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iv Zusammenfassung

Zusammenfassung

Die Visualisierung und Animation von Algorithmen ist in den letzten Jahren sowohl bei Lehrkräften
als auch bei Lernenden auf weltweit zunehmendes Interesse gestoßen. Dieses Interesse wird belegt
durch die wachsende Anzahl an wissenschaftlichen Publikationen, verfügbaren Animationssyste-
men und die Anzahl frei erhältlicher Animationen im World Wide Web. In ihrem Artikel von 1998
geben Price, Baecker und Small die Zahl verfügbarer Animationssysteme als “über 150” an [156].
Seit dem Zeitpunkt der Publikation ist diese Zahl nochmal deutlich gestiegen.
Diese Arbeit stellt ein Framework für Algorithmenvisualisierung (AV) vor, das zahlreiche beson-
dere Eigenschaften bietet, die es von aktuellen Animationssystemen abhebt. Hierzu zählt insbeson-
dere die sehr weitreichende Dynamik des Frameworks hinsichtlich seiner Zusammenstellung. Für
diesen Zweck wird die Verwendung dynamischer Lookup-Datenstrukturen konsequent auf die Ad-
ministration sowohl von Komponenten als auch deren Attributen ausgedehnt. Als Ergebnis entsteht
ein Framework, das die Einfügung einzelner Komponenten zur Laufzeit durch dynamisches Laden
ebenso unterstützt wie die Entfernung von Komponenten und die Einführung zusätzlicher “At-
tribute”.
Ein besonderes Konzept zur dynamischen Vermittlung nutzbarer Funktionalitäten durch eine Abar-
beitung von Anfragen und Bereitstellung von Auswahlmöglichkeiten mittels einer sogenannten
Handler-Klasse findet im Framework weitreichenden Einsatz. Dieses Konzept kann auch in vielen
anderen Softwarebereichen erfolgreich eingesetzt werden. Zusätzlich unterstützt das Framework
die Verwendung übersetzbarer GUI-Elemente auf Basis der Java Swing-Bibliothek, wobei gleich-
zeitig die Erstellung der Komponenten vereinfacht wird. Da diese dynamischen Eigenschaften
des Frameworks für viele Anwendungsgebiete interessant sind, werden sie im Rahmen der Arbeit
zunächst abstrakt vorgestellt, bevor sie in den konkreten Anwendungszweck der Algorithmenvisu-
alisierung eingebettet werden.
Zu den besonderen Leistungen des Frameworks im Bereich der Algorithmenvisualisierung zählt
insbesondere die Unterstützung für flexible Ablaufkontrolle inklusive vollwertigem Rückwärtsab-
spielen der Animationsinhalte. Zur Demonstration der Nutzbarkeit des Frameworks stellt die Ar-
beit eine Umsetzung in einen konkreten Prototypen vor, der weitere Funktionsmerkmale beinhal-
tet. Hierzu zählen etwa die Unterstützung mehrerer Generierungs- und Editierarten sowie eine
eingebaute Skriptsprache mit Unterstützung für modulare Animationskomponenten. Die direkte
Übersetzung von Animationsinhalten mit automatischer Anpassung der Positionen davon betrof-
fener Objekte wird im Rahmen des Prototyps erstmals im Bereich der AV vorgestellt.
Die Arbeit ist wie folgt strukturiert. Kapitel 2 gibt einen kurzen Überblick über die Geschichte
der Algorithmenanimation. Basierend auf Price et al. [156] werden vier Rollen im Umgang mit
AV-Systemen vorgestellt: Nutzer verwenden das System zum Betrachten und Interagieren mit der
Animation; Visualisierer erstellen die Animationen; Entwickler erstellen oder erweitern das Ani-
mationssystem; Programmierer implementieren den zu animierenden Algorithmus, eventuell ohne
dabei von einer geplanten Animation zu wissen. Einzelne Personen können dabei mehrere Rollen
innehaben. So wird beispielsweise der Visualisierer oftmals die Rolle des Nutzers annehmen, um
sich von der Qualität der erstellten Animation zu überzeugen.
Zusätzlich wird ein einfaches Klassifikationsschema für Animationssysteme vorgestellt, das die
Systeme einteilt in themengebundene Systeme sowie anhand der Animationserstellungsart nach
manueller Eingabe, API-Programmierung, Skriptsprachenbefehlen oder logischen Beschreibungen.
Die Verteilung der einzelnen Rollen sowie typische Stärken und Schwächen der Ansätze werden
dabei ebenfalls beleuchtet.
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Basierend auf einer umfangreichen Betrachtung verfügbarer Applets und AV-Systemen sowie Lite-
raturrecherchen werden Anforderungen an AV-Systeme formuliert. Die Anforderungen sind un-
terteilt in allgemeine sowie von den einzelnen Nutzungsrollen ausgehende und werden unter Berück-
sichtigung der relevanten Publikationen in Kapitel 3 präsentiert. Aktuelle AV-Systeme realisieren
nur eine stark eingeschränkte Untermenge dieser Anforderungen. Andererseits macht es die stetig
steigende Erwartungshaltung hinsichtlich Funktionalität in allen Softwarebereichen unwahrschein-
lich, dass es ein “ideales” AV-System geben kann, das allen Wünschen gerecht werden kann. Daher
sollte ein AV-System so flexibel gestaltet werden, dass Ergänzungen und Erweiterungen der Funk-
tionalität so leicht wie möglich realisiert werden können.
Aufgrund dieser Überlegung präsentiert Kapitel 4 den Entwurf des ANIMAL-FARM Frameworks
für dynamisch erweiterbare und anpassbare AV-Systeme. Das Framework adressiert sowohl soft-
waretechnische als auch AV-bezogene Anforderungen. Aus Sicht der Softwaretechnik ist insbeson-
dere die abstrakte Beschreibung des Frameworks interessant, die auf dynamischen Laden und
der intensiven Verwendung dynamischer Lookup-Strukturen beruht und damit eine dynamische
Zusammenstellung und Erweiterbarkeit erlaubt. Hierzu zählt auch die strikte Entkoppelung zweier
zentraler Komponenten durch das Handler-Konzept, das eine sehr konsequente Ausdehnung des
Prinzips der Trennung von Aufgabengebieten (engl. separation of concerns) erlaubt und als Ent-
wurfsmuster (engl. design pattern) für den Entwurf dynamisch anpassbarer Kommunikation dienen
kann. Ein allgemeines Softwarepaket zur Übersetzung von grafischen Elementen rundet den soft-
waretechnischen Leistungsumfang des Frameworks ab.
Aus AV-Sicht ist einer der entscheidenden Beiträge des Frameworks die effiziente Unterstützung
des Zurückspulens und sogar des flüssigen Rückwärtsabspielens von Animationen. Auf dem First
International Program Visualization Workshop im Jahr 2000 stellte ein Mitglied des Programmkomi-
tees die Bedeutung des Zurückspulens als “one of the most important ‘open questions’ in AV”
heraus [2]. Das hier vorgestellte Framework beinhaltet diese Funktionalität, wurde aber weniger
als ein halbes Jahr nach Publikation des Artikels fertiggestellt, was die Ausdruckskraft der ihm
zugrundeliegenden Konzepte unterstreicht.
Kapitel 5 stellt die erste Umsetzung des Frameworks vor: das ANIMAL System. ANIMAL ist dy-
namisch erweiter- und anpassbar und komplett unabhängig von einem Verwendungskontext. Die
meisten denkbaren grafischen Inhalte im zweidimensionalen Raum können basierend auf den un-
terstützten Primitiven Punkt, Linienzug / Polygon, Text und Kreisbogen sowie den Animations-
effekten für das zeigen / verbergen, verschieben, rotieren sowie umfärben von Primitiven dargestellt
werden. In einigen Fällen müssen Primitive zur Repräsentation eines neuen Objekttyps kombiniert
werden.
Die Erweiterbarkeit von ANIMAL unter Nutzung der Strukturen des ANIMAL-FARM Frameworks
wird in Kapitel 6 diskutiert, indem unter anderem Listenelemente als neue Primitive vorgestellt
werden. Ein Listenelement besteht aus einem Text, zwei Polygonen sowie einer Menge von Li-
nienzügen mit einer Pfeilspitze am Ende als Modellierung der Zeiger. Andere Beispielerweite-
rungen im Kapitel umfassen einen Zoom Effekt, weitere Untertypen des allgemeinen Effekts zum
Verschieben von Objekten, zusätzliche Import- und Export-Filter sowie die Hinzufügung weiterer
Sprachenunterstützung zur grafischen Benutzerschnittstelle.
Die Evaluation von ANIMAL in Kapitel 7 zeigt, dass ANIMAL alle gestellten Anforderungen bis auf
sieben unterstützt. Sieben weitere Anforderungen werden nur teilweise angeboten, während fünf
zusätzliche Anforderungen zwar erfüllt werden, von ANIMAL als kontextunabhängiges System
aber nicht garantiert werden können. Insgesamt erfüllt ANIMAL mehr Anforderungen als irgendein
anderes aktuelles AV-System.
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Die wissenschaftlichen Hauptbeiträge dieser Arbeit liegen in verschiedenen Bereichen. Die in
Kapitel 3 zusammengetragenen Anforderungen resultieren aus einer sorgfältigen Literaturrecherche
sowie eigenen Überlegungen. Sie sind umfangreicher als bisherige einschlägige Publikationen.
Gleichzeitig werden die vier verschiedenen Nutzungsrollen in Betracht gezogen sowie allgemeine
Anforderungen gestellt.
Das Framework dehnt die Verwendung von Hashtabellen zur Speicherung von Werten konsequent
auf die Anforderungen der dynamischen Erweiterbarkeit und Adaptivität aus. Anstelle einfacher
Werte wird Hashing zur Verwaltung der zu einem konkreten Zeitpunkt zur Verfügung stehenden
Komponenten genutzt, was eine leichte Ergänzung oder Entfernung von Komponenten begünstigt.
Der Zustand der einzelnen Komponenten wird ebenfalls in einer dynamischen Struktur verwaltet
anstelle einer festen Codierung in Form von Attributen. Hierdurch können Entwickler leicht weitere
Zustandsbeschreibungen einfügen, ohne den Quelltext des Frameworks oder des Gesamtsystems
zu ändern. Im Rahmen des Frameworks finden zusätzlich mehrere Entwurfsmuster Verwendung,
indem etwa die zentralen Hashtabellen in einem Singleton [61, p. 217ff] verwaltet werden.
Die bereits erwähnten Handler-Klassen dienen zu einer vollständigen Entkoppelung von primären
Komponenten. Für diese Vorgehensweise zur Vermittlung verfügbarer Funktionalitäten zwischen
den entkoppelten Komponenten finden sich zahlreiche Anwendungsgebiete. Ein Hauptvorteil des
Ansatzes ist dabei die stark vereinfachte Entwicklung von Erweiterungen der entkoppelten Kom-
ponenten durch eine klare Trennung der Aufgabengebiete (engl. separation of concerns). Hand-
ler agieren in diesem Sinn als ein spezielles Entwurfsmuster für die bessere Unterstützung von
erweiterbaren Systemen.
Die Strategien für die Erstellung dynamisch erweiterbarer Systeme werden im Rahmen der Arbeit
erstmals auf den Entwurf eines Frameworks für AV-Systeme übertragen. Hier kann die verwen-
dete Modellierung ihre volle Flexibilität durch die von ihr unterstützten Operationen herausstellen.
Die strikte Trennung der Aufgabengebiete mittels des Handler-Konzepts ermöglicht dabei eine ein-
fache und effiziente Unterstützung des Rückwärtslaufs in Animationen. Gleichzeitig ermöglicht die
Grundstruktur des Frameworks die Ausdehnung des Rückwärtslaufs – sowohl in Form eines schritt-
basierten Zurückspulens als auch in dynamischem Rückwärtsabspielen – auf dynamisch eingebet-
tete Erweiterungen von Animationseffekten und grafischen Objekte, ohne dass der Autor dieser
Komponenten hierzu eine zusätzliche Implementierung leisten muss. Verglichen mit den meis-
ten bisherigen AV-Systemen bietet das vorgestellte Framework “echtes” Rückwärtsspielen anstelle
der Nutzung einer eingeschränkten Historie. Zusätzlich verfolgt das Framework eine deutliche
Trennung von Inhalten (engl. separation of concerns), die in ihrer Ausgestaltung eine sehr große
Flexibilität erlaubt.
Die im Rahmen des Frameworks vorgestellten Komponenten für übersetzbare GUI-Komponenten
werden zusätzlich auch für die Unterstützung von übersetzbaren Animationen genutzt. Hierzu ist
eine relative Platzierung der Primitiven erforderlich, um den unterschiedlichen Abmessungen von
Texten in verschiedenen Sprachen Rechnung zu tragen.
Die in ANIMAL eingebettete und im Rahmen dieser Arbeit vorgestellte Skriptsprache ANIMAL-
SCRIPT bietet zusätzlich Unterstützung für modulare Animationskomponenten mit der Möglichkeit
zum Datenaustausch. ANIMALSCRIPT-Animationen können manuell erstellt oder automatisch
generiert werden, wobei die Eingabedaten des Nutzers oder Visualisierers entsprechend berück-
sichtigt werden. In Kombination mit dem JHAVÉ-System [131, 181] unterstützt ANIMALSCRIPT

ebenfalls interaktive Vorhersagen als didaktisch motiviertes Modell zur Verbesserung des Verständ-
nisses.
Teile dieser Arbeit wurden bereits als Konferenzbeiträge oder Journalartikel veröffentlicht. Die
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verschiedenen Techniken zur Generierung von Animationsinhalten für Lehrzwecke wurden zuerst
bei der SITE Konferenz 2000 präsentiert [173]. Ein Beitrag bei der SIGCSE Konferenz im Jahr
2000 [174] erläuterte die Motivation für die Verwendung von AV-Systemen in einer Vorlesung zur
Einführung in die Informatik. Der Beitrag stellte den damals aktuellen Stand des ANIMAL-Systems
vor. Zwei Beispielanimation zu Quicksort und der Verifikation von Algorithmen wurden detailiert
beschrieben, zusammen mit den im Einsatz von AV gewonnenen Erfahrungen.
Auf der Basis zweier Konferenzposter [175, 183] und der sich daraus ergebenden Diskussion
mit Konferenzteilnehmern wurde auf der ITiCSE 2000 [184] der Entwurf des ANIMAL-Systems
vorgestellt. Zu diesem Zeitpunkt bot ANIMAL nur eine grafische Schnittstelle zur Erzeugung von
Animationen und eingeschränkte Unterstützung von Zoomen und Export. Ein Beitrag beim First
International Program Visualization Workshop im Anschluß an ITiCSE 2000 [177] und einem
Beitrag zur SIGCSE 2001 [179] stellte die Skriptsprache ANIMALSCRIPT vor. Eine kurze Beschrei-
bung der dynamischen Erweiterbarkeit von ANIMALSCRIPT befindet sich ebenfalls in dem letzt-
genannten Beitrag.
Die vier Nutzerrollen gemäß Price et al. [156] wurden zuerst in einer gleichzeitigen Veröffent-
lichung in den Zeitschriften Informatik / Informatique [178] und Novática [176] der Informatik-
Dachorganisationen der Schweiz und Spaniens verwendet. Diese Artikel beschreiben auch weiter-
führende Merkmale von ANIMAL, wie etwa die Internationalisierung und die Strukturierung von
Animationen.
Drei weitere Publikationen befinden sich zur Zeit im Druck. Ein Artikel in der Aprilausgabe
2002 des Journal of Visual Languages and Computing [180] umfasst die Unterstützung der vier
Nutzerrollen sowie die grundlegenden Merkmale im Rahmen von ANIMAL. Ein Beitrag bei der
ITiCSE 2002 [181] präsentiert mehrere pädagogische Anforderungen an AV-Systeme und erläutert,
wie diese in der Kombination von JHAVÉ [131] mit ANIMAL umgesetzt werden. Wesentliche
Entscheidungshilfen für oder gegen konkrete Animationssysteme liefert der Beitrag bei der SEC
III Konferenz [170].
Weitere Publikationen befinden sich zur Zeit in Begutachtung für den Second International Pro-
gram Visualization Workshop. In [171] wird das ANIMAL-FARM Framework von Kapitel 4 vorge-
stellt. Ausgewählte aktuelle Forschungsvorhaben im AV-Bereich, die in [182] vorgestellt wer-
den, sollen AV-System interaktiver machen und in die Richtung intelligenter Tutorensysteme wei-
terführen. Die Entwicklung eines umfangreichen AV-Repositories wird in [40] vorgestellt.
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Chapter 1

Introduction

One central challenge in computer science lies in understanding the dynamics of algorithms and
data structures. This is of particular importance in two areas: computer science education and
programming, especially concerning debugging. Understanding how and why an algorithm such
as Quicksort works is challenging for students and novice programmers. Finding a presentation
that allows learners to see how the intricate details of an implementation cooperate and interdepend
is usually difficult. Pinpointing the precise location of an implementation bug is difficult even for
advanced programmers. Both tasks are especially difficult if a static medium such as paper or an
irreversible presentation technique such as writing on a blackboard is used.
Software for instructing novices how to program and debug their code is increasingly used in com-
puter science education. Algorithm Visualization (AV) systems are a special application of software
visualization, focusing on visualizing the dynamic behavior of software. The most common appli-
cation areas of AV lie in education and debugging. The interest in AV from computer science
education has steadily increased over the last years, as evidenced by the number of publications on
the topic. AV software visualizes the behavior of algorithms and data structures and thus mostly
frees the user from having to manually trace the underlying implementation code.
A large number of AV systems are already available, mainly from educational institutions. They
differ in a large number of ways, including the degree of interactivity, display strategy and the type
of supported input. The interactivity ranges from slide show-like displays without any interactiv-
ity to full-fledged debuggers that let the user specify attribute values and invoke methods. Some
displays may run automatically, possibly even without enabling the user to pause or slow down the
display. Other displays are triggered solely by user events such as pressing mouse buttons. A large
variety of different display control elements exist between the two extremes. Finally, the input
data used by AV systems ranges from actual source code in a specific programming language to
interactive graphical editing using direct manipulation.
The large variety of available systems presents a formidable challenge for users interested in em-
ploying AV. The strengths, weaknesses and restrictions of a given system are usually not obvious at
first glance. One drawback common to most current AV systems is the lack of support for easy cus-
tomization of the system. Furthermore, it is highly unlikely that a given fixed system can meet all
demands of future applications. However, most systems cannot easily be extended with additional
features.
This thesis covers three main aspects for addressing these concerns. First, an extensive set of
requirements for an “ideal” AV system is defined. These requirements also address different types
of interaction with AV systems including displaying and animation generation demands.
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Second, we introduce a framework design for extensible and configurable systems. The framework
consequently uses dynamic loading for component acquisition and hashing for administrating the
components. Each hashed component acts as a Prototype [61, p. 127ff] and can be cloned for
acquiring a new instance. The administration of components using hash tables allows easy addition
and removal of individual components at run-time. By modeling the object state by properties
instead of fixed attributes, the framework also allows the introduction of new object properties at
run-time. The handler concept introduced in this thesis allows a very strict separation of concerns
between two parties, with the negotiating handler fully decoupling the components. The framework
also provides a package for on-the-fly translation of arbitrary Swing-based GUI components. The
AV components of the framework support efficient animation rewinding and even reverse playing,
which were considered “one of the most important ‘open questions’ in AV” in one of last year’s
more prominent AV publications [2].
Finally, we present a reference implementation prototype of the framework and analyze how it mea-
sures against the set of requirements. The benefits of the framework design regarding extensibility
and adaptivity are emphasized by example extensions. As the prototype is extensible, requirements
which are currently unsupported may be addressed by later extensions.
This thesis is organized as follows. Chapter 2 introduces key terms used throughout this research,
followed by an extensive examination of related AV systems. In chapter 3, we define and moti-
vate a large set of AV system requirements. Where applicable, we also provide references to other
publications that outline the rationale for a given requirement. Chapter 4 presents the design for
dynamically extensible and configurable frameworks. The chapter introduces the consequent usage
of dynamic data structures for supporting dynamic extensibility, as well as the handler concept use-
ful for offering selective views of a given object’s functionality. The general-purpose framework
design is then applied to AV with an emphasis on supporting the requirements discussed in chap-
ter 3. In chapter 5, we present the implementation decisions taken in developing the prototypical
ANIMAL AV system. The system is based on the framework introduced in chapter 4 and the set of
requirements presented in chapter 3. Chapter 6 explores example extensions of the ANIMAL sys-
tem. The features offered by ANIMAL are compared in chapter 7 with the requirements presented
in chapter 3. Chapter 8 concludes the thesis and outlines areas of further research.
Parts of this thesis have been previously published in conference papers or journal articles. The
different techniques for generating animation content for educational purposes were first presented
at the AACE SITE conference in 2000 [173]. A SIGCSE paper in 2000 [174] motivated the use of
adopting AV systems within an introductory computer science course. The primitives and effects
supported by ANIMAL were presented including example animation screen shots. Two example
animations, Quicksort and Introduction to Verification, were discussed in detail. The paper also
summarized several of the lessons we learned during the course. Based on two conference posters
[175, 183] and the discussion with conference participants, a publication at the ITiCSE conference
in 2000 [184] outlined the design of the ANIMAL AV system. It also presented the first rough set
of requirements for AV systems. At this time, the system offered only manual generation within a
GUI and very limited zooming and export facilities. A paper presented at the First International
Program Visualization Workshop in 2000 (published in 2001) [177] and a SIGCSE paper [179]
introduced the scripting language ANIMALSCRIPT, illustrating the main features and the general
structure. A short description of how new features can be added dynamically was included in the
paper. The four usage roles described by Price et al. [156] were adopted by a joint publication in the
journals Informatik / Informatique [178] and Novática [176] of the Swiss and Spanish Computer
Societies, respectively. They also focused on additional functionality of the ANIMAL system, such
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as internationalization and the labeling of animation steps.
Three new publications are currently accepted for publication and in print. A journal article in the
Journal of Visual Languages and Computing special issue on Software Visualization [180] presents
the features that ANIMAL offers for the four roles defined by Price et al. in [156] and outlines the
basic features of ANIMAL. A paper at the ITiCSE 2002 conference [181] illustrates some of the
pedagogical requirements for AV systems and how they are met by the combination of the JHAVÉ
environment [131] and ANIMAL. Key decisions in adopting AV systems for teaching are presented
in a paper for the SEC III conference 2002 [170].
Additionally, three publications are currently under review for publication in the Second Interna-
tional Program Visualization Workshop. The ANIMAL-FARM framework is presented in [171]. A
second paper presents current research issues in AV, which shall take AV systems further in the
direction of interactive intelligent tutoring [182]. Finally, the development of a comprehensive AV
repository is presented in [40].
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Chapter 2

Related Work

2.1 Introduction

Algorithm visualization is a subtopic of software visualization. It focuses on the visualization of
the higher level abstractions which describe software [156]. Algorithm animation is a variant of
AV that uses dynamic effects and transitions, rather than discrete scene images. Thus, it covers
the dynamic display of actual implementation code, pseudo code or other abstract views. In the
following, we will often refer to the field of AV as algorithm animation, or animation for short.
The interest in algorithm animation research and application to education has grown over the last
years, as indicated by the growing number of publications. A good recent overview of the field is
given in the book by Stasko et al. [198]. The basic form of algorithm animation is shown in Fig-
ure 2.1. The animation results from an “appropriate” transformation of the underlying algorithm.
Various different types of transformation are examined in detail in later parts of this chapter.

appropriate
transformation

Algorithm

Animation

Figure 2.1: Base Form of Algorithm Animation Using an “Appropriate” Transformation

The term “animation” is understood differently by diverse researchers. Within the context of this
work, animation always refers to a dynamic display of algorithmic behavior. The precise approach
used for presenting the dynamics can choose from a set of options, including animated images or
video streams. However, the focus is always taken to be on algorithms. Thus, special effects as used
in movies like Toy Story are not counted as animations. This chapter presents some of the history
of algorithm animation, the different roles taken by users of animation tools, and an overview of
the different types of animation.
We give a brief outline of the history of algorithm animation and then discuss the different roles
that a person using an animation system can assume. After exploring the different approaches
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for generating algorithm animations, a large set of animation systems is briefly presented. We
first examine several Java applets ordered by their degree of interactivity. Full-fledged animation
systems are then examined ordered by the adopted generation type. The key findings of the chapter
are summarized in the last section.

2.2 A Short History of Algorithm Animation

One main focus of algorithm animation is educational in nature: making algorithms easier to un-
derstand and grasp. For an overview of how the field has evolved, we take a step back to previous
developments, many of which come from software engineering research. This research has led to
a number of developments for addressing the problems of software complexity and comprehensi-
bility. Examples include top-down design and stepwise refinement, as well as new concepts such
as object-oriented approaches to software design and development. For example, design patterns
[61] help to reduce the complexity of software by providing a reusable class structure for certain
common structures. Other regions of research and progress include the organization and manage-
ment of development teams, integrated software development environments and computer-aided
software engineering (CASE).
Despite all these advances, the current appearance of programs usually does not contribute to mak-
ing a program easily understandable. Baecker and Marcus [12] give an overview of various tech-
niques for publishing C program code that help addressing this to a certain degree. Well-formatted
code is easier to read and follow than unindented code, and the addition of various layout techniques
can improve legibility even further. Comments following certain guidelines can be embedded into
the code and extracted by a tool to generate documentation. This approach is employed for ex-
ample in Java, but has been used at least since 1984, when the WEB system by Knuth embedded
documentation into sources of the TEX typesetting system [106].
Probably the first visual aid for understanding computer programs are flowcharts which were first
demonstrated in 1947 by von Neumann and Goldstein [13]. Several later developments allowed
automatic generation from Fortran code, or embedding into source code. Nassi-Shneiderman dia-
grams, introduced in 1973, present an alternative approach that counters the unstructured nature of
standard flowcharts.
All approaches described so far represent static visual displays of algorithms. The first dynamic
displays go back to films by Knowlton [104, 105] that demonstrated a low-level list processing
language developed at Bell labs. The movies are attributed as being the first to use animation
techniques to portray program behavior and the first to address the visualization of dynamically
changing data structures [13].
Several more short films by other educators followed, including material by John Hopgood for
hashing and syntax analysis and an animated PQ-tree data structure algorithm. Probably the most
influential film for algorithm animation is Sorting Out Sorting [14] by Baecker. Shown at many uni-
versities all over the world, the movie introduces nine different internal sorting methods, including
an efficiency analysis. The movie is described in more detail in [11].
The 1980s saw the wider availability of affordable personal workstations with bit-mapped displays
and graphical user interfaces. This advance allowed researchers to go beyond the prototypes and
highly specific animations of the previous decade and develop full-fledged algorithm animation
systems. The most important and well-known system of the time was the Brown Algorithm Sim-
ulator and Animator (BALSA) by Brown [30], followed by BALSA-II in 1988. Due to the tight



2.3. ANIMATION USER ROLES 7

integration of BALSA with the teaching materials used, hundreds of undergraduates used the tool in
their course of study. Several later tools were inspired by aspects of BALSA.
Since then, the number of animation systems has risen steadily. Price et al. [156] claim that by
1998, more than 150 software visualization prototype systems and animations had been built. The
growing popularity of the Internet and especially the World-Wide Web has helped in spreading
these tools and make users aware of the large number of offers available. The Complete Collection
of Algorithm Animations [33] lists all resources found by its creator in 1998. The reference book
by Stasko et al. [198] provides a good overview of the state of the art of the late 1990s.
Today, various tools stray into hitherto unexplored areas of algorithm animation, including program
auralization [28] and three-dimensional displays [29, 163]. Given the development speed in the
young area of algorithm animation, it will be interesting to see what the state of art will be in ten
years. A good overview of the history of AV and general issues can be found in [198].

2.3 Animation User Roles

Price et al. [156] define four different roles in algorithm animation: programmer, software visual-
ization software developer (or simply developer), visualizer and user. Programmer refers to the
implementer of the underlying algorithm to be animated, for example Quicksort. Developer refers
to the implementer of the animation system, while the visualizer specifies the animation. Finally,
the user views the resulting animation. Depending on the system, this may also include various
degrees of interaction.
Figure 2.2 shows the different roles and how they tie in with the algorithm, animation system and
the animation display. Note that in this context, the programmer may be unaware of animation
plans by the visualizer. Therefore, many animation systems may not be able to provide services for
the programmer role.

Visualizer

User

DeveloperProgrammer

Algorithm

Animation

Animation System

Figure 2.2: Schematic View of User Roles

Each role has specific expectations of algorithm animation systems. Developers may be interested
in how easy it is to update or extend the system. They may also want to be able to adapt the system
to their preferences. Visualizers require flexible animation generation; different ways of generating
animations may be required to address personal preferences or experience levels. Finally, users
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want to have a tool that runs smoothly, is easy to use and offers features such as video player-like
controls.
Many animation systems are geared for one or at most two different roles. In general, the later in
the development or display cycle of an animation a role appears, the more likely it is to be supported
by a given animation system. Thus, users located at the bottom rung of the generation process will
usually find several features that allow for attractive animation display. Visualizers are also likely to
find features that help them in developing new animations, with the exception of some closed-shop
systems that can only display selected animations with fixed data sets.
Developers are often not specially supported, due to the fact that most systems are simply shipped
“as is” and are not meant to be extended or adapted at the client side. Finally, support for the
programmer roles requires special care, as the programmer may not be aware of future animation
plans. Thus, support for this role is usually limited to programs that work on interpreting the
underlying algorithm’s source code or extract debug data for interpretation.

2.4 Animation Generation Approaches

In this section, we discuss the approaches for generating animations. This classification is espe-
cially important for the visualizer role responsible for generating animations, but may also have
consequences on the other roles. Visualizers should choose an animation system that fits their
personal skills and preferences. Such systems may be easier or “more fun” to use, which may
be reflected in both the quantity and quality of the generated animations. The type of animation
generation does not directly impact the features offered to the developer, programmer or user role.
Therefore, the following sections focus on the support for the visualizer role, enabling them to
determine the base type of animation generation most appropriate to their situation.
There are several different approaches for how animations can be generated by a visualizer. One
approach is using a graphical user interface, as included in most presentation tools such as Micro-
soft PowerPointTM and StarOffice ImpressTM, or special generation tools such as Macromedia
Flash. On the other end of the scale, some systems can automatically generate animations by in-
terpreting source code or debug data. Between these extremes lie approaches that employ method
invocations using a special visualization application programmer’s interface (API), use a collection
of ASCII-based commands (often also referred to as “scripting”), generate animations from dec-
larations such as logical predicates, or explicitly encode animations for special topic areas. The
following sections examine the different approaches for animation generation and characterize the
distribution of the four roles in each approach.

2.4.1 Topic-Specific Animation

Topic-specific animation systems offer special support for a limited number of applications. This
support is usually hard-coded, so that the system is restricted to the covered topics.
Figure 2.3 shows the typical role distribution for topic-specific animation systems. The program-
mer implements the original algorithm. The developer implements the complete tool including the
graphical user front-end for displaying the animation. The developer may use the implementation
provided by the programmer, or re-implement the algorithm. This alternative is indicated by a
dotted line connecting the original implementation and the animation system. The developer has
to adapt the algorithm so that it provides an animation while it is being executed. This is often
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User role

Zoom

(empty)

Compare the elements

Programmer role
Developer role
Visualizer role

Figure 2.3: Role Distribution in Topic-Specific Systems

accomplished by adding special method invocations for generating the visualization. The origi-
nal algorithm may also be split into separate units which are invoked in turn, each providing a
visualization of special sub-aspects of the algorithm.
The animation of the underlying algorithm is generated automatically. Thus, the visualizer role has
no direct part in the presentation. It may be possible to configure the appearance or behavior of
the display, for example by setting the animation speed or zoom factor. However, these features
can typically also be adjusted by the end user. Configurations by the visualizer may therefore be
readjusted by the user, weakening the role of the visualizer.
The user interacts with the graphical front-end to see the animation. The amount of adjustable
features varies with each tool, but will usually include a “play” or “step” operation for displaying
the next step. Figure 2.3 also indicates some other possible features including pause, run, execute
until end, or zooming.
We select the image compression packages RLE, Quadtree and JPEG presented in [101] for illus-
trating the typical strengths and weaknesses of topic-specific animations. Each of these packages
animates a special approach for image compression using a fixed graphical front-end for visualiz-
ing the embedded implementation code. Therefore, they cannot be used for other topics such as the
common application area of sorting algorithms. Each system supports exactly one type of image
compression algorithm: run-length encoding (RLE), Quadtree image segmentation and JPEG.
The tools are very helpful in these application areas; however, they are also restricted to the embed-
ded features. Several other approaches for image compression are missing. For example, the image
compression algorithms employed in the popular GIF or PNG are not explained. The tools also
do not support newer compression approaches such as Wavelets [35], fractal compression using
iterated function systems or weighted finite automata [41, 96]. Comparing the performance of the
covered algorithms is made more difficult due to their implementation in separate tools.
These attributes are similar for most topic-specific systems. Developers of such specific systems
possess a precise knowledge of the animation content. Therefore, they can optimize the systems
to provide the best possible illustration of the topics as they perceive it. Note that in general, the
perception of the most helpful or appropriate way of presentation may differ between the developer,
visualizer and user. Most topic-specific animation systems do not give the user a chance to adapt
the display to his or her preferences.
Topic-specific systems may often prevent visualizers from influencing the animation display. In an
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educational context, the visualizer role will typically be assumed by the educator, while the users
will be the students. The main advantage of topic-specific systems for visualizers is that they are
freed from having to generate the animation. Additionally, most topic-specific tools will allow the
user to change the input parameters, for example by providing a different image to be run through
the compression algorithms in the packages described above. This allows users to experiment with
different data sets to get a better understanding of the algorithm’s behavior.
The visualizer should carefully test the system before recommending it to his or her students. Apart
from different perceptions of “good” presentation, there may also be fine but important differences
in the interpretation of the underlying algorithm. For example, there is a wide variety of ways
for choosing the pivot element in the Quicksort algorithm. If the approach used within the tool is
not identical to the one used by the visualizer in the educational context, the users may become
confused. Even worse, such small differences may go unnoticed by both visualizer and users. In
this case, they may later find that they have developed different understandings of finer aspects of
the covered topic. This may be especially harmful for the user in an examination context.

2.4.2 Manual Generation in a GUI

GUI-based generation is typically found in presentation tools such as Microsoft PowerPointTM

or StarOffice ImpressTM. Most presentation systems can also be used for algorithm animations,
although they are not specialized for this usage. Figure 2.4 shows a typical distribution of the roles
in GUI-based animation generation.

User role

Zoom

Programmer role
Visualizer role
Developer role

Compare the elements

A

Graphical
Editor

Conceptual

Mapping

Figure 2.4: Role Distribution in GUI-Based Systems

The programmer implements the algorithm to be animated. The developer is responsible for im-
plementing both the graphical editor and the user interface for displaying the animation. The task
of the visualizer is to perform a conceptual mapping that transforms the algorithm into a visual
representation. The GUI usually offers a set of graphical primitives and animation effects acting
on them. The visualizer generates an animation by assembling a set of graphical primitives and
transforming them using the animation effects. The schematic system shown in Figure 2.4 offers
the basic graphic primitives line, rectangle, text and circle. It also offers moving, rotating, changing



2.4. ANIMATION GENERATION APPROACHES 11

the color and the visibility of graphical primitives, as shown from left to right. Finally, the user can
use the graphical front-end to view the animation.
The graphical front-end used for displaying the animation may be the same as used for generating
the animation. In the figure, the animation display contains the standard control elements including
a zoom operation. The graphical editor used for generating the animation may also be accessible
to the user.
As an example of GUI-based animation generation, we consider manual generation using a standard
presentation tool such as Microsoft PowerPointTM or StarOffice ImpressTM. Several examples
of this can be found in the World-Wide Web, for example [158, 126, 22]. The decision to use a
presentation tool is usually influenced by the fact that the tools are already being used for a slide-
based presentation. Embedding animations in the same tool used throughout the presentation is the
most “natural” approach. This also prevents possible problems regarding switching tasks during the
presentation or lack of memory. The latter is especially important when performing presentations
on notebooks which usually have less RAM than full-fledged desktop computers.
Most systems employing a graphical front-end for animation generation adhere to the WYSIWYG
approach – “what you see is what you get”. Thus, the visualizer will usually see a direct reflection
of his or her actions in the graphical display. This ability to immediately see the effects of any
given action makes the approach very helpful, especially for novices or laypersons. The level of
abstraction expected of the visualizer is also lower than in most other approaches.
The visualizer has a high degree of freedom in designing the animation, as the algorithm and the
animation are completely separated. Thus, he or she can choose any level of abstraction, and adapt
the graphical properties of the display and operations to his or her preferences. For example, a
manually generated animation may gloss over some aspects of an algorithm and focus on the more
salient features, as perceived by the visualizer. Both the extent and the way in which this is used
may differ between visualizer. For example, complex operations may be decomposed into their
basic components and executed step by step.
Another strength of GUI-based generation is that the visualizer can easily enhance the animation
with explanatory notes. As the animation is decoupled from actual implementation code, the expla-
nation does not have to be embedded in the code, and can be arbitrarily terse or verbose, according
to the visualizer’s interests.
Finally, it is very easy for visualizers to illustrate the behavior of a given algorithm when certain
common bugs are present. For example, invalid partitioning strategies for the Quicksort algorithm
can be presented, illustrating how sorting fails. The visualizer does not have to be concerned
with runtime considerations. Combining this approach with focusing strategies also enables the
visualizer to highlight the effect of typical coding mistakes. Infinite loops due to incorrect recursive
calls or loop conditions only impact the visualization. Incorrect pointer assignments also cannot
corrupt the actual algorithm. The commonly held opinion that one learns the most from mistakes
can be tested by presenting such typical coding errors.
Most graphical systems have a proprietary storage format, for example the format used by Mi-
crosoft PowerPointTM. Import of and export to this format is usually supported in related tools.
However, the format is usually ill suited for automatic generation. Part of this is due to the lack
of freely available format documentation or the definition of the subcomponents. For practical
purposes, this means that the visualizer usually has to generate the animation manually. There is
often no free API that the visualizer can use for generating the required format.
Changing a single value of the algorithm’s input data may require editing the whole animation
within the GUI. Thus, this type of animation generation is more suited to generating a prototype
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animation that serves as a guiding example. This animation may be shown and discussed within a
presentation. The presence of only one animation of a given algorithm and the lack of support for
quickly adapting the animation to different parameters may reduce the learning chance of the user.
The time required to generate a full animation manually should not be underestimated by the visual-
izer. The precise amount of time needed differs between reports. Our experience with the ANIMAL

system presented in chapter 5 indicates that visualizers already familiar with the given system re-
quire roughly six hours for generating an “average” algorithm animation. This figure assumes that
the visualizer has already decided on the presentation and thus can directly start generating the
animation. Interestingly enough, this time span corresponds to the required time for generating a
“low-fidelity” animation using papers, pen and scissors, as reported by Hundhausen and Douglas
[84].

2.4.3 API-based Generation

API-based generation involves method invocations using a special visualization application pro-
grammer’s interface (API). The extent of support for primitive types and effects depends on the
underlying visualization API.

User role

Zoom

API Calls API Calls

Visualization API

Compare the elements

Visualizer role
Developer role

Programmer role

Figure 2.5: Role Distribution in API-based Systems

Figure 2.5 illustrates the different roles when using this generation approach. The programmer is
responsible for implementing the actual algorithm. The developer has to provide an appropriate
implementation of the visualization API, as well as a front-end for displaying the resulting anima-
tion. The visualizer has to ensure that the appropriate API methods are invoked. The user interacts
with the display front-end.
API invocations can be implicit or explicit. The upper left section of the figure symbolizes implicit
API method invocations. This may be supported by supplying a special class that incorporates
method invocations instead of a standard class. Note that this requires that the original implemen-
tation expects appropriate objects which can be replaced by the visualizer with customized objects.
An example of this approach is outlined in [138]. Implicit API invocation will in most cases still
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require code modifications, but may be possible without touching the actual algorithm implementa-
tion. Explicit invocations, on the other hand, modify the underlying implementation code by adding
explicit method invocations. This approach is shown in the upper middle of the figure.
API-based generation has several advantages. Once the visualizer has implemented the appropriate
method invocations, a new animation can be generated by simply invoking the algorithm. Illus-
trating the behavior of the algorithm for different parameter values requires only passing in the
appropriate parameters. Depending on the complexity of the algorithm, the visualizer may also be
able to generate a new animation during a presentation. Users may also profit from this fact if the
implementation is available to them.
A good visualization API may contain many methods that allow the visualizer to assemble the
animation easily. Finally, method invocations - whether implicit or explicit - are a “clean” way of
modifying the underlying algorithm. Provided that the API method names and parameters are not
too cryptic, the original algorithm may remain readable even when using explicit invocations.
However, the API-based generation also has disadvantages. First of all, the algorithm to be ani-
mated usually has to be implemented in the same programming language as the visualization API.
There are a small number of exceptions, such as Java’s ability to invoke “native code” methods
using the JINI interface. However, for most practical purposes, the visualizer has to settle for using
the same programming language.
API-based generation requires the visualizer to have a certain amount of programming skill in the
API’s programming language. GUI-based generation, on the other hand, only requires that the
visualizer understands the algorithm and is able to “draw” it. Finally, API-based generation limits
the visualizer to the methods provided in the API. The extent to which this is problematic depends
on the extent of the API.

2.4.4 Scripting-based Generation

Scripting-based generation uses an intermediate format for representing the animation. Typically,
this format consists of a set of text-based commands for generating or modifying graphical prim-
itives. The title derives from the similarity of the output to a “program” written in a scripting
language such as PHP [16] or Perl [208]. However, this should not be taken to imply the format is
a full-fledged programming language capable of handling standard algorithms. Typically, the ex-
pressiveness of the scripting language is strictly limited to animation purposes. Methods, variables,
or loops are usually not supported.
Figure 2.6 illustrates the distribution of roles in scripting-based generation. The programmer imple-
ments an arbitrary algorithm or program. The visualizer is responsible for generating the animation
in either of two ways. Firstly, he or she may substitute one or more parameter objects with specific
objects that produce scripting output, as illustrated in the top left part of the figure. Alternatively,
he or she may add explicit method invocations or other statements that result in the generation of
scripting code within the algorithm. This output is analyzed by the scripting parser and displayed
in the user front-end. Both parser and front-end have to be implemented by the developer. The user
merely interacts with the front-end for displaying the animation.
Modifying an algorithm to generate scripting code is very similar to adding method invocations in
a special visualization API, as described in section 2.4.3. Instead of reading the method documen-
tation of a visualization API, the visualizer has to become familiar with the syntax of the scripting
language. The scripting output can usually be stored in a file and loaded by the parser, allowing the
visualizer to store a set of animations. However, the compiler of the programming language can
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Figure 2.6: Role Distribution in Scripting-based Systems

only detect syntax errors concerning the invocation of the statements used for generating the script-
ing code. Thus, a syntactically correct underlying algorithm may generate syntactically incorrect
scripting code.
Generating scripting code may be easier than figuring out appropriate API method invocations,
depending on the visualizer’s programming skills and the extent of the API. Scripting offers the
advantage of storing animations to disk, so that visualizers can prepare a set of animations. If
an animation using the requested parameter values is already available, it can be loaded directly;
otherwise, the algorithm has to be invoked according to the parameters. One especially helpful
feature of scripting based on stored scripting code is that the visualizer can fine-tune the animation
by manually editing the stored code. Once the desired result is reached, this can be reinserted into
the implementation code for generating the animation. Thus, the visualizer may avoid having to
recompile and execute the algorithm to determine the output. Depending on the characteristics of
the algorithm, this can save a huge amount of time.

2.4.5 Declarative Visualization Generation

Declarative generation regards visualization as a mapping from a given program state to graphi-
cal representations. It uses abstract mathematical expressions which can result in complex visual
representations. The declarative approach was introduced in [164] and is summarized in [163].
Figure 2.7 illustrates the distribution of roles. The programmer develops the program code. The
visualizer defines a mapping from program states to their graphical representation, and the user
examines the results of the visualization. The developer has to implement a system that analyzes the
mappings and generates the representation, as well as a front-end for displaying the animation. The
conceptual execution model updates the display whenever the program changes state in a relevant
manner. There may also be a special directive allowing the visualizer to deactivate the visualization
update [44].
Declarative visualizations are usually also embedded into the code as abstract specifications, for



2.4. ANIMATION GENERATION APPROACHES 15

User role

Zoom

Programmer role
Visualizer role
Developer role

Compare the elements

A

Graphical
Representation

Mapping
State

Figure 2.7: Role Distribution in Declarative Visualization

example in a special comment notation. A special compilation or extraction mechanism is required
for mapping these abstract specifications into a computation. However, the developer also has
to provide the mechanism for extracting the specifications, as well as a front-end for displaying
the visualization itself. Thus, declarative visualization tends to shift part of the work required for
generating visualizations from the visualizer to the developer.
Mapping the program state to a graphical representation may be difficult for visualizers not schooled
in mathematical reasoning. Declarative visualization system such as Pavane [165] and Leonardo
[39] use predicates for specifying the mapping. Figuring out how to read the predicates and use
them appropriately may present an initial obstacle.

2.4.6 Generation By Code Interpretation

Some animation systems offer a direct visualization of algorithms from the underlying code. There
are three main approaches for achieving this. The first approach relies on a debugger used for
retrieving the current state of the program. The second approach preprocesses the underlying source
code and modifies it before sending it along to the compiler or interpreter. Alternatively, the code
may also be interpreted “as is”. The latter two approaches may require slight modifications to the
code, such as using a customized version of input and output methods.
Figure 2.8 illustrates a typical role distribution for code interpretation-based animation. The pro-
grammer implements the algorithms without regard to their visualization. The developer is respon-
sible for implementing an appropriate technique for analyzing the code and interpreting it, as well
as a user front-end for displaying the animation. The user interacts with the front-end as usual.
The visualizer role depends on the mode of generation. Systems that rely on debugger data, such as
DDD [212] or Kami [205], need no modification of the actual source code. The only interaction for
customizing the display is usually the addition or removal of breakpoints for retrieving the current
program state. If the breakpoints or a full session can be saved, as in DDD [212], the visualizer can
preselect them for the user. Otherwise, the user is responsible for the animation display.
Systems that preprocess unmodified algorithm code, such as WinHIPE [128] and ZStep 95 [114],
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do not require a visualizer. The user will typically be able to choose the amount of detail of the
display using a special control bar.
The main strength of code interpretation-based animation is certainly the tight connection between
the code and its visualization. Errors in the graphical display are nearly impossible, apart from
those caused by bugs in the code interpretation modules. Thus, the user always sees the actual im-
plementation and can analyze the exhibited behavior. Changes to the implementation code will be
reflected in the animation, once the code has been recompiled or reloaded for interpretation. Users
can easily change aspects of the programmer’s code to determine the actual effects this causes.
The main weaknesses of the approach lie in its restricted expressiveness and level of abstraction,
as well as a possibly severely restricted granularity control. The expressiveness of the animation is
restricted to the display of the actual code execution. Explanatory texts or cross-references cannot
easily be added, so that the code has to “speak for itself”. This is probably sufficient in many
applications areas such as code debugging. However, certain aspects of the implementation may
be difficult to understand based on the implementation alone. For example, moderately advanced
sorting algorithms such as Shellsort and Mergesort may confuse the user when only a display of
the changed elements is presented.
It is often very difficult, if not outright impossible, to change the level of abstraction. Users may
find it very difficult to understand some algorithms containing very efficient implementations of
comparatively “mundane” subtasks. For example, Dijkstra’s Shortest Path algorithm requires the
determination of an unvisited node with minimum connection costs from the start node in each
loop iteration. It is comparatively easy to state this abstractly, as shown in the previous sentence. A
standard approach for determining the next node involves storing the connection costs in a priority
queue which has to adapt to changed connection costs in each loop iteration. Visualizing this
segment of the algorithm may confuse users not yet familiar with Dijkstra’s algorithm and mix
implementation details and algorithm issues.
The user interface may provide only a limited selection of operations for adjusting the granularity
of the display. For many educational applications, it might be preferable to take the result of a given
set of code lines for granted. In Dijkstra’s algorithm, it may be beneficial to assume that the node
has been determined “somehow”, so that users can focus on the algorithm’s base idea. The user
might also want to skip lengthy initialization code and focus on the actual problem. In some cases,
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this may be possible by setting or erasing breakpoints, as in DDD [212], or using special “show
value” controls as in ZStep 95 [114]. If this operation is not supported, the user has to sit through
the full initialization process.
Finally, code interpretation-based animation is not suitable for all possible application areas. Ob-
viously, it can only be used if an appropriate implementation of a given topic is available. The
programming language usually has to match the programming language used in the interpretation
tool. Debugger-based tools may not have this restriction, but will usually require an executable file
which may preclude the animation of programs implemented in interpreted programming languages
such as Smalltalk or Lisp.

2.5 Evaluation of Representative Tools

Price et al. [156] state that more than 150 animations and authoring systems have been developed.
However, this number stems from 1998. Since then, several new systems have been introduced,
while others may have vanished. For example, several of the links valid in 1998 have become
invalid. On the other hand, systems newer than the summer of 1998 are not included in the count.
The “Complete Collection of Algorithm Animations” (CCAA) [33] contains a set of linked Web
pages enumerating the animations found by Peter Brummund in 1997/1998. Each animation is
characterized by its title, author or institution of origin, the set of provided algorithms, special
requirements and a short overview of what the animation offers. The site is organized by algorithm
types on the one hand and site locations on the other hand. Adding a new animation would thus
require changing at least two different explicitly encoded Web pages, one each for the algorithm
and the site listing.
Peters [151] presents a taxonomy for algorithm animation systems adapted from the taxonomy in-
troduced by Price, Baecker and Small in [155, 156]. The appendix of the Master’s Thesis classifies
selected software into this modified taxonomy. The appendix is available on a CD-ROM and as a
collection of Web pages.
A topic with such wide-spread interest as software visualization and its subarea of algorithm anima-
tion cannot fully be classified by static media. Hard-coded web pages as provided by Brummund
are too cumbersome to maintain manually, and CD-ROM based approaches prevent the direct addi-
tion of new links. Users interested in the field profit from a dynamic listing of available animation
software. In order to be easy to maintain, the listing must allow for easy updating and addition
of elements. At the same time, it should also offer a certain amount of classification of the ani-
mations, for example by topic. A full classification as employed by Price [156] or Peters [151] is
probably more than the average user requires. However, the user should be able to easily locate
certain animations or topics, such as “all sorting algorithms”.
We have recently begun installing a new algorithm animation collection on the Internet [168] that
addresses these issues. Users can choose the types of animations they want to see by the following
criteria: topic classification, for example “sorting”, language used in the animation (if any), anima-
tion system, or all animations. The pages are dynamically generated by a set of PHP [16] scripts.
The underlying data is extracted from a MySQL database [127]. The web pages therefore always
reflect the current state of the collected data, and do not require manual maintenance.
Evaluating all algorithm animation systems or applets available on the Internet is beyond the scope
of this thesis. Instead, we constrain the discussion to some of the more relevant systems or applets.
The main consideration of “relevance” here rests with the supported features of a given system or
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applet. Thus, the system chosen may not always be the most popular or well-known tool. Indeed,
we will not be able to mention several tools that some reader might consider relevant. However, our
focus in this evaluation lies not on a concrete tool’s qualities or shortcomings, but rather on typical
features found in specific types of systems.
In the remainder of the chapter, we introduce and evaluate some of the applets and animation
systems available on the Internet. The central difference between applets and systems is that the
applets presented are usually hard-coded for the given topic and possibly also a fixed input set,
while animation systems are capable of handling a larger set of algorithms and animation topics.
The requirements for an “ideal“ algorithm animation system stemming from evaluating other tools
are given in the next chapter.

2.5.1 Algorithm Animation Applets on the WWW

In this section, we examine typical algorithm animations presented as applets. As stated in the
previous section, the choice of concrete applets stems from the set of features they offer. Thus, the
applets presented may not be the most popular or publicized applets. Instead, we select “typical”
representatives for a class of applets to discuss the typical attributes, starting with the least complex
applets. Whenever possible, a set of links to related applets is also given.
Furthermore, applets are excluded whenever they can be recognized as display front-ends of anima-
tion systems. Full-fledged animation systems are discussed in the following section. This section,
on the other hand, focuses on hard-coded animations. Thus, practically all applets discussed in this
section belong to the category of topic-specific algorithm animation, as described in section 2.4.1.
Note that this does not imply that the content of the applet is fixed to one parameter set or a single
algorithm. For example, the user may be able to select a concrete sorting algorithm or customize
the input values.

Non-Interactive Applets

The simplest forms of algorithm animation applets are fully automatic with no special user inter-
action. As a typical representative, we examine the illustration of Insertion Sort by Sekisita [190].
Figure 2.9 shows a screen shot of this applet. The elements of the array are represented by col-
ored bars separated by a small amount of space. The current insertion operation concerns the two
highlighted elements.

