
MINIMALLY INVASIVE NAVIGATED LIVER

INTERVENTION

Ultrasound-Guided Surgery and Ablation Validation

Osama Shahin

Dissertation

University of Lübeck
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Abstract

Navigated surgery is becoming widely used in applications such as neurosurgery and
orthopedics, however it is still in the research phase for soft organs such as the liver.
This is mainly because of the organ’s deformability which leads to substantial in-
traoperative anatomical changes. Particularly in minimally invasive interventions,
where the surgeon has no direct access to the organ, image guided navigation can
play a crucial role to guide the surgical instrument to the target tumor. In case of
radiofrequency ablation, accurately targeting the tumor is not enough: the lack of
quantitative feedback during the procedure is another problem which may lead to
inefficient treatment.

To maintain high navigation accuracy during minimally invasive liver interventions,
we propose two new approaches based on tracked 2D ultrasound and focused on the
tumor region. The aim is to compensate for intraoperative tumor shift, which can
happen due to surgical manipulation or repositioning of the patient. The developed
techniques combine segmentation and registration algorithms to estimate the actual
tumor position during the surgical procedure. We tested the approaches in a needle
navigation experiment on ex-vivo porcine liver. The results indicate that the methods
can quickly and accurately compensate for changes in the tumor position, providing a
mean needle insertion error of 1.4 ±0.8 mm using the first approach and 2.1 ±0.8 mm
using the second. The developed techniques have the advantages of being radiation-
free, based on the widely available 2D ultrasound, and repeatable throughout the
surgery. So they present a practical solution to maintain high tumor targeting accu-
racy in navigated laparoscopic and radiofrequency ablation procedures.

The second point we investigated is the ablation feedback. To enable quantitative
assessment of ablated lesions based on monitoring images, we developed techniques
to correlate ablation outcomes on different images (MRI and ultrasound) to actual
necroses. Two approaches were developed: one is based on a geometrical phantom
and was applied ex-vivo, the other is based on electromagnetic tracking and was
tested in-vivo. Results of the experiments showed that the feedback given to the
surgeon, upon which the extent of the ablation is determined, varies depending on
the imaging modality. This emphasizes the importance of such validation schemes
and the need to apply them systematically to obtain a larger dataset. The ultimate
goal is to standardize the ablation monitoring procedure and eventually improve the
radiofrequency ablation recurrence rate.
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Chapter 1
Introduction

1.1 Motivation

Cancer is a leading cause of death worldwide, causing 7.6 million deaths (around

13% of all deaths) in 2008 [5]. The liver is highly susceptible to both primary and

metastatic cancer [6]. Usually, surgical intervention is necessary to remove or ablate

the tumor [7]. Minimally invasive interventions, when applicable, are advantageous

for the patient over the conventional open surgery. However, it presents a challenge for

the surgeon to accurately control surgical instruments without having direct access to

the organ. Therefore, image guided navigation is required to provide the surgeon with

additional information during the surgery, by tracking the instruments and imaging

the internal anatomy.

Liver interventions require deep understanding of the complex anatomy of the organ

and its vascular structures. The introduction of surgical planning based on 3D imag-

ing data from computed tomography (CT) or magnetic resonance imaging (MRI)

enables preoperative anatomy visualization, quantitative assessment of risk factors,

and determination of surgical strategies. However, accurate realization of the surgical

plan is not a trivial task in a highly deformable organ such as the liver. In minimally
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invasive liver interventions, the tumor can be subject to considerable shift caused by

pneumoperitoneum [8], respiration [9], heartbeat [10], patient movement, and liver

manipulation by surgical instruments. While periodic motions can be modeled and

recovered [11, 12], irregular motions need to be quickly reflected in the navigation

system to maintain an accurate navigation throughout the surgical procedure.

When developing a navigation system for deformable organs, there is always a trade-

off. Mapping every deformation to the navigation screen requires complicated and

time-consuming algorithms, which is typically impractical for the surgical workflow.

On the other hand, assuming rigidity of the organ may lead to inaccurate navigation

at the region of interest containing the target tumor. The compromise we chose while

developing our methods is based on the fact that the surgical workflow is local by

default; the surgeon focuses on only one tumor at a time. Hence, we focused on the

key information in the navigation procedure, the target tumor, and assumed rigidity

in the local neighborhood.

Tumor treatment using radiofrequency ablation (RFA) is a common minimally inva-

sive procedure [13]. While a navigation system can assist the surgeon targeting the

tumor, feedback during the procedure is equally important for a successful treatment.

Quantitative evaluation of the feedback given by imaging modalities used in ablation

monitoring such as ultrasound (US) is still missing [14]. This was our motivation

to develop methods to correlate ablated lesions on intraoperative images to actual

necroses.

1.2 Liver Anatomy

The liver is the largest internal organ in the body. It lies just below the diaphragm

beneath the right lung and weighs approximately 2% to 3% of the total body weight

of an adult. It has a triangular shape and divided into two main lobes (right and left),

these lobes are further divided into segments [15]. Figure 1.1 shows the segmental

hepatic anatomy and main vessels.
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Bile duct

Portal vein

Hepatic artery

IVC

Figure 1.1: Illustration of the segmental liver anatomy1.

Two sources supply the liver with blood: blood rich in oxygen from the heart through

the hepatic artery, and nutrient-rich blood from the intestines through the portal vein.

The parenchyma of the liver is made up of cells called hepatocytes, other cell types

also exist such as cells lining the blood vessels and bile ducts. The liver regulates

most chemical levels in the blood and excretes a product called bile into the hepatic

duct, this duct transports the bile to the gallbladder and intestines. All the blood

leaving the stomach and intestines passes through the liver. The liver processes this

blood and breaks down the nutrients and drugs into forms that are easier to use for

the rest of the body.

1Source: Singh et al. [16]
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1.3 Liver Functions

Several essential functions are carried out by the liver, including the following:

• It regulates chemical levels in the blood and filters out toxic wastes.

• It breaks down (metabolizes) and stores many of the nutrients absorbed from

the intestine to be used by the rest of the body for energy or to build and repair

body tissues.

• It produces most of the clotting factors that prevent too much bleeding in case

of injury.

• It secretes bile into the intestines, which helps break down fats in the small

intestine and carry away waste during digestion.

• It converts excess glucose into glycogen for storage, which can later be converted

back to glucose for energy.

1.4 Cancer and Liver Metastases

Cancer is an abnormal cell growth out of control. There are more than one hundred

diseases in which cells in a certain body organ may grow out of control. Untreated

cancer can cause serious illness and may lead to death. Growth, division, and death

is a normal body cells life cycle. Normal body cells divide more quickly during the

early years of a person’s life. When the person becomes an adult, cells in most parts

of the body divide only to replace exhausted or dying cells and to repair injuries. In

contrary to normal cells, cancer cells continue to grow and form abnormal cells. DNA

(Deoxyribonucleic Acid) exists in every cell and has the role of directing its activities.

Cancer cells are developed because of damage to DNA. Normally, either the cell dies

or repairs the DNA. In cancer cells, the damaged DNA stays not repaired and the cell

doesn’t die. Moreover, this cell goes out of control, making new cells with the same

damaged DNA. Damaged DNA can be inherited, but mostly it is caused by other

reasons such as chemicals, viruses, too much sun light or tobacco smoke [17].
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1.4.1 Cancer Spread

Cancer cells often travel through the bloodstream or through the lymph system to

other parts of the body, where they begin to grow and form new tumors that re-

place normal tissue. This spreading process is called metastasis. No matter where

a cancer may spread, the metastasis is named for the place of the body where it is

originated. For example, breast cancer may spread into the liver and cause breast

cancer metastases. Most of the cancer found in the liver is not originated there, but

it is metastasized from somewhere else in the body [15].

Several types of cancer can start in the liver including hepatocellular carcinoma

(HCC), intrahepatic cholangiocarcinoma (bile duct cancer), and cancers that begin

in cells lining the blood vessels of the liver. More than 700,000 people are diagnosed

with liver cancer each year throughout the world [18]. It is also a leading cause of

cancer mortality worldwide.

1.5 Liver Cancer Treatment

After liver cancer is diagnosed, the stage of the cancer describes the extent or severity

of the case. According to the stage of disease and the overall health of the liver, the

doctor plans an appropriate treatment. Depending on many factors such as the extent

of the case and the overall health of the patient, the treatment may include one or

more of the following:

• Surgery

• Ablation or embolization

• Radiation therapy

• Targeted therapy

• Chemotherapy

5
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1.5.1 Surgery

The aim of liver surgery is to completely remove the tumor and render the patient

free of metastatic diseases. The first open liver resection was reported by Ichio Honjo

in 1949, Kyoto University. The description of the segmental liver anatomy by Couin-

aud in 1957 marked a breakthrough in liver surgery. After that more centers started

performing these complex operations [19]. With the advance of the surgical tech-

niques, resectability of tumors is not any more limited to the size, number, or loca-

tion. Metastases are resectable as long as an adequate functional future liver remnant

(FLR) remains. Moreover, downsizing of lesions which were considered unresectable

due to size or location is now possible via chemotherapy [20].

1.5.2 Ablation

Ablation techniques treat tumors by destroying the cancer cells without removing

them. It is often used to treat patients with no more than a few small tumors or

when surgery is not a good option because of poor patient’s health or reduced liver

function [15]. Several techniques are used to destroy tumors in ablation procedures,

such as thermal ablation, ultrasound ablation, and cryotherapy. Thermal ablation

methods, including radiofrequency, microwave, and laser approaches, generate heat

which turns cancer tissue into dead tissue. Also high frequency focused ultrasound

(HIFU) is used to apply high intensity focused ultrasound energy to locally heat and

destroy the tumor [21]. On the contrary, cryotherapy techniques destroy the tumor

by freezing it.

1.5.3 Embolization

Embolization is the injection of substances (embloi) into a blood vessel to stop or

occlude the blood flow to cancer cells in the liver. It is a nonsurgical minimally

invasive procedure which can be an option for patients with tumors that cannot
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be removed surgically. Also it can be used to kill off tumors that are too large

to be treated with ablation. This technique exploits that the liver has two blood

supplies [15]. For example, blocking a branch of the hepatic artery feeding a tumor

helps to treat the tumor, while other healthy liver cells stay unharmed because their

blood supply comes from the portal vein.

1.5.4 Radiation Therapy

Radiotherapy uses high-energy ionizing radiation to kill cancer cells by damaging

their DNA. Cancer cells are more sensitive to ionizing radiation than normal cells. It

is not often used to treat liver cancer as radiation can damage healthy parts of the

liver. Radiotherapy may be used to treat bile duct cancer, but is less likely used for

hepatocellular liver cancers [7].

1.5.5 Chemotherapy

Chemotherapy is cancer treatment with anti-cancer drugs, these drugs are injected

into a vein or given by mouth. These drugs circulate in the bloodstream and reach all

areas of the body. Thus, chemotherapy can kill cancer cells that have metastasized or

spread to parts of the body far from the original tumor. It kills the cell by damaging

the part inside the cell responsible for the cell division process. This explains why it

also affects healthy tissue where the cells are rapidly growing and splitting such as

hair follicles, bone marrow, and lining of the digestive system. Liver cancer resists

most chemotheraphy drugs [15], but it can help in combination with other types of

treatment. For example, it can be used before surgery to down size the tumor or after

surgery to help lower the risk of the cancer coming back.
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1.6 Minimally Invasive Intervention

Currently, surgery is the only option which gives reasonable chance to cure liver

cancer [7]. When applicable, a minimally invasive intervention provides a less invasive

alternative to the open surgery. Typically, it is carried out through the skin or

anatomical opening or a body cavity, and involves observation of the surgical field

on a screen using an endoscope. Many medical procedures are called minimally

invasive, such as percutaneous surgery, endoscopy, ablation procedures, stereotactic

surgery, laparoscopic surgery, and others. We focus in this work on two important

minimally invasive techniques for liver interventions, namely laparoscopic surgery and

radiofrequency ablation.

1.6.1 Laparoscopic Surgery

Although minimally invasive surgery has significant benefits for the patient, the adap-

tion of laparoscopic liver surgery progressed slowly mainly because of the complexity

of the liver operations. The first laparoscopic liver resection was reported by Gagner

et al in 1992. Since then, over 3000 liver resections have been performed mainly in

specialized liver centers [22]. The surgeon uses long thin instruments through small

incisions to perform the operation. Figure 1.2 illustrates the concept of laparoscopic

liver surgery in comparison to the open approach.

Laparoscopic liver resection requires expertise in both advanced laparoscopic tech-

niques and precise knowledge of liver anatomy [23]. It was initially performed for

low-risk cases like the resection of benign lesions. Recently, laparoscopic techniques

have gradually become incorporated in the practice of most of the liver centers. The

most common indications of laparoscopic liver resections are for peripheral tumors, 5

cm or less [19]. Although most types of liver resection can be performed laparoscop-

ically, including major liver resections (i.e. right or left hepatectomies), these should

be reserved to experienced surgeons [24]. Due to the recent technological advance

8
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Figure 1.2: Laparoscopic vs. open surgery showing how laparoscopic intervention is performed using

instruments inserted into the abdomen through small incisions2.

in laparoscopic surgery, laparoscopic hepatic resection became more common and

surgeons are gaining more experience and expanding its indications.

Advantages

Laparoscopic liver resection has significant benefits for patients, such as decreased

operative time, less blood loss, less analgesic requirements, faster recovery, shorter

hospital stay, and better cosmetic outcome. Besides, there are no economical dis-

advantages regarding the laparoscopic approach [25]. Furthermore, the oncological

outcomes of the laparoscopic resection show no difference in comparison to the open

approach [23, 26]. Also, in a study conducted by Rao et al. [19], it is reported that

laparoscopic liver resection showed a reduced overall morbidity rate when compared

with the open group.

2Source: http://www.toolabi.com/en/service/biliary-surgery
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Limitations

While laparoscopic surgery is clearly advantageous for patients, surgeons must use

tools to interact with the tissue rather than manipulate it directly with their hands

in open surgery. Hence, the procedure brings several challenges for the surgeon such

as indirect vision through an endoscopic camera, limited freedom in manipulating the

instruments, reduced haptics, and poor depth perception [27]. Also the instruments

endpoints move in the opposite direction relative to the surgeon’s hands due to the

pivot point, making laparoscopic surgery a non-intuitive motor skill that is difficult

to learn. All these factors increase the risk, for example hemorrhage is more difficult

to control laparoscopically.

Systematic training for laparoscopic liver surgery is necessary. A non-experienced

surgeon cannot perform laparoscopic surgeries. Approximately 60 operations have

to be performed in order to overcome the learning curve effect. Not only the num-

ber of operations but the regular practice and standardization of the laparoscopic

procedures are key factors in proper development of laparoscopic liver surgery pro-

gram [28]. Surgeons performing laparoscopic liver surgery require expertise in two

areas: advanced laparoscopic technical skills and precise knowledge of liver anatomy

and liver surgery [23].

1.6.2 Radiofrequency Ablation

For nonresectable liver tumors, RFA is the most viable minimally invasive therapeutic

procedure [13]. In 1943, King et al. reported the occurrence of liver tissue damage

with whole body hyperthermia, however, the technology was adapted in 1990 to allow

minimally invasive treatment of malignant hepatic tumors [29,30]. The procedure uses

high frequency alternating current to destroy tumors and surrounding tissue. The

frequency range for RFA is about 200 KHz - 20 MHz, this high frequency alternating

current doesn’t cause muscle stimulation or life-threatening arrhythmias [7].
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A needle-like probe, usually with deployable tines at the tip, is used by the surgeon to

target the tumor under realtime image guidance, Figure 1.3. Heat generated by the

alternating current turns the cancer tissue into dead tissue. RFA may be performed

either percutaneously or during laparoscopic surgery. Intraoperative imaging, such

as US and CT, is used to guide the ablation probe and monitor the procedure. The

treated tissue undergoes coagulative necrosis, which is gradually replaced by fibrosis

and scar tissue.

Figure 1.3: Radiofrequency ablation for the treatment of liver cancer3.

1.7 Thesis Outline

Minimally invasive intervention has many advantages, especially for the patient. How-

ever, it can hinder surgeon’s capabilities during the surgery. Therefore, additional

information obtained via imaging and navigation techniques can be of a great help

3Source: http://www.hopkinsmedicine.org/liver tumor center/treatments/ablative techniques

11



1.7. THESIS OUTLINE

to the surgeon. Image guided interventions have proven its feasibility and become

routinely performed on rigid anatomy, such as orthopedics, and ear, nose, and throat

(ENT) surgery. However, navigation in soft tissue interventions requires more so-

phisticated techniques to deal with tissue deformation, organ shift, and tracking of

flexible tools.

Recent preliminary practice of image guided liver intervention raised two major tech-

nical challenges. First, how to compensate for intraoperative organ changes and make

the navigation system reflect the actual target position during the surgery. Second,

several imaging techniques are used to monitor RFA procedures, but there is no

standard way to evaluate the ablation outcome based on the feedback given to the

surgeon. These are the two problems addressed in this work.

The thesis is structured as follows:

Chapter 2: Image Guided Interventions

This chapter gives an overview of different components used in image guided surgical

techniques. Then we present the state of the art in open and minimally invasive

navigated liver interventions.

Part I: Ultrasound-Guided Navigation

Chapter 3: Three-Dimensional Freehand Ultrasound

As our navigation approach is based on freehand 3D ultrasound, we demonstrate in

this chapter how to reconstruct a 3D ultrasound volume from tracked 2D laparoscopic

frames.

Chapter 4: Tumor Segmentation

This chapter covers two different methods to segment tumors on ultrasound images:

level set and graph cut segmentation algorithms. The theory and how the algorithms

were adapted to solve the segmentation problem are explained.

12
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Chapter 5: Local Registration

Here we present our first approach to maintain high navigation accuracy to the target

tumor throughout the surgical procedure. The tumor is segmented once, then fast

registration is applied repeatedly to localize the tumor in 3D reconstructed ultrasound

volumes.

Chapter 6: Sparse Segmentation

In this chapter, we present our second approach to automatically detect and localize

tumors during the surgery. This technique is mainly based on image segmentation and

uses a few automatically selected ultrasound images to quickly estimate the current

tumor position.

Chapter 7: Discussion and Outlook

Here we discuss the proposed techniques in the context of the state of the art in

related work with respect to three important aspects in navigated liver procedures:

accuracy, speed, and visualization.

Part II: Ablation Assessment

Chapter 8: Image-Guided Tumor Ablation

This chapter introduces current ablation monitoring techniques which are used to

give feedback to the surgeon during ablation procedures.

