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Lübeck 2015



First referee: Prof. Dr.-Ing. Achim Schweikard

Second referee: Prof. Dr.-Ing. Erik Maehle

Date of oral examination: 08.12.2015

Approved for printing. Lübeck, 15.01.2016



Kurzzusammenfassung

Die optische Kopf-Lokalisierung in der robotergestützte Strahlentherapie bietet entschei-
dende Vorteile. Die Methode basiert auf harmlosen Laserlicht und ermöglicht eine hohe
Lokalisierungsrate. Der kritische Nachteil von optischer Kopf-Lokalisierung ist die be-
grenzte Genauigkeit. Das Problem ist, dass die Registrierung von Oberflächen durch das
deformierbare Weichgewebe beeinflusst wird. Um die Genauigkeit von optischer Kopf-
Lokalisierung zu erhöhen, hat unsere Forschungsgruppe ein neuartiges Mess-System
entwickelt. Durch die Analyse der Reflektion eines projizierten Punktgitters, werden eine
punktbasierte Rekonstruktion der Stirnoberfläche und optische Merkmale erfasst. Letz-
tere bieten eine Korrelation mit der Dicke des Weichgewebes der Stirn. In zukünftigen
Entwicklungen sollen die optischen Merkmale dazu verwendet werden, um den Einfluss
des Weichgewebes zu kompensieren. Auf diese Weise soll eine hochgenaue Registrierung
bezüglich der rigiden Schädeloberfläche erreicht werden.

In dieser Arbeit wird die Erfassung von punktbasierten Oberflächenrekonstruktionen be-
handelt. Um die Korrespondenz zwischen projiziertem und gemessenem Licht herzustel-
len, wird eine Methode für binäres zeitliches Multiplexing vorgeschlagen. Die entwickel-
te Methode kann für Objekte eingesetzt werden, welche sich mit geringer Geschwindig-
keit bewegen. Weiterhin bildet die Methode die Basis zur Erreichung einer hohen Rekon-
struktionsrate. Neben der hergestellten Punktkorrespondenz setzt die Triangulation von
Oberflächenpunkten auch die Kalibrierung der extrinsischen Parameter des Laser-Scan
Systems voraus. Aus diesem Grund wird eine Prozedur für die hochgenaue Kalibrierung
von Laserstrahlen vorgeschlagen.

Die Analyse der Genauigkeit der Triangulation hat einen root mean square (RMS) Fehler
von 0.1037 mm für die Rekonstruktion einer Ebene und einen RMS Fehler von 0.1477 mm
für die Oberflächenrekonstruktion eines Treppen-Phantoms ergeben. Im Fall der Ober-
flächenrekonstruktion der Stirn von drei Personen, hat die Analyse RMS Fehler zwischen
0.1526 mm und 0.1832 mm ergeben.
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Abstract

Optical head tracking for robot-guided radiosurgery offers essential advantages. It is
based on harmless laser light and it provides a high localization rate. The crucial disad-
vantage of optical head tracking is given by limited accuracy. The problem is that the
registration of surfaces is influenced by the deformable soft tissue. In order to enhance
the accuracy of optical head tracking, our research group developed a novel measure-
ment system. By analyzing the measured reflection of a grid of projected laser spots, a
point-based reconstruction of the forehead’s surface and optical features are acquired.
The latter provide a correlation with the thickness of the soft tissue of the forehead. In fu-
ture developments, the optical features shall be utilized to compensate for the influence
of the soft tissue. In this manner, a highly accurate registration with respect to the rigid
skull surface shall be achieved.

In this work, the acquisition of point-based surface reconstructions is addressed. In order
to establish correspondence between the projected and the captured light information, a
method for binary time multiplexing is proposed. The developed method can be used
for objects that move slowly. Furthermore, the method provides the basis for a high
reconstruction rate. Besides the established point correspondence, the triangulation of
surface points also requires the calibration of the extrinsic parameters of the laser scan-
ning system. For this reason, a procedure for the highly accurate calibration of laser rays
is proposed.

The analysis of the triangulation accuracy revealed a root mean square (RMS) error of
0.1037 mm and 0.1477 mm for the reconstruction of a plane and the surface reconstruction
of a stair phantom, respectively. In the case of the reconstruction of the surface of three
human foreheads, the analysis revealed RMS errors between 0.1526 mm and 0.1832 mm.
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1. Introduction

1.1. Motivation

In the field of intracranial radiation therapy, a variety of modalities for the treatment
of brain metastases is offered. Stereotactic radiotherapy (SRT) is a widely used technique
which incorporates a significantly invasive immobilization of the patient’s head. The
head of a patient that is treated by the Gamma Knife [94] is immobilized by using a Leksell
frame. The stereotactic frame is rigidly attached to the head by means of four pins that are
drilled into the outer surface of the patient’s skull. Furthermore, the frame is also rigidly
attached to the treatment device of the Gamma Knife. Since the patient’s head is immob-
ilized during the whole treatment, the radiation is precisely delivered to the target area
inside the brain. The mechanical alignment accuracy of the Gamma Knife was analyzed
by comparing the planned and the measured central position of a single-isocenter. The
analysis revealed an accuracy of approximately 0.25 mm [78, 94].

A more comfortable approach for intracranial treatment is given by image-guided radi-
ation therapy (IGRT) which can also be used for a large variety of other cancerous diseases
inside the body. IGRT is based on the frequent localization of the target area by using dif-
ferent imaging modalities. When the target area is moving, the localization data is used
to realign the treatment beam. In this manner, a motion compensation can be achieved.
Often the target area is given by moving tissue inside the body and consequently the
use of IGRT is absolutely necessary. In the case of intracranial treatment, the localization
capability of IGRT is used to increase the patient comfort. Since the patient’s head can
be localized, an invasive stereotactic frame for the rigid immobilization of the head can
be avoided. Nevertheless, the motion of the patient’s head has to be as minimal as pos-
sible during the treatment. A common approach for IGRT immobilization is the use of a
patient-custom thermoplastic mask [14, 60, 61]. The latter can be supported by an addi-
tional bite block, a head mold or a head cushion. This type of immobilization is less in-
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1. Introduction

vasive than a stereotactic frame but wearing a thermoplastic mask for a whole treatment
session can still be uncomfortable for the patient. According to [81], common IGRT im-
mobilization systems tend to inaccuracies (i.e. head movement) of approximately 1 mm
for the mean intrafraction translational shift and 2 mm for the mean interfraction transla-
tional shift.

In the last years, a large variety of different IGRT technologies has been established [76].
The highly accurate localization of the patient’s head can be achieved by using the rigid
skull structure for registration between a reference imaging dataset and imaging datasets
that are acquired during treatment. Accuray Inc. (Sunnyvale, CA, USA) developed 6D
Skull Tracking for their CyberKnife system. This method uses stereoscopic X-ray images in
which the rigid bone structure of the head is segmented. Subsequently, the segmented
bone structure is registered to a planning dataset. The latter is acquired by computed
tomography (CT). The On-board Imager (OBI) by Varian Medical Systems Inc. (Palo Alto,
CA, USA) uses cone-beam computed tomography (CBCT) for head localization based on
bone structures. Experiments with anthropomorphic head phantoms revealed that the
CyberKnife system and the OBI system achieve sub-millimeter tracking accuracy [19, 39].
The high accuracy of X-ray based localization methods is achieved at the cost of tracking
speed. This is due to the fact that X-ray imaging has to be carried out at low frame rates
to guarantee acceptable additional dose levels.

By contrast, optical head tracking offers much faster scan rates. Here, visible or infrared
laser light is used to reconstruct the surface of the skin. However, this method is inaccur-
ate since the registration process is influenced by deformable structures which are given
by the skin and the muscles. In a clinical evaluation, the tracking accuracy of the Sentinel
3D laser scanning system (developed by C-RAD, Uppsala, Sweden) was analyzed for six
different tumor locations including head and neck [58]. The tracking accuracy was cal-
culated by comparing the tracking results of the Sentinel system with those obtained from
megavoltage computed tomography (MVCT). The evaluation revealed large tracking errors
of more than 1 mm.

The treatment of an area as delicate as the head requires highest treatment accuracy and
so far optical head tracking systems are not able to offer a sufficient tracking accuracy
in the sub-millimeter range. Nevertheless, optical head tracking is a very promising ap-
proach. First of all, optical head tracking uses harmless laser light for localization. Thus,
an additional radiation exposure for imaging can be avoided. This also guarantees that a
high scan rate can be achieved. In this manner, the realignment of the treatment beam can
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1.2. Problem statement

be carried out more often than compared to X-ray based localization methods. These are
strong arguments to make an effort towards the enhancement of the accuracy of optical
head tracking.

1.2. Problem statement

In order to overcome the problems of optical head tracking, our research group de-
veloped a novel measurement system (see Fig. 1.1). The measurement system projects a
grid of discrete infrared laser spots onto the forehead of a person. Afterwards, the cap-
tured reflection of the grid is used to obtain a point-based reconstruction of the forehead.
Furthermore, the captured reflection is also utilized to compute a set of optical features
for each captured laser spot [93]. The novelty of this approach is given by the correlation
of each feature set with the thickness of the soft tissue. In future developments, the recon-
structed surface points will be combined with the optical features to offer highly accurate
registration with respect to the rigid skull surface. Here, the correlation properties of the
optical features will be used to compensate for the soft tissue. This would be the first
system that solely uses harmless laser radiation to offer registration with the rigid bone
structure of the head. In this manner, tracking errors that are related to the deformable
skin and muscles can be avoided.

The developed measurement system is presented in Fig. 1.1. A beam shaped 850 nm
laser diode (Thorlabs L850P010) generates an infrared laser beam which is splitted by a
pellicle beamsplitter (Thorlabs CM1-BP145B2). Afterwards, the laser beam is redirected
by an AXJ-V20 closed-loop scanner (laserwinkel.nl) which consists of two rotatable gal-
vanometer driven mirrors. The redirection of the laser beam offers the projection of a
grid of discrete laser spots onto the forehead of a person.

When a laser spot is projected onto the skin surface then a portion of the incident light is
reflected and the remaining light penetrates in the soft tissue. The infrared wavelength
of the laser light guarantees that the light attenuation of the chromophores inside the soft
tissue is much lower than compared to wavelengths that belong to the visible light spec-
trum [4]. A low light attenuation by the chromophores offers a high light penetration
depth. Thus, a sufficient radiant power of the laser source guarantees that the laser light
reaches the skull surface of the forehead. Due to light scattering inside the soft tissue,
a small portion of the light travels back to the skin surface of the forehead. This backs-
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Scanning mirrors

Laser source

Beamsplitter

Triangulation camera

HDR camera

Figure 1.1.: Measurement system.

cattered light superimposes with the light that was initially reflected at the skin surface
and the resulting light is captured by two cameras (see Fig. 1.1). For better clarity, the fol-
lowing descriptions use the simplified term reflected laser spot to refer to the described
superimposed light.

A 16-bit high dynamic range (HDR) camera (ANDOR Zyla) captures the reflected laser
spot. Utilizing the procedure described in [92], the resulting HDR image is processed to
compute the explained set of optical features which offer a correlation with the thickness
of the soft tissue. Besides to the HDR camera, the reflection of the laser spot is also
captured by an IDS UI-3240CP-NIR-GL camera which provides 8-bit grayscale images
of dimensions 1280 × 1024 and a maximum frame rate of 30 Hz in trigger mode. The
captured reflection of the laser spot is used to reconstruct the center of the laser spot.
This reconstruction is carried out by means of triangulation. For this reason, the second
camera is also referred to as triangulation camera.

As explained, the two galvanometer driven mirrors are used to project a grid of discrete
laser spots onto the forehead of a person. The triangulation camera operates in trigger
mode and captures the reflection of the whole grid of laser spots in one single image. In
this manner, a fast reconstruction of the corresponding spatial points can be achieved.
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1.2. Problem statement

The reconstruction is carried out by means of triangulation which requires the mapping
between the projected and captured light information. This is also known as the corres-
pondence problem [6, 45].

Due to partial pattern occlusion, it can not be guaranteed that all laser spots of the projec-
ted grid are captured by the triangulation camera. Moreover, the successful detection of
the captured laser spots depends on the robustness of the used point detection algorithm.
As a consequence, the correspondence problem can not be solved directly. To address the
correspondence problem appropriately, a structured light encoding technique has to be
utilized.

target object

camera
laser source

mirrors

infrared
laser source

camera

Mirrors

target object

camera
Triangulation Infrared

laser source

Object

camera

Figure 1.2.: This figure shows a diagram of the laser scanning system. The laser source gen-
erates an infrared laser beam which is redirected by two galvanometer driven mirrors. The
outgoing laser beam hits the surface of an object and the reflection of the beam is captured by
the triangulation camera.

This work analyzes existing structured light techniques and proposes a method to solve
the correspondence problem for the described laser scanning system. The laser scanning
system can be considered as a sub-system of the measurement setup presented in Fig.
1.1. The laser scanning system consists of the infrared laser source, the two galvanometer
driven mirrors and the triangulation camera. A diagram of the system is shown in Fig.
1.2. Next to the established point correspondence, the triangulation of surface points also
requires the calibration of the extrinsic parameters of the laser scanning system. For this
reason, this work also proposes a method for the accurate calibration of laser rays. The
purpose of the laser scanning system is to achieve a highly accurate point-based surface
reconstruction of the forehead of a person. The resulting triangulation accuracy is ana-
lyzed and compared to the triangulation accuracy of a commercially available product.
Furthermore, the developed laser scanning system was used for tracking. In this manner,
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1. Introduction

it is possible to determine how the process of tracking is influenced by the remaining
triangulation errors.

1.3. Structure of the thesis

The thesis is structured as follows. In Sec. 2, the previous research in the field of struc-
tured light is reviewed. Sec. 3 describes how correspondence is established between the
projected and the captured light information. In Sec. 4, models of projective geometry
are described. This is the basis for the calibration and triangulation methods which are
proposed in Sec. 5. The analysis of the accuracy of the triangulation is carried out in
Sec. 6. In order to verify the experimental results, a model for the simulation of the laser
scanning system is described in Sec. 7. In Sec. 8, the conclusion and thoughts on future
works are presented.
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2. Previous research

In the context of triangulation, light can be passively or actively used to reconstruct the
surface of an object [72]. Passive methods commonly use two cameras which are dis-
placed relative to each other to capture a scene which overlaps in both camera images.
Triangulation is realized by using the projective geometry of both cameras which de-
pends on the intrinsic and extrinsic camera parameters. Furthermore, corresponding
image points have to be detected in the overlapping camera images. The result of tri-
angulation is given by the corresponding spatial points located on the observed object’s
surface. The main disadvantage of this approach is that the detection of corresponding
image points becomes complicated for textureless surfaces.

This problem can be solved by active methods which replace one of the cameras by a light
projector. This approach is known as structured light and involves the establishment of
the correspondence between the projected and captured light information. According to
[17], the following types of structured light systems can be classified (see also Fig. 2.1).

• Single spot: A light spot is swept across the object’s surface and the camera cap-
tures an image for each single spot. The correspondence between the projected and
captured spots is directly given.

• Single slit: A light slit is swept across the object’s surface and the camera captures
an image for each single slit. The correspondence between the projected and cap-
tured slits is directly given.

• Multiple slits: An array of parallel light slits is projected onto the object’s surface
and the camera captures the whole pattern by means of one single image.

• Grid: A light grid is projected onto the object’s surface and the camera captures the
whole grid by means of one single image. The projected grid is either given by a

7



2. Previous research

grid of discrete spots or a grid of connected lines.

(a) (b)

(c) (d)

Figure 2.1.: Classification of structured light systems: (a) single spot, (b) single slit, (c) mul-
tiple slits, (d) grid. Here, image (d) only contains the projected and the captured grid without
showing the path of the light rays.

Common cameras offer rates of 30 to 60 frames per second. Consequently, the reconstruc-
tion of the surface of an object can take several seconds if the scanning system follows the
described single spot or single slit approach. In contrast, scanning systems that follow the
multiple slits or grid approach provide a much faster reconstruction rate since the whole
light pattern is captured in one single camera image. Nevertheless, partial pattern occlu-
sion can lead to images where parts of the projected pattern are missing. Hence, such
images do not offer a direct correspondence between the projected and captured light
information. For this reason, multiple slits and grid approaches always involve encoding
strategies to solve the correspondence problem. A broad range of encoding strategies
will be introduced later in this section. Before, a brief overview of the related hardware
components of common light projection systems will be given.

The most simple light projector can be realized by a line-based laser source which is tilted
to sweep a laser line across the object’s surface [90]. Regarding the above listed taxonomy,
this approach is appropriate for the single slit or multiple slits approach. The projection of
an arbitrary pattern is typically realized by an off-the-shelf liquid-crystal display (LCD)
projector or digital light processing (DLP) projector [35]. A less cost-intensive alternative
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2.1. Spatial multiplexing

is given by the use of a diffractive optical element (DOE) which shapes a single laser spot
to project a desired pattern [3]. However, a DOE is a static component which is designed
for the projection of exactly one light pattern.

As realized in this work, the projection can also be carried out by using a point-based
laser source and two controllable mirrors which redirect the laser beam. This approach
guarantees a high flexibility since arbitrary light patterns can be projected onto the sur-
face of an object. Compared to off-the-shelf LCD and DLP projectors, this approach also
offers the advantage that the light source can be selected individually to comply with the
specifications of the scanning application.

In the following, a broad range of structured light techniques is introduced. A very de-
tailed state of the art in structured light is also presented in [72]. As explained, the meas-
urement system shown in Fig. 1.1 projects a grid of discrete laser spots onto the forehead
of a person. For this reason, the following sections concentrate on previous research in
the field of discrete encoding methods. Although the measurement system uses a single
infrared wavelength for the projection, the following sections also cover color based en-
coding. Furthermore, also slit and stripe based projection patterns are covered. This is
necessary in order to examine the diversity of general encoding topics which are incor-
porated by previous methods. In this manner, the conclusions of the previous methods
can be used in Sec. 3 to design an appropriate light encoding for the measurement sys-
tem.

2.1. Spatial multiplexing

Spatial multiplexing covers methods which incorporate the encoding of light by means of
the projection of one single pattern. This type of projection is also referred to as one-shot
pattern [24]. A one-shot pattern is captured in one single camera image and thus a high
reconstruction rate can be achieved. Spatial multiplexing uses the local neighborhood of
each projected light element to encode the position in the pattern by means of intensity,
color, geometric features or distance information. The following sections introduce three
different classes of spatial multiplexing given by de Bruijn sequences, M-arrays and cus-
tomized encoding approaches.
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2. Previous research

2.1.1. De Bruijn sequences

A k-ary de Bruijn sequence of order n is a sequence of length kn which contains each
possible k-ary sequence of length n exactly once [84]. The latter is also known as the
window property [63]. In the following, all possible k-ary sequences of length n are also
referred to as sub-sequences of a de Bruijn sequence. The number m of all possible k-ary
de Bruijn sequences of order n is calculated by [84]:

m = ((k − 1)!)kn−1
kk

n−1−n. (2.1)

The construction of a de Bruijn sequence can be achieved by the computation of the
Hamiltonian cycle in the respective de Bruijn graph. The Hamiltonian cycle visits each
node in the graph only once. Using for example k = n = 2, the de Bruijn sequence is
given by 0011 [13]. The latter contains the possible binary sub-sequences 00, 01, 10 and
11 exactly once. In this case, it holds that m = 1 and thus only one de Bruijn sequence
exists. Another example is given by the configuration k = 2 and n = 3 that leads to
m = 2. In this case, the de Bruijn sequences are given by 00010111 and 11101000. Each of
them include the possible binary sub-sequences 000, 001, 010, 011, 100, 101, 110 and 111
exactly once.

For structured light systems, a de Bruijn sequence can be used to encode a projected
array of colored light slits or stripes [72]. An array of colored light slits can be defined
as the projection of multiple thin lines with equidistant spacing. In contrast, an array
of colored light stripes can be defined as the projection of multiple thick lines without
spacing. In the case of light stripes, the edges of the stripes are used for reconstruction. In
general, the use of light stripes provides the acquisition of a reconstruction with a higher
density. This is due to the fact that this approach does not include gaps between the
projected elements. However, light stripes provide a lower detection accuracy because of
the merging of colors at the stripe edges.

The parameter k defines the number of colors that are used to encode an array of light slits
or stripes. Since each possible k-ary sub-sequence of length n appears only once inside
a de Bruijn sequence, the correspondence between the projected and captured elements
can be uniquely determined by analyzing the local neighborhood for each light element
in the camera image [63]. More precisely, each element can be identified by inspecting
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2.1. Spatial multiplexing

the n− 1 adjacent elements.

According to [63], de Bruijn sequences are the most used strategy for one-shot patterns.
[11] proposed the projection of de Bruijn sequences based on stripes using the colors
red, green, blue and white. Different values for n led to different amounts of projected
stripes. In [53], a slit based de Bruijn sequence using six colors was realized. A color
calibration for the camera was carried out in order to compute the transfer function of
the camera. The results of a color calibration can be used to correct the scaling of the
color channels which is caused during the capturing process. After pattern projection,
the captured image was transformed from RGB (red, green, blue) space to HSV (hue,
saturation, value) space. In this manner, the hue value was used for simple segmentation
of the captured light slits. A graph based search algorithm was utilized to find the most
probable correspondence between the projected and captured light slits.

[11] and [53] are both early works in the context of structured light systems. [11] men-
tions one of the main disadvantages of color coding. The color of the captured light in
the camera image also depends on the albedo (reflection coefficient) of the object whose
surface has to be reconstructed. In the case of colored objects, color components of the
projected light can be subject to attenuation. This can lead to a high amount of errors
when the codes of the captured light elements have to be determined. In the worst case,
unnoticed code detection errors cause local errors in the surface reconstruction.

The same problem can occur in the case of partial pattern occlusion. A captured light
element can be identified if it’s n − 1 adjacent elements are available. Consequently, the
appearance of partial pattern occlusion does not necessarily lead to code detection errors.
Code detection errors only occur if wrong adjacent elements are utilized for the code
detection. This problem can be avoided when partial pattern occlusion can be noticed.
However, the detection of small holes within a pattern can not always be guaranteed.
Small holes within a pattern occur when single light elements are missing. Unnoticed
partial pattern occlusion is a problem for all spatial multiplexing approaches.

A disadvantage of de Bruijn sequences in general is given by the trade-off between the
length of a de Bruijn sequence and the length of the included sub-sequences [53]. In
order to achieve a high number of reconstructed light elements, the projected de Bruijn
sequence has to provide a high length. The latter can be increased by increasing the para-
meters k and n. Especially the increase of n is not desirable since this will also increase
the number of n − 1 adjacent elements that have to be identified correctly. Hence, an
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increase of n increases the probability of code detection errors.

To increase the reconstruction density and the robustness of slit detection, a grid of ho-
rizontal and vertical colored slits was proposed in [71]. Six different colors were used
to encode the projected slits in both axes. The colors red, green and blue were utilized
to encode the horizontal slits. Furthermore, the colors magenta, cyan and yellow were
used to encode the vertical slits. Captured images were transformed from RGB space to
HSI (hue, saturation, intensity) space to simplify the segmentation of the captured light
slits. The crossings of the horizontal and vertical slits were extracted by peak intensity
detection. Subsequently, the crossings were used to find the correspondence between the
projected and captured grid.

[96] proposed the projection of a stripe-based de Bruijn sequence. To increase the ro-
bustness of the code detection, an adapted de Bruijn sequence was created. The latter
incorporates the constraint that two successive stripes can not have the same color. As a
side effect, the length of a de Bruijn sequence and hence the number of projected stripes
is reduced. A compensation is achieved by increasing the amount k of colors used for
encoding. However, a high number of different colors can be a drawback. As explained,
the color of the captured light also depends on the albedo of the object. Resulting code
detection errors can even be intensified when the number of used colors is increased.

A similar approach compared to [96] was published in [18] and [16] which created an ad-
apted de Bruijn sequence based on stripe and slit projection, respectively. Both methods
use an adapted de Bruijn sequence that is subject to the constraint that the color of two
successive stripes or slits has to differ in at least two color channels.

[63] combined the projection of a slit- and stripe-based array. In this manner, the high re-
construction density of light stripes could be combined with the high detection accuracy
of light slits. The HSI space was used to construct a de Bruijn sequence of half illumin-
ated colored light stripes. Dark and bright light slits were nested in each sub-sequence of
the de Bruijn sequence.

So far, all of the introduced de Bruijn methods were based on color encoding. In [83], a
different approach was realized by using a distance based encoding. A grid of horizontal
and vertical light slits was projected onto the surface of an object. The color of all hori-
zontal and vertical slits was given by blue and red, respectively. The use of red and blue
slits does not provide a color encoding. Instead these colors were solely utilized to distin-
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guish the horizontal and vertical slits. Both, the horizontal and vertical spacing between
the light slits, followed a de Bruijn sequence. By using a distance based encoding, the
described drawbacks of color encoding can be avoided.

However, distance based encoding is not robust against perspective distortion of the en-
coded distances in the camera image. This distortion depends on the position and orient-
ation of the involved components. The latter are given by the light projector, the camera
and the object whose surface has to be reconstructed. A perspective distortion of the
distances corrupts the encoding and thus code detection errors can occur.

2.1.2. M-arrays

The equivalent of de Bruijn sequences in the 2-dimensional space is given by perfect maps
which are also known as pseudorandom sequences [15, 47]. A perfect map is a matrix
M of dimensions r × v in which the elements are taken from an alphabet k and in which
a sub-matrix of dimensions n × m is contained exactly once (window property). The
number of sub-matrices included in M is given by rv = knm. To avoid the occurrence
of the sub-matrix which solely contains zero-elements, M can be designed to provide
rv = knm − 1 sub-matrices. In this case, the perfect map M is referred to as M-array [3].

[57] suggested the projection of a binary 91 × 45 M-array using sub-matrices of dimen-
sions 3 × 4. The projected pattern contains white spots on a black background. Thus,
the black spots of the M-array are not visible. To detect these black spots, another pat-
tern has to be projected in advance. This pattern includes 91× 45 white spots on a black
background at the same position. By detecting all white spots in the camera image, the
black and white spots of the M-array can be detected in the second camera image. In
general, all spatial multiplexing approaches are one-shot methods. This also holds in the
case of M-array approaches. However, the method proposed in [57] is an exception since
it requires a preceding pattern to detect the encoded spots. As described in Sec. 2.1.1,
unnoticed partial pattern occlusion is a problem for all spatial multiplexing approaches.
This is also valid in the case of M-array approaches.

[23] projected a M-array containing 11×29 spots of three colors red, green and blue. Each
sub-matrix contained five elements using the four adjacent neighbors for every position.
The problems of color-based de Bruijn sequences described in Sec. 2.1.1 also apply for
color-based M-arrays. The albedo of the object can cause code detection errors. To avoid
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this drawback, [23] also designed a monochromatic 27 × 127 M-array based on five dif-
ferent geometric features. The basic feature was given by a square with four blank quad-
rants and the remaining four features were defined by filling one to four quadrants of the
square.

