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Abstract
Because of the rapid evolution of 3D acquisition and modelling methods, highly
complex and detailed polygonal models with constantly increasing polygon
count are used as three-dimensional geometric representations of objects in
computer graphics and engineering applications. The fact that this particular
representation is arguably the most widespread one is due to its simplicity,
flexibility and rendering support by 3D graphics hardware. Polygonal models
are used for rendering of objects in a broad range of disciplines like medical
imaging, scientific visualization, computer aided design, film industry, etc.

The handling of huge scenes composed of these high-resolution models
rapidly approaches the computational capabilities of any graphics accelerator.
In order to be able to cope with the complexity and to build level-of-detail
representations, concentrated efforts were dedicated in the recent years to the
development of new mesh simplification methods that produce high-quality ap-
proximations of complex models by reducing the number of polygons used in
the surface while keeping the overall shape, volume and boundaries preserved
as much as possible.

Many well-established methods and applications require “well-behaved”
models as input. Degenerate or incorectly oriented faces, T-joints, cracks and
holes are just a few of the possible degenaracies that are often disallowed by
various algorithms. Unfortunately, it is all too common to find polygonal mod-
els that contain, due to incorrect modelling or acquisition, such artefacts. Ap-
plications that may require “clean” models include finite element analysis, sur-
face smoothing, model simplification, stereo lithography. Mesh repair is the
task of removing artefacts from a polygonal model in order to produce an out-
put model that is suitable for further processing by methods and applications
that have certain quality requirements on their input.

This thesis introduces a set of new algorithms that address several partic-
ular aspects of mesh repair and mesh simplification. One of the two mesh re-
pair methods is dealing with the inconsistency of normal orientation, while an-
other one, removes the inconsistency of vertex connectivity. Of the three mesh
simplification approaches presented here, the first one attempts to simplify
polygonal models with the highest possible quality, the second, applies the
developed technique to out-of-core simplification, and the third, prevents self-
intersections of the model surface that can occur during mesh simplification.
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Chapter 1

Introduction

This chapter familiarizes the reader with the areas of research presented in this
thesis. The problems treated in this work are discussed in section 1.1, while
section 1.2 provides a brief overview of our contributions to the solution of
these problems.

1.1 Motivation and problem statement

One of the main goals of computer graphics applications and research is to
provide realistic description and visualization of 3D objects. According to
recent trends and development in this field, highly complex objects described
by huge amounts of data have become common.

The rendering performance of common desktop PCs have grown drasti-
cally in the last few years, and the bandwidth of networks increases rapidly as
well. However, these both factors are still the major constraints determining
the desirable level of complexity of 3D objects to be worked with. In order
to provide a flexible solution to cope with this problem, a number of methods
have been suggested.

Mesh simplification techniques facilitate the reduction of complexity while
optimally approximating the original model in terms of an error.

Level-of-detail representations consist of several meshes with varying de-
gree of simplification, and thereby enable the use of desired level of complex-
ity: the objects lying farther or closer to the observation point in the scene are
represented with more or less detail content, respectively.

Progressive representations consist of models with detail content encoded
in a progressive manner in the sense of an approximation error, which enables
transmission of complex models by first transmitting a coarse representation
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4 Chapter 1. Introduction

and subsequent successive addition of detail. Hence, progressive representa-
tions may be interpreted as special level-of-detail representations as well.

A common issue in mesh simplification is whether or not to retain the topol-
ogy of original models. In some cases it is desirable to join the disconnected
parts of an object at a certain simplification level, thereby resulting in a better
approximation of the original model. In order to facilitate such topology modi-
fication, the vertex contraction operator is commonly used. This simplification
technique allows for unifying vertices not necessarily connected by an edge,
thus enabling topology changes during the decimation process. However, in
some applications we do not want to unify vertices lying in arbitrary regions of
the mesh in order to retain the topological structure of the model – in this case
it is common to use the edge collapse operation, which only unifies vertices
lying on a common edge.

In many cases these well-established decimation techniques are entirely
sufficient. At the same time, for some classes of models and in some certain
applications, the methods proposed in this thesis can deliver much better re-
sults.

On the other hand, a common problem of geometric modelling tools is the gen-
eration of consistent three-dimensional meshes. Models from different sources
like remote sensing, medical scanning, CAD and even scientific computing
contain degenerate or incorectly oriented faces, T-vertices, narrow gaps and
cracks. Applying well-established methods and applications, including finite
element analysis, surface smoothing, model simplification, stereo lithography
and milling, to meshes with such degeneracies often results in severe artefacts.

The industrial relevance of this problem is emphasized by the fact that as
an output of most of the commercial CAD/CAM and other modelling tools,
the user usually gets consistent meshes only for separate polygonal patches as
opposed to the whole mesh. Mesh repair aims at creating a similar model but
without its flaws. To achieve this goal the topology and sometimes also the
geometry of the given mesh has to be modified.

1.2 Contributions and thesis structure
This thesis describes two approaches to repair polygonal meshes, which con-
tain two particular types of artefacts due to incorrect modelling or acquisition,
as well as three methods related to three different aspects of mesh simplifica-
tion. Below, we will provide a brief background of the problem that each of
these algorithms attempts to solve and describe their individual contributions.

All methods presented in this thesis were developed and pre-published at
different international computer graphics conferences between the years 2001
and 2004.
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1.2.1 Mesh repair
1.2.1.1 Consistent orientation of normals

In many areas of computer graphics, such as real-time rendering, mesh pro-
cessing, etc., models are assumed to consist of correctly oriented polygons.
Incorrect orientation of model’s primitives could cause such methods to pro-
duce severe artefacts. However, many geometric modelling tools (such as CAD
systems) pay little attention to the orientation of the normals, when exporting
polygonal models.

We propose a method that can consistently orient all normals of any mesh
(if it’s possible at all), while ensuring that most polygons are seen with their
front faces from most viewpoints. Our algorithm combines the traditional
proximity-based approach with our new visibility-based approach.

We first divide the model into a set of manifold surface patches and consis-
tently orient the polygons within each patch. Then, we determine the proximity
of the patches to each other across their common boundaries and approximate
the visibility for each patch regarding all possible viewpoints. Based on these
values we orient the patches so that consistency between the ones with close
boundaries is maximized, and the visible surface of as many patches as possible
is seen with their front faces from as many viewpoints as possible.

We have tested our method with a large suite of models, many of which are
from the automotive industry. The results show that almost all models can be
oriented consistently and sensibly using our algorithm.

1.2.1.2 Progressive gap closing

Many meshes contain degenerate faces, T-vertices, narrow gaps and cracks.
Due to lack of consistent connectivity information, many rendering and pro-
cessing methods produce undesirable artefacts, if applied to such meshes. Sev-
eral approaches exist aimed at generation of topologically connected meshes.
We propose to interpret this issue as a mesh boundary simplification task.

By using a vertex contraction operation we are able to join unconnected
regions of the mesh. In addition to it and the usual edge collapse operation, we
introduce a new vertex-edge contraction operation. By utilizing this operator to
simplify the boundaries, we manage to remove the artefacts in 3D models, such
as T-vertices, degenerate triangles, etc. Furthermore, by applying the operator
according to an increasing error, we successively close the gaps and holes in
the model.

This provides extra support for closing gaps and stitching together the
boundaries of triangle patches lying in near proximity to each other. In our
method, the decimation process is error controlled and conducted in a progres-
sive manner in terms of the error. Therefore, the user is enabled to visually
inspect and interactively influence the procedure.
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1.2.2 Mesh simplification

1.2.2.1 High-quality simplification

In works by Garland/Heckbert and Popović/Hoppe, the traditional edge col-
lapse operation (also known as edge contraction) was generalized to vertex
contraction, which allows for topology modifications during the decimation.
Because of its simplicity, the vertex contraction operation became very popu-
lar in mesh simplification.

The vertex contraction facilitates the joining of originally disconnected re-
gions of the mesh by contracting vertices lying in different connected com-
ponents of the model. While this operation provides considerable topological
flexibility during the mesh simplification, in some cases it is not general enough
to connect close or even intersecting surfaces with small error early in the sim-
plification

We propose the use of the generalized pair contractions: contraction of a
vertex with another vertex, an edge or a triangle and also contraction of two
edges. These operations have several advantages over standard vertex contrac-
tion. They allow to repair cracks and self-intersections and to sew unconnected
components with lesser error.

In addition to its ability to repair meshes in an intuitive and efficient way,
simplification using generalized pair contractions often produces much better
decimation results than previous simplification techniques. Furthermore, our
algorithm is particularly useful for the simplification of the models consisting
of a large number of unconnected parts, such as industrial machines, generated
by CAD/CAM and other geometric modelling tools.

1.2.2.2 Out-of-core simplification

A general strategy for out-of-core simplification is to split the model into smaller
blocks, simplify these blocks and stitch them together for further simplifica-
tion. One of the problems of this approach is that triangles that intersect the
octree cells used to partition the model cannot be simplified before the cells are
combined in a higher level of the hierarchy. Therefore, the number of triangles
in an octree cell may exceed the available main memory.

Another problem of many out-of-core simplification methods is that the
geometric distance between the original and simplified models cannot be truly
controlled, since the original model does not fit into main memory.

Using our high-quality simplification technique, we implemented an end-
to-end out-of-core mesh simplification algorithm that is capable to guarantee a
given geometric error between the original and simplified models.

Our method consists of three parts: memory-insensitive cutting, hierarchi-
cal simplification and memory-insensitive stitching of adjacent parts. Since the
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first and last parts of the algorithm work entirely on disk, and the number of
vertices during each simplification step is bound by a constant value, the whole
algorithm can process models that are far too large to fit into main memory.

The use of generalized pair contractions combined with cutting of the model
at octree cell boundaries allows us to not accumulate the triangles that intersect
the octree cells. Also, in contrast to most previous out-of-core simplification
approaches, we do not use vertex clustering, since for a given error tolerance
the reduction rates are low compared to vertex contraction techniques.

Since we use our high-quality simplification method during the whole re-
duction, and we guarantee a maximum geometric error between the original
and simplified models, the computation time is higher compared to recent ap-
proaches, but the gain in quality and/or reduction rate is significant.

1.2.2.3 Intersection-free simplification

All of the existing mesh simplification approaches focus on the creation of
a geometrically close approximation of the original model. But none of the
standard techniques tries to avoid self-intersections during the simplification
process.

When producing a simplified version of a model with close layers, such as
dressed humans, self-intersections can result in intolerable results. Even meth-
ods that allow the sewing of close surface parts lead to unpleasant artefacts. We
show that in real-world situations self-intersections often lead to unacceptable
results.

In the final method presented in this thesis, we focus on the avoidance of
self-intersections in the case of vertex contraction simplification. This is done
by parameterizing the contraction operations over time and by detecting colli-
sions of affected simplices. For the case of a collision, we examined different
strategies to determine new target positions that avoid the collision.

Experimental results show that our method produces high-quality simpli-
fied meshes without causing any new self-intersections. Furthermore, our ap-
proach allows for arbitrary changes in the topology.

1.2.3 Thesis structure
This thesis consists of two main parts:

• Mesh repair, in which we present our methods to perform consistent
orientation of normals (chapter 3) and progressive gap closing (chap-
ter 4), and

• Mesh simplification, in which we present our approaches for high-qual-
ity (chapter 5), out-of-core (chapter 6) and intersection-free (chapter 7)
simplification.
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But first, in the next chapter, we will present some basic concepts about
polygonal meshes and areas of their application, provide an overview of data
structures and file formats, which are most commonly used to store manifold
and non-manifold meshes, and describe the implementation of data structure
used in our work.



Chapter 2

Basics on meshes and data
structures

2.1 Polygonal meshes
In this section we define what a polygonal mesh is and discuss what kinds of
meshes there are and for which purposes we need meshes. We begin with the
definition of a polygonal mesh and its main properties in section 2.1.1. Then,
in section 2.1.2, we describe the most important relations between the number
of different elements of a mesh as well as topological functions to create and
edit polygonal meshes.

In section 2.1.3 we concentrate on a particular simple case of polygonal
meshes, triangle meshes, which are used very widely in computer graphics.
Finally, in section 2.1.4, we describe and motivate the usage of meshes.

2.1.1 Mesh definition
Let us define the notion of a mesh. Most easily this could be done at the
example of a triangle mesh, as shown in figure 2.1. The triangle mesh looks
very similar to a graph, which is defined as a set of vertices V and a set of edges
E, where each edge e ∈ E is a set of two vertices e = v1,v2 specifying the end
points of the edge. But a triangle mesh is more than a graph. First of all, it
also contains a geometric representation of the vertices, i. e. it is, for example,
embedded in the three-dimensional Euclidean space – each vertex is mapped
to a point and each edge to a line segment or a curved segment connecting the
end vertices. In order to distinguish between the geometric representation of a
mesh and its graph-like structure, we introduce the terms mesh geometry and
mesh connectivity. We define a mesh M as a pair (C ,G ) of its connectivity

9



10 Chapter 2. Basics on meshes and data structures

Figure 2.1: Example of a triangle mesh representing a dolphin.

C , which describes the mesh constitutes and their relations to each other, and
its geometry G , which describes embedding of the mesh in, for example, the
Euclidean space. In what follows we describe separately the mesh connectivity
and geometry together with their most important properties.

2.1.1.1 Connectivity

Even without the geometry, the polygonal mesh connectivity differs from a
graph, as the triangles itself are represented. A polygonal mesh can contain
in addition to triangles also closed polygons as faces. The connectivity of a
polygonal mesh contains a third set F of faces. Each face f ∈ F is a closed
loop of edges f = (e1,e2, . . . ,en). In figure 2.1 the faces are illustrated by
shading them opaquely. We can gather the said in the following definition.

Definition 2.1 (polygonal connectivity)

• The polygonal connectivity is a triple (V,E,F) of the set of vertices V ,
the set of edges E and the set of faces F.

• Each edge is a subset of V with two elements.

• Each faces is an ordered closed loop of edges (e1,e2, . . . ,en) with ei ∈ E,
such that e1 = {v1,v2},∀i = 2 . . .n−1 : ei = {vi,vi+1} and en = {vn,v1}.

Here, we want to prevent the reader from the idea that a polygonal con-
nectivity has anything to do with polygons. The connectivity only defines the
relations between the vertices, edges and faces. The geometric representation
of these can be arbitrarily curved and bent.

The collection of all vertices, all edges and all faces of a mesh is called the
mesh elements. We next define the relations of incidence and adjacency.
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Definition 2.2 (incidence)

• A vertex v ∈V is incident to an edge e ∈ E, iff v ∈ e = {v1,v2}.

• An edge e ∈ E is incident to a face f ∈ F, iff e is contained in the closed
loop of f .

• The incidence relation is reflexive and transitive.

The reflexive nature of the incidence relation defines the incident edges to
a vertex and the incident faces to an edge. Thus it makes sense to talk of the
incidence between an edge and a face. The transitive nature of the incidence
relation defines the incidence relation between vertices and faces.

Definition 2.3 (adjacency)

• Two faces are adjacent, iff there exists an edge incident to both of them.

• Two edges are adjacent, iff there exists a vertex incident to both.

• Two vertices are adjacent, iff there exists an edge incident to both.

Up to now we defined only terms for very local properties among the mesh
elements. Now we move on to global properties.

Definition 2.4 (edge-connectedness)

A polygonal connectivity is edge-connected, iff each two faces are connected
by a path of faces such that two successive faces in the path are adjacent.

Definition 2.5 (closeness)

A polygonal connectivity is closed, iff each edge is incident to exactly two faces.

General polygonal meshes can be very nested. Therefore, we define next
the notion of a manifold mesh and a manifold mesh with border.

Definition 2.6 (manifoldness)

A polygonal connectivity is manifold, iff

(a) each edge is incident to exactly two faces, and

(b) the non-empty set of faces around each vertex form a closed edge-
connected loop.
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Definition 2.7 (manifoldness with border)

A polygonal connectivity is manifold with border, iff

(a) each edge is incident to one or two faces, and

(b) the non-empty set of faces around each vertex form an open or closed
edge-connected loop.

For the navigation in a mesh the orientation of a face, i.e. the order of its
edges, is important, especially the consistent orientation of adjacent faces.

Definition 2.8 (orientability)

• The oriented half-edge of an edge ei in a face f = (. . . ,{vi−1,vi},ei =
{vi,vi+1}, . . .) is the pair (vi,vi+1).

• Two adjacent faces are consistently oriented, iff the oriented half-edges
of their common edge have opposite orientation.

• A manifold mesh is orientable, iff all adjacent faces are oriented consis-
tently.

The orientation of a face in a polygonal mesh can be used to define the out-
side of a closed mesh or to calculate the surface normal. It is also important dur-
ing the navigation through the mesh. The problem with non-orientable meshes
is that one cannot choose the orientation of the faces consistently. Therefore,
surface normals can not be calculated consistently and no inside or outside re-
lation makes sense. Furthermore, it complicates the navigation in the mesh, as
one must know during the traversal between two adjacent faces, whether the
orientation of the face changes or not.

Figure 2.2 shows two classical examples of non-orientable surfaces: Möbi-
us strip and Klein bottle. One can easily check their non-orientability, as one
can move on the surface from one point always staying on the same side of the
surface in a loop and arrive back at the same point but on the other side of the
surface.

Definition 2.9 (polyhedron)

A polygonal mesh is called polyhedron, iff

(a) the mesh is closed and edge-connected, and

(b) each vertex v ∈V is incident to a finite, cyclic ordered set of faces Fi, i.e.
there exists an ordering of faces Fi incident to a vertex v, such that Fi and
Fj share an edge incident to v.
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a) b)

Figure 2.2: Two classical examples of non-orientable surfaces: a) Möbius strip;
b) Klein bottle.

Based on definition 2.9, we can define the polyhedral connectivity as a
quadruple (V,E,F,P) of vertices, edges, faces and polyhedra. Each polyhe-
dron is a set of oriented faces forming a topological polyhedron. The local
and global relations incidence, adjacency, face-connectedness, closeness, man-
ifoldness and manifoldness with border are direct generalizations of the corre-
sponding attributes in a polygonal connectivity. We do not want to define all
these terms in detail, but want to mention that the roll of the face orientation is
taken by the outside relation of the topological polyhedron.

2.1.1.2 Geometry

Now we will add the geometry to the mesh. We want to describe this procedure
only for the typical case of polygonal geometry in Euclidean space. Similarly,
meshes with curved edges and surfaces could be defined.

Definition 2.10 (Euclidean polygonal geometry)

The Euclidean geometry G of a polygonal mesh M = (C ,G ) is a mapping
from the mesh elements in C to R3 with the following properties:

• a vertex is mapped to a point in R3;

• an edge is mapped to the line segment connecting the points of its inci-
dent vertices;

• a face is mapped to the inside of the polygon formed by the line segments
of the incident edges.

Here, arises a problem that also often arises in practice. In R3 the edges of
a face often do not lay in a plane. Therefore, the geometric representation of a
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face is not defined properly, and also a two-dimensional parametrization of the
polygon is not easily defined. In practice, this is often ignored and the polygon
is split into triangles for which a unique plane is given in Euclidean space.

Often, further attributes like physical properties of the described surface,
the surface colour, the surface normal or a parametrization of the surface are
necessary. These attributes are typically stored as constant values at the vertices
and interpolated along the edges and faces. Otherwise, higher order interpola-
tion schemes are exploited by further attribute values given at the edges and or
faces.

2.1.2 Mesh relations and operations
The Euler and Euler-Poincaré formulas describe the relationship of the number
of vertices, the number of edges and the number of faces in a polygonal mesh.

2.1.2.1 Euler formula

For a polygonal connectivity C = (V,E,F) with v = |V | vertices, e = |E| edges
and f = |F | faces, the following Euler equation holds (for more details see e.g.
the works by Wilson [105] or by Foley et al. [27]):

v− e+ f = χ, (2.1)

where χ is the Euler characteristic. For a closed manifold connectivity, the
Euler characteristic splits into the number of shells s and the genus g of the
mesh:

v− e+ f = 2(s−g). (2.2)

A shell is an internal void of a solid. A shell is bounded by a manifold sur-
face, which can have its own genus value. Note that the solid itself is counted
as a shell. Therefore, the value for s is at least 1.

The genus of a closed surface is the number of handles of the described
solid, i.e the number of holes that it. The surface of a cup has, for example, one
handle, i.e. one hole in the circumscribed solid.

As we will deal with triangular meshes, we can also consider the special
characteristic of triangular meshes to derive a much simpler equation. For this,
we enumerate in a closed manifold triangle mesh all incidences between edges
and triangles. In terms of edges, there are 2e incidences as each edge is incident
to two faces. In terms of triangles, there are 3 f incidences resulting in

2e = 3 f . (2.3)

Substitution of this relation in the Euler equation yields

2v− f = 4(s−g), (2.4)
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and for edge-connected triangle meshes with genus one, we get

f = 2v. (2.5)

Although the number of conditions to this relation is large, it is a good
approximate statement for meshes, that describe the surface of a solid. The
Euler characteristic χ is typically small compared to the number of vertices
and triangles. For completeness, we want to incorporate the number of border
edges b into the equations. As each border edge has only one incident face, the
number of incidences between edges and faces in terms of the edges must be
corrected to 2e−b resulting in

2v− f −b = 4(s−g). (2.6)

2.1.2.2 Euler-Poincaré formula

Let r be the number of face inner loops. Then the generalized Euler-Poincaré
formula is the following:

v− e+ f − r = 2(s−g). (2.7)

And with r = l− f , where l is the number of all outer and inner loops of
faces:

v− e+ f − (l− f )−2(s−g) = 0. (2.8)

The Euler-Poincaré formula describes the topological property amount ver-
tices, edges, faces, loops, shells and genus. Any topological transformation
applied to the model will not alter this relationship.

2.1.2.3 Euler operators

Once a polyhedron model is available, one might want to edit it by adding or
deleting vertices, edges and faces to create a new polyhedron. These oper-
ations are called Euler operators (for more details on modelling using Euler
operators see e.g. the works by Eastman and Weiler [24] or by Mäntylä and
Sulonen [67]). However, it has been shown that in the process of editing a
polyhedron with Euler operators, some intermediate results may not be valid
solids at all.

Based on the the relation 2.8, some Euler operators have been selected for
editing a polyhedron so that the Euler-Poincaré formula is always satisfied.
There are two groups of such operators: the Make group and the Kill group.
Operators starting with M and K are operators of the Make and Kill groups,
respectively.

Euler operators are written as Mxyz and Kxyz for operations in the Make
and Kill groups, respectively, where x, y and z are elements of the model (e.g.
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Operator Meaning v e f l s g
MEV Make an edge and a vertex +1 +1
MFE Make a face and an edge +1 +1 +1
MSFV Make a shell, a face and a vertex +1 +1 +1 +1
MSG Make a shell and a hole +1 +1
MEKL Make an edge and kill a loop +1 −1

Table 2.1: The Make group of Euler Operators.

Operator Meaning v e f l s g
KEV Kill an edge and a vertex −1 −1
KFE Kill a face and an edge −1 −1 −1
KSFV Kill a shell, a face and a vertex −1 −1 −1 −1
KSG Kill a shell and a hole −1 −1
KEML Kill an edge and make a loop −1 +1

Table 2.2: The Kill group of Euler Operators.

vertex, edge, face, loop, shell and genus). For example, MEV means adding an
edge and a vertex while KEV means deleting an edge and a vertex.

Note that not all operators that can be represented in this way are Euler
operators: MV F is not an Euler operator, since it adds a vertex and a face to a
model, and therefore, violates the Euler-Poincaré formula.

It has been proved by Mäntylä [65] that Euler operators form a complete
set of modelling primitives for manifold solids. More precisely, every topo-
logically valid polyhedron can be constructed from an initial polyhedron by
a finite sequence of Euler operators. Therefore, Euler operators are powerful
operations.

The Make group consists of four operators for adding some elements into
the existing model creating a new one and a Make-Kill operator for adding and
deleting some elements at the same time.

Table 2.1 shows the change of values of v, e, f , l, s and g. Note that
adding a face produces a loop, the outer loop of that face. Therefore, when f
is increased, l should also be increased. This new loop and the new face will
cancel each other in the subexpression l− f . None of these operators would
cause the Euler-Poincaré formula to fail.

The Kill group just performs the opposite of what the Make group does. In
fact, replacing the M and K in all Make operators with K and M, respectively,
would get the operators of the Kill group. Five operators of the Kill group are
shown in table 2.2.
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2.1.3 Triangular meshes

A lot of algorithms that deal with meshes are restricted to the simple case of
triangular meshes. This is easily justified from the much simpler handling of
triangles in terms of intersection calculation, attribute interpolation, line up of
physical equations, rendering and so on. But in real world data, a lot of meshes
contain not only triangles.

For this reason, a whole area of research has tackled the problem of effi-
ciently subdivide a simple polygon, i.e. a polygon without self-intersections
and only edges of non-zero length, into triangles. That this is always possible
is intuitively clear from the idea of the basic algorithm for this task. It is called
ear-cutting and does exactly the following.

The algorithm searches three successive vertices on the polygon forming
a corner also called ear). For each ear, it checks, whether the line segment
from the first to the third vertex is completely contained in the polygon, or if
it is in the outside or intersecting the polygon. If the line segment is inside
the polygon, the triangle formed by the ear can be cut away, and this process
is repeated until only one triangle is left. The cut-away triangles form the
polygon’s triangulation. The intuition tells us that there cannot be a polygon,
from which we cannot cut at least one ear.

The expensive operation is the intersection test of the line segment and the
polygon. Chazelle [16] came up with a solution to the polygon triangulation
problem that can be computed in linear time in the number of edges in the
polygon. Two other papers, one by Kirkpatrick et al. [54] and another one
by Seidel [87], give simpler solutions with only slightly worse running time.
Held [41] developed a very robust implementation, that always succeeds also
on polygons with self-intersections and degenerated edges.

