The Appropriation of a Software
Ecosystem

A Practice Take on the Usage, Maintenance and
Modification of the Eclipse IDE

Sebastian Draxler

Dissertation zur Erlangung des akademischen Grades

Doktor rerum politicarum

(Dr. rer. pol.)

an der Fakultat I11:
Wirtschaftswissenschaften,
Wirtschaftsinformatik und Wirtschaftsrecht

der Universitat Siegen

Jahr der Fertigstellung: 2014
Erster Gutachter: Prof. Dr. Gunnar Stevens

Zweiter Gutachter: Prof. Dr. Volker Wulf

Tag der miindlichen Priifung: 23. Oktober 2014

Abstract 111

Abstract

This thesis was written in order to gain a deeper understanding of the appropriation
of software in groups and organizations. In doing so, it focuses on software created un-
der the modern software engineering trend software ecosystems. Software ecosystems
have a major influence on software development, as they rely on massive usage of dis-
tributed software development, open source models and modularization. It is unclear if
existing models to explain appropriation still hold good. Furthermore, it has to be ex-
plored whether current appropriation support is still appropriate and beneficial or if
we need new ideas to help users cope with these developments.

In order to achieve these objectives, this work is mainly based on an empirical field
study, which investigates workgroups at seven German organizations that use the
Eclipse IDE, an extremely modularized and adaptable software system, developed by
a globally active ecosystem of large corporations, small businesses and even hobbyists.

Using the qualitative analysis approach of the grounded theory method and appropri-
ation as a lens for this research endeavor, observations and interviews as well as arti-
facts were analyzed, uncovering practices that are part of Eclipse usage and appropria-
tion. They are identified and discussed from the backdrop of software ecosystems —
viewed from a users perspective. Examples are the sheer amount of appropriation ac-
tivities at the shop floor, the dilemma of software maintenance, that comes with con-
tinuously developed but sometimes unstable technology, practices as learning or tailor-
ing, influences on practices stemming from the software ecosystem, the organization

and the group.

Grounded in these results, suggestions for the design of appropriation support are giv-
en and prototypically implemented, which reflect the embeddedness of individuals and
groups in the software ecosystem. They provide a fresh perspective, based on peer-to-
peer technology and awareness mechanisms.

IV Acknowledgements

Acknowledgements

There are a lot of people who have to be mentioned for their importance to me and to
this work.

I cannot thank Gunnar Stevens enough, who acted as my mentor for many years and
as my supervisor for this work. Working with him has lead to my interest in this topic
and in the end to this book. Many ideas and insights of my work are based on the dis-
cussions we had during my work on the thesis and our collaborative work for the
CoEUD project. Furthermore for his co-authorship and constructive feedback.

I thank Volker Wulf, for guiding my interest towards the intersection of Computer
Supported Cooperative Work and Software Engineering and for awaking my interest
in research. His advice and support through the whole process was especially

important.

Special thanks to Alexander Boden, Kai Schubert and Claudia Miiller for their co-au-
thorship, valuable feedback and input during the creation of many publications and
the finishing phase of this thesis. Furthermore for coffee.

I like to thank Martin Stein, Hendrik Sander, Adrian Jung and Tobias Schwartz, for
being my students in the past and for helpful collaborations.

Rachel Schneider and Oliver Stickel have to be thanked for proof reading of the final

version. This contributed a lot to the readability of this document.

I would also like to thank my other colleagues from the University of Siegen and
Fraunhofer FIT whose feedback and inspiration has helped.

Also, I thank all the participants of my studies, who remain anonymous in this thesis,
for the invitations to their workplaces, for allowing me to conduct interviews and ob-
servations, for contributing Eclipse-usage related data. You contributed greatly to the
insights embedded in this thesis.

I also feel deep gratitude towards my family and friends (especially Thorsten), who
have always supported me morally through the years that it took to write this book;
without their support, patience and encouragement, this would not have been possi-
ble. Last but not least, I especially want to thank my partner Ania, who supported

and encouraged me, despite being in a similar situation. Dzigkuje.

Thank you all!

Related Publications Vv

Related Publications

Parts of this dissertation have already been published as conference or journal papers.
The chapters of part II and part III resemble the accepted versions of these
publications:

* Chapter 4: Draxler, S. & Stevens, G., 2011, Supporting the Collaborative Ap-
propriation of an Open Software Ecosystem, Computer Supported Cooperative
Work (CSCW), 20, pp. 403-48. With kind permission from Springer Science+Bus-
iness Media. http://link.springer.com /article/10.1007%2Fs10606-011-9148-9

* Chapter 5: Draxler, S., Jung, A., Boden, A., et al., 2011. Workplace warriors:
identifying team practices of appropriation in software ecosystems. In Proceeding
of the 4th international workshop on Cooperative and human aspects of software
engineering. CHASE ’11. Waikiki, Honolulu, HI, USA: ACM, pp. 57-60. © 2011
ACM, Inc. http://doi.acm.org/10.1145/1984642.1984656

* Chapter 6: Draxler, S., Stevens, G., Boden, A., 2014. Keeping the development
environment up to date - A Study of the Situated Practices of Appropriating the
Eclipse IDE, IEEE Transactions on Software Engineering (TSE), accepted with
minor revision. © 2014 IEEE. Reprinted, with permission, from Sebastian
Draxler, Gunnar Stevens and Alexander Boden, September 2014. http:/
/dx.doi.org/10.1109/TSE.2014.2354047

* Chapter 7: Draxler, S., Jung, A. & Stevens, G., 2011, End-User Development,
Third International Symposium, IS-EUD 2011. Torre Canne, Italy, June 7-10,
2011, Proceedings, Managing software portfolios: A comparative Study. Springer,
Berlin Heidelberg, pp. 337-42. With kind permission from Springer Science+Busi-
ness Media. http://link.springer.com/chapter/10.1007%2F978-3-642-21530-8 36

* Chapter 8: Draxler, S., Sander, H., Jain, P., Jung, A. & Stevens, G., 2009. In
Supplementary Proceedings of the 11th European Conference on Computer Sup-
ported Cooperative Work, Peerclipse: Tool Awareness in Local Communities. Vi-
enna, Austria, pp. 19-20.

* Chapter 9: Draxler, S. et al., 2012. Supporting the social context of technology
appropriation: on a synthesis of sharing tools and tool knowledge. In Proceedings
of the SIGCHI Conference on Human Factors in Computing Systems. CHI ’12.
New York, NY, USA: ACM, pp. 2835-2844. © 2012 ACM, Inc. http://dx.doi.org/
10.1145/2207676.2208687

VI Related Publications

Additionally, these publications contribute to the presented topic. However, they are
not included as sections of this book.

* Draxler, S., Sander, H. & Stevens, G., 2008, ECAI '08 Workshop on Recom-
mender Systems, Plug-in recommending for Eclipse users. University of Patras,

Patras, pp. 61-2.

* Pipek, V., Stevens, G., Veith, M., Miller, C. & Draxler, S., 2008, 16th European
Conference on Information Systems, Towards an Appropriation Infrastructure:
Supporting User Creativity in I'T Adoption. Galway, Ireland, pp. 1165-77.

* Dorner, C. et al., 2009. End Users at the Bazaar: Designing Next-Generation En-
terprise Resource Planning Systems. IEEE Software, 26(5), p.45-51.

* Draxler, S., Sander, H. & Stevens, G., 2010, Multikonferenz Wirtschaftsinformatik
2010, Provisioning 2.0: Diffusion kleinteiliger Software in sozialen Netzwerken.
Universitatsverlag Gottingen, Gottingen, pp. 665-77.

* Stevens, G. & Draxler, S., 2010, Proceedings of the 9th International Conference
on Designing Cooperative Systems, Appropriation of the Eclipse Ecosystem: Lo-
cal Integration of Global Network Production. Springer, London, pp. 287-308.

Contents VII

Contents
1. INtroduction .oeceeieiiiiiiiiiiiiiiiiii e a e 11
1.1. A grounded MOBIVATIONuiiiiiiiiiiiiiiiieee e 13
1.2. Structure of this DOOKuuiiiiii e 14
Lo O VEIVIEW ..ottt e et e e e e eeaae 15
2. Related WOrK ..ccouiuiniiiiiiiiiiiiiiiiiiiii i e 17
2.1. Components in modular Software Engineeringcccccoeeiiiiiiiiiiiiiiiinnnn.n. 17
2.1.1. Component approaches for modular software systemsc.cceeeeen. 17
2.1.2. Component approaches built for user customization....................ccccoeee. 19
2.1.3. Components for manufacturing purposes: Software Product Lines.......... 20
2.1.4. Software ECOSYSEEIMNS. . ..ccoiiiiiiiiiiiiiiie e 21
2.1.5. Modularity in Integrated Development Environments.................cc.c......... 26
2.2. Situated use and appropriation of modular software systemsccccceenn... 27
2.2.1. The 1st generation of studies on flexible system usage: tailoring............. 28
2.2.2. The 2nd generation of studies on flexible system usage: appropriation....29
2.3. Appropriation of software ecoSYStEIMSooooiiiiiiiiiiiiiiiiiieeeee e 31
3. Research OUtlinec.oeieiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii e ae s e e 33
3.1. Research Perspectiveooiiiiiiiiiiiiii e 33
3.2. Research QUESTIONS.coeiiiiiiiiiiiie e 34
3.3. Selecting a field for empirical appropriation research.................ccccccviiiinnnn.n. 35
3.3.1. Firefox Web DrOWSET.......coiiiiiiiiiii i 36
3.3.2. Photoshop iMage PrOCESSOT........uiiiiiiiiiii et 38
3.3.3. Microsoft OffiCeuiiiiiieeei e 39
3.3.4. Sketchup 3D modeling t00l............coooiiiiiiiiiii 40
3.3.5. Eclipse - Integrated Development Environmentccoooooeiiinn.o. 41
3.3.6. World of Warcraft..........ooooiiii e 42
3.3 7. DISCUSSION ..t 43
3.4. Research method ... 45
3.4.1. Gathering datacoooiiiiiiii e 47
3.4.2. Data @nalySiSuuuiiiiiiiiiii e 47
3.4.3. Ethnographically informed design ..o 49
3.5. Overview of Eclipse-related field visits.........cccoooviiiiiiiiiiiiii e, 50
3.6. Mapping of sections and research questionsccccoeeviiiiiiiiiiiiiiiiiiiiiiiinn. 52
II. Understanding Eclipse Appropriation..................cccoooeeiiiiiiiiniiiiiin s 53
4. The Collaborative Appropriation of an Open Software Ecosystem........ 55
4.1, INETOAUCTION. vt o6

4.2. Workplace design as “artful integration”.............ccccccciiiiiiiiii o8

VIII Contents

4.2.1. Tayloristic workplace desi@ncoooeiiiiiiiiiiiiiiiiiiie 58
4.2.2. From Taylorism to Tailorabilityccccco, 59
4.2.3. Patterns of sharing customizable working environments.......................... 60
4.2.4. From tailoring to appropriation research............ccccccooviiiiiiiiinieeiiiiiiineee. 61
4.2.5. Managing the coevolution of artifacts within Software Ecosystems 63
4.2.6. Local production of large-scale technologies..............ccooiiiiiiiiinnnn, 64
A.2.7. DISCUSSION ..ttt ettt e et 66
4.3 MeEthOAOLOZY ... 67
4.4. Eclipse as a global €CoSYStemcooiiiiiiiiiiiiii 70
4.4.1. Transformation of Eclipse into a global ecosystem..................ccccoiiiiin. 70
4.4.2. “Everything is a plug-in”: Technological fundament of an ecosystem 71
4.4.3. The “Eclipse way”: the rhythm of evolutioncoooiiii 73
A4 A DISCUSSION L.ttt ettt et e et e e et eaes 74
4.5. A survey on Eclipse appropriationcccccoeiiiiiiiiiiiiiiiiiiiiieeeeeeee 74
4.5.1. Adapting Eclipse as a regular activity..........cccoooiiiiiiiiiiiii 75
4.5.2. Local network of Eclipse USers...........coviiiiiiiiiiiiiiiiii e 76
4.5.3. Getting tools and tool information............cccooeeeiiiiiiiiiiiiiiii e 7
4.5 4. DISCUSSION ..ttt ettt e e 78
4.6. Appropriating Eclipse in an organizational contextcccccoiiiiiinnnnn. 78
4.6.1. Organizational context ... 79
4.6.2. Situations of collaborative appropriation.............ccccceeeiiiiiiiiiiiiiiiiiiiiinnn, 82
4.7. Some futures of supporting the appropriation of software ecosystems............. 91
4.7.1. The personal 1evel.........ccooooiiiiiii e 91
4.7.2. Local level of the organization............c..oooiiiiiiiiiiiiiii e 94
4.7.3. Global level of the ecoSYStemccoooiiiiiiiiiiiiiii e 96
4.8, CONCIUSION ...ttt e e e e e e e e e e 97
5. Team Practices of Appropriation in Software Ecosystems 101
5.1 INETOAUCTION ..o 102
5.2. A Brief History of Appropriationccccooiviiiiiiiiiiiii e 102
5.3. Research Methodologyuiiiiiiiiiiii e 103
5.4. A Classification Scheme of Team Practicescccccccciiii, 104
D.4. 1. LONE WATTIOT ...iiiiiiiiiise e e e e 105
5.4.2. Centralized Organizationccccuviiiiiiiiiiiiiiii e, 106
5.4.3. Collegial Collaborationcoooieiiiiiiiiiiiiii 107
5.5, COMCIUSION 1.t 108
6. Situated Practices of Appropriating the Eclipse IDE...........ccccccuuuee..e. 111
6.1, INtrOdUCTION ... eeiiiii e 112

6.2. Related LIBeTabure ... oot 113

Contents IX

6.2.1. Designing and integrating CASE t00lS ..., 113

6.2.2. Adopting CASE 10018 ...ccoiiiiiiiiii e 114

6.2.3. CSCW studies on tool appropriation..........cccoeeeeeeeeeeeiiiiiiiiiiiiiiiieeeeene. 115

6.2.4. DISCUSSION 1..ttieeee et e e e e eeeeanee 116

6.3. Research Methodologycoooiiiiiiiiiiiii e, 117
6.3.1. Sensitizing and constitutive cOnCeptscooeeeviiiiiiiiiiiiiiii e 118

6.3.2. Data sources, selection and analysisccccoviiiiiiiiiiiiniii e, 118

6.4. Understanding the Three Faces of Eclipse. ..., 121
6.4.1. Typical EClipSe USEIS.......uuuiiiiiiiiiiiiieee e 121

6.4.2. An architecture and user interface, designed for flexibility.................... 121

6.4.3. The Community’s Rhythm ..o, 123

6.5. Maintaining the collective ability to workccccoo 123
6.5.1. Learning and Gathering Information..................oooci . 124

6.5.2. TAILOTITIE +oeeviiie e e 127

6.5.3. DISCOVETINE ..oiiiiiiiiiiiiiiiii e 130

6.5.4. Collaborationuiiiiiiiiii e 131

6.6. DISCUSSIONeeeeeiiei e 134
6.6.1. Configuration and adaptation practices..........cccoeeeeiiiiiiiiiiiiiiiiiiieeeeennn. 134

6.6.2. Potential areas for support and process improvements.............cccccce....... 136

6.6.3. Limitationsocoouiiii e 138

6.7, CONCIUSION ... 138
6.8. ACKNOWIEdGIMEntooiiiiiiiiiiii i 140

7. Managing Software Portfolios: A Comparative Study.....cccceceveveenenenenn. 141
7.1 INETOAUCTION ... 142
7.2. Two field studies on managing software portfoliosccccviiiiiiiinnnnnnnn. 142
7.2.1. Customizing the Eclipse IDE (Study 1) «.cooooiiiiiiiiiiiiiiiiiciicce 143

7.2.2. Customizing World of Warcraft (Study 2).......cccccoviiiiiiniiiiiiiiiiene, 144

T.2.3. DISCUSSION .ttt eeeaees 146

7.3. Related WOTKooiii e 147
T4, CONCIUSION Lttt 148
ITI. Designing Appropriation Support.............cccccooiiiiiiiiiiiiiiiiiiiiiieeeeeee 149
8. Peerclipse: Tool Awareness in Local Communitiesccccccvveiiieenennnn... 151
8.1. Grounded Design of PeerclipsSecoooiiiiiiiiiiiiiiiiiiii e 152

9. Supporting the Social Context of Technology Appropriation............... 155
9.1, INETOdUCTIONeeiiii e 156
9.2. Related WOTK.....coooiiiie e 157
9.2.1. Sharing tools at WOTK...........ooiiiiiiiii e 157

9.2.2. Finding new tools and learning how to use themoool. 158

X Contents

9.2.3. DISCUSSION ...ttt et 160

9.3, MethodOLOZY ..oeeiiiiiiiii e 161
9.3.1. Cycle 1: Concept Design........ccooiiiiiiiiiiiiiiiiie e 161

9.3.2. Cycle 2: Interaction Design..........ccooouiiiiiiiiiiiiiiiiiieee 162

9.3.3. Cycle 3: Field trials ... 162

9.4. Design PrinCIPLEsuuiiiiiiii i 162
9.4.1. Facilitating collaborative appropriation................ciiiiiiiiiiiiineenn, 163

9.4.2. Workplace integration...........coooiiiiiiiiiiiiii e 164

9.4.3. SRATING SCOPE..eetiiiiiiiiiie et 165

9.4.4. Searching tool Knowledge..........oooiiiiiiiiiiiii e 166

9.4.5. ApPropriation aWATEIIESS.ceeetiiiiiiiiiiiiiiee e e e e e e e e e ettt eeaeeeeeees 167

9.4.6. Peer installation ... 168

9.5. The Collaborative Appropriation Prototypecccocoociiiiii, 169
9.5.1. Realizing search and annotation featurescccccooviiiiiiiiii 169

9.5.2. Realizing awareness features...........ccocuviiiiiiiiiiiiii 172

9.5.3. Realizing peer installation features...............oooeiiii 173

9.6. EVAlUATION 1.ooiiiiiiiii e 173
0.7, CONCIUSION ..ot e e e e e e e 174
TV, ConCIUSION ... 177
10, CONCIUSIONS ceuvuiiiiiiiiiiiiiiiiiiiiiiiiiirititeretrererrrarasasasasasasssessesssesesssssasnsns 179
10.1. Research iNterestso...u.iiiiiiii e 179
10.2. Appropriation TeviSited............uuuiiiiiiiiiieee e 180
10.2.1. Summary of Findings...........ccooiiiiiiiiiiiii 180
10.2.2. DISCUSSION .ttt e 184

10.3. Designing for collaborative appropriation............ccccoeeeiiiiiiiiiiiiiiiiiiiin. 188
10.3.1. Summary of findingseevviiiiiiiiiiiiiii 188
10.3.2. DISCUSSION 1ttt 189

10.4. Open Questions and Future Workcccooiiiii 193
11. Bibliography ..ccocieiiiiiiiiiiiiiiiiiiii e 197

Appendix I: Detailed overview of research sites......cccccceevvviiiiiiiiiiiiiinnnn, 213

1. Introduction 11

"The third and final main area of impact on the software engineering
practices for an organization transitioning from a software product line
to a software ecosystem is the change in ownership of the product com-
position. [...] the immediate consequence of this approach is that the
party composing the functionality of the overall solution is no longer
the product line company, but instead the customer. The customer com-
poses the solution that best suits his or her needs and assumes the
resulting selection works seamlessly without requiring any additional
work. " (Bosch 2009, pp. 8-9)

1. Introduction

The development, distribution and marketing of software products and services is con-
tinuously changing. The interplay of the latest major innovations over the last 20
years has created not only interesting possibilities for software producers, but also new
challenges for its users and with that, new challenges for the fields of CSCW and HCI.

From a producer's perspective, the internet has become an infrastructure for multiple
development and marketing activities. It is used to foster collaboration in several areas
of product development, allowing for development methods as component software
(Szyperski, Gruntz & Murer 2002) or Global Software Development (O'Brien & Mon-
tazemi 2003). However, it has also evolved as a vehicle for transporting and provision-
ing digital goods to customers through e.g. digital market places (Anderson 2009).

Accompanying these technical and work-practice related changes, producers have es-
tablished new business models that actively encourage users to modify and share soft-
ware (instead of simply sanctioning this behavior) (Dix 2007; Bourguin, Lewandowski
& Lewkowicz 2013). Today, many producers clearly count user-developed contribu-
tions as part of their product development process, as part of their product experience
and as part of the economic value chain (von Hippel 2005; Reichwald et al. 2004;
McKinsey Global Institute et al. 2012).

12 1. Introduction

In several cases of such kinds of flexible software, different software producers have
even linked up to what can be described as a loosely coupled production network and
which forms the base for software ecosystems (Messerschmitt & Szyperski 2003).
These ecosystems often rely on a shared platform that defines a base and interfaces as
well as certain standards, enabling the participating producers to contribute function-
ing additions. This allows manufacturers to deliver complex applications based on
small software components, produced not only by themselves, but by several indepen-
dent manufacturers (Bosch & Bosch-Sijtsema 2010a).

Described primarily from a production or economic point of view, these trends also
have the potential to massively change the basic conditions for diffusion, usage and
appropriation of software in recent years. Therefore, at this point I will change the
perspective and discuss how these changes present themselves, from a user's point of

view.

Not long ago, software was primarily delivered on storage media (such as floppy disks
or CD-ROMs), combined with a printed manual. The internet as an infrastructure for
transport, provisioning and marketing, led to digital market places where users obtain
a large amount of their software today. Examples of this are Google Play and the Ap-
ple store for mobile products such as smartphones or Steam for computer games. In
combination with the ecosystems trend, a growing number of software systems are
based on (an existing and continuously growing number of) software components, cre-
ated by different vendors (Bosch & Bosch-Sijtsema 2010a). This leads to a new free-
dom for users, as they can easily compose and modify systems and applications to
their liking. But, this also implies that systems are, to some extent, put together by
users themselves, e.g. by adding components. In the past, the producer was usually re-
sponsible for integrating components, as well as for testing the quality of the composi-
tions. While the building blocks today are still delivered by professional producers, the
integration work has shifted to become the users' responsibility. Naturally, producers
try to ensure that integration (e.g. the installation of a smartphone app or an add-on
for a web-browser) works as smoothly as possible. However, as small as this task may
seem, it results in component combinations which may never have been tested before.
Should incompatibilities arise, the user is left with a problem which generally belongs
to the domain of software engineering work. License models which are free to use and
adapt (e.g. Open Source Software) further encourage users to play around and ex-
plore, yet they also multiply the possible occurrence of such pitfalls.

1. Introduction 13

1.1. A grounded motivation

It is highly likely that past and ongoing trends of software production ecosystems
affect the usage, appropriation and acquisition of software from a user's point of view.
Ecosystems and product communities empower users to explore different solutions and
to exchange experiences with others throughout the whole world (Bourguin,
Lewandowski & Lewkowicz 2013). At the same time, additional integration work
might have negative effects on appropriation. The most influential studies on tailoring,
appropriation and diffusion of complex software either predate (e.g. Mackay 1990b;
Gantt & Nardi 1992; Kahler 1995; Ruel 2002; Trigg, Moran & Halasz 1987; Mgrch
1997; Wulf & Golombek 2001) the introduction of software ecosystems (Messerschmitt
& Szyperski 2003) and related developments, or focus on different aspects (e.g. Dour-
ish 2003; Pipek 2005; Stevens 2009). Existing work therefore does not acknowledge the
aspects of current production trends. To understand new opportunities for appropria-
tion as well as new challenges caused by ecosystems and product communities, this
line of work has to be complemented. I agree with Stevens, who argued in favor of the
empirical investigation of 'self-organized communities (like talking about artifacts with
friends, sharing adaptations with colleagues, etc.)" (Stevens 2009) and for supporting
the self-organized configuration management of software, surrounded by product com-
munities (Stevens 2009). Within this work I accordingly intent to investigate how the
current trends of software production are reflected in software appropriation in local
(work-)groups. The main goals are:

* to gain a deeper understanding of activities contributing to appropriation, under
the influence of modern software engineering trends (especially software ecosys-
tems) and

* to assess possibilities for appropriation support under these circumstances.

In order to attain these objectives, this work is based on empirical field studies to in-
vestigate work groups, which are using the Eclipse Integrated Development Environ-
ment (IDE). Eclipse is a very flexible software system, developed by a globally active
ecosystem of large corporations, small businesses and even hobbyists. Seen through
the lens of appropriation (Dourish 2003; Pipek 2005; Stevens 2009; Dix 2007; Bour-
guin, Lewandowski & Lewkowicz 2013), practices such as learning how to use Eclipse
in certain situations, sharing information and artifacts (e.g. components), modifying
Eclipse and awareness about appropriation efforts are identified and discussed in the
light of new production trends. Grounded in these results, suggestions for the design
of appropriation support in the light of ecosystems are given.

14 1. Introduction

1.2. Structure of this book

This book consists of four parts. Part II and III of this thesis have already been pub-
lished in the form of several peer-reviewed publications, which constitute the core of
this work. For a list of papers in chronological order see Related Publications, page V.

* Part I presents the background and frame for this work. It defines the necessary
terminology and introduces existing work in the field of software appropriation
and related topics. It furthermore frames this study by developing a research per-
spective, establishing research questions, presenting the way chosen to approach

them and the selection of the field for empirical investigations.

* Part II presents those findings of my work that contribute to a) understanding
activities which contribute towards appropriation by collaborating users under the
influence of modern software engineering trends. This is presented as collection of

peer-reviewed articles.

* Part IIT presents those findings that relate to b) the design for appropriation
support, specifically to address some of the observed phenomena root in software
ecosystems and product communities and which are new compared to other stud-
ies. This is presented as collection of peer-reviewed articles.

* Part IV summarizes the results and discusses the overall contributions reflected
against current literature, pointing out the originality of this investigation. Fur-

thermore, open questions and links to future research are shown.

Overview

2. Related work 17

2. Related work

This section introduces scientific literature that grounds and defines the fields of soft-
ware ecosystems and appropriation and forms the foundation for understanding these
phenomena in the context of the Eclipse IDE. This topic is entwined with several dis-
ciplines. Software engineering discusses related topics mainly from a production per-
spective (see section 2.1). CSCW and HCI first introduced the user's perspective and
started exploring what users make of given systems (see section 2.2). As these topics
are interrelated, both perspectives are introduced. As part of the software engineering
section, an overview on Software Ecosystems is given, since the term is used through-
out this book and divers publications never allowed to explore it in detail. Section 2.3
connects both lines of research and argues for further research.

2.1. Components in modular Software Engineering

The discipline of software engineering defines the context for understanding the
production side that influences Eclipse appropriation. One of the major problems of
software production is that the fields of application are usually heterogeneous and
change dynamically. This is especially true if software is created for socio-technical
contexts (Orlikowski 1993; Wulf 1994; Wulf & Rohde 1995). In these contexts, end-
users working and collaborating in organizations are involved. As organizations, tasks
and relations between roles change, a perfect requirements analysis is impossible. Soft-
ware engineering therefore has to cope with a continuous incompleteness of specifica-
tions (Firesmith 2005). This challenge often results in software that does not fit work
practices well enough. Several possible procedures to mitigate effects have been estab-
lished in the domain of software engineering. The following sections discuss software
component approaches, as an architectural means to creating systems that can be
more easily adapted to changing requirements than monolithic systems as well as the
shift towards software ecosystems that is related to this technology. While the broader
concept of tailorability also introduced approaches to cope with this problem, it stems
more from a more direct work practice centered perspective of CSCW and HCI re-

search and is therefore discussed in section 2.2.

2.1.1. Component approaches for modular software systems

Component approaches aim at the loose coupling of building blocks, which ideally can
be replaced, tailored, inserted or removed from a software system during its runtime.
Modern component-oriented systems additionally contain a container concept, which

18 2. Related work

implements a runtime environment for the components and delivers compositional

tools.

The term Component-oriented software construction was first used by Mcllroy (1968).
His vision of future software production was that the work would be carried out main-
ly by combining ready-made building blocks. A more modern and detailed perspective
on software components is given by Szyperski (2002). He points out that there is no
single definition of the term software component, but argues for certain commonalities
that components usually feature: “A component is a unit of composition with contrac-
tually specified interfaces and explicit context dependencies only. Components can be
deployed independently and are subject to composition by third parties.” (Szyperski,
Gruntz & Murer 2002, p. 548)

Szyperski (2002) described component software as a valid medium between standard
software and perfectly adapted, custom made software. He argues that it is easier to
adapt to the users' needs than standard software. Yet at the same time, it is faster to
develop (by using pre-existing components) and usually better tested (single compo-
nents are well tested as they are used in multiple products) than custom made soft-
ware. Overall, this allows better quality standards to be attained and also enables a
faster reaction to the changing needs of users and organizations alike (Shaw &
Clements 2006).

Over the years, a vast array of component approaches and de-facto standards has
evolved. Szyperski (2002) separates these into three major categories: the Object Man-
agement Group (OMG) approach, the Sun/Java approach and Microsoft's approach.
All of these define different styles of components, composition systems and runtimes.
The Object Management Group (OMG) is a large standardization consortium. It
operates on a non-profit base in order to achieve interoperability in an open market
for objects. Its main achievement is the Common Object Request Broker Architecture
(CORBA) to support the development of distributed applications in heterogeneous en-
vironments. The Sun/Java approach started out in the late 90s with the introduction
of applets, small components that could be integrated into websites. Later, more
evolved approaches were established. For example JavaBeans to create and distribute
graphical user interface elements (Hamilton 1997). Enterprise Java Beans (EJB) to en-
capsulate and distribute business logic (Johnson 2003). JXTA to create and distribute
services and resources within peer-to-peer networks (Gong 2001). The Microsoft ap-
proach was less an idea to standardize the industry and more a campaign to support
the interoperability of their own applications. OLE/ActiveX created a way for users to
exchange (copy and paste) data between the different Microsoft office applications
(Chappell 1996). It was extended to encapsulate application elements into websites

2. Related work 19

(similar to Java Applets however, ActiveX was released earlier). Later approaches in-
clude COM+ and .NET CLR. Furthermore, there was great commitment towards cre-
ating service-oriented architectures (SOA), which can be seen as a component ap-
proach that relies on existing standard web architecture (application servers, web
servers, HTTP and TCP/IP protocols). These are mostly used to separate split busi-
ness logic into services and to make these services location-independent (Erl 2005).

One additional component standard as well as one implementation is to be noted, as
it will feature rather prominently in this book: the OSGi standard (OSGi Alliance
2005). The OSGi alliance specified a platform-independent dynamic approach to creat-
ing component software. Like Sun's approaches, it relies on the Java programming lan-
guage and Java's mechanism for creating building blocks — the jar container format
that is also used for creating libraries. It focuses on stability and robustness, instead
of fine-tuned composing techniques. As such, it packages services into building blocks;
therefore OSGi components can't really be composed during runtime. It specifies a
fine grained lifetime model and allows components to be replaced during runtime
(OSGi Alliance 2005; Cummins & Ward 2013). Since Eclipse version 3.0, its compo-
nents, so-called plug-ins are based on the OSGi standard. They offer services, re-
sources and points for extension within the Eclipse runtime. In doing so, they encap-
sulate all existing Eclipse functionality, including business logic as well as graphical
user interface elements (Gamma & Beck 2004). Eclipse components reintroduced com-
ponent-level dependencies (OSGi specifies only service and package level

dependencies).

2.1.2. Component approaches built for user customization

The introduced component standards, as well as their respective possibilities for com-
position and runtime environments, are still most useful from an engineering perspec-
tive as their composition is carried out mostly as part of designing component soft-
ware. However, other approaches exist, which allow users to compose components
themselves in order to create completely new application software (Wulf, Pipek &
Won 2008; Mgrch et al. 2004). The FreEvolve (Stiemerling 2000) approach is an exam-
ple of this. It uses FlexiBeans, an extended version of JavaBeans which is combined
with a box-and-wiring approach to allow users to compose new component software.
The box-and-wiring approach is easy to use, as it follows a very visual approach that
usually supports drag&drop functionality to add components and wires. Components
are often visualized as boxes, connections between components as wires. Evolve
(Stiemerling 2000) and SwapBox (Tan, Esfandiari & Pagurek 2001) are examples of

such composition environments.

20 2. Related work

This kind of work was recognized and appreciated in the field of CSCW, where it con-
tributed to the discussion around end users tailoring and customizing software on
their own (Trigg & Bgdker 1994). Later, approaches that put this kind of flexibility in
the hands of the users (instead of the designers) were classified as End User Develop-
ment (Lieberman et al. 2006), which is also mainly discussed within the CSCW

community.

2.1.3. Components for manufacturing purposes: Software Product Lines

As we shown in the last section, some component approaches exist that inherently al-
low users to compose systems. However, many approaches in use still mainly follow
the needs of efficient software manufacturing. The software product lines approach
(Clements & Northrop 2002) continues this tradition. Bosch's (2009) work in particu-
lar traces the development from component approaches towards Software Product
Lines (and further towards Software Ecosystems). Software Product Lines can be seen
as an engineering perspective on the development of extendable software platforms in
order to create and deliver different versions of software products. To achieve this, the
manufacturer splits a product into components and composes sets of components to
deliver certain functionalities as a version of the product (Clements & Northrop 2002;
Bosch 2009). This results in specific base building blocks having to be developed and
tested only once for all products, thus rendering different versions of a software prod-
uct cheaper to develop (Northrop & Clements 2004). Northrop and Clements (2004)

defined the technological base for software product lines as:
* A commonly used platform that is used to integrate all the building blocks.

* A component approach that is used to define the building blocks of user function-
ality or basics as a Ul framework.

* Clearly defined interfaces between components, as well as between components
and the platform.

* A common release cycle in order to synchronize the development of platform and

components.

This new approach was initially seen as an interesting new production technique for
large manufacturers who were able to develop platforms as well as the extensions on
their own (Northrop & Clements 2004). This implies that the integration work neces-
sary to ensure that components form a valid, executable product is carried out by the
manufacturer (Bosch 2009). This viewpoint changed with the advent of software

2. Related work 21

ecosystems, as platforms as well as development processes were opened for other man-
ufacturers to join in (Bosch 2009).

2.1.4. Software Ecosystems

The first usage of the term Software Ecosystem is assigned to Messerschmitt and
Szyperski (2003), who used it to introduce a new perspective on software engineering
to the scientific discussion. Since then, the term has undergone a number of reinter-
pretations. This section gives an overview of the different lines of work in this area
and defines how the term Software FEcosystem is used within this book.

Messerschmitt and Szyperski (2005) argued (and different researchers seem to agree
here (Bosch & Bosch-Sijtsema 2010b; Jansen, Finkelstein & Brinkkemper 2009)), that
the market and the conditions for software production and distribution changed over
time. They observed that production became more fine grained and involved more and
more developing actors. Such actors can be individual persons as well as organizations.
Furthermore, they agree that those actors nowadays often group around certain com-
monly used platforms. A typical example is the software manufacturer that opens up
the base or platform of a software to other actors and allows them to develop additio-
nal components that deliver additional functionalities for the end-user. Bosch and
Bosch-Sijtsema defined this as follows: "A software ecosystem consists of a software
platform, a set of internal and external developers and a community of domain experts

in service to a community of users that compose relevant solution elements to satisfy
their needs." (Bosch € Bosch-Sijtsema 2010b)

Jansen et al. (2008) in contrast, focus even more on the software engineering or manu-
facturing side as they emphasize the connections between the involved developing ac-
tors: "We define a software ecosystem as a set of businesses functioning as a unit and
interacting with a shared market for software and services, together with the relation-
ships among them. These relationships are frequently underpinned by a common tech-
nological platform or market and operate through the exchange of information, re-

sources and artifacts.” (Jansen, Finkelstein € Brinkkemper 2009)

Messerschmitt and Szyperski's work (2005) is in line with these definitions. However,
it additionally created a new perspective on the development and production of soft-
ware. Their ecosystems perspective focuses on all typically involved stakeholders and
their share of the process. This allows involved actors to understand the problems,
needs, skills and potential of other stakeholders, possibly leading to a more refined un-
derstanding of their own work. On the one hand, this can be seen as practical use for

the involved agents, but it is more than just that. It is a manifesto for a multi-per-

22 2. Related work

spective view on the development, marketing and distribution of software — which, as
the authors argue, is increasingly gaining in importance in the struggle to remain suc-
cessful in the software business of tomorrow. In the main however, it is this multi-per-
spective view in particular which is missing from the work of others (Bosch 2009;
Jansen, Cusumano & Brinkkemper 2013; Joshua et al. 2013), as they argue only from

a manufacturers point of view.

One of the important changes accompanying the introduction of software ecosystems
is that platforms (and parts of the common process) are opened up for others to parti-
cipate. When this happens, a plethora of actors can develop and publish their own
components and, as a result, the responsibilities of the actors change. Jansen et al.
(2009) described the layers of responsibility that are usually established after opening
up processes in this way: "software ecosystem level, the software supply network level,
and the software vendor level." (Jansen, Finkelstein € Brinkkemper 2009)

Outsourcer

Customer

Customer

SOftware Vendor Level

Soﬁ"‘,/,‘f:'re Supply Network Leve\

Customer

Software Ecosystem Level

Figure 1: Software Ecosystems Perspectives (Jansen et al. 2009).
As the platform owner's responsibility for integrating and testing possible composi-

tions lessens, some of the integration work is shifted to the customer:

"The third and final main area of impact on the software engineering practices for an
organization transitioning from a software product line to a software ecosystem is the
change in ownership of the product composition. A software ecosystem consists of a
platform, products built on top of that platform and applications built on top of the
platform that extend the products with functionality developed by external developers.
However, the immediate consequence of this approach is that the party composing the
functionality of the overall solution is no longer the product line company, but instead

the customer. The customer composes the solution that best suits his or her needs and

2. Related work 23

assumes the resulting selection works seamlessly without requiring any additional
work. " (Bosch 2009, pp. 8-9)

In many cases however, the customer may also be the user. Therefore in certain situa-
tions, the integration work such as composition and/or testing is outsourced to the
end-user. Examples span from Web browsers like Mozilla Firefox through Microsofts
Office suite and games to CAD software and Integrated Development Environments
(see section 3.3 for a detailed analysis of examples).

2.1.4.1. A classification of Software Ecosystems

Bosch (2009) separates existing software ecosystems along two dimensions: Different
kinds of software (end-user programming, application or operating systems) and the
underlying platform-technology (desktop, web or mobile). Table 1 gives a brief
overview of several modern software ecosystems, classified by this scheme.

Category\Platform |Desktop Web Mobile
end-user MS Excel, Mathemat- |Microsoft PopFly, Tasker (Android)
programming ica, VHDL Google's mashup editor
application MS Office, Eclipse, |SalesForce, eBay, Ama-|Yatse (Android)
Firefox, Photoshop, |zon, Ning
Skype, WoW
operating system MS Windows, Linux, [Google AppEngine, Ya- |Nokia S60, Palm, An-
Apple OS X hoo developer, Cog- droid, iOS
head, Bungee Labs

Table 1: Classification of software ecosystems, following (Bosch 2009) and (Joshua 2013), ex-
tended and updated.

Operating systems count as the oldest software ecosystems, as they are by nature
open to the extensions of other software manufacturers (Bosch 2009). Manufacturers
of operating systems have always delivered a profusion of documentation for the devel-
opment of additional building blocks such as drivers for hardware or application soft-
ware for end users. For Bosch, the new development within the software engineering
community is that manufacturers have intensified their commitment to do the same in

the area of application software.

Application-centric software ecosystems are set up to allow independent software
vendors, distribution partners, consulting and customization organizations to create
and distribute their own extensions and services that integrate seamlessly into the ap-

plication. Joshua et al. (2013) picked the software development environment Eclipse as

24 2. Related work

an example. But other integrated development environments like Netbeans, Visual
Studio or IntelliJ IDEA seem to aim in the same direction.

Furthermore, web applications such as Facebook feature possibilities to embed addi-
tional applications into these services (Graham 2012). Current examples mainly in-

clude games, but also include music streaming or news services'.

Bosch only named operating systems within the mobile category. However, this can be
complemented by apps such as Yatse” and Tasker’. Yatse is a mobile app for the An-
droid OS that controls media center software by remote. It is extendable through sev-
eral small components. Tasker is also an Android application which can be classified
under End User Development. It allows users to automate different tasks, based on
different contexts and sensor values of the device. E.g. if the user is within the range
of a particular wifi network, the context home might be activated. The device might

then activate certain tasks, as configured by the user.

Bosch (2009) assessed end-user programming ecosystems as not being of very great
importance, although he appreciated their special characteristics. He asserts that they
are powerful enough to let users create their own software without greatly increasing
flexibility. For a long time, it was believed that this outstanding property would one
day let users widely create their own software (Mcllroy 1968). Many of the existing
tailoring approaches are grounded in ideas such as this (Wulf, Pipek & Won 2008;
Mgrch et al. 2004). Today there are several commercial approaches in existence, such
as e.g. Yahoo Pipes’. Research, however, is still ongoing, using the terms End-User
Development (Lieberman et al. 2006; Pipek et al. 2009; Costabile et al. 2011; Dittrich
et al. 2013) and End-User Software Engineering (Ko et al. 2011; Burnett, Cook &
Rothermel 2004; Burnett 2009). The scientific discourse mainly covers desktop appli-
cations (Le Berre & Rapicault 2009; Bosch 2009). However, web applications (Jansen,
Finkelstein & Brinkkemper 2009) and embedded systems (Bosch & Bosch-Sijtsema
2010b) have also been explored.

—_

https://www.facebook.com/appcenter/category /apps/?platform=web (last accessed 2014/04/01)

N

http://yatse.leetzone.org/redmine/projects/androidwidget /wiki (last accessed 2014/04/01)

®

http://tasker.dinglisch.net/ (last accessed 2014/05/15)

=

http://pipes.yahoo.com/pipes/ (last accessed 2014/04/01)

2. Related work 25

2.1.4.2. Eclipse as a software ecosystem

From an engineering perspective, the Eclipse IDE is a very good example of a software
ecosystem. Using Bosch's (2009) classification system, it is an application, but at this
point I would like to classify this in more detail. This will be extended in several sec-
tions of parts II and IIL.

The Eclipse IDE makes use of a platform, often referred to as the Eclipse platform or
Eclipse Rich Client Platform (RCP). The platform as well as the first IDE functionali-
ties were implemented by IBM and later passed into the hands of a committee (the
Eclipse Foundation) (O’Mahony, Diaz & Mamas 2005). Furthermore there is a devel-
opment process in place, which is coordinated via forums, interfaces between compo-
nents and the platform and a certain development rhythm (Gamma & Beck 2004;
Frost 2007). The development efforts of certain organizations are interlocked with the
work of the Eclipse foundation and other organizations. However, other manufacturers
are completely independent and contribute to their own liking and at their own pace.

It is noteworthy that the development of the platform as well as the IDE functionality
is carried out by this plethora of organizations. In comparison the existing software
ecosystem definitions, this is a special case as no single manufacturer is responsible for
the platform. This complicates the development of the Eclipse IDE. Some of the con-
tributing organizations are, to some extent interconnected due to technical dependen-
cies between their products. This usually happens if one manufacturer's components
make use of another manufacturer's components. As the interface of one component
evolves within a new Eclipse release, other components may also need changes that lie
within the responsibilities of another manufacturer (Des Rivieres & Wiegand 2004).

There is a market for components that are compatible with the Eclipse platform.
However, it is very distributed because there is no mandatory central coordination.
Although there is a centralized plug-in directory (called Eclipse Marketplace’), it often
contains outdated information. Some manufacturers don't even bother to register their
components. Bosch's (2009) argument presenting the user as the compositor can be
taken literally within this context.

5. http://marketplace.eclipse.org/ (last accessed 2014/05/14)

26 2. Related work

2.1.5. Modularity in Integrated Development Environments

The Eclipse IDE, as the main field of research in this book, shows that workplaces for
software engineering usually combine plenty of different tools and integrate their fea-
tures into a powerful and often complicated workplace (Des Rivieres & Wiegand
2004).

However, flexible software systems (IDE are a particularly good example) have come a
long way. Early programming tools were small and simple. They were specialized for
the automation of routinized, basic tasks (e.g. compilers to generate machine code)
and it was not uncommon to create one's own tools (Kernighan & Plauger 1976). In
the 1970s however, the complexity of the supported tasks was increasing (Bennett et
al. 2008) and the variety and number of tools was constantly growing (Forte 1993).

Tools were mostly developed independently from each other. While each task was im-
proved singly, it was often clumsy or not possible at all to use the various tools to-
gether. As a result, research shifted during the 80s from the isolated tool perspective
to integrating tools into supporting environments (Forte 1993; Boehm 2006). In the
following, this shift is outlined along general lines.

Emacs can be considered one of the first and notable answers to the challenge of tool
integration. From the beginning, Stallmann (1981) aimed at creating a powerful text
editor that could be tailored and extended by the users “to experiment with alterna-
tive command languages, and to share extensions which are generally useful”
(Stallman 1981). Examples for extensions (e.g. Glickstein 2010) that add new func-
tionality to Emacs are object oriented programming (Houser & Kalter 1992) or prolog
programming (Bueno et al. 1997).

Significant efforts supporting the entire development process beyond individual tasks
were carried out within the field of Computer Aided Software Engineering (CASE).
CASE had also emerged in the 1980s (Chikofsky 1989). With increasing popularity,
CASE became an umbrella term for diverse SE concepts including tool integration,
automated tool assistance, process standardization etc. (Fuggetta 1993). The common
idea was to address “all aspects of software development and maintenance as a single
complex system” (Forte 1993), including modeling, programming, debugging, manag-
ing requirements, documenting, creating user interfaces, etc. One unexpected result of
the CASE approach was that the individual developers were mainly excluded from the
design of their own workplaces. Only the freedom to change small details such as
shortcut keys or reorganizing windows remained their responsibility.

2. Related work 27

The latest pragmatic turn can be described as distinguishing repetitive software engi-
neering tasks that can be streamlined via automation from the “essential” tasks that
rest on human expertise, judgment, and collaboration (Brooks & Jr. 1987). This turn
is expressed by less restrictive integrated development environments. In particular
IDEs like Microsoft’s Visual Studio and Eclipse as two widespread examples (Geer
2005) present a synthesis of the need for freedom and the need for standardization: On
the one hand they maintain the concept of freedom, which allows users to adapt the
working environment to their needs without over-regulating the situated work (Gam-
ma & Beck 2004). On the other hand they contribute to the automation of repetitive
tasks as well as standardization. Today, such tools are usually extensible by using vari-
ous components that add more functionality as well as including tailoring functions

(e.g. windows, fonts, font sizes, style of compiler, etc.).

During the 1990s the standardization of working environments had also progressed,
e.g. by the introduction of the NIST/ECMA (1993) reference model for tool integra-
tion. However, despite that progress, working environments today often consist of
many tools which are only “partially integrated, forming a complex tool landscape with
partial integration.” (Asplund et al. 2011). One of the reasons for this ongoing struggle
is that not only the solutions, but also the industry’s demands are constantly
evolving. For instance, new methodologies like aspect-oriented programming, model
driven development or continuous integration emerged. In addition, new application
areas like mobile computing, web applications or the internet of things arose and de-

manded special tools.

2.2. Situated use and appropriation of modular software systems

This section introduces the concept of customization of flexible software by its users.
The overview is guided by our primary research interest: appropriation of flexible soft-
ware (as part of workplace design) in the age of software ecosystems. This kind of re-
search was mostly conducted within the CSCW research community. As this topic is
the core of this book, several aspects are introduced later in minute detail (see e.g.

section 4). Here, an overview is given.

The presented work differs from section 2.1 mainly in perspective. While section 2.1 is
driven by a manufacturing perspective, the following subsections take a CSCW per-
spective. Common to many CSCW studies is the focus on the user, taking the embed-
dedness of usage and customization activities into organizational and daily routine
very seriously (c.f. Bentley et al. 1992; Orlikowski 1992).

The existing work concerning flexible systems from a user perspective, can be differen-

tiated into two groups: first generation studies that concentrated on the act of tailor-

28 2. Related work

ing and customization and second generation studies that used a much broader under-
standing of the topic at hand.

2.2.1. The 1st generation of studies on flexible system usage: tailoring

Efforts to create tailorable or customizable software predate Orlikowski's (1993) semi-
nal empirical field study by far (i.a. Stallman 1981). However, her results do explain
very illustratively why this development is so important. Software engineering is often
not able to keep up with the speed at which, organizations and their requirements
were changing (Kahler 1995). During this time, communities like CSCW and HCI
started to cultivate interest in flexible software concepts, analyzing and extending the
technological state, but also investigating how users cope with flexible software

systems.

Early important examples of such work are (i.a. Henderson & Kyng 1992; Wulf 1994;
Muller, Haslwanter & Dayton 1997). In this line of work, different tailorable systems
were created as research prototypes to explore the possibilities of tailorable software.
Examples are DODE (Fischer 1994), OVAL (Malone, Lai & Fry 1995), Prospero
(Dourish 1996), or FreEvolve (Wulf, Pipek & Won 2008). Next to concepts pertaining
to how tailorability should be established from a software engineering point of view,
they also helped to gain a better understanding of different levels of tailoring complex-
ity (and possibilities) (MacLean et al. 1990). E.g. changing the font size of an applica-
tion might be easier than programming a macro for a text processor. At the same
time, programming might allow greater possibilities than functionalities which are eas-
ier to use. As a result, those studies demanded a so called "gentle slope of complexity"
(MacLean et al. 1990). By recognizing this, they illustrated that users have different
motivations towards, as well as skills in, tailoring software. people need a smooth tran-
sition from a tailoring mechanism which is easy to use but not powerful to a more
powerful but also more complex one, especially if they are not skilled in formal pro-
gramming (which is true for most end users). Mgrch (1997) investigated such levels of
tailorability in detail and introduced more refined borders between different tailoring
levels. He distinguishes customizing, integration (e.g. composition of components) and
extending (e.g. programming a macro) (Mgrch 1997).

Some viewed tailoring mainly as an individual effort (i.a. Kobsa & Wahlster 1989; Op-
permann 1994; cf. Friedrich, & Rodiger 1991). Examples are modifying toolbars in a
text processor or the font size of the operating system. This perspective also implicitly
includes the possibility that one person's requirements may differ considerably from
another's thus necessitating this depth of flexibility. However, as empirical studies

with users of commercial systems in the wild have shown, there was substantial inter-

2. Related work 29

est in the tailoring results achieved by others within collaborative environments (i.a.
Mackay 1990a; MacLean et al. 1990; Gantt & Nardi 1992; Wulf 1999b; Kahler 2001b;
Eriksson 2008). This established the perspective that tailoring is a collaborative effort.
This perspective gave rise to interesting new aspects, such as who tailors? (capabili-
ties/skills of users) and in what ways are results shared? (division of labor), etc. As a
result, different studies established classification systems for users and their abilities to
tailor (Gantt & Nardi 1992; Mackay 1990b) as well as sharing habits (Mackay 1990a).

In the late 1990s, a range of studies was conducted in the intersection between CSCW
and HCI which demanded additional supportive technical functions to make it easier
to cope with tailorable systems. Examples are the concept of direct activation, which
demands that the means to tailor a function should be coupled to the point of entry of
that function (Wulf 1999a). Kahler (2001b) furthermore demanded support such as
repositories for tailored artifacts to choose from, as well as mechanisms for sharing
and awareness support. However, Kahler did not specify concepts for the realization of
such features.

2.2.2. The 2nd generation of studies on flexible system usage: appropriation

The work on tailorability has mostly been succeeded by other lines of research today.
The technical aspects of empowering (end-)users to make the most of flexible systems
has been subject of discussion for at least 10 years within the End User Development
(EUD) community, which biannually meets to present the theoretical and technologi-
cal developments as well as studies concerning EUD systems (Lieberman et al. 2006;
Pipek et al. 2009; Costabile et al. 2011; Dittrich et al. 2013). Analytically however, the
research around appropriation of software systems can be seen as a successor of previ-
ous tailorability research.

Appropriation is considered a much broader term, that cannot be reduced to pure tai-
loring or customization of software. Instead, it is the general prerequisite of making
practical use of (information) technology (in this case software). Part of this can be
the repurposing of artifacts or their modification. A distinction between activities of

plain usage and activities that accommodate appropriation are often not separable at
all (Pipek 2005; Dourish 2003; Balka & Wagner 2006; Stevens 2009).

Historically, the concept stems from the tradition of information systems (IS) and was
introduced to help information system models to include the rather vaguely definable
results of system usage: "we cannot expect people to employ a technology in predefined
ways. Rather, we can expect that users will alter a system as they use it. The key is to

understand how users alter systems, thereby enacting sociotechnical change within the

30 2. Related work

group. Adaptive Structuration Theory defines this process as 'appropriation.'" (Poole &
DeSanctis 1989)

Dourish (2003) carefully introduced the concept into the CSCW discourse by using
"the term 'appropriation’ to refer to the ways in which people adopt and adapt interac-
tive technologies, fitting them into working practices and evolving those practices
around them." (Dourish 2003) This perspective intensified pressure to think of gaining
and sharing knowledge about systems or repurposing artifacts without tailoring. Still,
tailoring is an aspect of appropriation.

Based upon this perspective, several studies have been carried out. Pipek (2005) car-
ried out two long term studies, observing appropriation activities (one in a German
authority and one within a commercial network of consultants. Other studies investi-
gated appropriation of technology by teenagers (Carroll et al. 2002), in hospitals (Bal-
ka & Wagner 2006), photo logs (Khalid & Dix 2010) and software development
(Sigfridsson 2010).

Conceptual advances of appropriation research include classification schemes for tailor-
ing activities as part of appropriation (Kahler 2001b; Pipek 2005) and classification
schemes for the dimensions and interplay of appropriation with the surrounding situa-
tion (Balka & Wagner 2006). Stevens (2009) opened up these results and created an
extensive theoretical investigation that put appropriation back into the context of
software development and connected it with ideas of open innovation and global ap-
propriation infrastructures, after the general idea was described by Pipek (2005). This
perspective regarding the way a user's needs can be combined with new business mod-
els and flexible systems is one of the reasons for this book. Twidale (2005) established
the concept of informal, spontaneous workplace help-giving among colleagues that is
very closely connected to the appropriation of software. Additionally, a bird's eye view
model of technology appropriation was suggested (Carroll 2004). This, however, focus-
es more on the individual and therefore ignores many results from the CSCW commu-
nity. Furthermore, the importance of breakdown situations for appropriation was dis-
cussed (Pipek 2005; Stevens, Pipek & Wulf 2009).

Several researchers argued in favor of additional (or differently designed) technology to
support appropriation. Pipek (2005) argued for supporting appropriation by empower-
ing users to take part in design discourses and to share experiences. He suggested a
technological infrastructure to support this. Stevens discussed these ideas for support
e.g. use-development discourses in more detail and argued in favor of integrating these
directly into the application. Bourguin, Lewandowski & Lewkowicz (2013) used the
prototype ShareXP to argue for and demonstrate a similar approach, focusing on

sharing of experiences and related tailoring artifacts. Concerning several details of the

2. Related work 31

ShareXP concept as well as the field of application, this work is very related to what
is presented here. A more general approach, stemming more directly from the field of
human computer interaction suggests certain aspects that the design of software
should include to accommodate appropriation (Dix 2007). Examples of this are flexi-
bility (e.g. component software), allowing for reinterpretation (not too specifically de-
signed functions) and enabling users to share artifacts.

