
Behavioural Analysis of Systems with
Weights and Conditions

Coalgebraic and Algorithmic Perspectives on Behavioural
Analysis

Von der Fakultät für Ingenieurwissenschaften,
Abteilung Informatik und Angewandte Kognitionswissenschaften

der
Universität Duisburg-Essen

zur Erlangung des akademischen Grades eines
Dr. rer. nat.

genehmigte Dissertation

von
Sebastian Küpper

aus
Düsseldorf

Gutachter: Prof. Dr. Barbara König
Gutachter: Prof. Dr. Filippo Bonchi

Tag der mündlichen Prüfung: 06.11.2017





Acknowledgements

First, I would like to thank my supervisor Barbara König for the opportunity
to pursue a doctorate under her guidance. My work with her was a great and
instructive experience. Her patience with beginner’s problems and passion for
her work allowed me to learn and enjoy scientific research as well as teaching.

One of the most important aspects of scientific research is learning about
new perspectives and different approaches as only possible by the way of
international collaboration. Thus, I would like to thank in particular my co-
authors Filippo Bonchi, Alexandra Silva and Thorsten Wißmann who I enjoyed
working with a lot, both from a professional and a personal perspective.

When it comes to local cooperation, I worked closely with Harsh Beohar
and Christina Mika. It was a pleasure to discuss research and develop ideas
together for several papers that are now the basis for this thesis. Both also
provided thorough comments on drafts of the thesis, for which I am grateful.

I would also like to thank my colleagues Christoph Blume, Sander Bruggink,
Benjamin Cabrera, Mathias Hülsbusch, Dennis Nolte and Jan Stückrath for a
great working environment. A special thanks goes to Henning Kerstan, with
whom I shared my office for four years. Besides being a great DJ at my wedding,
he helped me understand coalgebraic notions in the beginning of my work and
to overcome the hardships of having to use console applications on a Unix basis.

Though not directly involved in the research process, I would like to express
my gratitude to my family and friends, who put up with the emotional lows and
highs of scientific work and provided a warm and comfortable atmosphere in my
life outside the university. Naturally, my wife Tosha, father Rolf, sister Sarah
and grandmother Erika played a vital role. Finally, I would like to emphasise
my late mother Regina, who unexpectedly died during my research on CTS,
and proved to be caring and thoughtful right until our last conversation.

iii





Inhaltsverzeichnis

1 Introduction 1
1.1 State-Based Systems with Conditions or Weights . . . . . . . . 1
1.2 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Mathemetical Foundations 7
2.1 Semirings and Semimodules . . . . . . . . . . . . . . . . . . . . 8

2.1.1 Semirings . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Semimodules . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Lattices and Order Theory . . . . . . . . . . . . . . . . . . . . . 11
2.2.1 Partially Ordered Sets . . . . . . . . . . . . . . . . . . . 12
2.2.2 Lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Birkhoff’s Representation Theorem . . . . . . . . . . . . 17
2.2.4 Embedding into Boolean Algebras and Approximation

into Lattices . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3 State-Based Systems . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 From (Non-)Deterministic Automata to Weighted Auto-
mata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 From Labelled Transition Systems to Conditional Tran-
sition Systems . . . . . . . . . . . . . . . . . . . . . . . . 30

2.4 Category Theory and Coalgebra . . . . . . . . . . . . . . . . . . 34
2.4.1 Categories and Morphisms . . . . . . . . . . . . . . . . . 34
2.4.2 Functors . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.4.3 Natural Transformations and Monads . . . . . . . . . . . 42
2.4.4 Coalgebra . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.4.5 Coalgebraic Behavioural Equivalence . . . . . . . . . . . 48

i



3 Generic Partition Refinement Algorithms for Coalgebras 55
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.3 Generic Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 Applications to Various Automata Models . . . . . . . . . . . . 70

3.4.1 Deterministic Automata and Labelled Transition Sys-
tems: The Classical Cases . . . . . . . . . . . . . . . . . 71

3.4.2 Branching Bisimulation for LTS . . . . . . . . . . . . . . 76
3.4.3 Weighted Automata . . . . . . . . . . . . . . . . . . . . 81
3.4.4 HD-Automata . . . . . . . . . . . . . . . . . . . . . . . . 94

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4 Language Equivalence for Weighted Automata: An Instantia-
tion of the Final Chain Algorithm 101
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
4.2 The Prototype Algorithm . . . . . . . . . . . . . . . . . . . . . 103

4.2.1 The Operator F . . . . . . . . . . . . . . . . . . . . . . . 104
4.2.2 Equivalences and Preorders on Matrices . . . . . . . . . 105
4.2.3 Comparison to Conjugacy . . . . . . . . . . . . . . . . . 108
4.2.4 Algorithm A for Checking Language Equivalence . . . . 111
4.2.5 Algorithm B for Checking Language Equivalence . . . . 113

4.3 Algorithmic Issues and Case Studies . . . . . . . . . . . . . . . 120
4.3.1 A Concrete Instantiation of Algorithm B . . . . . . . . . 120
4.3.2 Case Study: l-Monoids and Fuzzy Automata . . . . . . . 123

4.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

5 Up-To Techniques for Weighted Systems 133
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
5.2 Congruence Closure . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . 136
5.2.2 Congruence Closure for Rings . . . . . . . . . . . . . . . 137
5.2.3 Embedding Semirings into Fields . . . . . . . . . . . . . 139
5.2.4 Congruence Closure for l-Monoids . . . . . . . . . . . . . 141

5.3 Up-To Techniques for Weighted Automata . . . . . . . . . . . . 157
5.3.1 Coinduction and Up-to Techniques . . . . . . . . . . . . 157



5.3.2 Language Equivalence for Weighted Automata . . . . . . 159
5.3.3 Language Inclusion . . . . . . . . . . . . . . . . . . . . . 165
5.3.4 Threshold Problem for Automata over the Tropical Semiring169
5.3.5 Exploiting Similarity . . . . . . . . . . . . . . . . . . . . 175
5.3.6 An Exponential Pruning . . . . . . . . . . . . . . . . . . 179

5.4 Runtime Results for the Threshold Problem . . . . . . . . . . . 181
5.5 The Shortest Path Problem in Directed Weighted Graphs . . . . 187
5.6 Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . 190

6 Algorithmic Issues and Applications for Conditional Transiti-
on Systems with Upgrades 191
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.2 Conditional Transition Systems . . . . . . . . . . . . . . . . . . 193
6.3 Lattice Transition Systems . . . . . . . . . . . . . . . . . . . . . 196

6.3.1 Correspondence to Fitting’s Bisimulation . . . . . . . . . 201
6.4 Computation of Lattice Bisimulation . . . . . . . . . . . . . . . 202

6.4.1 A Fixpoint Approach . . . . . . . . . . . . . . . . . . . . 202
6.4.2 Lattice Bisimilarity is Finer than Boolean Bisimilarity . 208
6.4.3 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . 209
6.4.4 Bisimulation Game . . . . . . . . . . . . . . . . . . . . . 212
6.4.5 Deactivating Transitions . . . . . . . . . . . . . . . . . . 215

6.5 Application to Software Product Lines . . . . . . . . . . . . . . 223
6.5.1 Featured Transition Systems . . . . . . . . . . . . . . . . 223
6.5.2 BDDs as Models for Boolean Formulae . . . . . . . . . . 224
6.5.3 BDDs for Lattices . . . . . . . . . . . . . . . . . . . . . . 228
6.5.4 Implementation and Run-Time Results . . . . . . . . . . 233

6.6 Conclusion, Related Work, Future Work . . . . . . . . . . . . . 234

7 Conditional Transition Systems Coalgebraically 239
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239
7.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
7.3 Equivalence of Lattice Monad and Reader Monad . . . . . . . . 244
7.4 Modelling CTS without Upgrades using P . . . . . . . . . . . . 253
7.5 Modelling CTS with Upgrades in Kl(_Φ) . . . . . . . . . . . . . 257
7.6 Computing Behavioural Equivalence . . . . . . . . . . . . . . . 264



7.7 Conclusion, Related Work and Future Work . . . . . . . . . . . 274

8 Implementation, Future Work and Conclusion 277
8.1 PAWS: A Tool for the Analysis of Weighted Systems . . . . . . 277
8.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 282

A Additional Proofs (Chapter 3) 285

B Additional Proofs (Chapter 5) 289
B.1 Proofs on the Embedding of Semirings . . . . . . . . . . . . . . 289
B.2 Termination of HKP without Abstraction . . . . . . . . . . . . . 293

C The Lattice Monad is a Monad (Chapter 7) 295



Chapter 1

Introduction

1.1 State-Based Systems with Conditions or
Weights

State-based system models have a long history in computer science. The analysis
of formal languages and state-based machines has brought forth a rich theory of
system models with varying expressiveness results and algorithmic properties.
To balance versatility of modelling and computability of key constructions and
properties, numerous types of models have been investigated. Common among
many of these models is that they are primarily used for modelling qualitative
properties, such as the acceptance of a word and describe exactly one system
per model.

Determining equivalent states in state-based systems is advantageous in
many applications. As a system developer it might be interesting to know if
a model matches the behaviour of the requirements. If (aspects of) both can
be regarded as state-based machines, behavioural analysis can help answering
questions that concern the comparison of a system model with its requirements
model. Moreover, redundancies can be identified in a model. If two states are
found to be behaviourally equivalent, it may be prudent to merge both and
obtain a smaller model that behaves in the same way.

More recently, models that come equipped with a quantitative aspect that
allow to express properties such as the likelihood or cost of a transition have
been studied. Weighted automata over arbitrary semirings are well-suited for

1



2

modelling systems with quantitative aspects. The choice of semiring provides
a vast amount of modelling opportunities. However, this versatility comes
at a cost when it comes to analysing system models given in the form of
weighted automata. In particular, it has been shown that language equivalence
of weighted automata is undecidable in general, whereas for many specific
semirings, e.g. the Boolean algebras or fields, rather efficient solutions to the
problem exist. In this thesis, we will discuss two algorithms aimed at deciding
language equivalence where it is decidable. The first, more general algorithm
is applicable to weighted automata over all semirings in principle, provided
containment of vectors in a semimodule is decidable. A second algorithm that
uses up-to techniques to reduce the number of steps required to decide language
equivalence is presented afterwards. This algorithm is limited to a certain range
of semirings, but when it is applicable, it may significantly reduce the number
of steps the algorithm takes and, consequently, lead to a gain in run-time.

In modern software development, it is common to develop not a single piece
of software on its own, but to design a family of systems that is based on a
common code base. Traditional state-based systems are insufficient to model
such families of systems, because one would need to give a distinct model for
each system. Conditional transition systems offer a modelling technique that
allows for modelling software product lines with multiple products uniformly.
Originally, the products in a CTS were considered as separate concerns, but
in this thesis we will discuss a generalised model that allows for a hierarchy
of products that allow for upgrading to improved products and an efficient
procedure to determine behavioural equivalence taking all products into account.

It can be observed that behavioural analysis for various different kinds of
state-based systems is based on a common base structure. To capture the
essential concepts of procedures and structures is a central motivation for
the theory of coalgebras. An algorithm generalising partition refinement from
classical labelled transition systems to arbitrary coalgebraically specified state-
based systems is the root point for the more fundamental aspects of this thesis.
Extending the applicability of this standard procedure to further kinds of state-
based systems, in particular, weighted automata, and identifying commonalities
in particular in terms of termination conditions is the main driving force behind
the coalgebraic aspects in this thesis. For both, weighted automata and CTS,



3

the same general procedure can be applied, even though the notion of behaviour
differs, while taking a generic way of optimisation into account.

When considering state-based systems, different notions of behaviour have
been developed, that highlight different perspectives. For weighted automata,
which generalise non-deterministic automata, one is typically interested in
language equivalence. Considering our previous examples, two states may be
considered equivalent, if they perform the same tasks using the same amount
of resources or succeeding with the same probability. For CTS, however, which
generalise labelled transition systems in turn, a finer notion of behaviour is
considered. Instead of looking at the complete runs and comparing possible
traces from any given state, bisimulation also considers the decisions that are
possible in each step. For a user of a system, it can make a difference, whether
he has to decide at an earlier or at a later point during the run of a system,
if he wants to perform an a action or a b action at some point. Therefore,
bisimulation takes into account the time a choice is made, rather than purely
the available sequences of decisions.

1.2 Structure of the Thesis

The thesis is covering three main lines of work, which focus on behavioural
equivalence of various kinds of automata. From a coalgebraic point of view,
a general procedure and some possible optimisations have been developed,
which is defining a template algorithm that captures the common structure
of various algorithms that can be found in the literature. This work builds on
previous work in [ABH+12] where iteration on the final chain in the presence of
a factorisation structure was investigated. The presented algorithm generalises
the optimisations considered in the previous work and provides a more flexible
termination condition.

The main motivator for this line of work was language equivalence for
weighted automata, which could not be covered by the algorithm in its original
form. The instantiation to weighted automata moreover generalises techniques
that were presented in the literature for specific semirings and is therefore of
interest in itself. However, to obtain further optimisations over the optimisations
already present in the coalgebraic template algorithm, we needed to restrict the



4

class of semirings under consideration. This lead to an on-the-fly algorithm to
decide language equivalence, that is additionally modified to solve the related
problem of language inclusion and the threshold problem.

Finally, we also considered behavioural equivalence between any given pair
of conditional transition systems (CTS). We have first considered these systems
algorithmically, but later we have additionally developed a coalgebraic model
for CTS which can be analysed using the aforementioned family of coalgebraic
algorithms.

This is reflected in the structure of the thesis, comprising of five main
chapters (Chapters 3 to 7), where the results from all three lines of work are
presented independently of each other. Additionally, the work on coalgebraic
behavioural equivalence and on conditional transition systems is split into two
chapters each, one dealing with the coalgebraic reasoning and one chapter
where an algorithmic perspective on the systems under consideration is taken.

The common prerequisites to understand the content of the main chapters
are presented in Chapter 2. Here, we focus on the fundamentals of category
theory and coalgebra, as well as lattice theory.

There are two dimensions to reading this thesis. If one is primarily interested
in weighted systems or systems with conditions, and if one is mainly interested
in a coalgebraic treatment or a classical treatment. This thesis is designed to be
approachable for any combination of reader interest. The following table shows,
which chapters are covering which points of view. For instance, if one is only
interested in the classical point of view, one may skip Chapters 3 and 7. In turn,
a reader that is solely interested in the coalgebraic treatment of behavioural
equivalence, may focus solely on these two chapters. In a similar way, a reader
who prefers to only read about weighted systems, may be referred to Chapters 3
to 5, whereas for the conditional transition systems, the reader should focus on
Chapters 6 and 7.

Weighted systems Systems with conditions
Algorithmic Chapters 4 and 5 Chapter 6
Coalgebraic Chapter 3 Chapter 7

Though all main chapters in the above table can be read and understood
independently of each other, i.e. for each chapter only Chapters 1 and 2 are



5

prerequisites, there are some chapters that work on related concepts. Therefore,
the following graph details recommended reading, where an arrow going from
a node A to a node B signifies that it is recommended to read the chapter
represented by node A before reading the chapter represented by node B. The
dashed line indicates that the dependence is only relevant if the reader is
interested in the coalgebraic aspects of this work.

Chapter 3
Behavioural equivalence in coalgebras

Chapter 6
CTS algorithmically

Chapter 4
Partition refinement for weighted automata

Chapter 7
CTS coalgebraically

Chapter 5
Up-to techniques for weighted automata

Over the course of my work at the department, I have developed, together
with my colleague Christina Mika, a tool called Paws, short for Program
for the Analysis of Weighted Systems, that aims to illustrate the algorithms
developed in all three lines of work. Furthermore, Paws was also used to obtain
runtime results for the algorithms presented in the main chapters. It focusses
particularly on the weighted automata line of work, where a special emphasis
was put on flexibility. Section 8.1 serves as an overview over the design and
usage of Paws.

1.3 Publications

This thesis is based on the following publications:

• Barbara König and Sebastian Küpper. Generic partition refinement
algorithms for coalgebras and an instantiation to weighted automata. In
Proc. of TCS ’14, IFIP AICT, pages 311–325. Springer, 2014. LNCS 8705
– Chapter 3



6

• Barbara König and Sebastian Küpper. A generalized partition refinement
algorithm, instantiated to language equivalence checking for weighted
automata. Soft Computing, pages 1–18, 2016 – Chapter 4

• Filippo Bonchi, Barbara König, and Sebastian Küpper. Up-to techniques
for weighted systems. In Proc. of TACAS ’17, Part I, pages 535–552.
Springer, 2017. LNCS 10205 – Chapter 5

• Harsh Beohar, Barbara König, Sebastian Küpper, and Alexandra Silva.
Conditional transition systems with upgrades. In Proc. of TASE ’17
(Theoretical Aspects of Software Engineering), 2017. to appear – Chapter 6

• Harsh Beohar, Barbara König, Sebastian Küpper, Alexandra Silva, and
Thorsten Wißmann. Conditional transition systems coalgebraically. sub-
mitted. arXiv:1612.05002 – Chapter 7

Additionally, some contents from the following two publications were used in
Chapter 4 and Section 8.1, respectively:

• Harsh Beohar and Sebastian Küpper. On path-based coalgebras and
weak notions of bisimulation. In Proc. of CALCO ’17, 2017. LIPIcs Vol.
72, to appear

• Barbara König, Sebastian Küpper, and Christina Mika. Paws: A tool
for the analysis of weighted systems. In Proc. of QAPL ’17 (Internatio-
nal Workshop on Quantitative Aspects of Programming Languages and
Systems), 2017. to appear

My previous publications are thematically detached from this thesis and there-
fore are not represented in this work:

• H.J. Sander Bruggink, Barbara König, and Sebastian Küpper. Concaten-
ation and other closure properties of recognizable languages in adhesive
categories. In Proc. of GT-VMT ’13 (Workshop on Graph Transformation
and Visual Modeling Techniques), volume 58 of Electronic Communicati-
ons of the EASST, 2013

• H. J. Sander Bruggink, Barbara König, and Sebastian Küpper. Robustness
and closure properties of recognizable languages in adhesive categories.
Sci. Comput. Program., 104:71–98, 2015



Chapter 2

Mathemetical Foundations

This thesis builds on three fields of mathematical research: category theory,
in particular coalgebraic modelling techniques, semirings and lattice theory.
In this chapter, we will discuss all basic notions of these fields that we will
require throughout the thesis, motivate the notions and give detailed examples.
Additionally, we will discuss the previously established system models that
we are working on, including weighted automata. This introductory chapter is
broken up into four parts, focussing on

• Semirings and Semimodules

• Lattices and Order Theory

• Automata and Transition Systems

• Category Theory and Coalgebra

Section 2.4, which serves as an overview over the fundamentals of category
theory, is of course only relevant if the reader is interested in Chapters 3 and 7.

We presuppose an intuitive understanding of sets. Throughout this chapter,
at a few points we need to distinguish sets and classes, where the intuitive
difference is that a class may contain any set, but a set may not. The finer details
are not discussed here, because they do not play a role in the main chapters of
this thesis. We fix some notions for sets A,B. A×B = {(a, b) | a ∈ A, b ∈ B},
A \ B = {a ∈ A | a /∈ B}, AB = {f : B → A}, A ∩ B = {a ∈ A | a ∈ B},
A ∪ B = {a ∈ A, b ∈ B}. Furthermore we write A+ B to denote the disjoint
union of A and B. Typically we assume A ∩B = ∅, but if this is not the case,

7



8

this set can be characterised as A+ B = {(a, •), (•, b) | a ∈ A, b ∈ B}, where
• /∈ A ∪B. Moreover, we sometimes refer to a single element set as 1 = {•}.

2.1 Semirings and Semimodules

2.1.1 Semirings

In mathematics, sets with corresponding operations like addition and multi-
plication are ubiquitous, that is foundational for most areas, be it calculus,
algebra or stochastics. In this subsection we want to discuss the building blocks
for a structure that admits an addition and a multiplication, a semiring. The
most basic algebraic structure we need to consider are monoids.

Definition 2.1.1 (Monoid) Let M be a set and • : M × M → M be an
operation on M , i.e. a function.

• If • is associative, i.e. for allm1,m2,m3 ∈M it holds that (m1•m2)•m3 =
m1 • (m2 • m3), and there exists a neutral element e ∈ M such that
e •m = m • e = m for all m ∈M , we call (M, •, e) a monoid.

• If • is additionally commutative, i.e. for all m1,m2 ∈ M it holds that
m1 •m2 = m2 •m1, we call (M, •, e) a commutative monoid.

We will now consider some examples of monoids:

Example 2.1.2 • (N0,+, 0) is a monoid: Addition is associative and n+
0 = 0 + n = n for all n ∈ N0. Moreover, it is commutative, since addition
is commutative.

• Similarly, (N0, ·, 1) is a monoid.

• An example of a non-commutative monoid is ({0, 1, e}, •, e) where

0 • 1 = 1 1 • 0 = 0 1 • 1 = 1
0 • 0 = 0 0 • e = 0 1 • e = 1

The operation • is obviously not commutative, because 0•1 = 1 6= 0 = 1•0.
It is associative though, because a product of three elements either contains
an e and thus collapses to a product of two elements, or it equals 1 if and
only if the rightmost element is 1.



9

Monoids only have a single operation, but when combining two monoids
over the same carrier set, one may obtain a semiring.

Definition 2.1.3 (Semiring) Let S be a set. A semiring is a tuple S =
(S,+, ·, 0, 1), where 0 ∈ S, 1 ∈ S and 1 6= 0, (S,+, 0) is a commutative monoid,
(S, ·, 1) is a monoid, 0 · a = a · 0 = 0 for all a ∈ S and the distributive laws

(a+ b) · c = a · c+ b · c and c · (a+ b) = c · a+ c · b

hold for all a, b, c ∈ S. In the sequel we will identify S with the set S.

Note, that semirings need not be commutative wrt. multiplication. Conse-
quently, most of the work on semirings presented in later chapters works in
the non-commutative case, unless otherwise stated. As previously hinted at,
we can combine the monoids (N0,+, 0) and (N0, ·, 1) to obtain the prototypical
example of a semiring – the semiring (N0,+, ·, 0, 1) of natural numbers. This
is not the only way to equip the natural numbers with the structure of a
semiring though, another option that is of particular importance for the theory
of weighted automata, is the tropical semiring:

Example 2.1.4 The semiring T = (N0∪{∞},min,+,∞, 0), where T-addition
is the minimum and T-multiplication is addition, is called the tropical semiring.

In many cases, semiring operations have inverses, which gives rise to the
more well-known structures ring and field.

Definition 2.1.5 (Ring, Field) Let (S,+, ·, 0, 1) be a semiring.

• If there exists for each element s ∈ S an element −s ∈ S such that
s+ (−s) = 0, we call S a ring. In that case, we also define the operation
− : S× S→ S where s1 − s2 = s1 + (−s2).

• If additionally, for each element s ∈ S \ {0} there exists an element s−1

such that s · s−1 = 1, and multiplication is commutative, then we call S
a field. In that case, we also define the operation / : S × (S \ {0}) → S

according to s1/s2 = s1 · (s−1
2 ).

Example 2.1.6 We start with two examples of semirings that are not rings.



10

• (N0,+, ·, 0, 1) is not a ring, because there exists no element n ∈ N0 such
that 1 + n = 0.

• The tropical semiring T = (N0 ∪{∞},min,+,∞, 0) is not a ring, because
there exists no element s ∈ N0 ∪ {∞} such that min(1, s) =∞.

• The prototypical ring is (Z,+, ·, 0, 1). Different from the carrier set N0,
the additive inverses for all elements exist in Z. However, (Z,+, ·, 0, 1) is
not a field, because e.g. 2 has no multiplicative inverse.

• Extending the carrier set further, we obtain the field (Q,+, ·, 0, 1). Q
contains exactly those elements that can be written as z

n
, z ∈ Z, n ∈ N

and thus any element z
n
∈ Q \ {0} has a multiplicative inverse, namely

sign(z)·n
|z| .

2.1.2 Semimodules

Matrices and vectors over fields are a well-studied concept that plays an
important role, for instance, when solving linear equations or in computer
graphics. This concept can be generalised to semirings in a straight-forward
way.

Definition 2.1.7 (Semimodule, Matrix) Let X be an index set, let S be
a semiring and let SX be the set of all functions s : X → S of finite support,
i.e. functions where s(x) 6= 0 for only finitely many elements x ∈ X. Then
SX is a semimodule, i.e., SX is a set closed under pointwise addition and
multiplication with a constant (from the right). Every subset of SX closed under
these operations is called a subsemimodule of SX .

An X×Y -matrix a with weights over S is given by a function a : X×Y → S,
i.e., it is an element of SX×Y , such that in each column there are only finitely
many entries different from 0. X indexes the rows and Y indexes the columns
of the matrix. We can multiply an X ×Y -matrix a and a Y ×Z-matrix b in the
usual way, obtaining an X×Z-matrix a·b where (a·b)(x, z) = ∑{a(x, y)·b(y, z) |
y ∈ Y } for all x ∈ X, z ∈ Z.

By ay : X → S, where y ∈ Y , we denote the y-th column of a, i.e., ay(x) =
a(x, y).



11

For a generating set G ⊆ SY of vectors we denote by 〈G〉 the subsemimodule
spanned by G, i.e., the set that contains all linear combinations of vectors of G.
Similarly, given an X × Y -matrix, we denote by 〈a〉 ⊆ SX the subsemimodule
of SX that is spanned by the columns of a, i.e., 〈a〉 = 〈{ay | y ∈ Y }〉.

Note that we write matrices with small letters instead of capital letters.
The reason is that when dealing with matrices over semirings in a coalgebraic
setting, the matrices will be the arrows of the category under consideration and
arrows are usually written in small letters. For consistency, we have decided to
use small letters for matrices throughout this thesis.

Semimodules are a generalisation of vector spaces in the following sense:

Remark 2.1.8 (Comparison to vector spaces) If the semiring S happens
to be a field, the notions from Definition 2.1.7 turn into well-known concepts
from linear algebra. A (sub-)semimodule is a (sub-)vector space, a generating
set for a semimodule is a generator for a vector space.

Similarly, semimodules over rings are modules.

The usual notions of linear algebra (vector spaces, matrices, linear maps)
can be extended from fields to semirings. Note that we will allow index sets X
different from {1, . . . , n}.

Whenever we are talking about a semiring (ring, field) throughout this thesis,
we assume that the operations + and · (−, /) of all discussed semirings S can
be computed effectively. This is relevant with regards to the algorithms we will
later develop because they naturally rely on these operations.

2.2 Lattices and Order Theory

This overview over lattices and order theory contains all basic concepts we will
require in the main chapters of the thesis. Many aspects of lattices and order
theory will not be discussed here, because they are not required to understand
the main parts of the thesis. For a more thorough introduction to lattices and
order theory, including also the proofs missing in this section, the reader is
referred to e.g. [DP02].



12

2.2.1 Partially Ordered Sets

Ordering objects according to a notion of size and identifying objects that are
the same are two basic operations in mathematics that play a very important
role in many concepts. For instance, the field of all real numbers may be
characterised by its property of being the greatest Archimedean ordered field
(with an order compatible with + and ·), where an order plays a role twice, first
by saying that R is ordered, and second by saying it is the greatest field with
that property – using a different notion of order, namely the subfield ordering.
Orders will play a central role in all main chapters of this thesis. So we first
recall the four basic properties required to specify what an order is:

Definition 2.2.1 Let M be any set then we call any R ⊆M ×M a relation
on M . The relation R is

• reflexive if for all x ∈M it holds that (x, x) ∈ R.

• symmetric if for all (x, y) ∈ R it holds that (y, x) ∈ R.

• transitive if whenever (x, y) ∈ R and (y, z) ∈ R, then also (x, z) ∈ R.

• antisymmetric if for all (x, y) ∈ R it holds that, if (y, x) ∈ R, then it
must hold that x = y.

Using this terminology, we can define the notions of order and equivalence.

Definition 2.2.2 (Equivalence Relations and Partial Orders) LetM be
any set and R ⊆M ×M be a relation on M .

• If R is reflexive, symmetric and transitive, we call R an equivalence
relation and call any pair (x, y) ∈ R equivalent.

• If R is reflexive, antisymmetric and transitive, we call R a (partial) order
and (M,R) a partially ordered set (poset). If, in addition, for all pairs
(x, y) it holds that (x, y) ∈ R or (y, x) ∈ R, then we call R a total order.

• A function f : (M,R)→ (M ′, R′), where R and R′ are partial orders is
called order-preserving or monotone, if whenever x ∈ M , y ∈ M and
(x, y) ∈ R it holds that (f(x), f(y)) ∈ R′.



13

Note that an equivalence relation is often written as ≡ and then ≡ is also
written infix, i.e. instead of (x, y) ∈ ≡, we will often write x ≡ y. Similarly,
orders are often written ≤ or v. In either case, we will also write the order
infix, i.e. instead of (x, y) ∈ v we write x v y.

We will have a look at some simple examples of well-known orderings and
equivalence relations.

Example 2.2.3 We consider the set of all natural numbers including 0, N0

and identify some orders and equivalence relations:

• The traditional order ≤ on N0 is a partial order: For all natural numbers
n it holds that n ≤ n, whenever n ≤ m and m ≤ n for any natural
numbers n,m ∈ N0, it must hold that m = n and for any natural numbers
n1, n2, n3 ∈ N0 it is true that n1 ≤ n2 and n2 ≤ n3 implies n1 ≤ n3. ≤ is
also a total order on the natural numbers.

• Similarly, ≥ is a (total) partial order as well. More generally, whenever
R is a (total) partial order, the set R′ = {(x, y) | (y, x) ∈ R} is a (total)
partial order as well.

• Another partial order on N0, which is not total, is

R = {(n1, n2) ∈ N0 × N0 | n1 ≤ n2 ∧ n1 mod 5 = n2 mod 5}.

Note that for instance 2 and 3 are incomparable, since 2 mod 5 = 2 6=
3 = 3 mod 5

• An example that will play an important role throughout this thesis is the
powerset P(M) of any given set M ordered by inclusion, i.e.

⊆M= {(M ′,M ′′) ∈ P(M)× P(M) |M ′ ⊆M ′′}.

Note, that the subset ordering on the class of all sets also meets all criteria
to be regarded as a partial order, except for not being defined on a set,
because the class of all sets is not a set itself.

• R= on N0, defined as

R= = {(n1, n2) ∈ N0 × N0 | n1 = n2}

is both, a partial order and an equivalence relation. In fact, equality gives
rise to a partial order and an equivalence relation on all base sets.



14

• Any natural number n ∈ N except 0 gives rise to an equivalence relation

Rn = {(n1, n2) ∈ N0 × N0 | n1 mod n = n2 mod n}

None of these relations is a partial order, because (n, 2 · n) ∈ Rn, but
n 6= 2 · n.

2.2.2 Lattices

When working with partially ordered sets, a helpful property is the existence
of suprema and infima. This allows to reason about sets of elements from a
partially ordered set in various ways.

Definition 2.2.4 (Supremum and Infimum) Let (M,v) be any partially
ordered set and M ′ ⊆M be any subset of M .

• If there exists an element x ∈M such that x v x′ for all x′ ∈M ′, then
we call x a lower bound of M ′.

• A lower bound x of M ′ is called the infimum of M ′ if it is maximal
among all lower bounds, i.e. for all lower bounds x′′ ∈ M , it holds that
x′′ v x. We then write x =

d
M ′. If, in addition, x ∈M ′, we call x the

minimum of M ′ and we write x = min(M ′). If M ′ has only two elements,
we also write the infimum infix as x = m1 um2, when M ′ = {m1,m2}.
The infimum is also known as greatest lower bound.

• If there exists an element x ∈M such that x w x′ for all x′ ∈M ′, then
we call x an upper bound of M ′.

• An upper bound x of M ′ is called the supremum of M ′ if it is minimal
among all upper bounds, i.e. for all upper bounds x′′ ∈M , it holds that
x′′ w x. We then write x = ⊔

M ′. If, in addition, x ∈M ′, we call x the
maximum of M ′ and we write x = max(M ′). If M ′ has only two elements,
we also write the supremum infix as x = m1 tm2, when M ′ = {m1,m2}.
The supremum is also known as least upper bound.

Suprema and infima need not always exist, for instance, if we consider the set
{1, 2} and the partial order R = {(n1, n2) ∈ N0 × N0 | n1 ≤ n2 ∧ n1 mod 5 =



15

n2 mod 5} from the previous example, then there exists no element that is the
infimum or supremum of {1, 2}, since for an element n to be related to 1, it
must hold that n mod 5 = 1, but for n to be related to 2 as well, it is required
that n mod 5 = 2, which cannot be true at the same time.

Suprema and infima can exist of course, for instance when considering the
partially ordered set (N0,≤) and any two numbers n1, n2, then

n1 u n2 =


n1 if n1 ≤ n2

n2 otherwise
.

Similarly,

n1 t n2 =


n1 if n2 ≤ n1

n2 otherwise
.

Whenever suprema and infima exist, they are unique.
Note that for (N0,≥), suprema and infima are swapped when compared with

(N0,≤), i.e.

n1 u n2 =


n1 if n2 ≤ n1

n2 otherwise
and n1 t n2 =


n1 if n1 ≤ n2

n2 otherwise
.

The reason is that the order v is always the basis for the notions of u and t.
This kind of inversal, also called duality, happens at several points throughout
this thesis, particularly in Chapter 7 and Chapter 5.

Suprema and infima are central operations on lattices, which we will now
introduce.

Definition 2.2.5 (Lattice) Let (L,v) be a partially ordered set.

• If for all `1, `2 ∈ L there exists the supremum `1 t `2 and the infimum
`1 u `2, then L is called a lattice. Sometimes, we refer to the lattice by its
base set together with the supremum and infimum operator as (L,t,u),
from which the order can uniquely be derived.

• If, in addition, a top element > = ⊔
L and a bottom element ⊥ =

d
L

exist, L is called bounded.

• If for all L′ ⊆ L the infimum
d
L′ and the supremum ⊔

L′ exist, we call
L = (L,v) a complete lattice.



16

• If in a (complete, bounded) lattice the distributive law

(`1 t `2) u `3 = (`1 u `3) t (`1 u `3)

holds, then we call it a distributive (complete, bounded) lattice.

• If (L,t,u), (L′,t′,u′) are lattices and f : (L,t,u) → (L′,t′,u′) is a
function, we call f a lattice homomorphism, if f preserves suprema and
infima, i.e. f(`1 t `2) = f(`1) t′ f(`2) and f(`1 u `2) = f(`1) u′ f(`2). A
lattice homomorphism is necessarily order preserving.

Note that any finite lattice is automatically bounded and complete and that
complete lattices are always bounded. We will often identify the base set L of
a lattice L with L itself.

We will now consider several examples of lattices. Note that we have already
discussed examples of partially ordered sets that are not lattices, particularly
R = {(n1, n2) ∈ N0×N0 | n1 ≤ n2 ∧ n1 mod 5 = n2 mod 5} on N0, since, as we
have seen, not all pairs of elements have a supremum or an infimum.

Example 2.2.6

• (N0,max,min) is a lattice. As seen before, for any given pair of natural
numbers, the maximum and minimum exists. However, (N0,max,min) is
not bounded. While min N0 = 0 exists, no element max N0 exists. Thus,
the lattice cannot be complete either. Still, (N0,max,min) is distributive.

• (N0∪{∞},max,min) is a distributive lattice as well, but it is additionally
bounded, where max N0 ∪ {∞} =∞. It is also complete, because for all
M ⊆ N0 ∪ {∞}, the supremum of M is defined according to

⊔
M =


∞ if max M does not exist

max M otherwise
.

• We are particularly interested in finite distributive lattices. Consider the
lattice L = {0, a, b, c, d, e, f, 1} with the order depicted below.



17

1

df

c

a b

e

0

As one can easily verify, this lattice is distributive. Completeness follows
from its finiteness. Using this graphical way of writing the order, known
as Hasse diagram in the literature, it is easy to see the infimum and the
supremum, by just following downwards or upwards the paths in the graph
from any two given lattice elements. For instance, the supremum of e and
a can be seen to be d.

The following example will be used later in Chapter 6

Example 2.2.7 Given a set N , consider B(N), the set of all Boolean expres-
sions over N , i.e., the set of all formulae of propositional logic, where the
elements of N are the atomic propositions. We equate every subset C ⊆ N

with the evaluation that assigns true to all f ∈ C and false to all f ∈ N\C.
For b ∈ B(N), we write C |= b whenever C satisfies b. Furthermore we define
JbK = {C ⊆ N | C |= b} ∈ P(P(N)). Two Boolean expressions b1, b2 are called
equivalent whenever Jb1K = Jb2K. Furthermore b1 implies b2 (b1 |= b2), whenever
Jb1K ⊆ Jb2K.

2.2.3 Birkhoff’s Representation Theorem

We have already seen that lattices are just special partially ordered sets. Howe-
ver, there is a particularly deep correspondence between (finite) distributive
lattices and (finite) partially ordered sets. To understand this connection, we
first have to specify what a (join-)irreducible element is.

Definition 2.2.8 ((Join-)Irreducible elements, downward-closed sets)
Let L be a lattice. An element n ∈ L is said to be (join-) irreducible if it is
not the bottom element of L and whenever n = ` tm for elements `,m ∈ L, it
always holds that n = ` or n = m. We write J (L) for the set of all irreducible
elements of L.



18

Let (Φ,≤Φ) be a partially ordered set. A subset Φ′ ⊆ Φ is downward-closed,
whenever ϕ′ ∈ Φ′ and ϕ ≤Φ ϕ′ implies ϕ ∈ Φ′. We write O(Φ) for the set of
all downward-closed subsets of Φ. Given ϕ ∈ Φ, we write ↓ ϕ = {ϕ′ | ϕ′ ≤Φ ϕ}
for the downward-closure of ϕ.

Example 2.2.9

• For our Example 2.2.7, B(N) quotiented by equivalence, the irreducibles
are the complete conjunctions of literals, or, alternatively, all sets C ⊆ N .

• In Example 2.2.6, for all three infinite lattices, all elements other than
0 are irreducibles, since pairwise suprema are defined as maxima. In
the example of a finite distributive lattice, the irreducible elements are
a, b, e, f , i.e. exactly those elements that have a unique direct predecessor.

Distributive lattices give rise to an interesting duality result, which was first
stated for finite lattices by Birkhoff and extended to the infinite case by Priestley
[DP02]. The infinite case is significantly more complicated and requires notions
from general topology. Since we do not need topology throughout this these,
nor the infinite duality result, we will focus solely on the finite case here.

Theorem 2.2.10 (Birkhoff’s representation theorem, [DP02]) Let L be
a finite distributive lattice, then (L,t,u) ∼= (O(J (L)),∪,∩) via the isomor-
phism η : L→ O(J (L)), defined as η(`) = {`′ ∈ J (L) | `′ v `}. Furthermore,
given a finite partially ordered set (Φ,≤Φ), the downward-closed subsets of Φ,
(O(Φ),∪,∩) form a distributive lattice, with inclusion (⊆) as the partial order.
The irreducibles of this lattice are all downward-closed sets of the form ↓ ϕ for
ϕ ∈ Φ.

Going from L to the isomorphic O(J (L)), each lattice element ` ∈ L is
mapped to the set of all irreducible elements that are smaller than `, i.e.
{`′ ∈ J (L) | `′ v `}.

Similarly, there is a correspondence between monotone functions from Φ to Φ′

and lattice homomorphisms from O(Φ′) to O(Φ).
We illustrate this result on our previous example of a finite distributive

lattice:



19

Example 2.2.11 We consider the finite distributive lattice from Example 2.2.6
and illustrate its dual representation of the lattice in terms of downward-closed
sets of irreducibles, ordered by inclusion:

{a, b, e, f}

{a, b, e}{a, b, f}

{a, b}

{a} {b}

{b, e}

∅

Indeed, each element ` from the lattice can be represented by the set of all
irreducible elements that are smaller than ` and the order is given by inclusion.

Bounded distributive lattices (with at least two elements) can also be inter-
preted as semirings in the following way: Let (L,t,u) be bounded distributive
lattice, then there exist ⊥ =

d
L and > = ⊔

L. Additionally, we can compute
for all ` ∈ L:

• ⊥ t ` = `, since ⊥ v `, i.e. ⊥ is the neutral element for t.

• > u ` = `, since > w `, i.e. > is the neutral element for u.

• ⊥ u ` = ⊥, i.e. ⊥ is cancellative for u

Therefore, (L,t,u,⊥,>) is a semiring.
As we have discussed before, it can be nice to have an inverse for the

operations of a semiring, making the semiring a ring or even a field. However,
sadly, an inverse in that sense cannot exist for the operations of a lattice, for
the following reason: Assume in a bounded lattice with at least two elements,
> had an inverse (for t), which we call >−1. Then > t>−1 = ⊥ since >−1 is
the inverse of >. On the other hand > t >−1 = > t > t >−1 = > t ⊥ = >,
because a lattice is idempotent. Therefore, ⊥ = >, which is a contradiction,
since in a semiring 0 6= 1 must hold for the neutral elements of the operations.

Definition 2.2.12 (Heyting Algebra, Boolean Algebra) Let (L,t,u) be
a bounded distributive lattice.



20

• If for any `1, `2 ∈ L, there is a greatest element ` such that `1 u ` v `2,
we call L a Heyting algebra. Furthermore, we call ` the residuum ` =
`1 → `2 = ⊔{`′ | `1 u `′ v `2}.

• If L is equipped with a complement, i.e., for each ` ∈ L there exists an
element ¬` such that ¬` u ` = ⊥ and ¬` t ` = >, we call L a Boolean
algebra. If the complement exists, it can be defined using the residuum as
¬` = `→ ⊥.

Sometimes we say ¬` = `→ ⊥ even in a Heyting algebra that is not a Boolean
algebra. This negation is then well-defined, but it does not admit the de Morgan
laws, which always hold in a Boolean algebra, i.e. ¬(`1 u `2) = ¬`1 t ¬`2 and
¬(`1 t `2) = ¬`1 u ¬`2 for all `1, `2 ∈ L. Moreover, ¬` t ` = > need not hold.

Also note that a complete distributive lattice L need not be a Heyting algebra:
`1 → `2 = ⊔{` | `1u ` v `2} must exist for all `1, `2 ∈ L, but (`1 → `2)u `1 v `2

need not hold.

Example 2.2.13 Let M ⊆ R, then we call M open, if for all m ∈M it holds
that there exists an ε > 0 such that m− ε ∈M and m+ ε ∈M . We consider
the partially ordered set L = ({M | M ⊆ R | M is open},⊇). This forms a
lattice, where t = ∩ and u = ∪. It is also complete: The union of open
sets necessarily is open again, so infinite infima exist. The intersection of open
sets need not exist in the infinite case, but its interior serves as the infinite
supremum. The interior of an arbitrary set M ⊆ R can be constructed as the
intersection of all open sets M ′ ⊆M . It is also distributive, since intersection
and union of sets distribute.

Now, to see that it is not a Heyting algebra, consider R \ {0} → R. Note,
that for all open subsets M that contain 0, it holds that R \ {0} ∪M ⊇ R,
i.e. R \ {0} uM v R. The supremum of all these intervals is the interior of
their intersection. Their intersection is just the set {0}, which is not open.
Its interior is ∅ – trivially, it is the only open subset of {0}. Therefore, we
can conclude that R \ {0} → R = ⊔{M ∈ L | R \ {0} uM v R} = ∅. Yet,
R \ {0} u ∅ 6v R, so this infimum does not actually yield a proper residuum.

If in a complete distributive lattice, in addition the infinite distributive law
` u ⊔i∈I `i = ⊔

i∈I(` u `i) holds for all `, `i ∈ L, i ∈ I, L is always a Heyting
algebra.



21

Example 2.2.14 The set B(N) from Example 2.2.7, quotiented by equivalence,
is a Boolean algebra, isomorphic to P(P(N)), where Jb1Kt Jb2K = Jb1K∪ Jb2K =
Jb1 ∨ b2K, analogously for u,∩,∧, ¬JbK = P(N)\JbK = J¬bK, and Jb1K→ Jb2K =
P(N)\Jb1K ∪ Jb2K = J¬b1 ∨ b2K.

2.2.4 Embedding into Boolean Algebras and Approxi-
mation into Lattices

Using the Birkhoff duality, we can now see that it is always possible to embed a
finite distributive lattice into a Boolean algebra, which can make computations,
in particular for the residuum, significantly easier: Note that the Birkhoff
duality naturally also holds for Boolean algebras and that the inverse of an
element ` ∈ B in a Boolean algebra B can be easily identified as the element
corresponding to the complement set J (B)\η(`). In this sense, all computations
in Boolean algebras can be expressed in terms of set manipulations.

Proposition 2.2.15 (Embedding) Let L be a finite distributive lattice, then
L embeds into the Boolean algebra B = P(J (L)) via the monomorphism η :
L→ B, defined as η(`) = {`′ ∈ J (L) | `′ v `}.

This embedding will prove to be fruitful when computing operations on lattices,
since they can be computed using well-known operations in Boolean algebras.
The following example will illustrate the embedding.

Example 2.2.16 We continue our Example 2.2.6, investigating further the
finite example. We have already identified the join irreducible elements, so it
is easy to construct the Boolean algebra B the lattice L embeds into, for it can
be represented as the powerset of {a, b, e, f} and L can be embedded into B by
mapping a to {a}, b to {b}, e to {b, e}, f to {a, b, f}, ⊥ to ∅, > to {a, b, e, f},
c to {a, b} and d to {a, b, e}. Below we have visualised the Boolean algebra and
the embedding of the lattice into it. The lattice is printed black, whereas the
remaining elements in the Boolean algebra are grey.



22

{a, b, e, f}

{a, b, e}{a, b, f}{a, e, f} {b, e, f}

{a, b}{a, f}{a, e}{b, f} {e, f}

{a}{f} {b}

{b, e}

{e}

∅

We will simply assume that L ⊆ B. Since an embedding is a lattice homomor-
phism, supremum and infimum coincide in L and B and we simply write t,u for
both versions. Negation and residuum may however differ and we distinguish
them via a subscript, writing ¬L,¬B and →L,→B. Given such an embedding,
we can approximate elements of a Boolean algebra in the embedded lattice.

Definition 2.2.17 (Approximation) Let L be a complete distributive lattice
that embeds into a Boolean algebra B. Then we define the approximation of
` ∈ B as b`c

L
= ⊔{`′ ∈ L | `′ v `}.

In the sequel, we will drop the subscript L and simply write b`c, if the
lattice is clear from the context. For instance, in the previous example, the
set of irreducibles {a, e, f}, which is not downward-closed, is approximated by
b{a, e, f}c = {a}.

Next, we present some computational rules for approximations that are
helpful in the sequel.

Lemma 2.2.18 Let L be a complete distributive lattice that embeds into a
Boolean algebra B. For `1, `2 ∈ B, we have b`1u`2c = b`1cub`2c and furthermore
that `1 v `2 implies b`1c v b`2c. If `1, `2 ∈ L, then b`1 t ¬`2c = `2 →L `1.

Proof: Let `1, `2 ∈ B. Monotonicity of the approximation is immediate from
the definition.

We next show b`1u`2c w b`1cub`2c: by definition we have b`1c v `1, b`2c v `2

and hence b`1c u b`2c v `1 u `2. Since b`1 u `2c is the best approximation of
`1 u `2 and b`1c u b`2c is one approximation, the inequality follows.



23

In order to prove b`1 u `2c v b`1c u b`2c observe that b`1c w b`1 u `2c and
b`2c w b`1 u `2c by monotonicity of the approximation. Hence b`1 u `2c is a
lower bound of b`1c, b`2c, which implies b`1c u b`2c w b`1c u b`2c.

Now let `1, `2 ∈ L. Recall the definitions b`1t¬`2c = ⊔{` ∈ L | ` v `1t¬`2}
and `2 →L `1 = ⊔{` ∈ L | `2 u ` v `1}. We will prove that both sets are equal.

Assume ` ∈ L with ` v `1t¬`2, then `2u` v `2u(`1t¬`2) = (`2u`1)t(`2u
¬`2) = (`2 u `1) t ⊥ = `2 u `1 v `1. For the other direction assume `2 u ` v `1,
then `1t¬`2 w (`2u`)t¬`2 = (`2t¬`2)u(`t¬`2) = >u(`t¬`2) = `t¬`2 w `.
�

Note that in general it does not hold that b`1 t `2c = b`1c t b`2c and
b`1 t ¬`2c = b`2c →L b`1c for arbitrary `1, `2 ∈ B. To witness why these
equations fail to hold, take `1 = {a, e} and `2 = {b, f} in the previous example
as counterexample.

We have already discussed that a bounded distributive lattice can be viewed
as a semiring. However, there is another relevant way of getting a semiring
structure from a lattice, by adding an additional multiplication operation to
the lattice.

Definition 2.2.19 (l-Monoid) Let (L,t,u) be a lattice and (L, ·, e) be a
monoid. If · distributes over t, i.e. x · (y t z) = (x · y)t (x · z) and (xt y) · z =
(x · z) t (y · z) for all x, y, z ∈ L, we call (L,t, ·) an l-monoid. If (L,t,u) is
complete, we call the l-monoid complete. It is called completely distributive if
(L,t,u) is complete and multiplication distributes over arbitrary suprema. A
complete l-monoid is called integral provided that > = e.

Moreover, if L has a ⊥-element 0 and x · 0 = 0 = 0 · x for all x ∈ L, we call
(L,t, ·) bounded. Every bounded l-monoid is a semiring (L,t, ·, 0, e).

Here, we slightly deviate from the usual definition of l-monoids by not requi-
ring the existence of a >-element, since this is not needed for our algorithms.

Note, that every bounded distributive lattice is a bounded l-monoid, where
· = u. On the other hand, a bounded l-monoid structure can also be found for
non-distributive lattices.

Completely distributive l-monoids are often referred to as unital quantales.

Example 2.2.20 An example of an l-monoid that we will use as a running
example throughout the thesis is M = ([0, 1],max, ·, 0, 1), which is based on the



24

lattice ([0, 1],max,min, 0, 1) and the order ≤. Multiplication distributes over
arbitrary maxima and therefore it is a distributive l-monoid. Furthermore, it is
a bounded complete l-monoid, since min[0, 1] = 0 and x · 0 = 0 = 0 · x for all
x ∈ [0, 1].

Another example of an l-monoid is the tropical semiring T, based on the
order ≥.

The l-monoid M is isomorphic to T via the isomorphism ϕ : T→ M, x 7→ 2−x.

In very much the same way as for lattices, we can also define a residuation
operation for completely distributive lattices as follows:

Definition 2.2.21 The residuation operation for a completely distributive l-
monoid L is defined for all `1, `2 ∈ L as `1 → `2 = ⊔{` ∈ L | `1 · ` v `2},
also called residuum of `1, `2. We extend this to L-vectors, replacing `1, `2 by
v1, v2 ∈ LX .

Example 2.2.22 Recall the semirings T, M in Example 2.2.20. For `1, `2 ∈ T
we have `1 → `2 = min{` ∈ R+

0 ∪ {∞} | `1 + ` ≥ `2} = `2 −̇ `1 (modified
subtraction). For `1, `2 ∈ M, we have `1 → `2 = max{` ∈ [0, 1] | `1 · ` ≤ `2} =
min{1, `2

`1
}.

Another example where the residuation operation can be easily characterised
is any Boolean algebra (B,∨,∧, 0, 1). For `1, `2 ∈ B we have `1 → `2 = ¬`1 ∨ `2.

Similar to the semirings before, we assume throughout this thesis that
all relevant operations, i.e. supremum, infimum, negation, multiplication and
residuum on lattices and l-monoids are effectively computable.

2.3 State-Based Systems

The focus of this thesis lies on the analysis of state-based systems, so we want to
give a brief overview over classical state-based systems, weighted automata and
conditional transition systems (CTS) without upgrades. Weighted automata are
the systems under investigation for Chapters 3 to 5. CTS without upgrades, in
turn, are generalised by CTS (with upgrades) in Chapter 6 which are the systems
under investigation in Chapters 6 and 7. For both, weighted automata and CTS,
we need to consider words over an alphabet A. Formally, we will work in the



25

free monoid A∗ where we will consider sequences of symbols a ∈ A. We call the
empty sequence ε, and write a sequence of symbols a1, a2, ..., an ∈ A as a1a2...an.
More detailed introductions to traditional state-based systems can be found
in several textbooks, e.g. [HMRU00] for deterministic and nondeterministic
automata and [Mil89a] for an introduction to bisimilarity. More on weighted
automata can be found in [DKV09] and conditional transition systems without
upgrades have previously been introduced in [ABH+12].

Definition 2.3.1 (Free Monoid) Let A be a set, then we can define the sets
An, n ∈ N0 according to A0 = {ε}, A1 = A, An+1 = {aw | a ∈ A,w ∈
An}. Then A∗ = ⋃

n∈N0 A
n. Defining the concatenation operation according to

• : A∗ × A∗ → A∗ by w1 • w2 = w1w2 for all w1, w2 ∈ A∗, we obtain a monoid
structure (A∗, •, ε) which we call the free monoid over A.

2.3.1 From (Non-)Deterministic Automata to Weighted
Automata

(Non-)Deterministic Automata

Often, computer systems can be understood as abstract systems that are always
in one of finitely many possible states and change their state upon receiving an
input by a user. One or more states may signify a finished computation. This
basic concept lies at the core of deterministic automata.

Definition 2.3.2 (Deterministic Automaton) A deterministic automaton
is a four tuple M = (X,A, δ, F ), where

• X is a set, which we call the set of states

• A is a finite set, which we call the set of actions

• δ : X × A→ X is the transition function

• F ⊆ X is a subset of X which we call the final states of M .

We write x a−→ x′ if δ(x, a) = x′.

We are considering automata without initial states and consider the language
of any state instead. This may be uncommon, but since our work is rooted in



26

coalgebra, where initial states are unusual, we adopt a model that does not
include initial states. The language of a state x0 ∈ X is defined as

L(x0) = {w = a1a2...an ∈ A∗ |∃x1, x2, ...xn ∈ X :

∀0 < i ≤ n : xi = δ(xi−1, ai) ∧ xn ∈ F}

While we allow infinite state sets in the definition of deterministic automata,
in most applications we restrict to finite state systems.

Determinism is restricting the modelling power of automata, in particular,
even for those transitions that may be considered illegal, we still need to define a
successor state. Non-deterministic automata enable us to not define a successor
state for a given pair of state and action, or to define more than one successor,
which may be selected in a non-deterministic way. This allows for exponentially
smaller automata accepting the same language as a deterministic automaton,
but in turn it can make analysis of non-deterministic automata more difficult
when compared to deterministic ones.

Definition 2.3.3 (Non-deterministic Automaton) A non-deterministic au-
tomaton is a four tuple M = (X,A, δ, F ), where

• X is a set, which we call the set of states

• A is a finite set, which we call the set of actions

• δ : X × A→ P(X) is the transition function

• F ⊆ X is a subset of X which we call the final states of M .

We write x a−→ x′ if x′ ∈ δ(x, a).

The language of a state x0 ∈ X is defined as

L(x0) = {w = a1a2...an ∈ A∗ |∃x1, x2, ...xn ∈ X :

∀0 < i ≤ n : xi ∈ δ(xi−1, ai) ∧ xn ∈ F}

Note that for a given word w there may exist different paths1 from any given
state, where some may end in a final state and others do not. However, as long
as one path exists that is accepting, the word is in the language of the state.

1In this context, a path for a word w is a sequence of subsequent transitions labelled with
the symbols from w.



27

Thus, it is not sufficient to consider a single path to determine whether a word
is not in the language of a state, but instead one has to consider all paths.

Both, deterministic automata and non-deterministic automata, are well
studied classical system models that are limited in expressiveness, but offer –
in the case of deterministic automata even polynomial time – algorithms for
most interesting constructions. However, when dealing with system models, in
many cases one is not purely interested in the sequences of actions a system
may accept, but additionally in quantitative information. For instance, one
may wonder how long a computation takes, how many resources are used by a
transition or how likely it is that a transition is taken. This can be interpreted
as a weight associated with the transition.

Weighted Automata

Weighted automata can be seen as a generalisation of non-deterministic au-
tomata and differ from non-deterministic automata by a weight from a given
semiring S that is assigned to each transition. Consider for instance the weighted
automaton depicted in the sequel:

1

2 3
b, 1

a, 2

1

b, 1

a, 1

1

b, 1

This automaton may be considered over the semiring (N0,+, ·, 0, 1), which is
just the natural numbers with usual addition and multiplication. All transitions
carry a label over the alphabet {a, b} and additionally a weight from N0. If we
were to ignore the weights and consequently interpret it as a non-deterministic
automaton, the language of the automaton when considering all states initial
would just be the set of all sequences over {a, b} that correspond to a path in
the automaton ending in final state, marked by an outgoing arrow not pointed



28

towards another state. For instance, any sequence of as is in the language,
because from state 1 or state 2, one can input an arbitrary number of as and
still end up in a final state. Moreover, any sequence of as may be interrupted
by any even number of bs. In addition, a word may also start with an odd
number of bs. Overall, the language of the non-deterministic automaton can be
identified as 2: L((b|ε)(a∗(bb)∗)∗).

Now, if we consider the weights associated with each transition, the words
that do not get assigned the value 0 are exactly those that are accepted by the
underlying non-deterministic automaton. However, words do not simply get
accepted or rejected, but they get assigned a value from S in accordance with
the weights associated to the transitions. To determine the value of a word, we
first must consider the weight of a path. Assume we want to compute the value
of the word w = abba. One path that corresponds to w starts in state 1, takes
an a transition to 1, then transitions via b to 3 and via an additional b to 2.
Then, via another a, a transition to state 2 can be taken and, since 2 is a final
state, this path is actually accepting abba. Along the way, the following weights
were associated with the transitions we chose: 1, 1, 1, 2 and finally a 1 when
terminating. These values are multiplied to obtain the value of the path, in
this case 2. However, there exists another path, that also accepts abba, starting
in 2, taking the loop to 2 with the first a, followed by a b transition to 3 and
back to 1 via another b transition. The a loop in 2 allows to read the final a
of the word and finally, this path is actually accepting, because 2 has a final
weight of 1. Overall, we get a value of 4 for this path. To obtain the weight of
the word assigned by the automaton, we must add up all the weights for paths
accepting the word. Since there are only those two paths accepting abba, the
weight assigned to abba by the automaton is therefore 4 + 2 = 6.

The language of a weighted automaton consequently is not just the set of
words that get assigned a non-zero value by the automaton, but a function
that maps each word to its corresponding value. In this particular case, the
weighted language of the automaton assigns 0 to all words that are not in
L((b|ε)(a∗(bb)∗)∗), 2#a(w) to all words in L((b|ε)(a∗(bb)∗)∗) that start with an

2Here we use standard notation of regular expressions, i.e. a ∗ means the preceding
expression may be repeated arbitrarily often (finitely, including zero) and a | means alternative
choice.



29

odd number of bs and to all remaining words of type anbw ∈ L((b|ε)(a∗(bb)∗)∗)
it assigns the value (1 + 2n) · 2#a(w). Analogously, the language of a state x is a
function that assigns to each word the sum of the weight of all paths that start
in x.

To formalise this, a weighted automaton is defined as follows:

Definition 2.3.4 (Weighted Automaton) Let A be a finite set of alphabet
symbols and X be a set of states. Then a weighted automaton is an X × (A×
X + 1)-matrix with entries from S. We write x a,s−→ x′ if α(x, (a, x′)) = s.

For a weighted automaton α, α(x, •) denotes the final weight of state x ∈ X
and α(x, (a, y)) denotes the weight of the a-transition from x to y. Weighted
automata over l-monoids are also referred to as fuzzy automata.

We are mainly interested in weighted automata where the state set X is
finite. The reason for this becomes clear when considering the definition of the
language of a weighted automaton.

Definition 2.3.5 (Language of a Weighted Automaton [DKV09])
Let (X,α) be a weighted automaton over alphabet A, a semiring S and a

finite state set X. The language Lα : A∗ → SX of α is recursively defined as

• Lα(ε)(x) = α(x, •)

• Lα(aw)(x) = ∑
x′∈X α(x, (a, x′)) · Lα(w)(x′) for a ∈ A, w ∈ A∗

We will call Lα(w)(x) the weight that state x assigns to the word w. Two states
x, y ∈ X are language equivalent if Lα(w)(x) = Lα(w)(y) for all w ∈ A∗.

Note that the language of a (state in a) weighted automaton might not
be defined if X is not finite, because weighted automata need not be finitely
branching and therefore computing the language of a state may depend on
computing an infinite sum, which may not be well-defined in the underlying
semiring. Therefore, we will restrict our analysis to weighted automata over a
finite state set throughout this thesis.

To see that weighted automata are actually a generalisation of non-deter-
ministic automata, consider the semiring B = ({0, 1},∨,∧, 0, 1}) Then the
transition matrix α has entries from 0 and 1, where for indexes x, y ∈ X and
a ∈ A, α(x, (a, y)) = 1 means that there is a transition going from x to y for



30

the input a. Analogously α(x, •) = 1 indicates that x is a final state. Weighted
automata over the Boolean semiring can thus be translated to non-deterministic
automata in a straight forward way and vice-versa.

When discussing up-to techniques for weighted automata in Chapter 5,
we will employ a different way of writing weighted automata, for the sake of
convenience, which will be introduced in that chapter.

2.3.2 From Labelled Transition Systems to Conditional
Transition Systems

Conceptually, labelled transition systems (LTS) are very close to non-deterministic
automata, however LTS are not considered as acceptors of languages, but in-
stead are often perceived as a model for reactive systems. Thus, LTS do not
have final states. Additionally, for LTS one is typically interested in a different
notion of behavioural equivalence, called bisimulation, rather than language
acceptance. Bisimulation is a behavioural notion that takes into consideration
the choices a user may have at each point of an execution, thus making even
states that are language equivalent distinguishable in some cases.

Definition 2.3.6 (Labelled Transition Systems) A labelled transition sys-
tem is a triple (X,A,→), where

• X is a set which we call the set of states,

• A is a finite set which we call the set of actions and

• → : X × A→ P(X) is called the transition function.

If the set of actions is clear from the context, we omit the set of actions from
the definition of an LTS and only write (X,→). Moreover, we write x a−→ x′ if
x′ ∈→ (x, a).

The language of a state in an LTS is defined analogous to the language of a
state in a finite automaton where all states are considered final. Since LTS have
no final states, language equivalence is often referred to as trace equivalence
instead. However, as noted before, we are usually not interested in language
equivalence, when discussing LTS, but bisimulation instead.



31

Definition 2.3.7 (Bisimulation) Let (X,A,→1), (Y,A,→2) be LTS, then a
relation R ⊆ X × Y is called a bisimulation if for all pairs (x, y) ∈ R it holds
that

• For all a ∈ A x′ ∈ X such that x a−→1 x
′ there exists a y′ ∈ Y such that

y
a−→2 y

′ and (x′, y′) ∈ R.

• For all a ∈ A y′ ∈ Y such that y a−→2 y
′ there exists an x′ ∈ X such that

x
a−→1 x

′ and (x′, y′) ∈ R.

Bisimulations are closed under union and thus, there exists a greatest bisimula-
tion, called bisimilarity, between any pair of LTS. We call two states bisimilar if
there exists a bisimulation that relates the two states. To motivate bisimulation
for LTS, consider the following example:

Example 2.3.8 Let

({A,B,C,D,E}, {a, b, c},→1), ({A′, B′, D′, E ′}, {a, b, c},→2)

be LTS where →1,→2 are given graphically below:

A

B C

D E

a a

b c

A′

B′

D′ E ′

a

b c

States A and A′ are language equivalent, since both states allow transitions for
the words ab and ac, however they are not bisimilar. A bisimulation containing
the pair (A,A′) would also need to contain the pairs (B,B′) and (C,B′), because
from state A an a transition is possible to both, B and C and the only available
a transition from A′ goes to B′. However, B and B′ cannot be bisimilar, because
B′ can do a b transition, whereas B cannot. Indeed, from a user perspective, A
and A′ behave differently. A well-known figurative explanation for this example
is that of a coffee and tea machine. Action a may be interpreted as inputting a
coin, whereas b may be interpreted as choosing coffee and c may be interpreted
as choosing tea. In state A the user can input a coin, but then the system



32

non-deterministically decides, whether to offer tea or coffee and the user can
only accept the machine’s choice. On the other hand, in A′ after inputting a
coin, the user may choose on his own whether to get coffee or tea.

The greatest bisimulation can be computed using a partition refinement
algorithm, which lies at the core of both, the coalgebraic algorithm to compu-
te behavioural equivalence (cf. Chapter 3) and the matrix multiplication to
compute the greatest bisimulation for a CTS (cf. Chapter 6) :

Algorithm 2.3.9 (Partition Refinement Algorithm for Bisimilarity)
Let (X,A,→1) and (Y,A,→2) be two LTS over the same label alphabet, then

the following algorithm computes the greatest bisimulation between the two
systems.

• Start by setting R0 = X × Y

• As long as Ri 6= Ri+1 compute Ri+1 ⊆ X × Y based on Ri as follows:
(x, y) ∈ Ri+1 if and only if

– (x, y) ∈ Ri

– For all x′ ∈ X such that x a−→1 x
′ there exists a y′ ∈ Y such that

y
a−→2 y

′ and (x′, y′) ∈ Ri

– For all y′ ∈ Y such that y a−→2 y
′ there exists an x′ ∈ x such that

x
a−→1 x

′ and (x′, y′) ∈ Ri

Alternatively, bisimulation can also be characterised by a bisimulation game.
We will state the traditional bisimulation game for LTS here, because it is
similar in nature to the bisimulation game we will later discuss for CTS.

Definition 2.3.10 (Bisimulation Game) Bisimulation can be characterised
using the following game. Given two LTSs (X,A,→1) and (Y,A,→2), a state
x ∈ X and a state y ∈ Y the bisimulation game is a round-based two-player
game that uses both the LTSs as game boards. Let (x, y) be a game instance
indicating that there is a marked state in each of X and Y at any given time.
The game progresses to the next game instance as follows:

• Player 1 is the first one to move. Player 1 can choose either the marked
state x ∈ X or y ∈ Y and must perform a transition x a−→1 x

′ or y a−→2 y
′

for some a ∈ A.



33

• Player 2 then has to simulate the last step, i.e., if Player 1 made a step
x

a−→1 x
′, Player 2 is required to make step y a−→2 y

′ and vice-versa.

• In turn, the new game instance is (x′, y′).

Player 1 wins if Player 2 cannot simulate the last step performed by Player 1.
Player 2 wins if the game never terminates or Player 1 cannot make another
step.

The correspondence between bisimulation and bisimulation games is that
whenever Player 1 has a winning strategy, the initial pair of states is not
bisimilar and whenever Player 2 has a winning strategy, the initial pair of states
is bisimilar. Note, however, that winning a specific game against a non-optimal
opponent does not prove any claim about bisimilarity either way.

System models can often be designed with numerous products in mind, but
with a common code base. Moreover, some systems may behave differently,
when put into different contexts, e.g. the same system model may be used to
model a coffee machine that only offers coffee and one that also offers the choice
of tea. In order to be able to model and analyse transition systems that offer
different configurations, conditional transition systems (CTS) were proposed in
[ABH+12]. Each transition in a CTS, when compared to LTS, is additionally
equipped with a condition, which is a subset of a finite set of products over
which the CTS is defined. When a CTS is executed, first an atom of the Boolean
algebra must be selected, which instantiates the CTS to an LTS that contains
all those transitions of the CTS that carry a guard greater than the selected
atom. Formally a CTS is defined as follows:

Definition 2.3.11 (CTS (without upgrades)) Let Φ be a finite set. Then,
a conditional transition system (CTS) is a triple (X,A, f) consisting

• a set of states X,

• a finite set A called the label alphabet and

• a function f : X × A → (Φ → P(X)) mapping every ordered pair in
X × A to a function of type Φ→ P(X).

We call the elements of Φ the conditions of the CTS. As usual, we write x a,ϕ−−→ y

whenever y ∈ f(x, a)(ϕ).



34

Two states from two CTS are bisimilar if they are bisimilar under all conditions,
i.e. bisimilar in the LTSs one obtains when instantiating to each condition.
In Chapters 6 and 7 we will explore a generalisation of CTS which offers the
option to perform a change in condition during run-time. CTS are strongly
related to featured transition systems (FTS), where instead of conditions each
transition is labelled by a set of features, that a system may or may not have.
Similar to CTS, upon start a set of features is set and transitions are activated
or deactivated accordingly. As we will discuss in more detail in Chapter 6, FTS
correspond exactly to CTS without upgrades (with a set of conditions whose
cardinality is a power of two), where the powerset of all features acts as the set
of conditions.

2.4 Category Theory and Coalgebra

We are now turning our attention towards category theory and coalgebra. In
this section we will give an overview over all notions concerning category theory
and coalgebra that will be required throughout this thesis. Even though we
aim at giving a thorough introduction to those concepts that we are going to
use, this is of course only a small look onto the basics of category theory. For a
more complete introduction, the reader may be referred to e.g. [AHS90, ML71].

2.4.1 Categories and Morphisms

Category theory is a mathematical theory that aims at finding common structu-
res in different fields that are linked by the property that they are all concerned
with morphisms that are a mapping between certain objects. The idea is to
identify core concepts that can be found in many different fields that would
otherwise be viewed as unconnected. Thus, category theory aims to provide
an abstract view on morphism that can help identifying the fundamentals of
different constructions.

Definition 2.4.1 (Category) A category C = (Obj,Arr, ◦, id) consists of

• A class Obj whose members we call objects.



35

• A class Arr whose members we call arrows or morphisms. Each f ∈ Arr
has a domain dom(f) ∈ Obj and a codomain cod(f) ∈ Obj and we write
f : dom(f)→ cod(f).

• A (partial) composition operation ◦ : Arr × Arr → Arr that allows to
concatenate arrows f : A → B and g : B → C to obtain an arrow g ◦
f : A→ C. The operation ◦ is required to be associative in the following
sense: Given three arrows f : A→ B and g : B → C, h : C → D, it must
hold that (h ◦ g) ◦ f = h ◦ (g ◦ f).

• A class of identity arrows id such that for each object A ∈ Obj there exists
an arrow idA and for all objects B and all arrows f : A→ B, g : B → A

it holds that idB ◦ f = f and g ◦ idA = g.

There exist several different ways of defining categories, all of which are equiva-
lent: One may remove the objects from the definition and identify them with
their identity arrows instead or one may define the arrows as classes Arr(A,B)
for each pair of objects A,B. Throughout this thesis we will adhere to the
notation given in the above definition though.

Sometimes we will consider more than one category at a time. The com-
ponents, i.e. objects, arrows, composition and units, may then be distinguished
by an index indicating the category they belong to. If there is no danger of
confusion, we will still forego making explicit, for instance which category a
concatenation operation belongs to.

A motivating example for the definition of a category is the category Set,
which will play an important role in all our category theoretic endeavours.

Example 2.4.2 (Set) The category Set is defined as follows:

Objects The objects are all sets.

Arrows The arrows are all functions.

Concatenation Concatenation is function composition, i.e. f : A→ B, g : B →
C can be composed as g ◦ f : A→ C according to g ◦ f(x) = g(f(x)) for
all x ∈ A.

Identity The identity arrows idA : A→ A are just the identity functions where
idA(x) = x for all x ∈ A.



36

A closely related category is Poset, the category of partially ordered sets
and order preserving functions:

Example 2.4.3 (Poset) The category Poset is defined as follows:

Objects The objects are all pairs (M,≤M ) of sets M partially ordered by ≤M .

Arrows The arrows are all order-preserving functions (cf. Definition 2.2.2).

Concatenation Concatenation is function composition, i.e. f : (A,≤A) →
(B,≤B), g : (B,≤B) → (C,≤C) can be composed as g ◦ f : (A,≤A) →
(C,≤C) according to g ◦ f(x) = g(f(x)) for all x ∈ (A,≤A).

Identity The identity arrows id(A,≤A) : (A,≤A)→ (A,≤A) are just the identity
functions where id(A,≤A)(x) = x for all x ∈ A.

Even though our first two examples of categories both use sets and functions
as objects and arrows, this need not be true in general, the following example
serves to give an impression of how versatile the notion of a category is. Different
from the previous two examples, these two categories will not be important in
the main chapters of this thesis.

Example 2.4.4

• Let (M,≤M) be any partially ordered set, then M can be considered as
a category in the following way: The objects are all elements m ∈ M ,
between two elements m,m′ ∈M there exists an arrow f : m→ m′ if and
only if m ≤M m′. Concatenation is given by transitivity and, since partial
orders are reflexive, this also yields an identity arrow idm for all m ∈M .

• Rel has as objects all sets and morphisms f : A → B are relations
f ⊆ A×B. The identity arrow on a set A is the identity relation given by
idA = {(x, x) | x ∈ A} and concatenation of any two arrows f : A→ B,
g : B → C is relation composition, i.e. g ◦ f : A→ C is the relation given
by g ◦ f = {(a, c) | ∃b ∈ B : (a, b) ∈ f, (b, c) ∈ g}.

An important general construction of a new category from any given category
is the op category.



37

Example 2.4.5 Let C be any category. Then Cop defined according to:

Objects The objects of Cop are just ObjC.

Arrows Cop contains one arrow f op : Y → X for each arrow f : X → Y ∈
Arr(C).

Composition Given two arrows f op : Y → X, gop : Z → Y , the arrow f op ◦
gop : Z → X is defined as (g ◦ f)op.

Identities The identity arrow of any object X ∈ ObjCop is idop
X .

is a category as well.

When discussing arrows, three distinct types of arrows are of particular
importance: Monomorphisms, epimorphisms and isomorphisms.

Definition 2.4.6 (Mono-, Epi- and Isomorphisms) Let C be any catego-
ry and f ∈ Arr be any arrow of C. Then we call f : A→ B

• a monomorphism (or mono) if for all pairs of arrows g, h : C → A it
holds that f ◦ g = f ◦ h implies g = h.

• an epimorphism (or epi) if for all pairs of arrows g, h : B → C it holds
that g ◦ f = h ◦ f implies g = h.

• an isomorphism (or iso) if there exists an arrow f−1 : B → A such that
f−1 ◦ f = idA and f ◦ f−1 = idB. We then call f−1 the inverse of f and
call A and B isomorphic. Additionally, if for any arrows f : X → Y ,
g : X → Z there exists an isomorphism i : Y → Z such that i ◦ f = g, we
call f and f isomorphic.

Monomorphisms generalise injective functions, epimorphisms generalise sur-
jective functions and isomorphisms generalise bijective functions. Indeed, the
epis in Set are the surjective functions, the monos are the injective functions
and the isos are the bijective functions. Note, that in general an arrow that is
monomorphic and epimorphic need not be isomorphic. However, isomorphisms
are always monomorphisms and epimorphisms. This can be observed by our
Example 2.4.4. Given a non-trivially partially ordered set (M,≤M), we can
interpret this partially ordered set as a category. In this category, for each



38

pair of objects, i.e. elements m,m′ ∈M , there either exists no arrow from m

to m′, in case m 6≤M m′, or there exists exactly one arrow from m to m′, in
case m ≤M m′. Thus, all arrows are both epimorphisms and monomorphisms.
However, due to antisymmetry of partial orders, only the identity arrows are
isomorphisms.

Finally, we also want to identify one special kind of object, the final object.

Definition 2.4.7 (Final Object) Let C be any category. An object Y of C
is final if for every object X in C there exists a unique arrow f : X → Y .

Final objects need not always exist, for instance the category with two objects
and only identity arrows has no final object, since there is no arrow connecting
the two distinct objects. On the other hand, final objects need not be unique.
For instance, in Set and Poset, the final objects are all one-element sets
(the order is uniquely given in Poset for a single-element set). However, final
objects naturally are unique up to isomorphism. Unique up to isomorphism – a
uniqueness property which we will use often when arguing category theoretically
– means, that whenever two entities (e.g. objects or arrows) exist that have a
property, they are connected by an isomorphism. In the case of final objects,
this can easily be checked as follows: Assume there are two final objects X, Y
in a category C. Then there must exist a unique arrow f : X → Y because
Y is final, also there must be a unique arrow g : Y → X because X is final.
Then f ◦ g : Y → Y must be equal to idY because Y is final. Analogously
g ◦ f = idX . Thus, f and g are each other’s inverses and therefore the final
object is unique up to isomorphism. If an entity satisfying a property P is
unique up to isomorphism, we often call it ’the entity’ instead of ’an entity’
satisfying P , e.g. we say ’the final object’ even though several final objects may
exist.

2.4.2 Functors

Since morphisms are the primary object of interest in category theory, it is
only natural to consider morphisms between categories. This role of ‘mapping
categories to categories’ is taken by the functor.



39

Definition 2.4.8 (Functor) Let C and D be categories. A functor F : C→
D maps objects from C to objects from D and arrows from C to arrows of D
in the following way:

• Let f : A→ B ∈ ArrC. Then Ff : FA→ FB ∈ ArrD.

• F preserves identities, i.e. for all objects A ∈ ObjC, F idA = idFA.

• F respects composition, i.e. for all arrows f : A → B ∈ ArrC, g : B →
C ∈ ArrC, F (g ◦C f) = Fg ◦D Ff .

If C = D, we call F an endofunctor.

The most basic functor is the identity functor:

Definition 2.4.9 (Identity Functor) Let C be any category, then we can
define the identity functor IdC according to IdC(X) = X for all objects X ∈ ObjC
and IdC(f) = f for all arrows f ∈ ArrC.

We will now consider an example of a Set-endofunctor that is a prominent
example in particular in coalgebraic modelling.

Definition 2.4.10 (Powerset Functor) The powerset functor P : Set →
Set is defined according to

Objects Let X be any object of Set, i.e. a set, then PX = {X ′ ⊆ X} is the
powerset of X.

Arrows Let f : X → Y be any arrow in Set, i.e. a function, then Pf : PX →
PY is defined for all X ′ ⊆ X according to

Pf(X ′) = {f(x) | x ∈ X ′}

Several variations of the powerset functor exist. Probably the most prominent
one being the finite powerset functor Pfin, which differs only in the definition
for objects, where the definition changes to PfinX = {X ′ ⊆ X | |X ′| < ∞}.
Furthermore, similar functors can be defined on Poset by choosing a suitable
order on P(X), e.g. subset ordering.

As previously stated, the category Set will play an important role throug-
hout this thesis, even when working with categories different from Set. The



40

connection to Set naturally comes from a functor, namely the concretisation
functor, mapping to Set.

Definition 2.4.11 (Concrete Category)

• A functor F : C→ D is called faithful if, for all pairs of arrows f : X →
Y , g : X → Y with common domain and codomain, Ff = Fg implies
f = g. I.e. F is injective on the class of arrows between a given pair of
objects.

• Let C be a category. If there exists a faithful functor U : C → Set, we
call (C, U) a concrete category.

