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Abstract

Modeling causal dependencies in complex or time-dependent domains often
demands cyclic dependencies. Such cycles arise from local points of views on
dependencies where no singular causality is identifiable, i.e., roles of causes and
effects are not universally identifiable. Modeling causation instead of correlation
is of utmost importance, which is why Bayesian networks are frequently used
to reason under uncertainty. Bayesian networks are probabilistic graphical
models and allow for a causal modeling approach with locally specifiable and
interpretable parameters, but are not defined for cyclic graph structures. If
Bayesian networks are to be used for modeling uncertainties, cycles are eliminated
with dynamic Bayesian networks, eliminating cycles over time. However, we
show that eliminating cycles over time eliminates an anticipation of indirect
influences as well, and enforces an infinitesimal resolution of time. Without a
“causal design,” i.e., without representing direct and indirect causes appropriately,
such networks return spurious results.

In particular, the main novel contributions of this thesis can be summarized
as follows. By considering specific properties of local conditional probability
distributions, we show that a novel form of probabilistic graphical models rapidly
adapts itself to a specific context at every timestep and, by that, correctly
anticipates indirect influences under an unrestricted time granularity, even if
cyclic dependencies arise. We show that this novel form of probabilistic graphical
models follows familiar Bayesian networks’ syntax and semantics, despite being
based on cyclic graphs. Throughout this thesis, we show that no external
reasoning frameworks are required, no novel calculus needs be introduced, no
computational overhead for solving common inference-, query- and learning-
problems is introduced, and that familiar algorithmic schemes remain applicable.
We feel confident to say that Bayesian networks and dynamic Bayesian networks
can be based on cyclic graphs. In effect, we show, for the very first time, that a
novel dynamic probabilistic graphical model is an intrinsic representation of a
full joint probability distribution over multiple full joint probability distributions.
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Zusammenfassung

Betrachtet man kausale Zusammenhänge in komplexen oder zeitlich veränder-
lichen Domänen, sind oftmals keine eindeutigen Kausalitäten erkennbar, d. h.
die Rollen von Ursachen und Wirkung sind nicht allgemeingültig bestimmbar.
Betrachtet man Zusammenhänge lokal, d. h. aus einer rein kausalen Sicht von
Ursachen auf Wirkungen, so werden durch veränderliche kausale Abhängigkeiten
in erster Linie zyklische Abhängigkeiten benötigt. Es ist sehr wichtig, Kausa-
lität anstatt von Korrelation zu modelieren, weshalb oftmals Bayes’sche Netze
verwendet werden, um unter Untersicherheit Schlüsse zu ziehen. Bayes’sche
Netzwerke sind gerichtete probabilistische graphische Modelle, erlauben eine
kausale Modellierung von Wahrscheinlichkeitsprozessen und verfügen über lokal
spezifizierbare und verständliche Parameter, sind jedoch nicht für zyklische Grap-
hen definiert. Um zyklische Abhängigkeiten in Bayes’schen Netzen zu betrachten,
werden oftmals dynamische Bayes’sche Netze verwendet, welche zyklische Abhän-
gigkeiten in mehreren Zeitschritten auflösen. Durch diese zeitliche Auflösung
werden jedoch nicht nur Zyklen aufgehoben, sondern es werden auch sämtliche
indirekte Einflüsse innerhalb eines Zeitschrittes eliminiert, wodurch sich eine
infinitesimal kleine Zeiteinteilung aufzwingt. Ohne eine kausale Modellierung,
d. h. ohne direkte und indirekte Zusammenhänge kausal korrekt darzustellen,
so zeigen wir in dieser Arbeit, können Modelle "‘kollabieren"’ und entartete
Ergebnisse produzieren.

Der größte Beitrag dieser Arbeit lässt sich wie folgt zusammenfassen: Wir
zeigen, dass spezielle Eigenschaften von bedingten Wahrscheinlichkeitsvertei-
lungen es probabilistischen graphischen Modellen erlauben, sich rapide an einen
speziellen Kontext anzupassen, wodurch sich Einflüsse korrekt modellieren lassen
und indirekte Einflüsse beachtet werden, ohne dabei Anforderungen an eine
Zeiteinteilung zu stellen, selbst wenn sich zyklische Abhängigkeiten ergeben.
Zudem zeigen wir, dass diese gerichteten probabilistischen Modelle der üblichen
Syntax und Semantik von Bayes’schen Netzen folgen, obwohl sie auf zyklischen
Graphen basieren. Im Laufe dieser Arbeit zeigen wir, dass diese Modelle keine
externen Rahmenwerke benötigen, zur Lösung übliche Inferenz-, Anfrage- und
Lern-Probleme kein erheblich höherer Rechenaufwand nötigt ist und übliche
Strukturen von bekannten Algorithmen erhalten bleiben. Wir sind daher über-
zeugt, dass Bayes’sche Netze und dynamische Bayes’sche Netze tatsächlich auf
zyklischen Graphen basieren können. Schlussendlich ist es mit dieser Arbeit
erstmalig möglich ist, mehrere Verbundwahrscheinlichkeiten innerhalb eines
probabilistischen graphischen Modells zu repräsentieren.
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Chapter 1

Bayesian Networks,
Dependencies and Causality

Bayesian networks are probabilistic graphical models for reasoning under uncer-
tainty from causal relationships between causes and effects. Pearl and Russell
(2003) emphasize that Bayesian networks should be a direct representation of
the world instead of a reasoning process. Therefore, directions of edges in a
probabilistic graphical model shall represent causality and identify cause→effect
relationships, and should not be adjusted to properties and restrictions of a
reasoning framework. While edge directions in probabilistic graphical models
are irrelevant for the expressivity, i.e., ability to represent full joint probability
distributions, only a causal edge direction allows for an intuitive, directly un-
derstandable, and local parametrization of conditional probability distributions
(CPDs) in Bayesian networks. Pearl and Russell (2003) introduce local implica-
tions of parameters, i.e., CPDs, in Bayesian networks as their local semantics, to
which we accredit the local understandability and direct, intuitive interpretability
of CPDs as well. The product of those local parameters defines the global seman-
tics of a Bayesian network without the need of any global normalization factors
which allows one to locally and individually interpret these values. We consider
these local semantics of CPDs as a highly valuable property of probabilistic
graphical models, as they allow one to directly represent knowledge directly
obtained from multiple experts from different expertises. For the scope of this
thesis and the following definitions, we, therefore, solely consider models in which
edge directions represent possible causal relationships.

As outlined throughout this thesis, the world is not necessarily causal if
viewed in a too general setting. We show that no matter how acausal a world
might seem, a Bayesian network must exactly represent a world or otherwise
loses its expressiveness.

This introductory chapter is structured as follows. Section 1.1 introduces
preliminaries on probabilistic graphical models and Bayesian networks and
outlines an example domain and application of Bayesian networks for reasoning
from causal models. Section 1.2 considers the role of causalities and extends
a running example towards an emerging problem that motivates the work
throughout this thesis, over which an overview is given by Section 1.3 and
Section 1.4 describes this thesis’ contributions.

1



2 Chapter 1. Bayesian Networks

1.1 Probabilistic Graphical Models
In general, a probabilistic graphical model (PGM) represents relationships,
influences and dependencies between variables. A large variety of PGMs exists in
the literature, from which we consider the form of directed probabilistic graphical
models, and particularly focus on the form of Bayesian networks. We introduce
both using the following running example.

Example 1.1 (Joke-Cry domain). Explaining why someone is crying and so-
meone tells a joke at a funeral, why sad persons are crying, why someone cries
at a wedding, or why a joke is told at a wedding are easy problems for a human.
To brighten up an icing atmosphere and to cheer up crying (sad) persons, more-
or-less good anecdotes or jokes are told; persons moved by weddings more-or-less
inexplicably start crying; jokes are generally told at weddings and someone is
usually happy. One is able to represent all these cause-and-effect relationships in
one model as shown in Figure 1.1. Here, edge directions immediately identify
causalities between causes and effects. While, from a reasoning view, a told joke
provides information about crying persons, capturing a true causality is of utmost
importance: Jokes are not told because of a funeral taking place, but jokes are
told to partially cheer up persons in deep sorrow at a funeral. Without a directed
edge from Cry to Joke, the only explanation (i.e., cause) for a joke being told at
a funeral would be the funeral itself.

Cry

Joke

Mood

Place

Figure 1.1. Modeling causal dependencies is of utmost importance. Without a link
from Cry to Joke, the only explanation for a Joke being told at a funeral is the funeral
itself—usually a quite macabre assumption.

This example domain, further called the joke-cry domain, is an example for
a probabilistic graphical model and, in fact, for a Bayesian network. In this
example Joke, Cry, Mood, Place represent variables assignable to some values,
e.g., the Place can be a funeral or a wedding. However, it is not certain which
value each variable will take, which is why they are called random variables.

Notation 1.1 (Random variables). Let capital X represent a random variable
and let X be assignable to a value of its domain x ∈ dom(X), denoted in lowercase.
Let P (X = x), or P (x) for brevity, denote the probability of random variable
X having x as a value. If dom(X) = {true, false} we write +x for the event
X = true and ¬x for X = false. If X is unspecified and not fixed by evidence,
let P (X) denote the probability distribution of X w.r.t. all possible values in
dom(X).
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Every random variable is associated with a domain of values, to which
the random variable are assignable. For the running example, one obtains
dom(Place) = {funeral ,wedding}, dom(Mood) = {happy , sad}, and Cry and
Joke are binary domains, representing someone is (not) crying and (some/no)body
tells a joke. Naturally, e.g., being in a sad mood does not inevitably lead to crying,
which is why, in probabilistic graphical models, every influence is associated
with a set of parameters representing a degree of uncertainty in their influence.
For the scope of this thesis, we solely consider directed probabilistic graphical
models which are parametrized using conditional probability distributions. A
conditional probability, for example, represents a probability of crying under the
consideration of attending a wedding and being happy.

Definition 1.1 (Directed probabilistic graphical model, PGM). A PGM is
syntactically defined as a directed graph B = 〈V,E〉 with vertices V and edges E.
Every vertex represents a random variable Xi ∈ ~X assignable to one of its values
xi ∈ dom(Xi). Every directed edge from vertex X to Y represents a possible
direct influence of X on Y and a possible direct causal dependence of Y on X.
Every absent directed edge from vertex X to Y assures that X does not exert
a direct causal influence on Y and that X is not a direct cause of Y. Every
random variable is associated a local conditional probability distribution (CPD)
P (X| ~parX), where ~parX represents the set of random variables that directly
causally influence X. If ~parX is empty, we call X a prior (random variable). A
PGM’s global semantics is defined as the joint probability distribution (JPD)
over all random variables P ( ~X), which is given by some combination, specific to
each PGM, of the locally defined CPDs. N

Note that by Definition 1.1 an edge does only represent a possibility for a direct
causal influence, but does not guarantee it. Further note that by Definition 1.1 an
absent edge from random variable X to Y does not assure a global independence
between both considering the global semantics of the model; a missing edge from
X to Y assures that no direct causal influence is exerted, for which we speak of
a local conditional independence of Y on X given ~parY . Further, the complete
graph B encodes global conditional independence assertions, i.e., a variable X is
globally conditionally independent from its non-descendants given its parents
~parX .

With a specification of a conditional probability distribution for every random
variable in the joke-cry domain in addition to Figure 1.1, a PGM is formed.
Often, e.g., by Koller and Friedman (2009), Murphy (2012), or by Pearl and
Russell (2003), directed probabilistic graphical models are used synonymously
with the term Bayesian network. During the scope of this thesis we revisit the
foundations of Bayesian networks and, therefore, require a careful differentiation
and definition of (directed) probabilistic graphical models and Bayesian networks,
which are defined as follows.

Theorem 1.1 (Bayesian network). A Bayesian network B is a directed proba-
bilistic graphical model where the PGM’s associated graph 〈V,E〉 is a directed
acyclic graph (DAG). A Bayesian network’s (global) semantics is defined as the
PGM’s semantics and given as the product of all locally defined CPDs, i.e.,

P ( ~X) =
∏
X∈ ~X

P (X| ~parX) (1.1)
N
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Figure 1.1 is a DAG and, therefore, the PGM introduced by Example 1.1 for
the joke-cry domain represents a Bayesian network. Although, the definition of a
Bayesian network’s JPD (Eq. 1.1, derived as part of Proof of Theorem 1.1 given
in Appendix A) might seem unimpressive, it is its simplicity that characterizes
Bayesian networks as a world-representing first class declaration. The global
semantics, i.e., the joint probability distribution over all random variables
Eq. 1.1, is directly given as the product of all defined conditional probability
distributions, i.e., parameters of the PGM, and the JPD does not involve any
“normalizing” factors. This means that all defined parameters are directly and
locally interpretable in a Bayesian network. Pearl and Russell (2003) introduce
local implications of parameters, i.e., CPDs, in Bayesian networks as their local
semantics, to which we accredit the local understandability and direct, intuitive
interpretability of CPDs as well. While the edge directions in a Bayesian network
are irrelevant for the expressivity, i.e., ability to represent full joint probability
distributions, only a causal edge direction allows for this intuitive, directly
understandable, local parametrization of conditional probability distributions
(CPDs) in Bayesian networks. If an edge does not represent a direct causal
relationship, such an edge must consider transitive and inverse implications of
effects on causes which is inherently non-local and hardly overseeable by a human.
We, therefore, as mentioned in the beginning, solely consider models where edge
directions represent direct causal cause→effect relationships, which, per se, are
intensively studied by, e.g., Pearl (2009). The following example demonstrates
the intuitive and directly understandable parametrization of Bayesian networks
under a causal design.

Example 1.2 (CPDs and local semantics). Continuing the joke-cry dom-
ain from Example 1.1, one needs to specify the CPDs P (Cry |Place,Mood),
P (Mood |Place), P (Joke|Cry ,Place), and a prior random distribution P (Place).
In this example, we exemplarily demonstrate the parametrization of
P (Cry|Place,Mood). To do so, one needs to specify a local conditional probabi-
lity for every dependance instantiation, i.e., every instantiation of Place,Mood ,
namely P (+cry |wedding , happy), P (+cry |funeral , happy), P (+cry |wedding , sad),
P (+cry |funeral , sad). A respective counter part, e.g., P (¬cry |wedding , happy),
is then directly given by P (¬cry |wedding , happy) = 1− P (+cry |wedding , happy).
It is quite usual to specify CPDs in Bayesian networks by using conditional
probability tables (CPTs), as demonstrated in Table 1.1.

Each probability value of the CPD P (Cry |Place,Mood) is interpretable as
itself and, moreover, is locally interpretable. This means that each defined
conditional probability is independent of the use case of the complete model.
For example, the specified probability of a happy person crying at a wedding
is assessed to be 70%1 and represents the same probability of, e.g., tossing
less than 7 given one tosses a ten-sided dice. Further, one is not urged to
consider backwardly-directed implications of Joke, as only direct causes need to
be considered. Therefore, this CPD remains valid even if, say, one extends the
domain with a deep and complex Bayesian network reasoning from individual
spoken words if a joke was told or not.

The example shows that CPDs are locally interpretable, i.e., demonstrates the
local semantics of a Bayesian network. Moreover, all parameters are interpretable

1We use % in its mathematical meaning “per hundred,” i.e., to represent a number and not
a ratio of a whole, e.g., 70% is identical to 0.7.
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Table 1.1. Example for a CPD P (Cry |Place,Mood) represented as a CPT for the
joke-cry domain.

Place Mood P(+cry|Place,Mood)

wedding happy 70%1

wedding sad 20%
funeral happy 1%
funeral sad 80%

and specifiable without a need to consider the big picture. This means that
every CPD is defined locally by considering its direct parents, i.e., its direct
causes, and one is neither urged to consider transitive effects of grandparents nor
urged to consider causally-inverse implications of descendants. Using the direct
interpretation of CPDs, one is able to validate all CPDs separately and locally.
This is especially useful for applications where one must rely on (subjective)
expert assumptions and is not able to validate parameters and results against
ground truth.

Example 1.2 uses a conditional probability table (CPT) to represent CPD
P (Cry |Place,Mood) in Table 1.1, but please note that CPTs are just one form for
representing CPDs, and CPDs can as well be represented by three dimensional
graphs, lists of probabilities, or, in some cases, as decision trees. We believe it
is best to see a CPD P (X|~Z) as a function associated with random variable X
returning a value between 0 and 1, depending on arguments of X’s value x and
an instantiation ~z of X’s dependencies ~Z. This view is as well taken by Koller
and Friedman (2009).

To obtain results from PGMs, i.e., to reason about possible values of random
variables, a PGM, seen as a probabilistic knowledge base, is queried for results
of conditional probabilities. For example, to obtain knowledge where one is
located, given one sees someone cry and hears a joke being told, one queries
for P (Place|+cry , +joke). Finding an answer to this query poses a probabilistic
inference problem solvable by Bayes’ theorem and marginalization from the JPD,
as the following example outlines. Common queries and associated answering
problems are discussed more deeply in Section 2.3.

Example 1.3 (Global semantics and answering a query). Continuing Exam-
ple 1.2 with a specification of all CPDs, the BN’s global semantics is simply
given by the product of all locally defined CPDs, i.e.,

P (Place,Mood ,Cry , Joke) =

P (Joke|Cry ,Place) · P (Cry |Place,Mood) · P (Mood |Place) · P (Place) (1.2)

Based on this BN, say, one intends to obtain knowledge about the probability of
being at a wedding while seeing crying persons and hearing jokes being told, i.e.,
P (wedding |+cry , +joke). An exact answer is obtained by marginalization over all
unobserved random variables from the JPD as

P (wedding |+cry , +joke) =

∑
Mood P (wedding ,Mood , +cry , +joke)∑

Place

∑
Mood P (Place,Mood , +cry , +joke)

.

Often, it is more interesting to obtain a distribution over possible values of
a random variable, e.g., P (Place|+cry , +joke). When calculating distributions,
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one commonly avoids an explicit calculation of the denominator by using a
normalizing factor α s.t.

∑
Place P (Place|+cry , +joke) = 1. Further, one usually

avoids the explicit calculation of P (Place,Mood ,Cry , Joke) by using the product
representation (i.e., the right side of Eq. 1.2), and one factors out CPDs in the
summation.

To answer this query from a semantic point of view, one needs to incorporate
that +cry and +joke deliver information about a potential Place (abduction), and
that +cry and some Place deliver information about Joke (prediction). Therefore,
one obtains some information about Place that leads to information about Mood
(prediction), but, +cry delivers information about Mood (abduction) as well, i.e.,
information from two “sides” must be merged.

Furthermore, say, to represent that a wound makes people cry as well, one
models that a Wound influences Cry additionally. Then, if one observes crying
persons, beliefs in +wound , sad , and funeral (these are all modeled causes for
crying) increase (abduction). But if one additionally knows that people attend a
funeral, the belief in +wound suddenly lowers, i.e., P (+wound |funeral , +cry) <
P (+wound |+cry): A Bayesian network can “explain causes away,” although no
information about the cause is directly given and its effect is in place.

Obtaining exact answers to queries in PGMs based on exact probabilistic in-
ference is computationally expensive, and often approximate inference techniques
are used. Still, the direct incorporation of prediction, abduction and explaining
away in BNs is an extremely valuable reasoning mechanism, which, as demon-
strated in Example 1.3 and stated by Pearl and Russell (2003), is otherwise
difficult to implement. Moreover, due to the local semantics of parameters, once
all parameters are validated, every result derived from this model is validated as
well, as no global normalization factor is involved.

To further accentuate the need of local and global semantics, consider the
following counter-example.

Example 1.4 (Counter-example of non-local semantics). Say, one intends to
mimic reasoning capabilities of Bayesian networks, as outlined in Example 1.3, in
a new reasoning framework. Then, considering Figure 1.1, at first, uncertainty
degrees must be specified somehow. Say, one specifies the uncertainty from
Place = wedding → Mood = happy by 5. However, the value 5 of this parameter
has no meaning as itself and does not bear any (local) semantics. 5 first gains
a degree of meaning, once one specifies a range of possible values, e.g., [0, 15].
Still, 5 on a scale from 0 to 15 only bears a very limited degree of interpretation,
as it is unclear how this range is scaled. In order to judge this scale, other
parameters must be considered. Say, one knows it is highly unlikely that jokes
are told at a funeral where no one cries, which is parametrized by 4. 5 now seems
to be more unlikely, but one has to consider distant, unrelated relationships as
well to perform a judgment. In fact, one is first able to judge the likeliness of
a parameter 5 by considering all specified parameters. In order to mimic the
reasoning capabilities, one now needs to combine all parameters by an algorithm,
answering a query for, e.g., the likeliness of being at a wedding, given one hears
a joke and people are crying. Still, as parameters do not bear any local semantics,
and no global semantics are defined for this framework, this algorithm must be
validated against ground truth. In essence, for every domain that is supposed
to be modeled by this framework and algorithm, large datasets must be present
against which an algorithm can be validated and can be trained from. In the end,
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one would obtain an answer of, say, 13. However, one now requires large sets of
reference values to judge this likeliness or must deeply understand the complete
framework and algorithms.

In contrast, in a Bayesian network, local parameters, e.g., P (happy |wedding) =
89%, immediately bear a meaning and are interpretable. For every random
variable only the direct causes must be considered, and locally independent
random variables (e.g., Joke) are completely irrelevant for the parametrization
of P (Mood |Place). Note that under consideration of the global semantics of this
Bayesian networks, Joke and Mood are not independent, and an observation of
one random variable will deliver information about the other. Still, due to the
local views taken in CPDs, one need neither consider these backwardly-directed
implications and nor consider the global interdependencies of all variables for
specifiying the local CPD P (Mood |Place). Moreover, every result obtained from
a Bayesian network (e.g., P (wedding |+cry , +joke) = 66%) is immediately inter-
pretable by itself, does not require any reference values, and is seen as validated
once an expert trusts or assures that local CPDs are reasonable from a subjective
perspective. Moreover, in order to interpret this value, an expert need not even
understand probabilistic inference.

This example accentuates—and exaggerates—the advantages and needs of
well-defined local and global semantics. The need for these properties are further
outlined and applied in a real world use case involving experts’ assessments in
Chapter 6.

To summarize, in a Bayesian network, one is able to capture true causalities
from local point of views, experts’ assessments for degrees of uncertainty are
directly integrable without a need to consider a big picture, and obtained
results are defined to be correct once experts’ assessments are correct. The
combination of these properties allow a Bayesian network to be a first-class
representation of the world, i.e., a Bayesian network is everything required
to reason under uncertainty and must not be hidden inside some probabilistic
reasoning framework.

In the following section we extend the joke-cry domain with further places and
encounter that capturing true causalities in Bayesian networks from local points
of views quickly leads to significant problems in Bayesian network formalisms.

1.2 Cyclic Dependencies and Causality
To repeat, Pearl and Russell (2003) emphasize that Bayesian networks should
be a direct representation of the world instead of a reasoning process. Therefore,
directions of edges in a probabilistic graphical model shall represent causality
and identify cause→effect relationships, and should not be adjusted to properties
and restrictions of a reasoning framework. The following example shows that it
is not easy to adhere to this principle. To represent the world more precisely
in our joke-cry domain, we extend the domain in the following example with
further places where one usually hears jokes and/or needs to cry.

Example 1.5 (Human interaction and emotions). Cause and effects of human
interactions are often not uniquely identifiable without further context and play
a major role in Winograd challenges (see, e.g., Levesque, Davis, & Morgen-
stern, 2012). Crying need not always be emotionally triggered by being moved,
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but can also be triggered from pure joy, e.g., hearing the best joke ever told.
In this particular situation, for example at a comedy festival or party, a told
(very good) joke might make someone cry, i.e., Joke → Cry. To integrate this
new information into our world-representing model from Figure 1.1, we extend
dom(Place) by 〈comedy − festival , party〉 and, from a pure local point of view,
now, Cry is dependent on Joke and one obtains Figure 1.2. However, Figure 1.2
is not a DAG anymore, as an allegedly directed cycle is evident from the graph.
Therefore, one does not obtain a Bayesian network anymore, by which one loses
all local semantics and the global semantics is not given. Still, all dependency-
and influence considerations originate from local point of views from direct causes.
What one has to note is that a causality is not singly identifiable, but is only
known in a further context, e.g., if a funeral or a party is observed. However,
the context is a random variable, is part of our domain itself, cannot be known
in advance, and we intend to reason over it as well.

Cry

Joke

Mood

Place

Figure 1.2. Modeling causal dependencies often requires cyclic dependencies. If one is
supposed to reason over Cry, potential influences of Cry or on Joke must be considered.
Without a link from Joke to Cry, the only possible explanation for crying at a party is
that the person is Mood=sad or that a person always cries at parties—usually a wrong
assumption. And without a link from Cry to Joke, the only explanation for a Joke being
told at a funeral is the funeral itself—usually a quite macabre assumption.

Example 1.5 represents an example for a cyclic dependency created due to
local views on dependencies, and one must conclude that dependencies cannot
be modeled in a causally correct way. In essence, no straightforward solution
in a Bayesian network formalism exists: Removing both edges of the alleged
cyclic dependencies between Cry and Joke destroys causality, as the essential
causes and effect relationships are removed: Jokes are not told at a funeral, just
because of the funeral taking place; jokes are told at a funeral to possibly cheer
up crying, sad persons. Further, someone (usually) does not cry at a comedy
event because of being at a comedy event; a person is crying at a comedy event
because jokes (which are usually told at comedy events) were good and made
a person cry. One could mimic an intended joint probability distribution by
a single edge between Cry and Joke, e.g., only Cry → Joke, which, however,
destroys the local semantics: The local CPD of Joke must then be designed w.r.t.
an intended influence of Joke → Cry , i.e., a CPD is not solely designed with
respect to causal cause→effect relationships from direct parents, but also with
an inverse “reasoning” view on effect→cause relationships. By moving away from
directed PGMs, one is able to represent the outlined domain as a completely
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undirected PGM or as a partially directed PGM. For example, by sacrificing the
identification of causality, the allegedly cyclic edges between Joke and Cry could
be represented by one undirected edge associated with a factor for uncertainty.
However, such factors, sometimes called “potentials,” bear no local meaning
and are not easily interpretable. Moreover, local semantics are lost, as only a
global normalization factor on the complete model enables a certain degree of
interpretation. Note that, such allegedly cyclic dependencies need not be evident
directly between two variables, but could emerge from a constellation of many
random variables in large domains.

In summary, cyclic dependencies are required from a causal perspective on
Bayesian networks and arise from local views on dependencies, as envisioned
in Bayesian networks. Without cyclic dependency structures in a Bayesian
network, local interpretation of parameters and causalities are lost. However,
cyclic dependencies in Bayesian network are fundamentally forbidden, as every
definition of a Bayesian network begins with “a Bayesian network is a directed
acyclic graph.”, which, as we show in the remainder of this thesis, is not necessarily
true. We continue the joke-cry example as an example for a novel well-defined
PGM, introduced in the following chapters, using familiar Bayesian network
syntax and semantics in Section 5.2 on Page 88.

1.3 Overview over the Remainder of this Thesis

The remainder of this thesis is structured as follows. Chapter 2 discusses
preliminaries on dynamic probabilistic graphical models (DPGMs) and shows
that the inability to model dependencies in a causally correct way poses a
compelling problem in dynamic Bayesian networks (DBNs). Namely, we show
that in certain domains DBNs are unable to anticipate indirect influences and
enforce an infinitesimal resolution of time. By considering properties of local
conditional probability distributions (CPDs) associated with random variables,
we introduce a novel, directed (dynamic) probabilistic graphical model that
permits locally seen cyclic dependencies, allowing for a causal design, anticipating
indirect influences on an unbound time granularity. In fact, we show and prove
that the introduced (dynamic) probabilistic graphical model is remarkable similar
to a (D)BN and preserves all attributed desired properties, which is why we
call them Activator (D)BNs (ADBNs). We discuss and derive solutions to
commonly known query answering problems and, further, that ADBNs do not
introduce any computational overhead, compared to its closest relative in classic
DBN formalisms. To reduce computational complexity of finding solutions to
common query answering problems in ADBNs, we introduce, derive and discuss
approximate inference techniques for ADBNs and show that familiar approaches
remain applicable. As this thesis covers a broad field of research areas, we discuss
related work on each chapter separately in each chapter.

While Chapter 2 shows that ADBNs, as a novel form of DPGMs, enable
a causal parametrization and creation of models from local perspectives, an
expert might now always be present or must be assisted to do so. Therefore,
Chapter 3 discusses and introduces a learning approach towards ADBNs based
on an EM-algorithm. We discuss that classical approaches such as structural EM
algorithms and learning approaches for non-stationary DBNs are not applicable
towards learning ADBNs, as ADBNs pose a novel challenge: A structure is not
and cannot be known in advance. That structures could be known in advance is
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so far assumed for all DPGM learning approaches. We, further, continue the
discussion of ADBNs’ closest relatives in classic DBN formalisms. Chapter 2 has
shown that classic DBN formalisms are not parametrizable and creatable from
causal, local perspectives, leading to a spurious anticipation of indirect influences
in certain domains. Now, Chapter 3 discusses if classic DBN models can learn
from data in these domains to anticipate indirect influences in an unbound time
granularity. In fact, we empirically evaluate that not even the most general form
of DBNs is able to learn an anticipation of indirect influences in these particular
domains.

In Chapter 4 we focus more deeply on specific properties of local CPDs in
(D)PGMs and formalize an often mentioned, but yet unformalized property of
CPDs, which we call innocuousness. In particular, it is often assumed that “a
false dependence does not cause any harm,” and an arc in a graphical model
can be left out if a potential cause is known to be non-harmful. Chapter 4
formalizes a general form of innocuousness in the form of innocuousness-contexts
and exploits their properties of vacuous arcs in ADBNs. While, semantically,
often accredited to commonly known Boolean combination functions for creating
CPDs, e.g., noisy-or assumptions, ADBNs enable one to formalize this property
for the very first time.

Where the previous chapters introduce and discuss ADBNs as a novel DPGMs
with softer, but still existing, restrictions on observations and instantiations,
Chapter 4 shows that these restrictions can be significantly relaxed. In Chapter 5
we discuss the rationale behind such restrictions and show that, by adequate
parametrization and modeling approaches, ADBNs are able to represent multiple
structures in one model and are able to intrinsically adapt to a specific context
at every timestep with neither restrictions on observations or instantiations,
nor introduction of external reasoning frameworks. In effect, we show, for
the very first time, that ADBNs are (D)PGMs that representat multiple joint
probability distributions in one model, i.e., are a graphical representation of
a joint probability distribution of joint probability distributions. In fact, we
show that the joke-cry domain introduced by Example 1.5 and Figure 1.2 from
Chapter 1 is already such a well-defined probabilistic graphical model.

In Chapter 6 we discuss and introduce a pertinacious problem in the field
of business informatics and cyber security. Large industrial companies become
more and more dependent on large and complex IT infrastructures supporting
critical operations inside the company. Any defect, attack, or executed action,
i.e., any impact on some resource might transitively lead to a causal chain of
failures affecting a critical operation of a company and therefore a company
itself. Assessing these eventualities is a novel field of research often referred
to as a mission impact assessment, and Chapter 6 shows that local and global
semantics of (dynamic) probabilistic graphical model are highly beneficial for
these assessments. The local interpretation of locally defined parameters provides
a direct integration of expert knowledge. Further, PGMs permit validating
parameters, instead of holistically validating obtained results against ground
truth. Such large amounts of ground truth are often not available in such
domains. We discuss a dynamic mission impact assessment providing real-time
and forensic analyses of potential impacts caused inside largely scaled networks
based on a DPGM and show that ADBNs are inevitably required and directly
evident from the problem’s domain.

We conclude, summarize and discuss results obtained throughout this thesis
in Chapter 7.
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1.4 Scientific Contribution

The scientific contributions of this thesis can be summarized as follows: We
show that the restriction of acyclic graphs of classic DBN formalisms enforces
an infinitesimal resolution of time in certain domains, or, otherwise, leads to an
ignorance of indirect influences. By considering DPGMs in which some random
variables show to have an activator nature, we prove that such DPGMs, called
ADBNs, are subject to a different acyclicity constraint and can be based on cyclic
graph structures. We show that ADBNs intrinsically are able to rapidly adapt
to contexts, without requiring an infinitesimal resolution of time, anticipating
indirect influences on a solid mathematical basis using familiar Bayesian network
semantics. This is beneficial for applications where causal models arise naturally
and cyclic dependencies arise through local views on (in)dependencies, e.g.,
automatic learning of causal influences from coarse observation sets and—as a
long-term goal—finding causally correct explanations and relations in (tempo-
rally uncertain) knowledge bases requiring context-aware interpretations and
anticipations of causal chains, as required for, e.g., DeepQA (Ferrucci et al.,
2010) or the Knowledge Vault (Dong et al., 2014).

Moreover, by proposing a learning approach for ADBNs for problems where
effective structures are not known in advance, are rapidly changing over time, and
are not evident from data while learning, we effectively fuse structure learning
with parameter learning into one atomic task to learn DBNs from incomplete
data under unknown structures. On top of that, we question whether it might
be possible that “diagonal” (A)DBNs can be learned, whose parameters do not
bear a local semantics, but which deliver satisfying inference results anticipating
indirect influences. We show that not even the most general form of diagonal
(A)DBNs can be trained to anticipate indirect influences.

Furthermore, by formalizing a yet unexpressed innocuousness property in
CPDs, expressiveness of local semantics of CPDs is increased, and acyclicity
restrictions on (A)DBNs are relaxed. Namely, we unveil that in ADBNs one is
able to novelly formalize that “a deactive nodes does not cause any harm,” and
an arc could be left out in a model. Based on graph enumeration techniques
we quantitatively explore new relaxations of syntactic restrictions of graphical
models for (A)DBNs.

In addition, based on a consideration of specific modeling approaches and a
constraint of local CPDs, we show that ADBNs form (dynamic) probabilistic
graphical models where partial structural information can be missing completely.
In effect, we prove that ADBNs are well-defined DPGMs intrinsically representing
multiple structures, and, for the very first time, are a representation of multiple
joint probability distributions. This means that one is able to represent joint
probability distributions of joint probability distributions. In conclusion we show
that all local and global semantics, i.e., locally interpretable and parametrizable
parameters of causal models remain without a need of global normalization factors
in ADBNs. We show that familiar schemes for learning, exact inference, and
approximate inference in ADBNs are evident, that no computational overhead is
introduced, and that one remains in a classical and familiar calculus. By showing
that, through adequate modeling approaches, any restrictions on ADBNs are in
fact removable, we feel confident to say that (dynamic) Bayesian networks can
directly be based on cyclic graphs.
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Finally, we contribute to an emerging research area in cyber security and bu-
siness informatics by introducing a well-defined dynamic probabilistic graphical
model for dynamic mission impact assessment, which is predestined for realtime
and forensic analyses of mission impacts. We reduce impact assessment onto a
probabilistic inference problem, which allows validating results at data level, and
does not require deep training of experts to understand and validate holistic re-
sults. By the use of local semantics of ADBNs one is able to integrate widespread
knowledge from different expertise into a single sound model. This is useful for
applications where qualitative assessments are required and perpendicular views
from multiple experts onto a problem must be brought inline and require a view
over time.
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Chapter 2

Indirect Causes in Dynamic
Bayesian Networks Revisited

Dynamic Bayesian networks (DBNs) are an extension to Bayesian networks
motivated from two perspectives, on the one hand as a manifestation of cyclic
dependencies over time, closely related to Markov models (Murphy, 2002), on the
other hand as a stationary process repeated over time in fixed timeslices (Glesner
& Koller, 1995) to reason about historical and future evolutions of processes.
Considering Pearl and Russell (2003) who emphasize that Bayesian networks
should be a direct representation of the world instead of a reasoning process,
Murphy’s and Glesner’s views seem to be conflicting. A model repeated over
time with cyclic dependencies would expand to infinity already for one timeslice.
Therefore, e.g., Jaeger (2001) or Glesner and Koller (1995) use a strict order of
dependencies s.t. state variables of time t are only dependent of states at t− 1.
Unfortunately, this means that evidence at a certain time point does not affect
states at this time point, but one slice later. We argue and show that this limits
the causal expressiveness of Bayesian networks.

In the extreme form of a directed dynamic probabilistic model, each random
variable is locally and causally seen as being directly dependent on every other
random variable of one timestep, inevitably creating cyclic dependencies. When
using DBNs to allow for local specifications and interpretation of probability
distributions, there exists no option to causally correctly leave all dependencies
in the same timestep as dependencies create cycles. Therefore, some random
variables can only be dependent on variables from a previous timestep. However,
this poses serious conflicts in causality, as (i) the temporal causality is simply
inaccurate and (ii) no indirect effects are considered at a particular timestep,
enforcing an infinitesimal resolution of time adjusted to a reasoning process,
instead of a time modeled for a world representation. Both restrictions (i) and
(ii) severely limit the usage of DBNs.

To circumvent this problem, basically two options are available. As investi-
gated by Boutilier, Friedman, Goldszmidt, and Koller (1996), variables might be
independent in certain contexts, which would allow a causally correct network
generation from rules such as those presented by Glesner and Koller (1995),
Ngo, Haddawy, and Helwig (1995), or by Ngo and Haddawy (1997). Still, then
rules often need to be designed with a procedural view, degrading a BN to a

15
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procedural tool in a reasoning process, rather than designing it as a first-class
declarative representation. Further, such rules would inherently be cyclic and
might cause additional problems as stated by Ngo et al. (1995). A second option
would be to heavily restrict a DBN to specialized observation sets, e.g., to “single
observations at a time” as done by, e.g., Jaeger (2001) or Sanghai, Domingos,
and Weld (2005), s.t. no indirect causes need to be considered. Obtaining only
single observations during one timeslice again implies that observations are made
at an infinitesimal resolution of time.

The contribution of this chapter can be summarized as follows: By considering
DBNs in which some random variables have an activator nature, we prove that
such DBNs, called ADBNs, are subject to a different acyclicity constraint by
rapidly adapting to different contexts at every timestep, do not enforce an
infinitesimal resolution of time, and anticipate indirect influences on a solid
mathematical basis using familiar Bayesian network semantics. This is beneficial
for applications where causal models arise naturally and cyclic dependencies
arise through local views on (in)dependencies, e.g., automatic learning of causal
influences from coarse observation sets and—as a long-term goal—finding causally
correct explanations and relations in (temporally uncertain) knowledge bases
requiring context-aware interpretations and anticipations of causal chains, e.g.,
DeepQA (Ferrucci et al., 2010) or the Knowledge Vault (Dong et al., 2014).

This chapter is structured as follows. We discuss preliminaries on DBNs
and context-specific independencies as introduced by Boutilier et al. (1996)
and Haddawy, Helwig, Ngo, and Krieger (1995) in Section 2.1 and identify an
eminent problem of causality in DBNs by the use of a running example. By
considering DBNs in which some random variables have an activator nature, we
introduce Activator Dynamic Bayesian Networks (ADBNs) in Section 2.2. We
investigate common queries and associated problems in ADBNs such as filtering
and smoothing in Section 2.3 and provide experimental results for exact inference.
Section 2.4 is dedicated to an introduction and derivation of an approximate
inference technique for (A)DBNs. We discuss our results and relations to previous
work in Section 2.5. Section 2.6 gives an intermediate conclusion an outlook to
following chapters.

2.1 Dynamic Bayesian Networks: Preliminaries

The following definitions, propositions and theorems on dynamic probabilistic
graphical models and dynamic Bayesian networks follow familiar notations and
definitions. However, painstaking definitions are needed to shed light on marginal
details which lead to a significant problem of anticipating indirect influences
in DBNs and limit the expressiveness of (D)BNs as we show in the following
section.

A PGM models influences and dependencies between random variables, e.g.,
“a wet lawn is caused by rain,” where rain is a prior random variable. However,
seeing rain as a fixed prior random variable is not necessarily correct, as it is
easy to see that it is more likely for it to rain tomorrow, if it rained for the past
three weeks. Still, the dependence between lawn and rain remains structurally
the same over time. Dynamic (directed) probabilistic graphical models (DPGMs)
are used to represent such models, where some dependencies depend on previous
states of random variables. Therefore, a DPGM models dependencies between
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random variables where random variables exist in fixed, discrete timeslices and
are dependent on random variables from the same or from previous timeslices.
Random variables that depend on their direct predecessor are stateful, which is
why we call them state variables.

Notation 2.1 (State variables). Let Xt
i be a random variable. Xt

i is the ith state
variable Xi at time t, where time t is represented by the tth discrete timeslice
and t represents some wall-clock time t. Every Xt

i is assignable to a value
xi ∈ dom(Xt

i ), where dom(Xt
i ) = dom(Xi) for all t. Let ~Xt be the vector of all

n state variables at time t s.t.

~Xt =
(
Xt

1, . . . , X
t
n

)ᵀ
.

A random variable Xt
i is a state variable if it bears a history, i.e., is at least

dependent on Xt−1
i . Let P (Xt

i = xi) (or P (xti) for brevity) denote the probability
of state Xi having xi as a value at time t. If dom(X) = {true, false} we write
+xt for the event Xt = true and ¬xt for Xt = false. If Xt

i is unspecified and
not fixed by evidence, P (Xt

i ) denotes the probability distribution of Xt
i w.r.t. all

possible values in dom(Xi).

To represent influences and dependencies between state variables, a DPGM is
specified by one initial model and a dependency pattern between variables from
consecutive timeslices. It is assumed that dependencies and influences remain
constant, and a modeled pattern is repeated for multiple timeslices forming
an ever expanding model. For the scope of this thesis we focus on models
where dependencies solely exist between two consecutive timeslices (Markov-1
assumption).

Definition 2.1 (Dynamic probabilistic graphical model, DPGM). A DPGM is
syntactically defined as a tuple (B0, B→) with B0, an initial PGM representing
time t = 0 containing all state variables X0

i in ~X0, and B→, a consecutively
repeated directed graph fragment for defining state dependencies between Xs

i and
Xt
j , with Xs

i ∈ ~Xs, Xt
j ∈ ~Xt, s ≤ t. For every random variable Xt

i a local CPD
over all parents of Xt

i is specified. By repeating B→ for every time step t > 0,
a DPGM (B0, B→) is unfolded into a directed graph representing a PGM B

over random variables 〈 ~X0, ~X1:t〉. The global semantics of a DPGM (B0, B→)
is defined as B’s global semantics. N

Commonly, in a DPGM one distinguishes between permanently observed
and unobservable variables (sensors and hidden states, respectively). For our
work, we consider a fully observable Markov model containing only observable
(but not constantly observed) random variables, i.e., hidden Markov models
with varying observability spaces. Moreover, we will consider specific forms of
DPGMs, namely, dynamic Bayesian networks. The relation of PGMs to Bayesian
networks and of DPGMs to dynamic Bayesian networks is similar:

Proposition 2.1 (Dynamic Bayesian network, DBN). A DPGM (B0, B→) is
called a DBN and is well-defined, if state dependencies defined in B→ are limited
s.t. no cyclic dependencies are created during unfolding, i.e., B is a directed
acyclic graph. This is the case if B→ is a directed acyclic graph fragment. An
unfolded DBN represents a Bayesian network (BN), by which the global semantics
of the DBN is given by the product of all locally defined CPDs of all timeslices. N
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A proof of Proposition 2.1 is directly equivalent to the proof of Theorem 1.1, as
an unfolded DBN is a classic BN. As before, it is the simplicity of (D)BN semantics
without global normalization factors that still enables local CPDs to define their
own local semantics, i.e., to allow for local interpretations and specifications of
(in)dependencies without considering global normalization factors. DPGMs, and
therefore DBNs, are especially useful for reasoning about evolutions of processes,
predicting future events, or performing analyses in retrospect, e.g., analyzing
the current weather situation, predicting the weather for upcoming days, or
reconstructing events that lead to a hail storm.

In the following, we revisit roles of indirect influences and dependencies in
DBNs to broaden the representation abilities of (D)BNs while maintaining sound
(D)BN semantics. To do so, we differentiate between different structural forms
of DPGMs and DBNs.

Notation 2.2 (Inter- and intra-timeslice dependencies, and diagonal models).
For state dependencies defined in B→ of the form t−1 ≤ s ≤ t (see Definition 2.1),
one speaks of a first order Markov property, which we focus on in this thesis.
For any DPGM with t− 1 ≤ s < t, i.e., states at time t are only dependent of
states at time t− 1, an acyclicity constraint in the directed graph holds and a
DPGM is a well-defined DBN. We call dependencies of the form t− 1 ≤ s < t
inter-timeslice dependencies. We call DPGMs in which only inter-timeslices
dependencies are defined diagonal models. For a limited set of dependencies
of the form t − 1 ≤ s ≤ t, called intra-timeslice dependencies, a DPGM is a
well-defined DBN, as long as no directed cycles are created.

More often than not, many DBNs are designed as diagonal models (as in
Figure 2.2, gray), and introduced due to syntactic constraints on (D)BNs, but
stand in conflict with an actual causality in their domain, as the following
examples demonstrate. Such dependencies exist causally at s = t, but would
create directed cycles in one timeslice. Dependencies on “sibling” states of one
timeslice are then “spread over the past” and conflict with causality. This means
that indirect causes among siblings are not anticipated correctly in a particular
state, such that “chain reactions” are not covered appropriately. The following
example introduces a running example used throughout this thesis.

Example 2.1 (Regulatory compliance). In a company a corrupt employee deli-
berately places fraudulent information, e.g., faked payment sums for bribe money,
which spread throughout a company until every employee has (unknowingly)
committed a compliance violation, i.e., has become corrupt, too. In order to
trace back a potential source for a detected compliance violation, to reconstruct
sequences of events and to prevent future compliance violations, we model a
probabilistic regulatory-compliance domain using a DBN. If one employee spreads
fraudulent information, we do not say that such an employee is “corrupt,” but
in this context we assume that he is tainted. We speak of taintedness, because
saying that an employee is corrupt implies that he is knowingly manipulating
information; being tainted shall represent that he might distribute fraudulent
information indeliberately. The taintedness state of every employee, Claire, Don
and Earl, say, is represented by a state random variable in ~Xt. The probability
P (Xt

i ), encodes the belief in employee Xi being tainted +xti or being integrous ¬xti
at time t. We model B0 s.t. it models our prior belief in every employee being a
source of fraudulent information, i.e., B0 is a BN containing all ~X0 as random
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variables without any influences; say P (+c0) = 0.5, P (+d0) = 0.6, P (+e0) = 0.7.
Being tainted is assumed to be permanent, such that B→ describes all random
variables Xt

i depending on Xt−1
i with conditional probability P (+xti|+xt−1

i ) = 1.
An employee might influence another employee in his writings or, rather,

in his information state. A tainted employee might therefore (indeliberately)
influence his colleague such that the colleague also falls prey to fraudulent infor-
mation, i.e., becomes tainted, too. Influences happen through message exchanges,
i.e., only if a message is passed from employee X to Y at t an influence is
exerted. We represent message exchanges by random variables M t

XY as part of
our domain, with +mt

XY indicating that Y receives a message from X at time t.

In the example, one now can make observations, e.g., from unheralded com-
pliance checkups, and trace a potential diffusion of false information throughout
our company over time. Say, Claire influences Don, and if Claire is tainted there
is a probability of Don becoming tainted, too. Further, if Don influences Earl
there is a probability that Claire influences Earl indirectly through Don, i.e.,
Claire is an indirect cause of Earl becoming tainted. If one is inclined to model
only this dependency of E on D on C, one can correctly represent the domain
as in Figure 2.1. In this minimal example, indirect influences occur and are
correctly anticipated. However, if more potential influences are supposed to be
modeled one is at odds with causality as the following will show.

C0

D0

E0

C1

D1

E1

C2

D2

E2

M1
CD

M1
DE

M2
CD

M2
DE

Figure 2.1. A causally correctly represented world for the minimal case of Example 2.1
using a DBN. Messages M t

XY are only possibly sent from Claire to Don and from Don
to Earl. Modeling more possible message exchanges, i.e., influences, leads to Figure 2.2.