Figure 2.9: Insertion Sort Applet by Hiromasa Sekisita [190]
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The animation uses blue for the array elements not affected by the current operation, and red for
the currently affected elements. Using blue for inactive and red for the currently active elements
is also common in several other applets. The grey values of the elements correspond to 39 for the
blue elements, and 87 for the red elements. Color-blind users may find it very difficult to tell the
two colors apart. This problem becomes even more relevant if a screen shot of the applet is printed.
The colors in Figure 2.9 have been adapted to printing purposes by brightening the currently active
array elements to 204.
The Insertion Sort applet does not support any user interaction: it starts immediately once the page
is loaded and continues until the values are sorted. Thus, if the user is inattentive when the page
starts, he or she may miss parts of the animation. This can easily happen if the download of the page
takes a certain while. The algorithm used by the applet is fixed and cannot be influenced by the user,
although the same author also provides applets illustrating Bubble Sort [189] and Selection Sort
[191]. The author also provides a special page which allows the user to choose the target algorithm
to visualize [192]. The supported algorithms include Selection, Bubble, Insertion and Quicksort,
Depth / Breadth First Search and Dijkstra’s Algorithm, the string searching algorithms Brute Force,
KMP and Mischar Search, three tree traversal algorithms, Binary Search and Dictionary Search.
There are many similar applets, mainly for illustrating sorting algorithms. One of the first such
Java-based applets was implemented by James Gosling and Kevin A. Smith of Sun Microsystems
[70]. Included in the Java development kit distributions in the demo/applets folder, these
applets have inspired many authors. Figure 2.10 shows an example screen shot illustrating three
different sorting algorithms running in parallel. Many educators have been using similar algorithm
animations for several years. However, most of these animations have never been published and
thus remained bound to the context they were presented in.

Figure 2.10: Screen Shot of Gosling and Smith’s Applet for Sorting Algorithms [70]

Comparing Figure 2.9 and 2.10 shows both similarities and differences. Sekisita’s animation por-
trays the array as a set of colored bars in horizontal orientation. Gosling and Smith’s implemen-
tation, on the other hand, uses simple lines (often also called “sticks”) with vertical orientation.
Sekisita highlights elements currently being exchanged by changing their color and lifting them up
from the array’s base line. Gosling and Smith simply update the display with the changed state of
the array. Sekisita’s applet starts automatically once the page is loaded, while Gosling and Smith’s
applet is started when the user clicks on it. Furthermore, Sekisita only presents a single sorting
algorithm on each page, while Gosling and Smith include three applets on their page: Bubble Sort,
Bi-directional Bubble Sort and Quicksort.
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Finally, Gosling and Smith use two color lines to illustrate the low and high index of the search
- in their own terms, the “high” and “low water mark” of the current sorting interval. The low
water mark is colored in red, and the high water mark is in blue. For Bubble Sort, the role of the
lines is exchanged: the blue line describes the value of the innermost loop variable, while the red
line represents the value of the outer loop variable. The same problems with color perception as
described above apply to this selection. Again, the colors have been adapted for this printed thesis,
with the blue line shown in a darker shade of grey than the red line. The standard array elements
are painted in black. Thus, the Bubble Sort algorithm shown in Figure 2.10 currently examines
the fifth array element and has already finished sorting the largest five array elements. Note that
the two special lines always have a fixed width, obscuring the actual array element’s value at the
current index.
Many applets have been inspired by the freely available code of Gosling and Smith’s animation.
For example, [69] contains a collection of fourteen sorting algorithm animations including the most
common sorting algorithms, including various variants of Merge Sort and Quicksort. Each algo-
rithm is a separate applet that merely inserts a different sorting algorithm into Gosling and Smith’s
implementation. Another example is provided by Andrew Kitchen [103], covering Bubble Sort,
Quick Sort, Odd-Even Transposition Sort and Shear Sort. The web page also states the complexity
classes of the algorithms.

Figure 2.11: Shellsort Animation taken from [186]

Another popular presentation type for sorting algorithms uses 2D dot plots. Figure 2.11 shows an
example of this, provided by Robert Sedgewick [186]. Here, the x axis represents the array index,
and the y axis the value of the element. The situation in Figure 2.11 illustrates a roughly sorted
array where most dots are set near to a diagonal line from the bottom left to the upper right corner.
The associated applet offers a set of different increment sequences for Shell Sort and the related
Brick Sort and Shakersort algorithms.
The animations presented so far use different activation techniques for starting the animation. Some
animations start once the applet is loaded, others wait for the user to click on them, and Sedgewick’s
animation requires user inputs before it starts. However, none of them allow the user to control the
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animation’s progress once the animation has been started. There is no pause, stop or single step
facility. Thus, the user has to pay constant attention and be able to follow the algorithm at the pace
set by the animation. Several other animations share this limitation, for example the animations for
breadth- [187] and depth-first search [188] by Hirosama Sekisita. Taisuke Fukuno’s animation of
the Towers of Hanoi [60] shown in Figure 2.12 also runs until all eight disks are sorted and then
restarts after a short delay. The disks possess different sizes and colors, with the smallest disk being
the darkest. A counter at the bottom left keeps track of the current step number.

Figure 2.12: Towers of Hanoi Animation taken from [60]

Applets with some user control

There are many examples of applets which support elementary user controls. We focus on two to
outline the range of what we consider elementary controls. Firstly, Tanya Filipova’s animation of
a solution approach for the Traveling Salesman Problem [58] allows the user to generate a new
graph, run the animation or perform a single adaptation step. A sample image of this animation is
shown in Figure 2.13.
Gabrielle Ortmann’s Sorting Algorithm Demo [141] is similar to the sorting demonstration by
Gosling and Smith, but combines the different algorithms in a single applet. It also allows the user
to toggle the animation speed between “fast” and “slow” and stop the animation. The algorithms
offered include Insertion, Bubble, Bidirectional Bubble, Quick, and Shellsort.
More refined applets give the user better control over the animation display. As an example, we
regard the Bubble Sort animation provided by Alejo Hausner [73]. Figure 2.14 shows a screen
shot of this applet. The animation uses a standard sticks view to portray the array elements and
highlights the currently regarded elements. In Figure 2.14, these elements are shown in a slightly
brighter shade of grey than the other array elements. The colors of the screen shot have been
improved for printing purposes; color-blind users might find it difficult to tell the array elements
apart in the original animation.
The user can control the animation by reinitialization, a run, pause and single step button. Addi-
tionally, the animation speed is controllable by a slider. The two scrollbars on the left and right side
allow the user to adjust the animation’s zoom factor and scroll within the display. The applet offers
three different input sets: random, descending or almost sorted array elements. The name of the
algorithm and the number of events performed are shown at the top of the animation applet.
Hausner also offers other comparable animation applets for Merge Sort [74] and Quicksort [75].
The Merge Sort applet controls are identical to the Bubble sort applet. The Quicksort applet offers
three different types of display: random, sorted data in a sticks view as shown in Figure 2.14, and
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Figure 2.13: Traveling Salesman Problem Applet by Filipova [58]

Figure 2.14: Bubble Sort Screen Shot taken from [73]



2.5. EVALUATION OF REPRESENTATIVE TOOLS 23

random data with a dot plot similar to the one shown in Figure 2.11. Contrary to the other applets
by Hausner, this applet does not show the number of events.
Sandeep Poonen [154] provides an applet that uses odometers to display the number of move and
comparison operations. The algorithms offered cover Insertion Sort, Selection Sort, Bubble Sort,
Shaker Sort and Shellsort. The data is either random or in descending order. The user controls are
limited to single step, run (called “finish” in the applet) and pause.

Applets with accompanying extra information

Extra information can be placed in the embedding web page or encoded in the applet. For example,
David Eck’s xSortLab [52] applet incorporates two lines of explanatory text at the bottom of the
applet. The applet allows the user to control the display speed. Apart from choosing between “go”
and “step” mode, the animation can also be restarted. The user can select two different animation
speeds: normal and “fast”. Figure 2.15 shows a screen shot of the applet in action.

Figure 2.15: Quicksort Animation Screen Shot from Eck’s xSortLab applet [52]

The xSortLab applet contains three different visualization modes: the “visual mode” shown in Fig-
ure 2.15, a “timed” mode which displays the elapsed time and a “log” which stores the statistics of
the sorting algorithm after completion. The current number of comparisons and copying operations
are also given. Finally, the user can select the algorithm to watch, choosing between Bubble Sort,
Selection Sort, Insertion Sort and Quicksort.
John Morris provides various animations for his Programming Languages and System Design
course [123]. The user can run the animation fully, stop it or perform a single step. The delay
between animation steps can be chosen from a set of predefined delays. The web pages from which
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the applets are started contain a description of the algorithm including a complexity analysis. Figure
2.16 shows a screen shot of a Radix Sort animation with the stop, run, step and skip buttons.

Figure 2.16: Radix Sort Animation Screen Shot from [9]

Some of the manually generated animation applets listed by Morris embed explanations directly
into the animation, for example the applets for matrix chain multiplication [7], optimal binary
search trees [124] and hashing [4]. The latter applet additionally allows the user to choose the
probing strategy between linear or quadratic probing with c=

�
1, 2, 4 � .

Several of the applets provide a code view facility, either in the same window as the rest of the
animation or in a separate window. Examples of this include Huffman encoding and decoding [6],
heaps [5], various sorting algorithms including Insertion Sort [8], Bin Sort [3], Quick Sort [203],
Dijkstra’s shortest path algorithm [137] and some tree animations [136, 115]. The sorting applets
allow the user to choose the input data from a predefined list of ascending, descending or random
data.
Peter Brummund’s sorting algorithm animator [32] goes a step further by letting the user adjust
the graphical properties of the display. Color adjustments include the color of the foreground,
background, sorted or inspected array elements and the highlight color. The number of blocks can
be typed in by the user. The properties of the data can be toggled between random, ascending and
descending order. Figure 2.17 shows a screen shot of the applet.
The animation is controlled by a pause and stop button, together with a speed selection slider. The
number of comparisons and swap operations is given below the animation, as well as an optional
explanation. The user can select the sorting algorithm from Bubble Sort, Insertion Sort, Merge
Sort, Selection Sort, Shellsort and Quicksort. The Java source code of the algorithm including
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Figure 2.17: Bubble Sort Screen Shot taken from [32]

indentation and highlighting is also shown in the applet.
Athanasios Papagelis provides animations of Prim’s [147] and Kruskal’s [146] algorithm for gener-
ating the minimum spanning tree as well as for backtracking [145]. Figure 2.18 shows an example
screen shot. The user can toggle between single step mode and a complete solution and may request
a new problem. The pseudo code of the algorithms is shown on a separate page. The algorithms
are described on the web page containing the applet. The backtracking animation also allows the
user to adjust the problem size between 4 and 16.

Applets with user input

Hans-Werner Lang provides several web pages for selected algorithms for his German course on
algorithms [109]. The animations can be divided into two groups. Shellsort, Quicksort and the
Traveling Salesman Problem are animated automatically with very little user control except for
typing in the number of elements and selecting the ordering of the data. Figure 2.19 shows a screen
shot of Quicksort, with the number of exchanges shown at the top.
Some pages also contain a small selection of interactive “animations” prompting the user to se-
lect the appropriate elements. These interactive applets cover the Warshall and Prim algorithms,
Heapsort and the partitioning of Quicksort shown in Figure 2.20.
There are several comparable applets that prompt the user for input data. For example, the Delaunay
triangulation applet by Daniel Mark Abrahams-Gessel [1] shows the triangulation process based on
the user’s mouse clicks within the canvas. However, it only provides a reset button and no other
controls. Similarly, Connie Peng’s convex hull demonstration [150] uses user clicks as input to
Graham’s Scan with only a pair of Clear and OK buttons. The VoroGlide applet by Christian Icking
et al. [87] also uses user clicks for Voronoi, Delaunay and convex hull calculation. However, it also
allows the user to drag or remove individual points and directly updates the display.
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Figure 2.18: Screen Shot taken from Papagelis’ Kruskal animation [146]

Figure 2.19: Quicksort Screen Shot from Lang’s applet [109]
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Figure 2.20: Partitioning in Quicksort as Illustrated in Lang’s applet [109]

Paul Chew’s Voronoi and Delaunay applet [37] determines both Voronoi diagrams and Delaunay
triangulations based on user clicks. It also shows the empty circles and the Delaunay or Voronoi
edges. Geoff Leach’s Delaunay triangulation applet [112] illustrates the performance of three dif-
ferent algorithms with different complexities. Some of the display properties are adjustable by the
user. User controls include start, stop, new problem and a toggle between automatic and “manual”
stepping equivalent to single step modes. Figure 2.21 shows a screen shot of this applet.

Sandeep Mitra’s animations [121] cover various sorting algorithms including Bubble Sort and
Quicksort. The animations show the array elements both as sticks and by their numerical val-
ues. The user can control the animation display by adjusting the delay between steps and a set
of controls also including going backwards in the animation. Some variant algorithms also let the
user provide customized input data. One of the applets [122] allows the user to select up to four
different sorting algorithms which are then executed in a “race” against each other.

The merge sort demonstration by David Neto [135] illustrates the algorithm by showing the subtrees
used in the merging process. The data may be in ascending, descending, “strange” (customized)
order or be provided by the user. A “shuffle” button can also be used to modify the element ordering.
The user controls include go, step, rewind, stop and a speed control. The animation also shows the
decisions made at each tree branching. Figure 2.22 shows a sample screen shot.

The sorting algorithms provided by Biliana Kaneva and Dominique Thiébaut [94] cover Insertion
Sort, Quicksort with four variants, Shellsort, Selection Sort, Heap Sort and Bubble Sort. The
input data can be in random, ascending or descending order. The delay between animation steps
is adjustable, and the user can control the animation with a start, stop, resume and suspend button.
The source code can optionally be shown with highlighting of the currently executed command.

The string-searching animation by Adriana Cássia Rosse de Almeida [43] allows the user to set
both search pattern and text to search. Furthermore, more than a single animation can be exe-
cuted, including the Brute Force, KMP and Boyer-Moore algorithm. The user can adjust the delay
between steps, but has no other control over the animation.
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Figure 2.21: Delaunay Triangulation Applet taken from [112]

Figure 2.22: Screen Shot of Neto’s Merge Sort Applet [135]
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A limited number of applets incorporate the prediction of algorithm steps, for example [201], or
even simulating an algorithm, for example [54, 56]. Typically, these applets are generated by full-
fledged AV systems, or following generation guidelines as in [55].

“Animations” incorporating user activity

Several of the animation applets provided by Tom Naps [132] may use preexisting data used in
another algorithm. For example, the data vector generated for one sorting algorithm may be reused
for running a different sorting algorithm. The Boyer-Moore string searching algorithm also queries
the user for both the searching pattern and the text to search. Most other animations do not allow
the user to specify input parameters. However, they offer a “quiz mode” which queries the user
about the current state of the display and the anticipated effect of the next transformation. The user
can typically control the zoom factor of the display and use a single step mode. Some animations
also contain a link to external HTML documentation of the algorithms.
The Heapsort animation by Nils Faltin and Tobias Gross [56] uses a didactical model for animation
generation resulting from research by Faltin [55]. It allows the user to perform the execution of
Heapsort interactively by picking a pair of nodes and selecting the operation to perform from a list
of primitives provided.
The Towers of Hanoi animations by Friedrich Roschmann [166] and Romuald J. Żyłła [213] are
both implemented in JavaScript. Instead of performing an animation, they merely visualize the
current state and wait for the user to select the appropriate disk to move. The user can also adjust
the number of discs.
Mathew Palakal offers visualizations of the data structures stack [143] and queue [142] as a part of
the Personally Active Computing Exploration Resource (PACER) developed at Purdue University.
The user can insert random elements to the data structure and remove them. The standard pointers
into the data structure - top of stack and front / rear for the queue - are also shown. The site contains
many other similar applets. More details on the PACER system are given in [144].

2.5.2 Algorithm Animation Systems

A large number of full-fledged animation systems has been developed over the last years. As we
cannot cover all of them in this section, we will again focus on representative systems and briefly
outline the properties of other related systems. We follow the separation of systems by animation
generation approach as described in section 2.4: topic-specific systems, GUI-based generation,
generation by API method invocations or scripting, declarative visualization and code interpreta-
tion.

Topic-Specific Approaches

All animation systems presented in this category are limited to a specific topic area. Both users and
visualizers should be aware of this restriction, as it may imply that they have to use more than one
system within their course. The presentation proceeds from the more limited to the more general
systems.
Probably one of the first widely known algorithm animations comes from Ronald Baecker and Dave
Sherman [14]: the movie Sorting Out Sorting. This movie was shown in many universities world-
wide as an introduction to the covered sorting algorithms. It also contains a complexity analysis and
a “race” in which multiple algorithms are executed at the same time. Another pair of older movies
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by Ken Knowlton [104, 105] illustrated operations on data structures in Bell Lab’s L programming
language. These movies are regarded as being probably the first to address the effects of operations
on data structures by dynamically updating the stored elements [13].
The choice of movies as the animation media implies that the user has a large degree of control
concerning the display speed. Most standard video playing device are able to play the movie at
normal speed, as well as faster or slower, and may offer “freeze frames” and single frame stepping.
Many video playing devices support playing the movie in reverse. Rewinding the movie is also
easy, although navigation to a certain scene within the movie is difficult to achieve.
However, presenting the animation as a movie also means that the user cannot adjust any other
settings. Thus, the color of the movie cannot be adjusted, nor may the user select a target algorithm
or provide a customized input set. In this aspect, the movie acts similarly to many of the animation
applets available on the World World Web. Both common sense and research studies agree that the
degree of user interaction should be higher than simply using a remote control to achieve learning
benefits. More on this will be said in chapter 3.
Sami Khuri and Hsiu-Chin Hsu have developed a set of Java applications for animating CPU
scheduling and page replacement algorithms [100] as well as image compression [101]. Each of
these packages contains a graphical front-end that displays one algorithm at a time. Both packages
allow the user to select the algorithm from a list of supported algorithms.
The scheduling and page replacement package supports the FIFO, Second Chance, Clock and LRU
algorithms, as defined in standard operating systems references such as [204]. The user can provide
input data by either typing in a sequence of page requests or clicking on a set of buttons representing
one page request each. The animation places the previous state next to the current state. A trace
button shows the effect of the next operation, while the run button executes all operations. The total
number of page faults is displayed during and at the end of the animation.
The image compression package offers similar controls and illustrates the RLE, Quadtree and JPEG
compression algorithms. Both systems embed a set of explanations into the animations that help
the user to understand what is currently happening. The image compression package also includes
a step-by-step illustration of how JPEG compression works, which should prove helpful to the user.
The EROSI system by Carlisle E. George [63] targets the visualization of recursion. Recursion
is probably one of the most important basic concepts underlying many applications in Computer
Science. However, it is also notoriously difficult to understand for novices [64, 92]. This is at
least partially due to the danger of loosing track of context within multiple recursive calls. The
EROSI system visualizes only selected recursive methods. During method execution, it opens
small subwindows showing the new context for each new method invocation.
The Bewegte Mathematik (“Animated Mathematics”) project by Stauff [200] is based on Microsoft
Visual Basic 5 and therefore restricted to Microsoft WindowsTM and MacOSTM. It contains
a large selection of animations for illustrating diverse aspects of mathematics, especially the al-
gorithmic components such as determining the area of an object. Alas, the system’s usability is
limited due to the platform restrictions, the lack of an applet version and the fact that the whole tool
is held in German.
Ted Hung and Susan H. Rodger introduce two tools usable within an automata theory course in
[86]. JFLAP is a package containing several tools for helping students understand topics of for-
mal languages and automata theory. More specifically, it covers finite state automata, pushdown
automata, single or double band Turing machine as well as grammar and regular expression conver-
sion. On starting the tool, the user can select one of the subtools, and may also use more than one
tool at the same time. Each tool has an extensive documentation and facilities for both generating
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and simulating the generated automata. [71] offers additional comments on using the program.
The other system presented in [86] is called Pâté and can be used for parsing and transforming
grammars. Pâté shows the textual or graphical visualization of a derivation for a given grammar
(restricted or unrestricted). With the textual visualization, a step-by-step derivation is displayed
including the rules used at each step. In the graphical visualization, a parse tree for the derivation is
shown with each node representing a symbol or a variable. Starting with a user-defined context-free
grammar, Pâté performs the standard operations to transform the grammar into Chomsky normal
form (CNF) [79]. A graphical representation shall aid the user in determining new productions in
the removal of unit and useless productions. Figure 2.23 shows a screen shot of Pâté containing
both textual and graphical visualizations.

Figure 2.23: Pâté Screen Shot taken from [162]

JELLRAP [95] is another system for animation in the field of formal languages and compiler con-
struction. Its main focus lies in the parsing of strings with a variety of algorithms. It covers the
LL(1), LL(2) and LR(1) algorithms. JELLRAP, Pâté and JFLAP are all available on the WWW on
Susan Rodger’s tool page [161].
In a similar vein, Ganimal by Stephan Diehl, Andreas Kerren and Reinhard Wilhelm [47] focuses
on interactive, web-based learning software for compiler design. The project currently offers an
applet illustrating the compilation of programs, as well as illustrations of Heapsort.
William Yurcik and Larry Brumbaugh present a web-based little man computer simulator [210]
used for animating the inner workings of a simple computer architecture. The user can control the
simulator with “step into” and “step over“ buttons. After setting breakpoints, the simulator can also
be put into a “burst” mode which continues until the next HALT statement is reached.
PILOT [24] is an interactive tool for learning and grading developed by Stina Bridgeman et al.
The tool first generates a random problem for a limited set of application algorithms. The example
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discussed in [24] uses minimum spanning tree problems. The user then has to select the operations
that he or she supposes represent the algorithm’s execution. In the example, the user has to decide
on the next edge or node selected by the algorithm. The grading component of the systems displays
an evaluation of the user’s performance once the “Check” button has been pressed. PILOT also
automatically determines a grade for the user according to a built-in point table.
Duane Jarc et al. have implemented a system that incorporates interactive prediction [90]. Similar in
concept to PILOT, the user has to select the next element touched by the algorithm. The system also
includes an animation unit that does not require any user input. However, a preliminary evaluation
of the system indicates that the benefits of interactive prediction are not as good as hoped for.
Several students seem to rely more on simply clicking elements and waiting for the system’s reply.
As no grading component is installed and the process may be repeated as often as wanted, the
easiest way to “solve” any assignment is using trial-and-error. Whenever the system claims that
the currently selected node is incorrect, the student can simply select another node. In this type of
usage, any learning effects would probably be accidentally. However, it is often very difficult if not
impossible to prevent users from abusing the system in this way.
There are many more topic-specific algorithm animation systems than can be listed here. We there-
fore constrain ourselves to a single sentence for pointing the reader to a few other systems of
interest. Dershem and Vanderhyde [46] present a visualization of all methods of a given Java class
that can be invoked by entering input values into text fields and clicking on a button; it is thus not
a true algorithm animation system. De Pauw et al. [149] present a visualization system for object-
oriented programs showing critical operations and statistics from a program execution. Steven
Robbins describes several applets for interactive network protocol simulations in [159]. Heath et
al. [76] describe visualization approaches for performance evaluation and optimization of concur-
rent programs. Achim Janser has implemented an interactive environment for teaching and learning
computer graphics and image processing [89]; however, the system is only available in German and
restricted to MacOSTM and Microsoft WindowsTM .

GUI-based Systems

Compared to all other generation approaches, the number of GUI-based systems usable for algo-
rithm animation is small. The key word here is usable - most of the systems actually used for
animations were not specifically designed for this purpose.
Among the most often encountered tools for algorithm animation purposes are the presentation
tools belonging to office packages. Typical examples include Microsoft PowerPointTM and Star-
Office ImpressTM. The main reasons for using them for creating and using algorithm animation
are threefold: they may already be used for generating and presenting course slides, they usually
have a broad installation base, and they are usable by both instructors and students.
The fact that the visualizer may already be familiar with the tool is highly significant in this choice.
On the one hand, the time required for being able to use the tool is reduced or even eliminated. On
the other hand, the structure of the tools and their WYSIWYG approach of generation reduces the
level of abstraction, seemingly making it easier to “get results”.
However, the last argument may be highly misleading. While the visualizer is easily able to see the
progress the animation makes, manual generation is also very time-consuming! Hundhausen et al.
[84] and our own experiences agree that manually generating an animation may well take several
hours using either standard artistic supplies such as pen, paper and scissors or a generic GUI-
based tool. Part of the problem stems from the fact that the whole animation has to be assembled
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manually. Even careful planning of the animation beforehand and heavy use of the clipboard facility
embedded in office presentation tools may not significantly speed up the process.
Using standard presentation tools for algorithm animations has several advantages for the visual-
izer. The main advantage, as outlined above, is the visualizer’s possible experience with the tool.
Most importantly, though, visual generation with the mouse is something that most of today’s com-
puter users have become used to. Therefore, the learning curve that visualizers have to master is
particularly gentle. This becomes most evident when switching from a GUI-based tool to a tool
using a different generation approach. Finally, presentation tools are also relatively easy to use by
the user. The presentation is usually regarded as a sequence of discrete slides. Therefore, the user
can usually navigate the animation in both directions, and may also jump directly to an interesting
state.
Presentation tools also come with a set of typical disadvantages concerning algorithm anima-
tion. First of all, they typically belong to an office system such as Microsoft OfficeTM or Sun
StarOfficeTM. This means that on the one hand, the cost for getting the program can be quite high.
For the visualizer, this may not be an issue due to a possibly already existing installation. However,
each user may also require an installation of the software. This is especially true if users are ex-
pected to take on the visualizer role in the course of their work. Office packages have become very
extensive over the last years, regarding both the number of features offered and the amount of disk
space required for an installation. Even worse, the office system may not be available for the target
user or visualizer platform. For example, there is no port of Microsoft OfficeTM to other operating
systems than MacOSTM and Microsoft WindowsTM .
However, the main disadvantage of presentation tools lies in their fixed state. Each tool has its own
set of offered features that the visualizer will usually be unable to extend or adapt to specific needs.
Despite the ability to use diverse effects for inserting objects into an animation, the effects usable
for changing elements already presented may be severely limited. The tool will usually cater mostly
to presentation authors by offering fancy background motives or text fonts. The standard graphical
primitives including lines are also supported. However, the tools are not designed for generating
elaborate drawings.
To further compound the problem, presentation tools are unlikely to offer support for special primi-
tive types such as arrays or linked lists. A typical animation topic such as sorting an array of integer
values thus requires the visualizer to draw the array including all array cells, element values and
possible pointers to cells. From the tool’s point of view, this merely represents a set of objects
that happen to be close to each other, without semantic interpretation. Standard features such as
grouping all array elements may be helpful. However, this also forces the visualizer to undo the
grouping whenever an element is moved or otherwise changed. Typically, presentation tools will
start each new “slide” with a clean state, so that all relevant elements have to be copied from the
previous slide.
An animation generated in a GUI-based tool does not have any connection to the algorithm it
is supposed to present. On the one hand, this gives the visualizer a large amount of freedom
in portraying the contents. On the other hand, this also means that the animation represents the
visualizer’s understanding of how the underlying algorithm behaves - which may differ from the
actual behavior. Such errors can only be detected by the human viewer.
Finally, perhaps the worst disadvantage of GUI-based systems is that the animations generated
cannot easily be reused. As the full animation is coded manually without a direct connection to
the algorithm, any change to the algorithm or the input values requires manual changes to the
animation. In extreme cases, changing a single input value may require changing all states of the
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animation, or even starting from scratch. This makes it very difficult for visualizers to provide a set
of examples for the same topic.
Presentation tools typically only support manual generation or importing of presentations in other
formats. The presence of a scripting language, such as Lingo for Macromedia Director, allows
at least a certain degree of automatic animation generation. However, the language used must
also be simple enough to learn for visualizers. Embedding languages such as Microsoft Visual
Basic for ApplicationsTM (VBA) into office components goes in this direction, but still requires
the visualizer to learn a programming language.
The addition of VBA has prompted some researchers to examine other office components for their
usefulness in algorithm animation. For example, Jukka Eskola and Jorma Tarhio [53] have built the
experimental Flopex system for dynamic visualizations in MicrosoftExcel. Flopex is a flowchart
programming environment embedded in Microsoft Excel using a special interpreter written in VBA.
The system can interact with the spreadsheet due to the access to the full Excel functionality and
all cells and values in VBA.
Flow charts are generated by copy and paste from predefined elements. These elements include flow
lines, read, assign, and conditionals. The “program” can be run either continuously or step by step,
and highlights the active cell in each step. The current value of all variables used in the program is
shown in spreadsheet cells. Contrary to animations generated within presentation tools, the Flopex
interpreter actually executes the algorithm represented by the flowchart. While this prevents the
visualizer from employing abstractions, it also makes reuse easy, as the user can provide input data
in one column of cells. However, the limitations regarding platform dependency and license costs
for presentation tools also apply to Flopex due to its dependence on Microsoft Excel. Furthermore,
the usage of Flopex is limited by the features offered by the underlying flowchart interpreter.
Jari Lavonen et al. have developed the icon oriented programming system Empirica Control for Mi-
crosoft WindowsTM [111]. The system was designed to support teachers in technology education
at Finnish comprehensive schools. The system contains both the programming tool and an I/O
interface. Example applications addressable by the system include the indication and control of
changes in a physical environment. To this end, the interface provides access to eight independent
opto-isolated digital output channels and two independent analog inputs. The paper illustrates
several example programs using loops, conditionals, logical connectors and trigger events [111].
The DANCE system by Stasko et al. [195] uses a graphical editor to generate method invocations
in the API-based animation tool TANGO [197]. The animation depends on run-time information.
DANCE is supposed to ease the design of the animation and support program development with
rapid prototyping. The generated animation commands can be manually fine-tuned and enriched
with additional C source code. However, due to the underlying complex API, laypersons may find
DANCE comparatively hard to pick up. This is especially the case if they are not familiar with the
path-transition paradigm [197] used in TANGO.
Christopher Hundhausen and Sarah Douglas advocate a simplified graphical user interface for gen-
erating “low fidelity” animations in [83]. “Low fidelity” here refers to rough and unpolished anima-
tions similar to those built using simple art supplies. The system consists of two main components:
the prototypical language SALSA for creating and presenting visualizations, and the interactive pro-
gramming environment for the language, called ALVIS. Basically, the user is given a simple graph-
ics editor window for sketching and cutting out visualization objects and a storyboard window in
which these elements can be placed. The animation itself is specified either by direct manipulation
of the elements or by typing in SALSA commands. Additionally, the control interface supports
reversing the display of the animation as well as a complete rewinding.
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Systems with API-based Generation

In the Java visualizer class by Tom Naps [133], the visualizer declares a “visualizer” instance in
the code and invokes the object’s add method to generate a visualization. A special toString()
method converts a given execution state to the appropriate String representation. The output can
be visualized in Naps’ GAIGS system. Naps claims that the benefits of this approach include
heightened student interest and better appreciation of object orientation and polymorphism, as the
same visualizer class is used in different classes. Students acting as visualizers have to determine
the key points in the algorithm where the state of the data structure is likely to change in a “relevant”
way. The visualizers need not concern themselves with knowing the concrete API methods to
invoke. Therefore, this approach may prove to be easier to use for novices, and may lead to fast
results. A similar recent approach can be found in [97], which currently supports only arrays.
Rasala [157] presents an animation technique for automatic array animation in C++. The visual-
izer has to replace standard C++ arrays with a special template class and use the methods provided
for modifying the array. The added features of the array template include highlighting compared
elements and different views including bar, dot or line charts. Similarly, LaFollette et al. [108]
describe an animation approach that hides the actual animation method invocations from the visu-
alizer by replacing the standard primitive types with special self-animating C types. The resulting
output can be examined in several different views including source code, parameters, global vari-
ables, heap state, current operation, call stack and local variables. The user can run the animation,
pause it or perform a single step. Currently, the system is limited to acyclic graph structures which
the authors claim to be “sufficient for Computer Science I/II courses”.
Dershem and Brummund [45] describe the architecture underlying the animation applet shown
in Figure 2.17 on page 25. To generate the animation display, the user has to embed specific
commands to the algorithm implementation. Similarly, the Viz system by Domingue [48] records
“history” events for playback. These events are embedded as method calls into the source code.
Once the modified algorithm is executed, the history is recorded and used to generate one or more
views. This approach is also used in the Internet Software Visualization Lab (ISVL) system [49]
used for distance education, which also allows the user to annotate the recorded session.
One of the first animation systems with API-based generation is Marc Brown’s Zeus [25], the
successor of the famous BALSA systems. Zeus allows the user to select different views, each of
which is presented in its own window. For example, a transcript view shows events as a symbolic
expression as the event is generated. Zeus incorporates the standard controls play, pause, step and
a speed control, and also allows the user to store state snapshots.
Zeus follows the interesting events approach introduced by Brown and Sedgewick which is sum-
marized in [31]. Basically, this refers to annotating each part of the underlying algorithm with a
method invocation that generates an “appropriate” visualization of the current state during the exe-
cution. Several other tools use this approach, for example the system by Merlini et al. [118]. Here,
the API also supports array and binary tree structures and smooth transitions. It is also one of the
relatively few systems that offer a “back” facility for stepping to the previous step.
John Stasko developed the path-transition paradigm in his dissertation. Summarized in [197], this
paradigm performs each object transition along a path, which naturally leads to smooth and flexible
transitions by portraying the state of a transition at various intervals of the path. The first systems
incorporating this paradigm were Stasko’s TANGO and POLKA systems [197]. The Vivaldi project
[140] follows a similar approach, but restricts each transition to changing exactly one attribute
of one object. Thus, a diagonal move effect requires two transitions to modify the x and the y
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coordinate separately. The expressiveness is not limited by this approach, as multiple transitions
can be combined in a step.
The extensive Catai system [36] requires the algorithm to be implemented according to certain
specifics, for example in C++ and using the LEDA library. It offers an efficient distributed in-
teractive animation that can be integrated into the Web. To use the system, the visualizer has to
extend the non-animated data structures of the underlying algorithm to animated data structures.
The modified algorithm using the new data structures must then be placed in a special class. Some
special methods for handling the graphical objects have to be defined by the visualizer.
The first of the three algorithm animation tiers in McWhirter’s AlgorithmExplorer system [116]
relies on a specification using an abstract data type. This abstraction maps to a set of API-based
methods that realize the conceptual API. The Java Data Structures Library (JDSL) by Goodrich et
al. also incorporates special facilities for visualizing data structures in Java, as introduced in [15].
The only requirement is that visualizers replace their data structures by those provided in the JDSL.

Systems with Scripting-based Generation

The term “scripting” is sometimes confusing to novices in algorithm animation. Scripting usually
does not refer to full-fledged programming languages such as the scripting languages PHP [16]
or Perl [208], but rather to a command-based notation for specifying visualization objects. This
type of “scripting” languages often does not support variables, methods or higher constructs such
as loops or conditional statements.
One of the most popular and widely used animation systems incorporating a scripting language is
JSamba [196], a Java implementation of the visualization engine Samba used in Stasko’s POLKA
system [197]. JSamba animations contain exactly one command or comment per line. The com-
mands mostly use the standard names for defining or transforming objects, such as “triangle” or
“move”. Each object must be given an unique identifier so that it can later be referenced for transi-
tions. JSamba allows the user to zoom in and out of the display. To support this, object coordinates
are specified by floating-point values in the interval [0, 1] relative to the screen width and height.
JSamba supports multiple views and smooth transitions. However, the visualizer cannot specify the
duration or offset.
Rodger and Pierson’s JAWAA [161, 152] is very similar to JSamba. There are some minor differ-
ences regarding the names and parameters of some operations. JAWAA is specifically geared to
support the common data structures array, stack, queue, graph and tree, as well as the standard
graphic primitives. In contrast to JSamba, the number of nodes of polygon lines is not limited -
JSamba restricts the number of nodes to 8. JAWAA does not support multiple views or zooming.
The JHAVÉ system by Tom Naps et al. [131] is a client-server environment for algorithm anima-
tion. It uses either GAIGS or JSamba as its visualization agent. However, the JSamba scripting
language has been extended to incorporate multiple-choice quizzes and links to external documen-
tation. The most recent version of JHAVÉ [181] also incorporates the ANIMAL system developed
in the course of this thesis and presented in chapter 5.

Declarative Systems

As described in section 2.4.5, declarative systems employ predicates that describe the state of the
system. These predicates are usually placed in special comments inside the original source code,
so that the code effectively remains the same if a standard compiler is used. A special compiler or
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interpreter built into the declarative system is used to extract the actual predicates from the code
and uses them to map the current state into appropriate actions.
Declarative systems are still rather uncommon, although there are also some newer developments.
Probably the most visible declarative systems is Gruia-Catalin Roman’s PAVANE system [163].
Animations are generated by predicates embedded into program code. Changes in the program state
that touch a defined predicate cause an update of the graphical display. Pavane has been applied
to a wide range of visualization problems including concurrent algorithms, rapid prototyping and
computer architecture simulation. The authors claim that “competent” programmers are capable of
annotating finished programs within three to six hours of effort.
Another, more recent system is Leonardo by Pierluigi Crescenzi et al. [44, 39]. Leonardo incorpo-
rates the special logic programming language ALPHA which maps the concrete and abstract data
structures to the visualization. The integrated environment includes a special text editor for editing
C and ALPHA code. The source code is translated by both a C and ALPHA compiler and linked
to generate the actual code. The virtual execution environment contains windows for text input and
output, source code, input data and a control bar for controlling the behavior of the special virtual
machine. The system may use more than one view for the data. The virtual machine supports
fully reversible execution. ALPHA also contains special predicates for toggling the visualization
on or off. Specific operation subtypes can be passed as an integer, for example for synthesizing the
display of a rectangle [44]. Leonardo is currently only available for the MacOSTM platform.

Systems with Code Interpretation

Code interpretation-based systems can in principle be divided in two different subgroups: systems
that rely on external data, such as generated by a debugger, and systems that work directly on the
code, possibly including some modifications. The most prominent representative of the first class
is the GNU Data Display Debugger (DDD) by Andreas Zeller et al. [212]. DDD is a graphical
front-end for debuggers such as DBX, XDB or Ladebug. Within the scope of this thesis, its most
interesting feature is the graphical display of data structures within programs. Each element in a
data structure is represented as a graph node; pointers between elements are represented by edges.
The optional alias detection recognizes links to the same object and thus also allows the detection
of circular pointer structures.
For visualization purposes, the user has to insert breakpoints into the code. Whenever a breakpoint
is encountered, the display is updated according to the current values of the watched variables. A
dynamic animation can be generated by associating breakpoints with a continue statement. Apart
from a graph display, the full functionality of GNUPLOT can be used to plot scalar, 1D or 2D
arrays. The user can export the plot data and save the state of a session. To harness the full power
of DDD, the user has to be familiar with the basic operations of a debugger. This may cause
problems especially for programming novices.
The Kami system by Minoru Terada [205] also relies on debugger data automatically extracted us-
ing the GDB debugger and the Perl Expect package. It offers a play, stop, rewind and until mode
and also allows the user to step over user-defined “trivial” methods. The animation is automatic and
passive without user interaction beyond the controls listed. Kami always highlights the currently
executed line of code. Its most prominent feature is the use of the paper-slide metaphor for illus-
trating method invocations. Based on a traditional form of children’s entertainment in Japan, a new
slide is placed over the current activation frame when a method is invoked. Parts of the invoking
slide still remain visible and highlight the context of the method invocation.
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A similar approach to illustrating method invocations is taken in the VisMod project by Ricardo
Jiménez-Peris et al. [93]. In contrast to the previous two systems, VisMod is an integrated pro-
gramming environment with code interpretation. VisMod pops up a window showing the return
result of an invocation of a recursive method. However, as Jiménez-Peris and Patiño-Martı́nez
point out in [92], this is insufficient when a recursive program generates multiple calls. Typical
examples of this category are Fibonacci and Ackermann numbers and most divide-and-conquer
algorithms including Quicksort. For this purpose, they propose to visualize the call tree annotated
with the result(s) of the calculation.
VisMod is one of several systems based on a functional programming environment. In [148], the
same authors propose to use visualization in text mode, including a visualization for list and graph
structures. The presentation includes the expression before and after evaluation, as well as the
expression or equation to be evaluated. Color unification of the variables and constructors in the
expressions is used for user guidance. Newly introduced right-hand side elements are shown in a
common color. The user can set breakpoints either on a function or equation level.
The ZStep 95 project by Henry Lieberman et al. [114] offers comfortable controls for adjusting the
display of the animated code interpretation, including step over and back up operations. The execu-
tion speed can also be adjusted. Stuart Watt has developed a similar system for code interpretation
[209]. Both systems are targeted for the LISP programming language. Neither system focuses on
algorithm animation; however, the update of the graphical state display can be regarded as a (static)
algorithm visualization.
WinHIPE [207, 128, 129] provides a software visualization system for the functional programming
language Hope. The current evaluation state is presented as a series of static images shown after a
delay, and can also be stored as bitmap files. Apart from the standard play and pause operations,
the player for the static snapshots also allows the user to rewind the animation, go backwards or
adjust the display speed. The images are based on rewriting rules. A new development supports the
dynamic generation of HTML pages from a style sheet defining the page name, animation number
and image size.
There are several similar systems for imperative programming languages, especially for Pascal
with its long tradition in university teaching. For example, Christopher Boroni et al. [20] describe
a program animator that uses a special execution virtual machine. After choosing a source file, the
program can be displayed in a single step or continuous mode. The display can also be reversed.
The environment also generates a “run time cost” on predefined operation weights. In a recent
publication, they describe how the extended system was integrated into a hypertextbook [21]. For
more information, the reader can also look up the URL listed in [68].
The support for animating the behavior of object-oriented programs is also growing. For example,
Dean Jerding et al. [91] present the GROOVE systems that shall help programmers in designing
object-oriented protocols in a graphical, animated manner. The well-known Jeliot [72] system by
Haajanen et al. directly animates Java source code. Some minor modifications to the program code
may be necessary. The same is true for Steven Zeil’s AlgAE system [211].
Jeliot 2000 [113] is not a newer version of Jeliot, but rather a modified re-implementation for a
different target group, namely 10th grade high-school students. Accordingly, it places its main
emphasis on the basic programming elements: input/output, assignments, conditional and loop
structures. It is also limited to primitive types and arrays thereof. Animating the input and output
process requires the user to replace the standard Java methods with special classes for input and
output handling included in the package.
There are also several systems that perform code interpretation for specific tasks. For example,
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Javiva [206] focuses on the visualization and validation of student-written programs. To this end, it
extracts pre- and postconditions as well as abstraction functions from special comments embedded
in Java source code. These conditions are used to generate an instrumented class file with “ap-
propriate” validation method invocations. Whenever a condition is violated, the class informs the
user with a pop-up window. Optionally, the user can embed method invocations to the JDSL [15]
described in the section on API-based generation.
The GRASP programming environment (Graphical Representation of Algorithms, Structures and
Processes) [88] is a special software engineering tool. Besides syntax highlighting and code fold-
ing, it also incorporates the display of control structure diagrams (CSDs) showing the context of
each block inside the code. It can be used for a variety of languages including Ada95, C++, Java
and the hardware definition language VHDL.
Finally, the PVaniM 2.0 system [199] provides both online and postmortem visualization support as
well as rudimentary I/O for long running, communication-intensive PVM applications. It provides
these features while using several techniques to keep system perturbation to a minimum. The online
graphical views provided by PVaniM 2.0 provide insight into message communication patterns, the
amount of messages and bytes sent, host utilization, memory utilization, and host load information.

2.6 Summary

Algorithm animation as a special type of software visualization illustrates the dynamic behavior of
algorithms. Researchers and educators have been interested in visualizing algorithmic operations
for a long time. Starting with paper-based notations such as flowcharts, the field has evolved into
instructional movies and computer-based animations. Today, a large selection of algorithm anima-
tion systems is available. People interested in creating or using algorithm animation may have to
spend much time in finding a system that fits both their skills and expectations. To address this
problem, we have explored the different usage roles and animation generation approaches in this
chapter. We have also discussed a large set of animation applets and full-fledged systems.
Four roles can be associated with algorithm animation systems [156]. The programmer is respon-
sible for implementing the algorithm. He or she need not be aware of any interest in visualizing the
algorithm. The developer designs, implements or refines an algorithm animation system. The visu-
alizer combines the output from the two previous roles by mapping the algorithm to a visualization
in the chosen system. Finally, the user interacts with the animation generated by the visualizer. The
degree of interaction depends on both the animation and the underlying system.
Focusing on the visualizer role usually adopted by an educator, six different animation generation
approaches can be isolated. Apart from (semi-)automatic topic-specific systems, animations may be
generated using a graphical user interface, by API method invocations, using scripting commands,
by declarative programming using predicates, or by code interpretation. The main characteristics
of these approaches are summarized in Table 2.1: the input type needed for generating an animation,
the typical tasks of the developer and visualizer role, and the main benefits and drawbacks of
the approach. The programmer is by definition independent of the algorithm animation. The
interactions possible for the user depend on the animation display front-end of the system, not
on the approach used for animation generation. Therefore, the programmer and user role are not
included in the table.
None of the generation approaches is inherently superior to the others. Rather, the circumstances
of the planned usage help in determining the most appropriate approach. For example, if algorithm
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Table 2.1: Typical Properties of Generation Approaches
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animations are limited to a single application area, a topic-specific systems may be the most ap-
propriate choice. However, if several topics are covered, choosing a set of topic-specific systems
forces users to familiarize themselves with different systems over the length of a course. This may
lead to confusion and diminished motivation. The key findings regarding the generation approach
can be summarized as follows:� GUI-based animation systems are probably the easiest to learn for algorithm animation

laypersons who want to generate their own animation. This is mostly due to the fact that
these systems provide immediate feedback to any action taken. Also, most computer users
have gained sufficient familiarity with GUI-based systems from the window managers run-
ning on their system, such as GNOME or KDE for Linux, or the graphical interface of the
various Microsoft WindowsTM releases.

However, the generation is very time-consuming and usually can portray only a specific set
of input values. Changing parameter values can only be addressed by generating a new
animation.� API-based generation may be easy to pick up for more experienced programmers used to
invoking methods in external libraries. The calls are directly embedded in the code, either
by explicit invocation or by using self-animating data structures. Each new invocation of the
code generates a new animation. Thus, it is easy to portray the effect of changed parameter
values on the chosen algorithm.

While the embedding of additional method invocations is relatively “clean” from a program-
ming point of view, it may affect the algorithm behavior due to side effects. Run-time mea-
surements also become ineffective in instrumented code. Furthermore, the method invoca-
tions may reduce the code legibility if the division between algorithm and animation code
becomes diffuse.� Scripting-based systems are conceptually close to API-based generation. Instead of method
invocations in a special library, the visualizer generates scripting commands, typically by
sending them to the standard output or to a file. The approach mainly shares the same benefits
and drawbacks as API-based generation. However, scripting generation is not as “clean” as
method invocations due to infusing the code with output statements. On the other hand, the
generation of the scripting code is independent of the programming language in which the
algorithm is implemented. Storing the generated code in a file allows the animation to be
reused.� Declarative systems usually embed the predicates in special comments [163]. Thus, they
usually affect the code legibility less than scripting-based systems. In principle, each predi-
cate could be mapped to a method invocation in an equivalent API. Thus, the approach also
shares the same benefits as API-based generation. Some systems also allow the visualizer
to define new predicates. However, the visualizer must have a certain skill in mathematical
reasoning to use these systems.� Code interpretation frees the visualizer from most tasks, except perhaps the setting of “appro-
priate” breakpoints. These breakpoints can be similar to Marc Brown’s concept of interesting
events [26]. Some code modifications may be necessary if the source code is interpreted in a
fixed environment. The main benefit is the automatic tight connection to the actual algorithm
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execution; on the other hand, this closeness may also make abstract reasoning or focusing
on the “main” parts of the algorithm more difficult. For example, skipping ahead in the code
still requires the execution of the actual code. This may take a long time, as in the case of
NP-hard problems [62].

Section 2.5 presented several systems for each generation type. The available systems can be
split into two categories: applets that illustrate a selected topic and full-fledged animation systems.
The applets presented in section 2.5.1 were grouped according to the amount of user interaction
and additional information presented. Simple non-interactive applets may not show the underlying
source code or any textual description. More advanced applets let the user specify the input data and
control the animation, for example by adjusting the display speed or using a single step mode. Some
applets also contain additional information that explains the current state of the display. Section
2.5.2 discussed a selection of full-fledged systems for each animation generation approach. Several
of the systems let the user specify at least some input data. They may also allow the generation of
new animations by the visualizer.
The large number of available tools makes the choice of an appropriate algorithm animation system
difficult for both users and visualizers. Visualizers should try to determine the type of generation
that best fits their personal preferences and skills. However, depending on the chosen generation
approach, the number of remaining choices may still be large. Therefore, both visualizers and users
need a set of requirements that each system can be checked against. The most appropriate system
for their use can then be determined as the system that matches most of the requirements. The
following chapter focuses on the generation of such a set of requirements.



Chapter 3

Requirements Analysis

3.1 Introduction

The large number of available algorithm animation systems makes finding an appropriate system
difficult. Simply picking an arbitrary system may result in problems. For example, it may take a
while to figure out that the chosen system does not support all required operations. Evaluations of
available animation systems have to be constantly maintained to reflect the current state. Such lists
are unlikely to be both up to date and complete. For example, the 21 pages devoted to an evalua-
tion in section 2.5 contain only a small selection of the currently available applets and animation
systems.
Therefore, we take a different approach in this chapter. Rather than trying to pinpoint the strengths
and weaknesses of selected systems, we explore the requirements for a hypothetical “ideal” algo-
rithm animation system. Some of these requirements conflict with others, and may even contradict
each other. One standard requirements reference are the “ten commandments of algorithm anima-
tion” by Gloor [67]:

1. Be consistent

2. Be interactive

3. Be clear and concise

4. Be forgiving to the user

5. Adapt to the knowledge level of the user

6. Emphasize the visual component

7. Keep the user interested

8. Incorporate both symbolic and iconic representations

9. Include analysis and comparisons

10. Include execution history

43
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These “commandments” represent a mixture of demands on the different roles in algorithm ani-
mation, as defined in section 2.3. We argue that all requirements represent the interest of the user
role. However, some of the requirements place demands on how the visualizer generates the ani-
mation, notably requirements 1, 3, 6, 7 and 9. Additionally, the developer has to embed appropriate
functionality in the system so that some requirements can be met by the visualizer. This mostly
concerns requirements 2, 4, 5, 8, 10 and to a lesser extent requirements 6 and 9.
The goal of this chapter is to provide the reader with a comprehensive set of requirements for ani-
mation systems. The requirements are split into five categories. The first category contains general
requirements applicable to all roles. The following four categories are dedicated to the requirements
for one specific role each and are discussed in separate sections. Each requirement is described and
motivated. Not all requirements are equally important on an objective scale. Additionally, the
reader may regard several requirements as less important according to his or her preferences. Most
requirements are placed on functionality offered by the animation system, and thus address the
work done by the developer. The chapter ends with a brief summary of the main requirements.

3.2 General Requirements

This section focuses on general requirements which are independent of the current role taken by the
person using a given system. Therefore, they apply to most or all of the different roles. Typically,
the requirements are implicit for the developer role, as the developer can define the system to fit the
requirements. They are usually of little or no concern to the programmer role. This is especially
true if the programmer is unaware of any visualization plans. The requirements can be split into
three categories: requirements regarding the machine the system is used on, development state and
performance of the animation system, and applicability of the animation system.

3.2.1 System Requirements

GR1. Operating system independence

Following the presentation of the Java language, this argument has gained a large following.
The recognizable trend of many authors, including such illustrious firms as IBM, goes toward
the development of platform-independent software. The main rationale behind this trend is
the ability to reach the widest possible audience without having to port code to different
systems.

Several programs are only available for selected operating systems. For example, WinHIPE
[207, 128, 129] is only available for the Microsoft WindowsTM family. ZStep 95 [114] and
Leonardo [44, 39] are only available for MacOSTM. Thus, users running the increasingly
popular Linux or other operating systems are excluded from using either of the tools.

A common statement regarding operating systems is that “most people run Microsoft Win-
dowsTM”. This is used as a justification that it is unnecessary to use portable languages such
as Java or provide a port to other platforms. However, the argument does not consider that
many universities use UNIX or MacOSTM on their computers. Arguably, university students
or school pupils are among the primary clientele for algorithm animations. Thus, preventing
a portion of them from using the tool is unwise. The press also periodically indicates that
several firms consider shifting to Linux for speed and cost considerations.
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GR2. Modest hard disk and RAM requirements

Hard disk capacity is comparatively “cheap” and new “off the shelf” computers are being
equipped with an increasing amount of memory. Thus, it is tempting to ignore the space and
memory requirements of tools. However, the amount of memory used is of importance to
many users in a variety of ways. For example, even large hard disks become filled due to the
tendency of software to grow larger with each new release. Additionally, university campuses
or firms often restrict the amount of space a given user can allocate. Buying additional disks
or RAM modules once the capacity is exhausted may not be possible due to financial or
organizational reasons. Private users may also refrain from downloading sizable tools due to
the amount of time required.

