
oliver witt

T O P O L O G I C A L A N D O N L I N E A N A LY S I S O F
D Y N A M I C S T O R A G E N E T W O R K S

From the Institute of Theoretical Computer Science
of the Universität zu Lübeck

Director: Prof. Dr. math. K. Rüdiger Reischuk

T O P O L O G I C A L A N D O N L I N E A N A LY S I S O F
D Y N A M I C S T O R A G E N E T W O R K S

Dissertation
for Fulfillment of

Requirements
for the Doctoral Degree

of the Universität zu Lübeck

from the Department of Computer Science / Engineering

Submitted by

Oliver Witt, M. Sc.
from Winsen / Luhe

Lübeck, 2016

First referee: Prof. Dr. math. K. Rüdiger Reischuk

Second referee: Prof. Dr. rer. nat. Andreas Brandstädt

Date of oral examination: December 6, 2016

Approved for printing: December 8, 2016

»Everything flows.«

— Heraklit (c. 535 — c. 475 BC)

P R E FA C E

During my studies at the Universität zu Lübeck, I discovered my passion
for the mathematical and theoretical aspects of computer science. Lectures
of the Institute of Theoretical Computer Science were among my favorite
ones. I also enjoyed teaching students as a tutor. Still, I did not expect to
become a PhD student at this institute until I almost finished my master’s
thesis. But then, it seemed like the most natural thing to do.

In the summer of 2012, Prof. Reischuk and I started to model supply and
demand scenarios based on flow networks with a strong focus on problems
arising together with the possibility to store flow at specific nodes. Our
original motivation is a quite practical one. At times of growing shares of
renewable energy, the amount of electricity supplied to the power grid be-
comes more and more unpredictable. We modeled this aspect as an online
problem for a certain kind of network that we defined in this context.

In order to make quite general statements about these networks and on-
line problems, I soon immersed in the world of mimicking networks. A central
insight from this realm carried over to our online problems is that in many
cases it suffices to analyze quite small networks. Moreover, the complexity of
the technique we developed for the analysis of our networks depends only
on the number of nodes that cannot only forward flow, but also produce,
store, or consume it.

These mimicking networks, in turn, are heavily intertwined with the set
of all minimum s-t cuts of an s-t flow network. As this can be considered
the basis of all results in this thesis and since many questions in this area
are still open, I dedicated an entire chapter just to this topic.

This text is intended to be read front to back, but each chapter is as self-
contained as possible. Concepts and notions that are frequently used are pre-
sented in an own chapter, while other concepts are introduced right where
they are needed.

I thank Rüdiger for giving me the freedom to explore whatever I liked.
He always had an open ear for my problems and inspired me with new
ways to approach them. I would also like to thank in alphabetical ordering
Christoph Stockhusen, Till Tantau, Claudia Witt, Jakob Witt, Maja Witt as
well as my brother Ingo Witt and my parents Regina Witt and Wolfgang
Witt.

Oliver Witt
Lübeck, fall of 2016

1

A B S T R A C T

Storage sites are a key component of future power grids that have a high
share of renewable energy [4, 18, 73]. Using dynamic flow networks and
techniques from online problems [3, 9, 28], we model and analyze the ques-
tion of how to utilize these storage sites most efficiently. Our model consists
of a multi-terminal flow network where each terminal is a supply, storage,
or demand node. For sequences of supplies and demands that are revealed
step by step, we answer the two questions at which storage nodes to store
flow if any is oversupplied, and from which storage nodes to take flow if
too little is supplied. The limited capacities of a network coupled with the
unknown future supplies and demands may produce scenarios in which
flow cannot be stored in a way that an optimal use of it can be guaranteed.

Using external flow patterns known from the context of mimicking net-
works [40], we develop a technique to obtain optimal online algorithms for
such problems. We apply it to show that in every network with a single
producer and a single consumer node, there is always an online algorithm
that can guarantee that approximately 83% of the supplied energy can be
consumed in comparison to the offline setting where all future supplies and
demands are known ahead. We also show that there are networks with a
single producer and a single consumer node where no better performance
than this is possible.

Two multi-terminal networks are mimicking networks if they share identi-
cal external flow patterns, i. e., for every flow that evokes certain net flows at
the terminals of the one network, there is a flow evoking the same net flows
at the terminals of the other network. For these mimicking networks, we
show that the common assumption that for every terminal bipartition there
is a unique min-cut separating the terminals according to this bipartition
[52, 55] is a quite strong restriction and yields wrong expectations concern-
ing the complexity of related problems. We show that the techniques com-
monly used to enforce this assumption may yield networks whose smallest
contraction-based mimicking network is exponentially larger than of the
original one. We examine problems in this setting without this unique min-
cuts assumption and give close upper and lower bounds on the complexity
of mcbmn, i. e., of deciding whether the number of nodes of the smallest
contraction-based mimicking network of a given network is at most a given
number. We show that mcbmn is in ΣP

2 and that mcbmn is coNP-hard. The
analysis of this problem parameterized over the number of terminals is dif-
ficult without the unique min-cuts assumption. We pinpoint few cases that
suggest that this problem is not fixed-parameter tractable anymore when
the assumption is dropped. So far, it was only known that the problem is in
FPT under the unique min-cuts assumption [52].

The lifted unique min-cuts assumption gives rise to up to exponentially
many min-cuts for each terminal bipartition. By representing min-cuts either
by all nodes on the source side or by all edges that are cut, different types
of set systems are obtained. These set systems are poorly understood and,
especially in the multi-terminal case, the root for many unsolved problems
in this and related areas. For the classical 2-terminal case, we find a short
characterization for the set systems that represent min-cuts as node sets.
For the edge set representation, we develop a new framework that replaces

3

the set systems of well-known NP-complete problems by the edge set sys-
tem implicitly encoded in an s-t flow network. The two opposing effects of
succinct representation and restrictions on the sets that can be encoded are
shown to outweigh each other depending on whether the emerging prob-
lem involves counting all min-cuts. If no counting is involved, the problems
are P-complete. Otherwise, the problems are conjectured to be PP-complete
since the counting versions are #P-complete [71].

For the analysis of these problems, the notion of the max-flow DAG is de-
veloped that succinctly represents the min-cut set systems. It allows simple
algorithmic solutions and helps us to discover several dualities among the
new problems.

4

Z U S A M M E N FA S S U N G

Energiespeicher sind eine Schlüsselkomponente für zukünftige Stromnet-
ze, insbesondere für solche mit hohem Anteil erneuerbarer Energien [4, 18,
73]. Wir modellieren und analysieren die Frage wie man diese Energiespei-
cher möglichst effizient nutzt mit dynamischen Flussnetzwerken und Tech-
niken aus der Welt der Online-Probleme [3, 9, 28]. Unser Modell besteht
aus einem Multi-Terminal-Netzwerk, dem jedem Terminal eine Rolle als
Angebots-, Speicher- oder Nachfrageknoten zugeordnet ist. Wird eine zu-
nächst unbekannte Folge von Angebots- und Nachfragemengen Schritt für
Schritt bekannt, so stellen sich zu jedem Zeitpunkt die Fragen bei welchen
Speicherknoten man Fluss speichern sollte, falls mehr Fluss angeboten als
nachgefragt wird, und von welchen Speicherknoten man Speicher entneh-
men sollte, falls es umgekehrt ist. Die beschränkten Kapazitäten des Netz-
werks zusammen mit den dezentralen Energiespeichern können nämlich
wegen der unbekannten Zukunft zu Szenarien führen, wo eine optimale
Nutzung des zur Verfügung gestellten Flusses nicht garantiert werden kann.

Zur Beantwortung dieser Fragen benutzen wir external flow patterns, die
aus der Welt der mimicking networks bekannt sind [40]. Wir entwickeln eine
Technik für die Analyse unseres Modells, welche zu optimalen Online-Al-
gorithmen führt. Ferner zeigen wir, dass es für die Klasse von Netzwerken,
die genau einen Angebots- und einen Nachfrageknoten besitzen, immer ei-
nen Algorithmus gibt, der sicherstellt, dass annähernd 83% der angebote-
nen Flussmenge zum Nachfrageknoten geschickt werden kann im Vergleich
zu einem Algorithmus, der die gesamten Angebots- und Nachfragemengen
vorab kennt. Des Weiteren zeigen wir, dass es solche Netzwerke gibt, bei
denen es keinen besseren Online-Algorithmus gibt.

Zwei Multi-Terminal-Netzwerke sind mimicking networks, wenn sie die
gleichen external flow patterns besitzen, d. h., wenn es für jeden Fluss, der in
einem Netzwerk bestimmte Nettoflüsse an den Terminalen hervorruft, einen
Fluss für das andere Netzwerk gibt, der dort an den Terminalen die gleichen
Nettoflüsse hervorruft [40]. In der Literatur zu diesen mimicking networks
gibt es die gängige Annahme, dass es zu jeder Terminal-Zweiteilung ge-
nau einen minimalen Schnitt gibt, der die Terminale entsprechend dieser
Zweiteilung trennt [52, 55]. Wir nennen diese Annahme die unique min-cuts
assumption und zeigen, dass diese Annahme eine starke Einschränkung an
die Netzwerke ist und dass sie falsche Erwartungen an die Komplexität
verwandter Probleme weckt. Darüber hinaus zeigen wir, dass die Metho-
den, die sicherstellen sollen, dass die unique min-cuts assumption zutrifft,
dazu führen können, dass das kleinste contraction-based mimicking network
exponentiell in der Anzahl der Terminale größer wird. Des Weiteren zei-
gen wir für die Komplexität des Problems zu entscheiden, ob ein gegebenes
Netzwerk ein contraction-based mimicking network einer gegebenen Maxi-
malgröße zulässt, eine untere Schranke von coNP und eine obere Schranke
von ΣP2 . Die Analyse dieses Problems parametrisiert über die Anzahl der
Terminale ist ohne die unique min-cuts assumption komplex, wir können al-
lerdings einige wenige Fälle identifizieren, die die Vermutung stützen, dass
das Problem nicht in FPT ist. Bisher ist nur bekannt, dass das Problem mit
der unique min-cuts assumption in FPT ist [52].

5

Ohne die unique min-cuts assumption kann es für jede Terminal-Zweitei-
lung bis zu exponentiell in der Anzahl der Terminale viele zugehörige mini-
miale Schnitte geben. Welchen Einschränkungen diese Mengen von minima-
len Schnitten unterliegen und wie sich diese Mengen gegenseitig bedingen
ist noch nicht vollständig verstanden. Wir zeigen für den Fall mit 2 Termi-
nalen eine kurze Charakterisierung für die Menge, die sich ergibt, wenn
man minimale Schnitte durch die Knoten auf der Quellenseite repräsentiert.
Die Einschränkungen für die Mengen definiert über die geschnittenen Kan-
ten der minimalen Schnitte lassen sich schwieriger charakterisieren, sodass
wir eine neue Methode entwickeln. Dafür ersetzen wir die Mengensysteme
bekannter NP-vollständiger Probleme durch das Kanten-Mengensystem im-
plizit codiert in einem Flussnetzwerk, das nun Teil der Eingabe ist. Für die
Komplexität des neuen Problems sind zwei gegensätzliche Effekte zu beob-
achten: Während die kompakte Codierung das Problem potenziell schwie-
riger macht, führen die Einschränkungen dieser Mengensysteme eher zu
einer Vereinfachung. Wir zeigen, dass das neue Problem P-vollständig ist,
falls es nicht das Zählen aller minimalen Schnitte beinhaltet. Im anderen
Fall vermuten wir, dass das Problem PP-vollständig ist, da das entsprechen-
de Zählproblem #P-vollständig ist [71].

Für die Analyse dieser Probleme entwickeln wir das Konzept des max-
flow DAGs, der nicht nur die Menge aller minimalen Schnitte kompakt re-
präsentiert, sondern auch einfache algortihmische Lösungen für die neuen
Probleme zulässt.

6

C O N T E N T S

Preface 1

Abstract 3

Zusammenfassung 5

List of Notations 9

1 introduction 11

1.1 Organization 15

2 concepts and notation 17

3 min-cut set systems 29

3.1 The Sets of All Min-Cuts 30

3.2 The Max-Flow DAG of a Network 31

3.3 Node Set Systems 39

3.3.1 The 2-Terminal Case 39

3.3.2 The Multi-Terminal Case 41

3.4 Edge Set Systems 46

3.4.1 The 2-Terminal Case 47

3.4.2 Problems Encoded in Edge Set Systems 49

4 mimicking networks 71

4.1 Review of Mimicking Networks 72

4.2 The Unique Min-Cuts Assumption 74

4.3 The Complexity of Finding Small Mimicking Networks 87

4.4 An Algorithm for the 4-Terminal Case 93

5 online analysis of dynamic storage networks 101

5.1 Dynamic Networks and Online Problems 101

5.2 Dynamic Storage Networks – The Model 103

5.3 A Technique for the Online Analysis 107

5.4 Competitive Ratios of Some Network Classes 116

6 conclusion 127

6.1 Outlook 127

7

L I S T O F N O TAT I O N S

This list contains abbreviations and notations that are often used in this
thesis. The entries are sorted alphabetically with Greek symbols inserted
according to their English transliteration. Special symbols are put at the
front.

A terminal.

A non-terminal.

A An online algorithm (Def. 14, p. 106).

α Storage vector (Def. 22, p. 113).

BN Set of all terminal bipartitions for N (Def. 1, p. 20).

banf binary acyclic network flow (Problem 7, p. 51).

c Capacity function or competitiveness (pp. 17ff. and

Def. 15, p. 106).

cN,S Minimum capacity over all S-cuts in N.

CBMN Contraction-based mimicking network (Def. 7, p. 71).

comp(·) Function assigning competitiveness to argument (p. 106).

E(N) Edge set system of N (Def. 2, p. 30).

f A flow (p. 18 and p. 105).

|f| Value of f (Eq. 5, p. 18).
~f External flow of f (p. 18).

FM External flow pattern of M (p. 105).

FN External flow pattern of N (p. 18).

M A dynamic storage network (Def. 9, p. 103).

M = (M, ρ) A dynamic storage system (Def. 13, p. 106).

mcbmn minimum contraction-based mimicking network

(Problem 28, p. 88).

MCHS Minimal min-cut hitting set (p. 61).

µ Pp. 33ff.

N A multi-terminal network (p. 17).

Nd Max-flow DAG of N (Def. 4, p. 36).

Ne Edge cut network of N (Def. 3, p. 34).

Nf = (Vf,Ef) Residual network of N with respect to f (p. 20).

nca network capacity augmentation (Problem 15, p. 60).

opt(·) Profit of an optimal offline algorithm (Eq. (127), p. 106).

p-mcbmn mcbmn parameterized over the number of terminals (p. 91).

ρ Set of request sequences.

σ A request.

σ̄ A request sequence (Def. 10, p. 104).

σM,fill Filling request of M (Def. 20, p. 112).

σ(M) Request space of M.

9

10 Contents

τ(σ) Duration of σ (Def. 10, p. 104).

T Set of all terminals in a network.

V(N) Node set system of N (Def. 2, p. 30).

1I N T R O D U C T I O N

Electric power grids are the most fundamental infrastructure of modern so-
cieties. Their structures evolved without clear awareness of the implications
for future demands. These networks are among the most complex networks
man-made and not surprisingly, they are poorly understood in many ways.
There have been power outages whose cause remains unknown, for exam-
ple the 2003 outage in Northeastern U. S. [4]. It turns out that this structure
is obsolete in many aspects and is due to a change, in particular because of
the much discussed and needed transition from fossil to renewable energy
sources.

For this, many aspects of the current grids, their changes, and the envi-
sioned power grid of the future are actively being researched. These aspects
include security, reliability, efficiency, cost-effectiveness, and many more.
They range from technical topics over economical contemplations to artifi-
cial intelligence.

The objective of very high reliability and quality of service is difficult to
achieve in such a system. The quite young realms of non-linear dynamical
networks and in particular complex adaptive systems try to capture and
analyze the arising complexity and its problems. Understanding when such
a system leaves a stable state may be key to avoiding future blackouts [61].
But not only blackouts, but also brownouts, often unintentional drops in
voltage, need to be understood and prevented.

The grid of the future is supposed to be smart, making all components
aware of each other’s state. This forms the basis for the implementation of
many algorithmic strategies that are devised.

A key part of the future grids is the capability to store electricity. Its neces-
sity is unquestioned and verified by many simulations and projections [4,
18, 73]. While the amount of consumed energy always underlies unantici-
pated fluctuations, the amount of produced energy used to be projectable
and thus known. This changes in the presence of wind, hydro, and solar
power. The possibility to store electric energy at appropriate sites if put to
use wisely, attenuates the associated effects of this uncertainty. Therefore, it
gains significance together with the share of renewable energy and evolves
to an essential ingredient for future power grids.

The load-balancing and flexibility offered by storage sites can partly be
achieved at home by smart appliances that are aware of the current demand
and supply, and by batteries of electric cars. The latter are expected to gen-
erate a huge storage capacity and quick response times, but are costly and
only applicable for short-term storage. In the presence of seasonal effects
and economical considerations, large storage facilities, like pumped storage
hydro power stations, are indispensable [43].

While some parts of the envisioned power grid are only beginning to
evolve, storage facilities are already in use and technologically mature. They
have proven to be economical and their importance will grow with the share
of renewable energy [18].

Of the broad range of topics, we study a very specific part: the problem
of how to use the storage capacity of a network. That is, where should flow

11

12 introduction

be stored if it can be stored at several storage sites? Our contribution is a
better understanding of just this question.

In this thesis, we introduce dynamic storage networks modeling the prob-
lem of deciding how to store flow in a flow network at times where the
supply exceeds the demand, and which storage facility to tap at times of
flow shortage, while future supplies and demands are unknown. We put
to use the techniques of online problems – a field dealing with problems
whose input is presented to a solver only step by step such that it has to
cope with incomplete information – in the realm of dynamic flow networks.
Our model fades out many technical issues, as for example lossy transmis-
sion, and concentrates on the core difficulty of storage strategies. Then, we
derive a general technique for the online analysis of this problem. Moreover,
worst case networks for certain classes are presented.

Despite this quite specific motivation, our dynamic storage networks can
be used to model any kind of supply-demand scenario with storage capa-
bilities and unknown future requests on a network topology. As our model
uses zero-transit times along the edges, this particularly applies where the
transit times can be neglected. Our model, for example, might apply to
caching problems occurring in networks.

We would like to illustrate the problems arising together with the pos-
sibility to store flow with an example. These problems seem to be quite
luxurious ones at first sight: At times of overproduction, which storage site
should be used to store the excess, and at times of underproduction, from
which storage site should energy be taken? The decentralized storage sites
together with the limited capacities of the power lines can cause situations
in which the stored flow might be condemned to stay unused at its storage
site. So why has the power been stored at that storage site at all? In particu-
lar in the presence of unknown future supplies and demands, the electricity
needs to be stored in a way that best anticipates all possible future scenarios.
This may lead to a situation as the described one.

1 1

1

To demonstrate the model and the prob-
lems that we analyze, consider the network
depicted on the right. It contains a sin-
gle energy producer, represented by a wind
turbine, and a single energy consumer, rep-
resented by a light bulb. Moreover, there
are two batteries, that symbolize storage
sites. The lines with the numbers stand for
power lines with associated capacities. We consider discrete time steps, and
in each time step, a line can be passed by as many energy units as its num-
ber indicates. The term (x |y)z abbreviates the situation in which for a total
of z time units, x energy units are produced, while y energy units are de-
manded.

Now suppose that the wind turbine is generating 1 energy unit, and the
light bulb does not consume any energy. Hence, this energy unit can be
stored at the storage sites. We assume that there is no loss of energy when
it is transferred or stored. The just described situation now continues for a
total of two time steps, i. e., (1 | 0)2.

The main question associated with this model now is: How would you
store these two energy units at the batteries not knowing the supplies and
demands of the future time steps?

introduction 13

2

1/
1 1/1

0/
1

(1 |2)2

Let us assume you choose to store both
units at the upper battery. In the picture
on the right, this is indicated by a circled
number attached to the according battery.
Zigzag lines indicate active power lines. If
the wind now continues to blow such that
the turbine produces one unit, and the con-
sumer now demands two units, then a total
of one unit needs to be released from batteries in order to satisfy the demand.
However, all power stored at the upper battery is blocked by the energy that
is transferred from the turbine to the light bulb. This scenario repeats for
two time steps and is depicted on the right. While a total of four units is
produced by the turbine, only two are able to reach the light bulb. It would
have been much better if all power had been stored at the lower battery in-
stead. In that case, all four units could have been sent to the consumer. So
what if we do store all energy at the lower battery?

2

0/
1 0/1

1/
1

(0 |2)1

This might not be the best idea either.
If the turbine now stops producing energy,
and the consumer still demands two units,
then we again run into a problem. In case
of (0 | 2), we can only send one unit to the
consumer. Of a total of two produced en-
ergy units, only one can be sent to the con-
sumer. Again, the consumer was only able
to consume a mere 50% of the energy that has been produced. Quite unac-
ceptable from an economical and ecological point of view. Even though it
is better to split the energy and store some at the upper battery and some
at the lower battery, it is still not possible to guarantee that 100% of the pro-
duced energy will end up being consumed. The best we can do is to find
the storing strategy that guarantees the highest percentage.

The fraction corresponding to this percentage is a quite characteristic
number for a network and its reciprocal is called competitive ratio. Among
all networks with one producer and one consumer, we identify those net-
works with highest competitive ratio, which is shown to be (1+

√
2)/2. Such

a network is a hard network of that class. Moreover, we develop a technique
to derive an optimal storing strategy for arbitrary networks. It is based on a
vector space in which each point represents the net flows of storage nodes
in response to a given request. The best ratio of storing flow at the storage
nodes is then found by identifying a center point with respect to a scaled L1
distance measure. In its algorithmic form, this technique leads to a runtime
that is dependent solely on the number of terminals of the network.

This is one of the central insights carried over from the realm of mim-
icking networks. These are multi-terminal networks that allow exactly the
same set of external flows as another multi-terminal network, where an ex-
ternal flow is characterized by the net flows that a flow evokes at the termi-
nals. These networks are of interest wherever not the flows itself, but rather
the net flows evoked at certain nodes are of importance. Such mimicking
networks may be much smaller than the original network by using fewer
non-terminals. Below you can see two networks similar to the ones before.
The upper one has a new kind of node, a non-terminal, denoted by a , in
contrast to the other nodes which are all terminals.

14 introduction

2

2

2

1

1 1

1

1

In fact, these two networks are mimick-
ing networks of each other. This is due to
the fact that every flow that is feasible in
one network evokes net flows at the termi-
nals such that there is another flow in the
other network evoking the same net flows
at the corresponding terminals. Try it out.

The literature concerning mimicking net-
works deals with various topics, but has fo-
cused on bounding the size of the smallest
mimicking network for a given network [10,
12, 40, 52, 55].

A prominent problem from this research
area is to find a smallest mimicking net-
work for a given one by contracting nodes. An assumption commonly
made in the literature for this and other problems is that for every bipar-
tition of the terminal set, there is exactly one minimum cut separating the
terminals according to this bipartition [52, 55]. This will be referred to as
unique min-cuts assumption in this thesis. We show that the results obtained
with respect to this assumption cannot be carried over to the general case.
Our proof demonstrates that the techniques used to enforce the unique min-
cuts assumption by slightly altering the original network possibly cause the
smallest contraction-based mimicking network to be exponentially larger
in the number of terminals than the smallest contraction-based mimicking
network of the original network.

Furthermore, we model many questions in this context as decision prob-
lems and analyze their complexity. This yields lower bounds for the com-
plexity of related problems where so far only upper bounds have been
known [52].

Dropping the unique min-cuts assumption unleashes the true complexity
of finding a smallest contraction-based mimicking network that is directly
linked to the set of all minimum cuts in a flow network. To close in on still
unsettled problems, these set systems are carefully studied. A minimum
cut can be represented by the nodes on the source side or by all edges
that are cut. Each representation leads to a set system when considering all
minimum cuts of a network. We study these for both classical flow networks
and multi-terminal networks.

For the set systems representing minimum cuts with nodes, we present
a short characterization. Moreover, we show how to efficiently construct a
network whose set of all min-cuts corresponds exactly to the given one if
one exists. While the node set systems can be quite well understood, the
set systems emerging from the edge representation cause problems. As an
indirect approach to study the characteristics of such set systems, a new
framework is developed. For this, the input of well-known NP-complete
decision problems that contain set systems is altered such that the set system
is replaced by a flow network. The problems’ questions remain the same but
now assume the set system to be the set of all minimum cuts of the given
network represented as edge sets. The new problems are called min-cut
variants. hitting set is an example of such a problem. Its min-cut variant
asks whether k edges can be found in a network such that every minimum
cut cuts at least one of these k edges. This problem is closely related to the
very natural problem of augmenting the capacity of a network by increasing
the capacity of existing edges by a given amount.

1.1 organization 15

The complexity of these min-cut variants is influenced by two opposing
effects in comparison to the original problem. Since networks may have
up to exponentially many minimum cuts, set systems can be encoded quite
succinctly in networks this way. This may increase the complexity. At the
same time, not every set system can be encoded in a network. This may
decrease the complexity. We show that the true complexity depends on a
single aspect: Does the problem involve counting all min-cuts? If this is not
the case, then the problem is P-complete and thus has gotten easier than the
original one. If it does involve counting, then its complexity is equivalent
to deciding whether a flow network has at least k minimum s-t cuts, where
k is part of the input. This is expected to be PP-completeness, since the
counting version of the problem is #P-complete [71]. For example, the min-
cut variant of hitting set does not involve counting all min-cuts and thus is
P-complete while the min-cut variant of set basis does involve the counting
of all min-cuts and thus is conjectured to be PP-complete.

1.1 organization

Chapter 2 introduces concepts and notions that are repeatedly used through-
out this thesis and familiarize the reader with our notation. Many very basic
results concerning flow networks are presented. Many other concepts that
are used just once are introduced right before they first appear.

The main part of this thesis is composed of three chapters, Chapter 3,
Chapter 4, and Chapter 5. Even though these chapters are quite self-con-
tained, each one of them relies on some results of the earlier chapters. Each
chapter introduces the considered problems, presents the results, and dis-
cusses them.

Chapter 3 studies the set of all minimum s-t cuts of a flow network. As
cuts can be represented by nodes or by edges, we study both of these aspects
trying to characterize these sets.

Chapter 4 deals with mimicking networks and shows that an assumption
commonly made in the literature in this problem setting imposes a strong
restriction and yields results that do not apply to the general case. Some
questions that have been believed to be settled hit new problems without
this erring assumption. We link problems that we are unable to resolve to
problems of Chapter 3 that also have been left unresolved.

Chapter 5 moves the focus away from the set of all min-cuts to an online
problem in the realm of dynamic flow networks dealing with storage strate-
gies. In particular, we develop techniques to find an optimal strategy for
any given such network.

The thesis concludes with reviewing the presented results in Chapter 6.
Additionally, future research directions related to the presented results are
discussed.

2C O N C E P T S A N D N O TAT I O N

This chapter introduces the reader to the concepts and techniques com-
monly used in the realm of network flows. We also make the reader familiar
with our notation used throughout this thesis. We expect the reader to be
familiar with graph theory. Renowned textbooks dedicated to this topic are
Graph Theory by Diestel [19], or Modern Graph Theory by Bollobás [8].

A good part of this work consists of analyzing the complexity of problems.
We assume the reader to be acquainted with the concepts of complexity
theory. Classic textbooks covering many of the notions used in this the-
sis include Computational Complexity by Papadimitriou [67], Computational
Complexity: A Modern Approach by Arora and Barak [7], and Introduction to
Automata Theory, Languages, and Computation by Hopcroft, Motwani, and Ull-
man [44]. Typical results of this thesis include the P- or NP-completeness of
problems. Other parts of this thesis will deal with parameterized complexity
which is a discipline trying to understand from which aspects of the input
(the parameter) the hardness of problems originates. For an introduction to
this field of computational complexity, we refer the reader to the textbooks
Fundamentals of Parameterized Complexity by Downey and Fellows [24] and
Parameterized Complexity Theory by Flum and Grohe [31]. We will mention
the complexity class FPT , which contains all parameterized problems solv-
able within a time that may depend arbitrarily on the parameter, but only
polynomially on the input size. For fixed parameters, the problem becomes
tractable – hence the name FPT (fixed parameter tractable).

We encode all problems in binary and assume some reasonable way of
representing the considered objects. A network’s underlying graph, for ex-
ample, can be represented by an adjacency matrix or adjacency list. The
capacities of our networks will be defined over real numbers. Whenever we
encode networks, we assume that all real numbers are encoded with fixed
precision, as computers would do.

The theory of flow networks roots in the 1950s [75] and has ever since been
a field of active research. Flow networks are used to model a great variety
of real world applications. Flows can pertain to people, goods, electricity,
among many other things. Classical flow networks with a single source and
a single sink are a well-known and well-understood concept. Multi-terminal
networks generalize these flow networks by allowing more terminal nodes
than two (a source and a sink) and not assigning a fixed role to a terminal as
source or sink. Formally, a multi-terminal network N = (V ,E,T, c) (often only
referred to as network) consists of a directed graph (V ,E), a set of terminals
T ⊆ V , and a capacity function c : V ×V → R+

0 ∪ {∞ }. For all (u, v) ∈ V ×V

with (u, v) /∈ E, we have c(u, v) = 0. The nodes V − T are the non-terminals.
In case of |T| = 2, we say T = { s, t } (or sometimes T = { t1, t2 }) and obtain
classical s-t flow networks. We assume that an arbitrary but fixed total order
is imposed over the terminals such that T = { t1, t2, . . . , tk } for |T| > 2. The
size of a network |N| is the number of its nodes |V |. In the illustrations
throughout this thesis, denotes a terminal and a non-terminal, see for
example Figure 1 on page 20.

17

18 concepts and notation

A flow in N is a function f : V × V → R that satisfies

the capacity constraint f(u, v) 6 c(u, v) for all u, v ∈ V , (1)

the skew symmetry f(u, v) = −f(v,u) for all u, v ∈ V , and (2)

the flow conservation
∑
u∈V

f(u, v) = 0 for all v ∈ V − T. (3)

An edge e ∈ E is saturated by a flow f if f(e) = c(e), i. e., if the capacity
constraint (1) is met with equality. The skew symmetry (2) is not an original
constraint by Ford and Fulkerson, but has been used by Cormen et al. [16]. It
simplifies the definitions of a node’s net flow and the residual network, which
will come up soon. The net flow

f(v) =
∑
u∈V

f(u, v) (4)

of a node v with respect to a flow f is the sum of all flow units reach-
ing v minus the sum of all flow units leaving v. It is 0 for all nodes
v ∈ V − T. The terminals are exempt from the flow conservation (3). The
net flow of terminals is positive (negative) if, and only if, more flow reaches
(leaves) than leaves (reaches) it. The flow that appears or disappears at
these nodes can be seen as connection to the outside. This is why the vector
~f =

(
f(t1), f(t2), . . . , f(t|T|)

)
of net flows is called the external flow of f as in-

troduced by Hagerup et al. [41]. Further, we call FN = { ~f | f is a flow in N }

the external flow pattern of N.
For classical flow networks, Ford and Fulkerson make the assumption that

every edge incident to s is directed away from s and every edge incident to
t is directed towards t. We do not make this assumption which allows a
flow from the sink to the source. To make clear in what direction flow is
supposed to flow, we define a flow to be a T ′-flow for a non-trivial T ′ ⊂ T

if it satisfies f(v) 6 0 for all v ∈ T ′ and f(v) > 0 for all v ∈ T − T ′. This
definition gives rise to another ambiguity: A T ′ ∪ { v }-flow with f(v) = 0

for some v ∈ T is also a T ′-flow. In particular, every cycle flow (where all
nodes have a net flow of 0) and the 0-flow f0 with f0(e) = 0 for all e ∈ E are
T ′-flows for any non-trivial T ′ ⊂ T.

The flow value
|f| =

∑
t∈T ′

f(t) (5)

of a T ′-flow is the sum of the net flows of all nodes in T ′. Notice that due
to the definition of a T ′-flow, we are summing non-negative values only. A
T ′-max-flow is a T ′-flow of maximum value. There may be several distinct
T ′-max-flows in a network. Often, we will only talk about a flow or a max-
flow if the direction of flow is clear from the context.

A path p in N is a set { (x1, x2), (x2, x3), . . . , (xn−1, xn) } ⊆ E of directed
edges where all nodes xi ∈ V are distinct. A u-v path is a path with x1 = u

and xn = v for u, v ∈ V . The length of a path denoted by |p| is the number
of its edges. The width of a path is the minimum capacity among all its edges.
A path flow fp is a flow in N with fp(e) = 0 if e /∈ p and p is a path. A path
flow always connects terminals. A cycle o in N is a set of directed edges
{ (x1, x2), (x2, x3), . . . , (xn−1, xn), (xn, x1) } ⊆ E where all nodes xi ∈ V are
distinct. The width of a cycle is defined analogously to the width of a path as
the minimum capacity among all its edges. For a cycle o, fo is a cycle flow if
fo is a flow in N with fo(e) = 0 if e /∈ o. The value of every cycle flow fo is
0 since fo(v) = 0 for all v ∈ V .

concepts and notation 19

We use the capacity function in different contexts. Even though these are
formally different functions, all of them are denoted by c. It becomes clear
from the context which function applies. We already introduced the edge
capacity function. We can also assign a capacity to two arbitrary but disjoint
node sets A,B ⊆ V as

c(A,B) =
∑

(u,v)∈(A×B)∩E

c(u, v) . (6)

Extending this notion, the capacity of a non-empty node set A ⊂ V is defined
as

c(A) = c(A,V −A) . (7)

For a non-trivial V ′ ⊂ V , a partition (S, T) of V into two non-empty sets is
a V ′-cut if S ∩ T = V ′ ∩ T. For a singleton set like { v }, we say v-cut instead
of { v }-cut. If V ′ is clear from the context we will sometimes simply say cut.
In particular, a cut in an s-t flow network usually refers to an s-cut. Note
that we define cuts in a way that might contain all terminals on one side and
hence do not separate any terminals. This will be useful in a few situations,
but in most cases cuts do separate terminals. S will be referred to as source
side and T as sink side (even in case S or T do not contain any terminals).
Sometimes, a cut will be denoted just by its source side. The capacity of a
cut (S, T) is c(S, T) or just c(S). A cut (S, T) is a V ′-min-cut if (S, T) is a V ′-cut
of minimum capacity. The V ′-min-cuts with smallest and largest number of
nodes on the source side are extremal V ′-min-cuts. These differ if, and only
if, there are multiple min-cuts. The edge cut set of a cut (S, T) is

E(S, T) = (S× T)∩ E , (8)

the set of all edges directed from S to T . If for an edge (u, v) we have
|S ∩ {u, v }| = 1, then (S, T) separates u and v. If, and only if, additionally
(u, v) ∈ E(S, T), then (S, T) cuts (u, v). Any edge directed from T to S is not
cut by (S, T). An edge cut by some min-cut will also be referred to as min-cut
edge. Since T = V − S, we may abbreviate the function with E(S). The flow
across (S, T) with respect to a flow f is

f(S, T) =
∑

e∈S×T

f(e) . (9)

Recall the skew symmetry (2) and note that f(S, T) is the sum of all flow
units going from S to T minus the sum of all flow units going in the opposite
direction.

Two min-cuts are crossing min-cuts if their source sides S1,S2 have the
property that S1 − S2 6= ∅ and S2 − S1 6= ∅.

We will often make the assumption that a network is undirected. In this
case, the edge set shall not contain unordered pairs of nodes, but rather is
a symmetric relation containing ordered pairs of nodes. Additionally, the
capacity function is also symmetric, i. e., c(u, v) = c(v,u) for all (u, v) ∈
V × V .

Moreover, we will often consider the various bipartitions of the terminals
into two non-empty sets. Such a bipartition can be understood as an as-
signment of roles to the terminals – the ones belonging to the one set are
sources and the ones belonging to the other set are sinks. If the network
is undirected, it does not matter which set of nodes is assigned which role.
From this perspective, (S, T) and (T ,S) describe the same terminal biparti-
tion. It hence suffices to consider only those terminal bipartitions (S, T) with

20 concepts and notation

t1 ∈ S. Moreover, a terminal bipartition (S, T) is fully identified by S. These
considerations motivate the following definition.

B definition 1 (set of terminal bipartitions): For an undirected net-
work N, let

BN = { T ′ ⊂ T | t1 ∈ T ′ } (10)

be the set of terminal bipartitions of N.

If there are no ambiguities, we neglect the subscript. For every B ∈ B,
we use B to denote T − B. Moreover, for each B ∈ B, we consider B to be
the sources and B the sinks. B contains 2|T|−1 − 1 terminal subsets for any
network N. For any B ∈ BN, let cN,B be the capacity of a B-min-cut in N.
Note, that cN,B = cN,B for all B ∈ B and all undirected N.

residual network . The residual network Nf = (V ,Ef,T, cf) of N with
respect to a flow f in N is a new network with

Ef = { e ∈ V × V | c(e) − f(e) > 0 } and (11)

cf(e) = c(e) − f(e) for all e ∈ Ef . (12)

Recall that c(e) = 0 if e /∈ E. It is an important technique used in many
contexts. We, too, will use them for a variety of problems, including the
computation of max-flows, the construction of max-flow DAGs, a concept
introduced in Chapter 3, and the minimization of mimicking networks. Fig-
ure 1 shows an example.

N with
flow f:

s

u

v

t

1/2

0/1

1/1

0/1

1/1

Nf:

s

u

v

t

1
1

1

1

1

1

Figure 1: Network N with flow f defines the residual network Nf = (V ,Ef,T, cf).
The edges e of N are labeled with f(e)/c(e), while the edges of Nf are only
labeled with the capacity cf. According to (11), Ef contains e = (v,u) since
c(e) = 0 and f(e) = −1, where the latter is due to the skew symmetry (2).

maximum flows . The following renowned Max-Flow Min-Cut Theo-
rem has been found independently by Ford and Fulkerson [33] and by Elias,
Feinstein, and Shannon [26] in 1956.

B theorem 1 (max-flow min-cut theorem): In any s-t network the
max-flow value equals the min-cut capacity.

It is a well-known fact that for every max-flow f and for every min-cut of
a 2-terminal network, we have f(S, T) = |f|. Due to the definitions of the cut
capacity (7) and the flow across a cut (9), a max-flow saturates all edges in
S-T direction and does not allow any flow in T -S direction.

The problems of finding a max-flow and a min-cut in a network can
be stated as linear programs. It can be shown that these linear programs
are dual implying the Max-Flow Min-Cut Theorem as a special case of the
strong duality theorem of linear programming. Thus, the value of any flow
is a lower bound for the min-cut value, and the cut capacity of any cut

concepts and notation 21

is an upper bound for the max-flow value. There is a great variety of al-
gorithms to directly find a max-flow. One of the simplest of them is the
Ford-Fulkerson algorithm. It is based on the insight that we can augment
the value of a flow f if, and only if, the residual network with respect to f

contains an s-t path (an augmenting path). In Figure 1, for example, there is
an augmenting path s-v-u-t of width 1 in Nf. In its original version, an aug-
menting path is chosen repeatedly to augment the flow until no more such
path is found. This algorithm has the major drawback that its runtime may
depend on the value of a max-flow – turning it into a pseudo-polynomial
algorithm. Moreover, if the capacities are irrational, the algorithm might not
even terminate. By simply choosing the shortest augmenting path in each
iteration, we obtain the Edmonds-Karp algorithm presented by Edmonds
and Karp [25] that overcomes these shortcomings. The Ford-Fulkerson algo-
rithm can be used to proof the fact that a network has an integer max-flow if
all edge capacities are integer, a result known as Integrality Theorem, already
stated by Ford and Fulkerson [33].

A further enhancement is to augment a flow along many shortest paths as
proposed by Dinic [20]. A whole different class of algorithms make use of
so-called preflows that flood the network such that nodes may have excesses
of flow. Such nodes are iteratively relieved from the excess by sending it
towards the sink or backwards to the source, see for example [60].

Karger’s algorithm [47] is an example of a randomized algorithm to com-
pute a min-cut of a connected graph. The idea is to randomly contract edges
until only two nodes are left. Repeating this process sufficiently, a min-cut is
found with high probability. More precisely, after O

((
n
2

)
logn

)
repetitions,

the probability not to have found the min-cut is less than 1/n. An exten-
sion of this idea by Karger and Stein [48] achieves an order of magnitude
improvement.

For a more detailed list of approaches and the history of max-flow algo-
rithms, see for example the textbook Network Flows by Ahuja, Magnanti, and
Orlin [2], the book Networks and Algorithms by Dolan and Aldous [22], or the
survey of Ahuja, Magnanti, and Orlin [1]. A more recent textbook is Graphs,
Networks and Algorithms by Jungnickel [46]. The problem of computing a
max-flow is still subject of active research with a notable and quite recent
example being that of Kelner et al. [51]. For our purposes though, it suffices
to know that a max-flow can be computed in strongly polynomial time.

flow decomposition. Flows can be decomposed into a set of flows.
For this, the sum of two flows f1 + f2 = f3 in N is defined quite naturally as
f3(e) = f1(e)+ f2(e) for all e ∈ E. This function satisfies the skew symmetry
and the flow conservation. Hence, f3 is a flow if, and only if, the capacity
constraint is fulfilled. Ford and Fulkerson have observed that every flow f

in a network N can be decomposed into a set of path and cycle flows such
that their sum is f. Here is a version of the theorem from the book Network
Flows by Ahuja, Magnanti, and Orlin [2]. While this result originally applies
to s-t networks, we can also apply it to multi-terminal networks.

B theorem 2 (flow decomposition theorem , [2]): Every flow f can
be represented as the sum of at most |V | + |E| cycle and path flows with
non-zero value.

Proof. Ahuja, Magnanti, and Orlin [2] give an algorithmic proof. If f(v0) < 0,
then v0 is a source and there is an edge (v0, v1) carrying a non-zero flow.
If f(v1) > 0, i. e., v1 is the sink, we stop. Otherwise, the flow conservation

22 concepts and notation

s
v

t

9

9

9

9

2

3

5

8

2

3

5

8

Figure 2: The problem of deciding whether a given flow f in a given network N

can be decomposed into at most k path and cycle flows is NP-hard by
a reduction from the well-known partition problem [53], formally intro-
duced on page 88. The reduction constructs a network with two disjoint
s-v paths each of width 1/2

∑
a∈A s(a). Additionally, there are |A| disjoint

paths from v to t, where the ith path has width s(ai). The depicted net-
work N is the result of the transformation of the partition instance (A, s)
with A = {a1,a2,a3,a4 } as well as s(a1) = 2, s(a2) = 3, s(a3) = 5, and
s(a4) = 8. A max-flow in N can be decomposed into 4 path flows if, and
only if, (A, s) ∈ partition. Since (A, s) /∈ partition, a max-flow in N

cannot be decomposed into 4 path flows.

constraint demands that some other edge (v2, v3) carries non-zero flow. We
repeat this until we hit a node vk with f(vk) > 0, or we hit a node already
visited. In the former case, we obtain a path flow fp, in the latter a cycle flow
fo. We set the value of the path flow |fp| = min{−f(v0), f(vk), mine∈p c(e) }

and redefine f(v0) = f(v0) + |fp|, f(vk) = f(vk) − |fp|, and c(e) = c(e) − |fp|

for every e ∈ p. If we obtained a cycle flow, we let |fo| = mine∈o c(e) and
redefine c(e) = c(e) − |fo| for all e ∈ o.