Considering Example 2.1, we would like to model that all employees can
potentially influence each other, which, however, would lead to a cyclic graph
structure in B→ of a DPGM (as seen in Figure 2.2, black). In order to, at least,
obtain a syntactically well-defined DBN, one must “bend” some dependencies to
a consecutive/previous timestep in B→ (as done in Figure 2.2, gray) forming
a diagonal model. This is unavoidable, but is seen as inaccurate from a world
representation point of view, as indirect influences are now anticipated spuriously.
Bending an influence to a consecutive timestep encodes an incubation time and,
essentially, models a different process: Earl is now influenced by Claire through
Don from a Claire of the penultimate timepoint. To approximate the intended
meaning, a timeslice must be infinitesimally small, to somehow anticipate all
indirect influences, and cannot be chosen appropriately for an intended use case,
e.g., to represent a daily acquisition of information.
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Remark 2.1 (Use of diagonal models). Diagonal models can be used to simulate
a cyclic “feedback” relationship, by letting a model converge to a stable state after
long periods of time, which is used to simulate hidden Markov models with the
use of DBNs, as, e.g., done by Murphy (2002) or Ghahramani (2001). However,
when seeing each timeslice as a representation of a fraction of a real “wall-clock”
time (a viewpoint taken, e.g., by Glesner and Koller (1995), Sanghai et al. (2005),
Jaeger (2001), and us), a cyclic model would already expand to infinity during
one timeslice, e.g., when going from day 1 (t = 1) to day 2 (t = 2).

In the following we show that without a causal design, i.e., without modeling
direct and indirect causes correctly, spurious results are obtained from such
models. We propose a novel DPGM, called ADBN, able to represent locally seen
cyclic dependencies to anticipate indirect influences without any demands on
time granularity. Moreover, we show that it is remarkable similar to DBNs, but
without an acyclicity constraint.
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E0

C1

D1

E1

C2

D2

E2

M1
DC M1

EC

M1
CD

M1
ED

M1
CE M1

DE

M2
DC M2

EC

M2
CD

M2
ED

M2
CE M2

DE

Figure 2.2. Two options (black/gray) to represent a world using an (A)DBN for
the running example if every employee (Claire, Don, Earl) can influence every other
employee through messages M t

XY . Syntactic DAG constraints of (D)BNs prevent cyclic
dependencies, and diagonal state dependencies are enforced (indicated with gray arrows).
The diagonal option is considered inaccurate from a world representation point of view.
In the diagonal case, M t

XY represents M t−1 t
XY , i.e. M t

XY affects the dependency of state
Y t on Xt−1.

Classically, a conditional independency in a Bayesian network is represented
by the lack of arcs between some nodes. Another kind of independence in
Bayesian networks, called context-specific independence (CSI), has been studied
by Boutilier et al. (1996) & Ngo and Haddawy (1997). CSIs represent dependen-
cies in a BN that are only present in specific contexts, and have mainly been
used for more efficient inference, e.g., as studied by Poole and Zhang (2003)
(cf. Section 2.5). We use the notation AXY if a random variable acts as a
so called activator random variable which activates a dependency of random
variable Y on X in a given context. Note that activator random variables are
not auxiliarily introduced, but are often already part of a domain. Therefore,
we use the following definition to identify special random variables of a domain
that have an activator nature.
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Definition 2.2 (Activation / deactivation criteria). Let dom(AXY ) = {true, false}
(extensions to non-Boolean domains are straightforward). The deactivation cri-
terion for AXY = false is defined as

∀x, x′ ∈ dom(X),∀y ∈ dom(Y ),∀~z ∈ dom(~Z) :

P (y|x,¬aXY , ~z) = P (y|x′,¬aXY , ~z) = P (y|∗,¬aXY , ~z) ,
(2.1)

where ∗ represents a wildcard and ~Z remaining direct dependencies of Y, i.e.,
direct parents of Y. Given ¬aXY , we say that a direct causal dependence of Y
on X, i.e., a direct causal influence of X on Y, is inactive.

The activation criterion describes a situation where Y becomes directly depen-
dent on X, where the CPD entry for some y ∈ dom(Y ) is not uniquely identified
by just +aXY and ~z, hence

∃x, x′ ∈ dom(X),∃y ∈ dom(Y ),∃~z ∈ dom(~Z) :

P (y|x, +aXY , ~z) 6= P (y|x′, +aXY , ~z) .
(2.2)

Given +aXY , we say that the direct causal dependence of Y on X, i.e., the direct
causal influence of X on Y, is active.

If for a random variable AXY both activation and deactivation criteria are
fulfilled by a local CPD definition of random variable Y , AXY is called an
activator random variable. N

Note that Definition 2.2 is based on properties of locally defined CPDs of
random variables in a (D)BN, i.e., some random variable of a (D)BN is identified
to be an activator random variable by some specific numerical parameter settings
in CPDs. Carefully note that the activation criteria and deactivation criteria
only apply to these local CPDs, and do not apply to the global semantics of a
(D)BN. Table 2.1 shows an arbitrarily specified CPD in which random variables
show to have an activator nature and follow Definition 2.2. Note that activator
criteria can be present in any form of CPDs, as remarked in the following.

Remark 2.2. The (de)activation criterion can be summarized as: a probability
is uniquely identified by active dependencies, and inactive dependencies become
irrelevant. This property is easily confusable with a property of a “noisy-or
combination” function (e.g., described by Henrion, 1988), where “false” depen-
dencies (or as Heckerman and Breese (1996) say: in a “distinguished” state)
are semantically supposed to be irrelevant. Under noisy-or assumptions, each
conditional probability value in a CPD is obtained by a deterministic combination-
function of individual probability fragments associated with “true” dependencies.
Still, the general activation and deactivation criteria from Definition 2.2 are
not linked to specific combination functions and can be present in arbitrarily
specified CPDs (cf. Table 2.1). Nevertheless, the noisy-or combination function
inherently defines activation and deactivation criteria in their semantics, where
only “true dependencies act as potential causes” and a “false dependence does
not cause any harm.” We call such a property an “innocuousness-property,” and
explore their role in ADBNs deeply in Chapter 4, as ADBNs actually enable
one to (semantically and syntactically) formalize such a property in CPDs. The
difference between innocuousness and activator criteria is that for the general
(de)activation criteria the presence (the activeness) of a dependence is relevant
for every value. For innocuousness properties of CPDs, the presence of a “false”
dependence is irrelevant, i.e., the activeness is only of interest for some values
of the dependence.
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Furthermore, the following Example 2.2 demonstrates the identification of
activator random variables on the running example of the taintedness domain.

Example 2.2 (Regulatory compliance continued). In Example 2.1 we modeled
that Claire does not constantly exert an influence on Don, but only if Claire
sends a letter to Don. In fact, message exchange variables M t

XY from the domain
of our Example 2.1 act as activator random variables according to Definition 2.2.

We observe possible message exchanges from used envelopes (possibly found in
the trash bin). On internal envelopes one usually finds multiple transfers from a
coarse time interval in an imprecise or inaccurate order. For example, a transfer
from Don to Earl and one from Claire to Don might include a transitive influence
of Claire on Earl during the same time interval. We show in the following that
it is highly important to cover these indirect influences and to model indirect
causes appropriately.

Example 2.2 shows that activator random variables naturally exist in domains
and do not necessarily need be introduced as auxiliary variables. If activator
random variables are present in domains, an (effective) structure of an DPGM is
not known in advance and even changes over time, i.e., changes at every timeslice
when using the model. As effective structures are not known in advance, i.e., are
not known when creating the model, only general structures are designable in
advance covering all potential substructures. To correctly cover all implications
of influences, i.e., to consider all direct and indirect causes, generally cyclic
DPGMs are required (as in Figure 2.2, black).

Table 2.1. Example for a CPD P (+x|V,W, Y, Z) with arbitrary numbers α—γ. In fact,
random variables V and W are identifiable as activator random variables according to
Definition 2.2. V represents an AY X and W represents an AZX .

V W Y Z P(+x| . . .)
+v +w +y +z α
+v ¬w +y +z β
+v ¬w +y ¬z β
¬v +w +y +z ε
¬v +w ¬y +z ε
+v +w ¬y +z η
+v +w +y ¬z γ
+v +w ¬y ¬z µ

V W Y Z P(+x| . . .)
+v ¬w ¬y +z ν
+v ¬w ¬y ¬z ν
¬v ¬w +y +z ϕ
¬v ¬w +y ¬z ϕ
¬v ¬w ¬y +z ϕ
¬v ¬w ¬y ¬z ϕ
¬v +w +y ¬z ψ
¬v +w ¬y ¬z ψ

2.2 Activator Dynamic Bayesian Networks

A DPGM in which some random variables are identifiable as activator random
variables according to Definition 2.2 is called an Activator DBN, i.e., random
variables in B0 and B→ can syntactically be grouped into two (not necessarily
disjoint) sets of state variables ~Xt and activator variables ~At.
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Notation 2.3 (Activator matrices). Let As tij be the activator random variable
influencing Xt

j regarding a dependency on Xs
i . Let As t describe the matrix of

all activator random variables between time-slice s and t s.t.

As t =

A
s t
11 · · · As t1n
...

. . .
...

As tn1 · · · As tnn

 .

Let ~As ti denote the ith column of As t, i.e., ~As ti represents the vector of all
activator random variables relevant for Xt

i regarding an influence by random
variables of timeslice s. Let ~As t denote the corresponding column vector of all
entries of As t, i.e.,

~As t =
(
As t11, . . . , A

s t
1n, . . . , A

s t
n1, . . . , A

s t
nn

)ᵀ
.

Let ~A01:tt = 〈 ~A01, ~A11, ~A12, . . . , ~Att〉 denote the vector of all activator random
variables existing in and between timeslices 0 to t. For brevity, we write At for
Att (excluding Attkk s.t. Xtt

k cannot be dependent on itself), and correspondingly
we write Atij, ~Ati and ~At. Let ~A1:t = 〈 ~A1, ~A2, . . . , ~At〉 then denote the vector of
all intra-timeslice activator random variables ~At for every timeslice t.

Activator dynamic Bayesian networks are DPGMs and share familiar syntax
and semantics with dynamic Bayesian networks (compare Definition 2.1 and
Proposition 2.1), but ADBNs are not bound to DAG constraints like DBNs:

Definition 2.3 (Activator dynamic Bayesian network, ADBN). An ADBN is
syntactically defined as a tuple (B0, B→) with B0 defining an initial Bayesian
network representing time t = 0 containing all states X0

i ∈ ~X0 and a consecutively
repeated activator Bayesian network fragment B→ consisting of dependencies
between state variables Xs

i and Xt
j , t− 1 ≤ s ≤ t (Markov-1) and dependencies

between state variables Xt
i and activator random variables Astji. For every random

variable Xt
i , Astij a local CPD over all parents, e.g., as a CPT is specified, where

CPDs of state variables Xt
i follow Definition 2.2.

By repeating B→ for every time step t > 0, an ADBN (B0, B→) is unfolded
into a PGM defining an ADBN’s semantics. N

Definition 2.3 defines ADBNs as a form of DPGM in which some random
variables have an activator nature, i.e., some CPDs of state variables show certain
properties that identify other random variables as activator random variables.
Note that these activator random variables are not introduced externally, but
are already part of a domain as shown in the following examples. The following
theorem states in which cases an ADBN is well-defined. The idea is that two
cases may exist: (1) an ADBN is a classical DBN, i.e., acyclic and well-defined
by Proposition 2.1, or (2) an ADBN is not a classical DBN, i.e., it contains
cyclic dependencies, for which a different well-definedness condition is introduced,
which is a modified constraint of acyclicity.
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Theorem 2.1 (ADBN well-definedness). An ADBN is well-defined if an ADBN
is well-defined according to Proposition 2.1, i.e., is a well-defined DBN. An
ADBN is well-defined for every instantiation ~a1:t

∗ of ~A1:t if for all t, ~at∗ satisfy
the following conditions:

∀x, y, z ∈ ~Xt : A(x, z)t,A(z, y)t → A(x, y)t

¬∃q : A(q, q)t ,
(2.3)

with an acyclicity predicate A(i, j)t that is defined as

A(i, j)t =

{
false if ¬atij ∈ ~at∗
true if else

.

For every well-defined ADBN, semantics as P ( ~X0:tᵀ , ~A01:ttᵀ) is sound and
given equivalently to DBN semantics as the product of all locally defined CPDs.

N

Theorem 2.1 means that ADBNs are not syntactically bound to DAG structu-
res in B→ and still share familiar DBN semantics providing a local interpretation
and specification of conditional probability distributions without the need of
global normalization factors such as, e.g., required for conditional random fields.
Proof of Theorem 2.1 is later given in Appendix B. Well-definedness is achie-
ved through the novel acyclicity constraint, namely that not a syntactic graph
structure is forced to be acyclic, but rather that an instantiation of an unrolled
DBN is acyclic. This is useful for applications where actual structures are not
known in advance and might change at every timeslice, depending on specific
contexts. Such particular situations often arise if timeslices are not supposed
to be infinitesimal small s.t. cyclic dependency structures in B→ arise naturally
during a design phase s.t. indirect influences must be considered during usage
of the model. In particular, the novel acyclicity constraint of ADBNs is highly
beneficial for the running example, as demonstrated in Example 2.3 after the
following definitions.

The novel acyclicity constraint means that it has to be enforced that only
well-defined instantiations are used for inference. Enforcing the use of only
well-defined instantiations can be ensured by adequate observations or modeling
approaches (see later Chapter 5). We explicitly name such instantiations leading
to well-defined ADBNs using the following definition.

Definition 2.4 (Regular and acyclic instantiations). If an instantiation ~x0:t,~a1:t

of ~X0:t, ~A1:t leads to a well-defined ADBN according to Theorem 2.1, we say
that the instantiation ~x0:t,~a1:t is regular. Let GtA represent a graph formed by
active activators of a full instantiation ~at, where every active activator +atij ∈ ~at
represents an edge from node i to j. If, for every ~ai in ~a1:t, GiA is acyclic, we
say that the instantiation ~x0:t,~a1:t is acyclic. N

Under Definition 2.4 every acyclic instantiation is regular. For the predicate
A defined in Theorem 2.1 every regular instantiation is also an acyclic instan-
tiation. Later, in Chapter 4 we show that A predicates exist for which regular
instantiations do not necessarily need to be acyclic, i.e., not only contexts of
activator random variables can assure regularity.

Corresponding to Notation 2.2 regarding inter- and intra-timeslice models,
we distinguish ADBNs based on the density of their activator matrices:



2.2. Activator Dynamic Bayesian Networks 25

Notation 2.4 (Dense, inter- and intra-timeslice ADBNs). An intra-timeslice
ADBN (B0, B→) is an ADBN with non-empty activator matrix At t. A diagonal
or inter-timeslice ADBN (B0, B→) is an ADBN non-empty At−1 t. An ADBN
(B0, B→) is called a dense ADBN, if at least one activator matrix As t is dense,
i.e., there exists a random variable acting as an activator random variable for
every modeled influence. In a dense intra-timeslice model, cyclic dependencies
exist in B→, for which we also speak of cyclic ADBNs.

Note again that activators in an ADBN are classical random variables and are
part of a modeled domain, i.e., activators are not necessarily auxiliary variables.
The following example shows that activator random variables are already present
in the taintedness domain.

Example 2.3 (Inter- and intra-timeslice ADBNs). Based on Example 2.2
the regulatory compliance domain can be modeled as an ADBN: Message ex-
change variables have activator nature and one obtains an ADBN with activa-
tors ~At = (M t

CD,M
t
DC ,M

t
DE ,M

t
ED,M

t
CE ,M

t
EC)ᵀ and state random variables

~Xt = (Ct, Dt, Et)ᵀ.
To model that every employee can potentially influence every other, i.e.,

send him a document two options are available: (a) a diagonal (dense) inter-
timeslice ADBN as shown in Figure 2.2 (gray), i.e., a well-defined DBN according
to Proposition 2.1 or (b) a cyclic (dense) intra-timeslice ADBN as shown in
Figure 2.2 (black), i.e., a novelly well-defined ADBN according to Theorem 2.1,
if correctly instantiated.

This example shows that activator random variables may already be part of
a domain, and are not introduced externally. As discussed earlier, this example
highlights both design options for the discussed example domain of an ADBN: one
classic solution based on a diagonal ADBN and one using a newly allowed cyclic
ADBN. As a diagonal (dense inter-timeslice) ADBN represents a classical DBN,
we also write (A)DBN in the diagonal case. Note that the diagonal (A)DBN
solution is the only consequent well-defined classical DBN solution1. Note that
in this example, all n2 − n activator random variables are present leading to
a dense intra- or inter-timeslice ADBN, but not always all activator random
variables must be present. However, as discussed earlier, a diagonal option is
seen as inaccurate from a world representation point of view and is subject to a
significant problem with indirect causes, as pinpointed in the following example.

Example 2.4 (Example for diagonal (A)DBN restrictions). Continuing Exam-
ple 2.3, one observes a message transfer from Claire to Don (+m1

CD) and from
Don to Earl (+m1

DE), say, and one can neglect all other transfers, i.e., ¬m1
DC ,

¬m1
ED,¬m1

CE ,¬m1
EC . To fully evaluate all implications of the observations, one

has to anticipate an indirect influence from Claire to Earl through Don during
timeslice 1. But, the diagonal (A)DBN in Figure 2.2 (gray) does not encode
the domain correctly and leads to spurious results: Earl is only influencable by
Claire through Don from a Claire of the penultimate timepoint, but the observed
message exchanges only let t1-Claire influence t2-Don, and let t1-Don influence
t2-Earl. Cf. later Examples 2.6 and 2.7.

1A limited set of dependencies can be modeled as intra-timeslice dependencies, but it is
an arbitrary decision why some dependencies are modeled as inter- and some are modeled as
intra-timeslice dependencies. Cf. Section 3.2.
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Example 2.4 shows that classical, diagonal DBNs are limited, as some ob-
servations may lead to spurious results. Due to an enforced bend of influences
between timeslices in diagonal models, which is required to assure the acycliciy
constraint of Proposition 2.1, one has to conclude that diagonal models (as a
representative of classic DBNs) cannot anticipate indirect influences and are
limited to reasoning using only direct dependencies.

Proposition 2.2 (Diagonal (A)DBN restrictions). A diagonal inter-timeslice
(A)DBN is restricted to certain instantiation sets. Indirect influences are spread
over multiple timesteps and possible indirect influences inside one timestep
cannot be considered. This enforces (a) an infinitesimal resolution of timeslices,
where indirect effects do not need to be anticipated, or (b) restricts a DBN to
instantiations where indirect influences strictly do not occur. We say that a
diagonal (A)DBN is restricted to indirect-free instantiations. This forbids that
any two activators At∗i and Ati∗ are probably active, i.e., the set of probably active
activators must form a bipartite digraph with uniformly directed edges. This
means that it must be enforced that only specific instantiations of a diagonal
(A)DBN are instantiated. Further, only up to n2/4 activators are allowed to be
probably active per timestep, and all other activators must be observed to be
deactive. If, in a diagonal DBN, observations can neither fulfill (a) nor (b),
observation- and query-(de)serializations would be needed, and n− 2 spurious
“time”-slices would need to be inserted between t− 1 and t. In our opinion, this
degrades a BN to a reasoning tool. N

Proposition 2.2 summarizes that DBNs are significantly limited in their
expressiveness and are restricted to certain instantiations, namely, indirect-free
instantiations.

However, Theorem 2.1 explicitly permits structures of B→ that are forbidden
under classic DBN definitions: cyclic intra-timeslice models, as discussed in
Example 2.3, are well-defined under some restrictions according to Theorem 2.1.
In the following we show that restrictions of intra-timeslice models are softer
than restrictions on classic, diagonal (A)DBN models:

Example 2.5 (Example for Cyclic (A)DBN benefits). Continuing Ex. 2.4, with
the same message transfer observations, but for a cyclic ADBN option (Figure 2.2,
black): The observations only allow regular and acyclic instantiations which
satisfy Theorem 2.1 and thus lead to a well-defined Bayesian network, even
though B→ is based on a cyclic graph. Here, all implications of the observations,
namely an indirect influence from Claire to Earl through Don during timeslice 1
is anticipated. As intended, t1-Claire does influence t1-Don of the same timeslice,
and t1-Don influences t1-Earl in the same timeslice. To achieve this constellation
in a general setting, B→ must proactively be designed with cycles, as actual
dependencies are not known in advance and are changing over time.

This example shows that in ADBNs indirect influences are anticipated under
a time-granularity suited to a problem (e.g., days) instead of a time-granularity
enforced by a reasoning framework. Essentially, ADBNs move an acyclicity
constraint for well-definedness from a design phase of a Bayesian network to an
actual instantiation of a Bayesian network. Example 2.5, further, shows how
observations assure regularity. Still, situations may exist where not sufficient
observations are made and one cannot preclude a non-regular instantiation; this
situation, its implications, and possible mitigations are discussed in Section 2.5
and Chapter 5.
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To summarize, we have shown that classic (A)DBNs are limited in their
expressiveness and that instantiations of them are limited to indirect-free in-
stantiation sets that do not contain indirect influences, if a time granularity
is not infinitesimally small. With the identification of activator properties of
random variables in ADBNs, more expressive graph structures for (A)DBNs
are supported, share similar semantics, and larger sets of regular instantiations
of ADBNs. Later, in Section 2.5, we numerically compare restrictions on the
number of regular instantiations between diagonal DBNs and cyclic ADBNs
to substantiate that restrictions of cyclic ADBNs are far softer than the ones
opposed on diagonal DBNs. Nevertheless, situations may exist where insufficient
observations are made to fulfill regularity, either that too many active activators
are observed, or that too few deactive activators are observed. Both situations
are discussed in Section 2.5 and, later, motivate Chapter 5.

In fact, every possible Markov-1 DBN can be represented as a dense inter-
and-intra timeslice ADBN:

Proposition 2.3 (Completeness). An ADBN can model any joint probability
and includes every possible Markov-1 DBN structure. Let (B∗0 , B

∗
→) be a dense

inter- and intra-timeslice ADBN with a dense inter-timeslice activator matrix
At−1 t and a dense intra-timeslice activator matrix At t. Then, for every Markov-1
DBN (B′0, B

′
→) there exists a minimal set of instantiations ~a� of (B∗0 , B

∗
→) under

which the same effective topological ordering is formed as defined by (B′0, B
′
→).

Therefore, a dense inter-timeslice ADBN represents a superclass of all possible
inter-timeslice DBN structures and a dense intra-timeslice ADBN represents a
superclass of all possible intra-timeslice DBN structures. N

We argue that often DBN models with diagonal state dependencies are used
only due to syntactic constraints on (D)BNs (Proposition 2.1) and stand in
conflict with an actual causality in their domain. Therefore, we focus in the
following on a dense intra-timeslice ADBN, which includes and represents all
possible cases of ADBNs that were not modellable in a classical DBN formalism,
i.e., all intra-timeslice cycles. The following proposition derives the semantics
according to Theorem 2.1 as the joint probability distribution over all random
variables for a dense intra-timeslice ADBN.

Proposition 2.4 (Joint probability distribution of a dense intra-timeslice
ADBN). If an ADBN is well-defined, the joint probability over all random
variables is defined as the product of all locally defined CPDs. Therefore, a dense
intra-timeslice ADBN’s semantics is

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X0
1 )·. . .·P (X0

n)·
t∏
i=1

P (Xi
1|Xi

2, . . . , X
i
n, A

i
21, . . . , A

i
n1, X

i−1
1 )

· . . . · P (Xi
n|Xi

1, . . . , X
i
n−1, A

i
1n, . . . , A

i
(n−1)n, X

i−1
n ) · P (Ai12) · . . . · P (Ain(n−1))

=
∏

X0
k∈ ~X0

P (X0
k) ·

t∏
i=1

∏
Xik∈ ~X i

P (Xi
k| ~Xiᵀ\Xi

k, ~A
iᵀ
k , X

i−1
k ) ·

∏
Aicv∈ ~Ai

P (Aicv) , (2.4)
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As expected, the joint probability can be defined recursively:

P ( ~X0:tᵀ , ~A1:tᵀ) =

P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ) ·
∏

Xtk∈ ~X t

P (Xt
k| ~Xtᵀ\Xt

k,
~At
ᵀ
k , X

t−1
k ) ·

∏
Atcv∈ ~At

P (Atcv) . N (2.5)

Naively, every query to an (A)DBN can be answered by marginalization
from the defined joint probability distribution over all random variables from all
timeslices, which, however, is computationally intractable. Therefore, the follo-
wing sections discuss special types of queries and derive exact and approximate
solutions to associated problems in cyclic (A)DBNs.

2.3 Common Queries and Associated Answering
Problems in ADBNs

A DBN is a temporal probabilistic knowledge base with respect to which queries
can be posed. Common query types are known as filtering, smoothing and most
likely explanation (cf. Murphy, 2002) and define query answering problems w.r.t.
the semantics of the knowledge base. Queries are used to investigate on historical
information in retrospect or are used to constantly monitor a specific variable
over time, e.g., estimate a trajectory of a moving object for which position
measurement values are noisy.

Naively, every query is answered by straight marginalization from the full
JPD defined be the unrolled DBN, i.e., from the JPD defined by a Bayesian
networks consisting of all timeslices at once. However, such a naive approach is
only tractable for the very first timeslices and the curse of dimensionality prevents
inference over long periods of time. Still, it is a highly important property of
DBNs that commonly known problems, such as filtering- and smoothing-problems,
remain practically solvable even over long periods of time via commonly known
algorithms such as the forward-backward-algorithm. Without restriction of any
kind this property must be preserved in any novel dynamic probabilistic model,
such as the one introduced by us—ADBNs. Therefore, we prove in this section
that inference in ADBNs remains in the same complexity class as corresponding
problems in multiply connected DBNs do. In general, inference problems in
multiply-connected (D)BNs are known to be NP-hard as shown by Cooper (1990).
However, focusing on single input parameters of inference problems associated
with DBNs, problems show to be fixed-parameter tractable. This means that
algorithms exist, e.g., the forward-backward-algorithm, which provide exact
solutions to common query answering problems in a tractable time- and memory-
complexity over time, i.e., remain tractable even for large numbers of consecutive
timeslices. In this section we show and prove that inference in ADBNs does not
introduce any overhead for solving commonly known problems, that solutions,
such as the forward-backward-algorithm remain directly applicable for ADBNs
based on cyclic graphs, and that inference in ADBNs remains in a classical
and familiar calculus as DBNs without any introduction of novel operators, i.e.,
one preserves classical marginalization from a JPD based on classical random
variables with associated CPDs.

We denote observations of random variables in probabilistic knowledge bases
and formulate queries to these probabilistic knowledge bases based on these
observations using the following definition.
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Definition 2.5 (Query answering language and observations). Let ~Zt ⊆ ~Xt

be a set of observed and ~ζt = ~Xt\~Zt be the corresponding set of not-observed
state variables. Let Bt ⊆ At be a set of observed activators and ~Bt ⊆ ~At be
the corresponding column vector representation. Likewise, let ~βt = ~At\ ~Bt be
the column vector of all unobserved activators. Then, observations of state
variables ~z t are instantiation assignments Xt

i = xi ∈ dom(Xt
i ) and observations

of activator random variables ~bt are instantiation assignments Atij = aij ∈
dom(Atij).

Let ~xt ∈ dom( ~Xt) be a full instantiation of ~Xt and let ~at ∈ dom( ~At) be a full
instantiation of ~At. Further, let every instantiation assignment in ~xt, ~zt,~at,~bt
uniquely define the value of its respective random variable in ~Xt or ~At.

Then, a query to a probabilistic knowledge base defined as (B0, B→) is a
request for a result of P (~xk

ᵀ
,~ak

ᵀ |~z 0:tᵀ ,~b1:tᵀ), i.e., the probability of a full instan-
tiation ~xk,~ak at an arbitrary timestep k, given (partial) evidence ~z 0:t,~b1:t until
an arbitrary timestep t. The answer to a query for a probability of an instan-
tiation contradicting observations, i.e., an observed state variable Xk

i ∈ ~Zk is
contradictorily defined by a zkj ∈ ~zk and xki ∈ ~xk or an observed activator random
variable Akij ∈ ~Bt is contradictorily defined by a bkcv ∈ ~b k and akij ∈ ~ak, is defined
to be of probability zero, e.g., P (+c, +d, +e|¬d) = 0. A query for an uninstantiated
set of random variables is a query for a distribution P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) and
is answerable by queries for all possible instantiations of ~Xk, ~Ak. N

Answers to queries defined by Definition 2.5 are obtained by probabilistic
inference in the knowledge base. As discussed earlier, inference must be based
solely on regular instantiations. If observations are supposed to enforce regularity,
we talk about regular or acyclic observations.

Definition 2.6 (Regular and acyclic observations). An observation is regu-
lar/acyclic, if every instantiation ~x 0:t,~a1:t for which P (~x 0:tᵀ ,~a1:tᵀ |~z 0:tᵀ ,~b1:tᵀ) >
0 holds is regular/acyclic. N

Notation 2.5 (Summation over uninstantiated random variables). Let R be
an uninstantiated, i.e., an unobserved and unqueried, random variable. Then
let
∑
R P (R) denote a summation over all possible instantiations r of R, r ∈

dom(R), e.g., for a binary R:
∑
R P (R) = P (+r) + P (¬r). Let ~R denote a

column vector of uninstantiated random variables Ri ∈ ~R, 0 ≤ i ≤ n. Then
let
∑

~R P (R0, R1, . . . Rn) denote a nested summation over all uninstantiated
random variables

∑
Ri∈~R, i.e., a summation over all possible instantiation com-

binations of all random variables in ~R. For example, for binary ~R = 〈R0, R1〉:∑
~R P (R0, R1) = P (+r0, +r1)+P (+r0,¬r1)+P (¬r0, +r1)+P (¬r0,¬r1). Respecti-

vely, this notation applies to arg max.

Definition 2.5 defines queries about full instantiations of all random variables
in a timeslice. Queries for partial subsets, e.g., distributions of single random
variables, are answerable using the following proposition.

Proposition 2.5 (Answering queries about partial subset of instantiations). All
queries about partial subsets of instantiations ~xkq , ~akq of random variables ~Xk

q ∈ ~Xk

and ~Akq ∈ ~Ak are answerable by marginalization from P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) as

P (~xk
ᵀ
q ,~a

kᵀ
q |~z 0:tᵀ ,~b1:tᵀ) =

∑
~Xku

∑
~Aku

P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) ,
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where ~Aku is the vector of unqueried activator variables ~Aku = ~Ak\ ~Akq and ~Xk
u

is the vector of unqueried state variables ~Xk
q = ~Xk\ ~Xk

q . Given the distribu-
tion P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ), marginalization is exponential in the dimension
of unqueried variables from timestep k and in the largest domain dom(X+),
dom(A++) of unqueried random variables X+ ∈ ~Xk

u , A++ ∈ ~Aku, i.e., in
O(|dom(X+)|| ~Xku| · | dom(A++)|| ~Aku|). N

2.3.1 Filtering Queries and Problems
Queries P (~xk

ᵀ
,~ak

ᵀ |~z 0:tᵀ ,~b1:tᵀ) with k = t to a probabilistic knowledge base are
commonly known as filtering queries. Finding answers to queries of the type
P (~xt

ᵀ
,~at
ᵀ |~z 0:tᵀ ,~b1:tᵀ) poses two different filtering problems.

Given historical information about a probabilistic process, filtering queries for
multiple timeslices from a broad timerange considering long periods of evidences
need to be answered. To answer these queries efficiently, the offline filtering
problem needs to be solved.

Definition 2.7 (Offline filtering problem). Given a probabilistic knowledge base
B0, B→, the offline filtering problem is the task of determining the conditional
probability of random variables at all timeslices 0 ≤ j ≤ t given all obtained
evidence ~z 0:t,~b1:t so far. This is, to obtain

P ( ~Xjᵀ , ~Ajᵀ |~z 0:jᵀ ,~b1:jᵀ) ,∀j : 0 ≤ j ≤ t .

We denote a parametrized offline filtering problem as OffFP(B0, B→, ~z 0:t,~b1:t, t),
where t represents the (unary coded) total number of passed timeslices so far. N

The offline filtering problem determines the complete conditional joint proba-
bility distribution P ( ~Xjᵀ , ~Ajᵀ |~z 0:jᵀ ,~b1:jᵀ) at every timestep j, called a filtering
distribution, such that every filtering query for a timeslice j can be answe-
red directly. Further, an answer to filtering query about partial instantiations
can be derived by marginalization, without determining the complete filtering
distribution again.

If knowledge about a distribution’s evolution over time is required incremen-
tally from t− 1 to t for every newly obtained evidence, i.e., queries need to be
answered temporally consecutively only for the current timeslice t, one has to
solve the online filtering problem.

Definition 2.8 (Online filtering problem). Given a probabilistic knowledge
base B0, B→ and a stored solution to the online filtering problem at t − 1,
e.g., P ( ~Xt−1ᵀ , ~At−1ᵀ |~z 0:t−1ᵀ ,~b1:t−1ᵀ), the online filtering problem is the task of
determining the conditional probability distribution of random variables at time t
given newly obtained evidence ~z t,~bt. This is, to obtain

P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ) ,

conditioned on the stored solution to the online filtering problem at t− 1. We
denote a parametrized online filtering problem as OnlFP(B0, B→, ~z t−1:t,~bt−1:t, t),
which includes a solution to OnlFP(B0, B→, ~z t−2:t−1,~bt−2:t−1, t− 1). N

The following example demonstrates how a filtering query can be used to
gain knowledge about potential infringements in the running example.



2.3. Common Queries 31

Example 2.6 (Filtering). With Theorem 2.1 one can actually model cyclic
dependencies as desired in Example 2.3 and build an ADBN for our example as
shown in Figure 2.2 (black). We assume a noisy-or combination for every state
Xt and an individual probability of influence of 0.8.

Say, Don and Earl did pass an initial checkup, but Claire did not. At t = 1,
one observes a document transfer from Claire to Don, one is unsure about
one from Don to Earl, i.e., MDE is uninstantiated, and one can neglect all
other transfers. As Claire is known to be tainted, one expects her to influence
Earl through Don, analyzable in a filtering query P (E1|~z 0:1ᵀ ,~b1ᵀ), with ~z 0:1 =
(+c0,¬d0,¬e0)ᵀ, and ~b1 = (+m1

CD,¬m1
DC ,¬m1

ED,¬m1
CE ,¬m1

EC)ᵀ. As ~b1 is
regular, one obtains P (E1|~z 0:1ᵀ ,~b1ᵀ) = 〈0.8 · 0.8 · 0.5, 1 − 0.8 · 0.8 · 0.5〉 =
〈0.32, 0.68〉 using a cyclic ADBN, i.e., a cyclic ADBN considers that Earl is
possibly influenced by Claire through Don and there exists a probability of 32% that
Earl is now tainted. A diagonal DBN cannot anticipate the indirect influence,
because t1-Earl is influenced by a t0-Don that has not received a document
from Claire. Therefore, a diagonal DBN assures that Earl is not tainted, i.e.,
P (E1|~z 0:1ᵀ ,~b1ᵀ) = 〈0, 1〉 and there is absolutely no possibility that Earl is tainted.

To obtain a correct answer in a diagonal DBN for this situation, one needs
observations at a finer time scale where indirect influences are not evident
during one timeslice. For example, one first has to observe m1

CD, considered
in an evaluation of P (E1|~z 0:1ᵀ ,~b1ᵀ), and then insert a “correcting” “time”-slice
t = 1.1, where possibilities of M1

DE are considered during the evaluation of
P (E1.1|~z 0:1.1ᵀ ,~b1:1.1ᵀ). To achieve the result of one ADBN evaluation, one needs
n− 1 “diagonal”-evaluations. Somehow, a reasoning framework would need to
map queries to serialized observations in a diagonal DBN. Introducing obscure
“correcting” time-slices in this manner degrades a BN to a reasoning tool.

This example demonstrates that it is highly important to consider indirect
causes, as otherwise highly unexpected results are obtained. Moreover, it demon-
strates that by the use of cyclic ADBNs, indirect causes are correctly represented
and anticipated, in contrast to a diagonal ADBN. The correct anticipation of
indirect influences is achieved by novelly allowed cyclic dependencies in an ADBN,
which, as stated by the following theorems, do not cause any overhead in solving
associated filtering problems.

Theorem 2.2 (Exact solution to the offline filtering problem). Given an offline
filtering problem OffFP(B0, B→, ~z 0:t,~b1:t, t), finding an exact solution is linear
in t. Finding an exact solution is exponential in the maximal dimension of
unobserved variables ~ζ∗, ~β∗ in a timestep 0 < ∗ < t, and in the largest domain
dom(ζ+), dom(β+) of all random variables ζ+ ∈ ~ζ0:t, β+ ∈ ~β1:t. Finding an
exact solution to the offline filtering problem is exponential in the dimension of
number of random variables | ~Xt|, | ~At| and a respective maximal domain size
dom(X+), dom(A++) of all random variables X+ ∈ ~Xt, A++ ∈ ~At. N

Theorem 2.2 is proven by showing that an algorithm exists that finds an exact
solution to OffFP(B0, B→, ~z 0:t,~b1:t, t) in time-complexity O(t · | dom(X+)|| ~Xt| ·
|dom(A++)|| ~At| · | dom(ζ+)||~ζ∗| · | dom(β+)||~β∗|) and with space-complexity
O(t · |dom(X+)|| ~Xt| · |dom(A++)|| ~At|) for storing P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ) for
every timeslice t. The proof is combined with the proof for the following theorem.
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Theorem 2.3 (Exact solution to the online filtering problem). Given an online
filtering problem OnlFP(B0, B→, ~z t−1:t,~bt−1:t, t), finding an exact solution is
constant in t. Finding an exact solution is exponential in the dimension of
unobserved variables from timestep t − 1 and in the largest domain dom(ζ+),
dom(β+) of random variables ζ+ ∈ ~ζt−1, β+ ∈ ~βt−1. Finding an exact solution
to the online filtering problem is exponential in the dimension of number of
random variables | ~Xt|, | ~At| and a respective maximal domain size dom(X+),
dom(A++) of all random variables X+ ∈ ~Xt, A++ ∈ ~At. N

Theorem 2.3 is proven by showing that an algorithm algorithm exists that
finds an exact solution with time-complexity O(|dom(X+)|| ~Xt| ·|dom(A++)|| ~At| ·
|dom(ζt−1

+ )||~ζt−1| · |dom(βt−1
+ )||~βt−1|) and space-complexity O(|dom(X+)|| ~Xt| ·

|dom(A++)|| ~At|).
Theorems 2.2 and 2.3 discuss the computational complexity of filtering

problems in general ADBNs, and most importantly state that filtering in ADBNs
still remains constant over time, as one is used to for classical DBN filtering
problems. Both theorems are proven below, where a major result is a commonly
known recursive definition of a filtering equation for solving filtering problems.

Proof of Theorems 2.2 and 2.3 (Solutions to filtering problems). Filtering is
generally defined from the joint probability as

P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ) = α ·
∑
~ζ0:t−1

∑
~β1:t−1

P ( ~X0:tᵀ , ~A1:tᵀ) , (2.6)

with a normalization factor α s.t.
∑

~Xt, ~At P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ) = 1, as usual.
In Eq. 2.6 all values of variables ~Xt, ~At are defined by the query and variables
~X0:t−1, ~A1:t−1 are defined by either observations in the sets ~z 0:t−1,~b1:t−1 or
through summation over unobserved variables in ~ζ 0:t−1, ~β1:t−1.

Using the recursive definition of the joint probability in Equation 2.5, one
obtains

P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ)

= α
∑
~ζ0:t−1

∑
~β1:t−1

P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ)·
∏

Xti∈ ~Xt
P (Xt

i | ~Xtᵀ\Xt
i , ~A

tᵀ
i , X

t−1
i ) ·

∏
Atij∈ ~At

P (Atij)

= α
∑
~ζt−1

∑
~βt−1

∑
~ζ0:t−2

∑
~β1:t−2

P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ)

·
∏

Xti∈ ~Xt
P (Xt

i | ~Xtᵀ\Xt
i , ~A

tᵀ
i , X

t−1
i ) ·

∏
Atij∈ ~At

P (Atij)

= α
∑
~ζt−1

∑
~βt−1

∏
Xti∈ ~Xt

P (Xt
i | ~Xtᵀ\Xt

i , ~A
tᵀ
i , X

t−1
i ) ·

∏
Atij∈ ~At

P (Atij)

·
∑
~ζ0:t−2

∑
~β1:t−2

P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ)

= α
∑
~ζt−1

∑
~βt−1

∏
Xti∈ ~Xt

P (Xt
i | ~Xtᵀ\Xt

i ,
~At
ᵀ
i , X

t−1
i ) ·

∏
Atij∈ ~At

P (Atij)

· P ( ~Xt−1ᵀ , ~At−1ᵀ |~z0:t−1ᵀ ,~b1:t−1ᵀ) .
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One obtains the general filtering equation as

P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ) = α
∑
~ζt−1

∑
~βt−1

P ( ~Xt−1ᵀ , ~At−1ᵀ |~z 0:t−1ᵀ ,~b1:t−1ᵀ)

·
∏

Xti∈ ~Xt
P (Xt

i | ~Xtᵀ\Xt
i , ~A

tᵀ
i , X

t−1
i ) ·

∏
Atij∈ ~At

P (Atij) . (2.7)

The general filtering equation reuses a previously stored filtering results from t−1.
Evaluating Equation 2.7 for all instantiations of ~Xt, ~At is an algorithm that gives
an exact solution to the online filtering problem OnlFP(B0, B→, ~z t−1:t,~bt−1:t, t).
For a fixed B0, B→ and a fixed number and domain size of unobserved varia-
bles per timeslice in ~z t−1:t,~bt−1:t the algorithm has constant time- and space-
complexity O(1).

Iteratively evaluating Equation 2.7 for all instantiations of ~Xi, ~Ai, ∀i : 0 ≤
i ≤ t, is an algorithm that gives an exact solution to the offline filtering problem
OffFP(B0, B→, ~z 0:t,~b1:t, t). For a fixed B0, B→ and a fixed number and domain
size of unobserved variables per timeslice in ~z 1:t,~b1:t the algorithm has linear
time- and space-complexity O(t).

To obtain a complete distribution, both algorithms require exponentially
many evaluations in the dimension of all possible instantiations of random
variables per timeslice. Every incremental evaluation is exponential in the
number and domain size of unobserved variables from the previous timeslice. �

This proof shows that filtering has constant complexity over time in dense
intra-timeslice ADBNs, i.e., the most general form of cyclic ADBNs. Moreover,
it shows that no novel calculus (in significant contrast to Milch et al., 2005;
Bilmes, 2000; Geiger & Heckerman, 1996) is required to perform exact inference
in dense intra-timeslice ADBNs, despite them being based on cyclic graphs.
Furthermore, note that at any timestep an effective structure is not known and
remains unknown, and, still, the general filtering equation does not require an
postponed analysis of such a structure.

If one would be constrained to achieve similar results in an acyclic, diagonal
(A)DBN, a serialized observation set with spurious intermediate timeslices had
to be generated. Filtering in such a generated diagonal network would then be
n-times slower. Additionally, a generated order needs to be stored for answering
queries. We refrain from a detailed analysis how similar results could be achieved
in a diagonal (A)DBN by artificially serializing observations; a diagonal (A)DBN
simply represents the wrong model and cyclic ADBNs are immediately required
to provide a local and causal parametrization of such models.

Prediction is used to propagate a possible evolution into the future. Essenti-
ally, prediction is a filtering query with an empty observation set. If observations
are supposed to enforce regularity, plain prediction is not possible in our forma-
lism, as a minimal set of observations is needed to assure regularity. Nevertheless,
one could use a most likely acyclic observation for prediction. Finding a most
likely acyclic observation is a special case of a most likely explanation problem.
Later, we introduce in Chapter 5 a solution based on our formalism that fully
supports prediction without requiring observations to enforce regularity.
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2.3.2 Smoothing Queries and Problems

Queries P (~xk
ᵀ
,~ak

ᵀ |~z 0:tᵀ ,~b1:tᵀ) with k < t to a probabilistic knowledge base are
commonly known as smoothing queries and are used to obtain knowledge in
retrospect. Finding answers to queries P (~xk

ᵀ
,~ak

ᵀ |~z 0:tᵀ ,~b1:tᵀ), k < t defines two
smoothing problems.

Similar to the offline filtering problem, the complete smoothing problem needs
to be solved when answering multiple smoothing queries for different timeslices
from broad timerange of evidences investigated in hindsight.

Definition 2.9 (Complete smoothing problem). Given a probabilistic knowledge
base B0, B→, the complete smoothing problem is the task of determining the
conditional probability of random variables at all times 0 ≤ j < t, considering
evidence ~z 0:t,~b1:t until time t. This is, to obtain

P ( ~Xjᵀ , ~Ajᵀ |~z 0:tᵀ ,~b1:tᵀ) , ∀j : 0 ≤ j < t .

We denote a parametrized complete smoothing problem as
ComplSP(B0, B→, ~z 0:t,~b1:t, t). N

Solutions to the complete smoothing problem are used to investigate on a
distribution’s evolution over time in retrospect, but by considering evidence until
a later timepoint.

Similar to the online filtering problem, the fixed lag smoothing problem needs
to be solved, if smoothing queries need to be answered temporally consecutively
for every newly obtained evidence.

Definition 2.10 (Fixed lag smoothing problem). Given a probabilistic knowledge
base B0, B→ and a solution to the respective fixed-lag smoothing problem at
t− 1, the fixed lag smoothing problem at time t is the task of determining the
conditional probability distribution of random variables at a time k = t − ∆,
considering evidence ~z 0:t,~b1:t until time t. This is, to obtain

P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) .

We denote a parametrized fixed lag smoothing problem as
FLagSP(B0, B→, ~z t−∆−1:t,~bt−∆−1:t,∆, t), which includes a solution to
FLagSP(B0, B→, ~z t−∆−2:t−1,~bt−∆−2:t−1,∆, t− 1). N

Answers to the fixed lag smoothing problem are used to track a distribution
over time. A fixed lag smoothing tracking “lags” ∆ timeslices behind real time,
but a trajectory is smoothed out by a look ahead in time (cf. Russell & Norvig,
2010, p. 571).

The following example shows up merits of a smoothing query to the running
example and accentuates the need for cyclic ADBNs in favor of diagonal DBNs.

Example 2.7 (Explaining away). Continuing Example 2.6 this example de-
monstrates that smoothing handles explaining away over multiple timesteps and
respects indirect causes. Say, only Don underwent a successful compliance check
at time t = 0, i.e., ~z 0 = (¬d0). For t = 1 one found the same document transfer
as in Example 2.6, and for t = 2, a Sunday, one can neglect all, i.e., ~β2 = ∅. On
that Sunday also irregularities in Earl’s documents were found, i.e., ~z 2 = (+e2).



2.3. Common Queries 35

If one performs a smoothing query for Claire’s initial belief state (t = 0)
without considering evidence from t = 2, an answer is equivalent to the prior
belief of P (C0|~z 0:1ᵀ ,~b1ᵀ) = 〈0.5, 0.5〉, as one has not gained any new information
with the evidence from t = 1. However, with observations from t = 2, one needs
to consider an indirect influence by Claire onto Earl and the belief in Claire
being tainted rises to P (C0|~z 0:2ᵀ ,~b1:2ᵀ) ≈ 〈0.532, 0.468〉, because the observation
+e2 tells one indirectly something about +c0.

The slow increase from 0.5 to 0.532 is due to the high prior belief in Earl
manipulating documents of P (+e0) = 0.7 and it is more likely that Earl has been
manipulating documents ever since. If, say, Earl can be relieved from initial
incrimination, i.e., ¬e0, the only explanation for this situation is an indirect
cause of Claire being tainted, and that Claire has influenced Earl through Don
at time t = 2, which is correctly handled as P (+c1, +m1

DE |~z 0:2ᵀ ,~b1:2ᵀ) = 1. One
can further update an initial prior belief using a smoothing query and find that
P (+d0) = P (+e0) = 0 but P (+c0) = 1. This means that the only explanation for
the observations made is that Claire has been corrupt from the beginning (+c0)
and that Don has actually sent a message to Earl (+m1

DE), i.e., the possibility
of ¬m1

DE is explained away due to the observations made at times t = 0 . . . 2.

In a diagonal (A)DBN the last example is inexplicable, as indirect influences
of t1 (causally) are first anticipated a step later at t2 (for n = 3). The reason
for the inexplicability is confusing because it is not causal: at t2, the time
of incriminating evidence for Earl, one knows that Earl is only influenced by
himself, i.e. only t1-Earl can be the source of his taintedness. At t1, Earl only
receives a document from integrous t0-Don (observation). This is where the
problem lies: t0-Claire should have influenced t0-Don by now, but t0-Claire
influences t1-Don with her message +m1

CD. This means that Earl cannot become
tainted and the observation +e2 is inexplicable. Mathematically one obtains
P (+e0|~z 0:2ᵀ ,~b1:2ᵀ) = 0 in a diagonal DBN, as

P (+e0|~z 0:2ᵀ ,~b1:2ᵀ)

= α ·
∑
C0

P (C0,¬d0,¬e0) ·
∑
C1

P (C1| . . . , C0) ·
∑
D1

P (D1| . . . , C0, . . .)