Without loss of generality, we can assume that the model consists entirely
of triangular faces, since any non-triangular polygons may be triangulated in a
pre-processing phase [72, 87].

It’s possible that a model contains isolated vertices and edges, which are
not part of any triangle. For best results in practice, we should maintain them
during simplification and render them at run-time [62, 79, 84, 85]. However,
to streamline the discussion, we will assume that models consist of triangles
only. For most algorithms, the only effect of isolated vertices and edges is to
complicate the implementation; the underlying algorithms remain the same.
Finally, we will also assume that the connectivity of the model is consistent
with its geometry, i.e. if the corners of two triangles coincide in space then
those triangles share a common vertex.
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2.1.4 Application areas for meshes

There are several important application areas for meshes. One of the most
important ones is in finite element simulations. Here, a surface is split into a
polygonal mesh and attributed with physical quantities of the underlying ma-
terial. The equations of motion are written in terms of the mesh elements, and
equation solvers are used to find solutions for different starting conditions. The
flexible structure of a mesh allows to model arbitrary geometries.

The finite element method (FEM) has been successfully applied to simulate
all types of materials including fluids and cloth. Therefore, the FEM is widely
used in all industrial branches. One common task in FEM is the generation
of appropriate meshes from boundary data only. The mesh elements of the
produced meshes must fulfill certain quality criteria. More information on this
topic can be found in a book by George [32].

The second main application of meshes is the boundary representation of
objects. Here, polygonal and triangular meshes come into operation. The
meshes are typically attributed with the surface normal, surface material in-
formation and a parameterization together with some textures specifying fine
variations of the surface colour, surface normal or of the surface offset in direc-
tion of the surface normal. Simple triangle meshes are very common because
of their hardware accelerated rendering with all the mentioned attributes.

The boundary representation of objects is used, for example, in computer
aided design (CAD), in virtual worlds, in the game industry, for terrain mod-
elling, and gains more and more importance in electronic commerce. New ob-
jects are often scanned with 3D scanners producing very fine and large meshes,
which demand for simplification.

Scientific visualization is also a broad application area for meshes. Not
only the finite element meshes are directly visualized, but new surface meshes
are generated to represent and visualize isosurfaces in volume data sets.

Finally, meshes are also used as algorithmic tool for spatial hashing and to
build hierarchical structures for point location queries.

2.2 Data structures and file formats for meshes
In this section we discuss different data structure for triangle meshes, both
manifold (in section 2.2.1) and non-manifold (in section 2.2.2), and then in-
troduce the one that we used in our work. At the end, in section 2.2.4, we
briefly describe the most common file formats used in computer graphics to
store polygonal meshes.

A boundary representation of a polyhedral surface consists of a set of ver-
tices V , a set of edges E and a set of faces F . For navigation in the mesh the
incidence and the adjacency relations (see definitions 2.2 and 2.3 from sec-
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Figure 2.3: Possible adjacency relations in a boundary data structure.

tion 2.1.1.1) discussed by Weiler [98] are used (this is discussed in detail in,
e.g., works by Mäntylä [66] or by Hoffmann [43]).

Figure 2.3, which we adopted from Woo [106], shows all possible adja-
cency and incidence relations in a data structure based on three primitive topo-
logical entities (face F , edge E and vertex V ). The arrows between the sets
of different mesh elements represent the incidence relations, whereas the self-
pointing arrows illustrate the adjacency relations. For example, the relation
E→V stores two incident vertices for each edge, and the relation V→V stores
all adjacent vertices for each vertex.

In order to answer all possible incidence and adjacency questions, one
needs to represent only a subset of all relations. This subset must connect
all sets of equal and different mesh elements, i.e. there need not only be a path
from each mesh element set to each other, but there also must be a path from
each mesh element set back to the set in order to answer adjacency questions.
In figure 2.3, this means that one can eliminate arrows as long as this condition
is fulfilled. For example, the relations V→E→F→V would suffice.

It is often possible to represent some of the relations only partially by one
or two representatives. For example, if the relations F→F→V are known in
a manifold mesh with border, the relation V→F can be stored with one face
per vertex, as the remaining faces of each vertex can be determined through
the adjacency relation of the faces. To indicate this, we write near the respec-
tive arrow the number of representatives stored per relation (see, for example,
figure 2.4).

It is clear that the enumeration of all faces incident on a vertex is more ex-
pensive than if the relation would have been stored explicitly. On the other hand
the update of the explicit representation is more expensive. Ni and Bloor [74]
provide a good analysis of different possible data structures.



20 Chapter 2. Basics on meshes and data structures

Of course, the more explicit information is stored, the more memory is re-
quired, but the faster is the access to the required data. Unfortunately, memory
is a hard limit in computer systems. Even virtual memory does not help in most
cases, since the mapping of a complex triangle mesh to the linear structure of
the memory usually opposes the need for local coherence access to memory.
Drastic slowdown of the performance due to extensive swapping is the result.

Performance is a very important aspect, but time is in general a soft limit.
When doubling the amount of input data to be processed, it is acceptable to
wait even more than twice the time to get a result, if this is necessary. But if
doubling the amount of data implies that the data structure does not fit into the
memory of a computer, this makes it impossible to work on a data set.

As a result, the implementation of a data structure can be considered as a
compromise between memory requirements and performance gains.

The following short survey of edge-based data structures addresses their
sufficiency for modelling topology and the efficiency of their primitive opera-
tions and storage costs.

According to definition 2.6 from section 2.1.1.1, the two types of boundary
representations are manifold and non-manifold surfaces. A manifold surface
is a surface, where for each point on the surface there exists a neighbourhood
that is homeomorphic to the open disc. Non-manifold examples are two tetra-
hedrons glued together at a single vertex or a common edge.

2.2.1 Manifold mesh data structures
Several manifold data structures have been developed to provide fast access
(ideally O(1)) to the information that is required by different algorithms. The
most popular ones are the winged-edge [8], half-edge [99] and quad-edge [36]
data structures. The half-edge data structure suggested by Mäntylä [66] turned
out to be very suitable for polygonal meshes (see Kettner [53]).

2.2.1.1 Winged-edge data structure

Perhaps the oldest data structure for a boundary representation is Baumgart’s
winged-edge structure [8, 9, 33]. For each oriented edge it stores eight refer-
ences: two vertices (PV T , NV T ), two faces (PFACE, NFACE) and four in-
cident edges that share the same faces and vertices (PCW , PCCW , NCW and
NCCW ), the so-called wings (see figure 2.5). An edge is oriented from the
source vertex PV T to the target vertex NV T . The face PFACE is to the left of
the oriented edge when the surface is seen from the outside. Vertices and faces
have a single pointer to one incident edge.

This data structure is able to model orientable manifolds (see definition 2.8
from section 2.1.1.1). It is even sufficient for curved-surface environments
where loops and multi-edges are allowed, as shown by Weiler [99]. The basic
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Figure 2.4: Adjacency relations in the winged-edge data structure.
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Figure 2: Euler operator examples for polyhedral surfaces.

the Klein bottle. We consider only orientable 2-manifolds.
The natural operations under which 2-manifolds are closed are

Euler operations; Four of them are shown in Figure 2. The principal
characteristic of an Euler operation is the invariance of the Euler-
Poincaré formula. A sufficiency proof for a specific set of Euler
operations can be found in [21]. Note that 2-manifolds are not
closed under (regularized) boolean operations.

The class of representable surfaces is further restricted by the
kind of geometry associated with vertices, edges and faces. Ver-
tices map to points in R3. For polyhedra the edges are typically the
straight line segments between their two endpoints and the facets
are simple, planar polygons. Other classes might allow curved sur-
faces as facets.

We now present a definition for polyhedral surfaces following
Steinitz [30]. It is the basis for the combinatorial integrity definition
of the polyhedral surface data structure and will lead to a stricter
class of representable surfaces, which provides more insight in the
combinatorial structure of the representation.

Definition 2.1. A structural complex is a union C = V [ E [ F
of three disjoint sets together with an incidence relation. We call V
the vertices, E the edges and F the facets of the structural complex.
The incidence relation on C must be symmetric. No two elements
from the same set V , E or F are incident. If v 2 V is incident to
e 2 E and e is incident to f 2 F then v is incident to f .

Definition 2.2. A polyhedral complex is a structural complex with
four additional conditions.

(1) Every edge is incident to two vertices.

(2) Every edge is incident to two facets.

(3) For every incident pair v; f , there are exactly two edges inci-
dent to both.

(4) Every vertex and every facet is incident to at least one other
element.

The neighborhood of a vertex is the set of edges and facets in-
cident to the vertex. If we restrict the incidence relation to this
neighborhood then each facet is incident to exactly two edges and
each edge is incident to exactly two facets. The neighborhood de-
composes into disjoint cycles. As for the dual, the neighborhood
of a facet is the set of incident edges and vertices and decomposes
into cycles too. Assuming that the neighborhood of each facet is
a single cycle (geometrically speaking: no holes in the facet), we
can define a polyhedral complex as oriented if each cycle around
a facet is oriented and if, for each edge, the two cycles of its two
incident facets are oriented in opposite directions. A polyhedral
complex is orientable if there exists such an orientation.

Definition 2.3. The boundary representation of a polyhedron is a
polyhedral complex with a mapping V ! R

3. This extends to the
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Figure 3: A winged-edge.

edges by mapping them to the open, straight line segments between
their two incident endpoints. The following additional conditions
must hold.

(5) The neighborhood of each vertex and each facet is a single
cycle.

(6) The polyhedral complex is orientable.

(7) The mapping of the cycle of the neighborhood of each facet
is the boundary of a simple, planar polygon. The mapping
extends for F to the open region of these polygons.

(8) The images of V , E and F are pairwise disjoint.

The surface defined by such a boundary representation is an ori-
entable 2-manifold where the neighborhoods of two vertices have
at most one edge and two facets in common, the edge and vertex
graphs are connected within each connected component of the sur-
face and where each facet has at least three edges on its boundary.
The smallest possible configuration is a tetrahedron.

The closed surfaces considered so far can be extended to sur-
faces with boundaries by two changes in the definition: Condition
(2) can be relaxed to allow edges that are incident to one facet;
they are called border edges. This induces a modification of (5):
The neighborhood of a vertex decomposes into either a cycle or a
collection of open paths going from border edge to border edge.
Although the surface is no longer closed, the orientation still de-
fines a “solid” side of the surface. The minimal configuration for
surfaces with boundaries is a triangle. The data structures we will
describe can be used for polyhedrons as well as for surfaces with
boundaries with a simple extension denoting “empty” facets.

A suitable data structure based on the Definition 2.3 for polyhe-
dral surfaces has been used successfully for three years in a project
on contour-edge-based polyhedron visualization where we take ad-
vantage of the strict properties imposed by the definitions: For ex-
ample the definition for contour-edges is based on the orientable 2-
manifold property, and the lack of holes in facets simplifies certain
algorithms2 [18]. An initial implementation of the data structure
made it easy to compute the silhouette for a polyhedral surface [14].
The extension of this data structure design and their advantages are
presented in the following sections.

3 Data Structures for Boundary Representations

The following survey of edge-based data structures addresses their
sufficiency for modeling topology and the efficiency of their primi-

2And holes are not represented in the file-formats that occur usually in
visualization, for example VRML [12], Open Inventor [34] or the Object
File Format OFF [28]. These consist of a list of vertices followed by a list
of facets. Each facet is a list of indices denoting a subset of the points.
Edges are not explicitly stored but can be derived from the vertices shared
by facets. These formats are not strict enough for our purpose since they can
represent non-manifold configurations where three or more facets are inci-
dent to a single edge, non-orientable 2-manifolds, and also violate condition
(3) for polyhedral complexes. But they cannot represent holes in facets.

2

Figure 2.5: Winged-edge data structure.

operations include traversal around a vertex and around a face. High-level
operations maintaining integrity are Euler operators, which we discussed in
section 2.1.2.3. The next edge counterclockwise around a vertex V for an edge
E is equal to E→PCW if E→PV T is equal to V and E→NCW otherwise.

Variants are possible where vertex and face pointers can even be omit-
ted without loosing the traversal capabilities knowing the edge visited previ-
ously. However, all four edge pointers must remain if loops or multi-edges
are allowed since otherwise the traversal around a vertex or face is no longer
uniquely defined (see Weiler [99]). The winged-edge data structure where the
wings PCCW and NCCW are omitted has been called Doubly Connected Edge
List (DCEL) (see Muller and Preparata [69]), though this name is now more
commonly used for the half-edge data structure (see de Berg et al. [21]).

The two symmetric parts in the winged-edge correspond to the two pos-
sible orientations of the edge. The inefficient case distinction in the traversal
computation results from the fact that a pointer to an edge does not encode the
orientation it is currently used with. One extension of the winged-edge main-
tains an additional bit with each edge-pointer to code the orientation, but this
leads to cumbersome storage layouts and function interfaces.
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Figure 2.6: Adjacency relations in the half-edge data structure.

Winged-Edge Half-Edge Quad-Edge

Modeling space orientable 2-manifold 2-manifold
Operations Euler operator Splice()
Duality at compile time at runtime

(with adaptor) (Rot operator)
Holes in facets yes yes no
Basic traversal case direct modulus

distinction access operation
Min size per edge 4 ptr 4 ptr 2 ptr + 2 bits
Max size per edge 8 ptr 10 ptr 8 ptr + 12 bits

Table 1: Comparison of the edge-based data structures.

pointers and four times three bits for r and f ). The operations sim-
plify considerably for orientable 2-manifolds. They can be further
simplified if the dual graph is not necessary. This reduces to the
winged-edge data structure enriched with a bit to encode orienta-
tion.

The single high-level operation that modifies a quad-edge data
structure is the Splice() operation. It is its own dual. The usual
Euler operators can be implemented in terms of Splice(). The
quad-edge data structure provides a unified view for the primal and
dual graph. This implies that vertices and facets cannot be dis-
tinguished with strong type checking at compile time. The defi-
nition used for duality implies, furthermore, that the facets must
have a single connected boundary. Holes in facets are not allowed.
If strong type checking is desired, the Splice() operation is
needed twice, once for the primal view and once for the dual view.
Splice() can also be provided for the halfedge data structure.

Comparison of Edge-Based Representations. The main dif-
ferences of these edge representations are captured in Table 1. The
differences in the basic traversal capabilities are not negligible,
especially when considering modern microprocessor architectures
where conditional branching can be an order of magnitude slower
than computing. The storage size requirements are quite similar.
Our design will focus on the flexibility of trading runtime against
storage costs. We are interested in the minimal and maximal con-
figurations for the halfedge data structure and the space efficiency
of the quad-edge data structure. Another issue is the preference for
strong type checking at compile time. Polyhedral surfaces have dif-
ferent information stored in the vertices and facets, namely points
and plane equations. These can be treated as duals of each other, but
in a strongly-typed geometry kernel (like the one CGAL provides)
they are different types and might even be represented differently.
Additional information, like color, will finally destroy the typeless
symmetry of the duality assumed by the quad-edges. We consider
non-orientability as not so important since three-dimensional sur-
faces of solid objects are always orientable.

The choice for our design is a halfedge data structure like the
FE-structure. The conventions used are depicted in Figure 6. We
have next(), opposite() and prev() pointers for the half-
edges. The incident vertex is the target vertex of the oriented half-
edge. The incident facet is to the left of the halfedge which implies
a counterclockwise ordering of the halfedges around the facet and a
clockwise ordering around the vertex when seen from the outside.
This complies with the right-hand rule for out-facing normals of
plane equations for facets.

4 Generic and Object-Oriented Programming

The major design issues considered for polyhedral surfaces are ge-
nericity, flexibility, time efficiency, space efficiency and ease-of-
use. Two techniques are available in C++ for realizing generic and
flexible designs: Object-oriented programming, using inheritance

incident vertex
opposite half-edge

half-edge

incident face

previous
half-edge

next
half-edge

Figure 6: Halfedge data structure.

from base classes with virtual member functions, and generic pro-
gramming, using class templates and function templates.

The flexibility in the object-oriented programming paradigm is
achieved with a virtual base class, which defines an interface, and
as many derived classes as different actual implementations of the
interface are present in a system. The technique of so-called virtual
member functions and runtime type information allows a user to se-
lect any of the derived classes wherever the base class is required –
even at runtime. Generic functionality can be programmed in terms
of the base class without knowing all possible derived implementa-
tions beforehand.

The advantages are the clear definition of the interface and the
flexibility at runtime. There are four main disadvantages: This
paradigm cannot provide strong type checking at compile time, en-
forces tight coupling through the inheritance relationship [19], it
adds additional memory to each object derived from the base class
(the so-called virtual function table pointer) and it adds an indi-
rection through the virtual function table for each call to a virtual
member function [20]. The latter one is of particular interest when
considering runtime performance since virtual member functions
can usually not be made inline and are therefore not subject to code
optimization within the calling function. Modern microprocessor
architectures4 can optimize at runtime, but, besides that runtime
predictions are difficult, these mechanisms are more likely to fail
for virtual member functions. These effects are negligible for larger
functions, but small functions will suffer a loss in runtime of one
or two orders of magnitude. Significant examples are coordinate
access and arithmetic for low-dimensional geometric objects and
traversals of combinatorial structures. Vertices, edges and facets for
polyhedrons are anticipated to be small objects with simple mem-
ber functions. The space and runtime overhead introduced through
virtual member functions would not be negligible.

The generic programming paradigm features what is known in
C++ as class templates and function templates. Templates are pro-
gram recipes where certain types are only given symbolically, the
so called template arguments. The compiler replaces these argu-
ments with actual types where the program recipe is actually used,
at the place of the template instantiation. The recipe transforms to
a normal part of a program. For function templates this can even be
done automatically by the compiler, since the types of the function
parameters are known to the compiler. Examples are a generic list
class for arbitrary item types or a swap function exchanging vari-
able values for all possible types. The following definitions would
enable us to use list<int> as a list of integers or to swap two
integer variables x and y with swap(x,y).

template <class T> class list {
// ... , uses T as item type.

};

4Pipelining, branch prediction, speculative execution and reordering,
global optimizers using runtime statistics and the interplay with the cache
architecture.
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tive operations and storage costs. The representative example cho-
sen is the traversal around a vertex to the next counterclockwise
edge.

Winged-Edge Data Structure. The winged-edge data struc-
ture [1, 10] stores, for each oriented edge, eight references: two
vertices (PVT, NVT), two faces (PFACE, NFACE) and four inci-
dent edges that share the same faces and vertices (PCW, PCCW,
NCW and NCCW), the so-called wings, see Figure 3. An edge is
oriented from the source vertex PVT to the target vertex NVT. The
face PFACE is to the left of the oriented edge when the surface is
seen from the outside.

This data structure is able to model orientable 2-manifolds. It
is even sufficient for curved-surface environments where loops and
multi-edges are allowed [33]. The basic operations include traver-
sal around a vertex and around a facet. High-level operations main-
taining integrity are Euler operators. The next edge counterclock-
wise around a vertex v for an edge e is equal to e->PCW if e->
PVT == v and e->NCW otherwise.

Variants are possible where vertex and facet pointers can even
be omitted without loosing the traversal capabilities knowing the
edge visited previously. However, all four edge pointers must re-
main if loops or multi-edges are allowed since otherwise the traver-
sal around a vertex or facet is no longer uniquely defined [33]. The
winged-edge data structure where the wings PCCW and NCCW
are omitted has been called Doubly Connected Edge List (DCEL)
by [24] though this name is now more commonly used for the half-
edge data structure [5]. 3

The two symmetric parts in the winged-edge correspond to the
two possible orientations of the edge. The inefficient case distinc-
tion in the traversal computation results from the fact that a pointer
to an edge does not encode the orientation it is currently used with.
One extension of the winged-edge maintains an additional bit with
each edge-pointer to code the orientation, but this leads to cumber-
some storage layouts and function interfaces.

Halfedge Data Structure. The orientation problem can be
solved for the winged-edge data structure by splitting the edge into
the two symmetric records, called halfedges, and adding mutual
links to each other [33]. There are two ways of splitting the edge,
which are actually dual to each other. In both situations the half-
edge contains a pointer to an incident vertex, an incident facet and
the opposite halfedge. It is a matter of convention whether the
source or target vertex is the one chosen to be stored in a halfedge or
whether the facet to the left or the right is stored. In [33] the source
vertex and the facet to the right were chosen. The FE-structure in
Figure 4 additionally stores a pointer to the next clockwise halfedge
and optionally a pointer to the previous counterclockwise halfedge
around the facet. It is therefore biased towards traversals around
the incident facet. The dual VE-structure is depicted in Figure 4

3In order to avoid confusion we will not use the name DCEL since it
turned out to be ambiguous. In fact, the name is misleading when denoting
halfedges and the possible variants of single linking.
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Figure 5: Quad-edge data structure.

on the right. Its next and optional previous pointer refer to half-
edges counterclockwise and clockwise around the incident vertex.
The traversal operation that is not directly accessible with a single
pointer access is available through the opposite halfedge. For ex-
ample the next halfedge around the incident source vertex for the
FE-structure is opposite()->next(). The different conven-
tions are not independent. If the convention defines the halfedge
order around a facet to be clockwise, the halfedge order around the
vertex will be counterclockwise, and vice versa.

The halfedge data structure is able to model orientable 2-mani-
folds. It is sufficient for modeling topology even in the presence of
loops and multi-edges, which can occur in curved-surface environ-
ments [33]. High-level operations maintaining integrity are again
Euler operators. The solid modeling system GWB [21] is based on
a halfedge-data structure, though it uses an additional edge record
between two opposite halfedges, which makes this access less effi-
cient. The Minimal Rendering Tool MRT [2] uses a halfedge data
structure for polygonal surfaces.

Quad-Edge Data Structure. If we perform both halving steps
for the halfedge data structure, we end up with the quad-edge data
structure [11]. It provides a fully symmetric view on the primal
and the dual graph, as can be seen in Figure 5. Instead of using
opposite pointers, a two bit counter r is used to address a slot in an
edge record of four quad-edges. With an additional bit f per edge
for the flipped status the quad-edge data structure is able to model
non-orientable 2-manifolds.

A quad-edge data structure is defined as an edge algebra with
three operations: Onext(), Rot() and Flip(). An edge is rep-
resented as a triple (e; r; f) with r 2 f0; 1; 2; 3g and f 2 f0; 1g.
e is the base pointer to the quad-edge record with the four incident
edges e[0] to e[3]. The operations are implemented as follows with
a calculus modulus 4 for r and modulus 2 for f :

Rot(e; r; f) = (e; r + 1 + 2f; f);

Flip(e; r; f) = (e; r; f + 1);

Onext(e; r; f) = Flipf (Rotf(e[r + f ])) :

Four different orientations of an edge are considered: two orienta-
tions from vertex to vertex and two orientations for the dual edge
from facet to facet. The Rot operator rotates the edge by 90 de-
grees, oscillating between the primal and the dual view of the struc-
ture. For non-orientable 2-manifolds an edge can additionally be
seen from above or below the surface, which is encoded in the f
bit. The Flip operation changes the view from above to below
or vice versa. The Onext operation gives the next quad-edge in
counterclockwise order around the source vertex (origin), or the
next quad-edge in clockwise order if f is equal to one. The values
for Onext are simply stored in the record for each edge (i.e. four

3

Figure 2.7: Half-edge and split-edge data structures.

The winged-edge data structure has been termed “edge-based” because its
three major stored relations have edge as the reference entity. Weiler [99] no-
ticed that representing the edge as a single structure complicates relation-query
algorithms because it requires additional processing to determine which side or
end of the edge is intended every time a reference to an edge structure appears.
He defined three improvements. The first modifies the winged-edge data struc-
ture by adding explicit edge-side indicators. Two other data structures – the
vertex-edge and the face-edge – split each edge into two half-edges. Each half-
edge is related to one of the two edge ends or sides and is also associated with
its opposite half-edge.

2.2.1.2 Half-edge data structure

As mentioned above, the orientation problem can be solved for the winged-
edge data structure by splitting the edge into the two symmetric records called
half-edges and adding mutual links to each other. There are two ways of split-
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ting the edge, which are actually dual to each other: split-edge (see East-
man [23]) and half-edge (see Weiler [99]). In both situations the half-edge
contains a pointer to an incident vertex, an incident face and the opposite half-
edge.

The half-edge data structure was first introduced by Mäntylä and Sulo-
nen [67], though in their solid modelling system they used an additional edge
record between two opposite half-edges, making this access less efficient.

It is a matter of convention whether the source or target vertex is the one
chosen to be stored in a half-edge or whether the face to the left or the right
is stored. Weiler [99] chooses the source vertex and the face to the right. The
half-edge data structure, shown in figure 2.7 together with the dual split-edge
data structure, additionally stores a pointer to the next clockwise half-edge
and optionally a pointer to the previous counterclockwise half-edge around the
face. It is, therefore, biased towards traversals around the incident face. Its
next and optional previous pointer refer to half-edges counterclockwise and
clockwise around the incident vertex. The traversal operation that is not di-
rectly accessible with a single pointer access is available through the opposite
half-edge. For example, the next half-edge around the incident source vertex is
opposite()→next(). The different conventions are not independent. If the con-
vention defines the half-edge order around a face to be clockwise, the half-edge
order around the vertex will be counterclockwise, and vice versa.

The half-edge data structure is able to model orientable manifolds. It is suf-
ficient for modelling topology even in the presence of loops and multi-edges,
which can occur in curved-surface environments. High-level operations main-
taining integrity are again Euler operators (see section 2.1.2.3).

2.2.1.3 Quad-edge data structure

If we perform both halving steps for the half-edge data structure, we end up
with the quad-edge data structure, suggested by Guibas and Stolfi [36]. It
provides a fully symmetric view on the primal and the dual graph, as can be
seen in figure 2.9. Instead of using opposite pointers, a two-bit counter r is used
to address a slot in an edge record of four quad-edges. With an additional bit
f per edge for the flipped status the quad-edge data structure is able to model
non-orientable manifolds.

