
From the Institute of Information Systems
of the University of Lübeck

Director: Univ.-Prof. Dr. rer. nat. habil. Ralf Möller

Hybrid Architecture for

Hardware-accelerated Query Processing in

Semantic Web Databases based on
Runtime Reconfigurable FPGAs

Dissertation for Fulfillment of Requirements for the Doctoral Degree

of the University of Lübeck

— from the Department of Computer Sciences —

Submitted by Stefan Werner from Karl-Marx-Stadt, now Chemnitz.

Lübeck, October 2016

First referee: PD Dr. rer. nat. habil. Sven Groppe
Second referee: Prof. Dr. rer. nat. Stefan Fischer

Date of oral examination: February 6th, 2017

Approved for printing. Lübeck, February 16th, 2017

Abstract
Nowadays it is a fact that more and more (unstructured) data is generated, stored
and analyzed in several areas of science and industry – motivated by political and
security reasons (surveillance, intelligence agencies), economical (advertisement,
social media) or medical matters. Besides a flood of machine-generated data due
to technological advances, e.g., in ubiquitous internet-of-thing products and in-
creasing accuracy of sensors, a large amount of data is produced by humans in
various forms. In order to enable machines to automatically analyze (possibly not
well or completely defined) data the idea of the Semantic Web was created. Besides
suitable data structures, optimized hardware is necessary to store and process this
vast amount of data. Whereas persistently storing these massive data is hassle-free,
the processing and analysis within a reasonable time frame becomes more and more
difficult. In order to cope with these problems, in the last decades intensive work
was done to optimize database software and data structures. Furthermore, tech-
nological advances enabled shrinking feature size to increase clock frequency and
thus the overall performance. However, nowadays these approaches are reaching
their limits (power wall) and in the last years the trend evolved to multi/many-
core systems in order to increase performance. Additionally, these systems are not
assembled with homogeneous cores, but rather are composed by heterogeneous and
specialized cores which compute a specific task efficiently. The main issue of such
systems is that these specialized cores can not be used in applications showing a
huge variety in processing. Widely available Field Programmable Gate Arrays (FP-
GAs) with the capability of (partial) runtime reconfiguration are able to close the
gap between the flexibility of general-purpose CPUs and the performance of spe-
cialized hardware accelerators.

In this work, a fully integrated hardware-accelerated query engine for large-scale
datasets in the context of Semantic Web databases is presented. The proposed
architecture allows the user to retrieve specific information from Semantic Web
datasets by writing a query which is automatically adapted and executed on a
runtime reconfigurable FPGA. As queries are typically unknown at design time a
static approach is not feasible and not flexible to cover a wide range of queries
at system runtime. Our proposed approach dynamically generates an optimized
hardware accelerator in terms of an FPGA configuration for each individual query
and transparently retrieves the query result to be displayed to the user. The
benefits and limitations are evaluated on large-scale synthetic datasets with up to
260 million records as well as the widely known Billion Triples Challenge with over
one billion records.

3

Kurzfassung
Es ist bekannt, dass in der heutigen Zeit immer mehr (unstrukturierte) Daten in
verschiedensten Bereichen der Wissenschaft und Wirtschaft erzeugt, gespeichert
und analysiert werden – (sicherheits-) politisch motiviert (Überwachung, Sicher-
heitsdienste), getrieben durch wirtschaftliche Interessen (Werbung, soziale Netz-
werke) oder aus medizinischem Nutzen. Neben der Flut an Maschinen-generierten
Daten verursacht durch technologische Fortschritte, z.B. allgegenwärtige Geräte
des Internets der Dinge und höhere Genauigkeit von Sensoren, wird ein Großteil
der Informationen in zahlreichen verschiedenen Formaten durch den Menschen pro-
duziert. Damit auch Maschinen diese möglicherweise unvollständigen Daten ver-
arbeiten können, entstand die Idee des Semantic Web. Neben angepassten Daten-
strukturen werden jedoch auch optimierte Rechensysteme benötigt, um die riesi-
gen Datenmengen speichern und verarbeiten zu können. Während das Speich-
ern dieser Datenmengen keine Herausforderung darstellt, so wird das Verarbeiten
und Analysieren in akzeptablen Zeitfenstern mehr und mehr problematisch. Um
diesen Anforderungen gerecht zu werden, wurde in den letzten Jahrzehnten in-
tensiv an der Optimierung von Datenbanksystemen und den darunterliegenden
Datenstrukturen geforscht. Des Weiteren erlaubten technologische Fortschritte die
stetige Verkleinerung von elektronischen Schaltkreisen und damit die Erhöhung der
Rechenfrequenz und -leistung. Jedoch stießen diese Methoden an ihre physikalis-
chen Grenzen und trieben die Einführung von Mehrkernprozessoren voran, um
dennoch Leistungsverbesserung erzielen zu können. Zudem setzen sich diese Sys-
teme häufig nicht mehr nur aus gleichartigen Rechenkernen zusammen. Stattdessen
basieren diese auf verschiedensten Spezialprozessoren, um damit bestimmte Auf-
gaben mit sehr hoher Effizienz lösen zu können. Jedoch lassen sich Spezialprozes-
soren typischerweise nur in eingeschränkten Aufgabenfeldern einsetzen und sind
damit nicht für Anwendungen mit hohen Flexibilitätsanforderungen sinnvoll einset-
zbar. Die wachsende Verfügbarkeit und Beliebtheit von Field Programmable Gate
Arrays (FPGAs), mit der Möglichkeit der partiellen Rekonfiguration zur Laufzeit,
stellen einen interessanten Lösungsansatz dar um die Flexibilität von typischen
Prozessoren mit der Leistungsfähigkeit von Spezialprozessoren zu vereinen.

In dieser Arbeit wird ein vollständig integrierter Anfragebeschleuniger im Kontext
von Semantic Web Datenbanken vorgestellt. Die entwickelte Architektur erlaubt es
dem Benutzer eine Anfrage an Datensätze zu stellen, wobei die gegebene Anfrage
zur Laufzeit auf einen FPGA abgebildet und anschließend beschleunigt ausgeführt
wird. Typischerweise sind die Anfragen vorab nicht bekannt, so dass ein statischer
Ansatz nicht flexibel genug ist, um ein breites Spektrum an Anfragen sinnvoll
abbilden zu können. Daher erzeugt der hiermit vorgestellte Ansatz dynamisch zur
Systemlaufzeit einen anfragespezifischen Beschleuniger und ermittelt transparent

5

für den Benutzer das Ergebnis der Anfrage. Im Rahmen dieser Arbeit werden die
Vorteile und Einschränkungen, anhand von synthetischen Datensätzen mit bis zu
260 Millionen Einträgen sowie realen Datensätzen der Billion Triples Challenge
mit mehr als einer Milliarde Einträgen, aufgezeigt.

6

Acknowledgments
During my PhD studies I have met many people which supported me and influenced
my work. First of all, I would like to thank Prof. Volker Linnemann for giving me
the opportunity to enter scientific research at the Institute for Information Systems
and providing support after his leave. In addition, I would like to thank Prof. Ralf
Möller for supporting me and giving me the freedom to finish this thesis.

All these years my advisor Dr. Sven Groppe has been motivating me to question
my results and further improve them. I am certainly grateful for his help to finish
my thesis. Additionally, I would like to thank Prof. Thilo Pionteck for introducing
me into to the world of reconfigurable computing and collaborating in several pub-
lications. I thank the exam committee Prof. Stefan Fischer and Prof. Erik Maehle
for reviewing my work and chairing my exam.

Furthermore, I would like to thank Dennis Heinrich for working together and ex-
changing experience in the field of FPGA development; Nils Fußgänger for main-
taining the technical infrastructure and sharing knowledge in several technical top-
ics. A special thanks goes to Angela König for selflessly supporting me in basically
any situation.

I deeply thank my mother Gisela, my father Dietmar and my brother Frank for
bringing me up without worries, fulfilling all my wishes but still taught me to be
humble and providing me all freedom to make my own choices – always knowing
to have their support.

Lastly, I greatly thank my fiancée Irina for mentally strengthening me everyday,
keeping doubts out of my head and showing the pleasures of life not only during
the period of writing this thesis.

Lübeck, February 2017 Stefan Werner

7

Contents

1 Introduction 1
1.1 Motivation. 1
1.2 Scientific Contribution and Organization of this Work 2

2 Background 5
2.1 Semantic Web . 5

2.1.1 Introduction . 5
2.1.2 Semantic Web Technologies . 7
2.1.3 LUPOSDATE - A Semantic Web Database 17

2.2 Reconfigurable Computing . 28
2.2.1 Field-Programmable Gate Array . 29
2.2.2 Evaluation Platform. 35
2.2.3 Development Flow of FPGA Designs . 36
2.2.4 Dynamic Partial Reconfiguration . 47
2.2.5 Applications . 49

2.3 Related Work . 50
2.3.1 In-storage Processing . 51
2.3.2 General Purpose Computing on Graphics Processing Units 52
2.3.3 Reconfigurable Computing. 56

3 Query Operators on Field-Programmable Gate Arrays 59
3.1 Hardware Acceleration for LUPOSDATE. 59
3.2 Operator Template . 64
3.3 Join Operator . 67

3.3.1 Join Algorithms . 67
3.3.2 Micro Benchmarks . 80
3.3.3 Related Work . 93
3.3.4 Summary of FPGA-based Join Operators. 93

3.4 Filter Operator . 94
3.4.1 Fully-Parallel Filter . 95
3.4.2 Pipelined Filter . 97
3.4.3 General Filter Expressions. 98

9

Contents

3.4.4 Micro Benchmarks . 100
3.4.5 Related Work . 105
3.4.6 Summary of the FPGA-based Filter Operator 106

3.5 Additional Operators . 107
3.5.1 RDF3XIndexScan . 107
3.5.2 Projection. 108
3.5.3 Union / Merge-Union. 109
3.5.4 Limit and Offset. 109
3.5.5 AddBinding / AddBindingFromOtherVar . 110
3.5.6 Unsupported Operators . 110

3.6 Summary . 111

4 Automated Composition and Execution of Hardware-accelerated Op-
erator Graphs 115
4.1 Hybrid Architecture . 115

4.1.1 Integration into LUPOSDATE . 116
4.1.2 Hybrid Work Flow . 116
4.1.3 Hybrid Query Engine. 118

4.2 Automated Composition . 119
4.2.1 Static Components. 120
4.2.2 Dynamic Components . 120
4.2.3 Parametrization of Operators . 123

4.3 Evaluation . 126
4.3.1 Evaluation Setup . 126
4.3.2 SP2Bench SPARQL Performance Benchmark 126
4.3.3 Billion Triples Challenge . 130

4.4 Related Work . 133
4.5 Summary . 134

5 Semi-static Operator Graphs 137
5.1 Extending the Hybrid Query Engine . 137

5.1.1 Semi-static Routing Element . 139
5.1.2 Modified Hybrid Work Flow . 139

5.2 Evaluation . 144
5.2.1 Evaluation Setup . 144
5.2.2 Benchmarks . 144

5.3 Related Work . 147
5.4 Summary . 148

10

Contents

6 Conclusion 151

A Performance of PCIe 159
A.1 Downstream Throughput . 160
A.2 Upstream Throughput . 160

B Test Queries 163
B.1 Commonly used prefixes . 163
B.2 Queries on SP2B dataset. 163
B.3 Queries on BTC-2012 dataset . 165

Acronym 169

References 173

Lists 197

Curriculum Vitae 201

List of Personal Publications 203

11

1
Introduction

1.1 Motivation

While economies at the beginning of the 20th century were characterized by indus-
trialization, nowadays more and more business models rely on information exchange
and analysis. The creation of the World Wide Web (WWW) – in which users be-
came not only consumers, but also content producers – can be seen as the initial
spark of this progression.

Furthermore, devices get smaller and cheaper which in turn increases the user basis.
Nowadays there are more than 1 billion websites accessible [1]. Finding valuable
information in this vast amount of data can not be manually done by humans.
Therefore, search engines have been developed to cope with the information flood.
The phrase Just google it has become ordinary. Amit Singhal1 reported in October
2015 more than 100 billion searches a month [2]. Basically, these engines compare
given keywords with plain text from a website. But the content is designed for
humans to read, rather than for further processing by machines. Understanding the
semantics of information provided by a website is rarely possible in an automated
manner and thus results might consist of unrelated information. The Semantic
Web (SW) intends to extend the current web providing a well-defined meaning for
any kind of information by enriching existing data with metadata and semantically
linking data and data sources. There is a growing number of applications that
benefit from SW technologies and the datasets are becoming increasingly large
(millions to billions [3]).

Additionally, not only humans are producing and consuming data. Any kind of
sensors or even sensor networks are deployed to monitor various indicators with
increasing precision. A fast query execution on this vast amount of data is essential

1Senior Vice President, Google Fellow, Google Inc., responsible for Google Search

1

1 Introduction

to develop high performance SW applications. The increasing amount and com-
plexity of data demand for higher performance of the underlying algorithms and
hardware to analyze and query data in a reasonable time frame. Database systems
are typically optimized for traditional hardware systems which are based on the
commonly used von-Neumann architecture [4]. As a consequence, general-purpose
Central Processing Units (CPUs) suffer from architectural limitations (e.g., mem-
ory wall). Additionally, technological limits do not allow continuous performance
improvements by simply increasing the clock rate due to the power wall. Thus,
re-thinking the universal design using general-purpose CPUs is required. Rather
than using one general processor, multi- and many-core architecture have been de-
veloped. These can be homogenous architectures but more and more architectures
base on heterogeneous designs. Typically, besides general-purpose CPUs, these
consist of hardware accelerators which have been developed to efficiently fulfill a
specific application task. Well-known examples are network and graphics proces-
sors. However, usually they can not be utilized in application domains showing a
huge variety in processing such as query processing in SW databases. With the
aid of Field-Programmable Gate Arrays (FPGAs) the gap between the flexibil-
ity of general-purpose CPUs and the performance of specialized hardware can be
closed.

1.2 Scientific Contribution and Organization of this
Work

This work investigates the utilization of runtime reconfigurable hardware archi-
tectures in the scope of query processing on Semantic Web data. As a result
a dynamically reconfigurable hybrid query engine based on Field-Programmable
Gate Arrays (FPGAs) is provided. The hybrid architecture is shown in Figure 1.1.
It allows the user to retrieve specific information from Semantic Web datasets
by writing a query which is automatically transformed into an FPGA configura-
tion and executed on the runtime reconfigurable FPGA. Each query operator is
a specialized processing core to process a particular intermediate result as fast
as possible. The composition of several specialized processing cores enables the
hardware-accelerated query evaluation. The major results of this thesis have been
published in peer-reviewed conference proceedings and journal papers [5, 6, 7, 8, 9].

The main contributions of this work are:

• We introduce an operator template which enables the transparent communica-
tion of FPGA-based query operators.

2

1.2 Scientific Contribution and Organization of this Work

DATABASE SERVER

D
A
T
A

CPU

FPGA

CLIENT

QUERY

R
E
S
U
LT

Figure 1.1 − Hybrid architecture - The client application sends a query to the
hybrid database server which transparently determines the result using a hard-
ware accelerator based on a Field-Programmable Gate Array (FPGA).

• We present and evaluate the FPGA-based implementations of various query
operators, each realizing a dedicated hardware processing core.

• We present the first fully-integrated hybrid hardware-software system which
utilizes a runtime reconfigurable FPGA to provide a query-specific hardware
accelerator operating on large-scale Semantic Web datasets over one billion
records. Compared to a highly optimized CPU-based software solution our
hybrid query engine executes queries up to 32 times faster.

• We extend our architecture by the new concept of Semi-static Operator Graphs
(SOGs) which deploy a general query structure on a runtime reconfigurable
FPGA. Instead of exchanging the whole query structure this approach en-
ables the exchange of single query operators in terms of Reconfigurable Mod-
ules (RMs). As a result the reconfiguration overhead can be significantly re-
duced.

Summarizing all, in this work we develop a hybrid database system which is able to
automatically map and execute queries on a query-specific hardware accelerator.

In Chapter 2 the fundamentals and technical background of this work are provided.
The motivation of the Semantic Web – one driving force of the data growth –
is given, followed by a comprehensive overview of Semantic Web data formats
and standards. On the example of our Semantic Web database LUPOSDATE we
describe the typical query representation and query processing stages in software
systems. As the technological basis of this work, we introduce the methodology of
reconfigurable computing, specifically based on FPGAs. Besides the internal FPGA
architecture, we present the typical development flow of FPGA-based hardware
design. Concluding this chapter, we review recent work using modern hardware
architectures in the field of database tasks.

3

1 Introduction

In Chapter 3, we motivate the use of FPGAs in databases by providing a top-down
view and outline potential benefits in query execution. Our final approach aims
to automatically transform the internal query representation of our database sys-
tem into a query-specific hardware accelerator by assembling dedicated processing
cores. Each processing core executes one operator of the given query. Therefore, we
introduce an operator template which defines a common interface for all operators.
The common interface allows the transparent data flow between successive opera-
tors without needing the knowledge about their internal function. On the example
of the join and filter operators, first performance insights are given. Furthermore,
all supported operators of this work are introduced in this chapter.

With a set of operators, we show in Chapter 4 the automated composition of mul-
tiple operators to represent arbitrary queries. Therefore, the integration into the
software system and the architecture of the hybrid query engine is described. The
resources on the FPGA are divided into static components such as communication
interfaces and one large Reconfigurable Partition (RP) which allows the exchange
of the complete query structure. The benefits and limitations are evaluated on
large-scale synthetic datasets with up to 260 million triples as well as a real-world
dataset with over one billion triples.

In Chapter 5, we further improve our architecture by deploying a semi-static query
structure on the FPGA. It consists of multiple small RPs rather than one large
RP which allows the exchange of single query operators. This greatly reduces the
overhead from minutes to milliseconds for exchanging queries on the FPGA during
system runtime.

We recap this work and summarize the resulting benefits of our approach in Chap-
ter 6. Subsequently, we outline numerous extensions and provide a broad range of
ideas for future research based on this work.

4

2
Background

In this chapter we introduce the core technologies of this work. First the Semantic
Web and its characteristics are described which further motivates the need of re-
configurable hardware platforms. Latter is presented in detail and discussed based
on Field-Programmable Gate Arrays. In the remainder of this chapter, a compre-
hensive overview of recent research on modern hardware architectures in the field
of database tasks is given.

2.1 Semantic Web

This section gives an introduction to the Semantic Web and its core technolo-
gies. Furthermore, we present the Semantic Web database LUPOSDATE which is
extensively used as a software basis of this work.

2.1.1 Introduction

With the evolution of the World Wide Web (WWW) and its related increasing
number of services the amount and availability of information has grown enor-
mously. While in April 2006 more than 80 million websites have been reported
[10], only ten years later in April 2016 this number marks more than one billion
websites [11] (see Figure 2.1). But the content is typically designed for humans to
read rather than for further processing by machines. The web characteristic comes
from dumb links connecting one resource to another one without expressing their
relation to each other [12, p. 29]. Additionally, understanding the semantics of
information provided by a website is rarely possible in an automated manner.

On the other side, managing and finding valuable information in all these data
was not achievable without algorithms implemented by the many search engines
we use every day. Basically, users type some keywords related to some topic and

5

2 Background

the search engine returns a list of websites by textually comparing one or more of
the keywords with the website’s content. If the keyword is ambiguous the list will
contain unwanted results. Contrary, if the meaning of a keyword can be expressed
using other words (synonyms), the list of results might be incomplete. Besides
these problems, further visions of software agents taking advantage by bringing
structure to meaningful websites, motivate the idea of the Semantic Web (SW) to
establish a machine-readable web by adding methods for systematically analyzing
data and inferring new information.

Figure 2.1 − Growth of the World Wide Web (site refers to the number of web
servers, whereby one host may have multiple sites by using different domains
or port numbers [1]).

Take the author’s web page1 shown in Figure 2.2 as a simple example. As a
human it is easy to interpret the containing information and combine them to
a comprehensive knowledge. The reader finds a name (simply inferred from the
layout of the page and because it looks like a name) and a picture, and concludes
that picture and name refer to the same person. Furthermore, the page shows an
address, but a human would not consider it to be the home address of the author
because it contains terms like institute and Universität, and obviously it is not
a private website. In order to automatically retrieve these (for humans obvious)
information by agents, powerful and complex algorithms are necessary. Due to
the variety of websites in the WWW these algorithms are still error-prone because
mostly they rely on a predefined and regular structure. In order to address these
issues the SW does not intend to be an alternative web but to be an extension
of the current one, in which information is given well-defined meaning, better
enabling computers and people to work in cooperation [13]. Although some SW

1http://www.ifis.uni-luebeck.de/index.php?id=werner&L=1

6

http://www.ifis.uni-luebeck.de/index.php?id=werner&L=1

2.1 Semantic Web

Figure 2.2 − Excerpt of the author’s web page.

technologies benefit from Artificial Intelligence (AI) research it is not deemed as
AI. Instead of smarter machines it establishes smarter data by describing resources
and relations/links in a standard machine-readable format [12, p. 22].

Regarding the simple example, the website can be semantically enriched for ma-
chines by embedding additional information and relations between them. These
can be of simple forms such as annotations expressing Universität zu Lübeck is of
type “university” or more complex forms such as name and picture belong to the
same person. Of course, these terms and relations have to be well defined and
commonly used. The vastness of the WWW and its distributed growth requires
the SW to provide methods to handle semantically duplicated and vague terms.
Furthermore, new data sources might occur and others might disappear frequently,
and thus information might be incomplete and inconsistent [14]. In order to cope
with these challenges, the SW defines and combines several basic technologies.

2.1.2 Semantic Web Technologies

Although the Semantic Web is not directly recognizable to the end-user from out-
side, more and more SW technologies exert influence on web applications and
their algorithms. In order to strengthen this trend, the World Wide Web Consor-
tium (W3C) makes huge efforts to provide standardized languages and technologies
to get closer to the full vision. As a result, several standards have been released
and other proposals are currently work in progress. Figure 2.3 outlines the SW
stack. The bottom layers provide the basis of the SW consisting of Universal
Character Set (UCS) [15], Internationalized Resource Identifiers (IRIs) [16] and
Extensible Markup Language (XML) [17]. The UCS specifies different encoding
schemes for written form of all languages of the world and additional symbols.

7

2 Background

RDF

XML

Identifiers (IRI)Universal Character Set

Ontology

RDFS

OWL

Rule

RIF

Query

SPARQL

Unifying Logic

Proof

Trust

C
ry
pt
og
ra
ph
y

Figure 2.3 − Semantic Web stack (adapted from [12, p. 23]).

IRIs are basically an extension of Universal Resource Identifiers (URIs) but allow
the use of almost all the UCS characters. An IRI consists of an string of char-
acters to identify an abstract or physical resource. XML defines a set of rules
for encoding human- and machine-readable documents. The Resource Description
Framework (RDF) [18] allows to express and interconnect statements in form of
triples which are used as the basic data format. The SPARQL Protocol And RDF
Query Language (SPARQL) [19] provides a query language to retrieve informa-
tion from RDF datasets. Taxonomies and ontologies can be expressed using RDF
Schema (RDFS) [20] respectively Web Ontology Language (OWL) [21]. Latter
allows to express complex properties and relations between resources. The Rule
Interchange Format (RIF) [22] enables the exchange of different rule languages
between existing rule systems. These frameworks and technologies will be further
refined in the following sections. However, the remaining layers consisting of uni-
fying logic, proof and trust as well as cryptography, that spans all layers, are not
yet standardized.

8

2.1 Semantic Web

2.1.2.1 Resource Description Framework

The Resource Description Framework (RDF) is an abstract framework for rep-
resenting information in the web [18]. It is used as the basic format in the SW
to express statements about web resources. In general, RDF datasets consist of
triples. Each triple consists of the components subject, predicate (or property) and
object (or value), and is formally defined as (s, p, o) ∈ (I∪B)×I×(I∪B∪L), with
the pairwise disjoint infinite sets I, B and L, where I is a set of IRIs, B is the set
of blank nodes and L contains literals. Each IRI or literal denotes something in the
world and is called a resource [23]. However, they do not necessarily point to an
actual existing resource such as a file or web address but can be abstract concepts
or physical things. A literal consists of a lexical form in terms of a Unicode string
and a data type annotation defining the range of possible values (using a data type
IRI). For plain-text strings in a natural language a language tag must be appended
which implies the data type language-tagged string2. Simple literals without any
data type or language tag are interpreted as strings3. Blank nodes are unnamed
identities without an identifier, and thus do not identify specific resources. They
can represent complex attributes or multi-component structures [23].

Listing 2.1 shows an example RDF dataset consisting of five prefix definitions (lines
1 to 5) and nine triples (line 6 to 14) using the Notation 3 (N3) [24]. Prefixes are
declared for simplicity and readability. For instance, the predicate rdfs:subClassOf
is expanded to <http://www.w3.org/2000/01/rdf-schema#subClassOf> due to the
previous prefix definition of rdfs. The example consists of five distinct subjects.
Some subjects are are used in multiple triples (e.g., l:Journal1). Other subjects are
used in other triples as object (e.g., v:Article).

Besides N3, several other serialization formats for RDF data are available such as
N-Triples [25], Turtle [26], and RDF/XML [27]. The specification Resource De-
scription Framework in Attributes (RDFa) [28] describes how to embed structured
data in any markup language such as the Hypertext Markup Language (HTML)
[29].

Conceptually, a set of RDF triples can be interpreted as an RDF graph, in which
the subjects respectively objects with the same IRI are represented as unique nodes
and the predicates serve as labeled directed edges. Figure 2.4 shows the resulting
graph regarding the example dataset in Listing 2.1. Throughout this work RDF
is used as the basis input data format. The query language to access RDF data is
introduced in the next section.

2IRI: http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
3IRI: http://www.w3.org/2001/XMLSchema#string

9

http://www.w3.org/1999/02/22-rdf-syntax-ns#langString
http://www.w3.org/2001/XMLSchema#string

2 Background

Listing 2.1 − Example RDF dataset.

1 @prefix rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#> .
2 @prefix rdfs: <http://www.w3.org/2000/01/rdf−schema#> .
3 @prefix swrc: <http://swrc.ontoware.org/ontology#> .
4 @prefix v: <http://localhost/vocabulary/> .
5 @prefix l: <http://localhost/instances/> .
6 v:Journal rdfs:subClassOf v:Document .
7 v:Article rdfs:subClassOf v:Document .
8 l:Journal1 rdf:type v:Journal .
9 l:Journal1 v:title ”Popular Journal”^^xsd:string .

10 l:Article1 rdf:type v:Article .
11 l:Article1 v:abstract ”English abstract”@en .
12 l:Article1 v:publishedIn l:Journal1 .
13 l:Article1 v:creator l:Famous_Author .
14 l:Famous_Author v:name ”Stephen Hawking”^^xsd:string .

v:Document

v:Journal

rd
fs
:s
ub
Cl
as
sO
f

v:Article

rdfs:subClassOf

l:Journal1

r
d
f
:
t
y
p
e

"Popular Journal"^^xsd:string

v:title

l:Article1

r
d
f
:
t
y
p
e

v:publishedIn

"English abstract"@en

v:abstract

l:Famous Author

v:
cr
ea
to
r

"Stephen Hawking"^^xsd:string

v
:
n
a
m
e

Figure 2.4 − RDF graph corresponding to Listing 2.1.

10

2.1 Semantic Web

Listing 2.2 − SPARQL example query.

1 PREFIX v: <http://localhost/vocabulary/>
2 PREFIX l: <http://localhost/instances/>
3 SELECT ?aName WHERE {
4 ?author v:name ?aName .
5 ?doc v:creator ?author .
6 ?doc v:publishedIn l:Journal1
7 }

2.1.2.2 SPARQL Protocol And RDF Query Language

After standardized by the W3C, the SPARQL Protocol And RDF Query Lan-
guage (SPARQL) in version 1.0 [30] became the most important query language
for the SW. It enables access to the data by selecting specific parts of the pos-
sibly distributed RDF graph. Listing 2.2 shows an example query which re-
quests all names of authors which published in the journal referenced by the IRI
<http://localhost/instances/Journal1>.

Variables in a query are indicated by ? or $. The SELECT clause defines a projec-
tion list of variables to appear in the final result (i.e., the bound values of variable
?aName). Similar to RDF triples, the core component of SPARQL is a set of
triple patterns (s,p,o). These are defined in the WHERE clause and constrain the
input RDF data by specifying known RDF terms and replacing unknown terms
by variables. Each triple pattern matches a subset of the RDF data when the
terms are equal to the triple in the RDF data and bounds specific values to the
variables of the pattern. The appearance of the same variable in several patterns
requires to combine those intermediate results, which have the same values in com-
mon variables. This operation is known as (natural) join and frequently appears
in SPARQL queries due to the linking structure of RDF. Regarding Listing 2.2
and the dataset shown in Listing 2.1 the result is determined as follows. The first
triple pattern (line 4) matches one triple (surrounded orange in Figure 2.4) and
returns bindings for the variables. The second triple pattern (line 5) matches one
triple as well (green in Figure 2.4). As the first and the second pattern share the
common variable ?author in the subject respectively object, a join between both
intermediate results is implied. Additionally, the third triple pattern (line 6) shares
the variable ?doc with the second pattern, which implies another join (blue in Fig-
ure 2.4). Besides the basic structure, consisting of SELECT-WHERE clause and
triple patterns, SPARQL 1.0 and its recent version 1.1 [19] provide numerous other
features. Besides SELECT other query forms using the keywords ASK, DESCRIBE

11

2 Background

or CONSTRUCT are supported. ASK query returns whether a query pattern has a
solution (true) or not (false). DESCRIBE queries return an RDF graph containing
data about the resources. CONSTRUCT queries allows to construct and return a
new RDF graph instead of only bound values for variables. Named graphs allow
to use multiple RDF datasets (referred using an IRI) within one query. Besides
triple patterns, the WHERE clause can consist of other expressions to further refine
the intended result. The FILTER expression restricts the solution according to a
given constraint. Each solution which evaluates to false (or an error) regarding
the constraint is eliminated. The constraint can be of various logical conjunctive
and disjunctive forms consisting of built-in functions (such as isIRI, bound, etc.),
comparisons of typed literals and extensional functions named by an IRI. The
filter expression (NOT) EXISTS tests whether a triple pattern matches the dataset
or not. MINUS allows to remove solutions which fit its arguments. The UNION
enables to specify pattern alternatives such that one of several graph patterns may
match. One characteristic in the SW is that regularity and completeness can not
be assumed in all RDF graphs. The OPTIONAL keyword enables to express pat-
terns which add information to the results if there are any, but does not reject
the results because some patterns do not match. The keywords DISTINCT and
REDUCED determine whether duplicates are included in the result. The former
strictly eliminates duplicates, the latter only permits them to be eliminated. The
clause ORDER BY establishes an ascending or descending order of the solution re-
garding given variables. LIMIT defines an upper bound on the number of results
returned. OFFSET controls where the solution starts from in the complete result.
The combination of both is useful to select subsets of the result. Property paths en-
able to find a connection between graph nodes consisting of one or more predicates
(properties). Federated queries are supported through the SERVICE keyword [31].
It allows to explicitly delegate certain sub-queries to another SPARQL endpoint.
Besides querying data, SPARQL provides language constructs to update, create
and remove RDF graphs [32]. The full grammar and reference of SPARQL 1.1
and its features can be found in [32, 33]. Throughout this work SELECT queries
according SPARQL are mapped to an hardware accelerator in order to improve
query performance. This enables a standardized access to the benefits of this work
without learning a new language or new language constructs. The supported con-
structs are explained later in Chapter 3. A detailed description on how database
systems evaluate queries is given later in Section 2.1.3.

2.1.2.3 Taxonomies and Ontologies

Taxonomies and ontologies (also called vocabularies) are used to improve knowl-
edge about data by classifying terms and defining relationships between them ac-

12

2.1 Semantic Web

cording to a specific domain. Additionally, relationships can be implicitly inferred
based on the explicitly given relationships. In order to allow applications/machines
to verify knowledge and reason knowledge (make implicit knowledge explicit) to
finally understand meaning, the specific domain knowledge has to be formally ex-
pressed. Therefore, the W3C proposed the following different ontology languages.
RDF Schema (RDFS) is a semantic extension of the RDF vocabulary. It provides
an extensible type system for RDF by defining specific RDF terms [20]. The ex-
pressiveness covers definitions of classes (also called groups) such that resources
(instances) can be assigned to classes which in turn are resources as well. Further-
more, classes can be described using RDF properties such as types or subclasses.
The Web Ontology Language (OWL) [34] defines an additional vocabulary and for-
mal semantics grouped together in one namespace owl. It provides three different
fragments (Lite, DL, Full). The purpose of OWL Lite aims for the definition of
taxonomies with simple constraints and restricts cardinalities to 0 and 1 – mainly
intended to simplify tool implementation. OWL DL (Description Logic) maximizes
the expressiveness by adding features like union or arbitrary cardinality, but still
restricts for instance properties in order to preserve decidability (computable in fi-
nite time) and completeness. OWL Full enables maximum expressiveness without
computational guarantees.

However, new requirements have been identified during OWL deployments which
consequently resulted in the new revision OWL 2 [21]. It is backward compatible
and adds new functionalities to increase expressiveness but also provides different
subsets called profiles (EL, QL, RL [35]) which restrict modeling features to address
specific use cases and simplify reasoning. A lower complexity allows conceptually
simpler algorithms which in turn are easier to implement resulting in more and
better tools [36]. OWL EL4 is mainly designed for applications using ontologies
consisting of a very large number of classes and properties, and allows classification
and instance queries in polynomial time. Applications which mostly query data
by reasoning on a large number of instance data should use OWL QL (Query
Language). It covers the expressiveness of relatively lightweight ontologies and
most of the expressiveness of entity-relationship and UML schemas [37]. Therefore,
it is suitable as an ontological data access layer such that the unchanged data in a
relational database can be queried through an ontology by rewriting a given query
into an SQL query. OWL RL (Rule Language) provides scalable reasoning but
retains a high level of expressiveness.

In practice there are several syntaxes available to describe and exchange OWL 2
ontologies, such as RDF/XML, OWL/XML, Functional Syntax, Manchester Syntax
and Turtle [21].

4bases on EL family of description logics that provide only existential quantification [35]

13

2 Background

A simple use case for using ontologies is the integration of data from different
sources as different identifiers (author, creator, …) for the same concept may cause
troubles combining these datasets. Adding an ontology which expresses the rela-
tions between terms (author is the same as creator and vice versa) can solve this
problem easily and most important automatically. Among other things, ontologies
are essential to provide agents with the capability to understand diverse informa-
tion and enrich them to higher knowledge [38]. Ontologies realize the paradigm
of the Open World Assumption which assumes everything not expressed in the
database to be unknown, instead of considering it to be false [14, p. 16]. This is
beneficial especially if we intentionally want to underspecify or at the moment we
are not able to fully specify a domain. Ontologies do not have to be complex and
already simple ontologies can have an impact, e.g., expressing same as relations
regarding synonyms or RDF predicates (a:name,foaf:name) can improve search re-
sults. However, some ontologies cover a specific knowledge domain and are very
complex. Thus, they are usually developed by domain experts [39, p. 42] but can
be beneficially used in various applications.

Some popular ontologies are (without any claim to completeness): Dublin Core
(dc) for describing generic metadata [40]; Friend Of A Friend (foaf) for describing
social relationships between people focused on the virtual world [41]; DOAP for
describing software projects [42]; eClassOwl (eBusiness ontology) for products and
services [43]; Music Ontology to describe meta data related to the music indus-
try [44]; Open Biomedical Ontologies including Gene Ontology and others such as
UniProt [45, p. 307]. Various ontologies for different domains are collected and
provided by the Linked Open Vocabularies (LOV) initiative5.

This work does not provide support for hardware-accelerated ontology evaluation
and thus is not further examined.

2.1.2.4 Rule Interchange Format (RIF)

The Rule Interchange Format (RIF)[22] was originally designed as a common stan-
dard for rules interchange in the SW between different existing rule systems. How-
ever, now it is seen as a complementation for ontologies as RIF rules can be used to
express ontology inferences and conditions which may be complicated to describe in
ontologies. The RIF-based rule inference follows the Closed World Assumption [46]
which means that everything which is not derivable by a given set of RIF rules is
considered to be false.

5http://lov.okfn.org/dataset/lov

14

http://lov.okfn.org/dataset/lov

2.1 Semantic Web

RIF comes with two different dialects (i) Basic Logic Dialect (BLD) using logic rules
to add new knowledge, and (ii) Production Rule Dialect (PRD) using production
rules to change facts. Both extend the Core Dialect which uses the Datatypes and
Built-Ins (DTB) specification describing a set of built-in datatypes, predicates and
functions to be supported by all dialects. The additional dialect Framework for
Logic Dialects (FLD) extends BLD and provides a formalism for specifying logic
RIF dialects. New user-defined logic RIF dialects can be derived from FLD to
cover new needs. This work does not provide support for hardware-accelerated
rule execution and thus is not further examined. However, we will outline possible
extensions of our approach including support of rule languages in Chapter 6.

2.1.2.5 Applications of the Semantic Web

Due to its nature, the SW is not visible for humans in the first place. The W3C
provides a list of several reported prototypes (use cases) and deployed systems
(case studies) using SW technologies [47]. In the following, we will shortly review
some of them to show the variety of possible SW applications.

Especially in large corporations the integration and consolidation of disparate ap-
plications and different data sources is expensive in terms of time and resources.
The automobile manufacture Groupe Renault established a repository with an
OWL model storing repair, diagnostic operations and related concepts [48]. In-
stead of showing all possible diagnostic procedures in a manual, the web-based
tool enables the technician to progressively discover repair information at differ-
ent granularity levels and is instructed to perform tests and enter results. For
information exchange and publishing RDF is used.

The broadcasting corporation BBC publishes large amounts of text, audio and
videos online. In the past, they provided separate websites each focused on a broad-
casting brand or a series of specific domains. Major issues regarding user experi-
ence resulted from the lack of cross linking and thus it was not possible to present
contextual information (such as which artist performed in the TV show). BBC
Programmes provides a uniform appearance using web identifiers and machine-
readable formats (RDF/XML) for every BBC program [49]. Each site can be
simply incorporated into other sites across different program genres. Similar BBC
Music provides a web identifier for every artist and additionally gathers and ag-
gregates informations from other public linked datasets (Wikipedia, MusicBrainz).
In turn BBC editors directly contribute to these datasets.

AGFA Healthcare transformed clinical textual guides consisting of appropriateness
criteria into a machine-readable medical knowledge base using RDF and OWL [50].

15

2 Background

Recommendations for radiology orders with respect to the patient’s condition can
be generated by using SW rule engines. Furthermore, the reuse and linking of
existing medical knowledge is possible and allows a standard description of clinical
problems and patient conditions.

The Drug Ontology Project for Elsevier (DOPE) provides a single interface to
access multiple sources in the life science domain [51]. Therefore, Elsevier’s main
life science thesaurus has been converted to RDFS, which afterwards has been used
to index and describe several large data collections. The DOPE Browser allows to
query and navigate through the collection, while hiding complexity such as multiple
data sources.

The General Council of the Judiciary in Spain established a search system for young
judges which provides and enhances the expert knowledge of over 400 judges from
all over Spain with ontologies [52]. The search performs several steps such as topic
detection, classification into subdomains, finding semantic similarities based on the
question’s legal meaning (defined in ontologies) rather than on keywords.

Typically, administrative authorities (cities, states, etc.) publish many documents
(announcements, laws, etc.) every day. Citizens are supposed to read them but
these documents are written in legal and administrative jargons, which causes a
barrier between citizens and administration. A keyword based search fails on terms
that are synonyms from a citizen’s view but are clearly different for experts. Thus,
the Principality of Asturias (Spain) provides an interface to express queries in
their own words, which then are analyzed for the underlying concepts of terms to
transform them into a common context [53]. The OWL-based ontologies include
more than 10,000 concepts. Two thesauri consisting of the end-user and the expert
vocabulary are linked to the concepts in the ontologies.

Besides others, the Linking Open Data (LOD) project [3] aims to publish new
RDF datasets and to interconnect existing open RDF datasets. As a result the
LOD cloud consisted of more than 30 billion triples and more than 500 million
links in 20116 and hence often serves as an example of Big Data. One data source
is the community-driven DBpedia [54] which extracts structured information (such
as info boxes) from Wikipedia and provides a SPARQL endpoint to this dataset.

The catalog WorldCat [55] is the world’s largest network of library content. It
itemizes the collection of libraries all over the world. After searching a specific
item, a webpage with embedded RDFa (which describes various properties of the
bibliographic item) is returned. All these embedded information can be extracted
and used in an automated fashion without the need of additionally providing access

6 http://lod-cloud.net/state/ (Version 0.3, 2011-09-19 / accessed: 2016-05-11)

16

http://lod-cloud.net/state/

2.1 Semantic Web

methods such as web services or dedicated Application Programming Interfaces
(APIs).

2.1.3 LUPOSDATE - A Semantic Web Database

The LUPOSDATE project [56] was originally initiated by Dr. Sven Groppe at the
Institute of Information Systems and funded by the DFG7. After the funding period
and still on-going, the LUPOSDATE system is continuously improved regarding
performance and feature richness. It provides several query engines, all (except
streaming engine) supporting full SPARQL 1.0 and SPARQL 1.1. The code is
freely available as open source [57] and allows anybody the easy integration of
SW technologies in any other application or the extension and contribution to
LUPOSDATE itself. The developed architecture of this work is based on and
integrated into the LUPOSDATE system. Therefore, in the following section the
basic architecture LUPOSDATE shown in Figure 2.5 is introduced with focus on
the main components (i) index construction and the underlying data structures as
well as (ii) the processing stages in query evaluation.

RDF
Data

Index
Construction

Abstract
Syntax Tree

CoreSPARQL-
Query

Abstract Syntax Tree

Operatorgraph

Logically optimized Operatorgraph

Physically optimized Operatorgraph

Result

Instance
Data

Preprocessing
O

ptim
ization

Transformation into
CoreSPARQL

Logical Optimization

Physical Optimization

Evaluation

SPARQL-Parser

CoreSPARQL-Parser

Transformation into
Operatorgraph

SPARQL
Query

RDF
Parser

Triples

D
ata M

anagem
ent

OWL
Ontology

RDFS
Ontology

RIF-Parser

Transformation
into CoreRIF

RIF
Rules

Abstract
Syntax Tree

Abstract
Syntax
Tree

O
ntology

Support

Generation of
Inference Rules

Figure 2.5 − Architecture of the Semantic Web database LUPOSDATE [58].

7Deutsche Forschungsgemeinschaft (German Research Foundation)

17

2 Background

2.1.3.1 Index Generation

When it comes to manage large-scale datasets typically indices are used to access
the stored data in an ordered and structured fashion. Over the past decades nu-
merous indexing data structures have been presented. A general classification is
to split them into hash-based and tree-based indices. In-memory optimized indices
are usually based on hashing and perform very well on punctual requests. Due to
the distributive nature of hash functions, hash-based indices do not support range
or prefix searches. Additionally, although the size of available main memory is con-
tinuously growing, usually data and indices are persistently stored on disk-based
devices such as Hard Disk Drives (HDDs). One drawback is their poor performance
caused by the comparably long access time especially at random access patterns.
On the other side HDDs are organized in relatively large blocks of data which allows
them to store more data at one address. Regarding these properties, the B-tree [59]
has been developed as an optimized data structure for disks and is widely used in
database and file systems. Due to the block-based node structure, each node can
store multiple pairs consisting of key and data. A variant, the B+-tree [60], stores
the actual data only at the lowest level (leaves). Thus, leaf nodes and internal
nodes may have different formats. Latter can store more referential data (keys)
which reduces the height of the tree. Additionally each leaf may have a pointer to
the next leaf (sequence set) which, after finding the leaf, enables sequential access
through the succeeding leaves. This is desirable especially for database systems.

With respect to RDF triples, SPARQL engines like RDF3X [61] and Hexastore [62]
apply a simple but efficient scheme to provide the optimal (disk- and tree-based)
index for a given triple pattern. Therefore, six evaluation indices, one for each of
the possible collation orders (SPO, SOP, PSO, POS, OSP and OPS), are gener-
ated. The collation order states in which order the triple components s, p and o
are considered as primary, secondary and tertiary keys in a global triple sequence.
For instance, the collation order POS determines that triples are primarily sorted
according to predicate (P), secondarily sorted according to the object (O), and
tertiary sorted with respect to the subject (S). The POS index can efficiently re-
trieve triples which match to a triple pattern with given predicate only (object
and subject are variables) or given predicate and object (only subject is a variable)
by using the known components as a prefix key. In order to avoid an up to six
times higher space consumption, the evaluation indices typically rather use integer
identifiers (IDs) for strings than the actual component strings. This is beneficial
in query evaluation as well because the main memory consumption is greatly re-
duced. Therefore, during import of RDF triples into LUPOSDATE all component
strings are sorted in ascending order. Due to the amount of strings, they have to
be sorted in several runs which are finally merged. When it comes to efficiently

18

2.1 Semantic Web

store strings, especially those with common prefixes, usually Patricia Tries [63] are
the first choice. Thus, they are used to generate the initial runs stored on external
storage. In a final run the generated Patricia Tries are merged to retrieve the final
sorted dataset [64]. Afterwards, an ascending integer ID is assigned to each con-
taining string. The mappings between IDs and strings and vice versa are stored in
additional dictionary indices. The index for translating strings to IDs is based on
B+-trees, which can be constructed easily due to the fact that the strings are al-
ready sorted. The opposite direction, IDs to strings, is implemented as HDD-based
array realized using two files8. Obviously, the equality of two strings can be simply
checked by comparing their IDs. If the IDs are the same then the underlying strings
are the same as well. Furthermore, if the dictionary is not changed afterwards (by
inserting a new string) or the lexical order is maintained (complete recreation of
dictionary after insertion) then even relational comparisons like smaller and greater
can be supported9. If latter can not be guaranteed and in all other cases (e.g., ad-
vanced string operations such as substring or regular expressions) a lookup in the
dictionary to obtain the textual representation is mandatory. However, in a final
run through the imported RDF data, each triple respectively its components are
mapped to the related ID forming an ID triple. The ID triples are used to build
the six evaluation indices [14]. Regarding the previous example in Listing 2.1, the
corresponding dictionary is presented in Figure 2.6. Additionally, the resulting
RDF triples consisting of the IDs and B+-tree of the SPO index are shown. In
this work the index maintenance and access is always served by the software sys-
tem. However, Heinrich et al. [65] present a hybrid index which stores frequently
accessed interior nodes within a hardware accelerator.

2.1.3.2 Query Evaluation

Query evaluation (or execution) is nothing new and lots of database research has
investigated on optimizing query evaluation with respect to the shortest execution
time. Database Management Systems (DBMSs) provide a Query Language (QL) to
manipulate and retrieve data from one or more databases. After the user applica-
tion submitted the query, it is parsed using a grammar defining the query language
resulting in an Abstract Syntax Tree (AST). In an additional processing stage,
LUPOSDATE transforms the given AST into a core fragment of SPARQL, called
CoreSPARQL [66], which excludes redundant language constructs but still has the
same expressiveness. Like in relational databases, the components of SPARQL
queries are finally broken down to a set of nestable basic operators and are com-
bined to an operator graph (or tree) representing the query. Note that the chosen

8One file consisting the ordered IDs and a references pointing to the string in other file [57].
9This is not implemented in LUPOSDATE since SPARQL 1.1 supports updates.

