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ABSTRACT

We present a new computational methods for computing the coefficient vectors in dock-
ing problem by using GTO and ETO orthonormal spherical polar radial basis functions.
These computational techniques arise from the modeling of the molecule. Representing
the molecules properties (shape and electrostatics) as three-dimensional (3D) functions
in terms of GTO and ETO spherical polar radial Fourier expansion, respectively provides
a straightforward way for computing the correlation between pairs of these functions. Af-
ter rotating and translating the original functions, the correlation has the form of scalar
products of suitably rotated and translated coefficient vectors. In this work we describe
our method for computing these coefficients and finally estimating the docking problem
in terms of these coefficients.

Keywords: shape complementarity (SC); electrostatic complementarity (EC); spherical
harmonics; Laguerre polynomials; GTO and ETO spherical polar radial Fourier coeffi-
cients; ISC-coefficients and IEC-coefficients
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ABBREVIATIONS

1D one-dimensional

2D two-dimensional

3D three-dimensional

5D five-dimensional

6D six-dimensional

A/ B A or B

COM centre of mass

–COOH carboxylic acid

EC electrostatic complementarity

ETO(s) exponential type orbital(s)

FFT fast Fourier transform

FRM fast rotational matching

FSOFT fast SO(3) Fourier transform

FT Fourier transform

FTM fast translational matching

GTO(s) Gaussian type orbital(s)

NFFT nonequispaced fast Fourier transform

NFSOFT nonequispaced fast SO(3) Fourier transform

PDB protein data bank

PPD protein-protein docking
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PPI(s) protein-protein interaction(s)

SAS solvent accessible surface

SC shape complementarity

SES solvent excluded surface

SOFT SO(3) Fourier transform

VDW van der Waals

VDWS van der Waals surface

wwPDB world wide protein data bank
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CHAPTER 1

INTRODUCTION

1.1. Motivation

Proteins are very important molecules in our body. They are made up of a chain of amino
acids that link to each other through covalent bonds. In other words, amino acids link
together by peptide bonds (covalent bonds) form a polypeptide. One or more polypeptide
chains screwed into a three-dimensional (3D) shape constitute a protein. Proteins have
complex shapes include various folds, loops and curves that the chemical bonds between
the polypeptide chains hold the structure of the protein and make the protein’s shape,
see [6]. Generally four levels of protein structures are identified that distinguish of each
other by the degree of complexity in the polypeptide chain.

• Primary Structure: Primary structure refers to the unique sequence of amino
acids that are linked together to form a polypeptide or protein.

• Secondary Structure: Secondary structure refers to the way that the primary
structure of a polypeptide chain coils or folds and gives the 3D shape of a protein
and we have two types of stable secondary structures, α-helices and β-sheets.

• Tertiary Structure: Tertiary structure refers to the final 3D structure of the
polypeptide chain of a protein.

• Quaternary Structure: Quaternary structure refers to the structure formed by
interactions between multiple polypeptide chains or sometimes with an inorganic
component to form a protein.

A 3D shape of a protein is determined by its primary structure. Each protein within
the body has specific function. In other words, often protein-protein interactions (PPIs)
when they constitute a complex perform the protein’s function. In the following we have
taken of Bailey [6, Protein Functions], a list of several types of proteins and their func-
tions.

• Antibodies or immunoglobulin are proteins involved in defending the body from
foreign objects which are called antigens. They can travel through the blood stream
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and are used by the immune system to identify and defend against bacteria, viruses,
and other foreign invaders. An example of antibody can be find in blood types.
A person with a blood type A can not receive blood type AB because blood type
A produces antibodies that recognize B antigens so if a person with blood type
A is transfused by blood type AB or B , then the antibodies that recognize the B
antigen in the blood cause the person blood to be clotted.

• Enzymes are proteins that facilitate biochemical reactions. They are often referred
to as catalysts because they speed up chemical reactions. Examples include the
digestive enzymes lactase and pepsin. Lactase is essential to the complete digestion
of whole milk. Pepsin is another digestive enzyme that is secreted in the stomach
and helps to the digestion of protein.

• Hormonal proteins are messenger proteins which help to harmonize certain bodily
activities. Examples include insulin, oxytocin and thyroid. Insulin regulates car-
bohydrate and fat by controlling the glucose from the blood. Thyroid controls the
consumption of the body energy and sensitivity of the body to other hormones.

• Contractile proteins are proteins which participate in contractile process. Examples
include actin and myosin. These proteins are responsible for muscle contraction and
movement.

• Storage proteins are biological resources of amino acids and metal ions. Examples
include ovalbumin and casein. Ovalbumin is the main protein found in egg white
and casein is in mammalian milk.

• Transport proteins or carrier molecules are porter proteins which move molecules
from one place to another place around the body. Examples include hemoglobin and
serum albumin. Hemoglobin transports oxygen through the blood. Serum albumin
transports water insoluble lipids (lipids are insoluble in water) in the blood stream.

So the protein’s amino acid chain determines its 3D molecular structure and the protein’s
3D structure determines its specific functions, see Ritchie [78].

In recent years, there is a new branch in sciences which is called proteomics. Proteomics
is an interdisciplinary field and studies proteins in a large scale, particularly the protein’s
structure and protein’s function. Proteomics relies on genome and protein information
to identify proteins associated with the disease which the computer softwares use them
as targets for the new drugs. If a certain protein causes a disease, its 3D structures pro-
vided the informations for designing drugs against the protein. Drugs are small molecules
which in human body they bind to the disease causing protein and prevent of the ac-
tivities of the disease causing protein. Often data for proteins and drugs are available
but not for the interaction of them together. Genome-wide proteomics studies have pro-
vided a growing list of supposed protein-protein interactions (PPIs), but understanding
the function of these predicted interaction requires additional biochemical and structural
analysis, cf. Ritchie [78]. We can find good information about some known proteins
in “Protein Data Bank” (PDB), ref. http://www.rcsb.org/pdb/home/home.do. The
PDB archive is a bank for saving the atomic coordinates and other valuable information
describing proteins and other biological macromolecules. Nowadays scientists use meth-
ods such as X-ray crystallography, nuclear magnetic resonance (NMR) spectroscopy and

http://www.rcsb.org/pdb/home/home.do
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cryo-electron microscopy to determine the location of each atom relative to each other in
the molecule, then this information is annotated and published into the archive by the
“World Wide PDB” (wwPDB), see http://www.wwpdb.org/. If you look at PDB, then
you can see a constantly growing list which reflects a continuous search and research in
laboratories across the world. In PDB archive, we can find the structures for oncogenes,
ribosomes, drug targets, and even the known viruses. However, it can be a challenge to
find the information that you need, since the PDB archives has multiple structures for
a given molecule, or partial structures, or structures that have been modified or inac-
tivated from their native form. For further information refer to http://www.wwpdb.org/.

To understand and know more about PPIs help us for better understanding the molec-
ular mechanism of diseases. Therapeutic drugs often operate by modulating or blocking
PPIs and therefore PPIs represent an important class of drug targets, cf. Ritchie [78].
So the basis of new drug discovery is finding new drugs for deactivating protein involved
in disease.

The problem of determining a relative motion (rotation and translation) for a pair of
proteins and their compound reproducible in the nature is known as “protein-protein
docking” (PPD) problem, cf. Bajaj [7]. The docking problem generally divided into two
types, bound and unbound docking. In bound docking we are given a complex of two or
more molecules. After artificial separation, the goal is to reconstruct the native complex,
but in unbound docking we are given two molecules in their native conformation, the goal
is to find the correct association. Unbound is much more difficult than bound docking
because the protein involved can change conformation upon binding.

Ligands are small molecules which interact with protein’s binding sites. Binding sites
are areas of protein known to be active in forming of compounds. The most interesting
case is the protein-ligand interactions (PLIs) and consequently protein-ligand docking
(PLD).

There are two main challenges in the development of methods for protein-protein docking:

• The first is to construct a scoring function that admits the distinction between
correct, nearly correct and incorrect predictions.

• The second is development an algorithm that quickly searches and scores all possible
rotations and translations of proteins to be docked.

For more details see Kevin et al. [54]. Proteins intrinsically are dynamic and they can
change their conformation, so solving the protein docking problem is not easy. In order
to make the computations and assumptions easier, the structures of proteins are consid-
ered rigid and this essentially reduces the problem to a six-dimensional (6D) rotational-
translational search space.

H. E. Fischer has an interesting theory for the rigid body protein docking which is known
under the name “Key-&-Lock Theory”. Roughly speaking, according to this theory, rigid
body protein docking can be considered as the problem of key and lock. For opening a
lock, at first we must know which key is fit and secondly which motions (rotations and
translation) are required for opening the lock.

http://www.wwpdb.org/
http://www.wwpdb.org/
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Many current protein-protein docking algorithms use fast Fourier transform (FFT) tech-
niques, and this approach was first introduced by Katchalski-Katzir et al., cf. [51], in
1992, for computing surface complementarity (SC) and later on extended by Gabb et al.,
cf. [36], for surface complementarity and electrostatic complementarity (EC).

The standard way to exhaustively compute the scoring function is fast translational
matching (FTM), but Wriggers and Kovacs have shown the exhaustive search in reverse
order which is called fast rotational matching (FRM). In Wriggers’ method the scoring
function is a function of two rotations and one displacement that allows to write the
scoring function as a Fourier expansion in terms of five angular variables (representing
the rotations) and one linear variable for the translation, cf. [58].

1.2. Outline of the Thesis

The main aim of this work is development of computational techniques for 3D structure
of molecule’s properties (shape and electrostatics) and protein docking problem using
efficient GTO & ETO spherical polar radial Fourier series.

Some of the mathematical ideas here were inspired of Ritchie’s works. The interested
readers can find protein docking material in Ritchie’s papers and references therein. The
rest of this preamble is structured as follows:

Chapter 2 summarizes some mathematical preliminaries related to this work, like the
notions of rotations and motions in R3 and also Hilbert spaces and orthogonal functions
specially the GTO & ETO spherical polar radial functions.

Chapter 3 presents an overview on the FTM algorithm on shape and electrostatic
complementarity. FTM on shape and electrostatic complementarity is not a new and
has discussed by many people, for example, Bajaj et al., see [7] and [8], and also Gabb
et al., cf. [36]. Here with the inspiration of Grant-pickup’s idea, cf. [41], we define a
simpler model for charge density that makes the computation of the scoring function
easier and hence we present a simpler and more efficient FTM algorithm for electrostatic
complementarity.

Chapter 4 is the heart of this work and contains quite new computational methods
for fast rotational matching (FRM) on shape and electrostatic complementarity. In the
first section of this chapter we present a new computational method for computing the
GTO spherical polar radial Fourier coefficients for shape complementarity and after some
efforts we develop an efficient algorithm to compute these coefficients. Also we define
the GTO translational coefficients ISC and representing an algorithm to compute these
coefficients and eventually finding an algorithm to compute the scoring function with the
aid of GTO spherical polar radial Fourier coefficients, GTO translational coefficients ISC

and Wigner D-functions.

Analogously, in the second section of this chapter, we define the ETO spherical polar
radial Fourier coefficients for two affinity functions. We present two different approaches
for computing these coefficients. For computing the ETO spherical polar radial Fourier
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Fast Translational Matching (FTM)

all steps from (3.7) to (3.29). all steps from (3.39) to (3.49).

SC EC

Figure 1.1.: Structure of Chapter 3, Fast Translational Matching (FTM) Algorithm on
Shape Complementarity (SC) and Electrostatic Complementarity (EC).

coefficients Q̂B
klm, we present a new computational method, but for computing Q̂A

klm, we
apply Ritchie’s method. Also we define the ETO translational coefficients IEC and a
method for computation of them and finally describing our algorithm in terms of ETO
spherical polar radial Fourier coefficients Q̂A

klm and Q̂B
klm, ETO translational coefficients

IEC and Wigner-D functions.

Fast Rotational Matching (FRM)

Theorem 4.1.3 Theorem 4.2.1

SC EC

Figure 1.2.: Structure of Chapter 4, Fast Rotational Matching (FRM) Algorithm on
Shape Complementarity (SC) and Electrostatic Complementarity (EC).
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CHAPTER 2

PRELIMINARIES

2.1. Rotation and Motion Groups

In the beginning of this section, we define the notion of a rotation of a rigid body object
and in general case the rotation group. We shall pursue the rest of this section with
reminding the concept of translation and also definition of motion and in general motion
group. Throughout this work, all objects are rigid bodies, i.e., all deformations of theses
objects will be neglected.

Definition 2.1.1 (Rotation) A rotation is a transformation in a plane or in space
that describes a movement of an object around a fixed point which is called the centre of
rotation.

In three-dimensional space R3, a matrix R describes rotation of a point (x, y, z) to a
point (x′, y′, z′) where the matrix R is an orthogonal 3× 3 matrix with det(R) = 1. So
with the above definition, a three-dimensional rotation about the origin 0 ∈ R3 is a linear
map

ΛR : R3 −→ R3

x 7−→ Rx,
(2.1)

where x ∈ R3 and R is an orthogonal 3× 3 matrix with det(R) = 1.

Definition 2.1.2 (Rotation Group SO(3)) The set

SO(3) =
{
R ∈ R3×3; RRt = I and det(R) = 1

}
is called special orthogonal group and it includes all the three-dimensional rotation ma-
trices.

In this definition we can easily check that SO(3) is a group and also this group is not
commutative. Since SO(3) is constituted of three-dimensional rotation matrices, it is
also called rotation group. In the following well-known lemma we explain the intrinsic
properties of a rotation.
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Lemma 2.1.1 A three-dimensional rotation preserves

1. the length of a vector.

2. the distance between two vectors.

3. the angles between two vectors.

4. the orientation of the space.

Proof. Suppose u1, u2 and u3 are vectors in R3 and R ∈ SO(3) is an arbitrary rotation,
then we have:

1. ‖u1‖2 =
√
〈u1,u1〉 =

√
ut
1u1 =

√
ut
1R

tRu1 =
√
〈Ru1,Ru1〉 = ‖Ru1‖2.

2. The distance between two arbitrary vectors u1 and u2 in R3 is given by

‖u1 − u2‖2 =
√
〈u1 − u2,u1 − u2〉,

and by the first part of this lemma, the assertion is obvious.

3. The angle between the vectors u1 and u2 in R ∈ SO(3) is equal with

cos ̂(u1,u2) =
u1 · u2

‖u1‖2‖u2‖2
,

but since

u1 · u2 = ut
1u2 = ut

1R
tRu2 = (Ru1)

t (Ru2) = (Ru1) · (Ru2) ,

hence cos ̂(u1,u2) = cos ̂(Ru1,Ru2).

4. Suppose U = [u1,u2,u3] ∈ R3×3, then

detU = det ([u1,u2,u3])

= det(R)det ([u1,u2,u3])

= det (R [u1,u2,u3])

= det ([Ru1,Ru2,Ru3]) ,

and hence we have the results. �

Definition 2.1.3 (Metric on SO(3)) For a rotation R, we denote the angle of this
rotation by ‖R‖ which is uniquely defined by

cos(‖R‖) =
trace(R)− 1

2
and ‖R‖ ∈ [0, π].

The distance between two rotations R1 and R2 of the rotation group SO(3) is defined as
the angle of the rotation R2R1

−1 which is denoted by ‖R2R1
−1‖.
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There are many ways to parameterize rotations. Why we would want to use a particular
parameterization (or any parameterization at all) depends entirely on its performance
in applications of interest. We use the Euler angles parameterization that is defined in
the following, but several other parameterizations of a rotation have been explained by
Chirikjian [21, Section 5.4] and Vollrath [96, Section 2.2] in more details.

We start off with the standard definition of the rotations about the three coordinate
axes:

• A rotation of α about the x-axis is defined as

Rx(α) =

 1 0 0
0 cosα − sinα
0 sinα cosα

 . (2.2)

• Similarly a rotation of β about the y-axis is defined as

Ry(β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 . (2.3)

• Finally a rotation of γ about the z-axis is defined as

Rz(γ) =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 . (2.4)

Any three-dimensional rotation can be thought of a sequence of three rotations, one about
each coordinate axis. We rotate first about the z-axis, then the y-axis and finally again
about the z-axis. Such a sequence of rotations can be represented as the matrix product
and is described in the following definition.

Definition 2.1.4 (Euler Angles) Suppose we are given three angles α, β and γ where
α, γ ∈ [0, 2π) and β ∈ [0, π]. If a rotation matrix is given by multiplication of three
rotation matrices Rz(α), Ry(β) and Rz(γ) by

R (α, β, γ) := Rz(α)Ry(β)Rz(γ),

then the angles α, β and γ are called the Euler angles of the rotation R = R (α, β, γ).

Note that throughout this work we will use this convention for the Euler angles.

Remark 2.1.1 In terms of Euler angles, the rotational angle of a rotation R = R (α, β, γ),
in Definition 2.1.3 is

cos(‖R
2
‖) =

(
cos

β

2
cos

α+ γ

2

)
.

According to Definition 2.1.4, with having three Euler angles α, β and γ we can determine
a rotation R (α, β, γ) ∈ SO(3), but now in the following lemma is shown how one can
determine the Euler angles of a three-dimensional rotation R ∈ SO(3).
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Lemma 2.1.2 If we are given a rotation matrix R = (Rij)i,j=1,2,3, then the Euler angles
can be determined by

1. if |R33| 6= 1, then

• α =

 arccos R13√
R2

13+R
2
23

if R23 ≥ 0

2π − arccos R13√
R2

13+R
2
23

if R23 < 0

• β = arccosR33

• γ =

 arccos −R31√
R2

31+R
2
32

if R32 ≥ 0

2π − arccos R31√
R2

31+R
2
32

if R32 < 0

2. if R33 = 1, then

• β = 0

• α+ γ =

{
arccosR11 if R21 ≥ 0
2π − arccosR11 if R21 < 0

3. if R33 = −1, then

• β = π

• α− γ =

{
arccos (−R11) if R21 ≥ 0
2π − arccos (−R11) if R21 < 0

Proof. See Vollrath [96, Corollary 2.2.11]. �

Now we review two lemmas of [96] to show the Euler angles are uniquely determined
by its three-dimensional rotation R ∈ SO(3).

Definition 2.1.5 Corresponding to the three unit vectors ex = (1, 0, 0)t, ey = (0, 1, 0)t

and ez = (0, 0, 1)t, we define three subgroups of the rotation group SO(3) by

X = {R ∈ SO(3); Rex = ex},
Y = {R ∈ SO(3); Rey = ey},
Z = {R ∈ SO(3); Rez = ez},

which are called respectively vanished subgroups of SO(3) along x-axis, y-axis and z-axis.

Lemma 2.1.3 Every rotation R of the vanished subgroup Z of SO(3) fulfils

R =

 cos γ − sin γ 0
sin γ cos γ 0

0 0 1

 ,

for some γ ∈ [0, 2π).

Proof. See Vollrath [96, Lemma 2.2.3]. �

Lemma 2.1.4 Every rotation matrix R = (Rij)i,j=1,2,3 of SO(3) with |R33| 6= 1 uniquely
determines its Euler angles.
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Proof. Suppose we are given a rotation matrix R = (Rij)i,j=1,2,3 with |R33| 6= 1 which
is written in terms of different Euler angles, namely

R = Rz(α)Ry(β)Rz(γ) where α, γ ∈ [0, 2π) and β ∈ [0, π],

R = Rz(α
′)Ry(β

′)Rz(γ
′) where α′, γ′ ∈ [0, 2π) and β′ ∈ [0, π],

we prove α = α′, β = β′ and γ = γ′.

Since
Rz(α)Ry(β)Rz(γ) = Rz(α

′)Ry(β
′)Rz(γ

′),

so we have
Rz

(
α− α′

)
Ry(β) = Ry(β

′)Rz

(
γ′ − γ

)
. (2.5)

We multiply both sides of the equation (2.5) on the unit vector ez, namely

Rz

(
α− α′

)
Ry(β)ez = Ry(β

′)Rz

(
γ′ − γ

)
ez,

and hence we have(
sinβ cos

(
α− α′

)
, sinβ sin

(
α− α′

)
, cosβ

)t
=
(
sinβ′, 0, cosβ′

)t
.

So the corresponding pairs are equal, i.e.
sinβ cos (α− α′) = sinβ′ (a)
sinβ sin (α− α′) = 0 (b)
cosβ = cosβ′ (c)

(2.6)

According to the hypothesis |R33| 6= 1 and hence R 6∈ X and also Rt 6∈ X , consequently
cosβ 6= 1 and hence β ∈ (0, π), if so then sinβ 6= 0.

• If cosβ = cosβ′, see (2.6)-(c), then β = 2kπ ± β′ where k ∈ Z, but since β ∈ (0, π)
so β = β′.

• We have sinβ sin (α− α′) = 0, see (2.6)-(b), but since sinβ 6= 0, therefore sin (α− α′) =
0 and hence α− α′ = kπ where k ∈ Z+.

• Accordingly if we replace these changes in (2.6)-(a), i.e., sinβ cos (kπ) = sinβ, then
we have cos kπ = 1 and hence k = 0, if so since α− α′ = kπ then α = α′.

• Now from (2.5), we have Rz (γ′ − γ) = I, hence γ′ − γ = 0. So γ = γ′. �

Remark 2.1.2 Throughout this work, integration of functions f : SO(3) −→ R that the
rotations are parameterized in terms of Euler angles are considered by∫

SO(3)
f(R) dR =

1

8π2

∫ 2π

0

∫ π

0

∫ 2π

0
f (R (α, β, γ)) sinβ dα dβ dγ.

The volume element dR gives the Haar measure µ of SO(3) by dR = dµ(R). For more
details see [21, p. 256].

We know translations are also motions in a plane or in the space and hence here we recall
the following definition of a translation.
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Definition 2.1.6 A translation in a plane or in space is a function that moves every
point in specific direction with a constant distance, i.e.

T t : R3 −→ R3

x 7−→ x + t.

Now we know rotations and translations are motions about and along respectively point
or axsis but we would like to have a mathematical definition of the notion of motion.

Definition 2.1.7 (Motion) A motion in a plane or in space is a transformation that
describes the movement of a rigid body object at first about the centre of rotation and then
translates every point of the rigid body object by a fixed distance in the same direction.

So according to this definition, a three-dimensional motion about the origin 0 ∈ R3 is a
linear map

R3 −→ R3

x 7−→ Rx + t,
(2.7)

where R ∈ SO(3) and t ∈ R3.

Definition 2.1.8 (Motion Group SE(3)) The set

SE(3) =
{

(R, t) ; R ∈ SO(3) and t ∈ R3
}
,

with the binaray operation “o” where (R1, t1) o (R2, t2) = (R1R2,R2t1 + t2) is called
special Euclidean group and consists of all three-dimensional motions.

Since the group SE(3) consists of all motions, we call it motion group. Also note that
each motion (R, t) ∈ SE(3) can be written as

(R, t) = (I, t) o (R,0) , (2.8)

so each motion can be assumed as a rotation followed by a translation.

Definition 2.1.9 (Metric on SE(3)) The distantce between two motions (R1, t1) and
(R2, t2) of the motion group SE(3) is defined by the metric on SO(3), Definition 2.1.3,
and metric on R3 as in the following:

‖ (R1, t1) , (R2, t2) ‖ = ‖R2R
−1
1 ‖+ ‖t2 − t1‖2.

We need the integration of functions on the motion group SE(3) hence we remind the
following remark.

Remark 2.1.3 Throughout this work, integration of functions f : SE(3) −→ R are
assumed as ∫

SE(3)
f ((R, t)) d (R, t) =

∫
SO(3)

∫
R3

f ((R, t)) dR dt,

where d (R, t) on SE(3) is given by dRdt where dR and dt are respectively volume
element of SO(3) and R3.
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We can represent the integration of real valued functions on SE(3) in terms of various
parameterizations of rotations R ∈ SO(3) and translations t ∈ R3, but we will utilize
the Remark 2.1.2, hence∫

SE(3)
f ((R, t)) d (R, t) =

1

8π2

∫
R3

∫ 2π

0

∫ π

0

∫ 2π

0
f (R (α, β, γ) , t) sinβ dα dβ dγ dt.

(2.9)

2.2. Hypergeometric Functions

we start up this section with some elementary notions that will be used in some parts of
the next chapters.

The factorial function is defined for nonnegative integers n where n! = 1 × 2 × . . . × n,
and 0! = 1. The definition of the factorial function can also be extended to noninteger
arguments, i.e., the Gamma function denoted by “Γ” is an extension of the factorial
functions of real and complex numbers except the negative integers and zero. That is, if
n is a positive integer, then

Γ(n) = (n− 1)! (2.10)

and in general

Γ(n) =

∫ ∞
0

e−ttn−1 dt. (2.11)

Definition 2.2.1 The hypergeometric function pFq (a1, a2, . . . , ap; b1, b2, . . . , bq; z) is de-
fined by

pFq (a1, a2, . . . , ap; b1, b2, . . . , bq; z) =
∞∑
n=0

(a1)n(a2)n . . . (ap)n
(b1)n(b2)n . . . (bq)n

· z
n

n!

and (a)n is the Pochhammer symbol which is defined by

(a)n := a(a+ 1)(a+ 2) . . . (a+ n− 1),

where n ∈ N and (a)0 := 1.

Note that the parameters must be such that the denominator never be zero. When one of
the numerator parametrs ai = −N where N is a nonnegative integer, the hypergeometric
function is a polynomial in z, for more details see Abramowitz et al. [1, p. 374-401].

2.3. Hilbert Spaces & Bases

Orthogonal functions play an important role in the theory of Hilbert spaces. We know a
Hilbert space is essentially an algebraic extension of the notion of an ordinary Euclidean
space. So corresponding to the axes of Euclidean space we have an infinite set of orthog-
onal basis functions and hence corresponding to a coordinate vector in Euclidean space,
each point in the Hilbert space is described as a linear combination of basis functions, cf.
Ritchie [78].



30 Preliminaries

In this section we shall seek to summarize some ideas of algebra and linear algebra.
To do this, we at first recall some elementary properties of vectors.

Two vectors U and V are called orthogonal if the dot product of them be zero. The
dot product of two vectors U = (u1, u2, . . . , un) and V = (v1, v2, . . . , vn) is defined as

U · V =

n∑
i=0

uivi.

In particular we would like to generalize the notion of vector orthogonality to functions.
We think of a function space that the value of each function being specified by substituting
a particular value of x, taken from some interval (a, b). In such case we can define two
functions U(x) and V (x) are orthogonal in (a, b), if∫ b

a
U(x)V (x) dx = 0.

A vector U is called a unit vector or normalized vector, if U · U = 1. Extending the
concept, we say that the function U(x) is orthonormal or normalized, if∫ b

a
|U(x)|2 dx = 1.

Now we recall a notion that throughout this work will be used.

Definition 2.3.1 Suppose f(x) is a real or complex valued measurable function for which∫ ∞
−∞
|f(x)|2 dx <∞,

then the function f is called square integrable function on the real line and we denote it
by f ∈ L2(R).

The interval of an integration can also be bounded such as [0, 1]. The square integrable
functions form an inner product space whose inner product is given by

〈f, g〉 =

∫ ∞
−∞

f(x)g(x) dx. (2.12)

So, square integrability is the same as saying 〈f, f〉 <∞.

Definition 2.3.2 A sequence {fn}n∈N is a Schauder basis (or simply a basis) for a
Hilbert space H , if each element of H can be written uniquely as an infinite linear com-
bination of the set {fn}n∈N, i.e., given f ∈ H , there must exist unique coefficients cn(f),
such that

f =
∞∑
n=1

cn(f)fn.

In addition, if {fn}n∈N is an orthonormal sequence, then we call this set as an orthonor-
mal basis, or complete orthonormal sequence.
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Note that we are only considering a countable set of basis vectors, i.e. separable Hilbert
spaces. If we try and have uncountably many then we run into trouble trying to define∑
n

cn(f)fn. It can be shown that square integrable functions form a complete metric

space under the metric induced by the inner product, therefore the space of square
integrable functions is a Hilbert space because the space is complete under the metric
induced by inner product. We consider two facts about square integrable functions and
Hilbert spaces:

• Every square integrable function can be expanded in terms of Fourier like series.

• Every Hilbert space admits an orthogonal basis, and each vector in this Hilbert
space can be expanded in terms of this orthonormal basis.

It turns out that the first of these facts is the special case of the second one, for example,
the trigonometric functions {einx}n∈Z can be considered as an orthonormal basis of the
space of square integrable functions and then the Fourier expansion of an arbitrary square
integrable function is the same as its Hilbert space expansion in terms of orthonormal
basis.

Lemma 2.3.1 (Parseval’s Lemma) If f(x) and g(x) be in L2(T) of period 2π with
Fourier series

f(x) =

∞∑
k=−∞

f̂ke
2πix.k

and

g(x) =
∞∑

k=−∞
ĝke

2πix.k,

then
1

2π

∫ π

−π
f(x)g(x) dx =

∞∑
k=−∞

f̂kĝk.

In the following lemma, we can see the Fourier expansion of the correlation of two func-
tions in L2(T3).

Lemma 2.3.2 Suppose we are given f(x) =
∑
k∈Z3

f̂ke2πix.k and g(x) =
∑
k∈Z3

ĝke2πix.k. If

C(t) =

∫
T3

f(x)g(t + x) dx,

where t ∈ R3, be the correlation of these two functions, then the Fourier coefficients of
the correlation are

Ĉ(t) =
∑
k∈Z3

f̂kĝke2πit.k.