A quad-edge data structure is defined as an edge algebra with three oper-
ations: Rot(), Flip() and Onext(). An edge is represented as a triple (e,r, f )
with r ∈ {0,1,2,3} and f ∈ {0,1}. e is the base pointer to the quad-edge record
with the four incident edges e[0] to e[3]. The operations are implemented as
follows with a calculus modulus 4 for r and modulus 2 for f :
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Figure 2.8: Adjacency relations in the quad-edge data structure.
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tive operations and storage costs. The representative example cho-
sen is the traversal around a vertex to the next counterclockwise
edge.

Winged-Edge Data Structure. The winged-edge data struc-
ture [1, 10] stores, for each oriented edge, eight references: two
vertices (PVT, NVT), two faces (PFACE, NFACE) and four inci-
dent edges that share the same faces and vertices (PCW, PCCW,
NCW and NCCW), the so-called wings, see Figure 3. An edge is
oriented from the source vertex PVT to the target vertex NVT. The
face PFACE is to the left of the oriented edge when the surface is
seen from the outside.

This data structure is able to model orientable 2-manifolds. It
is even sufficient for curved-surface environments where loops and
multi-edges are allowed [33]. The basic operations include traver-
sal around a vertex and around a facet. High-level operations main-
taining integrity are Euler operators. The next edge counterclock-
wise around a vertex v for an edge e is equal to e->PCW if e->
PVT == v and e->NCW otherwise.

Variants are possible where vertex and facet pointers can even
be omitted without loosing the traversal capabilities knowing the
edge visited previously. However, all four edge pointers must re-
main if loops or multi-edges are allowed since otherwise the traver-
sal around a vertex or facet is no longer uniquely defined [33]. The
winged-edge data structure where the wings PCCW and NCCW
are omitted has been called Doubly Connected Edge List (DCEL)
by [24] though this name is now more commonly used for the half-
edge data structure [5]. 3

The two symmetric parts in the winged-edge correspond to the
two possible orientations of the edge. The inefficient case distinc-
tion in the traversal computation results from the fact that a pointer
to an edge does not encode the orientation it is currently used with.
One extension of the winged-edge maintains an additional bit with
each edge-pointer to code the orientation, but this leads to cumber-
some storage layouts and function interfaces.

Halfedge Data Structure. The orientation problem can be
solved for the winged-edge data structure by splitting the edge into
the two symmetric records, called halfedges, and adding mutual
links to each other [33]. There are two ways of splitting the edge,
which are actually dual to each other. In both situations the half-
edge contains a pointer to an incident vertex, an incident facet and
the opposite halfedge. It is a matter of convention whether the
source or target vertex is the one chosen to be stored in a halfedge or
whether the facet to the left or the right is stored. In [33] the source
vertex and the facet to the right were chosen. The FE-structure in
Figure 4 additionally stores a pointer to the next clockwise halfedge
and optionally a pointer to the previous counterclockwise halfedge
around the facet. It is therefore biased towards traversals around
the incident facet. The dual VE-structure is depicted in Figure 4

3In order to avoid confusion we will not use the name DCEL since it
turned out to be ambiguous. In fact, the name is misleading when denoting
halfedges and the possible variants of single linking.
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Figure 5: Quad-edge data structure.

on the right. Its next and optional previous pointer refer to half-
edges counterclockwise and clockwise around the incident vertex.
The traversal operation that is not directly accessible with a single
pointer access is available through the opposite halfedge. For ex-
ample the next halfedge around the incident source vertex for the
FE-structure is opposite()->next(). The different conven-
tions are not independent. If the convention defines the halfedge
order around a facet to be clockwise, the halfedge order around the
vertex will be counterclockwise, and vice versa.

The halfedge data structure is able to model orientable 2-mani-
folds. It is sufficient for modeling topology even in the presence of
loops and multi-edges, which can occur in curved-surface environ-
ments [33]. High-level operations maintaining integrity are again
Euler operators. The solid modeling system GWB [21] is based on
a halfedge-data structure, though it uses an additional edge record
between two opposite halfedges, which makes this access less effi-
cient. The Minimal Rendering Tool MRT [2] uses a halfedge data
structure for polygonal surfaces.

Quad-Edge Data Structure. If we perform both halving steps
for the halfedge data structure, we end up with the quad-edge data
structure [11]. It provides a fully symmetric view on the primal
and the dual graph, as can be seen in Figure 5. Instead of using
opposite pointers, a two bit counter r is used to address a slot in an
edge record of four quad-edges. With an additional bit f per edge
for the flipped status the quad-edge data structure is able to model
non-orientable 2-manifolds.

A quad-edge data structure is defined as an edge algebra with
three operations: Onext(), Rot() and Flip(). An edge is rep-
resented as a triple (e; r; f) with r 2 f0; 1; 2; 3g and f 2 f0; 1g.
e is the base pointer to the quad-edge record with the four incident
edges e[0] to e[3]. The operations are implemented as follows with
a calculus modulus 4 for r and modulus 2 for f :

Rot(e; r; f) = (e; r + 1 + 2f; f);

Flip(e; r; f) = (e; r; f + 1);

Onext(e; r; f) = Flipf(Rotf(e[r + f ])) :

Four different orientations of an edge are considered: two orienta-
tions from vertex to vertex and two orientations for the dual edge
from facet to facet. The Rot operator rotates the edge by 90 de-
grees, oscillating between the primal and the dual view of the struc-
ture. For non-orientable 2-manifolds an edge can additionally be
seen from above or below the surface, which is encoded in the f
bit. The Flip operation changes the view from above to below
or vice versa. The Onext operation gives the next quad-edge in
counterclockwise order around the source vertex (origin), or the
next quad-edge in clockwise order if f is equal to one. The values
for Onext are simply stored in the record for each edge (i.e. four

3

Figure 2.9: Quad-edge data structure.

Rot(e,r, f ) = (e,r +1+2 f , f ),
Flip(e,r, f ) = (e,r, f +1),

Onext(e,r, f ) = Flip f (Rot f (e[r + f ])).

(2.9)

Four different orientations of an edge are considered: two orientations from
vertex to vertex and two orientations for the dual edge from face to face. The
Rot() operator rotates the edge by 90 degrees, oscillating between the primal
and the dual view of the structure. For non-orientable manifolds an edge can
additionally be seen from above or below the surface, which is encoded in the
f bit. The Flip() operation changes the view from above to below or vice
versa. The Onext() operation gives the next quad-edge in counterclockwise
order around the source vertex (origin) or the next quad-edge in clockwise
order, if f is equal to 1. The values for Onext() are simply stored in the record
for each edge (i.e. four pointers and four times three bits for r and f ). The
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Figure 2.10: Adjacency relations in the face-edge-vertex data structure.

operations simplify considerably for orientable manifolds. They can be further
simplified if the dual graph is not necessary. This reduces to the winged-edge
data structure enriched with a bit to encode orientation.

The single high-level operation that modifies a quad-edge data structure
is the Splice() operation. It is its own dual. The usual Euler operators (see
section 2.1.2.3) can be implemented in terms of Splice(). The quad-edge data
structure provides a unified view for the primal and dual graph. This implies
that vertices and faces cannot be distinguished with strong type checking at
compile time.

The definition used for duality implies, furthermore, that the faces must
have a single connected boundary. Holes in faces are not allowed. If strong
type checking is desired, the Splice() operation is needed twice, once for the
primal view and once for the dual view. Splice() can also be provided for the
half-edge data structure.

2.2.1.4 Face-edge-vertex data structure

Ni [73] designed the face-edge-vertex data structure for a study of free-form
solid modelling that used a hybrid CSG/B-Rep (constructive solid geometry
and boundary representation) approach. The data structure maintains three
relations: E→V , E→F and F→E (see figure 2.10). The first two relations are
returned by a boundary evaluation procedure (see Requicha and Voelcker [81])
on the CSG model, and the third is derived from the previous two. We can
create a free-form solid model in three stages by creating, first, a basis CSG
model with geometric coverage of only quadric surfaces and, second, free-form
surfaces in B-spline form. Then we perform operations between the basis CSG
model and the free-form surfaces, building the face-edge-vertex data structure
for the basis model and updating the data structure accordingly.
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Compared with the winged-edge, the face-edge-vertex data structure shows
an important feature: its manipulation algorithms (creation and modification)
are much simpler. If a solid model is newly created or modified, the winged-
edge must invoke an elaborate and error-prone pointer-chasing procedure for
setting E→E relations correctly. One edge can refer to the other four edges
when and only when the other four are actually created or modified. In the
face-edge-vertex data structure, updating can proceed face by face, which is
more natural to the user. For this reason, we can say the face-edge-vertex data
structure is face-based.

2.2.2 Non-manifold mesh data structures
In practice, many objects represented by triangle meshes contain isolated ver-
tices or edges that are locally non-manifold for several reasons (see Campagna
et al. [15]). On the one hand, many data structures are restricted to orientable
manifold triangle meshes. Even if there are only some few artefacts that are
locally non-manifold within a large data set, these data structures are not able
to represent such an object.

On the other hand, several data structures, which are capable of storing
non-manifold meshes require more memory due to the fact that they store non-
manifold information all over the whole object by using extra memory, even if
most entities are in fact manifold.

Several sophisticated data structures have been developed, but most of them
are capable to represent general polygonal meshes instead of just the special
case of a triangle mesh. Specializing to triangles obviously allows to design
more efficient data structures.

2.2.2.1 Directed-edge data structure

In directed-edge data structure by Campagna et al. [14], a single triangle is
represented by three directed edges (see figure 2.12). Thus, the common edge
vavb of two neighbouring triangles corresponds to two directed edges va→vb

and vb→va. This is very similar to the concept of half-edges, discussed in
section 2.2.1.2. For each directed edge the following information is stored: a
starting vertex va, a target vertex vb, the previous, next and neighbouring edges
epv, enx and eng.

All directed edge information is stored in an array, such that the i’th tri-
angle is represented by the directed edges at the entries 3i, 3i + 1 and 3i + 2.
Therefore, there is no need to store explicit references from each triangle to
an edge and vice versa. Instead, these references are derived from the given
algorithmic context.

So far, only orientable manifold triangle meshes are considered. Assuming
that the number of non-manifold vertices or edges is typically small compared
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Figure 2.11: Adjacency relations in the directed-edge data structure.
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Figure �� The data structure records two vertices va� vb� the neighboring edge eng and the
previous and next edges epv and enx for each directed edge� The memory for some values
�gray� can be exchanged by a constant amount of additional calculations�

the faster is the access to the required data� Unfortunately� memory is a hard limit in
computer systems� Even virtual memory does not help in most cases� since the mapping of
a complex triangle mesh to the linear structure of the memory usually opposes the need for
local coherence access to memory� Drastic slowdown of the performance due to extensive
swapping is the result�

Performance is a very important aspect� but time is in general a soft limit� When
doubling the amount of input data to be processed� it is acceptable to wait even more than
twice the time to get a result� if this is necessary� But if doubling the amount of data
implies that the data structure does not �t into the memory of a computer� this makes it
impossible to work on a data set�

As a result� the implementation of a data structure can be considered as a compro�
mise between memory requirements and performance gains� We propose a scalable data
structure� where additional memory can be utilized to speed up the access and hence the
performance as long as enough resources are available� Once the hard memory limit is
reached� performance can be traded for memory in order to maximize the complexity of
meshes which can be processed on a given system� We will present a new data structure
for triangle meshes that has been motivated by this idea in the following section�

� Directed�Edge Data Structure

We are �rst going to describe the directed�edge data structure for the case of oriented
��manifolds� Afterwards we will present our extension to handle non�manifold triangle
meshes�

�

Figure 2.12: Directed-edge data structure.

to the complexity of the whole mesh, the following simple strategy is used to
handle non-manifold entities.

Using integer values as array-indices for the references to neighbouring
edges allows to use the sign-bit without any additional implementation efforts.
The value for the neighbouring edge eng is zero or positive for every pair of
directed edge mates that represent a manifold interior edge. A directed edge on
a topological boundary is marked by a certain negative entry for eng, e.g. −1. A
non-manifold edge or an edge whose two triangles are of opposite orientation
may be marked by −2.

A manifold vertex references one of its emanating edges. For non-manifold
vertices the same strategy can be used as for edges. A negative array-index
indicates such a node. Removing the negative sign provides a positive value
that points to a separate array which lists either all edges emanating from that
vertex or the connected components attached to that vertex.
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Figure 2.13: Adjacency relations in the radial edge data structure.

2.2.2.2 Radial edge data structure

The radial edge data structure is an edge-based boundary representation for
non-manifold models presented by Weiler [100, 101, 102]. It is known that
there are three kinds of cyclic ordering in non-manifold topology: loop, radial
and disk cycles. Note that the loop cycle is a cycle of edges on the boundary of
a face, the radial cycle is a cycle of faces incident to an edge, and the disk cycle
is a cycle of edges incident to a vertex. The radial edge data structure extends
the manifold representation to the non-manifold representation through a radial
cycle.

Weiler’s radial edge data structure is a generalization of Baumgart’s winged-
edge data structure, disscussed in section 2.2.1.1, to non-manifold geometry.
These two data structures allow us to answer questions about topological adja-
cency relationships often either in constant time or in time proportional to the
size of the output set. Weiler’s data structure also records the radial ordering of
faces around non-manifold edges, hence its name (see figure 2.14). Radial edge
structure was conceived for non-manifold modelling and Weiler has proven its
completeness, which means that any adjacency relationship can be extracted
from this representation.

In order to describe the topology of a spatial subdivision, the radial edge
representation employs the concept of use of a topological element. A use can
be seen as the occurrence of a topological element in an adjacency relation-
ship related to an element of higher dimension. Thus, the radial edge structure
explicitly stores the two uses (sides) of a face by the two regions (not neces-
sarily distinct) that share that face. Each face-use is bounded by one or more
loop-uses, which are composed by an alternating sequence of edge-uses and
vertex-uses (see figure 2.14). Vertex-uses are necessary to store non-manifold
conditions at vertices.
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Figure 2.14: Radial edge data structure: uses of topological elements.
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Figure 2.15: Radial edge data structure: hierarchy of topological entities.
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Figure 2.16: Adjacency relations in the progressive simplicial complexes data
structure containing simplices of dimension 0, 1 and 2. EVi and FEi represent
the number of edges incident to a vertex and the number of faces incident to an
edge, respectively.

The radial edge structure is a hierarchical description of a spatial subdivi-
sion, starting in higher dimension levels (regions) and reaching the lower levels
(vertices) (see figure 2.15). The topological elements are kept in doubly linked
circular lists and have pointers to their attributes.

Topological data structures are complex and should not be directly manipu-
lated. Weiler has introduced a set of operators that provide a high-level method
to access the radial edge structure. These operators are divided in two groups.
The first group has operators that act on faces of a spatial subdivision and are
analogous to the (manifold) operators presented by Mäntylä [66]. The second
group has operators that are capable of creating wireframes and adding faces,
which are attached to specified edges or wireframes. They are referred to as
non-manifold operators. Considerations about a minimal set of operators can
be found in the paper by Wu [108].

2.2.2.3 Progressive simplicial complexes

Progressive simplicial complexes (PSC) is a data structure developed by Popo-
vić and Hoppe [79] for storing and transmitting triangular models. It is non-
oriented, i.e. it is stripped off any oriented simplices or cells. Consequently,
progressive simplicial complexes can be used to represent both orientable and
non-orientable objects (see definition 2.8). Thus, unlike oriented boundary
representations (e.g. directed-edge data structure discussed in section 2.2.2.1),
there is no simplex redundancy. Besides, PSC data structure is able to rep-
resent n-dimensional simplicial complexes. However, the lack of explicit ori-
ented simplices or a geometric orientation mechanism for simplices in this data
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structure poses some difficulties in rendering. Unlike progressive meshes de-
veloped earlier by Hoppe [44], progressive simplicial complexes avoid explic-
itly storing surface normals at vertices. Instead, this data structure makes usage
of smoothing group fields for different materials.

In PSC representation, the geometry of a triangular model is denoted as a
tuple (K,V ), where the abstract simplicial complex K is a combinatorial struc-
ture, which specifies the adjacency of vertices, edges, triangles, etc., and V is a
set of vertex positions specifying the shape of the model in R3.

An abstract simplicial complex K consists of a set of vertices together with
a set of non-empty subsets of the vertices, which are called the simplices of K,
such that any set consisting of exactly one vertex is a simplex in K, and every
non-empty subset of a simplex in K is also a simplex in K.

The abstract simplicial complex K is not restricted to manifolds (see defi-
nitions 2.5 and 2.6, but may in fact be arbitrary. To represent K in memory, the
incidence graph of the simplices is encoded using the following linked struc-
tures:

struct Simplex
{

int dim; // 0=vertex, 1=edge, 2=triangle, ...
int id;
Simplex* children[MAXDIM+1]; // [0..dim]
List<Simplex*> parents;

};

2.2.3 Our data structure

For progressive gap closing and high-quality simplification techniques, which
will be discussed in chapters 4 and 5, respectively, we need an abstraction of
different topological entities. As such abstraction we use a simplex, which in
our data structure represents one of the three topological types, a vertex, an
edge or a face – a concept similar to the progressive simplicial complexes data
structure (see section 2.2.2.3). The simplex basic type allows us to efficiently
build and handle contraction pairs used in our generalized pair contractions
simplification method (see section 5.1).

Inside the simplex type we declare all operations and queries, which are
common for all topological entities, e.g. “is boundary?”, “is manifold?” “get
neighbourhood”, etc. Depending on the actual type of the simplex, a vertex,
an edge or a face, it contains references to respective incident or adjacent sim-
plices.
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Figure 2.17: Adjacency relations in our data structure. EVi, FVi and FEi rep-
resent the number of edges incident to a vertex, the number of faces incident to
a vertex and the number of faces incident to an edge, respectively.

2.2.3.1 Memory consumption

As figure 2.17 shows, in addition to the relations stored in the progressive
simplicial complexes data structure, we store another two incidence relations:
V→F and F→V . This makes our data structure more memory-consuming.
However, in several operations essential for the methods presented in this the-
sis, such as calculation of error quadrics, these relations are used very fre-
quently.

It would suffice to access the information provided by these relations indi-
rectly, i.e., by using relations V→E→F and F→E→V , but in that case, more
additional operations would be necessary, e.g., we would have to check if a
respective edge is part of a boundary etc. Since we store the relations V→F
and F→V , we are provided with the necessary information directly and, there-
fore, can perform the important operations such as calculation of error quadrics
with the maximum possible speed. This allows us to increase the overall per-
formance of the respective methods.

2.2.3.2 Handling mesh attributes

The most important attribute of a mesh is the geometric representation of the
vertices. In nearly all applications the geometry of a vertex is stored as a two-,
three- or four-dimensional point in the Euclidean space. The number format
depends on the application, but floating point values are most commonly used.
The geometric representation of the edges and faces is often not stored explic-
itly but is derived from the points of the vertices. The edges are mapped to the
line segments between their end points and the faces to the polygon interiors
described by the line segments of their edges.
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Further attributes, such as surface normals, surface colours and texture co-
ordinates, i.e. the surface parametrization, are often available at the vertices.
The vertex attributes can simply be stored by extending the dimension of the
point in order to include the normal, colour and texture coordinates. It is also
not a problem to treat attributes given at the faces (or edges, which occur sel-
dom in praxis), as their indices are known.

Often it is necessary to handle attributes at the corner of faces – also called
corner attributes – if the represented surface has non-differentiable creases.
At vertices on the creases the surface normal is not continuous, and different
normals might have to be stored for each face the vertex is incident to. The
corner attributes can be stored within triangle faces – three per face, in the
same order as vertices. The edge attributes in the case when the surface has
non-differentiable creases can be handled similarly.

2.2.4 File formats

Anyone who has worked in the field of computer graphics for even a short time
knows about the bewildering array of storage formats for graphical objects. It
seems as though every programmer creates a new file format for nearly every
new programming project. However we will not follow this “strategy” and
will use some of the most popular 3D graphics formats. Fortunately, there is
a couple of tools available (e.g. Deep Exploration developed by Right Hemi-
sphere1), which can convert from one format to another, and therefore, allow
us to work with 3D meshes stored in almost any available format.

There is a great variety of different 3D graphics file formats around: from
the very basic ones, such as Stanford Triangle Format (PLY) or Stereolithogra-
phy (STL), which represent just an indexed face set or a triangle soup respec-
tively, to such advanced ones, such as Open Inventor (IV) or VRML (WRL),
which allow to represent anything from a single object to a complete scene
with interaction as a tree structure called the scene graph.

However our applications work only with meshes, and therefore, we are
only interested in the way how the formats we are going to read store the mesh
information. In the following, we will describe and discuss the formats sup-
ported by our applications directly.

2.2.4.1 PLY file format

The PLY polygon file format developed by Turk [94], also known as the Stan-
ford Triangle Format, is a simple object description in form of a single indexed
face set that was developed at the Stanford University. The PLY file format has

1http://www.righthemisphere.com

http://www.righthemisphere.com
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two variants: an ASCII representation and a binary version. PLY files have the
.ply extension.

The PLY format describes an object as a collection of vertices, faces and
other elements, along with properties such as colour and normal direction that
can be attached to these elements. A PLY file contains the description of ex-
actly one object. Sources of such objects include: hand-digitized objects, poly-
gon objects from modelling programs, range data, triangles from marching
cubes (isosurfaces from volume data), terrain data, radiosity models. Proper-
ties that might be stored with the object include: colour, surface normals, tex-
ture coordinates, transparency, range data confidence and different properties
for the front and back of a polygon.

A PLY file (see listing consists of a header followed by a list of vertices and
then a list of polygons. The header specifies how many vertices and polygons
are in the file and also states what properties are associated with each vertex,
such as coordinates, normals and colour. The polygon faces are simply lists of
indices into the vertex list, and each face begins with a count of the number of
elements in each list.

A typical PLY object definition is simply a list of (x, y, z) triples for vertices
and a list of faces that are described by indices into the list of vertices. Most
PLY files include only this core information.

p l y
f o r m a t a s c i i 1 . 0 { a s c i i or b i n a r y , f o r m a t v e r s i o n }
comment t h i s f i l e c o n t a i n s a t e t r a h e d r o n model
e l e m e n t v e r t e x 4 { t h e r e a r e 4 v e r t e x e l e m e n t s }
p r o p e r t y f l o a t 3 2 x { v e r t e x c o n t a i n s 3 f l o a t c o o r d i n a t e s }
p r o p e r t y f l o a t 3 2 y
p r o p e r t y f l o a t 3 2 z
e l e m e n t f a c e 4 { t h e r e a r e 4 f a c e e l e m e n t s }
p r o p e r t y l i s t u i n t 8 i n t 3 2 v e r t e x i n d e x
e n d h e a d e r { d e l i m i t s t h e end of t h e h e a d e r }
1 0 0 { s t a r t o f v e r t e x l i s t }
0 1 0
0 0 1
0 0 0
4 1 3 2 { s t a r t o f f a c e l i s t }
4 3 1 0
4 2 0 1
4 0 2 3

Listing 2.1: The model of tetrahedron stored in ASCII PLY file format.
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2.2.4.2 Wavefront object file format

Initially, object files (see Wavefront format description [83]) were developed to
define the geometry and other properties for objects in Wavefront’s Advanced
Visualizer animation package. In Wavefront’s 3D software, geometric object
files may be stored in ASCII format (using the .obj file extension) or in bi-
nary format (using the .mod extension). The binary format is proprietary and,
according to Murray [71], undocumented; therefore, only ASCII format is sup-
ported in our applications and discussed here.

The OBJ file format supports both polygonal objects and free-form objects.
Polygonal geometry uses points, lines and faces to define objects, while free-
form geometry uses curves and surfaces. Lines and polygons are described in
terms of their points, while curves and surfaces are defined with control points
and other information depending on the type of curve. The format supports
rational and non-rational curves, including those based on Bezier, B-spline,
Cardinal (Catmull-Rom splines) and Taylor equations.

OBJ files do not contain colour definitions for faces, although they can
reference materials that are stored in a separate material library file. The most
commonly encountered OBJ files contain only polygonal faces.

g t e t r a h e d r o n { s t a r t o f t h e t e t r a h e d r o n group }
v 1 0 0 { s t a r t o f v e r t e x l i s t }
v 0 1 0
v 0 0 1
v 0 0 0
# 4 v e r t i c e s
f 2 4 3 { s t a r t o f f a c e l i s t }
f 4 2 1
f 3 1 2
f 1 3 4

Listing 2.2: The model of tetrahedron stored in Wavefront Object file format.

2.2.4.3 Inventor file format

Open Inventor is probably the most widely used C++ graphics toolkit in the
world. Originally developed by SGI, Open Inventor has been implemented
on almost every major platform. Anything from a single object to a complete
scene can be represented as a tree structure called the scene graph. The scene
graph contains nodes representing geometry, transformations, attributes, lights
and other data.

IV is the abbreviation for Inventor, a file format used by SGI with a variety
of programs and now shared with Open Inventor, the successor to Inventor.
Inventor files have the .iv extension.
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The version number indicates the version of the Open Inventor file format,
in this case version 2.0. The keywords ascii and binary indicate whether the
rest of the file is in a human-readable ASCII text format or not. The binary
files are smaller than the text files, but files in text format can easily be edited
manually (see Inventor nodes reference [103]).

# I n v e n t o r V2 . 0 a s c i i

DEF t e t r a h e d r o n S e p a r a t o r {
C o o r d i n a t e 3 {

p o i n t [
1 0 0 ,
0 1 0 ,
0 0 1 ,
0 0 0

]
}
I n d e x e d F a c e S e t {

c o o r d I n d e x [
1 , 3 , 2 , −1,
3 , 1 , 0 , −1,
2 , 0 , 1 , −1,
0 , 2 , 3 , −1

]
}

}

Listing 2.3: The model of tetrahedron stored in Inventor 2.0 file format.