19

2 Background

ID component string
0 ”Stephen Hawking”^^xsd:string
1 ”Popular Journal”^^xsd:string
2 ”English abstract”@en
3 l:Article1
4 l:Famous_Author
5 l:Journal1
6 rdf:type
7 rdfs:subClassOf
8 v:abstract
9 v:Article

10 v:creator
11 v:Document
12 v:Journal
13 v:name
14 v:publishedIn
15 v:title

1 11 7 10 .
2 9 7 10 .
3 5 6 11 .
4 5 15 1 .
5 4 6 9 .
6 3 8 2 .
7 3 14 5 .
8 3 10 4 .
9 4 13 0 .

3
8
2

3
10
14

3
14
5

4
6
9

4
13
0

5
6
11

5
15
1

9
7
10

11
7
10

3
14
5

4
13
0

Figure 2.6 − Dictionary for component strings (left) and resulting ID triples
(right) including possible B+-tree (SPO order) regarding Listing 2.1 (without
prefix substitution).

operators are only logically described and no actual implementation is given at this
stage.

Each SPARQL operator (except the index scan operator) can be expressed as
relational algebra. Definition 2.1 introduces the operations of the relational algebra
and common extensions [67, 68]. It is worth to mention that the relational algebra is
not turing-complete which allows easier optimization in order to provide an efficient
access to large datasets. The relational algebra has a set semantic which implies
that all (intermediate) results are without duplicates. But elimination of duplicates
is not trivial and might consume much memory. Therefore, real query engines use
the multiset (or bag) semantic due to the fact that it can be implemented more
efficiently. However, typically they provide constructs to remove duplicates in a
final processing step. This needs to be explicitly expressed in the query language.

In this work, we develop a runtime adaptive hardware accelerator to improve query
performance of SPARQL queries supporting the following subset of the extended
relational algebra operators: projection, selection/filter, join, union and limit/off-
set. The triple pattern scan is implemented as a hybrid operator such that it scans
the triple indices in software and sends matching triples to the hardware accel-
erator. The final hybrid hardware-software architecture is able to fall-back into
software-based query processing if the query consists of an unsupported operation
and thus provides full SPARQL 1.1 support.

20

2.1 Semantic Web

Definition 2.1 (Relational algebra and common extensions)
Given two relations R(r1, . . . , rm) and S(s1, . . . , sn) with ri respectively sj at-
tributes of R respectively S. The relational algebra defines a set of operators on
sets of tuples R and S, and thus no duplicate tuples are allowed. However, many
real database languages and implementations follow multiset semantics. There-
fore, we present the operators on R and S with respect to set ({. . . }) semantics
and on the multiset relations RM and SM with respect to multiset ({. . . }M)
semantics. If the definition of a multiset operator is the same as the set operator
then we denote it as multiset equivalent.

Projection returns set/multiset consisting of tuples only with the attributes
v1, . . . , vk of R:

πv1,...,vk
(R) := {(t[v1], . . . , t[vk]) | t ∈ R} (multiset equivalent)

Note: t[vi] represents the value in tuple t at attribute vi.

Selection/Filter/Restriction returns set/multiset of tuples of R which hold
a given propositional formula c:

σc(R) := {t | t ∈ R ∧ c(t)} with constraint c (multiset equivalent)

Note: The constraint c can be a simple variable/constant, a function call or a
complex expression riθrj with ri, rj constants or attributes of R and θ ∈ {=, ̸=
, <,≤,≥, >}. Furthermore, c can be of nested form ¬c1 or c1 ∧ c2 or c1 ∨ c2 with
constraints c1, c2. SPARQL provides a rich set of built-in functions such as type
checks, (NOT) EXISTS or regular expressions. For a full list of built-in functions
see [33].

Cross Product returns set/multiset consisting of tuples of R concatenated with
each tuple of S:

R× S := {(r1, . . . , rm, s1, . . . , sn) | (r1, . . . , rm) ∈ R, (s1, . . . , sn) ∈ S}
(multiset equivalent)

Note: With |TM | cardinality of any multiset TM then |RM × SM | = |RM | · |SM |.
With |TM |t cardinality of tuple t in TM , then |RM × SM |rs = |RM |r · |SM |s.

Union returns all tuples of R and S:

R ∪ S := {t | t ∈ R ∨ t ∈ S} (multiset equivalent)

21

2 Background

Note: With respect to union on multisets it holds ∀t ∈ RM ∪SM : |RM ∪SM |t =
|RM |t + |SM |t. In relational databases R and S must have the same scheme of
attributes. In SPARQL union is implemented as outer union (R⊎S), thus equal
schemes are not required and unbound variables remain unbound in the result.

Difference returns set of all tuples of R which do not appear in S respectively
multiset with as many removed duplicated tuples from RM as appear in SM :

Set semantic: R\S := {t | t ∈ R ∧ t /∈ S}
Multiset semantic: RM\SM ⊆ RM∧

∀t ∈ RM\SM : |RM\SM |t = max(0, |RM |t − |SM |t)

Note: In relational databases R and S must have the same scheme of attributes.
This is not required in SPARQL.

The following operators can be expressed using the minimal set but are often
defined explicitly as follows:

Intersection returns set/multiset of all tuples of R which also appear in S:

R ∩ S := R\(R\S) (multiset equivalent)

Note: R and S must have the same scheme of attributes. Due to the semantic of
difference on multisets a tuple t ∈ RM and t ∈ SM will appear min(|RM |t, |SM |t)
times in R ∩ S.

Theta-Join returns set/multiset of all tuples of R concatenated with all tuples
of S which hold given a propositional formula c:

R 1c S := σc(R× S) (multiset equivalent)

Note: Join condition c is defined as selection condition (see selection). The Equi-
Join restricts the condition to consist only of conjunctions of equality expressions.
The Natural Join is based on the Equi-Join but implicitly checks equality only on
commonly named attributes in both relations. One occurrence of each common
attribute is eliminated from the result [68]. In SPARQL queries, the natural
join is inferred for joining the results of different triple patterns with common
variables (attributes).

The following operators can not be expressed using the minimal set and therefore
are often defined in QLs to enhance expressiveness:

22

2.1 Semantic Web

Extended projection enables renaming of attributes and binding aggregate
values to attributes of the resulting relation:

πF1,...,Fk
(R) with either Fi ∈ {r1, . . . , rm} (rj attribute of R)

or Fi is an expression of the form X → Y with Y as new attribute and X is
either an attribute of R (renaming), a constant value, an aggregation function

or another complex arithmetic formula respectively string operation
(multiset equivalent).

Note: Renaming is often necessary when other operations require a common
scheme of the input relations such as union, difference and intersection. SPARQL
supports renaming in SELECT expressions and BIND clauses. Additionally,
SPARQL provides aggregate functions on associated attributes for counting the
number of values (COUNT), returning the sum of values (SUM), returning the
smallest respectively largest value (MIN/MAX), calculating the average of values
(AVG), returning an arbitrary sample value (SAMPLE) and performing string
concatenation across the values (GROUP_CONCAT) [33].

Distinct returns a set of a given multiset RM :

δ(RM) := {t | t ∈ RM}

Note: Duplicate elimination in real DBMS implementations is expensive because
all tuples must be either sorted or partitioned.

Order-By returns a sorted sequence R⟨⟩ of R with respect to bound values of
given attributes v1, . . . , vk:

τv1,...,vk
(R) := T = ⟨t1, . . . , tn⟩ with vi ∈ {r1, . . . , rm}∧

∀ti ∈ T holds ti[v1] < ti+1[v1] ∨ (ti[v1] = ti+1[v1]∧
ti[v2] < ti+1[v2] ∨ (ti[v2] = ti+1[v2] ∧ (. . .)))
∧ |R| = |R′| ∧ ti ∈ R (multiset equivalent)

Note: Overall the semantic of sequences is equal to sets respectively multisets
but sequences define a (not necessarily sorted) order on the containing elements.
In real DBMS implementations the results of most operators are determined in
an iterative and deterministic fashion and thus order is given implicitly. All
previously described operators can process sequences as well.

23

2 Background

Limit returns a sequence consisting of the first n tuples of sequence R⟨⟩:

limitn(R⟨⟩) := ⟨ti | ti ∈ R⟨⟩ ∧ 1 ≤ i ≤ n ≤ |R|⟩ (ti is the i-th tuple in R)

Offset returns a sequence consisting of all except the first n tuples of R⟨⟩:

offsetn(R⟨⟩) := ⟨ti | ti ∈ R ∧ n < i ≤ |R|⟩ (ti is the i-th tuple in R)

Note: Offset respectively Limit require a fixed order of tuples which is typically
given implicitly in real DBMS implementations.

Group-By returns a sequence of tuples of set/multiset R partitioned into groups
regarding to the bound values in one or more specified attributes [68]:

GF1,...,Fk
(R) with either Fi ∈ {r1, . . . , rm} (rj attribute of R)

or Fi is an expression of the form X → Y with Y as new attribute and X is
either an attribute of R (renaming), a constant value, an aggregation function

or another complex arithmetic formula respectively string operation
(multiset equivalent).

Note: Additionally, SPARQL provides the HAVING expression which can be used
to further restrict the tuples to be consolidated in a group [33].

Left Outer Join / Optional returns the join of R and S, and additionally
contains tuples of input relation, which do not have any join partner in the other
input relation:

R d|><| S := (R\(R n S)) ⊎ (R ◃▹ S) (left outer join) with
R n S := πr1,...,rm(R 1 S) (semi join)

(multiset equivalent)

Note: Right outer join R |><|d S is realized by simply substituting R with S respec-
tively S with R. Full outer join R d|><|d S := (R\(RnS))⊎ (R ◃▹ S)⊎ (S\(SnR)).

24

2.1 Semantic Web

With respect to SPARQL queries the following additional operator is defined:

Triple Pattern Scan returns triples satisfying a given pattern:

(e1, e2, e3) := { E | (d1, d2, d3) ∈ D ∧
E = ((x, v) | i ∈ {1, 2, 3} ∧ x = ei ∧ ei ∈ V ∧ v = di) ∧
((∀j ∈ {1, 2, 3} : (ej ∈ V) ∨ (ej = di)) ∧
∀(n, v1) ∈ E : ∀(n, v2) ∈ E : v1 = v2)

} with D input graph containing all input triples

Note: The triple pattern scan returns always a set because the input graph D is
defined to be a set of triples.

Regarding the previous example query (Listing 2.2 in Section 2.1.2) the logical
operator graph shown in Figure 2.7 is generated. In this simple example the trans-
formation of the query to a corresponding operator graph is obtained in a straight
forward fashion. Each triple pattern results in one index scan operator with a
collation order regarding the known terms in the triple pattern. As the first two
index scans provide bindings for the common variable ?author, both intermediate
results need to be joined. The calculated intermediate result consists of bindings
for the variables ?author, ?aName and ?doc. The latter in turn is a common vari-
able supplied by the remaining index scan and thus both intermediate results need
to be joined regarding ?doc. The last step is projecting out the unwanted variables
because in the query it is only asked for bindings of the variable ?aName. On the
other hand, it is also possible to calculate the join of intermediate results provided
by the second and third index scan, and afterwards join with the intermediate re-
sult of the first index scan. Typically for a given query there are numerous possible
operator graphs which differ in processing costs, mostly in terms of time required
to calculate the final result [69]. As a consequence database systems are equipped
with optimizers which try to form an optimal operator graph which obtains the
result in least amount of time. But already finding an optimal join order is a
NP-hard problem [70, 71] and it must be avoided that the optimizer consumes too
much time even before the processing of the query result has started. This goal is
achieved by using best-effort optimizers which do not necessarily find the optimal
solution but still significantly reduce the processing costs of complex queries. In
the logical optimization, equivalence rules are applied to reduce the size of inter-
mediate results as early as possible in the operator graph. This methodology saves
memory space and processing costs at later possibly more complex operators. For
instance, the early execution of a highly selective filter before a join can signifi-
cantly impact the overall execution time as the join does not need to compare so
many potential join partners any more. Other equivalence rules are early execution

25

2 Background

Index Scan on
?author v:name ?aName

Collation: PSO

Index Scan on
?doc v:creator ?author

Collation: POS

Index Scan on
?doc v:publishedIn l:Journal1

Collation: OPS

Join on
?author

Join on
?doc

Projection
to ?aName

Result

SELECT ?aName WHERE {

? autho r v : name ?aName .

? doc v : c r e a t o r ? autho r .

? doc v : p u b l i s h e d I n l : J ou rna l 1

}

Figure 2.7 − Transformation of example query from Listing 2.2 into a logical
operator graph.

of projection, combining sequences of projections and selections, associating cross
product with selection to join, and identification of common subexpressions [72].
However, applying a rule does not necessarily lead to a better performance. Thus,
heuristic methods apply certain rules which usually result in a better performance.
With respect to finding a good join order, logical optimizers use cost models and
estimations about the input size based on statistics (cost-based optimization). Af-
terwards, the physical optimization chooses for each logical operator a concrete
implementation (physical operator) based on estimations about the structure (e.g.
is input sorted?) and size of the intermediate results. Concrete implementations
of physical operators especially join operators will be introduced in Chapter 3 of
this work. The final operator graph consisting of physical operators is called Query
Execution Plan (QEP).

Pipelining and Sideways Information Passing

As described before, each operator (except the index scans) gets as input the output
of one or more preceding operators (intermediate results). In fact, many opera-
tors do not need the complete intermediate result of their predecessors to start
processing and providing their own intermediate results. Instead of handing over
completely materialized intermediate results, which possibly exceed main mem-

26

2.1 Semantic Web

ory limits (with all its drawbacks10), a pipeline is established between operators
providing only some intermediate results. This greatly reduces the main mem-
ory consumption in many cases during query evaluation. One widely used software
paradigm to support the pipelined execution model is called iterator concept [73, 74]
and requires only a minimal set of methods, namely open(), next() and close(). The
method open() is used to start the computation. Afterwards each intermediate re-
sult can be requested one by one from predecessors using the corresponding next()
method. The predecessors in turn might implicitly call open() and next() of their
predecessors in order to calculate and provide an intermediate result. If all inter-
mediate results are supplied or other conditions are reached to finish computation
then the close() methods of all operators are called in a cascading manner which
typically includes cleaning procedures such as releasing resources. However, some
operators need to know the complete input data before starting the computation
and tend to stall the whole processing pipeline, such as minus, sorting, grouping,
and aggregation. Therefore, they are called pipeline breaker. Depending on the
actual implementation some operators can be realized either as pipeline breaker or
not, such as join and duplicate elimination. Pipeline breakers still support the it-
erator concept by first calculating the complete intermediate result internally and
providing it one by one to the succeeding operator. Thus, the fact whether an
operator is a pipeline breaker or not is completely hidden to the other operators
which further strengthens modularization.

Another performance optimization is achieved by introducing an additional method
next(v) which takes an argument v which is handed over to the preceding operator.
The value v describes a lower limit which needs to be satisfied by the next provided
intermediate result which implies that all potential previous intermediate results
are not useful for the calling operator. Thus, processing steps are saved by skipping
unnecessary intermediate results. Regarding index scans and their underlying B+-
trees this value can be used to jump across several leaves (which are read from
slow HDD) by navigating11 through only some internal nodes instead of traversing
a large amount of leaves containing unwanted entries. This approach is called
Sideways Information Passing (SIP) [75, 76] and can be highly beneficial if there
are large gaps in otherwise unselective index scans.

10swapping to HDD
11prefix search with v

27

2 Background

2.2 Reconfigurable Computing

In the last decades, computer technology has made enormous progress regarding
different characteristics. On one side, the size of digital storage is still exponentially
increasing - without any prospect of an end [77]. First available HDDs started with
3.5 MByte in the year 1956. Nowadays, 1 to 3 TByte is standard, but HDDs with
up to 10 TByte are available [78]. On the other side, processing and analysis of this
huge amount of data within a reasonable time frame becomes more and more diffi-
cult in traditional von-Neumann-based architectures using general-purpose CPUs.
Besides application-specific data structures and optimized algorithms to increase
performance, technological advances enabled shrinking feature size to increase clock
frequency and thus the overall performance. However, nowadays these approaches
reach limits to deal with known as the power wall [79, 80]. Although smaller fea-
ture size causes a lower energy consumption, effectively more transistors are placed
in the same chip area. But a higher transistor density results in a higher power
density, which directly increases the temperature emission. Either sophisticated
(expensive) cooling solutions are used to counteract these high temperature or op-
erating frequency is lowered, which in turn results in lower performance. In the
last years, this contradiction led to the trend using multi/many-core12 systems
in order to increase overall system performance. Additionally, these systems are
not assembled with uniform processing cores, but rather are composed by heteroge-
neous/asymmetric and specialized cores. Well-known representatives of specialized
cores are Graphics Processing Units (GPUs) and Digital Signal Processors (DSPs).
These are tailor-made hardware accelerators to solve a particular task very effi-
ciently in terms of power consumption and performance. Besides GPUs and DSPs,
for many other tasks so-called Application-Specific Integrated Circuits (ASICs) are
developed. Typically, ASICs perform orders of magnitude better than solving the
same task in software running on a general-purpose CPU. However, the main ad-
vantage of specialized cores computing one specific task efficiently, at the same time
becomes a disadvantage as they can not be used in application domains showing
a large variety on processing. Furthermore, architectural restrictions of the tra-
ditional von-Neumann architecture became apparent even before physical barriers
have been reached. While CPU performance steadily increased for the last decades,
the limited communication bandwidth for main memory access turned out to be a
shortage known as the von-Neumann bottleneck [81] or memory wall [82, 83]. As a
consequence CPUs spend much of their time waiting for the memory to response.
Therefore, typically small but very fast memory (cache) is located within the CPU
to store recently used instructions and data. Furthermore, different cache levels

12multicore: small number of large cores, many-core: large number of small cores

28

2.2 Reconfigurable Computing

with growing size but slower speed are provided. However, this approach can only
reduce but can not solve the performance degradation.

Reconfigurable hardware offers a solution to close the gap between flexibility and
performance. Already in 1960, Estrin [84] sketched an architecture consisting of
fixed structures and an inventory of high speed substructures, which can be dy-
namically connected to provide a problem oriented special purpose computer. In
1977 the Ramming Machine was presented as a system, which, with no manual or
mechanical interference, permits the building, changing, processing and destruction
of real (not simulated !) digital hardware [85]. Furthermore, the data-driven prin-
ciples of Xputer were introduced in contrast to control-flow-driven von-Neumann
architectures [86]. Nowadays Reconfigurable Computing involves architecture us-
ing reconfigurable devices providing dedicated application-specific hardware struc-
tures. With the wide availability of Field-Programmable Gate Arrays (FPGAs)
and their increase of logic, reconfigurable computing became a vivid research field
in numerous applications.

In this work we utilize an FPGA in the context of query evaluation. Therefore, the
next section gives a brief overview regarding the internal architecture and provided
resources of FPGAs. Afterwards, we describe how to obtain an application-specific
configuration suitable for FPGAs. The chapter concludes with several application
scenarios utilizing FPGAs.

2.2.1 Field-Programmable Gate Array

Just like ASICs, FPGAs implement functions in dedicated resources distributed
on the chip in a possibly highly concurrent and spatial fashion. But instead of
permanently binding particular resources to a specific operation, FPGAs allow
reconfiguration of these resource allocations in-the-field (post fabrication). Typ-
ically, the FPGA device itself is mounted on an FPGA board, which provides
several standardized physical interfaces to communicate with other devices such as
a host systems, HDDs or other FPGAs. Numerous manufactures are available and
are not necessarily producing both, FPGA dies and FPGA boards.

In the following sections, we will focus on FPGAs provided by the manufacturer
Xilinx. Currently, Xilinx is market leader and in this work a Xilinx Virtex-6
FPGA [87] is used. However, the overall concept and structure of FPGAs are very
similar and typically differs in used manufacturing technology, feature size, num-
ber of provided logic resources and dedicated hardware cores (ranging from DSPs
up to full CPUs). The FPGA is organized in an array of basic building blocks.
In Xilinx devices, these blocks are called Configurable Logic Blocks (CLBs) and

29

2 Background

XC6VLX75T XC6VHX380T XC6VHX565T
Slices Total 11,640 59,760 88,560

SLICEL 7,460 41,520 63,080
SLICEM 4,180 18,240 25,480

Number of 6-input LUTs 46,560 239,040 354,240
Number of FFs 93,120 478,080 708,480

Distributed RAM [Kb] 1,045 4,570 6,370
Shift Register [Kb] ~522 2,285 3,185

Table 2.1 − Available logic resources of three Virtex-6 devices [88].

are arranged in columns together with other dedicated resources (see subsequent
sections). Regarding Virtex-6 FPGAs, each CLB consists of 2 slices [88]. A slice
is assembled of four Lookup Tables (LUTs), three Multiplexers (MUXs), a carry
chain and eight Flip-Flops (FFs). Each LUT can be used to implement one func-
tion with six input bits and one output bit. Furthermore, one LUT can be utilized
to implement two functions, each with five input bits (using common logic inputs)
and two separate output bits. The output of the LUTs can be stored in the FFs.
Each LUT is realized using a very fast and tiny memory utilizing the input as
address to select a single bit used as the output. Typically these memories are
based on volatile Static Random-Access Memory (SRAM), but other technologies
such as non-volatile flash or non-reversible anti-fuse are available. Regarding a
6-input LUT the memory stores 64 bits. Furthermore, slices are differentiated into
SLICEL and SLICEM. Besides implementing only combinatorial functions (SLI-
CEL), the LUTs of between 25 to 50% of all slices can be used as distributed 64-bit
Random-Access Memory (RAM) or 32-bit shift registers (SLICEM). Table 2.1 out-
lines the available logic resources of three different devices of the Virtex-6 family
ranging from the families low-end (XC6VLX75T) to high-end (XC6VHX565T) in-
cluding the FPGA used in this work (XC6VHX380T). Figure 2.8 schematically
shows a very small segment of the CLB array, which typically consists of hundreds
of thousands CLBs. In order to achieve higher functions each CLB is connected
to a hierarchical communication network consisting of Programmable Interconnect
Points (PIPs), which enable the reconfiguration of communication links between
CLBs. Furthermore, each slice provides dedicated carry logic to establish fast carry
chains for vertical data propagation directly from one slice to another above. Carry
chains can be cascaded to form wider add and subtract logic [88]. Within the CLB
array, additional dedicated resources such as Block RAMs (BRAMs) or DSPs are
column-wise located and will be introduced in the following sections.

30

2.2 Reconfigurable Computing

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

B
lo
ck

R
A
M

B
lo
ck

R
A
M

D
S
P

D
S
P

CLB

CLB

CLB

CLB

CLB

CLB

CLB

CLB

Configurable

Interconnects

Figure 2.8 − Array of Configurable Logic Blocks (CLBs). Reconfigurable switch
matrices allow flexible interconnection between CLBs. Additional resources
such as Block RAMs (BRAMs) and Digital Signal Processors (DSPs) are located
within the CLB mesh.

2.2.1.1 Memory Resources

As already mentioned some of the LUTs (in SLICEM) can be utilized as distributed
memory in a very granular and localized fashion. Together with a very low access
time (<1 ns), it opens up a wide range of applications as small data buffers (such
as First-In First-Out queues (FIFOs) and shift registers) or small state machines.
Additionally, on-chip Block RAM (BRAM) [89] is available, which is located in
columns within the CLB array (see Figure 2.8). Depending on the device, multiple
BRAMs are placed in columns in the whole FPGA die. In case of the Virtex-
6 each block provides 36 KBit on-chip storage, but can be segmented into two
independent 18 KBit BRAMs. Furthermore, they support true dual-port access
by providing two completely independent access ports (each with own address
and data signals in possibly different clock domains). Besides dedicated FIFO
logic (to eliminate the need for additional CLB logic), an integrated cascade logic
enables to logically combine BRAMs for higher storage needs using one common
interface. This is supported by Xilinx’ Memory Interface Generator (MIG) to
generate various memory structures depending on the application’s need. It also
supports 64-bit Error Correction Code (ECC) to detect single or double-bit errors,
and correct them in case of single bit errors. In summary, BRAM is ideal for mid-

31

2 Background

sized buffering in terms of usage as local data storage, shift registers and FIFOs
(due to integrated support by dedicated FIFO logic13). Both, distributed RAM and
BRAM can be preloaded with the FPGA configuration. Furthermore, MIG allows
to generate interfaces for various kinds of external memory, which are not located
in the FPGA die, but on the FPGA board. Supported interfaces for Virtex-6 are
DDR2 SDRAM, DDR3 SDRAM, RLDRAM II and QDRII+SRAM [90]. Thus,
FPGA architectures provide a flexible memory hierarchy ranging from small but
very fast storage up to comparably larger but slower memory with different possible
granularities as outlined in Figure 2.9. Depending on the FPGA board, for each
memory type there can be multiple modules. These modules can be utilized as one
logical unit using only one controller implemented in the FPGA or using multiple
controllers (one for each module) for concurrent access in the same or different
tasks. This allows the hardware designer to create application-specific caching
or pre-fetching strategies between different memory levels to successfully cascade
access delays.

External
Storage

(HDD/SSD)

DDR2/3
SDRAM

FPGA

Block
RAM

Distributed
RAM

SRAM
(QDR)

SRAM
(QDR)

Level 0

Level 1

Level 2

Level 3

Figure 2.9 − Example of a memory hierarchy. Different memory types enable
application-specific caching, pre-fetching and swapping strategies.

Besides BRAM, Figure 2.8 shows dedicated DSP elements, so-called DSP48E1
tiles, each assembled of two DSP48E1 slices [91]. These highly optimized resources
provide a variety of frequently required functions ranging from simple functions
such as add and multiply, magnitude comparisons or bit-wise logic functions up to
complex pattern detections and multi-precision arithmetics by cascading multiple
DSP48E1 in a column. Deploying these DSP48E1 further reduces the general
utilization of logic resources.

13one 18 KBit FIFO and one 18 KBit BRAM

32

2.2 Reconfigurable Computing

2.2.1.2 Clocking Resources

Although FPGAs operate at a relatively low clock frequency and performance is
mostly obtained due to their inherent parallelism and pipelining, clocking receives
special attention. Contrary to running software on a higher clocked general-purpose
CPU, which does not necessarily result in a better performance at the same scale,
improving the achievable frequency of an FPGA design directly impacts the whole
performance to the same extend. Thus, there are several dedicated global high
speed signal paths used for clock routing only. They allow the distribution of clock
signals all over the FPGA reaching every FFs with low skew. Skew is the maximum
delay of the clock input of one FF to another one. Depending on the device size
each Virtex-6 is divided into 6 to 18 clock regions [92]. Figure 2.10 provides a
schematic view of the XC6VHX380T obtained from the software tool PlanAhead
[93]. The die is divided into two columns spanning half of the device with each
nine clock regions. Between the two clock region columns the central column is
located. It contains 32 vertical spines of the global clock trees and nine Clock
Management Tiles (CMTs)14. Each CMT provides two PPL-based15 Mixed-Mode
Clock Managers (MMCMs), which can take one input clock ranging from 10 to 800
MHz to generate multiple clocks with different frequencies and phase relationships.
All clock regions have a height of 40 CLBs and are horizontally divided by a clock
row (HROW) in their center. The HROW provides 12 horizontal spines of the
global clock tree. Independently to the global clock tree each region provides six
regional clock networks, which can be used to drive logic within the region as well
as the region above and below. If no clock routing resources are left then regular
routing resources are used to build clock trees with possibly noticeable clock skew.
Due to its complexity the routing is handled by the implementation tools in order
to guarantee the clock arrival at the same time. However, instantiation primitives
are available if needed.

2.2.1.3 High Speed Input/Output Resources

Besides internal flexibility, FPGAs provide a highly customizable interface to com-
municate with the outside world supporting versatile Input/Output (IO) stan-
dards [94]. Therefore, it is equipped with 320 up to 1200 Input/Output Blocks
(IOBs), each usable as either input or output pin. An IOB contains registers16 and
resources to translate internal voltage demand regarding a used IO standard [87].
This is highly beneficial as no additional external interface components on the
14one CMT per pair of left and right clock region
15PPL = Phase-Locked Loop
16supporting Double Data Rate (DDR) using two input, two output, two 3-state enable registers

33

2 Background

40
C
L
B
s

clock region

I/O banks

central column

PCIe

PCIe

PCIe

PCIe

GTXGTX

GTHGTH

TEMAC

TEMAC

Figure 2.10 − Schematic view of the FPGA XC6VHX380T die obtained from
PlanAhead [93].

34

2.2 Reconfigurable Computing

board are needed for this purpose. Each 40 IOBs are grouped into an IO bank
resulting in 8 up to 30 IO banks arranged in columns (see Figure 2.10). Note that
some IO banking rules have to be followed regarding shared power pins for input
respectively output when mixing different IO standards on IOBs in the same bank.
When it comes to a specific FPGA board usually several pins are already assigned
to dedicated components on the board such as buttons, LEDs, video or memory
interfaces.

For high performance off-chip communications, between 8 to 72 Gigabit Transceiver
(GTX) blocks provide a fast serial communication channel [95]. Each GTX com-
bines independent transmitter and receiver using specialized on-chip circuitry to
satisfy signal integrity requirements at high data rates (480 Mbit/s to 6.6 Gbit/s
[87]). Additional GTH transceivers allow data rates of up to 10 Gbit/s [96]. Fur-
thermore, up to four integrated interface blocks for PCIe designs are provided and
can be utilized with the GTX [87, 97]. Multiple PCIe lanes can form a larger
link (each up to 5.0 Gbit/s17) and be operated as Endpoint or Root Port to allow,
e.g., host-to-FPGA and FPGA-to-FPGA communication [98]. The PCIe interface
block covers the physical, data link and transaction layer [99]. However, the de-
signer still has to take care of construction and interpretation of Transaction Layer
Packet (TLP) packets in the FPGA fabric as well as the driver development on the
possibly existing host. This itself is an error-prone task. Additionally, almost all
Virtex-6 FPGAs provide 4 Tri-Mode Ethernet MAC (TEMAC) blocks implement-
ing the link layer of the Open Systems Interconnect (OSI) protocol stack [87].

Besides these numerous interface options, some FPGAs include CPU hard cores
such as ARM CPUs running at a much higher frequency than the equal implemen-
tation using FPGA resources [98]. Typically, they are used for tasks which are not
beneficial for FPGA execution or management purposes like reconfiguration up to
running whole operating systems.

2.2.2 Evaluation Platform

Throughout this work all FPGA related experiments are carried out on Dini
Group’s FPGA board DNPCIe_10G_HXT_LL [100] shown in Figure 2.11. The
board is equipped with a Xilinx FPGA Virtex-6 XC6VHX380T-2FF1923. A re-
source overview of the FPGA is given in Table 2.1. Besides the FPGA, the board
provides several memory interfaces such as two Serial AT Attachment II (SATA-II)
ports for connection HDDs/Solid State Drives (SSDs), one DDR3 interface sup-
porting up to 16 GByte (currently equipped with 4 GByte) and three independent

17PCIe base specification 2.0

35

2 Background

Quad Data Rate II (QDRII+) SRAM memory channels (2x 144 Mbit, 1x 288
Mbit). Off-board communication is supported by three 10 GbE (Gigabit Ethernet)
transceivers, one Infiniband channel, an 8-lane PCIe GEN-218 interface (16-lanes
mechanical) and a Universal Asynchronous Receiver Transmitter (UART). How-
ever, not all provided components and interfaces are used in all performance eval-
uations and will be explicitly mentioned at corresponding locations in this work.

Figure 2.11 − FPGA board DNPCIe_10G_HXT_LL [100] used in this work.

The following section outlines how FPGA designers can create a configuration for
an FPGA utilizing all these resources in an automated fashion.

2.2.3 Development Flow of FPGA Designs

In the previous sections we described the numerous kinds of available resources
on the FPGA and the board. In the following sections the complete FPGA de-
velopment flow will be presented. It consists of multiple stages assisted by ven-
dor’s implementation tools. The Xilinx Integrated Synthesis Environment (ISE)19

18theoretical bandwidth of 500 MByte/s per lane
19or Xilinx Vivado Design Suite for newer devices ≥ Ultrascale, Virtex-7, Kintex-7, Artix-7, and

Zynq-7000

36

2.2 Reconfigurable Computing

provides all necessary implementation tools for all translation steps and can ei-
ther be used with a graphical user interface or script-based on the command line.
Both extensively use the Tool command language (Tcl) [101, 102]. FPGA design
is conceptually a top-down process, but implementation and verification follows a
bottom-up fashion. This means after dividing the overall architecture into modules
(or building blocks) and sub-modules, each can be implemented and verified easier.
Afterwards, these lower-level modules are combined into a higher-level module and
so on. The highest-level module is often referred as top level module (TOP) and typ-
ically consists only of instantiated modules and wires between them. Figure 2.12
presents the typical development stages of FPGA-based designs [103]. After an
analysis and specification phase, the intended hardware design is described using a
Hardware Description Language (HDL). The subsequent synthesis associates the
described components with internal FPGA primitives, which afterwards are trans-
lated, mapped and placed to physical resources. During the routing process theses
resources are connected. As a result a bitstream (or bitfile) is generated which is
used as the FPGA configuration. The configuration is then loaded into the FPGA’s
configuration storage which basically determines the input-output relations of the
LUTs and configures the interconnects. As a result an application-specific circuit
is provided. During the whole process different simulation models assist the de-
signer in testing and verifying the hardware design. In the following sections each
implementation stage of the shown development flow and related properties are
described.

2.2.3.1 Hardware Description Languages

Due to increasing capabilities, the amount of available transistors20 and shorter
development cycles, the hardware design can not be handled anymore by man-
ually specifying complex functions at the gate level. Thus, each hardware de-
sign starts with an abstract module of the whole intended architecture with its
corresponding input and output relations. In further steps, modules are divided
into submodules, each with their appropriate input/output relations. In order to
achieve a specific behavior of (sub-)modules, it has to instantiate other modules
and/or needs to be equipped with a behavioral description. Hardware Description
Languages (HDLs) enable hardware designers to provide structural and behavioral
descriptions of hardware independently of the underlying technology [104]. Re-
garding ASIC and FPGA design, one commonly used HDL is VHSIC Hardware
Description Language (VHDL)21 [105]. Originally, VHDL was the result of the
VHSIC initiative funded by the U.S. Department of Defense in the early 1980’s.
20hundreds of million
21Very High Speed Integrated Circuit (VHSIC)

37

2 Background

Legend:

Process

Resource

Design Entry

HDL

SynthesisVendor Libraries

Netlist

Translate, Map
Place & Route

Bitstream
Generation

Netlist with
Timing ScoresBitstream

Configuration

Functional
Simulation

Timing/Area
Constraints

Pre-Layout/Gate-
Level Simulation

Timing/Area
Constraints

Post-Layout
Timing Simulation

In-Circuit
Verification

Figure 2.12 − FPGA development flow.

The main objective was to reduce efforts and costs caused by insufficient docu-
mentation and the usage of different tools, methods and languages from different
suppliers, all resulting in numerous incompatibilities. The first standardized re-
vision22 in 1987 was developed by Intermetrics, IBM and Texas Instruments. In
fact, firstly VHDL was created to describe Integrated Circuits (ICs) and to simu-
late these components [106]. This includes descriptions which might not have any
counterpart in hardware to be mapped on. However, in 1988 Synopsys developed
a synthesis tool which was able to automatically map a subset of the language con-
structs into a description at gate level. Further impulses were given by a growing

22IEEE 1076-1987

38

2.2 Reconfigurable Computing

interest of Computer Aided Engineering (CAE) vendors, resulting in additional re-
visions and other related standards, with international involvement. The usage of a
standardized HDL provides several advantages in many stages of the development
cycle and can be summarized as follows [104, 107]:

• Implicit structural and behavioral documentation of complex systems by the
HDL itself. Especially VHDL is a verbose and self-descriptive language.

• Simulation of behavioral description allows early verification of algorithms. No
(error-prone) manual design and (performance-hungry) simulation on logic level
is needed.

• Supports design on different abstraction levels. Translation from high-level to
low-level description can be automatized.

• Simplified modularization supports parallel development of multiple designers
on the same product.

• Simpler reuse of previously implemented and tested modules, which further
reduces development time and costs.

• Widely used as an exchange format between different manufactures.
• Generally, HDL descriptions do not aim on a specific manufacturing technology

and thus are portable to other technologies. However, this highly depends on
the developer and the used language constructs to utilize resources.

Besides VHDL, the HDL Verilog [108] gained a wide prevalence and is mostly used
in the USA. Basically, the expressiveness of both languages is comparable and
most of the synthesis tools and simulators support both HDLs and even mixed
designs. Since VHDL is exclusively used as a HDL in this work, we introduce the
basic elements of VHDL in the following paragraphs. As described before each
HDL-based design typically consists of structural and behavioral descriptions of
modules.

The entity description defines the interface (input/output) of a hardware module
without specifying the concrete behavior of the module. Listing 2.3 shows an ex-
ample entity called myEntity. Each entity declaration consists of the components
generic, port, type and constant. Generics are used to parametrize a module (e.g.,
used data width) and thus allow reuse of the same module with different parame-
ters. Initial values are optional and can be overwritten during module instantiation
but must be set before simulation respectively synthesis. Ports define the commu-
nication interface of the module and thus are sometimes referred as external signals.
To each port a direction (in, out, inout, buffer) and a data type are assigned. The
types std_logic and std_logic_vector are parts of the IEEE-1164 standard and cor-
respond to one bit respectively a bit vector but provide a nine-valued logic for each
bit. Choosing an appropriate data type and data width is crucial as each additional
bit might cause increased logic utilization. In the type section user-defined types

39

2 Background

Listing 2.3 − Entity example (VHDL).

1 entity myEntity is
2 Generic(
3 DATA_WIDTH : integer := 32
4);
5 Port (
6 clk : in std_logic;
7 sel : in std_logic;
8 input1 : in std_logic_vector(DATA_WIDTH−1 downto 0);
9 input2 : in std_logic_vector(DATA_WIDTH−1 downto 0);

10 output1 : out std_logic_vector(DATA_WIDTH−1 downto 0);
11 output2 : out std_logic_vector(DATA_WIDTH−1 downto 0);
12);
13 Type myType is Array (0 to 31) of integer;
14 Constant MAX_VALUE : integer := 255;
15 end myEntity;

can be declared, which in turn are assembled of basic data types. In the constant
section constants can be defined to simplify code readability and refactoring as in
usual software programming languages.

For a given entity the architecture description specifies the internal structure and
behavior of a hardware module [109]. Each architecture is assigned to one entity,
but each entity might have several architectures. This further assists the modular-
ization and reuse of models as the internal structure and behavior of a module can
be exchanged while the interface is kept. Listing 2.4 shows the example architecture
myArch assigned to the entity myEntity. In the declaration head of each architec-
ture (between the keywords architecture in line 1 and begin in line 5) additional
internal definitions take place, e.g., signals (lines 3-4), constants and component
declarations. Signals are the smallest unit carrying information regarding a spec-
ified type. The architecture body (between the keywords begin in line 5 and end
in line 19) is composed of component instantiations including wires between them
(structural description) and/or behavioral descriptions. Latter is differentiated
into concurrent statements and processes (or sequential statements). Concurrent
statements mostly describe selective assignments or combinatorial logic. For in-
stance, the expression in line 7 in Listing 2.4 calculates the XOR of the input bit
vectors input1 and input2, and assigns (indicated by <=) the result to the entities’
output port output1. The concurrent statement in line 8 assigns the content of
the internal signal temp1 to the output port output2 if the input port sel is set
to '0', otherwise the content of the internal signal temp2 is assigned to output2.

40

2.2 Reconfigurable Computing

Listing 2.4 − Architecture example (VHDL).

1 architecture myArch of myEntity is −− architecture head
2 −− declaration of signals, constants, types, functions, ...
3 signal temp1 : std_logic_vector(DATA_WIDTH−1 downto 0);
4 signal temp2 : std_logic_vector(DATA_WIDTH−1 downto 0);
5 begin −− architecture body
6 −− concurrent statements
7 output1 <= input1 xor input2;
8 output2 <= temp1 when (sel = ’0’) else temp2;
9 −− process (sequential statement)

10 myProcess: process (clk) −− process name and sensitivity list
11 variable sum : std_logic_vector(DATA_WIDTH−1 downto 0);
12 begin
13 if rising_edge(clk) then
14 sum := std_logic_vector(unsigned(input1) + unsigned(input2));
15 temp1 <= sum;
16 temp2 <= not input1;
17 end if;
18 end process;
19 end myArch;

Note that each change of the involved signals or the input immediately23 effects
at any time the content of the output signals in this example. Processes allow to
describe behavior in a sequential manner (lines 10 to 18 in Listing 2.4). Typically
processes are equipped with a sensitivity list consisting of signals, which activate
the sequential execution when one of the signals changes24. After one iteration
through the process the process is suspended until it is activated again. In the
example, the process is always activated on a change of the clock signal clk. In the
declaration part (line 11) additional process specific types, constants, variables,
etc. can be defined. Variables (exclusively in processes) can have the same types
as signals, but show a different behavior than signals in the sequential execution.
The assignment of a value to a variable (indicated by :=) is directly available in
subsequent statements of the current process iteration. Mostly variables are used to
split and combine complex combinatorial calculations. Contrarily, an assignment
to a signal changes the content of the signal at the end of the process. During the
current process iteration the signal keeps its current value. Although the shown
process is triggered at all signal changes (rising and falling) of clk, the actual cal-
culation is done only on a rising edge in this example (line 13). The statement
in line 14 sums up input1 and input2, and immediately stores the result in vari-
23with respect to a physical signal propagation time
24alternatively, there is a WAIT ON directive to model the same behavior

41

2 Background

able sum. The stored value is assigned to signal temp1 in line 15. Note that this
assignment does not change the content of temp1 immediately but at the end of
the process. Each subsequent statement using temp1 in this process would work
on the old content. In line 16 simply the inverted value of input1 is assigned to
temp2. The values of temp1 respectively temp2 are used in the previously described
statement in line 8. The actual resulting resources on the FPGA highly depend
on the way how signals and variables are used. Although the assignment in line
14 seems to temporarily store the result in sum, in fact the implementation tools
will directly assign the result to temp1, which in turn might not necessarily be a
storing element but only a signal path. Typically, all signals assigned in clocked
process are replaced with registers. If a variable is read before an assignment takes
place in the current process iteration then for the variable a register is inferred.
Thus, a variable stores the value between process iterations. However, variables
have no direct equivalent to hardware and usually the same behavior can be ex-
pressed using signals exclusively. Processes, which are triggered by a clock signal,
are called synchronous processes. In turn, processes, which do not depend on a
clock signal, are called asynchronous processes. Besides clock signals, often reset
signals are used to set modules respectively their internal signals to well defined
states. Otherwise, the signals’ contents can not be guaranteed. All existing con-
current statements, processes and instantiated components work concurrently and
interact using the architectures signals. Figure 2.13 shows the corresponding block
diagram described in Listing 2.4. On the left side all input signals are listed. The

Figure 2.13 − Block diagram corresponding to Listing 2.4 at Register Transfer
Level (RTL).

42

2.2 Reconfigurable Computing

signal input1 is directed into an inverter and an adder. The result of the inverter
is stored in a FF (fd). The second input of the adder is the input signal input2.
The result of the adder is stored in another FF. After inverting the signal sel it
is used as the input of a MUX which takes the intermediately stored values of the
FFs and selects the corresponding output. Furthermore, both inputs input1 and
input2 are processed by an XOR element. Thus, in this simple example the input is
spread into different processing elements using dedicated signal paths and results
are determined concurrently without interfering.

In Chapter 3 an operator template is described as an entity, which defines the
common operator interface to be implemented by all query operators. This mod-
ularization allows a flexible interconnection of different operators without making
assumptions about the preceding and succeeding operators. Furthermore, generics
are used to parametrize different operators. Each operator’s functionality is given
in their architecture description.

Configurations are used to assign an architecture to an entity, as it is possible that
for one entity multiple architectures exist [109]. If no configuration for an entity
is given then the last translated architecture is used for this entity. Furthermore,
parameters can be modified. Furthermore, Packages can be declared to further
assist reuse within different projects or architectures [109]. Typically user-defined
packages consist of new types, constants, functions and procedure declarations.
Additionally, some predefined packages are provided, e.g., mathematical functions
on standard data types. Besides newly written HDL, design reuse is assisted using
so-called Intellectual Property (IP) cores. These cores are provided as either source
code or netlists, which are mapped onto FPGA resources. Typically, FPGA vendors
provide several cores for different applications such as memory interfaces or clock
generators. Licensed and open source IP cores are available as well [110].

After the design is described in VHDL a long and processing intensive toolchain is
applied on the description in order to get a suitable configuration file to configure
the FPGA.

2.2.3.2 Constraints

Constraints are used to specify the design’s performance standards in a User Con-
straint File (UCF) [107, 109]. It effects the FPGA toolchain in all development
stages and impacts how the design is placed within the FPGA. Besides constrain-
ing timing specification (clock rate respectively signal propagation delay between
storing elements), it is possible to manually specify mapping and block placement
of components described in the HDL design. This is extensively used to assign ports

43

2 Background

and signals to physical pins, which are connected to resources outside the FPGA
die. A full list of constraints and attributes for Xilinx FPGAs is given in [111].
Over-constraining might result in an excessive replication in synthesis and failure
of the whole translation process, but might also obtain better performance charac-
teristics [107].

2.2.3.3 Synthesis

Synthesis is the first phase in which the HDL design is associated with internal
FPGA primitives [112, 113]. Regarding Xilinx FPGAs the synthesis tool Xilinx
Synthesis Technology (XST) [109] is provided in the Xilinx ISE Design Suite, but
other (manufacturer independent) tools are available as well.

Before the actual synthesis, the HDL sources are parsed and syntax checks are
applied. Afterwards, all found entities and modules are elaborated with their spec-
ified generics and the overall design hierarchy is recognized. In the following HDL
synthesis, for each module/unit an element association takes place inferring ba-
sic elements (primitives and macros25) such as adders/subtractors, comparators,
registers/BRAMs, multiplexers and so on26. During this process unconnected or
unused ports and signals are detected. Additionally, Finite State Machines (FSMs)
and RAM as well as clock and reset signals are detected. In the advanced synthesis,
the previously detected basic macros are combined to larger macro blocks such as
counters, pipelined multipliers or accumulation functions [109, p. 468]). Further-
more, for inferred RAM it is distinguished to implement it using LUTs or internal
BRAM. In the low level synthesis the encoding for FSMs is set, a detection and re-
moval of equivalent FFs/Latches are performed as well as optimizations of constant
FF are applied. As a result a pre-optimized netlist using only technology-specific
components of the targeted FPGA is provided. The process is summarized in re-
ports about utilized basic elements, e.g. LUT, MUX, FF, BRAM, shift registers,
clock and IO buffers and others such as MMCM or PCIe cores. Additionally, a first
timing report on detected clock signals based on estimations associated with the
targeted FPGA is given. At this and later stages the critical timing path becomes
crucial to decide whether a performance constraint tc is met or not. The critical
timing path represents the longest propagation tp between two storing elements.
If tp > tc then the constraint is not met. This can be solved by either weakening
the constraint or shortening the path by introducing other storing elements in the
path. Detection of clock signals is crucial as only then the dedicated clocking re-
sources are used for routing these signals. However, the actual timing and thus the

25elements which are too complex to instantiate by just using the primitives [114, p. 3]
26a full list of all Virtex-6 primitives and macros is given in [114]

44

2.2 Reconfigurable Computing

achievable clock frequency will be affected by later processes of the design flow.
Depending on the report the developer can revise the HDL design in some aspects
or adjust constraints at an early stage of the whole toolchain. The RTL view gives
a hierarchical view of modules and submodules using generic symbols like adders
or AND gates and is typically manufacturer independent. The technology view in
turn shows the design using basic elements available on the targeted FPGA. Note
that no board layout or interface signals are considered at this stage.