This process is repeated, until all net flows are zero. Any remaining flow
now corresponds to cycle flows. So we choose any node with outgoing flow
and carry out the above procedure repeatedly until all capacities are zero.
Clearly, f is the sum of the set of obtained path and cycle flows. Moreover,
as every path flow reduces the net flow of some node or the capacity of
some edge to zero, and every cycle flow sets the capacity of some edge to
zero, we are done after at most |V |+ |E| path and cycle flows.

The construction in the proof of the last theorem is remindful of the Ford-
Fulkerson algorithm. A flow is constructed step by step, and each time a
new network is created with adapted edge capacities. There is, however, one
big difference. The Ford-Fulkerson algorithm adds back capacities for each
flow, the just described procedure does not do this. While the flow along an
edge may be lowered or even reversed in direction by the Ford-Fulkerson
algorithm, this is not possible here. In effect, no obtained cycle or path flow
can be undone.

One may ask how difficult it is to find the minimum number of path and
cycle flows in which a given flow can be decomposed. It turns out that
the decision version of this question is NP-complete by a reduction from
partition given by Kleinberg [53] – see an example in Figure 2.

flow networks with edge demands . The edges of an s-t network
cannot only be assigned an upper bound for the flow in terms of a capacity,
but also a lower bound, by so-called edge demands. Such a network N =

(V ,E,T, l, c) contains an additional function l : E → R. A flow f : E →
R in such a network is a function that does not only satisfy the capacity

concepts and notation 23

constraints, the skew symmetry, and the flow conservation, but also fulfills
f(e) > l(e) for all e ∈ E.

For the networks discussed so far, there was no question whether a flow
existed at all. The 0-flow f0 with f0(e) = 0 for all e ∈ E satisfies all con-
straints in all networks. This question, however, becomes non-trivial when
we consider flow networks with edge demands. In particular, finding a min-
flow, i. e., a flow of minimum value, is a new and interesting problem. We
describe a solution to this problem similar to that by Ciurea and Ciupală
[15]. They first identify a flow, if there is any, and then decrease the value of
the flow until it hits the minimum.

For networks with edge demands, the capacity of an s-t cut (S, T) is de-
fined as the sum of the lower bounds of all S-T edges minus the sum of the
capacities of all T -S edges, that is

c(S, T) =
∑

e∈E(S,T)

l(e) −
∑

e∈E(T ,S)

c(e) . (13)

Interestingly, this leads to the following theorem, that can be proven sim-
ilarly as the original Max-Flow Min-Cut Theorem.

B theorem 3 (min-flow max-cut theorem): If there exists a flow in N,
then the min-flow value in N is equal to the maximum s-t cut capacity.

Finding a flow in N can be reduced to finding a max-flow in a transformed
network N ′ without edge demands. For this, let N ′ = (V ′,E ′, { s ′, t ′ }, c ′) be
a new network with

V ′ = V ∪ { s ′, t ′ } , (14)

E ′ ⊆ E∪ { (t, s) } , (15)

c ′(u, v) = c(u, v) − l(u, v) for all (u, v) ∈ E , and (16)

c ′(t, s) = ∞ . (17)

E ′ contains additional edges. For each node v ∈ V , let the net demand

d(v) =
∑
u∈V

l(u, v) −
∑
w∈V

l(v,w) (18)

be the demand of the incoming edges minus the demand of the outgoing
edges. Now, we add an edge of capacity |d(v)| for each node v ∈ V if
d(v) 6= 0 such that

e(v, t ′) ∈ E ′ if d(v) < 0 and (19)

e(s ′, v) ∈ E ′ if d(v) > 0 . (20)

In the obtained network N ′, we compute a max-flow f ′. If this flow sat-
urates all edges leaving s ′, then there is a flow f = f ′ + l in N. Due to
the construction, f certainly meets the lower bound constraints. Moreover,
f also satisfies the capacity constraint in N, as f ′(e) 6 c(e) − l(e). Finally,
the flow conservation is given as well. Intuitively speaking, the net flow at
every node in N ′, when removing s ′ and t ′ from the network, is of opposite
sign as the net demand in N. Hence, when adding f ′ and l, the net flow is
0 at every node v ∈ V − { s, t }.

The flow f, however, may not be of minimum value. Any augment-
ing path algorithm for finding a max-flow can be modified to obtain a
decreasing path algorithm for finding a min-flow [15]. For this, we rede-
fine the residual network Nf in this context: If f(u, v) > 0, then cf(u, v) =

24 concepts and notation

1) Network N:

s

u

v

t

1/2

2/3

1/3

3/4

0/2

2) Network N ′:

t ′

s

u

v

t

s ′

1

1

2

1

2

∞
3

1

1

3

3) Max-flow f ′ in N ′:

t ′

s

u

v

t

s ′

1

0

0

0

1

4

3

1

1

3

4) Feasible flow f in N:

s

u

v

t

2

2

1

3

1

5) Residual network Nf:

s

u

v

t

1

1

2

1

1
1

6) Min-flow in N:

s

u

v

t

1

2

2

3

0

Figure 3: N is a network with edge demands. Each edge e is labeled with l(e)/c(e)

– its demand and its capacity. We want to find a min-flow in N, if there
is one. For this, we transform N to a network N ′ without edge demands
by setting the capacity of each edge e of N to c(e) − l(e), adding two new
nodes s ′, t ′, and connecting s ′ with each node v of positive net demand
d(v) and each node v with negative net demand d(v) with t ′, each new
edge with capacity d(v). Moreover, we add an edge (t, s) of infinite capacity.
Then, we compute a max-flow f ′ from s ′ to t ′ in N ′. If f ′ saturates all edges
leaving s ′, then there is a feasible flow in N which is f(e) = f ′(e) + l(e) for
all edges e in N. In Nf, we identify a decreasing t-s path t-v-u-s of width
1 and decrease f by this path flow to obtain a min-flow in N.

c(u, v) − f(u, v) and cf(v,u) = f(u, v) − l(u, v). Now, we may repeatedly re-
duce the value of a flow if there is a t-s path in the corresponding residual
network. For an example, see Figure 3. The Integrality Theorem, which
we have mentioned in the context of max-flows, holds for min-flows as
well [15].

multi-terminal generalizations . Ford and Fulkerson and others
of the flow network pioneers have already considered the multi-terminal
case. One straightforward generalization of s-t networks is to allow a set
of source nodes and a set of sink nodes. Such a network, however, can be
reduced to the single source, single sink case in the following sense. We add
a new super source s ′, a super sink t ′, and edges (s ′, s) for every source s

and (t, t ′) for every sink t. These new edges all have an infinite capacity.
Now, f is a flow in the original network if, and only if, there is a flow f ′ in
the altered s ′-t ′ network that is equivalent to f at all edges existing in both
networks.

Another generalization is the problem of determining the max-flow value
for each pair of nodes in an undirected network. Consider an undirected

concepts and notation 25

network N = (V ,E, c) specified without any terminals. We would like to
know the max-flow value v(s, t) for each pair (s, t) of nodes where s and t

are temporarily considered as source and sink. As N is undirected, we have
v(s, t) = v(t, s) for every pair of nodes. Gomory and Hu [36] demonstrated
a technique to get around computing the max-flow value for each of the
quadratic number of pairs. A central observation is that

v(x, z) > min{ v(x,y), v(y, z) } for all x,y, z ∈ V (21)

which leads to the fact that v may not have more than |V |− 1 distinct val-
ues. In fact, they show how to construct a tree for any given network that
preserves the max-flow value for every pair of nodes. Preserving max-flow
values between certain sets of nodes is an important aspect in this thesis.

submodularity. A set function f : 2V → R, where V is some set and
2V its powerset, is a submodular set function if for all X, Y ⊆ V it satisfies

f(X) + f(Y) > f(X∪ Y) + f(X∩ Y) . (22)

It is well-known that the capacity function c defined by (7) is a submod-
ular set function – with important implications. If X and Y are source sides
of B-min-cuts for any B ∈ B, then the sum of their capacities is at least as
great as the sum of the capacities of X∪ Y and X∩ Y. Since neither can have
a capacity less than the min-cuts X and Y, (22) is satisfied with equality and
hence, X∪ Y as well as X∩ Y are B-min-cuts, too. We may conclude that the
set of source sides of all min-cuts of a network N is closed with respect to
∩ and ∪. The submodularity of the capacity function c is not bound to a
fixed terminal bipartition. This will allow some more general implications
for multi-terminal networks.

Another interesting fact about submodular functions is that any submod-
ular set function that can be evaluated in polynomial time can also be min-
imized in polynomial time [38] using the ellipsoid method. Schrijver [74]
shows how to minimize submodular functions without the use of the ellip-
soid method and in strongly polynomial time.

merging nodes . A common technique throughout this thesis is to merge
nodes of a network N = (V ,E,T, c). Let M ⊆ V be a non-empty set of nodes
with w ∈ M and |M ∩ T| 6 1. If there is a terminal in M, then let w be
this terminal. Otherwise, w is an arbitrary node of M. Further, let m be a
function with

m(v) =

v if v ∈ V −M and

w else .
(23)

Merging the nodes in M then yields a network N ′ = (V ′,E ′,T, c ′) where

V ′ = (V −M)∪ {w } , (24)

E ′ =
{ (

m(x),m(y)
)
| (x,y) ∈ E and { x,y } 6⊆M

}
, and (25)

c ′(x,y) =
∑
u∈V

m(u)=x

∑
v∈V

m(v)=y

c(u, v) for all (x,y) ∈ E ′ . (26)

In case u, v are joined by an edge e, we sometimes refer to merging u, v
as the edge contraction of e. However, merging nodes does not require any
edges among them. Merging nodes may thus result in a network whose
underlying graph is not a minor of the original one.

26 concepts and notation

M

t1 t2

t3 u

t4 v

c1

c2

c3

c4 c5

c6

c7

c8

c9

merge M

t1 t2

t3

t4

c1

c2

c3

c4 + c5

c6 + c8

Figure 4: This example demonstrates the effect of merging the nodes M = { t3,u, v }.
The nodes u, v are removed and edge capacities that connected u or v to
the outside of M are added to the edge capacities from t3 to the outside of
M. In the obtained network, terminal t3 represents the former set M.

From a capacity perspective, merging two nodes u, v can be interpreted
as setting c(u, v) = c(v,u) = ∞ (and previously adding the edges, if not
existing). If there is a node u /∈ M connected to two different nodes v,w ∈
M, then merging the nodes of M also merges the edges (u, v) and (u,w).
See Figure 4 for an example of nodes that are being merged.

linear programming . We briefly introduce notation and some core
concepts of linear programming. Classical textbooks devoted to this topic
are Linear Programming by Chvátal [14] and Combinatorial Optimization: Al-
gorithms and Complexity by Papadimitriou and Steiglitz [68]. Linear pro-
gramming is a form of mathematical optimization used for problems whose
requirements are represented by linear relationships. Such a problem looks
for an optimal solution ~x that maximizes or minimizes an objective function
c(~x) that is a linear combination of ~x and can thus be expressed as ~cT~x. Fur-
ther, there are linear constraints on ~x that are commonly written as A~x 6 ~b

where A is the coefficients matrix. Altogether, we will state a minimization
or maximization problem like the following two linear programs (LP for
short).

problem a (27)

min ~bT~y

s. t. AT~y > ~c ,

~y > 0

problem b (28)

max ~cT~x

s. t. A~x 6 ~b ,

~x > 0

All LPs, whether they originally are minimization or maximization prob-
lems, can be expressed in canonical form as a maximization problem just like
problem b.

Depending on whether we allow ~x to be a vector over the real numbers
or whole numbers, the LP is called an RLP or ILP, respectively. While ILPs
in general relate to NP-hard optimization problems, an optimal solution to
an RLP can always be found in polynomial time. Often we deal with LPs
where every component of ~x is either a 0 or a 1, a so-called 0-1 ILP. The
relaxation of such an LP is an RLP where 0 6 xi 6 1 for every xi of ~x.
While many NP-hard optimization problems can be modeled as a 0-1 ILP,
the relaxed version can be optimized efficiently. This implies, of course, that
the optimal solutions may differ.

Every LP, referred to as primal problem, possesses a counterpart, the so-
called dual problem, to which it can be converted. The dual problem of
the dual problem is the primal problem. Moreover, every feasible solution
for an LP gives a bound for the value of an optimal solution to its dual

concepts and notation 27

problem. The famous strong duality theorem states that the values of the
optimal solutions to the primal and dual problem are equivalent.

A covering LP is a LP of the form of problem a, i. e., LP (27), where A, ~b,
and ~c are non-negative. The dual of a covering LP is a packing LP, which
is of the form of problem b, i. e., LP (28), where again A, ~b, and ~c are
non-negative. The way problem a and problem b are stated, they form a
covering / packing duality.

3M I N - C U T S E T S Y S T E M S

This chapter pushes towards a deeper understanding of the set of all min-
cuts in networks. For each fixed terminal bipartition, a multi-terminal net-
work encodes a set system of min-cuts. Depending on whether we represent
a min-cut by its source side or by the set of edges cut, we either obtain a set
system over V or over E. Picard and Queyranne [69] have already shown
that there is a succinct representation for the set of all min-cuts. This repre-
sentation can be used to quickly identify edges that are cut by some min-cut
or to even enumerate all min-cuts. Both possibilities are of great importance
for applications in the areas of sensitivity analysis and parametric analysis.
These disciplines are related to questions concerning slight changes of the
capacity function or the existence of edges, for example.

However, from the set system point of view, many questions are still open.
How can these set systems be characterized? How hard is it to tell whether
a network exists that encodes a given set system as the set of all its min-
cuts? And how efficiently can such a network be constructed? In what way
do the set systems encoded by a multi-terminal network restrict each other?
In particular the last question turns out to be the core of problems arising
in the domain of mimicking networks discussed in the next chapter.

For the 2-terminal case, we are able to fully settle these questions for set
systems over V . We can quickly tell whether a given set system can be en-
coded in a network such that the source sides of all min-cuts are exactly
the given set system. Moreover, the appropriate network can be constructed
in polynomial time. When considering multi-terminal networks with more
than 2 terminals, each terminal bipartition encodes a set system of its own.
In this case, new effects arise. Two set systems, each of which can be en-
coded in a 2-terminal network, may not be able to be encoded in a single
multi-terminal network – they may be incompatible in a certain sense. We
present necessary conditions for a collection of set systems over V to be able
to be encoded in a multi-terminal network.

We can ask the same set of questions when considering min-cuts that
are represented by the edges they cut. In this case, however, the question
regarding 2-terminal networks is already considerably harder to answer. We
are unable to give a short characterization of these set systems as it was
in the previous case. Due to this, we use a new technique to explore the
restrictions of these set systems. We define new decision problems based on
well-known problems whose input contains a set system. Instead of a set
system, the new problems’ input contains a 2-terminal network encoding
the set system as the set of all min-cuts represented by the edges they cut.
We settle the question of the complexity of most of these problems giving
us more insight into the set of all min-cuts edge sets.

Interestingly, the newly defined problems defined by this framework find
immediate and natural applications. hitting set, for example, leads to our
problem called min-cut hitting set which asks for a smallest set of edges
such that each min-cut cuts an edge of this set. Having found such a set is of
particular value when trying to increase a network’s capacity by increasing
the capacities of existing edges.

29

30 min-cut set systems

This chapter is broken down into four sections. Section 3.1 introduces
the formal definitions for the mentioned set systems. A technique use-
ful throughout this chapter is the max-flow DAG that is introduced in Sec-
tion 3.2.

Section 3.3 deals with the node set systems that are defined by the source
sides of all min-cuts. As already described on page 25, it is a well-known
fact that these are closed with respect to ∪ and ∩ for every classical s-t flow
network N due to the submodularity of the capacity function – and so is the
arising node set system for every fixed B ∈ B for every multi-terminal net-
work N. We establish a link in the opposite direction. In the multi-terminal
case, we describe some necessary conditions for a set system to allow a cor-
responding network. Moreover, we define a problem whose complexity is
linked to the question of how restrictive these node set systems are. This
problem will be revisited in Chapter 4.

In Section 3.4, we focus on the edge set systems that arise when a min-cut
is represented by the set of edges it cuts. We show necessary conditions for
set systems to be the edge set system of a network. To further examine the
edge set systems, we replace the set systems in the input of well-known NP-
complete problems like hitting set and set packing with a flow network
and analyze the complexity of the obtained problems. While not all set
systems can be encoded as the edge set system of a flow network, some
large set systems can be encoded quite succinctly. We analyze the impact of
these two opposing effects on the complexity of the obtained problems.

3.1 the sets of all min-cuts

In the 2-terminal case, we allow directed and undirected networks, but still
only consider flow in s-t direction (i. e., from t1 to t2). For networks with
more than 2 terminals, we consider undirected networks (except where ex-
plicitly stated differently). Such a network encodes |B| set systems.

B definition 2 (node set system and edge set system): For a multi-
terminal network N = (V ,E,T, c) with |T| > 3 and any non-trivial V ′ ⊂ V ,
we define its V ′ node set system and its V ′ edge set system as

VV ′(N) =
{
S | (S, T) is a V ′-min-cut in N

}
and (29)

EV ′(N) =
{
E(S, T) | (S, T) is a V ′-min-cut in N

}
, (30)

respectively. The node set system and edge set system of N are defined as

V(N) =
{
VB | B ∈ B

}
and (31)

E(N) =
{
EB | B ∈ B

}
, (32)

respectively. For directed 2-terminal networks, the hierarchy is flattened,
and the node set system and edge set system are defined as

V(N) = V{s}(N) and (33)

E(N) = E{s}(N) . (34)

We define these set systems not only for undirected networks, but also for
directed ones even though the definition of B makes use of the symmetry
present in undirected networks only. We do this in order to directly com-
pare these set systems for directed and undirected networks. In particular,
we would like to know whether there are set systems to which there is a
directed, but no undirected network.

3.2 the max-flow dag of a network 31

N:

s

u

v

w

x

t

2

1

1

1

3

1

2

V(N) =
{
{ s }, { s,u }, { s, v }, { s,u, v }, { s,u, v,w }

}
E(N) =

{
{ (s,u), (s, v) }, { (u, x), (u,w), (s, v) },

{ (s,u), (v,w) }, { (u, x), (u,w), (v,w) },

{ (u, x), (w, t) }
}

Figure 5: The 2-terminal network N with a total of five min-cuts defines the two set
systems V(N) and E(N). The edge (x, t) is the only edge not cut by any
min-cut.

s

v1

v2

...
vn

t

1 1

1 1

1 1

Figure 6: The depicted network is a network with the maximum number of min-cuts,
which is 2|V−T|. For each set V ′ ⊆ (V −T) of non-terminals, { s }∪V ′ is the
source side of a min-cut.

See Figure 5 for an example of set systems defined by a directed 2-termi-
nal network. Note that a V ′ set system is not only defined for V ′ ⊂ T, but
for all non-trivial V ′ ⊂ V . This generalization is handy at some time, but in
the majority of the cases, V ′ is a set of terminals.

Undirected multi-terminal networks give rise to some symmetry. When
B is considered to be the set of sources and T − B the sinks, then switching
these roles does not change much – any flow that works in one situation
can be reversed to work in the other situation. This, however, switches the
direction of flow and switches source and sink sides. This impacts the cor-
responding node and edge set systems such that EB(N) = { (v,u) | (u, v) ∈
EB(N) } and VB(N) = { T | (S, T) ∈ VB(N) }. Even though these pairs are
different sets, they do not add any new information. On the contrary, EB is
fully determined by EB.

For any given non-trivial B ∈ B, finding a B-max-flow can be achieved
via the multi-source multi-sink reduction described in Chapter 2 on page 24.
Moreover, everything that we know or will prove for classical s-t networks
also applies to each fixed B in this way.

3.2 the max-flow dag of a network

In this section, we will focus on the 2-terminal case. Despite this restriction,
we arrive at insights that also apply for each fixed terminal bipartition of a
multi-terminal network.

An s-t network may have up to 2|V |−2 min-cuts (Figure 6) rendering it
impossible to list all of them in polynomial time. It is, however, possible to
find a short representation for all of them in polynomial time. In order to
gain more insight into the structure of the set of all min-cuts in a network,
consider the relation R ⊆ V × V with

(u, v) ∈ R⇐⇒ f(u, v) < c(u, v) (35)

32 min-cut set systems

for a network N with respect to a max-flow f in N as defined by Picard and
Queyranne [69]. Due to the skew symmetry (2), this definition is somewhat
shorter than its original. A set V ′ ⊆ V is a closure for R if for all nodes
u, v ∈ V we have that v ∈ V ′ and (u, v) ∈ R imply u ∈ V ′.

B theorem 4 ([69]): An s-t cut (S, T) is a min-cut if, and only if, S is a
closure for R.

Recall that the submodularity of the capacity function implies that the
source sides of min-cuts are closed with respect to ∩ and ∪. Interestingly,
the last theorem implies the same closedness since the intersection and the
union of closures are again closures.

The relation R is actually nothing else but the edge relation in the residual
network Nf = (V ,Ef, { s, t }, cf) for any max-flow f. To see this, compare the
definition of the relation R in (35) with the definition of the edge set of the
residual graph in (11) on page 20. Hence, R = Ef for all max-flows f.

Translating the closure property of R to Ef, we see that a node set S with
s ∈ S and t /∈ S is the source side of a min-cut if, and only if, there are no
edges in Ef leaving S. This implies two well-known facts: As we have seen
earlier, a min-cut exclusively cuts edges that are saturated by every max-flow.
Additionally, there is no flow in f from T to S. If there was, then the residual
network would contain an edge in S-T direction.

The residual network may thus not contain any edges crossing the min-
cut from S to T . We may hence reformulate Theorem 4 such that an s-t cut
(S, T) is a min-cut if, and only if, there are no edges leaving S in the residual
graph Nf with respect to any max-flow f. This, in turn, leads directly to the
statement that an s-t cut is a min-cut if, and only if, its capacity is 0 in the
residual network with respect to any max-flow, as the following well-known
lemma states.

B lemma 5: An s-t cut (S, T) is a min-cut if, and only if, cf(S, T) = 0, where
f is any max-flow.

In the remainder of this chapter, we will implicitly assume that N is con-
nected in the sense that for every node v, there is a positive flow from s to
t via v. Moreover, we assume s and t to be different nodes. In particular,
this implies that each network has a positive capacity. Note that the con-
nectedness assumption is not very strong. A node v that is not used by any
flow can be removed including all incident edges. This neither changes any
flow nor E(N). It may, however, change V(N). If this node v is connected to
other nodes, then no min-cut will ever separate v from its neighbors as this
unnecessarily increases the cut capacity.

B lemma 6: In any s-t network N, two nodes u, v belong to the same strongly
connected component (SCC) in Nf with respect to any max-flow f if, and
only if, there is no min-cut separating u and v.

Proof. Suppose u, v belong to the same SCC in Nf and let (S, T) be any min-
cut separating u and v. Without loss of generality, we assume that u ∈ S

and v ∈ T . As u, v do belong to the same SCC in Nf, there is a u-v path
in Nf such that (S, T) cuts an edge from S to T in Nf – a contradiction to
Lemma 5.

For the opposite direction, we make use of our connectedness assumption.
Due to this assumption, the network has a truly positive capacity. We will
first show that for all nodes v ∈ V , there is a v-s path as well as a t-v path in
Nf.

If t can be reached from v in Nf, then there is a v-s path in Nf since N

has a positive capacity. So assume there is no v-t path in Nf. Let u be a

3.2 the max-flow dag of a network 33

node that can be reached from v in Nf (possibly u = v) but from which t

cannot be reached. This is due to the fact that flow blocks all paths from u

to t. This, however, implies that there is a v-u-t path in Nf.
Similarly, if there is flow from v to t, then there is a t-v path in Nf. If

there is no flow from v to t, then because every s-v path or every v-t path is
already blocked by flow. Now let u be a node from which v can be reached
in Nf and from which there is flow to t (possibly u = s). Then, there is a
t-u-v path in Nf.

If u, v do not belong to the same SCC, then without loss of generality,
there is no u-v path in Nf. This implies that there is no u-t path in Nf as
otherwise, there would be a u-t-v path – but u and v are not in the same
SCC. Now, let S be the closure of { s,u }. As there is no s-t path and no u-t
path, we have s ∈ S and t /∈ S. Hence, S is the source side of a min-cut.

Picard and Queyranne [69] have proposed a similar partition of V , but
without the connectedness assumption, there may be closures not composed
of a set of strongly connected components. We will make use of this later.
A nice corollary of the last lemma is that reachability between two nodes in
Nf is independent of the choice of a max-flow f. Due to this, we can assign
a function µN : V → 2V to each s-t network N such that µN(v) is the set of
nodes of the SCC in Nf that contains v. Further, we may define the function
µN : E → 2E as µN(u, v) =

(
µN(u) × µN(v)

)
∩ E. It maps an edge e to

the set of edges that connect the same SCCs as e does. We will neglect the
subscripts in µN when the appropriate network is clear from the context. In
the case of multi-terminal networks, µB denotes the described functions for
a fixed terminal bipartition B ∈ B. Interestingly, µ does not only describe a
partition of the nodes, but also of the min-cut edges.

B lemma 7: For any network N, µ : E → 2E partitions E. Further, for any
two min-cut edges e1, e2 we have e2 ∈ µ(e1) if, and only if, every min-cut
cuts e1 if, and only if, it also cuts e2.

Proof. Clearly, every edge e is part of some set as e ∈ µ(e). Let µ(u, v) and
µ(w, x) be two distinct sets. Then

µ(u, v)∩ µ(w, x) =
(
µ(u)× µ(v)

)
∩
(
µ(w)× µ(x)

)
∩ E = ∅

since µ : V → 2V is a partition of the nodes. We infer that µ : E → 2E

partitions E.
Let (u, v), (w, x) be two min-cut edges in N. If (u, v) ∈ µ(w, x), then

u,w ∈ µ(u) and v, x ∈ µ(v). As a min-cut therefore separates u from v if,
and only if, it separates w from x, the statement is true.

Moreover, it now becomes clear that an edge (u, v) in N is a min-cut edge
if, and only if, its reversed counterpart (v,u) connects two different SCCs in
Nf. In order to show that every max-flow saturates an edge e if, and only if,
e is cut by some min-cut, we first need the following lemma.

B lemma 8: Let f1, f2 be two flows of equal value in an arbitrary s-t network
N. Then, there is a set of cycle flows O in Nf1 such that f1 +

∑
fo∈O fo = f2.

Proof. Let f3 : V ×V → R be a function with f1(e) + f3(e) = f2(e) for all e ∈
E. We show that f3 is a flow in the residual network Nf1 . The capacities in
Nf1 are cf1(e) = c(e) − f1(e) for all e ∈ Ef1 . For each edge e ∈ Ef1 , we have
f3(e) = f2(e) − f1(e). Since f2(e) 6 c(e), we get f3(e) 6 c(e) − f1(e) and
the capacity constraint is fulfilled. Function f3 is also skew symmetric since
f3(u, v) = f2(u, v) − f1(u, v) = −

(
f1(v,u) − f2(v,u)

)
= −f3(v,u). Finally,

34 min-cut set systems

the flow conservation is satisfied at all nodes v ∈ V − T as the net flow f3(v)

is the difference of the net flows f2(v) and f1(v).
Since f3 is a flow in Nf1 of value 0, we may infer from the Flow Decom-

position Theorem (Theorem 2 on page 21) that f3 can be decomposed into
a set of cycle flows O. This set is exactly the desired one.

B lemma 9: For every s-t network N, an edge e is cut by some min-cut if,
and only if, every max-flow saturates e.

Proof. Let e = (u, v) be an edge in N. By Lemma 8, every max-flow f satu-
rates e if, and only if, Nf does not contain any cycle using e. By Lemma 6,
Nf contains a cycle using (u, v) if, and only if, u, v belong to the same SCC.
If they do belong to the same SCC, then no min-cut cuts e. If they do not
belong to the same SCC, then some min-cut cuts (u, v).

In the following, we introduce the edge cut network as well as the max-
flow DAG that both will prove to be useful techniques. While the edge
cut network is defined for multi-terminal networks, the max-flow DAG is
defined for the 2-terminal case only (or a fixed terminal bipartition).

B definition 3 (edge cut network): The edge cut network Ne = (Ve,Ee,
T, ce) of a multi-terminal network N = (V ,E,T, c) is the network obtained
from N by merging all pairs of nodes not separated by any min-cut.

By the way we defined how to merge nodes on page 25, it follows that
Ve ⊆ V and Ee ⊆ E. Figure 8 on page 37 shows an example of an edge
cut network. For every pair of terminals, there is a min-cut separating them
and hence, the terminal set of Ne is the same as of N. It is not immediately
clear, however, whether the edge cut network is unique. What happens if
we vary the order in which mergeable nodes are merged? Do we still obtain
the same edge cut network? Could merging two nodes force two edges to
be identified with each other where one of them is contractible and the other
is not?

Two nodes u, v can be merged for the edge cut network, if there is no
terminal bipartition that contains a min-cut separating u, v. Let µB be the
discussed partitioning functions for a specified terminal bipartition B ∈ B.
Nodes u, v may be merged, if µB(u) = µB(v) for all B ∈ B. The set

µ(v) =
⋂

B∈B

µB(v) (36)

is the intersection of all SCCs containing v. This is a generalization of
function µ from the 2-terminal case to the multi-terminal case. The set
{µ(v) | v ∈ V } hence is a partition of V and nodes u, v can be merged if,
and only if, µ(u) = µ(v), i. e., we merge all nodes in µ(v) for all v ∈ V . The
yielded network Ne is unique regardless of the order in which we merge as
µ is a partitioning of V .

Let µ(u),µ(v) be two distinct sets in a multi-terminal network N and
e1, e2 ∈ E two distinct edges connecting nodes in µ(u) with nodes in µ(v)

in N. Then these edges will be represented by a single edge in Ne. Analo-
gously to the 2-terminal case, we define a function µ : Ee → 2E as µ(u, v) =(
µ(u)× µ(v)

)
∩ E to keep track of these represented edges.

The previous considerations lead straightforward to an algorithm to find
the edge cut network.

B theorem 10: The edge cut network Ne of a given network N can be com-
puted in time O

(
2|T| · p(n)

)
, where n is the input length and p some fixed

polynomial.

3.2 the max-flow dag of a network 35

Proof. We construct Ne by computing a T ′-max-flow fT ′ for every non-
trivial T ′ ⊂ T and marking all edges connecting nodes of different SCCs
in fT ′ as incontractible. Finally, we contract all edges not marked as in-
contractible. If an edge is cut by some T ′-min-cut, then the algorithm will
mark this edge as incontractible when it reaches T ′. If an edge is not cut by
any min-cut, then it always connects nodes within an SCC and hence is not
marked. Concluding, the algorithm contracts an edge if, and only if, it is
not cut by any min-cut.

This algorithm loops over all non-trivial elements of 2T and performs a
polynomial time computation for each iteration. We thus have the claimed
runtime.

The algorithm of the proof is an FPT algorithm when |T| is seen as param-
eter. Hence, for classical s-t flow networks, the edge cut network can be
computed in polynomial time.

Some edges are quite obviously never cut by any min-cut. If an edge
is a min-cut edge, it is saturated by every max-flow. For some edges,
however, we can locally verify that it is not saturated by any flow imply-
ing that it is not cut by any min-cut. Based on this observation, we say
that an edge (u, v) of a directed or undirected network dominates u if its
capacity is truly greater than all capacities reaching u, and it dominates
v if c(u, v) is truly greater than all capacities leaving v. Formally, (u, v)
dominates u, if c(u, v) >

∑
(w,u)∈E, w 6=v c(w,u), and (u, v) dominates v, if

c(u, v) >
∑

(v,w)∈E, w 6=u c(v,w). No min-cut will ever cut a dominating
edge if it dominates a non-terminal as its capacity can be lowered simply by
moving the dominated node to the other side. Hence, all such dominating
edges can be contracted. This notion can even be generalized. Algorithm 1

is a heuristic and involves the computation of at most |V | many min-cuts
and is thus a polynomial time algorithm. It guarantees to contract all domi-
nating edges among possibly more edges that are no min-cut edges. It can
be used as a preprocessing that might already suffice before running the
FPT algorithm described in the proof of Theorem 10 to find the edge cut
network. Additionally, a modified version of this algorithm will be useful
in the context of mimicking networks in Chapter 4.

Algorithm 1: Heuristic to find the edge cut network of an undirected network.

input : An undirected network N = (V ,E,T, c).
output : A minor N ′ obtained by contracting edges not cut by any min-

cut.
1: N ′ ← N

2: for every v ∈ V do

3: Compute the v-min-cut (Sv, Tv) with minimum |Sv| and v ∈ Sv.
4: Merge all nodes in Sv.
5: end for

6: return N ′

B lemma 11: Let N be an undirected network, B ∈ B, and v ∈ V . If ∅ 6=
SB ∩ Sv and v ∈ TB, then SB − Sv is a B-min-cut, and Sv − SB is a v-min-cut.

36 min-cut set systems

a)

x1

x2

u v

x3

x4

1

1
5

1

1

b)

u

v

w

x

y

1
1

1

1
1

c)

u

v

w

x
y

z

1

1
1

1

1
1

1

1

Figure 7: a) Edge (u, v) with u, v /∈ T is a dominating edge and hence not cut by
any min-cut. It is contracted by Algorithm 1. b) The nodes v,w, x can be
merged to obtain the edge cut network. Algorithm 1 accomplishes this as
the v-min-cut (Sv, Tv) with minimum |Sv| and v ∈ Sv is Sv = { v,w, x }. Note,
that this network does not contain any dominating edges showing that
Algorithm 1 generalizes the notion of dominating edges. c) In this example,
v,w, x,y can be merged to obtain the edge cut network, but Algorithm 1

fails to do so.

Proof. Let V1 = SB − Sv, V2 = Sv − TB, V3 = Sv − SB, and V4 = TB − Sv as
depicted. Note that by the definition of a v-min-cut, Sv ∩ SB does not con-
tain any terminals no matter whether v is a terminal or not.

SBTB

v

V2

Sv

V4V1

V3

Since SB is a B-min-cut, we know that c(V1) > c(V1 ∪ V2)

and hence c(V1,V2) > c(V2,V3)+ c(V2,V4). Moreover, Sv is
a v-min-cut and therefore c(V3,V2) > c(V2,V4) + c(V2,V1).
Since N is undirected, we have c(V1,V2) = c(V2,V1) and
c(V2,V3) = c(V3,V2). But then, the two inequalities are
only satisfied if c(V1,V2) = c(V2,V3) and c(V2,V4) = 0,
which in turn implies that the two inequalities are satisfied with equality.
The claim follows immediately.

B lemma 12: Algorithm 1 finds a minor Nm for a given undirected network
N by contracting only edges that are not cut by any min-cut.

Proof. Let v ∈ V be some node and Sv the v-min-cut with v ∈ Sv and mini-
mum Sv. For the sake of contradiction, we assume that there is a B-min-cut
(SB, TB) for some B ∈ B such that ∅ 6= SB ∩ Sv 6= Sv. Without loss of
generality, we assume that v ∈ Sv − SB. By Lemma 11, this implies that
there is a true subset of Sv that is a v-min-cut also. This contradicts the
assumption, that Sv is a v-min-cut with minimum |Sv|. Furthermore, the
resulting network is a minor of N, as every v-min-cut induces a connected
component.

That Algorithm 1 is just a heuristic to find the edge cut network and that
there are networks where the output of the algorithm is not the edge cut
network can be seen in Figure 7.

In the classical case of |T| = 2, we go one step further and orient all edges
of the edge cut network to obtain the max-flow DAG.

B definition 4: The max-flow DAG Nd = (Vd,Ed, { s, t }, cd) of an s-t net-
work N = (V ,E, { s, t }, c) is a network obtained from N by orienting all
edges of the edge cut network Ne of N in the flow direction of f for an ar-
bitrary max-flow f. The capacity function cd is equal to ce, but 0 for edges
not in Ed.

Again, we have Vd ⊆ V and Ed ⊆ E. From a technical perspective, orient-
ing the edges simply refers to removing either (u, v) or (v,u) if both exist.
See Figure 8 for an example of a max-flow DAG.

3.2 the max-flow dag of a network 37

N:

s

u1

u2 u3

v

w

t1

t2 1

1

1

2

3

1

1

2

2

2

4

Ne:

s

u

v

w

t

3

1

1

2

3

1

1

Nd:

s

u

v

w

t

3

1

1

2

3

1

1

Figure 8: The s-t network N contains several edges that are not cut by any min-cut.
Contracting these edges merges {u1,u2,u3 } and { t1, t }, and yields the
edge cut network Ne of N. By directing all edges of Ne in the direction
of the max-flow, we obtain the max-flow DAG Nd of N. We now have
µ(u) = {u1,u2,u3 } and µ(s,u) = { (s,u2), (s,u3) }.

B lemma 13: For every s-t network N, the max-flow DAG Nd is a unique
DAG and can be constructed in polynomial time.

Proof. As the edge cut network Ne is unique, it remains to be shown that all
max-flows use all edges of Ne in the same direction. We know that every
min-cut edge is saturated by every max-flow. A max-flow that saturates
(u, v) and (v,u) can easily be altered to be a max-flow that uses neither
edge. This implies that neither one belongs to Ne.

Furthermore, a max-flow in an edge cut network does not contain any
cycles. If it did, then the corresponding residual network would contain an
SCC consisting of the nodes of that cycle – but each SCC has been merged
to a single node to obtain the edge cut network. Hence, we have arrived at a
directed, acyclic flow network. Finding a max-flow and directing all edges
in the direction of its flow can be done in polynomial time.

The two functions µ : V → 2V and µ : E → 2E tell us for a node or an
edge in Nd which nodes or edges of N have been merged to obtain it. Refer
to Figure 8 for an example. We will now introduce two more functions that
link min-cuts in N and Nd, represented as node sets and as edge sets. They
are fully based on the already discussed function µ.

B definition 5: We define µ̃ : E(Nd)→ E(N) as

µ̃(E ′) =
⋃

e∈E ′

µ(e) (37)

and µ̃ : V(Nd)→ V(N) as

µ̃(S ′) =
⋃

v∈S ′

µ(v) . (38)

B lemma 14: The functions µ̃ : E(Nd) → E(N) and µ̃ : V(Nd) → V(N) are
bijective.

Proof. We claim for both functions that there are inverse functions defined
for every element of E(N) and V(N), respectively. These are

µ̃−1(E ′) = Ed ∩ E ′ for all E ′ ⊆ E and (39)

µ̃−1(S ′) = Vd ∩ S ′ for all S ′ ⊆ V , (40)

38 min-cut set systems

and hence simply the restrictions of the edge and node sets to those edges
and nodes also present in the corresponding max-flow DAG. To see that this
suffices, let V ′ ∈ V(N) be any min-cut in N. Then, we have

µ̃
(
µ̃−1(V ′)

)
= µ̃

(
Vd ∩ V ′) = ⋃

v∈Vd∩V ′

µ(v) = V ′ , (41)

since Vd ∩ V ′ restricts V ′ to those in Vd – these are exactly those nodes
representing the nodes of V ′ in Nd. Function µ re-expands these nodes to
obtain V ′ again.

Knowing this, it is immediate to see how the according functions for the
edges work. For any min-cut E ′ ∈ E(N) in N, µ̃−1(E ′) is the restriction of
its edges to the representing edges in Ed. Function µ̃ then re-expands these
edges to E ′.

This lemma implies that E ′ ⊆ Ed (S ′ ⊆ Vd) is a min-cut in Nd if, and only
if, µ̃(E ′) (µ̃(S ′)) is a min-cut in N. For the same arguments, the statement
also holds true for N and its edge cut network Ne. The max-flow DAG of
a network N in combination with function µ : V → 2V contains the same
information concerning the min-cuts of a network as N itself. As the max-
flow DAG commonly is obtained from N, we also have µ and hence a short
representation for the set of all min-cuts. In other words, V(N) = {µ(S) | S ∈
V(Nd) }.

The following lemmata show some more useful properties of max-flow
DAGs.

B lemma 15: Let N be an arbitrary network and Nd the corresponding max-
flow DAG. Then, every s-t path in Nd is cut exactly once by every min-cut
in Nd.

Proof. Every min-cut cuts every s-t path in Nd at least once, as it is an s-t
cut. Suppose there is a min-cut (S, T) that cuts some s-t path p twice. If so,
then we can find a flow decomposition of a max-flow following the proof of
Theorem 2 (page 21) that contains a path flow fp. Hence, the value of fp is
counted twice for the capacity of (S, T) – a contradiction.

In general, it is well possible that a network allows an s-t path p that is
cut more than once by some min-cut. In that case, however, no max-flow
allows a flow decomposition containing a path flow along p. See Figure 14

on page 60 for such a network.

B lemma 16: Every set S ⊂ Vd with s ∈ S and t /∈ S is a min-cut in Nd if,
and only if, every edge with exactly one endpoint in S leaves S.

Proof. Let S ⊂ Vd with s ∈ S and t /∈ S be a set of nodes such that every
edge with exactly one endpoint in S leaves S. Let f be any max-flow in Nd.
This flow saturates all edges and hence, cf(S, T) = 0. By Lemma 5, (S, T) is
a min-cut in Nd.

Now let (S, T) be a min-cut in Nd. This implies that there is a max-flow
f with cf(S, T) = 0. Hence, all edges with exactly one endpoint in S leave
S.

A DAG has the advantage that not only shortest, but also longest paths
can be computed efficiently. Starting a breadth-first search at s, we have
found the shortest path when we hit t for the first time, and the longest
path when we hit t for the last time, as all paths starting at s end at t. This
fact will later be exploited.

3.3 node set systems 39

3.3 node set systems

Definition 2 on page 30, that defines node set systems, raises some questions.
Given a set system V, is there a network N with V(N) = V? What properties
does V(N) have? We will first discuss the 2-terminal case where these ques-
tions are answered. The multi-terminal case complicates the situation. We
present necessary conditions for a node set system V to allow a network N

with V(N) = V.

3.3.1 The 2-Terminal Case

As described on page 25, the submodularity of the capacity function implies
that both the intersection and the union of the source sides of any two
min-cuts yield the source side of another min-cut. The opposite direction
obviously cannot be true. As soon as a set system that is closed with respect
to ∩ and ∪ contains two disjoint sets, it also contains the empty set. The
empty set, however, cannot be the source side of a min-cut in any network,
as it always has to contain at least the source. With the following theorem,
we still establish a link in the opposite direction by understanding the sets
as source sides that explicitly leave out the source. The idea of the proof is
to first construct a network N ′ that can be viewed as the residual network
of some network with respect to a corresponding max-flow f. As we know
from Lemma 6, such a network can be partitioned into SCCs. As such a
network does not fulfill the connectedness assumption we extend the idea
to construct a connected network N with the property that Nf = N ′.