Now we recall and introduce some orthogonal polynomials that are related to our work
and will be used in the next chapters.
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2.3.1. Legendre Polynomials

Legendre polynomials Pl(x) are defined here, using the Rodrigues formula

Pl(x) =
1

2ll!

dl

dxl
(
x2 − 1

)l
. (2.13)

Also these polynomials are known as the solutions of the Legendre differential equation

d

dx

[(
1− x2

) d

dx
Pl(x)

]
+ l (l + 1) Pl(x) = 0,

for x ∈ [−1, 1], where l = 0, 1, 2, . . .. The Legendre polynomials satisfy the orthogonality
condition ∫ 1

−1
Pl(x)Pm(x) dx =

2

2l + 1
δl,m. (2.14)

For more details see Chirikjian [21, 3.2.1].

2.3.2. Associated Legendre Functions

The associated Legendre functions Pml (x) can be calculated from the Legendre polyno-
mials as

Pml (x) = (−1)m
(
1− x2

)m/2 dm

dxm
(Pl(x)) , (2.15)

where l = 0, 1, 2, . . . and 0 ≤ |m| ≤ l.

It is easy to see that P0
l (x) = Pl(x). In the following lemma, we present another repre-

sentation for the associated Legendre functions that will be used in our work.

Lemma 2.3.3 Associated Legendre functions Pml (x) with the integer indices l and m,
where 0 ≤ |m| ≤ l, have the following representation

Pml (x) = 2−l
b l−m

2
c∑

t=0

(−1)t+m (2l − 2t)!

(l −m− 2t)! (l − t)!t!
(
1− x2

)m/2
xl−m−2t.

Proof. Substituting the Rodrigues formula (2.13) in the associated Legendre polynomials
(2.15) gives

Pml (x) =
(−1)m

2ll!

(
1− x2

)m/2 dl+m

dxl+m
(
x2 − 1

)l
.

Hence according to this equation, the extension range of m can be −l ≤ m ≤ l. Using

the binomial expansion of
(
x2 − 1

)l
, gives

dl+m

dxl+m
(
x2 − 1

)l
=

dl+m

dxl+m

(
l∑

t=0

(
l

t

)
(−1)t(x2)l−t

)

=
l∑

t=0

(−1)tl!

t!(l − t)!
dl+m

dxl+m
x2l−2t
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and since
dl+m

dxl+m
x2l−2t =

{
(2l−2t)!

(l−m−2t)!x
l−m−2t if l −m− 2t ≥ 0

0 otherwise.

So we have l −m − 2t ≥ 0 and hence l −m ≥ 2t, consequently l−m
2 ≥ t. Also since t is

defined for positive integers therefore the range of t is 0 ≤ t ≤ b l−m2 c. �

The associated Legendre functions are orthogonal, i.e.∫ 1

−1
Pmk (x)Pml (x) dx =

2 (l +m)!

(2l + 1) (l −m)!
δk,l, (2.16)

where 0 ≤ |m| ≤ l, k. For any fixed m ∈ [−l, l], the associated Legendre functions form
an orthonormal basis for L2 ([−1, 1]), i.e.

Pm
l (x) =

√
(2l + 1)(l −m)!

2(l +m)!
Pml (x), (2.17)

this means, any function on the interval [−1, 1] can be expanded in terms of normalized
associated Legendre functions as

f(x) =
∞∑

l=|m|

f̂lmPm
l (x), (2.18)

where

f̂lm =

∫ 1

−1
f(x)Pm

l (x) dx, (2.19)

are called the associated Legendre (Fourier) coefficients, cf. Chirikjian [21, p. 45].

Note that during this work, we will always use the normalized associated Legendre func-
tions (2.17), otherwise we will mention it.

2.3.3. Spherical Harmonics

Associated Legendre functions play a vital role in definition of spherical harmonics. Here,
using the normalized associated Legendre functions defined in (2.17), we have the follow-
ing definition for spherical harmonics.

Y m
l (θ, φ) =

√
(2l + 1)(l −m)!

4π(l +m)!
Pml (cos θ) eimφ, (2.20)

where l and m are integers such that l ≥ m ≥ 0 and θ is the colatitudinal coordinate
with θ ∈ [0, π] and φ as azimuthal (latitudinal) coordinate with φ ∈ [0, 2π).

Remark 2.3.1 Note that in the definition of spherical harmonics Y m
l (θ, φ), l and m are

considered positive integers where l ≥ m ≥ 0. The negative order spherical harmonics
Y −ml (θ, φ) are rotated about z-axis by 90 ◦/m with respect to the positive order ones.
This comes from the point that in the associated Legendre functions Pm

l (x) where l, and
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m are refered to the degree and order and l ≥ m ≥ 0 and since the differential equation
inside the associated Legendre functions (2.15) is clearly invariant under a change in sign
of m, the function for negative m is proportional to those of positive m, i.e.

P−ml (x) = (−1)m
(l −m)!

(l +m)!
Pm
l (x). (2.21)

Figure 2.1.: This is a figure of spherical harmonics Y m
l (θ, φ), for l = 0, 1, 2, 3 (top to

bottom) and m = 0, 1, 2, 3 (left to right). The negative order spherical
harmonics Y m

l (θ, φ) are rotated about the z-axis by 90◦/m with respect to
the positive order ones.

Lemma 2.3.4 The spherical harmonics for integer indices l and m where l ≥| m |≥ 0
have the following representation

Y m
l (θ, φ) = 2−l

√
(2l + 1)(l −m)!

4π(l +m)!

b l−m
2
c∑

t=0

(−1)t+m(2l − 2t)!

(l −m− 2t)!(l − t)!t!
(sin θ)m(cos θ)l−m−2teimφ.

Proof. The assertion is clear by using the spherical harmonics, see (2.20), and Lemma
2.3.3. �

The unit sphere S2 in R3 is a two-dimensional surface denoted by

S2 := (θ, φ) where θ ∈ [0, π] and φ ∈ [0, 2π). (2.22)

Functions on the sphere can be viewed as functions on S1 × [0, π]. Hence the volume
element is viewed as the product of volume element for S1 and [0, π], namely

w (θ, φ) = w(θ) · w(φ) = sin θ · 1.
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We know
{

eimφ
}
m∈Z is an orthonormal basis for L2(S1). Also from the previous section

we know associated Legendre functions form an orthogonal basis for L2 ([−1, 1],dx). By
change of coordinates x = cos θ, the normalized associated Legendre functions (2.17)
form an orthonormal basis for the Hilbert space L2 ([0, π], sin θdθ) and hence altogether
the set

{Y m
l (θ, φ) ; l, |m| ∈ N0, (θ, φ) ∈ [0, π]× [0, 2π)} , (2.23)

of spherical harmonics forms an orthonormal basis for the Hilbert space L2(S2), see
Chirikjian [21, p. 100], i.e.∫ π

0

∫ 2π

0
Y m
l (θ, φ) Y m′

l′ (θ, φ) sin θ dφ dθ = δl,l′δm,m′ ,

therefore any function in L2(S2) can be expanded uniquely in terms of spherical harmonic
Fourier series as

f (θ, φ) =
∞∑
l=0

l∑
m=−l

f̂lmY m
l (θ, φ) , (2.24)

where

f̂lm =

∫
S2
f (θ, φ) Y m

l (θ, φ) sin θ dθdφ, (2.25)

are called spherical (harmonic) Fourier coefficients.

Spherical harmonics have many theoretical and practical applications, particularly in
the computation of atomic orbital electron configurations which is pretty much related
to our work and will be applied in the next chapters.

Here we recall the Laplace operator. The Laplace operator is a second order differ-
ential operator in the 3-dimensional Euclidean space R3, defined as the divergence (5·)
of the gradient (5f). Thus if f is a twice differentiable real valued function, then the
Laplacian of f is defined by

4 f = 52f = 5 · 5f, (2.26)

where

5 =

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
. (2.27)

Given a scalar field Φ(x), the Laplace equation is

52Φ(x) = 0,

where in Cartesian coordinates

52 =

(
∂2

∂x2
,
∂2

∂y2
,
∂2

∂z2

)
and in spherical coordinate system

52 =
1

r

(
∂2

∂r2

)
r +

1

r2
Λ2, (2.28)

where Λ2 is the Legendrian operator defined by

Λ2 =
1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2
. (2.29)
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The angular part of Laplace’s equation has solutions

Λ2Y m
l (θ, φ) = −l(l + 1)Y m

l (θ, φ) , (2.30)

cf. Ritchie [78, equations 2.67, 2.68, 2.69 & p. 19] or Chirikjian [21, equation 4.22, p. 92].

2.3.4. Laguerre Polynomials

Laguerre polynomials Ln(x) may be defined by Rodrigues formula

Ln(x) =
ex

n!

dn

dxn
(
e−xxn

)
. (2.31)

These polynomials are solutions of the differential equation

xy′′ +
(
1− x2

)
y′ + ny = 0,

for x ∈ R+. The Laguerre polynomials satisfy the orthogonality conditions∫ ∞
0

Lm(x)Ln(x)e−xdx = (n!)2δm,n. (2.32)

For more details see Chirikjian [21, p. 48-49].

Figure 2.2.: The Laguerre polynomials Ln(x) for n = 0, 1, 2, 3, 4, 20, 31.

2.3.5. Associated Laguerre Polynomials

The associated (or generalized) Laguerre polynomials L
(α)
n (x) are defined by the Rodrigues

formula

L(α)
n (x) =

exx−α

n!

dn

dxn
(
e−xxn+α

)
. (2.33)
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(a) The associated Laguerre polynomials

L
(α)
n (x), for n = 10 and α = 0, 1, 2, 3, 4, 5.

(b) The associated Laguerre polynomials

L
(α)
n (x), for α = 3 and n = 0, 1, 2, 3, 4, 5.

Figure 2.3.: Associated Laguerre Polynomials

Lemma 2.3.5 (Leibniz Rule) If we have n-times differentiable functions f and g, then
the n-th derivative of the product f · g is given by

(f · g)(n) =

n∑
j=0

(
n

j

)
f (j)g(n−j),

where
(
n
j

)
is the binomial coefficient.

For more detail refer to the Olver [69, p. 318]. Applying the Leibniz rule for differentiation
of products gives the following representation of associated Laguerre polynomials

L(α)
n (x) =

n∑
j=0

1

j!

(
n+ α

n− j

)
(−x)j . (2.34)

Setting α = 0 results L
(0)
n (x) = Ln(x), see Figure (2.6a). These polynomials are the

solution of the differential equation

xy′′ + (α+ 1− x) y′ + ny = 0.

The set {
L(α)
n (x); n ∈ N, α ∈ R

}
, (2.35)

of associated Laguerre polynomials forms an orthogonal basis for L2(R+) with respect to
the weight function e−xxα, i.e.∫ ∞

0
L(α)
n (x)L(α)

m (x)e−xxα dx =
Γ (n+ α+ 1)

n!
δn,m. (2.36)

2.3.6. GTO & ETO Radial Basis Functions

We identify two weighted versions of the associated Laguerre polynomials which are called
in general, radial basis functions.
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Definition 2.3.3 We define

Rl
k(r) =

√
2(k − l − 1)!

Γ(k + 1
2)

e−
r2

2 rlL
(l+ 1

2)
k−l−1(r

2),

for r ∈ R+
0 and k, l ∈ N0 where k > l, as the GTO radial basis functions.

Since these functions have a Gaussian pre factor and spherical harmonics basis functions
are often called Gaussian type orbitals (GTO) in the quantum chemistry literature, see
Ritchie [78, p. 24]. Applying the formula (2.34) for associated Laguerre polynomials in
(2.3.3), brings the following representation

Rlk(r) =

√
2(k − l − 1)!

Γ(k + 1
2)

e−
r2

2 rl
k−l−1∑
j′=0

1

j′!

(
k − 1

2

k − l − 1− j′

)
(−r2)j′ . (2.37)

(a) The GTO radial functions Rl
k(r), for k = 10

and l = 0, 1, 2, 3, 4.
(b) The GTO radial functions Rl

k(r), for l = 2
and k = 3, 4, 5, 6, 7.

Figure 2.4.: GTO Radial Functions

Now in the following lemma, we show the orthogonality of the GTO radial functions
with respect to the weight function r2.

Lemma 2.3.6 For each r ∈ R+
0 and k, l ∈ N0 where k > l, we have∫ ∞
0

Rl
k(r)R

l
k′(r)r

2 dr = δk,k′ .

Proof. Applying Definition 2.3.3, causes to have∫ ∞
0

Rl
k(r)R

l
k′(r)r

2 dr =

√
2(k − l − 1)!

Γ(k + 1
2)

× 2(k′ − l − 1)!

Γ(k′ + 1
2)

×
∫ ∞
0

e−r
2
r2lL

l+1/2
k−l−1(r

2)L
l+1/2
k′−l−1(r

2)r2 dr.

Substituting the variable r2 by x, gives∫ ∞
0

Rl
k(r)R

l
k′(r)r

2 dr =

√
2(k − l − 1)!

Γ(k + 1
2)

× 2(k′ − l − 1)!

Γ(k′ + 1
2)

×
∫ ∞
0

e−xxlL
l+1/2
k−l−1(x)L

l+1/2
k′−l−1(x)x

dx

2
√
x
.
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Hence,∫ ∞
0

e−xxlL
l+1/2
k−l−1(x)L

l+1/2
k′−l−1(x)x

dx

2
√
x

=
1

2

∫ ∞
0

e−xL
l+1/2
k−l−1(x)L

l+1/2
k′−l−1(x)xl+1/2 dx

=
Γ (k − l − 1 + l + 1/2 + 1)

2(k − l − 1)!
δk−l−1,k′−l−1

=
Γ (k + 1/2)

2(k − l − 1)!
δk,k′ . �

In analogy to the GTO radial basis functions, we define another orthogonal radial basis
functions.

Definition 2.3.4 We define

V l
k(r) =

√
(k − l − 1)!

Γ(k + l + 2)
e−

r
2 rlL

(2l+2)
k−l−1(r),

for r ∈ R+
0 and k, l ∈ N0 where k > l, as the ETO radial functions.

These functions in quantum mechanics correspond to certain Coulomb potential problems
and in quantum chemistry are often called exponential type orbitals (ETO) to represent
the electrostatic properties of proteins, see Ritchie [78, 2.101, p. 25].

Using the associated Laguerre polynomials in (2.34), we have the following represen-
tation for ETO radial basis functions

V l
k(r) =

√
(k − l − 1)!

Γ(k + l + 2)
e−

r
2 rl

k−l−1∑
j′=0

1

j′!

(
k + l + 1

k − l − 1− j′

)
(−r)j′ . (2.38)

(a) The ETO radial functions V l
k(r), for k = 10

and l = 0, 1, 2, 3, 4.
(b) The ETO radial functions V l

k(r), for l = 2
and k = 3, 4, 5, 6, 7.

Figure 2.5.: ETO Radial Functions

Now in the following lemma, we show the ETO radial functions are orthogonal
with respect to a weight function r2.

Lemma 2.3.7 We have ∫ ∞
0

V l
k(r)V

l
k′(r)r

2 dr = δk,k′ ,

where r ∈ R+
0 , l, k, k′ ∈ N0 and k, k′ > l.
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Proof. By (2.38), we have

∫ ∞
0

V l
k(r)V

l
k′(r)r

2 dr =

√
(k − l − 1)!

Γ(k + l + 2)
× (k′ − l − 1)!

Γ(k′ + l + 2)

×
∫ ∞
0

e−rr2lL
(2l+2)
k−l−1(r)L

(2l+2)
k′−l−1(r)r

2 dr.

Now using the orthogonality of associated Laguerre polynomials in (2.36), gives∫ ∞
0

e−rr2l+2L
(2l+2)
k−l−1(r)L

(2l+2)
k′−l−1(r) dr =

Γ(k + l + 2)

(k − l − 1)!
δk,k′ . �

(a) Comparison of the functions R0
10(r), V 0

10(r),

L
(0)
10 (r) & L10(r).

(b) In the above figure, we can see R4
10(r) and

V 4
10(r).

Figure 2.6.: Comparision of the GTO and ETO radial functions.

2.3.7. GTO & ETO Spherical Polar Radial Basis Functions

In this section, we introduce GTO and ETO spherical polar radial functions. To prove
the GTO and ETO spherical polar radial functions yield an orthonormal basis for L2(R3),
we shall briefly review some basic concepts related to the theory of Hilbert space. We
are not trying to give a complete development but rather review the basic lemmas and
theorems mostly without proof and finally we are able to prove that these functions con-
stitute bases for square integrable functions on R3.

In the following lemma, we remind the “Bessel’s inequality” which will be used in the
proof of the next lemma. You can find a proof for the Bessel’s inequality in Robinson’s
book [84, Corollary 5.11]

Lemma 2.3.8 (Bessel’s inequality) If {fn}n∈N is an orthonormal set in an inner
product space X, then for any f ∈ X, we have

∞∑
n=1

|〈f, fn〉|2 ≤ ‖f‖2 .

In the following lemma, the necessary and sufficient condition for the convergence of an
orthonormal set in a Hilbert space is explained.
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Lemma 2.3.9 Let H be a Hilbert space and {fn}n∈N be an orthonormal set in H . Then

the series
∞∑
n=1

cnfn converges, if and only if,
∞∑
n=1

|cn|2 <∞.

Proof. Suppose {fn}n∈N be an orthonormal set in the Hilbert space H and f =
∞∑
n=1

cnfn.

For the natural numbers k ≤ n, we have

〈
∞∑
n=1

cnfn, fk〉 =

∞∑
n=1

cn〈fn, fk〉 = fk.

Letting n→∞ and using the continuity of the inner product, we obtain

〈f, fk〉 = lim
n→∞

ck = ck.

Hence by Bessel’s inequality, we have

∞∑
k=1

|ck|2 =

∞∑
k=1

|〈f, fk〉|2 ≤ ‖f‖2 <∞.

Conversely, we assume
∞∑
n=1

|cn|2 < ∞. We set fn =
n∑
i=1

cifi. By Pythagoras’ Theorem

for n > m in N, we have

‖fn − fm‖2 =

∥∥∥∥∥
n∑

i=m+1

cifi

∥∥∥∥∥
2

=
n∑

i=m+1

|ci|2 .

By the assumption
∞∑
i=1

|ci|2 < ∞, the sequence of partial sums is Cauchy and so we

can make the right hand side arbitrary small, hence {fn}n∈N is a Cauchy sequence in a
Hilbert space H and it converges to some point of H . �

Corollary 2.3.1 Let H be a Hilbert space and {fn}n∈N be an orthonormal set in H ,

then for any f ∈ H , the series
∞∑
n=1

〈f, fn〉fn converges.

This leads us to the following proposition of the Robinson’s book [84, Proposition 5.14]:

Proposition 2.3.1 Let {fn}n∈N be an orthonormal set in a Hilbert space H , then the
following assertions are equivalent.

1. 〈f, fn〉 = 0, for all n ∈ N implies that f = 0.

2. {fn}n∈N is an orthonormal basis for H .

3. f =
∞∑
n=1

〈f, fn〉fn, for all f ∈ H .
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4. ‖f‖2 =
∞∑
n=1

|〈f, fn〉|2, for all f ∈ H .

Now we identify an orthonormal basis for L2(R3). The first point in our work here is
transferring the Cartesian coordinate system to spherical coordinate system, in other
words, each point x ∈ R3 is written as

x = ru; r = ‖x‖2 and u = (θ, φ) ∈ S2, (2.39)

where θ ∈ [0, π] and φ ∈ [0, 2π). For the functions f(x) and g(x) of the Hilbert space
L2(R3), we have

For all f, g ∈ L2(R3); 〈f, g〉 =

∫
R+

∫
S2
f(ru)g(ru)r2 du dr. (2.40)

Lemma 2.3.10 The set
{

Rl
k(r)Y

m
l (u); k, l, |m| ∈ N0, k > l ≥ |m| ≥ 0

}
where Rl

k(r)s
are the GTO radial basis functions and Y m

l (u)s are spherical harmonics form an or-
thonormal basis for L2(R3).

Proof. At first we show this is an orthonormal set. We have

〈Rl
k(r)Y

m
l (u),Rl′

k′(r)Y
m′
l′ (u)〉 =

∫ ∞
0

∫
S2

Rl
k(r)Y

m
l (u) · Rl′

k′(r)Y
m′
l′ (u) r2 du dr

=

∫ ∞
0

Rl
k(r)R

l′
k′(r)

(∫
S2

Y m
l (u)Y m′

l′ (u) du

)
r2 dr

=

∫ ∞
0

Rl
k(r)R

l′
k′(r)

(
δl,l′δm,m′

)
r2 dr

= δk,k′δl,l′δm,m′ .

So the set
{

Rl
k(r)Y

m
l (u)

}
klm

is an orthonormal set in the Hilbert space L2(R3) and by
the 1sh part of Proposition 2.3.1, we prove this is an orthonormal basis for L2(R3). If we
assume for all integers k, l and m where k > l ≥ |m| ≥ 0,

〈f(ru),Rl
k(r)Y

m
l (u)〉 = 0,

then we have ∫ ∞
0

∫
S2
f(ru)Rl

k(r)Y
m
l (u)r2 dudr = 0.

But

0 =

∫ ∞
0

∫
S2
f(ru)Rl

k(r)Y
m
l (u)r2 dudr

=

∫
S2

(∫ ∞
0
f(ru)Rl

k(r)r
2dr dr

)
Y m
l (u) du,

and since spherical harmonics are an orthogonal basis for L2(S2), hence the coefficients
are zero, i.e. (∫ ∞

0
f(ru)Rl

k(r)r
2 dr

)
= 0.

Also we know radial basis functions are weighted version of associated Laguerre polyno-
mials and since associated Laguerre polynomials form a basis for L2(R+), hence we have
f = 0. �
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Definition 2.3.5 We call the set{
Rl
k(r)Y

m
l (u); k, l, |m| ∈ N0, k > l ≥ |m| ≥ 0

}
,

GTO spherical polar radial basis functions.

These functions constitute an orthogonal basis for square integrable functions on R3,
therefore each function f on L2(R3) can be written uniquely as

f(x) = f(ru) =

∞∑
k=1

k−1∑
l=0

l∑
m=−l

f̂klmR
l
k(r)Y

m
l (u), (2.41)

where

f̂klm =

∫ ∞
0

∫
S2
f(ru)Rlk(r)Y

m
l (u)r2 dudr, (2.42)

are called GTO spherical polar radial Fourier coefficients. Since Rl
k (r)s are real valued

functions, therefore we have

f̂klm =

∫ ∞
0

∫
S2
f(ru)Rlk(r)Y

m
l (u)r2 dudr. (2.43)

Now we introduce another orthonormal basis for L2(R3).

Definition 2.3.6 We call the set{
V l
k(r)Y

m
l (u); k, l, m ∈ N0, k > l ≥ |m| ≥ 0

}
,

ETO spherical polar radial functions where V l
k(r)s are ETO radial basis functions and

Y m
l (u)s are spherical harmonics.

Now in the following lemma we show that ETO spherical polar radial functions are an
orthonormal basis for L2(R3).

Lemma 2.3.11 The set
{

V l
k(r)Y

m
l (u); k, l, m ∈ N0, k > l ≥ |m| ≥ 0

}
of ETO pheri-

cal polar radial functions constitute an orthonormal basis for L2(R3).

Proof. At first we show ETO spherical polar radial functions are orthonormal. We have

〈V l
k(r)Y

m
l (u),V l′

k′(r)Y
m′
l′ (u)〉 =

∫ ∞
0

∫
S2

V l
k(r)Y

m
l (u) ·V l′

k′(r)Y
m′
l′ (u)r2 dudr

=

∫ ∞
0

V l
k(r)V

l′
k′(r)r

2

(∫
S2

Y m
l (u)Y m′

l′ (u) du

)
dr

=

∫ ∞
0

V l
k(r)V

l′
k′(r)r

2δl,l′δm,m′ dr

= δk,k′δl,l′δm,m′ .

Therefore the ETO spherical polar radial function constitute an orthonormal set in the
Hilbert space L2(R3) and by the 1sh part of Proposition 2.3.1, we prove this set is an
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orthonormal basis for L2(R3). If we assume for all integers k, l and m where k > l ≥
|m| ≥ 0,

〈f(ru),V l
k(r)Y

m
l (u)〉 = 0,

then we have ∫ ∞
0

∫
S2
f(ru)V l

k(r)Y
m
l (u)r2 dudr = 0,

but since

0 =

∫ ∞
0

∫
S2
f(ru)V l

k(r)Y
m
l (u)r2 dudr

=

∫
S2

(∫ ∞
0
f(ru)V l

k(r)r
2 dr

)
Y m
l (u) du,

and spherical harmonics are an orthogonal basis for L2(S2), hence the coefficients should
be zero, i.e. (∫ ∞

0
f(ru)V l

k(r)r
2 dr

)
= 0.

Also we know radial basis functions are weighted version of the associated Laguerre poly-
nomials and since associated Laguerre polynomials form a basis for L2(R+), hence the
function f = 0. �

Here we illustrate an interpretation of the GTO and ETO spherical polar radial ba-
sis functions. From physical point of view, an atomic orbital is a mathematical function
that can be applied to compute the probability of finding any electron of an atom in any
specific region around the atom’s nucleus. The simplest case is considering an atom with
one electron which is called hydrogen like orbital. So atomic orbitals can be the hydrogen
like orbitals which are the exact solutions to the Schrödinger equation. The Schrödinger
equation for the hydrogen atom is written as

Sklm(ru) = Nkle
−ρ/2ρlL

(2l+1)
k−l−1(ρ), (2.44)

where Nkl are the normalization factor and ρ is a scaled distance, cf. Ritchie [78, p.
25, Equation 2.102]. Alternatively, atomic orbitals refer to functions that depend on the
coordinates of one electron (hydrogen like orbitals), are also used as the starting point
to approximate radial functions, for example here Rl

k(r) and V l
k(r), that depend on the

simultaneous coordinates of all the electrons in an atom or molecule. The coordinate sys-
tems for atomic orbitals are usually chosen spherical coordinates (r, θ, φ). The advantage
of spherical coordinates is that an orbital wave function is a product of radial functions
(here Rl

k(r) or V l
k(r)) by spherical harmonics Y m

l (θ, φ) for each k, l and m ∈ N0 with the
condition k > l ≥ |m| ≥ 0 where the integers k, l and m are called the quantum numbers.

There are typically three mathematical forms for the radial basis functions which can
be chosen as a starting point for the computation of the properties of atoms and hence
molecules with many electrons. According to the mentioned three types of radial basis
function, we have three types of orbitals, i.e.

1. Gaussian Type Orbital (GTO): The form of the Gaussian type orbital has no radial

nodes and decays as e−(distance)
2

, see Definition 2.3.5 and Lemma 2.3.10.
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2. Exponential Type Orbital (ETO): The hydrogen like atomic orbitals are derived
from the exact solution of the Schrödinger Equation for one electron and a nucleus.
The part of the function that depends on the distance from the nucleus has radial
nodes and decays as e−(constant·distance), see Definition 2.3.6.

3. The Slater type Orbital (STO): STO is a form without radial nodes but decays
from the nucleus as does the hydrogen like orbital. In this work we are not going
to describe about this group of orbitals and only for more information we remind
the STO.

For more details refer to the Subsection 2.3.6 and also [70]. In modern computational
chemistry and quantum mechanics, computations are typically performed within a finite
set of GTO or ETO spherical polar radial basis functions to create the atomic orbitals. In
most literatures, the GTO or the ETO spherical polar radial basis functions and atomic
orbital are used interchangeably although it should be noted that these basis functions
are not actually the exact atomic orbitals due to approximation and simplifications of
their analytic formulas, for further information see R. M. Balabin [9].

2.3.8. Bessel Functions

The function

Jv(w) = (w/2)v
∞∑
k=0

(−1)k(w/2)2k

k! (v + k + 1)
, (2.45)

is called the general Bessel function of degree v and complex argument w. Also

jl(w) =

√
π

2w
Jl+1/2(w), (2.46)

is called spherical Bessel function of integer degree l. For more details see [78, p. 25-27].
Spherical Bessel functions satisfy the orthogonality condition∫ ∞

0
jl (βr) jl(βr

′)β2 dβ =
π

2r
δrr′ , (2.47)

cf. Gottfried [38] or Ritchie [78, p. 27, Equation 2.112]. The spherical Bessel transform
of a function f(r) is defined as

f̂l(β) =

√
2

π

∫ ∞
0
f(r)jl(βr)r

2 dr, (2.48)

where by (2.47),

f(r) =

√
2

π

∫ ∞
0
f̂l(β)jl(βr)β

2 dβ (2.49)

and is called the inverse spherical Bessel transform.
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2.3.9. Wigner D-Functions

We consider the Hilbert space L2(SO(3)) with the following inner product

〈f1, f2〉 =

∫
SO(3)

f1(R)f2(R) dR =

∫ 2π

0

∫ π

0

∫ 2π

0
f1 (R (α, β, γ)) f2 (R (α, β, γ))

× sinβ dα dβ dγ,

(2.50)

where f1 and f2 ∈ L2(SO(3)). We are going to define an orthogonal system in L2(SO(3)),
related to the above inner product.

Definition 2.3.7 (Wigner D-function) Let l ∈ N0 and m, m′ = −l, . . . , l. We define

Dmm′
l (R (α, β, γ)) = e−imαe−im

′γdmm
′

l (cosβ) ,

where

dmm
′

l (x) =
(−1)l−m

2l

√
(l +m)! (1− x)m

′−m

(l −m)! (l −m′)! (l +m′)!

dl−m

dxl−m

(
(1 + x)m

′+l

(1− x)m
′−l

)
,

respectively as Wigner D-functions and Wigner d-functions of degree l, and m, m′.

