Gruenewald, Nora, Jan, Audric ORCID: 0000-0001-5006-4190, Salvatico, Charlotte, Kress, Vanessa, Renner, Marianne ORCID: 0000-0002-8727-6581, Triller, Antoine, Specht, Christian G. and Schwarz, Guenter ORCID: 0000-0002-2118-9338 (2018). Sequences Flanking the Gephyrin-Binding Site of GlyR beta Tune Receptor Stabilization at Synapses. eNeuro, 5 (1). WASHINGTON: SOC NEUROSCIENCE. ISSN 2373-2822

Full text not available from this repository.

Abstract

The efficacy of synaptic transmission is determined by the number of neurotransmitter receptors at synapses. Their recruitment depends upon the availability of postsynaptic scaffolding molecules that interact with specific binding sequences of the receptor. At inhibitory synapses, gephyrin is the major scaffold protein that mediates the accumulation of heteromeric glycine receptors (GlyRs) via the cytoplasmic loop in the beta-subunit (beta-loop). This binding involves high- and low-affinity interactions, but the molecular mechanism of this bimodal binding and its implication in GlyR stabilization at synapses remain unknown. We have approached this question using a combination of quantitative biochemical tools and high-density single molecule tracking in cultured rat spinal cord neurons. The high-affinity binding site could be identified and was shown to rely on the formation of a 310-helix C-terminal to the beta-loop core gephyrin-binding motif. This site plays a structural role in shaping the core motif and represents the major contributor to the synaptic confinement of GlyRs by gephyrin. The N-terminal flanking sequence promotes lower affinity interactions by occupying newly identified binding sites on gephyrin. Despite its low affinity, this binding site plays a modulatory role in tuning the mobility of the receptor. Together, the GlyR beta-loop sequences flanking the core-binding site differentially regulate the affinity of the receptor for gephyrin and its trapping at synapses. Our experimental approach thus bridges the gap between thermodynamic aspects of receptor-scaffold interactions and functional receptor stabilization at synapses in living cells.

Item Type: Journal Article
Creators:
CreatorsEmailORCIDORCID Put Code
Gruenewald, NoraUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Jan, AudricUNSPECIFIEDorcid.org/0000-0001-5006-4190UNSPECIFIED
Salvatico, CharlotteUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Kress, VanessaUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Renner, MarianneUNSPECIFIEDorcid.org/0000-0002-8727-6581UNSPECIFIED
Triller, AntoineUNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Specht, Christian G.UNSPECIFIEDUNSPECIFIEDUNSPECIFIED
Schwarz, GuenterUNSPECIFIEDorcid.org/0000-0002-2118-9338UNSPECIFIED
URN: urn:nbn:de:hbz:38-203103
DOI: 10.1523/ENEURO.0042-17.2018
Journal or Publication Title: eNeuro
Volume: 5
Number: 1
Date: 2018
Publisher: SOC NEUROSCIENCE
Place of Publication: WASHINGTON
ISSN: 2373-2822
Language: English
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > Department of Chemistry > Institute of Biochemistry
Subjects: no entry
Uncontrolled Keywords:
KeywordsLanguage
GAMMA-AMINOBUTYRIC-ACID; GLYCINE RECEPTOR; ACETYLCHOLINE-RECEPTOR; INHIBITORY SYNAPSES; CRYSTAL-STRUCTURES; PROTEIN GEPHYRIN; MOLECULAR-BASIS; ALPHA-HELICES; DIFFUSION; MEMBRANEMultiple languages
NeurosciencesMultiple languages
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/20310

Downloads

Downloads per month over past year

Altmetric

Export

Actions (login required)

View Item View Item