Note, that faithful functors may map two different arrows to the same
arrow, provided their domain or codomain differs. It is important to specify the
concretisation functor for a concrete category, because concretisation functors
need not be unique. We will however omit U at times when it is clear from
the context which concretisation functor we are referring to. Concretisation
functors need not exist for all categories, however, throughout this thesis, all
categories we will consider are concrete categories.

Example 2.4.12

• The category Set, together with the identity functor Id : Set → Set is
concrete.

• Moreover, the category Poset can be equipped with a concretisation functor
U that is often called the forgetful functor and acts by just dropping the
order, so U(X,≤X) = X for any partially ordered set (X,≤X) and
Uf = f for any monotone function f ∈ ArrPoset. Observe that this
example of a concretisation functor is not injective on arrows in general.
E.g. the identity arrow on the set X equipped with two different orders is
mapped to the same arrow in Set, the identity function on X.

• Interpreting a partially ordered set (M,≤M) as a category, we can find
different ways of identifying the category as concrete. For one, we could
map each element m ∈M to the set Um = {m} ∈ ObjSet and each arrow
f : m → m′ ∈ Arr(M,≤M) to the (unique) function Uf : {m} → {m}.



41

Alternatively, we could choose any • /∈M and map each element m ∈M
to the set U ′m = {m, •} ∈ ObjSet and each arrow f : m→ m′ ∈ Arr(M,≤M)

to the constant function U ′f : {m, •} → {m′, •} mapping every element
to •.

• Finally, the category Rel can be identified as concrete as well, via the
functor U : Rel→ Set defined according to U(X) = P(X) for all objects,
i.e. sets, X ∈ ObjRel and for all arrows, i.e. relations f : X → Y ∈ ArrRel,
and all X ′ ≤ X, we define

Uf(X ′) = {y ∈ Y | ∃x ∈ X ′ : (x, y) ∈ f}

Similar to morphisms, functors can also be composed, yielding another
functor.

Definition 2.4.13 (Composition Functor) Let C,D,E be categories and
F : C→ D and G : D→ E be functors. Then the composition functor G ◦ F is
defined according to:

Objects Objects X ∈ ObjC are mapped to GFX ∈ ObjE

Arrows Arrows f ∈ ArrC are mapped to GFf ∈ ArrE

Since the collection of all categories, together with their functors, the identity
functors and functor composition mimic exactly the definition of a category, it
is only natural to extend the notion of isomorphic objects also to categories.
Note that calling this structure itself a category poses problems similar to those
from set theory when allowing a set that contains all sets. The reason being
that the objects need not form a class. However, if we restrict to the categories
where the classes of objects and arrows are just sets, this structure can be
identified as a category. Note that this category itself does not have only a set
of objects and arrows and is thus not an object of itself.

Definition 2.4.14 (Isomorphic Categories) Two categories C and D are
said to be isomorphic if there exists a functor F : C → D and a functor
G : D→ C such that F ◦G = IdD and G ◦ F = IdC.

We will soon see a prominent example of isomorphic categories.



42

2.4.3 Natural Transformations and Monads

Many category theoretic theorems can be illustrated by means of a diagram,
which is a directed graph, where the nodes are labelled by objects and the edges
are labelled by arrows. To say a diagram commutes means to say that for all
directed paths in the graph from the same starting node to the same end node,
the concatenation of the labels on the path are equal. We will demonstrate this
in the following definition of a natural transformation.

As stated previously, the main focus in category theory lies on the study of
morphisms. We have already seen that this extends to considering morphisms
between morphisms, which we called functors. Adding another layer on top, we
are also interested in a notion of morphisms between functors, which is given
by natural transformations.

Definition 2.4.15 (Natural Transformation) Let F : C→ D and G : C→
D be two functors between the same pair of categories C and D. A natural
transformation α : F ⇒ G from F to G is a family of arrows αA, one for
each object A in C, such that for all arrows f : X → Y the following diagram
commutes, i.e. it holds that Gf ◦αX = αY ◦Ff . The arrows αA of α are called
its components.

FX

FY

GX

GY

αX

GfFf

αY

If all components of a natural transformation α are isomorphisms, we call α a
natural isomorphism.

Very similar to functors before, natural transformations give rise to a categorical
structure3, where the objects are all functors between a given pair of categories
C, D and the arrows are natural transformations. The identity natural trans-
formation idF for any given functor F : C→ D has, for each X ∈ ObjC as its
components the identity arrows αX = idFX of D. The composition of natural
transformations is defined in the following way:

3This structure again need not be a category itself, in general. However, if the classes of
objects and arrows of C and D are just sets, it is a category



43

Definition 2.4.16 (Composition of Natural Transformations) Let C,D
be categories and F,G : C→ D be functors. Furthermore, let α : F ⇒ G and
β : G ⇒ H be natural transformations. Then the composition of α and β,
β◦α : F ⇒ H is a natural transformation, where the component (β◦α)X : FX →
HX is defined for all objects X ∈ ArrC according to (β ◦ α)X = βX ◦ αX .

Natural transformations are the building blocks of monads, which can be
seen as a category theoretical analogue to a monoid.

Definition 2.4.17 (Monad) Let C be a category. A monad on C is a triple
(T, η, µ), where T : C → C is an endofunctor and η : Id ⇒ T , µ : T 2 ⇒ T ,
where T 2 = T ◦T , are natural transformations such that the following diagrams
commute, i.e. for all objects X ∈ ObjC it must hold that µX ◦ µTX = µX ◦ TµX
and µX ◦ ηTX = idTX = µX ◦ TηX . We call the first law the associative law and
the second law the unit law.

T 3

T 2

T 2

T

Tµ

µµT

µ

T

T 2

T 2

T

ηT

µTη

µ

idT

We call η the unit of (T, η, µ) and µ the multiplication of (T, η, µ). In the
sequel, we may identify a monad with its functor if unit and multiplication are
clear from the context.

The analogy to a monoid can already be derived from the naming of the natural
transformations, namely the unit plays the role of the identity element in a
monad and the multiplication can be seen as the analogue to the monoid
operation. We will now consider two examples of monads on Set.

Definition 2.4.18 (Reader Monad) Let Φ be a set. Then, for an object
X ∈ ObjSet and an arrow f ∈ ArrSet, we define the reader monad (_Φ, η, µ)
where the functor _Φ is defined as

Objects For any object X ∈ ObjSet we define XΦ = {C : Φ→ X}

Arrows For any arrow f : X → Y , we define fΦ : XΦ → Y Φ where for all
C ∈ XΦ, we define fΦ(C) = f ◦ C.



44

Furthermore, the unit νX : X → XΦ is given as νX(x)(ϕ) = x for all x ∈ X.
Lastly, the multiplication ζX : (XΦ)Φ → XΦ is defined as ζX(ψ)(ϕ) = ψ(ϕ)(ϕ),
for any ψ ∈ (XΦ)Φ, ϕ ∈ Φ.

It is easy to see that the reader monad is indeed a monad.

• _Φ is a functor: Preservation of identities follows from the definition of
identities: idΦ

X(C) = idX ◦C = C, the fact that _Φ respects concatenation
is similarly simple: (g ◦ f)Φ(C) = (g ◦ f)(C) = g(f(C)) = g(fΦ(C)) =
gΦ ◦ fΦ(C).

• ν is a natural transformation: For any function f : X → Y , x ∈ X, ϕ ∈ Φ
it holds that νY ◦ f(x)(ϕ) = f(x) = f(νX(x)(ϕ)) = fΦ ◦ νX(x)(ϕ).

• ζ is a natural transformation: For any function f : X → Y , any function
ψ : Φ→ XΦ and any ϕ ∈ Φ it holds that fΦ ◦ ζX(ψ)(ϕ) = f(ζX(ψ)(ϕ)) =
f(ψ(ϕ)(ϕ)) = ζY ◦ ((fΦ)Φ(ψ))(ϕ)

• The associative law holds: Let C ∈ T 3X, ϕ ∈ Φ be given, then ζX ◦
ζΦ
X(C)(ϕ) = (ζΦ

X(C)(ϕ))(ϕ) = C(ϕ)(ϕ)(ϕ) = ζXΦ(C)(ϕ)(ϕ) = ζX ◦
ζXΦ(C)(ϕ).

• The unit law holds: Let C ∈ XΦ and ϕ ∈ Φ, then ζX ◦ νXΦ(C)(ϕ) =
νXΦ(C)(ϕ)(ϕ) = C(ϕ) = νX(C(ϕ))(ϕ) = νΦ

X(C)(ϕ)(ϕ) = ζX ◦ νΦ
X(C)(ϕ).

Definition 2.4.19 (Powerset Monad) The powerset functor P gives rise
to a monad as well, where the component ηX : X → P(X) for any object X
of the unit η is defined by ηX(x) = {x} for any x ∈ X and the component
µX : PPX → PX is given by µX(X ′) = ⋃

X ′ for any X ′ ⊆ PX.

Monads are of particular interest, because they give rise to new categories,
so-called Kleisli categories, in the following way.

Definition 2.4.20 (Kleisli Category) Let (T, η, µ) be a monad on a catego-
ry C where η is the unit and µ the multiplication. Then its Kleisli category
Kl(T ) is defined as follows:

Objects The objects are just ObjC



45

Arrows For each arrow f : X → TY ∈ ArrC there is an arrow fT : X → Y ∈
ArrKl(T )

Identity The identity arrows idX in Kl(T ) for any object X are given by ηX

Composition the composition of two arrows fT : X → Y , gT : Y → Z in
Kl(T ) is given by µZ ◦ Tg ◦ f in C.

We will often identify fT : X → Y in Kl(T ) and f : X → TY in C and just state,
when necessary, in which category the arrow is interpreted. We have already
seen a category that is (isomorphic to) a Kleisli category, namely the Kleisli
category for the powerset functor on Set, which is isomorphic to Rel. An arrow
f : X → Y in Kl(P) corresponds to a function f : X → P(Y ). A function of
typeX → P(Y ) can be interpreted as a relationRf = {(x, y) | x ∈ X, y ∈ f(x)}
and, vice versa, any relation R ⊆ X×Y , i.e. arrow of typeX → Y in Rel, can be
interpreted as a function fR : X → P(Y ) where fR(x) = {y ∈ Y | (x, y) ∈ R}.
This way we can identify an isomorphism between Kl(P) and Rel by mapping
each set to itself and arrows as indicated above.

Functors in Kleili categories are often obtained as extensions of functors in
their base categories. For this purpose a special natural transformation, called
a distributive law is needed.

Definition 2.4.21 (Distributive Law, Extension) Let C be a category,
(T, η, µ) a monad on C and F an endofunctor on C. Then a natural transfor-
mation λ : TF ⇒ FT is called a distributive law in case the following diagrams
commute:

F

TF FT

Fη
ηF

λ

T 2F

TF

TFT FT 2

FT

Tλ λT

FµµF

λ

Then, the functor F that acts as FX = FX on objects X of Kl(T ) and as
FfT = λX ◦ Ff on arrows fT : X → Y of Kl(T ) is called the extension of F
to Kl(T ).



46

2.4.4 Coalgebra

We now want to put the categorical framework to use by modelling state-
based systems. For that purpose, we need coalgebras. A coalgebra is an arrow
α : X → FX where the endofunctor F describes the branching type of the
system under consideration, X plays the role of the set of states and α specifies
transitions.

Definition 2.4.22 (Coalgebra) Let F : C → C be an endofunctor on a
category C. An F -coalgebra is a pair (X,α : X → FX), where X is an object
of C and α is an arrow in C.

Given two F -coalgebras (X,α), (Y, β), a coalgebra homomorphism from
(X,α) to (Y, β) is a C-arrow f : X → Y , so that the diagram below commutes,
i.e. Ff ◦ α = β ◦ f .

X FX

Y FY

α

f

β

Ff

Coalgebra homomorphisms can be considered as structure-preserving maps
between coalgebras, they correspond to functional bisimulations. F denotes the
branching type of the system. For instance, the powerset functor yields non-
deterministic branching. The distribution functor, that maps sets to probability
distributions, can be used for probabilistic branching and given any semiring
S, the functor mapping each set X to a function X → S expresses weighted
branching. Other prominent examples of Set-functors used in the coalgebraic
context are polynomial functors, i.e. those that act on sets as any combinations
of cross product and disjoint union, the former being used to model input
and the latter being used to model a system with output. So, for instance,
given a set X, it may be mapped to A ×X for a fixed set A by the functor
A×_, so each transition corresponds to picking one input symbol a ∈ A and a
corresponding successor state. Analogously, given a functor that maps any set
X to X +B, for a fixed set B, in each step, the system may choose to reach
another state (from X) or to output one output symbol b ∈ B.

Again, coalgebras give rise to a category. For any given endofunctor F on a
category C, the category Coalg(F ) has as objects all F -coalgebras, as arrows



47

all F -coalgebra homomorphisms, as identity arrows the identity arrows of C –
note that identity arrows are coalgebra homomorphisms because functoriality
of F guarantees that F idX = idFX and therefore commutativity of the defining
diagram – and composition is just the composition of C limited to coalgebra
homomorphisms. In the sequel, whenever the functor is clear from the context,
we will just write coalgebra instead of F -coalgebra and coalgebra homomorphism
instead of F -coalgebra homomorphism.

To get a better understanding of how coalgebras can be used to model
state-based systems, we take a look at the prototypical state-based system,
non-deterministic automata.

Example 2.4.23 (Non-Deterministic Automata as Coalgebras) In or-
der to model a non-deterministic automaton over the input alphabet A, we need
to map each state from the state set X to a possibly empty set of a successor
states for each a ∈ A. Moreover, we need to model if the state in question is a
final state or not. This can be captured by the functor F : Set→ Set defined
according to:

Objects Each set X is mapped to the set FX = P(X)A × {0, 1}

Arrows Each function f : X → Y is mapped to the function Ff : FX → FY

where each pair (g, t) ∈ P(X)A × {0, 1} is mapped as follows: Ff(g, t) =
(Pf ◦g, t). Here, Pf is defined as for the powerset functor, i.e. Pf(X ′) =
{f(x) | x ∈ X ′}.

Using this functor, we can model a non-deterministic automaton M coalgebrai-
cally in the following way: Let X be the state set of M = (X,A, δ, F ), then we
define the coalgebra (X,α : X → FX) by defining α(x) = (f, t), where t = 1 if
x ∈ F , t = 0 otherwise and f(x)(a) = {x′ ∈ X | x′ ∈ δ(x, a)} for all a ∈ A.

Note that this is not the only way to model non-deterministic automata
coalgebraically. For instance, one could alternatively work in the category Rel
and choose the functor F that maps any set X to FX = A × X ∪ {•} and
each relation f ⊆ X × Y to a relation Ff : FX → FY where Ff(•) = •
and Ff(a, x) = {(a, x′) | (x, x′) ∈ f}. Here, a coalgebraic model for a non-
deterministic automaton collects in α(x) all those pairs (a, x′) where x′ can



48

be reached from x via a and additionally, • ∈ α(x) if x is final. Straight-
forward computations can be used to show that these functors are actually
isomorphic, i.e. there exists a natural isomorphism between P(X × A ∪ {•})
and P(X)A × {0, 1}.

In similar ways, various automaton models can be modelled as coalgebras in
Set or Rel. For instance, in Chapter 3 we will model deterministic automata
and labelled transition systems as Set-coalgebras.

2.4.5 Coalgebraic Behavioural Equivalence

Now that we have seen how to model state-based systems as coalgebras, we
turn our attention towards analysing their behaviour.

In the theory of coalgebras, traditional bisimilarity [Par81] is captured in
more than one way, namely: coalgebraic bisimulation, via an arrow into any
coalgebra (so-called cocongruences), via the arrow into the final object of the
coalgebra category (if that exists), called final coalgebra, and a related approach
that minimises the coalgebra via factorisation (see Section 7.6).

We will first fix the notion of behavioural equivalence used in this thesis.

Definition 2.4.24 (Behavioural equivalence) Let (C, U) be a concrete ca-
tegory and (X,α : X → FX) be an F -coalgebra. We call the elements x ∈ UX
the states of (X,α). Two states x, y ∈ UX are behaviourally equivalent (x ∼ y)
if and only if there exists an F -coalgebra (Y, β) and a coalgebra-homomorphism
f : (X,α)→ (Y, β) such that Uf(x) = Uf(y).

This notion is closely related to the notion of behavioural equivalence induced
by the arrow into the final coalgebra. If in the above definition we do not allow
any coalgebra (Y, β), but only the final one, if it exists, then we obtain a notion
of behavioural equivalence that coincides with our notion whenever a final
coalgebra exists. Final coalgebras need not exist in general, so our notion of
behavioural equivalence is more general than the alternative characterisation
using final coalgebras. On the flipside, characterising behavioural equivalence
via final coalgebras leads to a unique representative of all systems with common
behaviour, i.e. their image in the final coalgebra.

For our previously discussed example of non-deterministic automata, (coal-



49

gebraic) behavioural equivalence coincides with bisimilarity 4, as we can
see by characterising coalgebra homomorphisms. Let (X,α : X → FX) and
(Y, β : Y → FY ) be coalgebras for F from Example 2.4.23 and assume the-
re exists a coalgebra homomorphism f : X → Y such that Ff ◦ α = β ◦ f .
Furthermore, assume f(x) = f(x′) for some pair of states x, x′ ∈ X. We
claim that then x and x′ are bisimilar, as witnessed by the bisimulation
relation R = {(x, x′) | f(x) = f(x′)}. If x is final, then π2

1(α(x)) = 1
and thus π2

1(Ff ◦ α(x)) = 1. Since f is a coalgebra homomorphism, also
π2

1(β ◦ f(x)) = 1, and, since f(x) = f(x′), π2
1(β ◦ f(x′)) = 1, which in turn

means π2
1(Ff ◦ α(x′)) = 1 and thus that x′ is final. Since the situation is

symmetric, this shows that the acceptance behaviour of x and x′ is the same.
For the more interesting part, assume there exists a transition x a−→ x̃, then
x̃ ∈ π2

2(α(x)(a)) and thus f(x̃) ∈ π2
2(Ff ◦ α(x)(a)). The same chain of argu-

ments as before yields that f(x̃) ∈ π2
2(Ff ◦ α(x′)(a)). Therefore, there must

exists a state x̃′ such that x′ a−→ x̃′ and f(x̃) = f(x̃′). The other direction, that
bisimulation implies behavioural equivalence, can be checked by factoring the
state set by the bisimilarity and to map each state into its equivalence class.
It can then easily be seen that this defines a coalgebra homomorphism. Thus,
we can conclude that behavioural equivalence for coalgebras over this functor
indeed induces bisimulation.

However, behavioural equivalence need not coincide with bisimulation in
general. In fact, depending on the way one models systems, various behavioural
equivalences such as weak bisimulation or language equivalence can be captured.
In Chapter 3, we will discuss several examples of various notions of behaviour
and system types. For non-deterministic automata, one is often interested not
in bisimulation but language equivalence, instead. So the question arises how to
model a non-deterministic automaton in such a way that language equivalence
rather than bisimulation is characterised by behavioural equivalence. We have
seen that there are alternative ways of modelling non-deterministic automata
in Set, but we cannot expect a different notion of behavioural equivalence for

4Bisimilarity for non-deterministic automata is defined in the same way as for labelled
transition systems, but additionally, two states need to agree on termination as well to
be bisimilar (which then propagates to other states, so that bisimilar states are language
equivalent)



50

isomorphic functors. Instead, we will employ a change of category. Rather than
modelling in Set, we work in a Kleisli category.

The idea behind the use of Kleisli categories is, to distinguish observable
choice that is intended to differentiate behaviour and side effects that may
occur internally and not be observed. Assume a Kleisli category for a monad
(T, η, µ) on C and an endofunctor F in Kl(T ) is given. Then an F -coalgebra
has the form X → TFX in C. While the effect that comes through the functor
F is explicit in the arrow, the effect of T is thought of to be hidden in the
category as a side effect. This way, Kleisli categories can be used to obtain
a different notion of behaviour by splitting the branching behaviour into two
parts, one monad and one functor in the Kleisli category.

In order to demonstrate this, we will turn our attention back towards non-
deterministic automata.

Example 2.4.25 We now want to model non-deterministic automata in such
a way that behavioural equivalence coincides with language equivalence, rather
than bisimilarity as before. While we want the choice of a label of a transition to
influence behavioural equivalence, we would like to hide the concrete choice of
the next state. Therefore, we choose as the monad (T, η, µ) the powerset monad
to obtain the Kleisli category Kl(P). As functor F we use FX = A×X + 1 on
objects. On arrows, we need to take into consideration, that arrows f : X → Y

in the category Kl(P) are actually functions f : X → P(Y ). So we define
Ff : FX → FY according to Ff(a, x) = {(a, y) | y ∈ f(x)}, Ff(•) = {•}.

Modelling non-deterministic automata in the Kleisli category now works
the same way as modelling them in Set using the functor P(A × X + 1).
The difference in behavioural equivalence arises when considering coalgebra
homomorphisms, since now a coalgebra homomorphism f : X → Y actually
maps a state x ∈ X to a set of states Y ′ ⊆ Y rather than a single state. So, if
f(x) = f(x′) and x a−→ x̃, then f(x̃) must still be in the image of Ff ◦ α(x′),
but it need not be the image of any single state x̃′ s.t. x′ a−→ x̃′, but it may be
collected from several a successors of x′, thus giving more freedom in the choice
of coalgebra homomorphisms.

Now that we have characterised behavioural equivalence in coalgebras and
demonstrated different modelling techniques fit to obtain different notions of



51

behaviour, we will turn our focus towards an algorithm to (semi-)decide beha-
vioural equivalence. For this purpose, the final chain construction generalises
the classical partition refinement algorithm for labelled transition systems.

In parallel, we will revisit the partition refinement algorithm to compute the
bisimilarity of a single labelled transition system5 and translate the coalgebraic
concepts to their counterpart in the case of labelled transition systems.

We consider a coalgebra
(X,α : X → FX) for a
functor F

We consider a labelled transition system
(X,A,→).

We start by setting
d0 : X → 1, the unique
arrow from X into a fi-
nal object.

We start by defining R0 as the relation that
puts all pairs of states into relation. R0 can be
obtained from d0 by checking for each pair of
states whether they get mapped to the same
element (which is trivially true for d0).

Given an arrow
di : X → F i1, we
compute di+1 = Fdi ◦ α

Given a relation Ri, relating all pairs of states
that have the same image under di, we check
each pair of states (x, y) ∈ Ri whether the set
of successors of x and the set of successors of y
are in relation Ri. Two sets of states are said to
be in relation Ri whenever for each element x′

in the first set there exists an element y′ in the
second set such that (x′, y′) ∈ Ri and vice-versa.
The sets of successor states can be obtained
from α, whereas multiplication with Fdi yields
the correspondence to the previous relation Ri.

When an index n is
found such that dn is
isomorphic to dn+1, the
algorithm terminates.

The algorithm terminates when Rn = Rn+1. Sin-
ce two set functions dn and dn+1 are isomorphic
if and only if there exists a bijection between
dn and dn+1, this corresponds exactly to the
condition that Rn = Rn+1.

5We have introduced the partition refinement algorithm for two systems, originally, for
this analogy we just assume that (X, A,→1) = (Y, A,→2) in Algorithm 2.3.9.



52

Note, that the strong correspondence between the final chain algorithm and the
partition refinement algorithm for bisimilarity of labelled transition systems
is strongly dependent on properties of Set. In particular, the termination
condition that allows to cease computation as soon as the final partitions of
states is reached, in the case of labelled transition systems is less well-behaved
in different categories. We will later see examples where the algorithm may
never terminate, even though it finds the right partition of the state set at one
point.

This construction is a well-known construction that was initially used to
characterise final coalgebras [Wor05], though in [ABH+12] the final chain was
also used to obtain minimisations. For this purpose, an optimisation of the
algorithm by the use of factorisation structures was proposed.

Definition 2.4.26 (Factorisation Structures) Let C be a category and let
E ,M be classes of morphisms in C. The pair (E ,M) is called a factorisation
structure for C whenever

• E andM are closed under composition with isos.

• C has (E ,M)-factorisations of morphisms, i.e., each morphism f of C
has a factorisation f = m ◦ e with e ∈ E and m ∈M.

• C has the unique (E ,M)-diagonalisation property: for each commutative
square g◦e = m◦f with e ∈ E and m ∈M there exists a unique diagonal,
i.e., a morphism d such that d ◦ e = f and m ◦ d = g, cf. the following
figure.

A e // //

f
��

B

g

��

d

~~

C //
m // D

Adámek et al. have shown in [ABH+12], that behavioural equivalence can
be characterised by the final chain algorithm, if in each step, the arrow di is
factored to di = mi ◦ ei using a factorisation structure and the computation
of the next step is changed to di+1 = F (ei) ◦ α, providedM arrows are closed



53

under application of F and mapped to monos by the concretisation functor
U . Considering our running example of non-deterministic automata, this idea
means the following: In some steps of the partition refinement algorithm, not
all possible subsets of F i1 correspond to a new equivalence class. Factorisation
prunes the codomain of di to only include those elements that are actually in
the image of di. This leads to a more compact representative, if a function is
always given with explicit domain and codomain. This gained compactness of
representatives propagates to later steps.

To conclude the review of the state-of-the-art on behavioural equivalence,
we note that in [ABH+12] the authors already proposed a relaxation of the
condition of using a factorisation structure. Instead, it is possible to use a pseudo-
factorisation. A pseudo-factorisation structure arises if a reflective subcategory
of the category C under consideration possesses a factorisation structure. First
we need to define reflective subcategories:

Definition 2.4.27 Let S be a subcategory of C and let X be an object of C.
Then, an S-reflection for X is a C-arrow ρX : X → X ′ into some object X ′

of S such that the following universal property is satisfied: for any C-arrow
f : X → Y into some object Y of S, there exists a unique S-arrow f ′ : X ′ → Y

(called ρ-reflection of f) such that f ′ ◦ ρX = f . Moreover, S is a reflective
subcategory of C if each object of C has an S-reflection.

Now, if a category C has a reflective subcategory that has a factorisation
structure, the pseudo-factorisation structure in C arises in the following way.

Definition 2.4.28 (Pseudo-Factorisation) Given a reflective subcategory
S of C with its reflection ρ that has an (E ,M)-factorisation structure. Then,
the category C has a so-called (E ,M)-pseudo-factorisation structure since every
C-arrow f : X → Y into some object Y of S can be factored as f = m◦ (e◦ρX)
where m ◦ e (for m ∈ M, e ∈ E) is the decomposition of the ρ-reflection of f .
For such pseudo-factorisations, we do not necessarily have a diagonal arrow,
but one can show that such an arrow exists whenever g is in S.

In the final chain algorithm, it is permissible to use a pseudo-factorisation
structure instead of a factorisation structure to the same effect.



54



Chapter 3

Generic Partition Refinement
Algorithms for Coalgebras

3.1 Introduction

Coalgebra [Rut00] (see Section 2.4) offers a unifying theory in which we can
model and reason about various types of transition systems and automata
and comes equipped with a canonical notion of behavioural equivalence (see
e.g. [Sta09] for an overview on behavioural equivalences for coalgebras). An
important contribution of coalgebra is the provision of generic algorithms for
checking behavioural equivalence, independent of the type of transition system.
Such generic algorithms would be useful for two reasons: first, for classifying
and comparing existing algorithms; second for obtaining prototype algorithms
(that might be further optimised) when studying a new class of systems. One
example of such generic methods that have recently been studied are up-to
techniques [RBB+15, BPPR14a].

Here we are interested in generic algorithms for checking behavioural equiva-
lence, akin to minimisation or partition refinement techniques. A rather general
account for such minimisation techniques has been presented in [ABH+12],
by using factorisation structures and factoring the arrows into the final chain.
For coalgebras over Set this boils down to classical partition refinement, en-
compassing minimisation of deterministic automata [HU79] or the computa-
tion of bisimulation equivalence classes for probabilistic transition systems
[LS89, Bai96]. In [ABH+12] it was also shown how to handle some coalgebras

55



56

in categories different from Set, especially in Kleisli categories, which allow
to specify side-effects and hence trace equivalence (where non-determinism is
abstracted away as a side-effect).

However, some examples do not fall into this framework, most notably
weighted automata over semirings, for which the underlying category does not
possess any suitable factorisation structures. We found that a different notion
of factorisation can be used to capture behavioural equivalence. Furthermore it
is unnecessary to look for a unique minimisation or canonical representative,
rather it is sufficient to compute some representative coalgebra and use it
to precisely answer questions about behavioural equivalence. For weighted
automata over semirings this yields an algorithm that we did not find in the
literature as such. However, for many specific (classes of) semirings, instances
of this algorithm have been presented in the past: For fields a method is
discussed in [Bor09] and a result for rings, based on results by Schützenberger,
is given in [DK13]. The notion of coalgebra homomorphism is strongly related to
conjugacy [BLS06], this correspondence will be worked out in Subsection 4.2.3.
For probabilistic automata there is a related procedure for checking language
equivalence [KMO+11] which uses the same base concept, but improves on the
expected run time by making use of randomisation.

We will present a generic algorithm, based on the notion of equivalence
classes of arrows. We will compare this algorithm to the algorithm of [ABH+12]
that uses factorisation structures [AHS90]. An important special case and the
motivating example that we will discuss in detail is the setting of weighted
automata.

3.2 Preliminaries

In order to be able to describe our algorithms, we will introduce some relations
on objects and arrows. We first need the notion of a coslice category.

Definition 3.2.1 (Coslice category) Let C be a category and let X be an
object of C. The coslice category X ↓ C under X has all arrows a : X → A

as objects. An arrow between two objects a : X → A, b : X → B is a C-arrow
c : A→ B such that c ◦ a = b.



57

Definition 3.2.2 (Relations on objects and arrows) Let X, Y be two ob-
jects of a category C. We write X ≤ Y whenever there is an arrow f : X → Y .
Furthermore we write X ≡ Y whenever X ≤ Y , Y ≤ X.

Let a : X → A, b : X → B be two arrows in C with the same domain. We
write a ≤X b whenever a ≤ b holds in the coslice category X ↓ C, i.e., there
exists an arrow d : A→ B with d ◦ a = b. Similarly we write a ≡X b.

If the objects of a category formed a set, ≤ would be a preorder (or quasi-
order) and ≡ would be an equivalence relation (i.e. reflexivity, transitivity and
symmetry hold for ≡). Note that if a category has a final object 1, then X ≤ 1
holds for any other object X. Furthermore if f : X → 1 is an arrow into the
final object, we have that g ≤X f for any other arrow g : X → Y .

Example 3.2.3 Let f : X → A, g : X → B with X 6= ∅ be two functions in
Set. It holds that f ≡X g if and only if both functions induce the same partition
on X, i.e., for all x, y ∈ X it holds that f(x) = f(y) ⇐⇒ g(x) = g(y).
Similarly f ≤X g means for all x, y ∈ X that f(x) = f(y)⇒ g(x) = g(y).

Hence, if a ≡X b holds for two arrows a : X → A, b : X → B in a concrete
category (C, U), we can conclude that Ua, Ub induce the same partition on UX.

Proposition 3.2.4 Let X, Y be objects of a category C and let a : X → A,
b : X → B be arrows in C. Furthermore let F : C→ C be an endofunctor.

1. X ≤ Y implies FX ≤ FY .

2. a ≤X b implies Fa ≤FX Fb.

3. a ≤X b implies a ◦ c ≤Y b ◦ c for any arrow c : Y → X.

Proof:

1. This is true due to functoriality of F . If X ≤ Y , then there is an arrow
f : X → Y and thus also an arrow Ff : FX → FY , so FX ≤ FY .

2. Similar to case 1 this also follows from functoriality of F . a ≤X b implies
there is an arrow f : A→ B such that f ◦ a = b and thus Ff ◦ Fa = Fb,
i.e. Fa ≤FX Fb.

3. If a ≤X b then there is an arrow f : A→ B such that f ◦ a = b and thus
f ◦ a ◦ c = b ◦ c.



58

�

The notion of equivalent arrows is connected to the notion of split-mono.
An arrow m : X → Y is called split-mono if it has a left inverse, i.e., if there
exists an arrow m← : Y → X such that m← ◦ m = idX . Now, assume two
arrows a : X → Y , b : X → Z are equivalent (a ≡X b). Then there is an arrow
m : Y → Z and an arrow m← : Z → Y such that m ◦ a = b and m← ◦ b = a.
Then, m← ◦m ◦ a = a, hence m behaves like a split-mono, relative to a. More
concretely, split-monos m : X → Y are exactly the arrows that are equivalent
to idX .

In Section 3.4.3, we will show that equivalence on arrows boils down to a
very natural notion in the setting of weighted automata: the fact that two sets
of vectors (with entries from a semiring) generate the same semimodule.

3.3 Generic Algorithms

Before introducing the algorithms, based on the construction of the final chain
[AK95], we will first discuss how behavioural equivalence can be expressed as a
post-fixpoint using the terminology of the previous section.

Proposition 3.3.1 Let F be an endofunctor on a concrete category (C, U)
and let α : X → FX be a coalgebra on C. Furthermore let f : X → Y be a
C-arrow. It holds that f ≤X Ff ◦ α (f is a post-fixpoint) if and only if there
exists a coalgebra β : Y → FY such that f is a coalgebra homomorphism from
(X,α) to (Y, β).

For every such post-fixpoint f we have that x, y ∈ UX and Uf(x) = Uf(y)
implies x ∼ y. If, in addition, it holds for every other post-fixpoint g : X → Z

that g ≤X f (f is the largest post-fixpoint), we can conclude that f induces
behavioural equivalence, i.e., Uf(x) = Uf(y) ⇐⇒ x ∼ y.

Proof: The first statement is almost trivial, since f ≤X Ff ◦ α means
the existence of an arrow β : Y → FY with β ◦ f = Ff ◦ α, which is exactly
the condition that β is a coalgebra homomorphism. Hence, by definition of
behavioural equivalence, Uf(x) = Uf(y) implies x ∼ y. It is left to show
that x ∼ y implies Uf(x) = Uf(y) if f is the largest fixpoint. Since x ∼ y,
there must be some coalgebra γ : Z → FZ and a coalgebra homomorphism



59

g : X → Z such that γ ◦ g = Fg ◦ α and Ug(x) = Ug(y). This implies that
g ≤X Fg ◦ α and hence g ≤X f . Finally, we obtain Uf(x) = Uf(y). �

In Set one can imagine the largest fixpoint f : X → Y as a function that
maps every state into its equivalence class.

We now consider the the Final Chain Algorithm A.

Algorithm 3.3.2 Final Chain Algorithm A
Let F be an endofunctor on a concrete category (C, U) and let α : X → FX

be a coalgebra in C. Moreover, let 1 be the final object of C. We define the
following algorithm.

Step 0: Take the (unique) arrow dA0 : X → 1.

Step i+ 1: Compute dAi+1 = FdAi ◦ α : X → F i+11.

Termination: If there exists an arrow β : F n1→ F n+11 such that β ◦ dAn =
dAn+1, i.e., if dAn ≤X dAn+1, the algorithm terminates and returns dAn and
(F n1, β) as its result.

X

. . .F11 F n1 F n+11

dA0 dA1 dAn dAn+1 = FdAn ◦ α

! F ! F n−1! F n!

β

The algorithm is easy to analyse using the terminology introduced earlier.
Specifically, it yields a sequence of arrows dA0 ≥X dA1 ≥X dA2 ≥X . . . that
approximates behavioural equivalence from above. It terminates whenever this
sequence becomes stationary, i.e., dAn ≡X dAn+1.

Lemma 3.3.3 Let g : X → Z be any post-fixpoint, i.e., g ≤X Fg ◦ α. Then
for all dAi obtained in Algorithm A we have dAi ≥X g.

Proof: Clearly dA0 ≥X g, because dA0 is the arrow into the final object of the
category. Therefore, we can find an arrow g′ from g’s codomain to 1 and the
composition g′ ◦ g is an arrow from X to 1, which is unique, due to finality of
1, i.e. it is the same as dA0 . By induction, using Proposition 3.2.4, we can show



60

that dAi ≥X g implies dAi+1 = FdAi ◦ α ≥X Fg ◦ α ≥X g. The first step is the
induction hypothesis, the second uses the fact that g is a post-fixpoint. �

Proposition 3.3.4 If Algorithm A terminates in step n, its result dAn induces
behavioural equivalence, i.e. x, y ∈ UX are behaviourally equivalent (x ∼ y) if
and only if UdAn (x) = UdAn (y).

Proof: First, dA0 ≥X dA1 since dA0 is an arrow into the final object. Since ≤X

is preserved by functors and by right composition with arrows, we obtain by
induction, using Proposition 3.2.4, that dAi ≥X dAi+1. The termination condition
says that dAn ≤X dAn+1 = FdAn ◦ α. In order to conclude with Proposition 3.3.1
that the resulting arrow dAn induces behavioural equivalence, we have to show
that it is the largest post-fixpoint. Assume another post-fixpoint g : X → Z

with g ≤X Fg ◦ α. Then, Lemma 3.3.3 shows that dAn ≥X g and thus dAn is the
largest post-fixpoint. �

Furthermore whenever dAn ≡X dAn+1 we have that dAn ≡X dAm for every m ≥ n.
Hence every arrow dAm obtained at a later step induces behavioural equivalence
as well. We can show that dAn is equivalent to the arrow into the final coalgebra
(if it exists).

Lemma 3.3.5 Let (Z, κ) be the final coalgebra, i.e., a coalgebra into which
there exists a unique coalgebra homomorphism from every other coalgebra. Take
a coalgebra (X,α) and the unique homomorphism f : (X,α) → (Z, κ) and
assume that Algorithm A terminates in step n. Then f ≡X dAn .

Proof: Since (Z, κ) is the final object in the coalgebra category, there is a
(unique) coalgebra homomorphism h : (Y, β) → (Z, κ). Thus, dAn ≤X f via h.
The other way around, the arrow f into the final coalgebra is a fixpoint and
thus, via Lemma 3.3.3 we also have dAn ≥X f . We can conclude dAn ≡X f . �

Note that after each step of the algorithm, it is permissible to replace dAi
with any representative eAi of the equivalence class of dAi , i.e., any eAi with
dAi ≡X eAi . This holds because dAi ≡X eAi implies dAi+1 = FdAi ◦ α ≡X FeAi ◦ α
and checking the termination condition dAn ≤X dAn+1 can instead be done for
any representatives of dAn , dAn+1. This gives rise to the following algorithm:



61

Algorithm 3.3.6 Final Chain Algorithm B
Let F be an endofunctor on a concrete category (C, U) and let α : X → FX

be a coalgebra in C. Moreover, let 1 be the final element of C and R, the class
of representatives, be a class of arrows of C such that for any arrow d in C
we have an arrow e ∈ R that is equivalent to d, i.e. d ≡X e. We define the
following algorithm:

Step 0: Take the (unique) arrow dB0 : X → 1.

Step i+ 1: Find a representative eBi ∈ R, for dBi , i.e. factor dBi = mB
i ◦ eBi

such that (eBi : X → Yi) ∈ R, mB
i : Yi → FYi−1. Determine dBi+1 =

FeBi ◦ α : X → FYi.

Termination: If there exists an arrow γ : Yn → FYn such that γ ◦ eBn = dBn+1,
i.e., dBn+1 ≥X eBn , the algorithm terminates and returns eBn and (Yn, γ) as
its result.

The choice good and compact representatives can substantially mitigate
state space explosion. Naturally, in concrete applications, one has to choose a
suitable class R and a strategy for factoring. For the case of weighted automata
we will discuss how such a strategy looks like (see Section 3.4.3). Algorithm B
is an optimization of Algorithm A and it terminates in exactly as many steps
as Algorithm A (if it terminates).

Proposition 3.3.7 Algorithm B terminates in n steps if and only if Algo-
rithm A terminates in n steps. Furthermore two states x, y ∈ UX are beha-
viourally equivalent (x ∼ y) if and only if UeBn (x) = UeBn (y).

Proof: First, we observe that we always have dBi ≡X dAi . This can be shown
inductively. dA0 = dB0 by definition. Now, assume dAi ≡X dBi , then FdAi ≡FX FdBi

and, since by definition eBi ≡X dBi , FeBi ≡FX FdAi . In both cases, we have used
Proposition 3.2.4, Item (2). Item (3) then yields dBi+1 = FeBi ◦ α ≡X FdAi ◦ α =
dAi+1.

In addition, we factor in such a way that eBi ≡X dBi .
If Algorithm B terminates in n steps, then dBn+1 ≥X eBn . This implies dAn+1 ≡X

dBn+1 ≥X eBn ≡X dBn ≡X dAn and Algorithm B terminates as well.



62

If, on the other hand, Algorithm A terminates in n steps, then dAn+1 ≥X dAn .
We obtain dBn+1 ≥X dAn ≡X dBn ≡X eBn . Hence Algorithm B also terminates in n
steps.

Since dAn ≡X eBn , we have seen in Example 3.2.3 that they induce the same
partition on X. Hence it follows that one can check behavioural equivalence
also with Algorithm B. �

Note that termination for Algorithm B is independent of the choice of the
representatives eBi .

In [ABH+12] an algorithm similar to ours is being discussed. The algorithm
also works on the final chain and uses a factorisation system to trim the
intermediate results with the aim of finding a so-called minimisation, i.e., a
unique and minimal representative of the given coalgebra α. We we will discuss
a variation of said algorithm that has a more liberal termination condition akin
to the termination conditions for Algorithm A and Algorithm B.

Algorithm 3.3.8 Final Chain Algorithm C
Let F be an endofunctor on a concrete category (C, U) and let α : X → FX

be a coalgebra in C. Morover, let 1 be the final element of C and (E ,M) be a
factorisation structure such that U mapsM-morphisms to injections and F
preservesM. We define the following algorithm:

Step 0: Take the (unique) arrow dC0 : X → 1.

Step i+ 1: Factor dCi = mC
i ◦ eCi via the factorisation structure, i.e. (eCi : X →

Yi) ∈ E , (mC
i : Yi → FYi−1) ∈M. Determine dCi+1 = FeCi ◦ α : X → FYi.

Termination: If there exists an arrow δ : Yn → FYn such that δ ◦ eCn = dCn+1,
the algorithm terminates and returns eCn and (Yn, δ) as its result.

If a category has a suitable factorisation structure that ensures compact
intermediate results, Algorithm C might terminate faster than Algorithm B.
However, not every category has a suitable factorisation structure (see our
examples in Section 3.4.3), which drove us to investigate alternatives such as
Algorithms A and B introduced earlier. For the trivial factorisation structure
where E is the class of all arrows andM are just the isomorphism, we obtain just
the unoptimised Algorithm A. Algorithm C is a variation of the algorithm in



63

[ABH+12] in the sense that it terminates as soon as a coalgebra homomorphism
is found as opposed to running until an mC

i is found that is an isomorphism.
This termination condition is sufficient to decide behavioural equivalence.

Under certain conditions, which basically amount to a factorisation structure
possessing E morphisms for all equivalence classes, Algorithm C terminates in
the same number of steps as Algorithm A and Algorithm B, where in the latter
case we can choose R = E to obtain the same intermediate results, as well.

Proposition 3.3.9 Let F be an endofunctor on a concrete category (C, U) and
let α : X → FX be a coalgebra in C. Moreover, let (E ,M) be a factorisation
structure for C.

1. Assume that F preservesM-arrows. If Algorithm A terminates in n steps,
then Algorithm C terminates in n steps, as well.

2. If Algorithm C terminates in n steps and for each arrow dAi , i = 0, . . . , n
there exists an arrow ei ∈ E with ei ≡X dAi (i.e., there is an arrow in E in
all relevant equivalence classes), then Algorithm B terminates in n steps,
as well.

Furthermore two states x, y ∈ UX are behaviourally equivalent (x ∼ y) if and
only if UeCn (x) = UeCn (y).

Proof:

1. Since F preservesM-morphisms and (E ,M)-factorisations are unique up
to isomorphism we obtain, up to iso, the same E-arrow eCi when factoring
dAi as we do when factoring dCi . This is clear by induction: dA0 = dC0 and if
the statement is true for i, we have dAi = m′i ◦ eCi for m′i ∈M, ei ∈ E and
dCi = mC

i ◦ eCi for mC
i ∈ M. Then, dAi+1 = FdAi ◦ α = F (m′i ◦ eCi ) ◦ α =

Fm′i ◦ FeCi ◦ α = Fm′i ◦ dCi+1. Now assume that dCi+1 = mC
i+1 ◦ eCi+1, for

eCi+1 ∈ E ,mC
i+1 ∈M, we can conclude that dAi+1 = Fm′i ◦mC

i+1 ◦ eCi+1. We
have that Fm′i ◦mC

i+1 is anM-arrow, sinceM-arrows are preserved by
F and by composition. Hence we again obtain eCi+1 when factoring out
an E-morphism from dAi+1.

Assume Algorithm A terminates in n steps. Then we have an arrow
β : F n1→ F n+11 such that β ◦dAn = dAn+1. Now consider the factorisations



64

of dAn+1 = m′n+1 ◦ eCn+1 and dAn = m′n ◦ eCn and observe that this gives rise
to the following commuting diagram and thus, by diagonalisation (see
Definition 2.4.26) the diagonal arrow d, depicted as a dashed line, exists.

X

C

B

F n+11

eCn

β ◦m′neCn+1

m′n+1

d

The existence of this diagonal arrow d means that (mC
n+1 ◦ d) ◦ eCn =

mC
n+1 ◦ eCn+1 = dCn+1, which is precisely the termination condition for

Algorithm C.

2. First we will prove that the following holds: if for an arrow f : X → Y

there exists an arrow (e′ : X → Z) ∈ E such that e′ ≡X f then in the
factorisation of f into m ◦ e using (E ,M), we have e ≡X f . We assume
that e : X → V , m : V → Y .

Since e′ ≡X f , there is an arrow m′ : Z → Y such that m′ ◦e′ = f = m◦e.
Then, there has to be a diagonal arrow d : Z → V such that d ◦ e′ = e

and m ◦ d = m′. Hence e′ ≤X e via d.

Moreover, e ≤X e′ holds as well. Since e ≡X f , we also have an arrow
m′′ : Y → Z such that m′′ ◦ f = e′. Thus (m′′ ◦m) ◦ e = m′′ ◦ (m ◦ e) =
m′′ ◦ f = e′, which implies e ≤X e′.

Now, assume Algorithm C terminates in n steps and the arrows dAi ,
i = 0, . . . , n are such that there always exists an eCi ≡X dAi such that
eCi ∈ E , then we have just shown that dAi ≡X eCi for all i. Therefore, in
Algorithm B we can choose eBi = eCi and since the termination conditions
for Algorithm B and Algorithm C coincide, Algorithm B also terminates
in step n.

Above we have shown that dAi = m′i ◦ eCi for m′i ∈M. Since m′i is mapped to
an injection by U , dAi and eCi induce the same partition on X and we can also
use Algorithm C to check behavioural equivalence. �

Note that in our comparison of Algorithm B and Algorithm C, we did not
discuss the class of representatives R. In many cases, it is possible, given a



65

factorisation structure (E ,M), to choose R = E . In those cases, the algorithms
do not only terminate after the same amount of steps, but each intermediate
result also coincides. However, there also exist cases where this does not hold
and a class E is not a suitable class of representatives, because the back-arrows
are missing. An example for this will be discussed in Chapter 7 in form of
the category Poset, which we will use to model conditional transition systems
(CTS). The class of injective, order preserving functions can be identified as
a suitable class M giving rise to a factorisation structure in this category,
however, since all arrows in Poset are required to be order preserving, a back
arrow for an arrow m ∈M need not exist. Even though termination must still
occur after the same number of iterations, when using Algorithm B with a
trivial class of representatives as in Algorithm C, it can then be advantageous
to use Algorithm C over B, because potentially, a more compact representation
of the intermediate results can be obtained. Depending on the representation of
the intermediate results, in the case of CTS, this advantage may be negligible,
because the only difference is the size of the codomain of arrows, but in other
cases, e.g. for weighted automata, where matrices are the intermediate results
and the choice of representatives reduces the matrix size, it is a significant
difference.

One example where all both algorithms actually coincide completely, is
Set. In Set, every equivalence class of arrows, except the equivalence classes
of ≡∅, contains a surjection. Therefore, a suitable class R of representatives
for Algorithm B would be the surjections. Hence, if we choose surjections
and injections as a factorisation structure in Set, we obtain exactly the same
intermediate steps for Algorithm C as for Algorithm B, provided that the state
set is not empty. This yields classical partition refinement algorithms.

It is not satisfactory that Algorithm B and Algorithm C do not strictly
generalise one another, so it is natural to ask for a more general algorithm that
subsumes both optimisations. For this purpose we propose a fourth algorithm,
Algorithm D, which moves the equivalence of arrows towards the category
Set. This move to the image of the concretisation functor allows to capture
factorisation structures in terms of representative arrows as well. Algorithm D
certainly is less intuitive with respect to the category the coalgebras live in,
but we will see that it subsumes both Algorithm B and Algorithm C.



66

Algorithm 3.3.10 Final Chain Algorithm D
Let F be an endofunctor on a concrete category (C, U) and let α : X → FX

be a coalgebra in C. Moreover, let 1 be the final element of C and R, the class
of representatives, be a class of arrows of C such that for any arrow d : X → Y

in C we have an arrow e ∈ R such that UF nd is equivalent to UF ne for all
n ∈ N0, i.e. UF nd ≡U(FnX) UF ne. We define the following algorithm:

Step 0: Take the (unique) arrow dD0 : X → 1.

Step i+ 1: Find a representative eDi ∈ R, for dDi , i.e. factor UdDi = mD
i ◦UeDi

such that (eDi : X → Yi) ∈ R and UF jeDi ≡U(F jX) UF jdDi for all j ∈ N0.
Determine dDi+1 = FeDi ◦ α : X → FYi.

Termination: If there exists an arrow γ : Yn → FYn such that γ ◦ eDn = dDn+1,
i.e., dDn+1 ≥X eDn , the algorithm terminates and returns eDn and (Yn, γ) as
its result.

Note that factoring in this algorithm depends strongly on the category of
Set.

Lemma 3.3.11 If Algorithm D terminates and returns eDn and (Yn, γ) as its
result, then eDn induces behavioural equivalence, i.e. eDn (x) = eDn (y) if and only
if x ∼ y.

Proof: We use the correctness of Algorithm A and show that it always holds
that UdDi (x) = UdDi (y)⇔ UdAi (x) = UdAi (y).

First we show inductively, that dAi = F jdAi−j ◦F j−1α ◦F j−2α ◦ ... ◦F 0α holds
for all 0 ≤ j ≤ i

Induction Start For j = 0, the claim holds trivially, because then the term
F j−1α ◦ F j−2α ◦ ... ◦ F 0α has length 0 and we just have dAi = F 0dAi−0.

Induction Hypothesis dAi = F jdAi−j ◦F j−1α ◦F j−2α ◦ ... ◦F 0α is true for all
0 ≤ j < k < i



67

Induction Step We can now compute, starting with the induction hypothesis:

dAi =F jdAi−j ◦ F j−1α ◦ F j−2α ◦ ... ◦ F 0α

=F j(FdAi−j−1 ◦ α) ◦ F j−1α ◦ F j−2α ◦ ... ◦ F 0α

=F j+1dAi−j−1 ◦ F j(α) ◦ F j−1α ◦ F j−2α ◦ ... ◦ F 0α

So we can conclude in particular dAi = F idA0 ◦ F i−1α ◦ F i−2α ◦ ... ◦ F 0α. Now
we show that for all j < i it holds that

U(F i−jdDj ◦ F i−j−1α ◦ ... ◦ F 0α)(x) = U(F i−jdDj ◦ F i−j−1α ◦ ... ◦ F 0α)(y)

⇔U(F i−j−1dDj+1 ◦ F i−j−2α ◦ ... ◦ F 0α)(x)

= U(F i−j−1dDj+1 ◦ F i−j−2α ◦ ... ◦ F 0α)(y)

For that purpose we observe that U(F i−jdDj ) ≡U(F i−jX) U(F i−jeDj ), so we
can use the fact that in Set it holds that f ≡ g ⇒ (f(x) = f(y)⇔ g(x) = g(y))
and we can compute:

U(F i−jdDj ◦ F i−j−1α ◦ ... ◦ F 0α)(x) = U(F i−jdDj ◦ F i−j−1α ◦ ... ◦ F 0α)(y)

⇔U(F i−jdDj ) ◦ U(F i−j−1α ◦ ... ◦ F 0α)(x)

= U(F i−jdDj ) ◦ U(F i−j−1α ◦ ... ◦ F 0α)(y)

⇔U(F i−jeDj ) ◦ U(F i−j−1α ◦ ... ◦ F 0α)(x)

= U(F i−jeDj ) ◦ U(F i−j−1α ◦ ... ◦ F 0α)(y)

⇔U(F i−jeDj ◦ F i−j−1α ◦ ... ◦ F 0α)(x) = U(F i−jeDj ◦ F i−j−1α ◦ ... ◦ F 0α)(y)

⇔U(F i−j−1(FeDj ◦ α) ◦ F i−j−2α ◦ ... ◦ F 0α)(x)

= U(F i−j−1(FeDj ◦ α) ◦ F i−j−2α ◦ ... ◦ F 0α)(y)

⇔U(F i−j−1dDj+1 ◦ F i−j−2α ◦ ... ◦ F 0α)(x)

= U(F i−j−1dDj+1 ◦ F i−j−2α ◦ ... ◦ F 0α)(y)

Observe that the formula degenerates to UdDi (x) = UdDi (y) for j = i− 1
So chaining these two arguments together we get

UdAi (x) = UdAi (y)

⇔U(F idA0 ◦ F i−1α ◦ ... ◦ F 0α)(x) = U(F idA0 ◦ F i−1α ◦ ... ◦ F 0α)(y)

⇔U(F idD0 ◦ F i−1α ◦ ... ◦ F 0α)(x) = U(F idD0 ◦ F i−1α ◦ ... ◦ F 0α)(y)

⇔∗U(dDi )(x) = U(dDi )(y)



68

�

It is easy to see that Algorithm B is an instance of Algorithm D since we have
already shown that the functor property preserves ≤X . Moreover, in Algorithm
C, the F nmD

i are mapped to monomorphisms by U .

Lemma 3.3.12 Let (C, U) be a concrete category and F an endofunctor on C.
Furthermore, let d = m ◦ e be an arrow C, such that UF nm is a mono for all
n ∈ N0 and Ud has non-empty codomain. Then UF ne ≡ UF nd for all n ∈ N0.

Proof: Due to functoriality it holds that F nd = F nm ◦ F ne, so it suffices to
show that a function f exists such that f ◦ UF nd = UF ne. Since UF nm is
a mono, i.e. an injective function, it holds that the pre-image of any element
x ∈ Im(UF nm) is unique, written as UF nm−1(x). Let y ∈ cod(UF nd) be given
arbitrarily, then we can define

f(x) =


UF nm−1(x) if x ∈ Im(UF nm)

y otherwise

We can then compute f ◦UF nd(x) = UF nm−1 ◦UF nm ◦UF ne(x) = UF ne(x).
�

We can also see that, assuming U and F preserve monos, a suitable choice
for factorisation in Algorithm D is to factor out any monomorphisms. A
factorisation structure therefore is not required for the purpose of checking
behavioural equivalence using Algorithm C. Thus, in practice, one could forego
the proof of the diagonalisation property in a factorisation structure and
still compute behavioural equivalence as in Algorithm C. This condition was
already weakened in [ABH+12], where instead of a factorisation structure
a pseudo-factorisation structure, i.e. a factorisation structure in a reflective
subcategory, was considered. However, the diagonalisation property is not
completely redundant, because it guarantees uniqueness up to isomorphism of
the representative coalgebra that is returned when the algorithms terminate.
In general, this does not hold when factoring out arbitrary monomorphisms.

Another case, where Algorithm D can easily be applied, is when the coalgebra
functor F has a lifting F to Set. In this case, the complicated condition of
UF jdDi ≡ UF jei for all j ∈ N0 collapses to just showing that UdDi ≡ UeDi . Note,
however, that in many cases functors in Kleisli categories arise as extensions of



69

Set-functors, in which case it is uncommon, that also a lifting to Set exists. So
to conclude, the following table shows a collection of conditions that individually
are valid strategies to choose representatives in Algorithm D and therefore give
rise to an instance of Algorithm D.

Choice of Factor e Conditions on F Conditions on U

Any arrow e ≡X d - -
Factorise d = m ◦ e using (E ,M) PreservesM MapsM to monos
Factor out any mono m, d = m ◦ e Preserves monos Preserves monos

Choose any e s.t. Ue ≡UX Ud Lifts to functor on Set -

In this table, the first line corresponds to Algorithm B and the second line
corresponds to Algorithm C. The remaining lines outline additional strategies
for Algorithm D that do not warrant a distinct name here, because we will not
use those strategies in our examples unless they coincide with Algorithm B or
Algorithm C.

Termination: The algorithms naturally terminate whenever ≡X has only
finitely many equivalence classes. In Set this is the case for finite sets X.
However, there are other categories where this condition holds for certain
objects X: in Vect, ≡X is of finite index, whenever X is a finite-dimensional
vector space.

Note that it is not sufficient to iterate until the partition induced by Udi is
not refined from one step to the next. We will discuss weighted automata in the
next section and the tropical semiring provides an example where behavioural
equivalence is undecidable, but all steps of Algorithm B are computable and
the partition induced by Udi can only be refined finitely often, rendering this
criterion invalid.

Remark 3.3.13 In the algorithm for behavioural equivalence, if we interpret
the arrows dDi as partitioning the set of states UX into the equivalence classes
[x̄]i := {ȳ ∈ UX | UdDi (x̄) = UdDi (ȳ)}, then

• dD0 maps every state x̄ ∈ UX into a single equivalence class.

• In each step, the equivalence classes remain unchanged or some equivalence
classes are split into several equivalence classes, i.e., the equivalence is
refined.



70

However, we differ from classical partition refinement in two regards: first, we
have to remember not only the partition, but also the arrows dDi in order to
perform the next step. Second, the termination condition is different from usual
partition refinement algorithms, because it need not hold that whenever in one
step the equivalence classes are not refined, they will stay unchanged forever.
This follows from the undecidability of the language equivalence problem for
weighted automata over the tropical semiring [Kro94], where the algorithm does
not necessarily terminate even if the state set is finite.

However, if we work with a category in Set, we obtain a classical partition
refinement algorithm. In this case the arrows dDi are functions and two functions
are equivalent whenever they induce the same partition (see Example 3.2.3).
Here, we should choose surjections as representatives. We look into deterministic
automata over an alphabet A to get some intuition: if we consider the functor
FX = {0, 1} × XA, then a coalgebra α : X → FX describes a deterministic
automaton where to each state we assign α(x) = (o, δx), where o ∈ {0, 1}
indicates whether the state is final and δx : A→ X returns the successor state
δx(a) for each alphabet symbol a. It is well-known that in this case coalgebraic
behavioural equivalence coincides with language equivalence (and bisimilarity).
Applying our algorithms yields the well-known minimisation algorithm for
deterministic automata [Hop71], based on partition refinement. Furthermore, in
this case mD

n+1 is unique (up to isomorphism) and coincides with the minimised
automaton.

3.4 Applications to Various Automata Models

In this section we will demonstrate the applicability of the final chain based
algorithms to several different automata models. We will start by reviewing
the classical examples of language equivalence for deterministic automata and
bisimulation of labelled transition systems. We will also demonstrate that
a modification of the modelling technique allows us to decide a variety of
bisimilarity notions in the presence of silent transitions, this is a technique
developed in [BK17]. We will then describe the motivating example of weighted
automata. However, we will not go into detail with regards to algorithmic issues
when instantiating to weighted automata, more details about this can be found



71

in Chapter 4. We will conclude this case study by showing that in addition,
a technique developed in [FMT05] to determine behavioural equivalence in
history dependent automata can be simulated by Algorithm A. Another case
study for conditional transition systems can be found in Chapter 7, we will just
note here that Algorithm A (without the factorisation) and Algorithm D (using
the factorisation) can be used in the way described in Chapter 7, whereas for
Algorithm B the factors ei could in general not be chosen as small as with
Algorithm D, so Algorithm B is not a good choice for CTS.

Even though Algorithm B is always applicable when Algorithm A is – by
choosing R to be the set of all arrows – we will only reference Algorithm B as
applicable explicitly if a significant improvement over Algorithm A is possible
by a suitable choice of R. Naturally, Algorithm D is always applicable whenever
either Algorithm B or Algorithm C are applicable, so we forego making this
fact explicit.

3.4.1 Deterministic Automata and Labelled Transition
Systems: The Classical Cases

Both deterministic automata (with final states, but without initial states) and
labelled transition systems can be modelled in the base category Set – which
is trivally concrete using the identity functor as concretisation.

Definition 3.4.1 (Deterministic Automata and LTS Coalgebraically)
Deterministic automata over a finite set of actions A can be expressed as coal-
gebras for the following Set-functor:

Objects DX = XA × {0, 1}, i.e. each set X is mapped to a set of pairs (f, t)
where t ∈ {0, 1} and f is a function f : A→ X.

Arrows Let f : X → Y be any Set-arrow, i.e. function, then Df : XA ×
{0, 1} → Y A×{0, 1} is the function Df(g, t) = (f ◦g, t) that preserves the
second component of a pair and precomposes f with the first component.

In a similar way the Set-functor L that can be used to model LTS can be defined
over a finite set of actions A:

Objects LX = P(X)A, i.e. each set X is mapped to the set of functions
f : A→ P(X).



72

Arrows Let f : X → Y be any Set-arrow, i.e. function, then Lf : P(X)A →
P(Y )A is the function Lf(g) = f ◦ g where a function is applied to a
subset of its domain component-wise.

A deterministic automaton can be seen as a D-coalgebra in the following way:
A D-coalgebra is a function α : X → XA×{0, 1}. The value π2

2(α(x)) indicates
whether the state x is final – it is if π2

2(α(x)) = 1 – and π2
1(α(x))(a) is the

a successor of x. In turn, an L-coalgebra can be identified as an LTS in the
following way: An L-coalgebra is a function α : X → P(X)A, where each state
x is mapped to a function f : A→ P(X) that maps each action a ∈ A to the
set of successor states of x under a. We illustrate both classical cases – which
are well-known case studies for coalgebraic modelling – together, because they
share a suitable factorisation structure, namely the set of all surjective functions
as E and the set of all injective functions asM. Additionally, E can be chosen
as a class of representatives, so for the classical cases, both Algorithm B and C
are applicable and coincide. Note, that our previously discussed (in Chapter 2)
example of non-deterministic automata is defined in a Kleisli category over Set
rather than Set, if one is interested in language equivalence, and is subsumed
by the weighted case we will discuss hereafter, thus we will not discuss an
example for this third classical type of systems here.

In both cases, the notion of behavioural equivalence is bisimilarity. In the
case of deterministic automata, bisimulation and language equivalence coincide,
so here, in contrast to non-deterministic automata and weighted automata, we
do not need a Kleisli-category to hide side effects in order to obtain language
equivalence. We will illustrate Algorithm B (and hence, Algorithm C) on one
example for deterministic automata and one example for labelled transition
systems:

Example 3.4.2 Consider the following deterministic finite automaton over
the input alphabet {a, b} and the state set {A,B,C,D,E}:



73

A B

C D E

a

b
b

a
a, b

b

a

a, b

For this example, we will write elements (f, t) ∈ Y {a,b}×{0, 1} as (f(a), f(b), t)
to get a compact representation. The automaton can be modelled by the coalgebra
α : X → X{a,b} × {0, 1} defined as follows:

α(A) = (B,D, 0) α(B) = (E,D, 1) α(C) = (D,D, 0)
α(D) = (E,D, 1) α(E) = (E,E, 0)

Now we can use Algorithm B (or C):

• Let d0 : X → {•} be the function mapping into the single element set {•}.

• We compute d1 = Fd0 ◦ α : X → {•}{a,b} × {0, 1} where

d1(A) = (•, •, 0) d1(B) = (•, •, 1) d1(C) = (•, •, 0)
d1(D) = (•, •, 1) d1(E) = (•, •, 0)

We could choose e1 to be just d1, because d1 is surjective, but since the
• symbols do not carry any information, we will choose the function
e1 : X → {0, 1} where e1(A) = e1(C) = e1(E) = 0 and e1(B) = e1(D) = 1
instead. Then m1 : {0, 1} → {•}{a,b}×{0, 1} is defined as m1(0) = (•, •, 0)
and m1(1) = (•, •, 1)

• We compute d2 = Fe1 ◦ α : X → {0, 1}{a,b} × {0, 1} where

d2(A) = (1, 1, 0) d2(B) = (0, 1, 1) d2(C) = (1, 1, 0)
d2(D) = (0, 1, 1) d2(E) = (0, 0, 0)
d2 is not surjective, so we need to factorise d2 by simply taking

e2 : X → {(1, 1, 0), (0, 1, 1), (0, 0, 0)}

where e2(i) = d2(i) for all i ∈ {A,B,C,D,E} and

m2 : {(1, 1, 0), (0, 1, 1), (0, 0, 0)} → {0, 1}{a,b} × {0, 1}

as the obvious injection.



74

• We compute d3 = Fe2 ◦ α : X → {(1, 1, 0), (0, 1, 1), (0, 0, 0)}{a,b} × {0, 1},
where
d3(A) = ((0, 1, 1), (0, 1, 1), 0) d3(B) = ((0, 0, 0), (0, 1, 1), 1)
d3(C) = ((0, 1, 1), (0, 1, 1), 0) d3(D) = ((0, 0, 0), (0, 1, 1), 1)
d3(E) = ((0, 0, 0), (0, 0, 0), 0)

Since d3 induces the same partition on X as d2, there exists the function

f : {(1, 1, 0), (0, 1, 1), (0, 0, 0)} → {(1, 1, 0), (0, 1, 1), (0, 0, 0)}{a,b} × {0, 1}

defined according to

f(1, 1, 0) = ((0, 1, 1), (0, 1, 1), 0) f(0, 1, 1) = ((0, 0, 0), (0, 1, 1), 1)
f(0, 0, 0) = ((0, 0, 0), (0, 0, 0), 0)

such that f ◦ e2 = d3, so we can stop the computation.

The final result e2 now induces language equivalence in the following way: All
states that have the same image under e2 are language equivalent and all states
that have different images under e2 are not language equivalent. In fact, we can
read the acceptance behaviour for all words of length up to 1 from e2 and the
acceptance behaviour for all words of length up to 2 from d3. Take for instance
d3(D) = ((0, 0, 0), (0, 1, 1), 1), that can be read as follows: Due to the last 1,
we can see that D accepts the empty word. The first tuple (0, 0, 0) now yields
information about the acceptance behaviour of D for all words that start with
an a: The words aa, ab and a are all rejected. Similarly, one can read from the
second tuple (0, 1, 1) the acceptance behaviour for words starting with a b. ba is
rejected, bb and b are accepted by D.

Now we can turn our attention to an example for labelled transition systems.

Example 3.4.3 We consider the labelled transition system over the set of
actions {a} depicted below:

A B

C

a

a a



75

As a coalgebra, this LTS can be modelled as follows:

α : {A,B,C} → P({A,B,C}){a}

(A, a) {A,C}
(B, a) {B}
(C, a) ∅

Now we can compute:

d0 : {A,B,C} → {•}
A •
B •
C •

This function is surjective, so e0 = d0.

d1 : {A,B,C} → P({•}){a}

(A, a) {•}
(B, a) {•}
(C, a) ∅

This function is surjective, so e1 = d1.

d2 : {A,B,C} → P(P({•}){a}){a}

(A, a) {[a 7→ {•}], [a 7→ ∅]}
(B, a) {[a 7→ {•}]}
(C, a) ∅

d2 is not surjective, so we have to factorise and obtain

e2 : {A,B,C} → {{[a 7→ {•}], [a 7→ ∅]}, {[a 7→ {•}]}, ∅}{a}

where e2(X, a) = d2(X, a) for all X ∈ {A,B,C}.

m2 : {{[a 7→ {•}], [a 7→ ∅]}, {[a 7→ {•}]}, ∅}{a} → P(P({•}){a}){a}

is just the obvious injection.

d3 : {A,B,C} → P({{[a 7→ {•}], [a 7→ ∅]}, {[a 7→ {•}]}, ∅}{a}){a}

(A, a) {[a 7→ {[a 7→ {•}], [a 7→ ∅]}], [a 7→ ∅]}
(B, a) {[a 7→ {[a 7→ {•}]}]}
(C, a) ∅



76

Now there exists a function

f : {{[a 7→ {•}], [a 7→ ∅]}, {[a 7→ {•}]}, ∅}{a}

→ P({{[a 7→ {•}], [a 7→ ∅]}, {[a 7→ {•}]}, ∅}{a}){a}

[a→ {[a 7→ {•}]}] [a→ {[a 7→ {[a 7→ {•}]}]}]
[a→ {[a 7→ {•}], [a 7→ ∅]}] [a→ {[a 7→ {[a 7→ {•}], [a 7→ ∅]}], [a 7→ ∅]}]

[a 7→ ∅] [a 7→ ∅]

such that f ◦ e2 = d3, so the algorithm terminates.
From e2 we can now see that all three states of the LTS are not bisimilar. We

can also observe the possible behaviour from e2. C can do no steps, A always
has the choice of doing one last a-step (via the function [a→ ∅]) or to do an
a-step and again have the option to do further a-steps. B can always do further
A steps. Thus C and A,B can be separated in just one step, but A and B only
get separated after two steps, because after one step, an execution starting from
A may have no further steps available whereas an execution starting from B

can always do more a-steps.

3.4.2 Branching Bisimulation for LTS

LTS can also be defined in the presence of silent transitions. The idea behind
silent transitions is that these are internal transitions the system can take,
which are not visible to an observer. Of course, adding silent transitions to
the set of actions A would allow us to model LTS with silent transitions
just fine, but the notion of behavioural equivalence would not regard silent
transitions any different from any other kind of transition. In the presence of
silent transitions, several different notions of bisimilarity have been proposed
that handle silent transitions differently. In a joint work with Harsh Beohar,
[BK17] we have investigated means of expressing LTS using a different functor
that takes paths rather than single transitions into consideration. Using this
functor and appropriate modelling of the LTS, we can obtain four commonly
investigated notions of bisimulation in the presence of silent transitions, namely
branching, delay, η and weak bisimulation. For these notions, we can again make
use of the factorisation structure (E ,M) of surjective and injective functions
and thus Algorithm B and C coincide again. However, here, we will solely focus
on branching bisimulation and will not consider weak, η and delay bisimulation.



77

We will give a quick overview on how to model LTS using the Path-functor
to obtain branching bisimulation. Weak, η and delay bisimulation can be
modelled in a similar way. Since this only serves as an illustration of the final
chain technique, we will not provide the proof that this way of modelling LTS
actually yields the right notion of bisimulation as behavioural equivalence. The
interested reader can find the corresponding proofs in [BK17].

We will write Aτ to denote the set of all non-silent actions A together with
a distinct silent action τ .

We first need to define the notions of path and execution which are essential
to our modelling technique:

Definition 3.4.4 (Path)

• A path p on a set X is a sequence of type X(AτX)∗.

• We say a path p can be reduced to a path p′ = x1a1x2...an−1xn if there
exist indices i1, ...in such that p = x1(τx1)i1a1x2(τx2)i1 ...an−1xn(τxn)in,
i.e. p′ can be obtained by removing τ -loops from p.

• For any two given paths p and q, we say they are equivalent p ∼ q if and
only if they can be reduced to the same path r.

• The endofunctor Path∼ on Set is defined as follows:

Objects Let X be any set, then Path∼(X) is the set of all equivalence
classes of paths on X.

Arrows Let f : X → Y be any function and [p] ∈ Path∼(X) any equiva-
lence class of paths, then Path∼(f)([p]) = [f ◦ p].

• An execution is a path p where for all subsequences (x, a, x′) of p, there
is an a transition from x to x′.

We will identify minimal paths, i.e. paths that cannot be further reduced,
with their equivalence class of paths. Intuitively, a representative of an equiva-
lence class of paths can easily be identified, for it is the (unique) path in the
equivalence class that does not contain any τ -loops. Before specifying how to
define LTS using this functor, we will first define branching bisimulation.



78

Definition 3.4.5 (Branching Bisimulation) Let an LTS (X,→) over Aτ
be given, where τ is considered a silent transition. Then, a relation R ⊆ X ×X
is called a branching bisimulation, if for all pairs of states (x1, x2) ∈ R and all
action a ∈ A it holds that

• If x1
a−→ x′1 then there exist states x′2, x′′2 such that x2

τ−→∗ x′2, x′2
a−→ x′′2,

where (x1, x
′
2) ∈ R and (x′1, x′′2) ∈ R.

• Vice versa, if x2
a−→ x′2 then there exist states x′1, x′′1 such that x1

τ−→∗ x′1,
x′1

a−→ x′′1, where (x′1, x2) ∈ R and (x′′1, x′2) ∈ R.

• If x1
τ−→ x′1, then x2

τ−→∗ x′2
τ−→ x′′2 where (x1, x

′
2) ∈ R and (x′1, x′′2) ∈ R.

• Vice versa, if x2
τ−→ x′2, then x1

τ−→∗ x′1
τ−→ x′′1 where (x2, x

′
1) ∈ R and

(x′2, x′′1) ∈ R.

Conceptually, branching bisimulation treats states as equivalent if their obser-
vable behaviour is the same and no internal action can take away choices on
observable behaviour.

We can now explain how to define a labelled transition system as a P ◦Path∼
coalgebra in order to obtain branching bisimilarity as behavioural equivalence.
For that purpose, let an LTS (X,Aτ ,→) be given. We model (X,Aτ ,→) coal-
gebraically as α : X → P(Path∼(X)) as follows:

α(x) = {[p] |dom(p) = τna,

∀i < n : p(τ i) τ−→ p(τ i+1),

p(τn) a−→ p(τna), a ∈ Aτ}

∪ {[x] | x ∈ X}

Intuitively, for branching bisimulation, all τ -sequences are made explicit.
Since we are working in the category of Set, and both P and Path∼ preserve

monomorphisms, we can use the factorisation structure (E ,M) where E is the
set of all surjective functions andM is the set of all injective functions to apply
Algorithm B or Algorithm C and both algorithms coincide. We will illustrate
the application of the algorithm on a small example. If the reader is familiar
with all four notions of bisimilarity in the presence of silent transitions, he may
observe that this example distinguishes all four notions.



79

Example 3.4.6 Consider the set of actions Aτ = {a, b, τ} that contains two
non-silent transition a and b. We define a transition system over Aτ and the
state set X = {A,B,C,D,E} as depicted below:

A

B

C

D E

a, τ τ

b

τ

b

τ

a, b, τ τ

b

a

We will now model this system using the P ◦ Path∼ functor in order to obtain
branching bisimilarity as the behavioural equivalence and compute Algorithm B
(or, equivalently, Algorithm C). We will identify each equivalence class of paths
with its paths and write down the computed sets of paths explicitly. The paths
that are redundant are printed in grey. Redundant in this context means that
there exists another representative of the same equivalence class in the set.

To obtain branching bisimulation as behavioural equivalence, we model the
transition system by the following table:

α : X → P(Path∼(X))
A {(A), (A, b, A), (A, a,D), (A, τ,D), (A, τ, E), (A, τ, E, a,D)}
B {(B), (B, b, B), (B, τ, E), (B, τ, E, a,D), (B, τ,D)}
C {(C), (C, b, C), (C, a,D), (C, b,D), (C, τ,D), (C, τ, E), (C, τ, E, a,D)}
D {(D)}
E {(E), (E, a,D)}

This model consists of the paths corresponding to each single-step transition
and all τ ∗-transitions, including the ε-loops.



80

We will illustrate the intermediate results of Algorithm B in triples of tables:
In each step an arrow (i.e. a function) di is computed, then a representative
ei is chosen and there exists another arrow mi such that mi ◦ ei = di. Each of
these functions are again depicted in tables. Note that we always factorise by
just naming the different images with natural numbers instead of restricting the
function to its image. The reason for this is that the visual representation of
the intermediate results would otherwise end up unwieldy large already from the
second step.

d0 = e0 : X → {•}
A •
B •
C •
D •
E •

m0 : {•} → {•}
• •

d0 is just the unique (up to iso) function mapping all states to •. Therefore,
d0 is surjective and e0 = d0.

d1 : X → P(Path∼({•}))
A {(•), (•, b, •), (•, a, •), (•, τ, •), (•, τ, •), (•, τ, •, a, •)}
B {(•), (•, b, •), (•, τ, •), (•, τ, •), (•, τ, •, a, •)}
C {(•), (•, b, •), (•, a, •), (•, b, •)(•, τ, •)}
D {(•)}
E {(•), (•, a, •)}

e1 : X → {1, 2, 3}
A 1
B 1
C 1
D 2
E 3

m1 : {1, 2, 3} → P(Path∼({•}))
1 {(•), (•, a, •), (•, b, •)}
2 {(•)}
3 {(•), (•, a, •)}

Observe that in the table for d1 there are several entries that are printed in
grey. This is to illustrate, which paths we need not consider further, because
another representative of the same path has already been found. E.g., the path
(•, τ, •, a, •) is not reduced, it contains a τ -loop. In fact, it is equivalent to
(•, a, •), so we only keep the representative (•, a, •). In a similar way, all other
grey entries can be found to be just non-minimal representatives of equivalence



81

classes already present in the entry. Note that for the image of B, we left
the non-minimal element (•, τ, •, a, •) in the table to make it easier to see
which paths are generated by composition with α. It turns out that the states
A,B,C are all mapped to the same set of equivalence classes of paths, so after
factorisation, only three different images remain in e1.

d2 : X → P(Path∼({1, 2, 3}))
A {(1), (1, b, 1), (1, a, 2), (1, τ, 2), (1, τ, 3), (1, τ, 3, a, 2)}
B {(1), (1, b, 1), (1, τ, 3), (1, τ, 3, a, 2), (1, τ, 2)}
C {(1), (1, b, 1), (1, a, 2), (1, b, 2), (1, τ, 2), (1, τ, 3), (1, τ, 3, a, 2)}
D {(2)}
E {(3), (3, a, 2)}

e2 : X → {1, 2, 3, 4, 5}
A 1
B 2
C 3
D 4
E 5

m2 : {1, 2, 3, 4, 5} → P(Path∼({1, 2, 3}))
1 {(1), (1, b, 1), (1, a, 2), (1, τ, 2), (1, τ, 3), (1, τ, 3, a, 2)}
2 {(1), (1, b, 1), (1, τ, 3), (1, τ, 3, a, 2), (1, τ, 2)}
3 {(1), (1, b, 1), (1, a, 2), (1, b, 2), (1, τ, 2), (1, τ, 3), (1, τ, 3, a, 2)}
4 {(2)}
5 {(3), (3, a, 2)}

In d2, all states now have been separated and found not to be branching bisimilar.
We can stop here, because d3 is just a renaming of α, which again has five
different equivalence classes for the five states. We can conclude that no pair of
states in this automaton is branching bisimilar.