Note that in some literature, Wigner D-functions are called generalized spherical harmon-
ics and also Wigner d-functions are called generalized associated Legendre functions, see
Hielscher et al. [47]. According to our requirement we utilize the above definition, but in
general Wigner D-functions are defined as the representative function of the irreducible
unitary representation of the rotation group SO(3), for more details see Vollrath [96].
Wigner D-functions satisfy the following property

Dmm′
l

(
RR′

)
=

l∑
n=−l

Dmn
l (R) Dnm′

l

(
R′
)
. (2.51)

Also Wigner D-functions satisfy the following orthogonality condition∫
SO(3)

Dmm′
l (R) Dnn′

l′ (R) dR =
8π2

2l + 1
δll′δmm′δnn′ . (2.52)

2.3.10. Wigner 3-j Symbols

In literature, there are different ways to define the 3-j symbols

(
j1 j2 j3
m1 m2 m3

)
. Here

we modify the 3−j symbols which are also called Wigner 3-j or 3-jm symbols.(
j1 j2 j3
m1 m2 m3

)
:= (−1)j1−j2−m3

√
∆ (j1, j2, j3)×

tmax∑
t=tmin

(−1)t

z

×
√

(j1 +m1)! (j1 −m1)! (j2 +m2)! (j2 −m2)! (j3 +m3)! (j3 −m3)!,

(2.53)
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where

∆ (j1, j2, j3) =
(j1 + j2 − j3)! (j1 − j2 + j3)! (−j1 + j2 + j3)!

(j1 + j2 + j3 + 1)!
, (2.54)

is called triangle coefficients and

z = t! (j3 − j2 + t+m1)! (j3 + j1 + t−m2)! (j1 + j2 − j3 − t)! (j1 − t−m1)!

× (j2 − t+m2)!.
(2.55)

The sum is over all integers t for which tmin = max (0, j2 − j3 −m2, j1 +m2 − j3) and
tmax = min (j1 + j2 − j3, j1 −m1, j2 +m2).

The Wigner 3-j symbols are zero unless the following conditions are satiefied:

1. m1 +m2 +m3 = 0.

2. j1 + j2 + j3 is an integer number but if m1 = m2 = m3 = 0, then j1 + j2 + j3 is an
odd integer number.

3. 0 ≤ |mi| ≤ ji, for i = 1, 2, 3.

4. |j1 − j2| ≤ j3 ≤ j1 + j2 (triangle inequality).

In the following equation which is called Gaunt’s integral, we can see the relation between
the 3-j symbols and spherical harmonics, i.e.∫

S2
Y m1
l1

(θ, φ) Y m2
l2

(θ, φ) Y m3
l3

(θ, φ) sin θ dθ dφ =

√
(2l1 + 1) (2l2 + 1) (2l3 + 1)

4π

×
(
l1 l2 l3
0 0 0

)(
l1 l2 l3
m1 m2 m3

)
,

(2.56)

where l1, l2 and l3 ∈ Z.





CHAPTER 3

FTM ALGORITHM ON SHAPE &
ELECTROSTATIC

COMPLEMENTARITY

3.1. FTM Algorithm On Shape Complementarity

3.1.1. Introduction

We know proteins as special molecules are building blocks of our body cells. We know
the problem of determining a relative motion (R, t) in SE(3) for a pair of proteins or
more and their compounds that form a stable complex, reproducible in nature is known
as protein-protein docking, Bajaj [7]. In this section we present an overview on fast
translational matching (FTM) on surface complementarity (SC), discussed by Bajaj, see
e.g. [7] & [8] and Vollrath [96]. Here affinity functions are modeled in terms of Grant-
Pickup’s idea, cf. [41], to facilitate using FFT to efficiently solve the docking problem.
For docking based shape complementarity, we maximize the overlap of the surface of
molecule B with the complementarity space of molecule A.

3.1.2. Modeling for Molecular Shape

A protein is made up of a long chain of amino acids that each of them links to its neighbor
via covalent bonds, see Figure 3.1. Generally in chemistry to each molecule that consists
of amino (−NH2) and carboxylic acid (−COOH) functional groups, along with a (−R)
groups which determine the type of amino acid, is said amino acid. The letter “R” is
used as a sort of chemical variable. The stable balance of attractive and repulsive forces
between atoms when they share electrons is known as covalent bonding, see Campbel
et al. [18]. The Figure 3.2 shows a schematic picture of the structure of amino acid.
There are twenty different types of amino acids found in proteins. Each has a different
R-group. Protein size is usually measured in terms of the number of amino acids that
comprise it. Proteins can range from fewer than 20 to more than 5000 amino acids in
lengh, although an average protein is about 350 amino acid in length, cf. Tompa [91].
An average protein’s molecule typically consists of hundreds of amino acids, thousands
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Amino
Acid

Amino
Acid

Amino
Acid

Amino
Acid

Covalent Bonds

Figure 3.1.: The structure of protein can be considered as a chain of amino acids that
each amino acid links to its neighbors through covalent bonds.

NH2

R

C

H

C OH

O

Cα: central carbon

R-group

Amino-group

Carboxyle-group

Figure 3.2.: The Structure of Amino Acid. To each molecule that consists of amino
(−NH2) and carboxylic acid (−COOH) functional groups along with a (−R)
group which determine the type of amino acid is said amino acid.

of atoms and tens of thousands of electrons.

Now we have an imagination of protein as a molecule with special properties, so we
should be able to define a mathematical model for a molecule and hence for a protein. In
quantum mechanics, atoms are often treated as fixed arrangement of atomic nuclei sur-
rounded by clouds of electrons, see Figure 3.3. Mathematically this may be represented
as a superposition of electronic wave functions centred on the nuclear coordinates which
together define a probabilistic model of how electrons are distributed through space.
Therefore in a protein with at least hundreds of electrons to more than thousands of
electrons, it is very expensive or even impossible to represent and compute the properties
of protein using electronic wave functions, cf. Ritchie [78].

A common and straightforward way to display the structures of proteins and in gen-
eral case molecules is simply to draw each atom of a molecule as a sphere of a given
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Figure 3.3.: Molecules are collection of atoms and atoms are often assumed as fixed ar-
rangement of atomic nuclei surrounded by clouds of electrons.

radius which is called the van der Waals (VDW) radius, see Ritchie [78]. When the
sphere of two atoms just touch, the interatomic distance is equal with the summation of
the VDW radii of them. The boundary of the union of these spheres for a molecule is
called the van der Waals surface (VDWS) of that molecule. A solvent molecule usually
water that rolls over the VDWS of a molecule is called probe molecule. If this probe
molecule is rolled over the VDWS without any penetration then the trace of the probe’s
centroid is called the solvent accessible surface (SAS). The volume bounded by the van
der Waals surface and SAS was called by Ritchie the skin volume and plays a key role in
docking calculations.

Grant and Pickup [41], in 1995 have shown an effective way to describe a molecule
in terms of Gaussian density function. The overall matter of molecule M of NM atoms
can be represented by the sum of atomic densities

ρ(x) =

NM∑
j=1

αe
−β
(
‖x‖22
r2
j

)
, (3.1)

where rj is the van der Waals radius of the j-th atom and α and β are adjustable
parameters, cf. Ritchie [78].

3.1.3. Affinity Functions in General

With inspiration of the Grant-Pickup’s idea, see (3.1), for a representation of three-
dimensional shape density of molecules, we define affinity functions for different properties
of the two molecules that should be docked. The idea for affinity functions is the same
for almost every property. Therefore we consider M as a molecule with NM atoms and a
desired property. The general affinity function is defined by

QProperty
M (x) =

NM∑
j=1

γProperty(xj)κ
j
G (x− xj) , (3.2)
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Figure 3.4.: Molecular Surfaces. The van der Waals surface (VDWS) of a molecule is the
boundary of the union of spheres of the atoms in the molecule. The solvent
molecule (probe) rolls over the molecule’s van der Waals surface. The trace
of the probe’s centroid is called the solvent accessible surface (SAS) and the
boundary of the volume which the probe can not penetrate is called solvent
excluded surface (SES) or sometimes Connolly surface.

where xj is the centre of the j-th atom, the function γProperty(xj) assigns weights to the
j-th atom and

κjG (x) = e
β

(
1− ‖x‖

2
2

r2
j

)
, (3.3)

is the Gaussian density function where rj is the van der Waals radius of the j-th atom
and β controls the sharpness of the Gaussian density function.

3.1.4. Shape Complementarity Score

For the shape based docking we always maximize the overlap of the surface of one molecule
with the complementary space of the other molecule, therefore we define two skin regions
and two core regions for the two supposed molecules A and B, i.e.

1. The surface skin of molecule B which is the VDWS of the molecule B.

2. The surface skin of molecule A defined by introducing a one-layer of pseudo-atoms
on the VDWS of molecule A, for further information about pseudo atom see [64].

3. The atoms of molecule A and inner atoms of molecule B form the core regions, see
Figure 3.5.

According to (3.2), we define our affinity functions for molecules A and B respectively by

QSC
A (x) =

NA∑
j=1

γSC,A(xj)κ
j
G (x− xj) , (3.4)
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Figure 3.5.: This pictures shows skin and core regions in shape complementarity. For
more details read the text.

and

QSC
B (x) =

NB∑
j=1

γSC,B(xj)κ
j
G (x− xj) . (3.5)

Here we consider the shape as a property where the function γSC,A(x) assigns different
values to the defined regions skin and core of the molecule A by

γSC,A(x) =


1 if x ∈ skin A
%i if x ∈ core A
0 otherwise,

(3.6)

and %� 1. Analogously we can define γSC,B(x).

Now we define the overlap of these two functions by

CSC ((R, t)) = Re

∫
R3

QSC
A (x) · T tΛR

(
QSC

B (x)
)

dx. (3.7)

For the next step, we need to find a fast algorithm to maximize the scoring function
(3.7). Protein docking algorithms typically produce a set of candidate solutions and the
scoring function is used to assess the goodness of the candidate solutions.

3.1.5. Fast Translational Matching Algorithm on Shape Complementarity

Here our goal is introducing an efficient algorithm to solve the docking problem, hence
we need to compute the scoring function for certain number of different motions (R, t) ∈
SE(3). From (2.7) and (2.8), we have

• ∀ (R, t) ∈ SE(3); (R, t) = (I, t) o (R,0) = T tΛR,

• ∀ (R, t) ∈ SE(3) and ∀x ∈ R3; (R, t) · x = Rx− t,
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Figure 3.6.: This is a picture of a particular affinity function QSC
M (x) with NM = 8

and x1 = (4.060, 7.307, 5.186), x2 = (4.042, 7.776, 6.533), x3 =
(2.668, 8.426, 6.664), x4 = (1.987, 8.438, 5.606), x5 = (5.090, 8.827, 6.797),
x6 = (6.338, 8.761, 5.929), x7 = (6.576, 9.758, 5.241), x8 =
(7.065, 7.759, 5.948) and γSC,M(x1) = γSC,M(x2) = . . . = γSC,M(x8) = 1.

therefore the scoring function (3.7) can be written as

CSC ((R, t)) = Re

∫
R3

QSC
A (x) ·QSC

B (Rx− t) dx. (3.8)

As a rigid body motion (R, t) ∈ SE(3) has six degrees of freedom, the search space
for the docking problem is six-dimensional. For each fixed rotation R ∈ SO(3), the scor-
ing function CSC ((R, t)) is a correlation of affinity functions QSC

A (x) and QSC
B (x), and

can be computed by NFFT and its adjoint, see e.g. [74], and also Lemma 2.3.2. Since for
all favorable rotations R ∈ SO(3), we have to compute CSC ((R, t)), therefore different
translations will be computed by NFFT, hence this approach in protein docking is called
“Fast taranslational matching (FTM)” approach.

In the following we describe the needed modifications on the defined affinity functions in
the fast translational matching approach.

First of all, we need to consider molecules A and B in the unit cube [−1
2 ,

1
2 ]3, thefore we



FTM Algorithm On Shape Complementarity 55

compute the diameters

dA = max ‖xj − xk‖2 where j, k ∈ {1, 2, . . . , NA} (3.9)

and
dB = max ‖xj − xk‖2 where j, k ∈ {1, 2, . . . , NB} , (3.10)

for molecules A and B and also the centres of them by

cA =
1

NA

NA∑
k=1

xk (3.11)

and

cB =
1

NB

NB∑
k=1

xk. (3.12)

With having the molecules diameters and molecule centres, we can compute the modified
atomic centres of the molecules A and B by

zj =
xj − cA

2D
, j = 1, 2, . . . , NA (3.13)

and

zj =
xj − cB

2D
, j = 1, 2, · · · , NB, (3.14)

where D = max {dA, dB}+ω. Adding ω to the maximum diameters ensures the outermost
atoms are inside the unite cube, see Vollrath [96, 6.4, p. 103]. Now we have the relocated
and scaled atomic centres and we have to scale the van der Waals radii of atoms by the
factor 1

2D to adjust the atoms in the unit cube [−1
2 ,

1
2 ]3, i.e.

κjG(x) = e
β

(
1− ‖x‖

2
2

r2
j

)
7−→ κ̂jG(x) =

{
κjG( x

2D ) if−D ≤ ‖x‖∞ ≤ D
0 otherwise.

(3.15)

Now we approximate the Gaussian function in the unite cube as in the following:

κ̂jG(x) ≈ κ̃jG(x) =
∑
k∈In

ĥke2πix·k, (3.16)

where

In =

{
k ∈ Z3; k ∈

[
−n

2
,
n

2

)3
, n ∈ 2N

}
(3.17)

and

ĥk =

∫
[− 1

2
, 1
2
]3
κ̂jG(x)e−2πix·k dx (3.18)

are the Fourier coefficients. Now we have the following approximation of QSC
A (x) in the

assumed unit cube by using (3.16). We have

QSC
A (x) ≈ Q̃SC

A (x) =

NA∑
j=1

γSC,A(zj)κ̃
j
G(x− zj)

=

NA∑
j=1

γSC,A(zj)

∑
k∈In

ĥke2πi(x−zj)·k


=
∑
k∈In

ĥkαke
2πix·k,

(3.19)
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where

αk =

NA∑
j=1

γSC,A(zj)e
−2πizj ·k. (3.20)

In this approximated affinity function, the fuction has been separated into a molecule
independent part and molecule dependent part αk. We will see the advantage of this
separation. Also we have

QSC
B (Rx− t) =

NB∑
j=1

γSC,B(zj)κ̂
j
G ((Rx− t)− zj) . (3.21)

So for approximation of the affinity function QSC
B (Rx − t), first of all we need to know

the effect of a rotation R ∈ SO(3) on the Gaussian function κ̂jG (x− zj). Since

κ̂jG (Rx− zj) = e
β

(
1−
‖Rtx−zj‖

2
2

r2
j

)
, (3.22)

and also from the Lemma 2.1.1, we know

‖Rtx− zj‖
2
2 = ‖R

(
Rtx− zj

)
‖2
2
. (3.23)

Now by substituting (3.23) in (3.22), we have

κ̂jG (Rx− zj) = e
β

1−
‖R(Rtx−zj)‖

2

2
r2
j



= e
β

(
1−
‖x−Rzj‖

2
2

r2
j

)

= κ̂jG (x−Rzj) .

(3.24)

Using the formulas (3.24) and (3.16), we can approximate the rotated and translated
Gaussian functions by

κ̃jG ((Rx− t)− zj) = κ̃jG ((x− t)−Rzj)

=
∑
k∈In

ĥke2πi((x−t)−Rzj)·k

=
∑
k∈In

ĥke2πi(x−t)·ke−2πiRzj ·k.

(3.25)

Now we are ready to approximate QSC
B (Rx− t). So

Q̃SC
B (Rx− t) =

NB∑
j=1

γSC,B(zj)κ̃
j
G ((Rx− t)− zj)

=

NB∑
j=1

γSC,B(zj)

∑
k∈In

ĥke2πi(x−t)·ke−2πiRzj ·k


=
∑
k∈In

ĥkβ
R
k e2πi(x−t)·k,

(3.26)
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where

βRk =

NB∑
j=1

γSC,B(zj)e
−2πiRzj ·k. (3.27)

Similar to (3.19), this affinity function was separated into molecule independent part and
also molecule dependent part βRk , which is also dependent on the rotations R ∈ SO(3).

Now we can approximate the scoring function (3.8) by

CSC ((R, t)) = Re

∫
R3

QSC
A (x) ·QSC

B (Rx− t) dx

≈ Re

∫
[− 1

2
, 1
2
]3

Q̃SC
A (x) · Q̃SC

B

(
Rtx− t

)
dx

= Re

∫
[− 1

2
, 1
2
]3

∑
k∈In

ĥkαke2πix·k
∑
k′∈In

ĥk′β
R
k′xe2πi(x−t)·k

′
dx

= Re

∑
k∈In

∑
k′∈In

ĥkĥk′αkβ
R
k′e
−2πit·k′

(∫
[− 1

2
, 1
2
]3

e2πix·ke2πix·k
′
dx

) .

(3.28)

We have
∫
[− 1

2
, 1
2
]3e2πix·ke2πix·k

′
dx = δk′,−k, so k′ = −k, also since κjG(x) = κjG(−x), hence

by (3.18) we get ĥk = ĥ−k, therefore

CSC ((R, t)) ≈ Re

∑
k∈In

∑
k′∈In

ĥkĥk′αkβ
R
k′e
−2πit·k′δk,k′


= Re

∑
k∈In

ĥ2kαkβ
R
−ke2πit·k

 .

(3.29)

Finally we have an algorithm which is called fast translational matching (FTM) algo-
rithm for our docking problem. For precomputed coefficients ĥk, αk and βR−k, where

αk and βR−k, are computed by NFFT and the computational complexity of them respec-
tively are O

(
NA + n3 log n

)
and O

(
NB + n3 log n

)
N3

R, this algorithm can be computed
by NFFT, and the computational complexity of that is O

((
N3

R + n3 log n
)
N3

t

)
, where

NR andNt respectively denote the number of rotations and translations in one dimension.

If we compute the docking problem (3.8), directly without using the fast transla-
tional matching algorithm, the computational complexity in comparison, is very expen-
sive, because the computational complexity for all required motions (R, t) ∈ SE(3), for
QSC

A (x), is NA and similarly the computational complexity of QSC
B (Rx− t), only for one

motion (R, t) ∈ SE(3), is NB, and hence the computational complexity for all required
motions, i.e. N3

R rotations and N3
t translations is NBN

3
RN

3
t , therefore the computational

complexity of the straightforward docking approch is NANBN
3
RN

3
t .



58 FTM Algorithm On Shape & Electrostatic Complementarity

Algorithm 1: FTM Algorithm on Shape Complementarity

Input:
n: The degree of Fourier approximation
NA & NB: The number of atomic coordinates of molecules A and B
A set of motions (R, t) ∈ SE(3)

foreach xj with j ∈ NA/B do
Compute the modified atomic centers zAj and zBj , respectively of (3.13) and

(3.14).

end
foreach k ∈ In do

Compute coefficients ĥk of (3.18).
Compute αk of (3.20) by NFFT.
foreach Rotation R ∈ SO(3) do

Compute βR−k of (3.27) by NFFT.

end

end
foreach motion (R, t) ∈ SE(3) do

Compute Re

∑
k∈In

ĥ2kαkβ
R
−ke2πit·k

 in (3.29) by NFFT.

end
Output: The solution of the docking problem.

Complexity: O
((
N3

R + n3 log n
)
N3

t

)
operations.

3.2. FTM Algorithm on a Simplified Model for Electrostatic
Complementarity

3.2.1. Introduction

We know molecular docking is the study of how two or more molecular structures fit
together best to make a complex, but from the physical point of view, the most precise
way for studying the structure of matter is to apply quantum mechanics to the situations,
therefore the interaction between two macromolecules could be realized by solving the
combined Schrödinger equation of both systems. It is impossible to find an explicit solu-
tion for this difficult problem, although it is possible to find a numerical solution which
is computationally too expensive to produce truly applied results, cf. Kaapro et al. [50].
Although there is no escape of some quantum phenomena, like covalent bonds between
atoms and also Pauli exclusion principle (PEP) which states if the distance between two
particles is very small, then they experience a strong repulsive force, we need to study the
quality and quantity of forces between the interactive particles. Often forces are divided
into five categories, for more details see A. Kaapro and J. Ojanen [50].
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1. Forces with Electrostatic Origin

Forces with electrostatic origin are due to charges residing in the matter. The solid
or liquid phases of matter for a molecule or atom are due to attractive forces between
the molecules or atoms. If no attractive forces exist, then a collection of molecules or
atoms would remain in the gas phases. The most common interactions are charge-charge,
charge-dipole and dipole-dipole. These forces can be calculated by basic law of Coulomb.
Coulombs’s law states that the force acting between two point charges q1 and q2 separated
by a distance r in a vacuum is

F =
q1q2

4πε0r2
· (3.30)

If the two charges have the same sign, either both positive or both negative, then F > 0
and the force is repulsive, see Figure 3.7. If the two charges are of opposing sign, then
F < 0 and the force is attractive, see Figure 3.8. Note that, if the two charges are not in a
vacuum but are instead separated by another medium then the force acting between them
is reduced. Coulomb’s law must be modified with the vacuum permittivity ε0 replaced
by the permittivity of the medium ε = ε0εR and hence

F =
q1q2

4πεr2
. (3.31)

q1 q2 F12F21

Figure 3.7.: Coulomb’s Law: Repulsion. The vector F21 is the electrostatic force ex-
prienced by q1 and the vector F12 is the force exprienced by q2. Here q1q2 > 0,
so the forces are repulsive and |F12|= |F21|.

q1 q2F21 F12

Figure 3.8.: Coulomb’s Law: Attraction. Here q1q2 < 0, so the kind of forces are at-
traction and |F12| = |F21| = k |q1q2|

r2
where r is the distance between the two

charges q1 and q2.

The potential energy resulting from the electrostatic interaction between two charges q1
and q2 is

Φ = k
q1q2
r
, (3.32)

where k = 1/(4πε0) and Φ is equivalent to the work that must be done to bring the two
charges together from an infinite separation.

Dependencies on the distance of these interactions with electrostatic origin are as the
following:

• Charge-Charge (ion-ion) ∝ 1/r

• Charge-Dipole (ion-dipole) ∝ 1/r2
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• Dipole-Dipole (hydrogen bonds) ∝ 1/r3

2. Forces with Electrodynamic Origin

In addition to electrostatic forces, there exist forces with electrodynamic background.
Atoms, those are normally electrically neutral may develop an induced dipole moment
when an external electric field is applied. The most common interactions are dispersion
forces and induced dipole-induced dipole. Dispersion forces are attractive forces that arise
as a result of temporary dipoles induced in atoms and can be categorized in two groups,
chare-induced dipole and dipole-induced dipole. Note that van der Waals interaction
is the force between the two induced dipoles and it has a very short range. Range
dependencies are as the following:

• Charge-Induced Dipole (ion-induced dipole) ∝ 1/r4

• Dipole-Induced Dipole (ion-induced dipole) ∝ 1/r5

• Induced Dipole-Induced Dipole (van der Waals) ∝ 1/r6

3. Forces with Electromagnetic Origin

Electromagnetic force is a special force that effects anything in the nature like gravity.
Since materials in solid and liquid forms are made of charges having a unique order, they
also may be manipulated by this force. It is also responsible for giving things strength,
shape and hardness. The electromagnetic force can be generated by three types of fields
known as electrostatic field, magnetostatic field and the electromagnetic field , for further
information see http://emandpplabs.nscee.edu.

4. Steric Forces

Steric effects arise from the fact that each atom within a molecule occupies a certain
amount of space. If atoms are brought too close together, the overlapping of electron
clouds between them spent more energy due to repulsive forces, and this may affect the
molecule’s shape.

To understand about steric forces is an important subject in chemistry and pharmacol-
ogy. In chemistry steric effects affect energies and the rates of most chemical reactions.
In pharmacology, steric effects determine how and at what rate a drug interact with the
disease causing. The most common types of steric forces are steric hinderance, steric
shielding, steric attraction, steric repulsion and chain crossing. The structure, proper-
ties, and reactivity of a molecule is dependent on bonding. This bonding supplies a basic
molecular skeleton that is modified by repulsive forces. These repulsive forces include the
steric interactions, for more details see Newman [66].

5. Solvent-Related Forces

Solvent-related forces are due to the structural changes of the solvent. These structural
changes are generated when ions, proteins, etc. are added into the structure of solvent.

http://emandpplabs.nscee.edu
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For example, when water is acting as a solvent, one must take the polaric nature of water
molecule into account.

It is very hard to determine the solvent-related interactions because their modeling de-
pends very much on the way that the actual solvent is modeled. Examples are hydrophilic
interactions and hydrophobic interactions.

3.2.2. A Simplified Model for Electrostatic Complementarity

Gabb et al., cf. [36], have described a simplified model for electrostatics and also Bajaj
et al. in [8] and [7] have used FTM algorithm on this simplified model. In the previous
section, we modeled our affinity functions using Gaussian function and in this section we
will follow Gabb and Bajaj with a little change in the affinity functions used in electro-
static complementarity. At first we try to explain simply the notions of charge density,
electrostatic potential and electrostatic potential energy in a system.

We know matter is made of molecules and molecules are a collection of atoms. Atoms
consist of a dense central nucleus contains a mix of positively charged protons and electri-
cally neutral neutrons, surrounded by a cloud of negatively charged electrons, see Figure
3.3. Atoms typically have equal numbers of protons and electrons in which case their
charges cancel out, yielding a net charge of zero thus making the atom neutral. Hence the
electric charge is the fundamental property of forms of matter that exhibit electrostatic
attraction or repulsion and Coulomb’s law (3.30) and (3.31) computes the electrostatic
force between charges. A point like charge is an idealized model of a particle that has an
electric charge. So the charge in a region consists of N discrete point like charge carriers
(volume charge density) is expressed via the Dirac delta function, i.e.

ρq(x) =

N∑
i=1

qiδ (x− xi) , (3.33)

where xi is the position of point like charge carrier qi. Also the electrostatic potential
generated by these N discrete point like charge carriers is computed by

Φ(x) =

N∑
i=1

qi
ε (x− xi) ‖x− xi‖2

, (3.34)

where

ε (x) =


4 if ‖x‖2 ≤ 6

80 if ‖x‖2 ≥ 8

38‖x‖2 − 224 otherwise,

(3.35)

for more details see Gabb et al. [36]. The electrostatic potential energy E (x), stored in
a system with volume charge density ρq(x) and electrostatics potential Φ(x) is computed
by

E (x) =

∫
R3

ρq(x)Φ(x) dx. (3.36)
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Now we define our affinity functions. We are given two molecules A and B. These two
molecules are considered as two volumes with NA and NB point like charge carriers.
Hence we define our affinity functions by

QEC
A (x) =

NA∑
j=1

qj
ε (x− xj) ‖x− xj‖2

κjG (x− xj) (3.37)

and

QEC
B (x) =

NB∑
j=1

qjκ
j
G (x− xj) , (3.38)

where qj is the point charge at position xj , ε (x) has been defined in (3.35), and

κjG (x− xj) = e
β

(
1−
‖x−xj‖

2
2

r2
j

)
.

We fix molecule A and we rotate and translate molecule B, hence we define the scoring
function by

CEC (R, t) = Re

∫
R3

QEC
A (x) · ΛRT tQEC

B (x) dx. (3.39)

3.2.3. Fast Translational Matching on Electrostatic Complementarity

Here we will apply the fast translational matching algorithm to efficiently compute the
scoring function (3.39). Similar to the shape complementarity approach, we describe all
the essential modifications in the fast translational matching approach. Here also we
relocate and scale the molecules such that they can be inside the unit cube [−1

2 ,
1
2 ]3. In

the previous section from (3.9) to (3.18), we described all the details. To avoid of repeti-
tion, we consider all the steps from (3.9) to (3.18), but we do not rewrite these steps again.

Now we suppose molecules A and B are inside the unit cube [−12 ,
1
2 ]3, so we can ap-

proximate the affinity function QEC
A (x) using (3.16). We have

QEC
A (x) =

NA∑
j=1

qj κ̂′
j

G (x− zj) , (3.40)

where

κ̂′
j

G (x− zj) =
qj

ε (x− zj) ‖x− zj‖2
κ̂jG (x− zj) . (3.41)

Similar to (3.16), we have

κ̂′
j

G (x− zj) ≈ κ̃′
j

G (x− zj) =
∑
k∈In

ĥ′ke2πi(x−zj)·k (3.42)

and

ĥ′k =

∫
[−1

2
, 1
2
]3
κ̂′
j

G (x− zj) e−2πi(x−zj)·k dx. (3.43)
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Hence we have

QEC
A (x) ≈ Q̃EC

A (x) =

NA∑
j=1

qj κ̃′
j

G (x− zj)

=

NA∑
j=1

qj

∑
k∈In

ĥ′ke2πi(x−zj)·k


=
∑
k∈In

ĥ′kαke2πix·k,

(3.44)

where

αk =

NA∑
j=1

qje
−2πizj ·k. (3.45)

In analogy to the last section, here also we could divide the affinity function into molecule
independent part and molecule dependent part αk.