Synthesis tools typically infer resources regarding the chosen platform. Inference
should be used to keep HDL code portable and maintainable. However, sometimes
it is difficult to infer resources exactly as demanded. Therefore, a list of primitives
is available to manually instantiate specific resources [114]. Furthermore, the code
is not necessarily translated into what the designer would think. In fact the design
tools heavily optimize based on synthesis constraints and tool options. The way
of coding significantly impacts the design performance and thus requires serious
design considerations at any time.

2.2.3.4 Translate, Map, Place & Route (PAR)

After the synthesis of one or more netlists, the implementation phase takes place.
First the provided netlists are merged by the translate process. The succeeding
map process fits the given design into a Native Circuit Description (NCD) target-
ing the physical resources (CLB, IOB, etc.) of the specified FPGA [103]. If enabled,
the map process already places the design. Furthermore, unused logic is detected
and removed. The Place & Route (PAR) tool maps the components on physical
resources and logical connections to physically routing resources (switching ma-
trices) with respect to timing constraints (timing-driven). If no timing constraint
needs to be satisfied then a cost-based (non timing-driven) approach is applied.
Cost tables are used to assign weighted values to relevant factors such as routing
resources and connection lengths [115].

2.2.3.5 Bitstream Generation and Configuration

The Bitstream Generator (BitGen) produces a configuration (called bitstream or
bitfile) from a given fully routed circuit. Using the iMPACT configuration tool [103],
the binary data is then transferred into the configuration memory (LUTs, PIPs)
of the FPGA and consequently defines the internal logic and interconnections. As
the configuration memory is based on volatile SRAM the configuration gets lost on
power shutdown. Thus, typically the FPGA board is equipped with a non-volatile

45

2 Background

UUT

IN
P
U
T

S
T
IM

U
L
I

O
U
T
P
U
T

R
E
S
P
O
N
S
E

TESTBENCH

Figure 2.14 − Testbench verifies Unit Under Test (UUT) by providing input
stimuli and evaluating the UUT’s response.

flash memory holding the configuration. On startup the configuration is loaded
from the flash into the FPGA.

Due to the enormous complexity of all involved tools each of them can be adjusted
by several optimization flags with respect to timing, area and effort. Note that
applying the whole toolchain on a HDL design takes at least several minutes for
simple designs and up to hours or days for complex architectures.

2.2.3.6 Simulation

As shown in Figure 2.12 each development stage can be verified by simulating the
design. Typically, a testbench module is used to simulate single modules or the
whole design (referred as Unit Under Test (UUT)). The testbench itself is HDL
code which instantiates components (given as code or netlist), initializes the design
and generates the stimuli such as clock or input data (see Figure 2.14). Further-
more, usually the output is verified by comparing it with an expected result given
by the designer (golden vector or self-checking testbench) [116]. Functional (or be-
havioral) simulation uses directly the HDL sources prior to the synthesis. Thus, no
information about the implementation in terms of actual used physical resources
are available and no assessments regarding timing can be made. However, due to
the early stage in the whole development flow, the functional simulation should
be frequently used for possibly all (sub-)modules to verify proper behavior. Pre-
Layout/Gate-Level (or Post-Synthesis) simulation is used to verify the design based
on the design’s netlist after the synthesis. Although there is still no knowledge
about the actual routing, the netlist contains information about the utilized hard-
ware resources. Thus, the timing can be simulated with higher accuracy than in
the functional simulation. Post-Layout/Timing (or Post-P&R) simulation uses the
full knowledge about actual used resources, their location on the FPGA and the
routing between them and thus provides the most accurate timing model. However,

46

2.2 Reconfigurable Computing

writing a comprehensive testbench as well as executing the simulation at this stage
is very time consuming. As a matter of fact, this simulation is least frequently
used, because the design is verified in earlier stages and typically is adjusted to
meet the constraints.

2.2.4 Dynamic Partial Reconfiguration

Initially, FPGAs have been used as glue logic or simple ASIC replacements for one
given computation task [117]. Thus, slow configuration of the entire chip was suf-
ficient. Nowadays, a single computation might be broken into multiple configura-
tions, which need to be reconfigured during execution (time-multiplexed hardware).
But some of design’s components may be required during the whole process, e.g.,
communication interfaces. Furthermore, Dynamic Partial Reconfiguration (DPR)
enables the modification of an operating FPGA design by loading a partial bitfile.
Figure 2.15 shows the basic concept of DPR. The FPGA design is divided into static
logic (or top-level logic) and one (or more) Reconfigurable Partitions (RPs) [118].
For each partition several Reconfigurable Modules (RMs) in terms of partial bitfiles
may be provided (e.g., A1.bit, A2.bit, A3.bit in Figure 2.15). Although each mod-
ule may provide another functionality, all of them must use common partition pins
connecting the RP with the static logic. Therefore, proxy logic is automatically
inserted by the implementation tools as fixed and known interface point [118].

FPGA

static

PARTITION
“A”

dynamic

A3.bit

A2.bit

A1.bit

Figure 2.15 − Basic concept of Dynamic Partial Reconfiguration (DPR): Re-
sources are divided into static logic and one or more Reconfigurable Parti-
tions (RPs). Multiple configurations may be provided for each RP as Recon-
figurable Modules (RMs) – adapted from [118].

The design flow slightly differs from the approach without DPR. Typically, sepa-
rate projects for the static logic and each RM are created. In the static logic the
RP is denoted as black box. Thus, the component is declared with its input and
output relations but without specifying an underlying architecture. The netlists for
the static logic and each RM are synthesized independently [118]. The following

47

2 Background

partial reconfiguration design flow is graphically assisted by the application PlanA-
head [93, 119]. For each RP an Area Group Constraint needs to be specified. The
constraint assigns FPGA resources (slices, BRAM, etc.) to the RP using a global
label. Thus, these resources are not available for static logic or any other RP. Ad-
ditionally, note that optimizations cannot take place across partition boundaries
and thus partitions can significantly effect timing, utilization and runtime [120]. In
a first configuration (or design run) the implementation of the static logic, includ-
ing placement and routing, is promoted (or exported). All subsequent design runs
import the static logic from the promoted configuration and thus the static logic
is identical in all design runs. In all design runs to each partition a RM is assigned
or remains empty as a black box. The succeeding bitfile generation delivers a full
configuration bitfile as well as partial bitfiles for each RM in the selected design
run. Partial bitfiles of different design runs can be used in a mixed fashion as long
the design runs share the common static logic. The partial bitfiles contain all con-
figuration commands and data which is needed for the DPR [118, p. 93]. Besides
an external configuration port, an Internal Configuration Access Port (ICAP) en-
ables the configuration from within the static logic [121]. For instance, a minimal
static design might consist only of the logic needed to provide an operational PCIe
interface. After system startup, partial bitfiles can be transmitted through this
interface, which then are configured into the reconfigurable partition(s) using the
ICAP [122, 123]. Furthermore, a set of partial bitfiles might be stored in one of
the FPGAs respectively the board’s memory and can be loaded from there later.
During partial reconfiguration static logic and all other reconfigurable partitions
in the device continue to operate. Papadimitriou et al. [124] present a survey on
performance and capabilities of partial reconfiguration. Koch et al. [125, 126] pro-
vide some use cases, which motivate the practical relevance of DPR in industrial
systems.

In this work, DPR is used to divide the chip area into static logic, consisting of
communication interfaces as well as the ICAP module, and one or more RPs. In
Chapter 4 one comparably large RP is dynamically reconfigured with various RMs.
Each RM is assembled using VHDL modules during system runtime with respect
to a given query. In Chapter 5 we divide the chip area into multiple small RPs,
each large enough to provide logic for one query operator at a time. Therefore,
the static logic additionally consists of a semi-static structure of a general operator
graph connecting the RPs.

48

2.2 Reconfigurable Computing

2.2.5 Applications

Typically, FPGAs are used in application areas with a high demand on processing
power and low energy consumption. In this section general application areas of
FPGAs are outlined. Related work regarding usage of FPGAs in database tasks is
presented in detail in Section 2.3.

First of all, the availability of HDLs and FPGAs opens doors for a broader range
of learners to design and prototype hardware in a rapid and cost efficient fashion.
Due to their reconfiguring capabilities they are more and more used as replacement
for ASICs which can not be adapted after manufacturing to the rapidly changing
algorithms and protocols [127]. Furthermore, the fast time to market cycle for new
products makes them popular in many fields.

In the automotive industry several applications can be found. Nowadays cars are
equipped with numerous sensors and actors possibly from different vendors provid-
ing different interfaces. FPGAs provide a high amount and variety of connectivity
pins to attach these devices. Adjustable internal logic resources can provide several
controllers to interconnect different subsystems. Besides being only a connector of
different subsystems, the FPGA suits well in many applications with high require-
ments on information quality and real-time response to prevent serious accidents
[128, pp. 149–159]. FPGA-based driver information and assistance solutions enable
(without claim to completeness): real-time stereo vision and input image analytics
(object and motion detection, traffic sign recognition, collision warning, pedestrian
detection), surround view at high resolution and frame rate (including distortion
correction, stitching).

In the rapidly evolving consumer electronics market continuously new features are
added to many different device categories such as TVs, portable and networking
devices [129, 130]. Manufactures are under competitive time pressure to handle
continuous changes. Contrary to ASICs, FPGAs provide flexibility and low devel-
opment costs to quickly adapt to market trends.

Further tasks applicable in many areas cover digital signal processing in real-time
such as filter or fast Fourier transformation, compression of images, e.g. satellite
pictures [131], audio or video (exchanging compression algorithm codec [128, pp.
336–341]).

Regarding Wireless Sensor Networks (WSN), Bellis et al. [132] propose sensor
nodes providing a low power FPGA layer. Typically sensor nodes have limited
processing capabilities and thus intensive processing tasks are performed outside
the WSN. Therefore, collected data needs to be transferred via radio interfaces
which obviously consume energy. But power consumption is a serious concern in

49

2 Background

these deployments as battery storage of the nodes is limited and directly connected
to the WSN lifetime. The FPGA is used to perform (digital signal) processing on
the node to ultimately save overall power consumption.

In cryptography enormous performance benefits have been reported [133] and re-
cently machine learning approaches, such as deep convolutional neural networks
used for image classification [134, 135, 136, 137, 138], have been adapted to FPGAs.

All these and new FPGA applications will get a further boost as the CPU vendor
Intel has bought the FPGA specialist Altera and presented a package including the
server CPU Xeon E5 and an FPGA [139]. Weisz et al. [140] study the impact of
shared-memory CPU-FPGA systems on the example of large pointer-based data
structures – more precisely linked lists. The authors conclude that traversing a
single list with non-sequential node layout and a small payload size is least effi-
cient on the FPGA due to memory latency. However, interleaving multiple linked
list traversals overcomes these stalls and significantly enhances traversal perfor-
mance.

2.3 Related Work

In the early days of databases in the late 1970’s, first ideas occurred to increase the
performance of database operations through the use of specialized hardware com-
ponents. Leilich et al. [141] outlined a tailor-made search processor particularly
to improve selection and restriction operations. The DIRECT architecture [142]
considered multiple query processors dynamically assigned to a query to support
intra-query and inter-query parallelism. Each query processor is equipped with
an instruction set optimized to perform relational database operations efficiently.
An interconnection matrix using cross-point switches enables the query processors
to rapidly switch between shared memories. However, the centralized control for
the parallel executions and the shared memory architecture limited the scalability.
Although most projects appeared promising initially, almost none of them be-
came commercially available [143]. As a result the Gamma database machine [144]
employed a shared-nothing architecture which can be seen rather as a parallelized
database than a hardware accelerator. Although not exploiting any parallelism, the
Intelligent Database Machine (IDM) [145] appears to be the first widely used and
most commercially successful product. However, at this time the technological ca-
pabilities were limited and thus it was simply easier to develop a database machine
on paper than to assemble and evaluate a working prototype [146]. Thus, most
performance gains were driven by speed enhancement in general-purpose CPUs
and optimized data structures which address the characteristics of the underlying

50

2.3 Related Work

hardware architecture [14, 73, 82, 83, 147, 148, 149, 150, 151]. Nowadays, since
clock frequency growth reaches its limits and the availability of new hardware ar-
chitectures, these and new ideas get a fresh impetus [80, 152]. In the following
sections, we review recent work using modern hardware architectures in the field
of database tasks, categorized into in-storage processing, general-purpose comput-
ing on GPUs and reconfigurable computing. Additionally, we discuss specifically
related work in the remaining chapters and sections throughout this work.

2.3.1 In-storage Processing

While CPU performance steadily increased for the last decades, the latency of main-
memory access turned out to be a bottleneck known as the memory wall [83, 148].
This imbalance exacerbates when it comes to persistent storages such as disk-
based HDDs [153]. Although the latency is significantly reduced by flash-based
SSDs, the disk bandwidth remains considerably low. With respect to databases,
typically huge amounts of data are transferred to the CPU but often most of the
data is irrelevant or is only a part of an aggregation. Already in 1998, Keeton
[154] et al. introduced the concept of intelligent disks (IDISK) to offload data
processing from the host’s CPU to the low-power processors on disks. However,
due to technological limitations it was never completely prototyped. Similarly,
Riedel et al. [155, 156] as well as Acharya et al. [157] investigate the utilization of
active disks from architectural and software-technical perspectives.

Nowadays, Smart SSDs provide an embedded processor, fast internal memory and
multiple IO channels (16+) with faster interfaces resulting in a high performance
on concurrent access patterns [158]. In order to estimate performance and energy
consumption, Cho et al. [159] introduce methods to model the benefits of intelli-
gent SSDs. The validation in a simulated environment assists the accuracy of the
analytical model. Additionally, a table scan was evaluated on a prototype SSD.
The scan includes the selection of 1 % of all records (1 GByte) and the projection
of 4 bytes out of 150 bytes for each selected record. Overall a speedup of 2.3X
and an energy improvement of 5.2X is reported. The table scan operation is not
computing-intensive and thus the performance improvements are gained mostly by
data transfer reduction. Comparably, Do et al. [160] motivate the use of smart
SSDs in database applications. Therefore, they present a runtime framework to
run user-defined applications in smart SSDs. The proposed system is evaluated
using queries with selection, aggregation and range checks. Although significant
speedups (>2.7X) are obtained in many cases, the performance degrades if selectiv-
ity is low and thus much data has to be processed by the low-performance processor.
In these cases the regular (non-smart) SSD performs better. Seshadri et al. [161]

51

2 Background

present the Willow system, a prototype which allows to implement application-
specific data access utilizing the internal SSD processing resources. In fact, the
prototype is implemented on an FPGA-based prototyping system. It consists of
four FPGAs, each hosting two storage processing units which are equipped with 8
GByte DDR2 RAM (64 GByte total). However, only IO operators are investigated
reporting latency and bandwidth improvements.

2.3.2 General Purpose Computing on Graphics Processing Units

Graphics Processing Units (GPUs) are specialized hardware accelerators to create
and manipulate images stored in memory (frame buffer) to be shown on a dis-
play. Their internal structure is highly parallel which makes them interesting also
for other fields than image processing. The methodology of performing general
computations on GPUs is referred as General Purpose Computing on Graphics
Processing Units (GPGPU). In order to efficiently utilize the huge amount of sim-
ple processing unit, the general computation and its data need to be migrated into
a graphical form. Furthermore, GPUs follow a stream-computing model and thus
are restricted regarding random access writes.

Geodatabases

Sun et al. [162] show how to turn these characteristics into an hardware accelera-
tor for querying spatial databases (geodatabases) used in geographical information
systems and computer-aided design (CAD) systems. Basically, first a set of can-
didate objects is determined in a filtering step using indexes and minimum bound
rectangles. For each of these candidates the actual geometry is compared to the
query geometry (refinement). Latter is computational intensive especially for com-
plex geometries such as polygons. Therefore, the authors propose techniques to
accelerate spatial selection and joins. The authors achieve speedups of up to 5.9X
but also report hardware limitations due to the stream-computing model.

Govindaraju et al. [163] give an insight into the graphics architectural pipeline con-
sisting of various units, each designed to perform one specific operation efficiently.
One of these units, the pixel processing engine, provides a small and simple set of
test functions to be performed on fragments. The engines are programmable by
providing a fragment program. The authors show how to perform predicate eval-
uations, semi-linear queries27, boolean combinations of simple predicates, range

27commonly used in spatial database and geodatabases

52

2.3 Related Work

queries and aggregations (count, min/max, sum, avg). In the performance bench-
mark TCP/IP data for monitoring traffic patterns is stored in floating point num-
bers. Each record consists of four attributes. In case of semi-linear queries the
authors observed an order of magnitude speedup over the optimized CPU-based
implementations running on a dual 2.8 GHz Xeon CPU. Although several of the
presented algorithms are not able to use all capabilities of the GPU and the GPU
uses a relatively low clock rate28, speedups of 2X up to 4X are achieved. In some
case the GPU-based approach is slower than the algorithms running on the CPU,
e.g. due to missing integer arithmetic instructions, accumulations are cumbersome.
In succeeding work, Govindaraju et al. [164] utilize a GPU as a co-processor for
solving sorting tasks on billion-record files. They map a bitonic sorting network
to GPU rasterization operations and use the GPU’s programmable hardware and
high bandwidth memory interface to minimize data transfers between the CPU
and the GPU. In order to efficiently utilize the GPU resources the bytes of the
keys are represented as 32-bit floating point 2D arrays. The evaluation shows that
the overall sorting performance of a mid-range GPU is comparable to that of a
algorithm running on an expensive CPU.

Relational Databases

Further enhancements in GPU architecture, resulting in hundreds of very fast pro-
cessing units, and the CUDA [165] programming model increased performance and
programmability of GPUs. He et al. provide extensive work on relational query
co-processing using GPUs. In [166], they investigate GPU-based join execution.
Although speedups of 2X up to 7X for joins are reported, the authors highlight that
the speedup is far behind the higher clock rates and memory bandwidths of the
GPU compared to the CPU. In [167], they extend their system to an in-memory
relational query co-processing system and present a cost model for estimating pro-
cessing time on the GPU. Additionally, the system is able to dynamically assign
operations either to be processed on the CPU or GPU taking into account whether
the input data is already located in the GPU’s in-device memory or is in the main
memory. In the evaluation using two queries from the TPC-H benchmark [168]
the proposed system achieves speedups of 13.8X on small datasets and 3.5X on
larger datasets which do not fit into main memory. The authors highlight that
mostly the IO time degrades the performance. Furthermore, they outline that the
data transfer between the GPU’s in-device memory and the main memory can be-
come a performance bottleneck for GPGPU applications. Due to the cost of data
transfer, the processing of simple queries on the GPU can be much slower than
28GeForce FX 5900 Ultra with clock rate 450 MHz; nowadays GPUs with clock rates >1.7 GHz

are available

53

2 Background

the CPU-based algorithms. The significant impact of transferring data from the
main memory to the GPU’s device memory and vice versa is reduced by Fang et al.
[169]. Therefore, nine lightweight and cascadable compression schemes on GPUs
are proposed and assembled by a compression planner in order to find the optimal
combination. As a result the data transfer overhead can be reduced by up to 90 %
and the overall query performance is improved by up to 10X.

The concept of transactions enables databases to concurrently execute read and
write access while ensuring the ACID properties29. Thus, fast transaction process-
ing is a cornerstone in online transaction processing (OLTP) applications in which
thousands of transactions can be issued in a short time frame. He et al. [170]
propose the bulk execution model to group multiple transactions into a bulk to
be executed on the GPU as one task. Due to the variety of possible commands
in one transaction, the author’s approach is limited to a static set of procedures.
Furthermore, the approach is limited to databases fitting in the GPU’s memory (4
GByte). However, the evaluation show achievements in terms of speedups ranging
from 4X up to 10X compared to a high-end quad-core CPU. Although the price
of the GPU is three times higher than the CPU, the proposed system achieves a
higher throughput per dollar ratio than the CPU-based implementation.

Besides dedicated GPU’s, there are processor designs which integrate the CPU and
GPU in a single chip. As a drawback, the memory bandwidth of the integrated
GPU is significantly lower than for a discrete GPU. On the other hand, the last
level cache is shared between CPU and GPU, and thus can be used for efficient
co-processing. He et al. [171] propose methods for in-cache query co-processing for
these coupled CPU-GPU architectures. Basically, CPU-assisted prefetching hides
the memory latency and minimizes the cache misses of the GPU. Furthermore,
the architecture allows a variation of core assignments (CPU and GPU) to execute
decompression or query evaluation tasks. In experiments the authors show that
the overall performance of TPC-H [168] queries can be improved by 1.4X.

Cheng et al. [172] experimentally evaluate the power consumption and perfor-
mance of embedded systems which are equipped with a GPU. While selection and
aggregation are executed faster and show lower energy consumption on the CPU,
more complex operations such as sort and hash joins benefit from the GPU. Es-
pecially, simple operations are mostly stalled by memory transfers to the GPU. In
comparison to a workstation the embedded system achieves a 15 % higher energy
efficiency if the dataset is small enough to fit into the memory of the embedded
device. Plain execution times of the embedded systems in comparison to the work-
station are not reported. The authors sketch a cluster setting consisting of multiple
embedded devices in order to efficiently process larger datasets.
29atomicity, consistency, isolation, durability [14, p. 165]

54

2.3 Related Work

Hardware-Oblivious Database Designs

Obviously, all these approaches require a wide knowledge about the underlying
hardware. Therefore, Heimel et al. [151] present a hardware-oblivious database
design which allows to implement operators in an abstract fashion without relying
on a particular hardware architecture. The proposed framework is able to trans-
parently run the implemented operators either on a multi-core CPU or a GPU.
In most cases the approach shows a competitive (and in some cases superior) per-
formance to hand-tuned parallel database operators. The authors mention that
there were multiple cases for which their approach was outperformed. However,
the approach shows the opportunities of such a system and might further drive
the adoption and acceptance of specialized hardware such as GPUs or FPGAs.
Breß [173] further motivates the need of hybrid query processing engines based on
GPUs. Due to increasing optimization space (execute operator on GPU or CPU)
the challenge is how to make scheduling decisions with respect to heterogeneous
architectures. These scheduling algorithms have to consider that changing a pro-
cessing unit might imply additional data transfers. Therefore, the authors propose
an alternative database design which learns the cost models without detailed knowl-
edge about the underlying hardware during query processing [174]. Additionally to
the cost models, data locality and load conditions across (co-)processors are used
in query optimization. The in-memory DBMS CoGaDB [175] shows the feasibility
of this approach but reveals a data transfer bottleneck [175]. A comprehensive
analysis on the overhead introduced by memory transfers is given by Gregg and
Hazelwood [176].

Indexing

Recently, Shahvarani et al. [177] propose a heterogeneous computing platform to
accelerate lookups in B+-trees. Before the tree can be used it is preprocessed into
two parts, one resides in the GPU’s memory and the other part in the host’s main
memory. Assuming the system throughput is bound by the CPU, all inner nodes
of the tree are processed by GPU, while the CPU is used only for searching in leaf
nodes. In order to address arbitrary GPU-to-CPU computation power ratio, the
authors present a load balancing scheme which utilizes the CPU to traverse upper
nodes. If a certain level is reached then the inner node of the index is transferred
to the GPU which resumes the search in the remaining levels. In the evaluation
the authors report an average speedup of 2.4X and prove the feasibility of their
load balancing methodology.

55

2 Background

In this work, we use a reconfigurable FPGA which is attached via PCIe and thus in
our approach the data transfer might become a performance bottleneck. However,
in Chapter 4 we will analyze this circumstance and show that the PCIe interface
is not the bottleneck of our hybrid architecture.

2.3.3 Reconfigurable Computing

Reconfigurable architectures provide the post-fabrication programmability of soft-
ware and the spatial parallelism of hardware [178]. Due to the availability of FPGAs
reconfigurable computing becomes more and more attractive and affordable. Typ-
ically, these devices obtain their performance advantages rather by inherent paral-
lelism than by high clock frequencies. Thus, algorithms mostly can not be adapted
in a straight-forward fashion to beneficially utilize FPGAs. In the following para-
graphs we review recent work utilizing FPGAs in database applications.

In data mining applications, the Apriori [179] algorithm is a popular correlation-
based method. As it is computationally expensive, Baker et al. [180] present a
scalable implementation on a FPGA. The architecture consists of a cyclic pipeline.
The initial items are fed into a candidate generator30 which in turn forwards the
candidates in a pruning unit which forwards its result to the support calculation.
These resulting items are fed back to the head of the pipeline and the process
is repeated until the final candidate set is found. Especially the last step, the
support calculation is the most time consuming and data intensive part. But the
sequential algorithm consists of two loops with no dependencies and thus is highly
suitable for parallelization. In simulations on datasets containing 100,000 items
the authors report speedups of at least 4X compared to software solutions running
on a dual-core Xeon.

Shan et al. [181] present an FPGA approach supporting the parallel programming
framework MapReduce [182]. MapReduce is divided into two phases. The map
function processes each input tuple (key,value) and generates a set of intermediate
tuples. After grouping the intermediate tuples with respect to the key, the reduce
function is called for each group. The calculations in the map phase as well as in the
reduce phase are independent from each other and thus both phases suit well for
parallelization. The authors provide a framework to place various mappers/reducers
on the FPGA and deploy RankBoost [183] as a case study on their architecture.
With an increasing number of up to 146 mappers, the achievable speedup increases
of up to 31.1X. Although a PCIe interface is instantiated these results are obtained
in simulations only.

30one generation of candidates is built into the next generation

56

2.3 Related Work

Mueller et al. [184] implement an FPGA-based median operator for data streams
consisting of 32 bit values. In a first step the data over a count-based sliding
window is sorted using sorting networks (bitonic merge, odd-even merge). As for
the median operator a fully sorted data sequence is more than required, the pre-
sented sorting networks are further optimized in terms of resource consumption
by removing some swap elements. The introduction of FIFO queues decouples the
executions of the median operator and the CPU and avoids the need of explicit
synchronization. However, processing larger amounts of data (≥ 4 KByte) bene-
fits from utilizing a Direct Memory Access (DMA) controller in the FPGA fabric.
The instantiation of up to four median operators on a Virtex-II Pro allows the
processing of multiple streams without interfering each other and thus significantly
improving performance and energy consumption compared to CPU systems.

Koch and Torresen [185] analyze different hardware sorting architectures to develop
scalable sorters for large datasets. As a result they propose a combination of a
FIFO-based and a tree-based merge sorter. DPR is used in order to save almost half
of the FPGA resources or to improve processing performance. The whole chip area
can be used to execute the FIFO-based merge sorter which stores the intermediate
result in external memory. After reconfiguring the FPGA with the tree-based merge
sorter it reads the intermediate results from the same external memory. Another
approach uses two memory channels and uses half of the resources for the FIFO-
based merge sorter and the remaining resources for the tree-based merge sorter.
During the FIFO-based merge sorter stores the intermediate result in external
memory, the tree-based merge sorter concurrently reads those and writes its result
in the second external memory. After a reconfiguration also the first half is used as
tree-based merge sorter to enable larger problem sizes (up to 20 GByte). Due to a
poor IO performance of the system, it is evaluated using IO emulation modules to
test the sorter at full speed. In this case the authors report a sorting throughput of
1 GByte/s (speedup of 1.4X compared to a GPU-based approach). On top of this
work, Casper et al. [186] build new designs that make use of a modern multi-FPGA
prototyping system with a large amount of memory capacity and bandwidth (four
large FPGAs each equipped with 24 GByte RAM at a line speed of 38.4 GByte/s).
They explore accelerating in-memory database operations with focus on throughput
and utilization of memory bandwidth during sorting rather than determining the
performance of the design. The evaluation shows substantial improvements in
both absolute throughput and utilization of memory bandwidth. Additionally, the
presented system performs an equi-join after sorting of two tables by utilizing two
FPGAs for sorting and one FPGA for merging (sort merge join). However, the
architecture supports only one join operator and not arbitrary queries.

Heinrich et al. [65] propose a hybrid index structure which stores the higher levels
of a B+-tree including the root on an FPGA. The lower levels including the leaves

57

2 Background

are located on the host system. As a result, the access on frequently entered higher
levels is accelerated. The FPGA returns an entry point (address) from where the
software system continues the search.

Additional related work will be reviewed separately in the following chapters.

58

3
Query Operators on

Field-Programmable Gate Arrays
In this chapter first a top level view on the intended hybrid query engine is given.
Afterwards, following the typically bottom-up design flow, an operator template is
introduced as the basis for a flexible system. It enables the transparent composition
of multiple operators using a common interface. On the example of the join and
filter operator the benefits compared to a software-only solution are experimentally
shown in micro benchmarks. Additionally, all implemented operators of this work
are outlined.

3.1 Hardware Acceleration for LUPOSDATE

The approach used in this work to manage and query RDF data is based on the
Semantic Web (SW) database system LUPOSDATE [56, 57]. Figure 3.1 recaps
the functionalities and query processing phases of LUPOSDATE (see Figure 2.5
in Section 2.1.3 for a detailed introduction). After parsing the SPARQL query,
redundant language constructs are eliminated to simplify the following processes.
Afterwards, an operator graph is generated in order to apply logical and physical
optimizations. The logical optimization reorganizes the operator graph into an
equivalent operator graph. It generates the same output for any input as the
original operator graph, but needs less execution time to evaluate the query. The
physical optimization aims to obtain the operator graph with the best estimated
execution times by choosing a concrete implementation (physical operator) for
each logical operator resulting in the Query Execution Plan (QEP). The QEP is
executed by using formerly generated indices to retrieve the query’s result. In this
work, we extend the execution model by an additional layer which dynamically
maps the QEP onto FPGA resources in order to provide a query-specific hardware
accelerator.

59

3 Query Operators on Field-Programmable Gate Arrays

Index-Generation

Abstract Syntax Tree

CoreSPARQL-Query

Abstract Syntax Tree

Operatorgraph

Logical optimized Operatorgraph

Physical optimized Operatorgraph

Result

RDF-Data

Preprocessing

Optimization

Transformation into CoreSPARQL

Logical Optimization

Physical Optimization

Evaluation

SPARQL-Parser

CoreSPARQL-Parser

Transformation into Operatorgraph

SPARQL-Query

Mapping on FPGA resources

Figure 3.1 − Stages of query processing in the LUPOSDATE system. In this
work, we introduce an additional stage which dynamically maps the query struc-
ture onto an FPGA to obtain a query-specific hardware accelerator.

software

hardware

software software

hardware

Figure 3.2 − Scopes of FPGA application in query execution. Blue rectangles
indicate one processing task and lines between them represent data exchange.

60

3.1 Hardware Acceleration for LUPOSDATE

Besides utilizing the FPGA in query execution, it can be beneficially used in other
database tasks such as index generation (indicated by FPGA boards in Figure 3.1).
Figure 3.2 shows different scopes of FPGA applications. It starts with an entire
software system using no reconfigurable hardware. Then, it is followed by a hybrid
system, which only accelerates one expensive operator. Other complex application
tasks are still processed by the software system. Finally, it ends with a system
where the software component simply acts as a controller providing input data
and retrieving results from the reconfigurable hardware. Dynamic Partial Recon-
figuration (DPR) provides the opportunity to use the full chip area and resources
of the FPGA in the different phases.

DPR plays an important role in query execution because typically at deployment
time of the database system the queries are not known in advance. Thus, the ex-
tended LUPOSDATE system has to generate a QEP for a given SPARQL query
and maps it on the FPGA resources at runtime. In this work, we present two
approaches. The first approach outlined in Figure 3.3(a) uses one large Reconfig-
urable Partition (RP) to exchange complete QEP including the interconnections
between the operators. The second approach shown in Figure 3.3(b) separates the
chip area into multiple small RPs, each large enough to take one operator at a
time. The interconnections between the operators are fixed and thus the global
structure of the QEP on the FPGA as well. However, we show in Chapter 5 how
the structure can be modified to provide more flexibility and cover a wider range of
queries. Furthermore, the communication costs to transfer data to the FPGA and
back as well as reconfiguration time must be considered to determine a reasonable
usage of the hardware acceleration. It is expected that not all queries benefit from
hardware execution due to communication and reconfiguration overhead.

Figure 3.4 outlines the idea of a query pipeline in the proposed hardware/software
system. After parsing and reconfiguring the incoming query A, the software com-
ponent is able to parse and prepare the next incoming query B in parallel, while
query A is still being processed. Similarly, query C can be configured for execution
while both queries A and B are not yet finished. If one query is finished, the chip
area can be released and used for another query. If multiple queries are incoming
simultaneously, the partial reconfiguration time can be masked instead of waiting
for previous queries to be completed. This allows masking the reconfiguration time
because even the amount of time for small bitfiles cannot be neglected [124].

61

3 Query Operators on Field-Programmable Gate Arrays

◃▹

σ σ

π

static logicFPGA

RP

RM

(a) one large RP

RP

RP RP

RP

static logicFPGA

◃▹ σπ

(b) multiple small RPs

Figure 3.3 − Utilization of Dynamic Partial Reconfiguration (DPR) in query
execution. (a) One large Reconfigurable Partition (RP) is reconfigured us-
ing a Reconfigurable Module (RM) representing a complete Query Execution
Plan (QEP). (b) A predefined query structure consisting of multiple small RPs
is deployed in the static logic. Each RP can take the RM of any operator.

B

C

...

so
ftw

ar
e

ha
rd

w
ar

e

C
on

fig
ur

e
Q

ue
ry

 A

ha
rd

w
ar

e

E
xe

cu
te

 Q
ue

ry
 A

C
on

fig
ur

e
Q

ue
ry

 B C

...

so
ftw

ar
e

ha
rd

w
ar

e

E
xe

cu
te

 Q
ue

ry
 B

C
on

fig
ur

e
Q

ue
ry

 C

E
xe

cu
te

 Q
ue

ry
 A ...

so
ftw

ar
e

so
ftw

ar
e

ha
rd

w
ar

e

E
xe

cu
te

 Q
ue

ry
 B

E
xe

cu
te

 Q
ue

ry
 C

C
on

fig
ur

e
...

ha
rd

w
ar

e

A

B

C

so
ftw

ar
e

Figure 3.4 − Cascaded query processing. After one query is deployed on the
FPGA the next is prepared, configured and executed. If one query is completely
executed then the corresponding resources are freed.

62

3.1 Hardware Acceleration for LUPOSDATE

Dimensions of Parallelism in Query Execution

Deploying multiple query operators on an FPGA provides true parallelism in var-
ious forms. Figure 3.5 outlines the described idea by using different operators in
three QEP: A, B and C. Within one query, the operators are concurrently process-
ing data deploying the following types of parallelism.

Horizontal Horizontal parallelism is provided in different levels of granularity.
First, multiple queries can be executed in parallel (inter-query parallelism [73]).
Intra-query parallelism is provided by the concurrent processing of intermediate
results in two or more subtrees of a complex query tree. Regarding two operators
on the same level of a (sub-)tree we refer as horizontal inter-operator parallelism. If
the data can be partitioned and has less dependencies, then using several sub-units
(composing one operator) can result in horizontal intra-operator parallelism.

Vertical While one operator is processing its recently consumed input, the pre-
ceding operator can already process newly arriving inputs of its predecessor (inter-
operator parallelism). The natural data flow from the top to the bottom of the whole
operator tree establishes an operator pipeline (vertical intra-query parallelism). De-
pending on the granularity of an operator also a micro pipeline inside the operator
may be implemented (vertical intra-operator parallelism).

◃▹ ◃▹

◃▹

π

◃▹ ◃▹ σ

π

∪

O
P
E
R
A
T
O
R
P
IP
E
L
IN
IN
G

INTRA-QUERY

INTER-OPERATOR

PARALLELISM

INTER-QUERY PARALLELISM

Figure 3.5 − Dimensions of parallelism in query execution.

63

3 Query Operators on Field-Programmable Gate Arrays

3.2 Operator Template

In our hybrid architecture incoming queries are dynamically mapped onto FPGA
resources following a building block concept. Therefore, each implemented query
operator is expressed in VHDL using a minimalistic common interface specified
as the operator template shown in Figure 3.6. It defines the input and output
signals which need to be implemented by each operator. It is motivated by Vol-
cano [74], a well-known scheme for query execution engines based on iterators (see
Section 2.1.3). The scheme enables a high flexibility in orchestrating operators and
a pervasive degree of parallelism. Operators can have up to two preceding opera-
tors. If an operator needs only one preceding operator (e.g., filter) then only the left
or right input is used. The second input is simply not used by the operator. During
synthesis of the design those unused signals are implicitly detected and removed
accordingly. Furthermore, each operator has exactly one succeeding operator. The
signals are grouped in such a way that the output of each operator can be used as
an input for any other operator. Each group consists of four signals, namely data,
valid, finished and read. The signal data provides the data to be processed, whereas
the valid flag indicates the validity of this data. If an operator has read the current
data it uses the backward channel read to indicate the preceding operator that the
data was read. The preceding operator might provide more data by raising the
valid flag again. If no more data will be present then the finished flag is raised.

In our hybrid query engine the data signal corresponds to the variables of the query
to be processed. During query processing each variable is either bound or not bound
to a specific value determining one (intermediate) result. Throughout this work, we
refer to a set of partially bound variables as bindings array (see Definition 3.1). At
the preprocessing stage all variables are enumerated and to each variable a position
in the bindings array is appointed. This variable position remains unchanged during
the entire query execution. Furthermore, the LUPOSDATE system can be config-
ured to map the components of RDF triples to a unique numerical representation
(see Section 2.1.3). The reversible bidirectional mapping is stored in a dictionary
to enable the computation of specific results. Consequently, this approach leads
to improvements in transfer speed and greatly reduces storage requirements. It
is more convenient for FPGA to handle numeric values as opposed to unlimited
strings.

Figure 3.7(a) shows a bindings array consisting of four variables. During the query
evaluation the variables are bound to concrete values resulting in partially and fully
bound bindings arrays (see Figure 3.7(b) and (c)). As the bindings array corre-
sponds to the data signal it is directly mapped to a dedicated data path between the
operators on the FPGA. In the software-based query execution in LUPOSDATE,

64

3.2 Operator Template

T

T

. . .
T

data

valid

finished

read

data

valid

finished

read

data

valid

finished

read

Figure 3.6 − The operator template defines the common interface of all imple-
mented operators. Each group consists of (i) a vector data which corresponds
to the bindings array, (ii) a valid flag which indicates the validity of data, (iii)
a finished flag which indicates the end of data, and (iv) a backward flag read
which notifies the proceeding operator that data was read.

bindings arrays consist of so-called Lazy Literals. The lazy characteristic comes
from the fact that an instance only stores the literal’s integer ID which results in
a small memory footprint. However, if the materialized literal is required during
query processing then the literal is looked up in the previously described dictionary
using the integer ID.
Definition 3.1 (Binding and bindings array)
The pair (?x, t) consisting of an variable ?x and RDF term t is called binding (t is
bound to ?x). A set of bindings bound on different variables [(?a, ta), (?b, tb), . . .]
is called bindings array. Each bindings array can be illustrated as a table with
the variable names as column headers. Each row describes the bindings to the
corresponding variable. It is not required that all variables in a bindings array
are bound. Unbound variables are assigned to the value null.

65

3 Query Operators on Field-Programmable Gate Arrays

?a ?b ?c ?d

(a) variable positions

5 1

(b) partially bound

5 2 8 1

(c) fully bound

Figure 3.7 − Each variable appearing in the has a dedicated position in the bind-
ings array which remains unchanged during query execution. It is possible that
not all variables are bound in the bindings array after being processed by an
operator.

Listing 3.1 − The operator template defines the common interface of all imple-
mented operators (VHDL).

1 entity Operator is
2 generic(
3 DATA_WIDTH : integer := 64;
4 VALUE_WIDTH : integer := 32
5 −−[... more operator specific generics ...]
6);
7 port(
8 clk : in std_logic;
9 reset : in std_logic;

10

11 left_data : in std_logic_vector(DATA_WIDTH − 1 downto 0);
12 left_valid : in std_logic;
13 left_finished : in std_logic;
14 left_read : out std_logic;
15

16 right_data : in std_logic_vector(DATA_WIDTH − 1 downto 0);
17 right_valid : in std_logic;
18 right_finished : in std_logic;
19 right_read : out std_logic;
20

21 result_data : out std_logic_vector(DATA_WIDTH − 1 downto 0);
22 result_valid : out std_logic;
23 result_finished : out std_logic
24 result_read : in std_logic;
25);
26 end entity Operator;

Due to the common interface arbitrary operators can be connected easily as each
operator needs no knowledge about actual function of its preceding and succeeding
operators. Listing 3.1 presents the entity corresponding to the operator template.
The data width of the signals *_data is specified by the generic DATA_WIDTH.
The DATA_WIDTH corresponds to the bit width of the bindings array to be pro-
cessed by the operator. The bit width of a single variable in the bindings array

66

3.3 Join Operator

is set by the generic VALUE_WIDTH. It follows that the number of variables in
the bindings array is determined by DATA_WIDTH/VALUE_WIDTH. Thus, the
operator in Listing 3.1 processes bindings arrays consisting of 64/32 = 2 variables.
Remember that LUPOSDATE uses a dictionary to map component strings of RDF
triple to integer IDs (see Section 2.1.3) and thus the signals *_data represent arrays
consisting of integer IDs. Besides the signals for inter-operator communication, a
clock signal and reset signal need to be connected. Typically, all instantiated oper-
ators operate at the same clock frequency. Issuing a reset will set the operator into
an initial state. In the following sections, we will present the supported operators
of our hybrid query engine.

3.3 Join Operator

In the following sections, we will focus on implementing the join operator which
is one of the most crucial operators in query processing. Although semantically
simple (see Definition 2.1), there are numerous algorithms for join processing. In
the following sections we will adapt the algorithms Nested Loop Join (NLJ), Merge
Join (MJ) and various forms of the Hash Join (HJ) to be executed on an FPGA.
Parts and results of this section have been published by the author in [5, 7].

3.3.1 Join Algorithms

Figure 3.8 shows an example of a join operator with two incoming bindings arrays.
In both bindings arrays, the variable ?b is bound to a value, which implies the
usage of ?b as a join attribute. For all the remaining variables, a bound value
appears in only one of the two bindings (?a, ?d in the left and ?c, ?e in the right

◃▹

5 2 8

?a ?b ?c ?d ?e

742

425 8 7

Figure 3.8 − Join of two bindings arrays. Common bound (intersecting) at-
tributes form the join attributes (red). If the join condition is satisfied the
bound values of both inputs are taken over into the resulting bindings array.

67

3 Query Operators on Field-Programmable Gate Arrays

preceding operator). Consequently, the join is executed if the join attribute ?b in
both bindings arrays accomplishes the join condition. In the following sections,
the join condition evaluates the equivalence operation with respect to the join
attributes (Equi-join, see Definition 2.1). The remaining bound values are inherited
into the result.

Although the composition of a single result is simple, all join operators on the
FPGA can take advantage by their inherent parallelism and the direct mapping
of bindings arrays onto a data path. If a join is executed, the data signals of the
two preceding operators simply need to be redirected to the data signal of the
current operator’s result interface. This is easily done by a multiplexer as shown in
Listing 3.2. Each variable in the left incoming bindings array is verified to be valid
(bound to a value) or not valid (unbound). The invalidity of a value is indicated
by −1 but can be set in the global constant INVALID to any predefined value. As
LUPOSDATE uses positive integer values for mapping between strings and IDs,
the value −1 remains unused. If the left value is unbound then the content of the
variable in the right bindings array is taken over into the result. Otherwise the left
value is bound and thus is taken over into the result. The resulting schematic of
Listing 3.2 is shown in Figure 3.9.

Listing 3.2 − Composition of a joined result (VHDL).

1 result_builder: for i in 0 to ((DATA_WIDTH / VALUE_WIDTH)−1) generate
2 begin
3 result((VALUE_WIDTH*i+VALUE_WIDTH)−1 downto VALUE_WIDTH*i) <=
4 right_data((VALUE_WIDTH*i+VALUE_WIDTH)−1 downto VALUE_WIDTH*i)
5 when left_data((VALUE_WIDTH*i+VALUE_WIDTH)−1 downto VALUE_WIDTH*i) = INVALID
6 else left_data((VALUE_WIDTH*i+VALUE_WIDTH)−1 downto VALUE_WIDTH*i);
7 end generate result_builder;

Multiplexer

4 2 4 7 1

4 7 1 2

left data right data

result

Figure 3.9 − Schematic of the structure expressed in Listing 3.2.

Contrary, a CPU-based software solution with an instruction set operating on a lim-
ited number of registers requires the sequential iteration through the two operands

68

3.3 Join Operator

Listing 3.3 − Sequential composition of joined result (C source code).

1 void join(int* left, int* right, int* result) {
2 int i;
3 for (i = 0; i < VARIABLES_PER_BINDING; i++) {
4 if (left[i]==INVALID_VALUE)
5 result[i]=right[i];
6 else
7 result[i]=left[i];
8 }}

to compose the result. While the implementation of the composition is a very
simple loop as shown in Listing 3.3, obviously these steps require multiple clock
cycles involving several register transfers. Especially when joins are frequent this
simple task can have an impact on the performance compared to the FPGA-based
composition.

Before presenting the concrete join algorithms, we introduce some commonly used
definitions. The input of each join operator is defined as two sets of bound variables
from preceding operators, where R and S denote the input provided by the left
operator and the right operator, respectively. Variables which appear in both pre-
ceding operands are considered as a sequence of join attributes J = (j1, j2, ..., jk).
For simplification we introduce the following definitions and functions before de-
scribing the particular join algorithms. Corresponding to the previously introduced
operator template, we assume r.data and s.data (r ∈ R and s ∈ S) to be the raw
bindings arrays, and r.valid and s.valid indicate their validity. Definition 3.2 in-
troduces the projection over the join attributes and thus returns only values for all
attributes evaluated in the join condition.
Definition 3.2 (Projection over the join attributes)
Given r.data being bound values of bindings array r ∈ R and ji ∈ J join at-
tributes. Then the projection over the join attributes is defined as

πJ(r.data) := (r.data[j1], . . . , r.data[jk])

As mentioned before each join evaluates a join condition to decide whether two
bindings arrays r ∈ R and s ∈ S are joinable or not. In the following sections
we will focus on Equi-Joins and therefore introduce in Definition 3.3 the equality-
relation according to the join attributes.

69

3 Query Operators on Field-Programmable Gate Arrays

Definition 3.3 (Equality-relation according to the join attributes)
Given r.data, s.data being bound values of bindings arrays r ∈ R, s ∈ S and
ji ∈ J join attributes. Then the equality-relation according to the join attributes
is defined as

r
J= s :=

{
true if ∀ji ∈ J : s.data[ji] = r.data[ji]
false otherwise

Additionally, we define the smaller-relation with respect to the join attributes ji ∈ J
in Definition 3.4.
Definition 3.4 (Smaller-relation according to the join attributes)
Given r.data, s.data bound values of bindings arrays r ∈ R, s ∈ S and ji ∈ J join
attributes. Then the smaller-relation according to the join attributes is defined
as

r <J s :=

true if r.data[j1] < s.data[j1] ∨ (r.data[j1] = s.data[j1]∧

(r.data[j2] < s.data[j2] ∨ (r.data[j2] = s.data[j2] ∧ (. . .))))
false otherwise

In the following sections we present the join algorithms which are implemented as
FPGA-based operators.