·
∑
M1
DE

P (+m1
CD,¬m1

DC ,¬m1
ED,¬m1

CE ,¬m1
EC ,M

1
DE)

·
(
P (+e1|¬m1

CE ,M
1
DE , C

0,¬d0,¬e0) · P (¬e2|¬m2
CE ,¬m2

DE , C
1, D1, +e1)

+ P (¬e1|¬m1
CE ,M

1
DE , C

0,¬d0,¬e0) · P (¬e2|¬m2
CE ,¬m2

DE , C
1, D1,¬e1)

)
· P (¬m2

∗∗) = 0

where both alternatives of E1 are impossible under the given observations, and
CPD entries P (+e2|¬m2

∗E , C
1, D1,¬e1) and P (+e1|M1

DE ,¬m1
CE , C

0,¬d0,¬e0)
are uniquely identified to be 0 by the underlined dependencies. By definition,
one obtains P (¬e2| . . . , +e2, . . .) = 0, and, thus, obtained results from a diagonal
DBN stand in conflict with the probability axioms of Kolmogorov (compare
Proposition 2.2 under which ~b1:2 is not indirect-free). As Example 2.7 shows,
the observation of Example 2.7 is regular and an intra-timeslice ADBN fully
respects indirect influences while remaining a first-class representation.
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The following theorems state the complexity of solving smoothing problems
and the related proof derives a commonly known forward-backward algorithm
for finding exact solutions to smoothing problems.

Theorem 2.4 (Exact solution to the complete smoothing problem). Given
a complete smoothing problem ComplSP(B0, B→, ~z 0:t,~b1:t, t), finding an exact
solution is linear or quadratic in t. Finding an exact solution is exponential in
the maximal dimension of unobserved variables ~ζ∗, ~β∗ in a timestep 0 < ∗ ≤ t,
and in the largest domain dom(ζ+), dom(β+) of all random variables ζ+ ∈ ~ζ0:t,
β+ ∈ ~β1:t. Finding an exact solution is exponential in the dimension of number
of random variables | ~Xt|, | ~At| and a respective maximal domain size dom(X+),
dom(A++) of all random variables X+ ∈ ~Xt, A++ ∈ ~At. N

Theorem 2.4 is proven by showing that an algorithm exists that finds
an exact solution to ComplSP(B0, B→, ~z 0:t,~b1:t, t) in time-complexity O(t2 ·
|dom(X+)|| ~Xt| · | dom(A++)|| ~At| · |dom(ζ+)||~ζ∗| · | dom(β+)||~β∗|) and with
O(t · | dom(X+)|| ~Xt| · |dom(A++)|| ~At|) space-complexity for storing all smoo-
thing distributions. The proof is combined with the proof for the following
theorem.

Theorem 2.5 (Exact solution to the fixed lag smoothing problem). Given a
fixed lag smoothing problem FLagSP(B0, B→, ~z t−∆−1:t,~bt−∆−1:t,∆, t), finding an
exact solution is constant in t. Let k = t − ∆ for brevity. Finding an exact
solution is exponential in the maximal dimension of unobserved variables ~ζ∗,
~β∗ in a timestep k − 1 < ∗ ≤ t, and in the largest domain dom(ζ+), dom(β+)

of all random variables ζ+ ∈ ~ζk−1:t, β+ ∈ ~βk−1:t. Finding an exact solution is
exponential in the dimension of number of random variables | ~Xt|, | ~At| and a
respective maximal domain size dom(X+), dom(A++) of all random variables
X+ ∈ ~Xt, A++ ∈ ~At. N

Theorem 2.5 is proven by showing that an algorithm exists that finds
an exact solution to FLagSP(B0, B→, ~z k−1:t,~bk−1:t,∆, t) with time-complexity
O(∆ · |dom(X+)|| ~Xt| · | dom(A++)|| ~At| · |dom(ζ+)||~ζ∗| · | dom(β+)||~β∗|) and
O(|dom(X+)|| ~Xt| · |dom(A++)|| ~At|) space-complexity for storing a smoothing
distribution of timeslice k.

Theorems 2.4 and 2.5 discuss the computational fixed-parameter complexity
of commonly known smoothing problems in dense intra-timeslice ADBNs. Most
importantly Theorem 2.4 states that solving the complete smoothing problem
has linear complexity over the number of observed timeslices, as one expects in
classical DBNs, and Theorem 2.5 states that solving the fixed lag smoothing
problem has constant complexity over the number of observed timeslices, as
one expects in classical DBNs as well. Both theorems are proven below, where
a major result is that the classically known forward-backward-algorithm still
remains applicable to cyclic ADBNs.

Proof of Theorems 2.5 and 2.4 (Solutions to smoothing problems). The gene-
ral smoothing equation is obtained by straight marginalization from the joint
probability as

P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) = α ·
∑
~ζ0:k−1

∑
~β1:k−1

∑
~ζk+1:t

∑
~βk+1:t

P ( ~X0:tᵀ , ~A1:tᵀ) .
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Using Equation 2.5 one obtains

P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) = α ·
∑
~ζ0:k−1

∑
~β1:k−1

∑
~ζk+1:t

∑
~βk+1:t

P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ)

·
∏

Xti∈ ~Xt
P (Xt

i | ~Xtᵀ\Xt
i ,
~At
ᵀ
i , X

t−1
i ) ·

∏
Atij∈ ~At

P (Atij) . (2.8)

We define an intermediate joint probability as

P ( ~Xk:tᵀ , ~Ak:tᵀ) =
∏

Xki ∈ ~Xk
P (Xk

i | ~Xkᵀ\Xk
i ,
~Ak
ᵀ
i , X

k−1
i )

·
∏

Akij∈ ~Ak
P (Akij) · P ( ~Xk+1:tᵀ , ~Ak+1:tᵀ) ,

which is a term T k−1:t depending on variables from time k − 1 until t. One can
therefore split the recursive definition of the joint probability and obtain

P ( ~Xkᵀ , ~Akᵀ |~z0:tᵀ ,~b1:tᵀ)

= α ·
∑
~ζ0:k−1

∑
~β1:k−1

∑
~ζk+1:t

∑
~βk+1:t

P ( ~X0:kᵀ , ~A1:kᵀ) · P ( ~Xk+1:tᵀ , ~Ak+1:tᵀ)

= α ·
∑
~ζ0:k−1

∑
~β1:k−1

P ( ~X0:kᵀ , ~A1:kᵀ) ·
∑
~ζk+1:t

∑
~βk+1:t

P ( ~Xk+1:tᵀ , ~Ak+1:tᵀ)

= α ·

 ∑
~ζ0:k−1

∑
~β1:k−1

P ( ~X0:kᵀ , ~A1:kᵀ)

 ·
 ∑
~ζk+1:t

∑
~βk+1:t

P ( ~Xk+1:tᵀ , ~Ak+1:tᵀ)

 .

(2.9)

One finds a previous (stored) filtering problem in the first sum-product, known
as a “forward message,” and a new latter sum-product commonly known in smoo-
thing equations as a “backward-message.” Using an adequate recursive definition
for the latter term, one obtains the so-called forward-backward algorithm. The
commonly known “sensor model” is, due to in-time-slice dependencies, included
in the forward, as well as backward message.

The latter sum-product term from k + 1 to t corresponds to
P (~zk+1:tᵀ ,~bk+1:tᵀ | ~Xkᵀ , ~Akᵀ) from a probabilistically point of view, but essenti-
ally is a just a term T k:t over variables from time k to t. The splitting into two
disjoint products is possible, because all variables from time k are query variables,
i.e., are constant in a query. Without determining a full joint probability, a
backward message is not derivable in multiply connected BNs. In fact, the
probabilistic view also derives from Bayes’ theorem and a first-order Markov
assumption, but we rely on straight calculus here, as intra-timeslice dependencies
pose various pitfalls here.
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Therefore, one obtains

P (~zk+1:tᵀ ,~bk+1:tᵀ | ~Xkᵀ , ~Akᵀ)
= α ·

∑
~ζk+1:t

∑
~βk+1:t

P ( ~Xk+1:tᵀ , ~Ak+1:tᵀ)

= α ·
∑
~ζk+1:t

∑
~βk+1:t

∏
Xk+1
i ∈ ~Xk+1

P (Xk+1
i | ~Xk+1ᵀ\Xk+1

i , ~Ak+1ᵀ
i , Xk

i ) ·
∏

Ak+1
ij ∈ ~Ak+1

P (Ak+1
ij )

·P ( ~Xk+2:tᵀ , ~Ak+2:tᵀ)

= α ·
∑
~ζk+1

∑
~βk+1

∏
Xk+1
i ∈ ~Xk+1

P (Xk+1
i | ~Xk+1ᵀ\Xk+1

i , ~Ak+1ᵀ
i , Xk

i ) ·
∏

Ak+1
ij ∈ ~Ak+1

P (Ak+1
ij )

·
∑
~ζk+2:t

∑
~βk+2:t

P ( ~Xk+2:tᵀ , ~Ak+2:tᵀ) , (2.10)

in which one finds the backward message as the latter term. Using a recursive
definition, one obtains the backward message as

P (~zk+1:tᵀ ,~bk+1:tᵀ | ~Xkᵀ , ~Akᵀ)
= α ·

∑
~ζk+1

∑
~βk+1

∏
Xk+1
i ∈ ~Xk+1

P (Xk+1
i | ~Xk+1ᵀ\Xk+1

i , ~Ak+1ᵀ
i , Xk

i )

·
∏

Ak+1
ij ∈ ~Ak+1

P (Ak+1
ij ) · P (~zk+2:tᵀ ,~bk+2:tᵀ | ~Xk+1ᵀ , ~Ak+1ᵀ) . (2.11)

Finally, by combining Equation 2.9 and 2.11, one obtains the general smoothing
equation as

P ( ~Xkᵀ , ~Akᵀ |~z0:tᵀ ,~b1:tᵀ) = P ( ~Xkᵀ , ~Akᵀ |~z 0:kᵀ ,~b1:kᵀ)·P (~z k+1:tᵀ ,~bk+1:tᵀ | ~Xkᵀ , ~Akᵀ) .
(2.12)

With the recursive definition of the backward message, Eq. 2.11, this yields

P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) = α · P ( ~Xkᵀ , ~Akᵀ |~z 0:kᵀ ,~b1:kᵀ)

·
∑
~ζk+1

∑
~βk+1

∏
Xk+1
i ∈ ~Xk+1

P (Xk+1
i | ~Xk+1ᵀ\Xk+1

i , ~Ak+1ᵀ
i , Xk

i ) ·
∏

Ak+1
ij ∈ ~Ak+1

P (Ak+1
ij )

· P (~z k+2:tᵀ ,~bk+2:tᵀ | ~Xk+1ᵀ , ~Ak+1ᵀ) . (2.13)

Evaluating the general smoothing Equation 2.12 for all instantiations of
~Xk, ~Ak decrementally for descending k = t− 1 . . . 0 is an algorithm that gives an
exact solution to the complete smoothing problem ComplSP(B0, B→, ~z 0:t,~b1:t, t).
During the decremental evaluation the backward message is stored: an intermedi-
ate result P (~z k+1:tᵀ ,~bk+1:tᵀ | ~Xkᵀ , ~Akᵀ) (the backward message) obtained during
an evaluation of P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) at time k is needed in an upcoming
(but temporally backward) evaluation of P ( ~Xk−1ᵀ , ~Ak−1ᵀ |~z 0:tᵀ ,~b1:tᵀ) at time
k − 1. Thus, obtaining the last term of Equation 2.13 is constant in t for every
evaluation. The first term P ( ~Xkᵀ , ~Akᵀ |~z 0:kᵀ ,~b1:kᵀ) of the general smoothing
equation poses a filtering problem, for which a solution is found in O(1) in a
storage from a solution to an offline filtering problem OffFP(B0, B→, ~z 0:t,~b1:t, t),
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which is found in O(t) by the previously derived algorithm in Proof of Theo-
rems 2.2 and 2.3. If memory is scarce, P ( ~Xkᵀ , ~Akᵀ |~z 0:kᵀ ,~b1:kᵀ) is obtained in
O(k) for every k by solving all OnlFP(B0, B→, ~z i−1:i,~bi−1:i, i), 0 ≤ i ≤ k. Thus,
for a fixed B0, B→ and a fixed number and domain size of unobserved variables
per timeslice in ~z 1:t,~b1:t the algorithm has linear time-complexity O(t) and
linear space-complexity O(2 · t) or quadratic time-complexity O(t2), but halved
space-complexity O(t). For every evaluation at time k, the backward message
“moves one down” from k + 1 to k and the forward message “ripples up” from
0 to k (or is obtained from a storage). For special DPGMs, a forward message
can also be “moved one down” by using an inverse matrix calculation. With this
picture in mind, the forward-backward-algorithm is sometimes seen as a “dance”
between messages.

Evaluating the general smoothing Equation 2.12 for all instantiations of
~Xk, ~Ak for k = t − ∆ is an algorithm that gives an exact solution to the
fixed lag smoothing problem FLagSP(B0, B→, ~z t−∆−1:t,~bt−∆−1:t,∆, t). For a
fixed B0, B→ and a fixed number and domain size of unobserved variables per
timeslice in ~z t−∆−1:t,~bt−∆−1:t, the algorithm obtains the first term as a solution
to an online filtering problem in O(1) and the latter term in O(∆) using the
recursive definition.

To obtain a complete distribution, both algorithms require exponentially many
evaluations in the dimension of all possible instantiations of random variables
per timeslice. Every incremental evaluation is exponential in the number and
domain size of unobserved variables from the previous and consecutive timeslice.
�

This proof shows that smoothing problems are solvable in a classical calculus
without any introduction of external frameworks or novel mathematical operators.
Moreover, it shows that the commonly known forward-backward-algorithm still
remains applicable to dense intra-timeslice ADBNs without any modification,
despite them being based on cyclic graphs.

2.3.3 Most Likely Explanation Problem
It is sometimes desirable to obtain knowledge in the form of discrete explanations,
instead of in the form of probability distributions. A common query for this
case is a query for a most likely explanation for a given observation, i.e., to find
the sequence of instantiations that most likely took place given the observed
evidence.

Definition 2.11 (Most likely explanation query and problem). Given a proba-
bilistic knowledge base B0, B→, and obtained evidence ~z 0:t,~b1:t, it is the task
to find the instantiation mlet =

(
~x0:t,~a1:t

)
conforming with evidence ~z 0:t,~b1:t

that maximizes the complete joint probability distribution to P (mlet). This is to
determine,

mlet =

(
arg max
~ζ0:t,~β1:t

P ( ~X0:tᵀ , ~A1:tᵀ |~z 0:tᵀ ,~b1:tᵀ)

)
∪
(
~z 0:tᵀ ,~b1:tᵀ

)
,

and
P (mlet) = max

~ζ0:t,~β1:t

P ( ~X0:tᵀ , ~A1:tᵀ |~z 0:tᵀ ,~b1:tᵀ) .

We denote a most likely explanation problem as MleP(B0, B→, ~z 0:t,~b1:t, t). N
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As a continuation of Example 2.7, the following example answers a most
likely explanation query.

Example 2.8. From Example 2.7 it is already evident that only one possible
explanation remains. Under observations ~z0:2, ~b1:2 the instantiations of inte-
rest are C0, C1, D1, E1,M1

DE , C
2, D2. As discussed in Example 2.7, the only

explanation is that Claire is tainted from the beginning and Claire has indirectly
tainted Earl through Don during timeslice 1. Therefore, one obtains

mle2 = (+c0,¬d0,¬e0, +c1, +d1, +e1, +c2, +d2, +e2, +m1
CD, +m

1
DE ,¬m1

∗∗,¬m2
∗∗)

P (mle2) = 1 .

As the example demonstrates, finding answers to most likely explanation
queries are especially useful if one is interested in a concrete sequence of actions.
While a concrete instantiation is easier to interpret than a complete conditional
probability distribution of a timeslice, only considering one chain of events can
easily lead to false assumptions or accusations. Therefore, when considering
answers from most likely explanation queries, it is highly important to consider
P (mlet) as well. As one obtains P (mle2) = 1 in this example, it is certain to
say that “corrupt Claire has directly and indirectly tainted all other employees.”

The following theorem discusses the complexity of obtaining such a most
likely explanation.

Theorem 2.6 (Exact solution to the most likely explanation problem).
An algorithm providing an exact solution to MleP(B0, B→, ~z 0:t,~b1:t, t) has
the same time-complexity as an algorithm solving an offline filtering
problem OffFP(B0, B→, ~z 0:t,~b1:t, t). An algorithm has O(|dom(X+)|| ~Xt| ·
|dom(A++)|| ~At| · (| ~Xt|+ | ~At|) · t) space-complexity for (intermediately) storing
a distribution over possible most likely explanations. N

Both, the most likely explanation problem and the filtering problem, as well
as their respective solutions are very similar. Likewise, also an on- and offline
most likely explanation problem could be formulated. For brevity, and as we
expect offline most likely explanation queries to be more frequently, we do not
discuss an online most likely explanation problem. We prove Theorem 2.6 by
deriving an exact solution to the general most likely explanation equation from
the joint probability based on a maximization problem. The following proof is
similar to Proof of Theorems 2.2 and 2.3 and, likewise, shows that neither a novel
calculus nor any novel operators are required to solve most likely explanation
query answering problems.

Proof of Theorem 2.6 (Solution to the most likely explanation problem). Let
mlet~xt,~at be some most likely explanation ending on ~xt,~at. Then, to find mlet~xt,~at
the following problems need to be solved

mlet~xt,~at =

(
arg max

~ζ0:t−1,~β1:t−1

P ( ~X0:tᵀ , ~A1:tᵀ |~z 0:tᵀ ,~b1:tᵀ)

)
∪
(
~z 0:tᵀ ,~b1:tᵀ

)
,

and
P (mlet~xt,~at) = max

~ζ0:t−1,~β1:t−1

P ( ~X0:tᵀ , ~A1:tᵀ |~z 0:tᵀ ,~b1:tᵀ) ,
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where all variables of timeslice t are fixed by the query, and all unobserved
variables of timeslice 0 to t−1 are subject to maximization. Remaining variables
from timeslices 0 to t are then fixed by evidence. Let MLEt be the set of all
most likely explanations mlet~xt,~at with all possible endstates ~xt,~at.

For this proof we derive an exact solution to the problem of finding P (mlet~xt,~at)
and, later, show how it provides an exact solution to the most likely explanation
problem. Using the recursive definition of the joint probability distribution for a
dense inter-timeslice ADBN from Proposition 2.4 one obtains

P (mlet~xt,~at) = max
~ζ0:t−1,~β1:t−1

P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ |~z 0:t−1ᵀ ,~b1:t−1ᵀ)

·
∏

Xtk∈ ~X t

P (Xt
k| ~Xtᵀ\Xt

k, ~A
tᵀ
k , X

t−1
k ) ·

∏
Atcv∈ ~At

P (Atcv)

Splitting the maximization operator yields

P (mlet~xt,~at) = max
~ζt−1,~βt−1

max
~ζ0:t−2,~β1:t−2

P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ |~z 0:t−1ᵀ ,~b1:t−1ᵀ)

·
∏

Xtk∈ ~X t

P (Xt
k| ~Xtᵀ\Xt

k, ~A
tᵀ
k , X

t−1
k ) ·

∏
Atcv∈ ~At

P (Atcv) ,

which can be combined with

P (mlet~xt,~at) = max
~ζ0:t−1,~β1:t−1

P ( ~X0:tᵀ , ~A1:tᵀ |~z 0:tᵀ ,~b1:tᵀ) ,

and one obtains the general most likely explanation equation as

P (mlet~xt,~at) = max
~ζt−1,~βt−1

P (mlet−1
~xt−1,~at−1)

·
∏

Xtk∈ ~X t

P (Xt
k| ~Xtᵀ\Xt

k,
~At
ᵀ
k , X

t−1
k ) ·

∏
Atcv∈ ~At

P (Atcv) . (2.14)

The general most likely explanation equation (Equation 2.14) is equivalent to
the general filtering equation (Eq. 2.7) with exchanged

∑
and arg max operators

and has the same time-complexity. To keep track of the maximization argument
mlet~xt,~at , additional storage is required, which grows linearly in the number
of random variables and time t. Storage requirements are exponential in the
dimension of all possible instantiations of all random variables to store all
mlet~xt,~at . The final most likely explanation mlet is obtained from MLEt by

mlet = arg max
mlet

~xt,~at
∈MLEt

P (mlet~xt,~at) . (2.15)

Evaluating Equation 2.14 for all instantiations of random variables ~Xt, ~At
and consecutively evaluating Equation 2.15 is an algorithm that gives an exact
solution to MleP(B0, B→, ~z 0:t,~b1:t, t). For a fixed B0, B→ and a fixed number
and domain size of unobserved variables per timeslice in ~z 1:t,~b1:t, the algorithm
has linear time- and space-complexity O(t). �
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2.3.4 Experimental Evaluation of Exact Inference

Section 2.3 shows that no novel calculus must be invented to perform inference,
i.e., to solve commonly known query answering problems, in dense intra-timeslice
ADBNs, despite them being based on cyclic graphs, and, moreover, shows that
no computational overhead is introduced to perform inference. We provide
substantiating empirical evidence for the latter results by showing that solving
multiple on- and offline filtering- and smoothing-problems remains tractable even
over large periods of time2. To do so, we perform multiple experiments, where in
every experiment, state variables in ~Xt, t > 0 are assigned a randomly generated
individual CPD following Definition 2.2. Further, in every experiment random
priors are assigned to random variables ~X0, ~At. Every randomly generated
probability is taken from the range [0.1, 0.9] to avoid impossible observations.
For every timestep t > 0 we generate random observations ~bt conforming with
Theorem 2.1. We refrain from observing state variables ~Xt, i.e., ~z t = ∅, to
achieve worst-case time complexity.

In each experiment, state variables in ~Xt, t > 0 are assigned a randomly
generated individual CPD following Definition 2.2. Further, in each experiment
random priors are assigned to random variables ~X0, ~At. Every randomly genera-
ted probability is taken from the range [0.1, 0.9] to avoid impossible observations.
For every timestep t > 0 we generate random observations ~bt conforming with
Theorem 2.1. We refrain from observing state variables ~Xt, i.e., ~z t = ∅, to
achieve worst-case time complexity.

In every experiment, we consecutively solve the online filtering problem
OnlFP(B0, B→, ~z i−1:i,~bi−1:i, i) at every timestep i using the algorithm deri-
ved in Proof of Theorems 2.2 and 2.3, and denote the computation time per
timeslice i in Figure 2.3. Further, we solve the complete smoothing problem
ComplSP(B0, B→, ~z 0:i,~b1:i, i) at every timestep i, using the algorithm derived in
Proof of Theorems 2.5 and 2.4 using stored filtering results (Figure 2.5) and
recalculated filtering results (Figure 2.4) and denote the computation time per
timeslice i.

As ~z t = ∅, one does not acquire any new knowledge about state variables using
smoothing, i.e., P ( ~Xkᵀ , ~Akᵀ |~z 0:kᵀ ,~b1:kᵀ) is equal to P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ). A
Kullback-Leibler-Divergence of both solutions was measured to be zero (in the
range of double precision), which verifies our implementation in that sense.

Experiments were repeated 139 times for n = 4, i.e., an ADBN consisting of
16 random variables ~Xt, ~At per timeslice for a timerange of 40. All experimental
results validate expected fixed-parameter tractability of filtering and smoothing
problems in ADBNs. Nevertheless, experiments show that for models beyond
n = 5, i.e., beyond 25 random variables, approximate inference techniques
are needed, for which the following section provides an introduction and a
demonstration.

2All experiments are reproducible, for which we supply an experimental framework imple-
menting inference in dense ADBNs in C available at: http://adbn.motzek.org
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) over t

Figure 2.3. Finding an exact solution to the online filtering problem
OnlFP(B0, B→, ~z

i−1:i,~bi−1:i, i) at timestep i (abscissa) is constant (computation time
in ms, ordinate, Pearson’s product-moment correlation coefficient between t > 1 and
computation time r ≈ −0.015) at every timestep i. (139 evaluations superimposed)
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Figure 2.4. Finding an exact solution to the complete smoothing problem
ComplSP(B0, B→, ~z

0:i,~b1:i, i) at timestep i (abscissa), without stored filtering results,
scales quadratically (computation time in ms, ordinate, R2 = 0.9913 for quadratic
regression) with increasing timesteps, but has constant memory requirements.
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Figure 2.5. Finding an exact solution to the complete smoothing problem
ComplSP(B0, B→, ~z

0:i,~b1:i, i) at timestep i (abscissa), using stored filtering results scales
linearily (computation time in ms, ordinate, r = 0.9999) with increasing timesteps, but
has linear memory requirements over time.
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2.4 Approximate Inference Techniques in ADBNs
Finding exact solutions to common problems is only tractable in small toy
domains, i.e., with very few random variables. Approximate inference techniques
have shown to be a valuable alternative for Bayesian networks and can be divided
into two categories: (i) Approximations to the derivation of exact calculations,
such as loopy belief propagation or variational methods, and (ii) stochastic
sampling methods on which we focus in this section. Introductions to sampling
methods for general graphical probabilistic models from a stochastical perspective
are provided by Arulampalam, Maskell, Gordon, and Clapp (2002), Murphy
(2012, pp. 823–831) and Doucet and Johansen (2009).

Naive adaptations of approximate inference techniques for BNs towards
DBNs, however, show to be suboptimal, as an approximation error accumulates
over inference time, i.e., only for few consecutive time-slices accurate results are
obtained. Fortunately, modifications to these approaches allow for approximate
inference in DBNs even for long periods of inference time under a bounded and
constant approximation error. Such a property, i.e., approximation algorithm
providing a bounded and constant error over time must be preserved for any
novel DPGM such as ADBNs. Therefore, we show and prove in this section that
commonly known “particle filters” aka sequential important resampling (SIR)
techniques remain applicable in ADBNs without any overhead, and provide
approximations with constant error over time. On top of that, an interesting
challenge remains: approximate inference techniques for DBNs are based on the
topological ordering of B→, but a topological ordering of a (dense intra-timeslice)
ADBN is firstly known in an instantiation. Therefore, an approximate inference
technique must rapidly adapt to specific contexts at every sampling step.

Remark 2.3 (Approximate inference nomenclature). Sampling based approx-
imate inference techniques for DBNs are referred to under various names (cf.
Russell & Norvig, 2010, pp. 603ff). In general, every sampling based technique
can be classified as a Monte Carlo simulation. For DBNs, two major sam-
pling based approximations are known as Sequential Importance Sampling (SIS)
and Sequential Importance Resampling (SIR), both are sometimes referred to
as Sequential Monte Carlo (SMC) techniques (cf. Arulampalam et al., 2002).
Furthermore, SIS and SIR are often referred to as particle filters (especially by
Murphy, 2012, pp. 823–831 and Doucet, de Freitas, Murphy, & Russell, 2000).
We adapt the naming of SIS and SIR.

The key idea behind sampling approaches is to estimate a probability distri-
bution, e.g., P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ), by a large number of samples, instead of
performing exact inference. This means that a modeled stationary process over
time is simulated multiple times, where every simulation generates a sample S
with a specific outcome.

Definition 2.12 (Sample). Let S = (~xt,~at, w) denote a sample of random
variables ~Xt, ~At at time t, i.e. an arbitary instantiation ~xt,~at of ~Xt, ~At. Each
sample is assigned a weight w. A sample S is sometimes called a particle.

Let ~St denote the set of all samples obtained at time t. Let nS = |~St| be
the number of samples per timeslice. Let wS denote the assigned weight w of a
sample S. Let St~x,~a denote a sample with instantiation ~xt,~at and let ~St~x,~a denote
the set of all samples S~xt,~at obtained at time t. We use St~x,~a in favor of a notation
for continuous state spaces using the delta Dirac mass distribution located at
~xt,~at (cf. Murphy, 2012, pp. 823–831 and Doucet & Johansen, 2009). N
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The key challenge behind approximate inference techniques is to efficiently
and correctly generate these samples for a given (dynamic) probabilistic graphical
model and a set of observations. In the following section we discuss two approa-
ches, namely, Sequential Importance Sampling (SIS) and Sequential Importance
Resampling (SIR).

2.4.1 SIS and SIR in ADBNs
In order to approximate solutions to filtering and smoothing problems, a dis-
tribution of obtained samples must correspond to the distribution they shall
approximate. For classic Bayesian networks multiple techniques exist to generate
stochastically correct samples, namely “prior sampling,” “rejection sampling,”
“likelihood weighting,” and “Gibbs sampling” (cf., Russell & Norvig, 2010, pp.
530–535). SIS and SIR represent an adaption of likelihood weighting to DBNs. In
SIS and SIR samples are sequentially updated at each timestep and are weighted
according to their importance, i.e., their conformity with evidence.

Informally, we sketch SIS for a generic DBN (B0, B→) with state variables ~Xt

as follows: To update a sample St−1, i.e., an arbitrary instantiation of random
variables at t − 1, to an updated sample St, one follows the stochastic model
of the DBN: Following the topological ordering of B→ every random variable
Xt
i is (a) observed or (b) unobserved. In case (a) the instantiation of Xt

i in
the updated sample St is fixed to the observed value xti ∈ ~zt and weighted
according to conformity of the current evolution St−1 → St with the observed
evidence P (xti|St−1, St). In case (b) the instantiation of Xt

i is sampled, i.e., is
randomly instantiated, corresponding to its probability distribution conditioned
on the current evolution, i.e., sampled according to P (Xt

i |St−1, St). St−1 is a
full instantiation of all random variables at t−1, and St is generated sequentially
according to a topological ordering. Therefore, St is initially empty and grows
with every sampled Xt

i until it contains a sample of every random variable of
timeslice t, i.e., until the topological ordering has been traversed. Note that
some random variables in St−1, St may not exert a direct influence on Xt

i and
are, therefore, non-descendants of Xt

i . Further, all parents of Xt
i are given by

St−1, St which renders Xt
i conditionally independent of all non-descendants.

This is a highly beneficial circumstance, as, then, P (Xt
i |St−1, St) is directly

given by a locally defined CPD entry and is obtained without any computational
cost.

Adapting SIS to a dense intra-timeslice ADBN with variables ~X0:t and A1:t,
gives an update procedure as Algorithm 1 that is used in sequential importance
(re)sampling techniques as shown in Algorithm 2. This update procedure requires
an effective topological ordering in a timestep t based on the observed activator
random variables in ~bt.

Notation 2.6 (Sampling operator ∝). X ∝ P (X) represents a sampling opera-
tion. The sampling operation instantiates a random variable X randomly to one
of its possible values x ∈ dom(X) according to a given random distribution P of
X for all x ∈ dom(X).

The analysis of an effective topology is necessary to sample from the cor-
rect distribution and to correctly weight a sample. Classically, one constant
topological ordering is given by B0, B→ for each timeslice t. However, in cyclic
ADBNs multiple structures, i.e., topological orderings, are represented by B→,
to which a cyclic ADBN intrinsically adapts in each timeslice. Therefore, it must
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Algorithm 1 Evolving a sample

1 procedure evolve(from St−1 to St, given ~z t, ~bt)
2 for all Atij ∈ ~At do . skip at t=0
3 if atij ∈ ~bt then . is observed
4 w ← w · P (atij) . initalized by Alg. 2
5 set Atij = aij in St
6 else
7 set Atij ∝ P (Atij) in St

8 for all Xt
i ∈ ~Xt following topological ordering induced by ~bt do

9 if xti is observed in ~z t then
10 w ← w · P (xti|~x t,~a ti , xt−1

i )
11 set Xt

i = xi in St
12 else
13 set Xt

i ∝ P (Xt
i |~x t,~a ti , xt−1

i ) in St

be analyzed at every timeslice. This circumstance does not come as a surprise
and is later discussed in Section 2.5. In consequence, Algorithm 1 uses local
CPDs conditioned on instantiations of ~Xt that are not yet updated, i.e., are
undefined yet in St. Still, the procedure remains sound, as all uninstantiated
or undefined instantiations of dependencies are deactive due to the induced
topological ordering of ~bt.

Algorithm 2 Sequential importance (re)sampling (SIS/SIR)

1 begin
2 init ~S with nS S = (∅, ∅, 1) samples
3 set t = 0
4 loop
5 given ~z t, ~bt . t=0: ~bt = ∅
6 for all samples S ∈ ~S do
7 S ←evolve(S, ~z t,~bt)
8 for all samples S ∈ ~S do
9 wS ← wS∑

S′∈~S wS′

10 ~S ∝ P (~S) . Only for SIR.
11 next t
12 return ~S
13 end

Sequential importance sampling provides approximate solutions to filtering
and smoothing problems, as the following theorems state.

Theorem 2.7 (Exact sampling based solutions to filtering problems). For
nS →∞ and infinite numerical precision, samples ~St generated by Algorithm 2
(SIS) represent the filtering distribution P ( ~Xtᵀ , ~Atᵀ |~z 0:tᵀ ,~b1:tᵀ) with

P (~xt
ᵀ
,~at
ᵀ |~z 0:tᵀ ,~b1:tᵀ) =

∑
S∈~S~xt,~at

wS∑
S∈~S wS

. (2.16)
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Thus, Algorithm 2 solves the offline filtering problem (Definition 2.7) in li-
near time-complexity over time, scales linearly with the number of samples
nS and linearly with the number of random variables | ~Xt| · | ~At|, i.e., solves
OffFP(B0, B→, ~z 0:t,~b1:t, t) in O(t · nS · | ~Xt| · | ~At|) space- and time-complexity.
Initializing Algorithm 2 with samples ~S from a previous solution ~St−1 from t− 1
is an exact solution to the online filtering-problem (Definition 2.8) with constant
time-complexity over time O(1), i.e., solves OnlFP(B0, B→, ~z t−1:t,~bt−1:t, t) in
O(nS · | ~Xt| · | ~At|) time- and space-complexity. N

Proof of Theorem 2.7 requires a detailed notation of samples as follows.

Notation 2.7 (Nostalgic sample). Let S =
(
~x 0:t−1,~a1:t−1, ~xt,~at, w

)
denote

a sample of all random variables from time 0 to time t. This means that
sample S carries its complete history ~x0:t−1,~a1:t−1 that ends in an end-sample
S = (~x t,~a t, w). Respectively, let St

~x0:t,~a1:t denote a sample with evolution
sequence ~x 0:t,~a 1:t and let ~St

~x 0:t,~a 1:t denote the set of all samples St
~x 0:t,~a 1:t

obtained at time t.

Proof of Theorem 2.7 (Correctness of Algorithm 2, SIS). We prove that for nS →
∞, Theorem 2.7 provides an exact answer to a filtering query P (~xt,~at|~z 0:tᵀ ,~b1:tᵀ)
for the SIS case of Algorithm 2 in a dense intra-timeslice ADBN. Using Nota-
tion 2.7, Eq. 2.16 is written as

P (~xt
ᵀ
,~at
ᵀ |~z 0:tᵀ ,~b 1:tᵀ) ≈

∑
~ζ0:t−1

∑
~β1:t−1

∑
S∈~St

~x0:t,~a1:t
wS∑

S∈~St wS
,

i.e., to sum over all samples S~xt,~at , one now sums over all possible histories
leading to such samples. As some instantiations are fixed by evidence in ~z 0:t,~b1:t,
the summation over all unobserved variables leads to all possible evolution
sequences. Following Algorithm 1 it is evident that the weight wS of a nostalgic
sample S is uniquely determined by its evolution instantiation ~x0:t,~a1:t, i.e., all
samples in ~St

~x0:t,~a1:t carry the weight

w~x0:t,~a1:t =

t∏
k=0

∏
Akij∈~bk

P (Akij) ·
∏

Xki ∈~z k
P (Xk

i | ~Xkᵀ\Xk
i , A

kᵀ
i , X

k−1
i ) . (2.17)

Note that a weight wS of a sample S~St
~x,~a

is not uniquely determined by its

instantiation ~xt,~at. Let N t
~x0:t,~a1:t = |~St

~x0:t,~a1:t | be the number of nostalgic
samples at time t with evolution sequence ~x0:t,~a1:t. Then

P (~xt
ᵀ
,~at
ᵀ |~z 0:tᵀ ,~b1:tᵀ) ≈ α

∑
~ζ0:t−1

∑
~β1:t−1

N t
~x0:t,~a1:t · w~x0:t,~a1:t , (2.18)

with a normalization factor α =
∑
S∈~St wS . For nS → ∞, the number of a

sample S, N t
S, equals their existence probability P (S). Algorithm 1 generates a

nostalgic sample S =
(
~x0:t,~a1:t, w

)
with probability

P (S) =

t∏
k=0

∏
Akij∈~βk

P (Akij) ·
∏

Xki ∈~ζ k
P (Xk

i | ~Xkᵀ\Xk
i , A

kᵀ
i , X

k−1
i ) . (2.19)
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For brevity, let Eq. 2.17 and Eq. 2.19 ignore the special case of t = 0. By
combining Equations 2.17–2.19, one obtains

P (~xt
ᵀ
,~at
ᵀ |~z 0:tᵀ ,~b1:tᵀ) = α

∑
~ζ0:t−1

∑
~β1:t−1

t∏
k=0

∏
Akij∈~βk

P (Akij)

·
∏

Xki ∈~ζ k
P (Xk

i | ~Xkᵀ\Xk
i , A

kᵀ
i , X

k−1
i )·

t∏
k=0

∏
Akij∈~bk

P (Akij)·
∏

Xki ∈~z k
P (Xk

i | ~Xkᵀ\Xk
i , A

kᵀ
i , X

k−1
i ) ,

as ~Z0:t ∩ ~ζ 0:t = ~X0:t and ~B1:t ∩ ~β1:t = ~A1:t this is

P (~xt
ᵀ
,~at
ᵀ |~z 0:tᵀ ,~b1:tᵀ) = α

∑
~ζ0:t−1

∑
~β1:t−1

t∏
k=0

∏
Akij∈ ~Ak

P (Akij)

·
∏

Xki ∈ ~X k

P (Xk
i | ~Xkᵀ\Xk

i , A
kᵀ
i , X

k−1
i )

which corresponds to the exact solution for the filtering problem in Eq. 2.6 with
the complete unrolled joint probability from Eq. 2.4. �

Algorithm 2 and Theorem 2.7 can be modified to provide solutions to smoo-
thing problems, as the following proposition states.

Proposition 2.6 (Exact sampling based solutions to the smoothing pro-
blem). By keeping track of nostalgic samples S in Algorithm 2, instead of
simple end-samples S, generated samples ~S represent any smoothing distribution
P ( ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ), k < t with

P (~xk
ᵀ
,~ak

ᵀ |~z 0:tᵀ ,~b 1:tᵀ) ≈

∑
~ζ0:k−1

∑
~β1:k−1

∑
~ζk+1:t

∑
~βk+1:t

∑
S∈~St

~x0:t,~a1:t
wS∑

S∈~St wS
,

i.e., the proportional weight of samples conforming with evidence and ~xk,~ak

as part of their evolution history, for infinite samples nS and infinitesimal
numerical precision. Thus, Algorithm 2 with nostalgic samples S solves
ComplSP(B0, B→, ~z 0:t,~b1:t, t) in time-complexity as stated in Theorem 2.7, but
with additional storage requirements, increasing linearly over time, for nostalgic
samples histories. N

Proof of Proposition 2.6 is similar to Proof of Theorem 2.7. Further, it is
easy to show that the history of the nostalgic sample Ŝt with the highest weight
w in ~St represents a solution to the most likely explanation problem.

For finite amounts of samples and finite numerical precision, SIS and SIR
deliver approximate solutions for filtering problems. However, for finite amounts
of samples, SIS techniques suffer from a “degeneracy” problem (cf., Murphy,
2012, pp. 823–831,Doucet & Johansen, 2009) in DBNs, as well as in ADBNs:
Gradually, a significant amount of samples degrade and carry a very low weight,
i.e., during sequential updating sampled instantiations do not fit to evidence
at later timepoints. Therefore, a large amount of samples become practically
irrelevant for the approximation and a few left over samples carry a high weight
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and are highly important. This means that an approximation error does not
remain bounded over time and gradually increases. To overcome this problem a
resampling procedure is introduced in SIR, which resamples nS samples from
a current sample distribution (Alg. 2, Line 10) according to their importance-
weights wS—the reason why some people speak of the “survival of the fittest” in
SIR techniques.

As a resampling technique we use stratified resampling as presented by Hol,
Schön, and Gustafsson (2006), which showed to be more accurate and faster
than multinomial resampling (cf. Hol et al., 2006 and Massey, 2008).

Theorem 2.8 (Approximate sampling based solutions to the online filtering
problem). For finite number of samples nS, finite numerical precision and
non-zero probabilities in every defined CPD, SIR, as in Algorithm 2, provides
an approximate solution to the online filtering problem (cf. Theorem 2.7) with
bounded error over time. SIR scales linearly in computation time and memory
requirements with the number of samples nS and linearly with the number of
random variables per timestep. Thus SIR solves OnlFP(B0, B→, ~z t−1:t,~bt−1:t, t)

in time-complexity O(nS · | ~Xt| · | ~At|). Further, has only O(nS · | ~Xt| · | ~At|)
for storing samples from which every filtering distribution can be obtained.
Likewise, it provides an approximate solution to the offline filtering problem
by solving t online filtering problems, i.e., solves OffFP(B0, B→, ~z 0:t,~b1:t, t) in
O(t · nS · | ~Xt| · | ~At|) space- and time-complexity. N

Theorem 2.8 is proven empirically in the following section. Approximate
solutions to smoothing problems are possible with Proposition 2.6, but require
impractical large amounts of samples (Särkkä, 2013), and are therefore not
further considered in this thesis. More advanced approaches to approximate
solutions to smoothing problems are given by Doucet and Johansen (2009)
or, as an overview, by Särkkä (2013, pp. 167ff.), but are beyond the scope of
this thesis. In principle, more advanced “particle smoothers” are based on the
forward-backward-algorithm as derived in Proof of Theorems 2.5 and 2.4, where
both forward- and backward-messages are obtained by a sampling procedure.

Answering queries via a sampling based approximation has significant advan-
tages in computational complexity and required storage complexity.

Proposition 2.7 (Filtering query answering from samples). Every filtering
query P (~xt

ᵀ
q ,~a

tᵀ
q |~z 0:tᵀ ,~b 1:tᵀ), where ~xtq,~atq are partial instantiations of random

variables ~Xt
q ∈ ~Xt, ~Atq ∈ ~At, are directly answerable from the set of samples ~St

obtained at time t in O(nS), by summation over all samples ~S~xt,~at that contain
the partial instantiation ~xtq,~atq. This reduces the space-complexity of the filtering
problem to storing nS samples for all timeslices, i.e., t timeslices for the offline
filtering problem, and 1 for the online filtering problem. Further, this reduces
time-complexity of answering a query for any partial instantiation to O(nS). N

This means that a probability distribution has neither to be stored nor to
be made explicit to marginalize out answers to queries. Further, plain linear
complexity is obtained, which permits the use of ADBNs in largely scaled
problems.
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2.4.2 Experimental Evaluation of Approximate Inference
In the following, we empirically prove Theorem 2.8. We evaluate SIR in terms
of approximation accuracy and performance as stated in Theorem 2.8 compared
to exact inference. To judge the accuracy of an approximated result obtained
by SIR, the Hellinger distance between approximated and exactly calculated
distribution is used.

Definition 2.13 (Hellinger distance). Let PR, PS, rankPR = rankPS = N
denote two probability distributions over the same N events p ∈ PR, respectively
p ∈ PS. The Hellinger distance H(PR, PS) between both distributions is defined
as (cf. Gibbs & Su, 2002)

H(PR, PS) =
1√
2

√∑
p∈PR

(√
PS(p)−

√
PR(p)

)2

The Hellinger distance is symmetric, i.e., H(PR, PS) = H(PS , PR) and is bounded
between 0 and 1. N

A Hellinger distance of 0 exists between two distributions that assign the same
probability to common events (no error). A distance of 1 occurs if every event
that is deemed impossible in PS , is supposed to be possible in PR. Naturally,
one expects small differences between approximated and exact results, i.e., low,
near 0 Hellinger distances. We refrain from using the more common Kullback-
Leibler-Divergence (KLD), as negligible errors can lead to a KLD of ∞. A
single event p with PR(p) = ε, very small ε > 0, but with PS(p) = 0 leads to
KLD(PR, PS) =∞.

For evaluation we consider the same models as in the previous evaluation
of exact inference discussed in Section 3.2. As an evaluation against exact
inference requires exact solutions of online filtering problems, we keep | ~Xt| = 4
for a detailed evaluation over 250 timesteps (Figure 2.6, repeated 25 times) and
demonstrate it on | ~Xt| = 5 for only 25 timesteps (Figure 2.8, repeated 2 times).
For | ~Xt| = 4 one state variable Xt

i is observed per timestep and for | ~Xt| = 5
two are observed. Observations of state variables lead to the aforementioned
degeneracy problem of SIS, which is clearly evident in Figure 2.6. Further,
Figure 2.6 shows over 250 evaluated timesteps of constant error for SIR, which
delivers a highly satisfying approximation accuracy for 10 000 and more samples
(Hellinger distance below 0.1). Judging from Figure 2.6 it seems that the Hellinger
distance of an SIR approximation linearly lowers with an increasing number of
samples. The constant, low Hellinger distance over long periods of inference
time evident from Figure 2.6 shows that SIR indeed delivers an approximate
solution to the online and offline filtering problem for a finite amount of samples,
scaling linearly with the number of random variables (Figure 2.7), as stated by
Theorem 2.8, which we consider empirically proven. �

While an algorithm finds an exact solution to the online filtering problem for
| ~Xt| = 4 with one observation almost instantly, it takes more than 12 minutes
for | ~Xt| = 5 with one observation and around 6 minutes for two observations per
timestep, as shown in Figure 2.8 (black). In contrast, an approximate solution
with 10 000 000 samples is found by SIR in 16 seconds per timestep in the same
experiment. Exact inference on | ~Xt| = 6, i.e., 36 random variables in B→ is
impossible, as the probability distribution alone requires 250GB of memory and
computation time is expected to be more than 6 days per timestep. For | ~Xt| = 6
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Figure 2.6. Stratified Sequential Importance Resampling (SIR) using nS samples sol-
ves OnlFP(B0, B→, ~z

i−1:i,~bi−1:i, i) at timestep i (abscissa) with constant and bounded
error (Hellinger distance compared with exact inference, ordinate, r ≈ 0.09), whe-
reas Sequential Importance Sampling (SIS) has exponential growth of error over time
(semilogarithmic plot). SIR plotted overlain, mean plot for SIS.
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Figure 2.7. Stratified Sequential Importance Resampling (SIR) using nS samples solves
OnlFP(B0, B→, ~z

t−1:t,~bt−1:t, t) (computation time in ms, ordinate) linearly (r ≈ 0.956)
in the number of random variables (abscissa) N = | ~Xt|+ | ~A| (double logarithmic plot).
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Figure 2.8. SIR solves OnlFP(B0, B→, ~z
i−1:i,~bi−1:i, i) at timestep i (abscissa) magni-

tudes (semilogarithmic plot) faster (solid, left ordinate, computation time in ms) than
an exact algorithm (black) and still achieves satisfying accuracy (dotted, right ordinate,
Hellinger distance).
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SIR obtained an approximate solutions to the online filtering problem in 12
seconds using 5 000 000 samples, and in 2 minutes when using 50 000 000 samples,
and only requires storage for all samples. In fact, Figure 2.7 shows that the
SIR algorithms scales linearly with the number of random variables (evaluated
on 10 different models over 50 timesteps, each) in an ADBN and shows that
approximate inference in large ADBNs is even feasible when considering the
absolute running time of the SIR algorithm.

2.5 Discussion and Related Work
Using an ADBN has the benefit of anticipating indirect causes per timestep in
an over-the-time evolving process and ADBNs permit cyclic dependencies from
local points of view. Some random variables need to be identified as activator
random variables, on which minimal observation sets are enforced (Theorem 2.1:
any acyclic constellation of probably active activators is allowed) or require
different modeling approaches (see later Chapter 5). Note that, we come from
a point of view where activators naturally exist in the modeled domain, and,
in fact, Proposition 2.2 shows that classic (diagonal) DBNs are significantly
restricted as well. We conclude that cyclic, as well as, diagonal ADBNs are only
usable for certain instantiations of all random variables. To emphasize that the
restrictions on cyclic ADBNs are far smaller than the identified restrictions on
diagonal ADBNs, we explicitly compare the numbers of allowed instantiations in
cyclic (Theorem 2.1) and diagonal ADBNs (Proposition 2.2) per timestep in the
following propositions.