GR3. No special hardware or additional component requirements

Depending on the features of a given tool, special hardware may be necessary. This includes
supposedly “standard” hardware, such as CD-ROM or DVD drives. However, it may also
concern video decoder hardware or special graphics adapters, for example for 3D support.
The developer should consider that each additional requirements may limit the number of
users. For example, not all computers today are equipped with a CD-ROM drive. This
concerns older computers as well as some terminals found in university computing centers.
It is questionable whether the interest of a given user is sufficiently high to invest the money
in additional components, let alone buying a new computer.

GR4. Independence of an Internet connection

The obvious drawback of requiring an active Internet connection is that it directly limits the
user range to those who can access the Internet. Many universities allow their students to use
the Internet. However, this does not mean that the students also possess a private Internet
connection at home. Even if this is the case, using the system may result in costs for the user
in the form of Internet connection or phone bills.

Finally, and perhaps most importantly, the system may be rendered unusable if the Internet
connection fails. In the simplest case, the user has no way to connect to the Internet. For
example, he or she may be traveling, or have no modem or Ethernet plug. Problems at the
client or the system site, restrictive firewall policies and a variety of connection problems
may also prevent system usage.

Some systems require a connection to the Internet due to their nature. For example, client-
server systems naturally require a connection to the server component. If the server is not
shipped to the user for technical, legal or other reasons, the system is only usable with an
active connection. In these cases, the developer has to take into account that users may be
prevented from accessing the system due to the reasons given above. If the Internet connec-
tion is not an essential part of the system, it should be added as an option which leaves (part
of) the system functionality available if the connection fails. Otherwise, possible users of
the system should be informed that an Internet connection is required. They can then decide
whether they want to download the system based on their connection situation.
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3.2.2 Development State and Performance

GR5. System maintenance and stability

Many software developers offer clients access to pre-release versions of the software, com-
monly called “beta software”. Users may associate “beta software” with many unknown or
known, but not yet fixed, bugs and lacking some of the expected features. Honesty and fair-
ness to the client thus require that any piece of software that is not considered “finished”
should mention that it is still “beta” or “under development”. Additionally, the user should
be able to determine whether the authors plan to maintain the system, so that bugs may be
fixed in a future release.

Ideally, the system should be available as Open Source. Other developers are then able to
develop additions or adaptations, as well as fixing known bugs.

GR6. Update policy

Similar to the previous requirement, a regular update policy can improve user confidence and
satisfaction with the software. “Regular” does not necessarily mean “scheduled”, so that no
fixed dates for updates have to be given. A good update policy will mention that an update
is planned, possibly including a list of the bug fixes and additions. This allows users to
determine if problems or shortcomings in the tool will be fixed. Without such information,
users may consider changing to a different tool if they cannot resolve their problems.

GR7. Total Cost of Ownership

One of the “buzzwords” in software development over the last years, total cost of owner-
ship (TCO for short) addresses the sum of all costs associated with using a given system.
This includes the cost of acquiring the system, the price of necessary additional components
(GR3), the cost for the working time spent on developing content, and Internet connection
fees (GR4). Other cost factors may for example be the cost for acquiring an update, li-
cense fees for software generated with the system or using an optional stand-alone “player”
software. Finally, the user may have to invest money in additional documentation, demon-
strations, tutorial material or simply in printing the digital manual. Comparatively “cheap”
systems regarding the original price may have a high cost of ownership once the other costs
are taken into account.

If possible, the user should be advised about additional costs. Thus, the system description
should include a list of expected components with their associated price.

GR8. Sufficient system performance

The performance of the system depends on the underlying hardware. The term “sufficient”
is at least partially subjective. However, the operations of the system, such as displaying the
sequence of animation frames, should not fall below a certain threshold. For example, the
illusion of smooth motion as in video clips requires a refresh rate of typically between 20
and 32 frames per second. Users should be advised of minimum or typical requirements for
standard performance. For example, statement such as “requires an Intel Pentium III with at
least 700 MHz” help users in deciding whether an installation is useful. Such information is
usually included in commercial software products, but often absent in shareware or freeware
products.
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GR9. Easy downloading, installation and maintenance

A large amount of administrative tasks are placed on both university faculty and system
administrators. Therefore, tool acquisition, installation and maintenance is one of the general
hindrances for adopting a tool. Even moderate effort may prevent effective use of the tool
[21, 167].

Another consideration is the effect of updating the software. It is often unclear whether
the update will modify, replace or simply ignore an existing installation. For example, the
updated version may be unable to access “old” files due to changes in formats. If the update
replaces the previous version, those files may be lost. Whenever possible, the user should
therefore make a backup of the software before installing a new version or update.

3.2.3 Applicability

GR10. Flexible application area

As discussed in the previous chapter, software that focuses on a single topic may provide bet-
ter support for its specific focus. However, this advantage also requires changing to another
system for exploring a different topic. Each system is likely to have its own specific user
interface. Therefore, both visualizers and users may have to learn using the system without
benefitting from their previous experience. The need to locate a set of systems for covering
the range of topics covered adds to the complexity of system installation and maintenance
(GR9) and may decrease the interest in using the systems.

GR11. Well-documented system goals

Khuri [98] points out that the intended goals of a system should be well-documented. In
his article, he targets the developer of an algorithm animation system. However, users and
visualizers can also benefit from this. A documentation of development goals may outline
possible application areas. It can also inform interested parties that the software may not be
appropriate for the planned area of use.

GR12. Upward file format compatibility

New releases of software tend to add functionality in addition to fixing bugs. This added
functionality usually also impacts the file format. While the new release thus may have to
modify its save and load routines, it should still be able to process files written with older ver-
sions. If this basic requirement is violated, all animations generated with a previous release
may be rendered unusable after installing the update.

Note that the requirement does not prevent the author from adding to the file format or even
changing the basic way animations are stored. Rather, it demands that the older parsing
routines are still supported. This may also contain the existence of the previous storage
routines, allowing the user to store an animation in a format that users of a previous release
can process.

GR13. Downward file format compatibility

GR12 requires that users can still process files generated in an older release. However, it
would also be helpful if users of an older release could read animations generated in a newer
release. Due to format changes and the possible use of features not present in their release,
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some compromise in the quality of the animation may be unavoidable. However, the ability
to get at least a rough impression of the new animation is helpful and may also be a good
acquisition incentive.

3.3 User Requirements

This section examines the requirements that the user role places on an “ideal” algorithm animation
tool. As described in section 2.3, user refers to the end user of an animation tool. Several user
requirements thus deal with interface decisions and the didactical structure of the animation. The
structure of the animation is decided by the visualizer; however, some of the user expectations may
require tool support for specific operations.
The requirements can be split in the following eight different categories, discussed in separate
subsections:� content presentation,� animation display controls,� user interaction,� educational support,� user interface considerations,� file exchange with other systems,� algorithm understanding support� and miscellaneous requirements.

3.3.1 Content Presentation

UR1. Embedded textual explanation of view

A common proverb in several languages holds that “a picture is worth more than 1,000
words”, although the precise number of words differs between languages. Hundhausen [81]
presents an evaluation of several cognitive science theories and empirical evidence that indi-
cates that people remember pictures more easily and readily than text. However, stand-alone
pictures may not be quite as helpful for understanding the content portrayed.

Several algorithm animation studies point out that one of the most important features of an
animation tool is the ability to embed a textual explanation [55, 2, 18, 21, 99, 134, 128].
This is also supported by psychological research, as cited in [18]: text and graphics must
be presented simultaneously and coordinated well. Anderson and Naps [2, 134] state that
the presence of explanatory textual materials seems to “be a minimal requirement to achieve
any level of understanding”. The underlying rationale is that the text is used to explain the
graphical display, especially the mapping between the underlying algorithm and its graphical
presentation. Without this additional help, the users may be unable to fully understand the
significance of what they see.
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UR2. Embedded pseudocode with highlighting

The addition of pseudocode is one possible application of UR1. Several studies [82, 51, 32,
201, 207, 38, 55, 174, 21, 110] consider pseudocode embedding important for understanding.
Pseudocode offers a comparatively compact way of conveying the structure of an algorithm
without focusing on the precise syntax of a programming language. Highlighting the cur-
rently executed line of pseudocode guides the attention of the user. It may also improve the
mapping between the algorithm and the animation [55, 174].

Pseudocode simplifies the presentation of algorithms with long or intricate implementation.
For example, it is comparatively easy to state Dijkstra’s algorithm in pseudocode by skipping
over the details on how the next cheapest reachable node is selected. The actual implementa-
tion, which may incorporate optimizations or special data structures such as a priority queue,
may confuse students. However, the focus of the algorithm does not lie in the specific imple-
mentation details!

UR3. Metaphors and Applications

In a similar vein as supporting pseudo code with highlighting, abstract views of an algo-
rithm may help the user in getting a better understanding. These abstract views may be a
pseudocode version of the algorithm, “stories” [50] or metaphors built around the algorithm.
One of the common metaphors is searching for a telephone number in a phone book, usually
used to explain interpolation search. The actual choice of the abstraction depends on the
preferences and social environment of both visualizers and users.

The ability to present a “real world” example of the algorithm in action may increase user
interest. It also offers a different view of the algorithm which some users may find easier to
grasp than the algorithmic presentation.

UR4. Linking to documentation

Layout considerations restrict the amount of documentation that can be embedded into an
animation. Thus, users may profit from a link to documentation that is presented in a separate
window. There is usually no “best” way to provide a given material that works well for all
users. Empowering the user to choose the reading speed as well as the order of reading the
material helps in addressing different needs. This may also include sidetracks unanticipated
by the visualizer. Hypertext documentation gives the control of reading and navigating the
documentation to the user and is preferable to straight text [65, 2, 21, 99, 134, 167].

Note that the location of the documentation is also important. Documentation which only
resides on a Web server requires an Internet connection, which may reduce usability for some
users - see GR4 and [167].

Anderson and Naps [2, 134] propose the addition of material in three different stages of in-
teractivity. Static materials contain a non-changing hypertext material that is always present,
regardless of the stage of execution of the algorithm. Algorithm-sensitive material changes
with respect to the execution of the algorithm, but is unaware of the actual data values af-
fected by the operations. Dynamic material finally is fully aware of the current data, and thus
may incorporate this knowledge into the documentation.
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3.3.2 Animation Display Controls

UR5. Full-fledged video player controls

A large number of studies stresses the importance of the animation control for the user.
The standard controls should at least support pause and resume [25]. Tools that view an
animation as a slide show of connected steps should also support step functionalities. Other
requirements often encountered include the ability to fast forward the animation either freely
[67, 114] or to predefined “points of interest” [83, 99].

Some researchers also stress the importance of arbitrarily stepping backwards in the anima-
tion to fixed “points of interest” [67, 83] or arbitrary points in the animation [118, 39, 55, 2,
21, 113, 134, 128]. By the time users notice that they are confused or have lost track of the
animation, the appropriate point for regaining the train of thought is most probably passed.
Therefore, the tool should support backtracking. Anderson and Naps [2] consider this es-
sential for effectively using animations “to achieve any non-trivial level of understanding”.
The article also points out that achieving this kind of backtracking is difficult in many cases.
Hardly surprisingly, it is absent in most animation systems with dynamic displays. Naps
[134] further points out that achieving the first two levels of Bloom’s taxonomy [19] require
a rewind facility.

UR6. Embedded breaks between steps

Some animation tools as well as general presentation tools such as Microsoft PowerPointTM

offer a “continuous” display more reminiscent of a slide show. While it may be tempting
for visualizers to incorporate this facility into their animations, breaks between steps can be
very relevant. The time needed for assimilating the animation content differs between users,
as does the speed of comments given by an instructor [174]. One of the common points of
critique in animations is that “the animation doesn’t wait for you to think” [2]. This may
even be true if a pause button is provided, as the user may be too slow in pressing the button,
leading to the problem of rewinding described in UR5.

Forcing the user to press a key or click on a button whenever the next step should be dis-
played is also inadvisable, as it may easily lead to fatigue. Depending on the algorithm being
animated, the animation may easily contain more than one hundred steps, each requiring a
separate key press or mouse click.

3.3.3 User Interaction

UR7. User interactivity support

Gloor [67] points out that the user should be active at least every 45 seconds. The simplest
way to achieve this is by combining slide show modes with explicit play commands issued
by the user at his or her own speed. Anderson and Naps [2] propose that a greater degree
of interaction allowed by the instructional design of the tools ties in with a greater degree
of understanding. This also underscores the importance of embedded breaks between steps
(UR6) combined with flexible controls (UR5) that prompt interactivity, if only on a mostly
mechanic level.
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UR8. Support role shift from user to visualizer

As a logical consequence of requirement UR7, the ultimate level of interactivity is letting the
user adopt the visualizer role. Several studies present convincing arguments that letting users
design their own animation is most effective for understanding [160, 194, 85, 2]. The central
issue then is the degree to which the animation system makes the design of a visualization
abstract. Both the level and quantity of programming needed for generating an animation
should be minimal to allow the user to focus on understanding the algorithm [2].

Note that this does not mean that the animation of a given algorithm has to be easy to modify.
Rather, the animation tool should present some avenues for the user to become a visualizer,
independent of any given animation. Thus, the user will generate a new animation, which
may be used interactively by other users. Of course, educators acting as visualizers may also
provide a basic animation structure that has to be completed by the student users.

UR9. Input data generation or specification

Some animation systems allow the user to specify the input data by entering concrete values
[71] or selecting the type of input from a predefined set [32]. Gloor stresses the importance
of enabling the user to specify input data by making it part of the second of his “ten com-
mandments of algorithm animation” [67]. As he also points out, this functionality is less
important for users new to either the animation tool or the portrayed algorithm. For these
users, a predefined set of inputs should be provided that illustrates the salient features of the
algorithm. The same argument is advocated by Khuri [99].

The user may find it difficult to fully design a “helpful” input. For example, novices to the
Quicksort algorithm may find it difficult to figure out the correct type of data set to choose
for worst-case or best-case behavior. The input facilities for entering the data may also
overwhelm the student due to the nature of the algorithm. For example, entering a complete
graph as done in [71] for formal languages already requires a certain level of understanding.
Anderson and Naps state that a “strategic” decision may be sufficient [2, 134]. In this case,
users are restricted to predefined sets of input types that help them in deciding the critical
issues. In sorting algorithms, this selection could be restricted to random, in order, in reverse
order or almost in order.

UR10. Incorporate predictions and “quizzes”

A comparatively new development in algorithm animation is the inclusion of interactive pre-
diction. The animation is stopped at specific breakpoints, and the user is prompted to predict
what will happen in the next step. This prediction may incorporate clicking on specific areas
of the screen. For example, a spanning tree algorithm animation may ask the user to select
the next node or edge chosen by the algorithm [24, 55, 90].

Alternatively, a text prompt may appear that presents a “quiz” question and prompts the
user to provide an answer. These quizzes can cover a variety of types, such as true / false,
multiple choice with one or more correct answers, or fill in the blanks [131]. The developer
and visualizer may decide whether users get direct feedback regarding the correctness of
their selected input.

Interactive prediction shall serve to sustain the concentration of the user. Studies by Byrne
et al. [34] indicate a benefit of using prediction, although this benefit was not statistically
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significant. Part of the unreliability may stem from the difficulty of the topic chosen for the
experiment. The structure and quality of both the prediction integration and the animation
itself may also have affected the experiment. Finally, previous experience of the users may
have impacted the results. In the study, strong users remained strong, while users who made
lots of errors in the prediction seemed not to learn enough from it in time for the post-test.
A recent study by Hundhausen [85] indicates that prediction can be a very effective way
of achieving significant improvement in understanding an algorithm as a problem-solving
recipe. An upcoming dissertation by Hill [77] examines the instructional value of student
predictions in tree animations.

However, the effectiveness of interactive prediction is still not fully evaluated. There may be
significant differences between predictions in pencil and paper form in a highly controlled
lab setting, as opposed to the integration of interactions in an animation tool. There are only
few systems with fully integrated prediction, including JHAVÉ [131], the work by Jarc et al.
[90], Bridgeman et al. [24], Miraftabi [120] and Faltin [54, 56, 55].

UR11. “Interesting” and “pathological” data incorporation

Animations with a predefined set of input values or supporting strategic input choices as
described in UR9 should also offer two special types of input. “Interesting” data refers
to data that lets the user explore specific properties of the algorithm. For example, users
learning the Quicksort algorithm may find it interesting to see the algorithm’s behavior when
comparing two swap candidates which are equal to the pivot element. This ties in with
the distinction of whether Quicksort is stable. As this type of data will often not occur in
randomized generation and may also not be representative, some authors also refer to it as
“cooked” data [27].

“Pathological” data, on the other hand, takes the algorithm to extreme behavior. Typically, it
also illustrates the worst-case behavior of the algorithm, for example when sorting an array
of identical values. Brown and Hershberger [27] mention that the use of pathological data
helped discover a subtle bug in the implementation of a polynomial decomposition algorithm.
Other examples include selecting a single color bitmap for run length encoding [99].

UR12. Labeling of main steps

The third of the “ten commandments of algorithm animation” [67] includes a demand that im-
portant logical algorithm steps should be accentuated in the animation. This can be achieved
by annotation or by providing a special controller element that lists the steps and also acts as
a hyperlink for jumping to a given step. A similar demand is given in [83, 99]. Incorporat-
ing this display guides the user by highlighting the current step and may allow for a better
in-depth understanding of the algorithm [66].

3.3.4 Educational Support

UR13. Embedded analysis, complexity and comparison

The ninth of the “ten commandments of algorithm animation” demands an inclusion of an
analysis of the algorithm’s behavior [67]. This allows comparing the performance of different
algorithms, possibly also running multiple algorithms in parallel [27]. A similar demand is
formulated by Anderson and Naps [2] who place the ability to perform a complexity analysis
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at the second-highest rung on their algorithm understanding scale. Note that the ability to
follow or even perform a complexity analysis also ties in with the highest level of Bloom’s
understanding taxonomy [134].

The analysis should ideally incorporate the actual data used in the algorithm, for example by
explicitly stating the number of operations performed during the animation [67]. As a smaller
requirement, it should include the complexity class of the algorithm in big-O notation.

UR14. Faculty propagation

Perhaps the most important requirement in gaining user interest in a given tool is the propa-
gation by faculty or other teaching staff. Bazik et al. [17] state that much of the success of the
BALSA system was due to the tight integration with the other resources for the algorithms
and data structure course. Similarly, students are more likely to use algorithm animations if
the teachers are enthusiastic about the tools themselves and propagate this interest. In some
cases, even a recommendation or pointer to web resources by the teacher may be sufficient
to prompt users to use the system.

UR15. Use of a visual layout notation

Certain visual layout notations such as grids or flowcharts may be helpful for novice users.
For example, Mulholland and Watts [125] found using “fact cards” similar to spreadsheet
tables helpful. Part of the reason is ascribed to the lower level of syntactic detail compared
to using a “real” programming language such as Prolog. This may assist novice users in
crossing the boundary from uncertainty into a confident use of the tool [125]. Similarly,
Ben-Ari [18] argues that a secondary graphical notation including layout and typography
may be advantageous. However, this notation must also be learned by the user and may not
be obvious especially for novice users.

UR16. Adjustment of detail level

Both novice and advanced users may want to be able to adjust the amount of detail presented
in an animation. Some systems support this feature, for example by allowing the user to
select different views of the data. Anderson and Naps [2] postulate the adjustment of detail
as the fifth of their eight levels on the instructional design scale. Similarly, adapting to the
user’s level of knowledge is the fifth of Gloor’s “ten commandments of algorithm animation”
[67].

The level of detail may be arranged by hiding corresponding elements or offering multiple
selectable views [27]. For example, [107] incorporates several different selectable views
which range from a basic display to detailed causality or communication views for distributed
algorithms. Typical other examples include portraying sorting algorithms as an array, a set
of sticks, a dot plot or a hierarchical recursive call tree [2]. The Heapsort learning applet
by Faltin and Gross [56] uses a bottom-up approach that illustrates the individual methods
separately, and thus avoids swamping the user with details.
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3.3.5 User Interface

UR17. General user interface considerations

A vast amount of different issues have to be taken into account when designing a user in-
terface. Discussing the issues is far beyond the scope of this thesis. For example, the user
interface should be easy to use, self explanatory, consistent, prompting only for relevant in-
teraction, flexible and supportive regarding the user’s tasks. An in-depth discussion of user
interface considerations can be found in a variety of Human-Computer Interaction (HCI)
publications. A good starting point for novices to the topic is Faulkner’s book on the “essen-
tials” of the field [57].

UR18. Internationalization in animations and user front-end

An aspect often overlooked by the predominantly English-speaking software developers is
the ability to translate content into the user’s native language. In the context of algorithm
animations, this concerns both the animation content and the graphical user interface. For
example, many German students may be less willing to use a system which is held completely
in English. While we may regard this as regrettable, most users are likely to prefer a system
which is offered in their native language.

Translating the interface itself is possible by resource bundles containing the translated con-
tent [80]. In effect, this is a requirement that the user places on the developer role. Offering
a localized animation, on the other hand, is a requirement placed on the visualizer who has
to prepare appropriate translations [178, 179]. However, this also requires special support
within the tool to either let the user choose from the list of encoded languages for each
loaded animation, or to adapt the language to the language used for the user interface. Thus,
the developer role also has to provide support for animation translation.

UR19. Smooth transitions

Smooth transitions make it easier to perceive the currently performed operation [197]. Grad-
ual change allows the eye more time to notice the changing elements. It also frees the user
from trying to find the difference between one picture and its ancestor, possibly from the
internal representation in the user’s memory. Many authors agree that smooth transitions are
helpful, for example [27, 55, 2, 134]. On the other hand, applying smooth transitions to large
data sets may be impractical as the operations may take too long and may make the user
impatient.

Anderson and Naps [2] report that an informal study found that some users preferred smooth
animations, while others preferred discrete snapshots with breaks in between. It should be
noted that the system underlying the study used smooth transitions without providing default
breaks between steps (UR6). It also offered no rewind facilities.

UR20. Color incorporation with “useful” settings

Colors can be very powerful for communicating information efficiently. Example applica-
tions may use colors to encode the state of data structures, highlighting of activity, tying
multiple views together, emphasizing patterns and providing a visible history [27].

However, human computer interaction research shows that not all color combinations are
equally suited. Unreflected color choice or an abundance of colors may hinder rather than



3.3. USER REQUIREMENTS 55

help user understanding [57]. Additionally, about 8 per cent of men and 1 per cent of women
are color blind in varying degrees. Using color cues as the only means for conveying a certain
information is therefore dangerous, especially if the brightness of the colors is similar. The
developer of a system should pay attention to this fact and try to use colors that exhibit
a significant brightness difference. Note that apart from color blind users, the brightness
difference is also decisive regarding the quality of grey scale printing of screen shots. Further
hints about using colors are given in [57, 99].

UR21. Easy customization

Each user is likely to have his or her own set of preferences regarding the user interface.
This mostly concerns the colors employed, as stated in UR20. For example, Brummund
[32] presents an animation of different sorting algorithms that can be adjusted by setting
diverse color properties. Other areas of customization include the amount of information
presented (see UR16) or its format. The work by Velázquez-Iturbide and Presa-Vázquez
[207] supports templates that allow the user to specify the textual format of expression used
for the animation.

3.3.6 File Exchange

UR22. Animation saving

This requirement is fulfilled by most systems incorporating graphical input. However, other
systems are also advised to support storing the full animation or parts thereof in an internal
format. The process of evaluating the input and building the animation may take a certain
amount of time. In some cases, it may not be possible to recreate the precise animation con-
tent, mostly if the algorithm incorporates random events. Systems incorporating generation
by declaration, API method invocations or code interpretation can benefit the most from an
internal storage format. Scripting-based systems benefit less from this ability, as their content
is usually already fixed to disk.

An internal, efficient storage system allows quick retrieval of a given animation. This is
especially helpful if the animation is propagated over the WWW. A variety of compression
algorithms can be used to further decrease the size of the file to be transmitted to the client.
Java contains support for the gzip and zip compression algorithms popular with both UNIX

and Microsoft WindowsTM users.

UR23. Export facilities

Users are likely to appreciate the ability to export parts of the animation. Typical examples
of export include storing the display as an image in one or more popular formats [128].
Video formats are obvious candidates for export, as they are able to appropriately convey
the dynamics of the animation. Other possible export formats include customized animation
languages specified in the increasingly popular XML [78], as well as formats used by other
animation systems.

Despite the presence of special libraries such as Apple’s Quicktime API [10], exports to
video formats are still very uncommon. Similarly, some freely available APIs support image
generation. Alas, most animation systems do not even offer facilities for exporting anima-
tions to other animation tools.
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UR24. Import facilities

In a similar vein to UR23, users are likely to appreciate import filters. These filters can be
used to load and possibly convert “legacy” animations. They also allow a user to access a
variety of resources built by visualizers using other systems and incorporate them into the
chosen system. Alas, import filters share the same fate as export filters, with most tools
supporting only their own format.

3.3.7 Algorithm Understanding

UR25. Focusing of attention

There are various techniques for focusing the user’s attention on the salient aspects of the
algorithm. Color usage has already been mentioned in UR20. Other possibilities include
shape analysis techniques [23], using only small data sets [51], incorporation of interactive
predications (UR10), highlighting the main steps of the algorithm (UR12) and shading out of
currently irrelevant elements [174]. Other techniques such as blinking may irritate the user
and distract from the content [55]. Sound effects can also be used to get or direct the user’s
attention [28].

UR26. Didactical structure of animation

The structure of the animation has a significant effect on the user’s chance of understanding
the topic [34]. Faltin [55] proposes a bottom-up approach that starts with an outline of
the problem and known solutions. After comparing relevant algorithms, the data structures
used in the concrete algorithm selection are presented. This is followed by an introduction
of the methods used by the algorithm and concluded with the actual implementation. The
presentation could end with a discussion of the algorithm’s efficiency, as described in UR13.

UR27. Small data sets for introduction

To avoid confusing especially novice users, any animation should start with a small set of
data. Some researchers claim that at most seven elements should be used or changed in each
step [55]. This ties in with psychological research which shows that short-term memory can
store five words or shapes, six letters, seven colors and eight digits [99].

Starting with a small set of carefully chosen data makes focusing on the salient aspects of
an algorithm easier [51, 2]. Larger data sets may be necessary for illustrating key properties
of algorithms [27]. Hashing animations operating on a small data set may have to resort to
“cooked” data as described in UR11 to illustrate collision handling. Using a large, represen-
tative data set offers a realistic view of hashing, but may initially confuse the user. To avoid
this confusion, the general principle should be introduced on a small data set, followed by
the larger data set that shows the typical behavior.

UR28. Loop shortening

The user should be able to skip the rest of a loop after understanding its operation. It is thus
often sufficient to perform only a few iterations of the loop fully and abbreviate or drop the
rest at the user’s discretion. Note that the user should be able to control when the rest is
skipped, as the visualizer cannot predict the user’s level of understanding. Gloor hints at this
capacity in the third, fifth and seventh of his “ten commandments of algorithm animation”
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[67]. Several other researchers also include the requirement, for example [68, 55, 98, 205,
210].

UR29. One “interesting event” per step

A single step in the animation should not be overburdened with operations. From the user’s
perspective, each step should contain at most one “interesting” event per step [27, 55]. Note
that there may be intermediate steps which do not contain an “interesting event”. These
steps may focus on providing an explanation of what happened or is to happen, or show the
preparation of the next “event”.

The precise definition of what constitutes an “interesting event” varies between authors. The
structuring approach advocated by Faltin [55] shows only interesting events. BALSA shows
the algorithm state at defined breakpoints [31]. In both cases, the visualizer defines which
elements are considered “interesting”.

UR30. Adjustable speed control

Gloor regards speed adjustability as an aspect of the fifth of his “ten commandments of
algorithm animation” [67]. Several other reports also stress the importance of a speed control
[65, 99, 205]. The most well-known veteran system of algorithm animation, BALSA by
Brown and Sedgewick [31], already incorporated a speed control. Since then, speed control
has been added to many systems that use a slide show approach of displaying the animation,
such as JSamba [196]. Step-based systems that wait for a user action to show the next step
usually have less demand for a speed control.

3.3.8 Miscellaneous

UR31. “Graceful degradation”

GR8 discussed that the tool should offer “sufficient” performance. Gloor [65] also demands
that the tool should degrade gracefully if running on a slower machine than anticipated. There
are basically two alternatives for achieving this goal: leaving out intermediate image frames
to “catch up”, or showing the full content, only slower.

The first approach may result in jerky, unpredictable behavior, but maintains a certain degree
of faith to the original timing constraints. The second approach ignores possible timing
constraints without leaving out anything. Watching the animation may become unbearable if
the user’s computer is far too slow. While there is no easy solution to the dilemma, a good
tool should offer some way of addressing this issue.

UR32. Incorporation of a “history”

Some reports indicate that a history of the previous step or steps is required for algorithm
understanding [51, 84]. Gloor has made the inclusion of a history the last of his “ten com-
mandments of algorithm animation” [67]. One way of offering a history is by showing the
current and former value side by side [100, 101, 148].

UR33. Consistent presentation over diverse animations

A set of related animations should preferably be presented in a consistent way. Gloor makes
this demand the first of his “ten commandments of algorithm animation” [67]. Consistency
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concerns both the visual presentation [98] and the control elements [65, 99]. Gloor [65] states
that the advantages of using a consistent view of a family of related algorithms include easier
generation and adaptation as well as better comparability. Using a customized presentation
that highlights the specific salient aspects of each algorithm in a family communicates its
intrinsic workings better [65]. However, it also forces the user to adjust to the different
notation employed.

UR34. Clear mapping of code to animation

The easiest way to fulfill this requirement is by letting the user specify the mapping as de-
scribed in UR8. Several other techniques have already been presented, such as including
textual explanations (UR1), using pseudocode (UR2) or interactive predictions (UR10). As
Khuri [99] points out, finding an appropriate mapping is non-trivial and requires time, effort,
careful thought and knowledge of the particular animation tool. Without providing a clear
mapping, especially novice users may be unable to profit from the animation [98].

UR35. Restriction to meaningful user events

Interactive systems that allow the user to select elements or provide input as described in
UR9 should detect faulty or meaningless inputs. Gloor [67] states that these types of input
should be disregarded. Optionally, a dialog may alert the user that the input is incorrect or
meaningless.

One easy way of preventing meaningless interaction is by disabling control elements which
are inapplicable in the current situation. For example, a button for rewinding the animation
is meaningless if the animation is already at the first step.

3.4 Visualizer Requirements

As described in section 2.3, animations are generated by visualizers. The design of the animation
and especially the mapping from code to visualization is therefore the main task of visualizers. In
order to provide the “best” possible animation, the animation tool has to support a set of specific
operations. Note that the importance visualizers place on the individual requirements may differ
according to their personal preferences and understanding of what constitutes a “good” animation.
Some user requirements as well as most general requirements also apply to the visualizer. See Ta-
ble 3.1 on page 66 for a detailed mapping. The visualizer requirements are split into the categories
applicability, animation display and animation generation.

3.4.1 Applicability

VR1. Focus on understanding the data structures and algorithmic steps

This should be the main focus of any educational algorithm animation. Part of the problem
lies in enabling the user to understand the mapping between the algorithm and its visualiza-
tion [81, 82, 51, 55, 2, 99]. Various ways for helping the user overcome this problem are
listed in the previous section and mapped in Table 3.1 on page 66. Slightly simplified, the
more freedom the visualizer is granted in designing an animation, the better. However, visu-
alizers should also check the user requirements in section 3.3. An animation tool that offers



3.4. VISUALIZER REQUIREMENTS 59

good support for generating animation, but is awkward to use for end users, may prevent
even very good animations from being used.

VR2. Extensibility

As Khuri points out, no single animation tool will ever be universally superior across all
kinds of users and tasks [99]. Despite this fact, there are a number of criteria that allow the
visualizer to determine which system is “better” for their application. One central aspect for
determining this is the extensibility of the system. The developer cannot anticipate future
uses or application areas. Regular updates may address this issue somewhat; however, it is
usually preferable if the visualizer can add extensions to the tool without having to download
a completely new release - see also GR9.

The extensions may be implemented by the visualizer who then assumes the developer role.
Depending on the structure of extensions, they may also be made available for download by
other programmers over the Internet. Some systems explicitly support extensions [36, 38,
113, 178], though implementing them may require a deep knowledge of the target system
[113].

VR3. Configurability

Similar to UR21, this requirement concerns the behavior and appearance of the tool’s user
interface. However, the focus lies more on the generation aspect. For example, the visualizer
may be able to define the (textual) output format using a template [207], specify which input
data is to be used [116], adjust color settings or delays between steps. Some of these settings
may also be applicable to the user. If the system is extensible (VR2), the visualizer should
also be able to add or remove extensions from the configuration.

VR4. Internationalization in generation front-end

UR18 requires that animations and the user front-end for displaying animations shall be
translatable into the user’s native language. The same arguments apply to the interface used
by the visualizer for generating animations. See the discussion of UR18 on page 54 for more
details.

VR5. Incorporation of several generation approaches

Each generation approach presented in section 2.4 has its particular strengths and weak-
nesses. Visualizers are advised to determine the approach best suited to their targeted use of
animations. For example, on the fly generation of animations effectively precludes manual
generation in a graphical user interface. Another important consideration, however, lies in
the visualizer’s preferences, skills and prior experience. For example, API-based generation
may not be feasible for a visualizer without programming experience.

One important aspect is that expectations in a tool grow over time as the visualizer’s skill in-
creases. Manual generation and direct code interpretation probably present the lowest initial
hurdle for novice tool users. However, these approaches usually lack support for automatic
generation and fine-tuning the display, respectively. The visualizer is therefore likely to ap-
preciate a tool that “adapts” to his or her skill by providing increasingly more expressive and
powerful ways of generation.

For example, a visualizer could proceed in the following way in using a given tool. First, a
few animations are generated manually to get acquainted with the features of the tool. After
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a certain level of mastery in the tool is reached, the visualizer may be interested in using a
quicker way of animation generation. One possible approach is using a scripting language
[65]. The scripting language code can normally also be generated within program code.

The next step could therefore be the addition of appropriate output statements into the algo-
rithm to be animated. Output statements of this kind can significantly lower the legibility of
the underlying implementation. Therefore, the visualizer could shift to API-based generation
by exchanging the output statements with appropriate API method invocations. Note that this
progression requires a tool that can handle animation generation in a GUI, by scripting and
by API invocations.

VR6. Educational use

The central consequence of this requirement is that the tool should be freely available (GR7)
for both teacher and students. Therefore, a free “player” version of the tool should be avail-
able for all major platforms (GR1), and the tool should be easy to download and install for
the students (GR9). One possible way to achieve this is by assembling all components on
a CD that can be used as a shared resource by teachers and students [167]. In order to be
helpful in teaching, the tool should also fulfill most of the user requirements. Otherwise, the
students may be reluctant to use the tool.

3.4.2 Animation Display

VR7. Establishing own conventions

To allow users to compare different animations of related algorithms, the visualizer should be
able to develop consistent views (UR33). This can entail an “appropriate” set of conventions
to denote different information [99]. For example, the shape, size, color or arrangement of
objects may be used to convey information. It may also concern the division of screen space
[99]. The tool should be prepared to support the visualizer in establishing such conventions.

VR8. Step skipping

The visualizer should be able to skip less interesting parts of the algorithm. This may concern
repetitive evaluations, for example of loops (UR28). Other application areas are lengthy ini-
tializations or complex sub-operations that may distract from the main algorithm. Skipping
these segments may allow the visualizer to focus on the more salient aspects of the algorithm
without boring or confusing the users.

Skipping is very easy to manage in some generation approaches, but may be problematic in
other approaches. For example, manually generated animations by definition only present
what the visualizer has explicitly embedded. Code or step skipping is simply accomplished
by not entering the information. API- and scripting-based as well as declarative systems
may offer special operations that turn off animation effects. Alternatively, the visualizer may
simply refrain from adding animation statements to the less interesting algorithm segments.
Tools based on code interpretation may present problems if they offer no possibility for the
visualizer to exclude code segments or at least set breakpoints.
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VR9. Optional multiple views

As stated in UR16, multiple views may present different aspects of an algorithm [27, 107] or
use different visualizations of the same underlying data [2]. However, some authors also crit-
icize the use of multiple views as possibly causing confusion due to an information overload
[99].

VR10. Close link between system and lecture materials

Brown et al. [17] claim that the success of the BALSA system at Brown University would
not have been possible without a tight integration with the other resources for the algorithms
and data structure course. It is reasonable to assume that this also holds for other systems.
The closer the link to the lecture materials, the more relevant the tool becomes for both
visualizer and user [21, 167]. Anderson and Naps place this demand at the top level of their
instructional design scale [2].

3.4.3 Animation Generation

VR11. Automatic ad-hoc generation

Several studies stress the importance of automatic generation support [48, 130, 110, 128,
129]. Automatic generation frees the visualizer from the time-intensive task of explicit ani-
mation generation and allows for a consistent presentation of animations of the same topic.
Additionally, animations can be generated on demand and on the fly. For example, if anima-
tions of Quicksort are generated automatically, the visualizer can respond to most question
types by showing an appropriate animation.

Note that only code interpretation offers “free” automatic generation. Most other generation
approaches require the visualizer to annotate the underlying algorithm with “appropriate”
statements. The annotation may also be partially automatic, but this may result in unsatisfac-
tory results. Manual generation approaches within a GUI typically do not support automatic
generation.

VR12. Quick generation

Hundhausen and Douglas [84] state that the generation of a “high fidelity” animation of
textbook quality took “just over 33 hours”, most of which was allocated for graphics pro-
gramming. As explained in Hundhausen’s dissertation [85], the system used for content
generation was JSamba. None of the students had previously worked with this system and
therefore had to spend a certain amount of time in getting familiar with the system. The lack
of advanced features such as relative placement may also have played an important part in
the long generation process. See also VR14 for a discussion of relative placement.

From our experience, a duration of about six hours for manually generating an animation
seems more typical. The amount depends on the visualizer’s experience, the ease of use of
the tool and the degree to which automation is supported. By replacing manual generation
with scripting, we could reduce the time required by a factor of roughly 3. Part of this is
probably due to our familiarity with the underlying scripting language.



62 CHAPTER 3. REQUIREMENTS ANALYSIS

VR13. Reusable animation components or modules

Sometimes visualizers may have to provide a set of animations for the same general topic.
As a typical application, the visualizer may generate multiple animations of the same sorting
algorithm that expose different aspects. For example, one animation each could illustrate
the best, worst and average case. Additional animations could be used to illustrate specific
algorithmic behavior such as the sorting stability. The visualizer may also want to start the
animation with general comments about the sorting algorithm as described in UR1 and end
it with a complexity analysis (UR13).

Generating basically the same start and end step sequence for each animation of a related
topic is irritating and time-consuming. It is possible to generate a “template” animation
that contains the standard start and end parts and use this to generate the other animations.
However, it would be both “cleaner” from a programming point of view and easier if the
visualizer could simply generate animations representing the start and end part, respectively,
and embed those into the finished animations. Note that this may also require the passing of
variable values, if the actual number of comparisons and assignments in a given invocation
is to be used for the complexity analysis.

VR14. Relative object placement

Relative placement allows the visualizer to place a new object at a certain distance from
another object. Alternative placement strategies are automatic (determined by the tool) or
by absolute coordinates. Automatic placement may result in unfortunate layouts and has
certain limitations. For example, optimal graph layout is NP-complete for most definitions
of “optimal” [62].

Absolute coordinates force the visualizer to specify fixed coordinates for each object. Instead
of fixed coordinates, normalized device coordinates can also be used [196]. This makes
aligning objects very difficult for the visualizer. In some cases, placing two objects directly
next to each other may require keeping track of their location and calculating the target
positions. This is awkward to do and also reduces code legibility.

Relative placement allows the visualizer to specify coordinates by giving a reference object
and an offset. The bounding box of the reference object can be used for precise placement
[197]. More elaborate placement options may allow the reference to be an arbitrary node
of a polygon or polyline or a user-defined location. The bounding box is also ill-suited for
aligning text components, as the lower edge of the bounding box depends on the presence of
characters that extend beneath the text base line such as g, j, q, y. For this application,
it would be preferable if the text’s base line could be used as an anchor point.

Both the ALVIS system [83] and DANCE [195] offer good support for relative placement.
For example, ”right-of” and offsets based on edges of the bounding box of a given object can
be used.

VR15. Ease of learning

Most visualizers will not be interested in spending much time in becoming familiar with a
given tool. Note that the requirement of quick generation (VR12) does not necessary imply
that the generation of the first animation is also quick and easy to achieve! As stated in
VR5 and VR12, a tool that supports multiple approaches for generating animations may
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significantly lower the initial learning hurdle. The ease with which a tool can be learned also
depends on the visualizer’s skill and previous experiences.

3.5 Developer Requirements

Developers of a system in our definition have only a small selection of requirements, as they can
only place requirements on an existing system. Therefore, the development process of the initial
release can be disregarded. The only remaining requirements are those that provide extensions for
the system. Therefore, this section is restricted to systems that support extensibility (VR2).

DR1. Easy addition of components

In general, adding components should be as easy as possible. As perhaps the most impor-
tant aspect, the amount of system code to touch should be minimal. In an extreme case,
the developer may not have to touch any existing system code. This can be achieved by us-
ing advanced software engineering technology concepts such as component-based software,
aspects [102] or introspection.

The system should preferably offer support for registering new components in a single place.
This cuts down on the likelihood of forgetting to register a new component in one place.
It also makes testing experimental additions much easier and allows for quick removal of
dysfunctional units - see also VR2.

DR2. Extensibility documentation

DR1 states that it should be easy to add extensions by limiting the segments of code to touch.
In addition, the location of the relevant code pieces must be well documented. Otherwise,
external developers may have to go through the code line by line to determine the correct
place for extension registration.

A sad experience with some software systems is that the presence of documentation is not
sufficient, as some references are barely understandable. Additionally, the documentation
should outline the general principle underlying the tool. In this way, developers stand a better
chance of understanding both where and how they can extend the system. For example, the
tool Catai [36] provides a short overview of what has to be done to add new operations. See
also Meyer [119] for a discussion of extensible system design.

DR3. Extension without detailed system knowledge

Even if the locations of code to touch are limited in number, the level of tool familiarity
required for appropriate modification should be as low as possible. For example, [113] pro-
vides a short overview of how Jeliot 2000 is implemented and how new animators can be
added. However, the authors also state that doing so requires detailed knowledge of the
implementation.
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3.6 Programmer Requirements

As defined in section 2.3, programmers are responsible for implementing the original algorithm.
They are not concerned with a possible animation. Thus, there is little that an animation tool can
offer to a programmer except for “standard” support from which any programmer can profit.

PR1. Code editing in an IDE

Integrated Development Environments (IDEs) are often used for implementation purposes.
Examples include the well-known Turbo products by Borland, for example Turbo C++, and
various environments for Java like Borland JBuilder or Symantec Visual Café. Typically, an
IDE allows the programmer to write and edit the source code, compile and execute it. It may
also include additional features such as debugging and generating user interfaces by drag and
drop.

Integrated environments that incorporate animation, for example Alice [42], Empirica Con-
trol [111] and Leonardo [39], can significantly help both programmers and visualizers. Naps
[134] states that animation as part of a programming environment is helpful for algorithm
understanding in both the analysis and synthesis aspects of Bloom’s taxonomy [19].

PR2. Standard libraries support

Another feature that can assist programmers in developing algorithms is support for standard
libraries such as the C++ Standard Template Library (STL) [153] or LEDA [117]. Such
libraries are usable independent of the actual visualization, and free the programmer from
having to reinvent the wheel. Note that this is only helpful if the system used by the visualizer
is able to animate the data structures specified using the library. For example, the Catai [36]
system supports the LEDA C++ library [117].

PR3. Programming environment testbed

This requirement needs the animation system to be extensible (VR2). In addition, there
must be a good documentation of how the system can be extended (DR2). Additionally,
the system’s extensibility should not require a detailed knowledge of the “inner workings”
or advanced programming and software engineering skills (DR3). If these requirements
are met, the system may be used as a test environment for programming. For example,
an educator could ask the students to implement extensions. Provided that the system is
easy to customize (UR21), the educator may also remove some components and ask the
students to re-implement them. Such assignments could be used in any programming or
object-orientation course once the students have reached a certain skill level in programming.

3.7 Summary

There are several ways for choosing an algorithm animation system. Basing the decision on recom-
mendations by other users or the number of publications may cause frustration after extended use.
For example, the chosen system may prove incapable of supporting all operations to be illustrated,
without supporting the later addition of components. “Complete” lists of algorithm animations or
animation systems may be incomplete and out of date.
In this chapter, we have explored an alternative approach. Based on the evaluation of a large
but incomplete set of animation systems in section 2.5, we have stated 69 requirements regarding
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algorithm animation systems. The requirements are split in five categories addressing 13 general
requirements, and the specific requirements associated with each animation role: 35 user, 15
visualizer, three developer and three programmer requirements. Many requirements also have
implications for other roles. For example, several requirements placed by the user or visualizer set
specific implementation goals for the developer role. The complete list of requirements is included
in the appendix on page 175.
Table 3.1 on the following page illustrates the roles touched by the individual requirements. A
check mark “✔” is used to indicate that the requirement applies to the role. Parentheses indicate
that the relation is indirect, typically because the requirement depends on certain actions from
another role. For example, UR9 requires support for input data specification. This is also an
interesting feature for the visualizer role, as users will profit more from generating their own input
than from merely using predefined values, as discussed for example in [67, 2, 134]. However, the
visualizer cannot fulfill the requirement without specific system support provided by the developer.
For example, the system - and thus also the developer - has to provide appropriate GUI elements
that allow easy specification of the input values.
The reader will probably regard some requirements as more important than others. We do not
claim that all requirements are equally relevant on an objective scale. Each reader may assign a
slightly different importance to the different requirements. For example, the demand for platform-
independent systems (GR1) may be regarded as irrelevant in a tightly controlled environment shar-
ing the same operating system. However, several educational environments use some variant of
Linux or UNIX operating systems, while most students probably use Microsoft WindowsTM on
their personal computers. In these cases, the requirement becomes highly relevant if the students
should also be able to use the system at home. Therefore, the reader should carefully study the re-
quirements for all roles and decide on the relevance of each requirement in his or her environment.
The implications of the requirements on the system design are discussed in the following chapter.
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GR1 ✔ ✔ (✔)
GR2 ✔ ✔ (✔)
GR3 ✔ ✔ (✔)
GR4 ✔ ✔ (✔)
GR5 ✔ ✔

GR6 ✔ ✔

GR7 ✔ ✔ (✔)
GR8 ✔ ✔

GR9 ✔ ✔

GR10 ✔ ✔

GR11 ✔ ✔

GR12 ✔ ✔

GR13 ✔ ✔

UR1 ✔ ✔

UR2 ✔ ✔

UR3 ✔ ✔

UR4 ✔ ✔

UR5 ✔ ✔

UR6 ✔ ✔

UR7 ✔ ✔ ✔

UR8 ✔ (✔)
UR9 ✔ (✔) ✔

UR10 ✔ ✔

UR11 ✔ (✔)
UR12 ✔ ✔

UR13 ✔ (✔)
UR14 ✔ ✔

UR15 ✔ ✔

UR16 ✔ ✔

UR17 ✔ ✔

UR18 ✔ ✔ ✔

UR19 ✔ ✔

UR20 ✔ ✔

UR21 ✔ ✔ ✔

UR22 ✔ ✔
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UR23 ✔ ✔

UR24 ✔ ✔

UR25 ✔ ✔

UR26 ✔ ✔

UR27 ✔ (✔)
UR28 ✔ ✔

UR29 ✔ ✔

UR30 ✔ ✔

UR31 ✔ ✔ ✔

UR32 ✔ ✔ ✔

UR33 ✔ ✔

UR34 ✔ ✔

UR35 ✔ (✔)

VR1 ✔

VR2 ✔ ✔

VR3 ✔ ✔

VR4 ✔ ✔

VR5 ✔

VR6 ✔

VR7 ✔

VR8 ✔

VR9 ✔

VR10 ✔ ✔

VR11 ✔

VR12 ✔

VR13 ✔ ✔

VR14 ✔ ✔

VR15 ✔

DR1 ✔

DR2 ✔

DR3 ✔

PR1 ✔

PR2 ✔

PR3 ✔

Table 3.1: Requirements Overview



Chapter 4

The ANIMAL-FARM Algorithm
Visualization Framework

4.1 Introduction

A framework consists of a set of cooperating classes that together represent a reusable design for a
specific class of software [61]. In this chapter, we focus on motivating and describing a framework
for algorithm visualization. The framework defines the basic architecture of all AV systems built
using it. In general, it will emphasize the ability to reuse the basic design rather than individual
classes or pieces of code.
Developers of AV systems can use the framework presented in the course of this chapter. They then
have to focus only on the implementation of the basic classes which are called from the framework.
The framework includes fixed and ready-to-use components as well as abstract classes and inter-
faces that have to be filled with content by the developers. All AV systems based on the framework
will therefore have the same core components and a similar structure of classes, making them easier
to maintain and more consistent.
Specifying a good framework structure is very difficult. Significant thought has to go into making
certain that the framework can be reused easily on the basis of its merits regarding understandability,
conciseness and easy applicability. The benefit of the framework is that it can make developing new
concrete implementations much easier.
One central aspect in framework design is to make it as flexible, expressive and at the same time
extensible and adaptive as possible. Within the course of this research, we have specified a frame-
work for AV systems that satisfies these requirements. This framework is called ANIMAL-FARM,
an acronym for “Advanced Navigation and Interactive Modeling of Animations for Lectures -
Framework for Animation Resource Management”. The framework title already hints towards some
of the development goals. Additionally, one property of an animal farm is that it can house multiple
animals - and accordingly, the prototypical AV system built based on this framework, as described
in the next chapter, is called ANIMAL. This system also illustrates the expressiveness of the frame-
work. The remainder of the chapter describes the components of the ANIMAL-FARM framework.
Section 4.2 illustrates how frameworks can incorporate adaptivity and extensibility. Section 4.3
presents an overview of the participating conceptual entities. Sections 4.4 to 4.9 introduce the com-
ponents of the framework, including graphical objects, animation effects and displaying and editing
front-ends. Section 4.10 summarizes the main aspects of the framework.

67
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4.2 Concepts for Extensible Framework Design

We have to design a framework structure for AV systems that allows us to fulfill as many of the
requirements in chapter 3 as possible. The requirements that have the greatest impact on the design
of the framework are extensibility (VR2) and configurability (VR3). Related to the extensibility
requirement are the developer requirements for easy addition of components (DR1) based on a
good documentation (DR2). To support the generation of additions, the implementation process
must not require deep system knowledge (DR3).
In the following, we will refer to additions as extensions. Our goal is the definition of a framework
that can be modified by programming extensions and by configuring the participating objects. To
make the generation of extensions as easy for the developer as possible, we shall strive to make
the modification of existing code unnecessary wherever possible. As we will see, this goal can be
achieved.
In this section, we examine approaches that support extensibility and adaptivity on a framework
level. Providing these features within a framework shifts the burden of designing them from the
developer of a concrete system or extension thereof to the framework developer. Essentially, this
means that a large investment of time and effort once saves much time for all later developments
based on the framework. The invested effort therefore pays off quickly.
In the following subsections, we will regard one application area for extensibility and flexibility
each. The areas we want to incorporate into an extensible framework concern the object state
representation (subsection 4.2.1), support for flexible import and export layers (subsection 4.2.2),
internationalization and GUI element generation (subsection 4.2.3), dynamic component assembly
and administration (subsection 4.2.4) and decoupling objects for better reuse (subsection 4.2.5).
Subsection 4.2.6 summarizes the key concepts and briefly evaluates their strengths and weaknesses.

4.2.1 Using Properties to Model Object State

One of the most basic design decisions to make for any framework or system is the representation
of object state. Most object-oriented systems model object state by attributes. These are declared
and instantiated for each new object of a given class, so that each object has its own copy of the
attribute. In some cases, a given attribute has to be shared by all objects of the same type. Java
supports this with the static keyword, which essentially states that a shared copy of the attribute
is kept.
The advantage of declaring attributes for modeling the object state are well-established: fast access
to the data and type checking [139]. However, modeling object state by a set of declared attributes
also has drawbacks. First of all, the user has to choose an appropriate access mode for each attribute.
Java offers private, protected, public and default access for attributes or methods. The mode is
chosen by placing the associated access modification keyword before the attribute or method name,
with the following consequences:� private attributes or methods can only be accessed within the class, and are thus invisible

even to inheriting classes;� protected attributes or methods are visible within all classes of the package and subclasses
regardless of the package they belong to;� public attributes or methods can be accessed by any class;
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therefore also prevents access within subclasses placed in a different package.