To increase the robustness of code detection, [55] proposed a M-array which makes use
of a voting approach and the Hamming distance between the codes. The used encoding
is either based on color or geometric features and supports sub-matrices of dimensions
3 × 3. To detect the code of an element in a captured M-array, the respective position
is analyzed nine times because it is a member of nine different but overlapping 3 × 3
sub-matrices. Consequently, a vote can be conducted to determine the correct code.

The Hamming distance between two code words is defined as the number of positions in
which they differ [66]. To further increase the robustness of code detection, [55] defined
a minimum Hamming distance d which has to be satisfied between each adjacent sub-
matrix during the creation of the M-array. In the case of an error that occurs in one of
the code digits of a sub-matrix, the computed Hamming distance will be equal or greater
than d − 1. The receiver knows that allowed Hamming distances are equal or greater d
and thus incorrect Hamming distances given by d − 1 can be detected. A higher min-
imum Hamming distance d provides a better error detection. The reason is that the num-
ber of possible d − 1 Hamming distances will increase when d is increased. However,
the increase of d also leads to the decrease of the supply of allowed sub-matrices which
have to be unique in the M-array. Thus, the increase of d is limited.

[64] utilized the M-array approach proposed in [55] for robot positioning by means of
visual servoing. The method uses a 20× 20 M-array and sub-matrices of dimensions 3× 3
which contain red, green and blue spots. Experimental results showed that the construc-
ted M-array can be used to successfully position a six degrees of freedom (DOF) robot
manipulator with respect to an object. The main drawback of the created M-array is that
it does not provide a rotation invariant detection of the codes. The M-array constructed
in [55] can only be used for cases that do not involve a high rotation of the grid in the
camera image.

To avoid the drawbacks of color-based spatial multiplexing, [3] proposed a monochro-
matic M-array which is constructed by using three geometric features. The latter are
given by a disc, a circle and a stripe (see Fig. 2.2). The encoding is realized by a M-array
of dimensions 27× 29 and sub-matrices of dimensions 3× 3. Furthermore, the approach
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in [3] uses the constraint of a minimum Hamming distance d = 4 which has to be sat-
isfied between each adjacent sub-matrix. The algorithm used for the construction of the
M-array achieved that approximately 96 % of the codes satisfy the specified constraint.
The shape of the stripe feature shown in Fig. 2.2 offers the computation of the orientation
of the captured M-array grid. A surface reconstruction is computed by using the center
of mass of each geometric feature. The experimental results showed that the proposed
M-array grid works robust in most cases. However, the effect of unnoticed partial pattern
occlusion is still a problem.

Figure 2.2.: Geometric features used in [3].

2.1.3. Customized encoding approaches

This section covers techniques for spatial multiplexing which use types of non-orthodox
encoding. [33] suggested a monochromatic approach based on the projection of a field of
connected square cells. One out of three different intensity values was assigned to each
square cell. The superimposed light at the intersection (node) of each set of four cells led
to 18 possible intensity values. For the identification of a node in the image, the intensity
value of the node and it’s four adjacent nodes was evaluated. To avoid ambiguity, [33]
used the epipolar line constraint which incorporates that a projected node is associated
with an epipolar line in the captured camera image. A node in the image can be verified
by evaluating the distance to the epipolar line. As described, [33] utilized an intensity
based encoding strategy. This approach clearly suffers from the same disadvantages as
color based spatial multiplexing.

In [41], a coding strategy that purely relies on the epipolar constraint was realized. The
projected pattern contains an array of black vertical slits on a white background. The
black slits are crossed by an array of green diagonal slits. Each crossing between the
black and green slits in the captured camera image is associated with an epipolar line.
A defined angle between the black and green slits provides that the mapping between
the captured crossings and the epipolar lines can be uniquely resolved. Consequently,
the identification of a crossing does not depend on other crossings in the local neigh-
borhood. In this manner, the problems of unnoticed partial pattern occlusion can be
completely avoided. This is a big advantage compared to common techniques for spatial
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multiplexing.

However, a disadvantage of the epipolar line based coding is given by the trade-off
between reconstruction density and accuracy. A higher reconstruction density can be
achieved by adding more green slits. Hence, the angle between the black and green slits
has to be decreased. This strategy is limited since a decreasing angle also decreases the
distance between the epipolar lines. When the distance between the epipolar lines is too
short then the mapping between the captured crossings and the epipolar lines becomes
ambiguous. The reason is the presence of image noise.

A different approach was realized in [51] which suggested a distance based encoding.
An array of black slits on a white background is projected onto the surface of an object.
To implement the distance encoding, each black slit is cut at random positions. In this
manner, each slit consists of a number of slit segments which have a random length. The
code detection is realized by analyzing the length of a slit segment and it’s six adjacent
slit segments in the projected array. The explained method clearly implies the same dis-
advantage as the distance based de Bruijn method described in Sec. 2.1.1.

[38] proposed the projection of a grid of horizontal and vertical light slits. The color of all
horizontal and vertical slits was given by blue and red, respectively. The encoding was
realized by random based spacing between the horizontal slits. An algorithm for peak
detection was utilized to localize the intersections of the horizontal and vertical slits.
Afterwards, the intersections and the encoded distances in the local neighborhood were
used to find the correspondence between the projected and captured grid. Since distance
based encoding is utilized, the explained method suffers from the same disadvantage as
the procedure in [51].

2.2. Time multiplexing

Time-multiplexed structured light covers methods which realize light encoding by suc-
cessive pattern projection. By means of a k-ary code, the position of N = kn light ele-
ments can be encoded in n projected patterns. The radix k defines the possible projection
states which are usually realized by means of change in intensity or different colors. A
camera captures the reflection of each pattern in one single image. Consequently, the pro-
jection of n patterns results in n captured camera images. The following sections cover
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general temporal codes, temporal hybrid codes and temporal shifting codes.

2.2.1. Temporal codes

An early work in the area of time multiplexing is proposed in [67]. An array of 2n light
stripes is encoded by means of the projection of n patterns. The binary encoding is real-
ized by switching the light source on or off. The first projected pattern corresponds to the
most significant bit (MSB). Consequently, the proposed approach represents a coarse-to-
fine scheme. As mentioned in Sec. 2.1, light stripes are not separated by gaps and hence
light stripes will merge when they provide the same projection state. The first projected
pattern is coarse since the stripes merge to two blocks. The patterns that follow after the
first one provide a finer partitioning of the light stripes since the alternation of the pro-
jection states becomes larger towards the least significant bit (LSB). In the last pattern the
projection state alternates for each adjacent stripe. In this context, it should be mentioned
that the order of the patterns has no influence. The same reconstruction results can be
achieved when the projection starts with the LSB.

The code of the captured stripes can be retrieved as follows. At first, the stripe edges
are detected in the last camera image. Afterwards, the position of the detected edges are
utilized in all n images to analyze the intensity between them. The method explained in
[67] can only be used for static applications which guarantee that the object whose surface
has to be reconstructed does not move during the projection of the n patterns. This is a
contrast to approaches which are based on spatial multiplexing. The use of a one-shot
pattern provides fast surface reconstruction and is applicable for moving objects.

The advantage of time-multiplexed structured light is given by accuracy. As described
in Sec. 2.1, the accuracy of the code detection for methods based on spatial multiplexing
is affected in the case of unnoticed partial pattern occlusion. This problem does not exist
for methods based on time multiplexing. This is due to the fact that the encoding of each
projected light element is independent of adjacent light elements. The accuracy of the
code detection for methods based on time multiplexing can only be influenced by the
robustness of the algorithm that is responsible for the extraction of the captured light
elements.

As proposed in [31], the robustness of binary time multiplexing can be further increased
by introducing the Gray code [22]. By using the Gray code, the difference between the
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code of adjacent light stripes is given by exactly one shuffled bit. This is equivalent to a
Hamming distance of value 1 and provides a guaranteed detection in case of an error that
occurs in one of the code digits. In the case of an array of light stripes, the conversion from
the usual binary code to the Gray code is loss-free. This means that all 2n light stripes can
be reordered so that the Hamming distance between the code of adjacent light stripes is
given by the value 1. Preserving the number of stripes is an advantage. Otherwise the
number n of projected patterns would have to be increased in order to compensate for
unusable stripes.

Another approach to further increase the robustness of binary time multiplexing is real-
ized in [52]. The Hamming distance between the code of adjacent light stripes is max-
imized in order to detect or even correct erroneous codes that are extracted from the
captured camera images. However, this approach also leads to the disadvantage that not
all 2n light stripes can satisfy the constraint. As described before, this leads to an increase
of the number n of projected patterns.

[12] proposed the use of color encoding to increase the number of projected stripes. As
described in Sec. 2.1, the use of color encoding can be problematic because of the albedo
of the object. To avoid this problem, [12] suggested an intensive color calibration for the
optical system. The following calibration steps are executed offline. A color calibration
for the camera is carried out to compute the transfer function. Furthermore, an image of
the scene is acquired which only contains the ambient light. The next calibration step has
to be carried out online because it depends on the color properties of the object whose
surface has to be reconstructed. A white pattern is projected onto the surface of the object
and the reflection is captured by the camera. The albedo of a colored object can change
the reflected light from white to different colors. Using the white light information and
the measured colors in the camera image, a transfer function can be calculated for the
relevant pixels in the camera image.

After calibration, the projection of the color encoded light stripes can be carried out. Us-
ing the calibrated parameters, the color of the relevant pixels in the n camera images can
be corrected to compensate for the influence of the camera, the ambient light and the
albedo of the object. Consequently, the corrected colors provide a very close approxim-
ation of the projected colors. In this manner, the code detection can not be affected by
the use of color encoding. The disadvantage of this approach is given by the fact that the
described calibration is time consuming. Moreover, the calibration of the albedo transfer
function has to be carried out online for every new object. This is achieved by using an
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additional pattern which contains white light. Hence, the number n of projected patterns
is extended by 1.

2.2.2. Temporal hybrid and shifting codes

[32] proposed a hybrid approach which combines spatial and time multiplexing. A one-
shot pattern provides fast surface reconstruction and it is applicable for moving objects.
On the other hand, time multiplexing provides robustness in the case of partial pattern
occlusion. The method described in [32] makes an effort to combine the advantages of
both approaches.

The basis is given by the binary encoding of 2n light stripes. To provide spatial multi-
plexing, a projected pattern contains the complete code of length n for each binary stripe.
The code of a stripe is projected along the x-axis and the codes of all stripes are stacked
along the y-axis. The time multiplexing is realized by the successive projection of n pat-
terns. Each new pattern contains the previous pattern which is modified by means of
a code shifting of 1 bit along the x-axis. In this manner, the algorithm can automatic-
ally switch between spatial and time multiplexing. It uses time multiplexing if the object
whose surface has to be reconstructed is not moving. In this situation, a highly accurate
code detection can be achieved. The algorithm switches to spatial multiplexing as soon
as the object starts to move.

Since the same stripe encoding is used for both approaches, the switching to spatial mul-
tiplexing does not change the sequence of projected patterns. As soon as the algorithm
detects that the object does not move anymore it switches back to time multiplexing.
Code detection errors in the case of spatial multiplexing are reduced since the Gray code
is utilized in [32].

Another approach for time multiplexing is given by the shifting of the projected patterns.
The goal is to obtain a reconstruction with a higher density. [73] proposed a shifting
method based on the projection of binary stripe patterns. The method utilizes the Gray
code and the projection order follows a coarse-to-fine scheme from MSB to LSB. After the
projection of all patterns, the LSB pattern is repeated three times. Each time this pattern
is slightly shifted and thus encoded regions have to be tracked in the camera image.
By means of the shifting, the stripe edges incorporate a translation and hence a higher
reconstruction density can be achieved.
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The measurement system shown in Fig. 1.1 projects a grid of discrete laser spots onto the
forehead of a person. The triangulation camera captures the reflection of the laser spots in
order to reconstruct their centers. For the purpose of reconstruction, the correspondence
between the projected and captured laser spots has to be established. Due to partial
pattern occlusion, it can not be guaranteed that all laser spots of the projected grid are
captured by the camera. The occlusion of parts of the projected pattern can either be
caused by the individual shape of the persons’s forehead or wrinkles of the skin. Partial
pattern occlusion also occurs when the projected grid of laser spots exceeds the forehead
area.

Besides partial pattern occlusion, the processing of the camera images has to be con-
sidered. The successful detection of the captured laser spots depends on the robustness
of the used detection algorithm. Due to partial pattern occlusion and detection issues,
the correspondence problem can not be solved directly. For this reason, a structured light
encoding technique is developed in the following. Furthermore, algorithms for the de-
tection of interest points are addressed.

3.1. Preliminary considerations

As a basis for the development of a structured light method, the most important ad-
vantages and disadvantages of the discrete encoding methods described in Sec. 2 are
summarized. Spatial multiplexing offers the projection of a one-shot pattern and the
encoding relies on the local neighborhood of each projected light element. Spatial multi-
plexing allows for a high reconstruction rate and can also be applied for moving objects.
The two major classes of spatial multiplexing are given by de Bruijn sequences and M-
arrays. Methods based on de Bruijn sequences mainly use the projection of an array of
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multiple light slits or stripes. Moreover, some of the proposed methods based on de
Bruijn sequences also use the projection of a grid of horizontal and vertical slits. The
matrix structure of M-arrays presents a scheme which is applicable for the encoding of a
grid of discrete spots. Another class of spatial multiplexing is covered by customized en-
coding approaches which do not follow a formal encoding paradigm. Proposed methods
in this area offer pattern projection based on spots or slits.

Most spatial multiplexing approaches utilize color encoding. However, the albedo of
the object whose surface has to be reconstructed can lead to code detection errors. To
decrease this effect an intense color calibration has to be carried out. Other spatial multi-
plexing approaches rely on the use of distance information for the encoding. A drawback
is given by the distortion of the encoded distances in the camera image. A more robust
encoding scheme is given by the use of geometric features. The latter can be used for
M-arrays since the properties of these features imply the encoding of a grid of discrete
spots. The use of appropriate geometric features also offers the advantage that the ori-
entation of the M-array can be detected in the camera image. A general disadvantage
of all spatial multiplexing approaches is the lack of robustness against unnoticed partial
pattern occlusion.

The use of a M-array based on binary encoded spots is another alternative to avoid the
drawbacks of color encoding. Nevertheless, a M-array based on binary encoded spots
also necessitates the projection of a second pattern in order to detect the encoded spots
that use the same color as the background. By means of a specified minimum Hamming
distance between the code words, the robustness of the code detection can be further
increased for all spatial multiplexing approaches. Another strategy to further increase
the robustness of the code detection is given by means of epipolar lines.

This technique also offers the possibility to develop a spatial multiplexing approach that
solely relies on epipolar lines. In this case, the pattern projection is designed so that each
interest point in the camera image is uniquely mapped to an epipolar line. This principle
offers the big advantage that the set of interest points can be encoded without the use
of the local neighborhood. In this manner, the consequences of unnoticed partial pattern
occlusion can be completely avoided. Hence, the sole use of epipolar lines is a promising
strategy to construct a very robust one shot pattern. Nonetheless, also this approach
contains a critical drawback. In the presence of image noise, epipolar lines have to be
located at least 10 pixels apart from each other. Only in this manner, a unique mapping
between interest points and epipolar lines can be guaranteed. Consequently, only a small
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amount of epipolar lines can be utilized which ultimately results in a low reconstruction
density.

Next to spatial multiplexing, the second branch of discrete encoding approaches is defined
by time multiplexing. The latter incorporates light encoding by means of the successive
projection of n patterns. The successive pattern projection enables that each projected
light element is encoded independently of the adjacent light elements. Consequently,
partial pattern occlusion has no effect on the code detection and hence a highly accurate
surface reconstruction can be achieved. This is a big advantage compared to spatial mul-
tiplexing. On the other hand, n patterns have to be projected in order to detect the code
of each light element. Consequently, surface reconstruction based on time multiplexing
incorporates a higher acquisition time. After the detection of the code words, surface re-
construction can be carried out. Typically, the positional information of the last captured
pattern is utilized for surface reconstruction.

Moreover, existing time multiplexing approaches can only be used for static applications
which ensure that the object does not move during the projection of the n patterns. As
in the case of spatial multiplexing, the robustness of time multiplexing approaches can
be further increased by incorporating the use of the Hamming distance between the code
words. Furthermore, the robustness can be increased by using the epipolar line con-
straint. In the literature, time multiplexing is mainly used for the projection of an array
of multiple light stripes. Since the encoding of each projected light element is independ-
ent from the adjacent light elements, time multiplexing can be easily transferred to the
encoding of a grid of discrete spots.

Next to the class of pure temporal codes, time multiplexing also covers temporal hybrid
codes and temporal shifting codes. The former is useful for applications which involve an
object that is moving on an alternating basis. A hybrid approach uses time multiplexing
when the object is not moving. In this situation, a highly accurate surface reconstruc-
tion can be obtained. When the object starts to move then the method switches to spatial
multiplexing. Approaches which follow the paradigm of temporal shifting codes are an
extension of pure temporal codes and can be utilized to further increase the reconstruc-
tion density.
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3.2. Design of a structured light pattern

To establish point correspondence for the grid projection of the measurement system
shown in Fig. 1.1, binary time multiplexing is utilized in this work. The reason to decide
against spatial multiplexing is that all spatial multiplexing approaches lack robustness
against unnoticed partial pattern occlusion. To achieve a highly accurate surface recon-
struction, the only proper spatial multiplexing approach would be the sole use of epipolar
lines. Nevertheless, the disadvantage is that only a small amount of interest points can
be uniquely mapped to epipolar lines. Consequently, this approach leads to a sparse sur-
face reconstruction. A successive projection of shifted patterns could solve this problem.
However, a successive projection can drastically affect the coherence of reconstructed
surface points if the head of the person is moving.

Instead, binary time multiplexing is utilized in this work. Also this approach involves
successive pattern projection. The difference is that time multiplexing utilizes the image
data from only one captured pattern for surface reconstruction. The image data of the re-
maining patterns is used for code detection. Thus, the coherence of reconstructed surface
points solely depends on one projected pattern.

Previous time multiplexing approaches can not be used in the case of moving objects.
Consequently, previous time multiplexing approaches can not be used in the case of op-
tical head tracking for radiation therapy. The time multiplexing method developed in
this work reduces this restriction. The developed method can be used for objects that
move slowly. Moreover, the developed method offers a high reconstruction rate. The
constraint of slow movement is satisfied during optical head tracking for radiation ther-
apy. The head of a person rests inside a head mold which offers only little space for head
movement.

The developed time multiplexing method utilizes binary encoding. Consequently, two
encoding states exist which are realized by switching the laser source on or off. As an
alternative, the laser source could also be used to create laser spots of different intensities.
In this manner, the amount of encoding states could be greater than two. For example,
three encoding states given by 0 %, 50 % and 100 % of laser intensity could be realized. In
the context of time multiplexing, a larger amount of encoding states k offers a reduction
of the amount n of projected patterns. However, an intensity based encoding suffers from
the same problems as discussed for color based encoding. Similar to color calibration, an
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intensity calibration could be carried out for an intensity based encoding. However, this
is not a practical approach in the scope of head tracking. Instead, binary encoding is
utilized to guarantee a clear distinction between the encoding states.

Before the developed time multiplexing method is described, the structural and time-
related properties of the grid projection are addressed. The projection of a single grid of
laser spots requires a certain time period t which lasts from the moment when the first
laser spot hits the surface to the moment when the last laser spot hits the surface. The
value of t depends on the used projection hardware. In this work, the projection system
is given by a point-based laser source and two controllable mirrors which redirect the
laser beam.

The used projection system is able to project a grid of N = 1000 discrete laser spots in
approximately t = 0.1 s. Using a grid resolution of 40× 25 laser spots, the dimensions of
the projected grid are given by approximately 16× 10 cm2. These dimensions apply for a
projection distance of 60 cm which is also the specified projection distance for the future
head tracking system.

The grid dimensions of 16×10 cm2 are used as an estimate of the average forehead size of
a person. The chosen grid dimensions depend on the number N of projected laser spots
and the spot size. The gap between the laser spots is as small as possible and guarantees
that the projected laser spots are clearly distinguishable in the camera image. The size of
the laser spots depends on the optical properties of human skin. Due to the high amount
of diffuse reflection, the spot size on human skin is larger than compared to the spot size
on synthetic material. At a projection distance of 60 cm, the diameter of each laser spot is
given by 2 mm. The gap between the laser spots is defined by 2 mm in both directions.

The time period t depends on the velocity of the mirrors and how fast the laser source can
be switched on and off. In this work, the laser source is switched during the movement
of the mirrors. The movement of the mirrors is carried out in intervals. This is necessary
since the slow switching characteristics of the used laser source prevent a high velocity
of the mirrors. If the mirrors would not stop at the end of an interval then the projec-
tion would result in laser line fragments instead of laser spots. During each movement
interval of the mirrors, five laser spots can be projected.

An increase of the number N of projected laser spots linearly increases the time period
t as well as the dimensions of the projected grid. Exemplary configurations that can be
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achieved by means of the utilized projection system are given in Table 3.1.

Number of spots N Grid dimensions [cm2] time period t [s]

40× 25 (1000) 16× 10 0.1
80× 50 (4000) 32× 20 0.4

Table 3.1.: This table exemplarily presents possible configurations for the projection of a grid
of laser spots. The quantity t defines the time period that lasts from the moment when the first
laser spot hits the surface to the moment when the last laser spot hits the surface. The grid
dimensions apply for a projection distance of 60 cm.

The declared values for t are only valid in the case that the measurement system shown
in Fig. 1.1 is solely used for surface reconstruction. If the measurement of the optical fea-
tures described in Sec. 1.2 is carried out simultaneously then the time period t increases.
This is due to the fact that the laser source has to be switched on for a longer time in
order to ensure that enough information bearing light can be captured by the HDR cam-
era. Thus, the mirrors of the projection system have to stand still during the projection
of every single laser spot. In this scenario, the projection of a grid of 1000 laser spots can
take up to several seconds. In most cases, the simultaneous measurement of optical fea-
tures is not carried out in the scope of this work. The reason is that this work is focused
on the acquisition of point-based surface reconstructions. Hence, for most experiments
conducted in this work, the time periods declared in Table 3.1 are valid. If the simultan-
eous measurement of optical features was necessary in a conducted experiment then the
deviating time period is explicitly specified.

In the following, the developed time multiplexing method is described. By means of the
binary code, the position of N laser spots is encoded in n projected grids. The number N
of laser spots and the code length n are related by:

N = 2n. (3.1)

Thus, given a number of N laser spots that have to be encoded, the required code length
n is calculated by:

n = log2(N). (3.2)
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3.2. Design of a structured light pattern

If this equation results in a value n that is not a natural number then n has to be rounded
up in order to provide a code length that is sufficient for the encoding of N laser spots.
The triangulation camera operates in trigger mode and captures the reflection of each
grid in one single image. Consequently, the projection of n grids results in n captured
camera images. In the following, the n captured camera images are referred to as code
frames. Since the head of a person will move during head tracking, a high number of
consecutive zeros has to be avoided in the projected code words. This is necessary in
order to ensure that the code words can be tracked in the captured camera images. For
this reason, bit stuffing is used to extend the code frames by so-called full frames. When
the camera captures a full frame then it is ensured that all laser spots of the grid are
projected. The fusion of code frames and full frames is referred to as extended code
sequence.

As shown in Fig. 3.1, an extended code sequence starts with a full frame. In this manner,
the system can acquire the initial pixel location of the laser spots that are visible in the
image. The pixel location of a laser spot is represented by it’s center. In this work, the
following nomenclature is used to avoid unclarity. The term laser spot describes a laser
profile and the term laser center refers to a point information. The detection of a center
of a laser spot is also known as interest point detection and is described later in Sec. 3.3.

sub
sequence 1

sub
sequence v

sub
sequence 1

full
frame

code
frame 1

code
frame m

Figure 3.1.: Extended code sequence containing v sub-sequences.

An extended code sequence is arranged in v sub-sequences. A sub-sequence has a con-
figurable length of j frames and always starts with a full frame. The remainder of a
sub-sequence is given by m code frames. The processing of the code frames starts with
the LSB and ends with the MSB of the projected code words. Depending on the value
n, not all sub-sequences necessarily possess the same amount of code frames. If an even
partitioning of the code frames is not possible then the last sub-sequence possesses a dif-
ferent amount of code frames. A length j = 2 means that a sub-sequence includes one
full frame which is followed by one code frame (see Fig. 3.2) and a length j = 3 means
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3. Establishing point correspondence

that a sub-sequence includes one full frame which is followed by two code frames. The
projection of an extended code sequence is repeated permanently.

Figure 3.2.: This figure exemplarily shows 1024 laser spots which are projected onto the fore-
head of a person. The binary representation of the indices of the laser spots (range: 0 to 1023)
defines the code words. The encoding is realized by means of n = 10 code frames. The loca-
tion of the code words in the projected grids is computed by a random permutation. The length
of each sub-sequence is defined by j = 2 and thus the number of sub-sequences is given by
v = 10. The images show the projection of the first three sub-sequences of an extended code
sequence. The order is given by top-left to bottom-right.

The tracking of the code words in a captured extended code sequence is carried out for
each laser spot that is visible in the first full frame. The latter yields the initial pixel
locations of the laser centers. The pixel locations of the laser centers in the subsequent
code frame are used to build a KD tree as described in Sec. A.7. Using this KD tree, a
radius based nearest-neighbor search is performed for each initial pixel location (query
points) from the first full frame.
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3.2. Design of a structured light pattern

The radius r is individually calculated for each query point and is given by half of the
distance between the query point and the closest adjacent query point in the first full
frame. A successful tracking of the code words requires that the pixel locations of the
laser centers in the subsequent code frame are located within the radius of the query
points. This implies that only a slight head movement is allowed between the acquisition
of two camera images.

If the radius based search returns a nearest neighbor for a query point, then the tracked
code information is given by the bit value 1. Otherwise the tracked code information is
given by the bit value 0. The subsequent frames within the extended code sequence are
processed in the same manner. Here, a special case is given by the radius based search for
the full frames. A full frame yields an update of the location of the query points and the
individual radius for each query point is recomputed. Furthermore, the full frames do
not contribute to the tracked code information. If a full frame does not yield an update
for the location of a query point then the tracking of the code word is cancelled for the
respective laser spot.

After all v sub-sequences of an extended code sequence have been processed, all tracked
laser spots have been identified by means of their respective code words. The first exten-
ded code sequence is referred to as initialization phase. A surface reconstruction can be
carried out for each full frame that is captured after the initialization phase. Code frames
are not used for surface reconstruction since they would only yield a sparse surface recon-
struction. The correspondence between the projected and captured light information is
established by utilizing the tracked code words of the preceding extended code sequence.
Laser spots are permanently tracked in the repeated extended code sequences.

Unidentified laser spots that are visible in the first full frame of a new extended code
sequence are tracked as well. Unidentified laser spots can be caused by head movements
which appear during the processing of the preceding extended code sequence. Head
movements can lead to varying partial pattern occlusions and thus laser spots can dis-
appear and reappear in the camera images. Consequently, partial pattern occlusions can
cause the cancellation of the tracking of the affected spots. Laser spots which reappear
after a while are treated as unidentified spots. The tracking of unidentified laser spots is
always initiated in the beginning of an extended code sequence.