Chapter 9: Ex-Vivo Ablation Correlation

Here we present our phantom-based platform to enable systematic correlation of ab-

lation images obtained from different monitoring modalities and compare them to

gross-pathology images.

Chapter 10: In-Vivo Ablation Correlation

In this chapter we propose an in-vivo ablation correlation technique based on elec-

tromagnetic tracking and present an animal experiment.

13
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Chapter 2
Image Guided Interventions

2.1 Introduction

The future of minimally invasive interventions relies heavily on the availability and

accuracy of image guided techniques. Generally, an image guided intervention IGI

involves the following steps:

• Plan the surgery based on preoperative data, typically tomographic images

• Localize and track the position of the surgical instrument or therapeutic device

• Register preoperative data to the actual situation of the organ of interest

• Visualize the position of the tracked instrument relative to the registered image

• Update the guiding images throughout the operation based on the intraopera-

tive situation

Although modern image guided interventions have been correlated with the recent

advance in imaging and tracking techniques, the IGI concept has been around for over

a hundred years. First stereotactic neurosurgical device was developed by Horsley and

Clark in 1908. Almost 40 years later, first human stereotactic frame was designed by

Spiegel and Wycis in 1947. Stereotaxis concept is based on fixing a three-dimensional
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Cartesian coordinate system (stereotactic frame) to the skull before image acquisition,

thus allowing for establishment of a spatial relationship between the medical image

space and the stereotactic frame space. As the position of the subcortical anatomy

relative to the stereotactic frame remains approximately constant, the target in the

brain can be located in terms of the frame-based coordinate system, and tools can be

guided to deep brain structures.

The invention of CT in 1973 by Hounsfield enabled three-dimensional imaging of

internal structure. This allowed for three-dimensional stereotactic localization in

1979 [31]. Also the advance in computer systems and the release of personal computers

in 1980s significantly changed the field of image guided procedures. In the early

nineties, optical and electromagnetic (EM) tracking systems became commercially

available. These systems enable continuous tracking of surgical instruments using

small sensors attached to them. By using such a system, a mechanical connection

between the surgical instrument and the patient’s anatomy is no longer required.

2.2 Tracking Systems

Tracking devices are used to localize surgical tools relative to the patient anatomy.

A tracking device is an essential component of any image-guided surgical system.

First versions of tracking devices were actually robotized mechanical digitizers, which

allowed for frameless stereotaxy in the 1980s. Optical tracking systems were then

developed and proved to be the most accurate tracking solution [32]. However, the

use of an optical tracking system requires uninterrupted line-of-sight between the

optical markers and the tracker camera. EM tracking system is an alternative that

avoid line-of-sight limitations and enable tracking of flexible instruments inside the

body. The choice of the tracking system depends on the application and the desired

accuracy.
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2.2.1 Optical Tracking Systems

There are optical tracking based on pattern recognition in video image sequences,

laser sensation, and infrared (IR) detection. The latter is widely used in clinical

applications. In the IR-based tracking systems, wavelengths of ambient light are

eliminated by an optical band-pass filter, hence the system can reliably identify optical

markers emitting or reflecting IR wavelengths.

• Active optical trackers: LEDs emitting waves in the near-IR range are used

as markers. The camera module tracking the markers consists of either two

planar or three linear charge-coupled device (CCD) units. The LEDs are fired

sequentially and signals are captured by each CCD sensor. At least three non-

collinear LEDs for each marker are required to determine six degrees-of-freedom

(DOF) pose information. Based on the known geometric configuration and

firing sequence of each LED and the known distance between the CCD sensors,

a triangulation method is used to solve for the pose. Typically active markers

are wired to a central unit to get powered.

• Passive optical trackers: instead of active LEDs, retroreflective spheres are

used as markers. The camera illuminates those spheres in the near-IR spectrum.

Each tracking probe (set of reflective markers) must have a unique pattern,

so that the reflected IR can be assigned to a particular probe. The system

has 2D CCD cameras which identify reflective markers. Similar to the active

approach, the six DOF pose is estimated via triangulation. However, no wires

are necessary between the central unit and the tracked probes. Figure 2.1 shows

an optical tracking camera, an active tracker, and a passive tracker.

2.2.2 Electromagnetic Tracking Systems

These systems localize small EM sensors in an EM field of known geometry. The

sensors consist of small coils which measure the induced voltage, which is proportional

to the flux of the magnetic field. Figure 2.2 shows an EM field generator and a sensor.
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Figure 2.1: Optical tracking components: infrared camera, active and passive trackers (Polaris, NDI,

Ontario, Canada), RMS tracking accuracy for this model is 0.35 mm.

The main advantage of EM tracking is the lack of the line-of-sight limitation and the

ability to track flexible instruments and catheters. On the other hand, the technology

is sensitive to distortion from nearby metal objects, also the accuracy is slightly less

compared to optical tracking [32]. However, the practical difference between EM

tracking and optical tracking systems is less significant, since EM sensors are small in

size and can be fixed closer to the point of interest. Thus, the error doesn’t extrapolate

further to a larger number. Generally, EM tracking systems are used when the objects

tracked cannot be seen by the tracking camera (interrupted line-of-sight), e.g. tracking

of surgical instruments inside the patient in laparoscopic procedures.

Figure 2.2: EM tracking field generator and a 6 DOF sensor (Aurora, NDI, Ontario, Canada), RMS

tracking accuracy for this model is 0.70 mm.
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2.2.3 Instruments Calibration

By using tracking systems, we can determine the six DOF pose of the sensor/probe

attached to the surgical tool, however what matters is the position of the end effector

approaching the target, for instance the needle tip in case of an ablation procedure.

Therefore, instrument calibration is necessary to determine the position of the instru-

ment tip, given the tracking information obtained via the sensor. Pivot calibration

is usually performed to find the relation between the attached sensor and the tip of

the instrument [33]. The procedure involves fixing the instrument tip in a divot and

rotating the instrument back and forth while collecting tracking data. After collecting

enough samples, the transformation from the tracked sensor to the needle tip is cal-

culated using a least square method. Hence, the point at the needle tip is determined

in the tracking system space.

2.3 Intraoperative Imaging

Especially in minimally invasive procedures, intraoperative imaging is crucial be-

cause the anatomical/pathological target cannot be observed directly by the surgeon.

Several medical imaging modalities based on different methods are in use currently.

Because the physical concept varies from one modality to another, image acquisition

workflow and image characteristics are different. Hence, different modalities are used

in a complementary fashion and there is no single ideal modality for image guided

interventions. The modalities introduced next are the commonly used in liver inter-

ventions.

2.3.1 Computed Tomography

Computed tomography utilizes X-rays to generate images. X-rays are generated by

accelerating electrons and directing them toward a metal target. Once the electrons
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encounter this target, they rapidly decelerate and dissipate their energy as heat and

X-rays. When the X-ray photons reach the patient, they interact with the tissue

through the photoelectric effect and Compton scattering. The net result of this

process is that the detected X-rays are the photons traveled in a straight line from

the source to the detector without being absorbed or scattered. Hence, X-ray images

are often described as shadowgrams or projection images.

In CT, the X-ray generator and detector are mounted on a gantry that rotates around

the patient. As the gantry rotates, projection images of the patient are acquired

at fixed angular intervals. Once a sufficient number of samples are obtained, the

projection images are then reconstructed into 3D axial slices through the patient.

Although the reconstruction process requires a fast or parallel computing, analytical

reconstruction using backprojection methods [34,35] can be performed in almost real

time. However, the limit of the gantry speed is approximately 0.4 sec per revolution,

this corresponds roughly to 2 images per sec.

Figure 2.3: Axial CT image showing a liver with tumors.
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Due to the excellent image quality of CT images (Figure 2.3), they are typically used

for preoperative imaging and treatment planning. In applications where they can be

used for guidance during the intervention, the size and design of the gantry makes it a

cumbersome procedure. An alternative is to use an “advance” and “check” approach,

where the surgical instrument is moved with the scanner off a small distance, and

then the patient is imaged again to determine magnitude and direction of the next

move.

2.3.2 Magnetic Resonance Imaging

Magnetic resonance imaging is based on the phenomenon that certain atomic nuclei

have a resonant frequency when they are placed in a magnetic field. This resonant

frequency is proportional to the magnetic field strength. When these nuclei are sub-

jected to radiofrequency waves at the resonant frequency, they absorb this energy and

possess a higher energy state. As these excited nuclei return to their original state,

they emit radiofrequency signals. A magnetic field gradient is applied to spatially

encode the emitted signals. This causes frequencies at different locations to vary lin-

early with the gradient field, which allows spatial information to be recovered from

the received signal using Fourier analysis.

Quality of MRI images are highly dependent on the acquisition parameters, but gener-

ally MRI has better soft tissue contrast than CT and less, yet good, spatial resolution.

MRI-based image guide procedures faces many challenges. First, special cautions are

necessary to work in the strong magnetic field created by the MRI magnet. Small

ferromagnetic objects such as scalpels, scissors, probes can turn into life threatening

bullets. Therefore, every object must be MRI compatible before it is allowed to be

used in the MRI room. Second, the magnetic fields and radiofrequency waves can

affect electronic devices. Third challenge is the limited work space, as the gantry

is slightly wider than the patient, Figure 2.4. This leaves very little space for the

surgeon’s hands or instruments.
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Figure 2.4: MRI machine (www.healthcare.siemens.com).

2.3.3 Ultrasound

Ultrasound is defined as acoustic waves with frequencies above those which can be

perceived by the ear, from about 20 kHz to several hundred MHz. The ultrasound

spectrum used in medical devices ranges from 1 MHz to 10 MHz. This spectrum

range meets the requirement of good resolution (small wavelength) and good pen-

etrating ability (not too high frequency). The waves are produced by electrically

driven acoustic transducers placed on the tissue surface. The transducers are made

of piezoelectric materials, which have the property that electrical excitation is trans-

formed into motion and pressure (acoustic waves). When the echo is reflected back to

the transducer, the piezoelectric materials transform the reflected pressure field back

into voltage, so it acts as an emitter and receiver as well [36].

Whenever a wave passes from a region of one value of acoustic impedance into a

neighboring region of different impedance, a certain amount of the incident power

is reflected at the boundary and the remainder continues as a transmitted wave,

Figure 2.5. The reflected wave serves as an indicator of the boundary position and
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shape, whereas the transmitted portion propagates deeper. The reflection coefficient

R is defined as the ratio of the reflected pressure to the incident pressure. The

value of R is proportional to the impedance mismatch between the two regions. As

the difference between the two impedance values increases, the amount of reflection

increases. The propagating wave encounters attenuation along its path due to several

reasons. One is simply the reflection of part of the wave.

Transmitted

Incident

Reflected

Region 1 Region 2

Transmitted

Incident

Reflected

Region 1 Region 2

Figure 2.5: Illustration of the reflection and transmission of ultrasound waves due to acoustic

impedance mismatch at the boundary between different regions.

Divergence of the wavefront and absorption of wave energy are other factors that cause

attenuation. The exact attenuation encountered versus depth depends on tissue types,

for soft tissue 1dB/cm is the typical attenuation rate [36]. Time gain compensation

(TGC) amplifier compensates for the decreasing signal strength from deeper tissues

due to the greater attenuation over longer paths. The gain of the amplifier varies

according to the elapsed time since the transmission of the wave pulse.

The ultrasound transducer can take many forms (Figure 2.6), the most common is to

have a linear array of acoustic elements which can acquire 2D images. Recently, 3D

transducers have been developed, where a linear array of elements is oscillated across

the field, or the transducer has a multi-row array of elements. The main drawback
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of ultrasound compared to CT or MRI is the limited field of view. Ultrasound is a

regional imaging modality and typically cannot provide a complete cross sectional

slices of the body. Also the signal-to-noise ratio is lower than CT and MRI, and the

quality of the images may also be operator-dependent.

Nevertheless, ultrasound probes are relatively small and handheld, this makes ultra-

sound access to patient unsurpassed. This is particularly true for laparoscopy, since

the probe must pass through a trocar to scan the organ. As for the limited field of

view, the operator can easily and quickly adjust the field of view by repositioning the

probe. Also by tracking the US probe as described in the next chapter, 3D image

volumes with a larger field of view can be reconstructed.

Figure 2.6: Configurations of different laparoscopic ultrasound probes (Solberg et al. [1]).

Intraoperative imaging may compromise spatial resolution in favor of improved tem-

poral performance. Because ultrasound provides real-time radiation-free imaging ca-

pabilities, there is great benefit in using ultrasound in image guided interventions and

also combining ultrasound with other imaging modalities. In addition, US scanners

are compact, relatively inexpensive, and mobile. Specially in regions of the body sus-

ceptible to intraoperative motions and deformation of organs such as the abdomen,

ultrasound can be used to update preoperative CT or MRI data using registration

methods.

24



2.4. VISUALIZATION

2.4 Visualization

Visualization in image guided interventions can be thought of as the interface be-

tween the surgeon and the patient. The role of visualization is to represent the

organ and surgical environment in a clear and accurate way that helps guiding the

surgeon to the treatment target. To this end, visualization should combine several

signals, mainly tracking information and imaging data, into a common representa-

tive interface. Three-dimensional visualization is important to provide an intuitive

representation to the surgeon. Multi-planar image representation typically uses or-

thogonal 2D images to give the viewer a sense of 3D. More complicated techniques are

3D volume and surface rendering, which require more computational overhead.

Before the surgery, visualization of preoperative data is essential to conduct surgery

planning. The planning is crucial to understand the patient’s anatomy and localize

the disease, and then develop a treatment approach. Also based on the preoperative

data, a patient specific model highlighting important structures and the target can

be created, Figure 2.7. This model can provide basic guidance during the interven-

tion. In deformable organs such as the liver, combining the preoperative model and

intraoperative data to reflect the current surgical situation is necessary.

2.5 Registration

Registration is a key step in all image guided surgical procedures. Since different data

streams, patient’s images and tracked instruments, are collected relative to different

reference frames, it is necessary to map the images in the tracking system coordi-

nates. This applies to both preoperative and intraoperative images, however, in case

of intraoperative ultrasound, probe calibration is the way to determine the spatial

relation between the images and the tracking system (Chapter 3). To map preoper-

ative data to the actual surgical scene, typically the whole anatomical structure is

modeled as rigid bodies and rigid registration is performed. This initial registration
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Figure 2.7: Liver model generated from preoperative data (Lange et al. [2]). The model shows the

resection plan (darker region), tumor (yellow), and vessels to be resected (green).

is not sufficient when dealing with deformable organs, therefore, it is usually followed

by further feature-based (landmark) or image-based registration.

2.5.1 Feature-Based Registration

Feature-based methods use homologous information extracted beforehand, like point

sets or surfaces. Aligning those structures consequently aligns the objects as well. If

a set of corresponding points is determined, using e.g. surface fiducials or manually

selected anatomical landmarks, the rigid relation between the two point sets can be

computed. The rationale for using feature-based methods is that it is independent of

the characteristics of the registered objects. So one of the registration entities may

arise from the actual physical patient, e.g. surface points, and the other from the

image. Also feature-based registration behaves the same regardless of the registration

being intermodal or intramodal.
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The features can be either with known correspondence (paired-points) or without

known correspondence, e.g. surface registration. In case of paired-points, the entries

are two sets of corresponding 3D points obtained in two Cartesian coordinate systems.

For a unique solution to exist, the data must include three or more noncollinear points.

The advantage of the point-paired registration is that there are various least square

closed form solutions [37, 38].

Unlike paired-points registration, there is no closed form solution to surface-based

registration. Usually surface points are obtained by digitizing the surface and obtain-

ing a point cloud. The iterative closest point (ICP) algorithm is one of the common

surface registration algorithms. ICP is an iterative approach: the first step is to es-

tablish point correspondences, the second is to compute a transformation based on

these matches. The incremental transformations compose the final registration re-

sult [39]. Given two non-corresponding point sets, an ICP framework consists of the

following steps:

1. Find corresponding points, e.g. by matching the nearest neighbors.

2. Compute similarity between the matched sets, e.g. root mean square distance.

3. Compute incremental transformation by solving for the least squares solution

using the current correspondences.

4. Apply the obtained transformation to one of the point sets.

5. Repeat the steps from 1 until either similarity is less than a certain threshold

or the maximum number of iterations is reached.

2.5.2 Image-Based Registration

Image-based (intensity-based) methods, on the contrary, use the images themselves

rather than an indirect representation to compute the registration. Image-based reg-

istration is an optimization task with a cost function directly dependent on the image
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intensity values and the transformation parameters. As this registration category

doesn’t necessarily need manual interaction, it is used often when automatic regis-

tration is required. Also as it uses more information compared to the feature-based

registration, the overall registration accuracy is potentially better.

An image-based registration algorithm includes the following components:

1. Similarity measure (cost function)

2. Optimization algorithm

3. Interpolation method

The similarity measure is the most important component in the registration process,

as it is the only component directly connected to the image data. Ideally, a similarity

measure should have a unique global optimum for the correct transformation param-

eters. However, in reality the algorithm converges to the nearest local optimum. In

general, similarity measures can be divided into two classes, functions that assume

existence of a deterministic relationship between images (e.g. sum of squared differ-

ences) and functions that assume a stochastic relationship (e.g. mutual information).

Several factors influence the choice of a cost function such as image characteristics

(imaging modalities), computational complexity (time), and robustness. Therefore,

there is no universal similarity measure that is optimal for all registration tasks.

2.6 Image Guided Liver Interventions

Surgical interventions on soft organs such as the liver is considered challenging in

many aspects. The liver has a complex anatomical structure, it is deformable and

subject to motion during the surgery. Surgical planning based on preoperative CT

or MRI offers better 3D understanding of the organ’s internal anatomy and helps

to preserve adequate functional FLR after the treatment. Such planning is becom-

ing a standard and is nowadays available from MeVis Distant Service AG (Bremen,
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Germany), EDDA Technologies (Princetown, United States), and Intrasense (Mont-

pellier, France). However, realization of the surgical plan in the actual surgery is

not an easy task. One of the challenges is that the model does not reflect the actual

situation of the liver during the surgery. Therefore, intraoperative computer-assisted

navigation for liver interventions is of a great importance, especially for minimally

invasive procedures.

2.6.1 Open Surgery

The development of liver navigation systems has been a topic of ongoing research since

late 1990s. Herline et al. [40] at Vanderbilt University developed a navigation system

for liver surgery and investigated the feasibility of adequate tracking accuracy. Their

work was later on extended by applying a surface registration using a laser range

scanner [41] and compensating for intraoperative soft-tissue deformations using a

finite element model [42]. The system was then evaluated in a clinical trial on eight

patients, where preoperative and intraoperative surface representations of the liver

surface were registered using ICP. Currently, this system is commercially available as

a product from the company Pathfinder Therapeutics (Nashville, Tennessee).