B theorem 17: For every set system V over a finite universe U, a flow net-
work N with nodes V = U∪ { s, t } (s, t /∈ U) and V(N) = {V ′ ∪ { s } | V ′ ∈ V }

exists if, and only if, V is closed with respect to ∩ and ∪. If such network N

exists, then another such network with positive capacity can be constructed
in polynomial time.

Proof. We already know that every node set system is closed with respect to
∩ and ∪. This still holds true even if the source node is removed from every
element of that set system.

For the opposite direction, we will first show how to construct a network
N ′ with c(N ′) = 0 in the desired time and proof that V(N ′) = {V ′ ∪ { s } |

V ′ ∈ V }. Then, we show how this network can be augmented to obtain a
network N with positive capacity such that N ′ equals the residual network
Nf for some max-flow f in N.

Let L =
⋂

S∈V S, M =
(⋃

S∈V S
)
− L, and R = U− (L ∪M). L contains

the nodes present in the source side of every min-cut, while R contains all
nodes that are in no source side. Construct a flow network N ′ =

(
U ∪

{ s, t },E ′, { s, t }, c ′
)

with edges

• (s, v) and (v, s) if v ∈ L,

• (v, t) and (t, v) if v ∈ R, and

• (x,y) if x,y ∈M, and x ∈ S implies y ∈ S for all S ∈ V

of positive capacity.
As there is no s-t path, the only valid flow is the 0-flow. Let µ(v) be the

SCCs that have emerged so far and v a node in µ(v) that represents µ(v).

40 min-cut set systems

More edges are added now depending on the indegree in and outdegree out
of a strongly connected component defined as

in(v) = |{ (u, v) | u /∈ µ(v), v ∈ µ(v) }| and (42)

out(v) = |{ (v,u) | u /∈ µ(v), v ∈ µ(v) }| . (43)

For every SCC µ(v) we add the edges

• (t, v) if in
(
µ(v)

)
= 0 and

• (v, s) if out
(
µ(v)

)
= 0 .

Note that edges from t to a node v or edges from a node v to s do not affect
any min-cut. The capacity of each edge is set to an arbitrary, but positive
value. This concludes the construction of N ′. Since t is not reachable from s,
the maximal flow is 0 and hence, there are no edges crossing any min-cut in
S-T direction. In the following, we show that V(N ′) = {V ′ ∪ { s } | V ′ ∈ V }.

First, we show that any set S ∈ V is a source side of an s-t min-cut. By
definition L ⊂ S and R∩ S = ∅, so edges from s and edges to t do not cross
any min-cut. Edges within M do not cross a cut by definition, since for any
such edge (x,y), if x is in S, then y must also be in S.

Now we show that if Q is a source side of an s-t min-cut, Q must be in
V. As there are no edges crossing a minimal cut, L ⊂ Q and R ∩Q = ∅. If
Q = L, the proof is done since L ∈ V. Otherwise, let

Q ′ =
⋃
x∈Q

⋂
S∈V
x∈S

S . (44)

By definition, Q ⊆ Q ′. Suppose there is an element y ∈ Q ′ that is not in Q.
Then y ∈ M and there is an element x ∈ Q such that for all S ∈ V, y ∈ S if
x ∈ S. Then, x ∈ M, since otherwise x ∈ L and L ∈ V is a counterexample.
Hence, (x,y) crosses a min-cut – a contradiction. We conclude that Q = Q ′

can be expressed as union and intersection of sets in V and hence Q ∈ V.
Since all these construction steps can be achieved in polynomial time, the

first part of the proof is done. Next, we alter N ′ to obtain a connected
network N = (V ,E, { s, t }, c) with V(N) = {V ′ ∪ { s } | V ′ ∈ V } and c(N) >

0. For this, we first construct network N ′′ = (V ,E, { s, t }, l, c ′′) with lower
bounds. Its edges

E =
{
(u, v) | (v,u) ∈ E ′ } (45)

are the same as in N ′, but reversed. The lower bounds are

l(u, v) =

0 u, v belong to the same SCC in N ′′;

1 otherwise;
(46)

and the capacity is c(u, v) = ∞ for all (u, v) ∈ E. Then, let f ′′ be a min-flow
in N ′′. This flow is now used to construct network N = (V ,E, { s, t }, c) by
setting

c(u, v) =

∞ u, v belong to the same SCC;

max{ 0, f ′′(u, v) } otherwise .
(47)

This concludes the construction of network N. Due to the construction of
N ′ and the reversal of the edges, for every node v in N there is an s-t flow
via v. Moreover, since the min-flow in N ′′ has a value greater 0, we have

3.3 node set systems 41

V =
{
{ s,w }, { s,u, v,w }, { s,w,y }, { s,u, v,w,y }, { s,u, v,w, x,y }

}
L = { s,w }, M = {u, v, x,y }, R = { t }

N ′:

s
w

u v

y

x
t

Min-flow in N ′′:

s
w

u v

y

x
t4

0

1
1

1

1
1

1

1

4

N:

s
w

u v

y

x
t∞

∞
1

1
1

1

1

1

1

4

Figure 9: Given V, the task is to construct a connected network N with V(N) = V.
Following the proof of Theorem 17, we first construct network N ′ with
arbitrary positive capacities on each edge, which already fulfills V(N) = V.
In a second step, all edge directions are reversed, we set c(e) = ∞ for
every edge, and a lower bound l(e) = 0 for every edge within an SCC,
and l(e) = 1 for every other edge. We call the resulting network N ′′.
Concluding, we obtain the directed network N from N ′′ and a min-flow
f ′′ in N ′′ by setting the capacity of each edge e to ∞, if it belongs to a
strongly connected component to N ′, and to max{ 0, f ′′(e) } otherwise. The
source sides of all min-cuts in the connected network N is now exactly V

as Nf is topologically identical to N ′ for any max-flow f in N.

c(N) > 0. Clearly, all construction steps can be accomplished in polynomial
time.

It remains to be shown that for any max-flow f in N, we have Nf = N ′

(with according positive capacities). This suffices, since we have already
shown that V(N ′) = {V ′ ∪ { s } | V ′ ∈ V }. As we have set the capacities of all
edges e connecting two strongly connected components to f ′′(e), this flow
f ′′ is now a max-flow in N. Clearly, it saturates all edges connecting two
strongly connected components and no edges within strongly connected
components. Hence, N ′ with an appropriately chosen capacity function is
the residual network for N with respect to the max-flow f ′′.

Of course the same construction works without the addition of a new
source, if there is a node that is present in the source side of every min-cut.
See Figure 9 for an example of the construction just described.

While a flow network N uniquely defines V(N), there may be many flow
networks that correspond to a given node set system in the sense of The-
orem 17. The proof of Theorem 17 constructs two, a third and undirected
network can easily be derived from the constructed network N by adding
an edge (u, v) for every edge (v,u) and setting c(u, v) = c(v,u). This nei-
ther alters the max-flow nor the residual network. We may thus infer the
following corollary.

B corollary 18: The set of all node set systems of directed 2-terminal net-
works and the set of all node set systems of undirected 2-terminal networks
are equivalent.

3.3.2 The Multi-Terminal Case

We now generalize the setting from two terminals to more than two ter-
minals. Suppose we are given a set V of set systems and the question is
whether there is a multi-terminal network N with V(N) = N where |T| > 2.

42 min-cut set systems

Such a set V contains several of those set systems just described in the 2-
terminal case. The question is whether these are compatible in a certain
sense. In the following, we present necessary conditions for a set V such
that there is a network N with V(N) = V.

If V is a set system such that V(N) = V for some network N, then there is
a bijection πV : B→ V with π(B) = S if, and only if, S∩T = B. This bijection
simply tells us which set system of V belongs to which terminal bipartition
B and vice versa. We will neglect the subscript of π if it is clear from the
context.

B lemma 19: Let V be a node set system such that there is a network N with
V(N) = V. Further, let B ′,B ′′ ∈ B be two terminal bipartitions with B ′ ⊂ B ′′.
Now, if S1 ∈ π(B ′), S2 ∈ π(B ′′), then S1 ∩ S2 ∈ π(B ′) and S1 ∪ S2 ∈ π(B ′′).

Proof. Due to B ′ ⊂ B ′′, we know that every B ′ ∩ B ′′-cut is also a B ′-cut,
and every B ′ ∪ B ′′-cut is also a B ′′-cut. Recall the submodularity of the cut
capacity function, which in this context implies

c(S1) + c(S2) > c(S1 ∩ S2) + c(S1 ∪ S2) . (48)

Since S1 and S2 are min-cuts for their corresponding terminal bipartitions,
we know that S1 ∩ S2 and S1 ∪ S2 are min-cuts as well.

Some set systems in V may force the existence of certain edges while some
other set systems in V may rule out some edges. If this applies to the same
edge, then these elements are not compatible in such a way, that there is no
corresponding network.

B lemma 20: Let N be a network and B ∈ B. Further, let X1,X2,X3 ∈ V − T

be non-empty and disjoint non-terminal sets such that

• S1 = B∪X1 ∈ VB(N) ,

• S2 = B∪X1 ∪X2 ∈ VB(N) , and

• S3 = B∪X1 ∪X2 ∪X3 ∈ VB(N) .

Then, c(X2,X3) > 0 if, and only if, B∪X2 /∈ VB(N).

Proof. Let R = V −B−X1 −X2 −X3. Since S1,S2 ∈ VB(N), we have

c(S1) = c(S2)⇐⇒ c(B∪X1,X2) = c(X2,X3 ∪ R) . (49)

Due to S2,S3 ∈ VB(N), we get

c(S2) = c(S3)⇐⇒ c(B∪X1 ∪X2,X3) = c(X3,R) . (50)

Now we compare the capacities of the min-cuts B∪X1 ∪X2 and B∪X1 ∪X3.

c(B∪X1 ∪X2) − c(B∪X1 ∪X3)

= c(B∪X1,X2) + c(X3,X2 ∪ R) − c(X2,X3 ∪ R) − c(B∪X1,X3)

= c(B∪X1,X2) + c(X3,X2) + c(B∪X1 ∪X2,X3)

− c(B∪X1,X2) − c(B∪X1,X3)

= 2 · c(X2,X3) . (51)

The last equality follows from (49) and (50). Now we see that B∪X1 ∪X3 ∈
VB(N) if, and only if, c(X2,X3) = 0.

3.3 node set systems 43

The last lemma shows us when min-cuts rule out or force the existence of
certain edges. If a set system of a node set system V contains two crossing
min-cuts S1 and S2, then the last lemma implies that c(S1 − S2,S2 − S1) = 0

(and, symmetrically, c(S2 − S1,S1 − S2) = 0). Hence, there must be no edge
joining nodes from X2 and X3 in any network N with V(N) = V. As a
consequence, a network with maximum number of min-cuts as in Figure 6

on page 31 cannot have any edges connecting non-terminals.
On the other hand, if V contains a set system with three min-cuts S1,S2,S3

containing each other as described in Lemma 20 without a min-cut crossing
S2, then there needs to be an edge with positive capacity joining nodes from
X2 and X3.

If a node set system contains set systems where this happens for the same
pair of nodes at once, then clearly, there can be no network – see the follow-
ing Example 1.

B example 1: In this example, Lemma 19 does not help for V1, but Lemma 20

tells us that the t1-min-cuts demand an edge between u and v. At the same
time, it tells us that the { t1, t2 }-min-cuts can only exist if there is no edge be-
tween u and v. Hence, there is no network N with V(N) = V1 even though
there is an s-t network for each single set system of V1. Symmetrically,
Lemma 20 does not apply to V2, but Lemma 19 rules out the existence of a
network N with V(N) = V2 since it demands the existence of the min-cuts
{ t1 }, { t1, t2,u, v }, and { t1, t3,u }.

V1 =

{ {
{ t1 }

}
︸ ︷︷ ︸
t1-min-cuts

,

{
{ t1, t2 }, { t1, t2,u }, { t1, t2, v }, { t1, t2,u, v }

}
︸ ︷︷ ︸

{ t1,t2 }-min-cuts

,

{
{ t1, t3 }, { t1, t3,u }, { t1, t3,u, v }

}
︸ ︷︷ ︸

{ t1,t3 }-min-cuts

}
. (52)

V2 =

{ {
{ t1,u }

}
︸ ︷︷ ︸
t1-min-cuts

,
{
{ t1, t2, v }

}
︸ ︷︷ ︸
{ t1,t2 }-min-cuts

,
{
{ t1, t3 }

}
︸ ︷︷ ︸

{ t1,t3 }-min-cuts

}
. (53)

We now introduce a problem that we call min-cut minimum type selec-
tion. In the context of mimicking networks in Chapter 4 we will see that
it is equivalent to another problem that will play a prominent role in that
chapter. The lack of understanding this problem was part of the reason for
the research involving min-cut set systems.

For this problem, we represent min-cuts by bit vectors for which we need
a total order imposed over the set of all nodes of a network. This order may
be arbitrary, it could, for example, be the order in which the nodes appear
in the encoding of the network. Once an order is fixed, the min-cut vector of
a min-cut (S, T) is a bit vector { 0, 1 }|V | where the ith bit represents the ith

node of the network. A node is represented by a 0 if, and only if, it is on the
same side as t1.

44 min-cut set systems

B problem 1 (min-cut minimum type selection):

Input: A tuple (N, l) of an undirected multi-terminal network N and
a number l.

Question: Is there a choice of min-cuts, one for each B ∈ B, such
that the matrix composed row-wise of the corresponding min-
cut vectors does not contain more than l distinct columns?

We will revisit the complexity of this problem when we talk about mim-
icking networks in Chapter 4. Right now, we want to focus on a different
aspect of it. Consider the problem

B problem 2 (minimum type selection):

Input: A tuple (S, l) of a family S containing sets of bit vectors of
identical length and a number l > 0.

Question: Is there a choice of exactly one vector per set such that a
matrix composed row-wise of these vectors contains at most l

distinct column vectors?

These two problems are quite similar. To solve either one, we need to
choose exactly one bit vector from each of the specified sets of bit vectors
such that the matrix composed row-wise of these chosen vectors does not
contain more than a specified number of distinct columns. While minimum

type selection presents these sets to choose from in a quite explicit way,
min-cut minimum type selection implicitly encodes these sets in the min-
cuts of a network.

These encoded sets are quite restricted, they cannot be arbitrary sets of
vectors. In particular, these sets are closed with respect to the logical and
and or operator, see Theorem 17. The main reason for this is the fact that
the capacity function of min-cuts is a submodular function. This makes the
problem potentially easier. Opposing this restriction, a network may encode
exponentially in its size many min-cuts for a fixed terminal bipartition. This
kind of succinctness makes the problem potentially harder. It seems not
clear which of these two effects dominates. This also implies that the com-
plexity of either problem does not bound the complexity of the other. At
least not without more knowledge about these node set systems.

For now, we will only show that minimum type selection is NP-complete
by a reduction from the NP-complete partition into hamiltonian sub-
graphs problem [34].

B problem 3 (partition into hamiltonian subgraphs):

Input: A directed graph G = (V ,E).
Question: Is it possible to partition the vertices of G into disjoint

sets V1,V2, . . . ,Vk for some k, such that each Vi contains at least
three vertices and induces a subgraph of G that contains a Hamil-
tonian cycle?

B theorem 21: minimum type selection is NP-complete.

Proof. We have minimum type selection ∈ NP, as a solution can easily be
guessed and verified. The reduction function to prove hardness creates a
family SG = {S1,S2, . . . ,Sn } such that each vector vj ∈ Si encodes an edge
that is directed from vi to some other node. The number of components of
each such vector is (n2−n)/2+ 2n+ 1. Each vector is composed of two main
blocks. The first block contains one bit for each pair of nodes. Such a bit
is 1 if the vector encodes an edge between the corresponding (unordered)
pair of nodes. The second block contains 2n more bits – two consecutive
bits for each node in G. If the edge is coming from vi, then the two bits

3.3 node set systems 45

corresponding to vi are 01, and 10 if it is going to vi. Finally, a 0 is always
the last bit. This reduction can easily be implemented by a logarithmic
space machine. Intuitively, the second block ensures that we obtain a set
of disjoint cycles that cover all nodes, and the first block ensures that every
cycle contains at least three nodes.

The minimum type selection instance is now fully defined by (SG,n+ 1).
Let G belong to partition into hamiltonian subgraphs. In this case, there
is a set of disjoint cycles with at least three nodes each that cover all nodes.
For every node vi, there is an edge of a cycle that leaves vi. For each vi, pick
the vector encoding this edge from Si. Now, we count the distinct column
vectors in the emerging matrix. Since each node is left by exactly one edge
and reached by exactly one edge of the cycles, each column vector of the
second block contains exactly one 1. Hence, there are exactly n distinct
column vectors in the second block. Moreover, for each pair vi, vj of nodes,
at most one of the two edges (vi, vj) and (vj, vi) is used. This implies, that
each column vector in the first block contains at most one 1 as well. Finally,
the last column vector is always the 0-vector leading to n+ 1 distinct column
vectors altogether. Concluding, (SG,n+ 1) ∈ minimum type selection.

Now, assume (SG,n+ 1) ∈ minimum type selection. Note, that the only
way of choosing n vectors from the sets in S such that there are no more
than n+ 1 unique column vectors is by choosing them in such a way that
each column in the second block contains exactly one 1. This is due to the
fact that each vector from Si contains 01 at the according spot for vi. Hence,
the minimum of distinct column vectors in the second block is n. With the
additional 0-vector we have a total of n+1 distinct column vectors. If vectors
are chosen such that a column vector contains two 1s, then the number of
distinct column vectors is at least n+ 2. Hence, we are able to choose edges
such that each node is left and reached exactly once each. Moreover, each
cycle must contain at least three vertices. If there was a cycle containing
only two nodes, then there would be a column in the first block containing
two 1s which again would generate too many distinct columns.

Refer to the following Example 2 to see how the reduction works with a
concrete input.

B example 2: The reduction function described in the proof of Theorem 21

transforms the partition into hamiltonian subgraphs instance

v3

v2v1

to the minimum type selection instance (S = {S1,S2,S3 }, 4) with

S1 = { 1000110000 }, S2 = { 1001001000, S3 = { 0010010010,

0010001100 }, 0101000010 }.

The gray edge is represented by the gray bit vector. Without the gray edge,
the graph cannot be partitioned into Hamiltonian subgraphs. In this case,
the set S3 contains just one element, and there are only the two possible
matrices

46 min-cut set systems

M1 =

1000110000

1001001000

0010010010

 and M2 =

1000110000

0010001100

0010010010

 .

Both these matrices clearly have more than 4 distinct columns. If the gray
edge does exist, then a possible choice of vectors allows the matrix

M3 =

1000110000

0010001100

0101000010

 .

Each column in M3 contains one 1. The matrix thus contains exactly 4

distinct columns.

We will revisit the complexity of the problem min-cut minimum type

selection in Chapter 4. We will see similar examples of problems that are
encoded in the sets of all min-cuts of a network in Subsection 3.4.2 of this
chapter starting on page 49.

3.4 edge set systems

This section deals with a quite similar question as the last section: Given a
set E, is there a network N such that E(N) = E? And what properties does
E(N) have? Recall that E(N) is the set of all B edge set systems

EB(N) =
{
E(S, T) | (S, T) is a B-min-cut in N

}
.

Moreover, we will apply the same kind of encoding problems in the min-
cuts of networks as we have seen it at the end of the last section. Interest-
ingly, this gives rise to a framework in which we analyze multiple problems
related to flow network and their min-cuts.

When considering an edge set system E and the question whether a net-
work exists with E(N) = E, we make the assumption that no pair of edges
belonging to E shares a common node. This way, no information about the
network N is revealed. This is equivalent to assigning unique labels to the
edges and then defining the edge cut set of a min-cut to contain the labels
of the corresponding edges.

For the node set systems, we noted in Corollary 18 that in the 2-terminal
case, it does not matter whether we consider directed or undirected net-
works – the sets of all node set systems are equivalent. This, however, is not
the case for edge set systems as there is an edge set system for which there
is a directed network but no undirected network.

B lemma 22: The set of all edge set systems for undirected networks is a true
subset of the set of all edge set systems for directed networks.

Proof. Clearly, the set of all edge set systems for undirected networks is a
subset of all edge set systems for directed networks. It remains to be shown
that there is an edge set system E, such that E(N) = E for some directed
network N, but for all undirected networks N ′, we have E(N ′) 6= E. Let
E =

{
{ e1, e2 }, { e2, e3 }, { e3, e4 }

}
, and let N be the network

3.4 edge set systems 47

s

u

v

t

e1

e2

e5

e3

e4

with unit capacity on every edge. We easily verify that E(N) = E.
The set of all networks N with E(N) = E can be split into two classes

– those whose max-flow DAG is the above network N and those whose
max-flow DAG is the following network N ′:

s

u

v

t

e3

e4

e5

e1

e2

However, there exists no undirected network N ′′ with E(N ′′) = E such
that the N ′′

d = N or N ′′
d = N ′. This implies that there is no undirected

network for the given edge set system E.

3.4.1 The 2-Terminal Case

The task to construct an s-t network for a given edge set system E is already
surprisingly challenging. We describe necessary conditions that an edge set
system E must fulfill in order to allow a network N with E(N) = E. One
quite obvious one is that an edge set system cannot contain two sets such
that one is a true subset of the other, as this violates the requirement of the
cut to be a min-cut. In the following, we will generalize this observation.
For that, we need the symmetric difference A∆B of two sets, i. e., A∆B =

(A− B) ∪ (B−A). We say that an edge set system E has the ∆-property if
there are three sets e1, e2, e3 ∈ E with e1∆e2 ⊆ e3. Note that if e1 ⊆ e2,
then e1∆e2 ⊆ e2. Hence, the ∆-property generalizes the subset relation in
the appropriate sense.

B lemma 23: Let E be any set system. If E has the ∆-property, then there is
no network N with E(N) = E.

Proof. Let us assume that there is a network N with E(N) = E, and that
there are sets e1, e2, e3 ∈ E with e1∆e2 ⊆ e3. If one of these sets is a subset
of another, then clearly there is no corresponding network. If e1, e2 are
disjoint, then e1∆e2 = e1 ∪ e2, and thus both e1 and e2 are subsets of e3.
Hence, e1, e2 are not disjoint and not subsets of each other.

We know the max-flow DAG in combination with µ stores the same infor-
mation about E as N. Knowing this, we now switch to the max-flow DAG
Nd and exploit the fact that every min-cut cuts every s-t path in Nd exactly
once. The edges in e1 ∩ e2 can be augmented to become a min-cut by either
adding the edges of e1 − e2 or of e2 − e1 to it. This means that all s-t paths
not cut by e1 ∩ e2 are cut by the edges of e1 − e2 and are also cut by the
edges of e2 − e1. This implies, that e3 cuts at least one s-t path twice and
hence cannot be a min-cut.

From a node set system perspective, the source sides of two min-cuts
either contain each other or they are crossing min-cuts. This can easily be
detected if the min-cuts are represented as node sets. In the case of edge
sets, this is not so easy. In fact, it is impossible to determine whether two

48 min-cut set systems

min-cuts are crossing min-cuts. This even holds for three min-cuts. To any
pair of crossing min-cuts belong four min-cuts. Lemma 24 allows us to
detect whether four given edge sets belong to four min-cuts belonging to a
pair of crossing min-cuts.

A possible approach is to keep thinking in terms of node set systems even
though an edge set system is given. This edge set systems has to consist of
edges that connect nodes in a way that we understand and which has been
described in the previous section.

If two min-cuts S1,S2 are crossing min-cuts, i. e., S1 − S2 6= ∅ and S2 −

S1 6= ∅, then they induce two more min-cuts S1 ∩ S2 and S1 ∪ S2 by the
submodularity property. The resulting four min-cuts associated with such
a crossing can be identified from an edge set system as described in the
following lemma.

B lemma 24 (crossing min-cut edge sets): Four min-cut edge sets
E0,E1,E2,E3 with I = E0 ∩ E1 ∩ E2 ∩ E3 correspond to the four min-cuts
induced by two crossing min-cuts if, and only if,

• the intersection graph of {E0 − I,E1 − I,E2 − I,E3 − I } is the C4 and

• no edge set contains an element that is not contained in any other edge
set.

Proof. Suppose we have two crossing min-cuts S ∪ X1 and S ∪ X2 with dis-
joint X1,X2 and let R be V − S− X1 − X2. By the submodularity, we also
have the min-cuts S and S ∪ X1 ∪ X2. By Lemma 20, there are no edges
connecting X1 and X2. These four min-cuts represented by the cut edges
are

E(S) = E(S,X1)∪ E(S,X2)∪ E(S,R) , (54)

E(S∪X1) = E(S,X2)∪ E(X1,R)∪ E(S,R) , (55)

E(S∪X2) = E(S,X1)∪ E(X2,R)∪ E(S,R) , and (56)

E(S∪X1 ∪X2) = E(X1,R)∪ E(X2,R)∪ E(S,R) . (57)

With I = E(S,R) it can easily be verified, that the intersection graph of
{E0 − I,E1 − I,E2 − I,E3 − I } is the C4. Moreover, no edge set contains any
edges that are not contained in any of the other three sets.

Conversely, suppose we are given a set of four edge sets E0,E1,E2,E3 with
I = E0 ∩ E1 ∩ E2 ∩ E3 such that no edge set contains an edge that is not
contained in any other edge set and such that the intersection graph of
{E0− I,E1− I,E2− I,E3− I } is the C4. Without loss of generality, we assume
that E0 ∩ E2 − I = ∅ and E1 ∩ E3 − I = ∅. Note, that for such a set of sets,
we have E0 − E1 = E3 − E2, E0 − E3 = E1 − E2, E2 − E1 = E3 − E0, and
E2−E3 = E1−E0. We will now construct a network based on a multi-graph
consisting of the nodes V = { s, x1, x2, t } and the edges E = E0 ∪E1 ∪E2 ∪E3.
For this, set

(s, t) = I , (58)

(s, x1) = E0 − E3 , (59)

(s, x2) = E0 − E1 , (60)

(x1, t) = E2 − E1 , and (61)

(x2, t) = E2 − E3 . (62)

This multi-graph can be turned into a graph by expanding each node to
a clique of appropriate size and infinitely high capacities.

3.4 edge set systems 49

Now, the capacity of the edges in Ei is set to 1/|Ei|. The capacity of the
network hence is 2. The set of all min-cuts is { s }, { s, x1 }, { s, x2 }, { s, x1, x2 },
and the according edge sets are

E({ s }) = I∪ (E0 − E3)∪ (E0 − E1) = E0 , (63)

E({ s, x1 }) = I∪ (E0 − E1)∪ (E2 − E1) (64)

= I∪ (E3 − E2)∪ (E3 − E0) = E3 , (65)

E({ s, x2 }) = I∪ (E0 − E3)∪ (E2 − E3) (66)

= I∪ (E1 − E2)∪ (E1 − E0) = E1 , and (67)

E({ s, x1, x2 }) = I∪ (E2 − E1)∪ (E2 − E3) = E2 . (68)

Even if four min-cuts are identified that belong to a pair of crossing min-
cuts, it is not clear which two of these four min-cuts are the crossing ones.
There are two possible pairs for this and these are the two sets whose inter-
section is I.

For any three min-cuts E1,E2,E3 corresponding to min-cuts whose source
sides S1,S2,S3 satisfy S1 ⊂ S2 ⊂ S3, we know that the min-cut E2 in be-
tween the other two has to cut every edge that E1 as well as E3 cut.

B lemma 25: Let N be a network with three min-cuts S1,S2,S3 such that
S1 ⊂ S2 ⊂ S3. Then E1 ∩ E3 ⊂ E2.

Proof. Suppose e ∈ S1 ∩ S3. This implies that one endpoint of e is in S1 and
the other endpoint of e is in S3. Hence, e ∈ S2 as well. Moreover, if E1 ∩
E3 = E2, then either E1 = E3 (which is a contradiction to the assumption)
or E2 is a true subset of E1 and E3 which contradicts the minimality of E1

and E3.

This, however, does not imply the other direction. If the given edge set
system E allows a network N with E(N) = E and if it contains three sets
E1,E2,E3 with E1 ∩ E3 ⊂ E2, then these three sets do not necessarily corre-
spond to three min-cuts S1,S2,S3 with S1 ⊂ S2 ⊂ S3.

Even though these considerations may lead to an efficient algorithm to
construct a network from a given edge set system, this will not give us a
short characterization as we obtained it for node set systems.

3.4.2 Problems Encoded in Edge Set Systems

As we are unable to fully settle the question of when a set system E allows
a network N with E(N) = E, we further explore these set systems using
new ideas, but keep focusing on 2-terminal networks. We consider new
variants of well-known set problems by encoding them in flow networks. In
particular, set problems whose instances contain a set or a set system S of
subsets of a universe U are encoded by a directed s-t flow network N such
that the universe is the set of all min-cut edges, i. e., edges that are cut by
some min-cut, and S is E(N). The obtained new problem remains its name
with a preceding min-cut. hitting set, for example, is turned into min-cut

hitting set this way.
Clearly, not every set system can be encoded by a flow network due to the

restrictions imposed by min-cuts. This makes the problem potentially easier.
On the other hand, a network may have up to exponentially many min-cuts

50 min-cut set systems

in the number of nodes. The problem of determining the number of min-
cuts in a network is #P-complete [71]. This makes the problem potentially
harder. In the following we will analyze which effect dominates.

This research could also be done by encoding the problem in the min-
cuts of graphs instead of flow networks. However, the number of min-cuts
in a graph with n nodes is at most quadratic in n [21] and the set of all
min-cuts is easily computed in P. A possible approach to achieve this is by
computing for every pair of nodes s, t the s-t min-cut capacity. Then, we list
all min-cuts for those pairs with the minimum min-cut capacity. As these
can be at most polynomial many, the total runtime is polynomial. Encoding
set systems in graph min-cuts thus puts severe restrictions on the sets but
does not provide any kind of succinctness. Hence, we will only consider
encoding sets and set systems in flow networks.

For some problems, like partition or subset sum, whose input does not
contain set systems, but simply a set, we do not observe any of the two
described effects if encoded in networks. Such a set cannot be encoded
succinctly. Moreover, there are no restrictions – any set can be encoded in a
flow network. Hence, these problems remain NP-complete. We demonstrate
this with the following three problems.

B problem 4 (min-cut partition):

Input: A network N.
Question: Is there a subset E ′ of the min-cut edges such that the sum

of their capacities equals the sum of the capacities of the min-cut
edges not in E ′?

B problem 5 (min-cut subset sum):

Input: A network N and a number k.
Question: Is there a set of min-cut edges whose sum of capacities is

k?

B problem 6 (min-cut subset product):

Input: A network N and a number k.
Question: Is there a set of min-cut edges whose product of capacities

is k?

B theorem 26: The problems

• min-cut partition,

• min-cut subset sum, and

• min-cut subset product

are NP-complete.

Proof. For membership, a short solution is easily guessed and verified for
each of the problems. For each problem, let A = {a1,a2, . . . } be the set and
w : A → N the weight function of the input. An instance of the original
version can be reduced to the min-cut variant by creating a network with
source s, sink t, nodes s1, s2, . . . , s|A|, and t1, t2, . . . , t|A|. The source is
connected to each si and each ti is connected to the sink by an edge of large
capacity to ensure that none of these edges are min-cut edges. Moreover,
each si is connected to ti by an edge of capacity w(ai). This can be done
using only logarithmic space.

This network has a unique min-cut that contains as many edges as there
are elements in the input of the instance. Clearly, this instance is a member

3.4 edge set systems 51

id flow network

(i,y,1) (i,y,2)

(i+ 1,x,1)
t

(i+ 1,x,2)

and flow network

(i,y,1) (i,y,2) (i,z,1) (i,z,2)

(i+ 1,x,1)
t

(i+ 1,x,2)

or flow network

(i,y,1) (i,y,2) (i,z,1) (i,z,2)

(i+ 1,x,1)
t

(i+ 1,x,2)

Figure 10: As part of the reduction from mlcve2 to banf, each edge from gate (i,y)
to gate (i+ 1, x) is replaced by one of the depicted flow networks depend-
ing on the type of (i+ 1, x) where each edge has capacity 4k−i.

of the min-cut variant if, and only if, the original instance is a member of
the original problem.

As already mentioned, min-cut variants are more interesting, when the in-
put of the original problem contains a set system rather than just a set. Those
problems change their complexity and do not stay NP-complete. Whether
they are easier or harder than before depends on whether the min-cut vari-
ant involves counting the number of min-cuts. If it does not, the complex-
ity is P-completeness, otherwise it is the complexity of deciding whether a
given network N contains at least k min-cuts, where k is part of the input
as well.

The following is a list of NP-complete problems whose instances contain
a set system and are listed by Garey and Johnson [34]. Many of these prob-
lems belong to the 21 NP-complete problems listed by Karp [50]. We will
define their min-cut variants and analyze the complexity of the new prob-
lems.

• minimum cover,

• hitting set,

• set packing,

• set splitting,

• test set, and

• set basis.

In 1982, Goldschlager, Shaw, and Staples [35] proved that deciding if the
max-flow value of an s-t network is odd is P-complete. In 1990, a result
by Lengauer and Wagner [58] followed showing that deciding whether the
max-flow value of a network is at least k is P-complete as well. We will
often use this to show P-completeness of some min-cut variants. Formally,
Lengauer and Wagner [58] define the problem as

B problem 7 (binary acyclic network flow (banf)):

Input: A network N = (V ,E, { s, t }, c), where G = (V ,E) is a DAG,
and a natural number m.

Question: Is the value of a max-flow in N at least m?

52 min-cut set systems

The completeness proof, that will be presented shortly, makes use of cir-
cuits. A circuit is a tuple C = (V ,E, v0, in) where (V ,E) is a DAG, v0 ∈ V ,
and in a function. The elements of V are referred to as gates. In- and out-
degree of a gate are called fan-in and fan-out. Every gate with fan-in 0 is an
input gate and every gate with fan-out 0 is an output gate. The function in
maps every input gate to { 0, 1 }. Typically, there are the four gate types and,
or, not, and id with indegrees 2, 2, 1, 1, respectively. These gates compute
the conjunction, disjunction, negation, and identity of their inputs. Gate
v0 ∈ V is a particular output gate. The classical circuit value problem

(cvp) asks for the output value of v0 for a given circuit and is P-complete
[56]. For a more detailed introduction to circuits, refer to the book Limits to
Parallel Computation: P-Completeness Theory by Greenlaw, Hoover, and Ruzzo
[37] or Introduction to Circuit Complexity: A Uniform Approach by Vollmer [80].

The problem mlcve2 is equal to cvp restricted to circuits that are mono-
tone (the not gate is forbidden), each gate has fan-out either 0 or 2, and
(V ,E) is layered meaning that V can be partitioned into layers { 0, 1, . . . , k }
such that for each edge (u, v), u belongs to layer 0 6 i < k if, and only if,
v belongs to layer i+ 1. Despite these restrictions mlcve2 is P-complete as
well [58]. The proof of this result does not make any use of cycles making
it possible to restrict the input to directed acyclic networks. We present this
proof as we will later adjust it for our needs. The unrestricted version of
this problem allowing cycles is P-complete, too [37, 58].

B theorem 27 (from [58]): banf is P-complete.

Proof. The problem is in P, as a max-flow can be computed in polynomial
time. To show hardness, a log-space reduction from mlcve2 is given. The
nodes V of the circuit C are made up of nodes (i, xj) with 0 6 i 6 k and
j > 0, where (i, xj) is the jth node on the ith layer. Let C(i, xj) be the value of
the according gate (recall that the input of the circuit is fixed by the function
in). Now, a flow network N = (V ′,E ′, { s, t }, c) is constructed from C as
follows:

1. A source s and a sink t are added, and every gate (i, x) in C is replaced
with the two nodes (i, x, 1) and (i, x, 2).

2. If in(0, x) = 1, then an edge is added from s to (0, x, 1) with capacity
4k. Otherwise, there is an edge from s to (0, x, 2) with capacity 4k.

3. Each edge from gate (i,y) to gate (i+ 1, x) is replaced by a small flow
network. Depending on whether (i+ 1, x) is an id, or, or and gate,
the edge is replaced by the id, or, or and flow network, respectively,
depicted in Figure 10.

4. There is an edge of capacity 1 from all nodes (k, x, 1) and (k, x, 2) to t.

Let D be the number of input gates in C. Lengauer and Wagner [58] show
that for every flow f in N we have |f(s)| = f(t) 6 D4k. Moreover, for every
max-flow fm in N the flow reaching (i, x, 1) and (i, x, 2) with respect to fm
is

fm,in(i, x, 1) = 4k−i if C(i, x) = 1 and (69)

fm,in(i, x, 2) = 4k−i if C(i, x) = 0 . (70)

3.4 edge set systems 53

We exploit this fact and link the value of the max-flow to the value of the
circuit by deleting the edge from (k, x0, 2) to t in N. This way, we have

c(N ′) =

D4k if C(k, x0) = 1 and

D4k − 1 otherwise .
(71)

Consequently, C ∈ mlcve2 if, and only if, (N ′,D4k) ∈ banf.

We will use the idea of the just presented proof to demonstrate the P-
completeness of some of our min-cut variants. For this, we define the net-
work N ′

d to be the max-flow DAG Nd of N with a few alterations. We
introduce a distance function w(e) = 1 for each edge in Nd. Then, we add
the edge (v,u) for every edge (u, v) and set w(v,u) = 0. The following
lemma might seem a little unnatural at the moment, but will prove very
helpful soon.

B lemma 28: Given a network N and a number k, the following two decision
problems are P-complete:

• Is the length of the longest s-t path in Nd at least k?

• Is the length of the shortest s-t path in N ′
d with respect to w at most

k?

Proof. The problems are in P as we can find the max-flow DAG Nd and
compute the longest path in it in polynomial time, and we can compute N ′

d

and find the shortest path in it in polynomial time.
For hardness, we use a log-space reduction similar to the one used in

the proof of Theorem 27. We utilize the fact that the value of a max-flow
is linked to the value of the circuit and attach a new path from t to the
new sink t ′ of length 3k+ 3 and width D4k. This can easily be done using
logarithmic space.

If C(k, x0) = 1, then the value of a maximum s-t ′ flow is D4k and the
t-t ′ path is saturated by every max-flow. By Lemma 9, the length of the
shortest s-t ′ path in Nd is thus quite long – in particular longer than 3k+ 2.
If C(k, x0) = 0, then the network’s capacity is Dk4 − 1 and the t-t ′ path is
contracted to obtain Nd. Now, the shortest s-t ′ path in Nd is at most 3k+ 2.
These considerations remain valid even if the length of a path is measured
with respect to the described distance function w.

Similar considerations hold for the length of the longest path in Nd. The
longest path is at least of length 3k+ 3 if, and only if, C(k, x0) = 1.

In the following, we take a look at some basic problems related to net-
works, min-cuts, and max-flows to gain some intuition for the hardness of
such problems, before finally turning our attention towards the complexity
of the new min-cut variants of set problems.

B problem 8 (min-cut):

Input: A flow network N and a natural number k.
Question: Is there an s-t cut in N of capacity at most k?

As banf is P-complete, it is no big surprise that min-cut is P-complete as
well due to the Max-Flow Min-Cut Theorem (Theorem 1, page 20). While
checking whether a given set of edges defines a min-cut is P-complete, check-
ing whether a given flow is a max-flow is NL-complete. This has also been
noted by Papadimitriou [67].

54 min-cut set systems

Gate input Max-flow DAG of Max-flow DAG of

and network or network

0,0

(i,y,1) (i,y,2) (i,z,1) (i,z,2)

(i+ 1,x,1)
t

(i+ 1,x,2)

(i,y,1) (i,y,2) (i,z,1) (i,z,2)

(i+ 1,x,1)
t

(i+ 1,x,2)

0,1

(i,y,1) (i,y,2) (i,z,1) (i,z,2)

(i+ 1,x,1)
t

(i+ 1,x,2)

(i,y,1) (i,y,2) (i,z,1) (i,z,2)

(i+ 1,x,1)
t

(i+ 1,x,2)

1,0

(i,y,1) (i,y,2) (i,z,1) (i,z,2)

(i+ 1,x,1)
t

(i+ 1,x,2)

(i,y,1) (i,y,2) (i,z,1) (i,z,2)

(i+ 1,x,1)
t

(i+ 1,x,2)

1,1

(i,y,1) (i,y,2) (i,z,1) (i,z,2)

(i+ 1,x,1)
t

(i+ 1,x,2)

(i,y,1) (i,y,2) (i,z,1) (i,z,2)

(i+ 1,x,1)
t

(i+ 1,x,2)

Figure 11: Depending on the input to each of the local replacement networks of Fig-
ure 10, every max-flow saturates the solid edges, no max-flow saturates
the grayed out edges, and some max-flows saturate the dashed edges,
while other max-flows do not saturate the dashed edges. In the not de-
picted id network, either the edges leaving (i,y, 1) or the edges leaving
(i,y, 2) are saturated, depending on the input. By Lemma 9, the according
max-flow DAGs consist of the solid edges, while dashed and grayed out
edges are contracted.

3.4 edge set systems 55

B problem 9 (min-cut edge set):

Input: A flow network N and a set of edges E ′.
Question: Is E ′ a min-cut in N?

B lemma 29: min-cut edge set is P-complete.

Proof. For membership, check if E ′ is a cut by deleting the edges E ′ in N and
then checking if there is an s-t path. If there is none, check if the capacity of
E ′ is equal to the min-cut capacity.

For hardness, we reduce banf to min-cut edge set via a log-space func-
tion. The original instance (N,k) is altered to obtain network N ′ by adding
a new sink t ′ and a new edge from the original sink t to t ′ of capacity k.
Now

(
N ′, { (t, t ′) }

)
∈ min-cut edge set if, and only if, there is a flow of

value at least k in N.

B problem 10 (max-flow):

Input: A flow network N and a function f : V × V → R.
Question: Does f describe a max-flow in N?

B lemma 30: max-flow is NL-complete.

Proof. To verify that f is a flow, we check for every edge whether the skew
symmetry (2) holds and whether its flow is at most its capacity. Next, we
need to check for every node except for source and sink if the flow conser-
vation is fulfilled. Since iterated addition is in TC0 [80], the problem stays
in NL. If f is a flow but not a max-flow, then there is an augmenting path in
the residual network Nf of width at least 1. We non-deterministically guess
successively the next node of this path and adjust the flow value accordingly,
checking the flow constraints as we go. If there is such a path, then f is not
a max-flow and hence we reject, otherwise we accept, which can be done
due to coNL = NL [45, 78].

For hardness, we alter a reachability instance (G, s, t) via a log-space
machine by declaring G as a flow network N with unit capacity on all edges
and with source s and sink t. Now (N, f0) ∈ max-flow where f0 assigns a
zero to every edge if, and only if, t is not reachable from s. Since coNL = NL,
we are done.

We now define a first set of min-cut variants following the pattern dis-
cussed earlier.

B definition 6: For a given s-t network N,

• a min-cut hitting set H ⊆ E for N is a set of edges such that for all
E ′ ∈ E(N) we have H∩ E ′ 6= ∅,

• a min-cut set packing P ⊆ E(N) for N is a set of pairwise disjoint min-
cuts,

• a min-cut cover C ⊆ E(N) for N is a set of min-cuts such that every
min-cut edge is cut by some min-cut in C, and

• a min-cut edge packing for N is a set of min-cut edges, such that no two
edges of this packing are cut by the same min-cut.