Now with the aid of (3.21) and (3.24), we can approximate QEC
B (Rx− t), so

Q̃EC
B (Rx− t) =

NB∑
j=1

qj κ̃
j
G ((Rx− t)− zj)

=

NB∑
j=1

qj

∑
k∈In

ĥke2πi(x−t)·ke−2πiRzj ·k


=
∑
k∈In

ĥkβ
R
k e2πi(x−t)·k,

(3.46)

where

βRk =

NB∑
j=1

qje
−2πiRzj ·k. (3.47)

Here also the affinity function was divided into molecule independent part and molecule
dependent part βRk which also depends on the rotations R ∈ SO(3).

Now we can approximate the scoring function (3.39), namely

CEC ((R, t)) = Re

∫
R3

QEC
A (x) ·QEC

B (Rx− t) dx

≈ Re

∫
[− 1

2
, 1
2
]3
Q̃EC

A (x) · Q̃EC
B

(
Rtx− t

)
dx

= Re

∫
[− 1

2
, 1
2
]3

∑
k∈In

ĥ′kαke2πix·k
∑
k′∈In

ĥk′β
R
k′e

2πi(x−t)·k′

 dx

= Re

∑
k∈In

∑
k′∈In

ĥ′kĥk′αkβ
R
k′e
−2πit·k′

(∫
[− 1

2
, 1
2
]3

e2πix·ke2πix·k
′
dx

) .

(3.48)
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Since
∫
[− 1

2
, 1
2
]3e2πix·ke2πix·k

′
dx = δk′,−k, so k′ = −k and hence we have

CEC ((R, t)) ≈ Re

∑
k∈In

∑
k′∈In

ĥ′kĥk′αkβ
R
k′e
−2πit·k′δk,k′


= Re

∑
k∈In

ĥ′kĥ−kαkβ
R
−ke2πit·k

 .

(3.49)

The summation represents a three-dimensional Fourier sum that can be computed by
NFFT with the computational complexity O

(
n3 log n+N3

R

)
operations. The sum to

compute αk is a three-dimensional Fourier sum and can be computed by NFFT algo-
rithm and its computational complexity is O

(
NA + n3 log n

)
operations. Also the sum

to compute βR−k is a three-dimensional Fourier sum and is computed by NFFT with the
computational complexity O

((
NB + n3 log n

)
N3

R

)
operations.

In straightforward way, for computation of the scoring function CEC ((R, t)), for all given
motions (R, t) of SE(3), we have to compute the affinity functions QEC

A (x) which takes
O(NA) operations and the affinity functions QEC

B (Rtx−t) which takes O
(
NBN

3
RN

3
t

)
op-

erations and hence the overall computational complexity is O
(
NANBN

3
RN

3
t

)
operations.

Therefore we see the advantage of FTM approach in comparison to the straightforward
way, for improvement the computational complexity.
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Algorithm 2: FTM Algorithm on Electrostatic Complementarity

Input:
n: The degree of Fourier approximation
NA & NB: The number of atomic coordinates of molecules A and B
A set of motions (R, t) ∈ SE(3)

foreach xj with j ∈ NA/B do
Compute the modified atomic centers zAj and zBj , respectively of (3.13) and

(3.14).

end
foreach k ∈ In do

Compute coefficients ĥ′k of (3.43).

Compute coefficients ĥ−k of (3.18).
Compute αk of (3.45) by NFFT.
foreach Rotation R ∈ SO(3) do

Compute βR−k of (3.47) by NFFT.

end

end
foreach (R, t) ∈ SE(3) do

Compute Re

∑
k∈In

ĥ′kĥ−kαkβ
R
−ke2πit·k

 in (3.49) by NFFT.

end
Output: The solution of the docking problem.

Complexity: O
((
N3

R + n3 log n
)
N3

t

)
operations.





CHAPTER 4

FRM ALGORITHM ON SURFACE &
ELECTROSTATICS

COMPLEMENTARITY

4.1. FRM on Surface Complementarity

4.1.1. Introduction

So far, we have obtained fast translational matching (FTM) algorithm to search for the
maximum of the scoring function (3.8) with respect to the different translations. In this
algorithm we could improve the computational complexity of the docking problem by
accelerating the computation of the scoring function (3.8) for the three translational de-
grees of freedom in each motion (R, t) ∈ SE(3).

Analogously, it is possible to repeat the computation of the correlation for different
rotations and this procedure is called fast rotational matching (FRM). A novel method
developed by Kovacs and Wriggers [58] that the fast Fourier transform (FFT) accelerates
all three rotational degrees of freedom. Also Vollrath in [96] has presented a method
that uses the computation of correlation for different rotations. Also she has discussed
how to compute correlation of functions in L2(S2) by FFT on the rotation group SO(3),
therefore in this method we are able to accelerate the computation of the scoring function
for the rotational degrees of freedom, cf. [96, 6.5].

Here, we present another method that considers the correlation as a function of two
rotations and one displacement parameter t. In this method we handle more degrees
of freedom and hence it speeds up the computation of the scoring function. In the rest
of this section, we use the Kovacs-Wriggers’ idea in [57] by recasting the docking prob-
lem into a formulation involving five angles and only one translational parameter. It is
possible to accelerate, five of the six degrees of freedom of the docking problem by NFFT.
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4.1.2. General Affinity Function in Spherical Coordinate System

In the Section 3.1.3, we have seen the general form of an affinity function QProperty
M (x),

see (3.2), for a molecule M with specific property that in general we have denoted by
“Property”, i.e.

QProperty
M (x) =

NM∑
j=1

γProperty(xj)e
β

(
1−
‖x−xj‖

2
2

ς2
j

)
,

where ςj is the van der Waals radius of the j-th atom and β controls the sharpness of the
Gaussian density function. Now we represent the general affinity function in a spherical
coordinate system.

Lemma 4.1.1 The general affinity function QProperty
M (x) in (3.2) has the following form

in the spherical coordinate system

QProperty
M (ru) =

NM∑
j=1

γProperty(xj)e
β

(
1−

r2+r2j−2rrj(cos(φ−φj) sin θ sin θj+cos θ cos θj)
ς2
j

)
,

where x = ru, r = ‖x‖2, and u = (θ, φ) ∈ [0, π] × [0, 2π) and similarly xj = rjuj,
rj = ‖xj‖2, uj = (θj , φj) ∈ [0, π]× [0, 2π).

Proof. We know each vector x = (x, y, z) ∈ R3 in Cartesian coordinate system has the
form

x = (r cosφ sin θ, r sinφ sin θ, r cos θ) , (4.1)

in the spherical coordinate system that we represent it by

x = ru, r = ‖x‖2 and u = (cosφ sin θ, sinφ sin θ, cos θ) , (4.2)

and briefly we denote it by

u := (θ, φ) ∈ [0, π]× [0, 2π). (4.3)

Hence we have

‖x− xj‖22
= ‖ (r cosφ sin θ − rj cosφj sin θj , r sinφ sin θ − rj sinφj sin θj , r cos θ − rj cos θj) ‖22
= (r cosφ sin θ − rj cosφj sin θj)

2 + (r sinφ sin θ − rj sinφj sin θj)
2 + (r cos θ − rj cos θj)

2

= r2 + r2j − 2rrj (cos(φ− φj) sin θ sin θj + cos θ cos θj) .

(4.4)

Substituting (4.4) in the general affinity function (4.1.2), proves the lemma. �
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4.1.3. GTO Spherical Polar Radial Fourier Coefficients Q̂SC
klm

In order to catch the detailed shapes of molecules sufficiently well, we apply the GTO
spherical polar radial basis functions {Rl

k(r)Y
m
l (u)}klm. This essentially causes to use

the mass density model instead of using the notion of defined surfaces for molecules, cf.
Ritchie [78]. Therefore for each property of interest we represent our affinity functions
according to Lemma 4.1.1. For shape complementarity (SC), our affinity functions are
defined as

QSC(ru) =

NM∑
j=1

γje
β

(
1−

r2+r2j−2rrj(cos(φ−φj) sin θ sin θj+cos θ cos θj)
ς2
j

)
(4.5)

and hence this function can be written uniquely in terms of GTO spherical polar radial
basis functions, see Lemma 2.3.10, i.e.

QSC(ru) =
∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂SC
klmRl

k(r)Y
m
l (u), (4.6)

where k, l and m are integer numbers with the condition k > l ≥ |m| ≥ 0 and so

Q̂SC
klm =

∫ ∞
0

∫
S2

QSC(ru)Rl
k(r)Y

m
l (u)r2 du dr (4.7)

are called the GTO spherical polar radial Fourier coefficients.

If we cut off the Fourier series QSC(ru) in (4.6) to order N , then it remains N(N +
1)(2N + 1)/6, GTO spherical polar radial Fourier coefficients Q̂SC

klm. For example, an
expression to order N = 13 involves N(N + 1)(2N + 1)/6= 819 of these coefficients.

Remark 4.1.1 If the affinity function QSC(ru) in (4.6) is rotated by a rotation R ∈
SO(3), then the GTO spherical polar radial Fourier coefficients Q̂SC

klm are multiplied by
the Wigner-D functions, i.e.

ΛRQ
SC(ru) = Q′SC(ru) = ΛR

( ∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂SC
klmRl

k(r)Y
m
l (u)

)

=
∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂SC
klmRl

k(r) (ΛRY m
l (u))

=

∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂SC
klmRl

k(r)

(
l∑

n=−l
Dnm
l ΛRY n

l (u)

)

=

∞∑
k=1

k−1∑
l=0

l∑
m=−l

(
l∑

n=−l
Q̂SC
klmDnm

l (R)

)
Rl
k(r)Y

n
l (u).

Hence, the rotated coefficients Q̂′
SC

klm are related to the unrotated coefficients Q̂SC
klm by

Q̂′
SC

klm =

l∑
n=−l

Q̂SC
klmDnm

l (R).



70 FRM Algorithm on Surface & Electrostatics Complementarity

Now our goal is to find an efficient way to compute the GTO spherical polar radial Fourier
coefficients Q̂SC(ru).

Lemma 4.1.2 The GTO spherical polar radial Fourier coefficients (4.7) are computed
by

Q̂SC
klm =

NM∑
j=0

∞∑
n=0

n+l even

(
2−2lim

√
(k − l − 1)!

Γ(k + 1/2)
× π

2
× (2l + 1)(l −m)!

(l +m)!
γje

β

(
1−

r2j

ς2
j

)

× e−imφj

(
βrj
ς2j

)n
/n!

k−l−1∑
j′=0

(−1)j
′

j′!

(
k − 1/2

k − l − 1− j′

)(
1

2
+
β

ς2j

)− (3+l+n+2j′)
2

× Γ

(
3 + l + n+ 2j′

2

) b l−m2 c∑
t=0

(2l − 2t)!22t

(l −m− 2t)!(l − t)!t!

l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)

×
m+1∑
t′=0

(
m+ 1

t′

)m+2n∑
q=m

(
n

q

)(
− i

2
sin θj

)q
(cos θj)

n−q
(

q
q−m
2

) q∑
u=0

(
q

u

)
(−1)u

×
n−q∑
v=0

(
n− q
v

)
(−1)t+t

′

n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′

)
.

(4.8)

Proof. By (4.7), we have

Q̂SC
klm =

∫ ∞
0

∫ 2π

0

∫ π

0

NM∑
j=1

γje
β

(
1−

r2+r2j−2rrj(cos(φ−φj) sin θ sin θj+cos θ cos θj)
ς2
j

)

×Rlk(r)Y m
l (φ, θ)r2 sin θ dθ dφ dr.

For more simplification, we denote

bj := 2β
rj
ς2j

(cos (φ− φj) sin θ sin θj + cos θ cos θj) . (4.9)

Hence,

Q̂SC
klm =

NM∑
j=1

γje
β

(
1−

r2j

ς2
j

) ∫ ∞
0

∫ 2π

0

∫ π

0
e
− β

ς2
j

r2

ebjrRlk(r)Y
m
l (θ, φ)r2 sin θ dθ dφ dr

=

NM∑
j=1

γje
β

(
1−

r2j

ς2
j

) ∫ 2π

0

∫ π

0
Y m
l (θ, φ) sin θ

(∫ ∞
0

e
− β

ς2
j

r2

ebjrRlk(r)r
2 dr

)
dθ dφ.

(4.10)
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Substituting Rl
k(r) by (2.37) gives

Q̂SC
klm =

NM∑
j=1

γje
β

(
1−

r2j

ς2
j

) ∫ 2π

0

∫ π

0
Y m
l (θ, φ) sin θ

(∫ ∞
0

e
− β

ς2
j

r2

ebjr

√
2(k − l − 1)!

Γ(k + 1
2)

× e−
r2

2 rl
k−l−1∑
j′=0

1

j′!

(
k − 1

2

k − l − 1− j′

)
(−r2)j′r2 dr

)
dθ dφ

=

NM∑
j=1

γje
β

(
1−

r2j

ς2
j

)√
2(k − l − 1)!

Γ(k + 1
2)

k−l−1∑
j′=0

(−1)j
′

j′!

(
k − 1

2

k − l − 1− j′

)

×
∫ 2π

0

∫ π

0
Y m
l (θ, φ) sin θ

∫ ∞
0

e
−
(
β

ς2
j

+ 1
2

)
r2

ebjrrl+2j′+2 dr

 dθ dφ.

(4.11)

For computing the coefficients in (4.11), at first we need to compute the inner integral

∫ ∞
0

e
−
(
β

ς2
j

+ 1
2

)
r2

ebjrrl+2j′+2 dr.

Since

ebjr =
∞∑
n=0

(bjr)
n

n!
, (4.12)

we have

∫ ∞
0

e
−
(
β

ς2
j

+ 1
2

)
r2

ebjrrl+2j′+2 dr =

∫ ∞
0

e
−
(
β

ς2
j

+ 1
2

)
r2 ∞∑
n=0

(bjr)
n

n!
rl+2j′+2 dr

=
∞∑
n=0

bnj
n!

∫ ∞
0

e
−
(
β

ς2
j

+ 1
2

)
r2

rl+2j′+n+2 dr

=

∞∑
n=0

(bj)
n

n!
× 1

2

(
β

ς2j
+

1

2

)− 1
2
(3+l+n+2j′)

Γ

(
3 + l + n+ 2j′

2

)
.

(4.13)

Replacing (4.13) in (4.11) gives

Q̂SC
klm =

NM∑
j=1

γje
β

(
1−

r2j

ς2
j

)√
2(k − l − 1)!

Γ
(
k + 1

2

) k−l−1∑
j′=0

(−1)j
′

j′!

(
k − 1

2

k − l − 1− j′

) ∞∑
n=0

1

n!
× 1

2

×

(
β

ς2j
+

1

2

)− 1
2
(3+l+n+2j′)

Γ

(
3 + l + n+ 2j′

2

)∫ 2π

0

∫ π

0
bnj Y m

l (θ, φ) sin θ dθ dφ.

(4.14)
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In this step of computation of Q̂SC
klm, we need to handle the following double integral

on S2 by the aid of spherical harmonics according to the Lemma 2.3.4, i.e.∫ 2π

0

∫ π

0
bnj Y m

l (θ, φ) sin θ dθ dφ =

∫ 2π

0

∫ π

0
bnj

(
1

2

)l√(2l + 1)(l −m)!

4π(l +m)!

×
b l−m

2
c∑

t=0

(−1)t+m(2l − 2t)!

(l −m− 2t)!(l − t)!t!
(sin θ)m (cos θ)l−m−2t e−imφ sin θ dθ dφ

=

(
1

2

)l√(2l + 1)(l −m)!

4π(l +m)!
×
b l−m

2
c∑

t=0

(−1)t+m(2l − 2t)!

(l −m− 2t)!(l − t)!t!

×
∫ 2π

0

∫ π

0
bnj (sin θ)m+1 (cos θ)l−m−2t e−imφ dθ dφ.

(4.15)

Now, again we need to compute the following double integral∫ 2π

0

∫ π

0
bnj (sinφ)m+1 (cosφ)l−m−2t e−imθ dφ dθ, (4.16)

and in order to compute this double integral, we do the following steps:

1. We have

bnj =

(
2
β

ς2j
rj (cos (φ− φj) sin θ sin θj + cos θ cos θj)

)n

=

(
2
β

ς2j
rj

)n
(cos (φ− φj) sin θ sin θj + cos θ cos θj)

n

=

(
2
β

ς2j
rj

)n n∑
q=0

(
n

q

)
(cos (φ− φj) sin θ sin θj)

q (cos θ cos θj)
n−q

=

(
2
β

ς2j
rj

)n n∑
q=0

(
n

q

)(
ei(φ−φj) + e−i(φ−φj)

2

)q (
eiθ − e−iθ

2i

)q

× (sin θj)
q

(
eiθ + e−iθ

2

)n−q
(cos θj)

n−q .

Using the binomial theorem, gives

bnj =
( β
ς2j
rj
)n n∑

q=0

(
n

q

)(
− i

2

)q
(sin θj)

q (cos θj)
n−q

q∑
s=0

(
q

s

)
e−i(φ−φj)s

× ei(φ−φj)(q−s)
q∑

u=0

(−1)u
(
q

u

)
e−iθueiθ(q−u)

n−q∑
v=0

(
n− q
v

)
e−iθveiθ(n−q−v)

=

(
β

ς2j
rj

)n n∑
q=0

(
n

q

)(
− i

2

)q
(sin θj)

q (cos θj)
n−q

q∑
s=0

(
q

s

) q∑
u=0

(
q

u

)
(−1)u

×
n−q∑
v=0

(
n− q
v

)
ei(φ−φj)(q−2s)ei(n−2u−2v)θ.

(4.17)
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2. Also we need to rewrite

(sin θ)m+1 =

(
eiθ − e−iθ

2i

)m+1

=

(
− i

2

)m+1 m+1∑
t′=0

(
m+ 1

t′

)
(−e−iθ)t

′
(eiθ)m+1−t′

=

(
− i

2

)m+1 m+1∑
t′=0

(
m+ 1

t′

)
(−1)t

′
ei(m+1−2t′)θ.

(4.18)

3. Finally, it remains to rewrite the following by

(cos θ)l−m−2t =

(
eiθ + e−iθ

2

)l−m−2t
=

(
1

2

)l−m−2t l−2t−m∑
t′′=0

(
l −m− 2t

t′′

)(
e−iθ

)t′′
×
(

eiθ
)l−m−2t−t′′

=

(
1

2

)l−2t−m l−2t−m∑
t′′=0

(
l −m− 2t

t′′

)
ei(l−m−2t−2t

′′)θ.

(4.19)

Now, we replace (4.17), (4.18) and (4.19) into the double integral (4.16), hence∫ 2π

0

∫ π

0
bnj (sin θ)m+1 (cos θ)l−m−2t e−imφ dθ dφ

=

(
β

ς2j
rj

)n n∑
q=0

(
n

q

)(
− i

2
sin θj

)q
(cos θj)

n−q
q∑
s=0

(
q

s

) q∑
u=0

(
q

u

)
(−1)u

n−q∑
v=0

(
n− q
v

)

×
(
− i

2

)m+1 m+1∑
t′=0

(−1)t
′
(
m+ 1

t′

)(
1

2

)l−m−2t l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)
×
∫ 2π

0

∫ π

0
ei(n−2u−2v)θei(q−2s)(φ−φj)ei(m+1−2t′)θei(l−m−2t−2t

′′)θe−imφ dθ dφ.

We simplify the above expression and hence we have∫ 2π

0

∫ π

0
bnj (sin θ)m+1 (cos θ)l−m−2t e−imφ dθ dφ

=

(
β

ς2j
rj

)n(
− i

2

)m+1 (1

2

)l−m−2t n∑
q=0

(
n

q

)(
− i

2
sin θj

)q
(cos θj)

n−q
q∑
s=0

(
q

s

)

×
q∑

u=0

(
q

u

)
(−1)u

n−q∑
v=0

(
n− q
v

)m+1∑
t′=0

(
m+ 1

t′

)
(−1)t

′
l−2t−m∑
t′′=0

(
l −m− 2t

t′′

)
×
∫ 2π

0

∫ π

0
ei(n+l+1−2u−2v−2t−2t′−2t′′)θe−imφei(q−2s)(φ−φj) dθ dφ.

(4.20)

Now we need to compute the double integral (4.20), so∫ 2π

0

∫ π

0
ei(n+l+1−2u−2v−2t−2t′−2t′′)θe−imφei(q−2s)(φ−φj) dθ dφ

= e−i(q−2s)φj
(∫ 2π

0
ei(q−2s−m)φ

(∫ π

0
ei(n+l+1−2u−2v−2t−2t′−2t′′)θ dθ

)
dφ

)
.

(4.21)
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We have ∫ 2π

0
ei(q−2s−m)φ dφ = 2πδm,q−2s (4.22)

and also ∫ π

0
ei(n+l+1−2u−2v−2t−2t′−2t′′)θ dθ := λn,l,u,v,t,t′,t′′ , (4.23)

where

λn,l,u,v,t,t′,t′′ =


π if n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′ = 0

2i
n+l+1−2u−2v−2t−2t′−2t′′ if (n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′) odd

0 otherwise,

or equivalently

λn,l,u,v,t,t′,t′′ =


π if n+ l = 2u+ 2v + 2t+ 2t′ + 2t′′ − 1

2i
n+l+1−2u−2v−2t−2t′−2t′′ if (n+ l) even

0 otherwise.
(4.24)

Therefore∫ 2π

0

∫ π

0
ei(n+l+1−2u−2v−2t−2t′−2t′′)θe−imφei(q−2s)(φ−φj) dθ dφ

= e−i(q−2s)φj
(∫ 2π

0
ei(q−2s−m)φ

(∫ π

0
ei(n+l+1−2u−2v−2t−2t′−2t′′)θ dθ

)
dφ

)
= e−i(q−2s)φj × 2πδm,q−2s × λn,l,u,v,t,t′,t′′ .

(4.25)

Thus we could compute the double integral (4.21) and consequently the double integral
(4.20). Therefore having (4.15) gives

Q̂SC
klm =

NM∑
j=1

γje
β

(
1−

r2j

ς2
j

)√
2(k − l − 1)!

Γ
(
k + 1

2

) k−l−1∑
j′=0

(−1)j
′

j′!

(
k − 1

2

k − l − 1− j′

)

×
(

1

2

)l+1 ∞∑
n=0

1

n!

(
1

2
+
β

ς2j

)− 1
2
(3+l+n+2j′)

Γ

(
3 + l + n+ 2j′

2

)

×

√
(2l + 1) (l −m)!

4π(l +m)!

b l−m
2
c∑

t=0

(−1)t+m(2l − 2t)!

(l −m− 2t)!(l − t)!t!
(βrj)

n

×
n∑
q=0

(
n

q

)(
− i

2
sin θj

)q
(cos θj)

n−q
q∑
s=0

(
q

s

) q∑
u=0

(−1)u
(
q

u

)

×
n−q∑
v=0

(
n− q
v

)(
− i

2

)m+1 m+1∑
t′=0

(
m+ 1

t′

)
(−1)t

′
(

1

2

)l−m−2t

×
l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)
e−i(q−2s)φj × 2πδm,q−2s × λn,l,u,v,t,t′,t′′ .

(4.26)
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Now considering the Kronecker delta function δm,q−2s implies q = m + 2s, and since
s = s(q) = q−m

2 is an integer-valued function and q = 0, 1, . . . , n, hence we have

Q̂SC
klm =

NM∑
j=1

∞∑
n=0

n+l even

((
1

2

)2l

π im

√
(k − l − 1)!

Γ
(
k + 1

2

) × (2l + 1)(l −m)!

2π(l +m)!
γje

β

(
1−

r2j

ς2
j

)

× e−imφj (
β

ς2j
rj)

n/n!
k−l−1∑
j′=0

(−1)j
′

j′!

(
k − 1

2

k − l − 1− j′

)(
1

2
+
β

ς2j

)− 1
2
(3+l+n+2j′)

× Γ

(
3 + l + n+ 2j′

2

)m+2n∑
q=m

(
n

q

)(
− i sin θj

2

)q
(cos θj)

n−q
(

q
q−m
2

) q∑
u=0

(
q

u

)
(−1)u

×
n−q∑
v=0

(
n− q
v

)m+1∑
t′=0

(
m+ 1

t′

)
×
b l−m

2
c∑

t=0

(2l − 2t)!(12)−2t

(l −m− 2t)!(l − t)!t!

l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)

× (−1)t+t
′

n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′

)
+A,

(4.27)

where

A =

NM∑
j=1

∞∑
n=0

n+l=2u+2v+2t+2t′+2t′′−1

((
1

2

)2l

π im

√
(k − l − 1)!

Γ
(
k + 1

2

) × (2l + 1)(l −m)!

2π(l +m)!

× γje
β

(
1−

r2j

ς2
j

)
e−imφj (

β

ς2j
rj)

n/n!

k−l−1∑
j′=0

(−1)j
′

j′!

(
k − 1

2

k − l − 1− j′

)(
1

2
+
β

ς2j

)− 1
2
(3+l+n+2j′)

× Γ

(
3 + l + n+ 2j′

2

)m+2n∑
q=m

(
n

q

)(
− i sin θj

2

)q
(cos θj)

n−q
(

q
q−m
2

) q∑
u=0

(
q

u

)
(−1)u

×
n−q∑
v=0

(
n− q
v

)m+1∑
t′=0

(
m+ 1

t′

)
×
b l−m

2
c∑

t=0

(2l − 2t)!(12)−2t

(l −m− 2t)!(l − t)!t!

l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)
π

)
,

but since when n+ l is the odd number 2u+2v+2t+2t′+2t′′−1, the following expression
is zero, i.e.

m+2n∑
q=m

(
n

q

)(
− i sin θj

2

)q
(cos θj)

n−q
(

q
q−m
2

) q∑
u=0

(
q

u

)
(−1)u

n−q∑
v=0

(
n− q
v

)

×
m+1∑
t′=0

(
m+ 1

t′

) b l−m2 c∑
t=0

(2l − 2t)!(12)−2t

(l −m− 2t)!(l − t)!t!

l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)
π = 0
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and therefore A = 0, so we have

Q̂SC
klm =

NM∑
j=1

∞∑
n=0

n+l even

((
1

2

)2l

π im

√
(k − l − 1)!

Γ
(
k + 1

2

) × (2l + 1)(l −m)!

2π(l +m)!
γje

β

(
1−

r2j

ς2
j

)

× e−imφj (
β

ς2j
rj)

n/n!
k−l−1∑
j′=0

(−1)j
′

j′!

(
k − 1

2

k − l − 1− j′

)(
1

2
+
β

ς2j

)− 1
2
(3+l+n+2j′)

× Γ

(
3 + l + n+ 2j′

2

)m+2n∑
q=m

(
n

q

)(
− i sin θj

2

)q
(cos θj)

n−q
(

q
q−m
2

) q∑
u=0

(
q

u

)
(−1)u

×
n−q∑
v=0

(
n− q
v

)m+1∑
t′=0

(
m+ 1

t′

)
×
b l−m

2
c∑

t=0

(2l − 2t)!(12)−2t

(l −m− 2t)!(l − t)!t!

l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)

× (−1)t+t
′

n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′

)
. �

Remark 4.1.2 Note that during the proof in (4.17), (4.18) and (4.19), we have used the
binomial theorem which describes the algebraic expansion of nonnegative integer powers
of a binomial. Therefore m should be a nonnegative integer. On the other hand we have,
m = −l, . . . , 0, . . . , l. Therefore for the negative integers m, we will use the Remark 2.21.
In other words, for negative integers m, we apply the same procedure for the nonnegative
integers m, just we multiply the GTO spherical polar radial Fourier coefficients Q̂SC

klm with

the factors (−1)m(l−m)!
(l+m)! where l and m are integers and l ≥ m ≥ 0.

Corollary 4.1.1 The GTO spherical polar radial Fourier coefficients (4.7) are computed
by

Q̂SC
klm =

NM∑
j=1

∞∑
n=l

n+l even

(
2−2lim

√
(k − l − 1)!

Γ(k + 1/2)
× π

2
× (2l + 1)(l −m)!

(l +m)!
γje

β

(
1−

r2j

ς2
j

)

× e−imφj

(
βrj
ς2j

)n
/n!

k−l−1∑
j′=0

(−1)j
′

j′!

(
k − 1/2

k − l − 1− j′

)(
1

2
+
β

ς2j

)− (3+l+n+2j′)
2

× Γ

(
3 + l + n+ 2j′

2

) b l−m2 c∑
t=0

(2l − 2t)!22t

(l −m− 2t)!(l − t)!t!

l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)

×
m+1∑
t′=0

(
m+ 1

t′

)m+2n∑
q=m

(
n

q

)(
− i

2
sin θj

)q
(cos θj)

n−q
(

q
q−m
2

) q∑
u=0

(
q

u

)
(−1)u

×
n−q∑
v=0

(
n− q
v

)
(−1)t+t

′

n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′

)
.

Now, In the following lemma we rewrite a part of the Corollary 4.1.1 to find a better
representation for the GTO spherical polar radial Fourier coefficients.
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Lemma 4.1.3 According to the condition of the above corollary we have

m+2n∑
q=m

(
n

q

)(
− i

2
sin θj

)q
(cos θj)

n−q
(

q
q−m
2

) q∑
u=0

(
q

u

)
(−1)u

×
n−q∑
v=0

(
n− q
v

)
(−1)t+t

′

n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′

= n!

(
− i

2
tan θj

)m
(cos θj)

n
n∑
p=0

(
2p+m

p

)(
− tan2 θj/4

)p
×

2p+m∑
u=0

(−1)u

u!(2p+m− u)!

n−m−2p∑
v=0

1

v!(n−m− 2p− v)!

× (−1)t+t
′

n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′
.