2.2.4.4 VRML file format

VRML (Virtual Reality Modelling Language, see VRML manual [40]) has
become the de facto standard for 3D data on the Internet. Originally conceived
as a format to describe multi-user immersive 3D worlds, VRML is finding
many more uses as a format for sharing 3D data, for example, engineering
models, and for packaging 3D presentations that combine sound and animation.
It gained acceptance as both an exchange format and a multimedia content type.

In many respects, Open Inventor is VRML, or at least the parent of VRML.
The VRML 1.0 specification was taken directly from Open Inventor’s file for-
mat, with the addition of a few nodes specific for World Wide Web. These
nodes were added to Open Inventor in release 2.1, making Open Inventor a
true superset of VRML. Release 2.1 of Open Inventor also introduced some
new nodes and field types. VRML 2.0 continues to both borrow from and ex-
tend the Open Inventor model. VRML files are commonly called worlds and
have the .wrl extension.
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2.2.4.5 Stereolithography file format

The stereolithography2 or STL file format is an ASCII or binary file widely
used in rapid prototyping industry (see Palm [78]). It contains a list of the
triangles that describe a solid model. This is the standard input for most rapid
prototyping machines; most CAD packages allow to export to the STL file
format. STL files have the .stl extension.

The structure of the STL file is extremely simple. It contains listings of
individual triangles that define the faces of the solid model. Each individ-
ual triangle description defines a single normal vector directed away from the
solid’s surface followed by the coordinates for all three of the vertices (see STL
specification [1]).

s o l i d f a c e t normal 0 .577 0 .577 0 .577
f a c e t normal −1 0 0 o u t e r l oop

o u t e r l oop v e r t e x 0 0 1
v e r t e x 0 1 0 v e r t e x 1 0 0
v e r t e x 0 0 0 v e r t e x 0 1 0
v e r t e x 0 0 1 end loop

end loop e n d f a c e t
e n d f a c e t f a c e t normal 0 −1 0
f a c e t normal 0 0 −1 o u t e r l oop

o u t e r l oop v e r t e x 1 0 0
v e r t e x 0 0 0 v e r t e x 0 0 1
v e r t e x 0 1 0 v e r t e x 0 0 0
v e r t e x 1 0 0 end loop

end loop e n d f a c e t
e n d f a c e t e n d s o l i d

Listing 2.4: The model of tetrahedron stored in STL file format.

For us the most important difference between the STL format and the for-
mats discussed previously is the fact that the STL file doesn’t contain indexed
face sets. What we have here is the so called triangle soup: there is no connec-
tivity information, every vertex is repeated for each triangle adjacent to it.

Consequently, in order to handle STL files we have to perform the prepro-
cessing phase, during which we read the input triangle soup and convert it to
an indexed face set representation, where

• every vertex is stored only once, and

• the triangles are determined by the indices of according vertices.

2Stereolithography is the most widely used rapid prototyping technology.
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We accomplish this by lexicographically sorting the vertices in a priority
queue, based on their coordinates. Let vstored be a stored vertex and vinput ,
the actual input vertex from the input triangle Tinput . In the case the distance
d(vstored ,vinput) = ||vstored−vinput ||< ε for some ε ,3 the vertices are considered
to be the same, vinput is not added to the priority queue, and Tinput is stored with
the index of vstored .

3Please note that in practice coordinates of the recurring vertices are exactly the same, that
makes the choice of ε trivial.
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Mesh repair
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In this part, we present two algorithms for repair of polygonal meshes con-
taining various artefacts due to incorrect modelling or acquisition. The first of
the methods is dealing with the inconsistency of normal orientation (chapter 3),
while the second, removes the inconsistency of vertex connectivity (chapter 4).
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Chapter 3

Consistent orientation of
normals

Boundary representations consist of a set of primitives, with or without topo-
logical information. Important examples of such primitives are polygons, patch-
es generated from subdivision surfaces and NURBS patches. In many areas
of computer graphics it is desirable or even necessary that the primitives of
a model are consistently oriented, i.e. that the surface normals point in the
“correct” direction.

One area, where consistent normal orientation is highly desirable, is real-
time rendering. Figure 3.1 a shows an example of an inconsistently oriented
polygonal model1. Inconsistent orientation results in incorrect lighting (the so-
called “checkerboard effect”). This could be remedied by two-sided lighting
or by doubling the number of light sources. However, both ways will decrease
rendering performance. In addition, correct normals are still needed to perform
back-face culling, a technique to further improve rendering performance.

Similarly, correct orientation of a model’s primitives is important in ray
tracing and radiosity, otherwise lighting artefacts will be caused.

More importantly, inconsistent orientation of normals can be fatal for many
well-established mesh processing algorithms. For example, the mesh simplifi-
cation algorithm proposed by Garland and Heckbert [30] uses vertex normals
to determine the order in which contraction operations are to be performed.
If applied to a model with inconsistent normals, this algorithm will produce
severe artefacts.

Other areas are the computation of basic object properties, such as vol-
ume and mass, rapid prototyping [88], NC machining and the optimization of
wireless communication systems [52].

1The bot model is courtesy of Michael Beals.
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a) b) c)

Figure 3.1: a) Original model of a bot consists of 2398 inconsistently oriented
separate surface patches; due to the lighting, the “backwards”-oriented faces
are rendered dark. b) Different manifold surface patches are rendered in dif-
ferent colours. c) The bot model after applying our algorithm (with exactly the
same lighting).

Many models are not designed as solids, but just as a single sheet of patches
(such as a windshield). In figure 3.1 b, separate surface patches, of which the
bot model from figure 3.1 a consists, are shown in different colours.

Unfortunately, many modelling tools, in particular CAD tools, pay little
attention to the consistency of normal orientation. There is no feature that
automatically orients the normals, so designers have to manually orient each
patch.2 In addition, many models contain other geometric flaws, such as un-
intentionally intersecting primitives, cracks or gaps and T-junctions, which are
discussed in more detail in section 4.

To solve the problem of inconsist normal orientation, we developed an al-
gorithm that allows to consistently orient the normals of a boundary represen-
tation, even in the presence of gaps, T-junctions and intersections. The input
of our algorithm consists of an arbitrary set of primitives, without any topol-
ogy information. It can handle non-closed and even non-manifold objects (see
definitions 2.5 and 2.6 from section 2.1.1.1).

Our method builds a connectivity graph of the patches of the model, which
encodes the proximity of neighbouring patches. In addition, it augments this
graph with two visibility coefficients for each patch. Based on this graph, a
global consistent orientation of all patches is quickly found by a greedy opti-
mization.

Figure 3.1 c shows the output of our algorithm for the bot model from fig-
ure 3.1 a, which now has consistent normals everywhere.

We describe our algorithm for polygonal objects only. Note, however, that
it works just the same for objects consisting of NURBS or other primitives.

2At many German automotive companies, there are design guidelines that include rules how
designers should orient surface patches, but it is often very difficult to enforce them.
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Thus, tessellations from such models with consistent normals would also be
consistent.

The results show that for almost all models our algorithm produces the
desired normal orientation.

3.1 Description of the algorithm
The input to our algorithm is an arbitrary polygon soup, i.e. a set of unor-
ganized polygons without any explicit topology information, with or without
normals. Since the orientation of each polygon’s normal can be encoded in its
vertex order, the problem of orientation of normals is equivalent to the problem
of ordering vertices in polygons consistently. In the following, we will treat the
term polygon normal synonymous with the term vertex order.

Usually, the output from modelling tools consists of a number of patches.
Here, a patch consists of a set of polygons that are connected to each other, i.e.
for which topology information can be constructed trivially. However, between
patches there are usually more or less wide gaps.

First, we build the neighbourhood information, divide the model into man-
ifold surface patches and detect their boundaries. At this point we also orient
the polygons consistently within each patch, which can be done trivially based
on the topology information that is now available. After that, we determine
those pairs of patches that are close to each other along some extent of their
respective boundaries. For each such boundary pair we calculate its coherence
coefficient.

Next, we determine the visibility coefficients for both sides of each patch.
These coefficients describe how much of the surface of the patch is visible
when viewed from all different viewing angles.

Finally, using both the boundary coherence and visibility coefficients we
compute a global consistent orientation of the whole model. Patch bound-
aries that are close to each other make our algorithm consider normal orienta-
tion consistency more important than front-face visibility. On the other hand,
patches that share only very loose boundaries are oriented such that front-face
visibility is favored over normal consistency across the boundaries.

In the following, we will describe each step of the algorithm in detail.

3.1.1 Detection of patches
As already mentioned, the input of our algorithm is a set of unorganized poly-
gons. First we read the input polygons and, using lexicographical sorting of
the vertices, convert them to an indexed face set.

After that, we build the neighbourhood information for the mesh. In or-
der to do so, we detect and collect all boundary and non-manifold edges. As
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boundary edges we define all edges which are incident to only one polygon. As
non-manifold edges we define all edges which are incident to more than two
polygons. During the traversal of the mesh we divide it into a set of manifold
surface patches, which either are not connected with each other or connected
only at vertices or non-manifold edges. For each patch we consistently orient
all polygons belonging to it, which is trivial, due to the manifold topology that
we now have. Of course, after that, the orientation could differ between two
neighbour patches, even if it was consistent in the original data.

The only problem that remains is how to orient the patches with respect to
each other, which is not trivial, because their boundaries are only more or less
close to each other along a part of that boundary.

3.1.2 Calculation of boundary coherence
At this stage we want to find close boundaries of different patches and deter-
mine the degree of their coherence. To accelerate finding pairs of close bound-
ary edges we use a 3D grid, but many other spatial acceleration structures,
such as k-d trees, can be used as well. Note that we should set a large search
distance, as the quality of the results will suffer, if it is too small.

Assume that we have found the boundary edge en
j from patch Pn as a closest

neighbour for a boundary edge em
i from patch Pm. Then, we proceed in the

following way: first, we calculate the local coherence between these two edges,
which we define as

cmn
i j =−sgn(smn

i j )

√
|smn

i j |

1+dmn
i j

, (3.1)

where smn
i j =~em

i ·~en
j is the scalar product of ~em

i and ~en
j , dmn

i j is the shortest dis-
tance between em

i and en
j .

3 The absolute value of the local coherence is ap-
proximately proportional to the edges’ lengths and inversely proportional to
the distance between them. Its sign shows whether the polygons incident to
these boundary edges have the same or different orientation.

All local coherences for edge pairs from the patches Pm and Pn are summed
up into the coherence coefficient:

cmn = ∑
i, j

cmn
i j . (3.2)

Figure 3.2 shows an example of the coherence coefficients. The idea of the
boundary coherence coefficient is that it can give a hint as to which patches
should probably be oriented consistently. This is, of course, only an intrinsic
constraint.

3Note that all lengths are normalized by dividing them by the length of the longest side of the
model’s bounding box.
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Figure 3.2: Local coherences cmn
i j and coherence coefficients cmn for patches

P1, P2 and P3.

3.1.3 Calculation of visibility
We still need an external indicator to help choose the correct overall orientation
of all patches. As mentioned before, our goal is to find a global orientation of
patches, such that as many polygons as possible can be seen with their front
faces from most viewpoints. For this purpose, we want to determine the visi-
bility of each side of each patch when seen from all possible viewpoints from
outside the whole object. To do this, we can use various methods.

3.1.3.1 Ray shooting method

The first method we have tried is similar to a common raytracer. On the surface
of each patch Pm we randomly and uniformly choose nm points, where nm is
proportional to the area of Pm. Starting from each of these points we shoot a
ray in a random direction. If the ray does not intersect any other polygons, we
increment the counter for the polygon’s side corresponding to the half-space in
which the ray was shot. So, each patch has two counters nm

f and nm
b , which are

the accumulation of all polygon counters. Finally, we define the front-face and
back-face visibility coefficients for each patch as

vm
f =

nm
f

nm , vm
b =

nm
b

nm . (3.3)

The main drawback of this method is that one needs to shoot a very large
amount of rays in order to obtain an acceptable reliability.

3.1.3.2 5D octree method

In the previous method we walk along a ray every time we shoot it into the
scene. Of course, we accelerate this by any of the well-known data structures,
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Figure 3.3: Ray space can be represented by a 5D cartesian rectangle with the
help of the direction cube.

a) b)

Figure 3.4: Two basic cases that can occur during computation of the visibility
coefficients using a 5D octree over ray space.

such as k-d trees. However, rays are essentially static objects, just like the
geometry of the model. So, based on the ideas of Arvo and Kirk [2], we develop
the following algorithm.

We discretize directions by the so-called direction cube (see figure 3.3).
Now we can build six octrees over the space of all rays, which are the 5-
dimensional rectangles R = U × [−1,+1]2×{+x,−x,+y,−y,+z,−z}, where
U is a suitable 3-dimensional bounding box around the complete model. Each
cell, of the 5D octree corresponds to a beam in 3D geometric space, emanating
from a 3D cell in geometric space [110].

Initially, we start with the root of the octree that comprises all possible rays.
We associate all patches of our model with the root. Then, we recursively parti-
tion a node of the octree and distribute the set of patches among its children. A
patch is associated with a child if it intersects the beam that child corresponds
to. We stop the partitioning (i.e. conceptually we create a leaf), if either of the
following conditions holds:

1. There is only one patch left in the 3D cell of the node. Now we must
consider two sub-cases (see figure 3.4):
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(a) There is no other patch associated with the node, i.e., all rays start-
ing from the patch in the cube and in the direction of the beam
would not hit any other patch (except for self-occlusions). There-
fore, we add an amount to the visibility coefficient that corresponds
to the spatial angle of the beam. Note that this angle depends only
on the depth of the node, so the increase of the visibility coefficient
can be precomputed.

(b) There are other patches associated with the node. This means that
at least some rays shot from within the 3D cell would hit another
patch. Since we are only interested in approximations of the visi-
bility coefficient, we assume that all rays would hit, and therefore,
we don’t increase the coefficient.

2. The node’s cell is too small (i.e., we have reached the maximum depth).
Now we just consider the two sub-cases of the previous case for each of
the patches that are (partially) inside the 3D cell of the node.

Note again that this computes, just like the previous of the following method,
an approximation of the visibility coefficient. In our experience, though, such
approximations are sufficient for all models we have tried so far.

Since we have now defined what a 5D cell of the octree represents, it is
almost trivial to define how objects are assigned to sub-cells: we just compare
the bounding volume of each object against the sub-cells 3D beam. Note that
an object can be assigned to several sub-cells (just like in regular 3D octrees).
The test whether or not an object intersects a beam could be simplified further
by enclosing a beam within a cone and then checking the object’s bounding
sphere against that cone. This just increases the number of false positives a
little bit.

Note that the octree does not have to be built at all. As soon as we arrive
at a leaf, we possibly increase the visibility coefficient and then backtrack the
recursion – we never actually construct any nodes. This greatly increases pro-
cessing time. Furthermore, in contrast to Arvo and Krik [2], we need only very
little memory, because we only keep some arrays of pointers to patches, one
per recursion level. The number of levels is fairly limited (10–20).

3.1.3.3 GPU-based method

This method uses the GPU to calculate the visibility of single patches. The
whole mesh is rendered from different points of view with colour coding, then
the frame buffer is read and processed.

In order to get correct results we have to distribute the viewpoints uni-
formly around the model. We achieve this by placing them on the vertices of
a tessellation of the bounding sphere of the model, produced by a successive
subdivision of the icosahedron.
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For each viewpoint we render the whole model onto a square viewport with
a side length lvp, using orthogonal projection, without shading and without
anti-aliasing. Each side of each patch is drawn in an unique colour, which
allows to unambiguously identify it when reading the pixels from the frame
buffer. For each non-black pixel we increase the appropriate counter nm

f or nm
b

(for front- or back-face, respectively) of the patch Pm by 1.
The side length lvp should be chosen such that the smallest patch in the

model will still occupy at least a few pixels from several viewpoints. Therefore,
this method is only suitable for models where the ratio of the bounding box to
the size of the smallest patch is not to large.

After nt viewpoints, we define the front-face and back-face visibility coef-
ficients for each patch Pm as

vm
f =

nm
f

nt ·am , vm
b =

nm
b

nt ·am , (3.4)

where am is the area of the patch Pm.

3.1.4 Consistent orientation of patches
After we have computed boundary coherence and visibility coefficients, we
combine this information to find a consistent, global orientation of all surface
patches.

For each patch Pm we already have its area am and two visibility coefficients
vm

f and vm
b . We also have the set C of boundary coherence coefficients cmn.

For each possible joint orientation of patches we define the overall front-
face visibility Vf , back-face visibility Vb and coherence C of the super-patch
as

Vf =
∑m vm

f ·am

∑m am , Vb =
∑m vm

b ·am

∑m am , C = ∑
m,n

cmn. (3.5)

Our goal is to find the orientation of all patches that maximizes both overall
front-face visibility Vf and overall coherence C for all super-patches.

We will now repeatedly replace the set of patches P by a new set P ′,
where two former patches Pk,Pl ∈P have been joined conceptually into a
super-patch P j ∈P ′. During this join operation, the orientation of one or both
patches can be flipped.

In the following we will denote by the word patch either an original patch
or a number of patches joined into one super-patch.

When we flip the orientation of a patch Pk, we update the coherence and
visibility coefficients related to this patch in the following way:

v̂k
f = vk

b, v̂k
b = vk

f ,

∀cmk : ĉmk =−cmk, ∀ckn : ĉkn =−ckn
(3.6)
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In order to achieve a fast algorithm, we use a greedy strategy: in a queue,
we sort all pairs of patches for which the boundary coherence is defined, so that
the absolute values of the coherence coefficients cmn are sorted in descending
order. Then, we connect pairs of patches into super-patches, which get their
own visibility coefficients. We also compute new boundary coherence coeffi-
cients between the new super-patch and the other patches and insert them into
the queue.

More specifically, with each step we take a pair of patches Pm and Pn with
the largest absolute coherence coefficient cmn out of the queue. Their visibil-
ity coefficients are vm

f , vm
b , vn

f and vn
b, respectively. Depending on a all these

coefficients, we make a decision considering joint orientation of both patches.

3.1.4.1 Conforming coefficients

If
(cmn > 0 ∧ vm

f ≥ vm
b ∧ vn

f ≥ vn
b) ∨

(cmn > 0 ∧ vm
f ≤ vm

b ∧ vn
f ≤ vn

b) ∨
(cmn < 0 ∧ vm

f ≥ vm
b ∧ vn

f ≤ vn
b) ∨

(cmn < 0 ∧ vm
f ≤ vm

b ∧ vn
f ≥ vn

b),

then the visibility coefficients agree with the coherence coefficients. Therefore,
we connect both patches into one super-patch S and define its front-face and
back-face visibility coefficients as

v f =
vm

max ·am + vn
max ·an

am +an ,

vb =
vm

min ·am + vn
min ·an

am +an ,

(3.7)

where vm
max = max(vm

f ,vm
b ), vm

min = min(vm
f ,vm

b ), am and an are the areas of the
patches Pm and Pn. We also change orientation of one or both patches, if
necessary (if v f < vb). If cmn was negative, it becomes positive after the change
of orientation (according to equations 3.6.

This choice of orientations results in the maximization of the front-face vis-
ibility v f of the super-patch S and, at the same time, its consistent orientation.

3.1.4.2 Conflicting coefficients

If
(cmn > 0 ∧ vm

f ≥ vm
b ∧ vn

f ≤ vn
b) ∨

(cmn > 0 ∧ vm
f ≤ vm

b ∧ vn
f ≥ vn

b) ∨
(cmn < 0 ∧ vm

f ≥ vm
b ∧ vn

f ≥ vn
b) ∨

(cmn < 0 ∧ vm
f ≤ vm

b ∧ vn
f ≤ vn

b),
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then the visibility coefficients come into conflict with the coherence coeffi-
cients: if we choose the patch orientations according to cmn, the front-face
visibility of the resulting super-patch will be not the maximum possible; on the
other hand, the choice of orientations, which maximizes the front-face visibil-
ity, will result in inconsistent orientation on the boundary between the patches.

To find a tradeoff between the front-face visibility and boundary coherence,
we compare them with some predefined values, which are parameters of the
algorithm.

As already mentioned in the beginning of section 3.1, in case of close patch
boundaries we consider normal orientation consistency more important than
front-face visibility. Therefore, we first compare the boundary coherence with
a threshold C0. If |cmn/lmn|> C0, where lmn is the sum of lengths of all edges
that contribute to cmn, we assume the coherence between two patches to be
strong and preserve their consistent orientation by connecting both patches into
one super-patch. The visibility coefficients of the new super-patch are defined
as

v f = max(v1,v2), vb = min(v1,v2), where

v1 =
vm

max ·am + vn
min ·an

am +an ,

v2 =
vm

min ·am + vn
max ·an

am +an .

(3.8)

If necessary, we change the orientation of one or both patches.
Otherwise, we compare the visibility coefficients off the two patches. If

for one of the patches both visibility coefficients are very small or differ not
much, and the visibility of the other patch dominates over it with respect to
the patches’ areas, we assume that its incorrect orientation will have only tiny
impact on the overall front-face visibility. Therefore, if for the patch Pm(

vm
b > εv ∧

vm
f

vm
b

< kv ∨ vm
b < εv ∧ vm

f < εv

)
∧ v1 < v2, (3.9)

we connect both patches into one super-patch. Here, εv is a lower threshold of
visibility, below which we assume it is not important; kv is a minimum ratio of
largest to smallest visibilities of a patch, below which we assume their incorrect
orientation is not important; v1 and v2 are defined in equation 3.8. The visibility
coefficients of the new super-patch are calculated according to equation 3.8. If
necessary, we change the orientation of one or both patches.

If condition 3.9 does not hold, we perform these comparisons again for the
second patch Pn and, if true, still connect the two patches.

In all other cases we decide to favor front-face visibility over normal con-
sistency across the boundaries and do not connect the patches. All their coef-
ficients remain unchanged and we proceed to the next pair of patches from the
priority queue.
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a) b)

Figure 3.5: Model consisting of 323 patches, which are shown in different
colours. Dark lighting shows back-facing polygons, which denote incorrect
orientation: a) original model; b) after applying our algorithm, all patches are
correctly oriented.

a) b)

Figure 3.6: Model with 78 patches: a) original model; b) after applying our
algorithm.

After the whole queue is processed, we get the final global orientation of
all surface patches.

3.2 Results
We have tested our method with a large number of models consisting of up to
3000 surface patches.

Our new algorithm produced the desired orientation for almost all models
of our test suite. Figures 3.5 and 3.6 show two samples of our test suite. Our
method can also handle the coffee mug model shown in figure 3.7, which Mu-
rali and Funkhouser reported to be difficult for proximity-based approaches [70].

Additionally, we tested the robustness of our algorithm. To this end, we
changed the orientation of a random sample of the input polygons (see fig-
ure 3.7 a). This had no influence on the result, i.e., our algorithm does not
depend on the initial orientation of the input and all normals are correct after-
wards.

We have also investigated whether only one of the two criteria (boundary
coherence or visibility) would be sufficient. Our tests have shown that for
many models the independent maximization of front-face visibility for each
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a) b) c)

Figure 3.7: The coffee mug model used by Murali and Funkhouser [70]: a)
polygons are oriented randomly (back-facing polygons are drawn in black); b)
different manifold surface patches are rendered in different colours; c) after
applying our algorithm, all polygons are oriented correctly.

a) b) c)

Figure 3.8: Model with 71 patches: a) original model; b) after applying our
algorithm with only boundary coherence taken into account; c) taking both
boundary coherence and visibility into account.

single patch can be sufficient. Using boundary coherence only was successful
with some models. However, there are models where both criteria are needed.
Figures 3.8 and 3.9 show examples where using only one of the two criteria
fails to produce the desired result.

Table 3.1 shows the performance rates of our algorithm for three different
models, each at three different levels of detail. To calculate the visibility co-
efficients we used the GPU-based method with 80 viewpoints and viewport of
400 x 400 pixels. The timings have been obtained on a Pentium 4 processor
with 1.8 GHz and GeForce2 MX graphics card. Obviously, the overall times
are dominated by the visibility computation. This time and also the time for
building the topology information and detecting the patches are mostly linear
in the number of polygons. The time for calculating the boundary coherence
coefficients depends mostly on the number of boundary edges. Apparently,
for the first model the simplification tool performed almost no reduction on
boundaries.
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a)

b)

c)

Figure 3.9: Model with 137 patches: a) original model; b) after applying our
algorithm with only visibility taken into account; some incorrectly oriented
patches are marked with arrows; c) taking both boundary coherence and visi-
bility into account.

a) b) c)

Figure 3.10: Model with 1250 patches: a) original model with patches shown
in different colours and lighted from both sides; many patches overlap or are
coplanar with each other; b) after applying our algorithm, several patches are
still oriented incorrectly; c) the same model lighted from both sides.
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Number of Number of Patch Coherence Visibility
polygons patches time (s) time (s) time (s)

1 180 252 78 5.6 0.7 17.7
60 080 80 1.5 0.6 6.6
18 019 83 0.4 0.5 2.5

2 194 668 1 508 5.9 3.4 19.0
64 648 1 509 1.8 2.0 6.8
19 142 1 511 0.4 1.1 2.6

3 300 836 3 310 10.5 9.2 29.1
84 673 2 040 2.7 2.8 9.1
14 327 2 067 0.4 0.9 2.5

Table 3.1: Performance rates of our algorithm for 3 models at different levels
of detail: time for detecting the patches, time for calculating the boundary
coherence coefficients and time for calculating the visibility coefficients.

It is difficult to compare the performance of our algorithm with that of
Murali and Funkhouser without re-implementing their approach. Therefore,
we tried to convert the timings reported by them on our platform. We used a
scaling factor of 50, which means that their algorithm could handle a model of
about 1200–1600 polygons in about 1.5–4.5 seconds. In contrast, our method
can handle a model of 15 000–18 000 polygons in 3.4–4.1 seconds.

