Zhang, Jie (2013). A Study on Dust Dry Deposition: Wind-tunnel Experiment and Improved Parameterization. PhD thesis, Universität zu Köln.

[img]
Preview
PDF (Ph.D. thesis of Jie Zhang)
A_Study_on_Dust_Dry_Deposition_Wind-tunnel_Experiment_and_Improved_Parameterization.pdf - Published Version
Bereitstellung unter der CC-Lizenz: Creative Commons Attribution.

Download (1MB)

Abstract

Dust deposition is a key component of the dust cycle in the Earth system. The lack of understanding for the mechanisms of dust deposition has been a major bottle neck to the development of the dust-related research field. The focus of this study is to obtain data for dust dry deposition, to validate the existing dust deposition schemes and to improve the parameterization for dust deposition processes. A series of dust deposition experiments are carried out in a wind-tunnel laboratory. A laser-based PDPA (Phase Doppler Particle Analyzer) technique is employed to measure the velocity and size of the dust particles which pass through the sampling area. Dust concentration is measured using an Aerosol Spectrometer and wind and turbulence are measured using a sonic anemometer and other conventional wind-tunnel instruments. A new method for processing the data is proposed. The PDPA data are used to derive the dust deposition velocity for different particle sizes and wind and surface conditions. A reliable dataset is obtained through the wind-tunnel experiments, which are then used to validate two representative dust deposition schemes, the Slinn and Slinn (1980) scheme for smooth surfaces and the Slinn (1982) scheme for vegetation canopies. It is found that the schemes tend to underestimate dust deposition velocity, especially for rough surfaces. The effect of interception is seriously underestimated in the schemes. A new dust deposition scheme is proposed in this study. The relationship between dust deposition and momentum depletion is established. The drag partition theory including the surface parameterization method is introduced to describe dust deposition. The improved scheme is suitable for both rough and smooth surfaces. The predictions of the new scheme are found to agree well with the experimental data. By sensitivity analysis, it is found that the newly introduced surface parameter, element frontal area index, has a predominant effect on surface collection efficiency and influences the deposition of particles of all sizes.