Proof. We have

m+2n∑
q=m

(
n

q

)(
−i

2
sin θj

)q
(cos θj)

n−q
(

q
q−m
2

) q∑
u=0

(
q

u

)
(−1)u

×
n−q∑
v=0

(
n− q
v

)
(−1)t+t

′

n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′

=

m+2n∑
q=m

n!q!( q−m
2

)
!
( q+m

2

)
!

(
−i

2
sin θj

)q
(cos θj)

n−q
q∑

u=0

(−1)u

u!(q − u)!

×
n−q∑
v=0

1

v! (n− q − v)!

(−1)t+t
′

n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′
.

Since q = m, m+ 2, . . . , m+ 2n, so setting p = q−m
2 implies that p = 0, 1, . . . , n, and

also q = m+ 2p. Changing the variable in (4.1.3), gives

n∑
p=0

n!(2p+m)!

p!(p+m)!

(
− i

2
sin θj

)m+2p

(cos θj)
n−m−2p

2p+m∑
u=0

(−1)u

u! (2p+m− u)!

×
n−m−2p∑
v=0

1

v! (n−m− 2p− v)!

(
(−1)t+t

′

n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′

)

= n!

(
− i

2

)m
(sin θj)

m(cos θj)
n−m

n∑
p=0

(
2p+m

p

)(
− i

2

)2p

(tan θj)
2p

×
2p+m∑
u=0

(−1)u

u! (m+ 2p− u)!

n−m−2p∑
v=0

1

v! (n−m− 2p− v)!

× (−1)t+t
′

n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′
.

With some simplifications like
(
− i

2

)2p
=
(
−1

4

)
, we obtain the final result. �
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Now with the aid of this lemma, we can find another representation for the spherical
polar radial Fourier coefficients Q̂SC

klm that the Q̂SC
klms can be written as the multiplication

of the angular dependent part u = (θ, φ) by the part (r, γ, ς, β), where (r, θ, φ), γ, ς and
β are respectively the spherical coordinates of an atom positioned at x ∈ R3, assigned
weights to the atom, van der Waals radius of the atom and sharpness of the Gaussian
density function. We summarize it in the following theorem.

Theorem 4.1.1 The GTO spherical polar radial Fourier coefficients Q̂SC
klm, for given

integers k, l and m where k > l ≥ m ≥ 0 can be computed by

QSC
klm = Cklm

NM∑
j=1

 ∞∑
n=0

n+l even

Ajkln (rj , γj , ςj , β)Bj
lmn (θj , φj)

 ,

where

Ajkln (rj , γj , ςj , β) := γje
β

(
1−

r2j

ς2
j

)(
βrj
ς2j

)n k−l−1∑
j′=0

(−1)j
′

j′!

(
k − 1/2

k − l − 1− j′

)

×

(
1

2
+
β

ς2j

)− (3+l+n+2j′)
2

Γ

(
3 + l + n+ 2j′

2

)
,

Bj
lmn (θj , φj) := e−imφj (tan θj)

m (cos θj)
n

b l−m
2
c∑

t=0

(2l − 2t)!22t

(l −m− 2t)!(l − t)!t!

×
l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)m+1∑
t′=0

(
m+ 1

t′

) n∑
p=0

(
2p+m

p

)(
− tan2 θj/4

)p
×

2p+m∑
u=0

(−1)u

u!(2p+m− u)!

n−m−2p∑
v=0

1

v!(n−m− 2p− v)!

× (−1)t+t
′

n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′

and

Cklm = 2−(2l+m)

√
(k − l − 1)!

Γ(k + 1/2)
× π

2
× (2l + 1)(l −m)!

(l +m)!
·
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Proof. Replacing Lemma 4.1.3 into the Corollary 4.1.1, gives

Q̂SC
klm =

NM∑
j=1

∞∑
n=l

n+l even

(
2−2lim

√
(k − l − 1)!

Γ(k + 1/2)
× π

2
× (2l + 1)(l −m)!

(l +m)!
γje

β

(
1−

r2j

ς2
j

)

× e−imφj

(
βrj
ς2j

)n
/n!

k−l−1∑
j′=0

(−1)j
′

j′!

(
k − 1/2

k − l − 1− j′

)(
1

2
+
β

ς2j

)− (3+l+n+2j′)
2

× Γ

(
3 + l + n+ 2j′

2

) b l−m2 c∑
t=0

(2l − 2t)!22t

(l −m− 2t)!(l − t)!t!

l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)

×
m+1∑
t′=0

(
m+ 1

t′

)
n!

(
− i

2
tan θj

)m
(cos θj)

n
n∑
p=0

(
2p+m

p

)(
− tan2 θj/4

)p
×

2p+m∑
u=0

(−1)u

u!(2p+m− u)!

n−m−2p∑
v=0

1

v!(n−m− 2p− v)!

× (−1)t+t
′

n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′

)
.

We simplify the above expression therefore we obtain

Q̂SC
klm =

NM∑
j=1

∞∑
n=l

n+l even

2−(2l+m)

√
(k − l − 1)!

Γ(k + 1/2)
× π

2
× (2l + 1)(l −m)!

(l +m)!
γje

β

(
1−

r2j

ς2
j

)

× e−imφj

(
βrj
ς2j

)n k−l−1∑
j′=0

(−1)j
′

j′!

(
k − 1/2

k − l − 1− j′

)(
1

2
+
β

ς2j

)− (3+l+n+2j′)
2

× Γ

(
3 + l + n+ 2j′

2

) b l−m2 c∑
t=0

(2l − 2t)!22t

(l −m− 2t)!(l − t)!t!

l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)

×
m+1∑
t′=0

(
m+ 1

t′

)(
− i

2
tan θj

)m
(cos θj)

n
n∑
p=0

(
2p+m

p

)(
− tan2 θj/4

)p
×

2p+m∑
u=0

(−1)u

u!(2p+m− u)!

n−m−2p∑
v=0

1

v!(n−m− 2p− v)!

× (−1)t+t
′

n+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′
.

With some replacements, we get the final results. �

This theorem describes an algorithm to compute the GTO spherical polar radial Fourier
coefficients Q̂SC

klm. The advantage of this theorem is that we could figure out that the
GTO spherical polar radial Fourier coefficients consist of two different parts, i.e.

Q̂SC
klm =

∞∑
n=0

Q̂lmn (θ, φ) Q̂kln (r, γ, ς, β) , (4.28)
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so, the affinity function can be written as

QSC
klm =

∑
klm

Q̂SC
klmRl

k(r)Y
m
l (θ, φ)

=
∑
klm

( ∞∑
n=0

Q̂lmn (θ, φ) Q̂kln (r, γ, ς, β)

)
Rl
k(r)Y

m
l (θ, φ)

=
∑
klmn

(
Q̂lmn (θ, φ) Ym

l (θ, φ)
)(

Q̂kln (r, γ, ς, β) Rl
k(r)

)
.

(4.29)

In comparison to the FTM algorithms in the last chapter, the affinity functions could be
written as the product of molecule dependent terms and molecule independet terms, here
we can say an affinity function can be written as the product of the spherical part and
the radial part. The overall computational complexity is O

(
NMN

4
)

operations, where
NM refers to the number of atoms in each molecule M and N is the cut off degree.

Algorithm 3: GTO spherical polar radial Fourier coefficients Q̂SC
klm

Input:
N : Cut off degree
NM: The number of the atomic coordinates of the molecule
β: Decay constant

foreach atomic coordinate xj = (xj , yj , zj) with j ∈ NM do
Compute the centre of molecule M.
Compute the relocate atomic centres.

end
foreach atomic coordinate xj = (xj , yj , zj) with j ∈ NM do

Convert the Cartesian coordinate xj to spherical coordinates (rj , θj , φj)
and also take the van der Waals radius ςj of the PDB.

end
foreach (k, l,m, n, j) with k > l ≥ |m| ≥ 0, n = l . . . N and j ∈ NM do

Compute Ajkln (rj , γj , ςj , β).

Compute Bj
lmn (θj , φj).

Compute Cklm.

end
foreach (k, l,m) with k > l ≥ |m| ≥ 0 do

Compute Cklm

NM∑
j=1

 N∑
n=0

n+l even

Ajkln (rj , γj , ςj , β)Bj
lmn (θj , φj)

.

end

Output: GTO spherical polar radial Fourier coefficients Q̂SC
klm.

Complexity: O(MN4) operations.



FRM on Surface Complementarity 81

4.1.4. The GTO Translational Coefficients ISCkk′,ll′,|n|(t)

We still seek to evaluate the scoring function (3.8) to find the best arrangement of the
two molecules. Here, in order to describe the relative positions and orientations of both
molecules A and B, we follow Ritchi and Kemp [82] and also Wriggers et al. [57], rotating
both molecules and translating molecule B along the positive z-axis by t = (0, 0, t). Hence
our scoring function is defined by

CSC
(
R,
(
R′, t

))
= Re

∫
R3

ΛRQ
SC
A (x) · ΛR′T tQSC

B (x) dx. (4.30)

We are given two affinity functions QSC
A and QSC

B in R3. Since the GTO spherical po-
lar radial functions constitute a basis for L2(R3), therefore the affinity functions can be
written uniquely as

QSC
A (ru) =

∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂A
klmRl

k(r)Y
m
l (u) (4.31)

and

QSC
B (ru) =

∞∑
k′=1

k′−1∑
l′=0

l′∑
m′=−l′

Q̂B
k′l′m′R

l′
k′(r)Y

m′
l′ (u). (4.32)

Note that, the reference point on each molecule is in principle arbitrary but it is convenient
to adopt the centre of mass (COM). Here we assume that the molecule A is at the origin
of the coordinate system, r is the distance of a generic point x from the reference point
of molecule A and φ is its colatitude (polar angle). The reference point of the molecule B
is located at t = (0, 0, t) and r′ and φ′ be analogous quantities relative to this reference
point. We have the following relation between the quantities of these two molecules,
namely

z = r cos θ, z′ = r′ cos θ′ and z − z′ = t, (4.33)

where t = ‖t‖2. Also we have

x− t = x′ = r′u′ where x = ru, (4.34)

and r = ‖x‖2 and u = (θ, φ) ∈ [0, π]× [0, 2π]. The spherical coordinates of point x ∈ R3

are (r cosφ sin θ, r sinφ sin θ, r cos θ), therefore

r′ = ‖x′‖2 =

√
(r cosφ sin θ − 0)2 + (r sinφ sin θ − 0)2 + (r cos θ − t)2

=
√
r2 − 2tr cos θ + t2.

(4.35)

Corresponding to u = (θ, φ) ∈ S2, we have u′ = (θ′, φ′) ∈ S′2 where

(
θ′, φ′

)
=

(
arccos

z − t√
r2 − 2rt cosφ+ t2

, φ

)
. (4.36)

According to these assumptions, we present the following triple integral that plays a
fundamental role in this section.
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Figure 4.1.: This figure shows a schematic picture of our molecular docking. We consider
the molecule A at the origin of the coordinate system and molecule B at
(0, 0, t). We rotate molecule A and also we rotate and translate molecule
B. Here (r, θ, φ) and (r′, θ′, φ) are the spherical coordinates of generic point
x ∈ R3 from molecule A and molecule B, respectively. For more details see
the text.

Definition 4.1.1 For given integers k, k′, l, l′, n, and n′ where k > l ≥ |n| ≥ 0,
k′ > l′ ≥ |n′| ≥ 0 and n′ = −n, we define

ISCkk′,ll′,|n|(t) =

∫ ∞
0

∫ π

0

∫ 2π

0
Rl
k(r)Y

n
l (θ, φ) Rl′

k′(r)Y
n′
l′
(
θ′, φ

)
r2 sin θ dφ dθ dr,

which are called GTO translational coefficients.

In the following lemma, we present a method for the computation of the GTO trans-
lational coefficients. It is very important to find an efficient method to compute these
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coefficients fast.

Lemma 4.1.4 The GTO translational coefficients ISCkk′,ll′,|n|(t) can be computed by

ISCkk′,ll′,|n|(t) =

√
(2l + 1)(2l′ + 1)

2l+l′+1

√
(l − n)!(l′ + n)!

(l + n)!(l′ − n)!

√
(k − l − 1)! (k′ − l′ − 1)!

Γ(k + 1
2)Γ(k′ + 1

2)

× e−
t2

2

k−l−1∑
j=0

(−1)j

j!

(
k − 1

2

k − l − 1− j

) k′−l′−1∑
j′=0

(−1)j
′

j′!

(
k′ − 1

2

k′ − l′ − 1− j′

)

×
b l−n

2
c∑

q=0

b l
′+n
2
c∑

q′=0

(−1)q+q
′
(2l − 2q)!(2l′ − 2q′)!

(l − n− 2q)! (l′ + n− 2q′)!(l − q)!(l′ − q′)!q!q′!

×
∞∑

n1=0

1

n1!

j′+q′∑
n2=0

(
j′ + q′

n2

) n2∑
n4=0

(
n2
n4

) l′+n−2q′∑
n3=0

(
l′ + n− 2q′

n3

)
(−1)n3

× tj′+q′+n1−n2+n3+2n4Γ

(
l + l′ + 2j + j′ − q′ + n1 + n2 − n3 − 2n4 + 3

2

)
× (−1)l+l

′+j′−q′+n1−n2−n3 + 1

l + l′ + j′ − 2q − q′ + n1 − n2 − n3 + 1
.

Proof. Using the Definition 4.1.1 and the spherical harmonics in (2.20) gives

ISCkk′,ll′,|n|(t) =

∫ ∞
0

∫ π

0
Rl
k(r)R

l′
k′(r

′)

(∫ 2π

0

√
(2l + 1)(l − n)!

4π(l + n)!
Pnl (cos θ)einφ

×

√
(2l′ + 1)(l′ − n′)!

4π(l′ + n′)!
Pn
′
l′ (cos θ′)ein

′φ dφ

)
r2 sin θ dθ dr.

We simplify the expression, hence

ISCkk′,ll′,|n|(t) =

√
(2l + 1)(2l′ + 1)

4π

√
(l − n)!(l′ − n′)!
(l + n)!(l′ + n′)!

×
∫ ∞
0

∫ π

0
Rl
k(r)R

l′
k′(r

′)Pnl (cos θ)Pn
′
l′ (cos θ′) 2πδn′,−n r

2 sin θ dθ dr.

We apply the GTO spherical polar radial basis fuctions, see Definition 2.37, hence we
have

ISCkk′,ll′,|n|(t) =

√
(2l + 1)(2l′ + 1)

2

√
(l − n)!(l′ + n)!

(l + n)!(l′ − n)!

∫ ∞
0

∫ π

0

√
2(k − l − 1)!

Γ(k + 1
2)

e−
r2

2 rl

× L
(l+ 1

2)
k−l−1(r

2)

√
2(k′ − l′ − 1)!

Γ(k′ + 1
2)

e−
r′2
2 r′

l′
L

(l′+ 1
2)

k′−l′−1(r
′2)Pnl (cos θ)P−nl′ (cos θ′)

× r2 sin θ dθ dr

=

√
(2l + 1)(2l′ + 1)(l − n)!(l′ + n)!

(l + n)!(l′ − n)!

√
(k − l − 1)! (k′ − l′ − 1)!

Γ(k + 1
2)Γ(k′ + 1

2)
× J SC

kk′,ll′,n(t),

(4.37)
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where

J SC
kk′,ll′,n(t) :=

∫ ∞
0

∫ π

0
e−

1
2
(r2+r′2)rlr′

l′
L
l+ 1

2
k−l−1(r

2)L
l′+ 1

2
k′−l′−1(r

′2)Pnl (cos θ)P−nl′ (cos θ′)

× r2 sin θ dθ dr.

(4.38)

For computing ISCkk′,ll′,|n|(t), we need to compute J SC
kk′,ll′,n(t). Using the definitions of

associated Laguerre polynomials, associated Legendre polynomials and also r′, see (4.35),
necessitates to have

J SC
kk′,ll′,n(t) =

∫ ∞
0

∫ π

0
e−

1
2
(r2+r2−2rt cos θ+t2)rl

(√
r2 − 2rt cos θ + t2

)l′ k−l−1∑
j=0

1

j!

×
(

k − 1
2

k − l − 1− j

)
(−r2)j

k′−l′−1∑
j′=0

1

j′!

(
k′ − 1

2

k′ − l′ − 1− j′

)(
−r2 + 2rt cos θ − t2

)j′

×
(

1

2

)l b l−n2 c∑
q=0

(−1)q+n(2l − 2q)!

(l − n− 2q)!(l − q)!q!
(
sin2 θ

)n
2 (cos θ)l−n−2q

(
1

2

)l′ b l′+n2 c∑
q′=0

× (−1)q
′−n(2l′ − 2q′)!

(l′ + n− 2q′)! (l′ − q′)! q′!
(
sin2 θ′

)−n
2
(
cos θ′

)l′+n−2q′
r2 sin θ dθ dr.

We simplify the expression so we have

J SC
kk′,ll′,n(t) =

∫ ∞
0

∫ π

0
e
−
(
r2−rt cos θ+ t2

2

) k−l−1∑
j=0

(−1)j

j!

(
k − 1

2

k − l − 1− j

)
rl+2j+2

×
k′−l′−1∑
j′=0

(−1)j
′

j′!

(
k′ − 1

2

k′ − l′ − 1− j′

)(
r2 − 2rt cos θ + t2

) l′
2
+j′
(

1

2

)l

×
b l−n

2
c∑

q=0

(−1)q+n(2l − 2q)!

(l − n− 2q)!(l − q)!q!
(sin θ)n (cos θ)l−n−2q

(
1

2

)l′ b l′+n2 c∑
q′=0

× (−1)q
′−n(2l′ − 2q′)!

(l′ + n− 2q′)!(l′ − q′)!q′!
(
sin θ′

)−n (
cos θ′

)l′+n−2q′
sin θ dθ dr.

(4.39)

Using trigonometric identities gives us the following equations for the relation between
the angles θ and θ′.

cos θ′ = cos

(
arccos

(
z − t√

r2 − 2rt cos θ + t2

))
=

r cos θ − t√
r2 − 2rt cos θ + t2

(4.40)

and

sin θ′ = sin

(
arccos

(
z − t√

r2 − 2rt cos θ + t2

))
=

√
1− (z − t)2

r2 − 2rt cos θ + t2

=

√
r2 − r2cos2θ

r2 − 2rt cos θ + t2
=

r sin θ√
r2 − 2rt cos θ + t2

·
(4.41)
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Therefore we have

J SC
kk′,ll′,n(t) =

∫ ∞
0

∫ π

0
e
−
(
r2−rt cos θ+ t2

2

) k−l−1∑
j=0

(−1)j

j!

(
k − 1

2

k − l − 1− j

)
rl+2j+2

×
k′−l′−1∑
j′=0

(−1)j
′

j′!

(
k′ − 1

2

k′ − l′ − 1− j′

)(
r2 − 2rt cos θ + t2

) l′
2
+j′
(

1

2

)l

×
b l−n

2
c∑

q=0

(−1)q+n(2l − 2q)!

(l − n− 2q)!(l − q)!q!
(sin θ)n (cosφ)l−n−2q

(
1

2

)l′ b l′+n2 c∑
q′=0

× (−1)q
′−n(2l′ − 2q′)!

(l′ + n− 2q′)!(l′ − q′)!q′!

(
r sin θ√

r2 − 2rt cos θ + t2

)−n
sin θ

×
(

r cos θ − t√
r2 − 2rt cos θ + t2

)l′+n−2q′
dθ dr.

Again by more simplification we get

J SC
kk′,ll′,n(t) =

(
1

2

)l+l′ k−l−1∑
j=0

(−1)j

j!

(
k − 1

2

k − l − 1− j

) k′−l′−1∑
j′=0

(−1)j
′

j′!

(
k′ − 1

2

k′ − l′ − 1− j′

)

×
b l−n

2
c∑

q=0

b l
′+n
2
c∑

q′=0

(
(−1)q+q

′
(2l − 2q)!(2l′ − 2q′)!

(l − n− 2q)! (l′ + n− 2q′)!(l − q)! (l′ − q′)!q!q′!

)
× T SC

kk′,ll′,n(t),

(4.42)

where

T SC
kk′,ll′,n(t) =

∫ ∞
0

∫ π

0
e−(r

2−rt cos θ+ t2

2
)rl+2j−n+2

(
r2 − 2rt cos θ + t2

)j′+q′
× (r cos θ − t)l

′+n−2q′ sin θ (cos θ)l−n−2q dθ dr.

(4.43)

For computing T SC
kk′,ll′,n(t), we use the binomial theorem and exponential function in terms

of power series, hence

T SC
kk′,ll′,n(t) =

∫ ∞
0

∫ π

0
e−(r

2+ t2

2
)
∞∑

n1=0

(rt cos θ)n1

n1!
rl+2j−n+2

j′+q′∑
n2=0

(
j′ + q′

n2

)

×
(
r2 + t2

)n2 (−2rt cos θ)j
′+q′−n2

l′+n−2q′∑
n3=0

(
l′ + n− 2q′

n3

)
(−t)n3

× (r cos θ)l
′+n−2q′−n3 sin θ (cos θ)l−n−2q dθ dr.

(4.44)
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Again by using binomial theorem for
(
r2 + t2

)n2 =
∑n2

n4=0

(
n2

n4

)
t2n4r2n2−2n4 in (4.44), we

have

T SC
kk′,ll′,n(t) = e−

t2

2

∞∑
n1=0

tn1

n1!

j′+q′∑
n2=0

(
j′ + q′

n2

) n2∑
n4=0

(
n2
n4

)
(−2)j

′+q′−n2 tj
′+q′−n2+2n4

×
l′+n−2q′∑
n3=0

(
l′ + n− 2q′

n3

)
(−t)n3

∫ ∞
0

∫ π

0
e−r

2
rl+l

′+2j+j′−q′+n1+n2−n3−2n4+2

× sin θ (cos θ)l+l
′−2q+j′−q′+n1−n2−n3 dθ dr.

(4.45)

So∫ ∞
0

∫ π

0
e−r

2
rl+l

′+2j+j′−q′+n1+n2−n3−2n4+2 sin θ (cos θ)l+l
′−2q+j′−q′+n1−n2−n3 dθ dr

=

∫ ∞
0

e−r
2
rl+l

′+2j+j′−q′+n1+n2−n3−2n4+2

(∫ π

0
sin θ (cos θ)l+l

′−2q+j′−q′+n1−n2−n3 dθ

)
dr.

(4.46)

For computing (4.46), we need to compute the following inner integral, namely

∫ π

0
sin θ (cos θ)l+l

′+j′−2q−q′+n1−n2−n3 dθ =

[
− (cos θ)l+l

′−2q+j′−q′+n1−n2−n3+1

l + l′ − 2q + j′ − q′ + n1 − n2 − n3 + 1

]π
0

=


−(−1)l+l

′−2q+j′−q′+n1−n2−n3+1−1
l+l′−2q+j′−q′+n1−n2−n3+1 if (l + l′ − 2q + j′ − q′ + n1 − n2 − n3 + 1) odd

0 if (l + l′ − 2q + j′ − q′ + n1 − n2 − n3 + 1) even

and hence we get

∫ π

0
sin θ (cos θ)l+l

′+j′−2q−q′+n1−n2−n3 dθ =

=


(−1)l+l

′−2q+j′−q′+n1−n2−n3+1
l+l′−2q+j′−q′+n1−n2−n3+1 if (l + l′ − 2q + j′ − q′ + n1 − n2 − n3) even

0 if (l + l′ − 2q + j′ − q′ + n1 − n2 − n3) odd.

(4.47)

Also ∫ ∞
0

e−r
2
rl+l

′+2j+j′−q′+n1+n2−n3−2n4+2 dr

=
1

2
Γ

(
l + l′ + 2j + j′ − q′ + n1 + n2 − n3 − 2n4 + 3

2

) (4.48)

and with some replacements, we get the final result. �
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Figure 4.2.: Comparison of the exact value and the approximated value according to the
Lemma 4.1.4 of the GTO translational coefficients. Here we considered k = 5,
k′ = 4, l = 3, l′ = 2, t = 5 and the cut off degree n1 = 60. As you see for
n1 ≥ 34, the exact value and the approximated value are almost the same.

So far we have presented a method, see Lemma 4.1.4, that can compute the GTO trans-
lational coefficients ISCkk′,ll′,|n|(t). Now in the following theorem we show that the GTO
translational coefficients are the multiplication of a Gaussian function by a polynomial of
degree 2(k+k′)−(l+l′)−6. This is a very promising result because then the computation
of the GTO translational coefficients can be accelerated by estimating the polynomials.

Theorem 4.1.2 The GTO translational coefficients ISCkk′,ll′,|n|(t) are the multiplication

of the polynomial P(t) of degree d = 2(k+k′)− (l+ l′)−6 by the Gaussian function e−
t2

4 ,
i.e.

ISCkk′,ll′,|n|(t) = P(t) · e−
t2

4 ,

where

P(t) =
d∑

w=0

a(kk
′,ll′,n)

w tw

and



88 FRM Algorithm on Surface & Electrostatics Complementarity

a(kk
′,ll′,n)

w =

√
(2l + 1)(2l′ + 1)

2(l+l′+1)

√
(l − n)!(l′ + n)!

(l + n)!(l′ − n)!

√
(k − l − 1)! (k′ − l′ − 1)!

Γ(k + 1
2)Γ(k′ + 1

2)

×
k−l−1∑
j=0

(−1)j

j!

(
k − 1

2

k − l − 1− j

) k′−l′−1∑
j′=0

(−1)j
′

j′!

(
k′ − 1

2

k′ − l′ − 1− j′

)

×
b l−n

2
c∑

q=0

b l
′+n
2
c∑

q′=0

(−1)q+q
′
(2l − 2q)!(2l′ − 2q′)!

(l − n− 2q)!(l′ + n− 2q′)!(l − q)!(l′ − q′)! q! q′!

×
j′+q′∑
n2=0

(
j′ + q′

n2

) n2∑
n4=0

(
n2
n4

) l′+n−2q′∑
n3=0

(
l′ + n− 2q′

n3

)
(−1)n3

×
w− j

′+q′−n2+n3+2n4
2∑

s1=0

(−1)s1

s1! (w − j′ − q′ + n2 − n3 − 2n4 − 2s1)!

× Γ

(
l + l′ + 2j − 2q′ + w + 2n2 − 2n3 − 4n4 − 2s1 + 3

2

)

×

(
(−1)l+l

′+w + 1
)

(−2)(j
′+q′−n2−2s1)

l + l′ − 2q − 2q′ + w − 2n3 − 2n4 − 2s1 + 1
.

Proof. In the Lemma 4.1.4, we replace e−
t2

2 by e−
t2

4 ·
∞∑
s1=0

(
−t2

4

)s1
/s1!, hence we have

ISCkk′,ll′,|n|(t) =

√
(2l + 1)(2l′ + 1)

2l+l′+1

√
(l − n)!(l′ + n)!

(l + n)!(l′ − n)!

√
(k − l − 1)! (k′ − l′ − 1)!

Γ
(
k + 1

2

)
Γ
(
k′ + 1

2

)
× e−

t2

4

k−l−1∑
j=0

(−1)j

j!

(
k − 1

2

k − l − 1− j

) k′−l′−1∑
j′=0

(−1)j
′

j′!

(
k′ − 1

2

k′ − l′ − 1− j′

)

×
b l−n

2
c∑

q=0

b l
′+n
2
c∑

q′=0

(−1)q+q
′
(2l − 2q)!(2l′ − 2q′)!

(l − n− 2q)! (l′ + n− 2q′)!(l − q)!(l′ − q′)!q!q′!

×
j′+q′∑
n2=0

(
j′ + q′

n2

) n2∑
n4=0

(
n2
n4

) l′+n−2q′∑
n3=0

(
l′ + n− 2q′

n3

)
(−1)n3

×
∞∑

n1=0

1

n1!

∞∑
s1=0

(−1
4

)s1
s1!

tj
′+q′+n1−n2+n3+2n4+2s1

× Γ

(
l + l′ + 2j + j′ − q′ + n1 + n2 − n3 − 2n4 + 3

2

)
× (−1)l+l

′+j′−q′+n1−n2−n3+1 + 1

l + l′ + j′ − 2q − q′ + n1 − n2 − n3 + 1
× (−2)(j

′+q′−n2).



FRM on Surface Complementarity 89

Setting w = j′+ q′+n1−n2 +n3 + 2n4 + 2s1, gives n1 = w− j′− q′+n2−n3−2n4−2s1
and therefore

ISCkk′,ll′,|n|(t) =

√
(2l + 1)(2l′ + 1)

2l+l′+1

√
(l − n)!(l′ + n)!

(l + n)!(l′ − n)!

√
(k − l − 1)! (k′ − l′ − 1)!

Γ
(
k + 1

2

)
Γ
(
k′ + 1

2

)
× e−

t2

4

k−l−1∑
j=0

(−1)j

j!

(
k − 1

2

k − l − 1− j

) k′−l′−1∑
j′=0

(−1)j
′

j′!

(
k′ − 1

2

k′ − l′ − 1− j′

)

×
b l−n

2
c∑

q=0

b l
′+n
2
c∑

q′=0

(−1)q+q
′
(2l − 2q)!(2l′ − 2q′)!

(l − n− 2q)! (l′ + n− 2q′)!(l − q)!(l′ − q′)!q!q′!

×
j′+q′∑
n2=0

(
j′ + q′

n2

) n2∑
n4=0

(
n2
n4

) l′+n−2q′∑
n3=0

(
l′ + n− 2q′

n3

)
(−1)n3

×
∞∑
s1=0

(−1
4

)s1
s1!

