 44). Temporal frequency was varied

between 1 and 15Hz. Figure 6.26 shows the results of the temporal frequency selectivity

properties of the network model. A broad distribution of preferred temporal frequencies

was found between 1 and 9Hz, with an average preferred frequency of 4.66Hz, dove-

tailing with experimental data (e.g. average preferred temporal frequency 2.9Hz [69]).
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(a) (b)

(c)

Figure 6.24.: Spatial tuning curves from (a) the present network model, (b) the network model

from Zhu et al. [232] and (c) an LGN input neuron. All curves show an attenuation at low spatial

frequencies except for the LGN input neuron. Note that in the present network the modelling

of the LGN input to the network model was adopted from the model of Zhu et al. [231, 232].

(Images: (b) modified from Zhu et al. [232], (c) after Zhu et al. [231].)
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(a) (b)

Figure 6.25.: Spatial frequency preference distributions in (a) the network model compared to (b)

experimental data from DeValois et al. [54].

Figure 6.26.: Distribution of preferred temporal frequencies.

74



6.3. Results

Table 6.10.: Resulting parameters (mean ± std) for the standard contrast response function

R(C) = k·Cp

(1+a·Cq) that was fitted to the spiking activity R(C) of single neurons in response to

gratings of four different contrasts (C = .1, .2, .4 and .8).

a k p q r2

0.03 ± 0.02 1.74 ± 0.06 2.29 ± 0.16 1.83 ± 0.20 0.88 ± 0.15

Additionally, the sharp cut-off at around 9Hz was also in good agreement with physio-

logical studies (see also [69]).

6.3.2.5. Contrast Response

The contrast response in the network model was investigated using moving sinusoidal

gratings at different levels of contrast as in physiological [24, 68] and psychophysical

studies [226]. Four different values were used for the contrast of the sinusoidal grating:

.1, .2, .4 and .8. A standard contrast response function was then fitted to the responses

of each of the 16 cells, which had receptive fields that lay fully within the stimulated

10 × 10 region and which had a preferred orientation matching the orientation of the

presented grating (details see 6.2.3.5). The contrast response function could not be fitted

to three cells, because their response was substantially independent from the contrast of

the stimulus and thus excluded them from subsequent analyses. Table 6.10 summarises

the results for the fitted parameters k, a, p and q, as well as the r2-value as a measure

of the goodness of fit. Contrast response curves were very similar to experimentally

observed curves. In general, cells responded weakly to low contrast gratings (.1 and

.2) and responses increased substantially for higher contrasts. Parameters fitted close

to experimental data, with exponents p and q around 2.3 and 1.8 (see Table 6.10) and a

difference p− q of around 0.45, matching well with experimental data [24, 68]. This is not

surprising, the ranges of the fitting parameters were highly restricted to experimentally

found values. However, the high average r2-value (see Table 6.10) shows that, within

these bounds, very good fits to the data could be achieved, showing that simulated and

experimental data match well.

6.3.3. Neural Centre-Surround Suppression

After the thorough validation of the network model in the previous sections, all model

parameters were now fixed and the centre-surround properties of the model were ex-

plored.
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Table 6.11.: Centre-surround suppression for sinusoidal gratings. Suppression indices for four

different centre contrasts in two different surround conditions are shown.

Centre Contrast .1 .2 .4 .8

Low Surround (SI, mean ± std) 1.56 ± 0.27 1.36 ± 0.3 1.14 ± 0.42 0.22 ± 0.06

High Surround (SI, mean ± std) 1.06 ± 0.1 1.29 ± 0.51 0.57 ± 0.15 0.19 ± 0.07

6.3.3.1. Centre-Surround Suppression for Sinusoidal Gratings

Centred moving sinusoidal gratings surrounded by additional sinusoidal gratings of dif-

ferent contrasts were used as explained in Section 6.2.3.5. Suppression indices were cal-

culated for each of the 16 cells with receptive fields that lay fully within the stimulated re-

gion (see also 6.2.3.5) for all 16 possible combination of centre and surround gratings (four

possible centre contrasts .1, .2, .4 and .8 and four possible surround contrasts .2, .4, .8 and

.95). The results were then divided into two groups based on the contrast of the surround

grating: a low surround contrast group, encompassing the results from simulations with

surround contrasts of .2 or .4, and a high surround contrast group, encompassing the

results from simulations with surround contrasts of .8 or .95. Table 6.11 summarises the

results. A high response suppression was found in both low (SI=0.22) and high (SI=0.19)

surround conditions for the high centre contrast, which coincides with experimental data

[112]. Furthermore, a strong facilitation was observed in the low surround condition with

a low centre contrast, also in agreement with experimental findings [226]. This facilita-

tion for low centre contrasts is much weaker for the high surround condition. However,

responses at low contrasts have to be interpreted with caution, since they were weak for

all cells and the influence of noise fluctuations might have been much stronger, relatively,

than for the high centre contrast responses.

6.3.3.2. Centre-Surround Suppression for Contrast Texture Patterns

Centre-surround suppression was additionally tested with a second type of stimulus,

consisting of random contrast texture patterns instead of the moving sinusoidal gratings

described in the previous section. Contrast texture patterns are also commonly used in

psychophysical experiments and thus made it possible to compare the results to a larger

body of experimental work. Here, centre-only patterns as described in 6.2.4.2 were used,

with varying contrasts, starting from .05 going up to .6 in steps of .025. Additionally,

centre-surround patterns with a fixed centre contrast of .4 and a fixed surround contrast

of .95 were presented in two conditions: a small surround condition, where the sur-
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Table 6.12.: Centre-surround suppression results. Predicted response at a contrast of .4 and the

actual responses in the two surround conditions are shown. Furthermore, matching contrasts in

the two surround conditions and the prediction are shown.

Response (Hz) Match (contrast))

(mean± std) (mean± std)

Predicted 40 15.15 ± 19.96 40

Small Surround 5.93 ± 10.13 .2083 ± .1583

Large Surround 5.67 ± 9.91 .2097 ± .1775

round region was six times larger than the centre region, and a large surround condition,

where the surround region was seven times larger (see 6.2.4.2 for more details). A stan-

dard contrast response function (see Section 6.2.3.5) was fitted to the spike rates of each

cell in response to the centre-only stimuli. A predicted response at a contrast of .4 was

then calculated from this fit and compared to the actual responses at .4 contrast in the

two centre-surround conditions. Additionally, the matching contrasts were computed

for both surround conditions, that is, the contrast at which the fitted contrast response

function predicted a spike rate matching the actual spike rate in the surround condition.

This matching contrast gave a measure of the suppression introduced by the surround,

since the difference between the matching contrast and the physical contrast of the stim-

ulus (.4 in this case) can only be attributed to the surround. Hence, a matching contrast

closely below the physical contrast indicates low suppression, whereas a large difference

indicates strong suppression. This procedure is commonly used in psychophysical stud-

ies [e.g. 51].

50 %(32/64) of the cells had to be excluded, either because their response was lower

than 4Hz for all stimuli or because the contrast response function could not be fitted in a

reasonable manner (r2-value lower than .6). Overall, an average r2-value of .64± .14 was

obtained indicating that the contrast response function fitted adequately. The predicted

response at .4 contrast and the response at the two surround conditions are summarised

in Table 6.12. The inclusion of a surround markedly reduced the response of the neu-

rons, that is, the predicted response for a contrast of .4 was substantially larger than the

response in the two surround conditions (see 6.12). Furthermore, a one-tailed t-test was

performed between the predicted and the actual responses, to test whether the surround

significantly reduced the response strength. An additional t-test was conducted between

both surround conditions, to see whether the size of the surround significantly influenced

the reduction.There was a significant difference between actual response and prediction
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(t(62) = 2.21, p < .05 and t(62) = 2.36, p < .05 in the small and the large surround con-

dition, respectively). However, the difference between the two surround conditions was

not significant (p = .92). Additionally, the matching contrasts were calculated for the

response in both surround conditions. These were about .21 in both cases, dovetailing

with psychophysical studies on centre-surround suppression [51].

6.3.4. Mechanisms of Emergent Classical Receptive Field Properties

After the investigation of the centre-surround suppression properties of the network

model, the different mechanisms contributing to the emergence of CRF properties were

explored in more detail. The main goal was to discern the effects of converging input

from LGN at excitatory cells from the effects of recurrent activity from within the corti-

cal layer. Again, the focus was put on orientation selectivity as the most important CRF

phenomenon.

In order to estimate the tuning of the input signal to excitatory cortical cells, ORI,

CV and OBW were calculated on simulated spike trains based on the input rates of the

network neurons (see 6.2.3.2). The classification into selective, biased and non-selective

cells was based on the ORI (as explained in 6.2.3.2). Table 6.13 summarises the orien-

tation selectivity of the LGN input to the network neurons. It can be clearly seen that

the input arriving at excitatory cells in the network was poorly tuned for orientation,

as can be seen in the low ORI, the high CV and the high OBW. This becomes especially

apparent in the distribution of the CV depicted in Figure 6.29. Overall, only a few cells

received input that was highly selective, whereas the majority of cells received input that

was only weakly biased for orientation. Figure 6.28 exemplifies the difference in tuning

between the LGN input of one cell and the response of the cell, demonstrating that the

poor tuning of the input curve was considerably sharpened in the response curve and

that the main effect was a suppression at non-preferred orientations. Table 6.14 shows

the tuning of excitatory neurons of the network in comparison to the tuning of the in-

Table 6.13.: Comparison of the orientation tuning of the LGN input to V1 with the tuning of V1

cells.

ORI CV OBW Selective Biased

(mean ± std.) (mean ± std.) (mean ± std.) Neurons Neurons

LGN Input .47 ± .25 .88 ± .10 64.6 ◦ ± 35.3 ◦ 15.35 % 43.95 %

V1 .63 ± .30 .74 ± .21 23.7 ◦ ± 35.7 ◦ 62.03 % 21.30 %
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(a) (b)

Figure 6.27.: Comparison of the orientation of the network model with the tuning of the LGN

input to the network: (a) CV for the LGN input, and (b) CV for the network . Note that the tuning

of the LGN cells themselves is not shown, but the tuning of the input arriving at V1 network cells,

thus describing the feed-forward part of the orientation tuning.

Table 6.14.: Comparison of the orientation tuning of excitatory V1 cells with inhibitory V1 cells

in the network model.

ORI CV OBW

(mean ± std.) (mean ± std.) (mean ± std.)

V1 inh. .55 ± .26 .85 ± .08 33.5◦ ± 40.4 ◦

V1 exc. .63 ± .30 .74 ± .21 23.7◦ ± 35.7 ◦
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Figure 6.28.: Example orientation tuning curve for a selective cell in the network model having

a preferred orientation of 150◦. The cell had an ORI of .96, a CV of .44 and an OBW of 12.23◦. The

cell also showed a bias for direction with a DRI of .5. Overlaid (dashed line) is the normalised

strength of the LGN input converging onto this cell (with a CV of .75). Inhibition at non-preferred

orientations and sharpening of the tuning was clearly visible.
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hibitory population evidencing that excitatory neurons were more sharply tuned, that is,

showed a higher ORI, a lower CV and a lower OBW. This result also explains the sharp-

ening of orientation tuning when input and output of excitatory cells were compared.

The broader tuning of inhibitory cells was responsible for the suppression of excitatory

cells at non-preferred orientations.

(a) (b)

Figure 6.29.: Comparison of the orientation tuning of the (a) inhibitory cells of the network

model with the tuning of the (b) excitatory cells. The distribution of CV is shifted towards higher

values for the inhibitory cells, indicating a lower tuning.

Figure 6.30 summarises the influence of the inhibitory weight wie on the orientation

selectivity of the network neurons. The other network parameters were kept fixed, es-

pecially the two weights controlling excitatory-to-excitatory and excitatory-to-inhibitory

connections were kept constant. The data clearly showed that stronger recurrent inhibi-

tion increased orientation selectivity in the network neurons, which was reflected in an

increasing ORI, a decreasing CV and a decreasing OBW, as well as increasing percentages

of selective neurons. However, this effect is reversed from the point where the weight ex-

ceeded 0.3, except for the OBW. Figure 6.31 shows the influence of the weight on the

tuning of the population of inhibitory neurons. Again, the tuning of inhibitory neurons

was weaker than for the excitatory cells in all conditions. Furthermore, the global tuning

increased with inhibition, although, in contrast to excitatory neurons, it did not reach a

maximum and then decline but increased monotonically. The local tuning, as reflected by

OBW, increased with increasing inhibition, reached its peak at wie = 0.4 and the slightly

decreased at wie = 0.5. Figure 6.33 summarises the influence of the excitatory weight on

inhibitory neurons wei on the orientation selectivity of the network neurons. It is clear
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(a)

(b)

Figure 6.30.: Evolution of orientation selectivity under increasing strength of inhibition. (a)

Global measures of orientation selectivity (CV and ORI). (b) Local measure of orientation selec-

tivity (OBW) and percentage of selective and biased cells. Mean values and standard errors are

shown.
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(a)

(b)

Figure 6.31.: Evolution of orientation selectivity of inhibitory neurons under increasing strength

of inhibition. (a) Global measures of orientation selectivity (CV and ORI). (b) Local measure of

orientation selectivity (OBW).
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that the influence of the excitation of inhibitory cells, which is controlled by the weight

wei, only had a weak effect on the orientation selectivity of the neurons. ORI and CV

for all tested weights were within a narrow range ([.55 .64] and [.73 .74], respectively),

and also the number of selective and biased cells did not change substantially. Again,

stronger inhibition led to a sharpening of the tuning curve, that is, a decrease in OBW,

even though mean ORI and CV again decreased and increased, respectively, and the to-

tal numbers of selective and biased neurons also decreased. Figure 6.34 summarises the

influence of the excitatory weight on inhibitory neurons wei on the orientation selectivity

of the inhibitory population. While global orientation selectivity decreased (Figure 6.34

(a)), the local tuning around the peak improved (Figure 6.34 (b)).

Figure 6.32.: Evolution of direction selectivity under increasing strength of inhibition wie. Mean

value and standard error are reported.

Additionally, it was assessed whether the direction selectivity was also influenced

by inhibition. Figure 6.32 shows the evolution of the DRI, as well as the percentage of

selective and biased cells with increasing strengths of inhibition. It demonstrates that

direction selectivity increased with increasing inhibitory strength and reached a plateau

at approximately wie = 0.3. However, the influence was not as strong as in the case of

orientation selectivity.
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(a)

(b)

Figure 6.33.: Evolution of orientation selectivity under increasing strength of excitation of in-

hibitory neurons. (a) Global measures of orientation selectivity (CV and ORI). (b) Local measure

of orientation selectivity (OBW) and percentage of selective and biased cells. Mean values and

standard errors are shown.
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(a)

(b)

Figure 6.34.: Evolution of orientation selectivity of inhibitory neurons under increasing strength

of excitation of inhibitory neurons. (a) Global measures of orientation selectivity (CV and ORI).

(b) Local measure of orientation selectivity (OBW) and percentage of selective and biased cells.
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6.3.5. The Role of Recurrent Inhibition in Classical Receptive Field

Properties and Centre-Surround Suppression

The previous section dealt with the mechanisms of orientation selectivity in the network

model, as the most important CRF property. This section covers how orientation selectiv-

ity, contrast response properties and centre-surround properties change as a consequence

of variations in GABAergic inhibition. Therefore, the parameters governing GABAergic

inhibition were modified as explained in Section 6.2.6, subsequently repeating the sim-

ulations testing orientation selectivity, contrast response properties and centre-surround

properties in response to sinusoidal gratings and in response to contrast noise patterns,

as explained in Sections 6.2.3.2, 6.2.3.5, 6.2.4.1 and 6.2.4.2. This section summarises the

results and presents the most important findings. Additional, detailed data are shown in

Appendix B.

6.3.5.1. Weight of Inhibitory Connections on Excitatory Cells

The first parameter varied was the weight wie, controlling the strength of the inhibitory

connections onto excitatory cells. Five different values were chosen, ranging from 0.1 to

0.5 in steps of 0.1. Note that the standard value used in the previous simulations was

0.275, which lay roughly in the middle of the chosen interval. All other parameters of the

network model were kept fixed at their standard values.

Orientation Selectivity Orientation selectivity properties were tested using moving si-

nusoidal gratings varying the orientation of the grating at four different spatial frequen-

cies and seven different sizes. The spatial frequency and size of the grating eliciting the

maximum response was then identified and only the data at these values were analysed.

Measures for orientation selectivity were calculated for the obtained spatial frequency

and size, namely the percentage of selective and selective or biased cells, the ORI and the

CV. Figure 6.35 (a) shows the orientation selectivity for different weights and compares

it to the standard configuration. The orientation selectivity strongly depended on the in-

hibitory weight. For a small inhibitory selectivity is weak, as indicated by the high CV,

the low ORI and the low numbers of selective and selective or biased cells. However,

the selectivity reached a plateau at the standard weight wie = 0.275 and stayed approxi-

mately constant for higher weights.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.35.: Orientation selectivity measures for different parameters governing inhibition: (a)

inhibitory-to-excitatory weight wie, (b) excitatory-to-inhibitory weight wei, (c) amount of in-

hibitory cells Ni, (d) amount of inhibitory-to-excitatory connections nie, (e) amount of excitatory-

to-inhibitory connections nei and (f) GABA decay time constant τ . For CV and ORI mean values

are reported and the error bars show the standard error. For selective and selective or biased cells

the fraction of cells in this category are depicted. As a reference, the standard configuration is also

shown, marked with a red cross.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.36.: r2-values of the fits of the contrast response functions for different parameters

governing inhibition: (a) inhibitory-to-excitatory weight wie, (b) excitatory-to-inhibitory weight

wei, (c) amount of inhibitory cells Ni, (d) amount of inhibitory-to-excitatory connections nie, (e)

amount of excitatory-to-inhibitory connections nei and (f) GABA decay time constant τ . Standard

configurations are shown for comparison and are marked with a red cross.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.37.: Mean suppression indices (error bars depict standard errors) for the size varia-

tion test for different parameters governing inhibition: (a) inhibitory-to-excitatory weight wie,

(b) excitatory-to-inhibitory weight wei, (c) amount of inhibitory cells Ni, (d) amount of inhibitory-

to-excitatory connections nie, (e) amount of excitatory-to-inhibitory connections nei and (f) GABA

decay time constant τ . Standard configurations are marked with a red cross.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.38.: Suppression indices for the two most important conditions (’low-centre/low-

surround’ and ’high-centre/high-surround’) in the centre-surround suppression for sinusoidal

gratings test for different parameters governing inhibition: (a) inhibitory-to-excitatory weightwie,

(b) excitatory-to-inhibitory weight wei, (c) amount of inhibitory cells Ni, (d) amount of inhibitory-

to-excitatory connections nie, (e) amount of excitatory-to-inhibitory connections nei and (f) GABA

decay time constant τ .
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(a) (b)

(c) (d)

(e) (f)

Figure 6.39.: Mean matching contrasts (error bars represent standard errors) for the small and

the large surround conditions in the centre-surround suppression for texture patterns test for

different parameters governing inhibition: (a) inhibitory-to-excitatory weight wie, (b) excitatory-

to-inhibitory weight wei, (c) amount of inhibitory cells Ni, (d) amount of inhibitory-to-excitatory

connections nie, (e) amount of excitatory-to-inhibitory connections nei and (f) GABA decay time

constant τ . The actual physical contrast of the stimulus, 0.4, is marked in red.
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Contrast Response Properties Again, sinusoidal gratings were used at four different

contrasts varying the weight wie in the network model, and a standard contrast response

function was then fitted to the mean of the responses of the 16 cells with receptive fields

that lay fully within the stimulated 10 × 10 region (see 6.2.3.5). Figure 6.36 (a) shows

the results for the r2-value of the fit of the contrast response function to the mean of

the responses of the cells, as a measure of the goodness of fit. The contrast response

function could be fitted independent from the inhibitory weight wie. The goodness of fit,

as indicated by the r2 value, was very good in all cases. Detailed fitting parameters are

shown in the Appendix in Table B.2.

Centre-Surround Suppression for Sinusoidal Gratings In the size variation test, a

certain amount of inhibition was needed, in order to obtain suppression comparable to

the standard configuration. A further increase of the inhibitory weight wie, however, did

not further increase suppression (see Figure 6.37 (a)). Centre-surround suppression in

the high-contrast surrounding condition was surprisingly unaffected by the inhibitory

weight. Only for a low weight wie = 0.1 suppression was notably reduced. Interest-

ingly, centre-surround facilitation for low a centre contrast in the low-surround condition

strongly increased with inhibition (see Figure 6.38 (a)). Additional, detailed data for all

conditions can be found in Tables B.3 and B.4 in the Appendix.

