
From the Institute of Mathematics
of the University of Lübeck
Director: Prof. Dr. Prestin

Investigating measures of complexity for dynamical systems

and for time series

Dissertation
for Fulfillment of Requirements

for the Doctoral Degree of the University of Lübeck
- from the Department of Computer Science -

Submitted by
Valentina A. Unakafova
from Cherkasy, Ukraine

Lübeck 2015

First referee: Prof. Dr. Karsten Keller

Second referee: PD Dr. Bernd Pompe

Chairman: Prof. Dr. Thomas Martinetz

Date of oral examination: 6 of March, 2015

Approved for printing. Lübeck, 10 of March, 2015

i

Zusammenfassung

Diese Arbeit ist der Untersuchung von Komplexitätsmaßen für dynamische Systeme

und für Zeitreihen gewidmet. Die zentralen Gegenstände der gesamten Arbeit sind

die Permutationsentropie und ihre Schätzung, die empirische Permutationsentropie,

die beide von Bandt und Pompe im Jahr 2002 eingeführt wurden. Die Permutation-

sentropie wird aus den Verteilungen ordinalen Muster berechnet, und jedes ordinale

Muster mit Ordnung d beschreibt die Relationen zwischen den Komponenten eines

(d+ 1)-dimensionalen Vektors.

Auf der einen Seite untersuchen wir die theoretischen Eigenschaften der Permuta-

tionsentropie und einiger anderer Komplexitätsmaße für dynamische Systeme. Auf der

anderen Seite studieren wir die Eigenschaften der empirischen Permutationsentropie und

vergleichen sie mit anderen praktischen Komplexitätsmaßen bezüglich der Anwendung

auf reale Daten, vor allem auf EEG-Daten mit dem Ziel der Detektion von epileptischen

Anfällen.

Die wichtigsten Ergebnisse dieser Arbeit sind die folgenden.

• Wir geben hinreichende Bedingungen für die Gleichheit von Permutationsentropie

und Kolmogorov-Sinai-Entropie für den allgemeinen Fall und insbesondere für den

eindimensionalen Fall.

• Wir entwickeln effiziente Algorithmen zur Berechnung von ordinalen Mustern, em-

pirischer Permutationsentropie und damit verbundenen ordinale-Muster-basierten

Komplexitätsmaßen. Die vorgeschlagenen Algorithmen sind schneller als die

bekannten Algorithmen und können in Echtzeit angewendet werden.

• Wir vergleichen die Eigenschaften der empirischen Permutationsentropie und

der weit verbreiteten Approximate-Entropie und Sample-Entropie. Insbesondere

zeigen wir mögliche Probleme und geben Hinweise für die Anwendung dieser

Entropien auf reale Daten.

• Wir schlagen ein neues Komplexitätsmaß, die robuste empirische Permutation-

sentropie, vor, die im Gegensatz zur empirischen Permutationsentropie auch

metrische Information gebraucht. Dieses Komplexitätsmaß hat bezüglich der

Detektion von epileptischen Anfällen in EEG-Daten während eines Wachzustands

bessere Ergebnisse als die empirische Permutationsentropie gezeigt.

iii

Die Arbeit gliedert sich in fünf Kapitel.

Kapitel 1 gibt eine kurze Einführung in die Arbeit.

In Kapitel 2 untersuchen wir, wann die Kolmogorov-Sinai-Entropie und die Per-

mutationsentropie gleich sind. Wir haben keine bejahende Antwort erhalten, ob die

Entropien gleich sind, sondern präsentieren interessante und neue Ergebnisse, die als

Grundlage für weitere Untersuchungen in dieser Richtung dienen könnten.

Kapitel 3 ist dem Vergleich der empirischen Permutationsentropie mit der

Approximate-Entropie und Sample-Entropie gewidmet. Wir diskutieren hier die the-

oretischen Grundlagen für die drei Entropien. Dann vergleichen wir die praktischen

Eigenschaften der Entropien. Außerdem führen wir die (gegen Rauschen) robuste

empirische Permutationsentropie ein.

In Kapitel 4 stellen wir effiziente Algorithmen zur Berechnung von ordinalen Mustern,

der empirischen Permutationsentropie und von zwei weiteren ordinale-Muster-basierten

Komplexitätsmaßen vor. Insbesondere wird eine effiziente Nummerierung für die schnelle

Berechnung von ordinalen Mustern mit Bindungen (die dem Fall des häufigen Erscheinens

von gleichen Werten in einer Zeitreihe angepasst werden) eingeführt.

Schließlich wenden wir in Kapitel 5 die empirische Permutationsentropie, die robuste

empirische Permutationsentropie, die Approximate-Entropie und die Sample-Entropie

auf EEG-Daten mit dem Ziel der Detektion von epileptischen Anfällen an. Wir erhalten

gute Detektionsergebnisse für die robuste empirische Permutationsentropie. Außer-

dem untersuchen wir die Wahl der Parameter der empirische Permutationsentropie.

Schließlich zeigen wir, dass die kombinierte Verwendung von mehreren praktischen

Komplexitätsmaßen ein vielversprechender Ansatz zur Unterscheidung zwischen ver-

schiedenen Zuständen eines System auf der Basis von Messdaten ist.

iv

Abstract

This thesis is devoted to the investigation of complexity measures for dynamical systems

and for time series. The central concepts throughout the thesis are the permutation

entropy and an estimate of it, the empirical permutation entropy, both introduced by

Bandt and Pompe in 2002. The permutation entropy is computed from the distributions

of ordinal patterns, each ordinal pattern of order d describes the order relations between

the components of (d+ 1)-dimensional vector.

On the one hand, we study theoretical properties of the permutation entropy and

some other measures of dynamical system complexity. On the other hand, we study

the properties of empirical permutation entropy and compare it with other practical

complexity measures, when applying to real-world data, and, especially, to EEG data

with the aim of epileptic seizure detection.

The main results of this thesis are the following.

• We provide sufficient conditions for equality of permutation entropy and

Kolmogorov-Sinai entropy for the general and, especially, for the one-dimensional

cases.

• We develop efficient algorithms for computing ordinal patterns, empirical per-

mutation entropy and related ordinal-patterns-based measures. The proposed

algorithms are faster than the known methods and can be applied in real-time.

• We compare properties of the empirical permutation entropy with the widely-used

approximate entropy and sample entropy. In particular, we indicate possible

problems and provide hints for applying the considered entropies to real-world

data.

• We propose a new quantity, the robust empirical permutation entropy, which

in contrast to the empirical permutation entropy uses also a metric information.

This quantity has shown better results than the empirical permutation entropy

for epileptic seizures detection in EEG data during the awake state.

v

The thesis is organized as follows.

Chapter 1 provides a brief introduction to the topic of this thesis.

In Chapter 2 we investigate when the Kolmogorov-Sinai entropy and the permutation

entropy coincide. We have not obtained an affirmative answer when the entropies

coincide, but we present interesting and new results which could be the basis for further

research in this direction.

Chapter 3 is devoted to the comparison of the empirical permutation entropy with

the approximate entropy and the sample entropy. We discuss here the theoretical

underpinnings for the three entropies. Then we compare practical properties of the

considered entropies. We also introduce the robust (to noise) empirical permutation

entropy.

In Chapter 4 we present efficient algorithms of computing ordinal patterns, the

empirical permutation entropy and two other ordinal-patterns-based measures. In

particular, for fast computing of ordinal patterns with tied ranks (adapted to the case of

high occurrence of equal values in a time series) the efficient enumeration is introduced.

Finally, in Chapter 5 we apply empirical permutation entropy, robust empirical

permutation entropy, approximate entropy and sample entropy to EEG data with

the aim of epileptic seizure detection. We demonstrate good detection results for the

robust empirical permutation entropy. Besides we study the choice of the parameters

for empirical permutation entropy. Finally, we demonstrate that a combined use of

several practical complexity measures is a promising approach for discriminating between

different states of a system on the basis of real-world data.

vi

Acknowledgement

First of all, I am very grateful to my supervisor Prof. Karsten Keller who gave me

an opportunity to work on this thesis. I would like to thank him for his guidance,

enthusiasm, advice and patience during all stages of my research work.

I sincerely thank all the staff of the Institute of Mathematics and of the Graduate

School for Computing in Medicine and Life Sciences at the University of Luebeck

for their support and cooperation. I would like to thank particularly Katja Dau

and Olga Schachmatova from the management team of the Graduate School for their

encouragement and help with documentary work.

Many thanks to my Romanian friends Rada Popescu, Alexandru Barbu and Irina

Burciu for their friendship and support. Finally, I would to thank my family and my

husband Anton for their constant understanding and encouragement.

I dedicate this work to my parents, Anna A. Kulikova and Andrei D. Zavizion.

vii

Contents

1 Introduction 1

1.1 Dynamical systems, time series and observables 1

1.2 The model of measuring complexity from real-world data 2

1.2.1 Birkhoff’s ergodic theorem . 5

1.2.2 Takens’ reconstruction theorem 5

1.3 Outline of the thesis . 7

2 Relationship of permutation entropy and Kolmogorov-Sinai entropy 9

2.1 Preliminaries . 11

2.1.1 Kolmogorov-Sinai entropy . 11

2.1.2 Lyapunov exponents . 12

2.1.3 Ordinal patterns and ordinal partitions 13

2.1.4 Permutation entropy and Kolmogorov-Sinai entropy 14

2.2 Equality of permutation entropy and Kolmogorov-Sinai entropy 15

2.2.1 Piecewise strictly monotone interval maps 15

2.2.2 A criterion for the coincidence in the general case 16

2.3 Comparing ordinal partitions PX(d+ n− 1) and PX(d)n 17

2.3.1 The general case . 17

2.3.2 The one-dimensional case . 19

2.3.3 Conclusions . 22

2.4 Comparing ordinal partitions for mixing interval maps 22

2.4.1 Ordinal patterns of order (d+ n− 1) and (n, d)-words 24

2.4.2 The “neighboring” partitions P(d+ 1)n−1 and P(d)n 25

2.4.3 The partitions P(d)n and P(d+ n− 1) 26

2.4.4 Conclusions and open questions 28

2.5 Conclusions . 28

2.6 Proofs . 29

2.6.1 Proof of Theorem 8 . 29

2.6.2 Proof of Proposition 11 . 31

2.6.3 Proof of Theorem 13 . 32

3 Comparing practical complexity measures 35

3.1 Theoretical underpinnings of approximate and sample entropy 36

3.1.1 Correlation entropy and H2(T)-entropy 36

3.1.2 Relationship between H2(T)-entropy, correlation entropy and KS

entropy . 38

ix

3.1.3 Eckmann-Ruelle’s approximation of KS entropy 39

3.1.4 Estimation of the H2(T)-entropy 40

3.2 Definitions of the entropies . 41

3.2.1 Approximate entropy and sample entropy 41

3.2.2 Empirical permutation entropy 42

3.3 Comparing the practical properties of the entropies 45

3.3.1 Preliminaries . 45

3.3.2 Robustness with respect to strictly monotone transformations . . 46

3.3.3 Dependence on the length of a time series 48

3.3.4 Estimation of large complexity 50

3.3.5 Robustness to noise . 52

3.3.6 Robust empirical permutation entropy 55

3.3.7 Computational efficiency . 57

3.4 Summary . 59

3.4.1 The choice between approximate entropy, sample entropy and

empirical permutation entropy 59

3.4.2 Hints for using empirical permutation entropy 60

4 Efficient computing of ordinal-patterns-based characteristics 61

4.1 Computing ordinal patterns and the empirical permutation entropy . . . 62

4.1.1 Ordinal patterns . 62

4.1.2 The empirical permutation entropy 64

4.2 Efficiently computing the numbers of ordinal patterns 65

4.2.1 Precomputed numbers of ordinal patterns 65

4.2.2 Storage requirements . 66

4.3 Efficiently computing the empirical permutation entropy 66

4.3.1 Precomputed values of empirical permutation entropy 67

4.3.2 Round-off error . 68

4.3.3 Scheme of the method . 69

4.4 Efficiently computing numbers of ordinal patterns with tied ranks 69

4.4.1 Ordinal patterns with tied ranks 70

4.4.2 Precomputed numbers of ordinal patterns with tied ranks 71

4.4.3 Storage requirements . 73

4.5 Efficiently computing empirical conditional entropy of ordinal patterns . 73

4.5.1 Efficiently computing (2, d)-words 74

4.5.2 Efficiently computing empirical conditional entropy of ordinal

patterns . 74

4.6 Comparing efficiency of methods . 75

4.7 Conclusions . 77

4.8 Supplementary materials . 78

4.8.1 Number representation of ordinal patterns with tied ranks 78

4.8.2 Amount of ordinal patterns with tied ranks 79

x

5 Measuring complexity of EEG 81

5.1 Applying empirical permutation entropy for analysis of EEG data . . . 81

5.1.1 Description of EEG data from The European Epilepsy Database 81

5.1.2 Choice of delay, order, and EEG channel 82

5.2 Detecting epileptic seizures in EEG data by empirical permutation en-

tropy, robust empirical permutation entropy, approximate entropy and

sample entropy . 86

5.2.1 Detecting epileptic seizures in dependence on vigilance state . . . 87

5.2.2 Detecting epileptic seizures in short-term EEG data 89

5.2.3 Detecting epileptic seizures in long-term EEG data 91

5.3 Discrimination between different complexities of EEG data 94

5.3.1 Description of EEG data from the Bonn EEG Database 94

5.3.2 Discriminating recordings by empirical permutation entropy, ap-

proximate entropy and sample entropy 95

5.3.3 Discriminating recordings by empirical permutation entropy com-

puted for different delays . 95

5.4 Conclusion . 97

A MATLAB code 99

A.1 Computing empirical permutation entropy by the new method 99

A.2 Computing empirical permutation entropy by the old method 100

A.3 Computing empirical permutation entropy for ordinal patterns with tied

ranks . 101

A.4 Computing empirical conditional entropy of ordinal patterns 103

A.5 Computing robust empirical permutation entropy 105

A.6 Computing empirical permutation entropy of long-term EEG recording . 106

Bibliography 111

Curriculum Vitae 120

xi

Chapter 1

Introduction

The problem of measuring the complexity of an underlying system from observed data

arises in various fields of research and in many applications. For example, distinguishing

between brain states on the basis of EEG (electroencephalogram) data is an impor-

tant problem nowadays [MAEL07, Leh08]. A widely-used concept for modeling and

measuring complexity of real-world data, in particular, of EEG data, is a dynamical

system [Sta05, Leh08]. A dynamical system is defined by a pair (Ω, T), where Ω is

a state space describing all possible states of the system, and T is a dynamics that

describes how a point ω ∈ Ω is evolving. Complexity of a dynamical system is character-

ized by unpredictability of its dynamics, i.e. more complex dynamical systems are less

predictable. In this thesis we investigate quantifiers of dynamical systems complexity

and their derived counterparts adapted to real-world data.

First, in Section 1.1 we recall the basic notions from dynamical systems theory.

Then in Section 1.2 we present the model, used throughout the thesis, for measuring

complexity from real-world data. Finally, in Section 1.3 we outline the content of the

thesis.

1.1 Dynamical systems, time series and observables

Given a dynamical system (Ω, T), in order to introduce a measure on Ω, a sigma-algebra

A(Ω) is defined, which is a collection of subsets from Ω satisfying the following conditions

(i) ∅ ∈ A(Ω),

(ii) if A ∈ A(Ω), then Ω \A ∈ A(Ω), and

(iii) if A1, A2, A3, . . . ∈ A(Ω), then

∞⋃
n=1

An ∈ A(Ω).

A pair (Ω,A(Ω)) is called a measurable space, the sets A ∈ A(Ω) are called measur-

able sets. Given a topological space Ω, the smallest sigma-algebra on it containing all

the open sets of Ω is called the Borel sigma-algebra B(Ω). A measure µ is a map that

assigns a non-negative real number to each measurable set, i.e. µ : B(Ω) → [0,+∞),

1

and satisfies the following conditions:

(i) µ(B) ≥ 0 for all B ∈ B(Ω),

(ii) µ(∅) = 0,

(iii) for all pairwise disjoint measurable sets B1, B2, B3, . . . ∈ B(Ω),

it holds µ

(∞⋃
n=1

Bn

)
=

∞∑
n=1

µ(Bn).

We assume further that the measure µ is a probability measure, i.e. µ(Ω) = 1, which is

just a normalization for a finite µ. A triple (Ω,B(Ω), µ) is called a measure space (or

probability space in the case of a probability measure).

A map T is called measure-preserving or µ-preserving if it holds

µ
(
T−1(B)

)
= µ(B) for all B ∈ B(Ω). Throughout the thesis we consider a measure-

preserving dynamical system (Ω,B(Ω), µ, T). This means that Ω is a state space, B(Ω) is

a Borel sigma-algebra on it, T : Ω←↩ is a B(Ω)-B(Ω)-measurable µ-preserving map, and

µ : B(Ω)→ [0, 1] is a probability measure. An intrinsic property of a measure-preserving

dynamical system is Poincaré recurrence (see [ELW11] for a good description), roughly

speaking, it means that for any measurable set B ∈ B(Ω) almost every ω ∈ B returns

to the set B infinitely often.

Given a dynamical system (Ω, T), the dynamics T provides an orbit

ω, T (ω), T 2(ω), . . . for each ω ∈ Ω. Further we refer to T i(ω) with i ∈ N0 as i-th iterate

of ω. In reality, one usually observes only a time series without knowing either the

state space of a dynamical system or the dynamics. A dynamical system is related to

the observed time series by an observable X : Ω→ R, a function that assigns to each

possible state ω ∈ Ω a value from R. From a mathematical point of view, an observable

is a Borel measurable map. Given an observable X, one observes from a dynamical

system the time series

(xi)i∈N0 =
(
X
(
T i(ω)

))
i∈N0

from the orbit
(
T i(ω)

)
i∈N0

. In many cases it is reasonable to consider more than one

observable in order to obtain more information from the dynamical system, for example,

in Chapter 2 we consider a vector X = (X1, X2, . . . , XN) for N ∈ N.

1.2 The model of measuring complexity from real-world
data

Throughout the thesis we use the following scheme of measuring complexity from

real-world data, see Figure 1.1.

2

Figure 1.1: A scheme of measuring complexity from time series

Complexity of a dynamical system (Ω, T) is characterized by the following theoretical

complexity measures, among which the most important is Kolmogorov-Sinai (KS)

entropy.

• The KS entropy1 measures, roughly speaking, the unpredictability of a dynam-

ics [Wal00]. The KS entropy is an invariant of a measure-preserving dynamical

system.

• The Lyapunov exponent measures how two infinitely close to each other points

from the state space can diverge under the action of the dynamics. Due to Pesin’s

theorem [You13] and Ruelle’s inequality [Rue78] in certain cases one can compute

or bound the KS entropy by the Lyapunov exponent.

• The H2(T)-entropy and the correlation entropy are introduced in [TV98] and

[Tak81, BT11] on the basis of the ideas from [HP83, GP84, ER85].

• The permutation entropy, introduced in [BP02], is a simple concept with a strong

relation to the KS entropy [BKP02, Kel12, KUU12, AKM14]. The permutation

entropy will be the central concept throughout the thesis.

It is often not easy to estimate these and similar quantities from finite real-world time

series. Therefore practical complexity measures adapted for real-world time series,

like the approximate entropy [Pin91], the sample entropy [RM00], and the empirical

permutation entropy [BP02] are introduced.

Example 1. To motivate the practical complexity measures, in Figure 1.2 we present

the values of approximate entropy, sample entropy and empirical permutation entropy

computed from EEG data with an epileptic seizure (in gray in the upper plot). The

1Kolmogorov-Sinai entropy is sometimes also called metric entropy and measure-theoretic entropy.

3

EEG has been recorded from channel F4 from a male patient of age 36, the complex

partial seizure has been recorded during awake state, EEG data are provided by [Epi14].

2200 2250 2300 2350 2400 2450 2500 2550 2600 2650
−50

0

50

Time (s)

A
m

p
lit

u
d
e
 (

µ
V

) (a) ORIGINAL EEG DATA

2200 2250 2300 2350 2400 2450 2500 2550 2600 2650
0.8

1

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (b) EMPIRICAL PERMUTATION ENTROPY ePE(4,4,1024)

2200 2250 2300 2350 2400 2450 2500 2550 2600 2650
0

0.2
0.4

0.6

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (c) APPROXIMATE ENTROPY ApEn(2,0.2σ,1024)

2200 2250 2300 2350 2400 2450 2500 2550 2600 2650

0.4

0.6

0.8

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (d) SAMPLE ENTROPY SampEn(2,0.2σ,1024)

Figure 1.2: The values of approximate entropy, sample entropy and empirical permuta-
tion entropy, computed from EEG data, decrease during the epileptic seizure (in gray,
upper plot)

The entropies are computed in maximally overlapping sliding windows of 4 s size.

One can see that all the entropies reflect the seizure by a decrease of their values (for

more details of this experiment we refer to Example 23, p. 88). This is important

since detecting epileptic seizures is a relevant problem in biomedical research [LE98,

MAEL07, Leh08]. We continue measuring complexity of EEG data by approximate

entropy, sample entropy and empirical permutation entropy in Chapter 5.

Roughly speaking, practical complexity measures are related to the theoretical

complexity measures by two theorems. Birkhoff’s theorem allows to recover properties

of a dynamical system just from one orbit of almost every ω ∈ Ω, and Takens’ theorem

enables to reconstruct the original dynamics T from observed time series. We consider

both theorems in more details in Subsections 1.2.1 and 1.2.2.

4

1.2.1 Birkhoff’s ergodic theorem

We consider here an ergodic map T that provides the possibility to recover properties

of the measure-preserving dynamical system just from an orbit of a single ω for almost

all ω ∈ Ω.

Definition 1. A map T is said to be ergodic if for every B ∈ B(Ω) with T−1(B) = B

it holds either µ(B) = 0 or µ(B) = 1.

A dynamical system (Ω,B(Ω), T, µ) with ergodic T is also called

an ergodic dynamical system. Roughly speaking, an ergodic dynamical system does not

split up into “independently” developing systems, i.e. the orbits of almost all points

ω ∈ Ω reflect approximately the same properties of the dynamics T .

Now we present Bikhoff’s ergodic theorem which is one of the central results in

ergodic theory (see [Cho00] for details and proof).

Theorem 1 (Birkhoff’s ergodic theorem, [Cho00]). Given a measure-preserving dynam-

ical system (Ω,B(Ω), T, µ) and an integrable function f , there exists a function f∗ such

that
∫

Ω|f
∗|dµ(ω) <∞, f∗(T (ω)) = f∗(ω) for all ω ∈ Ω and for almost every ω ∈ Ω it

holds

lim
n→∞

1

n

n−1∑
i=0

f
(
T i(ω)

)
= f∗(ω). (1.1)

Furthermore, if T is ergodic, then f∗ is constant and for almost every ω ∈ Ω it holds

lim
n→∞

1

n

n−1∑
i=0

f
(
T i(ω)

)
=

∫
Ω
fdµ(ω). (1.2)

Roughly speaking, according to Birkhoff’s ergodic theorem, ergodicity provides a

possibility to obtain all information of a distribution of a measure µ from an orbit of

almost every point ω ∈ Ω. Another important property of dynamical systems, which is

stronger than ergodicity, is mixing [Cho00].

Definition 2. T is said to be mixing or strong-mixing if for every A,B ∈ B(Ω)

lim
n→∞

µ
(
T−nA ∩B

)
= µ(A)µ(B).

Roughly speaking, mixing implies that future iterates T i(ω) of ω become

“almost independent” from ω as i increases. We use the mixing property for proofs

in Chapter 2.

1.2.2 Takens’ reconstruction theorem

Takens’ theorem is closely related to the so-called state space reconstruction. In order to

explain the idea of the state space reconstruction, we consider four different time series

in Figure 1.3. (We have taken the idea of such a representation from the instructive

and well explained dissertation of S.A. Borovkova [Bor98].) These time series are:

5

(1) EEG data recorded from a healthy subject with open eyes [Bon14];

(2) a sequence of random real numbers;

(3) a time series (xi)i∈N0 observed with X = id from an orbit of the logistic map

TLM : [0, 1]←↩ given by TLM(ω) = 4ω(1− ω), i.e. (xi)i∈N0 =
(
T iLM(ω)

)
i∈N0

;

(4) a time series (xi)i∈N0 observed with X = id from an orbit of the tent map

TTM : [0, 1]←↩ given by TTM(ω) = 2 min{ω, 1− ω}, i.e. (xi)i∈N0 =
(
T iTM(ω)

)
i∈N0

.

(a) (b)

(c) (d)

Figure 1.3: What is the correspondence between the plots (a), (b), (c), (d) and the time
series (1), (2), (3), (4)?

Can you guess what the correspondence between the plots (a), (b), (c), (d) and the

time series (1), (2), (3), (4) is? Indeed, it is complicated to answer the question just

looking at Figure 1.3.

Now we plot the values xi+1 versus the values xi (so-called delay plot) for each time

series, and the situation becomes clear (see Figure 1.4). Indeed, delay plots reveal

the deterministic dynamics for the time series observed from the logistic (a) and the

tent map (b), complex dynamics for the EEG data (c) and for a sequence of random

numbers (d).

Now we come back to the state space reconstruction; its basic idea is to consider a

sequence of reconstruction vectors (xi, xi+1, . . . , xi+k−1)i∈N0
instead of the original time

series (xi)i∈N0 , in order to reveal the properties of the underlying dynamics. For example,

the reconstruction vectors with k = 2 reveal the underlying dynamics in Figure 1.4.

The considered k is called an embedding dimension. By the Takens’ theorem if k is high

6

x
i

x
i+

1

(a)

x
i

x
i+

1

(b)

x
i

x
i+

1

(c)

x
i

x
i+

1

(d)

Figure 1.4: Delay plots of time series observed from the logistic map (a), time series
observed from the tent map (b), EEG data from [Bon14] (c), and a sequence of random
numbers (d)

enough then the properties of the original dynamics can be recovered from the behavior

of the reconstruction vectors [Bor98]. We refer for the formulation of Takens’ theorem

to [Tak81] (see a good and simple explanation of Takens’ theorem in [Bor98]). Further

we consider reconstruction vectors in Chapter 3 when considering approximate entropy

and sample entropy.

1.3 Outline of the thesis

Throughout the thesis we consider the theoretical and practical complexity measures

shown in Figure 1.1, we investigate their interrelationship (Chapters 2, 3), compare

properties of the practical complexity measures (Chapter 3), propose a fast algorithm

for computing the empirical permutation entropy and related measures (Chapter 4),

and apply practical complexity measures for analyzing EEG data (Chapter 5). We

specify now the main points considered in each chapter.

• In Chapter 2 we investigate when the KS entropy and the permutation entropy

coincide. This investigation is motivated by the result of entropies equality

for piecewise strictly monotone interval maps established by Bandt, Keller and

Pompe [BKP02]. In this chapter we compare the permutation entropy and the KS

entropy on the basis of the recent approach from [KUU12]; we have not obtained an

affirmative answer whether the KS entropy and the permutation entropy coincide,

7

but we describe the main problems occurring for the considered approach and

present interesting and new results which could be the basis for further research

in this direction. In particular, we provide sufficient conditions for coincidence of

both entropies for the general and, especially, for the one-dimensional cases.

• In Chapter 3 we compare the practical complexity measures: the widely-used

approximate and sample entropy with the relatively new empirical permutation

entropy. First, we explain the theoretical underpinnings for the approximate

entropy, the sample entropy and the empirical permutation entropy. Then we

compare the important for applications to real-world data properties of the

entropies, such as computational and storage requirements, sensitivity to the

length of a time series, robustness with respect to noise, ability to correctly

estimate a large complexity of a time series and robustness with respect to strictly

monotone transformations. In particular, we introduce a robust (to noise) empirical

permutation entropy, which is further applied to EEG data for epileptic seizure

detection in Chapter 5.

• In Chapter 4 we present efficient algorithms for computing ordinal patterns, the

empirical permutation entropy, which is based on calculating distributions of

ordinal patterns, robust empirical permutation entropy and other ordinal-patterns-

based measures (e.g. recently introduced conditional entropy of ordinal patterns

[UK14]). In particular, for fast computing of ordinal patterns with tied ranks

(adapted to the case of high occurrence of equal values in a time series) the

efficient enumeration is introduced. The proposed algorithms are faster than the

known methods, they provide a possibility to compute the ordinal-patterns-based

measures of large time series in real time.

• Finally, in Chapter 5 we apply the practical complexity measures for analyzing

EEG data with the aim of epileptic seizure detection. We discuss the choice of

the parameters when applying empirical permutation entropy to EEG data. Then

we illustrate how a vigilance state influences the values of empirical permutation

entropy, approximate entropy and sample entropy. We demonstrate that in many

cases the robust empirical permutation entropy, introduced in Chapter 3, shows

better results than the empirical permutation entropy, the approximate entropy

and the sample entropy for epileptic seizure detection in EEG recordings during the

awake state. We demonstrate also that a combined use of empirical permutation

entropy with approximate and sample entropy or a combined use of empirical

permutation entropy computed for different values of parameters is a promising

approach for measuring complexity and discriminating between different states of

a system on the basis of real-world data.

8

Chapter 2

Relationship of permutation
entropy and Kolmogorov-Sinai
entropy

In this chapter we discuss the relationship between the permutation entropy [BP02]

and the well-known Kolmogorov-Sinai (KS) entropy [Wal00]. This relationship is of

interest because, on the one hand, the permutation entropy is a conceptually simple

and well-interpretable measure of dynamical systems complexity, and, on the other

hand, the empirical permutation entropy is a successfully applied measure of time series

complexity (see Chapters 3, 4 for details).

A significant result, given by Bandt, Keller, and Pompe, is equality of KS and

permutation entropy for piecewise strictly monotone interval maps [BKP02]. This result

gave rise to the question of coincidence of the entropies in the general case. Amigó et al.

have shown the equality of the entropies for a slightly different concept of permutation

entropy [AKK05, Ami10, Ami12]. The representation of KS entropy on the basis of

ordinal partitions given in [KS09, KS10, Kel12] for many cases allows to compare KS

entropy and permutation entropy (see also [AKM14] for a recent result). However, apart

from the result in [BKP02], to our knowledge, nothing is known about the equality of

permutation entropy and KS entropy for other dynamical systems.

Throughout the chapter we use the following result from [KUU12] as a basic approach

to comparing the permutation entropy and the KS entropy (see the exact formulation

in Theorem 8, p. 16).

Theorem 2. The following statements are equivalent.

(i) The ordinal partitions PX(d+ n− 1) and PX(d)n do not differ too much.

(ii) The permutation entropy and the KS entropy coincide.

Now we briefly explain the idea behind Theorem 2. Recall that an ordinal pattern of

9

order d describes order relations between the components of (d+ 1)-dimensional vector.

Given some observables X from the dynamical system, the partition PX(d+ n− 1) is

provided by ordinal patterns of order (d+ n− 1) and the partition PX(d)n is provided

by n successive ordinal patterns of order d.

Example 2. In Figure 2.1 the partitions PX(d)n and PX(d + n − 1) are presented

for d = 1 and n = 2. One can see that PX(2) refines PX(1)2, i.e. the elements of

the partition PX(2) are proper subsets of the elements of the partition PX(1)2. Some

elements of the partition PX(1)2 contain one element of the partition PX(2) and some

elements contain two, it depends on the order relations between the iterates. Indeed,

some of the elements of the partition PX(1)2 determine the relation between ω and

T 2(ω) like ω < T (ω) and T (ω) < T 2(ω) determine ω < T 2(ω), whereas ω < T (ω) and

T (ω) > T 2(ω) do not determine the order relation between ω and T 2(ω). Many proofs

in this chapter are based on playing with the order relations in ordinal patterns of order

d+ n− 1 and in n successive ordinal patterns of order d.

(a) (b)

Figure 2.1: The partition PX(1)2 by 2 successive ordinal patterns of order 1 (a) and
the finer partition PX(2) by ordinal patterns of order 2 (b) of the state space Ω

The rest of the chapter is organized as follows. In Section 2.1 the KS entropy,

ordinal patterns, ordinal partitions and the permutation entropy are introduced. In

Section 2.2 we consider the main approaches to comparing the permutation entropy and

the KS entropy. The considerations in Sections 2.3 and 2.4 are based on comparing the

partitions PX(d+ n− 1) and PX(d)n (see Theorem 2).

• In Section 2.3 we compare the partitions PX(d+ n− 1) and PX(d)n for the general

case on the basis of pure combinatorics and we provide a sufficient condition for

the coincidence of the permutation entropy and the KS entropy. However we show

that the pure combinatorial relation between the partitions PX(d+ n− 1) and

PX(d)n is rather complicated already for Ω ⊂ R with X = id.

• In Section 2.4 we compare the partitions PX(d+ n− 1) and PX(d)n for mixing

interval maps [UUK13]. We formulate for this case a sufficient condition for the

equality of the permutation entropy and the KS entropy.

Finally, we discuss possible future directions of work in Section 2.5.

10

2.1 Preliminaries

2.1.1 Kolmogorov-Sinai entropy

Throughout the chapter, we consider a measure-preserving dynamical system

(Ω,B(Ω), µ, T), see Subsection 1.1 for a background. The (Shannon) entropy of a

finite partition P = {P1, P2, . . . , Pl} ⊂ B(Ω) of Ω with respect to µ is defined by

H(P) = −
∑
P∈P

µ(P) lnµ(P)

(with 0 ln 0 := 0).

Let us associate the elements of a finite partition P = {P1, P2, . . . , Pl} with letters

of the alphabet A = {1, 2, . . . , l}. One can make a word a1a2 . . . an of given length n

from the letters a ∈ A. The set An of all such words a1a2 . . . an provides a partition Pn
of Ω into the sets

Pa1a2...an =
{
ω | ω ∈ Pa1 , T (ω) ∈ Pa2 , . . . , Tn−1(ω) ∈ Pan

}
. (2.1)

The entropy rate of the map T with respect to the measure µ and the partition P is

given by

hµ(T,P) = lim
n→∞

H(Pn)

n
. (2.2)

It is well known that the limit in (2.2) exists (see, for example, [Wal00]). One can see

that different partitions of the state space Ω provide different entropy rates. Therefore,

in order to have a uniquely defined measure of complexity, one takes the supremum

over all possible finite partitions in the following definition of the KS entropy. The

Kolmogorov-Sinai (KS) entropy is defined by

hµ(T) = sup
P finite partition

lim
n→∞

H(Pn)

n
. (2.3)

Roughly speaking, the KS entropy hµ(T) measures the unpredictability of the dynam-

ics T .