2.3. Appropriation of software ecosystems

From a software engineering perspective, appropriation is not without problems. Users
changing their own work practices as part of appropriation can lead to new require-
ments, which can render existing products to be less useful and in need of additional
development work (Firesmith 2005). As demonstrated, the technology to create flexi-
ble software that could be leveraged by users for modification mostly already exists
(i.a. Wulf, Pipek & Won 2008; Mgrch et al. 2004). However, component approaches
are still often used in ways which benefit the manufacturer, not the user. The software

product line trend is one example of this (i.a. Clements & Northrop 2002).

The trend of software ecosystems is however different. The structure of collaboration
between the participating actors and market places (Messerschmitt & Szyperski 2005)
demands models of flexibility that users can interact with. Detailed examples for this
development are shown in section 3.3 and include web browsers, games, word proces-
sors, CAD software, mobile devices and Integrated Development Environments (IDE).

How appropriation of software that was produced by such complex, distributed and
collaborative environments is constituted — is largely unknown. For an investigation
into this matter, the concept of appropriation seems an adequate lens to uncover spe-
cific aspects about wusing, reinterpreting, maintaining and modifying ecosystem-
produced software.

3. Research Outline 33

3. Research Outline

The following section will elaborate on the research perspective of this work and carve
out the research questions towards which the related work is leading. Accordingly, the
methodology to approach these questions is discussed, ending with a grounded de-

scription of the methods used for the case studies as well as the design efforts.

3.1. Research Perspective

Based on the body of research concerning the development and appropriation of flexi-
ble software systems (see section 2), it can be concluded that software engineering of
flexible systems is changing. Furthermore, while there is a solid body of work con-
cerning tailoring and appropriation of flexible software in general, we do not know
how the current software engineering trend of software ecosystems is affecting the us-
age and appropriation of such systems. This is especially remarkable as software
ecosystems (e.g. users integrating software themselves, the plethora of different
vendors involved, different release cycles of components) seem to possess special po-
tential to change patterns of appropriation. A more profound investigation into the
appropriation of software produced by a software ecosystem is therefore needed.

However, the use of information technology is embedded in personal preferences, social
and socio-technical systems as well as in the product communities of software manu-
facturers (Poole & DeSanctis 1989; Dourish 2003; Wulf & Rohde 1995; Pipek 2005;
Stevens, Pipek & Wulf 2010). Appropriation can therefore only be understood if these
aspects are taken into account. In the past, the micro-perspective research approach of
CSCW studies has proven to be very successful in achieving this (e.g. Heath, Luff &
Cambridge 1992; Randall, Harper & Rouncefield 2005; Wulf et al. 2011; Eveland et al.
1994; Bowers 1994). This micro-perspective allows the focus of this investigation to
fall on the main actor — the user. Starting from this point, social, technical, socio-tech-
nical and other influences can be studied in detail, while always allowing to view and
hopefully understand their entanglements with the user. This work will follow this
principle in order to uncover details of appropriation of flexible software, produced by
a software ecosystem. In this way, I hope to gain a deeper understanding of what the
global phenomenon of software ecosystems means for today's software users and which
possibilities for support exist.

The term appropriation itself (Dourish 2003; Pipek 2005; Stevens 2009), introduced a
very interesting lens to focus on phenomena related to usage, but often cannot be
clearly classified as plain usage. Often, appropriation is expressed by work that is car-
ried out in order to be able to use software or improve the usage experience, similar to

34 3. Research Outline

articulation work being defined as work "that is necessary to be able to work" (Strauss
1988). While appropriation is a very good guiding lens, it is still not defined clearly
enough to classify what can be discovered through field work. It will therefore be used
to guide the empirical view towards the user's practices but not to classify these in

advance.

3.2. Research Questions

The research perspective underlying this work argued in favor of a closer look at the
practices of users, trying to understand appropriation form this perspective. Against
this backdrop, the following questions will be investigated and discussed within this

work:

Q1) The constitution of appropriation: How do users, as part of work groups, appro-
priate flexible software that was produced and is surrounded by a software ecosystem?
(What are the general conditions, which practices are applied to cope with such soft-

ware and which situations contextualize appropriation?)

The explicit naming of work groups was chosen, as this opens up opportunities for ob-
serving possible practices of sharing expertise (Twidale 2005) or artifacts (Mackay
1990a) as part of appropriation. Furthermore it allows the investigation of such prac-
tices, with regard to the different existing organizational levels.

To investigate this question, different software systems are suitable fields of research.
An overview as well as the justification for the choice that was made (the Eclipse
IDE) is presented in section 3.3. Within this field of research, practices relating both
to appropriation as well as to their contextualizing situations will be uncovered. Espe-
cially those that can be traced back to software ecosystems as a transforming factor
will be discussed later in this book. This should not produce a normative description
of good or bad practices, but a thick description (Geertz 1973) and analysis of the ac-
tual state of appropriation on the shop floor to broaden our understanding of
appropriation.

Q2) Transferability: Are the results wholly or partially transferable to other software
systems? / Can we find similar practices and phenomena in other software
ecosystems?

Qualitative empirical studies stemming from the tradition of CSCW research usually
produce theories of low range. Their results are therefore very detailed, however not
easily transferable to other cases or even domains (Strauss & Corbin 1997). It is safe
to assume, that this study is no exception, due to the very specific focus and applied

methods. That said, as the software ecosystems trend is spreading, it would be very

3. Research Outline 35

interesting to investigate appropriation of other flexible software systems to compare
results. As part of this study, it was possible to carry out an additional, albeit smaller,
empirical field study in a different field of research (World of Warcraft).

Q3) Support: How is appropriation supported/accommodated by the software system?
Can we observe problems and areas for improvement? How should adequate appropria-
tion support be shaped?

An increasing array of software is currently equipped with features which allow the
user to modify the system (see section 3.3 for several examples of component-based
extendability). Sometimes complex and confusing product communities evolve around
these features (Murphy-Hill & Murphy 2011; Stevens 2009). While some manufactur-
ers are beginning to understand that flexibility is an interesting asset to their software
systems, the software ecosystem approach seems to remove the clear responsibility of,
who should manage those communities and take care of integration work (Bosch
2009).

As part of the empirical research in order to discuss Q1 and Q2, this work therefore
also intends to inform design-activities carried out to discuss new appropriation sup-
port that might be beneficial, compared to existing approaches.

3.3. Selecting a field for empirical appropriation research

As software usage is embedded in and entangled with social, technical and often socio-
technical systems (Poole & DeSanctis 1989; Dourish 2003; Wulf & Rohde 1995; Pipek
2005; Stevens, Pipek & Wulf 2010), it depends on both the private and work contexts
of users as well as on the technological frame. The latter is continuously being devel-
oped further and this moreover potentially changes from one software system to the
next. An empirical field study to discuss Q1-Q3 universally is therefore not possible.
Instead, this study is based on one exemplarily chosen field and opens possibilities for
others to investigate furthers fields in order to compare and complement the results.
At the time of this study, there were several very interesting examples of flexible soft-
ware systems. Due to the focus on the appropriation of software systems that are part
of a software ecosystem, the field of investigation needs to reflect this. The following
line-up of software systems (see Table 2) is therefore fitted with clear features of tailo-
rability and created by a software ecosystem.

36 3. Research Outline
Type Target Tailorability |Community |Collaboratio
audience n
Mozilla Web Browser |not specialized |Look of the centrally Mozilla
Firefox Ul, Ul Ele- managed community
ments, Add-
ons
Adobe Graphics Media Design- |Plug-ins, centrally + unknown
Photoshop |processor ers, actions decentralized
Photographers
Microsoft |Text not specialized |Add-ins, User |centrally + unknown;
Office processor interface, decentralized |personal
Macros exchange
Google 3D modeling |Architects, 3D |Plug-ins decentralized |forums
Sketchup design
Eclipse IDE |Software Software devel- |Plug-ins, pref- |decentralized |forums; mar-
engineering |opers, software |erence set- ketplace; con-
testers, software |tings, user tact
architects, etc. |interface developers
World of Massive mul- (Gaming Add-ons, User |centrally + local groups,
Warcraft |tiplayer on- interface decentralized |curse
line game community

Table 2: Characterization of different flexible software systems that are incorporated in a soft-
ware ecosystem.

In the following sections, each software system from Table 2 is briefly analyzed to ass-
es in which ways they are flexible and to what extent they are part of a software
ecosystem. This is followed by a grounded selection of one software system as the field

of research for this work.

3.3.1. Firefox web browser

Firefox is a general purpose web browser, used to surf the World Wide Web in order
to do everything from gathering information through online shopping to hearing music
and watching videos. Web browsers usually have no particular target audience and

Firefox is no exception.

Firefox is developed by the Mozilla foundation, which describes the process as follows:
"The Mozilla project is governed by a virtual management team made up of experts
from wvarious parts of the community. Some people with leadership roles are employed
to work on Mozilla and others are not. Leadership roles are granted based on how ac-

tive an individual is within the community as well as the quality and nature of his or

3. Research Outline 37

her contributions. This meritocracy is a resilient and effective way to guide our global

commaunity. "

Firefox uses so-called personas to change its visual appearance. User interface ele-
ments such as buttons for certain functions can be hidden/shown and reordered with-
in a toolbar. Furthermore, a wide variety of add-ons exist that can provide powerful
additional features. Examples are a proxy for anonymous surfing, download helpers for

web content or a literature manager.

The Mozilla foundation provides a website, dedicated to different forms of add-ons
(see Figure 2), that is also accessible as a native application within Firefox. It includes
the sections extensions — small components that deliver new functionality, and
themes — to change the optical appearance.

800 @ Mozilla Firefox Start Page % | && Add-ons Manager. ®.f r.@ Up & Coming Extensions ... % | 4 L3
!
A () @ Mozill Foundation (US) mozilla.org/en-Us/firefox/e ~ ¢ | ([~ Google AU)HBA + &-2-8 P Z 9390 | =
e
, ADD-ONS
- T
EXTENSIONS | THEMES | COLLECTIONS | MORE...

EXPLORE 4 » Extensions

Fotied Up & Coming Extensions

Maost Popular

Top Rated Sort by: Featured | Most Users | Top Rated | Newest | Up & Coming | More = 2 Subscribe

CATEGORIES E Tabs on Bottom (Australis) [EEGd

Alerts & Updates bs on botto
(14) - 3,493 users
Appearance

Bookmarks

e Privacy Badger
Download Management o Pk Ol Ry i This atdn
Feeds, News & Blogging o/privacybadger
Games & Entertainment
Language Support
- Modern Download Manager
Photos, Music & Videos Motarn Danmload Manaoe gheapon it coni

Privacy & Security

Search Tools

Shopping

Social & Gommunication
Tabs
Web Development

Other

& New Add-on Bar

(12) - 4,815 users

@5 Tabs On Bottom MO RESTART |

Figure 2: Overview of Mozilla Firefox add-ons. (https://addons.mozilla.org/en-US/firefox/exten-
sions/ accessed: 2014/05/16).

Furthermore, there are community features such as most-popular add-ons, featured
extensions, User-based rankings, and search for add-ons. Furthermore and maybe most
interesting, a feature that allows sets of popular add-ons, which can be defined by oth-

6. http://www.mozilla.org/en-US/about/governance/roles/ (last accessed 2013/12/18)

38 3. Research Outline

ers and contain multiple extensions, to be installed. The Firefox add-ons site contains
139 extensions that deliver new functionalities’.

3.3.2. Photoshop image processor

Adobe Photoshop is a very powerful image editor/graphics processor that over the
years has become virtually an industrial standard.

The Photoshop user interface can be tailored by changing menu and palette entries.
Palettes can be freely moved around. Furthermore, Photoshop has a long tradition of
being extendable through plug-ins. Adobe itself provides a number of functions as
plug-ins (e.g. the import of proprietary raw file formats of photo cameras); yet many
plug-ins are created from within the Photoshop community. Plug-ins usually provide
tools for filtering, importing or exporting, color correction or automation (Dayley
2012).

: : [TBECOME A PUBLISHER |
ADOBE PHOTOSHOP Marketplace

Marketplace tools

Photoshop Marketplace home
Publisher login

About Adobe Photoshop Marketplace
RSS feeds

== ContrastMaster Forums
by The Plugin Site

All Offerings Filter by: Category H Type H Interest

Highest Rated | Staff Picks | Most Recent | Most Popular .

3D Invigorator
by Digital Anarchy

Artists can easily create complex 30 logos,

text and objects using vector artwork. Turm
flat 2D art into dynamic 3D objects!

WRWWI 46 20ratings

Photoshop Downloads
by Deepak malhotra

Another Good Place for Downloading
Adobe Photoshop Freebies.

WRRWH 47 28ratings

35 free, high-res, seamlessly tiling
textures for 3D and design
by Digital Anarchy

§ Great for texturing 3D objects or for design
backgrounds, these textures don't show
edges when tiled! And they're free!

WRRWI 45 2ratings

Free - Bling Effects Pack

by MediaMilitia

These brushes are large and look great on
almost anything. Bling it alll

ContrastMaster is a plugin and Lightroom
editor for contrast enhancement, dramatic
contrast looks and HOR-like effects.

TEKXY 3.6 17 ratings

Retina

| by XtraSens Ltd

Retina maximizes the perceived contrast,
brightniess, sharpness, depth and
resolution using a proprietary model of
human vision.

WRWWI 46 19ratings

DAZ Studio

by DAZ 30

DAZ Studio is a powerful, free 3D figure
posing and animation tool that enables

users to easily create stunning digital
imagery

HHHEH 39 12ratings

23 free high resolution backgrounds
for Photography or Design
by Digital Anarchy

Free high resolution backgrounds for

Portrait Photography, Print Design, or Web.

About becoming a publisher
Help

Browse by category

View all
General
3D
+ Actions, Automation, Scripts
Brushes
Camera Raw
Color, Color Management
» Custom Shapes, Styles, Effects
+ Digital Asset Management
Drawing and Painting
+ Editing, Layers, Selections
Filters
¥ Input/Output
¥ Panels (Flash Panels)

Templates

Browse by type

View all
» Software/Hardware

Figure 3: The Adobe Photoshop Marketplace, showing plug-ins for Photoshop (left) and cat-
egorization mechanisms for search functionality (right). (http://www.adobe.com/cfusion/mar-
ketplace/index.cfm?event=marketplace.categories&marketplaceld=2&categoryid= accessed
2014/05/16)
Adobe provides a community for plug-ins (see Figure 3), which groups plug-ins into

categories and provides search a functionality. Several commercial companies have

7. https://addons.mozilla.org/en-US /firefox/ (last accessed 2014/05/15)

3. Research Outline 39

been manufacturing plug-ins for years. However, many of these provide their own com-
munities with forums and market places or simple download possibilities (Dayley
2012).

At the time of this investigation, the Photoshop Marketplace featured around 1,897
plugins® delivering additional functionality.

3.3.3. Microsoft Office

The Microsoft Office suite features a general purpose word processor, spread sheets,
and presentation software. Office is used by everyone from pupils to managers in order
to create written documents, calculate costs or create presentations (Melton 2013).

Office has a long tradition of being customizable in many ways. The user interface
(menus and toolbars) can be fully adapted. Repetitive tasks can be reproduced in so-
called macros, small programs that are mostly generated by recording user interaction
(Kahler 2001a). Furthermore, Office (especially the text processor Word) can be tai-
lored by using add-ins, now called Office Apps (see Figure 4).

Reference (47)

Content Management Word of the Day

(23) WORD OF THE Word of the Day helps user learn a new word every day!
Education (21) (6)
MAQ LLC

Excel 2013, Word 2013
FREE

Search + Discoverability
(13)

Communication (11)

Contextual for Word
Contextual is a content discovery app for Word 2013
)

PROJECT77
‘Word 2013
6,99 zt

Translator
Translate words and sentences you've chosen in a document, using Microsoft
Translator.
(2)
Microsoft Corporation
Word 2013
FREE

LinguLab WordCloud

Create your free word cloud and embed it to your document.
(3)

LinguLab, GmbH

‘Word 2013

FREE

My Facebook Photos
View and insert your Facebook Photos inte your Word Documents

The App Refinery
‘Word 2013
FREE

Figure 4: An overview of components in the Microsoft Store for office apps. (http://office.mi-
crosoft.com/en-us/store/?CTT=97 accessed 2014/05/16)

8. http://www.adobe.com/cfusion/marketplace/index.cfm?event=marketplace.categories&marketpla-
celd=2&categoryid= (last accessed 2014/05/16)

40 3. Research Outline

Existing add-ins for Word include dictionaries (Bing dictionary), encyclopedias (bri-
tannica), literature tools (citavi, zotero), reading and writing support for other docu-
ment formats (e.g. Open Office) and more’.

The Microsoft Store for Office apps listed 192 additional components at the time.
However, this may be only the tip of the iceberg. Many add-ins are developed and dis-
tributed independently by their creators. The community is highly decentralized, with
a common platform that however does not allow for interaction (Kahler 2001a).

3.3.4. Sketchup 3D modeling tool

Sketchup is a 3D modeling software, for "architects, designers, builders, makers and

n10

engineers"’. Compared with other CAD tools, it is considered very easy to use.

Sketchup can be tailored by modifying the toolbar to add, remove or relocate icons.
Additionally, further tool palettes can be shown which add specific supplementary
functionalities. Moreover, Sketchup can be expanded by so-called extensions. These
small components add supplementary functionalities as support for different file for-

mats (e.g. STL or OBJ), rendering images, 3D printing objects, etc.

For several years, Sketchup was at the center of a very active community of extension
users and developers, loosely organized within a commonly used forum. Currently, the
so-called Sketchup extension warehouse'' is the starting point for users to pick and in-
stall their extensions (see Figure 5). The extension warehouse currently lists 267

components.

9. http://office.microsoft.com/en-us/store/?7CTT=97 (last accessed 2014/05/16)
10. http://www.sketchup.com/about /sketchup-story (last accessed 2014/05/16)

11. http://extensions.sketchup.com/en/search/site (last accessed 2014/05/17)

3. Research Outline 41

. i
Engineering (167) - el
Education (153) ~
Kitchen & Bath (152) 3skeng Channel by 3skengD
! Generate and edit rectangular HVAC channels or cable trays
Film & Stage (146)
Gaming (145)
Woodworking (145) il 3skeng Pipe by 3skengo
Heavy Civil (132) Generate and edit pipelines, work with standard fittings and components
Other (107)
Authors 4l 3skeng Steelwork by 3skeng®

Generate structural and support steelwork with five powerful tools
ThomThom (46)
Chiris Fullmer (25)
SketchUp Team (18) r":‘;_H 4D Virtual Builder for Trimble SketchUp by D-Stdio
Eneroth3 (12) Y? 4D Construction Visualisation within SketchUp

bz

Renderiza (12) T
SimLab S. (12)

[Re]Scene byRenderiza
Render Plus (9) Set current page style to others pages.
Aerilius (7)
daiku (7)
Smustard Team (7) | [SUICh byRenderiza
alexschreyer (6) Extract & Export Alpha, Clay, Color, Color by Layer, Line, Profile, Shadow, Texture and Zdepth

channels for composting.
Chuck Vali (B)
D.Bur (6)
David W. (6) AddQrthoScenes by Smustard Team

Add scenes orthographically by entering x,y,z offsets
CMD (5) ﬂ@ grap y by B XY,

Figure 5: The Sketchup extension warehouse, showing categorization mechanisms for search-
ing (left), as well as several extensions (right). (http://extensions.sketchup.com/en/search/site
accessed 2014/05/17)

3.3.5. Eclipse - Integrated Development Environment

Eclipse is an integrated software development environment (IDE), a software engineer-
ing toolbox, used by programmers, software architects and testers. It started out as a
development environment for the Java programming language but over the years it
was expanded to cope with many major programming languages and software engi-
neering technologies. Eclipse was created by IBM in 2005. Later it was made open
source and is currently being developed by the Eclipse foundation (O’Mahony, Diaz &
Mamas 2005). That said, the foundation is very small and only engages in coordina-
tion work. All implementation work is carried out by large corporations to small busi-
nesses and hobbyists, who contribute their work to Eclipse.

The Eclipse user interface can be tailored in several ways, but most importantly, so-
called plug-ins can be installed which result in new functionalities. Examples are sup-
port for additional software engineering tools (e.g. bug trackers, code repositories or
additional programming languages). Furthermore, Eclipse and the additional plug-ins
can be configured in several ways, to fit the project under development (Gamma &
Beck 2004).

42 3. Research Outline

1 ML Wi fwunw e Tou
iew and manage requests

Subclipse 443 Jidebug 2.1

EGit - Git Team Provider 374 Do you spend a considerable part of your time on finding bugs and looking for the lecation of code for

3 9 a feature? To solve your problem we have developed Jidebug, to have more...
FindBuas Eclipse Plugin 363 [:Dlnstall General Purpose Tooks ~ Other | Source Code Analyzer | Testing | Toolks
Maven Integration for 308 Last Updated on 16 May 2014 by Jidebug Team
Eclipse (Juno and newer’
PyDev - Python IDE for 274 - Nodeclipse CLI Installer 0.11
Eclipse Install Eclipse plugins from command line like ‘nodeclipse install egit'....
Eclipse Color Themse 272 1 o EclipzeRT Target Platform Components | General Purpose Tools | Other | Tools
Chec le Plug-in 219 bmsta“ Last Updated on 16 May 2014 by Paul Verest
Subversive - SVN Team 218
Provider ContentSuggest 1.0.0
AnyEdit Tools 213 ‘W During development and maintenance of a software preduct, software developers often search for
1 o relevant information in the web about an encountered error or exception, where...
more Search | Tools
Last Updated on 15 May 2014 by Masud Rahman
Explore Others Favorites . SVEditor 1.5.6
SVEditor provides a development envirenment for SystemVerilog and Verilog files. It features syntax
Rich Sage coloring, structure display, content assist, and source formatting.

4 1
Matt Cowell [:Dlnstall Editor | IDE | Languages = Source Code Analyzer
Last Updated on 15 May 2014 by Matthew Ballance

Victor Bathke

Johannes Guck

Impulse 0.6.14

Jan Reimann i h‘Qc impulse is a waveform viewer integrated into the eclipse framework. It allows to analyse digital
Igore Vitaller 4 0 signals , transactions, legs and analogue signals. The plug-in can be used on W...
Ravikanth kasim hlnstall Mobile and Device D Systems Dy Testing | Tools
_ Last Updated on 15 May 2014 by Thomas Haber
Janis Abele
fwb IBM Codename: BlueMix for Eclipse Kepler Beta ® Member Company
maxman @ “Beta* Enables rapid deployment and integration of applications with IBM Codename: BlueMix or the

Figure 6: Eclipse Marketplace, showing several tools for installation into Eclipse (right), as well
as categories to search for certain components. (http://marketplace.eclipse.org/ accessed
2014/05/16)

The Eclipse community is quite large and heterogeneous. Some means for centraliza-
tion exist, like the Eclipse forum for experience exchange and further development of
Eclipse and the marketplace for components, which currently lists 1,751 components
(see Figure 6). However, many additional components are not well represented there.
The community is very powerful, but also very complex (Gamma & Beck 2004).

3.3.6. World of Warcraft

World of Warcraft (often abbreviated as WoW) is a massive multiplayer online role
playing game that was very successful in recent years with about 11.5 million users.
World of Warcraft is developed and licensed by Blizzard entertainment, one of the
largest game design companies in the world (Nardi 2010).

The game can be extended with various add-ons, which deliver new features. As Bliz-
zard wants to balance gameplay and prevent unfair advantage over other players,
these features and therefore the power of add-ons is limited to changing just the user
interface and the display of values that are relevant for the gameplay. Some of these
add-ons can be configured afterwards (Nardi 2010).

3. Research Outline 43

World of Warcraft add-ons (which currently number 6,496) are at the center of a 3rd
party community, driven by Curse gaming (see Figure 7)". They offer features similar
to Firefox or Photoshop, as they present popular add-ons and let users rate add-ons,
etc. However, there seems to be an important personal exchange between collaborat-

ing players on which add-ons to use.

_ Deadly Boss Mods
1,067,802 Monthly 83,149,281 Total

Updated 16 May 2014 Created 29 Apr 2008
453 Likes Supports: 5.4.7

Browse by Class

_NPCScan
582,182 Monthly 18,456,549 Total
Updated 19 Apr 2014 Created 6 Jun 2009
219 Likes Supports: 5.4.7
Browse by Categories
— GatherMate2_Data
‘W) Al Addons
317,914 Monthly 19,031,008 Total
" Updated 11 May 2014 Created 10 Oct 2010
Achievernents > 72 Likes Supports: 5.4.7

Action Bars >
Artwork >

l xi Auction & Economy »

_NPCScan.Overlay
287,772 Monthly 8,737,504 Total
Updated 30 Apr 2014 Created 13 Sep 2009
112 Likes Supports: 5.4.7

Figure 7: Partial list of World of Warcraft add-ons at Curse.com. (http://www.curse.com/ad-
dons/wow accessed 2014/05/17)

3.3.7. Discussion

All of the introduced software systems are an interesting base to investigate the pre-
sented research questions. However, the Eclipse IDE and World of Warcraft seem most
promising. Together with Photoshop, they are arguably the largest in terms of existing
components. Unlike Photoshop, their components are very easy to access. Photoshop
plug-ins are often costly, for example; therefore a practical investigation would have
been much more difficult.

At the same time, we can assume a certain level of collaboration and potential needs
for an exchange of experiences between users. Programmers using Eclipse very often
work in work groups or project teams. World of Warcraft players organize themselves
in clans — groups of players that work together in order to achieve better results. The
same cannot be said for users of other systems. Firefox and Office usage is very often
not as collaborative.

In the end, the Eclipse Integrated Development Environment was chosen from this

group as field for research. We recognized some phenomena as problems with Eclipse

12. http:/ /www.curse.com/addons/wow (last accessed 2014/04/10)

44 3. Research Outline

usage and maintenance during informal interviews with Eclipse users that attracted
our interest. Furthermore, the pragmatics of field research, lead to a stronger focus on
the Eclipse IDE. However, the following additional considerations show that the deci-

sion to choose Eclipse as field for research was an excellent decision:

The technical possibilities to tailor and extend Eclipse are much more extensive than
the tailoring possibilities in Sketchup and World of Warcraft. The plug-in mechanism
(Gamma & Beck 2004) established Eclipse as one of the most flexible software systems
today. Figure 11 (see page 122) illustrates this very clearly by comparing it to a more
typical component architecture (included in this comparison).

Eclipse's user or target group consists of software developers, architects and testers.
This target group is of special interest for appropriation research. It can be argued
that they embody many of the skills that other users may have and need in order to
cope with flexible systems. They are generally considered to be technically skilled and
are regarded as being able to solve technical problems very well. Incompatibilities, up-
dates, or more typically making software work as part of appropriation can be counted

amongst their their skills.

They rank as being very open-minded regarding the adoption of new technology
(Stribing 1992), which is an important factor from a research pragmatics point of
view. Appropriation is enmeshed in other practices that aren't carried out every day.
As such it lacks observability in the wild. Due to this, every aspect that increases the
chance of triggering such activities also increases the chance to gather data for this
study.

The general field of application (software development) is a rather complex and usual-
ly group based activity. This potentially provides good general conditions for ob-
serving the collaborative effects of appropriation.

Eclipse — considered to be an open source development project — is conceived as an
impeccable example of open source software. This has come about not only due to the
relative stability of the software but also due to the emergence of a huge community of
users which has been continuously growing since 2001 (O’Mahony, Diaz & Mamas
2005).

One result of this community is the existence of more than 1,751 tools that are largely
free of charge and can extend the delivered functionality of Eclipse (see section 3.3.5).
Despite the existence of a common marketplace, their distribution is very heteroge-
neous. Every actor contributing a plug-in can choose to deliver it as he likes. Forms of

distribution are:

3. Research Outline 45

* Packaging and providing the plug-ins (or rather the container format of features)
as an archive for download (zip file). Such components can be copied directly into
the Eclipse installation or installed using the update manager.

* Providing an update-site that supports the Eclipse update manager. This option
is superior, as the update-site can be automatically checked for updates later.

* Providing an update-site and listing the plug-in in the Eclipse marketplace.

This creates a complex situation for users that reflects the missing integration respon-

stbility within software ecosystems very well.

Concerning access to the research field, Eclipse is again a good choice. At the time of
the study, Eclipse was perhaps the most important development environment for the
Java programming language, as well as being a well-known environment for other lan-
guages (Vaughan-Nichols 2003; Geer 2005). The large market share of Eclipse allowed
us to easily access Eclipse users for the field study. It was a crucial aspect as this
study was laid out to approach work groups in organizations which were as diverse as
possible.

The Eclipse IDE is open source at its core. Focusing on Eclipse therefore allows for de-
sign prototypes that would not be possible when relying on other software systems.
This could facilitate the design of appropriation support that could be integrated and
tested directly as part of Eclipse.

3.4. Research method

The overall case study of this work largely followed a praxeological approach (Reck-
witz 2002; Wulf et al. 2011). It focused on the practice level of users as a starting
point for the investigation of the social and socio-technical phenomena around Eclipse
appropriation. Underlying this idea is an existing definition that clarifies the focus on
practices further:

"Practices are understood as the smallest unit in the analysis of social phenomena. A
practice is understood to be a mainly routinized pattern of human action which is not
only encompassed by mental and physical forms of activity but that is also greatly im-
printed by objects, especially by tools, media, and their usage. A practice is grounded
in background knowledge that is both not entirely explicit and containing emotional as
well as motivational elements. Practices, therefore, represent collective patterns of in-
teraction that are reproduced in specific contexts. While the collective patterns of inter-
action are routinized, the concrete action is situated context-specifically and may devi-
ate from them." (Wulf et al. 2011)

46 3. Research Outline

This understanding of practice and idea to theorize about practices, allows appropria-
tion to be understood as originating from its visible, observable part: human practice.
Originating at this point allows additional questions regarding the involved human
agents and artifacts to be asked. In such ways personal and collaborative underlying
motivations and values as well as situational contexts within groups or organizations
can be pursued, interpreted and connected. Or as summarized by Suchman: “To un-
derstand technologies ethnographically, it is required that we locate artifacts within the

sites and the relations of their everyday use.” (Suchman et al. 1999)

Concerning the design of supporting technology (see part III), a grounded design ap-
proach was followed (Stevens 2009; Ramirez Zuniga 2012). Grounded design as carried
out during this work can be classified as follows: During the (long running) design
process, very few presumptions about the field were used to define a prototypical de-
sign. Instead, ideas for design had been grounded in the results of the empirical field
research. Furthermore, some of the concepts were open for discussion and presented to
users in order to gather feedback and include potential users into the design process
(Draxler, Sander & Stevens 2010). The design was influenced and inspired by, but was
not clearly a result of, the field study itself. The design process was intricately entan-
gled with the field research, as design ideas were grounded in (or discussed against
the) results of the field study. The combination of the empirical field study grounded
design led to a design concept and later implementation which had not been created
under previously defined hypotheses, rather the main conceptual aspects of the design
stemming from the empirical field work. The actual activity of designing in the
grounded design approach is similar to the activity of analyzing as part of the ground-
ed theory approach (Glaser & Strauss 1967) (see also section 3.4.2). Both approaches
demand further investigation, until theoretical saturation is reached. Theoretical satu-
ration in grounded theory is the point where the additional analysis of new material
does not raise new results (Strauss & Corbin 1996). In grounded design it can be con-
sidered the point where additional field research does not contribute to further de-

scribe the design space, which is to be filled creatively through designing.

To some extent, the presented work can be also seen as a mixed method approach
(Kelle 2001). The first investigation made use of a questionnaire that was evaluated
mainly in order to determine the rate of participants working in a collaborative envi-
ronment, sharing tailoring artifacts, etc. The following investigation adopted the mi-
cro-level approach, as previously introduced.

3.4.1. Gathering data

The first part of this study was carried out as an exploratory interview study with
Eclipse IDE users. While the results have not been published, they sharpened the view

3. Research Outline 47

towards this phenomenon: Eclipse users were struggling with the maintenance, config-
uration and appropriation of their main working tool.

A first investigation into the field of Eclipse usage and appropriation was prepared as
a study based on an online-questionnaire in order to understand if modification and
exchange was common among Eclipse IDE users. The results of this work are present-
ed in chapter 4. The question and answer categories of this questionnaire were pre-
pared, based on the first results of the exploratory study. The questionnaire was pub-
lished in several well-known places for Eclipse IDE users (e.g. forums consulted by
web developers). The questions were evaluated, using statistical analysis (e.g. count of
installed plug-ins, top 10 installed plug-ins, most used versions of Eclipse IDE, etc.).
This was especially interesting, as we did not only ask certain questions, but requested
the participants to attach a footprint of their Eclipse IDE. All participants found this
easy to achieve as Eclipse provides a function to automatically create such footprints
as a text file, including version numbers and installed plug-ins.

However, the most useful way to investigate the proposed research questions was by
conducting an empirical field study. Over time, we gained access to seven organiza-
tions that at the time were using the Eclipse IDE. A detailed introduction is given in
section 3.5, an overview of the complete material is shown in Table 6 on page 119. We
were allowed to carry out observations, interviews and workplace investigations com-
bined with small ethnographical interviews (Randall, Harper & Rouncefield 2005).
Furthermore, we gathered artifacts. All interviews were recorded and transcribed for
later analysis. Screenshots and Eclipse footprints were taken, during workplace investi-

gations. In the course of these observations, we furthermore created field notes.

As part of a comparison of Eclipse appropriation with the appropriation of another
flexible software system, we chose World of Warcraft as a second field for research (see
section 3.3.6). We applied the same data gathering method (and analysis method) to a
group of World of Warcraft players, in order to compare the results (see chapter 7).

3.4.2. Data analysis

The detailed analysis of the material gathered during field visits was carried out by
following the strategy of theoretical sampling as suggested by the grounded theory ap-
proach (Strauss & Corbin 1997). Therefore, the data was coded (in grounded theory
terms: breaking the surface of the material (Strauss & Corbin 1997)). Over time,
through continuous comparison of codes and by carving out the characteristics of
codes, larger categories were formed which span multiple codes and present a less de-

tailed but easier to comprehend unit. In order to achieve this, the grounded theory ap-

48 3. Research Outline

proach instructs that leading questions should be asked. These can be classified into

several categories to systematically explore the data:

"(A) conditions -> (B) phenomenon -> (C) context -> (D) intervening conditions ->
(E) strategies of action -> (F) consequences” (Strauss & Corbin 1996, p. 78).

Data from each organization was first investigated separately, in order to search for
differences between the participating organizations. During this phase, the Eclipse
IDE footprints were also analyzed. A small tool was prepared (see Figure 8) to pick
interesting data from the footprints and export it as files, processable by spread sheet
software in order to gain an overview of the data and create graphs that represent cer-
tain aspects of the data. This data was used to validate and add details to statements,

given during the interviews.

8.0 60 Eclipse Configuration Analyzer 1.1

I There's nothing to do.

éclipse Configuration Analyzer

I | Name of this Project Dewtscher Rina 1

[Users,"sdraxIer,fDocumems,’Sanchox,fEcIipseFeatureAnalyszerNEU;’Konﬁgurationen,’data,fir:‘
JUsers/sdraxler/Documents/Sandbox/EclipseFeatureAnalyszerNEU/Konfigurationen/data g
JUsers /sdraxler/Documents/Sandbox/EclipseFeatureAnalyszerNEU/ Konfigurationen,/data/d
JUsers /sdraxler/Documents/Sandbox/EclipseFeatureAnalyszerNEU/Konfigurationen,/data/cd
JUsers/sdraxler/Documents/Sandbox/EclipseFeatureAnalyszerNEU/Konfigurationen/data/g

i — —"
(o)

=
~

o
5|

Top 10 Features

Top 10 Features in CSV Date. Exportiert genau genommen alle Features. Sortiert diese
|laber nach Haufigkeit. 5o konnen leicht ausreier entfernt werden.

Schnittmenge ‘ ﬁ || 7

Es wird die Schnittmenge, sowie die Restmengen der verschiedenen Konfigurationen
als CSV gespeichert.

Last Changed ‘EJ

[Exportiert die Daten an denen die Konfigurationen zuletzt ver@ndert wurden

[[Altersbestimmung)

\Alle Konfigurationen \EJ |‘

TODO: Genauer: Alle Features/Plugins in eine CSV Datei

\Alle Konfigurationen Getrennt ‘EJ |

|Alle Features/Plugins in getrennte CSV Dateien

[Features-Plug-ins XML \1| |
|;| l;‘ \Alle Features/Plugins in eine XML-Datei (Data.XML) v

Figure 8: Eclipse Footprint analysis tool.
The organizations were carefully selected to ensure they differed from each other. This
was part of the effort to achieve a theoretical saturation (Strauss & Corbin 1997) dur-
ing the analysis. The grounded theory approach suggests selecting cases which differ
from each other in order to gain a range of insights during the analysis, up to the
point where new different cases do not provide any new results (theoretical satura-
tion). Despite careful selection, the results proved to be very similar, thus rendering a

side by side comparison unsuitable. Instead, a more comprehensive analysis compris-

3. Research Outline 49

ing all data was carried out. Furthermore, theoretical saturation was reached after in-

vestigating seven organizations.

As part of this analysis, we also investigated the socio-technical structure of the
Eclipse ecosystem since this determines users' opportunities to shape their personal
workspaces. The work of other researchers was mainly included subsequent to the
original analysis in order to describe certain uncovered phenomena using naming con-

ventions known in the scientific CSCW and HCI community.

3.4.3. Ethnographically informed design

Parallel to field visits and interviews, different design interventions were carried out.
This included participatory design (Schuler & Namioka 1993) workshops with Eclipse
users, sketching (Buxton 2007) workshops with designers, reflection workshops to
ground ideas within the results of the field study and evaluation (Dahlbéck, Jonsson &
Ahrenberg 1993) workshops with Eclipse users. Overall, these steps were carried out

at various times, not strictly in this chronological order during later iterations.

_[/—) N . V.

SEATH

Figure 9: Left: prototyping-approach; right: sketching-approach (Buxton 2007)
The early process was organized as a sketching approach (Buxton 2007) (see Figure 9
left) in order to envision ideas. Those early concept ideas followed a recommender sys-
tem approach for customizations as well as a social network for customizations and ex-
perience exchange. However, the ideas were quickly discarded in favor of an awareness
approach (Heath, Luff & Cambridge 1992) that was better grounded in the empirical
results and showed potential during a wizard of oz evaluation (Buxton 2007;
Dahlbéack, Jonsson & Ahrenberg 1993). From this point onwards, the process changed
to a prototyping approach (Buxton 2007) (see Figure 9, right), focusing more on
making this design concept usable for support, rather than arguing for different

concepts.

The next phase saw an improvement in interaction with the demonstrator. A partici-
patory design workshop with regular Eclipse users helped to shape the provided infor-
mation and interaction design in that respect.

Additionally, the prototype was presented to seven Eclipse users from two of the
organizations participating in the study. First, early versions of screenshots were used

but as the prototype improved, the complete software was shown in order to evaluate

50 3. Research Outline

the user interface. Based on this, the prototype was stabilized, bugs were fixed and the
user interface received a cleanup. It was finally tested (Wulf et al. 2011) and discussed
with eight users at a research institute, who integrated the plug-in into their daily

working environments (see chapter 9 for more details).

3.5. Overview of Eclipse-related field visits

The main part of this work is based on a corpus of empirical field studies, carried out
in seven different organizations. At the time, all organizations used Eclipse for certain
software development efforts and agreed to participate in a study to investigate their
Eclipse IDE usage. To contextualize the results presented in parts II and III, the par-
ticipating organizations are introduced in this section. Please note that the data for
these descriptions was gathered in the course of the field study. The names of the
organizations, products and services as well as the names of the participants have
been replaced with pseudonyms. Please also note, that a much more detailed overview
is presented in Appendix I.

* Alpha: Is a small German software producer (about 10 people). Their main asset
is a groupware system that is licensed to customers. The main tasks can be de-
scribed as further developing the groupware system for customers as well as main-
tenance and bug fixes. There was a divide between the senior staff and the junior
workers. Seniors preferred command line tools, while the junior developers pre-
ferred the Eclipse IDE. Interviews and workplace visits with all Eclipse users were

carried out.

* Beta: Is a small German web developer (8 employees + freelancers). Their work
consists mostly of the development of small web-based applications that incorpo-
rate Open Source Software. At the time, they used the Eclipse IDE in most
projects. Interviews with the CTO and one junior developer have been carried
out. to represent a senior and a junior developer.

* Gamma: Represents the software development department at an insurance com-
pany, responsible for in-house development. The whole company employs 1,200
people, the development department consists of 90 people. They mostly develop
Java-based web-applications. Interviews with three members of one development
group were carried out. We chose this group, as the project leader was actually an
employee of Delta and we hoped to get some interesting insights, because of that.
The group had to cope with certain problems, because of a very restrictive Fire-
wall, that prevented updates and download of plug-ins.

3. Research Outline 51

* Delta: Is a German software development and technology consultancy company,
about 50 people strong. Most employees are specialists in using Eclipse and in de-
veloping new software that is based on Eclipse technology. We interviewed two
people, typical for the company at their work places.

* Epsilon: Represents the maintenance group at a German 1,700 people research
facility. The maintenance consists of 20 people for software and hardware develop-
ment. They are responsible for the development and maintenance of the cooling
facility of a particle accelerator. We carried out three interviews with typical staff
members and visited their work places.

* Zeta: Is a medium-sized (300 employees) German enterprise, known for small and
medium sized web-applications. At the time, they used the Eclipse IDE for nearly
all projects. Their trouble with the maintenance of Eclipse, lead to making one
member of the company responsible for Eclipse IDE management. We interviewed
four experienced Eclipse users, that were part of one development team.

* Theta: Is a small German software development company, employing about 30
people. Theta is an expert in Eclipse technology (similar to Delta), as their two
main products are based on Eclipse technology and developed using the Eclipse
IDE. We interviewed the project leader of ThetaProduct as well as two of his de-
velopers at their work places.

While the beginning of chapter 4 is based on a questionnaire, the main part is based
on research carried out at Alpha. Chapter 5 is based on data from several, however
not all organizations (see Table 5). Chapter 6 is based on all of the introduced organi-
zations Alpha to Theta. Chapter 7 is based on a subset of these organizations (Alpha
to Epsilon). The data used for chapter 7 was supplemented by several interviews
with, as well as remote participant observations of a group of World of Warcraft play-
ers. This was carried out to gather comparable data, which is described in chapter 7.
Chapter 8 was also based on the Data of Alpha to Epsilon, while chapter 9 again
makes use of the whole dataset.

3.6. Mapping of sections and research questions

Part II of this book will center on discussing ()1 and ()2, outlined above. The four
chapters (4-7) have already been published and resemble the accepted versions of the
related journal or conference papers (see Related Publications on page V).

* Chapter 4 provides an overview over some aspects of appropriation of the Eclipse
IDE, as well as a broader study showing that the observed phenomena are not
only specific for the selected research sites. It outlines the dilemma between up-

52 3. Research Outline

dtating Eclipse and stabilizing Eclipse. Furthermore, it presents a detailed analy-
sis of Alpha.

* Chapter 5 focuses on a group view of the observed practices. It centers on the de-
finition of types of collaboration within organizations or work groups during ap-

propriation efforts.

* Chapter 6 presents a very detailed analysis of observed appropriation practices
and contextualizing situations. It connects both aspects and creates a rich under-
standing of the appropriation of Eclipse, grounding the presented categories in

the users' work and organizational specifics in order to relate the results to other
fields.

* Chapter 7 focuses mainly on 2, as this presents a different field study which in-
vestigated the field of World of Warcraft players in order to compare appropria-
tion between them and previous results from the Eclipse IDE case study.

Part III of this book will introduce results to discuss @3 outlined above. Both chap-
ters have already been published and resemble the accepted versions of the related
conference papers (see Related Publications on page V).

* Chapter 8 provides an early overview of the design space, concerning the support
of Eclipse appropriation.

* Chapter 9 presents in detail several design-principles that have been evaluated
and implemented for prototypical demonstration. This exemplifies and demon-
strates a new category of appropriation support: relying on the group instead of

communities and awareness as a main channel.

Part TV summarizes the results of this work, discussing them against the backdrop of
the presented related literature and points out findings that go beyond the state of the
art. Furthermore, open questions that could not be answered or have risen during this
work are discussed.

Understanding Eclipse
Appropriation

4. The Collaborative Appropriation of an Open Software Ecosystem 55

4. The Collaborative Appropriation of an Open Software
Ecosystem™

Since the beginning of CSCW there was an intense interest for research on workplace
design using tailorable applications and sharing customizations. However, in the mean-
time the forms of production, distribution, configuration and appropriation of software
have changed fundamentally. In order to reflect these developments, we enlarge the
topic of discussion beyond customizing single applications, but focusing on how people
design their workplaces making use of software ecosystems. We contribute to under-
stand the new phenomenon from within the users’ local context. By empirically study-
ing the Eclipse software ecosystem and its appropriation, we show the improved flexi-
bility users achieve at designing their workplaces. Further the uncovered practices
demonstrate, why design strategies like mass-customization are a bad guiding princi-
ple as they just focus on the individual user. In contrast we outline an alternative de-
sign methodology based on existing CSCW approaches, but also envision where the
workplace design in the age of software ecosystems has to go beyond.

13.This chapter has been published as: Draxler, Sebastian and Stevens, Gunnar, 2011. Supporting the
Collaborative Appropriation of an Open Software Ecosystem. Journal of Computer Supported Cooper-
ative Work (CSCW), Volume 20, Issue 4-5, pp. 403-448, October 2011. With kind permission from
Springer Science and Business Media. http://link.springer.com/article/10.1007%2Fs10606-011-9148-9

56 4. The Collaborative Appropriation of an Open Software Ecosystem

4.1. Introduction

“How do wusers design their digital workplaces in an age of open, dynamically evolving

software ecosystems?” - this presents the overall guiding question in this work.

In the past, the question of tailoring working environments was intensively investigat-
ed by HCI as well as CSCW research (i.a. Mackay 1990a; MacLean et al. 1990; Mgrch
1997; Kahler 2001b; Lieberman et al. 2006). This is no wonder as inappropriate de-
signed workplaces are considered to interfere with work instead of supporting it.
Searching for reasons why supporting workplace design is so complicated, Henderson
and Kyng (1992) argued that the worlds’ complexity itself makes it difficult for the
designer to anticipate all that will eventually be of importance in the users actual
work situation. And even the best design can not solve the problem once and for all, if
it is inflexible. The strategy therefore must be to design customizable applications
that can be adapted within the use situation in order to fit to the personal preferences
as well as to the task at hand. Early solutions did focus on the individual user only,
but empirical studies conducted in the CSCW community made aware of this issues’

collaborative dimension.

Standing on the shoulder of this research, this work explores a paradigm change in
software development with regard to possible futures of the workplace design at the
shop floor. This paradigm change can be categorized by several trends like the estab-
lishment of the Internet as the dominating infrastructure for mass communication as
well as the dissemination and marketing of digital goods; the establishment of new
business- and development-models that foster a gift culture, encouraging users to
share software with others; the establishment of loosely coupled networks of manufac-
turers, semi-professionals, and hobbyists, creating small-scale components which can
be individually assembled by users.

Messerschmidt and Szyperski (2005) coined the term “software ecosystem® to label
this new paradigm. It is semantically related to concepts such as production networks
or network economies; however, it tries to integrate the economical and the technologi-
cal point of view. A Software ecosystem can be defined as a network of related actors,
interacting with a shared market (Boucharas, Jansen & Brinkkemper 2009). These re-
lationships are frequently underpinned by a common technological platform or market
and operate through the exchange of information, resources and artifacts. Technologi-
cally, software ecosystems need new architectures to integrate assemblies of coexisting
and coevolving software in a deep and seamless manner, to be perceived by the user as
a unit solving the task at hand (Bosch 2010).

4. The Collaborative Appropriation of an Open Software Ecosystem 57

This new paradigm has been anticipated to some extent by Mcllroy’s (1968) vision of
component-based software development. As early as 1968, he saw future application
development as a plugging together of different components bought on the free mar-
ket. He envisaged the role of a general contractor, offering application services similar
to roles in the manufacturing industry; yet today this task often becomes the responsi-
bility of end users. Like many things in life the new responsibility has a twofold char-
acter: while it introduces a new freedom to create personal software portfolios, it also
requires new competencies to keep an overview over useful and trustworthy material
available on the software ecosystem and competencies to assemble them in a reliable
way.

The discovery of the local appropriation practices and the change in the global soft-
ware development practices give reasons to take a closer look on the new paradigm
and how this is reflected in the users appropriation practices. Yet, there is still a lack
on empirical research on the situated practices, people employ to manage and share
personal software portfolios while coping with the complexity of dynamically evolving
software ecosystems. This work therefore attempts to address this gap by studying
Eclipse as one of the most vivid software ecosystems today. Eclipse is based on an ad-
vanced software architecture where ‘everything is a plug-in‘ (Gamma & Beck 2003).
Build on this architecture more than thousand plugins are available on the Internet,
provided by a large number of open source projects and commercial vendors.

Our research agenda for investigating into workplace design in the age of software
ecosystems is constituted by the following questions:

1. How is the coexistence and coevolution of software structured at the large scale
of software ecosystems?

2. Is there evidence that people make use of the new opportunities (including the
integration of coevolving software pieces - a work that was previously done by
designers)?

3. How is appropriation structured and what situations contextualize this work?

Contributing to the conceptual foundation of CSCW, we further use the empirical
findings as a sensitizing lens to adapt existing approaches to support the appropria-
tion work (Pipek 2005) in the local context. Keeping the advantages of software
ecosystems, but lowering the burden of using of it, we especially address the following

issues:

A)How can we support individual persons when selecting appropriate tools from
the ecosystems to design their workplaces?

58 4. The Collaborative Appropriation of an Open Software Ecosystem

B) How can we support collaborative appropriation practices?

C)How to foster the collaboration among the ecosystem in mediating the local
global context a better way?

Guided by our research topic this work is structured as follows: Section 4.2 gives an
introduction into the related research on workplace design and appropriation work.
Section 4.3 outlines the mixed method research approach we applied, discussing the
relation between the ecosystem analysis, the survey and ethnographically oriented
study in detail. Section 4.4 gives a brief introduction into the Eclipse ecosystem, illus-
trating, how the Eclipse ecosystem functions as a decentralized, open production net-
work. This addresses our first research question. Against this backdrop, section 4.5
presents the findings of the survey, contributing to the second research question. Sec-
tion 4.6 presents the findings of the in depth case study, answering the third question.
Section 4.7 interprets the empirical findings in terms of technological and organizatio-
nal opportunities to support the appropriation of software ecosystems. In section 4.8
we give a conclusion and we discuss the transferability of our findings in more detail.

4.2. Workplace design as “artful integration”

In this section we want to draw a rich picture of designing workplaces at the shop
floor. The tour is guided by our primary research interest: workplace design in the age
of software ecosystems. Our tour starts with a tayloristic view, where the workers’
efforts to get a useful workplace are almost invisible. Studying the topic from the
different research threads in CSCW, we uncover more and more facets of this phenom-
enon. These facets show the artfulness of situated workplace design as integrating and
managing the coevolution of diverse resources coming from different contexts.

4.2.1. Tayloristic workplace design

In the field of Information Systems theoretic models about adoption of technology in
organizations have been suggested from a positivistic stance (e.g. Fichman & Carroll
2000; Venkatesh & Davis 2000). Empirically these models are typically validated with
the help of standardized surveys. In addition, there is a growing literature on using a
practice lens to study the appropriation of technology in organizations (e.g. Orlikowski
2000; Boudreau & Robey 2005). However, there are only few ethnographic studies
that examine how workers deal with the design of their workplaces in order to get
their work done.

This lack of research might also be an outcome of the implicit assumption of a Tay-

loristic view that workers should not design their workplaces themselves. Following

4. The Collaborative Appropriation of an Open Software Ecosystem 59

Taylor’s (1911) principles of Scientific Management this issue is in the duty of the ma-
nagement and should rest on the expertise of system analysts. Despite the fact that
these principles rarely appear in pure form, Jirotka et al. (1992) point to the fact that
they “permeated deeply into management philosophy and appear to form part of the
background assumptions of many of those who design computer systems for organiza-
tions” (Jirotka, Gilbert & Luff 1992).

With regard to the design of computerized workplaces we found such permeation in
the common standards for IT management like ITIL and CobiT (Bon 2004). These
standards describe a set of ‘best practices’ including the provisioning of IT services
and the maintenance and operation of IT infrastructures. The provision and configura-
tion of I'T systems is thereby a part of common IT services, which are carried out by
service providers. The service provider can be the internal IT department, or out-
sourced to an external partner. The ITIL standard does not address the single user as
the customer of an IT service, but the organization as a whole. Therefore it is not sur-
prising that the topic of tailoring is not addressed within the ITIL standard (neither
by end users alone nor cooperatively with the service provider).

4.2.2. From Taylorism to Tailorability

A central demand of Participatory Design was the democratization of work; giving the
end user a voice in the workplace design (Ehn 1990). In the beginning Participatory
Design focused mainly on giving the end user a voice at the early stages of software
development projects. Methods like future workshops or mock-up prototyping were
used to support the mutual learning between designers and users (Floyd et al. 1989).
However, even if design is conducted in a participatory manner it became clear that
monolithic or too inflexible systems cannot cope with the complexity and the dynam-
ics of the world. The democratization of work therefore should include the design of
tailorable systems (i.a. Henderson & Kyng 1992; Wulf 1994; Muller, Haslwanter &
Dayton 1997). Kahler (1995) emphasized this as “from Taylorism to tailorability” to
characterize this new workplace design paradigm.

Tailorability comes along with new challenges as anticipating the scope of possible
changes (Stevens, Quaisser & Klann 2006); considering the variety of tailoring skills of
an heterogeneous group of users (MacLean et al. 1990); and bridging the gulf between
surface and deep customization (Bentley & Dourish 1995). Tailorable systems should
therefore follow a gentle slope of complexity allowing the user to use broader tailoring
features step-by-step (MacLean et al. 1990) and keep a reasonable trade-off between
case-of-use and degree of freedom (Costabile et al. 2006).

60 4. The Collaborative Appropriation of an Open Software Ecosystem

A way for implementing stepwise increasing freedom and complexity is to provide
three levels of tailoring (Henderson & Kyng 1992; Mgrch 1997). These levels can be
defined as follows (cf. Mgrch 1997): customization (or parameterization) as modifying
attribute values by selecting among set of predefined configuration options; integration
(or composing) as linking together modular pieces of functionality by script mecha-
nisms (e.g. macros recorder) or by plugin mechanisms (e.g. extension managers); and
extension (or programming) as adding new functionality by changing existing program

code or develop new modules.

To demonstrate the technical feasibility of tailorable systems several systems have
been developed in research. Examples are OVAL (Malone, Lai & Fry 1995), Prospero
(Dourish 1996), DODE (Fischer 1994) or FreEvolve (Wulf, Pipek & Won 2008). These
design studies showed that systems could provide tailoring options at different levels
of complexity. However, most of them served only as research prototypes that were
never used in practice. Accordingly no ethnographic studies exist about how end users

use and tailor these systems in the wild.