Since we do not only consider solids (i.e. objects that have, or should have,
a well-defined interior and exterior), it should be mentioned here, that for some
models a consistent orientation of all normals is not possible. The Möbius
strip, shown in figure 3.11, is classical example of a non-orientable surface, as
defined in definition 2.8 from section 2.1.1.1.

In addition, with (intentionally) non-manifold models, it can become very
hard to define the best of all possible orientations, even for humans. But even
in those cases, our method finds a good solution. Only for models with many
overlapping and coplanar polygons it produces sub-optimal results (see fig-
ure 3.10).

3.3 Related work
So far, there were two approaches to solve the problem of inconsistent normal
orientation: proximity-based or boundary-based and solid-based.

Proximity-based and boundary-based methods try to establish topological
information based on the proximity of vertices or boundaries. In their surface
reconstruction method, Hoppe et al. [47] determine a consistent orientation
of tangent planes in all data points by solving a graph optimization problem.
However, their method can be applied only to manifold models. Several works,
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Figure 3.11: Some models cannot be oriented consistently. The Möbius strip
is a simple example. Shown here are two different possible solutions.

e.g. by Bernardini et al. [10] or by Azernikov and Fischer [4, 6, 5], utilize a
normal consistency criterion in order to correctly recover the topology of an
object. Some other methods, e.g. by Kernighan and van Wyk [52] or by Laurini
and Milleret-Raffort [57], are inherently two-dimensional.

Solid-based approaches, e.g. by Thibault and Naylor [93] or by Teller and
Hanrahan [92], try to partition R3 into cells that are either inside or outside
the model. Murali and Funkhouser [70] significantly extend this in order to
deal with gaps, T-junctions and intersections. However, these methods can
handle only geometry that is closed and manifold (or intended to possess these
properties).

Guthe et al. [39] collect the patch connectivity information in a so-called
seam graph, which is then used for view-dependent trimmed NURBS render-
ing.

In computational geometry, a lot of work has been devoted to robust com-
puting (see works by Segal [86], Fortune and van Wyk [28] or Shewchuk [89]).
However, these methods are not applicable here, because they try to avoid er-
rors caused during the computation, while our algorithm tries to correct errors
in the input data.

Since the publication of our method in the year 2004, several new ap-
proaches, which handle the problem of inconsistent normal orientation, were
published.

Mesh repair methods based on a volumetric techniques, e.g. by Bischoff et
al. [11], solve several mesh inconsistency problems simulteniously. The idea
of these methods is to convert the mesh data into a volumetric representation
and then generate a consistent mesh when converting back to a surface. In the
volumetric setting, various filter operations can be applied to repair some of
the topological artefacts and holes but this also removes sharp features from
the input data. Hence, most volumetric approaches have been suggested in the
context of topology-modifying mesh simplification.
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The very recent visibility-based geometry-analysing algorithm by Zhou et
al. [112] propagates visibility using ray casting and computes an inside and
outside classification of oriented triangle faces using graph cuts. It is closely
related to our method and improves several of its issues. Most notably, it is able
to cope with coplanar polygons and intersections and incorporates a mecha-
nism to correct sampling errors, which may appear due to the imperfection of
the geometry, e.g. gaps between faces.

3.4 Summary
We have proposed a new approach, which we call visibility-based, to the prob-
lem of consistently and sensibly orienting all normals of arbitrary polygonal
models. We combine this approach with a proximity-based approach, which
yields a method that can correctly orient more models than previous methods.

We first divide the model into a set of manifold surface patches and estab-
lish a consistent orientation within each patch. Then, we orient the patches in
such a way that the coherence between patches with close boundaries is maxi-
mized and, at the same time, as many polygons as possible are seen with their
front-faces from most viewpoints.

Our method produces the desirable solution for almost all practical cases,
except the models, which contain many overlapping and coplanar polygons.

The algorithm is controlled by only very few parameters, and their adjust-
ment is not critical. While some of them balance the tradeoff between accuracy
and speed, the others determine the choice between consistent orientation and
visibility.

As we mentioned in the beginning of this chapter, our method is applicable
not only to polygonal meshes, bot to objects consisting of other primitives as
well, such as NURBS. This is one avenue for future work. Another area is
the search of other metrics and other criteria for decision-making in conflict
situations. Also, acceleration and increase of accuracy of our method could be
considered as further development.
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Progressive gap closing

Since the generation of 3D models is application-driven, numerous models
contain artefacts like T-vertices, degenerate triangles, gaps and holes. Essen-
tially, a set of polygons not containing consistent connectivity information suf-
fice for rendering purposes.

However, as a natural consequence of recent advances in computer graph-
ics field, we no longer want to be able only to render images of objects, but also
to process and analyze the already available models. New demands and appli-
cations have arisen, where “better behaved” polygonal models are desired, in a
sense that they do not contain the above artefacts.

Signal processing techniques on meshes aim at analyzing the geometry
and improving the visual quality of models. Compression and progressive
transmission facilitate robust transfer of 3D meshes through the Internet and
their efficient storage. Mesh simplification algorithms reduce the complexity
of highly detailed models by optimally approximating the geometry within a
prescribed tolerance.

The following example demonstrates the problem of applying a common
mesh decimation algorithm to a model containing gaps between the patches.
The model shown in figure 4.1 a consists of several separate patches with no
visible gaps between the patch boundaries, which are rendered red in fig-
ure 4.1 b. However, after applying mesh simplification, the gaps can grow,
as shown in figure 4.1 c.

Computing geodesic distances has gained a lot of attention in the last few
years, since this numerical method was recently found very useful in a number
of applications, e.g. in a work by Novotni and Klein [77]. The effect of lack of
consistent connectivity of vertices is depicted in figure 4.2.

There are numerous variants of these geometric modelling techniques, and
some of them are applicable to meshes containing the artefacts mentioned
above. Generally however, in order to achieve optimal results, consistent vertex
connectivity information is required.

59
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d)c)b)a)

Figure 4.1: Impact of inconsistent vertex connectivity on a mesh simplifica-
tion algorithm. The original model (a) contains gaps between separate patches,
whose boundaries are rendered red in (b). After applying decimation, the gaps
became visible (c). Simplification of the model repaired by our algorithm pro-
duces no such artefacts (d).

a) b)

Figure 4.2: Impact of inconsistent vertex connectivity on an algorithm com-
puting geodesic distances on triangular meshes. For a closed watertight hippo
mesh (a), the algorithm produces appropriate wavefronts. In contrary, for the
hippo that contains a long hole along its back (b), the wavefront breaks at the
ends of the hole, thus producing erroneous results.

We developed a method that allows to eliminate these artefacts and repair
the input mesh by applying topological modifications while retaining the over-
all geometry.

In the proposed method we suggest to approach the problem of eliminating
the artefacts listed above as a simplification task. Without loss of generality,
we formulate our technique for triangle meshes. Since we intend to proceed by
altering the topology of the triangle mesh, we clearly need topology modifying
operators.

Garland and Heckbert [29] and Popović and Hoppe [79] already gener-
alized the common edge contraction operator, where two vertices lying on a
common edge are contracted, to vertex contraction, where two vertices not nec-
essarily connected by an edge are contracted. This way unconnected regions
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Figure 4.3: Representative stages of repairing the model of a steering wheel,
demonstrating the progress of our algorithm. Only the boundary edges are
rendered as wireframe, the vertices of the mesh are rendered to give a feeling
where the surface is. About 2700 models were generated in sequence between
the leftmost original mesh and the rightmost final one. After the generation of
this sequence, the user is free to navigate back and forth between the models
and select the desired one, she/he can also choose to proceed further with the
gap closing.

of the mesh can be joined. We further generalize this operation by introducing
a vertex-edge contraction, where a vertex is unified with its projection on an
edge.

The intuition behind our algorithm is that the gap closing should proceed
by attracting the boundaries of the mesh towards each other, which is achieved
by utilizing the vertex-edge contraction operator. In other words, we apply the
methodology of mesh decimation to the decimation of boundaries targeted at
gap closing.

Similarly to the common simplification methods, the procedure is error-
controlled as well, furthermore, it is performed in a progressive manner ac-
cording to a monotonically increasing error. Our method essentially generates
a sequence of meshes where the gaps and holes are progressively removed, as
shown in figure 4.3.
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As explained in section 4.1, the transition between the neighbouring models
in the sequence is accomplished by applying a single contraction operator or its
inverse. We enable the user to navigate between these meshes, which facilitates
the visual inspection of the results and interactive control of the process by
determining a desired error tolerance.

As pointed out by Weihe and Willhalm [97], stitching of mesh boundaries
is a highly non-trivial process, since some of the gaps may be intentionally
modelled, while others might be results of erroneous modelling or tessellation
procedure. We take this issue into account by allowing the user to manually
select/deselect areas to be considered during the stitching process.

Again, the input to our algorithm is a general polygon soup – a set of un-
organized polygons without any explicit topology information, à la STL file
format (see section 2.2.4.5). We assume the mesh to be composed of triangular
faces. Note that this does not imply any loss of generality, since the polygonal
faces may easily be converted into triangular ones. The mesh to be processed
by our method will possibly include the following artefacts:

• degenerate faces without finite area,

• unwanted gaps and cracks between regions of the mesh resulting from
erroneous scan data reconstruction or modelling and/or tessellation of
analytical surfaces,

• holes in the model due to missing polygons,

• T-vertices lying on interior of an edge of a face.

The vertex-edge contraction operator to be defined in section 4.1 will pos-
sibly introduce non-manifold edges and/or vertices (see definition 2.6 from
section 2.1.1.1), and therefore, the output of our system will also be a non-
manifold mesh in the general case. However, if a manifold surface is desired,
the methods presented by Guéziec et al. [35] may be applied to our results;
the mesh will be cut exactly along non-manifold features, thus preserving the
consistent connectivity of the manifold components.

4.1 Vertex-edge contraction
Let us describe our notation and terminology: V is a set of N abstract vertices,
|V | = N. The abstract polygonal surface S (V ) contains the topological in-
formation of the model, it is composed of subsets of V . Since we work with
triangle meshes, the subsets are vertices, edges and triangles. In order to embed
the mesh into the three dimensional space R3, we assign a geometric position
in space to each abstract vertex. Let P = {pi ∈R3|1≤ i≤N}. We now define
the triangular mesh M as the pair (S ,P).
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Before After

Figure 4.4: Vertex contraction operation.

The decimation methods utilizing the edge contraction operator proceed by
iteratively contracting edges. As already pointed out above, this operator does
not provide enough topological flexibility during the decimation process. It is
possible to close holes in the mesh by iterative application of the operator, how-
ever, the disconnected regions of the mesh will remain in separate components.
The vertex contraction operator (see figure 4.4) is a natural generalization of
the edge contraction, and it seems to be the appropriate compromise between
topological flexibility and control over the topological changes it induces. This
operator contracts vertices not necessarily lying on a common edge, and there-
fore, it allows to stitch together the boundaries of the mesh. Note that we only
want to process the boundaries of the mesh, in which case even the vertex con-
traction may be not flexible enough. In order not to introduce distortions in
case of narrow gaps, it is sometimes more favorable to project a vertex directly
onto an edge. We call this operator a vertex-edge contraction, which is made
up of the sequence of following operations (see figure 4.5):

1. The vertex v is projected orthogonally onto the edge e.

2. A vertex v′ is inserted into the edge at the geometric position of the
projection.

3. The triangle t1 is split into two triangles t ′1 =(v0,v′,v2) and t2 =(v1,v2,v′).

4. A vertex contraction to v and v′ is performed. The new position of the
vertex will be a convex combination of v and v′, we move the new vertex
vnew into position λv+(1−λ )v′.

Please note that general version of the vertex-edge contraction operation,
which dealing not only with mesh boundaries but with arbitrary vertex-edge
pairs, will be discussed later in section 5.1.1, as we will introduce the general-
ized pair contraction operator.
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Figure 4.5: Vertex-edge contraction operation.

At this point, it is necessary to mention that during the process we main-
tain for each boundary edge a list of vertices being projected onto it. In case
the geometric position of the edge changes, the edge is destroyed or no longer
belongs to the boundary due to modifications in its vicinity, we recompute the
correspondences for all vertices in the list. Furthermore, note that if the vertex
v is projected onto a vertex incident to the edge e, only a simple vertex contrac-
tion is performed. Thus, the vertex-edge contraction is a further generalization
of the vertex contraction. The projection of vertices is conducted according to
an error measure, see the next section for details on that.

The goal of our method is to construct a series of meshes M0,M1, . . . ,MM
by incrementally applying the vertex-edge contraction operator, where M0 is
the input mesh. The user should be able to choose the desired model Mi, and
therefore, we allow him/her to navigate between the meshes. Thus, we essen-
tially generate a sequence of meshes in a sense of multiresolution representa-
tions, see e.g. Hoppe [44]. The forward navigation is clearly accomplished
by applying the contraction according to some well defined order. However,
in order to undo the operations during the backward navigation, we have to
define an inverse vertex-edge contraction operator and store some data during
the generation of the sequence. The data to be stored and the inverse opera-
tors for vertex contraction are described by Garland and Heckbert [29] and by
Popović and Hoppe [79]. We focus only on formulating an inverse operator of
the vertex-edge contraction (see figure 4.5):

1. The vertex vnew is projected orthogonally onto the edge e determined by
vertices v0 and v1, this way we reconstruct the position of the vertex v′.

2. The vertex v is computed as follows: v = vnew−λv′
1−λ

.

3. The triangle t2, which can unambiguously be determined, since we de-
fine it to be incident to v1 and non-incident to v0, is deleted.

4. The triangle t1 = (v0,v1,v2) is restored. Note that v2 can also always
unambiguously be determined, since e is a boundary edge.
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Note that we do not have to delete any vertex, since we reuse v to store
vnew. Given a mesh Mi, 0 < i ≤ M, in order to fully restore the mesh Mi−1,
we only need to store the indices of vertices v0 and v1 as split information. The
projection direction is the vector pointing from vnew towards v′; in order not to
be forced to recompute the projection, we additionally store the λ .

We store the split information for each projected boundary vertex; to re-
tain the ordering, we include the indices of vertices of this kind in an array
as the decimation proceeds. Moreover, note that in order to navigate between
the already generated meshes, it is not necessary to maintain for every bound-
ary edge lists of vertices corresponding to it. The ordering of features to be
contracted, which we store in an array during the procedure, fully determines
the process for these cases. We only have to store these information for the
mesh MM , where M is the largest index in the mesh sequence, since the corre-
spondences are needed only if the user chooses to continue to generate further
meshes.

4.2 Description of the algorithm
The algorithm for gap closing essentially consists of a preprocessing phase and
the boundary decimation process itself. The method proceeds according to an
increasing error computed as distance between feature pairs that are possible
candidates for a contraction operation. This in turn implies that our approach
has the nice progressive property, which means that always the contraction
corresponding to the smallest error is performed. The progressivity is not only
a numerically pleasant feature, it is also greatly appealing on the user level,
since the user can follow the process in an intuitive manner.

4.2.1 Preprocessing phase
During the preprocessing phase we first read the mesh and convert it to an
indexed face set representation, if necessary. After that, we find all boundary
edges and vertices of the input mesh and for each boundary vertex identify a
corresponding pair, i.e. another boundary vertex or boundary edge, which will
be used in the boundary decimation process. Finally, we order all pairs in a
queue.

4.2.1.1 Reading the mesh

We first read the input triangle soup and convert it to an indexed face set rep-
resentation where every vertex is stored only once, and the triangles are de-
termined by the indices of according vertices. We accomplish this by lexi-
cographically sorting the vertices in a priority queue. Let vstored be a stored
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Figure 4.6: Result of the preprocessing phase; the dashed arrows indicate the
correspondences. Note that some arrows point along an edge, which possibly
implies an edge contraction.

vertex and vinput the actual input vertex, in case the distance d(vstored ,vinput) =
||vstored−vinput ||< ε for some ε , the vertices are considered to be the same and
vinput is not added to the priority queue.

4.2.1.2 Identification of boundaries

Find all the edges e and vertices v that are elements of the boundary B. The
boundary edges are those having only one incident triangle, the boundary ver-
tices are simply the vertices incident to boundary edges.

4.2.1.3 Identification of corresponding pairs

In order to accomplish a pairing between vertices and edges to be contracted,
for all boundary vertices we find the nearest boundary edge that is non-incident
to the vertex. If an orthogonal projection of the examined vertex onto the corre-
sponding nearest edge is possible, we store the edge as the paired feature, oth-
erwise we store the nearest vertex of the edge. Additionally, for each boundary
edge we store all corresponding vertices. Figure 4.6 shows fragments of the
two close mesh boundaries with the identified correspondences marked by ar-
rows.

4.2.1.4 Ordering of the pairs

For each feature pair we compute the distance between the features as an error
measure. We subsequently include all the pairs into a priority queue sorted by
this error.
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4.2.2 Decimation step
For a boundary decimation step we first pop the vertex with minimal error from
the queue, then we perform a vertex or vertex-edge contraction depending on
the type of the corresponding nearest feature. Finally we maintain the corre-
spondences for each vertex corresponding to a modified edge; we accordingly
maintain the priority queue as well. The pseudo code for the decimation step
can be found in algorithm 1.

Algorithm 1 Decimation step
1: Vertex v = pqueue.pop min();
2: Feature f = v.nearest feature();
3: if is vertex( f ) then
4: vertex contraction(v, f );
5: else
6: vertex edge contraction(v, f );
7: end if
8: EdgeSet E = {modified edges()};
9: for all Edge e ∈ E do

10: for all Vertex v ∈ {e.corresponding features()} do
11: v.maintain correspondences();
12: pqueue.reinsert(v);
13: end for
14: end for

Note that if a vertex v is projected onto an edge in the vicinity of one of
its vertices vi, it is reasonable to snap the projected vertex v′ to the vertex
vi, this way creating triangles with very small edges will be avoided. In our
implementation if d(v′,vi) < ε , where ε is the global error threshold, we snap
the vertices vi and v′. Thus, in this case a vertex contraction will be applied to
v and vi.

4.3 Results
The first example shown in this section demonstrates a steering wheel model1.
Shown in figures 4.7a and 4.7c, this model gives an insight into artefacts re-
sulting from tessellating a complex model of a tessellated trimmed NURBS
surface. Every kind of artefacts listed in the introduction can be found in this
model. As it can be seen in the close-up in figure 4.7 a, there are holes even
inside relatively flat triangular regions and narrow gaps between the original
NURBS patches as well.

1The steering wheel model was kindly provided by DaimlerChrysler AG
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a) b)

c) d)

e) f)

Figure 4.7: Results for the steering wheel model. The narrow gaps in the
original model (a) have been removed by our procedure (b), which is even
more obvious by looking at the boundaries (c and d). The images (e) and (f)
demonstrate the impact on the decimation of models.



4.3. Results 69

a) b)

Figure 4.8: Results for a 3D laser scan. The boundaries identified in the origi-
nal model (a) are depicted in red. Our procedure removed all the holes (b).

We managed to close the undesired gaps and holes, and the repaired model
is shown in figures 4.7b and 4.7d. Note however, that the gaps intentionally
modelled by the CAD tool operator are preserved.

The impact of the mesh repairing on performance of mesh processing meth-
ods is demonstrated by an example of triangle mesh simplification. The sim-
plified original model (shown in figure 4.7 e) is hardly recognizable even after
a relatively small amount of decimation steps. In contrary, the repaired model
(shown in figure 4.7 f) retains the overall shape after a considerable reduction
of number of triangles (the original model contains 6540 triangles, and it has
been simplified to 1229 triangles).

An example of a different nature coming from a 3D laser scanner is the
model of a woman shown in figure 4.8. The model consists basically of one
connected component. However, it contains holes with jagged boundary and
T-vertices. In figure 4.8 a all boundary edges are rendered in red, and the re-
maining model is rendered as points. As shown in figure 4.8 b, our method
succeeds to remove all artefacts from this mesh as well.
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4.4 Related work

Considerable amount of research and development has been conducted in the
area of polygonal mesh and CAD data repair. Due to differences in inherent
structures of meshes generated by various modelling tools and 3D acquisition
techniques, the approaches handling the errors and degeneracies vary depend-
ing on the source of the data. Botsch et al. [12] provide an overview on the
typical types of artefacts that occur in geometric models and introduce the most
common algorithms that address these artefacts. Another survey of mesh er-
rors and techniques for their detection and correction is done by Veleba and
Felkel [96].

Turk and Levoy generate polygonal models from registered range data, they
remove overlaps by clipping them, utilising a technique called mesh zipper-
ing [95]. The meshes coming from 3D scanners and volumetric data often con-
tain artefacts of the reconstruction process: small handles and tunnels. Guskov
and Wood conceptualized these as topological noise, identified and eliminated
them by cutting and sealing the mesh, thus reducing the genus and topological
complexity of the model [37].

Due to the industrial relevance of the problem, a lot of work has been
devoted to repairing polygonal models generated by modelling tools, mainly
CAD systems. Barequet and Kumar determine corresponding edges within
an error tolerance and stitch them together in one pass [7]. Butlin and Stops
present a method for repairing CAD data for analysis and exchange purposes
[13]. Guéziec et al. generate manifold surfaces from non-manifold sets of poly-
gons by identifying the topological singularities and decomposing the model
into manifold components by cutting along these singularities [35]. They also
describe a stitching operation allowing to join the boundaries of the compo-
nents while guaranteeing the manifoldness.

Murali and Funkhouser first classify the regions of space as either solid or
not and then generate a consistent set of polygons describing the boundary of
the solids [70]. Nooruddin and Turk repair the polygonal models by convert-
ing them into volumetric representation, subsequently eliminate the topologi-
cal noise by morphological open and close operators and finally reconstruct the
polygonal mesh of the so-defined implicit function [75, 76].

Our gap-closing algorithm differs from the available techniques as it em-
ploys a well-established operation borrowed from mesh simplification field and
as it is progressive. Since mesh simplification is one of fundamental operations
on polygonal meshes, there is an extensive amount of literature on this topic,
an overview of which will be given in section 5.7. Here, we will only men-
tion the vertex contraction operation, which is directly related to our method.
Introduced simultaneously by Popović and Hoppe [79] and Garland and Heck-
bert [29], it allows to contract any two vertices independently of whether they
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are topologically adjacent or just geometrically close. Compared to edge col-
lapse operation, proposed by Hoppe et al. [48], the vertex contraction offers
more control over the topological modifications but is not general enough to
connect close or even intersecting surfaces with small error early in the simpli-
fication.

Since the publication of our gap closing algorithm in the year 2002, many
new methods related to mesh repair were published. Several recent approaches,
e.g. by Ju [51] or by Bischoff et al. [11], are based on volumetric techniques
(see section 3.3). The latter method overcomes the main disadvantage of the
voxelization, i.e. giving away the original model, by keeping the vertex coor-
dinates the same in the corrected model as in the input model.

Srinivasan et al. [90] proposed a purely topological algorithm to construct
manifold meshes from arbitrary collections of polygons, which automatically
and correctly creates the missing faces of manifolds with boundaries and elim-
inates several other mesh errors.

4.5 Summary
We presented a method that removes the inconsistency of vertex connectivity
and thus produces high-fidelity models with properties, which are important
prerequisites for most of the geometry processing and numerical simulation
methods.

Essentially, our technique accomplishes the removal of undesired artefacts
by simplifying the boundary of the mesh. For this purpose we generalized the
vertex contraction operator by introducing the vertex-edge contraction opera-
tor, which operates on mesh boundaries.

The necessary topological modifications were already possible by apply-
ing the vertex contraction, however, our vertex-edge contraction provides ad-
ditional flexibility. Our system is capable of creating a sequence of meshes
generated during the boundary decimation process, which allows the user to
choose the desired model. With additional interactive functionality, the user is
enabled to select the regions of the mesh she/he wants to repair.

As for further development, we see plenty of room to develop interactive
tools facilitating the effective work with the system. A 3D brush for instance
could be used to navigate along a narrow gap and selecting it for subsequent
zippering.
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Mesh simplification
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In this part, we present three algorithms dedicated to three different aspects
of mesh simplification. The first of the methods tries to perform mesh simpli-
fication with the highest quality (chapter 5), the second, applies the developed
technique to out-of-core simplification (chapter 6), and, finally, the third, pre-
vents self-intersections during mesh simplification (chapter 7).
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Chapter 5

High-quality simplification

Since the generation of 3D models is application-driven and mostly automatic,
numerous models do not have consistent connectivity information. Typical ar-
tifacts in these models are T-vertices, degenerate triangles, self-intersections,
gaps, small holes or very close but topologically unconnected surface parts.
During simplification the artifacts can lead to unnecessarily large errors or even
to further self-intersections in the simplified model. The vertex contraction op-
eration introduced independently by Popović and Hoppe [79] and Garland and
Heckbert [29] allows to contract any two vertices independently of whether
they are topologically adjacent or just geometrically close. The vertex contrac-
tion facilitates topological modifications but is not general enough to connect
close or even intersecting surfaces with small error early in the simplification.

In the previous part of this thesis, in chapter 4, we generalized the vertex
contraction operation by contracting a vertex with an edge. This improves the
sewing potential of the vertex-contraction-based simplification algorithm. Here
we completely generalize the pair contraction approach and allow contraction
of a vertex with another vertex, with an edge or a triangle and also contration of
two edges. The new operations allow to connect close and intersecting surface
parts that are not topologically incident on the early stages of simplification.

An important issue in the repair process is the ability of the user to specify
the exact size of features like holes, gaps and cracks that should be removed
from the model and, of course, in an intuitive solution small features should
disappear before larger features. Using our new generalized pair contraction
algorithm this can easily be achieved. During the simplification process, fea-
tures are removed in the order of increasing Hausdorff distance between the
original and simplified mesh, and therefore, according to the size of the fea-
tures themselves. In order to repair a mesh, the user can specify a maximum
size of features that should be removed and then simplification operations are
subsequently performed until the specified threshold is reached. An example
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is given in figure 5.6, where gaps and cracks in the triangulation of a steering
wheel are successively removed and holes are closed in the expected manner.