3.3.1.1 Nested Loop Join

The Nested Loop Join (NLJ) in its simplest form contains a nested loop. The outer
loop iterates through the bindings of the left operator while for each encountered
bindings array the inner loop iterates through the bindings of the right opera-
tor. Because the defined interface only allows to read each intermediate result
only once, the bindings arrays of the right operator have to be stored temporarily
within the join operator. Algorithm 1 presents the basic processing steps. As long
the right preceding operator provides valid data, it is stored into the operator’s
internal memory. Afterwards, as long the left preceding operator provides valid
data, the retrieved left bindings array is compared with all bindings arrays stored
in the internal memory with respect to the join attributes. If the join condition is
satisfied then the resulting bindings array is provided on the operator’s output. In
Figure 3.10 two datasets with each four bindings (representing the join attribute)
are joined using the NLJ. The first bindings array of the left input is compared to
all bindings arrays of the right dataset. This results in one match (solid line) and
3 mismatches (dashed lines) for the first run through the right input. Afterwards,

70

3.3 Join Operator

Algorithm 1 Nested Loop Join (assuming
that each bindings array can be read only once
from preceding operators)

1: while not right.finished do
2: if right.valid then
3: store right.data in memory
4: read next right binding
5: end if
6: end while
7: while not left.finished do
8: if left.valid then
9: for all b in memory do

10: if left.data
J= b.data then

11: provide join(left.data, right.data)
12: end if
13: end for
14: read next left binding
15: end if
16: end while

7

1

4

7

4

7

1

1

Figure 3.10 − Required com-
parisons of Nested Loop
Join (NLJ). Solid lines in-
dicate comparisons of join-
able pairs. Dashed lines in-
dicate comparisons of not
joinable pairs.

the next bindings arrays of the left input is read and is compared to all bindings
arrays of right input. Thus, the join evaluation using the NLJ causes multiple runs
through the right dataset. Due to its simplicity the NLJ is suitable for very small,
unsorted datasets but lacks of performance for large datasets due to the multiple
iteration through the right dataset. Latter also requires sufficient storage to store
the whole input of at least one preceding operator. Thus, this join algorithm is
useful as a part of more complex algorithms. The straight-forward realization of
the NLJ on the FPGA consists of two states. In the first state READ_RIGHT
the NLJ consumes all the input bindings of the right preceding operator and stores
them in the BRAM of the join core. If all right bindings are consumed, the join core
switches into the second state READ_LEFT. Contrary to the first state, the join
core does not consume all the left bindings at once. Instead it consumes one left
binding and compares it with each previously stored right binding (inner loop) and
provides the result in case of a match. Afterwards it requests the next left binding
(outer loop). While iterating through the bindings in the memory the response
time needs to be considered seriously (i.e. the duration from setting up the access
address and receiving the actual data from the memory). The BRAM on the FPGA
needs only one clock cycle. Another state to wait for the response of the memory
might be needed while iterating through the inner loop. But as the right input is

71

3 Query Operators on Field-Programmable Gate Arrays

sequentially stored, the implementation of the NLJ can avoid this waiting state by
using both ports of the BRAM (dual-port). One port provides the next bindings
array while the other port is used to pre-fetch the bindings array after next. Thus,
on the FPGA the comparison of the join attributes of the two operands, the inher-
iting of the values to the result and the request of the next operand are processed
in parallel within a single clock cycle. Contrary, the sequential execution on the
CPU requires multiple clock cycles to solve these tasks.

The worst case time complexity is O(|R| · |S|) for all join algorithms as it might
be possible that all bindings arrays of left input R are joinable with all bindings
arrays of the right input S. In other words, in the worst case the join may degrade
to a kind of cartesian product. However, in real-world cases the performance of
different join algorithms differs significantly. As for each bindings array of the left
input the join condition is evaluated considering all bindings arrays of the right
input, the time complexity of the NLJ is always Ω(|R| · |S|) [68]. Reading and
storing one bindings array of the buffered input into the BRAM takes one cycle.
Due to pre-fetching mechanism reading one bindings array from the other input and
the buffer, evaluating the join condition and providing the joined result takes one
cycle as well. In summary, all bindings arrays of S have to be stored in the buffer
which afterwards is read for each bindings array in R. Thus, the NLJ requires at
least (|S|+ |R| · |S|) clock cycles assuming that the succeeding operator consumes
the results at maximum speed.

3.3.1.2 Merge Join

The Merge Join (MJ) requires data that is sorted according to the join variables.
Algorithm 2 presents the basic processing steps. It initially reads the bindings
arrays of both preceding operators and checks if they are equal regarding the join
attributes. Due to the sorting, all remaining bindings arrays have to be equal or
larger than the current solution. If the join attributes are not equal, the next
solution of the operator with the smaller value is requested. Otherwise, if the
join condition is fulfilled, all bindings arrays with the same join attributes can
be read to return the joined bindings arrays. In Figure 3.11 two sorted datasets
are joined using the MJ. The first binding of the left input is compared to the
bindings of the right input until the right input provides a binding which has a
higher value regarding the join attribute. If this case occurs then the next bindings
of the left input are compared in the same manner to the remaining bindings of
the right input. As mentioned in Section 2.1.3, LUPOSDATE maintains six indices
corresponding to the six collation orders of RDF triples which permits the frequent
usage of the MJ. The FPGA implementation consists of two modules, comparator

72

3.3 Join Operator

Algorithm 2 Merge Join (assuming that the
input data is sorted accourding to the join at-
tribute)

1: while left.valid and right.valid do
2: if left.data <J right.data then
3: read next left binding
4: else
5: if right.data <J left.data then
6: read next right binding
7: else
8: a← left.data

9: while right.valid and a
J= right.data do

10: store right.data in memory
11: read next right binding
12: end while
13: while left.valid and a

J= left.data do
14: for all b in memory do
15: provide join(left.data, b.data)
16: end for
17: read next left binding
18: end while
19: end if
20: end if
21: end while

1

4

7

7

1

1

4

7

Figure 3.11 − Required com-
parisons of Merge Join
(MJ). Solid lines indi-
cate comparisons of join-
able pairs. Dashed lines in-
dicate comparisons of not
joinable pairs.

and merger. Due to the knowledge about the order, the comparator consumes left
and right bindings from both preceding operators until a match is found. Then
the merger gets filled with the matching bindings and all following bindings with
the same join attribute and starts providing the joined result to the succeeding
operator. During this merging process the comparator already searches for the
next matching pairs. When the merger finishes the current set the comparator can
provide new matching bindings faster. This improves the performance especially if
there are rows of matching pairs followed by long rows of non-matching pairs. Due
to the knowledge about the order, the FPGA implementation is able to generate
results while searching for the next matching join pairs.

Assuming the input data to be sorted, the MJ has a time complexity of O(|R| · |S|)
respectively Ω(|R| + |S|) [68]. The comparison of two bindings arrays including
temporarily storing them if they match is executed within one clock cycle. Each

73

3 Query Operators on Field-Programmable Gate Arrays

subsequent bindings array with the same value in the join attributes is stored
within one clock cycle. Afterwards, reading of the buffer and providing one joined
result takes one clock cycle. During this cycle already the next bindings array is
loaded from the buffer. Concurrently, the left and right inputs are consumed until
a pair of bindings arrays satisfying the join condition is found. Thus, during joining
the buffers, a great amount of bindings arrays might have been discarded already
because they do not satisfy the join condition. In best case the left and right input
already match after joining the buffers is done and can be stored in the buffers
straightaway. Assuming that the left and right input contain no joinable bindings
arrays then the presented MJ operator finishes the processing within |R|+ |S| clock
cycles. If each bindings array of the left input has exactly one join partner in the
right input then determining the join result takes 3(|R|+ |S|) clock cycles. In worst
case all bindings arrays of left and right input have to be joined. Then the MJ
logically degrades to a NLJ. Temporarily storing the whole input of R and S takes
max(|R|, |S|) clock cycles. Then each bindings array in R has to be initially loaded
from the buffer. At the same time the first bindings array of S is loaded from the
buffer. All subsequent bindings arrays of S are loaded in a cascaded fashion. Thus,
the MJ requires (max(|R|, |S|) + 3|R|+ |R| · |S|) clock cycles in worst case.

3.3.1.3 Asymmetric Hash Join

The Asymmetric Hash Join (AHJ) is divided into two phases (see Algorithm 3).
In the build phase, the bindings arrays of the smaller intermediate result are pro-
cessed. Depending on a calculated hash value over the join attribute, they are
stored in a hash table. In the following probe phase the bindings arrays of the
larger intermediate result are probed against the previously constructed hash ta-
ble. Therefore, for each bindings array of the larger result a lookup in the hash
table regarding a given key (consisting of values of the join attributes) is executed.
This returns all join partners of a given bindings array. Figure 3.12 shows the
schematic of the AHJ. In the build phase the hash function h is applied on each
bindings array of the left input and the bindings arrays are stored in the hash
table according to the calculated hash value. In the probe phase the same hash
function h is applied on each bindings array of the right input. The calculated
hash value points to potential join partners (bindings arrays of the left input with
the same hash value) in the hash table. However, depending on the hash function
it is possible that two different keys map on the same hash value. Therefore, the
hash table needs to compare the plain keys before returning the result. The AHJ
is only applicable for equi-joins, and its performance is affected by the quality of
the applied hash function. Typically, well known hash functions contain many ad-
ditions, multiplications and modulo operations. Even though there are dedicated

74

3.3 Join Operator

Algorithm 3 Asymmetric Hash Join
1: while right.valid do
2: key ← πJ(right.data)
3: store tuple(key, right.data) in hash table H
4: read next right binding
5: end while
6: while left.valid do
7: key ← πJ(left.data)
8: for all b in lookup(key, H) do
9: provide join(left.data, b.data)

10: end for
11: read next left binding
12: end while

Hash Table

Match

Result

7

1

4

7

4

7

1

1

h(x)

h(x)

Figure 3.12 − Schematic view
of Asymmetric Hash Join
(AHJ).

1 1 0 1 0 1 1 0

1 0 1 1 1 0 1 0

1 0 1 0 1

hash mask

join attribute

hash value

Figure 3.13 − The set bits in the hash mask denote the corresponding bits in the
join attribute composing the hash value.

multipliers/accumulators available in advanced DSP48E1 slices [87], we avoid mul-
tiplications and additions. Therefore, this approach uses a hash mask with the
same data width as the join attribute to describe which bits of the join attribute
will contribute to the final hash value. As the hash mask is set at design time,
choosing corresponding bits from the join attribute will result in simple wiring and
will cause no additional clock cycles for computation. Ideally, the number of set
bits in the hash mask is equal to the address width of the hash map. Figure 3.13
shows an example with a hash mask width and join attribute width of eight bits.
In this example, the hash value width is five bits, which is equal to the number of
set bits in the hash mask. Furthermore, implementing the hash table in BRAM
enables a fast hash table lookup in one cycle. However, during the build phase
no joined bindings arrays will be provided to the succeeding operator. Thus, the
lower operators are stalled until the first intermediate result is generated in the
probe phase. The time complexity of the build phase is O(|R|) assuming R to
be the smaller relation and calculating the hash value is possible in constant time

75

3 Query Operators on Field-Programmable Gate Arrays

[68]. The time complexity of the probe phase is O(|R| · |S|) respectively Ω(|S|).
Regarding our FPGA-based AHJ inserting one bindings array into the hash table
consumes at least three clock cycles. The hash value is calculated instantaneously
when the bindings array arrives at the input and the hash value is used as the ad-
dress to retrieve the corresponding location in the BRAM in the first clock cycle.
After waiting one clock cycle for the BRAM’s response the returned data indicates
either the address in the hash table is already used or is free. If latter then the
bindings array is stored at the address consuming another clock cycle. If the loca-
tion in the hash table holds already another bindings array then open addressing
with linear probing is used [187, p. 526]. Linear probing simply increments the ad-
dress by one until an empty location in the hash table is found to store the current
bindings array. This becomes disadvantageous when the hash table gets filled or
many values map onto the same location in the hash table but needs no additional
memory overhead. The examination of whether one location is empty and loading
the next address can be cascaded and thus taking two clock cycles. During the
probe phase the lookup is analogous but after loading one bindings array from the
hash table the join attributes need to be compared for equality. Assuming each
bindings array of the left input has exactly one join partner in the right input and
the location after each bindings array is free then determining the join result takes
(3|R|+4|S|) clock cycles (building hash table for R, two lookups – each consuming
two clock cycles – in the hash table for each s ∈ S for retrieving the join partner
and checking for end of probing). However, the number of required probes depends
on the load factor of the hash table. Knuth [187, p. 528] proves that the average
number of probes for insertion or unsuccessful search is approximately 2.5 at a load
factor of 50%, or 50.5 probes at a load factor of 90%. In worst case all bindings
arrays of R map onto the same location in the hash table and thus building the
hash table takes ∑|R|

i=1(3+2(i−1)) = |R|2 +2|R| clock cycles in total. Additionally,
the probing phase requires |S| · 2|R| clock cycles (for each bindings array in S two
cycles for each subsequent bindings array in the hash table).

3.3.1.4 Symmetric Hash Join

The Symmetric Hash Join (SHJ) uses two hash tables in parallel to decrease the
latency until the first results are provided (see Algorithm 4). The two hash tables,
HL and HR, store the bindings of the left and right operands, respectively (see
Figure 3.14). If a valid left binding is incoming, the hash value according to the
join attribute is calculated and the binding is stored in HL. Then, the probe phase
is initiated to find a corresponding join partner in HR. Additionally, the right
bindings will be stored in HR and checked against HL.

76

3.3 Join Operator

Algorithm 4 Symmetric Hash Join
1: while not (left.finished and right.finished) do
2: if left.valid then
3: key ← πJ(left.data)
4: store tuple(key, left.data) in hash table HL
5: for all b in lookup(key, HR) do
6: provide join(left.data, b.data)
7: end for
8: read next left binding
9: end if

10: if right.valid then
11: key ← πJ(right.data)
12: store tuple(key, right.data) in hash table HR
13: for all b in lookup(key, HL) do
14: provide join(right.data, b.data)
15: end for
16: read next right binding
17: end if
18: end while

HL HR

Match Match

Result

7

1

4

7

4

7

1

1

h(x) h(x)
h(x)

Figure 3.14 − Schematic view of Symmetric Hash Join (SHJ).

In the best case scenario, the first two bindings fulfill the join condition and can
immediately be provided to the next operator. Besides the previously mentioned
advantages, the FPGA implementation benefits from parallel calculating the hash
values of the two operands and parallel searching for join partners in the corre-
sponding hash tables. The mechanisms of probing and building are identical to
the AHJ. However, during the probing in one hash table, it is blocked for inser-

77

3 Query Operators on Field-Programmable Gate Arrays

tions. Assuming each bindings array of the left input has exactly one join partner
in the right input and the location after each bindings array is free, then the inser-
tion of one bindings array from the left respectively from the right input into the
corresponding hash table takes three clock cycles. The subsequent probing in the
other hash table takes another two plus two clock cycles. As the insertions into the
hash table and the probe phase are executed concurrently, in total 7 ·max(|R|, |S|)
clock cycles are required in this scenario. Note that even if both hash tables find a
match only one joined result can be provided at a time. The other matching bind-
ings array will be joined after the previously provided result is read. In worst case,
each bindings array of R is joinable with each bindings array of S and bindings
arrays of R and S are alternately arriving. Then building the hash tables takes
(|R|2 + 2|R|) + (|S|2 + 2|S|) clock cycles. Furthermore, we assume |R| = |S| and
the first arriving bindings array is from R. Then in total all probing steps take∑|R|

i=1(3 + 2(i− 1)) +
∑|S|

i=1(3 + 2i) = |R|2 + 2|R|+ |S|2 + 4|S| cycles (each bindings
array si ∈ S has to be probed with i bindings arrays from R).

3.3.1.5 Hash Join using separate chaining with linked list

The previously described approaches of the Hash Join use open addressing with
linear probing as collision resolution. As well-known, while the hash table is filling
up the performance of this approach decreases drastically. Thus, the Hash Join
using separate chaining with linked list (HJL) is implemented. Accordingly to
the AHJ, first a hash table of the smaller input is created by applying the hash
function as mentioned before to get the address of the first binding with the same
hash value. The general idea is depicted in Figure 3.15. First the hash function
h is applied on the bindings array respectively the join attributes. The resulting
value x is used to address the hashmap. It stores the first and the last address of
bindings with the same hash value according to the join attribute. If no bindings
array occurred before for a specific hash value then first and last are empty (⊥). In
this case the next free memory location in the bindings storage is used to store the
current bindings array. The next free memory location in the bindings storage is
simply obtained by incrementing a counter starting at address zero. This address
is then stored in the hashmap as first and last address. If another bindings array
with the same hash value needs to be stored then the first address indicates that
there was a bindings array with the same hash value before. Consequently, the
current bindings array is stored in the next free location in the bindings storage
and its address is written into the last address field in the hashmap as well as in
an additional address field successor of the former last element. Hence, bindings
arrays with the same hash value are linked through the successor address. The
first address is used as the entry into the linked list structure. The corresponding

78

3.3 Join Operator

first last
hashmap

bindings storage successor

3 131h(bj) = x bk3 127

bk+1127 131

bk+2131 ⊥

Figure 3.15 − Structure of the hashmap and bindings storage used in the Hash
Join using separate chaining with linked list (HJL).

last address enables the easy and fast insertion. Drawback of this approach is the
need of additional memory (currently realized using BRAM), but ensures that in
the probe phase only bindings with the same hash value are compared, which is
especially beneficial when the hash table has a high load factor. The overall time
complexity of probe and build phase is comparable to the AHJ. However, because
we explicitly store the address of the last element of each linked list, inserting a
new bindings array at the end does not require to iterate through all elements as
it is required at the AHJ using linear probing. Thus, calculating the hash value
and retrieving the corresponding entry address of the linked list from the hash map
takes three clock cycles. In the succeeding clock cycle the bindings array is written
into the bindings storage, its address stored as the end of the linked list and as
the successor of the former end of the linked list. In total the insertion of one
bindings array into the hashmap takes four clock cycles in any case independently
of previously inserted bindings arrays. During the probe phase, calculating the
hash value and retrieving the corresponding entry address of the linked list from
the hashmap takes three clock cycles. This returns the first and last address of
the linked list and thus no potential join partner is available at this step. The
retrieved entry address is used to retrieve the first bindings array from the linked
list which takes another three clock cycles. Furthermore, this provides the address
of the successor in the list. During provision of the current joined result the next
successor can be retrieved from the list consuming three clock cycles. Loading the
successors in a cascaded fashion can not be used due to the fact that the successor’s
address is just determined. In summary, the build phase takes 4|R| clock cycles

79

3 Query Operators on Field-Programmable Gate Arrays

for all bindings arrays of R even if all bindings arrays of R map onto the same
location in the hash table. Processing the join of one bindings array s ∈ S takes
(3 + 3 · Lhash(s)) clock cycles with Lhash(s) the length of the linked list containing
the bindings arrays r ∈ R with hash(r) = hash(s). Assuming each bindings
array of S has exactly one join partner in R then determining the join result takes
(4|R|+ (3 + 3)|S|) clock cycles (building, one initial loading and one probing). In
worst case the probing phase requires |S| · (3 + 3|R|) (for each bindings array in S
three clock cycles for initially loading the entry in the hash table and three clock
cycles for each bindings array from R).

3.3.2 Micro Benchmarks

In this section the hardware-accelerated and the software-based join execution are
compared to give a first insight of potential performance improvements regarding
FPGA-based query execution.

3.3.2.1 Evaluation Setup

In the following paragraphs we introduce the evaluation setups for the FPGA-based
respectively CPU-based operators and describe the evaluation data and metrices.

FPGA All previously introduced join operators are described in VHDL to be
evaluated on the FPGA platform (see Section 2.2.2). The FPGA platform operates
in standalone mode and thus is not mounted into a host. Figure 3.16 shows the
logical structure of the evaluation framework on the FPGA. Due to the previously
introduced operator template (see Figure 3.6), the join operator has no knowledge
about the internal implementation of its preceding operators (Op X and Op Y).
The join operator uses the common interface to consume their outputs as its two
inputs. Vice versa the preceding operator Op Z consumes the results produced by
the join operator. To emulate the two preceding operators of the join operator,
the data is transferred to the FPGA using the UART and stored in BRAM outside
the join operator. The operators Op X and Op Y only provide these data. Thus,
the communication costs are not considered in the following performance analysis
but will be included in the evaluation of the complete system later (see Chapter 4).
When the evaluation starts, the first bindings array is provided to the join operator.
The evaluation ends when the join operator sets its finished signal, which means
that the join operator has consumed all bindings of the preceding operators and
will not provide more results.

80

3.3 Join Operator

◃▹

Op X Op Y

Op Z

Block RAM

C
O
N
T
R
O
L
L
E
R

T
IM

E
R

UARTHOST

EVALUATION FRAMEWORK

FPGA

Figure 3.16 − Evaluation framework (connections between operators are simpli-
fied).

CPU-based implementation In order to obtain comparable results from a
general-purpose CPU system (Intel Core 2 Duo T7500, 2.2 GHz, 4 MByte Cache,
3 GByte RAM, Windows 7 (32 Bit), compiler GCC 3.4.4), all join algorithms
are implemented as an efficient software solution in the programming language C
as well. The implementation in the programming language C follows the usual
iterator concept [74] which enables pipelining in the whole operator graph. As the
solutions are computed one by one a huge size of intermediate results is avoided.
Furthermore, as the bindings arrays on the FPGA are simple arrays of integer, also
the software-based approach operates on integer arrays. Although in a real-world
database system complexer data structures are used to increase extensibility and
maintainability of the software, we aim for maximum throughput of the software-
based join execution in this first performance evaluation. In order to achieve the
maximum performance on the general-purpose CPU system, the test data is read
from the HDD into the main memory before starting the performance analysis.
The time it takes to load the input from the hard drive is not included in this
performance analysis. Each experimental run is executed 100 times to reduce
deviation and fully utilize caching capabilities of the CPU.

Test data and performance metrics In the following micro benchmarks for
both, the FPGA-based and software-based approach, the same datasets are used.
Therefore, 100 datasets are randomly generated whereby each bindings array con-
tains 4 variables, each 16 bits wide. Due to limited space of the BRAM, the

81

3 Query Operators on Field-Programmable Gate Arrays

generated datasets with up to 1000 bindings arrays are relatively small. However,
this is highly beneficial for the CPU-based execution as the datasets completely fit
into the cache. In the following section, we analyze the execution time of all join
operators on both platforms by varying input size and join probability. The latter
is expressed by the number of join attribute values (JA). While in this evaluation
the join is always determined regarding only one variable, the number of possible
different bound values of this variable is set by JA. If JA is small then the probabil-
ity of matching join pairs is high. For example, |JA| = 1 means that each bindings
array has the same bound value regarding the join attribute and consequently each
bindings array of the left input has to be joined with each bindings array of the
right input. This corresponds to the cartesian product of both inputs. Thus, if
|R| = |S| = 1000 and |JA| = 1 then the join operator generates one million joined
bindings arrays. On the other hand, increasing JA results in a lower join proba-
bility. In the following evaluation and throughout this work we use the Speedup
to indicate the performance enhancements of our FPGA-based approach compared
to a software-based solution running on a general-purpose CPU. The speedup ex-
presses the execution time ratio of both systems shown in Definition 3.5.
Definition 3.5 (Speedup)
SP = TCP U

TF P GA
with TCP U execution time of the software-based solution running on

a general-purpose CPU and TF P GA execution time of the FPGA-based approach.

Thus, if SP = 1 then both systems provide the same performance. If SP > 1
then the FPGA-based execution is faster than the software-based execution. If
SP < 1 the FPGA-based approach is slower than solving the task on the CPU.
In addition to the scalar value we use X as a unit, e.g., 2X indicates a two times
faster execution.

3.3.2.2 Comparison of Execution Times

In the following paragraphs, the execution times of each join operator running on
the FPGA and the software platform are compared.

Nested Loop Join (NLJ) Figure 3.17 illustrates the results of the NLJ. Besides
the C implementation it shows the performance of two approaches for the FPGA
running at a clock rate of 238 MHz. The first (unoptimized) approach (NLJ) is
the straight forward implementation while the second approach (NLJopt) uses the
previously described optimized memory access method to pre-fetch the next bind-
ings array in advance from the internal buffer while evaluating the join condition

82

3.3 Join Operator

on the current bindings array (see Section 3.3.1). Figure 3.17(a) shows the impact
of JA. If JA is small then many bindings arrays need to be joined causing a higher
load on the CPU.

 0

 2

 4

 6

 8

 10

 12

 14

 10 100 1000 10000
 0

 2

 4

 6

 8

 10

 12

E
x
ec

u
ti

o
n
 t

im
e

[m
s]

S
p
ee

d
u
p

|JA|

|R|=|S|=1000

CPU (2.2 GHz)
NLJopt (238 MHz)

NLJ (238 MHz)
Speedup

(a) Vary the number of potential join partners.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 1 10 100 1000
 0

 2

 4

 6

 8

 10

 12

E
x
ec

u
ti

o
n
 t

im
e

[m
s]

S
p
ee

d
u
p

|S|

|R|=1000, |JA|=500

CPU (2.2 GHz)
NLJopt (238 MHz)

NLJ (238 MHz)
Speedup

(b) Vary the input size of one operand.

Figure 3.17 − Execution times of Nested Loop Join (NLJ).

83

3 Query Operators on Field-Programmable Gate Arrays

While the C implementation on the CPU sequentially iterates through each bind-
ing of the array in order to assemble the resulting bindings array, the FPGA can
take advantage of building the results in parallel. This drawback of the CPU de-
creases when the number of JA increases and the number of joins decreases. Thus,
the overall performance of the software solution increases while the performance of
the unoptimized approach (NLJ) remains constant. The optimized NLJ (NLJopt)
impressively shows how a relatively simple optimization in terms of a tailor-made
pre-fetching significantly impacts the performance. The join probability has no sig-
nificant impact on the NLJopt running on the FPGA and NLJopt achieves speedups
of 1.8X to 3X. Figure 3.17(b) shows the execution times with a varied size of one
input and a constant size of the other input and JA (|R|=1000, |JA|=500). With
increasing |S| the execution times increase for the software-based and the FPGA-
based approaches but shrinks the achievable speedup. At a very small input size
the optimized FPGA approach significantly outperforms the software solution.

Merge Join (MJ) As mentioned before, the MJ requires the input data to be
sorted with respect to the join attributes. Therefore, the data is sorted before
processing it in the join operator and thus the time for sorting the data is not
included in the total time. This assumption is reasonable based on the use of indices
in the final intended system (see Section 2.1.3). Increasing JA in both approaches
leads to a significantly decreasing execution time (Figure 3.18(a)). However, the
FPGA-based MJ achieves speedups of 1.5X up to 4.2X compared to the software
solution. Figure 3.18(b) shows the execution time depending on the input size |S|
of one preceding operator. Obviously, increasing the input size results in a higher
execution time but the hardware-accelerated MJ slightly increases the achievable
speedup.

Asymmetric Hash Join (AHJ) In the following paragraphs, for all hash-based
joins on the FPGA the hash mask HM1='1111111100000000' is used. That means
only the 8 most significant bits of the 16 bit wide join attribute are considered
to address the hash table. Later we will show the impact of the hash mask on
the performance of the AHJ. In all test cases, the AHJ on the FPGA defeats
the software solution by a speedup of at least 1.3X (see Figure 3.19(a)). If the
frequency of joins is high (small JA), the gap between the software solution and
the FPGA increases. If the size of one input is small and thus the hash table is
sparsely filled the FPGA-based AHJ directly benefits from the very fast lookups
in its local BRAM (see Figure 3.19(b)). The highest reached speedup is 5.7X for
|S|=10.

84

3.3 Join Operator

 0

 0.5

 1

 1.5

 2

 2.5

 3

 10 100 1000 10000
 0

 2

 4

 6

 8

 10

 12

E
x
ec

u
ti

o
n
 t

im
e

[m
s]

S
p
ee

d
u
p

|JA|

|R|=|S|=1000

CPU (2.2 GHz)
MJ (200 MHz)

Speedup

(a) Vary the number of potential join partners.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 1 10 100 1000
 0

 2

 4

 6

 8

 10

 12

E
x
ec

u
ti

o
n
 t

im
e

[m
s]

S
p
ee

d
u
p

|S|

|R|=1000, |JA|=500

CPU (2.2 GHz)
MJ (200 MHz)

Speedup

(b) Vary the input size of one operand.

Figure 3.18 − Execution times of Merge Join (MJ).

85

3 Query Operators on Field-Programmable Gate Arrays

 0

 1

 2

 3

 4

 5

 6

 7

 10 100 1000 10000
 0

 2

 4

 6

 8

 10

 12
E

x
ec

u
ti

o
n
 t

im
e

[m
s]

S
p
ee

d
u
p

|JA|

|R|=|S|=1000

CPU (2.2 GHz)
AHJ (200 MHz)

Speedup

(a) Vary the number of potential join partners.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100 1000
 0

 2

 4

 6

 8

 10

 12

E
x

ec
u

ti
o
n

 t
im

e
[m

s]

S
p

ee
d

u
p

|S|

|R|=1000, |JA|=500

CPU (2.2 GHz)
AHJ (200 MHz)

Speedup

(b) Vary the input size of one operand.

Figure 3.19 − Execution times of Asymmetric Hash Join (AHJ).

86

3.3 Join Operator

Symmetric Hash Join (SHJ) As mentioned before the SHJ uses two hash
tables. Due to its higher circuit complexity, more logic resources are needed and
the signal propagation delay increases. Thus, the SHJ can just be used at a clock
rate of 167 MHz on the FPGA. However, the FPGA-based SHJ reaches a speedup
between 1.3X (see Figure 3.20(a)) and 10.2X (see Figure 3.20(b)) compared to the
software-based implementation.

Hash Join using separate chaining with linked list (HJL) In addition to
the AHJ (using linear probing), the HJL was implemented and compared with the
software solution. If JA is small and many bindings of the join attribute map on the
same position in the hash table then the FPGA achieves a speedup of not less than
3X (see Figure 3.21(a)). Furthermore, if |JA| increases then the performance of the
software as well as the hardware solution increases due to less collisions in the hash
table. However, the FPGA-based HJL achieves higher performance gains and is
able to increase the speedup up to 10.2X. Varying the input size (see Figure 3.21(b))
shows significantly that the performance drop of the C implementation is much
more noticeable than for the FPGA. Overall the FPGA achieves a performance
improvement between 8X and 9.4X in these test cases.

All join cores at normalized clock rate Figure 3.22 presents the execution
times of all join algorithms executed on the FPGA running at a normalized clock
rate of 100 MHz. As expected the MJ is the fastest join algorithm in all evaluated
cases. If the input datasets are not sorted then the HJL is a wise choice. Usually
the NLJ shows the worst performance. In order to choose a concrete algorithm
for a logical operator in a specific query the LUPOSDATE system uses cost-based
optimizations which take estimations about the cardinality of intermediate results
into account [14]. According to these estimations, in the physical optimization a
concrete join operator is chosen (see Section 2.1.3).

87

3 Query Operators on Field-Programmable Gate Arrays

 0

 1

 2

 3

 4

 5

 6

 7

 8

 10 100 1000 10000
 0

 2

 4

 6

 8

 10

 12

E
x
ec

u
ti

o
n
 t

im
e

[m
s]

S
p
ee

d
u
p

|JA|

|R|=|S|=1000

CPU (2.2 GHz)
SHJ (166 MHz)

Speedup

(a) Vary the number of potential join partners.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1 10 100 1000
 0

 2

 4

 6

 8

 10

 12

E
x
ec

u
ti

o
n
 t

im
e

[m
s]

S
p
ee

d
u
p

|S|

|R|=1000, |JA|=500

CPU (2.2 GHz)
SHJ (166 MHz)

Speedup

(b) Vary the input size of one operand.

Figure 3.20 − Execution times of Symmetric Hash Join (SHJ).

88

3.3 Join Operator

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 10 100 1000 10000
 0

 2

 4

 6

 8

 10

 12

E
x
ec

u
ti

o
n
 t

im
e

[m
s]

S
p
ee

d
u
p

|JA|

|R|=|S|=1000

CPU (2.2 GHz)
HJL (200 MHz)

Speedup

(a) Vary the number of potential join partners.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 1 10 100 1000
 0

 2

 4

 6

 8

 10

 12

E
x
ec

u
ti

o
n
 t

im
e

[m
s]

S
p
ee

d
u
p

|S|

|R|=1000, |JA|=500

CPU (2.2 GHz)
HJL (200 MHz)

Speedup

(b) Vary the input size of one operand.

Figure 3.21 − Execution times of Hash Join using separate chaining with linked
list (HJL).

89

3 Query Operators on Field-Programmable Gate Arrays

 0.01

 0.1

 1

 10

 100

 10 100 1000 10000

E
x
ec

u
ti

o
n
 t

im
e

[m
s]

 -
 l

o
g
 s

ca
le

|JA|

|R|=|S|=1000

NLJ (100 MHz)
MJ (100 MHz)

AHJ (100 MHz)

SHJ (100 MHz)
HJL (100 MHz)

(a) Vary the number of potential join partners.

 0.01

 0.1

 1

 10

 100

 1 10 100 1000

E
x
ec

u
ti

o
n
 t

im
e

[m
s]

 -
 l

o
g
 s

ca
le

|S|

|R|=1000, |JA|=500

NLJ (100 MHz)
MJ (100 MHz)

AHJ (100 MHz)

SHJ (100 MHz)
HJL (100 MHz)

(b) Vary the input size of one operand.

Figure 3.22 − Execution times of all hardware-accelerated join operators running
at a normalized clock rate of 100 MHz.

90

3.3 Join Operator

3.3.2.3 Impact of the Hash Mask

Certainly, the hash mask has an impact on the performance of hash-based joins. In
the previous measurements the hash mask HM1='1111111100000000' was used.
That means only the 8 most significant bits of the 16 bit wide join attribute are
considered to address the hash table. Figure 3.23(a) as well as Figure 3.23(b) show
the execution time of the AHJ using different hash masks. Like HM1, the hash
mask HM2 uses 8 bit but the 4 most significant as well as the 4 least significant
bit are set. Because of the uniform distribution of the data both hash masks show
the same performance. Contrary, HM3 considers only the 4 most significant bit
and as expected the execution time increases significantly due to more occurring
collisions in the hash table. HM4 uses 12 bit and thus is able to further increase
the performance compared to HM1 and HM2.

3.3.2.4 Device Utilization

Besides the single throughput of one join operator, the device utilization is an im-
portant fact. In join computation, many schemes are known to split and distribute
the input dataset over multiple processing units. Therefore, it is interesting to
know how many join operators could fit into the FPGA.

The provided resources of the used FPGA platform are given in Table 2.1 in Sec-
tion 2.2.1. The numbers of utilized slices, LUTs and BRAMs of each join operator
are summarized in Table 3.1. While the consumption of registers and LUTs is
significantly low (maximum 1% of all slices), the available BRAM becomes a bot-
tleneck. In that case, the BRAM suffices to implement 16 to 25 join cores, but a
huge amount of logic resources remains unused.

Table 3.1 − Device utilization of join operators (total including the evaluation
framework).

Slices LUTs BRAM
join total % total % total %
NLJ 519 0.87 1,362 0.57 45 5.9
MJ 489 0.82 989 0.41 30 3.9

AHJ 603 1.01 1,200 0.50 30 3.9
SHJ 642 1.07 1,509 0.63 45 5.9
HJL 582 0.97 1,090 0.46 45 5.9

91

3 Query Operators on Field-Programmable Gate Arrays

 0.1

 1

 10

 10 100 1000 10000

E
x
ec

u
ti

o
n
 t

im
e

[m
s]

 -
 l

o
g
 s

ca
le

|JA|

|R|=|S|=1000

 HM1 HM2 HM3 HM4

(a) Vary the number of potential join partners.

 0.01

 0.1

 1

 10

 1 10 100 1000

E
x
ec

u
ti

o
n
 t

im
e

[m
s]

 -
 l

o
g
 s

ca
le

|S|

|R|=1000, |JA|=500

 HM1 HM2 HM3 HM4

(b) Vary the input size of one operand.

Figure 3.23 − Execution times of Asymmetric Hash Join (AHJ) with different
hash masks.

92

3.3 Join Operator

3.3.3 Related Work

Teubner et al. [188] present a window-based stream join, called Handshake join.
The approach lets the items of two data streams flow by in opposite directions to
find join partners with each item they encounter. All items in a predefined window
are considered in parallel to compute an intermediate result. Due to the window-
based architecture and since the window size is limited by the chip area, this
approach cannot be used to process joins of datasets larger than the relatively small
windows. Following the same methodology using a pipeline of equal processing
elements, Woods et al. [189, 190] present parallel data processing on FPGAs with
shifter lists. They can be used to improve performance (up to 4X) in various
applications such as skyline operator [191], frequent item [192], n-closest pairs and
k-means [193].

Sukhwani et al. [194] investigate the use of FPGAs to accelerate data decompres-
sion and predicate evaluation in analytics queries. Halstead et al. [195] extend
the approach by relational joins – in particular hash-based equi-join. The authors
consider star-schema scenarios which are common in data warehousing. In such a
scenario a central large fact table can be joined to multiple dimension tables, which
are smaller tables containing attributes. Thus, all records of the dimension table
are inserted into a hash table by applying a hash function on the corresponding join
attributes (build phase). Afterwards, the fact table is streamed in and compared
against the hash table (probe phase). The evaluation is executed on two tables,
small enough to fit into the FPGA’s internal BRAM. The execution in a cycle
accurate simulator achieves a speedup of 11.3X compared to a commercial DBMS
running on a 4.4 GHz multi-core CPU. However, the build phase is considered
as one-time cost by the authors. Furthermore, the results on the FPGA are only
simulated. Another flexible hash table design is proposed by István et al. [196, 197]
but is not utilized in a database environment.

3.3.4 Summary of FPGA-based Join Operators

In this section, various join algorithms have been implemented as prototypes on
an FPGA. The evaluation shows that the FPGA implementations are able to
provide at least a competitive performance compared to general-purpose CPU with
ten times higher clock rate. In most cases, a significant speedup of the FPGA
prototype is achieved compared to the evaluated general-purpose CPU system. On
the example of the NLJ it was also shown that a straight forward implementation
on the FPGA does not guarantee performance improvements. But taking the
characteristics of the FPGA into account, it can result in a great performance gain.

93

3 Query Operators on Field-Programmable Gate Arrays

The software implementation, written in the programming language C, is highly
optimized for maximum throughput rather than extensibility and maintainability
of the software. Therefore, only primitive data types and no dynamic linking
of method calls are used. However, in real-world database systems complexer
data structures and concepts of object-oriented programming (e.g., inheritance)
are used. Thus, these systems might not achieve the single join performance of the
software used in this evaluation. Furthermore, each experimental run was executed
100 times to fully utilize caching capabilities of the CPU.

As previously described, the presented join algorithms differ in implementation
complexity, resource consumption and as a consequence achieve different clock
frequencies. Considering a complete operator graph the containing operators are
integrated on the same FPGA device and are executed at the same frequency.
After the feasibility of the hardware-accelerated join operator is shown in this sec-
tion, the remaining operators need to be implemented to support complex SPARQL
queries. Having an extended set of operators, the composition of multiple opera-
tors to a hardware-accelerated QEP will result in further improvements by taking
advantages of the intra-query and inter-operator parallelism as well as operator
pipelining. It is expected that the overall speedup will be more significant as the
remaining operators are more suitable for pipelining than the join operator and
more parallelism inside the FPGA can be taken into account.

3.4 Filter Operator

The filter expression restricts the solution space according to a given constraint
and thus is essential for highly expressive queries. In the previous section, we
implemented joins on the FPGA as one crucial element of the query execution.
Due to the complexity and its memory consumption it is likely to execute joins
later and reduce the amount of data in earlier processing steps. Typically, the
query optimizer tries to push filter operations as close as possible to the data
source in order to reduce the intermediate results and thus succeeding operators
have to cope with less data.

Listing 3.4 shows a typical SPARQL query [30] utilizing a filter expression to return
articles having more than five pages and published in February, March, May or
April. The filter expression consists of boolean formulas which are checked for
each intermediate result during query execution. If the boolean formula becomes
true then the bindings of the variables remain in the intermediate result, otherwise
they are discarded. As mentioned before the logical optimization tries to push
filter expressions as close as possible to the data source. The early evaluation

94

3.4 Filter Operator

Listing 3.4 − SPARQL example query with filter expression.

1 PREFIX swrc: <http://swrc.ontoware.org/ontology#>
2 SELECT ?article ?pages ?month WHERE {
3 ?article swrc:month ?month .
4 ?article swrc:pages ?pages .
5 FILTER (?pages > 5 && ?month > 1 && ?month < 6)
6 }

of the filter expression reduces the size of intermediate results and consequently
decreases the calculation costs for succeeding operators, such as joins. Due to their
early involvement in the query evaluation an efficient and scalable filter operator
is crucial for our hybrid query engine.

In the following sections, two approaches to implement the filter operator on an
FPGA are presented. The previously described operator template supplies the
input of two preceding operators to be processed by the current operator. The input
bindings arrays are directly mapped to the data input signals as well as the resulting
bindings array to the data output signal. However, the filter operator is a unary
operator and consumes the actual data of only one preceding operator. Internally,
it can just ignore the other input. This is feasible because there is actually no
other preceding operator connected. In order to realize a higher flexibility, we use
the second input interface for configuration data like the pattern or for setting the
compare operation. The content and results of this section have been published by
the author in [6].

3.4.1 Fully-Parallel Filter

The Fully-Parallel Filter presented in Figure 3.24 divides the bindings array w and
the pattern p into its bindings wi and pi (horizontal intra-operator parallelism).
The number i of bindings depends on the defined total width of the bindings array
and the value width of a binding. Each pair of wi and pi is connected to a sub-filter
SFi. Each SFi executes the actual comparison and decides whether the binding wi

fulfills the matching condition according to its corresponding pattern pi. As this
decision is binary, each sub-filter SFi indicates a match by '1', respectively a '0'
in case of a mismatch. Finally, the matches of all sub-filters are mapped to a match
vector m with mi is the result of SFi. In order to verify a global match the global
filter operator compares the match vector with the match mask '1..1'. Obviously,
choosing the match vector in this manner allows only conjugated conditions and is

95

3 Query Operators on Field-Programmable Gate Arrays

w = { w0, w1, w2, ..., wi−1, wi } p = { p0, p1, p2, ..., pi−1, pi }

SF0 SF1 SF2
... SFi−1 SFi

m = { m0, m1, m2, ..., mi−1, mi }∀k ∈ {0..i} : mk = 1?

r = { w0, w1, w2, ..., wi−1, wi }

Figure 3.24 − Schematic of the Fully-Parallel Filter.

chosen for simplicity in this case. We will describe later why this approach does not
affect the generality and allows any kind of condition with the same throughput.

An example execution of the Fully-Parallel Filter is shown in Figure 3.25. The
bindings array contains the bindings of three variables and thus three sub-filters
are used. Each sub-filter consumes a specific variable and the corresponding value
of the pattern (see Figure 3.25(a)). The first incoming bindings array satisfies the
whole condition (see Figure 3.25(b)). Thus, all sub-filters set their corresponding
bit in the match mask to '1' and the bindings array is forwarded to the output.
As the next bindings array does not match the condition in its first and third
variable, the positions 1 and 3 in the match mask are set to '0' and consequently
the bindings array is discarded (see Figure 3.25(c)). The last bindings array results
in a global match as well and is forwarded to the output (see Figure 3.25(d)). Each
sub-filter evaluates its condition within one clock cycle and thus evaluation of the
complete condition requires only one clock cycle as well.

With increasing the total width of the bindings array, the number of sub-filters
increases as well and the incoming bindings need to be distributed to the corre-
sponding sub-filters. Thus, the distance in the FPGA between the port which
receives the whole input bindings array and some of the sub-filters might become
very long. This in turn might result in long signal paths which lead to longer clock
cycles and thus limits the achievable clock rate of the whole design.

96

3.4 Filter Operator

4 4 4

5 7 7

5 3 7

= > =

0 0 0

5 6 7

(a)

5 6 7

4 4 4

5 7 7 5 3 7

= > =

1 1 1

5 7 7

(b)
5 6 7

4 4 4 5 3 7

= > =

0 1 0

5 7 7

(c)

5 6 7 5 3 7

= > =

1 1 1

5 6 7

5 7 7

(d)

Figure 3.25 − Example execution of the Parallel Filter.

3.4.2 Pipelined Filter

The second approach of implementing an FPGA-based filter operator, the Pipelined
Filter presented Figure 3.26, does not divide the input bindings array w, respec-
tively the pattern p into several bindings and distributes them into the sub-filters.
It applies the whole bindings array as well as the pattern to the head of pipelined
sub-filter units (vertical intra-operator parallelism). Each SFi is responsible for
one specific binding in the data stream, and indicates a partial match by setting
its output mi. This output is used by the succeeding sub-filter and iff the partial
match is set to '1' then the succeeding sub-filter will consume w and p to evaluate
its own condition. Otherwise the whole bindings array will be dropped within the
pipeline. Thus, if a bindings array reaches the end of the pipeline then all sub-filter
expressions have been satisfied and it can be processed by succeeding operators.
It is expected that the resource utilization is higher than for the Fully-Parallel
Filter as the whole bindings array is forwarded from sub-filter to sub-filter which
introduces additional registers to store the value. We can not shorten the bind-
ings by the size of one binding with each pipeline stage because the overall filter

97

3 Query Operators on Field-Programmable Gate Arrays

w = {w0, w1, w2, ..., wi−1, wi}

p = {p0, p1, p2, ..., pi−1, pi}

SF0 SF1 SF2
... SFi−1 SFi

1

w

p

m0

w

p

m1

w

p

m2

w

p

mi−2

w

p

mi−1

mi = 1?r = {w0, w1, w2, ..., wi−1, wi}

w

mi

w

Figure 3.26 − Schematic of the Pipelined Filter.

already consumes the next bindings array to forward it to the head of the sub-filter
pipeline. Otherwise in case of a match the complete bindings array would not be
available anymore. However, even with a higher resource utilization we expect a
better clock scalability with increasing the data width due to shorter signal paths.

An example data flow of the Pipelined Filter is shown in Figure 3.27. Each pipeline
stage consists of one sub-filter and is responsible for one dedicated variable in the
bindings array (see Figure 3.27(a)). The first incoming bindings array satisfies the
first condition and thus is forwarded to the second pipeline stage. In the second
stage it is checked for the next condition. Meanwhile, the next bindings array is
applied in the first stage (see Figure 3.27(b)). As the second bindings array does not
satisfy the first condition it is discarded and will not be evaluated in the subsequent
stages. While the first bindings array is checked for the third condition, the first
condition is checked for last bindings array (see Figure 3.27(c)). As the first as well
as the third bindings array satisfy the whole filter expression they pass the whole
pipeline and are forwarded to the output (see Figure 3.27(d)-(f)). Each sub-filter
evaluates its condition within one clock cycle. Due to the pipeline structure no
results will be return until the pipeline is filled. However, the Pipelined Filter can
consume one bindings array per clock cycle and after the initial pipeline delay, one
complete condition is evaluated each clock cycle.