4.2.3. Patterns of sharing customizable working environments

A large body of literature has considered tailoring to be an individual effort (cf.
Friedrich, & Rédiger 1991) and research on tailoring support therefore mainly focused
on personalization (i.a. Kobsa & Wahlster 1989; Oppermann 1994). This focus shifted
in reaction to empirical studies that uncovered the collaborative dimension of tailoring
(i.a. Mackay 1990a; MacLean et al. 1990; Gantt & Nardi 1992; Wulf 1999b; Kahler
2001b). These studies raised awareness of the existence of sharing habits and different
types of users who are involved in these processes. To categorize the different user
types several similar classification schemes have been developed, e.g. the one of Mack-
ay (1990a). Following her, we can distinguish between: lead users of new technology as
users who intensively look into new software and create and share adaptations with
others; translators as less technical oriented users, who connect the lead users to ordi-
nary users by relying on the work of lead users and adapting this to the users needs;
ordinary users as people who do no adapt themselves but use adaptations of other

persons.

The existence of different user types and their collaboration seems to be a general
phenomenon that is not limited to the organizational domain. In the domestic do-
main, for example, Grinter et al. (2005) found that the party with the biggest techni-
cal competence usually configures home IT for the others. In the general domain of
adopting individual products the classical Diffusion of Innovation Theory (DOI) also
identified different types of users including innovators, early adaptors, the majority,

4. The Collaborative Appropriation of an Open Software Ecosystem 61

and the laggards. There are several similarities between both classification schemes.
However, there is also an interesting difference: Mackay described lead users as cre-
ators of innovations within the local context, while the Rogers described the innova-
tors as adaptors of innovation coming from the outside. Therefore they have a slightly
different function: “/Most individuals do adopt new products] not on the basis of sci-
entific research by experts, but on the basis of the subjective evaluations of near peers
who have already adopted the innovation. These peers [typically innovators and early

adopters] serve as models whose behavior is imitated by others in the social system.’
(Rogers 2003).

In addition to the empirical research, several authors also exploited opportunities to
support collaborative tailoring adequately: Understanding groupware tailoring as a
kind of collaborative design process in the small, Oberquelle (1994) argued to support
the stages from getting aware and discussing tailoring needs over the evaluation possi-
ble solutions to the implementation of one solution and the notification of affected
users. Further, Kahler (2001b) suggested technical as well as organizational support,
including: sharing of configurations and tailored artifacts e.g. via email or built-in
mechanisms, curating a repository of tailored artifacts e.g. via a shared file system, en-
abling the exploration of tailored artifacts in a sandbox, raising awareness of tailoring
activities and fostering a tailoring culture including the cooperation among colleagues,
the cooperation between users and local experts and the organizational recognition of
tailoring efforts.

4.2.4. From tailoring to appropriation research

In the last ten years the term appropriation appears in CSCW research and since then
broadened our understanding about the ways how users give technology a meaning
and how they fit technology into the patterns of their everyday life (cf. Silverstone &
Haddon 1996; Dourish 2003; Pipek 2005; Balka & Wagner 2006; Stevens 2009). The
appearance of the concept was encouraged by phenomena of unanticipated use
(Robinson 1993), the situated, cultural production of meaning (du Gay et al. 1997),
and the transformation of work practice in the process of adopting and adapting tech-
nologies (Dourish 1996).

Etymologically, the term appropriation is rooted in the Latin word appropriare, "to
make one's own". Historically the theoretical concept can be traced back to the Marxi-
an/Hegelian evolutionary anthropology (cf. Stevens 2009). The central idea of this an-
thropology is that man is constituted by labor as the self-realization of man in nature
through the appropriation of nature (cf. Markus 1978; Rohr 1979). Appropriation, in
this tradition, refers to the relation between the socio-historically given world and

62 4. The Collaborative Appropriation of an Open Software Ecosystem

human agency constituting a dialectic unity, where the things we live with only exist
within this relation. Appropriation presents an open process of the situated main-
tenance and development of the relation and the boundary between one's own and the
foreign. This process has a productive achievement, but is a formative event as well.
What a thing is depends therefore on how it is used, and how it appears into human
activity. In particular, things itself can change as people change their mode of using it
(Ruel 2002).

The salient point in the dialectic view is that giving things another form and giving
things another meaning are not two independent phenomena, but express two facets of
solving the challenge to use things constructively, incorporated into one's life for bet-
ter or worse (Bertell 1971).

Appropriation work (Pipek 2005) as a dedicated activity becomes especially relevant
in breakdown situations. During these situations users can try to tailor the features of
system as well as explore the existing features in more detail (Stevens 2009). The ap-
propriation work is typically embedded in activities of situated experimentation and
explorative learning. It has typically the form of an artful integration or bricolage “us-
ing ready-at-hand materials, combinations of already existing pieces of technology —
hardware, software and facilities [..] — as well as additional, mostly ‘off-the shelf’
ones” (Buscher et al. 2001).

A facet of Appropriation work is explorative learning. It is closely related (but seldom
discussed) to Twidale’s (2005) work on the informal, spontaneous workplace help-
giving among colleagues who learn to use computer applications according to the local
needs. He identified several dimensions to characterize informal learning situations, in-
cluding: the time, the location, the formality and the topic of the situation. Drawing
on the implications for design, Twidale (2000) stressed that in addition to support in-
dividual learnability (e.g. by context help) features to support collaborative learnabili-
ty should also be included into the application. In a similar vein, Pipek (2005) argues
for appropriation support, including features to share use experiences and to foster use

discourses.

Appropriation research made another important topic visible: the cross-application na-
ture of the people’s work. The boundary of a system as intended by designers is often
not congruent with the one, perceived and needed by the users when solving the task
at hand. Hence, appropriation work is typically accompanied by altering boundaries,
re-assembling work materials, and re-configuring organizational, technological as well

as spatial relations (Balka & Wagner 2006). Technology should therefore provide an

4. The Collaborative Appropriation of an Open Software Ecosystem 63

outer-tailorability (Pipek & Kahler 2006), that enables the selection and combination

of technologies coming from different sources.

Providing and managing the cross-application tailorability is also a serious topic in the
evolution of IT-infrastructures: “Changes — independently of whether they are imple-
mented by tailoring or by evolving the software — can depend on and affect changes in
other applications of the IT-infrastructure and the interaction between applications.
This requires coordination between tailoring and development, and cooperation between
the persons responsible for tailoring and developing the different applications. And

this, in turn, requires a different set of competences from users and developers.’
(Eriksson & Dittrich 2009).

The artful integration of materials coming from different contexts should therefore be
studied from the background, how the coevolution of these materials is organized at
the large scale.

4.2.5. Managing the coevolution of artifacts within Software Ecosystems

The term software ecosystem refers to a new software production paradigm in Soft-
ware Engineering (Messerschmitt & Szyperski 2005). In the past, development efforts
of software companies were described rather static and individual. Instead, the new
paradigm emphasizes the dynamic character of a network of multi agencies. The au-
tonomous actors function as a unit and have to interact with each other either directly
or mediated e.g. through market processes.

The software ecosystem paradigm raises new challenges to be solved: the design of
software architectures that enable the deep and seamless integration of software com-
ponents (Bosch 2009; Bosch & Bosch-Sijtsema 2010a); methods to specify the basic
architectural structure that (implicitly) defines what is fixed and what is adaptable or
extendable (Dittrich, Lindeberg & Lundberg 2006); mechanisms to coordinate globally
distributed software development (Crowston et al. 2008; Bosch & Bosch-Sijtsema
2010b); dealing with the collaboration and competition at the same time (Henkel
2004; Jansen, Finkelstein & Brinkkemper 2009); and building and managing a soft-
ware ecosystem around a product including a community of external developers, do-
main experts and users (Bosch & Bosch-Sijtsema 2010a).

Additionally, there is an increasing awareness that the active role of users has to be
considered more seriously. For example Bosch (2009) argues to provide effective mech-
anism for facilitating mass customization. Yet the topic is still under investigated. In
particular, Software Engineering has to consider at a deeper level that developing soft-

64 4. The Collaborative Appropriation of an Open Software Ecosystem

ware will increasingly be mixed and interlaced with the tailoring (Dittrich, Lindeberg
& Lundberg 2006; Eriksson & Dittrich 2007; Dittrich, Vaucouleur & Giff 2009).

Part of the design problem is the difficulty to anticipate changes for which to provide
(Dittrich, Lindeberg & Lundberg 2006) and - with regard to open software ecosystems
- to anticipate the participating actors. Another challenge to cope with the multi
agencies of software ecosystems is to align common goals with issues of particular in-
terest. The wickedness of “designing for change” cannot be solved in advance, but is in
an ongoing accomplishment that requires a continuous communication between soft-
ware engineers, local experts, and ordinary users (Dittrich, Lindeberg & Lundberg
2006). Beyond an organizational tailoring culture, therefore, a cross-boundary culture
of participation is needed (Eriksson & Dittrich 2009; Fischer 2009). In addition, An-
dersen and Mgrch (2009) identified five interrelated activities in the coevolution of
software: adaptation of the product to a specific customer, generalization of new re-
lease that is available to more than one customer, improvement request articulated
from the customers’ perspectives, specialization created in-house to improve the prod-
ucts for their own internal work, and tailoring made by end users for their purposes.
These activities constitute a system of mutual development and the role of tailoring
activities has to be understood from within that system: “Tuailoring is better conceived
of as evolutionary design, in the sense that the local (customer) solution serves as a

design for the general (company) solution, assuming it is accepted” (Andersen &
Mgrch 2009).

4.2.6. Local production of large-scale technologies

Another thread of research on the local production of large-scale technologies is given
by the studies on ‘infrastructuring’ (i.a. Bowers 1994; Star & Ruhleder 1994; Karasti,
Baker & Halkola 2006; Pipek & Wulf 2009). In a narrow sense infrastructures are
large-scale technical systems that are deeply integrated into society. Examples are the
telephone system, the railroad system, or electricity. In a broader sense an infrastruc-
ture also covers the norms, routines and practices by which the technical system be-
comes deeply integrated into society. Dropping the idea that infrastructures have an
essential substrate, but asking instead when and how to infrastructure, Star and
Bowker (2006) focused on local practices by which infrastructure becomes a salient,
stable resource of action. They call these situated activities of creating order

‘infrastructuring’

Through these practices infrastructures are usually invisible and taken for granted:
“Something that was once an object of development and design becomes sunk into in-

frastructure over time.” (Star & Bowker 2006) Only when routinized actions become

4. The Collaborative Appropriation of an Open Software Ecosystem 65

inhibited (e.g. in reaction to a power blackout) practices that were before taken for
granted become visible and improvisational recovery work becomes a dedicated
activity.

Star and Ruhleder (2001) further explored infrastructures in their quality of decentral-
ized evolving technologies. They uncover a tension between local, customized, intimate
and flexible use on the one hand, and the need for global standards and continuity on
the other hand. This tension cannot be resolved once and for all, since “One person’s
standard is in fact another one’s chaos” (Star & Ruhleder 2001). Managing the field
of tension of local/global and flexibility /standardization, respectively is instead an on-
going accomplished that is manifested in the concrete practices of infrastructuring.

From this stance, Star and Ruhleder (1994) have studied the local context of using the
Worm Community System (WCS), a collaborative system for biologists to support se-
quencing of genetic structure. Similar to the appropriation studies, they observed that
getting the system up and running covers a variety of activities that typically become
invisible in a standardized description of technology adoption as finding out about the
system, installing it, and learning to use it. Bowers (1994) described similar effects for
the complexity of work to make a network work. He visualized the unanticipated work
that requires users to integrate technical infrastructures into the local context. He
notes that there is no unique way to deal with this issue. The significant extra work is
not always recognized by others and can even be a reason for abandoning technologies

or certain courses of action.

The temporal scales of infrastructure and infrastructuring were further enriched by
the work of Karasti et al., who studied the data management within the NSF funded
LTER network on long term ecological research (Karasti, Baker & Halkola 2006;
Karasti, Baker & Millerand 2010). The central goal of LTER is to promote synthesis
and comparative long-term studies across independent research sites. One strategy
was to make it mandatory to share the “raw” field data within two years of collection.
In addition, a long-term oriented information infrastructure was established, where
data sharing, data and meta-data standardization, curation and stewardship are nec-
essary, ongoing activities to maintain the long-term usefulness of data. This main-
tenance is a complex, socio-technical endeavor. Further, Karasti el al. (2006) recog-
nized that the infrastructure in general targets towards a long life span, while the
actual infrastructuring activities are often dominated by a short-term perspective.
This creates a field of tension between short-term and long-term concerns people have
to manage. Therefore, Karasti et al. (2006) argued to supplement the spatial focus of
Star and Ruhleder by a temporal scope. According to this, an infrastructure occurs

when the tension between local/global and short-term/long-term is resolved, when

66 4. The Collaborative Appropriation of an Open Software Ecosystem

here-and-now practices are afforded by large-and-long scale technologies, which can
then be used in a natural and reliable ready-to-hand fashion.

4.2.7. Discussion

The users” work to make things work is often invisible and recognized as part of daily
work. Further there are efforts in Tayloristic approaches that users should not have
the responsibility to design their workplaces. In contrast, because of the situatedness
of work as well as from the normative stance of work democratization there are good
reasons to replace the Tayloristic workplace design with tailorable workplace design.

Demonstrating the technical feasibility of radical tailorability, several research pro-
totypes have been built in CSCW. However, because of the experimental character of
these prototypes, we know very little about the usage of radically tailorable working
environments, in the wild. To cope with this problem, we have to consult the research
on customization practices of less sophisticated, but used-in-daily-life applications.
They enrich the picture demonstrating that tailoring is not just an individual activity,
but has a collaborative quality. The results were enriched by the appropriation stud-
ies, which revealed the close entanglement of designing and using workplaces; showing
the embeddedness of tailoring in the explorative learning of what an application pro-
vides. A similar picture is drawn by the research on infrastructuring. This research
thread highlighted that artful integration has to manage a field of tension between the
here-and-now of the local context and the once-and-there of decentralized evolving in-
frastructures. This view was complemented by research that understood production
and appropriation of technology not as separate spheres of existence but rather as
mutually constitutive of one another. Hence, we have to consider the local practices
within their function in the loosely coupled system of mutual development.

Parallel to these threads of research (and partially enforced by them) there is an ongo-
ing trend from monolithic software applications to applications assembled from multi-

ple, coevolving resources of software ecosystems.

From the outlined research, we can make the educated guess that it will become an
emerging topic for CSCW to support the fluent and seamless meshing of individual,
cooperative and organizational practices (Schmidt 2000) of designing workplaces by
managing coevolving resources coming from global software ecosystems within the lo-
cal context.

4. The Collaborative Appropriation of an Open Software Ecosystem 67

4.3. Methodology

Since the 80s there is a growing market of tools In the software industry supporting
the various tasks like compiling, debugging, code control, etc. (Chikofsky 1989; Fisher
1991). But using the diverse tools together was clumsy and error-prone. Permeated by
tayloristic thinking, in the 90s the CASE paradigm arose to solve the serious obstacle
by the idea of integrated working environments (Bergin 1993) combined with the
automation and standardization of work processes (McClure 1989). However, despite
great efforts in design and research the paradigm failed to realize the promises (Som-
merville 2007) and did not reach acceptance of the practitioners (Elshazly & Gover
1993; Tivari 1996; Chervany & Lending 1998).

From a CSCW stance the failure of the CASE paradigm might not be as surprising as
it sounds like the story about the rise and fall of the Office Automation program
(Schmidt 2011). However, what makes the story interesting is the change of the para-
digm and the nowadays existing universal tool platforms like Eclipse that are open for
a growing tool market. In particular, Eclipse has become one of the dominating

working environments for software developers in the last years.

In addition, we decided to investigate in Eclipse as kind of leading domain (von Hip-
pel 1986) that provides favorable conditions to study the emerging practices of de-
signing workplaces by using the new opportunities of open software ecosystems in the
wild. Methodologically, we studied the appropriation of the Eclipse ecosystem with the
help of a mixed method approach (Kelle 2001):

To answer question #1 we took a closer look on the development rhythm as well as
coevolution mechanisms of the Eclipse ecosystem at the large scale. This work is
mainly based on studying existing literature and online documents about Eclipse. Our
knowledge was further shaped by personal experience and talks with various Eclipse
stakeholders (committers, participating companies, and representatives of the
foundation).

To answer question #2 we conducted an online survey from February 2008 until April
2008. The online survey consisted of a questionnaire, which additionally asked the par-
ticipants to add certain Eclipse installation data. This allowed us to analyze which
plug-ins had been installed by the participants. The study was announced in different
online forums, mailing lists, at our project partners and in two research institutes
(however to protect the anonymity it was not possible to determine which respond
came from which context). We addressed several different target groups of the Eclipse
user community (computer science students, software professionals, project leaders

68 4. The Collaborative Appropriation of an Open Software Ecosystem

etc.). The survey asked for information on the local Eclipse installation, which gave
insights into the features and plug-ins the users had installed. In addition we asked
how often they adapt their configuration, in what setting Eclipse is used and how the
people stay informed. 138 persons participated in the survey and 59 additionally sent
us their Eclipse installation data, which we analyzed in detail. Surprisingly, we re-
ceived 76 sets of Eclipse installation data for our analysis, because some persons were
using more than one installation. This also means that these users own more than one

Eclipse installation on their computer.

To answer question #3 we conducted an ethnographically oriented case study about
the appropriation of Eclipse in the organizational context of Alpha, a small software
company. Previous research on collaboration tailoring (Mackay 1990a) and technology
adoption in general (Rogers 2003) mainly focused on patterns observed in the social
network. In contrast we addressed this topic from a slightly different angle. We took
the situatedness of appropriation work more serious and therefore investigated in more
detail into the diverse situations that constitute appropriation work.

The study was part of a publicly funded research project on component-based end
user development. In the project, we cooperated with different software companies in
Germany - one of them being Alpha. We had a special and trustworthy relationship to
this company grounded on a close cooperation with a software project, where Alpha
took over the source code written by us. Because of this, we visited Alpha and met
the developers several times at their workplaces to support their understanding of our
source code. We discussed open topics during visits, by telephone or email. One disad-
vantage of such a kind of ethnographically informed study was our strong engagement
during our site visits. This left almost no time for field notes. However, this setting
also had certain advantages. We were e.g. not perceived as outsiders. Instead, a colle-
gial atmosphere among people who work together on a task characterized our meet-
ings. This personal relationship was very helpful to gain profound insights into the

specific context.

In addition, together with some master students who wrote their thesis on the topic of
Eclipse appropriation, we interviewed five persons from Alpha (the CEO, one senior
developer and three junior developers). The interviews were semi-structured and took
about one hour each. They covered questions about the role, the tasks and the respon-
sibility of the interviewees in the company. In addition, we asked questions about their
experience with Eclipse as well as their update and learning strategies. And finally, we

searched for ways to improve the diffusion of tools and tool-expertise in the company.

All interviews were recorded, partly transcribed and analyzed together with field
notes. While interpreting the context, we made use of our personal knowledge that is

4. The Collaborative Appropriation of an Open Software Ecosystem 69

grounded on the close relationship with Alpha. We supplemented these by again ana-
lyzing selected pieces of the empirical data in detail, by applying the principles of the
Objective Hermeneutics (Oevermann & Allert 1987).

The structural ecosystem analysis, the online survey and the ethnographical oriented
investigation, triangulate the phenomena from alternate points of view. The structural
analysis outlines, how the ecosystem works at the large. The survey visualizes from a
bird’s-eye view some general patterns about users’ adaptation behaviors, yet without
the concrete context. Hence, in order to understand how people design their work-
places as part of their daily work, the case study follows the advice of Livingston
(1987) to move, metaphorically, the camera to eye level.

To answer questions #A, #B and #C, we analyzed the case especially with regard to
identifying support opportunities. The aim is to envision possible futures of designing
digital workplaces grounded in the empirical material. Methodologically, the link be-
tween our empirical studies and design considerations is not a causal, but an inspira-
tional one. Further, we try to uncover the links between the Eclipse case and existing
literature, in order to conclude by analogy, how existing approaches could be adapted
to the new possibilities given by software ecosystems and modern software

architectures.

We want to close this section with a general methodological remark: Like Grounded
Theory and Ethnomethodology, the Objective Hermeneutics is a reconstruction-logical
methodology (Bohnsack 2003). It is guided by interpretation principles such as the im-
manent, extensive and verbatim interpretation of records that follow the sequential
structure by applying the principle of austerity. The aim is to reconstruct the practical
accountable orderliness of the social world as it is expressed in the concrete situation
of practical action and practical reasoning (Livingston 1987; Pilz 2007).

The literature on reconstruction-logic approaches shows a common agreement to “re-
main sensitive to the data by being able to record events and detect happenings without
first having them filtered through and squared with pre-existing hypothesizes and bias-
es” (Glaser 1978). However, there is a general methodological dispute about the role
of previous knowledge and the — in our opinion — too restricting advise that re-
searchers should not read related literature until the end of an inquiry (cf. Kelle 2005).
Our position in this regard is that we should not subsume the phenomena under exist-
ing categories taken from somewhere else (e.g. form related literature). Yet, a pro-
found knowledge about related literature is often quite helpful to see through existing
categories.

70 4. The Collaborative Appropriation of an Open Software Ecosystem

To give an example: In an early stage of our research we reconstruct from our an in-
terview transcripts that one fundamental action problem need to solve for all practical
purposes is to manage the field of tension between having a stable working environ-
ment, while keep up date with the technology developments at the large scale (a de-
tailed documentation of this analysis is published in (Schwartz 2007)). At that time
we did not know the work of Karasti et al. (2010), who in parallel also found that bal-
ancing this tension is a serious issue of infrastructuring work. Yet, even if we knew
this work beforehand, our analysis would not have become less “grounded”. In con-
trast, knowing Karasti et al’s work might have helped us to get aware more previously
that we uncover a phenomenon that is of general interest for CSCW.

With regard to the collaborative dimension we studied, the situation was slightly
different. In this area we had a profound knowledge about the previous research on
collaborative tailoring and appropriation. In addition we had a partial knowledge of
Twidale’s studies on collaborative learning. This sensitized us to take closer look on
that topic. Yet, we would insist that the observed orderliness of the concrete practices
itself lead us to the categories outlined in section 4.6.

4.4. Eclipse as a global ecosystem

The case of Eclipse is in several dimensions an example for a global software ecosys-
tem. Each of them is worth being studied for its own sake. With regard to our re-
search interest we concentrate on three relevant facets: the growth of a large-scale
ecosystems; the architectural strategies at the large to cope with the spatial tension
between flexibility and standardization; and the socio-organizational practices at the
large to cope with temporal tension between reliability and innovation.

4.4.1. Transformation of Eclipse into a global ecosystem

Eclipse, with all its historical contingencies can be described as the transformation of
internal solutions of the problem on how to integrate a heterogeneous network of
product development divisions into a global informational production ecosystem (cf.
O’Mahony, Diaz & Mamas 2005), where a distributed development process has to be
coordinated (Grinter, Herbsleb & Perry 1999). IBM started the story of Eclipse in the
1990s as an answer to several internal and external challenges. In the mid-1990s, IBM
shifted its strategy to a software- and service-oriented enterprise. The IBM Software
group had grown rapidly, also by the fact that IBM had acquired a large number of
other software development companies. As a result, IBM’s software portfolio was only
loosely coordinated. This led to several problems of ‘inter-usability’ (e.g. tools did not

have a common ‘look and feel’,) and inter-operability (e.g. it was difficult to exchange

4. The Collaborative Appropriation of an Open Software Ecosystem 71

data among the applications). IBM was also confronted with the problem that the ap-
plications had been independently developed from the beginning and that components
could not be shared in order to save costs. As a result of this organizational context,
the idea of Eclipse as a common integration platform for several software tools was
born. It was planned as a coordination strategy (cf. Grinter, Herbsleb & Perry 1999)
to manage the loosely coupled production and product network inside the firm. Exten-
sibility was a critical design decision: IBM and its partners wanted to integrate differ-
ent modules and applications seamlessly.

The next step in the history of Eclipse was related to IBM’s middleware strategies,
which consisted of three parts: the applications - built by ISVs, the application-devel-
opment tools (like IBM Visual Age, Sun’s NetBeans or MS Visual Studio) and the
server software (the cash cow in the strategy of IBM). In order to convince ISVs to
adopt Eclipse and to send out a clear signal not to lock out developers on a proprie-
tary platform, Eclipse was made an open-source product. An egalitarian Eclipse Con-
sortium (now the Eclipse Foundation) was founded. All members of the consortium
were to have equal decision rights: “/W/e created this dual edged or bi-polar organiza-
tion that on the one side would play by Open Source rules of engagement to develop

the technology and of the other side was the eco-system side, or the commercialization
of the technology.” (O’Mahony, Diaz & Mamas 2005).

Today, Eclipse is a multi-facetted brand with millions of users. Eclipse stands for
example for a platform technology (e.g. the whole Lotus product line is based on
Eclipse) that is available on multiple operating systems (including Mac, Windows,
Linux and others), for the second most used IDE today, for an Open-Source project,
for a standard-like consortium (organized in the Eclipse Foundation, supported by big
players like IBM, SAP, Oracle, etc.), for a software ecosystem (where ISVs built more
than 1000 different extensions and applications on top of the Eclipse platform) and/or
for an ecosystem (where an Open-Source community co-exists with commercial play-
ers). In addition, commercial products like ondemand.yoxos.com or poweredby-
pulse.com are specialized in maintaining repositories of 3rd party plug-ins for Eclipse
and supporting organizations as well as end users to pick up plug-ins from these

repositories in a safe manner.

4.4.2. “Everything is a plug-in”: Technological fundament of an ecosystem

Eclipse is a living software ecosystem that faces the problem of a consistent evolution
of the heterogeneous network of producers and products. The strategy Eclipse imple-

72 4. The Collaborative Appropriation of an Open Software Ecosystem

ments to provide consistency can mainly be studied from a structural and process
perspective.

On the structural level, Eclipse applies an ‘everything is a plug-in’ philosophy (Gam-
ma & Beck 2003) to address the requirements of flexible and extensible infrastructure.
This means that Eclipse is decomposed into hundreds of components (so called plug-
ins), which use features of other plug-ins themselves and provide extension points to
be used by other plug-ins. Through this component architecture, an Eclipse installa-
tion is technically specified by the acyclic dependency graph between the plug-ins of
the installation.

In the first two versions, Eclipse was based on a proprietary component model, but
since version 3 it is based on the industry standard “OSGi”. OSGi defines a sophisti-
cated component model supporting independent loading mechanisms, dependency re-
solving, versioning control, etc. This architecture is to protect components from cor-
ruption by others and to address the integration problem at the same time. In
particular it manages situations where two components are used by a third component
(but in a different version).

The component networks do not only create dependency graphs in a technical sense,
but also in an organizational sense, i.e. between different actors in the Eclipse ecosys-
tem. This means the component architecture is a technical as well as a social artifact.
Therefore, the component architecture also affects the power structure and negotiation
processes inside the Eclipse ecosystem, as changes of plug-ins included in the core dis-
tribution have a greater effect than changing peripheral plug-ins, distributed by 3rd
parties: “You meed someone who can be a strong advocate to protect the integrity of the
platform; you need someone who has the strength to say: ‘no we are not going to put
that in the platform if it is only for your tool.”” (O’Mahony, Diaz & Mamas 2005).

An interesting aspect from an End User Development research perspective is how
Beck and Gamma translate the Eclipse plug-in philosophy into a discourse of empow-
erment that is based on the idea that designers should “[gfive the users an empower-

ing computing experience and provide learning environments as a path to greater pow-
er” (Gamma & Beck 2004).

Based on this idea, they argue that the plug-in concept constitutes a pyramid of in-
creasing commitments and rewards, in which the committers of the Eclipse Founda-
tion are at the top. In the middle of the pyramid are publisher and enablers, who con-
tribute third-party plug-ins to the Eclipse Ecosystem without being part of the
Eclipse core. End users are also part of the game, as they build the bottom of the
pyramid. They can influence the design of Eclipse directly by configuring and extend-

4. The Collaborative Appropriation of an Open Software Ecosystem 73

ing their Eclipse installations. Since we take a CSCW and HCI perspective on Eclipse,
the view of these end-users at the bottom of the pyramid, constitute our field for
research.

4.4.3. The “Eclipse way”: the rhythm of evolution

On the process level, Eclipse has to face the challenge of providing a stable and consis-
tent network of plug-ins and simultaneously innovating it. One of the major problems
in this process is that the further development of one piece in the global plug-in net-
work can lead to defects in other parts. The only secure method to prevent this is to
stop any changes, but this also hinders the innovation and reaction to dynamics in the
environment. Unlike this draconic solution, the Eclipse strategy (sometimes called The
Eclipse Way) is to create as much transparency as possible, and to establish a general-
ly accepted evolution rhythm, so that independent production processes can be syn-
chronized with each other. The transparency helps Eclipse core projects as well as
third parties to stay aware of changes (e.g. through API or plug-in refactoring) and
project progress. In addition, the transparency allows users to give feedback at early
stages to influence further developments.

The heart of the Eclipse evolution is a specific development rhythm. It is structured as
follows: 12 months pass between every major Eclipse release. This time is split into
different phases: warm-up (1 month), several milestone builds (9 months) and endgame
(1-2 months). The warm-up and milestone phase are innovation-oriented and allow for
new features to be implemented. All milestone goals are released in form of a release
plan at the Eclipse foundations website, as well as the resulting milestone builds
themselves, which was announced with a “news and noteworthy” description in order
to foster community feedback. The endgame phase is stabilization-oriented and con-
sists of continuous switches between integration, testing phases and bug fixing phases.
In the endgame, different release candidates are published (like 3.2RC6). Each release
candidate is more stable than its predecessor, ending in a new major release (like 3.2).

In addition, public nightly builds and integration builds are created. Their target
groups are users and developers who are eager to figure out the quality of the integra-
tion of the components they use or develop and to detect integration problems. Sup-
porting the integration work on the producer network side is important for global

quality management.

74 4. The Collaborative Appropriation of an Open Software Ecosystem

4.4.4. Discussion

Summarizing the background of Eclipse, we can describe it as an evolving socio-tech-
nical network, where technical dependencies between individual plug-ins are negotiat-
ed between different actors in the environment of related socio-economic dependencies.
The Eclipse Foundation — which is a non-homogenous organization, a political institu-
tion of different interest groups — presents the center of the network. Dealing with the
problem of how to organize the global evolution and integration of an independently
produced, but inter-dependently operating network of products, Eclipse applies innov-
ative professional strategies: on the structural level, the plug-in concept helps to estab-
lish trust in the beneficial nature of the existing technology among the different stake-
holders in the network. On the process level, the strict evolution rhythm with the
transparency strategies helps to establish similar trust in the beneficial nature of its

future technology among the different stakeholders in the network.

The analysis shows that the spatial and temporal dimensions outlined by Karasti et
al. (2010) are also relevant the software production. In particular, agree with Karasti
et al. that a structural analysis of large-scale ecosystems is only complete, if it investi-
gates both dimensions. The main difference between studies like Bowers (1994), Star
and Ruhleder (1994), or Pipek and Wulf (2009) and our case, however, is that the
software architecture of Eclipse is better prepared to integrate resources coming form
different actors (Gamma & Beck 2003) and the existing Eclipse configuration manager
provides some rudimentary mass-customization features (Bosch 2009). With regard to
the several feedback processes between design and use, the mutual development con-
cept (Andersen & Mgrch 2009) seems an interesting candidate. However, the concept
should be extended with regard to the multi-organizational character of Eclipse and
the institutionalized government structure of the Eclipse Foundation.

4.5. A survey on Eclipse appropriation

In this section we present the findings of the online survey. The major goal was to find
evidence of the work to make things work by managing coevolving resources coming
from different contexts (Bowers 1994; Balka & Wagner 2006). By its nature this artful
integration is almost invisible and difficult to quantity (Star & Ruhleder 1994; Dérner,
HeBl & Pipek 2008). Existing research mainly relies on qualitative evidence for the ex-
istence of users’ integration work. In order to quantify it, we use the tailoring at the
level of integration (Mgrch 1997) as a proxy to measure users’ integration work. Of
course, this proxy captures a small fraction of the whole phenomenon, but it neverthe-
less is helpful to get an impression. On the other hand, every feature in Eclipse is a

4. The Collaborative Appropriation of an Open Software Ecosystem 75

plugin, and therefore tailoring at the level of integration is mainly expressed by adapt-
ing Eclipse at the level of plugins. Hence, in our survey we focus on plug-ins.

4.5.1. Adapting Eclipse as a regular activity

As a first step, we were interested in how many plug-ins are used in practice. This
should help us to answer several questions (1) how complex is the appropriation task
users are confronted with in their efforts to manage the Eclipse ecosystem, (2) is the
modification of Eclipse installations a common practice and (3) what do Eclipse users
usually modify.

We were surprised to find 2,428 different plug-ins within the collected sample (the
number rises to 4,944 when we take the different versions into account. This means
that on average each plug-in was installed in two different versions). The average num-
ber was 326 plug-ins per installation.

Furthermore, we analyzed the so-called features of the captured Eclipse installation
data, as these are the basic elements of update management and installation manage-
ment in Eclipse." The concept of features reduces the complexity of the plug-in net-
work for the users. Instead of managing about 326 plug-ins, the user only has to man-
age around 40 features (cf. Table 3). The standard deviation of features 0f=36.8 is an
indicator for the diversity individualizing Eclipse. Furthermore, we calculated the nor-
malized average distance between two FEclipse installations. The wvalue of ufea-
ture=0.42 confirms the findings of other empirical data, which stated that practically
no Eclipse installation resembles another one."

Regarding the integration of a heterogeneous network of producers, we tried to find
out, if Eclipse is used as an off-shelf product or if 3rd party plug-ins from independent
ISVs are integrated into Eclipse installations. We therefore focused on features that
are not delivered by the Eclipse foundation. One of these features is the support for
the Subversion source-code version control system for Eclipse, which was by this time

provided by two different independent open source projects. At the time of the survey,

14. A feature in Eclipse defines a set of plug-ins and sub features which must be installed when the fea-
ture is installed.

15. We calculated the distance of two installations with the set of features Ci and Cj as follows: ufea-
ture(Ci,Cj) = (|Ci\Cj|+| Cj\Ci|)/(|Ci|+|Cj|). Based on this calculated the average distance: ufea-
ture(Cl,.., Cn) = 1/n*(n-1)*¥0=<i<j=<n ufeature (Ci,Cj). A value of U near 0 means that the different
Eclipse installations are almost identical; a value near 1 means that the installations are most
different.

76 4. The Collaborative Appropriation of an Open Software Ecosystem

none of these tools were integrated into Eclipse by default; instead it is up to the user
to integrate this extension into the Eclipse installation if Subversion support is need-
ed. In our sample 40% of the Eclipse installations included Subversion plug-ins, which
is a strong indicator that the users make use of the global market of Eclipse

extensions.

In order to learn how the evolution of Eclipse is reflected in the installation data, we
took a closer look at the version number of the core feature org.eclipse.platform
(which is part of every Eclipse installation). In our data, we found 11 different ver-
sions. 60 installations are of the 3.3.X release (published June 2007), 12 cases of the
3.2.X release (published June 2006) and 3 cases of the 3.1.X release (published June
2005). We did not find an installation based on one of the Eclipse 3.4 milestone builds,
released a few weeks before the survey (which we expected after our workplace study).
Within the range of 3.3.X releases, 36 cases were not older than 2 months. On aver-

age, a version in use is approximately half a year old.

In addition the online survey asks several questions on the practices to integrate the
global plug-in network into the local context. In a first step, we were interested
whether the adaptation of Eclipse is a common and regularly practice. Therefore we
asked: "How often do you adapt your Eclipse (installation and update of plug-ins, or
configuration settings)?“ Almost all participants (92.66%) declared they would adapt
their installation to their needs (7.34% never, 14.71% right after the installation,
77.21% sometimes, 0.74% daily). This result corresponds with the analysis of the in-
stallation data. In addition, it shows that adapting the working environment is not

only a singular, but in most cases a regular activity.

Overall number of features (no versions counted) 418
Overall number of features found (version sensitive) 865
Min. number of features in an Eclipse installation 3
Max. number of features in an Eclipse installation 196
Average number of features per Eclipse installation 42
Standard deviation of features per Eclipse installation 36.8

Table 3: Amount of plug-ins found in Eclipse installations (with n=76 Eclipse installations).

4.5.2. Local network of Eclipse users

We were also interested in strategies that inform people about activities of the Eclipse
ecosystem, the role of collaboration and installation sharing practices. In particular,
we were interested in seeing whether a local network of Eclipse users exists. Therefore,
we asked: “How many of colleagues of you also use Eclipse?” The majority (71.32%)

4. The Collaborative Appropriation of an Open Software Ecosystem 77

explained that in local environments also other persons use Eclipse (only 4.41% say no
other person uses Eclipse, 24.27% give no answer to that question). This confirmed
our workplace observation of existing local social networks of Eclipse.

4.5.3. Getting tools and tool information

We also asked: “How do you inform yourself about new plug-ins?” The most frequent
answer was the Internet with 78.48%, colleagues were mentioned by 54.43%, 21.52%
use magazines and 6.33% use special online plug-in marketplaces (multiple answers
were possible). This demonstrates that the Internet as a global resource is the most
used source for information, but also it demonstrates that local social networks play

an important role.

The question “Do you have ever received plug-ins from colleagues?” also addresses the
aspect of collaboration, but directly focuses on the diffusion of plug-ins. The answers
also indicate that local social networks play an important role in the appropriation of
the global network of plug-ins (65.44% of the participants stated ‘yes’, 17.65% stated
never and 16.91% gave no answer).

B What ways did you use to receive these plug-ins?

copied the plug-ins by hand
URL to the update site

URL to the direct download

55,3%

30,6%
URL to the plug-ins website 31,8%
personal communication 169,4%
miscellaneous 2,4%

0% 18% 35% 53% 70%

Figure 10: Channels used to receive plug-ins and plug-in information. The other way round
“Did you ever share plug-ins with colleagues?” and “Which way did you use to share these
plug-ins?” provide nearly identical pictures.

Furthermore we were interested in the channels used for the diffusion of plug-ins,
therefore we asked: “Which ways did you use to receive these plug-ins?”. Figure 10
gives an overview of the answers (it was possible to choose multiple answers). The an-
swers demonstrate that there is not just one way used for plug-in diffusion. However,
69.41% of the Eclipse user state that they receive plug-ins via personal communication
and 32.94% say that in some cases they have used a file copy strategy to get the plug-
in on the desktop. Both answers are a indicators that local networks also play an im-

78 4. The Collaborative Appropriation of an Open Software Ecosystem

portant role in the diffusion of plug-ins, although this was not anticipated by Eclipse
designers and although it is not well supported by Eclipse.

The analysis of the online survey shows that the dynamics of the global Eclipse evolu-
tion and the heterogeneity of the Eclipse plug-in universe are reflected at the micro-
level of Eclipse installation. It also demonstrates that local social networks play an im-
portant role in the appropriation of global Eclipse network of loosely coupled

components.

4.5.4. Discussion

Eclipse is one of the most advanced technologies today. It’s architecture in combina-
tion with a living software ecosystem enables users to design their workplaces by as-
sembling tools from different vendors. The survey gives quantitative evidence that this
not just as a theoretically given option. The given answers as well as the returned in-
stallation details shows that almost every user adapted his Eclipse configuration to his
needs. This finding emphasizes the significance of integration work mentioned in liter-
ature (Star & Ruhleder 1996; Balka & Wagner 2006). Moreover, the survey demon-
strated to what extend adapting Eclipse became part of ordinary work activities and

ordinary work situations.

The survey also shows that colleagues are an important resource to get information
about plugins as well as plugins itself. The findings are in line with the Diffusion of
Innovation theory (Rogers 2003) as well as the research on collaborative tailoring
(Mackay 1990a). However, neither Rogers nor Mackay discuss that people share dig-
ital 3rd party goods. With regard to the observed patterns, we should therefore have
in mind Eclipse’ open source character that legalizes this gift culture.

4.6. Appropriating Eclipse in an organizational context

In this section, we present the findings of the in depth case study at the small soft-
ware development company Alpha. Our primary goal was to understand and describe
the structure of appropriation work that is carried out at the shop floor. We expected
to learn about, how people get aware of new tools, how they learn to integrate them
into their work places and how they learn to use these tools and related methods.

Taken the situatedness of appropriation work seriously, we especially focus on diverse
situations that constitute appropriation work. The Table 4 presents a list of diverse
types of situations we found is. These situations were relevant for the collaborative ap-
propriation, yet we did not claim that this list was exhaustive by any means. Before

4. The Collaborative Appropriation of an Open Software Ecosystem 79

we discuss the diverse situation in detail, we start with a general description of Alpha
to help the reader to grasp the context of our results.

Team meetings Institutionalized auditorium to discuss tools in the whole group. The
meetings are typically co-located and conducted regularly.

Shared infrastruc- |Work to fix problems of the commonly used IT-infrastructure. These
ture breakdown situations are not planned, but occur in reaction to an accidental event.
Typically, the effects are distributed and cover an assembly of tools
and IT systems.

Looking over the Observing new tools or tool usage by working together or by chance
shoulder encounters. Typically, these are ad-hoc peer-to-peer situations, where
the people are co-located. Usually they are embedded in actual work
situations.

Giving a jump start |Joining a new team or project. In order to save the new person from
unnecessary preparation work on his own, whole working environ-
ments are copied or information about the used tools is given. Typical-
ly these peer-to-peer situations are embedded in work situations
where people are co-located.

Getting contextual- |A new task or problem during work drives a person to ask colleagues
ized help that are for some reasons considered more experienced in this topic.
These are peer-to-peer, ad-hoc situations that occur embedded in
work situations. Mostly co-located.

Table 4: List of situations that contextualized appropriation work.

4.6.1. Organizational context

Alpha is a small software company, which is quite typical for German software indus-
try. The company was founded twenty years ago as a spin off to commercialize Al-
phaProduct, a web application that was developed during a research project. The ap-
plication was implemented by making use of the Python programming language and
was extended by several Java applications. Today, the web application presents the
main asset of the company. Alpha’s market strategy is based on selling AlphaProduct
licenses and creating customer-specific adaptations. Furthermore, they are regularly
involved in research projects, in which the application is constantly extended by in-

novative features.

The company permanently employs about ten persons. In addition, there are a small
number of university students, working part time for the company. The customer rela-
tions are mainly in the duty of the CEO, who is supported by assistants that accom-
plish general administrative chores and office work. The software development carried

80 4. The Collaborative Appropriation of an Open Software Ecosystem

out at Alpha, deals with the maintenance and the continuous enhancement of Al-
phaProduct. This work is mainly conducted by eight software developers.

The development work at Alpha is organized as projects that can be categorized as
follows: The first type involves client projects that are carried out to realize cus-
tomizations or new features for a specific customer. Typically, client projects have
short durations. Usually, there are 2 or 3 developers involved, depending on the com-
plexity of the tasks. The second type covers projects that realize innovative features,
which are typically conducted as a part of funded research projects. These projects are
typically larger as for the amount of work, are long running and are carried out with
other partners.

In client projects, the CEO typically serves as the interface between the customer and
the software developer. The CEO obtains the wishes and requirements of the client
and discusses them internally with the developers in order to create an offer. At
project start, the staffing depends on the actual workload of the workers as well as on
their general expertise, prior knowledge and experience to work the job. The staffing
of the project decides, to a large extend, how the project is decomposed into indi-
vidual work packages and how work tasks are assigned. The work is coordinated main-
ly by communication. In addition, also other mechanisms like implicit coordination by

using a shared repository are applied:

“..well, during my studies I have come to know eXtreme-programming to manage
things. Here, we set things up so that we can divide everything up into sub-projects...we
divide projects into sub-projects, that means into special areas so that there will be a
specialist for each area..and every specialist works in his area of the project. [..] The
specialists do of course exchange implementation ideas ...and we have also introduced a

common repository.” (John, Junior Software Developer)

If possible, developers are assigned to certain tasks based on their previous experience.
This promotes the formation of knowledge niches, meaning that the developers be-
come specialists in one part of the application (e.g. adapting the data layer, imple-
menting the user interface or writing Java applets). However, the overall rule in the
company is that “whatever is necessary has to be done” (Paul, Junior Software Devel-
oper). This can lead to the situation that developers have to work on tasks, even if
they are not specialists for this. Through this, they also gain knowledge in other parts
of the application.

4. The Collaborative Appropriation of an Open Software Ecosystem 81

4.6.1.1. Laissez-faire Management

Taylor (1911) argued that standardized tool equipment is needed for certain tasks and
that only the management will be able to determine this set of tools for the best
results. This basic assumption is still reflected by Information Systems standards such
as CobiT and ITIL (Bon 2004) as they make the tasks of tool selection and provision-
ing the business of the management. Yet, at Alpha we observed that every employee is
allowed to freely choose his/her tools to work with. As a result, the workplace installa-
tions of the developers are quite heterogeneous. In particular, the management gives

its blessing to this autonomous working style:

"People that have been brought up with Unix and vi and Emacs and stuff, they have a
hard time dealing with it [Eclipse]. They’ve worked with it once in a while but don’t re-
ally see its benefits for themselves. And feel more at home in their environment. And I

don’t tell people how to do their work as long as they get it done.” (Peter, CEO)

We asked the CEO whether the heterogeneity of the workplace installations does not
increase the complexity of their working together. His position on this subject was
that the cooperation among the team members is reached not through tools, but
through discussions, working on the same source code and using the organizational

bug tracking system.

4.6.1.2. Dissemination of Eclipse

This freedom or autonomy also affects the adoption of Eclipse. In the company a
camp of younger developers as well as the CEO adopted Eclipse, while the older gen-
eration constituted of senior employees (about 40 years and older), does not use
Eclipse. The older generation was socialized by old-fashioned Unix systems, using tex-
tual consoles rather than graphical user interfaces and a set of mostly command line
tools. They “grew up” with those tools and workflows and feel more at home with
their existing situation. From their point of view, Eclipse has its merits, but is gener-
ally not perceived as a beneficial tool:

“We once discussed it [the use of Eclipse]. Actually, the main point of criticism is the
slow operational time vs. that of a simple text editor..still features are quite interest-
ing. Especially the integrated version management. Seeing how you don’t need an addi-
tional external tool ... that has something to it.” (Peter, CEO)

The young generation of employees is constituted of two students (about 20 to 25

years old) studying computer science at the local university. They work part time at

82 4. The Collaborative Appropriation of an Open Software Ecosystem

Alpha. Both are socialized with Windows and feel more at home in a graphical user

interface environment than in command line environments.

The first student works about 10 hours per week at Alpha. Within the company, he is
employed in software development work. He calls himself the Java and Eclipse expert.
He has known Eclipse for about 8 to 9 years now (since Version 2.1) and sees himself
as an experienced user. The second student works about 2 days per week at Alpha.
His tasks are software developments with Python and Java. He describes himself as a
mature Eclipse user. Both know Eclipse from programming courses at the university.

In addition to the younger developers as well as the CEO use Eclipse. The CEO holds
a degree in computer science and knows both the old and the new tools. He has used
Eclipse for 8 years and regularly joins software development tasks. He did not portray
himself as an expert or power user when it comes to Eclipse, but he appreciates it as a
toolbox capable of integrating quite different tools, and offering a common look and
behavior over the whole range of tools.

For newcomers who join the community of practice (Wenger 1998) at Alpha, the lais-
sez-faire management creates opportunities to bring new software engineering method-
ologies and tools into the company. This especially holds for Eclipse as their preferred
working environment. In this case, they serve as innovators, while old-timers could
profit from their expertise. Such a case of switched roles, regarding learning activities,
was described by the CEO:

“Well, you know Paul recently downloaded and installed some files for editing
JavaScript files. It was from Aptana. There is this bundled Aptana studio version and
one that could be installed into Eclipse as indiwvidual plug-ins...and since I needed it
too, I've asked him about the plug-in version before installing it. As it also looks so
nice, but you know, he told me that it wasn’t that good. [..] So I downloaded the Ap-
tana Studio..which is a good alternative to it. Apart from that I don’t have that many

special plug-ins running.” (Peter, CEO)

4.6.2. Situations of collaborative appropriation

Throughout our study, we observed or found traces of appropriation work, contextual-
ized by situations. Analyzing these situations in addition to the practices that had
been carried out, helped us to understand the structure or practices of appropriation
work at Alpha. But furthermore this focus on appropriation situations helped us to
understand the constituting situational context that renders certain observed practices

useful or not.

4. The Collaborative Appropriation of an Open Software Ecosystem 83

In the following subsections, we present detailed information on these situations of col-
laborative appropriation work.

4.6.2.1. Team meetings

One opportunity to share appropriation experiences with each other is the team meet-
ing that takes place once a month. In this meeting, all developers at Alpha get togeth-
er and discuss the current state of running projects and topics that occurred during
day-to-day work. Tools and their usage or management are not regular topics. Howev-
er, we found different incidents that the issue of tools becomes important enough to
be discussed during the meeting.

For example, the company is dependent on certain technologies like the Python inter-
preter used by customers to run AlphaProduct. This forces Alpha to take care of the
development plan and release-rhythm of the Python project. In particular, if the cur-
rently used interpreter version is going to be deprecated in the near future and if one
employee of Alpha gets to know about this, he will make it a topic in a team meeting.

Another example would be to explore technological options in order to realize emerg-
ing requirements like the integration of AJAX features into AlphaProduct. Sometimes
one of the developers is asked to carry out an inquiry about tools and technologies on
the market. If the results of the investigation turn out to be interesting for the others,
they are presented and discussed during the meeting.

4.6.2.2. Shared Infrastructure breakdowns

The separately used, but tightly interwoven tools and technologies, constitute a shared
infrastructure in an organization (Pipek 2005). This infrastructure evolves in a decen-
tralized manner through the situated activities of the people. In the case of Alpha, the
mentioned Python interpreter is part of the shared infrastructure. Each employee
should use the same interpreter when developing, testing and debugging AlphaProd-
uct to prevent incompatibilities at the customer’s site. Other critical systems are the
ones that are used by all developers like the bug tracking system or the version control

system.

In principle, modifications made on the shared infrastructure should be coordinated in
order to prevent breakdowns. However, because of hidden dependencies, it is not al-
ways easy to judge what modifications could lead to a breakdown situation. Therefore,
activities to prevent breakdowns are not coordinated beforehand, but in reaction to
dealing with an occurred breakdown situation (Pipek & Wulf 2009).

84 4. The Collaborative Appropriation of an Open Software Ecosystem

The chance of breakdowns is increased by the laissez-faire management, which does
not regulate the workplace design, but leaves it to the individual’s choice. In the case
of Alpha, we observed dealing with a breakdown that occurred during the regular
maintenance of the Subversion server, which is the version control system used in the
company. We recognized this when we visited Alpha and someone told us that we
can’t connect to their subversion system. We were told that the responsible person up-
dated the repository service software. Unfortunately, this was incompatible with the
clients in use and caused a breakdown for several developers. Later, during an inter-
view, we recognized that since everyone who had noticed the problem asked the main-
tenance person, he was quick to search a fix for the problem. He found that a certain
version of the repository client would enable his colleagues to work again and thus
spread this information. After the rest of the developers updated their clients, they
could use the repository again: “then all the others installed it [the subversion client]
and then it finally worked again. You see, based on these problems, we started commu-

nicating.” (John, Junior developer)

The shared infrastructure breakdown constraints the laissez-fair rule that the work-
place design lies within the individual’s authority. Moreover, the breakdown was one
of the sparse situations where the software developers adapted their workplaces
collectively.

4.6.2.3. Looking over the shoulder

One important type of informal situation of the collaborative appropriation that we
observed is what we call ,over-the-shoulder appropriation®. We adopted this term
from Twidale’s (2005) concept of over the shoulder learning. Originally, the concept
describes forms of informal learning in organizations that happen in over-the-shoulder
situations. The case of Alpha, however, shows that the core concept is suitable to de-

scribe certain forms of collaborative appropriation too.

When working together, it happened occasionally that one developer got aware of a
new tool or trick just by looking over his colleagues shoulder: “If we now sit down on
something and work on it together..we can borrow from each other. Features like key

combinations or if we see that someone uses a plug-in we don’t know about yet.” (Pe-

ter, CEO)

In order to become aware of new things, experience will have to be shared. Because of
the shared context, situated and tacit knowledge could be used in the over-the-shoul-
der setting to explain special features and demonstrate tricks of how to use the tool.
As demonstrated by Twidale (2005), one typically took over the role of the teacher

4. The Collaborative Appropriation of an Open Software Ecosystem 85

and one took over the role of the learner. However, as we have seen in the example of
the CEO who received advice from a newcomer, the roles were not necessarily as-
cribed according to their status as a senior or junior developer. In addition, the roles
could also switch during the situation. An essential point is that the appropriation
effect emerged spontaneously from within the situation and was not intended before-
hand. We therefore speak about opportunity based appropriation, which is fundamen-
tally different from other forms of informal situations like asking for help or jumpstart-
ing, as we will describe below. This is not just an analytic difference made by us as
researchers, but also creates a difference in practice:

“You know it wasn’t like I actually went down there and had him show me his
(Eclipse] installations and stuff..Like only when we are working together in front of his
PC I say..hey man, this is a new icon. What’s that?” (Peter, CEO)

But over-the-shoulder situations are not only important for the dissemination of tool
expertise. They are also important for the dissemination of the tools (the plug-ins as
an artifact) themselves. Either in an over-the-shoulder situation or later, as a reaction
to the situation, tools were exchanged and integrated into the personal working envi-
ronment. However, the fact that the collaborative appropriation is not intended does
not mean that a person is aware of the opportunity when sitting together with some-

one else:

“I am still curious to look over someone’s shoulder. You know, I peek interestedly at
what is now written there on the title bar..even if those are totally unknown applica-
tions to me.” (Peter, CEO)

4.6.2.4. Giving a jump start

The work preparation is a typical situation to appropriate new tools. In opposite to
the ordinary flow of work where tools are ready-to-hand, in such situations the tools
and their installation become present-at-hand. We found a collaborative form of this
kind of appropriation situation in cases where someone new joins the team. In such
situations the members of the already existing team introduce the new colleague to
the current tasks, problems, infrastructure that is used, etc. Additionally, the indi-
vidual working styles are coordinated among the team members. This covers issues as
for applied code conventions, strategies for code integration etc. but also for the in-
stallation of the workplace.

An innovative practice we found to cope with this challenge is that a team member
gives a jump start to the newcomer. In other words, the newcomer receives all of the

needed tools and tool information to be able to directly start working in the team.

86 4. The Collaborative Appropriation of an Open Software Ecosystem

This saves time and prevents errors through configuring the environment in a proper
way by himself. Through jump starting, the newcomer finds an environment that is
adjusted to the situated project context and that also helps to prevent breakdowns of
the shared infrastructure as described above. In the case of Alpha, one of the people,

who in the past gave jump starts, is the CEQO:

“If someone is new or joins a project ..we have some tools we use like the plug-in for
Python and for Subversion and most often I send off emails or tell people where they
can find these and they can arrange their own stuff..or otherwise everyone is free to

make adjustments and to extend their things.” (Peter, CEO)

4.6.2.5. Getting contextualized help

The user’s small, individual breakdowns in the flow of work also play a critical role in
the appropriation of software systems. The remarkable aspect of breakdown situations
is the user’s switch in focus. The concerns around the original work task are pushed
into the background, while the reflection on tools and methods to get the work done is
being initiated. This reflection phase now often results in asking colleagues for specific
help. We found different initial situations that resulted in specific requests for help.
Sometimes users had installed an incompatible update, in other cases they faced a
new task that required a special tool that was not yet within the personal toolbox.
Such situations have in common that they refer to a “need driven” (Peter, CEO) ap-
propriation. This is in contrast to the opportunity given appropriation, which we de-
fined as becoming aware of new things, e.g. in the mentioned over-the-shoulder situa-
tion or by reading in a magazine or website about new developments in the Eclipse
ecosystem.