As described, the tracking of laser spots is carried out permanently in the repeated exten-
ded code sequences. The code words of already identified spots are also extracted in new
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extended code sequences. In this manner, it is guaranteed that identified spots are re-
identified. Consequently, erroneous codes can be corrected. As presented in Fig. 3.2, the
location of the code words in the projected grids is computed by a random permutation.
In this manner, homogeneous areas are avoided in the projected grids. After the code
word of a laser spot is identified, further code verifications are performed. An identified
code word is rejected if it is out of range. Moreover, if the same code word was assigned
to two or more laser spots then the code word is rejected as well. This procedure ensures
that the following stages of code verification are not perturbed.

In the scope of time multiplexing, the Gray code is often used to verify the detected code
words (see Sec. 2.2). However, a loss-free conversion from the binary code to the Gray
code is only possible in the case of an array of light stripes. In this work, the shape of the
projected patterns is given by a grid of discrete laser spots. Thus, the majority of the laser
spots possess eight adjacent spots. The Gray code defines a Hamming distance of value
1 between adjacent code words. This leads to the fact that not all original code words
can be utilized to construct a grid which satisfies the Gray code constraint. In order to
compensate for unusable code words, the code length n would have to be increased.

However, an increase of the code length n also leads to an increase of the described ini-
tialization phase. For this reason, the Gray code is not used in this work. Instead, the
explicit code words of the adjacent laser spots are used to verify the code of a laser spot.
This strategy involves higher computational costs than the utilization of a Hamming dis-
tance. Nonetheless, the used strategy is more accurate and does not lead to an increase of
the code length n. Moreover, experiments revealed that the respective increase of compu-
tational costs is affordable. The developed software is anyway able to process a captured
camera image before the next camera image arrives.

The next stage of code verification is realized by means of epipolar lines. Every projected
laser spot corresponds to an epipolar line in the camera image. Due to head movements,
a captured laser spot will move along it’s epipolar line. To verify the code of a captured
laser spot, the orthogonal distance of the respective laser center is computed with respect
to the corresponding epipolar line. The laser spot is rejected if the computed distance
exceeds a threshold of 1 pixel. The described computation depends on the projective
geometry of the calibrated laser scanning system and is explained later in Sec. 4.5.

The developed time multiplexing approach embeds full frames into the projected code
information. This ensures that the laser spots in the camera images can be tracked when
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3.2. Design of a structured light pattern

it comes to slight movements of the person’s head. The use of full frames also provides
a high reconstruction rate. The highest reconstruction rate can be achieved when the
length j of each sub-sequence is given by the value 2. This means that only one code
frame follows after a full frame. As shown in Table 3.1, a grid of 1000 laser spots can
be projected in approximately t = 0.1 s. Hence, using a length of j = 2 for each sub-
sequence, a surface reconstruction of 1000 points can be obtained every 0.2 s. This results
in five surface reconstructions per second.

The only drawback of the proposed method is given by the circumstance that the first
extended code sequence has to be processed before the computation of surface recon-
structions can start. The first extended code sequence is referred to as initialization phase
and depends on the amountN of projected laser spots as well as the length j of each sub-
sequence. Table 3.2 shows two exemplary configurations for N using different values of
j. An increase of j leads to a decrease of the length of the extended code sequences. In
this manner, a shorter initialization phase can be achieved.

Nevertheless, an increase of j also means that the occurrence of full frames is decreased.
Thus, the allowed velocity of the object whose surface has to be reconstructed is reduced
as well. Furthermore, a decrease of the full frames also leads to a reduced reconstruction
rate. Consequently, there exists a trade-off between the length of the initialization phase
on the one hand and the allowed velocity of the object as well as the reconstruction rate
on the other hand.

Number N
of spots

Code
length n

Length j of each
sub-sequence

Number v of
sub-sequences

Length of an
extended code

sequence

1000 10
2 10 20
3 5 15
6 2 12

4000 12
2 12 24
3 6 18
7 2 14

Table 3.2.: Exemplary parameter configurations for the projection of extended code sequences.

As explained, a grid of 1000 laser spots can be projected in approximately t = 0.1 s. By
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using a length of j = 2 frames for each sub-sequence, the length of an extended code
sequence is given by 20 frames. This results in a short initialization phase of 2 s. In the
case of 4000 laser spots, the initialization phase takes longer. As presented in Table 3.1, a
grid of 4000 laser spots can be projected in approximately t = 0.4 s. Using again a length
of j = 2 frames for each sub-sequence, the length of an extended code sequence is given
by 24 frames. This results in an initialization phase of 9.6 s.

As described in the beginning of this section, a moving object affects the coherence of
the spatial points contained in an acquired surface reconstruction. In the case of the
developed time multiplexing approach, the coherence of the reconstructed spatial points
directly depends on the time period t. A surface reconstruction is computed by using the
detected laser centers in a full frame. The time which is required for the projection of a
full frame is defined by the time period t. When the object is moving during this time
period then the captured full frame will contain the respective movement artifacts. Since
the surface reconstruction depends on the detected laser centers, these artifacts are also
transfered to the surface reconstruction. As a consequence, a short time period t has to
be chosen for the grid projection in the context of head tracking.

The process of surface reconstruction is carried out by triangulation. The latter depends
on the detected laser centers and the extrinsic parameters of the laser scanning system.
The calibration of the extrinsic parameters of the laser scanning system and the triangula-
tion of spatial points is described later in Sec. 5. Beforehand, algorithms for the detection
of interest points are introduced.

3.3. Detection of interest points

The code tracking procedure described in Sec. 3.2 necessitates the accurate detection of
the centers of the laser spots in the captured images. The center of a captured laser spot
can be represented in two manners. An intuitive representation is given by the center
of the elliptical contour of the spot. A second representation is given by the maximum
intensity of the spot. The maximum intensity is not necessarily located at the same point
as the center of the elliptical contour. This is due to the incident angle of the respective
laser ray relative to the object’s surface. The more the incident angle differs from 90 ◦, the
more the point of maximum intensity will differ from the center of the elliptical contour.
Which of the two representations is utilized depends on the algorithm for interest point
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detection. In this section, template matching, ellipse fitting and paraboloid fitting are
introduced. Later in Sec. 6, all three detection algorithms are evaluated in terms of the
accuracy of the triangulation.

Figure 3.3 shows a typical grayscale image that contains a grid of 72 × 56 (4032) laser
spots that were projected on a planar surface. Figure 3.4 exemplarily shows a close up of
nine laser spots that are included in the grid in Fig. 3.3. It is noticeable that the captured
profile varies for each laser spot. Moreover, image noise is clearly visible. Depending on
the properties of the utilized algorithm, both factors can lead to detection inaccuracies.

3.3.1. Template matching

Template matching utilizes a template mask T of size (M × N) which is slided across
an image I . It computes the similarity between T and the equally sized image section at
image position I(x, y). Common similarity measures are given by sum of squared difference
(SSD), sum of absolute difference (SAD), and cross-correlation (CC) [29]. The CC measure is
the most commonly used similarity measure since it offers an optimal signal-to-noise
ratio estimation [79]. According to [50], the CC measure can be defined by the following
convolution of the template mask T and the respective image section at image position
I(x, y):

CC(x, y) =
M∑
v=0

N∑
u=0

I(x+ u, y + v)T (u, v). (3.3)

A more advanced similarity measure is given by normalized cross-correlation (NCC) which
is robust against linear changes in the amplitude of illumination [82]. The NCC measure
can be defined as follows [50]:

NCC(x, y) =

M∑
v=0

N∑
u=0

I(x+ u, y + v)T (u, v)√
M∑
v=0

N∑
u=0

I(x+ u, y + v)2

√
M∑
v=0

N∑
u=0

T (u, v)2

. (3.4)

The described robustness of the NCC measure is an advantage since the profile of each
captured laser spot has slightly individual brightness characteristics (see Fig. 3.4). Fur-
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thermore, measurements revealed that the brightness characteristics of the profile of a
laser spot also vary moderately over time. For template matching, a template mask T

showing one representative laser spot is extracted from a camera image that is captured
offline. The result of Eq. 3.4 is given by a new image that contains several local maxima.
The latter represent the highest matching similarity and yield the sought centers of the
captured laser spots.

Figure 3.3.: Captured grid of 72 × 56 (4032) laser spots which were projected on a planar
surface.

Figure 3.4.: Exemplary close up of nine captured laser spots contained in the grid in Fig. 3.3.
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The matching similarity is given in the range [0, 1] and a globally fixed threshold is util-
ized for the detection of the local maxima. The detection algorithm starts in the upper
left corner of the image which results from the convolution. The algorithm compares the
intensity of every pixel to the specified threshold. The search is carried out row-wise.
When the intensity is equal or greater than the threshold, the algorithm assumes that the
current pixel belongs to a laser spot. To find the local maximum, the algorithm uses a
region of interest (ROI) that is centered at the current pixel. The ROI has the same dimen-
sions as the utilized template mask. The maximum intensity inside the ROI represents the
sought local maximum. Afterwards, the value 0 is assigned to every pixel that belongs
to the ROI. Subsequently, the algorithm continues the search in the described manner by
comparing the intensity of the next pixel in the current row against the threshold.

Template matching includes several disadvantages. Detection errors occur as soon as a
captured laser spot differs from the template mask. The NCC measure guarantees robust-
ness against linear changes in the amplitude of illumination. But it is not robust against
scaling and perspective distortion of the captured laser spots. Hence, a new template
mask has to be defined when it comes to a significant change of the pose of the camera
with respect to the object whose surface has to be reconstructed. A general disadvantage
of template matching is the lack of sub-pixel localization.

3.3.2. Ellipse fitting

Another method for the detection of interest points is given by ellipse fitting. Figure 3.4
shows that the contour of each captured laser spot can be described by an ellipse. Thus,
the center of a captured laser spot can be determined by calculating the center of the re-
spective ellipse. The first step of this approach is defined by the binarization of a captured
grayscale image. A grayscale image which contains a grid of projected laser spots is ex-
emplarily shown in Fig. 3.3. In this work, Otsu’s method [62] is utilized for binarization.
This method assumes a bi-modal image histogram that contains two classes of pixels
given by back- and foreground. The histogram is analyzed to compute the grayscale
threshold which optimally separates both classes of pixels. Subsequently, the computed
threshold is applied to the captured grayscale image. The process of binarization yields
an image in which back- and foreground are separated by means of the values 0 (black)
and 255 (white), respectively. The resulting binary image contains the laser spots (filled
with the color white) which are separated from the black background.
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In the next step, the laser spots are detected by means of the region labeling method de-
scribed in [80]. A detected spot is represented by means of all included image points.
On this basis, the contour of each laser spot can be extracted. The contour of a spot is
defined by the image points pi and is used to carry out a least-squares (LS) fitting of
an ellipse model. [20] covers an overview of algebraic and geometric fitting procedures.
Both approaches are used to minimize the sum of the squared errors. In algebraic fitting,
the error is given with respect to the axis of the ordinate. In contrast, geometric fitting,
also known as orthogonal distance fitting or best fitting [2], defines the error as the ortho-
gonal distance between a data point and the curved shape of the ellipse. For this reason,
methods for geometric fitting are considered to yield more accurate results. However,
geometric fitting requires an iterative solution which increases the computational cost.

In this work, a single camera image typically contains around 4000 laser spots. Hence,
high computational costs for the fitting of the respective ellipses have to be avoided. Due
to this reason, an algebraic fitting of ellipses is used in this work. More precisely, a linear
regression based model for conic sections is applied. The procedure used in this work is
similar to the technique specified in [97]. The general form of a conic section is expressed
by the formula

0 = f(x, y) = ax2 + bxy + cy2 + dx+ ey + f . (3.5)

The intersection of a plane with a cone can lead to a circle, an ellipse, a parabola or a
hyperbola [44]. Consequently, these types of curves are also called conic sections. The
model in Eq. 3.5 is a generic formula whose parameters can be used to represent any of
the described conic sections. Moreover, it provides a linear estimation of an ellipse with
arbitrary translation and rotation. In this work, the model for conic sections is used in
the image space and hence it utilizes image points of type p = [ x y ]T . As described,
the extracted contour of a laser spot is given by the image points pi. To fit an ellipse to
the contour pi, the model in Eq. 3.5 is utilized to define the following system of linear
equations:

0n×1 =


x2

1 x1y1 y2
1 x1 y1 1

...
...

...
...

...
...

x2
n xnyn y2

n xn yn 1


︸ ︷︷ ︸

A

[ a b c d e f ]T︸ ︷︷ ︸
k

. (3.6)
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In order to avoid the trivial solution k = 0, the estimation of k is formulated by a con-
strained minimization problem:

min
k
‖ Ak ‖22 ,

subject to ‖ k ‖22 = 1.
(3.7)

This minimization problem can be solved by means of the method of Lagrange multipliers.
After some steps the following eigenvalue problem can be constructed [27]:

ATAk = λk. (3.8)

The symbol λ describes a Lagrange multiplier. A solution k that differs from the null
vector is an eigenvector of the matrix ATA. Moreover, the related λ is an eigenvalue of
this matrix. The sought solution for k is given by the eigenvector that corresponds to the
smallest eigenvalue. This solution can be comfortably computed by applying the singular
value decomposition (SVD) to the matrixA (see Sec. A.4):

A = UΣV T = U diag( σ1, · · · , σ6 )V T . (3.9)

The columns of V are the eigenvectors of ATA and are referred to as the set vj with
j ∈ [1, 6]. The singular values of A are contained on the diagonal of the matrix Σ and
are referred to as the set σj with j ∈ [1, 6]. The number of extracted singular values
and eigenvectors is equivalent to the number of columns of the matrix A. The sought
solution for k is given by the eigenvector that corresponds to the smallest singular value
[27]. Since the singular values are given in descending order, the sought solution for k is
defined by the eigenvector v6.

The estimated vector k includes the parameters of the conic section defined in Eq. 3.5.
Since the conic section model was fitted to an elliptical contour, the generic parameters
can be converted to the parameters of an ellipse. As described in the beginning of this
section, the sought parameters are given by the center of an ellipse. The following calcu-
lation of the center is based on the descriptions in [65]. Using the parameters a to e of the
estimated vector k, the center c of an ellipse is computed as follows:
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c =
[
x′

y′

]
= Q−1m =

[
2a b

b 2c

]−1 [
−d
−e

]
. (3.10)

Ellipse fitting represents a robust technique to detect the center of a laser spot in the pres-
ence of image noise. Compared to template matching, the fitting of an ellipse does not
depend on a reference signal. The fitting is carried out individually for each laser spot.
Consequently, a varying laser profile in the camera image does not affect the detection
accuracy. Furthermore, the center computation provides sub-pixel localization.

3.3.3. Paraboloid fitting

As proposed in [70], the detection of interest points can also be realized by paraboloid
fitting. This method assumes that the center of a laser spot is defined by it’s maximum
intensity. Fitting a paraboloid to a captured laser spot can compensate for image noise
and the imperfection of the laser source. In this context, the maximum intensity of a
captured laser spot is used as an initial guess. After paraboloid fitting, the sought center
of a laser spot is given by the maximum of the paraboloid.

Fitting a paraboloid to a captured laser spot is carried out as follows. At first, the de-
scribed initial guess has to be detected. This can be achieved by means of template
matching described in Sec. 3.3.1. This method computes an image point s which rep-
resents the maximum similarity between the template mask and the captured laser spot.
The maximum intensity of the captured laser spot is located in the local neighborhood
of s. The maximum intensity of the captured laser spot is detected inside a ROI which is
centered at s. This ROI has the same dimensions as the template mask that was used be-
fore. The fitting of a paraboloid is carried out by using the following bi-squared function:

z = f(x, y) = ax2 + bxy + cy2 + dx+ ey + f . (3.11)

This function uses the coordinates of an image point p = [ x y ]T and the associated
intensity z. Accordingly, the computed initial guess and it’s eight neighbors are utilized
to construct a system of linear equations:
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z1
...
z9


︸ ︷︷ ︸

w

=


x2

1 x1y1 y2
1 x1 y1 1

...
...

...
...

...
...

x2
9 x9y9 y2

9 x9 y9 1


︸ ︷︷ ︸

A

[ a b c d e f ]T︸ ︷︷ ︸
k

. (3.12)

In the respective image section, the points p1 to p9 are ordered from upper left to lower
right. Hence, the initial guess is defined by p5. By using the initial guess as the origin of
a translated coordinate system, the matrixA can be converted into a constant matrix:

A =



1 1 1 −1 −1 1
0 1 0 0 −1 1
1 1 −1 1 −1 1
1 0 0 −1 0 1
0 0 0 0 0 1
1 0 0 1 0 1
1 1 −1 −1 1 1
0 1 0 0 1 1
1 1 1 1 1 1



. (3.13)

The system of linear equations defined by Eqs. 3.12 and 3.13 can be solved by means
of the Moore-Penrose pseudoinverse described in Sec. A.3. Consequently, the vector k is
computed by:

k = A+w. (3.14)

The explained paraboloid fitting uses the pixel values of a 3× 3 sub-matrix in the camera
image. In this work, paraboloid fitting is also carried out by means of a 5× 5 sub-matrix.
The respective adjustment of matrix A in Eq. 3.13 is straightforward and is not further
described. As mentioned in the beginning of this section, the sought quantity is given
by the maximum of the fitted paraboloid. The maximum of the fitted paraboloid in the
translated coordinate system is given by:
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u = 2cd− be
b2 − 4ac ,

v = 2ae− bd
b2 − 4ac .

(3.15)

Using the following translation, the maximum of the fitted paraboloid is converted to the
original image coordinate system:

c =
[
x′

y′

]
=
[
x5 + u

y5 + v

]
. (3.16)

This translation represents an update of the initial guess p5 = [ x5 y5 ]T . The quantity
c defines the detected center of the laser spot.

The robustness of paraboloid fitting against image noise clearly depends on the dimen-
sions of the sub-matrix. A larger sub-matrix can lead to more accurate results. But the
use of a larger sub-matrix also increases the computational costs. Compared to template
matching, paraboloid fitting does not depend on a reference signal. The fitting is carried
out individually for each laser spot. Consequently, a varying laser profile in the cam-
era image does not affect the detection accuracy. Furthermore, the center computation
provides sub-pixel localization.
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This section describes the models of projective geometry which are used for the calibra-
tion of the laser scanning system and for surface reconstruction in Sec. 5. The utilized
models of projective geometry cover a camera model, the homography matrix, pose es-
timation, triangulation and the epipolar geometry.

4.1. Camera model

4.1.1. Model of central projection

The projection of a spatial point pc = [ xc yc zc ]T on an image point ps = [ xs ys ]T

is defined by the intercept theorem [27]:

ps = f

zc

[
xc

yc

]
. (4.1)

The spatial point pc is given in the camera coordinate system (CS)c and the image point
ps is given in the sensor coordinate system (CS)s. The projective mapping defined in Eq.
4.1 is also shown in Fig. 4.1. The z-axis of (CS)c is called optical axis and represents the
camera’s direction of view. The optical axis orthogonally intersects the sensor plane. The
point of intersection defines the origin of the sensor coordinate system (CS)s. The dis-
tance between the origin of (CS)c and the origin of (CS)s is expressed by f and presents
an intrinsic parameter of the camera.

In the context of the intercept theorem, the origin of (CS)s is located in front of the cam-
era. Contrary to this, the origin of (CS)s in a real physical camera is located on the
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negative z-axis of (CS)c. For this reason, the sensor plane in a real physical camera is
rotated by 180 ◦ around the x-axis of (CS)s. Subsequently, the sensor plane is rotated
by 180 ◦ around the the y-axis of (CS)s. Hence, a projective ray will intersect with the
camera’s center before reaching the sensor plane. The camera’s center is defined by the
origin of (CS)c and a projective ray connects the spatial point pc with the image point
ps. Changing the pose of (CS)s with respect to (CS)c in the described manner, leads to
the fact that the projective mapping in Eq. 4.1 is also valid for real physical cameras. By
using homogeneous points p̃c and p̃s, the projective mapping in Eq. 4.1 can be converted
into matrix form:

p̃s =


f 0 0 0
0 f 0 0
0 0 1 0

 p̃c. (4.2)

xc

yc

zc
xs

ys

pc

ps

f

Figure 4.1.: Central projection.

In an image processing system, the origin of the image coordinate system (CS)b is located
in the top-left corner of the camera image. For this reason, an image point ps has to be
converted into an image point pb = [ xb yb ]T with respect to the image coordinate
system (CS)b. This conversion is achieved by means of a translation which uses the
principal point [ x0 y0 ]T :

p̃b =


1 0 x0

0 1 y0

0 0 1

 p̃s. (4.3)
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x0xb

xs

ys

yb

y0

Figure 4.2.: Sensor and image coordinate system.

The principal point represents the origin of the sensor coordinate system (CS)s with
respect to the image coordinate system (CS)b (see Fig. 4.2). Equations 4.2 and 4.3 are
merged as follows:

p̃b =


f 0 x0 0
0 f y0 0
0 0 1 0

 p̃c =


f 0 x0

0 f y0

0 0 1


︸ ︷︷ ︸

K

[
I3×3 03×1

]
p̃c. (4.4)

K defines the calibration matrix and contains all intrinsic parameters of the camera. The
symbol I3×3 defines the (3×3) identity matrix. So far, a spatial point was given by pc with
respect to the camera coordinate system. However, spatial points are often given with
respect to an object coordinate system (CS)g. By means of the pose cT g, a point pg =
[ xg yg zg ]T can be transformed into a point pc (see Sec. A.2). The transformation
matrix cT g contains the (3 × 1) translation vector ctg and the (3 × 3) rotation matrix
cRg. These quantities define the extrinsic parameters of the camera. Using the extrinsic
parameters of the camera and Eq. 4.4, the projection of pg on pb is given by:

p̃b = K
[
cRg

ctg
]

︸ ︷︷ ︸
P

p̃g. (4.5)

P is called projection matrix. Besides f , x0 and y0, more intrinsic parameters have to be
incorporated in order to model the projection behavior of a charge-coupled device (CCD)
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4. Projective geometry

camera. First of all, a scaling mx and a scaling my have to be considered for the direction
x and y, respectively. Both scaling factors specify the ratio between the number of pixels
and the edge lengths of the sensor. Hence, it is also possible to model non quadratic
pixels. Usually, a CCD sensor includes quadratic pixels. In this case, mx and my are
equal. Moreover, a factor sk for shear mapping has to be incorporated. This parameter
models the angle between the x-axis and y-axis of the sensor. Commonly, the sensor’s
axes are orthogonal and hence the shear mapping is given by sk = 0. The calibration
matrix incorporates the additional intrinsic camera parameters as follows:

K =


fmx fmxsk x0mx

0 fmy y0my

0 0 1

 =


αx αxsk u0

0 αy v0

0 0 1

 . (4.6)

The intrinsic camera parameters f , x0, y0, mx and my are combined by αx, αy, u0 and v0.

4.1.2. Lens distortion

The camera’s lens system causes a distortion of image points. For this reason, the model
of central projection described in Sec. 4.1.1 is extended by a model of lens distortion. On
this basis, a rectification of image points can be defined later in Sec. 4.1.3. The model of
lens distortion considers the following types of distortion [89]:

• Radial distortion: The imperfection of lenses leads to a radial distortion δrad of the
image points. Radial distortion is defined relative to the center of distortion which
is given by the principal point presented in Fig. 4.2. The effect of radial distortion is
given by either an outward or inward distortion. The higher the distance between
an image point and the center of distortion, the higher the radial distortion. The ef-
fect of radial distortion is exemplarily shown for the undistorted lines of the grid in
Fig. 4.3 a. The result is given by either a pincushion distortion (outward distortion)
or a barrel distortion (inward distortion) in Fig. 4.3 b and c, respectively.

• Decentering distortion: In the ideal case, the optical center of the lenses are col-
linearly located on the optical axis. Deviations lead to a decentering distortion δdec
which consists of a radial distortion and a tangential distortion. As exemplarily
presented in Fig. 4.4, the effect of tangential distortion is given by a sideward dis-
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4.1. Camera model

tortion. All axes shown in Fig. 4.4 also represent undistorted lines which become
bent due to tangential distortion.

(a) undistorted grid (b) pincushion distortion (c) barrel distortion

Figure 4.3.: Types of radial distortion.

The basis for the model of lens distortion is given by a normalized image point pn =
[ xn yn ]T :

pn = 1
zc

[
xc

yc

]
. (4.7)

Eq. 4.7 is equivalent to Eq. 4.1 for the case f = 1. The squared L2-norm of pn is defined
by:

r2 = x2
n + y2

n. (4.8)

Using Eq. 4.8, the radial distortion is computed as follows [28]:

δrad = (kr1 r2 + kr2 r
4 + kr3 r

6)pn. (4.9)

Furthermore, the decentering distortion is expressed by:

δdec =
[

2kt1xnyn + kt2(r2 + 2x2
n)

kt1(r2 + 2y2
n) + 2kt2xnyn

]
. (4.10)

The parameters of radial distortion kr1, kr2 and kr3 as well as the parameters of tangential
distortion kt1 and kt2 represent further intrinsic parameters of the camera. Applying

45



4. Projective geometry

Eqs. 4.9 and 4.10 to a normalized image point pn leads to a distorted image point pd =
[ xd yd ]T :

pd = pn + δrad + δdec. (4.11)

As mentioned in Sec. 4.1.1, an image point in the image processing system is given by
pb. For this reason, the calibration matrixK in Eq. 4.6 is utilized to transform a distorted
image point pd into an image point pb:

p̃b = Kp̃d. (4.12)

Axis of maximal
tangential distortion

Axis of minimal
tangential distortion

x

y

Figure 4.4.: Tangential distortion of lines.

4.1.3. Rectification of image points

A rectification of image points is achieved by compensating for the effects of lens distor-
tion. A rectification is necessary in order to guarantee that image points are given with
respect to the model of central projection described in Sec. 4.1.1. This is a prerequisite for
the models of projective geometry that are utilized in the subsequent sections. By means
of rectification, a given image point pb is transformed into a normalized image point pn.
In the first step, Eq. 4.12 is expressed in Euclidean form:
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4.2. Homography matrix

pb =
[
αx(xd + skyd) + u0

αyyd + v0

]
. (4.13)

Hence, the inverse computation of the components of the distorted image point pd is
defined by:

yd = yb − v0
αy

,

xd = xb − u0
αx

− skyd.
(4.14)

Using the distorted image point pd, the inversion of Eq. 4.11 leads to the normalized
image point pn. Since Eqs. 4.9 and 4.10 contain pn as well, a direct inversion is not
possible. Instead, the Gauss-Newton method [10] can be used to find the root of the function

f(pn) = pn + δrad + δdec − pd. (4.15)

The Gauss-Newton method is an iterative procedure and requires a starting point for the
sought solution. The starting point is given by the distorted image point pd. The de-
scribed rectification of image points uses the complete set of intrinsic parameters of the
camera. The latter can be estimated by means of a camera calibration. In this work, the
intrinsic parameters were calibrated by means of the widely-used Camera Calibration Tool-
box for Matlab by Jean-Yves Bouguet which is partially inspired by the calibration method
of Zhang [98]. As explained, the subsequent models of projective geometry necessitate
that image points are rectified. For this reason, the following sections solely refer to nor-
malized image points.

