Systematische Untersuchung zur Steuerung der Morphologie in Polymer-Fulleren-Heteroübergangssolarzellen

Organic photovoltaics developed step by step and actually work out into a market-based competition to the well-established inorganic thin-film solar cells. The advantages of such polymer solar cells are flexibility, low weight, semi-transparency and comparably high production speed. The combination of these advantages currently outperforms other technologies in its entirety. Furthermore, the rather low power conversion efficiency of organic solar cells can be increased by progressive materials development and optimization of processing and compares to the performance of other inorganic thin-film photovoltaic solar cells. Self-assembly (phase separation and aggregation/crystallization) of the employed photoactive materials, before, during and after deposition of photoactive thin films from a common solution, plays a significant role for the power conversion efficiency. Thus the morphology of the photoactive layer is of fundamental importance for the generation and transport of free charge carriers and also for power losses due to recombination, if charge separation and transport are hindered. It is already known that the phase separation into pristine polymer phases for hole transport and pristine fullerene phases for electron transport is just as important as the formation of a homogeneously mixed phase for free charge carrier generation. Ideally the transport phases are aggregated/crystalline and the homogeneously mixed phase is amorphous. This leads to an energetically favorable organization of the material phases, finally resulting in an improved generation and disproved recombination of free charge carriers.In the present work these influences, phase separation and aggregation of materials, are studied. In particular, the influence of structural order of the pristine polymer phase on the photovoltaic properties of solar cells is in the focus of research. By targeted utilization of the materials properties of the applied polymers, phase separation and aggregation could be controlled precisely and thus the relation between morphology and solar cell parameters could be investigated in detail. It is demonstrated how the morphology in polymer-fullerene heterojunction solar cells can be selectively manipulated by the derivatization of the fullerene, the solution concentration, the polymer:fullerene blend ratio and the polymer: polymer blend ratio in a ternary mixture with the fullerene. Fine-scaled parameter variations lead to very systematic variations of the morphology. This allowed a controlled and optimized proportioning of a three-phase system of aggregated polymer phases and aggregated fullerene phases for charge transport, as well as a homogeneously mixed polymer:fullerene phase for free charge carrier generation. Qualitative and quantitative analysis of the structural order in the polymeric phase and the phase separation of the polymer from the fullerene derivative enabled deeper insights into the bulk morphology. Particularly absorption, photo- and electroluminescence spectroscopy have proven their ease as reliable methods for analysis of structural order. Additionally, X-ray scattering (GiWAXS) and AFM measurements were performed to resemble the three-dimensional bulk morphology. It is originally demonstrated for the first time how electroluminescence spectroscopy allows deeper insight into the nano-morphology at the interface between the polymer and fullerene domains in contact with disordered polymer:fullerene mixed domains. In combination with the measurement of current-voltage characteristics (IV) and external quantum efficiency (EQE), the influence of morphology on the solar cell characteristics is demonstrated. Furthermore, the presented hypothetical optimal morphology of well-dimensioned pristine phases for charge transport and disordered homogeneous mixed phases for free charge generation and barrier for recombination is proven. The combined approach for morphology description is unique and allows for simple and rapid analysis of the active layer morphology, comparable to GiWAXS measurements. To conclude, this work presents fundamental insights into the relationship between structural properties of the photoactive layer and the solar cell functionality.