This chapter is structured as follows. First, we introduce the generalized
pair contraction operations. Then, in section 5.2, we explain the use of the
quadric error metric with generalized pair contractions and describe improve-
ments, which are necessary for the preservation of sharp features. Section 5.3
details our use of a spatial grid, which is used to find all potential contraction
pairs. In section 5.4, we decribe the simplification algorithm, and then, in sec-
tion 5.6, present results that demonstrate the advantages of the generalized pair
contractions. Finally, we discuss related work and conclude.

5.1 Generalized pair contractions
As mentioned before (see section 4.4), the vertex contraction operation not
always sews together geometrically close but not incident surface parts. In
some cases a vertex on one part of a mesh is close to another part, but too far
from any vertex on that part. In this case any vertex contraction between the
two parts would introduce distortions and often also a large geometrical error.
Sometimes it is more favorable to contract a vertex directly with an edge or
triangle, what allows to connect the closest parts of a mesh and to close the
most narrow gaps first.

But in some cases even this will be not sufficient. Two unconnected regions
of a mesh, which are very close to each other, not necessarily have any vertices
close enough to the other part in order to connect the parts without producing
distortions. To enable sewing in such situations we also introduce a contraction
operation that connects two close edges.

In summary, we extend the vertex contraction operator to the generalized
pair contraction operator by introducing the new types of contractions: vertex-
edge, vertex-triangle and, finally, edge-edge.

In the vertex-edge and vertex-triangle contraction operations, an interme-
diate vertex v′ is created on the edge or triangle of the contraction pair just
in order to contract it with the vertex v of the contraction pair. The latter is
called contraction vertex. See figures 5.1 and 5.2 for an illustration. In case
of the edge-edge contraction operation we create two intermediate vertices as
shown in figure 5.3. In following sections we will describe the new contraction
operations in more detail.

5.1.1 Vertex-edge contraction
The exterior case of this operation, when both the vertex and the edge lie on
boundaries, was described in section 4.1. Now we allow pairs of an arbitrary
vertex and an arbitrary edge. We proceed as follows (see figure 5.1):
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Figure 5.1: The vertex-edge contraction operation performs no reduction, but
increases the connectedness of the model.

• Project the contraction vertex v0 onto the edge e = (v1,v2).

• Insert the intermediate vertex v′0 on the edge at the geometric position of
the projection and interpolate its quadric (see section 5.2).

• Split each triangle ti, incident to the edge e, into two triangles ti1 =
(v1,v′0,vi) and
ti2 = (v2,v′0,vi).

• Perform a vertex contraction of v0 and v′0.

This operator perfectly allows to sew borders and close parts of the mesh. It
doesn’t decrease the number of vertices but increases the connectedness of the
model. In the case, when both the vertex and the edge are incident to the same
triangle, the vertex-edge contraction is topologically equivalent to an edge flip.

In the manifold case (see definition 2.6 from section 2.1.1.1) a second flip
of the resulting edge would re-produce the original configuration. This can eas-
ily lead to an infinite number of successive edge flip operations. To avoid this
problem we allow the edge flip, only if an additional criterion is fulfilled: the
minimum angle among all affected triangles has to increase after the operation
by a non-zero constant. As the minimum angle cannot increase by a constant
infinitely, we avoid infinite sequences of edge flips. At the same time, triangles
with acute angles can be removed, what improves the overall triangle shape.

5.1.2 Vertex-triangle contraction

Here we generalize the vertex contraction further by connecting an arbitrary
vertex with an arbitrary non-incident face. While the vertex-edge contraction
operation is chosen by the algorithm mostly on boundaries, this one connects
geometrically close surface parts. The vertex-triangle contraction can be split
in four steps (see figure 5.2):
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Figure 5.2: The vertex-triangle contraction operation performs no reduction,
but increases the connectedness of the model.
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Figure 5.3: The edge-edge contraction operation increases the connectedness
of the model by cost of the insertion of one vertex.

• Project the contraction vertex v0 onto the triangle t = (v1,v2,v3).

• Insert the intermediate vertex v′0 on t at the projection point and interpo-
late its quadric (see section 5.2).

• Split the triangle t into three triangles t1 = (v1,v2,v′0), t2 = (v2,v3,v′0)
and t3 = (v3,v1,v′0).

• Contract the vertices v0 and v′0.

The vertex-triangle contraction operator neither performs a reduction, but
does increase the connectedness of the mesh.

5.1.3 Edge-edge contraction
The third generalized pair contraction operation is useful only in such cases,
when two surface parts are close to each other or intersecting, but the distance
between any vertex from one part to another part is significantly larger than the
distance between two edges.

We proceed as in the vertex-edge contraction, but insert intermediate ver-
tices on both edges (see figure 5.3):
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• Find the shortest distance between edges e1 = (v11,v12) and
e2 = (v21,v22).

• Insert the intermediate vertices v10 and v20 at the projection points and
interpolate their quadrics (see section 5.2).

• Split each triangle t1i incident to the edge e1 into two triangles.

• Split each triangle t2i incident to the edge e2 into two triangles.

• Contract the vertices v10 and v20.

We allow edge-edge contraction, only if the projection points lie inside the
edges.

5.2 Order of operations
To order the possible contraction operations and to find the optimal position of
a new vertex after the operation, our simplification algorithm uses the technique
of quadric error metrics presented by Garland and Heckbert [29].

For each face f of the original mesh a fundamental error quadric Q f (p)
is defined as the symmetric homogeneous 4× 4 matrix, which measures the
squared distance d2 of a point p ∈R3 to the plane of f as d2 = (p,1)Q f (p,1)t .
Each vertex v in the original mesh is assigned an initial quadric constructed as
the matrix sum of the fundamental quadrics of its incident faces, divided by the
order of v and optionally weighted by their areas.

Then, for each possible contraction of vertices v1 and v2, the vertex quadrics
are added yielding the quadric Q = Q1 +Q2, which computes the sum over the
two surface patches incident to v1 and v2 of the squared distances, divided by
the order of the appropriate vertex and optionally area-weighted. The location
of the new vertex vnew is set in a way to minimize the quadric error eq = vT Qv
caused by the performed contraction operation.

Finally, all possible contraction operations are ordered in a priority queue,
with the quadric error eq used as a key.

5.2.1 Non-accumulating error quadrics
In our approach, unlike the original algorithm by Garland and Heckbert, quad-
ric errors are not accumulated, i.e. after performing the contraction operation
the quadric Q = Q1 + Q2 is not associated with the newly created vertex vnew.
Instead, the error quadrics are always calculated on base of the current mesh.

We calculate new error quadrics at three points in the algorithms:

• In the preprocessing phase, as mentioned above, for each vertex we cal-
culate the initial error quadric.
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• When an intermediate vertex is created on an edge or a triangle, its
quadric is calculated the same way: as a matrix sum of fundamental error
quadrics of all faces, which are incident to the newly created intermedi-
ate vertex, divided by the order of the vertex and, optionally, weighted
by their areas.

• After performing the operation we recalculate the quadrics of the newly
created vertex and all adjacent vertices using the fundamental error quad-
ric of the faces, which are currently incident to the respective vertices.

Before performing the operation, we calculate the one-sided Hausdorff dis-
tance dv between all simplices of the original mesh, whose nearest points on
the simplified mesh lie inside the neighbourhood Ns1

⋃
Ns2 of the contraction

simplices s1 and s2, and the neighbourhood Nv of the newly created vertex v.
Here, if simplex s is a vertex, its neighbourhood Ns consists of the vertex

itself and its incident faces and edges; if s is an edge, Ns consists of the edge
and its incident faces; finally, if s is a face, Ns consists only of the face itself.

For two point sets A and B, the one-sided Hausdorff distance finds for each
point in A the closest point in B and takes the maximum:

d(A,B) = max
a∈A

min
b∈B
‖a−b‖, (5.1)

This function is not symmetric. The two-sided Hausdorff distance, or simply
Hausdorff distance, is constructed to be symmetric by considering both of the
one-sided Hausdorff distances and taking the maximum:

D(A,B) = max(d(A,B),d(B,A)), (5.2)

To ensure that due to certain special cases, the error introduced by a con-
traction operation does not exceed a predefined error threshold dmax, we com-
pare dv with dmax, and, if dv exceeds dmax, we reject the operation.

Since the error quadrics are not accumulated, we use an approximation
d̃s of the Hausdorff distance to order the possible contraction operations in a
priority queue:

d̃s = max(ds1 ,ds2)+
√

1/2∗ eq, (5.3)

where ds1 and ds2 are the one-sided Hausdorff distances from the neighbour-
hoods Ns1 and Ns2 of the simplices s1 and s2, respectively, to the original mesh.

The first part of this sum, max(ds1 ,ds2), is the Hausdorff distance to the
original mesh of the neighbourhood Ns1

⋃
Ns2 of the contraction simplices be-

fore the operation. The quadric error eq represents the sum of the squared
distances from the newly created vertex to the incident faces of two contrac-
tion vertices. Therefore, the second part of the sum in equation 5.3,

√
1/2∗ eq,
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is an approximation of the distance between the meshes before and after the
operation.

Thus, the value d̃s is a good estimation of the Hausdorff distance between
simplified and original meshes. This makes this error metric compatible with
Euclidian distances used to find the nearest simplices, as described in sec-
tion 5.3.

5.2.2 Handling of boundaries and sharp features
In order to preserve boundaries we proceed as proposed by Garland and Heck-
bert. For each face incident to a boundary edge we generate a perpendicular
plane running through the edge. Then we compute fundamental quadric for
this constraint plane and add it to the quadric sums of both vertices incident to
the boundary edge, divided by the order of appropriate vertex and optionally
weighted by the squared length of the edge.

A further enhancement to the error quadrics is necessary to preserve sharp
features. Figure 5.4 b shows the simplified helicopter of figure 5.4 a using the
introduced error quadrics as discussed thus far. Sharp features as the propeller
are destroyed. To handle very sharp edges properly we process them in the
same way as boundaries.

As feature edges and feature vertices we define all edges and vertices,
whose incident faces lie inside chosen small angle αmax. Note that accord-
ing to this definition, boundary edges are also feature edges. For each detected
feature edge e or feature vertex v we find the average plane of all its incident
faces and compute its fundamental quadric. This fundamental quadric is then
added to the quadric sums of both vertices incident to the feature edge or to the
quadric sum of the feature vertex. Figure 5.4 c shows the helicopter simplified
with feature preservation to the same number of vertices as in figure 5.4 b.

5.3 Spatial search data structure
In order to avoid a quadratic algorithm to pair close simplices for the con-
traction operations a spatial search data structure supporting nearest simplex
queries is necessary. The data structure must be able to handle vertices, edges
and triangles. Furthermore it must be dynamic as simplices are eliminated and
sheared during the simplification process. We chose to use a regular grid for
the spatial search because, as shown by Zachmann [109], it performs well in
static and dynamic environments and is easy to implement. In each grid cell
we stored a list of the simplices partially or completely contained in the cell.

In the beginning of the simplification process we used a grid with uniform
edge length of twice the average edge length of the model, such that each sim-
plex was in average contained in one or two cells allowing for fast insertion
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a)

b)

c)

Figure 5.4: Simplification with and without feature preservation: a) original
model (1972 vertices) with detected features drawn red; b) reduced to 200
vertices without feature preservation; c) reduced to 200 vertices with features
preserved.
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and removal. During the simplification process we kept track of the increasing
average edge length and every time it exceeded the grid edge length, we de-
stroyed the grid, created a new one of double grid edge length and inserted all
remaining simplices to the new grid. In the case of models with low variance
in the simplex size we achieved with this simple strategy, that in average each
simplex had to be entered in only a constant number of grid cells.

5.3.1 Simplex insertion and removal
To insert a vertex we simply compute the enclosing cell and add the vertex to
its list of contained simplices. Edges and triangles can penetrate more than
one cell into which they had to be entered. In the case of an edge a simple
incremental algorithm could be used to trace the penetrated cells along the
edge. For triangles we implemented a not optimal but simple solution. First
we collected all cells intersected by the bounding box of the triangle. Then we
sorted out the actually penetrated cells by a marching cubes like strategy. Each
of the grid vertices from intersected cells was classified to be above, below or
outside of the triangle in consideration. Finally, the triangle was inserted in all
grid cells with at least one vertex classified above and one classified below. As
each triangle was in average inserted into a small number of cells the presented
strategy worked reasonably fast.

For fast removal we stored for each vertex a pointer to the list item in the
enclosing cell such that it could be removed in constant time. Similarly, we
kept for each edge and each triangle a list of pointers to list items such that any
simplex could be removed in time proportional to the number of penetrated
cells.

Simplices incident to contraction vertices move in space during the con-
traction operation. It turned out that insertion and removal was so fast that it
did not pay off to implement an optimized move operation for the regular grid.
Instead we simply removed the simplex before the contraction operation and
inserted it again afterwards.

5.3.2 Distance-sorted nearest neighbour queries
For our simplex pairing strategy described in the next section, it is necessary to
find for each vertex besides the adjacent vertices, the closest non-incident sim-
plex, and for each edge, the closest non-incident edge. We designed a general
algorithmic scheme to find the closest simplex of a vertex or an edge, i.e. the
seed simplex. The scheme exploits two priority queues, the cell queue to store
the next to be considered grid cells sorted by increasing distance to the seed
and the simplex queue to store the non-incident simplices from the considered
cells also in increasing distance from the seed. The crucial idea is that the head
of the simplex queue is the closest simplex to the seed, only if the head of the
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cell queue, i.e. the closest not yet considered cell, is further apart from the
seed. Now we can state the closest simplex search algorithm:

• Given a seed vertex or edge, initialize the simplex and cell queues to be
empty.

• Lookup the seed cells penetrated by the seed, add all contained non-
incident simplices to simplex queue and the cells adjacent to the seed
cells to the cell queue.

• While the simplex queue is empty or the distance of the closest not con-
sidered cell is smaller than the closest simplex

– extract the head of the cell queue, add all contained non-incident
simplices to the simplex queue and add the not considered adjacent
cells to the cell queue.

• Return the closest simplex from simplex queue.

For the closest simplex algorithm the following distance computations need-
ed to be implemented: distance from vertex to vertex, edge, triangle or cell and
the distance from edge to edge or cell. To avoid the square root operation we
sorted the cells and simplices by the squared distance. As we were looking for
the closest simplex, the distance computations from a vertex to an edge or tri-
angle could be discarded if the orthogonal projection of the vertex did not fall
inside the edge or triangle, because in this case there must be a vertex incident
to the edge or an edge incident to the triangle closer to the seed vertex. The
squared distance from a vertex at location p to an axis aligned box with lowest
coordinates vector l and highest coordinates vector h can be computed by

dist = ∑
α∈{x,y,z}

max{0, lα − pα , pα −hα}2. (5.4)

It is quite complicated to compute the distance from an edge to a cell. We
used the following simple and efficient strategy. We parameterized the edge
over λ ∈ [0,1] as p = o + λ · v, plugged this expression into equation 5.4 and
minimized dist(λ ) over [0,1].

Equation 5.4 was only evaluated on values where the selection of the max-
function changed and on the extremes in-between. As the distance from a point
moving on a straight line to a convex object can only assume one minimum in
a connected region, it was sufficient to follow λ until it increased.

5.4 Description of the algorithm
Our simplification algorithm can be split into the initial preprocessing phase
and the decimation loop itself. The algorithm proceeds according to an in-
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creasing error, that is caused by contracting two simplices, which we call cor-
respondence pair. All correspondence pairs are ordered in a priority queue.

5.4.1 Preprocessing
After the acceleration grid (see section 5.3) has been initialized, we identify
the corresponding pairs for subsequent decimation operations.

For the priority queue algorithm to work properly, the operation causing
the minimum error needs to be the first element in the queue. This can either
be a manifold operation (edge collapse or edge flip) or a non-manifold one
(vertex contraction or edge-edge contraction). As the error caused by manifold
operations is not related to the distance by which the contraction vertices move,
we need to consider all possible manifold-operations. In case of non-manifold
operations, the caused error is at least half the distance between the contracted
simplices. Therefore, we search the corresponding simplices of each vertex or
edge with a maximum search distance of 2 ∗ l and consider only the closest
corresponding simplex. In case of the search for the corresponding simplex
of a vertex, l is the length of the edge incident to the vertex that causes the
minimum error if contracted. When we search for the corresponding edge of
an edge, l is simply the length of the edge itself.

For each vertex v we proceed as follows:

• For all incident edges the error that would be introduced if the edge was
collapsed is computed according to equation 5.3. We choose the edge
with the minimum error εm and calculate its length l. Note, that the grid
data structure automatically discards incident edges and triangles.

• Setting v as a seed vertex, we search in the grid with a maximum search
distance 2∗ l for the closest non-incident simplex (vertex, edge or trian-
gle) using the algorithm described in section 5.3.2.

• If a simplex is found within the 2 ∗ l distance, we compute the error εn,
which will be introduced by contracting vertex v with the found simplex
according to equation 5.3.

• We compare εm and εn and assign the operation with the minimal error
min(εm,εn) to the vertex v.

For edges only non-incident edges have to be considered as candidates. For
each edge e0 with length l we search the grid with a maximum search distance
of 2 ∗ l using e0 as a seed edge for the algorithm described in section 5.3.2.
During this search the algorithm guarantees that the points realizing the mini-
mal distance between e0 and the found edge e1 are in the (open) interior of the
two edges. For such two edges we compute the introduced error according to
equation 5.3. Note, that we find the corresponding edge only for some edges.
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After the search is complete, references to the found simplices are stored
for all vertices and some edges. Vice versa, each simplex stores references to
all vertices and edges pointing onto it.

Last but not least, the pairs are inserted into a priority queue according to
their associated errors.

5.4.2 Decimation loop
At each step of the decimation loop we first take the pair with the minimal error
from the queue.

Prior to perform the operation determined by this pair, the following tests
are performed:

• Normal test. Here we check that the normals of triangles affected by the
operation do not change by more than αmax.

• Minimum angle test. This test is performed only if the operation is an
edge flip. We check if the minimum angle among all affected triangles
increases by at least βmin. As described in section 5.1.1, this avoids
endless loops while allowing to improve the shape of triangles.

• Error test. We calculate local Hausdorff distance from original to simpli-
fied mesh after performing the operation, and check if it doesn’t exceed
the global simplification threshold dmax, as described in section 5.2.

• Collision test. Optionally, the collision detection is performed, as de-
scribed in section 7.3. This test allows to detect and avoid self-intersect-
ions which could occur as a result of the contraction operation.

When the operation is discarded because one of the above tests has failed,
we put it into the second queue of discarded operations, otherwise we perform
it.

After performing the operation we have to update all affected pairs. To
explain this process, let’s define Vc as the set of vertices that collapsed to a
vertex v, Ec and Tc as the sets of edges and triangles changed by the operation,
Er and Tr as the sets of edges and triangles which were removed. We proceed
as follows:

• For each vertex in Vc and each edge in Ec ∪ Er, we remove previous
correspondences.

• We find correspondences for v and each edge in Ec as described above.

• For each vertex, which corresponds to an edge in Ec∪Er or a triangle in
Tc∪Tr, we search again for the best correspondence.
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• For each edge e, which corresponds to an edge from Ec ∪Er, we find a
new correspondence.

5.4.3 Double queue strategy

As described before, some pairs are discarded if one of the above tests fail.
But it’s not desirable to simply reject the operation. During simplification the
neighbourhood of the considered pair might change and the reason of its rejec-
tion vanish. Therefore, we do not want to loose the operation.

On the other hand we cannot simply insert the discarded operation back
into the priority queue, since its error is the smallest one and it would be taken
from the queue again in the next step causing an infinite loop.

One strategy to keep invalid operations is to assign the discarded operation
to all simplices that caused the invalidity. If a simplex is removed or changed
in a contraction operation, all of the discarded operations attached to it are
reconsidered. Unfortunately, this strategy demands for complex data structures
and a large amount of computations. Therefore, we used a simpler heuristic
strategy.

We put each discarded operation into a second queue of discarded opera-
tions. We considered one randomly selected simplex from this queue once in k
simplification steps and after establishing a new correspondence for it we rein-
serted it into the first queue. We did it in the way to ensure that the frequency of
reinsertion of discarded elements into the first queue is approximately propor-
tional to the size of the second queue. When the first element was put into the
second queue we initialized k by the number of elements in the first queue and
decremented it by one in each simplification step. Each time a further element
was put into the second queue k was updated as follows: k := k ∗ N2

N2+1 , where
N2 is the number of elements in the second queue. If k became zero it was set
to N1

N2
, where N1 is the number of elements in the first queue.

5.5 Preservation of normals and other surface
properties

To preserve the appearance of the object during simplification, we extend the
geometric Hausdorff error measure with respect to appearance attributes as pro-
posed by Klein et al. [56] for view-dependent multi-resolution meshes. How-
ever, in contrast to this approach we need an error measure that is independent
of the viewing position.

When an edge is removed due to a collapse operation, the appearance at-
tributes of the removed points are interpolated during rendering. A screen
space error can now be defined as the distance between a shaded point of the



90 Chapter 5. High-quality simplification

 

 

original mesh 

geometric error 

normal deviation error 

simplification error

simplified mesh 

p

qq’

Figure 5.5: Combination of error measures for appearance preservation.

original model projected into screen space and the next pixel on screen with
the same colour. For static LODs this distance can directly be transformed into
object space as the distance between a point on the approximated surface and
the next point on the original mesh with the same appearance attribute.

We define the simplification error in object space to be the distance of a
point p on the original mesh and the closest point on the simplified mesh with
the same interpolated normal q (see figure 5.5). Now we make the observation
that the vector between the original point p and q can be split into the orthog-
onal vectors pq′ and q′q, where q′ is the closest point on the simplified mesh.
Therefore, the simplification error ε can be written as a combination of the ge-
ometric Hausdorff error εgeo and the normal deviation error on the simplified
mesh εa pp:

ε
2 = εgeo2 + εa pp2 (5.5)

The normal deviation error εa pp can be approximated using the maximum
normal curvature κ1:

εa pp≈ arccos(~n ·~nint)
κ1

, (5.6)

where~nint is the interpolated normal at q′. The maximum curvature of a point
on a bilinearly interpolated triangular patch with specified per-vertex normals
can be approximated by:

κ1 ≈max
(

arccos(~n1 ·~n2)
‖P1−P2‖

,
arccos(~n1 ·~n3)
‖P1−P3‖

,
arccos(~n2 ·~n3)
‖P2−P3‖

)
(5.7)

For small angles, the computation of the inverse cosine can be saved, since
in this case arccos(~na ·~nb)≈ ‖~na−~nb‖.

To prevent aliasing artifacts in the shading, we smooth the normals of ver-
tices that are only adjacent to triangles smaller than enode/res before simplifi-
cation. This also leads to a more efficient simplification.
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While we only use normals in our examples, the described approach is able
to deal with arbitrary appearance attributes, for which a distance is defined, e.g.
per-vertex colours, BRDFs, etc.

5.6 Results
The first example in this section demonstrates the model of a steering wheel.
A lot of artefacts, resulting from improper tessellation of a trimmed NURBS
surfaces, are present in this model. Figures 5.6 a – 5.6 d show several steps of a
simplification algorithm, which performs only vertex contractions.

Many gaps between separate patches, hardly recognizable in the original
model, have not been sewn together. Some of them have been transformed
to real holes and remain even in a coarse model with only 125 vertices. In
contrary, our new simplification algorithm which performs also generalized
pair contractions allows to close such narrow gaps already at the early stages
as shown in figures 5.6 e – 5.6 h. In a model reduced to 500 vertices all artefacts
have been eliminated, and only the large holes, which are inherent to the model;
remain.

Figures 5.7 show the model of a microscope. The original model in fig-
ure 5.7 a looks perfect but some triangles in the upper part of the tube are miss-
ing. Figure 5.7 b depicts the model simplified with vertex contractions only.
As can be seen, after simplification to 250 vertices the holes in the tube not
only remain but have increased. Furthermore, the mirror at the bottom origi-
nally consisting of several independent parts becomes strongly corrupted. The
model in figure 5.7 c was simplified with generalized pair contractions. As
expected, the holes in the tube were closed and also the mirror is simplified
adequately.

5.7 Related work
Since simplification is one of the fundamental operations performed on polyg-
onal meshes, there is an extensive amount of different methods. However, there
are detailed reviews of available simplification algorithms, e.g. by Cignoni et
al. [17] or by Luebke [64], and we will give here only a short overview of the
most related approaches.

Mesh simplification. The family of vertex clustering methods has been intro-
duced by Rossignac and Borrel [84] and has been refined in numerous more
recent works, e.g. by Low and Tan [62]. The algorithms of this family essen-
tially proceed by applying a 3D grid to the object and for each cell contracting
all the vertices inside the cell. Although the degenerate faces are subsequently
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a) e)

b) f)

c) g)

d) h)

Figure 5.6: Several stages of simplification with only vertex contractions
(a – d) and with generalized pair contractions (e – h): 4288 vertices (a and e),
500 vertices (b and f), 250 vertices (c and g), 125 vertices (d and h). While in
the first case some gaps between patches remain even at the coarsest resolution,
in the second case they all are closed at the early stage.
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a) b) c)

Figure 5.7: The original model of microscope with 4467 vertices (a) and sim-
plified to 250 vertices with only vertex contractions (b) and with generalized
pair contractions (c).

removed, it is difficult to influence the fidelity of the result due to lack of con-
trol over induced topological changes, and the reduction rate is quite low at flat
regions of the model.

Cohen et al. [20] developed simplification envelopes to guarantee fidelity
bounds while enforcing local and global topology. The simplification en-
velopes consist of two offset surfaces at some distance from the original sur-
face. Since these envelopes are not allowed to self-intersect, this distance is
decreased at high curvature regions. By keeping the simplified surface inside
these envelopes, the algorithm can guarantee a geometric deviation of at most
this distance and additionally it checks that the surface does not self-intersect.
While this algorithm has the advantage to guarantee a geometric error bound,
it is quite slow and requires an orientable manifold for the construction of the
offset surfaces.