B problem 11 (min-cut hitting set):

Input: A directed s-t network N and a natural number k.
Question: Is there a min-cut hitting set H for N of size at most k?

56 min-cut set systems

B problem 12 (min-cut set packing):

Input: A directed s-t network N and a natural number k.
Question: Is there a min-cut set packing of size at least k?

B problem 13 (min-cut minimum cover):

Input: A directed s-t network N and a natural number k.
Question: Is there a min-cut cover of size at most k?

B problem 14 (min-cut edge packing):

Input: A directed s-t network N and a natural number k.
Question: Is there a min-cut edge packing of size at least k?

Describing some of these problems as linear programs reveals some inter-
esting properties. Recall the cover-packing dualities mentioned on page 26.
There are several well-known cover-packing dualities. One of them is the
duality between hitting set and set packing. hitting set can be viewed
as a kind of covering problem where each set S in the given set system S is
covered if, and only if, an element e ∈ U is picked with e ∈ S. The corre-
sponding ILP with variables xe ∈ { 0, 1 } for each e ∈ U can be formulated
as ILP (72). Finding the dual to its LP relaxation and restricting it to integer
solutions yields ILP (73).

hitting set: (72)

min
∑
e∈U

xe

s. t.
∑
e∈S

xe > 1, ∀S ∈ S

xe ∈ { 0, 1 }, ∀ e ∈ U .

set packing: (73)

max
∑
S∈S

xS

s. t.
∑

S: e∈S

xS 6 1, ∀ e ∈ U

xS ∈ { 0, 1 }, ∀S ∈ S .

Clearly, ILP (72) is a covering ILP and ILP (73) is a packing ILP. As hitting

set and set packing are NP-complete, an optimal solution to ILP (72) does
not always have the same value as an optimal solution to ILP (73). If the LP
relaxations always had the same optimum value, then P = NP.

Very similar observations can be made for another pair. Vazirani [79]
describes a duality between set cover and a certain packing problem. To
formulate set cover as an ILP, we need for each set S of the given set system
S a variable xS which is allowed to be either 0 or 1. Variable xS is supposed
to be 1 if, and only if, set S is picked in the cover. The constraints need to
make sure that for each element e of the universe U, there is at least one
picked set that contains it. The corresponding ILP thus is ILP (74). Again,
we identify the dual to its LP relaxation and restrict it to integer solutions
to obtain ILP (75).

set cover: (74)

min
∑
S∈S

xS

s. t.
∑

S: e∈S

xS > 1, ∀ e ∈ U

xs ∈ { 0, 1 }, ∀S ∈ S .

element packing: (75)

max
∑
e∈U

ye

s. t.
∑
e∈S

ye 6 1, ∀S ∈ S

ye ∈ { 0, 1 }, ∀ e ∈ U .

A solution to the ILP (75) can be interpreted as a packing of elements
e ∈ U. Two elements may be in a packing if, and only if, there is no set that

3.4 edge set systems 57

a

b

c

{a,b }

{a,c }

{b,c }

Figure 12: Consider the universe U = {a,b, c } and the set system S ={
{a,b }, {a, c }, {b, c }

}
. In the above graph the elements of U are on the

left, and the sets in S on the right. There is an edge between an element
e ∈ U and a set S ∈ S if, and only if, e ∈ S. For this instance, all smallest
hitting sets are of size 2 (for example {a,b }), while all largest set packings
are of size 1. Similarly, the largest element packing may pack 1 element,
while the smallest set cover needs 2 sets. Hence, even though the LP-
relaxations are dual to each other, the optimal integer solutions do not
have the same value. This is consistent to the fact that the considered
problems are all NP-complete. The min-cut variants of these problems,
however, are P-complete, and the optimal values of the corresponding
ILPs are equal.

contains both of them. Considering the min-cut variant of this problem, it
translates to finding as many min-cut edges as possible such that no two of
them are cut by the same min-cut. This is min-cut edge packing.

The above formulated ILPs of the same pair do not always have the same
value. For an example, see Figure 12. We will shortly see, that the min-cut
variants of the just described problems restrict the instances to those where
the optimal values of the corresponding ILPs are equal. This is consistent
with the fact that these min-cut variants are P-complete as we will see next.

B lemma 31 (representation lemma): Let N be any network and Nd

its max-flow DAG. Then,

1. E ′ ⊆ E(Nd) is a maximum min-cut set packing (a minimum min-cut
cover) for Nd if, and only if, E ′′ =

{
µ(E ′) | E ′ ∈ E ′ } is a maximum

min-cut set packing (a minimum min-cut cover) for N, and

2. E ′ ⊆ Ed is a minimum min-cut hitting set (a maximum min-cut ele-
ment packing) for Nd if, and only if, it also is for N.

Proof. Let E1,E2 ∈ E(Nd) be two distinct min-cuts in Nd. There is an edge
(u, v) ∈ E1 ∩E2 such that u is on the source side of both cuts and v is on the
sink side of both cuts if, and only if, u is on the source side and v is on the
sink side of µ(E1) and of µ(E2). Hence, E1 and E2 are disjoint if, and only if,
µ(E1) and µ(E2) are. This implies that E ′ is a min-cut set packing for Nd if,
and only if, E ′′ is a min-cut set packing for N. Due to the bijection between
E(N) and E(Nd) shown in Lemma 14 on page 37, we know that N and Ne

contain the same number of min-cuts. The claim follows.
Concerning the min-cut covers, we assert that a set of min-cuts E ′ ⊆

E(Nd) covers the edge set E ′ in Nd if, and only if, E ′′ = {µ(E ′) | E ′ ∈ E ′ }
covers the edges {µ(e) | e ∈ E ′ } in N. Since µ partitions the edges of N, we
see that all min-cut edges are covered in N by E ′′ if, and only if, all edges
are covered in Nd by E ′. The first part of the claim thus is proven.

For the second part, we claim that H ⊆ Ed is a min-cut hitting set for Nd

if, and only if, it is a min-cut hitting set for N. For any min-cut E ′ ∈ E(Nd)

and any edge (u, v) ∈ Ed, we have (u, v) ∈ E ′ if, and only if, (u, v) ∈ µ(E ′).
Hence, a min-cut E ′ in Nd is hit by an edge e if, and only if, µ(E ′) is hit by e

58 min-cut set systems

as well. An edge e ∈ E−Ed either is not a min-cut edge at all or hits exactly
those min-cuts hit by µ(e).

Finally, two edges e1, e2 ∈ Nd are cut by the same min-cut E ′ ⊆ E if,
and only if, e1, e2 are also cut by the same min-cut µ(E ′) in N. Again, any
edge e ∈ E− Ed is either not cut by any min-cut or cut by exactly the same
min-cuts as some edge e ′ ∈ Nd.

This lemma allows us to solve many min-cut variants on the max-flow
DAG instead of the original graph. Now we are ready to show the complex-
ity of these min-cut variants.

B lemma 32: min-cut hitting set ∈ P.

Proof. Due to the Representation Lemma, we may solve the problem using
the max-flow DAG Nd, which can be efficiently computed. We obtain a
new network N ′

d from Nd with distance function w by setting w(u, v) = 1,
adding (v,u), and setting w(v,u) = 0 for each edge (u, v) in Nd. We claim
that the size of the smallest min-cut hitting set is equal to the length of a
shortest s-t path with respect to w in N ′

d. For this, we show that for any
shortest s-t path ps in N ′

d with respect to w, H = { e ∈ ps | w(e) = 1 }

is a smallest min-cut hitting set for Nd. It suffices to show that a set Eh

is a min-cut hitting set if, and only if, there is an s-t path p in N ′
d with

Eh ⊇ { e ∈ p | w(e) = 1 }.
Suppose that Eh ⊆ Ed is a min-cut hitting set. For the sake of contradic-

tion, we assume there is no s-t path p in N ′
d with { e ∈ p | w(e) = 1 } ⊆ Eh.

Let S be the set of all nodes reachable from s in N ′
d via edges in Eh or

edges e with w(e) = 0. By assumption, t /∈ S. Moreover, all edges of Nd

with exactly one endpoint in S leave S. To see this, suppose (u, v) is an
edge with u /∈ S and v ∈ S. Then, there is a counterpart (v,u) in N ′

d with
w(v,u) = 0, and hence v ∈ S by definition – such an edge thus does not
exist. By Lemma 16 (page 38), S is a min-cut in Nd, and the corresponding
min-cut edge set is not hit by Eh contradicting the fact that Eh is a min-cut
hitting set.

Now let Eh ⊆ Ed be a set of edges such that there is an s-t path p in N ′
d

with { e ∈ p | w(e) = 1 } ⊆ Eh. We will prove that Eh is a min-cut hitting set
by induction over p0 =

∣∣{ e ∈ p | w(e) = 0 }
∣∣. If p0 = 0, then p is an s-t path

in Nd which clearly is cut by every min-cut. We may now assume that the
statement is true for an arbitrary but fixed p0.

Now let p ′
0 = p0 + 1 and p an s-t path in N ′

d. Any min-cut (S, T) of Nd

cuts p as p is an s-t path in N ′
d. So assume that (S, T) cuts an edge (u, v)

of N ′
d with w(u, v) = 0. This means that (u, v) does not exist in Nd, but

(v,u). As (S, T) is still a min-cut in Nd, we know that v ∈ S and u ∈ T . This
implies that (S, T) cuts every s-u path and every v-t path. These contain at
most p0 edges of weight 0 and hence, we have proven that Eh indeed is a
min-cut hitting set.

B lemma 33: min-cut set packing ∈ P.

Proof. We claim that the size of the largest set packing is also equal to the
length of a shortest s-t path ps in N ′

d with respect to w as described in the
proof of Lemma 32. We first give an algorithm that runs on Nd to find such
a min-cut set packing and then show that there is no larger one.

1: S← { s }

2: P ← {E(S) }

3: while there is no (u, t) with u ∈ S do

3.4 edge set systems 59

a

b

c

d

{a,b }

{a,c }

{b,c }

{b,d }

Figure 13: For the system S =
{
{a,b }, {a, c }, {b, c }, {b,d }

}
, the LPs (72), (73), (74),

and (75) have integer optima. Still, there is no network N with E(N) = S.
By Lemma 23, the set system has the ∆-property rendering it impossible
to find such a network.

4: for all (u, v) with u ∈ S and v /∈ S do

5: S← S∪ { v }
6: end for

7: while there is an edge (u, v) with u /∈ S and v ∈ S do

8: S← S∪ {u }

9: end while

10: P ← P ∪ {E(S) }
11: end while

This algorithm produces a set P of pairwise disjoint min-cuts. Every edge
set in P is a min-cut since the set S from which it is derived contains s

but not t, and every edge with exactly one endpoint in S leaves S. This is
ensured in lines 7–9. In this loop, t cannot be added to S as there is no
outgoing edge from t in Nd. Further, let E(Si) be the set added to P in the
ith iteration where the first set added is S0. Then S contains exactly those
nodes v reachable in N ′

d from s via a path of length at most i with respect
to w because all nodes added in lines 4–6 have a distance to s increased by
1 compared to the previous step. Moreover, lines 7–9 add all those nodes
to S whose distance to S is 0. Therefore, E(Si) contains exactly those edges
(u, v) with w(u, v) = 1 to S where v is exactly at a distance of i from s in N ′

d

with respect to w. Hence, |P| = |{ e ∈ ps | w(e) = 1 }|.
To see that there is no greater packing, notice that the min-cuts of any

maximum min-cut packing cut all edges in { e ∈ ps | w(e) = 1 } for any
shortest s-t path ps in Nd. By the last lemma, this is a min-cut hitting set.
Since every min-cut cuts an edge of this min-cut hitting set, there cannot be
more disjoint min-cuts than |P|.

B theorem 34: min-cut hitting set and min-cut set packing are P-com-
plete.

Proof. We know from Lemma 32 and Lemma 33 that both problems are in P.
Even more, we know that the sizes of the minimum min-cut hitting set and
the maximum min-cut set packing are equal to the length of the shortest
s-t path in a modified max-flow DAG N ′

d. By Lemma 28 we know that
deciding whether this is at most k is P-complete.

B corollary 35: min-cut hitting set and min-cut set packing are dual
to each other.

Figure 14 shows an example of the just discussed problems and their
duality. This duality implies that our encoding restricts hitting set and
set packing to those instances, where the solutions to the ILPs (72) and (73)

60 min-cut set systems

N :

s

u v

w x

t

1

2

2

2

2

1

1

N ′
d :

s

u v

w x

t

1
0

1
0

1
0

1
0

1
0

1
0

1
0

Figure 14: Let N be the depicted network such that Nd = N. N ′
d is Nd with the

weight function w as described in the proof of Lemma 32. The smallest
min-cut hitting set is

{
(s,u), (x, t)

}
, and the largest min-cut set packing

is also of size 2. This corresponds to the length of the shortest s-t path
in N ′

d, which is s-u-x-t. The smallest min-cut cover needs 5 min-cuts as
the longest path in N is of length 5. Moreover, the largest min-cut edge
packing has also size 5. Note, that a min-cut hitting set needs not to be an
s-t path in N or part of one. But clearly, every s-t path in N is a min-cut
hitting set.

(page 56) are equal. There are, however, instances where the solutions to
these ILPs are equal, but that cannot be encoded in flow networks. For such
a network, see Figure 13.

The problem min-cut hitting set is closely related to the following ques-
tion: If k capacity units can be spent to increase edge capacities of existing
edges of a network N, does this suffice to increase the capacity of N by at
least one unit? The answer is yes if, and only if, (N,k) is a positive instance
of min-cut hitting set. This holds at least if all capacities are natural num-
bers. In that case, we can increase the capacity of every edge of a smallest
min-cut hitting set by 1 unit to increase the capacity of the network by 1

unit.
If we allow rational numbers or fixed precision real numbers, it is a bit

more technical. This is due to the fact that spending a capacity unit on each
of the edges of a smallest min-cut hitting set is not guaranteed to increase
the capacity of the entire network by 1 unit. Imagine, for example, the very
simple case of a source s and a sink t that are joined by a path of length 2.
The first edge has capacity 1/2, while the second edge has capacity 1. The
smallest min-cut hitting set consists of the first edge, but still, 1 capacity
unit does not suffice to increase the capacity of the network by 1.

Hence, we first find the lowest common denominator, say d, and then see
that if k · d capacity units can be spent, then this suffices to increase the
capacity of N by at least d if, and only if, (N,k) ∈ min-cut hitting set. In
the just mentioned example, we have d = 1/2. If we are given 1/2 capacity
units to spend on edges, then this certainly suffices to increase the network’s
capacity by 1/2 unit.

But what if we consider a variation of this problem and try to maximize
the amount by which we can increase the capacity of N? Given a network
N and a number k, what is the maximum amount by which the network
capacity can be increased? We define the following decision version of this
problem:

B problem 15 (network capacity augmentation (nca)):

Input: A directed s-t network N and two numbers k, l > 0.
Question: Is it possible to increase the capacity of existing edges by

a total of k capacity units such that the capacity of N is increased
by l units?

3.4 edge set systems 61

In order to increase the capacity of a network, we need to increase the
capacities of edges belonging to a min-cut hitting set, in particular a minimal
min-cut hitting set (or MCHS), i. e., a min-cut hitting set such that no subset
is a min-cut hitting set as well. Doing this, we increase the capacity of the
network by at most the minimum increase over all edges of that MCHS.
Hence, we will only increase all edges of an MCHS by the same amount.
For any MCHS H, by increasing H by k capacity units, we refer to increasing
the capacity of each edge in H by k units. This costs us k · |H| capacity units.
After H has been increased by k capacity units, H may or may not still be
a min-cut hitting set. Let ∆H be the amount such that increasing H by ∆H

causes H to be no min-cut hitting set anymore, but increasing H by less than
∆H does not. We call ∆H the saturation point of H. We say that the min-cut
hitting set H is saturated when increased by ∆H. If an MCHS cannot be
saturated, then ∆H = ∞.

After having saturated an MCHS H, we may increase a former max-flow
by a total of ∆H units via augmenting paths using the edges of H and possi-
bly more edges. There are edges that are saturated by all new max-flows but
have not been saturated by all old max-flows (if this was not the case, then
H is not saturated). Recall that by Lemma 9 (page 34), these are exactly the
new min-cut edges. The set of all these new min-cut edges after saturating
H is denoted by EH. Two MCHS H1,H2 interfere if EH1

∩ EH2
6= ∅. If N is a

network and H an MCHS in N, then let N(H) be network N after saturating
H.

Let H be the set of all smallest min-cut hitting sets for a given network
with at least two distinct min-cut hitting sets, and H1,H2 ∈ H any distinct
min-cut hitting sets. Then, there are the following two cases.

• EH1
∩ EH2

= ∅. In this case, saturating either one of the two min-cut
hitting sets leaves the other one unchanged. Hence, if H1 is saturated
first, then H2 remains unchanged, and vice versa.

• EH1
∩ EH2

6= ∅. Saturating one of the two min-cut hitting sets lowers
the saturation point of the other. As H1 and H2 interfere, the satura-
tion point of one of them is lowered by just the amount of flow that
can additionally flow through EH1

∩ EH2
after having saturated the

other one. Again, this is symmetric.

It can be concluded, that the total amount of capacity units needed to
saturate two min-cut hitting sets is independent of the order in which we
saturate them. By induction, the same holds true for any set of min-cut
hitting sets. Moreover, no new min-cut hitting sets emerge, they have existed
before but may not have been smallest min-cut hitting sets. Hence, in order
to maximally increase the capacity of a network N with k available capacity
units, we start with a minimum min-cut hitting set, saturate it, and repeat
until all k units are spent – see Algorithm 2 for pseudocode.

B theorem 36: Algorithm 2 is correct and runs in polynomial time.

Proof. The correctness follows from the considerations above. For the run-
time, we make the following observations. If the currently smallest min-cut
hitting set cannot be saturated, then all capacity units are spent on it and the
algorithm terminates. If it can be saturated, then at least one more edge be-
comes a min-cut edge (while all former min-cut edges stay min-cut edges).
After at most O(|E|) iterations, every edge is a min-cut edge and the remain-
ing available capacity units can be completely spent on the smallest min-cut

62 min-cut set systems

N :

s

u v

w

t

1

1

2

1

1 1

2

N(H1) :

s

u v

w

t

2

1

2

1

1 1

2

N(H2) :

s

u v

w

t

1

3

2

1

1 1

2

Figure 15: Network N has a capacity of 2 and the only min-cut is { (s,u), (s,w) }.
There are two smallest min-cut hitting sets, namely H1 = { (s,u) } and
H2 = { (s,w) }. The saturation points are ∆H1

= 1 and ∆H2
= 2. Moreover,

we have EH1
= { (u, v), (u, t), (v, t) } and EH2

= { (u, v), (u, t), (w, t), (v, t) }.
N(H1) is N after saturating H1, and N(H2) is N after saturating H2. EH1

and EH2
are represented as dashed edges in the appropriate networks.

These are the edges that have not been saturated by all max-flows in N,
but are now saturated by all max-flows. Saturating either one of the two
min-cut hitting sets lowers the saturation point of the other by 1 unit,
as this is the amount of flow that is additionally passing through EH1

∩
EH2

, i. e., through the edges (u, v), (u, t), and (v, t). The amount already
flowing through these three edges is 1 in N for any max-flow, and it is 2

in N(H1) and N(H2) for any max-flow. As the saturation point of H1 is 1,
this min-cut hitting set ceases to exist after H2 has been saturated, while
H2 is still a min-cut hitting set in N(H1) – now with a saturation point of
1.

Algorithm 2: Algorithm to maximally increase the capacity of a network by increas-
ing the capacity of existing edges by a total of k units.

input : A network N and a number k > 0.
output : Network N ′, a maximally augmented version of N.

1: N ′ ← N

2: while k > 0 do

3: H← a smallest min-cut hitting set in N ′

4: cb ← c(N ′)
5: c ′(e)←∞ for all e ∈ H

6: ∆H ← c(N ′) − cb
7: if ∆H = ∞ then

8: c ′(e)← c ′(e) + k/|H| for all e ∈ H

9: return N ′

10: else

11: d← min{∆H, k/|H| }

12: c ′(e)← c ′(e) + d for all e ∈ H

13: k← k− |H| · d
14: end if

15: end while

16: return N ′

3.4 edge set systems 63

hitting set. Since the runtime of each iteration can be bounded by some
fixed polynomial p in |N|, the runtime is bounded by O

(
|E| · p(|N|)

)
.

B theorem 37: nca is P-complete.

Proof. nca is in P by Theorem 36. Hardness is shown by a reduction from
min-cut hitting set. For hardness, we observe that (N,k) belongs to min-
cut hitting set if, and only if, (N,k, 1) ∈ nca – at least if all capacities are
natural numbers. If this is not the case, then we scale the capacities of N to
obtain natural numbers.

Now, if (N,k) ∈ min-cut hitting set, then there is a min-cut hitting set
of size k. Increasing the capacity of each of these k edges by 1 unit suffices
to increase the capacity of the network by 1 unit. Similarly, if the capacity
of the network can be increased by increasing the capacity of k edges, then
there is a min-cut hitting set of size k.

B lemma 38: min-cut minimum cover ∈ P.

Proof. Due to the Representation Lemma, we solve the problem using Nd.
We show that the size of a minimum min-cut cover is equal to the length of
a longest s-t path pl in Nd. By Lemma 15, no min-cut cuts more than one
edge of pl. Thus, in order to cover all min-cut edges, we need at least |pl|
min-cuts. To see that we do not need more either, consider the following
algorithm running on Nd that constructs a min-cut cover C of size |pl|.

1: S← { s }

2: C← {S }

3: while S 6= V − { t } do

4: V ′ ← { v | (u, v) ∈ E(S,V − S) and (w, v) ∈ Ed ⇒ w ∈ S }

5: S← S∪ V ′

6: C← C∪ {S }
7: end while

We show that C is a min-cut cover for Nd. First, every set S in C is a min-cut
since s ∈ S, t /∈ S, and every edge with one endpoint in S leaves S. This is
due to line 4 – we never add a node v to S incident to an edge (w, v) with
w /∈ S. Moreover, for every edge (u, v) ∈ Ed, the algorithm will eventually
add u, but not v, to S. Hence, for every edge there is a min-cut cutting it.

The above algorithm finds |pl| min-cuts since in each step it adds one
node of pl to S, beginning with only the source s.

B lemma 39: min-cut edge packing ∈ P.

Proof. We show that the largest number of edges in an edge packing is equal
to the length of a longest s-t path pl in Nd. Again Lemma 15 implies that
no two edges are cut by the same min-cut. Hence, the largest edge packing
has at least |pl| edges. At the same time, we know that each min-cut cuts pl
leading directly to the fact that there cannot be more than |pl| edges in an
edge packing. It thus suffices to check the length of a longest s-t path in Nd

which can be done in polynomial time since Nd is a DAG.

B theorem 40: min-cut minimum cover and min-cut edge packing are
P-complete.

Proof. We have just shown that these problem are in P and that the size of a
minimum min-cut cover and the size of a maximum min-cut edge packing
are equal to the length of a longest s-t path in Nd. We have already seen in
Lemma 28 that this problem is P-complete.

64 min-cut set systems

Again, we observe that the LPs (74) and (75) are restricted to solutions
with equal optima. Refer to Figure 14 on page 60 for examples.

B corollary 41: min-cut minimum cover and min-cut element packing

are dual to each other.

Again, while the requirement that an edge set system can be encoded
in the min-cuts of a flow network imposes a restriction on these set sys-
tems, the restrictions are not characterized by this. There are set systems
for which min-cut minimum cover and min-cut element packing have
integer solutions, but that cannot be encoded in a network, see Figure 13.

Next, we focus on the complexity of another group of problems. While
min-cut set splitting originates from encoding the well-known NP-com-
plete problem set splitting in networks in the described manner, the others
are listed due to their close relationship to this problem.

B problem 16 (min-cut set splitting):

Input: A directed s-t network N.
Question: Is there a partition of the set of all min-cut edges into two

subsets E1 and E2 such that no min-cut is entirely contained in
either E1 or E2?

B problem 17 (single edge min-cut):

Input: A directed s-t network N.
Question: Is there a min-cut in N cutting just one edge?

B problem 18 (maximum min-cut edge set):

Input: A directed s-t network N and a natural number k.
Question: Is there a min-cut in N cutting at least k edges?

B problem 19 (minimum min-cut edge set):

Input: A directed s-t network N and a natural number k.
Question: Is there a min-cut in N cutting at most k edges?

B problem 20 (minimum min-cut edge path-cover):

Input: A directed s-t network and a natural number k.
Question: Is there a min-cut edge path-cover of size at most k, i. e., is

there a set P of at most k paths such that for every min-cut edge
e there is a p ∈ P with e ∈ p?

B problem 21 (min-flow):

Input: A directed s-t flow network N with edge demands and a
natural number k.

Question: Is there a min-flow of value at most k?

Two of these problems can be quite easily log-space reduced to each other.
It holds that N is in single edge min-cut if, and only if, (N, 1) is in minimum

min-cut edge set. Due to the connectedness assumption, there is no empty
min-cut. The following lemma states that there is another equivalence.

B lemma 42: min-cut set splitting = single edge min-cut.

Proof. If there is a min-cut set splitting for N, then clearly there is no min-
cut in N cutting just one edge. So suppose there is no min-cut in N that
cuts just one edge. Pick an arbitrary s-t path p in Nd. Every min-cut cuts
p exactly once according to Lemma 15, i. e., every min-cut contains exactly
one edge of this path. Since there is no min-cut cutting just one edge, no
min-cut is entirely contained in this path. Thus, the edges in p on the one
hand and all other edges on the other hand are a min-cut set splitting.

3.4 edge set systems 65

We have already seen on page 22 how to compute a flow of minimum
value in a network with edge demands. The algorithm that has been de-
scribed there is a polynomial time algorithm. But P is also the lower bound
for the complexity of min-flow.

B theorem 43: min-flow is P-complete.

Proof. min-flow clearly is in P. For hardness, we reduce banf. The given
banf instance (N,k) is altered to obtain a min-flow instance (N ′,k) by
degrading the terminal t of N to a non-terminal. Then, we add a new
terminal t ′ and connect t to t ′ via an edge of infinite capacity and a lower
bound of k. All other edges are assigned a lower bound of 0 and maintain
their capacity. Now, there is a max-flow in N of value at least k if, and only
if, there is a min-flow of value at most k in N ′.

B theorem 44: min-cut set splitting and single edge min-cut are P-com-
plete.

Proof. The problems are in P by the algorithm described in Lemma 42.
For hardness, we reduce banf to single edge min-cut via a log-space

function. The network from the instance (N,m) is altered by adding the
edge (s, t) with capacity 1. Then, a new node t ′ and a new edge (t, t ′)
with capacity m+ 1 is added. This yields network N ′ and the single edge

min-cut instance N ′.
If (N,m) /∈ banf, then there is a min-cut of capacity at most m− 1 in N

and a min-cut of capacity at most m in N ′. Hence, the edge (t, t ′) is not
a min-cut. Moreover, every min-cut contains at least two edges due to the
(s, t) edge. Therefore, N ′ /∈ single edge min-cut.

If (N,m) ∈ banf, then there is a min-cut of capacity at least m in N and
of capacity m+ 1 in N ′. Hence, (t, t ′) represents a min-cut and concluding,
N ′ ∈ single edge min-cut.

B lemma 45: minimum min-cut edge set is P-complete.

Proof. For the given network N, compute Nd, and let N̂d be network Nd

where all edges e have capacity |µ(e)|. Now, let E ′ be a min-cut in N̂d with
E ′ = E(S, T). Since E ′ is a min-cut in N̂d, we know that all edges with
exactly one endpoint in S leave S. Hence, (S, T) is also a min-cut in Nd.
The min-cut in N cutting the least number of edges thus cuts exactly c(E ′)
edges.

To show hardness, we use the fact that N ∈ single edge min-cut if, and
only if, (N, 1) ∈ minimum min-cut edge set.

B theorem 46: maximum min-cut edge set is P-complete.

Proof. To determine the min-cut that cuts the largest number of edges, we
first compute the max-flow DAG Nd = (Vd,Ed, { s, t }, cd) of N. Then, we set
the capacity of each edge e in Nd to |µ(e)| to obtain N ′ = (Vd,Ed, { s, t }, c ′).
If (S, T) is a min-cut in Nd, then the capacity of (S, T) in N ′ tells us how
many edges are cut by the corresponding min-cut in N. We want to maxi-
mize this number now.

To do this, we make use of the Min-Flow Max-Cut Theorem (page 23).
We construct a new network N ′′ = (Vd,Ed, { s, t }, l, c ′′) with edge demands
by setting l(e) = c ′(e) and c ′′(e) = ∞ for all e ∈ Ed. Now recall the
definition of the cut capacity for networks with edge demands (Equation (13)
on page 23). With all capacities set to infinity, it implies that the capacity of
a cut (S, T) in N ′′ is maximum if c(T ,S) = 0, i. e., if there is no edge from

66 min-cut set systems

T to S. Under this restriction,
∑

e∈E(S,T) l(e) is maximized. For N ′, this is
equivalent to maximizing

∑
e∈E(S,T) c(e) under the restriction that (S, T) is

a min-cut in Nd. As the sought value is equal to the value of a min-flow, we
now compute a min-flow f ′′ for N ′′ as described on page 22. The largest
number of edges being cut by any min-cut in N is now |f ′′|.

For hardness, we transform a banf instance (N,m). Let E be the edges in
N. Multiply the capacity of each edge with |E|+ 1. Then, add a new sink
t ′ and |E|+ 1 new nodes vi. The original sink t is connected to each vi and
each vi is connected to t ′ with an edge of capacity m.

Now assume that (N,m) ∈ banf, meaning that c(N) > m. This implies
that c(N ′) > m(|E|+ 1) and (N ′, |E|+ 1) hence belongs to maximum min-cut

edge set.
If (N,m) /∈ banf, then c(N) < m and c(N ′) < m(|E|+ 1) and consequently

(N ′, |E|+ 1) /∈ maximum min-cut edge set.

B theorem 47: minimum min-cut edge path-cover is P-complete.

Proof. To find a minimum min-cut edge path-cover, we compute the max-
flow DAG Nd = (Vd,Ed, { s, t }, cd) and then add edge demands to this
network in order to obtain N ′ = (Vd,Ed, { s, t }, l, c ′) with l(e) = |µ(e)| for
each edge e. The capacity c ′(e) of each edge is set to infinity. We then find
a min-flow f ′ in N ′. Observe that on every s-t path in N ′, there is an edge
e with f ′(e) = |µ(e)| and thus an edge just fulfilling the lower bound on
the flow. If there was an s-t path p without this property, then we could
subtract a path flow along p of value 1 from f ′ to obtain a flow of smaller
value than f ′, which is not possible since f ′ is a min-flow.

By a slight modification of the algorithm for the flow decomposition, we
can decompose the flow f ′ into a set of path flows each of value 1. From this
set, we can easily construct a min-cut edge path-cover for the original net-
work N. Moreover, there is no smaller such path-cover as f ′ is of minimum
value in N ′.

For hardness, we observe that the smallest min-cut edge path-cover con-
sists of as many paths as the min-cut with the largest min-cut edge set cuts
edges. As maximum min-cut edge set is P-hard, this holds true for mini-
mum min-cut edge path-cover as well.

B corollary 48: There is a duality between the number of the fewest paths
needed to cover all min-cut edges of a network and the number of min-cut
edges cut by the min-cut cutting the most edges.

This corollary is remindful of Menger’s Theorem [62]. It states that the
maximum number of edge-disjoint paths is equal to the minimum number
of edges cut by a min-cut, for unweighted networks. It later was generalized
as the famous Min-Cut Max-Flow Theorem.

For the problems considered so far, we cannot only decide in polynomial
time whether there is a solution of size k, but also compute a solution of
optimal size in polynomial time. Moreover, they all have solutions – there
always is a min-cut hitting set, a min-cut set cover, and so on. The difficulty
is to identify the optimal one. We now investigate min-cut minimum test

set and will show that there may be no solution at all regardless of k. These
cases, however, can easily be identified.

We call a min-cut (S, T) for N a test for the distinct edges e1, e2 ∈ E, if
|{ e1, e2 } ∩ E(S, T)| = 1. A test set S for N is a set of min-cuts such that for
every pair of min-cut edges in N, there is a test in S.

3.4 edge set systems 67

B problem 22 (min-cut minimum test set):

Input: A directed s-t network N and a natural number k.
Question: Is there a test set for N of size at most k?

B lemma 49: For a network N, there is no test set at all if, and only if, there
is an edge e in the corresponding max-flow DAG Nd with |µ(e)| > 1.

Proof. Assume e is such an edge with e1, e2 ∈ µ(e). Then, a min-cut in N

cuts e1 if, and only if, it cuts e2. Hence, there is no test for (e1, e2).
Now, if there is no test set for N, then there are two min-cut edges

(u, v), (u ′, v ′) such that a min-cut in N cuts (u, v) if, and only if, it cuts
(u ′, v ′). Suppose there is a min-cut separating u and u ′, i. e., assume there
is a source side S of a min-cut in N with u ∈ S and u ′ /∈ S. Let Ŝ be
the source side of some min-cut in N that cuts (u, v) and (u ′, v ′) such that
u,u ′ ∈ S. Then, Ŝ ∩ S is a test for (u,u ′) as u ∈ Ŝ ∩ S and u ′ /∈ Ŝ ∩ S.
This implies that there is no min-cut in N separating u and u ′. The same
holds true for v and v ′. So by definition, u,u ′ belong to the same SCC in
Nf, and v, v ′ belong to the same SCC in Nf with respect to any max-flow f,
represented by u and v. Therefore, we have |µ(u, v)| > 1.

If there is a test set and pl is the longest s-t path in Nd, then every test set
needs at least |pl|− 1 many tests as otherwise there would be two min-cut
edges not cut by any test. On the other hand, a test set of size |Ed|(|Ed|−1)/2

is always sufficient. We may obtain it by choosing a test for each pair of
edges in Nd. As every solution is thus at most of polynomial size, we have
min-cut minimum test set ∈ NP.

B theorem 50: min-cut minimum test set is P-hard.

Proof. The proof idea is to reduce the question whether there is an edge e

with |µ(e)| > 1 in Nd to the question whether (N,∞) is a positive instance
of min-cut minimum test set. For this, observe that the max-flow DAG of
the network created by the reduction in the proof of Theorem 27 on page 52

contains only edges e with |µ(e)| = 1. This is due to the fact that there are
no two solid edges e1, e2 in Figure 11 on page 54 such that every min-cut
cuts e1 if, and only if, it also cuts e2. We can, however, artificially introduce
such edges by adding a new node v, removing the edge from (k, x0, 2) to t,
adding an edge from (k, x0, 2) to t with capacity 1/2, an edge from (k, x0, 2)
to v with capacity ∞, and an edge from v to t with capacity 1/2. Now,
((k, x0, 2), t) is cut by a min-cut if, and only if, (v, t) is, too. This, in turn,
happens if, and only if, the value of the original circuit is 0. The needed
manipulations can easily be done using only logarithmic space.

We believe that min-cut minimum test set is P-complete as most of the
presented problems, i. e., we believe there is an efficient algorithm to find a
smallest min-cut test set. However, we can only prove the shown bounds.

The next set of problems involves the counting of min-cuts. The first one
of these is a min-cut variant of the well-known problem set basis. The other
problems are listed due to their close relationship to this one.

B problem 23 (min-cut set basis):

Input: A directed s-t network N and a natural number k.
Question: Is there a set E ′ of at most k min-cuts in N such that for

each min-cut E ′ there is a subset of E ′ whose union is exactly
E ′?

68 min-cut set systems

B problem 24 (min-cut minimum number):

Input: A directed s-t network N and a natural number k.
Question: Does N have at most k distinct min-cuts?

B problem 25 (min-cut maximum number):

Input: A directed s-t network N and a natural number k.
Question: Does N have at least k distinct min-cuts?

B problem 26 (min-cut minimum edge cut number):

Input: A directed s-t network N, an edge e, and a natural number
k.

Question: Are there at most k distinct min-cuts in N cutting e?

B problem 27 (min-cut maximum edge cut number):

Input: A flow network N, an edge e, and a natural number k.
Question: Are there at least k distinct min-cuts in N cutting e?

B lemma 51: min-cut maximum number and min-cut maximum edge cut

number are equivalent with respect to polynomial time reductions.

Proof. First, we reduce min-cut maximum number by simply adding the
edge (s, t) with capacity 1 to the network N to obtain N ′. If E is the set
of min-cuts in N, then {E ′ ∪ { (s, t) } | E ′ ∈ E } is the set of min-cuts in N ′.
Hence, there are at least k min-cuts in N if, and only if, there are at least k
min-cuts in N ′ cutting (s, t).

To reduce min-cut maximum edge cut number, we first check if k = 0.
If so, we transform the instance to (N, 0) which also is a positive instance.
If k > 0 and if e is no min-cut edge, then (N, k, e) is transformed to a
negative instance of min-cut maximum number. If k > 0 and e is cut by
some min-cut, then we transform the instance to the new instance (N ′,k),
where N ′ is obtained from N lowering the capacity of e by 1 unit. This way,
all min-cuts cutting e are preserved (with a capacity one unit less), while
all other min-cuts are now no min-cuts anymore. Moreover, every cut that
was not a min-cut still is not a min-cut. Hence, (N,k, e) belongs to min-
cut maximum edge cut number if, and only if, (N ′,k) belongs to min-cut

maximum number.

B lemma 52: min-cut set basis = min-cut minimum number.

Proof. Suppose (N,k) ∈ min-cut set basis. Thus, there is a set E ′ of k

min-cuts in N such that for each min-cut E ′ there is a subset of E ′ whose
union is exactly E ′. Since no min-cut is a subset of another min-cut (com-
pare to Lemma 23, page 47), it follows that E ′ contains all min-cuts and
consequently, there are at most k min-cuts in N.

If (N, k) ∈ min-cut minimum number, then there are at most k min-cuts
in N, and hence we can simply choose the set of all min-cuts as solution to
min-cut set basis.

min-cut minimum number is the decision version of the counting prob-
lem to determine the number of all min-cuts. This problem is #P-complete
[71]. The complexity of min-cut minimum number is unclear. It does not
seem to be in NP as it seems unlikely that a short proof can be guessed and
efficiently verified that there are no more than k distinct min-cuts. Rather,
we show membership in PP.

B lemma 53: min-cut maximum number ∈ PP.

3.4 edge set systems 69

Proof. We describe the construction of a Turing machine M that on input
(N,k) with N = (V ,E, { s, t }, c) starts a computation for each subset of E and
additionally starts 2|E| − 2k + 1 computations that accept unconditionally.
The machine checks for each subset of E whether it is a min-cut. If so, the
computation accepts. This machine has a total of 2|E|+1 − 2k+ 1 computa-
tions. The number of accepting paths is more than one half if, and only if,
at least k subsets of E are min-cuts.

If min-cut maximum number (Problem 25) is not only in PP, but also
hard for that complexity class, then the same result is implied for the other
four problems defined above. It follows for

• Problem 27 due to Lemma 51,

• Problem 26 since (N,k, e) belongs to Problem 27 if, and only if, (N,k+
1, e) does not belong to Problem 26, and the fact that PP is closed under
complement,

• Problem 24 since (N,k) belongs to Problem 25 if, and only if, (N,k+ 1)

does not belong to Problem 24, and again the fact that PP is closed
under complement, and

• Problem 23 due to Lemma 52.

We conjecture that all of these problem are PP-complete. To prove this,
we have tried to modify the reduction chain given by Provan and Ball [71]
to show #P-completeness of counting the min-cuts. Completeness for #P,
however, is defined with respect to Turing reductions and not many-one
reduction, as it is the case for PP. The reduction of [71] makes heavy use
of Turing reductions such that it seems unclear how to replace them with
many-one reductions.

Concluding this section, we can say that the complexity of the min-cut
variants we defined depends on whether the problem involves the counting
of min-cuts or not. The problems that do not all seem to be P-complete,
while the problems that do seem to be PP-complete. Earlier, we stated the
question which of the two effects on the complexity of our min-cut variants
outweighs. Is it the restriction to the encoded set systems that makes the
problems potentially easier or is it the fact that networks may quite suc-
cinctly encode huge set systems? From what we have learned, it depends
on the problem. For problems not involving the counting of min-cuts, the
restriction to the encoded set system outweighs. If a problem does involve
the counting of min-cuts, then, quite naturally, the succinctness is a more
important aspect than the restrictions to the set systems.

Even though we could ask many of the presented problems for multi-
terminal networks, we will not consider this generalization for edge set sys-
tems given the open problems for the 2-terminal case.

4M I M I C K I N G N E T W O R K S

Early multi-terminal problems deal with networks in which every node is a
potential terminal – an example is the problem of determining the min-cut
capacity for each pair of nodes mentioned on page 25. Gomory and Hu [36]
solved this problem in 1961, and even more: They showed how to construct
a tree that maintains the minimum s-t cut values for all pairs s, t ∈ V .

Mimicking networks are undirected networks whose concept has been in-
troduced by Hagerup et al. [40] in 1995. They took the idea of Gomory and
Hu one step further by maintaining the min-cut values for all non-trivial
terminal bipartitions. They generalized the concept of Gomory and Hu in
another way as well. The underlying multi-terminal networks distinguish
between terminals and non-terminals. In many network applications, we
are mainly interested in the networks’ behavior exhibited at terminal nodes.
In particular, we are interested in networks that have the same external flow
pattern (see page 18) as other networks and thus mimick their behavior.

B definition 7 (mimicking network , [40]): Two undirected multi-ter-
minal networks N1,N2 over the same terminal set T are mimicking networks
of each other if, and only if, FN1

= FN2
. N1 is a contraction-based mimicking

network (CBMN for short) of N2 if, and only if, N1 is a mimicking network
of N2 and the nodes of N2 can be partitioned such that merging the parts
yields N1.

The term contraction-based does not only refer to the contraction of edges,
but also to the merging unconnected nodes.

Applications for mimicking networks include those where a network can
be decomposed into smaller networks that are interconnected only by a
small number of nodes. By temporarily declaring these nodes to be ter-
minals, we may consider each part of the decomposition independently as
long as we make sure that the external flow pattern remains unchanged
– and this is exactly what mimicking networks do. This technique can be
put to good use in networks of bounded treewidth. For example, it allowed
Arikati, Chaudhuri, and Zaroliagis [5] to find an optimal solution to the all-
pairs min-cut problem in bounded treewidth networks. Also, for integrated
circuit layout problems a circuit (network) can be decomposed into smaller
circuits that are connected by pins (terminals).

Other problem areas, where decompositions are not applicable, may profit
from these considerations as well. Flow networks are used to model prob-
lems in a wide range of settings and in many these networks tend to get
larger and larger making computations more costly. A strategy to tackle
this problem is graph compression – a concept describing techniques to ob-
tain smaller networks that preserve key properties of the original graph.
Finding a smaller or even smallest mimicking network tackles this question.

This chapter starts off with a review of the results related to mimicking
networks in Section 4.1. This includes a closer look at the different types of
mimicking networks and results from the literature mainly comprising size
bounds for mimicking networks.