3.4.3 Weighted Automata

We will show that we can apply our approach to weighted automata with weights
taken from a semiring. Weighted automata [DKV09] are a versatile formalism
to specify and analyse systems equipped with quantitative information. They
are a generalisation of non-deterministic automata (NFA), but instead of just



82

accepting or rejecting words over a given alphabet, weighted automata assign
values taken from a semiring to words.

Coalgebraic treatment for weighted automata was already discussed in
[BMS13, BBB+12], but making use of different categories. Here, we propose
a category closely related to the ideas of [HJS07], which shows how to obtain
trace or language equivalence by working in a Kleisli category.

We will mainly consider Algorithm B. The algorithm will not terminate for
every possible choice of the semiring (for example it is known that language
equivalence is undecidable for tropical semirings). However, we will characterise
the cases for which it terminates.

Definition 3.4.7 (Category of Matrices, Linear Maps) We consider a ca-
tegory M(S) of S-matrices where objects are sets and an arrow a : X → Y is an
X × Y -matrix as defined in Definition 2.1.7. Arrow composition is performed
by matrix multiplication, i.e., for a : X → Y , b : Y → Z we have b ◦ a = a · b.
The identity arrow idX : X → X is the X ×X unit matrix.

For x ∈ X, the unit vector x̂ ∈ SX is defined as x̂(x) = 1 and x̂(y) = 0 if
y 6= x.

There exists a concretisation functor U where UX = SX and for a : X → Y

Ua : UX → UY is the linear map from SX to SY represented by the matrix a,
i.e., Ua(x̄) = x̄t · a for all x̄ ∈ SX . (Note that xt, the transpose of x, is a row
vector which is identified with the corresponding 1×X-matrix.)

Therefore, (M(S), U) is a concrete category. In the sequel we will only
reference M(S), but whenever a concrete category is required, it is understood
to be (M(S), U).

We can now define weighted automata in a coalgebraic notation. Note that,
different from the weighted automata in [DKV09], our automata do not have
initial states, as it is customary in coalgebra, and hence no initial weights, but
only final weights. However, for language equivalence we can easily simulate
initial weights by adding a new state to the automaton with edges going to
each state of the automaton, carrying the initial weights of these states and
labelled with some (new) symbol.

Definition 3.4.8 (Weighted Automaton Coalgebraically) Let M(S) be
the category defined above. Let A be a finite set of alphabet symbols. We define



83

an endofunctor F : M(S)→M(S) as follows: on objects1 FX = A×X + 1 for
a set X. For an arrow f : X → Y we have Ff : A×X + 1→ A× Y + 1 where

• Ff((a, x), (a, y)) = f(x, y) for a ∈ A, x ∈ X, y ∈ Y ,

• Ff(•, •) = 1

• Ff(c, d) = 0 for all remaining c ∈ A×X + 1, d ∈ A× Y + 1.

A weighted automaton is an F -coalgebra, i.e., an arrow α : X → FX in the
category M(S) or, alternatively, an (X × FX) = X × (A×X + 1)-matrix with
entries from S.

For a weighted automaton α, α(x, •) denotes the final weight of state x ∈ X
and α(x, (a, y)) denotes the weight of the a-transition from x to y.

We now want to show that language equivalence for weighted automata
coincides with behavioural equivalence. For this purpose, we restate the de-
finition of the language of a weighted automaton. Note, that we restrict to
finite-state weighted automata, here, because otherwise this definition may not
be well-defined, considering it is then potentially based on an infinite sum.

Definition 3.4.9 (Language of a Weighted Automaton [DKV09])
Let (X,α) be a weighted automaton over alphabet A, a semiring S and a finite
state set X. The language Lα : A∗ → SX of α is recursively defined as

• Lα(ε)(x) = α(x, •)

• Lα(aw)(x) = ∑
x′∈X α(x, (a, x′)) · Lα(w)(x′) for a ∈ A, w ∈ A∗

We will call Lα(w)(x) the weight that state x assigns to the word w. Two states
x, y ∈ X are language equivalent if Lα(w)(x) = Lα(w)(y) for all w ∈ A∗.

It can be shown that two states x, y ∈ X of a finite weighted automaton
(X,α) are behaviourally equivalent in the coalgebraic sense (x ∼ y) if and only
if they assign the same weight to all words, i.e. Lα(w)(x) = Lα(w)(y) for all
w ∈ A∗.

1Here X + Y denotes the disjoint union of two sets X, Y and 1 stands for the singleton
set {•}.



84

Proposition 3.4.10 Let (X,α : X → FX), where X is a finite set, be a
weighted automaton over the finite alphabet A and the semiring S. Then, two
states x, y ∈ X are language equivalent if and only if x̂, ŷ are behaviourally
equivalent (x̂ ∼ ŷ).

Proof: The first part of the proof is based on two lemmas from Section 3.3.

• Assume x̂, ŷ are behaviourally equivalent, but x, y are not language
equivalent. Then there is a coalgebra homomorphism f : (X,α)→ (Y, β)
such that Uf(x̂) = Uf(ŷ) (i.e., x̂t · f = ŷt · f , which means that the rows
in f corresponding to x, y coincide), but there is also a word w such that
Lα(w)(x) 6= Lα(w)(y).

Note that the sequence of matrices dA0 , dA1 , dA2 , . . . that we obtain when
applying Algorithm A to a weighted automaton have the following pro-
perty: For any index i, dAi is a matrix that has one column for each word
w′ of length j < i, which contains for each row index x ∈ X the weight
that is assigned to w′ by state x. In Subsection 4.2.5 a bit more intuition
about this property is given.

Thus, U(dA|w|+1)(x̂) 6= U(dA|w|+1)(ŷ), i.e. the rows corresponding to x, y
in dA|w|+1 differ (see Lemma 4.2.17). According to Lemma 3.3.3 we have
dA|w|+1 ≥X f (i.e., there exists a matrix a such that dA|w|+1 = f · a), which
is a contradiction since U(dA|w|+1)(x̂) 6= U(dA|w|+1)(ŷ) and Uf(x̂) = Uf(ŷ).

• Assume x, y are language equivalent. We need to show that there exists
a coalgebra homomorphism f : (X,α) → (Y, β) such that Uf(x̂) =
Uf(ŷ). We choose Y = A∗ and β is an A∗ × (A × A∗ + 1)-matrix with
β(aw, (a, w)) = 1, β(ε, •, ) = 1, all other entries of β are 0. Then, β is
obviously an arrow of M(S), since in every column (a, w) only the entry in
row aw is different from 0 and in the column • only the row ε is different
from 0.

Now, we choose f : X → A∗ as the matrix with the entries f(z, w) =
Lα(w)(z), where w ∈ A∗, z ∈ X. Note, that f is well-defined, because
we assume that X is finite. Also, since x and y are language equivalent,
per definition of f we have that the rows corresponding to x and y in f
coincide.



85

It is left to be shown that that f is a coalgebra homomorphism, i.e. we
need to prove that Ff ◦ α = β ◦ f . The matrix Ff ◦ α has dimension
X × (A×A∗ + 1), so we compute for an arbitrary z ∈ X, a ∈ A, w ∈ A∗:

(Ff ◦ α)(z, (a, w))

=
∑

(a′,z′)∈A×X
α(z, (a′, z′)) · Ff((a′, z′), (a, w)) + α(z, •) · Ff(•, (a, w))

=
∑
z′∈X

α(z, (a, z′)) · f(z′, w) = f(z, aw)

as well as:

β ◦ f(z, (a, w)) =
∑
w′∈A∗

f(z, w′) · β(w′, (a, w))

=
∑

w′=aw
f(z, w′) · β(w′, (a, w)) = f(z, aw) · β(aw, (a, w)) = f(z, aw)

For an arbitrary z ∈ X we can compute:

(Ff ◦ α)(z, •)

=
∑

(a′,z′)∈A×X
α(z, (a′, z′)) · Ff((a′, z′), •) + α(z, •) · Ff(•, •)

= α(z, •) · Ff(•, •) = α(z, •) = f(z, ε)

as well as:

(β ◦ f)(z, •) =
∑
w′∈A∗

f(z, w′) · β(w′, •)

=
∑
w′=ε

f(z, w′) · β(w′, •) = f(z, ε) · β(ε, •) = f(z, ε)

So we indeed have Ff ◦ α = β ◦ f .

�

Due to the change of category (from Set to M(S)) we obtain language
equivalence instead of a notion of bisimilarity. We will see that M(S) is closely
related to a Kleisli category over the semiring monad (see also [HJS07] which
explains the effects that the implicit branching or side-effects of the monad
have on behavioural equivalence).

Relation to Kleisli Categories

Definition 3.4.11 (Kleisli Category of Matrices) We consider the cate-
gory Kl(S) for the monad (S, ν, µ) on Set, defined according to:



86

Objects: SX = SX , i.e. functions of finite support from X to S.

Arrows: Let f : X → Y be any arrow of Set, then we define Sf : SX → SY

according to Sf(a)(y) = ∑{a(x) | x ∈ X, f(x) = y} for any a ∈ SX ,
y ∈ Y .

Unit: ηX : X → SX is defined according to

ηX(x)(y) =


1 if x = y

0 otherwise

for all x, y ∈ X.

Multiplication: µX : SSX → SX is defined according to

µX(m)(x) =
∑
{m(f) · f(x) | f ∈ SX}

for all m ∈ SSX and x ∈ X.

It is a standard result that (S, η, µ) is a monad. If the reader is interested in
how to prove this, a proof can be found in Appendix A, Lemma A.1.

We will now discuss how it can be seen that Kl(S) coincides with M(S)
for all arrows that correspond to functions of finite support. Note, that the
categories Kl(S) and M(S) are not isomorphic, because Kl(S) has finite row
support, whereas M(S) has finite column support. Beyond this subsection, we
will continue working with M(S), but we will limit our discussion to matrices
of finite dimension, so for the cases that are of interest for us, both categories
act the same.

To show that Kl(S) and M(S) coincide for finite carrier sets X and Y ,
we first have a look at arrows in Kl(S). An arrow f : X → Y is a function
f : X → SY where SY is a function of finite support. Now, assume additionally,
that X and Y are finite. Then we can curry and obtain a function of type
F : X × Y → S, which can be interpreted as an X × Y -matrix with (trivially)
finite row and column support. Consequently, ηX : X ×X → S can be seen as
the X ×X unit-matrix. Next, we will show that arrow composition coincides
with matrix multiplication.

Let f : X×Y and g : Y ×Z be two arrows in Kl(S), i.e. f is a Y ×X matrix
and g is a Z × Y matrix. Then the multiplication g · f is defined and for any



87

x ∈ X, z ∈ Z we get

f · g(x, z) =
∑
y∈Y

f(x, y) · g(y, z).

On the other hand,

g ◦ f(x)(z) = µZSg ◦ f(x)(z) =
∑

h : Z→S
{Sg(f(x))(h) · h(z)}

=
∑

h : Z→S
{
∑
{f(x)(y) | y ∈ Y, g(y) = h} · h(z)} =

∑
{f(x)(y) · g(y)(z) | y ∈ Y }.

So indeed, matrix multiplication corresponds to the concatenation of arrows in
the following way: g ◦ f = f · g. This shows that Kl(S) coincides with M(S)
for all arrows between finite sets.

Adapting Proposition 3.4.10 for Kl(S) Note, that in the second part of
the proof of Proposition 3.4.10, we used the fact that arrows in M(S) can have
infinite row support – in order to be able to define the coalgebra homomorphism.

Interestingly, whenever Algorithm A terminates in either category, it also
terminates in the other category and the result is the same. Indeed, the proof
of Proposition 3.4.10 can then be adapted for Kl(S) in the following way:

Assume the semimodule generated by A∗ in Proposition 3.4.10 is finitely
generated, then the proof of Proposition 3.4.10 can be adapted to Kl(S),
by restricting the carrier set of the coalgebra in the image to a finite set of
words A≤n for some n ∈ N0. This can be seen as follows. Let n be chosen
such that the semimodule generated by A≤n is the same as the semimodule
generated by A∗, which exists by the assumption that the latter is finitely
generated. Now for any w ∈ An+1, the vector (Lx1(w), Lx2(w), ..., Lxm(w))2 can
be obtained via a (not necessarily unique) linear combination of all vectors
(Lx1(w′), Lx2(w′), ..., Lxm(w′)), where w′ ∈ A≤n. For each word w ∈ An+1,
choose one such linear combination C(w) : A≤n → S. Now, β : A≤n → FA≤n

may be defined just as β from the proof of Proposition 3.4.10 except for the
cases β(w′, (a, w)), where |w| = n. In those cases, let β(w′, (a, w)) = C(aw)(w′).
Then f : X → A≤n, defined just as in the proof of Proposition 3.4.10, can be
shown to be a coalgebra homomorphism in the same way as in the proof of

2Here, we assume X = {x1, ..., xm}



88

Proposition 3.4.10. The sole exception is considering (β ◦ f)(z, (a, w)), where
|w| = n. Here, the computation is slightly more involved, we obtain∑

w′∈A≤n

f(z, w′) · β(w′, (a, w)) =
∑

w′∈A≤n

Lα(z)(w′) · β(w′, (a, w))

=
∑

w′∈A≤n

Lα(z)(w′) · C(aw)(w′) = Lα(z)(aw).

The corresponding computation for Ff ◦ α remains unchanged.

Preorder and Representatives From now onwards we consider only finite
index sets. We will study the category M(S) and show what the preorder on
arrows (see Definition 3.2.2) means in this setting.

If the semiring is a field, there exists a factorisation structure which factors
every matrix into a matrix of full row rank and a matrix of full column rank.
This factorisation is unique up-to isomorphism. However, for generic semirings,
semimodule theory does not provide a similarly elegant notion of base as in
vector spaces, and such unique factorisations are not possible in general. Hence
Algorithm C is usually not applicable.

Proposition 3.4.12 Let a : X → Y , b : X → Z be two arrows in M(S),
i.e., a is an X × Y -matrix and b is an X × Z-matrix. It holds that a ≤X

b ⇐⇒ 〈a〉 ⊆ 〈b〉. That is, two matrices a, b are ordered if and only if the
subsemimodule spanned by a is included in the subsemimodule spanned by b.
Hence also a ≡X b ⇐⇒ 〈a〉 = 〈b〉.

Proof: Let a ≤X b, hence there exists a Y × Z-matrix c with a · c = b. This
means that the columns of b (indexed by X) arise as linear combinations of
the columns of a. Thus, every vector in 〈b〉 can be generated from the vectors
in 〈a〉.

For the other direction, assume that 〈a〉 ⊆ 〈b〉. This means that all column
vectors of a, which are included in 〈a〉, must also be included in 〈b〉. Hence
they can be obtained as linear combinations of the column vectors of b, which
means that there exists a matrix c with a · c = b and hence a ≤X b. �

For weighted automata, a class of representatives R must have the property
that for every subsemimodule of SX there exists a matrix a ∈ R generating
this subsemimodule, i.e., the subsemimodule corresponds to 〈a〉.



89

Depending on the semiring, the class of representatives can be rather simple,
for instance for fields, one could choose matrices corresponding to the bases of
vector spaces of dimension X. In general, there is no notion of basis for semimo-
dules over a semiring. However, a suitable choice for the class of representatives
is the class of all generating matrices without redundant column vectors.

Definition 3.4.13 (Class of Representatives for Weighted Automata)
We define R as the class of all matrices a that do not contain a column that is
a linear combination of the other columns of a.

We will now give a sufficient condition and some examples that guaran-
tee termination of Algorithm B. The corresponding proofs can be found in
Subsection 4.2.5.

Proposition 3.4.14 If 〈G∗〉 = {Lα(w) | w ∈ A∗} for a weighted automaton
(X,α) is finitely generated, Algorithm B terminates.

If S is a field, 〈G∗〉 is always finitely generated, since semimodules over
fields are vector spaces and the algorithm coincides with earlier work by
Schützenberger [Sch61]. Similar algorithms were presented in [Bor09, ABH+12].
A similar argument also holds for skew-fields, structures that are almost fields,
but where multiplication need not be commutative, as shown by Flouret
and Laugerotte, [DK13, FL97], extending Schützenberger’s result. A further
extension can be found in [BLS06, BLS05], extending the decidability result
to principal ideal domains such as (Z,+, ·). In Chapter 4, we will show that
the algorithm is also strongly related to conjugacy, investigated for instance in
[Sak09].

We can easily specify some classes where the algorithm necessarily terminates.
If S is a finite semiring, the algorithm terminates, since there are only finitely
many different column vectors of a fixed dimension |X|. If S is a distributive
complete lattice, the algorithm will terminate as well.

Corollary 3.4.15 Algorithm B always terminates on weighted automata with
weights from a distributive complete lattice.

Proving termination does not mean that Algorithm B is effectively compu-
table in itself, because for this it is also necessary to be able to decide whether



90

two matrices are equivalent, i.e., whether a vector is generated by a given set
of generators. This need not be decidable in general, but it is decidable in all
the cases above.

We now consider several examples.

Example 3.4.16 We use as a semiring the complete distributive lattice L =
{>,⊥, ϕ, ψ} where ⊥ ≤ ϕ ≤ >, ⊥ ≤ ψ ≤ > and consider the labelled transition
system (X,α), X = {A,B,C,D} with weights over L and labels from {a}
represented by the transition matrix and automaton (transitions with weight ⊥
are omitted):

α =

a
,A

a
,B

a
,C

a
,D •

A

B

C

D


⊥ ϕ ⊥ ⊥ ϕ

⊥ ⊥ ⊥ ⊥ >
⊥ ⊥ ⊥ > ϕ

⊥ ⊥ ⊥ ⊥ ϕ

 A B

C D

a, ϕϕ >

a,>ϕ ϕ

We apply Algorithm B to this automaton. Below ei denotes the chosen
representative in R.

• We start with d0 = e0, a 4× 0-matrix

• Fe0 =



⊥
⊥
⊥
⊥
>


, d1 = Fe0 · α =


ϕ

>
ϕ

ϕ

. This is in R, so e1 = d1.

• Fe1 =



ϕ ⊥
> ⊥
ϕ ⊥
ϕ ⊥
⊥ >


, d2 = Fe1 · α =


ϕ ϕ

⊥ >
ϕ ϕ

⊥ ϕ

. This is in R, so e2 = d2.

• Fe2 =



ϕ ϕ ⊥
⊥ > ⊥
ϕ ϕ ⊥
⊥ ϕ ⊥
⊥ ⊥ >


, d3 = Fe2 · α =


⊥ ϕ ϕ

⊥ ⊥ >
⊥ ϕ ϕ

⊥ ⊥ ϕ

.



91

This is not in R, we can for example see that the first row equals ⊥ times
the second plus ⊥ times the third row. So we factorise:

d3 = e3 · γ =


ϕ ϕ

⊥ >
ϕ ϕ

⊥ ϕ

 ·
 ⊥ > ⊥
⊥ ⊥ >



Now e3 = e2 and we can stop our computation.

The resulting automaton is a two-state automaton, where the states will be called
E,F . Looking at e3 we can see that the states A and C of X are equivalent, since
their columns coincide (in fact, both accept ε and a with weight ϕ). States B
and D on the other hand are not equivalent to any other state. We see that
e2 : X → Y , where Y = {E,F}, is a coalgebra homomorphism from (X,α) to
(Y, γ). The coalgebra (Y, γ) can be considered as a minimal representative of
(X,α). The following diagram depicts automata (X,α) and (Y, γ) where the
coalgebra homomorphism e2 is drawn with dashed lines.

A

B

C

D

E

F

a, ϕ

ϕ

ϕ

ϕ

> >

a,>

ϕ

ϕ

ϕ

ϕ
ϕ

a,>
>

γ =
a
,E

a
,F •
E

F

⊥ > ⊥
⊥ ⊥ >



We can also see that our method of factoring is not unique, because in γ we
could have chosen γ(E, (x,E)) = ψ (and all other entries as before). In this
case, there would be an a, ψ-loop on state E in the diagram above. Since all
dashed arrows going into E carry weight ϕ and ϕ u ψ = ⊥, this loop would not
have any effect and the equivalence one obtains is the same.

In the next example, we will investigate the tropical semiring (cf. Ex-
ample 2.1.4). We will write ⊕ and ⊗ for the S-addition respectively the
S-multiplication to avoid confusion. Language equivalence is in general undeci-
dable, hence the algorithm can not terminate in general.

Example 3.4.17 Consider the (rather simple) transition system over the one-
letter alphabet {a}, given by the matrix α:



92

(a
,A

)

(a
,B

)

•
A

B

 1 ∞ 1
∞ 0 0


A B

a,∞

a, 1

1
a,∞

a, 0

0

Applying Algorithm B to α, we obtain the following (intermediate) results:

• d0 = e0 is the 2× 0-matrix

• Fe0 =


∞
∞
0

 , d1 = Fe0 · α =
 1

0

 = e1

• d2 =
 2 1

0 0

 ∈ R, so we choose e2 = d2.

• d3 =
 3 2 1

0 0 0

 /∈ R, because we can obtain the second column as a

linear combination of the first and the third column:

1⊗
 1

0

⊕ 0⊗
 3

0

 =
 2

1

⊕
 3

0

 =
 2

0


However, we cannot obtain the first row via linear combination of the
other two rows, so the algorithm cannot stop in the third iteration.

So we can choose: m3 =
 0 0 ∞
∞ 1 0

 and e3 =
 3 1

0 0


• From now on, each step is analogous to the third step, we obtain ei = i 1

0 0

 in each iteration i, but we will never reach a di+1 such that

di+1 ≡X ei.

Algorithm B therefore does not terminate for α. However, since the two states
are already separated from the first step onwards, we can at least conclude that
the states are not behaviourally equivalent.

We have seen, for an arbitrary semiring, it is possible that the algorithm
does not terminate. If it terminates, it always yields behavioural equivalence, if
it does not terminate, we can still look at the intermediate results and use this
as a means to semi-decide if two states are not equivalent. If two states ever get



93

separated, they are not behaviourally equivalent, if they never get separated,
they are behaviourally equivalent.

This example also demonstrates that the termination condition for Algorithm
B can be not met – and, since both algorithms terminate at the same time,
neither is Algorithm A’s – , although we already have all information regarding
behavioural equivalence. Even from the first step onwards in the non-terminating
example, both states are proven not to be language equivalent, but Algorithm
B’s termination condition is never met. However, for an arbitrary semiring
we cannot find a termination condition that guarantees that the algorithm
always terminates whenever all states, that are not behaviourally equivalent,
are separated. Since for two states to not be language equivalent, there needs to
be some word they assign a different weight to, which can be found in a finite
span of time, such a termination condition would yield a decision algorithm for
the undecidable case of the tropical semiring, as well.

We have already seen that Algorithm B does not terminate for some automata
over the tropical semiring, we will investigate another example where the
algorithm does terminate. So even if there is no termination guarantee, it is
reasonable to apply the algorithm even to semirings where termination is not
guaranteed in general.

Example 3.4.18 Consider the automaton over the single-letter alphabet {a}
given by the matrix α below.

(a
,A

)
(a

,B
)

(a
,C

)

•
A

B

C


2 0 0 2
1 2 1 0
0 0 3 1

 A B

C

a, 0

a, 0

a, 2
2

a, 1

a, 2

a, 1 0a, 0

a, 3

a, 0

1

• d0 = e0 is the 0× 3-matrix

• d1 =


2
0
1

 = e1



94

• d2 =


0 2
2 0
0 1

 = e2

• d3 =


0 0 2
1 2 0
0 0 1

 =


0 2
2 0
0 1

 ·
 0 0 ∞

1 ∞ 0

 = e2 · γ

So the algorithm terminates and we can observe that none of the three states
are equivalent, since all columns in e3 are different.

3.4.4 HD-Automata

History-dependent automata (HD-automata) are an automaton model for name
passing calculi such as the π-calculus. States and transitions as in traditional
non-deterministic automata are enhanced with a notion of names, that are
present in each transition. Since names can be generated over the course of
the execution of a name passing calculus (e.g. using the ν operator in the
π-calculus) or changed (e.g. using the renaming operator in π-calculus), names
are dealt with in an abstract way in HD-automata, as natural numbers and
permutations on natural numbers, allowing for renaming.

In [FMT05], a coalgebraic way of modelling HD-automata, as well as a final
chain based algorithm to compute behavioural equivalence has been presented.
HD-automata were defined by specifying a category they live in, the category of
named sets and named functions. For one specific kind of HD-automata, those
modelling π-calculus, Ferrari et al. have furthermore specified a proper choice
of functor to model them coalgebraically. The algorithm to decide behavioural
equivalence, which is early bisimulation in the specific case considered in
[FMT05], is specified independently of the concrete choice of functor.

We will quickly recall the definitions from [FMT05] using our notations and
will then show that Algorithm A can simulate the proposed algorithm. Note,
that names are abstracted as natural numbers and a change in names is realised
by permutation in this formalism.

Definition 3.4.19 (Category H) The category H is defined as follows:

Objects Objects are named sets A = (QA,.A, |_|A,GA) where



95

• QA is a set

• .A⊆ QA ×QA is a total order

• |_|A ∈ QA → N, here, N denotes the set of natural numbers excluding
0 but including ∞.

• GA maps q ∈ Q to a finite permutation group on {x | x ≤ |q|A} –
note that |q|A may be infinity.

Arrows Arrows f : D → C are named functions f = (D,C, h,Σ) where

• D = (QD,.D, |_|D,GD)

• C = (QC ,.C , |_|C ,GC)

• h : QD → QC is a function

• Σ maps q ∈ QD to a finite set of functions σ : {x | x ≤ |h(q)|C} →
{x | x ≤ |q|D} such that

1. for all σ ∈ Σ(q) it holds that σ ◦ GC(h(q)) = Σ(q)

2. for all σ ∈ Σ(q) it holds that GD(h(q)) ◦ σ ⊆ Σ(q)

3. all σ ∈ Σ(q) are injective

Composition Let f = (Df , Cf , hf ,Σf ) and g = (Dg, Cg, hg,Σg) be given such
that Cf = Dg, i.e. g and f can be composed to form g ◦ f , then g ◦ f is
defined according to

g ◦ f = (Df , Cg, hg ◦ hf ,Σg◦f )

where Σg◦f (q) = Σf (q) ◦ Σg(hf (q))

Identity arrows The identity arrows have the form idD = (D,D, idD,ΣidD
)

where ΣidD
(q) = id{x|x≤|q|}.

Intuitively, a named set A can be understood as a set of states QA, together
with a number of names specified by |_|A and a permutation on the set of
names for each state q that is the symmetry of q, i.e. the set of permutations
on names that do not change the process modelled by q. Consider for instance
the π-calculus process P (x, y, z) = (νc)(c〈x〉.0 + c〈y〉.0 + c〈z〉.c〈z〉.0). The state
representing P , qP , has three names x, y, z, so |qP |A = 3. Moreover, the process
P is independent of the order of x and y, but exchanging x for z will possibly



96

change the behaviour of P . Thus, GA(qP ) contains the identity permutation as
well as the permutation exchanging x and y. The order . is used to identify a
(canonical) representative state among a given set of states. This is important,
because a transition in an HD-automaton yields a set of possible successor
states, of which one needs to be selected.

A named function f = (D,C, h,Σ) in turn maps states q from its domain
D to states q′ from its codomain C via h such that Σ translates the names
belonging to q to names belonging to q′ in a way that respects the symmetries
of q and q′. So all symmetries of q must be translated to symmetries of q′,
symmetries of q are not generating any additional transitions (which is basically
mirroring our intuitive understanding of the symmetries) and no two names
get conflated by a transition.

The final chain based algorithm proposed in [FMT05] uses an order to
determine termination. To define this order, we need the notion of the kernel
of a function f : X → Y , where we define

kerf = {{y ∈ X | f(x) = f(y)} | x ∈ X}.

This notion can also be lifted to named functions f = (D,C, h,Σ) in the
following way: ker(f) = (ker(h),., |_|,G) where |A| = |h(a)|C and G(A) =
GC(h(a)) for any a ∈ A. The order . is defined by A . B if and only there
exist a ∈ A, b ∈ B such that a .C b, so we extend .C to sets in the typical
way. Now we can define a preorder on named functions according to:

Definition 3.4.20 (Preorder on Named Functions)
Let f1 = (D,C1, h1,Σ1), f2 = (D,C2, h2,Σ2) be two named functions with a
common domain. We write f1 � f2 if and only if the following conditions hold
on their kernels ker(f1) = (Q,., |_|,G) and ker(f2) = (Q′,.′, |_|′,G ′)

1. The partition Q is coarser than the partition Q′ in the following sense:
∀A ∈ Q∃B ∈ Q′ : A ⊇ B

2. ∀A ∈ Q,B ∈ Q′ : A ∩B 6= ∅ ⇒ |A| ≤ |B|′

3. ∀A ∈ Q,B ∈ Q′, q ∈ A ∩B : Σ(q) ⊆ Σ′(q)

In their paper, Ferrari et al. [FMT05] propose to iterate on the final chain
until fn � fn+1 and fn+1 � fn in order to compute the greatest bisimulation



97

between two HD-automata defined coalgebraically in the category H. We will
now show that then also fn ≡ fn+1, i.e. Algorithm A can simulate this procedure.

Lemma 3.4.21 Let f1 = (D,C1, h1,Σ1), f2 = (D,C2, h2,Σ2) be two named
functions such that f1 � f2 and f2 � f1. Then f1 ≡D f2.

Proof: Throughout the proof, let D = (QD,.D, |_|D,GD), C1 = (Q1,.1

, |_|1,G1) and C2 = (Q2,.2, |_|2,G2).
We will only show that there exists a named function f = (C1, C2, h,Σ) such

that f ◦ f1 = f2. Since the conditions are symmetric, it automatically follows
that then f1 ≡D f2.

Let e ∈ Q2 be chosen arbitrarily, then we can define h according to

h(b) =


h2(a) if ∃a ∈ Q1 : h1(a) = b

e otherwise

This is well-defined, because h1 and h2 induce the same partition (using Con-
dition 1 for � in both directions), so h2(a) is independent of the choice of
representative a such that h1(a) = b.

Additionally, we define

Σ(b) =


G1(b) if b ∈ Im(h1)

∅ otherwise
.

Now we must show two things, that f ◦ f1 = f2 and that f is a named function.
We first show that f ◦ f1 = f2, since this is quite immediate. The types match,
because f ◦ f1 = (D,C2, hf ◦ hn,Σ ◦ Σ1) and f2 = (D,C2, h2,Σ2). Moreover,
(h ◦ h1)(a) = h(h1(a)) = h2(a). Moreover, we can compute

Σ1(q) ◦ Σ(h(q)) = Σ1(q) ◦ G1(h1(q)) = Σ1(q) = Σ2(q)

The last step is true because Ferrari et al. have already shown that from
fn � fn+1 and fn+1 � fn it follows that Σ1(q) = Σ2(q) (for this step, Condition 2
and Condition 3 are needed), the second-to-last step is true because of the first
condition on the last component of a named function (Condition 1). So we
have seen that f ◦ f1 = f2, it remains to be shown that f is actually a named
function.



98

It is clear that D and C are named sets and that f is a function, so we need
to show the three conditions on Σ. For this purpose let any q ∈ Q1 be given.

1. Let any σ ∈ Σ(q) be given, then, since Σ(q) is not empty, it follows that
q ∈ Im(h1). Therefore there exists an a ∈ QD such that h1(a) = q. Then
we can compute

σ ◦ G2(h(q)) = σ ◦ G2(h(h1(a))) = σ ◦ G2(h2(a))

=σ ◦ G1(h1(a)) = σ ◦ G1(q) = G1(q)

2. Let any σ ∈ Σ(q) be given, then

G1(q) ◦ σ = G1(q) = Σ(q)

because G1(q) is a permutation group and thus closed under composition.

3. Since Σ(q) only contains permutations, i.e. bijections, all functions in
Σ(q) are necessarily injective.

�

Remark 3.4.22 Note that � does not correspond to ≤D but rather ≥D.

In order to give a concrete example for the computation of Algorithm A for the
case of HD-automata, we would need to specify the functor T from [FMT05],
that allows to model π calculus processes coalgebraically. The definition of this
functor is rather involved, but it is very specific to the π-calculus, so we finish
our discussion of the example of HD-automata without considering a concrete
example.

3.5 Conclusion

We have seen how the final chain construction gives rise to an algorithm to decide
behavioural equivalence for coalgebras on concrete categories. Optimisations in
the form of the choice of representatives or factoring out monomorphisms can
lead to more compact intermediate results and thus to faster run times. This
work is inspired by the minimisation techniques presented in [ABH+12], but
the more flexible termination condition of equivalence of arrows can lead to a



99

faster termination. Moreover, the choice of representatives or the factoring out
of monos instead of using factorisation structures allows the approach to be
applied to a greater class of systems.

The motivating example for this are weighted automata, modelled in a Kleisli
category to obtain language equivalence as the behavioural equivalence. We
have seen how to model weighted automata as coalgebras and how the generic
Algorithm B can be instantiated to this system model. The choice of represen-
tatives naturally coincides with the choice of a minimal generating set for a
semi-module, which is a generalisation of a vector space to arbitrary semirings
rather than fields. Naturally, Algorithm B does not necessarily terminate for
all semirings, since language equivalence for weighted automata is undecidable.
Provided linear combinations can be computed, it still yields a semi-decision
procedure for language equivalence, even if the algorithm is not guaranteed to
terminate.

Related Work Our work is closely related to [ABH+12] which uses factori-
sation structures in order to obtain generic algorithms for partition refinement.
However, the algorithm in [ABH+12] could not handle general weighted auto-
mata over semirings, due to the absence of suitable factorisation structures.

[Sta09] also discusses several coalgebraic methods to check behavioural
equivalence, however the paper focusses more on the relation-based view with
fixpoint iteration to obtain bisimulations. Staton compares with the final chain
and can prove that whenever the arrow F i! in the final chain is a mono, then
the relation refinement sequence converges at the latest. In our examples, the
algorithm usually terminates earlier, since we only need a relative inverse β of
F i! wrt. dAi .

Bonsangue, Milius and Silva [BMS13, BBB+12] have also investigated lan-
guage equivalence of weighted automata in a coalgebraic setting, where they use
Eilenberg-Moore instead of Kleisli categories. They present an axiomatisation
of weighted automata and give a set of sound and complete equational laws
axiomatising language equivalence.

Recently, in [UH14], Urabe and Hasuo studied simulation and language
inclusion for weighted automata, where the coalgebraic theory provides the
basis for an efficient implementation.



100

We have already discussed the related work by Ferrari et al. [FMT05] in
detail. The authors have shown how to model HD-automata coalgebraically and
have given a final chain based algorithm to compute the greatest bisimulation of
an HD-automaton. As we have seen, their algorithm can be seen as an instance
of our Algorithm A.

If instantiated to the case of weighted automata, Algorithm B coincides with
common algorithms that were developed directly for weighted automata. We
have already seen this in particular for the case of fields, where it is the same
procedure as the one described in [ABH+12] and also coincides with the work of
Schützenberger [Sch61]. In the next chapter, we will focus more on the weighted
automata point of view and will more thoroughly compare our algorithm to
classic work on weighted automata, including in particular conjugacy based
techniques, while also discussing specific (classes of) semirings, where the choice
of representatives can be done effectively.



Chapter 4

Language Equivalence for
Weighted Automata: An
Instantiation of the Final Chain
Algorithm

4.1 Introduction

Building on the general coalgebraic work of Chapter 3, we now want to take
closer look into the application to the analysis of the language of weighted
automata (Subsection 2.3.1). Due to the flexible nature of weighted automata
– remember that the weights can come from any semiring and varying choice
of semirings allow to express different things in a model – they are a powerful
modelling tool that can express various distinct kinds of models. For instance,
weights from the interval [0, 1] are often used to express the probability that a
transition takes place and weights from the tropical semiring (natural numbers
with minimum as addition and addition as multiplication) can be used to express
cost for a transition. On the flipside, weighted automata are computationally
complex and as a result, language equivalence, which we are mainly interested
in, is in general undecidable.

We aim to compute which pairs of states are language equivalent, i.e. which
pairs of states in a given weighted automaton assign the same value to all
words. This can be of interest for instance for optimisation purposes or for

101



102

checking if a system modelled as a weighted automaton behaves according to
specification. As mentioned previously, in general this problem is undecidable,
however, we have investigated it from a coalgebraic perspective and have found
an algorithm as a special instance for a generic coalgebraic algorithm that allows
to compute the language equivalence for various semirings where it is decidable.
The coalgebraic view on this algorithm is presented in Chapter 3. Consequently,
this chapter will only discuss its instantiation to weighted automata.

The instantiation yields an algorithm that does appear in the literature for
specific semirings. For probabilistic automata, there is a related procedure for
checking language equivalence [KMO+11], for fields, a method is discussed in
[Bor09] and a result for rings, based on results by Schützenberger, is given
in [DK13]. Division rings (or skew-fields) have been treated in [FL97] and
principal ideal domains in [BLS05]. Moreover, the algorithm is working in a
very similar way to techniques based on conjugacy, which Béal, Lombardy and
Sakarovitch [BLS06] worked out for semirings such as fields, natural numbers
and integers. We also show that the notion of coalgebra homomorphism (i.e.
matrices translating between any two given weighted automata in this context)
is strongly related to conjugacy as described in [BLS06, BÉ93, ÉK01]. Here,
we will make explicit how these two concepts are related.

In order to apply the algorithm to weighted automata, we have to solve
systems of linear equations for a given semiring. We will specifically treat fuzzy
automata with weights from an l-monoid as a case study.

One of the aims of this chapter is to present an algorithm to decide or,
depending on the semiring, semi-decide language equivalence for weighted
automata. The algorithm is defined in a general coalgebraic setting and can
be used for various types of automata. For a full discussion of the coalgebraic
aspects of the algorithm, as well as the corresponding proofs, refer to Chapter 3.

We will introduce an example weighted automaton in order to give some
intuition. For our examples we primarily use the l-monoid ([0, 1],max, ·, 0, 1),
hence we are considering fuzzy automata, where the weights are taken from a
distributive lattice, or more generally, an l-monoid [Rah09].

Example 4.1.1 We consider the automaton α over the l-monoid
([0, 1],max, ·, 0, 1) from Example 2.2.20, represented visually on the left and as
a matrix α on the right.



103

1

2 3

a, 0.05

b, 1

a, 0.1

1

b, 1

a, 0.1

1

b, 1

1

α =

(a
,1

)

(b
,1

)

(a
,2

)

(b
,2

)

(a
,3

)

(b
,3

)

•
1
2
3


0.1 0 0 0 0 1 1
0.05 0 0.1 0 0 1 1

0 0 0 1 0 0 1



In this automaton, states 1 and 2 only accept words w from the language
L(a∗(bba∗)∗(b|ε)) and assign the value1 0.1#a(w) to them, whereas state 3 only
accepts words of the form w ∈ L((ba∗b)∗(ba∗|ε)) and again assigns the value
0.1#a(w) to them. Hence, states 1 and 2 are language equivalent and the intuitive
reason for this is the fact that the a-labelled transition with weight 0.05 from
state 2 to state 1 is somehow redundant, subsumed by the loops with weight 0.1.
Note that state 3 is not language equivalent to states 1 and 2.

Throughout this chapter we consider only finite index sets for weighted
automata.

This chapter is strongly based on [KK16].

4.2 The Prototype Algorithm

In this section we will describe the prototype algorithm and give all necessary
definitions for the procedure. It works in a general coalgebraic setting, but
since we are primarily concerned with weighted automata we will explain each
concept in the setting of weighted automata right away.

The theorems in this section will only be stated and proven for weighted
automata, but proofs for the more general coalgebraic variants of the theorems
can be found in Chapter 3. Naturally, if the reader has read Chapter 3, this
section is redundant.

Throughout this section, we consider a fixed, finite set A of actions.
1#a(w) stands for the number of occurrences of the letter a in the word w.



104

4.2.1 The Operator F

In the algorithm to decide language equivalence for weighted automata, we
enumerate the weights a word gets assigned by each state in an automaton in
order of length. So first we compute the weight each state assigns to the word
of length 0, then the weight each state assigns to the words of length 1 and so
on. One way of doing this inductively is the following:

• The function d1 : X × {ε} → S that assigns to each state its weight for
the empty word in the automaton α : X × (A×X + 1)→ S is just the
last column of α.

• Given a function di : X × Ai → S that assigns to each state x and each
word w ∈ Ai of length smaller than or equal to i− 1 the weight for w of
x in α, we can compute the corresponding function di+1 : X × Ai+1 → S

via the following observation: The weight a word aw of length at most
i+ 1 has in state x can be computed as the sum over all states y of the
product of the weight α(x, (a, y)) and the weight di(y, w)

Consequently, we want to capture this via matrix multiplication. However, a
matrix di as above cannot be multiplied with a weighted automaton α. In order
to build a matrix that has the correct type based on the information present in
α, we define the operator F as follows:

Definition 4.2.1 (Operator F ) We define the operator FX,Y : (X × Y →
S)→ ((A×X ∪ {•})× (A× Y ∪ {•})→ S) as follows: Let f : X × Y → S be
any matrix, x ∈ X, a ∈ A, y ∈ Y , b ∈ A, then

FX,Y f(x, a)(y, b) =


f(x, y) if a = b

0 otherwise

Moreover,
FX,Y f(x, a)(•) = FX,Y f(•)(y, b) = 0

and
FX,Y f(•)(•) = 1

In the sequel, we will write just Ff instead of FX,Y f to denote the (unique)
operator that matches the type of f .



105

It is immediate that F preserves identity matrices:

Corollary 4.2.2 Let idX : X ×X → S be the X ×X unit matrix, then F idX
is the X × A ∪ {•} unit matrix.

Moreover, F is also compatible with multiplication:

Lemma 4.2.3 Let f : X × Y → S and g : Y × Z → S be two matrices, then
F (f · g) = Ff · Fg.

Proof: Let x ∈ X, a ∈ A, z ∈ Z, c ∈ C, then

F (f · g)(x, a)(z, c) =


(f · g)(x, z) if a = c

0 otherwise

and

(Ff · Fg)(x, a)(z, c)

=
∑

(y,b)∈Y×A
{Ff(x, a)(y, b) · Fg(y, b)(z, c)}+ Ff(x, a)(•) · Fg(•)(z, c)

=
∑

(y,b)∈Y×A
{Ff(x, a)(y, b) · Fg(y, b)(z, c)}

=


∑
y∈Y {Ff(x, a)(y, a) · Fg(y, a)(z, a)} if c = a

0 otherwise

=


∑
y∈Y {f(x)(y) · g(y)(z)} if c = a

0 otherwise
=


(f · g)(x, z) if c = a

0 otherwise

If one or both indices are •, the computation is similar but simpler because
more entries are guaranteed to be 0. �

This operator F now allows us to express the desired computation via
matrix multiplication where di+1 = α · Fdi. This is actually the main step in
the algorithms to decide language equivalence.

Remark 4.2.4 For ease of notation, we will write FX for the set X×A∪{•}.

4.2.2 Equivalences and Preorders on Matrices

We first start by defining preorders and equivalences on matrices:



106

Definition 4.2.5 (Relations on Matrices) Let a : X×A→ S, b : X×B →
S be two matrices with the same row indexes. We write a ≤X b whenever there
exists a matrix d : A × B → S with a · d = b. Similarly, we write a ≡X b,
provided a ≤X b and b ≤X a.

These relations can be understood using the notion of generators for semi-
modules:

Proposition 4.2.6 Let a be an X × Y -matrix and b be an X × Z-matrix. It
holds that a ≤X b ⇐⇒ 〈a〉 ⊆ 〈b〉. That is, two matrices a, b are ordered if
and only if the subsemimodule spanned by a is included in the subsemimodule
spanned by b. Hence also a ≡X b ⇐⇒ 〈a〉 = 〈b〉.

This result is immediate by considering linear combinations of the columns.
In addition, the following simple properties hold for ≤ (and similarly for ≡).

Lemma 4.2.7 Let a : X × Y → S and b : X × B → Z be matrices. Then it
holds that

1. a ≤X b implies Fa ≤FX Fb

2. a ≤X b implies c · a ≤W c · b for any matrix c : W → X.

Proof:

1. This holds because F is compatible with multiplication. a ≤X b implies
there is a matrix f : Y ×Z → S such that a ·f = b and thus Fa ·Ff = Fb,
i.e. Fa ≤FX Fb.

2. If a ≤X b then there is a matrix f : A× B → S such that a · f = b and
thus c · a · f = c · b.

�

Intuitively, the second statement means that multiplying two matrices a, b,
that span semimodules included in one another, with a matrix c will yield
matrices whose corresponding semimodules are again ordered by inclusion.

Before introducing the algorithms, based on the construction of the final
chain [AK95], we will first discuss how language equivalence can be expressed
as a post-fixpoint. We will use the following alternative characterisation of
language equivalence:



107

Lemma 4.2.8 Let α : X × (A×X ∪ {•})→ S be a weighted automaton, then
two states x, x′ ∈ X are language equivalent if and only if there exists a weighted
automaton β : Y × (A× Y ∪ {•})→ S and a matrix f : X × Y → S such that
α · Ff = f · β and f(x, y) = f(x′, y) for all y ∈ Y . We call a matrix f such
that a α · Ff = f · β coalgebra homomorphism from α to β.

A full proof for this correspondence can be found in Chapter 3, however, the
proof idea can be understood as follows:

• If an f and a β exist such that α · Ff = f · β and f(x)(y) = f(x′)(y) for
all y ∈ Y , but x and x′ are not language equivalent, then there exists a
word w that has different weights in x and x′. Now consider the sequence
d1, d2, ... from the motivation for the operator F . We will see that di ≥X f

for all i, so in particular for i = |w|+ 1, but d|w|+1(x,w) 6= d|w|+1(x′, w),
yet f(x, y) = f(x′, y) for all y, so there cannot exist a matrix g such that
d|w|+1 = f · g due to the way matrix multiplication is defined, which is a
contradiction to di ≥X f .

• Let x and x′ be language equivalent states, then we can define a weighted
automaton that has A∗ as its state space and transition weight 1 from
each word aw to the word w, w ∈ A∗, a ∈ A, 0 otherwise – note that
β defined this way has finite support in its columns and actually is a
weighted automaton. By mapping f(x̃, w) to the weight the word w has
in x̃ for all states x̃ and all words (i.e. β-states) w, it is immediate that
f(x)(w) = f(x′)(w) for all w ∈ A∗. A simple computation shows that
α · Ff = f · β holds.

The following observation about this alternative characterisation of language
equivalence is the basis for the corrsponding algorithm.

Proposition 4.2.9 Let α : X × (A×X ∪ {•})→ S be a weighted automaton.
Furthermore let f : X × Y → S be a matrix. It holds that f ≤X α · Ff (we
say: f is a post-fixpoint) if and only if there exists a weighted automaton
β : Y × (A× Y ∪ {•})→ S such α · Ff = f · β.

For every such post-fixpoint f we have that f(x)(y) = f(x′)(y) for all
y ∈ Y implies that x and x′ are language equivalent x ∼ x′. If, in addition,
it holds for every other post-fixpoint g : X × Z → S that g ≤X f (f is the



108

largest post-fixpoint), we can conclude that f induces language equivalence, i.e.,
∀y ∈ Y : f(x)(y) = f(x′)(y) ⇐⇒ x ∼ x′.

Proof: The first statement follows directly from the alternative characte-
risation of language equivalence, since f ≤X α · Ff means the existence of a
matrix β : Y × (A×Y ∪{•})→ S with f ·β = α ·Ff , which by the alternative
characterisation of language equivalence means, f(x, y) = f(x′, y) for all y ∈ Y
implies x ∼ x′. It is left to show that x ∼ y implies f(x, y) = f(x′, y) for all
y ∈ Y if f is the largest fixpoint. Since x ∼ y, there must be some weighted
automaton γ : Z × (A× Z ∪ {•})→ S and a matrix g : X × Z → S such that
g · γ = α ·Fg and g(x, z) = g(x′, z) for all z ∈ Z. This implies that g ≤X α ·Fg
and hence g ≤X f . Finally, we obtain f(x, y) = f(x′, y) for all y ∈ Y . �

One can imagine the largest fixpoint f : X × Y → S as a matrix that maps
every state into a vector that represents its (language) equivalence class.

4.2.3 Comparison to Conjugacy

We will now compare the alternative characterisation of language equivalence
for weighted automata (i.e. the notion of coalgebra homomorphism) to a
strongly related concept that has been used for deciding language equivalence
for weighted automata, the notion of conjugacy [BLS05, BLS06, Sak09, BÉ93].
A general notion of conjugacy (called simulation) appears in [ÉK01].

The alternative characterisation of language equivalence for weighted au-
tomata via coalgebra homomorphisms is strongly related to the notion of
conjugacy (see [BLS05, Sak09]). In fact, if there exists a matrix f : X × Y → S

such that α · Ff = f · β and f(x, y) = f(x′, y) for all y ∈ Y then the weighted
automaton (X,α) is conjugate to (Y, β) and vice versa (disregarding initial
weights).

We will first define what a conjugacy is, following [BLS05]: a weighted
automaton (I, E, T ) over a state set X consists of a square matrix E (the
transition matrix) of dimension X, whose entries are linear combinations of
letters in A (or, alternatively, vectors of the form SA). Furthermore I, T are
vectors of dimension X, specifying initial and terminal weights.

A weighted automaton specified this way can be transformed into the
corresponding weighted automaton in our notation α ∈ SX×(A×X+1) by omitting



109

the initial weights and setting α(x, (a, y)) = E(x, y)(a), α(x, •) = T (x) for
x, y ∈ X, a ∈ A.

A weighted automaton (I1, E1, T1) over state set X is conjugate to a weighted
automaton (I2, E2, T2) over state set Y , if there exists a matrix Z ∈ SX×Y such
that I1 · Z = I2, E1 · Z = Z · E2, T1 = Z · T2.

We will argue that the last two equations are equivalent to the existence of
a matrix f : X → Y between weighted automata α : X → FX, β : Y → FY ,
such that α ·Ff = f ·β, where α ∈ SX×(A×X+1) is derived from (I1, E1, T1) and
β ∈ SY×(A×Y+1) from (I2, E2, T2).

We set Z = f and observe that in the equation T1 = Z · T2 the vector T1

corresponds to the last column (indexed by •) of α · Ff , since T1 is the last
column of α, left unchanged by multiplication with Ff . On the other hand,
Z · T2 equals the last column of f · β, with T2 being the last column of β and
Z = f

Furthermore observe that α minus its last column is a matrix of dimension
X×(A×X), which is isomorphic to a matrix of (SX×X)A, which corresponds to
the type of E1. Similarly, there is a correspondence between β and E2. Finally,
if we omit the last row and last column (again indexed •) from Ff we obtain
a matrix of dimension (A×X)× (A× Y ), which can be transformed into a
matrix of (SA×A)X×Y , whose entries of type SA×A are diagonal matrices (all
entries on the diagonal of a matrix in position (x, y) are equal and correspond
to f(x, y) = Z(x, y); all other entries are 0). Hence, multiplying α with Ff

(minus last row and column) corresponds to a multiplication with f where
vectors are multiplied with scalars instead of diagonal matrices. In this way we
obtain from α · Ff = f · β the equation E1 · Z = Z · E2.

Similarly, a conjugacy matrix Z can be transformed into the corresponding
matrix f = Z such that α · Ff = f · β.

We do not consider initial weights, hence there is no correspondence for the
equation I1 · Z = I2.

To illustrate this transformation, consider the fuzzy automaton α from
Example 4.1.1.

α =


0.1 0 0 0 0 1 1
0.05 0 0.1 0 0 1 1

0 0 0 1 0 0 1





110

There exists a weighted automaton β and a coalgebra homomorphism f as
follows:

β =


0 0 0 1 0 1 0
0 1 0.1 0 1 1 0
0 0 0 0 0 1 1

 f =


0 0.1 1
0 0.1 1

0.1 0 1


We quickly check that f actually is a coalgebra homomorphism:

α · Ff =


0.1 0 0 0 0 1 1
0.05 0 0.1 0 0 1 1

0 0 0 1 0 0 1

 ·



0 0 0.1 0 1 0 0
0 0 0 0.1 0 1 0
0 0 0.1 0 1 0 0
0 0 0 0.1 0 1 0

0.1 0 0 0 1 0 0
0 0.1 0 0 0 1 0
0 0 0 0 0 0 1



=


0 0.1 0.01 0 0.1 1 1
0 0.1 0.01 0 0.1 1 1
0 0 0 0.1 0 1 1

 =


0 0.1 1
0 0.1 1

0.1 0 1

 ·


0 0 0 1 0 1 0
0 1 0.1 0 1 1 0
0 0 0 0 0 1 1


=f · β

Now we can translate all matrices according to the above construction. From
α, we obtain (Eα, Tα) (no Iα since there are no initial states):

Eα =


0.1a 0 b

0.05a 0.1a b

0 b 0

 Tα =


1
1
1

 .
The translation of β yields:

Eβ =


0 b b

b 0.1a a+ b

0 0 b

 Tβ =


0
0
1


Z = f , so we do not list it again. Now we can check that (Eα, Tα) and (Eβ, Tβ)
are conjugate:

Eα · Z =


0.1a 0 b

0.05a 0.1a b

0 b 0

 ·


0 0.1 1
0 0.1 1

0.1 0 1

 =


0.1b 0.01a 0.1a+ b

0.1b 0.01a 0.1a+ b

0 0.1b b





111

Z · Eβ =


0 0.1 1
0 0.1 1

0.1 0 1

 ·


0 b b

b 0.1a a+ b

0 0 b

 =


0.1b 0.01a 0.1a+ b

0.1b 0.01a 0.1a+ b

0 0.1b b



Z · Tβ =


0 0.1 1
0 0.1 1

0.1 0 1

 ·


0
0
1

 =


1
1
1

 = Tα

4.2.4 Algorithm A for Checking Language Equivalence

We will now, in two steps, work out an algorithm that can be used to find
the largest post-fixpoint for a weighted automaton. This first version of the
algorithm, named Algorithm A, is a non-optimised version of the algorithm and
is based on the final chain construction [AK95], which we have already begun
to illustrate in the motivation for the operator F . We will use this version of
the algorithm to prove correctness of the algorithm, later we will introduce an
optimisation named Algorithm B.

Both algorithms take as input a weighted automaton α : X×(A×X+{•})→
S and return a weighted automaton β : Y × (A× Y ∪ {•})→ S and a matrix
f : X×Y → S such that α ·Ff = f ·β. The matrix f , the largest fixpoint, is of
special interest, since it induces exactly language equivalence on X. In order to
specify the index sets of all matrices involved, we will write FX = A×X ∪{•}
and F iX = F (F i−1(X)) from here on out.

Algorithm 4.2.10 Final Chain Algorithm A
Let α : X → (A×X ∪ {•}) be a weighted automaton. We define the following
algorithm.

Step 0: Take the (unique) matrix dA0 : X × ∅ → S.

Step i+ 1: Compute dAi+1 = α · FdAi : X × F i+1∅ → S.

Termination: If there exists a matrix β : F n∅ → F n+1∅ such that dAn ·β = dAn+1,
i.e., if dAn ≤X dAn+1, the algorithm terminates and returns dAn and β as its
result.

Algorithm A uses the coalgebraic concept of iterating along the final chain,



112

except for the termination condition. It can easily be seen to be a direct
instantiation of Algorithm A from the previous chapter to weighted automata.

X

. . .F∅∅ F n∅ F n+1∅

dA0 dA1 dAn dAn+1 = α · FdAn
! F ! F n−1! F n!

β

The algorithm yields a sequence of matrices dA0 ≥X dA1 ≥X dA2 ≥X . . . that
approximates language equivalence from above. If and as soon as this sequence
becomes stationary, i.e., dAn ≡X dAn+1, the algorithm terminates. The above
image visualises the algorithm as a commuting diagram. The edges of the graph
signify matrices that occur in the algorithm, whereas the nodes are labelled
with their respective dimensions. Two adjacent edges signify matrices that
may be multiplied. The notable property of this diagram is commutativity,
i.e. whenever there are two sequences of arrows starting in a common vertex
and ending in a common vertex, their corresponding matrix products are the
same. For instance, the edges labelled dAn , β and dAn+1 form a triangle, where
dAn starts in the same vertex as dAn+1 and β ends in the same vertex as dAn+1.
Thus, dAn · β = dAn+1, due to commutativity. So this diagram shows how dAi can
be retained from any dAj , where j ≥ i via matrix multiplication. The point at
which this correspondence goes both ways (if it exists), is where the algorithm
terminates and yields β and dAn as its output.

Remark 4.2.11 When applied to a weighted automaton α, Algorithm A com-
putes, for i = 0, 1, . . . , the values Lα(w)(x) for a state x and words w of length
|w| ≤ i. It then checks whether the semimodule spanned by Lα(w) for words up
to length i+ 1 equals the semimodule spanned for words up to length i. If the
semimodules are the same, the algorithm terminates.

We will now show that the algorithm indeed yields the greatest post-fixpoint
whenever it terminates, i.e. it can serve as a semidecision procedure for language
equivalence.

Lemma 4.2.12 Let g : X ×Z → S be any post-fixpoint, i.e. g ≤X α ·Fg, then
for all dAi obtained in Algorithm A we have dAi ≥X g.



113

Proof: Clearly dA0 ≥X g, because dA0 is a 0-dimensional matrix, and it is
immediate, that any matrix can be transformed into a matrix with zero rows by
multiplying it to a matrix that has zero rows. By induction, using Lemma 4.2.7,
we can show that dAi ≥X g implies dAi+1 = α·FdAi ≥X α·Fg ≥X g. The first step
is the induction hypothesis, the second uses the fact that g is a post-fixpoint.

�

Proposition 4.2.13 If Algorithm A terminates in step n, its result dAn induces
language equivalence, i.e. x, x′ ∈ X are language equivalent (x ∼ x′) if and only
if dAn (x, y) = dAn (x′, y) for all y ∈ F n∅.

Proof: First, dA0 ≥X dA1 since dA0 is a matrix with zero rows. Since ≤X is
preserved by functors and by left multiplication with matrices, we obtain by
induction, using Lemma 4.2.7, that dAi ≥X dAi+1. The termination condition says
that dAn ≤X dAn+1 = α ·FdAn . This shows that the matrix dAn is actually a fixpoint.
In order to conclude with Proposition 4.2.9 that the resulting matrix dAn induces
behavioural equivalence, we have to show that it is the largest post-fixpoint.
Assume there is another post-fixpoint g : X × Z → S with g ≤X α · Fg. Then,
Lemma 4.2.12 shows that dAn ≥X g and thus dAn is the largest post-fixpoint. �

Furthermore, whenever dAn ≡X dAn+1 we have that dAn ≡X dAm for every
m ≥ n. Therefore, every arrow dAm obtained at a later step induces behavioural
equivalence as well. In that sense, the algorithm stabilises upon reaching a fixed
point wrt. partitioning the states.

4.2.5 Algorithm B for Checking Language Equivalence

Algorithm A as we have defined it so far can be an effective way of deciding
language equivalence, however we are exploring all words up to a given length
and collect their values for each state in a matrix. The resulting matrix can
quickly grow to unfeasible sizes, when it comes to performing further iteration
steps. We are therefore interested in finding an optimisation of the algorithm
that can shrink the intermediate results as much as possible. For this purpose,
observe that after each step of the algorithm, it is permissible to replace dAi
with any representative eAi of the equivalence class of dAi , i.e., any matrix that
spans the same semimodule. This holds because dAi ≡X eAi implies dAi+1 =
α · FdAi ≡X α · FeAi and checking the termination condition dAn ≤X dAn+1 can



114

instead be done for any representatives of dAn , dAn+1. Consequently, it is clear
that this additional step does not interfere with termination speed. We will see
that in general, this optimisation does not come at an added cost, because to
check the termination condition of Algorithm A, all necessary computations to
find a suitable representative must be computed anyway. This gives rise to the
following algorithm:

Algorithm 4.2.14 Final Chain Algorithm B
Let α : X × (A × X ∪ {•}) → S be a weighted automaton. Moreover, let R,
the class of representatives, be a class of matrices such that for any matrix
d we have a matrix e ∈ R that is equivalent to d, i.e. d ≡X e. We define the
following algorithm:

Step 0: Take the (unique) matrix dB0 : X × ∅ → S.

Step i+ 1: Find a representative eBi ∈ R, for dBi , i.e. factor dBi = eBi · mB
i

such that (eBi : X × Yi → S) ∈ R, mB
i : Yi × FYi−1 → S. Determine

dBi+1 = α · FeBi : X × FYi → S.

Termination: If there exists a matrix γ : Yn×FYn → S such that eBn ·γ = dBn+1,
i.e., dBn+1 ≥X eBn , the algorithm terminates and returns eBn and γ as its
result.

Choosing good and compact representatives can substantially mitigate state
space explosion by reducing the number of columns of the matrices that form
the intermediate results. Hence, Algorithm B is an optimisation of Algorithm A
that (potentially) reduces the number of computations needed in every step.
This optimisation has a cascading effect, since the number of columns of the
matrix in step i+ 1 depends on the number of columns of the matrix in the
previous step i.

The algorithm can be graphically represented via the following diagram,
where the matrices from the Yi to the F i∅ can be constructed from mB

0 , . . . ,m
B
i .



115

X

. . .Y1Y0 Yn

FYn

. . .F∅∅ F n∅ F n+1∅

eB0 eB1 eBn dBn+1 = α · FeBn

! F ! F n−1! F n!

β

mB
n+1

Algorithm B terminates in exactly as many steps as Algorithm A (if it
terminates).

Proposition 4.2.15 Algorithm B terminates in n steps if and only if Algo-
rithm A terminates in n steps. Furthermore, two states x, x′ ∈ X are be-
haviourally equivalent (x ∼ x′) if and only if eBn (x, y) = UeBn (x′, y) for all
y ∈ Yn.

Proof: First, we observe that we always have dBi ≡X dAi . This can be shown
inductively. dA0 = dB0 by definition. Now, assume dAi ≡X dBi , then FdAi ≡FX FdBi

and, since by definition eBi ≡X dBi , FeBi ≡FX FdAi . In both cases, we have used
Lemma 4.2.7, Item (1). Item (2) then yields dBi+1 = α · FeBi ≡X α · FdAi = dAi+1.

In addition, we factor in such a way that eBi ≡X dBi .
If Algorithm B terminates in n steps, then dBn+1 ≥X eBn . This implies dAn+1 ≡X

dBn+1 ≥X eBn ≡X dBn ≡X dAn and Algorithm B terminates as well.
If, on the other hand, Algorithm A terminates in n steps, then dAn+1 ≥X dAn .

We obtain dBn+1 ≥X dAn ≡X dBn ≡X eBn . Hence Algorithm B also terminates in n
steps.

Since dAn ≡X eBn , they induce the same partition on X – the argument for
this is analogous the first part of the proof idea for Lemma 4.2.8. It follows
that one can check behavioural equivalence also with Algorithm B. �

Termination for Algorithm B is independent of the choice of the representa-
tives eBi .

However, Algorithm B need not terminate in general. It does terminate
whenever ≡X has only finitely many equivalence classes. For some choices of
S, this holds for finite state sets X: if S = F is a field, ≡X is of finite index,
whenever X is finite, because finite dimensional vector spaces have a convenient



116

concept of basis that ensures that a vector space of dimension X has a basis of
at most |X| vectors. This means that the algorithm terminates for weighted
automata over fields, whenever the state set X is finite.

However, it need not terminate for all weighted automata, since language
equivalence of weighted automata is undecidable in general. It was shown
in [Kro94, ABK11] that language equivalence is not decidable for weighted
automata with weights over the tropical semiring. Termination hence depends
on the semiring and possibly on the automaton we investigate. In the case
of weighted automata ≡X is of finite index if and only if SX has only finitely
many subsemimodules, but a weaker condition discussed in the next section is
already sufficient for termination.

A class of representatives R must have the property that for every subsemi-
module of SX there exists a matrix a ∈ R generating this subsemimodule, i.e.,
the subsemimodule corresponds to 〈a〉.

Depending on the semiring, the class of representatives can be rather simple,
for instance for fields, one could choose matrices corresponding to the bases of
vector spaces of dimension X. In general, there is no notion of basis for semimo-
dules over a semiring. However, a suitable choice for the class of representatives
is the class of all generating matrices without redundant column vectors.

Definition 4.2.16 (Class of Representatives for Weighted Automata)
We define R as the class of all matrices a that do not contain a column that is
a linear combination of the other columns of a.

To state a termination condition for the case of weighted automata we
define the following generating sets for a given weighted automaton (X,α):
Gn = {Lα(w) | w ∈ A∗, |w| ≤ n} and G∗ = {Lα(w) | w ∈ A∗} = ⋃∞

n=0G
n. It

can be shown that G∗ ⊆ SX is finitely generated if and only if there exists
an index n such that 〈Gn〉 = 〈G∗〉. (Note that 〈G∗〉 consists of all linear
combinations of vectors of G∗. Thus, if it has a finite generator set G, the
vectors of G can again be composed of finitely many vectors of G∗. And these
must be contained in some Gn.)

We will show that Algorithm B terminates whenever 〈G∗〉 is finitely generated
(see also [DK13]). We start with the following lemma. (Note that the notation
(di)w is based on Definition 2.1.7.)



117

Lemma 4.2.17 Let di : X ×F i∅, i ∈ N0 be the sequence of matrices generated
by Algorithm A. Hence F i∅ contains tuples of the form (a1, a2, . . . , ai−1, •),
where aj ∈ A. We will identify such a tuple with the word w = a1a2 . . . ai−1.
Then, for an index i ∈ N0 and a word w with |w| < i, we have (di)w = Lα(w).
This means that 〈di+1〉 = 〈Gi〉.

Proof: We will prove this via induction on i.
Base case: For i = 0 there is nothing to show.
Inductive step: We assume that (di)w = Lα(w) for all words w with |w| < i.

Then we have:

(di+1)w(x) = (α · Fdi)w(x) = (α · Fdi)(x,w)

=
∑

(a,x′)∈FX
α(x, (a, x′)) · Fdi((a, x′), w) + α(x, •) · Fdi(•, w)

We now distinguish the following cases: if w = ε, then by the naming convention
Fdi((a, x′), ε) = Fdi((a, x′), •) = 0, Fdi(•, ε) = Fdi(•, •) = 1. And hence the
term above reduces to α(x, •) = Lα(ε)(x).

If w = bu, b ∈ A, u ∈ A∗, we have Fdi((a, x′), bu) = Fdi((a, x′), (b, u)) =
di(x′, u) if a = b and 0 otherwise, and Fdi(•, bu) = Fdi(•, (b, u)) = 0. Hence
we obtain: ∑

(b,x′)∈FX
α(x, (b, x′)) · di(x′, u) =

∑
x′∈X

α(x, (b, x′)) · di(x′, u)

=
∑
x′∈X

α(x, (b, x′)) · Lα(u)(x′) = Lα(bu)(x) = Lα(w)(x)

�

Proposition 4.2.18 If 〈G∗〉 for a weighted automaton (X,α) is finitely gene-
rated, Algorithm B terminates.

Proof: From Lemma 4.2.17 it follows that 〈dAi+1〉 = 〈Gi〉. Since 〈G∗〉 is finitely
generated, there must be an index n with 〈Gn〉 = 〈Gn+1〉, hence 〈dAn+1〉 = 〈dAn+2〉.
Proposition 4.2.6 then implies that dAn+1 ≡X dAn+2 and hence dAn+1 ≤X dAn+2,
which is exactly the termination condition. Note that this is not impaired when
we consider representatives ei in Algorithm B, since eBn+1 ≤X eBn+2 holds as well.
In fact, a representative eBi generates the same subsemimodule as dAi . �

If S is a field, 〈G∗〉 is always finitely generated (since each subsemimodule
is). Note that for fields, minimal generating sets of semimodules, i.e. bases for



118

vector spaces, always have the same size, so each intermediate result will be of
the smallest size possible. In fact, we can prove that the algorithm terminates
after at most |X| steps.

Lemma 4.2.19 If S is a field, then Algorithm B terminates within n iterations
provided the automaton under investigation has n states.

Proof: If the automaton under investigation has n states, then we are con-
structing a sub vector space of Sn. In a field, a linearly independent set of
vectors of dimension n can have cardinality of at most n. In each iteration of
the algorithm, the number of vectors in eBi either increases over eBi−1, or it stays
the same and the algorithm terminates. Therefore, in each non-terminating
iteration the number of columns of eBi increases by at least 1 over its predecessor.
Since the maximum number of columns an eBi can have is n, the algorithm
terminates after at most n steps. �

Corollary 4.1 Given two states s and t in a weighted automaton (X,α) over
a field where |X| = n, if there exists a word w such that the weight of w under
s is different from the weight of w under t, then there exists a word w′ where
|w′| ≤ n such that the weight of w′ differs between s and t, as well.

Proof: This directly follows from Lemma 4.2.19. In iteration i, Algorithm B
computes a generator for the vector space 〈Gi〉, so after n steps – where the
algorithm terminates at the latest – it has computed a generator for the vector
space 〈Gn〉. Since the algorithm is correct, it terminates after n steps at the
latest and finds two states s, t not to be language equivalent if and only if there
exists a word w that separates s and t within 〈Gm〉 ⊆ 〈Gn〉, where m is the
iteration where the algorithm terminates. �

For fields the algorithm coincides with earlier work by Schützenberger [Sch61]
who investigated a similar procedure, taking into account initial weights and
exploring the words from left to right instead of from right to left. A detailed
presentation of the algorithm for fields can be found in Chapter 3 of [BR88].
Similar algorithms were presented in [Bor09, ABH+12]. Schützenberger’s work
was extended by Flouret and Laugerotte, [DK13, FL97], to skew-fields, structu-
res that are almost fields, but where multiplication need not be commutative.
A further extension can be found in [BLS06, BLS05], extending the decidability



119

result to principal ideal domains such as (Z,+, ·). As we have shown earlier,
the algorithm is also strongly related to conjugacy, investigated for instance in
[Sak09].

We can easily specify some classes where the algorithm necessarily terminates.
If S is a finite semiring, the algorithm terminates since there are only finitely
many different column vectors of a fixed dimension |X|. If S is a distributive
complete lattice, the algorithm will terminate as well.

Corollary 4.2.20 Algorithm B always terminates on weighted automata with
weights from a distributive complete lattice.

Proof: [Sketch] This is a corollary of Proposition 4.2.18. First, observe that
there are only finitely many weights contained in a finite automaton. Since we
are working in a distributive lattice S, we can write the weights Lα(w) for every
word w in disjunctive normal form, using distributivity. Due to idempotence,
only finitely many elements of S can be obtained via meet and join and thus
there are only finitely many different column vectors of a fixed dimension.

�

Note that this argument cannot be used for arbitrary l-monoids, since the
multiplication of l-monoids need not be idempotent, a property which is used
in the proof above. In fact, the algorithm need not terminate for all l-monoids,
an example for this is presented later in Example 4.3.7.

For distributive lattices, it also does not follow that each spanned semimodule
is finite, only that there are only finitely many different semimodules that can
occur. For instance, in an infinite distributive lattice the vector (>, . . . ,>)
generates a vector (>,>, . . . ,>) u l = (l, l, . . . , l) for each lattice element l and
the generated subsemimodule is hence infinite in size.

Note that termination does not necessarily imply decidability of language
equivalence. For this it is also necessary to be able to decide whether two
matrices are equivalent, i.e., whether a vector is generated by a given set of
generators. This need not be decidable in general, but it is decidable in all the
cases above.



120

4.3 Algorithmic Issues and Case Studies

4.3.1 A Concrete Instantiation of Algorithm B

For easier understanding, we will now state Algorithm B for weighted automata
in a more programming language-like notation. Note that we will assume that
matrices have attributes rows and columns that contain the number of rows,
respectively columns, of a matrix. Moreover, concatenate takes two matrices
with the same number of rows and adds the columns of the second matrix as
new columns at the end of the first matrix. For a matrix m, m[i . . . j] denotes
the submatrix of m consisting of the columns i, i+ 1, . . . , j.

Algorithm 4.3.1 Language Equivalence Check (Algorithm B)
• Input: A weighted automaton α with state set X and labels A, with
weights from a semiring S = (S,+, ·, 0, 1). That is, α is a matrix of
dimension X × (A×X + 1) with entries from S.

• Output: (β, e), where β is a weighted automaton with state set Y and
e : X → Y is a coalgebra homomorphism.

Algorithm B (α)

1 e0 := the unique (X × ∅)-matrix

2 i := 0
3 do

4 i := i+ 1
5 di := α · F (ei−1)
6 (mi, ei) :=factorise(di)
7 while ei 6= ei−1

8 return (mi, ei)

From the output e we can infer language equivalence by checking whether
x̂t · e = ŷt · e, where x̂, ŷ are the unit vectors of dimension X that correspond
to x, y.

The algorithm above uses a (non-deterministic) function factorise, which
still needs to be specified. The function factorise is expected to find for a



121

given matrix d two matrices e andm such that e·m = d and e is a representative
matrix, i.e. no row of e can be obtained via linear combination from the other
rows of e. We will now discuss one possible implementation of factorise,
where the general idea is to check for the columns one after another whether
they can be eliminated since they can be reconstructed from the remaining
columns.

For an arbitrary semiring, this function can be implemented as follows.

Algorithm 4.3.2 Factorisation
• Input: An S-valued n× k-matrix d.

• Output: A pair (m, e) of S-valued matrices, where e ·m = d and e ∈ R.

factorise (d)

1 e := d

2 m := (n× n) unit matrix

3 i := 1
4 while i ≤ m.columns do

5 e′ :=concatenate(e[i+ 1...n], e[1...i− 1])
6 x :=findLinearCombination(e′, e[i])
7 if x 6= undefined then

8 e := e′

9 m′ := (m.columns−1)× (m.columns−1) unit matrix

10 insert x into m′ after the (i− 1)-th column

11 m := m′ ·m
12 else

13 i := i+ 1
14 return (m, e)

In the factorisation algorithm above we check in line 6 and line 7 whether
a column e[i] can be obtained as a linear combination of other columns in e.
If this is the case we construct a new matrix e′ by removing this redundant
column from e (line 8) and define the matrix m′ such that e′ ·m′ equals the
original matrix e (line 9 and line 10). This matrix m′ is then used to update m
(line 11).



122

Intuitively, the entire algorithm computes, for each state and words of
increasing length, the corresponding weight. A column (corresponding to a
word) is removed from the intermediate result if it can be represented as a
linear combination of other columns. As a consequence, in the next steps, no
extensions of this word are explored. It is important to note, that the columns
are checked one after another, so if e.g. two columns exist that are multiples
of each other but cannot be obtained via linear combinations of the other
columns, one of the columns will remain. The algorithm continues until the
subsemimodule spanned by the columns remains stable.

Note that, due to this specific way of implementing factorise, two matrices
ei, ei+1 in Algorithm B span the same subsemimodule if and only if they are
equal (cf. line 7 in the language equivalence check). The reason for this is that
new columns get added over ei when computing di+1 to the left, whereas ei is
retained in the right-most columns.

The algorithm calls a function findLinearCombination(A,b) that returns
a vector x such that A · x = b, provided such a vector exists. Otherwise, i.e.
if there is no linear combination of the columns of A that yields the vector b,
the return value of the function call function findLinearCombination(A,b)

is undefined.

Moreover, Algorithm B applies the operator F to a matrix e. In order
to make this explicit, we define the following method, where matrices have
indices numbered from 1 to a fixed bound. More specifically, if e is an (n×m)-
matrix and k = |A| is the size of the alphabet A = {a1, . . . , ak}, then Fe is a
(k · n+ 1)× (k ·m+ 1)-matrix. The column index of (ai,j) is k · (i− 1) + j and
the index of • is k ·m+ 1, analogously, the indices can be computed for the
rows.



123

Algorithm 4.3.3 Operator application F (e)

• Input: An S-valued (n×m)-matrix e.

• Output: An S-valued (k · n+ 1)× (k ·m+ 1)-matrix e′ with e′ = Fe.

F (e)

1 e′ := (k · n+ 1)× (k ·m+ 1)-zero matrix

2 for a1 := 1 to a do

3 for x := 1 to n do

4 for a2 := 1 to a do

5 for y := 1 to m do

6 if a1 = a2 then

7 e′[k · (x− 1) + a1, k · (y − 1) + a2] := e[x, y]
8 e′[a · n+ 1, a ·m+ 1] := 1
9 return e′

The algorithm still is not fully specified, since we did not state how the
procedure findLinearCombination works. The reason for this is, that this
problem cannot be solved in general for all semirings. Instead, individual
solutions for specific semirings or classes of semirings must be sought. Of
course, for fields and division rings, i.e. structures that are almost fields but
where multiplication need not be commutative, this problem can be solved via
Gaussian elimination.

Hence, we will now inspect another class of weighted automata, so-called
fuzzy automata, where the weights are taken from an l-monoid.

4.3.2 Case Study: l-Monoids and Fuzzy Automata

For l-monoids, we can use a procedure for finding linear combinations that
uses an algorithm based on residuation [BJ72]. It has been used to solve linear
equations of the form A · x = b as early as 1979 [CG79].

We require that arbitrary joins in the l-monoid (L,t, ·, 0, 1) exist
and that the multiplication · distributes over arbitrary joins.



124

In this case we can define a residuation operation for a, b ∈ L:

(a→ b) =
⊔
{x ∈ L | a · x ≤ b}

Note that since multiplication distributes over joins we have a · (a→ b) ≤ b.

Example 4.3.4 Residuation is defined for the l-monoid ([0, 1],max, ·, 0, 1)
from Example 2.2.20 as follows:

(a→ b) = max{x ∈ [0, 1] | a · x ≤ b} =


b
a

if a > b

1 otherwise

Now, given A ∈ Lm×n, b ∈ Lm. We define a candidate solution vector x̃ ∈ Lm

as follows, where 1 ≤ j ≤ m:

x̃j =
ml

i=1
(aij → bi).

Note that, since arbitrary joins exist, we can also take meets (since the meet of
a set S is the join of all elements smaller than all the elements in S).

Now it follows from results in [CG79] that A · x = b has a solution if and
only if A · x̃ = b. Furthermore, in this case x̃ is the greatest solution.

Using the l-monoid ([0, 1],max, ·, 0, 1) from Example 2.2.20, we illustrate
the algorithm for finding linear combinations. We will give an example where
no solution exists.

Example 4.3.5 Given A =
0.1n−1 1

1 1

, b =
0.1n

1

, we can show that the

equation A · x = b has no solution, for all n ∈ N. Again, we compute x̃1 and x̃2:

x̃1 = min{0.1n−1 → 0.1n, 1→ 1} = min
{ 0.1n

0.1n−1 ,
1
1

}
= 0.1

x̃2 = min{1→ 0.1n, 1→ 1} = min
{0.1n

1 ,
1
1

}
= 0.1n

Now, we have found a candidate x̃ :=
 0.1

0.1n

 and need to check whether

A · x̃ = b. However, this is not the case:0.1n−1 1
1 1

 ·
 0.1

0.1n

 =
max{0.1n, 0.1n}

max{0.1, 0.1n}

 =
0.1n

0.1

 6=
0.1n

1


So, we have proven that A · x̃ 6= b and therefore that there is no x such that
A · x = b.