System-wide public access has to be granted if an attribute has to be accessed in a different package
without an inheritance relationship between the providing and requesting class. The alternative
solution is to declare most, if not all, attributes as private to the class, and provide methods for
accessing or modifying the element’s value. Considered good practice in object-orientation [119],
external attribute value changes are prevented, as any assignment must be performed by invoking
the special “set” method. Furthermore, the approach can be used to provide conditional access. For
example, a method for setting the value may check the value subject to specific constraints and set
it only if the constraints are met.
Another concern in representing object state by attributes is that a new attribute may have to be
introduced whenever new capabilities are added to a class. For example, if users of a graphics tool
decide that circles also need a fill color which is not supported in the base system, a new color
attribute has to be added to the class representing circles. Following the modeling outlined above,
two methods for read and write access may also be required. Thus, each change in the attributes of
a given class requires changing the implementation including a recompilation of the sources. These
changes may propagate to other methods, other classes or even different packages. For example,
the declaration of a fill color and the appropriate access methods does not automatically affect how
the object is stored or displayed.
The last, and in some cases most awkward, drawback of using attributes with a method pair for
retrieving and setting the attribute is the large method interface of the class. As an example, we
regard a system where most attributes are declared as private and are thus only accessible using
the standard pair of access methods. This leads to very cumbersome invocations for initializing a
given object to non-standard values. There are three ways to deal with this situation: the invocation
of relatively few methods with a large number of parameters, passing a special data container pa-
rameter, or many subsequent invocations of access methods for setting one attribute each. All three
approaches may be irritating and exhausting to a developer, especially if the method invocation
order is relevant. If some methods expect multiple parameters of the same type, the developer also
has to figure out the meaning of each parameter, which may be challenging if the documentation is
sparse. In addition, some method invocations might be forgotten.
Java offers a partial solution for this unsatisfactory situation by using properties. Java properties
are instances of the java.util.Properties class that represents a specialized hash table for (key, value)
pairs of type String. Basically, the state of a given object is no longer represented by a collection
of locally declared attributes, but rather by a property object. Property objects can also be loaded
from and stored to a file.
Instead of working directly on the value of locally declared attributes, operations change the values
associated with a given key in the property dictionary. The user may also provide convenience
methods for setting or retrieving a given property. These methods have a very small interface
consisting of a single parameter or return value. The value is stored at the associated key by
copying or cloning the parameter, depending on the usage context.
The java.lang.Properties class inherits the insertion and retrieval methods of its superclass java.util.-
Hashtable that allow the usage of arbitrary objects as keys or values. However, the usage of the
inherited methods is strongly discouraged. The presence of even a single non-String key or value
causes invocations of the built-in storage support to fail. Attempts to retrieve a property value
which is not of String type returns the object’s String representation. This is usually generated by
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the toString() method inherited from the base class java.lang.Object. The default representation
of any object is its class name followed by the “at” sign @ and the object’s hash code. Unless the
toString() method is overridden by the retrieved object, no information about the object values can
be extracted from the String representation.

color = theColor;

return color;
− color: Color

+ getColor(): Color
+ setColor(Color)

AttributedClass

− properties: Properties

+ setColor(Color)
+ getColor(): Color

PropertiedClass
String colorName =
properties.getProperty("Color");

return ColorChoice.getNamedColor(

colorName);

props.put("Color",

ColorChoice.toString(theColor));

Figure 4.1: Modeling Attributes Using Properties with Customized Conversion Wrappers

This problem can be addressed by generating an appropriate String representation for each stored
object. Figure 4.1 illustrates how Color objects can be stored and retrieved. The upper part of
the figure shows a “standard” implementation using a color attribute. The lower half illustrates the
equivalent implementation using properties.
The example assumes the presence of a ColorChoice class that converts instances of java.awt.Color
to their String representation and vice versa. The resulting String object may have any format
that allows the extraction of the values. Some typical encoding examples for the color red that
allow for easy extraction of the values are textual (“red”) or using the color coordinate in the
RGB color space, typically coded either in hexadecimal (“0xFF0000”) or decimal (“(255, 0,
0)”). The method for decoding the color value has to know the format used to convert the String
representation back into a Color object.
The framework provides an extension of the java.util.Properties class called XProperties which
provides customized conversion methods for a variety of input types. The class is placed in the
package animal.misc that contains support classes of the framework. Figure 4.2 shows the class
diagram of this class. The XProperties class contains a constant Point object representing the
point of origin, used as the default return value for Point requests. Two class methods support the
conversion of an integer array or segment thereof into a String. Another class method extracts a
String array from a single String object using the element separator passed in the second parameter.
These convenience methods are independent of the actual properties attribute and help in generating
appropriate entries. Additionally, all storage and retrieval methods perform appropriate runtime
exception checking and catch possible exceptions, as they may occur if a property value is cast to a
wrong type.
XProperties allow the storage and extraction of boolean, double and int primitives, as well as Color,
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POINT_OF_ORIGIN: Point

+ arrayAsString(int[]): String

+ makeArrayFromString(String, String): String[]
+ arrayAsString(int[], int, int): String

+ getBoolProperty(String): boolean
+ getBoolProperty(String, boolean): boolean

+ put(String, boolean)

animal.misc.XProperties

+ getColorProperty(String, Color): Color + put(String, Color)
+ put(String, double)+ getDoubleProperty(String): double

+ getDoubleProperty(String, double): double

+ getImageProperty(String): Image

+ put(String, String[])
+ put(String, String)
+ put(String, Point[])
+ put(String, Point)
+ put(String, int[])

+ put(String, Font)

+ put(String, int[], int, int)
+ put(String, int)
+ put(int, int)

+ getStringArrayProperty(String): String[]
+ getStringArrayProperty(String, String): String[]

+ getPointProperty(String): Point
+ getPointProperty(String, Point): Point
+ getPointArrayProperty(String): Point[]

+ getIntProperty(String): int
+ getIntProperty(String, int): int
+ getIntArrayProperty(String): int[]

+ getFontProperty(String): Font
+ getFontProperty(String, Font): Font

+ getElementsForPrefix(String): XProperties + getKeys(): String[]

java.util.Properties

Figure 4.2: Class Diagram of the Extended Property Support Class XProperties
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Font, Image and Point objects. Arrays with underlying type int, Point or String can also be inserted
and retrieved. The set of keys can also be requested. Additionally, the getElementsForPrefix method
returns a new XProperties instance which contains the set of all (key, value) pairs where the key
starts with the prefix passed as a parameter. This operation is helpful if properties belonging to
the same object or context are prefixed with a keyword followed by a separator. For example, Java
commonly employs dots as separators for system properties such as the java.compiler property that
allows setting the Java Just in Time Compiler.
The attentive reader may be concerned that modeling the object state by properties violates two
central tenets of object orientation: data hiding and encapsulation. However, we can reassure the
reader that this is not the case. Rather, a system built using properties presents two different access
interfaces: a compile-time interface for accessing the “known” parts of the object state, and a
developer interface for accessing those parts of object state that were not anticipated at compile
time.
Those attributes that the developer considers central to the propertied object would normally repre-
sent the object state and be modeled as private attributes. A pair of get/set methods are then usually
used for allowing access to the object state from other objects. The return value may also depend
on the object having a certain consistent internal state. This type of method can still be provided
after changing the object state representation from attributes to properties. Where the old method
simply returned the value of an attribute, it will instead retrieve and return the associated property
from the hash table. This is in keeping with the concepts of data encapsulation and data hiding
central to object-oriented systems: the user need not be aware how a given method is implemented,
as long as it fulfills its promised contract [119]. This is also the main application of properties in
Java, featured under the title of Java Beans, and widely used throughout the Swing API.
Developers of extensions, on the other hand, need to be able to access parts of the object represen-
tation that could not be anticipated when the application was originally built, or may simply not
have been considered. This access requires both retrieving and modifying the object’s state. In
“classic” attribute-based systems, adding a new attribute requires code modification and recompi-
lation. Properties, on the other hand, allow the easy addition of attributes by adding a new key to
the properties and providing it with the target value. This is also possible at run-time. The attribute
can always be accessed through the properties object, even if there is no convenience method for
retrieving or setting it. Other parts of the system can easily query whether the object offers a given
attribute by accessing the value.
Java properties also support the installation of default values which are returned if a requested prop-
erty is unknown. The default property object provides the values for keys which are not included
in the object’s properties. Property access calls may also specify a default value to be returned if
the property currently has no assigned value. The default return value is null, which may cause
run-time problems. Providing a non-null default value makes many run-time checks unnecessary
and also helps to prevent null pointer exceptions. Our specialized XProperties class always returns
a default non-null value, freeing the programmer from checking whether the requested property is
known.
Figure 4.3 illustrates the support for default properties. The default properties object defaults is
stored as a separate Properties object in object object1. When anObject requests a property, ob-
ject1’s properties are consulted first, as shown in the upper part of the figure. If the requested
property key does not exist in object1, the internal default properties are consulted and the result
of this request is returned. This process is invisible to the requesting object. The requester thus
also has no way of detecting if the returned value comes from the object’s internal properties or the
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anObject object1 defaults

getProperty(...)

return value

getProperty(...)

getProperty(...)

return value
return value

Figure 4.3: Default Properties Interaction

default properties.

Listing 4.1: Behavior of Java Properties objects� �
/ / I n s t a l l the d e f a u l t p r o p e r t i e s to be used
Proper t i es d e f a u l t P r o p e r t i e s = new Proper t i es ( ) ;
d e f a u l t P r o p e r t i e s . p u t ( ”a” , ”d” ) ;
d e f a u l t P r o p e r t i e s . p u t ( ”b” , ”e” ) ;
d e f a u l t P r o p e r t i e s . p u t ( ”c” , ” f ” ) ;

/ / Generate two p r o p e r t i e s ob jec ts w i th d e f a u l t p r o p e r t i e s
Proper t i es p1 = new Proper t i es ( d e f a u l t P r o p e r t i e s ) ;
P rope r t i es p2 = new Proper t i es ( d e f a u l t P r o p e r t i e s ) ;

/ / ove rwr i t e the assoc ia t i on o f ” a ” i n ’ props ’
p1.pu t ( ”a” , ”g” ) ;
S y s t e m . e r r . p r i n t l n ( p1 .ge tProper ty ( ”a” ) ) ; / / ” g ”
S y s t e m . e r r . p r i n t l n ( p2 .ge tProper ty ( ”a” ) ) ; / / ” d ” ( d e f a u l t )

/ / ove rwr i t e the assocat ion i n the d e f a u l t s
d e f a u l t P r o p e r t i e s . p u t ( ”a” , ”h” ) ;
S y s t e m . e r r . p r i n t l n ( p1 .ge tProper ty ( ”a” ) ) ; / / ” g ” : no e f f e c t
S y s t e m . e r r . p r i n t l n ( p2 .ge tProper ty ( ”a” ) ) ; / / ” h ” ( d e f a u l t )

/ / remove the assocat ion o f ” a ” i n ’ p1 ’
p1.remove ( ”a” ) ;
S y s t e m . e r r . p r i n t l n ( p1 .ge tProper ty ( ”a” ) ) ; / / ” h ” ( d e f a u l t ! )� ��

Note that the default properties are stored in a separate properties object and not copied into the
properties table. Assigning a value to an entry thus does not affect the default properties object.
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Such assignments therefore also have no side effect if the default properties serve as defaults for
several objects. Direct assignments to a default properties object shared by several properties update
the association in the default properties. However, this is only noticeable if the changed property
is requested and unavailable in the base properties table. Alas, neither of these effects is very well
documented in the Java class documentation of properties: the developer has to read very carefully
to figure out the behavior. Listing 4.1 illustrates the behavior.
The XProperties class remedies the disadvantages of properties by providing customized wrappers
for element conversion to and from String objects. A judicious use of properties instead of attributes
helps in keeping class interfaces lean and also makes the code more readable. In addition, it makes
it far easier to let the computer generate parsing or exporting support for objects by allowing the
storage of the parsed entries into an XProperties object. Note that this may not be appropriate for
structured notations where the order of elements is relevant.
Figure 4.4 shows two small support classes that provide additional functionality regarding editable
object properties. The class animal.main.PropertiedObject provides methods for getting and set-
ting a private XProperties object. The setProperties method copies a reference to the underlying
XProperties object. Any assignments to the properties may therefore have side effects on other
objects. The clonePropertiesFrom method offers a simple solution by inserting a clone of all prop-
erties contained in the XProperties parameter into the local properties. The boolean parameter
determines if the local properties reference shall be newly allocated before the cloned entries are
inserted.

Cloneable

«interface»

− editor: Editor

+ clone(): Object
+ getEditor(): Editor
+ getSecondaryEditor(): Editor
+ resetEditor()
+ setDefaultEditor()
+ setEditor(Editor)

animal.misc.EditableObject

− properties: XProperties

+ getProperties(): XProperties
+ setProperties(XProperties)
+ clonePropertiesFrom(PropertiedObject, boolean)

animal.main.PropertiedObject

animal.misc.XProperties

java.util.Properties

animal.editor.Editor

editor

properties

Figure 4.4: UML Class Diagram for Propertied and Editable Objects

The EditableObject class in package animal.misc extends the PropertiedObject class by adding a
reference to an editor object. The editor is used in GUI-based animation generation or editing.
Its description is deferred to the concrete system, here part of the ANIMAL prototype presented in
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section 5.6. EditableObject instances can be cloned and provide methods for retrieving or setting
the given object’s editors. The secondary editor may represent different editing capabilities if the
object can be edited in two different contexts.
Developers of a concrete AV system may consider graphical editing of the animation unnecessary
or even unwanted. The editors shown in Figure 4.4 are not explicitly referenced throughout the
framework. Therefore, their implementation may be left open. If editing components are wanted,
they are relatively easy to implement either in specific manually generated windows or using the
standard Java support for editing properties in the java.beans package, especially the PropertyEdi-
tor classes.

4.2.2 Flexible Import and Export

One of the target areas for extensibility and adaptivity common to many systems is import and
export. Typically, each import or export format is represented by one class. Note that in some
cases, a single class may act as the importer for several related formats, while other formats may
require multiple classes or even packages. Import usually works on a java.io.InputStream or a
String object, depending on what is more adequate for the chosen format. Export usually requires
a String filename, as the concrete type of output stream may depend on the chosen format. For
example, a java.io.OutputStream or subclass thereof is inapplicable if multiple files have to be
generated.
Several of the requirements presented in chapter 3 stress the importance of the ability to import
and export content. This concerns compatibilities between different releases of the system-specific
proprietary format (GR12, GR13), the ability to save and export the actual content (UR22, UR23),
and finally the ability to import foreign content into the framework (GR24).
Resolving file format compatibilities is beyond the scope of a framework, as the proprietary storage
format used depends on the content type. However, the framework may be able to offer flexible
components for importing and exporting content to a variety of formats. We therefore have to
consider how the framework can ease the task for developers of a concrete system.
As an example, we investigate a system that can read and write its state to disk in six different
formats. We assume that the formats are sufficiently different to make implementing common read
and write code unattractive. We regard three approaches for solving this problem: incorporating
read and write methods in each class, using the Visitor pattern [61, p. 331ff], or implementing a
separate class or set of classes for each format.
In the first case, roughly a dozen methods per class have to be added for storing and retrieving
the data from disk in each of the formats. Once a new format is introduced, all classes have to
be touched by adding new storage and retrieval methods. Assuming that the number of formats is
sufficiently large - think for example of word processing systems and their large selection of import
filters -, the code for performing the actual operations represents a diminishing percentage of the
class code.
The Visitor pattern [61, p. 331ff] offers a different approach that promises to eliminate code modi-
fications on the underlying classes. The base visitor class declares a special visiting method for
each concrete class. In our example, this could be a method void storeXXX(XXX anXXX), where
XXX stands for the concrete class to store. A second visitor hierarchy can be used for loading the
contents, employing a set of XXX loadXXX() methods. The concrete classes now no longer need to
be adapted to a new storage format, as they can simply invoke the method reserved for them in the
visitor interface. The special accept(Visitor v) method is used for assigning the concrete visitor to
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employ, allowing for example the replacement of an ASCIIWriter by a XMLWriter.
However, the Visitor pattern has one decisive disadvantage. If a new class is added to the class
hierarchy - as would be expected in a dynamically extensible framework! -, an appropriate method
has to be added to the Visitor base class, and implemented in all subclasses. Thus, instead of
modifying each content class by adding for example image support when adding a new format, we
now have to modify each visitor class - both for loading and storing! - if a new “content” class is
added. Depending on the extent of the class hierarchy for storage and loading support on the one
hand and the underlying content classes on the other hand, the situation may even be worse than it
was before. For this reason, Gamma et al.warn against using the Visitor pattern if the underlying
class structure is likely to change often [61, p. 331ff].
The third approach provides the storage and retrieval functionality in a separate set of classes.
Storing or retrieving data is achieved by querying the attributes of the object to be stored in a
format-specific order and dumping them to disk in the target format. Storing the attributes of a
given object may require one method invocation for each attribute. Retrieving an object’s state
from disk also requires one method invocation for each attribute to be set.
The introduction of a new data exchange format in this approach no longer requires modifications
to the original classes. However, it will result in a large number of method invocations, making it
easy to forget one or more of them. The legibility of the code is reduced due to the large number of
lines of code required to parse and initialize a moderately complex object, for example possessing
twenty different attributes.
What can the framework do to counter these problems? First of all, the framework can define a
pair of small open interfaces for importing and exporting content. Typically, import operations will
work either on an input stream or come from a memory buffer that can be treated as having String
format. The latter is for example the case when the content to be imported was typed in or pasted
into a text field and shall be parsed from there.
If more than a single import filter is possible, there must be some way of determining the correct
one. We want to keep the framework as open for extensions as possible. This also concerns the
import and export components. Therefore, we have to anticipate that more than one filter each for
import and export will be present. One practical decision support comes from the file extensions.
However, there could be multiple different formats that have the same extensions, or formats with-
out a default file extension. In this case, the user of the system shall be able to specify the correct
import filter by selecting the appropriate MIME type.
We therefore have to slightly adapt the class javax.ṡwing.JFileChooser by adding one special file
filter for each known format specification. Each format specification shall consist of the default
extension, a short description and the MIME type of the format. We introduce a new interface for
this purpose, called FormatSpecification, that gathers these elements.
The abstract Importer class now has to offer only a small selection of methods. First of all, it must
be able to store references to known concrete importers. These elements, which can be regarded
as instances of the Prototype pattern [61, p. 117ff], have to be retrievable by either their MIME
type or the associated file extension. In addition, the importer shall be able to provide a list of all
format names it can handle, as there may be instances where one filter handles multiple input types.
For example, the gv application on UNIX-based systems such as Linux is able to handle (at least)
Postscript (.ps), Encapsulated Postscript (.eps), compressed Postscript (.ps.gz) and compressed
Encapsulated Postscript (.eps.gz). Instead of forcing developers to write four separate wrapper
classes, an implementor of this functionality shall be able to act as a filter for all four types.
Figure 4.5 illustrates the structure of the import layer in the framework. Apart from an initialization
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SomeImporter ExternalPackage

+ getDefaultExtension(): String
+ getFormatDescription(): String
+ getMIMEType(): String

FormatSpecification

+ init()

+ getImporterFor(String): Importer
+ getImporterForExtension(String): Importer

+ getContent(): Object
+ importFrom(String): Object
+ importFrom(InputStream, String): Object

+ getFormatNames(): String[]

Importer

...

Figure 4.5: Import Layer Structure in the Framework

method that may be needed by some formats, the main work is performed within two methods. The
importFrom(String) method tries to open an input stream on the String value passed in and invokes
the abstract importFrom(java.io.InputStream, String) method. Here, the first parameter is a file
stream which may be used for reading. The second parameter can be a filename or the actual
content, depending on the input type. The result of the import operation is returned by the methods,
but can also be queried later with the getContent method. Concrete subclasses of the abstract import
framework class may add additional methods or even delegate parts of the import process to other
packages.

Figure 4.6 illustrates the structure of the export layer in the framework. Except for exchanging
import with export, the export layer structure of the framework looks much as the import layer.
The two methods for importing content from a String or an InputStream and a String have been
merged into the method exportTo(String) which returns a boolean value. Concrete subclasses have
to open the appropriate stream or writer on the desired output and return a boolean value indicating
success or failure.

The reason for not passing in a Stream to write on is that the different types of conceivable output
are too different to subsume them under a stream class. For example, the output might be piped,
or result in a set of files. The latter is for example the case if the chosen export format is an image
format such as BMP, which may require the generation of multiple output files if dynamic content is
to be stored. In this case, a sequence of files sharing the same basic output name must be generated.
Having only a reference to one preopened stream instance is insufficient for this application case.

The FormatSpecification class covering the format name, default extension and MIME type, allows
incorporating all import formats as special file filters for a customized javax.swing.JFileChooser.
For example, if an importer for the MIME type text/plain is chosen, only files with the extension



78 CHAPTER 4. THE ANIMAL-FARM ALGORITHM VISUALIZATION FRAMEWORK

+ getDefaultExtension(): String
+ getFormatDescription(): String
+ getMIMEType(): String

FormatSpecification

SomeExporter ExternalPackage

+ exportTo(String): boolean
+ init()
+ setContent(Object)

Exporter

+ getExporterForExtension(String): Exporter
+ getExporterFor(String): Exporter

+ getFormatNames(): String[]

...

Figure 4.6: Export Layer Structure in the Framework

txt are shown in the file chooser.
At the same time, multiple different filters may have to use the same extension. For example,
this may be the case if multiple different XML formats have to be parsed separately. Instead of
hard-coding the association between an extension and a concrete filter, an implementing system
may retrieve the class names associated with a given MIME type from a configuration file and use
reflection to dynamically load in the associated class. This class can then act as a Prototype [61,
p. 127ff] for all later instantiations of the particular format handler. Thus, the number and types of
supported import filters can be configured at least before starting the system by adding or dropping
entries of the configuration file. The same applies to the export layer.
Note that implementing systems or concrete frameworks will have to adapt the method interface by
changing the return type of getContent and the importFrom methods, as well as the concrete Im-
porter subtype to return from the getImporterFor methods, and accordingly for the export support.

4.2.3 Internationalization and GUI Creation Support

Two further related issues provide very interesting avenues for flexible and adaptive framework
design: GUI component creation and internationalization in the GUI front-end. Two of the require-
ments placed in chapter 3 concern internationalization: UR18 demands support for translating the
content and the user front-end, and VR4 for the generation front-end.
Java is in principle prepared for handling GUI component internationalization issues. However,
the developer has to do all the work, as the extent of support in Java is limited to the inclusion
of several classes in the Java API. java.util.ResourceBundle and its subclasses bundle a set of re-
sources as pairs of key and value. java.util.Locale models the different locales on the earth, repre-
sented by their country code, language and possibly also application- or vendor-specific variants.
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java.util.MessageFormat, java.util.DateFormat and java.util.NumberFormat provide different for-
mat options for entries depending on the chosen locale. For example, the notation for Christmas
Eve in Germany is 24. Dezember 2002, while the US-English notation is December 24, 2002.
The first and easiest application of these classes is to use a set of ResourceBundle elements for
storing one language version each of all translatable messages. The current locale can then be used
to determine the bundle from which a concrete message has to be retrieved. The disadvantage of
this approach is that if a requested message is not present in the bundle, a java.util.MissingResour-
ceException runtime exception is thrown. The resource bundle class also offers the retrieval of all
possible keys in the form of an enumeration object.
The question we have to decide now is how a general framework can provide the best possible
support for developers. On the one hand, we need support for internationalization in the GUI front-
end, and on the other hand, provisions have to be taken for supporting content translation. The
basic classes provided by Java support addressing these issues. However, most of the work is still
left to the developer, as there is no systematic support. The example in [80] illustrates this problem,
including much code for performing the translation to a single additional language.
From a design point of view, it would be best if we had two main participants for solving this
problem. One participant should be able to translate a given message, possibly after modifying the
message text by including current values. This is important for messages such as “Could not load
xxx: file does not exist”. Here, we have to be able to use one message as the template from which
runtime messages containing a concrete replacement of the placeholder value xxx can be generated
on demand. Note that the developer cannot anticipate the concrete replacement value.
The second participant shall provide support for the easy generation of Swing-based GUI com-
ponents. Currently, the standard construction of many Swing components is cumbersome. For
example, generating a javax.swing.JButton with all features requires four method invocations. The
button is first generated together with its label and image icon. The tool tip text, mnemonic and
action listener have to be added separately in one method invocation each. This process is always
the same for buttons with these attributes.
When we try to provide internationalization for the button, the number of method invocations in-
creases even further, as we have to update the label and tool tip text, and possibly also the mnemonic
and icon. We therefore need a class that makes the generation of common GUI components includ-
ing internationalization support as simple as possible - ideally, each component shall be generated
with a single method invocation. This class requires the support class for text translation to be able
to update the text components after internationalization.

+ getCurrentLocale(): Locale
+ getResourceBundle(): ExtendedResourceBundle
+ setLocale(Locale)

+ translateMessage(String): String
+ translateMessage(String, Object[]): String
+ translateMessage(String, Object[], boolean): String

translator.Translator

+ getKeys(): String[]
+ getMessage(String): String
+ getMessage(String, boolean): String
+ printProperties()
+ printProperties(java.io.PrintStream)

translator.ExtendedResourceBundle

Figure 4.7: Class Structure of the Translator Class

Figure 4.7 shows the framework classes we provide to solve the first problem of translating mes-
sages. We have decided to provided an extended version of resource bundle support in a new
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class, called ExtendedResourceBundle. As the purpose of this class is the translation of content,
we have placed it into the new package translator. ExtendedResourceBundle offers accessing all
keys present in a resource bundle as a String array and catches the possible runtime exception when
translating a given message. An optional boolean parameter generates a warning if the requested
message does not exist. Of course, this warning is also translated into the language determined
by the current locale. To test the completeness of a given language resource bundle, two further
methods allow printing the contents to System.out or a given java.io.PrintStream object.
Based on the ExtendedResourceBundle class, we can specify the behavior for a class that offers
translatable messages. We call this class simply Translator and also place it in the translator pack-
age. The class shall act as a Singleton [61, p. 1287ff] by providing only class methods instead
of instance-specific methods. The class can therefore be used from everywhere without having to
maintain references to concrete instances. The class must allow querying and setting the current lo-
cale. Additionally, it must access the underlying ExtendedResourceBundle to retrieve the translated
content.
The translation process is performed within three methods sharing the same name translateMes-
sage. The String parameter passed in is the ID of the message to translate, not its concrete content.
The optional Object[] parameter represents arguments to be included in the translated content. In
the motivating example above, this is the concrete file name for the placeholder xxx. Finally, the
boolean parameter determines whether a warning shall be generated if the translation process fails.
This is typically the case if the message ID is not present in the keys of the current resource bundle.
The first two translateMessage methods always map into the third method by providing default
values for the missing arguments. The translation process is performed by requesting the target
message from the ExtendedResourceBundle. If the result is not null, the message format for the
current locale is applied to the returned message, incorporating the parameter values stored in the
Object array. As defined in class java.util.MessageFormat, the process replaces all occurrences of
numbers placed in curly braces by the object at the given position in the parameter array. Thus, the
correct representation of the message “Could not load xxx: file does not exist” is “Could not load�
0 � : file does not exist”. The developer only has to make sure that the array passed contains (at

least) one element, namely the file name at index 0.
The setLocale method of the Translator class switches the current locale. Apart from storing the
current locale within the Translator, the ExtendedResourceBundle is also requested to locate the
associated language resource bundle. Each new interaction with the Translator class will now
provide texts translated into the chosen language, provided that the target resource exists. The two
classes shown in Figure 4.7 therefore address the problem of translating message texts well.
Based on the classes Translator and ExtendedResourceBundle, we can now design the more chal-
lenging class for supporting translatable GUI elements. To allow easy reuse, the method interface
of the class shall be kept as simple as possible. Additionally, one method invocation shall be enough
for generation of a new GUI element. Finally, a single method invocation shall cause the translation
of all elements generated within the class.
To achieve this goal, we propose a class TranslatableGUIElement. Most of the class methods allow
the generation of translatable GUI elements. To make sure that all components are translatable, they
are registered in an internal hash table. When a translation of the components is requested, an iter-
ator translates each registered component according to its type. For example, a javax.swing.JLabel
can only have a text entry, while javax.swing.JButton instances may have to translate their text, tool
tip entry, mnemonic and possibly also the icon shown.
Table 4.1 lists the capabilities of the methods supported by the TranslatableGUIElement class. We
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refrain from including the UML diagram as this is too large to fit on the page due to a cascaded
method interface that allows dropping several of the generation parameters. Note that some meth-
ods can also be customized further with parameters. For example, the programmer can provide a
minimum, maximum and start value for JSlider elements.

Type Translatable Components

translator.ExtendedAction label, icon name, tool tip, name of method to invoke
translator.ExtendedActionButton label, tool tip, mnemonic
javax.swing.JButton label, icon name, tool tip, mnemonic
javax.swing.JCheckBox label, icon name, tool tip, mnemonic
javax.swing.JComboBox tool tip
javax.swing.JLabel text
javax.swing.JList tool tip
javax.swing.JMenu label, tool tip, mnemonic
javax.swing.JMenuItem label, tool tip, mnemonic
javax.swing.JRadioButton label, icon name, tool tip, mnemonic
javax.swing.JSlider tool tip
javax.swing.JTextField tool tip, default text

Table 4.1: Internationalization Support for GUI Elements in translator.TranslatableGUIElement

The table includes two special classes we provide: ExtendedAction and ExtendedActionButton.
Based on the javax.swing.Action class [80], these provide translatable buttons with built-in action
listeners. The comparatively simple approach followed by the Action elements causes a direct
invocation of the Action instance’s actionPerformed method, which then has to be adapted by the
developer. In contrast, the new classes directly invoke a target method passed by name. Note that
this method name is also parameterizable and may thus change if the locale has changed.
The classes in the translator package are easily reusable in other projects. They provide full-
fledged support for translating messages and even GUI elements on demand and on the fly. For
example, the developer could provide a (translatable) Language menu containing the (also trans-
latable) language choices as ExtendedAction elements. If the user clicks on one of these elements,
the setLocale method of class Translator is invoked to change the current locale. This will also
call the translateGUIElements method in the TranslatableGUIElement class and cause an update
of all GUI elements generated using the class. Thus, translating the whole interface of a given
application requires only one mouse click to perform, and only a few lines of code to embed! Of
course, the developer also has to make sure that the appropriate language resources are available,
as the translation process will fail otherwise.

4.2.4 Component Assembly and Administration

Achieving maximum flexibility in an extensible framework requires minimizing the number of
“hard-wired” extensible objects. Thus, a concrete system may contain only a small selection of
“fixed” elements which are explicitly referenced in the code, and add other extension components
at the user’s discretion. The decision which components shall be loaded can be encoded in a
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configuration file.

This configuration file can in principle be in straightforward line-based ASCII format, or be avail-
able as a XML or property resource file, or come in a variety of other formats. For easy modification
by users, we use the ASCII notation. Replacing the format by another one is a simple matter of
rewriting the parsing method that retrieves the entries stored in the file.

One possible concern with keeping a configuration file is that editing its content may render the
system unstable by adding unwanted or removing needed components. However, developers also
need the possibility to experiment with new extensions. To resolve this dilemma, the framework
looks for the resource file first in the directory where the system was started. If the file is not present
there, the entries of the CLASSPATH and finally the distribution jar file are searched.

Thus, developers can experiment with new features by simply starting the AV system in a different
directory. Note that this requires no code duplication or copying of the jar file. Classes which are
present in the jar file but not configured for use act as if they did not exist. One possible application
of this fact could be assigning students to programming tasks such as “implement the following
extension filter” by giving them access to the jar file with a configuration where the extension filter
is excised.

Another application area of adaptive and extensible systems is the support for changing the con-
figuration of the system at run-time. The framework therefore requires a special component that
supports the insertion of new elements. An example screen shot of such a ComponentConfigurer
is shown in Figure 4.8. The screen shot was taken from the prototypical implementation of the
framework presented in the next chapter. It therefore represents a certain configuration. For our
discussion of component assembly and configuration, we can ignore the actual values shown in
Figure 4.8 and focus on the existence and degree of support of the presented component.

Figure 4.8: ComponentConfigurer Window for Adding Extensions on the Fly
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Several entries are grayed out in each configuration tab. These are the core components without
which the system may not run smoothly. They cannot be removed by changing the configuration
dynamically. Other components can be removed by deselecting them in the ComponentConfigurer.
In general, the framework should allow the dynamic addition and removal of all component types
shown as tabs in Figure 4.8.
The general approach for adding a new component can always be essentially the same:

1. retrieve the class name of the class to add; for example from the text field in Figure 4.8 or as
an entry in the configuration file;

2. if necessary, prepare the class name for component look-up by prepending the associated
package name;

3. ask the default java.lang.ClassLoader object to locate the class definition for the given name
by searching the entries of the CLASSPATH. If this does not work, cancel the addition;

4. try to instantiate the loaded class without performing any cast operation. The result is either
an exception, in which case the addition process is canceled, or a new instance of the class;

5. test whether the object is of the expected type and conforms to the expected interfaces; if so,
cast the reference accordingly and store it appropriately;

6. finally, add the object to the “appropriate” places in the running system.

The last operation obviously depends on the type of object loaded. For example, loading a new
primitive class requires adding an appropriate entry to the tool bar for generating new primitive
instances. Whenever a new instance of the loaded primitive is requested, the prototypical instance
is cloned and returned. Removing a given component requires only the removal of the prototype
from the storage.
The last enumeration item but one does not specify how and where the newly loaded object shall
be stored. Similarly to the expressiveness gained by representing object state by properties, we
advocate storing the instance in a hash table as a Prototype [61, p. 127ff]. This is the logical
extensions of the application of hash tables for efficient look-up of dynamic values to dynamic
components. It is inspired by the usage of hashing and properties in GUI assembly and Java beans.
Using hash tables for storing each component as a Prototype consequently allows for maximum
flexibility. Individual components can easily be added to the hash table and mapped to concrete
instances by cloning the Prototypes. For this end, the hash key of each component must either
be known or located in the enumeration of all keys stored in the hash table. Removing a given
component from the system is achieved by simply deleting its entry from the hash table.

4.2.5 Decoupling Associated Objects Using Handlers

Handlers are used for decoupling components that have a different focus, where one component
offers services which can be selected and requested by the other component. For example, think of
a graphical object and a transformation on it. The graphical object, for example a point, does not
need to be aware why a change in location is performed, as long as it properly adjusts its location.
Handlers provide the communication between these two separate elements. They offer a set of
possible operations applicable to the first component to the second component. In this section, we
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will call the component which offers services and updates its internal state to perform operations
ActualModel. The second component which requests a list of possible operations and requests an
update of the ActualModel’s state is called Modifier. Once a specific operation is chosen and the
Modifier has determined the target state to assume, the handler invokes appropriate methods on the
associated ActualModel that cause the desired effect.
Handler instances are always tied to a ActualModel type and therefore Singletons [61, p. 127ff].
They effectively decouple the ActualModel and Modifier instances. To provide dynamic extensi-
bility without code modification, we also introduce handler extensions, which allow adding new
capabilities to a system even at run-time. Handler extensions are stored in a dynamic look-up struc-
ture along with the type covered. For example, the class name of the covered type can be used as
the key for storing the handler extension in a hash table. As there may be more than a single handler
extension for a given type, they are stored in a vector. When users request an operation on a given
type, the vector associated with the given type name is retrieved and iterated until the appropriate
handler extensions has been located and executed.

+ getType(): String

HandlerExtension

+ getMethods(ActualModel, Object): Vector
+ addExtensionMethodsFor(ActualModel, Object, Vector)

+ insertHandlerExtension(HandlerExtension)
+ propertyChange(ActualModel, PropertyChangeEvent)

Handler

Modifier
operations
supported

Change()
property−

ActualModel

current
state

"appropriate"
invocations

Figure 4.9: Abstract Schematic Handler Structure

Figure 4.9 shows an abstract view of the communicating parties in the handler concept. The Ac-
tualModel class in Figure 4.9 is the current point in our example. The Modifier role is taken on
by the transformation on the point. The name of the handler has not been changed. As outlined in
Figure 4.9, the handler provides the Modifier with a set of possible operations to perform on the
ActualModel instance. This set of operations will often depend on the current state of the model,
indicated by a dashed line.
Once the Modifier has decided on a concrete operation - for example, by querying the user for
a choice -, it requests appropriate actions on the ActualModel by sending a java.beans.Property-
ChangeEvent to the handler. This event encodes the name of the operation as well as the current
and target value of the property to change, as explained in detail in section 4.6. The handler is then
responsible for mapping the requested operation to the actual model, or possibly veto the change.
There are many possible areas where this concept can be of interest. Some examples include

Adaptive GUI components The Modifier represents the user who selects GUI operations. The
ActualModel is the actually generated or modified GUI. Finally, the handler is the agent that
offers a set of possible operations to the user and adjusts the actual GUI when needed.

Sandbox In this application, unwanted and possibly critical operations can be prevented from
accessing the underlying object by being caught in the handler. The Modifier role in this
example is the agent who requests operations, for example an application running inside the
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sandbox. The ActualModel role is taken on by the object outside the sandbox, which only
receives requests if the handler allows the operation.

Personalized Shops The Modifier is the Web interface of a given e-shop, offering different wares
to a target audience. The ActualModel contains the wares offered by the shop, or alterna-
tively the known information about the clients. The handler can then customize offers for
clients based both on the type of client (preferred, occasional customer, first time, �	�	� ) and
the concrete attributes of the client, such as the client ID. It can thus offer both general dis-
counts for long-time clients, and special offers that are thought to be of interest to a specific
client according to the information gathered so far.

Web Services Here, the requesting application takes the role of the Modifier. The Web Service
is represented by the ActualModel. The handler as a go-between can provide a description
of the features offered by the different Web Service types and instances available and nego-
tiate priority access. For example, the service description can be coded in the Web Service
Description Language (WSDL).

Consistency The Modifier role is assumed by the agent requesting an operation. The handler can
check whether the operation is admissible based on the type and current state of the underly-
ing ActualModel instance. If the operation is admissible, it may be forwarded. Alternatively,
it can also be stored (“cached”) locally and forwarded only after the Modifier sends a “com-
mit” signal. In this case, the handler can also act as a caching transaction control or policy
checker.

Filtering Proxy As a last example, the handler may act as a filtering proxy which shows only se-
lected operations based on the value of the ActualModel. Here, the Modifier role is typically
assumed by a user requesting an operation, and the ActualModel is a service or application.
The filtering may be applied to the service type - for example, no FTP access - or based on
the current state of the instance - for example, no access to pages containing sexual material.
In this case, the filtering proxy can also serve as either a privacy guard or children filter.

The handler concept is one of the most important parts of the framework, underscoring the flexi-
bility of the framework regarding adaptivity and extensibility. The concept is also far-reaching.
However, it is difficult to classify handlers and handler extensions as design patterns. Each concrete
handler and handler extension is implemented as a Singleton [61, p. 127], as they are tied to
a specific primitive type, not instance. The method invocation sequencing of passing both the
method name gathered by getMethods and the effect mapping within propertyChange is typical for
the Chain of Responsibility pattern [61, p. 223ff].
In some respects, handlers also act as a variation of the Bridge pattern [61, p. 151], although
the underlying problem is not one of bridging between an abstraction and an implementation as
intended by the pattern. There are additional similarities to the general ideas underlying the Adapter
[61, p. 139] pattern, although the focus here is not on inheritance, but rather dealing with code
decoupling and support for unanticipated extensions.
The Facade pattern [61, p. 185] offers a unified interface to a set of interfaces in a subsystem. In
a way, this is also what handlers do, as they offer a uniform way of determining and performing
animation effects appropriate to the given primitive type. However, the match is again not quite
accurate. There are also similarities between our handler concept and the Mediator pattern [61, p.
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273], but also enough differences to show that they are not the same. The main difference here is
the dynamic maintenance of the extensions which are not anticipated in the Mediator pattern.
As handlers and handler extensions are stored in a static hash table and looked up when needed,
new extensions can easily be added or removed at run-time, without risking the stability of the
system.

4.2.6 Summary of Framework Extensibility and Adaptivity Approaches

The goal of this section was the introduction of components for a highly flexible and dynami-
cally extensible framework. We have placed special attention on specifying components in such a
way that the implementation of extensions can be achieved without modifying existing system or
framework code. The only exception to this rule are adaptations of the return types of the hand-
ler concept, which are necessary for supporting compile-time type checking and thus preventing
casting and possible run-time exceptions.
In general, the approach we proposed in the section allows developers the implementation of ex-
tensions without deep system knowledge. Part of this is due to the fact that no existing code has
to be modified. The dynamic configuration and addition or removal further helps in implementing
extensions without having to read and analyze all existing classes in a given package.
In the following paragraphs, we briefly recap the key aspects of this section and outline strengths
and weaknesses of the individual components.� Properties offer a highly flexible approach for modeling object state. Basically, “fixed” at-

tributes are replaced by a properties object that stores all values in a look-up structure. The
standard pair of access and setting methods for individual “attributes” can still be provided,
but now works on the associated properties entry.

In general, properties can make the class interface leaner by not requiring the get / set method
pair, and also provide a good central point of data encapsulation in each object. Developers
can easily add or remove attributes even at run-time by inserting or removing a new key and
associated value into the properties look-up structure. The support for default values enables
consistent behavior even for incomplete data.

As any other approach, properties also have disadvantages. First, the developer cannot see
what “attributes” are covered as easily as with attributes. Note that from a data encapsulation
and information hiding point of view, this is actually an advantage! Additionally, retrieving
elements from the properties always returns a String object which has to be transformed
in the appropriate type. The final disadvantage or liability is that extracting elements from
properties, even using our support class XProperties, does not offer real type checking as
would be the case with declared attributes. In the interest of extensibility and in view of the
gained flexibility, however, we think that this disadvantage is acceptable, as we also make
sure to prevent run-time errors due to incorrect casting.

The main advantages of using properties are the great amount of additional freedom gained
for dynamic ad-hoc addition or removal of elements and attributes thereof. A special support
class specified in the framework addresses the disadvantage of having to transform entries
from String to the desired type and vice versa by offering this functionality. Additionally,
the base properties-based class in our framework supports flexible cloning of the properties
values for new instances based on the Prototype pattern [61, p. 127ff].
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for reading and writing a given object can be embedded in the class code. Second, the Visitor
pattern [61, p. 331ff] can be used for supporting diverse formats. Finally, the import and
export code can be placed in separate classes or even packages.

In the context of a dynamically extensible system, the first two choices are practically unus-
able. Embedded import and export code in the class results in continuously growing class
size, with the actual modeled content representing a shrinking percentage of the full class
code. Additionally, each newly introduced import or export filter requires modifications to
the implementation code of all classes.

Similarly, the introduction of a new element on a Visitor-based import and export layer is
problematic for dynamically extensible systems. Each addition requires a new method to
be declared and implemented in the Visitor and all subclasses - a direct violation of our
requirement of code modification-free extensions.

Placing the import and export code in a separate class or package thereof is the safest ap-
proach for dynamically extensible systems. Based on the Importer and Exporter classes
defined by the framework, new filters can easily be implemented. The FormatSpecification
interface defines the properties of the filter, essentially its default extension, a short descrip-
tion and the MIME type. Both extension and MIME type can be used for customizing the
JFileChooser class used for file selection in Java. Additionally, the correct filter can be
looked up based on the extension or MIME type. The import and export support is thus very
flexible and allows for easy reuse.� The internationalization components provided by the framework extend the translation ser-
vices supported by Java. Base Java offers a set of classes that can be used for translating
content. However, the developer has to implement the actual translation process manually.
For this end, the framework extends the underlying modeling object for translatable texts in
the ExtendedResourceBundle class.

Content translation is achieved by a single method invocation in the Translator class. The
method parameter is the ID of the message to translate. Additional parameters to be inserted
into the message can also be passed in.

Finally, the TranslatableGUIElement class provides internationalization support for Swing-
based GUI elements. A single method invocation is sufficient for generating supported Swing
components, in some cases even along with action listeners. The translation support covers
displayed texts, tool tips, mnemonics, and where applicable, also the names of icons or mes-
sages to invoke on activation.� The dynamic assembly of components used in the framework is based on a configuration file
on the one hand, and dynamic configuration in a special window on the other hand. The
configuration file can have different formats; for pragmatic reasons, we have decided to use
a straight line-based ASCII notation. To allow reusing the distribution jar file in a variety
of configurations, the framework looks for the configuration file first in the directory where
Java was started, followed by the entries of the CLASSPATH and finally the jar file itself.

There can be many different configurations of the same system, based on the directory where
the configuration file resides on the one hand, and on the dynamic configuration on the other
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hand. This allows developers to experiment with new features, as well as assigning program-
ming tasks to learners by simply “removing” the implemented component in question from
the configuration.

As described in section 4.2.4, adding a new component is very simple, stressing the exten-
sibility of the system. All possible run-time exceptions due to dynamic loading are caught
and lead to the removal of the component in question. Thus, the only run-time exceptions
and errors possible are those caused by the code, not by the dynamic assembly. The same
errors and exceptions would therefore occur if the components were “hard-wired” into the
framework or concrete system.

The performance of the system also does not suffer measurably from the dynamic assembly,
as cloning the requested elements is easy and efficient to achieve. The very slight overhead
in running time incurred by the dynamic nature of the framework is easily acceptable when
one considers the added expressiveness regarding dynamic assembly and extension imple-
mentation.� The handler concept decouples two components that depend on each other for performing
certain services. In the scenario, component A provides some services to component B. B can
select the target service to execute and request it from A. The handler interacts between these
two classes by providing the set of applicable services to B, based on the type of service
requested and the current state of A. Once a service is selected, the handler executes the
appropriate method invocations on component A.

Handler extensions can be provided easily by implementing a new class and adding it dy-
namically. The extensions are examined whenever the standard extension for a given type
cannot handle a request.

Handlers are usable in many different application areas. They improve reusability due to the
strict separation of concerns they provide. Implementing individual component extensions is
also easier due to the cleaner focus of each component.

Combining the flexibility of the dynamic loading used for most central components in the ANIMAL

framework with the power of the handler therefore yields a highly expressive, reusable and easily
extensible framework. In fact, apart from the software engineering approach, this is to our knowl-
edge the first published general-purpose framework for AV systems, as well as the first AV system
that is explicitly geared for extensibility without intimate system knowledge, and more importantly,
also requires no code modification.

4.3 A Brief Framework Overview

To specify an AV framework, we first have to define the participating entities. We regard both
algorithm visualizations and animations, in the following abbreviated as “animations”. It is easy
to see that there must be at least two central components: graphical objects such as text or lines,
and animation effects that modify the appearance of the objects over time. We will therefore adapt
these two components for the framework.
Assuming that a visualization cannot be stopped or even rewound, these two components are suf-
ficient. We could even skip the separation between animation effects and graphical objects and
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replace the effects by explicit operations on the graphical objects. This approach is clearly insuffi-
cient if we plan to develop a general-purpose animation system that has no advance knowledge of
the contents to present. Furthermore, an essentially stateless animation system built from cascaded
or sequenced invocations of animation effects is too inflexible to allow advanced features such as
animation rewinding. However, this facility is required for a deeper understanding of the animation
content, as stated in UR5 and several research papers, for example [118, 39, 55, 2, 21, 113, 134,
128].
We therefore have to incorporate a model of the animation content into our framework that repre-
sents the current animation execution state and also allows accessing previous or future animation
states. To avoid the problem of having inadequate settings for memory used for undoing executed
steps, we strive to find a solution that allows unlimited undo without excessive memory require-
ments for “large” animations. However, efficient rewinding represents a formidable challenge in
AV systems.
If a given object transformation can only be modeled within either the graphical primitive it changes
or the animation effect, developers will always be forced to touch existing (but possibly foreign)
code when they prepare an extension. However, we do not want to force developers to read and
understand the whole code of the system they want to modify. We are even less interested in
forcing them to modify this code by finding just the right place to plug in their added functionality
and basically hope that no side-effects will occur!
The framework shall therefore plug handlers between animation effects and graphical objects, as
described in section 4.2.5. The responsibility of the handler will be to negotiate the services an-
imation effects request from graphical objects by mapping them into a sequence of “appropriate”
method invocations in the graphical object. Section 4.6 examines the adaptation of the handlers to
the AV context in detail and outlines the advantages offered by the approach.
In addition, the ANIMAL-FARM framework offers a simple, efficient and elegant solution to the
problem of efficient rewinding and context-free reverse playing, which was stated to be “one of the
most important ”open questions” in AV” as late as 2001 [2]. Briefly, forward playing is performed
by initializing each primitive to the state to assume at the start of the current animation step. The
primitive is then successively transformed by the animator (acting via the associated handler), based
on the start time and the percentage stage of animation effect completion. For reverse playing, we
modify the current time to lie in the future after initializing the animator. Instead of going forward
in time, we step backwards until we reach the original start time, which marks the start of the step
and therefore the end of the reverse execution. Accordingly, the animator requests modifications of
the primitive that represent a move backwards in time.
The animation model contains three participating classes. The animation structure is encoded in
an Animation instance. Apart from fall-back copies during animation import or export, this class
acts as a Singleton [61, p. 217ff]. The Animation instance stores references to all primitives and
animators, as well as the animation structure segmented in individual animation steps. The links
connecting subsequent animation steps are modeled in Link objects. Apart from a link to the next
step, Link instances also specify the operation to perform for advancing a step, for example a timed
delay or waiting for a specific user interaction. Links may also be labeled, with each label acting
as hyperlinks to the associated animation step. Finally, the current dynamic state of the animation
is encoded in an AnimationState object.
Now the framework has four conceptual components: graphical objects, animation effects, handlers
that act as negotiators between the graphical objects and the effects, and an animation model. Two
more key components are obviously missing: facilities for displaying the animation and for editing
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its contents. The animation can be displayed by requesting each visible graphical object to paint
itself on a canvas for each state of the algorithm. Consecutive states therefore have to incorporate
the changes or fragments thereof requested by the animation effects, for example by moving or
recoloring a given graphical object. The editing GUI front-end shall allow the editing of both
graphical primitives, for example by modifying their initial color, and the animation effects, for
example by introducing different timing specifications or changing the type of effect to perform.
As this functionality is currently not supported in most AV systems and might not be wanted, we
provide only an interface for docking editing components. The interface may be left dangling
without risking the stability of the framework.
In addition, the framework shall provide support for importing and exporting the animation. We
therefore introduce two additional components for animation import and export. Several of the
framework entities represent areas for extension (“hotspots”) by developers. This concerns anima-
tion effects, handlers and graphical objects, as well as import and export facilities. Other areas,
such as the GUI components, can be configured and extended to a lesser degree, as several of the
requirements place implicit constraints on the design. For example, the control elements to support
in the AVPlayerGUI component are basically fixed by requirement UR5 and UR12.
Figure 4.10 on the next page provides a high-level overview of the central components of the AN-
IMAL-FARM framework: import and export layer, a drawing and editing front-end, and the central
animation representation consisting of primitives, animation effect and handlers that negotiate be-
tween the two other class types. The optional editing framework component is included in the
figure for completeness. As several AV systems may not want such a feature, we have not included
it as mandatory in the framework. However, the EditableObject class has prepared the needed
functionality for adding editing using direct manipulation.
The design of the framework places several research challenges. Apart from the general difficulty
of defining a reusable framework, we also have to support dynamic extensibility without code
modification. Users and visualizers shall be able to add and remove extension components at
run-time using a configuration window. This goal has far-reaching consequences on the design
approach taken, as it concerns most of the framework components. On the AV side, we have to
support efficient rewinding and reverse playing on a scale hitherto not shown in general-purpose
AV systems. Additionally, flexible and extensible import and export filters have to be introduced
including the support for magnification both in the display and in appropriate storage formats.

4.4 Graphical Objects

The supported graphical objects are one of the central components of AV systems. They model
the different types of entities that can be used for displaying the actual animation content, and thus
have a large impact on the system’s appearance and expressiveness.
The following issues have to be taken into account when designing the support for graphical objects:

Flexible The graphical objects should strive not to fix any context or place specific demands on
their environment.

Widely applicable As demanded by requirement GR10, the application area and concrete topic
used in a special instance of the framework shall be left open. Restrictions preventing reuse
or fixing the context of usage to a certain topic area limit the applicability of the framework
and therefore make it less attractive to use.
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Extensible Developers must be able to develop new graphical objects with ease. The concrete
implementation of the framework shall be able to embed new objects even while it is running,
without requiring a complete recompilation. Ideally, no source code of available classes shall
have to be changed.