One of the major problems of need driven appropriation is to obtain a market
overview. Since there exist hundreds of vendors, it is quite difficult to find the exact
solution for a problem. Therefore, to ask colleagues for help to enhance the view on
the market is a standard practice at Alpha. Only if this is not successful, one must
start the quest himself:

“Well the thing is..I want to have a plug-in for something..and if someone tells me it
s this plug-in, the whatever it is called, and it solves your problem. .. Then I try to
get the name of the plug-in, I will google it and then I have no trouble finding it — for-
tunately. But if there is no one else in the company that knows about it, then of course
I myself have to search for it.” (John, Junior developer)

Asking colleagues rather than Internet forums comes with another advantage. Quite
likely, Alpha employees share the same context. This again eases the expression of the

4. The Collaborative Appropriation of an Open Software Ecosystem 87

problem and results in better advice. Especially, since the advice giver is maybe an ex-
perienced user of the tool in question:

“Before I bother to somehow download it [a plug-in] and then realize that I need some-
thing else and then spend half a day to install it..to realize that it doesn’t meet my re-
quirements...I rather meet up with someone of whom I know he might already have
used it or that he still uses it.. I ask for his experience with it, and if he tells me it is

super or alright, then I would follow his example...if he says it’s crap, I would drop it.”
(Peter, CEO)

A key challenge the people have to cope with when appropriating new tools is to inno-
vate while keeping the work going. Yet, getting familiar with a new tool involves a lot
of time. Furthermore, it may be uncertain if there will be improvements of the work
practice at all. Instead, the existing workplace may be corrupted. In our interview, the
CEOQO gives a quite good illustration of the related problems and the role of asking col-
leagues to deal with them:

“It’s about efficient usage of time or even about saving time. It also is a trial. I think
that for some it’s also always an obstacle..new tools also require learning curves..that
s to say I must make someone else provide me with it and install it, etc...and then [
have to be able to manage it and learn how to use it..and have to see how it works and
to see what I can do with it..and finally realize that either all my requirements have
been met so that it makes work easier..or I realize that it is not what I have been
looking for..then ['ve spent hours and hours for nothing...and that I could already be
done with it. That’s why I think that many don’t take the trouble to get it or that they
cannot do it because they lack time...to simply try something out is often not possible.
So you are happy if someone else has already experienced this.” (Peter, CEO)

In general, we observed that the advice of colleagues is perceived to be more impor-
tant than advice found in magazines or the Internet. However, this varies depending
on the personal taste as well as the specific situation. In addition, if colleagues cannot
help, searching the web or magazines is the usual fallback solution:

“If I know that someone makes use of it on a reqular basis, and if I have problems
with it but he could know it..then I will ask him about it..or don’t even hesitate to ask
the developers’ community about the plug-in. Often they have mailing lists.” (John, Ju-
nior developer)

88 4. The Collaborative Appropriation of an Open Software Ecosystem

4.6.2.6. Discussion

The case study helped us to understand how the members of Alpha make use of the
possibilities to adapt their Eclipse configurations and which situations contextualized
their actions.

One of its merits was to get a closer insight in the new competencies that users need
because of the rising interdependency of tailoring and development (Eriksson & Dit-
trich 2009). Our research revealed that one of the new competencies is to keep the
personal skills and tools up to date with the development of the ecosystem. This is a
general infrastructuring competency (Star & Bowker 2006; Karasti, Baker & Millerand
2010) to manage the spatiotemporal tension between the local and the global context.
The need and the specific form of the competencies are shaped by the dialectic be-
tween the specific structuring of the software ecosystem at the large and the work
practices at the shop floor. At the large, users have to deal with a decentrally orga-
nized Eclipse ecosystem (see section 4.4). In particular there is no general quality
standard of the tools, as they come from quite different sources as manufactures and
hobbyists. In addition the market of tools is quite dynamic and furthermore fragment-
ed as no centralized distribution instance exists (an example for such an instance
would be Apples App Store). Hence, part of the specific competence is to keep track
of a fragmented market as well as dealing with the uncertainty that integrating a new

tool could corrupt the entire working environment.

Another key result of this study is to show that designing the workplace by making
use of software ecosystems is not a competence of the individual user, but a collective
competence of the workgroup or whole company. This collective competence is main-
tained in various situations like regular team meetings, break downs, asking for help

or introducing juniors to a new field of work.

Taking care about the own working environment is further closely linked to the habi-
tus of software developers. Stritbing (1992), described this habitus rather as a craft-
smanship than assembly-line work. He concluded that software developers tend to stay
on the bleeding edge of technology, as it is perceived as a part of their professional
ethics. Our case study complements his finding, but in this case showed the co-exis-
tence of two different camps of software developers. The first camp mainly consisted of
older developers. They retained the old style of command line oriented programming,
as they rely on their well-proven tools. In opposite, the second camp, mainly consist-
ing of younger developers, followed an always be up to date or “bleeding edge of tech-

4. The Collaborative Appropriation of an Open Software Ecosystem 89

nology” attitude as described by Striibing. However, both camps commonly felt
responsible for their work tasks and their tools.

In general, the case study also confirms the findings of the survey (section 4.5) and
the previous research on collaborative tailoring (Mackay 1990a; MacLean et al. 1990)
or technology adoption in general (Rogers 2003). In particular we saw that local net-
works and interpersonal communication are part and parcel of the appropriation of
new tools and methods. In addition, we see different types of user with their specific
roles in the process of adopting and disseminating new technologies. For example, we
observe that users collaborate by acting as experts (by sharing knowledge and giving
advice) as well as by sharing appropriation artifacts (e.g. components or preference

settings) when modifications are necessary.

However, the roles are not static, but could vary between situations as well as within a
situation (Twidale 2005). In particular, a general assumption in the Community of
Practice (CoP) theory is that newcomers learn form the old-timers (Wenger 1998).
However, our study nuanced picture concerning the adoption of new tools and the
learning of the usages. An example of an opposite case as outlined in the CoP is the
CEO, who adapted a whole new toolset from the junior developers. Murphy-Hill and
Murphy (2011) mentioned a similar case, showing that seniors can learn very much
from junior developers. Their explanation is that juniors have more time at their
hands to play around with bleeding edge technology.

Getting aware of new tools or tool usages often happens in informal situations based
on peer interaction. A typical example for this kind peer interaction the is ,over the
shoulder” situation described by Twidale (2005). Our case study demonstrates that in
this kind of situation learning, configuring, and adopting are closely entangled. All
these activities constitute the appropriation as a whole (in the outlined Marxian/
Hegelian sense). We therefore argue to extend Twidale’s concept by the notion ,,Over
the shoulder appropriation“, where we have to study the different parts within their
function of appropriation.

A common assumption is that people start to learn a new tool in reaction to a con-
crete need. Yet, in our case study we have also seen that people play with new tools
“just for fun”. Taking the “infrastructuring” perspective (Karasti, Baker & Halkola
2006; Karasti, Baker & Millerand 2010), the function of this kind of appropriation is
defined by satisfying a latent need to resolve the temporal tension between the actual
work practices and the innovation development at the large scale and in the long run.
In particular, innovations are not adopted because there is a need, but also because

90 4. The Collaborative Appropriation of an Open Software Ecosystem

there is an opportunity. In our work we therefore distinguish ,,opportunity driven,, and
,heed driven“ appropriation.

Good opportunities to appropriate a new tool or tool usage are over-the-shoulder situ-
ations. However, in advance one cannot ensure that a tool, satisfying an existing need,
can be found by accident. Need driven situations are therefore differently structured.
We found two examples of such kinds of situations: The situations of contextualized
help and the situations of shared infrastructure breakdowns.

Getting contextualized help is typically carried out by interaction with near peers.
MurphyHill and Murphy (2011) discussed “over the shoulder learning” and “getting
contextualized help” as one category, named peer-interaction. Through this lens they
got a fine-grained analysis of the diverse peer interaction situations, where people
talked about tools and tool usages. This is a valuable addition to our findings. Howev-
er, they did not distinguish between concrete (need) and latent (opportunity) needs.

In particular, satisfying a concrete need has typically a much higher priority than sat-
isfying a latent need, as one is under time pressure. The most prominent example of
satisfying a concrete need in our case study was the failure the common used version
control system. This situation of a shared infrastructure breakdown (Pipek 2005)
brings the users’ attention to reflect the current infrastructure and furthermore en-
ables him to think of actions to fix the breakdown. We have seen that fixing the
breakdown was not an individual need, but a collective and a collaborative effort was
necessary to fix the problem for the involved persons.

By highlighting the peer interaction and the ad hoc situation, we should not downsize
the institutional situations for the collaborative appropriation. Team meetings, for
example, serve as a platform within companies for knowledge sharing and work coor-
dination. Therefore we wanted to categorize these situations as the natural arena to
discuss appropriation efforts. And we were surprised to find, that previous work had
not described team meetings as platforms for appropriation work. However, there is a
note in the literature on agile methods, that one standard topic in the daily meetings
should be "What problems are preventing me from making progress" (Beck 1999). Pro-
jecting our findings that tools play an important role in making or not making
progress, we expect the daily meeting also to serve as a platform for appropriation

work. However, this has to be explored by empirical work.

Another category we haven’t found in the existing research on appropriation and re-
lated topics was the situation of , giving a jump start®. This activity is some related to
sharing tailored artifacts as well as knowledge sharing fostering organizational
learning. However in the scope of software workplaces and their appropriation it has

4. The Collaborative Appropriation of an Open Software Ecosystem 91

never been discussed. Yet we found that it was the mix of sharing information and
readily tailored artifacts that constitute a good jump start.

4.7. Some futures of supporting the appropriation of software ecosystems

The previous section has outlined that the openness of software ecosystems is double-
edged: while it introduces a new freedom, it also comes with new burdens. Bosch
(2009) has stressed mass-customization as an appropriate strategy to keep the advan-
tages of software ecosystems, but lower the burden for the users to make use of it.
Bosch does not further elaborate this thought, but typically mass-customization is un-
derstood as means for individualization focusing on the individual user only (Franke &
Piller 2002). The CSCW research on collaborative tailoring as well as the case study,
however, demonstrated the shortcomings of this design philosophy: instead of de-
signing for the individual user, a design that integrated the needs at the shop floor has
to be created. From this stance we will discuss in the following sections support op-
portunities at three levels: The personal level, the level of the local team and the
organization and at the global level of the ecosystem.

4.7.1. The personal level

The personal level addresses the appropriation work of the individual user, as he
adapts and adopts tools from the Eclipse ecosystem. An important aspect of the indi-
vidual appropriation work is to safely manage the different plug-ins of an Eclipse in-
stallation. Eclipse already includes several features to support this issue. First of all,
its software architecture itself is an enabling technology. It is designed to make plug-
ins coming from different vendors work together. In addition, the integrated configura-
tion manager (see section 4.4) provides a build-in mechanism to download, install and

remove COHlpOHthS.

Despite these support mechanisms we observed several workarounds that users devel-
oped because the support provided by Eclipse was not sufficient. In the process of
adoption (Rogers 2003), we can analytically separate the issues of keeping the tool
competence up-to-date, keeping the tools up-to-date and managing multiple installa-
tions. In practice, however, they are typically interwoven. Therefore, a design concept

should cover these activities in an integrated manner.

4.7.1.1. Keeping the tool competence up-to-date

Adapting the system is just one part of appropriation (Dourish 2003). In particular,
before installing new tools one has to be aware of their existence. In addition, one has

92 4. The Collaborative Appropriation of an Open Software Ecosystem

to know their purpose and one has to learn, how to use tools effectively. To support
these activities, we should distinguish two cases:

* Keeping the competence up-to-date with regard to a tool that is already in use

and

* Keeping the competence up-to-date with the general development in the plug-in
market and the general software engineering field.

With regard to the first case, a solution should make users aware of available updates
for tools they already use, e.g. by a service that regularly performs checks in the back-
ground. Such a mechanism is already provided by Eclipse. And as long as the manu-
facturers of a plug-in follow certain specifications, it works quite well. This mechanism
on the other hand lacks to present information that describes what an update is good
for. In principle, updating existing tools means that a user does not have to learn to
use the tool from scratch. Instead, migrating to the new version is mainly determined
by the question: ,what has changed since the last version?“ Hence, in the context of
updating a tool this kind of information should be given.

With regard to the second case our study reveals that we should distinguish between
need driven and an opportunity driven appropriation. Need driven appropriation refers
to activities as searching solutions for a specific problem, e.g. searching a plug-in to in-
tegrate the bug-tracker into the working environment. As seen, users typically ask col-
leagues for help, use general purpose search engines like Google or make use of special
web sites (see section 4.4). From a user’s point of view, the search mechanisms should
also be integrated into the working environment. This provides the opportunity to use
information about the actual installation, in order to only show plug-ins that are com-
patible and /or recommended.

Opportunity driven appropriation refers to situations, where people keep the tool
competence up-to-date through regularly reading magazines, studying web sites or be-
coming aware of interesting tools by looking over a colleagues shoulder. However, sup-
porting opportunity driven appropriation can only be supported in a heuristic mann-
er. We will discuss this issue in more detail in section 4.7.2 within supporting the tool

awareness among colleagues.

4.7.1.2. Keeping the tools up-to-date

After becoming aware of either a new tool or an update to an existing tool and the
decision that this tool/update might be worth a try, it must be integrated into the
Eclipse installation. Technically, this means the user has to modify the Eclipse instal-

4. The Collaborative Appropriation of an Open Software Ecosystem 93

lation, including all issues of transferring and installing plug-ins as well as mechanisms
to recover the installation in the case of a breakdown.

Several issues are supported by Eclipse. However, the functionality is split into several
user interfaces like a dialog to update installed plug-ins, a dialog to enhance the work-
place by installing new plug-ins. Another dialog allows for inspecting, and disposing
plug-ins as well as recovering older states of the installation.

Furthermore, Eclipse does support the exchange of tools among team members (see
section 4.6.2.4). Because of this, the user must change to the file system level to install
plug-ins that he copied from a colleague.

Following the easy-to-adapt principle of End User Development (Lieberman et al.
2006), the functionality could be improved by integrating the diverse features into one

tailoring environment that could directly activated form the use context (Wulf &
Golombek 2001).

4.7.1.3. Managing multiple installations

Appropriation processes do not just add to an Eclipse installation. Instead, managing
multiple installations and removing plug-ins is just as important. A first reason to use
more than one installation is the skepticism that the made modifications are reliable.
Because of this, some developers do not just remove outdated installations, but keep
different old versions as kind of fallback system. For example, we observed a develop-
er, who always creates a backup copy, before installing new plug-ins. After an ade-
quate period of testing, he copies the fallback system to a folder containing older in-
stallations, which are outdated. Then he uses the testing environment as his new
productive system.

Furthermore, because Eclipse installations are adapted to the specific demands of a
project, one might want to be able to access them later. Even if a project had been
finished and one turned towards a new project, there was still a possibility that a bug
had to be fixed or the customer requested new features. In such case one can benefit,

if the old installation is still available and can be reactivated.

A third reason is that people sometimes work on more than one project. Because of
this they want to be able to switch quickly between different toolset installations.

One drawback of the outlined Eclipse installation manager is the missing support for
having multiple installations. Instead, the design rests on the underlying assumption
that a user has only one Eclipse installation, ignoring above usage scenarios like using
explorative and fallback installation or having special installations for each project.

94 4. The Collaborative Appropriation of an Open Software Ecosystem

Because of these shortcomings, users have created their own workarounds. Examples
are installing Eclipse for each project in separated folders, manually backing up
Eclipse installations at file system level or disposing plug-ins at file system level that
caused a breakdown. The existing literature addresses these issues partially by in-
troducing the idea of exploration environments. These should allow users to try adap-
tations in a sandbox and revert if anything went wrong (Kahler 2001b; Wulf &
Golombek 2001). Yet the case study showed that the need to explore is not the only
reason to create backup copies of software work places. Another reason is the need to
work on different projects in parallel that may need differently configured tools.
Therefore we need a broader concept than exploration to support the practices we

observed.

Commercial solutions like Yoxos or Pulse are more sophisticated regarding the man-
agement of multiple Eclipse installations. In particular, they offer the opportunity to
specify and name different installations - so called profiles. This simplifies the manage-
ment of software portfolios and the selection of the right installation for the task at
hand. However, at the moment these solutions do not respect certain organizational
decisions (e.g. having a set of tools as base) and specific demands of a project or per-
sonal favorite addition. As a result, it is awkward to maintain the diverse profiles
when personal preferences or organizational constraints did change. In addition, fea-
tures are still missing to define exploration environments (Wulf 2000), which allows to

experiment with new tools in a safe manner.

4.7.2. Local level of the organization

Appropriation work inherently has a collaborative facet (Pipek 2005). Furthermore, at
Alpha we found a kind of informal collaboration (Mackay 1990a). This also holds true
in the case of sharing Eclipse plug-ins. As we have seen, sharing plug-ins is often root-
ed in personal contacts who work in the same project. Furthermore, we observed that
cooperation could even cross-organizational boundaries, as people interact with the

community or external workers, as students, who join a project team.

The finding that people in local context give advice to install, update or try some-
thing new also holds for the case of appropriating the Eclipse ecosystem in the organi-
zational context. But differently to the work of Mackay (1990a), innovators are usually
not the creators of the modification. Instead, they are usually the first adaptors of a
new tool that was built by someone else. This feature refers to the work of Rogers
(2003), who described the process of social systems, adopting externally developed in-
novations. However, he reflected on the adoption of individual artifacts only and did
not take the users creativity and the complexity into account that arises when dealing

4. The Collaborative Appropriation of an Open Software Ecosystem 95

with multiple artifacts, coming from different sources, at once. In addition, he did not
further investigate into the structure of the situations where forms of collaborative ap-
propriation could be observed.

With regard to this, the merits of our case study are not just to demonstrate that so-
cial networks are important for the appropriation of software ecosystems. In section
4.6.2 we further outlined the structure of the related situations that are constituted by
collaborative forms of appropriation.

An interesting approach to support opportunity driven appropriation is to address on-
line over-the-shoulder situations. Awareness mechanisms for tailoring activities as de-
scribed by Kahler (2001b) look like promising approaches. As an example, notifica-
tions could be used if something important happens within the organizational
network. The design of this awareness support additionally should be tightly integrat-
ed in the user interface (Twidale 2000; Pipek 2005; Stevens & Wiedenhofer 2006).

To support need driven appropriation, search based user interfaces and recommender
techniques seem promising. Concepts like the Expert Finder (Reichling, Veith & Wulf
2007), originally developed to support knowledge management, are also a promising
approach for collaborative appropriation. They can be used to identify tool expertise
in the organization and the personal social network and draw connections between ex-

perienced and advice-seeking users.

In addition in the case of a collective need affecting the whole team (which is some-
times subtle to answer), the collaborative tailoring mechanisms outlined by Oberquelle
(1994) seem to be promising to make the collaborative negotiation and realization

processes more effective.

While the different forms of appropriation result in different requirements on the level
of user interaction, the required data and data gathering mechanisms are very similar
for both forms. A promising approach to gather the needed data is to trace changes of
the Eclipse installations within the team. Even more detailed information can be pro-
vided by tracing usage histories, as this leads to more precise results (see also Pipek
2005). Additionally, we can enable users to rate and comment plug-ins to provide ad-

vice that can be accessed later.

A further general requirement to support collaborative appropriation is to enable the
sharing of plug-ins among team members and colleagues from within the working en-
vironment. At the moment, users are forced to copy plug-ins on the file system level,

which is awkward and error prone.

A first research prototype that realizes some of the mentioned requirements is Peer-
clipse (Draxler et al. 2009) (see chapters 8 and 9). The intention of Peerclipse is to re-

96 4. The Collaborative Appropriation of an Open Software Ecosystem

spect the habitus of the developers being responsible for their tools, but at the same
time to support the collaborative appropriation among the team members. Peerclipse
is integrated into the working environment and establishes a local peer-to-peer net-

work support awareness of tool expertise and sharing plug-ins with each other.

4.7.3. Global level of the ecosystem

Existing research on tailorability focuses mainly on the local context. However, our
case demonstrated that individuals and groups who tailor Eclipse are at the same
time linked to the global community. This underlines Eriksson and Dittrich’s (2009)
remark that Kahler’s (2001b) work has to be adapted to mutual development of situ-
ated tailoring and software development in the large. In particular the concept of an
organizational tailoring culture should be enlarged and embedded in a culture of parti-
cipation at a large scale. We therefore want to both discuss the global level of the
Eclipse ecosystem as a whole and discuss the way the individual user is connected to
it.

The Eclipse ecosystem today consists of millions of users, thousands of developers,
dozens of organizations and several thousand software artifacts (see section 4.3 and
4.4). We observed that users who go beyond the scope of their team or organization
(e.g. because no one else in the organization tested this new code repository client be-
fore), interact with people from the global community as to figure out what the mar-
ket looks like, how stable is a plug-in, if its features are sufficient and how it can be

utilized.

On the global level, there is a good chance that someone very experienced for the cur-
rent problem exists. Unfortunately, finding these people and fostering the collabora-
tion is only poorly supported today. The global level presents therefore a new chal-
lenge and a chance we should consider when designing appropriation support.
Through this new dimension the personal and local level do not become obsolete. In-
stead, they support each other and supporting design concepts need to connect and

integrate them.

On the global level efforts like the Eclipse marketplace (a plug-in market) and its inte-
gration into the working environment as well as commercial products like Yoxos on
Demand or Pulse are highly interesting. They all try to offer to the user a single point
of access to all independent vendors and their products. In addition, they try to bring
the tool market closer to the use context in order to overcome the separation between
distributing digital goods and configuring the working environment. This indicates a

transformation of the traditional mediation between an open network of producers

4. The Collaborative Appropriation of an Open Software Ecosystem 97

and users. However, they do not fully grasp the opportunities to foster cooperation

among the ecosystem members.

For example in a further step these systems should visualize available expertise as well
as implicit or latent cooperation needs. In particular, they should integrate a social in-
frastructure closer into the Eclipse application system. Realizing such ideas, we should
consider that users typically try to identify expertise within the nearby social network
first. If this fails, they try to do the same for the whole ecosystem. One example of
system design that supports such cascading strategies of collaboration is outlined by
Stevens (2009).

However, we just began to explore the interplay of local to global collaboration and

further research is needed to support a smooth transition between the different levels.

4.8. Conclusion

In the last years, software ecosystems that are constituted by networks of coexisting
and coevolving software are grown. This new way of software development is primarily
studied from a software engineering point of view, neglecting the consequences for the
design of software workplaces. To address this gap we investigated in Eclipse as one
most successful examples of the new software ecosystem paradigm. Methodologically,
we used a mixed method approach to measure to what extend people make use of new
opportunities as well as to understand how appropriation work is structured at the
shop floor.

The results of the online survey confirmed the literatures qualitative evidence that
people tailor their applications to fit them into the local context. Moreover, our survey
also showed evidence that over 90% of the users adapt their Eclipse configuration by
integrating plug-ins that come from different places. This indicates that tailoring ac-
tivities have become part of their everyday work practices.

The survey results furthermore showed that peers and colleagues are important re-
sources to get new artifacts as well as information about what’s is going on in the
software ecosystem. Similar patterns were mentioned before in the context of collabo-
rative tailoring (Mackay 1990a) as well as general technology adoption (Rogers 2003).
Because of these similarities, future research on end user issues of software ecosystems
should attempt to synthesize both research threads, enhanced by the dimension of in-
tegrating coevolving materials (which is neither addressed by Mackay nor by Rogers).

How is appropriation work structured and what situations contextualize this work? To
answer this question, we conducted an ethnographically oriented study in a small Ger-

man software company. The study uncovered the crucial problem that is resolved by

98 4. The Collaborative Appropriation of an Open Software Ecosystem

appropriation work. Namely to maintain a reliable working environment at the shop
floor, while keeping technologically informed with the fragmented developments in the
software ecosystem. These results show the deep link between appropriating ecosys-
tems and the general ‘infrastructuring’ activities (Star & Bowker 2006) studied so far.
Both have to resolve the structurally homologue tension between the here-and-now
practices and the evolutionary technologies at the large-scale (cf. Karasti, Baker &
Millerand 2010). The structural analysis of the Eclipse ecosystem revealed that this
tension is also a product of Eclipse’s short release cycles. However, Karasti et al noted
the effects of an increased speed of technological change on infrastructuring as “fift is
a constant battle to keep up with things, to remain current in technology” (Information
Manager quoted by Karasti et al. (2006)).

In contrast to Karasti et al., we took a closer look on the collaborative dimensions of
this issue. In particular, we systematically analyzed the diverse situations of collabora-
tive appropriation. We identified different types of situations that contextualize appro-
priation. Some were already mentioned in literature, like the over-the-shoulder-appro-
priation that generalizes Twidale’s (2005) work by stressing on the close entanglement
of adaptation and explorative learning. Another example is the infrastructure-break-
down situation, which is closely related by the work of Pipek (2005) work on dealing
with breakdowns in general. However, we also found practices like giving a jump start
that were not mentioned in literature beforehand and are solely grounded in the em-

pirical data.

This work underscores Bosch’s (2009) remark that end-user oriented strategies for
software ecosystem are needed. However, its seems that the software ecosystem re-
search so far either neglect this topic or primary focused on the individual user only.
A key contribution of this work is therefore to correct this view, showing that appro-
priating software ecosystems is not primary an individual competence, but a collective

competence.

Form this stance we envision at different levels the opportunities to support the ap-
propriation work: We outlined, how existing tailoring approaches (Hartmann et al.
1994; Kahler 2001b; Pipek 2005) could be applied to support the appropriation work
at the personal as well as organizational level. However, we must go beyond these ap-
proaches and integrate an organizational tailoring culture with a participation culture
of the ecosystem at the large (Eriksson & Dittrich 2009). We especially made aware of
the new role of intermediary parties that can lower the burdens to collaborate between
the manifold actors of the ecosystem. The most popular example of such an intermedi-
ary party is Apple with its AppStore. Users do not even consider it tailoring anymore
if new Apps are bought and installed by a single click. In the case of Eclipse, mass-

4. The Collaborative Appropriation of an Open Software Ecosystem 99

customization toolkits that provide a repository of 3rd party extensions, like Yoxos on
Demand or Pulse, become more popular.

Eclipse nowadays is a quite polished version of a software ecosystem. But even here we
can observe that the users’ role of establishing (collaboration) relations between differ-
ent actors has to be further explored in order to be supported. In particular we argue
that the guiding principle of mass-customization should be replaced by the concept of
appropriation infrastructures (Stevens, Pipek & Wulf 2010) that provide an integrated
customization and collaboration platform.

With all precautions to generalize a single case, we assume that tailoring applications
by making use of software ecosystems will become an important issue in general. How-
ever, we have to be careful when transferring our findings to other cases. We have to

consider three issues:

* At the large, we have to consider that the Eclipse platform is very successful, as it
addresses a market with more than a million users and more than thousand con-
tributors. In addition, it follows a rapid innovation cycle. Other successful and dy-
namic software ecosystems, like Mozilla, as well as Karasti et al’s findings indi-
cate that an increased technological change is a general issue. However, we cannot
take this for granted. We therefore argue that attempts to transfer these findings
should include a structural analysis of the ecosystem in question.

* At the local context, we have to consider that a laissez-faire management practice
was applied during our case study. This gives the responsibility for the workplace
design to the hands of the people on the shop floor. As discussed is section 2.1
this is not the usual view on workplace design (at least considering the literature
on IT management). Therefore the findings might not be easy to transfer to other
contexts. The survey on the other hand (see section 4.4) helped us understanding
that a wide range of Eclipse users actively adapt their workplaces, even if we do
not know their organizational backgrounds. Moreover, from a normative stance of
work democratization, we would argue that this case demonstrates that flexibility

is possible and useful.

* Additionally, we have to admit that software developers are usually not consid-
ered end-users, but trained to solve technical problems. Several studies confirm
their habitus as “following technological trends”. We should therefore not expect
that in other domains users have the same interest in their tools and keeping up-
to-date. If we try to transfer these results to other domains, we have especially
have to invent a set of methods, techniques and tools that allow less technical

skilled users to modify or extend their working environments (Lieberman et al.

100 4. The Collaborative Appropriation of an Open Software Ecosystem

2006). In section 4.7 we address this challenge by outlining, how the appropria-
tion of software ecosystems could be made easier in the future.

Considering this, further research has to expand in three different directions. First, we
should carry out studies in other companies in order to obtain a richer picture of the
diverse appropriation practices in organizations. Additionally, we should consider
studying different software ecosystems, like Mozilla or Linux, and comparing them to
our results. Finally, we have to study the different user types, their different strategies
and needs to maintain a reliable working environment at the shop floor, while keeping
informed with increasing speed of technological change.

5. Team Practices of Appropriation in Software Ecosystems 101

5. Team Practices of Appropriation in Software Ecosystems’®

Since the 1990s, the forms of production, distribution, configuration and appropriation
of software have changed fundamentally. Nowadays, software is often embedded in
software ecosystems, i.e. in complex interrelations between different stakeholders who
are connected by a shared technological platform. In our paper, we investigate how
small software teams deal with the challenges of appropriating and configuring soft-
ware in the Eclipse ecosystem for their daily work. We empirically identify three
different approaches for dealing with appropriation in software ecosystems which are
represented by the “ideal types” lone warrior, centralized organization, and collegial
collaboration. Based on a discussion of these strategies and the underlying appropria-
tion practices we found in the field, we suggest theoretical and practical implications
for supporting appropriation in software ecosystems.

16.This chapter has been published as: Draxler, Sebastian; Jung, Adrian; Boden, Alexander; Stevens,
Gunnar; 2011. Proceeding of the 4th international workshop on Cooperative and human aspects of
software engineering, Workplace warriors: Identifying Team Practices of Appropriation in Software
Ecosystems. ACM, New York pp. 57-60. © 2011 ACM, Inc. http://doi.acm.org/
10.1145/1984642.1984656

102 5. Team Practices of Appropriation in Software Ecosystems

5.1. Introduction

For a long time, research on software usage has been interested in aspects of customiz-
ing and tailoring single applications to the needs of end users (Gantt & Nardi 1992;
MacLean et al. 1990; Wulf 1999b). This was well suited in times when the software
market was limited and applications had a clear border. However, several trends have
changed the ways of software production, distribution and configuration considerably
over the last two decades: 1.) the establishment of the Internet as the dominating in-
frastructure for disseminating and marketing digital goods; 2.) the spread of new busi-
ness and development models in the Open Source domain, encouraging users to share
software with others; 3.) the establishment of software ecosystems which consist of
different manufacturers and hobbyists, creating small-scale components that can be in-
dividually assembled by end users. These developments do not only affect the ways
how software is developed and maintained, but also how it is appropriated by the
users (who are increasingly understood as prosumers instead of mere consumers of
software). As the social and collaborative aspects of appropriation in software ecosys-
tems are not well understood, we have conducted a study which investigated how
small teams of software developers deal with the necessities of appropriating the soft-
ware that constitutes their work tools—in this case the Eclipse IDE and its surround-

ing software ecosystem (Eclipse Foundation 2010).

The paper is organized as follows: after a discussion of the related work and our
methodology, we provide an overview on three different approaches of dealing with ap-
propriation as well as the underlying practices and implications that constitute these
strategies. Based on our findings, we then identify implications for the theoretic un-
derstanding of appropriation as well as for designing supportive tools for these
practices.

5.2. A Brief History of Appropriation

In the 80s and 90s, the research on the social and socio-technical aspects of software
use and development coined the terms customization, adaptability and tailorability.
Driver of these discussions was the fact that the existing, monolithic off-the-shelf
products did not accord well with the complex, heterogeneous needs of a dynamic
market. While tailoring was often considered to be an individual effort, later research
highlighted the collaborative aspects of these practices. A major contribution to this
shift was the work of Mackay (1990a), who conducted empirical studies within organi-
zations to examine patterns of sharing self-created email filter rules as well as configu-

rations of Unix desktop systems. In a similar vein, Gantt and Nardi (1992) investigat-

5. Team Practices of Appropriation in Software Ecosystems 103

ed into the tailoring practices of CAD users. Under their lens, collaborative efforts
became visible. While tailoring has been mainly discussed from a technical perspec-
tive, recent research has broadened the understanding of the corresponding practices
by analyzing the ways how users fit the technology at hand into both the pre-existing
culture and into the local patterns of use and life rhythms (Stevens, Pipek & Wulf
2009). Conceptually labeled as appropriation, this line of research highlights the link
between the creative re-configuration and the re-interpretation of given features as two
dialectically connected forms of end user development (Dourish 2003; Stevens 2009),
implying that technical concepts as tailorability (in terms of re-configuration of soft-
ware) should be supplemented by social-technical means for supporting appropriation
(Dourish 2003; Pipek 2005; Stevens 2009). Generally speaking, while tailoring focuses
on the technical customizations of software artifacts, appropriation also considers the
social-technical process of interpreting software in daily work practice. While research
in this domain has predominantly focused on the appropriation of single applications
so far, we want to understand how software users design their workplaces by assem-
bling heterogeneous resources from global software ecosystems.

5.3. Research Methodology

From 2006 to 2009, we participated in a publicly funded research project to develop
tailorable applications for different domains (like monitoring complex technical plants,
eLearning based on business simulation and using basic groupware technology). The
aim was to study the potential of the Eclipse platform (Gamma & Beck 2003) as a
core technology for realizing the concept of component based tailorability (Mgrch et
al. 2004). Eclipse was chosen as a platform as it was considered being a leading edge
technology in respect to a consequent component architecture (“everything is a plug-
in” (Gamma & Beck 2003, p. 83)) and a vital ecosystem (with thousands of free or
commercial extensions). We expected these features to empower users to personalize
their applications by managing individual plugin portfolios, selected form the Eclipse
software ecosystem.

Our research was organized following the strategy of theoretical sampling as suggested
by Strauss’ Grounded Theory (Glaser & Strauss 1967). We started with an open-end-
ed, qualitative study on Eclipse plug-in adoption practices, using semi-structured in-
terviews and on-site observations. Specifically, we cooperated with five German com-
panies with 10 to over 2000 employees that perform software development (see Table 5
for details). In each company, we conducted at least three semi-structured interviews
of at least one hour (altogether, we conducted 18 interviews between August 2007 and

104 5. Team Practices of Appropriation in Software Ecosystems

December 2008). Additionally, we visited two SMEs over a period of 3-5 days for on-

site observation.

All interviews were audio recorded and transcribed. The participant observations were
documented by means of field notes taken during the research. In addition, we also
analyzed the socio-technical structure of the Eclipse ecosystem, which determines the
possibilities of users for designing their personal workspace. Related work done by oth-
er researchers was investigated for the purpose of sensitizing our analytic lens. Howev-
er, we tried to prevent to subsume our observations under pre-defined concepts taken
from literature. Instead we focused on categorizing our data by carefully analyzing the
documented practices in minute detail. In a further step, we supplemented our quali-
tative analysis by an online survey where we used to assess the spreading of the ob-

served practices (Stevens & Draxler 2010).

Employees Domain Collected Data
Alpha 10 Software Development 3 Interviews
Beta 6 + freelancers Software Development 3 interviews

3 day observation

Gamma (1,200 (90 Insurance company + inhouse software |3 interviews
developers) dev.
Epsilon |1,700 (30 main- Research facility, Inhouse development |4 Interviews
tenance dept.) for machine maintenance
Zeta 250 Development of Multimedia and Web 5 day observation
applications 5 interviews

Table 5: Research Partners.

5.4. A Classification Scheme of Team Practices

Our research provided us with rich insights into the manifold practices of how practi-
tioners of small software teams appropriate software in the context of the Eclipse
ecosystem. In general, we observed that practitioners were in a constant struggle of in-
novating their working environment and keeping it up-to-date in order to perform
their work. At the same time they had to prevent possible breakdowns and incompati-
bilities resulting from updated and new plug-ins. As common Eclipse configurations
consist of a plethora of plugins (usually maintained by 3rd party developers), there
was a constant need for dealing with updates of particular plug-ins, also in cases when
no new plugins where to be installed. Even when developers decided to stick to one

version of Eclipse as a stable working environment, APIs to shared tools like the CVS

5. Team Practices of Appropriation in Software Ecosystems 105

could change and enforce the update of the related plugins. Furthermore, new tasks
did sometimes require new tools and therefore new plug-ins were explored and
introduced.

The companies we investigated expressed quite different strategies of dealing with the
challenges outlined above. These approaches move along a continuum, whose ends are
autonomy (leaving the responsibility to configure and maintain Eclipse to the indi-
vidual developers) and heteronomy (managing Eclipse configurations in a centralized
manner, thus enforcing a homogeneous working environment for the whole team). Fol-
lowing Max Weber (1949), we conveyed and conceptualized these approaches into
three different “ideal types”, which represent the underlying strategies of the compa-
nies for managing appropriation in practice: the lone warrior type, the centralized
organization type, and the collegial collaboration type. In the next sections, we will
discuss these types and illustrate their underlying practices as well as their socio-tech-

nical implications.

5.4.1. Lone Warrior

The first type is conceptually constituted by a high autonomy of the team members.
It refers to the freedom, but also to the individual responsibility workers have for
taking care of their workplaces. There are no guidelines for setting up the individual
Eclipse configurations, although the limitations of the platform may force team mem-
bers to use very similar configurations for certain collaborative functions, e.g. if only
one plugin is available for connecting to the version control system. If changes to the
workplace configuration need to be introduced on the team level, practitioners have to
justify this constriction of the individual autonomy by proving the benefits of the sug-
gested change to each of his colleagues.

Empirically, the lone warrior practice is expressed by the circumstances that collabo-
rative appropriation is not the normal case, but occurs at most accidentally (e.g. in re-
sponse to breakdowns of the infrastructure). In our study, an example for such an ac-
cidental collaboration was caused by the breakdown of a shared source code repository
that was caused by an update. In this exceptional case, the incompatibility forced the
team to search for a solution that was then adopted by the whole workgroup (in the
specific case, a developer worked out that the problem could be fixed by using a differ-
ent Eclipse plug-in. This information was spread and the plug-in was then used by
everyone). Except of such rare situations of collective appropriation of new tools,
every developer decided on his own what plug-ins to install and how they should be
configured.

106 5. Team Practices of Appropriation in Software Ecosystems

As the lone warrior culture forced team members to search for useful tools themselves
and experiment with them, practitioners were often very knowledgeable about their
individual workplace. On the other hand, we recognized a lack of group-consciousness
regarding tools and existing tool expertise. For example, in one company no one in the
group was able to tell us what tools his colleagues were using. From a management
perspective, this lack of awareness can have negative effects, like the tendency to de-
velop heterogeneous and possibly conflicting work practices, decreasing the diffusion of
innovation among the team members, and finally making it more difficult to find the
right person to ask for advice in case something went wrong or in case team members
evaluated new tools (Boden, Draxler & Wulf 2010).

5.4.2. Centralized Organization

This type is constituted by heteronomy that stems from a centralized organization of
the Eclipse installation. In this case, the workplace is designed by a designated team
member and then distributed to the team. Changes to the common installation have
to be discussed with the developer in charge, who is responsible for updating the in-
stallation and dealing with the possible incompatibilities.

Empirically, we observed one case of centralized organization as the opposite extreme
to the lone warrior type. In this case, the team elected a tool care taker. Once a
month, his duty was to configure a stable working environment that met the needs of
the group and afterwards put it on a shared file system where it was accessible for all
team members. He described this work as follows:

“Developer 2: [..] I sit down at home on my Vista partition and an up-to-date Eclipse
[configuration]. [..] I have a list of plug-ins which should be included. [...] I update this
at home, put it on an USB stick and bring it here. Here, I upload it to a shared drive

so that everybody can copy it.”(Transcript from an interview with the tool care taker).

The decisions about what should be included in the common configuration were made
by the whole team during stand-up meetings. Although the decision process was col-
laborative, the workplace caretaker realized the common working environment on his
own. He was expected to be interested and quite skilled in finding new tools as well as
in being up-to-date. Team members even reported to respect him as a “primus inter
pares” in this regard. Everyone else within the team relied on his skills to regularly set
up an up-to-date, stable environment for the whole team.

The approach of centralized organization did not just create the opportunity to bene-
fit from the maintenance of a common and thus homogeneous workplace configuration,
but also created a latent obligation for other developers not to customize their work-

5. Team Practices of Appropriation in Software Ecosystems 107

places. As experimenting with new tools for personal purposes was not legitimized by
the team, the amount of influence team members could bring into discussions about
the configuration management was clearly limited. The reason for this was, that it is
difficult to say what the concrete benefits are before one has used a new tool in prac-
tice. Hence, the central organization type had the tendency to impede individual ini-
tiatives of developers to explore new stuff during daily work. It detached innovation
activities from the daily production work. This means that the centralized organiza-
tion type had to solve the latent demand to innovate in different ways than the lone
warrior case, which allowed easy exploration through the integration with the daily

work, which was now mainly in the responsibility of one central team member.

5.4.3. Collegial Collaboration

As we have outlined in the two previous sections, our observations showed that in
practice there were often exceptions from the rules impeded by the different ideal ap-
proaches that the companies chose to deal with their workplace configuration. This led
to the identification of a third type, which is constituted by the dialectics between au-
tonomy and heteronomy. In this type, responsibilities are not pre-defined, but have to
be clarified in a situated manner. As a result, the used working environments were of-
ten neither as homogenous as a central organization, nor as heterogeneous as in a lone

warrior culture.

Empirically, we found many different practices of sharing configurations and plug-ins
in the team in an unplanned and ad-hoc way. These were similar to forms of learning
that have been described in the literature as learning in over-the-shoulder situations
(Twidale 2005). Generally, sharing was mainly based on a copy-and-adapt installation
practice, whereas one user configured and adapted her own Eclipse configuration indi-
vidually, and afterwards shared this configuration with his colleague(s) in the project.

“I did configure Eclipse a few times. Or rather we configured it more or less together.
For example, [within the project] we use the CheckStyle component and some other
plug-ins, whose names I forgot, because in fact my colleague did set up the original
configuration. And I eventually copied the whole configuration over to my worksta-

tion.” (Transcript from an interview with a junior developer).

An important type of situation was a kind of initiation rite in which experienced
Eclipse users introduced new team members or novice Eclipse users to the Eclipse
technology (e.g. if a developer joined the company and/or the team). In such situa-
tions, senior developers would often copy their working environments to the machines

of the junior developers. One observed effect in such situations was that people

108 5. Team Practices of Appropriation in Software Ecosystems

worked with similar configurations for a certain time. Later, the working environments
would drift apart in a lone warrior manner, as everyone modified the environment for

his own purposes.

The result of such a working style was that the selective cooperation fostered homoge-
nization to a certain degree, but did not enforce it in a centralized manner. At the
same time, the related ad hoc collaboration did not result in a systematic diffusion of
innovations. Instead, tools and experiences were typically shared in an unsystematic
manner, which was also a result of very limited support by existing technology. Ac-
cordingly, we found several attempts to organize self-made infrastructures to overcome
existing shortcomings in technology support.

“Developer: So, if the project requires to install something new and interesting, [...] 1
send a request wusing the mailing list: ‘Who knows a good plug-in for that?’
Interviewer: What do you mean by ‘mailing list’? Who receives these emails?
Developer: [...] All employees receive this message and everyone who wants to comment
can answer directly. [...] Some time ago, when we really wanted to use [a certain plug-
inf, I had already heard about it on the mailing list. [..] And I directly contacted the
colleague, asking where I could get it and how I could use it.” (Transcript from an in-

terview with a developer).

In this case, employees utilized the company‘s mailing list to reach every colleague
and to describe what tools they were currently using in a new project, as well as expe-
riences regarding the usage of tools. This presents a notable example of creating a
proxy for over-the-shoulder situations, coping with the challenge that several employ-
ees worked at the customer’s site full time as project leaders, programmers and tech-
nology consultants. In particular, these people described that they felt better connect-
ed to their company colleagues because of this mechanism. While they considered
themselves as part of the team, they also considered themselves as part of the periph-
ery. Living in the diaspora they were afraid of being cut off from their colleagues at
the headquarters, who were perceived as leaders in appropriating domain specific

innovations.

5.5. Conclusion

In this paper we studied practices of appropriating software in the Eclipse ecosystem,
asking how small teams of software developers manage their working environments.
We distinguished between three different approaches of managing the workplace con-
figuration. The first one was labeled the lone warrior type. It is defined by the con-
cept of autonomy, while the second, the centralized organization type, is defined by

5. Team Practices of Appropriation in Software Ecosystems 109

the concept of heteronomy. Both types have in common that informal collaboration
among team members is not a constitutive element. This distinguishes them from the
third type of collegial collaboration, which is defined by autonomy and heteronomy as
a dialectical unity.

It has to be noted, that the three types are analytic categories in the sense of Max
Weber’s “ideal types” (Weber 1949). In practice, their borders were blurred as we ob-
served various forms of collegial collaboration in all cases, leading to a fined-grained
balance between autonomy and heteronomy. Sharing occurred often rather unplanned
in over-the-shoulder situations, in case of breakdowns, in situations where newcomers
joined the team or just by accident. In these situations, the sharing of configurations
and knowledge did lead to a temporal increase in awareness on what is used and ho-
mogeneity of configurations. Between such occasions, configurations usually drifted
apart as users added new plug-ins or changed configurations to their needs, which led
to an increased heterogeneity and a decreased awareness which could sometimes cause
breakdowns in the cooperative work. We also observed attempts of overcoming exist-
ing shortcomings by realizing collegial forms of appropriation in distributed work.
Examples were setting up mailing lists to share experiences about new tools in a more
systematic way, or using the source code repository to also store the tools with the
code.

Nowadays, most tools provide tailorability functions. Eclipse as our example can be
tailored by adding plug-ins, setting preferences and changing the design of the user in-
terface. However, our research showed a clear lack of tools for supporting the various
practices of collaboration with regard to appropriating/tailoring. This is especially
true for tailoring artifacts in complex software ecosystems like Eclipse, since modifica-
tions are usually delivered by 3rd parties. In such cases conditions as practicality,
compatibility, stability can hardly be estimated beforehand, making the selection of
tools difficult and risky. Therefore, further research is needed to explore how collegial
collaboration can be supported with regard to appropriation. Such approaches should
not only take into account the provisioning models represented by the three ideal
types, but also the dialectical unity of autonomy and heteronomy that framed the
different practices we found in the field. In doing so, they should support tool aware-
ness as well as practices of over-the-shoulder learning.

6. Situated Practices of Appropriating the Eclipse IDE 111

6. Situated Practices of Appropriating the Eclipse IDE"’

Software engineers and developers are surrounded by highly complex software systems.
What does it take to cope with these? We introduce a field study that explores the
maintenance of the Eclipse Integrated Development Environment by software develop-
ers as part of their daily work. The study focuses on appropriation of the Eclipse IDE.
We present an empirical view on appropriation as a means to maintain the collective
ability to work. We visited seven different organizations and observed and interviewed
their members. Each organization was chosen to provide an overall picture of Eclipse
use throughout the industry. The results decompose the appropriation of Eclipse by
software developers in organizations into four categories: learning, tailoring and dis-
covering, as well as the cross-cutting category: collaboration. The categories are
grounded in situations that provoked a need to change as well as in policies adopted
for coping with this need. By discussing these categories against the background of
Eclipse and its ecosystem, we want to illustrate in what ways appropriation of compo-
nent- or plugin- based software is nowadays a common and highly complex challenge
for Eclipse users, and how the related appropriation practices can be supported by IT
systems.

17.© 2014 TEEE. Reprinted, with permission, from Sebastian Draxler, Gunnar Stevens and Alexander
Boden, Keeping the development environment up to date - A Study of the Situated Practices of Ap-
propriating the Eclipse IDE, September 2014. http://dx.doi.org/10.1109/TSE.2014.2354047

This chapter is was published as: Draxler, Sebastian; Stevens, Gunnar; Boden, Alexander; 2014. Keep-
ing the development environment up to date - A Study of the Situated Practices of Appropriating the
Eclipse IDE, IEEE Transactions on Software Engineering (TSE), accepted with minor revision.

112 6. Situated Practices of Appropriating the Eclipse IDE

6.1. Introduction

Adopting appropriate tools and using them effectively has long been recognized as an
important factor for improving productivity as well as product quality (Bruckhaus et
al. 1996). Therefore, unsurprisingly, the history of software engineering is also deeply
entangled with the history of development tools. Back in the early era of computing in
the 1950s, development tools were a scarce resource and it was not unusual for pro-
grammers to ‘hand craft’ their own. Today the situation is rather different —an abun-
dance of development tools and other applications. Web browsers such as Chrome or
Firefox, for instance, can be individualized by hundreds of extensions, and professional
tools like Photoshop benefit from vivid ecosystems of add-on providers. This trend
also holds for contemporary development tools. Users of the popular Integrated Devel-
opment Environment (IDE) Eclipse, for instance, can choose between several different
UML modeling tools, code management solutions, database editors, to name but a
few. The same is true for other popular development tools such as Visual Studio, Net-
beans, SharpDevelop or IDEA.

Tools and tool integration are broadly recognized as a central concern for software en-
gineering. However, we know little about what this abundance of development tools
means for developers in practice. Our understanding of the integration work of soft-
ware developers in real settings is quite limited. Therefore, this paper presents a
grounded theoretical study of appropriation work, providing the broader context in
which tool integration in companies is embedded and illuminating practices on the
‘shop floor’. By providing a rich account of these practices, we will show how appropri-
ation is constituted in learning, tailoring and discovering as well as collaboration. Fur-
thermore, we will show how Eclipse users’ actions and their technical, social and

organizational situations are intertwined.

Our results are based on an ethnographic field study in seven heterogeneous organiza-
tions involved in software development (Table 6). We observed software developers
during their daily work, examined their workplace context and interviewed them
about their tool usage and appropriation practices. All these organizations, despite
their differences, use the Eclipse IDE as their primary development environment. This
gave us the chance to perform a comparative analysis to identify both commonalities
and differences between the cases.

The paper is structured as follows: in section 6.2, we give an overview of the history of
software development tools, as well as their appropriation and integration. In section
6.3, we outline our methodology and the details of the study. Following this, in section
6.4, we discuss details of the Eclipse ecosystem and the features which pertain to ap-

6. Situated Practices of Appropriating the Eclipse IDE 113

propriation at the shop floor. In section 6.5 we analyze appropriation work in relation
to the various dimensions which affect it. Finally, in section 6.6, we discuss our find-

ings with regard to research on software development environments.

6.2. Related Literature

Workplaces where software engineering is done usually combine different tools for
computer aided software engineering (CASE) and integrate their features into a pow-
erful and often complex ecology. In the following, we give a brief survey of research
into workplace design and discuss why the use-perspective is becoming ever more

important.

6.2.1. Designing and integrating CASE tools

The first CASE tools aimed at the automation of routinized, basic tasks (like using
compilers to generate machine code) (Kernighan & Plauger 1976) were developed in
the 1970s. Since then, significant progress has been made, both qualitatively, as the
complexity of task support increased (Bennett et al. 2008) and quantitatively, as the
variety and number of tools grew (Forte 1993). The design of CASE tools in this time
increasingly oriented towards the paradigm of ‘software factories’ (Boehm 2006). The
guiding principle of software factories included separating planning processes from the
work at the shop floor (McClure 1989; Fernstrom, Narfelt & Ohlsson 1992). Here,
CASE tools were introduced to ensure that work practices were compliant with pre-
scribed development methodologies and processes (Zettel 2005). As a result, individual

developers were largely excluded from the design of their own workplaces.

The latest paradigmatic turn in the design of Software Engineering tools has been to
distinguish repetitive software engineering tasks that could be streamlined via
automation from the “essential” tasks that rest on human expertise, judgment, and
collaboration (Brooks & Jr. 1987). This trend is reflected by the less restrictive CASE
tool design associated with Integrated Development Environments (IDE) (Lundell &
Lings 2004). In particular, IDE such as Microsoft’s Visual Studio and Eclipse present
a synthesis of the need for individual tailorability and the need for standardization
(Geer 2005): On the one hand, they provide freedom for users to adapt the working
environment to their needs (which calls for related organizational protocols (Gamma
& Beck 2004)). On the other hand, they contribute to the automation of repetitive
tasks as well as to standardization.

The standardization of working environments also progressed, e.g. by the introduction
of the NIST/ECMA reference model (NIST/ECMA TR/55 1993) for tool integration.

114 6. Situated Practices of Appropriating the Eclipse IDE

More recent approaches investigated activity-centered tool integration (Hansen 2003),
model based integration (Asplund et al. 2011) and developing measures to determine
how well a tool might be integrated (Zelkowitz 1996). A promising approach is fur-
thermore the combination of sharing artifacts and experiences, as both seem interre-
lated (Bourguin, Lewandowski & Lewkowicz 2013). However, despite that progress,
working environments today often consist of a plethora of tools which are only “par-
tially integrated, forming a complex tool landscape with partial integration.” (Asplund
et al. 2011).

6.2.2. Adopting CASE tools

A number of studies on the impact of CASE tools on software development work were
carried out in the 1990s. While several studies mentioned positive effects (e.g. (Finlay
& Mitchell 1994; Aaen et al. 1992)), others reported that introduced CASE tools were
never used (Kemerer 1992) or subsequently abandoned (Elshazly & Gover 1993). To
understand the reasons in more detail, several studies on CASE Tool adoption have
been conducted.

Focusing on the organizational level, Orlikowski’s widely cited work (Orlikowski 1993)
showed that the adoption of CASE Tools is complex and dynamic. In addition, she
demonstrated that adoption should be understood as an organizational change process
that depends as much on organizational and political issues as on technical ones.
Maansari and livari (1999) further analyzed how expectations and perceptions
changed before and after an organization-wide introduction of CASE tools. Several
studies (Maansaari & Iivari 1999; Rai & Patnayakuni 1996; Mendoza, Rojas & Pérez
2001) showed how work process compatibility and management support are important
factors for adoption. Yet, as Riemenschneider et al. (2002) noted, “contrary to com-
mon beliefs, acceptance of the methodology [and tools] is not assured just because it is

mandated by the organization” (Riemenschneider, Hardgrave & Davis 2002).

In order to understand the relevant factors affecting CASE tool adoption by the indi-
vidual, research focused mainly on adoption theories like the Technology Acceptance
Model (Davis 1989) or the Personal Computing Utilization Model (Thompson, Higgins
& Howell 1991). Both show a significant relationship between adoption and factors
such as ease of use, perceived usefulness, and long-term consequences (Iivari 1996;
Chau 1996). Furthermore, (Kemerer 1992; Fowler et al. 2000) have shown that adop-
tion is linked to changes in work behavior, requiring new skills and knowledge on the
part of individual users. Moreover, it was argued (Robbins 2005) that tool adoption
can lead to the adoption of new methodologies and vice versa.

