Investigations on the mechanical relevance of prominent vibrissa features for surface texture detection

The tactile hairs of animals are used as paradigm for artificial tactile sensors. In the case of mystacial vibrissae, the animals can determine the distance to an object, recognize the shape of the object and detect the surface texture of the object. The goal is to design an artificial tactile sensor inspired by the natural paradigm. In the present work, the vibrissa and the follicle-sinus-complex are modeled as a one-sided clamped beam within the limits of the non-linear Euler-Bernoulli beam theory. The theoretical background of the function principle and the effects of typical properties of the natural vibrissa, e.g., a tapered shape and a pre-curvature while operating in surface texture detection are analyzed. The beam-surface contact is described by Coulomb’s law of friction. When the beam is in touch with the surface, a quasi-static displacement of the support takes place. As a consequence of the displacement the support reactions are changing. The resulting support reactions are analyzed in parameter studies and beneficial levels of tapering and pre-curvature are identified.

Zitieren

Zitierform:
Zitierform konnte nicht geladen werden.

Rechte

Rechteinhaber: ©2017 - TU Ilmenau

Nutzung und Vervielfältigung:
Alle Rechte vorbehalten