Zelinka and Garland [111] modified the above approach by using permis-
sion grids – spatial occupancy grids, where an operation is only performed if all
cells that are intersected by the new triangles are allowed to be occupied. Al-
though the algorithm is much faster than simplification envelopes and doesn’t
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need an orientable manifold mesh, the simplified models often contain much
more triangles due to the discrete grid and the fact that the Manhattan distance
is used instead of the Euclidean.

The vertex contraction operation, which was introduced at the same time by
Popović and Hoppe [79] and Garland and Heckbert [29], has become the most
common operation and is used in many simplification methods. In conjunc-
tion with the quadric error metric introduced by Garland and Heckbert [29], it
offers flexible control over the quality, still at very high reduction speed. How-
ever, the quadric metric mostly overestimates the real geometric error which
results in non-optimal reduction rates and the need to measure the exact error
after simplification.

Appearance-preserving simplification. In the field of appearance-preserving
simplification and rendering, the general approach is to use appearance-preser-
ving level-of-detail. Garland and Heckbert modified their error quadrics [29]
to preserve colour, texture coordinates and normals [30]. However, guaran-
teeing a certain error of the geometry or the appearance during rendering is
not possible using these modified error quadrics. As a different error measure
for appearance-preserving out-of-core simplification, the curvature of the mesh
can be used, as in the paper by Lindstrom [60], but like for the modified error
quadrics no screen space error can be guaranteed for this method.

Another approach used for view-dependent refinement of multi-resolution
meshes was introduced by Klein et al. [56]. It is able to control the shading
error by guaranteeing that for each point on the screen the distance to the next
correctly shaded pixel is below a specified constant. Unfortunately, this method
cannot be used for static LODs, since the error measure is viewpoint-dependent
and requires the exact position and orientation of the surface on the screen to
be known. Furthermore, the derivatives are calculated in screen space, which
makes it unapplicable to precomputed static LODs.

A different approach is perceptually driven simplification proposed by
Williams [104]. But again this method requires knowledge of all viewing pa-
rameters – even for its basic features that produce results similar to appearance-
preserving simplification – and additional movement information for velocity
simplification. Finally, peripheral simplification even requires tracking of the
user’s eye movements.

Measurement of simplification errors. For the first time, the Hausdorff dis-
tance, which is the tighest possible bound on the maximum distance between
two surfaces (see, e.g., the book by Luebke et al. [63]), was used to control
the simplification error by Klein et al. [55], although with significant computa-
tional effort.

Cignoni et al. [19] introduced the first method dedicated exclusively to
measurement of errors on simplified surfaces, which allows to compare qual-
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ity of different simplification methods. Another method, presented by Aspert
et al. [3], is more efficient in terms of speed at the cost of higher memory
use. Its implementation, the Mesh tool, was used in our research to compare
the results of different simplification methods (see sections 6.2 and 7.5). Both
algorithms are based on sampling of the geometry of the two models being
compared, where the sampling density depends on the desired accuracy: in or-
der to double the accuracy the number of samples needs to be multiplied by
four. Therefore, these algorithms quickly become slow for higher accuracy.

5.8 Summary
We presented an important strategy to generate high-quality simplified mod-
els. We introduced the generalized pair contraction operations. They not only
allow to remove gaps and holes, but also seamlessly integrate the automatic
connection of close surface parts in the most general setting and the resolution
of initial self-intersections during the simplification process.
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Chapter 6

Out-of-core simplification

Modern 3D acquisition and modelling tools generate high-quality, detailed ge-
ometric models, and the associated complexity increases much faster than the
hardware performance. Digitizing human-size objects in the sub-millimeter
range has become common, posing new challenges for the processing and ren-
dering of this data. Two standard examples of such hufe models are shown in
figures 6.1.

Whereas earlier simplification algorithms have worked only with models
that completely fit into main memory, the necessity of methods, which can deal
with arbitrary large meshes, has become obvious. These out-of-core algorithms
do not load the whole geometry of a model into the actual in-core memory, but
temporarily store its large parts on disk. Therefore, the memory requirements
of these methods is independent of the complexity of the input as well as output
models.

The fact that the model cannot be loaded into memory prevents efficient
comparison of simplified and original objects, which in turn complicates the
control over the geometric error of the simplified mesh. As long as the resulting
model does not fit into main memory as well, error control is simply impossible
in most cases.

Applying the methods mentioned above, we developed a high-quality end-
to-end out-of-core mesh simplification algorithm (neither input, nor output
model fit into main memory), which is capable not only to measure the Haus-
dorff distance between the original and simplified meshes, but also to simplify
a model up to a given error threshold. It guarantees, that no operation is per-
formed what would exceed this threshold, which allows to get a very high
reduction of the model complexity at a certain maximum geometric error.

Furthermore, applying generalized pair contractions instead of only ver-
tex contractions allows for a controlled modifications of the topology. This
way small gaps are automatically sewed and parts which are close together are
merged in a controlled way during the simplification process.

97
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a) b) c)

Figure 6.1: Three standard out-of-core models: a) David with 56 230 343 tri-
angles; b) Lucy with 28 055 742 triangles; c) St. Matthew with 372 422 615
triangles.

a) b) c)

Figure 6.2: a) Original Happy Buddha model with 1 087 716 vertices; b) re-
duced to 18 338 using standard QEM simplification; c) reduced to 18 338 ver-
tices using our out-of-core simplification method. Their corresponding relative
Hausdorff maximum errors (over the bounding box diagonal) are 0.79% and
0.26%, respectively.
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Model ∆input ∆out put d = 7 d = 9 d = 11 d = 13
Armadillo 345 944 33 780 737 1 022 n.a. n.a.
Happy Buddha 1 087 716 32 377 1 336 488 1 022 n.a.
David (2 mm) 8 254 150 25 888 2 637 2 029 826 n.a.
Lucy 28 055 742 26 772 1 551 1 008 430 1 024

Table 6.1: Numbers of triangles before and after simplification and maximum
numbers of triangles in the simplified nodes at different levels of the octree
hierarchy (with depth 7, 9, 11 and 13) for four standard models used in our
test.

The amount of main memory required for our algorithm does not depend on
the size of the input or output models and can easily be configured to consume
a fixed amount of memory depending on the system it is running on.

Of course, these advantages lead to lower computation rates compared to
other recent out-of-core simplification methods.

This chapter is structured as follows. First, we describe our out-of-core
simplification algorithm in detail. Some results of its work are shown in sec-
tion 6.2. Finally, we discuss the related work and conclude.

6.1 Description of the algorithm
Since generalized pair contractions close gaps more efficiently than vertex con-
tractions, a simple and fast out-of-core simplification is possible by cutting the
model into subparts and simplifying each subpart independently. With gener-
alized pair contractions, gaps are automatically closed, when all subparts are
simplified together. To simplify gigabyte-sized models, partitioning and inde-
pendent hierarchical simplification are applied recursively.

During each node simplification a maximum geometric error threshold for
the node simplification is determined as a constant fraction of the edge length
of its bounding box. Therefore, the error threshold duplicates with each level
of the octree. This leads to an almost constant order of magnitude of triangles
in the simplified node1, as shown in table 6.1. The geometric approximation
error of the simplified model is measured against two levels below the current
node. This way, only the geometry of at most 64 nodes have to be loaded into
memory. Nevertheless, a good upper bound for the geometric deviation from
the original model can be guaranteed.

If the accumulated maximum error in the next level already exceeds the
given global error threshold, the nodes are simplified up to this error instead

1Of course this number depends on the fractal dimension of the underlying mesh. But most of
the meshes have a fractal dimension near 2, which is verified by our experiments.
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and the hierarchical simplification is stopped. In this way all nodes are simpli-
fied up to the desired error. Since the simplification of nodes in the same level
of the hierarchy is completely independent of each other, it can be parallelized
in a straightforward way by distributing the nodes to simplify between different
computers.

To combine the subparts into one connected model, we use two different
approaches, depending on the size of the final simplified model. In general,
during simplification all 64 grandchildren of a node are gathered into the cur-
rent node and simplified. During simplification, the introduced gaps along the
cutting planes between them are automatically closed, since we know that their
geometric distance is at most half of the approximation error threshold of the
current node. Therefore, if possible, we do not perform independent simpli-
fication of the subparts on the last level of the hierarchy, but in-core simplifi-
cation of the combined model. When end-to-end out-of-core simplification is
required, we perform an out-of-core stitching of the subparts after the last level
of the hierarchy is simplified.

The following sections describe each phase of our algorithm in detail.

6.1.1 Cutting

Since the gaps are automatically closed during hierarchical simplification, we
do not need to preserve the triangles at node boundaries (in contrast to the
method by Cignoni et al. [18]). But if the triangles are simply sorted into one
of the child nodes during partitioning, a sawtooth boundary is created, which
cannot be simplified efficiently without exceeding the given error tolerance
of the node along the boundary. Therefore, if the model contains more than
Tmax trianglesthe, it is partitioned by cutting the geometry of a node into eight
subparts and storing it in its children. The partitioning is repeated until no node
has to be cut anymore. If no geometry is contained in a node, it is marked and
not partitioned further. In this way a sparse octree is build.

Since the whole geometry of a node and all its children generally does
not fit into the main memory, the vertices and normals of the mesh are stored
in blocks and swapped in and out from disk using a last-recently-used (LRU)
algorithm. The indices of the triangles need not to be stored in memory and
therefore, can be streamed from the geometry file of the node to the files of
its children. This is accomplished by loading the current triangle from the
geometry file of the node, cutting it and then saving the generated triangles in
the child geometry files. Therefore, only the current triangle and the triangles
generated from it are stored in memory. After the triangle is cut, it is not needed
any more. When first saving all triangles in the root node, the vertex normals
are calculated.
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At each partitioning step every triangle is cut with the three planes dividing
the node into its children and the resulting triangles are stored in the appropriate
geometry files. When a triangle edge is cut, the normal of the new point is
calculated by linear interpolation. Note that new vertices may have the same
coordinates as existing vertices, but this is resolved when the whole tree is
build. After partitioning the triangles of a node and storing it in its children,
the geometry file of this node is not used any more and is deleted.

When the partitioning is complete new indices for the leaf node triangles
are calculated and duplicate points are removed.

The total complexity of the partitioning algorithm is O(n logn), since on
each level of the octree all triangles need to be processed once.

6.1.2 Hierarchical simplification
After partitioning, the geometry contained in the leafs of the octree is stored
on disk. Starting from the geometry of these nodes the model is simplified
recursively from bottom to top with a constant resolution res depending on the
node size using the following algorithm:

• At every level of the octree, the simplified geometry from all child nodes
that are two levels below the current node (or the original geometry if
there is no pre-simplified geometry at this depth) is gathered. Its approx-
imation error εprev is then the maximum error of the simplified geometry
in these child nodes or zero.

• The resulting geometry is simplified as long as the Hausdorff distance
εh to the gathered geometry is less than εs = enode

res − εprev, where enode is
the edge length of the current nodes bounding cube and res is the desired
resolution in fractions of enode.

• ε = εh + εprev is stored as approximation error in the current node.

By using the children at two levels below the current node instead of its
direct children the simplified geometry contains less triangles, since the ap-
proximation of the real geometric error is better. This is due to the fact that
the difference between the estimated geometric error ε and the real geometric
error εreal is low, since:

εreal ≥ εs =
enode

res
− εprev ≥

enode

res
− enode

4 · res
=

3
4

enode

res
=

3
4

ε (6.1)

and thus 3
4 ε ≤ εreal ≤ ε .

Starting with the already simplified geometry gathered from the grandchil-
dren of the current node greatly reduces the computation cost and still leads
to high-quality drastic simplifications. Since the input and output number of
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a) b)

Figure 6.3: Hierarchical simplification using only vertex contractions (a) and
generalized pair contractions (b). The arrows point to some of the cracks in-
troduced by cutting and independent simplification and not closed by vertex
contractions.

triangles in an octree cell generally remain in the same order of magnitude and
since the vertices inside a node not closer than ε = enode

res are bound to be less
than 12

π
res3, the complexity of the simplification algorithm linearly depends on

the number of nodes in the octree and, therefore, is O(n). This means that the
total simplification time depends only linearly on the number of leaf nodes and
thus linearly on the number of triangles in the base geometry. Therefore, the
total time for this out-of-core simplification algorithm sums up to O(n logn),
where n is a number of input triangles.

In order to close the cracks introduced by the cutting and independent
simplification in previous stages of the recursion, the simplifier has to be ca-
pable of performing topological simplification. Performing standard vertex-
contraction-based simplification on such data could have undesirable results,
as shown in figure 6.3 a.

Therefore, the generalized pair contractions operator described in section
5.1 is used. The use of this technique eliminates the cracks introduced by the
cutting and independent simplification in previous stages of the recursion by
automatically sewing disconnected parts together, as shown in figure 6.3 b.

6.1.3 Stochastic simplification
As a criterion for the choice of next contraction operation we use the quadric
error metric presented by Garland and Heckbert [29].

Although the quadric error metric is a fast technique, which provides good
results, it does not deliver the Hausdorff distance. In our case this is a neces-
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sary requirement. Therefore, in addition to quadric error metric we calculate
the Hausdorff distance between the original and the simplified meshes. It is
done the same way as described by Hoppe [45] and Klein et al. [55]. Before
contracting the chosen candidate pair we always check, if the Hausdorff error
which will be produced by this operation is less than the given error thresh-
old. If not, we reject the operation. Thus we avoid all operations whose errors
exceed the maximum error set for the given hierarchical level.

During each node simplification an idea proposed by Wu and Kobbelt [107]
is used. Instead of using a priority queue to order candidates for contraction
operations, at each simplification step we stochastically pick Nrand vertices vi –
candidates for the next contraction operation. Then, for each candidate vertex
the neighbour simplex si is found, such that contraction of vi and si will result
in the smallest quadric error. In section 5.3.2 this search procedure is described
in detail. Since the search of nearest neighbour simplices is expansive, we do it
for Nsearch vertices only. For the rest Nrand−Nsearch vertices we check only their
adjacent vertices (this means that for these vertices only edge collapses could
be found). Of course for vertices which lie on boundaries, in order to close
the cracks introduced by the cutting, we always have to perform the complete
search2.

After defining Nrand candidate contraction pairs, we choose the one with
the smallest quadric error that will arise after contracting it. The new position
of a contraction vertex is chosen in order to minimize this error.

Once an operation is rejected we mark the vertex with a flag, which is valid
only until the operation on a neighbour simplex is performed. If a randomly
chosen vertex is marked with this flag, we choose the next vertex. Once all
operation candidates have been rejected and marked, the simplification of a
given node could not be continued further without exceeding the maximum
error threshold and we stop.

Table 6.2 demonstrates how quality and performance rates of our algorithm
depend on the number Nrand of the vertices, randomly selected at each simpli-
fication step. Computations have been done for the Armadillo model, shown in
figure 6.4, with an error threshold set to 0.129% of the diagonal of the bound-
ing box. For all other models the results are similar. In the last row of the table
the rates for the similar simplification algorithm driven by a priority queue are
shown. In shorter times the stochastic approach achieves even greater reduc-
tion rates than using a priority queue. Note, that all times include the cutting
time (≈1:10), which does not depend on simplification parameters.

2In practice, we performed the complete search of nearest neighbour simplices only for bound-
ary vertices.
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Figure 6.4: The Armadillo model, originally containing 345 944 triangles, sim-
plified to 33 780 triangles.

Nrand ∆out put Time (m:ss) Rate (∆/sec)
4 33 780 6:18 826
6 33 733 6:35 790
8 33 775 6:47 767

10 33 933 7:15 717
Queue 33 829 8:56 582

Table 6.2: Impact of the number Nrand of the vertices, randomly selected at
each simplification step, on the reduction and performance rates for the Ar-
madillo model.

6.1.4 Stitching
To generate a consistent mesh from the independently simplified nodes we
move a stitching frame over the model. This frame is placed as shown in fig-
ure 6.5. For all border vertices inside this frame the closest simplex in the other
seven nodes is determined and a contraction operation is applied if the distance
is less than 2ε . In this way all gaps introduced by independent simplification
of the nodes are closed.

Finally duplicate vertices are removed and new global indices stored in
each node. In this way a new vertex index can be calculated by only checking
the direct neighbour nodes leading to a stitching time of O(n), where n is the
number of input triangles. Then the simplified and stitched geometry is written
into a single file that may again exceed the amount of main memory available.
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Figure 6.5: Stitching frames for the torso of the Armadillo model.

a) b)

Figure 6.6: The head of the Happy Buddha model before (a) and after (b)
stitching.



106 Chapter 6. Out-of-core simplification

Error Cutting time Simpl. time RateModel
(% of diagonal) (h:mm:ss) (h:mm:ss) (∆/sec)

Armadillo 0.129 0:01:12 0:05:06 826
Happy Buddha 0.170 0:04:40 0:19:28 728
David (2 mm) 0.178 0:38:01 2:22:02 762
Lucy 0.163 2:19:08 8:03:57 779

Table 6.3: Reduction and performance rates of our out-of-core simplification
algorithm running on a single PC for four standard models.

6.2 Results
All results presented here have been measured on a Pentium-4 processor with
1.8 GHz and 512 MB main memory. Like other methods, we restrict ourselves
during the simplification to the one-sided Hausdorff distance from the simpli-
fied to the original model.

In table 6.3, the reduction and performance rates of our algorithm for four
models from the Stanford 3D Scanning Repository3 and The Digital Michelan-
gelo Project 4 are shown. The Lucy and David models are shown in figure 6.1.

The simplification time for these models is split into three parts. The cutting
of the model has an approximate splitting rate of 25 000 / logn triangles/sec,
where n is a number of input triangles, and simplification algorithm itself has
an approximate reduction rate of 960 triangles/sec. The stitching algorithm was
not applied, since the simplified models fit into main memory, but it performs
at more than 100 000 triangles/sec. Since the hierarchical simplification can be
parallelized, we ran the simplification on ten PCs achieving a linear speedup of
the reduction rate by a factor of ten (see Guthe et al. [9]).

We compared quality of our algorihnm with the following previous simpli-
fication methods:

1. QEM simplification by Garland and Heckbert [29] (QSlim 2.0), the only
in-core method used in our comparison;

2. simplification using out-of-core clustering by Lindstrom [59] (OOCC);

3. out-of-core simplification using external memory management by
Cignoni et al. [18] (OEMM-QEM);

4. stream decimation by Wu and Kobbelt [107].

Simplification errors for the Happy Buddha model (initially containing
1 087 716 triangles) were measured using the Mesh tool developed by Aspert

3http://www-graphics.stanford.edu/data/3Dscanrep
4http://www-graphics.stanford.edu/projects/mich/

http://www-graphics.stanford.edu/data/3Dscanrep
http://www-graphics.stanford.edu/projects/mich/
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One-sided Symmetric
Method ∆out put Hausdorff error Hausdorff error

(% of diagonal) (% of diagonal)

QSlim v2.0 18 338 0.261 0.786
OOCC 19 071 0.919 0.919
OEMM-QEM 18 338 0.505 0.821
Stream decimation 18 486 0.488 0.818
Our method 18 248 0.176 0.706

Table 6.4: Results of applying different out-of-core simplification methods to
the Happy Buddha model.

et al. [3]. As table 6.4 demonstrates, both one-sided and symmetric Haus-
dorff distances between simplified and original meshes in our approach are
smaller even than in in-core QSlim. Of course, since we use the one-sided
Hausdorff distance during simplification, it is significantly lower than the sym-
metric (double-sided) Hausdorff distance.

In figures 6.7 and 6.8 it is clearly visible that, compared to the other meth-
ods, details, e.g. the necklace or the mouth, and silhouettes are much better
preserved by our algorithm. The very small error of our method is a result of
rejection of contraction operations, which would introduce a too large Haus-
dorff error (see section 5.2). Since in out method error quadrics are not accu-
mulated, we achieve much better reduction rates in flat regions with noise, as
figures 6.8 g – i clearly demonstrate.

6.3 Related-work
To simplify models of ever increasing size a number of out-of-core simplifica-
tion algorithms have been developed. El-Sana and Chiang [25] sort all edges
according to their length and use this ordering as decimation sequence. In a
more efficient algorithm by Lindstrom [59], vertex clustering is used to reduce
the number of vertices; but since the geometry data is stored in a voxel grid
the memory requirement of this algorithm depends on the output size of the
model. For cases where neither input nor output model fit into main memory,
Lindstrom and Silva developed an out-of-core vertex clustering method [61].
The multiphase algorithm by Garland and Shaffer [31] first uses vertex cluster-
ing to reduce the complexity of the input model and then greedy simplification
approach to achieve high-quality results.

Another general strategy for out-of-core simplification is to split the model
into smaller blocks, simplify these blocks and stitch them together for further
simplification. Hoppe [46] applied this approach to terrain, while Erikson and
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a) b) c)

d) e) f)

Figure 6.7: Results of applying different simplification methods to the Happy
Buddha model: a) original model (1 087 716 triangles); b) QSlim 2.0 (18 338
triangles); c) OOCC (18 338 triangles); d) OEMM-QEM (18 338 triangles);
e) stream decimation (18 486 triangles); f) our method (18 248 triangles).
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a) b) c)

d) e) f)

g) h) i)

Figure 6.8: Results of applying different simplification methods to the Happy
Buddha model – close-ups: a) original model (1 087 716 triangles); b) QSlim
2.0 (18 338 triangles); c) OOCC (18 338 triangles); d) OEMM-QEM (18 338
triangles); e) stream decimation (18 486 triangles); f) our method (18 248 tri-
angles); g) OEMM-QEM; h) stream decimation; i) our method.
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Manocha [26] and Prince [80], to arbitrary meshes. This approach has the
problem that triangles intersecting the octree cells used to partition the model
cannot be simplified before the cells are combined in a higher level of the hi-
erarchy. Therefore, the number of triangles in an octree cell may very well
exceed the main memory available, so these are not real out-of-core simplifi-
cation algorithms although they allow simplification of large models. To over-
come this problem a special method to simplify these border triangles has been
developed by Cignoni et al. [18]. In our work we showed that the generalized
pair contractions combined with cutting of the model at octree cell boundaries
provide a more elegant and general solution to this problem.

Wu and Kobbelt developed a stream decimation algorithm [107] for out-of-
core simplification, which performs decimation by collapsing randomly chosen
edges. However, the geometric distance between the original and simplified
models cannot be truly controlled, since the original model in the active work-
ing region does not fit into main memory. Also the problem may arise that the
currently processed triangles may not fit into main memory.

Isenburg et al. [49] proposed a processing sequence paradigm, which repre-
sents a mesh as a particular interleaved ordering of indexed triangles and ver-
tices, a representation that allows streaming very large meshes through main
memory while maintaining information about the visitation status of edges
and vertices. They apply this approach to out-of-core simplification [50], as
well as to other mesh processing tasks, such as remeshing, parameterization or
smoothing.

6.4 Summary
We presented a high-quality end-to-end out-of-core mesh simplification algo-
rithm. The main features of the algorithm are that it allows to guarantee a
maximum geometric distance between original and simplified models and that
topological simplification is controlled based on a geometric error. Further-
more, the maximum allocated main memory can be restricted by the user. Al-
though, due to the advantages of the algorithm the reduction rates are less than
of other recent algorithms, they are almost constant regardless of the size of the
input model. This demonstrates the optimality of the approach.



Chapter 7

Intersection-free
simplification

Currently, a large number of simplification algorithms exist that produce high-
quality approximations of complex models with a reasonable amount of poly-
gons. However, none of the known techniques avoids the generation of self-
intersections during the simplification process. Figures 7.1 and 7.2 show typi-
cal examples, where self-intersections lead to severe visual artefacts.

a) b)

Figure 7.1: Model of a man wearing a shirt and trousers with 17 060 vertices (a)
was simplified to 600 vertices, arrows show self-intersections (b).

111
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a) b) c)

Figure 7.2: Model consisting of a green sphere inside a blue sphere (a) was sim-
plified to 70 vertices, without (b) and with (c) avoidance of self-intersections.

In figure 7.1 a, a human body is dressed with a shirt and trousers. A realistic
adaption of the clothes to the body typically demands for a computationally
expensive physical simulation with a not too coarse resolution of the model.
For an efficient visualization, the resolution of the model should be adaptable
to the extent of the model in screen space, what can be achieved by the use of
LODs. A standard simplification algorithm generates coarse approximations of
the model with artifacts, as shown in figure 7.1 b, where the combined model
was reduced to 600 vertices. The body penetrates the cloth in several places. A
simulation of the cloth in such a coarse resolution is not feasible and, therefore,
is a simplification algorithm that avoids self-intersections is mandatory.

The second, purely synthetic model, shown in figure 7.2 a, is composed of
two nested spheres. After reduction to 70 vertices, this model also contains
multiple self-intersections, as shown in figure 7.2 b.

Self-intersection problems typically arise, when two or more close surface
layers are present, what is very common for models of dressed humans, for
which our method was originally designed. We simplified the man and the
nested spheres once with edge collapses and once with vertex contractions,
where the contracted vertices do not have to be adjacent. Both cases yielded
results similar to figures 7.1 b and 7.2 b.

We developed a method that allows to completely avoid self-intersections
without loss of approximation quality. We describe our self-intersection-free
simplification strategy based on the vertex contraction approach, as introduced
by Popović and Hoppe [79] or Garland and Heckbert [29]. The result of
simplification of the nested spheres model using our approach to avoid self-
intersections is shown in figure 7.2 c.

The proposed approach have similarity with the simplification strategy of
progressive simplicial complexes [79]. The atomic simplification operation is
the vertex contraction. Starting with the original fine mesh vertex by vertex
is removed via pair contraction operations. At any time we keep the set of
all vertex pairs suited for contraction. This set is called the potential set and
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includes all vertex pairs connected by an edge, the so called edge pairs, and for
each vertex the closest not adjacent vertex forming the non-edge pairs.