6. Situated Practices of Appropriating the Eclipse IDE 115

Software development is today largely team-based (Riemenschneider, Hardgrave &
Davis 2002; Chau 1996; Sharma & Rai 2000; Hardgrave & Johnson 2003) which im-
plies a third important influence on adoption, situated between the individual and the
organization. However despite its importance, only few studies explicitly address team
practices. Existing studies typically argue that the social context has a double impact:
With regard to social norms, teams exert a pressure to accept and internalize common
and compatible styles of work. These pressures can promote (livari 1996; Sharma &
Rai 2000), but also impede the adoption of new tools and methodologies
(Riemenschneider, Hardgrave & Davis 2002).

6.2.3. CSCW studies on tool appropriation

The social dimension of software adoption and adaption was investigated in more de-
tail in the field of CSCW. In the 1980s and 90s, studies showed how non-programmers
tailored newly introduced systems in the local context of non-SE work environments.
MacLean (1990) investigated a system that allowed office workers to create buttons on
their user interfaces which contained small macro-like functionality. Furthermore,
these small programs could be shared through an email-like system. In a similar way,
patterns of cooperation emerging in the use of the sophisticated tailoring and exten-
sion facilities offered by many CAD products were identified (Gantt & Nardi 1992).
Further, studies on X-Windows modification and email filter configuration identified
common patterns of sharing tailored artifacts within an organization (Mackay 1990a).
These studies showed that even non-programmers can tailor in a small way. More
complex modifications, however, are usually carried out only by more motivated and
technically skilled users. Furthermore, both studies (Gantt & Nardi 1992; Mackay
1990a) identified a third group of users, situated between end-users and developers,
able to contextualize existing modifications by acting as bridges between developers
and users who do not tailor themselves. MacLean et al. (1990), called the three groups
programmers, tinkerers, and workers. In Mackay’s work (Mackay 1990a), they are

called lead users, translators, and ordinary users.

A later study that focused more on collaborative aspects of tailoring (Kahler 2001b)
argued for support mechanisms for tailored artifacts. These include repositories for
tailored artifacts, supplemented by features for sharing knowledge about how these ar-
tifacts should be used.

One of the few studies in the context of modern IDE usage (Murphy-Hill & Murphy
2011) showed that the first problem of adoption is the necessity to discover relevant
artifacts. The discovery mode described as “peer interaction” between developers in-

cludes observations as well as direct recommendations in order to become aware of in-

116 6. Situated Practices of Appropriating the Eclipse IDE

teresting artifacts for adoption. This can happen face to face or even through the use
of eclectic tools like social media and instant messengers in order to share customiza-
tions and especially to help peers. This can be considered especially important, as e.g.
many Java developers (12 of 14, based on interaction histories during a study of

Eclipse usage) use third-party plug-ins (Murphy, Kersten & Findlater 2006).

Furthermore, the benefit of role-based, coarse grained tailoring functionalities in the
context of the Eclipse IDE (IBM Rational Application Developer — RAD) have been
shown (Findlater, McGrenere & Modjeska 2008). The findings suggested that tailoring
mechanisms that are finer grained and more related to tasks instead of roles, as used
by RAD, may be more effective.

Furthermore, beneficial to understanding the results of this study is Sigfridsson’s en-
deavor to understand how developers (in distributed projects) gain and develop their
practical knowledge (Sigfridsson 2010). Although it does not focus on adoption and
adaption, it presents how three categories (continuos change, equivocal situations and
external influence) lead to a very complex field of work and at the same time force its
members to continuously adapt their practical knowledge.

During recent years, efforts were made to cover both, adaptation (tailoring) and adop-
tion (deciding to use something), under a single term: appropriation. The term relates
not only to the repurposing of technical artifacts for one’s own aims or the work in-
volved in doing so, but is held to be a general prerequisite for making practical use of
technologies (Pipek 2005; Dourish 2003; Balka & Wagner 2006). In this sense, the con-
cept can be used as a guiding principle for field studies on software adaption and

adoption.

6.2.4. Discussion

During the last few decades, great progress in the design of SE workplaces has been
made, entailing a shift from designing isolated tools to highly tailorable working envi-
ronments which allow the easy integration of additional tools. In addition, the way
tools are distributed and integrated has radically changed. Instead of pre-packaged
software bundles and occasional updates, the rise of the internet has fostered the cre-
ation of open and standardized platforms, accompanied by product communities.
These so called software ecosystems (Bosch & Bosch-Sijtsema 2010a) have radically
changed the whole tool market. More 3rd parties (commercial companies, as well as
single persons) began to build tools, offering new features and bug fixes in very fast
cycles. These tools can be installed by Eclipse users, mostly free of cost and during
runtime (Des Rivieres & Wiegand 2004). As a result, the integration work has to some

extent shifted from plug-in manufacturers to Eclipse users. Truly identical working en-

6. Situated Practices of Appropriating the Eclipse IDE 117

vironments became increasingly rare (Draxler & Stevens 2011). Sometimes the Eclipse
user is the first person who runs an “integration test” that verifies if this particular set
of installed tools is compatible.

The appropriation work that emerges with this tailoring of modern tool ecosystems
(Bosch & Bosch-Sijtsema 2010a) as part of SE workplaces — has not yet been investi-
gated in detail. From previous research several factors that promote or hinder appro-
priation are known (Kemerer 1992; Elshazly & Gover 1993; Orlikowski 1993;
Maansaari & Iivari 1999; Rai & Patnayakuni 1996; Mendoza, Rojas & Pérez 2001;
Riemenschneider, Hardgrave & Davis 2002). In particular: management support, per-
ceived usefulness and ease of use are held to be factors that significantly influence ap-
propriation. In general, we cannot consider workplace design merely as a technical
challenge, but also have to understand it as a change process that involves the indi-
vidual, the organizational and the team level. However, these ‘social’ factors have not,
as yet, been investigated in relation to professional software developers.

In order to contribute to an understanding of tool adoption and adaptation of soft-
ware developers in its social context, we want to combine the tradition of grounded
theoretical studies in Software Engineering (Orlikowski 1993; Coleman & O'Connor
2008) with traditional ethnographical work on collaborative work practices in CSCW
(Mackay 1990a; Schmidt 2000) to uncover the underlying structure of appropriation
work in the case of modern IDEs. For an example of this approach, applied to research
software development work, see (Sigfridsson 2010).

6.3. Research Methodology

For our study, we chose the Grounded Theory approach (Orlikowski 1993; Strauss &
Corbin 1997; Shull, Singer & Sjgberg 2008). This allowed us to recover the structure
of appropriation work from within the field in an explorative manner. It also allowed a
focus on contextualized and situated practices that have been omitted in tool adop-
tion research thus far, and hence the building of substantial theories that are closely
tied to the observed context, yet nevertheless are fit for ‘analytic generalization’ (Yin
2009). Our aim was therefore not to quantify practice occurrences through searching
for predefined categories, but to explore the range of existing practices.

The literature on Grounded Theory is shaped by an ongoing debate on the usage of
preconceived categories and existing literature as material for analysis, going back to
slightly different variants of the method’s founders, Glaser and Strauss. Our analysis
followed the approach of Strauss, which allows the inclusion of existing concepts and

118 6. Situated Practices of Appropriating the Eclipse IDE

findings from literature during coding phases. All notes, interviews and related arti-
facts that we gathered in the field, were coded using this approach.

In 2011, parts of our study have been published with a focus on appropriation work at
one small company (called Alpha in this publication) (Draxler & Stevens 2011). This
paper extends the initial study through including field data of six heterogeneous
organizations, leading to important clarifications and reconsiderations in our analytic

understanding.

6.3.1. Sensitizing and constitutive concepts

The theoretic concepts of appropriation, practices and situations are of special impor-
tance for this field study. They were shaped by our experiences in the field and have
proven constitutive of the phenomenon of appropriation work.

In this paper, we understand appropriation as the network of activities users continu-
ously perform to use software artifacts constructively and to incorporate software arti-
facts into their lives for better or for worse (Stevens, Pipek & Wulf 2010; Poole & De-
Sanctis 1989). We understand practice as a routinized pattern of human action (Wulf
et al. 2011). It is represented by a ,skillful performance' of activities, which are re-
produced in a specific context. A practice is grounded in, often implicit, background
knowledge and implicit normative rules, which render the action meaningful within its
context. In contrast we understand a situation as a specific constellation in which an
activity takes place. Appropriation is therefore mostly a lens for our research and we
will undertake efforts to explore its meaning in the context of Eclipse IDE usage. We
intend to gain this understanding by investigating observable and describable practices
and situations of Eclipse IDE users.

6.3.2. Data sources, selection and analysis

The data for this study was collected between 2006 and 2009 at seven different re-
search sites (Alpha to Theta). All sites are German organizations which were at the
time involved in software development. All of them utilized the Eclipse IDE for at
least part of that work. The sites were chosen specifically for the comparison of results
(that way Grounded Theory achieves significance). Therefore, we chose organizations

of different size, structure, customer base, business models and technology used (see
Table 6).

At three sites, we started with several days of work/workplace observations. At every

location, we carried out two to four on-site interviews in situ. Most interviews took

6. Situated Practices of Appropriating the Eclipse IDE 119

around 1.5 hours. Few interviews were shorter in duration and some took about 2
hours. In addition, we collected Eclipse configuration files.

Company |(Employees Domain Gathered data

Alpha 10 Software Development (shared work- 3 interviews
space system) 3 Eclipse footprints

Beta 8 + free-lancers |Software Development (business 3 interviews
games, web development) 3 day observation

5 Eclipse footprints
(of 4 persons)

Gamma ca. 1200 (ca. 90 |Insurance company + in-house software |3 interviews

developers) dev. 5 Eclipse footprints
Delta ca. 50 Software Development and consulting |4 Interviews
(Eclipse RCP, web development) 2 Eclipse footprints

5 day observation

Epsilon >2000 (30 main- |Research facility, Inhouse development |3 interviews

tenance dept.) for Machine maintenance 6 Eclipse footprints
Zeta ca. 250 Software Development (multimedia and |5 day observation
web applications) 4 interviews
Theta ca. 35 Software development (Eclipse RCP, 2 interviews
web development) 3 + 7 Eclipse
fooprints of two
teams

Table 6: Visited research sites.

6.3.2.1. Observations

At Beta, Delta and Zeta, we carried out several days of observation. At Beta, we tried
to observe the whole company because its small size and work structure did not in-
clude fixed development teams. At Delta and Zeta,- much bigger organizations- we
concentrated on particular development teams. We followed the observed teams close-

ly, took notes and asked questions at appropriate times.

6.3.2.2. Interviews

Overall, we interviewed 21 people at their desks or in meeting rooms of their organiza-
tions. Interviews that started in a meeting room always ended with visiting the actual
workplace. Therefore, we were able to observe modifications the interviewees made to
their Eclipse installation(s). This again enabled us to ask detailed questions about

120 6. Situated Practices of Appropriating the Eclipse IDE

these observations. We regularly made use of this opportunity to clarify responses giv-

en during the interviews.

The participants’ Eclipse usage experience ranged from 2 to 9 years. Some were final
year university students but most were professional software developers with several
years’ experience. We also interviewed the CEO of Alpha as well as the CTO of Beta,
who both did some development work from time to time. At the larger organizations
(e.g. Gamma and Epsilon), we interviewed people who worked together as a
workgroup or development team.

Before our field trips, we prepared an interview guideline. It included the following

topics:

* Personal aspects such as age, professional career, period of Eclipse usage and

experiences.

* Aspects related to the organization such as size, business model, and style of

working.
* Detailed questions on Eclipse usage, configuration efforts and collaboration.

Following the iterative and adaptive work-theory building principle of Grounded The-
ory (Strauss & Corbin 1997), we extended and focused our guideline during the study,
based on the results of earlier interviews. Additionally, if participants brought up re-
lated topics that seemed to contribute to our research question, we asked further ques-
tions to investigate this in more detail. All Interviews were audio-recorded and
transcribed with the consent of interviewees.

6.3.2.3. Artifact analysis — Eclipse footprints

The Eclipse development environment is a complex product and Eclipse users can tai-
lor substantial aspects of it. The key questions in our interviews centered around
which software components (features/plug-ins) had additionally been installed by an
Eclipse user and which preference settings had been changed.

Eclipse allows us to extract this kind of information and export it to a plain text file,
naming each of the installed components as well as their version, preference settings
etc. These files can be seen as ‘footprints’ of Eclipse installations. They provide insight
into the configuration decisions of Eclipse users. We carefully analyzed the footprints
by comparing objective data with the statements of the owner of this Eclipse installa-
tion. Even though the extraction mechanism changed between different versions of the
Eclipse IDE, which rendered a quantitative analysis less meaningful, the configuration
files were important evidence for our study as they allowed us to ask further questions

6. Situated Practices of Appropriating the Eclipse IDE 121

in case of mismatches between interview and footprint or helped to validate the state-

ments from the interviews.

6.4. Understanding the Three Faces of Eclipse

This section will provide an introduction to the Eclipse IDE, its typical users, and the
Eclipse community in general, considered as a software ecosystem. It is intended to
provide context for readers who are not familiar with the Eclipse project. It should
help the understanding of practices, restrictions and problems that will be presented
in the following parts of the paper.

6.4.1. Typical Eclipse Users

The Eclipse IDE (standing for Integrated Development Environment) is a tool-set for
software developers. Therefore, the user groups associated with it tend to be software
architects, developers and testers and other highly trained specialists. Nevertheless, it
puts its users in a difficult situation. On the one hand, it is a powerful and very tai-
lorable set of tools that fits a very broad range of tasks. But oftentimes it also forces
users to tailor it to their specific needs. Tailoring the Eclipse IDE is often a very com-
plex task. It is time consuming and can generate error, as incompatibilities between
components can appear. Problems range from components not working or disappear-
ing, apparently strange system behavior, to completely broken installations. In fact,
tailoring Eclipse can become so complex that even software engineers can easily reach

their limits.

6.4.2. An architecture and user interface, designed for flexibility

If the practical act of tailoring Eclipse can be quite complicated, the technical founda-
tions that allow this kind of tailorability are just as elaborate. Eclipse was built for
flexibility. Since the release of Eclipse IDE version 3.0 in 2004, everything is part of a
component, a so called plug-in, which makes Eclipse stand out from most other soft-
ware. Usually, flexible systems consist of a monolithic core, supplemented by addition-
al components (see Figure 11 left). Eclipse is a complex framework of interconnecting
components, delivering all of the functionality (see Figure 11 right). There is literally
no monolithic core or base, just a tiny runtime which loads and executes plug-ins. In
Eclipse terms: “FEverything is a plug-in“ (Gamma & Beck 2004). From a purely techni-
cal point of view, other software may be similarly structured. What makes Eclipse in-
teresting is the fact that Eclipse users are aware of recently introduced architectural
specialties.

122 6. Situated Practices of Appropriating the Eclipse IDE

3 we eipse
—f——

O
JFC
EEEN

Runtime Kernel

Application

Figure 11: Architectures of traditional software (left) and the ,every-thing is a plug-in“-ap-
proach of Eclipse (right) as perceived by it’s users.

The Eclipse architecture separates components into two main groups. A) Containers,
or ‘features’, used to group functionalities. B) Components that deliver the functional-
ity, called plug-ins and fragments. The Eclipse IDE comes preconfigured with a num-
ber of features, and each includes several plug-ins and fragments. Several of such pre-
configured packages are offered, all of them specialized Integrated Development
Environments (IDE) for software development. Examples are specialized Eclipse IDE
for testers, Java developers or C++ developers™. Even so, there are often components
that are very useful, or even necessary, which are not included. Therefore, an Eclipse
user often has to add further features/plug-ins in order to modify Eclipse‘s behavior
to his/her needs. There are over a thousand components available for Eclipse. Theo-
retically Eclipse users can even write their own components or adapt existing ones to

their needs.

Another level of complexity is added as most components are extensively configurable.
For example, the text editor component can be configured in terms of font, font size,
coding conventions, colors, etc. As an example, Eclipse IDE version 3.6 with addition-
al components for Android mobile phone development shows 139 pages of preference
settings, with each page showing several settings. Often these preference settings are
preconfigured to be usable right away. Sometimes, however, they need to be configured
in order to work properly. A tool that warns the user about bad coding style needs to
know what problems it should mark. Similar complex possibilities and necessities for

configuration occur with many components.

18. http://www.eclipse.org/downloads/ (Accessed February 24th, 2014)

6. Situated Practices of Appropriating the Eclipse IDE 123

A third level of complexity is added as the Eclipse user interface is also highly config-
urable. It is structured into Views, Editors and Perspectives. Views and Editors are
small windows within the Eclipse window. They show only a very small and specific
portion of information. Examples are a log of warnings and errors, files of a project or
a list of bugs to fix. Interacting with the content of a View often activates or opens a
different View to show details, or an Editor to interact with and change that informa-
tion. Views can be modified in a variety of ways. Views can be opened and existing
ones can be closed. They can be resized and relocated within the Eclipse window. Fur-
thermore, Views can be minimized, showing the view as and when it is needed, but
hiding it if not. A further aspect of Eclipse Ul architecture is the concept of Perspec-
tives. A Perspective is a set of Views, with defined locations, sizes and modes. Per-
spectives are an easy way to switch e.g. between a set of Views used for modeling, and
a set of Views for coding or debugging. They reduce the need to open and set-up a

dozen views to one click.

6.4.3. The Community’s Rhythm

Eclipse is also well known for its lively community (including Eclipse IDE users — ordi-
nary developers and our field for research — as well as people who further develop the
Eclipse IDE). This community consists of amateurs, students, freelancers as well as
members of companies and large enterprises. The joint effort to make Eclipse continu-
ously better is led by a very small organization: the Eclipse foundation. The Eclipse
foundation does not determine the content of an Eclipse installation package or the di-
rection the future development should take. Nor does it do the development work that
produces the Eclipse IDE. Rather, it provides connectivity and ‘rthythm’ for most of
the involved people. From 2004 to 2012, the Eclipse community released yearly major
version upgrades of the main Eclipse IDE components every June. Some contributors
who offer additional components follow this cycle, while others do not. Furthermore,
milestone releases as well as unstable nightly builds are available for everyone to use
and test. This complicates the situation for Eclipse users even more, as they usually
face an upgrade of their main working tool at least once a year (the Eclipse IDE).
This is especially complicated, as some components may have changed, while others

haven‘t, introducing new compatibility issues.

6.5. Maintaining the collective ability to work

The Eclipse IDE is a very flexible, powerful and complex tool for software developers.
Nevertheless, if changes are necessary, problems can arise. The uncertain rhythm we

refer to above means Eclipse users are under pressure to adapt. Therefore maintaining

124 6. Situated Practices of Appropriating the Eclipse IDE

the collective ability to work has become a very important aspect of work. The findings
of this study directly address this by presenting the four main aspects of this work to
maintain the workplace: learning, tailoring, discovering and collaborating. We in-
troduce these situated work practices by drawing the connections between the need
for change and particular situations, problems or issues that were drivers for this need.

6.5.1. Learning and Gathering Information

Throughout the study, we could only find a few restrictions on participants’ ability to
choose plug-ins and to modify Eclipse for their daily work. When the members of the
companies we studied started to use Eclipse, they began to reinstall, modify and im-
prove the software in order to deal with the upcoming challenges of development work
as well as new developments in the Eclipse community. The result was a complex and
continuous process of gathering information and learning over several years that we

present in the following sections.

6.5.1.1. Usual topics to learn about

The software developers we studied used such tools to a significant degree to support
their work. To benefit, however, they needed to be aware of what tools at that point
existed, what functionality they included, if they were compatible with their environ-
ments and how they could be practically used. Therefore, they needed to get an
overview of existing tools, i.e. plug-ins, and investigate their functionalities. The first
step for participants was to search for a tool that added support for e.g. the source
code repository GIT or UML modeling. This was followed by a thorough check to see
if that tool was compatible with the currently used Eclipse installation. Several indica-
tors for compatibility checking were used. The most important and easiest aspect to
check was the major Eclipse version. But the task could be more complex, as addition-
ally installed plug-ins can be incompatible with each other. Furthermore, plug-ins that
were new to the user needed to be thoroughly understood in order to be of practical
use. This involved far more effort than getting an overview of the tool’s functionality.
And lastly, many tools had to be configured in order to be helpful.

6.5.1.2. Learning Practices

A special source of information and a foundation for learning about recently in-
troduced aspects was the Internet. Using general purpose search engines such as
Google was a typical practice throughout the study. This was a step in a quest for in-
formation to solve certain problems or to stay informed of activities in the Eclipse
community. Used search terms were the names of known plug-ins, certain topics such

6. Situated Practices of Appropriating the Eclipse IDE 125

as “PHP programming Eclipse“ or details of a problem encountered by the users (e.g.

an error message).

While searching presents the first step, it was just the prelude for reading. We found
usage of internet-based media such as websites, user communities or mailing lists,
which report on software development and Eclipse related topics. This includes news
about upcoming or updated plug-ins, configuration manuals as well as tutorials for us-

age of certain tools and technologies.

The Eclipse magazine is a journal on the German market that exclusively addresses
topics around the Eclipse IDE and Eclipse community, for example current plug-ins,
their applications and functionalities as well as their configuration possibilities. Even
more importantly, perhaps, there are general software development related magazines.
These are not focused on Eclipse, but address topics around Eclipse from time to
time. Participants read both, although some stated that they did so only from time

to time.

Occasionally, tutorials and manuals that explain a certain plug-in refer to an older
version of the plug-in. Therefore, learning by doing or exploring was considered a very
important practice, even when following the existing documentation. When in doubt,
the participants explored a plug-in‘s functions, gathered experiences through using it
and observed and reflected on their progress in order to assess its benefit for their
work. This included creating small example programs to try certain functions. Exam-
ples for such tools are code editors for additional programming languages such as
Python or PHP, functionalities for the creation of SOAP Web Services, quality control
support and source code repositories. Plug-ins under exploration were even used for
working on commercial projects, as otherwise it would not have been possible to inves-

tigate a new tool or setting in real world settings.

Sometimes, software developers run into problems they cannot solve on their own. A
recurrent practice was to turn to a colleague for a different viewpoint or to find possi-
ble solutions. These situations offer the possibility to learn from a colleague's experi-
ences. During these sessions, the icon of a newly installed plug-in would become visi-
ble and trigger a conversation about its functionalities and possible uses. The reason
for this help giving activity was often not directly related to tools. However, the
study's participants learned about plug-ins and their functions this way.

Learning from colleagues was of course not limited to breakdown situations. During
the field study, it became clear that this also happens in a more subtle way. Gamma,
Delta as well as Theta from time to time make use of the so called Pair Programming

technique. Pair programming means two people share one computer during develop-

126 6. Situated Practices of Appropriating the Eclipse IDE

ment work. One person takes the role of the navigator, while the other person takes
the role of the driver. The navigator thinks about the current development task on a
larger scale, while the driver thinks more closely about existing code and uses key-
board and mouse to directly manipulate source code. Because of this, they often sit at
a colleague’s machine. This way, they learn not only about each other’s skills, but also
about the other person’s tools, their configuration as well as their functions. While
serendipitous, these practices have several benefits as compared to reading. First of
all, certain aspects (e.g. merging branches within a source code repository or the cre-
ation of unit tests) can be demonstrated live by the more experienced person in real
world customer projects, rather than example code/projects alone. Furthermore, the
receiver of the information can assess value more realistically than when information
comes from websites, as both persons may have a common background (e.g. working
at the same project).

The case of Gamma showed a particularly interesting occurrence of learning, as when
two members of that organization told us about a conference visit. The conference ad-
dressed general Java-related software development as well as upcoming technologies
and tools in that field. Through a talk, they learned about the Mylyn Eclipse plug-in
(or Mylar at the time) that was relevant to their work. Their perception was that it
would allow them to view their work tasks directly within their Eclipse IDE, instead
of using an additional web browser window and furthermore to easily integrate infor-
mation from their working environment into their task management system. A few
days later, they were experimenting with this plug-in and a few weeks later, they be-
gun using it as one of their standard tools. While this is comparable to learning from
a colleague, there is an additional layer to it, as they learned from an unknown person.
Normally, colleagues provide trustable context knowledge but, in this instance, it was
the inventor of the plug-ins who was giving the talk, and so his recommendation was
trusted.

6.5.1.3. Contrastive Cases

At Alpha, only a few employees were using Eclipse. Senior developers, who were used
to working with console based tools of typical Unix/Linux environments, were less
likely to see the benefit of Eclipse and refused to constantly struggle with informing
themselves. Younger employees, in contrast, had familiarized themselves with the
Eclipse IDE during their academic education. They viewed Eclipse as a useful set of
tools that was more beneficial than the alternatives. For them, continuous learning
about new developments in Eclipse was an integral requirement for the maintenance of
their skill levels.

6. Situated Practices of Appropriating the Eclipse IDE 127

The project team at Gamma, contrastively, delegated almost the whole process of cre-
ating a usefully configured, fully working Eclipse installation to one person. Because of
this, others told us that reliance on this co-worker meant that reading the usual infor-

mation sources on Eclipse became less likely.

6.5.2. Tailoring

Tailoring activities were carried out to adapt the Eclipse IDE to the specific needs of
its user. These activities were closely related to learning processes, as new needs and
new possibilities for tailoring emerged through learning processes.

6.5.2.1. Tailoring possibilities of Eclipse

The simplest form of tailoring was modifying the user interface, using the possibilities
introduced in section 6.4.2 The possibility to define perspectives was held to be espe-
cially useful and several participants used this to redefine and modify existing perspec-
tives. However, we found no occurrences of newly created perspectives. A more power-
ful but also more complex tailoring option was the installation of additional
components, as these delivered new functionality. Some of these were quite complex
and needed to be configured to work properly, which added a new layer of tailoring
possibilities. The most powerful tailoring possibility however was to create new plug-

ins from scratch.

6.5.2.2. Tailoring Practices

The means to tailor the user interface are integrated directly into Eclipse. Perspec-
tives were tailored directly after Eclipse had been installed. This happened e.g. if a
new version of Eclipse was released or after a major breakdown of the installation. Ad-
ditionally, this happened after a new plug-in was installed, as new Views sometimes
had to be integrated into a Perspective afterwards. During a work day, participants re-
sized and moved Views regularly if space on the screen was needed for other purposes.

Furthermore, during work place visits and in interviews, we found that people in-
stalled additional plug-ins. The installation process depended on the form of delivery.
At the time of the study, the vendors often offered a download, which usually con-
tained all the files needed. These had to be extracted and manually copied over to a
special folder within the Eclipse installation folder. Eclipse would be expected to de-
tect and install the new plug-ins at the next start. This way was considered tricky,
however, as it was hard to track whether the installation process worked properly, es-
pecially if the user had not previously used the plug-in. If an extension was delivered

128 6. Situated Practices of Appropriating the Eclipse IDE

through an Update Site, a special user interface could be used to install the extension,
the so called Update Manager. After inserting the URL of an Update Site into the
Update Manager, it would detect the available Features (which include the plug-ins).
The user could select the Features that should be installed and the Update Manager
automatically downloaded and installed these. The Update Manager did warn if any
errors appeared during the installation but it was not easy for the participants to
track down the reported problems. For example, the mechanism complained about
missing plug-ins, which were definitely available, downloads stopped in non-re-
producible manner or dependencies could not be found, even if the necessary reposito-
ries were included. While the Update Manager was the more convenient tool for tailor-
ing Eclipse, the participants stated they used manual installation for a long time. It
was only towards the end of the study (around 2009), that users began using the Up-
date Manager more frequently, as it was completely rebuilt and the Eclipse Founda-

tion recommended avoiding manual installation.

Throughout the whole study, we found only one case of custom plug-in development.
A member of Alpha created a plug-in that delivered code formatting functionality.
Compared to most other Eclipse plug-ins, the functionality was quite limited. But in
this special situation, incorrectly formatted source code resulted in compiler errors.
Therefore it solved a very specific problem for this group.

Eclipse offered a central mechanism to tailor the configuration of plug-ins, the so
called preference settings dialog. Additionally installed plug-ins often extended this di-
alog by adding one or more pages with settings that changed the plug-in’s behavior.
In some cases, additional plug-ins required separate configuration. Similar to plug-ins,
preference settings appeared to be quite stable throughout the typical working day in
the study. Events that drove the participants to tailor the settings were the installa-
tion of new plug-ins, or when Eclipse had to be reinstalled.

The Eclipse IDE is delivered as an archive that can be extracted in any folder of a
computer and executed from that place. This enabled users to install and tailor sever-
al instances of Eclipse in parallel. We found several participants who made use of this
feature. They used different versions of Eclipse, e.g. this year’s release and last year’s
release (as required for a certain project). In addition to this behavior, participants
kep different Eclipse installations for different tasks. Alpha and Beta both used differ-
ent programming languages (and related tools) for different projects. Alpha relied on
Python, complemented by Java, while Beta used PHP complemented by Java. Em-
ployees who often had to switch between projects were likely to use two different
Eclipse installations. Each was therefore configured for the project at hand. Partici-
pants from Zeta used this technique because of incompatibilities between certain plug-

6. Situated Practices of Appropriating the Eclipse IDE 129

ins. By using two Eclipse installations, they were able to separate the problematic
plug-ins from each other, although this was only possible if the incompatible plug-ins
were not both essential for the task.

At Zeta, it was a common practice to archive Eclipse installations and switch to a new
one, when a customer-paid project was shipped. This practice allowed the users to un-
pack and re-use an old, already tailored Eclipse installation that was fully compatible
with the shipped software project, even years later. Thus, if the customer required fix-
es for certain bugs or needed additional functionality, they could start working very
quickly.

6.5.2.3. Restrictions on Tailoring

Tailoring activities were sometimes subject to technical or organizational restrictions.
These were mandated either by other members or departments of the organization or
defined by internal, often implicit agreements. Participants (especially members of
Zeta) argued that they felt their superiors expected them to be compatible with other
parts of the company, even if this was never really made explicit. Zeta employees ex-
plained that while conforming to this expectation, they at the same time tried to ex-

plore new and probably unstable Eclipse-related tools from time to time.

Organizational restrictions emerged mainly from daily work and were of an implicit
nature. For example, the participants could freely choose additional plug-ins, but felt
they had to respect organizational restrictions such as the company’s infrastructure or
the programming languages in use for the project. While these aspects were clearly ex-
ternal restrictions, the participants argued this imposed no particular constraint since
the usage of that particular programming language or infrastructure had been their
own (collaborative) decision in the past.

Technical restrictions could be observed in several cases. At Zeta, the usage of plug-ins
for web service creation caused breakdowns of the Eclipse IDE. The participants used
multiple differently tailored Eclipse installations and backup copies of the whole IDE

to solve this problem.

Gamma, as a large company had its own IT department, which used a very restric-
tively configured Firewall. As a result, the members of Gamma were not able to install
additional plug-ins or even updates for Eclipse at all. To avert conflict with the I'T de-
partment, the team decided to delegate all tailoring tasks to one person. The person
most interested in news concerning Eclipse technology tailored an Eclipse installation
suitable for the whole team from home and distributed it via a memory stick. This

was repeated once a month to make use of updates and integrate additional tools.

130 6. Situated Practices of Appropriating the Eclipse IDE

6.5.3. Discovering

During the study, it became clear that serendipitous discoveries were an important as-
pect of actions to maintain the collective ability to work. We found a mixture of dis-
coveries, learning, tailoring and collaboration. Discovering relates to information on
tools/plug-ins, their functionalities, compatibility issues, etc. Discoveries can trigger
individual or collaborative learning or tailoring activities. Tailoring activities can,

however, also result in new discoveries.

6.5.3.1. Things to Discover

The different groups’ work practices were closely related to certain plug-ins, as the
functionalities and usability of each plug-in suggested a certain style of working. For
example, the usage of a code editor for the Python programming language indicated
Python development. Discoveries of new and helpful Eclipse plug-ins were therefore
important events. These discoveries had the most potential to change future work
practices. At Alpha, the Eclipse plug-ins for Python development were spread entirely
by serendipitous discoveries.

As Eclipse plug-ins tend to be complex, the settings of a given plug-in were often
arrived at through discovery. This happened especially with plug-ins for quality con-
trol. FindBugs and Checkstyle are two plug-ins in this category. They made extensive
use of tailorable rules to display warnings related to the code the users wrote. As
these were only of interest in combination with the rules in use, these settings were

very important.

Single functions or even the keyboard shortcuts of plug-ins were also subject to dis-
coveries. It was reported that new icons on someone else’s screen led to certain un-
known but potentially interesting new functions (e.g. the Eclemma plug-in for unit
test coverage support adds one new icon to the toolbar which is visually very
different).

6.5.3.2. Serendipitious Situations that Lead to Discoveries

At Gamma, the above-mentioned conference visit led to the discovery of a new plug-in
(Mylyn). After returning to the company, information seeking and learning practices
were used to explore the benefits of the Mylyn plug-in for the project team. Reading
the existing print magazines led also to discoveries. As with the conference visit, the
participants’ practice of reading magazine articles on Eclipse led to discoveries and
contributed to learning about new plug-ins.

6. Situated Practices of Appropriating the Eclipse IDE 131

Similar conclusions can be drawn for online magazines. While most of these report on
software engineering in general, they sporadically also report on Eclipse. New plug-ins
may only appear once a month or every few months, but even reading a note about

the update of an existing plug-in might be a discovery.

Practices that led to beneficial discoveries involved personal contact with colleagues.
Examples were collaboratively solving problems or working together at one machine.
These practices sometimes revealed new icons and keyboard shortcuts that led to pre-
viously unknown possibilities (e.g. a shortcut to organize imported java packages or
reformatting the source code). Learning and tailoring processes followed these dis-
coveries, as with practices reported above. Distinct from these, however, personal con-
tact was perceived in this instance as especially valuable. Participants argued that
third party information sources are often very interesting, but co-workers share similar
work contexts. They work collaboratively on the same projects, use the same company
infrastructure and can rely on common success and failure stories when discussing the
use and limits of a certain tool. This rendered discoveries at a co-worker's workplace
more useful and trustworthy than discoveries made through magazines or online

sources.

The usage of exploration environments also led to discoveries. Exploration environ-
ments were mostly freshly released Eclipse versions which were tailored in order to ex-
plore new functionalities or to test for compatibility issues. During this exploration
process, participants sometimes expected to make discoveries (e.g. to find a new ver-
sion of a plug-in compatible to the project, while the previous version might have been
incompatible). We were also told that this process had been accompanied by unex-
pected discoveries in the past, as newly introduced functionalities appeared at the user
interface. E.g. at the time of the study, support for the Subversion source repository
was included with the default download packages of the Eclipse IDE. Prior to this,

Eclipse users had to get to know about this plug-ins in other ways.

6.5.4. Collaboration

The problem of maintaining the ability to work over a longer period concerns the
whole group, as every team member can run into problems and people from time to
time depend on each other’s work. A variety of actions that contribute to appropria-
tion, could also be seen as collaboration, including sharing information and virtual ar-
tifacts as well as asking for help and solving problems together.

132 6. Situated Practices of Appropriating the Eclipse IDE

6.5.4.1. Actors and Areas for Collaboration

Collaborative effects could be observed first and foremost between colleagues, working
together as a group or project team or as members of an organization. Even between
co-workers, different levels and areas of expertise became visible. The perceived level
of expertise of a colleague was implicitly used as a measure for trust for this person’s
recommendations. As part of project work at the customer’s site, people employed by
the customer were also part of this process (therefore the group of collaborators
spanned multiple companies). Such individuals by definition knew the customer infra-
structure much better than suppliers, and shared knowledge to foster collaborative
work with external people.

Several interviewees maintained connections to former co-workers or friends working in
the same industry and using similar tools. Additionally, they made use of their person-
al social network to ask for help, to help others to solve problems or to generally dis-
cuss tools and related topics. If a problem could not be solved within the organization,
they would turn to this circle. This was not confined to work and was also a topic of

conversation during leisure time.

The last resort in terms of getting help was to contact the vendor or developer of a
plug-in. Several participants argued that they would directly contact the vendor if an
important plug-in would not work as expected, either in order to get help or to better
assess the tool for the given task. We were told of only two occasions where such con-
tacts actually happened. Given that this spans a tool usage of several years, it seems,
on the face of it, to be a surprisingly rare event. We have to bear in mind that the
Eclipse community is huge and incompatibilities, usage problems, etc. as well as
workarounds or warnings are published very quickly in related forums. This explains

why contact with the vendor of a plug-ins rare.

6.5.4.2. Collaboration Practices

A frequently observed and described collaboration practice was asking others for help.
Throughout the study, certain events sparked questions. Examples were breakdowns,
as well as unclear or difficult aspects of the tasks at hand. The discussion often also
included tools and configuration aspects, e.g. missing rules of quality control tools.
Whenever a solution for a certain problem was known within the group, a course of
action could be recommended.

During collaborative software development, developers relied on the hardware and

software infrastructure in use. Therefore, the configuration settings of plug-ins may be

6. Situated Practices of Appropriating the Eclipse IDE 133

as important as the installed set of plug-ins itself. A plug-in may be useless if not con-
figured properly in relation to the organization’s infrastructure (e.g. source code repos-
itory tools), the project’s needs (e.g. quality control tools) or informal agreements
(version of the interpreter of a programming language). Throughout the study, config-
uration settings were spread by word of mouth or read to a person over the phone. In
some more complex settings or when organizational boundaries were crossed, they
were exported, sent by e-mail or instant messenger and imported into another Eclipse
installation. This gave the receiver an exact copy of the configuration settings, which

saved time and reduced typing errors.

Furthermore, participants directly shared plug-ins, e.g. web service support tools at
Zeta, support for PHP development at Beta, support for Python development at Al-
pha. This was carried out by either sharing the files that represented the particular
Eclipse plug-ins or by sharing the URL of the plug-in’s update site (see Update Man-
ager in section 6.4.2). That said, extracting and sharing plug-ins from an existing in-
stallation was extremely complicated and error prone, as the users would have to man-
ually figure out which set of plug-ins belonged to a certain tool and what the
dependencies between plug-ins might be. As a result, the participants only shared files
if they kept the downloaded archives that contained the plug-ins. Otherwise, they pre-
ferred to share the complete Eclipse installation. The latter case was carefully applied
to enable the receiver to start working without further configuration needs. This was
especially useful when new members joined the company (e.g. a trainee who had just
joined Beta at the time) or the project team (which happened regularly at Zeta).

While these sharing practices resulted in manual labor, there were certain support
tools emerging at the time. Services as Yoxos" or Pulse” allow their users to create
tailored, fully functional Eclipse installations. With a few clicks, users can select the
plug-ins that should be included. Nevertheless, only Theta made use of one of these
services. The participants argued that they did not know the services well enough to
see sufficient benefit from their usage. Furthermore, some of the more interesting fea-
tures were not free of cost and their use would have involved the organization’s man-
agement in financial deliberations. Both services also tended to apply an IT-depart-
ment centric view, as they allowed only the owner of the shared installation to
reconfigure the installed plugins, which restricted other users of the installation.

19. https://yoxos.eclipsesource.com/ (Accessed February 24th, 2014)

20. http:/ /www.poweredbypulse.com/ (Accessed February 24th, 2014)

134 6. Situated Practices of Appropriating the Eclipse IDE

The people at Delta and Theta regularly held meetings. Apart from the often more
pressing issues of daily business, they also used these meetings to discuss work prac-
tices as well as tools in use and their configuration. These meetings were an accepted
way for members to share their know-how about tools within the company. This creat-
ed a certain awareness of what others were using during their daily work and who was
experienced in which fields. All companies involved in the study carried out regular
meetings and from time to time, all groups discussed the tools in use or tools for fu-
ture use. But Delta and Theta put considerably more effort into this and, as a result,

were more aware of these aspects.

A slightly more top down way of sharing tool-related knowledge happened at Gamma.
The project leader of the group we investigated was in fact an employee of Delta. He
joined the project team at Gamma two years previously, along with some of his col-
leagues from Delta. At that time, people at Gamma had no experience at all in using
the Eclipse IDE and related plug-ins. When the project leader and several of his col-
leagues joined Gamma, he introduced several new tools as well as practices that he
was familiar with (Scrum, pair programming, test driven development). The employ-
ees at Gamma accepted these innovations and, as they had never had contact with
these tools and practices before, this lead to ongoing learning and tailoring activities.

6.6. Discussion

The results of the field study can be interpreted in two ways. First of all, we want to
discuss the practices that we have identified in our fieldwork. Secondly, we want to
show potential areas for supporting appropriation, based on the results of the field
study.

6.6.1. Configuration and adaptation practices

In our study, we have seen that learning, tailoring, discovering and collaborating were
the main areas that contributed to the appropriation of the Eclipse IDE.

n

Stritbing (1992) argues that always moving along the 'bleeding edge of technology
(Stribing 1992) is part of the habitus of software developers. Sigfridsson mainly sees
continuos change, equivocal situations and external influence responsible for this effect
of continuos change of practical knowledge (Sigfridsson 2010). In the case of the
Eclipse IDE, this edge is defined by what happens in the community and at the differ-
ent plug-in vendors’ sites. It is fast moving and dynamic (similar effects have been de-
scribed for the PyPy open source community (Sigfridsson 2010)). Changing work tasks

provide further justification for learning; or in some cases create a pressing need to

6. Situated Practices of Appropriating the Eclipse IDE 135

learn (see also (Sigfridsson 2010)) about news on the plug-in market and to stay on
top of things (see also (Murphy-Hill & Murphy 2011)). Based on the results of the
study, we agree with previous studies (Kemerer 1992) (Fowler et al. 2000) (Robbins
2005) (Murphy-Hill & Murphy 2011) (Sigfridsson 2010), which argue that changes in
work behavior stimulate learning or the need for new tools which, in turn, can stimu-
late new skills. The lively Eclipse ecosystem creates plenty of opportunities, as new
tools are constantly created.

Adapting the user interface of Eclipse usually took only seconds and helped the
Eclipse users in our study to get a better overview, to use different tools and to be
better prepared overall for the task at hand. Other tailoring decisions, such as keeping
several differently configured Eclipse configurations, were carried out to improve the
performance of the Eclipse IDE and to provide backward compatibility, which has not
been described by other authors yet. Mostly, however, Eclipse was tailored in order to
use new techniques or work practices, as when using a different programming lan-
guage, using code management tools or testing tools that might result in either faster
development or better quality results. This result is in line with previous research
efforts on learning and tailoring in SE environments (see e.g. (Murphy-Hill & Murphy
2011; Findlater, McGrenere & Modjeska 2008; Sigfridsson 2010)).

Discoveries were closely related to awareness of colleagues’ workplaces. The flexibility
of Eclipse as a toolbox for software developers sometimes meant poor awareness of
what other colleagues were using. Discoveries were important, because they could help
to satisfy a current need or help in fixing a pressing problem. Most of the employees
at Alpha, Beta, Epsilon and Zeta were only aware of a minimal set of Eclipse plug-ins
or tools that were in use by their colleagues, which made them quite open for dis-
coveries. At Gamma, Delta and Theta, however, this was different. The employees of
Gamma could fairly precisely tell us which plug-ins their colleagues were using and
even how these plug-ins were configured. This was because their firewall drove them to
delegate all tailoring work to a single person and tailoring decisions were communicat-
ed within the team. At Delta and Theta, in contrast, tailoring was an individual
effort. Even so, both companies were using pair programming techniques, which regu-
larly made pairs of developers to sit down and use one machine together. This raised
awareness of the tools in use. While Gamma was also using pair programming tech-
niques, we found the technical infrastructure was the main reason for this level of
awareness. Overall, a constant awareness helped members to stay on top of things, but
in groups that had low awareness of each other’s workplaces, discoveries played a
much bigger role. Mutual awareness of this kind is a cornerstone for helping each oth-

er out, implemented in a variety of ways, and a very important practice among devel-

136 6. Situated Practices of Appropriating the Eclipse IDE

opers. This was previously noted by (Murphy-Hill & Murphy 2011), who suggested
further organizational support for such practices; (Sigfridsson 2010), who discussed it
as part of practical learning and (Twidale 2005), where it is however mainly discussed

as personal help giving.

If we focus on the collaborative aspects that contribute to appropriation, we can
identify certain sharing practices that contribute to work effectiveness. This kind of
expertise and artifact sharing happened above all when new co-workers joined the
company or the project team. This was because new colleagues were expected to con-
tribute to the project quickly, requiring useful (and compatible) tools. Similar effects
were described by (Sigfridsson 2010) when developers joined the PyPy open source

community.

Overall, we can see that the Eclipse users of our study modified their systems to main-
tain their collective ability to work. In line with (Sigfridsson 2010), we argue that they
did whatever was possible to achieve this task. The related practices were often collab-
oratively carried out and can be categorized as learning, tailoring, sharing. They were
often spawned spontaneously by discoveries that also contributed to the teams’ overall

workplace awareness.

6.6.2. Potential areas for support and process improvements

As the study has shown, at the time, Eclipse was an example of a very powerful, but
also complex and in some situations unstable software system. Improvements to the
current Eclipse architecture may be of help. In particular, mechanisms that might pre-
vent plug-ins from harming each other could prove very helpful. However, future solu-
tions that aim at a high configurability or modifiability could also learn from existing
practices of Eclipse users and include features for supporting appropriation. Some of
the suggested measures have already been implemented (see e.g. (Bourguin,
Lewandowski & Lewkowicz 2013; Findlater, McGrenere & Modjeska 2008; Draxler et
al. 2012)).

6.6.2.1. Fostering Collaboration

As shown, the introduced practices that contribute to appropriation have very often
been collaborative. The sharing of experience through recommendations, demonstra-
tions and collaborative problem solving, as well as sharing of artifacts and settings
were present to a large degree in all the participating organizations. However, as the
tasks at hand relied heavily on the local context, e.g. the infrastructures of the compa-

nies and the projects, people from the team were the main points of contact. Systems

6. Situated Practices of Appropriating the Eclipse IDE 137

that accommodate easy appropriation should leverage this. One successful example
was the possibility of sharing preference settings. While that feature was not available
for all settings and not at all for plug-ins, it was used on several occasions. It could be
easily improved by connecting Eclipse installations to a network infrastructure in or-
der to implement additional features for sharing installed plug-ins, as well as settings,
with colleagues.

6.6.2.2. Making Use of Trust Relations

Such functionality would not only increase the usability of the current Update Manag-
er and settings dialogs, but would also enhance trust between the members of an
organization. Co-workers often rely on common success and failure stories. They know
their own organizations’ infrastructure, as well as their products, best. Throughout
our study, it was apparent that participants in the main did know who was responsi-
ble for certain aspects of this infrastructure and therefore knew whom to ask in case
of breakdown. A network to share artifacts within the organization as suggested by
(Bourguin, Lewandowski & Lewkowicz 2013) and (Draxler et al. 2012) could benefit
from this, as it would make use of known sources from within the organization, and as
a result might create awareness of the tailoring efforts of experienced Eclipse users.
This could generate serendipitous discoveries and offer a means to share the object of
interest in an easy manner. However, this should also be supplemented by organizatio-
nal measures, as suggested by (Murphy-Hill & Murphy 2011).

6.6.2.3. Searching and Sharing

We learned that Eclipse users regularly search the web for information on tools, as
well as for subjective experiences with plug-ins and their settings. We also learned
that the relationship of trust between an Eclipse user and unknown people on the web
is different to the relationship of trust between an Eclipse user and his/her colleague.
The Eclipse forum and its members constitute a huge and complex network and influ-
ence at that level is difficult to manage. The local network of experienced persons is
more manageable. It should be possible to at least render the areas of co-workers’” ex-
pertise visible to, and searchable by, other members of the team in order to provide
new possibilities e.g. for people who are experienced in using a certain tool.

6.6.2.4. Creating Workplace-Awareness

Making the expertise of co-workers visible and searchable can help an Eclipse user if
he needs a contact person, e.g. because a problem has occurred. But this information

could also be used to increase the general awareness of colleagues’ workplaces in the

138 6. Situated Practices of Appropriating the Eclipse IDE

group. Serendipitous discoveries were perceived to be very helpful, but happened very
rarely and as the name suggests, by chance. Features that not only keep track of the
Eclipse user’s experiences, but that announce some features thereof within the group,
could create a much more consistent discovery experience (Bourguin, Lewandowski &
Lewkowicz 2013; Draxler et al. 2012). In much the same way, similar to such a feature,
certain practices like regular meetings to discuss the group’s workplaces or pair pro-
gramming can make discoveries much more likely (Murphy-Hill & Murphy 2011).

6.6.3. Limitations

We presented results from seven German companies that were gained through a quali-
tative study. While these results are very detailed, there are limitations to the validity
of this study.

The results are not easily transferable to other cases. This is true for several dimen-
sions of this study. Without further investigation, the results can not be easily applied
to other software ecosystems (e.g. Firefox or Android), other user groups (e.g. casual

computer users), as well as other usage scenarios (e.g. private/home usage).

Furthermore, we chose to focus mostly on small and medium sized organizations, as
they are very important for the German software industry. However, we are aware of
(especially large) companies that do not even allow their employees to tinker with
their work places. It is also likely that e.g. sharing of experiences is dealt with quite
differently in other cultures (the study included only German companies) and work

situations (e.g. offshoring scenarios).

This study is further limited by the fact that we may not have taken “preference set-
tings” to be as important as we might have. This, too, could be a topic for future

investigation.

We observed that some interview participants found it difficult to remember tailoring
efforts they had initiated in the past. One reason for this might be that those prac-
tices are only seldom used. In several cases, we gave examples for what we meant or

visited work places as part of the interview, in order to spark the discussion.

6.7. Conclusion

This paper addressed the topic of SE tool appropriation as a means to maintaining a
collective ability to work. In doing so, we took a CSCW perspective, focusing on the
micro-level of appropriation in the context of Eclipse users’ work practices. The focus
at micro level certainly allowed us to obtain a detailed understanding of appropriation

practices in the context of using software ecosystems, and introduced a perspective on

6. Situated Practices of Appropriating the Eclipse IDE 139

what Eclipse users actually do. Based on interviews and observations, we provide an
interpretation of the reasons behind the work being performed. Generally, the results
confirm statements from previous studies that have investigated how users engage
with software products and share modifications as well as useful practices with each
other (Gantt & Nardi 1992; Mackay 1990a; Sigfridsson 2010). The importance of
serendipitous situations has however only partially been discussed (see (Murphy-Hill
& Murphy 2011)). As such, we believe that our findings contribute to the state of the
art of a) understanding software development groups’ practices of maintaining the col-
lective ability to work and b) designing supportive tools for software developers, which
nowadays have to be understood as ecosystems rather than as standalone applications.
Our study can be seen as an attempt to better understand the needs of Eclipse users
and to identify approaches to supporting them in maintaining their ability to work in-
dividually as well as in the context of their teams, companies and communities. A
broader focus on surrounding technologies related to software development (e.g. pro-
gramming languages, frameworks, bug trackers) could reveal that these results might
be applicable to this domain of work (cf. (Sigfridsson 2010)), and constitute a topic

for future research.

With regard to possible support systems, we have shown that software developers in
the observed organizations possess a great deal of knowledge about their tools and
most of them constantly take action to further improve that (cf. (Sigfridsson 2010)).
Within all the visited sites, software developers modified their working environments
on their own, in order to adapt these to the tasks at hand. In the observed environ-
ments, this non-/self-organized approach was a very helpful and powerful mechanism
that worked well and could probably be enhanced by novel support tools that render
the related learning and tailoring efforts more visible and accessible to other Eclipse
users (see (Bourguin, Lewandowski & Lewkowicz 2013; Draxler et al. 2012; Murphy-
Hill & Murphy 2011)).

While the observed style of working seems to be very interesting especially for small
and medium-sized companies, this level of individualized tailoring also marks an inher-
ent problem of software ecosystems in general: to provide maximum flexibility in the
choice of tools and high levels of stability in the working environment at the same
time. How these mismatches can be mitigated, and to what extent companies that
rely on more standardized work environments can benefit from the flexible practices
we have observed is as yet an open question that we plan to pursue in our future

work.

140 6. Situated Practices of Appropriating the Eclipse IDE

6.8. Acknowledgment

The authors wish to thank the organizations that participated in the study. This en-
deavor was funded by the German Federal Ministry for Education and Research with-
in the research initiative Software Engineering 2006. We thank Dave Randall for his

valuable support.

7. Managing Software Portfolios: A Comparative Study 141

7. Managing Software Portfolios: A Comparative Study*

Software applications that can be changed, modified and extended are nowadays pret-
ty mainstream. But only few researchers focused on the role of the users social net-
work for actual modifying practices and hurdles. Therefore this paper, studies in a
comparative manner, how users modify software applications by using markets of ex-
isting components. We examine two popular applications: the universal tool platform
Eclipse as an example for work applications and the game of World of Warcraft as an
example for leisure applications. Despite the difference of the contexts, we found com-
mon patterns in collaborative actions within the social networks, that lead us to dis-
cuss the role of sharing and support for modification awareness for end users.

21. This chapter has been published as: Draxler, Sebastian; Jung, Adrian; Stevens, Gunnar; 2011. Manag-
ing software portfolios: A comparative Study. In End-User Development. Third International Sympo-
sium, IS-EUD 2011, Torre Canne, Italy, June 7-10, 2011, Proceedings. Lecture Notes in Computer Sci-
ence. Torre Canne, Italy: Springer. With kind permission from Springer Science and Business Media.
http://link.springer.com/chapter/10.1007%2F978-3-642-21530-8_ 36

142 7. Managing Software Portfolios: A Comparative Study

7.1. Introduction

For a long time, research on managing software portfolios primarily focused on the ap-
propriation of single applications. At a time, when applications had a clear border and
when the software market was very limited this was well-suited. Examples are the
work of Mackay (1990a) or Gantt and Nardi (Gantt & Nardi 1992) who empirically
investigated into tailoring efforts. One remarkable result of both studies was, how
much collaboration in form of artifact or knowledge sharing they had observed. But
since then the basic conditions have changed. Today it is often tried to establish so
called software ecosystems (see section 2.4). They consist of an open, extensible soft-
ware platform that attracts different manufacturers and hobbyists, creating small-scale
components, which can be individually assembled by end users (Bosch 2009). Software
ecosystems are an interesting topic to look upon, when it comes to study end user de-
velopment. They empower the end user to choose or add functionality to their soft-
ware by orchestrating pre-existing modifications. Compared to the situation of the
1990s, software ecosystems and the involved stakeholders are globally networked. We
believe that this changes the users opportunities for modifying applications, since un-
der these circumstances local networks of users (e.g. a company) collaboratively makes
use of software ecosystems. Our first goal is therefore to understand: “How and based
on what information do people modify their personal software installations?” To an-
swer this question, we followed a similar approach as Mackay (Mackay 1990a), which
can be described as a set of empirical field studies, consisting of observations and in-
terviews. Since we are not expecting an universal answer, we chose two quite different
software ecosystems to investigate into, hoping for contrasting results. First we ana-
lyzed how professional software developers modify their Eclipse installations during
their day to day work. This was followed by a second series of investigations, that
examined how players of the online role playing game World of Warcraft (WoW) mod-
ify their game clients during leisure time.

