
Research(Centre(for(Biosystems,(Land(Use(and(Nutrition(

Institute(of(Agronomy(and(Plant(Breeding(I((

Department(of(Plant(Breeding(

 

 

 

Digital'gene'expression'analysis'during'seedling'development'of'

complex'traits'in'winter'oilseed'rape'(Brassica'napus'L.)'

 

Inaugural(Dissertation(for(a(Doctoral(Degree(in(Agricultural(Sciences(

in(the(Faculty(of(Agricultural(Sciences,(Nutritional(Sciences(and(

Environmental(Management(

 
 

Examiners((

((((((((((((((1.(Prof.(Dr.(Dr.(h.c.(Wolfgang(Friedt 

2.(Prof.(Dr.(Matthias(Frisch(

 
 

Submitted(by((

Bertha(SalazarKColqui(

from((

Barquisimeto,(Venezuela(

Giessen(2015 



 

 

 

 

 

 

 

 
DEDICATION'

'
This work is dedicated to my loving parents, Germán Salazar and María Colqui,  for 

their eternal support.   

 

 

'
'
'
'

 

 

 

 

 
 



 III 

Table of Contents 
 
List of Figures V 

List of Tables VI 

List of Abbreviations VII 

1 Introduction 1 

2 Literature survey 2 

   2.1 Oilseed rape (Brassica napus L.) genome composition 2 

   2.2 Next generation sequencing (NGS) technologies 4 

   2.3 Digital gene expression (DGE) 7 

   2.4 Bulked-segregant analysis (BSA)-DGE approach 10 

   2.5 Weighted gene correlation network analysis (WGCNA) 12 

3 Materials and Methods 15 

   3.1 Plant material 15 

   3.2 Isolation of total RNA 16 

   3.3 DpnII-DGE libraries construction 16 

   3.4 PCR enrichment of DpnII-DGE adapter-ligated cDNA 17 

   3.5 Validation of libraries 18 

   3.6 Illumina sequencing and data analysis 18 

   3.7 Bulked-segregant analysis-DGE 19 

   3.8 Weighted gene co-expression network analysis (WGCNA) 20 

4 Results 21 

   4.1 Multiplexing of ExV8-DH population with DGE-DpnII Ilumina sequencing 21 

   4.2 DGE data analysis, mapping to Brassica unigenes and  

Normalisation 

23 

   4.3 Bulked-segregant analysis of DGE (BSA-DGE) data revealed differential 

expression of genes for complex traits 

28 

        4.3.1 Differentially expressed genes for hormone metabolites  28 

        4.3.2 Differentailly expressed genes for traits under greenhouse 

conditions 

35 

        4.3.3 Differentailly expressed genes for traits under field conditions 37 

   4.4 Weighted gene co-expression network analysis (WGCNA) for 

identification of highly connected (hub) genes 

41 



 IV 

       4.4.1 Identifying modules that are correlated with traits 41 

       4.4.2 Top hubs genes during seedling development at 8 and 12 DAS  46 

       4.4.3 Identifying biological functions of modules using gene ontology over-

representation analysis 

49 

5 Discussion 52 

   5.1 Multiplexing DGE-Ilumina sequencing for large plant populations 52 

   5.2 DGE data analysis enables mapping to the Brassica unigenes 54 

   5.3 DGE-BSA approach contributes to the understanding of complex trait 

regulation in winter oilseed rape 

55 

   5.4 WGCNA candidate genes expressed during seedling development 59 

   5.5 Gene expression of complex traits  63 

6 Summary 66 

7 Zusammenfassung 68 

8 References 70 

9 Appendix 80 

Declaration 87 

Acknowledgements 88 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 V 

 
List of Figures 
 
 
Figure 1. The Brassica triangle of species 3 

Figure 2. Recurrent genome duplications in B. napus 4 

Figure 3. The Illumina sequencing-by-synthesis approach 8 

Figure 4. Protocol description of digital gene expression (DGE) method 11 

Figure 5. Amplification products from four multiplexed DGE-DpnII libraries 22 

Figure 6. DGE-tag (10 nM) diluted DNA running under the High Sensitivity DNA 

Assay Chip 

23 

Figure 7. An example of different DGE-tag mapping scenarios within the 

complex polyploid B. napus genome 

27 

Figure 8. Co-expression network visualised in Cytoscape for 8 and 12 DAS 

(days after sowing) seedling plants 

51 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 VI 

List of Tables 
 
 
Table 1. GEX-1 adapter sequences for DGE-DpnII- multiplexed protocol 17 

Table 2. List of 27 traits evaluated for the ExV8-DH population and used for the 

BSA-DGE analysis for identification of differentially expressed genes 

29 

Table 3. List of the differentially expresed genes corresponding to ABA (absicic 

acid) hormone trait at 8 DAS after bulked-segregant analysis of DGE data 

(BSA-DGE). 

30 

Table 4. List of the 20 most significantly (P<0.05) differentially expressed genes 

for ABA3 (abscisic acid glucose ester) hormone metabolite trait at 8 DAS. 

32 

Table 5. List of the 20 most significantly (P<0.05) differentially expressed genes 

for   the AUX1 (auxin) at 8 DAS 

33 

Table 6. List of the 20 most significant (P<0.05) differentially expressed genes 

for AUX1 (auxin) hormone trait at 12 DAS 

34 

Table 7. List of the 20 most significantly (P<0.05) differentially expressed genes 

for shoot leaf weight (SPHW) at 8 DAS 

36 

Table 8. List of the 20 most significant (P<0.05) differentially expressed genes 

for PH06 (plant height end of flowering for year 2006) at 8 DAS 

38 

Table 9. List of the 20 most significant (P<0.05) differentially expressed genes 

for SY06 (seed yield for year 2006) at 8 DAS 

39 

Table 10. List of the significant (P<0.05) differentially expressed genes for 

SY07 (seed yield for year 2007) at 8 DAS 

40 

Table 11. List of the significantly (P<0.05) differentially expresed genes at 12 

DAS for SY07 (seed yield for year 2007) trait 

40 

Table 12. Top Hub Unigenes at 8 and 12 DAS (days after sowing) in B. napus. 

Annotation of Top Hub unigenes to Arabidopsis genome 

48 

Table 13. Singular enrrichment analysis (SEA) of modules with their respective 

top hub unigenes using agriGO 

50 



 VII 

List of Abbreviations 

 
ABA Abscisic acid 

AGI Arabidopsis Genome Initiative 

AILP1 ALUMINUM INDUCED PROTEIN 1 

AUX1 Auxin  

BSA Bulked-segregant analysis 

CNI1 CARBON/NITROGEN INSENSITIVE 1  

CLV1 CLAVATA 1  

CO CONSTANS  

CYT2 Cytokinin Zeatin-O-glucoside 

CYT4 Cytokinin cis-Zeatin  

DAS Days after sowing 

DGE Digital gene expression  

DH Doubled haploid  

DNA Deoxyribonucleic acid 

DPHW Dry leaf weight  

eQTL Expression quantitative trail loci 

FT FLOWERING LOCUS T  

GER1 GERMIN-LIKE PROTEIN 1  

GRF1 GROWTH REGULATING FACTOR 1 

GRF2 GENERAL REGULATORY FACTOR 2  

HCH Hypocotyl length  

LA Leaf area  

LEA LATE EMBRYOGENESIS ABUNDANT  

LHCB3 LIGHT-HARVESTING CHLOROPHYLL B-BINDING PROTEIN 3  

NGS Next generation sequencing 



 VIII 

NOI NITRATE INDUCED PROTEIN  

MyAP Myrosinase associated protein  

PCR Polymerase chain reaction 

PH06 plant height at the end of flowering, year 2006 

PH07 plant height at the end of flowering, year 2007 

RNA  Ribonucleic acid 

SDW Shoot dry weight  

SFW Shoot fresh weight  

SPHW Shoot leaf weight  

SY06 seed yield in 2006  

SY07 seed yield in 2007  

UBP15 UBIQUITIN-SPECIFIC PROTEASE 15  

VPS2 VACUOLAR PROTEIN SORTING 2.2  

WGCNA Weighted gene co-expression network analysis 

WOSR       Winter Oilseed Rape 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 



 1 

1 Introduction 
 
Oilseed rape (Brassica napus L) is an allotetraploid (2n = 4x = 38) that arose, 

probably within the last 10,000 years, by hybridization between unknown genotypes 

of Brassica rapa (Brassica A genome) and Brassica oleracea (Brassica C genome). 

Brassicas are important not only as crops but also as a resource for studying the 

impacts of polyploidy in plants as a prevalent evolutionary mechanism within 

angiosperms (O’Neill and Bancroft 2000, Rana et al. 2004, Parkin et al. 2005, Lysak 

et al. 2005, Geddy and Brown 2007, Bancroft et al. 2011, Chalhoub et al. 2014). 

Worldwide oilseed rape is the second most produced oilseed species after soybean, 

with extensive production in China, North America (Canada), Europe and Australia 

(Carré and Pouzet 2014). Seedling vigour is an important trait in winter oilseed rape 

(WOSR) due to its influence on seedling and plant establishment before winter and 

the consequent effects on yield and yield stability. Well-developed seedlings lead to 

higher yield stability even under suboptimal growing conditions like reduced nutrient 

input or drought stress (Blum, 1996). Therefore, the early developmental stages of 

Brassica napus plants are of high importance for plant breeders. Up to now, 

however, the genetics of seedling development of B. napus has been poorly 

understood. In addition, multiple homeologous gene copies, chromosomal 

rearrangements and amplification of repetitive DNA within large and highly complex 

crop genomes such as the oilseed rape genome can considerably complicate 

genome analysis and gene discovery. Next generation sequencing (NGS) 

technologies have been recommended as an alternative to understanding the 

complex trait regulation of oilseed rape at the molecular level (Edwards et al. 2013). 

In the last years, digital gene expression (DGE) Illumina sequencing has been used 

as an alternative to conventional microarray expression analysis, particularly for 

accurate quantification of low-abundance transcripts and for potential identification of 

candidate genes (Wei et al. 2013, Philippe et al. 2014). This was the method of 

choice for this study. The main objectives of the present study were: (i) to produce 

DGE transcriptome data after applying a multiplexing system for Ilumina sequencing 

of the Express617xV8 doubled haploid mapping population, (ii) to identify 

differentially expressed genes based on a bulked-segregant analysis (BSA) of DGE 

data, and (iii) to discover candidate genes during seedling development through gene 

co-expression network analysis.  
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2 Literature survey 
 
2.1 Oilseed rape (Brassica napus L.) genome composition  

The important oilseed crop B. napus originated from a spontaneous hybridization 

between B. rapa L. (syn. campestris, genome AA, 2n = 20) and B. oleracea L. 

(genome CC, 2n = 18). The former includes turnip rape (B. rapa spp. oleifera), turnip 

(B. rapa spp. rapifera), Chinese cabbage (B. rapa spp. pekinensis), while the latter 

involves the vegetable crops cauliflower (B. oleracea var. botrytis), cabbage (B. 

oleracea var. capitata), calabrese (B. oleracea var. italica), Brussels sprouts (B. 

oleracea L. gemmifera) and others (U 1935, Snowdon 2007, Kong et al. 2010) (Fig. 

1). These two parental cultivated species possess a DNA content of 529 Mb and 696 

Mb, respectively (Johnston et al. 2005) and diverged 7.3 million years ago (Mya). 

They belong to the mustard family (Brassicaceae), which consists of approximately 

340 genera and over 3,350 species (Johnston et al. 2005).  

The high homology between the A and C genomes was revealed in earlier studies 

(Parkin et al. 1995, Snowdon et al. 1997, Snowdon et al. 2002, Howell et al. 2008), 

whereby both genomes are thought to have derived from a common ancestral 

genome through chromosomal rearrangements (Parkin et al. 2005). Genome 

sequencing projects for both B. rapa and B. oleracea have already been completed. 

The B. rapa line Chiifu-401 (492 Mb) has been sequenced using second-generation 

Illumina sequencing technologies (Wang et al. 2011). The B. napus assembled 

genome size is 850 Mbp and has been recently sequenced (Chalhoub et al. 2014). 