125

di mi ei
1
1
1

 (
1
) 

1
1
1




0.1 1 1
0.1 1 1
0 1 1


1 1 0

0 1 1




0.1 1
0.1 1
0 1




0.01 0 0.1 1 1
0.01 0 0.1 1 1

0 0.1 0 1 1




0 1 0 1 0
0.1 0 1 1 0
0 0 0 1 1




0 0.1 1
0 0.1 1

0.1 0 1




0 0.1 0.01 0 0.1 1 1
0 0.1 0.01 0 0.1 1 1
0 0 0 0.1 0 1 1




0 0 0 1 0 1 0
0 1 0.1 0 1 1 0
0 0 0 0 0 1 1




0 0.1 1
0 0.1 1

0.1 0 1



Table 4.1: Algorithm B applied to the automaton from Example 4.1.1, the i-th
line (i = 1 . . . 4) of the table represents the intermediate results from the i-th
iteration

Note that from the considerations above we can easily derive a procedure
findLinearCombination as required by the algorithm. Using this procedure
Algorithm B can be applied to weighted automata over l-monoids, as long as the
required operations, i.e. ·, u, t and→, are computable. However, the algorithm
may not terminate for some l-monoids. For every distributive bounded lattice
and every locally finite2 l-monoid it will terminate though, since only finitely
many different column vectors can appear in the ei.

Example 4.3.6 We now get back to the fuzzy automaton from Example 4.1.1
and apply Algorithm B to it. We start with d0 = e0, a 0 × 3-matrix. Now,
Tabelle 4.1 contains all further intermediate results computed by the algorithm.
Note that d1 = e1 = α · Fe0 is simply the last column of α.

2A semiring is locally finite if each finitely generated subsemiring is finite.



126

Next we obtain Fe1 =



1 0 0
0 1 0
1 0 0
0 1 0
1 0 0
0 1 0
0 0 1


.

d2 = α · Fe1 =


0.1 0 0 0 0 1 1
0.05 0 0.1 0 0 1 1

0 0 0 1 0 0 1

 ·



1 0 0
0 1 0
1 0 0
0 1 0
1 0 0
0 1 0
0 0 1


=


0.1 1 1
0.1 1 1
0 1 1



The next step is to look for a representative e2 for d2. For this, we apply the
method factorise which amounts to checking for each column, starting from
the first, whether it is a linear combination of the other columns. Obviously
the second column, which is equal to the third, is a linear combination of the
first and the third column. The largest solution to the corresponding equation
multiplies each of the two columns with 1 and takes the maximum. No further
columns can be eliminated and factorisation yields e2 and m2 in Tabelle 4.1.

In d3 the first and fourth column can be eliminated, whereas in d4 this is
true for the first, second, third and sixth column. Hence, we obtain e3 = e4 and
the algorithm terminates.

The row with the matrices mi shows the redundant information that has been
factored out. Again m4 can be considered as a representative of α that can be
used to decide language equivalence.

Looking at the result of the overall algorithm, e4, we can conclude: States 1
and 2 are equivalent, since their respective rows are equal, whereas state 3 is
not equivalent to the others, since its row differs from the first two.

Now that we have seen how the algorithm works, we present an example
where it does not terminate, again using the l-monoid from Example 2.2.20.



127

iteration di mi ei

i = 1
1

1

 1
1

1


i = 2

0.1 1
1 1

 1 1
0 1

 0.1 1
1 1


n ≥ 3

0.1n−1 0.1n−2 1
1 1 1

  1 1 1
0.1n−1 0.1n−2 1

 0.1n−1 1
1 1



Table 4.2: Algorithm B applied to the example automaton

Example 4.3.7 Consider the following weighted automaton over the l-monoid
([0, 1],max, ·, 0, 1), two states 1, 2 and one alphabet letter a:

1 2

a, 1

1

a, 0.1

1

α =

(a
,1

)

(a
,2

)

•
1
2

0.1 0 1
0 1 1



Tabelle 4.2 contains the intermediate results produced by the algorithm
applied to α. The algorithm will not terminate, because as we have seen in
Example 4.3.5, the new column added in each iteration cannot be obtained as
linear combination of the old columns. However, since in iteration 2 states 1
and 2 are already separated, we could stop the computation after step 2 and
conclude that states 1 and 2 are not equivalent. Since a word separating two non-
equivalent states must always exist, the algorithm is a semi-decision procedure
to check whether two states are not language equivalent. However, we cannot
state whether two states are equivalent based on an intermediate result obtained
before termination.

Note that non-termination is sometimes unavoidable for this l-monoid. In fact
the tropical semiring (R+

0 ∪ {∞},min,+,∞, 0) is isomorphic to the l-monoid
([0, 1],max, ·, 0, 1) via the isomorphism f : R+

0 → [0, 1], x 7→ 2−x. From undecida-
bility of language equivalence checking for the tropical semiring [Kro94, ABK11]
we can then straightforwardly conclude undecidability for our example semiring.



128

4.4 Conclusion

In order to conclude, we will first introduce the implementation and then sum-
marise related work, both from the areas of coalgebra and weighted automata.
Finally, we mention some ideas for future work.

Implementation: We have developed a generic implementation of the al-
gorithms presented in this chapter using C#. Currently, Algorithm B is im-
plemented and can be used for automata defined over arbitrary semirings, if
the operations of the semiring and the method findLinearCombination are
provided. For this, we have implemented a semiring generator that supports
the definition of arbitrary semirings, including a method for finding linear com-
binations [Mik15, KKM17]. We have instantiated the algorithm to fields (using
Gaussian elimination for equation solving), to distributive lattices, l-monoids
and other algebraic structures. All examples in this section were verified with
the implementation. This implementation formed the basis for the tool Paws
which contains implementations of most algorithms presented in this thesis
and has been enhanced by my colleague Christina Mika in her Master’s thesis
with a visual interface and a semiring generator to allow for convenient and
flexible usability of the implementation for any semiring, cf. Section 8.1 for
more details on Paws.

Related Work: As already mentioned in the introduction, there are many
closely related concepts and methods in the field of weighted automata and
rational formal power series. Consequently, we do not claim much originality
for the instantiation of our generic algorithm to weighted automata.

For weighted automata there exist minimisation algorithms for a special class
that is known in the literature as deterministic weighted automata that, however,
do not work in the more general case. These algorithms are based on the idea
of redistributing the weights of transitions in a canonical way and applying
the minimisation algorithm for deterministic automata (without weights) to
the resulting automaton, where label and weight of each transition form a new
transition label in the deterministic weight-free automaton. Mohri’s algorithm
[Moh97, Moh09] is based on weight pushing, and is applicable whenever S is
zero-sum-free and weakly divisible. Eisner’s algorithm [Eis03] works whenever



129

S has multiplicative inverses. He remarks that his variation of weight pushing
can also be applied to some semirings that do not have inverses, if they can be
extended to ones that do have inverses. However, then, the minimal automaton
might carry weights outside of S.

Enumerating words of increasing length and stopping when longer words do
not generate a larger semimodule is an idea used by several authors [BLS06,
BLS05, BR88], for semirings such as fields and principal ideal domains. The
fact that this procedure is basically an instance of the proposed Algorithm B is
not too surprising, considering – as we have shown before – that conjugacy and
coalgebra homomorphisms for weighted automata are strongly related concepts.
Since the reduction step in [BLS06] is a special instance of choosing a set of
generators for a given semimodule, their proofs also show that Algorithm B
always terminates for Z. Skew-fields on the other hand have been considered in
[FL97]

Droste and Kuske [DK13] describe when equivalence of two weighted auto-
mata is decidable, based on earlier results by Schützenberger [Sch61]. Again,
their decidability result is close to our own, only they work with weighted
automata with initial weights. They show that whenever S is a ring such that
every subsemimodule generated by an automaton is finitely generated, language
equivalence is decidable.

Ésik and Maletti have investigated proper semirings in [ÉM10] and have
proven that language equivalence for weighted automata is decidable whenever
the corresponding semiring is proper and effectively presentable. Furthermore,
they investigated Noetherian semirings, i.e. semirings where every subsemimo-
dule of a finitely generated S-semimodule is finitely generated. However, they
do not give a concrete algorithm.

Additionally, there are several contributions on axiomatic treatment of
language equivalence aimed at characterising weighted languages as the free
algebras in certain classes of semirings. This line of work goes back to Morisaki
and Sakai, establishing a characterisation of this kind for weighted automata
with weights taken from a field [MS80]. Krob has extended this work to rings in
[Kro91]. A thorough investigation of this line of work can be found in [BÉ93].
Ésik has further found characterisations as free algebras for weighted languages
over N ∪ {∞} (together with Bloom, [BÉ09]), certain commutative ordered



130

semirings with a ∗-operation (together with Kuich, [ÉK13]) and the languages of
weighted tree automata [Ési11], extending the notion of conjugacy to weighted
tree automata, as well.

Kiefer et al. [KMO+11] have investigated optimisations for the case of weigh-
ted automata with weights over the field R, with applications to probabilistic
automata. Their algorithm is a probabilistic optimisation of an algorithm that
enumerates words of length at most n, where n is the number of states, and
their weights. As far as we know this method can not easily be generalised to
arbitrary semirings.

Language equivalence is not decidable for every semiring. For instance, it
was shown that language equivalence is undecidable for the tropical semiring
[Kro94, ABK11].

Therefore, procedures very similar to the instantiation of our Algorithm B
to weighted automata have been described in several papers, usually restricted
to certain types of semirings. This instantiation of Algorithm B to weighted
automata is offering a general account on how to decide language equivalence
for a wide array of semirings that makes use of linear combinations to shrink the
intermediate results. In the next chapter we will discuss further optimisations
for specific semirings that build upon this optimisation via linear combinations,
but adds further optimisations in form of up-to techniques using congruence
closures and simulations.

Future Work: For future work we plan to further investigate the issue of
termination: are there more general criteria which guarantee termination for
our algorithms? For this we will need a suitable notion of “finiteness” in a
general categorical setting, for instance the notion of finitely generated or locally
presentable [AR94].

Furthermore, when working with equivalence classes of arrows, it is necessary
to find good representatives, in order to discard redundant information and
make the representation more compact.

Recently, weighted automata over a more general structure than semirings,
valuation monoids, have been studied. Valuation monoids consist of a commuta-
tive monoid, which intuitively acts as the addition in a semiring and a valuation
function that maps sequences of monoid elements to single elements, acting as



131

the obvious projection on single-element sequences and maps sequences that
contain the neutral element of the monoid operation to the neutral element.
The valuation function takes the role of the multiplication in a semiring, yet
even fewer conditions are required. While the neutral element of the addition is
cancellative for the valuation function as it is true for semirings, the valuation
function need not be associative and need not have a neutral element. Addi-
tionally, distributivity need not hold between the valuation function and the
monoid operation. Valuation monoids have been studied for weighted automata
for instance by Droste and Meinecke [DM12], where a weighted MSO logic was
developed for weighted automata over valuation monoids (with some additional
structure). It is an interesting challenge to analyse these more general weighted
automata using a coalgebraically motivated framework and to find out whether
the techniques developed in this chapter can be adapted. The same restrictions
used by Droste and Meinecke, introducing a neutral element wrt. multiplication
may be required for a coalgebraic treatment though, to ensure the existence of
identity matrices.

More specifically, weighted automata have been extended to arbitrary, i.e.
not necessarily distributive, bounded lattices, which can serve as interesting
special cases of valuation monoids, cf. e.g. [DV12]. Note, that bounded lattices
can be identified as valuation monoids by letting the supremum operation
together with the bottom element form the monoid and taking the infimum
operation as the valuation function. A major challenge wrt. an adaptation of
the techniques developed in this chapter to bounded, non-distributive lattices
is the the lack of a useful notion of linear combination. When multiplication
distributes over addition, matrix multiplication is associative, but this fails to
hold when the structure under consideration is not distributive. A different
notion of equivalence would therefore be required.



132



Chapter 5

Up-To Techniques for Weighted
Systems

5.1 Introduction

In the previous Chapter 4, we have discussed how we can determine all language
equivalent pairs of states in a weighted automaton via means of a generalised
partition refinement algorithm. This approach corresponds to the well-known
minimisation procedure for deterministic automata. However, this technique
need not terminate for all semirings – which is a consequence of undecidability
of language equivalence in the general case – and even if it terminates, for many
semirings the algorithm does not perform very well. This is, why we will now
have a look at an alternative approach, that is again motivated by techniques
for weighted automata over the binary Boolean algebra, i.e. non-deterministic
automata.

Language equivalence of deterministic automata can be checked by means of
the bisimulation proof principle. For non-deterministic automata, this principle
is sound but not complete: to use bisimulation, one first has to determinise
the automaton, via the so-called powerset construction. Since the determinised
automaton might be much larger than the original non-deterministic one,
several algorithms [WDHR06, DR10, ACHV10, BP13] have been proposed to
perform the determinisation on the fly and to avoid exploring a huge portion
of states. Among these, the algorithm in [BP13] that exploits up-to techniques
is particularly relevant for this chapter. Though in Chapter 4 we have already

133



134

explored an optimisation that may be regarded as up-to linear combination,
here, we aim at up-to congruence, which subsumes up-to linear combination.
Additionally, instead of a partition refinement algorithm, we will now focus
on an on-the-fly-technique, that builds a language equivalence relation while
exploring words of increasing length. It is worth noting that we do not aim to
find all pairs of equivalent states (as in Chapter 4), but to determine if a given
pair of states is language equivalent, instead.

Up-to techniques have been introduced by Robin Milner in his seminal work
on CCS [Mil89b] and, since then, they have proven useful, if not essential, in
numerous proofs about concurrent systems (see [PS11] for a list of references).
According to the standard definition, a relation R is a bisimulation whenever
two states x, y in R can simulate each other, resulting in a pair x′, y′ that is
still in R. An up-to technique allows to replace the latter R by a larger relation
f(R) which contains more pairs and hence allows to cut off bisimulation proofs
and work with much smaller relations.

Here, we focus on up-to techniques in a quantitative setting: weighted systems,
especially weighted automata over arbitrary semirings. Some examples of up-to
techniques for weighted systems already appeared in [BPPR14b] and [RBB+15],
that study up-to techniques from the abstract perspective of coalgebras.

Although up-to techniques for weighted systems have already received some
attention, their relevance for algorithms to perform behavioural analysis has
never been studied properly. This is the main aim of this chapter: We give a
uniform class of algorithms exploiting up-to techniques to solve the problems
of equivalence, inclusion and universality, which, in the weighted setting, asks
whether the weight of all words is below some given threshold. In particular we
show how to implement these techniques and we perform runtime experiments.

The key ingredient to algorithmically exploit up-to techniques is a procedure
to decide, given x, y, R as above, whether x, y belongs to f(R). For a non-
deterministic automaton (NFA) with state space S, the algorithm in [BP13]
uses as sub-routine a rewriting system to check whether two sets of states
S, S ′ ∈ P(X) – representing states of the determinised automaton – belong to
c(R), the congruence closure of R.

For NFA, the congruence closure is taken with respect to the structure of
join semi-lattices (P(X),∪, ∅), carried by the state space of a determinised



135

automaton. For weighted automata, rather than join semi-lattices, we need to
consider the congruence closure for semimodules. Indeed, an analogue of the
powerset construction for weighted automata results in a sort of “determinised
automaton” (called in [BBB+12] linear weighted automaton) whose states are
vectors with values in the underlying semiring. We have discussed this approach
for general semirings in the previous Chapter 4.

Our first issue is to find a procedure to check whether two vectors belong
to the congruence closure (with respect to semimodules) of a given relation.
We face this problem for different semirings, especially rings and l-monoids.
For l-monoids we adapt the rewriting procedure for the non-deterministic case
[BP13] and show its confluence and termination, which guarantees a unique
normal form as a representative for each equivalence class. Confluence holds
in general and termination can be shown for certain semirings, such as the
tropical semiring (also known as the (min,+)-semiring).

Reasoning up-to congruence is sound for language equivalence, but not for
inclusion. For the latter, we need the precongruence closure that, in the case of
l-monoids, can be checked with a simple modification of the rewriting procedure.
Inspired by [ACHV10], we further combine this technique with a certain notion
of weighted similarity, a preorder that entails language inclusion and can be
computed in polynomial time.

We then show how to apply our up-to techniques to language equivalence and
inclusion checks for weighted automata. For some interesting semirings, such
as the tropical semiring, these problems are known to be undecidable [Kro94].
But based on the inclusion algorithm we can develop an algorithm which solves
the universality (also called threshold) problem for the tropical semiring over
the natural numbers. This problem is known to be PSPACE-complete and we
give detailed runtime results that compare our up-to threshold algorithm with
one previously introduced in [ABK11].

Throughout this chapter, we use the following notations and conventions:

• For notational convenience, we assume that for index sets X it holds that
X = {1, 2, . . . , |X|} and we write a vector v as a column vector.

• M [x, y] denotes the (x, y)-th entry of a matrix M and v[x] denotes the
x-th entry of v.



136

(Rel)
v R w

v c(R) w
(Refl)

v c(R) v
(Sym)

v c(R) w
w c(R) v

(Trans)
u c(R) v v c(R) w

u c(R) w
(Sca)

v c(R) w
v · s c(R) w · s

where s ∈ S

(Plus)
v1 c(R) v′1 v2 c(R) v′2
v1 + v2 c(R) v′1 + v′2

Table 5.1: Proof rules for the congruence closure

• We will always require l-monoids to be completely distributive, to ensure
that we have a residuation operation.

5.2 Congruence Closure

As explained at the beginning of the chapter, the key ingredient for exploiting
up-to techniques in Section 5.3 is an algorithmic procedure to check whether
two vectors belong to the congruence closure of a given relation of vectors. In
this section, we will formalise the problem and propose an algorithmic treatment
for rings and l-monoids.

5.2.1 Problem Statement

Let X be a finite set and let S be a semiring. A relation R ⊆ SX × SX is a
congruence if it is an equivalence and closed under linear combinations, that is,
for each (v1, v

′
1), (v2, v

′
2) ∈ R and each scalar s ∈ S, (v1 + v2, v

′
1 + v′2) ∈ R and

(v1 · s, v′1 · s) ∈ R. The congruence closure c(R) of a relation R over a semiring
S is the smallest congruence R′ ⊆ SX × SX such that R ⊆ R′. Alternatively,
two vectors v, v′ ∈ SX are in c(R) whenever this can be derived via the rules
in Table 5.1.

Given a finite R ⊆ SX × SX and v, w ∈ SX , we aim to determine if (v, w) ∈
c(R).

In [BP13], Bonchi and Pous presented a procedure to compute the congruence
closure for the two-valued Boolean semiring B = {0, 1}. The purpose of this
section is to generalise the procedure towards more general semirings, such as
rings and l-monoids.



137

5.2.2 Congruence Closure for Rings

A simple case to start our analysis is the congruence closure of a ring. It is kind
of folklore (see e.g. [Sta03, Bor09]) that a submodule1 can be used to represent
a congruence. In particular we write [V ] to denote the submodule generated by
a set of vectors V .

Proposition 5.2.1 Let I be a ring and X be a finite set. Let R ⊆ IX × IX

be a relation and let (v, v′) ∈ IX × IX be a pair of vectors. We construct a
generating set for a submodule of IX by defining UR = {u − u′ | (u, u′) ∈ R}.
Then (v, v′) ∈ c(R) iff v − v′ ∈ [UR].

In order to prove this proposition, we first define the following two functions
that translate between the two sets R and UR:

• u : P(IX × IX)→ P(IX) with u(R) = {v − v′ | (v, v′) ∈ R}.

• r : P(IX)→ P(IX × IX) with r(U) = {(v, v′) | v− v′ ∈ U}, where U ⊆ IX ,
i.e., U is a set of I-vectors.

For the functions r and u we can prove some basic properties.

Lemma 5.2.2

(i) Let I be a ring. Let R ⊆ IX × IX be a congruence. Then u(R) is a module.
(ii) Let I be a ring. Let U ⊆ IX be a module. Then r(U) is a congruence.

Proof:

(i) We will show that u(R) contains all vectors generated via linear combi-
nation from u(R), making u(R) a generating set for itself, i.e. a module.

• Let v′′ ∈ u(R) then there must be v, v′ ∈ IX such that (v, v′) ∈ R and
v− v′ = v′′. Since R is a congruence, it follows that (v · s, v′ · s) ∈ R
for any s ∈ I. This means that v · s − v′ · s ∈ u(R), distributivity
now proves (v − v′) · s ∈ u(R), i.e. v′′ · s ∈ u(R).

• Let v′′1 , v′′2 ∈ u(R). Then there must be v1, v
′
1, v2, v

′
2 ∈ IX such that

v′′i = vi − v′i and (vi, v′i) ∈ R for i = 1, 2. Since R is a congruence, it
follows that (v1 + v2, v

′
1 + v′2) ∈ R. Thus, (v1 + v2)− (v′1 + v′2) ∈ u(R).

1A subsemimodule for a ring is called submodule.



138

Commutativity of addition yields (v1 − v′1) + (v2 − v′2) ∈ u(R), i.e.
v′′1 + v′′2 ∈ u(R).

(ii) • Reflexivity: Let any v ∈ U be given, then v · 0 ∈ U , so the 0-vector
is in U . For any given v ∈ IX , v − v = 0, thus (v, v) ∈ r(U).

• Symmetry: Let (v, v′) ∈ r(U), then v − v′ ∈ U . Since U is a module,
(v − v′) · (−1) ∈ U and thus −v + v′ = v′ − v ∈ U , therefore
(v′, v) ∈ r(U).

• Transitivity: Let (v, v′) ∈ r(U), (v′, v′′) ∈ r(U), then v − v′ ∈ U and
v′ − v′′ ∈ U . Since U is a module, (v − v′) + (v′ − v′′) ∈ U and thus
v − v′′ ∈ U . Therefore (v, v′′) ∈ R(U).

• Addition: Let (v1, v2) ∈ r(U) and (v′1, v′2) ∈ r(U), then v1 − v2 ∈ U
and v′1− v′2 ∈ U . Therefore (v1− v2) + (v′1− v′2) ∈ U . Commutativity
yields (v1 + v′1)− (v2 + v′2) ∈ U , i.e. (v1 + v′1, v2 + v′2) ∈ r(U).

• Multiplication: Let (v, v′) ∈ r(U) and s ∈ I. Then v − v′ ∈ U . Since
U is a module, (v − v′) · s ∈ U , distributivity yields v · s− v′ · s ∈ U
and thus per definition (v · s, v′ · s) ∈ r(U).

�

Using these properties, we are now prepared to prove Proposition 5.2.1.
Proof (of Proposition 5.2.1): According to Lemma 5.2.2 we know that if R is a
congruence, then u(R) is a submodule and if U is a submodule then r(U) is a
congruence.

Observe that R ⊆ R′ implies u(R) ⊆ u(R′) via definition of u and r(U) ⊆
r(U ′) whenever U ⊆ U ′, by definition of r.

Observe furthermore that r(u(R)) ⊆ c(R) holds, because if (v1, v2) ∈ r(u(R)),
then there exists a (v′1, v′2) ∈ R such that v1−v2 = v′1−v′2, hence v′1−v1 = v′2−v2.
Now (v′1 − v1, v

′
1 − v1) ∈ c(R) due to reflexivity and thus we obtain: (v1, v2) +

(v′1−v1, v
′
1−v1) = (v1, v2)+(v′1−v1, v

′
2−v2) = (v1+v′1−v1, v2+v′2−v2) = (v′1, v′2),

hence (v′1, v′2) ∈ c(R). Thus, r(u(R)) ⊆ c(R), proving also that congruences are
fixed points of the monotone function r ◦ u, since r(U) is always a congruence
and for every congruence R it holds that c(R) = R.

Now we can observe that the module generated by a set of vectors is the
smallest module that contains this set and the congruence closure of a relation
is the smallest congruence closed relation containing that relation.



139

We will now show r([UR]) = r([u(R)]) = c(R), thus proving the statement
of the proposition. We have u(R) ⊆ u(c(R)) and we know that u(c(R)) is a
submodule from Lemma 5.2.2.(i), hence the submodule generated by u(R) is
included in u(c(R)), i.e. [u(R)] ⊆ u(c(R)). Therefore, r([u(R)]) ⊆ r(u(c(R))) =
c(R), and since Lemma 5.2.2.(ii) shows that r applied to a submodule yields a
congruence and we have R ⊆ r([u(R)]) ⊆ c(R), the second inclusion is indeed
an equality. �

This procedure directly yields a simple algorithm for a congruence check
whenever we have a suitable algorithm to solve linear equations, e.g. for fields. If
the ring is not a field, it might still be possible to embed it into a field. In this case
we can for instance solve the language equivalence problem (Subsection 5.3.2)
for weighted automata in the field and the results are also valid in the ring.
Similarly, the procedure can be used for probabilistic automata which can be
seen as weighted automata over the reals.

5.2.3 Embedding Semirings into Fields

This is an interesting property for the analysis of weighted automata. Assume a
weighted automaton over a semiring that can be embedded into a field is given.
Then one can embed the weights of the automaton into the field and decide
language equivalence on the field. Since any pair of states is language equivalent
in the field if and only if they are language equivalent in the semiring, this is a
correct decision procedure for language equivalence. Note, however, that this
embedding cannot be used to compute the congruence closure in the semiring,
since factors that do not exist in the semiring may be required for some linear
combinations.

Integral domains can be seen as sub-structures of fields and therefore, deciding
language equivalence for weighted automata over integral domains is not only
decidable but can be efficiently computed in just as many steps as there are
states in the automaton. However, integral domains are special rings and
weighted automata are defined over arbitrary semirings, so it is natural to
ask, under which circumstances we can embed a semiring into a ring. We will
give a necessary and sufficient condition for this. The construction uses the
Grothendieck group of the additive monoid. Since some proofs in this section
are rather technical and not important to the rest of this chapter, the interested



140

reader may be referred to Appendix B.1 for proofs that are missing in the main
text.

We first need to show the following lemma:

Lemma 5.2.3 Let (S,+, ·, 0, 1) be a semiring, then (S × S,+, ·, (0, 0), (1, 0))
where (s1, s2) + (s′1, s′2) = (s1 + s′1, s2 + s′2) and (s1, s2) · (s′1, s′2) = (s1 · s′1 + s2 ·
s′2, s1 · s′2 + s2 · s′1) is a semiring.

Proposition 5.2.4 Let S be a semiring. Then S is a subsemiring of a ring I
iff for all elements s1, s2, s3 ∈ S, s1 + s2 = s1 + s3 implies s2 = s3 (we say: +
is injective).

Hence, in these cases, one can work in the ring the semiring embeds into.
However, if one wants to be able to use Gaussian elimination for solving linear
equations, it is necessary to have an integral domain. We will now see in which
cases the super-ring of a semiring is an integral domain.

Proposition 5.2.5 If a semiring S

(i) has injective +
(ii) for each pair of elements s1, s2 ∈ S there always exists an element s ∈ S

such that s1 + s = s2 or s2 + s = s1

(iii) and S has no zero-divisors,

then the super-ring I of S, which exists according to Proposition 5.2.4, is an
integral domain, i.e. it also has no zero-divisors.

Proof: We first show that the only pairs equivalent to (0, 0) are of the form
(s, s). Assume that (s1, s2) ≡ (0, 0). This means that there exist s, s′ such that
(s1, s2) + (s, s) = (0, 0) + (s′, s′) = (s′, s′). This implies s1 + s = s′ = s2 + s and
from Condition (i) (injectivity of addition) we infer that s1 = s2.

Assume now that (s1, s2) · (s′1, s′2) ≡ (0, 0). According to Condition (ii),
there exists an s such that s1 + s = s2 or s2 + s = s1. Hence in the first case
(s1, s2) + (0, 0) = (0, s) + (s1, s1) and hence (s1, s2) ≡ (0, s). In the second case
(s1, s2) ≡ (s, 0). Assume (s1, s2) ≡ (s, 0) and (s′1, s′2) ≡ (s′, 0) (the other cases
are analogous). Then (0, 0) ≡ (s1, s2) · (s′1, s′2) ≡ (s, 0) · (s′, 0), i.e. there exists
an element s ∈ S such that (s, 0) · (s′, 0) = (s, s). Thus, s · s′ = s and 0 = s,
hence s · s′ = 0. From Condition (iii) it follows that s1 = 0 or s′1 = 0, in either
case, one of (s1, s2) and (s′1, s′2) is equivalent to (0, 0). �



141

5.2.4 Congruence Closure for l-Monoids

We now turn our attention towards l-monoids, to develop a technique to decide,
whether a pair of vectors over an l-monoid belongs to the congruence closure of a
relation (of pairs of vectors over this l-monoid). We will work towards adapting
a rewriting technique developed by Bonchi and Pous [BP13]. So the general
idea is to define a rewriting procedure based on a relation R that transforms
any given vector into a (unique) normal form that has the property that any
two given vectors are related by the congruence closure of R if and only if their
normal forms coincide. We later want to use this rewriting technique to adapt
the bisimulation proof technique up to congruence to weighted automata over
l-monoids.

Rewriting and Normal Forms.

Our method to determine if a pair of vectors is in the congruence closure is
to employ a rewriting algorithm that rewrites both vectors to a normal form.
These coincide iff the vectors are related by the congruence closure. Note, that
we will use the the l-monoid operations also on vectors, extending the operators
component-wise.

Definition 5.2.6 (Rewriting and normal forms) Let L be an integral l-
monoid and let R ⊆ LX × LX be a finite relation.

We define a set of rewriting rules R as follows: For each pair of vectors
(v, v′) ∈ R, we obtain two rewriting rules v 7→ v t v′ and v′ 7→ v t v′.

A rewriting step works as follows: given a vector v and a rewriting rule
l 7→ r, we compute the residuum l → v and, provided v @ (v t r · (l → v)),
the rewriting rule is applicable and v rewrites to v t r · (l → v) (symbolically:
v ; v t r · (l→ v)). A vector v is in normal form wrt. R, provided there exists
no rule that is applicable to v.

Example 5.2.7 In order to illustrate how rewriting works, we work in T, set
X = {1, 2} (two dimensions) and take the relation R = {

((
∞
0

)
,
(

0
∞

))
} ⊆ T2×T2,

relating the two unit vectors, and the vector v =
(
∞
3

)
. This yields a rule

l =
(
∞
0

)
7→ r =

(
0
0

)
. We obtain l → v = 3 and hence v ; v t r · (l → v) =(

∞
3

)
min

((
0
0

)
+ 3

)
=
(

3
3

)
.



142

It is worth to observe that when L is the binary Boolean semiring, the
above procedure coincides with the one in [BP13]. There is an alternative
characterisation of residuation for the use in the rewriting technique, which is
equivalent to the one given above in terms of fixpoints, which we will use in
some of the proofs in this section:

Lemma 5.2.8 Let (L,t, ·, 0, 1) be an l-monoid and v, v′ be n-dimensional
L-vectors. Then it holds that

v → v′ =
l
{v[i]→ v′[i] | 1 ≤ i ≤ n}

Proof: We define (v ⇒ v′) :=
d
{v[i]→ v′[i] | 1 ≤ i ≤ n}.

First we will show that v ⇒ v′ v v → v′. In order to prove this, we will
show that v · (v ⇒ v′) ≤ v′, i.e. (v ⇒ v′) ∈ {` ∈ L | v · ` v v′}:

v · (v ⇒ v′) =



v[1]
v[2]
...

v[n]

 · (v ⇒ v′) =



v[1] · (v ⇒ v′)
v[2] · (v ⇒ v′)

...
v[n] · (v ⇒ v′)



v



v[1] · (v[1]→ v′[1])
v[2] · (v[2]→ v′[2])

...
v[n] · (v[n]→ v′[n])

 v


v′[1]
v′[2]
...

v′[n]

 = v′

Next we need to show that v ⇒ v′ w v → v′. It suffices to show that v ⇒ v′ is
an upper bound of the set {` ∈ L | v · ` v v′}. Since v ⇒ v′ is the greatest lower
bound of {v[i] → v′[i] | 1 ≤ i ≤ n}, it is enough to show that every element
of the first set and every element of the second set are in relation. Thus, take
` ∈ L with v · ` v v′ and an index i. Since v · ` v v′ (component-wise), it holds
that v[i] · ` v v′[i] for every i. Hence, ` v v[i]→ v′[i].

�

In order to analyse the rewriting procedure, we need some monotonicity
results concerning the operations at play in the rewriting algorithm.

Lemma 5.2.9 In an l-monoid L, for all `, `′, `1, `2, `3 the following hold:

(i) Whenever `1 v `2 it follows that ` · `1 v ` · `2 and `1 · ` v `2 · `.



143

(ii) For all matrices M ∈ LX×Y it holds that v v v′ implies Mv vMv′.
(iii) If L is integral, ` · `′ v `′ and ` · `′ v `.
(iv) (`1 → `2) · `3 v `1 → (`2 · `3).
(v) If `2 v `3 it follows that (`1 → `2) v (`1 → `3).
(vi) `3 v `1 → `2 ⇐⇒ `1 · `3 v `2.
(vii) `1 → (`2 t `3) w (`1 → `2) t (`1 → `3).
(viii) `1 · (`1 → `2) v `2

Proof:

(i)
` · `2 = ` · (`1 t `2) = ` · `1 t ` · `2 w ` · `1

and
`2 · ` = (`1 t `2) · ` = `1 · ` t `2 · ` w `1 · `.

(ii) The second part follows directly, because

(Mv)[i] =
⊔
j∈Y

M [i, j] · v[j] v
v[j]vv′[j]

⊔
j∈Y

M [i, j] · v′[j] = (Mv′)[i]

(iii) This follows directly from monotonicity, ` · `′ v > · `′ = 1 · `′ = `′ and
` · `′ v ` · > = ` · 1 = `.

(iv) We first compute:

(`1 → `2) · `3 =
⊔
{` ∈ L | `1 · ` v `2} · `3 =

⊔
{` · `3 | `1 · ` v `2}

and:
`1 → (`2 · `3) =

⊔
{` ∈ L | `1 · ` v `2 · `3}

Now we obtain:
`1 · ` v `2 ⇒ `1 · ` · `3 v `2 · `3

and therefore {` · `3 | `1 · ` v `2} ⊆ {` ∈ L | `1 · ` v `2 · `3}.
(v) Obviously, {` ∈ L | `1 · ` v `2} ⊆ {` ∈ L | `1 · ` v `3} and therefore:

`1 → `2 =
⊔
{` ∈ L | `1 · ` v `2} v

⊔
{` ∈ L | `1 · ` v `3} = `1 → `3

.
(vi) Whenever `3 v `1 → `2, then `1 · `3 v `1 · (`1 → `2) = `1 ·

⊔{` ∈ L |
`1 · ` v `2} = ⊔{`1 · ` ∈ L | `1 · ` v `2} v `2.
Whenever `1 · `3 v `2 we have that `1 → `2 = ⊔{` ∈ L | `1 · ` v `2} w `3,
since `3 is an element of the set.



144

(vii) Because of Lemma 5.2.9.(vi) it suffices to show that `1 · ((`1 → `2)t (`1 →
`3)) = `1 · (`1 → `2) t `1 · (`1 → `3) v `2 t `3.

(viii) `1 ·(`1 → `2) = `1 ·
⊔{`′ | `1 ·`′ v `2} = ⊔{`1 ·`′ | `1 ·`′ v `2} v

⊔{`2} = `2

�

The rewriting relation satisfies some simple properties:

Lemma 5.2.10 In an l-monoid L, for all l-monoid vectors v, v′, w ∈ LX , it
holds that:

(i) If v ; v′ and v v w, then v′ v w or there exists w′ ∈ LX s.t. w ; w′

and v′ v w′.
(ii) Whenever v ; v′, there exists a vector u ∈ LX s.t. v t w ; u v v′ t w

or v t w = v′ t w.

Proof:

(i) Assume that v ; v′, via rule l 7→ r, and v v w. Then v′ = v t r · (l →
v) v w t r · (l → w) =: w′. Thus, either w ; w′ or w = w′ and in this
case w w v′.

(ii) Assume that v ; v′, via rule l 7→ r. Define u := (vtw)tr·(l→ (vtw)) w
(vtw)tr ·((l→ v)t(l→ w)) = (vtr ·(l→ v))t(wtr ·(l→ w)) w v′tw.
The first inequality is due to Lemma 5.2.9.(vii).
Now either v t w ; u or v t w = u w v′ t w. Since we also have that
vtw v v′tw due to extensiveness of rewriting, this implies vtw = v′tw.

�

We now have to prove the following three statements:

(i) Our technique is sound, i.e. whenever two vectors have the same normal
form wrt. R, they are in c(R).

(ii) Our technique is complete, i.e. whenever two vectors are in c(R), they
have the same normal form wrt. R.

(iii) Our algorithm to compute normal forms terminates.

We will show (i) and prove that (ii) follows from (iii). Afterwards, we will
discuss sufficient conditions and examples where (iii) holds.



145

Theorem 5.2.11 Whenever there exists a vector v, such that two vectors v1,v2

both rewrite to v, i.e., v1 ;
∗ v, v2 ;

∗ v, then (v1, v2) ∈ c(R).

Proof: We will show that if v rewrites to v′ via a rule l 7→ r, then (v, v′) ∈
c(R).

Since l 7→ r is a rewriting rule, we have that l = w, r = wtw′ for (w,w′) ∈ R
or (w′, w) ∈ R. In both cases w = w t w c(R) w t w′ due to the definition of
congruence closure, using rules (Plus), (Rel) and (Refl), as well as (Sym) in
case (w′, w) ∈ R. Hence, l c(R) r. This implies that l · (l → v) c(R) r · (l→ v)
(Sca) and furthermore v t l · (l → v) c(R) v t r · (l → v) (Plus). Since
l · (l→ v) v v we have v t l · (l→ v) = v and hence v c(R) v′. �

This concludes the proof of soundness, we will go on proving completeness.

Lemma 5.2.12 Assume we have a rewriting system that always terminates,
i.e. a Noetherian rewriting system. Then the local Church-Rosser property holds.
That is, whenever v ; v1 and v ; v2, there exists a vector v′ such that v1 ;

∗ v′

and v2 ;
∗ v′.

Proof: Assume that v ; v1 and v ; v2. We set va0 = v, va1 = v1 and consider
a sequence of rewriting steps va1 ; va2 ; · · ·; van 6; that leads to the normal
form van.

We now construct a sequence of vectors vb1, . . . , vbn+1 where vb1 = v2, vbi ; vbi+1

or vbi = vbi+1, and vi+1 w vai .
Given vbi with i ≥ 1, Lemma 5.2.10.(i) inductively guarantees the existence

of vbi+1 w vai with vbi ; vbi+1, or vbi w vai . In the latter case we set vbi+1 = vbi .
Since v ;∗ vbn+1 and van is a normal form, it must hold that vbn+1 v van. We

also know from above that vbn+1 w van, hence vbn+1 = van. Therefore, this is the
vector v′ which is reachable from both v1 and v2 and which proves the local
Church-Rosser property.

�

If a rewriting system terminates and the local Church-Rosser property holds,
the system is automatically confluent [DJ90]. In this case, every vector v is
associated with a unique normal form, written ⇓R v or simply ⇓ v where
v ;∗⇓v 6;.

Furthermore, due to Lemma 5.2.10.(i) we know that ⇓ is monotone, i.e.,
v v v′ implies ⇓v v⇓v′. This also implies ⇓(v t v′) w (⇓v) t (⇓v′).



146

Lemma 5.2.13 For all v ∈ LX , ` ∈ L we have that, if v ; v′, then v · `; v′′

for some v′′ w v′ · ` or v · ` = v′ · `. In particular, if rewriting terminates, we
have (⇓v) · ` v⇓(v · `).

Proof: Assume that v ; v′ via rule l 7→ r. Hence v′ = v t r · (l → v). Let
v′′ := v · `t r · (l→ v · `). By adapting the proof of Lemma 5.2.9.(iv) to vectors
we can show that v′′ w v · ` t r · (l→ v) · ` = (v t r · (l→ v)) · ` = v′ · `. Hence
either v · `; v′′ or v · ` = v′′. In the latter case v · ` w v′ · ` (since v′′ w v′ · `),
but also v · ` v v′ · ` (since v v v′). Hence v · ` = v′ · `.

Now assume that v = v0 ; v′ = v1 ; v2 ; · · · ; vn =⇓v. We construct
a sequence of vectors wi where w0 = v · `, wi w vi · ` and either wi ; wi+1 or
wi = wi+1.

Given wi w vi · ` and vi ; vi+1. We know that one of the following two cases
holds:

• there exists v′′ such that vi · ` ; v′′ w vi+1 · `: now, since wi w vi · `,
we know due to Lemma 5.2.10.(i) that there exists wi+1 such that wi ;
wi+1 w v′′ w vi+1 · ` or wi w v′′. In the second case we set wi+1 = wi.

• or vi · ` = vi+1 · `: again we set wi+1 = wi and obtain wi+1 = wi w vi · ` =
vi+1 · `.

Hence, wn w vn =⇓v and via monotonicity we obtain ⇓(v · `) =⇓w0 =⇓wn w⇓
vn =⇓v.

�

Now we have all the necessary ingredients to show that the technique is
complete, provided the computation of a normal form terminates.

Theorem 5.2.14 Assume that rewriting terminates. If v c(R) v′ then
⇓v =⇓v′.

Proof: It suffices to show that ⇓v w v′ and ⇓v′ w v, because if v v⇓v′, then
⇓v v⇓v′ (⇓ is monotone and idempotent) and vice-versa. We prove this via
rule induction (cf. rules in Table 5.1).

(Rel) If we find that v c(R) v′ because v R v′, then there are rules v 7→ v t v′

and v′ 7→ v t v′.



147

Hence, v rewrites to v t (v t v′) · (v → v) ≥ v t v′, since v → v w 1 (or v
can not be rewritten via this rule). Thus, either v is rewritten to a vector
larger or equal v′ or v w v′ holds. We can conclude that ⇓v w v′.

Analogously one can show ⇓v′ w v.

(Refl) If we find that v c(R) v′ because of reflexivity (i.e. v = v′), then trivially
⇓v =⇓v′.

(Sym) If we find that v c(R) v′ because of symmetry, then we already know
from the induction hypothesis that ⇓v w v′ and ⇓v′ w v.

(Trans) If we find that v1 c(R) v3 because of transitivity, i.e. v1 c(R) v2 and
v2 c(R) v3, we know from the induction hypothesis that ⇓ v1 w v2 and
⇓ v2 w v1 as well as ⇓ v3 w v2 and ⇓ v2 w v3. In particular, we have
v1 v⇓v2 v⇓v3 and v3 v⇓v2 v⇓v1.

(Sca) If we find that v · ` c(R) v′ · `, because v c(R) v′, then v v⇓ v′ and
therefore, using Lemma 5.2.13

v · ` v (⇓v) · ` v (⇓v′) · ` v⇓(v′ · `).

(Plus) If we find that v t v c(R) v′ t v′ because of v c(R) v′ and v c(R) v′,
then

v t v v (⇓v′) t (⇓v′) v⇓(v′ t v′),

due to the monotonicity of ⇓.

�

Termination.

One technique to prove termination is given in Corollary 5.2.16: It suffices to
show that the supremum of all the elements reachable via ; is included in the
congruence class. First we need the following result.

Proposition 5.2.15 If v c(R) v, then there exists a v′ w v t v such that
v ;∗ v′.

Proof: We prove this via rule induction (cf. rules in Table 5.1).



148

(Rel) If we find that v c(R) v, because v R v, then there are rules v 7→ v t v
and v 7→ v t v. As in the proof of Theorem 5.2.14 we obtain that v
rewrites to a vector larger or equal v t v in one step or that v itself has
this property. Analogously for v.

(Refl) If we find that v c(R) v, because of reflexivity (i.e. v = v), then no
rewriting step is needed.

(Sym) If we find that v c(R) v, because of symmetry, then we already know
this from the induction hypothesis, because the property we want to
prove is symmetric.

(Trans) If we find that v1 c(R) v3 because of transitivity, i.e. v1 c(R) v2 and
v2 c(R) v3, we know inductively that there exist vectors v′1, v′2 such that
v1 ;

∗ v′1 w v1 t v2, v2 ;
∗ v′2 w v2 t v3.

Now, due to Lemma 5.2.10.(ii), v1tv2 ;
∗ u w v1tv′2 w v1tv2tv3 w v1tv3.

Furthermore, since v′1 w v1 t v2 we know from Lemma 5.2.10.(ii) that
there exists a v′′1 such that v1 ;∗ v′1 ;∗ v′′1 w u. Combined, we obtain
v1 ;

∗ v′′1 w v1 t v3.

For v3 the proof is analogous.

(Sca) If we have v1 · ` c(R) v2 · `, because v1 c(R) v2 then there exist vectors
v′1, v

′
2, such that v1 ; v′1 w v1 t v2 and v2 ; v′2 w v1 t v2. Thus, using

Lemma 5.2.13, we can find v′′1 , v′′2 such that

v1 · `;∗ v′′1 w v′1 · ` w (v1 t v2) · ` = v1 · ` t v2 · `

v2 · `;∗ v′′2 w v′2 · ` w (v1 t v2) · ` = v1 · ` t v2 · `

(Plus) If we have v1 t v2 c(R) v′1 t v′2 because of v1 c(R) v′1 and v2 c(R) v′2,
then v1 ;∗ v′′1 w v1 t v′1 and v2 ;∗ v′′2 w v2 t v′2 and we obtain with
Lemma 5.2.10:

v1 t v2 ;
∗ v w v′′1 t v′′2 w (v1 t v′1) t (v2 t v′2) = (v1 t v2) t (v′1 t v′2).

Analogously for v′1, v′2.

�

If we assume that rule application is fair, we can guarantee that v is eventually
reached in every rewriting sequence.



149

Corollary 5.2.16 If v c(R) ⊔{v̂ | v ;∗ v̂}, then the rewriting algorithm
terminates, assuming that every rule that remains applicable is eventually
applied.

Proof: Take v = ⊔{v̂ | v ;∗ v̂}. By Proposition 5.2.15 if v c(R) v, then v ;∗ v.
Since ; is irreflexive, v 6; and v is in normal form.

If we assume that each rule that is applicable is applied at one point (or
rendered unapplicable by other rule applications), it is sufficient to know that
there exists one rewriting sequence reaching v from v. If we decide to apply a
rule, that was applied in this specific sequence, at a later point of time, either
we have already exceeded the corresponding vector in the original rewriting
sequence via other rule applications, or the rule can still be applied with the
same or a greater multiplicand, leading again to a larger vector.

It follows, that every sequence of rewriting steps will eventually reach v. �

Termination for Specific l-Monoids. We now study the l-monoid M =
([0, 1],max, ·, 0, 1) from Example 2.2.20 and show that the rewriting algorithm
terminates for this l-monoid. For the proof we mainly use the pigeonhole
principle and exploit the total ordering of the underlying lattice. Since M is
isomorphic to T, we obtain termination for the tropical semiring as a corollary.

Theorem 5.2.17 The rewriting algorithm terminates for the l-monoids M and
T.

Proof: We show this via contradiction. So we assume the algorithm does not
terminate, i.e. there exists an infinite sequence of rewriting steps starting from
a vector v. If that is the case, observe that there are some indices such that
the corresponding entries in the vector increase infinitely often. We can assume
that from the beginning, there are only indices that increase infinitely often or
do not increase at all, because otherwise, we can apply rules until this is true
and use the resulting vector as the new starting vector. Equivalently, we can
assume that each rule is applied infinitely often, by applying rules until no rule
that can only be applied finitely often can ever get applied anymore and then
removing all these rules from the rule system.

We call the initial vector v and the rule system R. The sequence of interme-
diate rewriting results is a sequence v0, v1, . . . where vi ; vi+1 for all i ∈ N0 in



150

a single rewriting step. Taking a look at the history of a specific component
v[j] of v, we can observe that in each rewriting step applying a rule l 7→ r, v[j]
either does not change or is rewritten to r[j]·v[j′]

l[j′] for a vector-index j′. In fact,
we choose the index j′ which minimizes that quotient. Inductively, we obtain
that at any given rewriting step i,

vi[j] = rn[j] · rn−1[jn−1] · . . . · r1[j1] · v[j0]
ln[jn−1] · ln−1[jn−2] · . . . · l1[j0]

where j0, . . . , jn are vector-indices and l1 7→ r1, . . . , ln 7→ rn are rules. The
maximum index of rules is not the same as i, because only those rules are
multiplied that really contributed to the value of vi[j] directly, thus, n might
be smaller than i. Note, that we used the fact that multiplication with 1 in
order to apply a rule cannot happen, since then the rule could never be applied
again (in this case we say that the rule has been applied maximally). If a rule
was used maximally instead, it would not necessarily contribute a factor of the
type r[i]

l[j] . Note, that this representation is unique and we say vi[j] is based on
v[j0], if it can be written as above.

Let N be the dimension of v. At any given time i, there are at most
N different entries in vi and each entry in vi+1 is obtained by multiplying
one factor of the form r[i]

l[j] , where l 7→ r is a rule and i, j are vector-indices,
with one of the entries in vi, or is identical to the entry in vi. After at most
N · (N − 1) + 1 steps, there must exist one vector-index j, such that there exist
indices i ≤ i′ < j′ ≤ i+N · (N − 1) + 1 where vi′ [j] and vj′ [j] are not identical
and based on the same entry ` ∈ [0, 1] from vi, i.e. vi′ [j] can be written as

vi′ [j] = rk[j] · rk−1[ik−1] · . . . · r1[i1]
lk[ik−1] · . . . · l2[i1] · l1[i0] · `

and vj′ [j] as

vj′ [j] = r′h[j] · r′h−1[jh−1] · . . . · r′1[j1]
lh[jh−1] · . . . · l′2[j1] · l′1[j0] · `

where k and h are at most N · (N − 1).
This can be proven as follows: Each vector vi has at most N different entries,

so there are at most N different entries from vi that an entry in a vector vj,
j ≥ i, can be based on. In each step, at least one entry of vi is rewritten to
something larger. Each of the N entries of vi can be rewritten and increased
in the process at most N − 1 times, without being based on the same element



151

from vi twice (including the initial entry of vi), due to the pigeonhole principle.
Again, since in each rewriting step at least one entry gets changed and there
are only N entries, after N · (N − 1) + 1 rewriting steps, there must be at
least one entry that was based on the same entry from vi twice and increased
in-between.

Thus, we have

vj′ [j] = r′h[j] · r′h−1[jh−1] · . . . · r′1[j1]
lh[jh−1] · . . . · l′2[j1] · l′1[j0] ·

lk[ik−1] · . . . · l2[i1] · l1[i0]
rk[j] · rk−1[ik−1] · . . . · r1[i1] · vi

′ [j]

which means, vj′ [j] can be obtained from vi′ [j] via multiplication of at most
N · (N − 1) + 1 factors of the form r[i]

l[j] and at most N · (N − 1) + 1 factors of the
form l[j]

r[i] . Also, since vj′ [j] > vi′ [j], this multiplicand is larger than 1. Observe
that due to finiteness of R, there are only finitely many products of at most
N · (N − 1) + 1 factors of the form r[i]

l[j] and at most N · (N − 1) + 1 factors of the
form l[j]

r[i] , so there is a least one such factor δ > 1. Moreover, this construction
works for each interval of size N · (N − 1). Dividing the whole history of rule
applications into consecutive chunks of size N · (N − 1) + 1 yields infinitely
many intervals where in each interval at least one index increases by at least
factor δ. Since the dimension of v is finite, there must be at least one index j
which has this property infinitely often. That means that v[j] is rewritten to
something larger than δn · v[j] for each n ∈ N0. However, the sequence 〈δn〉 is
not bounded, therefore δn · v[j] is not bounded by 1, but that is a contradiction
to the assumption that the rewriting never terminates.

Using this result, we can now go on to show that rewriting terminates for
the tropical semiring as well.

We show this by proving that the tropical semiring (R+
0 ∪ {∞},min,+∞, 0)

and ([0, 1],max, ·, 0, 1) are isomorphic with an isomorphism that is compatible
with the order and the multiplication, which ensures that any given trans-
formation system in one of those semirings can do a transformation step iff
the transformation system obtained by applying the isomorphism to each
component of every rule as well as the vector under consideration can do one.

We use the bijection f : R+
0 ∪ {∞} → [0, 1], f(x) = 2−x where we have

extended the power to −∞ via the natural definition 2−∞ = 0. Obviously,
this function is bijective with the inverse being f−1(x) = − log2(x), where the
base-2 logarithm is extended to 0 via log2(0) = −∞. Hence, we only have to



152

prove that f respects the order of the lattices and that it is compatible with
addition and multiplication.

• Let `1, `2 ∈ R+
0 ∪ {∞} be given, then

`1 ≥ `2 ⇔ −`1 ≤ −`2 ⇔ 2−`1 ≤ 2−`2 ⇔ f(`1) ≤ f(`2).

Note, that the order is swapped between the two semirings, so the function
indeed is an order-isomorphism.

• Let `1, `2 ∈ R+
0 ∪ {∞} be given, then

f(min{`1, `2}) = 2−min{`1,`2} = max{2−`1 , 2−`2} = max{f(`1), f(`2)}

• Let `1, `2 ∈ R+
0 ∪ {∞} be given, then

f(`1 + `2) = 2−(`1+`2) = 2−`1 · 2−`2 = f(`1) · f(`2)

�

These results provide an effective procedure for checking congruence closure
over the tropical semiring. We will mainly apply them to weighted automata,
but expect that they can be useful to solve other problems. For instance, in
Section 5.5, we show an interesting connection to the shortest path problem.

Termination for Lattices. We next turn to lattices and give a sufficient
condition for termination on lattices. Obviously, rewriting terminates for lattices
for which the ascending chain condition holds (i.e., every ascending chain
eventually becomes stationary), but one can go beyond that.

In this section, we assume a completely distributive lattice L and a Boolean
algebra B such that the orders of L and B, as well as the infima coincide when
evaluated on elements from L. Suprema need not coincide. Thus, whenever
there is ambiguity, we will add the index B or L to the operator. For the
negation of a given x ∈ B, we write ¬x.

One way to obtain such a Boolean algebra – in particular, one where suprema
coincide as well – is via Funayama’s theorem, see [BGJ13]. This embedding is
also discussed in Subsection 2.2.4.

We want to show that if L approximates B “well enough”, the rewriting
algorithm terminates for L.

First, we need to show some properties concerning residuation and negation.



153

Lemma 5.2.18 Let `1, `2 ∈ L, where L is a lattice, then

(i) `1 →L `2 w `2

(ii) `1 →L `2 w b¬`1c
(iii) `1 →L `2 = b`1 →B `2c
(iv) b¬`1c tB `2 v `1 →L `2 v ¬`1 tB `2

(v) `1 →L `2 can be written as `∗1 tB `2 for an b¬`1c v `∗1 v ¬`1.

Proof:

(i) Every lattice is integral, hence `1 · `2 v `2. Hence, `2 is an element of
the set {` | `1 · ` v `2}, the supremum of which is `1 →L `2. Thus,
`1 →L `2 ≥ `2.

(ii) Per definition, b¬`1c u `1 v ¬`1 u `1 = ⊥B and, if there were an element
` A ⊥L such that b¬`1c w ` and `1 w `, then this would be true
in B, too, and therefore such an ` cannot exist. Thus, in particular,
b¬`1c u `1 = ⊥L v `2 and per definition of `1 →L `2, this proves that
b¬`1c v `1 →L `2.

(iii) We observe that

b`1 →B `2c =
⊔
L

{` ∈ L | ` v `1 →B `2}

and
`1 →L `2 =

⊔
L

{` ∈ L | `1 u ` v `2}

We will show that both sets are equal:

• ⊆:
` v (`1 →B `2)⇒ `1 u ` v `1 u (`1 →B `2)

But then:
`1 u ` v `1 u (`1 →B `2) v `2

And thus ` ∈ {`′ ∈ L | `1 u `′ v `2}.

• ⊇:

`1 u ` v `2 ⇒ ` ∈ {`′ ∈ L | `1 u `′ v `2} ⊆ {`′ ∈ B | `1 u `′ v `2}

Hence, ` is smaller or equal than the supremum of this set.



154

(iv) b¬`1c tB `2 v
Lemma 5.2.18.(i),Lemma 5.2.18.(ii)

`1 →L `2 =
Lemma 5.2.18.(iii)

b`1 →B

`2c = b¬`1 tB `2c v ¬`1 tB `2

(v) In this proof we are exclusively computing in B, so we do not point out
that t = tB. We will define `∗1 := ((`1 →L `2) u ¬`2) t b¬`1c and first
prove that `1 →L `2 = `∗1 t `2 and then prove that b¬`1c v `∗1 v ¬`1.

For the first part of the proof:

`1 →L `2 =
Lemma 5.2.18.(iv)

`1 →L `2 t b¬`1c t `2

= ((`2 t ¬`2) u (`1 →L `2)) t b¬`1c t `2

= ((`1 →L `2) u ¬`2) t ((`1 →L `2) u `2) t b¬`1c t `2

= ((`1 →L `2) u ¬`2) t b¬`1c t `2

= `∗1 t `2

Now, obviously, b¬`1c v ((`1 →L `2) u ¬`2) t b¬`1c = `∗1, since b¬`1c
is part of the supremum. It is only left to be shown that ((`1 →L `2) u
¬`2)t b¬`1c v ¬`1 holds as well. First, we observe, that b¬`1c v ¬`1 per
definition, so it suffices to show that (`1 →L `2) u ¬`2 v ¬`1. Moreover,
it is true that ¬`1 = ⊔{` ∈ B | ` u `1 = ⊥}. Then a simple computation
shows:

(`1 →L `2) u ¬`2 u `1 = ((`1 →L `2) u `1) u ¬`2 v `2 u ¬`2 = ⊥.

Thus,
(`1 →L `2) u ¬`2 ∈ {` ∈ B | ` u `1 = ⊥}

of which ¬`1 is the supremum.

�

Theorem 5.2.19 The approximation of an element ` ∈ B in the lattice L is
defined as b`c = ⊔

L{`′ ∈ L | `′ v `}.
Let R be a rewriting system for vectors in LX . Whenever the set L(l, x) =

{` ∈ L | b¬l[x]c v ` v ¬l[x]} is finite for all rules (l 7→ r) ∈ R and all x ∈ X,
rewriting terminates.

Proof: Lemma 5.2.18.(v) shows that each multiplicand l →L v can be written
as supremum of v[x] for an index x ∈ X and an element l∗ from the finite set



155

L(l, x). This set is independent of v, the element from the set must however
be chosen according to v. Therefore, each element we obtain in rewriting is
built as infimum and supremum of finitely many elements from B and – using
conjunctive normal form – we obtain that we can only build finitely many
different rewriting results from v. Therefore, rewriting terminates for every
vector v. �

Note, that [¬`] = [`→B 0] = `→L 0 (Lemma 5.2.18). Hence, the theorem
says that there should be only finitely many elements between the negation of
an element in the lattice and the negation of the same element in the Boolean
algebra. As a simple corollary we obtain that the rewriting algorithm terminates
for all Boolean algebras.

We now provide an interesting example of an infinite lattice that satisfies
the conditions of Theorem 5.2.19.

It is known that a bounded distributive lattice L that satisfies the infinite
distributive law is isomorphic to the lattice of clopen downwards-closed sets in
its dual (Priestley) space, which has the prime ideals of L as elements, ordered
by inclusion. More importantly in the sequel, the lattice of clopen downward-
closed sets in a Priestley space always is a bounded distributive lattice which
can be embedded (as per Funayama’s theorem) into the Boolean algebra of all
clopen sets in the Priestley space, preserving infimum and supremum. For a
more detailed survey of Priestley spaces and the duality we use, cf. [DP02].

Example 5.2.20 We now define a lattice by first giving a Priestley space. We
work in the space of all natural numbers and infinity N∞. Open sets are all
sets O that do not contain ∞ or that do contain ∞, but where the complement
set N∞ \ O is finite. Then, the clopen sets are all sets that are finite and do
not contain ∞ or that are infinite and contain ∞ but where the complement is
finite (i.e. the co-finite sets).

If we define a suitable order ≤ on the elements of N∞ to obtain a Priestley
space, the space of all clopen downsets in N∞ is a distributive lattice. We claim
that the condition from Theorem 5.2.19 holds whenever for each element ` ∈ N∞
there are only finitely many larger elements in N∞ (according to ≤).

To prove this, we choose an arbitrary clopen downset O and prove that ¬O
in B, the Boolean algebra of all clopen sets of N∞, only contains finitely many
elements not contained in O →L 0. Observe that ¬O = N∞ \O. Either ∞ ∈ O,



156

or ∞ ∈ ¬O.

• If ∞ ∈ O, then there are only finitely many elements in ¬O. Since
O →L 0 cannot be smaller than ∅ and there are only finitely many sets
between the empty set and a finite set, there are at most finitely many
sets between O →L 0 and ¬O, with respect to inclusion.

• If ∞ /∈ O, O is finite. The number of sets that are between O →L 0
and ¬O is certainly finite, if there are only finitely many elements in
¬O \O →L 0. Moreover, O →L 0 can be characterised as follows:

O →L 0 = {n ∈ N∞ | ¬∃n′ ∈ O : n ≥ n′ ∨ n′ ≥ n}

={n ∈ N∞ \O | ¬∃n′ ∈ O : n > n′}

In the first step, we used that infimum and supremum are intersection and
union, in the second step we use the fact that O is downward closed. Hence,
the difference between ¬O and O →L 0 contains exactly those elements
that are larger than an element in O. Since O only contains finitely many
elements and for each element there exist only finitely many elements that
are greater, there are only finitely many elements in ¬O \ (O →L 0).

Example 5.2.21 Let L = (R, sup, inf,−∞,∞) (or any other completely orde-
red lattice), where R = R ∪ {−∞,∞}, i.e. the real numbers closed with ∞ and
−∞. There cannot be a Boolean algebra embedding for L such that there are at
most finitely many elements between ¬` and ` → −∞ for all ` ∈ R. Observe
that `→ −∞ = −∞ and that there are infinitely many elements `i larger than
`, therefore for each ` < `i < `j we have −∞ < ¬`j < ¬`i < ¬`, proving that
such a Boolean algebra cannot exist. However, rewriting still terminates, because
of the special form ` → `′ has for arbitrary `, `′. If ` > `′, then ` → `′ = `′,
otherwise `→ `′ =∞. Therefore, we can again find a conjunctive normal form
over a finite amount of lattice elements – the ones in the rules and the one in the
initial vector – to describe each intermediate rewriting result. Therefore, starting
from one given vector, only finitely many different vectors can be obtained by
rewriting and the algorithm necessarily terminates.

A similar argument holds for all lattices that are completely ordered (where
finite suprema and infima are maxima and minima) or are a finite product of



157

completely ordered lattices (where the argument needs to be applied component-
wise). The rewriting algorithm terminates for all such lattices and, provided
they are infinite in size, none of them can be embedded in a Boolean algebra
meeting the condition of Theorem 5.2.19.

5.3 Up-To Techniques for Weighted Automata

In this section we present applications of our congruence closure method. More
specifically, we investigate weighted automata and present up-to techniques
both for the language equivalence and the inclusion problem, which are variants
of the efficient up-to based algorithm presented in [BP13]. For the tropical
semiring we also give a procedure for solving the threshold problem, based on
the language inclusion algorithm.

5.3.1 Coinduction and Up-to Techniques

The soundness of the algorithms in Section 5.3 can be proven in a clear way
by exploiting coinduction and up-to techniques. In this subsection we shortly
recall the essential results of the theory developed in [PS11]. We fix the lattice
of relations over SX , RelSX , but the results expressed here hold for arbitrary
complete lattices.

Given a monotone map b : RelSX → RelSX , the Knaster-Tarski fixed-point
theorem characterises the greatest fixed-point νb as the union of all post-fixed
points of b:

νb =
⋃
{R ⊆ SX × SX | R ⊆ b(R)}.

This immediately leads to the coinduction proof principle

∃R, S ⊆ R ⊆ b(R)
S ⊆ νb

This coinduction proof principle allows to prove that (v1, v2) ∈ νb holds by
exhibiting a post-fixed-point R such that {(v1, v2)} ⊆ R. We call the post-
fixed-points of b, b-simulations. For a monotone map f : RelSX → RelSX , a
b-simulation up-to f is a relation R such that R ⊆ b(f(R)). We say that the
mapping f is compatible with b if the inclusion f(b(R)) ⊆ b(f(R)) holds for all



158

relations R. The following result from [PS11] justifies our interest in compatible
up-to techniques.

Theorem 5.3.1 If f is b-compatible and R ⊆ b(f(R)) then R ⊆ νb.

The above theorem leads to the coinduction up-to principle

∃R, S ⊆ R ⊆ b(f(R))
S ⊆ νb

Up-to techniques can be combined in a number of interesting ways. For a
map f : RelSX → RelSX , the n-iteration of f is defined as fn+1 = f ◦ fn and
f 0 = id, the identity function. The omega iteration is defined as fω(R) =⋃∞
i=0 f

i(R). Given two relations R and S, we use R•S to denote their relational
composition R•S = {(x, z) | ∃y : (x, y) ∈ R and (y, z) ∈ S}. For two functions,
f, g : RelSX → RelSX , we write f • g for the function mapping a relation R into
f(R) • g(R).

The following result from [PS11] informs us that compatible up-to techniques
can be composed resulting in other compatible techniques. This is helpful in
two ways: When proving compatibility of new up-to techniques we can separate
concerns by splitting them up into simpler up-to techniques, which may come
with easier proofs for compatibility. Additionally, it also allows us to combine
techniques that were found independently of each other.

Lemma 5.3.2 The following functions are b-compatible:

• id: the identity function;

• f ◦ g: the composition of b-compatible functions f and g;

• ⋃F : the pointwise union of an arbitrary family F of b-compatible functi-
ons: ⋃F (R) = ⋃

f∈F f(R);

• fω: the (omega) iteration of a b-compatible function f , defined as fω(R) =⋃∞
i=0 f

i(R)

Moreover, if b(R) • b(S) ⊆ b(R • S) for all relations R, S

• f • g: the relation composition of b-compatible functions f and g;

is b-compatible.



159

With these results it is easy to prove the soundness of the algorithms
discussed in the sequel.

5.3.2 Language Equivalence for Weighted Automata

We turn our attention towards weighted automata and the analysis of their
languages.

We will use a different notation for weighted automata in this chapter than
introduced in Chapter 2, because we will often need to refer to the submatrix
of an automaton α that corresponds to an a-transition for a label a ∈ A. Thus,
in this chapter, a weighted automaton over the semiring S and alphabet A is
a triple (X, o, t) where X is a finite set of states, t = (ta : X → SX)a∈A is an
A-indexed set of transition functions and o : X → S is the output function.
Intuitively, ta(x)(y) = s means that the state x can make a transition to the
state y with letter a ∈ A and weight s ∈ S (sometimes written as x a,s−→ y). The
functions ta can be represented as X ×X-matrices with values in S and o as a
row vector of dimension X. Given a vector v ∈ SX , we use ta(v) to denote the
vector obtained by multiplying the matrix ta by v and furthermore we write
o(v) to denote the scalar in S obtained by multiplying the row vector o by the
column vector v.

It is easy to see that this alternative way of writing weighted automata
(X, o, t) is equivalent to the one previously introduced in Definition 2.3.4, where
a weighted automaton over the state set X was defined to be an X×(A×X+1)-
matrix α:

• o is the last column in α

• for each a ∈ A, the matrix ta can be obtained by collecting the columns
indexed by (x, a), where x ∈ X.

This correspondence can serve as a translation in both ways.
A weighted language is a function ϕ : A∗ → S, where A∗ is the set of all words

over A. We will use ε to denote the empty word and aw the concatenation of a
letter a ∈ A with the word w ∈ A∗. Every weighted automaton is associated
with a function J−K : SX → SA

∗ mapping each vector into its accepted language.
For all v ∈ SX , a ∈ A and w ∈ A∗, this is defined as

JvK(ε) = o(v) JvK(aw) = Jta(v)K(w).



160

Two vectors v1, v2 ∈ SX are called language equivalent, written v1 ∼ v2, iff
Jv1K = Jv2K. 2

Recall that the problem of checking language equivalence in weighted auto-
mata for an arbitrary semiring is undecidable: for the tropical semiring this was
shown by Krob in [Kro94]; the proof was later simplified in [ABK11]. However,
for several semirings the problem is decidable, for instance for all (complete
and distributive) lattices. For finite non-deterministic automata, i.e., weighted
automata where the weights are taken from the binary Boolean semiring, Bonchi
and Pous introduced in [BP13] the algorithm HKC. The name stems from the
fact that the algorithm extends the procedure of Hopcroft and Karp [HK71]
with congruence closure.

Algorithm 5.3.3 shows the extension of HKC to weighted automata over an
arbitrary semiring: the code is the same as the one in [BP13], apart from the
fact that, rather than exploring sets of states, the algorithm works with vectors
in SX . The check at step 5 can be performed with the procedures discussed in
Section 5.2.

2The notions of accepted language and language equivalence can be given for states rather
than for vectors by embedding states x ∈ X in the unit vectors ex ∈ SX , to retrieve exactly
the notion of language equivalence we have used so far, i.e. JexK(w) = L(w)(x). On the other
hand, when weighted automata are given with an initial vector i – which is often the case in
literature – one can define the language of an automaton just as JiK.



161

Algorithm 5.3.3 Algorithm to check the equivalence of vectors v1, v2 ∈ SX

for a weighted automata (X, o, t).
• Input: A weighted automaton α = (X, o, t) over a semiring S and two

initial vectors v1, v2 ∈ SX

• Output: True, if v1 and v2 are language equivalent, false otherwise

HKC (α, v1, v2)

1 R := ∅; todo := ∅
2 insert (v1, v2) into todo

3 while todo 6= ∅ do

4 extract (v′1, v′2) from todo

5 if (v′1, v′2) ∈ c(R) then continue

6 if o(v′1) 6= o(v′2) then return false

7 for all a ∈ A,

8 insert (ta(v′1), ta(v′2)) into todo

9 insert (v′1, v′2) into R

10 return true

Below we prove that the algorithm is sound and complete, but termination
can fail in two ways: either the check at step 5 does not terminate, or the while
loop at step 3 does not. For the tropical semiring we have seen that the check
at step 5 can be effectively performed by rewriting (Theorem 5.2.17). Therefore,
due to Krob’s undecidability result, the while loop at step 3 may not terminate.

For (distributive) lattices, we have shown termination of rewriting under
some additional constraints (Theorem 5.2.19); moreover the loop at step 3
will always terminate, because from a given finite set of lattice elements only
finitely many lattice elements can be constructed using infimum and supremum
Chapter 4.

To prove soundness of HKC, we introduce the notions of simulation and
bisimulation up-to. Let RelSX be the complete lattice of relations over SX

and b1 : RelSX → RelSX be the monotone map defined for all R ⊆ SX × SX

according to

b1(R) = {(v1, v2) | o(v1) = o(v2) and for all a ∈ A, (ta(v1), ta(v2)) ∈ R}



162

Definition 5.3.4 A relation R ⊆ SX × SX is a b1-simulation if R ⊆ b1(R),
i.e., for all (v1, v2) ∈ R:

1. o(v1) = o(v2)

2. for all a ∈ A, (ta(v1), ta(v2)) ∈ R.

For a monotone map f : RelSX → RelSX , a b1-simulation up-to f is a
relation R such that R ⊆ b1(f(R)).

It is easy to show (see e.g. [PS11]) that b1-simulation provides a sound and
complete proof technique for ∼. On the other hand, not all functions f can
be used as sound up-to techniques. The algorithm HKC exploits the monotone
function c : RelSX → RelSX mapping each relation R to its congruence closure
c(R).

Proposition 5.3.5 Let v1, v2 ∈ SX . It holds that v1 ∼ v2 iff there exists a
b1-simulation R such that (v1, v2) ∈ R iff there exists a b1-simulation up-to c R
such that (v1, v2) ∈ R.

Proof: The key step in proving this claim consists in characterising ∼ as νb1.
This can easily be deduced from abstract results (see e.g. [BBB+12, HJ98]),
but to keep the argument self-contained, a concrete proof would proceed as
follows:

1. We will frist prove that b1 is a co-continuous function, i.e., for any index
set I it holds that b1(⋂I Si) = ⋂

I b1(Si) whenever Si+1 ⊆ Si holds for all
i ∈ I:

Let any descending chain of relations S1, S2, ..., where Si ⊇ Si+1 for all
i ∈ I, be given.

• Let (v1, v2) ∈ b1(
⋂
i∈I{Si}) be given, then note that for all i ∈ I it

holds that Si ⊇
⋂
i∈I{Si}, and b1 is obviously monotone. Therefore,

it follows that (v1, v2) ∈ b1(Si) for all i ∈ I and thus (v1, v2) ∈⋂
i∈I{b1(Si)}.

• Let (v1, v2) ∈
⋂
i∈I{b1(Si)} be given, then o(v1) = o(v2) and for

all a ∈ A, all i ∈ I, it holds that (ta(v1), ta(v2)) ∈ Si. Thus, it
follows for all a ∈ A, that (ta(v1), ta(v2)) ∈

⋂
i∈I{Si}. Therefore,

(v1, v2) ∈ b1(⋂i∈I{Si}).



163

2. consequently, by the Kleene fixed-point theorem [DP02], it follows that
νb1 = ⋂

n b
n
1 (>) holds, where b0

1 = Id and bn+1
1 = b1 ◦ bn1 ;

3. prove, using induction, that for all n, bn1 (>) = {(v1, v2) | Jv1K(w) =
Jv2K(w) for all words w ∈ A∗ up to length n− 1}:

For n = 0, nothing is to prove, because the condition Jv1K(w) = Jv2K(w)
for all words w ∈ A∗ up to length − 1 evaluates to true. For n = 1 this
follows from the condition o(v1) = o(v2). Now assume the claim holds
for all i ≤ n. Let (v1, v2) ∈ bn+1

1 (>), then for all a ∈ A it must hold
that (ta(v1), ta(v2)) ∈ bn1 (>). The induction hypothesis then yields that
Jta(v1)K(w) = Jta(v2)K(w) for all words w ∈ A∗ up to length n − 2 and
thus Jv1K(w) = Jv2K(w) for all words w ∈ A∗ up to length n− 1.

4. conclude by 2 and 3 that νb1 = {(v1, v2) | Jv1K = Jv2K for all words w ∈
A∗}.

By coinduction, the first statement follows.
For the second statement we have to use coinduction up-to and prove b1-

compatibility of c. The latter follows from abstract results [BPPR14b]. For a
concrete proof, one first has to show that the following monotone maps are
b1-compatible.

• the constant reflexive function: r(R) = {(x, x) | x ∈ S}: This is trivially
true, in fact, even r(b1(R)) = b1(r(R)) holds.

• the converse function: s(R) = {(y, x) | (x, y) ∈ R}: Due to the symmetric
definition of b1, it is easy to see that reversing the order in the pairs
before or after applying b1 does not make a difference.

• the squaring function: t(R) = {(x, z) | ∃y, (x, y) ∈ R and (y, z) ∈ R}: We
first compute

r(b1(R)) = {(x, z) | (x, y) ∈ b1(R), (y, z) ∈ b1(R)},

b1(r(R)) = b1({(x, z) | (x, y) ∈ R, (y, z) ∈ R}).

Now assume any x, z are given, such that (x, z) ∈ b1(r(R)). By definition,
there exists a y, such that (x, y) ∈ R and (y, z) ∈ R – i.e. (x, z) ∈
{(x′, z′) | (x′, y′) ∈ R, (y′, z′) ∈ R}. Then o(x) = o(y) and o(y) =



164

o(z), therefore, by transitivity of equality, o(x) = o(z). Moreover, for
(x, y) ∈ b1(R), it must be true that ta(x), ta(y) ∈ R for all a ∈ A

and analogously (ta(y), ty(z)) ∈ R can be shown to hold. Therefore,
(ta(x), ta(z)) ∈ {(x′, z′) | (x′, y′) ∈ R, (y′, z′) ∈ R}, which concludes the
proof that (x, z) ∈ b1(r(R)).

• the sum function: +(R) = {(v1 + v2, v
′
1 + v′2) | (v1, v2) ∈ R and (v′1, v′2) ∈

R}: We compute

+(b1(R)) = {(v1 + v2, v
′
1 + v′2) | (v1, v

′
1) ∈ b1(R), (v2, v

′
2) ∈ b1(R)},

b1(+(R)) = b1({(v1 + v2, v
′
1 + v′2) | (v1, v

′
1) ∈ R, (v2, v

′
2) ∈ R}).

Now assume (v1 +v2, v
′
1 +v′2) ∈ +(b1(R)) is given, then (v1, v

′
1) ∈ b1(R) ⊆

R, (v2, v
′
2) ∈ b1(R) ⊆ R. Thus, o(v1) = o(v′1) and o(v2) = o(v′2), i.e.

o(v1)+o(v2) = o(v′1)+o(v′2). Moreover, since (v1, v
′
1) ∈ b1(R), it must hold

for all a ∈ A that (ta(v1), ta(v′1)) ∈ R and analogously it can be shown
that (ta(v2), ta(v′2)) ∈ R. Thus also (ta(v1) + ta(v2), ta(v′1) + ta(v′2)) ∈
{(v1 + v2, v′1 + v′2) | (v1, v′1) ∈ b1(R), (v2, v′2) ∈ b1(R)}, showing that
(v1 + v2, v

′
1 + v′2) ∈ b1(+(R)).

• the scalar function: ·(R) = {(v · s, w · s) | (v, w) ∈ R and s ∈ S}: We first
compute

·(b1(R)) = {(v · s, w · s) | (v, w) ∈ b1(R), s ∈ S},

b1(·(R)) = b1({(v, w) | (v, w) ∈ ·(R)})

= b1({(v · s, w · s) | (v, w) ∈ R, s ∈ S}).

Now assume any pair of vectors (v · s, w · s) ∈ ·(b1(R)) is given. Then we
can find

o(v) = o(w)⇒ o(v · s) = o(v) · s = o(w) · s = o(w · s)

due to linearity of matrix multiplication. Moreover, since (v, w) ∈ b1(R)
is true for all a ∈ A, it must hold that (ta(v), ta(w)) ∈ R, i.e.

(ta(v) · s, ta(w) · s) ∈ {(v · s, w · s) | (v, w) ∈ R, s ∈ S},

concluding the proof that (v · s, w · s) ∈ b1(·(R)).



165

Also note, that Id(R) ⊆ ·(R) using s = 1. Then, one can observe that c =
(r ∪ s ∪ t ∪+ ∪ ·)ω and conclude that c is b-compatible by Lemma 5.3.2. �

With this result, it is easy to prove the correctness of the algorithm.