7.2. Two field studies on managing software portfolios

Our research process is loosely oriented on Mackay’s (1990a) studies. For each study
(Eclipse and WoW) we started exploring the relevant literature on the software,
organizations and communities that are related to the case. This was followed by par-
tially-structured interviews and in the case of Eclipse, on-site observations. The work
is still carried out as open ended qualitative study. The material presented here was
transcribed and the transcripts analyzed using coding mechanisms of the Grounded
Theory (Glaser & Strauss 1967) approach. While this is not a full grounded theory (so

7. Managing Software Portfolios: A Comparative Study 143

far we rely on In-Vivo codes), the approach has still proven very helpful to carefully
analyze the material, without subsuming our observations under pre-defined categories

from literature.

For the Eclipse case we cooperated with six software companies with 10 to 250 em-
ployees. At each company, we conducted at least two semi-structured interviews of at
least one hour (altogether, we conducted 17 interviews. Additionally, we visited two of
the smaller companies over a period of 3-5 days for on-site observation. For the WoW
study, we interviewed a small WoW guild that is constituted by 8 to 10 active mem-
bers of various game experience and with a different educational background. Where-
by a guild is an in-game association of player characters formed to make the accom-
plishment of group-related tasks easier. We conducted at least two semi-structured
interviews of 15 to 60 minutes with each player. Additionally, we recorded the changes
in their addon configuration over a period of one month.

7.2.1. Customizing the Eclipse IDE (Study 1)

Eclipse is a multi-language integrated development environment (IDE) and an extensi-
ble software ecosystem. It began as a toolbox for the Java programming language at
IBM. It was designed to integrate future tools under one roof, using a plug-in mecha-
nism. The platform was made freely available, open source and steered by a non-profit
foundation to attract other companies and other contributors.

Eclipse provides all of its functionality on top of a core runtime system and can be ex-
tended by using additional third-party plug-ins. The Eclipse core and most additional
plug-ins come free of charge and are released under the terms of an open source li-
cense. An Eclipse plug-in is constituted by an XML description and Java code that
supplies the functionality. There are about 900 tools available that consist of thou-
sands of plug-ins called components. Tools are either installed using the included in-

stall and update mechanism or just copied to a folder manually.

Software developers as we interviewed and observed have to fulfill quite different
tasks, from documenting requirements, modeling, coding, testing, debugging to talking
to customers. For many of these tasks special tools are either needed or at least are a
great help. Furthermore the resulting artifacts are often shared among other develop-
ers who work on the same or similar tasks. Eclipse allows to be extended by additional
plug-ins that could support the task in question. Most of the observed and interviewed
users were capable of creating such plug-ins on their own. But due to the amount of
plug-ins that already exist on the global Eclipse ecosystem and the time and effort

144 7. Managing Software Portfolios: A Comparative Study

necessary to create a new plug-in, they chose to first search for existing alternatives
that might fit their requirements.

One of the key findings of the study, when the need for a new tool arose, suitable rec-
ommendations regarding tool selection, installation, and configuration were sought out
from co-workers who also found themselves in similar working contexts. We especially
could observe this in environments where software developers organized themselves in
agile teams. People did trust in their co-workers advice much more than in recommen-
dations found on the Internet or in magazines. Within the observed companies, several
related strategies were established or put into practice by accident.

If it was obvious that someone should be told about what plug-ins to install, e.g. if a
new person joined a project team, either the plug-in names or even the whole set of
artifacts were passed to that person. In case of a problem, people went to colleagues
and just asked for advice which plug-in to pick or how to proceed if problems oc-
curred. Unfortunately quite often it was not clear who could be an experienced col-
league for a certain topic. As some Eclipse users were constantly trying to stay in-
formed on plug-in related topics, they sometimes stumbled upon interesting news that
could also be relevant for their colleagues. This was an interesting source for innova-
tion for their colleagues. But as they did not consider chatting about new tools as a
central part of their job, it was often unclear if news were important enough to be
shared. On several occasions Eclipse users sat together at one machine to discuss a
problem or how to proceed with a project or task. While doing so, the colleague did
discover new icons in the Eclipse toolbar and so the topic moved to new plug-ins. The

result was an exchange on new interesting plug-ins.

Overall we observed that Eclipse users tended to ensure personal information ex-
change on which plug-ins are interesting, how to install them and which problems can
occur. On the other hand it was often unclear if general plug-in related news, tips, ex-
periences should be spread and through which channels. Therefore this was often trig-
gered by accident.

7.2.2. Customizing World of Warcraft (Study 2)

With more than 12 million subscribers the massive multiplayer online role-playing
game World of Warcraft (WoW) is currently the world’s largest game of this kind.
WoW was developed by Blizzard Entertainment and released in November 2004.
Three expansions for the game have been released since then, in addition updates of
the game client are regularly released.

7. Managing Software Portfolios: A Comparative Study 145

WoW is an interesting example for EUD in games, because it is possible for players to
create their own add-ons for the game client that is used to play. Add-ons are consti-
tuted by describing metadata, XML documents describing the user interface and the
functionality, which is written in the scrip language LUA. The development of add-ons
is officially encouraged by providing the user with access to certain game API func-
tions. There are currently over 5900 user-created add-ons (Pipek & Kahler 2006) for
the player to choose from. Addons are installed by downloading a code package from
the internet and then placing it in a specific addon folder in the WoW installation.

The game is designed in a way that people work together in groups to accomplish
complex tasks in the game world. Players organize themselves in guilds in order to
simplify group building and represent social networks. Although the game is designed
in a way that players do not necessarily need addons, they play an important role be-
cause they can enhance the players or groups performance. Addon functionality can
range from displaying additional information that is helpful to the player to automat-
ing certain tasks or reorganizing the built-in chat function. Not every player benefits
from certain addons as the usefulness of an addon depends on the role that the player
seeks to fulfill in the game.

Throughout the whole interview study, every person had modified his/her game client
using addons, although this was not a selection criterion. Most of the collaborative in-
novation process happens via in game chat and voice chat. All interviewees use an ex-
ternal tool called TeamSpeak to coordinate group-related tasks and having general
discussions. TeamSpeak works similar to a Skype or a telephone conference where the
players connect to a persistent server in order to talk to each other. One of the key
findings of our study was that most of the addons are installed, based on recommen-
dations from other guild members. These recommendations are seen as more or equal-
ly important as recommendations on the addon-related websites. The experienced
players try to stay up-to-date by informing themselves on various WoW addon sites
about updates for their current addons or new addons that could enhance their play-
ing experience. As part of the study, we discovered several non-formal modifications

practices.

If players want to accomplish certain tasks or face problems concerning certain game
elements, this was often discussed with guild members, as helping other players is
quite common. As part of this, players often received recommendations on what ad-
dons could simplify the completion of this task. If a problem with an addon or the
game client arose, the other guild members were always asked first. Unfortunately, of-
ten it was not clear which guild member could be an expert for a certain addon or

problem. The continuous use of voice chat benefits the virtual collaboration in a way

146 7. Managing Software Portfolios: A Comparative Study

that it can create virtual over-the-shoulder learning situations. For example in one
specific case a player mentioned certain statistics about his character and another
player asked where he could find this statistic. The first player then realized that this
statistic was generated by an addon and recommended it. All interviewees use a third
party tool, called Curse Client* to install new and update existing addons. It was de-
veloped to help players in installing new addons and managing their current addon
configuration, by providing them with an easy-to-use interface representation of a rich
addon database. Information about new and interesting addons is spread verbally to
players which are suspected to have an interest in these. New players usually get rec-
ommendations on certain addons they should install. These recommendations are usu-
ally given to them before they engage a difficult task with other guild members.

7.2.3. Discussion

A common phenomenon that we expected was that people tend to employ pre-existing
modifications rather then developing their own, hence the fact that certain people in
both studies had the skills to develop them. The interviewees in both studies argued,
that using pre-existing modifications saves them a lot of time. What we did not ex-
pect were the similarities at the practice level as well as the reasons behind certain

actions.

But by comparing the two studies, we found more similarities. Despite the differences
of the contexts (work vs. play) and heterogeneous user groups (very skilled vs. vary-
ing) the sharing behavior was very similar. In both cases people relied on the recom-
mendations of their friends or co-workers more or as much as they relied on recom-

mendations made by external people or websites. We classified these as follows:
#1 asking, because of a problem

People actively asked their friends or co-workers about their software configuration
and which modifications they use. This happened mostly if a problem or a new and
unknown task appeared. In both studies we traced this back to the belief that the co-
workers or friends better understand each others context and therefore are a more reli-

able source of information.

22.Curse.com World of Warcraft Addons. http://wow.curse.com/downloads/wow-addons/default.aspx.
(last accessed 2011/03/14)

7. Managing Software Portfolios: A Comparative Study 147

#2 asking, triggered by accident

In several cases, people either accidently observed or discussed the use of an modifica-
tion unknown to others. This triggered a need for awareness of what the colleague or
friend is using and resulted often in a discussion to exchange experience on
modifications.

#3 actively spreading the news

If people were actively informing themselves or by accident picking up news on modifi-
cations, they tried to spread this information further to (potentially) interested people

in their near social network.
#4 actively introducing new workers/players

Sometimes a new person joins the game of WoW or a colleague joins a certain devel-
opment project or even the company. In this case people did introduce the “junior”
not only to the work/game, but also recommended certain modifications.

If we mirror these categories back to the several observations and interviews, they lead
back to a lack of awareness within social networks as colleagues or guilds. Even more,
there is a constant and latent need for this kind modification or EUD awareness. But
since there was no support, it took certain points of interaction like a breakdown, ben-
eficial accident or a complex task to bring the topic of modifications to the center of

attention and create this sort of awareness.

7.3. Related work

Mackay (1990a) as well as Gantt and Nardi (1992) empirically investigated into the
collaborative effects of tailoring, as sharing knowledge and artifacts. Our work is simi-
larly structured but takes current developments into account. More recent work on
collaborative tailoring and the related topic of software appropriation was especially
done by Pipek and Kahler (2006). They did describe different shared scenarios (con-
cerning usage, artifacts or infrastructure) that also lead to a need for awareness. While
their work discusses this topic marginally, we wanted to focus more deeply on the role
of awareness in collaborative EUD processes.

While existing research efforts investigated into organizations or closed groups as tar-
get for their research, we focus on groups, that act as social networks and are embed-
ded in software ecosystems (Bosch 2009). Therefore we can address appropriation
efforts in environments where large numbers plug-ins/addons from 3rd parties already
exist. This results in a different view on collaborative tailoring efforts and awareness.

148 7. Managing Software Portfolios: A Comparative Study

7.4. Conclusion

Our research shows that people may trust in particular recommendations of local
peers, regarding modifications as plug-ins or addons. Both, Eclipse and WoW users fa-
cilitate third party tools, to orchestrate and maintain their sets of plug-ins or addons.
These tools all share the same basic features. Curse for WoW, as well as the Eclipse
Marketplace or Yoxos for Eclipse represent central repositories of components to mod-
ify the application. These tools keep track of what a user installs, they help keeping
addons or plug-ins up to date and ensure an installation that is not broken after mod-
ifying. On the other hand, they miss to reflect the collaborative nature of modifying
software that creates a demand for addon awareness and recommendations.

In small local or remote groups as the ones we examined, we found plenty of incidents
were breakdowns, accidents or planned intervention functioned as a trigger that re-
vealed a need for awareness. This resulted in discussions and recommendations. This
was just “the tip of the iceberg”, as we observed a constant and latent need for modi-
fication awareness in groups. And as there already exist tools to support some of the
users EUD efforts, future research should suggest and evaluate possibilities to support
modification awareness, as it could improve the reach of EUD.

Designing Appropriation Support

8. Peerclipse: Tool Awareness in Local Communities 151

8. Peerclipse: Tool Awareness in Local Communities®

Motivated by our research in the field of Eclipse users, we want to present our idea of
Peerclipse — an Eclipse plug-in to support tool awareness and tool sharing in local

communities, which are using Eclipse for software development.

23. This chapter has been published as: Draxler, Sebastian; Sander, Hendrik; Jain, Piyush; Jung, Adrian;
Stevens, Gunnar; 2009. Peerclipse: Tool Awareness in Local Communities. In Supplementary Proceed-

ings of the 11th European Conference on Computer Supported Cooperative Work. Vienna, Austria,
pp- 19.

152 8. Peerclipse: Tool Awareness in Local Communities

8.1. Grounded Design of Peerclipse

Eclipse is a good example for a highly flexible contemporary software system. It is
based on an “everything is a plug-in”-philosophy and can be radically tailored by
adding some of the thousands of additional components available on the Internet.
Therefore, the user has the opportunity to adapt the software to the needs of his local
working context. Unfortunately it is very difficult to keep track of the available com-
ponents. In the CoEUD* research project we investigated how people use Eclipse as
their daily working environment in Software companies. One of the key findings
showed that, when the need for a new tool arose, suitable recommendations regarding
tool selection, installation, and configuration were sought out from co-workers who
also found themselves in similar working contexts. We especially could observe this in
environments where software development was organized in agile teams. People did
trust in their co-workers advice much more than in recommendations found on the

Internet.

We therefore follow Mackay (1990a), Kahler (2001b) and our own observations, and
suggest that tailoring support for tools like Eclipse should mirror the cooperative as-

pect of the users working environment.

T Peercipse Network. (] =0 I, Peerdipse Network. ©3 =0
Eric Cartman Advanced Search | Settings | Help Eric Cartman Advanced Search | Settings | Help
wotle v o3 & [search.. (avaie w| @ & |visual]
Welcome David Gimour |Search results for “visual* £
Users Edipse Match c (29results) Status User Rating 4|
® Adam Ste &, Peerclpse Network £3 =0 Lt e —— =0
® adtyaBhand Eric Cartman Advanced Search | Settings | Help ; Eric Cartman Advanced Search | Settings | Help
8ob Simony [avalebe v g & Search... voned (avaiste v| of & visud
® erad D.elsc welc David Gnour 3| : Y91 | Welcome [David o |Search |Camponent 14
® Catherine ts Status Rating # General
o] Org.eclipse.drawzd New Jeksriri P ame Eclipse Visual Editor Example_
® Fredrick < £'S % piard ¢ orge o org.eclipse xed.visualeditor.ui
B A Version 5.0.2.200902130801
« Org.edlipse.emf.encore New Jed ko .
® Gabriel Gi ¥ org.erl | Download Size 15833 Kb
| ek v s Rating Kk
® HenryOlaf |« Jokkokk ¢ 1 e
Org.. .gef N
. James Hetj : ” Ed_w“‘m‘w i = Koot ¥ 0rg.p Edlipse Visual Editor Plugin. It contains no tool chain integration
® irkHammy | rererarery v
v
® Lars Ulrich| e - - v
v ® David Gimou A ¥ 0.5
Martina Hil Eric : Hey Davidl & org.th|
& David: Hello Eric :) -
e —— Eric : Could you suggest me a good visual editor component for ecipse? Rate this component -
g $ ths Tiniedr Download
Peercipse 1.0Beta | 31] | David : Lemme see £ 1can help., Peerdipse 11 k
Tthink you can try org.eclipse. xed.visusleditor.ui . I have it shared in my File it Users Sharing this file
Eric : Okay lenme see if [can download 2. ‘Adam Stewart
David : Sure. .
Eric : Yeah 1 9ot & and 1 thik & work:) David Gilmour Frequent User
C alot David. - Henry Olanga
David : Say thanx to Peercipse!]
Peercipse 1.0 Beta | 31 users on the network Peerchpse 1.0 Beta | 31 users on the network [—|

Figure 12: The Peerclipse User Interface.
Our empirical study has sensitized our design, demonstrating that tool awareness is an
important issue. However there are often constraints that hinder an organic awareness,
but should be supported by an appropriate technical infrastructure. Figure 12 presents

24.http:/ /www.coeud.org/

8. Peerclipse: Tool Awareness in Local Communities 153

first snapshots of the JXTA Peer-to-Peer based Peerclipse plug-in for Eclipse. It gives
a good impression of how awareness support for tools used by co-workers could be in-
tegrated into Eclipse. It allows ad-hoc, Peer-to-Peer browsing, search and sharing of
tools, used within the team. The team can be seen as a repository of tools in use and

people with experience using these tools.

Scenario 1 (see Figure 12) shows Peerclipse, as the user Eric is searching for an appro-
priate user to look up for a desired component. In getting aware of his co-worker
David, Eric starts to study David’s configuration in detail. Scenario 2 (see Figure 12)
illustrates a reverse activity of first searching the component and then looking up at
the component’s profile prior downloading it.

9. Supporting the Social Context of Technology Appropriation 155

9. Supporting the Social Context of Technology
Appropriation®

There is an increasing spread of flexible software applications that can be modified by
adding components (sometimes called plug-ins or add-ons). A popular example in the
software development domain is Eclipse, a flexible development environment that can
be extended with literally thousands of different plug-ins. However, searching, in-
stalling and configuring new plug-ins requires complex overhead work that is only
weakly addressed by existing support mechanisms. Recent research has highlighted the
related practices of learning about new plug-ins and tailoring software tools as being
highly cooperative, situated, socially embedded, and often connected to particular
work situations. Based on an empirical study in small software enterprises, we develop
an understanding of appropriation as a social and collaborative activity. We then sug-
gest design principles for appropriation support that are grounded in the practices we
have found in the field, and present a prototypical implementation of the concept that

extends existing mechanisms of sharing tools and tool-knowledge.

25.This chapter has been published as: Draxler, Sebastian; Stevens, Gunnar; Stein, Martin; Boden,
Alexander; Randall, David; 2012, Proceedings of the 2012 ACM annual conference on Human Factors
in Computing Systems, Supporting the social context of technology appropriation: on a synthesis of
sharing tools and tool knowledge. ACM, New York, pp. 2835-44. © 2012 ACM, Inc. http:/
/doi.acm.org/10.1145/2207676.2208687

156 9. Supporting the Social Context of Technology Appropriation

9.1. Introduction

Today, tailorability is an important part of software development. We have conducted
a study on tailorability in the context of the Eclipse IDE, one of the most popular de-
velopment environments that is widely used by software developers (EvansData 2007).
Eclipse provides support for a broad variety of programming languages, connectors to
other software engineering tools such as bug trackers, as well as project management
functionalities (just to name a few). All these functionalities are provided by a huge
number of available plug-ins, which can extend and adapt Eclipse to virtually any
software engineering project (Murphy, Kersten & Findlater 2006). However, this flexi-
bility also leads to problems for practitioners, who often need to deal with a consid-
erable overhead in finding, selecting, installing and configuring the right plug-ins for a
task at hand—always at risk of breaking their installations due to possible incompati-
bilities between plug-ins (Murphy-Hill & Murphy 2011).

As a consequence, discovering new features has become an inherent and non-trivial
part of the daily work of software developers (EvansData 2007). This task can be
time-consuming, confusing and involves a number of decisions concerning compatibili-
ty issues etc. Our data clearly shows that Eclipse users struggle with the necessary
overhead work of managing their installations, keeping them up-to-date and reconfig-
uring them for new tasks. Hence, there is a strong case for understanding how people
go about finding the plug-ins they need, what problems and constraints they have to
deal with, and what kinds of support they rely on. In companies, appropriation is
shaped to large extents by individual activities as well as by the formal structure and
demands of the organization (Balka & Wagner 2006). Yet, in its very nature, appro-
priation is a highly social activity which is embedded in particular work-related situa-
tions and carried out mostly between peers or colleagues. Cooperative appropriation
may be performed in numerous different and elegant ways. Examples are asking col-
leagues for help, purposefully discussing new tools, casually sharing tools over coffee
breaks, using email or newsgroups to ask for help, or relying on Twitter for informa-
tion about new tools (Draxler & Stevens 2011; Murphy, Kersten & Findlater 2006;
Murphy-Hill & Murphy 2011).

As we will show in this paper, individual aspects of software appropriation like tailor-
ing, configuration sharing or informal learning are covered well in the literature. How-
ever, the connections between these aspects are not well understood. At the same
time, existing solutions for sharing and managing tools and configurations provide
only fragmented support for the diverse facets of technology appropriation. Based on
the example of Eclipse, we present a novel, lightweight approach that is based on a

9. Supporting the Social Context of Technology Appropriation 157

holistic understanding of appropriation as an entangled, cooperative process of search-
ing, becoming aware, installing, configuring, and learning how to use new tools. This
approach is meant to overcome the fragmentations in the current design of appropria-
tion support systems, filling a gap between solutions for general file sharing, special-
ized platforms for mass-distribution and configuration, as well as knowledge manage-
ment approaches.

9.2. Related Work

Our work is grounded in the Marxian tradition of understanding appropriation as the
social process of incorporating objects into one's life, including changes to the objects,
caused by the changing modes of using it (Draxler & Stevens 2011; Stevens, Pipek &
Wulf 2010). Configuring and sharing artifacts is seen as closely related to organizatio-
nal learning in this tradition, and appropriation is understood as a holistic concept
that includes adoption, tailoring, configuration sharing, tool awareness and informal

learning. In this section, we want to give a brief survey of these inter-related aspects.

9.2.1. Sharing tools at work

In both CHI and CSCW, studying data sharing practices has a long tradition (Greif &
Sarin 1987). Since peer-to-peer networks have become a mass-phenomenon, a special
focus in HCI has been on music sharing (Brown, Sellen & Geelhoed 2001), addressing
political and legal issues (like impacts on the music industry and digital right manage-
ment), as well as hedonic issues (like socializing, intimacy, or expressing identity and
personal experiences e.g. by creating mix-tapes) (Brown, Sellen & Geelhoed 2001; Voi-
da et al. 2005).

From a technical viewpoint, Voida et al. (Voida et al. 2006) analyzed the different sys-
tems people use in practice for file sharing (like e-mail, shared folders, version control
systems or peer-to-peer networks). By classifying these systems, they developed a
scheme of categories (including scope, addressing, distribution, visibility and notifica-
tion) that should be considered by the design of sharing tools in general. While such
general principles are valuable, we will argue that the specific demands and pragmat-
ics of sharing tools and customizations in the work context remain important. In the
case of customizations the shared object is a hybrid one, since not only the files need
to be shared (or copied), but also the contextualized information how to use the cus-
tomized tool. Therefore, a technological solution to address this issue has to deal with

knowledge sharing as well as pure file sharing.

158 9. Supporting the Social Context of Technology Appropriation

With regard to customization sharing, several important studies from the 1990s
showed that local social networks play an important role for adaptation and adoption
of software in organizations (Gantt & Nardi 1992; Mackay 1990a; Wulf 1995). Within
these networks, an informal division of labor exists where small groups of lead users
create sophisticated customizations. These customizations are further adapted by
translators to the needs of less experienced wusers, who usually do not adapt tools

themselves, but profit from their colleagues’ configuration work (Mackay 1990a).

As noted by Mackay, local work practices become objectified by the customizations
and diffuse through the sharing practices: “The exchange of customization files pro-
vides another example of how users in an organization share information about their
preferred ways of interacting with software” (Mackay 1990a). However, Pipek (2005)
pointed out that the forms of usage and the use conventions are only partially mani-
fested in the tailored artifact. In order to foster the collaborative appropriation and
the negotiation of conventions, he argues for providing built-in mechanisms for record-
ing and annotating usage, as well as use-discourse infrastructures to share these anno-
tations with others.

In addition, as customizations affect the work within the group, Wulf (1995) argues
that groupware systems should include a means for collaborative tailoring. However,
because of the complexity and subtle interplay between individualization and group
preferences, it remains an open research topic how general demands of collaborative

tailoring can be realized adequately.

Kahler (Kahler 2001b) further elaborates Wulf’s line of thought with regard to the
special case of sharing individual customizations. He suggests technical as well as
organizational means of support, including push and pull mechanisms (like sending
tailored artifacts by email (MacLean et al. 1990) or by a built-in notification system
as well as providing common repositories for configuration sharing (Kahler 2001a)),
enabling the annotation of configurations and allowing to test the modifications in an
exploration environment (Wulf 2000). Furthermore, he suggests raising the awareness
of tailoring activities and fostering a tailoring culture by encouraging cooperation
among colleagues as well as between users and local experts, and by recognizing tailor-
ing efforts as important part of cooperative work with computers.

9.2.2. Finding new tools and learning how to use them

As indicated, appropriating new technologies refers not only to the physical installa-
tion of new tools but also to organizational ‘learning’, and specifically to transforma-

tions of work practices and the acquisition of new competencies (Dourish 2003). As

9. Supporting the Social Context of Technology Appropriation 159

Lave and Wenger (Lave & Wenger 1991) have shown, such processes are often embed-
ded in everyday work situations. Informal interaction within communities of practice
turned out to be an important driver for knowledge exchange in this regard. The re-
lated learning processes have been outlined in an apprenticeship model that describes
how apprentices learn from a master or colleague by peripherally participating in their
practices.

Twidale has demonstrated how important these aspects are in the context of “infor-
mal technical help giving between colleagues” (Twidale 2005). Stressing the importance
of the specific situation and the collaborative nature of learning activities, he showed
how knowledge sharing could be understood flexibly and contingently. In contrast to
the apprenticeship model that usually discerns fixed roles (“masters” and “ap-
prentices”), Twidale discovered that actors tend to switch between these roles in prac-
tice. One example would be a student working in a software company. One the one
hand, he could be seen as an apprentice learning about software development prac-
tices. On the other hand, in some situations he may also be seen as a master, in-
troducing new technologies to his colleagues that he learned about in University. Such
forms of learning therefore could often be better characterized as peer learning, in-
stead of apprentice learning. Furthermore, Twidale observed that sitting together in
front of a computer in order to work together and discuss work issues often determines
a starting point and defines the context of the learning situation. Such forms of “over-
the-shoulder-learning” (Twidale 2005) are important for the diffusion of work practices
in an organization, as it enables people to discover and become aware of unknown

tools or features in their social surroundings, and observe how to use them.

Similar issues have been studied by Murphy-Hill and Murphy (Murphy-Hill & Murphy
2011). They analyzed peer interaction in collocated and remote pair programming set-
tings™ according to related situated discovering and learning processes. Among other
aspects, they identified sequences of peer observation and peer recommendation. In the
first case, one programmer observes a colleague using a programming tool or feature
that he/she was not familiar with. In the second case, the programmer is observed by
a colleague and gets a suggestion with regard to a new tool or feature.

Such situations could be characterized as special cases of the over-the-shoulder-
learning (Twidale 2005) that lead to the discovery of new tools and/or initiated
learning processes about how to use these tools. In comparison to other information

26.Pair programming is an agile development technique where two software developers synchronously
work together in front of one computer.

160 9. Supporting the Social Context of Technology Appropriation

sources like internet forums or following Twitter, practitioners reported a preference
for the local peer interaction because they valued the opinions and advice from col-
leagues” more. If possible, organizations should therefore support discussions about
tools as a regular part of informal work communication as well as of regular team
meetings. Furthermore, the results of Murphy-Hill and Murphy indicate a need for
system design “to make existing tools and environments more discoverable and distrib-
uted collaboration more effective.” (Murphy-Hill & Murphy 2011).

9.2.3. Discussion

At the technical level, sharing tools and configurations is similar to file sharing in gen-
eral (Voida et al. 2005). However, there are also important differences with regard to
the related pragmatics. As tools have to be configured in order to match the indi-
vidual needs or the IT infrastructure of the company, it is insufficient to share relevant
files only. One also has to share the information how tools can and should be config-
ured and used. As we have shown, such processes are often accompanied by forms of
informal learning that are focused by concepts such as legitimated peripheral participa-
tion (Lave & Wenger 1991), over-the-shoulder learning (Twidale 2005) or peer interac-
tion (Murphy-Hill & Murphy 2011). However, such concepts are hardly supported by
general purpose sharing solutions like Napster or Dropbox that just support users
specifying “the what, with whom, and how of sharing” (Voida et al. 2006, p. 2).

Even in the case of specialized platforms for software distribution (like Apple’s App
Store, the Firefox add-ons page or the Eclipse Marketplace), these aspects are only
weakly supported. Rating and commenting functionalities are practically anonymous,
making trustful interactions hard to establish. As a result, the features provided by
these platforms do not have the same impact as recommendations from known persons
or colleagues (Ozakca & Lim 2006; Rogers 2003). Also the existing configuration and
installation managers that are integrated in some applications (like Firefox add-on
manager or Eclipse update manager) primarily focus on the single user, and arguably
neglect the sharing of tools and tool expertise within personal social networks.

In summary, we have identified a lack of support for the appropriation of new tools in
situations where a large number of alternatives of varying use and relevance are possi-
ble. Current systems especially fail to address the social dimension of appropriation
and fail to take into account the close interrelation between the physical sharing of
tools, and the highly social and situated activity of sharing tool expertise. These
shortcomings on the technical level also reflect shortcomings on the conceptual level.
In particular, holistic concepts that provide theoretical accounts for the integration of

configuration sharing and knowledge sharing features have been introduced just re-

9. Supporting the Social Context of Technology Appropriation 161

cently covering only parts of the issue (Murphy-Hill & Murphy 2011). Hence, there is
a need for further research that takes the complex interrelations between informal
learning and collaborative tailoring into account. In the following sections, we present

such an approach and demonstrate how it can be realized in the case of Eclipse.

9.3. Methodology

Our work adopts the combination of ethnographic studies of work practice and partic-
ipatory design as outlined in the concept of Co-realization (Hartswood et al. 2008)
and Design Case Studies (Rohde et al. 2009). As noted by Hartswood et al. (2008)
knowing “what exists” can inform design, but cannot replace the practical experience
of designing and using the actual artifact. In particular, the realization and appropria-
tion of socially embedded software leaves ontic and epistemic traces that cannot be
fully anticipated (Rohde et al. 2009). It has been suggested that design research com-
prises both retrospective and prospective elements (Balka & Wagner 2006). Prospec-
tively, the purpose of theoretical and empirical knowledge is to sensitize and inspire
design. Retrospectively, analytic work should make explicit “what shows up [...] as hav-
ing been all along already implicit in that tradition [which is created by the ontic and
epistemic traces of the realization process/” (Brandom 2002). The purpose of retro-
spective analysis is further to clarify and elaborate the general lessons learned that are
worth remembering. So prospection and retrospection follow a different logic, but tak-
en together, they constitute the iterative design process (Rohde et al. 2009). Here, ret-
rospectively, we discuss a design project, where we developed a plug-in solution for
Eclipse that is able to support collaborative appropriation. The design realization fol-

lowed an iterative, participatory approach that was mainly organized in three cycles:

9.3.1. Cycle 1: Concept Design

In the first cycle we studied the Eclipse appropriation practices in five organizations (3
small and medium enterprises, 1 large enterprise and 1 research institute). In 2 small
and medium enterprises, we conducted participative observation for more than two
weeks. We furthermore interviewed at least 3 developers in each organization. In addi-
tion, we conducted an online survey in which 138 persons participated. As part of this
survey, 76 Eclipse installations were sent in to be analyzed. The findings of these stud-
ies are partially published in (Draxler & Stevens 2011; Stevens & Draxler 2010) (see
also chapter 4). Their results show that appropriation is an important prerequisite for
Eclipse users in order to get their work done, and that local social networks of col-

leagues are a hugely important source for support in this regard.

162 9. Supporting the Social Context of Technology Appropriation

We then developed a first design concept enabling users to browse the Eclipse installa-
tions of their colleagues. We evaluated the concept at the research institute in a small
team of 8 developers, who are located at the same floor. Following a Wizard of Oz ap-
proach, we manually collected information about all Eclipse installations in the team.
Based on the installed plug-ins, we derived suggestions for interesting tools for the
team members. The value of the suggestions was assessed by the participants, followed
by interviews that aimed to identify possible collaborative appropriation features
within Eclipse. We further developed a first demonstrator to illustrate the general
idea.

9.3.2. Cycle 2: Interaction Design

In Cycle 2 we focused on improving the interaction with the demonstrator. Initially,
we conducted a 3-hour Participatory Design workshop with 6 students who regularly
used Eclipse. Additionally, we presented the existing demonstrator to 7 Eclipse users
from 2 of the small and medium enterprises and the research institute. As a prelimi-
nary evaluation of the interaction concept, we presented screenshots of the user inter-
face to the practitioners. Later, the participants explored the demonstrator by them-
selves. The user tests were followed by interviews to get an insight into user
perceptions of the tool. These interviews followed the Laddering technique, took about
one hour each, and included discussions about the general impression of the design,
areas for improvement, motivational aspects and possible use scenarios. The usability
of the new interface design was also evaluated by 5 of the previous participants in
form of follow-up interviews. This part of the evaluation included open explorative
tasks as well as ‘solving’ tasks such as plug-in searches, browsing user configurations
and commenting on a plug-in. The specification of these tasks was informed by our
previous empirical study and the participatory discussion about meaningful use

scenarios.

9.3.3. Cycle 3: Field trials

In Cycle 3, we developed a fully functional prototype that is stable enough to be used
in practice. This stable version is currently being evaluated at the research institute,
where 8 users have integrated the plug-in into their daily working environments. The
feedback of the users is being used to continuously improve the prototype.

9.4. Design Principles

This section describes the major design principles we have identified, based on the on-

going ethnographic and evaluative work conducted. As described above, this process

9. Supporting the Social Context of Technology Appropriation 163

consisted of stages such as realizing and discussing prototypes and designing sketches
with users, conducting field studies and surveys, as well as analyzing related work in
the literature. As our understanding of appropriation practices reached a saturated
level (Glaser & Strauss 1967), we elaborated a system of related issues that designers
of supportive systems for collaborative appropriation might consider. In the following,
we present the most essential parts of this design space analysis.

9.4.1. Facilitating collaborative appropriation

“[..] especially one person in the project was extremely experienced in using Eclipse. It
would have helped me a lot to know which [tools] he was using. I just would have used
the tools| he used and wouldn’t have had to worry about it.” (Participant of an inter-
view study, beginning cycle 2, translated by authors)

In the software industry, technology often follows rapid innovation cycles that make it
hard for practitioners to keep up to date in their relevant fields. Furthermore, tool
competencies often vary among team members in software companies with regard to
different degrees of expertise (see e.g. (Mackay 1990a)), but also with regard to the
different specializations of team members (as we observed in our fieldwork). The dy-
namics and diversity of technology-related knowledge can also be seen in the working
environment. For example, in our online survey the average Eclipse installation con-
sisted of 418 plug-ins combined into 42 assembly units (so called Eclipse features), the
average age of a plug-in version was not older than 6 months (Draxler & Stevens 2011;
Stevens & Draxler 2010) (see also chapter 4). In addition, even among colleagues no
installation was identical to the other.

In line with existing literature (Kahler 2001b; Mackay 1990a; Murphy-Hill & Murphy
2011; Twidale 2005), our fieldwork shows that tool adoption emerges mainly from ad-
hoc circumstances in everyday work (Draxler & Stevens 2011; Stevens & Draxler
2010). Even when people were not actually working together on a common task, we
observed developers sometimes ‘having a look” at a colleague’s machine to understand
which tools he used for his daily work. If something attracted attention, communica-
tion was initiated about further explanations, help was taken and given, and cus-

tomizations were shared with each other.

Support for collaborative appropriation should exploit this diversity, as it allows peo-
ple to learn from each other. In particular, it should support the situated and social
nature of appropriation in the context of modifying tools and learning new features in
interaction with colleagues. In addition, design has to recognize the fact that appropri-
ation is an important part of the ‘work to make things work’, but it is usually not the

164 9. Supporting the Social Context of Technology Appropriation

primary work objective (Balka & Wagner 2006). Hence, the overall challenge is to fa-
cilitate situated appropriation, without distracting users from their primary work.

Based on our observations, supporting collaborative appropriation should consider the

following design issues:

* Workplace integration: Supporting the interleaving of work and appropriation
(Twidale 2005), a solution should be seamlessly and consistently integrated into
the work context.

* Sharing scope: With regard to the scope of sharing, the most promising granu-
larity is the organization, the group and the team that works closely together or
has at least some personal contact.

With regard to tasks that should be supported, we identified three major areas:

* Searching tool knowledge: Features are needed for supporting users in finding
the right information about the tool that might solve the problem at hand, and/

or persons who are willing and competent to give advice in the given case.

* Appropriation awareness: In order to facilitate serendipitous situations of dis-
covering new artifacts by chance, opportunities for social interaction in the sense
of a “tickets-to-talk” approach (Svensson & Sokoler 2008) should be provided.

* Peer installation: In order to support the exchange and tools between col-
leagues, a solution for installing tools that are already in use by peers is needed.

While some of these design issues may sound self-evident, they are disregarded by ex-
isting tools for appropriation support and customization sharing. For example, sending
customizations via emails (as suggested by (MacLean et al. 1990)) is detached from
ordinary work and involves the overhead of collecting the relevant files (or related
links to repositories). Similarly, using shared file systems as local repositories (as sug-
gested by (Kahler 2001a)) introduces extra burdens with regard to administrating and
maintaining the repository. While the more recent integration of marketplace features
in applications (like the Firefox built-in add-on manager or the currently released
plug-in for accessing the Eclipse marketplace) is a step in the right direction for satis-
fying the needs of appropriation, these solutions do not support the sharing of tools
and tool knowledge within the local context of a team or company, but rely on exter-
nal repositories or error-prone and clumsy file copying.

9.4.2. Workplace integration

In order to reduce any extra efforts and preserve the work context, appropriation fea-
tures should be closely integrated into the ordinary working environment and be easily

9. Supporting the Social Context of Technology Appropriation 165

accessible in a casual manner. The integrated features especially allow the interleaving
of work and learning from others by reducing the overhead for both the help-giver and
the help receiver by ‘looking over the wvirtual shoulder’ (Twidale 2005). In order to be
perceived as an integral component, the additional features should conform to the
general look € feel of the working environment. Further a lightweight solution is need-
ed that avoids additional burdens of configuring the system and/or maintaining extra

information.

9.4.3. Sharing scope

With regard to the sharing scope that specifies what data should be shared with
whom, we can distinguish three design alternatives in general: public, selective and
subnet (Voida et al. 2006). Examples of public sharing solutions are websites, blogs or
Twitter, where the content is published on the Internet for a public audience. Exam-
ples of selective systems are Emails, where providers intentionally select the persons
the information should be shared with. An example of a subnet solution is the possi-
bility to share pieces of music and whole playlists in the media player iTunes. It re-
stricts the public audience to persons in the same network (typically colleagues or
friends).

With regard to the pragmatics of collaborative appropriation, the drawback of the se-
lective scope is that it is only appropriate for intentional interaction where the
provider knows in advance which person the information is relevant to. This sharing
mechanism facilitates serendipitous situations only weakly. In addition, the selective
mechanism excludes newcomers who are not yet well connected to established local
networks. The selective mechanism is therefore inappropriate for promoting the

learning processes of newcomers within the community of practice (Lave & Wenger
1991).

In contrast, sharing information with the general public audience allows others (even
strangers or people one is only weakly connected to) to become aware about one’s ac-
tivities. Hence, the public sharing mechanism enables a legitimate peripheral aware-
ness (Lave & Wenger 1991) of appropriation activities. Yet, the public scope is too
broad and lacks a common work context that is important for trust building and initi-
ating peer-interaction (Draxler & Stevens 2011; Murphy-Hill & Murphy 2011). We
therefore recommend providing features that make appropriation activities publicly
visible within the scope of the organization and its work groups. Technically, this
could be realized by a subnet solution. Although the benefits of subnet sharing are
well known and used by some tools like iTunes, to our knowledge no tool sharing solu-

166 9. Supporting the Social Context of Technology Appropriation

tion exists so far which has adopted this sharing mechanism with regard to software
tools and configurations.

9.4.4. Searching tool knowledge

“I think this [used browsing tools] would be interesting for our company, since (..) we
do work in quite different projects. On the other hand, we are talking about a small
group in whose competences I trust—unlike a web portal such as the plug-in communi-
ty, which contains all [Eclipse] plug-ins, but I don’t know who rated or commented

these. That is just useless.” (Participant of an interview study, translated by authors)

In order to support the searching within the local context, we explored the concept of
being able to browse the tools installed by colleagues. As illustrated by the transcripts
above, all users stated that a browsing feature would be really helpful for them. In ad-
dition, the users recognized that this feature is not only relevant for appropriation,
but also addresses a general problem in cooperative work: namely identifying hidden
conflicts that are related to using different tools and configurations (Pipek 2005):

“I would have been interested in my colleague’s [Eclipse] installation, since I need to
be able to get and run the code that he produces. It would be useful to compare and
match different Eclipse configurations [..]” (Participant of an interview study, translat-
ed by authors)

As tool knowledge only partially manifests itself in the plug-ins a user has integrated
so far, such features as ‘browsing’ and ‘comparing tool configurations’ should be sup-
plemented by a means to document and discuss configuration settings, best practices
etc. (Mackay 1990a). Knowledge additionally should be made persistent as the appro-
priation of new tools happens irregularly and often casually as a kind of invisible
work. For example, our study revealed that people often could not remember when
and how they did modifications to their Eclipse installations, even in case they viewed
these modifications as highly important (and sometimes struggled to replicate them in
case of re-installations or updates). Hence, we believe that there is a need for a local
memory that makes tool-centric knowledge persistent and easily retrievable, and that
provides information on who has created the information, and how he or she can be
contacted.

In addition, the system should increase the visibility of others’ tool expertise and pro-
vide cues for becoming aware of what kind of tools the colleagues are usually working
with. The cues should make use of automatic recordable information like which tools a
person has installed, and how long they have been installed. However, the automatic

collected data alone does not necessarily qualify practitioners to offer help to their col-

9. Supporting the Social Context of Technology Appropriation 167

leagues, so cues should also consider user-controlled information, e.g. in a way as out-
lined by one of our participants:

«

. the system should somehow visualize that one has done a lot of annotations, as
this implies and shows others that one is experienced.“ (Participant of an interview
study, translated by authors)

9.4.5. Appropriation awareness

“Probably it would be useful to be able to send messages like ‘I solved all our problems
by..” if I discovered something new. [...] The question would also be, if I get informed if
someone else installed or likes something.” (Participant of an interview study, cycle 2,
translated by authors)

In the literature, awareness is mainly studied from the perspective of coordinating ac-
tivities (e.g. Heath, Luff & Cambridge 1992; Olson & Olson 2000). In our case, we are
more interested in a second, often neglected aspect of awareness about the work activ-
ities of colleagues, that of casual ‘looking over the shoulder’ (Murphy-Hill & Murphy
2011; Twidale 2005). Observing work practices and noticing individual tool modifica-
tion activities in a team allows for legitimate peripheral participation and supports
the learning and enculturation of newcomers (Lave & Wenger 1991).

Existing research results show that awareness support systems are especially useful in
the context of distributed work, as the knowledge about each other’s context decreases
with distance (Ozakca & Lim 2006). However, the evaluation of our design concept in
the first cycle shows that even small co- located teams would benefit from such sup-
port. As indicated in the transcript above, appropriation awareness is especially useful
if the people work on different projects and profit from the each other’s specific

competences.

To reduce overhead, we argue that an information notification mechanism should be
integrated, so that users do not have to fall back to communication channels like email
“to make sure that their indented recipient knows that a new file is available” (Voida
et al. 2006). Such a mechanism should support both sending explicit messages as well
as providing notifications that are implicitly triggered by tailoring activities. The last
issue is related to Wulf’s concept of informing groupware users of someone else’s tai-
loring activities by an integrated notification system (Wulf 1995). The major motiva-
tion is to support serendipitous situations of peer observation and peer recommenda-
tion. This means that the notification system should not just inform users about
conflicting activities, but also support them in sharing information about newly dis-

covered tools or solved problems within the work context.

168 9. Supporting the Social Context of Technology Appropriation

Technically, awareness features could be realized as an awareness pipeline (Fuchs,
Pankoke-Babatz & Prinz 1995) that grants users fine grained control of the implicitly
triggered notifications as well as the filtering of received events. As users want to
spend as little extra time as possible with appropriation work, the design of sophisti-
cated but complex configuration options has to adhere to the principle of proportion-
ality. Hence, the design of a lightweight solution should take into account that notifi-
cations about tailoring activities will only sparsely be triggered as users do not modify
their working environments daily. In addition, design should take into account that
the default appropriation activities should be visible in the subnet in order to foster
collaborative appropriation (see above).

9.4.6. Peer installation

“If you start using software, it helps to see how colleagues are using it. It helps to get
a first overview, and to configure the [Eclipse] environment in a way that enables you

to work with it.” (Participant of an interview study, translated by authors)

Studies conducted in the 1990’s (Kahler 2001a; MacLean et al. 1990; Mackay 1990a)
mainly focused on the sharing of self-created customizations. However, today it is easy
to distribute customizations world wide. Instead of creating own solutions, users nowa-
days have the opportunity to look for existing solutions that relate to their problem
and share the adopted solution with others.

Our fieldwork indicated that Eclipse users follow this trend, as they made intensive
use of the growing market of freely available tools. The practitioners regularly modi-
fied their working enviroment by downloading new plug-ins and exchanged them with
colleagues. However, the intention to exchange plug-ins was typically not planned in
advance, but emerged in peer-interaction situations, where one observed an interesting
feature in use by a colleague. Acquiring the relevant feature, however, requires knowl-
edge of:

* Which plug-in implemented the feature in question?
* Does the plug-in in question depend on other plug-ins?

* What plug-ins need to be transfered, which have already been installed, in which
version, and will this create conflicts?

* Were are the plug-in’s files stored?

In principle, the Eclipse installations of peers contain all the requireded information
and files to answer these questions and to (semi-)automize the task. However, we are
not aware of any solutions that support the exchange of tools in the peer interaction

9. Supporting the Social Context of Technology Appropriation 169

situations we observed in our study. Instead, users are forced to carry out clumsy and

error-prone workarounds as outlined above.

Based on this observation, we conclude that there is a need for supplementing existing
solutions with features supporting peer-installation in situations of peer observation as
well as peer recommendation (Murphy-Hill & Murphy 2011). We therefore decided to
provide peer-installation features that support users in installing plug-ins and features
observed on someone else’s installation, as well as in recommending useful features to

other users.

9.5. The Collaborative Appropriation Prototype

In order to support workplace integration and facilitation of appropriate methods, de-
scribed above, we adopted the general sharing experience idea of iTunes. Like the mu-
sic sharing feature is directly integrated into iTunes, the suggested features should be
integrated directly into Eclipse. In order to realize this seamlessly, the prototype was
implemented as an Eclipse plug-in. It uses the native Eclipse user interface, and relies
on typical Eclipse interaction concepts. The user interface consists of different so
called views (e.g. to show other peers) and editors (e.g. to comment a plug-in), typical
elements of the Eclipse interaction concept, which consistently integrate the appropri-

ation features into the work context (see Figure 13 for an overview).

Also like iTunes, our prototype is realized as a lightweight peer-to-peer solution, where
users do not need to configure anything apart from activating the sharing and setting
a nickname (optionally users can provide a picture, full name as well as their loca-
tion). Technically, the prototype uses a simple JXTA peer-to-peer architecture that
supports subnet visibility (Gong 2001). The network connections between the users’
installations are established automatically if the prototype is installed on their ma-
chines, as the peers broadcast their availability. The communication infrastructure al-
lows users to browse each other’s Eclipse installation within the subnet to foster the
coincidental nature of just meeting someone in the office. In contrast to iTunes, our
prototype optionally caches information about users, the tools they installed as well as
their comments and ratings (see below). Thus, tool information can be browsed even
when the people are currently offline.

9.5.1. Realizing search and annotation features

In order to support looking over the virtual shoulder (Twidale 2000) we implemented
an Eclipse view that allows users to inspect what tools are used in the local context.
Like a Skype contact list, this view consists of all (cached) users in the subnet includ-

170 9. Supporting the Social Context of Technology Appropriation

ing name, picture and presence information (see Figure 13 on the left). By clicking on
an entry, the view changes its appearance and shows the plug-ins used by the col-
league (Figure 13 on the right gives the example of the plug-ins used by Daniel). In-
formation in the list of tools includes the tool’s icon as well as the name and parts of
the description. From our usability study we know that this usually enough informa-
tion for Eclipse users to decide if the tool is worth further exploration. If a user wants
to have further information, he/she can click on an entry. This opens a detail view
(see Figure 13 black rectangle on the right) that gives additional information including
comments and ratings of other users (see below).

ﬁE_’j 'tava fL " f :igt*of”Baniél'g" |"svhlg.svn.fealum.gmupfE(hpseF\a(Fnrm)
’;—LSm 0-9— 9«0@—% -9,,%% - Je= et T O a| = e e A "o o o850 35 4 Ba Ba By
[£ Package Exywemr(hy &) o =[O PC-4, [# Package Expl | T3 Hierfrchy (€7 2 =5 PluginListComposite_java M Subversive SVN Team Provider (incub 52 = B
Sven Settings | Help 1 P& | sven Settings | Help
= = 2 =] [Subversive SVN Team Provider (Incubation) = | Add to Eclipse
\wﬁ} Q, Search (D) . 1B || (available [8) (@ < ecific) ((Got) i
47 @8 () 1 don't know the feature [] I'm an expert for the feature [| recommend this f-B tt t H t ”
Welcome| All Features | Daniel ; p |Welcome|All Features [Daniel 53 button to insta
® N » .
a Angela JF) Subversive SYN Team Provider dncubation) from Daniel
= P 51 #= The Eclipse Team Provider for the ™ User Feedback S S
F Subversion version contral system. For
- instructions about installi Comments Rating: 4 Ratings (3.8)
3 e o i Trvrdr
" v 3 Show Dewils » Leave comment.. Experts: Angela
= Karl ° sers 4 Ratings (3.8)
- Daniel
-y ° ~ comment
b Lennard -
—_— Craat SN ol iorks perfectly with our new cads reposory.
. Entar your comment hers + User yourintemal credntials for login.
Like
61
b) Subversive Revision Graph (OptonaD
ps (incubation) (New!) Angeta
65 Subversive revision graph.
2 Dor't forget to get the SVNKIE SVN client, creates way less
66 " Show Details problems than this other one.
67 sers
o 0 Ratings (0.0) Like!
60 b comment
;; Details of a rated tool (Subversive) with
72 SWNKit 1.3.5 Implementation (Optional)
73 (Newd) mm t
"""" SVN Kit http:/ jwww.svnkit.com connector co e en S
for the Eclipse Subversive. Compatible with v
[21 Pre [2i Problems | @ Javadoc ([, Declaratio [4" Search [E] Console [13% Call Hiera € Progress 52 . @] Error Log| (& History| = O
%~
No Na operations to display at this time.
Use this to chat with Daniel (Send)
You are ONLINE 5 | 5 Users Online You are ONLINE 5 | 5 Users Online
9,

Figure 13: Integration of collaborative appropriation within the work context. Left: List of
Eclipse users within the local network. Right: List of tools used by a colleague and a detail
view showing the stored tool knowledge.

In general, these user interface elements enable users to explore the diverse Eclipse in-
stallations used in the subnet and look for tools that might be helpful for them. This
is especially useful, as the experience in the group usually varies. To enhance the
browsing experience, we further implemented different ways to filter and sort the
results. For example, the user can search for keywords. This inverts the navigation, as
the user can find a consultant by searching for a tool’s name and therefore get help
even without knowing in advance who is an expert on a particular topic. Further, it is
possible to hide the tools that are used by both the user and his colleagues in the

same version in order to enhance the awareness about differences in the configuration.

The list of tools can be sorted either alphabetically in order to simplify search, or by
popularity in order to show potentially interesting tools. Currently, we measure popu-

9. Supporting the Social Context of Technology Appropriation 171

larity by calculating the average rating given by users (see below) and by the number
of colleagues who use the plug-in, if multiple plug-ins show the same average rating.
In addition, it is possible to exclude tools from the result set that have not been rated

or received bad ratings.

To capture and maintain a shared memory of the tool knowledge, we adopted the
common concept (used for example by commercial marketplaces like Amazon) to allow
customers to annotate and rate the products that are provided on the platform. We
provided rating and commenting in the detail view (see Figure 13 right). During de-
sign workshops, we introduced several different ways of annotating, namely, com-
ments, rating, tags, and categories. However, free comments and ratings were per-
ceived as the most useful ways of sharing knowledge and experiences and have

therefore been included in the prototype.

As illustrated by the quote below, it is important to understand the reasons for using

such features as well as necessary configuration information:

“I would add tool related information [annotations|. For example information that is
important for the initial configuration [of a tool]. Team members can benefit from this
information as it will save time and money..” (Participant of an interview study, be-
ginning of cycle 2, translated)

An important factor here is common work context. Colleagues, for instance, need to
know what kind of pitfalls might occur when installing new plug-ins, or may find it
useful to know that particular plug-ins are both useful and easy to install. Figure 13
(details box) presents an example of the different pragmatics. In this case one of parti-
cipants used the implemented annotation feature to provide an instruction on how to
configure the SVN tool in order to access the company’s new source code revision con-
trol system.

Generally, restricting annotation features to the local organization has the effect that
users are not forced to make knowledge explicit that could be taken for granted in the
shared work context. This prevents the general problem of ‘sticky information’ (von
Hippel 1994) and allows users to focus on more specific comments that are valuable
for the local context. For example, formulations and instructions are highly beneficial
for the local context, but do not make much sense without it. In their pragmatics, lo-
cal annotations therefore differ from information that is targeting a public audience
(like official help manuals or a users’ review published on Amazon).

The shared work context also has an effect on the pragmatics of reading comments. In
our fieldwork, for example, users often preferred to ask certain persons when seeking

advice. Trust is often enabled by specific knowledge of the capabilities and characteris-

172 9. Supporting the Social Context of Technology Appropriation

tics of colleagues. The system allows for such filtering and, if in doubt, supports to ask
the author supplementary questions, to clarify some information or get additional
advice.

9.5.2. Realizing awareness features

In order to raise awareness of the infrequent appropriation situations, the system
sends notifications to local peers in cases of users tailoring their installations, or when
they comment or rate tools (see Figure 14 for an example). By sending notifications to
all colleagues, we provide a solution for the lack of peer interaction in non-collocated
settings and increase their visibility at the team level of peer interaction, as the users
do not need to be working in the same room or building to discover that a colleague is

using a new or interesting tool.
Info about SWT Designer Core P

Bart looked after SWT Designer Core

His rating is

and he wrote “Used it for the Ul of the oging project
! You can use it to open the project fil
e .

r)

Figure 14: Notification example of a tool (SWT Designer) that was commented and rated by the
user Bart.

The notifications (we used Figure 14 as example) provide the user with different kinds

of information:

* Tool Awareness: Users become aware of the tool itself (SWT Designer) and are
able to look up more detailed information about it by clicking the corresponding
link in the notification.

* Peer information: Users become aware of the fact that a colleague (Bart) has in-
stalled the tool. They can contact him or check his profile by clicking the corre-
sponding link in the notification.

* Additional context: Users become aware that their colleague has provided com-
ments to specify a certain work context, tasks, pitfalls or practices that have

proven to be beneficial.

Notifications enable the user to navigate to relevant objects (a tool that might be in-
teresting and a person who may be an experienced user) by clicking the corresponding
link.

9. Supporting the Social Context of Technology Appropriation 173

9.5.3. Realizing peer installation features

In order to support users to share tools, we implemented a peer install feature. It
makes use of the circumstance that the users’ installations hold all needed information
and files for the exchange of plug-ins. Instead of forcing the user to switch to an exter-
nal marketplace or to copy files manually, the user can install a tool from a colleague’s
installation by clicking a single button (see Figure 13 upper right corner). The func-
tionality behind this button calculates the plug-in’s dependencies, detects possible ver-
sion conflicts, and identifies all the files that need to be transferred. As all needed files
are stored on the colleague’s machine, the prototype does not need an internet connec-
tion. Instead, all relevant files are copied using the peer-to-peer infrastructure and are
afterwards installed on the local machine. To calculate dependencies between plug-ins,
we used Eclipse’s internal provisioning mechanism (P2), which is also used by the de-
fault mechanism to update and install plug-ins from market places. By reusing this
functionality, the installation process using the prototype does not differ from the in-

stallation from any other source.