Easy to implement additions The developer shall find implementing new graphical objects as
easy to do as possible (see DR1 and DR3). Thus, the knowledge of implementation details
required for providing an implementation should be kept as small and shallow as possible.
At the same time, adding new primitives must be easy for the visualizer (VR2).

Separation of concerns Both reuse and extension programming are hindered if each instance of
a new graphical object has to address a large number of issues. To be usable for animation
purposes, graphical objects must be able to change over time. Packing this evolution process
into the graphical object implementation results in large classes and less likelihood of reuse.
We therefore have to decide on an approach that allows for a strict separation of concerns
between animation effects and graphical objects. This will also make it easier to provide
extensions without touching much if any existing class code.

Configurable As demanded by requirement VR3, certain aspects of the graphical object shall be
configurable. This concerns the graphical representation, for example the color used for the
object’s outline.

Designed for reuse Apart from a clear separation of concerns as discussed above, composing
available graphical objects into a new composite object must be easy. The amount of coding
to be performed should be as low as possible to allow for effective reuse.

In the remainder of this section, we will discuss the modeling of graphical objects used within the
ANIMAL-FARM framework. The discussion will show how the different demands are incorporated
into the design.
The first design decision concerns the amount of knowledge that a generic graphical object shall
have. The central issue in designing the graphical object is defining which entities shall be respon-
sible for animating a given graphical object. As stated in the framework overview in section 4.3,
we separate the animation into three concerns: determining the state to assume for the current point
in time, mapping this state into operations on the affected graphical objects, and finally rendering
the (updated) graphical objects the display front-end. The graphical objects only have to provide
appropriate methods for updating the state, such as changing the color. The main part of the actual
work in animating the object is shifted to the other two participating entities: the animation effect
on the one hand and the handler on the other hand. These are described in more detail in section
4.5 and 4.6, respectively.
This separation of concerns makes reusing the graphical objects much easier, as developers can fo-
cus on implementing a graphical object without worrying about how it can be animated. In essence,
this is similar to the task assumed by the programmer AV role, who implements an algorithm with-
out knowing or worrying about later animations.
To make the extension of animation effects independent from the supported graphical objects, we
decouple the classes using handlers. The animation effect shall not have direct access to the graphi-
cal primitive, but only refer to it by its ID. For the ID, we propose to use numerical values generated
by a self-incrementing Singleton [61, p. 87ff] method, so that each allocated ID will be unique. By
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not referencing concrete object instances, the development and compilation of extensions for both
areas are decoupled.

animal.misc.EditableObject

animal.main.PropertiedObject animal.misc.XProperties

− num: int

+ getNum(boolean): int

+ getBoundingBox(): Rectangle

animal.graphics.GraphicObject

+ paint(Graphics)
+ setColor(Color)
+ setDepth(int)
+ setLocation(int, int)
+ setNum(int)
+ translate(int, int)

+ getColor(): Color
+ getDepth(): int
+ getLocation(): Point

Figure 4.11: Architecture of Graphical Objects in the Framework

Offering the widest possible applicability of the available graphical objects means that we have
to constrain the framework to offering primitive types. Primitives are simple conceptual graphical
entities that can serve as building blocks for more complex entities. Typical primitives for building
a graphical system are points, polylines, texts and arcs. The framework specifies the base class
for the primitives. The degree of additional support for each primitive is left to the developers of
a concrete implementation. For the rest of this chapter, we will therefore replace the somewhat
imprecise term graphical object by graphical primitive or simply primitive.
Figure 4.11 shows the class structure of the proposed graphical object base class in our framework.
As mentioned above, the graphical primitive has a private numeric ID field with a pair of methods
for reading and modifying the value. When a graphical object is cloned, for example by a copy and
paste operation in an editing GUI, the clone retains the same numeric ID as the original object. In
some cases, this ID duplication may be wanted, as we will see in section 4.7. In all other cases, a
new ID can be assigned explicitly by invoking the setNum method, or generated automatically by
invoking getNum(true).
Apart from a unique numeric ID, all generic primitives share some other characteristics: color,
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depth, location and a bounding box, plus the standard methods for moving the element (also called
translating) and displaying it using the standard Java paint method. Note that the interpretation
of the color may differ between different primitives. In general, the most “basic” color should be
used, for example by picking an object outline rather than its (optional) fill color.

The depth information is used for resolving the display of overlapping objects. The depth acts as a
z coordinate in three-dimensional space, with the z axis vanishing into the monitor. Therefore, the
greater the value of the depth information, the “deeper” the primitive. Primitives are painted from
the background to the front in the reverse order of depth, so that primitives with a lower depth value
may partially or fully overlap and thus occlude primitives with a higher depth value.

The location of a given primitive is represented by a point. By convention, it is the upper left
corner of the object. The bounding box is the smallest rectangle that fully encloses the primitive. It
is needed for determining if a given mouse click within the display or editing front-end could refer
to the given primitive. It is also used for precise primitive placement based on the relation to other
primitives (“relative placement”).

The translate method moves the primitive to the target coordinate passed in. For some primitives,
this can be achieved by simply adapting the primitive’s location. In other cases, special adaptations
may be necessary. Finally, the paint method uses the standard Java interface for rendering the
current state of the primitive on the display, typically a drawing canvas. There is no adequate
generic implementation for either of these methods. Therefore, they are declared abstract to force
concrete primitives to provide an adequate implementation.

All primitives in the ANIMAL-FARM AV framework are subclasses of the abstract GraphicObject
class, which itself is a subclass of EditableObject. This means that all primitives have default
facilities for editing their state, and by default use properties for modeling their state, as shown in
Figure 4.4 on page 74.

A short reflection shows that the primitive base class is not tied to a specific usage context, and cer-
tainly not restricted to AV applications. It is flexible enough to be applicable to diverse application
areas. Also, the interface of the base class as shown in Figure 4.11 is so lean that it is very easy
to implement extensions. The strict separation of concerns we propagate has removed all traces
of animation purposes from the primitive implementation. In fact, the primitive could easily be
used in any graphics context such as drawing programs or even games without having to change
anything about its structure.

The appearance of the primitives can be configured by invoking their access methods, such as
setColor. More importantly, the underlying properties also allow far-reaching configurability, as
the insertion of new property values is as easy as modifying an existing entry. Of course, the paint
method has to be modified to take the new properties into account when rendering the primitive.

In effect, the primitive base class GraphicObject acts as a Template pattern [61, p. 325ff]. Concrete
primitives may also belong to the Composite pattern if they combine multiple primitives for added
functionality [61, p. 163ff]. The design goals we placed at the start of this section - flexible, widely
applicable, extensible, easy to implement, configurable and designed for reuse by using a strict
separation of concerns - are fulfilled well by the chosen structure. The primitive base class, rooted
as it is on editable propertied objects, can be reused in a large variety of different contexts. It thus
represents a large but easy to use “hotspot” for future extensions.
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4.5 Animation Effects

In section 4.4, we have seen that the graphical objects or “primitives” of the ANIMAL-FARM frame-
work are designed to represent only a “static” view without any provision for animation. The
framework therefore needs another set of classes for addressing the dynamical aspects of anima-
tions. For this purpose, we add two more types: animation effects (“animators”) and graphical
object handlers (“handlers”). In this section, we focus on the functionality desired from animators.
To avoid confusing the reader, we will first define some key terms used throughout the remainder
of this thesis. An animation effect represents a family of related operations on generic objects. The
implementation of a given animation effect is called animator.
Animation effect subtypes represent one concrete instance of animation effects. Finally, animation
effects and effect subtypes may possess a timing specification consisting of an offset and a duration.
The offset specifies the delay before the animation effect starts, while the duration specifies how
many intermediate steps are used for generating a smooth display.
We use a short example to illustrate these distinctions. A typical animation effect is the (generic)
move effect on selected primitives. A concrete animation subeffect could be move the first node,
if “first node” is a valid concept for the selected primitives. A timed instance of this subeffect
may specify both the offset – after 100ms – and the duration – within 500ms – of the underlying
transformation.
Before we can start developing the structure of animator objects, we have to consider what we
want to achieve. The design of the base animator class shall address the same requirements as for
primitives. Thus, the animator must be flexible and widely applicable by not containing any special
context, as achieved by a design geared for reuse. Developers shall find it easy to implement
extensions and configure the available animators.
The separation of concerns underlying the concept of primitives can also be found in the animators.
Here, we abstract in three different ways:

Decoupling from primitives The animator shall be fully decoupled from the primitives it works
on, as it would otherwise have to import fixed class names. Dynamically loading of new
primitives at run-time holds no advantage without this decoupling, as the primitives cannot
be referred to. However, for performance reasons, we also do not want to perform a dynamic
lookup and type cast for each primitive selected in a given animator.

Instead, the animator will simply work on the primitives’ IDs. When necessary, the current
state of the animation can be used for mapping this numeric ID to the actual underlying
primitives. This way, the animator is unaware of the possible types of primitives it could
work on, and therefore can easily animate primitives it knows nothing about. This especially
includes primitive types that were not known at compile-time or even during system start-up.

Thus, the animator has to be defined just once and will then be able to handle arbitrary
primitives, allowing for great flexibility in usage and animator reuse.

Animation effect timing All applicable animators shall possess a timing specification consisting
of the offset and duration of their operation, as defined above. The timing information shall
be specifiable both using real and virtual time units to address differences in processing
power of the underlying hardware, as demanded by requirement UR19. As this may not be
appropriate for all animators, we separate the animators in two base classes, with the second
class adding the timing handling.
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Genericity As stated above, each animation effect realized in an animator class shall represent a
family of related effects. Thus, the animator encoding the Move animation effect shall be
able to provide all possible applications of moving primitive or parts thereof. Obviously, the
animator cannot anticipate all move types possible for primitives whose conception and im-
plementation may still lie in the future. Therefore, the animator can only focus on represent-
ing the behavior of the animation effect over time, without actually modifying the underlying
primitives. For example, the Move animation effect will focus on interpolating the point to
reach at a given point in time, without trying to actually modify the selected primitives.

Separating the three aspects of decoupling, timing and genericity from the animator by shifting
them outside of the animator class improves the chances for reuse of individual animators, and also
makes implementing extensions much easier. However, we have to specify how animation effects
are supposed to work. For example, how can a generic ColorChanger animator determine what
color properties may be changed, if there is no direct access to the selected primitives? The answer
is simple: the decision of which animation effect subtypes are applicable for a given primitive is
shifted from the animator class to a handler, as introduced in section 4.2.5.
We decide to use a handler as a separate class for two reasons: first, the primitive as such is focused
on its “static” appearance and therefore does not have to know the different ways in which this could
be changed. Second, if the information were embedded in the primitive, providing a new animation
effect would also require modifying the code of several primitives. This runs counter to our concept
of code modification-free extension and reuse. Section 4.2.5 discusses the functionality offered by
handlers and illustrates the benefits of this approach.
For our current discussion of animation effects, we will assume that we can request a list of all
possible animation effect subtypes of the current animation effect for each affected primitive. The
process of generating this list is described in section 4.6. The animator is then responsible for
merging these subtype lists by building an intersection and presenting this to the visualizer for
selecting the appropriate effect.
Finally, we have to define how animators can be executed to actually achieve animation in the
visual front-end. We split this process into three segments: initialization, action, and finishing
the execution. The initialization is responsible for setting up the animator. Timed animators that
incorporate a duration, an offset or both must know the start time of the association execution to
determine when their own execution can begin. Therefore, the initialization requires the current
timing information, specified by real and virtual time. Additionally, the animator may depend on
the current state of the animation, for example due to dynamic elements that have to adapt to the
current situation. In some cases, the primitive will have to be accessed indirectly to retrieve the
start value for the animator.
The action part of the animator performance is performed in a loop. During each loop iteration, the
current time is determined. The animator then determines what its target state shall be. For example,
a ColorChanger effect may determine an interpolated intermediate color based on the percentage
stage of its execution and the start and target color. The type of the determined value depends
on the animator: ColorChanger animators will use a java.awt.Color to represent the current state,
while Move animators will use a java.awt.Point that represents the location to assume. Note that
the calculation of this state is independent of the actual primitives on which the effect works. The
resulting value of the calculation is passed along to the appropriate handler object, which is then
responsible for mapping this into the appropriate operations on each primitive. See the discussion
in section 4.6 for more details on handlers.
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The execute operation lets the animator assume the final state of execution. It is reached when
the animator is fully executed. It can also be invoked directly to get a static view of the end of
the animation step instead of a dynamic display. Additionally, it can mark the animation effect as
“finished” to allow the concrete AV system to skip it during the next loop iterations.

+ setFinished(boolean)

+ setStep(int)
+ setObjectNums(int[])

+ init(AnimationState, long, int)
+ hasFinished(): boolean

+ getObjectNums(): int[]
+ execute()
+ action(long, int)

animal.animator.Animator

+ isShow(): boolean
+ setShow(boolean)

animal.animator.Show

+ copyTimingFrom(TimedAnimator)

+ getOffset(): int
+ getDuration(): int

+ getProperty(double): Object
+ setDuration(int)
+ setOffset(int)

animal.animator.TimedAnimator

animal.misc.EditableObject

animal.main.PropertiedObject animal.misc.XProperties

+ getTemporaryObjects(): int[]

Figure 4.12: Architecture of the Framework Animation Effect Classes

Figure 4.12 shows the structure of the animators in the ANIMAL-FARM AV framework. The basic
animator class Animator extends the EditableObject class presented in section 4.2.1 and thus pre-
pares facilities for editing the properties. Apart from the already described methods action, execute
and init, the animator can be assigned to a certain animation step. Steps represent administrative
units for segmenting animations; they are described in more detail in section 4.7.
The object nums array stores the numeric identification of the primitives modified by the animator,
while the temporary objects array contains primitives that steer the execution without being visible
themselves. For example, moving requires a line or arc along which the primitives are moved. The
numeric ID of this line or arc is stored in the temporary objects array. Finally, the hasFinished
method allows determining if the animator has already finished its execution and can therefore be
removed from the display update scheduler.
Two example subclasses of the animator base class are included in Figure 4.12. A Show animator,
as shown, requires only a pair of additional methods for determining if the selected primitives shall
be shown or hidden. The TimedAnimator class adds methods for assigning and retrieving the timing
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information containing both the offset and duration. The copyTimingFrom method can be used to
transfer timing information from one timed animator to another.
The abstract getProperty(double) method is responsible for calculating the concrete value to assume
for the current point in time needed for smooth transitions UR19. The current time is passed as a
double value and represents the execution state of the animator in the normalized interval [0.0,
1.0]. 0.0 refers to the start of the animator, while 1.0 represents the end of the animator execu-
tion. The returned value represents the target state to assume for the current point of execution; its
type depends on the actual animation effect, as explained above.
Animators have two central hotspots: they can extend the Animator or the TimedAnimator class,
depending on whether the animator shall possess a duration and offset. To implement an extension,
the developer only has to implement the inherited abstract action and getProperty methods. In
many cases, however, the developer may also want to overwrite the execute method that by default
simply sets the animator state to “finished”.
Note that animators only specify the animation effect subtype by name and possibly add timing in-
formation for the execution. They do not work directly on any primitive object. This is done by the
handlers we examine in section 4.6. The primitives on which the animator works are present only
by their numeric IDs. Therefore, implementing a new animator without also modifying or extend-
ing at least one handler instance will only produce results if the animator works without primitives,
for example by linking to external documentation or tests (see UR4 and UR10, respectively).
Implementing a new animator is used for introducing a completely new animation effect group,
such as the family of all conceivable rotation types. To implement a new subeffect of an already
available animator, such as move nodes x y z where x, y, z are node indexes, the developer instead
has to implement a handler extension, as described in section 4.6. Animators have a very wide
focus and are thus very well suited for reuse in many different contexts, as they do not actually
perform operations that might clash with planned areas of use. Animators and TimedAnimators act
as Template pattern instances [61, p. 325ff], just as the primitives themselves.

4.6 Graphical Object Handlers

We have already described the representation of primitives and animators in our algorithm visual-
ization framework. As the reader will have noticed, there is no direct connection between primitives
and animators. Instead of a direct link, we use a handler for this connection, as described in section
4.2.5 to further support reuse and extensibility.
Without the negotiating intermediate handler class, animators and primitives have to communicate
directly. This means that the functionality the framework currently lacks would have to be placed in
either or both of these classes. The tasks left are the determination of the animation effect subtypes
available for a given animator and the mapping of a given animation effect to a modification of the
primitive that reflects the animation effect intent.
If the determination of the offered animation subtypes for all primitives is placed in the primitive
or the animator class, the introduction of a new animation subtype must always result in one of
two alternative situations: touching the code of the class or introducing a new class that is only
slightly different from the other one. Both solutions are inelegant, and the first solution is also
highly error-prone due to possible bugs introduced in established class code.
To illustrate the problem, let us assume that there is a Move animator that can move whole objects,
and a polyline graphical object that represents a sequence of linked line segments. The developer
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now wants to introduce a new move effect subtype that only moves the first node of a polyline.
We first regard the choice that the code for providing this new effect subtype is placed inside
the animator code. Adding the appropriate code to the Move implementation may easily lead to
bugs: the new effect subtype may only be used if all primitives selected for the Move animator are
polyline (or possibly polygon) instances. If the developer forgets to place an appropriate conditional
statement before the code, runtime errors due to invalid casts of for example text primitives to
polyline instances may result.
Even if the conditional is added, consider how bloated the implementation code of the animator
will become if the developer adds more subeffects. For example, moving multiple selected nodes
of a polyline or changing the radius of an arc are very easy to conceive. The net result of just a
few such additions will be a class code that becomes hopelessly tangled in casts and conditions,
obscuring the clear and simple design of the animator structure.
Even worse, consider what happens if a new primitive is added and shall be provided with the
“standard” effect. In this case, the developer has to touch all animator implementations to manually
insert the code for handling the primitive! This is about as far removed from our intention of easy
reuse and clear legibility as one can be.
Moving the generation of possible animation effects to the primitive does not improve the situation.
The formerly clear and lean code of the primitive that was able to focus on representing the graphi-
cal properties of a “static” primitive is suddenly swamped with conditional statements. In this case,
the code has to check which animator type requests the list of possible animation effects.
Developers of a new primitive have to embed the “appropriate” code for all currently available
animators that shall be supported directly into the new class’ code. Again, this reduces legibility,
makes maintenance more difficult, and increases the likelihood of bugs or inconsistent treatments
between primitives.
If a new animator is introduced instead, all primitive implementations have to be adapted. This
may introduce bugs and side effects into previously well-tested and stable code. And of course, it
also runs completely counter to our interest in reusability, legibility and simplicity.
The logical consequence of this dilemma is the introduction of a handler. In this context, the handler
instance has three main tasks: listing the supported animation effect subtypes for a given primitive,
mapping a concrete animation subtype at a specified state to operations on the underlying primitive,
and maintaining its own extensions. Each handler instance is tied to one primitive type instead of
a given primitive instance. It thus acts as a Singleton [61, p. 217ff]. Note that this also means that
a concrete instance of the primitive has to be passed as a parameter for both determining the list of
possible animation subeffects and actually modifying the underlying primitive.
Figure 4.13 on the next page shows the two participating classes GraphicObjectHandler and Graphic-
ObjectHandlerExtension. They were adapted from the handler classes presented in Figure 4.9 on
page 84 by replacing the classes AbstractModel and Modifier with the actual participating classes
GraphicObject and Animator. As discussed in section 4.2.5, the handler extension class adds only
a method that helps determining the primitive type to which it is associated. As stated above, the
primitive instance to work on has to be passed to both methods, as the realization of handlers as
Singletons provides no tie to concrete instances.
We will start our discussion of the handler usage with the first task. The scenario contains an
animation effect which acts on a set of selected primitives and has to determine which animation
effect subtypes are appropriate for this given set. To achieve this, the animator has to access the
getMethods method in the handler associated with each of the selected primitive. Note that the
decision which animation effects are possible may depend on the current state of the underlying
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animal.graphics.GraphicObjectHandlerExtension

+ getType(): String

animal.graphics.GraphicObjectHandler

+ getMethods(GraphicObject, Object): Vector
+ addExtensionMethodsFor(GraphicObject, Object, Vector)

+ insertHandlerExtension(GraphicObjectHandlerExtension)
+ propertyChange(GraphicObject, PropertyChangeEvent)

Figure 4.13: Handlers and Handler Extensions in the ANIMAL-FARM Framework

object. For example, changing the fill color of a polyline may be possible, but has no visible effect.
The animator contacts the underlying primitive which determines its associated handler and invokes
getMethods. This method receives two parameters: the current primitive for which the possible
animation subeffects shall be determined, and an object that specifies the animation type. For
example, a java.awt.Point object may represent both the underlying animator (Move) and the chosen
target point to assume. In Figure 4.14, this second parameter is called o, as nothing more about
the parameter is known a priori. Each invocation of getMethods returns a list of subeffect names.
After gathering this list, the animator performs an intersection on the names to determine the set of
animation subeffects that all selected primitives can perform.
In some cases, this set may be empty or contain only one element; in other cases, it may contain a
large number of elements. The size of the result set is likely to become smaller the more different
primitive types are involved, as each primitive adds effect subtypes specific to its type. For example,
the option to move the second node is only relevant for primitives that are defined by more than one
node, such as polylines, as opposed to text, point or arc components. The visualizer can select one
of the elements in the result set as the target subeffect, or remove selected primitives to get a larger
result set.
The second handler scenario deals with mapping a requested effect to appropriate operations on
the underlying primitives that result in the wanted visual display. At each discrete step during the
execution of the animation effect, the animator determines the current property of the effect. In our
move effect example, this property represents the point along the move line to be reached “now”.
As the method represents a change of one or more properties, we name the associated method
propertyChange.
Each primitive then has to be updated to this new state. Again, this is performed by contacting the
handler associated with the primitive type and asking it to invoke the appropriate methods on the
primitive. From the primitive’s point of view, this is a “static” change, not a dynamic animation:
there is no visible difference between handler-based and visualizer-based requests, as they might
be issued when editing the properties of an existing object. Furthermore, as each given handler
instance deals with exactly one primitive type, the mapping is typically very easy to perform. Figure
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Figure 4.14: Cooperation between Animator, Primitive and GraphicObjectHandler Instances

4.14 illustrates the scenario.
Finally, the last handler scenario covers the maintenance of handler extensions. The additional
indirection offered by the handler so far has improved reuse and the legibility of the code. Now let
us assume that the capabilities of the handler itself shall be improved by adding a new animation
subeffect for a given primitive. In this case, the developer will normally still have to modify existing
code, with all the bad consequences this may have. While this modification is not as critical as the
modifications previously undertaken in the primitive or animator class were, it is still unwanted.
The framework therefore adds a new class: handler extensions. The handler extension base class
extends the standard handler class by adding a type information which can be retrieved by a get-
Type() method. Extensions are added to the global repository of available handler instances by a
special method. The type of the handler extension determines the association with a concrete prim-
itive. At the end of the getMethods invocation, a special method is invoked that checks whether
the repository of handler extensions offers additional subeffects. Figure 4.15 illustrates this pro-
cess. Accordingly, the propertyChange method checks whether the repository contains a handler
extension capable of handling a concrete request if the “standard” handler for the given type cannot
handle it.
The insertHandlerExtension method adds the extension passed in to the repository. The addExten-
sionMethodsFor method checks the repository for extensions whose type information matches the
GraphicObject instance passed in. It will then invoke getMethods for all matching extensions. All
subeffect names resulting from these invocations are added to the java.util.Vector instance passed
as the third argument. This vector is the same vector that was filled by the “basic” handlers within
the getMethods invocation.
The net result of the operation matches the Chain of Responsibility pattern [61, p. 223ff]: invoking
getMethods on a given handler will return the set of all appropriate subeffect names, whether they
belong to the basic handler or any of the possible handler extensions. Note that the Object argument
encodes the type and possibly further properties of the animator. For example, Move effects may
use a Point object, while ColorChanger animators are likely to use a Color object.
Mapping the animation effect to the underlying primitive object works similarly. First, the handler
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Figure 4.15: Incorporating Dynamically Added Handler Extensions

checks whether it is able to perform the requested concrete subeffect passed in as the “property
name” in the PropertyChangeEvent argument. If so, the new value of the changed property is
extracted from the event object and appropriate method invocations are performed on the primitive
passed as the first argument. If the handler does not know how to treat the subeffect, the effect is
passed along the Chain of Responsibility until it reaches the appropriate handler extension that is
capable of handling the effect, or the end of the chain is reached and the effect is skipped.

4.7 Animation Representation

We have now described three of the central components of our framework: graphical objects
(“primitives”), animation effects (“animators”) and graphical object handlers and their extensions
(“handlers”). We have illustrated how each of these components is structured and why they all
support reuse and allow easy extensibility. The handlers act as a negotiating interface between
primitives and animators and allow the separation of concerns for primitives which only have to
provide a “static” representation of the object. Animators can focus on modeling one abstract ani-
mation effect family each, with both the responsibility for determining the concrete subeffect types
for the selected elements and the mapping of the subeffect into appropriate actions deferred to the
handler.
The structure presented is highly expressive, but also very flexible and context-free. However,
the combination of the three class types only allows the modeling of a set of unlinked animation
effects, as the structuring element that binds these isolated effects into a coherent whole has not yet
been presented. In this section, we focus on defining an appropriate animation representation that
performs this task.
The animation representation has to address some of the requirements discussed in chapter 3. Apart
from providing an appropriate model for generic animation content, this especially concerns the
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following requirements: labeling of steps (UR12) with the labels acting as hyperlinks, breaks be-
tween steps (UR6) and the possibility for skipping individual animation steps (UR8). In addition,
the flexible animation controls required by UR5 which also include reverse playing have to be kept
in mind. While the animation representation is not responsible for actually displaying the animation
- independent of direction -, it has to be prepared to address this issue.
Generally, animations can be structured into animation steps. Each animation step can contain an
arbitrary number of animators which execute simultaneously or consecutively, depending on the
specified timing. Requirement UR6 demands the possibility to place breaks between consecutive
steps. On the other hand, having a mandatory break between consecutive steps is disadvantageous,
as this makes slide show-like presentations or subsequences thereof difficult if not impossible.
Therefore, the animation representation has to let the visualizer decide whether there shall be a
break between two given consecutive steps. In general, there are two possible types of transitions
between steps: a timed and an event-based transition. The timed transition starts displaying the next
step after a specified delay has passed, with a zero delay resulting in immediate execution. Event-
based transitions are usually triggered by user events, typically clicking on a “play / continue”
button. However, other types of event-based transitions are also conceivable. For example, the next
step may be shown only after the user has selected an arbitrary or a specific (“correct”) element,
performed a special operation, finished a test or answered an interactive prediction (UR10).
In addition to defining transitions between steps, the visualizer must also be able to provide labels
for arbitrary animation steps. As stated in UR12, these labels can be gathered in a list and provide
an overview of the animation structure. In addition they also act as hyperlinks: clicking on one
of the labels in the list shall directly set the animation display to the associated step. Note that
this requires facilities for moving backwards in the animation, as well as skipping animation steps
(UR8).
Due to the different functions required from animation steps, we introduce a new class for mod-
eling the animation steps. The new class may represent either the step itself, or the link between
consecutive steps. The first approach is at first glance an obvious choice. Here, each step object
contains the list of animators to be performed in the step, and also models the transition of the step.
However, this modeling makes operations such as copying animators from one step to another or
exchanging the order of steps more difficult. Note that the step itself is basically stateless: only the
transition to the next step and the step label contain semantics.
We therefore model the transitions themselves in the new class, called Link. Links extend Ed-
itableObject and thus represent editable objects with built-in properties. Each Link instance is
aware of its successor and the number of the animation step it represents. In addition, it stores the
optional label belonging to the step where the transition starts.
A transition mode is used to describe how the user can reach the next animation step. As explained
above, there are two default types of behavior: waiting for the user to activate a navigation button
such as “play”, or waiting for a specified amount of time. The transition mode is modeled as an
integer value to allow for future extensions. The optional delay between steps as well as other
conceivable transition information is placed in the properties.
We represent the link to the next animation step by an integer number instead of a Link reference.
This makes merging two or more animations far easier, as we can easily provide a look-up table
that translates the original animation step numbers to appropriately adapted values. Additionally,
importing from and exporting to “flat” formats such as ASCII-based notations is easier if the next
step to assume is encoded numerically.
Figure 4.16 shows a schematic structure of an animation illustrating the use of links. Each box
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∆t=500ms press
key

press
key

Animation start Animation end

Start

Figure 4.16: Example Animation Structure

represents an animation step, and the horizontal lines represent the step transitions encoded in Link
instances. The example animation contains four steps with a total of seven animators on three
primitives. The first step shows a rectangle and a filled circle. The step is labeled Start, as shown
on the link connecting it to the next step. The transition between the first steps shall be performed
automatically after a time of 500ms, unless the user explicitly halts or pauses the animation. The
second animation steps changes the fill color of the rectangle and moves the circle. We use shading
and dashes to illustrate the dynamic effects of the step. The third animation step is reached after
the user has pressed a key. It moves two of the rectangle nodes, thereby shrinking the rectangle,
and hides the circle. After another key press, the fourth animation step is reached, which hides the
rectangle and introduces a new rectangle at the bottom.

animal.misc.EditableObject

+ setMode(int)
+ setNextStep(int)
+ setStep(int)

+ getMode(): int
+ getLinkLabel(): String

+ getNextStep(): int
+ getStep(): int
+ setLinkLabel(String)

animal.main.Link

Figure 4.17: Structure of Link Objects for Modeling the Transitions between Animation Steps

Figure 4.17 shows the structure of the Link framework class. The modeling of the transition be-
tween steps provides support for step labeling as demanded by UR12. Note that further support
is required in the animation display front-end to use the labels as hyperlinks; here, we can only
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support their addition to links. Link objects also enable the visualizer to specify different transition
types between steps (UR6).
We now have to define how we assemble the individual animation steps segmented by link objects
into a coherent animation. We have to take into account that the representation shall offer support
for skipping animation steps (UR8) and a variety of flexible animation controls including reverse
playing (UR5).
For efficiency reasons and to support easier reuse of animators, links and primitives, we advocate
placing all instances of the three types into one private vector each. Thus, the animation repre-
sentation class shall contain three vectors. The main operations needed by the animation concern
the insertion, deletion and retrieval of animators, primitives and links. Remember that animators
cannot directly access individual primitives, as they only store their numeric ID. We therefore have
to add a method for accessing a single primitive based on its numeric ID.
As the animation class as presented has a fixed connection to all animators, primitives and links, we
need only one instance of it at run-time. Therefore, the animation class is basically an instance of
the Singleton pattern [61, p. 127ff]. We say “basically”, as there may be special cases when having
two instances of the class for a few moments may be useful. For example, when importing a new
animation, it makes sense to hold a reference to the current animation until the new animation has
been successfully imported. In case of import problems, we can then easily revert to the previous
animation; if the import was successful, we can discard the previous animation. Similarly, the
generation of a subset of the animation as a new animation object may be helpful when exporting
parts of the current animation.
The animation structure as presented so far represents only a static view of the animation, as it
is completely stateless. We therefore introduce a second animation representation instance, called
AnimationState. Animation states are responsible for representing a given state of animation exe-
cution. Contrary to animations, there may be multiple animation states at the same. To accurately
represent the current state of the animation, the animation state object has to know the current
animation step.
Similarly to its namesake, the State pattern [61, p. 305ff], the behavior of the primitives and
animators depends on the current state of animation execution. The State object in the pattern and
the AnimationState objects in the framework can be shared and co-exist without problems. The
encapsulation of the dynamic aspects of the animation outside the main animation class makes
it far easier to support advanced navigation controls that work in both directions, as a common
fall-back point - the initial state of all primitives – is always preserved in the Animation Singleton.
To allow for easy navigation through the animation steps, as requested by requirements UR5 and
UR8, the animation state also has to be aware of the next and previous animation step, as well as the
first and last animation step. Similarly to the Animation class, the animation state also holds one
vector each for the set of current primitives and animators, as well as for the set of all primitives.
The important aspect here is the word current: the vector of current animators holds only the
animators to be executed in the current step. More importantly, the vector of current primitives
contains clones of the primitives being animated in the current step.
The last aspect is central for the built-in support for reverse execution requested by requirement
UR5. Most of the few AV systems that offer reverse execution to some degree do so by keeping an
undo stack. The problem with this approach is that the developer of a system cannot anticipate how
much memory has to be reserved for the undo stack. Note that the visualizer or user can also not
specify the stack size, as this depends on the current animation and the user’s interaction with it.
Additionally, the undo stack fills very quickly if all intermediate animation states are also stored.
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java.util.Vector

+ deleteAnimator(Animator)
+ deleteGraphicObject(int)
+ deleteStep(int)
# getAnimators(): Vector
+ getGraphicObject(int): GraphicObject
+ getGraphicObjects(): Vector
+ getLink(int): Link
+ insertAnimators(Animator)
+ insertGraphicObjects(GraphicVector)
+ insertLink(Link)

animal.main.Animation

+ setStep(int, boolean): boolean

animal.main.AnimationState

+ getCloneByNum(int): GraphicObject
+ getAnimation(): Animation

+ getStep(): int

+ getFirstRealStep(): int
+ getLastStep(): int
+ getNextStep(): int
+ getPrevStep(): int

# reset()

− allAnimators: Vector
− allGraphicObjects: Vector
− allLinks: Vector − nowObjects: Vector

− allObjectClones: Vector
− nowAnimators: Vector

nowObjects

allObjectClones

nowAnimators

allGraphicObjects

allAnimators

allLinks

Figure 4.18: Animation Representation in the ANIMAL-FARM Framework

Pedagogically, there is a large difference between supporting stepping back (rewinding) and playing
in reverse [2, 134, 181]. Stepping back simply returns the animation to the start of the previous step.
Therefore, users have no visible clues to the effects performed within the step. Instead, they have
to figure out the difference between the current and previous step by comparing the displays, which
may easily lead to overlooking critical aspects. Playing in reverse, on the other hand, performs the
same animation effect as playing the animation step in forward mode - only backwards. Thus, if
an object moves over a certain time span to the right during the animation step, playing the step
backwards will show the object moving to the left – and thus in reverse – over the same time span.
Detecting the difference between successive steps is therefore much easier if playing in reverse is
supported.
The described approach for setting the animation steps offers important functionality for two central
didactic AV requirements: the ability to rewind the animation and even play it in reverse (see
UR5), and the associated ability to skip animation steps (UR8). Note that the Animation and
AnimationState classes do not provide support for dynamically performing the animation step. The
AnimationState class only ensures the correct creation of primitives clones for the start or end of a
given selected step. The actual dynamic execution of the animation effects that results in a smooth
transitions on the display is only of interest in the AV player front-end, which we examine in the
next section.

4.8 Animation Player Front-end

The ANIMAL-FARM algorithm visualization framework is not limited to specifying the components
needed for assembling visualizations. Apart from the components already described - primitives,
animators, handlers and the animation representation -, the framework also includes a prototypical
definition of the animation display front-end. The reason for including this specification lies in
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the fact that all concrete systems based on the framework shall be able to address a large selection
of the requirements introduced in chapter 3. Accomplishing this is not trivial, and the developer
may often find that decisions early in the implementation process block the way to achieving some
goals. For example, flexible reverse playing and rewinding support require careful considerations
and considerable effort in tailoring the components so that they interact precisely as needed. This
is also part of the reason why most current AV systems offer only restricted rewinding or reverse
playing, if at all.
In this section, we analyze the individual requirements that are important for an abstract animation
playing front-end. We strive to support as many of them as possible inside the framework to make
the work for the developers of a concrete application easier, and give them interesting and important
functionality “for free”.
We start our discussion with a few relatively easy requirements. The first issue we have to address
is the independence of an Internet connection (GR4). As discussed in chapter 3, some AV systems
require an Internet connection for executing operations on the central server. Requiring an active
network connection may allow easy system updates, especially if part of the content is worked on at
the server side, instead of just providing fixed code. However, we have to acknowledge that not all
users may have an Internet connection. This is especially the case for applications of learning on
the move, whether in trains or on a plane. Even in settings with free Internet access, we have to take
possible network failures into account. In many countries, maintaining an Internet connection by
dial-up also entails costs for phone calls, apart from fees gathered by the Internet access provider.
Restricting the system to an Internet connection may thus limit the number of possible users, either
due to technical or monetary considerations.
Luckily, the framework as described in this chapter does not require an Internet connection to
run. There are only two places in the framework that actually profit from an Internet connection:
downloading animations from the Internet, and acquiring new extensions and bug fixes. However,
neither of these operations is essential to running the program. An inability or unwillingness to dial
in to the Internet while applications based on the framework are running therefore has no adverse
effects.
Another important consideration concerns the system performance (GR8), which must at least be
“sufficient”. As can be seen from the quotation marks, sufficiency is at least partially subjective.
We can state that the performance of the framework depends largely on the performance of the
installed Java runtime environment, as is the case for most Java-based software. This concerns
mostly two areas: a shortage of free memory and just in time compilation.
The amount of memory available to the Java virtual machine has an impact on the performance.
The Java virtual machine has an upper limit on the amount of RAM it can allocate. This limit can
be modified by start-up parameters. It is important to know that the Java virtual machine will not
allocate more memory than this limit states – even if much more free memory is available.
Just as the other central components of the framework, the content display front-end shall also
be flexible in its application area (GR10). Offering highly specific operations with a special AV
application in mind reduces the chances for reuse, as the application may not be usable for all AV
contents. The front-end will therefore have to strive for a mostly “implementation-neutral” appeal.
One of the special features we required in chapter 3 is the ability to link to external content, typically
in HTML format (UR4). The same application is used in many of today’s tools when activating the
built-in help function. Typically, the documentation is presented in HTML or the Microsoft Win-
dowsTM help format. Some of today’s programs also connect to the Internet for selected features;
this is for example the case with several Microsoft applications. Therefore, adding links to external
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documentation shall be supported, although the program must also be able to continue working if
no Internet connection is available.
One of the most prominent feature of the framework is the incorporation of extensions (VR2).
Here, provisions shall be taken that allow the integration of extensions even while the program is
running. Section 4.2 already explained how extensions can be added and removed on the fly.
Another important aspect in the flexibility of our framework is the ability to play animations in
both directions using a variety of controls. In keeping with requirement UR5 and in partial support
of the requirement for repeated user interaction (UR7), we want to support the following control
operations, as shown in Figure 4.19:
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Figure 4.19: Example Control Tool Bar

1. jump to start of the animation,

2. jump to the beginning of the previous step, without a limitation on how often this can be
done,

3. perform a reverse slide show mode, which respects all timed links and inserts a configurable
time delay between steps which would normally wait for a user event,

4. play the current step in reverse to allow following the performed operation in reverse mode,

5. pause the animation,

6. play the current animation step and succeeding steps provided they are linked by timed tran-
sitions,

7. perform a slide show mode by stringing together all steps, respecting all defined delays be-
tween steps and treating event-based links as if they had a (configurable) fixed delay,

8. jump to the start of the next step,

9. and jump to the end of the animation.

We can state that supporting reverse playing is easily accomplished within our framework. Our de-
sign of the animator, primitive and handler components as well as the animation representation has
been optimized to allow for smooth reverse playing and rewinding. Skipping ahead or backwards
in the animation (fast forward and rewinding) are very easy to do.
Achieving a slide show mode is also easy if we assume that we can play the current animation step
in the appropriate direction. Adding the slide show functionality then only requires checking the
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link object that connects the current step to its successor for the transition mode. If the mode is
set to a timed delay, or to user interaction-based events beyond clicking “play”, execution proceeds
normally. Otherwise, the visualizer-defined event is ignored and a predefined, user-configurable
default delay is performed. The animation can then continue with the next step. The same process
applies to a reverse slide show, if one replaces the (forward) playing with backward execution and
the next step with the previous one.
One of the additional required features concerns the support for step labels that act as hyperlinks
(UR12). We have already shown that the Link objects of the framework allow the addition of labels.
Each link is also aware of the animation step it connects to its successor, as described in section
4.7. Therefore, the animation display GUI only has to offer a small component that can gather all
defined labels in a list and waits for user selections. If a user clicks on an element in the list, the
target step to assume can be extracted easily from the underlying Link object. The framework can
then simply invoke the setStep method of the AnimationState class to reset the animation to the
associated step, as described in section 4.7.
The adjustment of detail level as required by UR16 cannot be achieved in a generic framework.
The only partial support for detail adjustment possible for the framework is zooming the display
canvas. As the primitives are painted on a graphical context, this can be achieved easily by scaling
the underlying context before rendering it on the screen.
There are two main components in the animation display front-end specified by the framework.
The animation window contains the slide rulers for controlling the display speed (UR30) and mag-
nification (UR16), the animation control tool bar shown in Figure 4.19, a text field and a third slide
ruler for controlling the current animation step by entering its number or dragging the ruler (UR5,
VR8) and finally the animation canvas on which the primitives are painted.
The second component of the display front-end that can be fully defined in the framework is the
animation structure view which presents those labels which are present in the current animation in
a list view and listens to user clicks. All of these entities including the canvas and the animation
window itself are instances of the Singleton pattern [61, p. 127ff].
We will now look at the process of reverse animation playing in more detail. In general, the
execution of smooth reverse playing is mostly the same as for smooth forward playing. Therefore,
we will first briefly examine how smooth forward playing is performed.
Instead of starting with a vector of primitives which are iteratively transformed by each animator
working on them, we keep the original primitives separate from their animated clones. Even irre-
versible animators that destroy the primitive structure, such as scaling an object with a factor of 0
in either direction, can thus be reversed easily. Compared to the standard approach of keeping the
previous instances on an undo stack, our approach allows for unlimited reversibility.
Cloning primitives requires additional memory for each generated clone. This memory can in
principle be freed once a new set of clones is requested. However, Java does not support explicit
memory deallocation by developers, so that both user and visualizer are at the mercy of the garbage
collector. However, note that each cloning operation will at most clone as many primitives as are
present in the whole animation. The amount of memory required for cloning thus depends on a
predictable value – the number of primitives used within the animation for the worst case scenario
–, instead of a highly dynamic and unpredictable value depending on the precise timing and content
of the stored animation effects. Our approach therefore normally consumes far less memory than
an elaborate undo stack that stores all intermediate dynamic states of the last few animation steps,
for example as images. Additionally, the highly improved functionality makes the consumption of
memory highly worthwhile.
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The first operation to perform when executing a timed animator is determining the current system
time and display frame number (“ticks”). Ticks refer to the number of frames already displayed
and are a useful virtual time measurement, as they adapt to the processing power of the current
system. All animators are then initialized with the current animation state and time. Note that the
animation state also contains the current state of the objects. The initialization also sets the start
time and ticks for the animator.
We then enter a loop that is performed until all animators for the current step are finished. The body
of this loop is shown in Figure 4.20. First, the current point in time is determined. For each active
animator, we then invoke the action method with the current time as a parameter. The net effect of
this invocation is that each animator determines the target state to assume for the current point in
time based on the current time and its execution start, as passed by the initialization method. For
timed animators, the getProperty method as described in section 4.5 is used to determine the target
state, and an appropriate PropertyChangeEvent object is sent to each primitive.

AnimationWindow anAnimator aGraphicalObject AnimationCanvas

aHandler

property−
Change(g, e)

appropriate
invocations

p = getProperty(factor)

propertyChange(...)

getHandler()

hasFinished()

repaintNow()

paint(graphics)

factor = ticks − start − offset
duration

time
determine

ticks++;

action(time, ticks)

Figure 4.20: Timed Animator Execution

The event is directly forwarded to the Singleton handlers for the underlying primitive types by
adding the current primitive. The generic handlers map the PropertyChangeEvent into a set of
invocations that cause the appropriate transformation of the primitive.
After performing this operation, each animator is checked for its finish status. If finished, it is
removed from the queue of current animators. In any case, execution proceeds with the next an-
imator. Once all animators have been executed, the time is incremented. The animation window
invokes the standard Java repaint method which causes all primitives to paint themselves in their
new state on the animation canvas. The loop over the animators continues until all animators have
finished executing. The animation step is then set to the start of the next step.
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This approach is flexible enough to be used after a small modification to also address reverse play-
ing. In effect, there are only three places where we have to alter the code slightly to achieve fully
dynamic reverse playing: in the initialization, the action invocation and the changing of the anima-
tion step at the end of the execution.
The initialization of all currently active animators for forward execution consists of two activities,
as outline above: determining the current system time and display frame number (or “ticks”), and
initializing each animator with the current animation state and the current time information. For
reverse execution, we also initialize all animators with the current animation state and current time.
However, we conceptually have to treat the “current” time – which marks the execution start of
the step – as if it lay in the past. To do so, we determine the duration of the current step as the
maximum of the sum of all offset and duration pairs of contained animators. This value is added to
the current time value. The new value represents the moment in time when the current step would
finish executing if we started it in forward playing mode “now”.
We now have two pieces of timing information: the actual time, which we take to be the start of the
animation step in forward mode, and the modified time, which represents the end of the animation
step in forward mode. Therefore, we will use the actual time for the animator initialization, but
start the execution of the action method with the modified (“end”) time. The main execution loop
is performed backwards by replacing the time increment by a time decrement, so that the execution
of the animators starts with their end state and successively approaches their initial state. The
net effect of this is a fluent reverse execution which can even handle the reversion of destructive
animators, such as scaling a primitive with a factor of zero.
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Figure 4.21: Treating Reverse Execution in the ANIMAL-FARM Framework

Figure 4.21 illustrates this process. The left side of the Figure shows how forward execution pro-
ceeds. The current time (“now”) is used as the reference point for the start of the current animation
step. The execution proceeds over multiple intermediate stages until all of the step is executed (and
thus 100% of the execution is reached). For simplicity reasons, the figure only shows the 20%,
40%, 60% and 80% stages.
The right side of Figure 4.21 shows the same process for reverse execution. The current time
also serves as the start point of the animation step. However, the animators start executing at the
end of the animation step, determined from the start time of the step and the duration of the step.
Therefore, the timing information passed along to the individual animators is initialized to the time
resulting from adding the step duration to the start time of the step. After 20% of the reverse step
execution, the animation state will be the same as after 80% of forward execution, as the internal
execution time is diminished in each loop iteration. Thus, after 100% of the reverse step execution
is performed, the animation has gone back far enough in time to end up at the start of the step.
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In a different vein, we can also enable the user to modify the display speed by providing a slide
ruler. The value of the slide ruler represents the amount of time to be added to the current time
after each loop iteration. We only have to replace the increment operator for forward playing by
adding the chosen value to the current time. For reverse playing, we replace the decrement operator
with a subtraction of the chosen value. Thus, adjusting the display speed as required in UR30 is
trivial to achieve in our framework. This feature can also be used to address the issue of graceful
degradation (UR31) on slow or fast machines by dragging the slide ruler appropriately to speed up
or slow down the interpretation process.

4.9 Animation Import and Export

As stated in section 4.2.2, the AV framework has to adapt the import and export layer classes
slightly to offer properly typed methods. However, this is easily accomplished by replacing the
Object parameters and return types by type Animation, as shown in Figure 4.22 and 4.23 for the
import and export layer, respectively. No other additions or modifications to the import and export
layer are necessary. The abstract framework components are placed in a dashed box.

+ init()

+ getImporterFor(String): Importer
+ getImporterForExtension(String): Importer

+ getContent(): Object
+ importFrom(String): Object
+ importFrom(InputStream, String): Object

+ getFormatNames(): String[]

Importer

+ getDefaultExtension(): String
+ getFormatDescription(): String
+ getMIMEType(): String

FormatSpecification

SomeImporter ExternalPackage

+ init()

+ getImporterFor(String): AnimationImporter
+ getImporterForExtension(String): AnimationImporter

+ getAnimation(): Animation
+ importFrom(String): Animation
+ importFrom(InputStream, String): Animation

+ getFormatNames(): String[]

animal.exchange.AnimationImporter

...

Figure 4.22: Import Layer Structure

4.10 Summary

The main goal of this chapter was developing a reusable, dynamically extensible framework for
AV. This challenging task can be split into three different research areas: specifying components
for a dynamically extensible framework (of arbitrary content), defining a solid framework struc-
ture for AV, and embedding useful relevant AV features into the framework. We will regard the
achievements in these three segments in the order given.
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+ exportTo(String): boolean
+ init()
+ setContent(Object)

Exporter

+ getExporterForExtension(String): Exporter
+ getExporterFor(String): Exporter

+ getFormatNames(): String[]

+ getDefaultExtension(): String
+ getFormatDescription(): String
+ getMIMEType(): String

FormatSpecification

+ exportTo(String): boolean
+ init()
+ setAnimation(Animation)

+ getExporterForExtension(String): AnimationExporter
+ getExporterFor(String): AnimationExporter

+ getFormatNames(): String[]

animal.exchange.AnimationExporter

SomeExporter ExternalPackage

...