In Section 4.2 we prove that the unique min-cuts assumption is a restric-
tion. A family of networks Nk with k terminals is constructed such that Nk

has several min-cuts for most terminal bipartitions. By an extensive analysis

71

72 mimicking networks

of the flow capacities of all possible cuts we show that depending on which
nodes are merged one can arrive either at the minimum CBMN that has two
non-terminals left or at an irreducible CBMN of size exponential in k. Thus,
in this general setting a simple greedy implementation merging nodes if
they can be merged may produce solutions very far from optimality.

By slightly changing the edge capacities we can force either solution to
be the unique minimum CBMN. This implies that slight perturbations may
drastically change the topology and size of the minimum CBMN. We also
derive implications on the quality of so-called cut sparsifiers that approxi-
mately mimick the behavior of the original network with a limited number
of non-terminals [65].

In Section 4.3 we analyze the complexity of deciding whether a CBMN of
a given size exists without making the assumption that min-cuts are unique.
Since the described techniques to make min-cuts unique may increase the
size of a minimum CBMN greatly, all min-cuts need to be taken into account
to correctly find a smallest CBMN. This comes at the expense of increasing
the complexity of the problem.

We are first to consider this problem in a complexity theoretic way that
does not only derive upper bounds, but also lower bounds. It will be shown
that deciding whether a given network has a CBMN of a specific size is
coNP-hard and contained in ΣP

2 . We also investigate these questions in the
fixed-parameter setting. For the problem of deciding whether l nodes exist
that can be merged to one node, we prove tractability when parameterized
by the number of terminals.

Furthermore, we show that finding the smallest contraction-based mim-
icking network is equivalent to min-cut minimum type selection defined
in Chapter 3 on page 43 linking the question of the complexity to the diffi-
culties arising when describing the min-cut set systems.

In order to further understand the question of finding a minimum CBMN,
we carefully analyze this problem restricted to networks with 4 terminals in
Section 4.4. We pinpoint those cases causing the difficulty and hence give
starting points for further investigations.

4.1 review of mimicking networks

The key lemma for finding contraction-based mimicking networks is the
following lemma by Hagerup et al. [40].

B lemma 54 ([40]): N1, N2 over the same terminal set T are mimicking
networks of each other if, and only if, cN1,B = cN2,B for all B ∈ B.

If there are two nodes u, v such that for every B ∈ B there is a min-cut not
separating u and v, then u, v may be merged to obtain a contraction-based
mimicking network. Consider network N of Figure 16 on page 75. There are
two t1-min-cuts ({ t1 } and { t1,u }), two t2-min-cuts ({ t2 } and { t2, v }), and
one t3-min-cut ({ t3 }). Merging the pair t1,u maintains the min-cut values
and thus yields a contraction-based mimicking network.

When we first defined the multi-terminal network in Chapter 2, we said
that we assume a total order imposed over the terminals T. If there is an-
other network over the same set of terminals T, then we assume that the
same total order is imposed over it. We just defined mimicking networks
over the same set of terminals. However, networks may be mimicking each
other even if the terminal sets are not identical, but of equal size. In that
case a bijection is needed telling us which terminals correspond to each
other. Since mimicking networks are usually constructed from a given one,

4.1 review of mimicking networks 73

we may assume that both networks have the same terminal set. In the con-
text of computational complexity, however, we will also consider the case
where the terminal sets are not the same.

In order to clearly differentiate between the two kinds of mimicking net-
works described in the last definition, we will from now on refer to mimick-
ing networks as unrestricted mimicking networks. Contraction-based mimick-
ing networks of a given network N often are a true subset of unrestricted
mimicking networks. In particular, the smallest contraction-based mimick-
ing network often is larger than the smallest unrestricted mimicking net-
work. Network N ′′ of Figure 16 (page 75) is its own smallest contraction-
based mimicking network. We call such a network an irreducible contraction-
based mimicking network. There is, however, an unrestricted mimicking net-
work of N ′′ with no non-terminals at all – network N ′′′ of Figure 16.

Even though CBMNs are obtained by merging nodes, a CBMN is not
necessarily a minor of the original network. This is due to the fact that we
may merge nodes that are not joined by an edge. In particular, there are
networks whose smallest CBMN is not a minor of the original network.

The problem of finding mimicking networks with as few nodes as possi-
ble has recently experienced a renewed interest. Since a network may have
a vast number of non-terminals in comparison to the number of terminals,
this question is very natural. Research on mimicking networks has focused
on bounding the size of the smallest unrestricted mimicking network with
respect to the number k of terminals for arbitrary graphs and for restricted
classes, for example graphs with bounded treewidth. Since one has to con-
sider exponentially in k many cuts, a quite obvious upper bound for the size
of any smallest mimicking network for arbitrary networks is 22

k
as already

noted by Hagerup et al. [40]. Chambers and Eppstein [10] as well as Khan
and Raghavendra [52] noticed that the size bound can be reduced slightly to

2
(k−1
(k−1)/2

)
. They define a cluster to be a set of non-terminals not separated by

any min-cut and then show that many of the at most 22
k

clusters are empty.
For certain graph classes the size bound has been further improved. Net-

works of treewidth t have mimicking networks of size at most k 22
3(t+1)

,
which grows only linear in k, and for outerplanar networks (having tree-
width 2) the size bound can be improved to 10k − 6 as found by Chaud-
huri et al. [12] already in 2000. The best known lower bound for arbitrary
k-terminal networks is 2Ω(k), which has been established for a family of
bipartite graphs by Khan and Raghavendra [52] and Krauthgamer and Rika
[55]. Furthermore, for k 6 3 one can always find a mimicking network with
terminals only. For 4 6 k 6 5 at most one non-terminal is needed [12].

Khan and Raghavendra [52] and Krauthgamer and Rika [55] assume that
for every terminal bipartition there is a unique min-cut. We will refer to it as
the unique min-cuts assumption. It is argued that this can always be achieved
by slight perturbations of the edge capacities or by maintaining only those
min-cuts with, for example, smallest source side. Under this assumption,
Krauthgamer and Rika [55] show that planar networks have a mimicking
network of size O(k2 22k) and Khan and Raghavendra [52] present an algo-
rithm that always yields a contraction-based mimicking network of minimum
size. This algorithm runs in time polynomial in n and 2k. This is done by
computing the by assumption unique min-cut for each terminal bipartition
and then merging all nodes that are not separated by any of these min-cuts.
Thus, the problem of deciding whether a CBMN of size k exists for a given
network with unique min-cuts is in FPT when parameterized over the num-
ber of terminals.

74 mimicking networks

By relaxing the goal of exactly preserving the min-cut values and allowing
no non-terminals to do so, one arrives at vertex sparsifiers or cut sparsifiers
(these terms are used synonymously). This notion has first been introduced
by Moitra [64] in 2009 and was quickly followed by several publications
by Englert et al. [27] as well as Leighton and Moitra [57]. Ankur Moitra
dedicated his PhD thesis to this topic [66]. Again, one may differentiate
between unrestricted and contraction-based cut sparsifiers. Formally, the
quality (sometimes called ratio) of a cut sparsifier is α if the min-cut values
of corresponding terminal bipartitions in the original network and the cut
sparsifier are within a factor of α of each other. Mimicking networks are thus
cut sparsifiers with quality 1. In 2012, Chuzhoy [13] expanded the notion of
cut sparsifiers to include those that do contain non-terminals. These are the
cut sparsifiers we will refer to. Without any additional non-terminals the
best possible approximation ratio achievable has been shown to be between
Ω(log1/4 k) and O(logk/ log log k) [11, 65]. A constant ratio can be obtained
by cut sparsifiers with additional non-terminals the number of which is
polynomially related to the edge capacities of the terminals [13].

While the size bounds are usually proven for unrestricted mimicking net-
works and are hence also applicable for contraction-based mimicking net-
works, the only known algorithm for actually computing a mimicking net-
work is the algorithm by Khan and Raghavendra [52] computing contraction-
based mimicking networks. From a complexity point of view, this algorithm
is only an upper bound. It is unknown whether there exists a more efficient
algorithm.

By a slight change of our network family Nk in dependence of a parame-
ter δ, we can show that for arbitrary δ > 0 one can find a smaller δ ′ > 0 such
that Nk has a cut sparsifier with 2 non-terminals and ratio at most 1+ δ, but
every contraction-based cut sparsifier achieving approximation ratio 1+ δ ′

requires exponentially in k many non-terminals.

4.2 the unique min-cuts assumption

This section is dedicated to the unique min-cuts assumption. To assume
that there is a unique min-cut for each terminal bipartition may be realistic
if each edge has a unique capacity. In that case, it may be highly unlikely
that the sum of different edge sets add up to the same value. In particular
if the capacities are all unique and irrational, the probability for this is 0.
In many real applications, however, many edges will have equal capacities.
This, in turn, quickly leads to multiple min-cuts.

We could deal with this by perturbing each edge’s capacity by a small
random amount. While this does make the min-cuts unique, it also changes
the network. One could think that this is equivalent to randomly choosing
a min-cut for each terminal bipartition. However, not every choice of min-
cuts corresponds to a random perturbation. This is implied by Lemma 19

(page 42), as two min-cuts of different terminal bipartitions may induce
another min-cut for the same terminal bipartition leading to multiple min-
cuts. But this is impossible after the random perturbation. So what if the
optimal choice of min-cuts is one that does not correspond to a random
perturbation?

We will show in this section that there is a network whose smallest CBMN
contains two non-terminals, but small random perturbations may change
the network in such a way that the smallest CBMN is exponential in the
number of terminals.

4.2 the unique min-cuts assumption 75

N :

t1

t3

t2

u v

3

2

3

1 1

N ′ :

t1

t3

t2

w1

2

1

3

N ′′ :

t1

t3

t2

w

3

2

3

N ′′′ :

t1

t3

t2

1 1

2

Figure 16: Network N allows the three CBMNs to its right where N ′′ and N ′′′ are
irreducible, and N ′′′ clearly is the minimum CBMN. When picking one
min-cut for each terminal bipartition and then merging all nodes not sepa-
rated by any picked min-cut, one does not necessarily reach an irreducible
CBMN. In this example, picking { t1,u }, { t2 }, and { t3 } for N yields N ′

which can be further reduced by contractions to obtain N ′′′. Another
effect that can be witnessed is that merging some nodes may yield an ir-
reducible CBMN that is not minimum in size and thus a local minimum
– N ′′ is such a dead end. Theorem 59 on page 86 states that a minimum
CBMN cannot be missed when first merging non-terminals with termi-
nals only. This rule here leads to N ′′′. Moreover, N ′′ is its own smallest
CBMN, while N ′′′ is the smallest unrestricted mimicking network for N ′′.

Before getting to this result, we need some more tools. The following
lemma is a direct consequence of Lemma 54 and a well-known fact.

B lemma 55: Two nodes u, v of a network N can be merged to obtain a
CBMN N ′ of N if, and only if, for every B ∈ B there is a B-min-cut that
does not separate u, v.

As a consequence, each CBMN of N corresponds to a specific choice of
a min-cut for each terminal bipartition. This is formally described by the
function γ : B→ 2V such that for every B ∈ B,

(
γ(B), V −γ(B)

)
is the chosen

B-min-cut. Two nodes (u, v) are in relation with respect to the equivalence
relation Rγ if there is no B ∈ B with |γ(B)∩ {u, v }| = 1, which would mean
that the nodes are separated by some chosen cut. Merging all nodes of the
same equivalence class to a single node yields a CBMN that might or might
not be an irreducible CBMN as there still may be contractible nodes left, see
Figure 16. A minimum CBMN for a given network N is a CBMN with the
smallest number of nodes among all CBMNs for N.

Note that if there are two pairs of nodes u,u ′ and v, v ′ such that each
pair of nodes can be merged in the sense of Lemma 55, then merging one
pair may render the other pair unmergeable. Node pairs t1,u and nodes
u, v of network N in Figure 16, for example, both can be merged, but still
we cannot merge all three of these nodes. Figure 19 on page 91 is another
example of such a situation with two pairs of nodes that do not share a
common node.

As the example in Figure 16 shows, the selection of min-cuts, may have
an influence on the size of the irreducible CBMN obtained. Thus, it is not
clear how to construct a minimum CBMN – a simple greedy strategy does
not work. Knowing this, a natural question is how far away from optimality
an arbitrary choice of min-cuts can lead. Note that there may be several
minimum CBMNs as Figure 19 on page 91 illustrates.

We will show that the difference in size of irreducible CBMNs for the same
network can be exponential in the number of terminals. For this purpose, a
family of networks N = {Nk | k > 4 } with k terminals will be constructed.
Let us first consider even k and let K =

(
k

k/2

)
.

76 mimicking networks

N4 :

t4

t3

t2

t1

u6

u5

u4

u3

u2

u1

w2

w1

1

1

1

1

1

1

1

1

1

1

1

1 1+ε

1+ε

1+ε

1+ε

1+ε

1+ε

1+ε

N ′
4 :

t4

t3

t2

t1

u

u3

u2

u1

w

1

1

1

1

2

1

2

1

2

3+ 3ε

1+ε

1+ε

1+ε

N ′′
4 :

t4

t3

t2

t1

x2

x1

3

1

2

1

2

1

2

1+ε

Figure 17: N4 is an example of our network family N. Its nodes V4 consist of ter-
minals T4 = { t1, t2, t3, t4 }, non-terminals U4 = {u1,u2, . . . ,u6 }, and
non-terminals W4 = {w1,w2 }. The edges and their capacities are
shown according to the described construction. Now, N4 allows the ir-
reducible CBMN N ′

4 with 5 non-terminals (by merging u4,u5,u6 to u

and w1,w2 to w) and the minimum CBMN N ′′
4 with 2 non-terminals

(by merging u1,u2,u3,w1 to x1 and u4,u5,u6,w2 to x2). The capac-
ity of every T ′-min-cut for non-trivial T ′ ⊂ T and |T ′| = 2 is 5 + ε in
every network: In N4, there are three { t2, t3 }-cuts, namely { t2, t3,u4 },
{ t2, t3,u1,u2,u4,u5,u6,w1,w2 }, and { t2, t3,u4,u5,u6,w2 }. The only
{ t2, t3 }-min-cut in N ′

4 is { t2, t3,u1,u2,u,w }, in N ′′
4 it is { t2, t3, x2 }.

The nodes Vk of Nk consist of three sets: terminals Tk = { t1, t2, . . . , tk },
non-terminals Uk = {u1,u2, . . . ,uK }, and non-terminals Wk = {w1,w2 }.
There thus is an exponential number of non-terminals. When clear from
the context, we neglect the k in the subscript of these sets. To the nodes
in U we assign as labels the binary strings of length k with exactly k/2 1s.
Let U1 be those nodes for which the first symbol of the label is a 1 and
U2 those starting with a 0. A terminal ti is connected to node uj by an
edge of capacity 1 if, and only if, the label of uj has a 1 at the ith position.
Note that U1 now is the neighborhood of t1. Furthermore, all nodes in U1

have an edge to w1, and all nodes in U2 an edge to w2, each with capacity
k/2− 1+ε for some 0 < ε� 1. Finally, w1 and w2 are connected by an edge
with capacity k/(4(k−1))K− 1+ ε. Thus, each terminal has degree K/2, each
node in U degree k/2+ 1, and each node in W degree K/2+ 1. All capacities
are clearly positive for all considered k. For odd k, we use the construction
for k− 1 and add an additional terminal tk that is only connected to tk−1

by an edge of capacity 1.
As an example, N4 is illustrated in Figure 17. Note that the capacity of

edges between nodes of U and W and between the two nodes in W is 1+ ε

and hence equal just for k = 4 by coincidence. In general these numbers
differ and grow with k.

In this setting, we will not talk about terminal bipartitions B ∈ B, but
about arbitrary non-trivial terminal subsets T ′ ⊂ T. Moreover, we abbre-
viate the set-theoretic union and set-theoretic difference of a set A with a
singleton {b } with A+ b and A− b, respectively.

B theorem 56: For all k > 4, Nk is a network with k terminals that has an
irreducible CBMN of size k + 2 +

(
k

k/2

)
/2 and a minimum CBMN of size

k+ 2.

4.2 the unique min-cuts assumption 77

Proof. We will show that Nk ∈ N is such a network. For this, we first
assume that k is even. For every T ′ ⊂ T with |T ′| 6= k/2, there is exactly one
T ′-min-cut (T ′ if |T ′| < k/2 and V − T ∪ T ′ if |T ′| > k/2) not separating any
non-terminals. We continue explaining the idea of the construction before
giving a formal proof of this claim later. Choosing these min-cuts is optimal
and hence, we will from now on only consider those T ′ ⊂ T with |T ′| = k/2.
Nk is constructed such that there are three T ′-min-cuts for every T ′ with

|T ′| = k/2. For the first min-cut note that for every T ′, there is exactly one
node in U denoted by uT ′ which is connected to all nodes in T ′. Due to
the chosen capacities, T ′ + uT ′ is the first min-cut with the capacity c(T ′ +
uT ′) = k/4 K− 1+ ε.

Without uT ′ the capacity is slightly higher with c(T ′) = k/4K. Adding
more nodes to T ′ + uT ′ results in a higher capacity unless adding all nodes
except for T − T ′ and the node uT ′ that is not connected to any nodes in T ′.
This cut T ′ ∪ (U− uT ′) ∪W has capacity k/4 K− 1+ ε as well which is due
to the fact that it is the complement of the T ′-min-cut T ′ + uT ′ .

For the third min-cut, an important observation is that while the neighbor-
hood of t1 is exactly U1, there is no ti ∈ T whose neighborhood is exactly
U2. If there were such a node ti, then labels having a 1 at the positions 1

and i do not occur (remember k > 4, thus each label has at least two 1s and
they must occur at any pair of positions). This asymmetry is the reason why
T ′ ∪U1 +w1 (T ′ ∪U2 +w2) is a T ′-min-cut for all T ′ ⊂ T with |T ′| = k/2

and t1 ∈ T ′ (t1 /∈ T ′). In the following, we will calculate the capacity of this
cut.

First let us calculate the number of edges from subsets T ′ ⊆ T to U1 and
U2. Due to the just described asymmetry, we introduce two new versions
of the capacity function c : 2V × 2V → R, namely ct1 and ct1 . The former,
ct1(V

′,V ′′), is only defined for all V ′ with t1 ∈ V ′, and ct1(V
′,V ′′) is only

defined if t1 /∈ V ′. We do this to clearly differentiate between cases where
V ′ contains t1 and where it does not. By construction, t1 is incident to all
nodes in U1. Every node in U1 is incident to k/2− 1 nodes in T − t1. Since
there are K/2 nodes in U1, there are (k/2− 1) · K/2 edges between T − t1 and
U1. As |T − t1| = k− 1, the total number of edges connecting nodes in T ′

with nodes in U1 is

ct1(T
′,U1) =

1

2
K+

|T ′|− 1

k− 1
·
(
k

2
− 1

)
· K
2

. (76)

The total number of edges between T and U is k/2 ·K. The number of edges
that is incident to nodes in T ′ is c(T ′,U) = |T ′| · K/2. Hence, the number of
edges from T ′ to U2 is

ct1
(
T ′,U2

)
= c(T ′,U) − ct1(T

′,U1)

=
|T ′|

2
K−

(
1

2
K+

|T ′|− 1

k− 1
·
(
k

2
− 1

)
· K
2

)
=

(
|T ′|

2
−

1

2
−

|T ′|− 1

2(k− 1)

(
k

2
− 1

))
K

=

(
2|T ′|k− 2|T ′|− 2k+ 2− |T ′|k+ k+ 2|T ′|− 2

4(k− 1)

)
K

=
k(|T ′|− 1)

4(k− 1)
K . (77)

78 mimicking networks

Note that

c(T ′,U1) + c(T ′,U2) = c(T ′,U) = |T ′| · K/2 and (78)

c(T ′,U1) + c(T ′,U1) = c(T,U1) = k · K/4 . (79)

It follows

c(T ′,U1)

= c(T,U1) − c(T ′,U1)

=
k

4
K−

(
|T ′|

2
K− c(T ′,U2)

)
=

k− 2|T ′|

4
K+ c(T ′,U2) . (80)

Let us take a look at T ′ ⊆ T with t1 /∈ T ′. In this case, we have

ct1(T
′,U1) =

|T ′|

k− 1
·
(
k

2
− 1

)
· K
2

and (81)

ct1(T
′,U2) = c(T ′,U) − c(T ′,U1)

=
|T ′|

2
K−

|T ′|

k− 1
·
(
k

2
− 1

)
· K
2

=
k|T ′|

4(k− 1)
K . (82)

The capacity of T ′ ∪U1 +w1 now amounts to

c(T ′ ∪U1 +w1)

= ct1(T
′,U2) + ct1(T

′,U1) + c(w1,w2)

=
k(k/2− 1)

4(k− 1)
K +

k/2

k− 1
·
(
k

2
− 1

)
· K
2
+

k

4(k− 1)
K− 1+ ε

=
k

4
K− 1+ ε . (83)

So far, we have shown that the claimed min-cuts are all of equal capacity.
Assuming they really are min-cuts and that there are no further min-cuts,
we now continue explaining the idea of the construction. That they truly
are min-cuts will be shown afterwards.

Due to these three min-cuts, merging w1 and w2 eliminates the possibility
of choosing T ′ ∪U1+w1 as a min-cut since it separates w1 and w2. So now,
for each T ′ with |T ′| = k/2, there are two T ′-min-cuts left in N ′

k which are
T ′ + uT ′ and T ′ ∪ (U− uT ′) ∪W. Hence, it is now possible to choose min-
cuts in order to merge half of the nodes in U, for example all nodes in U2 as
pictured in Figure 17. The size of this irreducible network then is k+ 2+K/2.

If we do not merge w1 and w2, we may choose the min-cut T ′ ∪U1 +w1

for each T ′. Then all nodes in U1 +w1 as well as all nodes within U2 +w2

can be merged resulting in the minimum CBMN N ′′
k of size k + 2. Both

irreducible networks are shown in Figure 17 for k = 4.
We will now start showing, that all claimed min-cuts truly are min-cuts

and that there are no more min-cuts. This is achieved by comparing their
capacities to all other possible cuts. This is rather long and technical and
continues to page 85.

4.2 the unique min-cuts assumption 79

Recall that K =
(

k
k/2

)
and that k was assumed to be even. For odd k we

use the construction for k− 1 and add an additional terminal tk that is only
connected to tk−1 by an edge of capacity 1.

We now compare the capacities of the two T ′-cuts T ′ ∪U1 +w1 and T ′ ∪
U2 +w2. First, we assume t1 ∈ T ′:

c(T ′ ∪U2 +w2) − c(T ′ ∪U1 +w1)

= ct1(T
′,U2) + ct1(T

′,U1) + c(w1,w2)

−
(
ct1(T

′,U1) + ct1(T
′,U2) + c(w1,w2)

)
=

k

4
K− 2ct1(T

′,U2) + ct1(T
′,U1) −

(
k

4
K− ct1(T

′,U1)

)
= 2ct1(T

′,U1) − 2ct1(T
′,U2)

= K+
|T ′|− 1

k− 1
·
(
k

2
− 1

)
·K−

k(|T ′|− 1)

2(k− 1)
K

=

(
2k− 2+ k|T ′|− 2|T ′|− k+ 2− k|T ′|+ k

2(k− 1)

)
K

=
k− |T ′|

k− 1
K (84)

Now, we assume t1 /∈ T ′:

c(T ′ ∪U1 +w1) − c(T ′ ∪U2 +w2)

= ct1(T
′,U1) + ct1(T

′,U2) + c(w1,w2)

−
(
ct1(T

′,U1) + ct1(T
′,U2) + c(w1,w2)

)
=

k

4
K− 2ct1(T

′,U1) + ct1(T
′,U2) −

(
k

4
K− 2ct1(T

′,U2)

)
= 2ct1(T

′,U2) − 2ct1(T
′,U1)

= 2

(
k|T ′|

4(k− 1)
K

)
− 2

(
|T ′|

k− 1
·
(
k

2
− 1

)
· K
2

)
=

k|T ′|

2(k− 1)
K−

|T ′|

k− 1
· k− 2

2
·K

=
|T ′|

k− 1
K (85)

The terms (84) and (85) are greater than zero for all non-trivial T ′ with t1 ∈
T ′ and t1 /∈ T ′. This implies that for all non-trivial T ′ we have c(T ′ ∪U1 +

w1) < c(T ′ ∪U2 +w2) if t1 ∈ T ′ and c(T ′ ∪U2 +w2) < c(T ′ ∪U1 +w1) if
t1 /∈ T ′.

We are now ready to show that for every T ′ ⊆ T with |T ′| 6= k/2, the
set of T ′-min-cuts is { T ′ } if |T ′| < k/2 and {V − T ′ } if |T ′| > k/2, and for
every T ′ with |T ′| = k/2 and t1 ∈ T ′ this set is

{
T ′ +uT ′ , T ′ ∪U1 +w1, T ′ ∪

(U− uT ′)∪W
}

.

1. Let T ′ ⊆ T be any set with |T ′| 6= k/2. Due to symmetry it suffices to
consider those sets with |T ′| < k/2. In the following, we will analyze
the capacities of all T ′-cuts (S,V − S).

a) Let S be an T ′-cut with W ∩ S = ∅. T ′ is such a cut with capacity

c(T ′) = |T ′| · K
2

. (86)

80 mimicking networks

Now let S = T ′ ∪U ′ with U ′ ⊂ U. Obviously, S is a T ′-cut. We
show that c(S + ui) > c(S) for any U ′ ⊂ U and ui ∈ U − U ′.
Since |T ′| < k/2, ui is connected to at least one node in T − T ′.
Hence, the new capacity is

c(T ′ ∪U ′ + ui) > c(T ′ ∪U ′) −

(
k

2
− 1

)
+

k

2
− 1+ ε

= c(T ′ ∪U ′) + ε . (87)

The capacity is larger with ui than it is without ui. We conclude
that without any nodes of W, the cut is smallest if no node of U
is contained in the cut, that is if the cut is T ′.

b) Next, consider any T ′-cut (S,V − S) with |S ∩W| = 1. First, we
assume w1 ∈ S. It pays off to move a non-terminal ui ∈ U1 to
U, if the capacity that is saved this way is at least as large as the
capacity gained, i. e., if

c(T ′, {ui }) + c(ui,w1) > c(T ′, {ui })

⇐⇒ c(T ′, {ui }) > c(T ′, {ui }) −
k

2
+ 1− ε . (88)

Since c(T ′, {ui }) = k/2− c(T ′, {ui }), this is equivalent to

c(T ′, {ui }) >
k

2
− c(T ′, {ui }) −

k

2
+ 1− ε

⇐⇒ c(T ′, {ui }) >
1

2
(1− ε) . (89)

This inequality holds for all ui ∈ U1 that are connected to at least
one node in T ′. Hence, we conclude that the cut containing w1

but not w2 can only be smallest, if it contains all nodes U ′
1 ⊆ U1

that are connected to at least one in T ′. If t1 ∈ T ′, then clearly
U ′

1 = U1. If t1 /∈ T ′, then

|U1 −U ′
1| = |{ui ∈ U1 | c({ui }, T ′) = 0 }|

6 |U1|−

(
1

k− 1
· k− 2

2
· 1
2
·K+ |T ′|− 1

)
=

k

4(k− 1)
K− |T ′|+ 1 . (90)

Now, we ask for which ui ∈ U2 it pays off to move it to U. This
is the case if

c(T ′, {ui }) > c(T ′, {ui }) + c(ui,w2)

⇐⇒ c(T ′, {ui }) >
k

2
− c(T ′, {ui }) +

k

2
− 1+ ε

⇐⇒ c(T ′, {ui }) >
1

2
(k− 1+ ε) . (91)

4.2 the unique min-cuts assumption 81

Our assumption |T ′| 6 k/2− 1 implies c(T ′, {ui }) 6 k/2− 1. Con-
sequently, the above inequality does not hold for any ui ∈ U2.
Hence, the cut S containing w1 but not w2 can only be smallest
if S∩U2 = ∅. Altogether, the smallest T ′-cut S for |T ′| < k/2 with
w1 ∈ S and w2 /∈ S is T ′ ∪U ′

1 +w1 where U ′
1 ⊆ U1 is the set of

nodes that are connected to at least one node in T ′. The capacity
of this cut is

c(T ′ ∪U ′
1 +w1)

= c(T ′ ∪U1 +w1) − |U1 −U ′
1|

(
k

2
−

(
k

2
− 1+ ε

))
> c(T ′ ∪U1 +w1) −

(
k

4(k− 1)
K− |T ′|+ 1

)
(1− ε) . (92)

c) Now, we assume w2 ∈ S. It pays off to move a node ui ∈ U1 to S

if

c(T ′, {ui } > c(T ′, {ui }) + c(ui,w1)

⇐⇒ c(T ′, {ui }) >
1

2
(k− 1+ ε) , (93)

which is true for no ui ∈ U1 since |T ′| < k/2. It pays off to move
a node ui ∈ U2 to S if

c(T ′, {ui }) +
k

2
− 1+ ε > c(T ′, {ui })

⇐⇒ c(T ′, {ui }) >
1

2
(1− ε) (94)

which is true for all ui ∈ U2 that have at least one edge to T ′.
Hence, quite symmetrically, S is a T ′-cut of smallest capacity, if
S = T ′ ∪ U ′

2 +w2 where U ′
2 ⊆ U2 contains all nodes that are

connected to at least one node in T ′. Similarly to the analysis
above, we get

|U2 −U ′
2| =

∣∣{ui ∈ U2 | c({ui }, T ′) = 0 }
∣∣

6 |U2|−

(
k(|T ′|− 1)

4(k− 1)
K+ |T ′|− 1

)
=

k− 2

4(k− 1)
K− |T ′|+ 1 . (95)

The capacity of this cut is

c(T ′ ∪U ′
2 +w2)

= c(T ′ ∪U2 +w2) − |U2 −U ′
2|

(
k

2
−

(
k

2
− 1+ ε

))
> c(T ′ ∪U2 +w2) −

(
k− 2

4(k− 1)
K− |T ′|+ 1

)
(1− ε) . (96)

Let us now assume t1 ∈ T ′. In this case, the smallest T ′-cut
containing w1 but not w2 is T ′ ∪U1 +w1 since every node in U1

82 mimicking networks

is connected to t1 ∈ T ′. The smallest T ′-cut containing w2 but
not w1 is T ′ ∪U ′

2+w2 where U ′
2 ⊆ U2 is the set of nodes that are

connected to at least one node in T ′. We compare their capacities:

c(T ′ ∪U ′
2 +w2) − c(T ′ ∪U1 +w1)

= c(T ′ ∪U2 +w2) − |U2 −U ′
2|(1− ε) − c(T ′ ∪U1 +w1)

> c(T ′ ∪U2 +w2)

−

(
k− 2

4(k− 1)
K− |T ′|+ 1

)
(1− ε) − c(T ′ ∪U1 +w1)

=
k− |T ′|

k− 1
K−

(
k− 2

4(k− 1)
K− |T ′|+ 1

)
(1− ε)

>
k− |T ′|

k− 1
K−

(
k− 2

4(k− 1)
K− |T ′|+ 1

)
=

3k− 4|T ′|+ 2

4(k− 1)
K+ |T ′|− 1 (97)

Since this difference is positive for all considered T ′, T ′ ∪U1+w1

is the smallest cut different from T ′. So, we now compare the
capacities of T ′ and T ′ ∪ U1 +w1. The capacity of the T ′-cut
S = T ′ ∪U1 +w1 is

c
(
T ′ ∪U1 +w1

)
= ct1(T

′,U1) + ct1(T
′,U2) + c(w1,w2)

=
k− 2|T ′|

4
K+ 2ct1(T

′,U2) + c(w1,w2)

=
k− 2|T ′|

4
K+

2k(|T ′|− 1)

4(k− 1)
K+

k

4(k− 1)
K− 1+ ε

=
k2 − 2k+ 2|T ′|

4(k− 1)
K− 1+ ε . (98)

We compare this capacity to the capacity of the T ′-cut T ′:

c(T ′ ∪U1 +w1) − c(T ′)

=
k2 − 2k+ 2|T ′|

4(k− 1)
K− 1+ ε−

|T ′|

2
K

=
k2 − 2k+ 2|T ′|− 2k|T ′|+ 2|T ′|

4(k− 1)
K− 1+ ε

>
k2 − 2k(k2) + 4(k2 − 1)

4(k− 1)
K− 1+ ε

=
k
2 − 1

k− 1
K− 1+ ε > 0 (99)

So in case |T ′| < k/2 and t1 ∈ T ′, the unique T ′-min-cut is T ′.
Now, we assume t1 /∈ T ′. The smallest cut containing w1 but not
w2 is T ′ ∪U ′

1 +w1 where U ′
1 ⊆ U1 is the set of nodes that are

4.2 the unique min-cuts assumption 83

connected to at least one node in U1. The smallest cut containing
w2 but not w1 is T ′ ∪U2 +w2. We compare their capacities:

c(T ′ ∪U ′
1 ∪+w1) − c(T ′ ∪U2 +w2)

= c(T ′ ∪U1 +w1) − |U1 −U ′
1|(1− ε) − c(T ′ ∪U2 +w2)

=
|T ′|

k− 1
K− |U1 −U ′

1|(1− ε)

>
|T ′|

k− 1
K−

(
k

4(k− 1)
K− |T ′|+ 1

)
(1− ε)

>
|T ′|

k− 1
K−

(
k

4(k− 1)
K− |T ′|+ 1

)
=

4|T ′|− k

4(k− 1)
K+ |T ′|− 1 (100)

This difference is positive for all considered T ′. Hence, we have
to compare the capacities of T ′ ∪U2 +w2 with T ′. For this, we
first determine the capacity of T ′ ∪U2 +w2:

c(T ′ ∪U2 +w2)

= ct1(T
′,U1) + ct1(T

′,U2) + c(w1,w2)

=
|T ′|

k− 1
· k− 2

4
·K+

(
k

4
K− ct1(T

′,U2)

)
+ c(w1,w2)

=
k|T ′|− 2|T ′|+ k2 − k− k|T ′|

4(k− 1)
K+

k

4(k− 1)
K− 1+ ε

=
k2 − 2|T ′|

4(k− 1)
K− 1+ ε (101)

The difference of the capacity of the two cuts amounts to

c(T ′ ∪U2 +w2) − c(T ′)

=
k2 − 2|T ′|

4(k− 1)
K− 1+ ε−

|T ′|

2
K

=
k2 − 2k|T ′|

4(k− 1)
K− 1+ ε . (102)

Since |T ′| < k/2, this is always positive.

d) Now, we consider all T ′-cuts S with W ⊂ S. It pays off to move a
node ui ∈ U to S, if

c(T ′, {ui }) + c({ui },C) > c(T ′, {ui })

⇐⇒ c(T ′, {ui }) > c(T ′, {ui }) −

(
k

2
− 1+ ε

)
⇐⇒ c(T ′, {ui }) >

k

2
− c(T ′, {ui }) −

k

2
+ 1− ε

⇐⇒ c(T ′, {ui }) >
1

2
(1− ε) . (103)

So again, it pays off to move all ui ∈ U to S that are connected
to at least one node in T ′. We denote the smallest such cut with
S = T ′ ∪U ′ ∪W. The number of nodes in U ′ can be bounded by

|U ′| =
∣∣{ui ∈ U | c({ui }, T ′) = 0 }

∣∣
6 |U|−

k

2
K− (|T ′|− 1) =

2− k

2
K− |T ′|+ 1 . (104)

84 mimicking networks

Hence, the capacity of T ′ ∪U ′ ∪W is

c(T ′ ∪U ′ ∪W)

= c(T ′,U ′) + c(T ′,U ′) + c(U ′,W)

= c(T ′,U ′) + c(U ′,W)

> |U−U ′|

(
k

2
− 1+ ε

)
= K−

(
2− k

2
K− |T ′|+ 1

)(
k

2
− 1+ ε

)
=

(
k

2
K+ |T ′|− 1

)(
k

2
− 1+ ε

)
>

(
k

2
K+ |T ′|− 1

)(
k

2
− 1

)
=

k2 − 2k

4
K+

k− 2

2
|T ′|−

k

2
+ 1 . (105)

We compare this capacity to the capacity of T ′:

c(T ′ ∪U ′ ∪W) − c(T ′)

>
k2 − 2k

4
K+

k− 2

2
|T ′|−

k

2
+ 1−

|T ′|

2
K

=
k2 − 2k− 2|T ′|

4
K+

k− 2

2
|T ′|−

k

2
+ 1 (106)

Since this difference is positive for all T ′ considered, we conclude
that for any T ′ with |T ′| < k/2, the unique T ′-min-cut is T ′.

2. Now, let us consider all T ′ ⊂ T with |T ′| = k
2 and t1 ∈ T ′.

a) First, we consider all T ′-cuts S with S∩W = ∅. We have

c(T ′) =
k

4
K and c(T ′ + uT ′) =

k

4
K− 1+ ε . (107)

If any non-terminal ui 6= uT ′ is added to S, the cut capacity is
increased since this node is connected to nodes in T − T ′.

b) We now consider all T ′-cuts with |S ∩W| = 1. Since t1 ∈ T ′, the
smallest such cut is T ′ ∪U1 +w1, since term (97) is positive for
all T ′ with t1 ∈ T1 and |T ′| = k/2. The capacity of this cut is

c
(
T ′ ∪U1 +w1

)
=

k

4
K− 1+ ε . (108)

Observe, that c(T ′ + uT ′) = c(T ′ ∪U1 +w1).

c) Finally, consider all S with W ∩ S = W. It pays off to move all
nodes ui ∈ U to S that are connected to at least one node in T ′.
There is exactly one node in S that is not connected to any node
in T ′. This node is uT ′ . Hence, the capacity of this cut is

4.2 the unique min-cuts assumption 85

c(T ′ ∪ (U− uT ′)∪W)

= c(T ′, {uT ′ }) + c(T ′,U− uT ′) + c({uT ′ },W)

= 0+
k

4
·K−

k

2
+

k

2
− 1+ ε

=
k

4
K− 1+ ε . (109)

We conclude that the set of all T ′-min-cuts for all considered T ′

with t1 ∈ T ′ is { T ′ + uT ′ , T ′ ∪U1 +w1, T ′ ∪ (U− uT ′)∪W }.

Thus, we have shown that the set of T ′-min-cuts is{
T ′ } if |T ′| <

k

2
and{

T ′ + uT ′ , T ′ ∪U1 +w1, T ′ ∪ (U− uT ′)∪W
}

if |T ′| =
k

2
, t1 ∈ T ′.

Thus, nodes w1 and w2 can be merged to obtain a contraction-based mim-
icking network for the original network, since for every T ′ ⊂ T, there is a
T ′-min-cut that does not separate w1 and w2. After merging w1 and w2,
only min-cuts are left that do not separate w1 and w2. The best choice of
min-cuts among these yields an irreducible CBMN of size k+ 2+ K/2.

Alternatively, we can merge all nodes in U1 +w1 and all nodes in U2 +

w2 to obtain a minimum contraction-based mimicking network of size k+

2.

The network family N also provides some insight how much little pertur-
bations of the capacities can impact the size of a minimum CBMN. If the
capacity of (w1,w2) is slightly lower, then the minimum CBMN is unique
and of the form of N ′′

4 as seen in Figure 17 with k+ 2+K/2 non-terminals. If,
however, the capacity of (w1,w2) is slightly increased, then the minimum
CBMN has only 2 non-terminals. Thus, if two networks are identical as
graphs and only differ in the vector of edge capacities, then with respect to
any Lp-metric measuring their distance, the distance can be made arbitrar-
ily small, yet the number of required non-terminals jumps from constant to
exponential in k. Thus, we can conclude:

B corollary 57: There exist pairs of k-terminal networks N+
k and N−

k with
the same topology and arbitrarily close capacities such that the minimum
CBMN of the first one is of size k+ 2 and exponential in k for the other.

Therefore, the technique of small perturbations to make min-cuts unique
does not seem appropriate to find a minimum CBMN. This construction also
implies that there can be a huge gap in the minimum size for contraction-
based cut sparsifiers if one changes the approximation quality slightly as
the next corollary states.

B corollary 58: There exist k-terminal networks and a cut point α > 1

such that minimum contraction-based cut sparsifiers with quality less than
α have to be of exponential size, while a quality larger than α can be
achieved by linear size contraction-based sparsifiers.

Proof. The same family of networks as in Theorem 56 is used with a slight
variation. Let δ = 1/4 · (α − 1) · (k · K + 4ε − 4). In network Nk, we now
raise the capacity of the edge (w1,w2) by δ such that c(w1,w2) = k · (4(k−
1))K− 1+ ε+ δ.

86 mimicking networks

The value of δ has been picked such that when choosing the min-cuts
separating w1 from w2 (compare to the proof of Theorem 56) leading to a
CBMN of size k+ 2, the quality is exactly α. Hence, a contraction-based cut
sparsifier of quality less than α does not allow choosing any min-cuts that
separate w1 from w2 and consequently, the smallest such contraction-based
cut sparsifier is of size exponential in k.

As another interpretation, we may see Theorem 56 as an indication that
drastically smaller CBMNs may be found if we do not restrict ourselves to
finding mimicking networks that allow the exact same set of flow patterns,
but only approximate it with cut sparsifiers.

The results so far indicate that an optimal strategy for merging nodes
will not be easy to find if one has to choose among several min-cuts. Here,
we give a partial result saying that merging certain nodes is always a good
strategy.

B theorem 59: Let N be a network and v ∈ V any node. Further, let Sv be
the source side of the v-min-cut (v ∈ S) with maximum |Sv|. Then, merg-
ing all nodes in Sv yields a CBMN N ′ whose minimum CBMN is also a
minimum CBMN for N.

Proof. Let γ be a choice of min-cuts for a minimum CBMN for N and B ∈ B

with ∅ 6= γ(B)∩Sv 6= Sv. In other words, γ(B) is a chosen min-cut separating
nodes within Sv. Let us say γ(B) = SB and V − SB = TB. Lemma 11 on
page 35 tells us that if v ∈ SB, then SB ∪ Sv is a B-min-cut, and if v ∈
TB, then SB − Sv is a B-min-cut. This allows us to adjust the equivalence
relation Rγ by moving all nodes that are in Sv, but not in the equivalence
class of v to that class. This way, no new classes are created and for each
terminal bipartition there is a min-cut that does not cut any nodes in Sv as
just shown.

Intuitively, for the last theorem we reroute all min-cuts going through Sv,
and this rerouting takes place locally. Note the similarity to Algorithm 1

on page 35. However, if Sv is a v-min-cut, we do not merge the nodes of
Sv if |Sv| is minimum, but if |Sv| is maximum. This does not maintain all
min-cuts as needed in Lemma 12, but suffices to ensure that we do not miss
the minimum CBMN. Here, too, computing for each node v the v-min-cut
with the largest source side and then merging all nodes of that side can be
done in polynomial time and always yields a minor of the original graph.
After this step, no terminal can be merged with any other nodes anymore
since for every terminal ti, there is exactly one ti-min-cut – { ti }. In general,
however, non-terminals may be left that can be merged with each other. The
next lemma states that if they can all be merged to a single non-terminal,
then this can be detected by examining min-cuts (S, T) with maximum and
minimum |S| only.