Remark 1. Note that in some books (e.g. [Dow11]) one takes a supremum over all

infinite partitions in the definition of KS entropy, whereas in (2.3) it is taken over all

finite partitions. These definitions are equivalent since by Lemma 1.19 from [ELW11]

the KS entropy can be computed using finite partitions only.

In the general case it is not easy to determine the KS entropy by (2.3), because

one has to consider an infinite number of finite partitions P of the state space Ω. The

exception is the case of existence of a generating partition.

Definition 3. A finite partition G = {G1, G2, . . . , Gl} ⊂ B(Ω) of Ω is said to be

generating (under T) if, given the sigma-algebra A generated by the sets T−n(Gi) with

i = 1, 2, . . . , l and n ∈ N, for every B ∈ B(Ω) there exists a set A ∈ A such that

µ(A4B) = 0.

11

Due to the Kolmogorov-Sinai theorem, the KS entropy and the entropy rate of a

generating partition G coincide: hµ(T) = hµ(T,G) [Wal00].

2.1.2 Lyapunov exponents

In certain cases the KS entropy can be computed or at least bounded by Lyapunov

exponents due to Pesin’s formula [Pes97, You03, You13]. Roughly speaking, Lyapunov

exponents measure how two infinitely close to each other points from the state space di-

verge under the action of the dynamics T . Throughout the thesis we use only a particular

case of Pesin’s formula for differentiable interval maps on the space
(
[0, 1],B([0, 1]), µ

)
.

Definition 4 ([Cho00]). Given a piecewise continuously differentiable map T : [0, 1]←↩
the Lyapunov exponent is defined by

λ(T) =

∫ 1

0
ln
∣∣T ′(ω)

∣∣dµ(ω).

For the following discussion we recall the definition of a Sinai-Ruelle-Bowen (SRB)

measure for the case Ω ⊆ RN [MN00].

Definition 5. A measure µ is said to be Sinai-Ruelle-Bowen (SRB) on (Ω,B(Ω)) with

respect to T if for Lebesgue-almost all ω ∈ Ω it holds

µ(B) = lim
n→∞

1

n

n−1∑
i=0

1B
(
T i(ω)

)
, (2.4)

where 1B is the characteristic function of the set B.

The SRB measure is the most natural measure for the system.

Theorem 3. (Pesin’s formula for the one-dimensional case.) If µ is the ergodic

T -invariant SRB measure on
(
[0, 1],B([0, 1])

)
then for λ(T) > 0 it holds

hµ(T) = λ(T) =

∫ 1

0
ln |T ′(ω)|dµ(ω). (2.5)

Moreover, in this case the KS entropy can be estimated from the orbit of µ-almost every

point ω:

hµ(T) = lim
n→∞

1

n

n−1∑
i=0

ln
∣∣T ′(T i(ω)

)∣∣. (2.6)

Proof. Equality (2.5) is a direct consequence of Pesin’s formula [You13, Theorem 1],

and equation (2.6) follows from (2.5) by Birkhoff’s Ergodic Theorem [Cho00].

Example 3. Throughout the thesis we often use in examples the logistic map

TLM : [0, 1] ←↩ given by TLM(ω) = Aω(1 − ω) for A ∈ [3.5, 4]. Note that for the

family of logistic maps it has been shown that for almost all A ∈ [3.5, 4] there exists

the SRB measure µA [MN00, Lyu02]. By Pesin’s formula, for almost all A ∈ [3.5, 4],

12

the KS entropy of the dynamical system
(
[0, 1],B

(
[0, 1]

)
, µA, TLM

)
, is given by

hµA(TLM) = max{λ(TLM), 0}. The Lyapunov exponent for the logistic maps can be

estimated rather accurately [Spr03], therefore we use further this family for comparing

practical complexity measures with the KS entropy.

2.1.3 Ordinal patterns and ordinal partitions

We define here ordinal patterns and ordinal partitions which we need for defining the

permutation entropy in the subsequent subsection.

Definition 6. Let Πd be the set of permutations of the set {0, 1, . . . , d} for d ∈ N. Then

the real vector (x0, x1, . . . , xd) ∈ Rd+1 has the ordinal pattern π = (r0, r1, . . . , rd) ∈ Πd

of order d if

xr0 ≥ xr1 ≥ . . . ≥ xrd , where

rl−1 > rl in the case xrl−1
= xrl .

Definition 7. We say that a real vector (x0, x1, . . . , xd+n−1) ∈ Rd+n has the (n, d)-word

π1π2 . . . πn if

(xi, xi+1, . . . , xi+d) has the ordinal pattern πi+1 ∈ Πd for i = 0, 1, . . . , n− 1.

We divide now the state space Ω ⊂ R into the sets of points having the same

dynamics from the ordinal viewpoint.

Definition 8. For d ∈ N, the partition P(d) = {Pπ | π ∈ Πd} with

Pπ =
{
ω ∈ Ω |

(
T d(ω), T d−1(ω), . . . , T (ω), ω

)
has the ordinal pattern π

}
is called the ordinal partition of order d with respect to T .

Remark 2. Note that in contrast to the traditional definition of a partition, P(d) may

contain some empty sets Pπ ∈ P(d), corresponding to the unrealized ordinal patterns

π ∈ Πd. However, this distinction does not cause any problems and P(d) still has all

properties of the partition.

The partition P(d)n associated with the collection of (n, d)-words consists of the

sets (note, analogously, Remark 2)

Pπ1π2...πn =
{
ω | ω ∈ Pπ1 , T (ω) ∈ Pπ2 , . . . , Tn−1(ω) ∈ Pπn

}
, π1, π2, . . . , πn ∈ Πd.

In order to define the ordinal partition in a general way we consider observables

X = (X1, X2, . . . , XN) for N ∈ N from the dynamical system such that Xi : Ω→ R for

i = 1, 2, . . . , N .

13

Definition 9. For N ∈ N, let X = (X1, X2, . . . , XN) be an R-valued random vector on

(Ω,B(Ω)). Then, the partition PX(d) =
{
P(π1,π2,...,πN) | πj ∈ Πd for j = 1, 2, . . . , N

}
for d ∈ N with (note, analogously, Remark 2)

P(π1,π2,...,πN) = {ω ∈ Ω | (Xj(T
d(ω)), Xj(T

d−1(ω)), . . . , Xj(ω))

has the ordinal pattern πj for j = 1, 2, . . . , N}

is called the ordinal partition of order d with respect to T and X.

Consider an n-tuple a =
(
π1, π2, . . . , πN

)
as a letter from the alphabet ΠN

d = (Πd)
N .

One obtains the partition PX(d)n generated by the words a1a2 . . . an with the letters

ai ∈ ΠN
d for i = 1, 2, . . . , n (compare with (2.1), note, analogously, Remark 2):

PX(d)n =
{
Pa1a2...an | ai =

(
π1
i , π

2
i , . . . , π

N
i

)
∈ ΠN

d for i = 1, 2, . . . , n
}
, where

Pa1a2...an =
{
ω ∈ Ω | ω ∈ Pa1 , T (ω) ∈ Pa2 , . . . , Tn−1(ω) ∈ Pan

}
.

2.1.4 Permutation entropy and Kolmogorov-Sinai entropy

Definition 10. Given a random vector X = (X1, X2, . . . , XN) on (Ω,B(Ω)) with

Xi : Ω→ R for i = 1, 2, . . . , N , the permutation entropy with respect to X is defined by

hXµ (T) = lim
d→∞

H
(
PX(d)

)
d

. (2.7)

For natural choices of observables X the KS entropy can be represented on the basis

of ordinal partitions [Kel12]. This provides a possibility to compare the permutation

entropy and the KS entropy. In particular, for these choices of observables it was shown

that the KS entropy is not greater than the permutation entropy [Kel12].

Theorem 4. For N ∈ N, let X = (X1, X2, . . . , XN) be a random vector on

(Ω,B(Ω)). Then for X satisfying the conditions from Theorems 5-7 in [KUU12] it

holds

hµ(T) = lim
d→∞

hµ
(
T,PX(d)

)
= lim

d→∞
lim
n→∞

H
(
PX(d)n

)
n

, and (2.8)

hµ(T) ≤ hXµ (T). (2.9)

The following choice of observables X provides (2.8) as it was shown in [Kel12].

Theorem 5. Let N ∈ N, Ω be a Borel subset of RN and X = (X1, X2, . . . , XN)

be a random vector on (Ω,B(Ω)) such that Xi is the i-th coordinate projection for

i = 1, 2, . . . , N , i.e.

Xi((ω1, ω2, . . . , ωN)) = ωi for (ω1, ω2, . . . , ωN) ∈ Ω. (2.10)

Then (2.8) and (2.9) are valid.

14

(See [Kel12, KUU12] for other possible choices of observables X.) In Sections 2.2 and 2.3

we use observables X given by (2.10), in Section 2.4 we consider X as an identity map

X = id. According to Remark 2 the following lemma holds.

Lemma 6. For d, n,N ∈ N, X = (X1, X2, . . . XN) given by (2.10), it holds∣∣PX(d)n
∣∣ =

(
(d+ 1)!(d+ 1)n−1

)N
,∣∣PX(d+ n− 1)

∣∣ = ((d+ n)!)N .

2.2 Equality of permutation entropy and Kolmogorov-Sinai
entropy

2.2.1 Piecewise strictly monotone interval maps

In this subsection we discuss the equality of permutation entropy and KS entropy for

piecewise strictly monotone interval map T and for an identity map X = id, shown

in [BKP02].

Definition 11. Given an interval [a, b] ⊂ R, a map T : [a, b]←↩ is said to be piecewise

strictly monotone if there is a finite partition of [a, b] into intervals such that T is

continuous and strictly monotone on each of those intervals.

Theorem 7. [BKP02] Given an interval [a, b] ⊂ R and a piecewise strictly monotone

map T : [a, b]←↩, for an identity map X = id it holds

hµ(T) = hXµ (T).

Remark 3. It was also shown in [BKP02] that the topological permutation entropy

and the topological entropy (see definitions in [BKP02, Mis03] and [Mis03, You03],

correspondingly) coincide for piecewise strictly monotone interval maps. However,

Misiurewicz has shown that topological permutation entropy does not coincide with the

topological entropy for arbitrary continuous interval maps [Mis03]. To our knowledge,

one still has not found an example of a dynamical system (Ω,B(Ω), T, µ) with hµ(T) 6=
hXµ (T).

Example 4. In order to illustrate the relationship of permutation entropy and KS

entropy for piecewise strictly monotone interval maps, we introduce the permutation

entropy of order d with respect to observables X in the following way:

hXµ (T, d) =
H
(
PX(d)

)
d

.

Despite of equality of the entropies for piecewise strictly monotone interval maps, the

permutation entropy of order d converges to the KS entropy with increasing d rather

slowly [BKP02]. In Figure 2.2 we present the values of the permutation entropy of order

15

0 2 4 6 8 10 12 14 16

0.65

0.7

0.75

0.8

0.85

Order d

H(P(d))

d

ln 2

Figure 2.2: The values of the permutation entropy of order d computed from an orbit
of the logistic map TLM

d computed from an orbit of the logistic map TLM for A = 4, the length of the orbit

is 108. The KS entropy of the logistic map for A = 4 is equal to ln 2 [Cho00]. Note that

there is a modification of permutation entropy of order d, which is called conditional

entropy of ordinal patterns of order d and provides better convergence to the KS entropy

for several cases (see [UK14, Una15] for details).

2.2.2 A criterion for the coincidence in the general case

Note that it is difficult to generalize Theorem 7 directly because its proof is essentially

based on the piecewise monotonicity. Therefore we present a criterion for the coincidence

of permutation entropy and KS entropy from [KUU12], which is the basic approach to

comparing the entropies in this chapter.

Theorem 8. The following statements are equivalent for hµ(T) satisfying (2.8):

(i) hµ(T) = hXµ (T).

(ii) For each ε > 0 there exists some dε ∈ N such that for all d ≥ dε there is some

nd ∈ N with

H
(
PX(d+ n− 1)

)
−H

(
PX(d)n

)
< (n− 1)ε for all n ≥ nd. (2.11)

(The proof is given in Subsection 2.6.1.) Roughly speaking, Theorem 8 says that the

permutation entropy and the KS entropy coincide when the partitions PX(d+ n− 1)

and PX(d)n do not differ “too much”. Note that the partition PX(d+ n− 1) is finer

than the partition PX(d)n, therefore it holds

H
(
PX(d+ n− 1)

)
≥ H

(
PX(d)n

)
. (2.12)

16

Remark 4. Note that we do not consider here the approach to comparing the permu-

tation entropy and the KS entropy proposed in [Ami10, Ami12]. The author shows

there that the modified permutation entropy, qualitatively different from Definition 10,

coincides with the KS entropy. See also [KUU12, Subsection 3.4] and [HN11] for more

details.

2.3 Comparing ordinal partitions PX(d+n−1) and PX(d)n

In Subsections 2.3.1 and 2.3.2 we describe the relation between the partitions

PX(d + n − 1) and PX(d)n for the general case (Corollary 9, Proposition 10) and

for Ω ⊂ R with X = id (Proposition 11), correspondingly.

2.3.1 The general case

We recall that the partition PX(d+ n− 1) is a refinement of the partition PX(d)n, i.e.

each element of the partition PX(d+ n− 1) is a subset of some element of the partition

PX(d)n. In order to compare the partitions PX(d+ n− 1) and PX(d)n, we introduce

a set QX(k, n, d) for k, n, d ∈ N as the union of those elements P ∈ PX(d)n that are

unions of exactly k elements from the partition PX(d+ n− 1):

QX(k, n, d) =
⋃

P∈PX(k,n,d)

P, where

PX(k, n, d) =

{
P ∈ PX(d)n | P =

k⋃
i=1

Pi, with Pi ∈ PX(d+ n− 1)

}
. (2.13)

Using the introduced sets and the entropy properties it holds1

H
(
PX(d)n

)
= −

(n!)N∑
k=1

∑
P∈PX(k,n,d)

µ(P) lnµ(P), whereas (2.14)

H
(
PX(d+ n− 1)

)
= −

∑
P ′∈PX(d+n−1)

µ(P ′) lnµ(P ′)

= −
(n!)N∑
k=1

∑
P∈PX(k,n,d)

∑
P ′⊂P |P ′∈PX(d+n−1)

µ(P ′) lnµ(P ′)

≤ −
(n!)N∑
k=1

∑
P∈PX(k,n,d)

k
µ(P)

k
ln
µ(P)

k
. (2.15)

1The summation in (2.14) is going up to (n!)N . Indeed, we show further in Proposition 12 that for
given n, d ∈ N and for Ω ⊂ R it holds

max
P ′⊂P |P∈P(d)n

#
{
P ′ ∈ P(d+ n− 1)

}
≤ n!

.

17

Then by (2.14) and (2.15) one can represent the difference of the entropies in the

following way

H
(
PX(d+ n− 1)

)
−H

(
PX(d)n

)
≤

(n!)N∑
k=1

∑
P∈PX(k,n,d)

(
µ(P) lnµ(P)− kµ(P)

k
ln
µ(P)

k

)

=

(n!)N∑
k=1

ln k
∑

P∈PX(k,n,d)

µ(P)

=

(n!)N∑
k=1

µ
(
QX(k, n, d)

)
ln k. (2.16)

By (2.16) we obtain the following corollary from Theorem 8, which provides a

sufficient condition for the coincidence of permutation entropy and KS entropy.

Corollary 9. For hµ(T) satisfying (2.8), for the following statements (i) im-

plies (ii).

(i) For each ε > 0 there exists some dε ∈ N such that for all d ≥ dε there is some

nd ∈ N such that for all n ≥ nd it holds

(n!)N∑
k=1

µ
(
QX(k, n, d)

)
ln k < (n− 1)ε.

(ii) hµ(T) = hXµ (T).

In order to illustrate the difficulties of the combinatorial approach, we consider

in Example 5 the “worst case” for Corollary 9, namely, the equidistributed measure

between the elements of the partition PX(d+ n− 1).

Example 5. We assume that for all P ∈ PX(d+ n− 1) it holds µ(P) = 1
((d+n)!)N

. (We

are not sure whether such dynamical system exists.) Then (see (2.13) for the definition

of PX(k, n, d))

µ
(
QX(k, n, d)

)
=

k

((d+ n)!)N
∣∣PX(k, n, d)

∣∣.
In this case (2.16) holds with equality:

H
(
PX(d+ n− 1)

)
−H

(
PX(d)n

)
=

(n!)N∑
k=1

µ
(
QX(k, n, d)

)
ln k

=
1

((d+ n)!)N

(n!)N∑
k=1

∣∣PX(k, n, d)
∣∣k ln k. (2.17)

18

Determining
∣∣PX(k, n, d)

∣∣ or bounding it by q1(k, n, d) <
∣∣PX(k, n, d)

∣∣ < q2(q, n, d) for

some q1(k, n, d) and q2(q, n, d) for k = 1, 2, . . . , (n!)N can help understanding when

statement (ii) from Theorem 8 holds. However, determining
∣∣PX(k, n, d)

∣∣ leads to a

complicated combinatorics even for Ω ⊂ R with X = id as we show in Subsection 2.3.2.

Let us compare now the partitions PX(d + n − 1) and PX(d)n by comparing the

“neighboring” partitions PX(d+ 1)n−1 and PX(d)n. For this we define a set VΠd
⊂ Πd:

VΠd
= {π = (r0, r1, . . . , rd) ∈ Πd : ra = 0, rb = d for some a, b : |a− b| = 1}, (2.18)

i.e. VΠd
is the set of all ordinal patterns of order d with the numbers 0 and d staying

nearby. It holds

|VΠd
| = 2d!, (2.19)

whereas |Πd| = (d+ 1)!.

Example 6. We present all ordinal patterns of order d = 3, one can see that the

numbers 0 and 3 in ordinal patterns from VΠ3 (in gray) are staying nearby.

(0, 1, 2, 3) (0, 3, 1, 2) (1, 2, 0, 3) (2, 0, 1, 3) (2, 3, 0, 1) (3, 1, 0, 2)

(0, 1, 3, 2) (0, 3, 2, 1) (1, 2, 3, 0) (2, 0, 3, 1) (2, 3, 1, 0) (3, 1, 2, 0)

(0, 2, 1, 3) (1, 0, 2, 3) (1, 3, 0, 2) (2, 1, 0, 3) (3, 0, 1, 2) (3, 2, 0, 1)

(0, 2, 3, 1) (1, 0, 3, 2) (1, 3, 2, 0) (2, 1, 3, 0) (3, 0, 2, 1) (3, 2, 1, 0)

The following proposition allows to compare the partitions PX(d+1)n−1 and PX(d)n

by means of the set VΠd+1
.

Proposition 10. Let d, n,N ∈ N, X = (X1, X2, . . . , XN) ∈ RN . Then for all

Pa1a2...an ∈ PX(d)n with ai =
(
π1
i , π

2
i , . . . , π

N
i

)
it holds

#
{
P ′ ∈ PX(d+ 1)n−1 | P ′ ⊂ Pa1a2...an

}
= 2m12m2 . . . 2mN , where

mk = #
{
i = 1, 2, . . . , n− 1 | πki ∈ VΠd+1

}
for k = 1, 2, . . . , N.

(Proposition 10 generalizes Proposition 16, the proofs are analogous, see the proof of

Proposition 16 in Section 2.4.) However, it is difficult to obtain a similar result for the

“distant” partitions PX(d+ n− 1) and PX(d)n due to the complicated combinatorics

already for Ω ⊂ R with X = id as we show in Subsection 2.3.2.

2.3.2 The one-dimensional case

In this subsection we show the difficulties of a pure combinatorial approach to comparing

the partitions P(d+n− 1) and P(d)n for Ω ⊂ R and X = id. We start from comparing

19

the “neighboring” partitions P(d)n and P(d+1)n−1 in the following proposition ensuing

from Proposition 10.

Proposition 11. Given d, n ∈ N for all m = 0, 1, . . . , n− 1 it holds

#

{
P ∈ P(d)n |

2m⋃
i=1

Pi = P with Pi ∈ P(d+ 1)n−1

}
=

2(d+ 1)!dn−m−1

(
n− 2

m

)
. (2.20)

(The proof is given in Subsection 2.6.2). One can see that (2.20) looks complicated

already for the relation between the “neighboring” partitions P(d+ 1)n−1 and P(d)n

for Ω ⊂ R. It is also not clear how to move from the combinatorial relation between the

“neighboring” partitions P(d+ 1)n−1 and P(d)n to the relation between the partitions

P(d + n − 1) and P(d)n since the relation between the partitions P(d + n − 1) and

P(d)n is more complicated that we illustrate in the following example.

Example 7. Given an element P ∈ P(d)n we determine how many elements from the

partition P(d + n − 1) it contains. For example, we consider Pπ1π2π3π4 ∈ P(2)4 with

π1 = (1, 0, 2), π2 = (2, 1, 0), π3 = (0, 2, 1) and π4 = (1, 0, 2) and we want to determine

#{P ′ ∈ P(5) | P ′ ⊂ Pπ1π2π3π4}. (2.21)

For that we represent (πi)
4
i=1 by the following rule, which does not change ordering:

π′i = πi + (n− i)(1, 1, . . . , 1), (2.22)

i.e. for n = 4 it holds π′4 = (1, 0, 2), π′3 = (1, 3, 2), π′2 = (4, 3, 2) and π′1 = (4, 3, 5). In

Figure 2.3 we present now Pπ1π2π3π4 by drawing the tree from left to right moving from

π′4 to π′1, on each level of the tree the next point i is included according to π′n−i.

One can see that π′4 = (1, 0, 2) is split into (1,3, 0,2) and (1, 0,3,2), because from

π′4 = (1,0,2) and π′3 = (1,3,2) do not determine the order relation between the points

0 and 3. On the second level there are two possibilities to include the point 4 in the

upper branch (1, 3, 0, 2) (on the left or on the right from 1) and three possibilities to

include the point 4 in the bottom branch (1, 0, 3, 2) (left from 1, 0, in the middle between

1, 0, and on the right from 1, 0).

Finally, we obtain nine elements P ′ ∈ P(5) satisfying (2.21):

Pπ1π2π3π4 = P(4,1,3,5,0,2) ∪ P(4,1,3,0,5,2) ∪ P(4,1,3,0,2,5) ∪ P(1,4,3,5,0,2) ∪ P(1,4,3,0,5,2)

∪P(1,4,3,0,2,5) ∪ P(4,1,0,3,5,2) ∪ P(4,1,0,3,2,5) ∪ P(1,4,0,3,5,2) ∪ P(1,4,0,3,2,5)

∪ P(1,0,4,3,5,2) ∪ P(1,0,4,3,2,5).

20

(1,0,2)

(1, 0,3,2)

(1, 0,4,3,2)
(1, 0,4,3, 2,5)

(1, 0,4,3,5, 2)

(1,4, 0,3,2)
(1,4, 0,3, 2,5)

(1,4, 0,3,5, 2)

(4, 1, 0,3,2)
(4, 1, 0,3, 2,5)

(4, 1, 0,3,5, 2)

(1,3, 0,2)

(1,4,3, 0,2)

(1,4,3, 0, 2,5)

(1,4,3, 0,5, 2)

(1,4,3,5, 0, 2)

(4, 1,3, 0,2)

(4, 1,3, 0, 2,5)

(4, 1,3, 0,5, 2)

(4, 1,3,5, 0, 2)

Figure 2.3: The elements from the partition P(5) are obtained from one element
Pπ1π2π3π4 ∈ P(2)4 according to the order relations π1 = (1, 0, 2), π2 = (2, 1, 0),
π3 = (0, 2, 1) and π4 = (1, 0, 2)

In the same way, one can determine #{P ′ ∈ P(d+ n− 1) | P ′ ⊂ P} for every given

P ∈ P(d)n, but it seems complicated to obtain the general formula. However we bound

#{P ′ ∈ P(d+ n− 1) | P ′ ⊂ P} from above in Proposition 12.

Proposition 12. For all n, d ∈ N it holds

max
P∈P(d)n

#
{
P ′ ∈ P(d+ n− 1) | P ′ ⊂ P

}
≤ n!. (2.23)

Proof. The statement becomes clear if we look at Figure 2.3. We consider

Pπ1π2...πn ∈ P(d)n and we represent π′i ∈ Πd by (2.22) for all i = 1, 2, . . . , n. Then we

enumerate the levels of the tree from left to right from 1 to n. When moving from the

level i to the level i+ 1 the relation between the points i, i+ 1, . . . , d+ i is known due to

π′i+1, but the order relation between d+ i and 0, 1, . . . , i− 1 is not known. Hence each

“node” of the level i has maximum i+ 1 “children”, because there are i+ 1 possibilities

to place each number. From that (2.23) follows.

Note that the bound n! is not sharp (see, for instance, Example 8).

Example 8. In this example we illustrate that it does not seem simple to obtain the

general formula for |PX(k, n, d)|. For X = id and Ω ⊂ R we present in Table 2.1 the

values of |PX(k, n, d)| for k = 1, 2, . . . , n! for n = 4 and d = 1, 2, . . . , 5.

21

k 1 2 3 4 5 6 7 8

d = 1 2 0 0 4 0 2 0 0
d = 2 34 14 24 30 6 18 12 0
d = 3 428 256 304 208 60 140 56 0
d = 4 61872 39936 26496 13392 3312 7056 1440 144
d = 5 773040 474000 254400 122640 26640 55920 9120 1440

k 9 10 11 12 13 14 15 16 17 ... 24

d = 1 4 0 2 0 0 0 0 2 0 0 0
d = 2 12 6 0 4 0 2 0 0 0 0 0
d = 3 48 24 0 8 0 4 0 0 0 0 0
d = 4 1152 576 0 96 0 48 0 0 0 0 0
d = 5 7200 3600 0 480 0 240 0 0 0 0 0

Table 2.1: The values of |P id(k, 4, d)| show how many elements P ∈ P(d)4 are unions of
exactly k elements from the partitions P(d+ 3) for k = 1, 2, . . . , 4! and d = 1, 2, . . . , 5.

2.3.3 Conclusions

To answer when the permutation entropy and the KS entropy coincide (see Theorem 8)

we compared the partitions PX(d + n − 1) and PX(d)n for the general and for the

one-dimensional case by using pure combinatorics. We conclude that pure combinatorics

does not provide a direct answer to our question, but the formulated results (see

Corollary 9, Propositions 10-12, Examples 7-8) are interesting and could be further

investigated. In particular, solving the following open problems is of interest.

Problem 1. Find a general formula for
∣∣PX(k, n, d)

∣∣ (see (2.13)) or find functions

q1(k, n, d) and q2(k, n, d) such that q1(k, n, d) ≤ |PX(k, n, d)| ≤ q2(k, n, d)

for k = 1, 2, . . . , n!, for n, d ∈ N.

Problem 2. For what dynamical systems does statement (i) from Corollary 9 hold?

2.4 Comparing ordinal partitions for mixing interval maps

In this section we consider and discuss an approach from [UUK13] to comparing the

partitions P(d+ n− 1) and P(d)n for Ω being an interval in R. We obtain an upper

bound of the difference H(P(d+ n− 1))−H(P(d)n) for mixing T , which still does not

provide (2.11), but sheds some new light on the general problem of equality between

the KS and the permutation entropy in the one-dimensional case. However, we are not

sure that mixing is an important property for (2.11), because mixing is not a necessary

condition for (2.11). For instance, it holds H(P(d+ n− 1))−H(P(d)n) = 0 for ergodic

but non-mixing irrational rotation.

For the following discussion we adapt the definition (2.18) of the set VΠd
, which is

22

“in charge” of the difference H(P(d+ 1)n−1)−H(P(d)n), to the case Ω ⊂ R:

Vd =
{
ω ∈ R | ω < T d(ω), T l(ω) /∈ (ω, T d(ω)) for all l = 1, . . . , d− 1

}
∪
{
ω ∈ R | ω ≥ T d(ω), T l(ω) /∈ [T d(ω), ω] for all l = 1, . . . , d− 1

}
. (2.24)

We present now the main results of this section, Theorems 13, 14, and Corollary 15.

Theorem 13. If T is mixing, then for all ε > 0 there exists some dε ∈ N such that for

all d > dε

µ(Vd) < ε. (2.25)

(The proof is given in Subsection 2.6.3.) Note that the ergodicity of the map T is not

enough for (2.25). For instance, Theorem 13 does not hold for an ergodic but non-mixing

irrational rotation. Theorem 14 provides a tool for comparing the “successive” partitions

P(d+ 1)n−1 and P(d)n.

Theorem 14. For all n ∈ N \ {1} and d ∈ N it holds

H(P(d+ 1)n−1)−H(P(d)n) ≤ ln 2(n− 1)µ(Vd+1). (2.26)

(The proof is given in Subsection 2.4.2.) Putting together Theorem 13 and 14, one

obtains a more explicit variant of (2.26):

Corollary 15. If T is mixing, then for all ε > 0 there exists some dε ∈ N such that

for all d ≥ dε, n ∈ N \ {1} it holds

H(P(d+ 1)n−1)−H(P(d)n) < (n− 1)ε.

Coming back to the partitions P(d+n−1) and P(d)n, in Subsection 2.4.3 we obtain

the following upper bound for H(P(d+ n− 1))−H(P(d)n), compare with (2.11):

H(P(d+ n− 1))−H(P(d)n) ≤ ln 2

n−1∑
i=1

(n− i)µ(Vd+i). (2.27)

Subsection 2.4.1 illustrates the relation between the (n, d)-words, ordinal patterns

and the set Vd. In Subsection 2.4.2 we focus on the partitions P(d+ 1)n−1 and P(d)n

and prove Theorem 14. Subsection 2.4.3 is devoted to the relation of the partitions

P(d+ n− 1) and P(d)n and provides (2.27). We make conclusions and state the open

questions in Subsection 2.4.4.

23

2.4.1 Ordinal patterns of order (d+ n− 1) and (n, d)-words

Figure 2.4 illustrates a segment
(
ω, T (ω), . . . , T 5(ω)

)
of some orbit (a) and the corre-

sponding (5, 1)-, (4, 2)-, (3, 3)-, (2, 4)- and (1, 5)-words (b).

(a) (b)

Figure 2.4: Representation of the segment of the orbit (a) by (n, d)-words (b)

Upon moving from (1, 5)- to (5, 1)-words one loses some information about the

ordering of the iterates of T . For example, the (3, 3)-word determines the relation

ω < T 3(ω),

but in the (4, 2)-word this relation is already lost. It either holds ω ≥ T 3(ω) or

ω < T 3(ω). On the other hand, one does not lose the relation

ω < T 4(ω)

when moving from the (2, 4)-word to the (3, 3)-word, although ω and T 4(ω) are in differ-

ent patterns of the (3, 3)-word. The reason for this is the existence of the intermediate

iterate T 3(ω) with

ω < T 3(ω) < T 4(ω).

More generally, if there is some intermediate iterate T l(ω) with

ω < T l(ω) < T d+1(ω) or T d+1(ω) ≤ T l(ω) ≤ ω, the relation between ω and T d+1(ω)

is not lost upon moving from (1, d+ 1)- to (2, d)-words, and is lost otherwise. Therefore,

the set Vd+1 (see (2.24)) consists of all ω, for which the relation between ω and T d+1(ω)

is lost upon moving from (1, d+ 1)- to (2, d)-words. More precisely, the set Vd+1 is a

union of the sets of the partition P(d+ 1) that are proper subsets of some sets of the

partition P(d)2.

24

(a) (b)

Figure 2.5: ω ∈ V3 (a), T 2(ω) ∈ V3 (b)

Figure 2.5 illustrates ω, T 2(ω) ∈ V3 for our example.

In the following subsection we compare the partitions P(d)n and P(d + 1)n−1 by

means of the set Vd+1.

2.4.2 The “neighboring” partitions P(d+ 1)n−1 and P(d)n

Upon moving from (n − 1, d + 1)- to (n, d)-words, for i = 0, 1, . . . , n − 2 the relation

between T i(ω) and T d+i+1(ω) is lost iff T i(ω) ∈ Vd+1. Therefore, if Vd+1 6= ∅, then the

partition P(d+ 1)n−1 is properly finer than the partition P(d)n. The following holds:

Proposition 16. Given non-empty P ∈ P(d)n, let

m(P) = #
{

0 ≤ l ≤ n− 2 | P ⊂ T−l(Vd+1)
}
. (2.28)

Then there exist 2m(P) sets P1, P2, . . . , P2m(P) ∈ P(d+ 1)n−1 with

P1 ∪ P2 ∪ . . . ∪ P2m(P) = P.

Proof. Given P ∈ P(d)n, the corresponding (n, d)-word determines the same dynamics

for all ω ∈ P , and for l = 0, 1, . . . , n− 2 it holds either

P ⊂ T−l(Vd+1) or (2.29)

P ∩ T−l(Vd+1) = ∅. (2.30)

(Note that Vd+1 6= ∅ since P ∈ P(d)n is non-empty by assumption.) If Vd+1 = ∅ then

m(P) = 0. For each l with (2.29) and all ω ∈ P , it holds either T l(ω) < T d+l+1(ω) or

T d+l+1(ω) ≤ T l(ω) providing a partitioning of P into two subsets. We are done since

there are exactly m such partitionings.

Example 9. Figure 2.6 illustrates Proposition 16.

For ω /∈ V2 ∪ T−1(V2) the obtained (3, 1)-word is not split and contains the same

information about the ordering as 20 = 1 (2, 2)-word (a), for ω ∈ V2 the (3, 1)-word is

split into 21 = 2 (2, 2)-words (b) and for ω ∈ V2 ∩ T−1(V2) the (3, 1)-word is split into

22 = 4 (2, 2)-words (c).