Furthermore, B. rapa and B. oleracea show extensive genome triplication since they 

derived from a hexapolyploid ancestor, which indicates that chromosomal 

rearrangements have occurred (Lysak et al. 2005, Schranz et al. 2006, Chalhoub et 

al. 2014). Evidence of these rearrangements can be readily identified in the genome 

of B. napus, where 21 syntenic blocks, with an average size of about 4.8 Mb in 

Arabidopsis thaliana, have been maintained since the divergence of the Arabidopsis 

and Brassica lineages, which has occurred around 20 Mya (Parkin et al. 2005). 
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Figure 1. The Brassica triangle of species (U 1935, Snowdon 2007) representing the 

A, B and C genomes and their respective amphidiploids that arose from spontaneous 

chromosome doubling via meiotic nondisjunction after interspecific hybridizations in 

regions of overlapping geographical distribution of the respective diploid progenitors. 

 

It has been estimated that 30–70% of modern plant species have evolved through a 

polyploid ancestor (Leitch and Leitch, 2008). Extensive gene-by-gene collinearity 

between Brassica genomes and the genome of A. thaliana have been investigated 

(Yang et al. 2006), and taking advantage of this, Bancroft et al. (2011), aligned their 

Tapidor x Ningyou7 rapeseed double haploid (TNDH) linkage map to the genome of 

Arabidopsis confirming tracts of synteny as well as chromosomal rearrangements by 

mapping Brassica unigenes that provided 7,200 anchor points to the A. thaliana 

genome, based on sequence similarity with the Arabidopsis Genome Initiative (AGI) 

gene models. In oilseed rape, because of its amphidiploid composition of A and C 

genomes, homeologous pairs of genes are co-expressed, and it is expected that 

transcripts will differ in sequence by only approximately 3.5% (I. Bancroft, unpubl.). 

The presence of homeologous loci is expected (Trick et al. 2009, Bancroft et al. 

2011, McKay and Leach 2011). More recently, Chalhoub et al. (2014) confirmed 

recurrent genome duplications in B. napus (Fig. 2).    
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Figure 2. Recurrent genome duplications in B. napus (Chalhoub et al. 2014). 

Genomic alignments between the basal angiosperm Amborella trichopoda, the basal 

eudicot Vitis vinifera, and the model crucifer A. thaliana, as well as B. rapa, B. 

oleracea and B. napus, are shown. A typical ancestral region in Amborella is 

expected to match up to 72 regions in B. napus (69 were detected for this specific 

region). Gray wedges in the background highlight conserved synteny blocks with 

more than 10 gene pairs. 

 
2.2 Next generation sequencing (NGS) technologies  

 
NGS technologies enable fast, inexpensive and comprehensive analysis of complex 

nucleic acid populations (Metzker 2010). They have opened fascinating opportunities 

for the analysis of plants with and without a genome sequence on a genomic scale. 

In the last few years, NGS has emerged as a revolutionary genomic tool, which will 

provide deep insights and change the landscape of genomics (Zhang et al. 2011). 

Nowadays, NGS technology offers to comparative and evolutionary developmental 

biologists a way to obtain in large orders of magnitude more developmental gene 

expression data than ever before, at a fraction of its former cost. For instance, 

several studies have demonstrated the feasibility of NGS for identifying SNPs in 

genomes,with asymmetric gene distribution (42,320
and 48,847, respectively) and 93% of the diploid
gene space in orthologous blocks (fig. S12) (7).
We identified 34,255 and 38,661 orthologous gene
pairs between the An and Cn subgenomes and

their respective progenitor genomes (fig. S13).
Comparison of An-Ar andCn-Co orthologous gene
pairs suggested a divergence 7500 to 12,500
years ago (fig. S14), indicating formation of B.
napus after this date. Synteny with Arabidopsis

(table S19) confirmed the triplicated mesoploid
structure (9–11) of the An and Cn subgenomes,
with the recent allopolyploidy conferring on B.
napus an aggregate 72× genome multiplication
since the origin of angiosperms (Fig. 1) (7).

SCIENCE sciencemag.org 22 AUGUST 2014 • VOL 345 ISSUE 6199 951

Fig. 1. Recurrent genome duplications in B. napus.
Genomic alignments between the basal angiosperm
Amborella trichopoda (24), the basal eudicot Vitis
vinifera (25), and the model crucifer A. thaliana, as
well as B. rapa (9), B. oleracea (10, 11), and B. napus,
are shown. A typical ancestral region in Amborella
is expected to match up to 72 regions in B. napus
(69 were detected for this specific region). Gray
wedges in the background highlight conserved
synteny blocks with more than 10 gene pairs.

Fig. 2. The genome of the B. napus oilseed cul-
tivar ‘Darmor-bzh’.The genomecomprises 9 chro-
mosomes belonging to the Cn subgenome and 10
to the An subgenome, scaled on the basis of their
assembled lengths.Tracks displayed are (A) gene
density (nonoverlapping,window size = 100 kb for
all tracks). Positions showing loss of one or more
consecutive genes are displayed (triangles) along
with homeologous exchanges, detected asmissing
genomic segments that have been replaced by du-
plicates of corresponding homeologous segments
(red rectangles). (B and C) Transcription states
estimated by RNA-seq in leaves (B) and roots (C)
(in nonoverlapping 100-kbwindows). (D) DNA trans-
poson density. (E) Retrotransposon density. (F) CpG
methylation in leaves (green) and roots (brown);
both curves are overlapping. (G) Centromeric repeats
(densities exaggerated for visual clarity). Homeol-
ogous relationships between An and Cn chromo-
somes are displayed with connecting lines colored
according to the Cn chromosomes.

RESEARCH | REPORTS
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population studies and gene sequences for use as phylogenetic markers (Ewen-

Campen et al. 2011). NGS technologies are a cost-effective high throughput 

approach for sequencing of a very large number of expressed genes even at very 

low expression levels (Bentley 2006). Several NGS methods allow larger-scale DNA 

sequencing and to date the number of large short-read sequences from NGS is 

increasing at exponential rates (Zhang et al. 2011). Currently, five NGS platforms are 

commercially available, including the Roche GS-FLX 454 Genome Sequencer, the 

Illumina/Solexa Genome Analyzer (this platform was chosen for the present study), 

the ABI SOLiD analyzer, Ion Torrent Semiconductor sequencing and the Helicos 

HeliScope. These NGS instruments generate different base read lengths, error rates, 

and error profiles relative to Sanger sequencing data and to each other. NGS 

technologies have increased the speed and throughput capacities of DNA 

sequencing and, as a result, dramatically reduced overall sequencing costs (Mardis 

2008, Shendure and Ji 2008).  

 

NGS technologies include a number of methods that are grouped broadly as 

template preparation, sequencing, imaging, data analysis, and the unique 

combination of specific protocols distinguishes one technology from another. This 

determines the type of data produced from each platform (Metzker 2010). My focus 

in this study was to use the NGS from Solexa/Illumina platform and the protocol I 

developed was mainly derived from a method named serial analysis of gene 

expression (SAGE). Within the last decade, there has been a rapid improvement of 

NGS technologies such as the Solexa/Illumina (Bentley 2006), which allow us 

quantification at large scale of mRNA transcripts levels to measure gene expression 

at several developmental stages in many plant species (Bräutigam and Gowik 2010). 

For instance, since the genomes of Brassica species are relatively large for analysis 

by Sanger/capillary electrophoresis sequencing, the B. rapa line Chiifu-401 (492 Mb) 

has been completely sequenced using next-generation Illumina sequencing 

technologies (Wang et al. 2011). In addition, a short read-base Solexa technology 

has already been used for discovery of single nucleotide polymorphisms (SNPs) in B. 

napus (Trick et al. 2009). Recently, Bancroft et al (2011) conducted a leaf 

transcriptome Illumina sequencing study of a widely used oilseed rape mapping 

population, Tapidor x Ningyou7 double haploid (TNDH), to dissect polyploidy.  
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2.2.1   Illumina Genome Analyzer IIx   

 

In 2006, Solexa released the Genome Analyzer IIx (GAIIx), and in 2007 the company 

was purchased by Illumina (Liu et al. 2012). The Illumina system utilizes a 

sequencing-by-synthesis approach in which all four nucleotides are added 

simultaneously to the flow cell channels, along with DNA polymerase, for 

incorporation into the oligo-primed cluster fragments (Fig. 3). Specifically, the 

nucleotides carry a base-unique fluorescent label and the 3′-OH group is chemically 

blocked so that each incorporation is a unique event. An imaging step follows each 

base incorporation step, through which each flow cell lane is imaged into tile 

segments by the instrument optics. After each imaging step, the 3′ blocking group is 

chemically removed to prepare each strand for the next incorporation by DNA 

polymerase. This series of steps continues for a specific number of cycles, as 

determined by user defined instrument settings, which permits discrete read lengths 

of 25–35 bases. A base-calling algorithm assigns sequences and associates quality 

values to each read and a quality checking pipeline evaluates the Illumina data from 

each run, removing poor DNA sequencing results (Bentley 2006, Mardis 2008).  

 
The single molecule amplification step for the GAIIx starts with an Illumina-specific 

adapter library, which takes place on the oligo-derivatized surface of a flow cell, and 

is performed by an automated device called a cluster station. The flow cell is an 8-

channel sealed glass microfabricated device that allows bridge amplification of 

fragments on its surface, and uses DNA polymerase to produce multiple DNA 

clusters, that represent a single molecule that initiated the cluster amplification. A 

separate library can be added to each of the eight channels, or the same library can 

be used in all eight, or combinations thereof. Each cluster contains approximately 

one million copies of the original fragment, which is sufficient for reporting 

incorporated bases at the required signal intensity for detection during sequencing. 

At first, GAIIx output was 1G/run. Through improvements in polymerase, buffer, flow 

cell, and software, in 2009 the output of GAIIx increased to 20 G/run, 30G/run, and 

50G/run, and the latest GAIIx series can attain 85 G/run. In early 2010, Illumina 

launched HiSeq 2000, which adopts the same sequencing strategy as GAIIx. Its 

output initially was 200 G per run, and improved to 600 G per run currently, which 

could be completed in 8 days (Liu et al. 2012). MiSeq, a bench top sequencer 

launched in 2011, which shared most technologies with HiSeq, is especially 
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convenient for amplicon and bacterial sample sequencing. In comparison with GAIIx, 

nowadays 96 dual-index libraries, including control samples, are denatured, pooled in 

equal volume, and sequenced by MiSeq (Katsouka et al 2014). Although, GAIIx is 

outdated, there are still studies using this platform to perform transcriptome analysis, 

as seen in the case of an biofuel crop, Camelina sativa (Mudalkar et al. 2014) or 

either the identification of microRNAs (Melnikova et al. 2014). Illumina GAIIx was 

used in this study for generation of multiplexed digital gene expression (DGE) 

analysis in large plant populations as a cost-effective method for large-scale 

quantitative transcriptome analysis (Obermeier et al. 2015). We have described how 

adaptation of DGE with barcode indexing in large segregating plant populations of 

over 100 genotypes can be applied for successful gene expression network analysis.  

 

2.3 Digital gene expression (DGE)  

 
Combination of NGS and serial analysis of gene expression (SAGE) led into a new 

method called DGE. This approach was chosen for this investigation (Obermeier et 

al. 2015, Zhang et al. 2011). Moreover, in the past a rapid progress in the DGE 

method for sequencing has been achieved, and the data produced have started to 

shed light on the understanding of gene expression (Xue et al. 2010, Wang et al. 

2010, Eveland et al. 2010, Veitch et al. 2011, Nishiyama et al. 2012). DGE analysis 

gave rise to a very suitable method for detecting differential expression in several 

organisms and to date many transcriptome studies have been investigated using this 

technique (Chen et al. 2012, Wei et al. 2013, Philippe et al. 2014). DGE analysis is a 

cost-effective method for large-scale quantitative transcriptome analysis using NGS. 