4.2. Homography matrix

The homography matrix H defines the mapping between corresponding image points.
As exemplarily shown in Fig. 4.5, a point pn in the image I corresponds with a point pn

∗

in the image I∗ if both points represent the 2D projection of the same spatial point pg. Us-
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ing the (3×3) homography matrixH , an image point p̃n is mapped to the corresponding
image point p̃n

∗
as follows [27]:

p̃n
∗ = Hp̃n =


h11 h12 h13

h21 h22 h23

h31 h32 h33

 p̃n. (4.16)

pg

c∗ c

pn∗
pn

I∗ I

Figure 4.5.: This figure shows the geometric relationships for one pair of corresponding image
points pn and pn∗

which are given in the image I and I∗, respectively. The spatial point pg is
given in the object coordinate system (CS)g and is projected on pn and pn∗

. The connection
between the camera center c and the camera center c∗ represents the baseline.

H is a nonsingular matrix and hence the inverse mapping is given by the inversion ofH :

p̃n = H−1 p̃n
∗
. (4.17)

Using the direct linear transformation (DLT), the homography matrix H can be estimated.
The basis for this estimation is given by Eq. 4.16. Since H is a homogeneous matrix, Eq.
4.16 can be extended by a scale factor s 6= 0 [27]:

p̃n
∗ = sHp̃n. (4.18)

The scale factor s emphasizes that the vector on the left side and the vector on the right
side of Eq. 4.18 have the same direction but not necessarily the same length. Using Eq.
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4.2. Homography matrix

4.16, this relationship can be expressed by the cross product:

03×1 = p̃n
∗ ×Hp̃n. (4.19)

By reordering Eq. 4.19, the following system of linear equations can be defined:

02×1 =
[

01×3 −(pn)T −1 yn∗(pn)T yn∗

(pn)T 1 01×3 −xn∗(pn)T −xn∗

]
︸ ︷︷ ︸

A

[ h1 · · · h9 ]T︸ ︷︷ ︸
h

. (4.20)

In this system, one linearly dependent equation has been removed. Furthermore, the
value 1 has been assigned to the third component of p̃n

∗
and p̃n. Hence, Eq. 4.20 only

includes the Euclidean coordinates xn∗ and yn∗ as well as the Euclidean point pn. The
components of the vector h in Eq. 4.20 correspond to the components of H in Eq. 4.16.
The order of the components is given by top-left to bottom-right. Equation 4.20 uses one
pair of corresponding image points. By means of n pairs of corresponding image points,
the system of linear equations becomes

0 =


A1

...
An


︸ ︷︷ ︸
Ares

h. (4.21)

For the sake of simplicity, Ares will be referred to as A. According to [27], n ≥ 4 pairs
of corresponding image points have to be available to estimate h. In order to avoid the
trivial solution h = 0, the estimation of h is formulated by a constrained minimization
problem:

min
h
‖ Ah ‖22 ,

subject to ‖ h ‖22 = 1.
(4.22)

As explained in Sec. 3.3.2, this minimization problem can be solved by applying the
method of Lagrange multipliers. After some steps the following eigenvalue problem can be
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defined [27]:

ATAh = λh. (4.23)

A solution h that differs from the null vector is an eigenvector of the matrix ATA. The
sought solution for h is given by the eigenvector that corresponds to the smallest eigen-
value. This solution can be comfortably computed by applying the SVD to the matrix A
(see Sec. A.4):

A = UΣV T . (4.24)

The sought solution for h is given by the eigenvector that is located in the last column of
V [27].

4.3. Pose estimation

In this work, the pose cT g of a planar calibration body has to be estimated with respect
to a camera. The concept of the pose of a rigid body is explained in Secs. A.1 and A.2.
To construct the calibration body, the calibration pattern presented in Fig. 4.6 is printed
on a planar board. In order to estimate the pose cT g, the coordinate system (CS)g of
the calibration body has to be defined. One freely selectable corner of the squares of the
calibration pattern is used as the origin of (CS)g. The x-axis and the y-axis of (CS)g are
aligned along the edges of the squares. All squares of the calibration pattern have the
same size and the edge length is known. Hence, the coordinates of the corners of the
squares are known in the x-y plane of (CS)g. A 2D point in the x-y plane of (CS)g is
referred to as pq = [ xq yq ]T . Furthermore, the z-axis of (CS)g is a normal vector on
the calibration pattern which points towards the viewer. The relationship between a 2D
point pq and it’s 3D representation pg relative to (CS)g is given by:

pg = [ xg yg zg ]T = [ xq yq 0 ]T . (4.25)
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4.3. Pose estimation

Figure 4.6.: Calibration pattern.

The pose cT g of the calibration body is estimated by computing an initial solution which
is improved by a subsequent refinement procedure.

4.3.1. Initial solution

The computation of an initial solution for cT g is based on a captured camera image which
contains the projection of the constructed calibration body. Based on the Harris corner
detector [25], the corners of the inner squares of the calibration pattern are detected within
sub-pixel domain. The resulting set of detected corners is referred to as pnj with j ∈ [1, J ]
where J defines the amount of detected corners. As mentioned, the coordinates of the
corners are also known with respect to (CS)g. In the following, pqj describes the set of
corners of the inner squares in the x-y plane of (CS)g. Two points pn and pq are referred to
as corresponding points if they incorporate the same index j. By using the corresponding
sets pnj and pqj , the homography matrix H can be estimated (see Sec. 4.2). Using H , a
point pq is mapped to the corresponding point pn as follows:

p̃n = Hp̃q. (4.26)

An initial solution for the pose cT g is computed by means of decomposing the estimated
homography matrixH into a translation vector and a rotation matrix [46]. First of all,H
has to be normalized. For this purpose, the SVD is applied to the matrixH (see Sec. A.4):
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H = UΣV T = U diag( σ1, σ2, σ3 )V T . (4.27)

Subsequently, each component ofH is divided by the second singular value σ2:

H1 = 1
σ2
H . (4.28)

The final normalization step is given by a sign correction of H1. For this purpose, the
sign of the dot product in Eq. 4.29 has to be evaluated for each pair of corresponding
points. The sign function is described in Eq. 4.30. The sign of H1 is only corrected if the
sign of each dot product in Eq. 4.29 is negative:

H2 =

−H1 if sgn((pn)TH1 pq) = −1 ∀ j

H1 otherwise.
(4.29)

sgn(x) =


−1 if x < 0

0 if x = 0

1 if x > 0

(4.30)

In the following, the normalized homography matrix H2 is decomposed into a transla-
tion vector and a rotation matrix. At first, the SVD is applied to the matrixH2:

H2 = UΣV T = U diag( σ1, σ2, σ3 )[ v1 v2 v3 ]T . (4.31)

The columns of the matrix V represent the orthonormal (3 × 1) eigenvectors v1,v2 and
v3. The components of the SVD in Eq. 4.31 are used to calculate the (3 × 1) vectors m1

andm2 as follows:
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4.3. Pose estimation

m1 =

√
1− σ2

3v1 +
√
σ2

1 − 1v3√
σ2

1 − σ2
3

,

m2 =

√
1− σ2

3v1 −
√
σ2

1 − 1v3√
σ2

1 − σ2
3

.

(4.32)

Since v1 and v3 are orthonormal, the resulting vector in the numerator of m1 is normal-
ized by using the term

√
σ2

1 − σ2
3 in the denominator. Consequently, m1 is a unit vector.

Furthermore, m1 is orthonormal to v2. The same relationships apply for the vector m2.
By means of the cross product, the vectors m1 and m2 are used to compute the ortho-
gonal matricesB1 andB2, respectively:

B1 =
[
v2 m1 v2 ×m1

]
,

B2 =
[
v2 m2 v2 ×m2

]
.

(4.33)

The normalized homography matrixH2 as well as the vectorsm1 andm2 are utilized to
compute a second set of orthogonal matricesW 1 andW 2:

W 1 =
[
H2 v2 H2 m1 (H2 v2)× (H2 m1)

]
,

W 2 =
[
H2 v2 H2 m2 (H2 v2)× (H2 m2)

]
.

(4.34)

As explained, the decomposition of the estimated homography matrix yields an initial
solution for the pose cT g of the calibration body with respect to the camera. The quant-
ities that were computed so far, are utilized in Eqs. 4.35 to 4.38 in order to define four
different solutions for the decomposition of the estimated homography matrix. Each
solution contains a translation vector t, a rotation matrix R and a normal vector n. The
latter is located on the calibration body. The physically possible solutions are selected by
imposing the following positive depth constraint. If the z-component of the translation
vector t is positive then the calibration body is located in front of the camera. Two of the
four solutions satisfy this constraint and the remaining two solutions are rejected. Both
physically possible solutions represent an initial solution for the pose cT g. Both initial
solutions lead to the same result in the following refinement procedure.
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n1 = v2 ×m1

R1 = W 1 B
T
1

t1 = (HN2 −R1)n1

(4.35)

n2 = v2 ×m2

R2 = W 2 B
T
2

t2 = (HN2 −R2)n2

(4.36)

n3 = −n1

R3 = R1

t3 = −t1

(4.37)

n4 = −n2

R4 = R2

t4 = −t2

(4.38)

4.3.2. Refinement

In order to formulate the refinement procedure, the projection matrix P in Eq. 4.5 is
defined for a normalized image point pn:

p̃n =
[
cRg

ctg
]

︸ ︷︷ ︸
P

p̃g =


P 1

P 2

P 3


︸ ︷︷ ︸

P

p̃g. (4.39)

The vectorsP 1, P 2 andP 3 define the rows of the projection matrixP . The latter contains
the translation vector ctg and the rotation matrix cRg of the sought pose cT g. Using
the projective mapping in Eq. 4.39, the non-linear least-squares problem in Eq. 4.40
can be formulated. In this manner, the parameters contained in P can be refined. The
initial solution is given by the translation vector ctg and the rotation matrix cRg which
are obtained from the decomposition of the homography matrix described in Sec. 4.3.1.
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Furthermore, the corresponding sets pnj and pqj of 2D corners from Sec. 4.3.1 are utilized.
For the refinement procedure, Eq. 4.25 is used in order to convert the set pqj into the set
pgj . The minimization problem in Eq. 4.40 can be solved by using the Levenberg-Marquardt
algorithm [43, 49].

min
P

n∑
j=1

∥∥∥∥∥∥∥∥


P 1 p̃
g
j

P 3 p̃
g
j

P 2 p̃
g
j

P 3 p̃
g
j

− pnj
∥∥∥∥∥∥∥∥

2

2

(4.40)

4.4. Triangulation

The reconstruction of the surface of an object is carried out by triangulation. In the fol-
lowing, a linear and a non-linear triangulation method is described. The non-linear tri-
angulation uses the result of the linear triangulation as an initial guess.

4.4.1. Linear triangulation

The triangulation method used in this work is based on the model of a calibrated stereo
camera rig. The triangulation of a spatial point pg is carried out by using the correspond-
ing image points pn and pn

∗
which are given in the image I and I∗, respectively (see

Fig. 4.5). Furthermore, the pose between the two cameras is utilized. The triangulation
model is formulated by means of the projection matrix of both cameras. As explained
in Sec. 4.3.2, the projection matrix P for a normalized image point pn is defined by Eq.
4.39. The projection matrix of the first camera is defined as follows. For triangulation,
the object coordinate system (CS)g coincides with the camera coordinate system (CS)c.
Hence, the translation vector ctg becomes the null vector 03×1 and the rotation matrix
cRg becomes the identity matrix I3×3:

p̃n =
[
cRg

ctg
]

︸ ︷︷ ︸
P

p̃g =
[
I3×3 03×1

]
︸ ︷︷ ︸

P

p̃g. (4.41)

Since (CS)g coincides with (CS)c, the projection matrixP ∗ of the second camera contains
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the pose of the first camera coordinate system (CS)c with respect to the second camera
coordinate system (CS)c∗ . This pose is defined by the translation vector c∗tc and the
rotation matrix c∗Rc:

p̃n
∗ =

[
c∗Rg

c∗tg
]

︸ ︷︷ ︸
P ∗

p̃g =
[
c∗Rc

c∗tc
]

︸ ︷︷ ︸
P ∗

p̃g. (4.42)

The triangulation of a spatial point pg is solved by means of the DLT method described
in Sec. 4.2. Consequently, the relationships in Eqs. 4.41 and 4.42 can be expressed by the
cross product:

03×1 = p̃n × P p̃g,

03×1 = p̃n
∗ × P ∗p̃g.

(4.43)

By reordering the resulting equations, the following system of linear equations can be
defined:

04×1 =


xnP 3 − P 1

ynP 3 − P 2

xn∗P
∗
3 − P ∗1

yn∗P
∗
3 − P ∗2


︸ ︷︷ ︸

A

p̃g. (4.44)

The value 1 is assigned to the third component of p̃n
∗

and p̃n in Eq. 4.43. Thus, Eq. 4.44
only includes the Euclidean coordinates xn, yn, xn∗ and yn∗ . Moreover, the vectors P 1,
P 2 and P 3 define the rows of the projection matrix P . Accordingly, the vectors P ∗1, P ∗2
and P ∗3 define the rows of the projection matrix P ∗. In order to avoid the trivial solution
p̃g = 0, the estimation of p̃g is formulated by a constrained minimization problem:

min
p̃g
‖ Ap̃g ‖22 ,

subject to ‖ p̃g ‖22 = 1.
(4.45)

As explained in Sec. 3.3.2, this minimization problem can be solved by applying the
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method of Lagrange multipliers. After some steps the following eigenvalue problem can be
defined [27]:

ATAp̃g = λp̃g. (4.46)

A solution p̃g that differs from the null vector is an eigenvector of the matrix ATA. The
sought solution for p̃g is given by the eigenvector that corresponds to the smallest eigen-
value. This solution can be comfortably computed by applying the SVD to the matrix A
(see Sec. A.4):

A = UΣV T . (4.47)

The sought solution for p̃g is given by the eigenvector that is located in the last column of
V [27]. In the literature, the described linear triangulation is also referred to as linear-eigen
method [26].

4.4.2. Non-linear triangulation

By means of the projective mappings in Eqs. 4.41 and 4.42, the non-linear least-squares
problem in Eq. 4.48 can be formulated. The initial guess for the sought spatial point pg

is given by the result of the linear triangulation described in Sec. 4.4.1. The minimization
problem in Eq. 4.48 can be solved by using the Levenberg-Marquardt algorithm [43, 49].

min
pg

∥∥∥∥∥∥∥
 P 1 p̃g

P 3 p̃g

P 2 p̃g

P 3 p̃g

− pn
∥∥∥∥∥∥∥

2

2

+

∥∥∥∥∥∥∥


P ∗1 p̃g

P ∗3 p̃g

P ∗2 p̃g

P ∗3 p̃g

− pn∗
∥∥∥∥∥∥∥

2

2

(4.48)

4.5. Epipolar geometry

As described in Sec. 4.4, the triangulation of a spatial point pg is carried out by using
the corresponding image points pn and pn

∗
which are located in the image I and I∗,
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respectively. In this work, the second camera is replaced by a mirror based projection
system that projects a grid of laser spots onto the surface of an object. In this context,
each laser ray can be considered as an inverse camera. Furthermore, each inverse camera
is associated with a virtual image I∗.

When a laser spot is projected onto the surface of an object then it’s position pn
∗

in the
virtual image I∗ is known. This relationship will be explained later in the context of the
calibration of the laser scanning system in Sec. 5. After the projection of the laser spot,
the corresponding image point pn has to be detected in the image I . For this purpose,
the structured light encoding method described in Sec. 3.2 is utilized. To verify that an
image point pn was identified correctly, the concept of epipolar geometry [27] is utilized
in this work.

The epipolar geometry for two cameras is illustrated in Fig. 4.7. A spatial point pg is
projected on the corresponding image points pn and pn

∗
which are given in the image

I and I∗, respectively. The points pg and pn
∗

are connected by a projective ray that
intersects with the camera center c∗. The 2D representation of this projective ray is given
by the epipolar line l in the image I . Consequently, the image point pn is located on the
epipolar line l. This relationship is also known as the epipolar constraint.

pg

I∗

c∗

pn∗l∗

e∗

I
pn

c

l

e

π

Figure 4.7.: Epipolar geometry.

The described principle also holds for the second camera which leads to an epipolar line
l∗ in the image I∗. The plane that contains the epipolar lines l and l∗ is referred to as
the epipolar plane π. Further quantities in the scope of epipolar geometry are given by
the epipols e and e∗. As explained, the camera center c∗ is located on the projective ray
that connects the points pg and pn

∗
. The 2D representation of the camera center c∗ is
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referred to as the epipol e which is located on the epipolar line l. Since each projective
ray of the second camera intersects with the camera center c∗, the epipol e is the point of
intersection of all epipolar lines in the image I . The described principle also holds for the
second camera which leads to the epipol e∗ in the image I∗.

The mathematical representation of the epipolar geometry is defined by the (3 × 3) fun-
damental matrix F [27]. The fundamental matrix in Eq. 4.49 is computed by means of
the pose of the second camera coordinate system (CS)c∗ with respect to the first camera
coordinate system (CS)c. This pose is given by the translation vector ctc∗ and the rotation
matrix cRc∗ .

F = S(ctc∗) cRc∗ (4.49)

The term S(.) defines the skew-symmetric matrix of a vector. The matrix F is used to
map an image point pn

∗
to the epipolar line l = [ a b c ]T :

l = F p̃n
∗
. (4.50)

By means of the epipolar line l, the following homogeneous linear equation can be defined:

0 = (p̃n)T l. (4.51)

Equation 4.51 is satisfied by the image point pn since it corresponds to the image point
pn
∗
. As explained in the beginning of this section, the epipolar geometry is utilized to

verify that an image point pn was identified correctly. This is realized by calculating the
orthogonal distance d of pn with respect to the epipolar line l. For this purpose, two
arbitrary points gn1 and gn2 on the epipolar line l are selected. The computation of the
orthogonal distance d is given by [40]:

d =
| det([ gn2 − gn1 pn − gn1 ])|

‖gn2 − gn1‖2
. (4.52)

A point pn is considered to be identified correctly if the orthogonal distance is in the

59



4. Projective geometry

range d ≤ 1 pixel. A tolerance is necessary due to image noise.
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5. Calibration and surface reconstruction

This section describes the calibration of the extrinsic parameters of the laser scanning
system. Furthermore, this section describes how the extrinsic parameters are utilized for
the reconstruction of the centers of the projected laser spots.

For many 3D scanning applications it is common to use an off-the-shelf light projection
system such as a LCD or DLP projector. As explained in [5] and [56], the model of central
projection described in Sec. 4.1.1 can be used to model the projective mapping of those
systems. In this context, a light projection system is considered as an inverse camera.
In this case, the extrinsic parameters are given by the pose between the camera and the
inverse camera. Hence, the calibration procedure is similar to the calibration of a stereo
camera rig. The inverse camera approach is appropriate since the projective rays incor-
porate a point where all projective rays are intersecting.

However, in this work the light projection is realized by means of an infrared laser beam
and two rotatable galvanometer driven mirrors (see Fig. 1.2). As described in Sec. 3.2,
the projection of a grid of laser spots is realized by means of the movement of the mirrors
and the switching of the laser source. The laser source sends the laser beam to the first
mirror which redirects the beam towards the second mirror. The latter finally redirects
the laser beam towards the surface of the object. Considering the projection of all laser
spots, a bundle of laser rays exists which originates from the second mirror and which is
sent towards the surface of the object. Depending on the orientation of the laser source
and the orientation of the mirrors, this bundle of laser rays does not necessarily include
a point where all laser rays intersect.

To achieve a point of intersection, a specific mechanical alignment of the laser source and
the mirrors would be required. However, this mechanical alignment would be highly
time consuming. Moreover, an ideal point of intersection can not be accomplished. Con-
sequently, this approach is not utilized in this work. This also implies that the model of
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central projection can not be used to describe the projective mapping of the galvanomet-
ric laser projection system.

A more general extrinsic calibration can be realized by using a physical-mathematical
model of a galvanometric laser projection system. The model in [48] describes the ori-
entation of the two galvanometer driven mirrors and the laser source. Depending on the
turning position of both mirrors, the model is used to compute the path of a laser ray. [48]
also describes a calibration method to compute the parameters of the proposed model.
The drawback of this approach is given by the fact that the parameters of the model can
not describe irregularities of the projection system. An example is given by imperfections
of the mirror surfaces. The model in [48] assumes that the surface of both mirrors is given
by an ideal plane. But in practice, small surface deviations will arise naturally during the
fabrication of a mirror. Furthermore, it is very likely that slight amounts of debris can be
found on the surface of a mirror after it’s mechanical installation.

All imperfections of the mirror surfaces will lead to slight changes of the path of a laser
ray. These changes are not considered by the model described in [48]. Hence, the calib-
ration can lead to a coarse estimation of the model parameters. In [91], an experimental
analysis of the triangulation accuracy was carried out on the basis of the calibration of
the model described in [48]. The accuracy analysis was carried out by calculating the
deviation of the triangulated points with respect to a planar surface. The achieved tri-
angulation accuracy was given by a root mean square (RMS) error of around 1.5 mm.
Consequently, the model described in [48] yields a very coarse triangulation accuracy.

To avoid such problems, a machine learning approach can be utilized. [91] proposed a
machine learning approach to calibrate the parameters of a galvanometric laser projection
system. The approach is based on the turning positions of the mirrors and the laser
centers in the camera image. [91] utilized three different machine learning approaches
given by an artificial neural network (ANN) [9], a support vector regression (SVR) [77] and a
Gaussian process (GP) [69]. As before, the accuracy analysis was carried out by calculating
the deviation of the triangulated points with respect to a planar surface. The analysis of
the triangulation accuracy revealed RMS errors between 0.4 to 0.5 mm. The best results
were achieved by means of the SVR and GP approach.

The drawback of a machine learning approach is given by high computational costs.
As reported in [91], the training of an ANN or a SVR model can take several minutes.
The training of a GP model can even take one to two days. Another disadvantage of
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machine learning is given by the fact that an accurate generalization of the model can
not be guaranteed. The interpolation result for an a priori unseen feature vector can
incorporate unexpected inaccuracies.

To avoid all of the previously described disadvantages, this work follows a different ap-
proach. As described, the laser scanning system projects a grid of discrete laser spots onto
the surface of an object. Thus, a set of laser rays exists which originates from the second
mirror and which is sent towards the surface of the object. To achieve a highly accurate
estimation of the sought extrinsic parameters, each laser ray is calibrated independently.
In this manner, the true path of each laser ray can be estimated. The extrinsic calibration
of a laser ray is carried out by computing the translation and the direction of the laser
ray with respect to the camera. In the following, this procedure is called explicit laser ray
calibration.

The developed calibration procedure is used to achieve a highly accurate surface recon-
struction. In this context, only one set of laser rays has to be calibrated. When new turn-
ing positions of the mirrors have to be utilized then the parameters of the corresponding
laser rays are computed by means of interpolation. In this manner, a time consuming
acquisition of new calibration data can be avoided. A new calibration is only required if
the position or orientation of one of the optical components in the laser scanning system
is changed during reassembly. The developed calibration procedure requires only very
low computational costs and terminates after a few seconds. The same applies for the
interpolation of laser rays. Solely the acquisition of calibration data is time consuming.
However, this is also the case for all previously described calibration approaches.

5.1. Explicit laser ray calibration

For the calibration of a set of laser rays, a calibration body is constructed as explained
in Sec. 4.3. The calibration pattern presented in Fig. 4.6 is printed on a planar board.
Usually, a calibration pattern contains black squares to provide a high contrast. However,
a grid of laser spots is projected onto the calibration body. In order to minimize the
absorption of light energy, the used calibration pattern contains gray squares.

In the following, the acquisition of calibration data is explained. One extended code
sequence (see Sec. 3.2) is projected onto the calibration body which is placed parallel to
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the front side of the laser scanning system. The utilized projection distance is referred to
as d1. In order to generate a high amount of full frames, the length of each sub-sequence
is defined by two frames. This configuration is useful for the calibration since the image
data of the full frames is used for averaging. The described configuration is only fixed
for the calibration. After calibration, the length of the sub-sequences can be changed to
meet individual requirements during the process of surface reconstruction.

The camera captures the extended code sequence that was projected onto the calibration
body. As exemplarily shown in Fig. 5.1, each projected grid is captured in one camera
image. Besides one extended code sequence, the camera captures one additional image
which shows the whole calibration body without projected laser spots. In the following,
this additional image is called chessboard frame.

The described data acquisition is repeated in the same manner for further projection dis-
tances. The second projection distance is given by d2 = d1− 1 cm and the third projection
distance is given by d3 = d1+ 1 cm. This alternation is continued and each time the shift-
ing value is increased by 1 cm. Consequently, the fourth projection distance is defined by
d4 = d1− 2 cm and the fifth projection distance is given by d5 = d1+ 2 cm. Subsequent
projection distances are calculated in the same manner.

The set of utilized projection distances is referred to as di with i ∈ [1, I] where I defines
the amount of projection distances. The definition of I is explained later in Sec. 6. In the
following, the processing of the captured camera images is described with regards to one
projection distance. This procedure involves the processing of one captured extended
code sequence and one chessboard frame. The procedure is carried out in the same man-
ner for each of the I projection distances. At first, the captured extended code sequence
is processed by the code detection procedure explained in Sec. 3.2. This results in the
identification of the laser spots that are tracked in the captured camera images. For the
purpose of calibration, the centers of the tracked laser spots are stored for each full frame.
Since a tracked laser spot is seen in all full frames, the stored data is used to compute the
mean center pn for each tracked laser spot. The resulting set of mean laser centers is
referred to as pnj with j ∈ [1, J ] where J defines the number of mean laser centers.

The computation of mean laser centers is carried out in order to remove the noise from the
data. Figure 5.2 shows a typical distribution of the pixel error of all stored laser centers.
The pixel error is given by the mean free laser centers. Figure 5.2 shows that the pixel
error follows a Gaussian distribution. The maximum L2-norm of the pixel error is given
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by approximately 0.5 pixel. The pixel error of the laser centers is caused by image noise.
Another reason is given by the positioning accuracy of the galvanometer driven mirrors.

The processing of the chessboard frame is carried out according to the pose estimation
procedure described in Sec. 4.3. As a result of this procedure, the quantities cT g and H
are given. cT g defines the estimated pose of the calibration body with respect to the cam-
era. H describes the homography matrix which maps the 2D corners of the calibration
body to the corresponding 2D corners in the chessboard frame. By using the inverse of
the homography matrix H , the mean laser centers pnj are mapped to the corresponding
laser centers pqj in the x-y plane of the calibration body:

p̃q = H−1 p̃n. (5.1)

Using the relationship described in Eq. 4.25, the laser centers pqj in the x-y plane of (CS)g
are mapped to their 3D representation pgj . By means of the estimated pose cT g, the laser
centers pgj are transformed to the laser centers pcj with respect to the camera (see Eq. A.5).