Centre-Surround Suppression for Contrast Texture Patterns Centre-surround sup-

pression in response to texture patterns, highly depended on the inhibitory weight (see

Figure 6.39 (a); full data in Tables B.5 and B.6 in the Appendix). Significant reductions

only occurred, when the weight was in a narrow range around the standard configura-

tion. In this range matching contrasts comparable to the standard configuration could be

seen and there was no significant difference between the two surround conditions. Inter-

estingly, the number of excluded cells was also very high outside of this range. When the

weight was low, cells had a low r2-value indicating a substantial contribution of inhibi-

tion to the contrast response. When the weight was high, cells showed generally weak

responses but high r2-values (Tables B.5 and B.6).

6.3.5.2. Weight of Excitatory Connections on Inhibitory Cells

The weight wei was varied next, controlling the strength of the excitatory connections

onto inhibitory cells. Four different values were chosen: 0.005, 0.02, 0.05 and 0.1. Note

that the standard value used in the previous simulations was 0.01. All other parameters

of the network model were kept fixed at their standard values.
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Orientation Selectivity Orientation selectivity was tested with the different values for

the weight wei in the same way as before. Figure 6.35 (b) shows the orientation selec-

tivity for different weights and compares it to the standard configuration. Orientation

selectivity did not change strongly with varying weight.

Contrast Response Properties Figure 6.36 (b) shows the results for the r2-values of

the fits of the contrast response function to the mean response of the cells for different

weights. Again, the contrast response properties of the network was independent from

the weight. The goodness of fit was also very high (see Figure 6.36 (b)). Fitting parameters

are presented in Table B.8 in the Appendix.

Centre-Surround Suppression for Sinusoidal Gratings In the size variation test,

suppression was unchanged by changes in the weight (see Figure 6.37 (b)). Similarly,

suppression in the high-surround condition was almost independent from the weight.

However, facilitation for low centre contrasts in the low-surround condition decreased

with the weight (see Figure 6.38 (b)). Data for all tested conditions are summarised in the

Appendix (Tables B.9 and B.10).

Centre-Surround Suppression for Contrast Texture Patterns Figure 6.39 (b) shows

the evolution of matching contrasts under increasing excitatory-to-inhibitory weight wei.

Interestingly, lower weights led to lower matching contrasts, hence to higher suppres-

sion. At low weights (0.005 and 0.02) the matching contrasts were comparable to the

standard configuration but only for wei = 0.02 the difference in response was significant.

Higher weights resulted in higher matching contrasts and the responses did not signifi-

cantly differ from each other. The two surround conditions did not produce significantly

different results for the tested weight range. The full data is shown in Tables B.11 and

B.12 in the Appendix.

6.3.5.3. Number of Inhibitory Cells

Here, the number of inhibitory cells was varied by reducing the number of inhibitory

neurons to 88% and 77% of the standard number of cells. All other parameters of the

network model were kept fixed at their standard values.

Orientation Selectivity Orientation selectivity was tested with the different amounts

of inhibitory cells in the same way described previously. Figure 6.35 (c) shows the orien-

tation selectivity for different amounts of inhibitory cells and compares it to the standard
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configuration. The number of inhibitory neurons had a strong effect on orientation selec-

tivity.

Contrast Response Properties Figure 6.36 (c) shows the results for the fit of the con-

trast response function to the mean response of the cells. For both conditions, a rea-

sonable fit of the contrast response function was not possible, indicating a fundamental

change in contrast response in the network model. Full details of the fitting procedure

are shown in Table B.14 in the Appendix.

Centre-Surround Suppression for Sinusoidal Gratings In the size variation test, a

strong influence of the number of neurons could be seen (see Figure 6.37 (c)). Further,

a strong decrease in both suppression and facilitation was seen in the subsequent tests

(Figure 6.38 (c)). Results for all tested conditions are presented in the Appendix (Tables

B.15 and B.16).

Centre-Surround Suppression for Contrast Patterns Figure 6.39 (c) shows the match-

ing contrasts for different amounts of inhibitory neurons in the network model. In the

88% condition, the matching contrasts for the small surround condition and for the large

surround condition did not differ significantly from the actual physical contrast. The

matching contrasts for the two conditions also did not differ significantly. In the 77%

condition, the results were very similar. No significant differences were found either

between the two surround conditions and the actual contrast, or between the two condi-

tions. Hence, in both conditions matching contrasts and responses were higher than the

standard configuration which implies that the amount of inhibitory neurons is an impor-

tant factor for centre-surround suppression in this experimental setting. Additional data

can be found in the Appendix (Tables B.17 and B.18).

6.3.5.4. Number of Inhibitory Connections to Excitatory Cells

Another factor governing intracortical inhibition in network model was the number nie

of connections from inhibitory to excitatory cells. The influence of the number of in-

hibitory connections on the excitatory neurons was investigated by reducing the number

of connections to roughly 88% and 64%, respectively.

Orientation Selectivity Orientation selectivity was tested with the different amounts

of inhibitory connections onto excitatory cells in the same way as before. Figure 6.35 (d)
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shows the orientation selectivity for different amounts of inhibitory connections onto ex-

citatory cells and compares it to the standard configuration. The influence of the amount

of connections was only weak.

Contrast Response Properties Figure 6.36 (d) depicts the results for the fit of the con-

trast response function to the mean response of the cells. Again, a reasonable fit of the

contrast response function was impossible, indicating a change in contrast response in

the network model. All parameters of the fitting procedures are shown in Table B.20 in

the Appendix.

Centre-Surround Suppression for Sinusoidal Gratings Suppression decreased with

decreasing amounts of connections in the size variation test (see Figure 6.37 (d)). Suppres-

sion and facilitation in the two most important conditions also decreased with decreasing

amounts of connections in the subsequent test (see Figure 6.38 (d)). An overview over all

tested conditions can be found in the Appendix (Tables B.21 and B.22).

Centre-Surround Suppression for Contrast Patterns In Figure 6.39 (e) the matching

contrasts for different amounts of excitatory connections are presented. In the 88% condi-

tion, the matching contrasts for the small surround condition and for the large surround

condition did not differ significantly from the actual physical contrast. Furthermore, the

matching contrasts did not differ significantly between both conditions. The results were

very similar in the 64% condition. There were no significant differences either between

the two surround conditions and the actual contrast, or between both conditions. Again,

the matching contrasts in both conditions differed from the standard configuration. The

higher matching contrasts showed that a decrease of inhibitory-to-excitatory connections

reduced the centre-surround suppression. Further data are given in the Appendix (Tables

B.23 and B.24).

6.3.5.5. Number of Excitatory Connections on Inhibitory Cells

Further the number of excitatory connections on inhibitory cells was reduced to 82% and

66%, influencing mainly feed-back inhibitory effects. Again, all other network parame-

ters were fixed at their standard values.

Orientation Selectivity Orientation selectivity was tested with the different numbers

of excitatory connections onto inhibitory cells in the same way as before. Figure 6.35 (e)

shows the orientation selectivity for different amounts of inhibitory cells and compares it
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to the standard configuration. Interestingly, a reduction of excitatory-to-inhibitory con-

nections further increased the orientation tuning.

Contrast Response Properties Figure 6.36 (e) summarises the results for the fit of

the contrast response function to the mean response of the cells. No notable changes

in the contrast response properties could be detected for a change in the amounts of

connections. All fitting parameters can be found in the Appendix (Table B.26).

Centre-Surround Suppression for Sinusoidal Gratings In the size variation test, the

suppression was hardly influenced by the amounts of connections (see Figure 6.37 (e)).

Surprisingly, hardly no suppression at all was seen in the high centre and high surround

condition (Figure 6.38 (e)). Suppression indices for all conditions of both tests are pre-

sented in Tables B.27 and B.28 in the Appendix.

Centre-Surround Suppression for Contrast Texture Patterns In the 82% condition,

the matching contrasts for the small surround condition and for the large surround con-

dition did not differ significantly from the actual physical contrast (Figure 6.39 (e)). The

matching contrasts for both conditions, however, did differ significantly from each other

(Figure 6.39 (e); p = .03). The results were similar in the 66% condition, with no signif-

icant differences between the two surround conditions and the actual contrast, but also

no difference between the two conditions (Figure 6.39 (e)). All matching contrasts were

higher than for the standard configuration, that is, a reduction of excitatory-to-inhibitory

connections reduced the centre-surround suppression. Further data can be found in Ta-

bles B.29 and B.30 in the Appendix.

6.3.5.6. Decay Times at GABAergic Synapses

The last considered factor that governed inhibition in the cortical network model, was the

synaptic decay time constant τ at GABAergic synapses. The time constant τ was changed

using five different values, namely 15, 20, 25, 30 and 50, and all other parameters were

kept fixed.

Orientation Selectivity Again, orientation selectivity was tested with the different time

constants for the inhibitory GABAergic synapses in the same way as before. Figure 6.35

(f) summarises the results for the five conditions. Additionally, for comparison, the re-

sults from same simulations are shown, using the standard time constant τ = 8ms. The

97



6. A Computational Model of the Primary Visual Cortex

prolonged time constants reduced the orientation tuning of the cells, the number of se-

lective and biased cells dropped, the ORI decreased and the CV increased, with respect

to the standard time constant of τ = 8ms. However, the amount of prolongation did not

seem to have an effect on the tuning, since all measures did not differ considerably for

the prolonged time constants tested.

Contrast Response Properties Figure 6.36 (f) summarises the results for the fit of the

contrast response function to the mean response of the cells. The variation of the decay

time constant τ hardly influenced the contrast response properties of the network. An

overview over all fitting parameters is presented in the Appendix in Table B.32.

Centre-Surround Suppression for Sinusoidal Gratings The results of the size vari-

ation test are presented in Figure 6.37 (f). A prolongation of decay times at GABAergic

synapses leads to a small decrease in suppression from 87% to 85%. Again, it did not

matter by how much the decay time constant was increased, the overall suppression

stayed constant. On the contrary, suppression and facilitation were markedly reduced

in the second centre-surround suppression test (see Figure 6.38 (f)). Additional data is

shown in the Appendix in Tables B.33 and B.34.

Centre-Surround Suppression for Contrast Patterns The matching contrasts for the

small surround condition and the large surround condition did not differ significantly

from the actual physical contrast for any of the decay time constant manipulations (Fig-

ure 6.39 (f)). Similarly, the matching contrasts did not differ significantly between the

small and large surround conditions for any of the decay time constants (Figure 6.39 (f)).

However, all matching contrasts were higher than the standard configuration, hence, a

prolongation of the decay times reduced suppression. Additional data is shown in the

Appendix in Tables B.35 and B.36.
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7.1. Introduction

Chapter 1 explained how inhibition as a form of gain control influences the visual proper-

ties of single cells, the classical receptive field properties, as well as extra-classical proper-

ties such as centre-surround suppression. This chapter will deal with the psychophysical

effects of surrounds in humans, that is, the perceptual centre-surround suppression and

its neural correlates.

There are two main effects of surrounds in visual perception: surrounds introduce

bias, that is, the stimuli are perceived different from the physical reality, and they de-

crease sensitivity, that is, they make it harder to detect stimuli. These two effects appear

in different modalities. Chubb et al. [43] found an introduction of bias for luminance and,

especially, for contrast. They demonstrated that the size of the effect depended on the

overlap of spatial frequencies in target and surround stimuli. Furthermore, conditions

such as motion [21, 150], size and orientation are known to be biased by a surround-

ing stimulus. Figure 7.1 shows typical stimuli for luminance, orientation, contrast and

size used in human psychophysical studies. These phenomena are attributed to centre-

surround suppression [206].

However, centre-surround suppression occurs at different stages of visual processing

for the different conditions. Table 7.1 shows the different conditions and the loci where

they occur along the visual pathway. Since the focus of this work lies on the interaction of

recurrent processing within the primary visual cortex (V1) and feed-forward convergence

of lateral geniculate nucleus (LGN) input, the experiments described here concentrate

on contrast discrimination and the introduction of bias in this dimension, which takes

place in LGN and V1. In addition to psychophysical research on centre-surround sup-

pression, several neuroimaging studies have addressed the relationship of psychophys-

ical effects, blood-oxygenation-level dependent (BOLD) responses and neural activity.

Contrast discrimination performance is consistent with responses in V1 obtained with

functional magnetic resonance imaging (fMRI) [24]; and the suppressive effect of neigh-

bouring stimuli [114], as well as orientation-specific inhibitory effects have been shown
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(a) (b)

(c) (d)

Figure 7.1.: Typical psychophysical stimuli for four of the five conditions producing a perceptual

bias in discrimination tasks with surrounds: (a) luminance, (b) orientation, (c) contrast and (d)

size. The centre-surround stimulus is depicted in the middle and several centre-only stimuli are

placed around it. Usually, centre-surround and centre-only stimuli are shown subsequently and

the centre-only stimulus is modified until both stimuli match perceptually. (Image modified from

[206]).
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Visual Attribute Locus

Luminance Retina/LGN

Contrast LGN/V1

Orientation V1/V2/V4

Size V1/V2/V4

Motion MT/MST

Table 7.1.: The five different conditions producing bias and their apparent locus of processing

[e.g. 206].

using fMRI [113]. There is also quantitative agreement between psychophysical surround

effects on contrast discrimination, that is, the introduced bias, and the response suppres-

sion in V1 obtained by fMRI [230].

Since centre-surround suppression relies on inhibition, it is natural to investigate its

link to the neurotransmitter GABA, which is responsible for cortical inhibition. Several

electrophysiological and modelling studies have associated the GABAergic system to

surround effects [7, 185], and all theories of centre-surround suppression presented in

Chapter 3 at least partially attribute centre-surround suppression to inhibition. Further-

more, studies have reported that GABA concentration, measured using magnetic reso-

nance spectroscopy (MRS), is a predictor for BOLD response amplitude in V1 [151] and

also in the anterior cingulate cortex [155]. However, neural dynamics strongly depend

on the balance between excitation and inhibition, and thus not only the inhibitory neuro-

transmitter might be important, but also its excitatory counterpart glutamate, as well as

the ratio between both.

In summary, centre-surround suppression introduces a bias in the perception of vi-

sual stimuli in the presence of surround stimuli. This bias is, at least partially, the result

of inhibitory activity elicited by the surround stimulus and is mediated via GABAergic

inhibition. Hence, retinotopically reduced BOLD responses appear as neural correlates

of centre-surround suppression [230]. Furthermore, the amount of available GABA is a

predictor of neural activity in response to stimulation and hence a predictor of centre-

surround suppression strength.

Interestingly, the introduction of bias is less pronounced in schizophrenic patients and

subjects with schizotypical traits for some conditions, such as contrast [12, 51, 227–229],

motion [203] and size [206, 213, 214]. Furthermore, cognitive and perceptual deficits in

these patients are sometimes attributed to a compromised GABAergic system: the so-

called GABA-Hypothesis of schizophrenia [130]. Evidence for reduced GABA levels
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comes from studies showing a deficient synthesis of glutamate decarboxylase (GAD67),

which is a crucial step in the production of GABA [1, 82, 83, 217]. Indeed, animal exper-

iments where the gene responsible for the production of GAD67 is knocked out, show a

significant reduction in GABA levels [8, 41].

Therefore, a disruption of excitatory and inhibitory balance in cortical circuits might

lie at the core of schizophrenia, which might manifest itself as a ubiquitous deficit in

context processing.

For this reason, centre-surround suppression and its neural correlates were investi-

gated in an experimental study, involving schizophrenic patients and healthy controls. It

used a psychophysical paradigm, and measured neurotransmitter concentrations (GABA

and glutamate) using MRS and BOLD responses to high contrast stimuli using fMRI. The

hypotheses were:

1. Hypothesis:

The concentration ofGABA (the ratio of glutamate/GABA) in V1 is reduced

(increased) for schizophrenic patients.

2. Hypothesis:

The contrast-evoked BOLD response in V1 is reduced for schizophrenic

patients.

3. Hypothesis:

Perceptual centre-surround suppression in schizophrenic patients is re-

duced in comparison to healthy controls.

4. Hypothesis:

The strength of perceptual centre-surround suppression and the concentra-

tion of GABA (the glutamate/GABA ratio) are correlated in V1.

5. Hypothesis:

The visually evoked BOLD response in V1 and the strength of perceptual

centre-surround suppression are correlated.

6. Hypothesis:

The visually evoked BOLD response in V1 and the concentration of GABA

(the glutamate/GABA ratio) in V1 are correlated.
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7.2. Methods

7.2.1. Subjects

Forty patients (21 male) who met DSM-IV criteria for schizophrenia or schizoaffective

disorder were recruited from the Department of Psychiatry of the UKSH/University

of Lübeck, both from psychiatric inpatient units and from an outpatient treatment unit

(most of the latter were former inpatients of the psychiatric hospital). All patients were

under treatment with atypical neuroleptics at the time of examination. The Structured

Clinical Interview for DSM-IV (SCID) was applied, and the medical recordings were re-

viewed to determine the diagnosis and rule out patients with co-morbid addiction dis-

orders and severe somatic disorders. Furthermore, patients on benzodiazepine medica-

tion within seven days before examination were excluded. All interviews and diagnoses

were conducted by the staff of the Department of Psychiatry of the UKSH/University of

Lübeck.

Overall, 25 patients had to be excluded from the final analysis (see Figure 7.2 and

Table 7.2 for a summary). The mean age of the 15 patients (9 male) included in the final

analysis was 34.13 ± 8.76 years, and the mean education time was 11.9 ± 2.78 years (see

Figure 7.4). Clinical symptoms were assessed with the Positive and Negative Syndrome

Scale (PANSS, [115]). Some of the patients were in an acute state of illness at the time of

examination, some suffered of a predominant negative syndrome, while another group

could be regarded as remitted according to the criteria of the Remission in Schizophrenia

Criteria Working Group [5].

Table 7.2.: Exclusion criteria for the study.

Threshold

General Neurological Disorder,

Substance Abuse

MRS Cramer-Rao bound > 30 for GABA or glutamate

fMRI Severe motion artefacts

Vision Contrast sensitivity threshold > 2.5%

Visual acuity < 0.8 (logMAR)

Psychophysics Inter-trial variability > 8.0%

Twenty-five healthy controls (14 male) with no history of mental illness or neurolog-

ical disorder were recruited from the community. Thirteen control participants (8 male)

were included in the final analysis. The other 12 subjects were excluded on the basis
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Figure 7.2.: Depiction of the exclusion process in the patient group.

Table 7.3.: Summary of the visual acuity and contrast sensitivity in both groups.

Patient Group Control Group Difference

Visual Acuity 1.28±0.21 1.34±0.32 n.s. p = .55

(logMAR)

Contrast Sensitivity 0.87±0.26 0.78±0.29 n.s. p = .42

(% Contrast)

of the same criteria as the patients (see Figure 7.3 for a summary). None of the control

subjects were under psychotropic medication. They were matched in age (paired t-test,

p = .29) and sex (χ2-test, p = .89) with the patient group, although control subjects had

a significantly higher education time (paired t-test, t(26) = 3.42, p < .01, see Figure 7.4).

All participants gave written informed consent for their participation and the study was

approved by the ethics committee of the UKSH/University of Lübeck.

To address other factors that might affect performance in the psychophysical task, all

subjects performed two screening tasks to assess visual acuity and visual contrast sensi-

tivity, respectively. These were measured using the Freiburg Visual Acuity and Contrast

Test (FrACT [9]), administered at a viewing distance of 190 cm.

Participants were excluded if they did not have normal or corrected-to-normal vision

(a score of less than 0.8 logMAR in the visual acuity task (see Table 7.2)) or were unable

to resolve low contrast stimuli (a score of more than 2.5% in the contrast sensitivity task
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Figure 7.3.: Depiction of the exclusion process in the control group.

(see Table 7.2)). The healthy control group was matched with the patient group regarding

visual acuity and contrast sensitivity (see Figure 7.5 and Table 7.3).

7.2.2. MR Spectroscopic Measures of Neurotransmission

Proton magnetic resonance spectroscopy (1H-MRS) is a technique that allows for the

identification of selected biochemical compounds, and for the quantification of these

compounds. MRS was used to quantify the levels of glutamate and GABA in V1 of

the participants. The measurements were performed by the staff of the Department of

Neuroradiology of the UKSH.