Initially, microarray-based expression platforms were used for quantitative 

transcriptome profiling. This type of analyses was mainly performed in model 

organisms, whereby the high expense of microarray gene expression experiments 

generally limited studies to a few individuals. Recently, cost-effective and high-

throughput transcriptome quantification techniques based on NGS approach has 

exceeded microarrays as the method of choice for global transcriptome analysis. 
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Figure 3. The Illumina sequencing-by-synthesis approach (Mardis 2008). (a) Double 

stranded cDNA libraries are produced and ligation of specific adapters occurred. (b) 

Cluster strands created by bridge amplification are primed and all four fluorescently 

labeled, 3′-OH blocked nucleotides are added to the flow cell with DNA polymerase. 
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DGE is a high-throughput sequencing, which has many advantages compared to 

conventional microarrays. It generates up to 100 million reads per run under the 

GAIIx and up to 1.6 billion 100-base paired-end reads on the HiSeq2000 systems. By 

contrast, the MiSeq is for single day experiments, and generates up to 5 million 150-

base paired-end reads. DGE method involves oligo-dT surface-attached beads used 

for synthesis of cDNA libraries. This results in the enrichment of the 3' end of 

polyadenylated mRNAs (Fig. 4). These are then used for massive-parallel 

sequencing of a short tag from the 3’ end of every captured mRNA molecule. The 

technique derives from the SAGE protocol, whereby 13-15 bp of concatenated and 

cloned tags are sequenced by Sanger sequencing (Velculescu et al. 1995). The 

technique was later refined for sequencing of 21 bp fragments in the LongSAGE 

protocol (Saha et al. 2002) and 26-27 bp in the SuperSAGE protocol (Matsumura et 

al. 2003). The LongSAGE and SuperSAGE procedures were also adapted to NGS 

for higher throughput. Library production and Illumina short-read sequencing services 

are offered by a number of commercial companies for LongSAGE and SuperSAGE. 

Services are also offered by commercial companies with modified protocols to 

sequence barcoded 100 bp 3’-fragment cDNA (Torres et al. 2008) or 50-500 bp 

assembled 3’-fragment cDNA (Kahl et al. 2012) using Illumina short-read technology. 

However, these services were expensive when multiplexing of samples was desired. 

In cases where one is solely interested in quantitative data, thus in measuring 

transcript levels, it is possible to combine NGS with SAGE (Bräutigam and Gowik 

2010). SAGE is characterised by the fact that each transcript within an RNA 

population is represented by a certain tag, a DNA fragment of typically 20–26 bp. In 

former times, these tags were ligated to longer fragments and sequenced using 

Sanger sequencing (Velculescu et al. 1995). Nowadays, with the availability of short 

read NGS sequencers like the Illumina GAIIx and Applied Biosystems SOLiD system, 

these tags are an ideal template for direct sequencing (Meyers et al. 2004).  

In more detail, to generate the DGE tags, the mRNA is converted to double stranded 

cDNA, which is bound to a matrix by the polyA tails. The cDNA is restricted using an 

enzyme with a four-base recognition site like NlaIII or DpnII. After removal of the 5’ 

moiety of the cDNAs, an adaptor containing the recognition motif of a type II 

restriction endonuclease like MmeI or EcoP15I is ligated. These enzymes cut 21, in 

the case of MmeI, or 26 nucleotides, in the case of EcoP15I, downstream of the 

recognition site (Matsumura et al. 2008). Following the restriction with such an 
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enzyme, the DNA fragments are recovered and, after addition of a second adapter, 

they can be directly used for short read NGS. The abundance of a given DGE tag, 

i.e. how often this tag was sequenced, within the collection of tags from a certain 

mRNA population, determines the expression level of the corresponding gene 

(Matsumura et al. 2003, Meyers et al. 2004). To assign the short sequence tags to 

mRNAs and genes, the complete annotated genome sequence, or at least the 

complete transcriptome sequence, of the species must be known (Bräutigam and 

Gowik 2010). Even the short 21-nt tags generated by an MmeI digest from cDNAs 

match mostly once to complex eukaryotic genomes (Simon et al. 2009), allowing the 

unequivocal relation of tags and genes. However, it is important to note that this is 

not true for B. napus, because of its complex paleopolyploidy structure (Parkin et al. 

2005). Nevertheless, if deep coverage transcript profiling is the main focus, then 

DGE is a cost-effective alternative compared to RNA-seq. 

  

2.4 Bulked-segregant analysis (BSA)-DGE approach  

 
Bulked-segregant analysis (BSA) is a method established to rapidly identify 

molecular markers in specific regions of a genome (Milchelmore et al. 1991, Perez-

Encisco et al. 1998). The underlying principle applied here is the bulking of 

individuals from a segregating population into pools each having an alternative 

phenotype or genotype at particular locus, or extreme phenotypes for a quantitative 

trait are selected to form contrasting bulks with the aim of finding differentially 

expressed genes (Fernández-del-Carmen et al. 2007, Kloosterman et al. 2010, Chen 

et al. 2011). Transcript profiling analyses has the potential to identify candidate 

genes associated with complex traits and provide a direct relationship with the 

involved underlying molecular mechanism (Fernández-del-Carmen et al. 2007). 

However, it should be taken into account that the number of differentially expressed 

genes identified between contrasting pools would depend on the pool size, 

population structure and the trait targeted. Global patterns of gene expression can be 

used to select for candidate genes based on the hypothesis that a key regulatory 

gene will be up-regulated or down-regulated depending on the specific trait of 

interest.  
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Figure 4. Protocol description of the digital gene expression (DGE) method (modified 

after Veicht et al. 2010). (1) Polyadenylated RNA is isolated on beads with oligo(dT). 

(2) First strand cDNA is synthesized. (3) Second strand synthesis. (4) cDNA is 

digested with DpnII. (5) 3’ fragments are isolated. (6) An adapter containing a MmeI 

site is ligated to the digested cDNA. As adapter attachment occurs while the cDNA is 

still attached to beads only one adapter can be ligated to a single cDNA molecule. (7) 

The ligated product is then digested with Mme I which recognizes within the linker 

sequences and cuts 21 bp further downstream, generating a single tag per transcript, 

which is released from the beads. (8) The fragments are isolated. (9) Adapters are 

ligated to the fragments. (10) The ligated product is then sequenced using Illumina 

sequencing technology, generating a 21bp sequence for each transcript. (11) Tags 

are quantified (12) Tag sequences are aligned to the transcriptome EST database. 
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The identification of the responsible genes, their allelic variation and modes of action 

underlying phenotypic complex trait variation has proved to be difficult due to a lack 

of understanding of the pathways involved or the complexity of the trait itself. For 

instance, an approach for gene mapping via bulked segregant RNA-seq (BSR-Seq) 

has been reported for finding global patterns of gene expression and candidate 

genes based on the fact that the causal gene will often be down or up-regulated in 

the mutant bulk as compared to the non-mutant bulk (Liu et al. 2012). Livaja et al 

(2013) reported the successful combination of BSA and NGS for SNP discovery in 

sunflower. In addition, identification and characterization of Mini1, a gene regulating 

rice shoot development was realized through application of BSA (Fang et al. 2014). 

Recently, Ramirez-Gonzalez et al (2014) also reported RNA-Seq bulked segregant 

analysis for enabling the identification of high-resolution genetic markers associated 

with a major disease resistance gene for wheat yellow rust (Yr15) for breeding in 

wheat.  

 

2.5 Weighted gene co-expression network analysis (WGCNA)  

Co-expression network analysis is a well-accepted statistical methodology for the 

study of large-scale gene expression datasets (Horvath et al. 2006, Oldham et al. 

2006). As a network strategy that has been long applied, WGCNA is an easily 

approach for network modelling based on simple correlation procedure for clustering 

genes by their expression patterns. WGCNA helps us to identify highly connected 

genes (Zhang and Horvath 2005, Langfelder and Horvath 2008), and to finally 

associate these specific regulatory genes with the phenotypic complex trait 

(Keurentjes et al. 2007, DiLeo et al. 2011, Basnet et al. 2013, Körber et al. 2014). 

Gene co-expression network are increasingly used to explore the system-level 

functionality of genes (Zhang and Horvath 2005). Therefore, network based methods 

have been found useful in gene co-expression networks (Stuart et al. 2003, Carter et 

al. 2004). WGCNA extends the pairwise co-expression analysis to produce a 

measure of gene connectivity followed by the clustering of densely interconnected 

genes into modules. The expression of each module is characterised by its 

eigengene value, thereby reducing the gene network into an eigengene network 

(Langfelder 2007). This method has been shown to produce a biologically meaningful 

network. The modules within the network maintain a consistent correlated expression 
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relationship independent from phenotype or environmental condition and have been 

found to be associated with specific biological processes or pathways. The modules, 

characterised by their eigengene value, can be correlated with trait measurements.   

 

Module-centric analysis can be used to understand the biological processes 

associated with the trait. Genes that are found to be “central” within the module 

(intramodular hubs) are candidates for key regulators associated with the trait. 

WCGNA has been used successfully to link molecular targets to oncogenic signals 

(Hovath 2006), complex traits (Fuller 2007) and even network divergence between 

human and chimpanzee neural patterns (Oldham 2006). In gene co-expression 

networks, each gene corresponds to a node. Each co-expression network 

corresponds to an adjacency matrix. The adjacency matrix encodes the connection 

strength between each pair of nodes (Zhang and Horvath 2005). To start the 

WGCNA, one needs to define a measure of similarity between the gene expression 

profiles. This similarity measures the level of concordance between gene expression 

profiles across the experiments.  

 

Once the modules have been defined, one can specify additional network concepts, 

e.g. the intramodular connectivity and consequently the modules and their highly 

connected (hub) genes, which are often related to traits of interest. Basically, each 

pair of genes i and j denotes a similarity measure from Sij. To transform the similarity 

matrix into an adjancency matrix, one needs to define an adjacency function. This 

choice determines whether the resulting network will be weighted (soft-treshholding) 

or unweighted (hard tresholding). In many real networks, the probability that a node 

is connected with k other node (the degree distribution p(k) of a network) decays as a 

power law p(k)  k-, which defines the property of scale-free networks (Barabasi and 

Albert 1999). Scale-free networks are extremly heterogeneous, their topology being 

dominated by a few highly connected nodes (hubs), which link the rest of the less 

connected nodes to the system (Zhang and Horvath 2005). For instance, analysis of 

the yeast protein-protein interaction network revealed that highly connected nodes 

are more likely to be essential for survival (Carter et al. 2004). The mergence of 

power-law distribution (scale free topology) is intimately linked to the growth of the 

network in which new nodes are preferentially attached to already established nodes, 

a property that is also thought to characterize the evolution of biological systems 
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(Barabasi and Albert 1999). Evidence shows that the scale-free topology of protein 

interaction networks originates from gene duplication (Barabasi and Oltvai 2004). 

Since the coordinated co-expression of genes encodes interacting proteins, studying 

co-expression patterns can provide insight into the underlying cellular processes 

(Eisen et al. 1998). It is a standard to use the (Pearson) correlation coefficient as a 

co-expression measure, e.g., the absolute value of Pearson correlation is often used 

in a gene expression cluster analysis (Zhang and Horvath 2005). However, 

topological overlap matrix (TOM) weighted co-expressions are used to construct 

networks on the dataset to define transcriptional modules (Zhang and Horvath 2005, 

Langfelder and Horvath 2008). The actual connectivity of features (topology) of the 

network is indicated by their position in a dendrogram and a correlation heat map 

where features are clustered into co-expressed modules, enabling appreciation of the 

whole dataset. Generally, module assignment is performed to minimize the number 

of features contained in each module, and therefore the total number of modules 

identified. Briefly, each module is obtained through a correlation heat map and is 

noted by a unique colour, thus summarizing a network with a limited number of 

modules which reduce the complexity of a dataset from hundreds of expressed 

genes or metabolites to a small module, which then can be analyzed with more 

statistical power.  
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3 Materials and Methods 
 

3.1 Plant material 
 
A doubled haploid (DH) population of 250 lines from the cross Express617 x V8 was 

used for selection of 96 DH lines, plus parents and F1. Express617 was derived by 

selfing of the elite double-zero seed quality (zero eurcic acid, low glucosinolate 

content) WOSR variety Express (Norddeutsche Pflanzenzucht Hans-Georg Lembke 

KG, Hohenlieth, Germany). The parental semisynthetic line V8 was derived from a 

resynthezised B. napus produced via embryo rescue from an interspecific cross 

between the Indian turnip rape Yellow Sarson variety YSPb-24 (B. rapa ssp. 

triloculoris) and the cauliflower (B. olerarcea L. convar. Botrytis) accession Super 

Regama (Lühs and Friedt 1995a) backcrossed to a high erucic acid breeding line 

(Lühs and Friedt 1995b). Extensive phenotype and QTL data were available for 

seedling development, heterosis, seed yield and various yield related traits in the 

ExV8-DH population. The ExV8-DH population, along with the parental genotypes, 

has been tested for different seedling traits in greenhouse trials, then for yield traits in 

large-scale field trials at four locations for 2 years. The locations used were 

Rauischholzhausen and Grund-Schwalheim in Middle Hesse, along with Reinshof 

and Einbeck in Lower Saxony (Basunanda et al. 2007, Basunanda et al. 2010).  