Item Type: Thesis (PhD thesis)
Translated abstract:
AbstractLanguage
Die Staubdeposition ist eine Schlüsselkomponente des Staubzyklus, allerdings sind die Depositionsmechanismen noch nicht vollständig verstanden. Dies limitiert die Fortentwicklung der Staubforschung. Die Hauptaspekte dieser Studie sind daher die Gewinnung verlässlicher Daten zur trockenen Deposition von Staubpartikeln, die Validierung existierender Staubdepositionsschemata sowie die Verbesserung der Parametrisierung der Staubdepositionsprozesse. Zu diesem Zweck wurde eine Reihe von Experimenten im Windtunnel durchge- führt. Um Geschwindigkeit und Größe der Staubpartikel festzustellen, die den Messbereich passierten, wurde eine laserbasierte PDPA („Phase Doppler Particle Analyzer“) Technik angewandt. Mit Hilfe eines Aerosolspektrometers wurde die Staubkonzentration gemessen. Wind- und Turbulenzmessungen wurden mit einem Schallanemometer und weiteren im Windtunnel üblichen Messgeräten durchgeführt. Es wird außerdem eine neue Methode zur Datenverarbeitung vorgestellt. Die Staubdepositionsgeschwindigkeit wird für verschiedene Partikelgrößen, Wind- und Bodenoberflächenbedingungen auf Basis der PDPA-Daten bestimmt. Durch die Windtunnelexperimente konnte auf diese Weise ein zuverlässiger Datensatz erstellt werden, auf dessen Grundlage zwei repräsentative Depositionssch- emata validiert werden konnten, nämlich das Schema von Slinn und Slinn (1980) für glatte Oberflächen und das Schema von Slinn (1982) für Vegetationsbedeckung. Es zeigte sich hierbei, dass die Schemata die Depositionsgeschwindigkeit insbesondere für raue Oberflächen leicht unterschätzen. Der Effekt der Interzeption hingegen wird in den Schemata deutlich unterschätzt. Ein neues Staubdepositionsschema wird in der vorliegenden Studie vorgestellt. Hierin wird der Zusammenhang zwischen Staubdeposition und Impulsvernichtung etabliert. Zur Beschreibung der Deposition wird die „drag partition“ Theorie inklusive der Bodenoberflächenparametrisierung eingeführt. Die verbesserte Parametrisierung kann nun sowohl auf glatte als auch auf raue Bodenoberflächen angewendet werden. Es zeigen sich gute Übereinstimmungen der Ergebnisse des neuen Depositions- modells mit den Windtunnelmessungen. Durch eine Sensitivitätsanalyse konnte der neu eingeführte Oberflächenparameter, der Element-Frontalflächenindex, als vorwie- gender Einflussfaktor auf die Kollisionseffizienz der Bodenoberfläche identifiziert werden. Somit hat der Index starken Einfluss auf die Deposition von Partikeln aller Größen.German
Creators:
CreatorsEmailORCIDORCID Put Code
Zhang, Jiezj8341@gmail.comUNSPECIFIEDUNSPECIFIED
URN: urn:nbn:de:hbz:38-53749
Date: 20 November 2013
Language: English
Faculty: Faculty of Mathematics and Natural Sciences
Divisions: Faculty of Mathematics and Natural Sciences > Department of Geosciences > Institute for Geophysics and Meteorology
Subjects: Earth sciences
Uncontrolled Keywords:
KeywordsLanguage
Dust dry depositionEnglish
Wind-tunnel experimentEnglish
SchemeEnglish
Date of oral exam: 28 October 2013
Referee:
NameAcademic Title
Shao, YapingProf. Dr.
Crewell, SusanneProf. Dr.
Funders: DFG
Projects: DFG (Deutsche Forschungsgemeinschaft) project:’ A Wind-tunnel Study on Dust-deposition Mechanics and Validation of Dust-deposition Schemes’
References: Arya, S. P. S. (1975). A drag partition theory for determining the large-scale roughness parameter and wind stress on the Arctic pack ice. Journal of Geophysical Research, 80(24), 3447-3454. Bache, D. H. (1979a). Particle transport within plant canopies—I. A framework for analysis. Atmospheric Environment, 13(9), 1257-1262. Bache, D. H. (1979b). Particulate transport within plant canopies—II. Prediction of deposition velocities. Atmospheric Environment, 13(12), 1681-1687. Beswick, K. M., Hargreaves, K. J., Gallagher, M. W., Choularton, T. W., & Fowler, D. (1991). Size-resolved measurements of cloud droplet deposition velocity to a forest canopy using an eddy correlation technique. Quarterly Journal of the Royal Meteorological Society, 117(499), 623-645. Bleyl, M. (2001). Experimentelle Bestimmung der Depositionsgeschwindigkeit Luftgetragener Partikel mit Hilfe der Eddy-Kovarianzmethode über einem Fichtenaltbestand im Solling. Ph.D. Thesis, Georg-August-Universität, Göttingen. Businger, J. A. (1986). Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques. Journal of Climate and Applied Meteorology, 25, 1100–1124. Buzorius, G., Rannik, Ü., Mäkelä, J. M., Vesala, T., & Kulmala, M. (1998). Vertical aerosol particle fluxes measured by eddy covariance technique using condensational particle counter. Journal of Aerosol Science, 29(1), 157-171. Campbell Scientific, Inc. (2007). CSAT3 Three Dimensional Sonic Anemometer. Revision 2/07. Cellier, P., & Brunet, Y. (1992). Flux-gradient relationships above tall plant canopies. Agricultural and Forest Meteorology, 58(1), 93-117. Chamberlain, A. C. (1966). Transport of gases to and from grass and grass-like surfaces. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 290(1421), 236-265. Chamberlain, A. C. (1967). Transport of Lycopodium spores and other small particles to rough surfaces. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 296(1444), 45-70. Clough, W. S. (1973). Transport of particles to surfaces. Journal of Aerosol Science, 4(3), 227-234. Clough, W. S. (1975). The deposition of particles on moss and grass surfaces. Atmospheric Environment , 9(12), 1113-1119. Csanady, G. T. (1963). Turbulent diffusion of heavy particles in the atmosphere. Journal of Atmospheric Sciences, 20, 201-208. Dantec Dynamics A/S (2006). BSA Flow Software Installation & User’s Guide, Version 4.10. Davidson, C. I., & Wu, Y. L. (1990). Dry deposition of particles and vapors. Acidic precipitation (pp. 103-216). Springer New York. Droppo, J. G. (2006). Improved Formulations for Air-Surface Exchanges Related to National Security Needs: Dry Deposition Models. Pacific Northwest National Laboratory. Durst, F. & Zaré, M. (1976). Laser Doppler measurements in two-phase flows. In The accuracy of flow measurements by laser Doppler methods, Vol. 1, pp. 403-429. Fick A., (1855), Über Diffusion. Poggendorff's Annalen der Physik und Chemie, 94, 59-86. Fitzgerald, J. W. (1975). Approximation Formulas for the Equilibrium Size of an Aerosol Particle as a Function of Its Dry Size and Composition and the Ambient Relative Humidity. Journal of Applied Meteorology, 14, 1044-1049. Fuchs, N. A. (1964). Mechanics of Aerosols. Pergamon, New York. Gallagher, M. W., Choularton, T. W., Morse, A. P. & Fowler, D. (1988). Measurements of the size dependence of cloud droplet deposition at a hill site. Quarterly Journal of the Royal Meteorological Society, 114(483), 1291-1303. Gallagher, M. W., Beswick, K. M., Duyzer, J., Westrate, H., Choularton, T. W., & Hummelshøj, P. (1997). Measurements of aerosol fluxes to speulder forest using a micrometeorological technique. Atmospheric Environment, 31(3), 359-373. Garland, J. A. (2001). On the size dependence of particle deposition. Water, Air and Soil Pollution: Focus, 1(5-6), 323-332. Gerber, H. E. (1985). Relative-humidity parameterization of the Navy Aerosol Model (NAM) (No. NRL-8956). Naval Research Lab, Washington DC. Gieré, R. & Querol, X. (2010). Solid particulate matter in the atmosphere. Elements, 6(4), 215-222. Ginoux, P., Prospero, J. M., Torres, O., & Chin, M. (2004). Long-term simulation of global dust distribution with the GOCART model: correlation with North Atlantic Oscillation. Environmental Modelling & Software, 19(2), 113-128. Giorgi, F. (1988). Dry deposition velocities of atmospheric aerosols as inferred by applying a particle dry deposition parameterization to a general circulation model. Tellus B, 40(1), 23-41. Goossens, D. & Offer, Z. Y. (1994). An evaluation of the efficiency of some eolian dust collectors. Soil technology, 7(1), 25-35. Goossens, D. & Rajot, J. L. (2008). Techniques to measure the dry aeolian deposition of dust in arid and semi-arid landscapes: a comparative study in West Niger. Earth Surface Processes and Landforms, 33(2), 178-195. Gregory, P. H. & Stedman, O. J. (1953). Deposition of airborne Lycopodium spores on plane surfaces. Annals of Applied Biology, 40, 651-674. Grimm Aerosol Technik GmbH & Co. KG. (2010). Portable Laser Aerosol spectrometer and Dust Monitor Model 1.108/1.109. Grönholm, T., Aalto P. P., Hiltunen V., et al. (2007). Measurements of aerosol particle dry deposition velocity using the relaxed eddy