Apparatus and Experimental Setup MRS was performed using a Philips Achieva

3T scanner with a standard head coil (Philips SENSE-Head-8). A point-resolved spec-

troscopy (PRESS) sequence was used (TR: 2000ms, TE: 80ms, scan duration: 4:22.0 min,

spectral resolution: 0.9766 Hz/point) with the TE optimised to reduce the overlapping

glutamate and glutamine peaks at around 2.1 and 2.4 ppm. A 25× 25× 25mm voxel was

placed at AP= 65.0, RL= 1.1 and FH= 3.6 bilaterally in the occipital lobe covering area V1

according to probability maps acquired across subjects [63] similar to previous studies

[151].
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(a)

(b)

Figure 7.4.: Demographic data for patient (SZ) and control (CTRL) groups: distributions of (a)

age (in years) and (b) education time (in years). On each box, the central mark is the median, the

edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data

points not considered outliers, and outliers (i.e. values larger than q3 + 1.5 · (q3 − q1) or smaller

than q1− 1.5 · (q3− q1), where q1 and q3 are the 25th and 75th percentiles, respectively) are plotted

individually.
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(a)

(b)

Figure 7.5.: Performances of the patient (SZ) and control (CTRL) groups in the Freiburg Visual

Acuity and Contrast Test (FrACT): (a) visual acuity (Note that the maximum value was 1.7 due to

the viewing distance and screen resolution) and (b) contrast sensitivity. On each box, the central

mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers extend

to the most extreme data points not considered outliers, and outliers (i.e. values larger than

q3 + 1.5 · (q3 − q1) or smaller than q1 − 1.5 · (q3 − q1), where q1 and q3 are the 25th and 75th

percentiles, respectively) are plotted individually.
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Figure 7.6.: Sagittal view of the voxel positioning for the magnetic resonance spectroscopy (mod-

ified from [151]).

Data Analysis LCModel ([167]) was used to analyse the MRS data, a software tool that

uses a linear combination of in vitro model spectra from different metabolite solutions to

quantify metabolites in in vivo spectra. This tool offers the advantage of incorporating full

model spectra instead of peak information, and a near model-free regularisation method

for the estimation. It also requires no user input, thus preventing implicit, subjective user

impact on the data.

Statistical analyses of group differences between patients and controls for the absolute

GABA and glutamate concentrations, as well as for the GABA and glutamate concentra-

tions normalised with respect to the creatine concentration, using standard parametric

(t-test and one-way ANOVA) and non-parametric (Mann-Whitney and Kruskal-Wallis)

statistics, where applicable. All statistical analyses were performed using MATLAB [141].

7.2.3. Functional MR Imaging of Contrast Processing

fMRI is a technique to non-invasively measure brain activity using the magnetic proper-

ties of the haemoglobin in the blood: oxygenated haemoglobin is diamagnetic, resulting

in an increased MR signal; whereas de-oxygenated haemoglobin is paramagnetic, result-

ing in a decreased MR signal, an effect first described by Ogawa et al. [158, 159]. During

a functional scan the participant is placed inside the MR scanner and the brain is imaged

repeatedly during the performance of a specific task. The BOLD contrast results from

the differences in the images as a function of the amount of de-oxygenated haemoglobin

in a certain brain region. When neurons become active, for example, as a result of the

participant performing a cognitive task, the supply of oxygenated haemoglobin to those

neurons increases, decreasing the amount of de-oxygenated haemoglobin in that area,

and thus decreasing the MRI signal loss [131]. In this way, fMRI allows for the local-
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(a) (b)

Figure 7.7.: Stimuli for the fMRI task: (a) contrast texture pattern stimulus presented during ON-

blocks, and (b) uniformly grey stimulus for the OFF-blocks. Note that the average luminance level

for both stimuli is the same.

isation and the identification of functional networks and even for the classification of

psychological or disease states [100].

Apparatus and Experimental Setup fMRI was performed using a Philips Achieva

3T scanner with the standard head coil, as in the MRS experiments. Participants lay in

supine position with their heads placed on a head-rest lined with soft foam. Stimuli were

presented through a standard binocular goggle system (VisuaStim Digital Goggles,[216]).

A standard echo-planar imaging (EPI) sequence was acquired during stimulus presenta-

tion (TE: 30ms , TR: 4000ms interleaved, 48 slices, slice thickness: 3mm , voxel size: 3×3

mm2, 80×79 voxels/slice, scan duration: 7:12.0 min). A 3D T1-weighted anatomical scan

was obtained for structural reference. All measurements were performed by the staff of

the Department of Neuroradiology of the UKSH.

Procedure A blocked design was used consisting of 21 blocks in total, 10 ON-blocks

and 11 OFF-blocks. Each block had a duration of 20s, resulting in a total scan time of ap-

proximately seven minutes and a total number of 105 acquired volumes. During the ON-

blocks, a high-contrast pattern with a Michelson contrast of .95 (see Figure 7.7 (a) ) was

presented. A red dot in the centre of the image served as a fixation point. Single frames

with randomly plotted contrast patterns were replotted each 500ms. However, the char-

acteristics of the different contrast patterns did not change. During the OFF-blocks (see
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Figure 7.7 (b) ), a uniformly grey image was shown which had the same average lumi-

nance as the contrast patterns. Again, a red dot served as fixation point. The stimuli were

presented using the software package Presentation [165]. Participants were asked to avoid

eye movements and were instructed to keep their eyes fixated on the red dot during the

whole fMRI session.

Data Analysis Data from the first three scans were discarded due to T1 saturation ef-

fects. A standard pre-processing procedure was then applied to the fMRI time series

using the SPM 8 software tool (Wellcome Trust Centre for Neuroimaging, UCL, London,

UK, [72]) implemented in MATLAB [141] .

The pre-processing included:

1. Slice-timing correction, to correct for the different acquisition times of slices within

each volume.

2. Motion correction, in order to compensate for motion during the fMRI session.(A

rigid six-degrees of freedom registration of all volumes to the mean volume)

3. Normalisation to the standard EPI volume provided by SPM and interpolation to a

resolution of 2× 2× 2 mm3.

4. Smoothing with a Gaussian kernel with a FWHM of 6mm in each dimension.

After the pre-processing, any significant changes in regional BOLD signal were es-

timated at the individual level by contrasting the ON- and OFF-blocks voxel-wise. To

analyse the differences between the patient and control groups, the individual statistical

maps were inputted in an independent samples t-test, thereby generating a random-effect

models, allowing inference to the general population. These statistics were consequently

transformed into z-statistics and visualised as colour-coded z-maps.

7.2.4. Psychophysical Measurement of Centre-Surround Suppression

Experimental Set-up and Procedure Perceptual measures of context processing were

introduced in the beginning of this chapter, and the question arises how to quantitatively

measure the bias caused by the inclusion of surrounds in visual stimuli. A well estab-

lished approach is to use surrounds that create perceptual illusions, that is to say, that

produce a percept of the centre stimulus that is substantially different from the percept

without surround. The effect of the surround is quantitatively measured by acquiring
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a psychometric function, namely by quantifying the probability of perceiving one stim-

ulus as having a higher contrast than the other as a function of the difference between

them. The point of subjective equivalence (PSE), is the point at which two stimuli are

perceived to be identical, and is thus defined as the point of the psychometric function

where the above-mentioned probability is exactly 50%. Since the stimuli were designed

so that the physical match of the stimuli or, in other words, the point of objective equiv-

alence (POE) was known, the bias, or the strength of the centre-surround suppression

(CSS), could simply be calculated as the difference between PSE and POE:

CSS = PSE − POE. (7.1)

This study focused on the contrast-contrast illusion and used stimuli (see Figure 7.8)

very similar to those of Chubb et al. [43] and also similar to those of Dakin et al. [51].

Figure 7.8.: Image of the target stimulus. On the left a centred circle of a noise pattern with a

Michelson contrast of .4, surrounded by a disk with a noise pattern of the same characteristics but

with a contrast of .95. On the right, four possible reference contrasts with .1, .2, .3 and .4 contrast,

respectively. Most subjects’ point of subjective equivalence lies between references two or three,

although circle four is the exact physical match to the target stimulus. (Note that the surround

width and hence the eye-stimulus distance is crucially influencing the effect [32].)

A simple two-interval up-down staircase procedure [123] was used, presenting the

fixed .4 contrast target patch with surrounding in the first interval, and a contrast-variable

reference patch without surrounding in the second (see Figure 7.9). The start of the first

interval was preceded by the appearance of a fixation cross. Both intervals lasted 1000ms.

Subjects made their response by pressing either the left or right mouse button, indicat-

ing the first and the second stimulus to have higher contrast, respectively. The range of
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contrast to be tested was .05 - .6 and the task was designed to converge to the point of

subjective equivalence. Acquisition of individual CSS was achieved by running 12 inde-

pendent trials, each converging at the PSE. The single CSS acquisitions were averaged

for each subject. A large inter-trial variability, that is, a standard deviation of the CSSs of

the 12 trials of ≥ 8.0, was considered an exclusion criterion (see 7.2).

(a) (b)

Figure 7.9.: Stimuli for the psychophysical task. (a) The target stimulus and (b) an example ref-

erence stimulus with a contrast of .6 are shown.

7.3. Results

7.3.1. MR Spectroscopic Measures of Neurotransmission

1. Hypothesis:

The concentration of GABA (the ratio of glutamate/GABA) in V1 is reduced (in-

creased) for schizophrenic patients.

1H-MR spectra were acquired from a single voxel in the occipital lobe for all par-

ticipants of the study using a standard PRESS sequence with a specialised echo time

TE = 80ms. Table 7.4 shows the results for the neurotransmitter GABA for the control
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Table 7.4.: Individual absolute GABA concentrations, GABA/creatine ratios and Cramer-Rao

bounds for the control group.

C1 C2 C3 C4 C5 C6 C7 C8 C9

GABA conc. 1.543 1.625 1.478 1.488 1.571 1.728 1.660 1.606 1.833

GABA/Creatine 0.237 0.249 0.210 0.205 0.247 0.232 0.265 0.213 0.265

ratio

Cramer-Rao bound 18 23 17 21 19 14 20 17 16

(%SD)

C10 C11 C12 C13

GABA conc. 1.714 1.839 0.937 1.927

GABA/Creatine 0.252 0.267 0.153 0.262

ratio

Cramer-Rao bound 16 16 23 17

(%SD)

group. Absolute concentrations as well as GABA/creatine ratios as a normalised mea-

sure are reported. The ratio is reported because the absolute concentration depends on

the amount of cerebrospinal fluid and grey and white matter in the voxel and also on the

signal strength which may vary between participants [53]. Furthermore, the Cramer-Rao

bound is also reported for each subject, which gives an estimate on the quality of the

spectrum and the fitting used in the analysis [38]. Table 7.5 shows the same data for the

patients group. On the whole, a high Cramer-Rao bound can be seen for the GABA esti-

mates, which is due to the spectral overlap of GABA with more prominent metabolites.

Nevertheless, the sequence used was able to reliably detect and quantify GABA levels

for the studied participants. Figure 7.10 compares the GABA levels for the two groups.

Table 7.6 shows the control group’s results for the neurometabolite glutamate. Again,

individual absolute concentrations are reported, as well as glutamate/creatine ratios and

the Cramer-Rao bounds. Table 7.7 shows the same data for the patients group. A low

Cramer-Rao bound for glutamate can be seen here, which is substantially below the ex-

clusion threshold of 30. This demonstrates that the specialised PRESS sequence can detect

and quantify glutamate with a high reliability. Figure 7.11 contrasts glutamate levels in

both groups. Tables 7.8 and 7.9 report the glutamate/GABA ratios for control and patient

groups, respectively, and Figure 7.12 contrasts the ratios in the groups.

Table 7.10 summarises the results of the MRS measurements of neurotransmitter con-

centrations in both groups. A significant difference can be seen for GABA levels (abso-
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Table 7.5.: Individual absolute GABA concentrations, GABA/creatine ratios and Cramer-Rao

bounds for the patient group.

P1 P2 P3 P4 P5 P6 P7 P8 P9

GABA conc. 1.771 1.110 1.339 1.444 1.035 1.400 1.330 1.231 1.422

GABA/Creatine 0.255 0.246 0.172 0.196 0.150 0.204 0.223 0.190 0.214

ratio

Cramer-Rao bound 17 26 20 19 25 26 21 23 25

(%SD)

P10 P11 P12 P13 P14 P15

GABA conc. 1.810 1.209 1.591 1.674 1.434 1.089

GABA/Creatine 0.258 0.180 0.207 0.237 0.204 0.147

ratio

Cramer-Rao bound 18 22 21 20 21 23

(%SD)

Table 7.6.: Individual absolute glutamate concentrations, glutamate/creatine ratios and Cramer-

Rao bounds for the control group.

C1 C2 C3 C4 C5 C6 C7 C8 C9

Glutamate conc. 6.362 6.608 6.104 6.861 6.939 7.805 6.601 6.616 6.926

Glutamate/creatine 0.976 1.014 0.868 0.944 1.090 1.047 1.053 0.877 1.000

ratio

Cramer-Rao bound 7 9 7 7 7 5 8 6 7

(%SD)

C10 C11 C12 C13

Glutamate conc. 6.701 6.680 4.981 8.206

Glutamate/creatine 1.004 0.971 0.813 1.117

ratio

Cramer-Rao bound 7 7 10 9

(%SD)
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Table 7.7.: Individual absolute glutamate concentrations, glutamate/creatine ratios and Cramer-

Rao bounds for the patient group.

P1 P2 P3 P4 P5 P6 P7 P8 P9

Glutamate conc. 8.060 4.620 6.174 7.216 6.659 6.755 5.958 6.328 6.850

Glutamate/creatine 1.159 1.019 0.794 0.977 0.968 0.985 0.997 0.976 1.033

ratio

Cramer-Rao bound 6 10 7 6 6 9 7 7 8

(%SD)

P10 P11 P12 P13 P14 P15

Glutamate conc. 7.476 6.378 6.680 6.108 6.670 6.000

Glutamate/creatine 1.066 0.949 0.894 0.866 0.950 0.811

ratio

Cramer-Rao bound 7 7 8 9 7 7

(%SD)

Table 7.8.: Glutamate/GABA ratios for the control group.

C1 C2 C3 C4 C5 C6 C7 C8 C9

Glutamate/GABA. 4.123 4.067 4.130 4.611 4.417 4.517 3.977 4.120 3.779

ratio

C10 C11 C12 C13

Glutamate/GABA 3.910 3.632 5.316 4.285

ratio

Table 7.9.: Glutamate/GABA ratios for the patients group.

P1 P2 P3 P4 P5 P6 P7 P8 P9

Glutamate/GABA 4.551 4.162 4.611 4.997 6.434 4.825 4.480 5.141 4.817

ratio

P10 P11 P12 P13 P14 P15

Glutamate/GABA 4.130 5.275 4.199 3.649 4.651 5.510

ratio
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(a)

(b)

Figure 7.10.: Box plots of (a) absolute GABA concentrations and (b) GABA concentrations rela-

tive to creatine (GABA/creatine ratios) for both patient (SZ) ad control (CTRL) groups.On each

box, the central mark is the median, the edges of the box are the 25th and 75th percentiles, the

whiskers extend to the most extreme data points not considered outliers, and outliers (i.e. values

larger than q3 + 1.5 · (q3 − q1) or smaller than q1 − 1.5 · (q3 − q1), where q1 and q3 are the 25th and

75th percentiles, respectively) are plotted individually.
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(a)

(b)

Figure 7.11.: Box plots of (a) absolute glutamate concentrations and (b) glutamate concentrations

relative to creatine (glutamate/creatine ratios) for both patient (SZ) and control (CTRL) groups.

On each box, the central mark is the median, the edges of the box are the 25th and 75th percentiles,

the whiskers extend to the most extreme data points not considered outliers, and outliers (i.e.

values larger than q3 + 1.5 · (q3 − q1) or smaller than q1 − 1.5 · (q3 − q1), where q1 and q3 are the

25th and 75th percentiles, respectively) are plotted individually.
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Figure 7.12.: Glutamate/GABA ratios in patient (SZ) and control group (CTRL). On each box,

the central mark is the median, the edges of the box are the 25th and 75th percentiles, the whiskers

extend to the most extreme data points not considered outliers, and outliers (i.e. values larger

than q3 + 1.5 · (q3 − q1) or smaller than q1 − 1.5 · (q3 − q1), where q1 and q3 are the 25th and 75th

percentiles, respectively) are plotted individually.

lute and GABA/creatine ratio, p < .05 and p < .05, respectively) as well as a significantly

higher glutamate/GABA ratio in the patient group (p < .05). The glutamate levels, how-

ever, do not differ (p > .05).

Furthermore, correlation coefficients were calculated for age and education time with

the GABA/creatine, glutamate/creatine and glutamate/GABA ratios, respectively, in or-

der to exclude possible confounders . Results are summarised in Tables 7.11 and 7.13.

Given that all correlation coefficients were statistically not significant (p > .05), educa-

tion time was not included as a regressor in the model, although the groups differed

statistically regarding education time. However, age significantly correlated with the

glutamate/GABA ratio in the patient group, and since there was a significant group dif-

ference between the correlation coefficients for age and glutamate/GABA ratios (Fisher

z-transform, z = 2.19, p < .05), an ANCOVA was conducted with age as a covariate. The

results are depicted in Figure 7.14 and Table 7.12. A significant difference in glutamate/-

GABA ratios between both groups (p < .01) and a significant interaction of group with

age (p < .05) was found.

Additionally, correlation coefficients for visual acuity and contrast sensitivity with

the neurotransmitter measures were calculated in order to rule out visual capabilities
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Table 7.10.: Comparison of the MRS measurements of glutamate and GABA concentrations in

patient and the control groups. An independent two-sample t-test with unequal sample size and

unequal variance was used, to test for differences in the mean between both groups. Statistical sig-

nificance level was set to p < .05. Absolute and relative GABA concentrations were significantly

reduced in the patient group, whereas the glutamate concentrations were not different. Moreover,

the glutamate/GABA ratio was significantly lower in the control compared to the patient group.

Control Group Patient Group Difference

GABA (abs. conc.) 1.61 ± 0.25 1.39 ± 0.24 * sign. p < .03

GABA/Cr ratio 0.24 ± 0.03 0.21 ± 0.03 * sign. p < .04

Glut (abs. conc.) 6.72± 0.77 6.53 ± 0.78 n.s. p = .52

Glut/Cr ratio 0.98± 0.09 0.96±0.09 n.s. p = .61

Glut/GABA ratio 4.22±0.43 4.76± 0.67 * sign. p < .02

Figure 7.13.: Plot of the correlation between age and glutamate/GABA levels in in the patient

group.
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Table 7.11.: Summary of the correlations between possible confound age with the neurotransmit-

ter levels and ratios.

Patient Group Control Group

Age vs GABA/Creatine Levels r = .31, p = .25 r = −.30, p = .32

Age vs Glutamate/Creatine Levels r = −.20, p = .47 r = −.26, p = .38

Age vs Glutamate/GABA Ratios r = −.55, p = .03 r = .37, p = .21

Figure 7.14.: Plot of the ANCOVA of the glutamate/GABA ratio in the two groups with age as a

covariate.

Table 7.12.: Results of the ANCOVA of the glutamate/GABA ratio in the two groups with

age as a covariate.

F p

Group 8.88 .0065

Age 1.39 .2497

Age * Group 7.14 .0133
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Table 7.13.: Summary of the correlations of possible confound education time with the neuro-

transmitter levels and ratios.

Patient group Control group

Education Time vs GABA/Creatine levels r = 0.26, p = 0.35 r = 0.22, p = 0.47

Education Time vs Glutamate/Creatine levels r = 0.03, p = 0.93 r = 0.14, p = 0.65

Education Time vs Glutamate/GABA ratios r = −0.23, p = 0.42 r = −0.28, p = 0.35

Table 7.14.: Summary of the correlations between possible confounds visual acuity and contrast

sensitivity and the neurotransmitter levels and ratios.