In more detail, besides the parental lines and F1, 48 ExV8-DH lines with the highest 

and 48 with the lowest shoot fresh weight measured at 28 days after sowing, were 

selected for parallel transcriptome and hormone analysis. The total 96 ExV8-DH 

lines, Express 617, V8 and their F1 were grown under controlled conditions in a 

climate chamber with 16h/8h, 20°C/15°C, relative humidity (RH) 55% day/night, 

respectively. Seeds were sown in Jacobsen germination vessels and seedlings were 

harvested at two time points, 8 and 12 days after sowing (DAS). Two experimental 

replications were performed under identical growth climate chamber conditions. 

Harvesting of 100 seedlings for RNA extraction was realised within one hour to 

prevent alteration of daytime circadian clock gene expression during transcriptome 

analysis. All samples were immediately shock-frozen into liquid nitrogen and stored 

at -80°C until RNA extraction.  

In addition, harvesting of 15 seedlings (~ 50 mg) per genotype was performed very 

rapidly and frozen immediately in liquid nitrogen to avoid metabolite changes caused 
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by enzymatic reactions connected to the handling and wounding of the plants. Both 

harvesting procedures were done within one hour and simultaneously for both 

replicates to avoid circadian clock effects and strong fluctuations in the metabolite 

profile. After harvesting and shock-frozen, seedlings samples were stored at -80°C 

until freeze-drying lyophilization process. A total of 198 rapeseed seedlings samples 

(~50 mg each), were freeze-dry lyophilized simultaneously on the CHRIST LOC–1m 

Alpha 1–4 freeze-dryer at -55°C and pressure 165 Pa in a 48–72 h period to be 

utilized for hormone metabolite analysis. 

 

3.2 Isolation of total RNA  
 
200 mg of plant material stored at -80°C was ground to a fine powder in a pre-cooled 

mortar with pistil, using liquid nitrogen. The sample was transfer into a precooled 2-

ml microcentrifuge tube, using a precooled spatula. To avoid thawing of the plant 

material tubes to -20°C were used until a manageable set of samples is ground. Total 

RNA was isolated using cold (4°C) TRIzol (Life Technologies, Carlsbad, California, 

USA) reagent following manufacter instructions. Total RNA concentration and a 

quality check were estimated by using a Nanodrop spectrophometer.  

 

3.3 DpnII-DGE libraries construction 

 
Dynabeads OligodT(25) beads (Life Technologies, Carlsbad, California, USA) were 

resuspended following manufacturer instructions and DGE-DpnII protocol was 

realized following Obermeier et al (2015). Complementarily barcoded 

oligonucleotides, HPLC-purified and 5’-modified, were mixed in equal concentrations 

(10 µM of ‘a’ and ‘b’ oligonucleotide for each barcode) to produce a GEX1 barcode 

adapter (Eurofins MWG, Operon, Ebersberg, Germany). The original GEX1 Illumina 

adapters were modified by introducing 4 bp barcodes after the DpnII restriction and a 

6 bp MmeI recognition site. The following 4 bp bases were used as barcodes for 

multiplexing of 8 samples for subsequent pooling: AGCT, GTAC, CATG, TCGA, 

ATGC, GACT, CGTA, and TCAG. GEX1 adapter was ligated to the 5’ end of the 

DpnII-digested bead-bound cDNA fragments. Barcodes in the oligos used for GEX 

adapter 1 production are underlined in Table 1.  
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The names of the oligos include an ‘a’ or ‘b’ in the name for the oligo of the upper 

and lower DNA strand. The oligos and adapters contained the barcode within the 

name. In addition, two complementary oligonucleotides for GEX2 adapter, GEX2a: 

5'-P-TCGTATGCCGTCTTCTGCTTG-3') and GEX2b: 5'-

CAAGCAGAAGACGGCATACGANN-3' (HPLC purified by Eurofins MWG, Operon, 

Ebersberg, Germany) were used for the second ligation step of the DGE-DpnII 

protocol.    

 

Table 1. GEX-1 adapter sequences for DGE-DpnII- multiplexed protocol (barcode is 

underlined).  

 

 

 

GEX-1 adapter name GEX-1 adapter sequence 
GEX1a_AGCT 5'-ACAGGTTCAGAGTTCTACAGAGCTTCCGAC-3' 

 
GEX1b_AGCT 5'-P-GATCGTCGGAAGCTCTGTAGAACTCTGAAC-3 

 
GEX1a_GTAC 5'-ACAGGTTCAGAGTTCTACAGGTACTCCGAC-3 

 
GEX1b_GTAC 5'-P-GATCGTCGGAGTACCTGTAGAACTCTGAAC-3' 

 
GEX1a_CATG 5'-ACAGGTTCAGAGTTCTACAGCATGTCCGAC-3' 

 
GEX1b_CATG 5'-P-GATCGTCGGACATGCTGTAGAACTCTGAAC-3' 

 
GEX1a_TCGA 5'-ACAGGTTCAGAGTTCTACAGTCGATCCGAC-3' 

 
GEX1b_TCGA 5'-P-GATCGTCGGATCGACTGTAGAACTCTGAAC-3' 

 
GEX1a_ATGC 5'-ACAGGTTCAGAGTTCTACAGATGCTCCGAC-3' 

 
GEX1b_ATGC 5'-P-GATCGTCGGAATGCCTGTAGAACTCTGAAC-3' 

 
GEX1a_GACT 5'-ACAGGTTCAGAGTTCTACAGGACTTCCGAC-3' 

 
GEX1b_GACT 5'-P-GATCGTCGGAGACTCTGTAGAACTCTGAAC-3' 

 
GEX1a_CGTA 5'-ACAGGTTCAGAGTTCTACAGCGTATCCGAC-3' 

 
GEX1b_CGTA 5'-P-GATCGTCGGACGTACTGTAGAACTCTGAAC-3' 

 
GEX1a_TCAG 5'-ACAGGTTCAGAGTTCTACAGTCAGTCCGAC-3' 

 
GEX1b_TCAG 5'-P-GATCGTCGGATCAGCTGTAGAACTCTGAAC-3' 
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3.4 PCR enrichment of DpnII-DGE adapter-ligated cDNA 

 

A PCR Master Mix was prepared and distributed in wells of 96 well PCR plate. The 

total volume per reaction was 25 µl including 16 µl water, 5 µl Phusion HF buffer 

(5X), 0.25 µl GEX1_PCR_1 primer (25 µM), 0.25 µl GEX_PCR_2 primer (25 µM), 

0.75 µl dNTPs (10 mM), 0.25 µl Phusion Hot Start DNA Polymerase (2 U/µl) 

FINNZYMES (New England Biolabs Inc., Ipswich, MA, USA) and 2.5 µl of GEX2 

Adapter 2-ligated cDNA to each well. Amplification in thermal cycler using the 

following program: 30 seconds at 98°C, 13 cycles of: 10 seconds at 98°C, 30 

seconds at 60°C, 15 seconds at 72°C, 10 min at 72°C, hold at 4°C was performed. 

Expected sizes were 93 bp for the targeted GEX1-tag-GEX2 fragment and smaller 

sizes for artifacts including 76 bp for GEX1-GEX2 adapter ligation, 30 bp for GEX1 

adapater, 23 bp for GEX2 adapter fragment plus PCR primer dimers. The 

GEX_PCR_1 (5'-CAAGCAGAAGACGGCATACGA-3') and GEX_PCR_2 (5'-

AATGATACGGCGACCACCGACAGGTTCAGAGTTCTACAG-3') primer sequences 

were used for amplification. Identification and purification of the 93 bp fragment 

compared to the other non-targeted fragments were realized by a 12% 

polyacrylamide gel electrophoresis (PAGE).   

 

3.5  Validation of libraries 
 
Library quality was checked on an Agilent Technologies 2100 Bioanalyzer using 

chips from the Agilent DNA 1000 kit (Agilent Technologies, Inc., Santa Clara, CA, 

USA). The procedure involved loading one µl of the resuspended DNA following the 

manufacturer’s protocol. The size, purity, and concentration of the sample were 

analysed. From the measured concentrations the approximate total yield in ng and 

the total amount in pmol were calculated. For calculation of the average molar mass 

for one base pair (650 g/mol) x 93 bp = 60,450 g/mol was used. A minimum of 2 µl of 

the sample was diluted up to 10 nM using the Qiagen elution buffer (from QIAGEN 

PCR Purification Kit) supplemented with 0.1% Tween 20. Additional validation of the 

10 nM diluted DNA libraries were realised by running a High Sensitivity DNA Assay 

Chip (Agilent Technologies, Inc., Santa Clara, CA, USA) on an Agilent Technologies 

2100 Bioanalyzer, to determine the exact final concentration of the diluted sample. 
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3.6  Illumina sequencing and data analysis 
 
For sequencing of the barcoded libraries in 8-plex mixes in the Illumina Genome 

Analyzer IIx (Cluster Station/cBO), the Illumina standard protocol and chemistry have 

been applied by the ServiceXS Company (Leiden, The Netherlands). The protocol 

can also be adapted for sequencing on the HiSeq2000 and MiSeq platform. The 

required amounts and concentrations of the 8-plex samples were 20 µl of 10 nM 8-

plex sample (0.64 ng/µl) in Qiagen elution buffer (Tris-HCl, 10 mM, pH 8.5) 

supplemented with 0.1 % Tween 20.  

Each single library was adjusted to an equal molarity of 10 nM based on Agilent DNA 

1000 kit measurements on the Agilent 2100 Bioanalyzer. Concentrations were 

rechecked and readjusted by using the High Sensitivity DNA Assay (Agilent 

Technologies, Inc., Santa Clara, CA, USA). Eight libraries were pooled with different 

barcodes by taking 2.5 µl from each library. A total of 6.5 pmol of DNA has been 

used for sequencing. In addition, a 30 µM solution of a custom sequencing primer 

GEX_seq (HPLC purified GEX_seq: 5'-GACAGGTTCAGAGTTCTACAG-3') was 

provided. Primary and part of secondary data analysis including image analysis, base 

calling and quality check were performed with the standard software, Illumina 

Genome Analyzer, the data analysis pipeline Real Time Analysis v1.8.70.0 and 

CASAVA v1.7.0.  

 
3.7 Bulked-segregant analysis-DGE 

The first step of BSA-DGE analysis strategy was to remove the parental lines and the 

heterozygotes lines from the data set. The second step was collapsing the A and C 

unigenes IDs (189k) by calculating the mean of both measurements. The expression 

values of homoelogue unigenes were collapsed, calculating the mean of the 

expression values of the two measurements. Collapsing means average of all 

observations to make a single record of the expression values within the DGE-data 

set. To identify differentially expressed genes for each trait, two groups were 

selected. Each group with 20 individuals, which have the highest and the lowest 

phenotypic value measurements for the specific trait. The normalised DGE data were 

log2- transformed, and for each Unigene the ratio of the mean expression values of 

the two groups was calculated.  
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Additionally, a student’s t-test was calculated to assign the significance for the 

differences. Differentially expressed genes were selected based on a fold-change of 

2 and a p-value < 0.05. To identify genes differentially expressed upon BSA for the 

each of the two bulks, differentially expressed tags were analyzed by comparison of 

the 8 and 12 DAS expression data. Normalised DGE values were first transformed to 

log values and scored with a p-value (p<0,05) threshold to assess the significance of 

differentially expressed genes. DGE-tags previously mapped to the set of 155k 

Brassica unigenes for A and C genomes (Trick et al. 2009) was used for annotation 

to the Arabidopsis thaliana genome, based on sequence similarity with the 

Arabidopsis Genome Initiative (AGI) gene model.  