Another system for open liver surgery was developed at the Technical University of

München. The proposed approach requires manual registration of preoperative CT

data with intraoperative ultrasound images using a 6D mouse (space ball) [43]. A case

report describing the system usage on a patient was presented by Oldhafer et al. [44].

An ultrasound-based navigation system was proposed by a group at Charité Hospital,

Berlin. They optically tracked a 3D US probe to study the navigation feasibility

based only on ultrasound images [45,46]. Recently, a group at the University of Bern,

Switzerland, presented a navigation system which uses landmark-based registration

to map preoperative data to the actual liver [47].
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2.6.2 Minimally Invasive Interventions

While surgical navigation can be used in open liver surgery to provide better under-

standing of the anatomy, it is particularly useful and plays a major role in minimally

invasive interventions. Unlike open surgery, the surgeon has no direct access to the

liver in minimally invasive interventions, therefore, an image-guided navigation can

be a necessity to precisely reach and treat the target tumor.

Similar to the open surgery approach, intraoperative images are acquired during the

procedure to update the navigation system with the actual surgical situation. As

explained in section 2.3, ultrasound is one of the best candidates for intraopera-

tive imaging in laparoscopic procedures. However, due to probe size limitations,

laparoscopic ultrasound (LUS) provides only 2D images. Although there is ongoing

research to develop a 3D laparoscopic probe [48, 49], such a probe is not yet com-

mercially available. Nevertheless, freehand 3D LUS can be obtained by tracking a

2D probe [50]. Several research groups have used this technique for navigation in

laparoscopic surgery, Langø et al. [51] presented an overview of the current research

work using tracked LUS.

One of the approaches to provide the surgeon with additional information beyond

the live scene obtained via the laparoscope is to augment laparoscopic images with

intraoperative 3D ultrasound/CT. Laparoscopic augmented reality was investigated

by Konishi et al. [52] and Nakamoto et al. [53], they superimposed 3D LUS onto

live laparoscopic images. They also described a calibration method for intraoperative

correction of magnetic tracking distortion. Feuerstein et al. [54] registered both the

laparoscope and the C-arm scanner in the same tracking coordinate system, thus

allowing intraoperative CT volumes to be directly augmented on the live laparoscope

video without further registration.

Langø et al. [55] (SINTEF Health Research, Trondheim, Norway) developed a navi-

gation system for laparoscopic surgery and used fiducial-based registration. They also

investigated the use of surface matching to register a surface model of the patient’s
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abdomen extracted from preoperative data to a corresponding surface generated in

the operating room using a structured light technique. Similar surface digitization

approach was developed by Billings et al. [56] using a time-of-flight camera. Martens

et al. [57] (University of Lübeck) developed a laparoscopic liver surgery system, the

navigation is done based on patient specific liver model generated from preoperative

CT/MRI data. This model is registered to the actual organ in two steps:

1. Initial registration: model-to-patient registration is performed to approximately

align the orientations of the liver model and the actual liver. This is done by

automatically defining four points on the model, namely the end points of the

the main two principal components axes. Then, the corresponding anatomical

locations of the four points on the actual liver are touched roughly using a

tracked calibrated pointer. This gives a very coarse initial registration.

2. Surface registration: accessible part of the liver surface is scanned to collect a

point cloud. To facilitate the scanning process, a calibrated ultrasound probe is

used as a pointer. After collecting the surface points, ICP is applied to register

the points with the liver model.

These two laparoscopic systems, however, utilize only information on the surface of

the liver, yet aim to solve the registration for the whole liver. Consequently, this

technique cannot guarantee adequate navigation accuracy at the target tumor; nev-

ertheless, it can serve as a starting point for further registration. Aiming for more

accurate preoperative-intraoperative registration, several registration methods based

on image information or features inside the liver have been proposed. As such registra-

tion is usually between ultrasound and CT/MRI, it is challenging to find an optimal

similarity measure between different image types. Therefore, pre-processing of the

data can be required to extract common features from the images. Penny et al. [58]

first generated vessel probability images fromMRI volumes and intraoperative tracked

ultrasound images. Then, preoperative to intraoperative rigid registration was per-

formed based on these probability images. Wein et al. [59,60] developed a method to

simulate ultrasound-like images from CT images, then applied a modified normalized
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cross correlation (NCC) similarity measure to align the simulated ultrasound (preop-

erative CT) to intraoperative ultrasound. After initial orientation alignment based

on the tracking values, the similarity measure was applied in a brute-force fashion to

determine large-scale translations. Then, 6D rigid and semi-affine registrations were

applied to further improve the registration results.

As the liver is deformable, a non-rigid registration would ideally recover deformations

intraoperatively. This is what motivated Lange et al. [2] to investigate the feasibility

of an interactive non-rigid registration, however, for open surgery. They presented a

combined landmark-intensity registration method based on vessels in preoperative CT

and intraoperative 3D Doppler ultrasound. First, landmark-based rigid registration

was applied after manually identifying eight landmarks (vessel bifurcations) on both

CT and ultrasound images. Finally, non-rigid thin plate spline (TPS) registration

was applied followed by the combined landmark-intensity method. Another elastic

registration approach was proposed by Dagon et al. [61], first vessels were detected

and segmented in tracked ultrasound frames to create 3D data points representing the

skeleton of the vessels. Then, a non-rigid registration method was applied to deform

the vascular structure of the preoperative 3D model according to the intraoperative

structure. Recently, Olesch et al. [62] presented a non-rigid 2D/3D registration al-

gorithm based on segmented vessels, they selected a number of intraoperative LUS

frames, which have significant information such as a main vessel bifurcation, and then

used them to map preoperative CT data.

Other navigation approaches are based directly on intraoperative images such as

LUS. Harms et al. [63] compared 3D LUS with 3D transcutaneous ultrasound and

CT, having CT as the gold standard. They reported that LUS-based navigation is

feasible. Sjølie et al. [64] compared different US-based guiding techniques for RFA in

the liver. They found that it was easier and more accurate to position the ablation

needle based on 3D US images, however movement of the tumor during the procedure

presented a challenge. Bao et al. [65] developed a prototype system for LUS-guided

RFA, whereby ultrasound volumes can be acquired and reconstructed as necessary to

present the most up-to-date image data before insertion of the RFA probe.
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2.7 Objective

The aforementioned techniques present the state of the art in computer assisted min-

imally invasive intervention. The main problem investigated by different groups is

how to keep the navigation system updated with the latest intraoperative situation.

Solutions for this problem proposed either direct navigation based on intraoperative

images or registration of preoperative data to the actual anatomy based on surface,

landmark, or vessel information obtained during the procedure. The first part of

this work demonstrates two new approaches for navigation in minimally invasive liver

intervention. The approaches are based on segmentation and registration of tumors

on intraoperative LUS images. The following criteria were considered to provide a

practical solution that can be easily integrated into the surgical workflow:

• Fast and accurate intraoperative target update

• Automated process without landmark-based registration

• No major changes in the surgical workflow

• Repeatable when necessary during the procedure

In RFA procedures, accurately targeting the tumor is not sufficient for a successful

treatment. However, feedback to the surgeon in such treatment is crucial. We demon-

strate in the second part our trials to develop a method to correlate ablation feedback

based on different monitoring modalities. Eventually, the aim is to standardize the

interpretation of the ablation feedback, and consequently improve the efficiency of

such important minimally invasive therapy.
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Chapter 3
3D Freehand Ultrasound

3.1 Introduction

Intraoperative imaging is essential in image-guided interventions. Laparoscopic ultra-

sound is the commonly used modality to acquire intraoperative images of the liver,

because it is a handy, safe and low cost modality (vs. CT or MRI). Thus, ultrasound

is well integrated with the surgical environment. However, laparoscopic ultrasound

doesn’t support 3D imaging and provides a limited field-of-view that is typically not

sufficient to cover the region of interest involved in a surgical procedure. Therefore,

3D volume reconstruction from freehand acquired 2D images can help to extend the

field-of-view given by a laparoscopic probe. It also allows 3D segmentation and vol-

ume rendering of anatomical structures and tumors. Solberg et al. [50] presented a

comprehensive review of freehand 3D US reconstruction algorithms.

3.2 Ultrasound Calibration

Three-dimensional tracking of 2D US images involves determination of the position

and orientation of each 2D image with respect to a given 3D coordinate system. To
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this end, a position sensor must be attached to the probe to determine the 6-DOF

of every acquired frame. We used an US machine (Aloka SSD-3500, Japan) with a

laparoscopic probe (Type 8666, Linear probe). Probe calibration was necessary to

define the transformation between the acquired 2D images and the position sensor

attached to the probe.

3.2.1 Spatial Calibration

The idea of the calibration is to find the spatial relationship between a group of

features (homologous points) which can be identified in both the image space and also

in a phantom space with known geometric properties. The calibration was performed

by mounting a 6-DOF EM sensor (Aurora, Northern Digital Inc., Waterloo, Canada)

on the LUS probe and scanning a Double-N phantom. The phantom consists of two

horizontally shifted layers of N-fiducials parallel to the x-y plane of the phantom

coordinate system [66, 67]. The N-fiducials intersection with the US image plane

showed 6 dots in the image. The centers of those dots were automatically identified

in the images using an adaptive thresholding algorithm [68]. Figure 3.1 illustrates

the intersection of an US plane with a single N-fiducial.

Y

X

Z
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K
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A

B

C

D

US Plane

Figure 3.1: Ultrasound plane (dashed line) intersecting an N-fiducial at the points E, K, and Z.

On the dashed line, coordinates of the point (XK , YK) in the phantom space can be

determined based on the similar triangles BEK and KZC in Fig. 3.1.
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XK = XB +
KE

EZ
(XC −XB)

YK = YB +
KE

EZ
(YC − YB)

(3.1)

The ratio KE/EZ was measured from the locations of the three collinear dots in the

US image; scale of the image was obtained previously from the US machine. The

coordinates of the vertices in the phantom space (XB, YB) and (XC , YC) were known

from the phantom geometry. Since each three dots are collinear, there is more than

one solution for the coordinates of points E and Z in the phantom space, i.e. more

than one solution for the fiducials-to-image transformation FTI . Figure 3.2 shows the

calibration procedure and Figure 3.3 illustrates the calibration transformations.

The sensor-to-image transformation STI is determined by the equation:

STI =
STW .WTP .

PTF .
FTI (3.2)

The sensor-to-world transformation STW was measured by the tracking device. The

origin of the world coordinate system is defined by the EM transmitter and must be

fixed relative to the phantom. The sensor should be placed as close as possible to the

imaging plane, to minimize angle effect errors. The world-to-phantom transformation

WTP is determined using a second sensor fixed to the phantom body. The phantom-to-

fiducials transformation PTF represents the relation between the fixed sensor and the

fiducial geometry, this transformation is measured once per phantom using a tracked

calibrated pointer. The sensor-to-image transformation STI is calculated using every

FTI solution.

The N-fiducial positions in the physical phantom space were calculated using every

calibration result, and then compared to a ground truth – the known fiducial loca-

tions from the phantom geometry. The transformation that minimizes the error was

accepted as the right calibration result. After obtaining the calibration matrix, it was

possible to transform every pixel in the image space into the world space.
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Figure 3.2: Calibration of the LUS probe using two EM sensors, one attached to the probe and the

other to the calibration phantom. The US image with the six dots shows the intersection

of the image plane with the N-fiducials in the phantom.

3.2.2 Temporal Calibration

The video output from the US machine was captured using a video-to-FireWire con-

verter (The Imaging Source Europe GmbH, Bremen, Germany). As the video con-

verter acquisition rate was slightly slower than the tracking frequency, a temporal

calibration was required to synchronize each US image with an associated tracking

transformation. This was accomplished by interpolating the tracking data stream be-

tween the B-scans using spherical linear interpolation (slerp) [69]. Figure 3.4 shows

how the tracking data were interpolated, where pinterp is the tracking value interpo-

lated between pj and pj+1 given the time stamps tUS and ttrack of the US and tracking

data.
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Figure 3.3: Ultrasound calibration using an N-fiducial phantom.
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Figure 3.4: Interpolation of tracking data to match the corresponding US frames.

3.3 Volume Reconstruction

While the probe acquired US images, the tracking system generated a series of trans-

formation matrices representing the position and orientation of the US probe. Equa-

tion (3.3) converts a point in the nth image into the world coordinate system and

represents it in the reconstructed volume space:
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Figure 3.5 illustrates the transformations required to map a point from an image to

the world space. For practical reasons, the origin of the image is often placed at the

top center of the image. For a curved-array probe, this corresponds to the center of

curvature. This point is preferred because its position does not vary when changing

the depth setting.

In Figure 3.5, an arbitrary point at position (u , v) relative to the image origin was

first scaled by sx and sy. Then it was mapped in the sensor space by the calibration

transformation ITS, then into the world space by STW , and finally in the volume space

by WTV . Pixels in the acquired US images were traversed and each pixel value was

assigned to one or several voxels in the output volume according to equation (3.3).

Multiple contributions to the same voxel were averaged. Afterwards, small gaps in

the output volume were filled by combining values from the local neighborhood using

a (3× 3× 3) grid [70].

The 3D US reconstruction was done in two steps: data acquisition, and then volume

reconstruction. Using a PC with a 3 GHz Core2 Duo CPU and 4 GB memory, the

average time required to transform an US frame into the output volume was 0.04

sec, i.e. a reconstruction rate of ca. 25 Hz. Given that the acquisition rate of the

US images is app. 16 Hz in our setup, the speed of the reconstruction algorithm

is sufficient for a real time reconstruction. Dense scanning of the region of interest

containing the tumor was necessary to avoid having a sparse volume due to big

gaps between different frames. The region of interest was scanned back and forth

for a period of 20 sec before reconstructing the volume. Filling small gaps in the

local neighborhood around mapped gray values in the volume took in average 0.16

sec.
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Figure 3.5: Sketch illustrating the volume reconstruction transformations.

Figure 3.6: Reconstructed US volume.
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The dimensions of the resulting volumes varied relative to the scanned area. In

average the US volume size was (480×240×300 voxels), which was equivalent to an

actual volume of (7×4×4.5 cm3) in the tissue. The time required to reconstruct such

a volume was 18 sec. Figure 3.6 shows a reconstructed US volume.

3.4 Conclusion

We presented in this chapter the steps to reconstruct a volume from tracked freehand

laparoscopic ultrasound. After attaching a position sensor to the ultrasound probe,

calibration was required to determine the transformation between the acquired images

and the sensor. Then, every image pixel was mapped into a volume in the tracking

system (world) space. The explained volume reconstruction method is used in the

following chapters to create 3D US images of the tumor region.
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Chapter 4
Tumor Segmentation

4.1 Introduction

In this chapter we present two different segmentation algorithms to segment tumors in

US images: level set and graph cut segmentation methods. In the following chapters,

these methods are applied as part of tumor localization techniques. Tumor segmen-

tation in US images is challenging due to characteristic artifacts such as speckles,

attenuation, and shadows. While conventional segmentation methods such as region

growing and threshold based algorithms have the advantage of being simple and fast,

they are typically not sufficient to segment US images [71]. Therefore, more robust

segmentation algorithms based on optimization of energy functions are adapted to

segment tumors in US images.

4.2 Level Set Segmentation

The level set method is an implicit representation of a surface. The contour of this

surface is embedded as the zero level set of a higher dimensional function called the

level set function φ(x, t). Level set methods rely on partial differential equations
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(PDE) to model deforming isosurfaces [72]. Level sets can be used for segmentation

by using image information in a PDE. Solving this PDE over the entire image domain

yields the level sets of the image. The target segmentation solution is where the zero

level set {x | φ(x, t) = 0} coincide with the boundaries of the object we want to

segment.

4.2.1 Mathematical Background

Consider a boundary, either a curve in two dimensions (or a surface in three dimen-

sions), separating one region from another1. For instance, let Γ(t)|t=0 be a smooth

initial contour in Euclidean plane ℜ2 (Figure 4.1), and let Γ(t) be the family of curves

generated by moving Γ(t)|t=0 along its normal vector field with a speed F , and x(s, t)

is the position vector which parametrizes Γ(t) by s.

Inside

Outside

Figure 4.1: Curve propagation with speed F in the normal direction.

The central idea in the level set approach is to represent the front (evolving curve)

Γ(t) as the zero level set {x | φ(x, t) = 0} [73]. Let φ(x, t)|t=0 be defined by

1The derivation of the evolution equation is based on the derivation given by Malladi et al. [73].
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φ(x, t)|t=0 = ±d, (4.1)

where x ∈ ℜN , d is the distance from x to Γ(t)|t=0, and the plus (minus) sign indicates

if the point is outside (inside) the initial surface Γ(t)|t=0. Thus, we have

Γ(t)|t=0 = {x | φ(x, t)|t=0 = 0}. (4.2)

As an example of front propagation, suppose the initial front Γ at time t = 0 is a

circle in the ℜ2-plane. Also the initial front is the zero level set {x | φ(x, t) = 0} of

an initial surface z = φ(x, y, t)|t=0 in ℜ3 (Figure 4.2a). And the front at any time t

is Γ(t) = {x | φ(x, t) = 0} (Figure 4.2b). From this example we can see how the zero

level set always represents the moving front at any time t.

To derive an equation for the evolving function φ(x, t) which embeds the front Γ(t) as

the zero level set {x | φ(x, t) = 0}, let x(t) be the path of points along the propagating

front, ẋ = F (x(t)) with F indicating the speed in the normal direction, and the vector

ẋ is normal to the front at x(t). Since the evolving function φ is always zero on the

propagating front, we must have

φ(x(t), t) = 0. (4.3)

Obtaining ∂φ/∂t is an implicit differentiation problem [74]. Let’s assume a one-

dimensional function φ(x(t), t) = 0. The total derivative for this function is given

by

dφ =
∂φ

∂x
dx+

∂φ

∂t
dt, (4.4)

and multiplication of the above equation by 1/dt yields

dφ

dt
=

∂φ

∂x

dx

dt
+

∂φ

∂t
. (4.5)

Let’s generalize equation (4.5) for higher dimensions

dφ

dt
= ∇φ(x(t), t)

dx

dt
+

∂φ

∂t
. (4.6)
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(a) Initial curve (b) Curve at time t

Figure 4.2: Level sets and front motion (a) The curve Γ and the surface φ(x, y) at t = 0. (b) The

curve Γ and the surface φ(x, y) at time t.