25

Figure 2.6: From (3, 1)- to (2, 2)-words. V2 ∪ T−1(V2) in (a) stands for the complement
of V2 ∪ T−1(V2)

Let m(P) be determined as in Proposition 16 for each P ∈ P(d)n. Since if Vd+1 6= ∅
then for each P it holds either (2.29) or (2.30), it follows

n−2∑
j=0

µ
(
T−j(Vd+1)

)
=

n−2∑
j=0

∑
P∈P(d)n

µ
(
T−j(Vd+1) ∩ P

)
=

∑
P∈P(d)n

m(P)µ(P). (2.31)

Therefore, by Proposition 16 and (2.31) one obtains an upper bound for

H(P(d+ 1)n−1)−H(P(d)n) in the following way:

H(P(d+ 1)n−1)−H(P(d)n) = −
∑

P ′∈P(d+1)n−1

µ(P ′) lnµ(P ′) +
∑

P∈P(d)n

µ(P) lnµ(P)

≤
∑

P∈P(d)n

(
µ(P) lnµ(P)− 2m(P) µ(P)

2m(P)
ln
µ(P)

2m(P)

)
= ln 2

∑
P∈P(d)n

m(P)µ(P)

= ln 2
n−2∑
j=0

µ
(
T−j(Vd+1)

)
= ln 2(n− 1)µ(Vd+1). (2.32)

Inequality (2.32) provides the proof of Theorem 14.

2.4.3 The partitions P(d)n and P(d+ n− 1)

Here we move from (n, d)-words to (1, d+ n− 1)-words (i.e. ordinal patterns of order

(d + n − 1)). At this point we cannot definitely say into how many (n, d)-words

a (1, d + n − 1)-word is split in dependence on the sets Vd+1, . . . , Vd+n−1 (see also

Example 7).

Example 10. Figure 2.7 illustrates a (3, 1)-word with the same information as in the

(1, 3)-word (a), other two (3, 1)-words are split into three and five (1, 3)-words ((b) and

(c), respectively).

26

Figure 2.7: From (3, 1)- to (1, 3)-words. V2 ∪ T−1(V2) ∪ V3 in (a) stands for the comple-
ment of V2 ∪ T−1(V2) ∪ V3

One obtains an upper bound for H(P(d+n−1))−H(P(d)n) by successive application

of (2.32):

H(P(d+ n− 1))−H(P(d)n) =

n−1∑
i=1

(H(P(d+ n− i)i)−H(P(d+ n− i− 1)i+1))

≤ ln 2
n−1∑
i=1

i µ(Vd+n−i) = ln 2
n−1∑
i=1

(n− i)µ(Vd+i). (2.33)

However, the upper bound given by (2.33) is a weak bound and does not provide

directly the required condition (ii) for Theorem 8 as we will see in the following example.

Example 11. Assume that we have the equidistributed measure µ(P) = 1
(d+1)! for all

P ∈ P(d). Then µ(Vd) = 2
(d+1) since there are 2d! ordinal patterns of order d in VΠd

(see (2.19)). Therefore one can represent the upper bound from (2.33) as

ln 2

n−1∑
i=1

(n− i)µ(Vd+i) = ln 2

n−1∑
i=1

2(n− i)
d+ i+ 1

= 2 ln 2

bn−d−1
2
c∑

i=1

n− i
d+ i+ 1

+
n−1∑

i=bn−d−1
2
c+1

n− i
d+ i+ 1

≥ 2 ln 2bn− d− 1

2
c = ln 2(n− d− 1) > (n− 1)ε

for all ε > 0 starting from some d and n >> d. (Note that n−i
d+i+1 ≥ 1 for i ≤ bn−d−1

2 c.)
This means that the upper bound from (2.33) is larger than required by (2.11).

In the following proposition we describe how the measure µ(Vd) should decrease

with increasing d in order to provide the coincidence of the permutation entropy and

the KS entropy for Ω ⊂ R.

27

Proposition 17. Let Ω be an interval in R, X = id. Then for the following

statements (i) implies (ii).

(i) For all ε > 0 there exists some d0 ∈ N such that for all d > d0 there exists

some n0 ∈ N such that for all n > n0 it holds

n−1∑
i=1

n− i
n− 1

µ(Vd+i) ≤ ε. (2.34)

(ii) hµ(T) = hXµ (T).

2.4.4 Conclusions and open questions

In this section we have bounded the difference of the entropies of the neighboring

partitions P(d+ 1)n−1 and P(d)n for Ω ⊂ (a, b) and a mixing map T (see Theorems 13,

14 and Corollary 15). However, the transition from the partitions P(d+1)n−1 and P(d)n

to the partitions of interest P(d+ n− 1) and P(d)n (see Theorem 8) is combinatorially

complicated as it is shown in Section 2.3.

The approach considered in this section and the condition formulated for coincidence

of the permutation entropy and the KS entropy (Proposition 17) are interesting results

for further investigation of the question when the entropies coincide. We think that

solving the following problems could provide one step more in this direction.

Problem 3. For what dynamical systems does statement (i) from Proposition 17 hold?

Problem 4. Is the mixing property of the map T important for coincidence of

Kolmogorov-Sinai entropy and permutation entropy?

Problem 5. Is there a better bound than (2.32) of the difference

H(P(d+ 1)n−1)−H(P(d)n) or a better bound than (2.33) of the difference

H(P(d+ n− 1))−H(P(d)n)?

Note that the upper bound (2.33) is a weak bound and, probably, can be improved,

since it is obtained by rough summing up (2.32).

2.5 Conclusions

In this chapter we have investigated when the KS entropy and the permutation entropy

coincide. The basic approach to doing this, provided by Theorem 8, is comparing the

partitions PX(d + n − 1) and PX(d)n. We have formulated sufficient conditions for

coincidence of permutation entropy and KS entropy in Propositions 9 and 17 (p. 18

28

and 28); and we have described the combinatorial relations between the partitions

PX(d+ 1)n−1 and PX(d)n (Propositions 10, 11). These results could be used for further

comparing the permutation entropy and the KS entropy.

In particular, solving the following problems could give an insight to the relationship

between permutation entropy and KS entropy.

• Problems 1-5 (see pages 22, 28).

• Is it possible to simplify the proof of Theorem 7 for piecewise strictly monotone

maps using Theorem 8?

• Is there a map for which the KS entropy does not coincide with the permutation

entropy?

– Is it possible to find such a map in a similar way as in [Mis03]?

– Is there such a mixing (one-dimensional) map?

2.6 Proofs

2.6.1 Proof of Theorem 8

We provide here the proof of Theorem 8 [KUU12]. First, we show two auxiliary lemmas.

Lemma 18. For hXµ (T) and hµ(T) defined by (2.7) and (2.8) it holds

hXµ (T) ≥ hµ(T).

Proof. For hµ(T) = 0 clearly hµ(T) ≤ hXµ (T) holds. Then we consider hµ(T) > α > 0

and show that hXµ (T) ≥ α. Since α can be chosen arbitrarily near to hµ(T) this implies

hXµ (T) ≥ hµ(T).

Given β > 1 with hµ(T) > β α, by (2.8) there exists some d ∈ N and some nd ∈ N

with
H(PX(d)n)

n > β α for all n ≥ nd. Thus for all n ≥ max
{
nd,

d
β−1

}
by (2.12) we

obtain

H
(
PX(d+ n− 1)

)
d+ n− 1

≥
H
(
PX(d)n

)
d+ n− 1

≥
H
(
PX(d)n

)
(β − 1)n+ n− 1

>
H
(
PX(d)n

)
βn

> α,

implying

hXµ (T) = lim
n→∞

H
(
PX(d+ n− 1)

)
d+ n− 1

≥ α.

Now we show that hµ(T) = hXµ (T) implies existence of the limit in the definition of

the permutation entropy (2.7).

29

Lemma 19. Let hµ(T) = hXµ (T). Then

hXµ (T) = lim
d→∞

H
(
PX(d)

)
d

. (2.35)

Proof. Given some k ∈ N for all n ∈ N it holds using (2.12)

lim
d→∞

H(PX(d))

d
= lim

n→∞

H(PX(k + n− 1))

k + n− 1
≥ lim

n→∞

H(PX(k)n)

k + n− 1
= lim

n→∞

H
(
PX(k)n

)
n

.

Therefore, we have

lim
d→∞

H
(
PX(d)

)
d

≥ lim
k→∞

lim
n→∞

H
(
PX(k)n

)
n

= hµ(T) = hXµ (T) = lim
d→∞

H
(
PX(d)

)
d

,

which shows (2.35).

Proof of Theorem 8

In order to show equivalence of (i) and (ii), we consider statement (ii′), which is

equivalent to (ii):

(ii′) For each ε > 0 there exists some dε ∈ N such that for all d ≥ dε there is some

nd ∈ N with

H
(
PX(d+ n− 1)

)
−H

(
PX(d)n

)
< (d+ n− 1)ε for all n ≥ nd.

Proof. (ii) ⇒ (ii′) is obvious. Let us show now (ii′) ⇒ (ii). For ε > 0 there exists

dε ∈ N such that for all d > dε there exists nd > d with

H
(
PX(d+ n− 1)

)
−H

(
PX(d)n

)
< (d+ n− 1)

ε

2
< (n− 1 + n− 1)

ε

2
= (n− 1)ε

for all n ≥ nd.

(i)⇒ (ii′). We are going to prove now that for all ε > 0 there exists some Mε ∈ R,

dε ∈ N such that for all d > dε there exists some nd with

Mε − ε <
H
(
PX(d)n

)
d+ n− 1

≤
H
(
PX(d+ n− 1)

)
d+ n− 1

< Mε for all n > nd, (2.36)

which shows (ii′). Consider some ε > 0 and Mε := hµ(T) + ε/2. By Lemma 19 and

(2.8) there exists some dε ∈ N such that for all d ≥ dε it holds

H
(
PX(d)

)
d

< Mε (2.37)

and

hµ(T)− ε

4
< lim

n→∞

H
(
PX(d)n

)
n

. (2.38)

30

From (2.37) and (2.12) it follows for all d ≥ dε

H
(
PX(d)n

)
d+ n− 1

≤
H
(
PX(d+ n− 1)

)
d+ n− 1

< Mε for all n ∈ N,

which shows the right-hand side of (2.36).

Given d ≥ dε, (2.37) and (2.38) imply existence of some nd ≥ 4Mε(d−1)
ε with

hµ(T)− ε

4
<
H
(
PX(d)n

)
n

=
H
(
PX(d)n

)
d+ n− 1

+
H
(
PX(d)n

)
d+ n− 1

d− 1

n

≤
H
(
PX(d)n

)
d+ n− 1

+Mε
d− 1

n

≤
H
(
PX(d)n

)
d+ n− 1

+
ε

4

for all n ≥ nd. Hence we have

Mε − ε = hµ(T)− ε

2
<
H
(
PX(d)n

)
d+ n− 1

. (2.39)

for all n ≥ nd. Putting (2.37) and (2.39) together we have (2.36) and we are done.

(ii′)⇒ (i). By (ii′) for each ε > 0 there exists some dε ∈ N such that for all d ≥ dε
there is some nd ∈ N with

H
(
PX(d+ n− 1)

)
d+ n− 1

≤
H
(
PX(d)n

)
d+ n− 1

+ ε

for all n ≥ nd. For d ≥ dε this implies

hXµ (T) = lim
n→∞

H
(
PX(d+ n− 1)

)
d+ n− 1

≤ lim
n→∞

H
(
PX(d)n

)
d+ n− 1

+ ε = lim
n→∞

H(PX(d)n)

n
+ ε,

hence by (2.8) we have hXµ (T) ≤ hµ(T) + ε. This provides hXµ (T) ≤ hµ(T) for ε → 0.

Now (i) follows by Lemma 18.

2.6.2 Proof of Proposition 11

Proof. First, we fix some m, d, n ∈ N and we determine

#

{
P ′ ∈ P(d+ 1)n−1 |

2m⋃
i=1

Pi = P where P ′ ⊂ P and P ∈ P(d)n

}
. (2.40)

Then we divide (2.40) by 2m in order to obtain the required amount (2.20) of elements

P ∈ P(d)n that are unions of exactly 2m elements P ′ ∈ P(d + 1)n−1. To count all

Pπ1π2...πn−1 ∈ P(d+ 1)n−1 satisfying (2.40), we consider two cases, namely, π1 /∈ VΠd+1

and π1 ∈ VΠd+1
.

The first case, π1 /∈ VΠd+1
. There are (d + 2)! − 2(d + 1)! = (d + 1)!d different

π1 /∈ VΠd+1
. By Proposition 10 exactly m permutations from π1, π2, . . . , πn−1 are

in VΠd+1
. Given πi, there are 2 possibilities to choose πi+1 ∈ VΠd+1

, because πi

31

determines (d + 1) from (d + 2) entries of πi+1 and πi+1 ∈ VΠd+1
assumes either

πi+1 = (. . . , 0, d + 1, . . .) or πi+1 = (. . . , d + 1, 0, . . .). Therefore there are 2m choices

of the m permutations from VΠd+1
. Given πi, there are d possibilities to choose

πi+1 /∈ VΠd+1
, because πi+1 /∈ VΠd+1

forbids both πi+1 = (. . . , 0, d + 1, . . .) and

πi+1 = (. . . , d + 1, 0, . . .), i.e. there are dn−m−2 choices of n − m − 2 permutations

from Πd+1 \ VΠd+1
. Note that one can place m from n− 2 permutations πi ∈ VΠd+1

in(
n−2
m

)
ways. So for π1 /∈ VΠd+1

there are

(d+ 1)! d 2mdn−m−2 (n− 2)!

m!(n−m− 2)!
= (d+ 1)!dn−m−12m

(
n− 2

m

)
(2.41)

elements Pπ1π2...πn−1 satisfying (2.40).

The second case, π1 ∈ VΠd+1
. It holds #

{
π1 ∈ VΠd+1

| π1 ∈ Πd+1

}
= 2(d + 1)!.

Analogously to the first case, there are 2m−1 choices of m− 1 permutations from VΠd+1

(we do not count π1); and there are dn−m−1 choices of n −m − 1 permutations from

Πd+1 \ VΠd+1
. So, for π1 ∈ Πd+1 the number of elements Pπ1π2...πn−1 satisfying (2.40) is

given by

(d+ 1)! dn−m−1 2m
(
n− 2

m

)
. (2.42)

Summing up (2.41) and (2.42) and dividing it by 2m we are done.

2.6.3 Proof of Theorem 13

Lemma 20. ([UUK13]) Let T be ergodic. Given an interval A ⊂ Ω and d ∈ N \ {1}, let

Ṽd = Ṽd(A) be the set of points ω ∈ A for which at least one of two following conditions

holds:

T l(ω) /∈ {a ∈ A | a < ω} for all l = 1, ..., d− 1, (2.43)

T l(ω) /∈ {a ∈ A | a > ω} for all l = 1, ..., d− 1. (2.44)

Then for all ε > 0 there exists some dε ∈ N such that µ
(
Ṽd

)
< ε for all d > dε.

Proof. Let Ṽ L
d be a set of points ω satisfying (2.43). Then it is sufficient to show

µ
(
Ṽ L
d

)
< ε

2 for the corresponding d since for points satisfying (2.44) the proof is

completely resembling.

Consider a partition {Bi}∞i=1 of A into intervals Bi with the following properties:

(i) µ(Bi) = µ(A)
2i

for all i ∈ N,

(ii) for all i < j, and for all ω1 ∈ Bi, ω2 ∈ Bj it holds ω1 > ω2.

Since µ({ω}) = 0 for all ω ∈ Ω (if µ({ω}) > 0 then µ(Vd) = 0, see Remark 5), such

partition always exists.

Define Di,d =
{
ω ∈ Bi | T l(ω) /∈

⋃∞
j=iBj for all l = 1, ..., d− 1

}
. It holds

d−1⋃
l=1

Di,d ∩ T−l
∞⋃
j=i

Bj

 = ∅. (2.45)

32

For all d ∈ N, (2.45) provides Ṽ L
d ⊆

⋃∞
i=1Di,d and, since Di,d ⊆ Bi, it holds

µ
(
Ṽ L
d

)
≤ µ

(∞⋃
i=1

Di,d

)
=
∞∑
i=1

µ(Di,d) ≤
k∑
i=1

µ(Di,d) +
∞∑

i=k+1

µ(Bi)

≤
k∑
i=1

µ(Di,d) +
∞∑

i=k+1

µ(A)

2i
≤

k∑
i=1

µ(Di,d) +
µ(A)

2k
(2.46)

for all k ∈ N. On the other hand, by the ergodicity of T and by (2.45) we have

µ

(∞⋂
d=1

Di,d

)
µ

∞⋃
j=i

Bj

 = lim
m→∞

1

m

m−1∑
l=1

µ

 ∞⋂
d=1

Di,d ∩ T−l
∞⋃
j=i

Bj

 = 0.

Therefore, µ
(⋃∞

j=iBj

)
> 0 implies µ(

⋂∞
d=1Di,d) = 0 and, since Di,1 ⊇ Di,2 ⊇ . . ., it

holds

lim
d→∞

µ(Di,d) = µ

(∞⋂
d=1

Di,d

)
= 0

for all i ∈ N.

Now let ε > 0. Fix some k ∈ N with k > log2
4
ε and dε with µ(Di,d) <

ε
4k for all

i = 1, 2, . . . , k and d > dε. Then, owing to (2.46), for d > dε it holds

µ(Ṽ L
d) < k

ε

4k
+
ε

4
=
ε

2

completing the proof. 2

Now we are coming to the proof of Theorem 13. Given ε > 0, let r > 3
ε and let

{Ai}ri=1 be a partition of Ω into intervals Ai with µ(Ai) = 1
r . Furthermore, fix some

dε ∈ N with

µ
(
Ai ∩ T−d(Ai)

)
≤ µ2(Ai) +

ε

3r
=

1

r2
+

ε

3r
(2.47)

and

µ
(
Ṽd

)
≤ ε

3r
(2.48)

for all i = 1, 2, . . . , r and all d > dε, which is possible by the strong-mixing of T and by

Lemma 20, respectively.

For ω ∈ Vd ∩Ai it is impossible that both T d(ω) 6∈ Ai and ω 6∈ Ṽd(Ai), implying

Vd =
r⋃
i=1

(Vd ∩Ai) ⊂
r⋃
i=1

((
Ai ∩ T−d(Ai)

)
∪ Ṽd(Ai)

)
=

r⋃
i=1

(
Ai ∩ T−d(Ai)

)
∪

r⋃
i=1

Ṽd(Ai).

From this, (2.47), and (2.48), one obtains

µ(Vd) ≤
r∑
i=1

µ
(
Ai ∩ T−d(Ai)

)
+

r∑
i=1

µ
(
Ṽd(Ai)

)
≤ r

(
1

r2
+

ε

3r

)
+
ε

3
< ε.

33

Remark 5. Note that µ({ω}) > 0 implies that ω is a periodic point, i.e. µ({ω}) = 1.

However, such ω /∈ Vd for all d ∈ N since ω ∈ P(0,1,...,d), i.e. µ(Vd) = 0.

34

Chapter 3

Comparing practical complexity
measures

In this chapter we compare the empirical permutation entropy (ePE) [BP02] with two

widely-used practical measures of complexity, the approximate entropy (ApEn) [Pin91]

and the sample entropy (SampEn) [RM00], in order to point out their advantages and

drawbacks when applying to real-world data.

In Figure 3.1 we present the values of ePE, ApEn, and SampEn computed from the

orbits of the logistic map TLM : [0, 1]←↩, given by TLM(x) = Ax(1− x), in dependence

on the parameter A ∈ [3.5, 4] in comparison with the Lyapunov exponent1 (LE). (The

length of the orbit is 104 and the step between the values of A ∈ [3.5, 4] is 5· 10−4. See

Section 3.2 for description of the parameters for the entropies.)

3.5 3.55 3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A

T
h
e
 v

a
lu

e
s
 o

f
th

e
 e

n
tr

o
p
ie

s
 a

n
d
 t
h
e
 v

a
lu

e
s
 o

f
L
E

ApEn(2,0.2σ,104)

SampEn(2,0.2σ,104)

ePE(7,1,104)

LE

Figure 3.1: The values of approximate entropy (ApEn), sample entropy (SampEn) and
empirical permutation entropy (ePE), computed from the orbits of the logistic map, in
comparison with the values of Lyapunov exponent (LE)

1See Subsection 2.1.2 for the relationship between the KS entropy and the Lyapunov exponent.

35

One can see that the entropies behave very similar to the values of LE (though the

ePE values are constantly higher than the LE values). This motivates us to study the

entropies in more details, especially for real-world data.

The rest of the chapter is organized as follows. We consider theoretical underpinnings

for ApEn and SampEn in Section 3.1. We define the entropies and discuss their

parameters in Section 3.2. Further in Section 3.3 we investigate practical properties of the

complexity measures, namely, robustness to monotone transformations (Subsection 3.3.2),

sensitivity to the length of a time series (Subsection 3.3.3), ability to correctly estimate

high complexity of a time series (Subsection 3.3.4), robustness with respect to noise

(Subsection 3.3.5), in particular, we introduce a modified ePE which is more robust than

ePE with respect to noise or abnormal deviations (Subsection 3.3.6), and computational

and storage requirements (Subsection 3.3.7). We summarize the results of comparison

of the entropies and provide some hints for their application to real-world data in

Section 3.4.

3.1 Theoretical underpinnings of approximate and sample
entropy

In this section we study the theoretical underpinnings of the approximate entropy and

the sample entropy. It is important to understand what they actually measure from a

time series. Both entropies are stemming from the concepts of Rényi [Rén61, Rén70],

Grassberger and Procaccia [GP83b, GP83a], Takens [Tak81] and Eckmann and Ruelle

[ER85]. We show here that the approximate entropy is an estimate of the Eckmann-

Ruelle entropy, proposed in [ER85] on the basis of the ideas from [GP83a, GP83b]

for estimating the Kolmogorov-Sinai entropy, and the sample entropy is an estimate

of the H2(T)-entropy, introduced, according to [BT11], in [Tak81]. Then we show

the relationship between the Eckmann-Ruelle entropy, the H2(T)-entropy and the

Kolmogorov-Sinai (KS) entropy (see Section 2.1 for more details about the KS entropy).

In Subsection 3.1.1 we recall the definitions of the correlation integral, which is the

basic notion of this section, the correlation entropy [TV98], which we need for some

proofs, and the H2(T)-entropy. In Subsection 3.1.2 we describe relationship between

the H2(T)-entropy, the correlation entropy and the KS entropy. Then we consider the

Eckmann-Ruelle entropy and its relationship to the KS entropy in Subsection 3.1.3.

Subsection 3.1.4 is devoted to the estimation of H2(T)-entropy from a finite time series.

3.1.1 Correlation entropy and H2(T)-entropy

The correlation integral was originally defined in [GP83a]. Given a state space Ω, one

can interpret the correlation integral as the mean probability of two points ω, ω′ ∈ Ω

being closer than a distance r.

36

Definition 12. Let (Ω, ρ) be a metric space with a Borel probability measure µ. Then

the correlation integral is given by

C(r) = (µ× µ)
{

(ω, ω′) ∈ Ω× Ω | ρ(ω, ω′) < r
}
. (3.1)

This definition is equivalent to the following

C(r) =

∫
Ω
µ(B(ω, r))dµ(ω) with

B(ω, r) =
{
ω′ ∈ Ω | ρ(ω, ω′) < r

}
.

Indeed, by Fubini’s theorem [Cho00], it holds∫
Ω×Ω

1δr(ω, ω′)d(µ× µ) =

∫
Ω

(∫
Ω

1δr(ω, ω′)dµ(ω′)

)
dµ(ω) =

∫
Ω
µ(B(ω, r))dµ(ω),

with 1δr =

{
1, ρ(ω, ω′) < r,

0, otherwise.

Further, we follow [BT11] when considering the concepts of the H2(T)-entropy and

the correlation entropy. In order to introduce these entropies, we consider a dynamics

T on the space (Ω, ρ). On the basis of the dynamics T one defines a metric ρk, the ball

Bk(ω, r) with a radius r around ω ∈ Ω with respect to ρk, and the correlation integral

C(k, r) over the balls Bk(ω, r) in Ω:

ρk
(
ω, ω′

)
= max

i=0,1,...,k−1
ρ
(
T i(ω), T i(ω′)

)
, (3.2)

Bk(ω, r) =
{
ω′ ∈ Ω | ρk(ω, ω′) < r

}
,

C(k, r) =

∫
Ω
µ(Bk(ω, r))dµ(ω).

Definition 13. Given a dynamical system (Ω,B(Ω), µ, T) on the compact metric space

(Ω, ρ), a Borel probability measure µ and a continuous map T : Ω←↩, the H2(T)-entropy

and the correlation entropy CE(T, 1) are defined by

H2(T) = lim
r→0

lim
k→∞

−1

k
ln

∫
Ω
µ(Bk(ω, r))dµ(ω), (3.3)

CE(T, 1) = lim
r→0

lim
k→∞

−1

k

∫
Ω

lnµ(Bk(ω, r))dµ(ω). (3.4)

Note that the limit r → 0 in (3.4) exists due to the monotonicity properties of

− 1
k

∫
Ω lnµ(Bk(ω, r))dµ(ω), see [Ver00, Lemma 2.1] for details. The limit k → ∞ in

(3.4) exists by Lemma 2.14 from [Ver00].

Remark 6. The H2(T)-entropy and correlation entropy CE(T, 1) are related to the

Rényi entropies, introduced in [Rén61, Rén70]. According to [TV02], there were attempts

in [HP83, GP84, ER85] to generalize the Rényi entropies of order q for the dynamical

systems since the Rényi entropies were successfully applied in information theory.

37

However, in [TV98] it was shown that “the Rényi entropies of order q, q ∈ R, are

equal to either plus infinity (q < 1), or to the measure-theoretic (Kolmogorov-Sinai)

entropy (q ≥ 1)” [TV02]. Then, inspired by [ER85, GP84, Tak81], where the Rényi

approach was used, Takens and Verbitskiy introduced in [TV98] the correlation entropy

CE(T, q) of order q (we consider in Definition 13 only the case q = 1), and very similar

H2(T)-entropy has been introduced, according to [BT11], in [Tak81]. We refer also to

Verbitskiy’s dissertation [Ver00] for an interesting study of properties of the correlation

entropies CE(T, q).

3.1.2 Relationship between H2(T)-entropy, correlation entropy and
KS entropy

In this subsection, on the basis of the ideas and results from [TV98, Ver00, BT11],

in Theorem 22 we show the relationship between the H2(T)-entropy, the correlation

entropy and the KS entropy. In order to prove Theorem 22 we recall the Brin-Katok

theorem.

Theorem 21 (Brin-Katok theorem [BK83]). Given a dynamical system (Ω,B(Ω), µ, T)

on a compact metric space (Ω, ρ) with a continuous map T : Ω ←↩ preserving a non-

atomic2 Borel probability measure µ. Then it holds:∫
Ω

lim
r→0

lim
k→∞

−1

k
lnµ(Bk(ω, r))dµ(ω) =

∫
Ω

lim
r→0

lim
k→∞

−1

k
lnµ(Bk(ω, r))dµ(ω) = hµ(T).

(3.5)

Theorem 22. Under the conditions of Theorem 21 it holds

H2(T) ≤ CE(T, 1) = hµ(T). (3.6)

Proof. First H2(T) ≤ CE(T, 1) is provided by Jensen’s inequality:

CE(T, 1) = lim
r→0

lim
k→∞

−1

k

∫
Ω

lnµ(Bk(ω, r))dµ(ω)

≥
Jensen’s inequality

lim
r→0

lim
k→∞

−1

k
ln

∫
Ω
µ(Bk(ω, r)dµ(ω) = H2(T).

Now CE(T, 1) = hµ(T) is shown, using the Fatou Lemma twice and the Brin-Katok

formula (3.5):

lim
r→0

lim
k→∞

∫
Ω
−1

k
lnµ(Bk(ω, r))dµ(ω) ≤ hµ(T) ≤ lim

r→0
lim
k→∞

∫
Ω
−1

k
lnµ(Bk(ω, r))dµ(ω).

Therefore the following limit exists and is equal to the Kolmogorov-Sinai entropy:

CE(T, 1) = lim
r→0

lim
k→∞

∫
Ω
−1

k
lnµ(Bk(ω, r))dµ(ω) = hµ(T).

2A measure µ is called non-atomic if for any measurable set A with µ(A) > 0 there exists a measurable
set B ⊂ A such that µ(A) > µ(B) > 0

38

3.1.3 Eckmann-Ruelle’s approximation of KS entropy

In this subsection we show the relationship between the Eckmann-Ruelle entropy and

the KS entropy in order to explain where the approximate entropy is stemming from.

Theorem 23. Under the conditions of Theorem 21 for an ergodic T , if for all r ∈ R+

the limit

lim
k→∞

lim
n→∞

1

n

n−1∑
j=0

lnµ
(
Bk(T

j(ω), r)
)
−
n−1∑
j=0

lnµ
(
Bk+1(T j(ω), r)

) (3.7)

exists then it holds

hµ(T) = lim
r→0

lim
k→∞

lim
n→∞

1

n

n−1∑
j=0

lnµ
(
Bk(T

j(ω), r)
)
−
n−1∑
j=0

lnµ
(
Bk+1(T j(ω), r)

). (3.8)

Proof. First, we use Theorem 22 to represent the KS entropy in following way:

hµ(T) = CE(T, 1) = lim
r→0

lim
k→∞

−1

k

∫
Ω

lnµ(Bk(ω, r))dµ(ω)

for a.a. ω ∈ Ω by Birkhoff’s Ergodic Theorem

= lim
r→0

lim
k→∞

−1

k
lim
n→∞

1

n

n−1∑
j=0

lnµ
(
Bk(T

j(ω), r)
)
.

Since the limit (3.7) exists, we obtain

lim
r→0

lim
k→∞

lim
n→∞

1

n

n−1∑
j=0

lnµ
(
Bk(T

j(ω), r)
)
−
n−1∑
j=0

lnµ
(
Bk+1(T j(ω), r)

)
= lim

r→0
lim
k→∞

 lim
n→∞

1

n

n−1∑
j=0

lnµ
(
Bk(T

j(ω), r)
)
− lim
n→∞

1

n

n−1∑
j=0

lnµ
(
Bk+1(T j(ω), r)

)
=

by Cesaro’s summation [Har91]
lim
r→0

lim
k→∞

−1

k
lim
n→∞

1

n

n−1∑
j=0

lnµ
(
Bk(T

j(ω), r)
)

= hµ(T),

which finishes the proof.

(Note, that in general it is not known whether limit (3.7) exists.)

Now recall that we observe (xt)
N
t=1 with xt = X

(
T t(ω)

)
via an observable

X : Ω → R from a dynamical system (see Subsection 1.1). Then, for an ergodic

T a term Ĉ
(
i, k, r, (xt)

N
t=1

)
is a natural estimate of µ

(
Bk
(
T i(ω), r

))
:

Ĉ
(
i, k, r, (xt)

N
t=1

)
=

#

{
1 ≤ j ≤ N − k + 1 : max

l=0,1,...,k−1
|xi+l − xj+l| ≤ r

}
N − k + 1

, (3.9)

see the following remark.

39

Remark 7. Further we come from the metric defined on the state space Ω by (3.2)

to the maximum norm max
l=0,1,...,k−1

|xi+l − xj+l| defined for the reconstruction vectors

(xi, xi+1, . . . , xi+k−1). This is possible by Takens’ theorem which says that for any

metric ρ on Ω, the orbit ω, T (ω), . . . and the sequence of reconstruction vectors

(xi, xi+1, . . . , xi+k−1) are metrically equivalent (up to bounded distortion, see [BT11,

Chapter 6] for more details).

Then the entropy proposed by Eckmann and Ruelle for a time series in [ER85] is

given by:

ĤER = lim
r→0

lim
k→∞

lim
N→∞

(
Φ
(
k, r, (xt)

N
t=1

)
− Φ

(
k + 1, r, (xt)

N
t=1

))
, (3.10)

where Φ
(
k, r, (xt)

N
t=1

)
=

1

N − k + 1

N−k+1∑
i=1

ln
(
Ĉ
(
i, k, r, (xt)

N
t=1

))
.

Now when comparing (3.10) with the representation of the KS entropy (3.8), one can

see that the Eckmann-Ruelle entropy can be considered as an approximation of the KS

entropy under the conditions of Theorem 23.

The approximate entropy, introduced in [Pin91] with the aim of measuring the

complexity of a system by the observed time series, is, in fact, the estimate of the

Eckmann-Ruelle entropy for finite k,N ∈ N and r ∈ R (compare (3.10)):

ApEn
(
k, r, (xt)

N
t=1

)
= Φ

(
k, r, (xt)

N
t=1

)
− Φ

(
k + 1, r, (xt)

N
t=1

)
, (3.11)

see Section 3.2 for further details regarding the approximate entropy.

3.1.4 Estimation of the H2(T)-entropy

In this subsection we consider estimation of the H2(T)-entropy and its relationship to

the sample entropy on the basis of estimation of the correlation integral. An estimation

of the correlation integral C(k, r) is possible under certain generic conditions of Takens’

reconstruction theorem (see [Tak81, BT11] for details).

Applying Birkhoff’s ergodic theorem (see Subsection 1.2.1) twice we obtain:

C(k, r) =

∫
Ω
µ(Bk(ω, r))dµ(ω) =

for a.a. ω1∈Ω
lim
n→∞

1

n

n−1∑
j=0

µ
(
Bk(T

j(ω1), r)
)

=
for a.a. ω2∈Ω

lim
n→∞

1

n2

n−1∑
i=0

n−1∑
j=0

1δr,k
(
T i(ω1), T j(ω2)

)
,

with 1δr,k
(
T i(ω1), T j(ω2)

)
=

{
1, ρk

(
T i(ω1), T j(ω2)

)
< r,

0, otherwise.

40

Then an estimate of the correlation integral of Ω from a time series

(xi)i∈N =
(
X
(
T i(ω)

))
i∈N is given by [GP83b, BT11], see also Remark 7:

Ĉ
(
k, r, (xt)

N
t=1

)
=

2#

{
(i, j) : 1 ≤ i < j ≤ N − k + 1, max

l=0,1,...,k−1
|xi+l − xj+l| ≤ r

}
(N − k − 1)(N − k)

.

(3.12)

We refer to [BT11, Bor98] for further discussion and review of estimators of the correla-

tion integral.

It was shown in [DK86] that for almost all ω ∈ Ω for (xt)t∈N =
(
X
(
T t(ω)

))
t∈N it

holds

lim
N→∞

Ĉ
(
k, r, (xt)

N
t=1

)
= C(k, r).

Note that there are some limitations in the estimation of the correlation integral, which

are related to the choice of the parameters r and k (see [Rue90, BT11]). For example, it

is shown in [Rue90] that in order to obtain reliable estimates of the correlation integral

one needs to take very long time series with a very small noise.