∞∑
w=j′+q′+n1−n2+n3+2n4+2s1

tw

(w − j′ − q′ + n2 − n3 − 2n4 − 2s1)!

× Γ

(
l + l′ + 2j − 2q′ + w + 2n2 − 2n3 − 4n4 − 2s1 + 3

2

)
× (−1)l+l

′+w + 1

l + l′ − 2q − 2q′ + w − 2n3 − 2n4 − 2s1 + 1
× (−2)(j

′+q′−n2).

With further simplifications, we get the following expression

ISCkk′,ll′,|n|(t) =

∞∑
w=0

a(kk
′,ll′,n)

w tw · e−
t2

4 ,

where

a(kk
′,ll′,n)

w =

√
(2l + 1)(2l′ + 1)

2l+l′+1

√
(l − n)!(l′ + n)!

(l + n)!(l′ − n)!

√
(k − l − 1)! (k′ − l′ − 1)!

Γ
(
k + 1

2

)
Γ
(
k′ + 1

2

)
×
k−l−1∑
j=0

(−1)j

j!

(
k − 1

2

k − l − 1− j

) k′−l′−1∑
j′=0

(−1)j
′

j′!

(
k′ − 1

2

k′ − l′ − 1− j′

)

×
b l−n

2
c∑

q=0

b l
′+n
2
c∑

q′=0

(−1)q+q
′
(2l − 2q)! (2l′ − 2q′)!

(l − n− 2q)! (l′ + n− 2q′)!(l − q)! (l′ − q′)!q!q′!

×
j′+q′∑
n2=0

(
j′ + q′

n2

) n2∑
n4=0

(
n2
n4

) l′+n−2q′∑
n3=0

(
l′ + n− 2q′

n3

)
(−1)n3

×
∞∑
s1=0

(−1
4

)s1
s1!

× 1

(w − j′ − q′ + n2 − n3 − 2n4 − 2s1)!

× Γ

(
l + l′ + 2j − 2q′ + w + 2n2 − 2n3 − 4n4 − 2s1 + 3

2

)
× (−1)l+l

′+w + 1

l + l′ − 2q − 2q′ + w − 2n3 − 2n4 − 2s1 + 1
× (−2)(j

′+q′−n2),
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and w ≥ j′+ q′−n2 +n3 + 2n4 + 2s1. According to this condition, we rewrite s1 in terms

of w, in other words, s1 = s1(w) ≤ w−(j′+q′−n2+n3+2n4)
2 , so

a(kk
′,ll′,n)

w =

√
(2l + 1)(2l′ + 1)

2l+l′+1

√
(l − n)!(l′ + n)!

(l + n)!(l′ − n)!

√
(k − l − 1)! (k′ − l′ − 1)!

Γ
(
k + 1

2

)
Γ
(
k′ + 1

2

)
×
k−l−1∑
j=0

(−1)j

j!

(
k − 1

2

k − l − 1− j

) k′−l′−1∑
j′=0

(−1)j
′

j′!

(
k′ − 1

2

k′ − l′ − 1− j′

)

×
b l−n

2
c∑

q=0

b l
′+n
2
c∑

q′=0

(−1)q+q
′
(2l − 2q)! (2l′ − 2q′)!

(l − n− 2q)! (l′ + n− 2q′)!(l − q)! (l′ − q′)!q!q′!

×
j′+q′∑
n2=0

(
j′ + q′

n2

) n2∑
n4=0

(
n2
n4

) l′+n−2q′∑
n3=0

(
l′ + n− 2q′

n3

)
(−1)n3

×

w−(j′+q′−n2+n3+2n4)
2∑

s1=0

(−1)s1

s1! (w − j′ − q′ + n2 − n3 − 2n4 − 2s1)!

× Γ

(
l + l′ + 2j − 2q′ + w + 2n2 − 2n3 − 4n4 − 2s1 + 3

2

)

×

(
(−1)l+l

′+w + 1
)

(−2)(j
′+q′−n2−2s1)

l + l′ − 2q − 2q′ + w − 2n3 − 2n4 − 2s1 + 1
.

(4.49)

Now we show the series

∞∑
w=0

a(kk
′,ll′,n)

w tw is a finite sum. If we simplify (4.49), then we

obtain

a(kk
′,ll′,n)

w =

√
(2l + 1)(2l′ + 1)

2l+l′+1

√
(l − n)!(l′ + n)!

(l + n)!(l′ − n)!

√
(k − l − 1)! (k′ − l′ − 1)!

Γ
(
k + 1

2

)
Γ
(
k′ + 1

2

)
×
k−l−1∑
j=0

(−1)j

j!

(
k − 1

2

k − l − 1− j

) k′−l′−1∑
j′=0

(−1)j
′

j′!

(
k′ − 1

2

k′ − l′ − 1− j′

)

×
b l−n

2
c∑

q=0

b l
′+n
2
c∑

q′=0

(−1)q+q
′
(2l − 2q)! (2l′ − 2q′)!

(l − n− 2q)! (l′ + n− 2q′)!(l − q)! (l′ − q′)!q!q′!

×
j′+q′∑
n2=0

(
j′ + q′

n2

) n2∑
n4=0

(
n2
n4

) l′+n−2q′∑
n3=0

(
l′ + n− 2q′

n3

)
(−1)n3

× 3F2 [{a1, a2, a3} , {b1, b2} ; 1]

(w − j′ − q′ + n2 − n3 − 2n4)!

× Γ

(
l + l′ + 2j − 2q′ + w + 2n2 − 2n3 − 4n4 + 3

2

)

×

(
(−1)l+l

′+w + 1
)

(−2)(j
′+q′−n2)

l + l′ + w − 2q − 2q′ − 2n3 − 2n4 + 1
,

(4.50)
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where

a1 =
j′ + q′ − n2 + n3 + 2n4 − w

2
,

a2 =
j′ + q′ − n2 + n3 + 2n4 − w

2
+

1

2
,

a3 =
− (l + l′ + w + 1)

2
+ n3 + n4 + q + q′,

b1 = −j − l + l′ + w + 1

2
− n2 + n3 + 24 + q′,

b2 =
− (l + l′ + w)

2
+ n3 + n4 + q + q′.

(4.51)

Therefore we get

a1 = a2 +
1

2
and b2 = a3 + 1, (4.52)

hence one of the a1 or a2 is a negative integer, but according to our assumption a1 is a
negative integer. We say a1 = −N where N = 0, 1, 2, . . .. Since

3F2 [{a1, a2, a3} , {b1, b2} ; 1] =
∞∑
p=0

(a1)p(a2)p(a3)p
(b1)p(b2)p

1

p!
(4.53)

and by the assumption
(a1)n = (−N)n = 0, (4.54)

therefore the hypergeometric function 3F2 [{a1, a2, a3} , {b1, b2} ; 1] is finite, in other words,
there exist a positive integer N , such that for p > N , the hypergeometric function is zero.
Also since we assumed

a1 =
j′ + q′ − n2 + n3 + 2n4 − w

2
= N, (4.55)

so w is finite and since according to our assumption always w+ (l+ l′) should be an even
number therefore the maximum w can be d = 2(k + k′)− (l + l′)− 6. �

Corollary 4.1.2 The GTO translational coefficients have the following properties:

1. ISCkk′,ll′,|m|(t) = ISCk′k,l′l,|m|(−t) = (−1)(l
′−l)ISCk′k,l′l,|m|(t).

2.
∞∑
k=0

k−1∑
l=0

ISCkk′,ll′,|m|(t)I
SC
kk′′,ll′′,|m|(t) = δk′k′′δl′l′′.

4.1.5. GTO Translational Coefficients & Ritchie’s Matrix Elements of the
Translation Operator

In Theorem 4.1.2, we obtained an expression for computing the GTO translational co-
efficients ISCkk′,ll′,|m|(t). Ritchie in [80, equation 10, p. 810] has described the translation
matrix elements for the GTO spherical polar radial basis function. We recall Ritchie’s
theorem here, because then we have two different possibilities to compute the molecular
docking.
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Figure 4.3.: Comparison of the exact value and the approximated value, according to the
Theorem 4.1.2, for the GTO translational coefficients. We considered k = 5,
k′ = 4, l = 3, l′ = 2, t = 5 and the cut off degree n1 = 60. Here we can
say precisely, from the degree “2(k + k′) − (l + l′) − 6 = 7” on, the GTO
translational coefficients obtained from the Theorem 4.1.2 are exact.

Algorithm 4: GTO Translational Coefficient Algorithm

Input:
Integers k, k′, l, l′ & m where k > l ≥ |m| ≥ 0 and k′ > l′ ≥ |m| ≥ 0

foreach (k, l,m) and (k′, l′,m) do
Compute d = 2(k + k′)− (l + l′)− 6.

Compute a
(kk′,ll′,m)
w of Theorem 4.1.2.

foreach Rotation d do

Compute P(t) =
d∑

w=0

a(kk
′,ll′,m)

w tw.

end

end
foreach polynomial P(t) do

Multiply P(t) by et
2/4.

end
Output: The GTO translational Coefficients ISCkk′,ll′,|m|(t).

Definition 4.1.2 For integers k, k′, l, l and m where k > l ≥ |m| > 0 and k′ > l′ ≥
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|m| > 0, the

T (|m|)
k′l′,kl(t) =

l+l′∑
p=|l−l′|

All
′|m|
p

∫ ∞
0

R̃l′
k′(β)R̃l

k(β)jp (βt)β2 dβ,

where jp (βt) are Bessel functions, see (2.46), and A
ll′|m|
p are given by

All
′|m|
p = (−1)

p+u−l
2

+m(2p+ 1)
√

(2l′ + 1)(2l + 1)

(
l l′ p
0 0 0

)(
l l′ p
m −m 0

)
,

are called the translational matrix elements for GTO spherical polar radial basis functions.

Lemma 4.1.5 For integer numbers k, k′, l, l′ and m where k > l ≥ |m| ≥ 0 and
k′ > l′ ≥ |m| ≥ 0, one has

T (|m|)
k′l′,kl(t) =

l+l′∑
p=|l−l′|

All
′|m|
p

(k+k′)−(l+l′)−2∑
i=0

C(kl,k
′l′)

i M!e−
t2

4

(
t2

4

)p/2
L

(p+ 1
2)

M

(
t2

4

)
,

where

All
′|m|
p = (−1)

p+u−l
2

+m(2p+ 1)
√

(2l′ + 1)(2l + 1)

(
l l′ p
0 0 0

)(
l l′ p
m −m 0

)
,

C(kl,k
′l′)

i =

k−l−1∑
j=0

k′−l′−1∑
j′=0

δi,j+j′XkljXk′l′j′ ,

Xklj =

√
(k − l − 1)! (1/2)k

2

(−1)k−l−1−j

j! (k − l − 1− j)! (1/2)l+j+1

,

M = i+
l + l′ + p

2
,

also (1/2)k and (1/2)l+j+1 are Pochhammer symbols and δi,j+j′, is the Kronecker delta
function.

Proof. By assumption two coordinate systems x = (r, θ, φ) and x′ = (r′, θ′, φ) may be
related functionally by multiplying the vector equation x′ = x−t by an arbitray complex
vector is where s = (s, θs, φs) and t = (t, θt, φt) gives

eis·x = eis·(t+x′) = eis·teis·x
′
. (4.56)

By Raleigh’s plane wave equation of [16], we have

eis·x = 4π

∞∑
l=0

l∑
m=−l

iljl(sr)Y
m
l (θs, φs)Y

m
l (θ, φ) . (4.57)

Now substituting the Raleigh’s plane wave equatin (4.57) in (4.56), gives

4π

∞∑
l=0

l∑
m=−l

iljl(sr)Y
m
l (θs, φs)Y

m
l (θ, φ) = 4π

∞∑
p=0

p∑
q=−p

ipjp(st)Y
q
p (θs, φs)Y

q
p (θt, φt)

× 4π

∞∑
u=0

u∑
v=−u

iuju(sr′)Y v
u (θs, φs)Y

v
u

(
θ′, φ

)
.
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We simplify this equation, therefore

∞∑
l=0

l∑
m=−l

jl(sr)Y
m
l (θs, φs)Y

m
l (θ, φ) = 4π

∞∑
p=0

p∑
q=−p

∞∑
u=0

u∑
v=−u

ip+u−ljp(st)ju(sr′)

×Y q
p (θs, φs)Y

q
p (θt, φt) Y v

u (θs, φs)Y
v
u

(
θ′, φ

)
.

(4.58)

Multiplying both sides of the equation (4.58) by Y m
l (θs, φs) and integrating on (θs, φs)

gives

jl(sr)Y
m
l (θ, φ) = 4π

∞∑
p=0

p∑
q=−p

∞∑
u=0

u∑
v=−u

ip+u−ljp(st)ju(sr′)Y q
p (θt, φt) Y v

u

(
θ′, φ

)
×
∫ π

0

∫ 2π

0
Y q
p (θs, φs)Y v

u (θs, φs)Y
m
l (θs, φs) sin θs dφs dθs.

(4.59)

We have generally, Y m
l (θ, φ) = (−1)mY −ml (θ, φ), consequently

jl(sr)Y
m
l (θ, φ) = 4π

∞∑
p=0

p∑
q=−p

∞∑
u=0

u∑
v=−u

ip+u−ljp(st)ju(sr′)Y q
p (θt, φt) Y v

u

(
θ′, φ

)
× (−1)q+v

∫ π

0

∫ 2π

0
Y −qp (θs, φs) Y −vu (θs, φs) Y m

l (θs, φs) sin θs dφs dθs.

(4.60)

Then by using the Gaunt’s integral in (2.56), we have

jl(sr)Y
m
l (θ, φ) = 4π

∞∑
p=0

p∑
q=−p

∞∑
u=0

u∑
v=−u

ip+u−ljp(st)ju(sr′)Y q
p (θt, φt) Y v

u

(
θ′, φ

)
× (−1)q+v

√
(2p+ 1) (2u+ 1) (2l + 1)

4π

(
l u p
0 0 0

)(
l u p
m −v −q

)
.

(4.61)

Now, in (4.61), the first 3-j symbols vanishes when l+u+p, is an odd integer. Furthermore
the second 3-j symbol vanishes unless m− v − q = 0, therefore m− v = q and hence by
substituting q = m− v the expression (4.61) reduces to the following triple sum

jl(sr)Y
m
l (θ, φ) = 4π

∞∑
p=0

∞∑
u=0

u∑
v=−u

ip+u−ljp(st)ju(sr′)Y m−v
p (θt, φt) Y v

u

(
θ′, φ

)
× (−1)m

√
(2p+ 1) (2u+ 1) (2l + 1)

4π

(
l u p
0 0 0

)(
l u p
m −v v −m

)
.

(4.62)

By assumption t = (t, 0, 0) is a translation along the positive z-axis which entails m−v =
0, this means m = v and allows the summation over v be eliminated, i.e.

jl(sr)Y
m
l (θ, φ) = 4π

∞∑
p=0

∞∑
u=0

u∑
v=−u

ip+u−ljp(st)ju(sr′)Y 0
p (0, 0) Y m

u

(
θ′, φ

)
× (−1)m

√
(2p+ 1) (2u+ 1) (2l + 1)

4π

(
l u p
0 0 0

)(
l u p
m −m 0

)
.

(4.63)
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We have Y 0
p (0, 0) =

√
(2p+1)

4π , ip+u−l = (−1)(p+l−u)/2 and also using the triangular
inequality for 3-j symbols gives

jl(sr)Y
m
l (θ, φ) =

∞∑
u=0

l+u∑
p=|l−u|

Alu|m|p jp(st)ju(sr′)Y m
u

(
θ′, φ

)
, (4.64)

where

Alu|m|p = (−1)(p+l−u)/2(2p+ 1)
√

(2u+ 1)(2l + 1)

(
l u p
0 0 0

)(
l u p
m −m 0

)
. (4.65)

Relabelling u by l′, therefore we have

jl(sr)Y
m
l (θ, φ) =

∞∑
l′=0

l+l′∑
p=|l−l′|

All
′|m|
p jp(st)jl′(sr

′)Y m
l′
(
θ′, φ

)
, (4.66)

where

All
′|m|
p = (−1)(p+l−l

′)/2(2p+ 1)
√

(2l′ + 1)(2l + 1)

(
l l′ p
0 0 0

)(
l l′ p
m −m 0

)
. (4.67)

Applying the inverse Bessel transform on (4.66) or equivalently multiplying each side of

(4.66) by
√

2
π R̂l

k(s) and integrating over s gives√
2

π

∫ ∞
0
jl(sr)Y

m
l (θ, φ) R̂l

k(s)s
2 ds =

∞∑
l′=0

l+l′∑
p=|l−l′|

All
′|m|
p

×
√

2

π

∫ ∞
0
jp(st)jl′(sr

′)Y m
l′
(
θ′, φ

)
R̂l
k(s)s

2 ds.

We simplify the above expression, hence we obtain

Rl
k(r)Y

m
l (θ, φ) =

∞∑
l′=0

l+l′∑
p=|l−l′|

All
′|m|
p ×

√
2

π

∫ ∞
0
jp(st)jl′(sr

′)Y m
l′
(
θ′, φ

)
R̂l
k(s)s

2 ds. (4.68)

Now, we multiply each side of the equation (4.68) by Rl′′
k′ (r

′)Y m′
l′′ (θ′, φ) and integrating

over all space in the corresponding variables gives∫ ∞
0

∫ π

0

∫ 2π

0
Rl
k(r)Y

m
l (θ, φ) Rl′′

k′ (r
′)Y m′

l′′
(
θ′, φ

)
r′2 sin θ′ dφ dθ′ dr′ =

∫ ∞
0

∫ π

0

∫ 2π

0 ∞∑
l′=0

l+l′∑
p=|l−l′|

All
′|m|
p

√
2

π

∫ ∞
0
jp(st)jl′(sr

′)Y m
l′
(
θ′, φ

)
R̂l
k(s)s

2 ds


× Rl′′

k′ (r
′)Y m′

l′′
(
θ′, φ

)
r′2 sin θ′ dφ dθ′ dr′.

We simplify the above equation, hence we obtain

T |m|k′l′,kl(t) =

∞∑
l′=0

l+l′∑
p=|l−l′|

All
′|m|
p

∫ ∞
0
jp(st)R̂

l
k(s)s

2

(√
2

π

∫ ∞
0
jl′(sr

′)

(∫ π

0

∫ 2π

0
Y m
l′
(
θ′, φ

)
Y m′
l′′
(
θ′, φ

)
sin θ′ dφ dθ′

)
Rl′′
k′ (r

′)r′2 dr′

)
ds.

(4.69)
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Computing the inner integral gives

T |m|k′l′,kl(t) =
l+l′∑

p=|l−l′|

All
′|m|
p

∫ ∞
0
jp(st)R̂

l
k(s)s

2

(√
2

π

∫ ∞
0
jl′(sr

′)Rl′
k′(r

′)r′2 dr′

)
ds

=
l+l′∑

p=|l−l′|

All
′|m|
p

∫ ∞
0
jp(st)R̂

l
k(s)R̂

l′
k′(s)s

2 ds.

(4.70)

Now we apply three identities about the associated Laguerre polynomials defined in
(2.34), as

(k + 1) L
(α)
k+1(x) = (2k + α+ 1− x) L

(α)
k (x)− (k + α) L

(α)
k−1(x), (4.71)

L
(α)
0 (x) = 1, (4.72)

and
L
(α)
1 (x) = α+ 1− x. (4.73)

From Erdelyi et al. [31, p. 42, equation 3] and also Ritchie [80, equation 17], we know
the GTO spherical polar radial basis functions are eigenfunctions of the spherical Bessel
transform, so

R̂l
k(s) = (−1)k−l−1

√
2 (k − l − 1)!√

π (1/2)k
e
−x2
2 xlL

(l+1/2)
k−l−1 (x2), (4.74)

where x2 = s. Now we can write

R̂l
k(s) =

√
4√
π

k−l−1∑
j=0

Xklje
−x2
2 x2j+l, (4.75)

where

Xklj =

√
(k − l − 1)! (1/2)k

2

(−1)k−l−1−j

j! (k − l − 1− j)! (1/2)l+j+1

. (4.76)

We substitute twice (4.74) into (4.70), hence we have

T |m|k′l′,kl(t) =

l+l′∑
p=|l−l′|

All
′|m|
p

∫ ∞
0
jp(xt)

√ 4√
π

k−l−1∑
j=0

Xklje−
x2

2 x2j+l


√ 4√

π

k′−l′−1∑
j′=0

Xk′l′j′e
−x2
2 x2j

′+l′

x2 dx.

(4.77)

Collecting the coefficient of x2i, using

C(kl,k
′l′)

i =

k−l−1∑
j=0

k′−l′−1∑
j′=0

δi,j+j′XkljXk′l′j′ , (4.78)

gives the following GTO translation matrix element

T |m|k′l′,kl(t) =
l+l′∑

p=|l−l′|

All
′|m|
p

(k−l−1)+(k′−l′−1)∑
i=0

C(kl,k
′l′)

i

4√
π

∫ ∞
0
jp(xt)x

2i+l+l′x2 dx. (4.79)
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For computing the integral, we apply the following relation of Erdelyi et al. [31, p. 30,
equation 13], see Ritchie [80, equation 22].

4√
π

∫ ∞
0

e−x
2
x2m+pjp(xy)x2 dx = m!e

−y2
4

(
y2

4

)p/2
L(p+1/2)
m

(
y2

4

)
. (4.80)

This gives the final result. �

4.1.6. Fast Rotational Matching on Shape Complementarity

The correlation of two affinity functions QSC
A (x) and QSC

B (x) is a new function of rotations
R, R′ and distance parameter t along the positive z-axis, see (4.30)

CSC
(
R,
(
R′, t

))
= CSC

(
R,R′; t

)
:=

∫
R3

ΛRQ
SC
A (x) · T tΛR′Q

SC
B (x) dx.

For given integers l and m with the condition l ≥ |m| ≥ 0 and a rotation R ∈ SO(3), we
have

ΛRY m
l (u) =

l∑
n=−l

Dnm
l (R)Y n

l (u). (4.81)

Considering (4.81), gives

ΛRQSC
A (ru) =

∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂A
klmRl

k(r)ΛR (Y m
l (u))

=
∞∑
k=1

k−1∑
l=0

l∑
m,n=−l

Q̂A
klmDnm

l (R)Rl
k(r)Y

n
l (u),

(4.82)

and the effect of a rotation R′ ∈ SO(3) together with a translation t along an axis on
the QSC

B (ru) is written as

ΛR′T tQSC
B (x) = ΛR′Q

SC
B (x− t) = ΛR′Q

SC
B (x′) = ΛR′Q

SC
B (r′u′)

=
∞∑
k′=1

k′−1∑
l′=0

l′∑
m′,n′=−l′

Q̂B
k′l′m′D

n′m′
l′ (R′)Rl′

k′(r
′)Y n′

l′ (u′).
(4.83)

We present the general form of the correlation of two affinity functions in L2
(
R3
)

in
the following result.

Theorem 4.1.3 The scoring function (4.30) can be computed by

CSC
(
R,R′; t

)
=

∞∑
k=1

∞∑
k′=1

k−1∑
l=0

k′−1∑
l′=0

l∑
m=−l

l′∑
m′=−l′

l∑
n=−l

Q̂A
klmQ̂

B
k′l′m′D

nm
l (R)D−nm

′

l′ (R′)

× ISCkk′,ll′,|n|(t).
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Proof. By the relation between u and u′ in (4.36), we have

CSC
(
R,R′; t

)
=

∫ ∞
0

∫
S2

∞∑
k=1

k−1∑
l=0

l∑
m=−l

l∑
n=−l

Q̂A
klmDnm

l (R)Rl
k(r)Y

n
l (u)

×
∞∑
k′=1

k′−1∑
l′=0

l′∑
m=−l′

l′∑
n′=−l′

Q̂B
k′l′m′D

n′m′
l′ (R′)Rl′

k′(r
′)Y n′

l′ (u′)r2 du dr

=
∑

kk′,ll′,mm′,nn′

Q̂A
klmQ̂

B
k′l′m′D

nm
l (R)Dn′m′

l′ (R′)

×
∫ ∞
0

∫ π

0

∫ 2π

0
Rl
k(r)R

l′
k′(r

′)Y n
l (u)Y n′

l′ (u′)r2 sin θ dφ dθ dr.

According to Definition 4.2.1, we have

CSC
(
R,R′; t

)
=

∑
kk′,ll′,mm′,n

Q̂A
klmQ̂

B
k′l′m′D

nm
l (R)D−nm

′

l′ (R′)× ISCkk′,ll′,|n|(t). �

The above theorem describes an algorithm to compute the scoring function (4.30). In
modern computational chemistry and quantum mechanics which are related to our algo-
rithms, computations are typically performed within a finite set, so suppose that we cut
off k and k′ to degree N ∈ N and we are given the precomputed coefficients Q̂A

klm, Q̂B
k′l′m′

and ISCkk′,ll′,|n|(t), the scoring function CSC (R,R′; t) can be computed in the following four
steps:

1. We compute

âkln,l′m′(t) =

N∑
k′=1

Q̂B
k′l′m′Ikk′,ll′,|n|(t), (4.84)

which takes O(N6Nt) operations and Nt shows the number of one-dimensional
translations.

2. In the second step we have

b̂R
′

kln(t) =

k′−1∑
l′=0

l′∑
m′=−l′

âkln,l′m′(t)D
−nm′
l′ (R′), (4.85)

which is computed by NFSOFT in O
((
N3
(
N2 logN + ÑR′

)
+N6

)
Nt

)
opera-

tions and ÑR′ denotes the overall rotations for R′.

3. In the third step we compute

ĉR
′

lmn(t) =

N∑
k=1

b̂R
′

kln(t)Q̂A
klm, (4.86)

and it takes O
((
N4ÑR′ +

(
N3
(
N2 logN + ÑR′

)
+N6

))
Nt

)
operations.



FRM on Surface Complementarity 99

4. Finally in the last step we compute CSC (R,R′; t) by NFSOFT, hence

CSC
(
R,R′; t

)
=

k−1∑
l=0

l∑
m=−l

l∑
n=−l

ĉR
′

lmn(t)Dnm
l (R), (4.87)

with the computational complexity

O
((
ÑR′

(
N3 logN +NR

)
+
(
N4ÑR′ +

(
N3
(
N2 logN + ÑR′

)
+N6

)))
Nt

)
,

therefore the whole computational complexity is O
((
N6 +N4ÑR′ +NRÑR′

)
Nt

)
op-

erations.

Algorithm 5: FRM on Shape Complementarity by NFSOFT

Input:
N : Cut off degree
NA and NB: The number of atomic coordinates of molecules A and B
A set of motions (R, t) in SE(3) and rotations R′ ∈ SO(3)

foreach xj with j ∈ NA ∪NB do
Compute the centeres cA and cB of both molecules A and B.

Compute the relocate atomic centeres z
A/B
j = xj − cA/B.

end
foreach

(
k, l,m

)
and

(
k′, l′,m′

)
with k > l ≥ |m| ≥ 0 and k′ > l′ ≥ |m′| ≥ 0 do

Compute Q̂A
klm and Q̂B

k′l′m′ of Theorem 4.1.1.
end
foreach translation t ∈ R3 with t = ‖t‖2,

(
k, k′, l, l′, n

)
with k > l ≥ |n| ≥ 0

and k′ > l′ ≥ |n| ≥ 0 do
Compute ISCkk′,ll′,|n|(t) of Theorem 4.1.2.

end
foreach

(
k, l, n, l′,m′

)
with k > l ≥ |n| ≥ 0 and l′ ≥ |m′| ≥ 0 do

Compute âkln,l′m′ of (4.84).
end
foreach rotation R′ ∈ SO(3) and

(
k, l, n

)
with k > l ≥ |n| ≥ 0 do

Compute b̂R
′

kln by NFSOFT of (4.85).
end
foreach

(
l,m, n

)
with l ≥ |n|, |m| ≥ 0 do

Compute ĉR
′

lmn of (4.86).
end
foreach rotation R ∈ SO(3) do

Compute CSC (R,R′; t) by NFSOFT of (4.87).
end
Output: The solution of the docking problem.

Complexity: O
((
N6 +N4ÑR′ +NRÑR′

)
Nt

)
operations.

Now we use Wriggers’ approach to show a more useful representation of the corre-
lation by factorizing the rotations R and R′ ∈ SO(3) in term of Euler angles, see [58].
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Corollary 4.1.3 The scoring function in Theorem 4.1.3 is a function of five Euler an-
gles and one displacement translation parameter and can be computed by

CSC
(
R,R′; t

)
= CSC

(
σ, η, ω, η′, ω′, t

)
=

∑
kk′,ll′,mm′,n,ss′

Q̂A
klmQ̂

B
k′l′m′d

ns
l dsml d−ns

′

l′ ds
′m′
l′ ei(nσ+sη+mω+s

′η′+m′ω′) × ISCkk′,ll′,|n|(t).

Proof. If R = R (α, β, γ) and R′ = R′ (α′, β′, γ′) then R = R1 ·R2 and R′ = R′1 ·R′2
where

R1 = R1

(
ζ,
π

2
, 0
)
, R2 = R2

(
η,
π

2
, ω
)

and

R′1 = R′1

(
ζ ′,

π

2
, 0
)
, R′2 = R′2

(
η′,

π

2
, ω′
)

together with the following relations

ζ = α− π

2
, η = π − β, ω = γ − π

2

and

ζ ′ = α′ − π

2
, η′ = π − β′, ω′ = γ′ − π

2
.

Using the definition of Wigner-D function, i.e.