Theorem 5.3.6 Whenever HKC terminates, it returns true iff Jv1K = Jv2K.

Proof: Observe that R ⊆ b1(c(R) ∪ todo) is an invariant for the while loop
at step 3.

If HKC returns true then todo is empty and thus R ⊆ b1(c(R)), i.e., R is a
b1-simulation up-to c. By Proposition 5.3.5, v1 ∼ v2.

Whenever HKC returns false, it encounters a pair (v′1, v′2) ∈ todo such that
o(v′1) 6= o(v′2). Observe that for all pairs (v′1, v′2) ∈ todo, there exists a word w =
a1a2 . . . an ∈ A∗ such that v′1 = tan(. . . ta2(ta1(v1))) and v′2 = tan(. . . ta2(ta1(v2))).
Therefore Jv1K(w) = Jv′1K(ε) = o(v′1) 6= o(v′2) = Jv′2K(ε) = Jv′2K(w). �

5.3.3 Language Inclusion

Whenever a semiring S carries a partial order v, one can be interested in
checking language inclusion of the states of a weighted automata (X, o, t). More
generally, given v1, v2 ∈ SX , we say that the language of v1 is included in the
language of v2 (written v1 @∼ v2), iff Jv1K(w) v Jv2K(w) for all w ∈ A∗.

The algorithm HKC can be slightly modified to check language inclusion,
resulting in algorithm HKP: The only change when compared to HKC are the
checks in steps 5 and 6.

For this algorithm, we use a function p : RelSX → RelSX , which is the
monotone function assigning to each relation R its precongruence closure p(R).

(Ord)
v v v′

v p(R) v′

The precongruence closure is defined as the closure of R
under v, transitivity and linear combination. That is, in
the rules of Table 5.1 c(R) is replaced by p(R), rule (Sym)
is removed and rule (Refl) is replaced by rule (Ord) on
the right.



166

Algorithm 5.3.7 Algorithm to check the language inclusion of vectors v1, v2 ∈
SX for a weighted automata (X, o, t).
• Input: A weighted automaton α = (X, o, t) over a semiring S and two

initial vectors v1, v2 ∈ SX

• Output: True, if the language of v1 is a sublanguage of the language of
v2, false otherwise

HKP (α, v1, v2)

1 R := ∅; todo := ∅
2 insert (v1, v2) into todo

3 while todo 6= ∅ do

4 extract (v′1, v′2) from todo

5 if (v′1, v′2) ∈ p(R) then continue

6 if o(v′1) 6v o(v′2) then return false

7 for all a ∈ A,

8 insert (ta(v′1), ta(v′2)) into todo

9 insert (v′1, v′2) into R

10 return true

The soundness of the modified algorithm can be proven in the same way
as for HKC by replacing c by p and b1 by b2 : RelSX → RelSX defined for all
R ⊆ SX × SX as

b2(R) = {(v1, v2) | o(v1) v o(v2) and for all a ∈ A, (ta(v1), ta(v2)) ∈ R}.

However, the soundness of up-to reasoning is guaranteed only if v is a precon-
gruence, that is p(v) is contained in v.

Lemma 5.3.8 νb2 = @∼ .

Proof: The proof proceeds as for the first part of Proposition 5.3.5 by using
v in place of = and b2 in place of b1. �

Lemma 5.3.9 If v is a precongruence, the following monotone maps are
b2-compatible:



167

• the constant ord function: v (R) = {(v1, v2) | v1 v v2},

• the constant inclusion function: @∼ (R) = {(v1, v2) | v1 @∼ v2},

• the squaring function: t(R) = {(v1, v3) | ∃v2, (v1, v2) ∈ R and (v2, v3) ∈
R},

• the sum function: +(R) = {(v1 + v2, v
′
1 + v′2) | (v1, v2) ∈ R and (v′1, v′2) ∈

R},

• the scalar function: · (R) = {(v · s, w · s) | (v, w) ∈ R and s ∈ S}.

Proof: Since v is a precongruence, if v1 v v2, then o(v1) v o(v2) and for all
a ∈ A, ta(v1) v ta(v2). Which means that v⊆ b2(v), that is, for all relations R,
v (b2(R)) ⊆ b2(v (R)). This proves the first statement. The others are similar
to the proof of b1-compatibility before. �

Lemma 5.3.10 p is compatible.

Proof: Observe that by definition p = (Id ∪ v ∪ t ∪+ ∪ ·)ω. The statement
follows immediately by Lemma 5.3.2 and Lemma 5.3.9. �

Note that we have not made use of the constant inclusion being b2-compatible
here. However, it is useful, because it informs us that we use information about
pairs of vectors, that are language included in each other. Therefore, we can
initialise the relation R in our algorithm with any pairs of vectors, that are
language included, known e.g. from a pre-computation.

Theorem 5.3.11 Let S be a semiring equipped with a precongruence v. Whe-
never HKP(v1, v2) terminates, it returns true if and only if v1 @∼ v2.

Proof: For soundness, observe that the following is an invariant for the while
loop at step 3.

R ⊆ b2(p(R) ∪ todo)

If HKP returns true then todo is empty and thus R ⊆ b2(p(R)), i.e., R is a
b2-simulation up-to p. By Lemma 5.3.10, Theorem 5.3.1 and Lemma 5.3.8,
v1 @∼ v2.

For completeness, we proceed in the same way as in Theorem 5.3.6. �



168

In order for HKP to be effective, we need a procedure to compute p. When
S is an integral l-monoid, we can check (v, v′) ∈ p(R) via a variation of the
congruence check, using a rewriting system as in Subsection 5.2.4.

Proposition 5.3.12 Let L be an integral l-monoid and let R ⊆ LX × LX be a
relation.

The set of rules R is defined as {v′ 7→ v t v′ | (v, v′) ∈ R}.3 Rewriting steps
are defined as in Definition 5.2.6. If the rewriting algorithm terminates, then
for all v, v′ ∈ LX , (v, v′) ∈ p(R) iff ⇓v′ w v (where, as usual, ⇓v′ denotes the
normal form of v′).

Proof: This proof is very close in structure to the proofs for Theorem 5.2.11
and Theorem 5.2.14. We will use Lemma 5.2.12 and Lemma 5.2.13, because the
claims and proofs for these lemmas can be copied verbatim for the asymmetric
case, so we do not prove these claims again. This does not hold true for
Theorem 5.2.11 and Theorem 5.2.14, though, where symmetry is relevant. We
will now prove the two claims, adjusted to the non-symmetric case.

• Whenever there exists a vector v′2 w v1 such that v2 rewrites to v′2 via
R, i.e., v2 ;∗R v′2, then (v1, v2) ∈ p(R). This is the analogue to Theo-
rem 5.2.11.

We will show that if v2 ;
∗
R v

′
2, then (v′2, v2) ∈ p(R). Furthermore, v1 v v′2

implies v1 p(R) v′2 due to rule (Ord). Transitivity then yields (v1, v2) ∈
p(R).

Assume v2 ; v′ via a rule l 7→ r, then l = w′, r = wtw′ where (w,w′) ∈ R,
according to definition of R. Due to closure under linear combinations and
idempotency of t, we have wtw′ p(R) w′tw′ = w′, i.e. r p(R) l. Therefore,
due to closure under scalar multiplication, r ·(l→ v2) p(R) l ·(l→ v2), due
to closure under linear combination v2 t r · (l→ v2) p(R) v2 t l · (l→ v2).
Keeping in mind the definition of→, we can observe that l · (l→ v2) v v2.
Applying this and taking idempotency of the supremum into account
again, we obtain v2 t l · (l→ v2) = v2, therefore v′ p(R) v2. Transitivity
yields the claim for ;∗.

3Whenever v ≤ v′, the rule can be omitted, since it is never applicable.



169

• If v p(R) v′, then ⇓ v′ w v . This is the analogue to Theorem 5.2.14.
We perform a proof by structural induction on the modified derivation
rules of Table 5.1 (where (Sym) is removed and (Refl) is replaced by
rule (Ord)).

(Rel) If v p(R) v′ because vRv′ then there exists a rewriting rule (v′ 7→
v t v′) ∈ R. Applying this rule shows that ⇓v′ w v′ t v w v.

(Ord) If v p(R) v′ because of the ordering rule, i.e. v v v′, then ⇓v′ w
v′ w v.

(Trans) If v1 p(R) v3 because of v1 p(R) v2 and v2 p(R) v3, then ⇓v3 w
v2 implies ⇓ v3 w⇓ v2. Furthermore v1 p(R) v2 inductively yields
⇓v2 w v1 and transitivity therefore yields ⇓v3 w v1.

(Sca) If v ·` p(R) v′ ·` because v p(R) v′, then v v⇓v′ and Lemma 5.2.13
yields ⇓(v′ · `) w (⇓v′) · ` w v · `.

(Plus) If v t v p(R) v′ t v′ because v p(R) v′ and v p(R) v′, then
v t v v (⇓ v′) t (⇓v′) v⇓(v′ t v′), due to the monotonicity of ⇓.

�

Observe that Theorems 5.2.17 and 5.2.19 guarantee termination for certain
specific l-monoids. In particular, termination for the tropical semiring will be
pivotal henceforward.

5.3.4 Threshold Problem for Automata over the Tropi-
cal Semiring

Language inclusion for weighted automata over the tropical semiring is not
decidable, because language equivalence is not: mutual language inclusion is
the same as language equivalence.

However, the algorithm HKP that we have introduced in the previous section
can be used to solve the so-called threshold problem over the tropical semiring
of natural numbers (N0 ∪ {∞},min,+,∞, 0).

The problem is to check whether for a given threshold T ∈ N0, a vector of
states of a weighted automaton v ∈ (N0 ∪ {∞})X satisfies the threshold T , i.e.
JvK(w) ≤ T for all w ∈ A∗.



170

Note, that this problem is also known as the universality problem: universality
for non-deterministic automata can easily be reduced to a threshold check, by
taking weight 0 for each transition of the automaton and setting T = 0 for the
threshold.

t
a, 0 T

Figure 5.1: Added state for the threshold check

This problem – which is known to be PSPACE-complete [ABK11] – can be
reduced to language inclusion by adding a new state t to the automaton, which
has o(t) = T as output and a 0 self-loop for each letter a ∈ A. This state then
assigns to all words in A∗ the weight T . Then we check whether the language
of v includes the language of the unit vector et. If language inclusion does not
hold, there must exist at least one word where the weight of v must be smaller
than the weight of et, which is exactly T .

It is worth to note, that in (N0∪{∞},min,+,∞, 0) the ordering v is actually
≥, i.e. the reversed ordering on natural numbers. Therefore, in order to solve
the threshold problem, we need to check whether the inclusion et @∼ v holds,
rather than the converse, which may appear to be the more natural choice at
first sight.

Abstraction is not required for termination The algorithm HKP, when
applied to an instance of the threshold problem will always terminate, without
any additional requirements. In the original work [BKK17], we claimed that
an abstraction is required to guarantee termination, but the rule Ord already
guarantees termination without the need of an abstraction, using the following
argument:

To show that the algorithm terminates, we observe that the following claim
is a direct consequence of Dickson’s Lemma:

Every set of n-dimensional vectors over the tropical semiring that
contains no pair of (different) vectors v, v′ such that v v v′, i.e.
v ≥ v′, is finite.

If the reader is unaware of Dickson’s Lemma, a direct proof of this claim may be
found in Appendix B.2. Observe that for the threshold problem, the algorithm



171

HKP generates vector pairs where the right side always stays the same, so we
can characterise a run of HKP as collecting vectors from a set of n-dimensional
vectors, where no pair of different vectors v, v′ with v ≥ v′ exists – all other
vectors are eliminated by the rule Ord. The constant right side is ignored in
this view, instead we will solely focus on a projection to the first element of
each pair.

This result can now be used to show termination, taking into account that the
algorithm creates a sequence of such sets of vectors, that is strictly increasing
and prunes them by removing all non-minimal vectors. So for each vector in
iteration i it holds that this vector is also minimal in iteration i+ 1, or replaced
by a new, smaller vector. Each vector can only be replaced by a smaller vector
finitely often. For entries which are natural numbers, this is obvious, for infinite
entries, note, that after replacing them once by a smaller entry, the new entry
also is a natural number. Now, we can take the union of all the sets of vectors
obtained in the algorithm, pruned again to only include the minimal vectors
and observe that there are only finitely many such vectors. This finite set must
be reached after finitely many steps in the algorithm, because in each step, a
change in the minimal vectors must occur, otherwise the algorithm terminates.
Since only finitely many changes can occur, this is limiting the number of steps
that the algorithm can take.

An abstraction to improve the run-time This reasoning certainly does
not yield a very promising argument for termination speed of HKP when used
to decide the threshold problem. However, it has already been observed in
[ABK11] that it is a sound reasoning technique to replace every vector entry
larger than the threshold T by ∞. In order to reduce the number of vectors
that need to be explored, it is sensible to apply this reasoning technique, even
though it is not strictly required to guarantee termination. To formalise this
result, we will first introduce an abstraction mapping A and then state our
modified algorithm:

Definition 5.3.13 Let a threshold T ∈ N0 be given. We define the abstraction
A : N0 ∪ {∞} → N0 ∪ {∞} according to A(s) = s if s ≤ T and A(s) = ∞
otherwise. The definition of the abstraction A extends elementwise to vectors
in (N0 ∪ {∞})X .



172

This abstraction can be incorporated into the algorithm HKP. Taking the
abstraction into account, we call the algorithm obtained from HKP by changing
steps 7 and 8 by applying the abstraction appropriately HKPA. The algorithm
HKPA is given as follows:

Algorithm 5.3.14 Algorithm to check the language inclusion of vectors v1, v2 ∈
SX for a weighted automata (X, o, t).
• Input: A weighted automaton α = (X, o, t) over a semiring S and two

initial vectors v1, v2 ∈ SX

• Output: True, if the language of v1 is a sublanguage of the language of
v2, false otherwise

HKPA(α, v1, v2)

1 R := ∅; todo := ∅
2 insert (v1, v2) into todo

3 while todo 6= ∅ do

4 extract (v′1, v′2) from todo

5 if (v′1, v′2) ∈ p(R) then continue

6 if o(v′1) 6v o(v′2) then return false

7 for all a ∈ A
8 insert (ta(v′1),A(ta(v′2))) into todo insert (v′1, v′2) into R

9 return true

Now to check whether a certain vector v satisfies the threshold of T , it is
enough to run HKPA(α, et, v) where et is the unit vector for t as defined above.

The soundness of the proposed algorithm can be shown in essentially the
same way as for HKP but using a novel up-to technique to take care of the
abstraction A. For the completeness, we need the following additional result.

Lemma 5.3.15 For all vectors v ∈ (N0 ∪ {∞})X it holds that

(i) A(ta(A(v))) = A(ta(v))
(ii) A(o(A(v))) = A(o(v)).

Proof:



173

(i) Observe thatA is increasing and thus, ifA(ta(v))[x] =∞,A(ta(A(v)))[x] =
∞ necessarily holds, as well. Also note that A(ta(v))[x] > T implies
A(ta(v))[x] =∞. Thus we can prove this lemma by showing the following:
Let I = {x ∈ X | v[x] > T}, x ∈ X and a ∈ A such that ta(v)[x] ≤ T be
given, then ta(A(v))[x] = ta(v)[x].
All entries greater than T necessarily get mapped to ∞.
We first compute:

ta(A(v))[x] =
⊔
{A(v)[y]uta[y, x] | y ∈ X} = min{A(v)[y]+ta[y, x] | y ∈ X}

and analogously

ta(v)[x] = min{v[y] + ta[y, x] | y ∈ X}

Since we know that ta(v)[x] ≤ T , there must exist a y ∈ X such that
v[y] + ta[y, x] ≤ T . Observe that v[x] > T and ta[y′, x] ∈ N0 for all y′ ∈ I,
therefore y /∈ I. Thus

ta(v)[x] = min{v[y] + ta[y, x] | y ∈ X \ I}

Now we can compute:

ta(A(v))[x] = min{A(v)[y] + ta[y, x] | y ∈ X}

= min{min{A(v)[y] + ta[y, x] | y ∈ X \ I},min{A(v)[y′] + ta[y′, x] | y′ ∈ I}

= min{ta(v)[x],min{∞+ ta[y′, x] | y′ ∈ I}} = min{ta(v)[x],∞} = ta(v)[x]

(ii) First we show that if o(v) ≤ T it also holds that o(A(v)) = o(v). If o(v) ≤
T then min{o[i] + v[i] | 1 ≤ i ≤ |X|} ≤ T , so there is an index i where
the minimum is reached and smaller than or equal T , i.e. o[i] + v[i] ≤ T .
Thus, since + is increasing, v[i] ≤ T and therefore A(v[i]) = v[i]. Since
A is also only increasing, we can conclude o(A(v)) = o(v).
It remains to be shown that o(v) > T ⇔ o(A(v)) > T . Certainly, if
o(v) > T it must follow that o(A(v)) > T , since A(v) ≥ v. So assume
now, for the converse direction, that o(A(v)) > T holds. This means
min{o[i] +A(v)[i] | 1 ≤ i ≤ |X|} > T and assume o(A(v)) 6= o(v). Then
there exists an index i where the minimum is reached, i.e an index such
that o[i] + v[i] ≤ o[j] + v[j] for all j. Since A is only increasing the
entries of a vector, it follows o[i] + v[i] < o[j] +A(v[j]) for all j. Thus,



174

o[i] + v[i] < o[i] +A(v[i]), i.e. v[i] < A(v[i]). It follows that A(v[i]) =∞.
Then, v[i] > T and since o[i] ≥ 0 it follows that o(v) > T .

�

Lemma 5.3.16 p • v is b2-compatible, where p : RelSX → RelSX is the mono-
tone function assigning to each relation R its precongruence closure.

Proof: By Lemma 5.3.9 and Lemma 5.3.10, v and p are b2-compatible. It is
easy to check that for all relations R, S, it holds that b2(R) • b2(S) ⊆ b2(R • S).
Therefore, by Lemma 5.3.2, p • ≥ is b2-compatible. �

Theorem 5.3.17 HKPA(α, et, v1) always terminates. Moreover, HKPA(α, et, v1)
returns true iff Jv1K(w) ≤ T for all w ∈ A∗.

Proof: Termination is obvious, as there are only finitely many vectors with
entries from the set {0, 1, 2, .., T,∞}. We now prove soundness. Observe that
the following is an invariant for the while loop at step 3.

R ⊆ b2((p(R) ∪ todo)• v)

since A(ta(v′1)) v ta(v′1), i.e. A(ta(v′1)) ≥ ta(v′1). If HKPA returns true then todo
is empty and thus R ⊆ b2(p(R)• v). By Lemma 5.3.16, Theorem 5.3.1 and
Lemma 5.3.8, et @∼ v1, i.e. T ≥ Jv1K(w) for all w ∈ A∗.

The converse implication is more elaborated than its analogous in Theo-
rem 5.3.6. Assume that HKPA yields false, then a vector v′1 was found such that
o(v′1) > T . This means there exists a word w = a1a2...an such that

v′1 =tan(A(tan−1(A(tan−2(...A(ta1(v1))...)))))

≤A(tan(A(tan−1(A(tan−2(...A(ta1(v1))...))))))

Now we can apply Lemma 5.3.15 and eliminate all inner A-applications, yielding
v′1 ≤ A(tan(tan−1(tan−2(...(ta1(v1))...)))). For easier reading we will now call
v′ := tan(tan−1(tan−2(...(ta1(v1))...))). Since o(v′1) > T , certainly o(A(v′)) > T

due to transitivity. Since A is increasing, o(A(v′)) ≤ A(o(A(v′))), which is,
according to Lemma 5.3.15, A(o(v′)). Due to transitivity of > we can conclude
A(o(v′)) > T , i.e. A(o(v′)) = ∞. According to the definition of A, it follows
that o(v′) > T , therefore w is indeed a witness for the automaton not to respect
the threshold. �



175

5.3.5 Exploiting Similarity

For checking language inclusion of non-deterministic automata it is often
convenient to precompute a similarity relation that allows to immediately
skip some pairs of states [ACHV10]. This idea can be readapted to weighted
automata over an l-monoid by using the following notion.

Definition 5.3.18 (Simulation) Let (X, o, t) be a weighted automaton. A
relation R ⊆ SX × SX on unit vectors is called a simulation relation whenever
for all (v, v′) ∈ R

(i) o(v) v o(v′)
(ii) for all a ∈ A, there exists a pair (u, u′) that is a linear combination of

vector pairs in R and furthermore ta(v) v u, u′ v ta(v′).

Similarity, written �, is the greatest simulation relation.

Lemma 5.3.19 Simulation implies language inclusion, i.e. � ⊆ @∼

Proof:
We will prove this inductively, by showing that JvK(w) v Jv′K(w) for all

w ∈ Σ∗.

• Induction start (|w| = 0): In this case, JvK(w) = JvK(ε) = o(v) v
o(v′) = Jv′K(ε) = Jv′K(w).

• Induction hypothesis: For all words w, where |w| ≤ n, it holds that
JvK(w) v Jv′K(w).

• Induction step (n→ n+1): Let w be given such that |w| = n+1. Then
w can be written as w = aw′, a ∈ Σ, w′ ∈ Σ∗. Since (v, v′) ∈ R, there
must exist (u, u′), (v1, v

′
1), (v2, v

′
2), . . . , (vm, v′m) ∈ R, s1, s2, . . . , sm ∈ L

such that u = ⊔{vi · si | 1 ≤ i ≤ m}, u′ = ⊔{v′i · si | 1 ≤ i ≤ m} and
ta(v) v u, u′ v ta(v′). Using monotonicity of · and t (wrt. v), we obtain
the following two inequalities:

JvK(w) = JvK(aw′) = Jta(v)K(w′) v JuK(w′)

Ju′K(w′) v Jta(v′)K(w′) = Jv′K(aw′) = Jv′K(w)



176

Now we can apply the induction hypothesis, keeping in mind that |w′| = n:
Since JviK(w′) v Jv′iK(w′) for all 1 ≤ i ≤ m. Applying again monotonicity
of · and t, as well as the definition of u and u′, we get JuK(w′) v Ju′K(w′).
Finally, transitivity yields JvK(w) v Jv′K(w).

�

There are other, matrix-based definitions for simulation used for weighted
automata, but for our purpose we need a relational notion of simulation.

Similarity over an l-monoid can be computed with Algorithm 5.3.20. Even
though the relation is not symmetric, the method is conceptually close to the
traditional partition refinement algorithm to compute bisimilarity. Starting
from the cross-product of all states, the algorithm first eliminates all pairs of
states where the first state does not have a smaller-or-equal output than the
second one and then continuously removes all pairs of states that do not meet
the second requirement for a simulation relation, until the relation does not
change anymore.

Algorithm 5.3.20 Algorithm to compute similarity (�) for a weighted auto-
maton α = (X, o, t).
• Input: A weighted automaton α = (X, o, t) over a semiring S

• Output: R, the greatest simulation relation on α

SIM α

1 R := {(v, v′) ∈ SX × SX | v, v′ are unit vectors}
2 R′ := ∅
3 for all (v, v′) ∈ R
4 if o(v) 6v o(v′) then R := R \ {(v, v′)}
5 while R 6= R′

6 R′ := R

7 for all a ∈ A
8 for all (v, v′) ∈ R
9 u := ⊔{v1 · (v2 → ta(v′)) | (v1, v2) ∈ R}

10 if ta(v) 6v u then R := R \ {(v, v′)}
11 return R



177

We will now show the correctness of the algorithm to compute the bisimilarity.

Lemma 5.3.21 SIM computes �.

Proof: First observe that, since simulations are closed under union, there exists
a greatest simulation relation on unit vectors.

• Due to the nature of the algorithm, it necessarily terminates after finitely
many steps: In the beginning, R contains only finitely many pairs of
vectors and in each iteration, either some pairs are removed from R, or
R does not change, but in the latter case the algorithm terminates.

• The result is always a simulation relation, this can be seen as follows: Let
R be the result of a run of Algorithm 5.3.20 and (v, v′) ∈ R. Then

– It holds that o(v) v o(v′), because otherwise, the pair (v, v′) would
have been removed from R in the first for all-loop.

– Furthermore,

ta(v) v
⊔
{v1 · (v2 → ta(v′)) | (v1, v2) ∈ R} =: u

Moreover, for all (v1, v2) ∈ R, v2 · (v2 → ta(v′)) v ta(v′) holds per
definition of residuation. Therefore,

u′ :=
⊔
{v2 · (v2 → ta(v′)) | (v1, v2) ∈ R} v ta(v′)

holds, as well. This means that (u, u′) is a linear combination of
R-vectors and ta(v) v u, u′ v ta(v′).

• Now we will show inductively, that there cannot exist any greater simu-
lation relation. The algorithm starts with the full cross-product of unit
vectors and removes all pairs (v, v′) where o(v) v o(v′) does not hold –
meaning that these pairs cannot be in a simulation relation at all. Thus,
before we enter the nested for all-loops, R is a superset of (or equal to) the
greatest simulation relation on α. We will now show that, whenever a pair
of vectors is removed in the nested for all-loops, it cannot be contained
in a simulation relation, therefore proving that after each execution of
the nested for all-loops, R retains the property to be a superset of (or
equal to) the greatest simulation relation on α.



178

Assume that (v, v′) is an element of the greatest simulation relation
R′ = {(v1, v

′
1), (v2, v

′
2), . . . , (vn, v′n)}. Then for all a ∈ A, there must exist

multiplicands s1, s2, . . . , sn such that ta(v) v ⊔{vi · si | 1 ≤ i ≤ n} and⊔{v′i · si | 1 ≤ i ≤ n} v ta(v′). From this it follows that for any given
1 ≤ i ≤ n, it holds that v′i · si v ta(v′) and therefore si v

⊔{` | v′i · ` v
ta(v′)} = v′i → ta(v′), since it is included in the set. We can therefore
compute, using R′ v R, which is the induction hypothesis:

u =
⊔
{v · (v′ → ta(v′)) | (v, v′) ∈ R}

w
⊔
{v · (v′ → ta(v′)) | (v, v′) ∈ R′}

=
⊔
{vi · (v′i → ta(v′)) | 1 ≤ i ≤ n}

w
⊔
{vi · si | 1 ≤ i ≤ n} ≥ ta(v)

Thus, the if-condition ta(v) 6v u in the second-to-last line does not evaluate
to true, meaning that (v, v′) will not be removed from R in the current
iteration.

�

Lemma 5.3.22 The runtime complexity of SIM when applied to an automa-
ton over state set X and alphabet A is polynomial, assuming constant time
complexity for all semiring operations (supremum, multiplication, residuation).

Proof: Assuming all semiring operations (supremum, multiplication, residuati-
on) consume constant time, the runtime of the algorithm can be analysed as
follows: the for-loop in line 3 is executed |X|2 many times, once for each element
of R, which is initialised as all pairs of unit vectors of dimension |X|, of which
there are exactly |X| many. The while-loop in line 5 is executed until R remains
constant for one iteration. Since R contains at most |X|2 many elements in the
beginning (if no pair was thrown out in the preceding for-loop), and in each step
of the inner for all-loop, line, R remains either constant or a pair of vectors gets
taken out of R. The for all-loop in line 7 is executed |A|-times each time, and
the inner for all-loop is executed |R|-times. While line 10 only takes constant
time, line 9 takes |X| · |R| many steps. At worst, the time taken by the whole
while-loop in line 5 therefore is |A| ·∑|X|2i=1 ((|X|2 − i)2 · |X|) ∈ O(|A| · |X|7), if
in each iteration exactly one pair of vectors gets removed from R. Obviously,
the latter loop dominates the former, so the run time is in O(|A| · |X|7). �



179

Once � is known, it can be exploited by HKP and HKPA. To be completely
formal in the proofs, it is convenient to define two novel algorithms – called
HKP’ and HKPA ′ – which are obtained from HKP and HKPA by changing step 5 to
take simulation into account, using a function p′, where p′(R) is defined for all
relations R as p′(R) = p(R∪ �). In either algorithm, we replace the fifth line
with the following line:

1 if (v′1, v′2) ∈ p′(R) then continue

The following two results state the correctness of the two algorithms.

Lemma 5.3.23 Let S be a semiring equipped with a precongruence v. Whene-
ver HKP’(v1, v2) terminates, it returns true iff v1 @∼ v2.

Proof: For soundness, we use the invariant R ⊆ b2(p′(R) ∪ todo), which allows
to conclude that R ⊆ b2(p′(R)). Now p′ is not guaranteed to be compatible,
but p′′ defined for all relations R as p′′(R) = p(R ∪ @∼ ) is compatible by
Lemma 5.3.9 and Lemma 5.3.2. By Lemma 5.3.19, �⊆ @∼ . By monotonicity of
p, we have that p′(R) = p(R∪ �) ⊆ p(R ∪ @∼ ) = p′′(R). By monotonicity of b2,
R ⊆ b2(p′′(R)). By Theorem 5.3.1 and Lemma 5.3.8, v1 @∼ v2. For completeness,
we proceed in the same way as in Theorem 5.3.6. �

Lemma 5.3.24 HKPA ′(et, v1) always terminates. Moreover, HKPA ′(et, v1) re-
turns true iff Jv1K(w) ≤ T for all w ∈ A∗.

Proof: For termination and completeness we reuse the same argument as in
Theorem 5.3.17. For soundness we need to combine the proofs of Lemma 5.3.23
and of Theorem 5.3.17: we use the invariant R ⊆ b2((p′(R) ∪ todo)• v), which
allows to conclude that R ⊆ b2(p′(R)• v). Now p′ is not guaranteed to be b2-
compatible, but p′′, as defined in the proof of Lemma 5.3.23, is. By Lemma 5.3.2,
p′′• v is compatible, since v is compatible. By monotonicity of p, we have that
p′(R)• v = p(R ∪ �)• v ⊆ p(R ∪ @∼ )• v = p′′(R)• v. By monotonicity of
b2, R ⊆ b2(p′′(R)• v). By Theorem 5.3.1 and Lemma 5.3.8, v1 @∼ v2. �

5.3.6 An Exponential Pruning

To illustrate the benefits of up-to techniques, we show an example where HKPA ′

exponentially prunes the exploration space by exploiting the technique p′. We



180

x x1 x2 xn−1 xn

y y1 y2 yn−1 yn

a, b
a a, b a, b

a, b
b

a, b a, b

Figure 5.2: Class of examples where HKPA ′ exponentially improves over ABK.
Output weight is always 0, transition weight is always 1.

compare HKPA ′ against ABK in Algorithm 5.3.25, that can be thought of as an
adaptation of the algorithm proposed in [ABK11] to the notation used in this
paper.

Algorithm 5.3.25 Algorithm to check whether a vector v0 of a weighted
automata (X, o, t) satisfies the threshold T ∈ N0

• Input: A weighted automaton α = (X, o, t) over a semiring S, a threshold
T and an initial vector v0 ∈ SX

• Output: True, if v0 respects the threshold T , false otherwise

ABK(α, T, v0)

1 todo := {v0}
2 P := ∅
3 while todo 6= ∅
4 extract v from todo
5 if v ∈ P then continue

6 if o(v) 6≤ T then return false

7 for all a ∈ A insert A(ta(v)) into todo
8 insert v into P

9 return true

Consider the family of automata over the tropical semiring in Figure 5.2 and
assume that T = n. By taking as initial vector ex t ey (i.e., the vector mapping
x and y to 0 and all the other states to ∞), the automaton clearly does not
respect the threshold, but this can be observed only for words longer than n.

First, for ABK the runtime is exponential. This happens, since every word
up to length n produces a different weight vector. For a word w of length m



181

state xi has weight m iff the i-last letter of the word is a, similarly state yi has
weight m iff the i-last letter is b. All other weights are ∞. For instance, the
weights for word aab are given below.

x x1 x2 x3 x4 . . . y y1 y2 y3 y4 . . .

3 ∞ 3 3 ∞ . . . 3 3 ∞ ∞ ∞ . . .

Now we compare this behaviour with HKPA ′. Observe that xi � x, yi � y for
all i. (Keep in mind that since the order is reversed, a lower weight simulates a
higher weight.) Therefore, we obtain rewriting rules that allow to replace an
∞-entry in xi and yi by m for all i (since both entries x and y are m, we can
always apply this rule). In the example above this leads to a vector where every
entry is 3.

Hence, it turns out that for all words of the same length, the corresponding
vectors are all in the precongruence relation with each other – as they share
the same normal form – and we only have to consider exactly one word of each
length. Therefore, only linearly many words are considered and the runtime is
polynomial.

5.4 Runtime Results for the Threshold Pro-
blem

We now discuss runtime results for the threshold problem for weighted au-
tomata over the tropical semiring of the natural numbers. We compare the
following three algorithms: the algorithm without up-to technique (ABK), Algo-
rithm 5.3.25, the algorithm that works up-to precongruence (HKPA), explained
in Subsection 5.3.4, and the algorithm that additionally exploits pre-computed
similarity (HKPA ′), introduced in Subsection 5.3.5. This precomputation step is
relatively costly and is included in the runtime results below.

We performed the following experiment: for certain values of |X| (size of
state set) and of T (threshold) we generated random automata. The alphabet
size was randomly chosen between 1 and 5. For each pair of states and alphabet
symbol, the probability of having an edge with finite weight is 90%. We chose
this high number, since otherwise the threshold is almost never respected and
the algorithms return false almost immediately due to absence of a transition



182

for a given letter. With our choice instead, the algorithms need many steps
and the threshold is satisfied in 14% of the cases. In case the weight is different
from ∞, a random weight from the set {0, . . . , 10} is assigned.

For each pair (|X|, T ) we generated 1000 automata. The runtime results can
be seen in Table 5.2. We considered the 50%, 90% and 99% percentiles: the
50% percentile is the median and the 90% percentile means that 90% of the
runs were faster and 10% slower than the time given in the respective field.
Analogously for the 99% percentile.

Apart from the runtime we also measured the size of the relation R (or P
in the case of ABK) and the size of the similarity � (in case of HKPA ′). The
program was written in C# and executed on an Intel Core 2 Quad CPU Q9550
at 2.83 GHz with 4 GB RAM, running Windows 10.

First note that, as expected, HKPA and HKPA ′ always produce much smaller
relations than ABK. However, they introduce some overhead, due to rewriting
for checking p(R), and due to the computation of similarity, which is clearly
seen for the 50% percentile. However, if we look at the larger parameters and
at the 90% and 99% percentiles (which measure the worst-case performance),
HKPA and HKPA ′ gain the upper hand in terms of runtime.

Note also that, while in the example above (Subsection 5.3.6) similarity
played a large role, this is not the case for the random examples. Here similarity
(not counting the reflexive pairs) is usually quite small. This means that
similarity does not lead to savings, only in very few cases does the size of R
decrease for HKPA ′. But this also means that the computation of � is not very
costly and therefore the runtime of HKPA is quite similar to the runtime of HKPA ′.
We believe that for weighted automata arising from concrete problems, the
similarity relation will usually be larger and promise better runtimes. Note
also that similarity is independent of the initial vector and the threshold.
Consequently, if one wants to answer several threshold questions for the same
automaton, it has to be computed only once.

We will now consider two additional examples, demonstrating the possible
gain over the ABK algorithm. The first example is particularly simple, in this case,
computing a simulation relation up-front does not yield any benefits. However,
due to the small size of the example, the disadvantage of the additionally
required computation is negligible either way. Therefore, in this case, we will



183

Runtime (millisec.) Size of R/P Size of �
(|X|, T ) algo 50% 90% 99% 50% 90% 99% 50% 90% 99%
(3,10) HKPA ′ 2 8 20 5 14 33 0 2 4

HKPA 1 3 14 5 14 34 - - -
ABK 1 3 13 6 28 92 - - -

(3,15) HKPA ′ 3 17 127 11 34 100 0 2 4
HKPA 2 16 126 11 34 100 - - -
ABK 2 17 90 18 119 373 - - -

(3,20) HKPA ′ 6 65 393 18 70 174 0 2 4
HKPA 4 64 466 18 71 192 - - -
ABK 5 79 315 55 364 825 - - -

(6,10) HKPA ′ 21 227 1862 18 106 302 0 2 12
HKPA 8 217 1858 19 106 302 - - -
ABK 9 286 2045 40 693 2183 - - -

(6,15) HKPA ′ 90 2547 12344 65 353 750 0 2 11
HKPA 84 2560 12328 65 353 750 - - -
ABK 88 4063 20987 346 3082 7270 - - -

(6,20) HKPA ′ 239 7541 59922 111 589 1681 0 3 11
HKPA 234 7613 60360 111 589 1681 - - -
ABK 253 16240 103804 702 6140 14126 - - -

(9,10) HKPA ′ 274 9634 73369 98 582 1501 0 3 21
HKPA 236 9581 72833 99 582 1501 - - -
ABK 232 17825 99332 536 6336 14956 - - -

(9,15) HKPA ′ 1709 71509 301033 256 1517 3319 0 3 19
HKPA 1681 70587 301018 256 1517 3319 - - -
ABK 919 112323 515386 1436 14889 28818 - - -

(9,20) HKPA ′ 3885 168826 874259 407 2347 5086 0 3 20
HKPA 3838 168947 872647 407 2347 5086 - - -
ABK 1744 301253 1617813 2171 22713 48735 - - -

(12,10) HKPA ′ 1866 93271 560824 247 1586 3668 0 7 31
HKPA 1800 92490 560837 251 1586 3668 - - -
ABK 1067 189058 889949 1342 18129 37387 - - -

(12,15) HKPA ′ 5127 363530 1971541 423 3001 6743 0 7 35
HKPA 5010 362908 1968865 423 3001 6743 - - -
ABK 1418 509455 2349335 1672 27225 55627 - - -

(12,20) HKPA ′ 15101 789324 3622374 744 4489 9027 0 6 32
HKPA 15013 787119 3623393 744 4489 9027 - - -
ABK 4169 1385929 4773543 3297 43756 80712 - - -

Table 5.2: Runtime results on randomly generated automata



184

only compare the ABK algorithm to our algorithm HKPA where R is initialised
to the empty set.

Example 5.4.1 Consider the automaton depicted below with initial vector
(0, 0):

1 2

a, 1

b, 1

c, 0

0

a, 0

b, 1

c, 1

0

It is easy to see that this automaton does not respect any threshold, since for
any threshold T , bT+1 is assigned the value T + 1. Our algorithm can observe
this fact after considering only 3 · T + 2 many words, i.e. all those words (up to
size T + 1) that contain only bs and at most one letter that is not a b at the
end.

The corresponding vectors for any word that contains symbols other than b
are dropped immediately in HKPA, because they are subsumed by the corresponding
vector consisting only of b’s. However, when performing the ABK algorithm, no
such words can be ignored, but all different vectors must be considered. This
renders only those words equivalent that contain the same numbers of as, bs
and cs.

As a result, the runtime of the ABK algorithm grows roughly quadratic in
the threshold T , whereas it grows only roughly linearly in T for our algorithm
HKPA. For instance, for the threshold 100, we have recorded a runtime of our
algorithm of less than 4 seconds, whereas the ABK algorithm took 49 seconds to
terminate.

A more elaborate automaton, that also allows us to see a possible advantage
in computing the simulation relation in advance will be detailed in the next
example.

Example 5.4.2 Consider the following automaton:



185

1

2

4 5

3a, 0; b, 0; c, 0

0

a, 0

a, 0; b, 0

c, 0
0

a, 1; b, 1; c, 1
b, 0

c, 0

0

a, 1; b, 1; c, 1

b, 0

c, 0
0

a, 1; b, 1; c, 1

b, 0
c, 0

0

Again, this automaton does not respect any threshold, when using the initial
vector (0,∞,∞,∞,∞), since for any threshold T , baT+1 (as well as caT+1) is
assigned the value T + 1. This automaton can be extended by increasing the size
of the circle going from 3 over 4 to 5 by additional states. With increasing circle
length, the number of words, that need to be explored in order to determine that
the threshold is not respected, increases in the ABK algorithm.

However, it remains constant in our algorithm, since we can exploit the fact
that the states on the circle can simulate each other. Provided the threshold is
chosen large enough wrt. the circle length, we can observe how many words of
any given length (larger than the number of states, shorter than the threshold)
need to be explored by each algorithm. The following table shows how these
numbers, as well as runtimes change when increasing the number of states in
the circle:

HKPA ′ HKPA ABK

Circle length 3, time / ms 4605 12091 107704
words per word-length 3 9 81

Circle length 4, time / ms 4484 12088 167628
words per word-length 3 9 126

Circle length 5, time / ms 5174 12890 357400
words per word-length 3 9 240

Circle length 6, time / ms 6657 12628 605130
words per word-length 3 9 315

The experiments were conducted with a threshold of 100. Note that there is



186

a significant speed up due to the up-to algorithm and also a gain to be observed
from initialising R with the greatest simulation. However, with increasing circle
length, the advantage of using the simulation decreases, since the computation
of the simulation relation takes more time when the number of states increases.

However, the significance of the simulation relation is considerably greater
when changing the initial vector to (0, 0,∞,∞,∞). In this case, any threshold is
respected. Using the simulation relation, the algorithm can already conclude the
positive result for the threshold after only exploring the empty word, the other
two algorithms behave very similarly as with the initial vector (0,∞,∞,∞,∞),
though. For instance, with circle length 3, the time required by HKPA ′ could,
in our experiment, be reduced to 215 milliseconds. Note, that in this case, the
time taken by the approach using the simulation relation is independent of the
threshold T , whereas the runtime is linear in the value of T (i.e. exponential in
its encoding) in the two other cases. For instance, if we increase the threshold
to 200, the time used by the algorithm using the simulation relation remains
constant at 204 milliseconds (the difference is just fluctuation), whereas our
algorithm, when initialised with the empty set, takes 28228 milliseconds and
the unoptimised reference algorithm takes 214546 milliseconds. Note, that the
runtime was more than doubled in both cases. The results can be observed from
the following table, where the algorithm is applied to the same automaton, but
the threshold is increased stepwise from T = 100 up to T = 500.

HKPA ′ HKPA ABK

T=100, time / ms 215 8087 65184
T=200, time / ms 204 28228 214546
T=300, time / ms 229 60813 456371
T=400, time / ms 304 102957 792559
T=500, time / ms 201 159925 1196630

The significant speed-up when using the initial vector (0, 0,∞,∞,∞) stems
from the fact that state 2 simulates all other states. Therefore, for all 1 ≤ i ≤ 5,
(ei, e2) is in the relation R when the threshold algorithm is initialised. Linear
combination of all these pairs yields the pair (e1 + e2 + e3 + e4 + e5, e2) ∈ c′(R).

After adding ((∞,∞,∞,∞,∞, 0), (0, 0,∞,∞,∞)) to R in the first step,
we can drop all further vector pairs as follows: All vectors v that can be derived



187

in one or more steps from (0, 0,∞,∞,∞,∞) (remember we add an additional
state to the automaton to decide the threshold problem) still contain a 0 in
the second component so, for the candidate ((∞,∞,∞,∞,∞, 0), v) we can
observe:

(∞,∞,∞,∞,∞, 0) c′(R) (0, 0,∞,∞,∞,∞) v (e1 + e2 + e3 + e4 + e5)

c′(R) (∞, 0,∞,∞,∞,∞) v v

So the speed-up overall depends on the simulation relation, closure under
linear combination and closure under v.

5.5 The Shortest Path Problem in Directed
Weighted Graphs

The rewriting algorithm to compute the congruence closure over the tropical
semiring is closely related to the Dijkstra algorithm to find the shortest paths
in directed weighted graphs.

A weighted directed graph is a couple G = (V,weight) where V = {1, 2, . . . , n}
is the set of vertices and weight : V × V → R+

0 ∪ {∞} is a function assigning
to each pair of vertices v, w the weight to move from v to w. Intuitively, the
weight is ∞, if there is no way (no edge) to go from v directly to w.

Definition 5.5.1 (Rewriting System of a Graph) Let G = (V,weight) be
a weighted, directed graph and ei be the i-th unit vector of dimension |V | in
T and fix vi to be the vector representing the outgoing arrows from the i-
th vertex, i.e. vi[j] = weight((i, j)). The rewriting system associated to G is
RG = {ei 7→ vi | 1 ≤ i ≤ |V |}.

Proposition 5.5.2 For a graph G and vertex i, let ⇓ ei be the normal form
reached with RG. Then for all vertices j, ⇓ ei[j] is the weight of the shortest
path from i to j.

Proof:

• We first show inductively that for all vertices j it holds that ⇓ ei[j] ≤
d(i, j). We show this by induction over the length k of a shortest path
from i to j



188

Induction Start For k = 0, it is clear that j = i must hold and due to
monotonicity of rewriting, we have d(i, i) = 0 = ei[i] ≥⇓ ei[i]

Induction Hypothesis For all vertices j where a shortest path of length
at most k exists, it holds that ⇓ ei[j] ≤ d(i, j).

Induction Step Let j be a vertex such that there exists a shortest path
of length k+ 1 from i to j and let u be the predecessor on said path.
Then ⇓ ei(u) ≤ d(i, u) and there exists a rule eu 7→ vu. Since ⇓ ei is
a fixpoint we can deduce

⇓ ei[j] = min{⇓ ei[j], (eu →⇓ ei) + vu[j]}

=min{⇓ ei[j],⇓ ei[u] + vu[j]}

≤min{⇓ ei[j], d(i, j)} ≤ d(i, j)

• The other way around, to show that ⇓ ei[j] ≥ d(i, j) for all vertices j,
we argue that this property holds for all rewriting steps individually. So
first we observe that ei[j] ≥ d(i, j) for all vertices j is trivially true. Now,
given any vector v such that v[j] ≥ d(i, j) for all vertices j, assume a rule
ek → vk is applied. Then for all vertices j we can compute the result of
the rule application as follows:

min{(ek → v) + vk[j], v[j]}

=


v[j] if v[j] ≤ (ek → v) + vk[j]

(ek → v) + vk[j] otherwise

≥


d(i, j) if v[j] ≤ (ek → v) + vk[j]

d(i, k) + vk[j] otherwise
≥ d(i, j)

�

In order for rewriting to behave exactly like Dijkstra’s algorithm, we need to
always choose the rule with the smallest multiplicand that is applicable – i.e. the
greatest one according to the order of the lattice. Choosing a rule corresponds
to choosing a vertex to explore, determining the multiplicand corresponds to
finding the weight, accumulated from the starting vertex to the vertex to be
explored next, and applying the rule corresponds to updating the distances of
all adjacent vertices that can be reached via a shorter path than the currently
known shortest path.



189

Keep in mind that, while rewriting can be used to find shortest paths in a
graph, it does not work the other way around, because for the shortest-path-
interpretation we depend on a very specific kind of rewriting system, where
each rule has a left hand side that is exactly a unit vector and for each unit
vector there exists exactly one rule it is part of.

The following example shows the rewriting at work.

Example 5.5.3 Consider the following directed graph:

x1 x2

x3

2

3

0

5

0

7

1

0

This graph corresponds to the following rule system:

R =




0
∞
∞

 7→


0
3
2

 ,

∞
0
∞

 7→

∞
0
5

 ,

∞
∞
0

 7→


1
7
0




Now we can, for instance, determine the weights of the shortest paths to all
vertices starting in the vertex x3 as follows:

∞
∞
0

; 1 +


0
∞
∞

min


1
7
0

 =


1
7
0

; 1 +


0
3
2

min


1
7
0

 =


1
4
0


Afterwards, no more rewriting rule is applicable.

Note, that rewriting is non-deterministic and we could have chosen another
path. If we choose to apply the rule that has the smallest coefficient, we effectively
simulate Dijkstra’s algorithm.

We could have chosen to rewrite using 7 plus the second rule, first, but we
would have then had to apply the first rule anyway and would have ended up
with the same end result.



190

5.6 Conclusion and Future Work

In this work, we have investigated up-to techniques for weighted automata,
including methods to determine the congruence closure for semimodules.

Related work: Related work on up-to techniques has already been discussed in
the introduction. For the language equivalence problem for weighted automata
we are mainly aware of the algorithm presented in [BLS06], which is a partition
refinement algorithm and which already uses a kind of up-to technique: it can
eliminate certain vectors which arise as linear combinations of other vectors.
This algorithm also is very similar to the one presented in Chapter 4. The paper
[UH14] considers simulation for weighted automata, but not in connection to
up-to techniques.

Congruence closure for term rewriting has been investigated in [CLS96].
Our examples mainly involved the tropical semiring (and related semirings).

Hence, there are relations to work by Aceto et al. [AEI03] who presented
an equational theory for the tropical semiring and related semirings, as well
as Gaubert et al. [GP97] who discuss several reasons to be interested in the
tropical semiring and present solution methods for several types of linear
equation systems.

Future work: As we have seen in the experiments on the threshold problem,
our techniques greatly reduce the size of the relations. However, the reduction
in runtime is less significant, which is due to the overhead of the computation
of similarity and the rewriting procedure. There is still a substantial impro-
vement for the worst-case running times (90% and 99% percentiles). So far,
the algorithms, especially algorithm SIM for computing similarity, are not very
sophisticated and we believe that there is further potential for optimisation.



Chapter 6

Algorithmic Issues and
Applications for Conditional
Transition Systems with
Upgrades

6.1 Introduction

Software product lines (SPLs) are a software engineering method for managing
a collection of similar software systems with common features. To ensure
correctness of such systems in an efficient way, it is common to specify the
behaviour of many products in a single transition system and provide suitable
analysis methods based on model-checking or behavioural equivalences (see
[CCP+12, FUB06, tBFGM16, GLS08, CCS+13, AFL15, CHS+10]).

A popular modelling technique for software product lines are featured tran-
sition systems (FTSs) [CCS+13], where transitions are annotated with features
and a transition can only be taken when the corresponding feature is present
in the product under consideration. An issue that has rarely been studied, is
the notion of self-adaptivity for FTS [CCH+13], i.e., the view that features or
products are not fixed a priori, but may change during run-time. Here we focus
on adaptivity by performing upgrades.

In this context of adaptive SPLs, we are especially interested in behavioural
equivalences, specifically in bisimilarity. The questions we ask are the following:

191



192

Given two states in the transition system specifying an SPL, are they equivalent
for all products? Are they equivalent for a specific product? For which products
are they equivalent? Such questions are relevant when we compare a system
with its specification or want to modify a system in such a way that its
observable behaviour is invariant. Furthermore, computing bisimilarity provides
a minimisation technique for transition systems that are potentially very large.

To address these issues, we introduce the so-called conditional transition
systems (CTSs) as a formal model expressive enough to incorporate upgrades
in SPL. CTSs describe a more abstract view than FTSs: transitions are labelled
by conditions, corresponding to products, rather than features. An equivalent
view is to represent those transition systems by matrices (one for each label),
where we assign to each pair of states x, y the set of products that allow a
transition from x to y.

This exhibits three levels of abstraction: single features, products or con-
ditions (sets of features) and sets of products. This is strongly reminiscent of
propositional logic or Boolean algebra: features correspond to atomic propositi-
ons (X, Y, Z), products to complete conjunctions (e.g., X ∧ ¬Y ∧ Z) and sets
of products to (equivalence classes of) formulae or Boolean expressions (e.g.,
X ∨ ¬Y ). All these different views can be helpful: The product view allows
for compact and natural modelling, while the feature view can separate the
concerns for different products when modelling and connects CTS to the well-
known FTS. Finally, the Boolean view allows a compact representation of the
fixed-point algorithm for bisimilarity checking based on matrix multiplication
and BDDs.

The notion of an upgrade can be integrated into the above setting by
switching from Boolean algebras to distributive lattices, where the upgrade
ordering gives rise to the lattice order. Consequently, much of the theory and
methods can be reused, including the matrix multiplication algorithm.

Our contributions are as follows. First, we make the different levels in the spe-
cification of SPLs explicit and give a theoretical foundation in terms of Boolean
algebras and lattices. Second, we work out a theory of behavioural equivalences
with corresponding games and algorithms catered towards conventional and
adaptive SPLs. Third, we present our implementation based on binary decision
diagrams (BDDs), which provide a compact encoding of a propositional formula



193

and also show how they can be employed in a lattice-based setting. Lastly, we
show how the BDD-based matrix multiplication algorithm provides us with
an efficient way to check bisimilarity, that can be vastly superior to the naive
approach of checking all products, i.e., all feature combinations, separately.

This chapter is organised as follows. In Section 6.2 we formally introduce
CTSs and conditional bisimilarity. Using the Birkhoff duality, it is shown in
Section 6.3 that CTSs can be represented as lattice transition systems (LaTSs)
whose transitions are labelled with the elements from a distributive lattice.
Moreover, the bisimilarity introduced on LaTSs is shown to coincide with the
conditional bisimilarity on the corresponding CTSs. In Section 6.4, we show how
bisimilarity can be computed using a form of matrix multiplication. Section 6.5
focusses on the translation between an FTS and a CTS, and moreover, a BDD-
based implementation of checking bisimilarity is laid out. Lastly, we conclude
with a discussion on related work and future work in Section 6.6.

6.2 Conditional Transition Systems

The theory of conditional transition systems leans heavily on the theory of orders
and (finite, distributive) lattices, as introduced in Section 2.2. Throughout
the chapter, the reader is assumed to be familiar with the notions of lattices,
partially ordered sets and the Birkhoff duality.

In this section, we introduce conditional transition systems to formally specify
software product lines together with a notion of behavioural equivalence based
on bisimulation. In [ABH+12], such transition systems were already investigated
in a coalgebraic setting without an order on the conditions. Naturally, the CTS
from [ABH+12] arise as a special case of our notion of CTS, when ≤ is chosen
as the discrete order =.

Definition 6.2.1 Let (Φ,≤) be a finite poset. Then, a conditional transition
system (CTS) is a triple (X,A, f) consisting

• a set of states X

• a finite set A called the label alphabet and

• a function f : X × A→ (Φ→ P(X)) mapping every pair in X × A to a
monotone function of type (Φ,≤)→ (P(X),⊇).



194

We call the elements of Φ the conditions of the CTS. As usual, we write x a,ϕ−−→ y

whenever y ∈ f(x, a)(ϕ).

Intuitively, a CTS evolves as follows. Before the system starts acting, it is
assumed that all the conditions are fixed and a condition ϕ ∈ Φ is chosen
arbitrarily which represents a selection of a valid product of the system (product
line). Now all the transitions that have a condition greater than or equal to
ϕ are activated, while the remaining transitions are inactive. Henceforth, the
system behaves like a standard transition system; until at any point in the
computation, the condition is changed to a smaller one (say, ϕ′) signifying a
selection of a valid, upgraded product. This, in turn, has the propelling effect in
the sense that now (de)activation of transitions depends on the new condition
ϕ′, rather than on the old condition ϕ. Note that, due to the monotonicity
restriction, we have that x a,ϕ−−→ y and ϕ′ ≤ ϕ imply x a,ϕ′−−→ y. That is, active
transitions remain active during an upgrade, but new transitions may become
active.1 Labelled Transition Systems arise as a special case, where |Φ| = 1.

Example 6.2.2 Consider a simplified example (originally from [CCH+13])
of an adaptive routing protocol modelled as a CTS over the alphabet A =
{receive, check, u, e} graphically as follows:

ready received

safe

unsafe

receive,b
check,b

check,b

u,b

u,b

e,a

The system consists of two products: the basic system with no encryption
feature written as b and the advanced system with encryption feature written
as a. The ordering on the sets of valid products is defined as the smallest poset

1Monotonicity is important to ensure the duality between CTSs and lattice transition
systems (see Section 6.3). In Subsection 6.4.5 we will weaken the requirement that transitions
remain active after an upgrade by discussing a mechanism for deactivating transitions via
priorities.



195

containing the relation a < b. Transitions that are present due to monotonicity
are omitted.

Initially, the system is in state ’ready’ and is waiting to receive a message.
Once a message is received there is a check whether the system’s environment is
safe or unsafe, leading to non-deterministic branching. If the encryption feature
is present, then the system can send an encrypted message (e) from the unsafe
state only; otherwise, the system sends an unencrypted message (u) regardless
of the state being ’safe’ or ’unsafe’. Note that such a behaviour description
can be easily encoded by a transition function. E.g., f(received, check)(b) =
{safe, unsafe} and f(received, a)(x) = ∅ (for x ∈ {a,b} and a ∈ A \ {check})
specifies the transitions that can be fired from the received state to the (un)safe
states.

Next, we turn our attention towards (strong) bisimulation relations for CTSs
which consider the ordering of products in their transfer properties.

Definition 6.2.3 (Conditional Bisimulation) Let (X,A, f), (Y,A, g) be two
CTSs over the same set of conditions (Φ,≤). For a condition ϕ ∈ Φ, we define
fϕ(x, a) = f(x, a)(ϕ) to denote the traditional (A-)labelled transition system
induced by a CTS (X,A, f). We will sometimes call fϕ the instantiation of f
to ϕ.Two states x ∈ X, y ∈ Y are conditionally bisimilar under a condition
ϕ ∈ Φ, denoted x ∼ϕ y, if there is a family of relations Rϕ′ (for every ϕ′ ≤ ϕ)
such that

(i) each relation Rϕ′ is a traditional bisimulation relation2 between fϕ′ and
gϕ′,

(ii) whenever ϕ′ ≤ ϕ′′, it holds that Rϕ′ ⊇ Rϕ′′, and

(iii) Rϕ relates x and y, i.e. (x, y) ∈ Rϕ.

To illustrate conditional bisimulation, we discuss our previous example of a
CTS.

Example 6.2.4 As an example of conditional bisimulation, consider the CTS
illustrated in Example 6.2.2 where the condition b of the transition

2Since ϕ′ is fixed, the traditional bisimulation relation only takes labels from A into
account.



196

‘received check,b−−−−→ unsafe’ is replaced by a. Let ready1 and ready2 denote the
initial states of the system before and after the above modification, respectively.
Then, we find ready1 ∼a ready2; however, ready1 6∼b ready2. To see why the
latter fails to hold, consider the smallest bisimulation relation Rb in the tra-
ditional sense between α and β under the condition b that contains the pair
(ready1, ready2). The relation Rb has the following form:

Rb = {(ready1, ready2), (received1, received2), (unsafe1, safe2), (safe1, safe2)}

Similarly, we can give the bisimilarity Ra between the instantiations of α
and β to the condition a:

Rb = {(ready1, ready2), (received1, received2), (unsafe1, unsafe2), (safe1, safe2)}

Observe, that the states unsafe1, safe2 are bisimilar in the traditional sense,
under the condition b, i.e., (unsafe1, safe2) ∈ Rb. This pair is required in
any bisimulation relation that contains (ready1, ready2), because otherwise, in
the bisimulation game, after the necessary receive-steps in round 1, Player 1
can make a select-move from received1 to unsafe1 which cannot be answered
by Player 2. However, the two states cannot be related by any traditional
bisimulation relation under the condition a, because from unsafe1 an encrypted-
transition is possible, which is not possible from the state safe2. Therefore,
Condition 2 of Definition 6.2.3 is violated and the states ready1, ready2 can be
seen not to be conditionally bisimilar, even though there are bisimilar for all
possible instanciations.

Indeed, the two systems behave differently. In the first, it is possible to
perform actions receive, check (arrive in state unsafe), do an upgrade, and send
an encrypted message (e), which is not feasible in the second system, because
the check transition forces the system to be in the state ’safe’ before doing the
upgrade. However, without upgrades, the above systems would be conditionally
bisimilar for both products.

6.3 Lattice Transition Systems

Recall from Theorem 2.2.10 that there is a duality between partial orders and
distributive lattices. In fact, as we will show below, this result can be lifted to



197

the level of transition systems as follows: a conditional transition system over a
poset is equivalent to a transition system whose transitions are labelled by the
downward closed subsets of the poset (cf. Theorem 6.3.2).

Definition 6.3.1 (Lattice Transition Systems) A lattice transition sys-
tem (LaTS) over an alphabet A and a finite distributive lattice L is a triple
(X,A, α) consisting of a set of states X and a transition function α : X × A×
X → L.

Note that superficially, lattice transition systems resemble weighted automata
[DKV09]. However, while in weighted automata the lattice annotations are seen
as weights that are accumulated, in CTSs they play the role of guards that
control which transitions can be taken. Furthermore, the notions of behavioural
equivalence are quite different.

Given a CTS (X,A, f) over (Φ,≤), we can easily construct a LaTS over
O(Φ) by defining α(x, a, x′) = {ϕ ∈ Φ | x′ ∈ f(x, a)(ϕ)} for x, x′ ∈ X, a ∈ A.
Due to monotonicity, α(x, a, x′) is always downward-closed. Similarly, a LaTS
can be converted into a CTS by using the Birkhoff duality and by taking the
irreducibles as conditions.

Theorem 6.3.2 The set of all CTSs over a set of ordered conditions Φ is
isomorphic to the set of all LaTSs over the lattice whose elements are the
downward-closed subsets of Φ.

Proof: Given a setX, a partially ordered set (Φ,≤), and L = O(Φ), we define an
isomorphism between the sets (Φ mon.−−→ P(X))X×A and O(Φ)X×A×X . Consider
the following function mappings η : (Φ mon.−−→ P(X))X×A → O(Φ)X×A×X ,
f 7→ η(f) and η′ : O(Φ)X×A×X → (Φ mon.−−→ P(X))X×A, α 7→ η′(α) defined as:

η(f)(x, a, x′) = {ϕ ∈ Φ | x′ ∈ fϕ(x, a)},

η′(α)(x, a)(ϕ) = {x′ | ϕ ∈ α(x, a, x′)}.

We need to show that these functions actually map into their proclaimed domain,
so we will show that η(f)(x, a, x′) is downward-closed and that η′(α)(x, a) is a
monotone function.

Downward-closed Let ϕ ∈ η(f)(x, a, x′) and ϕ′ ≤ ϕ. By using these facts in
the definition of fϕ′ we find x′ ∈ fϕ′(x, a), i.e., ϕ′ ∈ η(f)(x, a, x′).



198

Anti-monotonicity Let ϕ ≤ ϕ′ and x′ ∈ η′(α)(x, a)(ϕ′). Then by definition
of η′ we find ϕ′ ∈ α(x, a, x′). And by downward-closedness of α(x, a, x′)
we get ϕ ∈ α(x, a, x′), i.e., x′ ∈ η′(α)(x, a)(ϕ).

Now it suffices to show that η, η′ are inverse to each other, because by the
uniqueness of inverses we then have η′ = η−1. First, we show that η′ ◦ η = id:

x′ ∈ f(x, a)(ϕ)⇔ x′ ∈ fϕ(x, a)⇔ ϕ ∈ η(f)(x, a, x′)⇔ x′ ∈ η′(η(f))(x, a)(ϕ) .

Analogously we can show that η ◦ η′ = id:

ϕ ∈ α(x, a, x′)⇔ x′ ∈ {x′′ | ϕ ∈ α(x, a, x′)} ⇔ x′ ∈ η′(α)(x, a), (ϕ)

⇔x′ ∈ η′(α)ϕ(x, a)⇔ ϕ ∈ {ϕ′ ∈ Φ | x′ ∈ η′(α)ϕ′(x, a)} ⇔ ϕ ∈ η(η′(α))(x, a, x′)

�

So every LaTS over a finite distributive lattice gives rise to a CTS in our sense
(cf. Definition 6.2.1) and, since finite Boolean algebras are finite distributive
lattices, conditional transition systems in the sense of [ABH+12] are CTSs in
our sense as well. We chose the definition of a CTS using posets instead of
the dual view using lattices, because this view yields a natural description
to model the behaviour of a software product line, though when computing
(symbolically) with CTSs we often choose the lattice view.

More importantly, the point is, by adopting the lattice view, conditional
bisimulations can be computed more elegantly than the following brute-force
approach:

• Instantiate a given CTS for each condition and apply the well-known
algorithm for labelled transition systems to each element.

• For each condition ϕ that is not minimal, take the bisimulations of all
smaller conditions than ϕ, intersect their respective bisimulations to
obtain a new bisimulation for ϕ.

• Repeat until the relations Rϕ do not change anymore.

Definition 6.3.3 (Lattice bisimulation) Let (X,A, α) and (Y,A, β) be any
two LaTSs over a lattice L. A conditional relation R, i.e., a function of type
R : X × Y → L is a lattice bisimulation for α, β if and only if the following
transfer properties are satisfied.



199

(i) For all x, x′ ∈ X, y ∈ Y , a ∈ A, ` ∈ J (L), whenever x a,`−→ x′ and
` v R(x, y), there exists y′ ∈ Y such that y a,`−→ y′ and ` v R(x′, y′).

(ii) Symmetric to (i) with the roles of x and y interchanged.

In the above, we write x a,`−→ x′, whenever ` v α(x, a, x′).

For a condition ϕ ∈ Φ, we have a transition x a,ϕ−−→ x′ in the CTS if and only
if there exists a transition x a,↓ϕ−−→ x′ in the corresponding LaTS. Consequently,
they are denoted by the same symbol.

Theorem 6.3.4 Let (X,A, f) and (Y,A, g) be any two CTSs over Φ. Two
states x ∈ X, y ∈ Y are conditionally bisimilar under a condition ϕ (x ∼ϕ y)
if and only if there is a lattice bisimulation R between the corresponding LaTSs
such that ϕ ∈ R(x, y).

Proof: Let x ∈ X, y ∈ Y be any two states in CTS (LaTS) (X,A, f), (Y,A, g)
over the conditions Φ ((X,A, α), (Y,A, β) over the lattice O(Φ ≤)), respectively.
⇐ Let ϕ ∈ Φ be a condition and let R be a lattice bisimulation relation

such that ϕ ∈ R(x, y). Then, we can construct a family of relations Rϕ′ (for
ϕ′ ≤ ϕ) as follows: xRϕ′y ⇔ ϕ′ ∈ R(x, y). For all other ϕ′, we set Rϕ′ = ∅. The
downward-closure of R(x, y) ensures that Rϕ′′ ⊆ Rϕ′ (for ϕ′, ϕ′′ ≤ ϕ), whenever
ϕ′ ≤ ϕ′′.

Thus, it remains to show that every relation Rϕ′ is a bisimulation. Let
xRϕ′y and x′ ∈ fϕ′(x, a). Then, x a,↓ϕ′−−−→ x′. Since ↓ ϕ′ is an irreducible in the
lattice, ↓ ϕ′ ⊆ R(x, y) and R is a lattice bisimulation, we find y a,↓ϕ′−−−→ y′ and
↓ ϕ′ ⊆ R(x′, y′), which implies ϕ′ ∈ R(x′, y′). That is, y′ ∈ gϕ′(y, a) and x′Rϕ′y

′.
Likewise, the remaining symmetric condition of bisimulation can be proven.

⇒ Let∼ϕ be a conditional bisimulation between the CTS (X,A, f), (Y,A, g),
for some ϕ ∈ Φ. Then, construct a conditional relation: R(x, y) = {ϕ | x ∼ϕ y}.
Clearly, the set R(x, y) is a downward-closed subset of Φ due to Definiti-
on 6.2.3(ii); i.e., an element in the lattice O(Φ). Next, we show that R is a
lattice bisimulation.

Let x a,↓ϕ′−−−→ x′ and ↓ ϕ′ ⊆ R(x, y). This implies x′ ∈ fϕ′(x, a) and ϕ′ ∈
R(x, y), hence x ∼ϕ′ y. So using the transfer property of traditional bisimulation,
we obtain y′ ∈ gϕ′(y, a) and x′ ∼ϕ′ y′. That is, y a,↓ϕ′−−−→ y′ and ϕ′ ∈ R(x′, y′),



200

which implies ↓ ϕ′ ⊆ R(x′, y′). Likewise, the symmetric condition of lattice
bisimulation can be proven. �

Incidentally, the order in L also gives rise to a natural order on lattice
bisimulations. Let R1, R2 : X × Y → L be any two lattice bisimulations. We
write R1 v R2 if and only if R1(x, y) v R2(x, y) for all x ∈ X, y ∈ Y . As a
result, taking the element-wise supremum of a family of lattice bisimulations is
again a lattice bisimulation. Therefore, the greatest lattice bisimulation for a
LaTS always exists, just like in the traditional case.

Lemma 6.3.5 Let Ri ∈ X × Y → L, i ∈ I be lattice bisimulations for a pair
of LaTSs (X,A, α) and (Y,A, β). Then ⊔{Ri | i ∈ I} is a lattice bisimulation.

Proof: Let x, x′ ∈ X, a ∈ A, y ∈ Y and ` ∈ J (L) such that ` v ⊔
i∈I Ri(x, y)

and x
a,`−→ x′. Then, there is an index i ∈ I such that ` v Ri(x, y), since `

is an irreducible. Thus, there is a y′ such that y a,`−→ y′ and ` v Ri(x′, y′) v⊔
i∈I Ri(x′, y′). Likewise, the symmetric condition when a transition emanates

from y can be proven. �

Coming back to our previous argument about the distinction between weigh-
ted automata and lattice transition systems, we will illustrate via a small
example that lattice bisimilarity and weighted bisimilarity (in the sense of
e.g. [Buc08]) do not coincide. Consider the lattice {>, 0.5,⊥} with the order
⊥ v 0.5 v > and the following LaTS over a single (unnamed) action:

1 2

3
>

0.5

⊥

Then 1 is lattice bisimilar to 2, as can be immediately observed: both, 1 and 2
cannot perform any action in product 0.5 unless they upgrade to the product >,
which in turn allows them to perform an arbitrary number of steps. No other
irreducible elements exist. However, if the LaTS is considered as a weighted
automaton, they are not bisimilar. It is even true that they are not language
equivalent, since state 1 assigns the weight > to all words, whereas all words of
at least length 2 are assigned 0.5 by state 2.



201

6.3.1 Correspondence to Fitting’s Bisimulation

Fitting [Fit02] has conducted work on characterising conditional relations as
matrices, which is strongly related to lattice bisimulation. Remember that
Boolean algebras are semirings, therefore we can use matrix operations li-
ke matrix multiplication ·. Additionally, for any matrix M , MT denotes its
transposed matrix. Fitting calls a matrix R : X × X → B (for any boolean
algebra B) for a transition matrix α : X ×X → B a bisimulation if and only
if R · α v α · R and RT · α v α · RT . By restricting ourselves to LaTSs over
Boolean algebras and fixing our alphabet to be a singleton set, we can establish
the following correspondence between Fitting’s formulation of bisimulation and
lattice bisimulation.

Lemma 6.3.6 Let (X,α) be a LaTS over an atomic Boolean algebra B. Then,
a conditional relation R : X ×X → B is a lattice bisimulation for α if and only
if R · α v α ·R and RT · α v α ·RT .

Here we interpret α as a matrix of type X × X → L by dropping the
occurrence of action labels.

Proof:
⇐ Let R : X ×X → B be a conditional relation satisfying R · α v α · R

and RT · α v α · RT . Then, we need to show that R is a lattice bisimulation.
Let x `−→ y such that ` ∈ J (B) and ` v R(x, x′). Then, we find ` v α(x, y).
That is,

` v R(x, x′) u α(x, y) = RT (x′, x) u α(x, y) v (RT · α)(x′, y) v (α ·RT )(x′, y).

By expanding the last term from above, we find that ` v α(x′, y′)uRT (y′, y), for
some y′. Thus, ` v α(x′, y′) (which implies x′ `−→ y′) and ` v R(y, y′). Similarly,
the remaining condition when the transition emanates from x′ can be verified
using R · α v α ·R.

⇒ Let R : X × X → B be a lattice bisimulation. Then, we only prove
R · α v α · R; the proof of RT · α v α · RT is similar. Note that, for any
x, y′ ∈ X, we know that the element (R · α)(x, y′) can be decomposed into a
set of atoms, since B is an atomic Boolean algebra. Let (R · α)(x, y′) = ⊔

i `i for
some index set I such that the `i are atoms or irreducibles in B.



202

Furthermore, expanding the above inequality we get, for every i ∈ I there
is a state y ∈ X such that `i v R(x, y) u α(y, y′), since the `i are irreducibles.
That is, for every i ∈ I we have some state y such that `i v R(x, y) and
`i v α(y, y′). Now using the transfer property of R we find some state x′

such that `i v α(x, x′) and `i v R(x′, y′). Thus, for every i ∈ I we find
that `i v (α · R)(x, y′); hence, since (α · R)(x, y′) is an upper bound of all `i,
(R · α)(x, y′) v (α ·R)(x, y′). �

6.4 Computation of Lattice Bisimulation

The goal of this section is to present an algorithm that computes the greatest
lattice bisimulation between a given pair of LaTSs. In particular, we first
characterise lattice bisimulation as a post-fixpoint of an operator F on the set
of all conditional relations. Then, we show that this operator F is monotone
with respect to the ordering relation v; thereby, ensuring that the greatest
bisimulation always exists by applying the well-known Knaster-Tarski fixpoint
theorem. Moreover, on finite lattices and finite sets of states, the usual fixpoint
iteration based on the Kleene fixpoint theorem starting with the trivial con-
ditional relation (i.e., the constant 1-matrix over L) can be used to compute
the greatest lattice bisimulation. Lastly, we give a translation of F in terms
of matrices using a form of matrix multiplication found in the literature of
residuated lattices [BK12] and database design [KB85]. We will also briefly
discuss an extension of CTS that allows for deactivation of transitions on
upgrading.

6.4.1 A Fixpoint Approach

Throughout this section, we let α : X ×A×X → L, β : Y ×A×Y → L denote
any two LaTSs, L denote a finite distributive lattice, and B denote the Boolean
algebra that this lattice embeds into.

Definition 6.4.1 Recall the residuum operator (→) on a lattice (cf. Definiti-
on 2.2.12) and define three operators F, F1, F2 : (X × Y → L)→ (X × Y → L)



203

in the following way:

F1(R)(x, y) =
l

a∈A,x′∈X

(
α(x, a, x′)→

( ⊔
y′∈Y

(β(y, a, y′) uR(x′, y′))
))
,

F2(R)(x, y) =
l

a∈A,y′∈Y

(
β(y, a, y′)→

( ⊔
x′∈X

(α(x, a, x′) uR(x′, y′))
))
,

F (R)(x, y) = F1(R)(x, y) u F2(R)(x, y).

Note that the above definition is provided for a distributive lattice, viewing
it in classical two-valued Boolean algebra results in the well-known transfer
properties of a bisimulation.

Theorem 6.4.2 A conditional relation R is a lattice bisimulation if and only
if R is a post-fixpoint of F , i.e., R v F (R).

Proof:
⇐ Let R : X × Y → L be a conditional relation over a pair of LaTS

(X,A, α), (Y,A, β) such that R v F (R). Next, we show that R is a lattice
bisimulation. For this purpose, let ` ∈ J (L), a ∈ A. Furthermore, let x a,`−→ x′

(which implies ` v α(x, a, x′)) and ` v R(x, y). From R(x, y) v F1(R)(x, y) we
infer ` v F1(R)(x, y). This means that ` v α(x, a, x′) →

(⊔
y′∈Y (β(y, a, y′) u

R(x′, y′))
)
. Since `1 u (`1 → `2) v `2, we can take the infimum with α(x, a, x′)

on both sides and obtain ` v ` u α(x, a, x′) v ⊔y′∈Y (β(y, a, y′) uR(x′, y′)) (the
first inequality holds since ` v α(x, a, x′)). Since ` is irreducible, there exists a
y′ such that ` v β(y, a, y′), i.e., y a,`−→ y′, and ` v R(x′, y′).

Likewise, the remaining condition when a transition emanates from y can
be proven.

⇒ Let R : X×Y → L be a lattice bisimulation on (X,A, α), (Y,A, β). Then,
we need to show that R v F (R), i.e., R v F1(R) and R v F2(R). We will only
give the proof of the former inequality, the proof of the latter is analogous. To
show R v F1(R), it is sufficient to prove ` v R(x, y) ⇒ ` v F1(R)(x, y), for
all x ∈ X, y ∈ Y and all irreducibles `. So let ` v R(x, y), for some x, y. Next,
simplify F1(R) as follows:

F1(R)(x, y) =
l

a,x′

(α(x, a, x′)→
⊔
y′∈Y

(β(y, a, y′) uR(x′, y′)))

=
l

a,x′

⌊ ⊔
y′∈Y

(β(y, a, y′) uR(x′, y′)) t ¬α(x, a, x′)
⌋

(Lemma 2.2.18)



204

=
l

a,x′

⊔
{m ∈ L | m v

⊔
y′∈Y

(β(y, a, y′) uR(x′, y′)) t ¬α(x, a, x′)}.

Thus, it is sufficient to show that ` v ⊔y′∈Y (β(y, a, y′)uR(x′, y′))t¬α(x, a, x′),
for any a ∈ A, x′ ∈ X. We do this by distinguishing the following cases: either
` v ¬α(x, a, x′) or ` v α(x, a, x′). If the former holds (which corresponds to
the case where there is no a-labelled transition under `), then the result holds
trivially. So assume ` v α(x, a, x′). Recall, from above, that ` v R(x, y) and R
is a lattice bisimulation. Thus, there is a y′ ∈ Y such that ` v β(y, a, y′) and
` v R(x′, y′); hence,

` v
⊔
y′∈Y

(β(y, a, y′) uR(x′, y′)) t ¬α(x, a, x′) .

�

Next, it is easy to see that F is a monotone operator with respect to the
ordering v on L, since the infimum and supremum are both monotonic, and
moreover, the residuum operation is monotonic in the second component. Since
we are only only considering finite X, Y,L, from the fact that F is monotonic it
directly follows that F is co-continuous. As a result, we can use the following
fixpoint iteration to compute the greatest bisimulation while working with
finite lattices and finite sets of states.

Algorithm 6.4.3 Partition refinement algorithm to compute the bisimilarity
between two CTSs (X,A, α) and (Y,A, β).
Input: Two CTSs (X,A, α) and (Y,A, β), i.e., the sets X, Y , and A are all
finite.
Output: A matrix R ⊆ LX×Y that is the greatest bisimulation between α and
β.
We define the following algorithm:

Step 0 Fix R0 as R0(x, y) = 1 for all x ∈ X, y ∈ Y .

Step i+ 1 Compute Ri+1 = F (Ri) for all i ∈ N0

Termination When Rn v Rn+1, return Rn as the greatest bisimulation from
α to β.

If we assume α = β, then it is not hard to see that the fixpoint iteration
must stabilise after at most |X| steps, since the Ri always induce equivalence



205

relations for all conditions ϕ and refinements regarding ϕ are immediately
propagated to every ϕ′ ≥ ϕ. We will now formalise this result and show that it
actually is true.

The crucial point is to prove that the intermediate results Ri induce equiva-
lence relations Ri[ϕ] for all ϕ ∈ Φ. To prove this, we will heavily make use of
the following Lemma:

Lemma 6.4.4 Let x, y ∈ X be given, then

• ϕ ∈ F1(R) if and only if for all ϕ′ ≤ ϕ, and x′ ∈ X it holds that ϕ′ /∈
α(x, a, x′) or there exists a y′ such that ϕ′ ∈ α(y, a, y′) and ϕ′ ∈ R(x′, y′).