9.6. Evaluation

So far, we have conducted a limited evaluation in the research institute mentioned
above. Even so, useful feedback has been obtained through workshops and usage tests
during all phases of the design process. Users were generally positive and were particu-
larly enthusiastic about the opportunity to browse each other’s installations and be
aware of each other’s customization activities. The peer installation is more efficient
and preferred over the clumsy and error-prone solution of copying files, and users do
not feel distracted by additional appropriation features. In other words, the system
acts to significantly reduce overheads in terms of time. It also has the valuable func-
tion of preventing installation crashes since one person’s experiences can be easily
propagated to others and necessary tools and plug-ins are provided. However, certain
limitations are also becoming apparent.

One of the limitations that has become evident is the absence of a feature that can
draw a connection between a user interface element and the underlying tool. For
example a new Eclipse user needs help with a certain user interface element or func-
tionality. However since Eclipse plug-ins are integrated so deeply it is not clear what
tool/plug-in delivers this functionality and therefore he can’t use the prototype to find
an experienced user who uses the same tool. The same is true if a user wants to rec-
ommend certain functionalities but does not know which plug-ins contribute these. In
a future version, we plan to adopt the approach of the Eclipse plug-in spy, a function-

174 9. Supporting the Social Context of Technology Appropriation

ality which reveals the plug-in that is responsible for a certain user interface element
by pressing a shortcut key.”"

Another issue is the overly mechanistic implementation of the subnet, which needs to
be more flexible than we have provided for. Changes in team membership; the involve-
ment of external members (such as consultants to an organization) and casual sharing
with outsiders (friends, university colleagues, and so on) are currently not well sup-
ported. In addition, the prototype does not yet support the sharing of configuration
settings many Eclipse users have expressed a wish for.

9.7. Conclusion

Tailoring flexible software products is an increasingly important and common aspect
of organizational work. As our study showed, Eclipse users have to deal with complex
overhead work for maintaining and extending their working environments to the
emerging needs of the daily work. This is a real problem that thousands of Eclipse
users encounter regularly in their daily work. While over one thousand additional
tools for Eclipse exist, it is hard to find relevant and useful ones. Furthermore, the
users have to work out which conflicts may occur, what version of a tool is necessary,

and what the tool can be used for.

In the case of Eclipse, the related sharing and learning practices turned out to be
highly cooperative, situated, and grounded in the context of particular work situa-
tions. We have argued that because these issues are seldom addressed together, exist-
ing solutions only partially support the full context of appropriation. In other words,
they largely fail to provide adequate appropriation support in organizations. Hence,
there is strong evidence that better solutions for collaborative appropriation are need-
ed and that we have to support all the related facets of finding, sharing and learning
in order to support appropriation in practice.

Drawing on a detailed understanding of appropriation practices, we have presented de-
sign principles for supporting the social and collaborative aspects of appropriation.
These principles were implemented in form of a prototype that addressed different as-
pects we have found to be important in the context of organizations:

* Appropriation awareness within the organization helps to systematically uncover

customizations that are interesting for others.

27.Ct. http://www.eclipse.org/pde/incubator /spy/

9. Supporting the Social Context of Technology Appropriation 175

* The active search for tools and tool expertise help to decide what to use and
whom to ask, based on the people within the organization rather than relying on

anonymous market places.

* Peer installation of customizations supports sharing customizations with col-
leagues in a safe way, without having to search for dependencies and without hav-

ing to work with files directly.

Right now, the prototype is tested ‘in the wild” in form of a long-term study. Early
results are positive, though they are subject to the limitations we mentioned above.
Right now it is too early for a summative evaluation of how the prototype is being
used in practice. As many issues of appropriation support can only be studied in long-
term field trials (due to the relatively rare and unconscious occurrence of appropria-

tion), we plan to conduct further evaluations and iterate our design accordingly.

Conclusion

10. Conclusions 179

10. Conclusions

This chapter first presents the core findings of this work as a coherent whole and with
regard to the main research questions of this dissertation. Following this summary, the
results that contribute to a better understanding of appropriation, stemming from
part II, are summarized and discussed in relation to the existing state-of-the-art of ap-
propriation. The same is done with the findings that contribute to the design of ap-
propriation support, stemming from part III, with regard to existing support ap-
proaches. The open questions and outlook subsection closes this work by discussing
questions that could not be answered by this study or might have emerged as result of
this work.

10.1. Research interests

Software ecosystems are a relatively new trend within software engineering. By in-
troducing component-based systems in combination with commonly used platforms,
software ecosystems allow software producers to join forces and form complex produc-
tion networks. However, what does this mean from the users' perspective? Bosch
(2009) openly suggests, that this change in production means will transfer large parts
of the integration work to the users. In the past, it used to be the sole responsibility of
the software manufacturers to integrate components into a fully working software sys-
tem. With this shift, the significance of understanding how this change will transfer to
the usage and appropriation of software increases. Will users have to run component-
integration tests to ensure that two components work well together? Or will manufac-
turers provide different, easier mechanisms that help to find and select interesting
components from repositories or markets and integrate them? What happens to prac-
tices like updating software components?

To date, the effects and consequences software ecosystems have on appropriation are
poorly understood and not explicitly discussed within research on appropriation of
software systems. Furthermore, it remains unknown in which ways supporting systems
(e.g. the Eclipse update manager) help the users to cope with challenges such as inte-
grating software components. Software Ecosystems with hundreds of components have
already reached the mainstream of today's information technology usage. Browsers
such as Mozilla Firefox or Google Chrome, games such as World of Warcraft and even
phones (e.g. i0S, Android and Windows Phones) (see section 3.3) rely heavily on the
addition of further components that modify functionality and user experience. Against
this backdrop, and assuming that the end user should also benefit from software
ecosystems, software engineers as well as human computer interaction experts need a

better understanding of appropriation in software ecosystems and better design con-

180 10. Conclusions

cepts for supporting tools. Therefore this dissertation proposed the question: how do
users appropriate software systems that have been produced and developed by a soft-

ware ecosystem?

This was investigated through a field study in several organizations (see section 3.4).
The micro-perspective of CSCW studies that results in a deep embeddedness of find-
ings in context. The related difficulties of transferability has often been criticized. Due
to this, but even more because of intrinsic motivation to compare the results with a
different software ecosystem, this work proposed the question: 'how is appropriation
constituted in similar ecosystems? / can we transfer these results to other ecosystems?’
Based on this, the results of the larger Eclipse study were complemented by and com-
pared to a smaller study which was carried out in a different component-based soft-

ware ecosystem.

As introduced, it is also unclear if the existing supporting tools are up to the task,
which resulted in the question: How should adequate supporting tools be designed to
accommodate easy appropriation? To answer this question, the field study was comple-
mented by design workshops in order to reflect existing ideas and tools against the
results. The results confirmed that existing support lacks important features, that are
related especially to the group context (see chapter 9).

10.2. Appropriation revisited

10.2.1. Summary of Findings

One of the first findings was that nearly every Eclipse IDE user involved in one of the
presented studies modified her/his Eclipse installation. Concerning the questionnaire
study (see chapter 4), about 93% of all participants specified that they modified their
Eclipse installations. During the extensive qualitative field study including interviews,
observations and workplace inspections, not a single unmodified Eclipse installation
was found.

The modifications were mainly the installation of additional components, so-called fea-
tures and plug-ins, as well as the change of preference settings. Only one case of a
plug-in, developed by a participant was found. Apart from this occurrence, all additio-
nal components originated outside the participant's personal or organizational net-
works. They were all created by an ecosystem of software manufacturers, connected by

the common platform and partly by a common rhythm of development.

10. Conclusions 181

The participants' actions concerning appropriation were related to their personal pref-
erences, their co-workers and their organizations. However, we found that they were
also related to the software ecosystem:

1. which provided additional beneficial functionality through those plug-ins and
2. whose structures became recognized again, in case of plug-in related breakdowns.

We investigated the different levels that influence appropriation closer, as shown in
the model depicted by Figure 15. The center is comprised of the personal social net-
work or a work group; further outward, the department or even the whole organiza-
tion (depending on size and contact between co-workers) can be found. The software
ecosystem is situated in the outer layer, which also influenced appropriation by
defining what is possible. Interestingly, we found that the influence on a user's appro-
priation seems not to decrease with the distance of a layer. However, the user's influ-
ence on the layer often decreased with the distance of the layer. E.g. the firewall rules
at Gamma (see chapter 6) could not be changed, therefore some rules of the organiza-
tional layer could not be changed in this example.

External Factors/
Ecosystem

Developments in the
Java community Organisation

Department Laissez-faire
New Eclipse Management
e

release .

,
4
’
’
, m
’ Project
/ ‘) Over the shoulder
/ progress Installations learning
New e . Learing from
Individual Work

colleagues/
helpful enwronment Updatlng greenhorns

Developing
aplug-in (

Pair N

Team Work Programming

Multiple

Mailing lists D)
Learning from others

Experience
| Situatedness

Appropriation

1 T
(worklng on multiple prolects Sharing mformatlon & artlfacts)

infrastructure restrlctlons G|V|ng advice) l

(infrastructure breakdown) Demonstratmg /
Evaluating/ /
Tool breakdown
style of worklng explorin: Open discussion
Emerging Asklng for help
P (e mame /
umpstartin
AN Guidelines/ the mternet P .9 K
policies Meetings/ | /
regulars table
N[Working with
freelancers Installation
- - Community
Firewall preventing
tailoring
Being part of a
community

IT-Department that Backups/
should take care of exploration
el

provisioning nv./archiving

Figure 15: Layer model of situatedness and practices/strategies of appropriation of the Eclipse
IDE, based on results of the field study.

182 10. Conclusions

During the field study, every layer presented an interesting frame that influenced the
user's appropriation. Some users had strong preferences about their tools e.g. which
plug-ins, frameworks technologies to use (which again sometimes required additional
plug-ins e.g. for test coverage of unit tests). Sometimes, it happened that such person-
al preferences were incompatible and had to be omitted for the sake of collaboration

with co-workers.

The group especially defined a frame that was related to the larger task to fulfill, e.g.
a software development project. The choice of programming language for a project
therefore usually defined how a certain Eclipse installation had to be modified in order

to work within the group.

The already introduced inglorious firewall at Gamma, which prohibited most tailoring
activities at the workplace, is an example of how the organization can set a frame of
rules that influence appropriation (see chapter 6). An example that was more accepted
within the group of participants was the provided source code management system,
which also influences appropriation and which is usually defined on department or

organization level.

The presented work tries to carve these layers out for better visibility (see chapter 4).
What is especially interesting is the layer of a globally acting software ecosystem, con-
sisting of an open platform and a network of manufacturers, equipped with decentral-
ized component repositories and a distinct release rhythm.

This complexity of participating manufacturers, the changing API of the core platform
and of the components™, as well as the fast development rhythm was often seen to be
boon and bane at the same time. On the one hand, the ecosystem stood for new and
regularly updated and extended plug-ins that often grew very fast in terms of func-
tionality. However, at the same time new features are accompanied by the need to car-
ry out the necessary integration work. The Eclipse component model is designed so
that, apart from installation, no integration work should be left after development and
testing. However the complexity of the factors release rhythm and dependencies be-
tween components and their changing APIs created major breakdowns that had to be
fixed by users so that they would work. The software ecosystem therefore created a
tension amongst the study's participants, urging them to try new releases but at the

28.The Eclipse component model differs from others e.g. Firefox or Photoshop in a way that the compo-
nents can depend on each other. An example is: component A provides a service that component B is

supposed to use. Therefore, in some cases, component B needs component A to work properly.

10. Conclusions 183

same time urging them to protect the working tools as these represent a large part of
their workplace.

Generated by this continuous struggle, but also by work tasks, stimuli from outside
(e.g. Ecosystem) or personal interaction, various practices that contributed to appro-
priation could be observed. Interestingly, these practices were mostly embedded within
the usual usage of Eclipse. Users learned from others through sharing a screen when
coping with a complex task. Appropriation therefore could not be easily separated
from usage. Chapter 6 draws a rich picture of the practices that were discovered dur-
ing the field study.

These practices however could not solely describe appropriation within this context.
Often it was the embeddedness of these practices in certain situations that occurred
during work or organizational life which made appropriation accountable or reason-
able. For example, a breakdown of the code repository at Alpha set the users in mo-
tion to get the company's infrastructure working again.

During the analysis of the gathered data, four categories had been created to classify
the results. All categories contributed to describe certain actions or situational aspects
that were part of daily work practices. Learning and information gathering focused on
aspects such as personal help giving, regularly reading magazines and blogs or visiting
conferences. Tuailoring separated those actions that could be referred to as modifica-
tion, configuration or tailoring in order to grasp the act of modifying that is often the
observable part of appropriation. Discovering introduced serendipitous discoveries as a
factor that influenced appropriation. Sometimes, pure luck led to learning something
new and maybe changing the artifact in the process. Collaboration describes collabora-
tive aspects that were part of all other categories (e.g. learning might have happened
coincidentally when a problem was solved collaboratively; the Eclipse IDE was tai-

lored due to the advice of a co-worker etc.).

Furthermore, a bird's eye view was taken during the analysis phase, that provided
larger themes of appropriation efforts. The result is a classification model that defines
different cultures of appropriation. The first class depicts very personalized approaches
to appropriation, that only rely sparsely on collaboration. Secondly, a class of appro-
priation approaches that rely on formal collaboration by centralizing the appropriation
management (partly), is described. Lastly, a class is given that builds upon collabora-
tion within the group (e.g. exchange of interesting information) and trust (who dis-
seminated this information?). Within this class, there is certain exchange concerning
appropriation, but each person has to decide on his/her own what to make of it.

184 10. Conclusions

During this research effort, we had the chance to carry out a small but very similar
study with one organization that used a completely different software system for
comparison: a group of World of Warcraft players. Although we were searching for
differences in their appropriation, we were mainly able to confirm what was found dur-
ing the Eclipse IDE field study; rendering personal exchange, help giving and recom-
mendations the most influential practices; trust and a collaborative task as very influ-
ential situational factors. Furthermore, both studies have shown that new components
from the software ecosystems influenced the group's work/gameplay massively.

10.2.2. Discussion

By comparing the presented work to earlier studies, as carried out by Mackay (1990a),
Gantt and Nardi (1992) or Kahler (2001a), it can be observed that earlier work main-
ly focused on the creation and sharing of self-created tailoring artifacts (such as con-
figuration files or small components). Using Eclipse as the main example of this work,
the corresponding artifacts would be plug-ins and preference settings. The results of
those studies suggested that we would find several plug-ins that had been created by
users. However, only a single occasion of a self-created plug-in could was discovered.
Instead, the amount of readily available plug-ins from 3rd party manufacturers of the
Eclipse ecosystem was huge®. In contrast to earlier studies, the appropriation of exist-
ing 3rd party plug-ins was the main aspect of appropriation to be found. As the ongo-
ing End User Development research demonstrates (Lieberman et al. 2006; Pipek et al.
2009; Costabile et al. 2011; Dittrich et al. 2013), there is clearly a need for user creat-
ed extensions in several areas of software usage. However, the appropriation of Eclipse
revolves around the discovery and installation of existing components, as well as fixing
of breakdowns created by those. That said, the appropriation of well-made, already
existing components had not been investigated in such detail, before this study.

Furthermore, compared to earlier studies, everyone single person that was observed or
interviews modified his Eclipse IDE installation. Compared with existing results
(Mackay 1990a), this means an increase of tailoring activities. However, considering
the domain that was investigated (software engineers, highly skilled in technical as-
pects, an urge to be on the bleeding edge of technology (Striibing 1992)), this was
only to be expected. Remarkably, however, the results of the World of Warcraft study
(see chapter 7) showed very similar results. For example, both studies showed a cer-
tain informal division of labor, as some Eclipse and World of Warcraft users were

29. We found about 1.000 Eclipse features, that act as containers for plug-ins, grouping these for easier in-
stallation. Each feature consists of multiple plug-ins.

10. Conclusions 185

more curious and eager to try out new things than others and shared their experi-
ences. The general distinction between very explorative and more cautious users con-
firms earlier results (Mackay 1990a; Gantt & Nardi 1992; Rogers 2003), although was

not not presented in detail as it was not the focus of the investigation.

The study has furthermore shown that software ecosystems are a new dimension that
has to be considered when investigating appropriation and when designing appropria-
tion support (Bourguin, Lewandowski & Lewkowicz 2013). The literature discussed
earlier (see section 2.1) coined the term "software ecosystems', but mainly discussed
this new trend from a manufacturer's point of view (Bosch 2009; Bosch & Bosch-Sijt-
sema 2010b; Bosch & Bosch-Sijtsema 2010a; Jansen, Brinkkemper & Finkelstein 2007;
Jansen, Finkelstein & Brinkkemper 2009; Jansen, Cusumano & Brinkkemper 2013;
Yang & Jiang 2007; Stein 2008; Boucharas, Jansen & Brinkkemper 2009). If we focus
on studies that share a similar fundamental approach, stemming from the CSCW
community, it can be noted that the early work only focused on such local contexts as
the work group or the organization (Mackay 1990a; Gantt & Nardi 1992; Kahler 1995;
MacLean et al. 1990). This is also due to the fact that global networking at that time
was practically non-existent for end-users as well as manufacturers (Castells 2000, pp.
45-50). The existing results concerning sharing of knowledge and artifacts could be
largely confirmed and extended by this work. Later work focusing on appropriation,
especially (Pipek 2005), extended the focus of the topic and included networked com-
munities, such as forums. While this added global networks as influential factors, the
pressure, created by the Eclipse ecosystem, brings a new quality to influencing appro-
priation. Stevens (2009) is the first who actually referred to the trend of software
ecosystems. However, the ecosystem is discussed as a black box that is part of the lo-
cal context. The presented results add detail to Stevens' work: Artifacts that are part
of appropriation efforts often come from outside the work group or the organization,
but from within the global software ecosystem. As such, today's users are embedded
into and influenced by such ecosystems, besides the group or the organization.

As predicted by Bosch and Bosch-Sijetsema (2010a), the introduction of software
ecosystems shifted the responsibility for some integration work (e.g. work to make
components operate together as a functional system) to the users. This study has
shown in detail and based on empirical findings how this integration work is com-
prised for the Eclipse software ecosystem. It presented common problems (e.g. Eclipse
not starting anymore after installing a plug-in) as well as strategies to cope with this
(e.g. trying the respective plug-in within a blank, unmodified Eclipse installation and
gradually modify). Integration work is a very knowledge-intensive task, as the ecosys-

tem and the produced artifacts are in continuous motion. This confirms earlier results,

186 10. Conclusions

such as (Star & Ruhleder 1996; Balka & Wagner 2006). The focus on integration in-
stead of creation of add-ons or tailoring artifacts (following e.g. the tradition of End
User Development (Lieberman et al. 2006)) seems to demand a new connection be-
tween users and software engineers. Various researchers such as (Eriksson & Dittrich
2009; Stevens 2009; Dittrich 2014) argued for a more seamless integration of users and
other stakeholders as consultants, software integrators and developers into the soft-
ware development process. Some of these ideas include the software ecosystem level.

Considering the more detailed aspects of the results, the nature of tailoring activities
and information exchange during the study is remarkable. Eclipse plug-ins were
demonstrated to other users, discussed within team meetings or during coffee breaks.
Overall, sharing expertise on how to install additional plug-ins and, even more impor-
tantly, which ones are the most interesting happened on a very informal basis. Simi-
larities to the concept of informal learning are hard to ignore. The term informal
learning is used to describe learning which takes place outside formal learning systems
such as schools or universities, but are part of daily life (Garrick 2012). However,
these informal learning activities benefit from users (during the study mostly junior
developers), who had previous formal training in basic usage of the Eclipse IDE. The
results of this study reinforce several other studies, in that they argue for the impor-
tance of informal learning and coordination at the workplace (Whittaker, Frohlich &
Daly-Jones 1994; Hinn, Wang & Twidale 2004; Twidale 2005; Boden, Nett & Wulf
2007; Maalej & Happel 2008; Boden 2012; Bourguin, Lewandowski & Lewkowicz
2013). Similar to informal learning, the study helped us to understand practices that
could be described as informal tailoring. Often a person's tailoring decisions affected
others in some way. Despite this, many of these activities were not discussed with co-
workers, but carried out on one's own initiative. Others becoming aware of this later
generated a new chance to discuss the benefits of the tailoring decision and adopt the
tailoring artifact.

Concerning the situatedness of appropriation, similarities to the concept of infrastruc-
turing (Bowers 1994; Star & Ruhleder 1994; Karasti, Baker & Halkola 2006; Pipek &
Wulf 2009) can be drawn. The concept of infrastructuring describes that technology,
just like large infrastructures (e.g. the power network), disappears over time into the
background and is not noticed anymore. However users can reflect their infrastructure
in detail during a breakdown situation, for example. Pipek and Wulf (2009) described
this boundary as the point of infrastructure. The study revealed that Eclipse users
also reflected their infrastructure during breakdowns; especially which components or
external hard- and software it comprised. This reflection helped to find solutions to

cope with breakdowns during integration work. This work showed not only several

10. Conclusions 187

points of infrastructure, but also typical user strategies to cope with the underlying
problem.

Another remarkable insight was that appropriation, even in work places, is not always
need-driven, as implicated especially by research in the field of CASE tools (Kemerer
1992; Fowler et al. 2000; Robbins 2005, p. 121). Instead, various situations of opportu-
nity-driven appropriation were observed. One example was switching to a new Eclipse
IDE version just after it was released. Or the installation of a new plug-in intended to
create a more comfortable situation for the user. Points of infrastructure that resulted
from opportunities could often be traced back to a form of awareness of the work of
others (see chapter 6). Eclipse users were often aware of their colleagues' actions or
became aware of events within the Eclipse ecosystem, e.g. the annual release of the

new Eclipse version every June.

In the past, many categorization schemes of tailoring or appropriation have been de-
veloped. Examples are (MacLean et al. 1990; Mgrch 1997; Pipek & Kahler 2006). For
this context, the model of Pipek and Kahler (2006) is most useful, as it focuses on the
scope of tailoring activities as well as dependencies between actors. Tailoring is catego-
rized into four scenarios: shared use, shared context, shared tool, shared infrastructure
(Pipek & Kahler 2006). Each scenario describes a stronger need for collaboration in
order for tailoring to be beneficial. When applied to the findings of this study, several
of these scenarios can be applied at the simultaneously. Eclipse users form a communi-
ty of interest as they are users of the same basic tool (even when it may be configured
very differently). Furthermore, the shared context scenario applies, as the study's par-
ticipants worked as groups (within their organizations) towards a common goal (to de-
velop a piece of software). The shared tool scenario applies, as Eclipse use was inter-
twined with other tools as source code repositories, issue tracking systems shared by
the whole team. Modification of these tools can be considered a shared tool scenario.
At the same time, modifying these systems may create severe consequences for Eclipse
usage. Due to this, it could also be classified as a shared infrastructure scenario.
Therefore Eclipse appropriation can be considered as requiring careful collaboration
efforts. However, the model does not include software ecosystems (or a similar force)
as a surrounding factor and this would seem to create additional needs for collabora-
tion as they add new levels of complexity and new urges to innovate which often have
to be coordinated.

Within the same line of work (Pipek & Kahler 2004; Pipek & Kahler 2006), several
suggestions to support collaborative tailoring have been given. While the authors

deduced techniques for support (e.g. repositories of components or awareness mecha-

188 10. Conclusions

nisms), this work agrees with the results, but at the same time grounds the sugges-
tions in an empirical qualitative field study.

10.3. Designing for collaborative appropriation

10.3.1. Summary of findings

Today's software provisioning approaches and standards, e.g. Cobit and ITIL (Bon
2004), can prevent users from appropriating software as part of certain measures per-
taining to controlling IT within organizations. However, during the study, it was ob-
servable that users cared about their software and constantly tried to improve it. A
tailoring culture (Robertson 1998) could be found in each of the participating organi-
zations. The users viewed themselves as expert users of their tools, arguing that others
would not be able to configure their tools the right way. For example, the developers
at Gamma had a dispute with their I'T department over the provided Eclipse versions,
which were deemed too old. As a result many users were unhappy with other organi-
zational units, as self-determined appropriation was hindered. While the goals of
standardization wihtin workplaces are understandable, the study has shown that it
may be of more use to support such tailoring or appropriation cultures in contexts of

highly skilled workers who are able to self-organize themselves.

Furthermore, the study has shown that the integration of access to product communi-
ties into the product itself is a useful measure to reduce hurdles. It removes some of
the usual media breakage that happens if a user has to switch from an application to
e.g. a web browser in order to access the product community. Designing the Peerclipse
prototype as an Eclipse plug-in brought some remedy to such typical problems. At
the same time, because the prototype was integrated within the host software (in this
case the Eclipse IDE), it was possible to capture a unique set of data (running plug-
ins), in order to create awareness of what others use, which would otherwise not have
been possible.

Other than typical recommender systems that present results based on a huge and
mostly anonymous dataset (Linden, Smith & York 2003), Peerclipse reflects what oth-
er users within the near context modified. This unique function was created to take
advantage of local trust and expertise relations between co-workers. Compared to
global recommendations (e.g. a top 10 list of most used plug-ins on the Eclipse mar-
ketplace), creating awareness about the modifications made by co-workers allows Peer-
clipse users to understand and assess their co-workers' actions. As a result, the pro-
totype can help to establish miniature product communities within organizations. This

10. Conclusions 189

way, interesting modifications at a certain person's workplace can diffuse more easily
into the organization or work group.

The core mechanism that was chosen to deliver this functionality is awareness (Heath,
Luff & Cambridge 1992). While the study has shown that appropriation was very im-
portant within this context, it has also shown that users discuss actions as tailoring
efforts very unsystematically. The reasons for this may be that these actions happened
very rarely and that plug-ins were often considered as still being under evaluation as
modifications were explored for a while, before finally whether or not ir shoul dbe
kept. However, creating awareness allowed the informed person to ask questions about
the modification in order to learn more about it and to assess it for their own work
context. As such, awareness of tailoring activities provided support in the sense of a
tickets to talk (Svensson & Sokoler 2008) approach. It has to be noted that this notion
differs from usual CSCW terminology, where "awareness" is usually used to describe a

form of cheap coordination or "effortless coordination” of work activities (Gross 2013).

This approach showed interesting results when it was applied to a research depart-
ment (Draxler, Sander & Stevens 2010), for instance. The members knew each other,
but not all of them worked collaboratively. The tickets to talk approach of Peerclipse
is based on data that was delivered by the host software. The Peerclipse prototype in-
vestigates its host Eclipse installation for changes since the last check and reports in-
teresting changes to other users of Eclipse/Peerclipse. As such, Peerclipse raises aware-
ness on newly installed artifacts. However, users draw connections between this
information and the potential skills of the source of information (the person that just
installed a certain plug-in). Therefore, people draw a connection between tools and
their user's expertise.

10.3.2. Discussion

Peerclipse, the prototype developed as part of this work was designed to explore new
supporting concepts for appropriation. As introduced in chapters 8 and 9, it mainly
focuses on supporting work groups of collaborating Eclipse users. Examples are
project teams collaboratively developing a software system. Peerclipse does not sup-
port the introduction of new information from the ecosystem into the group, but it
does help to distribute innovations from ecosystem level that have found their way
into the group, within the group. First of all, I would like to discuss why it was fo-
cused on the group, although most of this work clearly uncovered that the surround-
ing software ecosystem has a major influence on Eclipse users.

In the well-received study by Mackay (1990a), the exchange of experience and arti-
facts within the organization was the main category of results. This study has however

190 10. Conclusions

shown that in today's software ecosystems, exchange within the organization is used
to transport new developments from the software ecosystem level into the group or to
disseminate them within the group. This said, the exchange of appropriation experi-
ences in personal networks, the work group or the organization are important and
happen on a daily basis. However, as this research has shown, the surrounding ecosys-
tem enhances this. It is a surrounding global networked community that introduces
plenty of interesting additional opportunities for appropriation. The users can be de-
scribed as being embedded within the ecosystem, just as they are embedded within
their organization, work group or personal network. In the case of Eclipse, the soft-
ware ecosystem was the origin of most innovations. However, the information of the
availability of such innovations needed to disseminate within the group in order to be
beneficial. Some innovations had been disruptive and made whole workplaces unus-
able. An exchange of experiences within the group was therefore considered very im-
portant. Hence no additional support to bring innovations from the ecosystem into the
group was created. Instead, Peerclipse was designed to share innovations from the out-
side and related experiences with the group and to expose possible contact persons or

experts, in case of problems occurring due to integration work.

Peerclipse was designed to use its host Eclipse installation as a repository for appro-
priation artifacts. Thus Peerclipse can extract and send installed, configured and run-
ning plug-ins to other Peerclipse users. At first sight, this is very similar to Kahler's
(2001a) demand for repositories for tailoring artifacts that can be accessed by other
users in order to choose beneficial modifications and apply them to the one's software.
What Kahler (2001a) however did not discuss were certain aspects such as the cre-
ation and maintenance of such repositories. It is therefore unclear who should operate
such repositories, how many there should be, etc. The creator of tailoring artifacts
would be the first thought. However, this person reaps few benefits, yet has all the ad-
ditional work to do, rendering success unlikely (Grudin 1988). Organizational units,
such as the IT department, were mistrusted with the provisioning of Eclipse installa-
tions and therefore are also unlikely candidates in this context. Furthermore, most
participating organizations were way too small to have a separate organizational unit
for such tasks. Peerclipse copes with this situation by creating such repositories auto-
matically, based on the existing installation. It therefore removes an additional step of
work. Furthermore, Kahler (2001a) discussed repositories as being the main point for
accessing artifacts, which is useful if these components are created within the organi-
zation. However, this study made clear that the integration work of already existing
components emerged to be a very complex aspect of appropriation. The repository
therefore also serves to mediate or share experiences with these components. This was
implemented by incorporating discussion features directly into Peerclipse. These fea-

10. Conclusions 191

tures, combined with the peer-to-peer approach of Peerclipse, created a completely
new design to support appropriation.

Recent work discussed the creation of appropriation infrastructures (Pipek 2005;
Stevens 2009). Appropriation infrastructures can be seen as global spaces with the
ability to host communities for the exchange of experiences and artifacts around (soft-
ware) products. The design of Peerclipse took a different path, as the appropriation
infrastructure concept as given does not explicitly include measures on beneficial
awareness support. However, during the field study and corresponding design phases,
we found that this was one of the most crucial aspects in supporting the investigated
groups of Eclipse users. Peerclipse therefore attempts to support appropriation at
group level and uses awareness mechanisms (balloon windows in case, anyone carried
out a modification or commented on a plug-in) to provide a base for further face-to-
face discussions among the group's members. This design was chosen as the study has
shown that the global ecosystem does not substitute the kind of contextualized com-
munity provided by the local group.

The focus on providing awareness towards software-modifications within a work group
of software developers is not completely new. The Palantir prototype (Sarma, Noroozi
& Hoek 2003; Sarma, Bortis & Hoek 2007) already achieved this in 2003. It calculates
a delta by comparing the software before and after modification, and uses this data to
raise awareness on tailoring efforts. Peerclipse uses a similar mechanism; however it
does not only exploit the existing modification data, it also empowers users to ex-
change experiences by attaching text-based discussions to these components. Peer-
clipse raises awareness on modifications, but also on subjective assessments of compo-
nents, expressed as the users' experiences and ratings. Additionally, Peerclipse differs
from Palantir, as it makes use of a peer-to-peer approach for exchanging the data that
is used by the awareness mechanism. Therefore no centralized server is needed to run
Peerclipse, which renders the setup and usage of Peerclipse very easy within a work
group of small companies.

This underlying concept of appropriation awareness is furthermore an alternative con-
cept to centralistic approaches as given in the Cobit or ITIL standards (Bon 2004).
Centralized approaches for software provisioning within organizations define central
actors (a person, a department, etc.) that are responsible for delivering the software to
the users and also for choosing the software in question. However, this study has
shown that within the field of Eclipse usage, the user is an expert of her/his software
tools and can often assess best what is needed. Peerclipse therefore does not incorpo-
rate support for creating software profiles from which users can not deviate. Instead,

awareness in combination with a user's ability to make sense of this information is the

192 10. Conclusions

driving mechanism behind Peerclipse, resulting in a self-organized software provision-
ing environment. Essential part of this self-organization were first of all personal help
giving (c.f. Murphy-Hill & Murphy 2011) and learning through co-workers (c.f.
Twidale 2005). However, such actions often relied on breakdowns and serendipitous
situations as triggering factors. In addition to breakdowns and lucky accidents, the
awareness feature is a third triggering factor, designed to create a more regular ex-
change of experiences, which could systemize self-organization.

A further reason for fostering the personal exchange of experiences within the group
instead of within the global community of an appropriation infrastructure was the
ability to exploit local context and trust relations. Both aspects enable people to as-
sess the advice given by their co-workers (Bourguin, Lewandowski & Lewkowicz 2013;
Mackay 1990b). As the awareness feature is able to report modifications within an
Eclipse installation but also subjective comments that are attached to plug-ins, Peer-
clipse helps to find experts in case of problems. This approach borrows from modern
knowledge management systems, like the expert finder (Reichling, Veith & Wulf
2007). However, this is the first work dedicated to support appropriation that makes
use of this concept, only accompanied by ShareXP (Bourguin, Lewandowski &
Lewkowicz 2013), which also heavily relies on the concept of sharing between co-work-

ers, exploiting trust relations.

This work was shown throughout that existing support mechanisms in Eclipse, e.g.
the update manager, can't keep pace with the development speed, complexity and in-
tegration work resulting from the software ecosystem. Peerclipse introduced new sup-
porting features in order to support some aspects that are often neglected today.
Examples are the focus on the group or sharing of already tailored artifacts, instead of
using the manufacturers' plug-in repositories. Considering Peerclipse's unique features,
it can be considered a reference architecture for lightweight, group-level appropriation
infrastructures. As such, it features a unique set functionalities:

* A component sharing mechanism integrated within the application itself in order

to reduce media breakage and speed up access time.

* Use of a peer-to-peer mechanism and the local network's boundaries to find co-
workers without additional configuration efforts. Peerclipse users can therefore
find each other and each other's modifications when working within the same
boundaries.

* Existing modifications are shareable. The host software itself is therefore a self-
contained repository for tailoring artifacts.

10. Conclusions 193

* Subjective ratings and comments for expressing and sharing experiences are at-
tachable to the artifact in question.

* Contents are transferred through a peer-to-peer network to reduce the need of

configuring Peerclipse (e.g. no account has to be created).

* Awareness features are implemented to spawn face-to-face discussions about ap-
propriation in order to help each other to cope with integration work.

Examples for more globalized solutions to support Eclipse appropriation are Yoxos™
and MyEclipse’'. Both solutions have to balance very liberate groups in which each
user can change her/his installation in a self-determined manner, as well as organiza-
tions that prefer centralized provisioning. Through the design of Peerclipse and close
cooperation with the designers of Yoxos and informal exchange with the designers of
MyZEclispe (at the time called Pulse), sharing mechanisms of both systems have been
refined.

10.4. Open Questions and Future Work

The presented work investigated the appropriation of the Eclipse IDE and software
ecosystem from a user's perspective. Software ecosystems as well as other aspects that
influence appropriation are still open research questions, despite the amount of exist-
ing work, as appropriation is highly embedded in the user's work context and social

network.

Concerning the appropriation of Eclipse, the aspect of changing preference settings
was excluded from this work. Through the lens of appropriation at the time, this was
considered a too small modification and minor aspect of re-thinking/re-inventing the
tool to focus this work on. However, the study has shown that preference settings are
immensely important for the work of Eclipse users. Future work should apply a view
that spans all different aspects of appropriation in order to understand the phenome-
non and to design support. For example, preference settings could possibly benefit
from the same awareness support as plug-ins. For Eclipse perspectives (sets of opened
views/windows with their respective size and placing on the screen), their is even an
existing prototype available that allows sharing of perspectives and related plug-ins
and features (Bourguin, Lewandowski & Lewkowicz 2013).

30. https://yoxos.eclipsesource.com/discover.html (last accessed 2014/05/12).

31.https://www.genuitec.com/products/sdc/ (last accessed 2014/05/12).

194 10. Conclusions

Among other criteria, the Eclipse software ecosystem was chosen in order to move the
attention towards a very active and complex software system. This allowed a thick de-
scription (Geertz 1973) of how users can act in such ecosystems. However, at the time
Eclipse and the surrounding ecosystem comprised the technological pinnacle and, as
such, comprised a tool for professionally trained software developers. Other ecosystems
emerged in recent years which are fast moving into homes and work places. The
amount of problems we found with Eclipse appropriation might represent what can
happen to other software ecosystems. However, software ecosystems tailored more to-
wards the end user might also create less problems. That said, examples as Firefox,
iOS and Android are very active software ecosystems that demand to be studied in
their own right. The same is true for different user groups, e.g. technically non-skilled

users and different contexts e.g. software used within work or leisure contexts.

Additionally, not only should we investigate the currently existing ecosystems, but
also compare the underlying component technology in order to understand what the
right component model and composition model for end users might be. The current
software ecosystems trend started mainly as a tool to give manufacturers more free-
dom, as 3rd party developers can be easily integrated. By comparing Eclipse and
World of Warcraft to Firefox and Android, we can observe that Eclipse and World of
Warcraft components can depend on each other. Firefox and Android do not use this
mechanism. From a software engineering point of view, reuse is an important means to
creating software that renders the second approach as the less optimal solution. From
a user's point of view however, this simplified approach to components can consid-
erably reduce complexity and might make the difference for appropriation and in the
end for the success of such ecosystems. However, so far no formal investigations have

been carried out to prove this.

The embeddedness of appropriation in context also demands the constant rethinking
of the design of supporting approaches to accommodate appropriation. First approach-
es that also build upon appropriation awareness already exist. For example, App-
Brain® investigates your smartphone and can tell your contacts what apps you have
installed. However, the concept of miniature-communities that consist of team or work
group members or small organizations have yet to be further explored. In line with
Bourguin, Lewandowski & Lewkowicz (2013), I believe that these supporting concepts
can be very successfully applied in different software ecosystems.

32. https://play.google.com/store/apps/details?id=com.appspot.swisscodemonkeys.apps (last accessed
2014/05/26)

10. Conclusions 195

Last but not least, the approach to share not single components, but sets of compo-
nents that go well together or even complement each other is an interesting concept
already being applied to the Firefox ecosystem (c.f. https://addons.mozilla.org). These
sets of tailoring artifacts are assembled and shared by users and afterwards provided
by the system for installation. We can't assess the success of these approaches without
formal investigation; however, it seems to be a very promising idea for supporting

larger communities of users who do not work collaboratively.

This work has shown that appropriation today can be very complex and confusing,
even for technically skilled users. At the same time, the Eclipse IDE was the pinnacle
of software ecosystems, employing a flexible component architecture, a very fast devel-
opment rthythm and an open source model to include as many developers as possible.
The results of this set of field studies may therefore be at the more extreme end of the
scale, showcasing several breakdowns. As these events are observable, they are just the
visible tip of the iceberg that is appropriation. Our understanding of the major, invisi-
ble, part of everyday technology appropriation is still very limited.

11. Bibliography 197

11. Bibliography

Aaen, 1., Siltanen, A., Sgrensen, C. & Tahvanainen, V.-P.; 1992, Proceedings of the IFIP WGS8.2 Working
Conference on The Impact of Computer Supported Technologies in Information Systems Develop-
ment, A Tale of Two Countries: Case Fxperiences and FExpectations. North-Holland Publishing Co.,
pp. 61-93.

Andersen, R. & Mgrch, A.IL., 2009, Proceedings of the 2nd International Symposium on End-User Devel-
opment, Mutual Development: A Case Study in Customer-Initiated Software Product Development.
Springer-Verlag, Berlin, Heidelberg, pp. 31-49.

Anderson, C., 2009, Free: The Future of a Radical Price, First Edition ed. Hyperion, New York.

Asplund, F., Biehl, M., El-Khoury, J. & To6rngren, M. 2011, Tool Integration beyond Wasserman, in C
Salinesi & O Pastor (eds), Advanced Information Systems Engineering Workshops, Springer Berlin
Heidelberg, pp. 270-81.

Balka, E. & Wagner, 1., 2006, Proceedings of the 2006 20th anniversary conference on Computer support-
ed cooperative work, Making things work: dimensions of configurability as appropriation work. ACM,
pp- 229-38.

Beck, K., 1999, FEatreme Programming FExplained: FEmbrace Change, US Ed ed. Addison-Wesley

Professional.

Bennett, C., Myers, D., Storey, M.-, German, D.M., Ouellet, D., Salois, M. & Charland, P., 2008, A sur-
vey and evaluation of tool features for understanding reverse-engineered sequence diagrams, J. Softw.
Maint. Evol., 20(4), pp. 291-315.

Bentley, R. & Dourish, P., 1995, Proceedings of the Fourth European Conference on Computer-Supported
Cooperative Work ECSCW95, Medium versus mechanism: Supporting collaboration through customi-
sation. pp. 133-48.

Bentley, R. et al., 1992, Proceedings of the 1992 ACM Conference on Computer-supported Cooperative
Work, Ethnographically-informed Systems Design for Air Traffic Control. ACM, pp. 123-9.

Bergin, T.J., 1993, Computer-aided Software Engineering: Issues and Trends for the 1990s and Beyond,
Idea Group Inc (IGI), Hershey.

Bertell, O., 1971, Alienation: Marz's conception of man in capitalist society, Cambridge University Press,

London.

Boden, A., 2012, Coordination and learning in global software development: articulation work in distrib-

uted cooperation of small companies, Universitat Siegen, Siegen.

Boden, A., Draxler, S. & Wulf, V., 2010, Multikonferenz Wirtschaftsinformatik 2010, Aneignungspraktiken
von Software-Entwicklern beim Offshoring - Fallstudie eines kleinen deutschen Softwareunternehmens.

Universitédtsverlag Gottingen, Gottingen.

Boden, A., Nett, B. & Wulf, V., 2007, Second IEEE International Conference on Global Software Engi-
neering, 2007. ICGSE 2007, Coordination Practices in Distributed Software Development of Small En-
terprises. pp. 235-46.

Boehm, B., 2006, Proceedings of the 28th international conference on Software engineering, A wview of
20th and 21st century software engineering. ACM, New York, pp. 12-29.

198 11. Bibliography

Bohnsack, R., 2003, Rekonstruktive Sozialforschung: Einfiihrung in qualitative Methoden, utb, Stuttgart.
Bon, J.V., 2004, IT service management: an introduction based on ITIL, Van Haren Publishing.

Bosch, J., 2009, SPLC '09: Proceedings of the 13th International Software Product Line Conference, From
software product lines to software ecosystems. Carnegie Mellon University, San Francisco.

Bosch, J., 2010, ECSA '10: Proceedings of the Fourth European Conference on Software Architecture:
Companion Volume, Architecture challenges for software ecosystems. ACM, Copenhagen, pp. 93-5.

Bosch, J. & Bosch-Sijtsema, P., 2010a, From integration to composition: On the impact of software prod-
uct lines, global development and ecosystems, Journal of Systems and Software, 83(1), pp. 67-76.

Bosch, J. & Bosch-Sijtsema, P.M. 2010b, Softwares Product Lines, Global Development and Ecosystems:
Collaboration in Software Engineering, in I Mistrik, J Grundy, A Hoek & J Whitehead (eds), Collab-
orative Software Engineering, Springer Berlin Heidelberg, pp. 77-92.

Boucharas, V., Jansen, S. & Brinkkemper, S., 2009, IWOCE '09: Proceedings of the 1st International
Workshop on Open Component Ecosystems, Formalizing software ecosystem modeling. ACM, New
York, pp. 41-50.

Boudreau, M.-C. & Robey, D., 2005, Enacting integrated information technology: A human agency per-
spective, Organization science, 16(1), pp. 3-18.

Bourguin, G., Lewandowski, A. & Lewkowicz, M., 2013, Sharing Experience Around Component Compo-
sitions: Application to the Eclipse Ecosystem, Int. J. Distrib. Syst. Technol., 4(4), pp. 15-28.

Bowers, J., 1994, CSCW '94: Proceedings of the 1994 ACM Conference on Computer Supported Coopera-
tive Work, The work to make a network work: studying CSCW in action. ACM, New York, pp.
287-98.

Brandom, R., 2002, Tales of the mighty dead : historical essays in the metaphysics of intentionality, Har-
vard University Press, Cambridge.

Brooks, F.P. & Jr., 1987, No Silver Bullet - Essence and Accidents of Software Engineering, Computer,
20(4), pp. 10-9.

Brown, B., Sellen, A.J. & Geelhoed, E., 2001, Proceedings of the Seventh Conference on European Con-
ference on Computer Supported Cooperative Work, Music Sharing As a Computer Supported Collab-
orative Application. Kluwer Academic Publishers, Norwell, pp. 179-98.

Bruckhaus, T., Madhavji, N.H., Janssen, I. & Henshaw, J., 1996, The Impact of Tools on Software
Productivity, IEEE Softw., 13(5), pp. 29-38.

Bueno, F., Cabeza, D., Carro, M., Hermenegildo, M., Lépez, P. & Puebla, G., 1997, The ciao prolog sys-
tem. reference manual, The CLIP Group, School of Computer Science, Technical University of
Madrid, 1(7).

Burnett, M. 2009, What Is End-User Software Engineering and Why Does It Matter? in V Pipek, MB
Rosson, B de Ruyter & V Wulf (eds), End-User Development, Springer Berlin, Heidelberg, pp. 15-28.

Burnett, M., Cook, C. & Rothermel, G., 2004, End-user Software Engineering, Commun. ACM, 47(9),
pp. 53-8.

Buxton, B., 2007, Sketching User Experiences: Getting the Design Right and the Right Design, Morgan

Kaufmann, San Francisco.

11. Bibliography 199

Biischer, M., Gill, S., Mogensen, P. & Shapiro, D., 2001, Landscapes of practice: Bricolage as a method
for situated design, Computer Supported Cooperative Work (CSCW), 10(1), pp. 1-28.

Carroll, J., 2004, Proceedings of the ECIS 2004, Completing Design in Use: Closing the Appropriation
Cycle. pp. 337-47.

Carroll, J. et al., 2002, Proceedings of the 35th Annual Hawaii International Conference on System Sci-
ences, 2002. HICSS, Just what do the youth of today want? Technology appropriation by young people.
pp. 1777-85.

Castells, M., 2000, The Rise of the Network Society, Blackwell Publishers, Inc.

Chappell, D., 1996, Understanding ActiveX and OLE: A Guide for Developers and Managers, 1st ed. Mi-
crosoft Press, Redmond, Wash.

Chau, P.Y.K., 1996, An empirical investigation on factors affecting the acceptance of CASE by systems
developers, Information and Management, 30(6), pp. 269-80.

Chervany, N.L. & Lending, D., 1998, CASE tools: understanding the reasons for non-use, SIGCPR Com-
put. Pers., 19(2), pp. 13-26.

Chikofsky, E.J., 1989, Computer-aided software engineering (CASE): software development, The Institute
of Electrical and Electronics Engineers, New York.

Clements, P.C. & Northrop, L.M., 2002, Software Product Lines: Practices and Patterns, Addison Wesley

Professional, Boston.

Coleman, G. & O'Connor, R., 2008, Investigating software process in practice: A grounded theory per-
spective, J. Syst. Softw., 81(5), pp. 772-84.

Costabile, M.F., Dittrich, Y., Fischer, G. & Piccinno, A. (eds.), 2011, End-User Development - Third In-
ternational Symposium, IS-EUD 2011, Torre Canne, Italy, June 7-10,, Springer, .

Costabile, M.F., Fogli, D., Mussio, P. & Piccinno, A. 2006, End-user development: The software shaping
workshop approach, in End user development, Springer, pp. 183-205.

Crowston, K., Wei, K., Howison, J. & Wiggins, A., 2008, Free/Libre open-source software development:
What we know and what we do not know, ACM Comput. Surv., 44(2), pp. 7:1-7:35.

Cummins, H. & Ward, T., 2013, Enterprise OSGi in action : with examples using Apache Aries, Man-
ning, Shelter Island, NY.

Dahlbéck, N., Jonsson, A. & Ahrenberg, L., 1993, Wizard of Oz studies - why and how, Knowledge-based
systems, 6(4), pp. 258-66.

Davis, F.D., 1989, Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Tech-
nology, MIS Quarterly, 13(3), pp. 319-40.

Dayley, L.D., 2012, Photoshop CS6 bible, Wiley Pub., Inc, Indianapolis, IN.

Des Rivieres, J. & Wiegand, J., 2004, Eclipse: a platform for integrating development tools, IBM Syst. J.,
43(2), pp. 371-83.

Dittrich, Y., 2014, Software engineering beyond the project — Sustaining software ecosystems, Information

and Software Technology.

Dittrich, Y., Burnett, M., Mgrch, A.I. & Redmiles, D. (eds.), 2013, End-user development 4th Internatio-
nal Symposium, IS-EUD 2013, Copenhagen, Denmark, June 10-13, 2013. Proceedings, Springer, .

200 11. Bibliography

Dittrich, Y., Lindeberg, O. & Lundberg, L. 2006, End-User Development as Adaptive Maintenance, in H
Lieberman, F Paterno & V Wulf (eds), End User Development, Springer Netherlands, pp. 295-313.

Dittrich, Y., Vaucouleur, S. & Giff, S., 2009, ERP Customization as Software Engineering: Knowledge
Sharing and Cooperation, IEEE Software, 26(6), pp. 41-7.

Dix, A., 2007, Proceedings of the 21st British HCI Group Annual Conference on People and Computers:
HCI...but not as we know it - Volume 2, Designing for appropriation. British Computer Society, pp.
27-30.

Dourish, P.; 1996, Open Implementation and Flezibility in CSCW Toolkits, Department of Computer Sci-
ence of University College London, London.

Dourish, P., 2003, The Appropriation of Interactive Technologies: Some Lessons from Placeless Docu-
ments, Computer Supported Cooperative Work (CSCW), 12(4), pp. 465-90.

Doérner, C., HeB, J. & Pipek, V., 2008, CHASE '08: Proceedings of the 2008 International Workshop on
Cooperative and Human Aspects of Software Engineering, Fostering user-developer collaboration with
infrastructure probes. ACM, New York, pp. 48-4.

Draxler, S. & Stevens, G., 2011, Supporting the Collaborative Appropriation of an Open Software
Ecosystem, Computer Supported Cooperative Work (CSCW), 20, pp. 403-48.

Draxler, S., Sander, H. & Stevens, G., 2010, Multikonferenz Wirtschaftsinformatik 2010, Provisioning 2.0:
Diffusion kleinteiliger Software in sozialen Netzwerken. Universitdtsverlag Gottingen, Gottingen, pp.
665-77.

Draxler, S. et al., 2009, Supplementary Proceedings of the 11th European Conference on Computer Sup-
ported Cooperative Work, Peerclipse: Tool Awareness in Local Communities. Vienna, Austria, pp.
19-20.

Draxler, S. et al., 2012, Proceedings of the 2012 ACM annual conference on Human Factors in Computing
Systems, Supporting the social context of technology appropriation: on a synthesis of sharing tools and
tool knowledge. ACM, New York, pp. 2835-44.

du Gay, P., Hall, S., Janes, L., Mackay, H. & Negus, K., 1997, Doing Cultural Studies: The Story of the
Sony Walkman, SAGE publications India, New Delhi.

Eclipse Foundation, 2010, Eclipse Community Survey 2010, http://www.eclipse.org/org/community__sur-
vey/Eclipse__Survey_2010_Report.pdf, pp. 1-30.

Ehn, P., 1990, Work-Oriented Design of Computer Artifacts, L. Erlbaum Associates Inc., Hillsdale.

Elshazly, H. & Gover, V., 1993, A Study on the Evaluation of CASE Technology, Journal of Information
Technology Management, 4(1).

Eriksson, J., 2008, Supporting the Cooperative Design Process of End-User Tailoring, Blekinge Institute of
Technology, Karlskrona.

Eriksson, J. & Dittrich, Y., 2007, Combining tailoring and evolutionary software development for rapidly
changing business systems, Journal of Organizational and End User Computing (JOEUC), 19(2), pp.
47-64.

Eriksson, J. & Dittrich, Y., 2009, Achieving sustainable tailorable software systems by collaboration be-
tween end-users and developers, Fvolutionary Concepts in End User Productivity and Performance:
Applications for Organizational Progress, pp. 19-34.

11. Bibliography 201

Erl, T., 2005, Service-oriented architecture : concepts, technology, and design, Prentice Hall Professional
Technical Reference, Upper Saddle River, NJ.

EvansData, 2007, 3rd Annual Eclipse Global Enterprise Survey Research Findings Public Version, http:/
Jwiki.eclipse.org/images/d/df/EDC _SurveyPreso__public_version.pdf, pp. 1-17.

Eveland, J.D., Blanchard, A., Brown, W. & Mattocks, J., 1994, Proceedings of the 1994 ACM conference
on Computer supported cooperative work, The role of “help networks” in facilitating use of CSCW
tools. ACM, pp. 265-74.

Fernstrom, C., Narfelt, K.- & Ohlsson, L., 1992, Software factory principles, architecture, and experi-
ments, IEEE Software, 9(2), pp. 36-44.

Fichman, R.G. & Carroll, W.E. 2000, The Diffusion and Assimilation of Information Technology Innova-
tions, in RW Zmund (ed), Framing the Domains of IT Management: Projecting the Future... Through
the Past, Pinnaflex Educational Resources Inc, .

Findlater, L., McGrenere, J. & Modjeska, D., 2008, Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, Fvaluation of a Role-based Approach for Customizing a Complex De-
velopment Environment. ACM, pp. 1267-70.

Finlay, P.N. & Mitchell, A.C., 1994, Perceptions of the Benefits from the Introduction of CASE: An Em-
pirical Study, MIS Quarterly, 18(4), pp. 353-70.

Firesmith, D., 2005, Are Your Requirements Complete? Journal of Object Technology, 4(1), pp. 27-43.

Fischer, G., 1994, Domain-oriented design environments, Automated Software Engineering, 1(2), pp.
177-203.

Fischer, G., 2009, Proceedings of the 2nd International Symposium on End-User Development, End-User
Development and Meta-Design: Foundations for Cultures of Participation. Springer, Heidelberg, pp.
3-14.

Fisher, A.S., 1991, CASE: using software development tools, 2nd ed. John Wiley & Sons, Inc., New York.

Floyd, C., Mehl, W.-M., Reisin, F.-M., Schmidt, G. & Wolf, G., 1989, Out of Scandinavia: Alternative
Approaches to Software Design and System Development, Human-Computer Interaction, 4(4), pp.
253-350.

Forte, G. 1993, Integrated CASE Environments, in TJ Bergin (ed), Computer-aided software engineering:
Issues and trends for the 1990s and beyond, Idea Group Inc (IGI), Hershey, pp. 3-52.