Proposition 2.8 (Number of indirection-free instantiations in diagonal ADBNs).
Proposition 2.2 enforces that instantiations (~x0:t,~a1:t) of ( ~X0:t, ~A1:t) of a dense
diagonal (A)DBN cannot contain two possibly active activator instantiations at∗i,
ati∗ to obtain an intended joint probability P (~x0:tᵀ ,~a1:tᵀ) result. Thus, the set of
active activators in an instantiation ~at must form a uniformly directed bipartite
graph where isolated nodes belong to a fixed group. For n = | ~Xt| state variables,
the number of these bipartite digraphs is given in Sequence A001831 by Sloane
(2015). For every allowed activator constellation ~at, 2n ~Xt-instantiations are
possible. The total number N /

n of regular instantiations of a joint probability in
a dense inter-timeslice (A)DBN with n state variables is therefore

N /
n = 2n ·

n∑
k=0

(
n

k

)
·
(
2k − 1

)n−k
N

Proposition 2.9 (Number of regular instantiations in cyclic ADBNs). Theo-
rem 2.1 enforces that instantiations (~x0:t,~a1:t) of ( ~X0:t, ~A1:t) do not contain a cy-
cle w.r.t. active activators to obtain a well-defined joint probability P (~x0:tᵀ ,~a1:tᵀ)
result. Thus, the set of active activators in an instantiation ~at must form a
directed acyclic graph (DAG), where every active activator atij ∈ ~at represents an
edge from a node i to j in the DAG. The number of DAGs for n = | ~Xt| nodes
is given in Sequence A003024 by Sloane (2015). For every allowed activator
constellation ~at, 2n ~Xt-instantiations are possible. The total number NOn of
regular instantiations of a joint probability in a dense intra-timeslice DBN with
n state variables is therefore

NOn = 2n ·A003024n N
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Figure 2.9 shows both curves of Proposition 2.8 and Proposition 2.9. Even
in a logarithmic plot, a cyclic ADBN has an exponential advantage in favor of a
classic diagonal (A)DBN when considering the number of allowed instantiations
per timestep.
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Number of allowed instantiations of ( ~Xt, ~At) over n = | ~Xt|

Figure 2.9. Cyclic ADBNs (NOn, solid, Proposition 2.9) clearly outperform classic
diagonal DBNs (N /

n, dashed, Proposition 2.8) in the number of allowed instantiations
of ( ~Xt, ~At) per timestep. (semi-logarithmic plot)

The need to anticipate indirect influences originates from coarse observation
timesteps, where indirect influences must be anticipated to explain observations.
While we motivate coarse timesteps from an unavailability of observations at a
finer time-scale, the choice of coarser timesteps is also motivated by computational
feasibility. Not being bound to the finest available observation granularity relaxes
the rate of needed time-updates and motivates Asynchronous DBNs by Pfeffer
and Tai (2005) using Nodelman, Shelton, and Koller’s (2002) Continuous-Time-
BNs (CTBNs). Asynchronous DBNs provide a distributed, decentralized update
of nodes in a DBN, instead of enforcing a synchronized update of all nodes
in a DBN at the smallest given update frequency. Still, Asynchronous DBNs
encounter the same problem given in Proposition 2.2 of anticipating indirect
influences during one timestep, if observations are not known at a near continuous
time granularity. CTBNs are motivated from a perpendicular perspective taken
in ADBNs: observations are fully known at an infinitesimal small time granularity
without hidden variables. A combining view on ADBNs and CTBNs is later
discussed in Section 3.3.

Our work considers dynamic Bayesian networks as a stationary process over
time, where random variables and dependencies between them represent a causal
influence, and a time represents an actual flow of a wall-clock time. Further,
we consider random variables with discrete domains and consider all random
variables to be potentially observable. The same view on dynamic Bayesian
networks is taken by Sanghai et al. (2005) in their work on relational DBNs
and by Jaeger (2001) in his work on recursive relation probabilistic models.
Both works follow the intention of Pearl and Russell (2003) to model causal
relationships instead of reasoning processes and extend DBNs to relational
domains. Both, Jaeger (2001) and Sanghai et al. (2005), consider timesteps
at a near infinitesimal small time granularity s.t. only single events occur per
timestep, by which both circumnavigate the problem of anticipating indirect
influences under an acyclicity constraint of relations. Nevertheless, it remains an
interesting future work to integrate an ADBN’s adapting structure per timestep
into relational domains.
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DBNs with changing structure over time are also the main focus of non-
stationary DBNs by Robinson and Hartemink (2008) and of time-varying DBNs
by Song, Kolar, and Xing (2009). However, Robinson and Hartemink (2008)
and Song et al. (2009) take a fundamentally different perspective on changing
structures where changing structures represent an evolutionary change of a
structure over time during a long evolutionary process and structures are slowly
modified by a set of possible actions. ADBNs can rapidly change over time,
namely at every timestep depending on a specific context. A need for a sometimes
rapidly switched structure has also been presented by Yoshida, Imoto, and Higuchi
(2005) by using Markov switching in linear models in an application towards gene
networks, but veers away—unlike ADBNs—from a world-representing first-class
declaration character of (D)BNs as emphasized by Pearl and Russell (2003). In
fact, ADBNs succeed non-stationary DBNs, and every non-stationary DBN can
be modeled as an ADBN, as it will be discussed, later, in Chapter 5.

Dynamic Bayesian networks in which actual dependencies depend on a
specific context of random variables are a main focus of Dynamic Bayesian
Multinets (DBMs) by Bilmes (2000) and represent a form of dynamic Bayesian
networks similar to our work. However, in a DBM a value of a single, externally
introduced, variable (Q) steers a structure of a network by introducing a new
syntax using so-called dependency functions. Encoding every possible structure
in one variable introduces a significant overhead in specifications and veers away
from a world-representing declaration. In ADBNs multiple activator variables
are part of a domain and, thus, do not introduce a modeling overhead. Further,
activator random variables adhere all properties of classic random variables
neither introducing a new syntax nor a new semantics. On top of that, in
an ADBN a higher degree of expressiveness is achieved, as activators can be
left unobserved, representing that part of a specific structure is left unknown.
Nevertheless, any DBM is transformable into an ADBN, but not vice versa, as
DBMs explicitly do not support proactively designed cyclic dependencies and
run into problems involving indirect influences as discussed in Proposition 2.2.

A further consideration of roles and implications of context-specific inde-
pendencies in probabilistic graphical models (PGMs) is done by Milch et al.
(2005) focusing on an increased expressiveness of PGMs by the framework of
(infinite) contingent Bayesian networks (CBNs). In CBNs edges are labeled with
instantiations of some random variables, if the edge, i.e., dependency, is subject
to a context-specific change. This edge-labeling follows a similar motivation
as activator random variables do, and, similarly, an ADBN-activator-random-
variable-instantiation AXY = +axy can be seen as such an edge label in CBNs.
Most notably, Milch et al. identify that certain domains cannot be modeled as one
acyclic PGM and cyclic dependencies are required as we have as well motivated
by the taintedness domain. However, Milch et al. (2005), similarly to Geiger and
Heckerman (1996), introduce a novel calculus for their context-specific PGMs,
which stands in a significant contrast to ADBNs. In ADBNs no novel calculus is
required, no external “outerloop” is required, and all random variables, CPDs,
and the JPD as the product of all locally defined CPDs are business as usual.
Moreover, CBNs make acyclicity constraints explicit by exclusive edge-labels,
i.e., it is impossible to instantiate a (unrolled) cyclic CBN, whereas, in the
ADBN formalism, a cyclic ADBN may be instantiated/unrolled, as regularity
constraints are never enforced or required to become explicit. As Chapter 4 will
show, this circumstance is highly beneficial, as not only acyclicity is a regula-
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rity constraint. Moreover, we have shown that classical algorithms such as the
forward-backward algorithm remain applicable for solving filtering or smoothing
problems in ADBNs without any significant modification. While CBNs may be
able to represent ADBNs to some extent, it remains unclear whether the novelly
introduced CBN-calculus still allows for these algorithms to persist and remain
applicable.

Our proof that an ADBN template B→ can be based on a cyclic graph
under certain conditions is based on an equivalence of an unrolled dynamic
Bayesian network whose instantiations are equivalent to instantiations of an
acyclic dynamic Bayesian network. This equivalence allows ADBNs to be
designed with cyclic structures proactively, as cycles are first resolvable in an
instantiation and, in fact, ADBNs represent all structures with which observations
are explainable. Sets of equivalent classes of graphs are also considered by Acid
and de Campos (2003) for more efficient structure learning in Bayesian networks.
Learning ADBNs represents a novel research area of Bayesian network learning,
as a structure is not known in advance and can only be designed, i.e., learned,
proactively and is therefore discussed in the following Chapter 3.

A view on DBNs as, e.g., taken by us, is significantly more expressive than
viewing DBNs as an unrolled hidden Markov model, where specific variables must
be constantly observed and a view over “time” is used to resolve cycles, instead
of representing a wall-clock time. Notwithstanding, if cyclic models are intended
to be designed, one could switch to chain graphs as described by Drton (2009)
or general Markov networks. However, by switching to (partially) undirected
models one loses the direct and intuitive interpretation of locally specified
conditional probability distributions by introducing a burden of computing non-
local normalization quotients. On top of that, an undirected model inherently
models a different domain as undirected edges imply symmetric influences,
whereas in an ADBN one can specify asymmetric influence strengths. Further, a
cyclic Markov network models a steady state influence domain, where influences
let random variables converge to a stable state. The latter is an application
of a diagonal DBN, where a cyclic directed graphical model is unfolded into a
diagonal DBN and simulated over a long timeperiod to obtain said stable state.
Note that, the “misuse” of time to simulate this cyclic behavior is exactly the
problem that motivated this thesis and leads to the problem of being unable to
anticipate indirect influences in one timestep of a DBN, if time is supposed to
represent an actual wall-clock time. Nevertheless, as Proposition 2.3 shows, an
ADBN can model any DBN and can therefore also be used to simulate feedback
loops, i.e., cyclic dependencies that do not resolve to be acyclic.

Our work is significantly based on activator random variables, which ex-
ploit context-specific independencies in Bayesian networks. The presence of
context-specific independencies and their advantages for easier specifications and
representations of local parameters has notably been described by Boutilier et al.
(1996). Poole and Zhang (2003) extend work by Boutilier et al. (1996) in order
to exploit context-specific independencies for more efficient exact reasoning in
(dynamic) Bayesian networks by considering effective independencies in instanti-
ated structures. Notwithstanding, their work was fundamental for our work, but
the authors solely focused on performance optimization, whereas we focus on
increasing expressiveness of DBNs for anticipating indirect influences correctly
by rapid adaptations to (even unknown) contexts.
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Recent advances in probabilistic logic languages by Fierens et al. (2015) and
de Raedt et al. (2007) can encode and simulate (dynamic) Bayesian networks
using probabilistic rules. Often probabilistic logic languages are not subject to
acyclicity constraints as a reasoning process is not based on Bayesian inference,
but are reduced to other commonly known computational problems. This means
that similar answers to inference queries in ADBNs are obtainable using, e.g.,
works by de Raedt et al. (2007) by adequate specifications of probabilistic rules,
but then procedural rules are designed instead of utilizing a DBN as a first-class
representation of a causal process.

We have discussed the complexity of problems over time and have shown that
in an ADBN one obtains the same, and even simpler (see Example 2.6) complex-
ities as in classic DBNs for solving commonly known query answering problems.
However, like in any other DBN, the complexity in terms of number of random
variables for solving query problems demands approximate inference techniques.
We demonstrate that approximate inference techniques solve inference problems
in ADBNs under reasonable complexities and derive an approximation technique
for dense intra-timeslice ADBNs. As dense intra-timeslice ADBNs represent
a superclass (Proposition 2.3) of all intra-timeslice ADBNs, the technique is
universally applicable to other ADBN models.

Further, we show that familiar approaches to approximate inference in DBNs
remain applicable in cyclic ADBNs, even over long periods of inference time. Ho-
wever, unlike exact inference, the demonstrated approximate inference technique
requires an effective topological ordering to become explicit, which is obtained
for acyclic observations by a topological topological sort of ~b1:t. Performing a
topological sorting does not represent a bottleneck and the requirement does
not come as a surprise, as sequential importance sampling is an adaptation of
likelihood weighting, which does require a topological ordering similar to prior
and rejection sampling (cf., Russell & Norvig, 2010, pp. 530–535). However, not
only contexts of activators can assure regularity, as Motzek and Möller (2015a)
(cf. Chapter 4) have shown. It is therefore desirable to find an approximate
inference technique for ADBNs that does not require a topological ordering to
become explicit beforehand. Considering that Gibbs sampling is an approximate
inference approach for Bayesian network that is not based on a topological
ordering and is only based local conditional independencies, an adaption of
Gibbs sampling towards approximate inference in dynamic (activator) Bayesian
networks is a promising research field for future work.

Notwithstanding, it is possible that a set of observations is not regular in
a particular situation, e.g., when time granularity is chosen too coarse or too
few observations are acquired. In such a particular situation, a cyclic ADBN
may return spurious results, which is verifiable by Theorem 2.1, i.e., satisfaction
of regularity conditions is used as a postponed sufficiency check to obtain well-
defined results. Note that in any situation where an observation does not assure
regularity in a cyclic ADBN, a diagonal ADBN will deliver spurious results as
well, as every cyclic observation immediately includes the necessity to anticipate
indirect influences. Furthermore, in contrast to work by Milch et al. (2005),
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these conditions neither become explicit, nor are enforced, nor need be checked
once one trusts that observations will be regular, as solutions to commonly
known inference problems are not based on any of these conditions and are
defined directly on the global semantics of ADBNs. Moreover, Chapter 5 will
introduce a solution to insufficient structural context information. Nevertheless,
in a situation where a context is actually observed to be cyclic, i.e., too many
active activators are observed, an action to assure well-definedness is needed.
Such an action can be to investigate on novel regularity predicates, as done in
Chapter 4, which shows that even cyclic observations may be regular. If no
novel regularity predicates are applicable, an invasive action to the observation is
required. Such an invasive action implies a willful modification of the real world,
which stands in a significant conflict with our views on Bayesian network as a
first-class representation of the real world. We, therefore, refrain from deriving
such an invasive action and advise to rethink the underlying model and problem
in such situations. Still, we briefly sketch a possible approach to modifying
observations to assure regularity in Chapter 7.

2.6 Conclusion
We have shown that indirect causes in dynamic Bayesian networks cause conflicts
in representing causality. These conflicts arise from using a modeled dimension
for assuring syntactic requirements. By identifying activator criteria of random
variables in (dynamic) Bayesian networks, we introduce ADBNs and are able
to move acyclicity constraints from a design phase to a later operation phase.
Without the need of external reasoning frameworks, degrading a Bayesian network
to a reasoning process, we obtained a solid mathematical basis similar to Bayesian
networks with a causally correct consideration of indirect causes in dynamic
Bayesian networks. ADBNs provide the ability to intrinsically let a DBN adapt
to observed contexts, where a DBN’s structure is not known in advance and
changes over time while maintaining a Bayesian network as a world-representing
first-class declaration.

In this chapter, we show that ADBNs exist under an exploitation of context-
specific independencies of activator random variables. Still, by considering
further properties of local CPDs, we later show in Chapter 4 that not only
activator random variables are able to assure regularity.

Local semantics of specified CPDs enable an expert to validate individual
CPD parameters, instead of requiring a validation of inferred results. This
is highly beneficial for applications where large datasets of ground truth are
unavailable and experts’ assessments must be incorporated directly. We utilize
ADBNs and exploit their local semantics later in Chapter 6.

While an ADBN allows for a local and causal representation of dependencies
by an expert, such an expert might not always exist, or must be assisted in
specifying locally interpretable CPDs. In such a particular situation, CPD
parameters must be learned from possibly incomplete datasets, which poses an
interesting new problem in ADBNs addressed in the following chapter.
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Chapter 3

Learning Dynamic Bayesian
Networks where Structures
Cannot be Known in Advance

While ADBNs are suited as a first-class representation of the world by the use
of local and global semantics, not always there is a domain expert available who
has the precise expertise to define a complete (A)DBN for a particular domain.
In that particular situation the expert must be supported, or even be replaced,
by a learning approach for (A)DBNs, which learns an ADBN from long, but
incomplete, sequences of partial observations. However, learning ADBNs poses
two imminent novel challenges: an ADBN’s structure can be rapidly changing at
each single timestep and a structure cannot be known in advance.

To more clearly motivate the following abstract statements and problems,
consider the following example from the taintedness domain.

Example 3.1 (ADBN learning challenges). Given a long, but incomplete, se-
quence of observations of compliance infringements in a company, it is of utmost
interest to learn a cyclic ADBN to precisely predict future compliance violations
and to reconstruct events that lead to previous infringements. However, on
one day not all message transfers were obtainable, and are therefore missing in
the data available for learning. One must now consider all potential message
transfers during that day, based on remaining information about the surrounding
days, e.g., known compliance adherences or violations. If one would know a
precise structure and all parameters of a required ADBN, one could reason about
all potential message transfers by solving a classical offline smoothing problem.
However, these structures and parameters shall be learned. Moreover, the big-
gest challenge is that a required structure in question depends on these message
transfers and rapidly changes at every timestep, i.e., first once one knows the
message transfers, one can decide on a structure, which is required in the first
place to reason about these transfers.

Commonly, one is concerned with two problems when learning DBNs: (i) in-
complete data, i.e., some instantiations of random variables are missing in data,
and (ii) an unknown structure, i.e., the presence of random variables and their
respective domain is known, but their causal relationships are unclear. Mo-
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reover, one distinguishes between two forms of learning: parameter learning,
i.e., learning parameters of local CPDs, and structural learning, i.e., learning
dependency structures between random variables. Naturally, structural learning
and parameter learning must be intertwined.

Classically, problems (i) and (ii) are approached in three (incrementally repe-
ated) steps by (1) obtaining a structure, (2) restoring hidden/missing variables
in incomplete data based on a structure and parameter candidates, and (3) opti-
mizing, or rather, learning new parameters. If a structure is known, (1) is trivial,
and an incremental repetition of (2) and (3) learns parameters from incomplete
data, which is known as the EM-algorithm. If a structure is unknown, (2) cannot
be performed, and different approaches exist for obtaining structures, such as
a fixed bootstrapped heuristic search, or, an incrementally repeated heuristic
search based on newly optimized parameters. Friedman, Murphy, and Russell
(1998) call the former a parametric EM approach, where a structure of a (D)BN
is once fixed during (1) and an algorithm iterates between (2) and (3) to perform
parameter learning. If a parametric EM approach does not deliver satisfying
results, the complete procedure is repeated based on a different choice in (1).
Friedman (1998) introduces the structural EM algorithm as a more efficient
learning approach towards BNs under an unknown structure, which has been
applied to DBNs by Friedman et al. (1998). The structural EM algorithm iterates
between all three steps, i.e., incrementally optimizes and learns a structure as
well as CPD parameters at every repetition.

In classical structural EM algorithms a structure is assumed to be constant
over time, i.e., it is assumed that there exists one structure which is able to
explain a process at time t = 1, as well as at, say, time t = 500. However,
the previous chapter shows that an ADBN rapidly adapts to a specific context
at every timestep, which must be incorporated by a learning approach. That
structures do not necessarily remain constant over time has, e.g., been discussed
in the form of non-stationary DBNs, where structures slowly evolve over time.
Robinson and Hartemink (2008) show that even for evolving structures, learning
remains possible and is highly relevant for interpreting data. However, a structure
only changes slowly over time, and not at every timestep. Therefore, Robinson
and Hartemink’s (2008) approach is not directly applicable for ADBN learning.
However, a much deeper challenge is imminent for finding a learning approach
towards ADBNs: Classical learning approaches assume that for the act of
restoring values of missing variables a structure remains constant. This means
that a calculation of a distribution of potential value-candidates is based on one
(previously optimized) structure. This is where the pertinacious challenge lies:
In ADBNs an effective structure is not knowable in advance, i.e., a required
structure changes and is only identifiable in retrospect given a specific context,
i.e., a set of instantiations in data or observations. This means that there exists
no single structure on which value candidates can be inferred, and classic learning
algorithms are not applicable for ADBN learning. If one fixes a structure prior
to inference, one immediately fixes instantiations of activators, which, if missing
in data, must be inferred based on all possible encoded structures of a timeslice.

The contribution of this chapter can be summarized as follows: By proposing
a learning approach for ADBNs for problems where effective structures are not
known in advance, are rapidly changing over time, and are not directly evident
from data while learning, we effectively fuse structure learning with parameter
learning into one atomic task to learn ADBNs from incomplete data under
unknown structures in this chapter. While we motivate cyclic dependencies
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to support a causal and local parametrization of ADBNs, it might be possible
that “diagonal” (A)DBNs can be learned, whose parameters do not bear a local
semantics, but which deliver satisfying inference results anticipating indirect
influences. To investigate the learnability of diagonal (A)DBNs we show, in this
chapter, that not even the most general form of diagonal DBNs can be trained
to anticipate indirect causes, neither by classical learning approaches nor by our
novelly proposed learning procedure designated for ADBNs, which is able to
learn highly accurate cyclic ADBNs.

This chapter is structured as follows: In Section 3.1, we derive and propose a
learning approach for ADBNs from data containing hidden variables. Based on
the derived approach, we discuss and experimentally evaluate different scenarios
of hidden variables and modeling approaches in Section 3.2. We discuss our
results and related works in Section 3.3 and conclude with Section 3.4.

3.1 Learning Structures where Structures are not
Knowable

Learning any probabilistic model is based on large amounts of data in a dataset.
A dataset ~d0:t is a time series of instantiations of some random variables in ~X0:t

and ~A1:t, i.e., every datum ~dt is not necessarily a full instantiation of a timeslice t.
Without loss of generality, we consider that learning is performed only on a single
(long enough) time series ~d0:t of data. This means, a DBN represents a process
evolving over time, where time represents an irreversible wall-clock time at a
specific granularity, instead of an arbitrary construct of operation-”time”-slots.
This means, an initial BN fragment B0 is only instantiated once, making it
impossible to learn prior probabilities of B0.

Often, learning-approaches and, especially, EM-approaches are introduced
informally, by reducing learning to a simpler case of complete datasets, i.e., all
values of variables are available for learning. Learning parameters from complete
datasets effectively reduces to counting how often an event associated with a
parameter is seen, i.e., learning from complete datasets is linear in the number
of parameters and the size of the dataset. Based on learning from complete
datasets, learning from incomplete data is often introduced via an idea that
virtual data counts are created by inferring all possible value candidates from
one incomplete datum. One has to hopefully expect that such an approach is
applicable to cyclic ADBNs and that no external frameworks analyzing structures
separately are required. As a cyclic ADBN represents multiple structures and
ADBNs are subject to a novel acyclicity constraint, applicability of classical
learning approaches is not granted, but is desired. We therefore, carefully derive
a classic EM approach from a pure probabilistic point of view. To do so, one
has to carefully distinguish between to-be-learned parameters and a numerical
instantiation of them.

Notation 3.1 (Parameters). Let ~Θ represent the vector of all to-be-learned
parameters as variables. Let ~ϑ represent a specific numerical instantiation of
all parameters ~Θ. Let P~ϑ(·) represent a probability derived based upon a set
of a parameter instantiation ~ϑ, i.e., P~ϑ(·) is a number. Let P~Θ(·) represent a
probability based on a set of parameter variables in ~Θ, i.e., P~Θ(·) is an equation
with variables. Given a set of instantiated parameters ~ϑ, there exists a specific
probability P~ϑ(~d) of observing a dataset ~d, i.e., the likelihood of the data.
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A dataset ~d0:t induces a probability distribution over all possible instantiations
~x0:t, ~a1:t conforming with ~d0:t under parameters ~ϑ that could have been observed,
also called the dataset distribution:

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) = α · P~ϑ( ~X0:tᵀ , ~A1:tᵀ)

As before, for inference, a dataset ~d0:t is seen as observed random variables
(~z,~b)0:t.

Given a dataset distribution P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t), the probability of observing
(note, not to have observed) ~d0:t under parameters ~Θ is

P~Θ(~d0:t) =
∑
~ζ0:t

∑
~β1:t

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) · P~Θ( ~X0:tᵀ , ~A1:tᵀ) , (3.1)

further called the likelihood of the dataset, and where instantiations in ~d uniquely
identify the instantiation of respective random variables in ~D. Note that both
sums do not iterate over all instantiations; instantiations that are not iterated
over have probability zero given ~d0:t, as they do not conform to the dataset.

Following a maximum likelihood approach, it is the goal to find a parameter
instantiation ~ϑ∗ of ~Θ that maximizes the probability of observing ~d0:t, i.e.,

~ϑ∗ = arg max
~Θ

P~Θ(~d) = arg max
~Θ

log
(
P~Θ(~d)

)
, (3.2)

where an expectation maximization (EM) approach iterates between calculating
a distribution P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) (E-step) and Eq. 3.2 (M-step). In fact, there
is a trivial algorithm to obtain P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t), but which requires an
intractable amount of memory, which is why in the following an extended
smoothing distribution is used.

Definition 3.1 (Extended smoothing problem). Given a probabilistic knowledge
base B0, B→, the extended smoothing problem is the problem of determining all
extended smoothing distributions k, k < t over all random variables in timeslices
k and k− 1 while considering evidence ~z 0:tᵀ ,~b1:tᵀ until time t. This is, to obtain

P ( ~Xjᵀ , ~Ajᵀ , ~Xj−1ᵀ , ~Aj−1ᵀ |~z 0:tᵀ ,~b1:tᵀ) , ∀j : 1 ≤ j < t .

We denote a parametrized extended smoothing problem as
ExtdSP(B0, B→, ~z 0:t,~b1:t, t). N

Finding exact solutions to extended smoothing problems is discussed in
Theorem C.1 in the appendix, and, in summary, is linear in t and only requires
storage for a distribution over all random variables of two timeslices.

For brevity, further derivations are given in Appendix C as the proof for the
following theorem on the derived learning approach. Notwithstanding, when
learning ADBNs one must consider activator criteria, for which we use a partition
of activator instantiations, defined as follows.

Definition 3.2 (Activator instantiation partitioning). Let Xi
λ ∈ ~Xi be a state

variable and let PΘ(xiλ|~xi
ᵀ\xiλ,~ai

ᵀ
λ , x

i−1
λ ) be a to be learned parameter. We par-

tition ~aiλ into two vectors ~aiλ =
〈
+~aiλ,¬~aiλ

〉
containing active and inactivate
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activator random variables. Then, let ~xi
ᵀ\xiλ =

〈
~xi�λ, ~x

i
�λ

〉
be a partition of rele-

vant and irrelevant dependencies of Xi
λ under an instantiation ~aiλ corresponding

to the activator criteria from Definition 2.2, such that

∀k +aikλ ∈ +~aiλ : xik ∈ ~xi�λ
∀k ¬aikλ ∈ ¬~aiλ : xik ∈ ~xi�λ .

Respectively let ~Xi
�λ,

~Xi
�λ represent the corresponding random variables of in-

stantiations ~xi�λ, ~x
i
�λ. N

Using Definition 3.1 and Definition 3.2 one obtains an EM procedure.

Theorem 3.1 (EM procedure). Repeatedly evaluating

P ∗ϑ(xiλ|~xi
ᵀ\xiλ,~ai

ᵀ
λ , x

i−1
λ ) =

γ′(Xλ = xλ)

γ′(Xλ = +xλ) + γ′(Xλ = ¬xλ)
(3.3)

with γ′(Xλ = xλ) =

t∑
i=1

∑
~ζi−1\Xi−1

λ

∑
~βi−1

∑
~βi\ ~Aiλ

∑
~Xi�λ

P~ϑ( ~Xi−1ᵀ\Xi−1
λ , xi−1

λ , ~Ai−1ᵀ , ~Xiᵀ
�λ, ~x

iᵀ
�λ,~a

iᵀ
λ ,

~Aiᵀ\ ~Aiλ|~d0:t) ,

and

P ∗ϑ(Aiµν) =
γ′(Aµν = aµν)

γ′(Aµν = +aµν) + γ′(Aµν = ¬aµν)
(3.4)

with γ′(Aµν = aµν) =

t∑
i=1

∑
~ζi−1:i

∑
~βi−1

∑
~βi\Aiµν

P~ϑ( ~Xi−1ᵀ , ~Ai−1ᵀ , ~Xiᵀ , ~Aiᵀ\Aiµν , ai
ᵀ
µν |~d0:t) .

for all parameters in ~Θ, is an algorithm that learns model parameters from
incomplete data, where even structural information, i.e., activators, are hidden.
Every iteration increases the likelihood of being able to observe ~d0:t under an
optimized parameter set ~ϑ∗ and converges to a local optimum. At every ite-
ration, one evaluates γ′(·), and respectively solves ExtdSP(B0, B→, ~z 0:t,~b1:t, t)

to obtain P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t), (Expectation-step), and consecutively evaluates
P ∗ϑ(·), (Maximization-step). N

That the proposed algorithm maximizes the likelihood in each iteration is
proven in Proof of Theorem 3.1 by a continued, detailed derivation on the
procedure, which can be summarized as follows: By summing out a specific
parameter, Eq. 3.2, i.e., the maximization of the likelihood is analytically solved in
a closed form by partial derivation and finding zeros. Under careful consideration
of identical parameters due to activator constraints, one obtains all equations
stated by Theorem 3.1 after several transformations. The convergence of the
proposed EM procedure is shown empirically in the following section.

To summarize, a learning approach for dense intra-timeslice ADBNs, where a
structure cannot be known in advance, shows similar structure to EM algorithms
for DBNs. In fact, one obtains a commonly known form of “expected counts”
(see also Russell & Norvig, 2010, pp. 820-824) as a closed form for optimized
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parameters ~ϑ∗, as hoped for. Note that, at no time an effective structure is made
explicit, and throughout the learning procedure a structure of each timeslice
remains unknown. Therefore, we say that learning ADBNs fuses structure- and
parameter learning into one atomic phase.

A dense intra-timeslice ADBN represents a superclass of all possible Markov-1
intra-timeslice DBN structures and is allowed to contain cyclic dependencies,
as long as, a final instantiation of such network is acyclic. This means that
multiple structures and, therefore, multiple joint probability distributions are
represented by one ADBN. This is a crucial point, as, the E-step is performed
based on multiple joint probability distributions. This is a required property,
as first an expected distribution obtained past an E-step allows a structural
analysis. Classic approaches apply heuristics prior to an E-step to improve or
change structures (or rather, a set of potential structure candidates), but an
E-step is performed on every single separately. This means that, if one uses only
one structure to create “virtual data points” from incomplete data, one would
immediately fix the to-be-inferred instantiations of activators as well, i.e., create
too few and incorrect virtual data points.

In the previous chapters we have introduced the taintedness domain, where
cyclic ADBNs arise naturally, and diagonal (A)DBNs cannot be parametrized
causally from local perspectives. In the following section we learn taintedness
domains from datasets and evaluate the proposed learning approach on cyclic
ADBNs and answer the question whether diagonal (A)DBNs could actually learn
suitable representations of the taintedness domain.

3.2 Convergence and Hidden Variables

This section explores and empirically evaluates different situations of hidden
variables while learning ADBNs. For empirical evaluation, we learn models
from multiple datasets gathered from simulated taintedness domains over long
time sequences with N = | ~Xt| employees, i.e., long (incomplete) periods of
observations of compliance infringements in a virtual company. We generate
these datasets by a simple sampling procedure under randomly generated CPDs
following Definition 2.2 in the taintedness domain; in detail by an SIR approx-
imation (cf. Section 2.4) using one sample. To avoid impossible situations we
constrain local CPDs to contain only probabilities in the range [0.01, 0.99] and
restrain all priors to be 0.5.

To prove the convergence of learned parameters ~ϑ∗ (as stated by Theorem 3.1)
towards the original model parameters, we consider the absolute error between
learned and original CPDs in different situations of missing data for cyclic and
diagonal (A)DBNs. To validate learned models, we generate new sequences
of observations and compare the accuracy of inference results for filtering and
smoothing problems. To do so we calculate the Hellinger distance, as previously
used in Section 2.4, between results obtained by the learned model and results
obtained from the original model. Again, one must expect small differences of
inference results, i.e., a low, near 0 Hellinger distance.

In summary, more than 200 experiments confirm that learned CPDs, using
the learning procedure from Theorem 3.1, converge to a local optimum that
closely represents the original CPDs, even from incomplete datasets with a very
low observability spaces (see Figure 3.2). In combination with the analytical
Proof of Theorem 3.1, we consider Theorem 3.1 as proven. �
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In the following paragraphs, we apply and discuss results of the learning
procedure for different observability spaces and structural models.

Learning from complete data If ~d contains full instantiations ~x0:t,~a1:t, then
a probability distribution P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) allocates all probability mass at
P~ϑ(~d0:t|~d0:t) = 1.0, i.e., all other possible to-be-learned instantiations have
probability zero of having been seen. Informally this means, given complete data
for learning, learning parameters reduces to pure counts of observations.

As expected, learning from complete data achieves highly accurate results
in representing original local CPDs (Figure 3.2: ), and one obtains nearly
identical inference results (Figure 3.1: Hellinger distance near 0) compared
to results obtained from the original model. Note that, by adhering a correct
prior P (+atij) = 0.5 in a dataset, not all possible activator settings are formed.
This means, not all individual subset-structures are learned sequentially, but
that a complete dense ADBN containing all possible substructures is learned as
a bulk from data, without the need to analyze effective structures. As learning
from complete data does not require a calculation of P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t), it is
linear in the size of the dataset and the number of parameters (further discussed
in the following section.)

Can diagonal ADBNs learn indirect influences? In summary, no. The
necessity of ADBNs is motivated by a causal design approach and the need to
anticipate indirect influences. It is demonstrated that if a diagonal (A)DBN
is parametrized from a causal design perspective, spurious results are returned
and indirect influences are not anticipated. However, this raises an interesting
question: Can diagonal (A)DBNs learn from indirect influences and learn to
anticipate, or at least, simulate them? In order to answer this question, we repeat
the previous experiment with complete datasets for four employees and different
structures: (a) a cyclic, dense intra-timeslice ADBN (as previously), (b) a
dense, diagonal inter-timeslice ADBN, (c) a dense, diagonal inter-timeslice DBN,
and (d) a tree-structured DBN. The difference between (b) and (c) is that (b)
enforces activator constraints as done in Eq. 3.3, but (c) does not and is learned
by a classic EM algorithm. Learning a cyclic ADBN from complete datasets
consisting of 10 000 datapoints delivers inference results with an extremely low
Hellinger distance to the original model of around 0.03. To absolutely assure
that sufficient datapoints are available for learning, we increase the dataset size
to 50 000 datapoints in this experiment.

Case (d), a tree-structured DBN as called by Ghahramani (1997), represents
a previously undiscussed modeling approach where as much intra-timeslice
dependencies are modeled as possible and remaining dependencies are bent to a
previous timeslice. It was not discussed previously, as it is an arbitrary decision
on which dependencies are bent and which not. Generally, one could analyze
activator distributions to obtain a most likely structure, which is correctly
represented by intra-timeslice dependencies, and remaining dependencies are
bent to a previous timeslice, forming a hybrid model consisting of intra- and inter-
timeslice dependencies. However, in our domain, all structures are equally likely,
which is why one has to arbitrarily chose some, e.g., chose all downward-pointing
(compare Figure 2.2, but for four employees) dependencies to be intra-timeslice.
Nevertheless, from a reasoning perspective, a desired influence between every
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random variable is present in each timeslice. However, these influences are then
modeled from a completely acausal perspective as dependencies then represent
cause→effect as well as effect→cause relationships at the same time. Therefore,
such acausal hybrid models stand in conflict with the view taken on Bayesian
networks in this thesis. Moreover, due to this acausality and inconsequence, the
parametrization of hybrid models becomes practically impossible for a human,
and parameters, i.e., CPDs, do not provide any local, nor intuitive understanding.
Such hybrid acausal models then require a spurious inverse-reasoning mechanism
over the complete model for specification and interpretation. Hence, tree-
structured DBNs could be learnable in theory, but learned model parameters
do not provide any meaning and learned models are only useful in black-box
approaches.

As one expects, experiments showed that learned CPDs heavily differ from
the original models. Still, diagonal ADBNs might be able to learn a different set
of parameters which “emulates” an anticipation of indirect influences. When va-
lidating learned non-cyclic models against observations requiring an anticipation
of indirect influences, experiments shown in Figure 3.1 show that diagonal and
tree-structured (A)DBNs deliver highly inaccurate results (Figure 3.1: Hellinger
distance of , , is above 0.15), even if learned from a reasoning per-
spective. In fact, filtering and smoothing distributions obtained from learned
non-cyclic ADBNs are almost as different from the original distribution as a
distribution obtained from completely random CPDs is (Figure 3.1: ). Note
that all experiments are performed using the same amount of data, and that
learning a tree-structured DBN is as computationally expensive as learning a
cyclic ADBN. A tree-structured ADBN performs slightly more accurately than a
diagonal ADBN, as, at least, half of all dependencies are coincidentally modeled
causally correctly, and some indirect influences implied by observations are then
handled correctly. However, a tree-structured model remains inconsequent, as it
is ambiguous which dependencies are modeled in which way.

Interestingly, cases (b) and (c), i.e., a diagonal DBN with and without
activator constraints, show similar results. Analyses of learned CPDs in both
cases revealed that models are learned where dependencies on other random
variables are eliminated, and a process solely based on a state-variable’s history
is learned, i.e., all CPDs encoded P (Xt

i | ~Xt−1ᵀ , ~At−1 tᵀ
i ) = P (Xt

i |Xt−1
i ). This

emphasizes that diagonal (A)DBNs simply do not understand indirect influences,
and cannot be learned from data containing indirect influences.

Furthermore, experiments on tree-structured DBNs (case d) were repeated
without enforcing activator constraints. In such DBNs a desired influence
between every random variable exists during one timeslice, and significantly more
parameters are learned, which could provide an increased accuracy compared
to other modeling approaches. However, experiments shown in Figure 3.1 show
that unconstrained tree-structured DBNs ( ) perform even worse than their
constraint counterpart, which may be explained by an overfitting to the training
dataset.

The following learning cases do not consider diagonal models anymore and
focus how cyclic ADBNs behave in extreme cases of incomplete data.
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Figure 3.1. Inference accuracy of learned models from complete datasets. Hellin-
ger distance (ordinate) of filtering and smoothing (lighter color) results displayed per
inference-timepoint (abscissa). Classic diagonal (A)DBNs (constrained , uncon-
strained ) and tree-structured (A)DBNs (constrained , unconstrained )
achieve unsatisfying inference accuracy. A learned cyclic model ( ) nearly comes to
the same conclusions as the original model. For reference, results of randomly generated
CPDs are given ( ). Average of 50 experiments displayed. Semi-logarithmic plot.
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Figure 3.2. Convergence of learned CPDs towards the original CPDs (mean of absolute
error, ordinate) over number of EM iterations (abscissa) from complete data ( ,
50 experiments), incomplete state variables Xt ( , 75 exp.), incomplete activator
random variables At

ij ( , 70 exp.) and incomplete Xt, At
ij ( , 10 exp.). For

reference, errors of randomly generated CPDs are given ( , 50 exp.). Learned from
10 000 data points in randomly generated ADBNs with N = 3. Semi-logarithmic plot.
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Figure 3.3. Inference accuracy of learned models from incomplete datasets. Hellinger
distance (ordinate) of filtering and smoothing (lighter color) results display per inference-
timepoint (abscissa). Same experiments and colors as in Figure 3.2. For reference,
results for randomly generated CPDs ( ) are given. Learned models nearly come to
the same conclusions as the original model, even when structural information ( ~At) is
missing. Semi-logarithmic plot.
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Hidden state variables are a common problem in classic hidden Markov
models, where certain state variables are constantly unobservable and whose
expected values must be restored during learning. In ADBNs no constant
structure exists, and we extend hidden variables in ADBNs by introducing
the problem of varying observability spaces, where roles of observable and
unobservable variables rapidly change at every timestep. Therefore, we randomly
exclude instantiations of variables ~Xt from each dataset at every timestep with
a probability of 0.5. This means that inside one dataset ~d0:t in every data ~dt

different instantiations of ~xt are missing, and are sometimes missing completely.
Figure 3.2 shows that after few EM iterations, learned local CPDs converge to a
local optimum closely resembling the original CPDs (Figure 3.2: ). Further,
inference results from a learned model are close (Figure 3.3: below 0.1) to
results from the original model.

Hidden activators in learning datasets ~d represent a novel problem of most
interest. If activator instantiations are missing in a dataset, actual structural
information for every timeslice is missing and must be restored based only on
remaining information. Note that, at least as much information must remain
to assure regularity of every learned ADBN (cf. Section 3.3). Therefore, we
observe a set of activators to be deactive in our experiments, i.e., the only known
structural information are independencies of a timestep and remaining structures
are actively learned. Indeed, this fuses structural and parameter learning into
one atomic phase.

Classic structural EM algorithms, e.g., proposed by Beal and Ghahramani
(2003) or Friedman et al. (1998), score graphical models to avoid overly complex
networks and to avoid small local optima formed by an EM approach. In order
to learn ADBNs without sufficient structural information, a similar approach
is incorporated into ADBN learning. Our experiments show that without full
activator instantiations, an EM approach converges towards too simple networks,
where no dependencies are present at all, i.e., a prior of near 0 for all P (+atij)
is learned. To overcome a tendency towards too simple models, one is able
to fix a prior of activators to a suitable estimation, e.g., the original value.
Experimental results of Figure 3.2 show that with a fixed prior for activator
variables, learned CPDs quickly converge to a local optimum (Figure 3.2: )
and deliver inference results in the same accuracy as when dealing with hidden
state variables (Figure 3.3: compare and , both below 0.1).

Hidden activators and state variables are the lowest form of observability
spaces. Structural information is partially hidden, and effects of remaining
influences between state variables are hidden as well. In this case, a structure
is not known in advance and structural context information is missing as well,
but information, from which structural context information can be restored, is
(partially) missing as well. Nevertheless, multiple experiments show that the
proposed EM algorithm with fixed activator priors converges to a local optima
with acceptable error (Figure 3.2: ) and which achieve satisfactory inference
results compared to the original model (Figure 3.3: ). Note that for these
experiments the length of each dataset was not increased, i.e., significantly fewer
individual instantiations in a datapoint are available for learning.
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3.3 Discussion and Related Work

Our approach for learning ADBNs is based on an EM approach for hidden
variables in BNs as, e.g., presented by Ghahramani (1997) and Friedman (1997).
In fact, Theorem 3.1 resembles a familiar “virtual” data count approach. Pro-
blems of hidden variables in addition to hidden structures have also been well
studied by Friedman (1998) and have been applied to DBNs by Friedman et al.
(1998), but all are subject to the assumption that a structure is knowable before
random variables are instantiated. Thus, structural EM algorithms are greatly
applicable to learning diagonal ADBNs, which, however, return spurious results,
but structural EM algorithms are not applicable to learning cyclic ADBNs, as
there exists no single structure on which an E-step can be performed.

A need for evolving structures over time has also been investigated by
Robinson and Hartemink (2008) in the form of non-stationary DBNs and by
Song et al. (2009) in the form of time-varying DBNs, which both find great
applications in the field of biomedicine. Robinson as well as Le Song present
learning approaches for such networks from complete datasets, i.e., no hidden
variables are considered, and focus on slowly evolving processes, where a structure
remains almost constant between two timeslices. Using an ADBN has the benefit
of being able to proactively model cyclic dependencies and to rapidly change
a structure depending on a context at every timestep and does not require an
explicit scoring and optimization of learned structures over time, even from
incomplete datasets. Models in which a context steers an effective structure are
a main point of (dynamic) Bayes multinets (DBMs) by Geiger and Heckerman
(1996) and by Bilmes (2000) as discussed in earlier chapters, and Geiger and
Heckerman (1996) presents learning approaches towards DBMs as well. Still, in
a DBM a structure is still bound to classic acyclicity constraints, and therefore
would lead to the same spurious results as one obtaines in diagonal ADBNs. Still,
as (diagonal) ADBNs are able to represent DBMs, as discussed in Section 2.5, the
presented learning approach for ADBNs is applicable to DBMs as well. The need
to anticipate indirect influences arises from naturally timesliced data, evolving
over time, known only in coarse grained timeslices containing hidden variables.
These are contrary domains suited for Nodelman et al.’s (2002) continuous time
Bayesian networks (CTBNs) and related learning approaches by Nodelman,
Shelton, and Koller (2003). Still, ADBNs and the presented learning approach
can be seen as an addition to CTBNs, where observations affect variables in
an uncertain coarse-grained temporal interval, while anticipating all potential
implications of hidden variables during these intervals. Moreover, a cyclic ADBN
contains all possible sequences formable by activator and state variables, and
not solely the most likely sequences. Therefore, when learning cyclic ADBNs
from data containing frequent, repeated sequences, such sequences must manifest
themselves in CPDs and Markov-n ADBNs are a direct application to mining
frequent sequences from incomplete, temporal datastreams. As shown by Saleh
and Masseglia (2008), such frequent sequences might only exist in certain context,
which is seen as a hidden variable in learning (cylic) ADBNs.
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The computational complexity of the proposed learning approach for incom-
plete data is exponential in the number of random variables and in the number
of missing instantiations in data. Please note that the same complexity, and
the same amount of learning data, is required for learning a classic DBN, e.g., a
tree-structured DBN and, still, DBNs show to be useful in practice. However,
as we have shown, classic DBNs such as tree-structured DBNs are unable to
anticipate indirect influences in extreme cases and return spurious results. Our
learning approach shows a similar schema to classic learning approaches and
is based on a smoothing distribution for which approximate solutions can be
found via sampling sampling based approaches. If “virtual” data points are
created by a sampling procedure, learning (A)DBNs reduces the complexity
of counting samples. Note that, for the scope of this chapter we used a dense
intra-timeslice ADBN, i.e., the most general intra-timeslice ADBN where all
activator random variables are present. The dense intra-timeslice is chosen s.t.
the proposed learning approach is universally applicable, as it encodes all possible
intra-timeslice DBN structures. Notwithstanding, in practice, not always all
dependencies are subject to a context-specific change, which will lead to fewer
random variables naturally. Nevertheless, learning an ADBN with 25 random
variables from complete datasets with 100 000 datums only takes 1.7s on average.

In this work, we consider situations where at least sufficient structural
independence information remains in data. By adequate specification of local
activator CPDs, it is possible to constrain ADBNs to assign zero-probabilities to
non-regular instantiations by assigning a belief over possible activator constellati-
ons, i.e., structures. This means that by an adequate modeling approach, deeply
discussed in Chapter 5, learning from data without any structural information,
i.e., completely missing activator instantiations, is possible. This is closely related
to the fact that a prior distribution over activator random variables must be fixed
in our approach and is directly related to finding adequate heuristics finding and
optimizing structures in structural EM algorithms. In fact, penalizing overly
complex structures, already represents a prior belief about potential structures.
As Chapter 5 discusses, a distribution over potential structure candidates is
directly embedded into the ADBN formalism and represents a plain additional
random variable, i.e., does not require an external framework for externally
creating DBN candidates. The latter ideas on intrinsically representing a distri-
bution over all possible structural candidates are achieved by specific parameter
settings of CPDs in Chapter 5, for which this chapter on learning is unaffected.
In one formalism therefore, structural- and parameter learning is collapsed to one
atomic problem and integrates reasoning under multiple structure candidates.
The latter idea is a novel view on work by Friedman and Koller (2003), but
without external frameworks and solved in one world-representing first-class
declaration of a Bayesian network.
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3.4 Conclusion
In this chapter we have derived a learning approach for ADBNs, where a structure
is only knowable in a specific context, i.e., an instantiation of random variables.
In fact, we are able to show that classical “virtual data counts” approaches remain
applicable, and, once again, that cyclic ADBNs do not introduce any modeling
or computational overhead. We demonstrate that even if parts of structure
relevant information are missing and, thus, no structure is knowable, ADBNs
are still able to learn model parameters which reciprocally decide an effective
structure. We have shown that not even the most general form of DBNs is able
to learn the taintedness-domain of the running example, and that cyclic ADBNs
are causally required. As ADBNs represent superclasses of Markov-1 DBNs,
parameter and structural learning of ADBNs are fused into one atomic phase of
constraint parameter learning, while being able to handle hidden variables and
hidden structural information.