Since the front Γ(t) is always represented by the zero level set, then

Γ(t)|t = {x | φ(x, t) = 0}, and also Γ(t)|t+∆t = {x | φ(x, t+∆t) = 0}:

⇒
dφ

dt
= 0,

and
∂φ

∂t
+∇φ(x(t), t)

dx

dt
= 0. (4.7)

Since F supplies the speed in the outward normal direction (see Figure 4.1), then

dx

dt
= F n̂ = F

∇φ

|∇φ|
, (4.8)

where n̂ = ∇φ/|∇φ|. By substitution in equation (4.7), we obtain

∂φ

∂t
+ F

|∇φ|2

|∇φ|
= 0, (4.9)
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which after algebraic simplification yields the evolution equation, namely

∂φ

∂t
+ F |∇φ| = 0, with initial condition φ(x, t)|t=0. (4.10)

4.2.2 Segmentation using Level Set

Segmentation of an object is the detection of its boundaries. So, we can segment

the desired object if we make the propagating front take the shape of its boundaries.

To do that, the evolving front should be forced to stop in the vicinity of the object

boundaries. In other words, we should define the final shape of the propagating front,

i.e. when the propagating front reaches the steady state and all the points on the

front come to a stop, to be the shape of the desired object boundaries.

The only input we have is the image information, and our goal is to define a speed

function from this information that forces the propagating front to stop at the object

boundaries. Let’s split the speed function F into two components: F = FP + FG.

The propagation term FP is independent of the moving front’s geometry. The front

uniformly expands or contracts with speed FP depending on its sign. FG depends on

the geometry of the front. Then equation (4.10) can be rewritten as

∂φ

∂t
+ FP |∇φ|+ FG|∇φ| = 0. (4.11)

Let g I be defined as

gI(x, y) =
1

1 + |∇Gσ ∗ I(x, y)|
, (4.12)

then the evolution equation now is

∂φ

∂t
+ gI(FP + FG)|∇φ| = 0. (4.13)

The term gI acts as an image dependent stopping function as it has values that are

closer to zero in regions of high image gradient and values that are closer to unity
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in regions with relatively constant intensity. The geometry dependent term FG in

equation (4.13) can be defined as the local curvature of the front. The curvature is

defined as the divergence of the gradient of the unit normal vector to the front

n̂ =
∇φ

|∇φ|
, (4.14)

thus the curvature is given by

κ = ∇ ·
∇φ

|∇φ|
=

−φxxφ
2
y − 2φxφyφxy − φyyφ

2
x

(φ2
x + φ2

y)
3/2

. (4.15)

This curvature speed term is used to control the shape of the evolving front. The

curvature speed at a certain point on the front acts inwards and is proportional to the

curvature magnitude of the front at this point (Figure 4.3). The effect of this term is

to slow down the front evolution at places of high curvature, such as sharp corners,

and consequently smooth out the high curvature regions of the front [75]. It has

also a regularization effect on the front which prevents leakage in case of incomplete

boundary.

Figure 4.3: Curvature forces act in the direction of the unit normal vector.

Surface Curvature (3D)

Curvature on a 3D surface is more difficult to define as there are infinitely many curves

through a point on the surface [76]. However, there are two principal directions of

50



4.2. LEVEL SET SEGMENTATION

maximal and minimal curvatures (Figure 4.4). Once the principal directions at a

point p are determined, two curves through the point p along those directions can be

identified and curvature can be calculated similar to equation (4.15).

n

t1

t2

P

Figure 4.4: Principal curvature directions.

Let the curvatures κ1 along t1 and κ2 along t2 be the principal curvatures at some

point p on the surface. Then we can locally determine the shape of the surface around

p by calculating the mean curvature which is given as

H =
κ1 + κ2

2
. (4.16)

Final Evolution Model

Back to the evolution model ∂φ/∂t + gI(FP + FG)|∇φ| = 0, the front evolves under

two simultaneous motions, propagation force FP and geometrical force FG. Since the

front expands or contracts with a constant speed, we can set FP = c, where c is a

scalar constant. FG is proportional to the curvature magnitude and acting inwards,

so it can be replaced by Fcurv = −ǫκ and the evolution equation becomes
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∂φ

∂t
+ gI(c− ǫκ)|∇φ| = 0. (4.17)

Let’s now add a third speed term to the evolution equation, advection speed Fadv,

which is introduced by Caselles et al. [77]. The final model is called Geodesic Active

Contours,2 and can be written as

∂φ

∂t
+ gI(c− ǫκ)|∇φ|+ α(∇gI · ∇φ) = 0. (4.18)

The scalar constants c, ǫ, and α weight the relative influence of each of the speed

terms on the propagation of the front. Note that in equation (4.17) the front stops

when gI = 0. This happens in case of ideal edges, but sometimes the boundaries in

real images have high variations of the gradient along their boundaries. In some other

cases the boundaries are incomplete or have small gaps.

The advection term ∇gI · ∇φ increases the attraction of the deforming front towards

the boundary of the desired object, regardless of the possible high variation in the

gradient values along the boundary. Figure 4.5 shows an image of a disc with high

intensity value and low intensity background, mimicking the boundary of an object.

A one-dimensional image I(x) is obtained by taking a cross section at one point along

the disc.

The image is smoothed by the convolution with the Gaussian filter Gσ. Figure 4.6

shows the smoothed image and its gI function. The gradient vectors∇gI point toward

the middle of the boundary [77]. Those vectors steer the propagating front into the

“valley” of gI function. When we apply the same concept on the whole 2D image, the

new term ∇gI · ∇φ = ∇gI · n leads the evolving front to the boundary of the object

and has the maximum effect when the gradient vectors coincide with the normal

direction of the evolving front. Eventually, it forces the front to stay in the vicinity

of the boundary.

2For details about the derivation of Geodesic Active Contours, see Caselles et al. [77].
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Figure 4.5: Image of a disc (boundary) and a through-cut at one point.

Figure 4.6: The smoothed 1D image and its g
I
, arrows show ∇g

I
direction.

4.2.3 Segmentation Steps

In the previous section we presented the level set method and how different speed

terms are integrated in the final evolution equation. This section describes the steps

used to segment tumors in 3D US volumes. As a preprocessing step, we apply a

median filter to smooth out the noise which might trap the evolving contour in a

local minima. Figure 4.7 shows a metastatic liver tumor and the effect of the median

filter on the image.
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Figure 4.7: Effect of median filter on an US image of metastatic liver tumor.

The evolution PDE in equation (4.10) needs an initial value. The initial value in

this case is an initial level set. In other words, it is the solution of a cheap and fast

evolution PDE which gives an initial level set function φ(x, t)|t=0. This fast evolution

algorithm is known as the fast marching.

Fast marching algorithm starts the evolution from a seed point with a constant speed

value. The pixel values of a unit speed image is used to determine the speed in the

fast marching PDE, equation (4.19). The fast marching acts as a distance function

to one or more user provided seed points.

Let T (x) be the arrival time of the front that indicates, for each pixel, how much

time it would take to arrive at the pixel location, and since distance = speed× time,

we have

|∇T |F = 1, T (x) = 0 for seed points x. (4.19)

Using a unit speed image, the equation reduces to the PDE of the distance func-

tion

|∇T | = 1, T (x) = 0 for seed points x. (4.20)

Figure 4.8 shows a geometrical interpretation of the distance function in 1D and 2D.

The output of the fast marching is the initial level set function and the zero level set

of this function is the initial front Γ(0) = {x | φ(x, t) = 0}|t=0.

Now the level set algorithm is initialized and ready to evolve according to the gov-

erning speed terms. But before that, a sigmoid filter is applied to the input image in
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(a) Distance function 1D (b) Distance function 2D

Figure 4.8: Geometric interpretation of the distance function. (a) 1D distance function. (b) 2D

distance function.

order to enhance edges at the borders of the tumor by increasing the difference be-

tween gray values inside and outside the tumor. The sigmoid filter is a point-to-point

intensity nonlinear mapping which transforms a certain range of gray values into a

new range of gray values while keeping a continuous and smooth transition in the

borders of the range [78].

Inew = (Max−Min)
1

(1 + exp−( I−β

α
))

+Min. (4.21)

=

=

=

Figure 4.9: The significance of α & β in equation (4.21). The α parameter defines the width of the

intensity window. The β parameter defines the center of the intensity window3.

3Source: ITK Software Guide [78]
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In equation(4.21), I is the input gray value, Inew the output gray value, Min,Max

are the minimum and maximum values of the output image, α defines the width of

the input gray value range, and β defines the gray value around which the range is

centered. Figure 4.9 illustrates the significance of each parameter. The ideal effect

of the sigmoid filter is that the gray values outside the tumor are mapped to the

maximum gray level and the gray values inside are mapped to the minimum gray

value, or vice versa depending on the sign of α, while keeping a smooth transition at

the border.

In the segmentation process, user interaction is required only once to initialize the seg-

mentation algorithm. A cross section of the tumor was visualized by slicing through

the reconstructed US volume. Using the mouse pointer a line was drawn along the

tumor diameter. The mid point of this line was fed as a seed point to the fast march-

ing algorithm. Also, the length of this line gives an estimate of the tumor size, and

accordingly the region of interest (ROI) around the tumor. This ROI is preprocessed

using a median filter to smooth out the noise, followed by the sigmoid filter explained

before to enhance tumor edges. The sigmoid α was set to ±1.5 depending on whether

the tumor hyper or hypoechoic, while β was automatically set to the mean gray

value of the image area covered by the circle defined by the line drawn along the

tumor.

The output of the sigmoid filter is the edge image (Figure 4.10), from its name it

defines the edges of the borders at which the propagating front should stop. However,

some parts of the tumor contour are not well defined by the sigmoid filter. Thus, the

sigmoid filter is not completely delineating the tumor from the surrounding tissue.

Nevertheless, those edges defined in the sigmoid image, even if they don’t draw a

complete contour, contribute significantly to the speed terms in equation (4.18).

Finally, the initial contour (fast marching output) evolves according to the level set

function to segment the 3D tumor in the edge image. Figure 4.11 shows how the

initial contour evolved iteratively to eventually take the shape of the tumor.
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Figure 4.10: Tumor image after applying sigmoid filter, most of the pixel intensities inside the tumor

are mapped to a maximum value and most of those outside are mapped to a minimum

value. The tumor borders are not completely defined by the sigmoid filter, however

edges making parts of the tumor contour contribute significantly to the energy terms.

(a) (b)

(c) (d)

Figure 4.11: Initial contour evolves according to the governing level set function to eventually take

the shape of the tumor.

57



4.3. GRAPH CUT SEGMENTATION

4.3 Graph Cut Segmentation

Image segmentation using graph cut algorithms was proposed by Boykov et al. [79].

The graph cut segmentation framework uses implicit representation of object bound-

aries, thus the method is considered a discrete counterpart of level sets. It doesn’t

rely on approximating numerical schemes, instead a discrete energy formula is solved

directly in a graph-based optimization. This makes the optimization potentially fast

and numerically stable. As explained in more details later in this section, the dis-

crete energy can combine both boundary and regional properties of the image seg-

ments.

A graph G = 〈V , E〉 consists of nodes (vertices) V and lines connecting them called

edges E . The nodes correspond to image pixels and each edge between them are

assigned a weight. Some nodes (pixels) are labeled as terminal nodes: source (s)

and sink (t) [3]. Figure 4.12 shows a two-terminal graph on a 3 × 3 image with two

labels. Edges can be directed or undirected, the graph in the figure illustrates the

case of directed edges, where the weights assigned to the edges differ depending on

the direction, i.e. the weight of the edge between two arbitrary nodes (p, q) may differ

from the weight of the reverse edge (q, p).

Two types of edges are connected to each (node) pixel in the image: n-links (neighbor-

hood links) and t-links (terminal links). Two sets of pixels are labeled by the user as

object (s) or background (t) to provide hard constraints for the segmentation. Each

pixel p has two t-links {p, s} and {p, t} connecting it to each terminal. Each pair of

neighboring pixels {p, q} is connected by an n-link. The weight assigned to an n-link

corresponds to the similarity between two neighboring pixels. The weight assigned to

a t-link corresponds to the similarity between an image pixel and the labeled pixels

(s and t). An s-t cut is a subset of edges C ⊂ E which completely separate the source

and sink terminals.

The labeled pixels (seeds) defined by the user represent a hard constraints for the

segmentation, as those pixels are predefined as part of the object or the background.
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Figure 4.12: Illustration of a graph cut on 3×3 image, thickness of the directed edges represent their

weights. Two types of links: n-links between the neighboring pixels (yellow), t-links

between the pixels and the source (red), and t-links between the pixels and the sink

(blue). From Boykov et al. [3].

The rest of the pixels are automatically classified as object or background by comput-

ing a global minimum of a cost function among all segmentations satisfying the hard

constraints. The cost function incorporates soft constraints: boundary and region

information [3].

4.3.1 Segmentation Cost Function

Let P be an arbitrary set of pixels in a 2D (or 3D) grid and N a set of all pairs

{p, q} of neighboring pixels, 8-neighborhood or 26-neighborhood in cases of 2D or 3D

respectively. Let A = (A1, . . . , Ap, . . . , A|P |) be a binary vector, whose elements Ap

mark the pixel p in P as object or background ; i.e. vector A defines a segmentation.

Then the cost function that imposes the region and boundary soft constraints can be

defined as:

E(A) = λ · R(A) + B(A) (4.22)
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where the regional term is

R(A) =
∑

p∈P

Rp(Ap) (4.23)

and the boundary term is

B(A) =
∑

{p,q}∈N

Bp,q · δAp 6=Aq
, δAp 6=Aq

=

{

1 Ap 6= Aq

0 Ap = Aq

(4.24)

The constant λ ≥ 0 in equation (4.22) defines the relative weight of the regional

R(A) term versus the boundary term B(A). The regional term corresponds to the

probability that a certain pixel belongs to the object or the background. Following

the model proposed by Boykov et al. [79], we used the seed pixels (hard constraints) to

get histograms for object (Pr(I|O)) and background (Pr(I|B)) intensity distributions.

Then, the regional term was calculated as the negative log-likelihoods:

Rp(“obj”) = −ln Pr(Ip|O)

Rp(“bkg”) = −ln Pr(Ip|B)
(4.25)

For each neighboring pair pixels p and q, the boundary term B(A) varies accord-

ing to the similarity or dissimilarity between the pixels. The value of Bp,q is large

when the pixel intensities are similar and approaches zero when discontinuity occurs.

Accordingly, we set the boundary term function to:

B(p, q) = F · exp

(

−
(Ip − Iq)

2

2σ2

)

(4.26)

where F is a constant factor and σ serves as a similarity variance. When intensities are

similar (|Ip−Iq| < σ), the bond between the neighboring pixel is strong and the weight

assigned to this edge is large. However, if pixels are very different ( |Ip − Iq| > σ),

then the bond is weak and the weight assigned is small.
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Table 4.1: Weights of all types of edges in the graph.

edge weight (cost) for

{p, q} Bp,q {p, q} ∈ N

{p, s}

λ ·Rp(“bkg”) p ∈ P, p /∈ O ∪ B

K p ∈ O

0 p ∈ B

{p, t}

λ ·Rp(“obj”) p ∈ P, p /∈ O ∪ B

0 p ∈ O

K p ∈ B

Table 4.1 summarizes all the weights assigned to the graph, where K is a constant

greater than the sum of all n-links costs. After defining the nodes, edges, and corre-

sponding weights of the graph G, the minimum cost cut Ĉ on the graph G defines the

segmentation boundary between the object and the background. The cost of a cut

C = {s, t} is defined as the sum of the costs of boundary edges (p, q), where p ∈ s and

q ∈ t. The minimum cut problem on a graph is to find a cut that has the minimum

cost among all cuts.

The minimum s-t cut problem can be solved by finding a maximum flow from the

source s to the sink t. We can think about the maximum flow as the maximum

“amount of water” that can flow from the source to the sink and the graph edges as

“pipes” with capacities equal to edge weights [3]. Solving for the maximum flow from

s to t dividing the nodes into two segments is equivalent to solving for the minimum

cut (minimum cost) [80]. We used an implementation of max-flow/min-cut algorithm

provided by [3]4.

4The implementation is freely available for research purposes on http://vision.csd.uwo.ca/code

For more details about the max-flow/min-cut algorithm, please see Boykov et al. [3]
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4.3.2 Segmentation Steps

After explaining the theory of using the graph cut method in image segmentation,

we present our approach to segment tumors in US images using graph cut. Our

implementation considered only 2D image segmentation; Chapter 6 illustrates how

several 2D segmented tumors were used to obtain 3D information.

First step is to label one set of pixels as object and another as background. Normally

these pixels are selected manually by brushing separate parts of the image before

running the segmentation algorithm; however, automatic initialization can be done

as described in Chapter 6. Figure 4.13 shows how the object and background nodes

(hard constraints) were set in our implementation. The object (tumor) was labeled

by a filled circle inside the tumor and the background (rest of the image) by a hollow

disc around the tumor.

Figure 4.13: Initialization of the graph cut algorithm by selecting two sets of pixels: object (tumor)

and background.

The edge weights were assigned according to table 4.1, with the constants as follows:

K = 10000, λ = 100, F = 10, and σ = 1. After initializing the algorithm by setting
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the hard constraints and the weights, the algorithm is practically ready to segment

the image. However, this would segment the whole image including irrelevant parts

far from the tumor. But we are interested only in the tumor, therefore we limited the

area considered in the segmentation to a narrowband around the tumor. Figure 4.14

demonstrates the segmentation result without applying the narrowband.

(a) Original (b) Segmentation

Figure 4.14: Segmentation result without limiting the segmentation algorithm to the area around

the tumor. The segmented image shows that not only the tumor was segmented, but

also some other irrelevant parts of the image.

Since the tumor boundary must lie between the source and the sink, the narrowband

was defined as the area between the circle inside the tumor and the inner diameter

of the disc around the tumor, Figure 4.13. By limiting the number of pixels (nodes)

on which the graph cut algorithm is applied, we reduced the segmentation time and

also avoided unwanted segmentation of image parts far from the object. Addition-

ally, due to the noisy nature of the US images, morphological post-processing of the

segmentation results was required. This was done by applying erosion filter to eat

away small false segmentation around the tumor and then dilation filter to restore

the original size of the main segmented object. Figure 4.15 shows the segmentation

when only the narrowband was considered and the final segmentation after applying

the morphological filters.
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(a) Before Morphology (b) Final Segmentation

Figure 4.15: (a) Segmentation when the area considered in the segmentation was limited to the

narrowband around the tumor. (b) Final segmentation after applying erosion and

dilation morphological filters.