3.8 Weighted gene co-expression network analysis (WGCNA) 

Weighted gene co-expression network analysis was performed using the WGCNA R 

package as described by Langfelder and Horvath (2008). The R scripts and tutorials 

are available on the following website 

http://www.genetics.ucla.edu/labs/horvath/CoexpressionNetwork/Rpackages/WGCN

A/Tutorials/index.html. First, the absolute value of the Pearson correlation coefficient 

was computed for all pairs of genes in the data set. A rising of these correlations to a 

soft-thresholding power (β = 5) to approximate scale free topology within the network 

was done. From these scaled correlations, calculation of the topological overlap (TO) 

between all genes, which summarizes the degree of connections between pairs of 

genes, was realized. Genes were then clustered using dissimilarity based on 

topological overlap in both datasets using the WGCNA function blockwise 

Consensus Modules. If not stated differently, all analyses were performed with the 

statistical software R (R Development Core Team, 2011). 
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4 Results 
 

4.1 Multiplexing of ExV8-DH population with DGE-DpnII Ilumina 

sequencing  

In this study, it was of great importance to apply this new multiplexing DGE method in 

order to perform deep transcriptome analysis and explore the large complexity 

transcriptome of the winter oilseed rape (Brassica napus L.) doubled haploid (DH) 

population Express 617xV8 (ExV8-DH) at seedling development stage. The 

multiplexed DGE protocol described here is a cost-effective and massive parallel for 

production of DGE libraries with 21 bp tag length (Obermeier et al. 2015) for plant 

mapping populations with 96 genotypes, applying 8-plex barcoding for sequencing in 

12 flow cells on Illumina systems GAIIx. Although, the GAIIx is becoming an old 

technology compared to HiSeq2000 platform, I was still able to use it for multiplexing 

of lines, reducing costs and time.  

The number of unique DGE-tag sequences detected represented the quantitative 

expression level of the corresponding transcript for each genotype. This DGE-

multiplexing protocol involved costs for synthesis of 16 oligonucleotides (29/30 bp in 

length) by a commercial service provider for production of 8 barcoded GEX1 

adapters. For higher-level multiplexing, e.g. for parallel sequencing of 64 samples in 

one flow cell, costs for synthesis of oligonucleotides would increase when more 

variants of adapter P1 are used (costs for 128 oligonucleotides).  

This would exceed sequencing costs per flow cell and is only cost-effective for usage 

of these adapters in a larger number of DGE projects. Barcoded adapters GEX1 

were used in different combinations to reduce oligonucleotide synthesis costs (16 

instead of 128 oligonucleotides required to produce 8 barcoded GEX1 adapters for 

parallel sequencing of 64 samples in one flow cell). In addition, to reduce costs 

during synthesis of cDNA, E.coli DNA ligase that helps to produce longer cDNAs, 

which is included in the Invitrogen LongSAGE and Morrissy (2010) protocols for 2nd 

strand synthesis, was removed due to high costs when applied to multiple samples. 

The E. coli DNA Polymerase amount was reduced from originally 200 to 20 units per 

reaction to reduce costs in multiplexing. Also, the E. coli RNase H amount was 

reduced from originally 10 to 0.8 unit per reaction to reduce costs in multiplexing 
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according to the concentrations recommended by the manufacturer. With current 

sequencing outputs the technique generated more than 25 million tags per flow cell, 

around of 3 million tags per individual, giving highly quantitative data even for low-

abundance transcripts. This multiplexed DGE protocol applied barcoding by using 4 x 

8 oligonucleotides for adapter GEX1 production, enables parallel sequencing of 8 

barcoded samples in one GAIIx flow cell. The protocol can easily be adapted to the 

increasing higher sequence read output of 2nd generation Illumina new sequencing 

machines (i.e. MiSeq, HiSeq), based on improvement of the hardware or the 

sequencing chemistry. The number of targeted reads per individual should be based 

on the transcriptome size and complexity of the studied organism. Finally, in this 

work, an adaptation of DGE method with barcode indexing in large segregating plant 

populations of nearly 100 genotypes was successful applied to generate enough 

DGE quantitative data to be used in further weighted gene correlation network 

analysis (WGCNA) and bulked segregant analysis (BSA)-DGE approach.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 5. Amplification products from four multiplexed DGE-DpnII libraries.  1-4 

samples were loaded on a 12 % polyacrylamide gel. Staining was done using SYBR 

Green I Nucleic Acid Gel Stain (Lonza). M = 25 bp size marker. Correctly sized 

fragments containing a tag should have 93 bp and can be excised from the gel 

before sequencing.  



 23 

 

 
 
 
 
Figure 6. DGE-tag (10 nM) diluted DNA running under the High Sensitivity DNA 

Assay Chip (Agilent Technologies 2100 Bioanalyzer). 

 
 

4.2 DGE data analysis, mapping to Brassica unigenes and 

normalisation 

 
DGE-data consisting of millions of sequence reads was processed to remove adapter 

sequences from the reads using the Illumina data analysis pipeline v1.7. by the 

ServiceXS company (Leiden, The Netherlands) using custom Perl scripts. Since 

DGE libraries were multiplexed using eight different nucleotides barcode 

combinations, removing of the barcode IDs from the sequences and placing them 

into the ID name of the samples was done. The read length was then reduced to 32 

bp. These raw reads were filtered by quality, keeping only sequences having a 

minimum Phred score of 15 with no more than one ‘N’ in the read. Basically, quality-

filtered data was split based on the adapter sequences at the 5’ and 3’ end of the 

reads.  

 

Reads having ‘TCCGACGATC’ (6-base tagging enzyme MmeI plus 4-base DpnII 

recognition site) sequence were separated from those not having this sequence. 

Then these selected reads were trimmed (10 bases) at their 5' end in order to 
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remove adapter 1. After trimming, the length of the reads resulted in 22 bp.  After 

this, reads were separated based on the ‘TCGTAT’ sequence in their 3’ end. Then 

this same reads were trimmed (6 bases) at their 3' end to remove adapter 2. After 

trimming the length of the reads is finally 16 bp (without the 6 bp restriction site). 

These were removed to make the reads specific as a part of a sequence.  

 
All 16 bp quality filtered tags were mapped to the Brassica unigenes reference 

‘cured’ to the diploid genomes (Higgins et al. 2012). Unigenes corresponded to all 

available Brassica species ESTs (expressed sequence tags) downloaded from the 

GenBank. A set of 94,558 brassica unigenes that have been assembled from 

approximately 810,000 public EST from brassica species was used. Mainly, they 

consisted of three principal sets of B. napus (567,240), B. rapa (180,611) and B. 

oleracea (59,696) (Trick et al. 2009). The cured reference sequence was constructed 

by combining two ‘cured’ reference sequences based on mRNA-seq libraries of B. 

rapa and B. oleracea. Thus creating a reference sequence containing both the A and 

C variants of each unigene. Libraries prepared from B. rapa and B. oleracea RNA 

samples were each run on two lanes of the Illumina Genome Analyzer GAIIx for 80 

cycles.  

The FASTQ files from the two lanes were combined generating a total of 46,120,559 

reads for B. rapa and 49,268,765 reads for B. oleracea. The 80 base reads were split 

into two files, each containing a set of 40 base reads using the Perl script 

illumina_split_read.pl. The 40 base reads were used separately to cure the naive 

reference sequence to an A genome version and a C genome version, described as 

follows. Using the Perl script cure_cycle_split.pl the 40 base reads were aligned 

against the naive reference sequence to produce a map file. The map files generated 

by alignment of the first and second sets of 40 base reads were merged using MAQ 

map merge and a consensus sequence. The Perl script, cure_ref-seqs.pl, was used 

to cure the naive reference using the consensus sequence. This process was 

iterated over six cycles after which there was no significant gain in alignment 

efficiency. On each iteration, bases were replaced in the reference, where these 

differed from high quality consensus bases called by MAQ (i.e. contributed by a read 

depth greater than 3, with quality values greater than 40). This process resulted in 

the production of an A genome and C genome version of the naive reference, these 

two sequences were compared at each base position using the Perl script 
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compare_sequences.pl to give a list of positions within unigenes where the base 

differed in the two sequences. The cured reference sequence was constructed by 

combining the two ‘cured’ reference sequences, thus creating a reference sequence 

containing both the A and C variants of each unigene (Higgins et al. 2012).  

Tag-to-gene matching was performed using the 16-bp long filtered reads under 

FASTAQ format to fit the pipeline. Mapping against the Brassica unigenes cured 

reference was performed using Bowtie aligner software, allowing only one single 

mismatch in the reads to increase the number of tags matching the reference 

sequence. Aligned reads were used to create a final output under TXT format for 

each DGE library, in which a list of unigenes, with the corresponding tags mapping to 

them and their respectively tag count frequencies, is presented. For further weighted 

gene co-expression network analysis (WGCNA) and bulked-segregant analysis 

(BSA), the number of tags for each gene was calculated and normalised to transcript 

read tags per ten million total tag reads. 

DGE-data from 2 x 99 libraries for two time-points (including 2 parents, Express and 

V8, and their F1) were normalised following the three-step pipeline procedure used 

for LongSAGE data (Obermeier et al. 2009). To achieve this, mapped-DGE to 

Brassica unigenes output under TXT format were loaded into a MySQL database 

(version 5.0.41, running under BioLinux 5.1 Ubuntu12.8) for the ExV8 DGE-Data. 

The MySQL database was linked to the phpMyAdmin interface to enable viewing of 

data subsets. Two DGE-Data sets, DGE_8DAS and DGE_12DAS (DAS = days after 

sowing) were normalised following identical pipelines. Processing and data 

normalization was handled through the use of Perl and MySQL scripts.  

Singlets were removed before normalisation base on the fact that they are likely to 

represent sequencing errors and with no statistical support for their presence. DGE-

data was normalised to transcript tags per ten million tags to facilitate comparisons 

among libraries. The number of tags per library has been in average more than two 

million per library. Therefore, I chose to normalise the tag counts to ten million. 

Normalising takes place to ensure that comparisons across our DGE libraries reflect 

biological differences and not merely differences in the total number of tags 

sequenced. In DGE analysis, comparisons between large libraries facilitate the 

detection of significant differential expression for genes expressed at low levels. 

Therefore, for a gene expressed at given rate, increasing the sampling size leads to 
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higher tag counts, and allows more stringent statistical inferences to be made for the 

same proportional variation (Audic and Claverie, 1997).  

 

To normalise the tag distribution per DGE library, a normalisation factor for all 

individual DGE libraries was calculated. For this, we first calculated the total sum of 

each tag counts per DGE library. Then, we were able to calculate the normalisation 

factor for each library by dividing 10 million by the sum of total tag counts per library. 

This resulting factor is then used to multiply each tag count frequency value to be 

normalised. After this, we obtained all the tag counts that were normalised to ten 

million per DGE library. The second step of our pipeline was averaging of normalised 

transcript counts that matched more than one unigene. These multiple matches 

underline the complex paleopolyploid structure of the B. napus genome.  

 

Due to this complexity, a three-step procedure was applied for calculating average 

values of the relative abundance of gene expression, based on the tag-to-gene 

matching results for each single unigene. In a first step, the measured counts were 

evenly distributed to the matched unigene, if a tag matched more than one unigene. 

In a second step, tag counts were added together if different tags matched the same 

unigene. In a final step the summed up tag counts for each unigene were normalized 

to a total tag count of 10 million for all libraries and the relative abundances were 

calculated (see scheme in Figure 7).  

 

Combining reads from multiple tags mapping to a given unique unigene will improve 

correlations among samples. In the next step, we used PostgreSQL database system 

(version 8.3.15 running under BioLinux 5.1 Ubuntu12.8) for joining all the DGE 

libraries with their respective averaged normalised tag counts per unique distinct 

Brassica unigene. We exported this data to EXCEL format and ended up with two 

files ~100 MB each for each dataset, named 155K_Unigene_DGE_8DAS and 

155K_Unigene_DGE_12DAS. In total, 154,790 distintc DGE- tags between the A and 

C genomes were mapped. The DGE-tags mapped to the AC “cured” unigene 

reference gave 86,908 DGE-tags mapping to A genome unigenes and 67,882 DGE-

tags mapping to C genome unigenes.   