The explained processing of the captured extended code sequence and the chessboard
frame is carried out in the same manner for each of the I projection distances. Con-
sequently, a set pcj of spatial laser centers is calculated for each of the I projection dis-
tances. Each set pcj is sorted according to the identified code words. For the calibration of
the laser rays, the sorted sets are combined in the collection pci,j which is structured as a
set of sets. Due to the described sorting, the collection pci,j can be used to access a set pci
of spatial laser centers. A set pci is related to one code word and includes the spatial laser
centers for all I projection distances. Thus, a set pci is related to one single laser ray.

On this basis, a set of laser rays can be calibrated with respect to the camera. The calib-
ration of a laser ray is carried out by means of principal component analysis (PCA). Given
a set pci , the PCA calculates the covariance matrix of this set (see Sec. A.5). The result
of the PCA is given by the eigenvectors and the eigenvalues of the covariance matrix.
The set of eigenvectors is defined by uw and the set of eigenvalues is defined by λw with
w ∈ [1, 3]. The amount of eigenvectors and eigenvalues is equivalent to the dimension
of the spatial laser centers in the set pci . The eigenvalues λw are arranged in descending
order λ1 ≥ · · · ≥ λ3 > 0. The corresponding (3 × 1) eigenvectors uw are orthonormal
vectors and define the principal components of the spatial laser centers pci .
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Figure 5.1.: This figure exemplarily shows a grid of 72 × 56 (4032) laser spots which is projec-
ted onto the calibration body. The binary representation of the indices of the laser rays (range:
0 to 4031) defines the code words. The encoding is realized by means of n = 12 code frames.
The length of each sub-sequence is defined by j = 2 and thus the number of sub-sequences
is given by v = 12. The images show the projection of the first sub-sequence of an extended
code sequence.

66



5.1. Explicit laser ray calibration

As mentioned, the extrinsic calibration of a laser ray is carried out by computing the
translation and the direction of the laser ray with respect to the camera. The sought
direction of the laser ray is given by the direction of highest variation in the associated
point set pci . Hence, the sought direction of the laser ray is defined by the eigenvector in
uw that corresponds to the largest eigenvalue in λw. Due to the descending order of the
eigenvalues λw, the direction of the laser ray is given by the eigenvector u1.

Usually, the orientation of a laser ray is sufficiently described by a single vector. Never-
theless, the calibrated laser rays are the basis for triangulation which involves the use of
projection matrices. For this reason, the orientation of a laser ray has to be described by a
(3× 3) rotation matrix. In this context, a laser ray is modeled as an inverse camera which
projects one single point along the optical axis. An inverse camera is referred to as laser
coordinate system (CS)l. The orientation of (CS)l with respect to the camera is defined
by the rotation matrix cRl.

Figure 5.2.: Typical Gaussian distribution of the pixel error of all laser centers that are used for
the calibration of the laser rays.

The rotation matrix cRl of a laser ray is determined by the following procedure. As
described, the direction of a laser ray is given by the eigenvector u1. This eigenvector is
used as the optical axis of the laser coordinate system (CS)l and defines the z-axis of the
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rotation matrix cRl. The eigenvectors uw which result from the PCA already represent
an orthonormal basis and can be used to determine the remaining entries of cRl. The
eigenvector u2 is utilized as the x-axis of cRl. The cross product of u1 and u2 is used to
determine the y-axis. Hence, the complete rotation matrix cRl is given by:

cRl = [ u2 u1 × u2 u1 ]. (5.2)

The (3 × 1) translation vector ctl of a laser ray is computed by the mean vector of the
respective set pci of spatial laser centers:

ctl = 1
I

I∑
i=1
pci . (5.3)

In order to calibrate all laser rays, the described procedure is carried out to process each
set pci that is contained in the collection pci,j . The result is given by the set of translation
vectors ctl(j) and the set of rotation matrices cRl(j). The notation l(j) is used to describe
the index j ∈ [1, J ] which is associated to a laser coordinate system (CS)l.

5.2. Interpolation of laser rays

Given a set of calibrated laser rays, new laser rays can be interpolated. An interpolation of
laser rays is necessary if new turning positions of the galvanometer driven mirrors have
to be utilized. The turning position of both mirrors is determined by a program that uses
a 16-bit register for the steering of each mirror. Consequently, each laser ray is associated
with a register value pair v = [ regx regy ]T ∈ N2. Regarding a set of calibrated laser
rays, the set of associated register value pairs defines a grid with equidistant steps in
both directions. As explained in Sec. 5.1, a set of calibrated laser rays is described by the
set of translation vectors ctl(j) and the set of rotation matrices cRl(j) with j ∈ [1, J ]. For
the sake of clarity, the given set of calibrated laser rays is referred to as L1. The set of
corresponding register value pairs is referred to as V1 = vj . The elements of the sets V1

and L1 define the supporting points of the interpolation algorithm.

As exemplarily shown in Fig. 5.3, the interpolation of laser rays is carried out for new
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register value pairs which are centered between the elements of V1. A centered position
of the new register value pairs is chosen for the sake of simplicity. The following inter-
polation of laser rays can also be configured for arbitrary register value pairs which are
located between the elements of the grid V1. The set of new register value pairs is re-
ferred to as V2 = vk with k ∈ [1,K]. The quantity K defines the amount of new register
value pairs. Since the new register value pairs are centered between the elements of V1,
it follows that K < J . Using one element of the set V2, the interpolation of a laser ray
is defined as follows. Since the interpolation is realized in an equidistant grid, the re-
spective four enclosing elements of the set V1 can be described by the corners of the cross
product [0, 1]× [0, 1]. Consequently, the interpolation is carried out for the register value
pair [ 0.5 0.5 ]T . The interpolation algorithm utilizes the four calibrated laser rays of
the set L1 that correspond to the four used elements of V1. The algorithm requires two
points on each of the four calibrated laser rays. The first point is already given by the
translation vector ctl and an additional point cgl can be calculated on the optical axis:

cgl = cRl[0 0 1]T + ctl. (5.4)

regx

regy

Figure 5.3.: The black dots represent the register value pairs of the given set V1. The red dots
represent the new register value pairs from the set V2 that are used as interpolation points. The
dashed lines are given for the purpose of orientation.

Subsequently, a bilinear interpolation is carried out for the x, y and z component of the
four used translation vectors W1 = { t1, t2, t3, t4 }. The same procedure is carried
out for the four additional points Q1 = { g1, g2, g3, g4 }. Thus, the interpolation of
a laser ray is based on six bilinear interpolations. In the following, the bilinear interpol-
ation is defined in a general manner. For this purpose, the quantities µ1, µ2, µ3 and µ4

are utilized to represent either the x, y or z components of the elements of either W1 or
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Q1. Using the register value pairs [ 0 0 ]T , [ 1 0 ]T , [ 0 1 ]T and [ 1 1 ]T , a bilinear
interpolation for the register value pair [ 0.5 0.5 ]T is carried out as follows. At first,
a polynomial of degree one is computed which passes through the supporting points
[ 0 µ1 ]T and [ 1 µ2 ]T :

m1 = µ2 − µ1,

b1 = µ1.
(5.5)

The parameterm1 is the slope and the parameter b1 is the axis intercept of the polynomial.
The parameters are used to calculate the polynomial’s function value s1 for the value 0.5:

s1 = 0.5m1 + b1. (5.6)

Afterwards, a second polynomial of degree one is computed which passes through the
supporting points [ 0 µ3 ]T and [ 1 µ4 ]T :

m2 = µ4 − µ3,

b2 = µ3.
(5.7)

The parameters are used to calculate the polynomial’s function value s2 for the value 0.5:

s2 = 0.5m2 + b2. (5.8)

Subsequently, a third polynomial of degree one is computed which passes through the
supporting points [ 0 s1 ]T and [ 1 s2 ]T :

m3 = s2 − s1,

b3 = s1.
(5.9)

Again, the parameters are used to calculate the polynomial’s function value s3 for the
value 0.5:
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s3 = 0.5m3 + b3. (5.10)

The value s3 is the sought result of the bilinear interpolation for the register value pair
[ 0.5 0.5 ]T . The described bilinear interpolation is carried out for the x, y and z com-
ponent of the four translation vectors in the set W1. The same procedure is carried out
for the four additional points in the set Q1. The result is given by two points ctl and cgl

which represent the interpolated laser ray. The latter is associated to the register value
pair [ 0.5 0.5 ]T . The point ctl defines the translation vector of the interpolated laser
ray with respect to the camera. The normalized difference of ctl and cgl represents the
direction of the interpolated laser ray. Thus, this normalized difference also represents
the z-axis of the coordinate system (CS)l of the interpolated laser ray:

z =
cgl − ctl
‖cgl − ctl‖2

. (5.11)

The rotation matrix cRl of the interpolated laser ray is given by:

cRl = [ x y z ]T . (5.12)

The x-axis and the y-axis of cRl are freely selectable with the restriction that the three
axes have to represent an orthonormal basis. An axis vector x = [ x1 y1 z1 ]T which
is orthogonal to the axis vector z = [ x3 y3 z3 ]T can be calculated by means of the dot
product:

xTz = |x||z| cos(90 ◦) = 0. (5.13)

By choosing x = [ 1 0 z1 ]T , the only unknown value in Eq. 5.13 is given by z1. Thus,
the value z1 can be computed by:

z1 = −x3
z3 . (5.14)
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Subsequently, the following normalization is utilized to convert the resulting axis vector
x to a unit vector:

x = x

|x|
. (5.15)

The axis vector y is expressed by the following cross product:

y = z × x. (5.16)

Hence, all axes of the rotation matrix cRl are calculated. The interpolated laser ray is
given by the translation vector ctl and the rotation matrix cRl with respect to the camera.
Furthermore, the interpolated laser ray is associated with the register value pair of the
set V2 that was used for interpolation. The described procedure is utilized to interpolate
all laser rays that are associated with the register value pairs in the set V2. The set of
interpolated laser rays is referred to as L2 and includes the set of translation vectors ctl(k)
and the set of rotation matrices cRl(k) with k ∈ [1,K].

5.3. Surface reconstruction

As explained in Sec. 3.2, the laser scanning system permanently projects encoded grids of
laser spots onto the surface of an object. After the captured full frames and code frames
of the first extended code sequence are processed, the tracked laser spots are identified.
Consequently, each full frame that is captured after the first extended code sequence is
used for the reconstruction of the object’s surface.

The reconstruction of the surface of an object is carried out by triangulation. The trian-
gulation of a spatial laser center depends on the center of the captured laser spot and the
corresponding calibrated laser ray. The calibration of the laser rays is carried out offline
before the laser scanning system is used for surface reconstruction. Moreover, each cal-
ibrated laser ray is associated with it’s respective code word. Hence, the correspondence
between the calibrated laser rays and the captured laser spots is established by means of
the code detection procedure explained in Sec. 3.2.
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Using the center of a captured laser spot and the corresponding calibrated laser ray, the
triangulation of a spatial laser center is formulated as follows. In Sec. 4.4, the trian-
gulation of spatial points was formulated for a calibrated stereo camera rig. The same
triangulation method is applied to the calibrated laser scanning system. As described in
Sec. 5.1, the triangulation method requires that a laser ray is modeled as an inverse cam-
era which projects one single point along the optical axis. An inverse camera is referred
to as laser coordinate system (CS)l. As described in Sec. 5.1, a calibrated laser is given
by the translation vector ctl and the rotation matrix cRl with respect to the camera. In
the scope of triangulation, the first camera is described by the camera coordinate system
(CS)c and the second camera is given by a laser coordinate system (CS)l.

The center of a captured laser spot is described by the point pn. Furthermore, the projec-
tion matrix for the first camera is given in Eq. 4.41. The projection matrix for the laser
coordinate system can be formulated by using Eq. 4.42. At first, Eq. 4.7 is utilized to
extend the calibrated laser ray by a virtual model of central projection:

pn
∗ = 1

zl

[
xl

yl

]
. (5.17)

Eq. 5.17 describes the projection of a spatial point pl = [ xl yl zl ]T on the virtual
image point pn

∗ = [ xn∗ yn∗ ]T . The spatial point pl is given in the laser coordinate
system (CS)l. As explained, a laser ray is modeled as an inverse camera which projects
one single point along the optical axis. Thus, only one virtual image point exists. This
point is given by pn

∗ = 02×1 and describes the point of intersection of the virtual image
plane and the z-axis of the laser coordinate system.

The projection model in Eq. 4.42 uses the pose of the first camera with respect to the
second camera. In the context of the laser scanning system, this relationship is now given
by the translation vector ltc and the rotation matrix lRc with respect to the laser coordin-
ate system (CS)l. However, as described in Sec. 5.1, a calibrated laser ray is given by the
translation vector ctl and the rotation matrix cRl with respect to the camera coordinate
system (CS)c. Hence, the required pose is calculated by (see Sec. A.2):

lRc = (cRl)T ,
ltc = −(cRl)T ctl.

(5.18)

73



5. Calibration and surface reconstruction

Accordingly, Eq. 4.42 can now be formulated as follows:

[ 0 0 1 ]T =
[
lRc

ltc
]

︸ ︷︷ ︸
P ∗

p̃g. (5.19)

The left side of Eq. 5.19 incorporates the homogeneous representation of the virtual im-
age point pn

∗ = 02×1. Using the projection model in Eqs. 4.41 and 5.19, the spatial laser
center pg can be triangulated. The methods for linear and non-linear triangulation are
described in Sec. 4.4. As explained in Sec. 4.5, the epipolar geometry is used to verify the
code words of the captured laser spots. Using a calibrated laser ray, the computation of
the fundamental matrix F in Eq. 4.49 is now defined as:

F = S(ctl) cRl. (5.20)

Using the virtual image point pn
∗ = 02×1, the computation of the corresponding epipolar

line in Eq. 4.50 is now given by:

l = F p̃n
∗ = F [ 0 0 1 ]T . (5.21)
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The accuracy of triangulated laser centers depends on the deviations that occur in the
developed laser scanning system. In this section, the sources of error of the laser scanning
system are briefly described. Afterwards, an experimental analysis of the triangulation
accuracy is carried out. The triangulation accuracy is analyzed for two different rigid
phantoms and three human foreheads. Moreover, this section also covers an accuracy
analysis for tracking. The developed laser scanning system was used for the tracking of
different rigid phantoms and a human head. In this manner, it is possible to determine
how the process of tracking is influenced by remaining inaccuracies of the triangulation.
The experimental results presented in this section have also been partially published in
[85–88].

6.1. Sources of error

Noise in the camera image leads to slight deviations during the detection of the laser
centers. According to [1], the two common types of noise in a camera image are given
by Gaussian white noise as well as salt and pepper noise. Reasons for image noise are
given by high temperature or transmission errors in the electronic circuit. Gaussian white
noise follows a Gaussian distribution whose parameters do not change over time. White
noise is also referred to as a stationary process. Salt and pepper noise creates peaks in the
camera image. In this case, the affected pixels are driven to their minimum or maximum
intensity value. In general, image noise occurs at random pixel positions and thus it can
not be predicted. Numerous filtering approaches exist to reduce image noise. However,
the camera images in this work are only slightly affected by image noise. The captured
laser spots are clearly visible and can be detected with high accuracy. For this reason,
no filters are utilized to reduce image noise. In this manner, the computational costs
for image processing are not increased unnecessarily. Furthermore, side effects of noise
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reduction filters can be avoided.

A deviation of the detected laser centers can also be caused by image blur. The latter is
due to the spherical aberration of the optical system. Spherical aberration is described as
follows. Light rays which run parallel to the optical axis of a lens are ideally refracted if
they intersect in one single point [42]. This point is defined as the focal point. A spherical
lens is described by a surface section of a sphere and thus a single focal point does not
exist. As a consequence, the camera image appears slightly blurry. It has to be mentioned
that spherical aberration is independent from the effect of defocusing. An object which
is perfectly focussed by the camera, can still occur slightly blurry in the camera image
due to spherical aberration. According to [36], spherical aberration can be minimized but
it can not be eliminated completely. To minimize spherical aberration, an aspheric lens
can be used [54]. However, the production of an aspheric lens is expensive. Instead, it is
more common to use a system of different spherical lenses. This system of simple lenses
is also referred to as compound lens or camera lens.

Another error source of the laser scanning system is given by the two galvanometer
driven mirrors. The positioning of the mirrors is achieved by a closed-loop controller
and the desired turning positions are determined by a program that uses a 16-bit register
for the steering of each mirror. When a grid of laser spots is projected, the program uses
a configured register value pair for each laser spot. Ideally, the closed-loop controller
would position the scanning mirrors as specified by the register value pairs. However, in
practice the achieved mirror positions slightly deviate from the desired positions. Dur-
ing the calibration of the laser rays, this effect is compensated by means of averaging.
Furthermore, the calibration method processes a set of spatial laser centers by means of
a LS fitting procedure. Hence, the calibrated laser rays are supposed to represent the
ideal laser rays that could be generated by an ideal mirror positioning. Accordingly, each
calibrated laser ray corresponds to the desired register value pair.

As described, the achieved mirror positions slightly deviate from the desired positions.
These mirror positioning errors affect the accuracy of triangulation. As soon as the con-
troller causes an inaccurate mirror position, the generated laser ray slightly differs from
the calibrated laser ray. The camera captures the reflection of the respective laser spot and
the calibrated laser ray is used for triangulation. Hence, the calibrated laser ray affects
the accuracy of triangulation if a positioning error is present for one of the mirrors. The
calibrated laser ray has to be used since the generated laser ray is unknown.
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A further error source of the laser scanning system is given by the intrinsic parameters of
the camera which are computed by means of calibration (see Sec. 4.1.2). The calibration of
the intrinsic parameters is based on the detection of corner features in the camera image.
Thus, the calculated intrinsic parameters will slightly deviate from their true values.

As described in [34, 71], the accuracy of triangulation depends on the length of the
baseline. The latter virtually connects the centers of the two camera coordinate sys-
tems. An increase of the baseline causes an increase of the triangulation accuracy. Con-
sequently, the distance between the light projection system and the triangulation camera
should be as high as possible. In the scope of this work, the length of the baseline is given
by approximately 35 cm. Moreover, the accuracy of triangulation is also affected by the
distance of the object’s surface with respect to the laser scanning system. An increase
of the object’s distance causes a decrease of the triangulation accuracy. Besides other
reasons, this effect is based on the image resolution. When the object is more far away
then the resolution of the ROI is reduced. In this case, the detection of the laser centers
becomes less accurate.

6.2. Triangulation accuracy for rigid objects

In order to analyze the triangulation accuracy of the developed laser scanning system,
the surface of two different rigid phantoms is reconstructed. The first phantom is given
by a planar surface and the second phantom is given by a printed stair model. The latter
allows a more detailed analysis of the triangulation accuracy. The achieved triangula-
tion accuracy is compared for calibrated and interpolated laser rays. Finally, Microsoft’s
Kinect camera is used to reconstruct the surface of the two phantoms. The resulting tri-
angulation accuracy is compared to the triangulation accuracy of the developed laser
scanning system.

Microsoft’s Kinect camera represents an alternative for fast point-based surface recon-
struction. The Kinect camera is mainly used as an input control in the entertainment
sector. Nevertheless, the Kinect camera was also used for several medical motion mon-
itoring applications [74, 95]. The advantage of the Kinect camera is that it offers a high
reconstruction rate of 30 Hz and a high reconstruction density.

Commercially available devices for surface reconstruction often use the single slit ap-
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proach which is described in Sec. 2. In the scope of this approach, a light slit is swept
across the object’s surface and the camera captures an image for every single slit. This
approach can offer a high triangulation accuracy but the stepwise scanning leads to a
very low reconstruction rate of far less than 1 Hz. In contrast, the use of light encoding
offers a high reconstruction rate but it also leads to the fact that the surface reconstruction
is more prone to errors.

Since the developed laser scanning system is based on light encoding, it would not be
appropriate to compare the achieved triangulation accuracy with a commercially avail-
able device which follows the single slit approach. Instead, the Kinect camera is utilized
for comparison. The Kinect camera uses an infrared light projector to project a specific
one-shot pattern on the surface of an object [95]. Available images of the projected pat-
tern show a grid of discrete light spots which vary in intensity and distance to each other.
Hence, it is very likely that the Kinect camera follows the M-array encoding principle
described in Sec. 2.1.2.

6.2.1. Triangulation accuracy for a plane

In order to analyze the accuracy of the triangulation, a planar surface is reconstructed.
The error measure for triangulation is given by the perpendicular distance of the trian-
gulated points with respect to the plane. This measure is also referred to as point-to-plane
distance. The highest error of a triangulated point is given by the deviation along the op-
tical axis of the camera. For this reason, the planar surface is placed parallel to the front
side of the laser scanning system.

A triangulated point is given by pg with respect to an object coordinate system. In the
scope of the triangulation procedure described in Sec. 5.3, the object coordinate system
coincides with the camera coordinate system. For this reason, a triangulated point can
also be referred to as pc with respect to the camera coordinate system. A reconstruction of
the planar surface is given by the point set pci with i ∈ [1, I] where I defines the number
of triangulated points.

In the following, a plane is fitted to the point set pci . Subsequently, the sought perpendic-
ular distance of the triangulated points with respect to the fitted plane is computed. The
fitting of the plane is realized by means of the PCA which is explained in Sec. A.5. In this
manner, the fitted plane can be described by a coordinate system. The PCA calculates the
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covariance matrix of the point set pci . The result of the PCA is given by the eigenvectors
and the eigenvalues of the covariance matrix. The set of eigenvectors is defined by uw
and the set of eigenvalues is defined by λw with w ∈ [1, 3]. The amount of eigenvalues
and eigenvectors is equivalent to the dimension of the spatial points contained in the
set pci . The eigenvalues λw are arranged in descending order λ1 ≥ · · · ≥ λ3 > 0. The
corresponding (3 × 1) eigenvectors uw are orthonormal vectors and define the principal
components of the point set pci .

The eigenvectors uw are used to determine a rotation matrix cRh of the fitted plane with
respect to the camera. The z-axis of cRh is given by the direction of smallest variation
in the respective point set pci . Hence, the z-axis is defined by the eigenvector u3. The
x-axis and the y-axis of cRh span the fitted plane and are calculated by using a second
eigenvector. The eigenvector u2 is utilized as the x-axis of cRh. The cross product of
u3 and u2 is used to determine the y-axis and hence the complete rotation matrix cRh is
given by:

cRh = [ u2 u3 × u2 u3 ]. (6.1)

The translation vector cth of the fitted plane is defined as the mean vector of the point set
pci :

cth = 1
I

I∑
i=1
pci . (6.2)

The computed translation vector cth and the rotation matrix cRh are used to define the
homogeneous (4 × 4) transformation matrix cT h (see Eq. A.5). By means of the inverse
transformation matrix hT c, Eq. A.6 is used to transform the set of triangulated points pci
to the point set phi with respect to the fitted plane. The third component of the result-
ing points phi defines the sought perpendicular distance of the triangulated points with
respect to the fitted plane. The computed perpendicular distances are referred to as the
1-dimensional set ei.

The triangulation accuracy for a planar surface is defined by the RMS of the computed
triangulation errors ei. The latter is a set of mean free error values which follow a Gaus-
sian distribution. Consequently, the RMS is equivalent to the standard deviation. The
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triangulation accuracy for a planar surface is computed as follows:

RMS =

√√√√1
I

I∑
i=1

e2
i . (6.3)

6.2.2. Triangulation accuracy for a stair phantom

The second phantom for the analysis of triangulation accuracy is given by a printed stair
model. The stair model enables that triangulation errors can be considered for all three
spatial directions. Thus, the triangulation accuracy can be analyzed in more detail than
in the case of a planar surface. The stair phantom is presented in Fig. 6.1. It consists out
of plastic material and was created by means of a 3D printer. The analysis of the triangu-
lation accuracy for the stair phantom requires a ground truth point set of the phantom’s
surface.

Figure 6.1.: Stair phantom of dimensions 12 × 6 cm2.

For this purpose, the stair phantom was reconstructed by means of a CT scanner (Siemens
SOMATOM Definition AS+, voxel size 0.359 × 0.359 × 0.6 mm3). Subsequently, a surface
point set of the stair model was extracted from the CT imaging data. The extracted sur-
face point set is used as the required ground truth. To analyze the triangulation accuracy
for the stair phantom, a surface reconstruction is acquired by using the developed laser
scanning system. The error measure for triangulation is given by the perpendicular dis-
tance of the triangulated points with respect to the ground truth surface. In order to cal-
culate the triangulation errors, the set of triangulated points is registered to the ground
truth point set. The registration process is defined by two steps given by a pre-alignment
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and a refinement. The pre-alignment is carried out by manually registering the set of
triangulated points to the ground truth point set. The resulting coarse registration is the
initial solution for the subsequent refinement step.

The refining registration is carried out by means of the iterative closest point (ICP) al-
gorithm. The most common variant of the ICP algorithm uses the point-to-point distance
measure for registration. However, the set of triangulated points and the ground truth
point set contain no or only few corresponding points. Thus, the use of the point-to-point
based ICP would lead to registration errors. To avoid these registration errors, another
variant of the ICP algorithm is used in this work. This variant uses the point-to-plane
distance measure as explained in Sec. A.6.2. After the convergence of the ICP algorithm,
the set of triangulated points and the ground truth point set are in a registered state.
Consequently, the triangulation errors can be computed by using the difference vectors
di in Eq. A.17. Calculating the L2-norm of each difference vector d in the set di yields
the sought perpendicular distance of the triangulated points with respect to the ground
truth surface:

e = ‖d‖2 . (6.4)

The triangulation errors are referred to as the 1-dimensional set ei. The triangulation
accuracy for the stair phantom is defined by the RMS of the triangulation errors ei (see
Eq. 6.3). The triangulation errors ei are defined by the length of the difference vectors di.
Thus, the triangulation errors ei are given by values ≥ 0. As a matter of principle, the
triangulated points are located before and behind the ground truth surface. This can also
be revealed by the evaluation of the direction of the difference vectors di. Consequently, it
is also possible to describe the triangulation errors by positive and negative values. This
leads to a set of mean free error values which follow a Gaussian distribution. However,
the computation of the RMS value would lead to the same result as compared to the
originally defined triangulation errors ei. This is due to the fact that the computation
of the RMS value involves the squaring of each triangulation error. For this reason, it
is simpler to compute the RMS value by means of the originally defined triangulation
errors ei.

A disadvantage of the stair phantom is given by the circumstance that the ground truth
point set is affected by the accuracy of the CT scanner. Hence, it can be assumed that
the computed triangulation accuracy for the stair phantom is slightly worse than the true
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triangulation accuracy. Nevertheless, the stair phantom is useful since triangulation er-
rors can be considered for all three spatial directions. Since the triangulation accuracy for
the stair phantom is affected, it is recommended to compute the triangulation accuracy
for the planar surface as well. Since the use of a planar surface considers triangulation
errors only in one direction, it can be assumed that the resulting triangulation accuracy
is slightly better than the true triangulation accuracy. As a consequence, it can be as-
sumed that the true triangulation accuracy is given by a value between the result of both
methods.