3.4.3 General Filter Expressions

Obviously, the described approaches only implement conjunctive conditions. In
case of the Fully-Parallel Filter the conjunction is introduced by the match vector
as it is checked against the constant vector '1..1'. In order to realize disjunction
we can define more constant vectors and connect the results of all vectors by logi-
cal OR; e.g., C0C1C2C3 ∨ C4C5C6C7 can be evaluated by comparing the provided

98

3.4 Filter Operator

=

>

=

4 4 4

7 7

5 6 7

5

5555

7

3

(a)

=

>

=

4 4

5 6 7

5 7

4

7

5555

7

3

(b)

=

>

=

6 7

5 7

5

7

5555

7

3

(c)

=

>

=

5 7

5 7 7

6

5555

7

3

(d)

=

>

=

5 6

5 7 7

7

5555

7

3

(e)

=

>

=

5 6 7

5 7 7

5555

7

3

(f)

Figure 3.27 − Example execution of the Pipelined Filter.

99

3 Query Operators on Field-Programmable Gate Arrays

match vector m with the match masks '11110000' respectively '00001111' and
connect both results by logical OR. Due to the structure of the Pipelined Filter
where each local match is only forwarded to the next sub-filter the implied conjunc-
tion can not be broken up. Introducing a match vector forwarded from sub-filter to
sub-filter would cause more utilization overhead. Thus, taking the advantages of
FPGAs into account we can configure multiple Pipelined Filter, each representing
one conjunction, in parallel and finally evaluate their results. For an expression
containing up to six disjunctions only one LUT is needed to evaluate the global
result (see Section 2.2.1). This introduces a negligible signal propagation delay
caused by the logic. However, more complex conditions consisting of various con-
junctions and disjunctions need to be broken down into their atomic conditions
and their single results have to be accumulated into the final result. Figure 3.28
shows an example for the complex condition C0 ∨ (C1 ∨ (C2 ∧ C3)) consisting of
conditions C0 to C3. For each disjunction the bindings array is forwarded into two
different branches. Thus, C0 is evaluated in one branch and the remaining con-
ditions are located in the other branch. As latter consists of another disjunction
it is split into two branches again. Conjunctions are simply chained as described
before. Note that the intermediate results of different disjunction branches have
to be combined. Thus, it is necessary to ensure that a bindings array which sat-
isfies all conditions on both branches is not duplicated in the result. Therefore,
an introduced special union operator (∪⊕) takes the results of two branches and
compares their outcome. If both branches provide a result then only one is taken.
However, due to the pipelining approach multiple bindings arrays might be within
the pipeline at different stages. As a consequence the union operator might receive
two different bindings arrays if the branches do not have the same depth. There-
fore, empty pipeline stages (2) are introduced in a branch if its depth is lower
than the depth of the other branch. If both branches have the same depth then
duplicated bindings arrays will arrive at the same time at the union operator which
will forward only one. If a bindings array is discarded within a branch due to a
failing condition then an invalid bindings array is forwarded to the union operator
and detected by it.

3.4.4 Micro Benchmarks

With respect to comparability, the implementation for the general-purpose CPU
written in the programming language C follows the iterator concept [74]. This is
recommended especially for large datasets as intermediate results are not computed
completely at once. This results in a smaller memory footprint for the operators
but also causes some overhead. As described earlier the modular approach using
the generic operator template introduced the signals read and valid to control the

100

3.4 Filter Operator

C0 ∨ (C1 ∨ (C2 ∧ C3))

∨

C0 2 2 2

∨

C1 2

C2 C3

∪⊕

∪⊕

Figure 3.28 − Complex filter expressions can be broken down into multiple sim-
ple filter conditions. Each occurrence of a disjunction (∨) results in two sep-
arate evaluation branches. Results of different branches need to be combined
and introduced duplicates have to be removed (∪⊕). Additional pipeline stages
(2) are introduced to ensure the simultaneous arrival of potential duplicates
at a union operator. Conjunctive condition (∧) are simply chained.

data flow. Consequently, both implementations for CPU as well as for the FPGA
are affected and thus fairly comparable. We suppose that the variables needed
for the filtering are located at the beginning of the bindings array. This can be
done easily by connecting the circuit in this manner. Leftover data can be simply
appended. We varied the following parameters to demonstrate the achievements
under various conditions. The match rate (MR) describes the selectivity of the filter
expression. Furthermore, we introduce the parameter mismatch position (MP) to
model the fact that depending on the filter condition the filter operator can detect
a mismatch without evaluating the whole expression, e.g., a complex conjunction
is always false if the first subexpression is false. Thus, the MP determines after
how many partial comparisons the filter operator can detect a mismatch, which
allows it to skip the evaluation of the rest of the bindings array and go on with
the next input. The label MPi indicates a mismatch at position i. For instance, in
case of MP1, the filter can detect a potential mismatch within the first evaluation
step. Of course, the filter still has to compare the whole bindings array in case
of a match, as it does not know about the data composition. Vice versa, if the
mismatch position is set to the last binding in the bindings array, then the filter
will detect the global mismatch in the last evaluation step of the whole expression.
Thus, the computational costs are almost1 equal compared to a global match. The

1almost because in case of a global match some overhead for providing the result is introduced.

101

3 Query Operators on Field-Programmable Gate Arrays

proposed architecture is generic and independent of the width of the bindings and
bindings arrays. However, for evaluation purpose we consider in the first part
of the experiments a conjunction of eight conditions and the mismatch position
models the complexity of these conditions. Each data point represents the average
of 10,000 single measurements respective to the parameters executed on a general-
purpose CPU (Intel Core2 Quad Q9400, 2.66 GHz, 6 MByte cache, compiled with
GCC 4.8.2). The data was preloaded into the main memory before measuring the
time in order to ensure warm caches and to achieve the maximum performance on
the CPU. The hardware-accelerated filter operators are described in VHDL. The
FPGA runs at 200 MHz which is the default clock rate provided by the equipped
clock generator (13 times lower than the CPU) – unless otherwise specified.

3.4.4.1 Throughput

By conception both approaches of the hardware-accelerated filter operators run-
ning at the same clock rate provide the same throughput. The difference in total
processing time for the Pipelined Filter is negligible2 and, thus, it achieves the
same throughput as the Fully-Parallel Filter. Due to clarity we will reference in
the next sections only to one of both hardware approaches. Later we will show
the distinction between both hardware-accelerated approaches considering achiev-
able clock rate and area consumption. Figure 3.29 shows the throughput of both
FPGA-accelerated filter operators. Most noticeable is the fact that the FPGA
performs independently of the data structure and shows for different MR and MP
the same throughput. Figure 3.30 outlines the total throughput of the software-
based and hardware-based filter operators. Contrarily to the hardware-accelerated
filter operators, the performance of the software solution is heavily affected by the
composition of the bindings arrays. If the match rate is low then the position of
the mismatch has a high impact on the throughput, e.g., if MP8 and MR=0 then
the approach on the CPU has to verify all subexpressions in order to detect a
mismatch in the last condition. Thus, the performance drops. For MP1 and the
same match rate this approach detects the mismatch in the first subexpression and
consequently drops the bindings array immediately and requests the next bindings
array to be evaluated. Increasing the match rate results in a lower sensitivity re-
garding MP of the software-based approach because a mismatch is detected in a
late evaluation step. The computational effort to detect a match or a mismatch
becomes the same. Figure 3.30 shows the corresponding speedup factors as dashed
lines. At a match rate of 0% and MP=1 (the mismatch is detected in the first
condition), the FPGA-based filter still achieves a speedup of 1.6X (60% faster). At
higher match rates a significant higher speedup of up to 5.5X is reported.

2the Pipelined Filter introduces a delay of 8 clock cycles in order to fill the pipeline.

102

3.4 Filter Operator

10
1

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

 0 0.2 0.4 0.6 0.8 1

B
in

d
in

g
s

ar
ra

y
s

p
er

 s
ec

o
n
d
 -

 l
o
g
 s

ca
le

Match rate

 MP1 MP2 MP4 MP8

Figure 3.29 − Throughput of Fully-Parallel and Pipelined Filter executed on the
FPGA. Both approaches achieve the same total throughput.

10
7

10
8

10
9

 0 0.2 0.4 0.6 0.8 1
 0

 1

 2

 3

 4

 5

 6

B
in

d
in

g
s

ar
ra

y
s

p
er

 s
ec

o
n
d
 -

 l
o
g
 s

ca
le

S
p
ee

d
u
p

Match rate

CPU (MP1)
CPU (MP2)
CPU (MP4)
CPU (MP8)

FPGA (both)

Sp (MP1)
Sp (MP2)
Sp (MP4)
Sp (MP8)

Figure 3.30 − Throughput of the software-based respectively hardware-based fil-
ter operator (solid lines) and resulting speedup Sp (dashed lines).

103

3 Query Operators on Field-Programmable Gate Arrays

(a) Fully-Parallel Filter. (b) Pipelined Filter.

Figure 3.31 − Register Transfer Level (RTL) of filter operators.

3.4.4.2 Scalability

At the beginning of the evaluation section of the filter operator we mentioned that
the throughput of both approaches in the FPGA is equal at the same clock rate.
Due to the different design ideas and their complexity the resource requirements
are different. Figure 3.31 shows both filter operators composed of 20 sub-filters
as RTL. The Fully-Parallel Filter (see Figure 3.31(a)) consists of multiple parallel
sub-filters while the sub-filters in the Pipelined Filter (see Figure 3.31(b)) are
connected as a chain. This results in a trade off between resource consumption
and timing requirements which effects the maximum achievable clock rate and
thus the effective total performance. To obtain the maximum achievable clock
rate we synthesized the whole design under varying the data width of the bindings
array. We tightened the clock frequency by constraining it in the designs UCF file
until PAR is not able to meet the timing requirements anymore. Furthermore, we
varied the design goal and choose the highest achieved value for each filter type and
parameter. Additionally, we noted the resource consumption in terms of utilized
slices. Figure 3.32 presents the maximum achievable clock rate depending on the
numbers of sub-filters respectively width of the bindings array. Each binding has
a width of 32 bits. Furthermore, the number of utilized slices is shown. With
increasing the amount of sub-filters the maximum frequency decreases for both
approaches but the Pipelined Filter always reaches a higher clock rate (minimum
10% for 12 bindings per array) than the Fully-Parallel Filter. The Fully-Parallel
Filter under 200 MHz for 16 or more sub-filters. As a drawback, the resource
utilization of the Pipelined Filter is in general higher due to the additional needed
registers between the sub-filter stages. However, in case of 20 bindings per array
the Pipelined Filter achieves a 19% higher clock rate than the Fully-Parallel Filter
while using 16% more slices. One advantage of the FPGA-implementation is the

104

3.4 Filter Operator

0

500

1000

1500

2000

2500

3000

3500

 4 8 12 16 20
 0

 50

 100

 150

 200

 250

 300

 350

R
es

o
u
rc

e
u
ti

li
za

ti
o
n
 [

sl
ic

es
]

M
ax

im
u
m

 c
lo

ck
 r

at
e

[M
H

z]

Variables per bindings array

Parallel (res.)
Pipelined (res.)

Parallel (clock)
Pipelined (clock)

Figure 3.32 − Resource consumption (bars) and maximum achievable clock rate
(lines) of both approaches (after Place & Route (PAR)). The Pipelined Filter
has a higher resource utilization due to additional pipeline stages but achieves
higher clock rates than the Fully-Parallel Filter.

fact that the throughput increases linearly with increasing the clock cycle. This
results in an even higher throughput than reported in the section before. For
example considering 8 bindings per bindings array, the Pipelined Filter achieves a
clock rate of 289 MHz which directly leads to a total throughput of 144 million
bindings arrays per second. The Parallel Filter achieves a clock rate of 256 MHz
respectively a throughput of 128 million bindings arrays per second. In summary,
the Pipelined Filter reaches a higher throughput at its maximum possible clock
frequency.

3.4.5 Related Work

Woods et al. [198, 199] present Ibex, an intelligent storage engine for the relational
database MySQL that supports off-loading of complex query operators using an
FPGA. The FPGA is integrated into the data path between data source and
host system. Data is read from an SSD attached to the FPGA and is directed

105

3 Query Operators on Field-Programmable Gate Arrays

through a pipeline consisting of modules for tuple parsing, projection, selection and
Group-By. The proposed system uses runtime-parametrization instead of DPR to
adapt to a given query structure. This means that before fetching a table from
the disk, the table schema (or catalog information) including projection flags is
stored in local RAM. The predicates of the selection module are parameterizable
(column, comparator, constant) as well but allow only the comparison of a column
value with a constant. However, multiple predicates can be combined via boolean
operations. The output signals of all base predicates together compose a lookup
address in a truth table (BRAM) returning the result of the combined expression.
The truth table is computed in software and loaded into the corresponding BRAM
on the FPGA. More complex expressions, such as predicates on two columns,
are evaluated in software. The Group-By operation is implemented using a hash
table. A bit mask determines which parts of the record are used as group key.
However, in order to avoid stalling3 the hash table, duplicated tuples are bypassed
to the host where they are processed in the software of the storage engine before
passing on the tuples to MySQL’s query engine. Even with a workload causing
90% bypass tuples, a speedup of 4.5X is achieved but also shows some performance
inefficiencies of MySQL itself. In some cases the authors report speedups of up to
32X. Note that no indices are used. István [200] beneficially uses this system to
generate statistics and histograms as a side effect of data movement in the data
path. Typically, this is performed as a batch job, separately from query processing.
The generation of histograms is computing intensive, but they are important for
query planning. The proposed prototype calculates histograms faster and with
similar or better accuracy than two commercial databases. However, the approach
of an intelligent storage engines aims to utilize the whole FPGA chip area. In this
work, we assemble multiple different operators to be reconfigured on the FPGA.

3.4.6 Summary of the FPGA-based Filter Operator

In this section, we presented two approaches to execute filter operators on an
FPGA. The presented results show that both approaches obtain significant speedups
in comparison to a general-purpose CPU system. While both approaches on the
FPGA reach the same total throughput at the same clock rate, they slightly differ
in scalability according to the width of the bindings array. Both implementations
significantly defeat the software solution executed on a general-purpose CPU. At
a 13 times lower clock rate the Fully-Parallel and the Pipelined Filter achieve a
speedup of more than 5X. Both approaches can process one bindings array within
two clock cycles, which results in a total throughput of 100M items per second at

3tuples with duplicate hash keys which are not from the same group require collision resolution

106

3.5 Additional Operators

200 MHz with the potential of higher throughput through higher clock rates. The
theoretical throughput of one bindings array per clock cycle is not reached due to
the flow control introduced by the operator template. If an operator consumed the
predecessor’s output then it raises the corresponding read flag. The preceding op-
erator notices the invalidity of its current output and needs at least one clock cycle
to provide the next bindings array. Thus, one clock cycle delay is introduced for
synchronization between two operators. Without this synchronization it can not
be guaranteed that no data gets lost. This is critical especially if a lower operator
can not consume intermediate results as fast as the upper operator produces them.
If both, the current and succeeding operator, are able to handle incoming bindings
arrays at a maximum speed of one bindings array per clock cycle then this can be
realized by simply setting the read and valid flags to constant '1'. Consequently,
the filter operator could double the total throughput to 200M bindings arrays per
second. Additionally, an almost overload flag could be added. Succeeding, po-
tentially slower operators could raise this signal after reaching a threshold. The
preceding operators can slow down using the read/valid signals in order to avoid
data loss. Furthermore, the filter expression is supposed to reduce the amount of
data in an early step of the overall query evaluation. Depending on the selectivity
of the expression the filter operator might consume data at a maximum speed of
one bindings array per second but will not provide data at the same speed because
many bindings arrays might not satisfy the filter expression and consequently will
be dropped. In summary, the hereby presented filter operators satisfy the required
efficiency and scalability necessary for the early involvement in our hybrid query
engine.

3.5 Additional Operators

In the following section, we outline the remaining supported operators to increase
expressiveness of our hybrid query engine. Contrary, to the previous two operators
(join and filter), the implementation of the following operators is relatively sim-
ple. Thus, only the general functionality is outlined and no explicit performance
evaluation is given. The concrete parametrization will be further explained later
in Section 4.2.3. Additionally, not supported features of SPARQL are examined in
this section as well.

3.5.1 RDF3XIndexScan

In the final hybrid architecture the evaluation indices in terms of B+-trees are
stored in the host’s HDDs and maintained by the LUPOSDATE software system.

107

3 Query Operators on Field-Programmable Gate Arrays

However, the evaluation indices are providing RDF triples respectively ID triples
which are transferred to the FPGA platform. Each index scan in the software
environment has as a counterpart a RDF3XIndexScan operator instantiated on
the FPGA (see Figure 3.33). The RDF3XIndexScan receive triples and maps the
triple components (s,p,o) into the corresponding ranges of the data signal which
represent the currently processed bindings array structure. While receiving of
triple components operates at the same clock rate as the interfacing core (e.g.,
PCIe), the provision of bindings arrays to succeeding operators runs at a common
operator graph clock rate. Thus, the clock domain of the arbitrary communication
interface and the query structure in the FPGA is completely decoupled. Assuming
the communication interface provides triple data at maximum speed (one triple
per clock cycle) the RDF3XIndexScan operator generates corresponding bindings
array at the same rate.

3.5.2 Projection

The Projection carries out the SELECT clause of the SPARQL query. Thus, vari-
ables used during query evaluation but not required in the final result are discarded
typically at the end of the QEP (see Figure 3.34). As the bindings array directly
corresponds to wires on the FPGA the wires representing a variable to be discarded
are simply not connected to the operator’s output. Although this would allow an
instant projection, the Projection temporarily stores the projected result within one
clock cycle in an output register due to our conception of an operator pipeline.

I

5 2 8

s p o

25 8

Figure 3.33 − RDF3XIndexScan op-
erator recieves triples and maps the
triple components (s,p,o) into the
corresponding positions in the bind-
ings array.

π?a?d

5 2 8 1

?a ?b ?c ?d

5 8

Figure 3.34 − Projection operator dis-
cards bound values of variables
which do not appear in the final re-
sult.

108

3.5 Additional Operators

∪

5 1

2 6

8 1

5 3

?a ?b ?c ?d

62

5 3

15

8 1

(a) Simple Union.

∪M

5 1

2 6

3 8 1

4 5 3

?a ?b ?c ?d

62

54 3

83 1

15

(b) Merge-Union.

Figure 3.35 − Union operators.

3.5.3 Union / Merge-Union

The Union operator builds the union of the results provided by its two predecessors
(see Figure 3.35(a)). It is not necessary that the same variables are bound at this
point in the query execution. The implementation is straight forward. If the left
input is valid then it is forwarded to the output. Otherwise, if the right input is
valid then it is forwarded to the output. If both preceding operators indicate to
be finished then the Union sets its finished flag as well. The Merge-Union shown
in Figure 3.35(b) is an extension and requires sorted input regarding common
variables. It unifies the two inputs such that the result is still sorted. Therefore,
it compares the bound values of the common variables and forwards the smaller
input to the operator’s output. If one of the preceding operators indicates to be
finished then the remaining bindings arrays of the other operator are forwarded to
the output. Both union operators take two inputs R and S but can provide only
one result at a time to their output. Thus, they require at least |R| + |S| clock
cycles.

3.5.4 Limit and Offset

The Limit(i) operator is typically located directly at the end of the QEP and
forwards up to i bindings arrays to its output. In Figure 3.36, the Limit operator
is parametrized with two and thus only two of four bindings arrays remain in the
result. If the limit is reached or its preceding operator indicates to be finished then
the Limit operator sets its finished flag. In turn the Offset(i) operator skips the first

109

3 Query Operators on Field-Programmable Gate Arrays

i resulting bindings arrays and simply passes the remaining bindings array to its
successor. In Figure 3.37, the Offset operator is parametrized with two and thus
the first two incoming bindings arrays are discarded from the result. Internally
both functionalities are simple counting operations. In order to selects different
subsets of the query result the Limit and Offset operators can be combined. Both
operators can process one bindings array per clock cycle.

LIMIT(2)

3 2 3 4

5 1 2 3

5 5 6 7

8 5 4 3

?a ?b ?c ?d

5 1 2 3

3 2 3 4

Figure 3.36 − Limit operator.

OFFSET(2)

3 2 3 4

5 1 2 3

5 5 6 7

8 5 4 3

?a ?b ?c ?d

8 5 4 3

5 5 6 7

Figure 3.37 − Offset operator.

3.5.5 AddBinding / AddBindingFromOtherVar

The AddBinding respectively AddBindingFromOtherVar operators shown in Fig-
ure 3.38 might occur due to a logical optimization rule for constant respectively
variable propagation [201]. E.g., if a simple filter expression checks a variable and
a constant for equality then the constant can by pushed up in the operator graph
replacing the variable with the constant value in the triple pattern of the corre-
sponding index scan operators. Consequently, retrieved bindings arrays matching
the modified triple pattern implies that the filter condition is already satisfied when
provided by the index scan operator. Both operators can process one bindings array
per clock cycle.

3.5.6 Unsupported Operators

At this stage, we support a subset of SPARQL 1.0 using the previously described
operators. The Sorting and Distinct operators are not implemented so far. Both

110

3.6 Summary

ADD(?b←3)

3 3

5 1

?a ?b ?c ?d

5 3 1

3 3 3

(a) Add binding from constant value.

ADD(?d←?c)

3 3

5 1

?a ?b ?c ?d

5 1 1

3 3 3

(b) Add binding from another variable.

Figure 3.38 − AddBinding operators.

must temporarily store the whole intermediate result of their predecessors, and
thus have enormous memory requirements which can not be satisfied by using only
BRAM. Koch et al. [185] utilize the entire FPGA in their sorting architecture
and thus is not applicable in our approach. However, extending our approach with
additional memory interface such as DDR3 and with support for mass storage
devices like SSDs we will be able to implement these operators in the future. The
OPTIONAL operator (left outer join) can be derived from already implemented join
operators. Furthermore, SPARQL tests such as isIRI and aggregation functions
are not implemented, yet. Some redundant features like the SPARQL 1.1 paths
(restricted to those without repetitions) can be partly covered by query rewriting.

3.6 Summary

In this chapter we have introduced the operator template and described the imple-
mentation of the join and filter operator. The evaluation shows possible speedups
of up to 10X for the join operator respectively up to 5.5X for the filter operator.
However, the evaluated datasets are small and communication costs are not consid-
ered yet in the performance evaluation because of the early prototype stage of the
system. It might be questionable if the transfer of the data from the host system
to the FPGA and back could devastate the achieved speedup. First of all, in the
completely software-based query evaluation the data has to be loaded from the
HDDs and all the data can not be provided to the CPU immediately as well. As
the FPGA works in parallel to the host system, a hardware-accelerated QEP can
begin with the evaluation right after the first bindings arrays have arrived. After

111

3 Query Operators on Field-Programmable Gate Arrays

the initial latency needed to provide the first bindings arrays a steady flow of (i)
sending new triples to the FPGA, followed by (ii) processing them on the FPGA
through several pipelined and parallelized operators and finally (iii) sending the re-
sulting bindings arrays back to the host system, can be established. Furthermore,
in this chapter only single operators are evaluated on the FPGA which does not
benefit from inter-operator parallelism. Consequently, the composition of multiple
operators to a complete hardware-accelerated QEP will result in performance im-
provements by taking advantages of the intra-query and inter-operator parallelism
as well as operator pipelining. However, when it comes to the execution of complete
operator graphs we have to categorize the operators into non-blocking and blocking
operators. Non-blocking operators are operators which can start the computation
without receiving the whole input of the preceding operators and thus are highly
suitable for true operator pipelining. Mainly those are operators which have a small
or no memory footprint such as Filter or (Merge-)Union. Each of these operators
can process one intermediate result in a constant time k. Consequently, a pipeline
of several operators introduces an initial latency of #operators∗k clock cycles. Af-
ter the pipeline is filled each k clock cycles a new intermediate result is processed.
Furthermore, also operators with medium/large memory footprint can support the
pipelined execution. The proposed SHJ consumes continuously the input of both
preceding operators and provides intermediate results before consuming the whole
input. Also the MJ can be considered as a non-blocking operator. Because it re-
trieves sorted data, typically in real-world case-studies the amount of cached inputs
of one preceding operator which have the same value at join attribute as the input
of the other preceding operator is small. Additionally, the proposed implementa-
tion further improves pipelining capabilities because while joining matching pairs,
the input of both preceding operators is consumed until a match is found and thus
are already available after the cached data is joined. Then MJ can proceed faster
with joining the next matching pairs. The LUPOSDATE system intensively uses
indices and thus many of the join operations are executed using MJ. Blocking
operators (Pipeline-Breaker) are operators which can not start the computation
without receiving the whole input of at least one preceding operator. This class of
operators contains all sorting operators as well as some join operators like AHJ or
NLJ. Temporarily storing the whole input also implies a high demand of memory
space. This amount of space is practically reduced by the LUPOSDATE architec-
ture because of the previously described mapping of strings to integer IDs. Besides
the small memory footprint of one variable in the bindings array, typically the
number of variables in real-world queries is small as well and consequently the in-
tegrated memory (BRAM) of the FPGA can be used efficiently. Despite the true
pipelining between operators, the FPGA gains some advantages regarding the way
how to transfer intermediate results between two operators. While CPU-based sys-
tems have to store intermediate results between succeeding operators in additional

112

3.6 Summary

memory/registers, the QEP on the FPGA allows a natural flow of the bindings
arrays between successive operators. Furthermore, the execution of the QEP in
software is always effected by the operating system (e.g. scheduling of processes,
moving of memory pages). Each operator on the FPGA performs the processing
in dedicated hardware blocks and several processing cores do not interfere. In the
following chapter, we will show how to automatically transform a given query into
a configuration suitable for an FPGA.

113

4
Automated Composition and

Execution of Hardware-accelerated
Operator Graphs

In the previous chapter we introduced the operator template to assist the idea
of composing hardware-accelerated Query Execution Plans (QEPs) consisting of
arbitrary operators. As queries are typically unknown at system deployment time,
a static approach is not feasible and not flexible to cover a wide range of queries
at system runtime. Therefore, we introduce a runtime reconfigurable architecture
based on an FPGA which is transparently integrated into the Semantic Web (SW)
database LUPOSDATE. At system runtime, the proposed approach dynamically
generates an optimized hardware accelerator in terms of an FPGA configuration for
each individual query and transparently retrieves the query result to be displayed
to the user. During hardware-accelerated execution the host supplies triple data
to the FPGA and retrieves the results from the FPGA via PCIe interface. The
benefits and limitations are evaluated on large-scale synthetic datasets with up to
260 million triples as well as the widely known Billion Triples Challenge (BTC)
with over one billion triples [202]. Parts and results of this chapter have been
published in [8, 9].

4.1 Hybrid Architecture

In this section we introduce our hybrid query engine in terms of processing tasks
provided by the software system and an architectural overview of the runtime
reconfigurable accelerator based on an FPGA.

115

4 Automated Composition and Execution of Hardware-accel. Operator Graphs

QueryEvaluator

compileQuery
logicalOptimization
physicalOptimization

evaluateQuery

CommonCoreQueryEvaluator

BasicIndexQueryEvaluator

MemoryIndexQueryEvaluator RDF3XQueryEvaluator

FPGAQueryEvaluator

Figure 4.1 − Class hierarchy of query evaluators in LUPOSDATE (simplified).

4.1.1 Integration into LUPOSDATE

LUPOSDATE follows a modular approach to integrate new query evaluators and
to exchange them during system runtime. In order to deploy a new query eval-
uator it has to be derived from the abstract class QueryEvaluator or one of its
abstract subclasses, e.g., CommonCoreQueryEvaluator and BasicIndexQueryEvalua-
tor (see Figure 4.1). Latter provide some initialization routines for often used
setups and further simplify the development of new query evaluators. Besides
compiling the query each evaluator provides methods for the logical and physi-
cal optimization as well as for the query evaluation. Among other query eval-
uators, LUPOSDATE provides the in-memory evaluator MemoryIndexQueryEval-
uator and the RDF3XQueryEvaluator which operates on six evaluation indices as
described in Section 2.1.3. In this work we integrate the FPGAQueryEvaluator into
the LUPOSDATE framework to support a transparent query execution on the
FPGA in order to increase query performance. It introduces another processing
step after the physical optimization which maps the query structure onto FPGA
resources. Afterwards the query is evaluated collaboratively by the host and the
FPGA platform. Details are described in the following sections.

4.1.2 Hybrid Work Flow

Figure 4.2 shows the general processing flow of our hybrid query engine. First
the user submits a query which is transformed into an operator graph by the
LUPOSDATE system. On the operator graph several logical and physical opti-
mizations are applied [14] resulting in the query’s Query Execution Plan (QEP).
Afterwards, the QEP is analyzed for unsupported operators, e.g., sorting opera-
tors. In case such an operator was found the query is evaluated completely by the

116

4.1 Hybrid Architecture

FPGA Toolchain

Parse Query Optimize & Analyze

suitable?

yes no
Software Execution

Display Result

Generate VHDL code

Synthesis

Place & Route

Bitgen

Configuration

errors?

yes

no

Supply Triples

Execution on FPGA

Collect Results

Preprocessing Execution

Figure 4.2 − Flow chart of the hybrid system.

software engine on the host system. If all operators are supported then our new
extension traverses the operator graph and generates a VHDL file which represents
the given query. A detailed description of this process is given later in Section 4.2.
The full FPGA toolchain (Xilinx Synthesis Technology (XST), mapping, Place &
Route (PAR)) is applied on the VHDL description of the circuit. The resulting
bitfile is configured on the FPGA and the query is ready to be executed. Again,
in case of any error (e.g., translation failed caused by lack of FPGA resources)
the query is evaluated in software. This always preserves a running system. If no
error occurred then the query is executed on the FPGA. In fact, during execution
the host and FPGA work jointly. While the query operators are executed on the
FPGA the host covers the following two tasks during query execution:

a) Provision of input triples: Depending on the triple patterns given in the
query, a collation order for each index scan is chosen (see Section 2.1.3). The
underlying data structure (B+-tree) iteratively returns all ID triples satisfying
the triple pattern. The ID triples are written in a buffer on the host and block-
wisely passed on to the FPGA.

b) Retrieval and post processing of results: Concurrently, the host is re-
questing resulting bindings arrays from the FPGA. Usually this returns mul-
tiple results but not necessarily all at once. Thus, results are requested again
until query execution is finished. In further post processing steps the result’s
low level representation (array of integer) is packed into higher data structures
(literal and bindings objects) in order to return the result back to typical soft-

117

4 Automated Composition and Execution of Hardware-accel. Operator Graphs

ware flow of LUPOSDATE and its modules for presenting the result to the user
or submitting it to another application.

4.1.3 Hybrid Query Engine

Figure 4.3 shows the architecture of the hybrid query engine consisting of two parts:
the host, which provides higher functions (such as user interface, query optimiza-
tion, maintaining of evaluation indices, etc.), and the FPGA as an accelerator for
query execution. The communication between both units is based on PCIe. The
FPGA is divided into static logic and one Reconfigurable Partition (RP). The
static logic contains modules which are independent of the actual query struc-
ture. Typically, those are modules for communication and memory interfaces. In
this case it contains the PCIe Endpoint (EP), an Internal Configuration Access
Port (ICAP) module and a managing module, the Query Coordinator (QC). The
main task of the QC covers delivery of incoming triples to the corresponding index
scan operators (RDF3XIndexScan) in the dynamic partition as well as retrieval
and serialization of bindings arrays (forming the final result). The RP can be re-
configured at runtime with a bitfile representing any arbitrary QEP (limited by
chip area). All QEPs contain index scan operators In with n ∈ {1..k} with k fixed
but adjustable at system deployment (currently k = 8). Each index scan represents
a triple pattern (with possibly bound components) and maps the incoming triple
components into the corresponding variable positions in the bindings array. Suc-
ceeding operators (such as Join, Filter, Union, etc.) consolidate and filter partly
bound bindings arrays to combined final results. These results are returned to the
QC in the static logic in order to transfer them to the host. On the host, the result
is materialized in higher data structure for further processing such as displaying the
result to the user or delivery to the calling application. The triples are supplied
using virtual streams – one for each index scan operator in the QEP – between
host and FPGA. Virtual streams logically divide the PCIe interface into multiple
channels. In the FPGA and on the host, each stream provides a dedicated inter-
face including dedicated buffer (BRAM respectively main memory). For incoming
triple data, each stream is associated with one index scan operator. The result is
always sent back on the first stream. Remaining streams can be used in the future
to support processing of multiple queries on the FPGA at the same time. In the
following section, we describe how to automatically obtain a configuration for the
RP during system runtime.

118

4.2 Automated Composition

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

static logic FPGA

Host

User Application

PCIe Endpoint PCIe Endpoint
Query Coordinator

IC
A
P

Reconfigurable Partition

I1 I2 . . .

. . .

Ik−1 Ik

◃▹

σ

◃▹

◃▹

∪
πR

P
O
S

P
S
O

O
S
P

S
O
P

S
P
O

Result

Query

QEP

Figure 4.3 − Architectural overview of the integrated hybrid query execution en-
gine. The FPGA’s logic fabric is divided into the static logic and one large Re-
configurable Partition (RP). According to the Query Execution Plan (QEP) of a
given query, a configuration is generated and configured via Internal Configura-
tion Access Port (ICAP) onto the FPGA. Afterwards, triples from the indices
located on the host are sent to the FPGA. The query results is determined
within the FPGA and sent back to the host.

4.2 Automated Composition

The configuration of the RP is generated automatically for each query. Therefore,
we use a VHDL template and the operators presented in Chapter 3 to compose
a VHDL file which represents a given query. The template consists of a dynamic
part and a static part (not to be confused with the static logic). The components
of the template are summarized in Table 4.1. In the following section, a detailed
description for each component of the template is given.

119

4 Automated Composition and Execution of Hardware-accel. Operator Graphs

Table 4.1 − Components of the VHDL template to generate the Reconfigurable
Module (RM) to be configured into the Reconfigurable Partition (RP).

Static signals & constants definition
Dynamic signals & constants definition
Dynamic signal assignment
Dynamic mapping of index scans
Static instantiations of entities
Dynamic instantiations of entities
Static glue logic

Listing 4.1 − Record type op_connection to connect two consecutive operators.

1 type op_connection is record
2 read_data : std_logic;
3 data : std_logic_vector(DW−1 downto 0);
4 valid : std_logic;
5 finished : std_logic;
6 end record op_connection;

4.2.1 Static Components

Each query contains a result operator which is connected using the signal results
of the record type op_connection shown in Listing 4.1. It is used as an interface
between the dynamically generated QEP and the static code which takes the query
results and serializes them into the PCIe engine. The record type op_connection
is an essential part in the dynamic part of the VHDL template as well and will be
explained in detail in Section 4.2.2. Additionally, the static instantiation of entities
covers a reset generator, a cycle counter (for debugging purposes and to evaluate
the raw FPGA performance) and signals to connect the logic in the RP with the
QC in the static logic.

4.2.2 Dynamic Components

In the following sections, we describe how the query operators are dynamically
instantiated and connected by composing VHDL code fragments based on the
operator template. The resulting VHDL file describes the whole structure of the
given query.

120

4.2 Automated Composition

4.2.2.1 Operator Instantiation and Interconnects

The operator instantiation bases on the operator template introduced in Sec-
tion 3.2. It defines the input and output signals which need to be implemented by
each operator. Each operator can have up to two preceding and one succeeding
operator. While traversing the QEP in LUPOSDATE, for each visited operator an
ID X is assigned and the signals opXinput1, opXinput2 and opXoutput1 are defined
(see lines 1 to 3 in Listing 4.2). Additionally, an entity of a specific operator with
type OperatorType is instantiated (line 5). In the port map (lines 11 to 27) the
internal operator signals are connected with the previously defined op_connection
signals. The generic map (lines 6 to 10) is used to parameterize this particular
operator. All operators have the generics for the data and value width in common
which correspond to the width of the bindings arrays and variables. Therefore,
two constants – BINDINGS_ARRAY_WIDTH and BINDINGS_WIDTH – are dy-
namically defined and thus assigned to all instantiated operators. Furthermore,
each operator can have additional individual generics. These extensions will be
described in Section 4.2.3.

The actual wiring of two consecutive operators is shown in Listing 4.3 and uses the
previously assigned operator IDs to systematically connect two operators. As the
output of operator X is used as (left) input of the operator Y this implies that X
is the predecessor of Y (see lines 2 to 4). The read_data flag indicates operator X
that operator Y has read the provided data and thus can provide the next data
(see line 1).

4.2.2.2 Triple Input Mapping

The input mapping of triples to index scan operator is realized implicitly by assign-
ing one individual virtual stream to each index scan operator within the QC. The
synchronization between the PCIe EP at host and FPGA is implicitly covered by
the PCIe core. The PCIe implementation is realized using the freely available Xilly-
bus core [203] which allows to divide one physical interface into multiple logical (or
virtual) stream interfaces. More details about the Xillybus core and a performance
analysis is given in Appendix A. Using virtual streams is a great advantage if the
triples of different index scans are not consumed at the same rate. If one index
scan does not consume the triples as fast as they arrive then the buffers within the
FPGA and the host memory get filled. This will finally block the writing method
within the host application. Assuming that all triples for all index scans are sent
using the same stream this might cause that the triples of a blocked index scan
are blocking the commonly used stream. As a consequence, the other index scans

121

4 Automated Composition and Execution of Hardware-accel. Operator Graphs

Listing 4.2 − Instantiation of operator X. Each operator is identified by its ID
which is used to dynamically define corresponding signals.

1 signal opXinput1 : op_connection;
2 signal opXinput2 : op_connection;
3 signal opXoutput1 : op_connection;
4 [...]
5 operatorX : entity work.OperatorType(arch)
6 generic map(
7 DATA_WIDTH => BINDINGS_ARRAY_WIDTH,
8 VALUE_WIDTH => BINDINGS_WIDTH,
9 −−[... more operator specific generics ...]

10)
11 port map(
12 [...]
13 left_read => opXinput1.read_data,
14 left_data => opXinput1.data,
15 left_valid => opXinput1.valid,
16 left_finished => opXinput1.finished,
17

18 right_read => opXinput2.read_data,
19 right_data => opXinput2.data,
20 right_valid => opXinput2.valid,
21 right_finished => opXinput2.finished,
22

23 result_read => opXoutput1.read_data,
24 result_data => opXoutput1.data,
25 result_valid => opXoutput1.valid,
26 result_finished => opXoutput1.finished
27);

Listing 4.3 − Connecting two operators identified by their ID’s X and Y.

1 opXoutput1.read_data <= opYinput1.read_data;
2 opYinput1.data <= opXoutput1.data;
3 opYinput1.valid <= opXoutput1.valid;
4 opYinput1.finished <= opXoutput1.finished;

122

4.2 Automated Composition

receive no more triples and thus the whole query execution is blocked. Of course
this can be avoided by an explicit and strict synchronization between host and
FPGA, but causes additional delays and protocol overhead which degrades overall
performance. Thus, we divide one physical stream into multiple virtual streams,
each implicitly synchronized and not effecting other virtual streams. However,
as all virtual streams share one physical interface consequently the bandwidth is
shared as well. The available bandwidth for each virtual stream is not preassigned
and thus if only one virtual stream is used to send data then this stream can utilize
the full bandwidth.

As mentioned before, each QEP contains a result operator which interconnects the
QEP in the RP to the QC located in the static logic. If the finished flag of the
result operator is set to '1' then the query execution is finished. As a consequence
the QC will close the result stream to the host which is detected on application
level.

4.2.3 Parametrization of Operators

In the following sections, we present the parametrization of the operators previously
introduced in Chapter 3 which are supported by our hybrid query engine. Besides
common parameters such as number and data width of the variables, each operator
is equipped with individual generics. While traversing the QEP in LUPOSDATE,
the values to be assigned to the generic are calculated dynamically according to
the current query.

4.2.3.1 RDF3XIndexScan

The RDF3XIndexScan is the link between the QC and the inner operators. Typ-
ically the RDF3XIndexScan provides data triples s, p, o but a bindings array can
have less or more than three variables and also not all of the three triple components
might be necessary to evaluate the query. Thus, the main objective of this operator
is to receive triples from the QC and map their required components to a position in
the bindings array. Therefore, the RDF3XIndexScan has three additional generics
SUBJECT_POSITION, PREDICATE_POSITION and OBJECT_POSITION – each
is a one-hot-coded bit vector indicating the position of the subject, predicate and
object, respectively. Each vector consists of as much bits as there are variables
in the bindings array. During synthesis these vectors are evaluated following a
simple scheme: If bit x is set to '1' in the bit vector of one triple component then
this triple component is connected to position x in the bindings array. Unbound
variables are initialized with an invalid value.

123

4 Automated Composition and Execution of Hardware-accel. Operator Graphs

4.2.3.2 Join

This operator joins the intermediate results of two preceding operators depend-
ing on one or more common join attributes. Similar to the RDF3XIndexScan,
the position of the join attribute is determined by the one-hot-coded bit vector
JOIN_VECTOR. As the structure of the bindings array is globally the same in the
whole QEP, only one set bit is necessary. However, it is possible that a join on
more than one common variable is executed. Although this is not yet supported
by the proposed system it is possible to simply add additional bit vectors for sec-
ondary, tertiary, etc. orders. The bit vector is independent of the actual used join
algorithm, e.g., Nested Loop Join or Merge Join.

4.2.3.3 Filter

In Section 3.4 we presented two approaches to implement the filter operator for
SPARQL queries. Taking the optimizer of LUPOSDATE into account we are able
to break down complex filter expressions into multiple simple filter operators of the
scheme VALUE COND VALUE, with COND as the condition, e.g., equality, and
VALUE either a constant or variable. Specifically, this means that conjunctions
of filter expressions result in a chain of simple filter operators each evaluating only
one relational condition involving one variable and a constant value respectively
another variable. In case of disjunction the operator duplication takes place and
thus multiple disjunctive conditions are evaluated by simple filter operators in con-
current branches of the operator graph. In turn the intermediate results of two (or
more) branches simply need to be unified in a lower level of the QEP as described
in Section 3.4.3. As a result each simple filter operator is equipped with the fol-
lowing generics. The generic FILTER_OP_TYPE describes the relational operation
to be evaluated by the filter. Due to the mapping from strings to integer IDs our
approach supports only equal and unequal comparators at the moment. However, if
the dictionary (ID→string) would be available on the FPGA also other conditions
such as greater/smaller than are possible. Furthermore, we have to distinguish be-
tween expressions comparing a variable with a constant value and comparing two
variables of the bindings array. Therefore, the boolean FILTER_LEFT_IS_CONST
is set to true if the left value is a constant. If so then the constant value is passed
through the generic FILTER_LEFT_CONST_VALUE by setting the actual value to
be compared. Contrary if the left value is not a constant then the one-hot-coded
bit vector FILTER_LEFT_VAR_POS is considered. Like in previously described
operators a set '1' bit in this vector corresponds to the position of the variable
in the bindings array. The same scheme is applied for the right value of the filter
expression as well by simply replacing the term LEFT with RIGHT in the generics.

124

4.2 Automated Composition

4.2.3.4 Projection

The Projection carries out the SELECT clause of the SPARQL query. Therefore,
it is equipped with the bit vector PROJECTION_VECTOR. It has as much bits as
the bindings array has variables. If bit x is set to 1 bit in the bit vector then the
corresponding variable at position x in the bindings array remains in the result.
Otherwise the corresponding variable is discarded.

4.2.3.5 (Merge-) Union

The Union operator builds the union of the results provided by its two predeces-
sors. It is not necessary that the same variables are bound at this point in the
query execution. The Merge Union requires sorted input regarding common vari-
ables. It unifies the two inputs such that the result is still sorted. Therefore, it
is equipped with the one-hot-coded bit vector UNION_VECTOR, to indicate the
common variable such that the order can be preserved. Similar to the generics of
the join additional bit vectors might be added to enable secondary, tertiary, etc.
orders. The simple Union has no additional generics.

4.2.3.6 Limit and Offset

The Limit operator is typically located directly before the result operator and
forwards a specific amount of resulting bindings arrays. After its limit is reached
(by simply counting) or its preceding operator indicates to be finished, it rises
its finished flag which propagates through the result operator to the QC. As a
consequence the QC will close the result stream to the host which is then detected
on application level. In turn, the Offset operator skips a specific number of the
first resulting bindings arrays and simply passes the remaining bindings array to its
successor. Combining Limit and Offset selects different subsets of the query result.
Therefore, both operators are equipped with an integer generic LIMIT respectively
OFFSET to set its corresponding value.

4.2.3.7 Unsupported Operators

As described in Section 3.5.6 some of the operators are not supported by our hybrid
query engine, yet. If an unsupported operator is detected during query optimization
the proposed system always falls back to the software-only execution covering full
SPARQL 1.1. Additionally, as a next step the operator graph could be partly

125

4 Automated Composition and Execution of Hardware-accel. Operator Graphs

located on the FPGA and on the host system. Latter executes the remaining not
implemented operators.

4.3 Evaluation

This section describes the evaluation setup and analyzes the proposed architecture
with respect to the query execution time and the resulting speedup compared to
the software-based execution on a general-purpose CPU.

4.3.1 Evaluation Setup

The host system is a Dell Precision T3610 (Intel Xeon E5-1607 v2 3.0 GHz, 40
GByte DDR3-RAM) which is equipped with the FPGA board described in Sec-
tion 2.2.2. As operation system Ubuntu 14.04 x86-64 (kernel 3.16.0-71-generic) is
used. The evaluation data is located on the HDD of the host system and will be
transferred to the FPGA during query execution via PCIe. The PCIe implementa-
tion is realized using the freely available Xillybus core [203]. Utilizing 4 PCIe lanes
our architecture achieves throughputs of up to 430 MByte/s for writing data to the
FPGA, and up to 225 MByte/s for reading data from the FPGA. The complete
performance analysis of the PCIe interface is given in Appendix A.

However, we show in the next sections that the PCIe interface, although not even
closely utilized at its specification, is not the bottleneck of our architecture. Before
the performance analysis we have verified the soundness and completeness of the
query results of the test queries which are introduced in the next sections.

4.3.2 SP2Bench SPARQL Performance Benchmark

As a first step in order to evaluate the presented approach systematically we use
the SP2Bench SPARQL Performance Benchmark (SP2B) [204]. Besides example
queries, it provides a data generator which is able to generate datasets with dif-
ferent triple cardinalities. The generated data itself is motivated by the project
Digital Bibliography & Library (DBLP)[205] and thus is supposed to mirror key
characteristics of real-world data.

For the following runtime analysis we use datasets with varying cardinalities start-
ing at one million up to 262 million triple. Most of the SP2B queries use SPARQL
features which are not fully supported by our hybrid query engine. These are the
sorting and distinct operations as well as relational filter expressions requiring the

126

4.3 Evaluation

materialized string representation rather than the integer ID. Others are consisting
only of a simple index scan and therefore are unlikely to benefit from our hybrid
approach. However, we choose five SPARQL queries inspired by the SP2B queries
to show the feasibility of our approach. SP2B-Q1 consists of one join and a simple
filter expression. SP2B-Q2 consists of two joins which can be executed indepen-
dently. Both intermediate results are unified. SP2B-Q3 consists of three joins.
Two of them can be executed independently as well, while the third join combines
the intermediate results of the previous two operators. The last join operates in
a pipelined fashion concurrently to the other two joins. SP2B-Q4 introduces an
additional variable and thus another join, but the size of the result set is the same
as for SP2B-Q3. SP2B-Q5 is a further extension with one variable/join more and
a smaller result size. The complete test queries can be found in Appendix B. The
size of the results depending on the input dataset size is shown in Figure 4.4 for
each test query.