 27 

 

 

Figure 7. An example of different DGE-tag mapping scenarios within the complex 

polyploid B. napus genome using Brassica unigenes and strategy for processing data 

for estimation of quantitative gene expression analysis. Three different scenarios are 

shown for alignment of three different 16/21 bp tag which occur 10 and 22.5 times in 

one particular library: a) the two tags (red and green) match highly specific to a single 

unigene, b) one of the tags (red) matches with the same e-values to two different 

unigenes due to the presence of highly homeologous or paralogous copies in the B. 

napus genome, the other one (green) matches highly specific to Unigene A, c) the 

red and green tag match to two to four unigenes. If tags match more than once their 

tag counts are evenly distributed to the matched unigenes, e.g. 5 counts for the red 

tag to Unigene A and to Unigene B in scenario b). Matches of more than one tag to a 

specific Unigene are summed up: see calculations below Unigenes A to D in 

scenarios b) and c).   
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4.3 Bulked-segregant analysis of DGE (BSA-DGE) data revealed 

differential expression of genes for complex traits 

 

The second aim of this study was to identify differentially expressed genes linked to 

complex traits based on best and worst performing genotypes within the ExV8-DH 

mapping population. To achieve this I used a combination of DGE, phenotypic and 

hormone metabolite data together with bulked-segregant analysis (BSA), to generate 

a closer insight into the putative candidate genes related to complex traits. Selection 

of bulks was based on field and greenhouse phenotypic data for the ExV8-DH 

mapping population. Twenty individuals from each of the best and worst performing 

genotypes were selected to construct the bulks. For each of the 20 investigated traits 

(Table 2) the 20 best and 20 worst performing individuals, respectively, were 

assigned to bulks with significant phenotypic variance using a simple t-test and P < 

0.05. 

 

In total, 40 individuals from each of the two time points, 8 and 12 DAS respectively, 

were analysed. Differentially expressed genes between the bulks were considered 

significant when differential expression values were greater than 2-fold change (FC > 

2) and a significant P-value (p<0.05) or in some cases down-regulation could also be 

identified if FC < -0.5. Several differentially expressed genes were found significantly 

differentially expressed depending on the analyzed trait at 8 and 12 DAS.  

 
 
4.3.1 Differentially expressed genes for hormone metabolites  

 

Abscisic acid (ABA) in nanograms per gram (ng/g) of dry weight in seedling plants at 

8 and 12 DAS, which plays a crucial role during plant development and regulation of 

growth was included as a trait for the BSA-DGE analysis. ABA and several derivative 

hormone metabolites of ABA biosynthesis pathway, such as dihydrophaseic acid 4 

(ABA2), abscisic acid glucose ester (ABA3), phaseic acid 3’ (ABA4), 7'-Hydroxy 

abscisic acid (ABA5) and neophaseic acid PA (ABA6) were analysed through UPLC 

method (Table 2). Bulks of genotypes were selected based on UPLC metabolite 

content value for 8 and 12 DAS. Differentially expressed genes were calculated 

based on DGE-normalised data.  
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Table 2. List of 27 traits evaluated in the ExV8-DH population and used for the BSA-

DGE analysis for identification of differentially expressed genes. 

 

 

Trait Description 

 

ABA Abscisic acid 

 

ABA2 Dihydrophaseic acid 

 

ABA3 Abscisic acid glucose ester 

 

ABA4 Phaseic acid 

Hormone   ABA5 7'-Hydroxy-abscisic acid  

metabolites ABA6 neoPhaseic acid  

 

ABA7 (trans) Abscisic acid 

 

AUX1  Auxin (Indole-3-acetic acid) 

 

CYT2 Cytokinin ((cis) Zeatin-O-glucoside) 

 

CYT4 Cytokinin ((cis) Zeatin)  

 

DPHW Dry leaf weight (28 DAS)  

 

HCH Hypocotyl length, (14 DAS)  

Greenhouse LA Leaf area (28 DAS)  

 

SDW Shoot dry weight (28 DAS)  

 

SFW Shoot fresh weight (28 DAS)  

 

SPHW Shoot leaf weight (28 DAS) 

 

PH06 plant height at the end of flowering in year 2006  

Field PH07 plant height at the end of flowering in year 2007  

 

SY06 seed yield in 2006  

 

SY07 seed yield in 2007  

 

 
Regarding 8 DAS, the abscisic acid (ABA) hormone and its metabolites named 

ABA2, ABA3 and ABA5 have shown significant differentially expressed genes. Seven 

genes were significantly differentially expressed after bulking of the genotypes for the 

ABA trait (Table 3). In the case of the ABA trait at 12 DAS, no differentially expressed 

genes could be identified. A down-regulation of the LATE EMBRYOGENESIS 

ABUNDANT (LEA) gene was also identified with a logFC equal to -1.5 (P value of 

0.0177). In addition, down-regulation of CCAAT-binding transcription factor (CBF-

B/NF-YA) family was also observed for the ABA trait at 12 DAS (-1.129 logFC).  
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Further identification of differentially expressed genes for ABA2 at 8 DAS was 

observed but none could be identified as belonging to the ABA biosynthetic pathway. 

A total of 29 significantly differential expressed genes were identified for the 

secondary metabolite named ABA2 (Dihydrophaseic acid) at 8 DAS (Appendix Table 

1).  

 

Table 3. List of the differentially expressed genes corresponding to ABA (abscisic 

acid) content at 8 DAS after bulked-segregant analysis of DGE data (BSA-DGE) 

sorted on the basis of log fold change (logFC) values. Arabidopsis genome initiative 

(AGI 2000) was used for identification of A. thaliana genes.  

 
Brassica 

Unigene logFC p-value   AGI Gene description 

EV152606 2.37E+18 0.0018 AT1G73490 RNA-binding family protein 

JCVI_40277 2.30E+19 0.0041 AT1G31335 unknown protein  

JCVI_11040 2.29E+19 0.0165 AT1G76010 Alba DNA/RNA-binding protein 

JCVI_20523 2.07E+19 0.0203 AT1G80400 RING/U-box superfamily protein 

JCVI_2077 2.07E+19 0.0039 AT1G60810 enzyme ATP Citrate lyase 

JCVI_27499 2.04861E+14 0.0065 AT1G16170 unknown protein 

JCVI_19656 2.02013E+14 0.0167 AT1G36280 L-Aspartase-like family protein  

 

 

No differentially expressed genes were found for ABA2 at 12 DAS. In contrast, for the 

ABA3 trait at 8 DAS, 201 significantly differentially expressed genes were identified 

(Table 4). Again the RING/U box superfamily protein was identified, but also another 

gene, the Leucine-rich repeat protein kinase was identified as differentially expressed 

for ABA3 at 8 DAS.  

 

Moreover, significant differentially expressed genes for ABA3 at 12 DAS were also 

identified after BSA-DGE analysis (Appendix Table A2). ABA3 trait at 12 DAS 

presented a differentially expressed gene related to seedling development transition, 
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the CARBON/NITROGEN INSENSITIVE 1 (CNI1) (Sato et al. 2009). Differentially 

expressed genes were identified for ABA4 at 12DAS but not at 8DAS (Appendix 

Table A3). In the case of ABA5 hormone metabolite at 8 DAS, a number of 

differentially expressed genes were observed (Appendix Table A4).    

 

For the AUX1 trait at 8 DAS, a list of the 20 most significantly (P<0.05) differentially 

expressed genes are shown in Table 5. Although no genes belonging to the auxin 

signaling pathway were identified at this early stage of development, an important 

transcription factor, the GENERAL REGULATORY FACTOR 2 (GRF2) was identified 

as significant differentially expressed gene. Congruently, AUX1 trait at 12 DAS 

showed differential expression of the SAUR (Small auxin-up RNA)-like auxin-

responsive protein family. Nevertheless, identification of some other key regulators 

such as EARLY IN SHORT DAYS 7 (ESD7) and ARGONAUTE7 (AGO7) was 

observed (Table 6). For instance, AGO7, a member of the ARGONAUTE family, is 

characterised by the presence of PAZ and PIWI domains and is involved in the 

regulation of developmental timing.  

 

Only for the CYT4 (cis-Zeatin) trait at 12 DAS, some other key regulators as 

GIGANTEA (GI) and EARLY FLOWERING 7 (ELF7) have been clearly identified as 

differentially expressed. They also correspond to the Brassica unigenes EV216677 

and JCVI_11121, respectively (Appendix Table A5). GI, together with CONSTANS 

(CO) and FLOWERING LOCUS T (FT), promotes flowering under long days in a 

circadian cycle controlled flowering pathway. GI acts earlier than CO and FT in the 

pathway by increasing CO and FT mRNA abundance. 

 

Furthermore, GI regulates several developmental processes, including photoperiod-

mediated flowering, phytochrome B signaling, circadian cycle, carbohydrate 

metabolism, and cold stress response. The circadian cycle controls its gene’s 

transcription and it is post-transcriptionally regulated by light and dark. On the other 

hand, ELF7 encodes a PAF1 homolog that is involved in the control of flowering time 

by elevating FLC expression to a level that creates the vernalization-response, 

winter-annual habit.  
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Table 4. List of the 20 most significantly (P<0.05) differentially expressed genes for 

ABA3 (abscisic acid glucose ester) hormone metabolite trait at 8 DAS after bulked-

segregant analysis of DGE data (BSA-DGE) sorted on the basis of log fold change 

(logFC) values. Arabidopsis genome initiative (AGI 2000) was used for identification 

of A. thaliana genes.  

 
Brasssica 
Unigenes             LogFC 

                         
p_value AGI 

Gene description * 

JCVI_31848 3.46E+14 4.42E+08 AT1G59820 
 
Phospholipid translocase  

JCVI_8042 3.43E+14 9.87E+09 AT1G16560 
 
Per1-like family protein 

JCVI_23597 3.31E+14 1.18E-04 AT2G03060 

 
MIKC (MADS box, Keratin binding domain, and C 
terminal domain containing )  

JCVI_24074 3.26E+14 2.52E-04 AT2G03140 
 
alpha/beta-Hydrolases superfamily protein  

EE450367 3.23E+14 1.46E-04 AT2G22090 
 
encodes a nuclear protein that binds to RNA  

JCVI_20523 3.17E+14 2.02E-04 AT1G80400 
 
RING/U-box superfamily protein  

JCVI_8184 3.10E+14 2.82E-04 AT2G18690 
 
unknown protein;  

JCVI_30212 3.05E+14 3.82E-04 AT1G66830 

 
Leucine-rich repeat protein kinase family 
protein  

EX128399 2.97E+14 1.08E-03 AT1G31070 

 
N-acetylglucosamine-1-phosphate 
uridylyltransferase  

JCVI_18840 2.93E+14 3.53E-03 AT2G16750 
 
Protein kinase protein  

JCVI_40149 2.93E+14 5.75E-04 AT1G67340 

 
HCP-like superfamily protein with MYND-type zinc 
finger  

JCVI_11040 2.92E+14 1.55E-03 AT1G76010 
 
Alba DNA/RNA-binding protein;  

JCVI_7194 2.91E+14 7.40E-03 AT1G49480 
 
nuclear-localized DNA-binding protein  

JCVI_10602 2.89E+14 6.10E-04 AT1G80720 
 
Mitochondrial glycoprotein family protein  

JCVI_16587 2.81E+14 2.77E-03 AT1G80290 

 
Glycosyltransferase Family 64 (according to CAZy 
Database) 

JCVI_1250 2.81E+14 9.55E-04 AT1G49950 

 
 
Encodes a telomeric DNA binding protein.  

JCVI_41756 2.79E+14 1.92E-03 AT1G30270 

 

CBL-interacting protein kinase 23 (CIPK23)  

JCVI_37138 2.79E+14 2.60E-04 AT1G50570 

 

Calcium-dependent lipid-binding (CaLB domain)  

JCVI_19591 2.76E+14 6.18E-04 AT1G10580 
 
Transducin/WD40 repeat-like superfamily protein;  

JCVI_35429 2.72E+14 5.01E-04 AT2G06005 
 
FRIGIDA INTERACTING PROTEIN 1 (FIP1) 

*ABA responsive genes shown in bold 
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Table 5. List of the 20 most significantly (P<0.05) differentially expressed genes for   

the AUX1 (auxin) content at 8 DAS after bulked-segregant analysis of DGE data 

(BSA-DGE) sorted on the basis of log fold change (logFC) values. Arabidopsis 

genome initiative (AGI 2000) was used for identification of A. thaliana genes.  