With a novel modeling approach, introduced and discussed later in Chapter 5,
learning ADBNs fusing parameter- and structural- learning into one atomic
phase will be directly applicable to learning (dynamic) Bayesian networks under
hidden variables and unknown structures in one atomic phase without requiring
heuristics.

So far, regularity of ADBNs is assured by observations of activators. The
following chapter reconsiders regularity of ADBNs and shows that not only
activators are relevant for regularity, but contexts formed by all random variables
can assure regularity. This will show that cyclic activator observations can still
be regular.
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Chapter 4

Exploiting Innocuousness in
Bayesian Networks

Boolean combination functions in Bayesian networks (BNs) are often credited
a property stating that if a dependence is observed to be inactive (i.e., a
precondition observed to be false) it shall not “cause any harm” and its arc
becomes vacuous, i.e., could have been left out. We call such a property an
“innocuousness” property of conditional probability distributions (CPDs) and it
is of significant interest to formalize this property and to exploit it in ADBNs.
Arcs becoming vacuous in specific contexts extends regularity conditions of
observations and instantiations postulated by Theorem 2.1. To give an example
in the taintedness domain: messages from compliant employees, cannot taint
anyone, i.e., dependencies on compliant employees are irrelevant, and are not
subject to regularity constraints. Unfortunately, one can neither specify such
an innocuousness property in CPDs, nor formalize it up to now. Vacuous
dependencies have shown to be of valuable interest for efficient reasoning in
Bayesian networks, and an innocuousness property is widely associated with,
e.g., noisy-or combination functions. Further, being able to explicitly specify an
innocuousness property in CPDs provides more precise representations of the
world, as demanded and emphasized by Pearl and Russell (2003).

Formalizing an innocuousness property can almost be achieved with previously
discussed context-specific independencies (CSIs) introduced by Boutilier et al.
(1996), but consider the following example: Say, random variable X is directly
dependent on Y and C and one specifies a CPD P (X|Y,C). CSIs represent that
X becomes locally independent of Y in a specific context C = c ∈ dom(C), but
X stays dependent on Y in another context C = c′ ∈ dom(X). Boutilier et al.
(1996) formalize: P (X|Y, c) = P (X|c) holds, if ∀y, y′ ∈ dom(Y ),∀x ∈ dom(X) :
P (x|y, c) = P (x|y′, c), but there exists a c′ ∈ dom(C) s.t. ∃y, y′ ∈ dom(Y ),∃x ∈
dom(X) : P (x|y, c′) 6= P (x|y′, c′).

However, if one intends to formalize an innocuousness property stating that
a context C = c ∈ dom(C) “removes” itself (and not only another variable),
i.e., one would like to specify “P (X|Y, c) = P (X|Y )” in a CPD, one runs into
the problem that a formal definition is neither available nor easily possible: the
allegedly irrelevant random variable C in question is in fact the one that ought
to be relevant for specifying the independence. Informally, this means that other
variables can become independent in a context, but not the context itself.

73
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The previous chapters introduced ADBNs as a novel form of DPGMs that
are subject to different acyclicity constraint, by exploiting properties of activator
random variables, which themselves represent CSIs. While the form ADBNs
increases the global expressiveness of DPGMs, this chapter shows that, in fact,
activators increase the expressiveness of local CPDs by providing a formal
definition of an innocuousness property. Further, we exploit innocuousness
properties in this chapter to relax acyclicity constraints of ADBNs, namely that
not only instantiations of activators assure regularity.

The contribution of this chapter can be summarized as follows: By formalizing
a yet unexpressed innocuousness property in CPDs, expressiveness of local
semantics of CPDs is increased, and acyclicity restrictions on (A)DBNs are
relaxed. Based on graph enumeration techniques we quantitatively explore new
relaxations of syntactic restrictions of graphical models for Bayesian networks.

This chapter is structured as follows: In Section 4.1 we introduce the in-
nocuousness property, an abstract concept of multiple innocuousness contexts,
and formally define innocuousness using activator random variables in ADBNs.
Subsequently, in Section 4.2 we exploit the innocuousness property for relaxing
restrictions posed on (A)DBNs. We discuss our results and related work in
Section 4.3 and show that the utility of (A)DBNs is significantly enhanced by
exploiting innocuousness properties. The chapter concludes in Section 4.4 giving
an outlook to future chapters of this thesis.

4.1 Innocuousness
We introduce innocuousness informally as “an inactive node does not cause
any harm,” but one is unable to give a formal definition for such a property in
CPDs of classic (D)BNs. Often “accountability,” i.e., P (+x|¬∗) = 0 as defined by
Cozman (2004), is confused with the innocuousness property, but semantically
P (+x|¬∗) = 0 can also represent that exactly one false-dependence is responsible
for P (+x|¬∗) being 0 (cf. Section 4.3).

As an extension to context-specific independencies (CSIs) from Boutilier et
al. (1996), we define a concept of innocuousness contexts, with fewer restrictions
of CSIs. Boutilier et al. (1996) provide a formal definition for CSIs, where
a variable X becomes independent of a variable Y in a context ~C = ~c ∈
dom(~C), where X,Y 6∈ ~C. Therefore, CSIs allows specifying properties such as
P (X|Y,~c) = P (X|~c) in local CPDs. But, X,Y 6∈ ~C prevents one from specifying
that a context ~C = ~c removes one of its own random variables C ∈ ~C, e.g.,
“P (X|Y, c) = P (X|Y ).” Using activators in ADBNs we extend Boutilier’s work
to innocuousness contexts. We formally define that in a context ~C = ~c, a context
variable C ∈ ~C itself becomes irrelevant, which we call self-reflexive independence.
Say, in a context C = c ∈ dom(C), X shall become independent of C, given
C = c, e.g., P (X|c, ACX , ~Z) = P (X|ACX , ~Z). Using an activator-enriched CPD
we define this to hold for binary activator random variables if

∀x ∈ dom(X),∀~z ∈ dom(~Z) :

P (x|c, +aCX , ~z) = P (x|c,¬aCX , ~z) = P (x|∗,¬aCX , ~z) ,
(4.1)

where ~Z represents remaining further dependencies of X. Extensions to non-
boolean activator random variables are straightforward.
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This means, given C = c, ACX becomes irrelevant for X, i.e., X becomes
independent of ACX . As ACX can be instantiated in any form now from X’s
point of view, one is able to frankly assume ¬aCX . Then, according to the
deactivation criterion of an activator, X becomes independent of C given ¬aCX ,
or rather X becomes independent of C given ¬c, which is exactly what was
intended, i.e., an innocuousness property of C for X.

Now, assume to specify a CPD P (X|C,ACX , Q, ~Z) where the innocuousness
property of a variable is only in place in a further context. For example, there
exists a variable Q that activates the innocuousness property of C only given
Q = q ∈ dom(Q) for X. In this case, Eq. 4.1 only holds for specific ~z ∈ dom(~Z).
This means, one innocuousness context is defined by instantiations of multiple
random variables, denoted as follows.

Notation 4.1 (Innocuousness contexts). Activator random variables are marked
with a dot, e.g., ȦY X , if they are subject to become irrelevant in specific contexts.
We denote a context in which Y is innocuous for X as a innocuousness context,
denoted as a left superscript on AY X . If a context is met and Y is innocuous for
X, we say that AY X stands in the innocuousness context. For the first example,
this is

P (X|C,C=c
ȦCX , ~Z) .

Further, this notation covers the previously discussed toggle variable Q as well:
Only in the context Q = q and C = c, X becomes independent of C, as ACX
becomes freely instantiable. For this situation one writes

P (X|C,Q=q,C=c
ȦCX , Q, ~Z) ,

where ~Z represents further dependencies of X, but without X, Q, C and ACX .

Moreover, one random variable might stand in multiple different innocuous-
ness contexts, which we denote as innocuousness context vectors.

Notation 4.2 (Innocuousness context vectors). Variables become innocuous in
multiple contexts. Multiple innocuousness contexts ϕAYX of one activator AY X
are encapsulated in a vector ~ϕAYX and are delimited by ; . An innocuousness
context vector ~ϕAYX can also be seen as a Boolean formula, where all contexts
are disjunctions and a context is a conjunction of instantiations.

This notation allows marking contexts in which an activator becomes irrele-
vant and could have been chosen to be deactive, and thus modifies the topology.
Definition 4.1 describes the explicit specification of innocuousness in CPDs.

Definition 4.1 (Activator innocuousness). Let ΦAYX be the vector of random
variables used in a context ϕAYX associated with AY X . Every innocuousness
context ϕAYX ∈ ~ϕAYX is then defined to hold

∀x ∈ dom(X),∀~z ∈ dom(~Z) : P (x|ϕAYX , +aY X , ~z) = P (x|ϕAYX ,¬aY X , ~z)
= P (x|{ϕAYX\y ∈ dom(Y )}, y,¬aY X , ~z) = P (x|{ϕAYX\y}, ∗,¬aY X , ~z) ,

(4.2)

with remaining arbitrary dependencies of X on other random variables ~Z and ~z
as an arbitrary instantiation of those, excluding AY X and ΦAYX . N



76 Chapter 4. Innocuousness

Frankly, with Definition 4.1 one can formulate the same CSIs as Boutilier et
al. (1996), but, further, one can specify previously mentioned self-reflexive inde-
pendencies. One is thus able to explicitly express P (X|{ϕAYX\y}, y, AY X , ~Z) =

P (X|{ϕAYX\y}, AY X , ~Z) as demonstrated in the following example.

Example 4.1 (Activator innocuousness). Continuing the taintedness domain
from Example 2.6, we assume a noisy-or combination function for each CPD of
a state Xt. With a noisy-or combination, every activator random variable (a
message transfer) Ṁ t

XY stands in the innocuousness context ϕMt
XY

= ¬xt. One
can now explicitly represent that Claire is not influenced by an untainted Earl,
i.e., P (Ct|Ct−1, Dt,¬et, AtDC , AtEC) = P (Ct|Ct−1, Dt, AtDC , A

t
EC), by fixing

∀ Ct, Ct−1, Dt, AtDC , A
t
EC :

P (Ct|Ct−1, Dt,¬et, AtDC , +atEC) = P (Ct|Ct−1, Dt,¬et, AtDC ,¬atEC)
(by Def. 2.2)

= P (Ct|Ct−1, Dt, +et, AtDC ,¬atEC)

in the respective CPD specification of Ct (likewise for untainted Don).

In this example, an arc in B→ representing a dependency of some X on some
Y becomes vacuous in a context of the variable Y itself, which was previously
impossible to formalize and impossible to define in a CPD without activators.
Note that a dependance of Y on X is still highly relevant in the context of
the variable Y . This is beneficial for more efficient reasoning and a higher
causal accuracy of independence declarations in all DBNs with activator random
variables.

Further, so far we did not consider any properties of CPDs for possible
acyclicity constraints in ADBNs, and only focus on instantiations of activators.
In the next section, we consider innocuousness properties of CPDs and relax
restrictions posed on graphical models.

4.2 Exploiting Innocuousness

By considering properties of CPDs of state variables ~Xt, we relax restrictions
of Theorem 2.1 by introducing innocuousness contexts as a further acyclicity
constraint. Note that in an ADBN, these checks and constraints are only
sufficient conditions for achieving sound results and are not required for necessary
calculations, if, e.g., observations can be trusted to fulfill these restrictions.
Informally, as arcs become vacuous and could be left out once a variable stands
in its innocuousness context, cycles are possibly eliminated as well. We, therefore,
reconsider the well-definedness of an ADBN in the following theorem.

Theorem 4.1 (ADBN well-definedness revised). An ADBN (B0, B→) is well-
defined, if an ADBN is well-defined according to Theorem 2.1. An ADBN
(B0, B→) is well-defined for every instantiation ~x0:t,~a1:t of random variables
~X0:t, ~A1:t, if for all t, ~x0:t,~a1:t satisfy the following conditions:

∀x, y, z ∈ ~Xt : A(x, z)t,A(z, y)t → A(x, y)t

¬∃q : A(q, q)t ,
(4.3)
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with a regularity predicate A(i, j)t that is defined as

A(i, j)t =

{
false if ¬atij ∨ ~ϕAtij ∈ ~x

0:t,~a1:t

true otherwise
,

with the innocuousness context vector ~ϕAtij seen as a disjunction of multiple
contexts ϕAtij for activator Atij, as defined in Definition 4.1. For every well-

defined ADBN, semantics as P ( ~X0:tᵀ , ~A01:ttᵀ) is sound and given equivalently to
DBN semantics given as the product of all locally defined CPDs. N

Theorem 4.1 refines the well-definedness of an ADBN by refining the set of
regular instantiations. According to Theorem 4.1, not only acyclic instantiations
are regular, but also instantiations where activators stand in their innocuousness
context are regular. Note that an ADBN’s definition, syntax and semantics is
unaffected, and Proposition 2.4 on the JPD on a dense intra-timeslice ADBN
remains applicable. This means that previously derived algorithms for solving
common query answering problems, and algorithms for learning ADBNs remain
sound and valid.

We prove Theorem 4.1 by showing that for any regular instantiation ~x0:t,~a1:t

of ~A1:t, ~X0:t, under Theorem 4.1, Proof of Theorem 2.1 holds.

Proof of Theorem 4.1 (ADBN well-definedness revision). Proof of Theorem 2.1
shows that for any regular instantiation under Theorem 2.1 a topological ordering
exists and that the JPD stated by Proposition 2.4 is equivalent to a JPD
of a Bayesian network using the same CPD parameters with an equivalent
topological ordering. Per timeslice, activator random variables At only follow
a lexicographical ordering, and Proof of Theorem 2.1 is analogous for every
instantiation that induces the same topological ordering over random variables
~X0:t. Therefore, we prove Theorem 4.1 by showing that any regular instantiation
under Theorem 4.1 is topologically equivalent to regular instantiation under
Theorem 2.1 for which Proof of Theorem 2.1 holds.

Definition 4.2 (Topology equivalence). Given an ADBN (B0, B→), an instan-
tiation (~x0:t,~a1:t)1 is topologically equivalent to an instantiation (~x0:t,~a1:t)2, if
for both the same topological ordering ≺ exists in (B0, B→). N

Generally, in an acyclic (A)DBN, for every arbitrary instantiation (~x0:t,~a1:t)∗
the same topological ordering ≺∗ exists. In a cyclic ADBN, a topological order
is defined (at “runtime”) by a minimal set of deactive activator random variables
in an instantiation ~a1:t of ~A1:t (c.f. Proposition 2.3). In that case, some state
variables ~Xt become independent of state variables ~Xt

E which previously created
cycles and prohibited a topological ordering ≺. Under Definition 4.1, an active
activator At+ might stand in a context ϕAt+ , which renders At+ innocuous or
irrelevant. It is straightforward from Definition 4.1 that At+ can then be seen as
deactive from a topological perspective, which we call topologically deactive. Two
instantiations (~x0:t,~a1:t)1, (~x0:t,~a1:t)2 then share the same topological ordering ≺,
i.e., are topologically equivalent, if the set of topologically-deactive activators in
(~a1:t)1 is a superset of deactive activators in (~a1:t)2.
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Any regular instantiation (~x0:t
1 ,~a1:t

1 ) under Theorem 4.1 that is not regular
under Theorem 2.1 contains instantiations that let some activators stand in their
innocuousness context and are topologically deactive. Therefore, (~x0:t

1 ,~a1:t
1 ) is

topologically equivalent to a regular instantiation (~x0:t
1 ,~a1:t

2 ) under Theorem 2.1
for which Proof of Theorem 2.1 holds. Thus, Proof of Theorem 2.1 proves
Theorem 4.1. �

Note that, while a structure of two topologically equivalent instantiations
follows the same topological ordering, the joint probability for each instantiation
need not be the same, as one needs to consider priors of ~A1:t.

Theorem 4.1 shows and it is proven that ADBNs can be based on cyclic
graphs and remain well-defined even for some observations that contain cyclic
activator evidences. Previously, the latter was forbidden, but is now well-defined,
as the following example shows.

Example 4.2 (Restriction relaxation example). We continue Example 4.1 wit-
hout the made observations. Say, one observes ¬e1, +m1

CD, +m
1
ED, +m

1
DE, and

one can neglect all other transfers. One observes that Claire influenced Earl
indirectly through Don, but Earl did not become tainted. This observation should
lower our belief in Claire, as well as, Don being tainted. However, observations
+m1

ED, +m1
DE obviously lead to a cycle, which is prohibited by Theorem 2.1.

Fortunately, the observation ¬e1 meets the innocuousness context ϕM1
ED

(cf. Ex-
ample 4.1, noisy-or), i.e., E1 is innocuous for D1 given ¬e1. Therefore, this
observation fixes all instantiations of ( ~X0:t, ~A1:t) to regular instantiations under
Theorem 4.1. Consequently, one obtains P (C1|~z 0:1ᵀ ,~b1ᵀ) ≈ 〈0.34, 0.66〉 and
P (D1|~z 0:1ᵀ ,~b1ᵀ) ≈ 〈0.39, 0.61〉, which both correspond to the intuitive interpre-
tation of the observation. To recall, the initial beliefs about Claire and Don
were P (C0) = 〈0.5, 0.5〉 and P (D0) = 〈0.6, 0.4〉, respectively. The observa-
tion that Earl has received documents, but has not become tainted, implies that
Claire and Don are likely to be untainted. Therefore, P (+c1| . . .) < P (+c0) and
P (+d1| . . .) < P (+d0).

Note that still this observation cannot be handled by a diagonal alternative, as
one needs to anticipate the indirect influence: ¬e1 tells us indirectly something
about C1, namely that ¬c1 is now more likely than without the observations.

This example shows that the cyclic model can handle a larger set of obser-
vation constellations in contrast to a diagonal alternative. The next section
generalizes these advantages for a general model in terms of the number of
regular instantiations per timestep in cyclic, diagonal and innocuous ADBNs.

4.3 Discussion, Comparison and Related Work
In this section, we investigate how cyclic ADBNs compare to classical diago-
nal (A)DBNs. As discussed before, only regular instantiations of ( ~Xt, ~At) in
a timestep t lead to well-defined cyclic ADBNs, and diagonal (A)DBNs run
into problems if instantiations are contain implications of indirect influences.
Further, we explore how the exploitation of innocuousness properties can relax
these restrictions. In fact, we show that with this exploitation one can handle
significantly more instantiations, and that cyclic ADBNs heavily outperform
their diagonal counterparts w.r.t. expressivity.
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In cyclic ADBNs, instantiations of ( ~Xt, ~At) during a timestep t are enforced
to be regular under Theorem 2.1 and are relaxed under Theorem 4.1. For
diagonal ADBNs, instantiations are restricted s.t. no indirect influences can
occur (Proposition 2.2). Notwithstanding, innocuousness properties also relax
this restriction. For a comparison, we consider the running Example 2.3 consisting
of N employees, i.e., state variables ~Xt, and likewise N(N−1) message exchange
variables in every network fragment B→.

Without considering innocuousness properties, i.e., one does not exploit
contexts of an instantiation ~xt, the number of regular ~At instantiations in a
cyclic ADBN corresponds the number of DAGs (Sloane, 2015, Seq. A003024), as
discussed in Proposition 2.9. In a classic diagonal ADBN no indirect effects are
anticipated, and thus, no “interlocking” (possibly active) activator instantiations
of ~At are allowed, as discussed in Proposition 2.8. This corresponds to the
number of uniformly directed bipartite graphs where isolated nodes belong to a
fixed group (Sloane, 2015, Seq. A001831). For every of these instantiations, 2N

instantiations of all ~Xt exist (for a binary domain of all state variables).
To emphasize the effect of exploiting innocuousness context, we consider

that q% out of all N state variables ~Xt in an ADBN B→ are innocuous states
~XQ, meaning that every state Xt

i “is not harmed” by any of these Xt
Q ∈ ~Xt

Q if
¬xtQ. This implies that every activator Ȧtij stands in the context ϕAtij = ¬xti, if
Xt
i ∈ ~Xt

Q. Thus, rank( ~Xt
Q) = Q = bN · qc, for which flooring operations lead to

wavy lines in Figure 4.1.
Innocuousness properties significantly relax restrictions opposed on cyclic

ADBNs in the number of regular instantiations, which are enumerable as follows.

Proposition 4.1 (Number of regular instantiations in cyclic ADBNs). Given
a cyclic, dense intra-timeslice (A)DBN (B0, B→), N = | ~Xt| and Q innocuous
states, the number of regular instantiations NON,Q under Theorem 4.1 is

NON,Q = 2N−Q ·
Q∑
k=0

2k(N−1+N−k) ·A003024N−k ·
(
Q

k

)
.

NON,Q origins from the consideration that one has between k = 0 to k = Q “de-
active” innocuous nodes. All non-innocuous state variables are freely instantiable,
i.e., 2N−Q instantiations. Activators regarding a dependance between N−k nodes
are bound to instantiations that form a DAG. For N − k nodes, A003024N−k
many DAGs exist. In each DAG combination, k deactive nodes exist, whose
each N − 1 activators (read: “outbound-activator”) are freely instantiable, i.e.,
2k(N−1) instantiations. In each DAG combination, N − k active nodes exist,
whose activators regarding a dependance towards the k deactive nodes are freely
instantiable, i.e., 2(N−k)k further instantiations. For each combination, one has(
Q
k

)
options to choose which (labeled) innocuous states are deactive. N

Notwithstanding, the restriction that only indirect-free instantiations of ~At
are allowed in diagonal ADBNs (Proposition 2.2) is also relaxed by considering
innocuousness properties of ~Xt. The number of allowed instantiations in diagonal
ADBNs, considering innocuousness properties is, therefore, enumerated as follows.
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Proposition 4.2 (Number of indirect-free instantiations in diagonal ADBNs).
Given a diagonal, dense inter-timeslice (A)DBN (B0, B→), N = | ~Xt| and Q
innocuous states, the number of indirect-free instantiations N /

N,Q of random
variables ( ~Xt, ~At) in a timestep t is

N /
N,Q = 2N−Q ·

Q∑
k=0

N−k∑
n=0

2k(N+n−1) ·A001831′N−k,n ·
(
Q

k

)
.

A001831′N,n represents the number of uniformly directed bipartite graphs with
groups of size n,m, N = n+m. This means that each node of the group with m
nodes (black) is connected to at least one node of the group with n nodes (white).
A black node is not connected to a black node. A white node is not connected to
a white node and can be unconnected. All nodes are labeled.

A001831′N,n =

(
N

n

)
· (2n − 1)

N−n
.

NON,Q origins from the consideration that one has between k = 0 to k =
Q “deactive” innocuous nodes. All non-innocuous state variables are freely
instantiable, i.e., 2N−Q instantiations. With k “deactive” innocuous nodes, there
exist N − k active nodes whose activators must be instantiated such that no two
activators possibly interlock. The number of activator instantiations between
these N − k active nodes then corresponds to the number of uniformly directed
bipartite graphs A001831′N,n, arranged in all possible group sizes from n = 1 to
N − k. In every arrangement, all k(k − 1) activators between deactive nodes
are freely instantiable, all 2 · k · n activators between deactive nodes and nodes
of the first group (and vice versa) are freely instantiable, and k ·m activators
regarding a dependenace of the deactive nodes on nodes of the second group are
freely instantiable, i.e., 2k(k−1)+2kn+m = 2k(k−1)+2kn+k(N−k−n) = 2k(N+n−1)

instantiations. N

Figure 4.1 shows a comparison of NON,Q and N /
N,Q for 0 < N ≤ 25

and different Q. Note that even in a logarithmic plot, a cyclic ADBN has an
exponential advantage in favor of a classic diagonal (A)DBN.

Independencies in Bayesian networks and graphical models in general have
been extensively studied for efficient inference, notably by Zhang and Poole
(1996) exploiting causal independencies. They extend their work on exploiting
independencies for more efficient inference with Boutilier et al.’s (1996) contextual
independencies in Poole and Zhang (2003). Still, a contextual independence where
a context itself becomes independent was not considered in these works, and this
hampers ways of more efficient reasoning and representations of causalities. To be
precise, so far independencies in (dynamic) Bayesian network have almost always
only been considered for their easier parametrization abilities, as only CPDs
instead of complete JPDs must be specified, and for exploitations towards more
efficient inference, but independencies in Bayesian networks were not considered
for their increase of expressiveness, as done by us in this and previous chapters.
However, the expressiveness and semantics of local CPDs have been well studied,
often evolving around combination functions that procedurally create CPDs.
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Number of allowed instantiations of ( ~Xt, ~At) over n = | ~Xt|

Cyclic Diagonal q = 0% 10% 20% 40% 60% 100%

Figure 4.1. Cyclic ADBNs (NON,Q, solid) clearly outperform classic diagonal DBNs
(N /

N,Q, dashed) in the number of allowed instantiations of ( ~Xt, ~At). Note that for
a full noisy-or network (100%) all possible graph structures ( ~At combinations) are
allowed in the case of ∀i¬xi, which draws N /

N,N near NON,N . Still, even in this
extreme case a cyclic ADBN outperforms a classic DBN by two orders of magnitude
(semi-logarithmic plot).

Often Boolean combination functions have undergone notable considerations
in works by Henrion (1988), Srinivas (1993), and Antonucci (2011) introducing
extensions to cope with imprecision. In Boolean combination functions, CPDs
are procedurally created through individual probability fragments, associated
with e.g., each arc and value of a dependence, and a (numerical) combination
function. Each CPD entry is then created by numerically combining values
of each arc associated with the value of a dependance. Often these values are
seen in binary domains to be “true” and “false” in the sense of “present” and
“absent.” Please note that these associations shall not be confused with activator
properties. Further, one value, say “true,” might represent a present cause for
one dependent, but an absent cause for another. To be precise, Heckerman
and Breese (1996) describes a value of a variable that represents an absent
cause as a “distinguished” state. Semantically, a distinguished state of a variable
does represent an innocuousness property, but, as discussed throughout this
chapter, it is not explicitly representable in a CPD. Still, a formal definition of
innocuousness itself as “an inactive node does not cause any harm” is missing.
Although, the counterpart “only an active node causes harm” is mentioned as
an “amechanistic” property by Heckerman and Breese (1996). Heckerman and
Breese (1996) and Zhang and Poole (1996) consider amechanistic properties in
combination with explaining-away properties of Bayesian networks towards more
efficient inference. They exploit that, once one active node is observed and is
sufficient to cause harm, other potential causes are explained away and are less
significant for any inference results. Still, amechanistic properties are not solely
relevant for more efficient inference, as Zagorecki and Druzdzel (2006) show that
amechanistic properties are beneficial for an easier parametrization of CPDs.
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Cozman (2004) provides formal definitions and specifies properties of combi-
nation functions leading to an axiomization of the noisy-or function. Cozman
(2004) formalizes an “accountability” property of combination functions, which is
related to innocuousness properties to some degree. In his definition accountabi-
lity is a property of CPDs that assures causes to origin from a modeled network,
i.e., is the counterpart of “leaky” combination function, as, e.g., introduced by
Henrion (1988). Namely, accountability formalizes that the probability of an
effect, given all dependencies (causes) are in their distinguished state, is zero,
e.g., P (+x|¬~z) = 0. Still, P (+x|¬~z) = 0 can semantically represent as well, e.g.,
that one false-dependence in ¬~z “overrides” all other dependencies. This means
that a CPD with P (+x|¬~z) = 0 does not provide any semantic information
about distinguished states of variables. Our formalization and definition of
innocuousness(-contexts) explicitly identifies distinguished states and explicitly
represents innocuousness properties in CPDs by specific parameter settings,
neither requiring annotations nor novel representation formalisms.

4.4 Conclusion
In this chapter we have formalized an innocuousness property of random varia-
bles, which is often associated with Boolean combination functions for general
CPDs. Based on a formalization with random variables taking the role of acti-
vators, we relax restrictions on ADBNs and give a quantitative evaluation of
restrictions posed on such networks. Further, by providing a formal definition
for innocuousness in CPDs, one gains the ability to formally represent that in
specific contexts a dependency is causally irrelevant, opening new ways for more
efficient inference and a higher causal accuracy in specifying CPDs.

Still, like in any other DBN, exact inference remains computationally intrac-
table with respect to dimension complexity (number of state variables), and
demands approximate inference techniques as introduced in Section 2.4. Consi-
dering that certain dependencies, i.e., arcs, are irrelevant in specific situations
and a resulting BN might turn out to be singly connected, approximate inference
techniques can heavily benefit from the newly defined, innocuousness properties.

While this chapter significantly increases the amount of allowed and supported
instantiations per timestep, ADBNs still remain constrained. We have discussed
that observations must enforce regularity, i.e., observations must be made under
which only regular instantiations remain possible, i.e., only regular instantiations
have a conditional probability larger 0. Note that Theorems 2.1 and 4.1 are based
on instantiations, and observations must enforce that only regular instantiations
remain a possible option. If observations are not sufficient to assure regularity, or
are missing completely, an ADBN is not well-defined up to now. The following
chapter addressed this problem by extending the theory of ADBNs towards
models representing multiple structures and JPDs, where regularity is enforced
intrinsically.



Chapter 5

Semantics of Bayesian
Networks Revisited

For a large set of probabilistic graphical models, if not all, it is common to
represent exactly one JPD, and, so far, situations, i.e., contexts from observations,
have been discussed for ADBNs where as much partial structural information
(deactive activator observations in ~b) is evident to assure the same in an ADBN.
Under every regular observation ~b, exactly one topological ordering (under a
common lexicographical ordering) of an equivalent (dynamic) Bayesian network
exists, and this topological ordering holds for all instantiations conforming with
evidence, as shown in Proof of Theorem 2.1. This means that inference is, so
far, based on one well-defined (dynamic) Bayesian network defining one joint
probability distribution. However, if sufficient structural information is not
evident from observations, multiple structures are represented by an ADBN,
each of which defining one joint probability distribution. This chapter shows
that by moving away from a dogma that a (D)BN represents solely one joint
probability distribution, an ADBN can be seen as a full extension of (D)BNs
towards multi full joint probability distribution representations. Consequently,
we show that cyclic ADBNs are well-defined even if no observations are provided.

If, in a specific context, Theorem 2.1 (and extensions) cannot be fulfilled,
then an effective single structure for an equivalent DBN is not known, and an
ADBN represents multiple joint probability distributions for every remaining,
well-defined constellation of activator instantiations in the joint probability
distribution. Note that no external constraints or conditions are given on the
JPD by Proposition 2.4 and one closed-form formula represents all possible joint
probability distributions of DBNs without a need of a case-by-case consideration.
In this chapter, we revisit (A)DBN semantics s.t. not one single joint probability
distribution is represented, but multiple. Note that this is significantly different
from considering every case separately, namely every single structure separately.
By Proposition 2.4 one formula encapsulates all full joint distributions and,
consecutively, every well-defined sub-JPD (and therefore, sub-BN) is directly
embedded in the global semantics of a dense intra-timeslice ADBN as a subset
of entries in the full joint probability distribution.

83
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The contribution of this chapter can be summarized as follows: By considering
specific modeling approaches and a constraint of local CPDs, this chapter
shows that ADBNs form (dynamic) probabilistic graphical models where partial
structural information can be missing completely. In effect, we prove that ADBNs
are well-defined DPGMs representing multiple structures as one, and, for the
very first time, are a representation of multiple joint probability distributions.
This means that one is able to represent joint probability distributions of joint
probability distributions.

This chapter is structured as follows: Section 5.1 revisits the semantics
of Bayesian networks and defines parameter settings for ADBNs in which no
structural information need be supplied. As Bayesian networks are a special case
of dynamic Bayesian networks (and vice versa), theory of ADBNs is extended
towards classic Bayesian networks in Section 5.2, where the Cry-Joke-domain
example is continued. We discuss obtained results and related work in Section 5.3
and conclude in Section 5.4.

5.1 Bayesian Networks of Bayesian Networks
In a situation where sufficient structural information is not available, multiple,
regular and non-regular instantiations conform with evidence. Under the assump-
tion that every timestep is regular, one knows that one of all remaining, possible
regular instantiations must be effective, over which one is able to specify a prior
belief. This means that, there exists a prior random distribution over all possible
regular instantiations. Therefore, ADBNs can be extended towards extended
ADBNs (eADBNs) in which no structural information need be evident from
data or observations. In eADBNs, multiple topological orderings (even under a
common lexicographic ordering) exist, each of them belonging to one well-defined
Bayesian network. Then, an eADBN represents a Bayesian network of Bayesian
networks as depicted in Figure 5.1, or rather, represents a distribution over
multiple well-defined joint probability distributions. An eADBN shares fami-
liar syntax and semantics with classic Bayesian networks, without case-by-case
analyses of possible structures or introduction of external constraints, and an
eADBN is defined as follows.

Definition 5.1 (Extended ADBNs, eADBNs). An eADBN is defined as a tuple
(B0, B→) according to an ADBN (Definition 2.3). Additionally, random variables
of a timestep t, i.e., ~Xt, At, are seen as influenced by one (meta) random variable
Ord t. Let each value of Ord t represent a possible obtainable topological ordering
ord ti ∈ dom(Ord t) of random variables at time t under a common lexicographical
ordering. Every topological ordering of random variables is obtainable by one
minimal set of deactive activator instantiations (Proposition 2.3). Let ~at�i be the
minimal set of deactive activator instantiations to obtain a topological ordering at
time t represented by ordti. Then, let every CPD of activators at ∈ ~at�i allocate
all probability mass at its deactive value, i.e., ∀at ∈ ~at�i : P (¬at|ord ti) = 1. N

In an eADBN, additional random variables are identified (or introduced) to
ADBNs and certain CPDs of activator follow special parameter settings. These
special parameter settings enable one to perform inference in ADBNs without
the need of minimal observation sets, as an eADBN is well-defined without
constraints, as stated by the following theorem.
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Ord1

~X1, ~A1~X0

Ord2

~X2, ~A2

Figure 5.1. eADBNs are able to represent Bayesian network of Bayesian networks,
i.e., represent a distribution of multiple well-defined probability distributions. Unlike
ADBNs, eADBNs do not require any contextual, structural information. Specific
parameter settings of P (At

XY |Ord t) preserve familiar Bayesian network syntax and
semantics without requiring case-by-case analyses nor externally invoked frameworks.

Theorem 5.1 (eADBN well-definedness). An eADBN is well-defined for every
instantiation ~x0:t,~a1:t, ~ord

1:t
of all random variables ~X1:t, A1:t,Ord1:t. Semantics

as P ( ~X0:tᵀ , ~A1:tᵀ ,Ord1:tᵀ) is well-defined and equivalent to DBN semantics given
as the product of all locally defined CPDs. N

Under Theorem 5.1 an eADBN is well-defined for all observation and in-
stantiations, i.e., no minimal observation sets need be enforced. Therefore, one
is able to reason about a structural identifying context itself, by using classic
Bayesian network inference as, e.g., shown in Section 2.3. Note that, although
cyclic dependencies are modeled and are not dissolved by activator contexts, no
external constraints nor global normalization factors need be introduced, which
still preserves the desired causal and local specifications, and the desired local
interpretation of conditional probability distributions. Note further that not all
possible structures need be considered separately (e.g., by an external frame-
work), but a consideration of all possible structure constellations is intrinsically
handled by the semantics of eADBNs, i.e., one joint probability distribution
handles all structural “cases.”

Proof of Theorem 5.1 (eADBN well-definedness). For every instantiation ord1:t
i

of Ord1:t there exists an equivalent instantiation ~x0:t,~a1:t of random variables
~X0:t, A1:t that is enforced by extreme allocations of probability masses in all
local conditional probability distributions. For every equivalent instantiation
~x0:t,~a1:t there exists a topological ordering according to Theorem 2.1 and Proof
of Theorem 2.1, and there exists a well-defined joint probability distribution
P ( ~X0:tᵀ , ~A1:tᵀ). Every well-defined joint probability distribution P ( ~X0:tᵀ , ~A1:tᵀ)

is seen as an entry P ( ~X0:tᵀ , ~A1:tᵀ |ord1:t
i ) of a conditional probability distribution

P ( ~X0:tᵀ , ~A1:tᵀ |Ord1:t). With a well-defined distribution over all possible orde-
rings, i.e., P (Ord1:t), a well-defined Bayesian network B̂ is formed, defined by
two random variables “Ord1:t” and “ ~X0:t, A1:t,” one prior probability distribution
P (Ord1:t) and one conditional probability distribution P ( ~X0:tᵀ , ~A1:tᵀ |Ord1:t)

representing the joint probability distribution P ( ~X0:tᵀ , ~A1:tᵀ , ~Ord
1:tᵀ

) as the
product of all locally defined CPDs, i.e.,

P ( ~X0:tᵀ , ~A1:tᵀ ,Ord1:tᵀ) = P (Ord1:t) · P ( ~X0:tᵀ , ~A1:tᵀ |Ord1:t) .
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For an intra-timeslice dependency structure, B̂ is seen as a dynamic Bayesian
network (B0, B →) with two random variables per timeslice as shown in Figure 5.1
with

P ( ~X0:tᵀ , ~A1:tᵀ ,Ord1:tᵀ) = P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ ,Ord1:t−1ᵀ)

· P (Ord t) · P ( ~Xtᵀ , ~Atᵀ | ~Xt−1ᵀ , ~At−1ᵀ ,Ord t) ,

which is, for all instantiations, a well-defined DBN following Proposition 2.1. �

Note that all derived approaches for exact inference and learning are not
based on any well-definedness constraints and are solely based on the full joint
probability distribution. This means that for inference or learning a well-
definedness theorem is irrelevant and solely deals as a post-condition in order to
be sure that results are correct. This has already been exploited in Chapter 4,
where the introduction of innocuousness properties refined the well-definedness
conditions, but all derived approaches remained applicable. The same holds for
eADBNs, even if cyclic dependencies are not resolved by observations. From an
inference perspective, the only addition is a new random variable Ordt affecting
some, or all, random variables of a timeslice without causing any cycles. Further,
one could define activator random variables for every dependence of Ordt and
obtain a classical intra-timeslice ADBN, for which all derived approaches remain
applicable.

The following example shows how the running example can be extended by a
meta random variable, and then supports even an unobserved context of message
transfer variables.

Example 5.1 (Regulatory compliance in eADBNs). So far, at every timestep at
least as much message transfers must be observed to assure regularity. Namely,
at least n2/2 message transfer variables M t

XY had to be observed to be deactive
to obtain a well-defined ADBN. With Definition 5.1 all queries are answerable
without any contextual information about message transfers, and thus also fully
supports predictive queries. We demonstrate the parametrization of dom(Ordt)
and P (Ordt) and a respective parametrization of activator random variables as
an example on M t

CD.
In the running example with employees Claire, Don and Earl, one obtains

six topological orderings under a common lexicographical ordering. Namely,
one obtains C � D � E,C � E � D,D � C � E,D � E � C,E � D �
C,E � C � D, which resemble the domain of Ordt, abbreviated as dom(Ordt) =
〈cde, ced, dce, dec, edc, ecd〉. For every value of dom(Ordt) one is now able to
specify a prior belief over every topological ordering as shown in Table 5.1. For
example, if Claire is a supervisor of Don and Earl, topological orderings starting
with C might be more likely, representing that it is more likely that the supervisor
influences her employees and sends tainted messages to them. As stated by
Proposition 2.3 every topological ordering can be induced by an instantiation
of activator random variables, which are influenced by Ordt in an eADBN.
Considering M t

CD, an adequate parameter setting of P (M t
CD|Ordt) is given in

Table 5.2, where the topological orderings dce ∈ dom(Ordt) (i.e., D � C � E)
and edc ∈ dom(Ordt) (i.e., E � D � C) must enforce an allocation of all
probability mass on ¬mt

CD.
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Table 5.1. Example for a distribution of P (Ordt) for the running example with
arbitrary numbers α—γ with α + β + χ + δ + ε + γ = 1. A numerical example
instantiation is given, resembling that a topological ordering starting with C is more
likely, e.g., that Claire is a supervisor of Don and Earl. Generation of dom(Ordt) and
P (Ordt) is straightforward and minimally invasive to the running example.

Ordt P(Ordt)

cde α = 0.3
ced β = 0.3
dce χ = 0.1

Ordt P(Ordt)

dec δ = 0.1
edc ε = 0.1
ecd γ = 0.1

Table 5.2. Example for a CPD of P (M t
CD|Ordt) for the running example with

arbitrary numbers ι—µ. A numerical example instantiation is given based on an
extension of the previous parameter P (+mt

CD) = η = 0.5 and shows that a generation
of P (+mt

CD|Ordt) is straightforward and minimally invasive to the running example.

Ordt P(+mt
CD|Ordt)

cde ι = η
ced κ = η
dce 0

Ordt P(+mt
CD|Ordt)

dec λ = η
edc 0
ecd µ = η

As we have demonstrated in this thesis, (cyclic) ADBNs arise naturally from
domains by considering direct dependencies from a local point of view. Not
always a meta variable Ordt is immediately part of a domain, and Ordt must
be introduced to assure regularity even if sufficient structural information is
not evident from observations. Still, the example shows that an introduction is
straightforward, and is minimally invasive, as only CPDs of activator random
variables must be modified in a simple schema. If intended, an extension of
an ADBN towards an eADBN can be implemented automatically and an Ordt
variable need not be made explicit, if an inference engine is able to distinguish
cases of insufficient structural information. Nevertheless, making Ordt explicit
has the benefit that a sufficiency check of regularity is not required and any
Bayesian inference engine is intrinsically able to handle even a cyclic ADBN.

In an extended ADBN, activator random variables need not necessarily exist
as independent random variables, as a topological ordering identifying random
variable is sufficient. Still, the following remark shows that it is desirable to
maintain individual activator random variables.

Remark 5.1 (Collapsed activator random variables). If a topological ordering
identifying random variable (Ord) is present in a domain, activator random
variables Astij can collapse with Ordt, i.e., Ordt represent each and every Astij .
While this leads to a well-defined A(D)BN, it introduces a significant modeling
overhead, as not all activator random variables are relevant for one Xt

i , i.e.,
large subsets of dom(Ordt) identify the same parameter in a local CPD of Xt

i .
Only random variables included in the vectors ~Asti , s ≤ t are relevant for Xt

i .
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For example, in a dense intra-timeslice ADBN with n state variables, one
obtains n! topological orderings of state variables. If activator random variables
are collapsed with Ordt, then every CPD specification of a state variable Xt

i

must consider n! cases of dom(Ordt). With explicit activator random variables,
every CPD specification of a state variable Xt

i must solely consider 2n−1 cases
of dom( ~Ati).

Still, for one cyclic dependency, i.e., two potential topological orderings and
two activator random variables, no overhead is introduced as shown in the
following section as a continuation of the introductory Example 1.5 regarding
the Joke-Cry-domain. As mentioned in the beginning, the Joke-Cry-domain,
in fact, does represent an eA(D)BN, and is continued in the following section.

5.2 Extended Activator Bayesian Networks

We motivate the identification and exploitation of activator random variables in
dynamic BNs, as they are often associated with cyclic dependencies and—from
another perspective—for reasoning over time. Of course, also static “time-
less” Bayesian networks benefit from activator conditions of random variables
in order to model processes where certain dependencies change depending on
other contexts. If roles of causes and effects are context-specific then cyclic
dependencies are needed, which are permitted in activator Bayesian networks
and defined as follows.

Definition 5.2 (Activator Bayesian networks, ABN). Unrolling the first two
timeslices of a cyclic ADBN yields a classic BN with cyclic dependencies. Such
a cyclic ABN represents a static Bayesian network in which local structures are
not known in advance and dependent on specific contexts. This is beneficial for
Bayesian networks in which roles of cause and effects are not uniquely identifiable,
and in which dependencies are sensitive to a context. An ABN’s semantics is
well-defined by the unrolled ADBN’s semantics as defined in Theorem 2.1 or
in Theorem 5.1. For the case that a topological ordering identifying random
variable is present in an ABN, i.e., an ABN’s semantics is well-defined under
Theorem 5.1, we speak of an extended ABN (eABN). N

Context-specific influence directions are often found in human emotions
caused by mutual interaction and are required to model a causally correct
knowledge base for an artificial intelligence as the introductory Example 1.5
shows. In fact, the Cry-Joke-domain from Example 1.5 represents an example
for an extended ADBN (Definition 5.1) as well as an eABN (Definition 5.2). The
following example shortly repeats the domain and demonstrate the modeling
approach as an eABN. For convenience, the referenced Figure 1.2 is given again
in Figure 5.2.

Example 5.2 (Extended activator Bayesian network). To repeat, people might
start crying from laughter because of hearing a (very) good joke. However,
assuming only this causal direction at, e.g., a funeral, is a macabre assumption—
the reasons why jokes are possibly told at a funeral are to possibly cheer up sad
and crying people. As discussed in the caption of Figure 5.2 only modeling one
causal direction is not an option.
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A cyclic dependency between both random variables Cry and Joke in Fi-
gure 5.2 is causally required, in order to capture a true causality between both
random variables, whose direction is only identifiable in a context of another
random variable Place. Considering Figure 5.2 as an extended eABN, Place
represents meta-random variable Ord. In fact, in this example Ord is not a meta-
variable, but is part of the domain: Seeing the domain of Place as cry − worthy
places like a funeral or wedding, and usually happy places like a festival party
or comedyclub, directly represents all possible topological orderings of the graph.
Note that activators ACry Joke and AJoke Cry are collapsed with Place in this
example.

By modeling the domain as an eABN, one includes all desired influences and
dependencies as seen from a world-representation point of view: One can cry
from happiness and from hearing very good jokes in the surroundings of happy,
comfortable places, but people tell jokes to warm-up a chilling atmosphere among
crying, sad people at darker places. Naturally, the cyclic eABN, as shown in
Figure 5.2, also covers that at a happy place, a mood is usually happy, from
which it is less likely to cry and it is more likely that a good joke was told. With
an eABN all possible relationships can be included in one general model, and it
is well-defined even if the context of Place is unobserved, i.e., no single causality
is identifiable. As all potential models are intrinsically represented by one eABN,
one is able to reason about Place—the structural identifying context—as well,
and, effectively, inference is based on all possible models at the same time.

In this example, we represent two full joint probability distributions over
which a distribution (P (Place)) is modeled. The semantics of this eADBN is
a distribution based on the prior random distribution of Place over a full joint
probability distribution over all random variables Place, Cry, Joke, Mood . Note
that both represented full joint probability distributions are partially overlapping,
as they represent full joint probability distributions over the same random variables
with common CPDs.

Cry

Joke

Mood

Place

Figure 5.2. Modeling causal dependencies often requires cyclic dependencies. If
one is supposed to reason over Crying, potential influences of Joke or on Joke must
be considered. Without a link between Joke and Cry, the only possible explanation
for crying at a party is that the person is Mood = sad or a person always cries at
parties—usually a wrong assumption. And without a link from Cry to Joke, the only
explanation for a Joke being told at a funeral is the funeral itself—usually a quite
macabre assumption. Repeated Figure 1.2 from Page 8.
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This example shows that not only activators exist naturally in domains, but
that topological ordering identifying random variables occur from local, causal
modeling approaches, as well. As shown in the previous chapters, the example
represents a well-defined probabilistic graphical model, neither requiring external
reasoning frameworks to handle every specific context of Place separately, nor
requiring global normalization factors due to cyclic graph structures. We have
shown that various algorithms for exact and approximate inference and learning
of A(D)BNs follow familiar schemes and that the identification of activator
random variables does not introduce any significant overhead. Further, this
chapter shows that not even restrictions on instantiations or observations are
enforced on A(D)BNs by adequate modeling techniques. Considering all of above,
we feel confident to say that (dynamic) Bayesian networks can be based on cyclic
graphs.

5.3 Discussion and Related Work

Extending ADBNs towards eADBNs is an interesting and tempting modeling
approach, as no demands are made on observations. This is highly beneficial
for situations where it is clear in advance that no sufficient observations will
be available. However, we emphasize that an extended ADBN does constrain
an ADBN as well, as an eADBN hardcodes the set of regular observations in
the form of Ordt and every other observation is deemed impossible, i.e., has
probability zero. As we have shown in Chapter 4, constraints of well-definedness
by Theorem 2.1 are relaxed by Theorem 4.1, without any modification to the
running example at all. Chapter 4 has shown that without any other algorithms
or constraints, observations that were deemed non-regular by Chapter 2 were, in
fact, regular by considering innocuousness properties as done in Chapter 4. If
one would have designed Ordt and respective P (AtXY |Ordt) for Theorem 2.1,
the complete model had to be revised based on Theorem 4.1. In summary, we
emphasize that if observations can be trusted in advance to be regular, inference
can be performed without the need of any regularity constraints, checks or
modeling approaches. In fact, apparently non-regular observations might prove
to be regular at a later point (after acquiring more observations, or, as discussed
below, at a later timepoint t of the model), and previously obtained results will
be well-defined without the need of any recalculation.