6.2.3. Results and discussion

The laser scanning system was configured to project a grid of 72 × 56 (4032) laser spots.
According to Table 3.1, this amount of laser spots is projected in approximately 0.4 s. At
a projection distance of 60 cm, the dimensions of the projected grid are given by approx-
imately 28.8× 22.4 cm2. The system projects one extended code sequence on the surface
of a phantom. 12 code frames are required to encode 4032 laser spots and a length of
two frames is utilized for each sub-sequence. Thus, the length of the projected extended
code sequence is given by 24 frames. After the captured full frames and code frames of
the extended code sequence are processed, the tracked laser spots are identified. Sub-
sequently, the laser scanning system captures one more full frame which is used for the
reconstruction of the surface of the phantom. The set of triangulated points can be used
to compute the accuracy of the triangulation.

Before a surface reconstruction can be carried out, a set of laser rays has to be calibrated.
As explained in Sec. 5.1, a certain amount I of projection distances has to be utilized for
the calibration. The projection distances are given by di with i ∈ [1, I]. The amount I of
projection distances has an influence on the accuracy of the triangulation. An increase of
I leads to a higher calibration accuracy and thus the resulting triangulation accuracy is
increased as well. Nevertheless, there is a limiting value for I where an increase does not
lead to a further increase of the triangulation accuracy.

Since the limiting value for I is not known beforehand, an iterative calibration of the laser
rays is utilized in this work. In the first iteration k = 1, the first three projection distances
d1, d2 and d3 are used to calibrate the set of laser rays. The first projection distance is given
by d1 = 60 cm which is also the specified projection distance for the future head tracking
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system. The second projection distance is given by d2 = d1− 1 cm and the third projection
distance is given by d3 = d1+ 1 cm. After calibration, the surface of the stair phantom is
reconstructed to compute the triangulation accuracy as explained in Sec. 6.2.2. The stair
phantom is utilized for the iterative calibration since it enables that triangulation errors
can be considered for all three spatial directions.

In order to decide for the position of the stair phantom, the following circumstances have
to be considered. The highest triangulation accuracy is achieved approximately in the
middle of the used projection distances di. This is due to the fact that each laser ray is
fitted to a set of spatial points which is associated with the used projection distances (see
Sec. 5.1). Consequently, the stair phantom is placed at projection distance d1 parallel to
the front side of the laser scanning system. The reader might think that this is problematic
since a part of the training data for calibration is also acquired at projection distance
d1. However, the image data for calibration is acquired by using the planar calibration
body described in Sec. 5.1. In contrast to the planar calibration body, the stair phantom
incorporates variations in height. Thus, the resulting image data is different from the
image data which is acquired for calibration.

In every following iteration k ∈ [2;K], the projection distance dk+2 and all preceding
projection distances d1 to dk+1 are used to calibrate the laser rays. Hence, in each iteration,
the number of used projection distances is increased by one. The computation of the
projection distances is explained in Sec. 5.1. At the end of each iteration, the surface of
the stair phantom is reconstructed to compute the current triangulation accuracy. In the
scope of the iterative calibration, the triangulation accuracy is always evaluated for the
projection distance d1 = 60 cm. For this reason, the image data for the reconstruction
of the surface of the stair phantom has to be acquired only once during iteration k =
1. This image data can be reused in every following iteration. The described iterative
process terminates as soon as the triangulation accuracy for the stair phantom can not be
increased anymore. The termination of the process is given at iteration k = K. Since the
iterative calibration starts by using three projection distances, the final amount of used
projection distances is given by:

I = K + 2. (6.5)

To realize the positioning of the calibration body and the stair phantom at the specified
projection distances, a robot manipulator was utilized. The laser scanning system was
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mounted to the end-effector of an Adept Viper s850 robot. To realize the specified projec-
tion distances, the end-effector of the robot was positioned accordingly.

The described iterative calibration of a set of laser rays was carried out for four config-
urations. Each configuration utilized a different method to detect the centers of the laser
spots in the camera image. The detection methods are given by template matching, el-
lipse fitting as well as paraboloid fitting based on a 3 × 3 and a 5 × 5 sub-matrix. As
explained in Sec. 3.3, each detection method has different advantages and disadvantages
which affect the accuracy of the center detection. For each of the four configurations, the
same acquired image data was used.

As explained in Sec. 5.3, a surface reconstruction can be acquired by means of the for-
mulated linear and non-linear triangulation. For each of the four configurations, both
triangulation methods are utilized in the scope of the computation of the triangulation
accuracy for the stair phantom. In this manner, the behavior of both methods can be ana-
lyzed. The termination of each iterative calibration was determined by the evaluation of
the increase of the triangulation accuracy. The termination is solely based on the triangu-
lation accuracy of the linear method.

The results of the iterative calibration for all four configurations are shown in Figs. 6.2
to 6.5. For each configuration, the calibration terminates at a different final iteration K.
Table 6.1 presents the triangulation accuracy at K for all four configurations. The use
of ellipse fitting yields the highest triangulation accuracy. Furthermore, ellipse fitting
achieves the fastest convergence of the iterative calibration.

For all four configurations, the following behavior can be seen in Figs. 6.2 to 6.5. Com-
paring the linear and the non-linear triangulation at iteration k = 1, the non-linear tri-
angulation achieves an increase of accuracy between 0.005 mm and 0.008 mm. The iter-
ative process increases the triangulation accuracy for both triangulation methods. This
increase is larger for the linear triangulation and towards termination the linear triangu-
lation achieves nearly the same accuracy as the non-linear triangulation. In fact, at the
final iteration K, the result of both methods only differs between two to five tenths of a
micrometer (see Table 6.1).

For the purpose of comparison, the curves for the linear triangulation are presented in
Fig. 6.6 for all four configurations. It can be seen that paraboloid fitting causes the
strongest curve oscillations and it also leads to the smallest triangulation accuracy for
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Figure 6.2.: Triangulation accuracy for the stair phantom at every iteration k starting at k = 1.
The detection of the centers of the laser spots is carried out by means of template matching.

every iteration. This is not surprising since image noise has a strong effect on parabol-
oid fitting. A better compensation for local variations can be achieved by using a larger
sub-matrix. The utilized paraboloid fitting considers a sub-matrix of dimensions 3 × 3
or 5 × 5. As can be seen, the sub-matrix of dimensions 5 × 5 already achieves a higher
triangulation accuracy than the sub-matrix of dimensions 3× 3.

However, experiments for even larger sub-matrices showed that only a slight increase of
the triangulation accuracy can be achieved and that template matching and ellipse fitting
still outperforms paraboloid fitting. Actually, a large increase of the dimensions of the
sub-matrix even leads to a counterproductive result given by a decreasing triangulation
accuracy. The reason is that the model of a paraboloid is not the best choice when a large
part of a captured laser profile is considered. For the sake of visual clarity, the curves for
larger sub-matrices are not presented.

As can be seen in Fig. 6.6, the curve for template matching incorporates less oscillations
than the curves for paraboloid fitting. Furthermore, template matching also leads to a
higher triangulation accuracy for every iteration. This is due to the fact that the influence
of image noise is reduced for template matching. The reason is that template matching
processes the whole signal of each captured laser spot. Nevertheless, template matching
uses a static reference signal to detect the highest similarity. For this reason, template
matching can not compensate for the varying shape and scale of the captured laser spots.
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Figure 6.3.: Triangulation accuracy for the stair phantom at every iteration k starting at k = 1.
The detection of the centers of the laser spots is carried out by means of ellipse fitting.

The curve for ellipse fitting in Fig. 6.6 incorporates the least oscillations of all four con-
figurations. Moreover, ellipse fitting yields the highest triangulation accuracy for every
iteration. Just as paraboloid fitting, ellipse fitting does not depend on a reference signal
and hence each laser spot is processed individually. Compared to paraboloid fitting, el-
lipse fitting can handle image noise in a more robust manner. The reason for this is given
by the circumstance that ellipse fitting uses the extracted contour of a captured laser spot.

In Fig. 6.6, the results of the four configurations are compared by means of the linear

Final iteration K Linear triangulation
Non-linear

triangulation

Template matching 18 0.1575 0.1572
Ellipse fitting 17 0.1467 0.1464

Paraboloid fitting
3× 3

20 0.1837 0.1839

Paraboloid fitting
5× 5

21 0.1702 0.1697

Table 6.1.: Triangulation accuracy in [mm] for the stair phantom at final iterationK.
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Figure 6.4.: Triangulation accuracy for the stair phantom at every iteration k starting at k = 1.
The detection of the centers of the laser spots is carried out by means of paraboloid fitting
based on a 3 × 3 sub-matrix.

triangulation. A comparison of the curves for the non-linear triangulation leads to the
same conclusions. For this reason, the curves for the non-linear triangulation are not
shown together in one figure.

The results have shown that the linear and the non-linear triangulation achieve a very
similar triangulation accuracy. At the termination of the iterative calibration, the results
only differ by a few tenths of a micrometer. Furthermore, ellipse fitting achieved the
highest triangulation accuracy. For this reason, ellipse fitting is chosen as the preferred
method for the detection of the centers of the captured laser spots. Using ellipse fitting,
the final iteration of the calibration was given by K = 17. The same iterative calibration
based on ellipse fitting was repeated multiple times and the resulting final iteration was
always given between K = 15 and K = 18.

According to Eq. 6.5, a maximum value of K = 18 implies that I = 20 projection dis-
tances are always sufficient for the calibration of a set of laser rays. This value is valid for
a calibration setup that uses the projection distance d1 = 60 cm. The latter was defined in
the beginning of this section. Using I = 20 projection distances, a set of laser rays can be
calibrated directly in one run. In this manner, an iterative calibration can be avoided.

The defined projection distance d1 = 60 cm is also the specified projection distance for
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Figure 6.5.: Triangulation accuracy for the stair phantom at every iteration k starting at k = 1.
The detection of the centers of the laser spots is carried out by means of paraboloid fitting
based on a 5 × 5 sub-matrix.

the future head tracking system. If this distance has to be changed then the amount I
of projection distances has to be redetermined by means of an iterative calibration. A
change of d1 clearly leads to a different triangulation accuracy. The further away d1 is
located the less accurate the triangulation accuracy becomes. This is due to the fact that
the detection accuracy for the centers of the captured laser spots becomes less accurate
if the used projection distances are located more far away (see Sec. 6.1). To compensate
for this effect, a larger baseline can be considered for the laser scanning system. A larger
baseline leads to a higher triangulation accuracy.

So far, the accuracy of the triangulation was always evaluated at projection distance d1 =
60 cm. At the end of the iterative calibration, a final triangulation accuracy was achieved.
After the termination of the calibration, it is also important to analyze the triangulation
accuracy for the relevant scanning space. For this reason, the following experiment was
carried out.

A set of laser rays was calibrated by using the defined amount of I = 20 projection
distances. The first projection distance was again given by d1 = 60 cm. To analyze the
triangulation accuracy for the relevant scanning space, the stair phantom was placed
at seven different positions parallel to the front side of the laser scanning system. The
positions are defined by the set gj with j ∈ [1; 7]. The positions are chosen so that they
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Figure 6.6.: Triangulation accuracy for the stair phantom. The curves show the results of the
linear triangulation for all four center detection methods from Figs. 6.2 to 6.5.

differ from the projections distances di that were used for calibration. This is necessary
since the following experiment was also carried out with a planar surface. Since the
acquisition of the image data for calibration is based on a planar calibration body, the set
gj and the set di have to be different. Later in this section, the results for the stair phantom
are compared to the results for the planar surface.

The first position is given by g1 = 47.5 cm which is incremented by 4 cm for every sub-
sequent position. Consequently, the last position is given by g7 = 71.5 cm. In this manner,
it is guaranteed that the positions g1 and g7 are located outside of the area that is spanned
by the projection distances di. Since I = 20 projection distances are used, this area is
defined between the distances 50 cm and 69 cm.

The triangulation accuracy for the stair phantom is presented in Fig. 6.7. At first, the
blue and the red curve are analyzed which present the triangulation accuracy based on
calibrated laser rays. The curves show the triangulation accuracy for all seven positions
contained in gj . The blue curve and the red curve show the accuracy which is based on
the linear triangulation (LT) and the non-linear triangulation (NT), respectively. As can
be seen, the highest triangulation accuracy is achieved for position g4 = 59.5 cm. The
latter defines the middle of the area that is spanned by the projection distances di. For the
linear triangulation, the highest accuracy is given by 0.1477 mm. Compared to the outer
positions g1 and g7, the accuracy for the linear method only decreases by 0.0053 mm and
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0.0071 mm, respectively. Position g7 causes a larger decrease since it is located further
away from the camera.
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Figure 6.7.: Triangulation accuracy for the stair phantom. The blue and the red curve show the
accuracy based on a set of calibrated laser rays. For comparison, the green and the black curve
show the accuracy for the same set of laser rays which is computed by interpolation.

The accuracy of the triangulation behaves according to the principle of the calibration of
the laser rays. As explained in Sec. 5.1, each laser ray is fitted to a set of spatial points
which is associated with the used projection distances di. This implies that the highest
triangulation accuracy can be achieved if a surface is placed approximately in the middle
of the used projection distances.

The blue and the red curve in Fig. 6.7 show that the non-linear triangulation achieves
only slightly better results compared to the linear method. In fact, the differences are
marginal and vary around a few tenths of a micrometer. The smallest difference between
both methods is achieved at position g4. Towards the outer positions g1 and g7, the differ-
ence increases. Hence, the non-linear triangulation is able to slightly compensate for the
decreasing accuracy of the linear method. However, the difference of the achieved accur-
acy is marginal. Consequently, it is sufficient to use the linear triangulation for surface
reconstruction. The non-linear triangulation uses the result of the linear triangulation as
an initial solution. By avoiding the calculation of the non-linear triangulation, computa-
tional costs can be reduced.
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For comparison, the described experiment has also been carried out for interpolated laser
rays. The interpolation of laser rays is explained in Sec. 5.2. A set of laser rays was cal-
ibrated and afterwards it was used for the interpolation of a new set of laser rays. This
new set is an estimation of the set of calibrated laser rays which was used to produce the
blue and the red curve in Fig. 6.7. The interpolated laser rays were used for the same
surface reconstruction at the positions contained in gj . To guarantee a direct comparison
of the triangulation accuracy, the image data that has been used for surface reconstruc-
tion based on calibrated laser rays has been reused for surface reconstruction based on
interpolated laser rays.

The triangulation accuracy for the stair phantom is presented in Fig. 6.7. The green and
the black curve present the triangulation accuracy based on interpolated laser rays. The
curves show the triangulation accuracy for all seven positions contained in gj . The green
curve and the black curve show the accuracy which is based on the linear triangulation
(LT) and the non-linear triangulation (NT), respectively. At first, the accuracy of the linear
method is compared for the set of calibrated laser rays and the set of interpolated laser
rays. The respective differences between the blue curve and the green curve are presented
in Table 6.2. The mean difference for both modalities is given by 0.0141 mm.

Plane position [cm] Difference LT [mm]
Difference LT /

calibration LT [%]

47.5 0.0146 9.54
51.5 0.0141 9.36
55.5 0.0117 7.84
59.5 0.0113 7.65
63.5 0.0149 9.94
67.5 0.0145 9.46
71.5 0.0174 11.24

Table 6.2.: This table presents the difference between the accuracy of the linear triangulation
for calibrated and interpolated laser rays from Fig. 6.7.

Table 6.2 also presents the difference of the accuracy for both modalities in percentage.
Here, the triangulation accuracy based on calibrated laser rays is utilized as the basis. The
mean value is given by 9.29 %. Consequently, the use of interpolation causes only a very
small decrease of the triangulation accuracy. This implies that the use of a set of inter-
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polated laser rays is an appropriate approach for surface reconstruction. In this manner,
only one set of laser rays has to be computed by means of calibration. If a new set of laser
rays has to be provided, the set of calibrated laser rays can be utilized for interpolation.
Hence, a time consuming acquisition of new calibration data can be avoided.

Fig. 6.7 shows that the highest accuracy based on interpolated laser rays is again achieved
for position g4. For the linear triangulation, the highest accuracy is given by 0.159 mm.
Compared to the outer positions g1 and g7, the accuracy for the linear method decreases
by 0.0086 mm and 0.0132 mm, respectively. This decrease is larger than compared to the
blue curve which is based on the calibrated laser rays. The reason is given by the fact
that the deviation between the interpolated laser rays and the true path of the laser rays
is increased. Thus, higher triangulation errors are generated.

Next, the linear and the non-linear triangulation based on interpolated laser rays are
compared in Fig. 6.7. The curves show that the non-linear triangulation achieves slightly
better results than the linear method. The differences vary around one to three micro-
meters. The smallest difference for both methods is achieved at position g4. Towards the
outer positions g1 and g7, the difference increases. Hence, the non-linear triangulation is
able to slightly compensate for the decreasing accuracy of the linear method. This com-
pensation is higher than in the case of the calibrated laser rays. An improvement of one
to three micrometers can already be useful. Thus, the use of the non-linear triangulation
can be considered for the case of interpolated laser rays. Nevertheless, it has to be taken
into account that the execution of the non-linear triangulation can take up to three times
longer than the execution of the linear triangulation.

As explained in Sec. 6.2.2, a disadvantage of the stair phantom is given by the fact that the
ground truth point set is already affected by the accuracy of the CT scanner. Hence, it can
be assumed that the computed triangulation accuracy for the stair phantom is slightly
worse than the true triangulation accuracy. For this reason, the triangulation accuracy is
also analyzed for a planar surface as described in Sec. 6.2.1. Since the use of a planar
surface considers triangulation errors only in one direction, it can be assumed that the
resulting triangulation accuracy is slightly better than the true triangulation accuracy.
As a consequence, it can be assumed that the true triangulation accuracy of the laser
scanning system is given by a value between the result of both methods.

The experiment for the planar surface was carried out in the same manner as for the
stair phantom. The results for the planar surface are presented in Fig. 6.8. At first, the
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6.2. Triangulation accuracy for rigid objects

blue and the red curve are analyzed which present the triangulation accuracy based on
calibrated laser rays. The highest triangulation accuracy is again achieved for position
g4. The highest accuracy for the linear triangulation is given by 0.1037 mm. For the stair
phantom in Fig. 6.7, the highest accuracy for the linear method based on calibrated laser
rays is given by 0.1477 mm. As explained, it can be assumed that the true accuracy for the
linear method is located between these two values. The difference between both values
is given by 0.044 mm.

In Fig. 6.8, the accuracy of the linear method is compared between position g4 and the
outer positions g1 and g7. The accuracy of the linear method only decreases by 0.005 mm
and 0.0067 mm, respectively. As in the case of the stair phantom, the non-linear triangula-
tion achieves only slightly better results compared to the linear method. The differences
between the blue and the red curve in Fig. 6.8 are marginal and vary around a few tenths
of a micrometer.
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Figure 6.8.: Triangulation accuracy for a plane. The blue and the red curve show the accuracy
based on a set of calibrated laser rays. For comparison, the green and the black curve show the
accuracy for the same set of laser rays which is computed by interpolation.

Figure 6.8 also presents the triangulation accuracy which is based on interpolated laser
rays. The highest triangulation accuracy is again achieved for position g4. The highest
accuracy for the linear triangulation is given by 0.1073 mm. For the stair phantom in
Fig. 6.7, the highest accuracy for the linear method based on interpolated laser rays is
given by 0.159 mm. As explained, it can be assumed that the true accuracy for the linear
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method is located between these two values. The difference between both values is given
by 0.0517 mm.

The blue curve and the green curve in Fig. 6.8 present the accuracy for the linear tri-
angulation based on calibrated and interpolated laser rays, respectively. The differences
between the blue and the green curve are presented in Table 6.3. The mean difference
for both modalities is given by 0.0062 mm. Table 6.3 also presents the difference of the
accuracy for both modalities in percentage. Here, the triangulation accuracy based on
calibrated laser rays is utilized as the basis. The mean value is given by 5.74 %. Con-
sequently, the use of interpolation causes only a very small decrease of the triangulation
accuracy.

Plane position [cm] Difference LT [mm]
Difference LT /

calibration LT [%]

47.5 0.0075 6.88
51.5 0.0062 5.76
55.5 0.0040 3.80
59.5 0.0036 3.47
63.5 0.0052 4.91
67.5 0.0078 7.18
71.5 0.0091 8.21

Table 6.3.: This table presents the difference between the accuracy of the linear triangulation
for calibrated and interpolated laser rays from Fig. 6.8.

Next, the results for the linear and the non-linear triangulation based on interpolated
laser rays are compared in Fig. 6.8. As described, the highest triangulation accuracy
is achieved for position g4. For the linear triangulation, the highest accuracy is given by
0.1073 mm. Compared to the outer positions g1 and g7, the accuracy for the linear method
only decreases by 0.0092 mm and 0.0126 mm, respectively. The non-linear triangulation
achieves slightly better results than the linear method. The differences vary around one
to two micrometers. As in the case of the stair phantom, the use of the non-linear trian-
gulation can be considered for the case of interpolated laser rays.

In the last experiment of this section, Microsoft’s Kinect camera was used to compute a
reconstruction of the surface of the stair phantom and a reconstruction of a planar surface.
The resulting triangulation accuracy is compared to the achieved triangulation accuracy
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of the developed laser scanning system. The values for position g4 in Figs. 6.7 and 6.8 are
utilized for the comparison. For the purpose of surface reconstruction, the stair phantom
was placed at the same position g4 parallel to the front side of the Kinect camera. After-
wards, the triangulation accuracy for the stair phantom was computed according to Sec.
6.2.2.

The same procedure was carried out for the reconstruction of a planar surface. The re-
spective triangulation accuracy was computed according to Sec. 6.2.1. The resulting
triangulation accuracy for the developed laser scanning system and the Kinect camera
are presented in Table 6.4. For the developed laser scanning system, four different meth-
ods are distinguished. The methods calibration LT and calibration NT describe the use of
calibrated laser rays in combination with linear or non-linear triangulation, respectively.
Moreover, the methods interpolation LT and interpolation NT describe the use of interpol-
ated laser rays in combination with linear or non-linear triangulation, respectively.

As can be seen in Table 6.4, all four methods clearly outperform the triangulation accur-
acy of the Kinect camera. This is valid in the case of the planar surface as well as the stair
phantom. Figure 6.9 shows the reconstruction of a planar surface that was acquired with
the developed laser scanning system (a) and the Kinect camera (b). The former was ac-
quired by means of the calibration LT method. The respective triangulation accuracies are
presented in Table 6.4. Fig. 6.9 (a) shows that the developed laser scanning system com-
putes a very accurate reconstruction of the planar surface. In contrast, Fig. 6.9 (b) shows
that the Kinect camera generates a surface reconstruction which incorporates many small
peaks.

As presented, the Kinect camera only achieves a very coarse triangulation accuracy. The
main reason is given by the fact that the Kinect camera utilizes spatial multiplexing for
the encoding of the projected light. As explained in Sec. 2, spatial multiplexing can
lead to a higher amount of code detection errors. As a consequence, higher triangulation
errors are generated.
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(a)

(b)

Figure 6.9.: Reconstruction of a plane which was acquired by means of the calibration LT
method (a) and Microsoft’s Kinect camera (b). The triangulation errors are mapped to the color
bars. The area that was reconstructed by the Kinect camera is smaller since the device provides
a higher reconstruction density. Both surface plots are based on an equivalent amount of ap-
proximately 4000 triangulated points.
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Device Method
Triangulation
accuracy for a

plane [mm]

Triangulation
accuracy for the
stair phantom

[mm]

Developed laserscanner

Calibration LT 0.1037 0.1477
Calibration NT 0.1035 0.1472

Interpolation LT 0.1073 0.1590
Interpolation NT 0.1066 0.1579

Kinect camera N/A 0.7580 0.8905

Table 6.4.: Comparison of the triangulation accuracy for the developed laser scanning system
and Microsoft’s Kinect camera.

6.3. Triangulation accuracy for human foreheads

In case of a rigid object, laser light does not penetrate far into the material. Hence, the
reflected light mainly depends on the structure of the surface. In contrast, laser light
penetrates far into soft tissue. This is especially true for the utilized infrared laser light.
Due to light interaction, a considerable amount of the reflected light comes from the inner
layers of the soft tissue. Thus, the reflected light is very diffuse in the case of soft tissue.

This implies that the captured reflection includes more variability. Consequently, the dif-
fuse reflection can influence the detection of the centers of the laser spots. Hence, it can
be assumed that the triangulation accuracy is decreased for the reconstruction of the sur-
face of a person’s forehead. To quantify this decrease, the triangulation accuracy of the
laser scanning system was determined for the surface reconstruction of three human fore-
heads. Before the results are analyzed, a measure for the triangulation error is defined.

6.3.1. Definition of an error measure

To define the triangulation accuracy for the surface of a forehead, a ground truth point
set can not be used. The reason is that the skin and muscles of the forehead are deform-
able. As an alternative, a mathematical model of a forehead surface could be fitted to
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the acquired surface reconstruction. However, it is problematic to find a general model
which is able to incorporate the individual shape of any arbitrary forehead surface. If a
mathematical model allows too much variability then it will simply compensate for the
triangulation errors.

To avoid this problem, a different approach is utilized in this work. An acquired sur-
face reconstruction is partitioned into small patches which contain a specified number
of triangulated points. Afterwards, the procedure described in Sec. 6.2.1 is used to fit a
plane to each patch. The triangulation errors for a patch are defined by the perpendicular
distance of the associated points with respect to the fitted plane. This measure is also re-
ferred to as point-to-plane distance. The triangulation accuracy for a forehead is defined
by the RMS of the triangulation errors for all patches (see Eq. 6.3).

As described, a plane is fitted to each patch. The quality of the surface approximation for
each patch depends on the number of utilized points. For the experiments in this work,
eight triangulated points were used for each patch. This value was determined by means
of a qualitative comparison of the fitting results. Smaller values tend to compensate for
triangulation errors and higher values lead to a coarse approximation of curved patches.
Although a tuned value is used for the number of points, the approximation of curved
patches is clearly affected. Consequently, it can be assumed that the resulting triangula-
tion accuracy is slightly worse than the true triangulation accuracy.

6.3.2. Results and discussion

The laser scanning system was configured to project a grid of 32 × 32 (1024) laser spots.
According to Table 3.1, this amount of laser spots is normally projected in approximately
0.1 s. However, for the following experiment, a simultaneous measurement of the optical
features described in Sec. 1.2 was carried out. The simultaneous measurement of the
optical features was carried out in order to establish a realistic measurement scenario.
The reason is that the acquisition of a surface reconstruction and optical features has to
be carried out simultaneously in the future head tracking system. As described in Sec.
3.2, the simultaneous measurement of optical features increases the projection time for a
grid of laser spots. For the described configuration, the projection time for one grid of
laser spots was given by approximately 15 s. The evaluation of the optical features is not
carried out in this work.
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6.3. Triangulation accuracy for human foreheads

The system projects one extended code sequence on the surface of a forehead. 10 code
frames are required to encode 1024 laser spots and a length of two frames is utilized
for each sub-sequence. Thus, the length of the extended code sequence is given by 20
frames. After the captured full frames and code frames of the extended code sequence are
processed, the tracked laser spots are identified. Subsequently, the laser scanning system
captures one more full frame which is used for the reconstruction of the surface of the
forehead. Finally, the set of triangulated points can be used to compute the accuracy of
the triangulation.