 

    Brassica  
    Unigene        logFC        p_value    AGI Gene description 

JCVI_35775 3.27868E+14 0.002610351 AT1G60690 
NAD(P)-linked oxidoreductase superfamily 
protein 

JCVI_6204 2.84563E+14 0.001101251 AT1G06290 ACYL-COA OXIDASE 3 (ACX3) 

EE429436 2.63519E+14 0.003963176 AT1G06490 CALLOSE SYNTHASE 7 (CalS7) 

EX098073 2.56159E+14 0.000699692 AT1G66760 MATE efflux family protein 

JCVI_21653 2.48244E+14 0.006633875 AT1G10360 
GLUTATHIONE S-TRANSFERASE TAU 
18 (GSTU18) 

JCVI_975 2.47804E+14 0.002845483 AT1G11860 Glycine cleavage T-protein family 

JCVI_5248 2.41594E+14 0.005484584 AT1G54290 
Translation initiation factor SUI1 family 
protein 

JCVI_20211 2.36686E+14 0.033344841 AT2G22780 
PEROXISOMAL NAD-MALATE 
DEHYDROGENASE 1 (PMDH1) 

JCVI_19994 2.30975E+14 0.002380513 AT1G66250 O-Glycosyl hydrolases family 17 protein 

DY008024 2.28166E+14 0.002854633 AT1G32050 
SECRETORY CARRIER MEMBRANE 
PROTEIN 5 (SCAMP5) 

JCVI_67 2.24824E+14 0.000386137 AT1G12840 DE-ETIOLATED 3 (DET3) 

JCVI_44 2.22555E+14 0.003465166 AT1G32060 PHOSPHORIBULOKINASE (PRK) 

EV173838 2.19109E+14 0.001900201 AT1G60060 
Serine/threonine-protein kinase WNK (With 
No Lysine)-related 

JCVI_37729 2.18658E+14 0.002328877 AT1G18590 SULFOTRANSFERASE 17 (SOT17) 

JCVI_243 2.14973E+14 0.012930825 AT1G19540 
NmrA-like negative transcriptional regulator 
family protein 

JCVI_1246 2.13151E+14 0.01114472 AT2G26230 
uricase / urate oxidase / nodulin 35, 
putative 

EV161088 2.12114E+14 0.002370931 AT1G72730 DEA(D/H)-box RNA helicase family protein 

JCVI_17626 2.11751E+14 0.008612213 AT1G27930 Function unknown.  Interacts with eIF3. 

JCVI_22791 2.07346E+14 0.001849011 AT1G78300 
GENERAL REGULATORY FACTOR 2 
(GRF2) 

JCVI_34745 2.0508E+14 0.020191301 AT1G55020 LIPOXYGENASE 1 (LOX1) 

JCVI_19676 2.04804E+14 0.005203842 AT1G43850 SEUSS (SEU) 

JCVI_12387 2.02362E+14 0.004204301 AT1G69930 
GLUTATHIONE S-TRANSFERASE TAU 
11 (GSTU11) 

JCVI_9049 2.01135E+14 0.002575579 AT1G12920 
EUKARYOTIC RELEASE FACTOR 1-2 
(ERF1-2) 

 

 



 34 

Table 6. List of the 20 most significant (P<0.05) differentially expressed genes for 

AUX1 (auxin) content at 12 DAS after bulked-segregant analysis of DGE data (BSA-

DGE) sorted on the basis of log fold change (logFC) values. Arabidopsis genome 

initiative (AGI 2000) was used for identification of A. thaliana genes. 

 
Unigene           logFC     p_value     AGI Gene 

JCVI_9933 2.12335E+14 0.0095 AT1G80450 VQ motif-containing protein 

EE569746 2.13738E+14 0.0042 AT1G01725 unknown protein 

JCVI_24410 2.32189E+14 0.0049 AT1G08260 EARLY IN SHORT DAYS 7 (ESD7) 

JCVI_7465 2.37691E+14 0.0036 AT1G48160 
signal recognition particle 19 kDa protein, 
putative / SRP19, putative 

JCVI_28827 2.60404E+14 0.0052 AT1G16510 SAUR-like auxin-responsive protein family  

JCVI_28783 2.93909E+14 0.0001 AT1G45231 
S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein 

JCVI_34325 2.17393E+14 0.0057 AT2G25690 Protein of unknown function (DUF581) 

EV046536 2.76543E+14 0.0003 AT1G33390 FASCIATED STEM 4 (FAS4) 

CX194114 2.63253E+14 0.0013 AT1G01030 NGATHA3 (NGA3). 

JCVI_35963 2.2728E+14 0.0175 AT2G25970 KH domain-containing protein 

JCVI_38691 2.13511E+14 0.0168 AT1G09710 Homeodomain-like superfamily protein 

JCVI_35043 2.35393E+14 0.0047 AT1G05785 Got1/Sft2-like vescicle transport protein family 

JCVI_16418 2.58931E+14 0.0022 AT1G69440 ARGONAUTE7 (AGO7) 

JCVI_25190 2.41574E+14 0.0036 AT1G20330 COTYLEDON VASCULAR PATTERN 1 (CVP1) 

JCVI_30600 2.27236E+14 0.0020 AT1G17920 HOMEODOMAIN GLABROUS 12 (HDG12) 

EE452351 2.77641E+14 0.0004 AT1G68370 ALTERED RESPONSE TO GRAVITY 1 (ARG1) 

JCVI_23144 2.23241E+14 0.0074 AT1G13080 cytochrome P450 monooxygenase 

JCVI_20799 2.65951E+14 0.0131 AT1G51650 ATP synthase epsilon chain 

JCVI_10506 2.70567E+14 0.0011 AT2G18330 AAA-type ATPase family protein 

EV168439 2.23128E+14 0.0280 AT1G77140 VACUOLAR PROTEIN SORTING 45 (VPS45) 
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4.3.2 Differentially expressed genes for traits under greenhouse conditions 
  
Several traits at seedling development stage have been evaluated under greenhouse 

condition in previous work (Basunanda et al. 2010). Six specific traits, such as dry 

leaf weight (DPHW), hypocotyl height (HCH), leaf area (LA), shoot dry weight (SDW), 

shoot fresh weight (SFW) and shoot leaf weight (SPHW) were analysed (see Table 

2). For 8 DAS, only HCH, SFW and SPHW showed significantly (P < 0.05) 

differentially expressed genes.  From HCH only 20 genes were found to be 

significantly differential expressed and SFW showed only 9 differentially expressed 

genes (see Appendix table A6 and table A7).  

 

Shoot leaf weight (SPHW) resulted in 22 significantly differentially expressed genes, 

in which the EV118481 unigene corresponds to the AT1G75820 CLAVATA 1 (CLV1) 

gene (Table 7). CLV1 is a putative receptor kinase with an extracellular leucine-rich 

domain, which controls shoot and floral meristem size, and contributes to 

establishing and maintaining the floral meristem identity. It is negatively regulated by 

KAPP (kinase-associated protein phosphatase) and CLAVATA 3 (CLV3) peptide 

which binds directly CLV1 ectodomain. Furthermore, one additional unigene, 

JCVI_7865 (AT2G21660) encodes a GLYCINE-RICH RNA-BINDING PROTEIN 7 

(GRP7) that is part of a negative-feedback loop through which GRP7 regulates the 

circadian oscillations of its own transcript.  

 

For 12 DAS, greenhouse traits such as DPHW (dry leaf weight), LA (leaf area), SDW 

(shoot dry weight), SFW (shoot fresh weight) and SPHW (shoot leaf weight) showed 

several differentially expressed genes, however, none of these were similar to those 

expressed at 8 DAS. Due to the time points that were chosen here for the 

experiments. For summarizing reasons, not data is showed concerning to these 

traits. 
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Table 7. List of the 20 most significantly (P<0.05) differentially expressed genes for 

shoot leaf weight (SPHW) at 8 DAS after bulked-segregant analysis of DGE data 

(BSA-DGE) sorted on the basis of log fold change (logFC) values. Arabidopsis 

genome initiative (AGI 2000) was used for identification of A. thaliana genes.  

 

Unigenes            logFC            p_value    AGI Gene description 

EE547519 2.79256E+14 0.000690151 AT2G16600 
Encodes cytosolic cyclophilin ROC3. 
ROTAMASE CYP 3 (ROC3) 

JCVI_29531 2.5489E+14 0.020440655 AT2G25450 similar to ACC oxidase 

EX131553 2.53386E+14 0.00091851 AT1G74050 Ribosomal protein L6 family protein 

JCVI_5668 2.52524E+14 0.005817949 AT1G80090 

Cystathionine beta-synthase (CBS) CBS 
DOMAIN CONTAINING PROTEIN 4 
(CBSX4) 

JCVI_20238 2.51136E+14 0.004725032 AT1G12064 unknown protein 

EX123254 2.39706E+14 0.001945594 AT1G34040 
Pyridoxal phosphate (PLP)-dependent 
transferases  

JCVI_37074 2.37519E+14 0.002017532 AT1G74100 SULFOTRANSFERASE 16 (SOT16) 

JCVI_4329 2.37008E+14 0.035717136 AT1G11910 ASPARTIC PROTEINASE A1 (APA1) 

JCVI_7751 2.34605E+14 0.011866902 AT1G15330 Cystathionine beta-synthase (CBS) protein 

EV118481 2.29533E+14 0.022445607 AT1G75820 CLAVATA 1 (CLV1) 

JCVI_7865/ 
EV188487/ 
CX269309  2.29153E+14 0.004259702 AT2G21660 

GLYCINE-RICH RNA-BINDING PROTEIN 7 
(GRP7) 

JCVI_32978 2.2309E+14 0.006596822 AT1G67660 Restriction endonuclease, type II-like  

ES943297 2.13462E+14 0.004162194 AT2G28900 
OUTER PLASTID ENVELOPE PROTEIN 
16-1 (OEP16-1) 

EX131209 2.09679E+14 0.006800394 AT1G32230 
RADICAL-INDUCED CELL DEATH1 
(RCD1) 

EV029825 2.08654E+14 0.00979309 AT1G18880 NITRATE TRANSPORTER 1.9 (NRT1.9) 

JCVI_5932 2.08571E+14 0.005090145 AT1G44760 Adenine nucleotide alpha hydrolases-like  

JCVI_21680 2.06613E+14 0.016898616 AT1G19960  transmembrane receptors  

JCVI_14373 2.06147E+14 0.004427159 AT1G63680 Mur ligase MURE 

JCVI_22656 2.04333E+14 0.010429121 AT2G21870 
MALE GAMETOPHYTE DEFECTIVE 1 
(MGP1) 

JCVI_5679 2.01545E+14 0.006578632 AT1G48460 unknown protein 
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4.3.3 Differentially expressed genes for traits under field conditions 
 
 

Similar to the greenhouse experiments, expression results were related to the results 

of field experiments in the years 2006 and 2007 regarding traits such as plant height 

at the end of flowering (PH) and seed yield (SY) (Basunanda et al. 2010). In this 

study, it was of great importance to identify the up-regulated genes observed when 

using gene expression data from early development seedling stages at 8 and 12 

DAS to validate the hypothesis of complex interactions of key regulators, playing an 

important role for late stages of development in winter oilseed rape.  

 

Plant height at the end of flowering in the year 2006 (PH06) for 8 and 12 DAS was 

identified as presenting 12 and 21 differentially expressed genes, respectively. 

Although not many genes from the flowering pathway were found, one key regulator 

named CLAVATA 1 (CLV1) or also known as FLOWER DEVELOPMENT 5 (FLO5) 

or FASCIATA 3 (FAS3) during flowering was up-regulated at 8 and 12 DAS to 2,49 

(see Table 8) and 3.55 fold change (see Appendix Table A8), respectively. CLV1 was 

found between SPHW and PH06 at 8 DAS, and its additional presence at 12 DAS for 

PH06 trait, suggested its role during transition from vegetative phase to reproductive 

stage.  