As an example for future work on regularity and well-definedness theorems
for ADBNs, consider that even Theorem 4.1 can be relaxed further by including
persistency, i.e., P (+xt|+xt−1, ~z) = 1. Given persistence, an observation of, say,
+x10 may let an activator A1

XY at time 1 stand in its innocuousness-context +x1

leading to a regular observation at time 1. In this situation, filtering distributions
between time 1 and 10 may be spurious, but become well-defined again after
timeslice 10. Respectively, smoothing distributions considering evidence beyond
timeslice 10 will lead to well-defined results for timeslices 1 to 10. Note that,
this situation is intrinsically handled by an ADBN, but would be cumbersome
to encode in an eADBN for dependances of Ord1:t in respective CPDs.

Prior to the contribution of this chapter, in an ADBN, a sufficient amount of
structural information had to be evident at every timestep to assure regularity.
This means that one could have mimicked ADBNs by an external reasoning
framework that analyzes each timestep and, procedurally, creates a required
(dynamic) Bayesian network. While such an external reasoning framework would
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have a large overhead (one model is required for every possible context situation)
and contradicts Pearl’s intention of promoting Bayesian networks as a first-class
world representation, sound results would have been obtained. However, not any
external structure-analyzing framework can comprehend an eADBN, as no single
model becomes evident. One eADBN represents multiple models and multiple
full joint probability distributions, and inference is based simultaneously on
all models. Note that this is significantly difficult to implement in an external
framework, as “static” edges between models represent the same conditional
probabilities that are not allowed to be counted twice. This means that inference
results are not simply weighted for each model by the prior belief of each model,
but the full joint over all random variables including the prior belief over each
model must be considered, which is intrinsically embedded in an eADBN.

Moreover, by using eADBNs, one is able to represent every non-stationary
DBNs (Robinson & Hartemink, 2008) or time-varying DBN (Song et al., 2009).
Robinson and Hartemink (2008) and Song et al. (2009) take a fundamentally
different perspective on changing structures, where changing structures represent
an evolutionary change of a structure over time during a long evolutionary
process and structures are slowly modified by a set of possible actions. As
discussed earlier, this is different from a view taken by ADBNs: an ADBN
changes rapidly over time, namely at every timestep depending on a specific
context. In fact, ADBNs succeed non-stationary DBNs in their expressiveness by
capturing all possible structures in one model, where a context specifies a needed
substructure. By discretizing an evolution of a structure in a non-stationary DBN
into discrete epochs, where during one epoch a structure remains constant, i.e.,
every modification action of a structure represents a different epoch, one obtains a
novel domain random variable Epocht. Notwithstanding, Epocht can dependent
on Epocht−1 to represent an evolutionary character. Then, Epocht represents an
Ordt, as well as, all activator random variables At as one. This means that all
activators are collapsed, and Epocht directly represents a context of a required
structure during each epoch. With an obtained eADBN even inference in an
unknown epoch is possible, and a non-stationary ADBN is represented in classic,
familiar DBN syntax and semantics.

This chapter revisits semantics by considering all possible semantics implied
by a model, i.e., all represented joint probability distributions at once. An
alternative would be, in the case of insufficient observations, to find a minimally
invasive modification of observations to assure regularity under a given theorem.
While a modification of an observation is discussable and can, at best, lead
to approximate results, not considering all possible n! topological orderings,
is significantly more efficient. Moreover, a modification of observations helps
handling non-regular observations to a limited extend, as discussed in Chapter 7.

As discussed earlier, Ordt represents a prior belief over potential structural
candidates and is directly related to classical structural learning. Heuristics
employed, e.g., by Friedman et al. (1998), to optimize and find potential struc-
tural candidates punish overly complex structures. Such a heuristic, for itself,
immediately represents a form of belief over the set of potential structural can-
didates, as well. Therefore, learning eADBNs directly includes prior beliefs
over network structures intrinsically in the model in one formalism. In fact,
incorporating beliefs over network structures for learning Bayesian networks
has been investigated by Friedman and Koller (2003), but in separate, external
formalisms and models.
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Acid and de Campos (2003) consider classes of equivalent graphs when sear-
ching a space of structural candidates, which is also incorporated by Friedman
and Koller (2003). In fact, our definition of Ord1:t considers equivalent graphs
intrinsically as well, as the domain, i.e., the space of potential structural candi-
dates, is not dictated by the number of DAGs formable by the random variables,
but by the number of topological orderings of the state variables. For example,
under one topological ordering, say, C � D � E, eight different DAGs are
representable, over which a prior belief according to the probability distribution
P (M t

CD,M
t
CE ,M

t
DE |CDE) exists.

To the best of our knowledge, an eADBN is the first probabilistic graphical
model that is able to represent multiple joint probability distributions in one
model. Further, to the best of our knowledge, an eADBN is the first probabilistic
graphical model that is able to intrinsically represent a distribution over its own
network structure and is able to base inference on all structural candidates at
the same time.

5.4 Conclusion
This chapter extends the theory and discusses roles of regularity and well-
definedness of ADBNs. We show that structural information need neither be
evident nor be supplied by observations for eADBNs. This is beneficial for
applications where one is not able to proactively assure that observations, and
further, regular observations will be available.

Future work is dedicated to combine ADBN learning and eADBNs towards
learning (dynamic) Bayesian networks under unknown and changing structures.
As a long term goal, and without the need of heuristics and “external” optimi-
zation of structures, learning eADBNs can replace classic learning approaches
with an intrinsic self-contained approach towards learning (dynamic) Bayesian
networks under incomplete data and unknown structures.

In summary, so far, we have shown that ADBNs are DPGMs that allow
a causal specification of dependencies while maintaining local semantics of
CPDs, even if cyclic dependencies arise, which are only resolvable once a specific
context is known. We have shown that their semantics as the JPD over all
random variables is similarly defined to classic (D)BNs as the product of all
locally defined CPDs and that algorithms with familiar schemes exist for finding
exact, as well as, approximate solutions to common query answering problems.
Further, learning ADBNs remains applicable, even from incomplete datasets
where structural information is (partially) missing and this chapter extends
theory towards models for which no structural information need be provided.
Theory has been substantiated by a running example on taintedness of employees,
for which we show in the following Chapter 6 that it is immediately applicable
to a real-world problem in security, and that ADBN’s local semantics and causal
specifications solve a pertinacious problem in security analyses.



Chapter 6

Protecting Companies with
(Dynamic) Bayesian Networks

Understanding and assessing potential impacts relevant for a company or mission
is a pertinacious problem and a novel research area. For example, a local impact
caused by an event on a distant node, say, a user workstation, might lead to
a causal chain of operational failures, leading to an impact on a company, as
some critical devices are affected required in critical business processes. Such
assessments are frequently called mission impact assessments.

In order to perform a mission impact assessment, one must understand
dependencies of a mission on various involved resources, and one requires an
approach to “spread” and “propagate” locally created impacts onto higher goals,
e.g., a space mission or a company’s business goals. Early approaches attempting
to solve mission impact assessment problems use ad-hoc methods involving
newly established algorithms. We argue that such newly created algorithms
suffer from multiple discrepancies, which we categorize into four different groups:
(1) An expert must first fully understand and be trained in a system before
he can assess configurations and parameters. We say, such systems do not
provide a context-free assessment. (2) Obtained results from a system require
a steep learning curve for interpretation and easily lead to overfitting by a
dulling due to learned reference values. This means, results are not bias-free
and require knowledge about a system. (3) During configurations, experts are
forced outside their expertise, leading to potentially inaccurate specifications.
We argue that it is favorable to accept disagreement from multiple knowledge
sources instead of enforcing the definition of one allegedly congruent knowledge
base. Finally, configurations (compare Problems 1 and 3) are assessed by a
possibly overtrained expert and might be inaccurate, but parameters are not
verifiable nor can be validated by an independent third party. This means that
(4) obtained results from a newly created algorithm must be validated against a
ground truth. Ground truths for occurred events and their exact impact on a
mission are often not available in large quantities or are confidential.

To put things into perspective, a non-context-free system requires an expert to
understand how an evaluation reacts to a parameter of “5” and how to a parameter
of “3”—without the context of the complete framework, such values do not have
any meaning and are neither verifiable, validatable, nor are understandable.

93
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Further, an end-user becomes biased from interpretation of received results:
With an unclear definition of an end-result, e.g., “yellow,” “3,” or “severe,” an
end-user intrinsically adapts over time to “normal” results and becomes biased,
i.e., a reported “severe” “red” error of category “5” is first taken serious, if it
persists for an hour. These are the same emerging problems as outlined by
Example 1.4.

In this chapter, we present an approach towards probabilistic mission impact
assessment (probabilistic MIA) based on a probabilistic graphical model. We
consider three views from three experts from different expertise and combine
them inside a probabilistic graphical model. Local and global semantics of
the defined probabilistic graphical models assure a context-free assessment of
defined parameters, which are assessable and can be validated by themselves
without knowing their later use. Based on the probabilistic models we reduce
the novel problem of mission impact assessment onto a well-understood problem:
probabilistic inference. Further, obtained results are understandable using
common sense and do not suffer from biased interpretations. While the presented
probabilistic MIA delivers great results in two real world use cases, it lacks
the ability to consider persistence of impacts, e.g., the persistence of already
caused harm to the surrounding even though the initial impact source has been
eliminated. In the same sense as persistence is “added” to Bayesian networks by
dynamic Bayesian networks, we extend probabilistic mission impact assessment
to dynamic mission impact assessment in this chapter and show that cyclic
ADBNs are immediately required.

The contribution of this chapter can be summarized as follows: By introducing
a well-defined probabilistic graphical model for mission impact assessment, we
are able to reduce impact assessment on a well-defined mathematical problem,
which allows for a validation of results at data level and does not require deep
training of experts. By resorting to local conditional probability distributions
one is able to integrate widespread knowledge from different expertise into one
sound model. This is useful for applications, where qualitative assessments are
required and perpendicular views from multiple experts onto a problem must be
brought inline. As a long-term goal, this provides the basis for an automated
response system based on a mathematical well-defined model for risk and impact
assessments in a predictive and retrospect analysis over time in changing and
dynamic environments by the use of dense intra-timeslice ADBNs.

This chapter is an extension of an approach that has been presented at the
NATO IST-128 Workshop on Cyber Attack Detection, Forensics and Attribution
for Assessment of Mission Impact held in Istanbul, Turkey during June 2015
and at the Workshop on Cyber Defence and Security in Brussels, Belgium in
September 2015. Valuable comments by participants and reviewers have been
incorporated, and the approach has been well perceived by end-users and security
experts. The underlying approach of this chapter, outlined in Section 6.1, is
employed as part of the Panoptesec integrated research project (GA 610416)
funded by the Seventh Framework Programme (FP7). In cooperation with the
Panoptesec’s use case partner, we apply the presented approach to real data in
Section 6.2.

The remainder of this chapter is structured as follows: Based on a well-
defined probabilistic graphical model, we develop in Section 6.1 a mathematical
model for mission impact modeling based on views from different experts. We
introduce a notion of temporal aspects to cover dynamic environments to a
certain degree and propose an independent-timeslice model assessing impacts
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at independent points in time, e.g., at independent short-, mid- and long-term
time points. Based on this model, we discuss mission impact assessment as a
formalized problem from probabilistic views in Section 6.2, apply the introduced
independent-timeslice mission impact assessment in two real world use cases
involving business-, IT-, and security experts from different domains and show
that the approach delivers satisfying and greatly accepted results.

We extend our work towards dynamic mission impact assessment for re-
altime and forensic analyses in Section 6.3 by an extension of the presented
independent-timeslice model towards completely dynamic probabilistic mission
impact assessments for rapidly changing environments and time-dependent ana-
lyses at a, if intended, nearly continuous time granularity. We show that this
extension directly represents and demands a cyclic dense intra-timeslice ADBN
closely resembling the taintedness domain. We discuss and propose various
approaches for such an extension and show how derived independent-timeslice
models can be reused directly in future work. In Section 6.4 we discuss related
work and identify common discrepancies and benefits of existing approaches. We
conclude in Section 6.5.

6.1 Dependencies and Impacts
In the following, we take a view from different perspectives towards mission
impact assessment. We consider three views from three experts from different
expertise. We do not enforce an expert to overlook assessments from other experts
and expertises (local assessment), and further, do not require that an expert
understands or is trained on how his assessment is used inside algorithms and
frameworks (context-free assessment). Based on a probabilistic model, we are able
to include all three views directly into one consistent model bridging semantic and
technology gaps. Based on this model a well-understood probabilistic inference
problem is evident that assesses a mission impact from widespread events towards
a bias-free result.

Every expert defines a different dependency model, where every modeled
entity represents a random variable and dependencies between entities are
represented by local conditional probability distributions (CPDs). As discussed
and demonstrated in earlier chapters, local semantics of CPDs enable one to
perform a context-free assessment of parameters, i.e., dependencies.

Remark 6.1 (Impact). We use an abstract term of “impact” in our work in the
sense of “not fully operating as intended.” The underlying meaning of “intended
operation” depends on the use-case of a model.

6.1.1 Mission Dependency Model (Business View)
In order to perform a mission impact assessment, one must understand the
good one aims to protect, e.g., a mission or a company. In the field of business
intelligence, a complete company or organization, i.e., the good one aims to
protect, is modeled as a conglomeration of business processes. Commonly,
business processes are modeled using the business process modeling notation
(BPMN) and a business process is modeled as a (dependent) collection of
tasks. This modeling approach is well accepted and is as well used by, e.g., de
Barros Barreto et al. (2013), Albanese et al. (2013), and Musman et al. (2010).
Figure 6.1 shows a sketch of a BPMN model used throughout this chapter.
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Figure 6.1. Example BPMN 2.0 model sketch for the BP1 business process shown in
the dependency model of Figure 6.2.

Designing such BPMN models is handled manually by an expert from a
company, or by an external business consultant having a precise expertise in
the understanding of business analysis. The business analysis is performed on a
pure business perspective and stops at a first “resource” level. For example, from
a business perspective, only a web-frontend may be identified, but not complex
dependencies on databases, computation clusters and backup devices. In order
to not force a business analyst outside his expertise, we intend to accept an
inaccurate identification of resource-devices in the mission dependency model
and focus on reflecting the information as directly described by an expert.

Therefore, we extend a model by Jakobson (Jakobson, 2011) and model
mission dependencies as shown in Figure 6.2 as a graph of mission nodes. We
model a company as being dependent on its business processes. A business process
is again dependent on one or more business functions. Business resources provide
business functions to some extent. Identified business resources are part of an
infrastructure perspective and may not precisely reflect the operational relevance
of resources. Continuing the previous example, an expert models a business
function “provide access to customer data” and may identify a web-frontend
as the directly mission critical device, i.e., business resource. Notwithstanding,
the web-frontend is only a small part of providing the access to customer data,
besides various central database servers, computation clusters analyzing customer
behavior, backup devices and load balancing servers. Still, it cannot be expected
that a business analyst with a complete view on business processes of a company
can overlook these complex technical dependencies. Moreover, when consulting
multiple experts their view might disagree which of those resources is in fact
the most critical. Therefore, we introduce in the following section a resource
dependency model, which is used to automatically analyze intra-dependencies
and allows experts to identify any of those involved resources that seem to be
relevant for them.

Similarly to BPMN models, mission dependency models, e.g., as shown in
Figure 6.2, are modeled manually directly by experts, for which we describe a
use-case study in Section 6.2.2. Manual workload remains low, as these global
business dependency models are likely to remain static over long periods of
time, whereas changes reflect themselves at a resource level, discussed in the
following section. Moreover, comparing Figure 6.2 to the original BPMN model
in Figure 6.1, relations between BPMN entities and mission nodes become
evident: Each BPMN model represents one business process inside a company,
where BPMN tasks represent business function. Likewise, BPMN tasks access
data from data stores, representing immediately critical business resources. In
consequence, mission dependency models can also be automatically extracted
from BPMN models if such are already present for a company.
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Figure 6.2. Mission Dependency Model. Values along edges denote individual conditio-
nal probability fragments. For Example 6.1 only the solid entities are used. Consequences
and further attributes are omitted in this figure.

In a mission dependency model, every dependency, i.e., edge in Figure 6.2,
represents a local conditional probability. Every conditional probability des-
cribes a probability of impact if a dependency is impacted. For example, the
probability of the business-function BF1 (see Figure 6.2 and 6.1), e.g., “provide
access to customer data,” failing, given the required business-resource A, e.g.,
“customer-data-frontend,” fails is 90%. The local semantics of local conditional
probabilities permit understanding parameters using common-sense (e.g., “in 9
out of 10 cases, customer data was not accessible for employees during frontend-
server maintenance”). By that, all assessments of parameters can be directly
validated (instead of holistic results) by an expert or through ground-truth. As
these assessments are directly understandable by themselves and do not require
reference values, an expert is able to take a local perspective on his assessments
and must not overlook parameter assessments made by other experts in other
parts of a mission dependency model, which may be outside his expertise. By the
use of the conditional probabilities, every entity of a mission dependency model
then represents a random variable X, where the event +x represents the case
that node X is operationally impacted and ¬x represents that X is operating as
intended, i.e., no impact is present.

Notwithstanding, a business entity may depended on multiple entities, e.g.,
a mission critical device may be a central database server or a node of a com-
putational cluster. Formally, then, given a random variable X (e.g., a business
process) that is dependent on multiple random variables ~Z (e.g., a set of business
functions), the dependencies of X on all Z ∈ ~Z are represented by one conditional
probability distribution (CPD) P (X|~Z) of node X. For ease of parametrization
of these distributions we use commonly known combination functions, such as
noisy-or and noisy-and. Hence, every node in a mission dependency model is a
random variable, and edges define local CPDs associated to them, according to
the following definition.

Definition 6.1 (From dependencies to distributions). We render every de-
pendency of random variable Y on X as an individual conditional probability
p(+x|+y) and p(+x|¬y). Such individual conditional probability are fragments of
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a complete conditional probability distribution (CPD) and are therefore denoted
in lowercase. To acquire the local CPD P (X|~Y ) of node X from all its individual
dependencies on nodes Y ∈ ~Y , we employ noisy-and and noisy-or combination
functions, as, e.g., described by Henrion in (Henrion, 1988). N

By the use of combination functions, not complete conditional probability
distributions must be parametrized, but solely single fragments of a distribution
for every dependency, or edge, in a model, by which the number of parameters
needed is significantly reduced. For the scope of this work, we consider non-leaky
combination functions. Non-leakiness implies that a source for an impact must
origin from inside a model and cannot occur “from nowhere,” i.e., P (+x|¬~y) = 0,
and thus p(+x|¬y) = 0 is fixed for every dependency. We believe that for most
mission nodes, a suitable combination function is noisy-or, representing that every
impact on a dependence might lead to an impact on the dependent node, i.e.,
every impacted dependence is a sufficient cause for an impact. If dependencies
are laid out completely redundantly, a noisy-and combination function can be
used for mission nodes to directly reflect redundancies. Notwithstanding, if an
expert feels confident to do so, CPDs can be designed directly. Consequently,
one obtains a formal definition of a mission dependency model as follows.

Definition 6.2 (Mission Dependency Model). A mission dependency model M
is a directed acyclic graph (DAG) as a pair 〈~V , ~E〉 of vertices ~V and edges ~E.
Vertices ~V are random variables (Notation 1.1) and are categorized according to
their semantic as business-resources ( ~BR), -functions ( ~BF ), -processes ( ~BP ),
and -company (BC). For the scope of this work, we consider that a business
dependency model is created for a single BC. The ordering BR ≺ BF ≺ BP ≺
BC represents the strict topological ordering of graph M . Every edge E ∈ ~E
represents a dependency. Let V ∈ ~V , then let ~EV ⊆ ~E be the set of edges directed
to V , and let ~DV be the set of vertices from which ~EV origin, i.e., ~DV is the
set of dependencies of V . For every vertex V ∈ ~V a conditional probability
distribution (CPD) P (V | ~DV ) is given, or, alternatively, a combination function
is given for V and edges E ∈ ~EV are associated with conditional probability
fragments s.t. a p(+v|d) is given for all d ∈ dom(D),∀D ∈ ~DV . N

Definition 6.2 solely considers inter-layer dependencies, and excludes intra-
layer dependencies, e.g., we exclude dependencies of a business function onto
another business function. We argue that such dependencies are resolvable
in a lower level and by an adequate specification of associated CPDs. With
Definition 6.2, a mission dependency model represents a probabilistic graphical
model, and, in particular, a Bayesian network, as initially defined by Theorem 1.1
in Chapter 1, which represents a joint probability distribution over all entities in
the dependency model plainly as the product of all local conditional probability
distributions. The local semantics of Bayesian networks permit an expert
to locally interpret individual parameters, i.e., to locally interpret individual
probabilities of CPDs. We will preserve these local semantics for our presented
probabilistic mission impact assessment, i.e., we preserve a direct and local
understandability to all conditional probabilities, e.g., p(+x|+y) = 67%. The
following example shows the intention of using probabilistic dependency models
and preserving the local semantics for mission impact assessments.
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Example 6.1. Following the mission dependency model depicted in Figure 6.2
(excluding dashed entities), a Bayesian network is evident representing a joint
probability distribution (JPD) over all random variables as

P (CM1, BP1, BF1, BF2, A,B) =

P (CM1|BP1) · P (BP1|BF1, BF2) · P (BF1|A) · P (BF2|A,B) · P (A) · P (B) ,

i.e., the product of all locally defined CPDs. P (BP1|BF1, BF2) and P (BF2|A,B)
are obtained by an employed combination function based on fragments p(+bp1|+bf1),
p(+bp1|+bf2) and p(+bf2|+a), p(+bf2|+b) respectively. Local semantics of conditio-
nal probabilities, e.g., P (BF2|A,B) and respectively p(+bf2|+a) are understanda-
ble without a need to consider the value of, say, p(+bp1|+bf1).

One obtains the probability of impact +cm1 onto the company CM1 from, say,
an observed impact on A = +a and none on B = ¬b by marginalization from the
JPD as

P (+cm1|+a) = α ·
∑
BP1

∑
BF1

∑
BF2

P (+cm1, BP1, BF1, BF2, +a,¬b) ,

with a normalizing factor α s.t.
∑
CM1

P (CM1|+a) = 1. Later, we will define
exactly this probability of impact onto a company as a well-defined mission impact
assessment. An obtained result, e.g., P (+cm1|+a) = 20% is defined to be formally
correct, given all CPDs are validated to be correct. This has the advantage
that obtained results can be reported to higher authorities without disclosure or
explanation of used algorithms or approaches.

The example shows how a mission impact can be defined based on a proba-
bilistic inference problem. An obtained result of, say, 20% is understandable
without a context, i.e., one does not require indepth knowledge of an originating
attack or needs to understand how this assessment is obtained. Further, a
probability of 20% is interpretable unbiasedly, i.e., every person should come to
a similar conclusion on how severe this assessment is.

The local semantics of mission dependency models, and the direct relationship
to commonly known entities in BPMN models, intuitively allows business experts
to model (partial) mission dependency models directly. When given information
from multiple sources, e.g., multiple BPMN models and information gathered
from different experts from different expertises, a common problem is eminent:
Experts frequently use different nomenclatures, descriptions, languages and
references for common entities, inevitably leading to semantic overlaps between
information sources due to semantic and terminology gaps. Ergo, a naive
concatenation of extracted and gathered business dependency model inevitably
leads to duplicate entities and incorrect impact assessments. To obtain well-
defined results, i.e., to obtain a solid and consistent business dependency model
from multiple sources and experts, a semantic normalization and merging is
required for business dependency model. Motzek, Geick, and Möller (2016)
deeply discuss and propose a solution to the semantic normalization and merging
problem of mission dependency models.

As mentioned above, a mission dependency model directly reflects expertise
of business experts, and remains directly and locally understandable. However,
an identification of resources might be too naive or operationally imprecise.
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Moreover, multiple experts might disagree on the identification of critical devices
as discussed previously. Therefore, the following section discusses a resource
dependency model, which covers transitive and indirect dependencies to cover
this inaccurate and disagreeing information.

6.1.2 Resource Dependency Model (Operation View)
Identified critical resources may be inaccurate, or rather, may be part of a complex
dependency network involving various other resources, which are beyond the
scope of knowledge of various experts. For example, a business expert might
identify a frontend web-server for accessing critical data involved in a business
process. While this does accurately represent a business perspective, the web-
server may only be a small part of a complex process from an operational
perspective: variously involved databases fed by computational clusters and
interfaces are equally, or even more, important. However, deeply understanding
all transitively involved resources exceeds the expertise of a business expert; in
fact, it might even be unknown to an IT specialist. Nevertheless, all transitively,
indirect and direct resources must be covered in order to provide an accurate
mission impact assessment, which is why we propose to learn these dependencies
automatically from data in the following.

Consequently, we introduce a resource dependency model covering depen-
dencies between individual resources, which can be, e.g., individual ICT servers,
ICS devices, software components or, in other use cases, manufacturing robots,
suppliers, soldiers or vehicles. Further, a resource dependency model may consist
of heterogeneous resources, e.g., may represent in one model intra-dependencies
between employees, intra-dependencies between ICT devices, as well as inter-
dependencies between employees and devices. We follow the same probabilistic
approach as before, i.e., every dependency between two resources represents a
local conditional probability of impact, given the dependence is impacted, as
shown in Figure 6.3, and every resource represents a random variable. Thus, a
resource dependency model is formally defined as follows.

Definition 6.3 (Resource Dependency Model). A resource dependency model R
is a directed graph as a pair 〈~V , ~E〉 of vertices ~V and edges ~E. Every edge E ∈ ~E,
from vertex X ∈ ~V to Y ∈ ~V represents a dependency, and is associated with a
conditional probability fragment p(+y|+x). Vertices ~V are random variables and
represent resources in an infrastructure, where a subset of vertices semantically
correspond to vertices of a corresponding mission dependency model M . Let
V ∈ ~V , then let ~EV ⊆ ~E be the set of edges directed to V , and let ~DV be the
set of vertices from which ~EV origin, i.e., ~DV is the set of dependencies of V .
For every vertex V ∈ ~V a conditional probability distribution (CPD) P (V | ~DV )
is defined by a non-leaky noisy-or combination of all conditional probability
fragments of associated edges in ~EV . V is not contained in ~DV , i.e., a resource
V is not dependent on itself. N

The definition of a resource dependency model is similar to the definition of
a mission dependency model (Definition 6.2), and does represent a probabilistic
graphical model as well, but does not introduce constraints of acyclicity, i.e., a
resource dependency model can contain cyclic dependencies. Hence, a resource
dependency model is not a Bayesian network. We preserve desired local semantics
of parameters, i.e., local conditional probabilities, by an exploitation of employed
noisy-or combination functions, as described by Motzek and Möller (2017) and
Motzek et al. (2015).
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Using two individual models, one from a business perspective and one from an
operational perspective, is highly beneficial, as knowledge from different experts
is included directly and is used to accept potential disagreements: If one model
had to be agreed on from both perspectives, the identified web-server would be
disputed as it is not clear which resources are directly mission critical and to
which depth all dependencies have to be covered. In the worst case, too many
vaguely relevant resources would be identified, or, too few resources would be
identified. By the use of two models, each perspective is correctly represented
without a need to make any compromise.

C
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Figure 6.3. Resource dependency model. Dependencies between B, C would also be
possible. Conditional probability fragments are marked along the edges. Grey nodes
represent external shock events leading to local impacts. The time-varying conditional
probability of local impact given an instantiated external shock event is given next to
the edge and the time-varying shock event’s prior random probability is given below it.
Connections to the mission dependency model are sketched in dashed gray.

As mentioned earlier, and in contrast to the mission dependency model,
assessing resource dependencies is not manageable by hand. Complex operation
structures render a manual dependency analysis infeasible and error prone. Furt-
her, dynamically adjusting infrastructures (e.g., as found in IT-cloud use cases)
make it even unknown to an expert to identify exact dependencies. However,
we argue that an expert is able to validate a presented resource dependency
model for plausibility. Therefore, heuristics are employed based on exchanged
information amounts, e.g., traffic analyses in an IT use case, to learn possible
resource dependencies. As long as a resource only consumes relevant information
for its purpose, then every information transfer must motivate some dependency.
Moreover, collecting traffic-information is a reasonable and feasible effort. Furt-
her, under the assumption of per node equally distributed entropy and encoding
of consumed information, a dependency, i.e., a conditional probability, must be
a function of consumed information bits. We, thus, reduce an infeasible effort
for an expert of identifying all dependencies by hand onto finding a heuristic,
or rather, validating of a generated dependency model. While a validation of
a resource dependency model is expensive, it is a reasonable effort for highly
critical infrastructures or operations. The following example demonstrates an
approach for an automatic generation of a resource dependency model in an ICT
use case.
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Example 6.2. It is reasonable to assume that it is feasible to acquire informa-
tion about exchanged information at a logical ICT device level covering virtual
machines as individual devices. Often, more granular data, e.g., on software
layers, is not acquirable, and exact dependencies between software components
are not identifiable. Still, multiple software applications running on one device
are very likely dependent on each other, and an impact of one software compo-
nent will lead to an impact of other software components. Ergo, we say that
dependencies at network device level are coarse enough, and assume that every
device drives one purpose that might be fulfilled by multiple software components.

For example, a workstation X consuming different query results from multiple
databases will distribute gained and processed information from such queries
to other devices. The percentage of received traffic TYi,X from every database
Yi towards the total received traffic gives a good guideline for the conditional
dependency between them as p(+x|+yi) =

TYi,X∑
i TYi,X

. In general, this heuristic
must apply to all cases where all dependencies of a resource provide similarly
encoded data with similar entropy. An implementation of this heuristic in an
ICT use case is directly provided by, e.g., Wireshark (Combs & The Wireshark
Foundation, 2016). Wireshark allows one to capture raw network-traffic over long
periods of time and, postponed, to analyze recordings, e.g., by their conversation
statistics. Such conversation statistics directly provide the relative amounts of
data transferred TYi,X from IP address Yi towards X. Aggregating this data
directly leads to the assessments for all conditional dependency assessments
p(+x|+yi) =

TYi,X∑
i TYi,X

in a resource dependency model. In order to cope with
dynamically changing IP addresses it is beneficial to utilize external network
inventories providing exact matching between IP addresses and unique identifiers,
or to use name resolution in a network. Moreover, it is highly beneficial to
not record network-traffic payload, by which one significantly reduces memory
requirements.

In Section 6.2 we show that the straightforward approach outlined in Exam-
ple 6.2 delivers highly satisfying results for two real world use cases and discuss
an implementation procedure. However, the heuristic presented by Example 6.2
may fail once a resource consumes irrelevant data, e.g., 5TB of cat pictures from
a local file server. Depending on a network or company characteristics other
heuristics might be appropriate, e.g., derivation from a mean received amount of
data or a mapping onto a σ distribution.

In addition to modeled ICT-devices in Example 6.2, human resources may be
modeled as well representing dependencies of employees on data access, manual
data acquisition and complex dependencies between multiple employees. By
analyzing access log files, and, if permitted, analyzing call and mail metadata,
such dependencies may be automatically learned by using the same heuristic as in
Example 6.2. Note that the presented mission impact assessment is not limited to
ICT use cases, but as well suited for medical or military domains, where a resource
dependency model may not represent ICT devices, but persons, patients, or
vehicles, and mixtures between them. For example, a resource dependency model
of a shipping company is likely to consist of various autonomous robots, multiple
employees scheduling ships and berths, and employees scheduling suppliers and
subcontractors.
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The approach outlined in Example 6.2 generates one model for the complete
period of observed network traffic, i.e., represents a general model of all evolution
phases if a network changes over time. By periodically repeating the approach
outlined in Example 6.2, a model incrementally adapts to changing, dynamic
environments, and a differential analysis to a fixed time-period reference point
(e.g., a monthly-generated model) can be used to cope with context drifts. In that
sense, the here discussed model can still be used in slightly dynamic environments.
Later in Section 6.3, we present an approach towards completely dynamic
probabilistic mission impact assessments for rapidly changing environments and
time-dependent analyses at a, if intended, nearly continuous time granularity.

Mission dependency models and resource dependency models directly repre-
sent an infrastructure and already define a probabilistic graphical model. What
is yet missing to perform a mission impact assessment using this model is a
source of potential impacts addressed in the following subsection.

6.1.3 Local Impacts (Security View)

A third view involves a security expert able to assess local consequences of events.
In the style of reliability analyses using Bayesian approaches, as, e.g., early work
by Torres-Toledano and Sucar (1998), we model external shock events inside a
network. Informally, an external shock event (SE) represents a source for an
impact and is attached to a node in a resource dependency model, i.e., a SE
threatens a node to be impacted. By representing SEs as random variables, one
gains the ability to include uncertainty about the existence of SEs and uncertainty
about whether a present threat leads to an impact on a node. Formally, a shock
event represents a random variable as well, and is defined as follows.

Definition 6.4 (External Shock Events). An external shock event SE is a
random variable and let ~SE be the set of all known external shock events. An
external shock event SE ∈ ~SE might be present (+se) or not be present (¬se), for
which a prior random distribution P (SE) is defined, i.e., SE is a prior random
variable. Every vertex V of a resource dependency model R might be affected by
one or more external shock events ~SEV ⊆ ~SE. In case an external shock event
is present (SE = +se, SE ∈ ~SEV ), there exists a probability of it affecting node
V , expressed as a local conditional probability fragment p(+v|+se). If an external
shock event exists and it is not inhibited, we speak of a local impact on V . In
the case that the external shock event is not present, i.e., ¬se, it does not affect
random variable V and we write p(+v|¬se) = 0. Every individual conditional
probability fragment from an external shock event is treated in the same noisy-or
manner as a dependency towards another node, and thus, multiple shock events
can affect one node and one shock event can affect multiple nodes. N

According to Definition 6.4, the presence of an external shock event can be
known (observed) or can be unclear and is assessed probabilistically through
its prior random distribution P (SE). We denote the set of observed external
shock events (known presence) as a set of instantiations ~seo of observed random
variables ~SEO ⊆ ~SE. This is highly beneficial for applications, where the actual
presence of impact-sources is uncertain (P (SE)), and where evidence of existence
and impacts is available, i.e., where SEs are observable (+se ∈ ~seo). Classically,
a local impact can also be seen as an observation of an impacted node, i.e., +x.
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However, in a probabilistic approach, a cause of an observation must be evident
from and and be modeled inside the network. In consequence, the cause of
an observation of an impacted node +x cannot origin from an external source,
and other network-nodes are “blamed” for the observed impact. By introducing
external shock events one gains the ability to model “soft evidence” of local
impacts, i.e., one is unsure whether an external shock event exists, and is unsure
whether it might actually lead to a local-impact and affect a node’s operational
capability from external sources. Nevertheless, observations provide valuable
information about transitive impacts and are further discussed after the following
definitions and examples.

Assessing the existence of external shock events and the implications of
present shock events is likely to not remain stationary over time. To address a
degree of variance over time, we introduce the concept of temporal aspects of
external shock events:

Definition 6.5 (Temporal Aspects). We define a temporal aspect of an external
shock event. We employ the idea of abstract timeslices in which the effect of an
external shock event changes. Every abstract timeslice then represents a duplicate
of the network- and mission dependencies with a different set of local conditional
probabilities and prior probabilities of local impacts. We denote time-varying
probabilities in a sequence notation as 〈t0 : p0, . . . , tT : pT 〉, with T + 1 abstract
timeslices. In every abstract timeslice i, varying local impacts take their respective
conditional or prior probability pi defined for its timeslice ti. N

With Definition 6.5 an independent model is created for each timeslice, where
impact assessments of time ti are independent of assessments from time ti−1. In
the following, we call this the independent-timeslice model. This idea is extended
in Section 6.3 towards a fully dynamic impact assessment, where entities of
timeslice ti depend on entities of timeslice ti−1, i.e., a resource dependency model
is a time-dependent model evolving over time with time-dependent, “conscious”
nodes allowing for retrospect and predictive analysis of potential mission impacts.
This extension will demands cyclic ADBNs as derived in previous chapters.

Every local impact represents a potential threat and can be, for example,
a consequence of a present vulnerability, a countermeasure, a failure or an
attack. It lies in the expertise of a security operator to assess a potential local
impact of those threats. Due to locally viewed CPDs based on combination
functions from probability fragments, an expert does neither need to have any
expertise in resource dependencies nor an understanding of missions to do so.
Further, an assessment of local impact probability can be formally validated
through experiments or be grounded on common sense. The following examples
demonstrate how to employ external shock events in an ICT security context
and outline the merits of local assessments.

Example 6.3 (Response Plan Side Effects). We employ mission impact asses-
sment to achieve a qualitative assessment of potential negative side effects of
a proposed response plan to an ongoing or potential attack. We see a response
plan as a collection of individual actions affecting a network. E.g., a shutdown
of a server might easily reduce the surface of a potential attack. Still, if a critical
resource is highly dependent on that server, it might impact a mission even more
severely than a potential attack. We consider three mitigation-action types and
transform them into external shock events, possibly leading to local impacts.
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The first mitigation action, i.e., an external shock event, is a shutdown.
Obviously, if a node is shut down (+se: the external shock event is present) it is
easy to see that the probability of local impact, given the shutdown of node X, is
1, i.e., p(+x|+se) = 1.

Secondly, employing a patch on a node X might produce collateral damage
as well. During installation of the patch, there exists a (low) probability of
immediate conflict, e.g., a flat assumption of 10% or a measure published by the
software vendor. In a mean time, a patch might enforce a reboot of a network
device. This leads to a temporal shutdown and might lead to hardware failure.
Finally, after a successful reboot, a replacement of hardware, and/or a restore of
a previous backup, the network device will fully resume its operational capability.
Using temporal aspects, one is able to model a patching operation in three abstract
timeslices and define the local impact probabilities of this external shock event to
be p(+x|+se) = 〈t0 : 0.1, t1 : 1.0, t2 : 0.0〉.

Our third considered mitigation action is the restriction of a connection from
node X to node Y , i.e., a new firewall rule. From a technical perspective this
operation forbids a transfer of data that might have been crucial for the operational
capability of a node Y . Therefore, a firewall rule leads to an operational impact
on Y . As a connection between two devices resembles a dependency, one must
further actually remove this dependency. Otherwise, one would infer further
impacts over a dependency that was prohibited and already assessed locally. To
do so, one transforms a prohibited dependency to an observed external shock
event +se s.t. the local conditional failure probability p(+y|+x) becomes a local
impact probability p(+y|+se). Another approach, decidable by a security operator,
would be to accumulate an amount of prohibited information flow for every node
affected by a firewall rule, and to add one unified local impact for all prohibited
connections per random variable.

These external shock events are deliberately executed in the domain, i.e.,
their presence is fully known and controlled. Therefore, we model their prior
probability to exist as a tautology, i.e., p(+se) = 1, and observe the presence
of mitigation actions, i.e., all modeled shock events ~SE represent the observed
events ~seo.

This example shows how executed actions are modeled as external shock
events for an assessment and is applied in a real world use case outlined in
Section 6.2.2. The assessments of local impacts are highly beneficial for the
example, as not enough, if even any, data is available that allows for an analysis
of potential impacts on a company related to executed individual mitigation
actions. Without a context-free and bias-free assessment, one needs to generate
data for learning and validation of an algorithm: Every mitigation action, and
every mitigation action combination, must be executed on all network resources
multiple times and an impact onto a company must be assessed. To obtain
statistically sound results, we believe such tests must be executed, at least,
several thousand times. Frankly, it is easy to imagine that a company would
not exist anymore before experiments have finished. In our approach, only
local assessments of mitigation actions are required which are validatable locally
by using common sense or by using small local experiments, without a need
to validate a global assessment. In our approach, if expert validation is not
available or seen as not sufficient, for example, the impact probability of a
patching operation on a resource can be validated by small local experiments on
single, automatically deployed instances of virtual machines, which deploy and
execute the patch and evaluate its outcome.
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A second use case is motivated from an opposite perspective. While response
plans discussed in Example 6.3 are intentionally executed actions on an environ-
ment, i.e., local impacts are triggered internally, the following use case considers
impacts triggered by external sources, e.g., an adversary.

Example 6.4 (Vulnerability Impact Assessments). In a cyber security context,
vulnerability advisories represent notifications of potential flaws in systems or
software. It is not always known if a vulnerability is actually “exploitable,” me-
aning, if a flaw can actually be exploited to cause harm to a system. Further,
the expected amount of potential harm can be difficult to assess and depends on
local configurations of components or further environment constraints. More-
over, inferring if a vulnerability is actually present on a local system requires
a deep analysis of local software configurations. These facts motivate to model
vulnerabilities as (partially observed) external shock events.

A vulnerability represents one external shock event SEV , which affects mul-
tiple nodes ~X. The prior probability distribution of an external shock event
SEV , i.e., P (SEV ), then represents (i) a probability of existence P (SEeV ), e.g.,
it affects all nodes running software Q, but it depends on numerous further
uncheckable constraints if vulnerability V actually affects this configuration and
represents (ii) the probability of exploitability P (SExV ) if a (publicly known)
exploit exists for a known vulnerability. P (SExV ) is very likely to vary over time
for which one can employ abstract timeslices. The prior probability distribution
P (SEV ) is then obtained by P (SEV )t = P (SEeV ) ·P (SExV )t and can be extracted
from CVSS scores based on access complexity, authentication and access vector
attributes, where access complexity is likely to vary, i.e., decrease, over time.
Moreover, the prior random distribution P (SEeV ) of each external shock event
provides the ability to include uncertainty whether an individual shock event does
exist or not.

Given an exploitable presence of a vulnerability on a node X, a local impact
might be created, i.e., p(+x|+sev). Likewise, this probability represents the expected
harm of a successful exploitation of a vulnerability on a node and can vary for
every individual node. A required probability fragment for an impact p(+x|+sev) is
obtainable by a noisy-or combination of the CVSS attributes for confidentiality-,
integrity- and availability impact.

All parameters, i.e., P (SEeV ), P (SExV ) and p(+x|+sev), are qualitatively
assessable and understandable for an expert, who can be assisted, or even be
replaced, by an automatic extraction from public vulnerability advisories. Ge-
nerally, abstract timeslices could be used to model a vulnerability in different
dimensions, e.g., C, I, A. We refrain from this idea and keep the nomenclature
of a general impact on a node.

Examples 6.4 and 6.3 demonstrate the use of external shock events to include
knowledge about a resource’s impact from external perspectives. Notwithstan-
ding, similar knowledge is obtained from sensors inside a network, e.g., intrusion
detection systems (IDS). Alerts obtained from, e.g., IDS represent internal in-
formation and are seen as observations of random variables, as discussed above.
In order to directly represent this knowledge as external shock events, every
raised alert is seen as one external shock event, with a prior random distri-
bution P (SEA) representing the certainty of the raised alarm and P (+x|+sea)
representing the severity, i.e., most likely 1, of the raised alarm.
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As discussed above, a raised alert may provide transitive information about
other resources as well, and we continue the discussion of observations and their
implications in probabilistic mission impact assessments in Section 6.3.

Modeling vulnerabilities in a probabilistic model is significantly different
from existing approaches to include vulnerability advisories to raise situational
awareness, as, e.g., generating attack paths (cf. Jha, Sheyner, & Wing, 2002; Ou,
Govindavajhala, & Appel, 2005). Attack paths try to address the problem how
an attacker might actually compromise the network, i.e., such approaches try to
simulate an attacker. In contrast, we intend to raise an amount of situational
awareness that provokes a proactive removal of potential impact sources. In
fact, examples like StuxNet (see, e.g., Langner, 2013) have shown that actual
attack paths are only loosely based on an interaction of vulnerabilities, and
that vulnerabilities rather represent first stages of attacks. Further, we argue
that global effects of local vulnerabilities are hardly foreseeable by any expert.
In our probabilistic model, only local consequences of exploited vulnerabilities
must be addressed, and transitive effects are (automatically) assessed due to
the resource dependency network. This means, one considers what all could
happen locally and one does not try to find an actual path of an attack or
somehow assess global effects at once. An actual use case demonstration for this
example is given in Section 6.2 and we show that one obtains an assessment that
is understandable directly and bias-free, namely “there exists a x% probability
of compromise to our company” instead of “there exists an attack path over
cve-xy, cve-zt, cve-ix, cve-po,” which is only understandable to a security expert
and whose implications are unclear for any non-security expert with indepth
domain knowledge. The mathematical foundations for a context- and bias-free
probabilistic mission impact assessment from the defined dependency models
are introduced in the following sections.

6.2 Applied Probabilistic Mission Impact Asses-
sment

In this section we discuss a probabilistic mission impact assessment from a
mathematical perspective and apply it in two real world use cases related to
cyber security.

Given a mission dependency model, a resource dependency model, and a set
of external shock events, one obtains a probabilistic graphical model. Informally
speaking, in the resource dependency model, some nodes are threatened by
(observed) external shock events, and, as nodes are dependent, a threatened node
might again threaten another node, leading to a “spread” or “propagation” of
impacts. We say, a node is threatened by an external shock event transitively. In
the end, there exists a probability that even a business process or the complete
company (mission) is threatened transitively by various external shock events.
To recall, to be threatened by an external shock event might lead to an impact;
and it is a well-defined problem of calculating this “might”-probability of being
impacted due to an external shock event, which is what we call the mission
impact assessment. The following definition on mission impact assessment has
already been applied in Example 6.1.
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Definition 6.6 (Mission Impact Assessment, MIA). Given a mission dependency
model M , a resource dependency model R and a set of external shock events
~SE, a mission impact assessment of a mission node MN is defined as the
conditional probability of a mission node MN ∈M being impacted (+mn), given
all observed external shock events ~seo, i.e., P (+mn|~seo), where the effects of local
impacts due to all ~SE are mapped globally based on mission-dependency and
resource-dependency graphs. Note that ~seo includes present (+se) and absent
(¬se) shock events and that some shock events are unobserved, i.e., are assessed
probabilistically through their prior random distribution P (SE). The task of
obtaining P (+mn|~seo) is defined as the MIA problem. N

Given Definition 6.6 it is the task of an mission impact assessment to solve
the MIA problem, i.e., to obtain the probability P (+mn|~seo).

From a probabilistic point of view, a sound definition of an overall joint
probability distribution as demonstrated in Example 6.1 is required. As demon-
strated, this is given for the mission dependency graph, because it is a directed
acyclic graph and represents a Bayesian network. However, in the resource
dependency graph an acyclicity constraint cannot be assumed and Bayesian
network semantics are not well-defined for cyclic graphs. One could transform
a network dependency graph to a Markov random network, which, however,
due to a needed global normalization factor, destroys an intended local view,
i.e., local semantics, on probabilities. Motzek and Möller (2017) show that
the MIA problem in the independent-timeslice probabilistic graphical model is
solvable by an exploitation of noisy-or and noisy-and CPDs. Under noisy-and
and noisy-or assumptions, the problem reduces to a commonly known problem
of probabilistic satisfaction, as, e.g., used by de Raedt et al. (2007). Motzek
and Möller (2017) employ a linearly scaling Monte Carlo simulation to obtain
an approximate solution to the MIA problem and show that results are highly
applicable to real world use-cases, which are given in the following subsection. In
fact, the independent-timeslice received great acceptance at the NATO IST-128
Workshop on Cyber Attack Detection, Forensics and Attribution for Assessment
of Mission Impact held in Istanbul, Turkey during June 2015, at the Workshop
on Cyber Defence and Security in Brussels, Belgium in September 2015, and at
the NATO IST-148 Symposium on Cyber Defence Situation Awareness, in Sofia,
Bulgaria in October 2016, even by attendees from different fields of applications.
Attendees were delighted that local CPDs and probability fragments allow an
easy parametrization leading to directly understandable results.

In Examples 6.3 and 6.4 we discuss two application fields for the introduced
probabilistic mission impact assessment, and give examples of automatically
generated and learned resource dependency models, as envisioned in Example 6.2.
In the following two subsections, we apply all examples to two real world use
cases and demonstrate that the approach is directly applicable, delivers satisfying
results and is greatly accepted by experts.