Patient group Control group

Visual Acuity vs GABA/Cr levels r = .23, p = .41 r = .40, p = .18

Contrast Sensitivity vs GABA/Cr levels r = −.33, p = .23 r = −.28, p = .35

Visual Acuity vs Glutamate/Cr levels r = .31, p = .27 r = .35, p = .24

Contrast Sensitivity vs Glutamate/Cr levels r = −.22, p = .43 r = −.06, p = .86

Visual Acuity vs Glutamate/GABA ratio r = −.15, p = .59 r = −.30, p = .32

Contrast Sensitivity vs Glutamate/GABA ratio r = .36, p = .18 r = .40, p = .18

as confounders. Results are summarised in Table 7.14. Since none of the correlation

coefficients were significant, visual acuity and contrast sensitivity were not included as

regressors in the model.

To sum up, significantly reduced GABA concentrations (absolute and relative) as well

as an increased glutamate/GABA ration were found for the patient group in comparison

to the healthy control group consistent with the hypothesis.

7.3.2. Functional MR Imaging of Contrast Processing

2. Hypothesis:

The contrast-evoked BOLD response in V1 is reduced for schizophrenic patients.

The fMRI experiment was designed to measure the strength of the BOLD signal in

response to the contrast stimulus. Figure 7.15 depicts the regions that showed a signifi-

cantly higher BOLD signal for the ON-blocks (.95 contrast) compared to the OFF-blocks

(0 contrast) for both groups (p < .001, uncorrected). As expected, in both groups the
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(a) (b)

Figure 7.15.: Contrast of ON- vs OFF-blocks in (a) patient and (b) control groups. The T-maps are

projected onto a standard brain (statistical significance threshold T = 3.50, p > .001, uncorrected,

color bars indicate T values above threshold). The main regions of activity lie within the occipital

lobe, comprising V1 for both groups.

global maximum lay within the occipital lobe centred on V1. The analysis of the group

differences revealed a significantly higher BOLD signal in the primary visual cortex in

control participants compared to patients (Figure 7.16). Furthermore, we found a sig-

nificantly higher activation for the patients in comparison with the control group in the

medial temporal lobe (see Figure 7.17).

Again, correlations were calculated between the activity in V1 (the z-value of the

most significant voxel in the group analysis), and age, education time, visual acuity and

contrast sensitivity, respectively, in order to exclude possible confounds. Results are sum-

marised in Table 7.15. Since there were no significant correlations for age, education time

and visual acuity, they were not included as a regressor in our model.

Summarising, a significant group difference of the BOLD signal was found in V1,

bilaterally, in response to high contrast stimuli.
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Figure 7.16.: Results of the group analysis. Voxels with a significantly higher response in the

control vs. the patient group are shown, colour-coded upon T-values. The highlighted regions

lay in V1 on both hemispheres with the global maximum at x = 14, y = −102 and z = 4 in

Talairach space (statistical significance threshold T = 3.50, p > 0.001, uncorrected, colour bar

indicates T values).

Figure 7.17.: Results of the group analysis. Voxels with a significantly higher response in the

patient vs. the control group are shown, colour-coded upon T-value. The highlighted region lies

in the medial temporal lobe (statistical significance threshold T = 3.50, p > 0.001, uncorrected,

colour bars indicate T values).
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Table 7.15.: Summary of the correlations between BOLD activation and the possible confounds

age, education time, visual acuity and contrast sensitivity (all correlations non-significant).

Patient group Control group

Age vs BOLD activation r = .10, p = .73 r = −.01, p = .98

Education Time vs BOLD activation r = .07, p = .81 r = −.02, p = .94

Visual Acuity vs BOLD activation r = .21, p = .45 r = .46, p = .11

Contrast Sensitivity vs BOLD activation r = .32, p = .24 r = −.36, p = .23

7.3.3. Psychophysical Measurement of Centre-Surround Suppression

3. Hypothesis:

Perceptual centre-surround suppression in schizophrenic patients is reduced in

comparison to healthy controls.

The centre-surround suppression effect was measured for all participants of the con-

trol and patient groups, using a two-interval staircase procedure converging to the PSE

and calculating the CSS. In Tables 7.16 and 7.17 the results of the psychophysical experi-

ment are shown for the control group and the patient group, respectively. No significant

differences were found in suppression strength between both groups (p = .07) but a

larger intra-subject, inter-trial variability was observed in the patient group (p < .01)

(see also Table 7.18). This means that patients were less precise in their contrast judge-

ment which dovetails with previous studies [51]. To sum up, no significantly reduced

centre-surround suppression strength was found for the patient group contrary to the

hypothesis.
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Table 7.16.: Average centre-surround suppression and intra-subject, inter-trial variability of the

healthy control group. Bias is calculated as average PSE, averaged over all 12 trials, subtracted

from POE, here 40%. Intra-subject, inter-trial variability is the standard deviation of the calculated

PSEs of the 12 trials.

C1 C2 C3 C4 C5 C6 C7 C8

Centre-Surround 13.88 10.72 9.54 18.49 10.69 9.03 9.93 2.61

Suppression (% Contrast)

Inter-Trial Variability 5.62 1.34 2.64 4.07 2.29 3.73 1.93 2.34

(% Contrast)

C9 C10 C11 C12 C13

Centre-Surround 10.34 13.75 16.25 8.37 6.25

Suppression (% Contrast)

Inter-Trial Variability 3.02 1.58 2.61 1.62 3.02

(% Contrast)

Table 7.17.: Average centre-surround suppression and intra-subject inter-trial variability of the

patient group. Bias and intra-subject, inter-trial variability calculated as above (see 7.16).

P1 P2 P3 P4 P5 P6 P7 P8

Centre-Surround 10.74 32.29 9.28 24.06 18.75 8.75 8.75 19.79

Suppression (% Contrast)

Inter-Trial Variability 2.47 4.50 3.29 7.78 3.35 3.71 3.87 3.28

(% Contrast)

P9 P10 P11 P12 P13 P14 P15

Centre-Surround 21.03 13.75 12.84 2.61 15.80 21.02 9.66

Suppression (% Contrast)

Inter-Trial Variability 3.05 5.54 7.44 4.44 2.57 4.82 3.88

(% Contrast)
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(a)

(b)

Figure 7.18.: Box plots of (a) centre-surround suppression strength and (b) inter-trial variability

in both patient (SZ) and control (CTRL) groups. On each box, the central mark is the median, the

edges of the box are the 25th and 75th percentiles, the whiskers extend to the most extreme data

points not considered outliers, and outliers (i.e. values larger than q3 + 1.5 · (q3 − q1) or smaller

than q1− 1.5 · (q3− q1), where q1 and q3 are the 25th and 75th percentiles, respectively) are plotted

individually.
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Table 7.18.: Summary of the psychophysical experiment. Mean centre-surround suppression and

mean intra-subject inter-trial variability of the control and patient groups are shown. Further-

more, group differences were tested using an independent two-sample t-test with unequal sample

size and unequal variance. Statistical significance level was set to p < .05.

Patient Group Control Group Difference

Centre-Surround Suppression 15.27±7.59 10.76± 4.15 n.s. p = .07

Inter-Trial Variability 4.27±1.59 2.75±1.18 *sign. p < .01

Table 7.19.: Summary of the post-hoc correlations between the possible confounds visual acuity

and contrast sensitivity and surround suppression strength and inter-trial variability (no signifi-

cances found).

Patient group Control group

Visual Acuity vs CSS r = −.16, p = .58 r = .11, p = .72

Contrast Sensitivity vs CSS r = −.04, p = .90 r = .23, p = .45

Visual Acuity vs Inter-Trial Variability r = −.16, p = .57 r = −.18, p = .56

Contrast Sensitivity vs Inter-Trial Variability r = −.10, p = .73 r = .21, p = .49

Table 7.20.: Summary of the post-hoc correlations between the possible confounds age and edu-

cation time and centre-surround suppression strength and inter-trial variability.

Patient group Control group

Age vs CSS r = −.03, p = .92 r = .04, p = .91

Age vs Inter-Trial Variability r = −.18, p = .53 r = −.20, p = .51

Education Time vs CSS r = .45, p = .09 r = .51, p = .07

Education Time vs Inter-Trial Variability r = −.18, p = .53 r = .27, p = .38
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7.3.4. Interactions between Modalities

After considering each of the different, presented modalities separately, the interactions

between psychophysical, fMRI and MRS data were analysed. This is particularly inter-

esting because there are known pairwise correlations between all of the three modalities,

but, to the author’s knowledge, this is the first study addressing all three of them simul-

taneously. Furthermore, some of the studies reporting pairwise correlations have been

conducted with small group sizes and/or only healthy subjects.

4. Hypothesis:

The strength of perceptual centre-surround suppression and the concentration

of GABA (the ratio glutamate/GABA) are correlated in V1.

In the first place, correlations between neurotransmitters and centre-surround sup-

pression strength were calculated for both groups separately. Table 7.21 summarises

these analyses. No significant correlation was found between surround suppression

strength and GABA levels (Figure 7.19), glutamate levels (Figure 7.20) and glutamate/-

GABA ratio (Figure 7.21) in either groups, respectively. Summarising, contrary to the

Table 7.21.: Summary of the correlations between neurotransmitter levels and ratios and centre-

surround suppression strength.

Patient group Control group

GABA/Cr vs CSS r = .15, p = .59 r = .15, p = .62

Glutamate/Cr vs CSS r = .29, p = .29 r = .07, p = .83

Glutamate/GABA vs CSS r = .06, p = .83 r = −.15, p = .60

hypothesis, no significant correlations were found either between centre-surround sup-

pression and GABA concentrations or between centre-surround suppression and gluta-

mate/GABA ratios.
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(a)

(b)

Figure 7.19.: Plot of the correlation between GABA/creatine ratio and centre-surround suppres-

sion in (a) patient and (b) control groups.
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(a)

(b)

Figure 7.20.: Plot of the correlation between glutamate/creatine ratio and centre-surround sup-

pression in (a) patient and (b) control groups.
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(a)

(b)

Figure 7.21.: Plot of the correlation between glutamate/GABA ratio and centre-surround sup-

pression in (a) patient and (b) control groups.
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5. Hypothesis:

The BOLD response and the strength of centre-surround suppression are corre-

lated in V1.

In the second place, correlations between centre-surround suppression and the BOLD

signal were calculated for both groups. Table 7.22 summarises these results. No sig-

nificant correlations were found in any case. However, the correlation coefficients for

BOLD activation with centre-surround suppression strength was negative for the patient

group but positive for the healthy control group (see Figure 7.22). Hence, it was tested

whether the correlations for both groups differed significantly, by applying a Fisher z-

transformation. There was a marginally significant difference between the correlation

coefficients of both groups (z = 1.88, p = 0.06), which might suggest different relation-

ships between surround integration and neural activation in response to contrast stimuli

in the two groups.

Table 7.22.: Summary of the correlations between BOLD activation and centre-surround sup-

pression strength.

Patient group Control group

BOLD Signal vs CSS r = −.33, p = .24 r = .46, p = .11

The advantage of fMRI is, that not only can centre-surround suppression strength be

correlated with V1 activity, as done above, but other brain regions can also be explored for

significant correlations between BOLD activity and centre-surround suppression. Figure

7.23 shows the brain regions where there was a significant interaction between BOLD

activation and centre-surround suppression strength in the control group. As already

stated above, contrary to the hypothesis, there was no significant correlation between

BOLD signal and centre-surround suppression strength within the V1. However, there

was a correlation in the thalamus for both groups, bilaterally. Interestingly, the exact

localisation of the active regions in the thalamus differed for the two groups (see Figures

7.23-7.25 ). In the patient group, there was additional activity in another region in the

thalamus (see Figure 7.24).

132



7.3. Results

(a)

(b)

Figure 7.22.: Plot of the correlation between between BOLD activation and surround suppres-

sion in (a) patient and (b) control groups.
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Figure 7.23.: Correlation between BOLD signal and centre-surround suppression in the control

group. The T-maps are projected onto a standard brain (statistical significance threshold T = 3.85,

p > .001, uncorrected, color bars indicate T values). The highlighted regions lie within the left and

the right thalamus in the LGN (Talairach coordinates x = 26, y = −25 and z = 2, and x = −26,

y = −25 and z = 2, respectively).

Figure 7.24.: Correlation between BOLD signal and centre-surround suppression in the patient

group. The T-maps are projected onto a standard brain (statistical significance threshold T = 3.85,

p > .01, FDR-corrected cluster level, colour bars indicate T values). The highlighted region lies

within the left thalamus (Talairach coordinates x = −4, y = −2 and z = 4).
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Figure 7.25.: Correlation between BOLD signal and centre-surround suppression in the patient

group. The T-maps are projected onto a standard brain (statistical significance threshold T = 3.85,

p > .001, uncorrected, colour bars indicate T values). The highlighted regions lie within the left

and right thalami in the pulvinar nucleus (Talairach coordinates x = 16, y = −27 and z = 11 and

x = −16, y = −27 and z = 11, respectively).

6. Hypothesis:

The BOLD response and the concentration of GABA (the glutamate/GABA ratio)

are correlated in V1.

In the third and final place, the correlations between neurotransmitters and the BOLD

signal were analysed. Table 7.23 shows these results. Contrary to the hypotheses, no

significant correlations were found between the GABA/creatine levels and the BOLD

responses , and between the glutamate/GABA ratios and the BOLD responses There was

also no significant correlation between the glutamate/creatine level and BOLD response.

Table 7.23.: Summary of the correlations between neurotransmitter levels and ratios BOLD

activation.

Patient group Control group

BOLD Activation vs GABA/Creatine Ratio r = .23, p = .41 r = .06, p = .84

BOLD Activation vs Glutamate/Creatine Ratio r = .20, p = .48 r = −.09, p = .78

BOLD Activation vs Glutamate/GABA Ratio r = −.07, p = .80 r = −.19, p = .52
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8.1. Computational Models

In this work, a biologically plausible model of layer 4Cα of the primary visual cortex

(V1) has been developed, that not only produces a feature selectivity (orientation, direc-

tion and spatial frequency selectivity) close to experimental results, but that also shows

neuronal centre-surround suppression resembling experimental data. Two major conclu-

sions can be drawn from this work.

In the first place, the model demonstrates that intracortical inhibition is a crucial factor

in feature selectivity and that it consists of two parts: feed-forward intracortical inhibition,

as a result of broadly tuned thalamic excitation of inhibitory neurons, and recurrent in-

tracortical inhibition as a result of recurrent excitation of inhibitory neurons depending

on the specific excitatory-inhibitory connectivity pattern of the model. While the feed-

forward intracortical inhibition is analogous to several previous experimental and mod-

elling studies [e.g. 174, 232], the specific recurrent intracortical inhibition profile further

sharpens the tuning in the network model, which, compared to other models [e.g. 232],

leads to higher selectivity measures that more closely resemble experimental findings.

Thus, the model developed here suggests a three stage process of feature tuning in V1 in

which feed-forward lateral geniculate nucleus (LGN) input provides a broad tuning of

excitatory neurons that is subsequently sharpened by feed-forward and recurrent intracor-

tical inhibition.

In the second place, the model suggests that intracortical inhibition, both feed-forward

and recurrent, is a crucial factor influencing neuronal centre-surround suppression. Centre-

surround suppression emerges in the network solely because of the intracortical connec-

tivity profile without extrastriate input or long-range horizontal connections, similarly to

the model of Wielaard and Sajda [222].

8.1.1. Feature Selectivity

In the model, similarly to other models [222, 231, 232], the main mechanism for high

feature selectivity is intracortical inhibition, especially feed-forward inhibition. This feed-
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forward inhibition emerges from the tuned input arriving at inhibitory cells from the

LGN. As modelled previously [144, 210, 232], inhibition in this model is more broadly

tuned than excitation, which leads to a suppression of responses at non-optimal stim-

uli. Furthermore, this is in agreement with recent experimental data for both orientation

selectivity [36, 157] and spatial selectivity [36].

As argued by Zhu et al. [232], this proposed mechanism is different from the classical

view, which attributes the emergence of feature selectivity to quasi-linear feed-forward

filtering by the convergent LGN input, that is, by the spatiotemporal receptive field [52,

59, 67, 121]. In the model, as well as, the model proposed by Zhu et al. [231, 232], highly

selective neurons are a product of non-linear cortical inhibition, dovetailing with recent

experimental data on the dynamics of feature selectivity [26, 172, 174, 225]. As in the

model of Zhu et al., feature selectivities coexist in the network model, which has not

been addressed by most other modelling studies before [144, 204, 210]. It is important to

mention here once again that all reported measures of feature selectivity were obtained

with the same parameters, specifically the weights of the connections were fixed, and

thus the model simultaneously shows feature selectivity in all considered dimensions.

However, the network model proposed in this thesis extends the work of Zhu et al.

and other known models in that it yields orientation tuning results very close-fitting to

experimentally measured data, due to differences in the factor of recurrent intracortical

inhibition, which further sharpens orientation tuning [174, 175]. This difference is due

to the specific connectivity pattern for recurrent excitatory activation of inhibitory cells,

which is different from the pattern in the network models discussed before.

In principle, the network model of Oliveira and Roque [160] should also show fea-

ture selectivity results and mechanisms similar to those presented in this work, since

both models are based on similar connectivity patterns. Withal, Oliveira and Roque do

not test and discuss orientation selectivity in their model in detail, and they also do not

investigate spatial frequency selectivity, or the mechanisms underlying these properties.

Orientation Selectivity Orientation selectivity in the network model developed here

arises from two major sources. Selectivity is first produced by the convergent LGN input

to an excitatory cortical cell, which is determined by its spatiotemporal receptive field

this yields a broad selectivity (see Table 6.13), as theoretically predicted [e.g. 187], which

is then sharpened by intracortical inhibition, firstly through the activation of inhibitory

neurons from the LGN input and secondly through recurrent excitation of inhibitory

neurons. This process is also in agreement with experimentally identified components

crucially influencing orientation selectivity, namely global, tuned enhancement (reflect-
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ing the tuning of the LGN input) followed by tuned (reflecting feed-forward inhibition)

and global (reflecting recurrent inhibition) suppression [175]. The sharpening through

feed-forward inhibition is due to a broader tuning of inhibitory neurons (see Figure 6.29

and Table 6.14), which leads to a suppression of non-preferred orientations (see Figure

6.28). Similarly, recurrent inhibition suppresses non-preferred orientations through the

spatial distance between connected excitatory and inhibitory neurons, thus further refin-

ing the tuning. This refining through intracortical inhibition leads to the high selectivity

in the model. Particularly, recurrent inhibition sets it apart from other models, in which

intracortical inhibition is also the major factor contributing to high selectivity, but that

assume a more local recurrent excitation of inhibitory neurons. Therefore, this model

and others relying on inhibitory suppression to achieve high selectivity [e.g. 232] predict

a significant reduction in selectivity in conditions of experimentally blocked inhibitory

synapses, whereas other models do not, for example, purely feed-forward models [e.g.

67]. It is evident that more detailed anatomical data will further help refine and validate

the connectivity pattern assumed in the model.

Another important factor is that feature selectivity is very diverse throughout V1 (see

Table 6.9 and Figure 6.17), although this aspect of selectivity is often not addressed in

modelling studies. The model proposed in this work shows a great diversity within its

neuron population, matching experimental findings. This diversity comes from the vari-

ation in the receptive fields of each cell, as well as, differences in intracortical connectivity.

This is another strong argument in favour of the present model and this diversity is as

important as the general high selectivity.

In addition to discerning the mechanisms behind orientation selectivity and investi-

gating the influence of lateral inhibition in the sharpening of tuning, the major factors

governing lateral inhibition are systematically varied in the network model. Although

the main interest lay in the influence of these variations on the neuronal centre-surround

suppression and its link to perceptual centre-surround suppression, this systematic ap-

proach also made it possible to explore the effects on orientation selectivity.

There is a strong influence of the inhibitory weight (see Table B.1) and only a weak

influence of the excitatory weight (see Table B.7) on the orientation selectivity. Simi-

larly to the inhibitory weight, the number of inhibitory cells strongly affects orientation

selectivity in the network model (see Table B.13), whereas the number of connections,

both inhibitory (see Table B.19) and excitatory (see Table B.25), does not seem to have a

strong influence. However, surprisingly, a reduction of excitatory connections slightly in-

creases the orientation tuning in the network. A prolongation of the decay time constant

at GABAergic synapses, reduces orientation tuning, although this is independent from
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the amount of prolongation, at least in the tested range (see Table B.31).

Summarising, all parameters governing inhibition in the network model influence

orientation selectivity. Not surprisingly, some of the parameters directly affecting inhibi-

tion (weight of inhibitory connections, number of inhibitory neurons) have a larger effect

than those affecting it only indirectly (weight of excitatory connections, number of exci-

tatory connections). Still, also the number of inhibitory connections and the decay time

of inhibitory synapses also merely show a weak effect on selectivity.