B lemma 60: Let N be a network with non-terminals where no non-terminal
can be merged with any terminals. Then, the size of a minimum CBMN is
|T|+ 1 if, and only if, there exists a choice of extremal min-cuts where no
chosen min-cut separates any non-terminals.

Proof. Since no non-terminal can be merged with any terminal, |T|+ 1 is a
lower bound for the size of a minimum CBMN for N. If |T|+ 1 is the size
of a minimum CBMN, then there is a choice of min-cuts such that none
of the non-terminals are separated from each other. Each of the chosen
cuts is an extremal min-cut as it contains terminals only on one side. For

4.3 the complexity of finding small mimicking networks 87

the other direction, if there is a choice of extremal min-cuts not separating
any non-terminals, then all non-terminals can be merged to a single non-
terminal.

Note that Theorem 59 allows to find the minimum CBMN of network N

in Figure 16 (page 75) in polynomial time. The next Theorem further helps
to efficiently reduce the size of the CBMN still maintaining the possibility
to reach a minimum CBMN.

B theorem 61: Let u, v be two non-terminals of a network N such that for
all nodes w 6= u, v we have c(u,w) > c(v,w). Then, merging u, v yields a
CBMN N ′ of N that can still be reduced to a minimum CBMN for N.

Proof. Assume there is a terminal bipartition for which a min-cut (S,V − S)

separates u from v with u ∈ S. The edges adjacent to u or v are categorized
in the four disjoint sets

• A = { (u, x) | u, x ∈ S } ,

• B = { (u, x) | u ∈ S, x /∈ S } ,

• C = { (v, x) | v /∈ S, x ∈ S } ,

• D = { (v, x) | v, x /∈ S } , and

• E = { (u, v) } .

If X is a set of edges, we denote the sum of the edge capacities of the
edges in X by c(X). We will now compare c(S) to c(S+ v). We have c(S) −

c(S+ v) = c(E) + c(B) − c(D). Since c(u,w) > c(v,w) for all w 6= u, v, it
follows that c(B) > c(D) and hence c(S) − c(S+ v) > 0. This implies, that
S + v is a min-cut as well that does not separate u and v. Similar to the
proof of Theorem 59, assume that γ is a choice of min-cuts leading to a
minimum CBMN. If a chosen min-cut separates u, v, we may locally alter
the chosen min-cut in the just described manner to obtain a new optimal
choice of min-cuts.

While finding and merging nodes as described in Theorem 61 can again
be done in polynomial time, this time it is not guaranteed to yield a CBMN
that is a minor of the original graph. In general, there are networks N whose
minimum CBMN is not a minor of N.

Applying Theorem 59 and Theorem 61 results in a smaller CBMN that in
general still has many non-terminals left to be merged. To find out which
ones in order to reach a minimum CBMN is still unknown and further ex-
amined in the next two sections.

4.3 the complexity of finding small mimicking networks

This section investigates the complexity of various problems related to mim-
icking networks. For some of these problems, we present completeness re-
sults, for others we obtain partial results in form of lower and upper bounds.
Lower bounds have not yet been considered at all in the literature.

The central problem that motivates much of this section is to decide
whether for a given network N a CBMN of a given size m exists. Formally,
this problem is stated as

88 mimicking networks

B problem 28 (minimum contraction-based mimicking network

(mcbmn)):

Input: A tuple (N,m) of an undirected multi-terminal network N

and a natural number m.
Question: Does N have a CBMN of size m?

We are also interested in the question of how much the complexities of
this and related problems change in presence and absence of the unique
min-cuts assumption. Khan and Raghavendra [52] present an algorithm
that finds minimum CBMNs for networks with unique min-cuts in time
polynomial in n and 2k where n is the size of the input network and k the
number of terminals. This restricted problem is therefore fixed-parameter
tractable when parameterized by the number of terminals. In order to an-
alyze the complexity of the problem to find a minimum CBMN under the
unique min-cuts assumption, we introduce the problem

B problem 29 (mcbmn-u):

Input: A tuple (N,m) of an undirected multi-terminal network N

and a natural number m.
Question: Are all min-cuts of N unique and does N have a CBMN

of size m?

A lower bound for the complexity of this problem can be obtained by
reducing the well-known partition problem, whose notation is as follows.

B problem 30 (partition):

Input: A tuple (A, s) of a finite set A = { 1, 2, . . . ,n } with n > 1 and
a weight s(i) ∈ Z+ for each i ∈ A.

Question: Is there a subset A ′ ⊆ A such that
∑

i∈A ′ s(i) =
∑

i/∈A ′ s(i)?

B lemma 62: mcbmn-u is coNP-complete.

Proof. We show that the complement of mcbmn-u is in NP. If there is a
terminal bipartition with more than one min-cut, then the machine guesses
this bipartition and verifies the existence of multiple min-cuts belonging to
it. This can be done by finding the two extremal min-cuts and verifying
that they are different. To see that there is no contraction-based mimicking
network of size m, the machine guesses m+ 1 nodes and for each pair of
these m+ 1 nodes a terminal bipartition. Then, it is verified that for each
pair u, v among the guessed m+ 1 nodes, the unique min-cut of the guessed
terminal bipartition separates u and v – hence making it impossible to merge
any nodes of the m+ 1 guessed ones. Concluding, there is no CBMN of size
m.

For hardness, we describe a log-space reduction from partition to the
complement of mcbmn-u. Given a partition instance (A, s) with |A| = n,
create a bipartite network N with terminals T = { t1, t2, . . . , tn+2 } on one
side and two non-terminals u, v on the other – a total of n+ 4 nodes. For
i ∈ { 1, . . . ,n } there are edges connecting ti with u and with v of capacities
c(ti,u) = c(ti, v) = 4 · s(ai). Moreover, c(tn+1,u) = 1 and c(tn+2, v) = 2.
These edges make up the edge set E of the constructed network. Every edge
now has a positive whole number as capacity. The mcbmn instance is then
defined as (N,n+ 3) – the question whether there is a pair of nodes that can
be merged.

In the following, we analyze the capacities of cuts. For every T ⊆ T,
let A(T) =

{
ai | ti ∈ T , i ∈ { 1, . . . ,n }

}
. Further, let Z =

∑
ai∈A s(ai) and

ZT =
∑

ai∈A(T) s(ai). For every non-trivial terminal subset T ⊂ T, there are

4.3 the complexity of finding small mimicking networks 89

four candidates for being a T -min-cut. Due to symmetry, we may assume
that ZT 6 Z/2. Their capacities are

c(T) = 8 ·ZT + f(T ∩ { tn+1, tn+2 }, ∅) , (110)

c(T ∪ {u }) = 4 ·Z+ f(T ∩ { tn+1, tn+2 }, {u }) , (111)

c(T ∪ { v }) = 4 ·Z+ f(T ∩ { tn+1, tn+2 }, { v }) , and (112)

c(T ∪ {u, v }) = 8 ·Z− 8 ·ZT + f(T ∩ { tn+1, tn+2 }, {u, v }) , (113)

where f : 2{ tn+1,tn+2 } × 2{u,v } → { 0, 1, 2, 3 } is a function that adds an
according value to the cut capacity in dependence of whether the edges
(tn+1,u) or (tn+2, v) are cut. It is defined as f(A,B) =

∑
e∈EA,B

c(e) where

EA,B = { e ∈ { tn+1, tn+2 }× {u, v } |

exactly one endpoint of e is in A∪B } . (114)

If ZT < Z/2, then the value of f does not influence which cut is the min-cut
– T is the unique T -min-cut which does not separate u and v. If ZT = Z/2,
then the cut with the lowest value for function f is the unique min-cut. If
t1 ∈ T , but t2 /∈ T , then this min-cut is T ∪ {u } and separates u and v.

Note that independent of whether (A, s) ∈ partition, all min-cuts in
the network created by the reduction function are unique. If there is no
partition solution to (A, s), then ZT < Z/2 for all considered T ⊂ T. If A ′

is a partition solution to (A, s), and if T ′ is a set such that A(T ′) = A ′,
then 2 · ZT ′ = Z = Z− 2 · KT . Hence, it depends on the value of the term
c(T ∩ { tn+1, tn+2 }, {u, v }) which cut capacity is minimum.

We are now ready to show the correctness of the reduction. So assume
(A, s) ∈ partition and let A ′ ⊂ A be a solution. Now, consider the terminal
subset T = { ti | ai ∈ A ′ } ∪ { tn+1 } and let T = T − T be the remaining
terminals. There are 4 potential candidates for the T -min-cut, namely T ,
T ∪ {u }, T ∪ { v }, and T ∪ {u, v } with capacities

c(T) = Z+ 1 , (115)

c(T ∪ {u }) = Z , (116)

c(T ∪ { v }) = Z+ 2 , and (117)

c(T ∪ {u, v }) = Z+ 1 . (118)

Hence, T ∪ {u } is the source side of the unique T -min-cut which separates
u and v. This forbids to merge u and v. It remains to be shown that no
other nodes can be merged – this could be pairs consisting of a terminal
and a non-terminal. As there is a solution to the partition instance, we
know that each single element of A that is not a solution has a weight of
truly less than Z/2. This implies for each i ∈ { 1, . . . ,n } and x ∈ {u, v } that
c(ti, x) < c(x,T − { ti }). Hence, the unique ti-min-cut is { ti }. We deduce
that (N,n+ 3) /∈ mcbmn.

If (N,n+ 3) /∈ mcbmn, then there is a T ′ ⊂ T such that all T ′- min-cuts
separate u, v. T ′ contains exactly one node of { tn+1, tn+2 }, since otherwise
the situation for u, v is completely symmetric and u, v are not separated.
This implies c

(
{u }, T ′ − { tn+1, tn+2 }

)
= c

(
{ v }, T ′ − { tn+1, tn+2 }

)
. The

set A ′ that corresponds to T ′ − { tn+1, tn+2 } is a solution to the original
partition instance.

The idea behind the just described reduction is illustrated in Figure 18.
Multiplying the edge capacities with factor 4 and using different edge capac-
ities for (tn+1,u) and (tn+2, v) might seem a little tedious. In fact, there is

90 mimicking networks

t1

t2

...

tn

tn+1

tn+2

u

v
1

2

Figure 18: This figure illustrates the reduction from a partition instance (A, s) to
the mcbmn-u instance described in Lemma 62. Every thick edge incident
to ti has capacity 4 · s(ai). Additionally, there are the two edges between
tn+1 and u and between tn+2 and v of capacity 1 and 2, respectively.
These capacities are so low in comparison to the capacities of the thick
edges such that a T ′-min-cut splits u and v if, and only if, the weights of
the elements in A corresponding to the terminals in T ′ ⊂ T add up to half
of the total weight.

an easier reduction to show coNP-completeness for mcbmn-u. However, we
wanted to emphasize that the success of the reduction does not depend on
creating multiple min-cuts at some point but solely on whether two nodes
can be merged or not. This way the hardness result can immediately be
applied to mcbmn as well.

B corollary 63: mcbmn is coNP-hard.

This corollary naturally raises the question whether mcbmn is in coNP as
well. Unfortunately, the technique of guessing m+ 1 nodes that cannot be
merged pairwise does not work – it fails due to the existence of multiple
min-cuts. An example of such a situation can be seen in Figure 19.

The polynomial hierarchy introduced by Stockmeyer [77] seems promis-
ing to provide a fitting complexity class for mcbmn. We are able to prove
membership for mcbmn in ΣP

2 .

B lemma 64: mcbmn ∈ ΣP
2 .

Proof. An NPcoNP machine repeatedly guesses a pair of nodes of the given
network N and merges them until m nodes are left. It remains to be verified
that the network N ′ obtained this way is a mimicking network of N. This
can be done by checking universally for all possible terminal bipartitions
that the min-cut capacities are identical.

For mcbmn it is unclear whether this upper bound can be improved or
whether the lower bound of Corollary 63 can be lifted up. Another possi-
bility is that the complexity of mcbmn is best captured by ∆P

2 . The precise
complexity of mcbmn remains open. The membership part of the proof of
Lemma 62 does not work anymore if min-cuts do not have to be unique.
Matching this fact, mcbmn ∈ coNP seems unlikely given that the proof of
Lemma 62 works also for the more restricted problem asking whether there
is a pair of nodes that can be merged in a bipartite network – with unique
min-cuts.

4.3 the complexity of finding small mimicking networks 91

t1 t2

t3t4

u

v

w

x

Figure 19: Every thin edge has capacity 1, every thick edge capacity 2. All { t1, t2 }-
min-cuts are drawn as dotted lines, all { t1, t4 }-min-cuts as dashed lines.
All other min-cuts do not separate any non-terminals and all ti-min-cuts
for ti ∈ T make it impossible to merge any nodes with a terminal. Merg-
ing (u, x) as well as merging (v,w) yields a CBMN. However, merging
both pairs does not. Therefore, there are two different minimum CBMNs
of size 7. It can be observed that for every set of 7 nodes, there is a pair of
nodes that can be merged. This shows that the strategy used in the proof
of Lemma 62 does not work to show mcbmn ∈ coNP.

The problem to compute the minimum size of a CBMN for a given net-
work N corresponds to a language that is the intersection of a language in
ΣP
2 and one in ΠP

2 . To actually construct a minimum CBMN a machine in ∆P
3

suffices. Note that for mcbmn-u the complexity drops down to ∆P
2 .

In order to show ΣP
2 -completeness, a reduction from a ΣP

2 -hard problem
(for a compendium of such problems see [72]) is needed that constructs an
mcbmn instance making smart use of the possibility to have several min-cuts
for each terminal bipartition. The problem of constructing such networks is
the lack of understanding which combinations of min-cuts are possible. It
is the same lack of understanding that is reflected in the exponential gap
between lower and upper bounds in the size for minimum CBMNs and
the same lack of understanding which set systems correspond to a multi-
terminal network (see Chapter 3). The correlation between these questions
is also expressed by noting that mcbmn is equivalent to min-cut minimum

type selection defined on page 43 in the previous chapter.

B theorem 65: mcbmn = min-cut minimum type selection.

Proof. (N,m) ∈ mcbmn is equivalent to the fact that there is a choice of
min-cuts γ such that Rγ contains at most m equivalence classes. When
representing min-cuts by min-cut vectors as done for min-cut minimum

type selection, then the columns of the matrix composed row-wise of the
min-cut vectors belonging to chosen min-cuts correspond to nodes. Two
columns are identical if, and only if, they correspond to nodes that are not
separated by any chosen min-cut, i. e., two columns are identical if, and only
if, the corresponding nodes belong to the same equivalence class. In total,
there is a choice of min-cuts for N such that the according matrix contains at
most k distinct columns if, and only if, there is a CBMN for N of size k.

Let us now switch to the parameterized world and analyze the fixed-
parameter tractability of these problems. For this, p-mcbmn and p-mcbmn-u
shall be the parameterized variants of mcbmn and mcbmn-u, respectively,
where the parameter is the number of terminals. The algorithm presented
by Khan and Raghavendra [52] shows that p-mcbmn is fixed-parameter

92 mimicking networks

tractable when limited to input networks with unique min-cuts. The sta-
tus of p-mcbmn remains unclear. Theorem 59 and Theorem 61 do not suf-
fice to create a kernel. Interestingly, the following problem remains fixed-
parameter tractable even if the unique min-cuts condition is dropped.

B problem 31 (p-nodes-merge):

Input: A tuple (N, `) of an undirected multi-terminal network N and
a natural number ` > 2.

Parameter: The number of terminals k in N.
Question: Is there a set of ` nodes in N that can be merged to a single

node to obtain a mimicking network of N?

If all min-cuts are known to be unique, then the algorithm from Khan
and Raghavendra [52] proves the problem to be in FPT . In our more general
setting, however, a different strategy is needed which we describe next.

B theorem 66: p-nodes-merge ∈ FPT .

Proof. For all B ∈ B, compute the two extremal B-min-cuts. Then, iterate
over all resulting 22

k−1−1 choices of min-cuts and accept if, and only if,
there is an equivalence class of size ` for some choice of min-cuts.

The two extremal min-cuts are unique for each terminal-bipartition due
to the submodularity of min-cuts and can be determined efficiently by stan-
dard methods.

Certainly, this algorithm never accepts instances in the complement of
p-nodes-merge. For the other direction, let (N, `) ∈ p-nodes-merge with a
set L of ` nodes that can be merged, but the algorithm rejects. This implies
that there is a terminal bipartition, for which both extremal min-cuts sepa-
rate nodes within L. If so, however, then all min-cuts separate nodes within
L – a contradiction.

The last result sheds some light on the structure of these networks. For
a network N, let M(N) be the merge graph of N that is defined over the
same set of nodes. Two nodes u, v are joined by an edge if, and only if,
they can be merged to obtain a mimicking network of N. Knowledge of the
merge graph does not allow to reconstruct the network since information
is missing. In particular, merging two nodes may or may not remove other
edges of the merge graph. However, all nodes of a clique can always be
merged to a single node as is now next.

B lemma 67: A set L of nodes in a network N can be merged to a single node
if, and only if, L is a clique in M(N).

Proof. If all nodes of L can be merged, then there is a choice of min-cuts
such that there is an equivalence class containing L. Since all nodes of an
equivalence class can be merged pairwise, L is a clique in M(N).

Assume there is a clique L in M(N) and pick an arbitrary terminal biparti-
tion B. If the B-min-cut with smallest source side contains a node u ∈ L and
if there is a node v ∈ L not contained in the source side of the min-cut with
the largest source side, then every B-min-cut separates u, v. Since there is
an edge (u, v) in M(N), this is a contradiction. Therefore, the min-cut with
the smallest source side does not contain any nodes of L or the min-cut with
the largest source side contains all nodes of L in the source side. In either
case, all nodes of L can be merged.

When considering the set of merge graphs for all networks with a fixed
number of terminals, then Theorem 66 together with Lemma 67 imply that

4.4 an algorithm for the 4-terminal case 93

2
2

2

2

2

2

2
2

1

1

1

1

t1

t2

t3

t4

u

v

w

x

All T -min-cuts for

T = { t1, t2 } { t1, t2, v }

{ t1, t2, v,w }

{ t1, t2, v,w, x }

T = { t1, t3 } { t1, t3,w }

{ t1, t3, v,w }

{ t1, t3,u, v,w }

Figure 20: The displayed network is an example of a case where no choice of ex-
tremal min-cuts leads to a minimum CBMN. All terminal bipartitions
not listed above do not have any min-cuts separating any non-terminals.
Hence, we only need to consider the listed min-cuts. The only choice of
these min-cuts that leads directly to the minimum CBMN is the two non-
extremal ones. In this case, v and w as well as u and x can be merged.
Other choices may lead to a local minimum. For example, there is a choice
of min-cuts that allows to merge u and w – but from then on, no more
nodes can be merged. There are, however, choices of extremal min-cuts
that neither lead to the minimum CBMN directly, nor to a local minimum.
See Figure 21 for an example where every choice of extremal min-cuts
leads to a local minimum.

cliques of any size can efficiently be detected in these graphs. Under stan-
dard complexity theoretic assumptions, the problem of finding a clique of
size ` in an arbitrary graph is fixed-parameter intractable when parameter-
ized over ` as it is W[1]-complete [23]. The merge graph of such networks
is thus subject to structural restrictions that make the problem consider-
ably easier. It is unclear whether these restrictions allow an FPT algorithm
for p-mcbmn as well. Unfortunately, the proof idea of Theorem 66 does
not work for p-mcbmn as there are networks where the choice of min-cuts
needs to include a min-cut that is not extremal, see Figure 20 and Figure 21

for such networks.

4.4 an algorithm for the 4-terminal case

A necessary condition for p-mcbmn to be in FPT is that every slice is in P, i. e.,
every language consisting of all problem instances with equal parameter can
be solved in polynomial time. To see if this necessary condition is met, we
analyze the problem for up to 4 terminals. If this problem can be solved in
polynomial time, then p-mcbmn possibly is in FPT . But if it is not, then this
possibility is ruled out.

This section describes an algorithm for p-mcbmn restricted to up to 4

terminals which is a surprisingly challenging task. While the presented al-
gorithm runs in polynomial time, it can only guarantee to find contraction-
based mimicking networks at most two nodes greater than the minimum
one. In the following, we will go through all possible cases for minimum
CBMNs to networks with at most 4 terminals. The cases that cannot be
decided correctly by the algorithm in polynomial time are promising candi-
dates to proof NP-hardness of this slice of p-mcbmn.

94 mimicking networks

2

2

2

2

2

2

1

2

2

1

2
21

2

2

t1

t2

t3

t4

u

vw

x

y

z

All T -min-cuts for

T = { t1, t3 } { t1, t3,y }

{ t1, t3, v, x,y }

{ t1, t3,u, v,w, x,y }

T = { t2, t3 } { t2, t3, v }

{ t2, t3, v, x,y }

{ t2, t3, v,w, x,y, z }

Figure 21: In this example, any choice of extremal min-cuts leads to a local minimum
when trying to find a minimum CBMN. Again, all terminal bipartitions
not listed do not have any min-cuts separating non-terminals and can
hence be ignored. Note that w and x are not separated by any extremal
min-cut. Merging them, however, yields a local minimum.

For up to three terminals, every terminal bipartition separates a single
terminal from the remaining terminals. Theorem 59 (page 86) allows us to
pick the best min-cut for such a terminal bipartition in polynomial time and
hence a minimum CBMN can be found in polynomial time for any network
with up to 3 terminals.

We refer to the problem p-mcbmn with exactly 4 terminals to 4-mcbmn.
The number of terminal bipartitions that needs to be considered in a 4-
terminal network grows to 7. Four of these are terminal bipartitions isolat-
ing a single terminal. For these, Theorem 59 can still be applied allowing
us to merge a maximum number of non-terminals with terminals. Hence,
if there is a CBMN with terminals only, then we can find it in polynomial
time – and certainly it is a minimum CBMN. The question (N, 4) ∈ mcbmn

can thus be answered in polynomial time.
If not all non-terminals can be merged with terminals, then we would

like to know whether they can all be merged with each other to obtain a
CBMN of size 5. This is the case if, and only if, we can find for each of the
three remaining terminal bipartitions a min-cut that does not separate any
non-terminals (compare to Lemma 60 on page 86). If there is such a min-cut,
then it is an extremal min-cut. Since these can be found in polynomial time,
we can determine in polynomial time whether the minimum CBMN is of
size 5.

If there is no minimum CBMN of size 5, then it still is a good idea to
choose extremal min-cuts that do not separate any non-terminals. For each
of the remaining three terminal bipartitions, we hence check if there is such
a min-cut and in the positive case choose it. This leaves us with at most three
terminal bipartitions for which we have to choose one min-cut each splitting
the set of non-terminals into as few sets as possible. For notational ease, we
will assign colors to these three terminal bipartitions – the red, the green,
and the blue one. A min-cut of the corresponding terminal bipartition will
from now on be referred to as a red, green, or blue min-cut.

What we have achieved so far is that we either found a minimum CBMN
of size at most 5 or we know that every minimum CBMN has size at least 6,
and no non-terminals can be merged with any terminals. Moreover, none of

4.4 an algorithm for the 4-terminal case 95

Number of non-terminals in minimum CBMN

Case 2 3 4 5 6 7 8

a)

b)

c)

d)

e)

Table 2: This table lists all classes of cases how the chosen min-cuts of a 4-terminal
network can split the set of non-terminals into 2 to 8 non-terminals. A line
denotes a min-cut, a dot a non-terminal. Terminals are not shown. Each
of the 7 terminal bipartitions of a 4-terminal network demands the choice
of a corresponding min-cut. Theorem 59 and Lemma 60 allow to make this
choice optimally in polynomial time for at least 4 of them. At most three
terminal bipartitions are left. If just one or two min-cuts are depicted, then
either there are only one or two terminal bipartitions left or multiple min-
cuts are equivalent with respect to the non-terminals (congruent min-cuts).
The case of 0 and 1 non-terminals are not listed.

the remaining terminal bipartitions allow a min-cut not separating any non-
terminals. Choosing an arbitrary min-cut for each of the remaining terminal
bipartitions leads to a minimum CBMN with a total of at most 12 nodes – 4

terminals plus 23 non-terminals. The task is to find out which case applies.

minimum cbmn of size 6 . If there is a minimum CBMN
of size 6, then min-cuts can be chosen such that the set of non-
terminals is split into exactly two sets. This is indicated by case
2a) of Table 2 that is also depicted on the right. If there is only
one min-cut left to be chosen, then any min-cut will suffice. If,
however, several need to be chosen, then we look for min-cuts belonging to
different terminal bipartitions that separate the set of non-terminals in the
exact same way. We call such min-cuts congruent min-cuts as defined in the
following.

B definition 8 (congruent min-cuts): Let B1,B2 ∈ B be two different
terminal bipartitions. A B1-min-cut (S1, T1) and a B2-min-cut (S2, T2) are
congruent if S1 ∩ (V − T) = S2 ∩ (V − T) or T1 ∩ (V − T) = S2 ∩ (V − T).

In the following, we will see that congruent min-cuts can be identified for
a set of terminal bipartitions in polynomial time – even though there may
be up to exponentially in |V | many min-cuts.

B lemma 68: There is an algorithm deciding for any network N in time

O
(
p(|N|) · 2|B|

)
, where p is some fixed polynomial, whether there is a choice

γ of min-cuts such that all chosen min-cuts are pairwise congruent, and out-
putting γ, if there is one.

96 mimicking networks

Proof. For each terminal bipartition B ∈ B, we compute a corresponding
max-flow fB. Next, we compute the residual network NfB which is com-
posed of strongly connected components by Lemma 6 on page 32. For ev-
ery terminal ti, we connect all neighbors of ti with each other and then
delete all edges incident to ti. This way, we remove terminals from strongly
connected components without creating new components of non-terminals.

Next, we consider two different orientations for the edges of each resid-
ual network NfB : Either all edges remain the way they are, or the direction
of each edge is reversed. For each of the 2|B| emerging possibilities, called
global orientation, we copy the edges of all residual networks into a new
graph consisting of the nodes V − T. We claim that there is a global ori-
entation such that the resulting graph decomposes into at least 2 strongly
connected components if, and only if, there is a choice of congruent min-
cuts.

If V ′ is a maximal strongly connected component in this graph, then for
each B ∈ B, it follows that B ∪ V ′ or B ∪ (V − T − V ′) is a B-min-cut. Since
creating these networks and checking the number of strongly connected
components can be done in the claimed time, we are left to prove correct-
ness.

So assume there is a global orientation such that the resulting graph G

contains at least 2 strongly connected components with V ′ being one of
them. All edges in G with exactly one endpoint in V ′ either leave or enter
V ′. If they leave V ′, then all edges enter V −T−V ′. Let X be the set entered
by all edges with exactly one endpoint in X. Then, for every B ∈ B, B∪X is
a B-min-cut of capacity 0 in NfB and thus a B-min-cut in N by Lemma 5 on
page 32.

If for every global orientation, G is a single strongly connected component,
then for every V ′ ⊂ V − T, there are edges leaving V ′ and edges entering
V ′. This means that for every V ′ there is a B ∈ B such that B ∪ V ′ is not a
B-min-cut.

Clearly, if the number of terminals is fixed, like in our case to 4, then
we can even find congruent min-cuts in polynomial time. Hence, (N, 6) ∈
4-mcbmn can be decided in polynomial time as well. For our purposes, we
extend the notion of crossing min-cuts to min-cuts belonging to different
terminal bipartitions. So let B1,B2 ∈ B be two distinct terminal bipartitions,
(S1, T1), and (S2, T2) a B1- and B2-min-cut, respectively. Then, these two
min-cuts are crossing min-cuts if, and only if, (S1 − S2) ∩ (V − T) 6= ∅ and
(S2 − S1)∩ (V − T) 6= ∅.

minimum cbmn of size 7 . If there is a minimum CBMN of
size 7, then it contains 3 non-terminals that are separated pair-
wise by min-cuts. Note that none of these min-cuts may be cross-
ing min-cuts since this would immediately yield 4 non-terminals.
Every min-cut that is left to be chosen by now separates the set
of non-terminals into two sets, let’s say (S1,S2). Another min-cut
may be congruent to the first or separate one of the two sets into
two more sets. A third min-cut may be congruent to one of the
first two or separate the nodes in a new way not introducing any new sets.
The discussed possibilities belong to one of two cases which are represented
by the two little images to the right.

If the minimum CBMN belongs to the class represented by the upper im-
age, then to at least one of the displayed two min-cuts, there is no congruent
min-cut that is also chosen. Note, that this min-cut can be replaced by an

4.4 an algorithm for the 4-terminal case 97

appropriate extremal min-cut of the same color, since the other min-cuts
only separate nodes on one side of it. Thus, for each color and each of its
extremal min-cuts, we check if after choosing it we can find two congruent
min-cuts of the other colors not crossing the chosen extremal min-cut.

If the minimum CBMN belongs to the lower image, then the presented
techniques do not suffice. By trying all extremal min-cuts, however, we will
find a CBMN of size at most 8 – the chosen min-cuts will then look like case
4c) in Table 2. We hence find in polynomial time a CBMN at most one node
larger than a minimum CBMN.

minimum cbmn of size 8 . If there is a minimum CBMN of
size 8, then min-cuts can be chosen accordingly to one of the five
images to the right. We can distinguish two main cases: Either
there are crossing min-cuts or there are none. If there are none,
then the three min-cuts separate the non-terminals as indicated in
the first or second image on the right, if there are some, then it
corresponds to one of the three remaining images.

If there are min-cuts crossing each other, then we already have
separated the set of non-terminals into 4 sets. The third cut either
is congruent to an already chosen one (third image) or it separates
only nodes that have already been separated, but is not congruent
to any other chosen min-cut (fourth and fifth image). Cases be-
longing to the third image can be detected quite easily by finding
two colors which allow to choose two congruent min-cuts. For the
remaining color, any min-cut that can be chosen crosses these two
congruent ones as there is no CBMN of size 7. Cases belonging
to the fourth image and fifth image cannot be correctly detected. At least,
for the fourth image, by trying all extremal min-cuts, we are able to choose
min-cuts as depicted in case 5a) in Table 2. For the fifth image, this tech-
nique always leads to chosen min-cuts as depicted in case 6b). Hence, the
algorithm finds in polynomial time a CBMN at most two nodes larger than
a minimum CBMN.

minimum cbmn of size 9 . If there is a minimum CBMN of
size 9, then min-cuts can be chosen that split the non-terminals
into 5 sets. Among these, there need to be two crossing min-cuts
as otherwise, there would be a smaller CBMN. These two crossing
min-cuts yield four sets of non-terminals. The third min-cut splits
one of these sets into two new sets as indicated in the image on the right.
This third min-cut can be replaced by an extremal min-cut of the same color.
After this, the two crossing min-cuts can also be replaced by extremal min-
cuts of the same color. Putting this together, by trying all possibilities to
choose extremal min-cuts, we are able to detect this case in polynomial
time.

minimum cbmn of size 10 . In this case, again, there are two
min-cuts crossing each other yielding four sets of non-terminals.
The third min-cut needs to split two of these sets into two new
ones each. This may happen as depicted in the two images on the
right. Cases belonging to the upper image can be detected by the
algorithm by again trying all choices of extremal min-cuts. The
cases belonging to the lower image again are difficult. However,
the min-cut represented as the rectangle in the middle may be

98 mimicking networks

replaced by an extremal min-cut such that this rectangle becomes smaller.
That case still looks like the lower image. Hence, we may assume that this
min-cut is an extremal min-cut. In the image, there are four regions in that
rectangle two of which are empty. By choosing extremal min-cuts for the
remaining two colors, one will find a choice of min-cuts where at most one
of these two regions is not empty anymore. Hence, we will find a CBMN at
most one node larger than a minimum CBMN.

minimum cbmn of size 11 . If a minimum CBMN has 7 non-
terminals, then the min-cuts split the nodes as depicted on the
right. There are two min-cuts crossing each other creating four
sets of non-terminals. The third min-cut splits three of these four
sets into 2 new sets each. This case, too, can be detected by trying
all possible choices of extremal min-cuts.

minimum cbmn of size 12 . If none of the previous cases
applies, then clearly all minimum CBMNs have size 12 and have
8 non-terminals. No matter which three min-cuts are chosen, they
split the set of non-terminals as depicted on the right.

This concludes the description of the algorithm. All these con-
siderations lead to the following theorem.

B theorem 69: There is a deterministic polynomial time algorithm that on
input of a 4-terminal network N outputs a CBMN N ′ for N whose size is at
most two greater than a minimum CBMN for N.

Proof. We check each of the just described cases beginning with the smallest
number of non-terminals and work our way up. As soon as we can confirm
that a case applies, we output the appropriate size and stop.

Even if this algorithm succeeded at finding the minimum CBMN in all
cases in polynomial time, the degree of the polynomial dominating the run-
time highly depends on the number of terminals. If we further were able
to generalize this algorithm to an arbitrary number of terminals, then we
would rather expect an XP algorithm for p-mcbmn and not an FPT algorithm.

It is well possible that 4-mcbmn is not in P, but rather NP-
complete. Easily, the problem is in NP as we can guess the right
choice of min-cuts leading to a CBMN of size at most m. Verifying
the solution can be done in polynomial time as we have a fixed
number of terminal bipartitions. To show NP-hardness, the above
case analysis yields promising candidates for a reduction. These
are case 3b), case 4d), case 4e), and case 6b) of Table 2, i. e., the four
images on the right. For each of these cases, it may be possible to
augment our algorithm to correctly handle it in polynomial time,
or it may be possible to show that this case cannot be decided in
polynomial time. The first of these cases, 3b), corresponds to the
next problem.

B problem 32: 4-mcbmn-7

Input: A tuple (N,m) of an undirected 4-terminal network N and a
natural number m.

Question: Is there a CBMN of size 7 for N?

If this problem turns out to be NP-hard, then clearly p-mcbmn /∈ FPT . If,
however, 4-mcbmn-7 ∈ P, then hopes are up to fit the other cases in P as
well.

4.4 an algorithm for the 4-terminal case 99

Following the idea of Dahlhaus et al. [17], we try to leverage the sub-
modularity to solve 4-mcbmn-7 in polynomial time. Grötschel, Lovász, and
Schrijver [38] have found that any submodular set function f : 2U → R that
can be evaluated in polynomial time can also be minimized in polynomial
time, i. e., a set X ⊆ U can be found in polynomial time with f(X) < f(Y) for
all Y ⊆ U. Recall that f is submodular if f(X) + f(Y) > f(X∩ Y) + f(X∪ Y) for
all X, Y ⊆ U.

If we could define a submodular set function such that it is evaluable in
polynomial time, and the set for which it hits its minimum hints us at the
solution to 4-mcbmn-7, then we could find the minimum in polynomial time.
Let us define a function fN over the non-terminals of N as follows.

fN(X) =



1 if { t1, t2 }∪X is not a { t1, t2 }-min-cut or

{ t1, t2 }∪X is a { t1, t2 }-min-cut but choosing

{ t1, t2 }∪X as { t1, t2 }-min-cut

does not allow a CBMN of size 7 ;

0 otherwise .

(119)

Function fN can indeed be evaluated in polynomial time. It is easy to
decide whether { t1, t2 }∪X is a { t1, t2 }-min-cut or not. Moreover, it can be
decided efficiently whether the choice of { t1, t2 }-min-cut as { t1, t2 }-min-cut
still allows the choice of other min-cuts in order to obtain a CBMN of size
7. For this, a slightly modified approach of the one described in Lemma 68

suffices. However, it does not always define a submodular set function. The
network N of Figure 22 is an example of a network for which fN is not
submodular. To find this counterexample, we started off at a set of min-
cuts that causes a network to exhibit the desired property making fN non-
submodular. Since it is unclear whether for such a system of set systems
a network exists at all, we formulated a linear programming forcing the
desired min-cuts to be min-cuts and all other cuts to be non-minimal. As this
leads to an exponential sized linear program, we made use of a technique
called column generation as described by Grötschel, Lovász, and Schrijver
[39].

Hence, we have further confined the truly hard cases – these are networks
N for which fN is not submodular. Further following the idea of Dahlhaus
et al. [17], we tried to construct a reduction from an NP-complete problem
using the network of Figure 22 as NP-completeness gadget – unfortunately
unsuccessfully.

Concluding to this chapter, we are left to find that the problem of deter-
mining the complexity of mcbmn is very challenging. Even though we have
pinpointed the difficulty to a few cases, we are unable to completely answer
it but rather give close upper and lower bounds on the complexity in the
first levels of the polynomial hierarchy.

Another main contribution is to show that the unique min-cuts assump-
tion, which is quite common in this area of research, is not only unrealistic
in practical settings where there is only a small set of distinct edge capac-
ities, but that enforcing this uniqueness by slightly perturbing edge capac-
ities may exponentially increase the size of a minimum CBMN. Moreover,
the unique min-cuts assumption made in previous research yields wrong ex-
pectations concerning the worst-case complexity of constructing a minimum
CBMN. Furthermore, we showed that the approximability by contraction-
based vertex sparsifiers does not behave smoothly.

100 mimicking networks

3

2

2

2

3
2

2

4

2

1

2

1

2

2

2

1

2

1

2

t1

t2

t3

t4

v1

v2

v3

v4

v5

v6

Terminal All Capacity

Bipartition T T -min-cuts

T = { t1, t2 } T ∪ { v2 } 12

T ∪ { v1, v2 }

T ∪ { v2, v3 }

T ∪ { v1, v2, v3 }

T = { t1, t3 } T ∪ { v6 } 13

T ∪ { v3, v5, v6 }

T = { t2, t3 } T ∪ { v4 } 13

T ∪ { v1, v4, v5 }

Figure 22: The depicted network N is a network for which the function fN de-
fined in (119) is not submodular. All terminal isolating min-cuts con-
tain exclusively that terminal. All other min-cuts are listed above. N

allows a minimum CBMN of size 7. For this, there are two possible
choices of min-cuts: 1) { t1, t2, v1, v2 }, { t1, t3, v3, v5, v6 }, { t2, t3, v4 }, and
2) { t1, t2, v2, v3 }, { t1, t3, v6 }, { t2, t3, v1, v4, v5 }. All other choices lead to
larger CBMNs. Hence, we have fN({ v1, v2 }) = fN({ v2, v3 }) = 0 and
fN({ v2 }) = fN({ v1, v2, v3 }) = 1 implying that fN is not a submodular set
function.

Without the unique min-cuts assumption, there may be several min-cuts
for each bipartition of terminals to select from. A wrong choice and thus a
merging of less suitable nodes may prevent reaching a minimum CBMN. For
the complexity of deciding whether a CBMN of a given size exists we have
established lower and upper bounds in the first levels of the polynomial hi-
erarchy. We also presented some partial results concerning fixed-parameter
tractability. The exact complexity remains open.

We conjecture that p-mcbmn is not fixed-parameter tractable, but at best
in XP. Moreover, we conjecture that mcbmn is not in coNP, but rather ΣP

2 -
complete.

5O N L I N E A N A LY S I S O F D Y N A M I C S T O R A G E N E T W O R K S

This chapter introduces our model of dynamic storage networks. We iden-
tify request sequences that are the most difficult and devise a general tech-
nique to find the best strategy of how to use the storage sites in a network.
Moreover, worst case networks belonging to certain classes are constructed.

In the following, Section 5.1 briefly presents several ways in which the
basic model of flow networks has been generalized. We also give a short
introduction to the world of online problems. Section 5.2 then introduces
our model which is a certain kind of a dynamic network in the context of
online problems. In Section 5.3, a technique is developed for the competitive
analysis of arbitrary networks. Finally, Section 5.4 applies this technique and
presents bounds for the competitivity of certain network classes.

5.1 dynamic networks and online problems

This section gives a short overview over the two topics of dynamic networks
and of online problems before the next section introduces our model of
dynamic storage networks that combines these two worlds.

dynamic networks . The motivation to consider flow networks and
min-cuts in them originated from military purposes [75]. In particular, it
was of interest to find a minimum number of railway tracks that need to
be cut to separate certain parts of a territory. The usefulness of the new
approach stimulated to model more and more aspects of railway systems
and soon many more applications. Many of these generalized flow network
models are grouped under the term dynamic networks. In general, such net-
works contain some kind of temporal component. For example, it may take
time for flow to pass an edge, flow may be delayed at nodes, and edge ca-
pacities may change over time. This may include the deletion or addition
of edges to a network at some point of time. In the following, we present
a number of problems from the realm of dynamic networks and present
techniques useful for our needs.

One of the earliest such networks has been considered by Ford and Fulker-
son [32]. In their setting, flow does not instantly traverse an edge, but takes
a certain amount of discrete time steps. The objective is to find flow that
maximizes the amount of flow reaching sink nodes within a given number
of time units. For this, they develop the technique of time-expanded networks,
which is a conventional s-t flow network. To obtain the time-expanded net-
work, the original network is copied for the needed number of time steps.
An original edge from u to v that takes k time steps to be traversed is then
represented in the time-expanded network by edges from u of every ith

copy to v of the (i+ k)th copy. Now, we simply use conventional max-flow
techniques to find a max-flow. Figure 24 on page 109 is an example for a
time-expanded network.

This techniques also helps for more sophisticated models and problems
and has been adapted to different needs. A drawback is that the size of
the time-expanded network may be exponential in the length of the original
problem. Fleischer and Skutella [30] developed the condensed time-expanded

101

102 online analysis of dynamic storage networks

network applicable in some cases resulting in a blow-up in size that is poly-
nomially bounded.

All kinds of problems from the realm of static networks and static flows,
like multi-commodity flow problems or transshipment problems, have been
defined with different temporal components. Problems in the dynamic net-
work setting may be modeled using continuous time or discrete time, may
involve storage nodes, and may allow the change of some parameters over
time. This allows many dimensions in which new models and problems can
be found. Several surveys have been published that give an overview over
this field of research, these include the ones by Aronson [6], Kotnyek [54],
Lovetskii and Melamed [59], Powell, Jaillet, and Odoni [70], and Skutella
[76].

We specifically want to address one important feature of some dynamic
networks: the ability to store flow at nodes. In the literature, this feature has
been given explicitly or implicitly. In the latter case, storing flow at a node
can be simulated by looping flow at that node in an edge with unit traversal
time and an appropriate capacity. In the explicit case, the node conservation
constraint may be relaxed of some nodes such that they may store flow. The
amount of flow that can be stored may be limited or unlimited.

Fleischer and Skutella [30] show that for the minimum cost flow problem
with continuous time and fixed traversal times and arc capacities, storage
nodes are not needed for any optimal solution. Minieka [63] also addresses
storage, but then assumes that no node is capable of storing flow to avoid
difficulties in the analysis. Halpern [42] looks for a max-flow in a model
with discrete time, fixed traversal times, but varying arc capacities, where
nodes may store flow. The solution uses an augmenting path algorithm.
Fleischer and Orlin [29] look for a minimum cost quickest integral trans-
shipment in a network model involving storage nodes. Recapitulatory, stor-
age nodes may be used but do not play a very prominent role in any of
these solutions. Mostly, this is due to the fact that solutions usually employ
some kind of time-expanded network which quite effortlessly takes storage
nodes into account. This will change in our online setting, which will be
introduced soon.

online problems . We encounter online problems all the time. Should
you hold on to your stocks or sell them? Should you get a monthly public
transport commuter ticket or pay each time? Should you gas up your car
now or wait until tomorrow?