Figure 4.23: Export Layer Structure

The incorporation of properties for representing the state of the participating entities allows dy-
namic adaptation and extension, as new keys and values can easily be inserted into the properties.
At the same time, data hiding and encapsulation purposes are still met by the changed represen-
tation of object state. As a further bonus, the properties can provide default values, replacing the
standard “zero” or null value returned when accessing “uninitialized” attributes by the specified
default value. Properties can easily be shared between objects, but can also be cloned to provide a
separate copy of each entry to the participating entities.
The flexible MIME type-based import and export layer offer simple facilities for supporting an
arbitrary number of different import and export filters. This is especially of interest when the actual
file filters are added or removed dynamically.
To achieve maximum applicability of our framework, we have also included support for the trans-
lation of messages and even the whole GUI into a set of different languages. The only constraint of
this support is the number of language resource files present. In theory, our framework can support
an unlimited number of languages and allow fast switching by a single mouse click. However, this
depends on (other) users and developers helping us translate the language resource files. As these
are encoded in a line-based ASCII notation as used by Java properties, this task is easy to achieve
if time-consuming, provided that one has enough familiarity with the target language.
As an added bonus, the TranslatableGUIElement class for generating translatable GUI components
also makes the generation process much easier by internalizing most of the otherwise necessary
method invocations. It also offers dynamic elements such as Action buttons that can directly invoke
a method by name, as specified in the configuration file. Changing the language used in the GUI
may therefore also automatically change the association of some buttons to specific methods.
The framework and concrete subsystems are assembled dynamically using dynamic loading. Most
entities loaded in this way are stored as Prototypes [61, p. 127ff] in a dynamic look-up structure.
Thus, adding or removing new entities is very easy. As outlined in this chapter, implementing
extensions typically requires neither source code modifications nor deep system knowledge. At
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run-time, the system can be reconfigured using the ComponentConfigurer component, both by
adding and removing components. Components that are marked as “core” cannot be removed so as
not to endanger the system’s stability.
The dynamic configuration of the framework during a session depends on a configuration file listing
the individual classes to be made available for the user or visualizer. The configuration can be
entered manually by editing the ASCII-based configuration file, or dynamically using a special
GUI component.
The configuration file is searched in the directory where the system is started first, followed by the
entries of the CLASSPATH and the distribution jar file. Therefore, users can keep multiple copies of
the configuration file representing different interests or views in separate directories. The concrete
system will then look slightly differently depending on the directory it is started in. Note that all
users can use the same jar file, even if their configurations vary. Of course, additional extensions
that lie outside the jar distribution have to be placed inside the CLASSPATH so Java is able to
locate them. Using the same jar file is especially helpful in a network setting. Here, the jar file
can be provided as a shared network resource, together with the default configuration file. Users
who want to modify their local configuration can then copy only the configuration file and modify
it accordingly.
The introduction of handlers as agents for negotiating services between two entities adds even more
flexibility to the system. As each handler or handler extension is linked to a fixed type, they are
represented by Singletons [61, p. 217ff]. Within the course of the framework, the handlers are
placed between primitives and animators. Animators can query the handler for the set of concrete
animation effect subtypes applicable to a given primitive or set thereof. The handler generates the
returned list from its own knowledge about the underlying primitive class, as well as from the prim-
itive’s state. When the animator has to perform an effect, it resolves the current timing information
and sends the concrete effect and the animator’s previous and current state to the handler. The
handler then examines the data passed in and invokes the appropriate methods on the primitive.
Handler extensions are lightweight classes that act in the same way as the “fixed” standard handlers,
but are maintained as Singleton instances in a dynamic look-up structure. The “standard” handlers
are required for animating a given primitive, and are thus automatically loaded in whenever a new
primitive is added to the system at start-up or during run-time. Extension handlers can be added
and removed at any time and are automatically included in the animation effect resolution process.
The framework thus offers a very strict separation of concerns, especially regarding handlers. Sev-
eral advantages spring from this approach. Firstly, it is very easy to develop new entities, whether
primitives, animators, handlers or handler extensions. The developer can focus on one aspect dur-
ing the development. For example, implementing a new primitive requires absolutely no knowledge
about animation. The animators completely abstract from the underlying types. Finally, the handler
instances are tied to a specific primitive class and act as Prototypes [61, p. 117ff]. Implementing
a handler or extension thereof on a known primitive is therefore also simple, as only one special
class has to be kept in mind.
As can be seen, the specified framework is reusable and employs an open and lean class structure.
As such, developing a concrete system on the basis of the framework design is not difficult. The
framework contains hotspots for extensibility in nearly all areas. In fact, there are only two areas
where extensions are not planned: in the animation representation and the display components.
These central components should not be subject to arbitrary change, as this may have catastrophic
consequences for the concrete system. Of course, the developers of a concrete system based on the
framework can add further extensions facilities to their own system.
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Two base classes are employed widely throughout the framework: PropertiedObject and Editable-
Object. The former represents an object whose state is represented by properties, with the added
facility for cloning the properties from another object. The latter adds editing capabilities to Prop-
ertiedObject instances. The editing process has to be implemented by the developer of the concrete
system to take individual preferences and system-specific demands into account. One example
implementation may follow the Java Beans approach for editing properties.
Animations in the framework consist of a set of animation steps. Each animation step may con-
tain an arbitrary number of animation effects. Steps are linked by Link objects which encode
the transition between steps. For example, the transition may be performed automatically after a
visualizer-set delay, or wait for a specific user event. Links can also be labeled. These labels are
gathered in a list, where each label acts as a hyperlink to the associated step, updating the display
accordingly.
The usage of an AnimationState object that provides clones of the primitives present in the current
animation state offers advanced rewind and reverse playing functionality. Even in 2001, experts in
the field of AV stated that “currently no AV has rewind” capabilities, and considered an “efficient
rewind one of the most important ‘open questions’ in AV” [2]. We submit that less than a year has
passed between this published statement and the finishing of our framework that offers full-fledged
rewinding including dynamic reverse playing.
Graphical Objects (“primitives”) as used within the framework offer a clean separation of con-
cerns. They are only aware of their current state and thus see themselves as “static” entities. Meth-
ods for retrieving and especially changing their status allow changing the way the primitives are
displayed. Each primitive also implements the paint(java.awt.Graphics) method for rendering it-
self on a graphical context, typically a canvas. As no knowledge about the dynamic behavior during
the animation is encoded in the primitives, they are highly reusable and could for example easily
be transported into a straightforward non-animating drawing program.
Animation effects (“animators”) represent one general animation effect each. For example, a single
animator is responsible for all translation (move) transformations. The animator has to be able to
store timing information such as the current time, start time of the effect execution, duration and
offset from the start of the animation step. Based on this information, the animator has to determine
its current state during each point in its execution.
This state only represents the value to be assumed by the animated primitives, and is thus com-
pletely independent of the actual animation subeffect. For example, if the animator represents a
move effect on a line, it is only responsible for calculating the point on the line reached at the
current time. The animator does not modify the animated primitives.
Handler prototypes introduce a powerful general concept for service negotiation. Within the frame-
work, they are used for two operations: determining the list of animation subeffects possible for
each primitive type and mapping property changes to primitives. For example, a handler can in-
form a Move effect that the selected primitive can offer three different move effect types: moving
the whole object, only the first node, or only the second node. The animator gathers this informa-
tion from all handlers and then builds an intersection to determine the subeffect types applicable to
all selected primitives. The visualizer can then select from these types.
When performing an animator, the animator determines its current state as defined above. This
state, together with the primitive worked on, the concrete subeffect and the previous state, is then
sent along to the handlers of each animated primitive. The handlers extract the information and
map it to the specific method invocations that achieve the requested effect. Additionally, handlers
can forward requests to extension handlers which can be added dynamically for further animation
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effect functionalities.
The display features the ANIMAL-FARM AV framework offers go beyond what most other compa-
rable systems can offer. On the one hand, ANIMAL-FARM offers the same functionality as we are
used from video playback devices, including fast forward and reverse, dynamic reverse playing,
jumping to the start and end of the animation and a slide show mode that strings all animation
steps together. Additionally, the user can adjust the display speed and magnification as well as the
percentage of the animation show using sliders. Finally, the optional labels of individual animation
steps provide a “table of contents” view of the animation structure [66] and act as hyperlinks for
directly jumping to the associated animation steps.



Chapter 5

The ANIMAL Animation System

5.1 Introduction

In chapter 2, we have explored a large selection of currently available animation systems and ap-
plets. The evaluation yielded an elaborate set of 69 requirements for an “ideal” AV system in
chapter 3. Based on some of the requirements, we have introduced a framework for an extensible
and configurable AV system in chapter 4.
The framework fixes some aspects of extensible AV systems, but leaves others open to the indi-
vidual developer. For example, the basic components of the target system are fixed, including the
principal components. However, the precise implementation details are deliberately left vague to
allow for personal design decisions. In this chapter, we present the prototypical extensible AV sys-
tem ANIMAL built on the proposed framework. We also highlight which design decisions were left
open for the individual components, and what decisions were taken and why.
As explained in section 4.1, ANIMAL is an acronym for Advanced Navigation and Interactive
Modeling of Animations for Lectures. The name expansion indicates that ANIMAL is specifi-
cally geared to be usable within lectures and other educational settings. As ANIMAL is built on
the ANIMAL-FARM AV system framework, we can focus on the more salient design issues in this
chapter. Our presentation of ANIMAL follows the structure of the previous chapter in describing
the individual components.
Section 5.2 describes the general architecture of ANIMAL. Section 5.2.1 presents the graphical
primitives supported by ANIMAL, followed by a discussion of the animation effects in section
5.3. Section 5.4 presents the coordination of the graphical primitives and animation effects using
transformation handlers. ANIMAL’s graphical front-end for displaying and editing animations is
presented in sections 5.5 and 5.6, respectively. Finally, section 5.7 describes the import and export
layer implementations. Section 5.8 summarizes the chapter.

5.2 ANIMAL Architecture

ANIMAL consists of a core program, an import layer, a graphical generation and editing component,
a graphical front-end for animation presentations and an export layer. The core program covers
the main animation window and other base classes, as well as the currently available graphical
primitives and animation effects. The import layer contains a set of import filter components which
are loaded on demand, allowing for dynamic addition or removal. The same applies to the export

117



118 CHAPTER 5. THE ANIMAL ANIMATION SYSTEM

layer components. The graphical generation and editing front-end allows adjusting the properties of
the currently loaded animation, as well as adding, modifying or removing both graphical primitives
and animation effects. Finally, the animation playing front-end offers flexible controls for viewing
and rewinding the animation.
The ComponentConfigurer introduced in Figure 4.8 on page 82 is used for dynamically assembling
the individual components usable during a given ANIMAL session. It contains a tabbed pane with
a set of tabs each addressing one area of extensibility or “hotspot”. In most cases, the user of the
system can simply enter the name of the component in the text field shown at the top and press
Return. ANIMAL then determines the “real” class name of the component from the user input and
the currently active tab and tries to load the associated class. If loading was successful, the class is
dynamically inserted into ANIMAL’s runtime environment, added to the list of components shown
on the associated tab, and can be used immediately. Thus, adding new components is very easy to
achieve if the name of the component is known.
The ComponentConfigurer shown in Figure 4.8 on page 82 can also be used for removing exten-
sions by unchecking the box placed before the component’s name. Note that this is only possible
for extensions; core components are selected but grayed out to prevent their removal. Further con-
figurations can be performed in the ANIMAL Preferences window, as well as in the individual editor
windows. The last value settings used for a given primitive, effect or step are always treated as the
default values for the next instance of the same type. Configuring individual elements is therefore
also easy.

5.2.1 Graphical Primitives

The framework includes a precise definition of the graphical primitive base class. Section 4.4 speci-
fied the super class for all primitives and the set of operations offered therein. However, Figure 4.11
on page 93 specified only a single data attribute for all graphical primitives, namely the numeric
identification. Obviously, more information is needed for actually encoding the primitive represen-
tation. Even the methods presented in the framework, such as getColor(), require an appropriate
underlying data representation.
As described in section 4.2.1, we have decided to encode the basic representation of graphical
primitives, such as color, font and depth information, as properties. Where necessary for efficiency
reasons, we use direct encoding with attributes for selected properties. This is especially the case
for object nodes, for example in a polygon object, which have to be referenced often. The type
conversion required by using properties may introduce an unacceptable delay if a large set of trans-
formations is performed, as is likely in larger animations.
All ANIMAL graphical primitives are placed in the package animal.graphics and extend the ab-
stract class PTGraphicObject, where PT stands for Portable Toolkit. As shown in Figure 5.1,
PTGraphicObject instances extend the framework class GraphicObject shown in Figure 4.11 on
page 93. They are therefore editable and propertied. In this and the following figures involving the
framework, the framework components are placed in a dashed box if present. Implementors of spe-
cific framework components are linked to their ancestor by standard inheritance arrows. Note that
in keeping with standard UML notation, methods inherited from the framework are not repeated in
the implementing subclass.
The class attribute registeredHandlers is a hash table used for mapping animation effects to inter-
mediate handler agents. The functionality of handlers was already introduced in section 4.6. The
actual mapping is described in more detail in section 5.4. The private num adopted from the frame-
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+ extractDefaultProperties(XProperties,  String): XProperties
+ initializeDefaultProperties(XProperties)

+ setFont(Font)
+ setObjectName(String)+ getObjectName(): String

+ getFont(): Font

+ operationRequiresNodeSelector(String): boolean
+ enableMultiSelectionFor(String): boolean
+ compatibleMethod(String): boolean
+ baseOperationName(String): String

+ getNumericIDs(): String + setNumericIDs(String)
+ resetNum()

+ propertyChange(PropertyChangeEvent)
+ handledKeywords(): String[]+ getMethods(): Vector

+ getHandler(): GraphicObjectHandler + getType(): String

numericIDs: String

+ safeClone(): Object
+ writeExternal(ObjectOutput)

animal.graphics.PTGraphicObject

+ registeredHandlers: Hashtable

+ readExternal(ObjectInput)
+ discard() + getFileVersion(): int

− num: int

+ getNum(boolean): int

+ getBoundingBox(): Rectangle

animal.graphics.GraphicObject

+ paint(Graphics)
+ setColor(Color)
+ setDepth(int)
+ setLocation(int, int)
+ setNum(): int
+ translate(int, int)

+ getColor(): Color
+ getDepth(): int
+ getLocation(): Point

Figure 5.1: PTGraphicObject as an Implementation of GraphicObject
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work has a unique value for each graphical primitive and thus acts as a reference for the object.
The numericIDs attribute is a convenience storage object that prevents multiple conversions of the
numeric object ID to String objects.
For better readability, the large interface of class PTGraphicObject has been segmented using dot-
ted lines. The first segment contains the two class methods extractDefaultProperties and initial-
izeDefaultProperties. They are used to initialize the current graphical primitive from a set of prede-
fined properties. The object properties are extracted from a set of general properties. This process
employs the getElementsForPrefix method of class XProperties as described in section 4.2.1.
The second segment contains several convenience methods for setting and retrieving attributes com-
monly found in most primitives. The framework already provides methods for accessing and setting
the color and depth. ANIMAL’s PTGraphicObject adds methods for retrieving and modifying the
font and object name. Note that the precise interpretation of the color depends on the object’s type.
ANIMAL chooses the most basic color for the getColor method. Therefore, the method will return
the outline color for a polygon rather than its fill color.
The depth of a primitive is used for resolving overlapping primitives. It acts like the z coordinate
in three-dimensional geometry, with higher values indicating a position further to the background.
Note that negative values represent positions in front of the display and are regarded as illegal.
The font property is applicable to all graphical primitives that may contain a text component and
covers the complete font information including font name, size and style. Finally, the object name
is an optional String assigned to the primitive for easier reference. The primitive’s num attribute
is sufficient for uniquely accessing the object, but only allows for natural number “names” which
may be difficult to remember.
The third segment lists the methods for accessing the primitive’s numerical identity. The framework
provides the methods getNum and setNum, as introduced in section 4.4. ANIMAL adds the method
resetNum for resetting a given object’s number to 0. The boolean parameter of getNum indicates
whether a new unique number shall be assigned before returning the current numeric ID. To prevent
careless use, a new unique identification is only assigned if resetNum has been invoked. This is a
necessary safety measure as the animation effects presented in section 5.3 all work on the numeric
IDs of the primitives and are not updated automatically if a new number has been assigned. The
methods for accessing the String representation of a set of numeric IDs are convenience facilities
which are mostly used by animation effects.
The fourth segment offers methods required for performing animation effects on the graphical
primitives. They are discussed in more detail in section 5.4. The following segment offers gen-
eral methods needed within the GUI-based animation editing. They are discussed in section 5.6
focusing on GUI-based generation and editing.
The methods paint and translate taken from the framework are abstract, as they cannot be fully
specified for abstract generic primitives. The paint method is responsible for displaying a given
primitive’s current state on the graphic output context, while translate adjusts the primitive’s loca-
tion. Note that translate is invoked internally from setLocation.
The final segment of methods deals with object versioning. It also includes support for the java.io.Ex-
ternalizable mechanism. Although externalization has been deprecated, the support is still present
to allow the parsing of older animation files. See section 5.7 for a discussion of export and import
handling.
The method interface of PTGraphicObject is relatively large for an object-oriented design. This is
due to the different interests that have to be covered within the base class: convenience property
access and setting, animation effect interface as well as storage and retrieval facilities.
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Note that the framework class GraphicObject is a subclass of EditableObject, which again extends
PropertiedObject, as described in section 4.2.1 and 4.4. Therefore, all subclasses of PTGraphicOb-
ject also inherit the methods and attributes of the classes PropertiedObject and EditableObject.
They can thus access an internal state representation using properties and have a link to graphical
editors. Furthermore, each subclass has a class attribute representing the default properties for all
objects of the given type.

animal.graphics.GraphicObject

animal.misc.EditableObject

animal.graphics.PTGraphicObject

animal.graphics.PTPoint animal.graphics.PTPolyline

animal.graphics.PTTextanimal.graphics.PTArc

animal.main.PropertiedObject animal.misc.XProperties

java.lang.Cloneable

nodes

textComponent

properties

Figure 5.2: Inheritance Structure of the Graphical Primitives in ANIMAL

The inheritance structure of the graphical primitives provided by ANIMAL is shown in Figure 5.2.
The individual subclasses shown are discussed in the following subsections.

5.2.2 Point Primitives

The PTPoint class represents a single point as a special instance of a PTGraphicObject. Points
are the smallest geometric unit. A PTPoint object occupies exactly one pixel on the display and is
therefore practically invisible. However, points are needed for assembling more complex objects
such as polygons. They are also needed for specifying the center of a rotation effect. We do not
provide example screen shots of ANIMAL PTPoint instances, as their nature prevents them from
being very interesting or surprising to look at.
Figure 5.3 shows the added methods provided by the class. Note that for efficiency reasons, the
location of a point instance is represented by a double array. The location is also stored in the
properties and included in the class DefaultProperties. For a list of methods inherited from the
base class PTGraphicObject, please refer to Figure 5.1 on page 119 and Figure 4.11 on page 93.
The methods placed above the first dotted line represent property setting or accessing. The standard
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animal.misc.XProperties

animal.graphics.PTPoint

+ DefaultProperties: XProperties

+ getW(): int
+ getX(): int
+ getY(): int
+ set(double, double, double)
+ setPoint(Point)

+ setW(int)

+ scale(double, double)
+ rotate(double, Point)
+ rotate(double)

+ shear(double, double)

+ setX(int)
+ setY(int)

+ toPoint(): Point
+ toString(): String

+ clone(): Object

animal.graphics.PTGraphicObject

− coords: double[]

Figure 5.3: Class Diagram for Point Primitives in ANIMAL

graphic operation translate inherited from the GraphicObject framework class is implemented in
PTPoint. In addition, PTPoint provides support for rotating, scaling and shearing point primitives.
The last set of methods cover the conversion of a point to a java.awt.Point or String representation,
as well as a secure clone operation that prevents unwanted side effects such as duplicated references
to primitive properties.
ANIMAL point primitives are specified using double precision homogenous coordinates [59]. Note
that although double precision coordinates are used for points, only integer coordinates are actually
retrievable. This is due to the basic graphic operations in Java, which are based on integer pixel
coordinates.
Homogenous coordinates represent a two-dimensional coordinate by three values labeled x, y and
w. For w 
 1, (x � y) represent the coordinates of the point. For w �
 1, the value of w represents
a scaling factor applied to the x � y coordinates. Note that a value of w 
 0 is invalid. Figure 5.4
summarizes the interpretation of homogenous coordinates.��
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w
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Figure 5.4: Interpretation of Homogenous Coordinates

The advantage of using homogeneous coordinates lies in the consistent representation of graphical
operations [59]. Standard operations such as rotate are implemented using matrix multiplications.
However, this is not possible for translations which add to the value of the x, y coordinates. Using
homogeneous coordinates, this addition can be achieved by multiplying the w entry with the target
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summand while assuming that w 
 1. Although there are faster ways to represent the graphical
operations, matrix multiplications allow for easy accumulation of effects.

5.2.3 Polyline and Polygon Primitives

ANIMAL’s polyline or polygon primitives consist of a vector of nodes linked by edges. Figure 5.5
shows the class diagram of the PTPolyline class that represents both polyline and polygon objects.
Note that each node is represented by a PTPoint primitive. PTPolyline primitives also implement
the animal.animator.MoveBase interface, and can thus be used as the base object for arbitrary move
effects.
The main difference between a polyline and a polygon is that the polygon is closed, that is, its last
node is equal to the first node. Additionally, only polygons may be filled and possess a fill color.
Polylines, on the other hand, may possess a forward or backward arrow that points away at a right
angle from the last or first node, respectively.

+ DefaultProperties: XProperties
− nodes(): Vector

+ addNode(PTPoint)

+ getDifferentNodesCount(): int

+ getNode(int): Point
+ getNodes(): Vector + getNodeCount(): int

+ removeNode(int)
+ setNodes(Vector)+ setNode(int, Point)

+ getFillColor(): Color + setFillColor(Color)
+ hasBwArrow(): boolean

+ setFilled(boolean)

+ rotate(double) + rotate(double, Point)
+ shear(double, double)+ scale(double, double)

+ translate(boolean[], int, int) + translate(int, int, int)

+ toPolygon(): Polygon
+ getPointAtLength(int): Point

+ getLength(): int
+ useAsMoveBase()

animal.graphics.PTPolygon

+ setBwArrow(boolean)

+ isClosed(): boolean
+ hasFwArrow(): boolean + setFwArrow(boolean)

+ setClosed(boolean)
+ isFilled(): boolean

animal.graphics.PTPoint

animal.graphics.PTGraphicObject
animal.animator.MoveBase

+ getLength(): int
+ getPointAtLength(int): Point
+ useAsMoveBase()

nodes

Figure 5.5: Class Diagram of Polyline / Polygon Primitives in ANIMAL

ANIMAL places no upper bound on the number of nodes used for a polyline object. A polyline
must consist of at least two nodes and thus represent a simple line to be valid. A polyline with only
one node is simply a point and has to be represented as such.
The first set of methods available for polyline or polygon primitives support the adjustment of
nodes. Apart from setting and retrieving a node at a certain index, ANIMAL also allows adding a
single node and setting or retrieving the set of nodes using a java.lang.Vector of PTPoint entries. In
addition, the getDifferentNodesCount method can be used to query the nodes of a polygon primitive.
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For polylines, the return value is equal to the return value of the getNodesCount method. However,
the implementation of polygons in ANIMAL sets the last node of a polygon identical to its first
node. The two methods will therefore have different results for polygon objects.
The methods for querying and setting display properties are shown in the second method segment.
PTPolyline instances provide methods for retrieving and setting the fill color of a polygon, as well
as testing or setting the existence of pointers at the start or end of a polyline. The closed property is
important for the distinction between polyline and polygon primitives. The filled property is only
meaningful for closed polylines, that is, polygons.
The methods for querying and setting the display state access the internal properties of the object.
They could be removed from the class without losing expressiveness. However, this may cause
problems for developers who wish to access a given value and would have to resort to guessing the
associated key. Note that neither of these methods is applicable to all instances of PTPolyline: the
fill color is only meaningful for closed polyline instances (and thus polygons), while the forward
and backward arrows are only meaningful for “open” polylines.
The implementation of the translate transformation as the third set of offered methods is almost
trivial. The standard translate(int, int) method inherited from PTGraphicObject translates all nodes
of the structure at the same time. The special translate(boolean[], int, int) is used to translate a
subset of nodes at the same time, instead of all nodes. Only those nodes where the boolean array
at the node index contains true are translated. The translate(int, int, int) method translates only the
node at the index passed as the first argument. All translation requests are mapped directly to the
set of PTPoint nodes and executed within that class. The other transformation methods behave as
expected. They perform the requested transformation by mapping the request to the set of nodes.
The final set of methods offers a conversion to a java.awt.Polygon representation as well as methods
needed for animation effects. The getLength method returns the geometric length of the object.
getPointAtLength returns the point on the object reached after traversing it for a specified length.
The useAsMoveBase method opens the object, activates the forward and deactivates the backward
arrow.

5.2.4 Text Primitives

The PTText class represents text objects consisting of a single line of text. Figure 5.6 shows the
UML class diagram for this class. PTText instances share a DefaultProperties object and the es-
capeText method. The method is used to escape unsafe text elements such as the single or double
quotation marks. The text and font information is stored in the internal properties representation.
All other inherited methods from either the framework or the PTGraphicObject class therefore pro-
vide only a short-hand notation for accessing the value from the properties. The relevant methods
from the PTGraphicObject class include accessing or setting the text color, font and depth proper-
ties. PTText adds methods for retrieving and setting the text component, as well as for performing
the graphical transformations rotate, scale and shear.
A special problem occurs when implementing the scale and rotate operations. Standard Java’s
java.awt.Graphics class does not support scaling or rotating text entries. Text scaling could in
principle be accomplished by adapting the font size. However, this implementation only works if
two conditions are met: first, the x and y scale factor must be identical, and second, the chosen
font must be available in the calculated size. As the scaling factor is a double value, the resulting
font size is highly likely to be a non-natural value. However, Java only allocates fonts with a
natural font size, so certain compromises have to be made. Additionally, rotating the text is not
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animal.graphics.PTGraphicObject

+ DefaultProperties: XProperties

+ escapeText(String): String

animal.graphics.PTText

+ getText(): String
+ rotate(double)
+ rotate(double, Point)
+ scale(double, double)
+ setText(String)

Figure 5.6: UML Inheritance Diagram for the PTText Class

easily accomplished due to lack of direct support. We have therefore decided to use the scaling and
rotation support in Java’s java.awt.Graphics2D class available in current JDKs.
For maximum portability, ANIMAL only supports the three font families SansSerif, Serif and
Monospaced. These font names are substituted with a system-specific font, typically Helvetica
or Arial for fonts without serifs (SansSerif), Times Roman or Times New Roman for Serif fonts,
and Courier or Dialog for Monospaced fonts. ANIMAL does not support the inclusion of
system-specific fonts such as Helvetica, as such fonts may not be present on a given client sys-
tem. In those cases, the display of texts has to revert to a common basis, which typically results in
problems for the layout. The generic fall-back font is a plain 16-point SansSerif font.

5.2.5 Arc Primitives

The PTArc class represents an arbitrary arc component with an optional text entry. Arcs cover
arbitrary circles and ellipses, as well as segments thereof. Figure 5.7 shows the class diagram for
PTArc components. PTArc primitives implement the animal.animator.MoveBase interface, and can
thus be used as the base object for arbitrary move effects.
Most of the explanations for PTPolyline objects also apply to PTArc instances. The large set of
access and set methods shown in the diagram maps requests to the local properties of either the arc
itself or its text subcomponent. If present, the text is centered on the arc’s center.
The access methods are basically unnecessary but allow developers easier access to the properties.
A closed arc is also called a pie wedge. The setCircle method allows switching from a circle
representation to an ellipse. The difference between these is that circles use an integer as the
radius, while ellipses have a x and y radius represented as a point.
Closed arcs may possess a fill color, while open arcs may exhibit the forward or backward arrows
already described for polyline objects. The angle and start angle determine the shape of the arc in
conjunction with its orientation. The orientation may be clockwise or counterclockwise and can be
determined or set using the isClockwise and setClockwise methods, respectively.
The second set of methods addresses animation effects on arcs. The getLength method returns
the length of the arc. The getPointAtAngle method returns a point on the arc at the given angle.
isAngleInside determines if a given angle is part of the arc, while useAsMoveBase opens the arc
and installs a single forward arrow. The rotate methods allow the rotation of an arc component
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around the point of origin or the passed point. The translate method is also implemented but not
shown in the diagram as it was inherited from the superclass.

+ DefaultProperties: XProperties
− textComponent: PTText

animal.graphics.PTArc

+ getArcAngle(): int + setArcAngle(int)
+ setCenter(Point)+ getCenter(): Point
+ setFillColor(Color)

+ getRadiusPoint(): Point
+ setRadius(int)
+ setRadius(Point)

+ getRadius(): int
+ getFillColor(): Color

+ getStartAngle(): int + setStartAngle(int)
+ getTextColor(): Color
+ getTextComponent(): PTText

+ setTextColor(Color)

+ hasBwArrow(): boolean
+ hasFwArrow(): boolean

+ setBwArrow(boolean)

+ isCircle(): boolean
+ isClockwise(): boolean
+ isClosed(): boolean
+ isFilled(): boolean

+ setClockwise(boolean)
+ setClosed(boolean)
+ setFilled(boolean)

+ scale(double, double)
+ rotate(double)
+ isAngleInside(int): boolean
+ getLength(): int + getPointAtAngle(int): Point

+ useAsMoveBase()
+ rotate(double, Point)

+ setText(String)

+ setFwArrow(boolean)
+ setCircle(boolean)

animal.graphics.PTGraphicObject

animal.graphics.PTText

animal.animator.MoveBase

+ getLength() : int
+ getPointAtLength(int): Point
+ useAsMoveBase()

Figure 5.7: UML Inheritance Diagram for the PTArc Class

5.3 Animation Effects

All ANIMAL animation effects or “animators” are placed in the animal.animator package and ex-
tend the abstract class animal.animator.Animator. Animation effects that allow offset and duration
specification instead extend the abstract class animal.animator.TimedAnimator, which is a subclass
of animal.animator.Animator. The UML class diagram for the Animator class in relation to the
framework is shown in Figure 5.8. Note that the framework class has been placed in a dashed box,
as it was directly extended for added functionality within the prototype system. Animator is a sub-
class of EditableObject and therefore also of PropertiedObject. It contains three static attributes
and a large collection of methods.
The DefaultProperties class attribute represents the properties used as default properties for all ani-
mator instances. On initializing a new animator, this attribute is declared as the default property set.
As outlined in section 4.2.1, this has the effect of providing a common base for all animators as a
fall-back position. The infoFrame attribute is an extension for adapting ANIMAL to integration into
JHAVÉ and is described in section 6.7. The class attribute registeredHandlers is a hash table used
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+ setInfoFrame(InfoFrameInterface)

+ printIDs(int[]): String

+ extractDefaultProperties(XProperties,  String): XProperties
+ initializeDefaultProperties(XProperties)
+ getInfoFrame(): InfoFrameInterface

animal.animator.Animator

+ getAnimatorName(): String
+ getSpecialObjectNums(): int[]

+ setObjectNums(int[])

+ readExternal(ObjectInput)
+ writeExternal(ObjectOutput)

+ getFileVersion(): int
+ scavenge(boolean[])
+ toString(int)

+ getStep() + getType(): String
+ handledKeywords(): String[]
+ isChangingAnimator(): boolean

+ discard()

+ DefaultProperties: XProperties
+ infoFrame: InfoFrameInterface
+ registeredHandlers: Hashtable

+ init(AnimationState, long, int)
+ hasFinished(): boolean

+ execute()
+ action(long, int)

Animator

+ getObjectNums(): int[]

+ setFinished(boolean)

+ setStep(int)
+ setObjectNums(int[])

+ getTemporaryObjects(): int[]

Figure 5.8: Architecture of the Animator Base Class Animator
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for mapping animation effects to intermediate agents called “handlers”. This process is described
in more detail in section 5.4.

For better readability, the large interface of class Animator has been segmented using dotted lines.
The first segment contains the two class methods extractDefaultProperties and initializeDefault-
Properties used for accessing the DefaultProperties class attribute described above. The get-
InfoFrame and setInfoFrame methods are used for retrieving or assigning the infoFrame. Please
refer to section 6.7 for more information about the infoFrame.

The second block of methods provides read access to the basic properties of the current anima-
tion effect: name, setting the array of objects on which the effect works, the array of special
objects used by the animator, and the animation step in which the animator is placed. The type
of the animator is used for extracting the animator’s properties from the global dictionary using the
getElementsForPrefix method of class animal.misc.XProperties, as described in section 4.2.1. The
handledKeywords are required for dynamically adding, removing and looking up animation effects.
Finally, the isChangingAnimator returns true if the animator modifies the objects it works on. The
printIDs method provides a convenience access to a String representation of the numeric IDs of the
animated objects.

The final segment of methods deals with object versioning. It also includes support for the java.io.Ex-
ternalizable mechanism. Although externalization has been deprecated, the support is still present
to allow the parsing of older animation files.

The method interface of Animator is relatively large for an object-oriented design. This is due
to the different interests that have to be covered within the base class: convenience property ac-
cess and setting, animation effect interface as well as storage and retrieval facilities. Note that
all subclasses of Animator also inherit the methods and attributes of the classes PropertiedObject
and EditableObject. They can therefore access an internal state representation using properties and
have a link to graphical editors. Furthermore, each subclass has a class attribute representing the
default properties for all objects of the given type.

The abstract class TimedAnimator, shown in Figure 4.12 on page 97, provides the basic function-
ality for timed animation effects. The class method copyTimingFrom for easy transferal of timing
information has already been defined in the framework, as well as methods for accessing and set-
ting the duration and offset of the current timed animation effect can be retrieved and set. The
getMethod method allows the determination of the concrete subtype of the animation effect. Most
animation effects provide more than only one type of effect. For example, a move effect may move
the whole object or only parts thereof, depending on the underlying type of the object.

The getStartTimeOrTicks methods can be used to retrieve the start time of the animation effect.
The isUnitIsTicks and setUnitIsTicks method pair is used for resolving whether the underlying base
time unit is milliseconds or internal ticks corresponding to displayed image frames. The abstract
getProperty method is the main method for resolving timing information. It must determine and
return the state of the animation effect at the current point in time. This is then used to determine
the state of each affected graphical primitive.

The inheritance structure of the animators provided by ANIMAL is shown in Figure 5.9. The Show
effect is currently the only available animation effect which does not use any timing information.
The PTGraphicObject reference belongs to an array of the primitives on which the effect works.
As the array is transient, the reference has been omitted from Figure 5.8.
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animal.animator.Animator

animal.animator.TimedAnimator animal.animator.Show

animal.main.AnimationStateanimal.graphics.PTGraphicObject

animal.animator.ColorChanger

animal.animator.Move animal.animator.Rotate

animal.animator.MoveBase

animal.animator.TimedShow

animal.animator.Rotation

Figure 5.9: Inheritance Diagram for ANIMAL Animation Effects

5.3.1 Show Effect

The Show effect implemented in class animal.animator.Show is arguably the simplest animator. Its
sole task is modifying the visibility of graphical primitives according to the method used. Figure
5.10 shows ANIMAL’s Show animator in relation to the framework. Apart from the methods inher-
ited from animal.animator.Animator, the class has a private boolean attribute that determines the
visibility of the selected primitives, with true for visible and false for hidden. The value of this
attribute can be retrieved by invoking isShow and set by setShow.

animal.animator.Animator

− show: boolean

+ isShow: boolean
+ setShow(boolean)

animal.animator.Show

Figure 5.10: Inheritance Diagram for Show Animators

Figure 5.11 presents a small example of the Show effect. In the first step, a coordinate axis with
a mathematical function is displayed by invoking the Show effect with the object numbers, which
we assume to be 1, 2 and 3. In the second step, two of the three primitives are hidden by a second
Show effect that has been set to hide mode by invoking setShow(false). Finally, the third step
shows the objects again by adding another Show effect. The boxes around the diagrams are inserted
to show the boundary of each step.
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hide 1 3show 1 2 3 show 1 3

Figure 5.11: Example Show Effect

5.3.2 Timed Show Effect

Figure 5.12 shows the structure of the TimedShow animator in relation to the framework. Just as
the Show animator, the simple structure of the requires only two additional methods for setting and
retrieving the visibility state of the selected primitives beyond those introduced in the framework
super classes animal.animator.Animator and animal.animator.TimedAnimator.

animal.animator.TimedAnimator

animal.animator.TimedShow

− show: boolean

+ isShow: boolean
+ setShow(boolean)

Figure 5.12: Inheritance Diagram for TimedShow Animators

For an example of the TimedShow effect, please refer to Figure 5.11. Note that the default Timed-
Show effect offers no fading, so that the duration has no visible effect. Thus, there is only one
difference between a Show and a TimedShow animator: the Show animator is always executed at
the start of the animation step, while the TimedShow animator is only executed when its start time
has been reached. This fact can be used for building animation steps that show a number of items
which appear one after another, as commonly done in Microsoft PowerPointTM presentations.

5.3.3 Color Change Effect

Figure 5.13 illustrates the relationship between the color changer animator in the framework and
in ANIMAL. To present a good interpolation of intermediate color values for non-instantaneous
color change effects, the original colors of all object must be stored. Alternatively, the visualizer
may also use a common start color for all animated primitives. Another pair of methods is used for
retrieving and setting the target color.
The color interpolation is achieved by calculating the intermediate color that bisects the line con-
necting the start and target color at the current execution point for each animated object. Figure
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5.14 illustrates this process for a change from black to white for an arbitrary color property. The
figure includes the interpolated color values for the following animator execution states, with the
double precision timing given in parentheses: 0%, equal to the animation effect start (0.0), 20%
(0.2), 50% (0.5), 85% (0.85) and 100%, equal to the animation effect end (1.0). The marked colors
are returned by the getProperty method defined on page 98.

animal.animator.TimedAnimator

animal.animator.ColorChanger

− originalColor: Color[ ]

+ getColor(): Color
+ setColor(Color)
+ setOriginalColor(Color)

Figure 5.13: Inheritance Diagram for ColorChanger Animators
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Color Changing

Figure 5.14: Color Interpolation in the ColorChanger Animator

Figure 5.15 shows an example color change application grabbed from ANIMAL. The color of the
text embedded in the box changes over time from black to white, assuming appropriate grey shades
during the operation.

t=0 t=0.2 t=0.5 t=0.85 t=1.0

Figure 5.15: Example Color Interpolation in the ColorChanger Animator
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5.3.4 Move Effect

Figure 5.16 illustrates the Move animator in ANIMAL. Apart from declaring the animator as a
timed animator, the only information needed are the length of the underlying move base and its
numeric ID. ANIMAL’s Move animator offers a fluent interpolation of move points for animators
possessing a duration. This is achieved by calculating the intermediate move points along the move
base object once for the current execution point. Figure 5.17 illustrates this process for a move
along a polyline. The figure includes the interpolated points for the following animator execution
states, with the double precision timing given in parentheses: 0%, equal to the animation effect start
(0.0), 20% (0.2), 50% (0.5), 85% (0.85) and 100%, equal to the animation effect end (1.0). The
marked points on the polyline in Figure 5.17 are also the returned value of invoking the getProperty
method for the associated values, as defined on page 98.

animal.animator.MoveBase

animal.animator.TimedAnimator

− length: int

+ setMoveBaseNum(int)
+ getMoveBaseNum(): int
− moveBase: MoveBase

animal.animator.Move

+ getLength(): int
+ getPointAtLength(int): Point
+ useAsMoveBase()

Figure 5.16: Inheritance Diagram for Move Animators

The MoveBase interface is responsible for determining the point on the underlying move base at a
given point in time. For this end, the execution state of the effect measured in the interval � 0 � 1 � is
multiplied with the length of the move base, as retrieved by getLength. The rounded result value
is then inside the interval � 0 � getLength � and used for determining the target point. Note that this
approach is not limited to using lines as a move base; the developer can easily also implement the
functionality for arc components. This is done in ANIMAL, so that moves can be accomplished
along polylines or arcs.

0.0 0.2

0.5

0.85 1.0

Move Path

Figure 5.17: Timing of Move Animators

Figure 5.18 shows an example move application that moves a square along the path shown in Figure
5.17.



5.4. TRANSFORMATION HANDLERS 133

t=0 t=0.2 t=0.5 t=0.85 t=1.0

Figure 5.18: Example Move Animator

5.3.5 Rotate Effect

Figure 5.19 illustrates the Rotate animator in ANIMAL. We added methods for setting and retriev-
ing the center point and the rotation angle. The rotation itself is encapsulated in a Rotation object
that allows accessing the rotation angle and center. ANIMAL’s rotate animator offers a fluent inter-
polation of rotation angles for animators possessing a duration. This is achieved by calculating the
intermediate rotation angles along the circle spanning the full rotation angle once for the current
execution point.

animal.animator.TimedAnimator

− center: Point

+ getCenterNum(): int
+ getDegrees(): int
+ setCenterNum(int)
+ setDegrees(int)

animal.animator.Rotate animal.graphics.Rotation

+ getAngle(): double
+ getCenter(): PTPoint

Figure 5.19: Inheritance Diagram for Rotate Animators

Figure 5.20 illustrates this process for a move along a polyline. The figure includes the interpolated
points for the following animator execution states, with the double precision timing given in paren-
theses: 0%, equal to the animation effect start (0.0), 20% (0.2), 50% (0.5), 85% (0.85) and 100%,
equal to the animation effect end (1.0). The marked angles and thus also the associated points on
the angle are returned by the getProperty method for the associated values, as defined on page 98.
Figure 5.21 shows an example rotate application that rotates an arrow on its end point along the
angle shown in Figure 5.20.

5.4 Transformation Handlers

As stated in section 4.6, transformation handlers act as agents for negotiation between primitives
and animation effects. The primitives provide a straightforward implementation of the underlying
graphical element. This especially includes methods for accessing the state using properties, the
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0.5

1.0

0.85

Rotation Angle

Figure 5.20: Timing Resolution for Rotate Animators

t=0 t=0.2 t=0.5 t=0.85 t=1.0

Figure 5.21: Example of Rotate Animators

determination of the primitive’s location and bounding box, and the paint method for displaying
the primitive on the graphics context. Additionally, they provide at least the translate method for
changing the location, and may also offer the other basic transformations scale and rotate.
Animation effects model the execution of generic animation effects. They can retrieve and set the
affected object and may possess a timing specification containing both an offset from the associated
animation step’s start and a duration. The core functionality is wrapped in one method each for
initializing, performing and finishing the effect, respectively. Section 5.3 examined the animation
effects in more detail. From the handler’s point of view, it is sufficient to know that the animation
effect can determine the percentage state of its execution and retrieve the appropriate intermediate
value, such as a target color or move location.
The transformation handler is responsible for two central aspects of performing animation effects.
Firstly, it is responsible for determining the list of concrete transformation subtypes available for
a given primitive and a given animator. Secondly, it maps the given effect to a set of primitive
transformations for each affected primitive.
The first task is achieved within the getMethods(PTGraphicObject, Object) method present in all
handlers. Given a concrete instance of the handled object type and an effect-parameterizing object,
the handler returns a vector of possible animation effect subtypes, as shown in Figure 4.14 on
page 101. Note that the list of available effects can depend on the properties of the primitive. For
example, if the nodes of a polygon can be moved individually, the set of possible method names
depends on the number of nodes of the primitive. By passing the primitive as a parameter, such
properties can be determined easily.
The mapping of animation effects to primitive method calls is performed in the propertyChange(PT-
GraphicObject, PropertyChangeEvent) method. Given the primitive on which to work and the
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transformation encoded as a java.beans.PropertyChangeEvent, a set of method invocations on
the primitive are performed that result in the execution of the animation effect. The Property-
ChangeEvent encodes the name of the animation effect subtype, as well as the current and target
value of the target object state. The precise data stored in the target state depends on the animation
effect. For example, Move effects encode the point reached at the current transformation time.
The transformation handlers as defined in section 4.6 are perfectly up to the task set them. We have
not found it necessary to provide any extension or customization within the course of implementing
the prototypical AV system, apart from filling in the actual transformation types possible for each
element. Therefore, we will not delve into the implementation code for handlers.
ANIMAL also faithfully follows the animation representation structure described in section 4.7
using a single Animation object modeling the animation built on the interaction of animators, prim-
itives and primitive handlers. The animal.main.Link class represents the links between successive
animation steps.
In the following sections, we will examine the GUI front-end offered by ANIMAL for displaying
and editing animations.

5.5 ANIMAL’s Animation Display GUI

ANIMAL’s animation display GUI is by definition the most “visible” component for users. We
have therefore taken special care to offer relevant and helpful features for users and visualizers
employing the display GUI for testing their animations.

Figure 5.22: ANIMAL’s Main AV Frame

Figure 5.22 shows the main ANIMAL frame. The numbers placed in colored squares are not part
of the frame; they were inserted here for better referencing of features. Similar numbering will
appear in most other GUI components under consideration. The menu bar (1) contains a File menu
with the usual operations for loading, storing or creating a new animation. The Edit menu is used
for showing or hiding the individual elements for the display and editing GUI. Options provides a
central access for configuring ANIMAL, including switching between two- and three-button mouse
types. The Language menu contains a list of localized GUI front-ends available for the installed
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system. By default, it contains English and German language support. Finally, the Help menu
offers the usual access to the built-in help facilities.
The tool bar below the menu also contains buttons for the most common file operations: new
animation (2), load (3), reload (4), enter scripting code (5), save (6) and save as (7) which stores
the animation under a different file name. The text area (8) below the tool bar lists status messages
for ANIMAL, especially the load and save status.
Figure 5.23 shows the animation display window used in ANIMAL. The top of the window contains
a pair of sliders for controlling the display speed (1) and magnification (3), as well as two buttons
for resetting the values to 100% (2, 4). The main part of the display is taken up by the animation
canvas (5) which presents the animation at the chosen speed and magnification scale. The animation
shown in the screen shot is a joint effort of four students of the University of Wisconsin Parkside
in animating a branch-and-bound dynamic knapsack algorithm. The display has been scaled to
slightly less than 50% to fit the window on the page, causing some font artifacts.
The bottom part of the animation window contains the central animation control bar (6) and the
animation step controls (7, 8). The text field (7) can be used for entering an arbitrary animation step
number. If the animation step exists, the animation jumps to it; otherwise, it remains at the current
step and resets the displayed value. The slider (8) displays the percentage of the animation currently
shown and can also be used for fast-forwarding or rewinding the animation. Both components (7, 8)
are squeezed due to the page constraints, as the images used in the control tool bar are not resizable.
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Figure 5.23: ANIMAL’s Animation Window

Figure 5.24 shows the animation control tool bar included in the animation window shown in Figure
5.23. The buttons, from left to right, carry the following meaning, in keeping with Figure 4.19 on
page 108:
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1 2 3 4 5 6 7 8 9

Figure 5.24: ANIMAL’s Control Tool Bar

1. jump to the start of the animation,

2. jump to the start of the previous animation step,

3. play the animation in reverse slide show mode. The timing delay between successive steps is
respected if present; otherwise, the delay set in the configuration is used,

4. play the current animation step backwards by employing all timing information for anima-
tors,

5. pause the animation, especially relevant when employing either slide show mode,

6. play the current animation step by employing all timing information for animators,

7. play the animation in slide show mode, respecting all defined delays between subsequent
steps and using the configured default delay otherwise,

8. jump to the start of the next animation step,

9. jump to the end of the animation.

Finally, Figure 5.25 shows the implementation of the Animation Structure View in ANIMAL. As the
structure represents an animation time line, we call the window Time Line Window. All available
step labels are gathered and displayed in a list inside the window, along with the associated step
number. If the user clicks on an entry in this list, the animation jumps to the associated step. Note
that it does not matter if the current animation step lies before or after the selected labeled step,
as ANIMAL can easily handle reverse animation playing. If the selected labeled animation step is
identical to the current animation step, no effect will be visible.

Figure 5.25: ANIMAL’s Implementation of the Animation Structure View
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5.6 ANIMAL’s Editing GUI

For our prototypical AV system, we have decided to support GUI-based animation generation and
editing. This feature is relatively uncommon for AV systems, especially when combined with other
generation or editing approaches, as demanded by requirement VR5. Therefore, adding such a
front-end is a good exercise and also adds a special flavor to our prototype.
The editing front-end of ANIMAL consists of four windows: the drawing window for generating
primitives, the animation overview for managing animation effects and animation steps, the Main
AV window shown in Figure 5.23 on page 136 and the Animation Structure View shown in Fig-
ure 5.25 on the page before. As the latter two windows have already been described, we focus on
the drawing window and the animation overview.
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Figure 5.26: ANIMAL’s Drawing Window GUI

Figure 5.26 shows the drawing window used by ANIMAL. The top button row offers access to
specific editors for the currently supported primitives point (1), polyline / polygon (2), text (3), the
list element extension (4) described in section 6.2.2, and arc elements (5) including circles, ellipses
and segments thereof. The grid control (6) toggles the display width of the grid between the values
none, 5, 10, 20, 25 and 50, measured in screen pixels. The main canvas (7) is populated by the
primitives visible at the current animation step, as well as the optional grid. The canvas uses drag
and drop for each primitive. Drag points for dragging the full object are placed at the middle of
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each line. Editing points for moving individual primitive nodes are placed at each node and allow
easy manipulation of node locations.
The first button row contains two buttons for toggling grid lock mode (8) and the display of tem-
porary objects, such as move base primitives (9). Grid locking automatically adjusts primitive
locations selected by user actions to the closest intersection of grid lines. The refresh button (10)
causes a redraw.
The second row starts with the select objects button (11) used for toggling the usage mode from
generation to editing. The remaining two buttons toggle the selection of multiple objects (12) and
the editing mode (13). The latter, if active, pops up special editor window for the currently selected
primitive or primitives. Figure 5.27 shows an example editor for arc primitives.

Figure 5.27: Arc Primitive Editor Window

The buttons (14, 15) offer undo and redo operations. Button (16) deletes the currently selected
primitive or primitives. If at least one of the selected primitives is used in an animation effect, the
user will be prompted to confirm the deletion. The hare (17) offers a cloning operation that is very
useful if a set of similar objects has to be generated. The cloned object is placed slightly below
and to the right of the original object. The disk button (18) is used to write the modified animation
content back to the animation and all associated windows. It can be used to update the animation
window, as this is not performed by default for performance reasons during the editing process.
Button (19) runs the current animation step in the animation window, opening the window first if
necessary.
The buttons (20) - (22) let the user select the current animation step to be edited, by going back-
wards (20) or forward (22) or by entering the target step number (21). The selection list (23) offers
five different magnification scales for drawing: 50%, 71%, 100%, 141% and 200%. The general
configuration menu that also allows adjusting the canvas background is activated by a button (24).
Finally, the status line (25) describes the actions currently possible.
The Animation Overview window shown in Figure 5.28 is used for generating and editing the
structure of the animation. It thus contains buttons for adding new animation effects (1-5) and
animation steps (8, 9). The animation effect buttons shown are, from left to right, Show (1), Move
(2), Rotate (3), Color Change (4) and Timed Show (5). The main canvas of the window contains
two different types of entries: animation steps (6) and animation effects (7). Double clicking on
an element brings up the associated editor. The right mouse button can also be used to activate a
context menu. The maintenance buttons at the bottom row allow inserting a new animation step
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Figure 5.28: ANIMAL’s Animation Overview GUI

before (“prepending”, 8) or after the current step (“appending”, 9), refreshing the display (10) and
deleting the selected element (11). If the element to be deleted is an animation step with at least
one animation effect, the user has to confirm the deletion before it is performed.

Figure 5.29: ANIMAL’s Move Options GUI Editor

Figure 5.29 shows an example editor window for the Move effect. The name of the animation
effect and the current animation step are shown at the top of the window, along with the selected
animation objects. The currently selected animation subeffect method translate #2 translates only
the second node of a polyline or polygon primitive. The list of possible subeffects is generated by
the transformation handlers of the selected object(s), as described in section 5.4. The two radio
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buttons at the middle of the window toggle between real time (ms) and virtual frame-based time
(ticks). The total duration and offset of the animation effect using the current time unit can be
specified in the two adjacent text fields. Finally, the temporary object used as the move base is
shown, along with the standard trio of window buttons OK, Apply and Cancel. OK acts as Apply
by applying any changes to the animation, but additionally also closes the editor window.

5.7 Import and Export

The import and export facilities offered by ANIMAL closely follow the specification of the frame-
work in section 4.9. The standard Java file selector with adapted filter selections is used for querying
the input or output file name and the target format. The appropriate import or export filters is then
instantiated and initialized by dynamic loading according to the configuration and accessed using
its MIME type.

Exporting can be configured to the user’s tastes. The exact degree of configurability depends on the
chosen target output format. Figure 5.30 shows the standard export mode choice dialog. The user
can choose between exporting the complete animation or only those steps selected in the list at the
bottom. Dynamic export as opposed to static snapshots contains the full dynamics of the animation
effects. If the export format is static, a sequence of appropriate elements may be generated, for
example resulting in a set of images written for a single animation step. The magnification can
be adjusted similarly to the drawing window to 50%, 71%, 100%, 141% or 200%, as well as to
the magnification used in the animation canvas. The selection list at the center right also allows
the entry of arbitrary percentage values. Keep in mind that the precise export capabilities and the
visual quality of the output depend on the target format and the export filter implementation, rather
than on ANIMAL’s display capabilities.

Figure 5.30: ANIMAL’s Export Mode Chooser Window
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5.7.1 ANIMALSCRIPT

As a special elaborate case of an import filter, we regard the support for the built-in scripting lan-
guage ANIMALSCRIPT. ANIMALSCRIPT animations are specified in a simple ASCII-based format.
Each line of a valid ANIMALSCRIPT animation contains exactly one command or comment.
ANIMALSCRIPT is extensible and thus allows easy adaptation and extension if desired features
are not provided. The concrete extent of the features supported by ANIMALSCRIPT is retrieved at
start-up from a configuration file and used to dynamically build the whole parser component for the
scripting language. This process is the same as described in section 4.2.
Apart from supporting the base primitives provided by ANIMAL, ANIMALSCRIPT also supports
linked list elements, arrays and source code embedding including highlighting and indentation.
Modular ANIMALSCRIPT files can be dynamically included using a special embed command.
To make full use of the possibility of placing runtime information into a reusable module, ANI-
MALSCRIPT allows the declaration of variables which can be placed in text components and are
replaced by their current value at load time.
All coordinates used for specifying primitives or animator parameters can be relative to other,
previously defined locations. One application area where this is important is the internationalization
of animation content offered in ANIMALSCRIPT. Here, the whole animation may be translated
into the target language chosen by the user. Provided that internationalization is embedded in the
animation file and that all primitives use relative placement, the screen layout will still be fine, even
if the length of the components differs between languages.
ANIMALSCRIPT provides facilities for performing interactive predictions (UR10). Currently, the
feature is employed only in conjunction with the JHAVÉ system [131, 181]. ANIMALSCRIPT can
be configured easily, as all components are loaded dynamically based on a configuration file. The
configuration file is first looked for in the current directory, followed by the CLASSPATH entries,
the jar file containing the ANIMAL distribution and the ANIMAL home page. Therefore, users and
visualizers can easily switch between different ANIMALSCRIPT configurations by simply changing
the directory from which ANIMAL is started.
ANIMALSCRIPT is simple to use but powerful. ANIMALSCRIPT input is typically a simple ASCII
file consisting of a number of lines. Each line may contain either a comment marked by a hash
mark #, or exactly one ANIMALSCRIPT command. The first word of each command line is the
keyword; this must always be unique to allow both easy parsing and dynamic extension.
ANIMALSCRIPT commands typically have a number of parameters, some of which may be op-
tional. The syntax of ANIMALSCRIPT is defined by a set of extended Backus-Naur rules using []
for optional parameters and

� � for elements that may be repeated an arbitrary number of times.
Further details about the syntax of ANIMALSCRIPT can be found in [179, 178, 177] and on the
ANIMAL Home Page [169].
ANIMALSCRIPT provides some extended functionality that offers more comfortable access to ”hid-
den” features of ANIMAL. The simplest extended command is the group / ungroup directive which
tells ANIMALSCRIPT to group all object IDs passed in as one object for the next steps, and thus
frees the user from much typing.
List linking allows the user to set or clear the pointers of list elements with a single command.
In keeping with pointer semantics, the user only has to specify the target object by its ID, and
does not have to worry about the exact location of the pointer. This takes a lot of administrative
book-keeping from the user, compared to other systems where the precise target location must be
given.
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ANIMALSCRIPT provides full array support for both vertical and horizontal alignments. This in-
cludes the installation and moving of array index pointers with an optional label as well as the put
and swap operations. As the last two operations may have an effect on the width of the array cells
following the first affected element, the layout of the array is updated, possibly including moving
existing array pointers. Thus, sorting an array using ANIMALSCRIPT is very easy to do, as it con-
sists mostly of a sequence of arraySwap and movePointer commands for changing the elements
and moving the (optional) index pointers.
ANIMALSCRIPT also provides full source code embedding. For this purpose, the user declares
a codeGroup with some formatting options, such as the font to be used, and gives the upper left
corner. Individual code lines or code line elements can then be added to the code group, including
an optional indentation depth. The code is laid out dynamically. Source code highlighting is easily
accomplished by commands that allow the user to highlight a given line or line segment as either
the current command or the current context.
All elements may be positioned in one of the following ways:� using absolute coordinates such as (10, 20),� relative to an edge of another object’s bounding box,� relative to an arbitrary node of a given (polyline) object,� relative to the baseline of a given text,� or relative to the last location used.