Spatial Frequency Selectivity The model shows spatial frequency selectivity match-

ing experimental data (see Figure 6.23). Cells are tuned to a variety of preferred spatial

frequencies in the range of 0.5 -8 c/deg], with variation in their tuning strength (see Figure

6.25). Local and global measures of spatial frequency tuning correspond well to exper-

imental data [26, 54, 59, 69, 224]. These results are also similar to those reported in the

works of Zhu et al. [231, 232]; as expected, given that the thalamic processing and the

formation of receptive fields were adopted from this work. Once again, this confirms the

validity of the network model proposed here.

The influence of cortical inhibition on spatial frequency selectivity was not specifically

investigated in this work, since orientation selectivity is more relevant to centre-surround

suppression, the central focus of this work, than spatial frequency selectivity. However,

since the work of Zhu et al. [231] was followed regarding the mechanisms of spatial fre-

quency selectivity generation, and given the strong influence of cortical inhibition on ori-

entation selectivity in the current network model, cortical inhibition is also expected to be

the major factor sharpening spatial frequency tuning. Additionally,low spatial frequency

responses of V1 simple cells, recorded intracellularly, do not have much frequency dou-

bling in the membrane potential, which is in accordance with the model of Zhu et al.

[231]. Classical feed-forward models without synaptic inhibition predict notably more

frequency doubling in the membrane potential, making this another testable difference

in the predictions of the two types of models.

The width of the neuron’s receptive field is the main factor in generating selectivity

for different spatial frequencies in the model. The distribution of receptive field widths

thus determines the distribution of preferred spatial frequencies. As argued in [231], the

spatial organisation of selectivity is still a matter of debate and is accompanied by contro-

versial experimental data [e.g. 57, 194]. Again, the work of Zhu et al. [231] was followed

using their interpretation of the optical imaging data from Sirovich and Uglesich [194].

However, an interesting aspect would be to compare these different interpretations of

the optical imaging data and their effects on the spatial tuning properties. The model
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presented in this work can be readily used to do so and, in addition, would also per-

mit investigating possible consequences for other receptive field, contrast response and

centre-surround suppression properties. However, it was beyond the scope of this work

to perform this comparison.

Temporal Selectivity The model presented in this work also agrees well with experi-

mental data regarding temporal frequency selectivity. Neurons respond well to low tem-

poral frequencies up to approximately 9Hz (see Figure 6.26), which is also reported for

V1 neurons in macaques [69, 84]. The temporal tuning characteristics of the network

neurons were not investigated in more detail, given this works focus on orientation se-

lectivity and centre-surround suppression. However, a closer investigation of the prop-

erties of the network model and a comparison to experimental data could be interesting

in order to further the understanding of mechanisms of temporal tuning, that is, includ-

ing the bandpass nature of frequency-response curves, increases in response amplitude

and in cut-off frequency for transient stimuli, and nonlinear temporal summation. Fur-

thermore, an exploration of the correlations of temporal frequency tuning with other

properties such as orientation selectivity or spatial frequency tuning, as has been done

experimentally [e.g. 69], seems promising.

Simple and Complex Cells The distribution of simple and complex cells in the net-

work model match adequately both experimental data [174, 190, 195] and recent models

[204, 231, 232]. The distribution is bimodal, has more simple than complex cells, and

shows a continuum of modulation ratios rather than a clear distinction in two groups

(see Figure 6.16).

Simple and complex cells emerge in the network model without a hierarchical com-

position, that is, the two classes of cells are not modelled a priori and intracortical connec-

tivity is isotropical. This dovetails with other models of V1 [204, 231, 232], but contradicts

the traditional view of feed-forward models (e.g. Hubel and Wiesel [98]), where simple

cells are thought to receive direct LGN input and then project forward onto cells that do

not receive LGN input, which in turn show complex responses. As argued in Chapter 5,

this view predicts a clear anatomical separation of the two classes and a stronger separa-

tion of modulation ratios. However, as mentioned above, experimentally (especially in

layer 4C) this strong separation is not observed, supporting the type of model.

The mechanisms underlying the formation of simple and complex cells were not stud-

ied in detail in this work. Nonetheless, due to the strong similarities of the construction

principles of this network model to those of Tao et al. [204] and Zhu et al. [231, 232], it
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is to expect that the crucial factor here is also cortico-cortical inhibition. This inhibition,

as argued by Tao et al. [204], allows for nearly linear, simple cell responses despite the

highly non-linear drive by LGN cells.

8.1.2. Contrast Response Properties

In addition to classical receptive field properties, the neurons in the network model

show contrast response functions well in agreement with electrophysiological studies

[2, 35, 186, 207]. The neurons show monotonically increasing activity with increasing con-

trasts. A standard contrast response function fits reliably to single average firing rates in

response to stimuli with varying contrasts. The fact that the free parameters in the fitting

of the contrast response function are highly restricted, but still the portion of variance

explained by the fitted functions, indicates a close match of the simulated responses to

actual experimental data. Furthermore, there is a strong similarity between the contrast

response function on the neuronal and on the perceptual level, as indicated by experi-

ments combining electrophysiological or functional magnetic resonance imaging (fMRI)

and psychophysical measurements [24, 73, 85, 186, 230].

8.1.3. Centre-Surround Suppression

Centre-surround suppression is researched with the network model for different sets of

stimuli, that is, oriented sinusoidal gratings with different contrasts in the centre and the

surround, and with contrast texture patterns usually utilised in human psychophysical

studies. The main goal is to compare the results to experimental studies investigating

centre-surround suppression [e.g. 51, 112, 226, 229, 230]

8.1.3.1. Sinusoidal Gratings

Moving sinusoidal gratings are used at optimal orientation and spatial frequency, and

centre-surround suppression is investigated by increasing the grating stimulus beyond

its optimal size. An average suppression of 87% is found in most cells (see Table 6.11).

Additionally, centre-surround suppression properties are investigated at four different

centre contrasts in two different surround conditions. These manipulations yield three

results: The introduction of a surround grating produces either suppression or facilita-

tion of single neuron activity (see Table 6.11). In the second place, this effect depends

on the balance between centre and surround contrast. Specifically, for a high centre con-

trast results in a strong suppression in both, high and low surround conditions, whereas
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low centre contrast leads to a facilitation in both surround conditions. Nonetheless, sup-

pression was stronger for the high surround condition, whereas facilitation was much

stronger for the low surround condition (see Table 6.11). Finally, in the third place, a

medium centre contrast of 0.4, produces facilitation in the low surround condition but

suppression in the high surround condition (see Table 6.11).

Comparison to Electrophysiological Studies Using moving sinusoidal gratings and

measuring intracellular responses of single cells, Jones et al. [112] report strong suppres-

sion, on average 71%, in layer 4C in V1 of macaques similar to the suppression found in

the network. These findings also match with previous reports on centre-surround sup-

pression in macaque V1 using sinusoidal gratings [181, 191, 192]. Additionally, these

studies also find facilitation of responses in several cases, but they do not investigate

their contrast-dependence. However, these studies show a great complexity of the or-

ganisation of spatial regions contributing to the surround interactions, which are beyond

the analyses performed in this work. It could be of interest to study the suppressive

and facilitatory effects of surround stimuli as well as their spatial organisation, and the

proposed model builds an ideal basis for this purpose.

Moreover, the present findings also fit in with other sets of stimuli, such as bars and

texture patterns, where suppression is found in the majority of neurons (65-85 %) and

the suppression strength varies between 34-69 % of the firing rate at optimal conditions

[117, 124]. Furthermore, the higher facilitation in low compared to high surround contrast

conditions in the simulations performed for this thesis matches well with the findings of

Levitt et al., who report a higher mean facilitation index in high than in low contrast

conditions [124]. There is also recent evidence that contrast-dependent centre-surround

suppression effects are apparent in response to natural scene stimuli [80].

Comparison to Psychophysical Studies Xing and Heeger [226], have investigated

contrast-dependent centre-surround interactions in a human psychophysical study us-

ing contras-reversing sinusoidal gratings and developed an analytical model adequately

explaining their data. These authors report suppression increasing and enhancement de-

creasing with increasing surround contrast, in agreement with the data from the model

described in this thesis. However, contrary to the findings reported in Chapter 6, the

suppression decreased and the enhancement increased with centre contrast. The find-

ings of Xing and Heeger also fit with previous studies of Cannon and Fullenkamp [32]

with respect to the dependence of suppression and facilitation on the ratio of centre and

surround contrasts. In the model developed here, suppression and facilitation are inde-
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pendent from the ratio of centre and surround contrasts, but rather depend on the sum of

the contrasts, that is, the lower the sum of the contrasts the more facilitation is seen and

the higher the sum the more suppression is observed. Xing and Heeger incorporate two

different factors of inhibition in their analytical model: a local inhibition that depends

on the centre contrast, and a surround inhibition that depends on the surround contrast.

These two different inhibitory mechanisms then account for the observed dependence

of suppression and facilitation on the ratio of centre and surround contrasts. A possi-

ble explanation for the difference between the findings of this work and those of Xing

and Heeger might be that the surround inhibition used in their model is actually me-

diated via long-range horizontal connections in addition to the short-range intracortical

inhibition, whereas the model developed here only utilises short-range intracortical in-

hibition. Furthermore, Xing and Heeger report that enhancement only depended on the

immediate surround and an increase of the surround width had no effect on it, whereas

Cannon and Fullenkamp described that an increase in the surround width changed from

enhancement to suppression in their measurements. Ultimately, the fact that these stud-

ies employed slightly different stimuli (contrast-reversing gratings, in contrast to moving

sinusoidal gratings in the current work) and that a direct, quantitative mapping of sur-

round widths is not possible, makes a final assessment of the differences we found very

difficult. However, the proposed model builds a basis ideally suited to further investigate

these phenomena.

It needs to be noted here that a quantitative comparison of the current model re-

sults and those from psychophysical experiments is not possible, since the exact mech-

anisms by which neural activity in V1 determines contrast perception is poorly under-

stood. Nonetheless, there is a strong link between perceived contrast and neural activity

in V1 [85], which allows for a qualitative comparison as has been done in this work.

Influences of Recurrent Inhibition After a discussion of the centre-surround suppres-

sion properties of the network model in the standard configuration, the influence of the

different parameters governing recurrent inhibition has to be discussed.

In the case of the weight of inhibition on excitatory cells, that the strength of surround

suppression increases with weight in the size variation test (see Figure 6.37 and Table

B.3) and also for high centre contrasts in the second test (see Figure 6.38 and Table B.4).

Furthermore, counterintuitively facilitation increases with inhibitory weight in the low

centre and low surround contrast condition (see Figure 6.38 and Table B.4). However,

in the low centre and high surround contrast condition, facilitation stays roughly the

same. Manipulations of the weight of excitation on inhibitory cells show that the strength
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of surround suppression decreases with increasing weight in the size variation test (see

Figure 6.37 and Table B.9). In the second test, there is a lower suppression at both ends of

the tested range of weights in both the low and the high surround conditions (see Figure

6.38 and Table B.4). Moreover facilitation strongly decreases as a function of the weight

(see Figure 6.38 and Table B.4). Changes in the number of inhibitory neurons, result in a

strong reduction of suppression (size test: Figure 6.37 and Table B.15; contrast variation

test: Figure 6.38 and Table B.16) and facilitation (see Figure 6.38 and Table B.16) with

decreasing number of neurons in both conditions. Indeed, facilitation actually disappears

and turns into moderate suppression with neuron decrement. This effect is also apparent,

albeit weaker, for the number of inhibitory connections on excitatory cells (see Figures

6.37 and 6.38 and Tables B.21 and B.22). Finally, the GABAergic decay time constant

hardly has any effect on suppression in the size variation test (see Figure 6.37 and Table

B.33),although a slight reduction in suppression and a strong reduction of facilitation is

seen in the second test (see Figure 6.38 and Table B.34).

Overall, this demonstrates that suppression in the high centre contrast condition and

facilitation in the low centre contrast condition strongly depend on inhibition. Still, each

of the considered factors makes a contribution to the net suppression or facilitation, so

that one factor cannot simply attributed to one observation.

8.1.3.2. Contrast Texture Stimuli

In addition to the sinusoidal gratings mentioned above, we used stimuli consisting of

contrast texture patterns were used, which are commonly used in psychophysical exper-

iments. This enabled comparing the present results to a different body of experimental

work. Introducing an additional surround stimulus (in both tested size conditions) to a

centre only stimulus significantly reduce the cells’ responses (see Table 6.12). Moreover,

it results in matching contrasts, which are markedly lower than the actual displayed con-

trast. This reduction of activity, as well as the lower matching contrasts produced by the

introduction of surround stimuli, is in good agreement with experimental data [43, 51]

Withal a substantial number of the cells in the network either do not respond strongly

to the texture pattern stimuli, or a standard contrast response function cannot be fitted

in a reasonable manner. It needs to be noted that, in contrast to human psychophysical

experiments, the simulations did not use static texture patterns, but the pattern in the

stimulus changed over the time course of the stimulation in order increase responses (see

Section 6.2.4).

These limitations were not present in the case of sinusoidal grating stimuli. This evi-

dences that the current model is missing a mechanism that enables this adaptation. Two
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plausible mechanisms might be involved: an increase in responsiveness caused by at-

tentional top-down signals, although attentional effects seem stronger in higher sensory

areas (see [58, 215]); an adaptation in the LGN response to texture stimuli.

8.1.3.3. Centre-Surround Mechanisms

The two classical hypotheses explaining the emergence of centre-surround suppression

in the visual cortex are fast extrastriate feedback and long-range horizontal connections.

In the first case,there is some experimental support for this hypothesis that argues that

intracortical connections do not have a spatial extent that is sufficient to generate the

surround sizes observed experimentally [6, 10, 37, 182]. Further support comes from

experiments investigating the dynamics of surround suppression [10], as well as from

tracer injection experiments [6]. In the second case, the argument is similar, now stat-

ing that long-range horizontal connections are able to reproduce experimental data but

short-range connections cannot [56, 61, 102, 202]. However, the experimental data from

these studies only indirectly observe the centre-surround phenomena and, except for the

rate-model of Dragoi et al. [61] and a model of Somers et al. [198], no computational

support for the hypotheses is available at present. The major reason for this is the great

difficulty to experimentally discern the influences of short-range, long-range and extras-

triate connections. Recently, a computational model by Wielaard and Sajda showed that

centre-surround effects can be reasonably well explained by a model of V1 that only

consists of short-range intracortical connections [222]. Additionally, recent experiments

demonstrate that short-range connections might be enough to produce surround sup-

pression [161] since it also occurs in layers that do not have long-range connections or do

not receive extra-striate feedback.

The network model presented in this work achieves centre-surround suppression

without long-range connections and extrastriate feedback in way similar to the model

Wielaard and Sajda [222]. In the present model, however, the main factor influencing

centre-surround suppression is intra-cortical inhibition, whereas the model of Wielaard

and Sajda produces suppression through a mixture of inhibition and reduced excitation.

Nevertheles, it has to be noted that the questions that would allow to unequivocally dis-

cern between the three above-mentioned hypotheses have not been addressed, since the

current network is too small to adequately model horizontal long-range connections and

to reliably address the problem of surround sizes. even so, the model could be easily

extended to investigate these questions in detail (see also Section 8.1.4.

The importance of a modelling framework for this problem has to be noted. As

mentioned earlier, and as argued by Wielaard and Sajda [222], the current experimen-
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tal methods do not make it possible to rigorously discriminate the influence of the three

proposed mechanisms for centre-surround suppression. In this case, having a computa-

tional model that makes all assumptions explicit and that is able to generate predictions

that result from these assumptions is an invaluable tool to address this difficult question.

The network model is an attempt to provide such a modelling framework.

8.1.4. Modelling Considerations

After addressing receptive field, contrast response and centre-surround suppression prop-

erties in the previous sections, the potential and limitations of the proposed network

model need to be discussed as well as the chosen modelling approach. The model devel-

oped in this work has two major areas of application: The detailed study of mechanisms

underlying receptive field phenomena in V1, and the detailed study of mechanisms un-

derlying centre-surround properties in V1.

Receptive Field Phenomena The current model already shows a large variety of fea-

tures that fit in well experimental data (see Section 6.3.2). Moreover, it displays these

features simultaneously, that is, the parameters are not tuned for each feature separately,

but the model shows all tested receptive field phenomena with a fixed set of parameters.

However, although many important aspects of receptive field phenomena are covered in

this work, the amount of experimental data on V1 is enormous and it was not possible to

include all of it into the model. Some of these are addressed here, as they seem especially

important either with respect to the above-mentioned feed-forward and recurrent theo-

ries of feature selectivities in V1, or with respect to the co-existence of feature selectivities

(see Chapter 5).

Regarding the emergence of feature selectivities, recent experimental data on the tem-

poral dynamics of orientation selectivity using so-called reverse correlation methods (de-

veloped by Ringach et al. [173]) strongly suggest a crucial role of recurrent inhibition

[175, 187]. Here, a ’movie’ of randomly chosen sinusoidal grating stimuli of varying

orientations is displayed, and a probability distribution for orientation is estimated by

correlating each spike of the neuron at hand with the orientation of the grating for a

specific time offset. This gives different orientation tuning curves for the different time

offsets and thus a more detailed description of the temporal dynamics of the orientation

selectivity process. A comparison of the dynamics of orientation selectivity in the pro-

posed network model with these experimental data and an investigation of the role of

inhibition in this process would be highly interesting. The experimental protocols could

be readily transferred to the network modelled here, due to its high flexibility.
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Recent experimental and modelling studies have started addressing the co-existence

of feature selectivities by exploring the correlations between orientation and spatial fre-

quency selectivity [81, 224, 232]. All studies find strong correlations between orientation

selectivity and spatial frequency selectivity measures in both experiments and models.

This aspect has not been addressed in the presented work, but similar correlations can be

expected in the network, since the mechanisms that produce selectivities are very similar

to those used in the mentioned models. Furthermore, the model allows for more detailed

analyses than those covered by the scope of this work. For instance, it would be possi-

ble not only to relate different selectivity measures to each other, but also to analyse the

correlation between feature selectivity and, for example, receptive field width, number

of projecting LGN neurons, among others.

Centre-Surround Suppression Centre-surround suppression properties in the net-

work have been explored with sinusoidal gratings and random texture patterns. For

both stimulus types, there is a general and strong correspondence with experimental

data (see Section 6.3.3). However, several points have not been addressed, such as the

surround sizes that can be produced with the local circuitry of the model, the centre-

surround suppression in the LGN, the feed-back from other layers and from extrastriate

areas (although extrastriate areas do not project to layer 4C), and long-range horizontal

connections (although layer 4C hardly receives any horizontal projections).

In order to test the surround sizes produced with the proposed model, the network

size would have to be increased to cover a larger area of the visual field, similar to the

model of Wielaard and Sajda [222]. An increase in the size of the model would also make

it more comparable to human psychophysical studies, since typical centre-surround sup-

pression stimuli used in these studies cover a range of 5-7◦ of the visual field. An integra-

tion of centre-surround suppression in the LGN into the model of thalamic processing

could be based on recent experimental data by Solomon et al. [196], but would require

changes to the model, although these would be minor, A modelling of feed-back from

other layers of V1 would imply a detailed modelling of all layers, which would dramati-

cally increase the complexity of the model and would have to be as rigorously based on

experimental data as done in the current model. Although this would greatly improve

the model, it would also entail a much larger effort than the current model. An integra-

tion of extrastriate feed-back would require an adequate model thereof. However, there

is only limited experimental data that measure the extrastriate influence on V1 neurons.

As mentioned above, these feed-back projections do not target layer 4C of V1. Therefore,

either the other layers of V1 and the extrastriate feed-back projections onto them would
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have to be modelled in detail, or a unified, simple model of feed-back from outside of

layer 4C would have to be developed. Horizontal connections could also be incorpo-

rated into either of these options.

In the end, all these points have to be addressed in order to rigorously test whether

the local circuitry in V1 is sufficient to produce centre-surround suppression in all the

different experimental conditions. Despite this, the model proposed in this work lays the

foundation for a detailed, biophysically grounded, model-based investigation of centre-

surround phenomena in V1.

Why detailed modelling? The model offers a big advantage over experimental work

in that it allows accessing all parameters at all time, which is not possible in experiments.