All of these questions share a similarity – information is missing to find
the globally optimal answer. But what strategy is optimal with respect to
incomplete information? How well does the strategy work to get a monthly
commuter ticket every time it would have paid off last month?

Online problems deal with just these kinds of questions. They model
problems where the input is given one piece at a time, and upon receiving
the input, the online algorithm must take action in response to it. Such an
action is afflicted with a cost or a payoff, and the total amount of it needs to
be minimized or maximized, respectively. To every online algorithm solving
such problems, there is an offline algorithm that gets the entire input at once.
As part of the competitive analysis the performance of an online algorithm is
compared to the performance of an optimal offline algorithm.

A well-studied setting is the famous ski rental problem. Suppose you are
going skiing for the first time, and you are asking yourself whether to buy
or to rent skis. Let us say buying skis costs $10 while renting them costs

5.2 dynamic storage networks – the model 103

$1 a day. If you knew how many times you are going skiing, the choice
would be clear. However, this is exactly the information missing that turns
the problem into an online problem. Indeed, regardless of your strategy it
can be shown that there always is a scenario that makes you pay at least
twice of what you could have paid. If your strategy tells you to rent skis for
j days and then buy them if you are still up for it, then you pay $(j+ 10).
The minimum you could have paid is $min{ j, 10 } of course. An adversary,
that tries to make you pay as much as possible, will then be able to make
you pay twice as much as you optimally would. For this, it waits until you
buy and then makes sure you never ski again.

On the other hand, there is a quite simple strategy ensuring that you do
not pay more than twice as much either. It makes you buy as soon as you
have skied 10 times. In total, this makes the problem 2-competitive. The
formal definitions of these notions follow later.

What we have just learned also applies to the mentioned problem of de-
ciding whether to buy a monthly commuter ticket or not. The suggested
strategy to buy such a ticket once it would have paid off for the last month
does not ensure any bounds. The ski rental strategy, however, instructs us to
get a monthly commuter ticket as soon as we have spent as much on single
tickets as a monthly ticket costs. This way, we will certainly never pay more
than twice as much as we optimally would have.

It is worth to mention that there exists a randomized algorithm for the
ski rental problem that performs better in terms of an expected cost. This
is based on the assumption that the adversary does not know the outcome
of the coin flips of the randomized algorithm ahead. Karlin et al. [49] show
that there is a randomized algorithm with an expected cost of e/(e−1) ≈ 1.58,
and that there is no better randomized algorithm.

For a more detailed introduction to these topics, refer to the textbook
Online Computation and Competitive Analysis by Borodin and El-Yaniv [9], or
the surveys by Albers [3] as well as by Fiat and Woeginger [28].

5.2 dynamic storage networks – the model

In this section, we introduce our model that combines dynamic networks
and online problems. The power grid is modeled as a multi-terminal net-
work where power is treated as a good that is instantaneously routed from
one node of the network to another one. In each time step, there is a certain
amount of supply and demand which vary over time. The terminals are
assigned the role of a source, a storage node, or a sink. Edges are assigned
a capacity very similar to power grids: A power line has a power capacity;
an upper bound of energy that can be transmitted in a certain amount of
time. To avoid power outages, the amount of power transmitted via such a
line needs to stay below that bound. The nodes of the grid obey the flow
conservation – or act as supply, storage, or demand node.

B definition 9 (dynamic storage network): A dynamic storage network
M = (V ,E,S,R,D, c) consists of an undirected and connected graph (V ,E)
(again modeled by a directed but symmetric edge relation), the disjoint and
non-empty sets of supply nodes S, storage nodes R, and demand nodes D such
that S ·∪ R ·∪ D ⊆ V , and finally a (symmetric) capacity function c : V ×V →
R+

0 .

The supply, storage, and demand nodes will be referred to as terminals T,
all other nodes as non-terminals. We again assume that some arbitrary but

104 online analysis of dynamic storage networks

fixed total order is imposed over the terminals that we need in the context
of external flows.

B definition 10 (request sequence): A request sequence σ̄ = (σ1,σ2, . . . ,
σl) (or simply σ̄ = σ1σ2 . . . σl) of length l ∈ N+ is a sequence of functions
σi : S ∪D → R+

0 called requests that assign a non-negative value σi(v) to
each supply and demand node. Each request σi has a duration τ(σi) ∈ R+.

We will use the notation
(
σi(s1), . . . ,σi(s|S|) |σi(d1), . . . ,σi(d|D|)

)τ(σi)

for a request σi of duration τ(σi) (or στ(σi)
i). The vertical line separates the

supplies from the demands for a better readability.
The operation of concatenating two request sequences is defined as the natu-

ral concatenation of the two sequences and yields a new request sequence.
We also define στ1στ2 = στ1+τ2 . This has implications on what a prefix is.
A request sequence σ̄p is a prefix of another request sequence σ̄ if there is
a request σ̄s with σ̄pσ̄s = σ̄. A request sequence σ̄p is a prefix of a set of
request sequences ρ if σ̄p is a prefix of each request sequence in ρ. More-
over, σ̄p is a maximal prefix for a set of request sequences ρ if σ̄p is a prefix
for every request sequence in ρ and there is no other prefix σ̄ ′

p for ρ such
that σ̄p is a prefix of σ̄ ′

p. Note that request sequences cannot be empty and
hence there is no empty prefix.

Since request sequences can be represented in different ways, we make
assumptions concerning their representation. The difference lies in the du-
rations of the requests. While στ1στ2 and στ1+τ2 are by definition the same
request sequences, it does make a difference for the online algorithm which
will be presented one request at a time. In order to make the representation
of request sequences unique, we assume that the duration of every request
is as long as possible unless for a shorter duration we obtain a maximal pre-
fix for some subset of ρ with at least two sequences. For example, when the
two request sequences σ2

1 and σ3
1 are in the same set, they are represented

as σ2
1 and σ2

1σ
1
1. This assumption can always be fulfilled by changing the

way the request sequences are represented.
For a request σ and a supply node (demand node) vj, we call τ(σ) · σ(vj)

the supply (demand) of vj. The supply (demand) of a request is the sum of
all its supplies (demands), and the supply (demand) of a request sequence
is the sum of the supplies (demands) of all its requests.

B definition 11 (sequence of flows): A sequence of flows f̄ = (f1, f2, . . . ,
fl) with respect to a request sequence σ̄ = (σ1,σ2, . . . ,σl) is a sequence of
functions fi : V × V → R where each fi satisfies

the capacity constraint fi(e) 6 τ(σi) · c(e) for all e ∈ V × V , (120)

the skew symmetry fi(u, v) = −fi(v,u) for all (u, v) ∈ V × V , (121)

the flow conservation fi(v) = 0 for all v ∈ V − T , (122)

the request constraints 0 6 −fi(s) 6 τ(σi) · σi(s) for all s ∈ S and (123)

0 6 fi(d) 6 τ(σi) · σi(d) for all d ∈ D , and (124)

the storage constraint − fi(v) 6 ri(v) for all v ∈ R , (125)

where

ri(v) =


∑i−1

j=1 fj(v) if i > 1 ;

0 if i = 1 .
(126)

Intuitively, the request constraints do not allow any supply node to send
out more flow as it can supply according to the request, and no demand

5.2 dynamic storage networks – the model 105

s1

s2

v1

v2

d1

d2

4

4

1

4

4

Figure 23: This dynamic storage network consists of two supply nodes s1, s2, two
storage nodes v1, v2, and two demand nodes d1,d2. As before, denotes
a terminal. Supply nodes are named si, storage nodes vi, and demand
nodes di. Consider the request σ1 = (1, 0 | 0, 0)4, that allows any algo-
rithm to store four units of flow in an arbitrary way at the storage nodes.
Now let σa = (0, 0 | 4, 0) and σb = (0, 0 | 0, 4) be two more requests. If
ρ = {σ41σa,σ41σb }, then any optimal offline algorithm will store the four
flow units of σ1 at v1 if the current request sequence is σ41σa and at v2
otherwise. An optimal online algorithm needs to find a compromise be-
tween these two extremes and stores two flow units at each storage node.
This way, one flow unit will remain in the dynamic storage network by
the end of either request sequence. Hence, the competitiveness is 4/3.

node may consume more flow than it demands according to the request.
Moreover, the request constraints demand that no supply node may have a
positive net flow, and no demand node may have a negative net flow.

The duration of a request could be modeled by simply repeating the re-
quest for a certain number of times. That way, however, only durations that
are whole numbers can be modeled and the representation could become
quite large. It turns out to be an elegant solution to simply scale up and
down each edge’s capacity with the request’s duration. This happens in the
capacity constraint (120).

A storage node is modeled as a node with relaxed flow conservation con-
straint. It stores flow if it has a positive net flow, and it releases stored flow
if it has a negative net flow. While it may store arbitrary amounts of flow,
it can only release as much flow as it has stored earlier in the sequence of
flows. The value ri(v) is the amount of flow stored at v during the requests
1 through i− 1 and thus available at the beginning of request σi. Initially,
we have r1(v) = 0 for all v ∈ R.

Having defined a sequence of flows with respect to a request sequence,
we now define a flow for a dynamic storage network M.

B definition 12 (flow in a dynamic storage network): A flow in
a dynamic storage network is a function f : V × V → R complying to (120),
(121), and (122) with the additional properties that f(s) 6 0 for all s ∈ S and
f(d) > 0 for all d ∈ D.

If we view a dynamic storage network M as a conventional multi-terminal
network N, then f is a flow in M if it also is a flow in N, supply nodes have
a non-positive net flow, and demand nodes a non-negative net flow. For a
dynamic storage network M and a flow f in M, there is a request sequence
such that a corresponding sequence of flows may contain f. The external
flow of a flow is defined analogously to multi-terminal networks – if f is
a flow in a dynamic storage network M, then ~f =

(
f(v1), f(v2), . . . , f(v|T|)

)
is the corresponding external flow. Now, FM = { ~f | f is a flow in M } is
the external flow pattern of M (compare to page 18). Again, while a flow
uniquely describes its external flow, an external flow may describe several
flows evoking the same net flows. The value of a flow in a dynamic storage

106 online analysis of dynamic storage networks

network is the sum of all positive (or all negative) net flows as it has been
defined before.

B definition 13 (dynamic storage system): A dynamic storage system
is a tuple M = (M, ρ) of a dynamic storage network M and a non-empty set
of request sequences ρ. An unrestricted dynamic storage system is a dynamic
storage system where ρ contains all possible request sequences for M.

Let ΦM,σ̄ be the set of all possible flow sequences with respect to a dy-
namic storage network M and a request sequence σ̄. We will often neglect
the M in the subscript if clear from the context. Now, we may define on-
and offline algorithms.

B definition 14 (online and offline algorithm): An offline algo-
rithm for M = (M, ρ) is a function A such that A(σ̄) = f̄ where f̄ ∈ Φσ̄ and
σ̄ ∈ ρ. An online algorithm has the additional requirement that it outputs the
same flow sequence for the same prefix of different request sequences.

We measure the performance of an algorithm with a profit function in
contrast to a cost function. Let ΦM = {ΦM,σ̄ | σ̄ ∈ ρ } be the set of all
possible flow sequences in response to all possible request sequences. The
profit of a flow sequence f̄ = (f1, f2, . . . , fl) is a function profit : ΦM → R.
The profit of A on σ̄ is the profit of the flow sequence produced by A. We
define

opt(σ̄) = max
f̄∈Φσ̄

{
profit

(
f̄
)}

(127)

as the optimal profit achievable by an offline algorithm. An offline algorithm
is optimal if its profit on σ̄ equals opt(σ̄) for every σ̄ ∈ ρ. An optimal
offline algorithm will also be denoted by opt. Even though there may not
be a unique optimal offline algorithm, we often refer to the optimal offline
algorithm. As the performance is measured only by the profit function, we
do not care about other aspects of these offline algorithms. We will only
consider request sequences σ̄ with opt(σ̄) > 0.

In the following, we consider the profit function

profit
(
f̄
)
=

l∑
i=1

∑
v∈D

fi(v) (128)

where the profit of a flow sequence is the sum of all flow units reaching
demand nodes.

B definition 15 (competitiveness): An online algorithm A for a dy-
namic storage system M = (M, ρ) is called c-competitive if for each σ̄ ∈ ρ

we have opt(σ̄) 6 c · profit(A(σ̄)). (M, ρ) is c-competitive if there is a c-
competitive online algorithm A for (M, ρ). M is c-competitive if (M, ρ) is
c-competitive for every ρ. We define comp(·) to be a function that assigns
a value c to a network, a dynamic storage system, or an online algorithm if
it is c-competitive, but not c ′-competitive for any c ′ < c. This value c will
also be referred to as competitive ratio. An online algorithm A is optimal for
(M, ρ) if comp(M, ρ) = comp(A).

The best competitiveness is 1 in which case the optimal offline and opti-
mal online algorithm send the same amount of flow to demand nodes. If
the competitiveness is worse, i. e., greater than 1, then for every online algo-
rithm there are request sequences for which it fails to send as much flow to
demand nodes as the optimal offline algorithm can do. See Figure 23 for an
example demonstrating these concepts.

5.3 a technique for the online analysis 107

5.3 a technique for the online analysis

The driving question of this section is: Given a dynamic storage network,
what is its competitivity? We will derive a general technique to answer such
questions. For this, we are first interested in finding a small set of request
sequences for a given dynamic storage network still maintaining the same
competitiveness. Clearly, we have comp(M, ρ ′) 6 comp(M, ρ) if ρ ′ ⊆ ρ. We
aim for a small set ρ ′ with comp(M, ρ ′) = comp(M, ρ).

B definition 16 (hard set of request sequences): For an unrestric-
ted dynamic storage system (M, ρ), we call any ρ ′ ⊆ ρ a hard set of request
sequences if comp(M, ρ ′) = comp(M, ρ). In particular,

ρA =
{
σ̄ ∈ ρ | opt(σ̄) = comp(A) · profit

(
A(σ̄)

)}
(129)

is a hard set of request sequences for an optimal online algorithm A.

Analogously to the external flow pattern for multi-terminal networks, de-
fined in Chapter 2 on page 18, we now give the corresponding definition for
a dynamic storage network.

B definition 17 (external flow pattern): For a dynamic storage net-
work M, the external flow pattern is FM =

{
~f | f is a flow in M

}
.

Even though the definitions look identical, they differ by the definition of
a flow. For example, a dynamic storage network does not allow any positive
net flow at a supply node.

B lemma 70: For any dynamic storage network M, the external flow pattern
FM is a |T|− 1 dimensional, convex polytope.

Proof. Hagerup et al. [41] have shown that for multi-terminal networks, a
vector (x1, . . . , xk) with k = |T| is an external flow if, and only if,

k∑
i=1

xi = 0 and (130)∑
vi∈T ′

xi 6 cM,T ′ , for all T ′ ⊆ T , (131)

where cM,T ′ is the capacity of a T ′-min-cut in M.
Feasible flows in a dynamic storage network have the additional restric-

tion to have non-positive net flows at supply nodes and non-negative net
flows at demand nodes. Hence, we add

xi 6 0 for all 1 6 i 6 |S| and (132)

xi > 0 for all |S|+ |R|+ 1 6 i 6 |T| . (133)

These linear constraints describe the external flow pattern which hence is
a convex polytope.

Concerning the dimension, note that due to (130), the polytope is not fully
dimensional. Moreover, there are k− 1 linearly independent external flows
found as follows: For each of the first k− 1 terminals denoted by u, find
some terminal v of different kind than u. Let fu,v be a flow from u to v

of positive value if u is a supply or storage node and from v to u if v is a
supply or storage node, and let ~fu,v be the corresponding external flow.

This lemma implies that for two arbitrary external flows ~f1, ~f2, the exter-
nal flow λ · ~f1 + (1 − λ) · ~f2 represents a flow for any 0 6 λ 6 1. Such a

108 online analysis of dynamic storage networks

flow lies somewhere in between two other flows, so to say. This is not only
true for flows, but also for sequences of flows. If λ · f̄ denotes the sequence
of flows (λ · f1, λ · f2, . . .), then we may equally define a sequence of flows
that lies in between other sequences of flows. This is an important insight
because the strategy chosen by an optimal online algorithm lies in between
the flows chosen by an optimal offline algorithm.

By continuously thinning out the hard set of request sequences, we seek
to find a smallest one allowing us to focus on the core reason that no on-
line algorithm may perform better than the competitiveness of the network
allows. While ρA is defined in dependence of a certain online algorithm A,
we are interested in finding a smallest hard set of request sequences. This
should be independent of any online algorithm A as the competitiveness is
a property of the network.

From the definition of hard sets of request sequences it is immediate that
the union of the hard set of sequences ρA defined in (129) for all optimal
online algorithms A is a hard set of request sequences for every optimal
online algorithm. The next lemma states that this applies to the intersection
as well.

B lemma 71: Let (M, ρ) be any dynamic storage system and A the set of all
optimal online algorithms for (M, ρ). Then

ρh =
⋂

A∈A

ρA (134)

is a hard set of request sequences.

Proof. Let comp(M, ρ) = c. We construct an online algorithm A∅ that out-
puts an average flow sequence f̄∅(σ̄) = (f∅,1, f∅,2, . . . , f∅,l) for each request
sequence σ̄ with

f∅,i(e) =
1

|A|

∑
A∈A

fA,i(e) (135)

for all e ∈ V × V where fA,i is the ith flow of A(σ̄). This truly is a flow
sequence for σ̄ as a consequence of Lemma 70.

For the performance of A∅ with respect to a given request sequence σ̄,
we have opt(σ̄) = c · profit

(
A∅(σ̄)

)
if, and only if, opt(σ̄) = c · profit

(
A(σ̄)

)
for every A ∈ A and opt(σ̄) < c · profit

(
A∅(σ̄)

)
otherwise. If ρH = ∅ then

comp(A∅) < c which contradicts the fact that comp(M, ρ) = c. Hence, ρh
is not empty and a hard set of request sequences.

This allows us to talk about a hard set of request sequences for a dynamic
flow system M independent of an optimal online algorithm. For this set we
know that if an online algorithm performs better than comp(M) on any of
its request sequences, then this algorithm cannot be optimal. Moreover, we
have ρh = ρA∅ . Still, this set is not a smallest hard set of request sequences.
We will address the reasons for this soon.

A dynamic storage network involves several differences in comparison to
classical flow networks – the less exciting being the fact that it may have
several sources and sinks. Additionally, we consider these dynamic storage
networks over the course of time, allow storage nodes, and have variable
supplies and demands at the sources and sinks. Still, for a dynamic storage
network M and a given request sequence σ̄, we can construct a time-expanded
network that is an s-t flow network. This time-expanded network is useful

5.3 a technique for the online analysis 109

s11

s12

v1
1

v1
2

d1
1

d1
2

16

16

4

16

16

s21

s22

v2
1

v2
2

d2
1

d2
2

4

4

1

4

4

∞

∞
s t

4

0

0

0

0

0

0

4

Figure 24: Let M be the dynamic storage network of Figure 23 and σ̄ =

(1, 0 | 0, 0)4(0, 0 | 0, 4). The above pictured network is then the correspond-
ing time-expanded network. It is easily seen, that a max-flow is a path-
flow along s-s11-v11-v12-v22-d22-t of value 4. The restriction of this flow to
edges in M tells us what an optimal offline algorithm does in response to
σ̄. Since four flow units are sent along the edge (v12, v22), the optimal of-
fline algorithm stores four flow units at v2 in M in response to (1, 0 | 0, 0)4.

for determining the maximum amount of flow that can be sent to the de-
mand nodes of M with respect to the request sequence σ̄. For this, we copy
the network l times where l is the length of σ̄. Then, all capacities of the ith

copy of M are scaled by τ(σi). Next, we introduce a source s and a sink t,
then connect s to the ith copy of sj via an edge of capacity τ(σi) · σi(sj). Fi-
nally, each storage node of the ith copy, for 1 6 i < l is connected to its own
copy of the (i+ 1)th copy with an edge of infinite capacity. Then, finding
an s-t max-flow yields a flow f that is also a flow of maximum profit for M

with respect to σ̄. See Figure 24 for an example.
Request sequences for most online problems can be organized in a prefix

forest. We define Pρ = (Vρ,Eρ) to be the prefix forest of a set of request
sequences ρ. We neglect the subscript if clear from the context.

The prefix forest Pρ is defined as a graph that contains the nodes

Vρ = ρ∪
{
σ̄ | σ̄ is a maximal prefix of (136)

at least two request sequences in ρ
}

.

There is an edge (u, v) in Pρ if, and only if, u is the longest prefix of v in
V . An online algorithm can be seen as a function assigning a flow to each
node in Vρ such that for every path from the root to a leaf we have a flow
sequence with respect to the request sequence belonging to the leaf. If P is
a tree in the prefix forest Pρ, then ρ(P) denotes the set of request sequences
corresponding to the leaves of P and hence ρ(P) ⊆ ρ for every Pρ.

B lemma 72: For every dynamic storage system (M, ρ), there is a single tree
P in Pρ such that comp(M, ρ) = comp(M, ρ(P)).

Proof. Suppose this was not the case such that for any tree P in the pre-
fix forest Pρ, there is an optimal online algorithm AP with comp(AP) <

comp(M, ρ). Then, an online algorithm A that simulates AP if the received
request sequence belongs to P performs better than the competitiveness al-
lows.

110 online analysis of dynamic storage networks

We call such a tree a hard tree. We may infer that all request sequences of a
smallest hard set of request sequences start with the same request. We may
wonder how small this set might get. If comp(M, ρ) > 1, then every hard
set of request sequences needs at least 2 elements starting with the same
request since otherwise, an online algorithm is not subject to any additional
restrictions in comparison to the optimal offline algorithm.

When taking a closer look at ρh, we notice that the prefix forest belonging
to ρh may consist of many trees instead of just a single one. This is due to
several reasons that are explained in the next few lemmas. For the first
lemma, we define the scaling of a request sequence σ̄ with a factor q ∈ R+

denoted with q · σ̄ as the request sequence σ̄ where the duration of each
request is multiplied with q. We further define q · ρ =

{
q · σ̄ | σ̄ ∈ ρ

}
as a

scaled set of request sequences.

B lemma 73 (scaling lemma): (M, ρ) is c-competitive if, and only if, (M,
q · ρ) is c-competitive.

Proof. Let Pρ and Pq·ρ be the prefix forests corresponding to the request
sequence sets ρ and q · ρ. There is a bijection between the trees of these
forests where each tree corresponds to its scaled version.

Let P be any tree in Pρ and Pq·ρ the corresponding scaled one. If there
is an online algorithm A for (M, ρ(P)) with comp(A) = c, then we can
derive an online algorithm Aq for (M,Pq·ρ) that is c-competitive as well.
On input q · σ̄, this algorithm simulates A on σ̄ to obtain the flow sequence
f̄. It then scales this flow sequence with q to obtain the flow sequence
q · f̄ = (q · f1,q · f2, . . .).

This suffices as for the other direction, the above argument works with the
scaling factor 1/q. Hence, (M, ρ) is c-competitive if, and only if, (M,q · ρ) is
c-competitive.

As the duration of a request is nothing else but the scaling of the net-
work’s capacities, this lemma also implies that if a network is c-competitive,
then the same network with equally scaled edge capacities is also c-compet-
itive.

Moreover, from the Scaling Lemma it follows that for an unrestricted dy-
namic storage system, ρh is an infinite set of request sequences containing
infinitely many scaled copies of a single tree. But even a single hard tree
might contain more request sequences than necessary. For example, a set of
hard request sequences might contain request sequences that supply more
flow than even an optimal offline algorithm can send to the demand nodes.
Intuitively, it is clear that lowering the supply such that all flow can be sent
to the demand nodes does not hurt the offline algorithm and should not
help any online algorithm and hence yields another hard set of request se-
quences. The situation is quite similar with request sequences where the
demand is so high that not even an optimal offline algorithm can fully sat-
isfy it. Here, too, the demand can be lowered to still obtain a hard set of
request sequences. This is formally stated in the next lemma.

B lemma 74: Let (M, ρ) be an unrestricted dynamic storage system and

ρ ′ =
{
σ̄ ∈ ρ | supply(σ̄) = opt(σ̄) = demand(σ̄)

}
. (137)

Then, comp(M, ρ) = comp(M, ρ ′).

Proof. Since ρ ′ ⊆ ρ, we have comp(M, ρ ′) 6 comp(M, ρ). In particular, this
implies comp(M, ρ ′) = 1 if comp(M, ρ) = 1. For the remainder of the proof,
we hence assume that comp(M, ρ) > 1.

5.3 a technique for the online analysis 111

We say σ̄ v σ̄ ′ if σ̄ and σ̄ ′ are of the same length l, opt(σ̄) = opt(σ̄ ′), and
for all i ∈ { 1, 2, . . . , l } we have τ(σi) = τ(σ ′

i) as well as σi(v) 6 σ ′
i(v) for

all v ∈ S ∪D. Now consider the set ρ ′′ = { σ̄ ′′ v σ̄ | σ̄ ∈ ρ and σ̄ ′′ ∈ ρ ′ }.
By definition, ρ ′′ ⊆ ρ ′. However, since for every request sequence σ̄ ′ ∈ ρ ′,
there is a request sequence σ̄ ∈ ρ with σ̄ ′ v σ̄, we have ρ ′′ = ρ ′.

Let P = (V ,E) be a hard tree of the prefix forest Pρ. Then, there is an
isomorphic tree P ′ = (V ′,E ′) of sequences in ρ ′ such that for each pair
(σ̄, σ̄ ′) of isomorphic nodes with σ̄ ∈ V and σ̄ ′ ∈ V ′, the two request se-
quences satisfy σ̄ ′ v σ̄. If there is an online algorithm A ′ for (M, ρ ′) with
comp(A ′) < c, then we can use A ′ to construct an online algorithm A for
(M, ρ) with comp(A) = comp(A ′). When A receives the request sequence
σ̄, it identifies the isomorphic request sequence σ̄ ′ of an isomorphic tree P ′

and simulates A ′ on it. This, however, yields comp(A) < comp(M, ρ) – a
contradiction.

We may conclude that for an unrestricted dynamic storage system, in
order to find a hard set of request sequences it suffices to consider those
request sequences for which an optimal offline algorithm can send as much
flow to the demand nodes as is supplied and demanded.

This allows us to assume that all request sequences σ̄ considered from
now on satisfy supply(σ̄) = opt(σ̄) = demand(σ̄).

We have now shown a number of ways to thin out a hard set of request
sequences, but still have not arrived at the smallest one yet. In the following,
we will show how to obtain a certain set of request sequences ρM for a given
dynamic storage network M. We will later see that it is almost a smallest
hard set of request sequences.

We can now argue that there always is a hard set of request sequences all
beginning with a request of zero demand.

B lemma 75: Let (M, ρ) be an unrestricted dynamic storage system with
comp(M, ρ) > 1. Then, there is a hard set of request sequences that all
begin with a request of zero demand.

Proof. For the sake of contradiction, we assume to the contrary such that all
hard sets of request sequences start with a request of positive demand. Let
P be a hard tree of request sequences. By Lemma 74, we may assume that
an optimal offline algorithm can send all supplied flow to sinks and satisfy
all demand.

Let σ1 be the first request of all sequences belonging to P. By Lemma 74,
we have demand(σ1) 6 supply(σ1). Moreover, if demand(σ1) = supply(σ1),
then P certainly is not a hard tree. Hence, x = supply(σ1)−demand(σ1) > 0

is the amount of flow that can be stored during the first request.
Now let us replace the first request of each sequence with a new request

of zero demand and a total supply of x flow units. In combination with the
duration, this request can be created in a way that allows any algorithm to
arbitrarily store the x flow units at storage nodes. The remaining requests
are left unchanged. Let us denote the corresponding tree by P ′.

The sequences in P allow any online algorithm to send flow from the
sources directly to the sinks in the first request as it has a positive demand.
Up to this point, the competitiveness is 1. For an adversary seeking a high
competitiveness, this can only pay off if the online algorithm is hindered to
store flow in a better way which it could if there was no demand. However,
as the optimal offline algorithm can still fully satisfy all demand, Lemma 70

implies that a compromise that lies in between the sequence of flows chosen
by the optimal offline algorithm, is possible as well. Hence, the adversary

112 online analysis of dynamic storage networks

can only lose by demanding flow at some demand nodes during the first
request.

Our search for a smallest hard set of request sequences can hence be
focused on those requests that all start with a request just supplying flow.
Due to the Scaling Lemma, we may assume that during this first request,
exactly 1 unit of flow is supplied.

The next request of each sequence is thus a request draining the storage
nodes. A request might force some storage node to release more flow than
another. As soon as a storage node runs empty, while there still is a need
to release more flow from it, the competitive ratio raises. In this case, the
adversary continues requesting the same storage node to release flow which
further increases the competitive ratio.

The adversary is hence looking for request sequences that stress the stor-
age nodes in as different ways as possible. This search can be narrowed
down to the vertices of the external flow pattern. These vertices correspond
to flows, however, the adversary can only control the requests. These dic-
tate a net flow at source nodes and at sink nodes. It is left to the online
and offline algorithms to choose compliant flows. Depending on this choice,
the net flow at the storage nodes can vary. Still, some requests can only be
served by extracting a large amount of flow from a specific storage node.
We now introduce some notions to formalize these ideas.

B definition 18 (request space): The request space of a dynamic stor-
age network M is

σ(M) =
{
(f1, f2, . . . , f|S|,

f|S|+|R|+1, f|S|+|R|+2, . . . , f|S|+|R|+|D|) | ~f ∈ FM
}

. (138)

The request space is thus the external flow pattern restricted to those
components which can be controlled by request sequences: the net flows of
the supply nodes and the net flows of the demand nodes. By appropriately
interpreting requests, that formally are functions over S∪D, as vectors, we
see that the request space is made up of all requests that could potentially
be served.

B definition 19 (vertex request): A request σ ∈ σ(M) for a dynamic
storage network M is a vertex request if σ is a vertex in σ(M), i. e., there are
no two distinct requests in σ(M) such that σ is a convex linear combination
of these two. A draining vertex request is a vertex request for which the
net flows of the demand nodes is greater than the net flows of the supply
nodes. A normalized draining vertex request is a draining vertex request with
a duration such that the demand is exactly 1 unit greater than the supply.

A draining vertex request can only be served by taking flow from the stor-
age nodes. There always are draining vertex requests since every dynamic
storage network has at least one storage node.

B definition 20 (filling request): For a dynamic storage network M,
let cmin be the minimum capacity over all positive edge capacities. Then,
the request σM,fill with σM,fill(s) = cmin for a fixed supply node s ∈ S,
σM,fill(v) = 0 for all v ∈ S∪D− s, and τ(σM,fill) = 1/cmin is the filling request
of M.

A filling request has no demand, but a supply so low that it can be routed
through any edge. This request has a duration such that the total amount of
flow entering the network is 1. This 1 flow unit may be stored in an arbitrary
way at the storage nodes, since the underlying graph is connected.

5.3 a technique for the online analysis 113

In the following, we link a flow f in M to the request σf of M by saying
that a flow f is compliant to a request σf if τ(σf)σf(v) = |f(v)| for all v ∈ S∪D.
There may be several flows that are compliant to a given request.

B definition 21 (draining vertex request sequences): Let M be a
dynamic storage network. If ρd is the set of all normalized draining vertex
requests for M, then we define

ρM =
{
σM,fillσf | σf ∈ ρd

}
(139)

as the set of all vertex request sequences for M.

Due to the previous discussions, we have comp(M, ρM) = comp(M, ρ)
for any unrestricted dynamic storage system (M, ρ). Hence, we now ana-
lyze the competitiveness of the dynamic storage system (M, ρM). While an
offline algorithm may store the flow during the filling request in exactly the
way it will be needed for the next request, any online algorithm is forced to
react to the first request of every sequence in ρM with the same flow and
thus store the provided flow in the same way at the storage nodes.

B definition 22 (storage vector): Let A be an online or offline algo-
rithm for a dynamic storage system (M, ρ), and let (r1, r2, . . . , rl+1) be the
sequence of storage functions created by A in response to a request sequence
σ̄ = (σ1,σ2, . . . ,σl). Further, let Ri =

∑
v∈R ri(v) be the total amount of

flow stored in M after the ith request. Then, we define the ith storage vector
~αi =

(
ri(v1), ri(v2), . . . , ri(v|R|)

)
and the normalized ith storage vector to be

~αi/Ri if Ri 6= 0 and the 0-vector otherwise.

The storage vector describes the way in which A stores the flow at the
storage nodes. The storage vector and normalized storage vector are equiv-
alent after σM,fill for optimal algorithms, as exactly 1 unit of flow is stored
at the storage nodes.

While the optimal offline algorithm adapts the storage vector in response
to σM,fill depending on how the request sequence continues, an online algo-
rithm always stores the flow provided during this first request in the same
way. This may lead to situations where the online algorithm cannot sat-
isfy all demands during the second request, see Figure 23. The flow not
reaching any demand nodes is left at storage nodes by the end of the re-
quest sequence – it is easy to see that no online algorithm will ever have
an advantage of not storing flow at storage nodes during the filling request.
Moreover, for any draining vertex request, there is a flow independent of
the current storage vector such that all flow supplied at supply nodes leaves
the supply nodes. We may thus assume that all flow unable to be sent to
demand nodes remains at storage nodes by the end of the request sequence.
Let ~α be some normalized storage vector and M~α the dynamic storage net-
work where the storage function corresponds to ~α. For any σM,fillσf ∈ ρM,
let d~α(σf) be the minimum amount of flow that is left at storage nodes if ~α
is the storage vector after σM,fill.

The competitiveness of the online algorithm A~α choosing ~α = (α1,α2, . . . ,
α|R|) as storage vector after σM,fill is equal to the worst ratio over all requests
in ρM of flow that can be sent to demand nodes by the offline algorithm
divided by flow that can be sent to demand nodes by an optimal offline
algorithm. More formally, we have

comp(A~α) = max
{

1+ supply(σf)

1+ supply(σf) − d~α(σf)
σM,fillσf ∈ ρM

}
. (140)

114 online analysis of dynamic storage networks

To determine this competitiveness, we need to find the optimal storage
ratio ~αopt that minimizes this term. This is

~αopt = argmin
~α

comp(A~α) (141)

= argmin
~α

max
{

1+ supply(σf)

1+ supply(σf) − d~α(σf)
σM,fillσf ∈ ρM

}
(142)

= argmin
~α

min
{

1+ supply(σf) − d~α(σf)

1+ supply(σf)
σM,fillσf ∈ ρM

}
(143)

= argmin
~α

min
{
1−

d~α(σf)

1+ supply(σf)
σM,fillσf ∈ ρM

}
(144)

= argmin
~α

max
{

d~α(σf)

1+ supply(σf)
σM,fillσf ∈ ρM

}
. (145)

We take a closer look at d~α(σf). It is defined as the minimum amount
of flow that is left at the storage nodes after the request sequence σM,fillσf

beginning with a storage vector ~α. Since f may not be the only flow cor-
responding to σf, we define the response space F(σf) of a draining vertex
request σf as the set of flows compliant to the request σf. The vertices of
this response space are exactly those draining vertex flows f ′ compliant to
σf. Therefore,

d~α(σf) = min

 ∑
vi∈R

max(αi − f(vi), 0) f ∈ F(σf)

 . (146)

Since
∑

vi∈R αi = 1 and
∑

vi∈R f(vi) = 1, we see that
∑

vi∈R αi − f(vi) = 0

which implies
∑

vi∈R max(αi − f ′(vi), 0) =
∑

vi∈R
|αi−f ′(vi)|

2 . Hence,

d~α(σf) = min

 ∑
vi∈R

|αi − f ′(vi)|

2
f ′ ∈ F(σf)

 . (147)

Thus, the objective is to find the α that minimizes

max

 min
{∑

vi∈R
|αi−f ′(vi)|

2 f ′ ∈ F(σf)
}

1+ supply(σf)
σM,fillσf ∈ ρM

 . (148)

In order to simplify this, we make the assumption, that |F(σf)| = 1 for every
σM,fillσf ∈ ρM. We arrive at

argmin
~α

max

{ ∑
vi∈R |αi − f ′(vi)|

1+ supply(σf)
σM,fillσf ∈ ρM

}
. (149)

To put some intuition into this, let us think about this geometrically. The
objective is to find a vector ~α, whose sum of components is 1, such that the
maximum distance to one of a set of given points is minimal. The set of
given points corresponds exactly to the external flow patterns limited to the
net flow at storage nodes of all normalized draining vertex requests. The
distance to these points is measured with a scaled L1 distance where each
point has its own scaling factor. If ~x is a point in this space, then the distance
of a draining vertex request σf to ~x is the L1 distance between these two
points scaled down by 1+ supply(σf) (actually by 1/2(1+ supply(σf)) which

5.3 a technique for the online analysis 115

can be neglected because we are only considering maxima and minima).
The task thus is to find an ~α that we call a scaled center.

The unit circle, that is the set of points reachable from the origin within a
distance of 1, is a rotated rectangle for the L1 distance. We rotate the axes
by 45° in order to arrive at an axes parallel rectangle. This is achieved by
transforming every point ~x = (x1, x2, . . . , x|R|) to the new point

~x ′ =
(
x1 + x2 + x3 + x4 + . . .+ x|R| ,

x1 − x2 + x3 + x4 + . . .+ x|R| ,

x1 + x2 − x3 + x4 + . . .+ x|R| ,

x1 + x2 + x3 − x4 + . . .+ x|R| ,

. . . ,

x1 + x2 + x3 + x4 + . . .− x|R|
)

. (150)

The L1 distance now allows us to consider each dimension independently
of the others to find for each dimension the two draining vertex requests
such that their scaled center is a scaled center for all draining vertex requests
in this dimension. So let us assume we have the two transformed vectors ~x ′

and ~y ′, the first with a scaling factor of sx ′ , the second with a scaling factor
of sy ′ . Then, the scaled center for the ith dimension is α ′

i, where

1

sx ′

∣∣α ′
i − x ′

i

∣∣ = 1

sy ′

∣∣α ′
i − y ′

i

∣∣ . (151)

Just demanding the distances to be equal as in (151) allows two solutions
due to the scaling. These are

α ′
i =


y ′
isx ′−x ′

isy ′
sx ′−sy ′

;
y ′
isx ′+x ′

isy ′
sx ′+sy ′

.
(152)

The upper solution may produce a scaled center not between the two
given points. The second solution is the one producing a true center, i. e.,
a point such that the maximum scaled L1 distance to the other points is
minimal.

Therefore, we find α ′
i for the ith dimension by finding the scaled center

for every pair of given points and then checking whether this scaled center
is a scaled center for all points in that dimension.

The vector ~α ′ obtained this way is then transformed by back-rotating the
axes. There is an applied example of this technique in the proof of Lemma 80

on page 119.
Due to our assumption that |F(σf)| = 1, the competitive ratio obtained via

this technique is only an upper bound. In the next section, we will analyze
a given network via this technique for which the assumption is true and
hence the derived competitive ratio is tight.

While this technique works well for small networks, its major drawback is
that it needs to take into account all vertices of the request space. These may
be up to (|S|+ |D|)! many – for each order of supply and demand nodes, we
iteratively set the supplied or demanded amount to a maximum. Many of
these vertices may be identical but in the worst case, they are distinct. Even
if many of them are distinct, they still might not be relevant for the compet-
itiveness of the network. Example 3 illustrates this difficulty of identifying
a smallest hard set of request sequences.

116 online analysis of dynamic storage networks

B example 3: This example demonstrates the difficulty to identify those
draining vertex requests that are solely responsible for the competitiveness
of a network. For this, let x > 1, M the depicted dynamic storage network,
and ρM the given set of all vertex request sequences (scaled up by a factor
of 15 such that σM,fill = (1, 0 | 0)15).

s1

s2

v1

v2

d1

10
1

x

1

1

2

ρM

σ̄1 = σM,fill(0, 0 | 5)3

σ̄2 = σM,fill(11, 0 | 14)5

σ̄3 = σM,fill(0, 1+ x | 4+ x)5

σ̄4 = σM,fill(11, 1+ x | 13+ x)15

It can be shown that the best online algorithm never stores less than 3 or
more than 5 flow units at v1, independent of x. Knowing this, we find the
number of flow units left in the network by the end of each of the four
request sequences. Let ~αopt be the optimal offline storage vector after σM,fill
and ~α = (α1,α2) the storage vector of the online algorithm after σM,fill,
where α1 is the amount of flow stored at v1 with 3 6 α1 6 5.

Request ~αopt Flow left in M Competitive ratio

sequence depending on α1 depending on α1

σ̄1 (3/15, 12/15) α1 − 3 15
18−α1

σ̄2 (5/15, 10/15) 5−α1
70

65+α1

σ̄3 (5/15, 10/15) 5−α1
20+5x

15+5x+α1

σ̄4 (15, 0) 15−α1
195+15x

180+15x+α1

The minimum of the maxima of these functions depends on x and, more
importantly, the set of vertex request sequences that suffice to show the
competitiveness depends on x. Moreover, two of these vertex request se-
quences always suffice to show competitiveness. For x < 20, it is σ1 and σ4.
For x > 20, it is σ1 and σ2. It never is σ3. For x = 20, it is σ1 together with
σ2 or σ4.

Value Hard sets of

of x request sequences

< 20 { σ̄1, σ̄4 }

= 20 { σ̄1, σ̄4 } and { σ̄1, σ̄2 }

> 20 { σ̄1, σ̄2 }

5.4 competitive ratios of some network classes

In this section, we analyze the competitive ratios of certain classes of dy-
namic storage networks. We group networks according to the number of
supply, storage, and demand nodes. The class of (nS,nR,nD) dynamic stor-
age networks are those with exactly nS supply nodes, nR supply nodes, and
nD demand nodes.

The problem an online algorithm faces is the question where to store
excess flow and which storage node to tap at times where the supply does
not suffice. Hence, for any kind of network with just a single storage node,

5.4 competitive ratios of some network classes 117

the competitivity is 1. Starting with 2 storage nodes, the competitiveness
may become worse – and it actually does as we will show shortly. We
consider the simplest type of dynamic storage networks with two storage
nodes – the one with a single source and a single sink. We will identify a
network with highest competitive ratio in this class, a hard network of (1, 2, 1).

But before we start looking for such lower bounds on the competitive
ratio, it pays off to think about upper bounds as well.

B lemma 76: Let M be a dynamic storage network with nR storage nodes.
Then, we have comp(M) 6 nR.

Proof. An online algorithm that stores flow as evenly as possible at all stor-
age nodes achieves the desired competitiveness. Suppose the request se-
quences start with a filling request in which n flow units enter the network.
Further, assume that each storage node stores one unit of flow.

If a storage node then runs empty during a draining request and all other
storage nodes cannot help, then the flow that has been stored at these other
storage nodes remains in the network. These are n− 1 flow units. In this
case, the competitive ratio is at most

n

n− (n− 1)
= n . (153)

If no online algorithm is able to store flow that evenly at the storage nodes,
then no offline algorithm will be able to do it either. Therefore, this bound
is an upper bound.

Such a network may have an arbitrary number of non-terminals. We will
put to use what we have learned from mimicking networks and show that
there is a hard (1, 2, 1) network that contains at most a single non-terminal.
Similar to the concept of mimicking networks, we wish to find a dynamic
storage network that mimicks the behavior of another dynamic storage net-
work.