4.4 Segmentation Cases

The explained segmentation methods are used in the following chapters as part of

tumor localization algorithms. The level set algorithm is performed on both 2D

and 3D images; however, our graph cut implementation is limited to 2D images.

Figure 4.16 demonstrates two segmentation examples of real liver tumors using the

two illustrated methods.

4.5 Conclusion

We presented two methods for tumor segmentation on US images. Both methods

were capable of dealing with the noisy nature of the US images. In case of the

level set method, user interaction was required to provide an initial contour (seed

point) inside the object. Afterwards, the initial contour evolved to match the tumor
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(a) Original (b) Original

(c) Level Set (d) Level Set

(e) Graph Cut (f) Graph Cut

Figure 4.16: Segmentation results of real liver tumors using level set and graph cut algorithms.

65



4.5. CONCLUSION

boundaries. Also the graph cut method requires labeling parts of the image as object

and background. Then a global minimum of a cost function is computed among all

segmentations that separate the object and background labels. This chapter aimed

to present the theory and steps involved in the segmentation process. In the next

two chapters, these methods are used to segment tumors in tumor localization ap-

proaches.

66



67

Chapter 5
Local Registration

5.1 Introduction

In image guided interventions, additional information is obtained from imaging modal-

ities and tracking systems. Based on this information, positions of the surgical tools

and the organ anatomy are represented on the navigation screen to support the sur-

geon approaching targets. Therefore, it is essential for the model representing the

organ on the navigation screen to reflect accurately the actual surgical situation.

This is not easily achievable in a highly deformable organ such as the liver.

The liver is subjected to motions throughout the surgery, either periodic due to respi-

ration or irregular due to surgical manipulation. Due to these motions, the position of

the target tumor inside the liver changes during the operation. Hence, intraoperative

update of the target position is necessary in navigated liver procedures. In section

2.6, several navigation approaches developed by other groups were presented. Most of

them aimed to find a global solution which maps the preoperative liver model to the

actual liver. The drawback of this process is that, it is complicated to repeat once the

surgery starts, as it requires access to multiple regions of the liver. Also, whole liver

mapping is typically computationally expensive and consequently very time consum-
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ing. Moreover, it is very unlikely after registering the whole liver to achieve adequate

navigation accuracy at arbitrary proximal targets in the liver. Especially as the liver

anatomy is divided into lobes and segments [15].

On the other hand, the surgical workflow is local by default; the surgeon focuses on

only one tumor at a time and then on another in case of multiple ones. Since the

key information in the navigation procedure is the target tumor, we can focus on this

target to reach a high navigation accuracy and then move to the next target. This is

achieved by performing local registration considering only one tumor region at a time

according to the surgical workflow. Another important aspect to consider is that the

process of updating the target position should be repeatable, as changes in the target

position usually are not predictable.

In this chapter we present a navigation approach based on tracked LUS and focused

on the neighborhood of the tumor. As LUS is routinely used in laparoscopic liver

procedures, the approach doesn’t introduce major changes to the surgical work flow.

The aim is to quickly compensate for tumor movements due to surgical manipula-

tion, and subsequently, maintain high navigation accuracy in the region of interest

containing the tumor throughout the procedure.

5.2 Methods

In Chapter 4, tumors were successfully segmented in reconstructed US volumes. As

we know the position and orientation of every acquired US frame (Chapter 3), we

also know the location of the segmented tumor in the reference (EM transmitter)

coordinates. So basically we can navigate to the tumor centroid. But, segmenting

the tumor in 3D takes substantial time to solve and requires user interaction to place

an initial contour. Thus, repeating this process during the surgery to get the actual

tumor position is impractical for the surgical workflow. However, we do not need to

start segmentation of the tumor from scratch for each newly acquired volume, but

instead use the segmented tumor as a priori knowledge.
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The main idea of the proposed approach is to use the segmented tumor as a tumor

model in a registration scheme. Hence, the time consuming segmentation is required

only once at the beginning of the procedure. After that, quick registration is per-

formed to update the navigation system with the actual tumor position. Figure 5.1

demonstrates the overall steps involved:

• LUS probe calibration

• Intraoperative volume reconstruction

• Tumor segmentation

• Tumor monitoring (US scan ⇒ registration)

x

Y

EM 

Sensor

Z

X

Y

US 

Probe
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Tumor 

Segmentation

Update Tumor 

Position 

New US Volume 
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Figure 5.1: Steps involved in the approach. First step resembles the US calibration procedure (sec-

tion 3.2), where an US image intersects the wires (white dots) inside the calibration

phantom. Second, an US volume is reconstructed. Third, tumor is segmented and its

position is determined. Those three steps are performed initially; afterwards, automatic

monitoring of the tumor position is performed with each newly acquired US volume

using the segmented tumor and its previous position as priori knowledge.

First of all, calibration of the US probe was performed (Chapter 3); this step is only

necessary if there was no calibration done beforehand or the sensor position on the

probe has been changed. Then an initial US volume was acquired, in which the tumor

was segmented (Chapter 4) and its center of mass (centroid) was computed.
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Afterwards, with every new scan of the tumor region, the tumor position is automat-

ically determined in two steps:

• Local surface registration

• Tumor-based registration

5.2.1 Local Surface Registration

While scanning the tumor region with the US probe, the points along the transducer

array are located on the liver surface. Accordingly, a line of surface points can be

collected per frame acquisition. But we don’t need all those points to perform a

surface registration, so only three points corresponding to the beginning, mid, and

end of the transducer array were recorded. By completing the US scan, we obtained

a set of points representing the surface of the liver above the tumor region.

Point clouds from two consecutive scans (Figure 5.2) were used to perform a 6D rigid

registration using an ICP method [78]. This iterative process involves matching the

nearest neighbors from the two point sets, minimizing a mean square cost function,

and estimating the transformation parameters.

US Probe

Point Set 2Point Set 1

Figure 5.2: Illustration of the ICP registration algorithm between two sets of points. For each US

frame acquisition, three points on the liver surface are collected. By completing the

scan, these points form a set of points.
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5.2.2 Tumor-based Registration

Although the surface registration was done locally for the tumor region and not for the

whole liver, it is only using surface points, so the registration error can extrapolate to

significant numbers at points located deeper in the tissue. Thus, surface registration

is not enough to guarantee good registration accuracy at the target tumor. However,

the surface registration brings the tumor model closer to the actual tumor. Following

the ICP registration, another registration was performed using the tumor itself as the

registration object.

At this point, the tumor model (segmented tumor) is mapped and located inside the

newly acquired US volume in the neighborhood of the actual tumor. Since tumors

are usually stiffer than the surrounding normal liver tissue [81], we assumed tumor

rigidity and consequently the tumor shape didn’t change. Hence, rigid registration

was applied using the tumor model as a moving image to search in the neighborhood

for the best match. Using image information from the segmented tumor and the US

volume, we applied a mutual information (MI) registration metric with a gradient

decent optimizer [72].

Optimization of registration metrics aim to maximize or minimize cost functions

by iteratively evaluating the output value given a set of transformation parameters.

Gradient descent optimizer searches in the parameters space so that the optimization

follows the negative gradient of the cost function. It is the direction along which

the cost function decreases most rapidly. If we want to maximize the cost function,

the optimizer moves along the positive gradient direction. First, we set an initial

step for the optimizer, this step is reduced by a factor once the gradient changes

direction. Eventually, the optimizer finds the spatial transformation that maps the

moving tumor model to the best match in the fixed US volume.
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Mutual Information Metric

Given two random variables (images), MI measures the average amount of information

that first variable conveys about the other or vice versa [82]. MI registration metrics

are based on probabilistic measures of image intensity values [83].

Let

H(A) = −

∫

PA(a)logPA(a) da (5.1)

be the entropy of random variable A, H(B) the entropy of random variable B and

H(A,B) =

∫

PAB(a, b)logPAB(a, b) dadb (5.2)

be the joint entropy of A and B. If A and B are independent, then

PAB(a, b) = PA(a)PB(b) (5.3)

and

H(A,B) = H(A) +H(B). (5.4)

However, if there is any dependency, then

H(A,B) < H(A) +H(B). (5.5)

The difference is called mutual information : I(A,B)

I(A,B) = H(A) +H(B)−H(A,B). (5.6)

5.3 Experiments and Results

To evaluate the proposed approach, we conducted an ex-vivo experiment on a porcine

liver. Fourteen pseudo-tumors were embedded into several pieces of the liver and their

center of masses were set as navigation targets. We also assessed how accurate the

tumor-based registration algorithm can estimate the tumor position by moving a

target on a known trajectory and estimating its position.
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5.3.1 Pseudo Tumors Preparation

The tumors were created by mixing 6 g agarose, 6 g cellulose, 14 ml glycerol, and a

trace of color powder in 200 ml distilled water [84]. The mixture was then heated

until having a homogeneous solution, then left to cool in room temperature. Just

before the mixture solidified, while it was still viscous, approx. 4 ml (≈ 1 cm tumor

radius) of the mixture was injected into several locations in the tissue. Figure 5.3

shows how the tumor-mimic mixture looked like under US imaging.

Figure 5.3: Ultrasound image showing one of the pseudo-tumors embedded in porcine liver tissue.

5.3.2 Experiment 1: Position Monitoring Validation

We immersed one of the pseudo-tumors in a container filled with water. A trace of

cellulose and agarose was added to the water to create speckle background in US

images. We fixed the tumor to a needle tip and mounted the needle to a robot. The

tumor was moved by the robot to a starting position in the water. At this position we
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acquired US images of the tumor and reconstructed a volume. Then we moved the

robot 5 mm to a next position and again acquired an US volume, Figure (5.4). The

process was repeated 4 times, so we had 20 different start-end position combinations.

For each combination, the tumor was segmented in one volume and registered to the

other.

Robot

Moving 

Target

(a) (b)

Figure 5.4: (a) Target tumor was moved inside a water tank on a known trajectory using a robot.

(b) One of the US images acquired while scanning the target in the water tank.

The distance between the target centroids before and after the registration was cal-

culated. Accuracy of the registration was estimated by comparing this distance to

the known robot movement. The mean difference error for all the movements was

0.4 mm ±0.3 SD.
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5.3.3 Experiment 2: Needle Navigation

This experiment tests the approach in a scenario where the surgeon navigates an

ablation needle to a tumor center and tries to compensate for possible tumor shift

during the process. Tumors were injected at several positions into the liver tissue.

For each tumor region, a 3D US volume was acquired and the tumor was segmented.

The centroid of the tumor was calculated and set as the navigation target.

To guide the needle to the target, we built navigation software based on open source

libraries [72, 85]. The software enables 3D visualization of the needle trajectory and

the needle tip relative to the target tumor. Figure 5.5 shows a snapshot of the

software, where the needle (arrow head) was aligned towards the target point (tra-

jectory to target distance < 1 mm) and the needle tip was 18.4 mm distant from the

target. The segmented tumor is visualized within the surrounding tissue, with the

option to adjust tissue/tumor transparency to see the target. When the needle tip

reaches a distance less than 1 mm from the tumor centroid, the target is considered

reached.

Figure 5.5: Snapshot of the navigation software showing rendered US volume and segmented tumor.

It gives the option to show/hide or change the transparencies of the volume/tumor. Also

it provides the distances from the needle tip to the tumor centroid and from the needle

trajectory (path) to the tumor centroid.
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Before navigating the needle to the target, we needed to determine the spatial location

of the needle tip in the world (transmitter) space and consequently its position relative

to the target. A 6D sensor was fixed to the needle handle and a standard pivot

calibration was performed [33]. The RMS error of the calibration was 0.53 mm.

After that, the needle was oriented with the help of the navigation software towards

the center of the tumor. Then, it was advanced till the software indicated that the

target was reached (< 1 mm).

However, needle insertion into the tissue causes a shift in the physical target posi-

tion, hence, the needle tip was not at the actual center of the tumor. Moreover,

we purposely moved and deformed the tissue to mimic a real surgical situation. To

compensate for the tumor shift and update its position in the navigation software, a

second US volume was acquired, Figure 5.6. Automatically, the registration algorithm

found the actual tumor position in the new US volume. Accordingly, a new centroid

was calculated and set as a new navigation target. Finally, the needle was navigated

to the new target. We stopped after two iterations; nevertheless, the procedure can

be repeated whenever tumor position update is necessary.

NeedleLUS Sensor

Liver Tissue

US Gel

Figure 5.6: Photo taken during the experiment: tracked LUS probe scanning piece of porcine liver to

acquire an US volume. Meanwhile, tracked needle was navigated towards an embedded

pseudo-tumor.
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To estimate the navigation error, the tumor was also segmented in the second US

volume and centroids of the registered and segmented tumors were compared. Table

5.1 demonstrates the results of the surface registration using ICP. The results show

the final registration parameters, the time elapsed, and how far the transformed tumor

was from the actual target position (distance between centroids).

Table 5.1: Results of the local surface registration using ICP: translation, rotation, time required

to update the tumor position, and distance between the transformed tumor position and

the actual tumor position.

T #
Rotation (Deg.) Translation (mm) Time RMSE Distance

Rx Ry Rz Tx Ty Tz (s) (mm) (mm)

T1 -1.36 2.36 0.92 4.2 5.6 7.5 0.02 1.23 3.3

T2 1.47 -2.22 -0.37 -6.5 -4.7 -0.6 0.16 4.38 4.4

T3 1.74 -1.78 -7.38 3.42 12.4 -4.2 0.08 2.05 3.6

T4 -17.97 -9.33 -7.62 -24.5 57.5 -35.3 0.15 1.56 4.3

T5 -20.21 -3.23 8.71 1.7 39.6 -34.0 0.25 2.78 2.5

T6 -19.10 -4.27 27.58 -16.2 -25.6 -23.9 0.05 1.54 3.3

T7 -5.61 2.49 -4.86 8.2 26.2 -7.7 0.15 2.76 5.3

T8 4.12 8.17 -4.54 18.8 21.0 7.6 0.05 4.41 8.1

T9 2.22 1.95 -4.65 5.0 -5.8 28.7 0.06 1.51 2.8

T10 -14.12 -10.18 -10.73 -8.6 30.6 1.6 0.03 1.34 3.3

T11 -25.65 -7.01 17.36 -8.4 24.5 -32.2 0.20 4.97 8.2

T12 -3.61 4.14 -15.82 5.3 17.2 -7.2 0.15 2.31 2.5

T13 -12.27 1.11 -19.99 11.1 53.2 3.0 0.18 2.08 1.5

T14 -18.58 14.34 17.32 21.9 47.2 33.0 0.03 2.44 2.4

Tables 5.2 demonstrate the results of the tumor-based registration using MI. The

results show the distance each tumor was translated and the time needed to register

the tumor. The last column in the table depicts the residual navigation error after

compensating for the tumor shift.
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Table 5.2: Results of the tumor-based registration using MI: translation, time required to update

the tumor position, distance the tumor was shifted, and the residual navigation error

after updating the tumor position.

T #
Translation (mm) Time Error

Tx Ty Tz (s) (mm)

T1 0.4 -2.2 -2.3 0.59 0.2

T2 -0.4 -3.9 0.7 0.78 1.5

T3 -2.2 -0.6 1.7 0.67 1.2

T4 -1.0 -2.6 1.9 0.96 2.6

T5 0.5 -1.9 0.5 0.73 1.5

T6 0.2 2.2 1.7 0.82 0.5

T7 -0.1 5.8 0.4 0.75 0.7

T8 -0.2 -8.0 -0.4 0.78 1.4

T9 0.2 0.7 -1.7 0.51 1.5

T10 -0.7 -0.2 -1.3 0.52 2.5

T11 1.9 8.8 1.1 0.87 1.4

T12 0.5 -0.5 -0.3 0.41 2.3

T13 0.1 0.9 -1.0 0.47 0.2

T14 0.0 0.2 0.7 0.50 2.4

Table 5.3 presents the overall time required to update the tumor position and the

distance between the original position of the tumor model and the position after

the registration. It also compares the navigation error before and after applying the

tumor-based registration.

5.4 Discussion

It is crucial while performing a navigated intervention to maintain high accuracy

throughout the procedure. Particularly, accurate navigation must be maintained in
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Table 5.3: Overall tumor shift recovered by the registration, total time required to update tumor

position, error after ICP, and residual navigation error after the tumor-based registration.

T # Distance Time (s) ErrorICP (mm) Errortotal (mm)

T1 2.3 0.61 3.3 0.2

T2 8.0 0.94 4.4 1.5

T3 1.5 0.75 3.6 1.2

T4 13.2 1.11 4.3 2.6

T5 33.4 0.98 2.5 1.5

T6 15.1 0.87 3.3 0.5

T7 12.4 0.90 5.3 0.7

T8 19.7 0.83 8.1 1.4

T9 25.2 0.57 2.8 1.5

T10 18.1 0.55 3.3 2.5

T11 26.3 1.07 8.2 1.4

T12 13.2 0.56 2.5 2.3

T13 14.2 0.63 1.5 0.2

T14 38.4 0.53 2.4 2.4

the region of interest containing the tumor. Therefore, the proposed technique was

focused on the tumor neighborhood and utilized the tumor itself as the registration

object. The technique is particularly useful when multiple tumors are approached

subsequently, i.e. in a situation that further complicates whole liver registration.

The registration algorithm found the new tumor position in all the cases. The results

show that tumor shift caused by needle insertion and tissue handling was up to 38

mm. Once a new US volume of the tumor region was acquired, the actual tumor

position was found in an average time of 0.78 sec. After the ICP registration, the

tumor model was closer to the actual tumor, nevertheless there was still an error

margin up to 8.2 mm. As demonstrated in table 5.3, following the ICP with a tumor-

based registration significantly increased the average accuracy to 1.2 mm in 12 of the
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cases. In the other two cases, the MI algorithm almost didn’t move the tumor model

and the algorithm could not converge to a better tumor match in the neighborhood;

thus the tumor-based registration didn’t improve the ICP results in these cases and

the accuracy remained around 2.4 mm.

In the experiments, we acquired only two US volumes per tumor, one before causing

the tumor shift and one after. However, one of the advantages of this approach is that

it is based on US, which is a widely available imaging modality and used routinely

in liver interventions. Hence, whenever a tumor position update is necessary, the

surgeon can simply scan the tumor region again and the new target position will

be automatically identified. On the other hand, due to the limited field of view US

imaging provides, compared to CT for instance, and the noisy nature of the images,

visualization of only US images on the navigation screen might be insufficient for

the whole navigation procedure. Therefore, this approach can be ideally used in

combination with a preoperative-based model. Initial global registration (e.g. surface

registration) can be applied to the model, and then the proposed method can at

any time during the surgery further improve the navigation accuracy in the tumor

region.