6.2.1 SMIA Challenge

In 2011 Teodor Sommestad et al. (Sommestad & Hunstad, 2013) conducted an
experiment at the information warfare lab of the Swedish defense research agency,
which gives us the opportunity to demonstrate Example 6.4 for vulnerability
impact assessment. In the 2011 experiment, codenamed SMIA2011, a complete
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network consisting of multiple domains was set up containing multiple ICT
servers, clients, mailservers, firewalls, ftps, webservers, even SCADA server,
etc. User behavior was simulated inside each domain by action scripts, e.g.,
checking webservices, emails and downloading files. Intrusion detection systems
provided information to one team in charge of monitoring the complete network
and noting suspicious behavior. Another team was in charge of infiltrating the
network. Both teams carefully documented their approaches and all network
traffic was recorded over six days.

In summary and most noteworthy, the attacking team was able to ex-filtrate
all mail messages from mail servers m1 − m5 and change parameters of a
SCADA server fanuc. For our analysis, we consider these servers as mission
critical resources, i.e., ~BR = 〈m1, . . . ,m5, fanuc〉. While some attacks built
on each other, the most impacting attacks were almost uncorrelated. Further,
vulnerabilities actually played an insignificant role during attacks. As our
approach does not build up on actual attack sequences, but rather considers
vulnerabilities as points of interest, we evaluate if our approach is able to
raise a significantly high enough situational awareness to be concerned about a
compromise, i.e., impact, on the identified mission critical systems.

In more detail, the attacking team firstly discovered a misconfigured service
running on one mailserverm1, which allowed the attackers to extract a (encrypted
and later decrypted) password file. By decrypting the password file from m1 the
attackers further gained a privileged ssh connection on m1, which was exploited
for tunneled attacks to two hosts f6 and o6 that were not reachable previously.
Exploitation of a known vulnerability on f6 and o6 gave a remote shell that
revealed further user-passwords. The extracted passwords allowed downloading
all mailboxes from all domains, most likely due to reused passwords in multiple
domains. Another vulnerability was exploited directly on another host ha. While
revealing new passwords, no further attacks built up on it. Nevertheless, it could
have been an excellent starting point for the following and most interestingly
attack: The attacking team was able to completely manipulate all employed
firewalls, providing complete access to any node on any domain. Firewalls were
only secured by a simple password (“password”), but it could have been extracted
in one of the previous attacks. Due to the broadened reachability, the attackers
had free access to a (otherwise completely unsecured) SCADA server, on which
they successfully changed various parameters. Note that most attacks were not
executed through any publicly-known software-vulnerability and, thus, would
not have been detected by any analysis of such vulnerabilities alone. In fact,
no publicly-known software-vulnerabilities were found on any mission critical
resource, and no exploits were launched against them. Achilles’ heel lied in a
set of badly configured resources and a false sense of security in a presumably
demilitarized zone. We believe that it is impossible to accurately identify and
devise these chain of events beforehand and to detect these configuration flaws
in any automatic or manual expert-driven approach.

In the SMIA2011 experiment all occurring traffic was recorded over multiple
days and thankfully provided to us, which allows us to obtain a resource depen-
dency model for this experiment, visualized in Figure 6.4. To learn a resource
dependency model automatically, we follow Example 6.2 using wireshark and
consider each IP as an individual resource, as dynamically assigned IPs remained
static over the experiment. We solely utilize recorded traffic of the first day prior
to any severe actions carried out by the attacking team (such as flooding the IDS
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and changing firewall configurations). An obtained dependency model seemed
plausible, but dependency degrees showed up to be imbalanced: The amount
of analyzed traffic of the first day was short and user scripts did not generate
a realistic amount of traffic. Further, no operator was simulated to control or
monitor the SCADA server, which is why it did not appear in the dependency
model analysis. To overcome these circumstances, a minimal dependency pro-
bability of 5% is assumed and the SCADA server is manually modeled to be
dependent on an operator from the same domain and vice versa. Note that these
manual corrections are exactly foreseen in our dependency model. A domain
expert is assisted by a heuristic delivering a locally interpretable model, which
is, if needed, corrected and consecutively validated in his expertise.

Figure 6.4. Resource dependency model extracted from one day traffic captures for the
SMIA challenge use case. Red nodes are directly impacted by vulnerabilities and affect
other nodes transitively (first-step edges highlighted in red) and are remotely placed from
mission critical devices (green). Thicker and darker edges represent higher dependency
degrees. For visualization some insignificant dependencies are removed. In fact, the
generated network is far from a fully meshed network (only 1% of all possible edges are
extracted.) Number of nodes nN = 475, number of edges nE = 2431. Visualized using
Gephi (Bastian et al., 2009).

External shock events are modeled as described in Example 6.4. In total,
attackers exploited three different vulnerabilities on four hosts (shown in red in
Figure 6.4): CVE-2010-0478 on some insignificant node hk, CVE-2008-4250 on
ha and CVE-2003-0352 on f6, o6. These vulnerabilities represent the external
shock events ~SEV = 〈CVE 478,CVE 4250,CVE 352〉. Three resources (ha, o6, f6)
of the compromised hosts are part of the domain containing m1 and one (hk) is
part of the domain containing scada server fanuc. For all vulnerabilities, exploits
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are publicly known and integrated into various frameworks, e.g., metasploit,
which is why we assume P (+cve) = 1,∀CVE ∈ ~SEV for all of them representing
that one is certain that each vulnerability is present and exploitable. Local
impact probabilities are adapted frankly according to their respective CVSS
score divided by 10, e.g., p(+f6|+cve352) = 0.75. For simplicity we do not employ
abstract time slices in this use case and no observations are made in this use
case, i.e., ~seo = ∅.

Based on the defined local impacts, the resource dependency model and
the mission dependency model, one obtains that there exists a probability of
P (+m1) = 23.4% of impact, i.e., compromise, of the firstly attacked mail server
m1 and that there exists a P (+fanuc) = 7.8% probability of compromise of the
discussed SCADA server fanuc. Both servers were in fact compromised, but
through ways unforeseeable by any software-vulnerability focused analysis. We
argue that a probability in these ranges cannot be ignorable by any person
confronted with these results. Even the other compromised mail servers, part
of domains without present shock events, are assessed to be impacted with
probabilities of P (+m2) = 8.1%, P (+m3) = 8.1%, P (+m4) = 10% and P (+m5) =
7.6%. This shows that our MIA delivers reasonable and accurate results, as one
obtains non-negligible impact probabilities raising one’s situational awareness
for all six servers that were compromised.

Considering all critical resources ~BR to provide, each, one business function
BFi ∈ ~BF , which are equally part of one business process BP1 of a, say, cloud
company CM1, an impact probability of P (+cm1) = 38.3% on the company’s
mission is assessed. A probability in this range is not dismissable in any case
and does not require reference results of previous impact assessments, e.g., it can
be directly compared to tossing a or on a six-sided dice . Additionally,
this mathematically grounded probability directly measures the criticality of this
situation: with an objective measure of this cloud company, e.g., a monetary value
expressing the value of the cloud company, one obtains an expected (monetary)
loss for this situation originating from this probability of impact.

Moreover, our approach is completely transparent and understandable throug-
hout from modeling over its usage up to obtained results. Every defined parameter
can be grounded on expert assessments or historical evaluations and, finally, a
produced assessment of “Due to a set of local, widespread impacts, there exists
a probability of 38.3% that our mission will be compromised” is understandable
and not dismissible. We argue that this assessment is eligible for reporting along
a command-chain and understandable by every instance. In contrary, a non-bias-
and non-context-free assessment of “vulnerabilities lead to a mission impact of
25764.324” does only make sense for a deeply trained expert or given reference
results and is not suitable for any reports.

This example further shows the benefits of local assessments: Every para-
meter in the form of a conditional probability fragment is understandable and
validatable by itself locally, and these parameters immediately define a well-
defined probabilistic graphical model. By reducing mission impact assessment to
a probabilistic inference problem in this model, obtained results are understan-
dable without any reference values of other assessments, and are defined to be
correct based on the correctness of the local parameters. While all parameters,
considered for themselves, are understandable, the global implications of them
are hardly overseeable. Still, the approximation algorithm derived by Motzek
and Möller (2017) defined obtains these assessments in the range of seconds.
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The following subsection discusses a further use case for a context-free mission
impact assessment, utilizing observations and temporal aspects.

6.2.2 Acea Use Case

The Panoptesec integrated research project aims to “deliver a beyond-state-
of-the-art prototype of a cyber defence decision support system” (Panoptesec
DOW, 2013). As part of this project, we employ the derived probabilistic mission
impact assessment for both use cases as outlined in Example 6.3 on response plan
assessments and Example 6.4 for a vulnerability impact assessment. We are able
to apply and test the complete approach in the Panoptesec’s use case partner,
Acea SpA, Italy’s largest water services operator and one of the largest energy
distribution companies in Italy (Acea SpA, 2016). To deploy a probabilistic
mission impact assessment, all three models were created in cooperation with
experts, as presented in the following.

In a team session of two business experts from the company and one IT
specialist, a complete mission dependency model was identified for Acea ARETi
in less than three hours. ARETi is a division of Acea SpA in charge of distributing
and controlling energy to the city and vicinity of Rome. Admittedly, business
experts showed to be reluctant to give assessments of CPDs, but intrinsically
were able to understand all parameters. Given a set of choices, experts quickly
agreed on an assessment and validated a complete mission dependency model,
which is displayed in Figure 6.6 in its general structure in combination with the
resource dependency model.

The most important objectives, i.e., business processes, of ARETi are to
distribute and control high level voltage, whose dependency decompositions are
shown in Figure 6.5. These business processes require four business functions
provided by 16 mission critical resources. For distribution of high level voltage
(business process BPD), remote terminal units (RTUs) are required, which are
remotely placed actors for switching power. Around 50 RTUs are geographically
scattered in the vicinity of Rome and accessed via various communication links,
e.g., by GSM. In consequence, these communication establishing devices (further
called proxies) as well as the individual RTUs provide business function BFR.
Naturally, a high dependence between RTUs and their proxies exists, which is
automatically learned and assessed in the resource dependency model (compare
the two “clouds” of devices in the lower right of Figure 6.6). Hence, it is sufficient
to solely identify involved proxies (i.e., central nodes of the clouds in Figure 6.6)
in a mission dependency model, and not all individual RTUs need be identified.
This is highly beneficial for this application, as individual RTUs are frequently
replaced, which is automatically captured by an incremental re-learning of the
resource dependency model and, thus, must not be made explicit in the mission
dependency model. Two of these proxies (p1, p2) are optional and were assessed
with a probability fragment of p(+bfr|+p1) = p(+bfr|+p2) = 0.8 each. Remaining
proxies p3, p4, p5 are required by business function BFR with a probability
fragment of p(+bfr|+p3) = p(+bfr|+p4) = p(+bfr|+p5) = 0.9 each.

The central intelligence between controlling (business process BPC) and
distributing power (BPD) is provided by multiple SCADA servers (business
function BFS), which control and manage the individual RTUs, which are
monitored by human machine interfaces (business function BFH). Note that it is
sufficient to solely identify the HMI clients (two in this case) in the HMI business
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function, as it is the directly critical device for the purpose of HMI; transitive
dependencies of the HMI clients on SCADA servers, RTUs and proxies are
automatically covered through the resource dependency model and probabilistic
inference. As both HMI clients (h1, h2) allow almost full control over the
complete process, both were assessed with a conditional probability fragment
of p(+bfh|+h1) = p(+bfh|+h2) = 0.9. All SCADA servers of business function
BFS are laid out redundantly, which is replicated in the mission dependency
model by using a noisy-and combination function. As controlling requires
a working ICT environment, business experts identified an “ICT” business
function BFI consisting of one NTP-, three archival FTP-, and one web-server
(business resources ~BRi). As these devices are not dramatically critical to
provide this business function, their probability fragments were assessed each to
p(+bfi|+bri) = 0.4,∀bri ∈ ~BRi. BFI is only marginally required for controlling
BPC and was consequently assessed with a probability fragment of p(+bpc|+bfi) =
5%. Dependency degrees for remaining business processes and functions, i.e.,
conditional probability fragments, were assessed as shown in Figure 6.5. Further
details on these business processes, such as further redundancies and objectives
of individual resources are omitted here for confidentially, and only shown in
their general structure in Figure 6.6. In Figure 6.6 two other business processes
are indicated with additional business functions, which are not discussed here
for the same reason.

Acea

BPC BPD

BFHBFI BFS BFR

0.9 1.0

1.00.05 0.9 0.9 1.0

Figure 6.5. Small exert of two business process involved in distributing (BPD) and
controlling (BPC) high level voltage in the vicinity of Rome by ARETi and their four
required business functions (BFH , BFS, BFR, BFI) provided by 16 mission critical
devices (green). Business resources providing BFS are laid out redundantly. Compare
with the corresponding resource dependency model and full mission dependency model
shown in Figure 6.6.

Further, in the team session, problems outlined in Section 6.1.1 were evident,
where different experts, in fact, used different nomenclatures and languages
to refer to the same entities. For example, some experts referenced resources
by hostnames, whereas others used IP addresses or some referenced mission
nodes using abbreviations and others used literary descriptions. (Motzek et al.,
2016) deeply discuss these challenges of an eminent semantic normalization and
merging problem of mission dependency models.

A resource dependency model, depicted in Figure 6.6 is automatically learned
from recorded traffic in a redundant, backup environment with emulated behavior
of SCADA devices as outlined in the Example 6.2 every hour. A scheduled task
iteratively collects traffic metadata using Wireshark for fifty minutes. These
recordings exclude payloads and solely capture header information from Ethernet-
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and IP-frames, such as MAC-address, IP-address, frame length and tcp/udp
ports. Analyzing and aggregating this information has low and constant storage-
and memory requirements, which allows one to constantly aggregate these
information and generate a cumulative model over time. Based on these raw
statistics, we periodically generate a resource dependency model as described in
Example 6.2 every hour. By doing so, the model constantly adapts to changing
environments within an hour. In fact, an external IT specialist consultant
validated the extracted model to be reasonable for the company. However, we
admit that not all individual probability assessments were validated, but critical
dependencies were validated to be included and to bear a reasonable dependency
degree. As discussed above, large amounts of RTUs are present requiring a
remote connection. For this reason, dependencies on routing equipments are
highly critical in this domain. In order to cover these routing resources, traffic is
not solely analyzed on a logical level, but also on a physical level. To be precise,
every connection is established between two logical devices, e.g., identified by
two IPs, through two physical devices, e.g., identified by two MAC addresses.
Through the use of a global inventory of all IT related resources, IPs and MACs
are mapped towards unique identifiers and a dependence of each resource on its
communication-establishing device is added. For example, say, a traffic recording
includes a connection from MAC1, IP1 to MAC2, IP2. Say, IP1 maps to ID1,
IP2 to ID2, MAC1 to ID3, and MAC2 to ID4; then a dependency of ID2

on ID1 is added, as well as a dependence of ID1 on ID3 and of ID2 on ID4,
through a flat assumption of p(+id1|+id3) = 0.9. By doing so, one considers that
a potential impact on a router may directly affect all resources communicating
over aforesaid router, i.e., that communication may be spoofed, compromised, or
prohibited.

In addition to a vulnerability assessment, response plan assessments are
highly important for Acea SpA and the Panoptesec project. Assessing how
responses to cyber-attacks affect an environment is a completely novel problem,
no large datasets are available, and one must rely on a validation by an expert.
The Panoptesec system proposes response plans automatically in reactive- and
proactive-situations based on their effectiveness against attacks and financial
benefits. However, these assessments and proposals are not necessarily in line
with a company’s goals. For example, a shutdown of highly critical node will
certainly eliminate all attacks targeted towards that node and is financially highly
attractive, as this response plan does not involve almost any cost. However,
this response is catastrophic when considering implications on the mission, i.e.,
company, as clearly the mission cannot be accomplished anymore. To avoid
sacrificing missions for a false security of security, the Panoptesec system employs
the presented mission impact assessment using impact definitions by Example 6.3
to obtain operational impact assessments for each individual response plan.
Mitigation actions ~MA in a response plan RP then represents an external
shock event ~SE, i.e., random variables with associated, time-varying conditional
probabilities. All of these shock events are supposed to be deliberately executed.
This means that their existence is known and observed, i.e., ~seo = + ~ma. Then
one obtains a three-dimensional assessment P (+cm|+ ~ma) for each response plan,
i.e., the probability of operational impact onto the company if the proposed
response plan is executed in a short-, mid-, and long-term time period.

Granadillo, Motzek, Garcia-Alfaro, and Debar (2016) demonstrate an ap-
proach to unify these three-dimensional assessments with additional multi-
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Figure 6.6. Resource dependency model extracted from roughly one month of traffic
captures in ARETi (represented in dark green), where related critical devices are
highlighted in green, business functions in blue, and business processes in orange.
This model was validated and verified to be reasonable by the company’s IT experts.
nN = 344, nE = 754. Visualized using Gephi (Bastian et al., 2009). Entities correspond
to Figure 6.5 and are marked accordingly.

dimensional assessments of response plans and propose a selection of optimal
response plans based on an unweighted best compromise in all dimensions.
Granadillo et al. (2016) evaluate the suitability of the presented mission impact
assessment for operational impact assessment to obtain adequate responses to
cyber-attacks in the here-discussed ARETi environment. In our expertise, we
obtained that operational impact assessments of individual response plans bear
reasonable assumptions, i.e., venturesome response plans were assessed to bear
a high operational impact, and that a combination of impact assessment from
financial and operational impact aspects delivers appropriate and non-trivial
response plans. Clearly, both use cases are motivated from opposite perspectives,
i.e., one from an adversarial perspective assessing probabilities of adversarial
impact, and one from an operational perspective assessing probabilities of self-
inflicted operational impact. Motzek and Möller (2016) discuss and evaluate the
benefits of considering operational- as well as adversarial-impacts towards a well-
defined probabilistic mission defense and assurance approach. Their approach is
based on multi-dimensional optimizations and graph-theoretical problems in the
probabilistic graphical model formed by Examples 6.3 and 6.4, an automatically
learned resource dependency model, and an acquired mission dependency model.
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Intermediate conclusion In summary, the presented independent-timeslice
probabilistic mission impact assessment allows for causal, context-free, and
validatable assessments of parameters and delivers context- and bias-free under-
standable assessments. Experiments on real data in two real world use cases
show that the approach is well accepted, delivers satisfying results, and that all
required models are directly obtainable. Moreover, Motzek and Möller (2017)
experimentally and theoretically evaluate that the approach scales linearly even
in large domains by the use of a verified approximation procedure.

Still, the introduced temporal aspects motivate that assessments require
a consideration of time. To a limited degree, temporal aspects implement a
consideration of time in the presented impact assessments, but we intend to
consider the following situation as well: A node is threatened due to a set of
vulnerabilities and is potentially impacted through them and dependent nodes
become impacted transitively as well. For example, a hypothetical attacker
is probably able to extract valuable information passively, able to manipulate
processed data, or is able to gain further access through unforeseen events, to
and from any dependent resource. If one now assures that the initial nodes
are not impacted, e.g., by reinstalling all directly affected system, affections
of other nodes do not immediately vanish as well. For example, all previously
caused harm by the hypothetical attacker does not vanish magically, but does
persist, i.e., any probability of inferred potential impact must persist to a certain
degree. In the same sense as persistence is “added” to Bayesian networks by
dynamic Bayesian networks, we extend probabilistic mission impact assessment
to dynamic mission impact assessment in the following section. In fact, we show
that an application of ADBNs is evident immediately and does closely represent
the taintedness domain.

6.3 Extensions to Dynamic Mission Impact As-
sessment

Temporal aspects introduced in Definition 6.5 introduce a need for mission impact
assessments over time. In rapidly changing environments, where dependencies of
resources rapidly change over time, one requires a finely-granular time-sensitive
evaluation of a mission impact. An extension of Bayesian networks (compare
Section 6.1.1, a mission dependency model is a Bayesian network) towards
dynamic domains considering evolutions of states over time is commonly known
as a dynamic Bayesian network (DBN). In DBNs values of random variables
depend not only on current influences, but also on their respective history.
An extension towards a dynamic probabilistic graphical model for dynamic
mission impact assessment (DMIA) proposed in this section allows for time-
dependent impacts, e.g., decaying impacts, evolving mission impact analyses,
and retrospective considerations of potential sources of impacts inside a network
allowing for forensic and predictive analyses.

So far in this chapter, we outlined how mission dependency models, resource
dependency models and impact models are obtainable, validatable and combi-
neable towards one independent-timeslice probabilistic graphical model. Let
R be a resource dependency model, then it is a straight-forward extension to
introduce a dimension of time t into a time-dependent model representing a
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resource dependency model Rt for each timeslice t. In every Rt, each resource
node RN t

i ∈ Rt is dependent on its predeccessor RN t−1
i ∈ Rt−1 forming a

dynamic probabilistic graphical model (DPGM) as shown in Figure 6.7. Re-
spectively, at every timestep t a mission dependency model M t is formed, whose
business critical functions are dependent on some business critical resources in
Rt. Likewise, at every timeslice some business resources are threatened directly
by some observed or unobserved shock events in SEt. However, as performed
in Section 6.2, a well-defined semantics is required for such a DPGM, which,
due to the (potentially) cyclic nature of a resource dependency model, are not
immediately given by classic DBN semantics.

R0

M1

R1

SE1

M2

R2

SE2

M3

R3
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Figure 6.7. An extension of the presented probabilistic graphical model for mission
impact assessment towards a dynamic assessment, considering history states of (poten-
tially impacted) nodes. This is beneficial for applications where interactions of nodes
are rapidly changing over time and a live tracking of impacts is required. Resource
nodes RN t

i of a resource dependency model Rt are dependent on their predecessor
RN t−1

i ∈ Rt. R0 represents an initial assumption about the potential impact state of
nodes.

A resource dependency model is derived from (automatic) analyses of com-
munications between resource nodes. Considering such a dependency model over
time directly allows modeling each communication at time t as a dependency,
i.e., an influence at time t. This means, with every communication there exists
a probability of impact. For example, every time a significant amount of data
is transferred from an, say, integrity impacted node to another, there exists a
probability that the other node becomes impacted as well, as it is the case for
message transfers M t

XY in the taintedness domain. The latter probability can,
e.g., either be derived as described in Section 6.1.2 or be derived by experts as
described for the mission dependency model.

Still, a high rate of communications between of nodes as, e.g., present in IT in-
frastructures, is computationally too expensive. Considering an IT infrastructure
as an information processing chain, it is reasonable to aggregate communications
over a reasonable timeframe suited to an use case. An aggregation significantly
can reduce computational costs for obtaining inference results in DPGMs, but
requires a careful consideration of indirect influences as we discussed in previous
chapters. Under the assumption of an information processing chain it is reasona-
ble to assume that during one timeframe no cyclic communication occurs, i.e., a
feedback loop in information processing is not finished in one timeframe. Then,
in fact, the presented dynamic mission impact assessment model represents an
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ADBN as described by the previous chapters, closely resembling the taintedness
domain, and one obtains well-defined semantics. Based on an ADBN, dynamic
mission impact assessments can be reduced to filtering and smoothing problems
in ADBNs.

A reduction of DMIA to problems in ADBNs has significant advantages: One
obtains the possibility to include evidence into a model, i.e., one is able to include
information about actual observations of impacts on nodes. Then a filtering
problem is formed by the problem of assessing the impact of any node at a time t
given all obtained evidences so far, i.e., represents an evolution of impact “live” at
the current time. Observations, e.g., can origin from IDS alerts, antivirus scans,
battle reports or plain-sight observations. A significant advantage of ADBNs
is that evidence is not only processed “forwardly,” but also “backwardly.” For
example, if X is influenced by Y , and given an observed impact on node X = +x,
an ADBN anticipates implications on Y by the observation of X = +x. Similarly,
a smoothing problem is formed by an impact assessment of any node at time
k, given evidence obtained until time t. A solution to a smoothing problem
delivers valuable information for forensic analyses about intermediate states of
mission impacts in retrospect, by including implications of future observations
to preceding timeslices.

Moreover, considering a Markov-1 property in ADBNs allows for persisting
impacts. This is beneficial for situations, where a potential compromise on a
node X already has led to an impact on other nodes ~Y , whose inferred impact
will persists if even, e.g., a cleaning operation is performed on the origin node X
at some time t. A Markov-1 ADBN is able to raise awareness for a potential
impact on nodes ~Y and, as well as, on a higher goal, such as a mission, even
though an original source has been eliminated, but residues remain of them.

In order to deploy a dynamic mission impact assessment based on ADBN,
one has to carefully consider the role of persistence, roles of external shock events
and the roles of observations. In the following three paragraphs we discuss these
roles, discuss different modeling approaches, and outline suited application fields
for each model.

Persistence is the degree an impact shall persist over time, i.e., is a conditional
probability fragment p(+xt|+xt−1). In essence, two modeling approaches can be
taken: p(+xt|+xt−1) = 1 and p(+xt|+xt−1) < 1. For the first option, one obtains
a model in which any potentially caused impact will persist forever, and will
“aggregate” over time. Note that such an aggregation is significantly different
from an aggregation obtained through a score-based propagation approach,
as one has to consider prior random probability distributions correctly. For
example, if there solely exists a prior random variable Q with P (+q) = 0.1
as the only source of any impact in a network, every impact assessment will
remain below 0.1. Moreover, irregardless how often any node came in contact
with the potential impact source, all probabilities of impact will vanish, once
one observes ¬q. We believe that it is highly complicated to include these
mechanisms into any score-based propagation approach. A total persistence
approach is suited to impact assessments for ICT networks, as resources usually
are not able to “heal” themselves from any adversarially caused impacts. The
second option, p(+xt|+xt−1) < 1, resembles a domain in which impacts do not
completely persists, and “cool down” over time. This is an approach suited to,
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e.g., infectious disease monitoring, where, in fact, entities modeled in a resource
dependency model, i.e., people, actually heal themselves over time. It is arguable
that a decaying impact is as well applicable to an ICT related use case, as a
compromise will unlikely persist forever, as compromised data (in compromised
memory locations and compromised data on a file system) will consecutively be
exchanged.

Observations of impacts and non-impacts of random variables must be care-
fully differentiated in a dynamic MIA based on an ADBN. One has to distinguish
between induced observations and true observations; a differentiation related
to Pearl’s (2002) introduction on the do-calculus and is best explained with
an example: Considering an infectious-disease monitoring system, one has to
differentiate between a person being healthy, because he has been healed and
between a person being tested to be healthy. The latter implies that there exists
the probability that the person has never been infected, i.e., did never have
a possibility to infect other persons he came in contact with. The first is an
induced action and delivers solely information from the current state on. In an
ICT security related use case this means that if one actively cleans a system,
the system is not impacted from now on, but previously caused impacts will
persist. If one deeply and passively inspects a system and comes to the conclusion
that the system has never been compromised, one truly observes ¬x, which has
an effect on all previously caused transitive impacts. In order to model these
differences, one needs to reconsider the role of external shock events.

External shock events in an ADBN used for DMIA are used to include soft
evidence and external sources of observations. In order to include external sources
of observations, one is able to model an external shock event that inevitably will
cause the desired observation. For example, to observe a non-impacted node
¬xt, but X has actively been cleaned at time t, one includes a random variable
SEt with P (+set) = 1 and p(¬xt|+set) = 1 s.t. ∀~z : P (¬xt|+set, ~z) = 1. Due to
a context-specific independence of Xt on all its possible dependencies ~Z, given
+set, Xt is decoupled from all other potential sources of (non-)impact, and the
observation ¬xt is completely accredited to SEt. Using external shock events to
include soft evidence is especially useful to include information obtained from
present vulnerabilities on nodes in an ICT security use case, which we discuss in
the following example.

Example 6.5 (Roles of vulnerabilities and initial believes in DMIA). In an
ICT/ICS security related use case of a dynamic mission impact assessment, one
must include information of potential compromises, i.e., information obtained
through IDS alerts and from vulnerability advisories. An IDS alert, say “com-
promise on node X” represents a classic observation +xt and will affect other,
transitively dependent devices even from previous timesteps, as the source of this
observed compromise will lie in the network. Still, such sources must be modeled
in an ADBN. We envision two potential use cases of DMIA, depending on two
perspectives what should be achieved: (1) Viewing DMIA as a simulation of evo-
lution of compromise, all sources of impacts are modeled as initial believes about
compromise in B0 in prior random distributions P ( ~X0). From this perspective,
all future observations are credited to any circumstance that is modeled, i.e., all
impacts must origin from inside a network. In order to integrate a degree of
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flexibility, one is able to include a “leakyness” in CPDs, i.e., P (+xt|¬~zt) > 0 (~zt
representing all dependencies of Xt). Still, by modeling leaky CPDs, one loses
deeper explanations for potential impacts, as impacts can occur “from nowhere.”
(2) Viewing DMIA as a monitoring system, one is able to explicitly model all
potential sources of impacts, but might over-accredit external- instead of internal-
sources of impact. From a monitoring perspective, at every timestep for every
vulnerability V an external shock event SEV exists, as discussed in Example 6.4,
and respective CPDs of affected nodes X accredit a (new) potential compromise
due to this vulnerability at every timestep, i.e., p(+x|+seV ) > 0 and P (+x|¬~z) = 0.
By following this approach, one is further able to represent that it is more likely
that a node becomes compromised, given it is prone to a vulnerability and actively
retrieves information from a dependent, impacted node.

This example outlines and discusses how to include information about (po-
tential) compromises and threats in an ICT security DMIA based on an ADBN
and outlines two possible perspectives that can be taken when using a DMIA.

We refrain from a deeper analysis and evaluation of the outlined approach
as DMIA represents a too large novel research field and is beyond the scope
of this thesis. Still, without the preceding chapters on ADBNs, an associated
DPGM to a DMIA problem is not well-defined and would exactly suffer from
problems evident in the taintedness domain. Without an ADBN, dependencies
in a resource dependency network must be bent to consecutive timeslices, either
enforcing an infinitesimal resolution of time, or ignoring crucial indirect causes
and influences.

6.4 Related Work

Mission modeling and mission impact assessment is an emerging field of rese-
arch; and, naturally in new, viral research areas, employ ad-hoc solutions using
algorithms involving fudge factors. While delivering early results and acclaimed
solutions for mission impact assessment, a formal definition of an underlying pro-
blem is yet missing. Employed fudge factors in newly established algorithms lead
to untraceable and possibly spurious results demanding data-driven validations.
Unfortunately, large, standardized datasets for validation are yet missing for
mission impact assessment, and no evidence of any data-driven validation is given
in the following presented works. Ad-hoc solutions can deliver acceptable results,
if an expert is familiar with an employed solution and understands the nature of
setup requirements, but frequently involves unvalidated and unverifiable “black
magic” (non-context-free).

De Barros Barreto et al. (2013) introduce a well-understood modeling techni-
que and use BPMN models to acquire knowledge. An impact assessment is based
on various indexes and numerical scores, such as exploit index, impact factor,
infrastructure capacity index, and graph distances. Various numerical factors are
arbitrarily combined, without a mathematical foundation and cannot provide
a transparent, understandable and verifiable assessment to an expert. Further,
an assessment is solely based on direct impacts, leaving aside transitive impacts
and/or defining a manual description of all dependencies between individual
devices inside one organization, which is, in most of the cases an unfeasible
process
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Albanese et al. (2013) a well-modeled formalism for complex inter-dependencies
of missions as a set of tasks. Using numerical scores and tolerances in a holistic
approach Albanese et al. focus on cost minimization. Their approach can solely
be validated holistically, as involved parameters do not bear local semantics and
do not provide bias-free and context-free understandable results. Buckshaw et
al. (2005) propose a quantitative risk management by involving various experts
and present a score-based assessment based on individual values and a standar-
dization using a weighted sum. Unfortunately, a mathematical foundation is
missing and obtained results are only interpretable after deep training of experts
in the characteristics of this approach. Buckshaw et al. themselves note that
a validation of the proposed model requires large amounts of actual data and
ground truth, which both are not available.

Jakobson (2011) presents a well-understood conceptual framework using
interdependencies based on operational capacity at different abstraction layers.
In this dependency model, impacts are propagated and reduce the operational
capacity, which has a similar intention to our approach. However, Jakobson (2011)
uses self-defined metrics for propagating impacts through Boolean gates, which
cannot provide context- and bias-free understandable results or parametrization.
Moreover, an explicit representation of “intra-asset” dependencies is required, i.e.,
all individual critical, and non-critical resources must be identified. (Musman
et al., 2010) proposes the use of BPMN models and describes a process for
evaluating impacts of cyber-attacks. However, (Musman et al., 2010) fails to get
across any mathematical approaches or formal definitions for impact assessment.

Further works focused solely on modeling. For example, Goodall, D’Amico,
and Kopylec (2009) focus on modeling and available data integration using
ontologies but do not address an impact assessment. Another ontology-based
approach is presented by D’Amico, Buchanan, Goodall, and Walczak (2010) and
identifies multiple experts while noting that, e.g., system administrators are not
capable of understanding an organization’s missions.

In terms of (probabilistic) approaches towards assessments of impacts caused
by vulnerabilities and attacks, probabilistic models have been researched by
Wang et al. (2008), Liu and Man (2005), and Xie et al. (2010). However, they
base their work on attack graphs and do not consider imperfect knowledge, e.g.,
unknown extents of damage causable by vulnerabilities, uncertainty of specific
events and potentially disagreeing information sources as we do. Moreover, Xie
et al., as well as, Liu and Man are significantly limited by the lack of supporting
cyclic dependencies and do not consider any mission impact relations. Chung et
al. (2013) consider a probabilistic approach as well to determine the likelihoods
of explicit attack paths. However, presented probability theory by Chung et al.
(2013) is not sound and voids fundamental principles of probabilistic inference
in multiply connected graphs. Other impact propagation approaches, e.g., by
Kheir et al. (2009) or Jahnke et al. (2007), claiming to handle details such
as disagreeing information sources and cycles, are not probabilistic based and
degrade to a handcrafted propagation algorithm with arbitrary scores, where
parameters are only assessable by deeply trained experts and obtained results
can only be used in a holistic way, as they provide no directly interpretable
meaning.
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6.5 Conclusion
By using filtering and smoothing problems for mission impact assessments,
we incorporate valuable reasoning mechanisms into an assessment predestined
for detailed predictive and forensic analyses. Although these assessments are
based on computational expensive probabilistic inference problems, approximate
solutions based on sampling procedures deliver detailed solutions and scale
linearly with domain size and inference timepoint, as shown in Section 2.4.

In contrast to previous approaches, we refrain from introducing new score-
based propagation algorithms, whose results and parameters are only interpreta-
ble to a limited extend. We rely on the expertise of different experts and merged
all views without losing information or forcing an expert into a knowledge field
he cannot understand. By exploiting local semantics of DPGMs, all defined pa-
rameters are validatable and understandable locally, i.e., do not require a global
view towards a complete system and algorithm. By reducing the novel problem
of impact assessments onto well-understood problems of probabilistic inference
in DPGMs, obtained results are understandable without indepth knowledge
about the assessment’s calculation approach. Moreover, obtained results do not
need to be validated against ground truth, as soon as an underlying model and
parameters have been validated.

We highly believe that the presented dynamic dependent-timeslice, as well
as, independent-timeslice approach is not limited towards ICT related use cases,
and is able to deliver valuable advantages for other civil- and military situational
awareness and mission impact assessment and is, as well, applicable towards
infection- and disease spreading, monitoring and prevention.
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Discussion and Conclusion

Throughout this thesis we have introduced a novel form of PGMs and DPGMs,
called ADBNs, as a solution for eliminating limitations of classical DBN for-
malisms while maintaining desired local and global semantics of (D)BNs. We
have shown that classic dynamic Bayesian networks are significantly limited in
anticipating indirect influences and cause conflicts when attempting to represent
causal dependencies from local points of views. These conflicts arise from using
a modeled dimension (time) for assuring syntactic requirements of acyclicity in
classical DBN formalisms. By identifying activator criteria of random variables
in (dynamic) Bayesian networks, we introduce ADBNs, which are able to move
acyclicity constraints from a design phase to a later operation phase, and which,
by adequate modeling approaches, are able to resolve their acyclicity constraints
intrinsically. Without the need of external reasoning frameworks, degrading a
Bayesian network to a reasoning process, we provide a solid mathematical basis
similar to Bayesian networks with a causally correct anticipation of indirect
causes while remaining in a classical familiar calculus.

We have discussed and derived solutions to commonly known query answe-
ring problems and, further, that ADBNs do not introduce any computational
overhead, compared to its closest relative in classic DBN formalisms. To re-
duce computational complexity of finding solutions to common query answering
problems in ADBNs, we derived approximate inference techniques for ADBNs
and have shown that familiar approaches remain applicable. Moreover, we have
derived a learning approach for ADBNs. In fact, we are able to show that classi-
cal “virtual data counts” approaches remain applicable, and, once again, that
cyclic ADBNs do not introduce any modeling or computational overhead. We
demonstrate that, even if parts of structure relevant information are missing and,
thus, no structure is knowable, ADBNs are still able to learn model parameters
which reciprocally decide an effective structure. We have shown that not even
the most general form of DBNs is able to learn the taintedness-domain of the
running example, and that cyclic ADBNs are causally required. As ADBNs
represent superclasses of Markov-1 DBNs, parameter and structural learning of
ADBNs are fused into one atomic phase of constraint parameter learning, while
being able to handle hidden variables and hidden structural information.

123
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Furthermore, we investigated implications of activator random variables in
CPDs, and are now able to formalize an innocuousness property of random
variables, which is often associated with Boolean combination functions for
general CPDs. Based on a formalization with random variables taking the role
of activators, we are able relax restrictions on ADBNs and give a quantitative
evaluation of restrictions posed on such networks. By a further investigation
of properties of CPDs in specific modeling approaches, we extend the theory
of ADBNs towards extended ADBNs. We show that structural information
need neither be evident nor be supplied by observations for eADBNs. This is
highly beneficial for applications where one is not able to proactively assure
that observations, and further, regular observations will be available. In effect,
and to the best of our knowledge, an eADBN is the first probabilistic graphical
model that is able to represent multiple joint probability distributions in one
model. Further, to the best of our knowledge, an eADBN is the first probabilistic
graphical model that is able to intrinsically represent a distribution over its own
network structure and is able to base inference on all structural candidates at
the same time.

We show that eADBNs are able to intrinsically handle not necessarily regular
observations (according to Theorem 2.1 and 4.1) where insufficient structural
information is evident, and multiple regular instantiations, i.e., structural candi-
dates, remain possible. If one directly observes a non-regular instantiation of
random variables in (e)ADBNs, one is prone to a challenge for future work on
regularity in (e)ADBNs, previously outlined in Section 5.3: The model declines
the possibility of this observation with a probability of 0. This is a similar
problem evident from diagonal networks, where observations including effective
indirect influences are deemed inexplicable as shown in Example 2.7. In such
a particular situation, an action is required to assure regularity of (e)ADBNs,
which, mostly likely, must be an invasive modification of an observation. Such a
modification would be, for example, to keep all instantiation assignments, but to
move small subsets of observations to a neighboring timestep. Another option
is to modify some instantiation assignments in an observation by finding the
most likely, but minimally invasive alternative observation that conforms to
Theorem 2.1, 4.1, or 5.1. As discussed in Section 2.5 we refrain from deriving
such an action in this thesis, as such an action involves a witfull modification of
the world, which stands in significant conflict with our views on DBNs that shall
be a direct representation of the world instead of a reasoning tool. We, therefore,
advise to rethink the underlying model or problem once such a situation arises.

All of above has been achieved by specific parameter settings of CPDs. At
no time, an ADBN requires an external reasoning framework that explicitly
analyzes an instantiation or observation and explicitly creates a (new) dynamic
Bayesian network. Moreover, the JPD and CPD definitions remain in a classical
familiar calculus without requiring any new form of operators such as those
novel operators introduced by Milch et al. (2005) or by Bilmes (2000). In fact,
neither exact inference nor (exact) learning, even from incomplete datasets,
requires a topological ordering to become explicit at any time. This is highly
beneficial, as derived algorithms for solving commonly known problems are not
tailored to one specific regularity constraint and remain universally applicable
even if novel regularity predicates are discovered in future work. Furthermore,
we have shown that approximate inference techniques renders finding answers
to inference problems in ADBNs manageable, even in largely scaled domains.
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The discussed sequential importance sampling approach requires that at every
timestep an effective topological ordering is made explicitly, i.e., a topological
ordering must be obtained from made observations. Performing a topological
sorting does not represent a bottleneck and the requirement does not come as a
surprise, as discussed earlier. Moreover, the presented SIS and SIR algorithm
remains globally applicable to universal regularity predicates as well; it is not
tailored to, e.g., an acyclicity nor an innocuousness predicate.

Throughout this thesis we exploited various forms of independencies in
Bayesian networks and focused on an increased expressiveness, but focused less
on their implications on more efficient exact inference. In fact, various forms
of independencies deliver promising points of optimization on exact inference
as, e.g., discussed by Boutilier et al. (1996), Poole and Zhang (1996, 2003),
and Heckerman and Breese (1996). Moreover, the combination of exact and
approximate inference in ADBNs represent a highly interesting future research
area: If substructures are formed for which exact inference remains tractable,
exact inference can be combined with approximate inference for the remainder of
the network. As shown by Doucet et al. (2000) in the form of Rao-Blackwellised
Particle Filtering (RBPF) such approaches deliver more accurate inference results
than, e.g., a classical SIR procedure. While in classical DBNs a structure remains
constant and a “tractable substructure” is known in advance, adapting RBPF to
ADBNs motivates a new form of RBPF: substructural-adaptive RBPF.

In essence, this work is motivated by being able to include cyclic structures
in a PGM, and one could switch from directed models towards chain graphs
as described by Drton (2009) or to general Markov networks, which, both,
support cyclic dependency structures. However, by switching to (partially)
undirected models one loses the direct and intuitive interpretation of locally
specified conditional probability distributions by introducing the burden of
computing non-local normalization quotients. In cyclic (e)ADBNs, all desired
local semantics are preserved without introducing any computational or modeling
overhead. On top of that, an undirected model inherently models a different
domain as undirected edges imply symmetric influences, whereas in an ADBN
one can specify asymmetric influence strengths. Further, an undirected model
implies a steady state influence domain, where influences let random variables
converge to a stable state. The latter is an application of a diagonal DBN, where
a cyclic directed graphical model is unfolded into a diagonal DBN and simulated
over a long timeperiod to obtain said stable state. Note that, the misuse of time
to simulate this cyclic behavior is exactly the problem that motivates this thesis
and leads to the problem of being unable to anticipate indirect influences in one
timestep of a DBN, if time is supposed to represent an actual wall-clock time, as
envisioned in ADBNs.

Furthermore, we demonstrate and punctuate the need of locally interpretable
parameters and well-defined semantics of probabilistic graphical models at a real
world use case, where experts’ assessments have to be trusted and have to be
integrated directly. We show that cyclic ADBNs arise naturally and are highly
beneficial for real world applications.

Considering all of above, we feel confident to conclude that (dynamic) Baye-
sian networks can contain cyclic dependencies, can be based on cyclic graphs, and
are required to be based on cyclic graphs representing distributions of multiple
full joint probability distributions in one first-class model.
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Appendix A

Derivation of a Bayesian
Network’s JPD

It is stated by Theorem 1.1 that the global semantics of a PGM based on a DAG
are given as the product of all locally defined CPDs. A proof is straightforward
by Bayes’ theorem, but will later be required in a deeper, complex setting and is
therefore given here for reference.

Proof of Theorem 1.1 (Bayesian network). A Bayesian network is defined by a
set of CPDs, in the form P (X| ~parX), where ~parX represents the set of random
variables that influence X. Bayes’ theorem is given as

P (X|Y ) · P (Y ) = P (X,Y ) = P (Y |X) · P (X) . (A.1)

Let B = 〈V,E〉 be a Bayesian network. Let Xi ∈ ~X represent the random
variable associated with the i-th vertex in V according to a topological sorting.
Then, X1 is not influenced by any other random variables, and X2 is influenced
(at most) by X1, i.e., ~parX2

= 〈X1〉 or ~parX2
= ∅. According to Theorem 1.1

the JPD is given as

P ( ~X) =
∏
X∈ ~X

P (X| ~parX) =

n∏
i

P (Xi| ~parXi)

= P (Xn| ~parXn) · P (Xn−1| ~parXn−1
) · . . . · P (X2| ~parX2

) · P (X1| ~parX1
)

If X2 is not directly influenced by X1, then P (X2|X1) = P (X2) holds ∀X1 =
x1 ∈ dom(X1) in the definition of X2’s local CPD, i.e., X1 is irrelevant for
a decision on which parameter to use, as the parameter only depends on the
value of X2. In reverse, any “irrelevant,” i.e., independent, random variable can
be added to a conditional probability distribution without any modification.
Therefore, P (X2| ~parX2

) = P (X2|X1) always holds. Then, under Bayes’ theorem,
one obtains

P ( ~X) = P (Xn| ~parXn) · P (Xn−1| ~parXn−1
) · . . . · P (X2|X1) · P (X1)

= P (Xn| ~parXn) · P (Xn−1| ~parXn−1
) · . . . · P (X2, X1) .
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Likewise, ~parX3
can at most be 〈X2, X1〉, or less. And, following the same

procedure, one obtains

P ( ~X) = P (Xn| ~parXn) · P (Xn−1| ~parXn−1
) · . . . · P (X3|X2, X1) · P (X2, X1)

= P (Xn| ~parXn) · P (Xn−1| ~parXn−1
) · . . . · P (X3, X2, X1)...

= P (Xn|Xn−1, Xn−2, . . . , X1) · P (Xn−1, Xn−2, . . . , X1)

= P (Xn, Xn−1, . . . , X3, X2, X1) .

Therefore, the product of all locally defined CPDs represents, in fact, the full
joint probability distribution over all random variables. �

The proof further shows why 〈V,E〉must be acyclic, as otherwise a topological
sorting is undefined. In this thesis we show that cyclic PGMs exist for which
the joint probability distribution is still defined as the product of all locally
defined CPDs, that all desired properties of Bayesian networks remain, and that
solutions to commonly known problems in DBNs remain applicable without
introducing any overhead.
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Proof of ADBN
Well-Definedness

We prove Theorem 2.1 of the well-definedness of a (cyclic) ADBN by showing
that Proposition 2.4, i.e., the joint probability over all random variables of a
dense intra-timeslice ADBN, corresponds to a joint probability of a well-defined
DBN (according to Proposition 2.1) under Theorem 2.1. This is a proof based on
one special ADBN, but Proposition 2.3 states that a dense intra-timeslice ADBN
includes all possible intra-timeslice dependencies and thus the following proof is
a proof for Theorem 2.1. An ADBN can include inter-timeslice dependencies,
but these are subject to the well-definedness Proposition 2.1 (see Theorem 2.1)
and the following proof is equivalent.

Notation B.1 (Vector probability operands). For brevity, we define a probability
of a vector containing random variables as a shorthand notation for a product
of probabilities. Let ~X, ~Z, | ~X| = |~Z| be column vectors of random variables.
Let PΓ( ~X|Y, ~Z) denote the product of probabilities P (Xi|Y,Zi) where Xi and Zi
are taken row-wise from ~X and ~Z, except rows identified in the exclusion-set Γ.
Scalars Y are repeated in every row. Formally,

PΓ( ~X|Y, ~Z) =
∏
i

P (Xi|Y,Zi) i ∈ {1 ≤ i ≤ | ~X|}\Γ

Respectively, we apply this notation to (conditional) probabilities with n-ary
dependencies and without dependencies, i.e., prior random variables.

Notation B.2 (Lexicographic order). Let ≺ be a lexicographic term order, such
that Xt−1

∗ ≺ Xt
∗, Xt

i ≺ Xt
i+1, and At−1

∗∗ ≺ At∗∗, Ati∗ ≺ At(i+1)∗, A
t
ij ≺ Ati(j+1),

and At∗∗ ≺ Xt
∗, Xt−1

∗ ≺ At∗∗.
We rewrite Proposition 2.4 using Notation B.1 as:

Proposition B.1 (Shorthand joint probability distribution notation). From
Proposition 2.4, a dense intra-timeslice ADBN’s semantics is

P ( ~X0:tᵀ , ~A1:tᵀ) =
∏

X0
k∈ ~X0

P (X0
k) ·

t∏
i=1

∏
Xik∈ ~X i

P (Xi
k| ~Xiᵀ\Xi

k, ~A
iᵀ
k , X

i−1
k ) ·

∏
Aicv∈ ~Ai

P (Aicv) ,

129



130 Appendix B. Proof of ADBN Well-Definedness

written for brevity using Notation B.1 as

P ( ~X0:tᵀ , ~A1:tᵀ) = P( ~X0) ·
t∏
i=1

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) . N

The shorthand allows for shorter notation of products where some indexes of
a product need to be excluded.