According to [BT11] the following estimate of H2(T)-entropy was proposed in

[Tak81], and then applied in [GP83b, GP83a]:

Ĥ2

(
k, r, (xt)

N
t=1

)
= ln

Ĉ
(
k, r, (xt)

N
t=1

)
Ĉ
(
k + 1, r, (xt)Nt=1

) . (3.13)

The sample entropy, introduced in [RM00] with the aim of improving the approximate

entropy, is, in fact, an estimate of H2(T)-entropy given by (3.13):

SampEn
(
k, r, (xt)

N
t=1

)
= Ĥ2

(
k, r, (xt)

N
t=1

)
= ln

Ĉ
(
k, r, (xt)

N
t=1

)
Ĉ
(
k + 1, r, (xt)Nt=1

) .
We consider the sample entropy in more details in Section 3.2.

3.2 Definitions of the entropies

3.2.1 Approximate entropy and sample entropy

In this subsection we recall the definitions of the approximate entropy (ApEn) and the

sample entropy (SampEn) from [Pin91, RM00] and discuss their properties.

Definition 14. Given a time series (xt)
N
t=1, a length k ∈ N of vectors to be compared

and a tolerance r ∈ R for accepting similar vectors, the approximate entropy is defined as

ApEn
(
k, r, (xt)

N
t=1

)
=

N−k+1∑
i=1

ln Ĉ(i, k, r, (xt)
N
t=1)

N − k + 1
−

N−k∑
i=1

ln Ĉ
(
i, k + 1, r, (xt)

N
t=1

)
N − k

,

(3.14)

where Ĉ(i, k, r, (xt)
N
t=1) is given by (3.9).

41

Definition 15. Given a time series (xt)
N
t=1, a length k ∈ N of vectors to be compared

and a tolerance r ∈ R for accepting similar vectors, the sample entropy is defined as

SampEn
(
k, r, (xt)

N
t=1

)
= ln Ĉ

(
k, r, (xt)

N
t=1

)
− ln Ĉ

(
k + 1, r, (xt)

N
t=1

)
, (3.15)

where Ĉ
(
k, r, (xt)

N
t=1

)
is given by (3.12).

Further we use short forms ApEn(k, r,N) and SampEn(k, r,N) instead of

ApEn
(
k, r, (xt)

N
t=1

)
and SampEn

(
k, r, (xt)

N
t=1

)
when no confusion arises. Note that

SampEn(k, r,N) is undefined when either Ĉ(k, r,N) = 0 or Ĉ(k + 1, r,N) = 0.

When computing ApEn by (3.14) one counts each vector as matching itself, because

max
l=0,1,...,k−1

|xi+l − xi+l| = 0 ≤ r,

which introduces some bias in the result [RM00]. When computing SampEn one does

not count self-matches due to i < j in (3.15) which is more natural [RM00].

For application of both entropies the tolerance r is recommended to set to

r ∈ [0.1σ, 0.25σ], where σ is the standard deviation (SD) of a time series, the length of

vectors to be compared is recommended to set to k = 2 [Pin91, Pin95, RM00].

In order to compare the complexities of two time series one has to fix k, r and N

due to the significant variation of the values of ApEn(k, r,N) and SampEn(k, r,N) for

different parameters [Pin95, RM00]. Apart from the aforementioned recommendations,

there is no guidelines to specify k and r [HAEG09].

Applications

Approximate entropy and sample entropy have been applied in several cardiovascular

studies [LRGM02, GGK12] (see for a review [AJK+06]), for quantifying the effect

of anesthesia drugs on the brain activity [BRH00, BRR+00, JSK+08], for analysis

of EEG data from patients with Alzheimer’s disease [AHE+06], for separating sleep

stages [AFK+05, BMC+05], for epileptic EEG analysis and epileptic seizures detection

[KCAS05, LOR07, Oca09, JB12] and in other fields (see [RM00, CZYW09, YHS+13]

for a review of applications). Costa, Goldberger et al. proposed also a multiscale variant

of sample entropy in [CGP05].

3.2.2 Empirical permutation entropy

In this subsection the empirical permutation entropy (ePE) is defined and its properties

are discussed.

First, we recall the definition of ordinal patterns which we need to introduce the

empirical permutation entropy. Originally, ordinal patterns of order d were defined as

permutations of the set {0, 1, . . . , d} (see Definition 6, p. 13), but we use the following

equivalent definition which provides simpler enumeration of ordinal patterns (see details

in [KSE07]).

42

Definition 16. A delay vector (xt, xt−τ , . . . , xt−dτ) is said to have an ordinal pattern

(iτ1(t), iτ2(t), . . . , iτd(t)) of order d ∈ N and delay τ ∈ N, where for l = 1, 2, . . . , d

iτl (t) = #{r ∈ {0, 1, . . . , l − 1} | xt−lτ ≥ xt−rτ}. (3.16)

Simply speaking, each iτl (t) codes how many points from (xt, xt−τ , . . . , xt−(l−1)τ) are

not larger than xt−lτ . Note that in Definition 6 the distance τ ∈ N between the values

in ordinal patterns is fixed to τ = 1, so Definition 16 is more flexible for application to

real-world data.

There are (d + 1)! ordinal patterns of order d, and one assigns to each of them a

number from {0, 1, . . . , (d+ 1)!− 1} in a one-to-one way by [KSE07]

nτd(t) = nτd((iτ1(t), iτ2(t), . . . , iτd(t))) =
d∑
l=1

iτl (t)
(d+ 1)!

(l + 1)!
. (3.17)

Definition 17. By the empirical permutation entropy (ePE) of order d ∈ N and of

delay τ ∈ N of a time series (xt)
N
t=1 with N ∈ N one understands the quantity

ePE
(
d, τ, (xt)

N
t=1

)
= −1

d

(d+1)!−1∑
j=0

pj ln pj , where

pj =
#{i = dτ + 1, dτ + 2, . . . , N | nτd(i) = j}

N − dτ
(with 0 ln 0 := 0).

Further we use a short form ePE(d, τ,N) instead of ePE
(
d, τ, (xt)

N
t=1

)
when no confusion

arises.

Empirical permutation entropy, originally introduced in [BP02] as a natural complex-

ity measure for time series, is an estimate of the permutation entropy (see Chapter 2).

Indeed, given an ergodic dynamical system (Ω,B(Ω), µ, T), the empirical permuta-

tion entropy is computed from the distribution of ordinal patterns in the time series

(xi)i∈N0 =
(
X
(
T i(ω)

))
i∈N0

.

The higher the diversity of ordinal patterns of order d in a time series (xt)
N
t=1 is, the

larger the value of ePE
(
d, τ, (xt)

N
t=1

)
is. It holds for d,N, τ ∈ N that

0 ≤ ePE(d, τ,N) ≤ ln((d+ 1)!)

d
, (3.18)

which is restrictive for estimation of a large complexity as we show in Example 15 in

Subsection 3.3.4 for EEG data. The choice of order d is rather simple. The larger d

is, the better the estimate of complexity by the empirical permutation entropy is. On

the other hand, too high d leads to an underestimation of the complexity of a system

because due to the bounded length of a time series not all ordinal patters representing

the system can occur. In [AZS08],

5(d+ 1)! < N (3.19)

43

is recommended. The choice of the delay τ is a bit complicated; in many applications

τ = 1 is used, however larger delays τ can provide additional information as we illustrate

in Subsection 5.1.2 for EEG data (see also [RMW13] for the discussion of the choice

of τ). Note also that an increase of a delay τ can lead to an increase of the values of

ePE(d, τ,N), i.e. when increasing the delay τ one should mind the bound (3.18) (see

Example 21 for EEG data in Subsection 5.1.2). We provide some hints for the choice of

the delay τ for EEG analysis in Chapter 5.

Let us consider an example to give some insight into the meaning of a delay τ .

Example 12. In Figure 3.2 we present the values of ePE(7, τ, 106) computed from the

orbit of the logistic map TLM(x) = Ax(1− x) for τ = 1, 2, 4 and A ∈ [3.5, 4]. (Length of

the orbit is 106, step between the values of A is 5 · 10−4.)

3.5 3.55 3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

A

ePE(7,1,106)

ePE(7,2,106)

ePE(7,4,106)

LE

Figure 3.2: The values of empirical permutation entropy ePE
(
7, τ, 106

)
computed from

the orbit of the logistic map for τ = 1, 2, 4

By Theorem 7, the KS entropy hµ(TLM) and the permutation entropy hXµ (TLM) for

X = id coincide as well as the KS entropy hµ(T τLM) and the permutation entropy hXµ (T τLM)

for X = id coincide. Hence, by the entropy properties (see [Cho00, Theorem 8.8]) it

holds

hXµ (T τLM) = hµ(T τLM) = τhµ(TLM) = τhXµ (TLM). (3.20)

Then, since TLM is an ergodic transformation, ePE
(
d, τ, (xt)

N
t=1

)
for τ = 1 is an

estimate of the permutation entropy hXµ (TLM) for X = id. For τ > 1, hXµ (T τLM) can be

44

estimated not only from one orbit but from τ different orbits:

x, T τLM(x), T 2τ
LM(x), . . . , T dτLM(x), . . .

TLM(x), T τ+1
LM (x), T 2τ+1

LM (x), . . . , T dτ+1
LM (x), . . .

. . .

T τ−1
LM (x), T τ+τ−1

LM (x), T 2τ+τ−1
LM (x), . . . , T dτ+τ−1

LM (x),

However, due to ergodicity, one still can say that ePE
(
d, τ, (xt)

N
t=1

)
for τ > 1 is an

estimate of the permutation entropy hXµ (T τLM) for X = id. Then empirical permutation

entropy should increase proportionally to τ due to (3.20). In Figure 3.2 one can see this.

Empirical permutation entropy has been applied for detecting and visualizing EEG

changes related to epileptic seizures (e.g., [CTG+04, KL03, LOR07, ODRL10, LYLO14,

KUU14]), for distinguishing brain states related to anesthesia [OSD08, LLL+10], for dis-

criminating sleep stages in EEG data [NG11, KUU14], for analyzing and classifying heart

rate variability data [FPSH06, BQMS12, PBL+12, GGK12], and for financial, physical

and statistical time series analysis (see [Ami10, AK13] for a review of applications).

3.3 Comparing the practical properties of the entropies

In this section we compare the practical properties of the approximate entropy (ApEn),

the sample entropy (SampEn) and the empirical permutation entropy (ePE). We

illustrate the properties with the examples from chaotic maps, because chaotic maps

are widely used for modeling real-world data.

Subsection 3.3.1 contains a description of the considered chaotic maps. Then in

Subsection 3.3.2 it is shown that ePE is more robust to strictly monotone transformations

of time series than ApEn and SampEn. In Subsection 3.3.3 we show experimentally

that ePE seems to be less sensitive than ApEn and SampEn to the length of time series.

Subsection 3.3.4 is intended to show that ApEn and SampEn are more appropriate

than ePE to apply when complexity of a time series is high. Subsection 3.3.5 is devoted

to a discussion of robustness with respect to noise of ePE, ApEn and SampEn. In

Subsection 3.3.6 we introduce a modification of ePE which is more robust than ePE with

respect to noise in some cases. Finally, we show that ePE is computed from a time series

considerably faster than ApEn and SampEn in Subsection 3.3.7. In all experiments in

this section we use MATLAB scripts from [Lee14a, Lee14b, Una14] when computing

the values of ApEn, SampEn and ePE, correspondingly.

3.3.1 Preliminaries

The following chaotic maps are chosen (for illustration when comparing the entropies)

due to their complex behavior in dependence on the parameter and due to the known

45

values of the KS entropy or the Lyapunov exponent (LE), see Subsection 2.1.2 for the

relation between the KS entropy and the LE.

We consider the logistic map TLM : [0, 1]←↩ given by

TLM(x) = Ax(1− x) (3.21)

with A ∈ [3.5, 4]. The Lyapunov exponent of TLM is estimated numerically by [Spr03]:

λLM = lim
N→∞

1

N

N∑
i=1

ln
∣∣A(1− 2T iLM(x)

)∣∣.
The tent map TTM : [0, 1] ←↩ and the skewed (asymmetric) tent map TSTM : [0, 1] ←↩
are given by

TTM(x) = Amin{x, 1− x},

TSTM(x) =

{
x
A for x ∈ [0, A),
(1−x)
(1−A) for x ∈ [A, 1]

for A ∈ (1, 2] and A ∈ (0, 1), respectively. The values of KS entropy for TTM and TSTM

are given by

hµ(TTM) = lnA,

hµ(TTM) = −A lnA− (1−A) ln(1−A),

correspondingly [YMS83, LPS93].

3.3.2 Robustness with respect to strictly monotone transformations

In this subsection we illustrate that ePE is more robust with respect to strictly monotone

transformations than ApEn and SampEn.

Ordinal patterns are invariant with respect to strictly monotone increasing trans-

formations, because such transformations do not change order relations between the

values of a time series [Pom98, BP02]. Strictly monotone decreasing transformations

“invert” ordinal patterns that correspond to the vectors without equal entries. Therefore,

for a time series with a low frequency of occurrence of equal values, one can say that

ePE is almost invariant with respect to strictly monotone transformations. (Note that

modified ePE defined in Section 4.4 for ordinal patterns with tied ranks is invariant to

strictly monotone transformations.) ApEn and SampEn are only relatively robust with

respect to strictly monotone transformations, because they strongly depend on metric

information due to the tolerance r (see Definitions 14, 15), see the following example

for an illustration.

46

Example 13. In Figure 3.3 we present the values of ApEn, SampEn and ePE computed

from the orbits of TSTM and from the same orbits distorted by f(x) = tanh(10x− 5).

(The length of the orbit is 104, the step between the values of A ∈ [0, 1] is 7 · 10−3.) The

values of the KS entropy of TSTM are presented for comparison.

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

A

T
h
e
 v

a
lu

e
s
 o

f
A

p
E

n
(2

,0
.2

σ
,1

0
4
)

ApEn from x

ApEn from f(x)

KS entropy

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

A

T
h
e
 v

a
lu

e
s
 o

f
S

a
m

p
E

n
(2

,0
.2

σ
,1

0
4
)

SampEn from x

SampEn from f(x)

KS entropy

0 0.2 0.4 0.6 0.8 1
−0.2

0

0.2

0.4

0.6

0.8

A

T
h

e
 v

a
lu

e
s
 o

f
e
P

E
(5

,1
,1

0
4
)

ePE from x

ePE from f(x)

KS entropy

0 0.2 0.4 0.6 0.8 1
−1

−0.5

0

0.5

1

x

T
h
e
 v

a
lu

e
s
 o

f
f(

x
)=

ta
n
h
(1

0
x
−

5
)

Figure 3.3: The values of approximate entropy (ApEn), sample entropy (SampEn) and
empirical permutation entropy (ePE) computed from the orbits of the skewed tent map
and from the same orbits distorted by the transformation f(x) = tanh(10x− 5)

One can see that the values of ePE are the same when computed from the distorted

and from the original orbits of TSTM, whereas the values of ApEn and SampEn change

significantly. The distortions of ApEn and SampEn are caused by the alterations of

distances between the values of a time series, whereas counting distances between the

values of a time series is an important step in computing the values of ApEn and

SampEn (see Definitions 14 and 15).

Robustness with respect to strictly monotone transformations (for a time series with

low frequency of occurrence of equal values) is an important feature of ePE, because

such transformations can be caused by changing the equipment when acquiring time

series [BP02].

Note that in [HPC+05] it was proposed to use ranking preprocessing before com-

puting ApEn and SampEn to make them invariant with respect to strictly monotone

47

transformations. However, it requires additional computational costs and study of the

consequences of such preprocessing. Meanwhile, ePE has ranking as an intrinsic step of

its algorithm, which is, of course, advantageous computationally.

3.3.3 Dependence on the length of a time series

In this subsection, we illustrate on the basis of the performed experiments, that ePE

seems to be less sensitive to the length of a time series than ApEn and SampEn. Despite

of the fact that ApEn and SampEn are often mentioned as appropriate for measuring

complexity of short (N > 100) time series [Pin91, Pin95, RM00], we show in Example 14

that the values of ePE are less dependent than the values of ApEn and SampEn on

the length of a time series for N = 100, 200, 500. However we do not have any strict

theoretical explanation for this.

We introduce the following coefficients to assess how much the values of the entropies

are changed with the length increasing from N to L > N :

αAE(k, r,N, L) =

∣∣∣∣1− ApEn(k, r,N)

ApEn(k, r, L)

∣∣∣∣
αSE(k, r,N, L) =

∣∣∣∣1− SampEn(k, r,N)

SampEn(k, r, L)

∣∣∣∣
αPE(d, τ,N, L) =

∣∣∣∣1− ePE(k, r,N)

ePE(k, r, L)

∣∣∣∣.
The larger the coefficient αAE(k, r,N, L) for N < L is, the more sensitive to the length

N of a time series the values of ApEn(k, r,N) are (the same holds for SampEn with

the coefficient αSE and for ePE with the coefficient αPE).

Example 14. In Figure 3.4 we present the values of the coefficients αAE(k, r,N, L),

αSE(k, r,N, L), αPE(d, τ,N, L) for the entropies computed from the orbits of TTM for the

lengths N = 100, 200, 500 and L = 5000. One can see that the values of αPE(d, τ,N, L)

are considerably smaller than the values of αAE(k, r,N, L) and αSE(k, r,N, L) for

N = 100, 200, 500. This illustrates that ePE is less sensible than ApEn and SampEn to

the length of a time series.

In Figure 3.5 we present the values of the coefficients αAE(k, r,N, L), αSE(k, r,N, L),

αPE(d, τ,N, L) for the entropies computed from the orbits of TSTM for the lengths

N = 100, 200, 500 and L = 5000. One can see that the values of αPE(d, τ,N, L) are a

bit smaller than the values of αAE(k, r,N, L) and αSE(k, r,N, L).

In Figure 3.6 we present the values of the coefficients αAE(k, r,N, L), αSE(k, r,N, L),

αPE(d, τ,N, L) for the entropies computed from the orbits of TLM for the lengths

N = 100, 200, 500 and L = 5000. One can see that the values of αPE(d, τ,N, L) are

considerably smaller than the values of αAE(k, r,N, L) and αSE(k, r,N, L). This again

illustrates that ePE is less sensible than ApEn and SampEn to the length of a time series.

Note that the discontinuities in Figure 3.6 in the plot for SampEn(k, r,N) are caused by

48

1.2 1.4 1.6 1.8
0

0.5

A
α

A
E
(2

,0
.2

σ
,1

0
0
,L

)
1.2 1.4 1.6 1.8

0

0.5

A

α
S

E
(2

,0
.2

σ
,1

0
0
,L

)

1.2 1.4 1.6 1.8
0

0.5

A

α
P

E
(5

,1
,1

0
0
,L

)

1.2 1.4 1.6 1.8
0

0.2

0.4

A

α
A

E
(2

,0
.2

σ
,2

0
0
,L

)

1.2 1.4 1.6 1.8
0

0.2

0.4

A

α
S

E
(2

,0
.2

σ
,
2
0
0
,L

)

1.2 1.4 1.6 1.8
0

0.2

0.4

A

α
P

E
(5

,1
,2

0
0
,L

)

1.2 1.4 1.6 1.8
0

0.05

0.1

A

α
A

E
(2

,0
.2

σ
,5

0
0
,L

)

1.2 1.4 1.6 1.8
0

0.05

0.1

A

α
S

E
(2

,0
.2

σ
,5

0
0
,L

)

1.2 1.4 1.6 1.8
0

0.05

0.1

A

α
P

E
(5

,1
,5

0
0
,L

)

Figure 3.4: Sensitivities αAE(k, r,N, L) of the approximate entropy, αSE(k, r,N, L) of
the sample entropy and αPE(k, r,N, L) of the empirical permutation entropy, computed
from the orbits of the tent map for N = 100, 200, 500 and L = 5000

0 0.5 1
0

0.5

1

A

α
A

E
(2

,0
.2

σ
,1

0
0
,L

)

0 0.5 1
0

0.5

1

A

α
S

E
(2

,0
.2

σ
,1

0
0
,L

)

0 0.5 1
0

0.5

1

A

α
P

E
(5

,1
,1

0
0
,L

)

0 0.5 1
0

0.5

A

α
A

E
(2

,0
.2

σ
,2

0
0
,L

)

0 0.5 1
0

0.5

A

α
S

E
(2

,0
.2

σ
,
2
0
0
,L

)

0 0.5 1
0

0.5

A

α
P

E
(5

,1
,2

0
0
,L

)

0 0.5 1
0

0.5

A

α
A

E
(2

,0
.2

σ
,5

0
0
,L

)

0 0.5 1
0

0.5

A

α
S

E
(2

,0
.2

σ
,5

0
0
,L

)

0 0.5 1
0

0.5

A

α
P

E
(5

,1
,5

0
0
,L

)

Figure 3.5: Sensitivities αAE(k, r,N, L) of the approximate entropy, αSE(k, r,N, L) of
the sample entropy and αPE(k, r,N, L) of the empirical permutation entropy, computed
from the orbits of the skewed tent map for N = 100, 200, 500 and L = 5000

the undefined values of SampEn(k, r,N) for either Ĉ(k, r,N) = 0 or Ĉ(k + 1, r,N) = 0.

49

3.6 3.8 4
0

0.5

A
α

A
E
(2

,0
.2

σ
,1

0
0
,L

)
3.6 3.8 4

0

0.5

A

α
S

E
(2

,0
.2

σ
,1

0
0
,L

)

3.6 3.8 4
0

0.5

A

α
P

E
(5

,1
,1

0
0
,L

)

3.6 3.8 4
0

0.1

0.2

A

α
A

E
(2

,0
.2

σ
,2

0
0
,L

)

3.6 3.8 4
0

0.1

0.2

A

α
S

E
(2

,0
.2

σ
,
2
0
0
,L

)

3.6 3.8 4
0

0.1

0.2

A

α
P

E
(5

,1
,2

0
0
,L

)

3.6 3.8 4
0

0.05

0.1

A

α
A

E
(2

,0
.2

σ
,5

0
0
,L

)

3.6 3.8 4
0

0.05

0.1

A

α
S

E
(2

,0
.2

σ
,5

0
0
,L

)

3.6 3.8 4
0

0.05

0.1

A

α
P

E
(5

,1
,5

0
0
,L

)

Figure 3.6: Sensitivities αAE(k, r,N, L) of the approximate entropy, αSE(k, r,N, L) of
the sample entropy and αPE(k, r,N, L) of the empirical permutation entropy, computed
from the orbits of the logistic map for N = 100, 200, 500 and L = 5000

3.3.4 Estimation of large complexity

In this subsection we illustrate that ApEn and SampEn allow to estimate correctly

larger range of complexities than ePE, because ePE has a low upper bound. Indeed, it

holds for all k,N ∈ N and r ∈ R [RM00]:

0 ≤ ApEn(k, r,N) ≤ ln(N − k),

0 ≤ SampEn(k, r,N) ≤ ln(N − k) + ln

(
N − k − 1

2

)
,

whereas it holds for all d, τ,N ∈ N

ePE(d, τ,N) ≤ ln(d+ 1)!

d
. (3.22)

Example 15. Let us consider the β-transformation Tβ(x) = βx mod 1 for β = 11

T11(x) = 11x mod 1

with the KS entropy ln(11) [Cho00]. In Figure 3.7 we present the values of ApEn,

SampEn and ePE computed from the orbits of T11 for different lengths N and for

different orders d. One can see that the values of ApEn and SampEn approach ln(11)

starting from the length N ≈ 105 of a time series, whereas the values of ePE(d, 1, N) are

bounded by (3.22) that is not enough for d ≤ 9. Note that d > 9 is usually not used in

applications since it requires rather large length of a time series N > 5 · 10! = 18144000

for reliable estimation of complexity [AZS08].

50

10
3

10
4

10
5

1.2

1.4

1.6

1.8

2

2.2

2.4

N

ApEn(2,0.2σ,N)

SampEn(2,0.2σ,N)

ln(11)

4 5 6 7 8 9
1.2

1.4

1.6

1.8

2

2.2

2.4

d

ePE(d,1,108)

ln((d+1)!)/d

ln(11)

Figure 3.7: The values of approximate entropy, sample entropy and empirical permuta-
tion entropy computed from the orbit of the beta-transformation in dependence on the
length of a time series N and the order d, correspondingly

The consequence is that ePE fails to distinguish between the complexities larger

than ln((d+1)!)
d . For example, we present in Figure 3.8 the values of ApEn, SampEn and

ePE computed from the orbits of the beta-transformation

Tβ(x) = βx mod 1

for the values β = 5, 7, . . . , 15. Note that the KS entropy of the beta transformation

is given by lnβ [Cho00]. One can see that the values of ePE(9, 1, 4 · 107) are almost

the same for the values β = 5, 7, . . . , 15 since they are bounded by ln(10!)
9 , whereas the

values of ApEn and SampEn estimate the complexity correctly.

5 6 7 8 9 10 11 12 13 14 15
1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

β

T
h
e
 v

a
lu

e
s
 o

f
th

e
 e

n
tr

o
p
ie

s

ApEn(2,0.2σ,N

1
)

SampEn(2,0.2σ,N
1
)

ePE(9,1,N
2
)

ln(10!/9)

ln(β)

Figure 3.8: The values of approximate entropy, sample entropy and empirical permuta-
tion entropy computed from the orbit of the beta-transformation in dependence on the
parameter β, N1 = 5 · 104, N2 = 4 · 107

51

3.3.5 Robustness to noise

In this subsection we illustrate that ePE is not as robust to noise as it is often reported

(e.g. [ZZRP12, MLLF+12, LYLO14]) and we propose a way of how the robustness of

ePE can be assessed. For that we introduce the following quantity MD that assesses a

number of pairs of points that are abnormally close or abnormally distant in the vectors

corresponding to the ordinal patterns.

Definition 18. Given d, τ,N ∈ N, and η1, η2 ∈ R with 0 ≤ η1 < η2, for a time series

(xt)
N
t=1 a quantity MD

(
d, τ, (xt)

N
t=1, η1, η2

)
is defined by

MD
(
d, τ, (xt)

N
t=1, η1, η2

)
=

2
N∑

t=dτ+1

#{(i, j) : 0 ≤ i < j ≤ d, |xt−iτ − xt−jτ | < η1 or |xt−iτ − xt−jτ | > η2}

d(d+ 1)(N − dτ)
.

Further we use the short form MD(d, τ,N, η1, η2) instead of MD
(
d, τ, (xt)

N
t=1, η1, η2

)
when no confusion arises.

The lower threshold η1 allows to detect the pairs of points that are abnormally close

(< η1) to each other, i.e. the order relation between these points could be easily changed

by a small noise. The upper threshold η2 allows to detect the pairs of points that are

abnormally distant (> η2) from each other. This means that MD counts “unreliable”

pairs of points that can introduce a mistake when computing empirical permutation

entropy, see the following examples for an illustration.

Note that d(d+1)(N−dτ)
2 is the number of the ordered pairs of points within the ordinal

patterns of order d and delay τ (we count each pair of points k times if it belongs to k

ordinal patterns), i.e. it holds for all d, τ,N ∈ N and η1, η2 ∈ R with 0 ≤ η1 < η2

0 ≤ MD(d, τ,N, η1, η2) ≤ 1.

Example 16. In this example when computing the values of MD we deliberately set

η2 = 2, i.e. we do not use upper threshold η2.

In Figure 3.9 we present the values of SampEn, ePE and MD computed from the

orbits of TSTM and from the same orbits contaminated by the noises with N (0, 0.052)

and N (0, 0.12). (We present here only the values of SampEn, because the values of

ApEn are very similar to them.) The length of the orbit is 5 · 104, the step between the

values of A is 5 · 10−4.

When comparing with the values of the KS entropy, one can see that the ePE

values are distorted when computed from the noisy orbits (especially for the parameters

A ∈ [0, 0.1] ∪ [0.9, 1]), whereas the SampEn values are almost not distorted. The

distortion of the ePE values can be explained by the large MD values for the parameters

A ∈ [0, 0.1] ∪ [0.9, 1], which means that for these values of A there are many pairs of

52

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

A

T
h
e
 v

a
lu

e
s
 o

f
S

a
m

p
E

n
(2

,0
.2

σ
,N

)

SE(2,0.2σ,N), δ=0

 SE(2,0.2σ,N), δ=0.05

SE(2,0.2σ,N), δ=0.1

KS entropy

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

A

T
h
e
 v

a
lu

e
s
 o

f
e
P

E
(5

,1
,N

)

 ePE(5,1,N), δ=0

 ePE(5,1,N), δ=0.05

 ePE(5,1,N), δ=0.1

KS entropy

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

A

T
h
e
 v

a
lu

e
s
 o

f
M

D
(5

,1
,N

,η
1
,η

2
)

MD(5,1,N,0.05,2)

MD(5,1,N,0.1,2)

Figure 3.9: The values of the sample entropy, the empirical permutation entropy, and
MD, computed from the orbits of the skewed tent map; δ stands for the standard
deviation of the added noise; SE stands for SampEn; N = 5000

points with the absolute value of their difference within η1, i.e. they are easily changed

by the noises with N (0, 0.052) and N (0, 0.12).

In Figure 3.10 we present the SampEn, ePE and MD values computed from the

orbits of TLM and from the same orbits contaminated with the noises with N (0, 0.12)

and N (0, 0.152). The length of the orbit is 5 · 104, the step between the values of A

is 10−4. One can see that the values of SampEn are strongly distorted when computed

from the noisy orbits for a noise with N (0, 0.152). The ePE values are also distorted,

but these distortions are explained by the MD values. The larger the MD values are,

the larger the distortions of the ePE values are.

The distortions of ePE caused by the noise can be reduced by varying the order d and

the delay τ . For example, in Figure 3.11 we present the ePE and MD values computed

for different delays τ from the orbits of TSTM and from the same orbits contaminated

with noise with N (0, 0.22). The length of the orbit is 104, the step between the values

of A is 5 · 10−4. When comparing with the KS entropy values, one can see that the

values of ePE(5, 3, N) are much more reliable than the values ePE(5, 1, N), which is

explained by the values MD(5, 3, N, 0.2, 2) < MD(5, 1, N, 0.2, 2).

53

3.5 3.6 3.7 3.8 3.9 4

−0.4

−0.2

0

0.2

0.4

0.6

0.8

A

T
h
e
 v

a
lu

e
s
 o

f
S

a
m

p
E

n
(2

,0
.2

σ
,N

)

SE(2,0.2σ,N), δ=0

 SE(2,0.2σ,N), δ=0.1

SE(2,0.2σ,N), δ=0.15

LE

3.5 3.6 3.7 3.8 3.9 4

−0.4

−0.2

0

0.2

0.4

0.6

0.8

A

T
h
e
 v

a
lu

e
s
 o

f
e
P

E
(5

,1
,N

)

 ePE(5,1,N), δ=0

 ePE(5,1,N), δ=0.1

 ePE(5,1,N), δ=0.15

LE

3.5 3.6 3.7 3.8 3.9 4
0.1

0.2

0.3

0.4

0.5

0.6

A

T
h
e
 v

a
lu

e
s
 o

f
M

D
(5

,1
,N

,η
1
,η

2
)

MD(5,1,N,0.1,2)

MD(5,1,N,0.15,2)

Figure 3.10: The values of the sample entropy, the empirical permutation entropy, and
MD, computed from the orbits of the logistic map; δ stands for the standard deviation
of the added noise; SE stands for SampEn; N = 5000

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

A

T
h
e
 v

a
lu

e
s
 o

f
e
P

E
(5

,τ
,N

)

ePE(5,1,N), δ=0

ePE(5,1,N), δ=0.2

ePE(5,3,N), δ=0.2

KS entropy

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

A

T
h
e
 v

a
lu

e
s
 o

f
M

D
(5

,τ
,N

,0
.2

,2
)

MD(5,1,N,0.2,2), δ=0.2

MD(5,3,N,0.2,2), δ=0.2

Figure 3.11: The values of empirical permutation entropy and MD computed from the
orbits of the skewed tent map for different τ ; δ stands for the standard deviation of the
added noise; N = 104

Remark 8. In Example 16 we used only the lower threshold η1 by setting η2 = 2 when

computing MD, however in Section 5.2 we illustrate using MD for EEG data also for

the upper threshold η2 (see Example 25, p. 90).

54

We conclude that the introduced quantity MD helps in understanding when the

ePE is robust to noise or to abnormal deviations of a time series. On the basis on the

MD quantity we introduce a robust ePE in Subsection 3.3.6.

Remark 9. Note that the quantity MD is in some sense related to the estimate of the

correlation integral. Compare the following representations for η2 =∞ and τ = 1:

Ĉ(k, η1, N) =

2#

{
(i, j) : 1 ≤ i < j ≤ N − k + 1, max

l=0,1,...,k−1
|xi+l − xj+l| ≤ η1

}
(N − k − 1)(N − k)

,

MD(d, 1, N, η1,∞) =

2
N∑

t=d+1

#{(i, j) : 0 ≤ i < j ≤ d, |xt−i − xt−j | < η1}

d(d+ 1)(N − d)
.

When computing MD(d, 1, N, η1,∞) we count the pairs of the values {xt−i, xt−j} with

|xt−i−xt−j | < η1, whereas when computing Ĉ(k, η1, N) we count the pairs of the vectors

{(xi, xi−1, . . . , xi−k), (xj , xj−1, . . . , xj−k)} such that all pairwise points are within a

tolerance η1: |xi+l − xj+l| ≤ η1 for all l = 1, 2, . . . , k.

3.3.6 Robust empirical permutation entropy

A natural idea is to enhance the robustness of ePE with respect to noise and abnormal

changes by counting only ordinal patterns with sufficiently many “reliable” pairs of

points.

Definition 19. Given d, τ ∈ N, for η1, η2 ∈ R with 0 ≤ η1 < η2, let us call an ordinal

pattern of the vector (xt, xt−τ , . . . , xt−dτ) ∈ Rd+1 (η1, η2)-ordinal pattern if

#{(i, j) : 0 ≤ i < j ≤ d, |xt−iτ − xt−jτ | < η1 or |xt−iτ − xt−jτ | > η2} <
(d+ 1)d

8
.

(3.23)

The threshold (d+1)d
8 is chosen as a quarter of the amount of the ordered pairs of

entries from the vector (xt, xt−τ , . . . , xt−dτ).