The triangulation accuracy of the laser scanning system was evaluated for three different
subjects. Ellipse fitting achieved the highest triangulation accuracy for the reconstruction
of the surface of rigid objects. This is due to the fact that ellipse fitting offers a robust
detection of the centers of the captured laser spots. A comparison of the triangulation ac-
curacy revealed that ellipse fitting also achieves the highest triangulation accuracy in the
case of soft tissue. For the reason of clarity, the results are not presented for all laser cen-
ter detection methods. Since the highest triangulation accuracy was achieved by means
of ellipse fitting, the following analysis only considers ellipse fitting.

For surface reconstruction, the forehead of each of the three subjects was located at a pro-
jection distance of approximately 60 cm. For comparison, the experiments were carried
out on the basis of calibrated and interpolated laser rays. Furthermore, linear and non-
linear triangulation was utilized for both modalities. At first, the results are discussed
for calibrated laser rays and the use of linear triangulation. For each subject, the surface
reconstruction and a histogram of the absolute triangulation errors are presented.

Fig. 6.10 shows a front view on the reconstruction of the forehead surface of subject 1.
The blue points define the triangulated points. The latter were used to interpolate the
copper surface. For illustration purposes, an illumination model and a shading model
were used for the interpolated surface. The same view is presented in Figs. 6.11 and 6.12
for the forehead of subject 2 and 3, respectively. Comparing each reconstructed forehead
surface with the reconstruction of a planar surface in Fig. 6.9 (a) on a qualitative basis, it
can be seen that the reconstructed forehead surfaces are less accurate.

As mentioned, one reason is given by the fact that the detection of the centers of the
captured laser spots is less accurate for soft tissue. Another reason is that the head of a
subject moves slightly during the acquisition of a surface reconstruction. In this context,
the projection time has to be considered. As described in the beginning of this section,
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Figure 6.10.: Front view on the reconstructed forehead surface of subject 1. The blue points
represent the triangulated points. The latter were used to interpolate the copper surface.

the projection time for one grid of laser spots was given by approximately 15 s. The
head movement causes the small buckles that are visible in the surface reconstructions
presented in Figs. 6.10 to 6.12. To minimize head movement during the acquisition of
a surface reconstruction, the head of each subject was placed in a head mold. However,
slight head movements are still possible inside the head mold. Another reason for the
reduced accuracy is that the soft tissue of a forehead is deformable. This leads to the
same artifacts as in the case of head movement.

In Figs. 6.13 to 6.15, a histogram of the absolute triangulation errors is presented for the
reconstructed forehead surface of subject 1 to 3, respectively. Each of the three recon-
structions contain around 900 triangulated points. As described in the beginning of this
section, the laser scanning system was configured to project 1024 laser spots. Hence, a
loss of approximately 10 % of the points occurred for each of the three reconstructions.
This is contrary to the surface reconstructions of rigid objects where almost always 100 %
of the points were reconstructed.
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Figure 6.11.: Front view on the reconstructed forehead surface of subject 2. The blue points
represent the triangulated points. The latter were used to interpolate the copper surface.

One reason for the loss of points is that a small amount of the laser spots appear very
weak inside the camera images. In this case, the ellipse fitting algorithm fails to distin-
guish the affected laser spots from the background of the camera images. Another reason
for the loss of points is that the detection accuracy for the centers of the captured laser
spots is reduced in the case of soft tissue. This affects the verification of the laser cen-
ters in the scope of epipolar lines. As described in Sec. 5.3, the orthogonal distance of a
detected laser center is computed with respect to it’s corresponding epipolar line. If the
orthogonal distance is greater than 1 pixel, the detected laser center is rejected in order to
prevent high inaccuracies in the triangulation result.

The histograms in Figs. 6.13 to 6.15 show that the maximum triangulation error is given
between 0.55 mm and 0.65 mm. However, the histograms also show that the probability
for a triangulation error greater than 0.3 mm is low. For subject 1 to 3 this probability is
given by 4.8 %, 5.6 % and 10.2 %, respectively. As explained in Sec. 6.3.1, triangulation
accuracy is defined by the RMS of the triangulation errors. The triangulation accuracy
for the reconstructed forehead surface of all three subjects is presented in Table 6.5.
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Figure 6.12.: Front view on the reconstructed forehead surface of subject 3. The blue points
represent the triangulated points. The latter were used to interpolate the copper surface.

As explained, the results in Figs. 6.10 to 6.15 are based on the use of calibrated laser rays
and linear triangulation. This modality is referred to as calibration LT and the respective
triangulation accuracies are shown in the first row of Table 6.5. The triangulation accur-
acy for subject 1 and 2 is very similar whereas the triangulation accuracy for subject 3
is given by an increased value of 0.1832 mm. Compared to subject 1 and 2, the increase
is given by approximately 0.03 mm. This shows that the error influences can vary indi-

Method Subject 1 Subject 2 Subject 3

Calibration LT 0.1526 0.1560 0.1832
Calibration NT 0.1515 0.1557 0.1823

Interpolation LT 0.1647 0.1652 0.1891
Interpolation NT 0.1623 0.1634 0.1871

Table 6.5.: Triangulation accuracy in [mm] for the reconstructed forehead surface of all three
subjects.
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Figure 6.13.: Histogram of the absolute triangulation errors for the reconstructed forehead sur-
face of subject 1.

vidually for each subject. This is not surprising since the interaction between laser light
and soft tissue is clearly individual for each subject. The same applies for the described
movement artifacts.

The use of calibrated laser rays and non-linear triangulation is referred to as calibration
NT. As can be seen in Table 6.5, this modality only leads to a marginal accuracy increase
of a few tenths of a micrometer for each subject. Table 6.5 also presents the triangula-
tion accuracy based on the use of interpolated laser rays. The combination with linear
and non-linear triangulation is referred to as interpolation LT and interpolation NT, re-
spectively. The mean value of the differences between the accuracy for calibration LT and
interpolation LT is given by 0.0091 mm. Using the accuracy for calibration LT as a basis, the
differences between both modalities were also calculated in percentage. The mean value
is given by 5.68 %. Consequently, the use of interpolated laser rays causes only a very
small decrease of triangulation accuracy. This implies that the use of interpolated laser
rays is an appropriate approach for the reconstruction of a forehead surface.
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Figure 6.14.: Histogram of the absolute triangulation errors for the reconstructed forehead sur-
face of subject 2.
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Figure 6.15.: Histogram of the absolute triangulation errors for the reconstructed forehead sur-
face of subject 3.
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Comparing the accuracy for interpolation LT and interpolation NT reveals that the non-
linear triangulation achieves an accuracy increase of around two micrometers for each
subject. An improvement of two micrometers can already be useful. Thus, the use of the
non-linear triangulation can be considered for the case of interpolated laser rays.

By comparing the accuracies shown in Tables 6.5 and 6.4, it can be seen that the accur-
acy for all three subjects is only slightly reduced with respect to the accuracy for the stair
phantom. For the modality calibration LT, the difference is given by 0.0049 mm, 0.0083 mm
and 0.0355 mm for subject 1 to 3, respectively. For the modality interpolation LT, the dif-
ference is given by 0.0057 mm, 0.0062 mm and 0.0301 mm for subject 1 to 3, respectively.

As described in the beginning of this section, the projection time for one grid of laser spots
was given by approximately 15 s. For the purpose of comparison, the reconstruction of a
forehead surface was also carried out without the simultaneous measurement of optical
features. In this manner, the projection of a grid of 1024 laser spots can be carried out in
approximately 0.1 s (see Table 3.1). Fig. 6.16 shows a front view on the reconstruction of
the forehead surface of subject 2. Comparing Figs. 6.11 and 6.16 on a qualitative basis, it
can be clearly seen that the reconstructed forehead surface in Fig. 6.16 is more accurate.
Since the projection of a grid of laser spots is now carried out in approximately 0.1 s, the
artifacts that are related to head movement and the deformation of soft tissue do not exist
in Fig. 6.16. The triangulation accuracy for the reconstructed forehead surface of subject
2 is presented in Table 6.6. Comparing Table 6.6 to the second column of Table 6.5 reveals
that the triangulation accuracy for the forehead surface in Fig. 6.16 is increased. For the
modality calibration LT, the difference is given by 0.0236 mm.

Method Subject 2

Calibration LT 0.1324
Calibration NT 0.1319

Interpolation LT 0.1432
Interpolation NT 0.1417

Table 6.6.: Triangulation accuracy in [mm] for the reconstructed forehead surface of subject 2
shown in Fig. 6.16.
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Figure 6.16.: Front view on the reconstructed forehead surface of subject 2. The blue points
represent the triangulated points. The latter were used to interpolate the copper surface.

6.4. Tracking accuracy

In the previous sections, the triangulation accuracy was determined for rigid phantoms
and human foreheads. In future works, the developed laser scanning system shall be
utilized for the tracking of human heads. Consequently, the triangulation accuracy will
influence the accuracy of tracking. As explained in Sec. 1, the tracking of a person’s head
shall be realized by combining two datasets. The first dataset is given by a surface re-
construction of the forehead and the second dataset includes the optical features which
correlate to the thickness of the soft tissue. The correlation properties of the optical fea-
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tures shall be used to compensate for the soft tissue. The final goal is to offer a highly
accurate registration with the rigid skull surface.

As described, the final tracking system is part of future developments. Consequently, the
influence of the triangulation accuracy on the final tracking accuracy can not be analyzed
in this work. However, the developed laser scanning system was utilized to carry out
tracking experiments which are solely based on surface reconstructions. The resulting
tracking accuracy can be interpreted as a tendency for the tracking accuracy which has
to be analyzed in the scope of the future tracking system.

6.4.1. Definition of tracking accuracy

The tracking accuracy was determined for two rigid objects and a human head. The rigid
objects are given by the stair phantom in Fig. 6.1 and the polystyrene head phantom
shown in Fig. 6.17. For the purpose of tracking, the developed laser scanning system was
mounted to the end-effector of an Adept Viper s850 robot. In this manner, the movement
of the robot can be utilized as a ground truth for the tracking.

Figure 6.17.: Polystyrene head phantom.

The tracking accuracy for an object is determined by the following procedure. At first, a
reconstruction of the surface of the object is acquired. This reconstruction is referred to
as the target point set. During the acquisition of the target point set, the end-effector is
located in the initial position. After the acquisition of the target point set, translational
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displacements are applied to the robot end-effector. The space which includes all ap-
plied end-effector displacements is described by a sphere and the initial position of the
end-effector defines the center of this sphere. Regarding the projection of extended code
sequences, one grid of laser spots is projected after each displacement. Due to the ac-
quisition of the target point set, the tracked laser spots are already identified. Hence,
a new reconstruction of the surface of the object is obtained for each displacement that
incorporates a captured full frame.

The tracking itself is realized by means of the ICP algorithm which registers the target
point set to each newly obtained point set. The utilized ICP variant uses the point-to-
plane distance measure as explained in Sec. A.6.2. The result of each registration is given
by an estimate of the pose cT g of the coordinate system of the target point set with respect
to the camera coordinate system (see Eq. A.18). The pose cT g consists of the translation
vector ctg and the rotation matrix cRg.

Each registration result has to be compared to a ground truth. The ideal ground truth
for tracking would be given by the initial pose of the camera with respect to each shifted
camera. This is due to the fact that each reconstructed point set is given with respect to
the camera coordinate system. However, this approach would necessitate an eye-in-hand
calibration in order to compute the constant pose of the camera with respect to the end-
effector. The problem is that an eye-in-hand calibration introduces high inaccuracies. To
avoid this problem, the ground truth for tracking is defined by solely using the applied
translational end-effector displacements. In this manner, the ground truth solely depends
on the high positioning accuracy of the robot end-effector.

In the following, a translational end-effector displacement is referred to as ete∗ . The latter
describes the translation of the initial end-effector coordinate system (CS)e∗ with respect
to a shifted end-effector coordinate system (CS)e. Using the ground truth translation ete∗

and the registered translation ctg, the translational tracking error can be defined as:

d = ‖ete∗‖2 − ‖
ctg‖2. (6.6)

Since both translation vectors are defined in a different manner, the translational tracking
error can not be defined by means of their difference vector. Instead, the L2-norm of both
translation vectors has to be compared in Eq. 6.6. As described, the displacements of the
end-effector are given by a pure translation. Consequently, the rotational tracking error
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solely depends on the rotation matrix cRg which results from the registration process. In
this work, the rotational tracking error is defined by the angle θ. The latter is calculated
by converting cRg to the angle-axis representation [75]. Finally, the tracking accuracy
is defined by the RMS of the translational tracking errors and the RMS of the rotational
tracking errors.

6.4.2. Results and discussion

The laser scanning system was configured to project a grid of 72 × 56 (4032) laser spots.
According to Table 3.1, this amount of laser spots is projected in approximately 0.4 s. In
order to encode 4032 laser spots, 12 code frames are required. The length of the sub-
sequences depends on the individual tracking experiment. In the scope of the tracking
experiments, calibrated laser rays and the linear triangulation are utilized for the gener-
ation of surface reconstructions.

In the first experiment, the tracking was carried out for the polystyrene head phantom
shown in Fig. 6.17. The surface reconstructions of the whole face were utilized for the
tracking. In this manner, a high amount of distinctive information is incorporated. As
explained in Sec. 6.4.1, a target point set is acquired when the robot end-effector is located
in the initial position. The target point set for the face of the polystyrene head phantom
is presented in Fig. 6.18.

The translational displacements of the robot end-effector are carried out consecutively by
using a constant robot step size g. Figure 6.19 shows an exemplary surface reconstruction
of the phantom’s face which was obtained after a translational end-effector displacement
was carried out. Figure 6.20 exemplarily presents the result of the registration of both
point sets.

As explained, the tracking of the polystyrene head phantom was carried out by means
of the whole face of the phantom. The tracking was carried out for three configurations.
Each configuration uses two parameters. The first parameter is given by the length j of
each sub-sequence included in a projected extended code sequence. The second para-
meter defines the robot step size g. Both parameters determine the pixel shift between
two full frames. As explained in Sec. 3.2, the tracked pixel position of a laser spot is
updated for every full frame. If the pixel shift between two full frames is too far then the
tracking of a laser spot can fail. In the worst case, a wrong laser spot is tracked. This is
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Figure 6.18.: Target point set of the polystyrene head phantom.

due to the fact that the tracking of laser spots is realized by a radius based search. An
incorrect tracking of the captured laser spots can lead to code detection errors. The latter
can lead to triangulation errors which ultimately influence the accuracy of the tracking
of the head phantom.

To avoid this problem, a small value j can be utilized. As explained in Sec. 3.2, a small
value j also leads to the advantage that a high reconstruction rate is achieved. On the
other hand, a small value j also leads to an increased initialization phase. Besides j, the
pixel shift between two full frames also depends on the robot step size g. A large value g
clearly causes a large pixel shift between two full frames.

The tracking accuracy for the three configurations is presented in Table 6.7. For each of
the three configurations, 264 tracking results were acquired. The tracking accuracy is
given by the RMS of the translational tracking errors and the RMS of the rotational track-
ing errors. The highest tracking accuracy was achieved for the configuration which uses
a length of j = 2 frames for each sub-sequence and a robot step size of g = 0.2 mm. In this
case, the described pixel shift is very small and the correct tracking of the captured laser
spots is guaranteed. This is not the case in the following configurations. Increasing either
the length j or the robot step size g leads to a decreasing tracking accuracy. Increasing
only j from 2 to 3 already leads to a RMS of the translational tracking errors that is loc-
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Figure 6.19.: Exemplary surface reconstruction of the face of the polystyrene head phantom.
The reconstruction was obtained after a translational displacement was applied to the robot
end-effector.

ated outside of the submillimeter range. Increasing only g from 0.2 mm to 0.5 mm leads
to a tracking accuracy that is around four times worse than the tracking accuracy of the
first configuration.

Figure 6.20.: Registration result for the target point set and the surface reconstruction shown in
Figs. 6.18 and 6.19, respectively.
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Length j of each
sub-sequence

Robot step size g
[mm]

RMS translational
tracking errors

[mm]

RMS rotational
tracking errors

[degree]

2 0.2 0.75 0.18
3 0.2 1.01 0.26
2 0.5 2.93 1.37

Table 6.7.: Tracking accuracy for the polystyrene head phantom. The tracking was carried out
by using surface reconstructions of the whole face of the phantom.

Nevertheless, the tracking accuracy for the first configuration shows that a high track-
ing accuracy can be achieved if small values are chosen for the parameters j and g. For
this reason, a length of j = 2 frames for each sub-sequence and a robot step size of g =
0.2 mm are utilized for all following tracking experiments. For the purpose of compar-
ison, the described tracking experiment was also carried out for the stair phantom shown
in Fig. 6.1. In contrast to the polystyrene head phantom, the stair phantom incorporates
an even surface. This leads to the circumstance that the detection of the centers of the cap-
tured laser spots is carried out with higher accuracy. The tracking accuracy for the stair
phantom is presented in the first row of Table 6.8. By comparing these results with the
first row in Table 6.7, it can be seen that a much higher tracking accuracy can be achieved
by means of the stair phantom. In fact, the tracking accuracy is around twice as good.

Object
Length j of
each sub-
sequence

Robot step
size g [mm]

RMS
translational

tracking
errors [mm]

RMS
rotational
tracking

errors [degree]

Stair phantom 2 0.2 0.33 0.12
Forehead of the

polystyrene head
phantom

2 0.2 1.56 0.41

Forehead of a
human head

2 0.2 7.43 1.11

Table 6.8.: Tracking accuracy for two rigid objects and the forehead of a human head.
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As described in the beginning of this section, the future head tracking system will in-
corporate a surface reconstruction of the forehead of a person. For this reason, the de-
scribed tracking experiment was also carried out for the forehead of the polystyrene head
phantom. The resulting tracking accuracy is presented in the second row of Table 6.8. By
comparing this result to the first row in Table 6.7, it can be seen that using only the fore-
head of the head phantom leads to a tracking accuracy which is around two times worse.
This is due to the fact that a surface reconstruction of a forehead contains less distinctive
information than a surface reconstruction of a whole face. Consequently, the use of more
information could be considered for the future development of the tracking of person’s
head. Especially the use of the surfaces around the pointed cheekbones and the nasal
bone can improve the tracking accuracy considerably. These areas belong to the most
distinctive parts in a facial surface reconstruction.

The last tracking experiment was carried out for a human head. To achieve the same
conditions for the tracking setup as in the case of the head phantom, the head of the test
person was fixed with a stereotactic frame. In this manner, it was guaranteed that the
head of the subject was not able to move. As in the case of the head phantom, the only
allowed movement is carried out by the robot end-effector. A side effect of the stereotactic
frame is that the frame occluded most of the parts of the lower facial structure. For this
reason, the head tracking could only be carried out by using the surface of the forehead.

The accuracy for the tracking of a human head is presented in the third row of Table 6.8.
The high inaccuracy is caused by two reasons. First of all, only surface reconstructions of
the forehead are utilized for the tracking. Consequently, a reduced amount of distinctive
information is incorporated. Furthermore, the soft tissue of a forehead is deformable and
structural changes are caused by facial expressions as well as variations in temperature.
Consequently, it is not surprising that the achieved tracking accuracy is much reduced
compared to the tracking accuracy for rigid objects.

This result confirms that the tracking of a person’s head can not be carried out by the sole
use of a reconstruction of the deformable skin surface. In order to achieve a high tracking
accuracy, it is necessary to use the reconstruction of a rigid surface. As described in Sec. 1,
this is the goal for future developments. The goal is to combine the surface reconstruction
of a forehead with optical features which correlate to the thickness of the soft tissue. In
this manner, the influence of the deformable soft tissue shall be compensated in order to
offer a highly accurate registration with respect to the surface of the rigid skull.
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As explained in Sec. 6.2.2, the stair phantom incorporates a ground truth point set that
is affected by the accuracy of the CT scanner. Hence, it can be assumed that the tri-
angulation accuracy for the stair phantom is slightly worse than the true triangulation
accuracy. In contrast, the use of a planar surface considers triangulation errors only in
one direction. Thus, it can be assumed that the triangulation accuracy for a planar sur-
face is slightly better than the true triangulation accuracy. As a consequence, it can be
assumed that the true triangulation accuracy of the laser scanning system is given by a
value between the result of both methods.

The correctness of the computed triangulation accuracy depends on the correctness of the
ground truth point set. To generate an ideal ground truth point set, this section covers
a simulation of the developed laser scanning system. In order to analyze the triangu-
lation accuracy, the sources of error described in Sec. 6.1 are included in the simulated
laser scanning system. Finally, the triangulation accuracy of the simulated laser scanning
system is utilized to verify the triangulation accuracy for rigid objects reported in Sec.
6.2.3.

7.1. A simulation model

The model in [48] is utilized to simulate a laser ray which is deviated by two controllable
mirrors. A graphical representation of this model is shown in Fig. 7.1. The origin of the
projector coordinate system (CS)f is located on the rotation axis of the first mirror. The
x-axis of (CS)f is parallel to the rotation axis of the second mirror and the y-axis of (CS)f
is perpendicular to it. The laser ray which originates from the laser diode is defined by
it’s (3 × 1) origin s and the (3 × 1) direction l. In the following, this laser ray is referred
to as the incoming laser ray.
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Incoming ray

Outgoing ray
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Figure 7.1.: Model for a galvanometric laser projection system.

The position of the first mirror is described by the origin a = 03×1 and it’s orientation
is described by the normal vector n. The latter depends on the angles φ and ω. The
angle φ defines the controllable rotation of the first mirror around the z-axis of (CS)f .
Considering only the angle φ, the normal vector of the first mirror is defined by n′ =
[ − sin(φ) cos(φ) 0 ]T . The angle ω defines a fixed rotation of the first mirror around
the x-axis of (CS)f . This rotation is described by the rotation matrix

Rx(ω) =


1 0 0
0 cos(ω) − sin(ω)
0 sin(ω) cos(ω)

 . (7.1)

Finally, the normal vector n of the first mirror is defined by:

n = Rx(ω)n′ = [ − sin(φ) cos(φ) cos(ω) cos(φ) sin(ω) ]T . (7.2)
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The point of intersection of the incoming laser ray and the first mirror is given by:

b = s+ < n,−s >
< n, l >

l. (7.3)

The notation < ., . > denotes the dot product. A laser ray which is reflected by the first
mirror is defined by it’s origin b and the direction d. The latter is expressed by:

d = 2 < n,−l > n+ l. (7.4)

The position of the second mirror is described by means of q = [ 0 r 0 ]T . The
quantity r is the distance between the origin a and the position q of the second mir-
ror. The orientation of the second mirror is defined by the normal vector k which de-
pends on the angle ψ. The latter defines the controllable rotation of the second mirror
around the x-axis of (CS)f . Hence, the normal vector of the second mirror is given by
k = [ 0 cos(ψ) sin(ψ) ]T . The point of intersection of a reflected laser ray and the
second mirror is defined by:

h = b+ < k, q − b >
< k,d >

d. (7.5)

A laser ray which is reflected by the second mirror is described by it’s origin h and the
directionm. The latter is computed by:

m = −2 < k,d > k + d. (7.6)

A laser ray that is reflected by the second mirror is referred to as an outgoing laser ray.
For the simulation, two sets of laser rays have to be considered. The first set simulates the
calibrated laser rays and the second set simulates the erroneous laser rays during surface
reconstruction. As described in Sec. 6.1, the positioning of the mirrors is error-prone in
the physical laser scanning system. Thus, during the reconstruction of a surface, the laser
rays slightly deviate from the calibrated laser rays. The simulation of this deviation is
achieved by introducing a positioning error for both controllable mirrors.
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The actual positioning accuracy of the galvanometer driven mirrors in the physical laser
scanning system is unknown. However, comparable products (scanlab.de) achieve a pos-
itioning accuracy of approximately 1µrad (RMS). For this reason, a standard deviation of
1µrad is utilized to introduce a realistic Gaussian distributed positioning error. In order
to obtain independent positioning errors for both mirrors, two equal Gaussian distribu-
tions are utilized. A positioning error for the first mirror is added to the angle φ and a
positioning error for the second mirror is added to the angle ψ.

For the simulation, a planar surface is placed at a specified distance with respect to
the projector coordinate system (CS)f . The goal is to project a set of laser points onto
the planar surface. The position of the planar surface is described by it’s origin u =
[ 0 0 j ]T . The orientation of the planar surface is described by the constant normal
vector v = [ 0 0 1 ]T which also represents the z-axis of (CS)f . In order to project a
laser point onto the planar surface, the intersection point pf between the planar surface
and an outgoing laser ray is computed. The calculation of a point pf is carried out as
follows:

pf = h+ < u,v > − < h,v >
<m,v >

m. (7.7)

The described projection utilizes the laser rays which depend on the explained position-
ing error. The result is given by a set of laser points which are projected onto the planar
surface. This set is described by pfi with i ∈ [1, I] where I defines the amount of points.

Next, the camera coordinate system (CS)c is placed with respect to the projector coordin-
ate system (CS)f . The translation vector of (CS)c is given by f tc = [ g 0 0 ]T . The ro-
tation matrix of (CS)c is given by fRc and is computed by means of XYZ Euler angles as
described in Eq. A.4. The translation vector f tc and the rotation matrix fRc are utilized
to construct the homogeneous (4× 4) transformation matrix fT c (see Eq. A.5).

As described, a projected laser point pf on the planar surface is given with respect to
the projector coordinate system (CS)f . Using the inverse transformation matrix cT f , a
projected laser point pf can be transformed to a projected laser point pc with respect
to the camera coordinate system (CS)c. Thus, the set of all projected laser points with
respect to the camera is defined by pci . The obtained set pci defines the ground truth point
set for the triangulation of spatial points.
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A deviation between a triangulated point set and the ground truth point set is caused
by the following error sources. For triangulation, the calibrated laser rays are utilized.
Furthermore, a pixel error is added to the laser points which are projected into the sensor
coordinate system of the placed camera. The projection of a point pc into the sensor
coordinate system is defined by Eq. 4.7. By applying Eq. 4.7 to all points in the set pci , a
set of normalized image points pni is obtained.

Subsequently, a pixel error is added to each point contained in the set pni . As explained
in Sec. 5.1, the pixel error in the physical camera follows a Gaussian distribution and the
maximum L2-norm of the pixel error is given by approximately 0.5 pixel. The same error
distribution is applied for the pixel error of the set pni in the simulation. However, the set
pni describes image points which are located in the sensor coordinate system. Thus, the
unit of these image points is not given by pixels. In order to apply the described pixel
error, the calibrated intrinsic parameters of the physical camera are utilized to transform
the pixel error to the sensor coordinate system. The applied pixel error simulates the
deviation that occurs during the detection of the centers of the captured laser spots.