accumulation technique. Tellus B, 59(3), 381-386. Hinds, W. C. (2012). Aerosol technology: properties, behavior, and measurement of airborne particles. Wiley-interscience. Hicks, B. B., Wesely, M. L., Durham, J. L., & Brown, M. A. (1982). Some direct measurements of atmospheric sulfur fluxes over a pine plantation. Atmospheric Environment (1967), 16(12), 2899-2903. Hicks, B. B., Baldocchi, D. D., Meyers, T. P., Hosker Jr, R. P., & Matt, D. R. (1987). A preliminary multiple resistance routine for deriving dry deposition velocities from measured quantities. Water, Air, and Soil Pollution, 36(3-4), 311-330. Hicks, B. B., Matt, D. R., et al. (1989). A field investigation of sulfate fluxes to a deciduous forest. Journal of Geophysical Research: Atmospheres (1984–2012), 94(D10), 13003-13011. IPCC. Climate Change 2007: IPCC Fourth Assessment Report (AR4). Cambridge University Press: 2007. Lamaud, E., Chapuis, A., Fontan, J., & Serie, E. (1994). Measurements and parameterization of aerosol dry deposition in a semi-arid area. Atmospheric Environment, 28(15), 2461-2471. Little, P. (1977). Deposition of 2.75, 5.0 and 8.5 μm particles to plant and soil surfaces. Environmental Pollution (1970), 12(4), 293-305. Liu, B. Y. & Agarwal, J. K. (1974). Experimental observation of aerosol deposition in turbulent flow. Journal of Aerosol Science, 5(2), 145-155. Malm, W. C., Day, D. E., Kreidenweis, S. M., Collett, J. L., & Lee, T. (2003). Humidity- dependent optical properties of fine particles during the Big Bend Regional Aerosol and Visibility Observational Study. Journal of Geophysical Research, 108(D9), 4279. McMahon, T. A., & Denison, P. J. (1979). Empirical atmospheric deposition parameters-a survey. Atmospheric Environment, 13(5), 571-585. Mili, H. R., & Lempfert, R. G. K. (1904). The great dust-fall of February 1903, and its origin. Quarterly Journal of the Royal Meteorological Society, 30(129), 57-91. Nemitz, E., Gallagher, M. W., Duyzer, J. H., & Fowler, D. (2002). Micrometeorological measurements of particle deposition velocities to moorland vegetation. Quarterly Journal of the Royal Meteorological Society, 128(585), 2281-2300. Nicholson, K. W. (1988). The dry deposition of small particles: a review of experimental measurements. Atmospheric Environment, 22(12), 2653-2666. Nicholson, K. W. (1993). Wind tunnel experiments on the resuspension of particulate material. Atmospheric Environment. Part A. General Topics, 27(2), 181-188. Ould-Dada, Z. (2002). Dry deposition profile of small particles within a model spruce canopy. Science of the total environment, 286(1), 83-96. Owen, P. R., & Thomson, W. R. (1963). Heat transfer across rough surfaces. Journal of Fluid Mechanics, 15(03), 321-334. Pérez, C., Nickovic, S., Pejanovic, G., Baldasano, J. M., & Özsoy, E. (2006). Interactive dust‐radiation modeling: A step to improve weather forecasts. Journal of Geophysical Research: Atmospheres, 111(D16). Petroff, A., Mailliat, A., Amielh, M., & Anselmet, F. (2008a). Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge. Atmospheric Environment, 42(16), 3625-3653. Petroff, A., Mailliat, A., Amielh, M., & Anselmet, F. (2008b). Aerosol dry deposition on vegetative canopies. Part II: A new modelling approach and applications. Atmospheric Environment, 42(16), 3654-3683. Pope III, C. A., & Dockery, D. W. (1999). Epidemiology of particle effects. Air Pollution and Health, 31, 673-705. Pryor, S. C. (2006). Size-resolved particle deposition velocities of sub-100nm diameter particles over a forest. Atmospheric Environment, 40(32), 6192-6200. Pryor, S. C., Larsen, S. E., et al. (2007). Particle fluxes over forests: Analyses of flux methods and functional dependencies. Journal of Geophysical Research: Atmospheres (1984–2012), 112(D7). Pryor, S. C., Larsen, S. E., Sørensen, L. L., & Barthelmie, R. J. (2008). Particle fluxes above forests: observations, methodological considerations and method comparisons. Environmental Pollution, 152(3), 667-678. Rajot J L, Formenti P, Alfaro S, et al. (2008). AMMA dust experiment: An overview of measurements performed during the dry season special observation period (SOP0) at the Banizoumbou (Niger) supersite. Journal of Geophysical Research: Atmospheres (1984–2012), 