B definition 23 (mimicking dynamic storage network): Let M, M ′

be two dynamic storage networks. M ′ is a mimicking dynamic storage network
of M if FM = FM ′ .

For a dynamic storage network M = (V ,E,S,R,D, c), let N = (V ,E,S ∪
R∪D, c) be the underlying multi-terminal network. For the opposite direction,
we say that M belongs to N. Now let M ′ be a dynamic storage network
belonging to a network that mimicks the underlying multi-terminal network
of M. Then, it is quickly seen that M ′ is a mimicking dynamic storage
network of M.

B lemma 77: Let M be a dynamic storage network and N the underlying
multi-terminal network. If N ′ is a mimicking network of N, then M ′ be-
longing to N ′ is a mimicking dynamic storage network of M.

Proof. Let f be a flow in M with the external flow ~f. Then, ~f is also an exter-
nal flow in N. Since N ′ is a mimicking network of N, ~f is an external flow
of N ′ as well. When reassigning the corresponding roles to the terminals
to obtain M ′, ~f still is an external flow. The same arguments hold for the
opposite direction.

One motivation behind mimicking dynamic storage networks is that they
have the same competitiveness as the network they mimick.

B lemma 78: Let M, M ′ be two mimicking dynamic storage networks. Then
comp(M) = comp(M ′).

118 online analysis of dynamic storage networks

M:

s

u

v

t

wc1

c2 c3

c4

c5

c6

c7

c7

c7

c7

Figure 25: According to Chaudhuri et al. [12], there is a unrestricted mimicking net-
work of size 5 for every network with 4 terminals such that the only non-
terminal is connected to all four terminals with edges of equal capacity.
This also holds true for dynamic storage networks and, as in this case, for
(1, 2, 1) networks.

Proof. Let us assume that M is c-competitive. Then there is a c-competitive
online algorithm A. We can use A to derive a c-competitive online algorithm
A ′ for M ′. For every request sequence that A ′ receives, it simulates the same
request sequence with A on M. The sequence of flows generated by A for M
is then transformed into a sequence of corresponding external flows. Then
A ′ finds for each external flow of this sequence of flow. Such a flow exists
since M and M ′ are mimicking dynamic storage networks. Algorithm A is
c-competitive because the optimal offline algorithm cannot perform better
on M ′ than on M and because A ′ sends the same amount of flow to demand
nodes as does A.

The property of having the same competitiveness stretches across mim-
icking dynamic storage networks. Two networks that do not share the
same number of storage nodes certainly can still share the same compet-
itiveness. While the techniques learned from mimicking networks in the
previous chapter do not allow to merge terminals with each other, the next
lemma describes when this is possible for dynamic storage networks with-
out affecting the competitiveness.

B lemma 79: Let M be a dynamic storage network and v1, v2 ∈ R two dis-
tinct storage nodes. If cM,{v1,v2}

6 cM,{v1}
then merging v1, v2 to v3 yields

a dynamic storage network M ′ with comp(M) = comp(M ′).

Proof. Let (S, T) be a { v1, v2 }-min-cut in M with v1, v2 ∈ S. As cM,{ v1,v2 } 6
cM,{ v1 }, we know that any amount of flow that enters S from outside S

can be either sent completely to v1 or completely to v2. The symmetric
argument holds for flow leaving S. Hence, any optimal online algorithm
A for M can be altered to never store any flow at v1 without losing its
competitiveness. If v1 is never used as storage node, then we could simply
demote it to be a non-terminal. If so, then Theorem 59 on page 86 tells
us in combination with Lemma 78 that merging v1, v2 yields a mimicking
dynamic storage network M ′ with comp(M) = comp(M ′).

So if, for example, two storage nodes are joined by an edge such that this
edge dominates the two storage nodes, then at least one of them does not
have to be ever used.

The described effect that a storage node is useless in the sense that all
flow that is stored at it could just as well be stored at another storage node
does not suddenly arise. If two storage nodes are joined by an edge whose

5.4 competitive ratios of some network classes 119

M:

s1

v1

v2

d1

1 1

1√
2

Figure 26: This network is a hard (1, 2, 1) dynamic storage network. Any online algo-
rithm needs to decide where to store the excess flow – at v1 or at v2. The
storage node v1 can be completely blocked by flow from s1 to d1. How-
ever, if d1 demands 1+ 1/

√
2 during a single time unit, then flow must

have been stored at v1. The best compromise is to store approximately
41% of the excess flow at v1.

capacity is not large enough to dominate either one of the two nodes, then,
still, the storage nodes can at least partly replace each other. This leads to the
fact that up to a certain amount it does not matter where to store the excess
flow. Under this perspective, it is not surprising that hard networks of a
class usually do not contain any edges joining their storage nodes. Moreover,
networks that do have edges joining their storage nodes are networks for
which the response spaces to requests do not contain single flows.

competitiveness of (1 ,nR ,1) networks . We show that any hard dy-
namic storage network with just a single supply node and a single demand
node is (1+

√
2)/2-competitive.

B lemma 80: There is a (1+
√

2)/2-competitive (1 , 2 , 1) dynamic storage net-
work M.

Proof. Let M be the network of Figure 26. Then, ρM = { σ̄1 , σ̄2 } is the set
with

σ̄1 = σM ,fill

(
0 | 1 +

1√
2

)
2−

√
2 , (154)

σ̄2 = σM ,fill

(
1 | 1 +

1√
2

)√
2 . (155)

The first request, the filling request, allows the online algorithm to arbitrarily
store 1 unit of flow at the storage nodes. The following draining vertex
requests demand a total of 1 flow units to be released from the storage
nodes.

The storage vectors of an optimal offline algorithm are

~s1 =

(
1

1 + 1√
2

,
1√
2

1 + 1√
2

)
(156)

=
(
2 −
√
2 ,
√
2 − 1

)
≈ (0 .59 , 0 .41) and (157)

~s2 = (0 , 1) (158)

for σ̄1 and σ̄2 , respectively. With these storage vectors, an optimal offline
algorithm is able to send all supplied flow to the demand nodes and satisfy
all demand. The response spaces to the two draining vertex requests in ρM

each contain a single flow. The external flow of these limited to the net flows
at the terminals is exactly ~s1 and ~s2 , respectively.

120 online analysis of dynamic storage networks

An optimal online algorithm uses the storage vector ~α according to (149).
We transform the vectors by an axes rotation and obtain

~s ′
1 =

(
1 , 3 − 2

√
2
)

and (159)

~s ′
2 = (1 , −1) , (160)

where the scaling factor of the first is 1 and of the second 1+
√
2. Hence,

by (152), we have

α ′
1 =

(1+
√
2) + 1

2+
√
2

= 1 and (161)

α ′
2 =

(1+
√
2)(3− 2

√
2) − 1

2+
√
2

(162)

= 2
√
2− 3 . (163)

Now, we need to back-rotate these vectors and hence, the sought vector
~α = (α1,α2) is the one with

α1 +α2 = 1 and (164)

α1 −α2 = 2
√
2− 3 , (165)

which is ~α = (
√
2− 1, 2−

√
2) ≈ (0.41, 0.59). Knowing this, we deduce that

for ¯sigma1, the algorithm leaves |2−
√
2− (

√
2− 1)| = 3− 2

√
2 flow units in

the network. This leads to a competitive ratio of

comp(M) =
1

1− (3− 2
√
2)

=
1+
√
2

2
. (166)

So there is a (1, 2, 1) dynamic storage network M with a competitive ratio
of (1+

√
2)/2. For this network the optimal online algorithm stores approxi-

mately 41% of the flow supplied during the filling request at the one storage
node (v1 in case of Figure 26) and the remaining flow at the other storage
node. But is there a dynamic storage network M ′ with a higher competitive
ratio? Any smallest hard set of request sequences for such a network con-
tains exactly two sequences since there are two draining vertex requests. Let
us call them σ̄1 and σ̄2. Intuitively, one of them makes the optimal offline
algorithm store a lot of flow at v1, while the other makes the optimal offline
algorithm store a lot of flow at v2. This difference can only be achieved by
supplying f2 additional flow units during the draining request of σ̄2. The
effect of this on the competitive ratio is maximized when the additional
supply blocks the flow stored at v1 completely. We thus assume that the
optimal offline algorithm stores no flow units at v1 during σ̄2 and x1 units
at v1 during σ̄1.

The online algorithm stores α1 units at v1 and 1−α1 at v2 with 0 < α1 <

1. By the end of σ̄1, (1−α1)− (1− x1) units are left at v2 and none at v1. By
the end of σ̄2, α1 units are left at v1 and none at v2. Hence, the competitive
ratio is the minimum of

c1 =
1

1−
(
(1−α1) − (1− x1)

) =
1

1+α1 − x1
and (167)

c2 =
1+ s2

1+ s2 −α1
. (168)

5.4 competitive ratios of some network classes 121

If there is a (1, 2, 1) network with a competitive ratio greater than (1+
√
2)/2,

then c1 > (1+
√
2)/2 and c2 > (1+

√
2)/2. This implies that

x1 − 1 < α1 <

√
2x1 + x1 −

√
2+ 1

1+
√
2

and (169)
√
2f2 − f2 +

√
2− 1

1+
√
2

< α1 < f2 + 1 . (170)

Such α1 may thus only exist if

(3− 2
√
2)f2 < x1 + 2(2

√
2− 3) . (171)

Note that during σ̄1 and σ̄2, different amounts of flow are sent to the de-
mand node. This can only happen if they have different durations. If the
durations of σ̄1 and σ̄2 are τ1 and τ2, respectively, then f2/τ2 = x1/τ1. The
ratio of the two durations is the ratio of the flow that reaches the demand
node and thus 1/1+f2. Hence, we have

x1 =
τ1
τ2

f2 =
f2

1+ f2
. (172)

Combining the two latter formulas yields

(3− 2
√
2)f2 <

f2
1+ f2

+ 2(2
√
2− 3) , (173)

which is not fulfilled for any positive f2. Is it fulfilled with equality instead
of inequality for values that yield the network of Figure 26.

In fact, these considerations work for any dynamic storage network M

with one supply and one demand node. The set of storage nodes can be
partitioned into two sets of those nodes that need to store a lot of flow
during σ̄1 or during σ̄2. This leads to the following theorem.

B theorem 81: For every (1,nR, 1) dynamic storage network M it holds that
comp(M) 6 1+

√
2

2 .

Note that this particular competitive ratio depends on irrational capacities
in the network. From a computational point of view where the encoding
matters, this is still of interest as it still as an upper bound. If the precision
of the encoded numbers is increased to infinity, then the upper bound is
met in the limit. In the following, we will see some more networks where
ratios can only be achieved in the limit.

competitiveness of (2 ,2 ,1) networks . Let M be the following net-
work together with the set of request sequences ρ.

s1

s2

v1

v2

d1

1

1

1

1

ρ

σ̄1 = (1, 1 | 0)(0, 1 | 2)2

σ̄2 = (1, 1 | 0)(1, 0 | 2)2

For σ̄1, the optimal offline algorithm stores all flow at v1 during the first
request. During the following request, it can satisfy the demand of 2 by one
unit from v1 and one unit from the supply node. For σ̄2, the optimal offline
algorithm stores all flow at v2 during the first request and then behaves
symmetrically.

The optimal online algorithm stores 1 unit at v1 and 1 unit at v2. During
the draining requests, it will only be able to send 3 of the demanded 4 units
of flow to the demand node.

122 online analysis of dynamic storage networks

The competitive ratio of M thus is 4/3. This is a lower bound on the com-
petitiveness of (2, 2, 1) networks – possibly there is another (2, 2, 1) network
causing a higher competitive ratio. By Lemma 76, 2 is an upper bound on
the competitive ratio.

competitiveness of (n ,n ,1) networks . As we were able to find a
network with a competitive ratio of 4/3 for a (2 , 2 , 1) network, a natural
question is how this result can be generalized for (n , n , 1) networks. Let
the network look like the one in the section before, but generalized for n

supply and n storage nodes. Consider request sequences that allow the
network to store n units of flow in an arbitrary way at the n storage nodes.
Then, for every 0 6 i < n, there are

(
n
i

)
sequences that continue with a

request with a supply of i units and a demand of n units where there are
exactly i sources with a supply of 1 unit. Such a request has a duration of
n/(n−i).

The optimal offline algorithm stores n/(n−i) units of flow at those n − i

nodes that are not blocked by the additional supply during the draining
request. The vectors describing the amount of flow that is drained from the
storage nodes contain a 0 if the corresponding storage node is blocked or a
n/i otherwise.

The maximum amount of flow that the optimal offline algorithm stores
at a storage node is n if all other nodes are blocked (i = n − 1). The
minimum is 0 if that node is blocked. So the optimal online algorithm
has to do something in between and due to symmetry, the optimal online
algorithm stores 1 unit at each of the storage nodes.

For i, we have the competitive ratio

ci =
n + n

n−i i

n + n
n−i i − i

(174)

=
1

1 −
(

i
n − i2

n2

) . (175)

This is due to the following considerations. The optimal offline algorithm
sends the n units of flow to the sink that have been stored at the beginning.
It also sends the i · n/n−i units of flow to the sink that are supplied during
the draining request. The optimal online algorithm, however, cannot send
the amount of flow to the demand node that is stored at the blocked storage
nodes – this is i units.

For a fixed n, the competitive ratio of the above network for the described
request sequences is the maxima of ci for 0 6 i < n. This is reached where
i
n −

(
i
n

)2 reaches its maximum. For a given n, this is the case where the
derivative equals zero, i. e.,

n − 2i

n2
= 0 (176)

⇐⇒ i =
n

2
. (177)

5.4 competitive ratios of some network classes 123

So the hard set of request sequences contains those sequences where n/2

of the storage nodes are blocked by additional supply. In this case, the
competitive ratio is

cn/2 =
1

1 −
(

n/2
n −

(n/2)2

n2

) (178)

=
1

1 −
(
1
2 − 1

4

) (179)

=
4

3
. (180)

Hence, the networks with the described request sequences are 4/3-com-
petitive for all n, at least for all even n. For odd n it is slightly below 4/3 but
for n approaching positive infinity, the competitive ratio approaches 4/3. To
be exact, for odd n, the competitive ratio is 4n2

3n2+4
.

One might now expect that a smallest hard set of request sequences for M

needs to contain
(

n
bn
2 c
)
∈ Θ

(
4n
√
n

)
request sequences. However, a mere two

request sequences suffice where the one request sequence blocks the first
half of the storage nodes and the other request sequence blocks the second
half of the storage nodes.

competitiveness of (n ,n ,n) networks . Let (M , ρ) be the depicted
dynamic storage system. We will analyze its competitive ratio for ε ap-
proaching 0.

s1

s2

...

sn

v1

v2

...
vn

d1

d2

...

dn

1

1

1

1

1

1

ε

ε

ε

ρ contains a σ̄i for each 1 6 i 6 n

where σ̄i = σfillσi with

σfill = (ε, 0, . . . , 0)1/ε and

σi(sj) = 0 for all 1 6 j 6 n and

σi(dj) = 0 for all 1 6 j 6 n, j 6= i and

σi(di) = 1.

The request sequences allow the algorithms to store 1 unit arbitrarily in
the network in a filling request. In a second request, there is no supply and
demand of 1 at only one demand node. The competitive ratio is then

ρ =
1

1−
(
1− 1

n − 2ε
) (181)

=
n

n− (n− 1− 2εn)
(182)

=
n

1+ 2εn
, (183)

which approaches n for ε approaching 0.
Clearly, n is also an upper bound for the competitiveness of (n,n,n) net-

works. A smallest set of hard request sequences for (M, ρ) requires n se-
quences.

competitiveness of (1 ,2 ,2) networks . As for all networks with nR

storage nodes, the upper bound of the competitiveness is nR . In this case,
this upper bound is reached. The following network is a hard (1 , 2 , 2)
network.

124 online analysis of dynamic storage networks

s1

v1

v2

d1

d2

ε

ε

1

1

ρ

σ̄1 = (ε | 0, 0)1/ε(0 | 1, 0)

σ̄2 = (ε | 0, 0)1/ε(0 | 0, 1)

Clearly, the optimal offline algorithm is able to fully satisfy the demand.
The optimal online algorithm, however, splits the flow and stores 1/2 at each
of the storage nodes. For each of σ̄1 and σ̄2, the optimal online algorithm
can send 1/2+ ε units of flow to the demand node. Hence, the competitive
ratio is

ρ =
1

1
2 + ε

=
2

2ε+ 1
. (184)

For ε approaching 0, the competitive ratio approaches 2.

competitiveness of (1 ,n ,n) networks . Let the dynamic storage net-
work M look like the hard (1 , 2 , 2) network generalized for (1 , n , n) net-
works. The request sequences begin with an identical filling request in
which the algorithms may store 1 flow unit in an arbitrary way at the stor-
age nodes. There are n request sequences. For each 1 6 i 6 n, there is a
request sequence σ̄i whose second request demands 1 unit for a duration
of 1 at node di . There is no supply in this second request. The competitive
ratio is then

ρ =
1

1 −
(
1 − 1

n − ε
) (185)

=
n

1 + 1ε
. (186)

For ε approaching 0, the competitive ratio approaches n.

constant demand and constant supply. Even in the case that ei-
ther the supply or the demand of a request sequence is constant and known
ahead to the online algorithm, the competitive ratio can be greater than 1.
Let Md = (Md , ρd) be a dynamic storage system where ρd has a con-
stant demand of 4 in every request for every demand node, where Md is
the following dynamic storage network and ρd the following set of request
sequences.

s1

s2

v1

v2

v3

d1

d2

d3

5

3

3

5

4

4

4

ρd

σ̄1 =
(
(7, 6 | 4, 4, 4)5, (7, 0 | 4, 4, 4)

)
σ̄2 =

(
(7, 6 | 4, 4, 4)5, (0, 7 | 4, 4, 4)

)
In order to be able to store flow during the first request, there needs to

be more supply than demand. The storage functions of an optimal offline
algorithm have to be different after this first request in order to be able to
serve the different demands of the two sequences. During the first request, a
total of five flow units can be stored in an arbitrary way at the storage nodes.
In the last request of the first sequence, the supply is (7, 0). This blocks all
flow that has prior been stored at v1 and thus renders it useless. At the
same time, at least one unit must have been stored at v3 to fully satisfy the

5.4 competitive ratios of some network classes 125

Network class Competitiveness

(1,n, 1) = (1+
√
2)/2

(2, 2, 1) > 4/3

(n,n, 1) > 4/3, even n

> 4n2/(3n2+4), odd n

(n,n,n) = n

(1,n,n) = n

Table 3: This table lists our results concerning the competitiveness of several network
classes. By Lemma 76, every dynamic storage network with nR storage
nodes has a competitive ratio of at most nR. This upper bound is met
by networks that have nR storage nodes, nR demand nodes, but only one
supply node. For (n,n, 1) dynamic storage networks, however, it seems not
to be possible to construct a network with a competitive ratio above 4/3.

demand. The same reasoning applies symmetrically to the second request
sequence, where at least one unit of flow has to be stored at v1. Therefore,
the competitiveness is truly greater than 1.

For constant supply, let Ms = (Ms, ρs) be a dynamic storage system,
where Ms and ρs are as depicted.

s1

v1

v2

d1

d2

1

1

5

5

ρs

σ̄1 =
(
(1 | 0, 0)4, (1 | 5, 0)

)
σ̄2 =

(
(1 | 0, 0)4, (1 | 0, 5)

)
Due to symmetry, the best online strategy is to equally distribute flow at

the storage nodes. However, it is easily seen that the competitive ratio is
greater than 1 in this case. In fact, the competitive ratio becomes the greater
the larger the capacities from vi to di, the smaller the capacities from si to
vi, and the more storage nodes vi are added following the same scheme and
idea of Ms.

Concluding, we can sum up the results of this section concerning compet-
itive ratios as in Table 3. While the upper bound of n can easily be reached
for those network classes containing not only n storage nodes but also n

demand nodes, this seems not possible for (n,n, 1) networks. In fact, we
are only able to show a competitive ratio of 4/3 for those networks, i. e., a
constant competitive ratio. Similarly, with constant demand it seems to be
harder to construct a network with a high competitive ratio than it is for
constant supply. Hence, the demand seems to play a more important role
for the competitive ratio than the supply.

6C O N C L U S I O N

In this thesis, we have developed the new model of dynamic storage net-
works and have derived a technique for the online analysis of them. Central
to this technique are insights from the field of mimicking networks. A better
understanding of them also deepens the understanding of dynamic storage
networks.

We have pointed out drawbacks of the unique min-cuts assumption com-
monly made in conjunction with mimicking networks and have studied the
complexity of finding a smallest contraction-based mimicking network with-
out the unique min-cuts assumption. We have linked unresolved questions
to the set of all min-cuts of a network.

To close in on these unresolved questions, we have studied the set of all
min-cuts of a network. By redefining well-known NP-complete problems,
whose inputs contain a set system, by replacing these set systems by flow
networks, we have developed a new way of studying the restrictions im-
posed on set systems encoded by a flow network as the set of all min-cuts
represented by the edges cut.

6.1 outlook

This section revisits some of the unanswered questions and offers some
ideas how to approach them.

chapter 3 – min-cut set systems . One of the most important and
yet unanswered questions of this chapter concerns the characterization of
edge and node systems of multi-terminal networks. While we understand
them quite well for the 2-terminal case, their dependencies in the multi-
terminal case remain open. The lack of understanding these dependencies
is the root for the lack of understanding other unanswered problems not
only in this dissertation. In particular, a deeper understanding of this ques-
tion is key to finding tighter bounds for the size of smallest mimicking
networks and to finding an algorithm that computes a smallest contraction-
based mimicking network for a given one.

chapter 4 – mimicking networks . As shown, questions that re-
mained open in this chapter are closely related to open questions of the
previous chapter. Since min-cut minimum type selection and mcbmn are
equal, settling the question of the complexity of mcbmn could yield valuable
information about the min-cut set systems.

The algorithm presented at the end of Chapter 4 attempts to
answer this question. However, it fails for a few instances making
these instances promising candidates for instances that cannot be
solved by any FPT algorithm. One of them can be depicted as on
the right. It is remindful of the multicut problem which asks
whether there is a set of edges of total weight at most k such that deleting
these edges pairwise disconnects a set of l given nodes. For l > 3, this
problem is known to be NP-complete [17]. Even though we have been un-
successful, this still might be a promising approach.

127

128 conclusion

chapter 5 – online analysis of dynamic storage networks .
An interesting addition to our model of dynamic storage networks would
be non-zero transit times. In such a model, flow would not instantaneously
travel through an edge, but take time to do so. Transit times are an as-
pect that has been examined in other contexts, and they are a generalization
to our model making it applicable to more scenarios. For example, idling
self-driving cars should idle at places that make them easily accessible even
though future requests are unknown. Since they do not travel along streets
at infinite speed, the augmented model fits better than its original version.

But also for many other kinds of generalizations that have been applied
to the very basic model of flow networks, it is conceivable to apply them
to our dynamic storage networks as well. Lossy transition or lossy storage
sites could be used to more realistically model power grids.

Moreover, the profit function we used simply measures the amount of
flow reaching demand nodes. One might want to enforce more fairness by,
for example, defining a profit function that maps a flow to the minimum
ratio of satisfied demand over all demand nodes.

B I B L I O G R A P H Y

[1] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. “Some
Recent Advances in Network Flows.” In: SIAM review 33.2 (June 1991),
pp. 175–219. doi: 10.1137/1033048.

[2] Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. Network
Flows: Theory, Algorithms, And Applications. Prentice-Hall, Inc., 1993.

[3] Susanne Albers. “Online Algorithms: A Survey.” In: Mathematical Pro-
gramming, Series B 97.1 (Aug. 2003), pp. 3–26. doi: 10.1007/s10107-
003-0436-0.

[4] Massoud Amin and John Stringer. “The Electric Power Grid: Today
and Tomorrow.” In: Materials Research Society Bulletin 33.4 (2008), pp.
399–407. doi: 10.1557/mrs2008.80.

[5] Srinivasa R. Arikati, Shiva Chaudhuri, and Christos D. Zaroliagis.
“All-Pairs Min-Cut in Sparse Networks.” In: Journal of Algorithms 29.1
(Oct. 1998), pp. 82–110. doi: 10.1006/jagm.1998.0961.

[6] Jay E. Aronson. “A survey of dynamic network flows.” In: Annals of
Operations Research 20.1 (1989), pp. 1–66. doi: 10.1007/BF02216922.

[7] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, 2009.

[8] Béla Bollobás. Modern Graph Theory. Springer, 2013.

[9] Allan Borodin and Ran El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

[10] Erin Chambers and David Eppstein. “Flows in One-Crossing-Minor-
Free Graphs.” In: Journal of Graph Algorithms and Applications 17.3 (2013),
pp. 201–220. doi: 10.7155/jgaa.00290.

[11] M. Charikar, T. Leighton, Shi Li, and A. Moitra. “Vertex Sparsifiers
and Abstract Rounding Algorithms.” In: 51st Annual IEEE Symposium
on Foundations of Computer Science. 2010, pp. 265–274. doi: 10.1109/
FOCS.2010.32.

[12] S. Chaudhuri, K. V. Subrahmanyam, F. Wagner, and C. D. Zaroliagis.
“Computing Mimicking Networks.” In: Algorithmica 26.1 (Jan. 2000),
pp. 31–49. doi: 10.1007/s004539910003.

[13] Julia Chuzhoy. “On Vertex Sparsifiers with Steiner Nodes.” In: Proceed-
ings of the Forty-Fourth Annual ACM Symposium on Theory of Computing.
2012, pp. 673–688. doi: 10.1145/2213977.2214039.

[14] Vašek Chvátal. Linear Programming. New York, San Francisco: W. H.
Freeman & Co., 1993.

[15] Eleonor Ciurea and Laura Ciupală. “Sequential and parallel algorithms
for minimum flows.” In: Journal of Applied Mathematics and Computing
15.1–2 (Apr. 2004), pp. 53–75. doi: 10.1007/BF02935746.

[16] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clif-
ford Stein. Introduction to Algorithms. Third. The MIT Press, 2009.

[17] E. Dahlhaus, D. S. Johnson, C. H. Papadimitriou, and M. Yannakakis.
“The Complexity of Multiterminal Cuts.” In: SIAM Journal on Comput-
ing 23.4 (1994), pp. 864–894. doi: 10.1137/S0097539792225297.

129

http://dx.doi.org/10.1137/1033048
http://dx.doi.org/10.1007/s10107-003-0436-0
http://dx.doi.org/10.1007/s10107-003-0436-0
http://dx.doi.org/10.1557/mrs2008.80
http://dx.doi.org/10.1006/jagm.1998.0961
http://dx.doi.org/10.1007/BF02216922
http://dx.doi.org/10.7155/jgaa.00290
http://dx.doi.org/10.1109/FOCS.2010.32
http://dx.doi.org/10.1109/FOCS.2010.32
http://dx.doi.org/10.1007/s004539910003
http://dx.doi.org/10.1145/2213977.2214039
http://dx.doi.org/10.1007/BF02935746
http://dx.doi.org/10.1137/S0097539792225297

130 Bibliography

[18] Deutsche Energie-Agentur GmbH (dena). dena-Netzstudie II (Endbe-
richt) – Integration erneuerbarer Energien in die deutsche Stromversorgung
im Zeitraum 2015–2020 mit Ausblick auf 2025. Nov. 2010.

[19] Reinhard Diestel. Graph Theory. Fourth. Springer, 2010.

[20] E. A. Dinic. “Algorithm for solution of a problem of maximum flow in
networks with power estimation.” In: Soviet Math. Doklady 11.5 (1970).
English translation by Rinehart, R. F., pp. 1277–1280.

[21] Efim A. Dinitz, Alexander V. Karzanov, and Michael V. Lomonosov.
“On the structure of the system of minimum edge cuts of a graph.”
In: Studies in Discrete Optimization. Ed. by A. A. Fridman. In Russian.
Moscow: Nauka, 1976, pp. 290–306.

[22] Alan Dolan and Joan Aldous. Networks and Algorithms: An Introductory
Approach. First. Wiley, 1994.

[23] Rod G. Downey and Michael R. Fellows. “Fixed-parameter tractability
and completeness II: On completeness for W[1].” In: Theoretical Com-
puter Science 141.1–2 (Apr. 1995), pp. 109–131.

[24] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parame-
terized Complexity. Springer-Verlag London, 2013. doi: 10.1007/978-
1-4471-5559-1.

[25] Jack Edmonds and Richard M. Karp. “Theoretical Improvements in
Algorithmic Efficiency for Network Flow Problems.” In: Journal of the
ACM 19.2 (Apr. 1972), pp. 248–264. doi: 10.1145/321694.321699.

[26] P. Elias, A. Feinstein, and C. E. Shannon. “A Note on the Maximum
Flow Through a Network.” In: IRE Transactions on Information Theory
2.4 (1957), pp. 117–119.

[27] Matthias Englert, Anupam Gupta, Robert Krauthgamer, Harald Räcke,
Inbal Talgam-Cohen, and Kunal Talwar. “Vertex Sparsifiers: New Re-
sults from Old Techniques.” In: SIAM Journal on Computing 43.4 (2014),
pp. 1239–1262. doi: 10.1137/130908440.

[28] Amos Fiat and Gerhard J. Woeginger. Online Algorithms: The State of
the Art. Vol. 1442. Springer, 1998.

[29] Lisa Fleischer and James B. Orlin. “Optimal Rounding of Instanta-
neous Fractional Flows Over Time.” In: SIAM Journal on Discrete Mathe-
matics 13.2 (Apr. 2000), pp. 145–153. doi: 10.1137/S0895480198344138.

[30] Lisa Fleischer and Martin Skutella. “Minimum cost flows over time
without intermediate storage.” In: Proceedings of the fourteenth annual
ACM-SIAM symposium on Discrete Algorithms. 2003, pp. 66–75.

[31] J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.

[32] L. R. Ford Jr. and D. R. Fulkerson. “Constructing Maximal Dynamic
Flows from Static Flows.” In: Operations Research 6.3 (June 1958), pp. 419–
433. doi: 10.1287/opre.6.3.419.

[33] L. R. Ford Jr. and D. R. Fulkerson. Flows in Networks. Santa Monica,
California: RAND Corporation, Sept. 1962.

[34] Michael R. Garey and David S. Johnson. Computers and Intractability:
A Guide to the Theory of NP-Completeness. New York: W. H. Freeman &
Co., 1979.

http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1007/978-1-4471-5559-1
http://dx.doi.org/10.1145/321694.321699
http://dx.doi.org/10.1137/130908440
http://dx.doi.org/10.1137/S0895480198344138
http://dx.doi.org/10.1287/opre.6.3.419

Bibliography 131

[35] Leslie M. Goldschlager, Ralph A. Shaw, and John Staples. “The max-
imum flow problem is log space complete for P.” In: Theoretical Com-
puter Science 21.1 (Nov. 1982), pp. 105–111. doi: 10.1016/0304-3975(82)
90092-5.

[36] R. E. Gomory and T. C. Hu. “Multi-Terminal Network Flows.” In: Jour-
nal of the SIAM 9.4 (1961), pp. 551–570. doi: 10.1137/0109047.

[37] Raymond Greenlaw, H. James Hoover, and Walter L. Ruzzo. Limits to
Parallel Computation: P-Completeness Theory. New York, Oxford: Oxford
University Press, 1995.

[38] M. Grötschel, L. Lovász, and A. Schrijver. “The Ellipsoid Method and
Its Consequences in Combinatorial Optimization.” In: Combinatorica
1.2 (1981), pp. 169–197. doi: 10.1007/BF02579273.

[39] Martin Grötschel, Laszlo Lovász, and Alexander Schrijver. Geometric
Algorithms and Combinatorial Optimization. 2nd ed. 2. Springer-Verlag
Berlin Heidelberg, 1993. doi: 10.1007/978-3-642-78240-4.

[40] Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar
Ragde. “Characterizations of k-Terminal Flow Networks and Comput-
ing Network Flows in Partial k-Trees.” In: Proceedings to the sixth An-
nual ACM-SIAM Symposium on Discrete Algorithms. 1995, pp. 641–649.

[41] Torben Hagerup, Jyrki Katajainen, Naomi Nishimura, and Prabhakar
Ragde. “Characterizing Multiterminal Flow Networks and Comput-
ing Flows in Networks of Small Treewidth.” In: Journal of Computer
and System Sciences 57.3 (Dec. 1998), pp. 366–375. doi: 10.1006/jcss.
1998.1592.

[42] J. Halpern. “A generalized dynamic flows problem.” In: Networks 9.2
(1979), pp. 133–167. doi: 10.1002/net.3230090204.

[43] N. Hartmann, L. Eltrop, N. Bauer, J. Salzer, S. Schwarz, and M. Schmidt.
Speicherpotenziale für Deutschland. Tech. rep. Zentrum für Energiefor-
schung Stuttgart, 2012.

[44] John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. Introduction
to Automata Theory, Languages, and Computation. Addison-Wesley, 1979.

[45] N. Immerman. “Nondeterministic Space is Closed under Complemen-
tation.” In: SIAM Journal on Computing 17.5 (1988), pp. 935–938. doi:
10.1137/0217058.

[46] Dieter Jungnickel. Graphs, Networks and Algorithms. Heidelberg: Sprin-
ger, 2013.

[47] David R. Karger. “Global Min-cuts in RNC, and Other Ramifications
of a Simple Min-Cut Algorithm.” In: Proceedings to the Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms. 1993.

[48] David R. Karger and Clifford Stein. “A new approach to the minimum
cut problem.” In: Journal of the ACM 43.4 (July 1996), pp. 601–640. doi:
10.1145/234533.234534.

[49] A. R. Karlin, M. S. Manasse, L. A. McGeoch, and S. Owicki. “Competi-
tive Randomized Algorithms for Nonuniform Problems.” In: Algorith-
mica 11.6 (July 1994), pp. 542–571. doi: 10.1007/BF01189993.

[50] Richard M. Karp. “Reducibility among Combinatorial Problems.” In:
Complexity of Computer Computations. Ed. by R. E. Miller and J. W.
Thatcher. The IBM Research Symposia Series. Springer US, 1972, pp. 85–
103. doi: 10.1007/978-1-4684-2001-2_9.

http://dx.doi.org/10.1016/0304-3975(82)90092-5
http://dx.doi.org/10.1016/0304-3975(82)90092-5
http://dx.doi.org/10.1137/0109047
http://dx.doi.org/10.1007/BF02579273
http://dx.doi.org/10.1007/978-3-642-78240-4
http://dx.doi.org/10.1006/jcss.1998.1592
http://dx.doi.org/10.1006/jcss.1998.1592
http://dx.doi.org/10.1002/net.3230090204
http://dx.doi.org/10.1137/0217058
http://dx.doi.org/10.1145/234533.234534
http://dx.doi.org/10.1007/BF01189993
http://dx.doi.org/10.1007/978-1-4684-2001-2_9

132 Bibliography

[51] Jonathan A. Kelner, Yin Tat Lee, Lorenzo Orecchia, and Aaron Sid-
ford. “An Almost-Linear-Time Algorithm for Approximate Max Flow
in Undirected Graphs, and its Multicommodity Generalizations.” In:
Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Dis-
crete Algorithms (2014), pp. 217–226.

[52] A. Khan and P. Raghavendra. “On mimicking networks representing
minimum terminal cuts.” In: Information Processing Letters 114.7 (July
2014), pp. 365–371. doi: 10.1016/j.ipl.2014.02.011.

[53] Jon Michael Kleinberg. “Approximation Algorithms for Disjoint Paths
Problems.” PhD thesis. Massachusetts Institute of Technology, 1996.

[54] B. Kotnyek. An annotated overview of dynamic network flows. Tech. rep.
INRIA, Sept. 2003.

[55] Robert Krauthgamer and Inbal Rika. “Mimicking Networks and Suc-
cinct Representations of Terminal Cuts.” In: Proceedings of the Twenty-
Fourth Annual ACM-SIAM Symposium on Discrete Algorithms. 2013, pp.
1789–1799.

[56] Richard E. Ladner. “The circuit value problem is log space complete
for P.” In: ACM SIGACT News 7.1 (Feb. 1975), pp. 18–20. doi: 10.1145/
990518.990519.

[57] F. T. Leighton and A. Moitra. “Extensions and limits to vertex sparsifi-
cation.” In: Proceedings of the fourty-second ACM Symposium on Theory of
Computing. New York: ACM, 2010, pp. 47–56. doi: 10.1145/1806689.
1806698.

[58] Thomas Lengauer and Klaus W. Wagner. “The binary network flow
problem is logspace complete for P.” In: Theoretical Computer Science
75.3 (Oct. 1990), pp. 357–363. doi: 10.1016/0304-3975(90)90101-M.

[59] S. E. Lovetskii and I. I. Melamed. “Dynamic flows in networks.” In: Au-
tomation and Remote control 48.11 (1987). Translated from Avtomatika i
Telemekhanika, No. 11, pp. 7–29, pp. 1417–1434.

[60] V. M. Malhotra, M. P. Kumar, and S. N. Maheshwari. “An O(|V |3)

algorithm for finding maximum flows in networks.” In: Information
Processing Letters 7.6 (1978), pp. 277–278.

[61] Peter J. Menck, Jobst Heitzig, Norbert Marwan, and Jürgen Kurths.
“How basin stability complements the linear-stability paradigm.” In:
Nature Physics 9.2 (Jan. 2013), pp. 89–92. doi: 10.1038/nphys2516.

[62] Karl Menger. “Zur allgemeinen Kurventheorie.” In: Fundamenta Math-
ematicae 10.1 (1927), pp. 96–115.

[63] E. Minieka. “Dynamic Network Flows.” In: Networks 4.3 (1974), pp. 255–
265. doi: 10.1002/net.3230040305.

[64] A. Moitra. “Approximation Algorithms for Multicommodity-Type Prob-
lems with Guarantees Independent of the Graph Size.” In: 50th Annual
IEEE Symposium on Foundations of Computer Science. IEEE, Oct. 2009,
pp. 3–12. doi: 10.1109/FOCS.2009.28.

[65] A. Moitra. “Vertex Sparsification and Oblivious Reductions.” In: SIAM
Journal on Computing 42.6 (2013), pp. 2400–2423. doi: 10.1137/100787337.

[66] Ankur Moitra. “Vertex sparsification and universal rounding algo-
rithms.” PhD thesis. Massachusetts Institute of Technology, Depart-
ment of Electrical Engineering and Computer Science, 2011.

http://dx.doi.org/10.1016/j.ipl.2014.02.011
http://dx.doi.org/10.1145/990518.990519
http://dx.doi.org/10.1145/990518.990519
http://dx.doi.org/10.1145/1806689.1806698
http://dx.doi.org/10.1145/1806689.1806698
http://dx.doi.org/10.1016/0304-3975(90)90101-M
http://dx.doi.org/10.1038/nphys2516
http://dx.doi.org/10.1002/net.3230040305
http://dx.doi.org/10.1109/FOCS.2009.28
http://dx.doi.org/10.1137/100787337

Bibliography 133

[67] Christos H. Papadimitriou. Computational Complexity. Addison-Wesley,
1994.

[68] Christos H. Papadimitriou and Kenneth Steiglitz. Combinatorial Opti-
mization: Algorithms and Complexity. 1982.

[69] Jean-Claude Picard and Maurice Queyranne. “On the structure of all
minimum cuts in a network and applications.” In: Mathematical Pro-
gramming Study 13 (1980), pp. 8–16. doi: 10.1007/BFb0120902.

[70] W. B. Powell, P. Jaillet, and A. Odoni. “Stochastic and dynamic net-
works and routing.” In: vol. 8. Elsevier Science, 1995. Chap. 3.

[71] J. Scott Provan and Michael O. Ball. “The complexity of counting cuts
and of computing the probability that a graph is connected.” In: SIAM
Journal on Computing 12.4 (1983), pp. 777–788. doi: 10.1137/0212053.

[72] Marcus Schaefer and Christopher Umans. “Completeness in the Poly-
nomial-Time Hierarchy: A Compendium.” In: SIGACT News (Oct. 2008).

[73] Wolf-Peter Schill, Jochen Diekmann, and Alexander Zerrahn. “Strom-
speicher: Eine wichtige Option für die Energiewende.” In: DIW-Wo-
chenbericht 82.10 (2015), pp. 195–205.

[74] Alexander Schrijver. “A Combinatorial Algorithm Minimizing Sub-
modular Functions in Strongly Polynomial Time.” In: Journal of Com-
binatorial Theory, Series B 80.2 (Nov. 2000), pp. 346–355. doi: 10.1006/
jctb.2000.1989.

[75] Alexander Schrijver. “On the history of the transportation and maxi-
mum flow problems.” In: Mathematical Programming 91.3 (Feb. 2002),
pp. 437–445. doi: 10.1007/s101070100259.

[76] Martin Skutella. “Research Trends in Combinatorial Optimization.” In:
Springer, 2009. Chap. An Introduction to Network Flows over Time,
pp. 451–482. doi: 10.1007/978-3-540-76796-1_21.

[77] Larry J. Stockmeyer. “The polynomial-time hierarchy.” In: Theoreti-
cal Computer Science 3.1 (Oct. 1976), pp. 1–22. doi: 10 . 1016 / 0304 -

3975(76)90061-X.

[78] Robert Szelepcsényi. “The Method of Forced Enumeration for Nonde-
terministic Automata.” In: Acta Informativa 26.3 (Nov. 1988), pp. 279–
284. doi: 10.1007/BF00299636.

[79] Vijay V. Vazirani. Approximation Algorithms. Springer, 2001.

[80] Heribert Vollmer. Introduction to Circuit Complexity: A Uniform Approach.
Springer, 1999.

http://dx.doi.org/10.1007/BFb0120902
http://dx.doi.org/10.1137/0212053
http://dx.doi.org/10.1006/jctb.2000.1989
http://dx.doi.org/10.1006/jctb.2000.1989
http://dx.doi.org/10.1007/s101070100259
http://dx.doi.org/10.1007/978-3-540-76796-1_21
http://dx.doi.org/10.1016/0304-3975(76)90061-X
http://dx.doi.org/10.1016/0304-3975(76)90061-X
http://dx.doi.org/10.1007/BF00299636

	 Preface
	Abstract
	Zusammenfassung
	List of Notations

	1 Introduction
	1.1 Organization

	2 Concepts and Notation
	3 Min-Cut Set Systems
	3.1 The Sets of All Min-Cuts
	3.2 The Max-Flow DAG of a Network
	3.3 Node Set Systems
	3.3.1 The 2-Terminal Case
	3.3.2 The Multi-Terminal Case

	3.4 Edge Set Systems
	3.4.1 The 2-Terminal Case
	3.4.2 Problems Encoded in Edge Set Systems

	4 Mimicking Networks
	4.1 Review of Mimicking Networks
	4.2 The Unique Min-Cuts Assumption
	4.3 The Complexity of Finding Small Mimicking Networks
	4.4 An Algorithm for the 4-Terminal Case

	5 Online Analysis of Dynamic Storage Networks
	5.1 Dynamic Networks and Online Problems
	5.2 Dynamic Storage Networks – The Model
	5.3 A Technique for the Online Analysis
	5.4 Competitive Ratios of Some Network Classes

	6 Conclusion
	6.1 Outlook