10
2

10
3

10
4

10
5

10
6

10
7

10
8

10
9

1M 2M 4M 8M 16
M

33
M

66
M

13
1M

26
2M

#
re

su
lt

s
-

lo
g
 s

ca
le

#Triples - log scale

Number of resulting bindings arrays

Q1 Q2 Q3 Q4 Q5

Figure 4.4 − Result size of test queries according to different sizes of the
SP2Bench SPARQL Performance Benchmark (SP2B) dataset [206].

Table 4.2 gives an overview of the metrics used in the following performance eval-
uation. The execution time of the standard LUPOSDATE software system TCPU

is typically shown with a red line and each circle represents the average of 1,000

127

4 Automated Composition and Execution of Hardware-accel. Operator Graphs

Table 4.2 − Performance metrics used in the evaluation of the software and hy-
brid system.
Label Description
TCPU Query execution time using the standard LUPOSDATE software system running on a

general-purpose CPU. No FPGA is involved.
TFPGA-full Query execution time of hybrid system including full iteration through the result on

host.
TFPGA-post Query execution time of hybrid system including post processing of the result on host.
SPfull Speedup TCPU / TFPGA-full
SPpost Speedup TCPU / TFPGA-post

single executions with warm caches. Latter is achieved by a single execution of
the identical query just before the actual performance evaluation. The execution
times of the hybrid system are labeled with TFPGA but covers the whole process-
ing time of the hybrid system. This includes the communication costs to transfer
triples from the host’s HDD to the FPGA as well as to send back the bindings
arrays forming the final result. Furthermore, we differentiate between TFPGA-full and
TFPGA-post. TFPGA-full includes the time of the whole evaluation on the hybrid system
and a final iteration through the obtained result. TFPGA-post includes the previously
described post processing steps on the host (see Section 4.1.2). Each of the both
execution times are set in relation to the software-based execution times on the
CPU resulting in the achieved speedup SPfull respectively SPpost.

Figure 4.5 to Figure 4.9 show the execution times of the test queries for different
dataset sizes. Regarding the very simple query SP2B-Q1, the software-only and
the hybrid approach scale linearly to the dataset (see Figure 4.5). TFPGA-full grows
slower on the hybrid system which results in an increasing speedup of up to 21X.
However, post processing the result on the host causes a higher overhead with
increasing result size shrinking the achievable speedup to 5X. As in both execution
times (TFPGA-full and TFPGA-post) the communication costs are included, the software
turns out to be the bottleneck.

SP2B-Q2 has the largest result set of all test queries. The speedup of the hybrid
system is slightly increasing up to 5X with a growing dataset size (see Figure 4.6).
Due to the enormous result size the post processing on the host further shrinks
the speedup. However, our hybrid query engine is never slower than the CPU-
based execution. Besides the enormous result size, the union operator causes the
speedup degradation. Although this operator is very simple it tends to consume
one intermediate result of one preceding operator and stalls the other preceding
operator. In fact, it stalls a whole branch including a join in this particular query.
SP2B-Q3 contains three joins and has significantly less results than SP2B-Q2, but
more than SP2B-Q1. Due to the previously described higher amount of concurrent

128

4.3 Evaluation

10
1

10
2

10
3

10
4

10
5

10
6

1M 2M 4M 8M 16
M

33
M

66
M

13
1M

26
2M

 0

 10

 20

 30

 40

 50

E
x

ec
u

ti
o

n
 t

im
e

[m
s]

 -
 l

o
g

 s
ca

le

S
p

ee
d

u
p

 -
 l

in
ea

r
sc

al
e

#Triples - log scale

SP
2
B-Q1

TCPU
TFPGA-full

SPfull
TFPGA-post

SPpost

Figure 4.5 − Execution times of SP2B-Q1 for different dataset sizes.

10
1

10
2

10
3

10
4

10
5

10
6

1M 2M 4M 8M 16
M

33
M

66
M

13
1M

26
2M

 0

 10

 20

 30

 40

 50

E
x

ec
u

ti
o

n
 t

im
e

[m
s]

 -
 l

o
g

 s
ca

le

S
p

ee
d

u
p

 -
 l

in
ea

r
sc

al
e

#Triples - log scale

SP
2
B-Q2

TCPU
TFPGA-full

SPfull
TFPGA-post

SPpost

Figure 4.6 − Execution times of SP2B-Q2 for different dataset sizes.

129

4 Automated Composition and Execution of Hardware-accel. Operator Graphs

operators the hybrid system is able to show steady speedup improvements of up
to 28X (see Figure 4.7). Again, post processing on the host shrinks the achievable
speedup significantly down to a still significant speedup of 5X.

SP2B-Q4 is an extension of SP2B-Q3 by introducing a new variable and triple
pattern resulting in another join. The number of resulting bindings array remains
the same, but notice that regarding SP2B-Q4 each bindings array contains one
more variable causing a 25% higher bandwidth requirement and post processing
overhead. Due to the additional join, the software-only execution needs more time
to evaluate the query (see Figure 4.8). Contrary, the FPGA-accelerated execution
shows almost no performance drop because the additional join is located in another
branch of the QEP and is perfectly integrated into the operator pipeline. As a result
the speedup increases up to 32X. However, at some point the speedup drops slightly
but increases again. Contrary, the host system is not able to counterbalance this
drop and post processing shrinks the speedup down to 5X.

SP2B-Q5 further extends SP2B-Q4 by another join respectively variable. This
results in a significantly smaller results than the other queries. In Figure 4.9, it
can be nicely seen that also this query suffers a speedup drop at 66 million triple
but afterwards stabilizes and increases. As the result is relatively small the post
processing on the host does not have a negative effect on the execution time.

It is worth to stress again the fact that the reported execution times and achieved
speedups include the complete communication costs between host and FPGA which
covers (i) reading triples at host side from HDD, (ii) sending triples to the FPGA
using PCIe and (iii) on the other hand sending back the result from FPGA to the
host and (iv) iterating through the result on the host.

4.3.3 Billion Triples Challenge

In this section, we evaluate our hybrid query engine using the read-world dataset
from the Billion Triples Challenge (BTC) [202]. It contains crawled triple data from
various sources, such as DBpedia and freebase, resulting in more than one billion
distinct triples1. The dataset does not provide any reference queries. Therefore, we
chose ten queries with different complexities regarding amount of operators, join
distribution and result size. The test queries BTC-Q1 to BTC-Q10 can be found
in Appendix B.

Figure 4.10 shows the resulting execution times for software-based execution (TCPU)
and the hybrid query engine (TFPGA-full, TFPGA-post) as well as the corresponding speedups

11,056,184,909 without duplicates

130

4.3 Evaluation

10
1

10
2

10
3

10
4

10
5

10
6

1M 2M 4M 8M 16
M

33
M

66
M

13
1M

26
2M

 0

 10

 20

 30

 40

 50

E
x

ec
u

ti
o

n
 t

im
e

[m
s]

 -
 l

o
g

 s
ca

le

S
p

ee
d

u
p

 -
 l

in
ea

r
sc

al
e

#Triples - log scale

SP
2
B-Q3

TCPU
TFPGA-full

SPfull
TFPGA-post

SPpost

Figure 4.7 − Execution times of SP2B-Q3 for different dataset sizes.

10
1

10
2

10
3

10
4

10
5

10
6

1M 2M 4M 8M 16
M

33
M

66
M

13
1M

26
2M

 0

 10

 20

 30

 40

 50

E
x

ec
u

ti
o

n
 t

im
e

[m
s]

 -
 l

o
g

 s
ca

le

S
p

ee
d

u
p

 -
 l

in
ea

r
sc

al
e

#Triples - log scale

SP
2
B-Q4

TCPU
TFPGA-full

SPfull
TFPGA-post

SPpost

Figure 4.8 − Execution times of SP2B-Q4 for different dataset sizes.

131

4 Automated Composition and Execution of Hardware-accel. Operator Graphs

10
1

10
2

10
3

10
4

10
5

10
6

1M 2M 4M 8M 16
M

33
M

66
M

13
1M

26
2M

 0

 10

 20

 30

 40

 50
E

x
ec

u
ti

o
n

 t
im

e
[m

s]
 -

 l
o

g
 s

ca
le

S
p

ee
d

u
p

 -
 l

in
ea

r
sc

al
e

#Triples - log scale

SP
2
B-Q5

TCPU
TFPGA-full

SPfull
TFPGA-post

SPpost

Figure 4.9 − Execution times of SP2B-Q5 for different dataset sizes.

(SPfull, SPpost). Again, all reported execution times include the communication costs
between host and FPGA.

Although, BTC-Q1 is a very simple query, consisting of only one join, the hybrid
system outperforms the software-only approach. BTC-Q2 is an extension of BTC-
Q1 with an additional triple pattern and join, but the new pattern matches only
a small number of triples. Thus, one join causes only low workload and the query
execution does not benefit from the FPGA. However, the performance loss is
almost not notable. In turn, BTC-Q3 has the same query structure as BTC-Q2
but the triple patterns match more triples which results in a higher utilization
of the joins which has no effect on the hybrid system but on the software-only
approach due to higher workload. BTC-Q4 and BTC-Q5 further extend BTC-
Q3 by one respectively two additional triple patterns (with a small amount of
matches) resulting in one respectively two additional joins. The latter causes higher
workload on the software-only approach but has no impact on the hybrid system.
BTC-Q6 has the same structure as BTC-Q5 but the distribution of triples between
index scans is more homogenous. Furthermore, the involved joins generate less
intermediate results which results in a significantly lower execution time than in
the previous queries. BTC-Q7 extends BTC-Q6 by another triple pattern and
join resulting in a ten times smaller result which is beneficial for the software-
only approach but is still significantly slower than the hybrid system. BTC-Q8

132

4.4 Related Work

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

B
TC

-Q
1

B
TC

-Q
2

B
TC

-Q
3

B
TC

-Q
4

B
TC

-Q
5

B
TC

-Q
6

B
TC

-Q
7

B
TC

-Q
8

B
TC

-Q
9

B
TC

-Q
10

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

E
x
ec

u
ti

o
n
 t

im
e

[m
s]

S
p
ee

d
u
p
 -

 l
in

ea
r

sc
al

e

TCPU
TFPGA-full

TFPGA-post
SPfull

SPpost

Figure 4.10 − Execution times of test queries on the BTC-2012 dataset [202].
Queries can be found in Appendix B.

results in a perfectly balanced operator graph consisting of four index scans and
three joins which enables the hybrid system to make use of its inherent advantages.
BTC-Q9 adds another triple pattern without any impact on the hybrid system but
performance gain of software-only system. BTC-Q10 extends BTC-Q9 by adding
two triple patterns resulting in two additional joins. Again, while the execution
time of the hybrid system slightly changes, the performance of the software-only
approach degrades due to the additional operators. In summary, it can be seen
that the hybrid system is less sensible to the query structure but also the post
processing on the host system is negligible.

4.4 Related Work

IBM’s Netezza Data Appliance Architecture [207] uses FPGAs to reduce the amount
of data to be transferred from (persistent) memory to the CPU by early execution
of projection and restriction. It consists of several distributed computing nodes
(S-Blades). Each node is equipped with multi-core CPUs, gigabytes of RAM and

133

4 Automated Composition and Execution of Hardware-accel. Operator Graphs

FPGAs. So-called FAST engines are running in parallel inside the FPGAs and
uncompress and filter data coming from the physical hard drives. Uncompressing
data at wire speed on the FPGA increases the read throughput and thus reduces
the drawback of hard disks. Filtering the data before reaching the CPU reduces
the load on the CPU and thus increases performances. The FPGA is used as
a co-processor to support the CPU but neither allows a modular composition of
database operators nor a complete query execution on the FPGA.

Mueller et al. [208, 209, 210] propose the component library and compositional
compiler Glacier. It takes a continuous query for data streams and generates a
corresponding file written in the hardware description language VHDL. Due to
the window-based processing on data streams, the approach is not suitable for
large-scale datasets. Furthermore, no join operations are supported. After the
time-consuming translation of the VHDL description to an FPGA configuration,
the query can be configured on an FPGA in order to accelerate the evaluation on
data streams. Consequently, this approach is not ideal for online processing or only
suitable for a known query set. Note that the approach of this chapter suffers the
same reconfiguration overhead. This remaining issue is addressed in Chapter 5.

Another synthesis framework that generates complex event processing engines for
FPGAs from an SQL-based language is proposed by Takenaka et al. [211]. In fact,
SQL primitives are translated into C source code which in turn is transformed into
a circuit description using C-to-HDL compiler. The prototype allows window-based
selection, matching and aggregation on multiple concurrent streams for a financial
analysis application. Joins are not supported.

4.5 Summary

In this chapter we integrated a new query evaluator into LUPOSDATE which dy-
namically generates an FPGA-based accelerator for a given query. Therefore, the
FPGA is divided into static logic and a large RP. The configuration file (RM)
of the RP is automatically assembled by using a query template and a pool of
operators. With respect to the query the operators are connected with each other
and parametrized by operator specific generics. As all operators provide a common
interface the presented framework can be easily extended by new operator imple-
mentations. In order to show the architecture’s feasibility and benefits, we executed
several queries on large-scale synthetic datasets generated by the SP2B data gen-
erator and real-world datasets from the BTC. It was shown that our hybrid query
engine is able to achieve speedups of up to 32X including all communication costs

134

4.5 Summary

between host and FPGA. In some cases our approach is not significantly faster
than the CPU-based execution but always shows comparable performance.

However, one important aspect is not yet addressed in the performance evaluation.
Due to complexity of the PAR process, which maps the query to actual resources
on the FPGA, the RM generation takes between 20 to 30 minutes. Thus, although
fully functional the system is not efficiently applicable in a real-world scenario with
dynamically changing queries. A straightforward approach is the generation of RMs
of frequently issued queries and reuse them during runtime. In fact, the detection
and reuse of known queries is prototypically implemented in the proposed hybrid
system. However, in a highly dynamic environment this approach is not applicable
as any arbitrary query is possible. Therefore, we propose to divide the chip area
into multiple small RPs rather than one large RP. Each RP is then able to take
one (but arbitrary) operator. This remaining issue is addressed in the next chapter
by introducing Semi-static Operator Graphs (SOGs).

135

5
Semi-static Operator Graphs

In the previous chapter, we have shown how to dynamically generate VHDL code
to represent and execute a given query on an FPGA. It was shown that the query
execution can highly benefit from our hybrid architecture. However, due to the fact
that the whole FPGA toolchain was executed during system runtime the proposed
architecture is not applicable in real-world scenarios with arbitrary queries. Thus,
in this chapter we extend our architecture by Semi-static Operator Graphs (SOGs).
SOGs deploy the structure of a general operator graph whereas each operator in
the graph is a Reconfigurable Partition (RP). Each RP can take any arbitrary
operator but only one operator at a time. Furthermore, the interconnections of
preceding and succeeding operators is not finally set and can be manipulated by
reconfiguring different Reconfigurable Modules (RMs) into the RPs. As a result
the time consuming generation of configurations can be moved into the deploy-
ment time of the system but still maintains a certain degree of flexibility regarding
different query structures. An article containing parts and results of this chapter
has been submitted for publication at the current Special Issue of the MICPRO
Journal and is under review.

5.1 Extending the Hybrid Query Engine

The overall architecture remains the same as in the previous chapter. The host
provides higher functions (such as user interface, query optimization, maintaining
of evaluation indices, etc.), and the FPGA is utilized as a runtime adaptive accel-
erator for query execution. The communication between both units is based on
PCIe. In the previous chapter, the FPGA chip area was divided into static logic
and one large RP. The RP provided logic resources for a whole operator graph
with an arbitrary number of operators, only limited by the chip area. However,
the configuration for the RP was generated during query time. In this chapter,
Dynamic Partial Reconfiguration (DPR) is used at operator level rather than at

137

5 Semi-static Operator Graphs

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

static logic FPGA

Host

User Application

PCIe Endpoint PCIe Endpoint
Query Coordinator

IC
A
P

RP

σ

◃▹

π

SRE

P
O
S

P
S
O

O
S
P

S
O
P

S
P
O

Result

Query

QEP

Figure 5.1 − Architectural overview of the integrated hybrid query execution en-
gine using Semi-static Operator Graph (SOG). The Query Execution Plan
(QEP) on the FPGA is assemble by choosing appropriate RMs and transfer-
ring them into Reconfigurable Partition (RP) via the Internal Configuration
Access Port (ICAP).

QEP level. Figure 5.1 shows the modified hybrid architecture. Rather than pro-
viding one large RP, the FPGA area is divided into static logic and multiple small
RPs, each taking any kind of operator. The static logic contains modules which
are independent of the actual query structure. Typically, those are modules for
communication and memory interfaces. In this case it contains the PCIe EP and
the Query Coordinator (QC). Additionally, the interconnections between the op-
erators are located in the static logic as well. But instead of directly connecting the
output of one operator to the input of another operator, we introduce Semi-static
Routing Elements (SREs) between operator levels. In Section 5.1.1 we explain
how these SREs allow a flexible operator interconnection in the deployed opera-
tor graph. Utilizing DPR, the RMs of the required operators are transferred into
the static logic via the PCIe interface and are configured into the RPs using the
ICAP.

138

5.1 Extending the Hybrid Query Engine

5.1.1 Semi-static Routing Element

Instead of connecting the output of one operator directly to the input of another
operator, we instantiate SREs between them. Each SREs can take a specific num-
ber of operator outputs and redirects them to the same number of operator inputs.
The number of supported operators can be set during deployment time of the sys-
tem. Figure 5.2 presents an example with two inputs and two outputs. Dashed
squares mark the RPs. The SREs are located in the static logic. The internal be-
havior of a SRE in terms of input-output-relations is effected by the external input
succ_sel. In Figure 5.2, if succ_sel is set to '0' then the results of the preceding
operators are routed straight downwards. Otherwise succ_sel is set to '1' and the
results are routed crosswise. The actual value of succ_sel is set from within the
RP and thus can be modified during system runtime by configuring different RMs
in the corresponding RPs. SREs can be instantiated using more than two pre-
ceding and succeeding operators. Obviously, then the succ_sel inputs of the other
operators must be considered, e.g., using three inputs/outputs implies six possible
input-output relations which requires three bits for encoding. Internally, the SREs
are simple n-to-n multiplexer (or crossbars). However it is not required that all
inputs and outputs are connected to actual RPs and can be unconnected.

5.1.2 Modified Hybrid Work Flow

The fundamental change within the FPGA design using multiple small RPs instead
of one large RP effects the general hybrid work flow as shown in Figure 5.3. In
order to utilize the RPs in the FPGA fabric efficiently, it is divided into deployment
time and system runtime.

5.1.2.1 Deployment time

Such as in traditional database systems, our hybrid system needs to be deployed
before using it for query processing. Alongside the obligatory installation of the
mandatory software and initial import of data, the static logic has to be deployed
on the FPGA and the RMs need to be generated and stored in the repository. The
semi-static structure of the QEP in the FPGA needs to be expressed explicitly in
VHDL by the designer or one of the developed SOGs of this work can be used.
Note that the static design contains no actual operator but RPs instead. After the
SOG is chosen, several processing steps of the FPGA toolchain have to be applied.
Therefore, we provide scripts using Python [212] and Tcl [102] to automatically
execute the following tasks during deployment time:

139

5 Semi-static Operator Graphs

SRE

T T

T T

succ sel succ sel

succ sel succ sel

succ sel=’1’
su
cc

se
l=

’0
’

su
cc

se
l=

’0
’

Figure 5.2 − Semi-static Routing Elements (SREs) are located in the static logic
connecting multiple Reconfigurable Partitions (RPs, dashed squares). By trans-
ferring a Reconfigurable Module (RM) into the RP, the value of succ_sel is set
which determines the final connection between two succeeding operators.

a) Synthesis of static logic including the SOG. At this stage an upper bound
determining the number of supported variables must be given. The netlist is
imported into a PlanAhead project [93].

b) Obtaining netlists for all operators. In fact, for each operator multiple netlists
are generated with all possible permutations of their corresponding generics
and possible values for succ_sel. Regarding Figure 5.2, there are at least two
netlists for each operator type. One with succ_sel set to '0' and one with
succ_sel set to '1'. As a consequence many netlists are generated. However,
an alternative approach would have been to set these metadata during query
execution by sending them just before the data stream. This would require
additional operator logic to distinguish between metadata and actual triple
data. Therefore, we decided to keep operators as simple as possible by the cost
of additional deployment time.

140

5.1 Extending the Hybrid Query Engine

FPGA Toolchain

Parse Query

Optimize & Analyze

suitable?

yes no
Software Execution

Display Result

Select RMs

Synthesis

Place & Route

Bitgen

Configuration

F
or

al
l
op
er
at
or
s

RM

errors?

yes

no

Supply Triples

Execution on FPGA

Collect Results

DEPLOYMENT TIME SYSTEM RUNTIME

Figure 5.3 − Flow chart of the hybrid system using SOGs. The Reconfigurable
Modules (RMs) are generated at system deployment time. During system run-
time, the RMs are selected and configured into the RPs.

c) For each operator netlist one run is generated in the PlanAhead project im-
porting the common static logic. Each run assigns its particular netlist to all
RPs. An exception is the RDF3XIndexScan as it is always located in the upper
levels of the SOG.

d) All generated runs are executed until BitGen. This generates the RMs of all
operators for all RPs.

e) Finally, the static logic is configured onto the FPGA.

Due to many possible combinations of RPs, operator types, operator generics and
values for succ_sel potentially many RMs are generated. As explained in Sec-
tion 2.2.3 this process is very time consuming. However, with this approach we
execute the time consuming FPGA toolchain during deployment time of the system
and not during system runtime.

5.1.2.2 System Runtime

After the hybrid system has been deployed, the user submits a query which is
transformed into an operator graph by the LUPOSDATE system. On the operator
graph several logical and physical optimizations are applied (see Section 2.1.3).
Afterwards the optimized operator graph is analyzed for unsupported operators.
If all operators are supported then our new extension traverses the operator graph

141

5 Semi-static Operator Graphs

and chooses appropriate RMs in terms of operator type and input for the SREs.
The chosen RMs are configured via ICAP, setting the final structure of the operator
graph on the FPGA.

Algorithm 5 shows the mapping algorithm for a given QEP and SOG. In a first pro-
cessing step all possible tree structures are generated by encountering all possible
assignments of succ_sel of all SREs. The SOG used in the subsequent evaluation
consists of five SREs each with two inputs respectively outputs. Thus, the map-
ping algorithm generates 32 trees which can be handled in reasonable time. Due to
the operator interface each operator in the QEP respectively each RP in the SOG
can have up to two predecessors. If no predecessors is available then it is set to
null. For each possible tree the map function is applied on the root of the QEP
respectively the generated tree. The map function recursively assigns operators
from the QEP to RPs in the tree. If a RP is not existent but an attempt to assign
an operator is made or the RP exists but no operator is assigned (line 11) then
false will be returned as this is not a valid assignment. If both are null – meaning
that the previously assigned operator was an index scan mapped into the last RP
of a path – then the mapping is valid (see line 14). Otherwise, the operator and the
RP exist and the operator is assigned to the RP (line 17). Afterwards, the Map
function is applied on the left predecessor of the current operator respectively RP
and vice versa on the right predecessors (line 18). If these mapping attempts in the
subtrees are successful then a mapping for the tree rooted at the current operator
is found. If one mapping attempt in the subtrees fails then a pass-through operator
is assigned to the current RP (line 21). This is motivated by the fact that the
branch in the SOG can be deeper than the branch in the QEP. Thus pass-through
operators simply fill up the operator pipeline. If a pass-through operator was as-
signed, another attempt to assign the current operator to one of the current RP’s
predecessor is made (lines 22 and 25). If these attempts fail then no mapping of
the current subtree can be found.

In case the QEP consists of unsupported operators or can not be mapped into the
SOG, then the query is evaluated completely by the software engine on the host
system. As described in Section 4.1.2, during the actual query execution host and
FPGA work jointly. While the query engine on the FPGA determines the query
results, the host system continuously supplies triples to the FPGA and retrieves
results from the FPGA via PCIe.

142

5.1 Extending the Hybrid Query Engine

Algorithm 5 SOG-Mapping (Returns a mapping of a given QEP into a SOG)
1: procedure sog-mapping(QEP, SOG)
2: T ← Enumeration of all possible trees by permutating all SREs in SOG
3: for all t in T do
4: if map(QEP.root, t.root) then
5: return mapping found
6: end if
7: end for
8: return no mapping found
9: end procedure

10: function map(Operator op, ReconfigurablePartition rp) : boolean
11: if (rp = null and not (op = null)) or (not(rp = null) and op = null) then
12: return false
13: end if
14: if (rp = null and op = null) then
15: return true
16: end if
17: rp.assign(op)
18: if map(op.left, rp.left) and map(op.right, rp.right) then
19: return true
20: else
21: rp.assign(pass-through)
22: if map(op, rp.left) then
23: return true
24: end if
25: if map(op, rp.right) then
26: return true
27: end if
28: end if
29: return false
30: end function

143

5 Semi-static Operator Graphs

5.2 Evaluation

In this section we describe the evaluation setup and analyze the newly introduced
concept of SOGs with respect to the reconfiguration time. Furthermore, we set
the results in relation to the query execution times of the approach presented in
Chapter 4.

5.2.1 Evaluation Setup

The host system is a Dell Precision T3610 (Intel Xeon E5-1607 v2 3.0 GHz, 40
GByte DDR3-RAM) which is equipped with the FPGA board described in Sec-
tion 2.2.2. As operation system Ubuntu 14.04 x64 (kernel 3.16.0-71-generic) is
used. The ICAP module operates at 100 MHz and configuration data width is 32
bit. Thus, theoretical maximum configuration speed is 3.2 GBit/s (381 MByte/s).
The compressed1 size of the RMs varies from 199 KByte till 375 KByte. Thus,
when supplying the RMs at full speed to the ICAP then the reconfiguration of
one operator theoretically requires between 0.5 and 1 ms. However, the RMs are
located at the host system and must be read from hard drive and transferred via
PCIe into the static logic. Thus, the total reconfiguration overhead might still
impact the performance of the hybrid query engine. Besides the methodology on
exchanging QEPs, the evaluation setup remains the same as in Section 4.3.

5.2.2 Benchmarks

In this evaluation, we use the five SPARQL queries on the SP2B dataset as intro-
duced in Section 4.3.2. Each query is executed on three different datasets (66M,
131M and 262M triples) generated with the SP2B data generator [206]. In order
to support all five queries, the SOG shown in Figure 5.4(a) is described in VHDL
and deployed on the FPGA. It consists of 12 RPs and supports queries with up to
8 variables. The generated Xillybus core provides eight virtual streams, of which
6 are used to supply the 6 index scan operators in the upper level. One stream is
exclusively used to transfer the RMs to the ICAP module. One stream remains un-
used. Figure 5.4(b) shows the configuration of SP2B-Q4 as an example. Note that
the QEPs of some queries are smaller in height than the deployed SOG. Therefore,
pass-through operator need to be configured into empty partitions to connect the
configured smaller QEP with the last RP which is connected to the QC. We simply
use the Union operator with only one predecessor to pass-through results.

1BitGen was used with flag -g Compress [103, p. 227]

144

5.2 Evaluation

RP

SRE

(a) SOG without any configured Recon-
figurable Module (RM).

I1 I2 I3 I4 I5

◃▹ ◃▹

◃▹ ∪

◃▹

π

(b) SP2B-Q4 configured into the SOG.
Union acts as pass-through operator.

Figure 5.4 − Structure of the Semi-static Operator Graph (SOG) used in the
evaluation.

Table 5.1 gives an overview of the utilized resources. Most of the resources in the
static logic are consumed by the Xillybus core and corresponding buffers. Due to
the heterogeneous FPGA architecture, the deployed RPs are not homogenous in
shape and size but provide enough resources to take any of the operators. But, if
necessary, we provide methods for efficiently identifying homogenous RPs [213]. In
total all 12 RPs together cover less than half of the chip area.

Table 5.2 presents the measured reconfiguration times of the test queries and relates
them to the query execution times. The query execution time using the standard
LUPOSDATE system is labeled as TCPU. The query execution time of the hybrid
system TFPGA denotes the pure execution time without reconfiguration overhead as
reported in Section 4.3.2.

Table 5.1 − Resource utilization of deployed Semi-static Operator Graph (SOG)
consisting of 12 Reconfigurable Partitions (RPs).

Registers LUTs BRAM (36 KBit)
total available 478,080 239,040 768

static logic 3,518 4,858 18
RP size (each) 12,800 – 16,640 6,400 – 8,320 16 – 32

145

5 Semi-static Operator Graphs

Table 5.2 − Execution times and reconfiguration overhead of five SPARQL
queries on three different SP2B datasets [206]. The reconfiguration time during
system runtime is significantly reduced and slightly impacts the overall achiev-
able speedup.

Query Query execution Reconfiguration Total
#Operators Triples TCPU TFPGA SP w/o nSOG SOG SOG SP w/

(+pass-through) [·106] [ms] [ms] reconf. [min:sec] [ms] [ms] reconf.
SP2B-Q1 66 2,900 183 15.8 191.2 15.2
5 (+1) 131 4,623 273 16.9 21:43 8.2 281.2 16.4

262 8,888 420 21.1 428.2 20.8
SP2B-Q2 66 48,983 11,306 4.3 11,320.2 4.3
8 (+2) 131 97,465 22,297 4.4 23:39 14.2 22,311.2 4.4

262 225,068 45,102 5.0 45,116.2 5.0
SP2B-Q3 66 9,897 495 20.0 509.0 19.4
8 (+2) 131 16,194 807 20.1 23:22 14.0 821.0 19.7

262 30,311 1,366 22.2 1,380.0 22.0
SP2B-Q4 66 13,756 470 29.3 485.7 28.3
10 (+1) 131 22,666 822 27.6 25:08 15.7 837.7 27.1

262 45,304 1,397 32.4 1,412.7 32.1
SP2B-Q5 66 5,913 480 12.3 497.1 11.9

12 131 9,524 781 12.2 30:29 17.1 798.1 11.9
262 19,920 1,364 14.6 1,381.1 14.4

Note that using SOGs neither impacts the overall performance of the query op-
erators nor increases the query execution time on the FPGA. Even if additional
pass-through operators have to be inserted to match the SOG (indicated by (+X)
in the first column in Table 5.2) the total throughput remains the same. Only an
initial delay of two clock cycles might be caused by each pass-through operator in
the operator pipeline. The evaluated architecture operates at 200 MHz and thus
the delay of two times 5 ns per pass-through operator is negligible. Furthermore, it
is worth to stress again the fact that these execution times include the whole com-
munication between host and FPGA. The reconfiguration overhead of the previous
approach without using SOG is denoted with nSOG. As the whole FPGA toolchain
was applied on the generated VHDL code, obtaining a configuration took between
21 minutes for SP2B-Q1 and 30 minutes for SP2B-Q5. Although the FPGA-based
query execution was significantly accelerated, the overhead for obtaining a query-
specific configuration prevented an effective use of reconfiguration capabilities in
real-world scenarios. By utilizing SOGs most of the reconfiguration overhead is
moved to the deployment time of the system. Consequently, the plain reconfigu-
ration times of the RMs assembling the test queries on the FPGA consume only
8.2 ms for SP2B-Q1 up to 17.1 ms for SP2B-Q5 instead of minutes (see column
Reconfiguration in Table 5.2). In average the reconfiguration of one operator takes

146

5.3 Related Work

1.4 ms which is significantly higher than our previous estimations. However, due
to the asynchronous PCIe interface these numbers do not reflect the internal re-
configuration performance of the ICAP module. Furthermore, loading the RMs
from the HDD is the major bottleneck. If the RMs are already located in the
host’s main memory then copying the reconfiguration data into the DMA memory
is at least one order of magnitude faster. Overall this slightly impacts the total
speedup (see columns SP w/o reconfig and SP w/ reconfig in Table 5.2). If the queries
are executed on smaller datasets the relative overhead introduced by the reconfigu-
ration is logically higher due to shorter query execution times. The most significant
speedup reduction from 29.3X to 28.3X is noted for SP2B-Q4 at a dataset size of
66 million triples. Regarding queries with high execution times such as SP2B-Q2
the reconfiguration overhead is negligible. In summary all achieved speedups are
still significant and prove the feasibility of our approach. The generation of all
RMs for the shown SOG takes around 17 hours on the mentioned workstation but
significantly reduces reconfiguration overhead during query time. The queries of
the BTC benchmark are not evaluated explicitly as the plain query execution time
is unaffected by this approach. The reconfiguration overhead of a single operator
is query independent and thus does not deliver new insights.

5.3 Related Work

Dennl et al. [214, 215] present FPGA-based concepts for on-the-fly hardware accel-
eration of SQL queries in the relational database MySQL. Assuming a small data
bus width, the data is split into several, properly sequenced parts (chunks). For
handling of intermediate results, spare chunks are allocated in the data stream and
each module is aware of where to insert its results. In order to build a pipeline
of modules, the authors use a post-order traversal through the operator tree to
preserve the dependencies of the operators. The chunks and the linearization of
operators save chip area, but also decrease the overall performance. The authors
mentioned the necessity of join processing, but they focused only on projection
and restriction such as in Netezza [207]. Thus, complete queries cannot be exe-
cuted on the FPGA. However, in order to evaluate more complex queries (includ-
ing joins) additional views are created to represent partial results. The proposed
hardware-software system consists of four RP and achieves promising speedup gains
for in-memory tables. Becher et al. [216] extend this approach to an embedded
low-energy system-on-chip platform and add more complex operators (e.g., merge
join and sorting of small datasets). In [217] the authors introduce a hash-based
join and slightly extend the query with some additional restrictions. For simple

147

5 Semi-static Operator Graphs

queries including one join they achieve a comparable performance but higher energy
efficiency than a standard x86-based system.

Polig et al. [218] use FPGAs for text analytics. The proposed extension of IBM’s
SystemT allows to partition a given text-analytics query into a supergraph exe-
cuted in software and an subgraph that is compiled into a hardware netlist. The
evaluation shows promising speedup of up to 16X for small documents with a size
of 2 KByte. However, DPR is not utilized and the generation of the FPGA con-
figuration is time consuming, and thus only applicable for known queries.

Teubner et al. [219, 220] present an FPGA-based XML filter. The XML document
is streamed into the FPGA via a network interface. The remaining XML expres-
sions are transmitted to a CPU-based host which applies an XQuery. Due to the
reduced amount of (not needed) data, less data needs to be parsed on the host, and
the processing and main-memory overheads are reduced as well. In order to cover a
wide range of different queries, the authors propose to statically compile a skeleton
automaton that can be configured at runtime to implement query-dependent state
automata. Each skeleton segment consists of a single state and two parameterized
transition conditions. These conditions are set using an additional configuration
stream prior to the query execution and thus no DPR is used for reconfiguration.

Sadoghi and Najafi [221, 222, 223, 224] describe a re-programmable event stream
processor based on an FPGA. The architecture consists of online programmable
blocks (OPB) [225], which each supports a number of basic query operators (selec-
tion, projection, window-joins). Each OPB can be dynamically configured using
a simple instruction set. Thus, no DPR is used. The authors present some per-
formance characteristics but provide no direct comparison to an existing software
solution. However, the chainable OPBs provide a promising basic framework for
stream processing applications.

In summary, the hereby presented hybrid architecture utilizing SOGs enables to
provide query-specific hardware accelerators covering a wide range of queries with
an appropriate number of operators including join operations.

5.4 Summary

In this chapter, we introduced the concepts of Semi-static Operator Graphs (SOGs)
on FPGAs to provide a flexible hardware accelerator for query execution in the con-
text of SW databases. Instead of generating one FPGA configuration for a given
query during system runtime, we deploy a general query structure with a certain
degree of flexibility. A SOG consists of multiple RPs with a common interface.

148

5.4 Summary

During the deployment of the system for each RP a set of RMs in terms of partial
bitfiles is generated and stored into a repository. At system runtime, our hybrid
system chooses RMs regarding a given SPARQL query and configures them via
ICAP into the RP which sets the final structure of the operator graph on the
FPGA. As a result the time consuming generation of RMs is executed before sys-
tem runtime and significantly reduces the reconfiguration during query execution.
The presented hybrid query engine significantly outperforms the software-based
execution on the CPU taking communication and reconfiguration costs into ac-
count.

149

6
Conclusion

In this work we investigate the use of hardware accelerators in the dynamic con-
text of query evaluation in Semantic Web (SW) databases. Due to the variety of
queries a static approach deploying a predefined query processor (with a fixed set of
processing primitives covering the different query operators) is not feasible. There-
fore, in this work reconfigurable hardware in terms of a Field-Programmable Gate
Array (FPGA) is used as a co-processor assisting the SW database LUPOSDATE.
While the software system covers tasks which are either not performance criti-
cal or too complex and not suitable for hardware acceleration, we introduce a
new hybrid query engine which utilizes a reconfigurable FPGA to accelerate query
evaluation.

As a first step to an extensible and flexible architecture, we defined the operator
template. Each implemented query operator must use the minimalistic common
interface enabling the transparent collaboration without making any assumptions
or providing detailed knowledge about preceding and succeeding operators. The
building block concept enables the simple composition of multiple operators to
match a given query structure and provides a pervasive degree of parallelism. On
the example of the join and filter operator multiple FPGA-based approaches have
been presented and evaluated. As a result both operators are able to provide at
least a competitive performance compared to general-purpose CPUs. In most cases,
the FPGA prototype achieves a significant speedup. Regarding the filter operator,
it was shown how different types of parallelism can be deployed within one operator
(pipelining, intra-operator parallelism) but must be evaluated in terms of scalability
and resource consumption.

With a set of operators on the FPGA, the LUPOSDATE system was extended
by a new query evaluator utilizing the capabilities of the FPGA. Therefore, the
FPGA is divided into static logic and a large Reconfigurable Partition (RP). The
configuration file of the RP is automatically assembled by using a VHDL query
template and the set of implemented operators. Each operator can be parametrized

151

6 Conclusion

by operator specific generics. After the automatic transformation into a configura-
tion, the FPGA is reconfigured and the query result is collaboratively determined.
The performance gains of the proposed hybrid architecture are shown by executing
multiple queries on large-scale synthetic datasets as well as real-world data from
the Billion Triples Challenge (BTC). Our hybrid query engine achieves speedups of
up to 32X including all communication costs between host and FPGA. Although
our approach is not significantly faster in all test cases, it is never slower than the
CPU-based execution.

However, due to the fact that the whole FPGA toolchain is executed during sys-
tem runtime the proposed architecture is not applicable in real-world scenarios
with arbitrary queries. Consequently, we introduced the concept of Semi-static
Operator Graphs (SOGs). A SOG describes the structure of a general operator
graph whereas each operator in the graph is replaced by a black box in terms of a
RP. Each RP can take any arbitrary operator but only one operator at a time. The
interconnections between the operators are predefined but allow a certain degree
of flexibility. The concrete sequence of operators can be effected by configuring
different Reconfigurable Modules (RMs) into the RPs. As a result the time con-
suming generation of configurations can be moved into the deployment time of the
system. Instead of applying the whole FPGA toolchain during query time, only
the prepared RMs need to be chosen and reconfigured. This greatly reduces the
reconfiguration overhead of QEP from minutes to milliseconds but still maintains
a certain degree of flexibility regarding different query structures.

In summary, this work contributes a hybrid query engine on the basis of an FPGA
which is transparently integrated into the SW database LUPOSDATE. It is able to
automatically execute and accelerate the query evaluation. However, as each new
architecture, our work has potential to be improved and extended. In the following
section we will outline possible extensions.

Future Work – Opportunities and Limitations

In this section we outline some further ideas based on this work and provide research
directions to be investigated in the future.

Operators and Sideways Information Passing

In the current prototype of the hybrid query engine not all operators are supported.
In case of unsupported operators the query evaluation is completely executed on
the CPU-based host system. Besides implementing the missing operators on the

152

FPGA, in some cases it is reasonable to break down the strict separation. Instead
of mapping the whole QEP onto the FPGA, only some supported operators could
be processed by the FPGA and the remaining operators would be executed in the
software system. For instance, the Distinct and Order-By operator are always lo-
cated at the end of the QEP and thus can be executed on the host while retrieving
the results from the FPGA. However, it is still recommended to develop the Dis-
tinct operator for the FPGA-based query execution because it typically reduces
the size of the result to be transferred to and processed by the host.

Additionally, all operators on the FPGA do not support Sideways Information
Passing (SIP) at the moment. As described in Section 2.1.3, SIP enables an op-
erator to prune irrelevant intermediate results of its direct or indirect preceding
operator and therefore saves unnecessary processing steps. Logically this is done
by passing information across operators. For instance, a merge join operator can
hand over the value of the join attribute of one input as a lower bound to retrieve
only intermediate result of the other input which are equal or larger than this
bound as smaller values will not be joined in any case.

In order to implement this feature in our hybrid query engine, the operator template
has to be extended. Basically, for each input/output relation an additional signal
to pass the lower bound and a signal to indicate the activation of SIP must be
implemented. Furthermore, as in the current approach the indices are located at
the host system, the lower bound must be sent to the host system via PCIe to
beneficially use SIP in the index scan operation.

Index Scan and Maintenance

In the current approach the LUPOSDATE system generates and manages the in-
dices. During query execution the indices are scanned for triples matching the
triple patterns which are transferred to the FPGA. The FPGA board used in
this work is equipped with two SATA-II ports and thus allows to directly attach
HDDs/SSDs to store the indices. Consequently, the communication overhead and
the load on the host will be significantly reduced because only the result of a query
needs to be sent to and processed by the host system after deploying the query.
Furthermore, it can simplify the support of the previously described SIP feature.

The evaluation indices could be either constructed on the host system and then
transferred onto the FPGA’s HDDs, or an FPGA design is deployed which is capa-
ble to generate the evaluation indices with potential performance benefits. Regard-
ing access operations first attempts are presented by Heinrich et al. [65]. Thus,

153

6 Conclusion

FPGA resources could be used in a time-multiplexed fashion for index generation
and query evaluation.

Relocation in Semi-static Operator Graphs

Introducing SOGs greatly reduces the overall reconfiguration time of complete
QEPs on the FPGA. In this work, we generate separate RMs for each RP and
each operator type. The generation of all RMs for the SOG used in this work takes
around 17 hours. Although this time is spent during deployment time and does
not effect the system runtime, it is desirable to reduce this time. This is further
motivated by the fact that the RMs of one operator for different RPs actually base
on the same netlist. Thus, as their description is identical, it is desirable to use the
same partial bitfile of one RM in different RPs without applying the whole FPGA
toolchain again and again. Using the same RM in different RPs is referred as re-
location. One requirement is a uniform structure of the RPs in terms of provided
resources (slices, BRAM, DSP). But the increasing heterogeneity and complex-
ity of modern FPGAs complicate the manual identification of equally sized and
structured RPs. Backasch et al. [213] propose a method for efficiently identifying
homogenous RPs. It allows to define a pattern which represents minimal resource
requirements provided by each RP. The pattern is dynamically adjusted in order
to meet the structural requirements of the heterogeneous device. As a result it
automatically returns a placement consisting of the maximum number of possible
RPs. After identification and deployment of identical RPs, the RM can be modi-
fied in such a way that it can be configured into different RPs. The relocation can
be done without modifying the actual configuration data but updating the address
and CRC1 field of a configuration data frame corresponding to the FPGA’s config-
uration memory. Ichinomiya et al. [226] present methods of relocation at runtime
during reconfiguration of the device. Furthermore, in order to adjust operator spe-
cific properties (such as the position of join variables) it is necessary to store the
operator’s parameters in registers within the operator and modify their content by
manipulating the configuration data according to the query.

Besides optimizing the RM generation process, deploying new SOG structures can
be simplified. Currently, if a new SOG needs to be deployed then a hardware de-
signer has to describe the structure in an HDL. However, this description contains
only instantiations of SREs and declarations of black boxes for the operators as
well as interconnections between those modules. Although this is relatively sim-
ple it requires knowledge about HDLs. Thus, a GUI-based tool could assist the
construction of SOGs by providing abstract modules which can be assembled in a

1Cyclic Redundancy Code

154

building block fashion. Internally, the tool could generate the corresponding HDL
code.

Query Scheduler and Optimizer

In the current prototype of the hybrid query engine, the FPGA characteristics
are not taken into account by LUPOSDATE’s query optimizer. However, it was
shown that not all queries remarkably benefit from the hardware-accelerated exe-
cution and thus it is reasonable to develop an estimator which is able to predict
the expected performance gains. These can depend on the amount of data and
the complexity of the query. Additionally, with respect to the SOG, the optimizer
might avoid reconfiguration of some operators by reusing already configured oper-
ators to further reduce reconfiguration time. Some of the evaluated queries share
common parts in the query structure and thus the reconfiguration of all operators
is not necessary. Therefore, our query optimizer must be extended to detect these
common structures.

Multi-query Support

In this work the FPGA is used to accelerate one query at a time. However, typ-
ically a database system receives many queries within a short period. Thus, it is
desirable to accelerate multiple queries on the FPGA (intra-query parallelism). In
fact, the modular approach and using virtual streams between host and FPGA
allows an easy extension. Besides executing queries concurrently, methods for de-
tecting common expressions have been proposed known as Multi-query optimization
[222, 227, 228]. Multi-query optimization aims to interleave common structure of
different QEPs in order to avoid redundant calculations and share results. It is rea-
sonable to further investigate these methods with respect to FPGA-based query
execution in order to save logic resources but also to improve performance.

Support of Other Query and Rule Languages

In this work we support the query language SPARQL. However, the presented con-
cepts can be extended to support other query languages such as SQL for relational
databases. Furthermore, in Section 2.1.2 we introduced the Rule Interchange For-
mat (RIF) which enables to express inference rules and complex conditions. Com-
parable to the approach of Baker et al. [180] (see Section 2.3.3) a cyclic pipeline
or graph consisting of rule operators could be established to evaluate the rules and
generate explicit facts which are expressed implicitly.

155

6 Conclusion

Alternative Architectures

Currently, our approach deploys one RP to take a complete operator graph re-
spectively multiple RPs each taking one operator. In the latter approach the
interconnections are slightly adjustable but still restricted and do not allow ar-
bitrary communications between any operator. Instead of direct connections or
bus systems so-called Network on Chips (NoCs) can be deployed for on-chip com-
munication. In a NoC each processing module is equipped with a router. The
routers are arranged in a grid which allows direct communication with neighboring
routers but also indirect communication with any other router in the NoC. Back-
asch et al. [229] present a generic hardware design based on a NoC which allows the
composition of application specific data paths at system runtime. Each RP has an
assigned router. This approach enables a higher degree of flexibility in placing one
or more operator graphs onto an FPGA. However, as the NoC introduces delays in
the data propagation, which might reduce query performance, it is still desirable
that succeeding operators in the operator graph are placed beside each other in the
NoC. Besides a flexible operator placement, a NoC-based architecture would sim-
plify the integration and utilization of other components such as dedicated memory
modules. Regarding the hereby proposed query engine, the dictionary which im-
plements the mapping between strings and IDs could be easily integrated into the
architecture and accessed from all operators. This would significantly enrich the
support of hardware-accelerated query execution.