Fowler, L., Allen, M., Armarego, J. & Mackenzie, J., 2000, 9th Annual Teaching Learning Forum,
Learning styles and CASE tools in software engineering. Curtin University of Technology, Perth,
W.A.

Franke, N. & Piller, F., 2002, Configuration Toolkits for Mass Customization, Setting a Research Agenda.
Arbeitsberichte des Lehrstuhls fir Allgemeine und Industrielle Betriebswirtschaftslehre, Technische
Universitdt Miinchen, 33, p. 4.

Friedrich, J. & Rodiger, K.-H. (eds.), 1991, Computergestiitzte Gruppenarbeit (CSCW), Vieweg+Teubner
Verlag, Wiesbaden.

Frost, R., 2007, Jazz and the Eclipse Way of Collaboration, IEEE Software, 24(6), pp. 114-7.

202 11. Bibliography

Fuchs, L., Pankoke-Babatz, U. & Prinz, W., 1995, Proceedings of the Fourth Conference on European
Conference on Computer-Supported Cooperative Work, Supporting Cooperative Awareness with Local
Event Mechanisms: The Groupdesk System. Kluwer Academic Publishers, pp. 247-62.

Fuggetta, A., 1993, A Classification of CASE Technology, Computer, 26(12), pp. 25-38.

Gamma, E. & Beck, K., 2003, Contributing to Eclipse: Principles, Patterns, and Plugins, Addison Wesley
Longman Publishing Co., Inc., Redwood City.

Gamma, E. & Beck, K., 2004, Contributing to Eclipse: Principles, Patterns, and Plug-ins, Addison-Wes-
ley Professional, Redwood City.

Gantt, M. & Nardi, B.A., 1992, Proceedings of the SIGCHI conference on Human factors in computing
systems, Gardeners and gurus: patterns of cooperation among CAD wusers. ACM, New York, pp.
107-17.

Garrick, J., 2012, Informal Learning in the Workplace: Unmasking Human Resource Development, Rout-
ledge, New York.

Geer, D., 2005, Eclipse becomes the dominant Java IDE, Computer, 38(7), pp. 16-8.
Geertz, C., 1973, The interpretation of cultures: Selected essays, Basic Books, New York.

Glaser, B. & Strauss, A., 1967, The Discovery of Grounded Theory: Strategies for Qualitative Research,
Aldine Transaction, New Brunswick and London.

Glaser, B.G., 1978, Theoretical sensitivity: Advances in the methodology of grounded theory, Sociology
press, Mill Valley, CA.

Glickstein, B., 2010, Writing GNU Emacs Eztensions: Editor Customizations and Creations with Lisp,
O'Reilly Media, Inc.

Gong, L., 2001, JXTA: a network programming environment, IEEE Internet Computing, 5(3), pp. 88-95.
Graham, W., 2012, Beginning Facebook game apps development, Apress, New York.
Greif, I. & Sarin, S., 1987, Data Sharing in Group Work, ACM Trans. Inf. Syst., 5(2), pp. 187-211.

Grinter, R.E., Edwards, W.K., Newman, M.W. & Ducheneaut, N., 2005, Proceedings of the ninth confer-
ence on European Conference on Computer Supported Cooperative Work, The work to make a home
network work. Springer-Verlag New York, Inc., Paris, France, pp. 469-88.

Grinter, R.E., Herbsleb, J.D. & Perry, D.E., 1999, GROUP '99: Proceedings of the international ACM
SIGGROUP conference on Supporting group work, The geography of coordination: dealing with dis-
tance in RED work. ACM Press, New York, pp. 306-15.

Gross, T., 2013, Supporting Effortless Coordination: 25 Years of Awareness Research, Computer Support-
ed Cooperative Work (CSCW), 22(4-6), pp. 425-74.

Grudin, J., 1988, Proceedings of the 1988 ACM Conference on Computer-supported Cooperative Work,
Why CSCW Applications Fuail: Problems in the Design and Fvaluationof Organizational Interfaces.
ACM, New York, pp. 85-93.

Hamilton, G., 1997, JavaBeans API Specification 1.01, Sun Microsystems.

Hansen, K.M., 2003, Proceedings of TIS 2003 Workshop on Tool Integration in System Development, Ac-
tivity-Centred Tool Integration — Using Type-Based Publish/Subscribe for Peer-to-Peer Tool Integra-
tion. ACM, New York.

11. Bibliography 203

Hardgrave, B.C. & Johnson, R.A., 2003, Toward an information systems development acceptance model:
the case of object-oriented systems development, IEEE Transactions on Engineering Management,
50(3), pp. 322-36.

Hartmann, A., Herrmann, T., Rohde, M. & Wulf, V. (eds.), 1994, Menschengerechte Groupware - Soft-

ware-ergonomische Gestaltung und partizipative Umsetzung, Teubner, Stuttgart.

Hartswood, M. et al. 2008, Co-Realization: Toward a Principled Synthesis of Ethnomethodology and Par-
ticipatory Design, in MS Ackerman, CA Halverson, MS Erickson & WA Kellog (eds), Resources, Co-
Evolution and Artifacts, Springer London, pp. 59-94.

Heath, C., Luff, P. & Cambridge, G., 1992, Collaboration and Control: Crisis Management and Multime-
dia Technology in London Underground Line Control Rooms, Computer Supported Cooperative Work,
1, pp. 69-94.

Henderson, A. & Kyng, M. 1992, There's no place like home: continuing design in use, in J Greenbaum &
M Kyng (eds), Design at work: cooperative design of computer systems, L. Erlbaum Associates Inc.,
pp. 219-40.

Henkel, J., 2004, Open Source Software from Commercial Firms — Tools, Complements, and Collective In-
vention, Zeitschrift fir Betriebswirtschaft, 74(4), pp. 1-23.

Hinn, D.M., Wang, X.C. & Twidale, M.B., 2004, IEEE International Conference on Advanced Learning
Technologies, 2004. Proceedings, Collaborative learning of computer applications in the contexts of
work, learning, and play. IEEE, pp. 201-5.

Houser, C. & Kalter, S.D., 1992, Eoops: an object-oriented programming system for Emacs-Lisp, SIG-
PLAN Lisp Pointers, V(3), pp. 25-33.

Tivari, J., 1996, Why are CASE tools not used? Commun. ACM, 39(10), pp. 94-103.

Jansen, S., Brinkkemper, S. & Finkelstein, A., 2007, IFIP Working Conference on Virtual Enterprises
(Pro-VE): Establishing The Foundation Of Collaborative Networks, Providing Transparency In The
Business Of Software: A Modeling Technique For Software Supply Networks. Springer, Boston, pp.
677-86.

Jansen, S., Brinkkemper, S. & Finkelstein, A., 2008, 15th Annual EuroMA Conference (Euroma 2008),
Component Assembly Mechanisms and Relationship Intimacy in a Software Supply Network. Euro-

pean Operations Management Association, Groningen, Netherlands.

Jansen, S., Cusumano, M.A. & Brinkkemper, S., 2013, Software Ecosystems: Analyzing and Managing
Business Networks in the Software Industry, Edward Elgar Publishing, Cheltenham.

Jansen, S., Finkelstein, A. & Brinkkemper, S., 2009, 31st International Conference on Software Engineer-
ing, A Sense of Community: A Research Agenda for Software Ecosystems. IEEE, Vancouver, Canada,
pp. 187-90.

Jirotka, M., Gilbert, N. & Luff, P., 1992, On the social organisation of organisations, Computer Supported
Cooperative Work (CSCW), 1(1-2), pp. 95-118.

Johnson, R., 2003, Expert one-on-one J2EE design and development, Wrox, Indianapolis, IN.

Joshua, J.V.; Alao, D.O., Okolie, S.0. & Awodele, O., 2013, Software Ecosystem: Features, Benefits and
Challenges, International Journal of Advanced Computer Science and Applications, 4(8).

204 11. Bibliography

Kahler, H., 1995, From taylorism to tailorability supporting organizations with tailorable software and
object orientation, Advances in Human Factors/Ergonomics, 20, pp. 995-1000.

Kahler, H., 2001a, More Than WORDs — Collaborative Tailoring of a Word Processor, Journal of Univer-
sal Computer Science, 7(9), pp. 826-47.

Kahler, H., 2001b, Supporting collaborative tailoring, Department of Communication, Journalism and
Computer Science, Roskilde.

Karasti, H., Baker, K.S. & Halkola, E., 2006, Enriching the Notion of Data Curation in E-Science: Data
Managing and Information Infrastructuring in the Long Term Ecological Research (LTER) Network,
Computer Supported Cooperative Work, 15(4), pp. 321-58.

Karasti, H., Baker, K.S. & Millerand, F., 2010, Infrastructure time: long-term matters in collaborative de-
velopment, Computer Supported Cooperative Work, 19(3-4), pp. 377-415.

Kelle, U., 2001, Sociological Explanations between Micro and Macro and the Integration of Qualitative
and Quantitative Methods, Forum Qualitative Sozialforschung / Forum: Qualitative Social Research,
2(1).

Kelle, U., 2005, Emergence" vs. "Forcing" of Empirical Data? A Crucial Problem of "Grounded Theory"
Reconsidered, Forum Qualitative Sozialforschung / Forum: Qualitative Social Research, 6(2).

Kemerer, C.F., 1992, How the Learning Curve Affects CASE Tool Adoption, IEEE Softw., 9(3), pp. 23-8.
Kernighan, B.W. & Plauger, P.J., 1976, Software tools, SIGSOFT Softw. Eng. Notes, 1(1), pp. 15-20.

Khalid, H. & Dix, A., 2010, 2010 International Conference on User Science and Engineering (i-USEr),
Learning from the appropriation of photologs. pp. 311-8.

Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A., Burnett, M., Erwig, M., Scaffidi, C., Lawrance, J.,
Lieberman, H., Myers, B., Rosson, M.B., Rothermel, G., Shaw, M. & Wiedenbeck, S., 2011, The
State of the Art in End-user Software Engineering, ACM Comput. Surv., 43(3), pp. 21:1-21:44.

Kobsa, A. & Wahlster, W., 1989, User models in dialog systems, Springer-Verlag, Berlin ; New York.

Lave, J. & Wenger, E., 1991, Situated learning: Legitimate peripheral participation, Cambridge university
press, Cambridge.

Le Berre, D. & Rapicault, P., 2009, IWOCE '09: Proceedings of the 1st International Workshop on Open
Component Ecosystems, Dependency management for the eclipse ecosystem: eclipse p2, metadata and
resolution. ACM, New York, pp. 21-30.

Lieberman, H., Paterno, F. & Wulf, V. (eds.), 2006, End User Development, Springer, Dordrecht,
Netherlands.

Linden, G., Smith, B. & York, J., 2003, Amazon.com recommendations: item-to-item collaborative filter-
ing, IEEE Internet Computing, 7(1), pp. 76-80.

Livingston, E., 1987, Making sense of ethnomethodology, Routledge & Kegan Paul, London.

Lundell, B. & Lings, B., 2004, Changing perceptions of CASE technology, Journal of Systems and Soft-
ware, 72(2), pp. 271-80.

Maalej, W. & Happel, H.-J., 2008, A Lightweight Approach for Knowledge Sharing in Distributed Soft-
ware Teams, Practical Aspects of Knowledge Management, pp. 14-25.

11. Bibliography 205

Maansaari, J. & livari, J., 1999, The evolution of CASE usage in Finland between 1993 and 1996, Infor-
mation and Management, 36(1), pp. 37-53.

Mackay, W.E., 1990a, Proceedings of the 1990 ACM conference on Computer-supported cooperative
work, Patterns of sharing customizable software. ACM, New York, pp. 209-21.

Mackay, W.E., 1990b, Users And Customizable Software: A Co-Adaptive Phenomenon, Massachusetts In-
stitute of Technology.

MacLean, A., Carter, K., Lovstrand, L. & Moran, T., 1990, Proceedings of the 1990 SIGCHI Conference
on Human Factors in Computing Systems, User-tailorable systems: pressing the issues with buttons.
ACM, New York, pp. 175-82.

Malone, T.W., Lai, K.-Y. & Fry, C., 1995, Experiments with Oval: a radically tailorable tool for coopera-
tive work, ACM Trans. Inf. Syst., 13(2), pp. 177-205.

Markus, G., 1978, Marzism and Anthropology: The Concept of Human FEssence in the Philosophy of
Marz, Van Gorcum Ltd.

McClure, C.L., 1989, Case Is Software Automation, Prentice Hall, Upper Saddle River.
Mcllroy, M.D., 1968, Mass produced software components, Garmich, Germany.

McKinsey Global Institute, Chui, M., Manyika, J., Bughin, J., Dobbs, R., Roxburgh, C., Sarrazin, H.,
Sands, G. & Westergren, M., 2012, The social economy: Unlocking value and productivity through so-
cial technologies, McKinsey Global Institute.

Melton, B., 2013, Microsoft Office Professional 2013, O'Reilly Media, Sebastopol, Calif.

Mendoza, L.E., Rojas, T. & Pérez, M.A., 2001, Organizational Indicators for CASE Tools Selection: A
Case Study, Revista Colombiana de Computacion, 2(2).

Messerschmitt, D.G. & Szyperski, C., 2003, Software Ecosystem: Understanding an Indispensable Technol-
ogy and Industry, The MIT Press.

Messerschmitt, D.G. & Szyperski, C., 2005, Software Ecosystem : Understanding an Indispensable Tech-
nology and Industry, The MIT Press.

Muller, M.J., Haslwanter, J.H. & Dayton, T. 1997, Participatory Practices in the Software Lifecycle, in
MG Helander, TK Landauer & PV Prabhu (eds), Handbook of Human-Computer Interaction, Elsevi-
er, Amsterdam, pp. 256-97.

Murphy, G.C., Kersten, M. & Findlater, L., 2006, How Are Java Software Developers Using the Eclipse
IDE? IEEE Software, 23(4), pp. 76-83.

Murphy-Hill, E. & Murphy, G.C., 2011, Proceedings of the ACM 2011 conference on Computer supported
cooperative work, Peer interaction effectively, yet infrequently, enables programmers to discover new
tools. ACM, New York, pp. 405-14.

Mgrch, A., 1997, Three levels of end-user tailoring: customization, integration, and extension, Computers
and design in context, MIT Press, Cambridge, MA.

Mgrch, AL, Stevens, G., Won, M., Klann, M., Dittrich, Y. & Wulf, V., 2004, Component-based technolo-
gies for end-user development, Commun ACM, 47(9), pp. 59-62.

Nardi, B.A., 2010, My life as a night elf priest : an anthropological account of World of warcraft, Universi-
ty of Michigan Press : University of Michigan Library, Ann Arbor.

206 11. Bibliography

NIST/ECMA TR/55, 1993, Reference Model for Frameworks of Software Engineering Environments,
http://www.cs.umd.edu/~muvz/pub/sp.500-211.pdf, .

Northrop, L.M. & Clements, P.C. 2004, An Introduction to Software Product Lines, in RL Nord (ed),
Software Product Lines, Springer Berlin Heidelberg, pp. 322-.

O'Brien, J.A. & Montazemi, A.R., 2003, Management information systems: managing information tech-

nology in the business enterprise, McGraw-Hill Ryerson, Limited.
Oevermann, U. & Allert, T., 1987, Modern German sociology, Columbia University Press, New York.
Olson, G.M. & Olson, J.S., 2000, Distance Matters, Hum.-Comput. Interact., 15(2), pp. 139-78.

Oppermann, R., 1994, Adaptively supported adaptability, International Journal of Human-Computer
Studies, 40(3), pp. 455-72.

Orlikowski, W.J., 1992, Proceedings of the 1992 ACM conference on Computer-supported cooperative
work, Learning from Notes: organizational issues in groupware implementation. ACM, New York, pp.
362-9.

Orlikowski, W.J., 1993, CASE Tools as Organizational Change: Investigating Incremental and Radical
Changes in Systems Development, MIS Quarterly, 17(3), pp. 309-40.

Orlikowski, W.J., 2000, Using technology and constituting structures: A practice lens for studying tech-
nology in organizations, Organization science, 11(4), pp. 404-28.

OSGi Alliance, 2005, About the OSGi Service Platform, OSGi Alliance, San Ramon.

Ozakca, M. & Lim, Y.-K., 2006, CHI '06 Extended Abstracts on Human Factors in Computing Systems,
A Study of Reviews and Ratings on the Internet. ACM, New York, pp. 1181-6.

O’Mahony, S., Diaz, F. & Mamas, E., 2005, IBM and Eclipse (A), Harvard Business School case, pp. 906
1007.

Pilz, D., 2007, Krisengeschépfe: zur Theorie und Methodologie der objektiven Hermeneutik, Deutscher
Universitt s-Verlag GWV Fachverlage GmbH, Wiesbaden (GWYV).

Pipek, V., 2005, From tailoring to appropriation support: Negotiating groupware usage, University of
Oulu, Oulu.

Pipek, V. & Kahler, H., 2004, Tailoring together, International Reports on Socio-Informatics, 1(2), pp. 5 -
47.

Pipek, V. & Kahler, H. 2006, Supporting Collaborative Tailoring, in End User Development, Springer,
Dordrecht.

Pipek, V. & Wulf, V., 2009, Infrastructuring: Towards an Integrated Perspetive on the Design and Use of
Information Technology, Journal of the Association of Information System (JAIS).

Pipek, V., Rosson, M.B., Ruyter, B. & Wulf, V. (eds.), 2009, End-User Development, Springer Berlin,
Heidelberg.

Poole, M.S. & DeSanctis, G., 1989, Emerging Technologies and Applications Track, Proceedings of the
Twenty-Second Annual Hawaii International Conference on System Sciences, 1989. Vol 1V, Use of
group decision support systems as an appropriation process. IEEE, pp. 149-157 vol.4.

Rai, A. & Patnayakuni, R., 1996, A structural model for CASE adoption behavior, J. Manage. Inf. Syst.,
13(2), pp. 205-34.

11. Bibliography 207

Ramirez Zuniga, L., 2012, Practice-centered support for indoor navigation : design of a ubicomp platform
for firefighters, Shaker, Aachen.

Randall, D., Harper, R. & Rouncefield, M., 2005, Proceedings of the Ethnographic Praxis in Commerce
(EPIC) Conference, Fieldwork and Ethnography in Design - A perspective from CSCW. Redmond,
USA.

Reckwitz, A., 2002, Toward a Theory of Social Practices: A Development in Culturalist Theorizing, Furo-
pean Journal of Social Theory, 5(2), pp. 243-63.

Reichling, T., Veith, M. & Wulf, V., 2007, Expert recommender: Designing for a network organization,
Computer Supported Cooperative Work (CSCW), 16(4-5), pp. 431-65.

Reichwald, R., Seifert, S., Walcher, D. & Piller, F., 2004, Proceedings of 2004 Hawaii International Con-
ference on Computer Sciences (HICSS), Customers as part of value webs: Towards a framework for
webbed customer innovation tools. IEEE, pp. 15-8.

Riemenschneider, C.K., Hardgrave, B.C. & Davis, F.D., 2002, Explaining Software Developer Acceptance
of Methodologies: A Comparison of Five Theoretical Models, IEEE Trans. Softw. Eng., 28(12), pp.
1135-45.

Robbins, J. 2005, Adopting Open Source Software Engineering (OSSE) Practices by Adopting OSSE
Tools, in J Feller, B Fitzgerald, S Hissam & K Lakhani (eds), Perspectives on Free and Open Source
Software, The MIT Press, pp. 245-64.

Robertson, T., 1998, Shoppers and Tailors: Participative Practices in Small Australian Design Companies,
Computer Supported Cooperative Work (CSCW), 7(3-4), pp. 205-21.

Robinson, M., 1993, Proceedings of the Third Conference on European Conference on Computer-Support-
ed Cooperative Work, Design for unanticipated use. Kluwer Academic Publishers, Norwell, MA, pp.
187-202.

Rogers, E.M., 2003, Diffusion of Innovations, 5th Edition, Original ed. Free Press.

Rohde, M., Stevens, G., Brodner, P. & Wulf, V., 2009, Proceedings of the 4th International Conference
on Design Science Research in Information Systems and Technology, Towards a paradigmatic shift in
IS: designing for social practice. ACM, New York, pp. 15:1-15:11.

Rohr, W., 1979, Aneignung und Persénlichkeit - Studie tber die theoretisch-methodologische Bedeutung
der marzxistisch-leninistischen Aneignungsauffassung fir die philosophische Personlichkeitstheorie,
Akademie-Verlag, Berlin.

Ruel, H.J.M. 2002, The non-technical side of office technology: managing the clarity of the spirit and the
appropriation of office technology, in CR Snodgrass & EJ Szewczak (eds), Managing the human side
of information technology: Challenges and solutions, IGI Global, pp. 78-104.

Sarma, A., Bortis, G. & Hoek, A.V.D., 2007, Proceedings of the twenty-second IEEE/ACM international
conference on Automated software engineering, Towards supporting awareness of indirect conflicts
across software configuration management workspaces. ACM, New York, pp. 94-103.

Sarma, A., Noroozi, Z. & Hoek, A.V.D., 2003, Proceedings of the 25th International Conference on Soft-
ware Engineering, Palantir: Raising Awareness among Configuration Management Workspaces. IEEE
Computer Society, Washington, DC, USA, pp. 444-54.

208 11. Bibliography

Schmidt, K. 2000, The critical role of workplace studies in CSCW, in P Luff, J Hindmarsch & C Heath
(eds), Workplace Studies: Recovering Work Practice and Informing System Design, University Press,
Cambridge, pp. 141-9.

Schmidt, K., 2011, Cooperative work and coordinative practices, Springer, Heidelberg.

Schuler, D. & Namioka, A., 1993, Participatory Design Principles and Practices, Lawrence Erlbaum

Associates.

Schwartz, T., 2007, Praxisgerechte Unterstiitzung kooperativer Aneignung am Beispiel der Eclipse IDE,

Siegen.
Sharma, S. & Rai, A., 2000, CASE deployment in IS organizations, Commun. ACM, 43(1), pp. 80-8.
Shaw, M. & Clements, P., 2006, The golden age of software architecture, IEEE Software, 23(2), pp. 31-9.

Shull, F., Singer, J. & Sjgberg, D.I.LK., 2008, Guide to advanced empirical software engineering, Springer,
London.

Sigfridsson, A., 2010, The purposeful adaptation of practice: an empirical study of distributed software de-
velopment, University of Limerick, Department of Computer Science & Information Systems,

Limerick.

Silverstone, R. & Haddon, L., 1996, Design and the domestication of ICTs: technical change and everyday
life, Communicating by Design: The Politics of Information and Communication Technologies, pp.

44-74.
Sommerville, 1., 2007, Software Engineering, Pearson Education.

Stallman, R.M., 1981, Proceedings of the ACM SIGPLAN SIGOA symposium on Text manipulation,
EMACS the extensible, customizable self-documenting display editor. ACM, New York, pp. 147-56.

Star, S.L. & Bowker, G.C. 2006, How to infrastructure, in Handbook of new media: Social shaping and so-
cial consequences of ICTs, SAGE Publications, New Delhi, pp. 230-45.

Star, S.L. & Ruhleder, K., 1994, Proceedings of the 1994 ACM conference on Computer supported co-
operative work, Steps towards an ecology of infrastructure: complex problems in design and access for
large-scale collaborative systems. ACM, New York, pp. 253-64.

Star, S.L. & Ruhleder, K., 1996, Steps Toward an Ecology of Infrastructure: Design and Access for Large
Information Spaces, Information Systems Research, 7(1), pp. 111-34.

Star, S.L. & Ruhleder, K. 2001, Steps toward an Ecology of Infrastructure: Design and Access for Large
Information Spaces, in J Yates & J van Maanen (eds), Information Technology and Organizational
Transformation: History, Rhetoric, and Practice, SAGE Publications, Inc., Thousand Oaks, Calif.,
pp- 305-46.

Stein, A., 2008, Proceedings of the 2008 international conference on Digital government research, Collabo-

rative software ecosystems. Digital Government Society of North America, Montreal, Canada, pp. 5-.

Stevens, G., 2009, Understanding and Designing Appropriation Infrastructures: Artifacts as boundary ob-

jects in the continuous software development, Universitdt Siegen, Siegen.

Stevens, G. & Draxler, S., 2010, Proceedings of the 9th International Conference on Designing Coopera-
tive Systems, Appropriation of the Eclipse Ecosystem: Local Integration of Global Network Produc-
tion. Springer, London, pp. 287-308.

11. Bibliography 209

Stevens, G. & Wiedenhofer, T., 2006, Proceedings of the 4th Nordic conference on Human-computer in-
teraction: changing roles, CHIC - a pluggable solution for community help in context. ACM, Oslo,
Norway, pp. 212-21.

Stevens, G., Pipek, V. & Wulf, V., 2009, Proceedings of the 2nd International Symposium on End-User
Development, IS-EUD 2009, Appropriation Infrastructure: Supporting the Design of Usages. Springer,
Siegen, pp. 50-69.

Stevens, G., Pipek, V. & Wulf, V., 2010, Appropriation infrastructure: mediating appropriation and
production work, Journal of Organizational and End User Computing (JOEUC), 22(2), pp. 58-81.

Stevens, G., Quaisser, G. & Klann, M. 2006, Breaking it up: An industrial case study of component-based
tailorable software design, in H Liebermann, F Paterno & V Wulf (eds), End user development,
Springer, pp. 269-94.

Stiemerling, O., 2000, Component-based tailorability, University of Bonn, Bonn.

Strauss, A., 1988, The articulation of project work: An organizational process, Sociological Quarterly,
29(2), pp. 163-78.

Strauss, A. & Corbin, J., 1996, Grounded Theory: Grundlagen Qualitativer Sozialforschung, Beltz, Psy-
chologie-Verlag-Union, Weinheim.

Strauss, A.C. & Corbin, J.M., 1997, Grounded Theory in Practice, 1st ed. SAGE Publications, Inc, New-
bury Park, CA.

Striibing, J., 1992, Arbeitsstil und Habitus - zur Bedeutung kultureller Phinomene in der Programmierar-
beit, Wissenschaftliches Zentrum fiir Berufs- und Hochschulforschung der Gesamthochschule Kassel,
Kassel.

Suchman, L., Blomberg, J., Orr, J.E. & Trigg, R., 1999, Reconstructing Technologies as Social Practice,
American Behavioral Scientist, 43(3), pp. 392-408.

Svensson, M.S. & Sokoler, T., 2008, Proceedings of the 5th Nordic Conference on Human-computer Inter-
action: Building Bridges, Ticket-to-talk-television: Designing for the Circumstantial Nature of Every-
day Social Interaction. ACM, pp. 334-43.

Szyperski, C., Gruntz, D. & Murer, S., 2002, Component software: beyond object-oriented programming,
ACM Press ; Addison-Wesley.

Tan, L., Esfandiari, B. & Pagurek, B., 2001, WCOP 2001: Proceedings of the 6 th International Work-
shop on Component-Oriented Programming, The SwapBox: A Test Container and a Framework for
Hot-swappable JavaBeans.

Taylor, F.W., 1911, The principles of scientific management, Harper & Brothers, New York.

Thompson, R., Higgins, C. & Howell, J., 1991, Personal Computing Toward a Conceptual Model of Uti-
lization, Management Information Systems Quarterly, 15(1).

Trigg, R.H. & Badker, S., 1994, Proceedings of the 1994 ACM conference on Computer supported cooper-
ative work, From implementation to design: tailoring and the emergence of systematization in CSCW.
ACM, pp. 45-54.

Trigg, R.H., Moran, T.P. & Halasz, F.G., 1987, INTERACT'87: Proceedings of the Second IFIP Confer-
ence on Human-Computer Interaction, Adaptability and tailorability in NoteCards. Elsevier Science
Ltd, Amsterdam, p.723.

210 11. Bibliography

Twidale, M., 2005, Over the Shoulder Learning: Supporting Brief Informal Learning, Computer Supported
Cooperative Work (CSCW), 14(6), pp. 505-47.

Twidale, M.B., 2000, Proceedings of the Thirty-Third Annual Hawaii International Conference on System

Sciences, Interfaces for supporting over-the-shoulder learning. Computer Society Press, pp. 33-7.
Vaughan-Nichols, S.J., 2003, The battle over the universal Java IDE, Computer, 36(4), pp. 21-3.

Venkatesh, V. & Davis, F.D., 2000, A theoretical extension of the technology acceptance model: four lon-
gitudinal field studies, Management science, 46(2), pp. 186-204.

Voida, A. et al., 2005, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
Listening in: practices surrounding iTunes music sharing. ACM, New York, pp. 191-200.

Voida, S. et al., 2006, Proceedings of the SIGCHI Conference on Human Factors in Computing Systems,
Share and Share Alike: Exploring the User Interface Affordances of File Sharing. ACM, New York,
pp- 221-30.

von Hippel, E., 1986, Lead users: a source of novel product concepts, Manage. Sci., 32(7), pp. 791-805.

von Hippel, E., 1994, "Sticky Information" and the Locus of Problem Solving: Implications for Innovation,
Management Science, 40(4), pp. 439, 429.

von Hippel, E.V.; 2005, Democratizing Innovation, The MIT Press, Cambridge, MA.
Weber, M., 1949, The Methodology Of The Social Sciences, Later Printing ed. Free Press, Glencoe.

Wenger, E., 1998, Communities of Practice: Learning, Meaning, and Identity, Cambridge University
Press, Cambridge.

Whittaker, S., Frohlich, D. & Daly-Jones, O., 1994, Proceedings of the SIGCHI conference on Human fac-
tors in computing systems celebrating interdependence - CHI '94, Informal workplace communication.
ACM, New York, pp. 131-7.

Wulf, V., 1994, Anpassbarkeit im Prozess Evolutionirer Systementwicklung, GMD-Spiegel, 24(3), pp.
41-6.

Wulf, V., 1995, Mechanisms for Conflict Management in Groupware, Advances in Human Factors/

Ergonomics, 20, pp. 379-84.

Wulf, V., 1999a, Proceedings of OZCHI"99, On Search for Tailoring Functions: Empirical Findings and
Design Concepts. CSU-Publisher, pp. 105-11.

Wulf, V., 1999b, Proceedings of the International ACM SIGGROUP Conference on Supporting Group
Work, “Let's see your search-tool!” - collaborative use of tailored artifacts in groupware. ACM, New
york, pp. 50--59.

Wulf, V., 2000, Exploration environments: Supporting users to learn groupware functions, Interacting
with Computers, 13(2), pp. 265-99.

Wulf, V. & Golombek, B., 2001, Direct activation: A concept to encourage tailoring activities, Behaviour
& Information Technology, 20(4), pp. 249-63.

Wulf, V. & Rohde, M., 1995, Proceedings of the 1st Conference on Designing Interactive Systems:
Processes, Practices, Methods & Techniques, Towards an Integrated Organization and Technology De-
velopment. ACM, New York, pp. 55-64.

11. Bibliography 211

Wulf, V., Pipek, V. & Won, M., 2008, Component-based tailorability: Enabling highly flexible software
applications, Int. J. Hum.-Comput. Stud., 66(1), pp. 1-22.

Wulf, V., Rohde, M., Pipek, V. & Stevens, G., 2011, Proceedings of the ACM 2011 conference on Com-
puter supported cooperative work, Engaging with practices: design case studies as a research frame-
work in CSCW. ACM, New York, pp. 505-12.

Yang, Z. & Jiang, M., 2007, Using Eclipse as a Tool-Integration Platform for Software Development,
IEEE Software, 24(2), pp. 87-9.

Yin, R.K., 2009, Case Study Research: Design and Methods, SAGE.

Zelkowitz, M.V., 1996, Modeling Software Engineering Environment Capabilities, Journal of Systems and
Software, 35(1), pp. 3-14.

Zettel, J., 2005, Methodology Support in CASE Tools and Its Impact on Individual Acceptance and Use:
A Controlled Experiment, Empirical Software Engineering, 10(3), pp. 367-94.

Appendix I: Detailed overview of research sites 213

Appendix I: Detailed overview of research sites

This Appendix contains a detailed overview of the different organizations that were
part of the main empirical field study on Eclipse appropriation. It should adequately
allow to assess the choice of research sites and help to understand some of the results.
Within section 3.5, a much shorter overview is given that is sufficient to understand

the results.

Alpha: Web application and groupware developer

Please note that Alpha is described in more detail within a journal publication (see
section 4.6). I decided to place a shortened version of the description here, for easier
comparison with the other organizations.

Alpha is a small software developing company, typical for the German software indus-
try. The company employs about ten people. In addition, a small number of university
students work part time for the company.

Alpha was founded twenty years ago as a spin-off to commercialize AlphaProduct, a
web application that had been developed during a research project. The application
was implemented using the Python programming language and is accompanied by sev-
eral Java applets. AlphaProduct presents the main asset of the company. Alpha’s mar-
keting strategy is based on licensing AlphaProduct to customers and on creating cus-
tomer-specific adaptations. Furthermore, Alpha is regularly involved in research
projects during which AlphaProduct was continuously extended by innovative

features.

Customer relations are mainly the duty of the CEO. He is supported by assistants
who accomplish general administrative tasks and office work. The software develop-
ment carried out at Alpha deals mainly with the maintenance and the continuous
enhancement of AlphaProduct. This work is mainly conducted by eight software de-
velopers. The development work is organized as projects that can be categorized as
follows: The first type involves client projects that are carried out to realize cus-
tomizations or new features for a specific customer. Typically, client projects have
short durations (few days). Usually two or three developers were involved, depending
on the complexity of the tasks. The second type covers projects to realize innovative
features, typically conducted as a part of funded research projects. These projects are
typically larger (in terms of the amount of work), run for a longer time and are car-
ried out with other partners.

214 Appendix I: Detailed overview of research sites

The CEO typically serves as the interface between the customer and the software de-
velopers in client projects. Usually, the client conveys his wishes and requirements to
the CEO who discusses them with developers in order to make an offer. At the start
of such a project, staffing depends on the actual workload of the developers as well as
on their general expertise, prior knowledge and experience towards the task. To a
large extend, it is the project staff who decide how the project is subdivided into indi-
vidual work packages and how work tasks are assigned. The work is coordinated main-
ly by communication. In addition, other mechanisms are also applied, such as implicit
coordination by using a shared repository. Wherever possible, developers are assigned
to certain tasks based on their previous experience. This promotes the formation of
knowledge niches, meaning that the developers become specialists in one part of the
application (e.g. adapting the data layer, implementing the user interface or writing
Java applets). However, the overall rule in the company is that whatever is necessary
has to be done by whichever person is available.

At the time of the study, parts of the company had started to use the Eclipse IDE for
Java development work as well as for Python development. Nevertheless, several mem-
bers of the core staff were still using text editors and did not plan to switch to the
Eclipse IDE. We interviewed all Eclipse users at Alpha:

John is a computer science student. He works about 10 hours per week at Alpha.
Within the company, he is employed in software development work. He is known as
the Java and Eclipse expert within the company. He has worked with Eclipse for sev-

eral years (since version 2.1) and perceives himself to be an experienced user.

Paul is also a student of computer science. He works about 2 days per week at Alpha.
His tasks are software development using Python and Java. He described himself as a
mature Eclipse user. Both John and Paul learned about Eclipse from programming
courses at the university.

Peter is the CEO of Alpha and also one of the Eclipse users. He holds a degree in
computer science. At the time of the study, he had been using Eclipse for 8 years and
regularly participated in software development tasks at Alpha. Together with many of
the older employees at Alpha, he took his first software development steps in console-
based UNIX environments. While he turned towards Eclipse, some of his employees
still preferred the old ways. He did not portray himself as an expert or power user
when it came to Eclipse, but he appreciated it as a toolbox capable of integrating di-
verse tools, and offering a common look and feel over the whole range of tools.

Appendix I: Detailed overview of research sites 215

Beta: Small web development company

Beta is a small software developing company. It was founded in 2002 by three students
to realize a product idea they had worked on during a project at the university. This
product idea won a national award. However, they unfortunately could not find a cus-
tomer so that the idea never reached the state of a commercial product. In order to
cope with this situation, they started working in different areas. In recent years, Beta
has become a small but successful web development agency which provides services in
three areas: E-Learning, Content Management and E-Commerce. Beta employs about
six persons permanently, but had a quite high turnover rate in the past. In addition,
the company cooperates with a network of freelancers, most of them are web and in-
terface designers. The company has two executive directors with two areas of responsi-
bility: one (Francois, not interviewed) takes care of the customer relations (more of a
CEO role). The other one (Frank) is responsible for the technical issues (CTO).

Beta's main business strategy is to develop individual internet presences in coopera-
tion with their clients. The result is uUsually implemented by means of an open
source content management system and was hosted on Betas servers. In addition,
training courses are provided which enable their clients to change content au-
tonomously and make small adjustments to the web design themselves.

Typical content management projects for clients are carried out as follows: One of Be-
tas directors (usually the CEO) meets with the customer and together they create a
concept. Over time, this concept is further developed by Beta employees and also by
integrating the input of freelance designers. In the end, the concept becomes a prose
description of the project, enhanced by various user interface scribbles, as the compa-
ny viewed their clients as very visual people. Such concepts include graphical design,
interaction design, information about the target group and perhaps technical features.
This concept usually presents the major contractual basis. One of the directors plans
the division of labor and is responsible for overseeing the progress of the project. This
involves negotiations between the client and the company's developers. For example if
requirements are not clear enough or if other additional information is needed, the
technicians and designers inform him of this either face to face in the office or via
email, Skype or telephone. As the CEO serves as an interface to communicate with
freelancers, he is included in the communication if the client has to be consulted in or-
der to clarify the requirements. In general such projects have a duration of about two

or three months.

In addition day-to-day business, Beta also implements and hosts a web-based business
simulation game, used to to teach economics in schools. The server side of the game

216 Appendix I: Detailed overview of research sites

was written in Java, while the web interface was realized in Flash. The initial develop-
ment, the hosting and the sequential enhancement and adjusting of the game were
paid for by a large enterprise as a part of their company initiative to sponsor

education.

While the directors are responsible for the division of labor, there are certain other
constraints. Various workers demonstrated special skills in specific areas of technology
and were therefore engaged in certain projects. Beta made use of Eclipse, Java, PHP,
Typo3 and other tools to deliver their typical projects.

Frank is one of the founders of Beta and fulfills the role of the chief technical officer
(CTO). In cooperation with the CEO, he heads the company. While programming was
of course not his main task at the time, he still sometimes did some work for clients
himself and furthermore overlooked development work. He had been an Eclipse user
since 2004. Whilst not considering himself to be an expert Eclipse user, he argued that

he was experienced.

Daniel was a software engineering trainee at the time of the study. Before training at
Beta, he had completed a three year training course at college to become an IT assis-
tant. During his time at college, he learnt the basics of software engineering and pro-
gramming. At the time of the study, he saw himself as an inexperienced Eclipse user;
he had, however been using Eclipse for six months previous to the study. He initially
worked on the modification of the content management system Typo 3 for two PHP-
based client projects.

Gamma: Software development department at an insurance company

Gamma is an insurance company employing around 1,200 people. Although their main
business is not software development, they still had a need for specialized software ap-
plications e.g. for insurance calculations, to connect brokers and end customers or to
support customer relationship management. The software applications necessary to
achieve this were developed and maintained in-house by a 90 person software develop-
ment department. Within the department, the development and maintenance work
was organized in different development teams. Contact between development teams is
not systematized whereby some development teams are in contact with each other
while others are not. There are no comprehensive formal rules that apply to all project
teams or their mode of working. During the last two years, Gamma has developed a
common service layer, used by some development teams to gain access to certain as-

pects of the business data.

Appendix I: Detailed overview of research sites 217

We interviewed developers of one team that was working on two different projects — a
business-to-business portal for brokers as well as a portal for end customers. The on-
going development started more than a year ago for both projects. Both projects are
based on Java enterprise technology and the developers used Eclipse as their main de-
velopment tool. In the beginning there were about ten people involved: a project
leader, two designers and seven software engineers. Several of these people did not
work for the insurance company itself, but for the consulting company Delta (see next
section). When these projects started, some of Delta's developers joined Gamma's de-
velopment team for the purpose of technology consulting, combined with practical
hands-on training and knowledge exchange while working. The crucial phase of both
projects already lies in the past and most of the external developers (from Delta) as
well as the designers have left the project team. One person, employed by Delta, is
still supporting the project team: the project leader. His job on the hand is to steer
the project of course, but at the same time he introduced some changes in the use of
tools as well as development methods. He introduced the agile development method
Scrum and unit testing, as well as certain new frameworks and tools that were sup-
posed to make development work easier. In the beginning, heading the project was a
full time job but at the time of the study he was supporting the development, im-
provement and maintenance of the system, like the other software developers at Gam-
ma. Both the project leader as well as the people interviewed were all trained software

engineers, each holding a university degree in computer science.

Jan is the project leader for a development project and employed by Delta. While be-
ing paid by Delta, he is actually working full time at Gamma's site. Since 1998 he has
been developing software, especially using the Java programming language. In 2001 he
started working for Delta, executing consulting work and software development at the

customers' sites.

Sven is a software developer and so-called architect. Next to his development duties,
once a month he tailors a new Eclipse IDE exactly to the needs of the project team.
This includes downloading a new Eclipse IDE release (at home), installation of addi-
tional plug-ins, configuration of preference settings, archiving the whole installation
again, carrying the archive into the company on a flash drive and copying the new
package to the company network storage.

Dominik is a software developer and so-called architect. When it comes to tailoring
Eclipse, he relies completely on Sven, whom he calls the team's Eclipse configuration
representative.

218 Appendix I: Detailed overview of research sites

Delta: Software development and consultancy company

Delta is a medium-sized company, employing approximately 50 people including stu-
dents and external workers. It was founded in 1999 and is closely related to a universi-
ty, to the point that some rooms of the university are even used as Delta's offices. One
of its founders is a professor at the university and the company itself is very engaged
in different research projects.

Their main business is customer-specific software development, technology and devel-
opment-related consulting as well as coaching and training courses for software devel-
opment. In the past, Delta was engaged in developing software used in banking, insur-
ance (see Gamma) and public services as well as the development of control rooms to
monitor high-tech machinery (see Epsilon). Software development is usually organized
in different development teams. Development work is hierarchically organized. It is
generally the CEO who contacts the customer and is the person in charge whenever
anything goes wrong. Project leaders work very closely with the customers, often to
the point of working full time at the customer's site. The same is true for many soft-

ware developers.

The CEQ's idea of technology and development training encompasses members of the
company working at the customer's site for quite some time if necessary, in order to
teach certain technological (e.g. Eclipse platform development) and methodological
know-how (e.g. the agile development approach) to the customer's employees. For
example, the project leader interviewed at Gamma was actually one of Delta's

employees.

Another of Delta's specialities is the development of software built on top of Eclipse
technology. While not every person at Delta was involved in this line of work, each
person we interviewed and observed had previously developed new plug-ins for the
Eclipse platform. This renders Delta's employees a very experienced group of Eclipse
users in the study. During this study, we followed one of Delta's project teams. In col-
laboration with their customer (Epsilon), they were developing a large and very flexi-
ble software application for a control room, based on Eclipse. As the machinery con-
trolled by the operators changed constantly, the aim was to give the control room
operators a very flexible tool. At the time, the Eclipse platform was a good base to
deliver just that. In order to achieve this goal, Eclipse was used as a base for the ap-
plication. New plug-ins delivered functionalities. A total of six people were working in
this project team in cooperation with several other people at Epsilon. Everyone in-
volved in the software development has direct contact with the customers. One of

Appendix I: Detailed overview of research sites 219

Delta's specialities was to engage in pair programming with mixed teams (Delta and

customer).

Delta did not establish company-wide regulations or formal rules concerning tool us-
age and configuration. The development teams on the other hand use informal

agreements.

Martin is a software developer and was 23 years old at the time of the study. He is
involved in training and coaching activities. He has used Eclipse since studying at uni-
versity (for about 5 years).

Chris is a student of business informatics, working at Delta. He had worked in soft-
ware development for several different companies for about seven years previously. He

had used Eclipse ever since being involved in software development.

Karl holds a degree in computer science and works full time for Delta. He is involved
in several projects, but mainly works for a larger development project at Epsilon, in
collaboration with Chris. He is very active in exploring new technologies and has been

an Eclipse user for several years.

Epsilon: Machinery maintenance department at large research site

Epsilon is a large research institution which mainly investigates in particle physics. At
the time of the study, Epsilon employed about 1,700 people. Additionally, about 3,000
external workers visit Epsilon for purposes of work or research throughout the year.
We focused on a small group within the organization that is responsible for parts of
the cooling infrastructure. This cooling system is a significant component as the parti-
cle accelerator could not be run without it. The cooling system is a huge machine
(spanning the whole accelerator ring) that cools down the various components of a
particle accelerator. The group started several years ago with three people. At the
time of the study, 20 people were employed to develop the hard- and software neces-
sary for operating and monitoring the cooling machinery. The group was divided into
operators and developers. During the study, we interviewed the development team.

The group consists of people from diverse backgrounds and with a range of skills.
Some come from a physics background, some from (mechanical or electrical) engineer-
ing, but most of them hold a software engineering or computer science degree. They
did whatever was necessary to keep the cooling system going, as a failure would cost
hundreds of thousands of Euros. They collaborate with the physicists in order to fur-
ther develop the system. Usually, the group leader triggers changes that are afterwards
realized as projects. Often other companies are involved in their implementation.

220 Appendix I: Detailed overview of research sites

At the time of the study, they were engaged in a project to replace parts of their soft-
ware infrastructure. They aimed at a software suite to visualize sensor data and com-
plex combinations of sensors, which were built into the cooling system. Six people
worked constantly on this project at that time. Several employees from Delta were
also involved. Sometimes members of Delta visited Epsilon to present the current state
of the project or to work collaboratively with the team at Epsilon.

The work on this project is to some extent decoupled, as the architecture of the sys-
tem allows this kind of flexibility. Meetings to refine requirements, to exchange experi-
ences or to solve problems usually happen ad-hoc. There is no strict separation of
work within the group. If new tasks arise, they are assigned according to people's pre-
vious experience, work-load and interest. During critical times of development, some
of Epsilon's members are involved in pair programming. Once a week they meet to
discuss the state of current tasks/projects.

Stephan is a physicist, holding a Ph.D. He has been an employee at Epsilon ever
since the particle accelerator was built and has used Eclipse since the group leader de-
cided on its introduction, several years ago. Additionally, he is a member of the work-
ers' council. This means that he can only spend a small amount of time on develop-
ment and thus still saw himself as an Eclipse beginner. He uses Eclipse mainly to test
his co-workers' developments. His role is to negotiate between the developers (his col-
leagues) and their users (the operators).

Klaas studied computer science and had formal training in electrical engineering. He
has worked at Epsilon for the last 3 years. At the time of the study, he was involved
in the implementation of Eclipse-based control room software. He had been using
Eclipse for 2.5 years at the time.

Heinke studies business economics. He spent half the week working as a Ph.D. candi-
date and research associate at the local university and the other half at Epsilon,
working on the same project as Klaas. He had been familiar with Eclipse for 5 years
at the time.

Zeta: Medium sized web development company

Zeta is a medium-sized business, employing about 250 people, comprised of several
branch offices throughout the country. Founded in 1991, zeta has since then developed
mainly web-based, customer-specific solutions, e.g. e-commerce systems and interac-
tive websites. However, they are also experienced in other areas such as small games,
multimedia and research projects. Their customers are mainly large enterprises.

Appendix I: Detailed overview of research sites 221

Zetas employees use whatever technology is necessary to fulfill customer requirements.
Typical web-based projects generally use PHP or Java for example, although Perl and
Ruby are also in use. At the time of the study, Eclipse was used for nearly every
project that involved Java as a programming language and furthermore for several

other projects that use PHP and other languages.

The work is managed in projects. Usually, projects start with a technologically-experi-
enced person as project leader. This person is responsible for communicating with the
customer and for coordinating developers as well as service providers. Although Zeta
does not suggest a specific software engineering practice (i.e. agile methods or V-mod-
el approaches), the developers and project managers tend to follow an agile approach.
This is furthermore also influenced by customers' preferences. Practices such as using
a common code repository or using coding conventions are typically part of every
project. Ultimately, the specific project team decides how to do the job.

Depending on emerging or expected needs, employees undergo training to develop
their skills in using different practices or a specific technology. During project work,
developers work together closely, generally exchanging experiences as needed and help-
ing each other should problems materialize.

At the time of the study, the overhead work for managing Eclipse-based working envi-
ronments was a huge problem for Zeta's employees. They spent too much time trying
to freeze every work place so it could be accessed at a later date, following completion
of a project. Furthermore, they were using several tools that were so worryingly unsta-
ble that they had destroyed the working environments of several people on a weekly
basis. One person was therefore allowed to work full time on a provisioning solution to
provide Eclipse-based working environments for specific projects. An Eclipse working
environment was created, fitted with certain plug-ins and configuration settings, which
the project team would later need. At that point, the whole working environment was
committed — file by file — into the company's Subversion source code repository. This
way, the rest of the project team was able to download it from there. While this ap-
proach held some benefits, it also introduced several new problems due to instability,

bad usability /user experience, high complexity and low transparency.

We met a team, which was involved with a web project at the time and which had
tested the self-made provisioning solution.

Simon is 31 years old. Since 1999 he has mainly developed software. First and
foremost he is involved in Java programming for the web. However, he sometimes
works within the company as a consultant. He has been using Eclipse since Version
2.1.

222 Appendix I: Detailed overview of research sites

Francois is 30 years old. He has been a software developer for 7 years, joining Zeta
just a few weeks before commencement of the study. He works with PHP and Java for
the web. Furthermore, he is an expert on different Java-related frameworks.

Robin is 38 years old. He has worked as a software developer for the last 7 years and
has used Eclipse for the last 4 years. He mainly works with large customers and has
maintained some of their systems and projects for several years now. He regularly

meets customers (in contrast to Simon and Francois, who don't).

Leo is 35 years old and works as a software developer at Zeta. At the time of the
study, he was working on the internal Eclipse provisioning solution and had a lot of
contact with his colleagues for requirement engineering and testing purposes.

Theta: Software development and Eclipse consultancy company

Theta is a small/medium-sized German company. It was founded in 1998 and employs
about 30 people. When the workload is heavy, Theta employs up to 50 people at
times, including several freelancers. At the time of the study, Theta had opened
another site in eastern Europe (four people) and was in the process of fusing with a
very small american company (two people). Altogether, Theta has the closest connec-
tion to Eclipse and the Eclipse community.

Theta's business is based on two columns. The first was a self-developed Eclipse-cen-
tered software provisioning solution (ThetaProduct), which was initially released in
late 2004. Theta licensed ThetaProduct to large companies and sometimes also pro-
vided hosting of the solution as a service. An additional offer Theta made their cus-
tomers was to develop specific adaptations of ThetaProduct. Theta's second business
column was Eclipse-related consulting, especially how to develop business applications
on top of Eclipse technology. In this line of work, Theta developed ThetaFramework,
which helped to create Eclipse-based web applications. ThetaProduct was based on
ThetaFramework and was used as a showcase for ThetaFramework. ThetaFramework
was released under a open source license and Theta sometimes makes use of business

models like sponsored development, which work best in open source communities.

Theta held experience exchange among the staff to be very important and for this
methods such as pair programming were very often used — although not exclusively.
Furthermore stand-up meetings allowed the whole team to be brought up to speed
every morning. Besides these more formal approaches towards sharing experiences
during work time, there was a commonly used coffee-kitchen. People spontaneously
met there or went there together to have a coffee and to collaboratively discuss and

solve tough problems relating to the tasks at hand. Once a week, one of the employees

Appendix I: Detailed overview of research sites 223

gave an informal talk on a topic of his choice. Although these talks were very often
work-related, this was not compulsory. New technologies or Eclipse-related aspects
were often discussed there.

As ThetaProduct and ThetaFramework are extremely Eclipse-centric, everyone in the
company was an exceptional Eclipse expert. This was true for the usage of the Eclipse
IDE but also for the development of new applications, based on Eclipse. Most people
either worked in the ThetaProduct or ThetaFramework team, as new features had to
be implemented and compatibility with the constantly changing Eclipse technology
had to be guaranteed. This work is often interrupted to give priority to customer spe-
cific work. Usually, the team leaders divided large tasks in smaller ones, which were
then distributed to the team members. Tasks were assigned according to the employ-
ees' experience and preferences. During the study, we took a closer look at the
ThetaProduct team.

Emil is a trained management assistant focusing on data processing. Having worked
as a software developer for more than 10 years, he was experienced in a variety of pro-
gramming languages such as Pascal, Delphi and Java. He has also been an Eclipse
user since 2001 and an Eclipse plug-in developer since 2002. For the last 3 years, he
has worked for Theta.

Antonio is a trained media designer who specialized in web applications. He has been
a member of Theta since 2004, when he started Java and Eclipse plug-in development.
He worked part time for the ThetaFramework project and is currently project leader
for ThetaProduct. He works with customers and sometimes does consulting work at a

customers site or at conferences.

Eugene is a management assistant focusing on data processing. For the last 2 years
he worked at Theta as an application developer and currently began studying business
informatics. For more than a year he is working as a student for Theta, mostly with
the ThetaProduct development team.

	Title
	Abstract
	Related Publications

	Contents
	1. Introduction
	1.1. A grounded motivation
	1.2. Structure of this book

	2. Related work
	2.1. Components in modular Software Engineering
	2.2. Situated use and appropriation of modular software systems
	2.3. Appropriation of software ecosystems

	3. Research Outline
	3.1. Research Perspective
	3.2. Research Questions
	3.3. Selecting a field for empirical appropriation research
	3.4. Research method
	3.5. Overview of Eclipse-related field visits
	3.6. Mapping of sections and research questions

	4. The Collaborative Appropriation of an Open Software Ecosystem
	4.1. Introduction
	4.2. Workplace design as “artful integration”
	4.3. Methodology
	4.4. Eclipse as a global ecosystem
	4.5. A survey on Eclipse appropriation
	4.6. Appropriating Eclipse in an organizational context
	4.7. Some futures of supporting the appropriation of software ecosystems
	4.8. Conclusion

	5. Team Practices of Appropriation in Software Ecosystems
	5.1. Introduction
	5.2. A Brief History of Appropriation
	5.3. Research Methodology
	5.4. A Classification Scheme of Team Practices
	5.5. Conclusion

	6. Situated Practices of Appropriating the Eclipse ID
	6.1. Introduction
	6.2. Related Literature
	6.3. Research Methodology
	6.4. Understanding the Three Faces of Eclipse
	6.5. Maintaining the collective ability to work
	6.6. Discussion
	6.7. Conclusion
	6.8. Acknowledgment

	7. Managing Software Portfolios: A Comparative Study
	7.1. Introduction
	7.2. Two field studies on managing software portfolios
	7.3. Related work
	7.4. Conclusion

	8. Peerclipse: Tool Awareness in Local Communities
	8.1. Grounded Design of Peerclipse

	9. Supporting the Social Context of Technology Appropriation
	9.1. Introduction
	9.2. Related Work
	9.3. Methodology
	9.4. Design Principles
	9.5. The Collaborative Appropriation Prototype
	9.6. Evaluation
	9.7. Conclusion

	10. Conclusions
	10.1. Research interests
	10.2. Appropriation revisited
	10.3. Designing for collaborative appropriation
	10.4. Open Questions and Future Work

	11. Bibliography
	Appendix I: Detailed overview of research sites