Definition 20. For η1, η2 ∈ R with 0 ≤ η1 < η2, the robust empirical permutation

entropy (rePE) of order d ∈ N and of delay τ ∈ N of a time series (xt)
N
t=1 is given by

rePE
(
d, τ, (xt)

N
t=1, η1, η2

)
= −1

d

(d+1)!−1∑
j=0

pj ln pj , where

pj =
{i = dτ + 1, dτ + 2, . . . , N | (xi, xi−τ , . . . , xi−dτ) has the (η1, η2)-ordinal pat. j}

{i = dτ + 1, dτ + 2, . . . , N | (xi, xi−τ , . . . , xi−dτ) has a (η1, η2)-ordinal pat.}
(with 0 ln 0 := 0 and 0/0 := 0).

Further we use the short form rePE(d, τ,N, η1, η2) instead of rePE
(
d, τ, (xt)

N
t=1, η1, η2

)
when no confusion arises.

Note that one cannot directly introduce robust ApEn or SampEn in a similar way

because they are based on counting pairs within a tolerance r (see Definitions 14, 15).

55

Remark 10. A similar to the rePE quantity has been introduced in [OSD08], where

the authors employ an additional ordinal pattern that corresponds to the vectors with

any two points with the difference within a threshold. An empirical permutation entropy

for this case is computed from the distribution of (d+ 1)! + 1 ordinal patterns.

Example 17. In Figures 3.12-3.14 are presented the values of ePE and rePE, computed

from the orbits of the maps TTM, TSTM and TLM and from the same orbits with the

added noise with N (0, 0.12). The length of the orbit is 105, the step between the values

A is 5 · 10−4 for TTM, TSTM and 10−4 for TLM. We deliberately set η2 = 2, i.e. we do

not use the upper threshold in this example. When comparing with the (KS entropy)

LE values, one can see that for these maps rePE provides more reliable estimation of

complexity than ePE.

In Figure 3.12 one can see that many values of rePE for A < 1.4 are equal to 0

which is related to the small number of (0.1, 2)-ordinal patterns, whereas the values of

ePE of noisy time series provide the wrong impression that the complexity of a time

series for the parameter A < 1.4 is large (compare with the KS entropy values).

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
0

0.2

0.4

0.6

0.8

1

1.2

A

T
h
e
 v

a
lu

e
s
 o

f
th

e
 e

n
tr

o
p
ie

s

ePE(5,1,105), δ=0

ePE(5,1,105), δ=0.1

rePE(5,1,105,0.1,2), δ=0.1

KS entropy

Figure 3.12: The values of robust empirical permutation entropy and empirical per-
mutation entropy computed from the orbits of the tent map and from the same orbits
contaminated with noise; δ stands for the standard deviation of noise

In Figure 3.14 one can see that the rePE values computed from the noisy orbits

almost coincide with the ePE values computed from the “clean” orbits of TLM, whereas

the ePE values computed from the noisy orbits of TLM are significantly distorted.

In Example 17 we have illustrated rePE only for the lower threshold η1, however in

Section 5.2 we demonstrate an application of rePE for EEG data to detect abnormal

changes also for the upper threshold η2.

Let us summarize that the introduced robust empirical permutation entropy (rePE)

provides better robustness with respect to noise than the ePE and can be useful in many

56

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

A

T
h
e
 v

a
lu

e
s
 o

f
th

e
 e

n
tr

o
p
ie

s

ePE(5,1,105), δ=0

ePE(5,1,105), δ=0.1

rePE(5,1,105,0.1,2), δ=0.1

KS entropy

Figure 3.13: The values of robust empirical permutation entropy and empirical permu-
tation entropy computed from the orbits of the skewed tent map and from the same
orbits contaminated with noise; δ stands for the standard deviation of noise

3.5 3.55 3.6 3.65 3.7 3.75 3.8 3.85 3.9 3.95 4
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

A

T
h
e
 v

a
lu

e
s
 o

f
th

e
 e

n
tr

o
p
ie

s
 a

n
d
 o

f
L
E

ePE(5,1,105), δ=0

ePE(5,1,105), δ=0.1

rePE(5,1,105,0.1,2), δ=0.1

LE

Figure 3.14: The values of robust empirical permutation entropy and empirical permu-
tation entropy computed from the orbits of the logistic map and from the same orbits
contaminated with noise; δ stands for the standard deviation of noise

cases. However, the rePE has two drawbacks. Firstly, choice of the thresholds η1 and η2

is ambiguous and needs further investigation. Secondly, rePE has a slower computational

algorithm than ePE (see Section 4.6 for details). One can find a MATLAB script for

computing the rePE in Appendix A.4.

3.3.7 Computational efficiency

In this subsection we show that the algorithm for computing ePE from [UK13] is much

more efficient than the fast algorithms for computing ApEn and SampEn introduced in

57

[PWLL11]3. We present the efficiency of the methods in terms of computational time

and storage use in dependence on the length N of a considered time series in Table 3.1.

Quantity Computing method Computational time Storage use

ApEn [PWLL11] O
(
N

3
2

)
O(N)

SampEn [PWLL11] O
(
N

3
2

)
O(N)

ePE [UK13] O(N) O((d+ 1)!)

Table 3.1: Computational and storage requirements when computing the approximate
entropy, sample entropy and empirical permutation entropy

According to Table 3.1 the storage use is less when computing ePE than the storage

use when computing ApEn and SampEn. The fast algorithm for computing ePE in

sliding windows for the orders d = 1, 2, . . . , 9 is described in Chapter 4 and in [UK13].

For better illustration we present in Figure 3.15 the computational times of the

entropies computed from the orbits of TLM for A = 4 in dependence on the length N of

a time series. The time is averaged over several trials.

1 2 3 4 5

x 10
4

0

20

40

60

80

100

Length N (samples)

T
im

e
 (

s
)

ApEn(2,0.2σ,N)

ApEn(3,0.2σ,N)

ApEn(4,0.2σ,N)

1 2 3 4 5

x 10
4

0

20

40

60

80

100

Length N (samples)

T
im

e
 (

s
)

SampEn(2,0.2σ,N)

SampEn(3,0.2σ,N)

SampEn(4,0.2σ,N)

1 2 3 4 5

x 10
4

0

0.002

0.004

0.006

0.008

0.01

Length N (samples)

T
im

e
 (

s
)

ePE(3,1,N)

ePE(4,1,N)

ePE(5,1,N)

1 2 3 4 5

x 10
4

0

0.1

0.2

0.3

0.4

Length N (samples)

T
im

e
 (

s
)

rePE(3,1,N,0.1,0.8)

rePE(4,1,N,0.1,0.8)

rePE(5,1,N,0.1,0.8)

Figure 3.15: The times (measured by the MATLAB function “cputime”) of computing
approximate entropy, sample entropy, empirical permutation entropy and robust empiri-
cal permutation entropy by the MATLAB scripts [Lee14a, Lee14b], [Una14] (”PE.m”)
and “rePE” (Appendix A.5)

3the most fast to our knowledge algorithms for computing ApEn and SampEn

58

One can see that the ePE values are computed about 104 times faster than the

ApEn and SampEn values from the same lengths of a time series; and the rePE values

are computed about 250 times faster than the ApEn and SampEn values from the same

lengths of a time series.

3.4 Summary

In this chapter, we have considered theoretical underpinnings for the approximate

entropy (ApEn), the sample entropy (SampEn) and the empirical permutation entropy

(ePE), which are important to understand where the entropies are stemming from. We

have also compared the practical properties of ePE, ApEn, and SampEn. Let us now

list the advantages of the ePE with respect to the ApEn and the SampEn.

• The computational algorithm of ePE is considerably faster and storage require-

ments are less than for computing ApEn and SampEn; this allows to compute

ePE of large datasets in real time (see Subsection 3.3.7 for details).

• ePE is almost invariant with respect to strictly monotone transformations, whereas

ApEn and SampEn are not (Subsection 3.3.2).

• Experimentally, ePE provides more stable results than ApEn and SampEn for

short time series with the lengths 100 < N < 500 (Subsection 3.3.3).

• One can assess robustness with respect to noise of ePE for a given time series by

the introduced quantity MD and one can improve the robustness with respect to

noise of ePE with the introduced quantity rePE (Subsections 3.3.5, 3.3.6).

The advantages of ApEn and SampEn in comparison with ePE are the following.

• ApEn and SampEn allow to estimate correctly a larger range of complexities than

ePE (see Subsection 3.3.4).

3.4.1 The choice between approximate entropy, sample entropy and
empirical permutation entropy

On the basis of the obtained results we formulate some hints for application of ePE,

ApEn and SampEn.

ePE is more appropriate to apply

• for measuring the complexity of a time series in a very fast way;

• for measuring the complexity of short time series;

• for measuring the complexity of a time series that are possibly modified by strictly

monotone transformations.

59

ApEn and SampEn are more appropriate to apply

• together with ePE (see Subsection 3.3.4 and example with EEG data in Subsec-

tion 5.3.3);

• for assessing complexity of a time series with a large entropy.

3.4.2 Hints for using empirical permutation entropy

In general, for using ePE we recommend

• to set the largest order d satisfying 5(d+1)! < N (according to the recommendation

from [AZS08]), where N is the length of a time series;

• to take into account that the upper bound of ePE(d, τ,N) is ln((d+1)!)
d+1 . In particular,

to take into account that an increase of τ can lead to an increase of the ePE(d, τ,N)

values whereas ePE is bounded by ln((d+1)!)
d+1 (see also Subsection 5.1.2, p. 82);

• to assess the robustness with respect to noise of ePE by the introduced quantity MD

(see Example 25, p. 90 for application of MD to EEG data);

• to use rePE for noisy time series or time series contaminated with artifacts (see

Section 5.2 for application of rePE to EEG data).

60

Chapter 4

Efficient computing of
ordinal-patterns-based
characteristics

Motivated by the good properties and many applications of empirical permutation

entropy (see Chapter 3), we propose in this chapter an efficient method of computing

it and ordinal patterns (in this chapter we simplify the description and provide more

applications of the method from [UK13]). An efficient computing of ordinal patterns

provides a fast calculation of not only empirical permutation entropy (ePE), but of many

ordinal-patterns-based characteristics, such as the ordinal distributions itself [KS05],

the empirical conditional entropy of ordinal patterns [UK14], transcripts [MBAJ09] and

other derived measures [KLS07, PR11, Ban14]. The main idea of the efficient method is

using the precomputed tables (so-called lookup tables in computer science) of successive

values instead of computing ordinal patterns and the ePE value at each time point. It is

possible to precompute such successive values, because ordinal patterns “overlap” and

one can use the information from the previous ordinal pattern in the successive one.

Since successive ePE values are computed for successive overlapping time-windows, the

possible successive ePE values can be precomputed as well.

For illustration, we present in Figure 4.1 that the ePE values (bottom plot) computed

by the efficient method reflect the epileptic seizure in one-channel electroencephalogram

(EEG) data (seizure is marked in gray in the upper plot). The processing of the depicted

20 min of EEG data, recorded at a sampling rate of 256 Hz, takes about 1 s in MATLAB

R2013b. The EEG data are from The European Epilepsy Database [Epi14]).

In Section 4.1 we recall the definition of ordinal patterns and consider their computing

by the relatively fast method from [KSE07], then we recall the definition of ePE

and consider the standard procedure of its computing from distributions of ordinal

patterns. We introduce a new efficient method of computing ordinal patterns and ePE

in Sections 4.2 and 4.3, correspondingly. In Section 4.4 we adapt the fast method to time

series with a high frequency of occurrence of equal values (tied ranks). It is reasonable

61

1600 1800 2000 2200 2400 2600

0.85
0.9

0.95
1

1.05

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

)

(b) EMPIRICAL PERMUTATION ENTROPY

1600 1800 2000 2200 2400 2600

−50

0

50

100

Time (s)

A
m

p
lit

u
d
e
 (

µ
V

)

(a) ORIGINAL EEG DATA

Figure 4.1: Empirical permutation entropy computed from the one-channel EEG data

to take into account these equalities for data digitized with a low resolution, for example,

for heart rate variability data as in [BQMS12]. In Section 4.5 we adapt the efficient

method for computing the empirical conditional entropy of ordinal patterns [UK14]

and for computing of robust ePE (introduced in Subsection 3.3.6), correspondingly.

Section 4.6 is devoted to the comparison between two known methods of computing

ePE and the introduced fast methods.

Remark 11. Note that the proposed method of efficient computing of ordinal patterns

and ePE is reasonable for the moderate orders d ≤ 9 of ordinal patterns. This restriction

is related to a relatively large size ((d + 1)!(d + 1)) of the precomputed table for

the orders d > 9. Note that the orders d = 2, 3, . . . , 6 are usually recommended for

applications [BP02].

4.1 Computing ordinal patterns and the empirical permu-
tation entropy

In Subsection 4.1.1 we consider ordinal patterns and compute them by the method

introduced in [KSE07], in Subsection 4.1.2 we consider empirical permutation entropy

(ePE) and compute it by the standard procedure.

4.1.1 Ordinal patterns

We recall here the definition of ordinal patterns and their enumeration given in Chapter 3.

Note that for encoding ordinal patterns the inversion numbers were used in [KSE07].

Inversion numbers can be also referred as Lehmer code like in [GLW14].

62

Definition 21. A delay vector (xt, xt−τ , . . . , xt−dτ) has the ordinal pattern (OP)

iτd(t) = (i1, i2, . . . , id) of order d ∈ N and delay τ ∈ N when for l = 1, 2, . . . , d

il = #{r ∈ {0, 1, . . . , l − 1} | xt−lτ ≥ xt−rτ}. (4.1)

Note that we assume here occurrence of equal values (tied ranks) in a time series

quite rare; by this reason the relation “equal to” is combined with the relation “greater

than” in Definition 21. Regarding the time series with a high frequency of occurrence

of equal values, we discuss OPs with tied ranks in Section 4.4.

There are (d+ 1)! OPs of order d, and one assigns to each of them a number from

{0, 1, . . . , (d+ 1)!− 1} in a one-to-one way according to [KSE07]

nτd(t) = nτd(iτd(t)) =
d∑
l=1

il
(d+ 1)!

(l + 1)!
. (4.2)

For example, all OPs of order d = 2 are given in Table 4.1.

Table 4.1: The ordinal patterns of order d = 2

In Figure 4.2 we present the OPs of the time series (xt)
10
t=1, the delay τ = 2 indicates

a distance between points in OPs, the order d = 2 indicates number of points (d+ 1) = 3

in ordinal patterns.

Figure 4.2: Illustration of computing the ordinal patterns of order d = 2

One can see that the blue OPs (dashed line) “overlap” the previous black OPs in

d = 2 points, as well as the black OPs “overlap” the previous blue OPs. This maximal

“overlapping” between OPs is usually used in order to obtain the maximal information

from a time series [KSE07].

63

Due to the “overlapping” between OPs one obtains the successive OP

iτd(t+ τ) = (i′1, i
′
2, . . . , i

′
d) from the previous one iτd(t) = (i1, i2, . . . , id) by

i′l+1 =

{
il if xt−lτ < xt+τ ,

il + 1 otherwise
(4.3)

for l = 0, . . . , d with i0 = 0. According to (4.3) one needs only d comparisons and at

most d incrementation operations to obtain the successive OP when the current OP is

given, which provides a relatively fast computing of OPs [KSE07]. When counting OPs

in their number representation (4.2), which is more convenient than in the representation

provided by (4.1), one needs d multiplications more.

4.1.2 The empirical permutation entropy

In order to reflect complexity changes in a time series in the course of time, the ePE

values are usually computed in sliding time-windows of a fixed size, see Definition 22

(compare with Definition 17, p. 74).

Definition 22. By the empirical permutation entropy (ePE) of order d and of delay τ

of a time-window (xt, xt−1, . . . , xt−M−dτ+1), t,M ∈ N one understands the quantity

ePE(d, τ,M, t) = −1

d

(d+1)!−1∑
j=0

qj(t)

M
ln
qj(t)

M
= lnM − 1

M

(d+1)!−1∑
j=0

qj(t) ln qj(t), (4.4)

where qj(t) = #{i = t, t− 1, . . . , t−M + 1 | nτd(i) = j}

(with 0 ln 0 := 0).

We use a time-window (xt, xt−1, . . . , xt−M−dτ+1), because it contains exactly M

ordinal patterns which is convenient for computations and further explanations.

In Figure 4.3 we illustrate computing ePE in the two maximally overlapped windows

(xt)
9
t=1 and (xt)

10
t=2, containing M = 5 OPs of order d = 2 for a delay τ = 2.

Figure 4.3: Illustration of computing the empirical permutation entropy in two successive
and maximally overlapped sliding windows

64

There are

q0(9) = 0, q1(9) = 1, q2(9) = 1, q3(9) = 1, q4(9) = 2, q5(9) = 0 and

q0(10) = 1, q1(10) = 1, q2(10) = 1, q3(10) = 1, q4(10) = 1, q5(10) = 0

OPs in Windows 1 and 2, correspondingly (see Table 4.1 for determining types of OPs).

Then the ePE at times t = 9 and t = 10 is computed by (4.4) as

ePE(2, 2, 5, 9) = ln 5− 1

5
(1 ln 1 + 1 ln 1 + 1 ln 1 + 2 ln 2) = 1.3322

ePE(2, 2, 5, 10) = ln 5− 1

5
(1 ln 1 + 1 ln 1 + 1 ln 1 + 1 ln 1 + 1 ln 1) = 1.6094.

4.2 Efficiently computing the numbers of ordinal patterns

In this section we precompute numbers of possible successive OPs for each ordinal

pattern. Using the precomputed values allows to compute numbers of OPs about two

times faster than by (4.2). For simplicity, we use here the number representation of

OPs provided by (4.2), but, in fact, the type of number representation is not substantial

for the method. It means that one can use the fast method of computing the numbers

of OPs using different number representations.

4.2.1 Precomputed numbers of ordinal patterns

Given an OP with the number nτd(t) there are (d+ 1) possible successive OPs with the

numbers nτd(t+ τ) (see Table 4.2). For example, for the OP with the number 0 there

are three possible positions l = 0, 1, 2 of the next point and three possible successive

ordinal patterns with the numbers 0, 3, 4, respectively.

Table 4.2: The successive ordinal patterns with the numbers nτ2(t + τ) given the
number nτ2(t) of current ordinal pattern

One can see that it is possible to introduce a function that determines the number of

the next OP by the number of the current OP and by the position l of the next point.

65

Definition 23. For d, n, l ∈ N we define a function

φd(n, l) = n1 (4.5)

such that for any vector (x1, x2, . . . , xd+2) ∈ Rd+2 for that n is the number of OP

of (x1, x2, . . . , xd+1), n1 is the number of OP of (x2, x3, . . . , xd+2), it holds

l = #{r ∈ {2, 3, . . . , d+ 1} | xr ≥ xd+2}. (4.6)

Given the values of φd(n, l) for all n and l, one obtains nτd(t+ τ) = φd(n
τ
d(t), l) just

by computing

l = #{r ∈ {0, 1, . . . , d− 1} | xt−rτ ≥ xt+τ}, (4.7)

which is almost twice faster than by (4.2), see Table 4.3.

Computing nτd(t+ τ) + +1 ∗ <> Total

by (4.2) and (4.3) d ≤ d d− 1 d ≤ 4d− 1
by (4.5) 0 ≤ d 0 d ≤ 2d

Table 4.3: Efficiency of computing the number nτd(t+ τ) from the number nτd(t)

The precomputed tables of φd(n, l) for d = 1, 2, . . . , 8 can be downloaded from [Una14].

4.2.2 Storage requirements

In order to efficiently compute the numbers of OPs by (4.5), one has to store

(d + 1)!(d + 1) values of φd(n, l): (d + 1) values for each of the (d + 1)! OPs. This

is not a very large size since usually the orders d = 2, 3, . . . , 6 are recommended for

applications [BP02].

When using the enumeration (4.2) one can reduce the size of the table from

(d + 1)!(d + 1) to (d + 1)! which can be important for the applications restricted

by the storage size. The OPs with the numbers (d+ 1)(k− 1), . . . , (d+ 1)k− 1 for each

k = 1, 2, . . . , d! describe the same relation between the last d points and therefore have

the same successive OPs. For example, the OPs with the numbers 0, 1, 2 as well as the

OPs with the numbers 3, 4, 5 have the same successive OPs: φd(0, l) = φd(1, l) = φd(2, l)

and φd(3, l) = φd(4, l) = φd(5, l) (see Table 4.2).

4.3 Efficiently computing the empirical permutation en-
tropy

In this section we consider computing ePE in maximally overlapping sliding windows

of a size M (i.e., the first point of the successive window is the second point of the

66

previous one). The case with a non-maximal overlapping is discussed in Remark 12

(Subsection 4.3.1).

4.3.1 Precomputed values of empirical permutation entropy

The successive windows

(xt−M−dτ , xt−M−dτ+1, . . . , xt−1) and (xt−M−dτ+1, xt−M−dτ+2, . . . , xt)

differ in the points xt and xt−M−dτ , therefore the ordinal distributions in the windows

differ in the frequencies of occurrence of the OPs with the numbers nτd(t) and nτd(t−M).

In order to obtain an ordinal distribution in the successive window given the current

one, one needs to recalculate the frequency of the number nout = nτd(t −M) of the

“outcoming” OP and of the number nin = nτd(t) of the “incoming” OP if they do not

coincide:

qnout(t) = qnout(t− 1)− 1, (4.8)

qnin
(t) = qnin

(t− 1) + 1.

Then the value ePE(d, τ,M, t) is computed from the value ePE(d, τ,M, t− 1) by

ePE(d, τ,M, t) = ePE(d, τ,M, t− 1) + g(qnout(t− 1))− g(qnin
(t− 1) + 1), (4.9)

where g(j) =
1

M
(j ln j − (j − 1) ln(j − 1)) for j = 1, 2, . . . ,M. (4.10)

The precomputed table is obtained by computing g(j) for all j = 1, 2, . . . ,M by (4.10).

So the size of a precomputed tables is a size M of a sliding window. For example, a

window size of two seconds is used in the example in Figure 4.1, i.e., M = 2 · 256 = 512

for a sampling rate of 256 Hz.

In Table 4.4 we show that computing ePE(d, τ,M, t) by (4.9) is considerably faster

than by (4.4).

Calculation + ∗ ln Total

by (4.4) ≤ (d+ 1)!− 1 (d+ 1)! (d+ 1)! ≤ 3(d+ 1)!− 1
by (4.9) 2 0 0 2

Table 4.4: Efficiency of computing the successive value ePE(d, τ,M, t) from the current
value ePE(d, τ,M, t− 1) by (4.9) in comparison with computing ePE(d, τ,M, t) by (4.4)

Remark 12. In the case of non-maximal overlapping between successive windows, one

can also compute the values of ePE by (4.9) and omit “unnecessary” intermediate ePE

values, see for illustration Figure 4.4.

Roughly speaking, for a distance D < 3(d+1)!−1
2 between the successive windows

computing the values of ePE by (4.9) is faster than by (4.4) despite of computing

“unnecessary” values for intermediate windows.

67

Figure 4.4: Non-maximal overlapping between successive windows

4.3.2 Round-off error

Computing the successive ePE values by (4.9) leads to an accumulation of relatively

small round-off errors resulting from finite computer precision. Since there are two

operations in (4.9) when computing ePE in sliding windows from a time series of the

length W , the round-off error is bounded by 2Wψ, where ψ is the machine precision.

For instance, in Figure 4.5 we present the absolute values of the difference between the

ePE values computed by (4.4) and the ePE values computed by (4.9), for the example

shown in Figure 4.1.

1800 1900 2000 2100 2200 2300 2400 2500 2600 2700
0

0.5

1

1.5

x 10
−14

Time (s)

R
o
u
n
d
−

o
ff
 e

rr
o
r

Figure 4.5: Absolute values of the difference between the ePE values computed by (4.4)
and the ePE values computed by (4.9)

One can see that the error is very small in relation to the values of the ePE (compare

with Figure 4.1).

For a relatively long time series one can recalculate the ePE by (4.4) after some

time, depending on the computer precision, in order to avoid big accumulating errors

and then continue calculations by (4.9). For example, if ε > 0 is the maximal allowable

error for computing the ePE, then one should recalculate the ePE by (4.4) every ε
2ψ

points.

68

4.3.3 Scheme of the method

Given a time series (xt)
W
t=1, a size of a sliding window M , an order d of OPs, and a

delay τ , we summarize the method of efficient ePE computing in Figure 4.6.

One can see that the first value ePE(d, τ,M, t) is computed by (4.4) since there is

no precomputed value ePE(d, τ,M, t − 1); numbers of the first τ OPs are computed

by (4.2) since there are no precomputed values nτd(t− τ).

start

compute nτd(dτ + 1), . . . , nτd(dτ + τ) by (4.2)

compute nτd(dτ + τ + 1), . . . , nτd(dτ + M) by (4.5)

compute ePE(d, τ,M,M + dτ) by (4.4)

t = M + dτ + 1

compute nτd(t) by (4.5)

compute ePE(d, τ,M, t) by (4.9) (or by (4.4) if needed)

t < W

t = t + 1

end

yes

no

Figure 4.6: Algorithm of fast computing empirical permutation entropy in sliding
windows

The MATLAB code for efficient ePE computing is given in Appendix A.1; it can be

also downloaded from [Una14].

Note that, according to Figure 4.6, the efficiency of the proposed method (after

some precomputing for the first window) depends only on a length of a time series W

and order d (and depends neither on the window size M nor on the delay τ).

4.4 Efficiently computing numbers of ordinal patterns with
tied ranks

In this section we adapt the method of efficient computing the numbers of OPs to the

case of a time series with a high frequency of occurrence of equal values (tied ranks). To

69

this aim we define OPs with tied ranks (OPTs) in Subsection 4.4.1 and propose coding

of them. In Subsection 4.4.2 we introduce the efficient enumeration of OPTs based on

the same idea of precomputed values as for the “usual” OPs.

For illustration, we present all OPTs of order d = 2 in Figure 4.7.

Figure 4.7: The ordinal patterns with tied ranks of order d = 2

4.4.1 Ordinal patterns with tied ranks

Let us first provide a natural idea of the coding of ordinal patterns with tied ranks

(OPTs) in Example 18, then we provide the formal definition of them.

Example 18. In Figure 4.8 we illustrate calculating an OPT of order d = 5. We go

from the right to the left and we code by Il the position of the point xl with respect to

the points on the right xl+1, xl+2, . . . , x6.

Figure 4.8: The ordinal pattern with tied ranks (0, 3, 0, 3, 5)

Definition 24. A delay vector (xt, xt−τ , . . . , xt−dτ) is said to have the ordinal pattern

with tied ranks (OPT) Iτd (t) = (I1, I2, . . . , Id) of order d ∈ N and delay τ ∈ N if for all

l = 1, 2, . . . , d

Il = bl + 2#{r ∈ {0, 1, . . . , l − 1} | xt−lτ > xt−rτ , br = 0} (4.11)

bl =

{
1 if xt−lτ = xt−jτ for some j ∈ {0, 1, . . . , l − 1}
0 otherwise.

(4.12)

In the above definition bl indicates whether the point xt−lτ is equal to any point

from
(
xt, xt−τ , . . . , xt−(l−1)τ

)
, Il indicates the position of the point xt−lτ in the vector

(xt, xt−τ , . . . , xt−dτ) as in Example 18, where (I1, I2, I3, I4, I5) = (0, 3, 0, 3, 5).

Note that the proposed coding of OPTs (compare with [BQMS12]) provides not

only a concise representation of OPTs but also an efficient computing of the numbers of

OPTs, see Subsection 4.4.2.

70

We assign to each OPT Iτd (t) = (I1, I2, . . . , Id) a unique number

N τ
d (t) ∈ {0, 1, . . . , (2d+ 1)!!− 1} in the following way:

N τ
d (t) = N τ

d (Iτd (t)) =
d∑
l=1

Il(2l − 1)!!, (4.13)

where !! stands for the odd factorial (2l − 1)!! =
∏l
j=1(2j − 1) (see Subsection 4.8.1 for

the proof and the details of enumeration). The OPTs of order d = 2 in their number

representation are given in Table 4.5.

Table 4.5: The ordinal patterns with tied ranks of order d = 2 and their numbers

Remark 13. Note that there are “gaps” in the enumeration given by (4.13). For

example, there are no OPTs of order d = 2 corresponding to the numbers 10 and 13

(see Appendix 4.8.1 for details). One could provide an enumeration of OPTs without

“gaps”, but the enumeration (4.13) provides an efficient computing of numbers of

OPTs.

One obtains the successive OPT Iτd (t + τ) = (I ′1, I
′
2, . . . , I

′
d) from the given one

Iτd (t) = (I1, I2, . . . , Id) (with (b1, b2, . . . , bd)) by

I ′l+1 =

Il if xt−lτ < xt+τ or bl = 1

Il + 1 if xt−lτ = xt+τ , bl = 0

Il + 2 if xt−lτ > xt+τ , bl = 0

(4.14)

for l = 0, 1, . . . , d − 1 with I0 = 0 (compare with (4.3)). One needs, at most, 3d

comparisons and, at most, d additions to obtain the successive OPT when the current

one is given. This property is useful for a relatively fast computing OPTs, when one

cannot use the precomputed table by some reason.

4.4.2 Precomputed numbers of ordinal patterns with tied ranks

Similar to the definition of the function φd in (4.5), we introduce here a function Φd

for determining the number N τ
d (t+ τ) of successive OPT from the given number N τ

d (t)

and from the position L of the next point1.

1In the following definition br is given by (4.12).

71

Definition 25. For d,N,L ∈ N we define a function

Φd(N,L) = N1 (4.15)

such that for any vector (x1, x2, . . . , xd+2) ∈ Rd+2 for that N is the number of OPT

of (x1, x2, . . . , xd+1) and N1 is the number of OPT of (x2, x3, . . . , xd+2), it holds

L = B + 2#{r ∈ {2, 3, . . . , d+ 1} | xr ≥ xd+2, br = 0}, where (4.16)

B =

{
1 if xd+2 = xj for some j ∈ {2, 3, . . . , d+ 1},
0 otherwise.

(4.17)

In the above definition L indicates the position of the next point xd+2 in relation to

the points (x2, x3, . . . , xd+1), B indicates whether the point xd+2 is equal to any point

from (x2, x3, . . . , xd+1).

The numbers N τ
2 (t + τ) of successive OPTs of order d = 2 in dependence on the

number of the current OPT N τ
2 (t) and on the position of the next point L are given in

Table 4.6.

L Nτ
2 (t) ∈ {0, 3, 6, 9, 12} Nτ

2 (t) ∈ {1, 4, 7} Nτ
2 (t) ∈ {2, 5, 8, 11, 14}

0 0 3 6
1 1 4 9
2 2 11 12
3 5 − 7
4 8 − 14

Table 4.6: The numbers N τ
2 (t+ τ) = Φd(N

τ
2 (t), L) of successive ordinal patterns with

tied ranks

In Table 4.7 one can see that computing the number N τ
d (t+ τ) from N τ

d (t) by (4.15)

is faster than by (4.14).

Computation of Nτ
d (t+ τ) + ∗ <> Total

By (4.14) 2d− 1 d ≤ 3d ≤ 6d− 1
By (4.15) d+ 1 0 ≤ 3d ≤ 4d+ 1

Table 4.7: Efficiency of computing the number N τ
d (t+ τ) of ordinal pattern with tied

ranks from the number N τ
d (t)

The precomputed tables of numbers of successive OPTs for the orders d = 1, 2, . . . , 6

can be downloaded from [Una14]. The MATLAB code for computing ePE for the case

of OPTs is given in Appendix A.3 and can also be downloaded from [Una14].

72

4.4.3 Storage requirements

In order to use (4.15) for the efficient computing of OPTs one has to store

(2d + 1)(2d + 1)!! values in the precomputed table. These are the values for each

position L = 0, 1, . . . , 2d for each of (2d + 1)!! numbers of OPTs (although there are

some empty entries, see for details Subsection 4.8.1). To give an impression we present

storage requirements for “usual” OPs and for OPTs in dependence on the order d in

Table 4.8.

Size of precomputed table d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

for OPs, (d+ 1)(d+ 1)! 4 18 96 600 4320 35280 322560
for OPTs, (2d+ 1)(2d+ 1)!! 9 75 735 8505 114345 1756755 30405375

Table 4.8: Storage requirements for efficient computing the numbers of “usual” ordinal
patterns and ordinal patterns with tied ranks

The enumeration given by (4.13) allows to reduce the table size, because one can

group the numbers of OPTs of order d according to the same relations between the

last d points (see Table 4.6, for example). To give an impression we also present the

storage requirements for “usual” OPs and for OPTs in dependence on order d for short

precomputed tables in Table 4.9.

Size of short precomputed table d = 1 d = 2 d = 3 d = 4 d = 5 d = 6 d = 7

for OPs, (d+ 1)! 2 6 24 120 720 5040 40320
for OPTs, (2d+ 1)!! 3 15 105 945 10395 135135 2027025

Table 4.9: Storage requirements for efficient computing the numbers of “usual” ordinal
patterns and ordinal patterns with tied ranks by using short precomputed tables

4.5 Efficiently computing empirical conditional entropy of
ordinal patterns

In this section we adapt the method of efficient ePE computing to empirical conditional

entropy of ordinal patterns (eCE), introduced in [KUU14]. The motivation for that is

the fact that conditional entropy of ordinal patterns estimates the Kolmogorov-Sinai

entropy better than ePE for several cases and can be also used in application (see

[UK14, Una15] for details and examples).

In contrast to the ePE, the eCE is computed not only from the distribution of OPs

but also from the distribution of (2, d)-words that are pairs of successive OPs of order d

(see Definition 7, p. 7). We describe efficient computing (2, d)-words in Subsection 4.5.1

and efficient computing eCE from the distributions of (2, d)-words in Subsection 4.5.2.

73

4.5.1 Efficiently computing (2, d)-words

Here we propose a coding for the (n, d)-words for the case n = 2 in order to define eCE

(see Definition 7 of (n, d)-words on p. 7).

Definition 26. A delay vector (xt, xt−τ , . . . , xt−(d+1)τ) is said to have an (2, d)-word

(iτd(t), iτd(t− τ)) when the OPs iτd(t) and iτd(t− τ) are given by Definition 21.