Admittedly, the model only gives an approximation of the processes in the living brain

and, thus, the ground truth can only be provided by experimental data. However, the

model provides an invaluable tool to explore the system and generate ideas and hypothe-

ses, which can then be experimentally tested. While the accessibility of parameters is, of

course, also true for more abstract models, it is easier to generate new testable hypothe-

ses for detailed models, as the one presented in this work, because the employed neuron

models have biophysically meaningful parameters, that is, they directly describe an ex-

perimentally measurable quantity. Withal, this comes at the cost of a high computational

complexity and long simulation times, a large implementation effort, a non-trivial inter-

pretation of results, due to their complexity.

Concluding, biophysically detailed modelling has become an indispensable tool, which

offers great advantages over experimental techniques and more abstract modelling meth-

ods, but also has some disadvantages. Therefore, it only unfolds its full potential in

combination with more abstract models, tightly linked to the detailed model, and, most

importantly, with human or animal experiments.
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8.2. Experimental Studies

The second part of this work investigated perceptual centre-surround suppression and

its neural correlates in humans in a study that comprised a psychophysical matching

task,fMRI and magnetic resonance spectroscopy (MRS). In addition to healthy partici-

pants, a group schizophrenic patients was included in the study, because of their doc-

umented deficits in centre-surround suppression, as well as known distortions in the

GABAergic inhibitory system (see Chapter 7). Six conclusions can be drawn fro this

study. In the first place, perceptual centre-surround suppression markedly reduces per-

ceived contrast in the contrast-contrast illusion task. However, centre-surround suppres-

sion does not differ significantly between schizophrenic patients and controls. In the

second place, in V1, the absolute concentration of γ-amino-butyric acid (GABA) and the

GABA/creatine ratio are significantly lower, and the glutamate/GABA ratio is signifi-

cantly higher in the patient group compared to the healthy control group. In the third

place, the contrast-evoked blood-oxygen-level dependent (BOLD) response in V1 is re-

duced for schizophrenic patients. In the fourth place, neither the GABA/creatine ratio

nor the glutamate/GABA ratio correlate with the strength of perceptual centre-surround

suppression in V1 in either of the groups. In the fifth place, the BOLD response does not

correlate with the strength of perceptual surround suppression in V1 in neither of the

groups. Finally, in the sixth place, neither the GABA/creatine ratio nor the glutamate/-

GABA ratio correlate with the BOLD response in V1 in neither of the groups.

8.2.1. Psychophysical Measures

The psychophysical data show that the surround lowers the perceived target contrast

consistently with previous reports [43]. However, contrary to the hypothesis, the centre-

surround suppression is not significantly lower in the patient group than in the control

group (see Table 7.18). These findings are in contrast to previous studies using similar

centre-surround suppression tasks, which have reported deficits in contextual contrast

integration in patients suffering from schizophrenia [12, 51, 206, 227–229]. Furthermore,

such deficits have been observed for size in patients with disorganised schizophrenia

[213, 214] and for motion in schizophrenic patients [203].

Since the paradigm employed in this study slightly varies from those used in previous

studies, the specific experimental set-up could have led to these differences. However,

this seems implausible for two reasons: the centre-surround suppression strength for

healthy controls (see Table 7.18) is comparable with the above-mentioned reports, and

the inter-trial variability in both groups reflects previously reported values (see Table
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7.18).

Another factor, that might explain the findings from this study is the heterogene-

ity of the patient group, which consisted of acutely ill inpatients with first episode of

schizophrenia as well as chronically ill outpatients. The previous study by Dakin et al.

[51], who report strong effect sizes, only tested chronically ill inpatients; whereas, the

studies by Barch et al. [12] and Tibber et al [206], who report weaker effect sizes, con-

sisted only of stable outpatients and of a mixture of stable outpatients, and chronically

ill inpatients, respectively. Taken together, there seems to be an influence of the severity

and the duration of the illness on centre-surround suppression. Therefore, a correlation

analysis with the clinical parameters of duration and severity of the disorder would be

convenient in future studies.

Another element that might account for these results is the significant difference in

inter-trial variability, which reflects a higher noise level in the patient population. The

training time for the participants was relatively short. Whereas this seems sufficient for

the control group, it might not be optimal for the patients, as the high variability in the

patient group demonstrates. However, a prolonged training time adds to the discomfort

and/or drop-out of the patients and is, for practical reasons, hard to achieve.

General visual abilities potentially influence the centre-surround suppression strength.

Still, since visual acuity and contrast sensitivity did not differ statistically between both

groups (see Table 7.3), it does not appear to be a confounding factor in the current re-

sults. The same applies for the demographic factors age and sex (see Figure 7.4). The

education level in both groups was significantly different (see Figure 7.4), a possible ef-

fect seems unlikely, since there was no correlation of education level with the strength of

centre-surround suppression, neither in the patient group nor in the control group.

Antipsychotic medication might also have an effect on the measured centre-surround

suppression strength in the patient group. Although the patients did not receive med-

ication directly affecting the GABAergic system, which is thought to mediate centre-

surround suppression, atypical neuroleptics typically affect multiple neurotransmitter

systems and receptor types and thus might have indirectly influenced the GABAergic

system.

Finally, attentional engagement could be a potential confounder. Barch et al [12]

have recently demonstrated that group differences in centre-surround suppression lev-

els disappear after controlling for attention. They conclude that the found differences

are largely due to attentional impairments in schizophrenic patients. However, the effect

reported before controlling for attention is rather weak (Cohen’s d = .27-.31), so that ex-

clusion of non-attentive participants might have simply lowered the power of their anal-
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ysis. The study presented in this work did not control for attentional engagement was

not executed in the study presented in this work, but the significantly higher inter-trial

variability might also indicate a lower attention in the patient group.

Concluding, although there is evidence of a reduced centre-surround suppression

strength in schizophrenic patients, the study presented here could not replicate this find-

ing. Nevertheless, possible confounds cannot be excluded with certainty and, especially,

the heterogeneity of the patient group, as well as the possible differences in attentional

engagement, might have influenced the results.

8.2.2. MR Spectroscopy

The MRS data show, in agreement with the hypothesis, that the absolute GABA concen-

tration and the GABA/creatine ratio in V1 are significantly lower, and the glutamate/-

GABA ratio in V1 are significantly higher in the patient group compared to the control

group (see Table 7.10). Yoon et al. [229] also report reduced levels of GABA in the vi-

sual cortex of schizophrenic patients. Furthermore, these findings match findings in the

cingulate cortex [177], where reduced GABA/creatine ratios are also observed and with

post-mortem studies that have observed reduced concentrations of cortical GABA [49].

Notwithstanding, these findings are controversial [118, 162]. In the study at hand, no dif-

ferences between groups are observed in the absolute glutamate and the glutamate/crea-

tine ratio (see Table 7.10). This is also in agreement with previous findings in other brain

regions. For instance, Bartha et al. [13] report no differences in glutamate levels between

schizophrenic patients and control participants in the left medial prefrontal cortex.

Findings of reduced GABA levels in schizophrenic patients are consistent with the

GABA hypothesis of schizophrenia, which attributes symptoms and cognitive deficits

to a compromised GABAergic system [130]. Further evidence supporting the GABA hy-

pothesis comes from findings of reduced activity of the glutamate decarboxylase (GAD67),

the necessary enzyme for GABA synthesis [18]. However, an alternative hypothesis

explaining these results is that the reduced inhibitory activity and the compromised

GABAergic system are merely a consequence of a reduced glutamatergic activation of

GABAergic interneurons via N-methyl-D-aspartic acid (NMDA) receptors: the so-called

NMDA hypothesis of schizophrenia [130]. Evidence in favour of this hypothesis is that:

NMDA antagonists found in anaesthetics can induce conditions that resemble schizophre-

nia [111], and can reproduce negative and positive symptoms, as well as cognitive deficits

[120, 180]. However, in the present study no alterations are found in glutamate levels (ab-

solute and relative to creatine) in the current study, which does not support the NMDA

hypothesis.
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So far, MRS investigations in schizophrenia have mainly targeted the frontal lobe and

the hippocampus. However, the findings presented here, support the notion of a com-

promised GABAergic system throughout the cortex, and might be the neural correlates

of ubiquitous changes in cortical function in schizophrenia.

MRS results crucially depend on the image quality. Overall image quality in this

study was very good, as indicated by the low Cramer-Rao bounds for the most promi-

nent metabolites (data not shown). This is not surprising since V1 is ideally suited for

MRS measurements, due to its proximity to the surface of the head and the relatively

large distance to cavities and fatty tissue. However, reliable detection and quantification

of GABA is challenging, because it is only present in a low concentration in the human

brain and it overlaps with more prominent molecules in the spectrum [168]. In this study,

a standard point-resolved spectroscopy (PRESS) sequence used with a modified echo

time of 80ms, in order to resolve the glutamate and glutamine peaks at approximately

2.05-2.50ppm. This sequence is not optimal for GABA detection and quantification, and

thus the Cramer-Rao bounds were relatively high (see Tables 7.4 and 7.5). Therefore, the

results reported here have to be treated with caution and more reliable GABA quantifi-

cation will be necessary for future studies. There are two recent promising approaches

to that respect: J-editing MEGA-PRESS sequences [16, 145, 178] and 2-D J-resolved MRS

[116]. In contrast, the reliability of the glutamate quantification in this study was very

high, as indicated by the generally low Cramer-Rao bounds (see Tables 7.6 and 7.7). The

separation of glutamate and glutamine peaks in MRS spectra can be challenging; how-

ever, the sequence used in this study was optimised to resolve this issue. Thus, the ap-

proach to quantify glutamate taken in this study seems more reliable than approaches

using standard sequences.

8.2.3. Functional MR Imaging

The fMRI data of the study show, consistent with the hypothesis of a significantly re-

duced BOLD response in V1 in response to contrast texture patterns in schizophrenic pa-

tients compared to healthy control participants, although, the effect was weak (see Figure

7.16). This finding dovetails with a study by Martinez et al., who report reduced activa-

tion in V1 in schizophrenic patients in response to sinusoidal gratings at different levels

of contrast [139]. However, other studies have shown normal [11, 25] and even increased

[45] BOLD responses to visual stimuli. These ambiguous results might be explained by

the nature of the stimuli used in the latter studies, which non-selectively activated mag-

nocellular and parvocellular streams. In contrast, Martinez et al. [139] used stimuli se-

lectively targeting the magnocellular pathway in a narrow spatial frequency band. This
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suggests a specific deficiency in the magnocellular pathway in patients suffering from

schizophrenia. The texture patterns used in presented in this work, do most probably

also mainly target the magnocellular pathway, although not exclusively. Furthermore,

the spatial frequencies in the stimuli are restricted to a narrow band similar to those used

by Martinez et al. [139]. This might explain the apparent inconsistency of the findings

with previous studies. Nevertheless, the study by Martinez et al. [139] found diminished

sensitivity especially to low contrast stimuli.

Additionally, schizophrenic patients show a higher BOLD response in the medial tem-

poral lobe in comparison to the control group (see Figure 7.17). Previous studies have

found reduced grey matter in the temporal lobe of schizophrenic patients [90, 188]. Fur-

thermore, the role of the temporal lobe in the processing of faces is documented and

Holt et al. [92] found an increased BOLD activity in the temporal lobe in schizophrenic

patients, when viewing emotional facial expressions. The findings from the study pre-

sented here add to the evidence of abnormal structure and function in the temporal lobe

in patients suffering from schizophrenia.

8.2.4. Relations Between Neurotransmission, Contrast-Evoked BOLD

Signal and Context Perception

In addition to the independent examination of each of the three modalities (psychophysics,

MRS and fMRI), the study investigated pairwise correlations between them. This pro-

duced three main results. Firstly, GABA/creatine ratios, glutamate/creatine ratios and

glutamate/GABA ratios in V1 did not significantly correlate with the strength of centre-

surround suppression neither in the patient nor in the control groups (see Table 7.21).

Secondly, the strength of the BOLD response in V1 did not significantly correlate with

the strength of centre-surround suppression neither in the patient group nor in the con-

trol group (see Table 7.22). Nevertheless, there was a marginally significant difference

between the correlation coefficients of both groups (see Figure 7.22). Thirdly, the BOLD

response in V1 did not significantly correlate with GABA/creatine ratios, glutamate/cre-

atine ratios and glutamate/GABA ratios (see Table 7.23).

The absence of a correlation between GABA/creatine ratios and centre-surround sup-

pression is inconsistent with a previous study of Yoon et al. [229] with schizophrenic

patients, which found reduced GABA concentrations, reduced centre-surround suppres-

sion and a strong correlation between both. This was interpreted as an underpinning

of the GABA hypothesis of schizophrenia. However, there are differences between the

two studies. Yoon et al. investigated orientation-specific centre-surround suppression

using sinusoidal gratings and studied contrast thresholds instead of the bias introduced
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by the grating. Furthermore, the schizophrenic group only consisted of stable outpa-

tients. Therefore, it is likely that, the absence of a correlation in the current study comes

from the absence of a group difference regarding centre-surround suppression, despite

the fact that reduced GABA concentrations are found. Furthermore, there might not be

a correlation between GABA concentrations and non-specific centre-surround suppres-

sion measured by bias; this relationship might be limited to the orientation-specific case

measured by contrast thresholds. Finally, the perceptual and behavioural consequences

of reduced GABA concentrations might differ with respect to severity and duration of

the disorder.

The absence of a correlation between BOLD response in V1 and centre-surround sup-

pression is inconsistent with a previous study of Zenger-Landolt et al. [230]. Zenger-

Landolt et al. found a positive correlation between BOLD activation in V1 and centre-

surround suppression in response to sinusoidal gratings in healthy participants. The

absence of the correlation in the patient group in the presented study is likely due to

the absence of a reduction in centre-surround suppression in this group, whereas the

GABA concentration was significantly reduced, in comparison to the control group. As

in the above-mentioned study of Yoon et al. [229], Zenger-Landolt et al. investigated con-

trast threshold using sinusoidal gratings. Thus, the absence of a correlation in the control

group as well as the absence of differences in centre-surround suppression might be task-

specific. Still, there was a trend towards a difference between the correlation coefficients

describing the relation in both groups. This might suggest a difference in the processing

of contrast stimuli between schizophrenic patients and healthy controls. Furthermore,

correlations between centre-surround suppression and BOLD response are observed in

the thalamus for both groups (see Figures 7.23, 7.24 and 7.25). However, the exact lo-

cations are different in both groups, which again suggests a difference in the contrast

processing underlying centre-surround suppression. Thus, the trend towards opposing

relations between BOLD response and centre-surround suppression might stem from a

different processing occurring already at thalamic level.

The presented study does not find correlations between BOLD response and GABA/cre-

atine ratios in V1 in neither group. However, in a recent work Muthukumaraswamy et

al. [151] demonstrated a strong negative correlation between GABA concentration and

BOLD response in the visual cortex of healthy participants. This finding is supported by

several other studies: Firstly, Muthukumaraswamy et al. [152] report a strong negative

correlation between GABA concentration and amplitude of the haemodynamic response

function in the visual cortex. Secondly, Chen et al. [42] blocked the action of GABA

transaminase (GABA-T), which is crucial in breaking down GABA, by administration of
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a GABA-T inhibiting drug in the somatosensory cortex of rats. This results in elevated

GABA levels as quantified by MRS and, importantly, in a significant decrease in BOLD

activation. Lastly, Northoff et al. [155] report a strong correlation between GABA levels

and negative BOLD responses in the anterior cingulate cortex in humans. A common

interpretation of this relationship is, that the amplitude of the BOLD response strongly

depends on the balance of excitation and inhibition, and that increases in GABA shift this

balance towards inhibition, thus reducing positive BOLD responses and increasing nega-

tive ones. However, it needs to be noted that the GABA level measured by MRS is a bulk

concentration and does not necessarily reflect the local effects of GABA on the excita-

tion/inhibition balance. The results presented here, thus indicate that a direct inference

on the effects of GABA on local circuit dynamics cannot be readily made from GABA

concentrations measured by MRS and that a deeper understanding of the relationship

of global GABA levels and excitation/inhibition balances in localised circuits is neces-

sary. The same argument applies to glutamate/creatine and glutamate/GABA ratios.

However, to the author’s knowledge, no correlation of both of these ratios with BOLD

responses in V1 have been reported. This is surprising, because, if the BOLD response de-

pended on the excitation/inhibition balance, changes in glutamate, as well as changes in

the glutamate/GABA ratio, should also influence BOLD responses. Most studies, how-

ever, do not measure glutamate levels but rather the combined glutamate and glutamine

levels because of their strong overlap in the MRS spectrum at the standard echo time

TE = 68ms. The absence of such correlations is then usually explained by the fact that

glutamine may contribute with as much as 45% to this combined estimate and might

mask the correlation between glutamate and the BOLD response [e.g. 151]. However, in

the study presented here, the echo time TE = 80ms was optimised in order to reliably

quantify glutamate. The fact that there still is no correlation between glutamate level and

BOLD response, further adds to the issue that global MRS measures of neurotransmitter

concentrations might not necessarily reflect effects on the local circuit level.
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8.3. Modelling vs. Experiments

In Chapter 6 the present network model was tested with the same contrast texture pat-

terns that were used in Chapter 7 to test centre-surround suppression in humans. One

of the ultimate goals of the modelling effort described in this work was to compare these

modelling results, that is, the influence of parameters governing inhibition on centre-

surround suppression, with the psychophysical and neuroimaging results and then to

possibly identify one or several parameters that would allow to discriminate between

healthy participants and patients.

However, this comparison is difficult for different reasons: First, due to its complexity,

the size of the network was limited in the present work. This implies that a quantitative

match between the stimulus sizes used in the model and those used in the psychophysi-

cal experiment cannot be given, and thus a quantitative comparison of the matching con-

trasts cannot be made. However, with the present model, that is, after the thorough and

time-consuming validation performed in Chapter 6, an up-scaled version of the model

could overcome this limitation. Another option, the use of a more abstract model with

lower computational complexity (e.g. integrate-and-fire neurons) seems less favourable

since the model would then lose the connection of its parameters to measurable bio-

physical quantities, which again would prevent quantitative comparisons. Second, the

relationship between the parameters tested in the model on the one hand, and the neu-

rotransmitter levels and BOLD signals on the other hand, is still not fully understood.

Therefore, a quantitative comparison of these is not yet possible. In summary, there is

still a gap in the understanding of the relationships between neural processes on the mi-

crocircuit scale and the corresponding phenomena on the perceptual scale.

Despite this, the modelling results of this work are in a general, qualitative agree-

ment with the experimental results presented here and in other psychophysical studies.

Furthermore, the present model constitutes a step towards bridging the gap between the

neural, microcircuit and the perceptual scale.
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9.1. Contributions

Throughout this work, a biophysically detailed model and experimental results have

been presented that advance the understanding of centre-surround suppression on two

complementary scales, that is, the local scale of neural circuits and the global scale of

perception. One of the main goals of this work was to provide the basis for establishing

a link between these two scales.

On the neural circuits scale, a large-scale, biophysically detailed neural network model

of the input layer of the primary visual cortex (V1) was developed. The model possesses

characteristic features of V1, matching well with experimental data. Furthermore, it ex-

tends previous models in that it matches experiments better and has more morphological

and biophysical detail. The model allows for an investigation of the mechanisms of fea-

ture selectivity in V1 and yields a mechanistic underpinning of the theory explaining the

emergence of feature selectivity in terms of recurrent inhibition.

Further, centre-surround suppression and the role of recurrent inhibition in shaping

it were explored was performed using the neural network model. The model shows neu-

ral centre-surround suppression that concurs with experimental work, allowing for the

mechanism underlying the suppression to be identified. Suppression is achieved through

recurrent inhibition mediated through the specific pattern of connections. This mecha-

nism is consistent with that, which produces the characteristic feature selectivities. The

model demonstrates that various parameters governing recurrent inhibition interplay in

neural centre-surround suppression, and additionally, although counterintuitively, that

inhibition is also crucial for centre-surround facilitation.

In addition to the investigation of classical receptive field properties and centre-surround

suppression mechanisms, the proposed model offers the possibility to perform detailed

studies in two other areas of neuroscience: mechanisms of neurological diseases and of

pharmacological interventions. An incorporation of models of disease mechanisms and

drug mechanisms, respectively, would allow for the study of their effects on the proper-

ties of the network model and thus might enable a deeper understanding of these pro-
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cesses.