• ϕ ∈ F2(R) if and only if for all ϕ′ ≤ ϕ, and y′ ∈ X it holds that ϕ′ /∈
α(y, a, y′) or there exists an x′ such that ϕ′ ∈ α(x, a, x′) and ϕ′ ∈ R(x′, y′).

Proof: We will only prove the claim for F1, it can be proven analogously for
F2. Using Lemma 2.2.18 and in particular the approximation operation b·c,
Definition 2.2.17, we can observe that

F1(R)(x, y) =
l

a∈A,x′∈X

(
α(x, a, x′)→L

( ⊔
y′∈X

(β(y, a, y′) uR(x′, y′))
))

=

 ∧
a∈A,x′∈X

(
α(x, a, x′)→B

( ∨
y′∈X

(β(y, a, y′) ∧R(x′, y′))
))

=
∧

a∈A,x′∈X

(α(x, a, x′)→B

( ∨
y′∈X

(β(y, a, y′) ∧R(x′, y′))
))

Now, by definition of approximation, ϕ ∈ blc if and only if for all ϕ′ ≤ ϕ it holds
that ϕ′ ∈ l. Applied to above formula, we get, for all ϕ′ ≤ ϕ, a ∈ A, x′ ∈ X the
condition

ϕ′ ∈
(
α(x, a, x′)→B

( ∨
y′∈Y

(β(y, a, y′) ∧R(x′, y′))
))

The well-known characterisation of → via negation and disjunction yields the
expected result. �

Definition 6.4.5 Let R : X×X → L be a conditional relation, then we define,
for all ϕ ∈ Φ the relation R[ϕ] ⊆ X ×X according to

R[ϕ] = {(x, y) | ϕ ∈ Ri(x, y)}



206

Lemma 6.4.6 Let R0, R1, ..., Rn be the sequence of conditional relations obtai-
ned via Algorithm 6.4.3 applied to (X,α) over L, then for all ϕ ∈ Φ, Ri[ϕ] is
an equivalence relation.

Proof: We prove this via induction over the iteration i. For R0[ϕ] the claim is
trivially true, since R0 is the one-matrix and therefore R0[ϕ] = X ×X for all
conditions ϕ ∈ Φ. We can now assume that for all ϕ ∈ Φ, Ri[ϕ] is an equivalence
relation and go on to show that then Ri+1[ϕ] is an equivalence relation for
all ϕ ∈ Φ as well. For this purpose, fix a ϕ ∈ Φ, we can now check the three
conditions of equivalence relations. In all instances, we will only show that the
condition holds for F1, because the proofs for F2 are completely analogous.

• Reflexivity: Let x ∈ X be given arbitrarily. Via the induction hypothesis
we obtain (x, x) ∈ Ri[ϕ′] for all ϕ′ ≤ ϕ. Let any ϕ′ ≤ ϕ be given,
to prove the claim that (x, x) ∈ Ri+1[ϕ′], we distinguish two cases. If
ϕ′ /∈ α(x, a, x′), then Lemma 6.4.4 shows that the claim is true. Now
assume ϕ′ ∈ α(x, a, x′), in this case we can just choose y′ = x′ to find
ϕ′ ∈ α(x, a, y′). Due to the induction hypothesis, we also know that
ϕ′ ∈ Ri(x′, y′) = Ri(x′, x′), due to reflexivity of Ri[ϕ′].

• Symmetry: Let (x, y) ∈ Ri+1[ϕ] be given arbitrarily. We know that (x, y) ∈
Ri+1[ϕ], thus, for all ϕ′ ≤ ϕ it holds that ϕ′ ∈ F2(Ri)(x, y), i.e.

ϕ′ ∈ F2(Ri)(x, y) = b
∨

a∈A,y′∈Y
α(y, a, y′)→

∨
x′∈X

α(x, a, x′) ∧Ri(x′, y′)c

Using the induction hypothesis, we can observe that Ri(x′, y′) = Ri(y′, x′)
and thus also

ϕ′ ∈ b
∨

a∈A,y′∈Y
α(y, a, y′)→

∨
x′∈X

α(x, a, x′) ∧Ri(y′, x′)c = F1(Ri)(y, x)

This concludes the proof of symmetry.

• Transitivity: Let any (x, y) ∈ Ri+1[ϕ], (y, z) ∈ Ri+1[ϕ] be given, this
means we know the following two things for all ϕ′ ≤ ϕ and any a ∈ A,
x′, y′ ∈ X:

1. ϕ′ ∈ α(x, a, x′)→B

(∨
y′∈X(β(y, a, y′) ∧R(x′, y′))

)
2. ϕ′ ∈ α(y, a, y′)→B

(∨
z′∈X(β(z, a, z′) ∧R(x′, y′))

)



207

Now choose any a ∈ A, x′ ∈ X such that ϕ′ ∈ α(x, a, x′). If no such (a, x′)
exists, then using Lemma 6.4.4 we have already proven transitivity. Using
(1), there must exist a y′ ∈ X such that ϕ′ ∈ α(y, a, y′) ∧ Ri(x′, y′), i.e.
ϕ′ ∈ α(y, a, y′) and ϕ′ ∈ Ri(x′, y′). Then, using (2), we must also find
a z′ ∈ X such that ϕ′ ∈ α(z, a, z′) ∧ Ri(y′, z′), i.e. ϕ′ ∈ α(z, a, z′) and
ϕ′ ∈ Ri(y′, z′). Finally, the induction hypothesis yields that transitivity
of Ri[ϕ′] and thus, it follows from ϕ′ ∈ Ri(x′, y′) and ϕ′ ∈ Ri(y′, z′) that
also ϕ′ ∈ Ri(x′, z′), proving transitivity.

�

Lemma 6.4.7 If, for all ϕ′ ≤ ϕ, F (Ri[ϕ′]) = Ri[ϕ′], then F (F (R[ϕ
′])) =

Ri[ϕ′] for all ϕ′ ≤ ϕ, i.e., if the fixpoint iteration does not change the relation
for a ϕ and all smaller conditions, it becomes stationary.

Proof: It holds that

ϕ ∈ F (F (Ri))(x, y)⇔ ∀ϕ′ ≤ ϕ : ϕ′ ∈ F (F (Ri))(x, y)

Let ϕ′ ≤ ϕ such that ϕ′ ∈ F (F (Ri))(x, y). We will again only argue about F1

and observe that the proof is completely analogously for F2. Then:

ϕ′ ∈ F1(F (Ri))(x, y)

=
∧

a∈A,x′∈X

α(x, a, x′)→
∨
y′∈X

(β(y, a, y′) ∧ F (Ri)(x′, y′))


⇔∀ϕ′′ ≤ ϕ′ ∀(a, x′) ∈ A×X : ϕ′′ /∈ α(x, a, x′)

∨ ∃y′ ∈ X : ϕ′′ ∈ β(y, a, y′) ∧ ϕ′′ ∈ F (Ri)(x′, y′)

⇔∀ϕ′′ ≤ ϕ′ ∀(a, x′) ∈ A×X : ϕ′′ /∈ α(x, a, x′)

∨ ∃y′ ∈ X : ϕ′′ ∈ β(y, a, y′) ∧ ϕ′′ ∈ Ri(x′, y′)

⇔ϕ′ ∈
∧

a∈A,x′∈X

α(x, a, x′)→
∨
y′∈X

(β(y, a, y′) ∧Ri(x′, y′))

 = F1(Ri)(x, y)

�

Lemma 6.4.8 R[ϕ] ⊆ R[ϕ′] for all ϕ′ ≤ ϕ.

Proof: Let (x, y) ∈ R[ϕ], then

ϕ ∈ R(x, y)⇒ ϕ′ ∈ R(x, y)⇒ (x, y) ∈ R[ϕ′]

due to R(x, y) being downward-closed, since R has only values in L. �



208

Theorem 6.4.9 The fixpoint iteration of Algorithm 6.4.3, applied to the system
(X,α) terminates after at most |X| steps.

Proof: Let ϕ ∈ Φ be given arbitrarily, we show that the fixpoint iteration beco-
mes stationary for ϕ after at most |X| many iterations, then, from Lemma 6.4.7
it follows that the whole fixpoint iteration must become stationary after at
most |X| many steps, because the argument can be applied to all conditions
independently of each other.

We consider the set

Φi = {ϕ′ ≤ ϕ | ∃ϕ′′ ≤ ϕ′ : Ri[ϕ′′] 6= Ri+1[ϕ′′]}

and show inductively that for all ψ ∈ Φi, it holds that Ri+1[ψ] has at least i+ 1
equivalence classes. For i = 0 this is trivially true, because every equivalence
relation contains at least one equivalence class. Now, assume the claim is
true for i, and show that it also holds for i + 1. If ψ ∈ Φi+1, then there
exists a ψ′ ≤ ψ such that Ri+1[ψ′] 6= Ri+2[ψ′]. The induction hypothesis yields
that Ri+1[ψ′] has at least i+ 1 equivalence classes, therefore the equivalence
relation Ri+2[ψ] ⊂ Ri+1[ψ′] must have at least i+ 2 equivalence classes. Since
Ri+2[ψ] ⊆ Ri+2[ψ′], Ri+2[ψ] must also contain at least i+ 2 equivalence classes.
�

6.4.2 Lattice Bisimilarity is Finer than Boolean Bisimi-
larity

We now show the close relation of the notions of bisimilarity for an LaTS
defined over a finite distributive lattice L and a Boolean algebra B. As usual,
let (X,A, α) and (Y,A, β) be any two LaTSs together with the restriction that
the lattice L embeds into the Boolean algebra B. Moreover, let FL and FB be
the monotonic operators as defined in Definition 6.4.1 over the lattice L and
the Boolean algebra B, respectively. We say that R is an L-bisimulation (resp.
B-bisimulation) whenever R v FL(R) (resp. R v FB(R)).

Proposition 6.1

(i) If R : X × Y → L, then bFB(R)c = FL(R).

(ii) Every L-bisimulation is also a B-bisimulation.



209

(iii) A B-bisimulation R : X × Y → B is an L-bisimulation, whenever all the
entries of R are in L.

Proof:

(i) This follows directly from Lemma 2.2.18, allowing to move the approxima-
tions to the inside towards the implications and Lemma 2.2.18, allowing
to approximate the implication in B via the implication in L.

(ii) If R is a bisimulation in L, then FL(R) w R. Since by definition, bQc v Q

for all conditional relations Q and we have shown in (i) that FL(R) =
bFB(R)c, we can conclude FB(R) w bFB(R)c = FL(R) w R. Thus, R is a
B-bisimulation.

(iii) Clearly, R v FB(R), because R is a B-bisimulation. Since R has exclusively
entries from L, FB(R) = bFB(R)c, and finally (i) yields that bFB(R)c =
FL(R); thus, R is an L-bisimulation.

�

However, even though the two notions of bisimilarity are closely related,
they are not identical, i.e., it is not true that whenever a state x is bisimilar
to a state y in B that it is also bisimilar in L (see Example 6.2.2 where we
encounter a B-bisimulation, which is not an L-bisimulation).

6.4.3 Matrix Multiplication

An alternative way to represent a LaTS (X,A, α) is to view the transition
function α as a family of matrices αa : X ×X → L (one for each action a ∈ A),
where the function αa is defined as follows: αa(x, x′) = α(x, a, x′), for every
x, x′ ∈ X. We use standard matrix multiplication (where t is used for addition
and u for multiplication), as well as a special form of matrix multiplication
[BK12, KB85].

Definition 6.4.10 (⊗-Multiplication) Given an X×Y -matrix U : X×Y →
L and a Y ×Z-matrix V : Y ×Z → L, we define the ⊗-multiplication of U and
V as follows:

(U ⊗ V )(x, z) =
l

y∈Y

(
U(x, y)→L V (y, z)

)
.



210

We obtain the following alternative characterisation of the fixpoint operator
F .

Theorem 6.4.11 Let R : X × Y → L be a conditional relation between a pair
of LaTSs (X,A, α) and (Y,A, β). Then, F (R) =

d
a∈A((αa⊗ (R · βaT ))u (βa⊗

(αa ·R)T )T ), where RT denotes the transpose of a matrix R.

To illustrate the fixpoint iteration and its representation via matrix multi-
plication, we consider a slightly simplified version of the routing protocol from
previous examples.

Example 6.4.12 Consider the following pair of systems:

α: ready1 received1

safe1

unsafe1

u,b
u,b

u,b

u,b

u,b

e,a

β: ready2 received2

safe2

unsafe2

u,b
u,b

u,a

u,b

u,b

e,a

They can be represented by the following matrices, where the columns and
rows refer to the states readyi, received i, safei, unsafei (in that order), and the
rows refer to the actions u, e (in that order):

α =



∅ {a,b} ∅ ∅
∅ ∅ ∅ ∅
∅ ∅ {a,b} {a,b}
∅ ∅ ∅ ∅

{a,b} ∅ ∅ ∅
∅ ∅ ∅ ∅

{a,b} ∅ ∅ ∅
{a} ∅ ∅ ∅



, β =



∅ {a,b} ∅ ∅
∅ ∅ ∅ ∅
∅ ∅ {a,b} {a}
∅ ∅ ∅ ∅

{a,b} ∅ ∅ ∅
∅ ∅ ∅ ∅

{a,b} ∅ ∅ ∅
{a} ∅ ∅ ∅


So, e.g. the entry {a,b} in the fifth line, first column of α represents the

information that it is possible to make a u step from state safe1 to ready1 under
both, a and b.

Now we can iterate using the matrix multiplication algorithm as follows:



211

• We initiate the algorithm with the one-matrix.

R0 =


{a,b} {a,b} {a,b} {a,b}
{a,b} {a,b} {a,b} {a,b}
{a,b} {a,b} {a,b} {a,b}
{a,b} {a,b} {a,b} {a,b}



• Since we have two actions, u, e, we need to consider two pairs of sub-
matrices of α and β, where αu can be obtained by taking all rows of
odd index and αe can be obtained by taking all rows of even index of
α, analogously for βu and βe. Then F can be computed as F (R) =
(αu ⊗ (R · βTu )) u (βu ⊗ (αu ·R)T )T u (αe ⊗ (R · βTe )) u (βe ⊗ (αe ·R)T )T ,
i.e we have

R1 = F (R0) =


{a,b} {a,b} {a,b} ∅
{a,b} {a,b} {a,b} ∅
{a,b} {a,b} {a,b} ∅
∅ ∅ ∅ {a,b}



R2 = F (R1) =


{a,b} ∅ {a,b} ∅
∅ {a} ∅ ∅

{a,b} ∅ {a,b} ∅
∅ ∅ ∅ {a,b}



R3 = F (R2) =


{a} ∅ ∅ ∅
∅ {a} ∅ ∅
∅ ∅ {a,b} ∅
∅ ∅ ∅ {a,b}



R4 = F (R3) =


{a} ∅ ∅ ∅
∅ {a} ∅ ∅
∅ ∅ {a} ∅
∅ ∅ ∅ {a}

 = F (R4)

So the algorithm terminates after computing R5 = F (R4) = R4. We can
conclude that x1 ∼a x2 for all x ∈ {ready, received, safe, unsafe} but no
other pairs of states are bisimilar under a and no pair of states is bisimilar
under b.



212

We end this section by making an observation on LaTS over a Boolean
algebra. In a Boolean algebra, it is well known that the residuum operator can
be eliminated by the negation and join operators. Thus, in this case, using
only the standard matrix multiplication and (component wise) negation we get
U ⊗ V = ¬(U · (¬V )). Hence, a conditional relation F (R) can be rewritten as:

F (R) =
l

a∈A

(
¬(αa · ¬(R · βTa )) u ¬(¬(αa ·R) · βTa )

)
.

This reduction is especially relevant to software product lines with no upgrade
features.

6.4.4 Bisimulation Game

We will now show that conditional bisimulation gives rise to a bisimulation game
that exactly characterises conditional bisimulation. This game is an adaptation
of the bisimulation game for traditional labelled transition systems.

Definition 6.4.13 (Bisimulation Game) Bisimulation can be characterised
using the following game. Given two CTSs (X,A, f) and (Y,A, g) over a poset
(Φ,≤), a state x ∈ X, a state y ∈ Y , and a condition ϕ ∈ Φ, the bisimulation
game is a round-based two-player game that uses both the CTSs as game boards.
Let (x, y, ϕ) be a game instance indicating that there is a marked state in each
of X and Y at any given time. The game progresses to the next game instance
as follows:

• Player 1 is the first one to move. Player 1 can decide to make an upgrade,
i.e., replace the condition ϕ by a smaller one (say ϕ′ ≤ ϕ, for some
ϕ′ ∈ Φ).

• Player 1 can then choose either the marked state x ∈ X or y ∈ Y and
must perform a transition x a,ϕ′−−→ x′ or y a,ϕ′−−→ y′ for some a ∈ A.

• Player 2 then has to simulate the last step, i.e., if Player 1 made a step
x

a,ϕ′−−→ x′, Player 2 is required to make step y a,ϕ′−−→ y′ and vice-versa.

• In turn, the new game instance is (x′, y′, ϕ′).



213

Player 1 wins, if Player 2 cannot simulate the last step performed by Player 1.
Player 2 wins, if the game never terminates or Player 1 cannot make another
step.

So bisimulation is characterised as follows: Player 2 has a winning strategy
for a game instance (x, y, ϕ) if and only if x ∼ϕ y.

Lemma 6.4.14 Given two CTSs (X,A, f), (Y,A, g) and an instance (x, y, ϕ)
of a bisimulation game, then whenever x ∼ϕ y, Player 2 has a winning strategy
for (x, y, ϕ).

Proof: The strategy of Player 2 can be directly derived from the family of
CTS bisimulation relations {Rϕ′ | ϕ′ ∈ Φ} where (x, y) ∈ Rϕ. The strategy
works inductively. Assume at any given point of time in the game, we have that
the currently investigated condition is ϕ and (x, y) ∈ Rϕ, where x and y are
the currently marked states in X respectively Y . Then Player 1 upgrades to
ϕ′ ≤ ϕ. Due to the condition on CTS bisimulations of reverse inclusion, we have
Rϕ′ ⊇ Rϕ, therefore (x, y) ∈ Rϕ′ . Then, when Player 1 makes a step x a,ϕ′−−→ x′

in f , there must exist a transition y a,ϕ′−−→ y′ in g such that (x′, y′) ∈ Rϕ′ due
to Rϕ′ being a (traditional) bisimulation. Analogously, if Player 1 chooses a
transition y a,ϕ′−−→ y′ in g, there exists a transition x a,ϕ′−−→ x′ in f for Player 2
such that (x′, y′) ∈ Rϕ′ . Hence, Player 2 will be able to react and establish the
inductive condition again. In the beginning, the condition holds per definition.
Thus, Player 2 has a winning strategy.

�

We will now prove the converse, by explicitly constructing a winning strategy
for Player 1, whenever two states are not in a bisimulation relation.

Lemma 6.4.15 Given two CTSs A,B and an instance (x, y, ϕ) of a bisimula-
tion game, then whenever x 6∼ϕ y, Player 1 has a winning strategy for (x, y, ϕ).

Proof: We consider the LaTSs which correspond to the CTSs A, B and
compute the fixpoint by using the matrix multiplication algorithm, obtaining a
sequence R0, R1, . . . , Rn = Rn+1 = . . . of lattice-valued relations Ri : X × Y →
O(Φ,≤). Note, that instead of using exactly the matrix multiplication method,
we can also use the characterization of Definition 6.3.3: whenever there exists
a transition x a,ϕ−−→ x′, for which there is no matching transition with y y,ϕ−−→ y′



214

with ϕ ∈ Ri−1(x′, y′), the condition ϕ and all larger conditions ϕ′ ≥ ϕ have to
be removed from Ri−1(x, y) in the construction of Ri(x, y).

We will now define Mϕ′(x, y) = max{i ∈ N0 | ϕ′ ∈ Ri(x, y)}, where
maxN0 = ∞. An entry Mϕ′(x, y) = ∞ signifies that x ∼ϕ′ y, whereas any
other entry i <∞ means that x, y were separated under condition ϕ′ at step i
and hence x 6∼ϕ′ y.

Now assume we are in a game situation with game instance (x, y, ϕ) where
Player 1 has to make a step. We will show that if Mϕ(x, y) = i <∞, Player 1
can choose an upgrade ϕ ≤ ϕ, an action a ∈ A and a step x a,ϕ−−→ x′ (or y a,ϕ−−→ y′)
such that independently of the choice of the corresponding state y′, respectively
x′, which Player 2 makes, Mϕ(x′, y′) < i.

For each ϕ′ ≤ ϕ compute

ω(ϕ′) = min{min
a,x′
{max

y′
{Mϕ′

n (x′, y′) | y a,ϕ′−−→ y′} | x a,ϕ′−−→ x′},

{min
a,y′
{max

x′
{Mϕ′

n (x′, y′) | x a,ϕ′−−→ x′} | y a,ϕ′−−→ y′}}

The formula can be interpreted as follows: The outer min corresponds to the
choice of making a step in transition system A or B. The inner min corresponds
to choosing the step that yields the best, i.e. lowest, guaranteed separation
value and the max corresponds to the choice of Player 2 that yields the best,
i.e. greatest, separation value for him.

Now choose a minimal condition ϕ, such that ω(ϕ) is minimal for all ϕ′ ≤ ϕ.
Player 1 now makes an upgrade from ϕ to ϕ and chooses a transition x a,ϕ−−→ x′ or
y

a,ϕ−−→ y′, such that the minimum in ω(ϕ) is reached. This means that Player 2
can only choose a corresponding successor state y′ respectively x′ such that
Mϕ(x′, y′) ≤ ω(ϕ).

Now it remains to be shown that ω(ϕ) < i, via contradiction: assume that
ω(ϕ) ≥ i. Since ω(ϕ) is minimal for all ϕ′ ≤ ϕ, we obtain ω(ϕ′) ≥ i for all
ϕ′ ≥ ϕ. This implies that for each step x

a,ϕ′−−→ x′ there exists an answering
step y a,ϕ′−−→ y′, such that Mϕ′(x′, y′) ≥ i (analogously for every step of y). The
condition Mϕ′(x′, y′) ≥ i is equivalent to ϕ′ ∈ Ri(x′, y′) and hence, we can infer
that ϕ′ ∈ Ri+1(x, y). This also holds for ϕ′ = ϕ, which is a contradiction to
Mϕ(x, y) = i.

In order to conclude, take two states x, y and a condition ϕ such that
x 6∼ϕ y. Then Mϕ(x, y) = i < ∞ and the above strategy allows Player 1 to



215

force Player 2 into a game instance (x′, y′, ϕ) where Mϕ(x′, y′) < Mϕ(x, y).
Whenever Mϕ(x, y) = 1, Player 1 wins immediately, because then x allows a
transition that y can not mimic or vice-versa, and Player 1 simply takes this
transition. Therefore, we have found a winning strategy for Player 1.

�

To illustrate the game, we will show how Player 1 may act to prove that the
states ready1 and ready2 from Example 6.2.4 are not bisimilar.

Example 6.4.16 Consider the two systems from Example 6.2.4. A winning
strategy for Player 1 starting in the states ready1 and ready2 and initial condition
b could work as follows:

• Choose either ready1 or ready2, do not perform an upgrade and take the
only possible transition labelled receive, leading to the state received1, re-
spectively received2. Player 2 can only answer this step by doing the receive
step in the other state. The new game situation is (received1, received2,b).

• Player 1 now must choose state received1 and perform no upgrade. Using
the check transition, Player 1 does a step to the state unsafe1. Player 2
again only has a single choice for his answering step, since no upgrade
was performed and therefore, the transition to unsafe2 is not available.
Thus, Player 2 has to take the check transition to safe2. So the new game
situation is (unsafe1, safe2,b).

• Now Player 1 can win the game by performing an upgrade to a, enabling
Player 1 to do an e step from unsafe1 to ready1. Player 2 cannot answer
this step, because in safe2, no e transition is available.

6.4.5 Deactivating Transitions

We will now introduce an extension, allowing to deactivate transitions when
upgrading. This extension loses some of the mathematical elegance of the CTS
without deactivation of transitions when upgrading, but in turn it is offering
additional modelling opportunities while still allowing for a fixpoint iteration
akin to the case without deactivation of transitions.

We have introduced conditional transition systems (CTS) as a modelling
technique that allows to model a family of systems that are all based on a



216

common design, but with different actions available for different products. Pro-
ducts may be upgraded to advanced versions, activating additional transitions
in the system. A change in the transition function can only be realised in one
direction: by adding transitions which were previously not available, while all
previously active transitions remain active.

However, this choice may not be the optimal choice in all cases, because
sometimes an advanced version of a system may offer improved transitions
over the base product. For instance, a free version of a system may display a
commercial when choosing a certain transition, whereas a premium model may
forego the commercial and offer the base functionality right away.

A practical motivation may be derived from our Example 6.2.2. In this
transition system one may want to be able to model that in the unsafe state,
the advanced version can only send an encrypted message, since we assume
that the user is always interested in a secure communication, ensured either
by a safe channel or by encryption. However, it is not an option to simply
drop the unencrpyted transition from the unsafe state with respect to the base
version, because then, whenever the system encounters an unsafe state in the
base version, the system will remain in a deadlock unless the user decides to
perform an upgrade. We will solve such a situation as follows: we will add
priorities that allow to deactivate the unencrypted transition in the presence of
an encrypted transition.

In order to allow for deactivation of transitions when upgrading, we pro-
pose a slight variation of the definition of CTS/LaTS and the corresponding
bisimulation relation.

Definition 6.4.17 A conditional transition system with action precedence is
a triple (X, (A,<A), f), where (X,A, f) is a CTS and <A is a strict order on
A.

Intuitively, a CTS with action precedence evolves in a way very similar
to standard CTS. Before the system starts acting, it is assumed that all
the conditions are fixed and a condition ϕ ∈ Φ is chosen arbitrarily which
represents a selection of a valid product of the system (product line). Now all the
transitions that have a condition greater than or equal to ϕ are activated, while
the remaining transitions are inactive. This is unchanged from standard CTS,



217

however, if from a state x there exist two transitions x a,ϕ−−→ x′ and x a′,ϕ−−→ x′′,
where a′ > a, i.e. a′ takes precedence over a, then additionally x a,ϕ−−→ x′ remains
inactive. Henceforth, the system behaves like a standard transition system; until
at any point in the computation, the condition is changed to a smaller one (say,
ϕ′) signifying a selection of a valid, upgraded product. Now (de)activation of
transitions depends on the new condition ϕ′, rather than on the old condition
ϕ. As before, active transitions remain active during an upgrade, unless new
active transitions appear that are exiting the same state and are labelled with
an action of higher priority.

In the sequel we will just write CTS for CTS with action precedence, since
for the remainder of this section we will solely investigate this variation of CTS.

Example 6.4.18 We now refine our earlier Example 6.2.2 of an adaptive
routing protocol modelled as a CTS over the alphabet A = {receive, check, u, e}
by adding an action precedence <A where u <A e. The transition function
remains unchanged, so does the visual representation:

ready received

safe

unsafe

receive,b
check,b

check,b

u,b

u,b

e,a

The system retains two products: the basic system with no encryption feature
written as b and the advanced system with encryption feature written as a.
However, the action precedence changes the behaviour in the advanced version
of the system. Under a, in state unsafe, it is not possible anymore to make a
u (unencrypted) transition, since the alternative e (encrypted) transition has
precedence over u and is available in state unsafe as well. Therefore, no non-
deterministic choice may occur anymore in presence of u and e and the system
model enforces that in unsafe environments, only encrypted messages may be
sent. However, under product b, in state unsafe, the u transition remains active,
since no e transition can take precedence over it. Similarly, also in state safe,
for product a, the u transition remains active.



218

This changed interpretation of the behaviour of a CTS of course also has an
effect on the bisimulation.

Definition 6.4.19 Let (X, (A,<A), f), (Y, (A,<A), g) be two CTSs over the
same set of conditions (Φ,≤). For a condition ϕ ∈ Φ, we define f̄ϕ(x, a) to
denote the labelled transition system induced by a CTS (X, (A,<A), f) with
action precedence, where

f̄ϕ(x, a) = {x′ | x a,ϕ−−→ x′ ∧ ¬(∃a′ ∈ A,∃x′′ ∈ X : a′ > a ∧ x a′,ϕ−−→ x′′)}.

Two states x ∈ X, y ∈ Y are conditionally bisimilar (wrt. action precedence)
under a condition ϕ ∈ Φ, denoted x ∼pϕ y, if there is a family of relations Rϕ′

(for every ϕ′ ≤ ϕ) such that

(i) each relation Rϕ′ is a traditional bisimulation relation between f̄ϕ′ and
ḡϕ′,

(ii) whenever ϕ′ ≤ ϕ′′, we have Rϕ′ ⊇ Rϕ′′, and

(iii) Rϕ relates x and y, i.e. (x, y) ∈ Rϕ.

The definition of bisimilarity is analogous to traditional CTS but refers
to the new transition system given by f̄ , which contains only the maximal
transitions.

Lattice transition systems (LaTSs) can be extended in the same way, by
adding an order on the set of actions and leaving the remaining definition
unchanged. Disregarding deactivation, there still is a duality between CTSs and
LaTSs. Now, in order to characterise bisimulation using a fixpoint operator, we
can modify the operators F1, F2 and F to obtain G1, G2 and G, respecting the
deactivation of transitions as follows.

Definition 6.4.20 Let (X, (A,<A), α) and (Y, (A,<A), β) be LaTSs (with or-
dered actions). Recall the residuum operator (→) on a lattice and define three



219

operators G,G1, G2 : (X × Y → L)→ (X × Y → L) in the following way:

G1(R)(x, y)

=
l

a∈A,x′∈X

(
α(x, a, x′)→

( ⊔
y′∈Y

(β(y, a, y′) uR(x′, y′)) t
⊔

a′>a,x′′∈X
α(x, a′, x′′)

))
,

G2(R)(x, y)

=
l

a∈A,y′∈Y

(
β(y, a, y′)→

( ⊔
x′∈X

(α(x, a, x′) uR(x′, y′)) t
⊔

a′>a,y′′∈Y
β(y, a′, y′′)

))
,

G(R)(x, y) = G1(R)(x, y) uG2(R)(x, y).

Now, we need to show that we can characterise the new notion of bisimulations
as post-fixpoints of this operator G. For the corresponding proof we will make
use of the following observation:

Lemma 6.4.21 Let L = O(Φ) for any finite partially ordered set (Φ,≤) be a
lattice that embeds into B = P(Φ). Take ϕ ∈ Φ. Then, in order to show that
ϕ ∈ (l1 → l2), for any given l1, l2 ∈ L, it suffices to show that for all ϕ′ ≤ ϕ,
ϕ′ /∈ l1 or ϕ′ ∈ l2.

Proof: We have already shown that l1 → l2 = bl1 → l2c = b¬l1 t l2c. Now,
if all ϕ′ ≤ ϕ are not in l1, i.e. in ¬l1, or in l2, then all ϕ′ ≤ ϕ are in ¬l1 t l2.
Therefore, ↓ ϕ ⊆ ¬l1 t l2, and thus ϕ ∈ l1 → l2. �

Theorem 6.4.22 Let (X, (A,<A), f), (Y, (A,<A), g) be two CTSs over (Φ,≤)
and (X, (A,<A), α), (Y, (A,<A), β) over O(Φ) be the corresponding LaTS. For
any two states x ∈ X, y ∈ Y it holds that x ∼pϕ y if and only if there exists a
post-fixpoint R : X × Y → L of G (R v G(R)) such that ϕ ∈ R(x, y).

Proof:

• Assume R is a post-fixpoint of G, i.e. R v G(R), let x ∈ X and y ∈ Y
be given arbitrarily and ϕ ∈ R(x, y). We define for each ϕ′ ≤ ϕ a relation
Rϕ′ according to

(x′, y′) ∈ Rϕ′ ⇔ ϕ′ ∈ R(x′, y′).

Since each set R(x′, y′) is downward-closed for all x′ ∈ X, y′ ∈ Y , it
holds that Rϕ1 ⊆ Rϕ2 whenever ϕ1 ≥ ϕ2. Moreover, since we assume
ϕ ∈ R(x, y), (x, y) ∈ Rϕ′ must hold for all ϕ′ ≤ ϕ.



220

So we only need to show that all Rϕ′ are traditional bisimulations for f̄ϕ′ .
For this purpose let x′, y′, ϕ′ be given, such that (x′, y′) ∈ Rϕ′ . Moreover,
let a ∈ A and x′′ ∈ X be given such that x′′ ∈ f̄ϕ′(x′, a) – if no such a and
x′′ exists then the first bisimulation condition is trivially true. For G1, it
must be true that ϕ′ ∈ G1(R)(x, y). Thus, ϕ′ must also be contained in

α(x′, a, x′′)→
( ⊔
y′′∈Y

(β(y′, a, y′′) uR(x′′, y′′)) t
⊔

a′>a,x′′′∈X
α(x′, a′, x′′′)

)
.

Since we also know that ϕ′ ∈ α(x′, a, x′′), because x′′ ∈ f̄ϕ′(x′, a), it must
be true that

ϕ′ ∈
( ⊔
y′′∈Y

(β(y′, a, y′′) uR(x′′, y′′)) t
⊔

a′>a,x′′′∈X
α(x′, a′, x′′′)

)
.

This is true, because ψ ∈ l1 → l2 ⇔ ψ ∈ b¬l1 ∨ l2c ⇒ ψ ∈ ¬l1 ∨ l2
(Lemma 6.4.21) and, if ψ ∈ l1, hence ψ /∈ ¬l1, it follows that ψ ∈ l2.

Per definition of f̄ϕ′ , there exists no a′ > a such that f̄ϕ′(x′′, a′) 6= ∅.
Therefore,

ϕ′ /∈
⊔

a′>a,x′′′∈X
α(x′, a′, x′′′).

It follows that
ϕ′ ∈

⊔
y′′∈Y

β(y′, a, y′′) uR(x′′, y′′).

Then, there must exist at least one y′′ ∈ Y such that ϕ′ ∈ β(y′, a, y′′) u
R(x′′, y′′). It follows that ϕ′ ∈ R(x′′, y′′), i.e. (x′′, y′′) ∈ Rϕ′ .

We will now show that y′′ ∈ ḡϕ′(y′, a), holds as well. Assume, to the
contrary, that y′′ /∈ ḡϕ′(y′, a), then, due to ϕ′ ∈ β(y′, a, y′′), there must
exist an a′ > a and a y′′′ ∈ Y such that ϕ′ ∈ β(y′, a′, y′′′). W.l.o.g.
choose a′ maximal. Since we required (x′, y′) ∈ Rϕ′ , it has to hold that
ϕ′ ∈ G2(R)(x′, y′). So in particular, ϕ′ must be contained in

β(y′, a′, y′′′)→
( ⊔
x′′′∈X

(α(x′, a′, x′′′)uR(x′′′, y′′′))t
⊔

a′′>a′,y′′′′∈Y
β(y′, a′′, y′′′′)

)

Since we chose a′ maximal, we know that ϕ′ /∈ ⊔a′′>a′,y′′′′∈Y β(y′, a′′, y′′′′).
Moreover, since a′ > a and x′′ ∈ f̄ϕ′(x′, a), there exists no x′′′ such that
ϕ′ ∈ α(x′, a′, x′′′). Thus, ϕ′ is not in the right side of the residuum, yet



221

it is in the left side of the residuum, therefore, it is not in the residuum.
Thus, we can conclude ϕ′ /∈ G2(R)(x′, y′), which is a contradiction.

Thus, the first bisimulation condition is true. The second condition can
be proven analogously, reversing the roles of G2 and G1 to find the answer
step in f̄ϕ′ .

• Now, assume the other way around, that a family Rϕ of bisimulations
from f̄ϕ to ḡϕ exists such that for all states x ∈ X, y ∈ Y and for all
pairs of conditions ϕ1, ϕ2 ∈ Φ the expression ϕ1 ≤ ϕ2 implies Rϕ1 ⊇ Rϕ2 .
Moreover, let ϕ, x ∈ X and y ∈ Y be given such that (x, y) ∈ Rϕ. We
define R : X × Y → L according to

R(x, y) = {ϕ′ | (x, y) ∈ Rϕ′}.

Due to anti-monotonicity of the family of Rϕ′ all entries in R are indeed
lattice elements from O(Φ,≤). Moreover, by definition, ϕ ∈ R(x, y). So
it only remains to be shown that R is a post-fixpoint.

For this purpose, let x′ ∈ X, y′ ∈ Y and ϕ′ ∈ Φ be given, such that
ϕ′ ∈ R(x′, y′). (If no such x′, y′, ϕ′ exist, then R is the zero matrix (where
all entries are ∅) and R v G(R) holds trivially.) We will now show
that ϕ′ ∈ G1(R)(x′, y′). The fact that ϕ′ ∈ G2(R)(x′, y′) can be shown
analogously. We need to show that

ϕ′ ∈
(
α(x, a, x′)→

( ⊔
y′∈Y

(β(y, a, y′) uR(x′, y′)) t
⊔

a′>a,x′′∈X
α(x, a′, x′′)

))

for all x′′ ∈ X and a ∈ A.

We recall that l1 →L l2 = bl1 →B l2c = b¬l1 ∨ l2c (Lemma 2.2.18) and
show that whenever ϕ′ ∈ α(x, a, x′), it holds that ϕ′ ∈

(⊔
y′∈Y (β(y, a, y′)u

R(x′, y′)) t ⊔a′>a,x′′∈X α(x, a′, x′′)
)
. We distinguish according to whether

a is maximal such that ϕ′ ∈ α(x, a, x′′):

– There is no a′ > a such that ϕ′ ∈ α(x, a, x′′) for any x′′ ∈ X:

Then there must exist a y′ ∈ Y such that ϕ′ ∈ β(y, a, y′) and
(x′, y′) ∈ Rϕ′ , i.e. ϕ′ ∈ R(x′, y′), because Rϕ′ is a bisimulation and
for all ϕ′′ ≤ ϕ′ we have Rϕ′ ⊆ Rϕ′′ .



222

– There is an a′ > a such that ϕ′ ∈ α(x, a, x′′) for some x′′ ∈ X:

Then ϕ′ ∈ ⊔a′>a,x′′∈X α(x, a′, x′′).

So we have shown for all ϕ′ ∈ R(x′, y′) that ϕ′ ∈ α(x, a, x′) implies

ϕ′ ∈
( ⊔
y′∈Y

(β(y, a, y′) uR(x′, y′)) t
⊔

a′>a,x′′∈X
α(x, a′, x′′)

)
,

i.e. we have

ϕ′ ∈ ¬α(x, a, x′) t
( ⊔
y′∈Y

(β(y, a, y′) uR(x′, y′)) t
⊔

a′>a,x′′∈X
α(x, a′, x′′)

)

in the Boolean algebra. Since R(x′, y′) is a lattice element and therefore
downward-closed, we can apply Lemma 6.4.21 and conclude that

ϕ′ ∈
(
α(x, a, x′)→

( ⊔
y′∈Y

(β(y, a, y′) uR(x′, y′)) t
⊔

a′>a,x′′∈X
α(x, a′, x′′)

))

in the lattice, concluding the proof.

�

Hence we can compute the bisimulation via a fixpoint iteration, as with
LaTS without an ordering on the labels. Due to the additional supremum in
the fixpoint operator, the matrix notation cannot be used anymore. However,
since the additional supremum term can be precomputed for each pair of states
x ∈ X or y ∈ Y and action a ∈ A, the performance of the algorithm should
not be affected in a significant way.

Note that, different from the Boolean case, l1 → (l2 t l3) 6≡ (l1 → l2) t
l3, which is relevant for the definition of G. In fact, moving the supremum⊔
a′>a,x′′∈X α(x, a′, x′′) outside of the residuum would yield an incorrect notion

of bisimilarity.
In addition, it may appear more convenient to drop the monotonicity re-

quirement for transitions and to allow arbitrary deactivation of transitions,
independently of their label. However, this would result in a loss of the duality
property and as a result, the fixpoint algorithm that allows to compute the
bisimilarity in parallel for all products would be rendered incorrect.



223

6.5 Application to Software Product Lines

6.5.1 Featured Transition Systems

A Software Product Line (SPL) is commonly described as “a set of software-
intensive systems that share a common, managed set of features satisfying the
specific needs of a particular market segment or mission and that are developed
from a common set of core assets [artifacts] in a prescribed way” [CN01]. The
idea of designing a set of software systems that share common functionalities
in a collective way is becoming prominent in the field of software engineering
(cf. [MP14]). In this section, we show that featured transition system (FTS) –
a well-known formal model that is expressive enough to specify an SPL – is a
special instance of a CTS. We begin by giving the definition of an FTS (taken
from [AFL15]).

Definition 6.5.1 A featured transition system (FTS) over a finite set of
features N is a tuple F = (X,A, T, γ), where X is a finite set of states, A is
a finite set of actions and T ⊆ X × A ×X is the set of transitions. Finally,
γ : T → B(N) assigns a Boolean expression over N to each transition.

FTSs are often accompanied by a so-called feature diagram [CCH+13,
CHS+10, CCS+13], a Boolean expression d ∈ B(N) that specifies admissible
feature combinations. Given a subset of features C ⊆ N (called configuration
or product) such that C |= d and an FTS F = (X,A, T, γ), a state x ∈ X can
perform an a-transition to a state y ∈ X in the configuration C, whenever
(x, a, y) ∈ T and C |= γ(x, a, y).

It is easy to see that an FTS is a CTS, where the conditions are subsets of
N satisfying d with the discrete order. Moreover, an FTS can also be seen as a
special case of a LaTS due to Theorem 6.3.2 and O(JdK,=) = P(JdK). Given an
FTS F = (X,A, T, γ) and a feature diagram d, then the corresponding LaTS is
(X,A, α), where the function α is defined as follows: α(x, a, y) = Jγ(x, a, y)∧dK,
if (x, a, y) ∈ T ; α(x, a, y) = ∅, if (x, a, y) 6∈ T .

Furthermore, we can extend the notion of FTSs by fixing a subset of upgrade
features U ⊆ N that induces the following ordering on configurations C,C ′ ∈
JdK:



224

C ≤ C ′ ⇐⇒ ∀f ∈ U(f ∈ C ′ ⇒ f ∈ C) ∧ ∀f ∈ (N\U) (f ∈ C ′ ⇐⇒ f ∈ C).

Intuitively, the configuration C can be obtained from C ′ by “switching” on
one or several upgrade features f ∈ U . Notice that it is this upgrade ordering
on configurations which gives rise to the partially ordered set of conditions
in the definition of a CTS. Hence, in the sequel we will consider the lattice
O(JdK,≤) (i.e., the set of all downward-closed subsets of JdK).

6.5.2 BDDs as Models for Boolean Formulae

In this section, we discuss our implementation of the lattice bisimulation check
using a special form of binary decision diagrams (BDDs) called reduced and
ordered binary decision diagrams (ROBDDs). Our implementation can handle
adaptive SPLs that allow upgrade features, using finite distributive lattices.
Non-adaptive SPLs, based on Boolean algebras are a special case. BDD-based
implementations of FTSs without upgrades have already been discussed in
[CCP+12].

A binary decision diagram (BDD) is a rooted, directed, and acyclic graph
which serves as a representation of a Boolean function. Every BDD has two
distinguished terminal nodes 1 and 0, representing the logical constants true
and false. The inner nodes are labelled by the atomic propositions of a Boolean
expression f ∈ B(N) represented by the BDD, such that on each path from
the root to the terminal nodes, every variable of the Boolean formula occurs at
most once. Each inner node has exactly two distinguished outgoing edges called
high and low representing the case that the atomic propositions of the inner
node has been set to true or false. Given a BDD b for a Boolean expression
f ∈ B(N) and a configuration C ⊆ N (representing an evaluation of the atomic
propositions), we can check whether C |= b by following the path from the
root node to a terminal node, where we choose the high-successor whenever
the label of a node is in C and the low-successor otherwise. If we arrive at the
terminal node labelled 1 we have established that C |= f , otherwise 6|= f .

We will use a special class of BDDs, called reduced and ordered BDDs
(ROBDDs) – full details in [And97] – in which the order of the variables
occurring in the BDD is fixed and redundancy is avoided. If both the child



225

nodes of a parent node are identical, the parent node is dropped from the BDD
and isomorphic parts of the BDD are merged. The advantage of ROBDDs is that
two equivalent Boolean formulae are represented by exactly the same ROBDD
(if the order of the variables is fixed). Furthermore, there are simple polynomial-
time implementations for the basic operations – negation, conjunction, and
disjunction. These are however sensitive to the ordering of atomic propositions
and an exponential blow-up cannot be ruled out, but often it can be avoided.

We will give a short introduction to ROBDDs and describe how Boolean
operators can be realised with ROBDDs.

First we will give an idea how Boolean formulae can be represented by
ROBDDs and how to define ROBDDs used to represent formulae in a Boolean
algebra:

Definition 6.5.2 (ROBDD)

• A BDD b over a set of variables N is a node-labelled rooted directed
acyclic graph. Each node of said graph has either outdegree of exactly two
and is labelled by a variable in N or it has outdegree zero – the leaves
of the BDD – and is labelled either 0 or 1. The successor nodes of any
inner node v are called high(v) and low(v), respectively, and the root of
the BDD is called root(b). A BDD b can be written as an expression in
one of the following forms: 0, or 1, or (f, b1, b0), where f ∈ N and b0 and
b1 is the low- and high-successors, respectively.

• Given a configuration C ⊆ N , one can obtain the value of a BDD b over
C by traversing the BDD starting from the root v as follows. For this
purpose, we write v(C) to denote the value of the tree represented by v
under C.

– if v is the 1-leaf, v(C) = 1

– if v is the 0-leaf, v(C) = 0

– if v is not a leaf we need to distinguish, if the label of v is in C or
not. If it is in C, v(C) = high(v)(C), otherwise v(C) = low(v)(C)

• If we put an order ≤ on the variables and for each edge in a BDD b,
it holds that the label of the successor nodes is less than the label of the



226

predecessor node, we call b an OBDD (wrt ≤). An OBDD b is reduced,
if it is minimal among all OBDDs for the same Boolean function that
respect the same order, we then call b an ROBDD. An OBDD can be
transferred into an ROBDD by repeatedly removing vertices where both
successors are the same vertex and merging vertices that share a common
label, as well as their high- and low-successors.

Moreover, if one implements ROBDDs as shared ROBDDs, where each ROBDD
is represented as a node in one big graph, equivalence checking is particularly
simple, because then, two formula are equal if and only if they are represented
by the same node in the shared ROBDD. We will now give a brief overview
over the operations to realise the three Boolean operators. Note that in this
description we will distinguish between ROBDDs and the logical functions they
represent explicitly.

• ¬: Given an ROBDD b representing a Boolean function f , the ROBDD
representing ¬f can be constructed by just flipping 0 and 1 nodes in b.

• ∨ / ∧: For those two binary operators, one recursive operation exists
that can be used to implement them in time linear in the size of the two
BDDs it gets applied to. Note, however, that the result is not reduced,
an additional reduction step is needed afterwards. Ordering is being
preserved by the operation, though.

Assume ROBDDs b1 representing the logical formula f and b2, representing
the logical formula g are given. Moreover, let an operation op ∈ {∨,∧} be
given. We want to find an ROBDD b that represents the formula f op g.

We will not describe the operation in detail, but only explain the general
idea. Given a binary operation op ∈ {∨,∧}, we apply, in a top-down
manner, the following expansion law, which holds for any given variable
x:

f op g = ¬x ∧ (f |x=0 op g |x=0) ∨ x ∧ (f |x=1 op g |x=1)

For a logical formula f , we write f |x=0 (f |x=1), to denote the formula
that arises if each occurrence of x is replaced by 0 (1), which amounts to
a partial evaluation of f .



227

This expansion can be applied by taking into consideration that the
high-successor of a node labelled by variable x representing a formula f
is a node representing the formula f |x=1 and the low successor represents
the formula f |x=0. We compute the desired ROBDD using the following
recursive procedure: If root(b1) and root(b2) are terminal, the resulting
BDD can directly be computed. If root(b1) = root(b2), we create a node
with label root(b1) and apply op recursively on low(b1) and low(b2) for
its low successor, as well as high(b1) and high(b2) for its high successor. If
root(b1) > root(b2) or b2 is a terminal node (analogously the other way
around), we can apply the same inductive step with b2 taking the part of
both, low(b2) and high(b2), because then the value of b2 is independent of
root(b1).

Computing the ROBDD b that represents f op g, op ∈ {∨,∧}, in this
manner takes time O(|b1| · |b2|).

• Reduction: Given an OBBD b, one can reduce it via a recursive procedure
that takes O(|b| · log |b|) time. We will not present the algorithm in
detail here, the idea is to work through the BDD bottom-up and put
an additional label on each node. For two nodes these labels should be
identical if and only if the nodes represent the same Boolean function. For
the terminal nodes, this works in the obvious way, for the other nodes, we
can use a hash table and the labels of the succeeding nodes which have
been computed earlier. When the labelling is complete, one can construct
from the original OBDD an ROBDD in which one node per label exists
and edges are being instated according to the now-labelled graph.

ROBDDs are commonly used as means to represent Boolean algebra elements
because they give rise to efficient implementations of the operations ∧, ∨ and
¬.
Consider a Boolean formula f with JfK = {∅, {f2, f3}, {f0, f1},
{f0, f1, f2, f3}} and the ordering on the atomic propositions as f0, f1, f2, f3.
Figure 6.1 shows the ROBDD for f , where the inner nodes, terminal nodes,
and high (low) edges are depicted as circles, rectangles, and solid (dashed) lines,
respectively.



228

f0

f1 f1

f2

f3 f3

1 0

Figure 6.1: BDD for a Boolean expression f .

Note that the elements of the Boolean algebra P(P(N)) correspond exactly
to ROBDDs over N .

6.5.3 BDDs for Lattices

We now discuss how ROBDDs can also be used to specify and manipulate
elements of the lattice O(JdK,≤). In particular, computing the infimum and
the supremum in the lattice O(JdK,≤) is standard, since this lattice can be
embedded into P(P(N)) and the infimum and supremum operations coincide
in both structures. Therefore, it remains to represent the lattice elements and
the residuum.

We say that an ROBDD b is downward-closed with respect to ≤ (or simply,
downward-closed) whenever the set of configurations JbK is downward-closed
with respect to ≤. The following lemma characterises when an ROBDD b is
downward closed. It follows from the fact that F ∈ P(P(N)) is downward-closed
if and only if for all C ∈ F, f ∈ U (C ∪ {f} ∈ F ).

Lemma 6.5.3 Let U ⊆ N be a set of upgrade features. An ROBDD b over N
is downward-closed if and only if for each node labelled with an element of U ,
the low-successor implies the high-successor.

Proof:
⇒ Assume that low(n) |= high(n) for all nodes n of b.
Let C ′ ∈ JbK and C ≤ C ′. Without loss of generality we can assume that

C = C ′ ∪ {f} for some f ∈ U . (The rest follows from transitivity.) For the
configuration C ′ there exists a path in b that leads to 1. We distinguish the
following two cases:



229

• There is no f -labelled node on the path. Then the path for C also leads
to 1 and we have C ∈ JbK.

• If there is an f -labelled node n on the path, then C ′ takes the low-
successor, C the high-successor of this node. Since low(n) |= high(n), we
obtain Jlow(n)K ⊆ Jhigh(n)K. Hence, the remaining path for C, which
contains the same features as the path for C ′, will also reach 1.

⇐ Assume by contradiction that JbK is downward-closed, but there exists
a node n with low(n) 6|= high(n) and f = root(n) ∈ U . Hence, there must be
a path from the low-successor that reaches 1, but does not reach 1 from the
high-successor. Prefix this with the path that reaches n from the root of b.

In this way we obtain two configurations C = C ′ ∪ {f}, i.e., C ≤ C ′,
where C ′ ∈ JbK, but C 6∈ JbK. This is a contradiction to the fact that JbK is
downward-closed.

�

The next step is to compute a residuum in O(JdK,≤) by using the residuum
operation of the Boolean algebra P(P(N)). For this, we first describe how to
approximate an element of the Boolean algebra (equivalently represented as an
ROBDD) in the lattice O(P(N),≤).

Algorithm 6.5.4 Approximation bbbcc of an ROBDD b in O(P(N),≤)

Input: An ROBDD b over a set of features N and a set of upgrade features
U ⊆ N .
Output: An ROBDD bbbcc, which is the best approximation of b in the lattice.

bbbcc

1 if b is a leaf then return b

2 if root(b) ∈ U then

3 return build(root(b), bbhigh(b)cc, bbhigh(b)cc ∧ bblow(b)cc)
4 return build(root(b), bbhigh(b)cc, bblow(b)cc)

In the above algorithm, for each non-terminal node that carries a label in U
(line 3), we replace the high-successor with the conjunction of the low and the
high-successor using the procedure described above. Since this might result in



230

a BDD that is not reduced, we apply the build procedure appropriately, which
simply transforms a given ordered BDD into an ROBDD.

The result of the algorithm bbbcc coincides with the approximation bbc of
the ROBDD b seen as an element of the Boolean algebra P(P(N)) (Definiti-
on 2.2.17).

Lemma 6.5.5 Let b be an ROBDD. Then bbbcc is downward-closed. Further-
more, bbbcc |= b and there is no other downward-closed ROBDD b′ such that
bbbcc |= b′ |= b. Hence, bbbcc = bbc.

Proof:

• We show that bbbcc as obtained by Algorithm 6.5.4 is downward-closed. This
can be seen via induction over the number of different features occurring
in the BDD b. If b only consists of a leaf node, then bbbcc is certainly
downward-closed. Otherwise, we know from the induction hypothesis
that bbhigh(b)cc, bblow(b)cc are downward-closed. If root(b) 6∈ U , then bbbcc
is downward-closed due to Lemma 6.5.3. If, however, root(b) ∈ U , then
bbhigh(b)cc ∧ bblow(b)cc is downward-closed (since downward-closed sets are
closed under intersection). Furthermore bbhigh(b)cc∧bblow(b)cc |= bbhigh(b)cc,
i.e., the new low-successor implies the high-successor. That means that
the condition of Lemma 6.5.3 is satisfied at the root and elsewhere in the
BDD and hence, the resulting BDD bbbcc is downward-closed.

• First, from the construction where a low-successor is always replaced by
a stronger low-successor, it is easy to see that bbbcc |= b.

We now show that there is no other downward-closed ROBDD b′ such
that bbbcc |= b′ |= b: Assume to the contrary, that there exists such a
downward-closed BDD b′. Hence, there exists a configuration C ⊆ N ,
such that C 6|= bbbcc, C |= b′, C |= b. Choose C maximal wrt. inclusion.

Now we show that there exists a feature f ∈ U such that f 6∈ C and
C ∪ {f} = C ′ 6|= b. If this is the case, then C ′ ≤ C and C ′ 6|= b′, which is
a contradiction to the fact that b′ is downward-closed.

Consider the sequence b = b0, . . . , bm = bbbcc of BDDs that is constructed by
the approximation algorithm (Algorithm 6.5.4), where the BDD structure



231

is upgraded bottom-up. We have bbbcc = bm |= bm−1 |= . . . |= b0 = b, since
in each newly constructed BDD for some node n low(n) with root(n) ∈ U
is replaced by high(n) ∧ low(n).

Since C |= b and C 6|= bbbcc, there must be an index k, such that C |=
bk, C 6|= bk+1. Let n be the node that is modified in step k, where
root(n) = f ∈ U . We must have f 6∈ C, since the changes concern only
the low-successor and if f ∈ C, the corresponding path would take the
high-successor and nothing would change concerning acceptance of C
from bk to bk+1.

Now assume that C ′ = C ∪ {f} |= b. This would be a contradiction to
the maximality of C and hence C ∪ {f} 6|= b, as required.

�

For each node in the BDD we compute at most one supremum, which is
quadratic. Hence the entire run-time of the approximation procedure is at most
cubic. Finally, we discuss how to compute the residuum in O(JdK,≤).

Proposition 6.2 Let b1, b2 be two ROBDD which represent elements of
O(JdK,≤), i.e., b1, b2 are both downward-closed and b1 |= d, b2 |= d.

(i) b¬b1 ∨ b2 ∨ ¬dc ∧ d is the residuum b1 → b2 in the lattice O(JdK,≤).

(ii) If d is downward-closed, then this simplifies to b1 → b2 = b¬b1 ∨ b2c ∧ d.

Here, the negation operation is the negation in the Boolean algebra P(P(N)).

Proof:

(i) For this proof, we work with the set-based interpretation, which allows
for four views, one on the Boolean algebra B = P(P(N)), one on the
lattice L = O(P(N),≤), one of the Boolean algebra B′ = P(JdK) and
one on the lattice L′ = (O(JdK),≤′) where ≤′=≤ |JdK×JdK. We will mostly
argue in the Boolean algebra B. When talking about downward-closed
sets, we will usually indicate with respect to which order. Similarly, the
approximation relative to ≤ is written b_c, whereas the approximation
relative to ≤′ is written b_c′.



232

We can compute:

b1 →L′ b2 ≡ b¬B′b1 ∨ b2c′ ≡ b(¬Bb1 ∧ d) ∨ b2c′

To conclude the proof, we will now show that bbc′ ≡ bb ∨ ¬dc ∧ d for any
b ∈ B′. We prove this via mutual implication.

• We show bb ∨ ¬dc ∧ d |= bbc′:

bb ∨ ¬dc ∧ d |= (b ∨ ¬d) ∧ d ≡ (b ∧ d) ∨ (¬d ∧ d) ≡ b ∧ d |= b

Since bb∨¬dc∧d implies d, it certainly is in B′. We now show that it
is downward-closed wrt. ≤′: we use an auxiliary relation ≤′′, which is
the smallest partial order on B that contains≤′, i.e.,≤′ extended to B.
We have ≤′′⊆≤. Since bb∨¬dc is an approximation, it is downward-
closed wrt. ≤ and hence downward-closed wrt. ≤′. Moreover, d is
downward-closed relative to ≤′′ (obvious by definition). Since the
intersection of two downward-closed sets is again downward-closed,
bb ∨ ¬dc ∧ d is downward-closed relative to ≤′′ and since finally,
downward-closure relative to ≤′′ is the same as downward-closure
relative to ≤′, provided we discuss an element from B′, we can
conclude that bb ∨ ¬dc ∧ d belongs to L′.

From bb∨¬dc∧d ∈ L′ and bb∨¬dc∧d |= b it follows that bb∨¬dc∧d |=
bbc′ by definition of the approximation.

• We show bbc′ |= bb ∨ ¬dc ∧ d:

Let any C ∈ P(N) be given, such that C ∈ Jbbc′K. We show that in
this case C ∈ Jbb ∨ ¬dc ∧ dK, which proves bbc′ |= bb ∨ ¬dc ∧ d. Let
↓ C be the downwards-closure of C wrt. ≤.

Since bbc′ must be downward-closed relative to ≤′, it holds that
↓ C ∩ JdK ⊆ Jbbc′K. Disjunction with ¬d on both sides yields ↓ C ⊆
Jbbc′ ∨¬dK ⊆ Jb∨¬dK, since c |= c∨¬d ≡ (c∧ d)∨¬d. The set ↓ C
is downwards-closed wrt. ≤, so it is contained in the approximation
relative to ≤ of this set, i.e ↓ C ⊆ Jbb ∨ ¬dcK. Thus, in particular,
C ∈ Jbb ∨ ¬dcK. Since C ∈ Jbbc′K, it follows that C ∈ JdK, therefore
we can conclude C ∈ Jbb ∨ ¬dc ∧ dK.



233

α : 0

2

1

b, JfK
b, JfK

b, JtrueK

c, JfK

β : 0

2

1

b, JfK
b, JfK

b, JfK

c, JfK

Figure 6.2: Components for α and β, where f is viewed as a Boolean expression
indicating its presence.

Hence,

b(¬Bb1 ∧ d) ∨ b2c′ ≡ b(¬Bb1 ∧ d) ∨ b2 ∨ ¬dc ∧ d ≡ b¬Bb1 ∨ b2 ∨ ¬dc ∧ d.

(ii) Since d is downward-closed wrt. ≤, d = bdc, therefore, using Lemma 2.2.18,
we obtain b¬b1∨b2∨¬dc∧d ≡ b¬b1∨b2∨¬dc∧bdc ≡ b(¬b1∨b2∨¬d)∧dc ≡
b(¬b1∨b2)∧d∨¬d∧dc ≡ b(¬b1∨b2)∧dc ≡ b¬b1∨b2c∧bdc ≡ b¬b1∨b2c∧d.

�

6.5.4 Implementation and Run-Time Results

We have implemented an algorithm that computes the lattice bisimulation
relation based on the matrix multiplication (see Theorem 6.4.11) in a generic
way. Specifically, this implementation is independent of how the irreducible
elements are encoded, ensuring that no implementation details of operations
such as matrix multiplication can interfere with the run-time results. For
our experiments, we instantiated it in two possible ways: with bit vectors
representing feature combinations and with ROBDDs as outlined above. Our
results show a significant advantage when we use BDDs to compute lattice
bisimilarity. The implementation is written in C# and uses the CUDD package
by Fabio Somenzi via the interface PAT.BDD [NSL+12].

To show that the use of BDDs can potentially lead to an exponential gain in
speed when compared to the naive bit vector implementation, we executed the
algorithm on a family of increasingly larger LaTSs over an increasingly larger
number of features, where all features are upgrade features. Hence, let F be



234

a set of features. The example we studied contains, for each feature f ∈ F ,
one disconnected component in both LaTSs that is depicted in Figure 6.2: the
component for α on the left, the component for β is on the right. The only
difference between the two is in the guard of the transition from state 0 to
state 2.

The quotient of the times taken without BDDs and with BDDs is growing
exponentially by a factor of about 2 for each additional feature (see the table
below). Due to fluctuations, an exact rate cannot be given. By the eighteenth
iteration (i.e. 18 features and copies of the basic component), the implementa-
tion using BDDs needed 17 seconds, whereas the version without BDDs took
more than 96 hours. The nineteenth iteration exceeded the memory for the
implementation without BDDs, but terminated within 22 seconds with BDDs.

Table 6.1 shows the run-time results (in milliseconds) for the computation
of the largest bisimulation for our implementation on the family of CTSs.

It is true that the example is somewhat artificial, but it is hard to find a
realistic case study where the number of features can be arbitrarily increased.

6.6 Conclusion, Related Work, Future Work

In this section, we have shown how CTSs can be equipped with an order on
conditions to obtain systems whose behaviour can be upgraded by replacing
the current condition by a smaller one. Corresponding verification techniques
based on behavioural equivalences can be important for SPLs where an up-
grade to a more advanced version of the same software should occur without
unexpected behaviour. To this end, we proposed an algorithm, based on matrix
multiplication, that allows to compute the greatest bisimulation of two given
CTSs. Interestingly, the duality between lattices and downward-closed sets of
posets, as well as the embedding into a Boolean algebra proved to be fruitful
when developing it and proving its correctness.

There are two ways in which one can extend CTSs as a specification language:
first, in some cases it makes sense to specify that an advanced version offers
improved transitions with respect to a basic version. For instance, in our
running example, allowing the router to send unencrypted messages in an
unsafe environment is superfluous, because the advanced version always has



235

features time(BDD) (in ms) time(without BDD) (in ms) time(without BDD)
time(BDD)

1 42 13 0.3
2 64 32 0.5
3 143 90 0.6
4 311 312 1.0
5 552 1128 2.0
6 1140 3242 2.8
7 1894 8792 4.6
8 1513 13256 8.8
9 1872 39784 21
10 3208 168178 52
11 5501 513356 93
12 7535 1383752 184
13 5637 3329418 591
14 6955 8208349 1180
15 11719 23700878 2022
16 15601 57959962 3715
17 18226 150677674 8267
18 17001 347281057 20427
19 22145 out of memory —

Table 6.1: Runtime results on a family of CTS.

the encryption feature. Such a situation can be modelled in a CTS by adding
a precedence relation over the set of actions, leading to the deactivation of
transitions, which is worked out in Subsection 6.4.5. The second question is
how to incorporate downgrades: one solution could be to work with a pre-order
on conditions, instead of an order. This simply means that two conditions
ϕ 6= ψ with ϕ ≤ ψ, ψ ≤ ϕ can be merged, since they can be exchanged
arbitrarily. Naturally, one could study more sophisticated notions of upgrade
and downgrade in the context of adaptivity.

As for the related work, literature on adaptive SPLs can be grouped into
either empirical or formal approaches; however, below we focus only on the
formal ones [CCH+13, GS13, DKB14, tBLLLV15].



236

Cordy et al. [CCH+13] model an adaptive SPL using an FTS which encodes
not only a product’s transitions, but also how some of the features may change
via the execution of a transition. In contrast, we encode adaptivity by requiring
a partial order on the products of an SPL and its effect on behaviour evolution
by the monotonicity requirement on the transition function. Moreover, instead
of studying the model checking problem as in [CCH+13], our focus was on
bisimilarity between adaptive SPLs.

In [GS13], the authors proposed methods to analyse reliability and energy
consumption properties of an adaptive SPL, using Discrete Time Markov Chains
(DTMC) and the model checker PARAM [HHWZ10].

Dubslaff et al.[DKB14] extended a Markov decision process (MDP) with
annotated costs to analyse and verify nonfunctional requirements of an adaptive
SPL, using the PRISM model checker.

In [tBLLLV15], a process calculus QFLan motivated by concurrent constraint
programming was developed. Thanks to an in-built notion of a store, various
aspects of an adaptive SPL such as (un)installing a feature and replacing a
feature by another feature can be modelled at run-time by operational rules.

Behavioural equivalences such as (bi)simulation relations have already been
studied in the literature of traditional SPLs. In [CCP+12], the authors proposed
a definition of simulation relation between any two FTSs (without upgrades)
to combat the state explosion problem by establishing a simulation relation
between a system and its refined version. In contrast, the authors in [AFL15]
used simulation relations to measure the discrepancy in behaviour caused by
feature interaction, i.e., whether a feature that is correctly designed in isolation
works correctly when combined with the other features or not.

(Bi)simulation relations on lattice Kripke structures were already studied by
Kupferman and Lustig [KL10], although in the context of three-valued model
checking (rather than on the analysis of adaptive SPLs). Disregarding the
differences between transition systems and Kripke structures (i.e., forgetting
the role of atomic propositions), the definition of bisimulation in [KL10] is quite
similar to our Definition 6.4.1 (another similar formula occurs in [CCP+12]).
However, in [KL10] the stronger assumption of finite distributive de Morgan
algebras is used.3 Thus, the notion of bisimulation as in [KL10] and our notion

3A De Morgan algebra is a lattice L with a negation operation ¯ : L → L subject to



237

of bisimulation are not necessarily the same, since lattices arising from partial
orders are in general not de Morgan algebras.

Lastly, Fitting [Fit02] studied bisimulation relations in the setting of unla-
belled transition systems and gave an elegant characterisation of bisimulation
when transition systems and the relations over states are viewed as matrices.
We have shown that this corresponds to LaTS over Boolean algebras with a
single alphabet symbol.

In summary, compared to related work, we are treating general distributive
lattices that allow us to conveniently model and reason about upgrades.

¯̄a = a and a ≤ b⇒ ā ≥ b̄. Note that the well known negation of Heyting algebras ¬a does
not necessarily yield a De Morgan algebra. As an example, consider the finite lattice from
Example 2.2.6 in which we have ¬¬b = e 6= b.



238



Chapter 7

Conditional Transition Systems
Coalgebraically

7.1 Introduction

In Chapter 6, we have extended conditional transition systems (CTS), which
were previously designed without upgrades in mind, to allow for a notion of
upgrading. The original notion of CTS was introduced in [ABH+12] and has
already been discussed in Chapter 2. In this chapter we want show how they
fit into a coalgebraic framework.

Coalgebraic modelling of CTS is interesting for several reasons: first, it gives
a non-trivial case study in coalgebra which demonstrates the generality of the
approach. Second, it studies coalgebras in the category of partially ordered sets,
respectively in Kleisli categories over this base category. We use the Birkhoff
duality for distributive lattices to show equivalence of two Kleisli categories
over two monads: the reader monad and the so-called lattice monad. This result
can be of interest, independently of the coalgebraic theory. Third, we introduce
a notion of upgrade into coalgebraic modelling.

The theory of coalgebras [Rut00] (see Section 2.4) allows uniform modelling
and reasoning for a variety of state-based systems. For instance, (non)deterministic
finite automata and weighted automata are the classical examples often stu-
died in this context (see [Rut00] for more examples). Furthermore, coalgebraic
modelling comes with the benefit of offering generic algorithms, capturing
the core of algorithms that are similar across different types of automata. In

239



240

particular, through the final chain-based reasoning, one can compute quotients
on automata up to a chosen notion of behavioural equivalence (such as strong
bisimilarity or trace equivalence). A detailed discussion of algorithms based on
the final chain can be found in Chapter 3.

A conditional transition system (CTS) [ABH+12], cf. also Chapter 6, is an
extension of labelled transition system that is well suited to model software
product lines [CN01], an emergent topic of research in the field of software
engineering. In contrast to the commonly used featured transition systems
[CCS+13], CTSs are not primarily concerned with the individual features of a
software product, but mainly with the individual versions that may arise from
the given feature combinations.

In CTSs [BKKS17], transitions are labelled with elements of a partially
ordered set of conditions (Φ,≤Φ), which can be viewed as products in the
terminology of software product lines. This gives us a compact representation
which merges the transition systems for many different products into one single
structure.

Intuitively, CTSs evolve in two steps: first, a condition ϕ ∈ Φ is chosen
at a given state; second, a transition is fired which is guarded by the chosen
condition. Over the course of the run of a CTS, it can perform an operation
called upgrade in which the system changes from a greater condition ϕ to a
smaller condition ϕ′ ≤Φ ϕ. This in turn activates additional transitions that
may be taken in future steps. This model of CTS is discussed in Chapter 6. In
[ABH+12], CTSs were defined without upgrades, i.e., ≤Φ = =Φ.

An interesting fact about a CTS is that there exists an equivalent model,
called lattice transition system (LaTS), which allows for a more compact
representation of a CTS using the lattice of downward-closed subsets of Φ (see
Chapter 6 for more details). In essence, this can be viewed as a lifting of the
well-known Birkhoff’s representation theorem to the case of transition systems.

This paper aims at characterising CTS and LaTS coalgebraically. To this
end, we define two monads, the reader monad and the lattice monad, which
allow for modelling CTS and LaTS respectively – provided a matching functor
is chosen – in their corresponding Kleisli categories. Note, that these functors
are defined on the category Poset, so the reader monad we define here is not
the same as the one on Set, defined in Chapter 2, though it is of course closely



241

related. We will show that these two categories are equivalent (in the categorical
sense).

Our next aim is to characterise conditional bisimilarity using the notion of
behavioural equivalence, a concept stemming from the theory of coalgebras.
Roughly, two states of a system (modelled as a coalgebra) are behaviourally
equivalent if and only if they are mapped to a common point by a coalgebra
homomorphism. In this regard, capturing the right notion of behavioural
equivalence (conditional bisimilarity in our case) depends on choosing the right
choice of functor modelling CTSs. The usual powerset functor P proves to be
a viable choice for CTS without any upgrades, but we will see that it is not a
viable choice to model CTS with upgrades. However, for a slight adaptation
of the powerset functor, i.e., allowing FX = P(X × Φ) for a set of states X,
behavioural equivalence indeed captures conditional bisimilarity. The idea is
to record successor states together with the corresponding product versions,
instead of just the possible successor states.

To conclude, we show that Algorithm C from Chapter 3, the minimisation
algorithm based on the final chain construction plus factorisations [ABH+12], is
applicable to the category under investigation and specify how it can be applied
to CTS. CTS without upgrades have already been considered in [ABH+12], but
applicability to CTS with upgrades is novel.

7.2 Preliminaries

Coalgebraic preliminaries In this chapter, our base category C will be the
well-known category of partially ordered sets denoted as Poset. Formally, the
objects of Poset are pairs (X,≤X), where X is a set and ≤X is a partial order
on X. Its arrows f : (X,≤X)→ (Y,≤Y ) are all the order preserving functions
from X to Y . Recall that Poset is concrete over Set as evident by the forgetful
functor U : Poset → Set defined as: U(X,≤X) = X, for any object (X,≤X),
and Uf = f , for any arrow f : (X,≤X)→ (Y,≤Y ).

Next, we recall the Kleisli category over the concrete category Poset, which
is just an instantiation of Definition 2.4.20 to the category Poset.

Definition 7.2.1 (Kleisli Category as a Concrete Category) Let (T, η, µ)
be a monad on Poset where η is the unit and µ the multiplication. Then



242

its Kleisli category Kl(T ) consists of partially ordered sets as objects (i.e.
the objects of Poset) and an arrow X → Y is an order-preserving function
X → TY . The identity arrow in Kl(T ) is given by ηX and the composition of
two arrows f : X → Y , g : Y → Z in Kl(T ) is given by µZ ◦ Tg ◦ f . Kleisli
categories on Poset are concrete categories as evident by the concretisation
functor U(X,≤X) = π2

1(T (X,≤)) on objects and Uf = µx ◦ Tf on arrows
f : (X,≤)→ (Y,≤).

For the remainder of the chapter we will not make the usage of the concre-
tisation functor explicit, but identify objects with their concretisation when
necessary. Intuitively, Kleisli categories help in distinguishing between the
visible effects of transitions in a system and those that can be characterised
as side-effects instead. Effects of a transition that are intended to be obser-
vable when determining behavioural equivalence are encoded in a functor F
on the Kleisli category, whereas the side effects are encoded via a monad
T . This is motivated by the previous works in [HJS07, PT99], where Kleisli
categories (on Set rather than Poset) are used to obtain (trace) language
equivalence as behavioural equivalence instead of bisimulation, as demonstrated
in Subsection 2.4.5.

In Definition 2.4.18 we have already discussed the well-known reader monad
on Set. We will now introduce a Poset variant of the reader monad, which we
will also simply call the reader monad. Throughout this chapter, whenever we
use the name reader monad, we refer to the Poset version.

Definition 7.2.2 (Reader Monad) Let (Φ,≤Φ) be a finite partially ordered
set. Then, for an object (X,≤X) and an arrow f in Poset, we fix:

(X,≤X)Φ = ({C : (Φ,≤Φ)→ (X,≤X)},≤XΦ) fΦ(C) = f ◦ C,

where C ≤XΦ D if and only if C(ϕ) ≤X D(ϕ) for all ϕ ∈ Φ. Furthermore,
the unit νX : (X,≤X) → (X,≤X)Φ is given as νX(x)(ϕ) = x. Lastly, the
multiplication ζX : ((X,≤X)Φ)Φ → (X,≤X)Φ is defined as ζX(Ĉ)(ϕ) = Ĉ(ϕ)(ϕ),
for any Ĉ ∈ (XΦ)Φ.

Proposition 7.2.3 The reader monad (_Φ, ν, ζ) is a monad on Poset.

Proof: Since order preservation is closed under function composition, it is clear
that fΦ is well-defined for an arrow f in Poset. And the unit νX is a constant



243

function, so clearly it is order preserving. Furthermore, for the multiplication,
let ϕ ≤ ϕ′ and Ĉ(ϕ) ≤ Ĉ(ϕ′). Then, Ĉ(ϕ)(ϕ) ≤ Ĉ(ϕ′)(ϕ) ≤ Ĉ(ϕ′)(ϕ′), showing
that ζX is also order preserving. The rest of the proof obligations, namely that
ν,M are actually natural transformations and that the unit and associative laws
hold are standard, just like the well-known reader monad on Set as outlined in
Definition 2.4.18. �

As mentioned in the introduction, we will model LaTS as a coalgebra in the
Kleisli category of a monad. One could try to simply use the monad mapping
sets to arbitrary lattice-valued functions defined on objects as TX = LX on
objects and on arrows as Tf(b)(y) = ⊔

f(x)≤Y y b(x), however, this would not
be equivalent to the reader monad. Given a monotone function f : Φ → X,
one would like to define a corresponding mapping f̄ : X → L with L = O(Φ)
and f̄(x) = ⊔{ϕ ∈ Φ | f(ϕ) ≤ x}. However, this does not result in a bijection,
since some arrows f̄ : X → L do not represent a monotone function f : Φ→ X.
Hence, we start by imposing restrictions on mappings LX and defining a suitable
endofunctor in our base category Poset. The full definition of the lattice monad
is as follows:

Definition 7.2.4 Let L be a complete lattice satisfying the join-infinite distri-
butive law:

` u
⊔
L =

⊔
{` u `′ | `′ ∈ L}, (for any L ⊆ L). (JID)

For an ordered set (X,≤X), let T (X,≤X) = (TX,≤TX), where TX = (X →
L)∗ is the set of all those functions b : X → L satisfying the following restricti-
ons1:

1. ⊔x∈X b(x) = >

2. For any x, x′ ∈ X, we have b(x) u b(x′) = ⊔{b(y) | y ≤ x, y ≤ x′}.

3. For any join-irreducible element ` ∈ J (L), we have

∃x∈X ` ≤L b(x) ∧ ∀x′∈X
(
` ≤L b(x′) =⇒ x ≤X x′

)
.

1In case of finite L, the Conditions 1 and 2 follow from Condition 3 and therefore need
not be checked.



244

Furthermore, for any two functions b, b′ ∈ (X → L)∗ we let2

b ≤TX b′ ⇐⇒ ∀x∈X b′(x) ≤L b(x) .

For an order preserving function f : (X,≤X)→ (Y,≤Y ), we fix

Tf(b)(y) =
⊔

f(x)≤Y y

b(x), for any b ∈ (X → L)∗, y ∈ Y .

Lastly, define two families of maps ηX : X → TX and µX : TTX → TX:

ηX(x)(x′) =


> if x ≤ x′

⊥ otherwise
,

µX(B̂)(x) =
⊔

b∈(X→L)∗
(B̂(b) u b(x)), where B̂ ∈ ((X → L)∗ → L)∗.

Then (T, η, µ) is called the lattice monad.

Since the proof that the lattice monad is actually a monad is very technical
and the techniques used do not play an important role in the remainder of
the chapter, the proof is omitted here. The interested reader may consult
Appendix C to find a full proof.

In order to understand this chapter, it is required to have an understanding
of CTS, LaTS and their notion of bisimulation. If the reader has not read
Chapter 6, it is recommended, to read Section 6.2 and Section 6.3, in particular
the Definitions 6.2.1, 6.3.1 and 6.2.3 as well as Theorem 6.3.2 at this point.

7.3 Equivalence of Lattice Monad and Reader
Monad

In this section, using the famous Birkhoff’s representation theorem, we show
that the Kleisli categories of the lattice monad and the reader monad are
actually isomorphic.

Throughout this section, we fix (Φ,≤Φ) as a finite partially ordered set and
L is the set of all downward-closed subsets of Φ. Recall that every downward-
closed subset of Φ can be represented by an element of L. As a result, in the
sequel, we do not distinguish between the elements of L and Φ.

2Note the reversal of the order in the ordering of functions!