There are (d+ 1)!(d+ 1) possible (2, d)-words, we assign to each of them a number

from {0, 1, . . . , (d+ 1)!(d+ 1)− 1} in a one-to-one way by

wτd(t) = wτd(iτd(t), iτd(t− τ)) = (d+ 1)nτd(t− τ) + l, (4.18)

where l = #{r ∈ {1, 2, . . . , d} | xt−rτ ≥ xt}. (4.19)

In Table 4.10 we illustrate that one needs only two more arithmetical operations to

compute wτd(t) together with nτd(t) in comparison with computing nτd(t) only, because

the same l from (4.19) is used for both of them.

Computation of + +1 ∗ <> Total

nτd(t+ τ) by (4.5) 0 ≤ d 0 d ≤ 2d
nτd(t+ τ), wτd(t+ τ) by (4.5) and (4.18) 1 ≤ d 1 d ≤ 2d+ 2

Table 4.10: Efficiency of computing the successive numbers nτd(t + τ) and wτd(t + τ)
from the current number nτd(t)

4.5.2 Efficiently computing empirical conditional entropy of ordinal
patterns

We define here empirical conditional entropy of ordinal patterns introduced in [KUU14].

Definition 27. By the empirical conditional entropy of ordinal patterns (eCE) of

order d ∈ N and of delay τ ∈ N of a time-window (xt, xt−1, . . . , xt−M−(d+1)τ+1) one

understands the quantity

eCE(d, τ,M, t) =

(d+1)!−1∑
j=0

qj(t− 1)

M
ln
qj(t− 1)

M
(4.20)

−
(d+1)!(d+1)−1∑

j=0

pj(t)

M
ln
pj(t)

M
, where

pj(t) =#{i = t, t− 1, . . . , t−M + 1 | wτd(t) = j}

qj(t− 1) =#{i = t− 1, t− 2, . . . , t−M + 2 | nτd(i) = j}

(with 0 ln 0 := 0).

74

In order to obtain the distributions of OPs and of (2, d)-words in the successive

window (xt, xt−1 . . . , xt−M−dτ+1) given the current one (xt−1, xt−2, . . . , xt−M−dτ), one

needs to recalculate the frequency of the “outcoming” wout = wτd(t−M) and “incoming”

win = wτd(t) (2, d)-words if they do not coincide (as well as frequency of the “outcoming”

nout = nτd(t−M) and “incoming” nin = nτd(t) OPs if they do not coincide):

pwout(t) = pwout(t− 1)− 1, qnout(t) = qnout(t− 1)− 1,

pwin
(t) = pwin

(t− 1) + 1, qnin
(t) = qnin

(t− 1) + 1.

Then eCE(d, τ,M, t) given eCE(d, τ,M, t− 1) is computed by

eCE(d, τ,M, t) = eCE(d, τ,M, t− 1)− g(qnin
(t− 1) + 1) + g(qnout(t− 1)) (4.21)

+ g(pwin
(t− 1) + 1)− g(pwout(t− 1)),

where g is defined by (4.10). One can see that when computing (4.21) one uses the same

precomputed tables for OPs and for the values of the function g as for computing ePE.

In Table 4.11 we show that one needs only two more arithmetical operations to cal-

culate eCE(d, τ,M, t) from eCE(d, τ,M, t− 1) compared with computing ePE(d, τ,M, t)

from ePE(d, τ,M, t− 1), which is much faster than direct computation by (4.20).

Calculation + ∗ ln Total

ePE(d, τ,M, t) by (4.9) 2 0 0 2
eCE(d, τ,M, t) by (4.20) (d+ 2)!− 2 (d+ 2)!− 2 2(d+ 2)!− 7 4(d+ 2)!− 11
eCE(d, τ,M, t) by (4.21) 4 0 0 4

Table 4.11: Efficiency of computing the successive value eCE(d, τ,M, t) from the current
value eCE(d, τ,M, t − 1) by (4.21) in comparison with computing by (4.20) and in
comparison with computing the successive value ePE(d, τ,M, t) from the current value
ePE(d, τ,M, t− 1) by (4.9)

In Figure 4.9 we present the summarized algorithm of an efficient eCE computing.

Remark 14. Note that we also efficiently compute robust empirical permutation

entropy, introduced in Chapter 3, on the basis of precomputing ordinal patterns, see

Appendix A.5 for the realization in MATLAB.

4.6 Comparing efficiency of methods

In this section we illustrate the efficiency of the proposed method of computing the ePE

with the efficiencies of the method introduced in [KSE07] and of the standard method

available in the Internet (see “PE.m” in Appendix A.1, “oldPE.m” in Appendix A.2,

“pec.m” from [Ouy14] for the realizations in MATLAB). For comparison, we present also

the time of computing the ePE for OPTs, the time of computing empirical conditional

75

start

compute nτd(dτ + 1), . . . , nτd(dτ + τ) by (4.2)

compute nτd(dτ + τ + 1), . . . , nτd(dτ + M) by (4.5),
compute wτd(dτ + τ + 1), . . . , wτd(dτ + M) by (4.18)

compute eCE(d, τ,M,M + dτ) by (4.20)

t = M + dτ + 1

compute nτd(t), w
τ
d(t) by (4.5) and (4.18)

compute eCE(d, τ,M, t) by (4.21) (or by (4.20) if needed)

t < W

t = t + 1

end

yes

no

Figure 4.9: Algorithm of computing empirical conditional entropy of ordinal patterns in
sliding windows

entropy of ordinal patterns and the time of computing robust empirical permutation

entropy (see Appendix A.3-A.5 for the corresponding MATLAB scripts). For estimating

the execution time of MATLAB scripts we use the MATLAB function “cputime”. (Note

that CPU times computed by the MATLAB function “cputime” are dependent on

PC and MATLAB version, in our case MATLAB 2013b and OS Linux 2.6.37.6-24,

processor Intel(R) Core(TM) i5-2400 CPU @ 3.10Hz. The algorithms can work faster if

programmed, for example, in C language.) The time is averaged over several trials.

In Table 4.12 the methods are compared for a one-channel EEG dataset recorded

at a sampling rate of 256 Hz, for the orders d = 3, 6, 7, the delay τ = 4 and different

lengths of a time series (for other datasets similar results were obtained).

In Table 4.13 we compare the methods for a sliding window of 512 samples (2 s) for

the same EEG dataset in dependence on the orders d = 3, 6, 7 and on the length W of

a time series. A maximal overlapping between the sliding windows and the delay τ = 4

are used. (Note that “pec.m” realized by G. Ouyang is not adapted for sliding windows

and the corresponding results are not presented in Table 4.13.)

76

Length W 1000 s 2000 s 4000 s

Order d 3 6 7 3 6 7 3 6 7

“pec.m” 8.02 933 7430 16 1869 14917 32 3733 29820
“oldPE.m” 1.17 1.19 1.19 2.32 2.36 2.39 4.66 4.76 4.77
“PE.m” 0.04 0.06 0.07 0.08 0.11 0.13 0.15 0.21 0.25
“PEeq.m” 0.52 0.57 1.12 1.03 1.08 1.67 2.08 2.15 2.76
“CondEn.m” 0.04 0.06 0.09 0.09 0.12 0.16 0.16 0.23 0.29
“rePE.m” 1.62 1.66 1.69 3.33 3.39 3.43 6.42 6.79 6.80

Table 4.12: Time (s) of computing in MATLAB R2013b (measured by a MATLAB
function “cputime”) of the empirical permutation entropy, the empirical permutation
entropy for the ordinal patterns with tied ranks, the empirical conditional entropy of
ordinal patterns and the robust empirical permutation entropy from a time series of
lengths W , τ = 4

Length W 15 min 30 min 60 min

Order d 3 6 7 3 6 7 3 6 7

“oldPE.m” 5.74 26.6 131 10.6 53.9 261 21.1 107 519
“PE.m” 0.10 0.11 0.11 0.19 0.19 0.22 0.35 0.39 0.42
“PEeq.m” 0.57 0.63 1.19 1.16 1.23 1.78 2.30 2.42 3.03
“CondEn.m” 0.18 0.19 0.22 0.34 0.38 0.43 0.68 0.76 0.84
“rePE.m” 6.04 29.2 138 12.0 58.4 279 23.8 115 549

Table 4.13: Time (s) of computing in MATLAB R2013b (by a MATLAB function
“cputime”) the empirical permutation entropy, the empirical permutation entropy for the
ordinal patterns with tied ranks, the empirical conditional entropy of ordinal patterns
and the robust empirical permutation entropy from W−dτ

M sliding windows of size
M = 2 s, τ = 4

4.7 Conclusions

We conclude that

• the proposed method of efficient computing the numbers of ordinal patterns

is almost two times faster than in [KSE07] (see Table 4.12), it can be also

applied to fast computing different ordinal-patterns-based characteristics such as,

for example, transcripts and ordinal distributions itself;

• the proposed method of efficient computing the empirical permutation entropy is

considerably faster than the known methods ones (see Tables 4.12 and 4.13), and

it allows to measure the complexity of large datasets in real-time;

• the proposed coding and enumeration of ordinal patterns with tied ranks is

natural, convenient and allows for efficient computing of them;

• the proposed methods of computing empirical permutation entropy for ordinal

77

patterns with tied ranks, and the empirical conditional entropy of ordinal patterns

are fast and can be applied to real-time processing of large datasets (see Table 4.13).

4.8 Supplementary materials

4.8.1 Number representation of ordinal patterns with tied ranks

Let us discuss first, why the enumeration (4.13) of OPTs has “gaps”, i.e. why some

numbers computed by (4.13) do not correspond to any OPT. Consider the OPT

Iτd (t) = (I1, I2, . . . , Id) with the vector (b1, b2, . . . , bd), that indicates equalities

between the points of the vector (xt, xt−τ , . . . , xt−dτ) and is computed by (4.12). The

more br = 1 for r = 1, 2, . . . , l − 1 are, the less the range of Il is:

Il ≤ 2

(
l −

l−1∑
r=1

br

)
. (4.22)

That is the more points in (xt, xt−τ , . . . , xt−dτ) are equal to any other point, the less

distinct values are in the vector. However, when enumerating OPTs by (4.13), we

consider all possible combinations of Il ∈ {0, 1, . . . , 2l} for l = 1, 2, . . . , d, and, according

to (4.22), some of these combinations do not correspond to any OPT. That is why the

enumeration has “gaps”.

We show now that different OPTs of order d have different numbers computed

by (4.13). Let us define a set Id of all vectors (I1, I2, . . . , Id) as

Id = {(I1, I2, . . . , Id) | Il ∈ {0, 1, . . . , 2l} for l = 1, 2, . . . , d}.

Proposition 24. For every d ∈ N, the assignment

(I1, I2, . . . , Id) 7→ Nd((I1, I2, . . . , Id)),

where Nd((I1, I2, . . . , Id)) is computed by (4.13), defines a bijection from the set Id onto

{0, 1, . . . , (2d+ 1)!!− 1}.

Proof. Note that N(I1) = I1. Then by (4.13) for all d ≥ 2 one has the recursion

Nd

(
(Il)

d
l=1

)
= Nd−1

(
(Il)

d−1
l=1

)
+ (2d− 1)!! Id

which by induction on d provides different Nd

(
(Il)

d
l=1

)
for different (I1, I2, . . . , Id).

Note again that not all vectors from the set Id are OPTs according to (4.22), but

all OPTs of order d have different numbers computed by (4.13).

78

4.8.2 Amount of ordinal patterns with tied ranks

One can see from (4.22) that there are less than (2d+ 1)!! OPTs due to the “gaps” in

the enumeration. In order to find the actual amount of OPTs we observe that the OPTs

of order d can be represented by Cayley permutations of the set {0, 1, . . . , d} [MF84].

Definition 28. [MF84] A Cayley permutation of length d is a permutation ρ of d

elements with possible repetitions from a set {x1, x2, . . . , xd} with x1 < x2 < . . . < xd

and with an order relation, subject to the condition that if an element xi appears in ρ,

then all elements xj < xi also appear in ρ.

Definition 28 means, in fact, that OPTs is one of possible coding of Cayley permuta-

tions. For example, we present in Table 4.10 the Cayley permutations of length 3 of a

set {1, 2, 3} and the corresponding coding by the OPs of order 2.

Figure 4.10: Cayley permutations of order 3 of a set {1, 2, 3} are coded by the ordinal
patterns with tied ranks of order 2

The amount of Cayley permutations is counted using the ordered Bell numbers [MF84].

Therefore the amount of OPTs of order d is computed by the (d+ 1)-th ordered Bell

number B(d+ 1) in the following way:

B(d+ 1) =

d+1∑
k=0

k∑
j=0

(−1)k−j
k!

j!(k − j)!
jd+1. (4.23)

We present in Table 4.14 the amounts of numbers for OPTs computed by (4.13), the

amounts of OPTs of order d that are computed by (4.23), and the amounts of “usual”

OPs of order d.

Order d 1 2 3 4 5 6 7

the amount of numbers for OPTs, (2d+ 1)!! 3 15 105 945 10395 135135 2027025
the amount of OPTs, B(d+ 1) 3 13 75 541 4683 47293 545835
the amount of OPs, (d+ 1)! 2 6 24 120 720 5040 40320

Table 4.14: Amounts of numbers for ordinal patterns with tied ranks, amounts of ordinal
patterns with tied ranks and of ordinal patterns for different orders d

79

Chapter 5

Measuring complexity of EEG

Detecting seizures in epileptic electroencephalogram (EEG)1 is an important problem in

biomedical research nowadays [LE98, MWWM99, MAEL07, Leh08]. In this chapter we

discuss seizure detection in epileptic EEG data from The Bonn EEG Database [Bon14]

and from The European Epilepsy Database [Epi14] by empirical permutation entropy

(ePE), robust empirical permutation entropy (rePE), approximate entropy (ApEn) and

sample entropy (SampEn), see Chapter 3 for details about the entropies. We have three

main purposes in this chapter. First, we discuss the applicability of ePE for the analysis

of EEG data, in particular, the choice of the parameters for its computing. Second,

we illustrate the potential of the rePE for application to real-world data. Third, we

compare ePE, rePE, ApEn and SampEn for detecting epileptic seizures in EEG data.

Section 5.1 is devoted to the discussion of the choice of the parameters when

applying ePE. Section 5.2 is intended to application of ePE, rePE, ApEn and SampEn

for detecting epileptic seizures in the EEG data from [Epi14]. In Section 5.3 we compare

ability of ePE, ApEn and SampEn to discriminate between different complexities of

EEG data from [Bon14]. Finally, we make conclusions and discuss future work in

Section 5.4.

5.1 Applying empirical permutation entropy for analysis
of EEG data

In this section we work with EEG data from [Epi14]. We start from the data de-

scription in Subsection 5.1.1, then we discuss the choice of the parameters for ePE in

Subsection 5.1.2.

5.1.1 Description of EEG data from The European Epilepsy Database

The European database contains multichannel surface EEG data sampled at 256 Hz

[Epi14] (see [IFDT+12] for more information). In Tables 5.1 and 5.2 we provide the

description of the EEG recordings that we use further in experiments. In Table 5.1 we

1We refer to [TT09] for a good tutorial about recording, montages, and characteristics of EEG.

81

provide the information about the patients, in Table 5.2 we describe the EEG recordings

with epileptic seizures, indicating types of seizures and human state (vigilance) in the

period when a seizure occurs. According to [RK68, TT09], there are 6 stages of human

vigilance: the awake state (W), two stages of light sleep (S1, S2), two stages of deep or

slow-wave sleep (S3, S4) and rapid eye movement (REM) sleep.

Patient Information Etiology

1 male, 36 years old malformation
89 female, 67 years old -
308 male, 28 years old malformation
454 female, 41 years old hippocampal sclerosis
586 male, 32 years old tumor
795 female, 35 years old -
852 female, 54 years old hippocampal sclerosis

Table 5.1: Description of the patients from [Epi14]

Patient Numbers of recordings Seizure type Vigilance

1 86 UC W
89 133, 140, 159, 164 CP W
89 100 CP UC
795 2, 27, 49, 54, 74, 79, 89, 99, 101 CP W
454 37 CP W
586 100 CP W
852 32, 36, 86 CP S2
852 39 CP S1
852 50, 88, 90 CP W
852 62, 74, 84 UC W

Table 5.2: Description of the EEG recordings with seizures from [Epi14]; here CP and
UC stand for complex partial and unclassified, correspondingly

Further in this section we refer to recording b from patient a as a b, for example, 852 50

stands for the recording 50 from the patient 852.

5.1.2 Choice of delay, order, and EEG channel

In this subsection we discuss the influence of the choice of EEG channel (Example 19),

of the delay τ (Examples 20-21), of the order d and of the window size N when applying

the empirical permutation entropy ePE(d, τ,N) for epileptic seizure detection.

Recall that ePE should satisfy the weak stationarity requirement [BP02]. Therefore

the size of a sliding window when computing ePE should be chosen in such a way that

the distribution of ordinal patterns does not change in this window [BP02]. Size of a

sliding window for EEG data is usually chosen equal to 2 s [BD00], however, we often

82

use in this chapter the sliding windows of 4 s size which provides good results in the

experiments. The order d is in most cases set to d = 4, maximal for this window size

according to the recommendation (3.19) (see Subsection 3.2.2, p. 43).

Example 19. Choice of EEG channel

EEG channels of the data from [Epi14] for every seizure are divided into four groups:

the origin channels related to the origin of the seizure, the early propagation channels

related to the early propagation of the seizure, the late propagation channels related

to the late propagation of the seizure and all other (unmarked) channels. Note that

one channel can belong to several groups. Usually, the ePE values reflect epileptic

seizure better when computed from the origin, early and late propagation channels (in

comparison to unmarked channels). To illustrate this, we present in Figure 5.1 the ePE

values computed from the EEG recording 586 100 (see Tables 5.1, 5.2) for channels F4

(unmarked), C3 (early propagation) and F7 (origin).

2400 2500 2600 2700 2800 2900 3000 3100
−100
−50

0
50

Time (s)

A
m

p
lit

u
d
e
 (

µ
V

) (a) ORIGINAL EEG DATA, channel F7

2400 2500 2600 2700 2800 2900 3000 3100
0.7

0.8

0.9

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (b) EMPIRICAL PERMUTATION ENTROPY, ePE(4,1,1024), channel F4

2400 2500 2600 2700 2800 2900 3000 3100

0.6

0.8

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (c) EMPIRICAL PERMUTATION ENTROPY, ePE(4,1,1024), channel C3

2400 2500 2600 2700 2800 2900 3000 3100

0.6

0.8

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (d) EMPIRICAL PERMUTATION ENTROPY, ePE(4,1,1024), channel F7

Figure 5.1: The values of the empirical permutation entropy computed from the EEG
recording 586 100 for channels F4, C3, and F7

Indeed, the ePE values reflect the epileptic seizure for channels C3 and F7 by a

decrease of its values whereas the seizure is almost not reflected for channel F4. The EEG

data are filtered with a third order Butterworth bandpass filter, 2-42 Hz as proposed in

[MDSBA08] for epileptic EEG data with the same sampling rate.

83

Example 20. Choice of delay τ

In this example we demonstrate that the ePE(d, τ,N) values computed for

different delays τ illustrate different features of the underlying dynamics of EEG

data. In Figure 5.2 we present the values of ePE(4, τ, 1024) computed from the EEG

recording 795 74 (see Tables 5.1, 5.2), channel C3 (early propagation) for τ = 1, 6, 13

(the seizure is marked in gray in the upper plot). The EEG data are filtered with a third

order Butterworth bandpass filter, 2-42 Hz. One can see that the seizure is reflected by

a decrease of the ePE(4, τ, 1024) values for τ = 6, 13, whereas it is almost not reflected

by the ePE(4, τ, 1024) values for τ = 1.

2400 2500 2600 2700 2800 2900 3000
−100
−50

0
50

Time (s)

A
m

p
lit

u
d
e

 (
µ

V
) (a) ORIGINAL EEG DATA

2400 2500 2600 2700 2800 2900 3000
0.4

0.5

0.6

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (b) EMPIRICAL PERMUTATION ENTROPY ePE(4,1,1024)

2400 2500 2600 2700 2800 2900 3000

0.8

1

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (c) EMPIRICAL PERMUTATION ENTROPY ePE(4,6,1024)

2400 2500 2600 2700 2800 2900 3000
0.8

1

Time (s)

E
n
tr

o
p
y
 (

n
a

ts
) (d) EMPIRICAL PERMUTATION ENTROPY ePE(4,13,1024)

Figure 5.2: The values of the empirical permutation entropy ePE(4, τ, 1024) for different
delays τ computed from the EEG recording 795 74, channel C3

However, values of ePE(d, τ,N) with relatively large τ do not always reflect epileptic

seizures better than that for small τ . For example, in Figure 5.3 we present the ePE

values computed from the EEG recording 586 100 (see Tables 5.1, 5.2), channel C3

(late propagation) for the delays τ = 1, 6, 13. One can see that here the seizure is better

reflected for τ = 1 than for τ = 6, 13 by a decrease of the ePE(4, τ, 1024) values. (Data

are filtered with a third order Butterworth bandpass filter, 2-42 Hz.)

At the moment we cannot specify which τ reflect which features of EEG data, we

recommend to consider different delays τ when analyzing EEG data by the ePE (see

also Subsection 5.3.3).

84

2400 2500 2600 2700 2800 2900 3000
−100
−50

0
50

Time (s)
A

m
p
lit

u
d
e
 (

µ
V

) (a) ORIGINAL EEG DATA

2400 2500 2600 2700 2800 2900 3000

0.6

0.8

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (b) EMPIRICAL PERMUTATION ENTROPY ePE(4,1,1024)

2400 2500 2600 2700 2800 2900 3000

0.9

1

1.1

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (c) EMPIRICAL PERMUTATION ENTROPY ePE(4,6,1024)

2400 2500 2600 2700 2800 2900 3000

0.9
1

1.1

Time (s)

E
n
tr

o
p

y
 (

n
a
ts

) (d) EMPIRICAL PERMUTATION ENTROPY ePE(4,13,1024)

Figure 5.3: The values of the empirical permutation entropy ePE(4, τ,N) for different
delays τ computed from the EEG recording 586 100, channel C3

Example 21. Possible problems when choosing delay τ

In this example we illustrate that an increase of delay τ can lead to an increase of

the ePE(d, τ,N) values (see Example 12, p. 44 for theoretical background), and in this

situation one should take into account the following bound:

ePE(d, τ,N) ≤ ln((d+ 1)!)

d
.

In Figure 5.4 we present the ePE values computed from the EEG recording 852 36 (see

Tables 5.1, 5.2), channel C3 (late propagation) for the delays τ = 1, 6, 13. One can see

that an increase of delay τ leads to an increase of the ePE(3, τ,N) values such that

they almost attain the upper bound ln((3+1)!)
3 = 1.0594 (dashed line). This does not

allow to reflect the seizure by an increase of ePE values for τ = 6 and τ = 13. (The

epileptic seizure is reflected by an increase of the ePE values here since the seizure

occurs during a sleep stage S2, we discuss this in more details in Subsection 5.2.1.)

Note that there are two possible ways to avoid this problem when applying ePE for

the analysis of real-world data:

• to use small delays τ ;

• to increase the order d if the length of a sliding window is large enough (see

recommendation (3.19) in Subsection 3.2.2).

85

2000 2100 2200 2300 2400 2500 2600 2700

−100
−50

0
50

Time (s)
A

m
p
lit

u
d
e
 (

µ
V

) (a) ORIGINAL EEG DATA

2000 2100 2200 2300 2400 2500 2600 2700

1

1.05

1.1

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (b) EMPIRICAL PERMUTATION ENTROPY ePE(3,1,1024)

2000 2100 2200 2300 2400 2500 2600 2700

0.9

1

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (c) EMPIRICAL PERMUTATION ENTROPY ePE(3,6,1024)

2000 2100 2200 2300 2400 2500 2600 2700

0.85
0.9

0.95
1

1.05

Time (s)

E
n
tr

o
p

y
 (

n
a
ts

) (d) EMPIRICAL PERMUTATION ENTROPY ePE(3,13,1024)

Figure 5.4: The values of the empirical permutation entropy ePE(d, τ,N) are bounded

by ln((d+1)!)
d (dashed line), which does not allow to reflect the seizure for τ = 6 and

τ = 13 for d = 3

5.2 Detecting epileptic seizures in EEG data by empirical
permutation entropy, robust empirical permutation
entropy, approximate entropy and sample entropy

In this section we discuss a detection of epileptic seizures by ePE, rePE, ApEn and

SampEn for EEG data from [Epi14] (see description in Subsection 5.1.1).

• In Subsection 5.2.1 we demonstrate that the seizures that occur in the awake

state (W) are often reflected by a decrease of the ePE, ApEn and SampEn values,

whereas the seizures that occur during sleep are often reflected by an increase

of the ePE, ApEn and SampEn values. Note that there are many results that

report only a decrease of the ePE values during the seizure-related time (e.g.

[LYLO14, CTG+04, KL03]).

• In Subsection 5.2.2 we demonstrate for short-term EEG data that rePE often

provides better results than ePE, ApEn and SampEn for epileptic seizure detection.

• In Subsection 5.2.3 we demonstrate for long-term EEG data that rePE often

provides better results than ePE for epileptic seizure detection.

86

Throughout the section we compute all entropies in maximally overlapping sliding

windows of 4 s size, in all examples we use a third order Butterworth bandpass filter,

2-42 Hz as proposed in [MDSBA08] for EEG data of the same sampling rate. When

computing the ApEn and SampEn values, we use the recommended for applications

parameters m = 2 and r = 0.2σ, where σ is a standard deviation of a time series.

5.2.1 Detecting epileptic seizures in dependence on vigilance state

Example 22. An increase of the ePE, ApEn and SampEn values for the seizure

occurred in sleep.

In Figure 5.5 we present the values of ePE, ApEn and SampEn computed from the

EEG recording 852 36 (see Tables 5.1, 5.2), channel C4 (late propagation). One can

see an increase of the ePE, ApEn and SampEn values during the time related to the

seizure (marked in gray in the upper plot), which occurs in sleep stage S2.

2350 2400 2450 2500 2550 2600 2650
−100
−50

0
50

Time (s)

A
m

p
lit

u
d
e
 (

µ
V

) (a) ORIGINAL EEG DATA

2350 2400 2450 2500 2550 2600 2650
0.8

1

Time (s)

E
n
tr

o
p

y
 (

n
a
ts

) (b) EMPIRICAL PERMUTATION ENTROPY ePE(4,4,1024)

2350 2400 2450 2500 2550 2600 2650
0.2

0.4

0.6

0.8

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (c) APPROXIMATE ENTROPY ApEn(2,0.2σ,1024)

2350 2400 2450 2500 2550 2600 2650
0.2

0.4

0.6

0.8

Time (s)

E
n

tr
o

p
y
 (

n
a
ts

) (d) SAMPLE ENTROPY SampEn(2,0.2σ,1024)

Figure 5.5: The values of the empirical permutation entropy, the approximate entropy
and the sample entropy computed from the EEG recording 852 36, channel C4

This increase of complexity is explained by smaller, in general, values of the entropies,

during the sleep stages S1-S4 [NG11, AFK+05]. Note that we have observed an increase

of the ePE, ApEn and SampEn values during the seizure-related times if the seizures

occur in the sleep stage S2 for many of the EEG recordings from [Epi14] (many exceptions

87

were observed for the recording 586 which is highly contaminated with noise). We

assume that the same situation takes place also for the sleep stages S1, S3, S4 and REM,

however, there are not enough recordings in [Epi14] to prove it.

Example 23. A decrease of the ePE, ApEn and SampEn values for the seizure

occurred in the awake state.

In Figure 5.6 we present the values of ePE, ApEn and SampEn computed from the

EEG recording 1 86 (see Tables 5.1, 5.2), channel F4 (early propagation). One can see

a decrease of the ePE, ApEn and SampEn values during the time related to the seizure

(marked in gray in the upper plot), the seizure occurs in the awake state (W).

2200 2250 2300 2350 2400 2450 2500 2550 2600 2650
−50

0

50

Time (s)

A
m

p
lit

u
d
e
 (

µ
V

) (a) ORIGINAL EEG DATA

2200 2250 2300 2350 2400 2450 2500 2550 2600 2650
0.8

1

Time (s)

E
n
tr

o
p

y
 (

n
a
ts

) (b) EMPIRICAL PERMUTATION ENTROPY ePE(4,4,1024)

2200 2250 2300 2350 2400 2450 2500 2550 2600 2650
0

0.2
0.4

0.6

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (c) APPROXIMATE ENTROPY ApEn(2,0.2σ,1024)

2200 2250 2300 2350 2400 2450 2500 2550 2600 2650

0.4

0.6

0.8

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (d) SAMPLE ENTROPY SampEn(2,0.2σ,1024)

Figure 5.6: The values of empirical permutation entropy, approximate entropy and
sample entropy computed from the EEG recording 1 86, channel F4

Note also a decrease of the ApEn and SampEn values in the time period

2240-2325 s, related to a sensitivity of ApEn and SampEn to artifacts2, whereas the

ePE values for this example are a bit more robust to artifacts. This illustrates that

ApEn and SampEn need some preprocessing or combination with other complexity

measures in order to detect seizures, otherwise they may provide many false alarms.

We have observed a decrease of the ePE, ApEn and SampEn values for many of

2EEG is often contaminated with different kinds of artifacts that are changes in EEG caused by eye
movement, muscle activity, electrode movement, etc (see, e.g. [Lib12, TT09] for more details).

88

EEG recordings from [Epi14] during the seizure-related times if the seizures occur in

the awake state. However, for some cases there is an increase the ePE values during

the seizure-related times in the awake state, as it happens for the recordings from the

patient 852 (see Example 27, p. 92). At the moment we do not have any rigorous

explanation for that and we relate it to the individual features of EEG data for the

patient 852.

5.2.2 Detecting epileptic seizures in short-term EEG data

In this subsection we illustrate that in many cases rePE values reflect epileptic seizures

occurred in the awake state better than ePE, ApEn and SampEn values.

Remark 15. In this subsection we do not apply rePE for detecting epileptic seizures in

sleep since ePE detects epileptic seizures in sleep rather well and rePE does not provide

any significant improvement. We relate this to a small number of artifacts and noise in

sleep EEG data.

Throughout this subsection we use the empirically chosen thresholds η1 = 0 and

η2 = 5 when computing rePE(d, τ,N, η1, η2) from EEG data. This means that we do

not use the lower threshold η1 since we did not obtain improvement of the results when

applying rePE(d, τ,N, η1, η2) with η1 > 0 for the EEG data from [Epi14]. We also use

the empirically chosen parameters τ = 4 and d = 4 which have shown good results in

the experiments.

Example 24. rePE values reflect epileptic seizures (occurred in the awake

state) better than ePE, ApEn and SampEn values.

We present in Figure 5.7 the values of ePE, rePE and SampEn computed from the

EEG recording 795 2 (see Tables 5.1, 5.2), channel F4 (late propagation). We do not

present the ApEn values since they are very similar to the SampEn values. One can

see that the seizure (marked in gray in the upper plot) is much better reflected by the

values of rePE than by the values of ePE and SampEn. Note also that a large increase

of the ePE and SampEn values at about 700 s, this increase is related, presumably, to

an EEG artifact. This illustrates that a sensitivity of the ePE, SampEn and ApEn to

EEG artifacts could hamper a correct epileptic seizure detection in EEG data by these

measures. We have encountered this problem many times when analyzing the EEG data

from [Epi14] by ePE, SampEn and ApEn. Meanwhile rePE often seems to be a better

alternative for epileptic seizure detection in the awake state. In the following example

we explain why the rePE values reflect epileptic seizures better than the ePE values.

89

600 700 800 900 1000 1100 1200
−50

0

50

Time (s)
A

m
p
lit

u
d
e
 (

µ
V

) (a) ORIGINAL EEG DATA

600 700 800 900 1000 1100 1200

0.8

1

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (b) EMPIRICAL PERMUTATION ENTROPY ePE(4,4,1024)

600 700 800 900 1000 1100 1200
0

0.5

1

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (c) robust EMPIRICAL PERMUTATION ENTROPY rePE(4,4,1024,0,5)

600 700 800 900 1000 1100 1200
0.2

0.4

0.6

0.8

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (d) SAMPLE ENTROPY SampEn(2,0.2σ,1024)

Figure 5.7: The values of the empirical permutation entropy, the robust empirical
permutation entropy and the sample entropy computed from the EEG recording 795 2,
channel F4

Example 25. Explanation for the rePE behavior.

We present in Figure 5.8 the values of rePE, ePE and MD (see Subsection 3.3.5, p. 52

for the MD definition) computed from the EEG recording 454 37 (see Tables 5.1, 5.2),

channel F4 (unmarked). One can see the prominent decrease of the rePE values during

the time related to the seizure (marked in gray in the upper plot), whereas the seizure

is almost not reflected by the ePE values. This is explained by the increasing values of

MD during the seizure-related time. This means that in the seizure-related time there

are many pairs of points that are abnormally (> η2 = 5) distant from each other and

the corresponding ordinal patterns are not counted when computing rePE which leads

to a decrease of the rePE values. Note also for this example a high sensitivity of ePE

to EEG artifacts that, in particular, does not allow to reflect the epileptic seizure by

the ePE values.

We conclude that for short-term EEG data in many cases rePE provides better

results than ePE, ApEn and SampEn for epileptic seizure detection if seizures occurred

in the awake state. However, further investigation of rePE is necessary, especially the

choice of the thresholds η1, η2 is of interest.

90

2700 2750 2800 2850 2900 2950 3000

−40
−20

0
20
40

Time (s)
A

m
p
lit

u
d
e
 (

µ
V

) (a) ORIGINAL EEG DATA

2700 2750 2800 2850 2900 2950 3000
0.8

1

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (b) EMPIRICAL PERMUTATION ENTROPY ePE(4,4,1024)

2700 2750 2800 2850 2900 2950 3000
0.2
0.4
0.6
0.8

1

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (c) robust EMPIRICAL PERMUTATION ENTROPY rePE(4,4,1024,0,5)

2700 2750 2800 2850 2900 2950 3000
0

0.5

Time (s)

M
D

 v
a
lu

e
s

(d) MD(4,4,1024,0,5)

Figure 5.8: The values of the empirical permutation entropy and the robust empirical
permutation entropy computed from the EEG recording 454 37, channel F4

5.2.3 Detecting epileptic seizures in long-term EEG data

In this subsection we illustrate epileptic seizure detection for long-term EEG data by

ePE and rePE. We do not compare here ePE and rePE with ApEn and SampEn since,

first, ApEn and SampEn do not show good results in epileptic seizure detection for

short-term EEG recordings (see Example 24) and, second, ApEn and SampEn are very

time-consuming in comparison with ePE and rePE (see Subsection 4.6).