The presented model is explicitly designed to be flexible and easily extensible, and

code is available for all common neural simulators as well as in NeuroML, a simulator-

independent markup language.

On the perceptual scale, centre-surround suppression and its neural correlates were

investigated using a psychophysical task, functional magnetic resonance imaging (fMRI)

and magnetic resonance spectroscopy (MRS). In addition to healthy participants, patients

suffering from schizophrenia were included in the study, since schizophrenia has been as-

sociated with abnormal centre-surround suppression and with an impaired, GABAergic

inhibitory system [51, 228, 229].

The study does not confirm previous reports of reduced centre-surround suppres-

sion in the heterogeneous patient group that participated. However, it evidences that

schizophrenic patients show a reduction in γ-amino-butyric acid (GABA) concentrations

and in blood-oxygenated-level dependent (BOLD) response in the visual cortex. More-

over, differences in thalamic processing of contrast related aspects of centre-surround

suppression are suggested by an analysis of correlations between centre-surround sup-

pression and BOLD activation. Further correlation analyses between neurotransmitter

concentrations (GABA and glutamate) and BOLD responses suggested a more complex

relationship between the neurotransmitter concentrations measured by MRS and neural

activity on the local neural circuit level than previously assumed.

9.2. Outlook

9.2.1. A Community Model of the Primary Visual Cortex

The model presented in this work is intended to serve as a starting point for a neural

network model commonly used by the computational, visual neuroscience research com-

munity.

However, several further developments can be implemented in the future of the model

to display its full potential. At the moment, the current model only represents the input

layer of V1 so far, but a complete understanding of the computations performed by V1,

as well as the mechanisms underlying these computations, can only be gained by a full

model of all cortical layers. Furthermore, the diversity of neuron types, with respect to

morphology and dynamics, is much greater than that implemented in the current model.

Since this diversity most certainly fulfils a functional purpose, incorporating of these

different types of neurons with greater detail seems necessary. Anatomical and physio-
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logical data on which to ground the model already exist [14, 17, 47, 60, 137, 156].

The majority of experimental data used to validate the current model are intracellu-

lar recordings in animals, mainly macaque monkeys. However, a simulation of other

measures of neural activity, such as fMRI signals, local field potentials (LFP) and op-

tical imaging data, combined with a thorough comparison against experimental work,

would not only highly increase the explanatory power of the model, it would also al-

low for a deeper understanding of the relationships of these different modalities and

their dependence on neural processes. Approaches on the modelling of these measures

already exist. In the case of fMRI, detailed models have been developed relating neu-

ral activity to haemodynamic responses [71, 219], but also coarser approximations have

been employed, for example by using summed synaptic activity as measure of the BOLD

response [110]. Linden et al. [127–129] have modelled the generation of LFPs as result

of the underlying neural activity, and thus, provided the basis for a calculation of LFPs

from simulated neural activity. Wielaard and Sajda [221] provide a model to calculate

optical imaging signals from membrane potential traces and, as a simplification thereof,

from neuronal spike trains. All the above-mentioned models can be readily applied to

the proposed network model, since it makes it possible access to all necessary parame-

ters, such as membrane potentials, synaptic currents and conductances, and spatial and

connectivity information.

One of the most important property of the brain, the ability to learn and adapt to new

circumstances, which is implemented by the plasticity of neural connections, has not been

addressed in the current model, due to the additional complexity this would have posed.

However, especially the modelling of changes of the inhibitory system has revealed that

these adaptation mechanisms need to be considered. Many phenomenological models

of short-term depression and facilitation [e.g. 136] and long-term plasticity [e.g. 33, 107,

200], exist and have been applied in large-scale neural network models [107, 110]. The

infra-structure for a future inclusion into the proposed model is given.

The further investigation of the mechanisms underlying centre-surround suppression

and a thorough testing of the explanatory theories, demands appropriate modelling of

long-range horizontal connections and of extrastriate feed-back projections. Again, an

experimental basis, that is, fairly detailed anatomical and physiological data, already

exists [e.g. 17, 60], so that this could be implemented in future versions of the model.

9.2.2. Theory of Receptive Field Properties

The mechanisms underlying the emergence of receptive field properties in the proposed

model support the theory of recurrent inhibition as the primary underlying mechanism.
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However, feature selectivity in V1 is still far from being fully explained by this theory and

many aspects of feature tuning remain elusive. Recent experiments and models have ad-

dressed two important facets: the temporal dynamics [173, 187, 225] and the co-existence

of selectivities [224, 232]

The temporal dynamics of feature selectivities have not been addressed in the current

model so far. Nevertheless, an implementation of the experimental protocols used in the

above-mentioned studies is possible in the current model without further ado. An in silico

replication of these experimental findings would provide a further underpinning of this

theory of classical receptive field properties and allow for a more detailed investigation

of the underlying mechanisms.

The study of the co-existence and simultaneous implementation of feature selectivi-

ties in V1, would provide further insights into the functions and computations of V1. The

theoretical work so far, has mainly focused on the explanation of single feature selectivi-

ties. Withal, their interactions and their possible mutual necessitation have been widely

ignored. Recent experimental [224] and modelling work [232] has started to address this

problem. However, a deeper exploration is needed and the proposed model builds an

ideal basis for this.

9.2.3. Theory of Centre-Surround Suppression

The neural mechanisms behind centre-surround suppression are less understood than

those of classical receptive field properties, since reliable measurements pose greater

challenges to experimenters, and they depend on the incompletely understood classical

feature selectivities.

Three competing theories exist at the moment, which ascribe the emergence of centre-

surround suppression mainly to local, short-range circuitry [222], horizontal, long-range

connections [56, 102], and extrastriate feed-back projections [6, 10, 101, 202], respectively.

The evidence for or against any of these theories is controversial, partly because of inad-

equate experimental methods, partly because of a lack of computational support [222].

A further understanding of this phenomenon and a rigorous testing of the different hy-

potheses would greatly benefit from a strong computational support, for which the pro-

posed network model builds an ideal starting point.
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A. The Visual System

In this chapter the function and organisation of the human visual system is reviewed

with a focus on the early stages of visual processing, especially in primary visual cortex.

It gives an overview of the anatomy of the visual system

A.1. Functional Neuroanatomy

Figure A.1.: Depiction of the visual pathway from the eye to the cortex ([93] License: GFDL).
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A. The Visual System

Figure A.2.: The two streams in higher visual processing. The ventral stream, also called the what

stream, and the dorsal stream, also called the where stream([95] License: GFDL).

Visual processing starts with the input of external stimuli, i.e. light waves hitting the

eye and therein the retinal photoreceptors. After a transmission from electromagnetic

waves to electric impulses in the retina, the retinal ganglion cells mainly transduce the

information to the thalamus, i.e. the dorsal and the ventral part of the lateral genicu-

late nucleus (LGN). Cells in LGN further relay the sensory information to neurons in the

primary visual cortex (also striate cortex, abbrev. V1). In primary visual cortex infor-

mation is further processed and then fed into two distinct streams, although connections

between these two streams exist. The first stream (the so-called dorsal stream), is dedi-

cated to the localisation of objects and the detection of motion. It mainly comprises the

areas V2, V3, MT (also called V5) and MST and gives us our sense of spatial orientation,

movement direction and speed of motion of objects. It fuses information from both eyes

to give us depth perception. The second stream (the so-called ventral stream) mainly com-

prises the areas V2, V3, V4 and IT. It is important for perception of shape as well as colour

perception [46].

A.1.1. The Eye - Phototransduction and Retinal Processing

The visual system starts with the eye, where the incoming light is directed towards the

retina at the back of the eye with the help of an adjustable lens and an iris that con-

trols the amount of light coming in. The retina is a laminar structure dedicated to the
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Figure A.3.: Depiction of the layered structure of the retina within the eye ball ([96] with friendly

permission from the copyright holder).
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transduction of light energy into electric impulses and the processing of the electrical ac-

tivity. It consists of five different functional units, the photoreceptors, the horizontal cells,

the bipolar cells, the amacrine cells and the ganglion cells. The direct way of information

processing goes from the photoreceptors to the bipolar cells and then further to the gan-

glion cells, which send axons through the optic nerve to the brain. The horizontal cells

receive input from photoreceptors and connect laterally to surrounding photoreceptors

and bipolar cells and the amacrine cells receive input from bipolar cells and influence

ganglion cells, bipolar cells as well as other amacrine cells in the surrounding (see Figure

A.3 for a schematic depiction of retinal organisation).

Photoreceptors Light is converted into neural signals via the photoreceptors. In the hu-

man retina two types of photoreceptors, with different structure and function, exist. The

rod photoreceptors have long, cylindrical outer segments whereas the cone photoreceptors

have shorter, tapering outer segments. For both photoreceptors the outer segment con-

tains membranous disks filled with photopigments, a light-sensitive substance. The pho-

topigments absorb light, thereby changing the potential of the surrounding membrane

and thus transform light energy into neural signals. While the rods have a very high

sensitivity to incoming light the smaller outer segments of the cones lead to a significant

reduction in light sensitivity. However, only the cones are specifically sensitive to certain

wavelength bands and are thus responsible for colour vision. There exist three types of

cones sensitive to blue, red and green, respectively.

Bipolar Cells Bipolar cells are divided into two groups based on their response to

’light off’ or ’light on’ conditions. OFF bipolar cells respond to ’light off’ conditions with

a depolarisation due to the increase in glutamate from the photoreceptors, whereas ON

bipolar cells respond with a depolarisation to ’light on’ conditions, i.e. a decrease in

glutamate. Bipolar cell receive direct input from a patch of photoreceptors depending

on their location in the retina. In the region near the fovea the patches only contain few

photoreceptors (down to 1) whereas in the peripheral regions the patches can contain

thousands of them. However, this is not the only input to the bipolar cells. Bipolar cells

also receive connections from horizontal cells which receive their input from a ring sur-

rounding the patch that directly targets the bipolar cells, thus creating a receptive field,

i.e. the area of the retina that, when stimulated changes the cell’s membrane potential,

with a centre-surround structure. The response of the bipolar cell to light falling into

the different parts of its receptive field is reversed, i.e. either light falling into the centre

causes depolarisation and light falling into the surround causes hyper-polarisation or the
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opposite, a mechanism which is seen throughout the visual system.

Horizontal Cells Horizontal cells are connected with photoreceptors in a centre-surround

fashion and control the activity of their centre photoreceptor cells based on the activity

of the their surround photoreceptor cells. By this mechanism they indirectly induce a

centre-surround receptive field in the bipolar cells. This surround effect enhances bright-

ness contrasts to produce sharper images and makes objects appear brighter or darker

depending on the background. Furthermore it enables to maintain these contrasts under

different levels of illumination.

Amacrine Cells Amacrine cells connect to bipolar cells and ganglion cells. They pro-

vide lateral connection in between of these groups, similar to horizontal cells, but also

provide links between bipolar and ganglion cells. There exist many different types of

amacrine cells (> 20) but little is known about their function. Some amacrine cells have

been identified to produce the movement sensitive response of M-type ganglion cells, to

enhance the centre-surround receptive field properties in ganglion cells and to connect

bipolar cells responding to cone photoreceptors with bipolar cells responding to rod pho-

toreceptors, therefore allowing ganglion cells to respond to the full range of light levels.

Retinal Cells Similar to the bipolar cells, retinal ganglion cells also have centre-surround

antagonistic receptive fields. The existence of these OFF-centre ganglion cells and ON-

centre ganglion cells, i.e. cells that have a centre-surround antagonistic receptive field

with a centre responding either to dark spot imaged on its receptive field (OFF) or a bright

spot (ON), leads to increased neural responses whenever the image shown has light-dark

edges. The retina thus can be seen as an edge-detector or as a contrast-enhancing system

There exist three types of retinal ganglion cells: M-type (where M stands for magno

Latin for large) , P-type (where P stands for parvo Latin for small) and nonM-nonP cells.

M-type ganglion cells are larger, compared with the other ganglion cell types, and have

larger receptive fields, conduct action potentials faster and are more sensitive to low-

contrast stimulation [46]. Furthermore, the M-type cells respond with transient bursts of

activity to a stimulus whereas P-type cells show regular repetitive firing.

A further distinction, which plays an important role in the later visual processing, is

the fact that M-type cells are insensitive the wavelength of the incoming light, whereas

some of the other ganglion cells are sensitive to changes in the wavelength, i.e. these

cells are colour-sensitive. These colour-sensitive cells show a colour-opponency in their

receptive field. Colour-opponency means that, for example for a cell with red-green op-
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ponency (denoted R+G−-cell) a red light spot in the centre of the receptive field evokes

a large response from this cell, but if additionally a green stimulus is presented in the

surround region of the cell’s receptive field, this leads to a cancellation of the red effect

of the red stimulus, thus results in no response from the cell. The same holds for blue

and yellow opponencies. The explanation for this phenomenon is that colour-opponency

depends on the type of photoreceptors that constitute the cell’s receptive field, e.g. a cell

where only cones sensitive to blue light contribute to the centre and only cones sensi-

tive to red and green contribute to the surround is a B+Y − cell, i.e. has a blue-yellow

opponency . This again explains why M-type cells do not show colour-opponency, their

receptive fields are so large that they always integrate cones sensitive to all blue, red and

green. Furthermore, it explains why humans only see colours in the centre of our visual

field, as explained above, the patches of photoreceptors targeting the bipolar cells grow

much larger the more peripheral they lie, thus the peripheral ones integrate all types of

cones and loose their colour-sensitivity.

A.1.2. The Thalamus

Figure A.4.: Depiction of the layered structure of the LGN ([96] with friendly permission from

the copyright holder).
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The axons from the retina go along the left and right optic nerve until they reach the

optic chiasm, where the information from the right and left visual hemifield, coming from

each eye, are separated such that the right optic tract only contains information from the

left hemifield and the left optic tract only contains information from the right hemifield.

About 80-90 % of the axons in the optic tract target the lateral geniculate nucleus (LGN)

which is located in the dorsal thalamus bilaterally [46]. The rest of the axons innervate

the hypothalamus and the mid-brain. The neurons in thalamus innervate the primary

visual cortex and this projection is often called the optic radiation. From lesion studies it

is known that these projections from LGN to V1 mediate conscious visual perception.

The non-thalamic targets of the optic tract in the hypothalamus and the mid-brain

are involved in controlling biological rhythms and the size of the pupil and certain eye

movements, respectively.

The thalamic targets of the optic tract, the left and right LGN, is structured in six prin-

cipal layers of cells which are numbered from 1 to 6 starting in the most ventral layer. It

has already been stated that the retinal ganglion can be subdivided into three types of

cells. In the thalamus this segregation of these three sub-streams of information persists.

The axons from M-type ,P-type and nonM-nonP cells project to different layers of the

LGN. The two ventral layers, layer 1 and 2, are called the magnocellular LGN layers

and the dorsal layers, layer 3 to 6, are called the parvocellular LGN layers. The mag-

nocellular layers receive projections exclusively from M-type ganglion cells whereas the

parvocellular layers receive projections exclusively from P-type ganglion cells. However,

there is a small region of very small neurons between the 6 principal layers of the LGN

which receives input projections from the nonM-nonP cells of the retina. These small

regions are called the koniocellular LGN layers.

But not only the information from the three different retinal ganglion cell types stays

segregated in the LGN, but also the information coming from both eyes. In the right LGN,

the right (ipsi-lateral) eye cells project to layers 2, 3 and 5 whereas the left (contra-lateral)

eye cells send projections to layers 1, 4 and 6 (and vice versa for the left eye).

A.1.3. The Primary Visual Cortex

In primary visual cortex (V1) one finds the laminar 6 layer structure as it is seen through-

out cortex. Layer 1 contains only a few cell bodies and mainly consists of dendritic and

axonal connections. Layers 2/3 (also called the supergranular layers) contain many ex-

citatory projection neurons which mainly target higher visual areas (e.g. V2,V3, V4, MT).

Furthermore, layer 2/3 receives very little thalamic input. Layer 4 (the granular layer)

contains mostly spiny stellate neurons and only few pyramidal cells (as opposed to the
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layers 2/3, 5 and 6). It can be subdivided into 4A, 4B and 4C. Layer 4C is the main projec-

tion site of innervation from the LGN and can be further subdivided into 4Cα and 4Cβ,

where 4Cα receives input only from the M-pathway and 4Cβ only from the P-pathway.

This means that the segregation of these two pathways remains also in the visual cor-

tex. Layers 5 and 6 (the infragranular layer) contain pyramidal cells that project back to

the LGN and provide feedback. Approximately 20% of the neurons in V1 are interneu-

rons. Throughout the layers many types and forms of interneurons, mainly inhibitory,

are found. Basket cells, Chandelier cells, neurogliaform cells, double bouquet cells and

Cajal-Retzius cells, to name just a few.

A.1.4. Higher Visual Areas

The higher visual areas can be subdivided into two streams the dorsal stream and the

ventral stream, which continues the segregation of M- and P-pathway seen in retinal

ganglion cells, LGN and V1. The dorsal stream, often also called the ’where’ stream,

goes from V1 through V2 then to the dorso-medial area and area MT (often called V5). It

is mainly associated with motion, representation of object location and the control of the

eyes and arms. The ventral stream, also called the ’what’ stream, goes from V1 through

V2 then to V4 and to inferior temporal cortex. It is mainly associated with object recog-

nition and also involved in storage of long-term memory. Goodale and Milner proposed

that the ventral stream performs visual tasks critical for perception whereas the dorsal

stream executes tasks related to visual control of skilled actions.
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Inhibition in Feature Selectivity and

Centre-Surround Suppression

B.1. Weight of Inhibitory Connections on Excitatory Cells

and then discusses the functional consequences arising from there.

Table B.1.: Orientation selectivity measures for the five different weights for the inhibitory con-

nections onto excitatory neurons and, as a reference, for the standard configuration of the model.

Weight Selective Biased ORI CV

wie Cells Cells (mean ± std) (mean ± std)

0.1 15.43 % 19.53 % .38 ± .26 .86 ± .14

0.2 42.66 % 19.96 % .56 ± .29 .74 ± .18

0.3 71.43 % 12.75 % .77 ± .22 .54 ± .25

0.4 72.16 % 13.57 % .77 ± .25 .53 ± .22

0.5 72.23 % 12.21 % .77 ± .25 .52 ± .24

0.275 (standard) 72.32 % 12.20 % .77 ± .25 .52 ± .24
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Table B.2.: Fitting parameters for the contrast response functions of the mean response of the net-

work neurons for the five different weights of inhibitory on excitatory cells, and for the standard

configuration.

Weight wie a k p q r2

0.1 0.050 1.78 2.10 1.83 0.09

0.2 0.050 1.70 2.20 1.60 0.99

0.3 0.005 1.64 2.22 1.60 0.99

0.4 0.005 1.64 2.20 1.60 0.99

0.5 0.050 1.71 2.20 1.82 0.98

0.275 (standard) 0.050 1.70 2.2 1.8 0.98

Table B.3.: Suppression indices in the size variation test for five different weights of inhibitory

connections on excitatory cells and for the standard configuration.

Weight wie SI (mean ± std)

0.1 0.52 ± 0.23

0.2 0.29 ± 0.25

0.3 0.14±0.17

0.4 0.15±0.18

0.5 0.13±0.17

0.275 (standard) 0.13 ± 0.16
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Table B.4.: Centre-surround suppression in response to sinusoidal gratings. Suppression indices

for the mean responses for five different inhibitory weights in the eight different centre-surround

conditions.

Weight: wie = 0.1

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 0.82 0.65 0.41 0.38

High Surround (SI) 0.97 0.95 0.65 0.35

Weight: wie = 0.2

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 1.15 1.19 0.85 0.26

High Surround (SI) 0.99 0.98 0.36 0.15

Weight: wie = 0.3

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 1.36 1.56 0.82 0.17

High Surround (SI) 1.06 0.99 0.36 0.14

Weight: wie = 0.4

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 1.46 1.17 0.75 0.14

High Surround (SI) 1.09 1.18 0.39 0.14

Weight: wie = 0.5

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 1.55 1.37 0.76 0.14

High Surround (SI) 1.06 1.31 0.36 0.16
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Table B.5.: Centre-Surround suppression in response to contrast noise patterns. Responses and

matching contrasts for five different inhibitory weights.