245

We start out by defining natural transformations α : T ⇒ _Φ and α−1 : _Φ ⇒
T . Subsequently, we will show that the lattice monad and the reader monad
are equivalent in the sense that, for any object (X,≤X) in Poset, we have
T (X,≤X) ∼= (X,≤X)Φ. Lastly, we will show that the induced Kleisli categories
are isomorphic as well.

Definition 7.3.1 Define two families of arrows αX : TX → (X,≤X)(Φ,≤Φ) and
αX
−1 : (X,≤X)(Φ,≤Φ) → TX (for each ordered set X) in the following way:

αX(b)(ϕ) = min{x | b(x)L ≥ ϕ} (for every b ∈ TX and ϕ ∈ Φ),

αX
−1(C)(x) =

⊔
{ϕ | C(ϕ) ≤X x} (for every C ∈ (X,≤X)(Φ,≤Φ) and x ∈ X).

Lemma 7.3.2 For an object in Poset, the corresponding functions αX and
α−1
X are arrows in Poset.

Proof: Let (X,≤X) be an ordered set. To show that αX is order preserving, let
b2 ≤TX b1, for some b1, b2 ∈ TX. I.e., b1(x) ≤L b2(x) for all x ∈ X (remember
the reversal of orders in the lattice monad T ). Since b1(x) ≤L b2(x) for all
x ∈ X, it must hold

b1(x) ≥L ϕ =⇒ b2(x) ≥L ϕ

⇒{x | b1(x) ≥L ϕ} ⊆ {x | b2(x) ≥L ϕ}

⇒min{x | b1(x) ≥L ϕ} ≥X min{x | b2(x) ≥L ϕ} ⇒ αX(b1)(ϕ) ≥X αX(b2)(ϕ).

And to show that αX−1 is order preserving, let C1 ≤ C2. Now, if C1(ϕ) ≤X
C2(ϕ) (which is always true), then C2(ϕ) ≤X x implies C1(ϕ) ≤X x, thus,
α−1
X (C1)(x) ≥L α−1

X (C2)(x) for all x and, due to the reversal of the order in T ,
α−1
X (C1) ≤ α−1

X (C2). �

Next, we show that the functions αX and αX−1 (for an ordered set (X,≤X))
are well defined. The next lemma proves this fact.

Lemma 7.3.3 Let (X,≤X) be an ordered set.

1. If b ∈ TX, then αX(b) ∈ (X,≤X)(Φ,≤Φ), i.e., αX(b) is order preserving.

2. If C ∈ (X,≤X)(Φ,≤Φ), then αX−1(C) ∈ TX.

Proof: For (1), let ϕ ≤Φ ϕ
′. Then, we need to show that αX(b)(ϕ) ≤X αX(b)(ϕ′),

which follows directly from the fact that {x | ϕ′ ≤L b(x)} ⊆ {x | ϕ ≤L b(x)}
holds.



246

For (2), let C ∈ (X,≤X)(Φ,≤Φ). Then, we need to show the three conditions
for T :

Condition 1 Using the fact that C ∈ (X,≤X)(Φ,≤Φ) is a total function, we get
⊔
x∈X

αX
−1(C)(x) =

⊔
x∈X

⊔
C(ϕ)≤Xx

ϕ =
⊔

Φ = >.

Condtion 2 Let x, x′ ∈ X. Then, using distributivity we find

αX
−1(C)(x) u αX−1(C)(x′) =

⊔
C(ϕ)≤Xx

ϕ u
⊔

C(ϕ′)≤x′
ϕ′

=
⊔

C(ϕ)≤Xx,C(ϕ′)≤Xx′

ϕ u ϕ′.

Furthermore,
⊔

x̄≤Xx,x̄≤Xx′
αX
−1(C)(x̄) =

⊔
x̄≤Xx,x̄≤Xx′

⊔
C(ϕ)≤x̄

ϕ =
⊔

C(ϕ)≤Xx,C(ϕ)≤Xx′

ϕ.

Next, we show that {ϕ | C(ϕ) ≤X x,C(ϕ) ≤X x′} = {ϕ u ϕ′ | C(ϕ) ≤X
x,C(ϕ′) ≤X x′} to complete the proof for this case. The direction ‘⊆’ is
obvious, because ϕ = ϕ u ϕ. For the other direction, let C(ϕ) ≤X x and
C(ϕ′) ≤X x′. Then, using order preservation of C we find C(ϕ u ϕ′) ≤X
C(ϕ) ≤X x. Likewise, C(ϕ u ϕ′) ≤X x′.

Condition 3 Let ϕ be a join irreducible element and let x = C(ϕ). Then,
we find that ϕ ≤L

⊔
C(ϕ′)≤XC(ϕ) ϕ

′ = αX
−1(C)(x). Now suppose ϕ ≤L

αX
−1(C)(x′), for some x′ ∈ X. Then, ϕ ≤L

⊔
C(ϕ′)≤Xx′ ϕ

′. Since ϕ is
join-irreducible, we get C(ϕ) ≤X x′ as required.

�

To show that α and α−1 induce isomorphisms between the two Kleisli
categories, we will proceed to show that they are each other’s inverses.

Lemma 7.3.4 The transformations α and α−1 are each other’s inverses.

Proof: Let (X,≤X) be an ordered set. Then we distinguish the following cases.

• To show αX
−1 ◦ αX(b) = b, for b ∈ TX. Expanding αX−1 ◦ αX(b) we get

αX
−1(αX(b))(x) =

⊔
{ϕ | αX(b)(ϕ) ≤X x}

=
⊔
{ϕ | min{y | ϕ ≤L b(y)} ≤X x}.



247

Now, if ϕ ≤L b(x), then x ≥X min{y | ϕ ≤L b(y)} and thus ϕ ≤L
αX
−1(αX(b))(x). If, on the other hand, ϕ ≤L αX−1(αX(b))(x) holds, then

there is a y ∈ X such that ϕ ≤Φ b(y) and y ≤X x. Since b is order
preserving, it follows that ϕ ∈ b(x).

• To show αX ◦ αX−1(C) = C, for C ∈ (X,≤X)(Φ,≤Φ). Expanding αX ◦
αX
−1(C) we get

αX(αX−1(C))(ϕ) = min{x | αX−1(C)(x) ≥L ϕ}

=min{x |
⊔
{ϕ′ | C(ϕ′) ≤X x} ≥ ϕ}.

Clearly, C(ϕ) ≤X x⇒ ⊔{ϕ′ | C(ϕ′) ≤X x} ≥L ϕ⇒ x ≥X min{x | ⊔{ϕ′ |
C(ϕ′) ≤X x} ≥L ϕ}.

If, on the other hand, x ≥X αX(αX−1(C))(ϕ), i.e. x ≥X min{x | ⊔{ϕ′ |
C(ϕ′) ≤X x} ≥L ϕ}, let y := min{x | ⊔{ϕ′ | C(ϕ′) ≤ x} ≥ ϕ}. Then,⊔{ϕ′ | C(ϕ′) ≤X y} ≥L ϕ holds. Since ϕ is a join-irreducible element, we
find ϕ ≤L ϕ′ and C(ϕ′) ≤X y, for some ϕ′ ∈ Φ. Lastly, order preservation
of C and transitivity of ≤ together yields C(ϕ) ≤X x.

�

Henceforth, we will make heavy use the following notation, introduced in
Definition 7.2.1: for an order preserving function f : (X,≤X) → (Y,≤Y ), we
write fΦ to denote the image of f under the reader monad, i.e., fΦ(C) = f ◦C,
for any C ∈ (X,≤X)(Φ,≤Φ).

Lemma 7.3.5 The family α given in Definition 7.3.1 is a natural transforma-
tion.

Proof: Given an order preserving function f : (X,≤X)→ (Y,≤Y ), we need to
show αY (T (f)(b))(ϕ) = fΦ(αX(b))(ϕ), for any b ∈ TX and ϕ ∈ Φ.

fΦ(αX(b))(ϕ) = f(αX(b))(ϕ) = f(min{x | b(x) ≥L ϕ}) = min{f(x) | b(x) ≥L ϕ}

In the last step we used monotonicity of f . On the other hand we have:

αY (T (f)(b))(ϕ) = min{y | Tf(b)(y) ≥L ϕ} = min{y |
⊔
{b(z) | f(z) ≤Y y} ≥L ϕ}

We will now show that both the expressions are equal.



248

• Let f(x) ∈ {f(x) | b(x) ≥L ϕ}, i.e. x be chosen such that b(x) ≥L ϕ. Then,⊔{b(z) | f(z) ≤Y f(x)} ≥ ϕ and therefore f(x) ∈ {y | ⊔{b(z) | f(z) ≤Y
y} ≥ ϕ}. So, in particular, f(x) ≥ min{y | ⊔{b(z) | f(z) ≤Y y} ≥L ϕ}.

• Let y ∈ {y′ | ⊔{b(z) | f(z) ≤Y y′} ≥L ϕ}. Since ϕ is join-irreducible,
there must be a z such that f(z) ≤Y y and b(z) ≥L ϕ, i.e. y ≥Y min{f(x) |
b(x) ≥L ϕ}.

�

Lemma 7.3.6 The family α−1 given in Definition 7.3.1 is a natural transfor-
mation.

Proof: Let C ∈ XΦ, y ∈ Y , f : (X,≤X)→ (Y,≤Y ). We compute:

T (f)(α−1
X (C))(y) =

⊔
{α−1

X (C)(x) | f(x) ≤Y y}

=
⊔
{
⊔
{ϕ | C(ϕ) ≤X z, z ≤X x} | f(x) ≤Y y} =

⊔
{ϕ | C(ϕ) ≤X x, f(x) ≤Y y}

as well as:

α−1
Y (fΦ(C))(y) =

⊔
{ϕ | fΦ(C)(ϕ) = x, x ≤Y y}

=
⊔
{ϕ | f(C(ϕ)) ≤Y x, x ≤Y y} =

⊔
{ϕ | f(C(ϕ)) ≤Y y}.

We will now show that {ϕ | C(ϕ) ≤X x, f(x) ≤Y y} = {ϕ | f(C(ϕ)) ≤Y y},
and therefore that their suprema are identical, too.

• Let C(ϕ) ≤X x and f(x) ≤Y y, then, due to monotonicity of f , f(C(ϕ)) ≤Y
f(x) ≤Y y.

• Let f(C)(ϕ) ≤Y y. We define x := C(ϕ) and observe that f(x) =
f(C(ϕ)) ≤Y y.

�

Now we want to show that the units are isomorphic as well.

Lemma 7.3.7 Let (X,≤X) be an ordered set. Then, the following properties
hold.

1. For all x, x′ ∈ X we have α−1
X (νX(x))(x′) = ηX(x)(x′).

2. For all x ∈ X, ϕ ∈ Φ we have αX(ηX(x))(ϕ) = νX(x)(ϕ)..



249

Proof: For (1), we derive

α−1
X (νX(x))(x′) =

⊔
{ϕ | νX(x)(ϕ) ≤X y, y ≤X x′} =

⊔
{ϕ | νX(x)(ϕ) ≤X x′}

=
⊔
{ϕ | x ≤X x′} =


> if x ≤X x′

⊥ otherwise
= ηX(x)(x′).

For (2), we find αX(ηX(x))(ϕ) = min{y | ηX(x)(y) ≥L ϕ} = min{y | x ≤X y} =
νX(x)(ϕ). �

In order to prove that the respective multiplications of our monads are
isomorphic, we will investigate commutativity of two diagrams (drawn below in
Lemma 7.3.8 and Lemma 7.3.9) that basically describe the translation process
from one multiplication to the other and vice-versa. This is later used to prove
that the corresponding Kleisli categories are isomorphic.

Lemma 7.3.8 The following diagram commutes for all g : Y → T (Z):

T (Y ) TT (Z) T (Z)

Y Φ

T (Z)Φ
ZΦΦ

ZΦ

Tg µZ

αZ

αY

gΦ

αΦ
Z ζZ

Proof: Let b ∈ T (Y ), ϕ ∈ Φ. We compute:

(αZ ◦ µZ ◦ Tg)(b)(ϕ) = min{z | (µZ ◦ Tg)(b)(z) ≥L ϕ}

= min{z |
⊔
{Tg(b)(d) u d(z) | d ∈ (Z → L)∗} ≥L ϕ}

= min{z |
⊔
{b(y) u d(z) | d ∈ (Z → L)∗, g(y) ≤ d} ≥L ϕ}.

as well as

(ζZ ◦ αΦ
Z ◦ gΦ ◦ αY )(b)(ϕ) = (αΦ

Z ◦ gΦ ◦ αY )(b)(ϕ)(ϕ)

= (αZ ◦ gΦ ◦ αY )(b)(ϕ)(ϕ) = min{z | gΦ ◦ αY (b)(ϕ)(z) ≥L ϕ}

= min{z | g(αY (b)(ϕ))(z) ≥L ϕ} = min{z | g(min{y | ϕ ≤L b(y)})(z) ≥L ϕ}.



250

It is sufficient to show that the following conditions are logically equivalent (for
every z ∈ Z):

ϕ ≤L
⊔

g(y)≤d,d∈TZ
(b(y) u d(z)) ⇐⇒ ϕ ≤L g(min{y | ϕ ≤L b(y)})(z).

⇐ Fix ȳ = min{y | ϕ ≤L b(y)}, d = g(ȳ). Thus, ϕ ≤L b(ȳ) u d(z) ≤L⊔
g(y)≤d,d∈TZ(b(y) u d(z)).
⇒ Assume ϕ ≤L

⊔
g(y)≤d,d∈TZ(b(y) u d(z)). Since ϕ is join-irreducible, we

find that ϕ ≤L b(y) u d(z), for some y ∈ Y, d ∈ TZ such that g(y) ≤TZ d. Let
ȳ = min{y | ϕ ≤L b(y)}. Then,

ȳ ≤Y y =⇒ g(ȳ) ≤TZ g(y) =⇒ g(y)(z) ≤L g(ȳ)(z).

Moreover, from above, we have ϕ ≤L d(z) and g(y) ≤TZ d, i.e., d(z) ≤L g(y)(z)
– again, respecting the reversal of orders. Thus, from transitivity of ≤L we obtain
ϕ ≤L g(ȳ)(z). �

Lemma 7.3.9 The following diagram commutes for all g : (Y,≤Y )→ (Z,≤Z
)(Φ,≤Φ):

Y Φ ZΦΦ
ZΦ

T (Y )

T (ZΦ) TT (Z) T (Z)

gΦ ζZ

α−1
Z

α−1
Y

T (g)
T (α−1

Z ) µZ

Proof: Let g : Y → ZΦ, C ∈ Y Φ, z ∈ Z. We compute:

α−1
Z ◦ ζZ ◦ gΦ(C)(z) =

⊔
{ϕ | ζZ ◦ gΦ(C)(ϕ) ≤Z z}

=
⊔
{ϕ | gΦ(C)(ϕ)(ϕ) ≤Z z} =

⊔
{ϕ | g(C(ϕ))(ϕ) ≤Z z},

as well as:

(µZ ◦ T (α−1
Z ) ◦ T (g) ◦ α−1

Y )(C)(z)

=
⊔
{(T (α−1

Z ) ◦ T (g) ◦ α−1
Y )(C)(b) u b(z) | b ∈ TZ}

=
⊔
{T (g) ◦ α−1

Y (C)(d) u b(z) | α−1
Z (D) ≤TZ b,D ∈ ZΦ, b ∈ TZ}

=
⊔
{α−1

Y (C)(y) u b(z) | g(y) ≤ D,α−1
Z (D) ≤TZ b,D ∈ ZΦ, b ∈ TZ}

=
⊔
{ϕ u b(z) | C(ϕ) ≤Y y, g(y) ≤ D,α−1

Z (D) ≤TZ b,D ∈ ZΦ, b ∈ TZ}.



251

So we need to prove that these two expressions are equal.

• Assume ϕ ≤Φ
⊔{ϕ′ u b(z) | C(ϕ′) ≤Y y, g(y) ≤ D,α−1

Z (D) ≤TZ b, b ∈
TZ}. Since ϕ is join-irreducible, we find some b ∈ TZ, y ∈ Y , and
D ∈ ZΦ such that α−1

Z (D) ≤TZ b, g(y) ≤ D, C(ϕ′) ≤Y y, ϕ ≤L ϕ′ and
b(z) ≥L ϕ. Clearly, using order preservation of g, C, and transitivity of
≤, we get g(C(ϕ)) ≤ g(C(ϕ′)) ≤ g(y).

Moreover, b(z) ≤L αZ−1(D)(z) since α−1
Z (D) ≤TZ b. Thus, ϕ ≤L α−1

Z (D)(z).
Since ϕ is join-irreducible, we find some ϕ′′ such that ϕ ≤L ϕ′′ and
D(ϕ′′) ≤Z z. And using order preservation of D and transitivity we get
D(ϕ) ≤Z z.

Now using the above facts g(C(ϕ)) ≤ g(y), g(y) ≤ D, and D(ϕ) ≤Z z,
we find the desired inequality: g(C(ϕ))(ϕ) ≤Z g(y)(ϕ) ≤Z D(ϕ) ≤U z.

• Assume ϕ ≤L
⊔{ϕ′ | g(C(ϕ′))(ϕ′) ≤Z z}, then g(C(ϕ))(ϕ) ≤Z z. Let

y := C(ϕ), then C(ϕ) ≤Y y per definition. Let D = g(C(ϕ)), then
g(y) = g(C(ϕ)) = D. Further define b = α−1

Z (D), then obviously we have
b ∈ (Z → L)∗ and per definition α−1

Z (D) ≤ b. We now only have left to
prove that with these definitions, ϕ ≤L b(z) is true. We compute:

b(z) = α−1
Z (D)(z) = α−1

Z (g(C(ϕ)))(z) =
⊔
{ϕ′ | g(C(ϕ))(ϕ′) ≤Z z}.

Since g(C(ϕ))(ϕ) ≤Z z and ϕ ∈ {ϕ′ | g(C(ϕ))(ϕ′) ≤Z z} hold; therefore,
we get ϕ ≤L

⊔{ϕ′ | g(C(ϕ))(ϕ′) ≤Z z} = b(z) .

�

Using the equivalence of the lattice and the reader monads, we can establish
an equivalence between the corresponding Kleisli categories as well.

Theorem 7.3.10 The categories Kl(T ) and Kl(_Φ) are isomorphic via the
mapping

α : Kl(T )→ Kl(_Φ) α−1 : Kl(_Φ)→ Kl(T )

defined as α(f) = αX◦f , for every f : X → TY in Kl(_Φ) and α−1(f) = α−1
X ◦f ,

for every f : X → XΦ in Kl(_Φ).

Proof: We have already shown that α(α−1(f)) = f and α−1(α(f)) = f , so
we only have to prove that α and α−1 are functors.



252

• We show that α is a functor.

– α preserves identities. Let idX : X ηX−→ T (X) then we can compute

α(idX) = X
αX◦ηX−−−−→ XΦ =

Lemma 7.3.7,Item 2
X

νX−→ XΦ = Idα(X)

– α respects composition. Let f : X → Y , g : Y → Z, we compute:

α(g ◦ f) =
in Set

αZ ◦ µZ ◦ Tg ◦ f =
Lemma 7.3.8

ζZ ◦ αΦ
Z ◦ gΦ ◦ αY ◦ f

=ζZ ◦ α(g)Φ ◦ α(f) =
in Kleisli

α(g) ◦ α(f)

• We show that α−1 is a Functor.

– α−1 preserves identities. Let idX : X νX−→ XΦ then we can compute

α−1(idX) = X
α−1

X ◦νX−−−−→ TX =
Lemma 7.3.7,Item 1

X
ηX−→ TX = Idα−1(X)

– α−1 respects composition. Let f : X → Y , g : Y → Z, we compute:

α−1(g ◦ f) =
in Set

α−1
Z ◦ ζZ ◦ gΦ ◦ f

=
Lemma 7.3.9

µZ ◦ Tα−1
Z ◦ T (g) ◦ α−1

Y ◦ f

=µZ ◦ Tα(g)−1 ◦ α−1(f) =
in Kleisli

α−1(g) ◦ α−1(f)

�

When proving the equivalence of the reader monad and the lattice monad,
the duality between complete finite distributive lattices and partially ordered
sets plays an important role, namely when defining the isomorphisms α and
α−1. Considering there is a similar duality between complete distributive
lattices (not necessarily finite) and clopen downsets on Priestley spaces – i.e.
spaces of partially ordered sets with a topology that makes them totally order
disconnected – one might wonder why we restrict to the finite variant.

To make a similar duality result work for the infinite case, we would need
to restrict the lattices with additional assumptions, because not all bounded
distributive lattices are isomorphic to a lattice of downsets of a partial order.
This holds if additionally the JID and its dual hold and some notion of atomicity
holds for the irreducibles in the lattice [DP02]. This however would make the
definition of the lattice monad more complicated.



253

7.4 Modelling CTS without Upgrades using P

Recall that once a condition is fixed by a CTS then it behaves like a traditional
transition system (until another upgrade occurs). Thus, it is natural to consider
the powerset functor to model the set of next possible states when the upgrade
order is discrete. In this section, we investigate the finite version of the well-
known powerset functor. This way of modelling CTS extends the approach
in [ABH+12], where the set of actions A was fixed to be singleton. Note that
the modelling in [ABH+12] could be adapted to incorporate non-singleton sets
of actions without changing to the category Poset. This change of categories
will only become important when we turn our attention towards systems with
upgrades. Throughout this section, we assume that Φ is discretely ordered.

Definition 7.4.1 The functor P on Poset is defined according to:

• On objects (X,≤X) we have P(X,≤X) = ({Y ⊆ X | Y is finite},⊇), so
P(X,≤X) is the set of all finite subsets of X, ordered by inverse inclusion.

• Let f : (X,≤X) → (Y,≤Y ), then P(f) : P(X) → P(Y ) is defined as
P(f)(S) = {f(s) | s ∈ S}, so P(f)(S) is the image of S under f .

It is easy to see that P is an endofunctor on Poset (the proof is similar to the
powerset functor on Set).

Now in order to extend P to Kl(_Φ), we need to find a distributive law
λ : P(_Φ)⇒ P(_)Φ. This extension then allows to define CTS in Kl(_Φ).

Definition 7.4.2 We define the distributive law λ : P(_Φ)⇒ P(_)Φ according
to

λX(S)(ϕ) = {C(ϕ) | C ∈ S}

where ϕ ∈ Φ, S ∈ P(XΦ).

Note, that it is important here, that we only consider discrete orders for Φ.
In fact, for a non-discrete order, λ fails to be a distributive law, because the
components λX are not arrows in the category, since they are not necessarily
monotone in Φ. To see this, consider the following counterexample: for the
state set X = {x, y}, where x ≤ y and the set of conditions Φ = {ϕ, ϕ′}, where
ϕ′ ≤ ϕ, consider S = {C}, where C(ϕ) = y, C(ϕ′) = x. Then C is a monotone
function, but λX(S)(ϕ′) = {C(ϕ′)} = {x} 6⊇ {y} = {C(ϕ)} = λX(S)(ϕ).



254

As expected, we obtain the following result.

Theorem 7.4.3 The mapping λ defined above is a distributive law.

Proof: First, to show that λX is an arrow (for any (X,≤X)), since the conditions
are discretely ordered, nothing has to be shown, the computation is straight
forward.

Second, we show that λ is a natural transformation. Let S ∈ P(XΦ) and
ϕ ∈ Φ. Then,

λX(P(fΦ)(S))(ϕ) = {C ′(ϕ) | C ′ ∈ P(fΦ)(S)}

={C ′(ϕ) | C ′ ∈ {fΦ(C) | C ∈ S}}

={C ′(ϕ) | C ′ ∈ {[ϕ′ 7→ f(C(ϕ′))] | C ∈ S}}

={f(x) | x ∈ {C(ϕ) | C ∈ S}}

={f(x) | x ∈ λX(S)(ϕ)} = P(f)(λX(S)(ϕ)) = P(f)Φ(λX(S))(ϕ).

Third, we show that the pentagonal law holds for λ, i.e., for all S ∈ P(XΦΦ),
ϕ ∈ Φ we have λX(P(ζX)(S))(ϕ) = ζP(X)(λXΦ(λXΦ(S)))(ϕ). We compute:

λX(P(ζX)(S))(ϕ) = {C(ϕ) | C ∈ P(ζX)(S)}

={C(ϕ) | C ∈ {ζX(C ′) | C ′ ∈ S}}

={C(ϕ) | C ∈ {[ϕ′ 7→ C ′(ϕ′)(ϕ′)] | C ′ ∈ S}}

={C(ϕ) | C ∈ λXΦ(S)(ϕ)}

=λXΦ(λXΦ(S))(ϕ)(ϕ) = ζP(X)(λXΦ(λXΦ(S)))(ϕ).

Lastly, we show that the triangular law holds for λ, i.e., for all S ∈ P(X) and
ϕ ∈ Φ we have λX(P(νX)(S))(ϕ) = νP(X)(S)(ϕ). Note νP(X)(S)(ϕ) = S. Then,

λX(P(νX)(S))(ϕ) = {C(ϕ) | C ∈ P(νX)(S)}

={C(ϕ) | C ∈ {νX(x) | x ∈ S}} = {C(ϕ) | C ∈ {[ϕ′ 7→ x] | x ∈ S}} = S.

�

To illustrate how the extended functor P is thus defined, we compute, for
all f : (X,≤X)→ (Y,≤Y )(Φ,≤Φ), S ∈ P(X) and ϕ ∈ Φ:

Pf(S)(ϕ) = λXPf(S)(ϕ) = {C(ϕ) | C ∈ Pf(S)}

= {C(ϕ) | C ∈ {f(s) | s ∈ S}} = {f(S)(ϕ) | s ∈ S}



255

Now to model CTS with action labels (the case when |A| > 1) we use
a distributive law between the functor _A and _Φ. The following result is
a straightforward exercise in currying; however, we present it for the sake
of completeness (this proof also works in the case of non-discretely ordered
conditions).

Definition 7.4.4 We define, for any ϕ ∈ Φ, a ∈ A, and S ∈ (_Φ)A, the
distributive law κ : (_Φ)A ⇒ (_A)Φ according to

κX(S)(ϕ)(a) = S(a)(ϕ).

Proposition 7.4.5 The above mapping κ results in a distributive law.

Proof: To see that κ is a natural transformation, let ϕ ∈ Φ, a ∈ A and
S ∈ (_Φ)A. Then

κ ◦ ((SΦ)A)(a)(ϕ) = (SA)Φ(ϕ)(a) = (SA)Φ ◦ κ(a)(ϕ).

For the pentagonal law, we find κ((ζAX)(S))(ϕ)(a) = ζAX(S)(a)(ϕ) = S(a)(ϕ)(ϕ)
and

(ζXA(κXΦ(κXΦ(S)))(ϕ))(a) = (κXΦ(κXΦ(S))(ϕ)(ϕ))(a)

=(κXΦ(S)(ϕ))(a)(ϕ) = S(a)(ϕ)(ϕ).
Lastly, for the triangular law, we derive

κX(νAX(S))(ϕ)(a) = κAX(S)(a)(ϕ) = S(a) = (νXA(S)(ϕ))(a).

�

The extended functor _A acts as follows on arrows f : X → Y Φ, where
S ⊆ XA, ϕ ∈ Φ and a ∈ A:

fA(S)(ϕ)(a) = κX ◦ (fa(S))(ϕ)(a) = fA(S)(a)(ϕ) = f(S(a))(ϕ)

As a result, a given CTS (X,A, α) over (Φ,=Φ) can be seen as a coalgebra
α : X → P(XA) in Kl(_Φ) with ≤X = =X . Next, we prove that behavioural
equivalence for coalgebras in Kl(_Φ) characterises conditional bisimilarity
between the states of a system.

Theorem 7.4.6 Given a CTS α : X → P(X)A over a discretely ordered set
of conditions Φ, two states x, y ∈ X are bisimilar if and only if there exists
a coalgebra homomorphism f : (X → P(X)A) → (Y → P(Y )A) such that
f(x) = f(y).



256

Proof:

• Given coalgebra homomorphism f : (X,α)→ (Y, β), we define the family
of relations Rϕ (for each ϕ ∈ Φ) as: Rϕ = {(x, y) | f(x)(ϕ) = f(y)(ϕ)}.
Next, we show that Rϕ satisfy the transfer property of a bisimulation
relation. Let xRϕy and x a,ϕ−−→ x′. Then

f(x′)(ϕ) ∈ (PfA ◦ α)(x)(a)(ϕ) = (β ◦ f)(x)(a)(ϕ)

=β(f(x)(ϕ))(a)(ϕ) = β(f(y)(ϕ))(a)(ϕ) = (β ◦ f)(y)(a)(ϕ)

=(PfA ◦ α)(y)(a)(ϕ) = PfA(α(y)(a)(ϕ))(ϕ).

I.e., there exists a y′ ∈ α(y)(a)(ϕ) such that f(y′) = f(x′), i.e., (x′, y′) ∈
Rϕ. Therefore, the family {Rϕ | ϕ ∈ Φ} is a conditional bisimulation,
since we are considering the discrete order, we do not show any inclusion
property for this family.

• Given a family of bisimulation relations {Rϕ | ϕ ∈ Φ}, we define the
equivalence classes [x]ϕ = {y ∈ X | (x, y) ∈ Rϕ} (where we distinguish
[x]ϕ and [x]ϕ′ , even if the partitions coincide) and set Y = {[x]ϕ | x ∈
X,ϕ ∈ Φ} with ≤Y ==Y . Now let f : X → Y as f(x)(ϕ) = [x]ϕ and
define a coalgebra β : Y → P(Y )A as

β([x]ϕ)(a)(ϕ) = {[y]ϕ | ∃x′,y′ x′ ∈ [x]ϕ ∧ y′ ∈ [y]ϕ ∧ x′
a,ϕ−−→ y′}.

Clearly, f and β are order preserving, since Φ is discretely ordered. Lastly,
to show that f is a coalgebra homomorphism, it suffices to show that
β([x]ϕ)(a)(ϕ) = {[y]ϕ | x

a,ϕ−−→ y}, for any x, a, ϕ. The direction ‘⊇’ is
obvious, so consider [y]ϕ ∈ β([x]ϕ)(a)(ϕ). Then, we find some x′, y′ such
that x′ ∈ [x]ϕ ∧ y′ ∈ [y]ϕ ∧ x′

a,ϕ−−→ y′. Now using the transfer property
of bisimulation, we find some y′′ such that x a,ϕ−−→ y′′ and y′′ ∈ [y′]ϕ, i.e.,
[x]ϕ

a,ϕ−−→ [y]ϕ.

�

It is important to note, that this approach only works if the set of conditions
is discretely ordered. In this case, the conditions can be regarded purely as
side effects, because the condition is set in the beginning and can never be
changed, over the run of a system. This changes, however, when the order
is non-discrete, since then upgrades, initiated by the user, may occur, which
requires the conditions to be observable to some capacity.



257

7.5 Modelling CTS with Upgrades in Kl(_Φ)

In the previous section, we argued that the functor P is not fit to model
CTS with a non-discrete order, since the distributive law required to extend
it to Kl(_Φ) is not a collection of arrows in case the order is non-discrete.
The reason can intuitively be understood as follows: Using the functor P , the
version of the system is hidden as a side effect and therefore not considered in
the behavioural equivalence – after all this is the purpose of modelling using
a Kleisli category. However, while the versions can be seen as side effects in
the absence of upgrades, this is no longer true when a CTS can perform an
upgrade. Upgrades are monotone by nature, so in order to perform an upgrade,
one must be aware of the current version of the system. Alternatively, one can
observe, that in the characterisation via the conditional bisimulation game, an
upgrade must be answered by an upgrade to the same system (see [BKKS17]).

Consequently, a functor that is fit to model CTS with upgrades has to carry
information regarding the current version the system is operated with. To
this end, we define a functor that is similar to P , but collects successor states
together with the products they can be reached in. The functor will again arise
via an extension, but we will later also define the functor explicitly on the
category.

Definition 7.5.1 We define the Poset endofunctor P(_× Φ) as follows:

Objects ((P(X × Φ)),⊆), for an object (X,≤X) in Poset

Arrows For an arrow f : X → Y in Poset,

P(f × Φ): (P(X × Φ))→ (P(Y × Φ))

is a function

P(f × Φ): (P(X × Φ))→ (P(Y × Φ)),

P(f × Φ)(p) = {(f(x), ϕ) | (x, ϕ) ∈ p},

for all p ∈ (P(X × Φ)).

It is easy to see that this is an endofunctor:



258

Lemma 7.5.2 P(_× Φ) is a functor.

Proof: It is well-known that inclusion is a partial order, so we will not show
this. Also, where the order of the sets is not important in the following parts of
the proof, we will omit them for ease of reading.

• P(_×Φ) maps monotone functions to monotone functions. Let f : X → Y

be a monotone function, and p, q ∈ P(X × Φ) such that p ≤ q, i.e. p ⊆ q.
Then P(f × Φ)(p) = {(f(x), ϕ) | (x, ϕ) ∈ p} ⊆ {(f(x), ϕ) | (x, ϕ) ∈ q} =
P(f × Φ)(q), i.e. P(f × Φ)(p) ≤ P(f × Φ)(q).

• P(_× Φ) preserves identities. Let p ∈ P(X × Φ), then P(idX × Φ)(p) =
{(idX(x), ϕ) | (x, ϕ) ∈ p} = p.

• P(_ × Φ) respects composition. Let f : X → Y , g : Y → Z, and p ∈
P(X×Φ) then P(g◦f×Φ)(p) = {(g(f(x)), ϕ) | (x, ϕ) ∈ p}. On the other
hand, P(g × Φ) ◦ P(f × Φ)(p) = {(g(y), ϕ) | (x, ϕ) ∈ P(f × Φ)(p)} =
{(g(y), ϕ) | (x, ϕ) ∈ {(f(x), ϕ) | (x, ϕ) ∈ p}} = {g(f(x)) | (x, ϕ) ∈ p}.

�

Now, we will show that this functor can be extended to Kl(_Φ) via a
distributive law:

Definition 7.5.3 We define the distributive law ι : P(_Φ × Φ)⇒ P(_× Φ)Φ

where ιX : P(XΦ × Φ)⇒ P(X × Φ)Φ is defined according to

ιX(S)(ϕ) = {(f(ϕ′), ϕ′) | (f, ϕ′) ∈ S}

for all S ∈ P(XΦ × Φ), ϕ ∈ Φ.

Lemma 7.5.4 ι is a distributive law.

Proof: We need to show several parts:

• ιX is an arrow: For this we need to show monotonicity in both arguments.
So first, let ϕ ∈ Φ and S, S ′ ∈ P(XΦ×Φ) be given, such that S ≤ S ′, i.e.
S ⊆ S ′. Then,

ιX(S)(ϕ) = {(f(ϕ′), ϕ′) | (f, ϕ′) ∈ S}

⊆{(f(ϕ′), ϕ′) | (f, ϕ′) ∈ S ′} = ιX(S ′)(ϕ).



259

Monotonicity in the second argument is trivial, since ιX is independent of
the second argument, ιX(S)(ϕ) = ιX(S)(ϕ′) for all S ∈ P(XΦ × Φ) and
all ϕ, ϕ′ ∈ Φ, not necessarily ordered.

• ιX is a natural transformation: Let S ∈ P(XΦ × Φ) and ϕ ∈ Φ, then we
can compute:

(P(f ×X))Φ(ιX(S))(ϕ)

=P(f ×X)(ιX(S))(ϕ)

={(f(x), ϕ′) | (x, ϕ′) ∈ ιX(S)(ϕ)}

={(f(x), ϕ′) | (x, ϕ′) ∈ {(g(ϕ′), ϕ′) | (g, ϕ′) ∈ S}}

={(f(g(ϕ′)), ϕ′) | (f, ϕ′) ∈ S}
as well as:

ιX(P(fΦ × Φ))(S)(ϕ)

={(h(ϕ′), ϕ′) | (h, ϕ′) ∈ P(fΦ × Φ)(S)}

={(h(ϕ′), ϕ′) | (h, ϕ′) ∈ {(fΦ(g), ϕ′) | (g, ϕ′) ∈ S}}

={(h(ϕ′), ϕ′) | (h, ϕ′) ∈ {(f ◦ g, ϕ′) | (g, ϕ′) ∈ S}}

={(f(g(ϕ′)), ϕ′) | (g, ϕ′) ∈ S}

• The pentagonal law holds: Let ϕ ∈ Φ and S ∈ P(XΦΦ ×Φ), then we can
compute:

ιX(P(ζX × Φ)(S))(ϕ) = {(f(ϕ′), ϕ′) | (f, ϕ′) ∈ P(ζX × Φ)(S)}

={(f(ϕ′), ϕ′) | (f, ϕ′) ∈ {(ζX(g), ϕ′) | (g, ϕ′) ∈ S}}

={(g(ϕ′)(ϕ′), ϕ′) | (g, ϕ′) ∈ S}
as well as:

ζP(X×Φ)(ιX(ιX(S)))(ϕ) = ιX(ιX(S))(ϕ)(ϕ)

={(f(ϕ′), ϕ′) | (f, ϕ′) ∈ ιX(S)(ϕ)}

={(f(ϕ′), ϕ′) | (f, ϕ′) ∈ {(g(ϕ′), ϕ′) | (g, ϕ′) ∈ S}}

={(g(ϕ′)(ϕ′), ϕ′) | (g, ϕ′) ∈ S}

• The triangular law holds:

ιX(P(νX × Φ))(S)(ϕ) = {(f(ϕ′), ϕ′) | (f, ϕ′) ∈ P(νX × Φ)(S)}

={(f(ϕ′), ϕ′) | (f, ϕ′) ∈ {(νX(x), ϕ′) | (x, ϕ′) ∈ S}}

={(νX(x)(ϕ′), ϕ′) | (x, ϕ′) ∈ S} = {(x, ϕ′) | (x, ϕ′) ∈ S} = S



260

By, definition νP(X×Φ)(S)(ϕ) = S, so the triangular law holds, as well.

�

Together with the extension of the functor _A for the set of actions A,
we obtain the CTS functor F . To make further arguments easier, we give an
explicit definition of the functor F we will use directly on Kl(_Φ). One can
see that this definition is capturing exactly the functor constructed via the
extension of P(_×X) concatenated with the extension of _A via the following
argument: Let f : (X,≤X) → (Y,≤Y )(Φ,≤Φ), S ∈ P(X × Φ), ϕ ∈ Φ, then we
can compute:

P(f × Φ)(S)(ϕ) = ιX ◦ P(f × Φ)(S)(ϕ)

={(g(ϕ′), ϕ′) | (g, ϕ′) ∈ P(f × Φ)(S)}

={(g(ϕ′), ϕ′) | (g, ϕ′) ∈ {(f(x), ϕ′) | (x, ϕ′) ∈ S}}

={(f(x)(ϕ′), ϕ′) | (x, ϕ′) ∈ S}

Definition 7.5.5 Consider the following mapping F : Kl(_Φ)→ Kl(_Φ) defi-
ned according to:

Objects F (X) = ((P(X×Φ))A,≤FX), for an object (X,≤X) in Poset, where
for all g, h : (P(X × Φ))A it holds that g ≤FX h iff g(a) ⊆ h(a) for all
a ∈ A.

Arrows For an arrow f : X → Y in Kl(_Φ), Ff : (P(X × Φ))A → (P(Y ×
Φ))A is a function Ff : (P(X × Φ))A → ((P(Y × Φ))A)Φ, where

Ff(p)(ϕ)(a) = {(f(x)(ϕ′), ϕ′) | (x, ϕ′) ∈ p(a)},

for all p ∈ (P(X × Φ))A, ϕ ∈ Φ and a ∈ A.

Now a CTS (X,Φ, A,→) over a finite set of states X (that is ordered
discretely), a finite set of actions A, and a partially ordered set of conditions Φ
is modelled by the following arrow α : X → FX in Kl(_Φ):

α(x)(ϕ)(a) = {(x′, ϕ′) | x a,ϕ′−−→ x′ ∧ ϕ′ ≤ ϕ} .

As can be observed above, Ff is just a pure arrow, i.e. independent of the
argument ϕ ∈ Φ, so the definition of α must account for the filtering for the



261

next states. The modelling can be understood as follows: given a state x, an
action a and a current version ϕ, we consider all possible upgrades ϕ′ ≤ ϕ

that could be performed and collect all states x′ that can be reached under
ϕ′. We then collect all those pairs of follow-up state and upgraded product.
Note that not doing an upgrade, but continuing with the current version ϕ

is permissible as well. From this intuition it can easily be seen that α is an
arrow in Kl(_Φ), because we assume that the state set X is ordered discretely,
rendering monotonicity in the first argument trivial, and α grows in its second
argument ϕ. Indeed it is immediate that whenever ϕ′ ≤ ϕ,

α(x)(ϕ′)(a) = {(x′, ϕ′′) | x a,ϕ′′−−→ x′ ∧ ϕ′′ ≤ ϕ′}

⊆{(x′, ϕ′′) | x a,ϕ′′−−→ x′ ∧ ϕ′′ ≤ ϕ} = α(x)(ϕ)(a)

We now prove the main result of this section; namely, that behavioural
equivalence coincides with conditional bisimulation.

Theorem 7.5.6 Let α : X → FX in Kl(_Φ) be a CTS where ≤X is equality.
Then, two states x, x′ ∈ X are conditionally bisimilar under ϕ ∈ Φ (x ∼ϕ y)
if and only if there exists a coalgebra homomorphism f : (X,α)→ (Y, β) (for
some β : Y → FY ) in Kl(_Φ) such that f(x)(ϕ) = f(x′)(ϕ).

Proof: ⇐ We define a family of relations Rϕ ⊆ X × X (for each ϕ ∈
Φ) as follows: xRϕ x

′ if and only if there exists a coalgebra homomorphism
f : (X,α)→ (Y, β) in Kl(_Φ) such that f(x)(ϕ) = f(x′)(ϕ). We first show that
each Rϕ satisfies the transfer property of a traditional bisimulation relation. Let
x1Rϕ x2 and x1

a,ϕ−−→ x′1. Then, by the construction of Rϕ we have some coalgebra
homomorphism f : (X,α)→ (Y, β) in Kl(_Φ) with f(x1)(ϕ) = f(x2)(ϕ). Thus,
Ff(α(x1)(ϕ))(ϕ) = β(f(x1)(ϕ))(ϕ) = β(f(x2)(ϕ))(ϕ) = Ff(α(x2)(ϕ))(ϕ).
Then

(x′1, ϕ) ∈ α(x1)(ϕ)(a) =⇒ (f(x′1)(ϕ), ϕ) ∈ Ff(α(x2)(ϕ))(ϕ)(a).

I.e., there is some (x′2, ϕ′) ∈ α(x2)(ϕ)(a) such that (f(x′2)(ϕ′), ϕ′) = (f(x′1)(ϕ), ϕ).
Therefore, ϕ = ϕ′ and f(x′1)(ϕ) = f(x′2)(ϕ). Hence, x′1Rϕ x

′
2.

Next, we need to show that, if ϕ2 ≤Φ ϕ1, then Rϕ1 ⊆ Rϕ2 . So let x1Rϕ1 x2

and ϕ2 ≤Φ ϕ1. Then, by the construction of Rϕ1 we have some coalgebra
homomorphism f : (X,α)→ (Y, β) in Kl(_Φ), such that f(x1)(ϕ1) = f(x2)(ϕ1).



262

Thus, for any a ∈ A, we have

{(f(x)(ϕ), ϕ) | ϕ ≤ ϕ1 ∧ x1
a,ϕ−−→ x} = {(f(x)(ϕ), ϕ) | ϕ ≤ ϕ1 ∧ x2

a,ϕ−−→ x}.

Note, that {(f(x)(ϕ), ϕ) | ϕ ≤ ϕ2 ∧ x1
a,ϕ−−→ x} = {(f(x)(ϕ), ϕ) | ϕ ≤

ϕ2 ∧ x2
a,ϕ−−→ x}, since ϕ2 ≤ ϕ1. Thus, (Ff ◦α)(x1)(ϕ2) = (Ff ◦α)(x2)(ϕ2), i.e.,

β(f(x1)(ϕ2)) = β(f(x2)(ϕ2)). Now, taking into consideration that every coal-
gebra is a coalgebra homomorphism itself and that compositions of coalgebra
homomorphisms are coalgebra homomorphisms, as well, β ◦ f is a coalgebra
homomorphism witnessing (x1, x2) ∈ Rϕ2 .
⇒ Let Rϕ (for ϕ ∈ Φ) be a family of largest bisimulation relations (which

exists, due to Lemma 6.3.5) on the given CTS such that Rϕ ⊆ Rϕ′ , whenever
ϕ′ ≤Φ ϕ. Since the largest bisimulation relation is an equivalence relation on
the set of states, we can define a function g : X × Φ → P(X) according to
g(x, ϕ) = {x′ | xRϕ x

′}. Moreover, we write [x]ϕ := (g(x, ϕ), ϕ) and define the
set Y = {[x]ϕ | x ∈ X,ϕ ∈ Φ}, ordered by3 ⊇ × ≤Φ. Now we can define a
coalgebra β : Y → FY according to

β([x]ϕ1)(ϕ2)(a) = {([y]ϕ, ϕ) | (y, ϕ) ∈ α(x′)(ϕ′)(a), ϕ′ ≤ ϕ1, ϕ
′ ≤ ϕ2, xRϕ′ x

′}

as well as a matching coalgebra homomorphism f : X → Y where

f(x)(ϕ) = [x]ϕ.

Now we need to show that β and f are arrows and that f is indeed a coalgebra
homomorphism from α to β.

To show that β is an arrow, we show that it is well-defined and monotone
in both arguments. We can observe that β is well-defined by showing that its
definition is independent of the chosen representative x, so let [x1]ϕ1 = [x2]ϕ1 , i.e.
x1Rϕ1 x2. Then, in the definition of β, it follows from ϕ′ ≤ ϕ1 that Rϕ′ ⊇ Rϕ1 ,
i.e. x1Rϕ′ x2, and, using transitivity, x1Rϕ′ x

′ ∧ x1Rϕ′ x2 ⇒ x2Rϕ′ x
′.

Now, to show that β is monotone in the first argument, observe that
[x]ϕ1 ≤ [x]ϕ′1 implies ϕ1 ≤ ϕ′1, and that xRϕ1 x, i.e. [x]ϕ1 = [x]ϕ1 . Thus, using
transitivity in the definition of β, we can observe that whenever ϕ′ ≤ ϕ1, then

3Since from ϕ′ ≤ ϕ it follows that g(x, ϕ′) ⊇ g(x, ϕ), it is sufficient to just check the
second component of the order.



263

also ϕ′ ≤ ϕ′1, proving that β([x]ϕ1)(ϕ2)(a) = β([x]ϕ1)(ϕ2)(a) ⊆ β([x]ϕ′1)(ϕ2)(a)
holds for all ϕ2 ∈ Φ.

Lastly, monotonicity of β in the second argument can be proven by observing
that there is only one place, where the definition of β depends on the second
argument, i.e. when checking that ϕ′ ≤ ϕ2. Now, if ϕ2 ≤ ϕ′2, by transitivity ϕ′ ≤
ϕ′2, as well, proving that for all [x]ϕ1 ∈ Y , β([x]ϕ1)(ϕ2)(a) ⊆ β([x]ϕ1)(ϕ′2)(a)
holds.

Monotonicity of f in the first argument is trivial, since X is discretely
ordered, so we only need to show monotonicity in the second argument, but
by definition of Y ’s order and conditional bisimilarity, whenever ϕ′ ≤ ϕ, then
f(x)(ϕ′) = [x]ϕ′(⊇ × ≤Φ)[x]ϕ = f(x)(ϕ).

So, it only remains to show that f is a coalgebra homomorphism. For this
purpose, let any x ∈ X, ϕ ∈ Φ, a ∈ A be given, then compute

Ff ◦ α(x)(ϕ)(a) = {(f(y)(ϕ′), ϕ′) | (y, ϕ′) ∈ α(x)(ϕ)(a)}

={([y]ϕ′ , ϕ′) | (y, ϕ′) ∈ α(x)(ϕ)(a)}

as well as:

β ◦ f(x)(ϕ)(a) = β(f(x)(ϕ))(ϕ)(a) = β([x]ϕ)(ϕ)(a)

={([y]ϕ, ϕ) | (y, ϕ) ∈ α(x′)(ϕ′)(a), ϕ′ ≤ ϕ, xRϕ′ x
′}

Since Rϕ′ is reflexive, it is clear that β ◦ f(x)(ϕ)(a) ⊇ Ff ◦ α(x)(ϕ)(a) holds,
so it remains to show that also β ◦ f(x)(ϕ)(a) ⊆ Ff ◦ α(x)(ϕ)(a) is true.

To show this, let (y, ϕ) ∈ α(x′)(ϕ′)(a), ϕ′ ≤ ϕ and xRϕ′ x
′ be given, then

we need to show that there exists also a (y′, ϕ) ∈ α(x)(ϕ)(a) such that y Rϕ y
′.

By definition of α we can see that (y, ϕ) ∈ α(x′)(ϕ′)(a) means that ϕ ≤ ϕ′.
Since xRϕ′ x

′, by definition of conditional bisimulation, there must exist a
(y′, ϕ) ∈ α(x)(ϕ′)(a) such that y′Rϕ y and due to monotonicity of α we can
finally conclude (y′, ϕ) ∈ α(x)(ϕ)(a), concluding the proof that f is a coalgebra
homomorphism from α to β.

�

So F indeed offers a way of modelling CTS in the presence of upgrades.
Note, however, that F -coalgebras exist that are not CTS themselves. As a
consequence the above result is limited to systems modelled as described before.



264

7.6 Computing Behavioural Equivalence

In this section, we concentrate on algorithms to obtain a minimal CTS from a
given CTS up to conditional bisimilarity. We will show that the final chain Algo-
rithm C (using pseudo-factorisation, cf. Algorithm 3.3.8 and Definition 2.4.28) is
applicable to the powerset functor P , as well as the functor F (Definition 7.5.5).

For our purpose, we need to show that Poset is a reflective subcategory of
Kl(_Φ), in order to construct a pseudo-factorisation. To this end, we first note
that an arrow f : (X,≤X)→ (Y,≤Y ) in Poset can be interpreted as a ‘pure’
arrow fΦ : (X,≤X)→ (Y,≤Y )Φ in Kl(_Φ), simply by letting fΦ(x)(ϕ) = f(x),
for all ϕ ∈ Φ. Clearly, the pure arrow fΦ is order-preserving just because f is.
Thus, Poset is a subcategory of Kl(_Φ).

Due to the Kleisli adjunction it is well-known that Poset is a coreflective
subcategory of Kl(_Φ). Here we show that it is reflective as well.

Theorem 7.6.1 The category Poset is a reflective subcategory of Kl(_Φ).

Proof: For an object (X,≤X) in Kl(_Φ), we define its Poset-reflection
ρX : X → (X ×Φ)Φ as ρX(x)(ϕ) = (x, ϕ). The set X ×Φ is ordered as follows:
(x, ϕ) ≤X×Φ (x′, ϕ′) ⇐⇒ x ≤X x′ ∧ ϕ ≤ ϕ′. Now for an arrow f : (X,≤X
) → (Y,≤Y ) in Kl(_Φ), we need to find its ρ-reflection f ′ : (X × Φ) → Y .
So let f ′(x, ϕ) = f(x)(ϕ), for any x ∈ X and ϕ ∈ Φ. To show that f ′ is
order-preserving, let x ≤X x′ and ϕ ≤Φ ϕ

′. Then, we find f(x)(ϕ) ≤Y f(x′)(ϕ)
and f(x′)(ϕ) ≤Y f(x′)(ϕ′) since f is an arrow in Kl(_Φ). Thus, f ′(x, ϕ) =
f(x)(ϕ) ≤Y f(x′)(ϕ′) = f ′(x′, ϕ′). Moreover, for any x, ϕ we have

f(x)(ϕ) = f ′(x, ϕ) = f ′(ρX(x)(ϕ)) = f ′Φ(ρX(x)(ϕ))(ϕ) = f ′Φ ◦ ρX(x)(ϕ).

Now assume an order-preserving function f ′′ : X×Φ→ Y such that f ′′Φ◦ρX = f .
Then, for any x, ϕ we find that f ′′(x, ϕ) = f(x)(ϕ) = f ′(x, ϕ). Thus, f ′ = f ′′.
�

Following [ABH+12], a reflective subcategory that has an (E ,M)-factorisation
structure gives rise to a pseudo-factorisation structure (Definition 2.4.28) in the
base category, which in turn can be used to compute behavioural equivalence,
provided the functor meets some conditions as outlined in Chapter 3.

Definition 7.6.2 We define a factorisation structure (Definition 2.4.26) for
Poset in the following way:



265

• An order-preserving function f : (X,≤X)→ (Y,≤Y ) is in E if and only
if f : X → Y is surjective in Set, and ≤Y is the smallest order satisfying
f(x1) ≤Y f(x2) whenever x1 ≤X x2. In other words, y ≤Y y′ (for
y, y′ ∈ Y ) if and only if there are x1, · · · , xn, x′1, · · · , x′n−1, such that
f(x1) = y, f(xn) = y′, f(xi) = f(x′i) and x′i ≤X xi+1 for all i ∈ [1, n].

• An order-preserving function f : (X,≤X)→ (Y,≤Y ) is inM if and only
if f : X → Y is injective in Set.

Lemma 7.6.3 The tuple (E ,M) from Definition 7.6.2 is a factorisation struc-
ture for Poset.

Proof: Showing that the classes E andM are closed under composition with
isomorphisms is standard. For instance, an isomorphism (order-preserving
bijection) composed with an order-preserving surjection (injection) is again an
order-preserving surjection (injection).

• An arrow f : (X,≤X)→ (Y,≤Y ) can be factorised into an arrow e : (X,≤X
) → (Im(f),≤Im(f)) and an arrow m : (Im(f),≤Im(f)) → (Y,≤Y ) just
like in Set. Here, ≤Im(f) is the smallest order which makes the func-
tion e an order-preserving one, i.e., y1 ≤Im(f) y2 if and only if the-
re are x1, · · · , xn, x′1, · · · , x′n−1, such that f(x1) = y1, f(xn) = y2, and
x′i ≤X xi+1, f(xi) = f(x′i), for all i ∈ [1, n].

The relation ≤Im(f) is reflexive, because e is surjective and ≤Im(f) is
transitive by construction. Lastly, antisymmetry of ≤Im(f) follows directly
from ≤Y .

• The unique diagonal property holds. Let e : (X,≤X) → (Y,≤Y ) ∈ E ,
m : (X ′,≤X′)→ (Y ′,≤Y ′) ∈M, f : (Y,≤Y )→ (Y ′,≤Y ′), and g : (X,≤X
) → (X ′,≤X′), such that f ◦ e = m ◦ g there exists a unique diagonal
arrow d : (Y,≤Y ) → (X ′,≤X′) such that d ◦ e = g and m ◦ d = f .
Since any such diagonal arrow would also be a diagonal arrow in Set,
uniqueness is clear, we only need to show the existence of the diagonal
arrow. Define a function d(y) = g(x) ⇐⇒ e(x) = y. Since e is surjective,
d is well-defined. Now, we show that d is order-preserving. Let a ≤ b,
for some a, b ∈ Y . Then there are x1, · · · , xn, x′1, · · · , x′n−1 such that
x′i ≤ xi+1, f(x1) = a, f(xn) = b, f(xi) = f(x′i). We know that, since g is



266

order-preserving, g(x′i) ≤ g(xi+1) and want to show that for all 1 ≤ i < n

we have g(xi) = g(x′i). Assume, on the contrary, that g(x′i) 6= g(xi)
for any i, then m ◦ g(xi) 6= m ◦ g(x′i), because m is injective. Then,
f ◦ e(xi) 6= f ◦ e(x′i), but this is a contradiction, because e(xi) = e(x′i).
So, we can conclude: d(a) = d(e(x1)) = g(x1) ≤ g(xn) = d(e(xn)) = d(b).

�

Now that we have seen that there is a factorisation structure in Poset and
that it can be lifted to Kl(_Φ), we want to make explicit what it means to
factorise in Kl(_Φ).

Theorem 7.6.4 Recall ρX from Theorem 7.6.1 and consider the following
data:

• An arrow f : X → Y given in Kl(_Φ) with the set Y0 = {f(x)(ϕ) | x ∈
X ∧ ϕ ∈ Φ}.

• The function e′ : X → Y0
Φ defined as e′(x)(ϕ) = f(x)(ϕ), for every

x ∈ X,ϕ ∈ Φ.

• The relation ≤Y Φ
0

is the smallest order such that e′ is order-preserving.

• The function m : Y0 → Y defined as m(y) = y, for every y ∈ Y0.

Then, mΦ ◦ e′ is a pseudo-factorisation of f .

Proof: Given an arrow f : (X,≤X) → (Y,≤Y ) in Kl(_Φ). Then, recall from
the proof of Theorem 7.6.1, we have ρX : (X,≤X) → (X × Φ,≤X×Φ)Φ and a
unique order-preserving function f ′ : X × Φ→ Y such that f = f ′Φ ◦ ρX . Now
factorising f ′ in Poset we get the decomposition m ◦ e with the functions
e : (X × Φ,≤X×Φ) → (Y0,≤Y0) and m : (Y0,≤Y0) → (Y,≤Y ) defined in the
obvious way. Note, that the order ≤Y0 is the smallest order which makes e
order-preserving. Then, interpreting these functions as pure arrows we get
e′ = eΦ ◦ ρ. Thus, mΦ ◦ e′ = f . �

Algorithm C, where the pseudo-factorisation structure above is used for
factorisation, cf. [ABH+12], is applicable, if the functor preserves the reflective
subcategory and the classM – it is obvious thatM maps to injective functions
via the concretisation functor. We will now go on to show that the algorithm



267

is applicable to both CTS modelling techniques presented, starting with the
variant without upgrades.

Lemma 7.6.5 The functor P (cf. Definition 7.4.1) preserves Poset andM.

Proof: To show that P preserves Poset, let f : (X,≤X)→ (Y,≤Y ) be an arrow
in Poset. Then, we need to show that P(fΦ) : P(X)→ P(Y ) is a pure arrow.
So let U ⊆ X and ϕ, ϕ′ ∈ Φ. Then P(fΦ)(U)(ϕ) = {fΦ(x)(ϕ) | x ∈ U} =
{fΦ(x)(ϕ′) | x ∈ U} = P(fΦ)(U)(ϕ′).

Lastly, to show that P preservesM, let m : X → Y be an order-preserving
injection. From above, we find P(mΦ) is an arrow in Poset. Let P(mΦ)(U)(ϕ) =
P(mΦ)(U ′)(ϕ). Then, we find m(U) = m(U ′) and injectivity of m gives U = U ′.
Thus, P(mΦ) is also injective. �

The next two lemmas show that Algorithm C (Algorithm 3.3.8) is applicable
to compute the greatest conditional bisimilarity for the systems as F -coalgebras.

Lemma 7.6.6 The functor F (cf. Definition 7.5.5) preserves Poset andM.

Proof:
Let f : (X,≤X) → (X,≤X) be an arrow in Poset. Then we need to show

that F (fΦ) : F (X)→ F (Y ) is a pure arrow. So let U ⊆ X × Φ and ϕ, ϕ′ ∈ Φ,
then

F (fΦ)(U)(ϕ) = {(fΦ(x)(ϕ̃), ϕ̃) | (x, ϕ̃) ∈ U} = F (fΦ)(U)(ϕ′).

To show that F preservesM, as well, let m be an order-preserving injection.
As shown above, FmΦ is an arrow in Poset. To show that FmΦ is injective,
let p, q ∈ (P(X × Φ))A be given. If FmΦ(p) = FmΦ(q), then for all ϕ ∈ Φ and
a ∈ A, FmΦ(p)(ϕ)(a) = FmΦ(q)(ϕ)(a). Thus, we compute

FmΦ(p)(ϕ)(a) ={(mΦ(x)(ϕ′), ϕ′) | (x, ϕ′) ∈ p(a)}

={(mΦ(x)(ϕ′), ϕ′) | (x, ϕ′) ∈ q(a)} = FmΦ(q)(ϕ)(a).

I.e., for all (x, ϕ′) ∈ p(a), there must exist a (y, ϕ′) ∈ q(a) such thatmΦ(x, ϕ′) =
mΦ(y, ϕ′). Since m is injective, it follows (x, ϕ′) = (y, ϕ′) and therefore p(a) ⊆
q(a), and, analogously q(a) ⊆ p(a). Thus, q(a) = p(a) for all a, i.e. q = p.
Hence, FmΦ is indeed injective. �



268

Lemma 7.6.7 The concretisation functor U for Kl(_Φ) mapsM to monos.

Proof: Given an arrow m : Y → Z ∈M in Kl(_Φ) – note that m is then an
injective function – and two functions e, e′ ∈ X → Y Φ. Then

Um ◦ e = Um ◦ e′ ⇔ ζZm
Φ ◦ e = ζZm

Φ ◦ e′

⇔ ∀x ∈ X,ϕ ∈ Φ : (ζZmΦ ◦ e)(x)(ϕ) = (ζZmΦ ◦ e′)(x)(ϕ)

⇔ ∀x ∈ X,ϕ ∈ Φ : m(e(x)(ϕ))(ϕ) = m(e(x)(ϕ))(ϕ)

⇔ ∀x ∈ X,ϕ ∈ Φ : e(x)(ϕ) = e′(x)(ϕ)⇔ e = e′.

�

Thus, we can conclude that the algorithm from [ABH+12] is applicable,
using the pseudo-factorisation structure we have derived. We now discuss a
small example for the application of the minimisation algorithm from [ABH+12]
using this pseudo-factorisation structure on Kl(_Φ) for the functor F .

Example 7.6.8 Let X = {x, y, z, x′, y′, z′}, |A| = 1 and Φ = {ϕ′, ϕ}, with
ϕ′ ≤Φ ϕ. Let X = {x, y, z, x′, y′, z′}, |A| = 1 and Φ = {ϕ′, ϕ}, with ϕ′ ≤Φ ϕ.
We define the CTS α coalgebraically as follows:

α(x)(ϕ) = {(y, ϕ), (z, ϕ), (y, ϕ′), (z, ϕ′)} α(x)(ϕ′) = {(y, ϕ′), (z, ϕ′)}

α(y)(ϕ̄) = {(x, ϕ′)} for ϕ̄ ∈ {ϕ, ϕ′} α(y′)(ϕ̄) = {(x′, ϕ′)} for ϕ̄ ∈ {ϕ, ϕ′}

α(x′)(ϕ) = {(z′, ϕ), (y′, ϕ′), (z′, ϕ′)} α(x′)(ϕ′) = {(y′, ϕ′), (z′, ϕ′)}

α(z̄)(ϕ̄) = ∅ for ϕ̄ ∈ {ϕ, ϕ′}, z̄ ∈ {z, z′}.

Graphically, the CTS can be depicted as follows:

α:
x

z

y

x′

z′

y′
ϕ, ϕ′

ϕ, ϕ′

ϕ′

ϕ′

ϕ, ϕ′

ϕ′

To compute the behavioural equivalence, we start by taking the unique mor-
phism d0 : X → 1 into the final object of Kl(_Φ) that is 1 = {•}. At the ith

iteration, we obtain ei via the pseudo-factorisation of di = mi ◦ ei and then we
build di+1 = Fei ◦ α. These iterations are shown in the following tables. Note



269

that each table represents both, di and ei, because the pseudo-factorisation just
yields simple injections as monomorphisms, so di and ei in each step only differ
by their codomain.

d0, e0 x y z x′ y′ z′

ϕ • • • • • •
ϕ′ • • • • • •

d1, e1 x y z x′ y′ z′

ϕ {(•, ϕ), (•, ϕ′)} {(•, ϕ′)} ∅ {(•, ϕ), (•, ϕ′)} {(•, ϕ′)} ∅
ϕ′ {(•, ϕ′)} {(•, ϕ′)} ∅ {(•, ϕ′)} {(•, ϕ′)} ∅

d2, e2 x y z x′ y′ z′

ϕ

ϕ′

d3, e3 x y z x′ y′ z′

ϕ

ϕ′

In the tables for d2/e2 and d3/e3 we have used colours to code the entries,
because the full notation for the entries would be too large to fit in the tables.

The codomains C0, C1, C2, and C3 of e0, e1, e2, and e3 (resp.) are given below
(note that the colours in C2 and C3 indicate the colours in the tables above):

C0 ={•}

C1 ={∅, {(•, ϕ′)}, {(•, ϕ), (•, ϕ′)}}

C2 ={{(∅, ϕ), (∅, ϕ′), ({(•, ϕ′)}, ϕ′)}, {{(∅, ϕ′), ({(•, ϕ′)}, ϕ′)}}, {({(•, ϕ′)}, ϕ′)}, ∅,

{({(•, ϕ′)}, ϕ), ({(•, ϕ′)}, ϕ′), (∅, ϕ), (∅, ϕ′)}}

C3 ={{{(∅, ϕ), ({({(•, ϕ′)}, ϕ′)}, ϕ′), (∅, ϕ′)}}, {{(∅, ϕ′), ({({(•, ϕ′)}, ϕ′)}, ϕ′)}},

{({({(•, ϕ′)}, ϕ′), (∅, ϕ′)}, ϕ′)}, ∅

{({({(•, ϕ′)}, ϕ′)}, ϕ), ({({(•, ϕ′)}, ϕ′)}, ϕ′), (∅, ϕ), (∅, ϕ′)}}

each ordered by inclusion. By contrast, the codomain C ′i of di is defined as
C ′0 = C0, C ′i = P(Ci × Φ) for i = 1, 2, 3.

By comparing the columns for each state we can determine which states are
bisimilar. The partitions are divided as follows (where Xi denote the entries at
the ith iteration):

X0 = {{x, y, z,x′, y′, z′}} X1 = {{x, x′}, {y, y′}, {z, z′}}

X2 = X3 = {{x}, {x′}, {y, y′}, {z, z′}}.



270

To obtain the greatest conditional bisimulation from e2 (or e3), we need to
compare individual entries of each table. We can identify the greatest bisimulation
as {Rϕ, Rϕ′}, where (written as equivalence classes)

Rϕ = {{z, z′}, {x}, {x′}, {y, y′}} Rϕ′ = {{x, x′}, {y, y′}, {z, z′}}

Additionally, it is possible to derive the minimal coalgebra that was identified
using the minimisation algorithm, which is of the form (E2,m3 ◦ ι) where
ι : E2 → F (E2) is the arrow witnessing termination of the algorithm. The
minimisation has the following form:

{({(•, ϕ′)}, ϕ), ({(•, ϕ′)}, ϕ′), (∅, ϕ), (∅, ϕ′)}

{({(•, ϕ′)}, ϕ′)} {(∅, ϕ), (∅, ϕ′), ({(•, ϕ′)}, ϕ′)}

{{(∅, ϕ′), ({(•, ϕ′)}, ϕ′)}}

∅

ϕ, ϕ′

ϕ, ϕ′

ϕ′

ϕ, ϕ′

ϕ′

ϕ′

ϕ′

Note that, if there was no order on Φ, x and x′ would be found equivalent
under ϕ, because without upgrading, x and x′ behave the same for ϕ: Both can
do exactly one step, reaching either of y, z or z′, respectively, but in none of
these states additional steps are possible in the product ϕ.

One can observe that both x and x′ get mapped under ϕ′ to the red state
(second from bottom of the diagram), but under ϕ, the state x gets mapped to
the blue state (top state in the diagram), whereas x′ gets mapped to the black
state (right-most state in the diagram).

Since we have seen that the Kleisli categories for the lattice monad and the
reader monad, Kl(T ) and Kl(_Φ), are isomorphic, we want to characterise
factorisation in Kl(T ). We can factorise an arrow by converting it to a Kl(_Φ)-
arrow and factorising that arrow, then translating back to Kl(T ). Since we have
already seen that factorising in Kl(_Φ) basically means to exclude all states
from the codomain of the arrow that are not in the image of any pair of state



271

and alphabet symbol, this boils down to finding out when a state in a Kl(T )-
arrow will be identified as redundant in Kl(_Φ). So let f : (X,≤X)→ (Y,≤Y )
be a Kl(T )-arrow, then f(x) is a function b : (Y → L)∗. An element y ∈ Y will
occur in the image of f(x) in case there is an irreducible element ϕ ∈ J (L) = Φ
such that y is the smallest element of Y such that b(y) ≥ ϕ. This is true if⊔{b(y′) | y′ < y} 6= b(y). So by factorising an arrow in Kl(T ) we eliminate all
states such that ⊔{f(x)(y′) | y′ < y} = b(y) for all x ∈ X.

Comparison of the Final Chain Algorithm and the Matrix
Multiplication Algorithm

In Chapter 6, where we did not consider CTS and LaTS from a coalgebraic per-
spective, we also presented a fixed point algorithm to compute the greatest latti-
ce bisimulation for an LaTS. The procedure works as follows (Algorithm 6.4.3):

Algorithm 7.6.9 Let (X,A,L, f) be a finite LaTSs over the finite distributive
lattice L = O(Φ,≤Φ), i.e., the sets X, and A are finite. We define a series of
lattice-valued relations Ri : X ×X → L.

Fix R0 as R0(x, y) = 1 for all x, y ∈ X. Then, compute Ri+1 = F1(Ri) u
F2(Ri) for all i ∈ N0 until Rn v Rn+1 for an n ∈ N0. F1 and F2 are defined
according to:

F1(R)(x, y) =
l

a∈A,x′∈X

(
f(x, a, x′)→

( ⊔
y′∈X

(f(y, a, y′) uR(x′, y′))
))
,

F2(R)(x, y) =
l

a∈A,y′∈X

(
f(y, a, y′)→

( ⊔
x′∈X

(f(x, a, x′) uR(x′, y′))
))
.

Lastly, return Rn as the greatest bisimulation.

It can be shown that for two states x, y x ∼ϕ y iff ϕ ∈ Rn(x, y).
As explained before, CTS and LaTS are dual models and can be translated

directly into one another. Using the functor F combined with the lattice monad,
we have shown how to define LaTS coalgebraically. The representation of an
LaTS needs to be derived from the definition of CTS, passed through the
isomorphism between the Kleisli categories for the reader monad and the lattice



272

monad: For any state x, action a and set of pairs Y ⊆ (X ×Φ)A we obtain the
coalgebra

f(x)(Y )(a) = {ψ ∈ Φ | ∀ϕ′ ≤ ψ, x′ ∈ X : x a,ϕ′−−→ x′ ⇒ (x′, ϕ′) ⊆ Y (a)}.

However, the final chain algorithm does not exactly replicate the fixed-
point algorithm described above. Instead of X ×X matrices over L, the final
chain algorithm yields – before factorisation – X × F i1 matrices over L, when
translated via α−1. Factorisation may shrink the second dimension, but it usually
is not equal to X. We will now show that there is still a strong correspondence
between the final chain algorithm and the fixed point computation: Both
algorithms separate pairs of states at the same point in the computation and
both algorithms terminate at the same time.

Lemma 7.6.10 Let a CTS α : X → FX over a finite set of states X and a
finite ordered set of conditions Φ be given. Moreover, consider the dual LaTS
f : X ×X → O(Φ). Then Algorithm 7.6.9 and Algorithm 3.3.8 terminate after
the same number of iterations.

Proof: Due to the special nature of the factorisation in Algorithm 3.3.8, we
will always argue using dk instead of ek. We will first show that Algorithm 3.3.8
separates two states in iteration k if and only if Algorithm 7.6.9 does, as well.
For that purpose we define the matrices

Mk(x, y) = {ϕ | dk(x)(ϕ) = dk(y)(ϕ)}.

Note, that per definition of F , this set is always downwards-closed for k ≥ 1,
and due to the d0 codomain being the final object, it is also downwards-closed
for k = 0. We can now prove that Rk = Mk for all k, proving the first claim,
that two states can only get separated in both algorithms at the same time.
We prove this via induction.

• Let k = 0. Per definition, R0(x, y) = Φ for all x, y ∈ X and due to
d0 being the unique arrow into the final object, is must also hold that
M0(x, y) = Φ for all x, y ∈ X.

• Assume we have shown the claim for all k′ ≤ k.



273

• We will now show that the claim also holds for k + 1. For this we show
mutual inclusion.

– Let ϕ ∈ Rk+1(x, y) for any ϕ ∈ Φ, x, y ∈ X. Then Rk(x, y) 3 ϕ and
– by definition of F1 – for all a ∈ A, ϕ′ ≤ ϕ, x′ ∈ α(x)(a)(ϕ′) exists
y′ ∈ α(y)(a)(ϕ′) such that R(x′, y′) 3 ϕ′ and – by definition of F2

– vice-versa. The induction allows us to find Mk(x, y) 3 ϕ and for
all a ∈ A, ϕ′ ≤ ϕ, x′ ∈ α(x)(a)(ϕ′) there exists a y′ ∈ α(y)(a)(ϕ′)
such that dk(x′)(ϕ′) = dk(y′)(ϕ′) (and vice-versa). Therefore, we can
compute:

dk+1(x)(ϕ)(a) = Fdk ◦ α(x)(ϕ)(a)

={(dk(x′)(ϕ′), ϕ′) | ϕ′ ≤ ϕ, x′ ∈ α(x)(ϕ′)(a)}

={(dk(y′)(ϕ′), ϕ′) | ϕ′ ≤ ϕ, y′ ∈ α(y)(ϕ′)(a)}

=Fdk ◦ α(y)(ϕ)(a) = dk+1(y)(ϕ)(a).

Thus, Mk+1(x, y) 3 ϕ.

– Let Mk+1(x, y) 3 ϕ, i.e. dk+1(x)(ϕ′)(a) = dk+1(y)(ϕ′)(a) for all
a ∈ A, ϕ′ ≤ ϕ. Thus, by definition of dk+1,

{(dk(x′)(ϕ′), ϕ′) | ϕ′ ≤ ϕ, x′ ∈ α(x)(ϕ′)(a)}

={(dk(y′)(ϕ′), ϕ′) | ϕ′ ≤ ϕ, y′ ∈ α(y)(ϕ′)(a)}.

Therefore, for all ϕ′ ≤ ϕ, a ∈ A, x′ ∈ α(x)(ϕ′)(a), there must
exist a y′ ∈ α(y)(ϕ′)(a) such that dk(x′)(ϕ′) = dk(y′)(ϕ′) and vice-
versa. Using the induction hypothesis we can therefore find, that
ϕ′ ≤ ϕ, a ∈ A, x′ ∈ α(x)(ϕ′)(a), there must exist a y′ ∈ α(y)(ϕ′)(a)
such that ϕ′ ∈ Rk(x′, y′), proving ϕ ∈ F1(Rk)(x, y) and vice-versa,
proving ϕ ∈ F2(Rk)(x, y). Thus, ϕ ∈ Rk+1(x, y).

So we have seen that both algorithms separate pairs of states in the same
iteration. However, it still has to be shown that when no pairs of states are
separated anymore, Algorithm 7.6.9 terminates. Per definition, Algorithm 3.3.8
terminates at that point, as well, so Algorithm 3.3.8 can mimic Algorithm 7.6.9.
So, let dn be such that Mn−1 = Mn, and thus Rn−1 = Rn, i.e. Algorithm 7.6.9
has terminated. Further, let x, y be given, such that dn(x)(ϕ) ≤ dn(y)(ϕ), i.e.



274

for all a ∈ A, dn(x)(ϕ)(a) ⊆ dn(y)(ϕ)(a). Then

dn+1(x)(ϕ)(a) = Fdn◦α(x)(ϕ)(a) = {(dn(x′)(ϕ′), ϕ′) | (x′, ϕ′) ∈ α(x)(ϕ)∧ϕ′ ≤ ϕ}

and analogously

dn+1(y)(ϕ)(a) = {(dn(y′)(ϕ′), ϕ′) | (y′, ϕ′) ∈ α(y)(ϕ) ∧ ϕ′ ≤ ϕ}.

We know that dn(x)(ϕ)(a) ⊆ dn(y)(ϕ)(a), therefore, for (x′, ϕ′) ∈ α(x)(ϕ) there
must exist a (y′, ϕ′) ∈ α(y)(ϕ) such that dn−1(x′)(ϕ′) = dn−1(y′)(ϕ′). Since
Mn−1 = Mn, then it must also hold that dn(x′)(ϕ′) = dn(y′)(ϕ′). Thus we can
conclude dn+1(y)(ϕ)(a) ⊇ dn+1(x)(ϕ)(a). Thus, Algorithm 3.3.8 terminates in
step n as well. �

7.7 Conclusion, RelatedWork and FutureWork

We have seen that the Kleisli categories for the lattice monad and the reader
monad are equivalent, providing an analogue for the Birkhoff duality between
lattices and partially ordered sets. This duality also reflects the duality between
conditional transition systems (CTS) and lattice transition systems (LaTS).
We have investigated two different functors, P and F , which can be used to
model CTS without upgrades and general CTS, respectively, in such a way that
behavioural equivalence is conditional bisimulation. The finite powerset functor
P does not lift in case the products are not discretely ordered, however, it is not
surprising that this functor cannot be used to model CTS with upgrades. When
considering upgrades, the individual products cannot be considered purely a
side effect and can instead be observed, which leads to the requirement of
making the products explicit in a way.

The Kleisli category for the reader monad has a pseudo-factorisation structure
that makes it possible to use Algorithm C (Algorithm 3.3.8) to compute the
greatest conditional bisimulation using a final chain-based algorithm for the
functors P and F .

Our work obviously stands in the tradition of the work in [ABH+12] and
[KK14]. In a broader sense, the modelling technique of using Kleisli categories
to obtain the ’right’ notion of behavioural equivalence goes back to previous
work in [HJS07, PT99], where non-deterministic branching of NFA was masked



275

by the use of a Kleisli category (over Set in this case) to obtain language
equivalence as behavioural equivalence rather than bisimulation.

Modelling new types of systems and behaviours coalgebraically is an ongoing
field of research, as evident by recent work for instance by Bonchi et al. on
decorated traces [BBC+16], Hermanns et al. on probabilistic bisimulation
[HKK14] or Latella et al. on labelled state-to-function transition systems
[LMdV15].

We are currently working towards obtaining some of the more technical results
in this chapter through universal constructions, instead of direct definitions to
obtain more concise proofs. Additionally, we are interested in extending our
duality result for the lattice and the reader monad appropriately. In particular,
we are interested in extending the Birkhoff duality to capture precisely those –
not necessarily finite – distributive lattices that are isomorphic to the downward
closed sets of irreducible elements. It is know that this does not hold in general
for all distributive lattices, though a more involved duality can still be found
in [DP02] that covers all distributive lattices.



276



Chapter 8

Implementation, Future Work
and Conclusion

8.1 PAWS: A Tool for the Analysis of Weigh-
ted Systems

As noted in Chapter 1, as well as the main chapters, throughout the thesis,
all algorithms that were developed have also been implemented in C#. These
implementations formed the basis for the tool Paws, which has been developed
together with my colleague Christina Mika.