Example 26. Epileptic seizure detection for the EEG recordings from the

patient 795.

In this example we use the empirically chosen thresholds η1 = 0, η2 = 4 and the

parameters d = 4, τ = 4 that provided good results for epileptic seizure detection in the

awake state by rePE for several long-term EEG recordings. In Figure 5.9 we present

the values of ePE and rePE computed from the EEG recordings from patient 795 (see

Tables 5.1, 5.2), channel C3. We indicate the seizures by green vertical lines. Note that

all the seizures for this patient occurred in the awake state (see Table 5.2). We mark the

ePE and rePE values less than 0.6 and 0.1, correspondingly, by x. Here all the seizures

are reflected by decreases of the rePE values, whereas the ePE values almost do not

reflect the seizures (also for other values of τ). However, there are some decreases of

the rePE values that are, presumably, related to EEG artifacts, but not to the seizures.

91

15:13 01:13 11:13 21:13 07:13 17:13 03:13 13:13 23:13 09:13 15:13
0

0.5

1

EMPIRICAL PERMUTATION ENTROPY ePE(4,4,1024)

Time (h:min)

E
n
tr

o
p
y
 (

n
a
ts

)

15:13 01:13 11:13 21:13 07:13 17:13 03:13 13:13 23:13 09:13 15:13
0

0.5

1

robust EMPIRICAL PERMUTATION ENTROPY rePE(4,4,1024,0,4)

Time (h:min)

E
n
tr

o
p
y
 (

n
a
ts

)

Figure 5.9: The values of empirical permutation entropy (ePE) and robust empirical
permutation entropy (rePE) computed from the EEG recordings from patient 795,
channel C3, the seizures are indicated by the green vertical lines, the ePE and rePE
values, less than 0.6 and 0.1, correspondingly, are marked by x

We present a MATLAB script for processing the EEG recordings from the patient

795 by ePE and rePE and for plotting the results (Figure 5.9) in Appendix A.6.

Example 27. Sleep stages separation for the EEG recording 852.

While analyzing the EEG data from [Epi14], we have found out that the ePE and

rePE values seem to separate the sleep stages. Here we illustrate two points: presumable

sleep stages separation and seizure detection by the ePE and rePE values. To this aim,

in Figure 5.10 we present values of ePE(3, 1, 1024) and rePE(3, 1, 1024, 0.5, 3) computed

from the EEG recordings from the patient 852 (see Tables 5.1, 5.2), channel C3. We

indicate the seizures by green vertical lines. We mark also the ePE and rePE values

higher than 0.69 and 0.84, correspondingly, by x. Note also that for this patient the ePE

values increase during the seizure-related times when seizures occurred in the awake

state (see Subsection 5.2.1 for discussion).

One can see the four clear prominent decreases of the ePE and rePE values related to

sleep (see the time axis to detect probable sleep during night time). Note that the sleep

stages are hardly seen in Figure 5.9 when the values of ePE and rePE are computed for

τ = 4. We also note lower rePE variance during sleep. However, detecting sleep stages

by ePE is beyond the scope of this thesis, we refer to [NG11, KUU14, Una15] for some

interesting results in this direction.

92

01:10 11:10 21:10 07:10 17:10 03:10 13:10 23:10 09:10

0.4

0.5

0.6

0.7

EMPIRICAL PERMUTATION ENTROPY ePE(3,1,1024)

Time (h:min)

E
n
tr

o
p
y
 (

n
a
ts

)

01:10 11:10 21:10 07:10 17:10 03:10 13:10 23:10 09:10
0.2

0.3

0.4

0.5

0.6

0.7

0.8

robust EMPIRICAL PERMUTATION ENTROPY rePE(3,1,1024,0.5,3)

Time (h:min)

E
n
tr

o
p
y
 (

n
a
ts

)

Figure 5.10: The values of empirical permutation entropy (ePE) and the robust empirical
permutation entropy (rePE) computed from the EEG recordings from the patient 852,
channel C3, the seizures are indicated by the green vertical lines, the ePE and rePE
values, higher than 0.69 and 0.84, correspondingly, are marked by x

We conclude that it is advantageous to combine non-metric ePE with using some

metric information to detect epileptic seizures, like we did when using rePE. The rePE

values often correctly reflect epileptic seizures (occurred in the awake state), however,

there are still many “false alarms” related to artifacts.

Remark 16. (Prediction of epileptic seizures) We would like to emphasize that

due to the sensitivity of ePE to artifacts, noise, choice of the channel and delay τ we do

not speak about prediction of epileptic seizures in this chapter. However, in some cases

the ePE values provide something that looks like a prediction of an epileptic seizure. For

example, in Figure 5.11 we present the ePE values computed from the EEG recording

89 140 (see Tables 5.1, 5.2) for channels F4 (late propagation), C3 (early propagation)

and F7 (origin). One can see that the ePE values start to increase about 40 s before the

seizure (marked in gray in the upper plot), which is rather typical for all the seizures

from this patient except for the EEG recording 89 133. However, these changes can be,

presumably, related to change of EEG activity (e.g. change of sleep stage) that happens

before the seizure. Note also that similar (looking like prediction) results were obtained

for the patient 308.

93

1450 1500 1550 1600 1650 1700 1750 1800

−50
0

50
100

Time (s)
A

m
p
lit

u
d
e
 (

µ
V

) (a) ORIGINAL EEG DATA, channel F7

1450 1500 1550 1600 1650 1700 1750 1800

0.8

1

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (b) EMPIRICAL PERMUTATION ENTROPY, ePE(4,4,1024), channel F4

1450 1500 1550 1600 1650 1700 1750 1800

0.8

1

Time (s)

E
n
tr

o
p
y
 (

n
a
ts

) (c) EMPIRICAL PERMUTATION ENTROPY, ePE(4,4,1024), channel C3

1450 1500 1550 1600 1650 1700 1750 1800

0.8

1

Time (s)

E
n
tr

o
p

y
 (

n
a
ts

) (d) EMPIRICAL PERMUTATION ENTROPY, ePE(4,4,1024), channel F7

Figure 5.11: The values of the empirical permutation entropy computed from the EEG
recording 89 140, channels F4, C3 and F7

5.3 Discrimination between different complexities of EEG
data

In this section we illustrate the ability of ApEn, SampEn and ePE to discriminate

between different complexities of EEG recordings from the Bonn EEG Database [Bon14].

Note that some results from this section are already presented in [KUU14]. In this

section we do not make any preprocessing for EEG data.

5.3.1 Description of EEG data from the Bonn EEG Database

There are five groups of recordings [ALM+01]:

• A – surface EEG recorded from healthy subjects with open eyes;

• B – surface EEG recorded from healthy subjects with closed eyes;

• C – intracranial EEG recorded from subjects with epilepsy during a seizure-free

period from hippocampal formation of the opposite hemisphere of the brain;

• D – intracranial EEG recorded from subjects with epilepsy during a seizure-free

period from within the epiloptogenic zone;

94

• E – intracranial EEG recorded from subjects with epilepsy during a seizure period.

Each group contains 100 one-channel EEG recordings of 23.6 s duration recorded at a

sampling rate of 173.61 Hz, the recordings are free from artifacts; we refer to [ALM+01]

for more details. For simplicity we refer further to the recordings from the group A as

“recordings A”, to the recordings from the group B as “recordings B” and so on.

Note that we take here the entire original time series since they fulfill a weak

stationarity criterion formulated in [ALM+01, Section II B2], see also Subsection 5.1.2

for discussion about choice of window size.

5.3.2 Discriminating recordings by empirical permutation entropy,
approximate entropy and sample entropy

In Figure 5.12 one can see that ApEn and SampEn separate the recordings A and B

from the recordings C, D and E, whereas ePE separates the recordings E from the

recordings A, B, C and D. Therefore it is a natural idea to present the values of ePE

versus the values of ApEn and SampEn for each recording. Indeed, in Figure 5.13 one

can see a good separation between the recordings A and B, the recordings C and D,

and the recordings E.

A, B C, D E

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
h
e
 v

a
lu

e
s
 o

f
A

p
E

n
(2

,0
.2

 σ
,N

)

A, B C, D E

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

T
h
e

 v
a
lu

e
s
 o

f
S

a
m

p
E

n
(2

,0
.2

σ
,N

)

A, B C, D E
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

T
h
e
 v

a
lu

e
s
 o

f
e
P

E
(5

,1
,N

)

A, B

C, D

E

Figure 5.12: The values of the entropies computed from the recordings from the groups
A and B, C and D, and E; N = 4097, σ stands for the standard deviation of a time
series

5.3.3 Discriminating recordings by empirical permutation entropy com-
puted for different delays

We have found also that varying the delay τ can be used for separation between

the groups of recordings when computing ePE. In Figure 5.14 we present the values

ePE(4, τ,N) for τ = 1, 2, 3. Note an increase of the ePE values for an increase of τ , we

plot also an upper bound ln(5!)
4 (blue dashed line) for ePE(4, τ,N) to show why we do

95

0 0.5 1 1.5

0.4

0.5

0.6

0.7

0.8

0.9

1

The values of ApEn(2,0.2 σ,N)

T
h
e
 v

a
lu

e
s
 o

f
e
P

E
(5

,1
,N

)

A, B

C, D

E

0 0.5 1 1.5

0.4

0.5

0.6

0.7

0.8

0.9

1

The values of SampEn(2,0.2 σ,N)

T
h
e
 v

a
lu

e
s
 o

f
e
P

E
(5

,1
,N

)

Figure 5.13: The values of empirical permutation entropy versus the values of approxi-
mate entropy and sample entropy; N = 4097, σ stands for the standard deviation of a
time series

not consider τ > 3 here. One can see that the delay τ = 1 provides a separation of the

recordings E from other recordings, whereas the delay τ = 3 provides a separation of

the recordings A and B from other recordings. The natural idea now is to present the

values of ePE versus themselves for different delays τ .

A, B C, D E
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

T
h
e
 v

a
lu

e
s
 o

f
e
P

E
(4

,1
,N

)

A, B C, D E
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

T
h
e
 v

a
lu

e
s
 o

f
e
P

E
(4

,2
,N

)

A, B C, D E
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

T
h
e
 v

a
lu

e
s
 o

f
e
P

E
(4

,3
,N

)

A, B

C, D

E

Figure 5.14: The values of the empirical permutation entropy computed from the
recordings A and B, C and D, and E, N = 4097

In Figure 5.15 one can see a good separation between the recordings A and B, the

recordings C and D, and the recordings E.

The results of discrimination are presented only for illustration of discrimination

ability of ePE, ApEn and SampEn, therefore we do not compare the results with other

methods (for a review of classification methods applied for the Bonn data set see

[TTF09]). Note also that we did not use any preprocessing of data, we even found that

filtering worsen the results of discrimination.

96

0.4 0.5 0.6 0.7 0.8 0.9 1 1.1
0.6

0.7

0.8

0.9

1

1.1

1.2

The values of ePE(4,1,N)
T

h
e
 v

a
lu

e
s
 o

f
e
P

E
(4

,3
,N

)

A, B

C, D

E

Figure 5.15: The values of ePE(5, 1, N) versus the values of ePE(5, 3, N), N = 4097

Application of the entropies to the epileptic data from Bonn EEG Database has

shown the following.

• It can be useful to apply approximate entropy, sample entropy and empirical

permutation entropy together since they reveal different features of the dynamics

underlying a time series.

• It can be useful to apply empirical permutation entropy for different delays τ since

they reveal different features of the dynamics underlying a time series.

See also [NG12] for use of permutation entropy for automated epileptic seizure

detection with the help of support vector machines for the same data set as we considered

in the section.

5.4 Conclusion

On the basis of the experiments performed for the EEG data from [Epi14] and [Bon14] by

the empirical permutation entropy (ePE), robust empirical permutation entropy (rePE),

approximate entropy (ApEn) and sample entropy (SampEn) we make the following

conclusions.

• In many cases the ePE, ApEn and SampEn values decrease during the seizure-

related time when the seizure occurs in the awake state, whereas the ePE, ApEn

and SampEn values increase during the seizure-related time when the seizure

occurs during sleep.

• The ePE values strongly depend on the chosen EEG channel. By this reason we

recommend to compute the ePE values from all the EEG channels when analyzing

EEG data by ePE.

97

• The ePE, ApEn and SampEn are very sensitive with respect to EEG artifacts

which hampers correct detecting the epileptic seizures in the awake state in EEG

data.

• The rePE is a promising new quantity; according to the results of our experiments,

it often provides better results than ePE, ApEn and SampEn for epileptic seizure

detecting in the awake state. However, rePE requires further investigation. In

general, it is useful to combine ePE with using some metric information obtained

from a time series.

• It is useful to combine ePE with ApEn and SampEn since it allows to reveal

different features of underlying system and it is helpful for discrimination of time

series with different underlying complexity.

• It is useful to combine ePE computed for different delays τ since it allows to reveal

different features of underlying system and it is helpful for discrimination of time

series with different underlying complexity.

Now we list the promising directions of future studies and applications of the ePE

and the rePE.

• study of the thresholds η1, η2 when applying rePE(d, τ,N, η1, η2) to real-world

data;

• study of various delays τ when applying ePE and rePE to real-world data;

• study of the variances of ePE and rePE which can be particularly interesting for

epileptic seizures prediction or sleep stages separation;

• further study of combining the ePE with different measures of complexity and

with using metric information from a time series;

• further application of rePE to real-world data, in particular, for sleep stages

separation.

98

Appendix A

MATLAB code

A.1 Computing empirical permutation entropy by the new
method

Figures/PE.m

% PE.m - algorithm for the fast calculation of an empirical

% permutaion entropy in maximally overlapping sliding windows

% the function is realized by the method proposed in [UK13]

% INPUT (x - the considered time series , Tau - a delay ,

% d - an order of the ordinal patterns , WS - size of a sliding window)

% OUTPUT [ePE - the values of empirical permutation entropy]

function ePE = PE(x, Tau , d, WS)

load([’table’ num2str(d) ’.mat’]);% the precomputed table

pTbl = eval([’table’ num2str(d)]);

Length = numel(x); % length of the time series

d1 = d+1;

dTau = d*Tau;

nPat = factorial(d1); % amount of ordinal patterns of order d

opd = zeros(1, nPat); % distribution of ordinal patterns

ePE = zeros(1, Length); % empirical permutation entropy

op = zeros(1, d); % ordinal pattern (i1, i2, ..., id)
prevOP = zeros(1, Tau); % previous ordinal patterns for 1 : τ
opW = zeros(1, WS); % ordinal patterns in the window

ancNum = nPat./ factorial (2:d1); % ancillary numbers

peTbl (1:WS) = -(1:WS).*log(1:WS); % table of values g(j)
peTbl (2:WS) = (peTbl (2:WS)-peTbl (1:WS -1))./WS;

for iTau = 1:Tau

cnt = iTau;

op(1) = (x(dTau+iTau -Tau) >= x(dTau+iTau));

for j = 2:d

op(j) = sum(x((d-j)*Tau+iTau) >= x((d1 -j)*Tau+iTau:Tau:dTau+iTau));

end

opW(cnt) = sum(op.* ancNum); % the first ordinal pattern

opd(opW(cnt)+1) = opd(opW(cnt)+1) +1;

for j = dTau+Tau+iTau:Tau:WS+dTau % loop for the first window

cnt = cnt+Tau;

posL = 1; % the position l of the next point

for i = j-dTau:Tau:j-Tau

if(x(i) >= x(j))

posL = posL +1;

end

end

opW(cnt) = pTbl(opW(cnt -Tau)*d1+posL);

opd(opW(cnt)+1) = opd(opW(cnt)+1) +1;

end

prevOP(iTau) = opW(cnt);

end

99

ordDistNorm = opd/WS;

ePE(WS+Tau*d) = -nansum(ordDistNorm (1: nPat).*log(ordDistNorm (1: nPat)));

iTau = mod(WS, Tau)+1; % current shift 1 : τ
iPat = 1; % position of the current pattern in the window

for t = WS+Tau*d+1: Length % loop over all points

posL = 1; % the position l of the next point

for j = t-dTau:Tau:t-Tau

if(x(j) >= x(t))

posL = posL +1;

end

end

nNew = pTbl(prevOP(iTau)*d1+posL); % "incoming" ordinal pattern

nOut = opW(iPat); % "outcoming" ordinal pattern

prevOP(iTau) = nNew;

opW(iPat) = nNew;

nNew = nNew +1;

nOut = nOut +1;

if nNew ~= nOut % update the distribution of ordinal patterns

opd(nNew) = opd(nNew)+1; % "incoming" ordinal pattern

opd(nOut) = opd(nOut) -1; % "outcoming" ordinal pattern

ePE(t) = ePE(t-1)+(peTbl(opd(nNew))-peTbl(opd(nOut)+1));

else

ePE(t) = ePE(t-1);

end

iTau = iTau +1;

iPat = iPat +1;

if(iTau > Tau) iTau = 1; end

if(iPat > WS) iPat = 1; end

end

ePE = ePE(WS+Tau*d:end);

A.2 Computing empirical permutation entropy by the old
method

Figures/oldPE.m

% oldPE.m - algorithm for the calculation of an empirical

% permutaion entropy in maximally overlapping sliding windows

% the function is realized by the method proposed in [KSE07]

% INPUT (x - the considered time series , Tau - a delay ,

% d - an order of the ordinal patterns , WS - size of a sliding window)

% OUTPUT [ePE - the values of empirical permutation entropy]

function ePE = oldPE(x, Tau , d, WS)

Length = numel(x); % length of the time series

d1 = d+1;

dTau = d*Tau;

nPat = factorial(d1); % amount of ordinal patterns of order d

opd = zeros(1, nPat); % distribution of ordinal patterns

ePE = zeros(1, Length); % empirical permutation entropy

op = zeros(Tau , d); % ordinal pattern (i1, i2, ..., id)
opW = zeros(1, WS); % ordinal patterns in the window

ancNum = nPat./ factorial (2:d1); % ancillary numbers

for iTau = 1:Tau % loop for the first window

cnt = iTau;

op(iTau , 1) = (x(dTau+iTau -Tau) >= x(dTau+iTau));

for k = 2:d

op(iTau , k) = sum(x((d-k)*Tau+iTau)>=x((d1-k)*Tau+iTau:Tau:dTau+iTau));

end

opW(cnt) = sum(op(iTau , :).* ancNum)+1; % the first ordinal pattern

opd(opW(cnt)) = opd(opW(cnt))+1;

for t = dTau+Tau+iTau:Tau:WS+dTau % loop for the next ord. patterns

op(iTau , 2:d) = op(iTau , 1:d-1);

op(iTau , 1) = (x(t-Tau) >= x(t));

100

for j = 2:d

if(x(t-j*Tau) >= x(t))

op(iTau , j) = op(iTau , j)+1;

end

end

opNumber = sum(op(iTau , :).* ancNum)+1;

opd(opNumber) = opd(opNumber)+1;

cnt = cnt+Tau;

opW(cnt) = opNumber; % the next ordinal pattern

end

end

ordDistNorm = opd/WS;

ePE(WS+Tau*d) = -nansum(ordDistNorm (1: nPat).*log(ordDistNorm (1: nPat)));

iTau = mod(WS, Tau)+1; % current shift 1 : τ
iPat = 1; % current pattern in the window

for t = WS+dTau +1: Length % loop for all time -series

op(iTau , 2:d) = op(iTau , 1:d-1);

op(iTau , 1) = (x(t-Tau) >= x(t));

for j = 2:d

if(x(t-j*Tau) >= x(t))

op(iTau , j) = op(iTau , j)+1;

end

end

nNew = sum(op(iTau , :).* ancNum)+1; % "incoming" ordinal pattern n

nOut = opW(iPat); % "outcoming" ordinal pattern

opW(iPat) = nNew;

if nNew ~= nOut % update the distribution

opd(nNew) = opd(nNew)+1; % "incoming" ordinal pattern

opd(nOut) = opd(nOut) -1; % "outcoming" ordinal pattern

ordDistNorm = opd/WS;

ePE(t) = -nansum(ordDistNorm (1: nPat).*log(ordDistNorm (1: nPat)));

else

ePE(t) = ePE(t-1);

end

iTau = iTau +1;

iPat = iPat +1;

if(iTau > Tau) iTau = 1; end

if(iPat > WS) iPat = 1; end

end

ePE = ePE(WS+Tau*d:end);

A.3 Computing empirical permutation entropy for ordi-
nal patterns with tied ranks

Figures/PEeq.m

% PEeq.m - algorithm for the fast calculation of an empirical

% permutaion entropy for the case of ordinal patterns with tied ranks

% in maximally overlapping sliding windows

% the function is realized by the method proposed in [UK13]

% INPUT (x - the considered time series , Tau - a delay ,

% d - an order of the ordinal patternswith tied ranks ,

% WS - size of a sliding window)

% OUTPUT [ePE - the values of empirical permutation entropy]

function ePE = PEeq(x, Tau , d, WS)

load([’tableEq ’ num2str(d) ’.mat’]); % the precomputed table

opTbl = eval([’tableEq ’ num2str(d)]);% of successive ordinal patterns

L = numel(x); % length of time series

dTau = d*Tau;

nPat = 1;

for i = 3:2:2*d+1

nPat = nPat*i;

end

101

opd = zeros(1, nPat); % distribution of the modified ordinal patterns

ePE = zeros(1, L); % empirical permutation entropy

b = zeros(Tau , d); % indicator of equality (b1, b2, . . . , bd)
prevOP = zeros(1, Tau); % previous modified ordinal patterns for 1 : τ
opW = zeros(1, WS); % modified ordinal patterns in the window

ancNum = ones(1, d); % ancillary numbers

for j = 2:d

ancNum(j) = ancNum(j-1) *(2*j-1);

end

peTbl (1:WS) = -(1:WS).*log(1:WS); % table of values g(j)
peTbl (2:WS) = (peTbl (2:WS)-peTbl (1:WS -1))./WS;

for iTau = 1:Tau % all shifts

cnt = iTau;

mOP = zeros(1, d);

t = dTau+iTau; % current time t of the last point in mOP

for j = 1:d % determining modified ordinal patterns

for i = j-1: -1:0

if(i == 0 || b(iTau , i) == 0)

if(x(t-j*Tau) > x(t-i*Tau))

mOP(j) = mOP(j)+2;

elseif(x(t-j*Tau) == x(t-i*Tau))

b(iTau , j) = 1;

end

end

end

end

mOP (1:d) = mOP (1:d)+b(iTau , 1:d); % add equality indicator

opW(cnt) = sum(mOP.* ancNum);

opd(opW(cnt)+1) = opd(opW(cnt)+1) +1;

cnt = cnt+Tau;

for t = iTau+Tau*(d+1):Tau:WS+Tau*d % loop for the first window

b(iTau , 2:d) = b(iTau , 1:d-1); % renew (b1, b2, . . . , bd)
b(iTau , 1) = 0;

posL = 1; % position L of the next point

eqFlag = 0; % indicator of equality B
for i = 1:d; % determining the position L

if(b(iTau , i) == 0)

if(x(t-i*Tau) > x(t))

posL = posL +2;

elseif(x(t) == x(t-i*Tau))

eqFlag = 1;

b(iTau , i) = 1;

end

end

end

posL = posL+eqFlag; % position L of the next point

opW(cnt) = opTbl(opW(cnt -Tau)*(2*d+1)+posL);

opd(opW(cnt)+1) = opd(opW(cnt)+1) +1;

cnt = cnt+Tau;

end

prevOP(iTau) = opW(t-dTau);

end

OPDnorm = opd/WS; % normalization of the ordinal distribution

ePE(WS+Tau*d) = -nansum(OPDnorm (1: nPat).*log(OPDnorm (1: nPat)));

iTau = mod(WS, Tau)+1; % current shift 1 : τ
iOP = 1; % position of the current pattern in the window

for t = WS+Tau*d+1:L % loop for all points in a time series

b(iTau , 2:d) = b(iTau , 1:d-1);

b(iTau , 1) = 0;

posL = 1;

eqFlag = 0; % x(j)==x(i)?

for i = 1:d; % determining the position L
if(b(iTau , i) == 0)

if(x(t-i*Tau) > x(t))

posL = posL +2;

elseif(x(t) == x(t-i*Tau))

eqFlag = 1;

b(iTau , i) = 1;

end

102

end

end

posL = posL+eqFlag; % position L of the next point

nNew = opTbl(prevOP(iTau)*(2*d+1)+posL); % "incoming" ordinal pattern

nOut = opW(iOP); % "outcoming" ordinal pattern

prevOP(iTau) = nNew;

opW(iOP) = nNew;

nNew = nNew +1;

nOut = nOut +1;

if nNew ~= nOut % if nNew == nOut , ePE does not change

opd(nNew) = opd(nNew)+1; % "incoming" ordinal pattern

opd(nOut) = opd(nOut) -1; % "outcoming" ordinal pattern

ePE(t) = ePE(t-1)+peTbl(opd(nNew))-peTbl(opd(nOut)+1);

else

ePE(t) = ePE(t-1);

end

iTau = iTau +1;

iOP = iOP+1;

if(iTau > Tau) iTau = 1; end

if(iOP > WS) iOP = 1; end

end

ePE = ePE(WS+Tau*d:end);

A.4 Computing empirical conditional entropy of ordinal
patterns

Figures/CondEn.m

% CondEn.m - algorithm for the fast calculation of an empirical

% conditional entropy of ordinal patterns in sliding windows

% INPUT (x - the considered time series , Tau - a delay ,

% d - an order of the ordinal patterns , WS - size of a sliding window)

% OUTPUT [eCE - the empirical conditional entropy of ordinal patterns]

function eCE = CondEn(x, Tau , d, WS)

load([’table’ num2str(d) ’.mat’]);% the precomputed table

Length = max(size(x)); % the length of the time series

d1 = d+1; % for fast computation

dTau = d*Tau;

dTau1 = d1*Tau;

nPat = factorial(d1); % the number of ordinal patterns of order d

ordDist = zeros(1, nPat); % the distribution of the ordinal patterns

wordDist = zeros(1, nPat*d1); % the distribution of (2,d)-words

op = zeros(1, d); % ordinal pattern (i1, i2, ..., id)
prevOP = zeros(1, Tau); % previous ordinal patterns for 1 : τ
prevWord = zeros(1, Tau); % previous (2,d)-words for 1 : τ
opWin = zeros(1, WS); % ordinal patterns in the window

wordWin = zeros(1, WS); % (2,d)-words in the window

peTbl (1:WS) = -(1:WS).*log(1:WS); % table of values g(j)
peTbl (2:WS) = (peTbl (2:WS)-peTbl (1:WS -1))./WS;

ancNum = nPat./ factorial (2:d1); % the ancillary numbers

patTbl = eval([’table’ num2str(d)]);

for iTau = 1:Tau

cnt = iTau;

op(1) = (x(dTau+iTau -Tau) >= x(dTau+iTau));

for j = 2:d

op(j) = sum(x((d-j)*Tau+iTau) >= x((d1 -j)*Tau+iTau:Tau:dTau+iTau));

end

opNum = sum(op.* ancNum); % the first ordinal pattern

% the ordinal distribution for the window

103

for j = dTau1+iTau:Tau:WS+(d+1)*Tau

word2 = opNum*d1;

for l = j-dTau:Tau:j-1

if (x(l) >= x(j))

word2 = word2 +1;

end;

end;

opNum = patTbl(word2 +1);

opWin(cnt) = opNum;

ordDist(opNum +1) = ordDist(opNum +1) +1;

wordWin(cnt) = word2;

wordDist(word2 +1) = wordDist(word2 +1) +1;

cnt = cnt+Tau;

end

prevOP(iTau) = opWin(cnt -Tau);

prevWord(iTau) = wordWin(cnt -Tau);

end

ordDistNorm = ordDist/WS;

wordDistNorm = wordDist/WS;

ePE = - nansum(ordDistNorm .*log(ordDistNorm));

eCE(WS+Tau*(d+1)) = -ePE - nansum(wordDistNorm .*log(wordDistNorm));

iTau = mod(WS, Tau)+1; % current shift 1 : τ
iPat = 1; % position of the current pattern in the window

for t = WS+Tau*(d+1)+1: Length % loop over all points

posL = 0; % the position l of the next point

for j = t-dTau:Tau:t-Tau

if(x(j) >= x(t))

posL = posL +1;

end

end

nNew1 = prevOP(iTau)*d1+posL;% "incoming" (2,d)-word

nOut1 = wordWin(iPat); % "outcoming" (2,d)-word

prevWord(iTau) = nNew1;

wordWin(iPat) = nNew1;

nNew = patTbl(nNew1 +1); % "incoming" ordinal pattern

nOut = opWin(iPat); % "outcoming" ordinal pattern

prevOP(iTau) = nNew;

opWin(iPat) = nNew;

nNew1 = nNew1 +1; nOut1 = nOut1 +1;

nNew = nNew +1; nOut = nOut +1;

% update the distribution of (2,d)-words

if nNew1 ~= nOut1

ordDist(nNew) = ordDist(nNew)+1; % "incoming" ordinal pattern

ordDist(nOut) = ordDist(nOut) -1; % "outcoming" ordinal pattern

wordDist(nNew1) = wordDist(nNew1)+1; % "incoming" (2,d)-word

wordDist(nOut1) = wordDist(nOut1) -1; % "outcoming" (2,d)-word

eCE(t) = eCE(t-1)-peTbl(ordDist(nNew))+peTbl(ordDist(nOut)+1) +...

peTbl(wordDist(nNew1))-peTbl(wordDist(nOut1)+1);

else

eCE(t) = eCE(t-1);

end

iTau = iTau +1;

iPat = iPat +1;

if(iTau > Tau) iTau = 1; end

if(iPat > WS) iPat = 1; end

end

eCE = eCE(WS+Tau*(d+1):end);

104

A.5 Computing robust empirical permutation entropy

Figures/rePE.m

% rePE.m - algorithm for the fast calculation of a robust empirical

% permutaion entropy in maximally overlapping sliding windows

% INPUT (x - the considered time series , Tau - a delay ,

% d - an order of the ordinal patterns , WS - size of a sliding window ,

% thr1 and thr2 - the lower and upper thresholds)

% OUTPUT [re_PE - the values of robust empirical permutation entropy ,

% MD - the values of MD]

function [MD , re_PE] = rePE(x, Tau , d, WS , thr1 , thr2)

load([’table’ num2str(d) ’.mat’]); % the precomputed table

pTbl = eval([’table’ num2str(d)]);

Length = numel(x); % length of the time series

d1 = d+1;

dTau = d*Tau;

nPat = factorial(d1); % amount of ordinal patterns of order d

opd = zeros(1, nPat); % distribution of ordinal patterns

op = zeros(1, d); % ordinal pattern (i1, i2, ..., id)
ancNum = nPat./ factorial (2:d1); % ancillary numbers

MDthr = (d+1)*d/8;

prevOP = zeros(1, Tau); % previous ordinal patterns for 1 : τ
opW = zeros(1, WS); % ordinal patterns in the window

re_PE = zeros(1, Length - WS -dTau);

MD = zeros(1, Length);

for iTau = 1:Tau

MDar1 = zeros(1, d);

MDar2 = zeros(1, d);

for i = 1:d

MDar1(i)=sum(abs(x(iTau+(i-1)*Tau)-x(iTau+i*Tau:Tau:iTau+dTau))<thr1);

MDar2(i)=sum(abs(x(iTau+(i-1)*Tau)-x(iTau+i*Tau:Tau:iTau+dTau))>thr2);

end

MD(iTau) = sum(MDar1)+sum(MDar2);

MDar1 (1:d-1) = MDar1 (2:d);

MDar2 (1:d-1) = MDar2 (2:d);

MDar1(d) = 0;

MDar2(d) = 0;

for i = iTau+Tau:Tau:Length -dTau -Tau

for j =0:d-1

MDar1(j+1) = MDar1(j+1) + (abs(x(i+j*Tau)-x(i+dTau)) < thr1);

MDar2(j+1) = MDar2(j+1) + (abs(x(i+j*Tau)-x(i+dTau)) > thr2);

end

MD(i) = sum(MDar1)+sum(MDar2);

MDar1 (1:d-1) = MDar1 (2:d);

MDar1(d) = 0;

MDar2 (1:d-1) = MDar2 (2:d);

MDar2(d) = 0;

end

end

for iTau = 1:Tau % the first sliding window

cnt = iTau;

op(1) = (x(dTau+iTau -Tau) >= x(dTau+iTau));

for j = 2:d

op(j) = sum(x((d-j)*Tau+iTau) >= x((d1 -j)*Tau+iTau:Tau:dTau+iTau));

end

opW(cnt) = sum(op.* ancNum); % the first ordinal pattern

OPnumber = opW(cnt);

if(MD(cnt)<MDthr)

opd(OPnumber +1) = opd(OPnumber +1) +1;

end

for j = dTau+Tau+iTau:Tau:WS+dTau % loop for the first window

cnt = cnt+Tau;

posL = 1; % the position l of the next point

for i = j-dTau:Tau:j-Tau

105

if(x(i) >= x(j))

posL = posL +1;

end

end

opW(cnt) = pTbl(opW(cnt -Tau)*d1+posL);

OPnumber = opW(cnt);

if(MD(cnt)<MDthr)

opd(OPnumber +1) = opd(OPnumber +1) +1;

end

end

prevOP(iTau) = opW(cnt);

end

ordDistNorm = opd/sum(opd);

re_PE(WS+Tau*d) = -nansum(ordDistNorm (1: nPat).*log(ordDistNorm (1: nPat)))/d;

iTau = mod(WS, Tau)+1; % current shift 1 : τ
iPat = 1; % position of the current pattern in the window

for t = WS+Tau*d+1: Length % loop over all points

posL = 1; % the position l of the next point

for j = t-dTau:Tau:t-Tau

if(x(j) >= x(t))

posL = posL +1;

end

end

nNew = pTbl(prevOP(iTau)*d1+posL); % "incoming" ordinal pattern

nOut = opW(iPat); % "outcoming" ordinal pattern

prevOP(iTau) = nNew;

opW(iPat) = nNew;

nNew = nNew +1;

nOut = nOut +1;