Weight: wie = 0.1

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 17.49 ± 29.27 .4

Small Surround 9.52 ± 16.63 .3271 ± .1866

Large Surround 7.71 ± 14.83 .2819 ± .2037

Weight: wie = 0.2

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 20.18 ± 22.94 .40

Small Surround 8.33 ± 12.42 .1783 ± .1385

Large Surround 7.38 ± 13.00 .1598 ± .1460

Weight: wie = 0.3

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 12.86 ± 17.53 .40

Small Surround 5.48 ± 9.09 .2087 ± .1660

Large Surround 4.27 ± 7.64 .1348 ± .1217

Weight: wie = 0.4

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 8.74 ± 14.63 .40

Small Surround 4.76 ± 8.32 .3272 ± .1867

Large Surround 3.86 ± 7.41 .2821 ± .2039

Weight: wie = 0.5

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 3.33 ± 5.13 .40

Small Surround 2.82 ± 3.22 .4043 ± .1919

Large Surround 1.96 ± 2.12 .3079 ± .2172
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B.2. Weight of Excitatory Connections on Inhibitory Cells

Table B.6.: Centre-Surround suppression in response to contrast noise patterns. r2 values and

percentage of excluded cells, and statistical analysis of the influence of the surround grating on

the response for both surround conditions and of the influence of the size of the surround.

Weight wie 0.1 0.2 0.3 0.4 0.5

r2-Value .60± .14 .64± .14 .60± .13 .60± .14 .64± .15

Excluded Cells 62.5% 25.0% 46.9% 62.5% 73.44%

Predicted 40

vs n.s. ** * n.s. n.s.

Small Surround p = .28 p < .01 p < .05 p = .28 p = .75

Predicted 40

vs n.s. ** * n.s. n.s.

Large Surround p = .18 p < .01 p < .05 p = .17 p = .36

Small Surround

vs n.s. n.s. n.s. n.s. n.s.

Large Surround p = .71 p = .72 p = .57 p = .70 p = .41

B.2. Weight of Excitatory Connections on Inhibitory Cells

Table B.7.: Orientation selectivity measures the four weights of the excitatory connections onto

inhibitory neurons and the standard configuration.

Weight Selective Biased ORI CV

wei Cells Cells (mean ± std) (mean ± std)

0.005 59.15 % 14.95 % .68±.28 .63±.22

0.02 67.83 % 13.60 % .73±.26 .57±.22

0.05 66.22 % 16.12 % .71 ± .25 .62 ± .19

0.1 63.84 % 12.32 % .68±.29 .62±.22

0.275(standard) 72.32 % 12.20 % .77 ± .25 .52 ± .24
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B. Results - The Role of Recurrent Inhibition in Feature Selectivity and Centre-Surround Suppression

Table B.8.: Fitting parameters for the contrast response functions of the average response of the

network neurons for four different weights wei and for the standard configuration.

Weight wei a k p q r2

0.005 0.05 1.73 2.2 1.93 0.97

0.02 0.005 1.76 2.53 1.6 0.99

0.05 0.005 1.78 2.58 1.6 0.97

0.1 0.05 1.70 2.2 1.6 0.85

0.01 (standard) 0.050 1.70 2.2 1.8 0.98

Table B.9.: Centre-surround suppression in response to sinusoidal gratings. Suppression indices

in the size variation test for four different weights wei and the standard configuration.

Weight wei SI (mean ± std)

0.005 0.24 ± 0.23

0.02 0.17 ± 0.19

0.05 0.17 ± 0.19

0.1 0.18±0.19

0.01 (standard) 0.13 ± 0.16
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B.2. Weight of Excitatory Connections on Inhibitory Cells

Table B.10.: Centre-surround suppression in response to sinusoidal gratings. Suppression in-

dices for four different weights in the eight different centre-surround conditions.

Weight wei = 0.005

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 1.79 1.17 0.66 0.23

High Surround (SI) 1.14 0.85 0.27 0.18

Weight wei = 0.02

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 1.17 1.03 0.79 0.16

High Surround (SI) 1.04 0.96 0.43 0.10

Weight wei = 0.05

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 1.03 1.00 1.00 0.17

High Surround (SI) 1.03 1.00 0.79 0.11

Weight wei = 0.1

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 0.96 0.98 1.01 0.25

High Surround (SI) 0.87 0.88 0.89 0.18
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B. Results - The Role of Recurrent Inhibition in Feature Selectivity and Centre-Surround Suppression

Table B.11.: Centre-Surround suppression in response to contrast noise patterns. Responses and

matching contrasts for four different weights wei.

Weight: wei = 0.005

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 18.76 ± 22.83 .40

Small Surround 11.94 ± 16.71 .2456 ± .1401

Large Surround 9.60 ± 16.30 .1868 ± .1474

Weight: wei = 0.02

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 10.56 ± 15.56 .40

Small Surround 3.50 ± 5.10 .2494 ± .1883

Large Surround 3.14 ± 4.85 .2121 ± .1625

Weight: wei = 0.05

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 4.16 ± 7.68 .40

Small Surround 1.88 ± 0.85 .3654 ± .1811

Large Surround 1.89 ± 1.28 .3324 ± .1802

Weight: wei = 0.1

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 4.50 ± 6.33 .40

Small Surround 2.91 ± 1.49 .3419 ± .1056

Large Surround 2.69 ± 1.47 .3167 ± .0996
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B.2. Weight of Excitatory Connections on Inhibitory Cells

Table B.12.: Centre-Surround suppression in response to contrast noise patterns. r2 values and

proportion of excluded cells and statistical analyses of the influence of the surround grating on

the response for both surround conditions and, of the influence of the size of the surround.

Weight wei 0.005 0.02 0.05 0.1

r2-Value .62± .12 .60± .14 .63± .12 .83± .13

Excluded Cells 43.75% 45.13% 39.06% 7.81%

Predicted 40

vs n.s. * n.s. n.s.

Small Surround p = .16 p < .05 p = .08 p = .07

Predicted 40

vs n.s. * n.s. *

Large Surround p = .06 p < .05 p = .08 p < .05

Small Surround

vs n.s. n.s. n.s. n.s.

Large Surround p = .56 p = .77 p = .96 p = .42
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B. Results - The Role of Recurrent Inhibition in Feature Selectivity and Centre-Surround Suppression

B.3. Number of Inhibitory Cells

Table B.13.: Orientation selectivity measures for two different amounts of inhibitory neurons and

the standard configuration.

Inhibitory Cells Selective Biased ORI CV

(%) Cells Cells (mean ± std) (mean ± std)

77 38.70 % 17.00 % .51 ± .32 .76 ± .20

88 45.85 % 15.52 % .55 ± .34 .71 ± .22

100 (standard) 72.32 % 12.20 % .77 ± .25 .52 ± .24

Table B.14.: Fitting parameters for the contrast response functions of the average response of

the network neurons for two different amounts of inhibitory neurons and for the standard

configuration.

Inhibitory Cells (%) a k p q r2

77 0.05 1.76 2.2 1.75 0.30

88 0.05 1.78 2.2 1.78 0.16

100 (standard) 0.050 1.70 2.2 1.8 0.98

Table B.15.: Centre-surround suppression in response to sinusoidal gratings. Suppression in-

dices in the size variation test for two different amounts of inhibitory neurons and the standard

configuration.

Inhibitory Cells SI (mean ± std)

(%)

77 0.36 ± 0.29

88 0.34 ± 0.32

100 (standard) 0.13 ± .16
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B.3. Number of Inhibitory Cells

Table B.16.: Centre-surround suppression in response to sinusoidal gratings. Suppression in-

dices for two different amounts of inhibitory neurons in the eight different centre-surround

conditions..

Number of Neurons = 77%

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 0.90 0.97 1.26 0.62

High Surround (SI) 0.59 0.64 0.62 0.41

Number of Neurons = 88%

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 1.01 1.02 0.91 0.71

High Surround (SI) 1.00 0.98 0.87 0.39

Table B.17.: Centre-Surround suppression in response to contrast noise patterns. Responses and

matching contrasts for two different amounts of inhibitory neurons.

Number of Neurons: 88%

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 10.92 ± 18.81 .40

Small Surround 7.19 ± 7.71 .3506 ± .0706

Large Surround 7.78 ± 9.65 .3556 ± .0811

Number of Neurons: 77%

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 19.21 ± 35.25 .40

Small Surround 14.08 ± 28.39 .3768 ± .0847

Large Surround 13.72 ± 28.34 .3513 ± .0955
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B. Results - The Role of Recurrent Inhibition in Feature Selectivity and Centre-Surround Suppression

Table B.18.: Centre-Surround suppression in response to contrast noise patterns. r2 values, per-

centages of excluded cells, and statistical analysis of the influence of the surround grating on the

response for both surround conditions and of the influence of the size of the surround for two

different amounts of inhibitory neurons.

Inhibitory Cells 88% 77%

r2-Value .88± .09 .91± .06

Excluded Cells 6.25% 12.50%

Predicted 40

vs n.s. n.s.

Small Surround p = .18 p = .38

Predicted 40

vs n.s. n.s.

Large Surround p = .28 p = .35

Small Surround

vs n.s. n.s.

Large Surround p = .73 p = .94

B.4. Number of Inhibitory Connections to Excitatory Cells

Table B.19.: Orientation selectivity measures for different amounts of inhibitory connections on

excitatory cells and the standard configuration.

Connection Number Selective Biased ORI CV

(%) Cells Cells (mean ± std) (mean ± std)

64 % 68.11 % 14.23 % .73 ± .26 .57 ± .22

88 % 72.65 % 12.27 % .78 ± .23 .53 ± .22

100 %(standard) 72.32 % 12.20 % .77 ± .25 .52 ± .24
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B.4. Number of Inhibitory Connections to Excitatory Cells

Table B.20.: Fitting parameters for the contrast response functions of the average response of

the network neurons for two different amounts of inhibitory connections and for the standard

configuration.

Number of Connections (%) a k p q r2

64 0.050 1.79 2.2 1.79 -0.03

88 0.050 1.75 2.2 1.78 0.60

100 (standard) 0.050 1.70 2.2 1.8 0.98

Table B.21.: Centre-surround suppression in response to sinusoidal gratings. Suppression in-

dices in the size variation test for two different amounts of inhibitory connections and the stan-

dard configuration.

Inhibitory Connections (%) SI (mean ± std)

64 0.32±0.22

88 0.28±0.23

100 (standard) 0.13 ± 0.16

Table B.22.: Centre-surround suppression in response to sinusoidal gratings. Suppression in-

dices for two different amounts of inhibitory connections in the eight different centre-surround

conditions.

Number of Connections = 64%

Centre Contrast 0.1 0.2 0.4 0.8

Low Surround (SI) 0.99 0.98 1.02 0.41

High Surround (SI) 0.97 1.01 0.86 0.38

Number of Connections = 88%

Centre Contrast 0.1 0.2 0.4 0.8

Low Surround (SI) 0.98 0.99 1.05 0.32

High Surround (SI) 0.93 1.03 0.78 0.28
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B. Results - The Role of Recurrent Inhibition in Feature Selectivity and Centre-Surround Suppression

Table B.23.: Centre-Surround suppression in response to contrast noise patterns. Responses and

matching contrasts for two different amounts of inhibitory connections.

Inhibitory Connections: 88%

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 6.74 ± 1.87 .40

Small Surround 6.90 ± 1.66 .4124 ± .0846

Large Surround 6.48 ± 1.86 .3795 ± .1090

Inhibitory Connections: 64%

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 9.12 ± 4.39 .40

Small Surround 8.04 ± 2.18 .3618 ± .0939

Large Surround 7.71 ± 2.45 .3345 ± .0834

Table B.24.: Centre-Surround suppression in response to contrast noise patterns. r2 values, per-

centage of excluded cells, and statistical analyses of the influence of the surround grating on the

response for both surround conditions and of the influence of the size of the surround, for two

different amount of inhibitory connections.

Connection Number 88% 64%

r2-Value .82± .07 .87± .08

Excluded Cells 21.88% 29.69%

Predicted 40

vs n.s. n.s.

Small Surround p = .68 p = .13

Predicted 40

vs n.s. n.s.

Large Surround p = .52 p = .05

Small Surround

vs n.s. n.s.

Large Surround p = .27 p = .49
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B.5. Number of Excitatory Connections on Inhibitory Cells

B.5. Number of Excitatory Connections on Inhibitory Cells

Table B.25.: Orientation selectivity measures for different amounts of excitatory connections onto

inhibitory cells and the standard configuration.

Excitatory Connections Selective Biased ORI CV

(%) Cells Cells (mean ± std) (mean ± std)

66 70.76 % 20.74 % .81 ± .21 .49 ± .21

82 78.73 % 12.35 % .80 ± .21 .51 ± .22

100(standard) 72.32 % 12.20 % .77 ± .25 .52 ± .24

Table B.26.: Fitting parameters for the contrast response functions fitted to the mean response of

the network neurons for two different amounts of excitatory connections and for the standard

configuration.

Excitatory Connections (%) a k p q r2

66 0.050 1.68 2.1 1.6 0.86

82 0.050 1.71 2.1 1.69 0.72

100 (standard) 0.050 1.70 2.2 1.8 0.98

Table B.27.: Centre-surround suppression in response to sinusoidal gratings. Suppression in-

dices in the size variation test for two different amounts of excitatory connections and the stan-

dard configuration.

Connection Number SI (mean ± std)

(%)

66 0.12 ± 0.11

82 0.17 ±0 .18

100 (standard) 0.13 ± 0.16
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B. Results - The Role of Recurrent Inhibition in Feature Selectivity and Centre-Surround Suppression

Table B.28.: Centre-surround suppression in response to sinusoidal gratings. Suppression in-

dices for two different amounts of excitatory connections in the eight different centre-surround

conditions..

Number of Connections: 82%

Centre Contrast 0.1 0.2 0.4 0.8

Low Surround (SI) 0.73 0.69 0.60 0.61

High Surround (SI) 0.93 0.94 0.93 0.94

Number of Connections: 66%

Centre Contrast 0.1 0.2 0.4 0.8

Low Surround (SI) 0.73 0.65 0.54 0.56

High Surround (SI) 0.93 0.93 0.93 0.91

Table B.29.: Centre-Surround suppression in response to contrast noise patterns. Responses and

matching contrasts for two different amounts of excitatory connections.

Number of Connections: 82%

Response (Hz) Match (contrast in %)

(mean± std) (mean± std)

Predicted 40 6.06 ± 1.55 .40

Small Surround 6.40 ± 1.67 .4437 ± .1058

Large Surround 5.54 ± 1.54 .3383± .1108

Number of Connections: 66%

Response (Hz) Match (contrast in %)

(mean± std) (mean± std)

Predicted 40 5.70 ± 2.13 .40

Small Surround 6.09 ± 2.04 .4430 ± .1293

Large Surround 5.65 ± 2.14 .3700 ± .1347
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B.6. Decay Times at GABAergic Synapses

Table B.30.: Centre-Surround suppression in response to contrast noise patterns. r2 values, per-

centages of excluded cells, and statistical analyses of the influence of the surround grating on the

response for both surround conditions and of the influence of the size of the surround for two

different amounts of excitatory connections.

Connection Number 82% 66%

r2-Value .74± .06 .73± .08

Excluded Cells 40.63% 57.81%

Predicted 40

vs n.s. n.s.

Small Surround p = .37 p = .53

Predicted 40

vs n.s. n.s.

Large Surround p = .17 p = .94

Small Surround

vs * n.s.

Large Surround p = .03 p = .49

B.6. Decay Times at GABAergic Synapses

Table B.31.: Orientation selectivity measures for five different decay time constants τ at in-

hibitory synapses and the standard configuration.

Time Constant τ Selective Biased ORI CV

τ (in ms) Cells Cells (mean ± std) (mean ± std)

15 64.50 % 14.50 % .70 ± .28 .62 ± .21

20 66.90 % 13.10 % .71 ± .28 .61 ± .22

25 65.52 % 13.40 % .70 ± .28 .62 ± .21

30 65.05 % 14.31 % .70 ± .28 .62 ± .21

50 64.20 % 14.6 % .70 ± .28 .62 ± .22

8 (standard) 72.32 % 12.20 % .77 ± .25 .52 ± .24
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B. Results - The Role of Recurrent Inhibition in Feature Selectivity and Centre-Surround Suppression

Table B.32.: Fitting parameters for the contrast response functions fitted to the mean response of

the network neurons for five different decay time constants τ at inhibitory synapses and for the

standard configuration.

τ (ms) a k p q r2

15 .050 1.72 2.2 1.6 .80

20 .050 1.70 2.2 1.6 .88

25 .50 1.70 2.2 1.6 .87

30 .050 1.71 2.2 1.6 .84

50 .050 1.73 2.2 1.64 .71

8 .050 1.70 2.2 1.8 .98

Table B.33.: Centre-surround suppression in response to sinusoidal gratings. Suppression in-

dices in the size variation test for five different decay time constants τ at inhibitory synapses and

the standard configuration.

Time Constant SI (mean ± std)

(τ in ms)

15 0.15 ± 0.18

20 0.15 ± 0.16

25 0.15 ± 0.18

30 0.15 ± 0.17

50 0.15 ± 0.18

8 (standard) 0.13 ± 0.16
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B.6. Decay Times at GABAergic Synapses

Table B.34.: Centre-surround suppression in response to sinusoidal gratings. Suppression in-

dices for five different decay time constants τ at inhibitory synapses in the eight different centre-

surround conditions..

Decay Time Constant: τ = 15ms

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 1.00 0.96 0.96 0.31

High Surround (SI) 0.86 0.86 0.80 0.20

Decay Time Constant: τ = 20ms

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 1.02 0.99 0.98 0.26

High Surround (SI) 0.86 0.86 0.80 0.17

Decay Time Constant: τ = 25ms

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 1.01 1.01 1.01 0.28

High Surround (SI) 0.85 0.86 0.80 0.17

Decay Time Constant: τ = 30ms

Centre Contrast 0.1 0.2 0.4 0.8

Low Surround (SI) 0.99 0.97 0.97 0.28

High Surround (SI) 0.86 0.86 0.81 0.18

Decay Time Constant: τ = 50ms

Centre Contrast .1 .2 .4 .8

Low Surround (SI) 1.00 0.98 0.98 0.37

High Surround (SI) 0.86 0.86 0.79 0.22
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B. Results - The Role of Recurrent Inhibition in Feature Selectivity and Centre-Surround Suppression

Table B.35.: Centre-Surround suppression in response to contrast noise patterns. Responses and

matching contrasts for five different decay time constants τ at inhibitory synapses.

Decay Time Constant: τ = 15ms

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 7.4±6.41 .40

Small Surround 5.73± 2.72 .3511 ± .0905

Large Surround 5.74± 2.92 .3491 ± .0765

Decay Time Constant: τ = 20ms

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 7.48 ± 6.41 .40

Small Surround 5.82 ± 2.79 .3514 ± .0921

Large Surround 6.00 ± 2.79 .3548 ± .0817

Decay Time Constant: τ = 25ms

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 6.94 ± 4.14 .40

Small Surround 5.62 ± 2.55 .3542 ± .823

Large Surround 5.55 ± 2.65 .3465 ± .713

Decay Time Constant: τ = 30ms

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 8.28 ± 11.78 .40

Small Surround 5.80 ± 2.92 .3547 ± .849

Large Surround 5.85 ± 3.02 .3525 ± .707

Decay Time Constant: τ = 50ms

Response (Hz) Matching contrast

(mean± std) (mean± std)

Predicted 40 8.53 ± 11.86 .40

Small Surround 5.85 ± 2.92 .3478 ± .876

Large Surround 5.95 ± 3.00 .3498 ± .714
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B.6. Decay Times at GABAergic Synapses

Table B.36.: Centre-Surround suppression in response to contrast noise patterns. r2 values, per-

centages of excluded cells, and statistical analyses of the influence of the surround grating on the

response for both surround conditions and, of the influence of the size of the surround, for five

different decay time constants τ at inhibitory synapses.

Decay Time Constant (ms) 15 20 25 30 50

r2-Value .86± .10 .87± .10 .86± .10 .86± .10 .86± .

Excluded Cells 12.50% 10.94% 12.50% 12.50% 12.50%

Predicted 40

vs n.s. n.s. * n.s. n.s.

Small Surround p = .08 p = .08 p < .05 p = .13 p = .11

Predicted 40

vs n.s. n.s. * n.s. n.s.

Large Surround p = .09 p = .12 p < .05 p = .14 p = .12

Small Surround

vs n.s. n.s. n.s. n.s. n.s.

Large Surround p = .95 p = .75 p = .88 p = .92 p = .87
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