Proof of Theorem 2.1 (ADBN well-definedness). We show that the joint pro-
bability distribution stated in Proposition 2.4 is indeed well-defined for every
instantiation of ( ~X0:t, ~A1:t), if for all t the instantiation ~at of ~At follows Eq. 2.3
by Theorem 2.1. We show this by reversing local conditional independency
assumptions in the semantic joint probability and that one obtains a topologi-
cal ordering of a syntactical graph structure, i.e., a syntactically cyclic graph
structure in B→ is semantically a DAG for which Bayesian network semantics
defines the same joint probability distribution as defined under restrictions in
Theorem 2.1. B0 can be written as

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X0
1 ) · . . . · P (X0

n) · γ = P (X0
1 , . . . , X

0
n) · γ = P ( ~X0ᵀ) · γ ,

with

γ =

t∏
i=1

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) .

Consecutively, one is able to roll up the joint distribution according to Bayes’
chain rule. Considering an extreme case of a set of activators corresponding
to Eq. 2.3, it is straightforward that in any instantiation following Eq. 2.3
it must always hold that ∃X1

E1 : ∀iA1
i(E1) = false, such that due to Eq. 2.1,

the set of activators and previous states uniquely identify the CPD entry of
P (X1

E1| . . .) and X1
E1 becomes locally independent of all other ~X1, such that the

joint probability can be written as

P ( ~X0:tᵀ , ~A1:tᵀ) =

P ( ~X0ᵀ) · P (X1
E1|∗, ~A1ᵀ

E1, X
0
E1) ·P{E1}( ~X

1| ~X1ᵀ\ ~X1, A1ᵀ , ~X0) ·P( ~A1)

·
t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) . (B.1)

By reversing X1
E1’s local conditional independence assumptions, i.e., one reverses

“if X is not directly influenced by Z then P (X|Y, Z) = P (X|Y ) holds in X’s
local CPD” and one enriches X’s local CPD P (X|Y ) with locally independent
random variable(s) Z to P (X|Y, Z), one obtains

P ( ~X0:tᵀ , ~A1:tᵀ) =

P ( ~X0ᵀ) · P (X1
E1|∗, ~A1ᵀ , ~X0ᵀ) ·P( ~A1) ·P{E1}( ~X

1| ~X1ᵀ\ ~X1, A1ᵀ , ~X0)

·
t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) .

Hence, with

P( ~At) = P (At12) · . . . · P (At1n) · . . . · P (Atn1) · . . . · P (Atn(n−1))

= P (At12, . . . , A
t
1n, . . . , A

t
n1, . . . , A

t
n(n−1)) = P ( ~Atᵀ) ,
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one can combine P ( ~X0ᵀ) with P ( ~A1ᵀ) to P ( ~A1ᵀ , ~X0ᵀ) s.t. the probability
distribution of the first eliminated state variable X1

E1 can be combined as
P (X1

E1|∗, ~A1ᵀ , ~X0ᵀ) · P ( ~A1ᵀ , ~X0ᵀ) = P (X1
E1,

~A1ᵀ , ~X0ᵀ), and one obtains

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X1
E1, ~A1ᵀ , ~X0ᵀ)

·P{E1}( ~X
1| ~X1ᵀ\ ~X1, A1ᵀ , ~X0) ·

t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) .

Consecutively, there ∃X1
E2 : ∀ {i\E1}A1

i(E2) = false in every regular instantia-
tion s.t.

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X1
E1, ~A1ᵀ , ~X0ᵀ) · P (X1

E2|∗, X1
E1, ∗, ~A1ᵀ

E2, X
0
E2)

·P{E1,E2}( ~X
1| ~X1ᵀ\ ~X1, A1ᵀ , ~X0) ·

t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) ,

for which one reverses the local conditional independency again and one obtains

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X1
E1, ~A1ᵀ , ~X0ᵀ) · P (X1

E2|∗, X1
E1, ∗, ~A1ᵀ , ~X0ᵀ)

·P{E1,E2}( ~X
1| ~X1ᵀ\ ~X1, A1ᵀ , ~X0) ·

t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) ,

which, according to Bayes’ chain rule, can be written as

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X1
E2, X

1
E1,

~A1ᵀ , ~X0ᵀ)

·P{E1,E2}( ~X
1| ~X1ᵀ\ ~X1, A1ᵀ , ~X0) ·

t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) .

Consecutively repeating this process for every remaining XEi where the ith
elimination variable is maximally directly dependent on the previous (i − 1)
eliminated variables, one, henceforth, approaches the elimination of X1

En, which
is dependent on up to every other ~X1, which are all eliminated variables up to
now, i.e.,

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X1
E(n−1), . . . , X

1
E1, ~A1ᵀ , ~X0ᵀ)

·P (X1
En|X1

E(n−1), . . . , X
1
E1,

~A1ᵀ
En, X

0
En)·

t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1)·P( ~Ai) ,

for which one reverses the local conditional independency again and combines
the joint probability finally to

P ( ~X0:tᵀ , ~A1:tᵀ) = P (X1
En, X

1
E(n−1), . . . , X

1
E1, ~A1ᵀ , ~X0ᵀ)

·
t∏
i=2

P( ~Xi| ~Xiᵀ\ ~Xi, Ai
ᵀ
, ~Xi−1) ·P( ~Ai) .

Indeed, one already obtains a topological ordering > for the first two timeslices
of X1

En > X1
E(n−1) > . . . > X1

E1 >
~A1ᵀ > ~X0ᵀ .
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Following this procedure for the remaining t > 1, one finally obtains

P ( ~X0:tᵀ , ~A1:tᵀ) = P (Xt
E(n−1), . . . , X

t
E1,

~Atᵀ , . . . , X1
En, . . . , X

1
E1,

~A1ᵀ , ~X0ᵀ)

· P (Xt
En|Xt

E(n−1), . . . , X
1
E1, A

1ᵀ
En, X

t−1
En ) .

With a final reverse local conditional independence assumption,

P ( ~X0:tᵀ , ~A1:tᵀ) = P (Xt
E(n−1), . . . , X

t
E1, ~At

ᵀ
, . . . , X1

En, . . . , X
1
E1, ~A1ᵀ , ~X0ᵀ)

· P (Xt
En|Xt

E(n−1), . . . , X
t
E1,

~Atᵀ , . . . , X1
En, . . . , X

1
E1,

~A1ᵀ , ~X0ᵀ) ,

one obtains a complete topological ordering and a full joint probability over all
random variables of

P ( ~X0:tᵀ , ~A1:tᵀ) =

P (Xt
En, X

t
E(n−1), . . . , X

t
E1, ~At

ᵀ
, . . . , X1

En, . . . , X
1
E1, ~A1ᵀ , ~X0ᵀ) . (B.2)

One, thus, obtains a complete topological ordering that syntactically defines
an equivalent Bayesian network (unrolled dynamic Bayesian network) (B0, B

′
→)

with the same random variables ~X0:t, ~A1:t, i.e., defines the same full joint
probability distribution P (Xt

En, X
t
E(n−1), . . . , X

t
E1,

~Atᵀ , . . . , X1
En, . . . , X

1
E1,

~A1ᵀ ,

~X0ᵀ). Therefore, the product of all locally defined CPDs, in fact, is the semantics
of a dense intra-timeslice ADBN, despite being based on a cyclic graph and does
not require any global normalization factors. �



Appendix C

Appendix on Learning
ADBNs

C.1 Extended Smoothing Problem

Theorem C.1 (Exact solution to the extended smoothing problem). Given
a complete smoothing problem ExtdSP(B0, B→, ~z 0:t,~b1:t, t), finding an exact so-
lution is linear in t. Finding an exact solution is exponential in the maximal
dimension of unobserved variables ~ζ∗, ~β∗ in a timestep 0 < ∗ ≤ t, and in the
largest domain dom(ζ+), dom(β+) of all random variables ζ+ ∈ ~ζ0:t, β+ ∈ ~β1:t.
Finding an exact solution is exponential in the dimension of number of random
variables | ~Xt−1:t|, | ~At−1:t| and a respective maximal domain size dom(X+),
dom(A++) of all random variables X+ ∈ ~Xt−1:t, A++ ∈ ~At−1:t. N

Theorem C.1 is proven by showing that an algorithm exists that finds an exact
solution to ExtdSP(B0, B→, ~z 0:t,~b1:t, t) in time-complexity O(t · |dom(X+)|| ~Xt| ·
|dom(A++)|| ~At| · | dom(ζ+)||~ζ∗| · | dom(β+)||~β∗|) and with O(|dom(X+)|| ~Xt−1:t| ·
|dom(A++)|| ~At−1:t|) space-complexity for storing one extended smoothing distri-
butions.

Proof of Theorem C.1 (Extended smoothing problem). An algorithm obtaining
solution for an extended smoothing problem ExtdSP(B0, B→, ~z 0:t,~b1:t, t) is si-
milar to an algorithm derived in Proof of Theorems 2.5 and 2.4. For the case
of a dense intra-timeslice ADBN an exact solution to an extended smoothing
problem is given by straight marginalization from a JPD as

P ( ~Xk−1ᵀ , ~Ak−1ᵀ , ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ)

= α ·
∑
~ζ0:k−2

∑
~β1:k−2

∑
~ζk+1:t

∑
~βk+1:t

P ( ~X0:tᵀ , ~A1:tᵀ)

133
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using the JPD of a dense intra-timeslice ADBN, one obtains

P ( ~Xk−1ᵀ , ~Ak−1ᵀ , ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ)

= α ·
∑
~ζ0:k−2

∑
~β1:k−2

∑
~ζk+1:t

∑
~βk+1:t

P ( ~X0:t−1ᵀ , ~A1:t−1ᵀ)

·
∏

Xti∈ ~Xt
P (Xt

i | ~Xtᵀ\Xt
i , A

tᵀ
i , X

t−1
i ) ·

∏
Atij∈ ~At

P (Atij) . (C.1)

Using an intermediate joint probability distribution definition, one obtains

P ( ~Xk−1ᵀ , ~Ak−1ᵀ , ~Xkᵀ , ~Akᵀ |~z0:tᵀ ,~b1:tᵀ)

= α ·
∑
~ζ0:k−2

∑
~β1:k−2

∑
~ζk+1:t

∑
~βk+1:t

P ( ~X0:kᵀ , ~A1:kᵀ) · P ( ~Xk+1:tᵀ , ~Ak+1:tᵀ)

= α ·
∑
~ζ0:k−2

∑
~β1:k−2

P ( ~X0:kᵀ , ~A1:kᵀ) ·
∑
~ζk+1:t

∑
~βk+1:t

P ( ~Xk+1:tᵀ , ~Ak+1:tᵀ)

= α ·
∑
~ζ0:k−2

∑
~β1:k−2

P ( ~X0:k−1ᵀ , ~A1:k−1ᵀ) · P ( ~Xkᵀ , ~Akᵀ)

·
∑
~ζk+1:t

∑
~βk+1:t

P ( ~Xk+1:tᵀ , ~Ak+1:tᵀ)

= α ·

 ∑
~ζ0:k−2

∑
~β1:k−2

P ( ~X0:k−1ᵀ , ~A1:k−1ᵀ)

 · (P ( ~Xkᵀ , ~Akᵀ)
)

·

 ∑
~ζk+1:t

∑
~βk+1:t

P ( ~Xk+1:tᵀ , ~Ak+1:tᵀ)


= α · P ( ~Xk−1ᵀ , ~Ak−1ᵀ |~z 0:kᵀ ,~b1:kᵀ) · P ( ~Xkᵀ , ~Akᵀ) · P (~z k+1:tᵀ ,~bk+1:tᵀ | ~Xkᵀ , ~Akᵀ) .

(C.2)

Evaluating the extended smoothing Equation C.2 for all instantiations
of ~Xk−1, ~Ak−1, ~Xk, ~Ak decrementally for descending k = t . . . 0 is an al-
gorithm that gives an exact solution to the extended smoothing problem
ExtdSP(B0, B→, ~z 0:t,~b1:t, t). The decremental evaluation allows for storing the
backward message: an intermediate result P (~z k+1:tᵀ ,~bk+1:tᵀ | ~Xk+1ᵀ , ~Ak+1ᵀ) from
an evaluation of P ( ~Xk−1ᵀ , ~Ak−1ᵀ , ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) is needed in an upco-
ming evaluation of P ( ~Xk−2ᵀ , ~Ak−2ᵀ , ~Xk−1ᵀ , ~Ak−1ᵀ |~z 0:tᵀ ,~b1:tᵀ). Thus, obtaining
the last term of Equation C.2 is constant in t for every evaluation. Obtaining
the middle term P ( ~Xkᵀ , ~Akᵀ) is linear in the number of random variables of
timeslice k.

The first term P ( ~Xk−1ᵀ , ~Ak−1ᵀ |~z 0:k−1ᵀ ,~b1:k−1ᵀ) of the extended smoothing
equation poses a filtering problem, for which a solution is found in O(1) in a
storage from a solution to an offline filtering problem OffFP(B0, B→, ~z 0:t,~b1:t, t),
which is found in O(t) by the previously derived algorithm in Proof of Theo-
rems 2.2 and 2.3.

For a fixed B0, B→ and a fixed number and domain size of unobserved
variables per timeslice in ~z 1:t,~b1:t the algorithm has linear time-complexity
O(t) and linear space-complexity O(t). It requires storage for one distri-
bution P ( ~Xk−1ᵀ , ~Ak−1ᵀ , ~Xkᵀ , ~Akᵀ |~z 0:tᵀ ,~b1:tᵀ) and storage for a solution of
OffFP(B0, B→, ~z 0:t,~b1:t, t). �
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C.2 Derivation of EM Procedure

We prove Theorem 3.1 by showing that the proposed procedure in fact maximizes
the likelihood of the dataset, i.e., the probability of observing the dataset under
the optimized parameters. To do so, we analytically solve Eq. 3.2. We derive an
ADBN EM procedure for the most general, i.e., dense, intra-timeslice ADBN,
which encapsulates all possible intra-timeslice DBN structures and onto which
all other intra-timeslice (A)DBNs are reducable.

Proof of Theorem 3.1 (EM procedure). Optimized parameters ~ϑ∗ are obtained by

~ϑ∗ = arg max
~Θ

P~Θ(~d) = arg max
~Θ

log
(
P~Θ(~d)

)
, (C.3)

i.e., by definition maximize the likelihood of observing a dataset under a given
parameter set. In the following, we explicitly derive one parameter.

One obtains

log
(
P~Θ(~d)

)
= log

∑
~ζ0:t

∑
~β1:t

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) · P~Θ( ~X0:tᵀ , ~A1:tᵀ)

 ,

where Jensen’s inequality for the concav function log, i.e.,

log

(∑
i

pixi

)
≥
∑
i

pi log(xi)

is applicable. Under Jensen’s inequality one obtains

log
(
P~Θ(~d)

)
=
∑
~ζ0:t

∑
~β1:t

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) · log
(
P~Θ( ~X0:tᵀ , ~A1:tᵀ)

)
, (C.4)

as
∑

~ζ0:t

∑
~β1:t P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) = 1, if the dataset yields a well-defined

ADBN, i.e., if the dataset only contains regular instantiations. Using the
definition of the JPD of a dense intra-timeslice ADBN (Eq. 2.4) yields

log
(
P~Θ(~d)

)
=
∑
~ζ0:t

∑
~β1:t

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t)

·
( ∑
X0
k∈ ~X0

PΘ(X0
k)+

t∑
i=1

( ∑
Xik∈ ~X i

PΘ(Xi
k| ~Xiᵀ\Xi

k,
~Ai
ᵀ
k , X

i−1
k )+

∑
Aicv∈ ~Ai

PΘ(Aicv)
))
,

with P(·) = logP (·) for brevity. P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) is a numerical value and
values of random variables are uniquely identified by ~d0:t or by summation over
the unobserved variables in the dataset.

Under a stationary process, i.e., PΘ(·i) = PΘ(·j) = PΘ(·), an optimized
parameter set ~ϑ∗ is obtainable in a closed form. Let Xt

λ ∈ ~Xt be some random
variable and let Atµν ∈ ~At be some activator. In the following, we extract one
parameter PΘ(xtλ|~xt

ᵀ\xtλ,~at
ᵀ
λ , x

t−1
λ ) from all sum-products to allow for partial
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derivation. First, one is able to represent the likelihood of data as

log
(
P~Θ(~d)

)
=
∑
~ζ0:t

∑
~β1:t

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t)
∑

X0
k∈ ~X0

PΘ(X0
k)

+
∑
~ζ0:t

∑
~β1:t

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t)

t∑
i=1

∑
Xik∈ ~X i

PΘ(Xi
k| ~Xiᵀ\Xi

k, ~A
iᵀ
k , X

i−1
k )

+
∑
~ζ0:t
ᵀ

∑
~β1:t

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t)

t∑
i=1

∑
Aicv∈ ~Ai

PΘ(Aicv) ,

factoring out further yields

log
(
P~Θ(~d)

)
=
∑
~ζ0:t

∑
~β1:t

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) ·
∑

X0
k∈ ~X0

PΘ(X0
k)

+

t∑
i=1

∑
~ζ0:t

∑
~β1:t

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) ·
∑

Xik∈ ~X i

PΘ(Xi
k| ~Xiᵀ\Xi

k, ~A
iᵀ
k , X

i−1
k )

+

t∑
i=1

∑
~ζ0:t

∑
~β1:t

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) ·
∑

Aicv∈ ~Ai
PΘ(Aicv) ,

where one is able to explicitly represent the summation over all possible instanti-
ations of Xi

λ by

log
(
P~Θ(~d)

)
=
∑
~ζ0:t

∑
~β1:t

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) ·
∑

X0
k∈ ~X0

PΘ(X0
k)

+

t∑
i=1

∑
~ζ0:t\Xiλ

∑
~β1:t

P~ϑ( ~X0:tᵀ , +xiλ, ~A1:tᵀ |~d0:t)

·

 ∑
Xik∈ ~X i\Xiλ

PΘ(Xi
k| ~Xiᵀ\Xi

k, ~A
iᵀ
k , X

i−1
k ) + PΘ(+xiλ| ~Xiᵀ\Xi

λ, ~A
iᵀ
λ , X

i−1
λ )


+

t∑
i=1

∑
~ζ0:t\Xiλ

∑
~β1:t

P~ϑ( ~X0:tᵀ ,¬xiλ, ~A1:tᵀ |~d0:t)

·

 ∑
Xik∈ ~X i\Xiλ

PΘ(Xi
k| ~Xiᵀ\Xi

k, ~A
iᵀ
k , X

i−1
k ) + PΘ(¬xiλ| ~Xiᵀ\Xi

λ, ~A
iᵀ
λ , X

i−1
λ )


+
∑
~ζ0:t
ᵀ

∑
~β1:t

t∑
i=1

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) ·
∑

Aicv∈ ~Ai
PΘ(Aicv) ,

Note that an instantiation of Xi
λ might be part of ~d0:t and therefore was not

present in the previous summation, i.e., was not included in ~ζ0:tᵀ . Nevertheless,
the extraction remains sound as a respective P~ϑ( ~X0:tᵀ , xiλ,

~A1:tᵀ |~d0:t) is then 0.
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With γ(Xλ = xλ) as a shorthand for

γ(Xλ = xλ) =

t∑
i=1

∑
~ζ0:t\Xiλ

∑
~β1:t

P~ϑ( ~X0:tᵀ , xiλ, ~A1:tᵀ |~d0:t)

·
( ∑
Xik∈ ~X i\Xiλ

PΘ(Xi
k| ~Xiᵀ\Xi

k, ~A
iᵀ
k , X

i−1
k ) + PΘ(xiλ| ~Xiᵀ\Xi

λ, ~A
iᵀ
λ , X

i−1
λ )

)
.

one obtains

log
(
P~Θ(~d)

)
=
∑
~ζ0:t

∑
~β1:t

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) ·
∑

X0
k∈ ~X0

PΘ(X0
k)

+γ(Xλ = +xλ) + γ(Xλ = ¬xλ) +
∑
~ζ0:t

∑
~β1:t

t∑
i=1

P~ϑ( ~X0:tᵀ , ~A1:tᵀ |~d0:t) ·
∑

Aicv∈ ~Ai
PΘ(Aicv) .

Classically, to learn a specific parameter, i.e., to find an optimized parameter
PΘ(xiλ|~xi

ᵀ\xiλ,~ai
ᵀ
λ , x

i−1
λ ) ∈ ~Θ∗ it must be explicitly extracted from all (nested)

summations s.t. one is able to solve Eq. C.3 by a partial derivation. By extracting
this parameter from all summations one obtains,

γ(Xλ = xλ)

=

t∑
i=1

∑
~ζ0:t\Xiλ

∑
~β1:t

P~ϑ( ~X0:tᵀ , xiλ,
~A1:tᵀ |~d0:t)

∑
Xik∈ ~X i\Xiλ

PΘ(Xi
k| ~Xiᵀ\Xi

k,
~Ai
ᵀ
k , X

i−1
k )

+

t∑
i=1

∑
~ζ0:t~β1:t\~xiᵀ ,~aiλ,xi−1

λ

P~ϑ( ~X0:tᵀ , xiλ,
~A1:tᵀ |~d0:t)PΘ(xiλ| ~Xiᵀ\Xi

λ,
~Ai
ᵀ
λ , X

i−1
λ )

+

t∑
i=1

∑
~ζ0:i−2

∑
~β1:i−2

∑
~ζi+1:t

∑
~βi+1:t

∑
~ζi−1\Xi−1

λ

∑
~βi−1

∑
~βi\ ~Aiλ

P~ϑ( ~X0:i−2ᵀ , ~Xi−1ᵀ\Xi−1
λ , xi−1

λ , ~A1:i−1ᵀ , ~xi,~aiλ, ~Ai
ᵀ\ ~Aiλ, ~Xi+1:tᵀ , ~Ai+1:tᵀ |~d0:t)

·PΘ(xiλ|~xi
ᵀ\xiλ,~ai

ᵀ
λ , x

i−1
λ ) , (C.5)

where
∑

~ζ0:t~β1:t\~xi,~aiλ,x
i−1
λ

represents the summation over all possible instantia-

tions of all unobserved variables excluding a specific instantiation ~xi,~aiλ, x
i−1
λ .

However, Equation C.5 extracts a too general parameter PΘ(xiλ|~xi
ᵀ\xiλ,~aiλ, xi−1

λ )
and does not consider activator criteria, which are needed in order to assure
well-definedness in the transformation towards Equation C.4.
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To learn an activation criteria aware parameter PΘ(xiλ|~xi
ᵀ\xiλ,~ai

ᵀ
λ , x

i−1
λ ), we

use Definition 3.2 and extract the parameter from all summations as

γ(Xλ = xλ)

=

t∑
i=1

∑
~ζ0:t\Xiλ

∑
~β1:t

P~ϑ( ~X0:tᵀ , xiλ,
~A1:tᵀ |~d0:t)

∑
Xik∈ ~X i\Xiλ

PΘ(Xi
k| ~Xiᵀ\Xi

k,
~Ai
ᵀ
k , X

i−1
k )

+

t∑
i=1

∑
~ζ0:t~β1:t\xiλ,~xi�λ,~aiλ,x

i−1
λ

P~ϑ( ~X0:tᵀ , xiλ,
~A1:tᵀ |~d0:t)PΘ(xiλ| ~Xiᵀ\Xi

λ,
~Ai
ᵀ
λ , X

i−1
λ )

+

t∑
i=1

∑
~ζ0:i−2

∑
~β1:i−2

∑
~ζi+1:t

∑
~βi+1:t

∑
~ζi−1\Xi−1

λ

∑
~βi−1

∑
~βi\ ~Aiλ

∑
~Xi�λ

P~ϑ( ~X0:i−2ᵀ , ~Xi−1ᵀ\Xi−1
λ , xi−1

λ , ~A1:i−1ᵀ , ~Xiᵀ
�λ, ~x

iᵀ
�λ,

~aiλ,
~Aiᵀ\ ~Aiλ, ~Xi+1:tᵀ , ~Ai+1:tᵀ |~d0:t)PΘ(xiλ|~xi

ᵀ\xiλ,~ai
ᵀ
λ , x

i−1
λ ) .

Then, an optimized parameter P ∗ϑ (xiλ|~xi
ᵀ\xiλ,~ai

ᵀ
λ , x

i−1
λ ) ∈ ~ϑ∗ according to Eq. 3.2

is explicitly obtained by partial derivation as

δP~Θ(~d)

δPΘ(xiλ|~xi
ᵀ\xiλ,~ai

ᵀ
λ , x

i−1
λ )

(
P ∗ϑ(xiλ|~xi

ᵀ\xiλ,~ai
ᵀ
λ , x

i−1
λ )

)
= 0 ,

which, under a stationary process reduces to

P ∗ϑ(xiλ|~xi
ᵀ\xiλ,~ai

ᵀ
λ , x

i−1
λ ) =

γ′(Xλ = xλ)

γ′(Xλ = +xλ) + γ′(Xλ = ¬xλ)
,

with

γ′(Xλ = xλ) =

t∑
i=1

∑
~ζ0:i−2

∑
~β1:i−2

∑
~ζi+1:t

∑
~βi+1:t

∑
~ζi−1\Xi−1

λ

∑
~βi−1

∑
~βi\ ~Aiλ

∑
~Xi�λ

P~ϑ( ~X0:i−2ᵀ , ~Xi−1ᵀ\Xi−1
λ , xi−1

λ , ~A1:i−1ᵀ , ~Xiᵀ
�λ, ~x

iᵀ
�λ,

~aiλ, ~Ai
ᵀ\ ~Aiλ, ~Xi+1:tᵀ , ~Ai+1:tᵀ |~d0:t) .

in which an extended smoothing problem ExtdSP(B0, B→, ~z 0:t,~b1:t, t) is evident
and can be written as in Theorem 3.1. Thus, the proposed procedure generates
parameter instantiations ~ϑ∗ of ~Θ that maximize the likelihood of the dataset. �

The proof for activator parameters is equivalent.



References

Acea SpA. (2016). The Acea Group. Retrieved 06.05.2016, from http://
www.acea.it/section.aspx/en/acea_spa

Acid, S., & de Campos, L. M. (2003). Searching for Bayesian Network Structures
in the Space of Restricted Acyclic Partially Directed Graphs. Journal of
Artificial Intelligence Research, 18 , 445–490.

Albanese, M., Jajodia, S., Jhawar, R., & Piuri, V. (2013). Reliable Mission
Deployment in Vulnerable Distributed Systems. In DSN 2013: 43rd
IEEE/IFIP International Conference on Dependable Systems and Networks
Workshop, Budapest, Hungary, June 24-27, 2013 (pp. 1–8).

Antonucci, A. (2011). The Imprecise Noisy-OR Gate. In FUSION 2011: 14th
International Conference on Information Fusion, Chicago, Illinois, USA,
July 5-8, 2011 (pp. 1–7).

Arulampalam, M. S., Maskell, S., Gordon, N. J., & Clapp, T. (2002). A Tutorial
on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking.
IEEE Transactions on Signal Processing , 50 (2), 174–188.

Bastian, M., Heymann, S., & Jacomy, M. (2009). Gephi: An Open Source
Software for Exploring and Manipulating Networks. In ICWSM 2009:
3rd International Conference on Weblogs and Social Media, San Jose,
California, USA, May 17-20, 2009.

Beal, M. J., & Ghahramani, Z. (2003). The Variational Bayesian EM Algo-
rithm for Incomplete Data: with Application to Scoring Graphical Model
Structures. Bayesian Statistics, 7 , 453–464.

Bilmes, J. A. (2000). Dynamic Bayesian Multinets. In UAI 2000: 16th Conference
on Uncertainty in Artificial Intelligence, Stanford University, Stanford,
California, USA, June 30 - July 3, 2000 (pp. 38–45).

Boutilier, C., Friedman, N., Goldszmidt, M., & Koller, D. (1996). Context-
Specific Independence in Bayesian Networks. In UAI 1996: 12th Conference
on Uncertainty in Artificial Intelligence, Reed College, Portland, Oregon,
USA, August 1-4, 1996 (pp. 115–123).

Buckshaw, D. L., Parnell, G. S., Unkenholz, W. L., Parks, D. L., Wallner, J. M.,
& Saydjari, O. S. (2005). Mission Oriented Risk and Design Analysis of
Critical Information Systems. Military Operations Research, 10 (2), 19–38.

Chung, C., Khatkar, P., Xing, T., Lee, J., & Huang, D. (2013). NICE: Network
Intrusion Detection and Countermeasure Selection in Virtual Network
Systems. IEEE Trans. Dependable Sec. Comput., 10 (4), 198–211.

Combs, G., & The Wireshark Foundation. (2016). Wireshark. Retrieved
11.10.2016, from https://www.wireshark.org/

Cooper, G. F. (1990). The Computational Complexity of Probabilistic Inference
Using Bayesian Belief Networks. Artificial Intelligence, 42 (2-3), 393–405.

139

http://www.acea.it/section.aspx/en/acea_spa
http://www.acea.it/section.aspx/en/acea_spa
https://www.wireshark.org/


140 References

Cozman, F. G. (2004). Axiomatizing Noisy-OR. In ECAI 2004: 16th Eureopean
Conference on Artificial Intelligence, including PAIS’2004: Prestigious
Applicants [sic] of Intelligent Systems, Valencia, Spain, August 22-27, 2004
(pp. 979–980).

D’Amico, A., Buchanan, L., Goodall, J., & Walczak, P. (2010). Mission Impact
of Cyber Events: Scenarios and Ontology to Express the Relationships
between Cyber Assets, Missions, and Users. In ICIW 2010: 5th Internati-
onal Conference on Information Warfare and Security, Wright-Patterson
Air Force Base, Ohio, USA, April 8-9, 2010 (pp. 8–9).

de Barros Barreto, A., da Costa, P. C. G., & Yano, E. T. (2013). Using a Semantic
Approach to Cyber Impact Assessment. In STIDS 2013: 8th Conference
on Semantic Technologies for Intelligence, Defense, and Security, Fairfax,
Virginia, USA, November 12-15, 2013 (pp. 101–108).

de Raedt, L., Kimmig, A., & Toivonen, H. (2007). ProbLog: A Probabilistic
Prolog and Its Application in Link Discovery. In IJCAI 2007: 20th
International Joint Conference on Artificial Intelligence, Hyderabad, India,
January 6-12, 2007 (pp. 2462–2467).

Dong, X., Gabrilovich, E., Heitz, G., Horn, W., Lao, N., Murphy, K., . . . Zhang,
W. (2014). Knowledge Vault: A Web-Scale Approach to Probabilistic
Knowledge Fusion. In KDD 2014: 20th ACM International Conference
on Knowledge Discovery and Data Mining, New York, New York, USA,
August 24-27, 2014 (pp. 601–610).

Doucet, A., de Freitas, N., Murphy, K. P., & Russell, S. J. (2000). Rao-
Blackwellised Particle Filtering for Dynamic Bayesian Networks. In UAI
2000: 16th Conference on Uncertainty in Artificial Intelligence, Stanford
University, Stanford, California, USA, June 30 - July 3, 2000 (pp. 176–
183).

Doucet, A., & Johansen, A. M. (2009). A Tutorial on Particle Filtering and
Smoothing: Fifteen years later. Handbook of Nonlinear Filtering , 12 ,
656–704.

Drton, M. (2009). Discrete Chain Graph Models. Bernoulli , 15 (3), 736–753.
Ferrucci, D., Brown, E., Chu-Carroll, J., Fan, J., Gondek, D., Kalyanpur, A. A.,

. . . Welty, C. (2010). Building Watson: An Overview of the DeepQA
Project. AI Magazine, 31 (3), 59–79.

Fierens, D., den Broeck, G. V., Renkens, J., Shterionov, D. S., Gutmann, B.,
Thon, I., . . . de Raedt, L. (2015). Inference and Learning in Probabilistic
Logic Programs Using Weighted Boolean Formulas. Theory and Practice
of Logic Programming , 15 (3), 358–401.

Friedman, N. (1997). Learning Belief Networks in the Presence of Missing Values
and Hidden Variables. In ICML 1997: 14th International Conference
on Machine Learning, Nashville, Tennessee, USA, July 8-12, 1997 (pp.
125–133).

Friedman, N. (1998). The Bayesian Structural EM Algorithm. In UAI 1998:
14th Conference on Uncertainty in Artificial Intelligence, University of
Wisconsin Business School, Madison, Wisconsin, USA, July 24-26, 1998
(pp. 129–138).

Friedman, N., & Koller, D. (2003). Being Bayesian About Network Structure. A
Bayesian Approach to Structure Discovery in Bayesian Networks. Machine
Learning , 50 (1-2), 95–125.



References 141

Friedman, N., Murphy, K. P., & Russell, S. J. (1998). Learning the Structure
of Dynamic Probabilistic Networks. In UAI 1998: 14th Conference on
Uncertainty in Artificial Intelligence, University of Wisconsin Business
School, Madison, Wisconsin, USA, July 24-26, 1998 (pp. 139–147).

Geiger, D., & Heckerman, D. (1996). Knowledge Representation and Inference
in Similarity Networks and Bayesian Multinets. Artificial Intelligence,
82 (1-2), 45–74.

Ghahramani, Z. (1997). Learning Dynamic Bayesian Networks. In Adaptive
Processing of Sequences and Data Structures, International Summer School
on Neural Networks, E.R. Caianiello, Vietri sul Mare, Salerno, Italy,
September 6-13, 1997, Tutorial Lectures (pp. 168–197).

Ghahramani, Z. (2001). An Introduction to Hidden Markov Models and Bayesian
Networks. International Journal of Pattern Recognition and Artificial
Intelligence, 15 (1), 9–42.

Gibbs, A. L., & Su, F. E. (2002). On Choosing and Bounding Probability
Metrics. International Statistical Review , 70 (3), 419–435.

Glesner, S., & Koller, D. (1995). Constructing Flexible Dynamic Belief Net-
works from First-Order Probabilistic Knowledge Bases. In ECSQARU
1995: Symbolic and Quantitative Approaches to Reasoning and Uncertainty,
European Conference, Fribourg, Switzerland, July 3-5, 1995 (pp. 217–226).

Gonzalez Granadillo, G., Alvarez, E., Motzek, A., Merialdo, M., García-Alfaro,
J., & Debar, H. (2016). Towards an Automated and Dynamic Risk Mana-
gement Response System. In NORDSEC 2016: 21st Nordic Conference on
Secure IT Systems, Oulu, Finland, November 2-4, 2016 (pp. 37–53).

Goodall, J. R., D’Amico, A., & Kopylec, J. K. (2009). Camus: Automati-
cally Mapping Cyber Assets to Missions and Users. In MILCOM 2009:
IEEE Military Communications Conference, Boston, Massachusetts, USA,
October 18-21, 2009 (pp. 1–7).

Granadillo, G. G., Motzek, A., Garcia-Alfaro, J., & Debar, H. (2016). Selection
of Mitigation Actions Based on Financial and Operational Impact Asses-
sments. In ARES 2016: 11th International Conference on Availability,
Reliability and Security, Salzburg, Austria, August 31 - September 2, 2016
(pp. 137–146).

Haddawy, P., Helwig, J., Ngo, L., & Krieger, R. (1995). Clinical Simulation
using Context-Sensitive Temporal Probability Models. In Symposium on
Computer Applications in Medical Care (Vol. 1, pp. 203–207).

Heckerman, D., & Breese, J. S. (1996). Causal Independence for Probability
Assessment and Inference Using Bayesian Networks. IEEE Transactions
on Systems, Man and Cybernetics, Part A: Systems and Humans, 26 (6),
826–831.

Henrion, M. (1988). Practical Issues in Constructing a Bayes Belief Network.
International Journal of Approximate Reasoning , 2 (3), 337.

Hol, J. D., Schön, T. B., & Gustafsson, F. (2006). On Resampling Algorithms
for Particle Filters. In NSSPW 2006: IEEE Nonlinear Statistical Signal
Processing Workshop, Cambridge, UK, September 13-15, 2006 (pp. 79–82).

Jaeger, M. (2001). Complex Probabilistic Modeling with Recursive Relational
Bayesian Networks. Annals of Mathematics and Artificial Intelligence,
32 (1-4), 179–220.



142 References

Jahnke, M., Thul, C., & Martini, P. (2007). Graph based Metrics for Intrusion
Response Measures in Computer Networks. In LCN 2007: 32nd Annual
IEEE Conference on Local Computer Networks, Clontarf Castle, Dublin,
Ireland, October 15-18, 2007 (pp. 1035–1042).

Jakobson, G. (2011). Mission Cyber Security Situation Assessment using Impact
Dependency Graphs. In FUSION 2011: 14th International Conference on
Information Fusion, Chicago, Illinois, USA, July 5-8, 2011 (pp. 1–8).

Jha, S., Sheyner, O., & Wing, J. (2002). Two Formal Analyses of Attack Graphs.
In CSFW 2002: 15th IEEE Workshop on Computer Security Foundations,
Cape Breton, Nova Scotia, Canada, June 24-26, 2002 (pp. 49–63).

Kheir, N., Debar, H., Cuppens-Boulahia, N., Cuppens, F., & Viinikka, J. (2009).
Cost Evaluation for Intrusion Response Using Dependency Graphs. In N2S
2009: International Conference on Network and Service Security, Paris,
France, June 24-26, 2009 (pp. 1–6).

Koller, D., & Friedman, N. (2009). Probabilistic Graphical Models - Principles
and Techniques. MIT Press.

Langner, R. (2013). To Kill a Centrifuge. A Technical Analysis of What Stuxnet’s
Creators Tried to Achieve (Tech. Rep.).

Levesque, H. J., Davis, E., & Morgenstern, L. (2012). The Winograd Schema
Challenge. In KR 2012: 13th International Conference on Principles of
Knowledge Representation and Reasoning, Rome, Italy, June 10-14, 2012.

Liu, Y., & Man, H. (2005). Network Vulnerability Assessment Using Bayesian
Networks. In SPIE Vol. 5812: Data Mining, Intrusion Detection, Infor-
mation Assurance, and Data Networks Security, Orlando, Florida, USA,
March 28, 2005 (pp. 61–71).

Massey, B. (2008). Fast Perfect Weighted Resampling. In ICASSP 2008: IEEE
International Conference on Acoustics, Speech, and Signal Processing,
Caesars Palace, Las Vegas, Nevada, USA, March 30 - April 4, 2008 (pp.
3457–3460).

Milch, B., Marthi, B., Sontag, D., Russell, S. J., Ong, D. L., & Kolobov, A.
(2005). Approximate Inference for Infinite Contingent Bayesian Networks.
In AISTATS 2005: 10th International Workshop on Artificial Intelligence
and Statistics, Bridgetown, Barbados, January 6-8, 2005.

Motzek, A., Geick, C., & Möller, R. (2016). Semantic Normalization and Merging
of Business Dependency Models. In CBI 2016: 18th IEEE Conference on
Business Informatics, Paris, France, August 29 - September 1, 2016 (pp.
7–15).

Motzek, A., & Möller, R. (2015a). Exploiting Innocuousness in Bayesian
Networks. In AI 2015: 28th Australasian Joint Conference on Artificial
Intelligence, Canberra, ACT, Australia, November 30 - December 4, 2015
(pp. 411–423).

Motzek, A., & Möller, R. (2015b). Indirect Causes in Dynamic Bayesian
Networks Revisited. In IJCAI 2015: 24th International Joint Conference
on Artificial Intelligence, Buenos Aires, Argentina, July 25-31, 2015 (pp.
703–709).

Motzek, A., & Möller, R. (2016). Probabilistic Mission Defense and Assurance.
In NATO IST-148: Symposium on Cyber Defence Situation Awareness,
STO-MP-IST-148, Sofia, Bulgaria, October 3-4, 2016 (pp. 4-1–4-18). STO.
doi: 10.14339/STO-MP-IST-148



References 143

Motzek, A., & Möller, R. (2017). Context- and Bias-Free Probabilistic Mission
Impact Assessment. Computers & Security , 65 , 166–186.

Motzek, A., Möller, R., Lange, M., & Dubus, S. (2015). Probabilistic Mission
Impact Assessment based on Widespread Local Events. In NATO IST-128
Workshop: Assessing Mission Impact of Cyberattacks, NATO IST-128
Workshop, Istanbul, Turkey, June 15-17, 2015 (pp. 16–22).

Murphy, K. P. (2002). Dynamic Bayesian Networks: Representation, Inference
and Learning (Unpublished doctoral dissertation). University of California,
Berkeley.

Murphy, K. P. (2012). Machine Learning: A Probabilistic Perspective. Cambridge,
MA: The MIT Press.

Musman, S., Temin, A., Tanner, M., Fox, D., & Pridemore, B. (2010). Evaluating
the Impact of Cyber Attacks on Missions. In ICIW 2010: 5th International
Conference on Information Warfare and Security, Wright-Patterson Air
Force Base, Ohio, USA, April 8-9, 2010 (pp. 446–456).

Ngo, L., & Haddawy, P. (1997). Answering Queries from Context-Sensitive
Probabilistic Knowledge Bases. Theoretical Computer Science, 171 (1-2),
147–177.

Ngo, L., Haddawy, P., & Helwig, J. (1995). A Theoretical Framework for Context-
Sensitive Temporal Probability Model Construction with Application to
Plan Projection. In UAI 1995: 11th Conference on Uncertainty in Artificial
Intelligence, Montreal, Quebec, Canada, August 18-20, 1995 (pp. 419–426).

Nodelman, U., Shelton, C. R., & Koller, D. (2002). Continuous Time Bayesian
Networks. In UAI 2002: 18th Conference on Uncertainty in Artificial
Intelligence, University of Alberta, Edmonton, Alberta, Canada, August
1-4, 2002 (pp. 378–387).

Nodelman, U., Shelton, C. R., & Koller, D. (2003). Learning Continuous Time
Bayesian Networks. In UAI 2003: 19th Conference on Uncertainty in
Artificial Intelligence, Acapulco, Mexico, August 7-10, 2003 (pp. 451–458).

Ou, X., Govindavajhala, S., & Appel, A. W. (2005). MulVAL: A Logic-
based Network Security Analyzer. In 14th USENIX Security Symposium,
Baltimore, Maryland, USA, July 31 - August 5, 2005.

Panoptesec DOW. (2013). Panoptesec Annex I, Description Of Work. In Project
Deliverables of the Panoptesec Collaborative Research Project on Dynamic
Risk Approaches for Automated Cyber Defence, Grant Agreement No:
610416, ICT-2013.1.5, Trustworthy ICT, Version 4th September, 2015.

Pearl, J. (2002). Reasoning with Cause and Effect. AI Magazine, 23 (1), 95–112.
Pearl, J. (2009). Causality: Models, Reasoning and Inference (2nd ed.). New

York, New York, USA: Cambridge University Press.
Pearl, J., & Russell, S. (2003). Bayesian Networks. In M. A. Arbib (Ed.),

Handbook of Brain Theory and Neural Networks (pp. 157–160). MIT
Press.

Pfeffer, A., & Tai, T. (2005). Asynchronous Dynamic Bayesian Networks. In UAI
2005: 21st Conference on Uncertainty in Artificial Intelligence, Edinburgh,
Scotland, July 26-29, 2005 (pp. 467–476).

Poole, D., & Zhang, N. L. (2003). Exploiting Contextual Independence In
Probabilistic Inference. Journal Of Artificial Intelligence Research, 18 ,
263–313.



144 References

Robinson, J. W., & Hartemink, A. J. (2008). Non-Stationary Dynamic Bayesian
Networks. In NIPS 2008: 22nd Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, December 8-11,
2008 (pp. 1369–1376).

Russell, S. J., & Norvig, P. (2010). Artificial Intelligence - A Modern Approach
(3. internat. ed.). Pearson Education.

Saleh, B., & Masseglia, F. (2008). Time Aware Mining of Itemsets. In TIME
2008: 15th International Symposium on Temporal Representation and
Reasoning, Université du Québec à Montréal, Canada, 16-18 June, 2008
(pp. 93–97).

Sanghai, S., Domingos, P., & Weld, D. (2005). Relational Dynamic Bayesian
Networks. Journal of Artificial Intelligence Research, 24 , 759–797.

Särkkä, S. (2013). Bayesian Filtering and Smoothing (No. 3). Cambridge
University Press.

Sloane, N. J. A. (2015). The On-Line Encyclopedia of Integer Sequences.
http://oeis.org/. OEIS Foundation Inc. (Sequences A003024 & A001831.)

Sommestad, T., & Hunstad, A. (2013). Intrusion Detection and the Role of the
System Administrator. Information Management & Computer Security ,
21 (1), 30-40.

Song, L., Kolar, M., & Xing, E. P. (2009). Time-Varying Dynamic Bayesian
Networks. In NIPS 2009: 23rd Annual Conference on Neural Information
Processing Systems, Vancouver, British Columbia, Canada, December 7-10,
2009 (pp. 1732–1740).

Srinivas, S. (1993). A Generalization of the Noisy-Or Model. In UAI 1993:
9th Conference on Uncertainty in Artificial Intelligence, The Catholic
University of America, Providence, Washington, DC, USA, July 9-11, 1993
(pp. 208–218).

Torres-Toledano, J. G., & Sucar, L. E. (1998). Bayesian Networks for Reliability
Analysis of Complex Systems. In IBERAMIA 98: 6th Ibero-American
Conference on AI, Lisbon, Portugal, October 5-9, 1998 (pp. 195–206).

Wang, L., Islam, T., Long, T., Singhal, A., & Jajodia, S. (2008). An Attack
Graph-Based Probabilistic Security Metric. In DBSec 2008: 22nd Annual
IFIP WG 11.3 Conference on Data and Applications Security, London,
UK, July 13-16, 2008 (pp. 283–296).

Xie, P., Li, J. H., Ou, X., Liu, P., & Levy, R. (2010). Using Bayesian Networks
for Cyber Security Analysis. In DSN 2010: 40th IEEE/IFIP International
Conference on Dependable Systems and Networks 2010, Chicago, Illinois,
USA, June 28 - July 1, 2010 (pp. 211–220).

Yoshida, R., Imoto, S., & Higuchi, T. (2005). Estimating Time-Dependent Gene
Networks from Time Series Microarray Data by Dynamic Linear Models
with Markov Switching. In CSB 2005: 4th International IEEE Compu-
ter Society Computational Systems Bioinformatics Conference, Stanford,
California, USA, August 8-11, 2005 (pp. 289–298).

Zagorecki, A., & Druzdzel, M. J. (2006). Probabilistic Independence of Cau-
sal Influences. In PGM 2006: 3rd European Workshop on Probabilistic
Graphical Models, Prague, Czech Republic, 12-15 September, 2006 (pp.
325–332).

Zhang, N. L., & Poole, D. L. (1996). Exploiting Causal Independence in Bayesian
Network Inference. Journal of Artificial Intelligence Research (JAIR), 5 ,
301–328.






	Bayesian Networks, Dependencies and Causality
	Probabilistic Graphical Models
	Cyclic Dependencies and Causality
	Overview over the Remainder of this Thesis
	Scientific Contribution

	Indirect Causes in Dynamic Bayesian Networks Revisited
	Dynamic Bayesian Networks: Preliminaries
	Activator Dynamic Bayesian Networks
	Common Queries and Associated Answering Problems in ADBNs
	Filtering Queries and Problems
	Smoothing Queries and Problems
	Most Likely Explanation Problem
	Experimental Evaluation of Exact Inference

	Approximate Inference Techniques in ADBNs
	SIS and SIR in ADBNs
	Experimental Evaluation of Approximate Inference

	Discussion and Related Work
	Conclusion

	Learning Dynamic Bayesian Networks where Structures Cannot be Known in Advance
	Learning Structures where Structures are not Knowable
	Convergence and Hidden Variables
	Discussion and Related Work
	Conclusion

	Exploiting Innocuousness in Bayesian Networks
	Innocuousness
	Exploiting Innocuousness
	Discussion, Comparison and Related Work
	Conclusion

	Semantics of Bayesian Networks Revisited
	Bayesian Networks of Bayesian Networks
	Extended Activator Bayesian Networks
	Discussion and Related Work
	Conclusion

	Protecting Companies with (Dynamic) Bayesian Networks
	Dependencies and Impacts
	Mission Dependency Model (Business View)
	Resource Dependency Model (Operation View)
	Local Impacts (Security View)

	Applied Probabilistic Mission Impact Assessment
	SMIA Challenge
	Acea Use Case

	Extensions to Dynamic Mission Impact Assessment
	Related Work
	Conclusion

	Discussion and Conclusion
	Derivation of a Bayesian Network's JPD
	Proof of ADBN Well-Definedness
	Appendix on Learning ADBNs
	Extended Smoothing Problem
	Derivation of EM Procedure

	References