Finally, the set pni of image points and the calibrated laser rays are utilized as the input
parameters of the triangulation procedure described in Sec. 5.3. For the simulation ex-
periments, the linear triangulation method is utilized. The result is given by the set pc

′
i

of triangulated points with respect to the camera coordinate system. Here, the index c ′ is
utilized to prevent confusion with the ground truth point set pci . The triangulation error
e for one point pc

′
is defined by the L2-norm of the difference vector between pc

′
and the

corresponding point pc in the ground truth point set:

e =
∥∥∥pc ′ − pc∥∥∥

2
. (7.8)

The triangulation accuracy is defined as the RMS of all triangulation errors ei and is
computed by means of Eq. 6.3.

7.2. Results and discussion

In the first experiment, the simulation model of Sec. 7.1 is utilized to verify the triangula-
tion accuracy for rigid objects reported in Sec. 6.2.3. For this purpose, the parameters of
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the simulated laser scanning system are determined by a manual estimation of the cor-
responding parameters in the physical laser scanning system. The intrinsic parameters
of the galvanometric laser projection system are given by the angle ω of the first mirror,
the distance r between the two mirrors as well as the origin s and the direction l of the
incoming laser ray. The utilized extrinsic parameters are given by the translation g and
the XYZ Euler angles of the camera with respect to the projector coordinate system.

As in Sec. 6.2.3, the simulated laser scanning system projects a grid of 72 × 56 (4032)
laser points. For the purpose of comparison, the planar surface is placed at a projection
distance j = 59.5 cm. This is the projection distance which is associated with the highest
triangulation accuracy for the physical laser scanning system in Figs. 6.7 and 6.8. A
histogram of the triangulation errors for the simulated laser scanning system is presented
in Fig. 7.2. The triangulation accuracy is defined as the RMS of all triangulation errors
and is given by 0.1184 mm. In Table 7.1, the resulting triangulation accuracy is compared
to the triangulation accuracies of the physical laser scanning system. The results for the
physical system are taken from the first row of Table 6.4 and represent the triangulation
accuracy for the stair phantom and a planar surface.
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Figure 7.2.: Histogram of the triangulation errors for the reconstructed planar surface.

As can be seen in Table 7.1, the triangulation accuracy of the simulated system is located
between the two triangulation accuracies of the physical system. This corresponds to the
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Device
Reconstructed

surface
Triangulation

accuracy [mm]

Physical laserscanner
Plane 0.1037

Stair phantom 0.1477
Simulated laserscanner Plane 0.1184

Table 7.1.: Comparison of the triangulation accuracy for the physical and the simulated laser
scanning system.

initial assumption that the true triangulation accuracy of the physical system is given
by a value which is located between the triangulation accuracy for the stair phantom
and a planar surface. The difference between the triangulation accuracy of the simulated
system and the triangulation accuracy for a planar surface in the physical system is given
by 0.0147 mm. The difference between the triangulation accuracy of the simulated system
and the triangulation accuracy for the stair phantom in the physical system is given by
0.0293 mm.

In the second experiment, the simulation model is used to analyze the influence of the
distance between the camera and the galvanometric laser projection system. In the first
experiment, the translation of the camera with respect to the projector coordinate system
(CS)f was given by g = 40 cm. For comparison, the triangulation accuracy is computed
by using a translation g of 20 cm, 30 cm, 50 cm and 60 cm. All other parameters of the
simulation model are the same as in the first experiment.

Camera translation g
[cm]

Triangulation accuracy
for a plane [mm]

20 0.1341
30 0.1269
40 0.1184
50 0.1102
60 0.1033

Table 7.2.: Comparison of the triangulation accuracy for different camera translations in the
simulated laser scanning system.

The triangulation accuracy for all camera translations is compared in Table 7.2. As ex-
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plained in Sec. 6.1, the triangulation accuracy increases when the distance between the
camera and the galvanometric laser projection system increases as well. This behavior is
also valid for the triangulation accuracies in Table 7.2. The relationship between the cam-
era translation and the triangulation accuracy can be approximated by a linear function.
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Optical head tracking for robot-guided radiosurgery is a very promising approach. It
is based on the use of harmless laser light and it offers high scan rates. However, op-
tical head tracking is inaccurate since the registration process is influenced by deform-
able structures which are given by the skin and the muscles. In order to overcome the
problems of optical head tracking, our research group developed a novel measurement
system. The system projects a grid of discrete infrared laser spots onto the forehead of
a person. The captured reflection of the grid is utilized to acquire a point-based recon-
struction of the forehead’s surface. Furthermore, the captured reflection of the grid is
also used to calculate a set of optical features for each captured laser spot. The novelty of
this approach is given by the correlation of each feature set with the thickness of the soft
tissue. The goal for future developments is to combine the point-based surface recon-
struction with the optical features. In this manner, the measurement system is intended
to offer highly accurate registration with respect to the rigid skull surface. Consequently,
tracking errors that are related to the deformable skin and muscles can be avoided.

The point-based reconstruction of the surface of a forehead is acquired by means of trian-
gulation. The latter requires the mapping between the projected and the captured light
information. This is also known as the correspondence problem. The reflection of a grid
of laser spots is captured in one single camera image. Due to partial pattern occlusion and
undetected laser spots, the correspondence problem can not be solved directly. For this
reason, binary time multiplexing is utilized for the encoding of the projected grid. The
advantage of time multiplexed structured light is that each laser spot is encoded inde-
pendently. In this manner, code detection errors can be minimized and a highly accurate
reconstruction of spatial surface points can be achieved.

The proposed method for binary time multiplexing reduces the general restrictions of
previous time multiplexing methods. The developed method can be used for objects that
move slowly. Moreover, the method makes an improvement to offer a high reconstruc-
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tion rate. Hence, the proposed method is appropriate for surface reconstruction in the
context of head tracking for radiation therapy. The only disadvantage of the developed
time multiplexing method is the fact that an initialization phase is required. After the
initialization phase has passed, the acquisition of surface reconstructions can begin. The
encoding of 1000 laser spots results in a reasonably short initialization phase of 2 s. How-
ever, if the simultaneous computation of optical features is required than the integration
time of the camera has to be increased. In this case, the projection of a single grid can take
up to several seconds and the initialization phase can take up to more than one minute.

The triangulation of surface points also requires the calibration of the extrinsic para-
meters of the laser scanning system. To achieve a high calibration accuracy, this work
proposes an explicit laser ray calibration. The latter incorporates the calibration of each
single laser ray that is used for the projection of a grid of laser spots. Furthermore, a
method for the interpolation of laser rays is proposed. Using a set of laser rays that was
calibrated in advance, new laser rays can be computed by means of interpolation. In this
manner, a time consuming acquisition of new calibration data can be avoided.

In order to analyze the triangulation accuracy of the developed laser scanning system, the
surface of a plane and the surface of a stair phantom were reconstructed. The triangula-
tion accuracy is given by a RMS error of 0.1037 mm and 0.1477 mm, respectively. These
results were also verified by means of a simulation of the laser scanning system. The re-
vealed triangulation accuracy is given by a RMS error of 0.1184 mm. In order to compare
the triangulation accuracy with a commercially available scanning system, the surface
of the plane and the surface of the stair phantom were also reconstructed by means of
Microsoft’s Kinect camera. The results show that the developed laser scanning system
outperforms the Kinect camera by a factor of six.

Furthermore, the surface of the forehead of the three different subjects was reconstruc-
ted. The resulting triangulation accuracy is given between RMS errors of 0.1526 mm and
0.1832 mm. Due to the interaction of the infrared laser light with soft tissue, the detec-
tion of the centers of the captured laser spots is less accurate than in the case of the rigid
phantoms. Moreover, the head of a subject moves slightly during the acquisition of a sur-
face reconstruction. Both circumstances lead to a triangulation accuracy that is slightly
decreased compared to the triangulation accuracy for the rigid phantoms.

The developed laser scanning system was also utilized to carry out tracking experiments.
For this purpose, the laser scanning system was attached to the end-effector of a robot
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manipulator. The goal was to analyze how the remaining triangulation errors influence
the accuracy of tracking. The highest accuracy was achieved for the tracking of the stair
phantom. The RMS of the translational tracking errors and the RMS of the rotational
tracking errors is given by 0.33 mm and 0.12 ◦, respectively. The tracking of a polystyrene
head phantom revealed a slightly decreased accuracy. The RMS of the translational track-
ing errors and the RMS of the rotational tracking errors is given by 0.75 mm and 0.18 ◦,
respectively.

The tracking of the forehead of a human head revealed a highly inaccurate result. The
RMS of the translational tracking errors and the RMS of the rotational tracking errors
is given by 7.43 mm and 1.11 ◦, respectively. This result clearly shows that the sole use
of a surface reconstruction of the forehead is not appropriate for tracking. The result
supports the initial idea to combine the surface reconstruction of a forehead with the
optical features which correlate with the thickness of the soft tissue. In this manner, the
influence of the deformable soft tissue shall be compensated.

The developed measurement system obtains a point-based reconstruction of the surface
of the forehead of a person. Furthermore, the measurement system acquires optical fea-
tures which correlate to the thickness of the soft tissue. For both measurements, an in-
frared laser source with a wavelength of 850 nm is utilized. The interaction of the infrared
laser light with the soft tissue leads to the fact that the detection of the centers of the cap-
tured laser spots is less accurate than in the case of a rigid object. Thus, the triangulation
accuracy is slightly decreased for the reconstruction of the surface of a person’s forehead.

To avoid this problem in future developments, the triangulation part of the measurement
system will use a blue laser source with a wavelength of 405 nm. This wavelength guar-
antees that the light absorption of the chromophores in the human skin is much higher
than compared to infrared laser light at 850 nm [4]. A high light absorption by the chro-
mophores reduces the light penetration depth and the effects of light scattering in the
skin. As a consequence, the skin specific variation of the captured laser light can be re-
duced by means of a blue laser source. In this manner, the accuracy of the detection of
the centers of the captured laser spots shall be increased for soft tissue.

Another open point for further improvements is given by the initialization phase of the
proposed time multiplexing method. In future works, alternative strategies for the en-
coding of the projected laser spots can be evaluated. An alternative encoding strategy
should either decrease the duration of the initialization phase or it should completely re-
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move the necessity of an initialization phase. A first idea to decrease the duration of the
initialization phase is given by the repetition of codes. The resulting ambiguity can be
resolved by means of a partitioning of the camera image into code regions.
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A. Mathematical supplement

A.1. Pose of a rigid body

Fig. A.1 shows a rigid body with it’s orthonormal coordinate system (CS)1 which is
given with respect to the orthonormal reference coordinate system (CS)0. A generalized
description is given by (CS)j for the coordinate system of the rigid body and (CS)i for
the reference coordinate system. The pose of a rigid body is defined relative to (CS)i and
consists of a position and an orientation [75]. The position is expressed by the (3 × 1)
translation vector itj :

itj = [ x y z ]T . (A.1)

The latter describes the translation of the origin of (CS)j relative to (CS)i. The orientation
is given by the (3× 3) rotation matrix iRj :

iRj =


r11 r12 r13

r21 r22 r23

r31 r32 r33

 . (A.2)

The latter defines the rotation of (CS)j relative to (CS)i. The columns of iRj represent
orthonormal vectors given in (CS)i and define the x-, y- and z-axis of (CS)j . Since the
three axes span an orthonormal basis, iRj is called orthogonal matrix.
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Figure A.1.: Pose of a rigid body.

A.1.1. Rotation matrix

In the following, the computation of the elementary rotation matrices is described. Sub-
sequently, the elementary rotation matrices are used to compose the rotation matrix which
describes the orientation of a rigid body with respect to a reference coordinate system.
The angles α, β and γ describe the elementary rotations of a coordinate system (CS)j
around the x-, y- and z-axis of a reference coordinate system (CS)i, respectively. By
means of the angles α, β and γ, the elementary rotation matrices can be expressed as
follows [75]:

Rx(α) =


1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)

 ,

Ry(β) =


cos(β) 0 sin(β)

0 1 0
− sin(β) 0 cos(β)

 ,

Rz(γ) =


cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 .

(A.3)
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A compact representation of the orientation of a rigid body is given by the XYZ Euler
angles. This representation is defined by the following successive rotations. The coordin-
ate system (CS)j is rotated around the x-axis of the reference coordinate system (CS)i.
Afterwards, (CS)j is rotated around the new y’-axis of the previously rotated coordinate
system. Subsequently, (CS)j is rotated around the new z”-axis of the previously rotated
coordinate system. The corresponding rotation matrix is computed by multiplying the
elementary rotation matrices from Eq. A.3 as follows [75]:

R(α, β, γ) = Rx(α)Ry′(β)Rz′′(γ)

=


cαcγ − sαcβsγ −cαsγ − sαcβcγ sαsβ
sαcγ + cαcβsγ −sαsγ + cαcβcγ −cαsβ

sβsγ sβcγ cβ

 .
(A.4)

The notations c(.) and s(.) represent the functions cos(.) and sin(.), respectively.

A.2. Linear coordinate transformation

In the following, the pose definition from Sec. A.1 is used to describe the linear coordin-
ate transformation based on translation and rotation. This transformation is also known
as rigid transformation and is a subclass of the more general affine linear transforma-
tion which also incorporates scaling and shear mapping. A rigid transformation offers
the changing of the coordinate system for a point p = [ x y z ]T . By means of homo-
geneous coordinates, a rigid transformation can be expressed in matrix form. By using
the homogeneous (4 × 4) transformation matrix iT j , a homogeneous point p̃j given in
the coordinate system (CS)j is transformed into a homogeneous point p̃i given in the
coordinate system (CS)i [75]:

p̃i = iT j p̃
j =

[
iRj

itj

01×3 1

]
p̃j . (A.5)

The inverse transformation is used to transform the point p̃i into the point p̃j :
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p̃j = (iT j)−1 p̃i = jT i p̃
i. (A.6)

Since the rotation matrix iRj is an orthogonal matrix, the inverse of iRj is given by it’s
transpose. Hence, jT i is defined by:

jT i =
[

(iRj)T −(iRj)T itj

01×3 1

]
=
[

jRi −jRi
itj

01×3 1

]
=
[

jRi
jti

01×3 1

]
. (A.7)

A.3. Moore-Penrose pseudoinverse

According to [75], the Moore-Penrose pseudoinverse A+ of a matrix A is calculated as fol-
lows:

b = Ax

ATb = ATAx

(ATA)−1 ATb = (ATA)−1 (ATA)x

(ATA)−1 AT︸ ︷︷ ︸
A+

b = x.

(A.8)

A+ only exists if the rank ofA is equal to the number of columns inA.

A.4. Singular value decomposition

Given a (m× n) matrix A, the singular value decomposition (SVD) of A is given as follows
[21]:

A = UΣV T = U diag( σ1, · · · , σk )V T . (A.9)

The singular values of A are contained on the diagonal of the (m × n) matrix Σ. The
singular values are defined by the set σj with j ∈ [1, k] where k = min{m,n}. The
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singular values are given in descending order σ1 ≥ · · · ≥ σk ≥ 0. The rank of the matrix
A is determined by r = rank(A). The rank r is equivalent to the number of non-zero
singular values contained on the diagonal of Σ. Thus, the remaining singular values are
given by σr+1 = σr+2 = · · · = σk = 0. IfA is a matrix of full rank then all singular values
σj are non-zero.

The (m ×m) matrix U and the (n × n) matrix V are orthogonal matrices. The columns
of the matrix U and V define the left-singular vectors and the right-singular vectors of
the matrix A, respectively. Moreover, the columns of the matrix U and V also define
the eigenvectors of AAT and ATA, respectively. By means of the singular values σj ,
the corresponding eigenvalues of AAT and ATA can be calculated. The relationship
between a singular value σ and an eigenvalue λ is defined as follows:

λ = σ2. (A.10)

A.5. Principal component analysis

Given a set of I d-dimensional data points, the principal component analysis (PCA) is used
to compute the principal axes (principal components) of the data points [37]. A set of
d-dimensional data points is referred to as pi with i ∈ [1, I] where I defines the number
of data points. The d-dimensional mean vectorm is calculated by:

m = 1
I

I∑
i=1
pi. (A.11)

Subsequently, the matrix Ψ is computed as follows:

Ψ = [ p1 −m, p2 −m, · · · , pI −m ]. (A.12)

The matrix Ψ is used to calculate the (d× d) covariance matrix C:
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C = 1
I − 1ΨΨT . (A.13)

The principal components of the data points pi are given by the eigenvectors of the cov-
ariance matrixC. In order to use the principal components it is also necessary to compute
the eigenvalues of C. The eigenvector that corresponds to the largest eigenvalue is the
direction of greatest variation. The eigenvector that corresponds to the second largest
eigenvalue is the direction which incorporates the next highest variation. The same prin-
ciple applies for all remaining eigenvectors. In order to calculate the eigenvectors and
the eigenvalues of C, the SVD of the matrix Ψ has to be computed (see Sec. A.4):

Ψ = UΣV T = U diag( σ1, · · · , σd )V T . (A.14)

The columns of the (d× d) matrix U are the eigenvectors of ΨΨT . The columns of U are
referred to as the setuj with j ∈ [1, d]. The eigenvalues of the matrix ΨΨT are determined
by using the singular values of the matrix Ψ. These singular values are located on the
diagonal of the computed (d × I) matrix Σ and are referred to as the set σj with j ∈
[1, d]. The eigenvalues of the matrix ΨΨT are defined by the squared singular values σ2

j

(see Eq. A.10). By using the following eigenvalue problem for the matrix C, the sought
eigenvectors and eigenvalues of the covariance matrix C can be determined:

1
I − 1ΨΨT︸ ︷︷ ︸

C

u = 1
I − 1σ

2︸ ︷︷ ︸
λ

u. (A.15)

Thus, the computed eigenvectors uj also define the eigenvectors of the covariance matrix
C. As defined in Eq. A.15, the eigenvalues of C are given by the set λj with j ∈ [1, d].
Since the computation of the eigenvalues λj is based on the SVD, the eigenvalues λj are
arranged in descending order λ1 ≥ · · · ≥ λd > 0. The corresponding set of eigenvectors
uj are orthonormal vectors and define the principal components of the data points pi.
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A.6. Iterative closest point algorithm

A set of 3D points given in an object coordinate system (CS)g is described by pgm with
m ∈ [1,M ] where M is the amount of points. A set of 3D points given in the camera
coordinate system (CS)c is described by pcn with n ∈ [1, N ] where N is the amount of
points. The amount of points in both sets can be different and the point correspondence
between both sets is not given. For the sake of clarity, the point sets pgm and pcn are referred
to as target point set and input point set, respectively.

Using the iterative closest point (ICP) algorithm [8], the target point set pgm can be registered
to the input point set pcn. The result is given by an estimate of the pose cT g of the object
coordinate system (CS)g with respect to the camera coordinate system (CS)c. The two
mostly used variants of the ICP algorithm use either the point-to-point distance measure
or the point-to-plane distance measure.

A.6.1. Point-to-point distance

Each iteration of the ICP algorithm includes the following three steps. In the first step,
the points in the input point set pcn are used to build a KD tree as described in Sec. A.7.
Using this KD tree, a nearest-neighbor search is performed for the points contained in the
target point set pgm. In this manner, points from the target point set are mapped to points
from the input point set. Here, a duplicate mapping to a point from the input point set
has to be avoided. The amount I of mapped points is given by the minimum of the initial
amounts M and N :

I = min{M,N}. (A.16)

The result of the nearest-neighbor search is given by the mapped point sets pgi and pci
with i ∈ [1, I]. The second step of the ICP algorithm is given by the minimization of
the point-to-point distances. This can be expressed by the following linear least-squares
(LS) problem which fits the translation vector t and the rotation matrixR to the mapped
points:
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min
R,t

E =
I∑
i=1
‖pci − (Rpgi + t)‖22 =

I∑
i=1
‖di‖22 . (A.17)

In [8], the LS problem in Eq. A.17 is solved by the unit quaternion-based method de-
scribed in [30]. In the third step of the ICP algorithm, the estimated parameters t and
R are used to transform the points contained in the target point set pgm to points with
respect to the camera coordinate system (CS)c (see Eq. A.5). The resulting set of points
is referred to as the new target point set. Afterwards, the three described steps of the
ICP algorithm are carried out again. In each new iteration, the new target point set re-
places the target point set of the previous iteration. The termination criteria of the ICP
algorithm can be defined by comparing the sum E of squared differences in Eq. A.17
for the current and previous iteration. If the change of the error sum E is lower than
a user-defined threshold then the ICP algorithm has converged. After convergence, the
algorithm is terminated after step two of the current iteration.

As described in the beginning of this section, the ICP algorithm is used to estimate the
pose cT g. After the convergence of the ICP algorithm, the parameters of this pose can be
computed by means of the result of Eq. A.17. The latter yields a translation vector t and
a rotation matrixR for each iteration of the ICP algorithm. Thus, a set t(k) of translations
and a set R(k) of rotation matrices have been computed. The quantity k is the iteration
index with k ∈ [1,K−1] whereK defines the number of executed ICP iterations. Iteration
K is not considered for t(k) and R(k) since step three is not executed for the final ICP
iteration. As explained in Sec. A.2, a pose can be described by a homogeneous (4 × 4)
transformation matrix T which contains a translation vector t and a rotation matrix R.
Thus, the sets t(k) and R(k) can be represented by the set T (k) of poses. The sought
transformation matrix cT g is defined by multiplying the elements of the set T (k):

cT g = T (K−1)T (K−2) · · ·T (1). (A.18)

The ICP algorithm only converges in the global minimum if the initial target point set
pgm and the input point set pcn are already close to each other before the algorithm starts.
Otherwise, the algorithm can converge in a local minimum. In a local minimum, the two
point sets pgm and pcn are incorrectly aligned. In the scope of this work, the ICP algorithm
is used for the registration of point sets which are only a few millimeters away from each
other. In this manner, a successful registration is always guaranteed.
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A.6.2. Point-to-plane distance

Another variant of the ICP algorithm uses the point-to-plane distance measure. This
variant uses the same algorithmic structure as the point-to-point based ICP which is de-
scribed in Sec. A.6.1. The point-to-plane based ICP extends the first step of the point-to-
point based ICP. As described in Sec. A.6.1, the result of the first step of an ICP iteration
is given by the mapped point sets pgi and pci with i ∈ [1, I]. This result is the basis for the
following extension.

In order to establish the point-to-plane distance measure, the points included in the input
point set pcn are used to build a KD tree as described in Sec. A.7. Subsequently, every
point in the set pci is processed by the following procedure. A point contained in the set
pci is defined as the query point pc. By means of the KD tree, a nearest-neighbor search
is carried out to find the J nearest neighbors of pc in the set pcn. The J nearest neighbors
of pc are defined by the set pcj with j ∈ [1, J ]. Since the query point pc is contained in the
KD tree as well, it is also contained in the set pcj .

In the following, a plane is fitted to the points included in the set pcj . The set pgi contains
the point pg which was mapped to the current query point pc. The goal is to compute the
point p̂c on the fitted plane which is orthogonally connected to the point pg. The point
p̂c is referred to as the orthogonal base point of pg. The point pg and it’s orthogonal base
point p̂c establish the sought point-to-plane distance.

The fitting of a plane to the point set pcj is computed by means of PCA (see Sec. A.5). In
this manner, the fitted plane can be described by a coordinate system. The PCA computes
the covariance matrix of the point set pcj . The result of the PCA is given by the eigen-
vectors and the eigenvalues of the covariance matrix. The set of eigenvectors is defined
by uw and the set of eigenvalues is defined by λw with w ∈ [1, 3]. The amount of eigen-
values and eigenvectors is equivalent to the dimension of the spatial points contained in
the set pcj . The eigenvalues λw are arranged in descending order λ1 ≥ · · · ≥ λ3 > 0. The
corresponding (3 × 1) eigenvectors uw are orthonormal vectors and define the principal
components of the point set pcj .

The eigenvectors uw are used to determine a rotation matrix cRh of the fitted plane with
respect to the camera. The z-axis of cRh is given by the direction of smallest variation
of the respective point set pcj . Hence, the z-axis is defined by the eigenvector u3. The
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x-axis and the y-axis of cRh span the fitted plane and are calculated by using a second
eigenvector. The eigenvector u2 is utilized as the x-axis of cRh. The cross product of
u3 and u2 is used to determine the y-axis and hence the complete rotation matrix cRh is
given by:

cRh = [ u2 u3 × u2 u3 ]. (A.19)

The translation vector cth of the fitted plane is defined as the mean vector of the point set
pcj :

cth = 1
J

J∑
j=1
pcj . (A.20)

The computed translation vector cth and the rotation matrix cRh are used to define the
homogeneous (4 × 4) transformation matrix cT h (see Eq. A.5). By means of the inverse
transformation matrix hT c, Eq. A.6 is used to transform the point pg to the point ph =
[ xh yh zh ]T with respect to the fitted plane. The point p̂h is the sought orthogonal
base point represented with respect to the fitted plane. The point p̂h is computed by
using the first two components of the point ph. Furthermore, the value 0 is utilized as the
third component:

p̂h = [ xh yh 0 ]T . (A.21)

The transformation matrix cT h is used to transform the point p̂h to the sought orthogonal
base point p̂c with respect to the camera. The point pg and it’s orthogonal base point p̂c

establish the sought point-to-plane distance. Each query point in the set pci is processed
by the explained procedure. The result is given by the set p̂ci of orthogonal base points.
Subsequently, the mapped sets p̂ci and pgi are used to solve Eq. A.17. The latter now
incorporates the minimization of the point-to-plane distances.

The point-to-plane based ICP is especially useful when two point sets have to be re-
gistered which contain only few or no corresponding points. In this case, the point-to-
point based ICP would lead to registration errors. By means of the described orthogonal
base points, these registration errors can be reduced. The explained parameter J is a user
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defined constant which determines the amount of nearest neighbors that is used to fit a
plane model. In general, J should be a small value in order to achieve a more accurate
surface approximation by means of the fitted planes.

A.7. KD trees

A computationally efficient method for nearest-neighbor search is given by KD trees.
Given a 2-dimensional point p = [ x y ]T , it’s nearest neighbor in a set of N 2-di-
mensional points can be found by using a KD tree [7]. A KD tree is a binary search
tree which is constructed by successive partitioning of the given set of N 2-dimensional
points. An exemplary box-based representation of a KD tree for a set of 20 2-dimensional
points is given in Fig. A.2. The partitioning starts with the x coordinates of the points
and leaves an equal number of points on both sides of the cut. The number of points on
both sides differ by one if the partitioned set contains an odd number of points. The next
partitioning step is carried out along the y coordinates of both new subsets. In this man-
ner, the construction algorithm continues to alternate the partitioning along the x and y

coordinates of new subsets. The process terminates if each point is separated from each
other.

Figure A.2.: Exemplary KD tree constructed from 20 2-dimensional points.
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The corresponding complete KD tree contains N leaf nodes and each leaf node uniquely
represents one of theN points from the initial set. A nearest-neighbor search for a point p
is carried out by traversing the KD tree with respect to the computed partitioning steps.
The search terminates in one of the leaf nodes. The found leaf node represents the sought
nearest neighbor of p. According to [68], the time complexity for the construction of a
KD tree including N points is given by O(N logN). The time complexity for a nearest-
neighbor search is defined by O(logN). Consequently, it takes O(N logN) to carry out
a nearest neighbor search for all points contained in a KD tree. In this work, a KD tree
implementation based on fully automated parameter selection is utilized [59].
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