Dnm
l (R (α, β, γ)) = e−inαe−imγdnml (β),

and the identity (2.51),

Dnm
l (R1 ·R2) =

l∑
s=−l

Dns
l (R1)D

sm
l (R2),

implies that

Dnm
l (R) = Dnm

l (R1 ·R2) = Dnm
l

(
R1

(
ζ,
π

2
, 0
)
·R2

(
η,
π

2
, ω
))

=
l∑

s=−l
Dns
l

(
ζ,
π

2
, 0
)
Dsm
l

(
η,
π

2
, ω
)

=
l∑

s=−l
e−inζdnsl (

π

2
)e−isηe−imωdsml (

π

2
)

=

l∑
s=−l

dnsl (
π

2
)dsml (

π

2
)e−i(nζ+sη+mω) =

l∑
s=−l

dnsl dsml e−i(nζ+sη+mω).

Similarly

Dn′m′
l′ (R′) =

l′∑
s′=−l′

dn
′s′

l′ ds
′m′
l′ e−i(n

′ζ′+s′η′+m′ω′).
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Note that, for brevity, we denote each drsl (π2 ) = drsl . Now by replacing these assumptions
into the Theorem 4.1.3, we have

CSC
(
R,R′; t

)
=

∑
kk′,ll′,mm′,n

Q̂A
klmQ̂

B
k′l′m′D

nm
l (R)D−nm

′

l′ (R′)× ISCkk′,ll′,|n|(t)

=
∑

kk′,ll′,mm′,n

Q̂A
klmQ̂

B
k′l′m′

l∑
s=−l

dnsl dsml e−i(nζ+sη+mω)
l′∑

s′=−l′
d−ns

′

l′ ds
′m′
l′ e−i(−nζ

′+s′η′+m′ω′)

× ISCkk′,ll′,n (t)

=
∑

kk′,ll′,mm′,n,ss′

Q̂A
klmQ̂

B
k′l′m′d

ns
l dsml d−ns

′

l′ ds
′m′
l′ ei(nζ+sη+mω−nζ

′+s′η′+m′ω′) × ISCkk′,ll′,|n|(t)

=
∑

kk′,ll′,mm′,n,ss′

Q̂A
klmQ̂

B
k′l′m′d

ns
l dsml d−ns

′

l′ ds
′m′
l′ ei(n(ζ−ζ

′)+sη+mω+s′η′+m′ω′) × Ikk′,ll′,|n|(t).

Letting δ = ζ − ζ ′, we have

CSC
(
R,R′; t

)
=

∑
kk′,ll′,mm′,n,ss′

Q̂A
klmQ̂

B
k′l′m′d

ns
l dsml d−ns

′

l′ ds
′m′
l′ ei(nσ+sη+mω+s

′η′+m′ω′)

× ISCkk′,ll′,|n|(t). �

From the above corollary we infer that the scoring function is a function of the five
angles σ, η, ω, η′, ω′ and the distance parameter t, and the Fourier coefficients of the scor-
ing function are

ĈSC
(
n, s,m, s′,m′

)
=
∑
kk′,ll′

Q̂A
klmQ̂

B
k′l′m′d

ns
l dsml d−ns

′

l′ ds
′m′
l′ ISCkk′,ll′,|n|(t).

The above corollary provides an algorithm. For each t, a five-dimensional FT yields the
correlation on a grid in (σ, η, ω, η′, ω′) space. As we need to compute the scoring function
CSC (R,R′; t) for five rotational degrees of freedom for different Euler angles, we cut
off k and k′ to degree N ∈ N and supposing we are given the precomputed coefficients
Q̂A
klm, Q̂B

k′l′m′ and ISCkk′,ll′,|n|(t), the scoring function CSC (R,R′; t) can be computed in the
following three steps:

1. At first, we compute

âklnm′(t) =

N∑
k′=1

k′−1∑
l′=0

Q̂B
k′l′m′ISCkk′,ll′,|n|(t), (4.88)

which takes O(N6Nt) operations, and Nt denotes the number of one-dimensional
translations.

2. In the second step, we compute

b̂mm′n(t) =
N∑
k=1

k−1∑
l=0

âklnm′(t)Q̂
A
klm, (4.89)

and its computational complexity is O
((
N5 +N6

)
Nt

)
operations
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3. Finally we compute the following expression by FFT, namely

CSC
(
σ, η, ω, η′, ω′; t

)
=

l∑
m=−l

l∑
m′=−l

l∑
n=−l

l∑
s=−l

l∑
s′=−l

b̂mm′n(t)dnsl dsml d−ns
′

l′ ds
′m′
l′

× ei(nσ+sη+mω+s
′η′+m′ω′)

(4.90)

with the computational complexity O
((
N5 logN +N5

R +N5 +N6
)
Nt

)
operations

and NR denotes the maximum number of the Euler angles σ, η, η′, ω and ω′.

Therefore the overall computational complexity yields O
((
N6 +N5

R

)
Nt

)
operations.

Algorithm 6: FRM on Shape Complementarity by FFT

Input:
N : Cut off degree
NA and NB: The number of atomic coordinates of molecules A and B
A set of motions (R, t) in SE(3) and rotations R of SO(3), with the conditions
R = R (α, β, γ) and R′ = R′ (α′, β′, γ′) where R = R1

(
ζ, π2 , 0

)
R2

(
η, π2 , ω

)
and R′ = R′1

(
ζ ′, π2 , 0

)
R′2

(
η′, π2 , ω

′) where ζ = α− π
2 , η = π − β, ω = γ − π

2 ,
ζ ′ = α′ − π

2 , η
′ = π − β′, ω′ = γ′ − π

2 and δ = ζ − ζ ′

foreach xj with j ∈ NA ∪NB do
Compute the centeres of both molecules A and B.
Compute the relocate atomic centeres of both molecules A and B.

end
foreach

(
k, l,m

)
and

(
k′, l′,m′

)
with k > l ≥ |m| ≥ 0 and k′ > l′ ≥ |m′| ≥ 0 do

Compute Q̂A
klm and Q̂B

k′l′m′ of Theorem 4.1.1.
end
foreach translation t ∈ R3 with t = ‖t‖2,

(
k, k′, l, l′, n

)
with k > l ≥ |n| ≥ 0

and k′ > l′ ≥ |n| ≥ 0 do
Compute ISCkk′,ll′,|n|(t) of Theorem 4.1.2.

end
foreach

(
k, l, n,m′

)
with k > l ≥ |n| ≥ 0 and l′ ≥ |m′| ≥ 0 do

Compute âklnm′of(4.88).
end
foreach

(
m,m′, n

)
with m,n = −l, . . . , l and m′ = −l′, . . . , l′ do

Compute b̂mm′n of (4.89).
end
foreach (σ, η, ω, η′, ω′) of Euler angles do

Compute CSC (σ, η, ω, η′, ω′; t) by FFT of (4.90).
end
Output: The solution of the docking problem.

Complexity: O
((
N6 +NR

5
)
Nt

)
operations.
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4.2. FRM on Electrostatic Complementarity

4.2.1. Introduction

In analogy to the previous chapter, FTM on shape complementarity, we present new
computational methods for FRM on electrostatic complementarity. In this section with
the aid of the ETO spherical polar radial basis functions, see Definition 2.3.6 and Lemma
2.3.11, the affinity functions are defined. Also we describe two methods for the computa-
tion of the ETO spherical polar radial Fourier coefficients QEC

klm. Also we define the ETO
translational coefficients IEC and we present a method to compute the IEC coefficients.
Finally we bring forward our algorithm that computes the scoring function by applying
the ETO spherical polar radial Fourier coefficients, the ETO translational coefficients
and the Wigner D-functions.

4.2.2. Affinity Functions & Electrostatic Complementarity Score

Shape complementarity together with electrostatic complementarity are typically used
as the initial steps to obtain possible docking sites. Electrostatic complementarity is
another important aspect in evaluating the fitness of the possible docking results. We have
described the notions of charge density and electrostatic potential in (3.33) and (3.34).
In molecular docking in terms of electrostatics, the molecules A and B are considered
as two volumes with NA and NB point like charge carriers. Hence we have two affinity
functions introduced in (3.37) and (3.38), i.e.

QEC
A (x) =

NA∑
j=1

qj
ε (x− xj) ‖x− xj‖2

κjG (x− xj)

and

QEC
B (x) =

NB∑
j=1

qjκ
j
G (x− xj) ,

where qj is the point-like charge on the j-th atom, ε (x) has been defined in (3.35) and

κjG (x− xj) = e
β

(
1−
‖x−xj‖

2
2

r2
j

)
.

Here we rotate molecule A by R ∈ SO(3) and also we rotate and translate molecule B by
(R′, t) ∈ SE(3) where t = (0, 0, t), see Figure 4.1. Hence we define the scoring function
by

CEC
(
R,
(
R′, t

))
= Re

∫
R3

ΛRQ
EC
A (x) · ΛR′T tQEC

B (x) dx. (4.91)

Since the ETO spherical polar radial functions are basis for L2(R3), the affinity function
QEC

A (x) can be written uniquely in terms of ETO spherical polar radial basis functions,
i.e.

QEC
B (x) =

NB∑
i=0

qiκG (x− xi) =
∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂B
klmV l

k(r)Y
m
l (u) , (4.92)
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where xi ∈ R3, x− xi = riui, ri = ‖x− xi‖2 & ui = (θi, φi) ∈ S2 and

Q̂B
klm =

NB∑
i=0

qi

∫ ∞
0

∫
S2
κG(riui)V

l
k(r)Y

m
l (u)r2 dudr. (4.93)

Analogously, the affinity function QEC
A (x) can be written uniquely in terms of ETO

spherical polar radial Fourier series, namely

QEC
A (x) = QEC

A (ru) =
∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂A
klmV l

k(r)Y
m
l (u) , (4.94)

where the ETO spherical polar radial Fourier coefficients Q̂A
klm are computed by the ETO

spherical polar radial Fourier coefficients Q̂B
klm in (4.92) by solving Poisson’s equation

52QEC
A (ru) = −4πQEC

B (ru) , (4.95)

cf. Ritchie [78]. Now, in the next step, at first we need to compute the FTO spherical
polar radial Fourier coefficients Q̂B

klm and then by solving Poisson’s equation (4.95), we

are able to compute Q̂A
klm.

4.2.3. ETO Spherical Polar Radial Fourier Coefficients Q̂EC
klm

Now in the following lemma, we present a method for computing the ETO spherical polar
radial Fourier coefficients Q̂B

klm, in (4.93).

Lemma 4.2.1 For given integers k, l and m where k > l ≥ |m| ≥ 0, the ETO spherical
polar radial Fourier coefficients (4.93) are computed by

Q̂B
klm =

NB∑
j=0

∞∑
n=0

n∑
p=0

p+l even

(
2−(2l+n−p−m)im

√
(k − l − 1)!

Γ(k + l + 2)
× π(2l + 1)(l −m)!

(l +m)!

× qje
β

(
1−

r2j

ς2
j

)
e−imφj/n!

k−l−1∑
j′=0

(−1)j
′

j′!

(
k + l + 1

k − l − 1− j′

)(
β

ς2j

)− (3+l+n+j′)
2

× Γ

(
3 + l + n+ j′

2

) b l−m2 c∑
t=0

(2l − 2t)!22t

(l −m− 2t)!(l − t)!t!

l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)

×
m+1∑
t′=0

(
m+ 1

t′

)m+2p∑
q=m

(
βrj
ς2j

)p(
p

q

)(
−i

2
sin θj

)q
(cos θj)

p−q
(

q
q−m
2

)

×
q∑

u=0

(
q

u

)
(−1)u

p−q∑
v=0

(
p− q
v

)
(−1)t+t

′

p+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′

)
.

Proof. By (4.92), we have

Q̂B
klm =

∫ ∞
0

∫ 2π

0

∫ π

0

NB∑
j=1

qje
β

(
1−

r2+r2j−2rrj(cos(φ−φj) sin θ sin θj+cos θ cos θj)
ς2
j

)

×V l
k(r)Y

m
l (φ, θ)r2 sin θ dθ dφ dr.
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We denote

bj := 2β
rj
ς2j

(cos (φ− φj) sin θ sin θj + cos θ cos θj) (4.96)

and hence

Q̂B
klm =

NB∑
j=1

qje
β

(
1−

r2j

ς2
j

) ∫ ∞
0

∫ 2π

0

∫ π

0
e
− β

ς2
j

r2

ebjrV l
k(r)Y

m
l (θ, φ)r2 sin θ dθ dφ dr

=

NB∑
j=1

qje
β

(
1−

r2j

ς2
j

) ∫ 2π

0

∫ π

0
Y m
l (θ, φ) sin θ

(∫ ∞
0

e
− β

ς2
j

r2

ebjrV l
k(r)r

2 dr

)
dθ dφ.

Substituting the ETO radial basis functions Vl
k by (2.38), gives

Q̂B
klm =

NB∑
j=1

qje
β

(
1−

r2j

ς2
j

) ∫ 2π

0

∫ π

0
Y m
l (θ, φ) sin θ

(∫ ∞
0

e
− β

ς2
j

r2

ebjr

×

√
(k − l − 1)!

Γ(k + l + 2)
e−

r
2 rl

k−l−1∑
j′=0

1

j′!

(
k + l + 1

k − l − 1− j′

)
(−r)j′r2 dr

)
dθ dφ

=

NB∑
j=1

qje
β

(
1−

r2j

ς2
j

)√
(k − l − 1)!

Γ (k + l + 2)

k−l−1∑
j′=0

(−1)j
′

j′!

(
k + l + 1

k − l − 1− j′

)

×
∫ 2π

0

∫ π

0
Y m
l (θ, φ) sin θ

(∫ ∞
0

e
−βr

2

ς2
j e(bj− 1

2)rrl+j
′+2 dr

)
dθ dφ.

(4.97)

For computing the coefficients (4.97), at first we need to compute the inner integral

∫ ∞
0

e
−βr

2

ς2
j e(bj− 1

2)rrl+j
′+2 dr.

Since

e(bj− 1
2)r =

∞∑
n=0

(
bj − 1

2

)n
rn

n!
, (4.98)

we have∫ ∞
0

e
−βr

2

ς2
j e(bj− 1

2)rrl+j
′+2 dr =

∫ ∞
0

e
−βr

2

ς2
j

∞∑
n=0

(
bj − 1

2

)n
rn

n!
rl+j

′+2 dr

=

∞∑
n=0

(
bj − 1

2

)n
n!

∫ ∞
0

e
−βr

2

ς2
j rl+j

′+n+2 dr

=

∞∑
n=0

(
bj − 1

2

)n
n!

× 1

2

(
β

ς2j

)− 1
2
(3+l+n+j′)

Γ

(
3 + l + n+ j′

2

)
.

(4.99)
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Replacing (4.99) by (4.97), gives

Q̂B
klm =

NA∑
j=1

qje
β

(
1−

r2j

ς2
j

)√
(k − l − 1)!

Γ (k + l + 2)

k−l−1∑
j′=0

(−1)j
′

j′!

(
k + l + 2

k − l − 1− j′

) ∞∑
n=0

1

n!
× 1

2

×

(
β

ς2j

)− 1
2
(3+l+n+j′)

Γ

(
3 + l + n+ j′

2

)∫ 2π

0

∫ π

0

(
bj −

1

2

)n
Y m
l (θ, φ) sin θ dθ dφ.

(4.100)

Now our task is handling the above double integral on S2 by applying the spherical
harmonics, see Lemma (2.3.4), i.e.∫ 2π

0

∫ π

0

(
bj −

1

2

)n
Y m
l (θ, φ) sin θ dθ dφ =

∫ 2π

0

∫ π

0

(
bj −

1

2

)n(1

2

)l√(2l + 1)(l −m)!

4π(l +m)!

×
b l−m

2
c∑

t=0

(−1)t+m(2l − 2t)!

(l −m− 2t)!(l − t)!t!
(sin θ)m (cos θ)l−m−2t e−imφ sin θ dθ dφ

=

(
1

2

)l√(2l + 1)(l −m)!

4π(l +m)!
×
b l−m

2
c∑

t=0

(−1)t+m(2l − 2t)!

(l −m− 2t)!(l − t)!t!

×
∫ 2π

0

∫ π

0

(
bj −

1

2

)n
(sin θ)m+1 (cos θ)l−m−2t e−imφ dθ dφ.

(4.101)

Now, again we need to compute the following double integral∫ 2π

0

∫ π

0

(
bj −

1

2

)n
(sinφ)m+1 (cosφ)l−m−2t e−imθ dφ dθ, (4.102)

and in order to do this, we do the following steps:

1. We compute (
bj −

1

2

)n
=

n∑
p=0

(
n

p

)
bpj

(
−1

2

)n−p
, (4.103)

where

bpj =

(
2
β

ς2j
rj (cos (φ− φj) sin θ sin θj + cos θ cos θj)

)p

=

(
2
β

ς2j
rj

)p
(cos (φ− φj) sin θ sin θj + cos θ cos θj)

p

=

(
2
β

ς2j
rj

)p p∑
q=0

(
p

q

)
(cos (φ− φj) sin θ sin θj)

q (cos θ cos θj)
p−q

=

(
2
β

ς2j
rj

)p p∑
q=0

(
p

q

)(
ei(φ−φj) + e−i(φ−φj)

2

)q (
eiθ − e−iθ

2i

)q

× (sin θj)
q

(
eiθ + e−iθ

2

)p−q
(cos θj)

p−q .



FRM on Electrostatic Complementarity 107

Using the binomial theorem, necessitates to have

bpj =
( β
ς2j
rj
)p p∑

q=0

(
p

q

)(
−i

2

)q
(sin θj)

q (cos θj)
p−q

q∑
s=0

(
q

s

)
e−i(φ−φj)s

× ei(φ−φj)(q−s)
q∑

u=0

(−1)u
(
q

u

)
e−iθueiθ(q−u)

p−q∑
v=0

(
p− q
v

)
e−iθveiθ(p−q−v)

=

(
β

ς2j
rj

)p p∑
q=0

(
p

q

)(
− i

2

)q
(sin θj)

q (cos θj)
p−q

q∑
s=0

(
q

s

) q∑
u=0

(
q

u

)
(−1)u

×
p−q∑
v=0

(
p− q
v

)
ei(φ−φj)(q−2s)ei(p−2u−2v)θ.

(4.104)

2. Also we need to rewrite

(sin θ)m+1 =

(
eiθ − e−iθ

2i

)m+1

=

(
− i

2

)m+1 m+1∑
t′=0

(
m+ 1

t′

)
(−e−iθ)t

′
(eiθ)m+1−t′

=

(
− i

2

)m+1 m+1∑
t′=0

(
m+ 1

t′

)
(−1)t

′
ei(m+1−2t′)θ.

(4.105)

3. Finally we have

(cos θ)l−m−2t =

(
eiθ + e−iθ

2

)l−m−2t
=

(
1

2

)l−m−2t l−2t−m∑
t′′=0

(
l −m− 2t

t′′

)(
e−iθ

)t′′ (
eiθ
)l−m−2t−t′′

=

(
1

2

)l−m−2t l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)
ei(l−m−2t−2t

′′)θ.

(4.106)

Now, replacing (4.104), (4.105) and (4.106), into the double integral (4.102), gives∫ 2π

0

∫ π

0

(
bj −

1

2

)n
(sin θ)m+1 (cos θ)l−m−2t e−imφ dθ dφ

=

n∑
p=0

(
n

p

)(
−1

2

)n−p( β

ς2j
rj

)p p∑
q=0

(
p

q

)(
− i

2
sin θj

)q
(cos θj)

p−q
q∑
s=0

(
q

s

) q∑
u=0

(
q

u

)

× (−1)u
p−q∑
v=0

(
p− q
v

)(
− i

2

)m+1 m+1∑
t′=0

(−1)t
′
(
m+ 1

t′

)(
1

2

)l−m−2t l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)
×
∫ 2π

0

∫ π

0
ei(p−2u−2v)θei(q−2s)(φ−φj)ei(m+1−2t′)θei(l−m−2t−2t

′′)θe−imφ dθ dφ,

(4.107)
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and hence we have∫ 2π

0

∫ π

0

(
bj −

1

2

)n
(sin θ)m+1 (cos θ)l−m−2t e−imφ dθ dφ

=

n∑
p=0

(
n

p

)(
−1

2

)n−p( β

ς2j
rj

)p(
− i

2

)m+1(1

2

)l−m−2t p∑
q=0

(
p

q

)(
− i

2
sin θj

)q
(cos θj)

p−q

×
q∑
s=0

(
q

s

) q∑
u=0

(
q

u

)
(−1)u

p−q∑
v=0

(
p− q
v

)m+1∑
t′=0

(
m+ 1

t′

)
(−1)t

′
l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)
×
∫ 2π

0

∫ π

0
ei(p+l+1−2u−2v−2t−2t′−2t′′)θe−imφei(q−2s)(φ−φj) dθ dφ.

(4.108)

Again, we compute the double integral in (4.108), so∫ 2π

0

∫ π

0
ei(p+l+1−2u−2v−2t−2t′−2t′′)θe−imφei(q−2s)(φ−φj) dθ dφ

= e−i(q−2s)φj
(∫ 2π

0
ei(q−2s−m)φ

(∫ π

0
ei(p+l+1−2u−2v−2t−2t′−2t′′)θ dθ

)
dφ

)
.

(4.109)

Since we have ∫ 2π

0
ei(q−2s−m)φ dφ = 2πδm,q−2s (4.110)

and ∫ π

0
ei(p+l+1−2u−2v−2t−2t′−2t′′)θ dθ := λp,l,u,v,t,t′,t′′ ,

where

λp,l,u,v,t,t′,t′′ =


π if (p+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′) = 0

2i
p+l+1−2u−2v−2t−2t′−2t′′ if (p+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′) odd

0 otherwise,

or equivalently

λn,l,u,v,t,t′,t′′ =


π if (p+ l) = 2u+ 2v + 2t+ 2t′ + 2t′′ − 1

2i
p+l+1−2u−2v−2t−2t′−2t′′ if (p+ l) even

0 otherwise,
(4.111)

therefore we have∫ 2π

0

∫ π

0
ei(p+l+1−2u−2v−2t−2t′−2t′′)θe−imφei(q−2s)(φ−φj) dθ dφ

= e−i(q−2s)φj
(∫ 2π

0
ei(q−2s−m)φ

(∫ π

0
ei(p+l+1−2u−2v−2t−2t′−2t′′)θ dθ

)
dφ

)
= e−i(q−2s)φj × 2πδm,q−2s × λp,l,u,v,t,t′,t′′ .

(4.112)
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Thus, we could compute the double integral (4.109) and consequently double integral
(4.108), so by (4.101) we obtain

Q̂B
klm =

NB∑
j=1

qje
β

(
1−

r2j

ς2
j

)√
(k − l − 1)!

Γ (k + l + 2)

k−l−1∑
j′=0

(−1)j
′

j′!

(
k + l + 1

k − l − 1− j′

)(
1

2

)l+1

×
∞∑
n=0

1

n!

(
β

ς2j

)−1
2
(3+l+n+j′)

Γ

(
3 + l + n+ j′

2

)√
(2l + 1) (l −m)!

4π(l +m)!

×
b l−m

2
c∑

t=0

(−1)t+m(2l − 2t)!

(l −m− 2t)!(l − t)!t!

n∑
p=0

(
n

p

)(
−1

2

)n−p( β

ς2j
rj

)p p∑
q=0

(
p

q

)

×
(
− i

2
sin θj

)q
(cos θj)

p−q
q∑
s=0

(
q

s

) q∑
u=0

(
q

u

)
(−1)u

p−q∑
v=0

(
p− q
v

)

×
(
− i

2

)m+1 m+1∑
t′=0

(−1)t
′
(
m+ 1

t′

)(
1

2

)l−m−2t l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)
× e−i(q−2s)φj × 2πδm,q−2s × λp,l,u,v,t,t′,t′′ .

(4.113)

Now, considering the Kronecker delta functions δm,q−2s, implies q = m + 2s and since
s = s(q) = q−m

2 is an integer valued function and since q = 0, 1, . . . , p, hence

Q̂B
klm =

NB∑
j=1

∞∑
n=0

n∑
p=0

p+l even

((
1

2

)2l+1

π im

√
(k − l − 1)!

Γ (k + l + 2)
× (2l + 1)(l −m)!

4π(l +m)!

× qje
β

(
1−

r2j

ς2
j

)
e−imφj1/n!

k−l−1∑
j′=0

(−1)j
′

j′!

(
k + l + 1

k − l − 1− j′

)(
β

ς2j

)− 1
2
(3+l+n+j′)

× Γ

(
3 + l + n+ j′

2

) n∑
p=0

(
n

p

)(
−1

2

)n−p( β

ς2j
rj

)p m+2p∑
q=m

(
p

q

)(
− i sin θj

2

)q

× (cos θj)
p−q
(

q
q−m
2

) q∑
u=0

(
q

u

)
(−1)u

p−q∑
v=0

(
p− q
v

)m+1∑
t′=0

(
m+ 1

t′

)

×
b l−m

2
c∑

t=0

(2l − 2t)!(12)−2t

(l −m− 2t)!(l − t)!t!

l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)

× (−1)t+t
′

p+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′

)
+ B,
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where

B =

NB∑
j=1

∞∑
n=0

n∑
p=0

p+l=2u+2v+2t+2t′+2t′′−1

((
1

2

)2l+1

π im

√
(k − l − 1)!

Γ (k + l + 2)
× (2l + 1)(l −m)!

4π(l +m)!

× qje
β

(
1−

r2j

ς2
j

)
e−imφj1/n!

k−l−1∑
j′=0

(−1)j
′

j′!

(
k + l + 1

k − l − 1− j′

)(
β

ς2j

)− 1
2
(3+l+n+j′)

× Γ

(
3 + l + n+ j′

2

) n∑
p=0

(
n

p

)(
−1

2

)n−p( β

ς2j
rj

)p m+2p∑
q=m

(
p

q

)(
− i sin θj

2

)q

× (cos θj)
p−q
(

q
q−m
2

) q∑
u=0

(
q

u

)
(−1)u

p−q∑
v=0

(
p− q
v

)m+1∑
t′=0

(
m+ 1

t′

)

×
b l−m

2
c∑

t=0

(2l − 2t)!(12)−2t

(l −m− 2t)!(l − t)!t!

l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)
π

)

and since, when p + l is the odd integer “2u + 2v + 2t + 2t′ + 2t′′ − 1”, the following
expression is zero, i.e.

p∑
q=0

(
p

q

)(
− i sin θj

2

)q
(cos θj)

p−q
(

q
q−m
2

) q∑
u=0

(
q

u

)
(−1)u

p−q∑
v=0

(
p− q
v

)

×
m+1∑
t′=0

(
m+ 1

t′

) b l−m2 c∑
t=0

(2l − 2t)!(12)−2t

(l −m− 2t)!(l − t)!t!

l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)
π = 0,

(4.114)

therefore B = 0 and hence we have

Q̂B
klm =

NB∑
j=1

∞∑
n=0

n∑
p=0

p+l even

((
1

2

)2l+1

π im

√
(k − l − 1)!

Γ (k + l + 2)
× (2l + 1)(l −m)!

4π(l +m)!

× qje
β

(
1−

r2j

ς2
j

)
e−imφj1/n!

k−l−1∑
j′=0

(−1)j
′

j′!

(
k + l + 1

k − l − 1− j′

)(
β

ς2j

)− 1
2
(3+l+n+j′)

× Γ

(
3 + l + n+ j′

2

) n∑
p=0

(
n

p

)(
−1

2

)n−p( β

ς2j
rj

)p m+2p∑
q=m

(
p

q

)(
− i sin θj

2

)q

× (cos θj)
p−q
(

q
q−m
2

) q∑
u=0

(
q

u

)
(−1)u

p−q∑
v=0

(
p− q
v

)m+1∑
t′=0

(
m+ 1

t′

)

×
b l−m

2
c∑

t=0

(2l − 2t)!(12)−2t

(l −m− 2t)!(l − t)!t!

l−m−2t∑
t′′=0

(
l −m− 2t

t′′

)

× (−1)t+t
′

p+ l + 1− 2u− 2v − 2t− 2t′ − 2t′′

)
.

(4.115)
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In this proof, we have applied the binomial theorem which describes the algebraic expan-
sion of nonnegative integer powers of a binomial in (4.104), (4.105) and (4.106), therefore
m should be a nonnegative integer. On the other hand we have, m = −l, . . . , 0, . . . , l.
Therefore for the negative integers m, we will use the Remark 2.21. In other words, for
negative integers m, we apply the same procedure as for the nonnegative integers m, just
we multiply the ETO spherical polar radial Fourier coefficients Q̂B

klm with the factors
(−1)m(l−m)!

(l+m)! where l and m are integers and l ≥ m ≥ 0. �

Now in the following lemma we present the Ritchie’s procedure to compute the ETO
spherical polar radial Fourier coefficients Q̂A

klm, see [78], or [82]

Lemma 4.2.2 For the integers k, k′, l and m where k′, k′ ≥ 1 ≥ m ≥ 0, the ETO spher-
ical polar radial Fourier coefficients Q̂A

klm can be computed from the following equation

∞∑
k=1

Q̂A
klmG

(l)
kk′ = −4πQ̂B

k′lm,

where

G
(l)
kk′ =

1

4

k−l−1∑
j=0

k′−l−1∑
j′=0

DkljDk′lj′
(
k + k′ + 2l

)
!
((
k − k′

)2 − (k − k′)− 2 (2l + 1) (l + 1)
)
,

and

Dklj =

√
(k − l − 1)!