One of the most helpful features of ANIMALSCRIPT during animation development is the echo
command. This command can be used to print the location of objects (usually the upper left corner)
or their bounding box. It can also be used to print the numerical IDs of grouped objects, or show the
IDs of all currently visible objects. For assertions, echo can print the current value, and it can also
print out any given text to the standard output. Thus, echo is a very powerful help during animation
development in pinpointing the precise reason why something did not go the way it was supposed
to. Of course, echo can also be turned off.
In order to address the widest possible target audience with animations, all ANIMALSCRIPT text
entries may be given either as a literal string or as localized text. The localization can be embedded
in the file or stored in separate language resource files. Embedded localized text is placed in paren-
theses (), and each component is prefixed with the language code followed by a colon, for example
as (de: ”Ja” en: ”Yes” fr: ”Oui”). On loading the animation, ANIMALSCRIPT prompts the user
for the language to be used for the animation’s display, and will layout all components accordingly.
Due to the possibility of using relative coordinates, it is usually sufficient to generate one animation
with multiple languages embedded. Additional extended features of ANIMALSCRIPT include as-
sertion checking, block charts, variables and stop-and-think questions as used in the JHAVÉ [131]
system now also using ANIMALSCRIPT.
While ANIMALSCRIPT already provides many helpful features for animation generation, users are
bound to find some features they consider necessary or at least helpful which are not yet covered in
the extended ANIMALSCRIPT functionality. For this purpose, we have designed ANIMALSCRIPT

in a way that allows easy extensions by other programmers.
Adding new graphic primitives or animation effects requires a certain knowledge of Java and pro-
gramming in general. ANIMALSCRIPT comes with an extensive set of parsing support methods, so



144 CHAPTER 5. THE ANIMAL ANIMATION SYSTEM

that parsing the input data is comparatively easy to accomplish. This includes support for parsing
keywords, optional parameters, comments, color specification, absolute or relative coordinates and
localized texts. Usually, each element in a new command definition requires one method call in the
parsing support class. The ANIMALSCRIPT components can also be configured dynamically using
the ComponentConfigurer shown in Figure 4.8 on page 82.
The auxiliary animalscript.sourcerer API generates the parser code from a given extended Backus-
Naur-Form. Using this API, programmers of ANIMALSCRIPT therefore only have to program the
actual graphical and display operations.

5.8 Summary

Both graphical primitives and animation effects in ANIMAL employ properties for modeling most
of the object state. One exception to this rule are the numeric identification of graphical primitives
and the internal representation of primitive locations. Both are accessed very often in a typical ses-
sion, including mathematical operations in the context of location transformations. Converting the
location between Point and String format for each access introduces an significant but completely
unnecessary overhead. Recall that the location of every visible primitive must be accessed at least
once for each paint invocation that updates the graphical display.
The graphical primitives supported by ANIMAL are point, polyline / polygon, text and arc. The
visualizer can toggle between polylines and polygons by inverting the value of the closed property.
Contrary to some other systems as JSamba [196], polylines are not restricted in the number of nodes
they have, apart from requiring at least two nodes to form a valid line. Polygons can be filled with
any color, while polylines may posses arrows at either or both ends. Text primitives are restricted to
the three Java system font families Serif, SansSerif and Monospaced to avoid portability problems
arising when specific fonts such as Arial are not installed on the user’s system. Finally, arcs may
be elliptical or circular. If closed as a pie wedge, they may also be filled; open arcs may possess
forward or backward arrows. Additionally, a text can be placed inside the arc and, if present, is
automatically aligned on the arc’s center.
All graphical primitives have a color, depth, name, numeric ID, location and bounding box that
completely encloses the primitive. They are also required to implement the translate(int, int)
method that moves the object by the offset � ∆x � ∆y � . The paint method is invoked for generat-
ing the display of a given primitive.
ANIMAL animators are separated into timed and untimed animators. The only untimed animator is
currently the Show animator for toggling the visibility of the chosen objects. All animators take an
arbitrary non-empty set of objects as target objects. Timed effects specify the animator’s duration
and offset from the animation step, using either real time measured in milliseconds or virtual time
measured by the number of frames to display. Base ANIMAL provides the timed animation effects
TimedShow, Move, Rotate and ColorChange.
With the exception of TimedShow, the intermediate state of the animated objects is interpolated for
each frame. For this purpose, ANIMAL employs three methods within each animator, as well as a
separate handler agent that maps the operations to the underlying primitives. The init(Animation-
State, long, double) method initializes the animator and sets the start time to the time passed in as
the current system time and frame number. The action(long, double) method determines the target
state of the primitives during the execution of the animator and forwards this state to the handler.
Finally, the execute() method is invoked when the animation effect has finished. It displays the final
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state of the animator and removes the animator from the list of animators to examine.
All animators are completely independent of the graphical primitives on which they work. Their
flexibility thus allows for easy reuse and recombination. The coordination of animators and primi-
tives is the responsibility of the handler agents.
Handlers provide two methods, called getMethods and propertyChange. The getMethods(PTGra-
phicObject, Object) method receives the concrete primitive on which an effect is to take place
and an object that represents the animation effect parameters. Based on this second object, the
method builds a vector of appropriate animation effect subtypes. This generation may also take
specific properties of the primitive into account. For example, if a Move effect is requested, the
vector returned may include the following move targets: full object, single specific node, or set of
nodes. The latter two subtypes require the knowledge of the node count encoded in the primitive.
Animation effects receive a vector of animation subtypes for each object on which they work.
The vectors are pruned by building an intersection. The resulting elements represent the possible
animation subtypes applicable to the selected objects.
The propertyChange(PTGraphicObject, java.beans.PropertyChangeEvent) method receives the cur-
rent and target state of the animation effect, as well as the animation subtype, in the Property-
ChangeEvent parameter. Based on the animation subtype, the new state is examined and mapped
into a set of method invocations on the primitive passed in so that the primitive’s display is adapted
to the requested effect.
ANIMAL thus employs a strict separation of concerns. The graphical primitive classes represent
only the current state of the underlying primitive including display capability in the paint method.
However, they have no knowledge about animation per se. The animators, on the other hand, only
determine appropriate animation subtypes on a String base, and can interpolate intermediate ani-
mation states. However, they do not possess any knowledge of the primitives on which they work.
Finally, the handlers may not need to access the current concrete primitive instance in most cases
when determining the possible animation effects. Exceptions are animation effects which depend
on the current state of the primitive, for example the number of nodes or whether the underly-
ing object is closed. Mapping the requested animation effect onto the primitive requires one or
more primitive method invocations that typically require little if any knowledge of implementation
details.
The front-end used by ANIMAL for displaying the animation consists of the main AV frame, an
animation window and a structure view of the animation. Apart from the usual file operations, the
main AV frame centrally controls the visibility of the other windows and provides international-
ization for all GUI components. The animation’s structure or “time line” is shown in a separate
window. Clicking on a labeled step shown in this window updates the display to the associated
animation step. The animation window offers facilities for changing the display speed and mag-
nification on a percentage scale. Additionally, the video player-like control incorporates playing,
stepping and displaying in a slide show mode for both animation directions, as well as jumping to
the animation start or end.
The animation generation and editing front-end contains a drawing window for generating primi-
tives with full drag and drop support, grid control, cloning, redo and undo. The animation effects
and steps are controlled in a separate animation overview window. Alternatively to visual gener-
ation in the GUI, the animation may be specified using the built-in animation scripting language
ANIMALSCRIPT. This language incorporates special features such as relative placement, anima-
tion content internationalization and debugging. Special subtypes such as arrays and list elements
are also embedded in ANIMALSCRIPT, together with the typical operations used on the data types.
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The import and export capabilities of ANIMAL are built from independent components that act as
a file filter for one format each. The concrete selected filter instance is determined from the MIME
type of the input and loaded dynamically. Export capabilities currently include the file format
specified by ANIMAL, ANIMALSCRIPT and image or XML export. If the user request exporting
the animation with full dynamics, a set of images is stored for each animated step, instead of a
single snapshot showing the start of the step.
The main contributions of the ANIMAL AV system prototype can thus be summed up as follows.
ANIMAL is dynamically extensible and uses the concepts of the underlying framework to configure
several component types at start-up or even while the system is running. This concerns primitives,
animators, import and export filters, and ANIMALSCRIPT components. ANIMAL also presents
a (for AV systems) highly unusual combination of multiple generation and editing approaches,
namely visually using the GUI front-end, by scripting in ANIMALSCRIPT, and by API invocations
in a separate API that is nearing completion. Thanks to the highly expressive framework base,
ANIMAL is to our knowledge also the only general-purpose AV system that can handle random
access navigation through any animation, including rewinding and dynamic reverse playing.
All GUI components can be dynamically translated on demand and on the fly by a single menu item
selection, thanks to the powerful operations provided by the underlying framework, as described
in section 4.2.3. The import and export filter interface is kept deliberately open for later additions.
It may also be used to add another animation generation approach by writing a code interpretation
“import filter” that translates code of a certain programming language into ANIMALSCRIPT or di-
rectly into ANIMAL animation primitives and effects. An example project of this type was recently
performed in a Compiler Construction course at the University of Zittau / Görlitz, Germany; alas,
the results have not been published.
ANIMALSCRIPT offers the standard features visualizers can find in other AV scripting language,
but also several advanced commands. Among these are the echo command that is very helpful
for debugging the code, powerful relative placement directives, internationalization support for the
animation code, and interactive prediction. Variables and loadable modules are also offered and
allow for example the extraction of common front- and back-ends for sorting algorithms including
placeholders for the actual number of calculation steps performed.
The display front-end of ANIMAL offers dynamic adjustments of the display speed and magnifi-
cation, hyperlink labels that illustrate the animation structure with the ability to directly jump to
certain animation steps, and full-fledged video player controls. A slider for adjusting the current
animation step as an execution percentage state can also be used for a “fast forward” navigation.
For visualizers who are not yet satisfied with the extended features offered by ANIMAL and for
developers interested in implementing extensions, we discuss example ANIMAL extensions in the
next chapter.



Chapter 6

Extending ANIMAL Using
ANIMAL-FARM

6.1 Introduction

We have already discussed how the ANIMAL-FARM framework presented in chapter 4 supports the
dynamic addition and removal of components. The ANIMAL system built on the framework there-
fore also supports the integration of new components at run-time, as well as their removal. Note
that there is a difference between extensions of the ANIMAL system and the framework: the former
type of extensions provides added functionality for a concrete system, while the latter type modifies
the framework. Here, we are concerned with extensions to the concrete implementation prototype
to better illustrate how easily new extensions can be developed. The design and implementation
process does not require modifying any existing code (DR1) or intimate system knowledge (DR3).
The developed extensions can be added or removed using the ComponentConfigurer introduced in
Figure 4.8 on page 82.
We have already discussed the individual components that make up the ANIMAL AV system. Only a
small number of components are tightly connected and explicitly referred to. These classes mainly
address the core animation modeling and GUI interactions. Other components are loaded dynam-
ically and instantiated at run-time. This especially concerns the graphical primitives, animation
effects and import / export layers. This dynamic embedding is performed both at start-up and when
the user alters the system settings while it is running. Thus, ANIMAL is dynamically extensible.
However, the fact that components can be added or removed at run-time does not state how easily
this can be achieved. This concerns both the developer and the user or visualizer who wants to
embed components. In this chapter, we discuss some example extensions that cover the range of
extensibility provided by ANIMAL. Where necessary, some implementation details will also be
provided. A precise implementation guideline is available online [169].
The chapter is organized as follows. In section 6.2, we discuss two example extensions for graphical
primitives. Extended animation effects are address in section 6.3. Adding sub-effects to already
implemented effects requires the extension of object handlers. This process is illustrated in section
6.4. Section 6.5 shows how a new language support can be installed for the whole ANIMAL GUI.
Additional animation import and export filter implementations are discussed in section 6.6. Section
6.7 discusses additions for interactivity added within the course of embedding ANIMAL to the
JHAVÉ system. Section 6.8 summarizes the chapter.

147
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6.2 Extending Graphical Primitives

There are two principal types of extensions for graphical primitives applicable to AV systems. The
first type, and probably the more obvious one, provides a fully new primitive that is not connected
to the other available primitives. Alternatively, an aggregate primitive that combines multiple other
primitives with modified or extended semantics can be introduced.
In this section, we discuss one example each for both approaches. For the completely new primi-
tive, we address embedding support for images. The aggregate extension presented here describes
support for list elements as they are used throughout computer science.

6.2.1 Example Extension: Image Support

In order to develop a completely new primitive, a set of standardized steps has to be followed,
which can be summarized as follows:

1. determine and define the properties of the primitive,

2. decide which properties if any should be modeled as attributes for performance reasons,

3. implement the basic functionality for displaying the primitive, including the abstract methods
inherited from the framework,

4. implement a handler object for the new primitive,

5. optionally implement a graphical editor component for visual adjustment of the displayable
properties,

6. optionally provide classes for im- and exporting of the new primitive, as the new primitive
cannot be saved and loaded otherwise,

7. and finally embed the new primitive into ANIMAL using ANIMAL’s ComponentConfigurer
component.

To illustrate these steps, we regard the Image primitive extension. Images can be a great boon
to many application areas in algorithm animation. For example, geometric algorithms may benefit
from embedded images in appropriate format, rather than hand-drawn objects based on the standard
primitives. The accompanying explanation of the visual content of the animation may also employ
images, for example by presenting a scanned flow-chart of the algorithmic structure.
First, we have to define the properties of images. Images possess a location inherited from the
framework. In keeping with the standard usage, we pick the upper left corner of the image as
its location. The image source is described by its URL and an internal javax.swing.ImageIcon for
rendering it on the graphical context. Additionally, the width and height of the image are important.
We will treat width, height and URL as properties, and store the ImageIcon and location as attributes
for efficiency reasons.
The basic functionality to be implemented is easy to accomplish. The inherited getLocation method
simply returns the location of the image, while getBoundingBox returns a rectangle using the lo-
cation as the upper left and the location plus (width, height) as the lower right corner. translate is



6.2. EXTENDING GRAPHICAL PRIMITIVES 149

implemented by modifying the location of the image. Displaying within the paint method is per-
formed by using the special drawImage method of the java.awt.Graphics class. Scale and rotate
can be achieved within the java.awt.Graphics2D environment introduced by JDK 1.2.
The ImageHandler class responsible for handling the animation effects for image primitives is very
easy to implement. Details on the process are given in section 6.4 which focuses on implementing
handler extensions. Implementing the graphical editor is straightforward using the provided basic
functionality residing in class animal.editor.GraphicEditor. This includes support for editing the
primitive name and depth, as well as adding the three standard buttons OK, Apply and Cancel to
the bottom of the displayed frame. Appropriate elements for entering the URL of the image to
embed and its width and height are easy to define. The main task left is then to make sure that the
communication flow between the GUI elements and the underlying primitive is maintained.
The implementation of import and export filters for image primitives is discussed in more detail in
section 6.6. In the near future, the developer will be able to make the extension available using a
special platform for World-Wide Web-based ANIMAL distribution, the J-Updater package imple-
mented by Matthew Smith [193]. For this end, a 20 � 20 GIF image representing the new primitive
must also be provided. As the J-Updater project is not fully finished yet, the user currently has
to download extensions manually. Independently of how the extensions have been acquired, end
users, typically adopting the user or visualizer role, can easily embed the functionality by start-
ing the ComponentConfigurer and typing in the base name of the extension, that is, Image. The
extension is then instantly usable.

6.2.2 Example Extension: List Element Support

List elements are commonly encountered in computer science applications and especially introduc-
tory programming courses. Many authors use a similar notation for list elements that shows two
boxes, one containing the value of the list element and the other the pointers. List elements thus
can be generated as an aggregation of available primitives. Instead of doing this manually for each
instance, we examine how we can implement a list element support extension.
Figure 6.1 shows an example list element with two pointers. As shown, it can be assembled from
two filled polygons, a possibly empty set of polylines with a forward arrow and a text entry. In
ANIMAL terms, the resulting elements are mostly instances of animal.graphics.PTPolyline with
appropriate values for the closed, filled and fwArrow properties. The color of the box outline and
the fill color of the polygons should be adjustable, requiring access to the respective properties. Due
to the visual appearance, we have decided to call the extension animal.graphics.PTBoxPointer.

PTPolyline: closed, filled,
color, fillColornrPointers,

pointerPosition

PTText; Font, color, size, style

PTPolyline: not closed, fwArrow

Element

Figure 6.1: Schematic View of List Element Primitives and Specific Components
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We have decided that the text element and all pointers shall share the same color to provide a
“cleaner” look and feel. Thus, only the color property of the animal.graphics.PTText component
is accessible, and not the color properties of the individual pointers. In addition to the color, the
text entry itself together with the font name, style and size shall be specifiable. Finally, assembling
the object requires properties that describe the pointer position and the number of pointers. We
have decided to support the five pointer positions none, top, left, right and bottom, with Figure 6.1
showing the commonly assumed bottom position. The number of pointers in the example is 2 and
dictates the size of the array storing the pointers in the code, as well as the dimension of the pointer
box on the display.
Implementing the extension is comparatively easy based on these definitions. Basically, we declare
the aggregated primitives and implement the basic operations from the framework. For example, the
paint method implementation simply invokes the paint method of all components in the appropriate
order. The bounding box is generated by building a union over the bounding boxes of all elements.
The location of the object is the upper left corner of the topmost box. Note that this is not necessarily
the same as the upper left corner of the list element’s bounding box, depending on the position of
the pointers.
One small issue lies in initializing the layout for the new primitive. We proceed as follows. First we
place the text at a small offset from the location in such a way that the upper left corner of the text
lies slightly below and to the right of the target upper left corner of the complete primitive. This
is accomplished by determining the display properties of the text using the java.awt.FontMetrics
object for the chosen font and determining the dimensions of the given text. The text baseline is
then placed at the location plus a slight offset and a vertical distance equal to the font’s maximum
ascent.
After the text component is placed, the text box is wrapped around the text, based on the text’s
width and height. The lower box starts at the lower left of the text box and has a sufficient height
to contain all pointers. Finally, the individual pointer start points are calculated and the pointers
drawn to the target location. If the pointer box is not placed at the bottom position, the calculation
of the pointer box is adapted appropriately. The whole object can be translated by translating the
object’s location and re-initializing the object.
One implementation issue has to be resolved when dealing with aggregate primitive types: the ques-
tion of separate or shared properties. Normally, the 3 � n primitives encapsulated by the new primi-
tive type will each have their own properties object. However, this makes it much more difficult for
the new primitive to gain and maintain control over the display of the subcomponents, for exam-
ple by preventing the modification of the closed attribute for the two polygon boxes. On the other
hand, if we simply share the same properties object in all primitives, all animal.graphics.PTPolyline
primitives used in the list element will receive the same color when looking up the associated prop-
erty.
We already prepared for such problems when we developed the graphical editor interfaces. A
supplementary class animal.misc.PropertyNameMapper is used for mapping lookup requests ac-
cording to the rules built into animal.main.PropertiedObject instances. Listing A.10 on page 190
shows the code of the name mapper.
The approach taken is as follows. When a polyline tries to determine its color, it will normally ac-
cess it through the properties object using the special access key, in this example “Polyline.color”.
The property name mapping mechanism is employed by rerouting direct property access through a
mapKey(String) invocation, where the parameter represents the original request key. If the internal
hash table of the mapper does not list an entry for the passed parameter, the parameter is returned



6.3. EXTENDING ANIMATION EFFECTS 151

unchanged; otherwise, the associated entry is returned.

Name Mapping Rules: Text Box

Key Value
Polyline.color BoxPointer.color
Polyline.fillColor BoxPointer.fillColor

Name Mapping Rules: Pointer Area Box

Key Value
Polyline.color BoxPointer.pointerAreaColor
Polyline.fillColor BoxPointer.pointerAreaFillColor

Properties Values

Key Value
BoxPointer.color red
BoxPointer.fillColor green
BoxPointer.pointerAreaColor blue
BoxPointer.pointerAreaFillColor black

Table 6.1: PropertyNameMapper Example Usage

Table 6.1 shows a small example. The two tables on the top contain the mapping for the text box
and the pointer area box, respectively. Thus, the color of a list element’s text box is stored in the
property BoxPointer.color, and the fill color of the pointer area box is stored as BoxPointer.pointer-
AreaFillColor. When one of the components requests a specific property, the actual property key to
use is looked up in the table associated with the object. Thus, the list element will have a red text box
filled with green, and a blue pointer area box filled with black. The property name mapper instances
for the text element, text box and pointer area box, as well as the pointer instances are declared and
assigned within the BoxPointer instance that also assigns its properties object as shared.
After these considerations, implementing the class code for list elements in the BoxPointer class
is easy. The same goes for the visual editor, where the main concern is that requests are always
performed on the shared properties instance. Import and export implementations are deferred to
section 6.6 on extending import and export layers.
The only thing that remains to be done except for packaging and configuration using the Com-
ponentConfigurer is implementing a BoxPointerHandler. As with the image handler, this is not
difficult if carefully done. See section 6.4 for more details on implementing this and other han-
dlers.
Additionally, the primitive offers extended animation subeffects for the move animator. Apart from
moving the full object, it is also possible to move the main object body without modifying the
pointer positions and moving individual pointer target positions. The former operation is needed
when illustrating operations such as inserting elements into a list or removing them, while the latter
operation is used for “linking” elements. Instead of performing a straightforward translate, the
effect is restricted to the associated target primitive or primitives. Listing A.3 on page 183 contains
the code for the handler that illustrates this situation.

6.3 Extending Animation Effects

Similarly to graphical primitives, animation effect extensions can be divided in two groups: those
that provide a fully new animator, and others that provide only modified or extended subeffects.
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The first type requires the implementation of a new animation effect, while the latter can be accom-
plished by providing handler extensions, as discussed in section 6.4. Here, we instead focus on the
former aspect of implementing a completely new animation effect.
As an example, we regard the Zoom animation effect. Primitives can be scaled using the Scale
animator. However, this operation only applies to the currently selected primitives. The Zoom
effect operates on the display and is therefore independent of the visible primitives. It enables the
visualizer to guide and focus the user’s focus by setting the magnification and also defining the
upper left corner of the currently visible animation content. A similar operation is available in
JSamba [196].
Zoom effects require the target magnification and the upper left corner of the target display. These
parameters can be queried in a simple GUI editor. The Zoom effect benefits from the fact that the
animation window already employs a scroll pane for displaying the animation content. The current
magnification factor is also modifiable by the user in a slide ruler using a pair of get/set methods.
Implementing an animation effect typically proceeds along the following steps:

1. determine the effect properties and whether they should be represented by attributes,

2. implement the animation effect initialization method init,

3. implement the execute method for performing the operations needed when the execution has
finished,

4. implement code for generating the intermediate execution stage display in the action and
getProperty methods,

5. implement a GUI editor for querying and adjusting the properties,

6. implement import and export facilities (see section 6.6 for more details),

7. embed the new animation effect using the ComponentConfigurer component.

For the Zoom animator, we decide to represent the upper left corner of the display by a PTPoint
primitive that is generated in the same way as other primitives. The advantage of using such a
point instead of absolute coordinates is that it is easier to specify the desired location, both visually
and using scripting notation with relative placement. The timing specification is inherited from the
super class animal.animator.TimedAnimator. Finally, the target magnification is represented by an
integer value specifying the percentage of the current display magnification, with 100 representing
the current magnification (100%).
The animator initialization invokes the inherited initialization method. As the magnification can
be adjusted by the user, the current magnification is stored to serve as a basis for determining
the target magnification. The execute method used for showing the final state of the animation
effect execution determines the target magnification by multiplying the original magnification with
the zoom factor. This value is then passed to the animation window component as the current
magnification. After that, the inherited execute method is invoked to perform additional operations
such as removing the animator from the list of scheduled animation effects.
The action method requests the desired zoom factor for the current point in time from the getProp-
erty method. This factor is then assigned to the animation window component. The getProperty
method performs a straightforward calculation for determining the target magnification. Assuming
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that the zoom factor at the start of the animator is zoomstart and that zoomtarget is the target zoom
factor, the current zoom factor for any point in time during the animator execution is determined as

zoomnow 
 zoomstart �! zoomtarget " zoomstart #%$ timenow

timetotal

where timenow and timetotal represent the current execution stage and the total duration of the ani-
mator, respectively.
The implementation of a GUI editor for querying the target upper left corner of the display is very
straightforward. Note that the required entries for picking the target point and setting the timing
are already inherited from the editor for timed animation effects. Similarly, it is easy to implement
import and export facilities for Zoom effects. This topic will be discussed in section 6.6. After
the extension has been successfully compiled and copied to an appropriate location in the CLASS-
PATH, the user or visualizer can activate the animation effect within the ComponentConfigurer
component.

6.4 Extending Handler Capabilities

The primitive handlers are used for determining the specific animation effects supported by a given
primitive. They also map a given effect to appropriate primitive invocations, as discussed in sec-
tion 4.6. Extending the handlers offered by ANIMAL can be accomplished in two different ways:
implementing a new handler, or adding an extension handler.
We still have to define the handlers for the PTImage and PTBoxPointer primitives introduced in
sections 6.2.1 and 6.2.2, respectively. Remember that a primitive handler as specified by the frame-
work contains the two methods getMethods and propertyChange. The former is responsible for
constructing and returning a java.util.Vector instance of appropriate animation effect names for the
primitive. The propertyChange method examines the java.beans.PropertyChangeEvent passed as a
parameter and has to invoke appropriate methods on the primitive for generating the visual display
that fits the desired effect.

6.4.1 Implementing a New Handler

The ImageHandler class that provides the handler for image primitives is very easy to implement.
We focus on the main ideas of the implementation here. The complete code is included in appendix
A.1 as Listings A.1 - A.2.
The getMethods(Object) method returns the names of the supported methods. We regard only
two different parameter types in this extension: java.awt.Point representing a Move effects and
java.lang.Boolean for Show / TimedShow effects. For move effects, the sole entry of the returned
vector is translate, the standard move method. TimedShow animators offer both show and hide.
The primitive passed in as a parameter can be ignored within this method. Other handlers may
have to examine the primitive to determine the appropriate animation effects, as we will see with
the BoxPointerHandler.
The handler’s propertyChange analyzes the information encoded in the java.beans.PropertyChange-
Event parameter and determines appropriate actions. Note that the support for show and hide effects
does not have to be encoded explicitly, as this is performed internally within the ANIMAL frame-
work by adding or removing the primitives from the vector of objects scheduled for drawing.



154 CHAPTER 6. EXTENDING ANIMAL USING ANIMAL-FARM

The same process has to be performed for the BoxPointerHandler class. Listings A.3 - A.5 on
page 185 show the processing performed for Move effects. Apart from simply moving the whole
object with the translate method, we also have to manage the pointers (called ”tips” within ANI-
MAL). The setTip method sets the position of the first pointer without moving the rest of the list
element. The translateWithFixedTip method performs the opposite operation: it moves the whole
object except for the target position of the first pointer. Both operations are sufficient for singly-
linked lists. However, list elements with more than a single pointer need more flexible support.
This will be examined in the next section. Additionally, the color properties shown in Figure 6.1
on page 149 can be adjusted by a ColorChanger animator.
The implementation of the propertyChange method is also relatively easy. The show / hide effects
again are deferred to the super class, and the straightforward translate effect is also a matter of about
five lines of code. The diverse operations for changing the color of the individual subcomponents
can use the code of the respective primitives after a slight adaptation.

6.4.2 Example Extension: Move Subtype Support

In some cases, the developer may not wish to implement a full-fledged new animation effect, but
rather add new subeffects to an existing animator. For example, polylines can be moved both as a
whole object and on an individual node basis. This is even more important for list elements, where
the visualizer must be able to move each pointer individually. Additionally, it should be possible
to move the whole list element except for selected pointers. If these requirements are not met, the
behavior of the list element is too restricted to provide full list element support.
The needed features for selecting individual nodes of a list element are already provided for poly-
lines and can easily be reused for list elements. However, the code for offering the additional
methods for moving or fixing selected pointers as well as for performing the actual operation has
to be implemented.
For this end, developers can take either of two different solution approaches. First, they can modify
the implementation of the underlying primitive handler by adding appropriate lines of code to the
handler. This has adverse effects on reuse and may also affect system stability. Alternatively,
they can implement a handler extension which acts for all purposes like the real handler, but is
embedded dynamically based on the current configuration and can therefore also be removed easily
if problems occur.
Based on the implementation of the standard list element handler starting in Listing A.3 on page
183f, Listings A.6 - A.9 on pages 186-189 contain the code for an extended list element han-
dler. The getMethods method inherited from the super class contains additional methods for mov-
ing the whole list element except for individual pointers (translateWithFixedTip #, translateWith-
FixedTips...) as well as for moving selected pointers (setTip #, setTips...). The method names that
end with ellipsis (...) cause a special NodeSelector window to pop up for selecting the precise
nodes. The ellipsis in the method name is then replaced by the chosen node numbers. Otherwise,
the number following the hash mark character # is the number of the selected pointer. Example
method names could therefore be setTips 1 3 for setting the first and third pointer, or translate-
WithFixedTips 2 4 for moving the full list element without changing the position of the second and
fourth pointer.
The property change handling is similar to the code used within the standard list element handler.
First, the graphical primitive passed in is validated as an instance of the list element class PTBox-
Pointer and cast to the appropriate type. Then a cascaded conditional check for the chosen method
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name is performed. If the method name contains a hash mark #, the integer following it represents
the node number to work on. The move distance is calculated from the values encoded in the Prop-
ertyChangeEvent. The appropriate primitive method for setting the pointer or moving the object
without the pointer can then be invoked.
Supporting the animation of multiple pointers at the same time is slightly more challenging. Here,
a java.util.StringTokenizer is used for extracting the numbers passed by the method name. Note
that the editing process replaces method names such as setTips... with a concrete name like setTips
1 3 after prompting the visualizer for the nodes. A boolean array sized according to the number of
pointers is used for representing the nodes to modify. The individual array elements are initialized
to false and thus “no modification”. The concrete elements to modify are determined by the String-
Tokenizer. After the array is initialized, the appropriate methods are invoked, based on the type of
animation method. Note that the method does not end with else super.propertyChange(ptgo, e), as
this would lead to a Stack overflow due to tailless recursion.

6.5 Adding Language Support

Adding a new language support for the GUI components is easy. The user or visualizer simply
downloads a language support pack from the ANIMAL home page [169] and uses the Component-
Configurer component to embed it in ANIMAL. The translation texts are stored in ASCII files
named AnimalResources.ll CT, where ll stands for the language code and CT for the country code
in upper case. Thus, the US-English texts are stored in AnimalResources.en US, German resides in
AnimalResources.de DE and Spanish would be stored in AnimalResources.es SP.

Listing 6.1: Example Definitions from the US-English Language Support File� �
About=About Animal
AnimAuthor=Animation Author :
AnimInfo=About t h i s Animation
AnimSize=Animation Size :
An imTi t le =Animation T i t l e :
about.iconName= H e l p . g i f
a b o u t . l a b e l =About Animal
about.mnemonic=a
a b o u t . t a r g e t C a l l =showAboutDialog
abou t . t oo lT i pTe x t =Shows in fo rma t i on about Animal
animBGColor=animat ion background c o l o r
animBGColorOption=Animation Background :
animInfo.iconName = H e l p . g i f
a n i m I n f o . l a b e l =About t h i s v i s u a l i z a t i o n
animInfo.mnemonic=v
a n i m I n f o . t a r g e t C a l l =showAnimInfoDialog
a n i m I n f o . t o o l T i p T e x t=Show i n f o about the cu r ren t animat ion� ��

The format of the resource files is a simple sequence of one key=value pair on each line. Listing
6.1 shows an example selection of the US-English texts for ANIMAL. If the chosen language is not
supported, it is still easy to provide support. The developer simply has to copy the English resource
file and replace the values - only the values, not the keys! - with the appropriate translation. After
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adding the language file via the ComponentConfigurer, the new language is instantly available
within the Language menu of the main ANIMAL window.
The entries of the file can be classified in four categories according to their target area of use: simple
labels, standard GUI elements such as radio buttons, menu items and button labels. The simple
labels, such as AnimAuthor in Listing 6.1, provide only the straightforward translation. Standard
GUI element entries usually also include a tool tip text that provides a short description. Menu
items and buttons may also contain an icon and a method to invoke upon activation. The icon and
method are specified by name, as can be seen with the entries about.iconName and about.targetCall
in Listing 6.1, respectively.

6.6 Extending Import and Export Facilities

The possible extensions for import and export facilities can be grouped in two aspects: provi-
ding a completely new import or export format, or adding to an existing format. Completely new
import or export formats have to be developed from scratch using ANIMAL’s support classes and
embedded using the ComponentConfigurer. Additions to an existing format only have to be placed
in an appropriate directory where the Java runtime environment can locate them. They are used
automatically if the primitive they handle is encountered.

6.6.1 Example Extension: Adding JSamba Import Facilities

JSamba [197] employs a scripting language for specifying animation content. Providing an import
filter for JSamba and other scripting-based animation formats requires the following operations:

1. implement components that handle the parsing of the scripting code,

2. map the parsed primitives and animation effects to ANIMAL primitives and effects “as closely
as possible”,

3. insert the generated elements into the animation.

ANIMAL comes with an extensive support component for parsing ASCII-based scripting languages
that place at most one command on a line of input. The developer can use this class to generate
a parser with comparatively little effort, or use the sourcerer component that builds a parser from
an extended Backus-Naur-Form specification. The output of this parser is a properties object that
stores the parsed values, and can be used for building ANIMAL components.
Mapping the primitives and animation effects to ANIMAL is typically easy to achieve. In some
cases, compromises may be necessary. For example, ANIMAL does not support rounded edges
in polygons. While this is a possible area for future extensions, animations that employ rounded
edges can currently only be rendered approximately. Once the current command has been mapped
into an ANIMAL representation, the objects can be inserted with a single straightforward method
invocation.
Implementing import facilities for new primitives or animators in an existing format is even eas-
ier. The developer can adapt the implementation of the new filter to those already present for the
given format. The same support classes for parsing ASCII-based input can be used. For example,
parsing support for Image primitives or Zoom effects is very straightforward to implement after the
developer has defined the precise structure of the file format. The new classes are then placed in the
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appropriate directory in the CLASSPATH. For example, an ImageImporter class for core ANIMAL

would be placed in the directory animal.exchange.animalascii if the ASCII-based ANIMAL format
is used.

6.6.2 Example Extension: Image and Video Export

As an interesting application of the flexible export facilities in ANIMAL, we provide both image and
video exporting. To keep ANIMAL’s code small, both facilities rely on external APIs for performing
the file stream handling. Image generation is highly flexible: the user or visualizer can select an
arbitrary set of steps for export and decide between a static snapshot of the step start or a “dynamic”
export which saves all intermediate frames as individual images. The latter can for example be used
for generating animated GIFs using other freely available tools. Additionally, the output images
can be scaled to the canvas display magnification or any user-specified magnification. The actual
exporting is accomplished by drawing the requested animation steps at the chosen magnification
and passing the resulting image to the export library. We have chosen JIMI [202] for this purpose,
as it is both easy to handle and flexible. Due to the straightforward implementation, the complete
source code for image exporting is only 6615 Bytes long.
Video export currently uses Apple’s Quicktime for Java API [10]. The export follows the same
basic approach, except that the animation display images are now drawn on a QTCanvas object
instead of the ANIMAL animation window. The total size of the Quicktime generation filter is
roughly 13 kB. However, due to the use of native libraries within the Quicktime for Java library,
video export is currently limited to MacOSTM and Microsoft WindowsTM .

6.7 Interactivity Support

Within the course of a cooperation with Tom Naps at the University of Wisconsin Oshkosh, AN-
IMAL was adapted to fit the Visualizer interface of Naps’ JHAVÉ system. Part of this adaptation
covers the support for interactive prediction using multiple choice quizzes and dynamic HTML-
based documentation, as described in [2].

Figure 6.2: Interactive Prediction: Fill in the Blanks Question
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The added components are gathered in an InfoFrame as shown in Figure 6.2. Here, the user is
prompted to predict the next position of the pivot element in a Quicksort animation. Adaptive
documentation [134] is also supported and can be shown in the InfoFrame. For layout reasons, this
is not included in Figure 6.2. All interactive elements are available in ANIMALSCRIPT, including
dynamically adapting documentation that can change the document URL to update the contents.
More details on this can be found in [131], although this does not yet cover the incorporation of
ANIMAL. A paper that describes the incorporation of interactivity into ANIMAL is currently in
print [181].

6.8 Summary

In this chapter, we have outlined some extension possibilities for ANIMAL. The dynamic loading
of independent components widely employed throughout ANIMAL allows easy plugging in and un-
plugging of extensions. Developing extensions is usually relatively easy, largely independent of the
content of the extension. In general, implementation difficulties stem more from the implemented
content than from the environment as fixed by the framework.
Typical extensions areas include new graphical primitives such as images and list elements, anima-
tion effects such as zoom and special animation effect methods, such as moving only selected nodes
of a given primitive. Graphical primitive handlers acting as agents between the associated primi-
tives and effects thereon can also be extended by an external class. Thus, no code modification is
necessary.
ANIMAL’s GUI can be translated on the fly by selecting the target language from the main AV
window. Adding a new language is another configuration operation performed within the Compo-
nentConfigurer. Providing a new language requires only the translation of an ASCII-based resource
file and configuring the component.
Extending the set of import and export filters provided by ANIMAL is performed by implementing
the filters using the prepared support classes for ASCII parsing and object storage. The new objects
are then added to ANIMAL using the ComponentConfigurer. As example filters, we have briefly
touched on importing JSamba [197] and exporting animations in image or Quicktime video format.
As we have seen, the large goals of making ANIMAL both extensible and configurable along the
lines of the proposed framework were achieved. In the next chapter, we examine how ANIMAL

measures up against the requirements placed in chapter 3.



Chapter 7

Evaluation

7.1 Introduction

In this chapter, we evaluate the features offered by the ANIMAL-FARM framework introduced in
chapter 4 and its prototype ANIMAL. To do so, we revisit the requirements defined in chapter 3 and
discuss the extent of their realization in our system.
For evaluation purposes, we offer two different views of the requirements. First, we examine the
state of support for individual requirements independent of the user role placing the requirement.
This mapping is then performed within a table that summarizes the findings and maps them against
the different requirements.
The requirements can be divided into the following 13 different areas, each of which is evaluated
in a separate section:� required environment including special hardware or operating system demands,� extensibility and configurability,� development state and performance,� applicability,� content generation,� content presentation,� user interface considerations,� display controls,� user interaction,� educational support,� algorithm understanding support,� file exchange,� and programmer requirements.
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7.2 Evaluation of ANIMAL’s Support for the Requirements

In this section and its subsections, we evaluate the degree to which ANIMAL measures up against
the requirements of chapter 3. The section is structured into individual subsections that address
one segment of related requirements each. We also provide a table overview that maps the current
implementation state of ANIMAL against the different user roles.

7.2.1 System Requirements Evaluation

System requirements define the target platform needed for running a piece of software - in our
case, an AV system. The foremost system requirements as discussed in section 3.2.1 are operation
system independence (GR1) and modest hard disk and RAM requirements (GR2). Additionally,
the system should not require special additional hardware or software libraries (GR3), and be able
to run without an Internet connection (GR4).
Today, the main criterion for platform independence is usually no longer the actual hardware but
rather the operating system. On the one hand, several operating systems are available for differ-
ent hardware platforms - for example, Linux -, and on the other hand, there is no longer a unique
mapping from hardware to the operating system even for “exotic” hardware. Therefore, the main
question to ask is whether the given system is independent of the operating system it runs under.
Most AV systems which are freely available today are implemented in Java. Provided that a suf-
ficiently recent Java runtime environment is available for the target system, any Java-based AV
system is basically platform independent. However, the platform independence can only be guar-
anteed if no special hardware or additional, possibly platform-dependent, software components are
required.
ANIMAL is written in standard Java and thus fulfills GR1. The base system also does not require
any special hardware of external libraries, in accordance with GR3. Optional extensions, such as
image and Quicktime video export, require special libraries, which may introduce platform depen-
dence due to native code. This is actually the case with the Quicktime library, which is currently
limited to Windows and MacOS. If this library were needed to run ANIMAL, GR3 would be vi-
olated; however, its absence only prevents accessing an optional extension without restricting the
basic functionality.
The standard ANIMAL distribution is sufficiently small to fit on a single 1.44 MB floppy, leaving
enough space for an archive of all currently available ANIMAL animations. The RAM requirements
are dictated by Java and are typically 32 MB or more on most modern computers. Thus, GR2 that
demands modest hard disk and RAM requirements is fulfilled.
In contrast to some AV systems such as Jeliot [72], ANIMAL works on a computer without Internet
access, as demanded in GR4. If an Internet connection is present, the user may log in to the
ANIMAL repository and download animations and extension packages. As ANIMAL is free, it can
be acquired and used by both teachers and learners. Its lean size of less than one megabyte also
makes it highly usable for both faculty and students (VR6).

7.2.2 Extensibility Requirements

Apart from the system requirements regarded in section 7.2.1, extensibility (VR2) places the most
far-reaching restrictions on a system’s architectural design. In chapter 3, we have isolated the fol-
lowing requirements that address extensibility: easy addition of components (DR1), the presence of
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documentation (DR2) that illustrates how extensions can be implemented without detailed system
knowledge (DR3), and support for configuring the system’s components (VR3).
We address all of these requirements in the ANIMAL-FARM AV framework presented in chapter 4.
An extensive documentation of how extensions can be generated is included in this thesis and also
provided on the Internet [168]. The most challenging aspect regarding extensibility is making the
provision of extensions not only possible but also easy - especially since we have set ourselves the
goal of making source code modifications unnecessary.
As we have seen in chapter 4, this ambitious goal is achieved by the AV framework presented in
this thesis. How did we manage to do it? Let us briefly summarize the main techniques, to further
ensure that the goal has been met.
Within the framework design, we have consequently adapted the approach of representing object
state in a dynamic data structure to extensible system design. Usually, this approach is found in
libraries of adaptable GUI components, such as Java Swing. We have extended this approach as
follows. The framework contains only a very small number of “fixed” central classes that provide
the basic frame for the system. Most of these classes are abstract. Concrete instances are embedded
in the system by dynamic loading, based on a configuration that can be passed in at start-up, or is
fixed to disk in the form of a configuration file. To provide maximum flexibility, the configuration
file is always looked for in the “current” directory, that is the directory where the application was
started, before the CLASSPATH entries are searched. Therefore, there can in principle be as many
different configurations as there are directories in the given file system.
The dynamically loaded classes are checked for conformance to the given target interface or class.
If this check is passed and the attempt to instantiate the class using Java’s reflection support also
leads to no error, the new object is entered to a hash table. The entries of the hash table are
Prototypes [61, p. 127ff] for future instances of the given class. The class name serves as the
lookup key. Using hash tables for storing prototypes has the advantage that adding and removing
components is very easy. To add a component, the system simply follows the same approach as
described at the start of this paragraph: load the appropriate class definition, check its interface,
and insert an instance of the class in the hash table, if all tests were passed. Removing a component
is achieved by simply removing its key from the hash table.
The framework goes one step further by representing object state by properties instead of fixed
attributes. The rationale behind this is threefold: first, properties allow the insertion and therefore
“declaration” of new keys at run-time. Second, default values for all properties keys can be in-
stalled, with the default value being returning when the currently requested key has no associated
value. Finally, mapping shared state-defining attributes is easier to accomplish using properties, as
access restrictions need not be circumvented or rendered ineffective by making everything “public”
or having default access.
From the extensibility point of view, the first two points are the most interesting. They effectively
mean that if developers of a new extension require attributes not declared in existing classes, they
can “declare” them by inserting an appropriate value in the chosen element. Note that this requires
no source code modification - not even the presence of the actual source code is needed for suc-
cessful compilation! Thus, our chosen approach offers new, innovative and interesting venues into
adaptive software construction.
So far, we have illustrated that developing extensions without touching existing code is possible in
our framework and the systems built on it. However, this does not mean that the development is
necessarily easy. In order to also achieve this goal, the framework introduces another new concept:
a handler class that acts as a negotiating agent between two other classes. Within the AV area, the
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target classes are the graphical primitives on the one hand, and the animation effects on the other
hand. The handler completely decouples these two classes, despite their seeming dependence on
each other. It does so by acting as a Singleton [61, p. 1287ff] that handles the specific operations
for one type of primitive.
An animation effect essentially needs to be able to perform two different types of operation on
primitives. First, it has to query the status of the primitive to determine the concrete animation
subeffects applicable to the primitive. Second, it has to invoke appropriate methods in the primitive
instance that cause the primitive to adapt to the desired outcome of the animation effect.
The handler cuts this direct connection between the animation effect and the primitive. The anima-
tion effect contacts the primitive only via the handler. Thus, the handler generates and returns the
list of applicable animation subeffects, and also determines and invokes the set of primitive methods
needed for representing the effect. Both operations may require querying the state of the underlying
primitive. For example, if a Move animation effect can also move single polyline nodes, the handler
has to query the given polyline instance to determine how many nodes it has in order to generate
the list of all applicable animation subeffects. However, this type of access is uncritical from the
object-orientation point of view. The handler is a Singleton specially adapted for the primitive, and
thus may have to change if the primitive changes. Preferably, developers should implement exten-
sion handlers for such operations. Following our basic approach of maximum flexibility, these are
also added and maintained dynamically in a hash table, allowing for easy addition and removal.
Finally, we have to justify the claim that adding and removing components is easy, independent of
how difficult or easy their implementation might have been. For this end, the framework provides
the ComponentConfigurer component described in section 5.2. This component offers an easy way
for adding and removing extensions while the system is running. It thus fulfills the requirements
for easy component addition (DR1) and configurability (VR3). To sum up, we can therefore state
that the requirements VR3, DR1, DR2 and DR3 are fulfilled very well by our framework.

7.2.3 Development State and Performance

Another issue of paramount importance for the target audience is the development state of the
system. An “alpha” or “beta” version of a system is often unacceptable for many target usage areas
due to likely changes in later versions and known but yet unresolved bugs. In general, the system
should be well-maintained and stable (GR5) and, ideally, have a fixed update policy for planned
versions (GR6). From the user’s and visualizer’s point of view, the total cost of ownership should
also be small (GR7). Cheap but well-implemented software with sufficient performance (GR8)
also has benefits for the developer, who is more likely to be interested in developing extensions on
a good basis. Finally, all four roles are likely to appreciate a simple and straightforward download,
installation and easy maintenance of the software (GR9).
ANIMAL’s official release is tested for stability over several weeks before it is made publicly avail-
able. As with any other large piece of software, we cannot guarantee the absence of bugs. However,
we have ascertained the stability and document known bugs on the tool’s web page including up-
dates when the bug has been resolved. Thus, ANIMAL can be taken to fulfill GR5 and GR6.
Currently, ANIMAL is given away for free, and thus has an almost zero TCO value, as requested
by GR7. Certain costs for the time needed for getting acquainted with ANIMAL can be assessed.
However, these costs could not be avoided by any system, no matter how “intuitive” the interface
might claim to be. ANIMAL is also not especially resource-hungry, running on all current com-
puters with ease. The computer on which large parts of ANIMAL’s newer components have been
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developed is a 300 MHz Intel Pentium II notebook running SuSE Linux (release 6.1 to 7.3). AN-
IMAL runs smoothly on this computer; most components do not take a noticeable amount of time.
The main exceptions to this rule are the elaborate parsing methods required for resolving relative
placement or internationalization within ANIMALSCRIPT animation input. In all other areas, the
system performance is more than sufficient for the performance requirement (GR8).
Finally, the newest release of ANIMAL has simplified the process of downloading and installing
ANIMAL even further. After navigating to the system home page [168], the user has to fill out
a small form and can then download a Java archive file that contains the full distribution. This
jar can be invoked either manually or - under Microsoft WindowsTM - by double clicking it
with the mouse. The latter approach assumes that the file type has been appropriately associated
with the Java runtime environment; otherwise, the CLASSPATH variable used by Java has to be
updated. Maintaining the installed system is also easy, as the maintainer has to do nothing at
all. The configuration files that steer the start-up component determination and initialization are
searched first in the current directory, then in the CLASSPATH and finally in the jar file of the
distribution. If a user should ruin his local installation, he or she can simply change to a different
directory and restart ANIMAL “from scratch”. Thus, GR9 is also satisfied by ANIMAL.

7.2.4 Applicability

After the more technical aspects discussed in the previous sections, we will now focus briefly on
the breadth of applicability offered by ANIMAL. As stated in GR10, the application area should
not be restricted to certain topic areas, and the system goals should be well-documented (GR11).
Again, ANIMAL measures up well against these requirements.
First, ANIMAL is not focused on a single topic area, such as graphs or sorting algorithms. Instead,
both its primitives and animation effects are generic to allow arbitrary content to be displayed. The
free placement of components and the support of the most relevant graphical primitives also allows
ANIMAL to break out of the bounds of its original algorithm animation content and act as a small-
scale alternative to full-fledged presentation tools such as Microsoft PowerPointTM and StarOffice
ImpressTM. For example, the animations generated by students within ANIMAL’s graphical front-
end include applications from Marketing, Economics, Physics and Mendel’s Laws from Genealogy
- topics that might as well have been presented in professional presentation tools. The application
area is therefore flexible enough to meet the associated requirement of free applicability (GR10).
The goals of the system – providing easy-to-use, portable and flexible support for AV while incor-
porating modern software engineering techniques – are well-documented within this thesis. Thus,
the requirement GR11 that demands well-documented system goals is also met.

7.2.5 Animation Generation

Chapter 3 defines seven requirements regarding the generation of animation content. Firstly, the
user shall be able to specify or generate the input data used by the algorithm (UR9). ANIMAL does
not directly support this requirement, as it is completely context-free. It thus has no easy way of
determining what input types and values might be required. In principle, the order of the algorithm
parameters, names and types can be described in a XML-based notation. However, this approach
reaches its limit if only subaspects of an intricate method invocation sequence are to be illustrated.
For example, illustrating the Ford-Fulkerson algorithm for maximum flow in a network as described
for example in [185] requires the initialization of a matrix and, depending on the realization, a set
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of other method invocations. This is difficult to describe abstractly without causing undue difficulty
to the person generating the specification. Instead of this approach, ANIMAL delegates the parsing
and incorporation of input parameter data to the (possibly external) subcomponents that generate
the animation content. For example, the JHAVÉ system [131] offers special input provision facil-
ities for the algorithms it handles. The ANIMAL Sorting Algorithms Demo applet [172] shows an
ANIMAL-specific animation generation applet that generates ANIMALSCRIPT animations of sev-
eral popular sorting algorithms according to the element and color settings chosen by the user. The
applet illustrates one approach how ANIMAL can show animations generated from user input by
shifting the context knowledge needed for querying the parameter from the AV system to context-
specific generation wrappers.

A second generation requirement is that several generation approaches (VR5) shall be offered to
better adjust to the visualizer’s skills and preferences. As described in previous chapters, ANI-
MAL currently offers three generation approaches: visually using the mouse with drag and drop, by
scripting using ANIMALSCRIPT, and by API invocations. Additionally, by adding input filter ap-
plications as done for sorting algorithms [172], topic-specific animation families may be generated,
and animations may also be extracted from filtered code interpretation. Thus, VR5 is very well
addressed by ANIMAL. The requirement of automatic ad-hoc generation (VR11) can also be met
by the prototypical implementation. Note that automatic generation nearly always implies context
knowledge of either the specific topic area or the underlying interpreted programming language.