Harizopoulos et al. [230, 231, 232] introduce a staged database design for multi-core
CPUs. They present the implementation of a QPipe which consists of independent
micro-engines. Each relational operator is promoted to one micro-engine but each
micro-engine might execute its particular operation for several queries on the same,
overlapping or different datasets (one-operator, many-queries). To each micro-
engine one or more threads are assigned. As a result locality in both data and
computation across different queries can be efficiently exploited. Regarding a multi-
FPGA setup this methodology could be applied such that each FPGA provides
the computational resources for one micro-engine. Due to the different complexity
of the operators either smaller FPGAs can be used for simple micro-engines or
multiple simple micro-engines are consolidated on one FPGA. Furthermore, using
DPR additional micro-engines can be deployed depending on the current load of
already deployed micro-engines.

156

Final Thoughts

Another major advantage of FPGAs, besides inherent parallelism, is the signifi-
cantly lower energy consumption. Fowers et al. [233] compare the performance of
sliding-window applications executed on FPGAs, GPUs and multicore-CPUs, and
report orders of magnitude lower energy consumption for FPGA-based solutions
while achieving significant speedups. Thus, the use of FPGAs in database systems
can not only improve overall performance but also reduce the energy footprints
of data centers – highly beneficial from an economical as well as an ecological
perspective.

157

A
Performance of PCIe

The PCIe interface is realized using the freely available Xillybus core [203]. The
FPGA application interacts with the Xillybus core using a standard FIFO interface.
The host application performs plain IO operations on file descriptors corresponding
to interfaces within the FPGA design. Although logically the communication is
stream-based, internally Direct Memory Access (DMA) buffers are allocated in the
host’s memory space [234]. The handshake protocol handles writing and reading
request by filling and handing over these DMA buffers. Throughout this work
asynchronous streams are used due to their better performance for continuous data
flows. Regarding the FPGA-to-host communication (upstream), the host’s DMA
buffers are filled whenever possible, e.g. stream is open, data is available and DMA
buffers are not full. If the host application wants to read the data then the data is
copied from the DMA buffer into a buffer provided by the application.

Regarding host-to-FPGA communication (downstream), the application’s writing
call copies the present data into the DMA buffers and returns immediately in case
all the data can be stored in the DMA buffers. The actual transfer of the buffers
from the host to the FPGA is mostly triggered by two conditions. Either the DMA
buffer is completely filled or a timeout expires. Currently the timeout is set to
5 ms but is adjustable during core generation [235]. If a buffer is not filled then
the actual data transfer will be initiated after the timeout which results in a lower
total throughput due to higher overhead compared to actual payload. Hence, with
a high amount of data the internal buffers are utilized intensively and the data
transactions are more efficient.

The used FPGA board is equipped with an 8-lane PCIe GEN-2 interface. The
theoretical possible bandwidth of this interface is noted with 4 GByte/s. However,
for the used Xilinx Virtex-6 a data rate of 400 MByte/s using only 4 PCIe lanes
is reported [236]. Furthermore, the developers of Xillybus report a reduction to
200 MByte/s (due to overhead of the data link layer and TLP packet headers).
Additionally, they point out that often the processing of the data on application

159

A Performance of PCIe

level turns out to be the real bottleneck [237]. Therefore, we evaluated the Xilly-
bus core in our environment with different buffer sizes at application level. In
this evaluation one downstream and one upstream is used. However, during core
generation the number and characteristics of the streams can be adjusted to the
applications need [235]. In our setting each stream utilizes 16 DMA buffers with
each 128 KByte (2 MByte total). The interface width is 32 bit. The host system is
a Dell Precision T3610 (Intel Xeon E5-1607 v2 3.0 GHz, 40 GByte DDR3-RAM)
which is equipped with the FPGA board described in Section 2.2.2. As operation
system Ubuntu 14.04 x86-64 (kernel 3.16.0-71-generic) is used.

A.1 Downstream Throughput

As mentioned before, a writing call from the application to transfer data to the
FPGA simply copies the given data into the host’s DMA buffers. Thus, a return of
the method call does not imply that the data was already transferred into the FPGA
design. In order to evaluate the downstream throughput we transfer datasets with
varying sizes of 1,000 up to 1 million DWORDs (32 bit). In the FPGA design the
data is simply discarded. Furthermore, we vary the buffer size at application level
(not DMA buffers) from 10 up to 100,000 DWORDs and additionally a buffer which
perfectly fits the length of the data payload. Figure A.1(a) shows the performance
of the writing method call. No significant differences are achieved by the different
buffer sizes. In turn, the total amount of data heavily impacts the throughput.
With increasing size the throughput increases from 80 MByte/s up to 430 MByte/s.
However, this scenario considers only the plain method call to the DMA engine.
Figure A.1(b) takes into account that the buffer at application level has to be
filled by the application. Therefore, we simply iterate through the buffer once,
fill it with incrementing values and then call the writing method. As it can be
seen in Figure A.1(b) this significantly slows down the throughput. This supports
the statement of the Xillybus developers [237]. Due to additional overhead using
multiple small buffers the usage of larger buffers enhances performance.

A.2 Upstream Throughput

As mentioned before, a reading call from the application simply copies data from
the DMA buffers into the provided application buffer. For this evaluation data is
continuously generated and send by the FPGA. Again, datasets with varying sizes
of 1,000 up to 1 million DWORDs (32 bit) are transferred and read. Figure A.2(a)
shows the performance of the reading method call. Note that the method does not

160

A.2 Upstream Throughput

 0.1

 1

 10

 100

 1000

1k 10k 100k 1M

T
h
ro

u
g
h
p
u
t

[M
B

y
te

/s
]

-
lo

g
 s

ca
le

Payload [DWORD] - log scale

Write (method call)

buffer=10
1

buffer=10
2

buffer=10
3

buffer=10
4

buffer=10
5

buffer=payload

(a) Plain method call until return.

 0.1

 1

 10

 100

 1000

1k 10k 100k 1M

T
h
ro

u
g
h
p
u
t

[M
B

y
te

/s
]

-
lo

g
 s

ca
le

Payload [DWORD] - log scale

Write (total)

buffer=10
1

buffer=10
2

buffer=10
3

buffer=10
4

buffer=10
5

buffer=payload

(b) Iteration through input buffer and
method call until return.

Figure A.1 − Throughput of host-to-FPGA (downstream) communication.

return before the application buffer is filled in this scenario. In total the upstream
throughput is significantly worse with 0.3 MByte/s up to 230 MByte/s compared to
the previously reported downstream. It can be seen that the size of the application
buffer has a high impact until a certain buffer size (104 DWORDs). Figure A.2(b)
provides the results of calling the read method and subsequent iteration through
the result. As the throughput of the plain read method is already slow the overhead
on the application level is noticeable but not as serious as for the downstream.

 0.1

 1

 10

 100

 1000

1k 10k 100k 1M

T
h
ro

u
g
h
p
u
t

[M
B

y
te

/s
]

-
lo

g
 s

ca
le

Payload [DWORD] - log scale

Read (method call)

buffer=10
1

buffer=10
2

buffer=10
3

buffer=10
4

buffer=10
5

buffer=payload

(a) Plain method call until return.

 0.1

 1

 10

 100

 1000

1k 10k 100k 1M

T
h
ro

u
g
h
p
u
t

[M
B

y
te

/s
]

-
lo

g
 s

ca
le

Payload [DWORD] - log scale

Read (total)

buffer=10
1

buffer=10
2

buffer=10
3

buffer=10
4

buffer=10
5

buffer=payload

(b) Method call until return and iteration
through output buffer.

Figure A.2 − Throughput of FPGA-to-host (upstream) communication.

161

B
Test Queries

B.1 Commonly used prefixes

The following prefix definitions are used in the test queries:

Prefix definitions

1 PREFIX bench: <http://localhost/vocabulary/bench/>
2 PREFIX dbo: <http://dbpedia.org/ontology/>
3 PREFIX dbp: <http://dbpedia.org/property/>
4 PREFIX dc: <http://purl.org/dc/elements/1.1/>
5 PREFIX dcterms: <http://purl.org/dc/terms/>
6 PREFIX foaf: <http://xmlns.com/foaf/0.1/>
7 PREFIX rdf: <http://www.w3.org/1999/02/22−rdf−syntax−ns#>
8 PREFIX rdfs: <http://www.w3.org/2000/01/rdf−schema#>
9 PREFIX swrc: <http://swrc.ontoware.org/ontology#>

B.2 Queries on SP2B dataset

The following test queries are used in Section 4.3.2:

SP2B-Q1

1 #Get all articles with property swrc:pages.
2 SELECT ?article WHERE {
3 ?article rdf:type bench:Article .
4 ?article ?property ?value .
5 FILTER (?property = swrc:pages) .
6 }

163

B Test Queries

SP2B-Q2 (equal to query q9 of SP2B [206])

1 #Get incoming and outcoming properties of persons.
2 SELECT ?predicate WHERE {
3 { ?person rdf:type foaf:Person .
4 ?subject ?predicate ?person
5 } UNION {
6 ?person rdf:type foaf:Person .
7 ?person ?predicate ?object
8 }
9 }

SP2B-Q3

1 #Get all articles with title, number of pages and creator.
2 SELECT ?article ?title ?pages ?creator WHERE {
3 ?article rdf:type bench:Article .
4 ?article dc:title ?title .
5 ?article swrc:pages ?pages .
6 ?article dc:creator ?creator .
7 }

SP2B-Q4

1 #Get all articles with titles, number of pages, the creator and the journal.
2 SELECT ?article ?title ?pages ?creator ?journal WHERE {
3 ?article rdf:type bench:Article .
4 ?article dc:title ?title .
5 ?article swrc:pages ?pages .
6 ?article dc:creator ?creator .
7 ?article swrc:journal ?journal .
8 }

SP2B-Q5

1 #Get all articles with titles, number of pages, the creator, journal and month when published.
2 SELECT ?article ?title ?pages ?creator ?journal ?month WHERE {
3 ?article rdf:type bench:Article .
4 ?article dc:title ?title .
5 ?article swrc:pages ?pages .
6 ?article dc:creator ?creator .
7 ?article swrc:journal ?journal .
8 ?article swrc:month ?month .
9 }

164

B.3 Queries on BTC-2012 dataset

B.3 Queries on BTC-2012 dataset

The following test queries are used in Section 4.3.3:

BTC-Q1

1 SELECT * WHERE {
2 ?book1 dbp:author ?author .
3 ?book1 dbp:name ?title .
4 }

BTC-Q2

1 SELECT * WHERE {
2 ?book1 dbp:author ?author .
3 ?book1 dbp:name ?title .
4 ?book1 dbp:pubDate ?date .
5 }

BTC-Q3

1 SELECT * WHERE {
2 ?book1 dbp:author ?author .
3 ?book1 dbp:name ?title .
4 ?book1 dbp:country ?country .
5 }

BTC-Q4

1 SELECT * WHERE {
2 ?book1 dbp:author ?author .
3 ?book1 dbp:name ?title .
4 ?book1 dbp:country ?country .
5 ?book1 dbp:pages ?pages .
6 }

165

B Test Queries

BTC-Q5

1 SELECT * WHERE {
2 ?book1 dbp:author ?author .
3 ?book1 dbp:name ?title .
4 ?book1 dbp:country ?country .
5 ?book1 dbp:pages ?pages .
6 ?book1 rdf:type dbo:Book .
7 }

BTC-Q6

1 SELECT * WHERE {
2 ?book1 dbp:author ?author .
3 ?book1 dbo:isbn ?isbn .
4 ?book1 dbp:country ?country .
5 ?book1 dbp:pages ?pages .
6 ?book1 rdf:type dbo:Book .
7 }

BTC-Q7

1 SELECT * WHERE {
2 ?book1 dbp:author ?author .
3 ?book1 dbo:isbn ?isbn .
4 ?book1 dbp:country ?country .
5 ?book1 dbp:pages ?pages .
6 ?book1 rdf:type dbo:Book .
7 ?book1 dbp:pubDate ?date .
8 }

BTC-Q8

1 SELECT * WHERE {
2 ?s dbp:countryofbirth ?o1 .
3 ?s dbo:birthDate ?o3 .
4 ?s rdf:type dbo:Athlete .
5 ?s dbp:fullname ?o5 .
6 }

166

B.3 Queries on BTC-2012 dataset

BTC-Q9

1 SELECT * WHERE {
2 ?s dbp:countryofbirth ?o1 .
3 ?s dbp:countryofdeath ?o2 .
4 ?s dbo:birthDate ?o3 .
5 ?s dbo:deathDate ?o4 .
6 ?s rdf:type dbo:Athlete .
7 }

BTC-Q10

1 SELECT * WHERE {
2 ?s rdf:type dbo:Athlete .
3 ?s dbp:countryofbirth ?o1 .
4 ?s dbp:countryofdeath ?o2 .
5 ?s dbo:birthDate ?o3 .
6 ?s dbo:deathDate ?o4 .
7 ?s dbp:fullname ?o5 .
8 }

167

Acronym
AHJ Asymmetric Hash Join

AI Artificial Intelligence

API Application Programming Interface

ASIC Application-Specific Integrated Circuit

AST Abstract Syntax Tree

BitGen Bitstream Generator

BRAM Block RAM

BTC Billion Triples Challenge

CAE Computer Aided Engineering

CLB Configurable Logic Block

CPU Central Processing Unit

CMT Clock Management Tile

DBMS Database Management System

DDR Double Data Rate

DMA Direct Memory Access

DPR Dynamic Partial Reconfiguration

DSP Digital Signal Processor

EP Endpoint

FF Flip-Flop

FIFO First-In First-Out queue

FPGA Field-Programmable Gate Array

FSM Finite State Machine

GPU Graphics Processing Unit

169

Acronym

GPGPU General Purpose Computing on Graphics Processing Units

GTX Gigabit Transceiver

HDD Hard Disk Drive

HDL Hardware Description Language

HJ Hash Join

HJL Hash Join using separate chaining with linked list

HTML Hypertext Markup Language

IC Integrated Circuit

ICAP Internal Configuration Access Port

IEEE Institute of Electrical and Electronics Engineers

IO Input/Output

IOB Input/Output Block

IP Intellectual Property

IRI Internationalized Resource Identifier

ISE Integrated Synthesis Environment

LOD Linking Open Data

LUPOSDATE Logically and Physically Optimized Semantic Web Database
Engine

LUT Lookup Table

MIG Memory Interface Generator

MJ Merge Join

MMCM Mixed-Mode Clock Manager

MUX Multiplexer

N3 Notation 3

NCD Native Circuit Description

NLJ Nested Loop Join

NoC Network on Chip

OSI Open Systems Interconnect

170

OWL Web Ontology Language

PAR Place & Route

PCIe Peripheral Component Interconnect Express

PIP Programmable Interconnect Point

QC Query Coordinator

QEP Query Execution Plan

QL Query Language

RAM Random-Access Memory

RDF Resource Description Framework

RDFa Resource Description Framework in Attributes

RDFS RDF Schema

RIF Rule Interchange Format

RM Reconfigurable Module

RP Reconfigurable Partition

RTL Register Transfer Level

SATA-II Serial AT Attachment II

SHJ Symmetric Hash Join

SIP Sideways Information Passing

SOG Semi-static Operator Graph

SP2B SP2Bench SPARQL Performance Benchmark

SPARQL SPARQL Protocol And RDF Query Language

SRAM Static Random-Access Memory

SRE Semi-static Routing Element

SSD Solid State Drive

SW Semantic Web

Tcl Tool command language

TEMAC Tri-Mode Ethernet MAC

171

Acronym

TLP Transaction Layer Packet

UART Universal Asynchronous Receiver Transmitter

UCF User Constraint File

UCS Universal Character Set

URI Universal Resource Identifier

UUT Unit Under Test

W3C World Wide Web Consortium

WWW World Wide Web

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

XML Extensible Markup Language

XST Xilinx Synthesis Technology

172

References

[1] Robert H’obbes’ Zakon. Hobbes’ Internet Timeline (Version 23). http:
//www.zakon.org/robert/internet/timeline/, January 2016. Accessed:
2016-05-03.

[2] InternetLiveStats.com. Google Search Statistics. http://www.
internetlivestats.com/google-search-statistics/. Accessed: 2016-
05-12.

[3] Linked Open Data. Connect Distributed Data across the Web. http://
linkeddata.org/. Accessed: 2016-06-08.

[4] John von Neumann. First Draft of a Report on the EDVAC. In IEEE Annals
of the History of Computing, volume 15, 1993. Exact copy of the original
typescript from 1945.

[5] Stefan Werner, Sven Groppe, Volker Linnemann, and Thilo Pionteck.
Hardware-accelerated Join Processing in Large Semantic Web Databases with
FPGAs. In Proceedings of the 2013 International Conference on High Per-
formance Computing & Simulation (HPCS 2013), pages 131–138, Helsinki,
Finland, July 2013. IEEE.

[6] Stefan Werner, Dennis Heinrich, Marc Stelzner, Sven Groppe, Rico Backasch,
and Thilo Pionteck. Parallel and Pipelined Filter Operator for Hardware-
Accelerated Operator Graphs in Semantic Web Databases. In Proceedings
of the 14th IEEE International Conference on Computer and Information
Technology (CIT2014), pages 539–546, Xi’an, China, September 2014. IEEE.

[7] Stefan Werner, Dennis Heinrich, Marc Stelzner, Volker Linnemann, Thilo
Pionteck, and Sven Groppe. Accelerated join evaluation in Semantic Web
databases by using FPGAs. Concurrency and Computation: Practice and
Experience, 28(7):2031–2051, May 2015.

[8] Stefan Werner, Dennis Heinrich, Jannik Piper, Sven Groppe, Rico Back-
asch, Christopher Blochwitz, and Thilo Pionteck. Automated Composition
and Execution of Hardware-accelerated Operator Graphs. In Proceedings of
the 10th International Symposium on Reconfigurable Communication-centric
Systems-on-Chip (ReCoSoC 2015), Bremen, Germany, June 2015. IEEE.

173

http://www.zakon.org/robert/internet/timeline/
http://www.zakon.org/robert/internet/timeline/
http://www.internetlivestats.com/google-search-statistics/
http://www.internetlivestats.com/google-search-statistics/
http://linkeddata.org/
http://linkeddata.org/

References

[9] Stefan Werner, Dennis Heinrich, Sven Groppe, Christopher Blochwitz, and
Thilo Pionteck. Runtime Adaptive Hybrid Query Engine based on FPGAs.
Open Journal of Databases (OJDB), 3(1):21–41, 2016.

[10] Netcraft Ltd. April 2006 Web Server Survey. http://news.netcraft.com/
archives/2006/04/06/april_2006_web_server_survey.html, April 2006.
Accessed: 2016-05-03.

[11] Netcraft Ltd. April 2016 Web Server Survey. http://news.netcraft.
com/archives/2016/04/21/april-2016-web-server-survey.html, April
2016. Accessed: 2016-05-03.

[12] Steve Bratt (W3C). Semantic Web, and Other W3C Technologies
to Watch. https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/
0130-sb-W3CTechSemWeb.pdf, January 2007. Accessed: 2016-05-03.

[13] Tim Berners-Lee, James Hendler, and Ora Lassila. The semantic web. Sci-
entific American, 284(5):34–43, May 2001.

[14] Sven Groppe. Data Management and Query Processing in Semantic Web
Databases. Springer Verlag, Heidelberg, 2011.

[15] International Organization for Standardization. ISO/IEC 10646:2014 - Uni-
versal Coded Character Set (UCS). http://www.iso.org/iso/home/store/
catalogue_ics/catalogue_detail_ics.htm?csnumber=63182, September
2014. Accessed: 2016-05-17.

[16] M. Duerst and M. Suignard. RFC 3987 - Internationalized Resource Iden-
tifiers (IRIs). https://tools.ietf.org/html/rfc3987, January 2005. Ac-
cessed: 2016-05-17.

[17] World Wide Web Consortium (W3C). Extensible Markup Language (XML)
1.0 (Fifth Edition). https://www.w3.org/TR/xml/, November 2008. Ac-
cessed: 2016-05-17.

[18] World Wide Web Consortium (W3C). Resource Description Framework
(RDF): Concepts and Abstract Syntax. https://www.w3.org/TR/2004/
REC-rdf-concepts-20040210/, 2004. Accessed: 2016-10-01.

[19] The W3C SPARQL Working Group. SPARQL 1.1 Overview. https://www.
w3.org/TR/sparql11-overview/, 2013. Accessed: 2016-08-15.

[20] World Wide Web Consortium (W3C). RDF Schema 1.1. https://www.w3.
org/TR/rdf-schema/, February 2014. Accessed: 2016-08-15.

174

http://news.netcraft.com/archives/2006/04/06/april_2006_web_server_survey.html
http://news.netcraft.com/archives/2006/04/06/april_2006_web_server_survey.html
http://news.netcraft.com/archives/2016/04/21/april-2016-web-server-survey.html
http://news.netcraft.com/archives/2016/04/21/april-2016-web-server-survey.html
https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/0130-sb-W3CTechSemWeb.pdf
https://www.w3.org/2007/Talks/0130-sb-W3CTechSemWeb/0130-sb-W3CTechSemWeb.pdf
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=63182
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=63182
https://tools.ietf.org/html/rfc3987
https://www.w3.org/TR/xml/
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/sparql11-overview/
https://www.w3.org/TR/rdf-schema/
https://www.w3.org/TR/rdf-schema/

References

[21] W3C OWL Working Group. OWL 2 Web Ontology Language Document
Overview (Second Edition). https://www.w3.org/TR/owl2-overview/, De-
cember 2012. Accessed: 2016-10-01.

[22] W3C Rule Interchange Format (RIF) Working Group. RIF Frame-
work for Logic Dialects (Second Edition). https://www.w3.org/TR/2013/
REC-rif-fld-20130205/, Februrary 2013. Accessed: 2016-08-15.

[23] World Wide Web Consortium (W3C). RDF 1.1 Concepts and Abstract
Syntax. https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/,
2014. Accessed: 2016-08-15.

[24] World Wide Web Consortium (W3C). Notation3 (N3): A readable RDF
syntax. https://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/,
March 2011. Accessed: 2016-10-01.

[25] World Wide Web Consortium (W3C). RDF 1.1 N-Triples. https://www.w3.
org/TR/2014/REC-n-triples-20140225/, February 2014. Accessed: 2016-
08-15.

[26] World Wide Web Consortium (W3C). RDF 1.1 Turtle. https://www.w3.
org/TR/2014/REC-turtle-20140225/, February 2014. Accessed: 2016-08-
15.

[27] World Wide Web Consortium (W3C). RDF 1.1 XML Syntax. https://www.
w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/, February 2014.
Accessed: 2016-08-15.

[28] World Wide Web Consortium (W3C). RDFa Core 1.1 - Third Edition.
https://www.w3.org/TR/rdfa-core/, March 2015. Accessed: 2016-05-17.

[29] World Wide Web Consortium (W3C). HTML5 - A vocabulary and associated
APIs for HTML and XHTML. https://www.w3.org/TR/html5/, October
2014. Accessed: 2016-05-17.

[30] World Wide Web Consortium (W3C). SPARQL Query Language for RDF.
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115, January
2008. Accessed: 2016-10-01.

[31] World Wide Web Consortium (W3C). SPARQL 1.1 Federated Query.
https://www.w3.org/TR/sparql11-federated-query/, March 2013. Ac-
cessed: 2016-08-15.

[32] World Wide Web Consortium (W3C). SPARQL 1.1 Update. https://www.
w3.org/TR/sparql11-update/, March 2013. Accessed: 2016-05-12.

175

https://www.w3.org/TR/owl2-overview/
https://www.w3.org/TR/2013/REC-rif-fld-20130205/
https://www.w3.org/TR/2013/REC-rif-fld-20130205/
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TeamSubmission/2011/SUBM-n3-20110328/
https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/2014/REC-n-triples-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2014/REC-turtle-20140225/
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.w3.org/TR/2014/REC-rdf-syntax-grammar-20140225/
https://www.w3.org/TR/rdfa-core/
https://www.w3.org/TR/html5/
http://www.w3.org/TR/2008/REC-rdf-sparql-query-20080115
https://www.w3.org/TR/sparql11-federated-query/
https://www.w3.org/TR/sparql11-update/
https://www.w3.org/TR/sparql11-update/

References

[33] World Wide Web Consortium (W3C). SPARQL 1.1 Query Language. https:
//www.w3.org/TR/sparql11-query/, March 2013. Accessed: 2016-05-11.

[34] W3C Web Ontology Working Group. OWL Web Ontology Language
Overview. https://www.w3.org/TR/2004/REC-owl-features-20040210/,
February 2004. Accessed: 2016-10-01.

[35] W3C OWL Working Group. OWL 2 Web Ontology Lan-
guage Profiles (Second Edition). https://www.w3.org/TR/2012/
REC-owl2-profiles-20121211/, December 2012. Accessed: 2016-10-
01.

[36] Markus Krötzsch. OWL 2 Profiles: An Introduction to Lightweight Ontology
Languages. In Thomas Eiter and Thomas Krennwallner, editors, Proceedings
of the 8th Reasoning Web Summer School, Vienna, Austria, September 3–8
2012, volume 7487 of LNCS, pages 112–183. Springer, 2012.

[37] World Wide Web Consortium (W3C). OWL 2 Web Ontology Language New
Features and Rationale (Second Edition). https://www.w3.org/TR/2012/
REC-owl2-new-features-20121211/, December 2012. Accessed: 2016-05-
03.

[38] World Wide Web Consortium (W3C). OWL Web Ontology Language Use
Cases and Requirements. https://www.w3.org/TR/webont-req/, February
2004. Accessed: 2016-10-01.

[39] Ivan Herman (W3C). Questions (and Answers) on the Seman-
tic Web. https://www.w3.org/People/Ivan/CorePresentations/SW_QA/
Slides.html, June 2007. Accessed: 2016-05-03.

[40] Dublin Core Metadata Initiative. Expressing Dublin Core metadata us-
ing the Resource Description Framework (RDF). http://dublincore.org/
documents/2008/01/14/dc-rdf/, January 2008. Accessed: 2016-05-18.

[41] Dan Brickley and Libby Miller. FOAF Vocabulary Specification 0.99. http:
//xmlns.com/foaf/spec/20140114.html, January 2014. Accessed: 2016-
05-18.

[42] Roger Meier and Edd Dumbill. Description of a Project (DOAP) vocabulary
(on Github). https://github.com/edumbill/doap. Accessed: 2016-05-18.

[43] Martin Hepp and Andreas Radinger. eClassOWL - The Web Ontology
for Products and Services (v 5.1.4). http://www.heppnetz.de/projects/
eclassowl/, April 2010. Accessed: 2016-05-18.

176

https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/2004/REC-owl-features-20040210/
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
https://www.w3.org/TR/2012/REC-owl2-profiles-20121211/
https://www.w3.org/TR/2012/REC-owl2-new-features-20121211/
https://www.w3.org/TR/2012/REC-owl2-new-features-20121211/
https://www.w3.org/TR/webont-req/
https://www.w3.org/People/Ivan/CorePresentations/SW_QA/Slides.html
https://www.w3.org/People/Ivan/CorePresentations/SW_QA/Slides.html
http://dublincore.org/documents/2008/01/14/dc-rdf/
http://dublincore.org/documents/2008/01/14/dc-rdf/
http://xmlns.com/foaf/spec/20140114.html
http://xmlns.com/foaf/spec/20140114.html
https://github.com/edumbill/doap
http://www.heppnetz.de/projects/eclassowl/
http://www.heppnetz.de/projects/eclassowl/

References

[44] Yves Raimond, Samer Abdallah, Mark Sandler, and Frederick Giasson. The
Music Ontology. In Proceedings of the International Conference on Music
Information Retrieval (ISMIR), 2007. Accessed: 2016-05-18.

[45] Ivan Herman (W3C). Tutorial on Semantic Web. https://www.
w3.org/People/Ivan/CorePresentations/SWTutorial/Slides.pdf, April
2012. Accessed: 2016-05-04.

[46] Vladimir Lifschitz. Closed-world databases and circumscription. Artif. Intell.,
27(2):229–235, November 1985.

[47] World Wide Web Consortium (W3C). Semantic Web Case Studies and Use
Cases. http://www.w3.org/2001/sw/sweo/public/UseCases/, June 2012.
Accessed: 2016-05-12.

[48] François-Paul Servant. Semantic web technologies in technical automo-
tive documentation. In 3rd OWL: Experiences and Directions Workshop
(OWLED2007), 2007.

[49] Yves Raimond, Tom Scott, Silver Oliver, Patrick Sinclair, and Michael
Smethurst. Use of Semantic Web technologies on the BBC Web Sites. In
Linking Enterprise Data, pages 263–283. Springer US, 2010.

[50] Helen Chen and Jos de Roo. Using Semantic Web and Proof Technologies
to Reduce Errors in Radiological Procedure Orders. https://www.w3.org/
2001/sw/sweo/public/UseCases/Agfa/, February 2007. Accessed: 2016-
05-17.

[51] Jeen Broekstra, Christiaan Fluit, Arjohn Kampman, Frank Van Harmelen,
Heiner Stuckenschmidt, Ravinder Bhogal, A. Scerri, Anita De Waard, and
Erik M. van Mulligen. The Drug Ontology Project for Elsevier - An RDF
Architecture Enabling Thesaurus-Driven Data Integration. In Proceedings of
the WWW2004 Workshop on Application Design, Development and Imple-
mentation Issues in the Semantic Web, January 2004.

[52] Pompeu Casanovas. Helping New Judges Answer Complex Legal Ques-
tions. https://www.w3.org/2001/sw/sweo/public/UseCases/Judges/,
May 2007. Accessed: 2016-05-17.

[53] Diego Berrueta and Luis Polo. Enhancing Web Searches within the Princi-
pality of Asturias. https://www.w3.org/2001/sw/sweo/public/UseCases/
CTIC/, August 2007. Accessed: 2016-05-17.

177

https://www.w3.org/People/Ivan/CorePresentations/SWTutorial/Slides.pdf
https://www.w3.org/People/Ivan/CorePresentations/SWTutorial/Slides.pdf
http://www.w3.org/2001/sw/sweo/public/UseCases/
https://www.w3.org/2001/sw/sweo/public/UseCases/Agfa/
https://www.w3.org/2001/sw/sweo/public/UseCases/Agfa/
https://www.w3.org/2001/sw/sweo/public/UseCases/Judges/
https://www.w3.org/2001/sw/sweo/public/UseCases/CTIC/
https://www.w3.org/2001/sw/sweo/public/UseCases/CTIC/

References

[54] Christian Bizer, Jens Lehmann, Georgi Kobilarov, Sören Auer, Christian
Becker, Richard Cyganiak, and Sebastian Hellmann. Dbpedia - a crystal-
lization point for the web of data. Web Semant., 7(3):154–165, September
2009.

[55] OCLC Online Computer Library Center, Inc. OCLC WorldCat. https:
//www.worldcat.org/, 2016. Accessed: 2016-05-17.

[56] Jinghua Groppe, Sven Groppe, Andreas Schleifer, and Volker Linnemann.
LuposDate: A Semantic Web Database System. In Proceedings of the 18th
ACM Conference on Information and Knowledge Management (ACM CIKM
2009), pages 2083–2084, Hong Kong, China, November 2 - 6 2009. ACM.

[57] S. Groppe. LUPOSDATE Open Source. https://github.com/luposdate,
2013. Accessed: 2016-08-15.

[58] Sven Groppe. LUPOSDATE Demonstration. http://www.ifis.
uni-luebeck.de/index.php?id=luposdate-demo, October 2012. Accessed:
2016-10-01.

[59] R. Bayer and E. McCreight. Organization and maintenance of large or-
dered indices. In Proceedings of the 1970 ACM SIGFIDET (Now SIGMOD)
Workshop on Data Description, Access and Control, SIGFIDET ’70, pages
107–141, New York, NY, USA, 1970. ACM.

[60] Douglas Comer. Ubiquitous b-tree. ACM Comput. Surv., 11(2):121–137,
June 1979.

[61] Thomas Neumann and Gerhard Weikum. RDF3X: a RISCstyle Engine for
RDF. In Proceedings of the 34th International Conference on Very Large
Data Bases (VLDB), pages 647–659, Auckland, New Zealand, 2008.

[62] Cathrin Weiss, Panagiotis Karras, and Abraham Bernstein. Hexastore: Sex-
tuple indexing for semantic web data management. Proc. VLDB Endow.,
1(1):1008–1019, August 2008.

[63] Donald R. Morrison. Patricia—practical algorithm to retrieve infor-
mation coded in alphanumeric. J. ACM, 15(4):514–534, October 1968.

[64] Sven Groppe, Dennis Heinrich, Stefan Werner, Christopher Blochwitz, and
Thilo Pionteck. PatTrieSort - External String Sorting based on Patricia Tries.
Open Journal of Databases (OJDB), 2(1):36–50, 2015.

[65] Dennis Heinrich, Stefan Werner, Marc Stelzner, Christopher Blochwitz, Thilo
Pionteck, and Sven Groppe. Hybrid FPGA Approach for a B+ Tree in a
Semantic Web Database System. In Proceedings of the 10th International

178

https://www.worldcat.org/
https://www.worldcat.org/
https://github.com/luposdate
http://www.ifis.uni-luebeck.de/index.php?id=luposdate-demo
http://www.ifis.uni-luebeck.de/index.php?id=luposdate-demo

References

Symposium on Reconfigurable Communication-centric Systems-on-Chip (Re-
CoSoC 2015), Bremen, Germany, June 2015. IEEE.

[66] Sven Groppe Jinghua Groppe and Jan Kolbaum. Optimization of SPARQL
by Using coreSPARQL. In José Cordeiro and Joaquim Filipe, editors, Pro-
ceedings of the 11th International Conference on Enterprise Information Sys-
tems, Volume DISI,(ICEIS 2009), pages 107–112, Milano, Italien, Mai 6 - 10
2009. INSTICC.

[67] E. F. Codd. A relational model of data for large shared data banks. Commun.
ACM, 13(6):377–387, June 1970.

[68] Thomas M. Connolly and Carolyn E. Begg. Database Systems: A Practical
Approach to Design, Implementation, and Management (Global Edition).
Pearson Education Limited, 6th edition, 2015.

[69] Kiyoshi Ono and Guy M. Lohman. Measuring the complexity of join enu-
meration in query optimization. In Proceedings of the 16th International
Conference on Very Large Data Bases, VLDB ’90, pages 314–325, San Fran-
cisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.

[70] Toshihide Ibaraki and Tiko Kameda. On the optimal nesting order for com-
puting n-relational joins. ACM Trans. Database Syst., 9(3):482–502, Septem-
ber 1984.

[71] Donald Kossmann and Konrad Stocker. Iterative dynamic programming: A
new class of query optimization algorithms. ACM Trans. Database Syst.,
25(1):43–82, March 2000.

[72] P. A. V. Hall. Optimization of Single Expressions in a Relational Data Base
System. IBM Journal of Research and Development, 20(3):244 – 257, May
1976.

[73] Goetz Graefe. Query evaluation techniques for large databases. ACM Com-
put. Surv., 25(2):73–169, June 1993.

[74] G. Graefe. Volcano - an extensible and parallel query evaluation system.
IEEE Trans. on Knowl. and Data Eng., 6(1):120–135, February 1994.

[75] Michael Steinbrunn, Klaus Peithner, Guido Moerkotte, and Alfons Kemper.
Bypassing joins in disjunctive queries. In Proceedings of the 21th Interna-
tional Conference on Very Large Data Bases, VLDB ’95, pages 228–238, San
Francisco, CA, USA, 1995. Morgan Kaufmann Publishers Inc.

179

References

[76] Zachary G. Ives and Nicholas E. Taylor. Sideways information passing for
push-style query processing. In Proceedings of the 2008 IEEE 24th Interna-
tional Conference on Data Engineering, ICDE ’08, pages 774–783, Washing-
ton, DC, USA, 2008. IEEE Computer Society.

[77] Computer History Museum. Timeline of Computer History - Memory &
Storage. http://www.computerhistory.org/timeline/memory-storage/,
2016. Accessed: 2016-08-31.

[78] HGST, Inc. Western digital corporation is now shipping world’s first
helium-filled 10tb pmr hdd to meet exponential growth in data, December
2015.
http://www.hgst.com/company/media-room/press-releases/western-
digital-corporation-is-now-shipping-worlds-first-helium-filled-
10TB-PMR-HDD-to-meet-exponential-growth-in-data, Accessed: 2016-
08-15.

[79] Avi Mendelson. How Many Cores is Too Many Cores? In 3rd HiPEAC
Industrial Workshop on Compilers and Architectures, Haifa, Israel, April
2007. IBM.

[80] Cor Meenderinck and Ben H. H. Juurlink. (When) Will CMPs Hit the Power
Wall? In Euro-Par 2008 Workshops - Parallel Processing, VHPC 2008,
UNICORE 2008, HPPC 2008, SGS 2008, PROPER 2008, ROIA 2008, and
DPA 2008, Las Palmas de Gran Canaria, Spain, August 25-26, 2008, Revised
Selected Papers, pages 184–193, 2008.

[81] John Backus. Can Programming Be Liberated from the Von Neumann Style?:
A Functional Style and Its Algebra of Programs. Commun. ACM, 21(8):613–
641, August 1978.

[82] Ambuj Shatdal, Chander Kant, and Jeffrey F. Naughton. Cache conscious
algorithms for relational query processing. In Proceedings of the 20th Inter-
national Conference on Very Large Data Bases, VLDB ’94, pages 510–521,
San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[83] Stefan Manegold, Peter A. Boncz, and Martin L. Kersten. Optimizing
database architecture for the new bottleneck: Memory access. The VLDB
Journal, 9(3):231–246, December 2000.

[84] Gerald Estrin. Organization of computer systems: The fixed plus variable
structure computer. In Papers Presented at the May 3-5, 1960, Western
Joint IRE-AIEE-ACM Computer Conference, IRE-AIEE-ACM ’60 (West-
ern), pages 33–40, New York, NY, USA, 1960. ACM.

180

http://www.computerhistory.org/timeline/memory-storage/
http://www.hgst.com/company/media-room/press-releases/western-digital-corporation-is-now-shipping-worlds-first-helium-filled-10TB-PMR-HDD-to-meet-exponential-growth-in-data
http://www.hgst.com/company/media-room/press-releases/western-digital-corporation-is-now-shipping-worlds-first-helium-filled-10TB-PMR-HDD-to-meet-exponential-growth-in-data
http://www.hgst.com/company/media-room/press-releases/western-digital-corporation-is-now-shipping-worlds-first-helium-filled-10TB-PMR-HDD-to-meet-exponential-growth-in-data

References

[85] Franz J. Rammig. A concept for the editing of hardware resulting in an
automatic hardware-editor. In Proceedings of the 14th Design Automation
Conference, DAC ’77, pages 187–193, Piscataway, NJ, USA, 1977. IEEE
Press.

[86] Reiner W. Hartenstein, Alexander G. Hirschbiel, and M. Weber. Xputers: An
open family of non-von neumann architectures. In Architektur Von Rechen-
systemen, Tagungsband, 11. ITG/GI-Fachtagung, pages 45–58, Berlin, Ger-
many, Germany, 1990. VDE-Verlag GmbH.

[87] Xilinx. Virtex-6 Family Overview. http://www.xilinx.com/support/
documentation/data_sheets/ds150.pdf, January 2012. DS150 (v2.5) Ac-
cessed: 2016-03-03.

[88] Xilinx. Virtex-6 FPGA Configurable Logic Block. http://www.xilinx.com/
support/documentation/user_guides/ug364.pdf, February 2012. UG364
(v1.2).

[89] Xilinx. Virtex-6 FPGA Memory Resources. http://www.xilinx.com/
support/documentation/user_guides/ug363.pdf, February 2014.

[90] Xilinx. Virtex-6 FPGA Memory Interface Solutions. http://www.xilinx.
com/support/documentation/ip_documentation/mig/v3_92/ug406.pdf,
March 2013. UG406.

[91] Xilinx. Virtex-6 FPGA DSP48E1 Slice. http://www.xilinx.com/support/
documentation/user_guides/ug369.pdf, February 2011. UG369 (v1.3).

[92] Xilinx. Virtex-6 FPGA Clocking Resources. http://www.xilinx.com/
support/documentation/user_guides/ug362.pdf, January 2014. UG362
(v2.5).

[93] Xilinx. PlanAhead User Guide. http://www.xilinx.com/support/
documentation/sw_manuals/xilinx14_4/PlanAhead_UserGuide.pdf, Oc-
tober 2012. UG632 (v14.3).

[94] Xilinx. Virtex-6 FPGA SelectIO Resources. http://www.xilinx.
com/support/documentation/user_guides/ug361.pdf, November 2014.
UG361 (v1.6).

[95] Xilinx. Virtex-6 FPGA GTX Transceivers. http://www.xilinx.com/
support/documentation/user_guides/ug366.pdf, July 2011. UG366
(v2.6).

181

http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/data_sheets/ds150.pdf
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.xilinx.com/support/documentation/user_guides/ug364.pdf
http://www.xilinx.com/support/documentation/user_guides/ug363.pdf
http://www.xilinx.com/support/documentation/user_guides/ug363.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mig/v3_92/ug406.pdf
http://www.xilinx.com/support/documentation/ip_documentation/mig/v3_92/ug406.pdf
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support/documentation/user_guides/ug369.pdf
http://www.xilinx.com/support/documentation/user_guides/ug362.pdf
http://www.xilinx.com/support/documentation/user_guides/ug362.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/PlanAhead_UserGuide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/PlanAhead_UserGuide.pdf
http://www.xilinx.com/support/documentation/user_guides/ug361.pdf
http://www.xilinx.com/support/documentation/user_guides/ug361.pdf
http://www.xilinx.com/support/documentation/user_guides/ug366.pdf
http://www.xilinx.com/support/documentation/user_guides/ug366.pdf

References

[96] Xilinx. Virtex-6 FPGA GTH Transceivers. http://www.xilinx.com/
support/documentation/user_guides/ug371.pdf, June 2011. UG371
(v2.2).

[97] Xilinx. LogiCORE IP Virtex-6 FPGA Integrated Block v2.5 for
PCI Express. http://www.xilinx.com/support/documentation/ip_
documentation/v6_pcie/v2_5/ds800_v6_pcie.pdf, January 2012. DS800.

[98] Doug Amos, Austin Lesea, and René Richter. FPGA-based Prototyping
Methodology Manual. Synopsys Press, February 2011.

[99] Xilinx. Virtex-6 FPGA Integrated Block for PCI Express. http:
//www.xilinx.com/support/documentation/ip_documentation/v6_
pcie/v2_5/ug671_V6_IntBlock_PCIe.pdf, January 2012. UG671.

[100] Dini Group. Dini Group DNPCIe_10G_HXT_LL. http://www.
dinigroup.com/web/DNPCIe_10G_HXT_LL.php, December 2013. Accessed:
2016-08-01.

[101] John K. Ousterhout and Ken Jones. Tcl and the Tk Toolkit. Addison-Wesley
Professional, 2nd edition, 2009.

[102] Clif Flynt. Tcl/Tk : A Developer’s Guide. Morgan Kaufmann (Elsevier,
Inc.), 3. edition, 2011.

[103] Xilinx. Command Line Tools User Guide. http://www.xilinx.com/
support/documentation/sw_manuals/xilinx14_4/devref.pdf, July 2012.
UG628 (v14.2).

[104] Gunther Lehmann, Bernhard Wunder, and Manfred Selz. Schaltungsdesign
mit VHDL. Franzis’ Verlag, 1994.

[105] IEEE. 1076-2008 - IEEE Standard VHDL Language Reference Manual, Jan-
uary 2009.

[106] Frank Kesel and Ruben Bartholomä. Entwurf von digitalen Schaltungen und
Systemen mit HDLs und FPGAs - Einführung mit VHDL und SystemC.
Oldenbourg, 2nd edition, 2009.

[107] Xilinx. Synthesis and Simulation Design Guide. http://www.xilinx.com/
support/documentation/sw_manuals/xilinx11/sim.pdf, December 2009.
UG626 v11.4.

[108] IEEE. 1364-2001 - IEEE Standard Verilog Hardware Description Language,
2001.

182

http://www.xilinx.com/support/documentation/user_guides/ug371.pdf
http://www.xilinx.com/support/documentation/user_guides/ug371.pdf
http://www.xilinx.com/support/documentation/ip_documentation/v6_pcie/v2_5/ds800_v6_pcie.pdf
http://www.xilinx.com/support/documentation/ip_documentation/v6_pcie/v2_5/ds800_v6_pcie.pdf
http://www.xilinx.com/support/documentation/ip_documentation/v6_pcie/v2_5/ug671_V6_IntBlock_PCIe.pdf
http://www.xilinx.com/support/documentation/ip_documentation/v6_pcie/v2_5/ug671_V6_IntBlock_PCIe.pdf
http://www.xilinx.com/support/documentation/ip_documentation/v6_pcie/v2_5/ug671_V6_IntBlock_PCIe.pdf
http://www.dinigroup.com/web/DNPCIe_10G_HXT_LL.php
http://www.dinigroup.com/web/DNPCIe_10G_HXT_LL.php
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/devref.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/sim.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/sim.pdf

References

[109] Xilinx. XST User Guide for Virtex-6, Spartan-6, and 7 Series De-
vices. http://www.xilinx.com/support/documentation/sw_manuals/
xilinx14_4/xst_v6s6.pdf, October 2012.

[110] ORSoC AB. Opencores. http://opencores.org/. Accessed: 2016-08-31.

[111] Xilinx. Constraints Guide. http://www.xilinx.com/support/
documentation/sw_manuals/xilinx11/cgd.pdf, December 2009. UG625
(v11.4).

[112] Srinivas Devadas, Abhijit Ghosh, and Kurt Keutzer. Logic Synthesis.
McGraw-Hill, Inc., New York, NY, USA, 1994.

[113] Jie-Hong Roland Jiang and Srinivas Devadas. Logic Synthesis in
a Nutshell . http://flolac.iis.sinica.edu.tw/flolac09/lib/exe/
logic-synthesis.pdf, October 2008.

[114] Xilinx. Virtex-6 Libraries Guide for HDL Designs. http://www.xilinx.com/
support/documentation/sw_manuals/xilinx14_4/virtex6_hdl.pdf, Oc-
tober 2012.

[115] Xilinx. Virtex-6 FPGA Routing Optimization Design Techniques.
http://www.xilinx.com/support/documentation/white_papers/wp381_
V6_Routing_Optimization.pdf, October 2010. WP381 (v1.0).

[116] Xilinx. Writing Efficient Testbenches. http://www.xilinx.com/support/
documentation/application_notes/xapp199.pdf, May 2010. XAPP199
(v1.1).

[117] Scott Hauck and André Dehon. Reconfigurable computing hardware. In
Scott Hauck and André Dehon, editors, Reconfigurable Computing, Systems
on Silicon, pages 1–2. Morgan Kaufmann, Burlington, 2008.

[118] Xilinx. Partial Reconfiguration User Guide. http://www.xilinx.com/
support/documentation/sw_manuals/xilinx14_5/ug702.pdf, April 2013.
UG702 (v14.5).