The non-edge pairs are determined with the spatial search data structure
described in section 7.1. To allow for fast simplification we use the quadric
error metrics introduced by Garland and Heckbert [29] with their extension to
border edges.

For a self-intersection-free simplification scheme it does not make sense to
start off with a model that has self-intersections. Therefore, we first clean up
the model to eliminate all initial self-intersections, as described in section 7.2.

In the initialization of the simplification process the vertex pairs of the po-
tential set are inserted into a priority queue as introduced by Klein et al. [55],
which is sorted by the quadric error produced if the vertex pair would be con-
tracted. Step by step the vertex pair producing the smallest error is extracted
from the queue.

Before the pair contraction is performed we check if the normals of the in-
cident triangles flip, as suggested by Ronfard and Rossignac [82], and, if the
normal check succeeds, we check if the pair contraction produces a collision
leading to a self-intersection, as described in section 7.3. If a collision is de-
tected, we try to avoid it by determining a different target position, as described
in 7.4.

If a collision-free position is found we evaluate the quadric error metric at
the new target location and re-insert the operation into the priority queue. If the
collision avoidance fails, we add the operation to a second queue of discarded
operations described below and, which gathers operations that failed in the
normal check.

If both normal and self-intersection tests succeed, the operation is per-
formed. The quadric error metric of all potential vertex pairs containing an
affected vertex is re-computed and their priorities are updated in the priority
queue. For each vertex pair containing an affected vertex and not connected by
an edge we re-compute the closest non-adjacent vertex for the non-contracted
vertex and add the new pairs to the priority queue.

Once discarded operations can become valid after contraction operations in
the neighbourhood that remove the cause of invalidity. Book marking the op-
erations that invalidate a temporarily discarded one can become very compli-
cated. Therefore, we chose to use the strategy with the second queue gathering
all invalid operations. We re-consider the invalid operations with a random-
ized strategy. With a frequency proportional to the number of operations in the
queue of discarded operations we randomly select a discarded operation, find
the currently best correspondence for it and enter it into the priority queue.

The self-intersection test is not performed before the insertion of a pair into
the queue because it is more expensive than the computation of the quadric er-
ror metric. In this way we have to compute only one collision test per collapsed
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vertex or avoided collision instead of one per insertion of a vertex pair into the
queue, which is in the average case of manifold meshes (see definition 2.6
from section 2.1.1.1) eight times the number of vertices and for non-manifold
meshes potentially even more.

7.1 Dynamic spatial search data structure
At three places of our intersection-free simplification method we make use of
a spatial search data structure:

1. to remove initial self-intersections, all pairs of an edge and a triangle
whose intersection need to be found;

2. to pair close vertices for non-edge vertex pairs, the closest non-adjacent
vertex of another vertex has to be found;

3. to detect collisions during vertex contraction, all simplices in the vicinity
of the contracted vertices need to be known.

As simplices change their shape and location during simplification, the spa-
tial search data structure needs to be dynamic. The interface of the data struc-
ture must support insertion of simplices – i.e. vertices, edges and triangles
– query for all triangles intersecting an edge, nearest neighbour queries for a
vertex to a given vertex and enumeration of all simplices in a given box.

We chose to use a regular grid for the spatial search, because it optimally
performs in static and dynamic environments, as shown by Zachmann [109],
and is easy to implement. In each grid cell we store a list of the simplices,
which are partially or completely contained in the cell. In the beginning of
the simplification process, we use a grid with uniform edge length of twice
the average edge length of the simplicial complex, such that each simplex is in
average contained in one or two cells allowing for fast insertion and removal.
During the simplification process we keep track of the increasing average edge
length. When the latter exceeds the grid edge length, we create a new grid
with double grid edge length and re-insert all remaining simplices. For the
used models, we observed that in average each simplex had to be entered in a
constant number of grid cells only.

7.1.1 Simplex insertion and removal
To insert a vertex we simply compute the enclosing cell and add it to its list
of contained simplices. Edges and triangles can penetrate more than one cell
into which they were entered. In case of an edge, a simple incremental algo-
rithm could be used to trace the penetrated cells along the edge. For triangles,
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we implemented a not optimal but simple solution. First, we collect all cells
intersected by the bounding box of the triangle. Then, we sort out the actually
penetrated cells by a marching-cubes-like strategy. Each of the grid vertices
from intersected cells is classified to be above, below or outside of the triangle
in consideration. Finally, the triangle is inserted in all grid cells with at least
one vertex classified as above and one, classified as below. As each triangle is
in average inserted into a small number of cells the presented strategy works
reasonably fast1.

For fast removal, we store for each vertex a pointer to the list item in the
enclosing cell such that it could be removed in constant time. Similarly, we
keep for each edge and each triangle a list of pointers to list items such that
any simplex could be removed in time proportional in the number of penetrated
cells. To move simplices affected by the contraction operations, we just remove
them from the grid and re-insert them.

7.1.2 Spatial queries
In order to find all triangles intersecting an edge, we determine all cells, which
partially contain the edge, and enumerate all triangles, which are partially con-
tained in these cells. To sort out the non-intersecting triangles we actually
perform the intersection tests between the edge and the selected triangles.

The closest non-incident vertex to a given vertex v can be found in the
grid by a region-growing strategy, starting with the cell that contains the ver-
tex. While the so far closest vertex is further away from v than the closest not
considered cell, we also consider the vertices in the closest cell.

Finally, to enumerate all simplices in a given box, we simply determine all
cells intersecting the box and enumerate all partially contained simplices.

7.2 Initial clean-up of self-intersections
In this section we describe how to eliminate self-intersections in the input
mesh by generation of new vertices, edges and triangles. The crucial self-
intersections are the ones between edges and triangles. The vertex-edge, vertex-
triangle and edge-edge intersections can be eliminated in one step and all
triangle-triangle intersections coincide with two edge-triangle intersections.
Our first solution tried to remove the edge-triangle intersections iteratively but
did not terminate in all cases.

Therefore, we came up with a method, that minimizes the number of newly
generated simplices. The basic idea is to determine on each triangle the collec-
tion of points and segments resulting from intersections with other simplices

1A slightly more efficient method was described by Zelinka and Graland [111].
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a) b) c)

Figure 7.3: a) Intersections of triangle with other simplices. b) Creating of
further vertices on intersecting segments. c) Triangulation of planar straight
line graph.

as depicted in figure 7.3 a. The resulting intersection graph is triangulated in a
way to include the intersection points and segments.

Suppose we want to split triangle t. The intersection with another trian-
gle is a line segment and the intersection with an edge or a vertex is just a
point. The resulting intersection graph can still have crossing edge, which are
removed by insertion of additional nodes at the segment intersections as shown
in figure 7.3 b.

Finally, the resulting planar straight line graph is triangulated with a stan-
dard sweep line algorithm as, for example, described by de Berg et al. [21].
Nodes that are closer than a user defined ε are snapped together in order to
avoid numerical problems with very short triangle edges. Care has to be taken
in order to match identical newly introduced vertices on different triangles.

7.3 Detection and prevention of self-intersections
This section describes the detection of self-intersections caused during the sim-
plification process.

In a vertex contraction operation the two contraction vertices are contracted
onto one target vertex. All simplices incident to one of the contraction vertices
are called affected as they are sheared during the contraction. Simplices inci-
dent to both contraction vertices are called contracted as they are eliminated.

The affected simplices can cause two problems as illustrated in figures 7.4.
Either an intersection can be caused, as depicted in figure 7.4 a, or a simplex
can switch from the inside to the outside of a closed surface, as shown in fig-
ure 7.4 b. The inside-outside switch does not cause an intersection but can
change the look of the model, when the switched simplex has a different colour
as the enclosing surface.

Both problems can be detected by parameterizing the contraction operation
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Figure 7.4: a) Intersection caused by vertex contraction. b) Inside-outside
switch of differently coloured edge.

over time, as Hoppe did to generate geomorphs [44], and by looking for a
collision between the simplices. An intersection is a collision, whereas an
inside-outside switch always cause a collision. Prevention of collisions will
also ensure that no intersection arises during a geomorph.

7.3.1 Classification of collisions
Suppose the contraction vertices of the current contraction operation are v1 and
v2 and the target vertex, on which they are contracted, is vc. Let Σ1 be the set
of affected simplices incident only to v1 and Σ2 the set incident to v2. Σ12 is the
set of contracted simplices incident to both v1 and v2. The remaining simplices
are called stationary and collected in the set Σ0. Only the stationary simplices
in a bounding box containing affected and contracted simplices and the target
vertex can cause a collision. These are collected via a range query from the
spatial data structure.

We parameterize the vertex contraction operation over the time interval
t ∈ [0,1] by specifying the movement of the contraction vertices

v j(t) = v j + t · (vc− v j) , j ∈ {1,2}, (7.1)

where we distinguish between the starting locations v j of the contraction ver-
tices and their time evolution v j(t) only by the additional time parameter. As
we cleaned up all intersections in the beginning, we can start off with the pre-
condition that there is no collision at t = 0. We distinguish five types of colli-
sions:

• hit collisions of the first kind between a simplex from Σ1 ∪ Σ2 and a
simplex from Σ0,

• hit collisions of the second kind between a simplex from Σ12 and a sim-
plex from Σ0,

• fan collisions between two simplices from Σ1 or two simplices from Σ2,
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Figure 7.5: Detection of hit collisions of the first kind with the time sweep of
the affected vertex (a), edge (b) or triangle (c) and calculation of collision time.

• contraction collisions of the first kind between a simplex from Σ1 and a
simplex from Σ2 and

• contraction collisions of the second kind between a simplex from Σ1∪Σ2
and a simplex from Σ12 or between two simplices from Σ12.

7.3.2 Efficient computation of collisions
To reduce the number of to be checked collisions and the number of to be
discussed collision types, we state the following lemma, which directly follows
from the continuous parametrization of the pair contraction operation.

Lemma 7.1
If a pair contraction is applied to a simplicial complex without self-intersections,
any collision between an edge and a triangle or between two triangles is pre-
ceded by or coincides with a collision between a vertex and a simplex or be-
tween two edges.

Lemma 7.1 implies that it is sufficient to test for collisions of the first class,
i.e. between a vertex and another simplex or between two edges, because if
any other collision arises there will also be one of the first class happening
even earlier in time.

If we split the pair contraction into two phases by, first, dragging vertex v1
with fixed v2 onto vc and by, second, dragging v2 onto vc, only hit collisions of
the first kind can arise. All the first class hit collisions of the first kind can be
detected by an intersection test between the time sweep of the affected simplex
with the stationary simplex as illustrated in figures 7.5.

The time sweep of the affected vertex is a line segment, which needs to
be tested against all stationary vertices, edges and triangles. Figure 7.5 a illus-
trates the case of a stationary triangle. Segment-vertex, segment-segment and
segment-triangle intersection tests can be implemented efficiently.
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In figure 7.5 b the time sweep of an affected edge is shown to be a triangle,
which needs to be tested for intersection with all stationary vertices and edges.
Finally, the time sweep of an affected triangle is a tetrahedron as depicted in
figure 7.5 c. Here only intersection tests with stationary vertices are necessary,
which reduce to a simple point inclusion test.

If we do not follow the two-phase strategy, one can additionally show that
fan collisions and contraction collisions of the second kind always coincide
with another type of collision and, therefore, do not have to be tested. The
intersection tests for hit collisions of the second kind and contraction collisions
of the first kind are slightly more complicated and are skipped here.

7.4 Avoidance of self-intersections
The simple prevention strategy of just discarding operations that cause a colli-
sion does not allow the generation of very coarse approximations with low er-
ror. As shown in section 7.5, the approximation error grows much faster if a lot
of low error operations have to be discarded, and furthermore is it possible that
the simplification process reaches a point when all possible operation would
cause a self-intersection. For models like the dressed man most operations of
vertices close to the cloths won’t be valid in a late stage of the simplification
process. Thus only the head, hands and feet can be reduced further yielding a
bad approximation of the head and hand, as can be seen in figures 7.6.

To actually avoid the large number of invalid operations, it is either possible
to look for a different target position that does not cause a self-intersection or to
move the part of the mesh, into which the contracted part bumped, or do both.
We decided to only change the target position, as in this case the progressive
representation of the model can be stored in exactly the same way as if no
self-intersection avoidance had been performed.

Thus we simply try to find a target location that does not cause a self-
intersection. In some situations this is not possible at all. But in most situations
there is a so called valid region of valid target positions onto which the two
contraction vertices can be contracted without causing a self-intersection. The
target position, which is optimal with respect to quadric error metric, causes a
self-intersection and is, therefore, not in the valid region. What we are looking
for is the location in the valid region that minimizes the quadric error metric.
As the explicit computation of the valid region is very complicated, we came
up with three approximate solutions:

• First hit: For all collision tests introduced in the previous section one
automatically computes the parameter value t = tc, when the collision
arises. By minimizing the time parameter over all colliding affected sim-
plices one can determine the time parameter tmin when the first collision
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arises. In the first hit strategy we guess the new collision-free target lo-
cation from the location of the contraction vertex incident to the simplex
causing the collision at time tmin. In the case this target location is again
causing a collision, we use the same strategy again up to five times before
we give up.

• Barycentric sampling: Here we sample possible target locations only
on the triangle spanned by the two contraction vertices and the QEM-
optimal target location. We sample the triangle on fourteen further loca-
tions, that result from two one to four subdivisions. We sort the sample
locations by increasing QEM error and perform collision checks until
the first yields a valid target location or until all of them failed and the
operation has to be discarded.

• Extensive sampling: As shown in section 7.5, it is not obvious at all how
to do an extensive sampling of the possible target location in order to
keep the approximation error low. In our extensive sampling strategy
we sample the space around the optimal target location in 26 directions
given by the vertices, edge centers and face centers of an axis aligned
octahedron, i.e. all possible directions with one, two or three ±1 as
coordinates. We sample an iso-surface of the quadric error metric, where
it is hit by the 26 directions. Let ε2

1/2 be the quadric error values at the
initial locations of the contraction vertices, and ε2

c , the one at the optimal
target location. Let

ε
2
α = α ·min(ε2

1 ,ε2
2 )+(1−α) · ε2

c , (7.2)

We determine the minimum value for α by an interval subdivision of
the interval [0,1], where we check for each α , if at least one valid target
location exists.

In case a valid target location is found by one of the strategies, we evaluate
the quadric error metric at the new approximation of the target position and
re-insert the operation into the priority queue. Figure 7.6 c shows the model of
a man simplified with avoidance of self-intersections.

7.5 Results
We tested our intersection-free simplification algorithm on four test data sets:
a dressed man, a dressed woman2, two nested spheres and the bunny – as an
example of a model that does not cause self-intersections. Figure 7.2 c shows
the reduced nested sphere model. In figures 7.6 and 7.7, the man and woman

2The models of a man and a woman were kindly provided by the Virtual Try-On project.
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Models Man Woman Spheres Bunny
Original number of vertices 17 060 19 498 1 028 34 838
Reduced number of vertices 600 370 100 500
Time (s) – no detection 1.87 2.02 1.23 1.29
Time (s) – prevention 7.52 8.45 4.31 3.12
Time (s) – first hit 10.18 10.71 4.43 3.18
Time (s) – barycentric 18.52 17.67 7.06 3.06
Time (s) – extensive 63.77 72.89 14.02 3.62
Hausdorff dist. – no detection 0.1050 0.1597 0.4841 0.1069
Hausdorff dist. – prevention 0.1293 0.2027 0.4719 0.1070
Hausdorff dist. – first hit 0.1246 0.1850 0.4894 0.1074
Hausdorff dist. – barycentric 0.1183 0.1648 0.4816 0.1072
Hausdorff dist. – extensive 0.1195 0.1708 0.4857 0.1071

Table 7.1: Experimental results. Reduction times are per 1000 pair contractions
and where measured on an Athlon processor with 1.2 GHz.

models are depicted. The bunny did not produce any self-intersections and is
not shown.

Table 7.1 gathers the experimental results. The first two rows show the
number of vertices of the original and simplified models. The next five rows
show the simplification time without collision test, with collision prevention
and with the three different avoidance strategies. The last four rows show the
Hausdorff distances between the simplified and original model achieved ei-
ther without collision test, with collision prevention or with the three different
avoidance strategies, measured using the Mesh tool [3].

For the bunny model only two collisions arose. The increase of running
time is due only to the insertion and removal of the simplices to/from the spatial
data structure. For the other models there are a lot of collision tests because of
the large portion of double layered parts. The measurements of the Hausdorff
distances show how the problem of the invalidation of operations by the simple
collision detection strategy can be nearly completely avoided by the barycentric
sampling.

7.6 Related work

As most of the models used with current simplification algorithms do not con-
tain close layers of different colour, few works considered the problem of self-
intersections at all. Typically, only the normal-flip test proposed by Ronfard
and Rossignac [82] is performed, which checks if the normals of the incident
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a)

b) c)

Figure 7.6: Dressed man model: original containing 17 060 vertices (a), simpli-
fied to 600 vertices with prevention (b) and avoidance (c) of self-intersections.
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a)

b) c)

Figure 7.7: Dressed woman model: original containing 19 498 vertices (a),
simplified to 370 vertices without collision test (b) and with collision avoid-
ance (c).
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triangles change their direction more than by a maximum angular deviation
and, in this way, allows to prevent local self-intersections. However, this does
not allow to produce acceptable simplifications of the very important class of
meshes that represent dressed people.

A method that can at least prevent global self-intersections was described
by Cohen at al. [20]. In order to ensure a one-sided Hausdorff distance of
ε from the simplified model to the original model, two offset surfaces of ±ε

around the original model are defined. To prevent self-intersections of the off-
set surfaces a different εi is specified for each vertex and is reduced from the
user specified epsilon, until no self-intersections of the so called simplification
envelopes remain. During simplification, the prevention strategy, as described
in the introduction, is performed to prevent, on the one hand, self-intersections
and, on the other hand, an increase in the one-sided Hausdorff distance over
ε by enforcing all triangles to stay within the tolerance volume enclosed by
the envelopes. Simplification envelopes are not efficient in a setting where ε

changes.
Zelinka and Garland [111] discretize the tolerance volume around the origi-

nal mesh on a regular grid to accelerate the validity tests for the atomic simplifi-
cation operations. An increase in ε is achieved by growing the discretized toler-
ance volume by one cell in all directions. They do not check self-intersections
of the tolerance volume and, therefore, do not prevent global selfintersections.

Guéziec [35] dynamically keeps a tolerance volume around the simplified
mesh such that the one-sided Hausdorff distance from the original model to the
simplified mesh can be controlled. In this approach, global self-intersections
are neither avoided.

Both the approaches of Guéziec and Zelinka/Garland could probably be
generalized to avoid self-intersections. But all tolerance volume based ap-
proaches to the prevention of self-intersections have one disadvantage. The
space between two close surface layers has to be split into two parts, one for
each layer. This split is done in the initialization stage without knowing po-
tential self-intersection problems. The optimal target location of an edge col-
lapse in one layer could then fall out of the corresponding tolerance volume,
although no self-intersection is caused. Thus, the tolerance-volume-based ap-
proaches can discard the operation with the smallest approximation error even
if it does not cause a self-intersection. Our approach on the other hand does
not report any non-existent self-intersections.

The simplification algorithm creating progressive tetrahedralizations de-
scribed by Staadt et. al [91] avoids self-intersections of the boundary surface
of the tetrahedral mesh. They argue that in the case of volume boundary meshes
these self-intersections can only arise at sharp boundary edges and restrict their
intersection tests to these edges. Their assumption does actually not even hold
for volume boundary meshes as a simple example shows: take a solid cube and
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cut out a very fine spherical layer. During the simplification the two sides of
the layer can easily intersect without the vicinity of any sharp edges. In this
case a method like ours is necessary.

7.7 Summary
We presented the first approach to globally prevent and avoid self-intersections
during mesh simplification. We based our implementation on the standard ver-
tex contraction approach and support non-manifold meshes and modification of
the topology. Other simplification approaches could be supported as well. Pro-
gressive transmission and several level-of-detail algorithms can be supported
self-intersection-free without any modifications, as we do not introduce any
new operations but only change the target locations of the pair contractions.

From the introduced strategies to find valid target locations in the case of
self-intersections, the first-hit strategy proved to be very efficient in terms of
running time and achieved approximation quality.

The proposed method is the first that can create high-quality simplified
versions of dressed people.
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Chapter 8

Conclusion

The topic of this thesis are algorithms for mesh simplification and mesh repair.
Since these areas are quite popular in Computer Graphics, and, therefore, a lot
of research was already done in both fields, in our work we addressed only
several particular problems of mesh simplification and mesh repair. Presented
here is a collection of techniques that allow to produce high-quality models
with properties, which are important prerequisites for most of the rendering
and processing methods.

8.1 Mesh repair
In chapter 3, we introduced a mesh repair method that consistently orients all
face normals of an arbitrary polygonal mesh and simultaneously ensures that
as much as possible polygons of the model are seen with their front faces from
most viewpoints. In our algorithm, we combine the traditional proximity-based
approach with our new visibility-based approach. This allows us to produce
the desirable solution for most practical cases of polygonal meshes containing
inconsistently oriented normals, except the models with many overlapping and
coplanar polygons.

Another mesh repair method, which removes the inconsistency of vertex
connectivity, was presented in chapter 4. Here, we interpret the problem of
generation of topologically connected polygonal models as a mesh boundary
simplification task. In addition to the vertex contraction and edge collapse op-
erations traditional for mesh simplification, we introduce a new vertex-edge
contraction operation, which provides additional flexibility. We use this new
operator to simplify the boundaries of the mesh, thereby we manage to re-
move various artefacts, such as T-vertices, degenerate triangles, narrow gaps
and cracks. By applying the vertex-edge operator according to an increasing
error, we successively close the gaps and holes in the model.
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8.2 Mesh simplification
In chapter 5, we presented a technique that generates high-quality simplified
models. It utilises the generalized pair contractions – contraction of a vertex
with another vertex, an edge or a triangle and contraction of two edges, which
allow to repair cracks and self-intersections and to sew unconnected compo-
nents with lesser error than standard vertex contraction. Therefore, our new
method is particularly useful for the simplification of the models consisting of
a large number of unconnected parts. In addition to its ability to repair meshes
in an intuitive and efficient way, our algorithm often results in much better
decimation than previous simplification techniques.

Using the above high-quality simplification method, we implemented a
simple and fast out-of-core mesh simplification algorithm, which we described
in chapter 6 of this thesis, that is capable to guarantee a given geometric dis-
tance between original and simplified model. Our topological simplification
is controlled based on a geometric error. Since we use generalized pair con-
tractions and cut the model at octree cell boundaries, we do not accumulate
the triangles that intersect the octree cells. Despite the fact that the computa-
tion time of our algorithm is higher compared to recent approaches, the gain in
quality and/or reduction rate is significant.

Finally, in chapter 7, we introduced the first approach to globally prevent
and avoid self-intersections that can occur during mesh simplification. We do
it by parameterizing the contraction operations over time and by detecting col-
lisions of affected simplices. In the case of a collision, we determine a new
target position that avoid the collision using one of the three different strate-
gies. Our method produces high-quality simplified meshes without causing any
new self-intersections and is especially suitable to simplify models with close
layers, such as dressed people.



Chapter 9

Future work

Since the development and publication at different conferences of the methods
collected in this thesis, a lot of research has been performed both in the field
of mesh simplification and in the field of mesh repair. In sections 3.3, 4.4, 5.7,
6.3 and 7.6, we provided an overview of the techniques related to the topics of
this thesis. In addition to the work done previously, this also included several
newer approaches, some of which contain references and/or directly relate to
our techniques.

In the field of mesh repair, we have been dealing with few particular types
of artefacts that occur in polygonal models. However, a growing number of
models contain errors of various types. An incomplete list of such artefacts in-
cludes: cracks, holes, T-joints, overlaps, dangling walls, duplicated geometry,
self-intersections, inconsistent normal orientation, invisible polygons, degen-
erated faces, concavities, etc. A natural direction for future work would be to
develop mesh repair techniques that handle errors of other types and, further-
more, can repair many types of errors simultaneously. This, for example, try to
do several newer methods based on volumetric techniques.

An aspect of mesh repair not covered in our work is the integration of user
interaction. Often, is is not easy to automatically decide if a particular mesh
structure is an artefact or a desired feature. In some practical cases, the correct
solution can not be found without human decision, and development of tech-
niques that provide the user an easy and intuitive possibilities to interactively
make a selection is another topic of interest in the area of mesh repair.

With regards to the techniques presented in this thesis, our normal-orienting
method could produce undesirable results for some models, which contain
many overlapping and coplanar polygons, as mentioned in section 3.4. So-
lution of this issue would be a task for future work.

As of mesh simplification, a drawback of our algorithms based on gener-
alized pair contractions is quite high memory consumption. This issue was
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discussed in section 2.2.3.1, and the search of a reasonable compromise be-
tween memory use and method’s productivity would surely be an advantage.
However, this is only an implementation issue.

Finally, as we mentioned in section 6.4, the computation time of our out-
of-core simplification method is higher compared to other recent approaches.
Acceleration of this algorithm without any loss in quality and reduction rate
could be another task for future research.
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[79] Jovan Popović and Hugues Hoppe. Progressive simplicial complexes.
In SIGGRAPH 1997 Conference Proceedings: Computer Graphics An-
nual Conference Series, pages 217–224. ACM Press/Addison-Wesley,
August 1997.

[80] Chris Prince. Progressive meshes for large models of arbitrary topol-
ogy. master’s thesis, department of computer science and engeneering,
university of washington, seattle, 2000.

[81] Aristides A. G. Requicha and Herbert B. Voelcker. Boolean operations
in solid modeling: Boundary evaluation and merging algorithms. Pro-
ceedings of the IEEE, 73(1):30–44, January 1985.
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