% update the distribution of ordinal patterns

if (MD(t-dTau)<MDthr)

opd(nNew) = opd(nNew)+1; % "incoming" ordinal pattern

end

if (MD(t-WS-dTau)<MDthr)

opd(nOut) = opd(nOut) -1; % "outcoming" ordinal pattern

end

ordDistNorm = opd/sum(opd);

re_PE(t) = -nansum(ordDistNorm (1: nPat).*log(ordDistNorm (1: nPat)))/d;

iTau = iTau +1;

iPat = iPat +1;

if(iTau > Tau) iTau = 1; end

if(iPat > WS) iPat = 1; end

end

re_PE = re_PE(WS+Tau*d:end);

A.6 Computing empirical permutation entropy of long-
term EEG recording

Figures/OnePatient795.m

% empirical permutation entropy is computed for the EEG recording 795 from

% The Euriopean Epilepsy Database [Epi14] in maximally overlapping sliding

% windows

close all; clear all;

[ALLEEG , EEG , CURRENTSET , ALLCOM] = eeglab;

AVR_EPE = zeros(1, 270*921600/256);

AVR_REPE = zeros(1, 270*921600/256);

sPlot = zeros(1, 270*921600/256);

DataPath = ’/home/unakafov/EEG_analysis/Data/Epileptic_Freiburg_Data/

rec_79500102 ’;

Cnt = 1; Cnt1 = 1;

Channel = 5; d = 4; FREQ = 256; Tau1 = 4; Tau2 = 4;

WS = 1024; SeizureMark = 2; Thr1 = 0; Thr2 = 4;

Filter = 1;% Filter = 1 "ON"; Filter = 0 "OFF";

106

ErValue = 1.5;

tic;

for i = 0:9

disp([’file ’ num2str(i) ’ from 102’]);

if(i == 2)

sPlot(Cnt+round (2*285346/ WS):Cnt+round (2*307916/ WS)) = SeizureMark;

end

EEG = pop_loadbv(DataPath , [’79502102 _000’ num2str(i) ’.vhdr’], [],Channel);

NewData = EEG.data;

if(Filter == 1)

% high -pass filtering

[S_numer , S_denom] = butter(3, 2 / FREQ , ’high’);

NewData = filter(S_numer , S_denom , NewData);

disp(’Filtering 1 has finished ’);

% low -pass filtering

[S_numer , S_denom] = butter(3, 42 / FREQ);

NewData = filter(S_numer , S_denom , NewData);

disp(’Filtering 2 has finished ’);

end

ePE = PE(NewData , Tau1 , d, WS);

[MD , rePE1] = rePE(NewData , Tau2 , d, WS, Thr1 , Thr2);

for j = 1:WS:length(ePE)-WS

if(numel(NewData(abs(NewData(j:j+WS)) <0.04)) <10)

AVR_EPE(1, Cnt) = min(ePE(1, j:j+WS));

AVR_EPE(1, Cnt+1) = max(ePE(1, j:j+WS));

AVR_REPE(Cnt) = min(rePE1(1, j:j+WS));

AVR_REPE(Cnt +1) = max(rePE1(1, j:j+WS));

else

AVR_EPE(1, Cnt) = ErValue;

AVR_EPE(1, Cnt+1) = ErValue;

AVR_REPE(Cnt) = ErValue;

AVR_REPE(Cnt +1) = ErValue;

end

Cnt = Cnt +2;

end

end

disp(’Time of processing 10 files’);

toc;

tic;

for i = 10:99

disp([’file ’ num2str(i) ’ from 102’]);

if(i == 27)

sPlot(Cnt+round (2*463602/ WS):Cnt+round (2*478818/ WS)) = SeizureMark;

end

if(i == 49)

sPlot(Cnt+round (2*549346/ WS):Cnt+round (2*566246/ WS)) = SeizureMark;

end

if(i == 54)

sPlot(Cnt+round (2*14483/ WS):Cnt+round (2*30618/ WS)) = SeizureMark;

end

if(i == 74)

sPlot(Cnt+round (2*726283/ WS):Cnt+round (2*743531/ WS)) = SeizureMark;

end

if(i == 79)

sPlot(Cnt+round (2*868568/ WS):Cnt+round (2*885189/ WS)) = SeizureMark;

end

if(i == 89)

sPlot(Cnt+round (2*648969/ WS):Cnt+round (2*668370/ WS)) = SeizureMark;

end

if(i == 99)

sPlot(Cnt+round (2*491476/ WS):Cnt+round (2*510564/ WS)) = SeizureMark;

end

107

EEG = pop_loadbv(DataPath , [’79502102 _00’ num2str(i) ’.vhdr’], [], Channel);

NewData = EEG.data;

if(Filter == 1)

% high -pass filtering

[S_numer , S_denom] = butter(3, 2 / FREQ , ’high’);

NewData = filter(S_numer , S_denom , NewData);

disp(’Filtering 1 has finished ’);

% low -pass filtering

[S_numer , S_denom] = butter(3, 42 / FREQ);

NewData = filter(S_numer , S_denom , NewData);

disp(’Filtering 2 has finished ’);

end

ePE = PE(NewData , Tau1 , d, WS);

[MD , rePE1] = rePE(NewData , Tau2 , d, WS, Thr1 , Thr2);

for j = 1:WS:length(ePE)-WS

if(numel(NewData(abs(NewData(j:j+WS)) <0.04)) <10)

AVR_EPE(1, Cnt) = min(ePE(1, j:j+WS));

AVR_EPE(1, Cnt+1) = max(ePE(1, j:j+WS));

AVR_REPE(Cnt) = min(rePE1(1, j:j+WS));

AVR_REPE(Cnt +1) = max(rePE1(1, j:j+WS));

else

AVR_EPE(1, Cnt) = ErValue;

AVR_EPE(1, Cnt+1) = ErValue;

AVR_REPE(Cnt) = ErValue;

AVR_REPE(Cnt +1) = ErValue;

end

Cnt = Cnt +2;

end

end

disp(’Time of processing 89 files’)

toc;

tic;

for i = 100:102

disp([’file ’ num2str(i) ’ from 102’]);

if(i == 101)

sPlot(Cnt+round (2*211787/ WS):Cnt+round (2*267313/ WS)) = SeizureMark;

end

EEG = pop_loadbv(DataPath , [’79502102 _0’ num2str(i) ’.vhdr’], [], Channel);

NewData = EEG.data;

if(Filter == 1)

% high -pass filtering

[S_numer , S_denom] = butter(3, 2 / FREQ , ’high’);

NewData = filter(S_numer , S_denom , NewData);

disp(’Filtering 1 has finished ’);

% low -pass filtering

[S_numer , S_denom] = butter(3, 42 / FREQ);

NewData = filter(S_numer , S_denom , NewData);

disp(’Filtering 2 has finished ’);

end

ePE = PE(NewData , Tau1 , d, WS);

[MD , rePE1] = rePE(NewData , Tau1 , d, WS, Thr1 , Thr2);

for j = 1:WS:length(ePE)-WS

if(numel(NewData(abs(NewData(j:j+WS)) <0.04)) <10)

AVR_EPE(1, Cnt) = min(ePE(1, j:j+WS));

AVR_EPE(1, Cnt+1) = max(ePE(1, j:j+WS));

AVR_REPE(Cnt) = min(rePE1(1, j:j+WS));

AVR_REPE(Cnt +1) = max(rePE1(1, j:j+WS));

else

AVR_EPE(1, Cnt) = ErValue;

AVR_EPE(1, Cnt+1) = ErValue;

AVR_REPE(Cnt) = ErValue;

AVR_REPE(Cnt +1) = ErValue;

108

end

Cnt = Cnt +2;

end

end

disp(’Time of processing 3 files’)

toc;

AVR_EPE = AVR_EPE(1, 1:Cnt -2);

AVR_REPE = AVR_REPE (1:Cnt -2);

sPlot = sPlot (1:Cnt -2);

FS = 10; Gray = [0 0.7 0]; mSize = 2;

TimeAxis (1:Cnt -2) = (1:Cnt -2)*(WS /256) /3600;

aThreshold1 = 0.6;

aThreshold2 = 0.2;

a1 = zeros(1, length(AVR_EPE))+4;

a1((AVR_EPE)<aThreshold1) = AVR_EPE(AVR_EPE <aThreshold1);

a2 = zeros(1, length(AVR_REPE))+4;

a2((AVR_REPE)<aThreshold2) = AVR_REPE ((AVR_REPE)<aThreshold2);

figure;

subplot(2, 1, 1);

plot(TimeAxis (1:3: end), AVR_EPE (1 ,1:3: end), ’k.’, ’MarkerSize ’, mSize); hold on;

plot(TimeAxis , sPlot (1:Cnt -2) -0.4, ’color’, Gray , ’LineWidth ’, 1); hold on;

plot(TimeAxis , a1, ’rx’, ’LineWidth ’, 1, ’MarkerSize ’, mSize *3); hold on;

axis([TimeAxis (1) TimeAxis(end) 0 1.2]);

XTickArray = TimeAxis (1:18000: end);

XLabelArray= {’15:13’,’01:13 ’,’11:13’,’21:13’,’07:13 ’,’17:13 ’,’03:13’,’13:13’,’

23:13’,’09:13’};

set(gca ,’XTick’, XTickArray ,’XTickLabel ’,XLabelArray ,’fontsize ’,FS);

title([’EMPIRICAL PERMUTATION ENTROPY ePE(’ num2str(d) ’,’ num2str(Tau1) ’,’

num2str(WS) ’)’], ’fontsize ’, FS);

xlabel(’Time (h:min)’, ’fontsize ’, FS);

ylabel(’Entropy (nats)’, ’fontsize ’, FS);

subplot(2, 1, 2);

plot(TimeAxis (1:3: end), AVR_REPE(1, 1:3: end), ’k.’,’MarkerSize ’, mSize);hold on;

plot(TimeAxis , sPlot (1:Cnt -2) -0.4, ’color’, Gray , ’LineWidth ’, 1); hold on;

axis([TimeAxis (1) TimeAxis(end) 0 1.2]);

plot(TimeAxis , a2, ’rx’, ’LineWidth ’, 1, ’MarkerSize ’, mSize *3); hold on;

set(gca , ’XTick ’, XTickArray , ’XTickLabel ’, XLabelArray , ’fontsize ’, FS);

title([’robust EMPIRICAL PERMUTATION ENTROPY rePE(’ num2str(d) ’,’ num2str(Tau2)

’,’ num2str(WS) ’,’ num2str(Thrd1) ’,’ num2str(Thr2) ’)’], ’fontsize ’, FS);

xlabel(’Time (h:min)’, ’fontsize ’, FS);

ylabel(’Entropy (nats)’, ’fontsize ’, FS);

set(gcf , ’PaperUnits ’,’centimeters ’);

set(gcf ,’PaperPosition ’, [0 0 21 21/2]);

print(’-depsc ’, ’-r200’, ’EEG795.eps’);

109

Bibliography

[AFK+05] U.R. Acharya, O. Faust, N. Kannathal, T. Chua, S. Laxminarayan. Non-

linear analysis of EEG signals at various sleep stages. Computer methods

and programs in biomedicine, 80(1):37–45, 2005.

[AHE+06] D. Abásolo, R. Hornero, P. Espino, D. Alvarez, J. Poza. Entropy analysis of

the EEG background activity in Alzheimer’s disease patients. Physiological

measurement, 27(3):241, 2006.

[AJK+06] U.R. Acharya, K.P. Joseph, N. Kannathal, C.M. Lim, J.S. Suri. Heart rate

variability: a review. Medical and Biological Engineering and Computing,

44(12):1031–1051, 2006.

[AK13] J.M. Amigó, K. Keller. Permutation entropy: One concept, two approaches.

The European Physical Journal Special Topics, 222(2):263–273, 2013.

[AKK05] J.M. Amigó, M.B. Kennel, L. Kocarev. The permutation entropy rate

equals the metric entropy rate for ergodic information sources and ergodic

dynamical systems. Physica D: Nonlinear Phenomena, 210(1):77–95, 2005.

[AKM14] A. Antoniouk, K. Keller, S. Maksymenko. Kolmogorov-Sinai entropy

via separation properties of order-generated σ-algebras. Discrete and

Continuous Dynamical Systems, 34(5):1793–1809, 2014.

[ALM+01] R.G. Andrzejak, K. Lehnertz, F. Mormann, C. Rieke, P. David, C.E. Elger.

Indications of nonlinear deterministic and finite-dimensional structures in

time series of brain electrical activity: Dependence on recording region

and brain state. Physical Review E, 64(6):061907, 2001.

[Ami10] J.M. Amigó. Permutation Complexity In Dynamical Systems: Ordinal

Patterns, Permutation Entropy and All That. Springer, Berlin Heidelberg,

2010.

[Ami12] J.M. Amigó. The equality of Kolmogorov-Sinai entropy and metric permu-

tation entropy generalized. Physica D: Nonlinear Phenomena, 241(7):789–

793, 2012.

111

[AZS08] J.M. Amigó, S. Zambrano, M.A.F. Sanjuán. Combinatorial detection of

determinism in noisy time series. EPL (Europhysics Letters), 83(6):60005,

2008.

[Ban14] C. Bandt. Autocorrelation type functions for big and dirty data series.

e-print – Arxiv preprint 1411.3904, 2014.

[BD00] B.E. Brodsky, B.S. Darkhovsky. Non-parametric statistical diagnosis.

Problems and methods. Dordrecht: Kluwer Academic Publishers, 2000.

[BK83] M. Brin, A. Katok. On local entropy. In Geometric dynamics. Springer,

Berlin Heidelberg, 1983.

[BKP02] C. Bandt, G. Keller, B. Pompe. Entropy of interval maps via permutations.

Nonlinearity, 15(5):1595–1602, 2002.

[BMC+05] N. Burioka, M. Miyata, G. Cornélissen, F. Halberg, T. Takeshima, D.T.

Kaplan, H. Suyama, M. Endo, Y. Maegaki, T. Nomura, et al. Approximate

entropy in the electroencephalogram during wake and sleep. Clinical EEG

and neuroscience, 36(1):21–24, 2005.

[Bon14] The Bonn EEG Database. Available online: http://epileptologie-bonn.de,

(accessed on 16 December 2014).

[Bor98] S.A. Borovkova. Estimation and prediction for nonlinear time series. PhD

thesis, University Groningen, 1998.

[BP02] C. Bandt, B. Pompe. Permutation entropy: A natural complexity measure

for time series. Phys. Rev. Lett., 88(174102), 2002.

[BQMS12] C. Bian, C. Qin, Q.D.Y. Ma, Q. Shen. Modified permutation-entropy

analysis of heartbeat dynamics. Physical Review E, 85(2):021906, 2012.

[BRH00] J. Bruhn, H. Röpcke, A. Hoeft. Approximate entropy as an electroen-

cephalographic measure of anesthetic drug effect during desflurane anes-

thesia. Anesthesiology, 92(3):715–726, 2000.

[BRR+00] J. Bruhn, H. Röpcke, B. Rehberg, T. Bouillon, A. Hoeft. Electroen-

cephalogram approximate entropy correctly classifies the occurrence of

burst suppression pattern as increasing anesthetic drug effect. Anesthesi-

ology, 93:981–985, 2000.

[BT11] H.H.W. Broer, F. Takens. Dynamical systems and chaos, volume 172.

Springer, 2011.

112

[CGP05] M. Costa, A.L. Goldberger, C.K. Peng. Multiscale entropy analysis of

biological signals. Phys. Rev. E, 71(2):021906, 2005.

[Cho00] H.C. Choe. Computational ergodic theory. Springer, Berlin Heidelberg,

2000.

[CTG+04] Y. Cao, W.-W. Tung, J.B. Gao, V.A. Protopopescu, L.M. Hively. Detecting

dynamical changes in time series using the permutation entropy. Phys.

Rev. E, 70:046217, 2004.

[CZYW09] W. Chen, J. Zhuang, W. Yu, Z. Wang. Measuring complexity using

FuzzyEn, ApEn, and SampEn. Medical Engineering & Physics, 31(1):61–

68, 2009.

[DK86] M. Denker, G. Keller. Rigorous statistical procedures for data from

dynamical systems. Journal of Statistical Physics, 44(1-2):67–93, 1986.

[Dow11] T. Downarowicz. Entropy in dynamical systems. AMC, 10:12, 2011.

[ELW11] M. Einsiedler, E. Lindenstrauss, T. Ward. Entropy in Dynamics (unpub-

lished). http://maths.dur.ac.uk/∼tpcc68/entropy/welcome.html, 2011.

[Epi14] The European Epilepsy Database. Available online: http://epilepsy-

database.eu/, (accessed on 16 December 2014).

[ER85] J.-P. Eckmann, D. Ruelle. Ergodic theory of chaos and strange attractors.

Reviews of modern physics, 57(3):617–656, 1985.

[FPSH06] B. Frank, B. Pompe, U. Schneider, D. Hoyer. Permutation entropy

improves fetal behavioural state classification based on heart rate analysis

from biomagnetic recordings in near term fetuses. Medical and Biological

Engineering and Computing, 44(3):179–187, 2006.

[GGK12] B. Graff, G. Graff, A. Kaczkowska. Entropy measures of heart rate

variability for short ECG datasets in patients with congestive heart failure.

Acta Physica Polonica B Proceedings Supplement, 5, 2012.

[GLW14] C. Guo, W. Luk, S. Weston. Pipelined reconfigurable accelerator for

ordinal pattern encoding. In Application-specific Systems, Architectures

and Processors (ASAP), 2014 IEEE 25th International Conference on,

pages 194–201. IEEE, 2014.

[GP83a] P. Grassberger, I. Procaccia. Characterization of strange attractors. Phys-

ical Review Letters, 50(5):346, 1983.

113

[GP83b] P. Grassberger, I. Procaccia. Estimation of the Kolmogorov entropy from

a chaotic signal. Phys. Rev. A, 28(4):2591–2593, 1983.

[GP84] P. Grassberger, I. Procaccia. Dimensions and entropies of strange at-

tractors from a fluctuating dynamics approach. Physica D: Nonlinear

Phenomena, 13(1):34–54, 1984.

[HAEG09] R. Hornero, D. Abasolo, J. Escuredo, C. Gomez. Nonlinear analysis of

electroencephalogram and magnetoencephalogram recordings in patients

with Alzheimer’s disease. Phil. Trans. R. Soc. A, 367:317–336, 2009.

[Har91] G.H. Hardy. Divergent series, volume 334. American Mathematical Soc.,

1991.

[HN11] T. Haruna, K. Nakajima. Permutation complexity via duality between

values and orderings. Physica D: Nonlinear Phenomena, 240(17):1370–

1377, 2011.

[HP83] H.G.E. Hentschel, I. Procaccia. The infinite number of generalized dimen-

sions of fractals and strange attractors. Physica D: Nonlinear Phenomena,

8(3):435–444, 1983.

[HPC+05] D. Hoyer, B. Pompe, K.H. Chon, H. Hardraht, C. Wicher, U. Zwiener.

Mutual information function assesses autonomic information flow of heart

rate dynamics at different time scales. Biomedical Engineering, IEEE

Transactions on, 52(4):584–592, 2005.

[IFDT+12] M. Ihle, H. Feldwisch-Drentrup, C.A. Teixeira, A. Witon, B. Schelter,

J. Timmer, A. Schulze-Bonhage. EPILEPSIAE – A European epilepsy

database. Computer methods and programs in biomedicine, 106(3):127–138,

2012.

[JB12] C.C. Jouny, G.K. Bergey. Characterization of early partial seizure onset:

Frequency, complexity and entropy. Clinical Neurophysiology, 123(4):658–

669, 2012.

[JSK+08] D. Jordan, G. Stockmanns, E.F. Kochs, S. Pilge, G. Schneider. Electroen-

cephalographic order pattern analysis for the separation of consciousness

and unconsciousness: an analysis of approximate entropy, permutation

entropy, recurrence rate, and phase coupling of order recurrence plots.

Anesthesiology, 109(6):1014–1022, 2008.

[KCAS05] N. Kannathal, M.L. Choo, U.R. Acharya, P.K. Sadasivan. Entropies

for detection of epilepsy in EEG. Computer methods and programs in

biomedicine, 80(3):187–194, 2005.

114

[Kel12] K. Keller. Permutations and the Kolmogorov-Sinai entropy. Discrete

Contin. Dyn. Syst., 32(3):891–900, 2012.

[KL03] K. Keller, H. Lauffer. Symbolic analysis of high-dimensional time series.

International Journal of Bifurcation and Chaos, 13(09):2657–2668, 2003.

[KLS07] K. Keller, H. Lauffer, M. Sinn. Ordinal analysis of EEG time series. Chaos

and Complexity Letters, 2:247–258, 2007.

[KS05] K. Keller, M. Sinn. Ordinal analysis of time series. Physica A: Statistical

Mechanics and its Applications, 356(1):114–120, 2005.

[KS09] K. Keller, M. Sinn. A standardized approach to the Kolmogorov-Sinai

entropy. Nonlinearity, 22(10):2417–2422, 2009.

[KS10] K. Keller, M. Sinn. Kolmogorov-Sinai entropy from the ordinal viewpoint.

Physica D, 239(12):997–1000, 2010.

[KSE07] K. Keller, M. Sinn, J. Emonds. Time series from the ordinal viewpoint.

Stoch. Dyn., 7(2):247–272, 2007.

[KUU12] K. Keller, A.M. Unakafov, V.A. Unakafova. On the relation of KS entropy

and permutation entropy. Physica D, 241(18):1477–1481, 2012.

[KUU14] K. Keller, A.M. Unakafov, V.A. Unakafova. Ordinal patterns, Entropy,

and EEG. Entropy, 16(12):6212–6239, 2014.

[LE98] K. Lehnertz, C.E. Elger. Can Epileptic Seizures be Predicted? Evidence

from Nonlinear Time Series Analysis of Brain Electrical Activity. Physical

Review Letters, 80:5019–5022, 1998.

[Lee14a] K. Lee. Fast Approximate Entropy. MATLAB Central File Exchange.

Available online, (accessed on 16 December 2014).

[Lee14b] K. Lee. Fast Sample Entropy. MATLAB Central File Ex-

change. http://www.mathworks.com/matlabcentral/fileexchange/35784-

sample-entropy, (accessed on 16 December 2014).

[Leh08] K. Lehnertz. Epilepsy and nonlinear dynamics. Journal of biological

physics, 34(3-4):253–266, 2008.

[Lib12] M.H. Libenson. Practical approach to electroencephalography. Elsevier

Health Sciences, 2012.

[LLL+10] D. Li, X. Li, Z. Liang, L.J. Voss, J.W. Sleigh. Multiscale permutation

entropy analysis of EEG recordings during sevoflurane anesthesia. Journal

of neural engineering, 7(4):046010, 2010.

115

[LOR07] X. Li, G. Ouyang, D.A. Richards. Predictability analysis of absence

seizures with permutation entropy. Epilepsy research, 77(1):70–74, 2007.

[LPS93] J.C. Lagarias, H.A. Porta, K.B. Stolarsky. Asymmetric tent map expan-

sions. I. Eventually periodic points. Journal of the London Mathematical

Society, 2(3):542–556, 1993.

[LRGM02] D.E. Lake, J.S. Richman, M.P. Griffin, J.R. Moorman. Sample entropy

analysis of neonatal heart rate variability. American Journal of Physiology-

Regulatory, Integrative and Comparative Physiology, 283(3):R789–R797,

2002.

[LYLO14] J. Li, J. Yan, X. Liu, G. Ouyang. Using permutation entropy to measure

the changes in EEG signals during absence seizures. Entropy, 16(6):3049–

3061, 2014.

[Lyu02] M. Lyubich. Almost every real quadratic map is either regular or stochastic.

Annals of Mathematics. Second Series, 156(1):1–78, 2002.

[MAEL07] F. Mormann, R.G. Andrzejak, C.E. Elger, K. Lehnertz. Seizure prediction:

the long and winding road. Brain, 130(2):314–333, 2007.

[MBAJ09] R. Monetti, W. Bunk, T. Aschenbrenner, F. Jamitzky. Characterizing

synchronization in time series using information measures extracted from

symbolic representations. Physical Review E, 79(4):046207, 2009.

[MDSBA08] R. Meier, H. Dittrich, A. Schulze-Bonhage, A. Aertsen. Detecting epileptic

seizures in long-term human EEG: a new approach to automatic online

and real-time detection and classification of polymorphic seizure patterns.

Journal of Clinical Neurophysiology, 25(3):119–131, 2008.

[MF84] M. Mor, A.S. Fraenkel. Cayley permutations. Discrete mathematics,

48(1):101–112, 1984.

[Mis03] M. Misiurewicz. Permutations and topological entropy for interval maps.

Nonlinearity, 16(3):971–976, 2003.

[MLLF+12] F.C. Morabito, D. Labate, F. La Foresta, A. Bramanti, G. Morabito,

I. Palamara. Multivariate multi-scale permutation entropy for complexity

analysis of Alzheimer’s disease EEG. Entropy, 14(7):1186–1202, 2012.

[MN00] M. Martens, T. Nowicki. Invariant measures for typical quadratic maps.

Paris: Astérisque, 2000.

116

[MWWM99] H.R. Moser, B. Weber, H.G. Wieser, P.F. Meier. Electroencephalograms in

epilepsy: analysis and seizure prediction within the framework of Lyapunov

theory. Physica D: Nonlinear Phenomena, 130(3-4):291–305, 1999.

[NG11] N. Nicolaou, J. Georgiou. The use of permutation entropy to characterize

sleep electroencephalograms. Clinical EEG and Neuroscience, 42(1):24–28,

2011.

[NG12] N. Nicolaou, J. Georgiou. Detection of epileptic electroencephalogram

based on permutation entropy and support vector machines. Expert

Systems with Applications, 39(1):202–209, 2012.

[Oca09] H. Ocak. Automatic detection of epileptic seizures in EEG using dis-

crete wavelet transform and approximate entropy. Expert Systems with

Applications, 36(2):2027–2036, 2009.

[ODRL10] G. Ouyang, C. Dang, D.A. Richards, X. Li. Ordinal pattern based similar-

ity analysis for EEG recordings. Clinical Neurophysiology, 121(5):694–703,

2010.

[OSD08] E. Olofsen, J.W. Sleigh, A. Dahan. Permutation entropy of the electroen-

cephalogram: a measure of anaesthetic drug effect. British journal of

anaesthesia, 101(6):810–821, 2008.

[Ouy14] G. Ouyang. Permutation Entropy. MATLAB Central File Ex-

change. http://www.mathworks.com/matlabcentral/fileexchange/37289-

permutation-entropy, (accessed on 16 December 2014).

[PBL+12] U. Parlitz, S. Berg, S. Luther, A. Schirdewan, J. Kurths, N. Wessel.

Classifying cardiac biosignals using ordinal pattern statistics and symbolic

dynamics. Computers in Biology and Medicine, 42(3):319–327, 2012.

[Pes97] Ya.B. Pesin. Dimension theory in dynamical systems: contemporary views

and applications. Chicago: University of Chicago Press, 1997.

[Pin91] S.M. Pincus. Approximate entropy as a measure of system complexity.

Proceedings of the National Academy of Sciences, 88(6):2297–2301, 1991.

[Pin95] S.M. Pincus. Approximate entropy (ApEn) as a complexity measure.

Chaos: An Interdisciplinary Journal of Nonlinear Science, 5(1):110–117,

1995.

[Pom98] B. Pompe. Ranking and entropy estimation in nonlinear time series

analysis. In Nonlinear analysis of physiological data, pages 67–90. Springer,

1998.

117

[PR11] B. Pompe, J. Runge. Momentary information transfer as a coupling

measure of time series. Physical Review E, 83:051122, 2011.

[PWLL11] Y.-H. Pan, Y.-H. Wang, S.-F. Liang, K.-T. Lee. Fast computation of sample

entropy and approximate entropy in biomedicine. Computer methods and

programs in biomedicine, 104(3):382–396, 2011.

[Rén61] A. Rényi. On measures of entropy and information. In Proceedings of the

fourth Berkeley Symposium on Mathematics, Statistics and Probability

1960., pages 547–561, 1961.

[Rén70] A. Rényi. Probability theory. 1970. North-Holland Ser. Appl. Math. Mech,

1970.

[RK68] A. Rechtschaffen, A. Kales. A manual of standardized terminology, tech-

niques and scoring system for sleep stages of human subjects. Washington:

Public Health Service US Government Printing Office, 1968.

[RM00] J.S. Richman, J.R. Moorman. Physiological time-series analysis using

approximate entropy and sample entropy. American Journal of Physiology-

Heart and Circulatory Physiology, 278(6):2039–2049, 2000.

[RMW13] M. Riedl, A. Müller, N. Wessel. Practical considerations of permutation

entropy. The European Physical Journal Special Topics, 222(2):249–262,

2013.

[Rue78] D. Ruelle. An inequality for the entropy of differentiable maps. Bulletin

of the Brazilian Mathematical Society, 9(1):83–87, 1978.

[Rue90] D. Ruelle. The Claude Bernard Lecture, 1989. Deterministic chaos: the

science and the fiction. Proceedings of the Royal Society of London. A.

Mathematical and Physical Sciences, 427(1873):241–248, 1990.

[Spr03] J.C. Sprott. Chaos and time-series analysis, volume 69. Oxford University

Press Oxford, 2003.

[Sta05] C.J. Stam. Nonlinear dynamical analysis of EEG and MEG: review of an

emerging field. Clinical Neurophysiology, 116(10):2266–2301, 2005.

[Tak81] F. Takens. Detecting strange attractors in turbulence. In Dynamical

systems and turbulence, Warwick 1980, pages 366–381. Springer, 1981.

[TT09] S. Tong, N.V. Thakor. Quantitative EEG analysis methods and clinical

applications. Artech House, 2009.

118

[TTF09] A.T. Tzallas, M.G. Tsipouras, D.I. Fotiadis. Epileptic seizure detection in

EEGs using time-frequency analysis. IEEE Transactions on information

Technology in Biomedicine, 13(5):703–710, 2009.

[TV98] F. Takens, E. Verbitskiy. Generalized entropies: Rényi and correlation

integral approach. Nonlinearity, 11:771–782, 1998.

[TV02] F. Takens, E. Verbitskiy. Rényi entropies of aperiodic dynamical systems.

Israel journal of mathematics, 127:279–302, 2002.

[UK13] V.A. Unakafova, K. Keller. Efficiently measuring complexity on the basis

of real-world data. Entropy, 15(10):4392–4415, 2013.

[UK14] A.M. Unakafov, K. Keller. Conditional entropy of ordinal patterns. Physica

D, 269:94–102, 2014.

[Una14] V.A. Unakafova. Fast Permutation Entropy. MATLAB Central File

Exchange. http://www.mathworks.com/matlabcentral/fileexchange/44161-

fast-permutation-entropy, (accessed on 02 May 2014).

[Una15] A.M. Unakafov. Ordinal-patterns-based segmentation and discrimination

of time series with applications to EEG data. PhD thesis, University of

Luebeck, 2015.

[UUK13] V.A. Unakafova, A.M. Unakafov, K. Keller. An approach to compar-

ing Kolmogorov-Sinai and permutation entropy. The European Physical

Journal ST, 222:353–361, 2013.

[Ver00] E.A. Verbitskiy. Generalized entropies in dynamical systems. PhD thesis,

University of Groningen, 2000.

[Wal00] P. Walters. An introduction to ergodic theory. New York, NY: Springer,

2000.

[YHS+13] J.M. Yentes, N. Hunt, K.K. Schmid, J.P. Kaipust, D. McGrath, N. Stergiou.

The appropriate use of approximate entropy and sample entropy with

short data sets. Annals of biomedical engineering, 41(2):349–365, 2013.

[YMS83] T. Yoshida, H. Mori, H. Shigematsu. Analytic study of chaos of the tent

map: band structures, power spectra, and critical behaviors. Journal of

statistical physics, 31(2):279–308, 1983.

[You03] L.-S. Young. Entropy in dynamical systems. In A. Greven, Keller G.,

G. Warnecke, editors, Entropy. Princeton University Press, Princeton, NJ,

USA, 2003.

119

[You13] L.-S. Young. Mathematical theory of Lyapunov exponents. Journal of

Physics A: Mathematical and Theoretical, 46(25):254001, 2013.

[ZZRP12] M. Zanin, L. Zunino, O.A. Rosso, D. Papo. Permutation entropy and

its main biomedical and econophysics applications: a review. Entropy,

14(8):1553–1577, 2012.

120

Curriculum Vitae

Personal details

Name:

Date of Birth:

E-mail:

Nationality:

Gender

Valentina A. Unakafova (Zavizion)

07/06/1989

UnakafovaValentina@yandex.ru

Russian

female

Educational profile:

• Diploma (equiv. Dipl. Inf) in Software Engineering (July 2011),

Institute of Technology, Southern Federal University, Taganrog, Russia.

• Bachelor of Sciences in Information Science and Computer Engineering (July

2010), Institute of Technology, Southern Federal University, Taganrog, Russia.

Work experience:

• University of Lübeck, Institute of Mathematics, Lübeck, Germany, September

2011 to March 2015, PhD student.

• Medicom MTD Ltd, Taganrog, Russia, September 2009 to August 2011,

Laboratory assistant.

121

Publications

1. J.M. Amigó, K. Keller, V.A. Unakafova, Ordinal symbolic analysis and its appli-

cation to biomedical recordings. Philosophical Transactions of the Royal Society

A: Mathematical, Physical and Engineering Sciences, 373(2034): 20140091, 2015.

2. K. Keller, A.M. Unakafov, V.A. Unakafova, Ordinal patterns, entropy, and EEG.

Entropy, 16(12): 6212–6239, 2014.

3. V.A. Unakafova, K. Keller. Efficiently measuring complexity on the basis of

real-world data. Entropy, 15(10): 4392–4415, 2013.

4. V.A. Unakafova, A.M. Unakafov, K. Keller, An approach to comparing Kolmogorov-

Sinai and permutation entropy. European Physical Journal Special Topics, 222(2):

353–361, 2013.

5. K. Keller, A.M. Unakafov, V.A. Unakafova, On the relation of KS entropy and

permutation entropy. Physica D, 241(18): 1477–1481, 2012.

Conference talks

1. Relationship between permutation entropy and Kolmogorov-Sinai entropy with

examples from interval maps. The 10th AIMS Conference on Dynamical Systems,

Differential Equations and Applications, Madrid, Spain, 2014.

2. The relationship of permutation entropy and Kolmogorov-Sinai entropy. Mathe-

matics for Life Sciences Workshop, Kiev, Ukraine, 2012.

122