[119] Xilinx. Partial Reconfiguration Tutorial - PlanAhead Design Tool.
http://www.xilinx.com/support/documentation/sw_manuals/
xilinx14_1/PlanAhead_Tutorial_Partial_Reconfiguration.pdf, May
2012. UG743 (v14.1).

[120] Xilinx. Hierarchical Design Methodology Guide. http://www.xilinx.
com/support/documentation/sw_manuals/xilinx14_5/Hierarchical_
Design_Methodology_Guide.pdf, April 2013. UG748 (v14.5).

183

http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/xst_v6s6.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/xst_v6s6.pdf
http://opencores.org/
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgd.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx11/cgd.pdf
http://flolac.iis.sinica.edu.tw/flolac09/lib/exe/logic-synthesis.pdf
http://flolac.iis.sinica.edu.tw/flolac09/lib/exe/logic-synthesis.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/virtex6_hdl.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_4/virtex6_hdl.pdf
http://www.xilinx.com/support/documentation/white_papers/wp381_V6_Routing_Optimization.pdf
http://www.xilinx.com/support/documentation/white_papers/wp381_V6_Routing_Optimization.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp199.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp199.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/ug702.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/PlanAhead_Tutorial_Partial_Reconfiguration.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_1/PlanAhead_Tutorial_Partial_Reconfiguration.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/Hierarchical_Design_Methodology_Guide.pdf
http://www.xilinx.com/support/documentation/sw_manuals/xilinx14_5/Hierarchical_Design_Methodology_Guide.pdf

References

[121] Xilinx. Virtex-6 FPGA Configuration. http://www.xilinx.com/support/
documentation/user_guides/ug360.pdf, November 2015. UG360 (v3.9).

[122] Xilinx. Fast Configuration of PCI Express Technology through Par-
tial Reconfiguration. http://www.xilinx.com/support/documentation/
application_notes/xapp883_Fast_Config_PCIe.pdf, November 2010.
XAPP883 (v1.0).

[123] Xilinx. Partial Reconfiguration of Xilinx FPGAs Using ISE Design
Suite. http://www.xilinx.com/support/documentation/white_papers/
wp374_Partial_Reconfig_Xilinx_FPGAs.pdf, May 2012. WP374 (v1.2).

[124] Kyprianos Papadimitriou, Apostolos Dollas, and Scott Hauck. Performance
of partial reconfiguration in fpga systems: A survey and a cost model. ACM
Trans. Reconfigurable Technol. Syst., 4(4), 2011.

[125] Dirk Koch, Christian Beckhoff, and Jim Torresen. Zero logic overhead in-
tegration of partially reconfigurable modules. In Proceedings of the 23rd
Symposium on Integrated Circuits and System Design, SBCCI ’10, pages
103–108, New York, NY, USA, 2010. ACM.

[126] Dirk Koch, Jim Tørresen, Christian Beckhoff, Daniel Ziener, Christopher
Dennl, Volker Breuer, Jürgen Teich, Michael Feilen, and Walter Stechele.
Partial reconfiguration on fpgas in practice - tools and applications. In ARCS
2012 Workshops, 28. Februar - 2. März 2012, München, Germany, pages
297–319, 2012.

[127] Scott Hauck and André DeHon. Preface. In Scott Hauck and André Dehon,
editors, Reconfigurable Computing, Systems on Silicon, pages xxiii – xxiv.
Morgan Kaufmann, Burlington, 2008.

[128] Roger Woods, Katherine Compton, Christos Bouganis, and Pedro C. Di-
niz, editors. Reconfigurable Computing: Architectures, Tools and Applica-
tions (4th International Workshop, ARC 2008 Proceedings). Lecture Notes
in Computer Science. Springer-Verlag Berlin Heidelberg, March 2008.

[129] Altera Corporation. Consumer Applications. https://www.altera.com/
solutions/industry/consumer/overview.html. Accessed: 2016-08-01.

[130] Xilinx Inc. Consumer Electronics - Smarter Vision: Intelligence for
Smarter Consumer Systems. http://www.xilinx.com/applications/
consumer-electronics.html. Accessed: 2016-08-01.

[131] Thomas W. Fry and Scott Hauck. Chapter 27 - SPIHT image compression. In
Scott Hauck and André Dehon, editors, Reconfigurable Computing, Systems
on Silicon, pages 565 – 590. Morgan Kaufmann, Burlington, 2008.

184

http://www.xilinx.com/support/documentation/user_guides/ug360.pdf
http://www.xilinx.com/support/documentation/user_guides/ug360.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp883_Fast_Config_PCIe.pdf
http://www.xilinx.com/support/documentation/application_notes/xapp883_Fast_Config_PCIe.pdf
http://www.xilinx.com/support/documentation/white_papers/wp374_Partial_Reconfig_Xilinx_FPGAs.pdf
http://www.xilinx.com/support/documentation/white_papers/wp374_Partial_Reconfig_Xilinx_FPGAs.pdf
https://www.altera.com/solutions/industry/consumer/overview.html
https://www.altera.com/solutions/industry/consumer/overview.html
http://www.xilinx.com/applications/consumer-electronics.html
http://www.xilinx.com/applications/consumer-electronics.html

References

[132] Stephen J. Bellis, Kieran Delaney, John Barton, and Kafil M. Razeeb. De-
velopment of field programmable modular wireless sensor network nodes for
ambient systems. In In Computer Communications, Special Issue on Wireless
Sensor Networks, 2005.

[133] Xilinx. High Performance Computing Using FPGAs (WP375).
http://www.xilinx.com/support/documentation/white_papers/wp375_
HPC_Using_FPGAs.pdf, 2010. Accessed: 2016-03-03.

[134] Chen Zhang, Peng Li, Guangyu Sun, Yijin Guan, Bingjun Xiao, and Jason
Cong. Optimizing FPGA-based accelerator design for deep convolutional
neural networks. In Proceedings of the 2015 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, FPGA ’15, pages 161–170,
New York, NY, USA, 2015. ACM.

[135] Kalin Ovtcharov, Olatunji Ruwase, Joo-Young Kim, Jeremy Fowers, Karin
Strauss, and Eric S. Chung. Accelerating deep convolutional neural networks
using specialized hardware. In White paper. Microsoft Research, February
2015.

[136] Toward Accelerating Deep Learning at Scale Using Specialized Logic.
HOTCHIPS, August 2015.

[137] Naveen Suda, Vikas Chandra, Ganesh Dasika, Abinash Mohanty, Yufei Ma,
Sarma Vrudhula, Jae-sun Seo, and Yu Cao. Throughput-optimized opencl-
based FPGA accelerator for large-scale convolutional neural networks. In
Proceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, FPGA ’16, pages 16–25, New York, NY, USA,
2016. ACM.

[138] Jiantao Qiu, Jie Wang, Song Yao, Kaiyuan Guo, Boxun Li, Erjin Zhou,
Jincheng Yu, Tianqi Tang, Ningyi Xu, Sen Song, Yu Wang, and Huazhong
Yang. Going deeper with embedded FPGA platform for convolutional neural
network. In Proceedings of the 2016 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, FPGA ’16, pages 26–35, New York,
NY, USA, 2016. ACM.

[139] P. K. Gupta (Intel). Intel Xeon + FPGA Platform for the Data Center. In
FPL’15 Workshop on Reconfigurable Computing for the Masses, September
2015.

[140] Gabriel Weisz, Joseph Melber, Yu Wang, Kermin Fleming, Eriko Nurvi-
tadhi, and James C. Hoe. A study of pointer-chasing performance on shared-
memory processor-FPGA systems. In Proceedings of the 2016 ACM/SIGDA

185

http://www.xilinx.com/support/documentation/white_papers/wp375_HPC_Using_FPGAs.pdf
http://www.xilinx.com/support/documentation/white_papers/wp375_HPC_Using_FPGAs.pdf

References

International Symposium on Field-Programmable Gate Arrays, FPGA ’16,
pages 264–273, New York, NY, USA, 2016. ACM.

[141] Hans-Otto Leilich, Günther Stiege, and Hans Christoph Zeidler. A search
processor for data base management systems. In Proceedings of the fourth
international conference on Very Large Data Bases - Volume 4, VLDB’1978,
pages 280–287. VLDB Endowment, 1978.

[142] D.J. DeWitt. Direct - a multiprocessor organization for supporting rela-
tional database management systems. Computers, IEEE Transactions on,
C-28(6):395–406, June 1979.

[143] Dina Bitton, David J. DeWitt, and Carolyn Turbyfill. Benchmarking
database systems a systematic approach. In Proceedings of the 9th Inter-
national Conference on Very Large Data Bases, VLDB ’83, pages 8–19, San
Francisco, CA, USA, 1983. Morgan Kaufmann Publishers Inc.

[144] D. J. Dewitt, S. Ghandeharizadeh, D. A. Schneider, A. Bricker, H. I. Hsiao,
and R. Rasmussen. The gamma database machine project. IEEE Trans. on
Knowl. and Data Eng., 2(1):44–62, March 1990.

[145] Michael Ubell. The Intelligent Database Machine (IDM). In Won Kim,
David S. Reiner, and Don S. Batory, editors, Query Processing in Database
Systems, Topics in Information Systems, chapter VII, pages 237–247.
Springer Berlin Heidelberg, 1985.

[146] David J. DeWitt, Robert H. Gerber, Goetz Graefe, Michael L. Heytens,
Krishna B. Kumar, and M. Muralikrishna. Gamma - a high performance
dataflow database machine. In Proceedings of the 12th International Confer-
ence on Very Large Data Bases, VLDB ’86, pages 228–237, San Francisco,
CA, USA, 1986. Morgan Kaufmann Publishers Inc.

[147] Jun Rao and Kenneth A. Ross. Cache conscious indexing for decision-support
in main memory. In Proceedings of the 25th International Conference on Very
Large Data Bases, VLDB ’99, pages 78–89, San Francisco, CA, USA, 1999.
Morgan Kaufmann Publishers Inc.

[148] Stefan Manegold, Peter Boncz, Martin Kersten, and Ieee Computer Society.
Optimizing main-memory join on modern hardware. IEEE Transactions on
Knowledge and Data Eng, 14:2002, 2002.

[149] Peter A. Boncz, Martin L. Kersten, and Stefan Manegold. Breaking the
memory wall in monetdb. Commun. ACM, 51(12):77–85, December 2008.

186

References

[150] Georgios Giannikis, Gustavo Alonso, and Donald Kossmann. Shareddb:
Killing one thousand queries with one stone. Proc. VLDB Endow., 5(6):526–
537, February 2012.

[151] Max Heimel, Michael Saecker, Holger Pirk, Stefan Manegold, and Volker
Markl. Hardware-oblivious parallelism for in-memory column-stores. Proc.
VLDB Endow., 6(9):709–720, July 2013.

[152] Shekhar Borkar and Andrew A. Chien. The future of microprocessors. Com-
mun. ACM, 54(5):67–77, May 2011.

[153] Sang-Won Lee, Bongki Moon, and Chanik Park. Advances in flash memory
ssd technology for enterprise database applications. In Proceedings of the 2009
ACM SIGMOD International Conference on Management of Data, SIGMOD
’09, pages 863–870, New York, NY, USA, 2009. ACM.

[154] Kimberly Keeton, David A. Patterson, and Joseph M. Hellerstein. A case for
intelligent disks (idisks). SIGMOD Rec., 27(3):42–52, September 1998.

[155] Erik Riedel, Garth A. Gibson, and Christos Faloutsos. Active storage for
large-scale data mining and multimedia. In Proceedings of the 24rd Interna-
tional Conference on Very Large Data Bases, VLDB ’98, pages 62–73, San
Francisco, CA, USA, 1998. Morgan Kaufmann Publishers Inc.

[156] Erik Riedel, Christos Faloutsos, Garth A. Gibson, and David Nagle. Active
disks for large-scale data processing. Computer, 34(6):68–74, June 2001.

[157] Anurag Acharya, Mustafa Uysal, and Joel Saltz. Active disks: Programming
model, algorithms and evaluation. SIGPLAN Not., 33(11):81–91, October
1998.

[158] Yangwook Kang, Yang suk Kee, Ethan L. Miller, and Chanik Park. Enabling
cost-effective data processing with smart ssd. In the 29th IEEE Symposium
on Massive Storage Systems and Technologies (MSST 13), May 2013.

[159] Sangyeun Cho, Chanik Park, Hyunok Oh, Sungchan Kim, Youngmin Yi,
and Gregory R. Ganger. Active disk meets flash: A case for intelligent ssds.
In Proceedings of the 27th International ACM Conference on International
Conference on Supercomputing, ICS ’13, pages 91–102, New York, NY, USA,
2013. ACM.

[160] Jaeyoung Do, Yang-Suk Kee, Jignesh M. Patel, Chanik Park, Kwanghyun
Park, and David J. DeWitt. Query processing on smart ssds: Opportunities
and challenges. In Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, SIGMOD ’13, pages 1221–1230, New
York, NY, USA, 2013. ACM.

187

References

[161] Sudharsan Seshadri, Mark Gahagan, Sundaram Bhaskaran, Trevor Bunker,
Arup De, Yanqin Jin, Yang Liu, and Steven Swanson. Willow: A user-
programmable ssd. In Proceedings of the 11th USENIX Conference on Oper-
ating Systems Design and Implementation, OSDI’14, pages 67–80, Berkeley,
CA, USA, 2014. USENIX Association.

[162] Chengyu Sun, Divyakant Agrawal, and Amr El Abbadi. Hardware accel-
eration for spatial selections and joins. In Proceedings of the 2003 ACM
SIGMOD International Conference on Management of Data, SIGMOD ’03,
pages 455–466, New York, NY, USA, 2003. ACM.

[163] Naga K. Govindaraju, Brandon Lloyd, Wei Wang, Ming Lin, and Dinesh
Manocha. Fast computation of database operations using graphics proces-
sors. In Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’04, pages 215–226, New York, NY, USA,
2004. ACM.

[164] Naga Govindaraju, Jim Gray, Ritesh Kumar, and Dinesh Manocha. Gput-
erasort: High performance graphics co-processor sorting for large database
management. In Proceedings of the 2006 ACM SIGMOD International Con-
ference on Management of Data, SIGMOD ’06, pages 325–336, New York,
NY, USA, 2006. ACM.

[165] NVIDIA Corporation. Compute Unified Device Architecture (CUDA).
https://developer.nvidia.com/cuda-zone. Accessed: 2016-07-01.

[166] Bingsheng He, Ke Yang, Rui Fang, Mian Lu, Naga Govindaraju, Qiong Luo,
and Pedro Sander. Relational joins on graphics processors. In Proceedings of
the 2008 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’08, pages 511–524, New York, NY, USA, 2008. ACM.

[167] Bingsheng He, Mian Lu, Ke Yang, Rui Fang, Naga K. Govindaraju, Qiong
Luo, and Pedro V. Sander. Relational query coprocessing on graphics pro-
cessors. ACM Trans. Database Syst., 34(4):21:1–21:39, December 2009.

[168] Transaction Processing Performance Council. TPC-H Benchmark. http:
//www.tpc.org/tpch/default.asp. Accessed: 2016-07-01.

[169] Wenbin Fang, Bingsheng He, and Qiong Luo. Database compression on
graphics processors. Proc. VLDB Endow., 3(1-2):670–680, September 2010.

[170] Bingsheng He and Jeffrey Xu Yu. High-throughput transaction executions
on graphics processors. Proc. VLDB Endow., 4(5):314–325, February 2011.

188

https://developer.nvidia.com/cuda-zone
http://www.tpc.org/tpch/default.asp
http://www.tpc.org/tpch/default.asp

References

[171] Jiong He, Shuhao Zhang, and Bingsheng He. In-cache query co-processing on
coupled cpu-gpu architectures. Proc. VLDB Endow., 8(4):329–340, December
2014.

[172] Xuntao Cheng, Bingsheng He, and Chiew Tong Lau. Energy-efficient query
processing on embedded cpu-gpu architectures. In Proceedings of the 11th
International Workshop on Data Management on New Hardware, DaMoN’15,
pages 10:1–10:7, New York, NY, USA, 2015. ACM.

[173] Sebastian Breß and Gunter Saake. Why it is time for a hype: A hybrid
query processing engine for efficient gpu coprocessing in dbms. Proc. VLDB
Endow., 6(12):1398–1403, August 2013.

[174] Sebastian Breß, Bastian Köcher, Max Heimel, Volker Markl, Michael Saecker,
and Gunter Saake. Ocelot/hype: Optimized data processing on heteroge-
neous hardware. Proc. VLDB Endow., 7(13):1609–1612, August 2014.

[175] Sebastian Breß. Efficient Query Processing in Co-Processor-accelerated
Databases. PhD thesis, Otto-von-Guericke-Universität Magdeburg, 2015.

[176] Chris Gregg and Kim Hazelwood. Where is the data? why you cannot debate
cpu vs. gpu performance without the answer. In Proceedings of the IEEE
International Symposium on Performance Analysis of Systems and Software,
ISPASS ’11, pages 134–144, Washington, DC, USA, 2011. IEEE Computer
Society.

[177] Amirhesam Shahvarani and Hans-Arno Jacobsen. A hybrid b+-tree as so-
lution for in-memory indexing on CPU-GPU heterogeneous computing plat-
forms. In Proceedings of the 2016 International Conference on Management
of Data, SIGMOD ’16, pages 1523–1538, New York, NY, USA, 2016. ACM.

[178] Steven A. Guccione. Chapter 3 - reconfigurable computing systems. In Scott
Hauck and André Dehon, editors, Reconfigurable Computing, Systems on
Silicon, pages 47–64. Morgan Kaufmann, Burlington, 2008.

[179] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining as-
sociation rules in large databases. In Proceedings of the 20th International
Conference on Very Large Data Bases, VLDB ’94, pages 487–499, San Fran-
cisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[180] Zachary K. Baker and Viktor K. Prasanna. Efficient hardware data mining
with the apriori algorithm on fpgas. In Proceedings of the 13th Annual IEEE
Symposium on Field-Programmable Custom Computing Machines, FCCM
’05, pages 3–12, Washington, DC, USA, 2005. IEEE Computer Society.

189

References

[181] Yi Shan, Bo Wang, Jing Yan, Yu Wang, Ningyi Xu, and Huazhong Yang.
FPmr: Mapreduce framework on FPGA. In Proceedings of the 18th Annual
ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA ’10, pages 93–102, New York, NY, USA, 2010. ACM.

[182] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing
on large clusters. Commun. ACM, 51(1):107–113, January 2008.

[183] Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient
boosting algorithm for combining preferences. J. Mach. Learn. Res., 4:933–
969, December 2003.

[184] Rene Mueller, Jens Teubner, and Gustavo Alonso. Data processing on fpgas.
Proc. VLDB Endow., 2:910–921, August 2009.

[185] Dirk Koch and Jim Torresen. Fpgasort: a high performance sorting architec-
ture exploiting run-time reconfiguration on fpgas for large problem sorting.
In Proceedings of the 19th ACM/SIGDA international symposium on Field
programmable gate arrays, FPGA ’11, pages 45–54, New York, NY, USA,
2011. ACM.

[186] Jared Casper and Kunle Olukotun. Hardware acceleration of database op-
erations. In Proceedings of the 2014 ACM/SIGDA International Symposium
on Field-programmable Gate Arrays, FPGA ’14, pages 151–160, New York,
NY, USA, 2014. ACM.

[187] Donald E. Knuth. The art of computer programming: Sorting and searching.
The Art of Computer Programming. Addison-Wesley, 2nd edition, 1998.

[188] Jens Teubner and Rene Mueller. How Soccer Players Would do Stream Joins.
In Proceedings of the 2011 International Conference on Management of Data,
SIGMOD ’11, pages 625–636, New York, NY, USA, 2011. ACM.

[189] Louis Woods, Gustavo Alonso, and Jens Teubner. Parallel computation of
skyline queries. Field-Programmable Custom Computing Machines, Annual
IEEE Symposium on, 0:1–8, 2013.

[190] Louis Woods, Gustavo Alonso, and Jens Teubner. Parallelizing data process-
ing on FPGAs with shifter lists. ACM Trans. Reconfigurable Technol. Syst.,
8(2):7:1–7:22, March 2015.

[191] Stephan Börzsönyi, Donald Kossmann, and Konrad Stocker. The skyline
operator. In Proc. 17th Int. Conf. on Data Engineering (ICDE), pages 421–
430, Heidelberg, Germany, 2001.

190

References

[192] Jens Teubner, René Müller, and Gustavo Alonso. Frequent item computation
on a chip. IEEE Trans. Knowl. Data Eng., 23(8):1169–1181, 2011.

[193] P. Drineas, A. Frieze, R. Kannan, S. Vempala, and V. Vinay. Clustering
large graphs via the singular value decomposition. Mach. Learn., 56(1-3):9–
33, June 2004.

[194] Bharat Sukhwani, Hong Min, Mathew Thoennes, Parijat Dube, Balakrishna
Iyer, Bernard Brezzo, Donna Dillenberger, and Sameh Asaad. Database
analytics acceleration using fpgas. In Proceedings of the 21st International
Conference on Parallel Architectures and Compilation Techniques, PACT ’12,
pages 411–420, New York, NY, USA, 2012. ACM.

[195] Robert J. Halstead, Bharat Sukhwani, Hong Min, Mathew Thoennes, Pari-
jat Dube, Sameh Asaad, and Balakrishna Iyer. Accelerating join operation
for relational databases with fpgas. Field-Programmable Custom Computing
Machines, Annual IEEE Symposium on, 0:17–20, 2013.

[196] Zsolt István, Gustavo Alonso, Michaela Blott, and Kees Vissers. A flexible
hash table design for 10gbps key-value stores on fpgas. In 23rd International
Conference on Field programmable Logic and Applications (FPL 2013), pages
1 – 8, New York, NY, USA, September 2013. IEEE.

[197] Zsolt István, Gustavo Alonso, Michaela Blott, and Kees Vissers. A hash
table for line-rate data processing. ACM Trans. Reconfigurable Technol. Syst.,
8(2):13:1–13:15, March 2015.

[198] Louis Woods, Jens Teubner, and Gustavo Alonso. Less watts, more perfor-
mance: An intelligent storage engine for data appliances. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’13, pages 1073–1076, New York, NY, USA, 2013. ACM.

[199] Louis Woods, Zsolt István, and Gustavo Alonso. Ibex: An intelligent stor-
age engine with support for advanced sql offloading. Proc. VLDB Endow.,
7(11):963–974, July 2014.

[200] Zsolt István, Louis Woods, and Gustavo Alonso. Histograms as a side effect
of data movement for big data. In Proceedings of the 2014 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’14, pages 1567–
1578, Snowbird, UT, USA, 2014. ACM.

[201] Sven Groppe. Rule Documentation - Rule Constant Propagation.
http://www.ifis.uni-luebeck.de/~groppe/tutorial_demo/ruledoc/
constantpropagationRule.html. Accessed: 2016-08-15.

191

http://www.ifis.uni-luebeck.de/~groppe/tutorial_demo/ruledoc/constantpropagationRule.html
http://www.ifis.uni-luebeck.de/~groppe/tutorial_demo/ruledoc/constantpropagationRule.html

References

[202] Andreas Harth. Billion Triples Challenge dataset. http://km.aifb.kit.
edu/projects/btc-2012/, 2012. Accessed: 2016-08-15.

[203] Xillybus Ltd. Xillybus - IP core product brief. http://xillybus.com/
downloads/xillybus_product_brief.pdf, January 2016. Accessed: 2016-
08-15 (v1.8).

[204] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph
Pinkel. SP2Bench. http://dbis.informatik.uni-freiburg.de/index.
php?project=SP2B/download.php, January 2009. Accessed: 2016-10-01.

[205] DBLP. Computer Science Bibliography. http://dblp.uni-trier.de. Ac-
cessed: 2016-08-31.

[206] Michael Schmidt, Thomas Hornung, Georg Lausen, and Christoph Pinkel.
SP2Bench: A SPARQL Performance Benchmark. In Proceedings of the 25th
International Conference on Data Engineering, ICDE 2009, March 29 2009
- April 2 2009, Shanghai, China, pages 222–233, 2009.

[207] IBM Corp. The Netezza Data Appliance Architecture: A Platform for High
Performance Data Warehousing and Analytics, 2011.

[208] Rene Mueller, Jens Teubner, and Gustavo Alonso. Streams on Wires: A
Query Compiler for FPGAs. Proc. VLDB Endow., 2:229–240, August 2009.

[209] Rene Mueller and Jens Teubner. Fpga: what’s in it for a database? In
Proceedings of the 35th SIGMOD international conference on Management
of data, SIGMOD ’09, pages 999–1004, New York, NY, USA, 2009. ACM.

[210] Rene Mueller, Jens Teubner, and Gustavo Alonso. Glacier: A Query-to-
Hardware Compiler. In Proceedings of the 2010 International Conference on
Management of Data, SIGMOD ’10, pages 1159–1162, New York, NY, USA,
2010. ACM.

[211] Takashi Takenaka, Masamichi Takagi, and Hiroaki Inoue. A scalable com-
plex event processing framework for combination of sql-based continuous
queries and c/c++ functions. In 22nd International Conference on Field
Programmable Logic and Applications (FPL), pages 237 – 242, Oslo, Nor-
way, 2012.

[212] Python Software Foundation. Python. https://www.python.org/. Ac-
cessed: 2016-08-15.

192

http://km.aifb.kit.edu/projects/btc-2012/
http://km.aifb.kit.edu/projects/btc-2012/
http://xillybus.com/downloads/xillybus_product_brief.pdf
http://xillybus.com/downloads/xillybus_product_brief.pdf
http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/download.php
http://dbis.informatik.uni-freiburg.de/index.php?project=SP2B/download.php
http://dblp.uni-trier.de
https://www.python.org/

References

[213] Rico Backasch, Gerald Hempel, Sven Groppe, Stefan Werner, and Thilo Pi-
onteck. Identifying Homogenous Reconfigurable Regions in Heterogeneous
FPGAs for Module Relocation. In International Conference on ReConFig-
urable Computing and FPGAs (ReConFig), Cancun, Mexico, December 2014.

[214] Christopher Dennl, Daniel Ziener, and Jürgen Teich. On-the-fly Composition
of FPGA-Based SQL Query Accelerators Using a Partially Reconfigurable
Module Library. 20th Annual IEEE Symposium on Field-Programmable Cus-
tom Computing Machines, 20:45–52, 2012.

[215] Christopher Dennl, Daniel Ziener, and Jurgen Teich. Acceleration of SQL
Restrictions and Aggregations Through FPGA-Based Dynamic Partial Re-
configuration. In Proceedings of the 2013 IEEE 21st Annual International
Symposium on Field-Programmable Custom Computing Machines, FCCM
’13, pages 25–28, Washington, DC, USA, 2013. IEEE Computer Society.

[216] Andreas Becher, Florian Bauer, Daniel Ziener, and Jürgen Teich. Energy-
Aware SQL Query Acceleration through FPGA-Based Dynamic Partial Re-
configuration. In Proceedings of the 24th International Conference on Field
Programmable Logic and Applications (FPL 2014), pages 662–669. IEEE,
2014.

[217] Daniel Ziener, Florian Bauer, Andreas Becher, Christopher Dennl, Klaus
Meyer-Wegener, Ute Schürfeld, Jürgen Teich, Jörg-Stephan Vogt, and Hel-
mut Weber. Fpga-based dynamically reconfigurable sql query processing.
ACM Trans. Reconfigurable Technol. Syst., 9(4):25:1–25:24, August 2016.

[218] Raphael Polig, Kubilay Atasu, Laura Chiticariu, Christoph Hagleitner,
H. Peter Hofstee, Frederick R. Reiss, Huaiyu Zhu, and Eva Sitaridi. Giv-
ing Text Analytics a Boost. IEEE Micro, 34(4):6–14, 2014.

[219] Jens Teubner, Louis Woods, and Chongling Nie. Skeleton automata for fpgas:
Reconfiguring without reconstructing. In Proc. ACM SIGMOD’12, pages
229–240, 2012.

[220] Jens Teubner, Louis Woods, and Chongling Nie. Xlynx—an FPGA-
based XML filter for hybrid xquery processing. ACM Trans. Database Syst.,
38(4):23:1–23:39, December 2013.

[221] Mohammad Sadoghi, Martin Labrecque, Harsh Singh, Warren Shum, and
Hans-Arno Jacobsen. Efficient event processing through reconfigurable
hardware for algorithmic trading. Proc. VLDB Endow., 3(1-2):1525–1528,
September 2010.

193

References

[222] Mohammad Sadoghi, Rija Javed, Naif Tarafdar, Harsh Singh, Rohan Pala-
niappan, and Hans-Arno Jacobsen. Multi-query Stream Processing on FP-
GAs. In Anastasios Kementsietsidis and Marcos Antonio Vaz Salles, editors,
ICDE, pages 1229–1232. IEEE Computer Society, 2012.

[223] Mohammadreza Najafi, Mohammad Sadoghi, and Hans-Arno Jacobsen. Flex-
ible Query Processor on FPGAs. Proc. VLDB Endow., 6(12):1310–1313,
August 2013.

[224] Mohammadreza Najafi, Mohammad Sadoghi, and Hans-Arno Jacobsen. The
FQP Vision: Flexible Query Processing on a Reconfigurable Computing Fab-
ric. SIGMOD Rec., 44(2):5–10, August 2015.

[225] Mohammadreza Najafi, Mohammad Sadoghi, and Hans-Arno Jacob-
sen. Configurable hardware-based streaming architecture using Online
Programmable-Blocks. In 31st IEEE International Conference on Data En-
gineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, pages 819–830,
2015.

[226] Yoshihiro Ichinomiya, Motoki Amagasaki, Masahiro Iida, Morihiro Kuga, and
Toshinori Sueyoshi. A Bitstream Relocation Technique to Improve Flexibility
of Partial Reconfiguration, pages 139–152. Springer Berlin Heidelberg, Berlin,
Heidelberg, 2012.

[227] Timos K. Sellis. Multiple-query optimization. ACM Trans. Database Syst.,
13(1):23–52, March 1988.

[228] Nilesh N. Dalvi, Sumit K. Sanghai, Prasan Roy, and S. Sudarshan. Pipelining
in multi-query optimization. In Proceedings of the Twentieth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems, PODS ’01,
pages 59–70, New York, NY, USA, 2001. ACM.

[229] Rico Backasch, Gerald Hempel, Thilo Pionteck, Sven Groppe, and Stefan
Werner. An Architectural Template for Composing Application Specific Dat-
apaths at Runtime. In International Conference on ReConFigurable Com-
puting and FPGAs (ReConFig), Cancun, Mexico, December 2015.

[230] Stavros Harizopoulos and Anastassia Ailamaki. A case for staged database
systems. In CIDR, 2003.

[231] Stavros Harizopoulos and Anastassia Ailamaki. Stageddb: Designing
database servers for modern hardware. IEEE Data Eng. Bull., 28(2):11–16,
2005.

194

References

[232] Stavros Harizopoulos, Vladislav Shkapenyuk, and Anastassia Ailamaki.
Qpipe: A simultaneously pipelined relational query engine. In Proceedings of
the 2005 ACM SIGMOD International Conference on Management of Data,
SIGMOD ’05, pages 383–394, New York, NY, USA, 2005. ACM.

[233] Jeremy Fowers, Greg Brown, Patrick Cooke, and Greg Stitt. A performance
and energy comparison of fpgas, gpus, and multicores for sliding-window
applications. In Proceedings of the ACM/SIGDA international symposium
on Field Programmable Gate Arrays, FPGA ’12, pages 47–56, New York,
NY, USA, 2012. ACM.

[234] Xillybus Ltd. Xillybus host application programming guide for linux.
http://xillybus.com/downloads/doc/xillybus_host_programming_
guide_linux.pdf. Accessed: 2016-08-15 (Version 2.2).

[235] Xillybus Ltd. The custom ip core factory. http://xillybus.com/
custom-ip-factory. Accessed: 2016-08-15.

[236] Xillybus Ltd. Download Xillybus for PCIe. http://xillybus.com/
pcie-download. Accessed: 2016-08-15.

[237] Xillybus Ltd. Xillybus’ data bandwidth. http://xillybus.com/doc/
xillybus-bandwidth. Accessed: 2016-08-15.

195

http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/downloads/doc/xillybus_host_programming_guide_linux.pdf
http://xillybus.com/custom-ip-factory
http://xillybus.com/custom-ip-factory
http://xillybus.com/pcie-download
http://xillybus.com/pcie-download
http://xillybus.com/doc/xillybus-bandwidth
http://xillybus.com/doc/xillybus-bandwidth

Lists

List of Figures

1.1 High-level view of the hybrid database architecture 3

2.1 Growth of the World Wide Web 6
2.2 Excerpt of the author’s web page. 7
2.3 Semantic Web stack . 8
2.4 RDF graph corresponding to Listing 2.1. 10
2.5 Architecture of the Semantic Web database LUPOSDATE 17
2.6 Dictionary for component strings 20
2.7 Transformation of example query into a logical operator graph. . . 26
2.8 Array of Configurable Logic Block 31
2.9 Example of a memory hierarchy . 32
2.10 Schematic view of FPGA XC6VHX380 34
2.11 FPGA board DNPCIe_10G_HXT_LL 36
2.12 FPGA development flow. 38
2.13 Block diagram at RTL . 42
2.14 Testbench verifies Unit Under Test 46
2.15 Basic concept of Dynamic Partial Reconfiguration 47

3.1 Stages of query processing in the LUPOSDATE system 60
3.2 Scopes of FPGA application in query execution 60
3.3 Utilization of Dynamic Partial Reconfiguration in query execution 62
3.4 Cascaded query processing . 62
3.5 Dimensions of parallelism in query execution. 63
3.6 Query operator template . 65
3.7 Bindings array . 66
3.8 Join of two bindings arrays . 67
3.9 Schematic of the structure expressed in Listing 3.2. 68
3.10 Required comparisons of Nested Loop Join 71
3.11 Required comparisons of Merge Join 73
3.12 Schematic view of Asymmetric Hash Join 75
3.13 Hashing based on bit vector . 75
3.14 Schematic view of Symmetric Hash Join 77

197

Lists

3.15 Structure of the hashmap and bindings storage used in the Hash
Join using separate chaining with linked list 79

3.16 Evaluation framework (join) . 81
3.17 Execution times of Nested Loop Join 83
3.18 Execution times of Merge Join . 85
3.19 Execution times of Asymmetric Hash Join 86
3.20 Execution times of Symmetric Hash Join 88
3.21 Execution times of Hash Join using separate chaining with linked list 89
3.22 Execution times of all hardware-accelerated join operators running

at a normalized clock rate of 100 MHz. 90
3.23 Execution times of Asymmetric Hash Join with different hash masks 92
3.24 Schematic of the Fully-Parallel Filter. 96
3.25 Example execution of the Parallel Filter. 97
3.26 Schematic of the Pipelined Filter. 98
3.27 Example execution of the Pipelined Filter. 99
3.28 Complex filter expressions . 101
3.29 Throughput of FPGA-based filter operators 103
3.30 Throughput of software-based and FPGA-based filter operator . . 103
3.31 Register Transfer Level of filter operators. 104
3.32 Resource consumption and scalability of filter operators 105
3.33 RDF3XIndexScan operator . 108
3.34 Projection operator . 108
3.35 Union operators. 109
3.36 Limit operator. 110
3.37 Offset operator. 110
3.38 AddBinding operators. 111

4.1 Class hierarchy of query evaluators in LUPOSDATE 116
4.2 Flow chart of the hybrid system. 117
4.3 Architecture of hybrid query engine 119
4.4 Result size of test queries . 127
4.5 Execution times of SP2B-Q1 for different dataset sizes. 129
4.6 Execution times of SP2B-Q2 for different dataset sizes. 129
4.7 Execution times of SP2B-Q3 for different dataset sizes. 131
4.8 Execution times of SP2B-Q4 for different dataset sizes. 131
4.9 Execution times of SP2B-Q5 for different dataset sizes. 132
4.10 Execution times of test queries on the BTC-2012 dataset 133

5.1 Architecture of hybrid query engine based on Semi-static Operator
Graphs . 138

5.2 Semi-static Routing Elements . 140

198

List of Listings

5.3 Flow chart of the hybrid system using Semi-static Operator Graphs 141
5.4 Semi-static Operator Graph used in the evaluation 145

A.1 Throughput of host-to-FPGA (downstream) communication. . . . 161
A.2 Throughput of FPGA-to-host (upstream) communication. 161

List of Listings

2.1 Example RDF dataset. 10
2.2 SPARQL example query. 11
2.3 Entity example (VHDL). 40
2.4 Architecture example (VHDL). 41

3.1 The operator template defines the common interface of all imple-
mented operators (VHDL). 66

3.2 Composition of a joined result (VHDL). 68
3.3 Sequential composition of joined result (C source code). 69
3.4 SPARQL example query with filter expression. 95

4.1 Record type op_connection to connect two consecutive operators. . 120
4.2 Instantiation of operator X . 122
4.3 Connecting two operators identified by their ID’s X and Y. 122

List of Tables

2.1 Available logic resources of three Virtex-6 devices 30

3.1 Device utilization of join operators 91

4.1 Components of the VHDL template 120
4.2 Performance metrics . 128

5.1 Resource utilization of deployed Semi-static Operator Graph . . . 145
5.2 Evaluation results of Semi-static Operator Graphs 146

199

Curriculum Vitae

Stefan Werner
Persönliches

Geburtstag 27. August 1984
Geburtsort Karl-Marx-Stadt, jetzt Chemnitz

Beruflicher Werdegang
04/2011 – 10/2016 Wissenschaftlicher Mitarbeiter

Institut für Informationssysteme
Universität zu Lübeck

Ausbildung
10/2005 – 03/2011 Diplomstudium der Informatik (Dipl.-Inf.)

mit Nebenfach Medieninformatik
Universität zu Lübeck

10/2004 – 06/2005 Grundwehrdienst
6./Jägerbataillon 371, Marienberg

08/2001 – 07/2004 Gymnasium (Abitur)
Berufliches Schulzentrum für Technik II, Chemnitz

08/1995 – 06/2001 Mittelschule (Realschulabschluss)
Yorckschule, Chemnitz

201

List of Personal Publications
References

Stefan Werner, Dennis Heinrich, Sven Groppe, Christopher Blochwitz, and
Thilo Pionteck. Runtime Adaptive Hybrid Query Engine based on FPGAs.
Open Journal of Databases (OJDB), 3(1):21–41, 2016.

Rico Backasch, Gerald Hempel, Thilo Pionteck, Sven Groppe, and Stefan
Werner. An Architectural Template for Composing Application Specific Data-
paths at Runtime. In International Conference on ReConFigurable Computing
and FPGAs (ReConFig), Cancun, Mexico, December 2015.

Christopher Blochwitz, Jan Moritz Joseph, Thilo Pionteck, Rico Backasch, Ste-
fan Werner, Dennis Heinrich, and Sven Groppe. An optimized Radix-Tree for
hardware-accelerated index generation for Semantic Web Databases. In Inter-
national Conference on ReConFigurable Computing and FPGAs (ReConFig),
Cancun, Mexico, December 2015.

Dennis Heinrich, Stefan Werner, Marc Stelzner, Christopher Blochwitz, Thilo
Pionteck, and Sven Groppe. Hybrid FPGA Approach for a B+ Tree in a Seman-
tic Web Database System. In Proceedings of the 10th International Symposium
on Reconfigurable Communication-centric Systems-on-Chip (ReCoSoC 2015),
Bremen, Germany, June 2015. IEEE.

Stefan Werner, Dennis Heinrich, Jannik Piper, Sven Groppe, Rico Backasch,
Christopher Blochwitz, and Thilo Pionteck. Automated Composition and Exe-
cution of Hardware-accelerated Operator Graphs. In Proceedings of the 10th In-
ternational Symposium on Reconfigurable Communication-centric Systems-on-
Chip (ReCoSoC 2015), Bremen, Germany, June 2015. IEEE.

Stefan Werner, Dennis Heinrich, Marc Stelzner, Volker Linnemann, Thilo Pio-
nteck, and Sven Groppe. Accelerated join evaluation in Semantic Web databases
by using FPGAs. Concurrency and Computation: Practice and Experience,
28(7):2031–2051, May 2015.

Sven Groppe, Dennis Heinrich, and Stefan Werner. Distributed Join Ap-
proaches for W3C-Conform SPARQL Endpoints. Open Journal of Semantic
Web (OJSW), 2(1):30–52, 2015.

Sven Groppe, Dennis Heinrich, Stefan Werner, Christopher Blochwitz, and
Thilo Pionteck. PatTrieSort - External String Sorting based on Patricia Tries.
Open Journal of Databases (OJDB), 2(1):36–50, 2015.

203

List of Personal Publications

Rico Backasch, Gerald Hempel, Sven Groppe, Stefan Werner, and Thilo Pi-
onteck. Identifying Homogenous Reconfigurable Regions in Heterogeneous FP-
GAs for Module Relocation. In International Conference on ReConFigurable
Computing and FPGAs (ReConFig), Cancun, Mexico, December 2014.

Stefan Werner, Dennis Heinrich, Marc Stelzner, Sven Groppe, Rico Back-
asch, and Thilo Pionteck. Parallel and Pipelined Filter Operator for Hardware-
Accelerated Operator Graphs in Semantic Web Databases. In Proceedings of the
14th IEEE International Conference on Computer and Information Technology
(CIT2014), pages 539–546, Xi’an, China, September 2014. IEEE.

Sven Groppe, Johannes Blume, Dennis Heinrich, and Stefan Werner. A Self-
Optimizing Cloud Computing System for Distributed Storage and Processing
of Semantic Web Data. Open Journal of Cloud Computing (OJCC), 1(2):1–14,
2014.

Sven Groppe, Thomas Kiencke, Stefan Werner, Dennis Heinrich, Marc
Stelzner, and Le Gruenwald. P-LUPOSDATE: Using Precomputed Bloom Fil-
ters to Speed Up SPARQL Processing in the Cloud. Open Journal of Semantic
Web (OJSW), 1(2):25–55, 2014.

Stefan Werner, Sven Groppe, Volker Linnemann, and Thilo Pionteck.
Hardware-accelerated Join Processing in Large Semantic Web Databases with
FPGAs. In Proceedings of the 2013 International Conference on High Perfor-
mance Computing & Simulation (HPCS 2013), pages 131–138, Helsinki, Fin-
land, July 2013. IEEE.

Sven Groppe, Björn Schütt, and Stefan Werner. Eliminating the XML Over-
head in Embedded XML Languages. In Proceedings of the 28th ACM Sympo-
sium on Applied Computing (ACM SAC 2013), Coimbra, Portugal, March 2013.
ACM.

Stefan Werner, Christoph Reinke, Sven Groppe, and Volker Linnemann.
Adaptive Service Migration in Wireless Sensor Networks. In Proceedings of the
12th International Conference on Parallel and Distributed Computing, Applica-
tions and Technologies (PDCAT-11), Gwangju, Korea, October 2011. IEEE.

Sven Groppe, Jinghua Groppe, Stefan Werner, Matthias Samsel, Florian
Kalis, Kristina Fell, Peter Kliesch, and Markus Nakhlah. Monitoring eBay
Auctions by querying RDF Streams. In Proceedings of the Sixth International
Conference on Digital Information Management (ICDIM 2011), pages 223–228,
Trinity College, The University of Melbourne, Australia, September 2011. CPS.

Christoph Reinke, Nils Hoeller, Stefan Werner, Sven Groppe, and Volker
Linnemann. Analysis and Comparison of Concurrency Control Protocols for
Wireless Sensor Networks. In Proceedings of the 3rd International Workshop on
Performance Control in Wireless Sensor Networks (PWSN 2011) in conjunction
with the 7th IEEE International Conference on Distributed Computing in Sensor
Systems (IEEE DCOSS ’11), pages 1–6, Barcelona, Spain, June 2011. IEEE.

204

Christoph Reinke, Nils Hoeller, Stefan Werner, Sven Groppe, and Volker
Linnemann. Consistent Service Migration in Wireless Sensor Networks. In Pro-
ceedings of the 2011 International Conference on Wireless and Optical Commu-
nications (ICWOC 2011 - including ICIME 2011), pages 278–285, Zhengzhou,
China, May 2011. IEEE.

Sven Groppe, Jinghua Groppe, Stefan Werner, Matthias Samsel, Florian
Kalis, Kristina Fell, Peter Kliesch, and Markus Naklah. Using a Streaming
SPARQL Evaluator for Monitoring eBay Auctions. International Journal of
Web Applications (IJWA), 3(4):166–178, 2011.

205

	1 Introduction
	1.1 Motivation
	1.2 Scientific Contribution and Organization of this Work

	2 Background
	2.1 Semantic Web
	2.1.1 Introduction
	2.1.2 Semantic Web Technologies
	2.1.3 LUPOSDATE - A Semantic Web Database

	2.2 Reconfigurable Computing
	2.2.1 Field-Programmable Gate Array
	2.2.2 Evaluation Platform
	2.2.3 Development Flow of FPGA Designs
	2.2.4 Dynamic Partial Reconfiguration
	2.2.5 Applications

	2.3 Related Work
	2.3.1 In-storage Processing
	2.3.2 General Purpose Computing on Graphics Processing Units
	2.3.3 Reconfigurable Computing

	3 Query Operators on Field-Programmable Gate Arrays
	3.1 Hardware Acceleration for LUPOSDATE
	3.2 Operator Template
	3.3 Join Operator
	3.3.1 Join Algorithms
	3.3.2 Micro Benchmarks
	3.3.3 Related Work
	3.3.4 Summary of FPGA-based Join Operators

	3.4 Filter Operator
	3.4.1 Fully-Parallel Filter
	3.4.2 Pipelined Filter
	3.4.3 General Filter Expressions
	3.4.4 Micro Benchmarks
	3.4.5 Related Work
	3.4.6 Summary of the FPGA-based Filter Operator

	3.5 Additional Operators
	3.5.1 RDF3XIndexScan
	3.5.2 Projection
	3.5.3 Union / Merge-Union
	3.5.4 Limit and Offset
	3.5.5 AddBinding / AddBindingFromOtherVar
	3.5.6 Unsupported Operators

	3.6 Summary

	4 Automated Composition and Execution of Hardware-accelerated Operator Graphs
	4.1 Hybrid Architecture
	4.1.1 Integration into LUPOSDATE
	4.1.2 Hybrid Work Flow
	4.1.3 Hybrid Query Engine

	4.2 Automated Composition
	4.2.1 Static Components
	4.2.2 Dynamic Components
	4.2.3 Parametrization of Operators

	4.3 Evaluation
	4.3.1 Evaluation Setup
	4.3.2 SP2Bench SPARQL Performance Benchmark
	4.3.3 Billion Triples Challenge

	4.4 Related Work
	4.5 Summary

	5 Semi-static Operator Graphs
	5.1 Extending the Hybrid Query Engine
	5.1.1 Semi-static Routing Element
	5.1.2 Modified Hybrid Work Flow

	5.2 Evaluation
	5.2.1 Evaluation Setup
	5.2.2 Benchmarks

	5.3 Related Work
	5.4 Summary

	6 Conclusion
	A Performance of PCIe
	A.1 Downstream Throughput
	A.2 Upstream Throughput

	B Test Queries
	B.1 Commonly used prefixes
	B.2 Queries on SP2B dataset
	B.3 Queries on BTC-2012 dataset

	Acronym
	References
	Lists
	Curriculum Vitae
	List of Personal Publications