Solarzellen kann durch die fortschreitende Materialentwicklung und Optimierung der Prozessierungsmethoden mit der Effizienz etablierter anorganischer Dünnschichtphotovoltaik konkurrieren. Die Selbstorganisation, d.h. Phasenseparation und Aggregation/Kristallisation der eingesetzten photoaktiven Materialien, vor, während und nach der Abscheidung zu photovoltaisch aktiven dünnen Schichten aus der gemeinsamen Lösung, spielt bei der Leistungsoptimierung eine wesentliche Rolle. Die somit ausgebildete Morphologie der photoaktiven Schicht ist von fundamentaler Bedeutung für die Generation von freien Ladungsträgern und deren Transport und folglich auch für Leistungsverluste durch Rekombination, sofern Ladungsträgertrennung und Transport nicht effektiv stattfinden können. Es ist bekannt, dass die Phasenseparation in reine Polymerphasen für den Transport der Löcher sowie reine Fullerenphasen für den Transport der Elektronen ebenso von Bedeutung ist wie die Ausbildung einer homogenen Mischphase für die Erzeugung der freien Ladungsträger. Idealerweise liegen die Transportphasen aggregiert/kristallin und die Mischphase amorph vor. Dann ergibt sich eine energetisch sinnvolle Organisation der Materialphasen, sodass die Generation freier Ladungsträger maximiert und deren Rekombination minimiert wird.In der vorliegenden Arbeit werden genau diese morphologischen Einflüsse, Phasenseparation und Aggregation der Materialien, untersucht. Insbesondere der Einfluss der strukturellen Ordnung der reinen Polymerphase auf die photovoltaischen Eigenschaften der Solarzelle steht hier im Vordergrund. Durch die gezielte Ausnutzung der Materialeigenschaften der eingesetzten Polymere konnten gezielt und kontrolliert Phasenseparation und Aggregation gesteuert und deren Einfluss auf die Solarzellparameter untersucht werden. Es wird gezeigt, wie die Morphologie von Polymer-Fulleren-Heteroübergangssolarzellen im Detail durch die Fullerenderivatisierung, die Lösungskonzentration und das Polymer:Fulleren-Mischungsverhältnis ebenso wie das Polymer:Polymer-Mischungsverhältnis in einer ternären Mischung mit dem Fulleren gezielt manipuliert werden kann. Mittels feinskalierter Parametervariationen konnten sehr systematische Variationen in der Morphologie induziert werden. Dies ermöglichte eine gezielte, optimierte Proportionierung eines Dreiphasensystems aus getrennt aggregierten Polymer- und Fullerenphasen für den Ladungstransport sowie einer homogenen Polymer:Fulleren-Mischphase zur freien Ladungsträgergeneration. Die vorgestellten Methoden zur qualitativen und quantitativen Beschreibung der polymeren Ordnung sowie der Phasenseparation des Polymers vom Fullerenderivat ermöglichen tiefere Einblicke in die Volumenmorphologie. Die quantitative Analyse von Absorptions-, Photo- und Elektrolumineszenzspektren hat sich hier als besonders einfach zu handhabende Methode erwiesen. Mit der Unterstützung von Röntgenbeugung (GiWAXS) und AFM-Messungen ist es möglich, eine sehr genaue Vorstellung von der dreidimensionalen Schichtmorphologie zu erhalten. Insbesondere die Elektrolumineszenzspektroskopie ermöglichte erstmalig einen tieferen Einblick in die Nanomorphologie an den Grenzflächen zwischen geordneten Polymer- und Fullerendomänen sowie ungeordneten Polymer:Fulleren-Mischphasen. Die Einflüsse der Morphologie auf die Solarzelleigenschaften konnten letztendlich in Verbindung mit der Messung der Strom-Spannungs-Kennlinien (I-V) und der externen Quanteneffizienz (EQE) abgeleitet werden. Damit konnte das vorgestellte Bild der hypothetisch optimalen Morphologie bestehend aus wohldimensionierten reinen geordneten Ladungstransportphasen sowie ungeordneten homogenen Mischphasen als Rekombinationsbarriere und Generationsschicht für freie Ladungsträger nachgewiesen werden. Der vorgestellte kombinierte Ansatz zur Morphologiebeschreibung ist bislang einzigartig und ermöglicht, abgesehen von den GiWAXS-Messungen, in Zukunft eine einfache und schnelle Analyse der Aktivschichtmorphologie. Darüber hinaus wird in dieser Arbeit ein tieferes Verständnis der Beziehung zwischen den Struktureigenschaften der photoaktiven Schicht und der Solarzellfunktion entwickelt.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.