113(D23). Raupach, M. (1992). Drag and drag partition on rough surfaces. Boundary-Layer Meteorology, 60(4), 375-395. Raupach, M. R., Briggs, P. R., Ford, P. W., Ahmad N., & Edge, V. E. (2001). Endosulfan transport: II. Modeling airborne dispersal and deposition by spray and vapor. Journal of Environmental Quality, 30(3), 729-40. Reheis M. C., Goodmacher J. C., Harden J. W., et al. (1995). Quaternary soils and dust deposition in southern Nevada and California. Geological Society of America Bulletin, 107(9), 1003-1022. Ruijrok, W., Davidson, C. I., & W Nicholson, K. E. N. (1995). Dry deposition of particles. Tellus B, 47(5), 587-601. Sehmel, G. A. (1971). Particle diffusivities and deposition velocities over a horizontal smooth surface. Journal of Colloid and Interface Science, 37(4), 891-906. Sehmel, G. A. (1973). Particle eddy diffusivities and deposition velocities for isothermal flow and smooth surfaces. Journal of Aerosol Science, 4(2), 125-138. Sehmel, G. A. & Sutter, S. L. (1974). Particle deposition rates on a water surface as a function of particle diameter and air velocity. Journal de Recherches Atmospheriques, 8, 911-920 Sehmel, G. A. (1980). Particle and gas dry deposition: A review. Atmospheric Environment, 14(9), 983-1011. Seinfeld, J. H., & Pandis, S. N. (2012). Atmospheric chemistry and physics: from air pollution to climate change. Wiley-Interscience. Shao, Y., et al. (2003). Northeast Asian dust storms: Real-time numerical prediction and validation. Journal of Geophysical Research, 108(D22), 4691 Shao, Y., & Yang, Y. (2005). A scheme for drag partition over rough surfaces. Atmospheric Environment, 39(38), 7351-7361. Shao, Y. (2008). Physics and modelling of wind erosion. Atmospheric and Oceanographic Sciences Library, 37, Springer. Sievering, H. (1981). Profile measurements of particle mass transfer at the air-water interface. Atmospheric Environment (1967), 15(2), 123-129. Slinn, S. A., & Slinn, W. G. N. (1980). Predictions for particle deposition on natural waters. Atmospheric Environment , 14(9), 1013-1016. Slinn, W. G. N. (1982). Predictions for particle deposition to vegetative canopies. Atmospheric Environment, 16(7), 1785-1794. Sokolik, I. N., Winker, D. M., et al. (2001). Introduction to special section: Outstanding problems in quantifying the radiative impacts of mineral dust. Journal of Geophysical Research: Atmospheres, 106(D16), 18015-18027. Stull, R. B. (2009). An introduction to boundary layer meteorology. Atmospheric and Oceanographic Sciences Library, 13, Springer. Tanaka, T. Y., & Chiba, M. (2006). A numerical study of the contributions of dust source regions to the global dust budget. Global and Planetary Change, 52(1), 88-104. Venkatram, A., & Pleim, J. (1999). The electrical analogy does not apply to modeling dry deposition of particles. Atmospheric Environment, 33(18), 3075-3076. Wells, S. G., McFadden, L. D., & Dohrenwend, J. C. (1987). Influence of late Quaternary climatic changes on geomorphic and pedogenic processes on a desert piedmont, Eastern Mojave Desert, California. Quaternary Research, 27(2), 130-146. Wedding, J. B., & Montgomery, M. E. (1980). Deposition velocities for full-scale corn and soybean canopies: a wind tunnel simulation. Environment International, 3(1), 91-96. Wesely, M. L., Hicks, B. B., Dannevik, W. P., Frisella, S., & Husar, R. B. (1977). An eddy-correlation measurement of particulate deposition from the atmosphere. Atmospheric Environment , 11(6), 561-563. Wesely, M. L., Cook, D. R., Hart, R. L., & Speer, R. E. (1985). Measurements and parameterization of particulate sulfur dry deposition over grass. Journal of Geophysical Research: Atmospheres, 90(D1), 2131-2143. Wesely, M. L., & Hicks, B. B. (2000). A review of the current status of knowledge on dry deposition. Atmospheric Environment, 34(12), 2261-2282. Winchell, A. N., & Miller, E. R. (1918). The dust fall of March 9, 1918. American Journal of Science, (274), 599-609. Zhang, L., Gong, S., Padro, J., & Barrie, L. (2001). A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmospheric Environment, 35(3), 549-560.
Refereed: Yes
URI: http://kups.ub.uni-koeln.de/id/eprint/5374

Downloads

Downloads per month over past year

Export

Actions (login required)

View Item View Item