5.5 Conclusion

We demonstrated a navigation approach focused on a local region where the tumor is

located. The technique does fast update of the tumor position by compensating for the

tumor shift caused by surgical manipulation. The results indicate that maintaining

an accurate navigation during laparoscopic liver procedures is feasible. The strength

of this technique is that it can be performed intraoperatively, and it is repeatable

throughout the operation. However, the algorithm requires acquisition of a dense US

volume containing the whole tumor. In the next chapter we present an alternative

approach which can estimate the tumor position using only a few US frames not

necessarily covering the whole tumor.
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Chapter 6
Sparse Segmentation

6.1 Introduction

The image localization approach described in the previous chapter is based on reg-

istration methods. It uses the output of an initial tumor segmentation to localize

the tumor throughout the operation in subsequent US volumes. However, one of the

limitations of this approach is that it requires dense scanning of the tumor region

every time a tumor position update is needed. Otherwise, the registration algorithm

wouldn’t have enough image information about the tumor. In this chapter, we propose

an alternative technique which doesn’t require dense US volume in order to deter-

mine the actual tumor position during the surgery. This technique is mainly based

on image segmentation; nevertheless, it provides a quick tumor position update using

a few US images of the tumor.

6.2 Methods

The concept of this approach is to estimate the tumor position and shape using sparse

information about the tumor. Similar to the local registration approach (Chapter 5),
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an initial US volume containing the tumor is acquired at the beginning of the proce-

dure. Then, the tumor was segmented in this volume to extract information about

the tumor such as maximum diameter and distribution of pixel intensities. This in-

formation is used later on to automatically detect the tumor in subsequently acquired

US images.

Whenever a tumor position update is necessary, an US scan of the tumor region is

required. But, in contrast to the local registration approach, it is enough to swiftly

scan the region of the tumor in a very natural manner as performed usually during

the operation. This scan triggers a fully automated algorithm which determines the

3D position of the tumor.

During this scan, a few images are selected based on two factors: how much infor-

mation the image contains (entropy), and its position given by the tracking system.

Images are discarded if they don’t contain enough information, which means they

are unlikely to show the tumor. Also tracking information is used to ensure that the

selected images are spatially distributed along the tumor and not representing the

same slice or adjacent slices.

Steps of the algorithm are as follows:

• Frame selection

• Tumor detection

• Tumor segmentation

• Position estimation

6.2.1 Frame Selection

Once the tumor region was scanned using the tracked US probe, the position of each

acquired frame relative to the previous one was determined. From 100 images acquired

in approx. 5 sec, a number of frames were selected such that the distance between

each two consecutive frames was between 1 and 5 mm. The lower threshold value
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was set to ensure that the selected frames are not redundant and covering substantial

part of the tumor. The upper threshold was used to avoid any inconsistency (jitter)

in the selected frames which may result from irregular scanning.

6.2.2 Tumor Detection

Since the tumor was initially segmented in 3D, a slice through the tumor was taken as

a reference image. For every selected frame, we calculated the entropy and compared

it to the entropy of the reference image. If the difference between the two entropies

was greater than 20%, the frame was excluded from the selected list. For the images

which passed the entropy test, a template matching algorithm was applied to detect

the tumor. The tumor in the reference image was used as a template in a template

matching method based on normalized cross correlation (NCC) [86]. For every pixel in

the image I(xi, yi), a cross correlation score R was calculated by sliding the template

tumor over the current US image and applying the following equation:

R(xi, yi) =

∑

xt,yt
(T (xt, yt)− I(xi + xt, yi + yt))

2

√

∑

xt,yt
T (xt, yt)

2.
∑

xt,yt
I(xi + xt, yi + yt)

2
(6.1)

where T (xt, yt) represents a pixel in the template image. The pixel with the highest

score determines the position where the overlaid template found the best match in

the US image. In case of a perfect match, the correlation score would be 1.0. A

threshold score of 0.95 was set for a successful tumor detection, accordingly images

were excluded when the R value was less than the threshold.

6.2.3 Tumor Segmentation

The tumor location in the US image is now determined, also the maximum diameter

and mean intensity of the tumor is known from the initial segmentation. Accordingly,
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automatic initialization of the level set and graph cut segmentation methods described

in Chapter 4 is possible.

The level set segmentation method was initialized by placing an initial contour cen-

tered at the point where the tumor is detected and with a diameter equals one third

of the maximum diameter. The sigmoid filter parameter (β) was set equal to the

mean intensity value. Also the graph cut method was automatically initialized; the

foreground region was defined as a circle inside the tumor, while the background was

a hollow circle around the tumor (Figure 4.13). Then either of the segmentation

methods was applied to segment the tumor.

Before accepting the segmentation result, another test was performed to compare the

segmentation output to the initial segmentation. This check uses prior knowledge

about the tumor vertical and horizontal diameters to detect incorrect segmentation,

e.g. due to leakage. For each segmented tumor, the maximum vertical and horizontal

diameters were automatically calculated. If any of the diameters was different by more

than 25% compared to the reference diameters, the segmentation result was rejected.

When five segmentation results of the tumor pass all the tests, the algorithm moves

to the next step to determine the 3D tumor position.

6.2.4 Position Estimation

The contours of the segmented tumors are actually points on the surface of the tumor.

Since the shape of the tumor is known from the initial whole tumor 3D segmentation,

we can fit these contours to the whole tumor surface. This is done by applying a

6D rigid ICP registration that maps the tumor surface to the contours. To speed up

the process, the surface of the tumor and the segmented contours were downsampled

before running the ICP algorithm. Finally, the centroid of the registered tumor points

was set as the updated tumor position.
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6.3 Results

The data from the experiment in Chapter 5 were used to test the proposed algorithm.

For each tumor we had two US acquisitions, one before causing a tumor movement

and one after. The first acquisition was used as a reference, where the tumor was

segmented to produce a 3D tumor model. This model was used in the ICP registration

to estimate the tumor location. Also a 2D template image was obtained from this

initial volume, which was used for the automatic tumor detection.

An arbitrary set of consecutive images (100 frames) from the second US scan was fed

as an input to the algorithm. Then the steps explained in the methods section were

applied in order. Both the level set and graph cut segmentation methods were tested

separately. The frame selection step based on relative frame positions took less than

1 msec in all cases. Also the tumor detection step including the entropy check and

the template matching took in average 0.015 sec.

For each successful tumor detection, the tumor was segmented and the result was

accepted or rejected based on the tumor size. The algorithm stopped when five

contours per tumor were obtained. Figures 6.3 and 6.2 show one of the segmented

tumors on three different frames, using the graph cut and level set methods respec-

tively. Figure 6.3 shows the surface points of the tumor registered to the segmented

contours.

Tables 6.1 and 6.2 demonstrate the results. They show the average segmentation

time per image and the time required to map the tumor model to the segmented

contours using ICP. The tables also show the total time from frame selection till

position estimation for each tumor. The error in the last column was calculated by

comparing the estimated tumor centroid to the actual tumor centroid obtained from

the experiment in the previous chapter.
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Figure 6.1: Tumor contours segmented using graph cut on three of the selected US frames.

Figure 6.2: Tumor contours segmented using level set on three of the selected US frames.

Figure 6.3: Tumor surface points (green) mapped to the segmented contours (red).

86



6.4. DISCUSSION

Table 6.1: Results of the sparse segmentation algorithm using the graph cut segmentation: average

segmentation time per image, registration time using ICP, total time from frame selection

till position estimation, and the error calculated as the distance between the estimated

tumor centroid and the actual tumor centroid.

T # Time/Image (s) TimeICP (s) Timetotal (s) Error (mm)

T1 0.70 0.56 5.43 2.1

T2 0.73 0.76 5.80 3.0

T3 0.79 0.89 5.09 1.2

T4 0.62 0.61 6.47 2.4

T5 0.75 0.71 6.55 2.4

T6 0.59 0.81 5.51 1.6

T7 0.72 0.57 5.36 2.1

T8 0.73 0.62 5.88 2.4

T9 0.56 0.46 4.72 1.0

T10 0.64 0.98 5.68 0.7

T11 0.57 0.59 7.46 2.4

T12 0.58 1.14 5.32 3.0

T13 0.59 0.84 5.65 0.7

T14 0.57 0.90 5.44 2.6

6.4 Discussion

The goal of the proposed approach is to estimate the tumor position using sparse

tumor surface. The sparse surface was built by performing automated tumor seg-

mentation. A few frames were automatically selected based on their positions and

entropies. In these frames, the tumor was detected and segmented. The template

matching threshold was set to a high value (0.95) to reduce false tumor detections.

Correct segmentation of the tumor is the core of this approach; hence, prior knowledge

about the tumor obtained from an initial segmentation was used to decide whether

to accept or reject the segmentation result.
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Table 6.2: Results of the sparse segmentation algorithm using the level set segmentation: average

level set segmentation time per image, registration time using ICP, total time from frame

selection till position estimation, and the error calculated as the distance between the

estimated tumor centroid and the actual tumor centroid.

T # Time/Image (s) TimeICP (s) Timetotal (s) Error (mm)

T1 0.55 0.59 5.30 1.5

T2 0.52 0.82 5.74 2.3

T3 0.65 1.34 5.37 2.1

T4 0.50 0.67 6.37 3.3

T5 0.51 0.68 3.68 2.2

T6 0.47 0.79 3.60 1.2

T7 0.51 0.81 3.63 2.3

T8 0.50 0.56 3.38 2.8

T9 0.44 0.48 3.99 0.7

T10 0.47 0.90 3.52 1.0

T11 0.45 0.89 6.62 2.4

T12 0.47 0.62 3.20 3.0

T13 0.51 0.64 3.57 1.9

T14 0.48 1.00 3.84 3.0

Although graph cut optimization is generally faster than level set optimization, the

foreground/background pixel assignments in our implementation made the time re-

quired to perform a graph cut segmentation slightly higher than that required by

the level set method. Nevertheless, both methods segmented the tumor in an average

time of 0.65 sec for the graph cut and 0.5 sec for the level set. The segmented contours

were not identical using the two methods. However, the differences are mostly due to

the degree of border smoothness. Hence, it did’t significantly affect the estimation of

the tumor position.

As an alternative to the previous tumor localization method in Chapter 5, this method

is more suitable for the hectic surgical workflow, as it doesn’t need scanning the
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tumor region in a special fashion. Also, volume reconstruction is not required, and

consequently the total time needed to update the tumor position is less. Although

the algorithm uses only a few surface contours to estimate the 3D position of the

tumor, the accuracy of the approach is comparable to the one obtained previously

by using registration based on the whole tumor. The error using the graph cut

segmentation methods was 2.0 ±0.8 mm, mean error ±SD. The error using the level

set segmentation methods was also in the same range: 2.1 ±0.8 mm. Both the level

set and the graph cut algorithms took in average 0.57 sec to segment the tumor in

each frame. The total time to localize the tumor was 5.74 ±0.67 and 4.42 ±1.15

using the graph cut and level set methods respectively. This method is at least 5

times faster than the previous method which required a longer US scan followed by

a volume reconstruction.

6.5 Conclusion

The approach presented in this chapter aimed, similar to the local registration ap-

proach, to compensate for the tumor shift during the surgery. This approach, how-

ever, considered practical issues concerning the surgical workflow. One of these issues

is that the surgeon might not be able to cover the whole tumor volume in one US

scan. Therefore, we considered an approach which automatically estimates the tu-

mor position given a few number of US frames showing the tumor. Also the proposed

algorithm doesn’t need any special considerations while scanning the tumor region,

unlike the local registration technique which requires dense scanning of the tumor

region. The results indicate that the algorithm can quickly compensate for tumor

movements during the surgery with an accuracy comparable to the local registration

approach.
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Chapter 7
Discussion and Outlook

Technological developments in the fields of tracking and intraoperative imaging in

combination with the availability of high computational power have led to the re-

cent advance in image guided interventions. While commercial systems are available

for surgical domains such as orthopedics, ear, nose, and throat (ENT), and neuro-

surgery, clinical practice of navigation on soft organs such as the liver is still limited.

This is directly attributed to the deformability and mobility of the organ during the

surgery.

Different factors cause tumor shift during minimally invasive interventions, including

surgical manipulation, respiration, and heartbeat. Also tumor shift due to pneu-

moperitoneum in laparoscopic surgeries was reported by [8] as high as 28 mm. Liver

surface registration after gas insufflations can significantly reduce this error [57]. Clif-

ford et al. [9] reviewed nine publications about liver movement due to respiration. All

studies agree that the most significant motion is observed in cranio-caudal direction,

with translation ranging from 10 to 26 mm. These studies, however, didn’t take into

account that mobilization of the liver, which is usually done at the beginning of the

surgery, may significantly decrease any effect of the respiration on the liver. Gener-

ally, the periodic motion due to respiration can be modeled and recovered [11,12,87].

Another approach to avoid the effect of respiratory motion is gating, which assumes
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that the liver periodically reoccupies the same position in the respiratory cycle [88].

The other involuntary movement that may affect the liver is the heartbeat, it was

studied by Kolen et al. [10] and found to be cyclic with a mean liver displacement

below 1 mm.

Our experiments were focused on non-periodic intraoperative liver motions which can

be caused by surgical manipulation and movement of the patient. Several preoperative-

based and intraoperative-based systems [1, 45, 55, 57, 64, 65] have reported anatomi-

cal shift during the surgery as a serious problem affecting the navigation accuracy.

Surgical navigation techniques can be evaluated based on several criteria, among

them:

• Intraoperative navigation accuracy

• Time required to estimate target changes

• Visualization type and field of view

7.1 Navigation Accuracy

For liver procedures, it is challenging to develop image guided systems that provide

the same accuracy of systems designed for bony or bone-encapsulated parts of the

body. However, an accuracy of 3-5 mm is considered sufficient for abdominal in-

terventions [32]. The overall system accuracy is affected by different components,

including tracking system distortion [1], instrument and ultrasound calibration er-

rors, and above all the registration error. We focus here on the registration error, as

it is usually the main source of error, assuming the others are constants.

Penney et al. [58] generated vessel probability images from MRI and ultrasound im-

ages using training datasets and performed intensity-based rigid registration. For

each ultrasound frame, the MRI probability volume was resliced according to the

frame orientation, then an NCC similarity measure was applied to solve for the 3D

translation parameters. Registration results were compared to a reference ICP-based
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manual registration. The residual error in the reference registration was between 2.7

- 3.5 mm. By setting the points used in the reference registration as targets, the

average target registration error (TRE) obtained after applying the NCC-based reg-

istration was 3.6 mm. Since no surgical interventions was necessary, they tested the

algorithm on data of volunteers and patients.

Another interesting approach was proposed by Wein et al. [59, 60], they developed

a method to simulate ultrasound from CT images, then tested rigid and semi-affine

registrations using a modified NCC similarity measure. The technique was evaluated

in a study involving 25 patients with lesions in liver and kidney. They reported that

automatic registration succeeded in 76% of the cases. Corresponding target points (1-

5 points) were set, mostly lesion centers. The resulting TRE was 9.0 and 8.1 mm for

the rigid and affine registrations respectively. Non-rigid registration was investigated

by [2, 61, 62]. Their algorithms utilized vessel information to register preoperative

data; consequently, only vessels were deformed and used to evaluate the accuracy.

In [2], registration error was estimated as the mean square distance (MSD) between

corresponding points on center lines of portal and hepatic veins. For three open

surgery cases, the mean error was 3.7 mm ±4.3 SD.

A percutaneous needle insertion approach was presented by Maier-Hein et al. [89].

Optically tracked navigation aids (needles with markers) were placed adjacent to the

tumor to continuously estimate the position of the target and update a preoperative

CT model. Then post-procedural CT was performed to calculate the error as the

distance between the needle tip and the tumor centroid in the images. The reported

mean navigation error is 3.5 ±1.1 mm. In comparison to their results, the mean errors

using our approaches, also calculated based on tumor centroids, were 1.4 mm ±0.8

and 2.1 ±0.8. Also other groups [90–92] investigated different techniques to perform

needle navigation under CT guidance and reported less accurate navigation.

It is difficult to directly compare accuracies delivered by different approaches because

the used intraoperative imaging modality can be different and the way each error is

estimated is usually different. Some methods consider a global solution to register
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the whole or big part of the liver. In terms of accuracy, based on solutions currently

available, global registration may lead to inaccurate registration at points where ac-

curacy is desired for an optimal treatment. Hence, having a local registration focused

on the tumor region provides more accurate navigation. However, orientation can be

less accurate because the area considered in the surface registration is relatively small

and tumor shape can be spherical.

7.2 Speed

Another important aspect for intraoperative navigation is how quick the system can

update the target according to the actual situation. This is usually proportional

to the complexity of the registration algorithm and the need for intraoperative user

interaction, for example to set corresponding landmarks. Most of the published lit-

erature didn’t consider a quick solution a requirement, but a few reported the time

their algorithms took. Wein et al. [11] stated that the time required to set landmarks

was around 10 min per patient, while their automated intensity-based registration

took less than 40 sec. The same range of time was required to set landmarks in [2],

and the non-rigid landmark-intensity-based registration took approximately 10 min.

The method in [61] also used initial landmark-based registration, however they re-

ported that the non-rigid registration afterwards converged to a stable solution, no

error estimation is given, in less than 5 sec.

The initial steps in the proposed solutions are ultrasound volume reconstruction and

3D tumor segmentation. Scanning the tumor region with the ultrasound probe took

20 sec, and the reconstruction of the volume took 18±2 sec. The time for the 3D tumor

segmentation varied with the tumor size and was up to 1 min. In case of the “local

registration” approach, a new volume reconstruction is needed every time a tumor

position update is required (18 sec), then the tumor was registered in approx. 1 sec.

The “sparse segmentation” approach neither requires a new ultrasound scan covering

the whole tumor nor volume reconstruction, thus it was faster and estimated the new
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position of the tumor in a total time of 5 sec in average. A real time estimation of

the target position was reported by Maier-Hein et al. [89], however the technique is

based on optically tracked fiducial needles, which can be only applied in percutaneous

ablation procedures.

7.3 Visualization

Visualization was considered mainly by the research groups worked on developing

a complete system for liver interventions. The image quality and the large field of

view provided by CT and MRI make them superior to ultrasound when it comes

to visualization. That is the main reason why most of the systems use preoperative

CT/MRI data to create a liver model [44,47,57,93]. The second reason is that the time

(days) between image acquisition and the surgery allows for accurate identification

and segmentation of tumors and main vessels, usually this process is done interactively

via semi-automated methods [94].