A key feature of Paws is its extensibility. The algorithms are parametrised
over the semiring and it is therefore possible to use the algorithms Paws
offers, not only for the semirings that come pre-implemented, but also for
newly generated semirings. For that purpose, Paws offers ways of adding new
semirings and executing algorithms for these semirings. All algorithms are
implemented generically and can be used for various semirings or l-monoids,
provided all necessary operations such as addition, multiplication, and solving
linear equations are specified. Therefore, Paws is equipped with a semiring
generator that allows to generate new semirings that are not pre-implemented
and to define weighted automata or conditional transition systems over these.
Specifically, we have built several layers of automatisation, so that whenever
one, e.g., defines a complete distributive lattice, it suffices to give a partial order,
from which the lattice of downward-closed sets is generated [DP02] and all

277



278

operations are provided automatically. Building semirings from other semirings
using cross products is almost completely automatised and modulo rings are
automatised using Hensel liftings [DM09]. In addition, it is possible to add
arbitrary semirings by providing code for the operations mentioned before. The
semiring generator, as well as the implementation of the Hensel lifting is the
main content of Christina Mika’s Master’s thesis [Mik15].

The problems Paws solves and the corresponding algorithms and semirings
are displayed in the following table:

Problem Algorithm Semiring Model
Language equivalence (all pairs) Language Equ.(Complete) any semiring WA

Language equivalence (initial vectors) Language Equ.(Up-To) l-monoids, lattices WA
Universality Problem Universality tropical semiring WA

Conditional bisimilarity CTS Bisimilarity finite lattice CTS

Where Language Equ.(Complete) is an implementation of Algorithm B (Al-
gorithm 3.3.6, Algorithm 4.3.1), Language Equ.(Up-To) is an implementation
of HKC (Algorithm 5.3.3), Universality is an implementation of HKPA (Algo-
rithm 5.3.14) and CTS Bisimilarity is the matrix multiplication algorithm for
CTS (Algorithm 6.4.3).

Paws offers two components:

• The semiring generator to build and provide the required semirings
over which automata can be defined. This generator is used to generate
semirings that cannot be obtained in a fully automated way and supports
some automatic generations.

• The analysis tool that allows the user to choose a previously generated
semiring, one of the semirings that come built-in with the Paws or to
build a finite lattice by inputting the dual partial order and then to define
automata in a matrix representation over those semirings. Matrices are
then interpreted as weighted automata or conditional transition systems
(CTS) and can be used to compute language equivalence for weighted
automata with two different approaches, decide the threshold problem
for weighted automata over the tropical semiring of natural numbers or
to compute the greatest bisimilarity of a CTS.



279

The analysis component is designed to offer generic algorithms applicable to
numerous predefined or user-defined semirings. However, some of the algorithms
can only be used with specific (types) of semirings. The most general algorithm is
the language equivalence check, for which all semirings are eligible. Conditional
transition systems are only defined over lattices, therefore, the bisimulation
check is limited to lattice structures. However, the user still has the choice
between two different ways of dealing with lattices: representing elements of the
lattice as downward-closed sets of irreducibles via the Birkhoff duality [DP02],
applicable to all finite distributive lattices, or representing them using binary
decision diagrams (BDDs). The BDD variant is more restrictive and mainly
designed for the application to CTS. Here, the irreducibles are required to be
full conjunctions of features from a base set of features, ordered by the presence
of distinct upgrade features. Lastly, the threshold check can only be performed
over a single semiring, the tropical semiring over natural numbers.

The general workflow of the analysis tool is as follows:

. Choose a semiring

. Generate a matrix over this semiring, representing a weighted automaton
or a conditional transition system



280

Alternatively: Choose the matrix from a list of matrices that have been
generated previously

. Start the algorithm and provide – if necessary – additional input

Additional input comes in two forms: starting vectors and the threshold to be
checked against in case of the threshold algorithm. Depending on the semiring
of choice, questions regarding language equivalence might not be decidable,
leading to non-termination of the corresponding procedure in Paws. In order to
deal with this problem and to allow abortion of an overlong computation, the
actual computation is delegated to a separate thread that can be aborted by
clicking a red button labelled “Abort” at any time. In that case all intermediate
results are discarded.

Note, that only the two language equivalence-based algorithms can run
into non-termination issues. For the CTS bisimulation check, as well as the
threshold problem on the tropical semiring of natural numbers, termination is
always guaranteed. However, the runtime of CTS bisimulation check can be
doubly exponential in the number of features under consideration – because
the lattice is the set of all possible configurations, which in turn are all possible
conjunctions over the features. Using the BDD-based implementation of lattices
– which is particularly suited to the needs of CTS modelling – this explosion is
mitigated in many cases, but it can not be ruled out completely. On the other
hand, the BDD-based modelling only allows for special lattices to be modelled,
i.e. those that arise as the lattices constructed from a set of features and upgrade
features, whereas the variant called FiniteLattice allows for arbitrary (finite,
distributive) lattices to be represented. In this case, lattices are represented
via the partial order of irreducible elements, using Birkhoff’s representation
theorem [DP02].

In [KKM17] we have also given an overview over runtime results for the
various algorithms that are implemented in Paws. The most interesting result
is, that using HKC for all pairs of states in a randomly generated automaton, one
after another, can be expected to perform better than computing Algorithm B
once, when considering the lattice of all integers with the standard order on
integers.



281

8.2 Future Work

For each individual chapter, we have already detailed related work and future
work. Thus, we will only note one more point of future research that is outside
each individual topic. We have seen that weighted systems can be used to
analyse quantitative aspects of system models. This can be used to express the
likelihood or cost associated with a transition. In many cases, a system model
is required to take these aspects into account, rather than just the labels of
actions that can be performed.

Additionally, conditional transition systems offer means to model software
product lines, where not a single piece of software is modelled, but a family,
instead, that has a common base structure but deviating concrete feature sets.
Using partial orders on the products, we can also capture a notion of upgrading
between different products.

A natural question that arises here is, why would one only be interested in
modelling a single system that takes e.g. performance into account? Or alterna-
tively: Why would one be content with answering qualitative questions where
software product lines are concerned? It is therefore a natural question whether
there are means to combine the techniques developed for weighted automata and
conditional transition systems, to answer questions about conditional weighted
automata, i.e. families of weighted automata with a common base structure.
Considering weighted automata are usually analysed for language equivalence
rather than bisimulation, consequently, the problem we would like to consider
is language equivalence in the following sense: Identify those products under
which a given pair of states is language equivalent.

A focus on specific structures such as fields, where language equivalence is
decidable and reasonably efficiently so, seems prudent, but, since the probabili-
stic case can be embedded into a field, one major field of interest in weighted
automata can be covered this way. One general idea to approach this problem
is to generalise the formal power series approach for weighted automata to take
products into account. So one could write the weights of a weighted automaton
as formal sums over the products and compute e.g. (a variant of) the algorithm
up to congruence HKC. In each step of HKC one could prune the intermediate
results by taking the upgrading structure into account: If for a condition ϕ a



282

word separating the initial vectors is found, one can conclude that the pair of
vectors is also not language equivalent for all systems that can upgrade to ϕ.
However, open questions in this regard include:

• Is a monotonicity requirement sensible as for CTS?

• Can techniques be developed that can yield a significant gain in perfor-
mance by exploiting common structures among different products? This
question is, of course, also tied to the matter of monotonicity requirements.

While this thesis is squarely focussed on behavioural equivalences, a natural
extension of this is to discuss how similar pairs of states in a given state-based
system are. Some coalgebraic groundwork for this has already been done by
Henning Kerstan in his doctoral thesis [Ker16], where lifting on metrics was
discussed, which could prove in particular fruitful for weighted automata. For
CTS, in contrast, previous work, e.g. by Fahrenberg et al. [AFL15], on software
product lines suggests, that contrasting the conditions under which two states
are equivalent is a relevant metric for comparing states.

8.3 Conclusion

The overarching theme of this thesis was to extend known techniques for
traditional state-based systems to ones that are enriched with weights or
conditions. For this purpose, two main approaches were taken. On the one
hand, coalgebraic techniques were adapted and refined, in order to identify
commonalities between different systems and different notions of behaviour. On
the other hand, we worked on improving our algorithmic results by employing
various optimisations. The two approaches complement each other nicely. A
coalgebraic analysis of behaviour allows to identify common structures in various
kinds of system models and to develop core algorithms, that can be instantiated
to many suitable classes of systems. A purely coalgebraic view abstracts from
the specifics of a given class of systems though, which is handy when one is
interested in core concepts, but may not be ideal when it comes to efficient
decision procedures. Therefore, a more concrete perspective on specific system
types is required to obtain well-performing algorithms for complex systems by



283

exploiting e.g. up-to techniques. Coalgebraic reasoning can still help to establish
the ideas that form the basis for more specialised algorithmic approaches.

In consequence, on the coalgebraic side, we have developed a more generally
applicable final chain algorithm – Algorithm A in Chapter 3 – that can for
instance be used for weighted automata, conditional transition systems or
HD-automata, but of course can also be applied to traditional systems such
as (non-)deterministic automata or labelled transition systems. A collection
of generic optimisation strategies for this approach have been proposed and
evaluated. Notably, we have shown that we can rediscover techniques developed
for various specific kinds of weighted automata, be it Schützenberger’s algorithm
for weighted automata over a field, or conjugacy-based techniques (Chapter 4).
Using a category that is strongly related to a Kleisli category to hide side
effects, we managed to model weighted automata coalgebraically in such a way,
that behavioural equivalence coincides with language equivalence, rather than
a notion of bisimulation. For conditional transition systems (Chapter 7), we
could capture the duality that lies at the core of the systems, in our coalgebraic
model and retrieve an algorithm that is similar, yet not identical to the concrete
approach we have developed. The proposed model for CTS is interesting in
the sense that the conditions play a dual role of being involved in a side effect,
hidden inside the Kleisli monad, and observable behaviour, as well. This stems
from the fact that updating must be regarded as an observable action.

Beyond the coalgebraic view, we have developed up-to techniques for weighted
automata that are designed in a modular way (Chapter 5), so that a procedure
to decide congruence closure may be plugged in to the base algorithms to
obtain an optimised algorithm to decide language equivalence for a new class
of weighted automata. We specifically focussed on l-monoids, which are lattices
with an additional monoid structure that distributes over suprema, to work out
the algorithm in full for a broad class of semirings. Consequently, a concrete
rewriting procedure for l-monoids has been developed and we demonstrated
a potential exponential gain when compared to known techniques in various
parameters. CTS, on the other hand, have been extended to take a notion of
upgrades into account (Chapter 6). A fixpoint algorithm to decide (conditional)
bisimulation, that is very reminiscent of the case of labelled transition systems
has been developed and new BDD-based techniques for (special kinds of) lattices



284

rather than Boolean algebras have been proposed and shown to allow for an
exponential speed-up when compared to a representation based on Birkhoff’s
duality.



Anhang A

Additional Proofs (Chapter 3)

The appendix consists of additional proofs that were omited in the main text
for one or more of the following reasons:

• The proof is rather technical and the technicalities involved do not
contribute to the understanding of the main content of the respective
chapter.

• The result is well-known, but we were not aware of a publication, where
a corresponding proof can be found and referred to. For the sake of
completion, the proof is given in the appendix.

• The result can be proven using previous work, but the previous result
cannot be stated using the mathematical machinary of this thesis.

We start by showing that the semiring monad (Definition 3.4.11) is a monad.
As stated in the main text, when the monad was defined, this is a standard
result.

Lemma A.1 (S, η, µ), defined in Definition 3.4.11, is a monad.

Proof:

• S preserves identities: Let id : X → X be the identity function on X,
a ∈ SX and y ∈ X, then

Sid(a)(y) =
∑
{a(x) | x ∈ X, id(x) = y} =

∑
{a(y)} = a(y)

285



286

• S respects concatenation: Let f : Y → Z, g : X → Y , a ∈ SX and z ∈ Z,
then

S(f ◦ g) =
∑
{a(x) | x ∈ X, f(g(x)) = z}

Sf ◦ Sg(a)(z) =
∑
{Sg(a)(y) | y ∈ Y, f(y) = z}

=
∑
{
∑
{a(x) | x ∈ X, g(x) = y} | y ∈ Y, f(y) = z}

=
∑
{s(x) | x ∈ X, ∃y ∈ Y, f(y) = z ∧ g(x) = y}

We will conclude by showing that x ∈ {x | x ∈ X, f(g(x)) = z} ⇔ x ∈
{x | x ∈ X, ∃y ∈ Y, f(y) = z ∧ g(x) = y}:

If x ∈ {x | x ∈ X, f(g(x)) = z}, i.e. f(g(x)) = z, let y = g(x), then
f(y) = z, i.e. x ∈ {x | x ∈ X, ∃y ∈ Y, f(y) = z ∧ g(x) = y}.

If x ∈ {x | x ∈ X, ∃y ∈ Y, f(y) = z ∧ g(x) = y} then there exists an
x ∈ X and a y ∈ Y , such that g(x) = y and f(y) = z, i.e. f(g(x)) = z,
therefore x ∈ {x | x ∈ X, f(g(x)) = z}.

• η is a natural transformation: Let f : X → Y , then

(ηY ◦ f)(x)(y) = ηY (f(x))(y) =


1 if f(x) = y

0 otherwise

Sf ◦ η(x)(y) =
∑
{ηX(x)(x′) | x′ ∈ X, f(x′) = y}

=
∑
{ηX(x)(x) | f(x) = y} =


1 if f(x) = y

0 otherwise

• µ is a natural transformation: Let m ∈ SSX , f : X → Y and y ∈ Y be
given, then

µY ◦ (SSf(m))(y) =
∑
{S(Sf(m))(g) · g(y) | g ∈ SY }

=
∑
{
∑
{m(h) | h ∈ SX , Sf(h) = g} · g(y) | g ∈ SY }

=
∑
{m(h) · Sf(h)(y) | h ∈ SX}

=
∑
{m(h) ·

∑
{h(x) | x ∈ X, f(x) = y} | h ∈ SX}

=
∑
{m(h) · h(x) | x ∈ X, f(x) = y, h ∈ SX}

and
Sf(µX(m))(y) =

∑
{µX(m)(x) | x ∈ X, f(x) = y}

=
∑
{
∑
{m(h) · h(x) | h ∈ SX} | x ∈ X, f(x) = y}

=
∑
{m(h) · h(x) | x ∈ X, f(x) = y, h ∈ SX}



287

• The unit law holds: Let b : X → SY and x ∈ X. Then

µX ◦ ηSX(b)(x) =
∑
{ηSX(b)(f) · f(x) | f ∈ SX}

=
∑
{ηSX(b)(b) · b(x)} = 1 · b(x) = b(x)

as well as:

µX ◦ S(ηX)(b)(x) =
∑
{SηX(b)(f) · f(x) | f ∈ SX}

=
∑
{
∑
{b(y) · f(x) | y ∈ X, ηX(y) = f} | f ∈ SX}

=
∑
{b(y) · f(x) | ηX(y) = f, y ∈ X, f ∈ SX}

=
∑
{b(y) · ηX(y)(x) | y ∈ X} =

∑
{b(x) · ηX(x)(x)} = b(x)

• The associative law holds: Let x ∈ X, Ŝ ∈ SSS
X

, then

µX ◦ S(µX)(Ŝ)(x)

=
∑
{SµX(Ŝ)(f) · f(x) | f ∈ SX}

=
∑
{
∑
{Ŝ(g) | g ∈ SSX

, µX(g) = f} · f(x) | f ∈ SX}

=
∑
{
∑
{Ŝ(g) | g ∈ SSX

,∀y ∈ X : µX(g)(y) = f(y)} · f(x) | f ∈ SX}

=
∑
{Ŝ(g) · µX(g)(x) | g ∈ SSX}

=
∑
{Ŝ(g) ·

∑
{g(f) · f(x) | f ∈ SX} | g ∈ SSX}

=
∑
{Ŝ(g) · g(f) · f(x) | f ∈ SX , g ∈ SSX}

as well as:

µX ◦ µSX(Ŝ)(x) =
∑
{µSX(Ŝ)(f) · f(x) | f ∈ SX}

=
∑
{
∑
{Ŝ(g) · g(f) | g ∈ SSX} · f(x) | f ∈ SX}

=
∑
{Ŝ(g) · g(f) · f(x) | f ∈ SX , g ∈ SSX}

�



288



Anhang B

Additional Proofs (Chapter 5)

B.1 Proofs on the Embedding of Semirings

Here, we want to give two proofs which we have omited in the main text for a
lemma and a proposition we used to show under which circumstances a semiring
can be embedded into a ring. As a reminder, we will restate the results before
giving their respective proofs.
Lemma 5.2.3 Let (S,+, ·, 0, 1) be a semiring, then (S× S,+, ·, (0, 0), (1, 0))
where (s1, s2) + (s′1, s′2) = (s1 + s′1, s2 + s′2) and (s1, s2) · (s′1, s′2) = (s1 · s′1 + s2 ·
s′2, s1 · s′2 + s2 · s′1) is a semiring.

Proof: (S× S,+, (0, 0)) is obviously a commutative monoid. The pair (1, 0)
really is the unit of multiplication, because given any (s1, s2) ∈ S× S, it holds
that (s1, s2) · (1, 0) = (s1 · 1 + s2 · 0, s1 · 0 + s2 · 1) = (s1, s2).

Now we need to show that · is associative, let (s1, s2), (s′1, s′2), (s′′1, s′′2) ∈ S×S
be given and compute:

((s1, s2) · (s′1, s′2)) · (s′′1, s′′2) = (s1 · s′1 + s2 · s′2, s1 · s′2 + s2 · s′1) · (s′′1, s′′2)

=((s1 · s′1 + s2 · s′2) · s′′1 + (s1 · s′2 + s2 · s′1) · s′′2,

(s1 · s′1 + s2 · s′2) · s′′2 + (s1 · s′2 + s2 · s′1) · s′′1)

=(s1 · s′1 · s′′1 + s2 · s′2 · s′′1 + s1 · s′2 · s′′2 + s2 · s′1 · s′′2,

s1 · s′1 · s′′2 + s2 · s′2 · s′′2 + s1 · s′2 · s′′1 + s2 · s′1 · s′′1)

=(s1 · (s′1 · s′′1 + s′2 · s′′2) + s2 · (s′1 · s′′2 + s′2 · s′′1),

s1 · (s′1 · s′′2 + s′2 · s′′1) + s2 · (s′1 · s′′1 + s′2 · s′′2))

=(s1, s2) · (s′1 · s′′1 + s′2 · s′′2, s′1 · s′′2 + s′2 · s′′1) = (s1, s2) · ((s′1, s′2) · (s′′1, s′′2))

289



290

Finally, we show that the distributive laws hold:

(s1, s2) · ((s′1, s′2) + (s′′1, s′′2)) = (s1, s2) · (s′1 + s′′1, s
′
2 + s′′2)

=(s1 · (s′1 + s′′1) + s2 · (s′2 + s′′2), s1 · (s′2 + s′′2) + s2 · (s′1 + s′′1))

=(s1 · s′1 + s1 · s′′1 + s2 · s′2 + s2 · s′′2, s1 · s′2 + s1 · s′′2 + s2 · s′1 + s2 · s′′1)

=(s1 · s′1 + s2 · s′2, s1 · s′2 + s2 · s′1) + (s1 · s′′1 + s2 · s′′2, s1 · s′′2 + s2 · s′′1)

=(s1, s2) · (s′1, s′2) + (s1s, s2) · (s′′1, s′′2)

((s′1, s′2) + (s′′1, s′′2)) · (s1, s2) = (s′1 + s′′1, s
′
2 + s′′2) · (s1, s2)

=((s′1 + s′′1) · s1 + (s′2 + s′′2) · s2, (s′1 + s′′1) · s2 + (s′2 + s′′2) · s1)

=(s′1 · s1 + s′′1 · s1 + s′2 · s2 + s′′2 · s2, s
′
2 · s1 + s′′2 · s1 + s′1 · s2 + s′′1 · s2)

=(s′1 · s1 + s′2 · s2, s
′
1 · s2 + s′2 · s1) + (s′′1 · s1 + s′′2 · s2, s

′′
1 · s2 + s′′2 · s1)

=(s′1, s′2) · (s1, s2) + (s′′1, s′′2) · (s1, s2)

�

Proposition 5.2.4 Let (S,+, ·, 0, 1) be a semiring, then (S×S,+, ·, (0, 0), (1, 0))
where (s1, s2) + (s′1, s′2) = (s1 + s′1, s2 + s′2) and (s1, s2) · (s′1, s′2) = (s1 · s′1 + s2 ·
s′2, s1 · s′2 + s2 · s′1) is a semiring.

Proof: Assume S is a sub-semiring of a ring I then, there must be an
inverse element −s1 ∈ I, such that s1 + (−s1) = 0. Now, additionally assume
s1+s2 = s1+s3, then, s3 = s3+s1+(−s1) = (s1+s3)+(−s1) = (s1+s2)+(−s1) =
s2 + s1 + (−s1) = s2, so s1 + s2 = s1 + s3 implies s2 = s3.

For the other direction assume that s1 + s2 = s1 + s3 implies s2 = s3 for all
s1, s2, s3 ∈ S.

We define a relation ≡ on S× S as follows:

(s1, s2) ≡ (s′1, s′2)

⇔∃s, s′ ∈ S : (s1, s2) + (s, s) = (s′1, s′2) + (s′, s′)

Note, that then for all s ∈ S, (s, s) ≡ (0, 0), which we will use in upcomming
computations.

We will now prove that the relation ≡ is a congruence on the semiring
(S× S,+, ·, (0, 0), (1, 0)) from Lemma 5.2.3. First we need to prove that ≡ is
an equivalence relation:

• ≡ is reflexive, because (s1, s2) + (0, 0) = (s1, s2).



291

• ≡ is symmetric, because if (s1, s2) ≡ (s′1, s′2) then there are s, s′ ∈ S such
that (s, s) + (s1, s2) = (s′1, s′2) + (s′, s′), and since = is symmetric, we also
have (s′1, s′2) ≡ (s1, s2).

• ≡ is transitive. Assume (s1, s2) ≡ (s′1, s′2), i.e. there are s, s′ ∈ S such
that (s1, s2) + (s, s) = (s′1, s′2) + (s′, s′), and (s′1, s′2) ≡ (s′′1, s′′2), i.e. there
are s, s′ ∈ S such that (s′1, s′2) + (s, s) = (s′′1, s′′2) + (s′, s′), then

(s1, s2) + (s+ s, s+ s) = (s1, s2) + (s, s) + (s, s)

=(s′1, s′2) + (s′, s′) + (s, s) = (s′1, s′2) + (s, s) + (s′, s′)

=(s′′1, s′′2) + (s′, s′) + (s′, s′) = (s′′1, s′′2) + (s′ + s′, s′ + s′)

Now we prove that ≡ is compatible with addition (+): Assume (s1, s2) ≡ (s′1, s′2),
i.e. there are s, s′ ∈ S such that (s1, s2)+(s, s) = (s′1, s′2)+(s′, s′), and (s′′1, s′′2) ≡
(s′′′1 , s′′′2 ), i.e. there are s, s′ ∈ S such that (s′′1, s′′2) + (s, s) = (s′′′1 , s′′′2 ) + (s′, s′).
Then we can compute:

(s1, s2) + (s′′1, s′′2) ≡ ((s1, s2) + (s′′1, s′′2)) + (s+ s, s+ s)

=(s1 + s′′1, s2 + s′′2) + (s+ s, s+ s) = (s1 + s′′1 + s+ s, s2 + s′′2 + s+ s)

=(s1 + s+ s′′1 + s, s2 + s+ s′′2 + s) = (s′1 + s′ + s′′′1 + s′, s′2 + s′ + s′′′2 + s′)

=(s′1 + s′′′1 + s′ + s′, s′2 + s′′′2 + s′ + s′) = (s′1 + s′′′1 , s
′
2 + s′′′2 ) + (s′ + s′, s′ + s′)

=((s′1, s′2) + (s′′′1 , s′′′2 )) + (s′ + s′, s′ + s′) ≡ (s′1, s′2) + (s′′′1 , s′′′2 )

So (s1, s2) + (s′′1, s′′2) ≡ (s′1, s′2) + (s′′′1 , s′′′2 ). Finally, we also need to prove that ≡
is compatible with multiplication (·): (s1, s2) ≡ (s′1, s′2), i.e. there are s, s′ ∈ S
such that (s1, s2) + (s, s) = (s′1, s′2) + (s′, s′), and (s′′1, s′′2) ≡ (s′′′1 , s′′′2 ), i.e. there



292

are s, s′ ∈ S such that (s′′1, s′′2)+(s, s) = (s′′′1 , s′′′2 )+(s′, s′). Then we can compute:

(s1, s2) · (s′′1, s′′2) = (s2 · s′′2 + s1 · s′′1, s1 · s′′2 + s2 · s′′1)

≡(s2 · s′′2 + s1 · s′′1, s1 · s′′2 + s2 · s′′1) + (s · s′′2, s · s′′2) + (s · s′′1, s · s′′1)

=(s2 · s′′2 + s · s′′2 + s1 · s′′1 + s · s′′1, s1 · s′′2 + s · s′′2 + s2 · s′′1 + s · s′′1)

=((s2 + s) · s′′2 + (s1 + s) · s′′1, (s1 + s) · s′′2 + (s2 + s) · s′′1)

=((s′2 + s′) · s′′2 + (s′1 + s′) · s′′1, (s′1 + s′) · s′′2 + (s′2 + s′) · s′′1)

=(s′2 · s′′2 + s′ · s′′2 + s′1 · s′′1 + s′ · s′′1, s′1 · s′′2 + s′ · s′′2 + s′2 · s′′1 + s′ · s′′1)

=(s′2 · s′′2 + s′1 · s′′1, s′1 · s′′2 + s′2 · s′′1) + (s′ · s′′2 + s′ · s′′1, s′ · s′′2 + s′ · s′′1)

≡(s′2 · s′′2 + s′1 · s′′1, s′1 · s′′2 + s′2 · s′′1)

≡(s′2 · s′′2 + s′1 · s′′1, s′1 · s′′2 + s′2 · s′′1) + (s′1 · s, s′1 · s) + (s′2 · s, s′2 · s)

=(s′2 · s′′2 + s′2 · s+ s′1 · s′′1 + s′1 · s, s′1 · s′′2 + s′1 · s+ s′2 · s′′1 + s′2 · s)

=(s′2 · (s′′2 + s) + s′1 · (s′′1 + s), s′1 · (s′′2 + s) + s′2 · (s′′1 + s))

=(s′2 · (s′′′2 + s′) + s′1 · (s′′′1 + s′), s′1 · (s′′′2 + s′) + s′2 · (s′′′1 + s′))

=(s′2 · s′′′2 + s′2 · s′ + s′1 · s′′′1 + s′1 · s′, s′1 · s′′′2 + s′1 · s′ + s′2 · s′′′1 + s′2 · s′)

=(s′2 · s′′′2 + s′1 · s′′′1 , s′1 · s′′′2 + s′2 · s′′′1 ) + (s′1 · s′, s′1 · s′) + (s′2 · s′, s′2 · s′)

≡(s′2 · s′′′2 + s′1 · s′′′1 , s′1 · s′′′2 + s′2 · s′′′1 ) = (s′1, s′2) · (s′′′1 , s′′′2 )

Therefore, I := ({[(s, s′)]≡ | (s, s′) ∈ S×S},+, ·, [(0, 0)]≡, [(1, 0)]≡) is a semiring.
It is also a ring, because every [(s, s′)]≡ has an inverse −[(s, s′)]≡, namely
−[(s, s′)]≡ := [(s′, s)]≡, as seen via the following computation:

[(s, s′)]≡ + (−[(s, s′)]≡) = [(s, s′)]≡ + [(s′, s)]≡
=[(s, s′) + (s′, s)]≡ = [(s+ s′, s′ + s)]≡ = [(0, 0)]≡

Up until now, we have not used injectivity of +. We only need this to finally
prove that S is a sub-semiring of I. For this we need to show that for each
s, s′ ∈ S, (s, 0) ≡ (s′, 0) implies s = s′. Assume, that (s, 0) ≡ (s′, 0), then there
is s′′, s′′′ ∈ S such that (s+ s′′, s′′) = (s′′′ + s′, s′), therefore s′ = s′′ and since +
is injective and s+ s′′ = s′′′ + s′, s = s′′′. Furthermore, the set of elements of
the form (s, 0) is closed under addition and multiplication.

So, S is indeed a sub-semiring of I. �



293

B.2 Termination of HKP without Abstraction

When discussing termination of HKP, we made the following claim:

Lemma B.1 Every set of n-dimensional vectors over the tropical semiring
that contains no pair of (different) vectors v, v′ such that v v v′, i.e. v ≥ v′, is
finite.

This can be shown using Dickson’s Lemma, but to give a more direct proof
in case the reader is unfamiliar with Dickson’s Lemma, consider the following
argument:

Proof: We can show this claim via induction over n.
If n = 1, then this is trivial, because every pair of elements in the tropical

semiring is ordered. Now, assume we have shown the claim for all m ≤ n, then
we show that it also holds for n+ 1 via contradiction. So assume there is an
infinite set M of vectors of dimension n + 1, such that no pair of different
vectors v, v′ ∈ M with v ≥ v′ exists. Let k := min{ṽ[1] | ṽ ∈ M} and let one
vector v ∈ M be given, such that v[1] = k. Note that the tropical semiring
is bounded from below (and the vector entries are natural numbers), so the
minimum is defined. Then, for all vectors v′ ∈ M , it holds that v′ ≤ v ⇔
∀1 < i ≤ n+ 1 : v′[i] ≤ v[i]. The induction hypothesis yields that there is no
infinite set of n-dimensional vectors, such that there exists no pair of vectors
v, v′, where v ≥ v′. Thus, there must exist a pair of vectors v1, v2 in M such
that v1 ≥ v2 and v1 6= v2. This is a contradiction, so the assumed infinite set
M cannot exist, concluding the proof. �



294



Anhang C

The Lattice Monad is a Monad
(Chapter 7)

Here, we will prove that the lattice monad, Definition 7.2.4 is a monad. We
will restate the definitions of the components of the monad in-place for easier
reading.

Definition C.1 Let L be a complete lattice satisfying the join-infinite distribu-
tive law:

` u
⊔
L =

⊔
{` u `′ | `′ ∈ L}, (for any L ⊆ L). (JID)

For an ordered set (X,≤X), let T (X,≤X) = (TX,≤TX), where TX = (X →
L)∗ is the set of all those functions b : X → L satisfying the following restricti-
ons:

1. ⊔x∈X b(x) = >

2. For any x, x′ ∈ X, we have b(x) u b(x′) = ⊔{b(y) | y ≤ x, y ≤ x′}.

3. For any join-irreducible element ` ∈ J (L), we have

∃x∈X ` ≤L b(x) ∧ ∀x′∈X
(
` ≤L b(x′) =⇒ x ≤X x′

)
.

Furthermore, for any two functions b, b′ ∈ (X → L)∗ we let1

b ≤TX b′ ⇐⇒ ∀x∈X b′(x) ≤L b(x) .

1Note the reversal of the order in the ordering of functions!

295



296

Lastly, for an order preserving function f : (X,≤X)→ (Y,≤Y ), we fix

Tf(b)(y) =
⊔

f(x)≤Y y

b(x), for any b ∈ (X → L)∗, y ∈ Y .

It should be noted that Conditions 1 and 2 in the above definition are
redundant in the case of finite distributive lattices in the following sense.
Given a finite distributive lattice L, an order preserving function b : X → L

satisfying Condition 3 also satisfies Condition 1. Moreover, Condition 3 and
order preservation imply Condition 2 in case of finite lattices.

For Condition 1, we note > = ⊔
`∈J (L) ` ≤L

⊔
`≤b(x`) b(x`) ≤L

⊔
x∈X b(x). Here,

x` = min{x | ` ≤L b(x)} whose existence is guaranteed by Condition 3.
For Condition 2, we first note that the inequality ⊔y≤Xx,y≤Xx′ b(y) ≤L b(x)u

b(x′) (for any x, x′ ∈ X) is equivalent to demanding that the function b is
order preserving. It is obvious that Condition 2 implies b is order preserving,
simply let x = x′. On the other hand, if b is order preserving, then from
y ≤ x and y ≤ x′ it follows that b(y) ≤ b(x) and b(y) ≤ b(x′). Therefore,
b(x) u b(x′) = ⊔{` | ` ≤ b(x) ∧ ` ≤ b(x′)} ≥ ⊔{b(y) | y ≤ x ∧ y ≤ x′}.

On the other hand, the inequality ⊔y≤Xx,y≤Xx′ b(y) ≥L b(x) u b(x′) follows
from Condition 3 in the finite case, because then

b(x) u b(x′) =
⊔
{` ∈ J (L) | ` ≤ b(x) ∧ ` ≤ b(x′)}

=
⊔
{b(x`) | b(x`) ≤ b(x) ∧ b(x`) ≤ b(x′)}.

Lastly, Condition 3 is required to rule out the cases when X has an infinite
descending chain x1 ≥ x2 ≥ x3 · · · such that ` ≤L b(xi) (for all xi ∈ X). This
in-turn is necessary to construct a corresponding function Cb ∈ XJ (L) for a
given b ∈ TX such that Cb(`) = min{x | ` ≤L b(x)} (for every ` ∈ J (L)), which
is required to prove isomorphism of the reader monad and the lattice monad
we are now constructing.

Next we prove that T is well-defined. Henceforth, we omit the index from
the ordering relation, whenever it is clear from the context.

Lemma C.2 Every function in (X → L)∗ is order preserving.

Proof: Let x ≤ x′, for some x, x′ ∈ X. Then,

b(x) u b(x′) =
⊔

x′′≤x,x′′≤x′
b(x′′) =

⊔
x′′≤x

b(x′′) = b(x).

Thus, b(x) = b(x) u b(x′), i.e., b(x) ≤ b(x′). �



297

Lemma C.3 If f : X → Y is order preserving and b ∈ TX, then Tf(b) ∈
T (Y ).

Proof: We need to show that Tf(b) satisfies the three conditions of Defi-
nition C.1. For Condition 1, we find ⊔

y∈Y Tf(b)(y) = ⊔
y∈Y

⊔
f(x)≤y b(x) =⊔

x∈X b(x) = >.
For Condition 2, let y, y′ ∈ Y . We need to show that Tf(b)(y)u Tf(b)(y′) =⊔

ȳ≤y∧ȳ≤y′ Tf(b)(ȳ). By expanding the right hand side, we get⊔
ȳ≤y∧ȳ≤y′

Tf(b)(ȳ) =
⊔

ȳ≤y∧ȳ≤y′

⊔
f(x)≤ȳ

b(x) =
⊔

f(x)≤y∧f(x)≤y′
b(x).

For Condition 3, let ` ∈ J (L). Then, there is a minimal element x0 satisfying
` ≤ b(x0). Clearly, ` ≤ b(x0) ≤

⊔
f(x)≤f(x0) b(x) = Tf(b)(f(x0)). Now let

` ≤ Tf(b)(y). Then, ` ≤ ⊔
f(x)≤y b(x). I.e., f(x) ≤ y and ` ≤ b(x), for some

x ∈ X. But by Condition 3, we get x0 ≤ x. And by order preservation of f we
get f(x0) ≤ f(x) ≤ y; thus, Tf(b)(f(x0)) ≤ Tf(b)(y). �

Lemma C.4 If f : (X,≤X)→ (Y,≤Y ) is order preserving, then so is Tf .

Proof: Let f : (X,≤X)→ (Y,≤Y ) be an order preserving function. Then, we
want to prove that Tf : T (X,≤X) → T (Y,≤Y ) is also order preserving. Let
b ≤TX b′, for some b, b′ ∈ (X → L)∗. Then, we have b′(x) ≤L b(x), for any
x ∈ X. Thus, we have

Tf(b′)(y) =
⊔

f(x)≤Y y

b′(x) ≤L
⊔

f(x)≤Y y

b(x) = Tf(b)(y).

Hence, Tf is order preserving. �

Now we prove that T is actually a functor.

Lemma C.5 The mapping T as in Definition C.1 is an endofunctor.

Proof: We start by showing the preservation of identities:

(T id)(b)(y) =
⊔

id(x)≤y
b(x) =

⊔
x≤y

b(x) =
⊔
x=y

b(x) = b(y) = idT (b)(y).

To show that T respects concatenation of arrows, we derive:

(Tf ◦ Tg)(b)(z) = Tf(Tg(b))(z) =
⊔

f(y)≤z
Tg(b)(y) =

⊔
f(y)≤z

⊔
g(x)≤y

b(x),

T (f ◦ g)(b)(z) =
⊔

(f◦g)(x)≤z
b(x).



298

Now we will prove that the sets over which the supremum is taken are identical,
making the suprema themselves identical.

• If f(g(x)) ≤ z, then let y := g(x), then automatically y ≥ g(x) and
additionally f(y) ≤ z.

• If y ≥ g(x) and z ≥ f(y), then z ≥ f(y) ≥ f(g(x)) due to monotonicity
of f .

�

Next, we define a unit and a multiplication associated with our functor T ,
which in turn give rise to the lattice monad.

Definition C.6 We define two families of maps ηX : X → TX and µX :
TTX → TX:

ηX(x)(x′) =


> if x ≤ x′

⊥ otherwise
,

µX(B̂)(x) =
⊔

b∈(X→L)∗
(B̂(b) u b(x)), where B̂ ∈ ((X → L)∗ → L)∗.

In the remainder, we show that the families of functions η and µ are well-defined
resulting in natural transformations η : Id⇒ T and µ : TT ⇒ T , respectively.

Lemma C.7 The family ηX defined in Definition C.6 is a natural transforma-
tion.

Proof: We first show that ηX ∈ TX, for any ordered set X. Condition 1 follows
directly ⊔x′∈X ηX(x)(x′) = >. For Condition 2, let x′, x′′ ∈ X, then we find⊔

{ηX(x)(x̄) | x̄ ≤ x′ ∧ x̄ ≤ x′′} =
⊔
{> | x ≤ x̄ ∧ x̄ ≤ x′ ∧ x̄ ≤ x′′}

=ηX(x)(x′) u ηX(x)(x′′).

Lastly, for Condition 3, given a join-irreducible element ` ∈ J (L), we have
` ≤ > = ηX(x)(x). Moreover, if ` ≤ ηX(x)(x′), then clearly we have x ≤ x′ per
definition of ηX .

We also need to show that ηX is an arrow in Poset. For that purpose let
x ≤ x′ and an arbitrary x ∈ X be given, then

ηX(x)(x) =


> if x ≤ x

⊥ otherwise
≥


> if x′ ≤ x

⊥ otherwise
= ηX(x′)(x).



299

Due to the reversal of orders in TX, this actually means ηX(x) ≤ ηX(x′), so
ηX is order preserving.

Next, it remains to verify that the function ηX satisfies the naturality square.
So let f : (X,≤X)→ (Y,≤Y ). Then, we find

Tf(ηX(x))(y) =
⊔

f(x′)≤Y y

ηX(x)(x′) =
⊔

f(x′)≤Y y∧x≤Xx′

> =
⊔

f(x)≤Y y

> = ηY (f(x))(y).

�

Lemma C.8 The family µX defined in Definition C.6 is a natural transfor-
mation.

Proof: First we show that for any B̂ ∈ ((X → L)∗ → L)∗, we have µX(B̂) ∈ TX.
To see that Condition C.1(1) holds, we expand ⊔x∈X µX(B̂)(x) and derive:⊔

x∈X

⊔
b∈(X→L)∗

(B̂(b) u b(x)) =
⊔

b∈(X→L)∗

⊔
x∈X

(B̂(b) u b(x)) =

⊔
b∈(X→L)∗

B̂(b) u (
⊔
x∈X

b(x)) = >.

Using Condition C.1(1) on B̂ and b individually.
For Condition C.1(2), the direction ⊔

x̄≤x∧x̄≤x′ µX(B̂)(x̄) ≤L µX(B̂)(x) u
µX(B̂)(x′) is straightforward, because B̂(b) u b(x̄) ≤ B̂(b) u b(x) whenever
x̄ ≤ x, for any b ∈ TX, since b is order preserving. For the other direction,
we first note by applying the JID law twice that µX(B̂)(x) u µX(B̂)(x′) =⊔
b,b′∈(X→L)∗

(
B̂(b) u b(x) u B̂(b′) u b′(x′)

)
. It is sufficient to show that for any

b, b′ ∈ TX we have B̂(b) u b(x) u B̂(b′) u b′(x′) ≤L
⊔
x̄≤x∧x̄≤x′ µX(B̂)(x̄). So, let

b, b′ ∈ TX. Then we derive

B̂(b) u B̂(b′) u b(x) u b′(x′) (2)=
 ⊔
b̄≤b∧b̄≤b′

B̂(b̄)
 u b(x) u b′(x′) (JID law)

=
⊔

b̄≤b∧b̄≤b′

(
B̂(b̄) u b(x) u b′(x′)

)
(Def. of ≤TX)

≤L
⊔

b̄≤b∧b̄≤b′

(
B̂(b̄) u b̄(x) u b̄(x′)

)
(Def.C.1(2))

=
⊔

b̄≤b∧b̄≤b′

B̂(b̄) u
⊔

x̄≤x∧x̄≤x′
b̄(x̄)

 (JID law)

=
⊔

b̄≤b∧b̄≤b′

⊔
x̄≤x∧x̄≤x′

(
B̂(b̄) u b̄(x̄)

)



300

=
⊔

x̄≤x∧x̄≤x′

⊔
b̄≤b∧b̄≤b′

(
B̂(b̄) u b̄(x̄)

)
≤L

⊔
x̄≤x∧x̄≤x′

⊔
b̄∈TX

(
B̂(b̄) u b̄(x̄)

)
=

⊔
x̄≤x∧x̄≤x′

µX(B̂)(x̄).

Lastly for Condition C.1(3), let ` ∈ L be a join-irreducible element. Since
B̂ ∈ ((X → L)∗ → L)∗, there is a minimal b0 ∈ (X → L)∗ such that ` ≤ B̂(b0).
I.e., for any b ∈ (X → L)∗ with ` ≤ B̂(b) we have b(x) ≤ b0(x), for all x ∈ X –
again, note that this holds due to the reversal of orders.

Moreover, there is a minimal x0 ∈ X, such that ` ≤ b0(x0), since b0 ∈ (X →
L)∗. Then, we find ` ≤ B̂(b0)u b0(x0), i.e., ` ≤ µX(B̂)(x0). Now let x ∈ X such
that ` ≤ µX(B̂)(x). Thus, it remains to be shown that µX(B̂)(x0) ≤ µX(B̂)(x).
To see this, we first observe that ` = `uµX(B̂)(x) = ⊔

b∈(X→L)∗(`u B̂(b)u b(x))
using the JID law. And since ` is join-irreducible, we find ` ≤ B̂(b) u b(x) for
some b ∈ (X → L)∗. Clearly, ` ≤ b(x) ≤ b0(x), (since b0 ≤ b) and ` ≤ B̂(b).
Thus, by minimality of x0, we find x0 ≤ x; hence, b(x0) ≤ b(x).

We further need to show that µX is an arrow in Poset. For that purpose let
B̂ ≤ B̂′ and any x ∈ X be given and compute

µX(B̂)(x) =
⊔

b∈(X→L)∗
B̂(b) u b(x) ≥

⊔
b∈(X→L)∗

B̂′(b) u b(x) = µX(B̂′)(x)

because of the reversal of order: If B̂ ≤ B̂′, then B̂(b) ≥ B̂′(b) for all b ∈ (X →
L)∗. Now, again because of the reversal of orders – note that µX(B̂), µX(B̂′) ∈
(X → L)∗ – it follows that µX(B̂) ≤ µX(B̂′), so µX is order preserving.

Now it remains to show that the µX satisfies the naturality square. Let
B̂ ∈ ((X → L)∗ → L)∗ and y ∈ Y . Then, we find

Tf(µX(B̂))(y) =
⊔
{B̂(b) u b(x) | f(x) ≤ y ∧ b ∈ TX}.

Furthermore,

(µY ◦ TTf(B̂))(y) =
⊔
{TTf(B̂)(c) u c(y) | c ∈ TY }

=
⊔

 ⊔
Tf(b)≤c

B̂(b)
 u c(y) | c ∈ TY

 (JID law)

=
⊔
{B̂(b) u c(y) | c ∈ TY ∧ Tf(b) ≤ c}

=
⊔
{B̂(b) u c(y) | c ∈ TY ∧ ∀y′∈Y c(y′) ≤ Tf(b)(y′)}.



301

Suppose there are b ∈ TX, c ∈ TY such that ∀y′ c(y′) ≤ Tf(b)(y′). Thus,
c(y) ≤ Tf(b)(y) = ⊔

f(x)≤y b(x). I.e., B̂(b) u c(y) ≤ B̂(b) u ⊔f(x)≤y b(x). Thus,
(µY ◦ TTf(B̂))(y) ≤ Tf(µX(B̂))(y). The other direction is straightforward,
take c = Tf(b). �

Now that we know that η and µ are well-defined natural transformations,
we investigate whether the so-called unit and associative law of a monad hold.

Lemma C.9 The associative law holds for µ, i.e. µX ◦ T (µX) = µX ◦ µTX .

Proof: Let x ∈ X and Ĉ ∈ TTTX. We first compute µX ◦ µTX (below
b ∈ TX, B̂ ∈ TTX):

µX(µTX(Ĉ))(x) =
⊔

b∈(X→L)∗
(µTX

(
Ĉ)(b) u b(x)

)
=

⊔
b∈(X→L)∗

( ⊔
B̂∈((X→L)∗→L)∗

(
Ĉ(B̂) u B̂(b)

)
u b(x)

)
(JID law)

=
⊔

b∈(X→L)∗

⊔
B̂∈((X→L)∗→L)∗

(
Ĉ(B̂) u B̂(b) u b(x)

)

=
⊔

B̂∈((X→L)∗→L)∗

⊔
b∈(X→L)∗

(
Ĉ(B̂) u B̂(b) u b(x)

)
(JID law)

=
⊔

B̂∈((X→L)∗→L)∗
Ĉ(B̂) u

⊔
b∈(X→L)∗

(
B̂(b) u b(x)

)

=
⊔

B̂∈((X→L)∗→L)∗
(Ĉ(B̂) u µX(B̂)(x)).

Furthermore, we compute µX ◦ T (µX) as follows:

µX(T (µX)(Ĉ))(x) =
⊔

b∈(X→L)∗

(
T (µX(Ĉ))(b) u b(x)

)

=
⊔

b∈(X→L)∗

(( ⊔
µX(B̂)≤b

Ĉ(B̂)
)
u b(x)

)
(JID law)

=
⊔

b∈(X→L)∗

⊔
µX(B̂)≤b

(
Ĉ(B̂) u b(x)

)
.

Now, we observe that Ĉ(B̂)u b(x) ≤ Ĉ(B̂)u µX(B̂)(x), for any b ∈ (X → L)∗

satisfying b(x′) ≤ µX(B̂)(x′) (for any x′ ∈ X). Thus, µX(T (µX)(Ĉ))(x) ≤
µX(µTX(Ĉ))(x). For the other direction, take b = µX(B̂); thus, µX(µTX(Ĉ))(x) ≤
µX(T (µX)(Ĉ))(x). �

Lemma C.10 The unit law holds, i.e., µX ◦ ηTX = idTX = µX ◦ T (ηX).



302

Proof: We first expand the left hand side

µX(ηTX)(b)(y) =
⊔
{ηTX(b)(d) u d(y) | d ∈ (X → L)∗}

=
⊔
{d(y) | b ≤ d} =

⊔
{d(y) | ∀x ∈ X : b(x) ≥ d(x)} = b(y).

Furthermore, expanding the right hand side we get

µX(TηX)(b)(y) =
⊔
{TηX(b)(d) u d(y) | d ∈ (X → L)∗}

=
⊔
{b(x) u d(y) | d ∈ (X → L)∗, ηX(x) ≤ d}

=
⊔
{b(x) u d(y) | d ∈ (X → L)∗,∀x′ ∈ X : ηX(x)(x′) ≥ d(x′)}

=
⊔
{b(x) | x ≤ y} = b(y).

�

So we have proven the main result of this section.

Corollary C.11 The tuple (T, η, µ) is a monad on Poset.



References

[ABH+12] Jiří Adámek, Filippo Bonchi, Mathias Hülsbusch, Barbara König,
Stefan Milius, and Alexandra Silva. A coalgebraic perspective
on minimization and determinization. In Proc. of FOSSACS ’12,
pages 58–73. Springer, 2012. LNCS/ARCoSS 7213.

[ABK11] Shaull Almagor, Udi Boker, and Orna Kupferman. What’s deci-
dable about weighted automata? In Proc. of ATVA ’11, pages
482–491. Springer, 2011. LNCS 6996.

[ACHV10] Parosh A. Abdulla, Yu-Fang Chen, Lukáš Holík, and Tomáš Vojnar.
When simulation meets antichains (on checking language inclusion
of NFAs). In Proc. of TACAS ’10, pages 158–174. Springer, 2010.
LNCS 6015.

[AEI03] Luca Aceto, Zoltán Ésik, and Anna Ingólfsdóttir. Equational
theories of tropical semirings. Theoretical Computer Science,
298(3):417 – 469, 2003. Foundations of Software Science and
Computation Structures.

[AFL15] Jo M. Atlee, Uli Fahrenberg, and Axel Legay. Measuring behaviour
interactions between product-line features. In Proc. of Formalise
’15, pages 20–25, Piscataway, NJ, USA, 2015. IEEE Press.

[AHS90] Jiří Adámek, Horst Herrlich, and George E. Strecker. Abstract
and Concrete Categories - The Joy of Cats. Wiley, 1990.

[AK95] Jiří Adámek and Vaclav Koubek. On the greatest fixed point of a
set functor. Theoretical Computer Science, 150:57–75, 1995.

303



304

[And97] Henrik R. Andersen. An introduction to binary decision diagrams.
Course Notes, 1997.

[AR94] Jiří Adámek and Jiří Rosický. Locally Presentable and Accessible
Categories, volume 189 of London Mathematical Society Lecture
Note Series. Cambridge University Press, 1994.

[Bai96] Christel Baier. Polynomial time algorithms for testing probabilistic
bisimulation and simulation. In Proc. of CAV ’96, pages 50–61.
Springer, 1996. LNCS 1102.

[BBB+12] Filippo Bonchi, Marcello M. Bonsangue, Michele Boreale, Jan J.
M. M. Rutten, and Alexandra Silva. A coalgebraic perspective on
linear weighted automata. Inf. Comput., 211:77–105, 2012.

[BBC+16] Filippo Bonchi, Marcello Bonsangue, Georgiana Caltais, Jan J.
M. M. Rutten, and Alexandra Silva. A coalgebraic view on de-
corated traces. Mathematical Structures in Computer Science,
26(7):1234–1268, 2016.

[BÉ93] Stephen L. Bloom and Zoltán Ésik. Iteration Theories: The
Equational Logic of Iterative Processes. EATCS Monographs on
Theoretical Computer Science. Springer, 1993.

[BÉ09] Stephen L. Bloom and Zoltán Ésik. Axiomatizing rational power
series over natural numbers. Information and Computation,
207(7):793 – 811, 2009.

[BGJ13] Guram Bezhanishvili, David Gabelaia, and Mamuka Jibladze.
Funayama’s theorem revisited. Algebra universalis, 70(3):271–286,
2013.

[BJ72] Thomas S. Blyth and Melvin F. Janowitz. Residuation Theory.
Pergamon Press, 1972.

[BK12] Radim Belohlavek and Jan Konecny. Row and column spaces of
matrices over residuated lattices. Fundam. Inf., 115(4):279–295,
December 2012.



305

[BK17] Harsh Beohar and Sebastian Küpper. On path-based coalgebras
and weak notions of bisimulation. In Proc. of CALCO ’17, 2017.
LIPIcs Vol. 72, to appear.

[BKK13] H.J. Sander Bruggink, Barbara König, and Sebastian Küpper.
Concatenation and other closure properties of recognizable langua-
ges in adhesive categories. In Proc. of GT-VMT ’13 (Workshop
on Graph Transformation and Visual Modeling Techniques), volu-
me 58 of Electronic Communications of the EASST, 2013.

[BKK15] H. J. Sander Bruggink, Barbara König, and Sebastian Küpper.
Robustness and closure properties of recognizable languages in
adhesive categories. Sci. Comput. Program., 104:71–98, 2015.

[BKK17] Filippo Bonchi, Barbara König, and Sebastian Küpper. Up-to
techniques for weighted systems. In Proc. of TACAS ’17, Part I,
pages 535–552. Springer, 2017. LNCS 10205.

[BKKS17] Harsh Beohar, Barbara König, Sebastian Küpper, and Alexandra
Silva. Conditional transition systems with upgrades. In Proc. of
TASE ’17 (Theoretical Aspects of Software Engineering), 2017. to
appear.

[BKK+ed] Harsh Beohar, Barbara König, Sebastian Küpper, Alexandra Silva,
and Thorsten Wißmann. Conditional transition systems coalge-
braically. submitted. arXiv:1612.05002.

[BLS05] Marie-Pierre Béal, Sylvain Lombardy, and Jacques Sakarovitch.
On the equivalence of Z-automata. In Proc. of ICALP ’05, pages
397–409. Springer, 2005. LNCS 3580.

[BLS06] Mariel-Pierre Béal, Slyvain Lombardy, and Jacques Sakarovitch.
Conjugacy and equivalence of weighted automata and functional
transducers. In Prof. of CSR ’06, pages 58–69. Springer, 2006.
LNCS 3967.

[BMS13] Marcello Bonsangue, Stefan Milius, and Alexandra Silva. Sound
and complete axiomatizations of coalgebraic language equivalence.
ACM Transactions on Computational Logic, 14(1), 2013.



306

[Bor09] Michele Boreale. Weighted bisimulation in linear algebraic form.
In Proc. of CONCUR ’09, pages 163–177. Springer, 2009. LNCS
5710.

[BP13] Filippo Bonchi and Damien Pous. Checking NFA equivalence
with bisimulations up to congruence. In Proc. of POPL ’13, pages
457–468. ACM, 2013.

[BPPR14a] Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan Rot.
Coinduction up to in a fibrational setting. CoRR abs/1401.6675,
2014.

[BPPR14b] Filippo Bonchi, Daniela Petrisan, Damien Pous, and Jurriaan
Rot. Coinduction up-to in a fibrational setting. In Thomas A.
Henzinger and Dale Miller, editors, Proc. of CSL-LICS ’14, pages
20:1–20:9. ACM, 2014.

[BR88] Jean Berstel and Christophe Reutenauer. Rational Series and
their Languages. Springer, 1988.

[Buc08] Peter Buchholz. Bisimulation relations for weighted automata.
Theoretical Computer Science, 393(1):109 – 123, 2008.

[CCH+13] Maxime Cordy, Andreas Classen, Patrick Heymans, Axel Legay,
and Pierre-Yves Schobbens. Model checking adaptive software
with featured transition systems. In Assurances for Self-Adaptive
Systems, volume 7740 of LNCS, pages 1–29. Springer, 2013.

[CCP+12] Maxime Cordy, Andreas Classen, Gilles Perrouin, Pierre-Yves
Schobbens, Patrick Heymans, and Axel Legay. Simulation-based
abstractions for software product-line model checking. In ICSE,
pages 672–682, 2012.

[CCS+13] Andreas. Classen, Maxime Cordy, Pierre-Yves Schobbens, Pa-
trick Heymans, Axel Legay, and Jean-François Raskin. Featured
transition systems: Foundations for verifying variability-intensive
systems and their application to LTL model checking. IEEE Trans.
Softw. Eng., 39(8):1069–1089, August 2013.



307

[CG79] Raymond A. Cuninghame-Green. Minimax algebra. Lecture Notes
in Economics and Mathematical Systems. Springer-Verlag, 1979.

[CHS+10] Andreas Classen, Patrick Heymans, Pierre-Yves Schobbens, Axel
Legay, and Jean-François Raskin. Model checking lots of systems:
Efficient verification of temporal properties in software product
lines. In Proc. of ICSE’10, pages 335–344, NY, USA, 2010. ACM.

[CLS96] David Cyrluk, Patrick Lincoln, and Natarajan Shankar. On Sho-
stak’s decision procedure for combinations of theories. In Proc. of
CADE-13, pages 463–477. Springer-Verlag, 1996.

[CN01] Paul C. Clements and Linda M. Northrop. Software Product Lines:
Practices and Patterns. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA, 2001.

[DJ90] Nachum Dershowitz and Jean-Pierre Jouannaud. Rewrite systems.
In Jan van Leeuwen, editor, Formal Models and Semantics, Hand-
book of Theoretical Computer Science, volume B, pages 243–320.
Elsevier, 1990.

[DK13] Manfred Droste and Dietrich Kuske. Weighted automata. In Jean-
Eric Pin, editor, Automata: from Mathematics to Applications.
European Mathematical Society, 2013. to appear.

[DKB14] Clemens Dubslaff, Sascha Klüppelholz, and Christel Baier. Pro-
babilistic model checking for energy analysis in software product
lines. In Proc. of MODULARITY ’14, pages 169–180. ACM, 2014.

[DKV09] Manfred Droste, Werner Kuich, and Heiko Vogler, editors. Hand-
book of Weighted Automata. Springer, 2009.

[DM09] Abhijit Das and C. E. Veni Madhavan. Public-Key Cryptography:
Theory and Practice. Pearson Education, 2009. pp. 295-296.

[DM12] Manfred Droste and Ingmar Meinecke. Weighted automata and
weighted {MSO} logics for average and long-time behaviors. In-
formation and Computation, 220-221:44 – 59, 2012.



308

[DP02] Brian A. Davey and Hilary A. Priestley. Introduction to lattices
and order. Cambridge University Press, 2002.

[DR10] Laurent Doyen and Jean-François Raskin. Antichain Algorithms
for Finite Automata. In Proc. of TACAS, pages 2–22. Springer,
2010. LNCS 6015.

[DV12] Manfred Droste and Heiko Vogler. Weighted automata and multi-
valued logics over arbitrary bounded lattices. Theoretical Computer
Science, 418:14 – 36, 2012.

[Eis03] Jason Eisner. Simpler and more general minimization for weighted
finite-state automata. In Proc. of HLT-NAACL ’03, Volume 1,
pages 64–71. Association for Computational Linguistics, 2003.

[ÉK01] Zoltán Ésik and Werner Kuich. A generalization of Kozen’s
axiomatization of the equational theory of the regular sets. In
Words, Semigroups, and Transductions - Festschrift in Honor of
Gabriel Thierrin, pages 99–114, 2001.

[ÉK13] Zoltán Ésik and Werner Kuich. Free inductive k-semialgebras.
Journal of Logic and Algebraic Programming, 82(3–4):111–122,
2013.

[ÉM10] Zoltán Ésik and Andreas Maletti. Simulation vs. equivalence. In
Proc. of FCS ’10, pages 119–124. CSREA Press, 2010.

[Ési11] Zoltán Ésik. Multi-linear iterative k-Σ-semialgebras. ENTCS,
276:159–170, 2011.

[Fit02] Melvin Fitting. Bisimulations and Boolean vectors. In Advances
in Modal Logic, pages 97–126, 2002.

[FL97] Marianne Flouret and Éric Laugerotte. Noncommutative minimi-
zation algorithms. Information Processing Letters, 64(3):123–126,
1997.

[FMT05] Gianluigi Ferrari, Ugo Montanari, and Emilio Tuosto. Coalge-
braic minimization of HD-automata for the π-calculus using poly-



309

morphic types. Theoretical Computer Science, 331(2–3):325–365,
February 2005.

[FUB06] Dario Fischbein, Sebastian Uchitel, and Victor Braberman. A
foundation for behavioural conformance in software product line
architectures. In Proc. of ROSATEA’06, pages 39–48. ACM, 2006.

[GLS08] Alexander Gruler, Martin Leucker, and Kathrin Scheidemann.
Modeling and model checking software product lines. In Proc.
of FMOODS’08, volume 5051 of LNCS, pages 113–131. Springer,
2008.

[GP97] Stéphane Gaubert and Max Plus. Methods and applications of
(max,+) linear algebra. In Proc. of STACS ’97, pages 261–282.
Springer Berlin Heidelberg, 1997. LNCS 1200.

[GS13] Carlo Ghezzi and Amir M. Sharifloo. Dealing with Non-Functional
Requirements for Adaptive Systems via Dynamic Software Product-
Lines, pages 191–213. Springer, 2013.

[HHWZ10] Ernst M. Hahn, Holger Hermanns, Björn Wachter, and Lijun
Zhang. Param: A model checker for parametric Markov models.
In Proc. of CAV ’10, pages 660–664. Springer, 2010.

[HJ98] Claudio Hermida and Bart Jacobs. Structural induction and
coinduction in a fibrational setting. Inf. Comput., 145(2):107–152,
1998.

[HJS07] Ichiro Hasuo, Bart Jacobs, and Ana Sokolova. Generic trace
semantics via coinduction. Logical Methods in Computer Science,
3(4:11):1–36, 2007.

[HK71] John E. Hopcroft and Richard M. Karp. A linear algorithm for
testing equivalence of finite automata. Technical Report TR 114,
Cornell University, 1971.

[HKK14] Holger Hermanns, Jan Krcál, and Jan Kretínský. Probabilistic
bisimulation: Naturally on distributions. CoRR, abs/1404.5084,
2014.



310

[HMRU00] John E. Hopcroft, Rajeev Motwani, Rotwani, and Jeffrey D. Ull-
man. Introduction to Automata Theory, Languages and Compu-
tability. Addison-Wesley Longman Publishing Co., Inc., Boston,
MA, USA, 2nd edition, 2000.

[Hop71] John E. Hopcroft. An n log n algorithm for minimizing states in
a finite automaton. Technical report, Stanford, CA, USA, 1971.

[HU79] John E. Hopcroft and Jeffrey D. Ullman. Introduction to automata
theory, languages and computation. Addison Wesley, Reading,
Massachusetts, 1979.

[KB85] Ladislav J. Kohout and Wyllis Bandler. Relational-product ar-
chitectures for information processing. Inf. Sci., 37(1-3):25–37,
December 1985.

[Ker16] Henning Kerstan. Coalgebraic Behavior Analysis – From Qualita-
tive to Quantitative Analyses. PhD thesis, Universität Duisburg-
Essen, Fakultät für Ingenieurwissenschaften, Abteilung für Infor-
matik und Angewandte Kognitionswissenschaft, 2016.

[KK14] Barbara König and Sebastian Küpper. Generic partition refine-
ment algorithms for coalgebras and an instantiation to weighted
automata. In Proc. of TCS ’14, IFIP AICT, pages 311–325. Sprin-
ger, 2014. LNCS 8705.

[KK16] Barbara König and Sebastian Küpper. A generalized partition re-
finement algorithm, instantiated to language equivalence checking
for weighted automata. Soft Computing, pages 1–18, 2016.

[KKM17] Barbara König, Sebastian Küpper, and Christina Mika. Paws: A
tool for the analysis of weighted systems. In Proc. of QAPL ’17
(International Workshop on Quantitative Aspects of Programming
Languages and Systems), 2017. to appear.

[KL10] Orna Kupferman and Yoad Lustig. Latticed simulation relations
and games. International Journal of Foundations of Computer
Science, 21(02):167–189, 2010.



311

[KMO+11] Stefan Kiefer, Andrzej S. Murawski, Joel Ouaknine, Bjoern Wach-
ter, and James Worrell. Language equivalence for probabilistic
automata. In Proc. of CAV ’11, pages 526–540. Springer, 2011.
LNCS 6806.

[Kro91] Daniel Krob. Expressions rationnelles sur un anneau. In Topics
in Invariant Theory: Séminaire d’Algèbre P. Dubreil et M.-P.
Malliavin 1989–1990 (40ème Année), pages 215–243. Springer,
1991.

[Kro94] Daniel Krob. The equality problem for rational series with mul-
tiplicities in the tropical semiring is undecidable. International
Journal of Algebra and Computation, 4(3):405–425, 1994.

[LMdV15] Diego Latella, Mieke Massink, and Erik P. de Vink. Bisimulation
of labelled state-to-function transition systems coalgebraically.
Logical Methods in Computer Science, 11(4), 2015.

[LS89] Kim G. Larsen and Arne Skou. Bisimulation through probabilistic
testing (preliminary report). In Proc. of POPL ’89, pages 344–352.
ACM, 1989.

[Mik15] Christine Mika. Ein generisches Werkzeug für Sprachäquivalenz
bei gewichteten Automaten. Master’s thesis, Universität Duisburg-
Essen, November 2015.

[Mil89a] R. Milner. Communication and Concurrency. Prentice-Hall, Inc.,
Upper Saddle River, NJ, USA, 1989.

[Mil89b] Robin Milner. Communication and Concurrency. PrenticeHall,
1989.

[ML71] Saunders Mac Lane. Categories for the working mathematician.
Graduate texts in mathematics. Springer-Verlag, New York, 1971.

[Moh97] Mehryar Mohri. Finite-state transducers in language and speech
processing. Computational Linguistics, 23:269–311, 1997.



312

[Moh09] Mehryar Mohri. Weighted automata algorithms. In Manfred
Droste, Werner Kuich, and Heiko Vogler, editors, Handbook of
Weighted Automata, pages 213–254. Springer, 2009.

[MP14] Andreas Metzger and Klaus Pohl. Software product line enginee-
ring and variability management: Achievements and challenges.
In Proc. of FOSE’14, pages 70–84, New York, NY, USA, 2014.
ACM.

[MS80] Masato Morisaki and Ko Sakai. A complete axiom system for
rational sets with multiplicity. Theoretical Computer Science,
11(1):79–92, 1980.

[NSL+12] Truong K. Nguyen, Jun Sun, Yang Liu, Jin S. Dong, and Yan Liu.
Improved BDD-based discrete analysis of timed systems. In Proc.
of FM’12, volume 7436 of LNCS, pages 326–340. Springer, 2012.

[Par81] David Park. Concurrency and automata on infinite sequences. In
Peter Deussen, editor, Theoretical Computer Science, volume 104
of LNCS, pages 167–183. Springer, 1981.

[PS11] Damien Pous and Davide Sangiorgi. Enhancements of the coinduc-
tive proof method. In Davide Sangiorgi and Jan J. M. M. Rutten,
editors, Advanced Topics in Bisimulation and Coinduction. Cam-
bridge University Press, 2011.

[PT99] John Power and Daniele Turi. A coalgebraic foundation for linear
time semantics. In Martin Hofmann, Dusko Pavlović, and Giuseppe
Rosolini, editors, Proc. 8th CTCS Conf., volume 29 of Electronic
Notes in Theoretical Computer Science. Elsevier, 1999.

[Rah09] George Rahonis. Fuzzy languages. In Manfred Droste, Werner
Kuich, and Heiko Vogler, editors, Handbook of Weighted Automata,
pages 481–517. Springer, 2009.

[RBB+15] Jurriaan Rot, Filippo Bonchi, Marcello Bonsangue, Damien Pous,
Jan J. M. M. Rutten, and Alexandra Silva. Enhanced coalgebraic
bisimulation. Mathematical Structures in Computer Science, pages
1–29, 2015.



313

[Rut00] Jan J. M. M. Rutten. Universal coalgebra: a theory of systems.
Theoretical Computer Science, 249:3–80, 2000.

[Sak09] Jacques Sakarovitch. Rational and recognisable power series.
In Manfred Droste, Werner Kuich, and Heiko Vogler, editors,
Handbook of Weighted Automata, pages 105–174. Springer, 2009.

[Sch61] Marcel-Paul Schützenberger. On the definition of a family of
automata. Information and Control, 4(2–3):245–270, 1961.

[Sta03] Eugene W. Stark. On behaviour equivalence for probabilistic
i/o automata and its relationship to probabilistic bisimulation.
Journal of Automata, Languages and Combinatorics, 8(2):361–395,
2003.

[Sta09] Sam Staton. Relating coalgebraic notions of bisimulation. In Proc.
of CALCO ’09, pages 191–205. Springer, 2009. LNCS 5728.

[tBFGM16] Maurice H. ter Beek, Alessandro Fantechi, Stefania Gnesi, and
Franco Mazzanti. Modelling and analysing variability in product
families: Model checking of modal transition systems with varia-
bility constraints. Journal of Logical and Algebraic Methods in
Programming, 85(2):287 – 315, 2016.

[tBLLLV15] Maurice H. ter Beek, Axel Legay, Alberto Lluch-Lafuente, and
Andrea Vandin. Statistical analysis of probabilistic models of
software product lines with quantitative constraints. In Proc. of
SPLC ’15, pages 11–15. ACM, 2015.

[UH14] Natsuki Urabe and Ichiro Hasuo. Generic forward and backward
simulations III: Quantitative simulations by matrices. In Proc. of
CONCUR ’14, pages 451–466. Springer, 2014. LNCS/ARCoSS
8704.

[WDHR06] Martin De Wulf, Laurent Doyen, Thomas A. Henzinger, and
Jean-François Raskin. Antichains: A new algorithm for checking
universality of finite automata. In Proc. of CAV ’06, pages 17–30.
Springer, 2006. LNCS 4144.



314

[Wor05] James Worrell. On the final sequence of a finitary set functor.
Theor. Comput. Sci., 338(1-3):184–199, June 2005.



Index

F (functor for CTS), 260
F (operator for CTS), 202
F (operator for weighted automata),

104
F1 (operator for CTS), 202
F2 (operator for CTS), 202
G (operator for conditional bisimilarity

with action precedence), 218
G1 (operator for conditional bisimilari-

ty with action precedence), 218
G2 (operator for conditional bisimilari-

ty with action precedence), 218
S (monad), 85
T (lattice functor), 243
≡X on arrows, 56
≡X on matrices, 106
≤X on arrows, 56
≤X on matrices, 106
Coalg(F ) (category), 46
H (category), 94
Kl(S), 85
M(S), 82
M(S) (as Kleisli category), 85
Poset (category), 36
Rel (category), 36
Set (category), 35
P (on Poset), 253
Path∼ (functor), 77

⊗-multiplication, 209
l-monoid, 23
Paws, 277

Algorithm A, 59
Algorithm A (language equivalence for

weighted automata), 111
Algorithm B, 61
Algorithm B (language equivalence for

weighted automata), 114
Algorithm C, 62
Algorithm D, 66
antisymmetry, 12
approximation (of Boolean algebra ele-

ments in a lattice), 22
approximation (ROBDD), 229
arrow, 34
associative, 8
associative (category), 34
associative law (monad), 43

BDD, 224
behavioural equivalence, 48
behavioural equivalence as a post-fixpoint,

58
Birkhoff’s representation theorem, 18
bisimulation (CTS without upgrades),

34
bisimulation (CTS), 195
bisimulation (LaTS), 198

315



316

bisimulation (LTS), 31
bisimulation game (CTS), 212
bisimulation game (LTS), 32
Boolean algebra, 19
Boolean expressions, 17
bounded lattice, 15
branching bisimulation (coalgebra), 78

category, 34
category of matrices, 82
class of representatives for weighted

automata, 89
coalgebra, 46
coalgebra homomorphism, 46
codomain, 34
commutative, 8
commute (diagram), 42
complete lattice, 15
component (of a natural transformati-

on), 42
composition functor, 41
composition of functors, 41
composition of natural transformati-

ons, 43
concrete category, 40
conditional bisimulation, 195
conditional bisimulation (CTS with ac-

tion precedence), 218
conditional transition system (coalge-

bra), 260
conditional transition system (with up-

grades), 193
conditional transition system (without

Upgrades), 33
configuration, 223

congruence closure, 136
congruence closure (proof rules), 136
congruence closure (rings), 137
conjugacy, 108
coslice category, 56
CTS (coalgebra), 260
CTS (with upgrades), 193
CTS (without Upgrades), 33
CTS with action precedence, 216

deactivation of upgrades, 216
deterministic automaton, 25
deterministic automaton (coalgebra),

71
distributive lattice, 16
distributive law (from (_Φ)A to (_A)Φ),

255
distributive law (monads), 45
distributive laws (semiring), 9
domain, 34
downward-closed (ROBDD), 228
downward-closed sets, 17

embedding (of a finite distributive lat-
tice into a Boolean algebra), 21

embedding (of semirings into rings),
140

embedding of a semiring into a field,
140

endofunctor, 38
epimorphism, 37
equivalence of arrows, 56
equivalence relation, 12
extension of functors, 45

factorisation structure on Poset, 264



317

factorisation structures, 52
faithful functor, 40
feature diagram, 223
featured transition system, 223
field, 9
final chain, 51
Final Chain Algorithm A, 59
Final Chain Algorithm B, 61
Final Chain Algorithm C, 62
Final Chain Algorithm D, 66
final object, 38
fixpoint algorithm (conditional bisimi-

larity), 202
free monoid, 25
FTS, 223
functor, 38

generator / generating set, 10

Heyting algebra, 19
history dependent automaton (coalge-

bra), 94

identity functor, 39
infimum, 14
instantiation of CTS, 195
inverse arrow, 37
irreducible elements, 17
isomorphic categories, 41
isomorphism, 37

JID, 243, 295
join-infinite distributive law, 243, 295
join-irreducible elements, 17

kernel of a function, 96
kernel of a named function, 96

Kleisli category, 44
Kleisli category of matrices, 85
Kleisli category over Poset, 241

labelled transition system (coalgebra),
71

labelled transition system (LTS), 30
language (deterministic automata), 26
language (non-deterministic automa-

ta), 26
language (weighted automaton), 29
language equivalence (weighted auto-

maton), 29
language equivalence (weighted auto-

maton, alternative characteri-
sation), 107

LaTS, 197
lattice, 15
lattice bisimulation, 198
lattice homomorphism, 16
lattice monad, 243
Lattice Transition System, 197
LTS (coalgebra), 71

matrix, 10
matrix multiplication algorithm (for

conditional bisimilarity), 210
maximum, 14
minimum, 14
monad, 43
monoid, 8
monomorphism, 37
monotone function (order-preserving

function), 12
morphism, 34



318

multiplication (lattice monad), 243
multiplication (monad), 43

named function, 94
named set, 94
natural isomorphism, 42
natural transformation, 42
non-deterministic automaton, 26
non-deterministic automaton (coalge-

bra), 47
non-deterministic automaton in Kl(P),

50
normal forms, 141

object, 34
order on arrows, 56
order-preserving function (monotone

function), 12

partial order, 12
partially ordered set, 12
partition refinement algorithm (LTS

bisimilarity), 32
partition refinement algorithm for con-

ditional bisimilarity, 204
path, 77
poset, 12
powerset functor (Set), 39
powerset monad (Set), 44
preorder on arrows, 56
preorder on named functions, 96
product, 223
pseudo-factorisation, 53
pseudo-factorisation (for Kl(_Φ)), 266

reader monad (Poset), 242

reader monad (Set), 43
reflective subcategory, 53
reflxivity, 12
relation, 12
residuum, 19
rewriting, 141
rewriting system for a graph, 187
ring, 9
ROBDD, 225
routing protocol (CTS example), 194
routing protocol with action precedence

(CTS example), 217

semimodule, 10
semiring, 9
similarity (weighted automaton), 175
simulation (weighted automaton), 175
software product line, 223
SPL, 223
split-mono, 58
subsemimodule, 10
supremum, 14
symmetry, 12

transitivity, 12
tropical semiring, 9

unique up to isomorphism, 38
unit (lattice monad), 243
unit (monad), 43
unit law (monad), 43
upgrade features, 223

weighted automaton, 29
weighted automaton (coalgebra), 82
winning strategy for player 1 (bisimu-

lation game for CTS), 213



319

winning strategy for player 2 (bisimu-
lation game for CTS), 213


	Introduction
	State-Based Systems with Conditions or Weights
	Structure of the Thesis
	Publications

	Mathemetical Foundations
	Semirings and Semimodules
	Semirings
	Semimodules

	Lattices and Order Theory
	Partially Ordered Sets
	Lattices
	Birkhoff's Representation Theorem
	Embedding into Boolean Algebras and Approximation into Lattices

	State-Based Systems
	From (Non-)Deterministic Automata to Weighted Automata
	From Labelled Transition Systems to Conditional Transition Systems

	Category Theory and Coalgebra
	Categories and Morphisms
	Functors
	Natural Transformations and Monads
	Coalgebra
	Coalgebraic Behavioural Equivalence


	Generic Partition Refinement Algorithms for Coalgebras
	Introduction
	Preliminaries
	Generic Algorithms
	Applications to Various Automata Models
	Deterministic Automata and Labelled Transition Systems: The Classical Cases
	Branching Bisimulation for LTS
	Weighted Automata
	HD-Automata

	Conclusion

	Language Equivalence for Weighted Automata: An Instantiation of the Final Chain Algorithm
	Introduction
	The Prototype Algorithm
	The Operator F
	Equivalences and Preorders on Matrices
	Comparison to Conjugacy
	Algorithm A for Checking Language Equivalence
	Algorithm B for Checking Language Equivalence

	Algorithmic Issues and Case Studies
	A Concrete Instantiation of Algorithm B
	Case Study: l-Monoids and Fuzzy Automata

	Conclusion

	Up-To Techniques for Weighted Systems
	Introduction
	Congruence Closure
	Problem Statement
	Congruence Closure for Rings
	Embedding Semirings into Fields
	Congruence Closure for l-Monoids

	Up-To Techniques for Weighted Automata
	Coinduction and Up-to Techniques
	Language Equivalence for Weighted Automata
	Language Inclusion
	Threshold Problem for Automata over the Tropical Semiring
	Exploiting Similarity
	An Exponential Pruning

	Runtime Results for the Threshold Problem
	The Shortest Path Problem in Directed Weighted Graphs
	Conclusion and Future Work

	Algorithmic Issues and Applications for Conditional Transition Systems with Upgrades
	Introduction
	Conditional Transition Systems
	Lattice Transition Systems
	Correspondence to Fitting's Bisimulation

	Computation of Lattice Bisimulation
	A Fixpoint Approach
	Lattice Bisimilarity is Finer than Boolean Bisimilarity
	Matrix Multiplication
	Bisimulation Game
	Deactivating Transitions

	Application to Software Product Lines
	Featured Transition Systems
	BDDs as Models for Boolean Formulae
	BDDs for Lattices
	Implementation and Run-Time Results

	Conclusion, Related Work, Future Work

	Conditional Transition Systems Coalgebraically
	Introduction
	Preliminaries
	Equivalence of Lattice Monad and Reader Monad
	Modelling CTS without Upgrades using P
	Modelling CTS with Upgrades in P
	Computing Behavioural Equivalence
	Conclusion, Related Work and Future Work

	Implementation, Future Work and Conclusion
	PAWS: A Tool for the Analysis of Weighted Systems
	Future Work
	Conclusion

	Additional Proofs (chap:BEq)
	Additional Proofs (chap:CC)
	Proofs on the Embedding of Semirings
	Termination of HKP without Abstraction

	The Lattice Monad is a Monad (chap:CTSB)
	Leere Seite