The visual front-end for generating and editing animation content is easy to pick up, as shown in
chapter 5.6. We have also tried to make the scripting and API front-end as easy to learn as possible
by choosing a straightforward notation. One part of making a system easy to learn (VR15) lies in
object placement. For visual generation, including a grid with user-adjustable width is enough for
placing objects. Programmed animation generation approaches such as scripting and API invoca-
tions benefit greatly from relative object placement (VR14). In the absence of relative placement,
the visualizer has to calculate the screen positions of all primitives manually. This is both time-
consuming and likely to lead to incorrect placement. Relative placement, on the other hand, allows
placing one object at a certain distance from a reference object, independent of where this reference
object resides. ANIMALSCRIPT and the generator API address the requirement VR14 by offering
flexible relative object placement based on the reference object’s bounding box, previously defined
locations, the last position used or individual nodes of a polyline or polygon.

One aspect that a purely graphical front-end cannot easily achieve is quick generation of anima-
tion content, as demanded by VR12. ANIMAL therefore incorporates the scripting language AN-
IMALSCRIPT and the animation generation API for quick generation of animation content. Note
that “quick” here refers to the time needed by an experienced visualizer for generating animation
content. The time needed to familiarize oneself with the animation system has to be taken into
account separately. ANIMAL keeps this initial learning time moderately short by providing easy-
to-use components.

ANIMALSCRIPT also offers an optional component that allows the embedding of other ANIMAL-
SCRIPT files to an existing animation. Thus, a library of reusable animation components may be
built (VR13). A typical application of this component is to extract the introduction and summary
sections of animations for a given sorting algorithm and dynamically linking them from the gener-
ated concrete sorting applications.
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7.2.6 Content Presentation

We isolated four user requirements regarding the content presentation capabilities of an AV system
in chapter 3: embedding of textual explanations (UR1), pseudo code (UR2), abstract views (UR3),
and linking to (possibly external) documentation (UR4).
Embedding a textual explanation of the display is easy to do in systems based on visual genera-
tion. ANIMAL’s editing front-end thus offers full support for arbitrary textual components. ANI-
MALSCRIPT and the generator API also support placing explanatory elements, textual or otherwise.
The ability to use relative placement again is useful for adding elements next to the entries they are
supposed to explain. UR1 is therefore fulfilled by ANIMAL in all generation and display front-ends.
Pseudo code addition can be a powerful assistance in focusing on the contents of a given algorithm.
For example, it can be used for abstracting or simplifying parts of the code. ANIMAL’s graphical
front-end for animation generation and editing views pseudocode as standard text and therefore
supports embedding, indentation and highlighting.
ANIMALSCRIPT and the generator API offer special support for code and pseudo code. The code
is specified as members of a code group, with each line containing one or more text elements with a
visualizer-specified indentation level. The line or element to highlight can be chosen with a single
command. Three different types of color highlighting are supported: unhighlight, highlight and
context highlight. The latter can be used if the context of the current command is to be highlighted,
typically the enclosing block or method invocation. ANIMAL therefore satisfies the requirement
UR2 for pseudocode embedding.
The simplest type of abstract algorithm views is pseudocode, which we have already determined
to be supported by ANIMAL. Other, more elaborate abstract views include metaphors or “stories”
[50]. While no special support for abstract views is incorporated in ANIMAL, the visualizer can
assemble such elements using the graphical primitives ANIMAL provides within the GUI front-
end, ANIMALSCRIPT and the generator API. We therefore argue that requirement UR3 is at least
partially supported by ANIMAL.
Sometimes, the layout prevents the inclusion of explanatory notes into the main animation body. In
other cases, the visualizer may want to separate the description from the actual content. One good
way of doing this is by placing the documentation in a separate window. The documentation may be
in HTML format and thus allow the user to browse through it at will. Refined documentations may
be adaptive to the current state of the display, and for example include concrete values lifted from
the current animation into the documentation, as described in [2]. Based on the cooperation with
Tom Naps, author of the JHAVÉ environment [131], ANIMAL also incorporates links to external
documentation in the InfoFrame component, and thus fulfills UR4.

7.2.7 User Interface

We have already shown that ANIMAL is highly flexible and easy to customize in the previous
sections and chapters, as demanded by requirement UR21. ANIMAL’s graphical front-end employs
the standard user interface considerations regarding clearness, orderliness, consistency, and forcing
interaction only where necessary, as requested by UR17. Note that ANIMAL does not enforce
sensible color choices, as this would restrict the creativity of the visualizer and possibly also the
range of applicability. By making the last color chosen the default color for future operations,
helpful color choices are made easier, in keeping with UR20.
ANIMAL also offers both smooth and static transitions. The visualizer may specify the base offset
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and duration for each effect. Note that a duration of 0 equals an instantaneous transformation. To
take different hardware performance and user perceptions into account, the user can also adjust
the animation speed between the theoretical value of 0% and 1000% (10 times the original speed).
Primitive transitions with a duration are performed smoothly, provided that the hardware is suffi-
ciently fast to perform them on time. This is noticeably more often the case if virtual frame-based
time is used than when using real time on a millisecond basis. Even reverse execution of effects is
performed smoothly. Requirement UR19 is therefore fulfilled.
Finally, both animations and the user front-end employed by ANIMAL are fully translatable on an
ad-hoc basis. Currently, content translation is limited to animations generated in ANIMALSCRIPT

or using the generator API. The target language for the animation is chosen on loading the anima-
tion to allow for placement resolution. The GUI front-end can be translated at any time by selecting
the appropriate entry from the Language menu of ANIMAL’s main window. Note that both transla-
tion types depend on the presence of appropriate language resources. Thus, many ANIMALSCRIPT

animations may not be translatable due to a lack of language resource files. As this could easily be
remedied by providing appropriate files, requirements UR18 and VR4 are fully satisfied.

7.2.8 Content Display and Controls

The controls for animation content display have to be highly flexible to allow the highest degree
of comfort for users and visualizers. Users especially need to be able to pause and rewind the
animation to be able to achieve meaningful understanding [2, 134]. The minimum requirements
therefore are support for play, pause, stop and rewind. ANIMAL goes beyond this by adding a static
step forward / backward facility.
Typically, ANIMAL animation steps are linked by an user interaction event rather than a fixed time
delay. Thus, they offer a natural pause between segments of content, contrary to some other systems
such as JAWAA [161, 152] or JSamba [196, 197]. The user can employ these breaks for gathering
thoughts, rethinking what was shown, and assimilating the content, as stated in requirement UR6.
The slide show mode, on the other hand, links all originally unlinked animation steps into one large
procession that can be started and paused with one mouse click each. The slide show mode is also
employed in other systems such as JAWAA [161, 152] and JSamba [196, 197]. However, to our
knowledge, ANIMAL is the only current general AV system that offers a play, step and slide show
mode for both directions, as well as a jump to the start or end of the animation.
Additionally, the speed of the animation can be adjusted between 0% and 1000% of the original
speed, as discussed in section 7.2.7. Finally, the display may be scaled between 0% and 500%
of its original size. Thus, ANIMAL exceeds the requirements of video player controls (UR5) and
adjustable speed (UR30). The speed controls also allow graceful degradation (UR31) if the current
machine is slower or faster than anticipated by the animation’s author.
At the user’s discretion, individual animation steps may be skipped, due to the built-in structured
view of the algorithm (UR12) and the slide rule for adjusting the current animation step. Addi-
tionally, the visualizer may decide to skip less interesting aspects of the underlying algorithm when
developing the animation. As ANIMAL is not based on code interpretation, arbitrarily long “jumps”
in the display are possible, as demanded by VR8.
ANIMAL does not provide direct support for displaying a “history” of previous states. However,
given enough screen space, the previous state can be shown next to the current state, as employed
in other tools [100, 101, 148]. Additionally, the flexible access controls allow going back to the
previous step for looking up the last state, as well as replaying the current step with smooth motions
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to easily detect changes. Requirement UR32 is therefore at least partially satisfied.
ANIMAL currently does not support fixed visualizer conventions, such as the size of elements, sim-
ilar to style sheets in Web context. At the present stage of development, only one set of properties
is stored that reflects the last chosen settings for elements of the given type. However, we plan to
provide an extension that offers style sheet-like capabilities in a later release. Requirement VR7 is
therefore mostly unsupported at the current stage of development. Multiple views (VR9) are also
currently unsupported, but planned for a later extension.
Finally, we are working on embedding ANIMAL into several courses at various universities, includ-
ing the University of Siegen, Germany, where ANIMAL was originally developed, the Darmstadt
University of Technology, Germany, and the University of Wisconsin, Oshkosh. We hope to ulti-
mately be able to duplicate the close relation to the lecture materials for a given course that was
important for the success of the BALSA system. Currently, the associated requirement (VR10) is
not yet fulfilled, but we have made significant progress in that direction. For this end, we count on
our current positive experiences in faculty propagation, as demanded by UR14.

7.2.9 User Interaction

One segment of the user interaction (UR7) is using the controls that steer the animation. This
activity, including the selection of labeled animation steps that act as hyperlinks, has already been
discussed in section 7.2.8. In general, the simplest form of user interaction is requesting mouse
clicks or other actions for advancing to the next animation step. As described in section 7.2.7, this
is done in ANIMAL at the visualizer’s discretion. A more advanced degree of interaction lies in the
area of interactive predictions. Here, ANIMAL in combination with the JHAVÉ environment offers
flexible interactive prediction including a “for real” mode that deactivates the animation controls
until an answer has been submitted. Both UR7 and UR10 are therefore addressed by ANIMAL.
We have also outlined before how the user may specify input data and perform a role shift to
visualizer, as described in requirements UR8 and UR9. Note that the choice of appropriate data
depends on both context and algorithm and can therefore not be performed automatically by a
generic system. Of course, any type of interesting or pathological input data for any given algorithm
can be used within ANIMAL; however, the data and the resulting animation effects have to be
specified by the visualizer. Requirement UR11 is therefore supported to the degree possible for a
generic AV system.

7.2.10 Educational Support

Many AV systems are not able to embed any type of meaningful complexity analysis into their
content. If a complexity analysis is embedded, it is usually restricted either to an abstract proof with
no connection to the animation content, or limited to a fixed input set. Based on ANIMALSCRIPT’s
modular animation components, ANIMAL offers a middle-way solution. The basic introductory
comments as well as the efficiency and complexity analysis of a given algorithm can be externalized
to a separate file and shared by all animation instances of the given algorithm. ANIMALSCRIPT

supports value assignments to String-based variables, which can be replaced by their value at the
time of reading. From a practical point of view, the visualizer may set a given variable to the
number of comparisons, assignments, swaps or any other value. The variable can then be used in
the externalized animation module that discusses the efficiency of the algorithm in general, thus
inserting the actual value of the given invocation. This can be used as a foundation for embedding
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efficiency analysis even in a generic, context-unaware AV system (UR13).

ANIMAL currently does not support specific visual layout notations, for example “fact cards” as
described in [125] (UR15), or the adjustment of the level of detail shown (UR16). Note that both
requirements are very difficult to achieve for a generic system that is by definition unaware of the
displayed primitives’ semantics.

7.2.11 Algorithm Understanding Support

Several issues must be addressed to reach optimal support for algorithm understanding. First,
the speed of the display must be adjustable to the user’s preferences (UR30). The presentation
of related issues should be consistent over separate animations (UR33); for example, the array
underlying most sorting algorithms should always be displayed in the same way. As we have seen
before, ANIMAL offers flexible controls for adjusting the display speed. The precise presentation
of the animation content is not enforced by ANIMAL to avoid restricting visualizers unnecessarily.
However, the primitives offered by ANIMAL and especially ANIMALSCRIPT are well-suited for
consistent presentation. The requirement UR30 is therefore fully met and UR33 is at least partially
fulfilled.

Two related issues that ANIMAL can handle to a certain extent are the clear mapping of code to
animation components (UR34) and focusing of user attention (UR25). ANIMAL supports diverse
approaches for explaining the mapping of the underlying code to the animation content: textual
explanations (UR1), pseudo code including indentation support and highlighting (UR2), using ex-
ternal documentation (UR4) and interactive predictions (UR10). Similarly, color and especially
highlighting techniques can be used for focusing the user’s attention (UR25). However, the vi-
sualizer is not forced to employ any of these techniques. As ANIMAL is completely unaware of
the context in which it is used, it also cannot provide automatic support for these features. The
requirements UR25 and UR34 are therefore fulfilled only partially by ANIMAL. However, we can
argue that a generic system cannot fulfill them to a greater degree than ANIMAL does. In a similar
vein, ANIMAL offers a good selection of features for focusing on the understanding of algorithms
and data structures (VR1), without enforcing adherence.

In the same vein, the requirements for a didactical structure of the animation (UR26) and the us-
age of small data sets for introducing new topics (UR27) are supported by ANIMAL, but cannot be
enforced. The same goes for loop shortening (UR28), which is easy to do both in the visual genera-
tion front-end and using ANIMALSCRIPT or the API. Restricting the animation content to allowing
only meaningful user events (UR35) and including at most one interesting event per animation step
(UR29) can also not be enforced by a generic AV system such as ANIMAL.

At first glance, it might appear that ANIMAL is ill suited for supporting understanding of the algo-
rithmic content. However, this is actually not the case. ANIMAL offers rich features for supporting
the understanding of algorithms; however, it is up to the visualizer to use or ignore them. This is
due to the fact that as a context-unaware system, no support can be provided for specific algorithms.
In fact, as ANIMAL allows for greater design freedom in assembling the animation content, we can
argue that ANIMAL allows better algorithm understanding than topic-specific tools if the visualizer
works well.
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7.2.12 File Exchange

File exchange between different applications is an import feature, but rather uncommon in AV sys-
tems. In general, the visualizer should be able to store the animation content at any time (UR22),
and users should also be able to load and store animations at their discretion. ANIMAL offers flex-
ible export and import facilities for this purpose, as required by UR23 and UR24, respectively.
Apart from the internal animation format in compressed and plain text format, ANIMAL also offers
exporting to XML, various image formats and Quicktime videos. The latter two options require spe-
cial external libraries. Note that Quicktime support is currently limited to Microsoft WindowsTM

and MacOSTM.
Another related issue for file exchange is format compatibility. On the one hand, the current system
release must be able to parse the content of previous releases (GR12). This is achieved in many
systems, for example office products such as Sun StarOffice. Of even more interest is the facility
to parse code produced by later releases of the software than is currently being used. ANIMAL

addresses both issues by maintaining a version number for each primitive and effect. Depending on
the version number, the appropriate set of attributes is parsed. In general, additions to the format are
always added at the end of the line containing the element. Thus, requirements GR12 and GR13
are addressed by ANIMAL.

7.2.13 Programmer Requirements

Currently, ANIMAL does not address the programmer requirements for code editing in an IDE
(PR1) and standard library support (PR2). ANIMAL can serve as a small-scale programming envi-
ronment testbed (PR3) where the programmers implement graphical primitives or effects. In this
function, it can also be used to introduce the dynamic loading and reconfiguration options.

7.3 Summary

In this chapter, we have evaluated the degree to which ANIMAL fulfills the requirements we defined
in chapter 3. The discussion was split into different areas depending on the target focus of the
individual requirements.
As we have seen, ANIMAL currently fulfills 62 of the 69 requirements. Seven requirements are
only partially fulfilled, including support for abstract views (UR3), input data specification (UR9),
automatic ad-hoc generation (VR11) and a close link to lecture materials (VR10). Five other
requirements are supported but cannot be enforced by a generic system such as ANIMAL: didactical
animation structure (UR26), small data sets for introductions (UR27), loop shortening (UR28),
restricting user events (UR35) and placing at most one “interesting event” in each step (UR29).
ANIMAL currently does not address the following requirements: visual layout support (UR15),
adjustment of detail level (UR16), visualizer animation conventions (VR7) and multiple views
(VR9). The programmer requirements for an IDE (PR1), standard libraries support (PR2) and
acting as a programming testbed (PR3) are also not fulfilled.
While ANIMAL is therefore not yet “perfect”, it offers a large selection of highly relevant and
innovative features for AV systems. The main focus area of extensibility and configurability is not
found in most other comparable systems.
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Chapter 8

Conclusions

Algorithm visualization and its subfield of algorithm animation have become more popular with
teachers and instructors all over the world over the last few years. This is evidenced both by the
number of publications on the topic and the number of algorithm animations available on the World
Wide Web. In 1998, Price et al. estimated the number of available animation systems at more than
150 [156]. Since then, the number of systems and individual applets has risen further.
In chapter 2, we have provided a short history of algorithm animation and introduced the four
user roles user, visualizer, developer and programmer. The user is the end-user of the AV sys-
tem, focused on watching and possibly interacting with the animation specified by the visualizer.
The implementor of the AV system is the developer, while the programmer wrote the animated
algorithm - perhaps without knowing about it being targeted for animation. Individuals may also
assume multiple roles. For example, the visualizer will typically also assume the user role to check
the quality of the generated animation.
We have examined a large selection of algorithm visualization applets and systems in section 2.5.
Based on our findings in this evaluation and literature research, we have formulated requirements
that different user roles place on algorithm visualization (AV) systems. The individual requirements
were discussed with their justification and related references in chapter 3. Most current AV systems
can only address a very limited number of these requirements. AV systems, as any other piece of
software, have to address rising expectations regarding functionality over time. It is unlikely that
there will ever be a “perfect” AV system that satisfies all conceivable wishes of the target audience.
Thus, we have to settle for a flexible AV system that allows the incorporation of changes and
additions (“extensions”). Embedding new functionality must also be as easy as possible.
We have presented a framework for a dynamically extensible and adaptable AV system in chap-
ter 4. The framework uses dynamic loading and reflection to achieve dynamic extensibility. For
this end, we have consequently adapted the well-known dynamic data structure hash table for dy-
namic administration of system components. The chosen approach shows good performance and
a very high degree of flexibility. The handler concept introduced in the same chapter enables a
clean decoupling of graphical objects and animation effects. It further enhances data hiding and
encapsulation, and can be applied to a large set of advanced topic areas.
The framework uses properties for representing object state, rather than the standard attributes.
In this way, we open the door wide for dynamic extensibility and adaptivity. The insertion of new
“attributes” as key and value pairs in a given object’s properties is simple for any developer familiar
with Java. The specialized support classes for propertied objects also reduce the disadvantage of
losing static type-checking inherent in employing a dynamic data structure for state representation.
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To ease the work of system developers and provide a boon for the users, the framework also sup-
ports internationalization of GUI elements. In fact, the support package added for this end makes
generating a translatable GUI element easier than generating it in the standard way using the Swing
API! Translating all GUI elements is achieved with a single method invocation, which may for
example result from a menu selection.
On the AV side, the presented framework offers fully reversible animation playing. As late as
2001, an efficient rewind was considered “one of the most important ‘open questions’ in AV” by
a member of the First International Program Visualization Workshop program committee [2]. We
submit that our solution to this problem was finished less than a year after the mentioned workshop,
illustrating the power and expressiveness of the concepts underlying our work.
We have also introduced the ANIMAL AV system, the first prototypical implementation of the
framework. ANIMAL is dynamically extensible and configurable and allows animation generation
and editing without context awareness. Based on the primitive types point, polyline / polygon, text
and arc and the animation effects (timed) show, move, rotate and change color, nearly all types
of two-dimensional displays can be achieved. In many cases, two or more primitives have to be
combined to form a new entity.
ANIMAL uses handlers to mediate between the primitives and the effect, allowing for a very clean
separation of concerns. Primitives focus only on their state representation and graphical rendition.
Animation effects focus only on determining their current state depending on the current execution
time - without any awareness of the underlying animated primitives or even the specific animation
method chosen.
As one of the example extensions presented in chapter 6, we have built list element support based on
a text element, two polygons, and a set of polylines with a tip at the end. Other example extensions
presented include a zoom effect, new move effect subtypes, additional import and export facilities,
and adding a new language for the graphical front-end.
As shown in our evaluation in chapter 7, ANIMAL fulfills all but seven of the 69 requirements
introduced. Additionally, seven of the supported requirements are only partially supported, and
five further requirements cannot be checked and enforced by a generic AV system unaware of the
topic content. In total, ANIMAL addresses a larger number of requirements than any other current
AV system that we are aware of.
The main research contributions of this thesis lie in diverse areas. We have presented a more
extensive set of requirements based on our own research and reference literature than published
before in this field. The requirements take the different interaction roles into account and thus
provide four specific and one general perspective to requirements.
We have also defined an extensible AV framework that contains a large set of hotspots for future ex-
tensions. The proposed framework offers “real” reverse playing, as opposed to replaying a recorded
history. The very strict separation of concerns of the components allows for easy customization and
dynamic extension. Especially the incorporation of the negotiating handler components with dy-
namic extensibility allows for very flexible and adaptable usage. At the same time, developing
extensions is very easy due to the tight focus that allows the developer to focus on a single aspect
of the whole system in each component.
The components of the system are gathered at start-up or while the system is running, based on a
configuration file and runtime configuration support. The configuration file is retrieved from the
directory where the system is started, allowing for a different system to be used in each directory of
a file system. If the directory does not contain a configuration file, the CLASSPATH are searched,
followed by the distribution jar file.
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We have also examined techniques for building GUI front-end components that can be translated
by a single mouse click. Based on this research, we have introduced internationalization issues to
algorithm animation, using relative object placement to account for different dimensions of content
in varying languages.
The embedded extensible scripting language ANIMALSCRIPT allows for modular animation de-
sign and also supports automatic generation of animation content based on input data specified
by the user or visualizer. In conjunction with the JHAVÉ AV system by Naps et al. [131], AN-
IMALSCRIPT also supports interesting features such as interactive predictions, as presented in a
paper awaiting publication in mid-2002 [181].
The dynamic display capabilities of the ANIMAL-FARM framework include modifying the display
speed and magnification, entering the target animation step, dragging a slider for fast-forwarding
between 0% and 100% of the animation content, and a full-fledged video player control bar. The
main feature of the video player capabilities is the unlimited capability for reverse playing, whether
by jumping to the associated step or playing the step in reverse with full dynamics.
Individual animation steps can be labeled. The labels are gathered in a list and outline the structure
of the animation. They also act as hyperlinks to the associated steps. Again, it does not matter if
a selected label links to previous states of the current animation, as ANIMAL can easily rewind the
animation to the selected state.
The ANIMAL-FARM framework and the implementation prototype ANIMAL are more extensive
than most comparable systems. However, there are still several areas of future research to follow.
In general, the research topics can be grouped in four areas: software engineering, AV, evaluation,
and educational aspects.
On the software engineering side, the main weakness of the framework at the moment is its lack
of a formal evaluation. While our experience in using the system shows that it is highly expres-
sive and adaptable, it would be preferable to actually determine the degree to which the system
can be adapted to different needs. Similarly, a careful assessment of the framework might locate
limitations that are not obvious at first glance, as is the case with most of today’s software systems.
Another interesting application of the framework comes in the form of the J-Updater package
[193]. This package shall support the downloading of new additions to the system both outside and
during run-time. Due to the extensive support for dynamic component addition and removal already
embedded in the framework, the dynamic update should not prove to be too difficult. However, the
work on this is not yet finished.
One application that partly belongs to software engineering and partly to AV is interactive AV gen-
eration and controlling by the user. Here, the user shall be able to enter parameters for the execution
of a given algorithm and then see an animation based on the provided values. The challenge here is
the specification and implementation of a front-end for querying parameter values for an arbitrary
algorithm. Implementing a component that prompts for values for a specific algorithm or class of
algorithms, such as sorting algorithms, is relatively easy. The task becomes much more challenging
if there shall be only one component that is capable of handling all types of algorithms.
We speculate that a verbose language definition for specifying the parameters and possible condi-
tions placed on them is necessary. For example, how can we address the effective input of a matrix,
as needed for most graph algorithms? What about special properties and interdependencies? A
simple property would be that negative values are forbidden for invocations of the faculty function.
Implementing the same condition for a matrix used for Dijkstra’s Shortest Paths algorithm is more
challenging. In some cases, special combinations of parameter values may be inappropriate, for ex-
ample for sorting algorithms that require an array and the length of the array passed as parameters.
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In this case, the length of the array could of course be determined from the input values - but how
can this condition be specified? Of course, there are even more complex examples, and it is as yet
completely unclear how far one could pursue this topic area.
There are also several unresolved AV research areas. Of course, foremost of them are the require-
ments not yet supported by either the framework or the system, such as the incorporation of multiple
animation windows, style sheets, and the adjustment of detail level. Additionally, more advanced
types of interaction could be supported. This starts with interactive predictions that actually provide
a didactically motivating answer, such as outlining reasons why a given answer might have been
incorrect, or links to further resources. More advanced interaction types could query the user for
interacting with the current animation state, for example by selecting one displayed primitive. De-
pending on which object is selected by the user, the animation could branch in different directions,
or simply remain in the current step until the “correct” element is selected.
Another interesting application is the addition of a code interpretation system as an import filter.
For example, Jeliot 2000 [113] could be used as a front end for analyzing Java code. Instead of
providing its own graphical rendition of the underlying algorithm, an ANIMAL animation could be
provided. As we have not yet managed to enter a cooperation with interested parties possessing
code interpretation-based AV systems, we could not pursue this area. However, the concept seems
plausible enough that it should be possible to perform this type of cooperation. In fact, the main
problem will likely be adapting the code interpretation-based AV system to actually generated
ANIMAL animation code as output, instead of a graphical rendition of the current algorithm state.
Two further related areas of future work concern an applet front-end for ANIMAL. Due to the large
number of animations already available on [168], this applet should also incorporate the ability to
load a compressed archive of all registered animations once. The user could then select the current
animation to view from the list of archive entries and interact with the animation. Once a given
animation is over, the user shall also be able to select another animation without having to restart
the applet.
There are several areas in the framework that would profit from an extensive evaluation. This
concerns the usage of ANIMAL as an AV system compared to other AV systems. Other aspects are
as the learning effect to be gained from interactive predictions with didactical feedback as motived
above. A working group led by the author and Tom Naps at the ITiCSE 2002 conference will
evaluate techniques for improving the educational impact of AV. We speculate that other interesting
areas of evaluation will come from this working group.
Finally, there is still no extensive AV repository geared for educational purposes. The “standard”
collection of algorithm animations [33] lists the visualizations only by site and algorithm, and also
does not incorporate newer entries. The repository prototype we have set up at [168] is still far from
complete, but already offers more information about a single animation than other repositories. This
includes a description of the animation content including screen shots and a classification of the
interaction type, as well as bibliographic data. A team of eight AV experts including the author of
this thesis are currently working on building an even more extensive AV repository to be available
in summer 2002. The URL will probably be http://www.algoanim.net; the concrete URL
will also be given on [168].
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A.1 Extension Listings

Listing A.1: ImageHandler Implementation, Part 1� �
package an ima l .g raph i cs ;

import j a v a . a w t . P o i n t ; / / f o r ”Move ” animator

import java.beans.PropertyChangeEvent ;

import j a v a . u t i l . V e c t o r ; / / f o r ” getMethods ( Object o ) ”

import animal.misc.MSMath ; / / used f o r p o i n t d i f f e r e n c e

/ &'&& Provides the opera t ions t h a t can be performed on images.& & @author Guido Roessl ing ( roessling@acm.org )& @version 1.0 2001 * 11 * 15& /
public class ImageHandler extends GraphicObjectHandler+

/ &'&& Generates a Vector o f e f f e c t types f o r the p r i m i t i v e .& The under ly ing animat ion e f f e c t i s cha rac te r i zed by& the second parameter , which may also encode re levan t& i n f o r m a t i o n .& We may also have to examine the p r o p e r t i e s o f the& p r i m i t i v e , which i s t h e r e f o r e passed i n as a parameter .& & @param ptgo the g raph i ca l p r i m i t i v e t h a t i s used i n& the animat ion e f f e c t . The parameter i s c u r r e n t l y not& used f o r images , but may be needed i n the f u t u r e .& @param ob j the ob jec t t h a t cha rac te r i zes the type& of animat ion e f f e c t f o r which the vec tor o f e f f e c t s& has to be generated.& /
public Vector getMethods ( PTGraphicObject ptgo , Object ob j )+

Vector r e s u l t = new Vector ( ) ; / / generate r e s u l t con ta ine r

i f ( ob j instanceof Poin t ) / / an imat ion types f o r Move
resu l t .addElement ( ” t r a n s l a t e ” ) ; / / move whole image

i f ( ob j instanceof Boolean )+
/ / an imat ion types f o r Show and TimedShow
resu l t .addElement ( ”show” ) ; / / show image
resu l t .addElement ( ” h i d e ” ) ; / / h ide image,� ��
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Listing A.2: ImageHandler Implementation, Part 2� �
/ / add extension methods prov ided i n o ther c lasses
addExtensionMethodsFor ( ptgo , ob j , r e s u l t ) ;

/ / r e t u r n the vec tor o f method names
return r e s u l t ;,

/ &'&& Change a p r i m i t i v e proper ty to perform the des i red e f f e c t .& To do so , examine the PropertyChangeEvent passed i n f o r& the animat ion e f f e c t name and the o ld and new va lue . Then& perform a set o f app rop r i a te method invoca t i ons on the& p r i m i t i v e passed as the f i r s t parameter .& & @param ptgo the g raph i ca l p r i m i t i v e to be animated& @param e the PropertyChangeEvent t h a t encodes the& animat ion sube f fec t name , o ld and new va lue .& /
public void propertyChange ( PTGraphicObject ptgo ,

PropertyChangeEvent e )+
/ / on ly works i f the passed ob jec t i s a PTImage !
i f ( ptgo ! = nul l && ptgo instanceof PTImage )

+
PTImage image = ( PTImage ) ptgo ;

S t r i n g what = e.getPropertyName ( ) ; / / r e t r i e v e name

i f ( what.equalsIgnoreCase ( ” t r a n s l a t e ” ) )
+

/ / move
/ / moving i s always r e l a t i v e ! Determine d i f f e r e n c e
/ / between the l a s t and cu r ren t p o s i t i o n and use t h i s .
Poin t o ld = ( Po in t ) e.getOldValue ( ) ;
Po in t now = ( Po in t ) e.getNewValue ( ) ;
Po in t d i f f = MSMath.d i f f (now , o ld ) ;

/ / move by ( new.x * o l d . x , new.y * o l d . y )
image . t rans la te ( d i f f . x , d i f f . y ) ;,

else / / de fer to super c lass ; a lso handles show / hide !
super.propertyChange ( ptgo , e ) ;,,,� ��
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Listing A.3: BoxPointerHandler Implementation, Part 1� �
package an ima l .g raph i cs ;

import j ava .aw t .Co lo r ; / / f o r ” ColorChanger ” animator
import j a v a . a w t . P o i n t ; / / f o r ”Move ” animator

import java.beans.PropertyChangeEvent ;

import j a v a . u t i l . V e c t o r ; / / f o r ” getMethods ( Object o ) ”

import animal.misc.MSMath ;

/ &'&& Provides opera t ions t h a t can be performed on l i s t e lements.& & @author Guido Roessl ing ( roessling@acm.org )& @version 1.0 2001 * 11 * 15& /
public class BoxPointerHandler extends GraphicObjectHandler+

/ &'&& Generates a Vector o f e f f e c t types f o r the p r i m i t i v e .& The under ly ing animat ion e f f e c t i s cha rac te r i zed by& the second parameter , which may also encode re levan t& i n f o r m a t i o n .& We may also have to examine the p r o p e r t i e s o f the& p r i m i t i v e , which i s t h e r e f o r e passed i n as a parameter .& & @param ptgo the g raph i ca l p r i m i t i v e t h a t used i n& the animat ion e f f e c t . This must be examined to o f f e r& approp r i a te methods f o r t r a n s l a t i n g i n d i v i d u a l po in te rs& ( ” t i p s ” ) .& @param ob j the ob jec t t h a t cha rac te r i zes the type& of animat ion e f f e c t f o r which the vec tor o f e f f e c t s& has to be generated.& /
public Vector getMethods ( PTGraphicObject ptgo , Object ob j )+

Vector r e s u l t = new Vector ( ) ; / / generate outpu t

/ / p r i m i t i v e must be l i s t element f o r t h i s c lass !
i f ( ptgo == nul l -.- ! ( ptgo instanceof PTBoxPointer ) )

return new Vector ( ) ; / / r e t u r n empty method set

/ / dec la re and cast l o c a l l i s t element
PTBoxPointer boxPointer = ( PTBoxPointer ) ptgo ;� ��
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Listing A.4: BoxPointerHandler Implementation, Part 2� �
i f ( ob j instanceof Poin t )

+
/ / Move animator subtypes

resu l t .addElement ( ” t r a n s l a t e ” ) ; / / move whole element

/ / add methods depending on number o f po in te rs
i f ( boxPo in te r .ge tPo in te rs ( ) ! = nul l )

+
/ / determine number o f po in te rs
i n t nrPo in te rs = boxPo in te r .ge tPo in te rs ( ) . leng th ;
i f ( n rPo in te rs ) 0 )

+
resu l t .addElement ( ” s e t T i p ” ) ; / / se t the t i p
/ / a lso , move the whole element except f o r t i p
resu l t .addElement ( ” t r a n s l a t e W i t h F i x e d T i p ” ) ;,,,

i f ( ob j instanceof Color )
+

/ / ColorChanger animator
/ / enumerate a l l s e t t a b l e c o l o r p r o p e r t i e s
resu l t .addElement ( ” t e x t box frame & p o i n t e r c o l o r ” ) ;
resu l t .addElement ( ” f i l l C o l o r ” ) ;
resu l t .addElement ( ” p o i n t e r box frame c o l o r ” ) ;
resu l t .addElement ( ” p o i n t e r background c o l o r ” ) ;
resu l t .addElement ( ” c o l o r ” ) ;
resu l t .addElement ( ” t e x t c o l o r ” ) ;,

i f ( ob j instanceof Boolean )
+

/ / Show or TimedShow
resu l t .addElement ( ”show” ) ; / / show whole element
resu l t .addElement ( ” h i d e ” ) ; / / h ide whole element,

/ / add extension methods from other c lasses
addExtensionMethodsFor ( ptgo , ob j , r e s u l t ) ;

return r e s u l t ; / / r e t u r n a l l determined methods,
/ &'&& Transform the requested proper ty change i n method c a l l s& & @param ptgo the g raph i ca l p r i m i t i v e to modify& @param e the PropertyChangeEvent t h a t encodes& the in fo rma t i on which proper ty has to change how& /
public void propertyChange ( PTGraphicObject ptgo ,

PropertyChangeEvent e )+
/ / on ly works i f the passed ob jec t i s a PTBoxPointer !
i f ( ptgo ! = nul l ptgo instanceof PTBoxPointer )

+
PTBoxPointer boxPointer = ( PTBoxPointer ) ptgo ; / / cast
S t r i n g what = e.getPropertyName ( ) ; / / r e t r i e v e proper ty� ��
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Listing A.5: BoxPointerHandler Implementation, Part 3� �
i f ( newValue ! = nul l && newValue instanceof Poin t )

+
/ / must be Move animator !
Poin t o ld = ( Po in t ) e.getOldValue ( ) ; / / o ld p o s i t i o n
Poin t now = ( Po in t ) e.getNewValue ( ) ; / / new pos
Poin t d i f f = MSMath.d i f f (now , o ld ) ; / / d i f f e r e n c e

i f ( what.equalsIgnoreCase ( ” s e t T i p ” ) )
+

/ / ( f i r s t ) t i p
i f ( boxPo in te r .ge tPo in te rs ( ) ! = nul l )

boxPo in te r . se tT ip ( 0 ,
MSMath.sum( boxPo in te r .ge tT ip ( 0 ) ,

d i f f ) ) ; / / f i r s t t i p,
else i f ( what.equalsIgnoreCase ( ” t r a n s l a t e ” ) )

b o x P o i n t e r . t r a n s l a t e ( d i f f . x , d i f f . y ) ; / / whole elem
else i f ( what.equalsIgnoreCase ( ” t r a n s l a t e W i t h F i x e d T i p ” ) )
boxPo in te r . t r ans la teWi thF i xed T ip s ( d i f f . x , d i f f . y ) ;,

else i f ( newVal ! = nul l && newVal instanceof Color )
+

Color c o l o r = ( Color ) e.getNewValue ( ) ;
i f ( what.equalsIgnoreCase ( ” t e x t box frame & p o i n t e r c o l o r ” ) )

boxPo in te r . se tCo lo r ( c o l o r ) ;
else i f ( what.equalsIgnoreCase ( ” f i l l C o l o r ” ) )

b o x P o i n t e r . s e t B o x F i l l C o l o r ( c o l o r ) ;
else i f ( what.equalsIgnoreCase ( ” p o i n t e r box frame c o l o r ” ) )

boxPo in te r . se tPo in te rA reaCo lor ( c o l o r ) ;
else i f ( what.equalsIgnoreCase ( ” p o i n t e r background c o l o r ” )-/- what.equalsIgnoreCase ( ” c o l o r ” ) )

b o x P o i n t e r . s e t P o i n t e r A r e a F i l l C o l o r ( newVal ) ;
else i f ( what.equalsIgnoreCase ( ” t e x t c o l o r ” ) )

boxPo in te r . se tTex tCo lor ( c o l o r ) ;,
else / / handle by superc lass , i n c l . Show / TimedShow !

super.propertyChange ( ptgo , e ) ;,,,� ��
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Listing A.6: Extension Handler for Moving Multiple List Element Pointers, Part 1� �
package an ima l .g raph i cs ;

import j a v a . a w t . P o i n t ; / / f o r ”Move ” animator

import java.beans.PropertyChangeEvent ;

import j a v a . u t i l . S t r i n g T o k e n i z e r ; / / to separate m u l t i p l e nodes
import j a v a . u t i l . V e c t o r ; / / f o r ” getMethods ( Object o ) ”

import animal.misc.MSMath ; / / used f o r p o i n t d i f f e r e n c e

/ &'&& Perform animators on l i s t elements wi th m u l t i p l e po in te rs& & @author Guido Roessl ing ( roessling@acm.org )& @version 1.0 2001 * 11 * 27& /
public class BoxPo in te rMoveMul t ip lePo in ters

extends GraphicObjectHandlerExtension / / extens ion !+
/ &'&& Create a new extension and assign the approp r i a te type& /
public BoxPo in te rMoveMul t ip lePoin te rs ( )+

type = PTBoxPointer.TYPE LABEL ; / / handles l i s t elements,
/ &'&& Generates a Vector o f e f f e c t types f o r the p r i m i t i v e .& The under ly ing animat ion e f f e c t i s cha rac te r i zed by& the second parameter , which may also encode re levan t& i n f o r m a t i o n .& We may also have to examine the p r o p e r t i e s o f the& p r i m i t i v e , which i s t h e r e f o r e passed i n as a parameter .& & @param ptgo the g raph i ca l p r i m i t i v e t h a t used i n& the animat ion e f f e c t . This must be examined to o f f e r& approp r i a te methods f o r t r a n s l a t i n g i n d i v i d u a l po in te rs& ( ” t i p s ” ) .& @param ob j the ob jec t t h a t cha rac te r i zes the type& of animat ion e f f e c t f o r which the vec tor o f e f f e c t s& has to be generated.& /
public Vector getMethods ( PTGraphicObject ptgo , Object ob j )+

/ / i f p r i m i t i v e n u l l or no l i s t element , r e t u r n ” no th ing ”
i f ( ptgo == nul l -.- ! ( ptgo instanceof PTBoxPointer ) )

return r e s u l t ;� ��
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Listing A.7: Extension Handler for Moving Multiple List Element Pointers, Part 2� �
Vector r e s u l t = new Vector ( ) ; / / r e s u l t vec tor

/ / cast p r i m i t i v e to app rop r i a te type
PTBoxPointer boxPointer = ( PTBoxPointer ) ptgo ;

i f ( ob j instanceof Poin t )
+

/ / Move animator subtypes
i f ( boxPo in te r .ge tPo in te rs ( ) ! = nul l )

+
/ / any po in te rs ?

/ / r e t r i e v e number o f po in te rs , must be more than 1
i n t nrPo in te rs = boxPo in te r .ge tPo in te rs ( ) . leng th ;
i f ( n rPo in te rs ) 1 )

+
/ / move whole element except f o r t i p t ( f o r a l l t )
for ( i n t t = 0 ; t ( nrPo in te rs ; t ++)

resu l t .addElement ( ” t r a n s l a t e W i t h F i x e d T i p #” + ( t + 1 ) ) ;

/ / se t only t i p t , leave r e s t as i t i s
for ( i n t a = 0 ; a ( nrPo in te rs ; a++)

resu l t .addElement ( ” s e t T i p #” +(a + 1 ) ) ;

/ / l e t v i s u a l i z e r s e l e c t which t i p s to se t
resu l t .addElement ( ” s e t T i p s . . . ” ) ;

/ / l e t v i s u a l i z e r s e l e c t which t i p s to leave untouched
resu l t .addElement ( ” t r a n s l a t e W i t h F i x e d T i p s . . . ” ) ;,,,

return r e s u l t ; / / r e t u r n r e s u l t vec tor,
/ &'&& Transform the requested proper ty change i n method c a l l s& & @param ptgo the g raph i ca l p r i m i t i v e to modify& @param e the PropertyChangeEvent t h a t encodes& the in fo rma t i on which proper ty has to change how& /
public void propertyChange ( PTGraphicObject ptgo ,

PropertyChangeEvent e )+
/ / on ly works i f the passed ob jec t i s a PTBoxPointer !
i f ( ptgo ! = nul l && ptgo instanceof PTBoxPointer )

+
PTBoxPointer boxPointer = ( PTBoxPointer ) ptgo ;� ��
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Listing A.8: Extension Handler for Moving Multiple List Element Pointers, Part 3� �
/ / r e t r i e v e t a r g e t method name
S t r i n g what = e.getPropertyName ( ) ;

/ / check i f move e f f e c t ( e lse not our problem here ! )
i f ( e.getNewValue ( ) instanceof Poin t )

+
Poin t o ld = ( Po in t ) e.getOldValue ( ) ; / / o ld p o s i t i o n
Poin t now = ( Po in t ) e.getNewValue ( ) ; / / new p o s i t i o n
Poin t d i f f = MSMath.d i f f (now , o ld ) ; / / d i f f e r e n c e
i f ( wha t . s ta r t sWi th ( ” t r a n s l a t e W i t h F i x e d T i p #” ) )

+
/ / determine s i n g l e f i x e d node number
i n t num = I n t e g e r . p a r s e I n t ( wha t . subs t r i ng ( 2 3 ) ) ;

/ / b u i l d app rop r i a te map
boolean [ ] map = new boolean [

boxPo in te r .ge tPo in te rCount ( ) ] ;
/ / mark node f o r move
map[num * 1] = true ;

/ / move l i s t element accord ing to chosen map
boxPo in te r . t r ans la teWi th F i xedT i ps (map , d i f f . x ,

d i f f . y ) ;,
else i f ( wha t . s ta r t sWi th ( ” s e t T i p #” ) )

+
/ / determine s i n g l e t a r g e t node to move
i n t num = I n t e g e r . p a r s e I n t ( wha t . subs t r i ng ( 8 ) ) ;

/ / move the se lec ted node
boxPo in te r . se tT ip (num * 1 ,

MSMath.sum ( boxPo in te r .ge tT ip (num * 1 ) ,
d i f f ) ) ;,

else i f ( wha t . s ta r t sWi th ( ” s e t T i p s ” )-/- wha t . s ta r t sWi th ( ” t r a n s l a t e W i t h F i x e d T i p s ” ) )
+

/ / ac t on m u l t i p l e nodes at the same time
/ / move nodes , or move element w i th f i x e d nodes?
boolean setTipsMode = wha t . s ta r t sWi th ( ” s e t T i p s ” ) ;

/ / determine se lec ted nodes
Str ingToken izer s t r i ngTok = new Str ingToken izer (

wha t . subs t r i ng ( ( setTipsMode ) ?
7 : 2 2 ) ) ;

i n t nodeCount = boxPo in te r .ge tPo in te rCount ( ) ;

/ / b u i l d map f o r nodes
boolean [ ] map = new boolean [ nodeCount ] ;
i n t currentNode = 0 ;� ��
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Listing A.9: Extension Handler for Moving Multiple List Element Pointers, Part 4� �
/ / i t e r a t e over parameter to e x t r a c t nodes
while ( str ingTok.hasMoreTokens ( ) )

+
/ / parse cu r ren t node number
currentNode = I n t e g e r . p a r s e I n t ( s t r ingTok.nex tToken ( ) ) ;
i f ( currentNode ) 0 && currentNode ( = nodeCount )

map [ currentNode * 1] = true ; / / s e l e c t f o r opera t ion,
i f ( boxPo in te r .ge tPo in te rs ( ) ! = nul l )

+
i f ( setTipsMode )

+
/ / se t only t i p s , leave ob jec t

i n t a ;
for ( a = 0 ; a ( boxPo in te r .ge tPo in te rs ( ) . leng th ; a++)

i f ( map [ a ] ) / / i f marked , se t i t !
boxPo in te r . se tT ip ( a ,

MSMath.sum( boxPo in te r .ge tT ip ( a ) ,
d i f f ) ) ;,

else / / move ob jec t except f o r mapped nodes
boxPo in te r . t r ans la teWi th F i xed T ips (map , d i f f . x ,

d i f f . y ) ;,,,,,� ��
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Listing A.10: PropertyNameMapper Implementation, Part 1� �
package animal .misc ;

import j a v a . i o . P r i n t S t r e a m ; / / f o r s ta tus p r i n t i n g

import j a v a . u t i l . P r o p e r t i e s ; / / f o r i n t e r n a l lookup

/ &'&& Perform proper ty lookup i n shared p r o p e r t i e s& & @author Guido Roessl ing ( roessling@acm.org )& @version 1.0 2001 * 11 * 30& /
public class PropertyNameMapper+

/ &'&& ” forward ” mapping of key to value& /
pr ivate Proper t i es mapping = new Proper t i es ( ) ;

/ &'&& ” reverse ” mapping of value to key& /
pr ivate Proper t i es reverseMapping = new Proper t i es ( ) ;

/ &'&& I n s e r t a new mapping of key to mappedKey& & @param key the o r i g i n a l key& @param mappedKey the ac tua l key used f o r lookup& /
public void inser tMapping ( S t r i n g key , S t r i n g mappedKey)+

mapping.put ( key , mappedKey ) ;
reverseMapping.put (mappedKey , key ) ;,

/ &'&& Ret r ieve an element a t the key passed i n ” forward ” lookup& & @param key the access key& @return the proper ty name at the key , e lse the key i t s e l f& /
public S t r i n g lookupMapping ( S t r i n g key )+

i f ( mapping.containsKey ( key ) )
return mapping.getProper ty ( key ) ;

else
return key ;,� ��
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Listing A.11: PropertyNameMapper Implementation, Part 2� �
/ &'&& Ret r ieve an element a t the key passed i n ” reverse ” lookup& & @param key the access key& @return the proper ty name at the key , e lse the key i t s e l f& /
public S t r i n g lookupReverseMapping ( S t r i n g key )+

i f ( reverseMapping.containsKey ( key ) )
return reverseMapping.getProper ty ( key ) ;

else
return key ;,

/ &'&& Remove the se lec ted en t r y from both mappings& & @param key the key to remove& /
public void removeMapping ( S t r i n g key )+

i f ( mapping.containsKey ( key ) )
+

S t r i n g value = lookupMapping ( key ) ;
reverseMapping.remove ( value ) ;
mapping.remove ( key ) ;,,

/ &'&& P r i n t the s ta tus o f the cu r ren t proper ty mapping& & @param out the Pr intStream to which to p r i n t& @see j a v a . i o . P r i n t S t r e a m& /
public void pr in tMapping ( Pr in tStream out )+

o u t . p r i n t l n ( ” s t r a i g h t mapping : ” ) ;
m a p p i n g . l i s t ( out ) ;
o u t . p r i n t l n ( ” r e v e r s e mapping : ” ) ;
r eve rseMapp ing . l i s t ( out ) ;,,� ��
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Jyväskylä, Finland, pages 200–242. Springer-Verlag Berlin Heidelberg, June 1997.

[103] Andrew Kitchen. Sorting Algorithms. WWW: http://www.cs.rit.edu/˜atk/
Java/Sorting/sorting.html, (no date given).

[104] Ken Knowlton. L6: Bell Telephone Laboratories Low-Level Linked List Language. 16
minute black-and-white film, Murray Hill, N. J., 1966.

[105] Ken Knowlton. L6: Part II. An Example of L6 Programming. 30 minute black-and-white
film, Murray Hill, N. J., 1966.

[106] Donald E. Knuth. The TEXBook. Addison-Wesley, May 1986.

[107] Boris Koldehofen, Marina Papatriantafilou, and Philippas Tsigas. Distributed Algorithms
Viisualisation for Educational Purposes. 4th Annual ACM SIGCSE/SIGCUE Conference on
Innovation and Technology in Computer Science Education (ITiCSE ’99), Cracow, Poland,
pages 103–106, June 1999.

[108] Paul LaFollette, James Korsh, and Raghvinder Sangwan. A Visual Interface for Effortless
Animation of C/C++ Programs. Journal of Visual Languages and Computing, 11(1):27–48,
February 2000.



BIBLIOGRAPHY 201

[109] Hans-Werner Lang. Algorithmen. WWW: http://www.iti.fh-flens- burg.de/
lang/algorithmen/algo.htm, 2001.

[110] Matti Lattu, Veijo Meisalo, and Jorma Tarhio. On Using a Visualization Tool as a Demon-
stration Aid. First International Program Visualization Workshop, Porvoo, Finland. Univer-
sity of Joensuu Press, pages 141–162, July 2001.

[111] Jari M. Lavonen, Veijo P. Meisalo, and Matti P. Lattu. Visual Programming: Basic Struc-
tures Made Easy. First International Program Visualization Workshop, Porvoo, Finland.
University of Joensuu Press, pages 163–178, July 2001.

[112] Geoff Leach. Delauney Triangulation. WWW: http://goanna.cs.rmit.edu.au/
˜gl/research/comp_geom/delaunay/delaunay.html, 1996.

[113] Ronit Ben-Bassat Levy, Mordechai Ben-Ari, and Pekka A. Uronen. An Extended Experi-
ment with Jeliot 2000. First International Program Visualization Workshop, Porvoo, Fin-
land. University of Joensuu Press, pages 131–140, July 2001.

[114] Henry Lieberman and Christopher Fry. ZStep 95: A Reversible, Animated Source Code
Stepper. In John Stasko, John Domingue, Marc H. Brown, and Blaine A. Price, editors,
Software Visualization, chapter 19, pages 277–292. MIT Press, 1998.

[115] Linda Luo, Mervyn Ng, and Woi L. Ang. Red Black Tree. WWW: http://ciips.ee.
uwa.edu.au/˜morris/Year2/PLDS210/red_black.html, 1998.

[116] J. D. McWhirter. AlgorithmExplorer: A Student-Centered Algorithm Animation System.
In Proceedings of the IEEE Symposium on Visual Languages, pages 174–181, Washington,
September 1996. IEEE Computer Society Press.

[117] Kurt Mehlhorn and Stefan Naher. LEDA: A Platform for Combinatorial and Geometric
Computing. Cambridge University Press, 2000.

[118] D. Merlini, S. Petruzzi, R. Sprugnoli, and M. C. Verri. A System for Algorithms’ Animation.
Proceedings of IEEE Multimedia Systems 1999, Florence, Italy, pages 1033–1034, 1999.

[119] Bertrand Meyer. Object-oriented Software Construction. Prentice Hall, 1997.

[120] Ramin Miraftabi. Intelligent Agents in Program Visualizations: A Case Study with Seal.
First International Program Visualization Workshop, Porvoo, Finland. University of Joensuu
Press, pages 53–58, July 2001.

[121] Sandeep Mitra. Java Sorting Animation Page - Bubble Sort. WWW: http://www.cs.
brockport.edu/cs/javasort.html, 1999.

[122] Sandeep Mitra. Java Sorting Animation Page - Racing Sorts Page! WWW:
http://www.cs.brockport.edu/cs/java/apps/sorters/race_
sorters/sortchoiceinp.html, 1999.

[123] John Morris. Data Structures and Algorithms. WWW: http://ciips.ee.uwa.edu.
au/˜morris/Year2/PLDS210/index.html, 1998.



202 BIBLIOGRAPHY

[124] John Morris and Woi L. Ang. Optimal Binary Search Tree. WWW: http://ciips.ee.
uwa.edu.au/˜morris/Year2/PLDS210/opt_bin.html, 1998.

[125] Paul Mulholland and Stuart Watt. Learning by Building: A Visual Modelling Language for
Psychology Students. Journal of Visual Languages and Computing, 11(5):481–504, October
2000.

[126] David R. Musser. Advanced programming - rensselaer csci-6090. WWW: http://www.
cs.rpi.edu/˜musser/ap/index_16.html, December 2000. Contains a binary
tree searching, insertion and deletion animation in Powerpoint.

[127] MySQL Group. MySQL Reference Manual, 2001. WWW: www.mysql.com.
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Automatic Generation of Algorithm Animations in a Programming Environment. 30th

ASEE/IEEE Frontiers in Education Conference, Kansas City, Missouri, pages S2C 6–12,
October 2000.

[131] Thomas Naps, James Eagan, and Laura Norton. JHAVÉ: An Environment to Actively En-
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