However, the main problem remains; the preoperative model must be modified in-

traoperatively according to the actual anatomy. Therefore, some groups developed

their visualization based directly on intraoperative 3D ultrasound [63–65]. Integra-

tion (fusion) of 3D ultrasound with preoperative images can help interpreting the

position of the ultrasound volume within the larger anatomy. One of the limitations

of our approach is that it segments only the tumor. Ideally the navigation screen

should not only visualize target tumors, but also important structures to be avoided,

like main blood vessels. Therefore, it is important to combine our ultrasound-based

navigation, which can quickly provide updated information that the surgeon relies on

during the surgery, with a preoperative model to give larger field of view and better

understanding of the anatomy.
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Chapter 8
Image-Guided Tumor Ablation

8.1 Introduction

Ablation refers to minimally invasive therapeutic procedures that destroy liver tumors

without removing them. These techniques are usually performed for patients with

no more than a few small tumors or when surgery is not a good option because of

poor patient’s health or reduced liver function . Although ablation is considered as a

second option after surgery, it can still be very helpful in some case such as patients

waiting for a liver transplant [15].

Several ablation techniques are available, including radiofrequency ablation (RFA),

microwave ablation, high-intensity focused ultrasound (HIFU), laser-induced inter-

stitial thermotherapy (LITT), percutaneous ethanol injection, and cryoablation. We

concentrate in this work on RFA as it is currently the most commonly used ablative

therapy [95].

RFA is performed under image guidance either percutaneously or in a laparoscopic

intervention. During the treatment, high frequency alternating current is delivered

through a probe with an active tip consisting of multiple prongs forming an umbrella-

like shape when deployed; this helps to cover the whole tumor region. The alternating
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current generates heat which turns cancer tissue into dead tissue, which is gradually

replaced by fibrosis and scar tissue [15].

The ablation procedure involves five steps:

• Planning: imaging techniques are used to determine tumor size, shape, and

whether the tumor is adjacent to critical structures or blood vessels.

• Targeting: placement of the ablation probe into the target tumor under imag-

ing guidance. The aim of the targeting is to accurately guide the probe tip to

the center of the tumor.

• Monitoring: visualization of the ablation effect on the tissue during the pro-

cedure. Tissue changes are reflected in the images and subsequently give a

realtime feedback to the surgeon.

• Controlling: based on the information obtained during the monitoring, the

operator can control the procedure. In RFA, this can be probe repositioning,

temperature tuning, or even termination of the procedure in critical situations.

• Assessment: after the procedure, images are acquired to evaluate the efficiency

of the treatment.

Among these steps, tumor targeting and monitoring are the most crucial for a success-

ful RFA procedure. Particularly while performing an ablation in the liver, the high

deformability of the organ presents a challenge for accurate probe placement in the

target tumor. In addition to image-based guidance while targeting the tumor, navi-

gation techniques were investigated to guide the probe accurately to the volumetric

tumor center. Techniques for accurate tumor targeting were covered in Part I.

Supposing that the needle was successfully inserted accurately into the tumor, feed-

back and monitoring of the procedure plays the most important role in determining

the efficiency of the therapy. This is not a simple task, especially when the same ab-

lation zone can appear differently depending on the used monitoring technique.
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8.2 Ablation Monitoring

Monitoring the ablation process is essential in order to determine how well the tumor

is being covered by the ablation zone. At the same time, it helps to insure that vital

normal structures are not affected during the procedure. Inaccurate visualization of

the necrosis zone can cause incomplete ablation and subsequently tumor recurrence.

Studies show that, local recurrence rates are up to 55% after RFA therapy [14, 96–

99]. This emphasizes the urgent need for an ablation monitoring technique that

can accurately distinguish between necrotic and non-necrotic tissue. That enables

the surgeon to decide whether further ablation is required or the tumor is wholly

burned.

Different imaging techniques can be used to visualize tissue changes during ablation

procedures. Some are handy, portable, fast, and inexpensive such as US-based tech-

niques. Others are more sensitive to thermal changes in the tissue and present the

ablation zone more accurately such as MRI [100]. But the latter techniques are expen-

sive and not easy to integrate in the operating room, therefore they are not as practical

as US in ablation monitoring. Currently, B-mode US is the conventional intraoper-

ative imaging modality for RFA monitoring [101]. But the zone of necrosis is not

easily visualized in B-mode due to tissue vaporization and micro-bubbles formation.

This produces a hyperechoic region which doesn’t accurately represent the coagulated

region (Figure 8.1) and becomes over time isoechoic [96]. This causes uncertainty in

determining the extent of the ablation procedure using B-mode US [21].

In addition to conventional B-mode US, several techniques based on US have been

recently investigated. These include temperature estimation by applying a cross-

correlation algorithm to radio frequency (RF) US echo signals acquired at discrete

time intervals during the ablation [14]. This method utilizes that changes in tissue

temperature cause changes in the speed of sound and consequently the echo arrival

time. Other methods monitor tissue elasticity changes before and after applying a

small amount of compression [4, 96, 102]. These methods are based on the fact that
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(a) (b)

Figure 8.1: Radiofrequency tumor ablation causes vaporization in the tissue.

the stiffness of the ablated tissue increases after the ablation. US-based elastogra-

phy is a promising technique to visualize ablated lesions that are barely visible with

conventional US.

8.2.1 Elastography

Pathological changes are usually correlated with changes in tissue stiffness. The

standard diagnostic palpation is used routinely to sense tissue stiffness and detect

any abnormalities, which may indicate tumor existence. Also mechanical properties

of ablated tissue are different from normal tissue. As a result of tissue heating and

protein denaturation during the ablation procedure, the ablated zone becomes stiffer

than the surrounding normal tissue [103]. Hence, imaging tissue elasticity, or a related

parameter such as local tissue strain, is an emerging medical imaging method used

for tumor detection and ablation monitoring.

Elasticity imaging visualizes the mechanical properties of the tissue as a response to

an external mechanical stimulus. Detection of internal tissue motions due to this

stimulus can be done using US, MRI, or other imaging modalities. In the ultrasound-

based elasticity imaging, the probe is used to apply a quasi-static compression to

the tissue, and the resulting strain is estimated. This method was first introduced

in 1991 by Ophir et al. [104] and known as “elastography”. Another approach is to
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stimulate the tissue by applying low frequency ( < 1kHz) vibration and capture the

tissue response by ultrasonic or audible acoustic means [105,106].

Elastography is based on measuring the time shift differences between congruent seg-

ments in an US A-line pair. First a set of radiofrequency echo signals is acquired

of a certain region of interest containing a lesion. Then the US probe is pressed to

compress the tissue along the axial direction by a small amount (1% of the total tissue

depth) and a second set of echo signals is acquired. The pre and post-compression

signals are then subdivided into small temporal windows. The difference in echo ar-

rival time between corresponding segments is compared using one of the time-delay

estimation techniques such as cross-correlation. Assuming a constant speed of sound,

the displacement is obtained and the local longitudinal strain is estimated as the gra-

dient of the displacement, Figure 8.2 and 8.3. The main assumption in elastography is

that speckle motion adequately correlates with the underlying tissue motion for small

uniaxial compressions. This holds as long as the distributions of the scatterers before

and after compression remain highly correlated [105], i.e. small tissue deformations.

Displacement Strain
gradient

D
e
p
th

Figure 8.2: Displacement and strain caused by a constant pressure applied to a tissue with different

stiffness layers.
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(a) Displacement (b) Strain

Figure 8.3: Displacement and strain images of a phantom containing a sphere made of stiffer material

to mimic a tumor (Rivaz et al. [4]).

Quality of the strain images is highly dependent on how the compression is generated.

Probe compression against the tissue should be in the axial direction. Any lateral

or out-of-plane motions can deteriorate the quality of the images. Therefore, robot-

assisted elastography produces better quality images compared to user-dependent

freehand procedures [107]. This is the main reason why elastography is not yet

widely used in clinical routines. A recent approach to improve the quality of freehand

elastography is to track the US probe and use only image pairs which meet the

optimum compression criteria to produce strain images [108]. However, 3D strain

imaging with a reasonable image quality hasn’t been yet achieved.

8.3 Ablation Correlation

Conventional US, MRI, and other promising techniques such as elastography provide

valuable feedback to the surgeon during and after the ablation; however, it is still

necessary to know the correlation between the actual necrosis and the lesion appear-

ance on the images. It is very important that the used imaging modality can reflect

the actual cellular damage. Usually, intraoperative ablation monitoring is done using
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US as a handy, safe, widely available modality. Moreover, it is well integrated into

minimally invasive procedures. Other imaging modalities such as CT or MRI can be

used in postoperative control and follow up. However, imaging modalities are based

on different physical concepts, consequently the same lesion can appear differently on

different images.

Currently, MRI is the only modality with well validated techniques for real time

temperature monitoring [109]. Although new monitoring modalities such as US elas-

tography showed promising results to detect the ablated lesion [4, 96, 102], the ac-

tual relation between strain images and actual necroses is not clear. Relating actual

necroses to lesions on the images will lead to better understanding of the images and

help to promote the use of new monitoring techniques such as US elasticity.

8.4 Conclusion

Ablation procedures involve several steps, the most crucial among them are tumor

targeting and monitoring of the process. These two steps play a major role in deter-

mining the efficiency of the procedure. The targeting problem was covered previously

in Part I. In this chapter we focused on the ablation monitoring techniques to im-

age the ablation procedure. This raised the question if the lesion appearance on the

images reflects the actual necrosis and how it may vary depending on the imaging

modality. Therefore, ablation correlation between different modalities and the ac-

tual necrosis is a necessity. Next two chapters address this topic, where we present

approaches for multimodal ablation correlation.
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Chapter 9
Ex-Vivo Ablation Correlation

9.1 Introduction

The previous chapter highlighted the importance of lesion monitoring during RFA.

The question now is that if the lesion appearance on the images during the monitoring

reflects the real necrosis. To investigate this point, correlation between the lesions

on the images and the actual necrosis is required. The aim of the correlation is to

enable direct comparison of images from different modalities used in RFA monitoring

to a ground truth. This ground truth can be obtained by slicing through the actual

tissue. However, it is necessary to match this particular slice to the corresponding

slice in the acquired images.

In the standard slice matching method, first the tissue is scanned with the imaging

modality and an image volume is obtained. Then, the ablated lesion is slices at

certain intervals (5 mm). These slices are manually matched to the corresponding

ones in the acquired image volumes [110–112]. However, thin slicing is not achievable

in all kind of tissues, especially in case of liver tissue. Additionally, slice matching is

usually done by comparing the actual lesion size, measured on the slice, to the lesion

size measured on the image. But the size of the lesion is exactly the questionable
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point: do lesions appear the same on different imaging modalities or is the lesion size

over- resp. underestimated by one modality?

We present a platform for ablation correlation which enables algorithmic mapping

of the slices between different modalities. A phantom was designed to enable accu-

rate pose estimation based on the phantom geometry. Regardless of the lesion shape

and size on different modalities, only the phantom information was taken into ac-

count in the slice mapping process. This eliminated any subjective influence in the

procedure.

9.2 Methods

9.2.1 Phantom Construction

To compare ablation outcomes on different imaging modalities to actual necroses, a

phantom was so constructed that its features were visible with the naked eye as well

as with the imaging modalities. Gelatin models were built containing a section of

bovine liver in which a 5-10 mm lesion was created using RFA. The tissue within the

gelatin was surrounded by four fiducials made of agarose such that each side view of

the phantom had a “Z-Shape” geometry.

The model was constructed in the following fashion: first, a 10% porcine gelatin, 1%

cellulose and 3% glycerol mixture was prepared at 95◦C. This mixture was cooled

down to 35◦C and then poured in a plastic container. After this, an acrylic glass

model, Figure 9.1 and 9.2, was placed in the gelatin mixture to create a negative space

for the fiducials footprint. Just before congealing of the gelatin, an approximately

4 × 4 × 4 cm section of fresh bovine liver was submerged in the gelatin within the

boundary of the fiducials.
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Figure 9.1: 3D model of the acrylic glass mold which was used to create a fiducial footprint in the

gelatin mixture.

Figure 9.2: Dimensions of the acrylic glass model used to create the fiducials in the gelatin phantom.

After this, the containers were placed in a refrigerator over night to allow for complete

solidification of the gelatin. The next day, the acrylic glass model was removed, thus

creating four triangle shaped cavities around the piece of liver. These cavities were
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filled with a mixture of 1% agarose and 1% methylene blue dye. At last, lesions

were created in the submerged piece of liver using a 4 cm deployable radiofrequency

ablation probe connected to a RITA model 1500 RF generator (Angiodynamics, NY,

USA). For tumor creation, the model was removed from the container and placed on

a grounding pad connected to the generator. The probe was inserted in the center

of the piece of liver under ultrasound guidance. The probe was then deployed to

1 cm and ablation was performed at 500 watts until target temperature of 100◦C was

reached.

The idea of the phantom is based on triangle similarity and a priori knowledge of

the vertices in the phantom space. By measuring the ratio between the two segments

EF and EG in Figure 9.3, coordinates of the point F in the X-Y space can be cal-

culated according to equation (9.1), given that we know the exact geometry of the

phantom.

XF = XB +
EF

EG
× (XC −XB)

YF = YB +
EF

EG
× (YC − YB) (9.1)

E B

G

Figure 9.3: From the similar triangles (ABC) and (BCE), the coordinates of the point F can be

determined by equation (9.1), given the ratio EF/EG and the exact geometry of the

phantom.
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Figure 9.4: Cross section through the phantom showing the tissue and the fiducials. The segments

EG and EF were measured for each fiducial to determine the ratio EF/EG at each

phantom side.

Each side of the phantom forms a “Z-Shape” like the one in Figure 9.3. The phantom

was scanned using robotized 3D-US and MRI, then a straight cut was made using a

sharp knife through the ablated liver tissue. The tissue was then photographed next

to a metric ruler. Figure 9.4 shows an image after cutting the phantom, where the

lesion appears in the middle of the tissue, the points E, F, G in the image correspond

to the same points in Figure 9.3. For each side of the phantom, we measured the

segments EF and EG and calculated the coordinates of the point F using equation 9.1.

Hence, we had four points lying on the cutting plane. These four points were used to

define the plane in the phantom space; however, we want to find the corresponding

plane in the images.
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9.2.2 Phantom Imaging

Ultrasound data were collected using a Sonix RP ultrasound system (Ultrasonix Med-

ical Corporation, Canada) with a 60mm-width linear array high frequency ultrasound

transducer (L14/5W-60; 128 transducers). Real-time RF data acquisition was avail-

able through the Texo SDK provided by Ultrasonix. In order to provide reliable and

reproducible volume information, the ultrasound data were sampled with a robot-

based system, yielding a series of 2D parallel slices through the respective phantom.

The phantoms were pre-positioned manually within the workspace of a high-precision

three-DOF Cartesian robot. The robot translated the probe successively 1 mm in the

elevation direction to cover the whole scanning area. To allow for elasticity images,

the robot also performed at every elevation position one compression-decompression

cycle with amplitude 1 mm (approx. 1.25% strain). At the top and bottom extreme

of each such motion, one RF frame was captured. Strain images were generated using

the algorithm introduced by [4].

MRI images of the phantoms were obtained using a 1.5 T Siemens Espree scanner

(Siemens Medical Solutions, Malvern, PA). T-2 sequence images were collected at a

slice thickness of 1 mm.

After scanning the phantoms using US and MRI, the phantoms were sliced and gross

pathology (ground truth) images were obtained. Depending on the lesion size, one or

two cuts were made per phantom. Measurements of the fiducials were taken. Also,

the slices were positioned next to a metric ruler and photographed using a digital

camera.

9.2.3 Pose Registration

Three-dimensional US and MRI image volumes were reconstructed for each phantom;

scales of the reconstructed volumes were obtained from the machines. Previously, we

defined the cutting plane in the phantom space. In order to transform the cutting
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Figure 9.5: The phantom ready to be scanned with the robotized US probe.

plane from the phantom space to the image space, we need to determine the position

and orientation of the fiducials in the image volume. During the MRI and US scans,

the phantom was placed such that the image plane was orthogonal to the fiducial

wedges, Figure 9.5. Consequently, the reference frame of the phantom space (phantom

origin) was parallel to the reference frame of the image space (image origin). Hence,

the orientation vector from the phantom space was directly mapped to the image

space.

However, we still need a point to define the plane in the image space. Fiducials

appearance in the image space was necessary to map this point from the phantom

space to the image space. The fiducials were clearly visible on the MRI volumes, so

the phantom space origin was determined with respect to the image origin. Thus, the

point satisfying the plane equation was easily determined in the MRI image space.

However, quality of the fiducials on the US images were not as good as on MRI.
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Due to attenuation and shadowing, only the upper part of the US images showed

distinguishable fiducials against the background. Nevertheless, since the dimensions

of the fiducials were known, we virtually extrapolated the visible part of the fiducials

to complete them. After that, the plane point was mapped in the US image space. The

volumes were opened in an open-source data analysis and visualization application

(ParaView) [113] and planes were interpolated using the slicing function.

Finally, the registration error was quantified by measuring the fiducials on the in-

terpolated images and comparing them to the actual measurements done beforehand

on the gross pathology (GP). It was not possible to measure all the fiducials on

the US images, therefore, we couldn’t calculate the US registration error. The MRI

mean registration error was calculated for each slice by equation (9.2), where FMR

and F Phantom are the fiducial lengths on the MRI image and the actual phantom

respectively.

E =

∑4
i=1 |F

MR
i − F Phantom

i |

4
(9.2)

9.3 Results

We prepared 18 Z-Shape phantoms with pieces of bovine liver inside. After scanning

and cutting the phantoms, four of them were not suitable for the experiment; either

the tissue was extruded from the mold due to gelatin damage or the contrast between

the fiducials and the background was not enough to take the measurements. The

unsuitable phantoms were excluded and the experiments were performed on 14 phan-

toms. Depending on the lesion size, one or two cuts were made per phantom. The

GP slices were registered and interpolated in both US and MRI volumes. Figure 9.6

shows a GP slice with resulting corresponding slices from US and MRI. The fiducials

were distinct and clear in the MRI images. However, the attenuation and shadowing

deteriorated the quality of fiducials in US images proportional to depth.
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(a) Gross Pathology (b) MRI (c) B-mode US

Figure 9.6: Gross pathology slices registered to corresponding MRI and US images using the “Z-

Shape” correlation phantom.