Γ (k + l + 2)

(−1)j

j!

(
k + l + 1

k − l − 1− j

)
.

Proof. Substituting the series expansion of the ETO spherical polar radial basis functions
in Poisson’s equation (4.95), gives

52

( ∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂A
klmV l

k(r)Y
m
l (u)

)
= −4π

∞∑
k′=1

k′−1∑
l′=0

l′∑
m′=−l′

Q̂B
k′l′m′V

l′
k′(r)Y

m′
l′ (u) .

Applying the Laplace operator 52 on the ETO spherical polar radial basis functions,
gives

5

( ∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂A
klmV l

k(r)Y
m
l (u)

)

=
∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂A
klm

(
1

r

(
∂2

∂r2

)
r +

1

r2
Λ2

)
V l
k(r)Y

m
l (u)

=

∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂A
klm

(
Y m
l (u)

r

∂2

∂r2

(
rV l

k(r)
)

+
V l
k(r)

r2
Λ2Y m

l (u)

)

=
∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂A
klm

(
V ′′

l
k(r) +

2

r
V ′

l
k(r)−

l(l + 1)

r2
V l
k(r)

)
Y m
l (u),

(4.116)



112 FRM Algorithm on Surface & Electrostatics Complementarity

where V ′lk(r) and V ′′lk(r) are the first and second derivatives of V l
k(r). Now with having

(4.116), we come back to the equation (4.2.3), hence we have∫ ∞
0

∫
S2
52

( ∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂A
klmV l

k(r)Y
m
l (u)

)
V l′
k′(r)Y

m′
l′ (u)r2 du dr

= −4πQ̂B
k′l′m′ .

(4.117)

We simplify both sides of the equation (4.117), hence we have

∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂A
klm

∫ ∞
0

∫
S2

(
V ′′

l
k(r) +

2

r
V ′

l
k(r)−

l(l + 1)

r2
V l
k(r)

)
Y m
l (u) V l′

k′(r)Y
m′
l′ (u)

r2du dr = −4πQ̂B
k′l′m′ ,

(4.118)

and more simplifications on (4.118), gives

∞∑
k=l

Q̂A
klm

∫ ∞
0

(
V ′′

l
k(r) +

2

r
V ′

l
k(r)−

l(l + 1)

r2
V l
k(r)

)
V l
k′(r)r

2 dr = −4πQ̂B
k′lm. (4.119)

We set

G
(l)
kk′ =

∫ ∞
0

(
V ′′

l
k(r)V

l
k′(r) +

2

r
V ′

l
k(r)V

l
k′(r)−

l(l + 1)

r2
V l
k(r)V

l
k′(r)

)
r2 dr, (4.120)

and since each element of G(l) has the symmetric form

G
(l)
kk′ = −

∫ ∞
0

(
V ′

l
k(r)V

′l
k′(r)r

2 + l(l + 1)V l
k(r)V

l
k′(r)

)
dr. (4.121)

It can be seen that for each l and m, the equation (4.119) represents a set of simultaneous
equations in the coefficients Q̂A

klm which can be determind by inverting each G(l) matrix.
The elements of G(l) may be calculated by the ETO spherical polar radial basis functions
(2.38). After some computation on (4.121), we obtain

G
(l)
kk′ =

1

4

k−l−1∑
j=0

k′−l−1∑
j′=0

√
(k − l − 1)! (k′ − l − 1)!

Γ (k + l + 2) Γ (k′ + l + 2)

(−1)j+j
′

j!j′!

(
k + l + 1

k − l − 1− j

)

×
(

k′ + l + 1

k′ − l − 1− j′

)(
k + k′ + 2l

)
!
((
k − k′

)2 − (k − k′)− 2 (2l + 1) (l + 1)
)
. �

4.2.4. The ETO Translational Coefficients IECkk′,ll′,|n|(t)

Definition 4.2.1 For given integers k, k′, l, l′ and n where k > l ≥ |n| ≥ 0, k′ > l′ ≥
|n′| ≥ 0 and n′ = −n, we define

IECkk′,ll′,|n|(t) =

∫ ∞
0

∫ π

0

∫ 2π

0
V l
k(r)Y

n
l (θ, φ) V l′

k′(r)Y
n′
l′
(
θ′, φ

)
r2 sin θ dφ dθ dr,

which are called ETO translational coefficients.
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Lemma 4.2.3 The ETO translational coefficients IECkk′,ll′,|n|(t) are computed by

IECkk′,ll′,|n|(t) =

√
(2l + 1)(2l′ + 1)(l − n)!(l′ + n)!

(l + n)!(l′ − n)!

√
(k − l − 1)! (k′ − l′ − 1)!

Γ(k + l + 2)Γ (k′ + l′ + 2)

×
k−l−1∑
j=0

(−1)j

j!

(
k + l + 1

k − l − 1− j

) k′−l′−1∑
j′=0

(−1)j
′

j′!

(
k′ + l′ + 1

k′ − l′ − 1− j′

)

×
b l−n

2
c∑

q=0

b l
′+n
2
c∑

q′=0

(−1)q+q
′
(2l − 2q)!(2l′ − 2q′)!

(l − n− 2q)! (l′ + n− 2q′)!(l − q)!(l′ − q′)!q!q′!

×
∞∑

n1=0

(−1/2)n1

n1!

n1∑
n4=0

(
n1
n4

) ∞∑
n2=0

(
j′/2 + q′

n2

) l′+n−2q′∑
n3=0

(
l′ + n− 2q′

n3

)

×
n4+n2∑
n5=0

(
n4 + n2
n5

)
(−1)j

′/2+q′+n1−n2+n3−n42j+j
′−2q+2q′+l+l′+2n1−n3−2n5+3

× Γ
(
l + l′ + j + j′/2− 2q + q′ + n1 + n2 − n3 + n4 − 2n5 + 3

)
× (−1)l+l

′+j′/2+q′+n1−n2−n3−n4 + 1

l + l′ + j′/2− 4q + q′ + n1 − n2 − n3 − n4 + 1
tj
′/2+q′+n1+n2+n3−n4 ·

Proof. Using the Definition 4.2.1 and the spherical harmonics, see (2.20), gives

IECkk′,ll′,|n|(t) =

∫ ∞
0

∫ π

0
V l
k(r)V

l′
k′(r

′)

(∫ 2π

0

√
(2l + 1)(l − n)!

4π(l + n)!
Pnl (cos θ)einφ

×

√
(2l′ + 1)(l′ − n′)!

4π(l′ + n′)!
Pn
′
l′ (cos θ′)ein

′φ dφ

)
r2 sin θ dθ dr.

We simplify the above expression, so we obtain

IECkk′,ll′,|n|(t) =

√
(2l + 1)(2l′ + 1)

4π

√
(l − n)!(l′ − n′)!
(l + n)!(l′ + n′)!

×
∫ ∞
0

∫ π

0
V l
k(r)V

l′
k′(r

′)Pnl (cos θ)Pn
′
l′ (cos θ′) 2πδn′,−n r

2 sin θ dθ dr.

(4.122)

We apply the the ETO spherical polar radial basis fuctions, hence we have

IECkk′,ll′,|n|(t) =

√
(2l + 1)(2l′ + 1)

2

√
(l − n)!(l′ + n)!

(l + n)!(l′ − n)!

∫ ∞
0

∫ π

0

√
(k − l − 1)!

Γ(k + l + 2)
e−

r
2 rl

× L
(2l+2)
k−l−1(r)

√
(k′ − l′ − 1)!

Γ(k′ + l′ + 2)
e−

r′
2 r′

l′
L
(2l′+2)
k′−l′−1(r

′)Pnl (cos θ)P−nl′ (cos θ′)r2 sin θ dθ dr

= 1/2

√
(2l + 1)(2l′ + 1)(l − n)!(l′ + n)!

(l + n)!(l′ − n)!

√
(k − l − 1)! (k′ − l′ − 1)!

Γ(k + l + 2)Γ(k′ + l′ + 2)
× J EC

kk′,ll′,n(t),

(4.123)
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where

J EC
kk′,ll′,n(t) =

∫ ∞
0

∫ π

0
e−

1
2
(r+r′)rlr′

l′
L
(2l+2)
k−l−1(r)L

(2l′+2)
k′−l′−1(r

′)Pnl (cos θ)P−nl′ (cos θ′)

× r2 sin θ dθdr.

(4.124)

For computing IECkk′,ll′,|n|(t), we need to compute J EC
kk′,ll′,n(t). Using the associated La-

guerre polynomials, associated Legendre polynomials and also r′, see (4.35), gives

J EC
kk′,ll′,n(t) =

∫ ∞
0

∫ π

0
e−

r
2 e(r2−2rt cos θ+t2)

1/2

rl
(√

r2 − 2rt cos θ + t2
)l′ k−l−1∑

j=0

1

j!

×
(

k + l + 1

k − l − 1− j

)
(−r)j

k′−l′−1∑
j′=0

1

j′!

(
k′ + l′ + 1

k′ − l′ − 1− j′

)(
−
√
r2 − 2rt cos θ + t2

)j′

×
(

1

2

)l b l−n2 c∑
q=0

(−1)q+n(2l − 2q)!

(l − n− 2q)!(l − q)!q!
(
sin2 θ

)n
2 (cos θ)l−n−2q

(
1

2

)l′ b l′+n2 c∑
q′=0

× (−1)q
′−n(2l′ − 2q′)!

(l′ + n− 2q′)! (l′ − q′)! q′!
(
sin2 θ′

)−n
2
(
cos θ′

)l′+n−2q′
r2 sin θ dθ dr.

Simplification the above expression, gives

J EC
kk′,ll′,n(t) =

∫ ∞
0

∫ π

0
e
−r
2 e(r2−2rt cos θ+t2)

1/2
k−l−1∑
j=0

(−1)j

j!

(
k + l + 1

k − l − 1− j

)
rl+j+2

×
k′−l′−1∑
j′=0

(−1)j
′

j′!

(
k′ + l′ + 1

k′ − l′ − 1− j′

)(
r2 − 2rt cos θ + t2

) l′+j′
2

(
1

2

)l

×
b l−n

2
c∑

q=0

(−1)q+n(2l − 2q)!

(l − n− 2q)!(l − q)!q!
(sin θ)n (cos θ)l−n−2q

(
1

2

)l′ b l′+n2 c∑
q′=0

× (−1)q
′−n(2l′ − 2q′)!

(l′ + n− 2q′)!(l′ − q′)!q′!
(
sin θ′

)−n (
cos θ′

)l′+n−2q′
sin θ dθ dr.

(4.125)

Using the following assumptions (4.40) and (4.41), namely

cos θ′ =
r cos θ − t√

r2 − 2rt cos θ + t2

and

sin θ′ =
r sin θ√

r2 − 2rt cos θ + t2
,
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gives

J CE
kk′,ll′,n(t) =

∫ ∞
0

∫ π

0
e−

r
2 e(r2−2rt cos θ+t2)

1/2
k−l−1∑
j=0

(−1)j

j!

(
k + l + 1

k − l − 1− j

)
rl+j+2

×
k′−l′−1∑
j′=0

(−1)j
′

j′!

(
k′ + l′ + 1

k′ − l′ − 1− j′

)(
r2 − 2rt cos θ + t2

) l′+j′
2

(
1

2

)l

×
b l−n

2
c∑

q=0

(−1)q+n(2l − 2q)!

(l − n− 2q)!(l − q)!q!
(sin θ)n (cosφ)l−n−2q

(
1

2

)l′ b l′+n2 c∑
q′=0

× (−1)q
′−n(2l′ − 2q′)!

(l′ + n− 2q′)! (l′ − q′)! q′!

(
r sin θ√

r2 − 2rt cos θ + t2

)−n
sin θ

×
(

r cos θ − t√
r2 − 2rt cos θ + t2

)l′+n−2q′
dθ dr.

(4.126)

Again by simplifying the above equation, we obtain

J EC
kk′,ll′,n(t) =

(
1

2

)l+l′ k−l−1∑
j=0

(−1)j

j!

(
k + l + 1

k − l − 1− j

) k′−l′−1∑
j′=0

(−1)j
′

j′!

(
k′ + l′ + 1

k′ − l′ − 1− j′

)

×
b l−n

2
c∑

q=0

b l
′+n
2
c∑

q′=0

(
(−1)q+q

′
(2l − 2q)!(2l′ − 2q′)!

(l − n− 2q)! (l′ + n− 2q′)!(l − q)!(l′ − q′)!q!q′!

)
× T EC

kk′,ll′,n(t),

(4.127)

where

T EC
kk′,ll′,n(t) =

∫ ∞
0

∫ π

0
e−

r
2 e(r2−2rt cos θ+t2)

1/2

rl+j−n+2
(
r2 − 2rt cos θ + t2

) j′
2
+q′

× (r cos θ − t)l
′+n−2q′ sin θ (cos θ)l−n−2q dθ dr.

(4.128)

For computing T EC
kk′,ll′,n(t), we apply the generalized binomial theorem and the exponential

function in term of power series, hence

T EC
kk′,ll′,n(t) =

∫ ∞
0

∫ π

0
e−

r
2

∞∑
n1=0

(
−1/2

(
r2 − 2rt cos θ + t2

))n1

n1!
rl+j−n+2

∞∑
n2=0

(
j′/2 + q′

n2

)

×
(
r2 + t2

)n2 (−2rt cos θ)
j′
2
+q′−n2

l′+n−2q′∑
n3=0

(
l′ + n− 2q′

n3

)
× (r cos θ)l

′+n−2q′−n3 (−t)n3 sin θ (cos θ)l−n−2q dθ dr.

(4.129)

Using the binomial theorem for the expression

(
r2 + t2 − 2rt cos θ

)n1 =

n1∑
n4=0

(
n1
n4

)(
r2 + t2

)n4 (−2rt cos θ)n1−n4 ,
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in equation (4.129), gives

T EC
kk′,ll′,n(t) =

∫ ∞
0

∫ π

0
e−

r
2

∞∑
n1=0

(−1/2)n1

n1!

n1∑
n4=0

(
n1
n4

)(
r2 + t2

)n4 (−2rt cos θ)n1−n4

× rl+j−n+2
∞∑

n2=0

( j′

2 + q′

n2

)(
r2 + t2

)n2 (−2rt cos θ)
j′
2
+q′−n2

×
l′+n−2q′∑
n3=0

(
l′ + n− 2q′

n3

)
(−t)n3 (r cos θ)l

′+n−2q−n3 sin θ

× (cos θ)l−n−2q dθ dr.

(4.130)

We simplify the above expression, so

T EC
kk′,ll′,n(t) =

∞∑
n1=0

(−1/2)n1

n1!

n1∑
n4=0

(
n1
n4

) ∞∑
n2=0

( j′

2 + q′

n2

) l′+n−2q′∑
n3=0

(
l′ + n− 2q′

n3

)
× (−t)n3

∫ ∞
0

∫ π

0
e−

r
2
(
r2 + t2

)n2+n4 (−2rt cos θ)
j′
2
+q′+n1−n2−n4

× rl+j−n+2 (r cos θ)l
′+n−2q−n3 sin θ (cos θ)l−n−2q dθ dr.

(4.131)

Again we apply the binomial theorem for
(
r2 + t2

)n2+n4 and also we simplify the expres-
sion (4.131), hence we have

T EC
kk′,ll′,n(t) =

∞∑
n1=0

(−1/2)n1

n1!

n1∑
n4=0

(
n1
n4

) ∞∑
n2=0

( j′

2 + q′

n2

) l′+n−2q′∑
n3=0

(
l′ + n− 2q′

n3

)

×
n4+n2∑
n5=0

(−1)n3(−2)
j′
2
+q′+n1−n2−n4t2n5+j′/2+q′+n1−n2−n4+n3

×

(∫ ∞
0

e−
r
2 rj+

j′
2
−2q+q′+l+l′+n1+n2−n3+n4−2n5+2

×
(∫ π

0
sin θ (cos θ)

j′
2
−4q+q′+l+l′+n1−n2−n3−n4 dθ

)
dr

)
.

(4.132)

For computing (4.132), we need to compute the following integrals∫ π

0
sin θ (cos θ)

j′
2
−4q+q′+l+l′+n1−n2−n3−n4 dθ

=
1− (−1)

j′
2
+q′+l+l′+n1−n2−n3−n4+1

j′

2 − 4q + q′ + l + l′ + n1 − n2 − n3 − n4 + 1

(4.133)

and∫ ∞
0

e
−r
2 rj+

j′
2
−2q+q′+l+l′+n1+n2−n3+n4−2n5+2 dr = 2j+

j′
2
−2q+q′+l+l′+n1+n2−n3+n4−2n5+1

× Γ

(
j +

j′

2
− 2q + q′ + l + l′ + n1 + n2 − n3 + n4 − 2n5 + 1

)
.

(4.134)

With some simplifications, we obtain the final result. �
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4.2.5. Fast Rotational Matching on Electrostatic Complementarity

We defined the scoring function in (4.91) by

CEC
(
R,
(
R′, t

))
= CEC

(
R,R′; t

)
:=

∫
R3

ΛRQ
EC
A (x) · T tΛR′Q

EC
B (x) dx.

We know from (4.81), for given integers l and m with the condition l ≥ |m| ≥ 0 and a
rotation R ∈ SO(3),

ΛRY m
l (u) =

l∑
n=−l

Dnm
l (R)Y n

l (u)

and hence, we have

ΛRQ
EC
A (ru) =

∞∑
k=1

k−1∑
l=0

l∑
m=−l

Q̂A
klmV l

k(r)ΛR (Y m
l (u))

=

∞∑
k=1

k−1∑
l=0

l∑
m,n=−l

Q̂A
klmDnm

l (R)V l
k(r)Y

n
l (u)

(4.135)

and the effect of a rotation R′ ∈ SO(3) together with a translation t ∈ R3 along an axis
on the QEC

B (ru) is

ΛR′T tQEC
B (x) = ΛR′Q

EC
B (x− t) = ΛR′Q

EC
B (x′) = ΛR′Q

EC
B (r′u′)

=
∞∑
k′=1

k′−1∑
l′=0

l′∑
m′,n′=−l′

Q̂B
k′l′m′D

n′m′
l′ (R′)V l′

k′(r
′)Y n′

l′ (u′).
(4.136)

In the following theorem, we present the general form of the scoring function (4.91).

Theorem 4.2.1 The scoring function defined in (4.91), can be computed by

CEC
(
R,R′; t

)
=

∞∑
k=1

∞∑
k′=1

k−1∑
l=0

k′−1∑
l′=0

l∑
m=−l

l′∑
m′=−l′

l∑
n=−l

Q̂A
klmQ̂

B
k′l′m′D

nm
l (R)D−nm

′

l′ (R′)

× IECkk′,ll′,|n|(t).

Proof. By the relation between u and u′ in (4.36), we have

CEC
(
R,R′; t

)
=

∫ ∞
0

∫
S2

∑
k,l,m,n

Q̂A
klmDnm

l (R)V l
k(r)Y

n
l (u)

×
∑

k′,l′,m′,n′

Q̂B
k′l′m′D

n′m′
l′ (R′)V l′

k′(r
′)Y n′

l′ (u′)r2 du dr

=
∑

kk′,ll′,mm′,nn′

Q̂A
klmQ̂

B
k′l′m′D

nm
l (R)Dn′m′

l′ (R′)

×
∫ ∞
0

∫ π

0

∫ 2π

0
V l
k(r)V

l′
k′(r

′)Y n
l (u)Y n′

l′ (u′)r2 sin θ dφ dθ dr.
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According to the Definition 4.2.1, the triple integral is the ETO translational coefficients
IECkk′,ll′,|n|(t) and hence

CEC
(
R,R′; t

)
=

∑
kk′,ll′,mm′,n

Q̂A
klmQ̂

B
k′l′m′D

nm
l (R)D−nm

′

l′ (R′)× IECkk′,ll′,|n|(t). �

Now according to the above theorem, it is easy to explain an algorithm to compute
the scoring function (4.91). Suppose k and k′ cut off to degree N ∈ N and we are
given the precomputed vectors Q̂A

klm, Q̂B
k′l′m′ and IECkk′,ll′,|n|(t), then the scoring function

CEC (R,R′; t) can be computed in the following four steps:

1. At first, we compute

âkln,l′m′(t) =
N∑
k′=1

Q̂B
k′l′m′IECkk′,ll′,|n|(t), (4.137)

where its computational complexity is O(N6Nt) operations and Nt denotes the
number of one-dimensional translations.

2. In the second step, by NFSOFT we compute

b̂R
′

kln(t) =

k′−1∑
l′=0

l′∑
m′=−l′

âkln,l′m′(t)D
−nm′
l′ (R′), (4.138)

which takes O
((
N3
(
N2 logN + ÑR′

)
+N6

)
Nt

)
operations and ÑR′ denotes the

number of overall rotations for R′.

3. We have

ĉR
′

lmn(t) =
N∑
k=1

b̂R
′

kln(t)Q̂A
klm, (4.139)

which is computed in O
((
N4ÑR′ +

(
N3
(
N2 logN + ÑR′

)
+N6

))
Nt

)
opera-

tions.

4. Finally, in the last step we compute

CEC
(
R,R′; t

)
=

k−1∑
l=0

l∑
m=−l

l∑
n=−l

ĉR
′

lmn(t)Dnm
l (R), (4.140)

by NFSOFT with the computational complexity

O
((
ÑR′

(
N3 logN +NR

)
+
(
N4ÑR′ +

(
N3
(
N2 logN + ÑR′

)
+N6

)))
Nt

)
.

Therefore the overall computational complexity isO
((
N6 +N4ÑR′ +NRÑR′

)
Nt

)
. op-

erations. Here we presented our FRM algorithm on electrostatic complementarity. The
advantage of the FRM in comparison to the straightforward way is the improvement of
the computational complexity. In straightforward way, we have to compute the rotated
affinity functions ΛRQ

EC
A (x) which takes O (NANR) operations and the computation of

the rotated translated affinity function QECB

(
R′tx− t

)
takes O (NBNR′Nt) operations,

therefore the whole computational complexity is O (NANBNRNR′Nt) operations.
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Algorithm 7: FRM on Electrostatic Complementarity by NFSOFT

Input:
N : Cut off degree
NA and NB: The number of atomic coordinates of molecules A and B
A set of motions (R, t) in SE(3) and R′ ∈ SO(3)

foreach xj with j ∈ NA ∪NB do
Compute the centeres of both molecules A and B.
Compute the relocate atomic centeres of both molecules A and B.

end
foreach

(
k, l,m

)
and

(
k′, l′,m′

)
with k > l ≥ |m| ≥ 0 and k′ > l′ ≥ |m′| ≥ 0 do

Compute Q̂A
klm of Lemma 4.2.2 and Q̂B

k′l′m′ of Lemma 4.2.1.
end
foreach translation t ∈ R3 with t = ‖t‖2,

(
k, k′, l, l′, n

)
with k > l ≥ |n| ≥ 0

and k′ > l′ ≥ |n| ≥ 0 do
Compute IECkk′,ll′,|n|(t) of Lemma 4.2.3.

end
foreach

(
k, l, n, l′,m′

)
with k > l ≥ |n| ≥ 0 and l′ ≥ |m′| ≥ 0 do

Compute âkln,l′m′ of (4.137).
end
foreach rotation R′ ∈ SO(3) and

(
k, l, n

)
with k > l ≥ |n| ≥ 0 do

Compute b̂R
′

kln by NFSOFT of (4.138).
end
foreach

(
l,m, n

)
with l ≥ |n|, |m| ≥ 0 do

Compute ĉR
′

lmn of (4.139).
end
foreach rotation R ∈ SO(3) do

Compute CEC (R,R′; t) by NFSOFT of (4.140).
end
Output: The solution of the docking problem.

Complexity: O
((
N6 +N4ÑR′ +NRÑR′

)
Nt

)
operations.
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APPENDIX A

FOURIER SERIES

In this work, we need to know how to expand a function into a trigonometric series. Here
we will survey of such series. Since each term of the trigonometric series is periodic, it is
clear that if we are to expand functions in such series, the functions should be periodic.

Definition A.0.2 A function f(x) is said to be periodic with period T if for all x,
f (x+ T ) = f(x) where T is a positive constant. The least positive value of T is called
the period of f(x).

As an example, we know the functions sinx and cosx have periods 2π, 4π . . ., because

sin (x+ 2kπ) = sinx and cos (x+ 2kπ) = cosx where k ∈ Z,

and since 2π is the the smallest number that sin (x+ 2π) = sinx and cos (x+ 2π) = cosx,
so 2π is the period of sinx and cosx.

Definition A.0.3 Let f(x) be defined in an interval [−T, T ] and determined outside of
this interval by f (x+ 2π) = f(x). The Fourier series corresponding to f(x) is defined
by

a0
2

+
∞∑
n=1

(
an cos

nπx

T
+ bn sin

nπx

T

)
, (A.1)

where the Fourier coefficients an and bn for n = 0, 1, 2, . . . are

an =
1

T

∫ T

−T
f(x) cos

nπx

T
dx (A.2)

and

bn =
1

T

∫ T

−T
f(x) sin

nπx

T
dx. (A.3)

If T = π then function in this case has the period 2π and the Fourier series (A.1) and
the Fourier coefficiens an (A.2) and bn (A.3) are simple to compute.
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Definition A.0.4 A function f(x) is piecewise continuous if

1. the interval can be divided into a finite number of subintervals such that f(x) is
continuous on each subinterval and

2. on each subinterval, the limits of f(x) as x approaches to the endpoints of this
subinterval have to be finite.

Definition A.0.5 A function f(x) is called piecewise smooth on an interval, if f(x) and
f ′(x) are both piecewise continuous on the interval.

We do not know whether the Fourier series (A.1) converges or not, and if it converges
whether it converges to f(x). In the following lemma we know about this problem.

Lemma A.0.4 (Dirichlet Conditions) If f(x) is piecewise smooth and periodic in
(−T, T ) then the Fourier series (A.1) with the Fourier coefficients defined in (A.2) and
(A.3) converges to

1. f(x), if x is a point of continuity.

2. f(x+0)+f(x−0)
2 , if x is a point of discontinuity.

So according to the Dirichlet conditions, if x is a point of continuity we can write

f(x) =
a0
2

+
∞∑
n=1

(
an cos

nπx

T
+ bn sin

nπx

T

)
, (A.4)

and if x is a point of discontinuity, then

f (x+ 0) + f (x− 0)

2
=
a0
2

+
∞∑
n=1

(
an cos

nπx

T
+ bn sin

nπx

T

)
. (A.5)

The Dirichlet conditions are sufficient conditions imposed on f(x) not necessary. In other
words, if the imposed conditions of f(x) hold, then the convergence is guaranteed other-
wise the Fourier series may or may not converge.

Using Euler’s identity eiθ = cos θ + i sin θ where i2 = −1 enables us to write the Fourier
series for f(x) as

f(x) =
∞∑

n=−∞
f̂ne

inπx
T , (A.6)

where

f̂n =
1

T

∫ T

−T
f(x)e

−inπx
T dx. (A.7)

Here we are supposing that the Dirichlet conditions are satisfied and further that f(x) is
continuous at x. If f(x) is discontinuous at x, then

f (x+ 0) + f (x− 0)

2
=

∞∑
n=−∞

f̂ne
inπx
T , (A.8)
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Lemma A.0.5 (Parseval’s Identity) Suppose f(x) satisfies the Dirichlet’s conditions
and an and bn are the Fourier coefficients corresponding to f(x), then

1

T

∫ T

−T
|f(x)|2 dx =

a20
2

+
∞∑
n=1

(
a2n + b2n

)
.

Again we recall some basic definitions and lemmas without proof of mathematical.

Suppose we have an infinite series {fn(x)}n∈N. We define the N -th partial sum of this
sequence by

SN (x) =
N∑
n=1

fn(x).

We say the infinite series
∞∑
n=1

fn(x) converges to f(x) in the interval (a, b), if for each

ε > 0 there exist for each x ∈ (a, b), a positive N such that for all n > N , we have

|Sn(x)− f(x)| < ε, (A.9)

where here the positive number N depends on ε and x. But the important case occurs
when the positive number N depends on ε and not on x ∈ (a, b). In this case we say
the infinite series is uniformly convergent to f(x). We demonstrate the most important
properties of the uniformly convergent series in the frame of two lemmas.

Lemma A.0.6 Suppose we have an infinite series
∞∑
n=1

fn(x). If each term fn(x) where

n ∈ N is continuous in an interval (a, b) and also the infinite series is uniformly conver-
gent to f(x) in this interval, then

1. f(x) is also continuous in the interval (a, b).

2.

∫ b

a

∞∑
n=1

fn(x) dx =
∞∑
n=1

∫ b

a
fn(x) dx.

Lemma A.0.7 Suppose we have an infinite series
∞∑
n=1

fn(x). If each term fn(x) where

n ∈ N is differentiable in an interval (a, b) and also the infinite series of derivatives is
uniformly convergent, then

d

dx

∞∑
n=1

fn(x) =

∞∑
n=1

d

dx
fn(x).

Integration and differentiation of Fourier series can be justified by using Lemma A.0.6 and
Lemma A.0.7 that hold for infinite series generally but note that these lemmas provide
sufficient conditions which are not necessary. The following lemma for integration is very
useful.
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Lemma A.0.8 The Fourier series corresponding to f(x) may be integrated term by term

from a to x and the resulting series will converges uniformly to

∫ x

a
f(u) du provided that

f(x) is piecewise continuous in [−T, T ] and both a and x are in this interval.

For more details, see Spiegel [87].
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