Slice matching error was estimated by comparing the fiducial lengths, see equa-

tion (9.2). Figure 9.7 plots the mean error per slice for the MRI images. The data

collected during the robotized US scan of the phantom were used to generate the

strain images. Hence, the b-mode and strain images are two different representations

of the same data and no registration is required to align them. Figure 9.8 shows

examples of strain images correlated to actual lesions. Although the obtained strain

images don’t clearly delineate the ablated lesions, a contrast can be observed between

the ablated lesions and the surrounding tissue. As the ablated lesions are stiffer than

the surrounding tissue, they have lower strain values and appear mostly darker.
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Figure 9.7: Mean error on the MRI slice calculated by measuring the fiducial lengths on the images

and comparing them to the actual lengths on the gross pathology.

9.4 Discussion

Monitoring the ablation procedure is crucial to ensure that the tumor is completely

treated. While different modalities can be used to perform this task, it is not clear

how the area of necrosis correlates to the lesion on the image. Standard correlation

method requires slicing the tissue and manually matching the slices. Instead, we

developed an algorithmic approach to perform multimodal ablation correlation. The

phantom geometry enabled unique pose estimation on different imaging modalities.

It was necessary, however, that the phantom fiducials appear clearly in every imaging

modality. Although this point was considered while preparing the phantom mate-

rial, the fiducials appeared incomplete under US due to shadowing and attenuation.

Therefore, the slice matching accuracy was measured based on the MRI images and

found to be 1.83 ±0.83 mm, mean ±SD.

It is obvious from the results in Figure 9.6 and 9.8 that lesions appear differently

based on the imaging modality. This emphasizes the importance of developing such
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Figure 9.8: Gross pathology slices and the corresponding strain images.
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a technique to enable accurate slice matching between different imaging modalities.

This is particularly helpful for new imaging techniques such as elastography. Using

this technique, strain images can be compared to ground truth (gross pathology) and

quantitative relation can be drawn. However, this work focused on the correlation

problem, a larger dataset will be considered to quantify the relation between lesion

sizes obtained from different imaging techniques.

One of the drawbacks of this technique is that it is applicable only on ex-vivo tis-

sue, while coagulation response differs in dead ex-vivo tissue compared to live in-vivo

tissue [114]. Also, the approach was not optimal for US imaging, as the fiducials ap-

peared fuzzy and incomplete. Yet US imaging is the most commonly used modality in

ablation monitoring. Therefore, we consider in the next chapter a new ablation corre-

lation approach suitable for US imaging and applicable in in-vivo experiments.

9.5 Conclusion

The recurrence rate after RFA procedures is remarkably high. One of the main

reasons causing that is the uncertainty during the monitoring of the procedure. This

uncertainty is directly related to inaccurate estimation of the necrotic area during the

ablation. We developed a novel platform for ablation correlation to enable accurate

comparison of ablated lesions on different imaging modalities. Using the geometrical

properties of the used phantom, multimodal image slices were matched with GP

slices. Hence, the approach allowed validation of the ablation outcome against a

ground truth. The results showed how lesion sizes may vary significantly depending

on the imaging technique. This indicates the need for such a validation scheme

to standardize the ablation monitoring and eventually improve the RFA recurrence

rate.
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Chapter 10
In-Vivo Ablation Correlation

10.1 Introduction

We presented in the previous chapter a platform for ablation correlation, which en-

abled accurate ablation correlation between MRI and gross pathology images. How-

ever fiducial-based registration made the algorithm not optimal in case of US imaging.

But US is the most commonly used ablation monitoring modality as it is portable,

inexpensive, and radiation-free technique. In addition, various new US-based imaging

techniques are being developed to enhance the US capability to monitor the ablation

procedure; one of them for instance is elastography. Therefore, an approach which

avoids the limitation of the previous one regrading US imaging is required.

Another aspect that encouraged a new solution for ablation correlation is that a

phantom-based solution is not applicable in an in-vivo setup. However, tissue coagu-

lation response differs in live in-vivo tissue in comparison to dead ex-vivo tissue [114].

For this reason it is more important to find the correlation between in-vivo necrosis

and in-vivo imaging.

We propose an in-vivo approach to correlate ablation outcomes on multimodal images

with actual necroses. This technique utilizes tracking systems to map intraoperative
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images and an actual cut through the ablated lesion in a common reference frame;

hence, it enables in-vivo ablation correlation. The method was tested in an animal

study, where intraoperative MRI and US images were acquired to visualize a number

of ablations made in a porcine liver. Eventually, the ablations on the acquired images

were compared to gross and histopathology (HP) results.

10.2 Methods

The aim is to spatially correlate the actual necrosis and intraoperative images. This

requires mapping two images showing the ablated tumor and obtained using different

modalities in the same coordinate system. We developed a tracking-based approach

to register multimodal images in one reference frame. An electromagnetic (EM) 6D

sensor was anchored as the reference frame adjacent to the lesion to minimize the

effect of tissue deformation with respect to the reference. In the experiments, we

used a medSAFE EM tracking system (Ascension, VT, USA). Intraoperative images

were obtained using a Sonix RP ultrasound system with a motor-driven 3D probe

(Ultrasonix Medical Corporation, BC, Canada) and a Siemens Espree MRI 1.5 T

scanner (Siemens AG, Munich, Germany). Also a Polaris optical tracking system

(NDI, Ontario, Canada) was used to track the 3D US probe to avoid EM signal

interference due to the motor.

10.2.1 Local Rigidity

Deformation is a major challenge when dealing with liver tissues. In the previous

approach the deformation was controlled by embedding the tissue in a gelatin mold.

Also in this approach it is required to limit the liver deformation effect. Usually when

using a tracking system, the reference frame is the transmitter in case of EM tracking

or the camera in case of optical tracking. Instead, since we are only interested in the

small region containing the tumor, we defined the reference frame within this region
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Figure 10.1: EM sensor glued to a biopsy needle with a hooked end. First the needle was used to

insert the EM sensor into the tissue, and then the anchor was deployed to keep the

sensor in place.

to minimize the liver deformation effect relative to the reference. This was achieved

by anchoring a 6D EM sensor ((Model 180, Ascension, VT, USA) ) adjacent to the

ablated lesion.

A biopsy needle was used to insert the sensor into the tissue, Figure 10.1. The sensor

was first glued to a biopsy needle with a hooked end. First, the anchor and the sensor

were retracted inside the needle shaft. Then, the shaft was inserted into the tissue to

place the sensor next to the lesion. The anchor was deployed by pushing the needle

out of the surrounding shaft. This anchor helped to keep the sensor in place in the

tissue by preventing translation and rotation around its own axis.

10.2.2 US Volume Mapping

The idea is to map intraoperative image volumes in the anchored sensor frame, then

make a straight cut through the ablated lesion and interpolate the cutting plane in
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the same reference frame. Figure 10.2 shows a sketch demonstrating the procedure

and the transformations involved in case of US imaging. The tracked 3D US probe

(U) was used to acquire a volume with an origin (V). Cuboid 1 represents a region

of the liver with a lesion inside. Sensor (S) was anchored into the tissue next to the

lesion. Rigid body (R) with optical markers was mounted to the EM transmitter (M);

the use of two tracking systems was only necessary because the 3D US probe was not

compatible with the EM tracking system.

The arrows in the sketch represent the transformations which were either given di-

rectly by the tracking systems or were determined beforehand through calibrations.

The MTR represents the calibration between the EM and optical trackers, it was cal-

culated by simultaneously recording two sets of points relative to the EM transmitter

(M) and the rigid body (R). These points were collected using a pointer calibrated in

both tracking systems using the standard pivot calibration procedure. The two sets

were then fed to Horn’s method to compute MTR.

The UTV was determined in two steps: first the US probe was calibrated to get the

transformation from the optical markers mounted on the US probe to the origin of the

central image, second the origin of the volume was determined relative to the central

image. The sensor-to-volume transformation matrix STV is calculated by:

STV = STM .MTR.
RTO.

OTU .
UTV (10.1)

10.2.3 Plane Mapping

Cuboid 2 in Figure 10.2 represents the liver region after cutting through the lesion;

the assumption is that the sensor position (S) is fixed before and after the cut with

respect to the lesion. A tracked pointer was used to scan the cutting plane and collect

a point cloud. The points were then mapped to the sensor space and subsequently to

the US volume space using the following equation:
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Figure 10.2: Sketch of the approach setup while using US to image the ablation: step 1 symbolizes a

liver section having a lesion inside and a 6D EM sensor (S) anchored next to the lesion;

step 2 is after cutting through the lesion, where a tracked pointer was used to collect

points on the cutting surface. Transformations between frames were either obtained

directly from the tracking systems or via calibration.

(xV yV zV 1)T = (STV )
−1.(MTS)

−1. (xM yM zM 1)T (10.2)

where (xM yM zM) represents a point from the collected point cloud in the EM

tracking space, and (xV yV zV ) is the corresponding point in the image volume

space. Finally, the mapped points were fitted into a plane and interpolated in the

volume.
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10.2.4 Validation Test

This test aims to prove that the end-to-end error of the proposed scheme is within

a reasonable margin. We built a phantom with a feature that can be seen with the

naked eye as well as with US. A cubic phantom was made of transparent gelatin mold,

while keeping 4 marginal sides of the phantom occupied by plastic sheets of 2 mm

thickness. After the mold had been hardened, the plastic sheets were replaced by

gelatin mixed with cellulose to create a speckle layer when imaged with US. Then an

EM sensor was anchored in the middle of the phantom cube, ca. 3 cm distance from

each layer. After that, we immersed the phantom in a water tank and scanned each

of the four sides using tracked US. Accordingly, we had 4 US volumes each containing

a 2 mm speckle layer.

Then the phantom was taken out of the water and the outer transparent gelatin cov-

ering the speckle layers was removed to expose the surfaces of the layers, Figure 10.3.

Each surface was scanned by a tracked pointer and the collected points were fed to

equation (10.2). The resulting points were fitted into a plane and interpolated in the

US volume to check if it was within the 2 mm speckle layer.

Figure 10.3: Drawing illustrates one side of the phantom: the transparent gelatin was removed after

the US acquisition, then points were collected on the speckle layer.
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10.3 Animal Experiment

The aim of this experiment was to test the feasibility of the outlined approach, par-

ticularly in case of US imaging. Four ablations were made in a pig liver. Afterwards,

we stitched 4 MRI fiducials to the surface of the liver and closed the pig. Then a T1

VIBE (volumetric interpolated breath-hold examination) MRI sequence was acquired.

After that, the pig was reopened and the EM transmitter was placed close to the liver.

Next, an EM sensor was anchored approximately in the middle of the ablated lesions

using a thin biopsy needle. Then we recorded the positions of the fiducials using a

tracked pointer. Thereby, we determined the transformation between the anchored

sensor and the MRI volume. Figure 10.4 shows the liver while we were registering

the MRI fiducials using the pointer. Also it shows the EM sensor glued to the biopsy

needle; a hook at the needle end was used to keep the sensor in place inside the tissue.

Sensor Wire

Tracked 

Pointer

MR Fiducial
1cm

Figure 10.4: Tracked pointer while registering the MRI fiducials during the animal experiment.

Overlaid picture explains how the anchored sensor was deployed inside the tissue.
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Afterwards, the fiducials were removed and tracked 3D US scans of the lesions were

acquired. With the embedded sensor still in place inside the tissue, the whole liver

was harvested and placed on a side table. Then we cut straight through each lesion

and collected a point cloud on the cutting surface using the tracked pointer. Fi-

nally, the lesions were sliced and mounted on glass slides, and later on HP tests were

performed.

10.4 Results

Figure 10.5 shows two planes in one of the validation US volumes. One plane is the

mapped speckle layer and the other is an arbitrary axial plane. As shown in the

image, the mapped plane was within the 2 mm speckle. The 4 resulting planes of

the validation test were all within the corresponding speckle layers. Hence, the end-

to-end plane mapping error, using a nonrigid gelatin phantom and having the sensor

anchored ca. 3 cm apart from the scanned surface, was ≤ 2 mm.

2
 m

m

Speckle 

Layer

Figure 10.5: Example of the validation results demonstrates that the speckle layer was mapped

correctly to the US volume; i.e. the end-to-end plane mapping error was within 2 mm.
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Lesions

Interpolated 

Plane

Figure 10.6: Cross section in the MRI volume showing three of the lesions and one of the mapped

planes intersecting the corresponding lesion.

In the animal experiment, the four cutting planes corresponding to the lesions were

mapped into the MRI and US volumes. Figure 10.6 demonstrates a cross section

in the MRI volume showing three of the lesions and one of the interpolated planes

cutting through the corresponding lesion. One of the ablations (left lesion in the

image) happened to be relatively far from the anchored sensor (5 cm) and located

in a different liver lobe. Except for this lesion, the resulting planes intersected the

corresponding lesions in the volumes.

Figure 10.7 represents one set of the correlated images showing a lesion on the interpo-

lated MRI and US slices and the corresponding necrosis in gross and histopathology.

Manual segmentation was performed to determine the margin of the lesions. Areas

of the lesions on different modalities and the gross pathology were calculated and
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(a) MRI (b) US (c) Gross Pathology (d) Histopathology

Figure 10.7: Set of results (MRI, US, gross and histopathology slices) shows the ablated lesion and

allows for multimodal ablation correlation.

Figure 10.8: Chart plotting areas of the lesions measured on correlated histopathology (ground

truth), gross pathology, MRI, and US images.

compared to the HP as a ground truth. Figure 10.8 plots the areas of the segmented

lesions.

10.5 Discussion

The proposed approach provided a multimodal in-vivo ablation correlation. In con-

trast to the method used in [115], we developed a tracking-based approach which

doesn’t require slicing the tissue at certain intervals. In addition, this approach is

particularly advantageous in case of US imaging, where fiducial-based registration is

difficult to achieve. The approach was feasible in a real liver ablation scenario. The
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anchor (Figure 10.4) prevented sensor translations and rotations around its own axis.

By anchoring the sensor adjacent to the lesions, the effect of the other two degrees

of freedom was minimized. We performed a validation test and found the overall

accuracy ≤ 2 mm.

Three out of four lesions in the animal experiment were successfully correlated, while

the fourth failed because it was located in a different lobe, far from the reference

sensor. In this study, we used only one reference sensor and tried to center it between

the lesions. In order to improve local rigidity in future experiments, more than one

sensor can be used and the number of lesions per sensor will be limited to two.

Conventional US (Figure 10.7b) is the common modality for ablation monitoring [101],

yet in agreement with [116], the US results underestimated the necrosis area compared

to the HP. Measurements on MRI were closer to the actual necroses. In this initial

experiment, we used a limited number of samples to investigate the feasibility of the

approach. In future work, it is planned to increase the number of samples and include

other imaging modalities such as US elastography.

10.6 Conclusion

We developed a novel technique to perform multimodal ablation validation in an in-

vivo setup. The main idea of the approach is to map intraoperative images showing

the lesion and a cut through the lesion in a common reference frame. This reference

frame was defined by a 6D EM sensor anchored next to the lesion. The proposed

technique was feasible in a real liver ablation experiment and enabled correlation of

actual necroses (gross and histopathology) and intraoperative images (MRI and US).

Ultimately, this will improve the interpretation of the ablation monitoring and reduce

the recurrence rates associated with RFA.
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Chapter 11
Summary

Image guided navigation is used routinely in surgical applications such as neuro-

surgery and orthopedics. However, its adaption to soft organs faces some challenges,

mainly because of the organ’s deformability which leads to intraoperative anatomi-

cal changes. To navigate reliably and accurately in the liver, the navigation system

must be able to intraoperatively reflect the actual surgical situation, especially in

the tumor region. The methods developed aimed to solve this problem for minimally

invasive liver interventions. We focused on minimally invasive procedures for two rea-

sons. First, it has a great benefit for the patient. Second, navigation is particularly

important in such procedures, as the surgeon has no direct access to the organ.

In this work, we studied two important points which directly affect the efficiency of

minimally invasive navigated interventions.

• Intraoperative estimation of the tumor position

• Evaluation of the RFA monitoring feedback

Two navigation approaches based on tracked 2D ultrasound were developed. The

approaches are focused on the tumor to reach high accuracy at the navigation target.

Intraoperative update of the tumor position was triggered by scanning the tumor

region using a tracked ultrasound probe. The first method built a 3D ultrasound



volume from the acquired 2D images, then used an initial 3D tumor segmentation to

find the new position of the tumor in the reconstructed volume. The second method

segmented the tumor in automatically selected ultrasound frames, not necessarily

covering the whole tumor, to build a sparse tumor surface. Then an initial 3D tu-

mor segmentation was registered to the sparse surface points to estimate the tumor

position.

As the proposed techniques are based on 2D ultrasound, they have the following

advantages:

• Repeatable throughout the surgical procedure

• Applicable in laparoscopic interventions and ablation procedures

• Radiation-free and without additional overhead to the surgical workflow

We tested the approaches in needle navigation experiments on ex-vivo porcine liver.

The results showed that the methods can quickly and accurately compensate for

changes in the tumor position during the procedure. This provides a solution for

intraoperative tumor shift caused by patient movement or surgical manipulation. It

is ideal to combine our focused techniques with preoperative liver models to benefit

from their larger field of view and better visualization. Thereby, the whole anatomy

is visualized and at the same time high navigation accuracy focused on the tumor is

achieved.

In the second part of the thesis, we developed methods to assess RFA ablation out-

comes by correlating intraoperative images of ablated lesions to actual necroses. In

an ex-vivo experiment, ablated lesions were observed using MRI and ultrasound. Ab-

lations were made in pieces of bovine liver encompassed by a gelatin phantom. The

geometrical properties of the phantom enabled unique pose estimation on different

imaging modalities including gross pathology as a ground truth showing the actual

necroses. The results showed how lesion sizes may significantly vary depending on

the imaging technique. This encouraged us to develop another ablation correlation

approach, which is based on EM tracking and applicable in in-vivo studies.
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The in-vivo approach mapped intraoperative images of the ablated lesions and the

actual liver in a common reference frame. Hence, the transformation between an ac-

tual cut through the lesion and the corresponding slice in each of the acquired image

was determined. The technique proved to be feasible in an animal experiment and

enabled correlation of actual necroses to intraoperative images. Results of the ex-vivo

and in-vivo experiments showed that the feedback given to the surgeon, upon which

the extent of the ablation is determined, varies depending on the imaging modal-

ity. This indicates the need for such validation schemes to standardize the ablation

monitoring, especially for potential techniques such as ultrasound elastography, and

eventually improve the RFA recurrence rate.
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