 

Regarding seed yield in 2006 (SY06) at 8 and 12 DAS, only 10 significant and two 

differentially expressed genes were found, respectively, after BSA-DGE analysis. For 

8 DAS, the BETA GLUCOSIDASE 33 (BGLU33) gene which is involved during 

carbohydrate metabolic process and TRANSPARENT TESTA 7 (TT7) which has 

been correlated with seed yellow trait in Brassica napus (Auger et al. 2009) (Table 9). 

For SY06 at 12 DAS, only two genes, the Haloacid dehalogenase-like hydrolase 

(HAD) superfamily protein (AT5G02230) and the Transmembrane CLPTM1 family 

protein (AT5G08500) were found to be significantly differentially expressed (FC > 2).  

 

In the case of seed yield in the year 2007 (SY07) at 8 and 12 DAS, a total of seven 

genes were shown to be significant differentially expressed at both time points. 
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Table 8. List of the most significant (P<0.05) differentially expressed genes for PH06 

(plant height/end of flowering, year 2006) at 8 DAS after bulked-segregant analysis of 

DGE data (BSA-DGE) sorted on the basis of log fold change (logFC) values. 

Arabidopsis genome initiative (AGI 2000) was used for identification of A. thaliana 

genes. 

 

Unigene logFC p_value AGI Gene description 

JCVI_5500 3.0237E+14 0.003880798 AT1G73940 unknown protein 

EV118481 2.49592E+14 0.008047967 AT1G75820 

CLAVATA 1 (CLV1); (ATCLV1);FLOWER 
DEVELOPMENT 5 (FLO5);FASCIATA 3 
(FAS3) 

JCVI_16396 2.36018E+14 0.018297862 AT4G02790 GTP-binding family protein 

JCVI_40142 2.32299E+14 0.003886537 AT3G16940 calmodulin binding;transcription regulators 

JCVI_12523 2.26422E+14 0.002696205 AT2G16630 
Pollen Ole e 1 allergen and extensin family 
protein 

EX038843 2.21522E+14 0.010700141 AT3G11430 
sn-glycerol-3-phosphate 2-O-
acyltransferas 

JCVI_36224 2.21244E+14 0.002150725 AT1G21880 
LYSM DOMAIN GPI-ANCHORED 
PROTEIN 1 PRECURSOR (LYM1) 

JCVI_18528 2.21239E+14 0.000880171 AT3G10400 
Encodes a U12-type spliceosomal protein 
U11/U12-31K 

JCVI_23903 2.10532E+14 0.008618833 AT4G05050 polyubiquitin gene 

JCVI_16830 2.07823E+14 0.022653341 AT5G11040 

 
VASCULAR NETWORK DEFECTIVE 4 
(VAN4) 

JCVI_15291 2.04808E+14 0.042881835 AT1G36310 
S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein 

JCVI_27034 2.02973E+14 0.03311565 AT3G17100 
AIF3 
ATBS1 INTERACTING FACTOR 3 

 

One very important gene during the photosynthetic process was identified for SY07 

at 8 DAS, the LIGHT-HARVESTING CHLOROPHYLL B-BINDING PROTEIN 3 

(LHCB3) gene which is a component of the main light harvesting chlorophyll a/b-

protein complex of Photosystem II (PSII) (Table 10). It has been shown that the 

antenna complexes of PSII harvest light efficiently under light-limited conditions but 

dissipate excess energy under light- saturated conditions (Horton et al. 1996). 

LHCB3 was not expressed at 12 DAS, suggesting only expression of this gene at 



 39 

early developmental stages but showing its importance for late developmental stages 

such as seed yield. In addition for SY07 at 12 DAS, the differentially expressed 

CRUCIFERIN 2 (CRU2) that belongs to an important group of seed storage proteins 

in Brassica napus, the 12S globulin complex, was identified (Table 11). 

 

Table 9. List of the most significant (P<0.05) differentially expressed genes for SY06 

(seed yield for year 2006) at 8 DAS after bulked-segregant analysis of DGE data 

(BSA-DGE) sorted on the basis of log fold change (logFC) values. Arabidopsis 

genome initiative (AGI 2000) was used for identification of A. thaliana genes.  

 

Unigene logFC p_value AGI Gene 

JCVI_33951 3.1412E+14 0.004554288 AT2G32860 
BETA GLUCOSIDASE 33 
(BGLU33) 

JCVI_29640 2.65407E+14 0.014506115 AT4G02890 
Polyubiquitin gene containing 4 
ubiquitin repeats. UBQ14 

JCVI_9135 2.39562E+14 0.019321388 AT2G35060 
K+ UPTAKE PERMEASE 11 
KUP11 

DV643338 2.32631E+14 0.003225664 AT4G37290 unknown protein 

JCVI_15136 2.22242E+14 0.025430314 AT5G07990 
TRANSPARENT TESTA 7 
(TT7) 

JCVI_23268 2.21698E+14 0.00288459 AT5G60200 Dof-type transcription factor 

AM385250 2.19723E+14 0.019096034 AT1G78550 senescence-related gene 1  

JCVI_35020 2.12718E+14 0.010911303 AT4G13030 
P-loop containing nucleoside 
triphosphate hydrolases  

JCVI_38164 2.00485E+14 
 

 
 
 

ATZIP2 
ZIP2 
ZRT/IRT-LIKE PROTEIN 2 
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Table 10. List of the significant (P<0.05) differentially expressed genes for SY07 

(seed yield, year 2007) at 8 DAS after bulked-segregant analysis of DGE data (BSA-

DGE) sorted on the basis of log fold change (logFC) values. Arabidopsis genome 

initiative (AGI 2000) was used for identification of A. thaliana genes. 

 
Unigene             logFC              p_value    AGI Gene 

JCVI_32354 2.74272E+14 0.008983342 AT2G34390 
NOD26-LIKE INTRINSIC PROTEIN 2;1 
aquaporin NIP2.1 

BQ704232 2.48243E+14 0.000952978 AT5G54270 

  
LIGHT-HARVESTING CHLOROPHYLL B-
BINDING PROTEIN 3 (LHCB3) 

EE525829 2.40629E+14 0.001797269 AT1G51060 
Encodes HTA10, a histone H2A protein. 
HISTONE H2A 10 (HTA10) 

JCVI_32184 2.37935E+14 0.002002075 AT2G28430 unknown protein 

JCVI_10157 2.05764E+14 0.013222199 AT5G41940 
Ypt/Rab-GAP domain of gyp1p superfamily 
protein 

EE547466 2.03479E+14 0.020005945 AT3G12800 

 
SHORT-CHAIN DEHYDROGENASE-
REDUCTASE B (SDRB) 

JCVI_41782 2.00825E+14 0.000577815 AT3G22550 Protein of unknown function (DUF581) 

 

 

Table 11. List of the significantly (P<0.05) differentially expressed genes at 12 DAS 

for SY07 (seed yield, year 2007) trait after bulked-segregant analysis of DGE data 

(BSA-DGE) sorted on the basis of log fold change (logFC) values. Arabidopsis 

genome initiative (AGI 2000) was used for identification of A. thaliana genes.  

 

Unigene logFC p_value AGI Gene 

JCVI_32354 2,75E+19 0.0031 AT2G34390 NOD26-LIKE INTRINSIC PROTEIN 2;1 (NIP2;1) 

DN191865 2,56E+19 0.0065 AT4G25433 

peptidoglycan-binding LysM domain-containing 

protein 

JCVI_3694 2,41E+19 0.0014 AT5G24170 Got1/Sft2-like vescicle transport protein family 

JCVI_23495 2,39E+19 0.0186 AT1G03880 CRUCIFERIN 2 (CRU2) 

JCVI_20987 2,32E+19 0.0014 AT5G62100 BCL-2-ASSOCIATED ATHANOGENE 2 (BAG2) 

JCVI_33951 2,04E+19 0.0304 AT2G32860 BETA GLUCOSIDASE 33 (BGLU33) 

JCVI_16889 2,50E+17 0.0027 AT4G23496 SPIRAL1-LIKE5 (SP1L5) 
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4.4 Weighted gene co-expression network analysis (WGCNA) for 

identification of highly connected (hub) genes  

 

WGCNA was performed as described by Zhang and Horvath (2005) and Langfelder 

and Horvath (2008). Datasets for 8 DAS and 12 DAS were obtained containing 

measurements of transcript abundance for 154,790 DGE-tags. The tags were 

mapped to the AC “cured” unigene reference to give 86,908 tags mapping to A 

genome unigenes and 67,882 tags mapping to C genome unigenes. Tags were kept 

if they had a normalised tag count of at least five in six or more samples.  

 

Replicate tags for each unigene were averaged and only those unigenes, which were 

found in both datasets, were used for the WGCNA consensus analysis. 91,048 

unigenes present in both datasets were used for the WGCNA. A total of 108 modules 

were obtained using the automatic network construction function 

blockwiseConsensusModules with the following settings; power = 5, minModuleSize 

= 50, deepSplit = 2, maxBlock- Size = 35000, reassignThreshold = 0, 

mergeCutHeight = 0.25, minKMEtoJoin = 1, minKMEtoStay = 0. The top hub 

unigenes were identified from fifteen modules, which were highly conserved between 

the two datasets and selected as candidate genes. 

 

4.4.1 Identifying modules that are correlated with traits 
 
A co-expression network was constructed for the 8 DAS and 12 DAS datasets.  

Conserved trait-module relationship was found for the salmon module and seed yield 

(SY), plant height at the end of flowering (PH) and shoot fresh weight (SFW) traits for 

8DAS. Although, the correlation for the association of salmon module with the traits 

was very low from 0.20 to 0.28 (p-value < 0.05), the presence of flowering regulating 

genes such as CONSTANS-LIKE 10 (COL10) and TERMINAL FLOWER 2  (TFL2) 

was relevant for the traits under study. In addition, conserved trait-module 

relationship of the module floralwhite with SY and cytokinin (CYT) traits with 

expression of CONSTANS (CO) and TERMINAL FLOWER 1 (TFL1) for 12 DAS, was 

also observed. The correlation for the association of the CYT trait with the floralwhite 

module was 0.79 (p-value = 9e-22).  
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The flowering regulating gene COL10, is a zinc finger protein, member of the 

CONSTANS-LIKE gene family. CONSTANS (CO) gene is an important floral 

regulator in the photoperiod pathway, integrating the circadian clock and light signal 

into a control for flowering time. It is well known that CO promotes flowering in 

Arabidopsis and other species under long-day conditions (Putterill et al. 1995, Zhang 

et al. 2015). Although CONSTANS-LIKE (COL) genes in other species have also 

been shown to regulate flowering time, it is not clear how widely this central role in 

photoperiod sensing is regulated (Wong et al. 2014).  

 

Generally, CO up-regulate the florigen gene FLOWERING LOCUS T (FT) and 

SUPRESSOR OF OVEREXPRESSION OF CO1 (SOC1) under long-day conditions 

(Samach et al. 2000, Searle and Coupland 2004). In Arabidopsis, the FT protein, a 

mobile signal recognized as a major component of florigen, has a central position in 

mediating the onset of flowering. FT-like genes seem to be involved in regulating the 

floral transition in all angiosperms examined to date.  

 

Flowering time is an important ecological trait that determines the transition from 

vegetative to reproductive growth. In depth, one of the key developmental processes 

in flowering plants is the differentiation of the shoot apical meristem into a floral 

meristem. This transition is regulated through the integration of environmental and 

endogenous stimuli, involving a complex, hierarchical signalling network.  

 

Conserved structure and function of the Arabidopsis flowering time gene 

CONSTANS in Brassica napus has been reported. Four genes homologous to the 

Arabidopsis CO gene were isolated from a pair of homeologous loci in each of two 

doubled-haploid Brassica napus lines displaying different flowering times. The four 

genes, BnCOa1, BnCOa9, BnCOb1 and BnCOb9, are highly similar to each other 

and to the Arabidopsis CO gene. Two regions of the proteins are particularly well 

conserved, a N-terminal region with two putative zinc fingers and a C-terminal region 

which may contain a nuclear localization signal. All four genes appear to be 

expressed in B. napus. For instance, the BnCOa1 allele was shown to complement 

the co-2 mutation in Arabidopsis in a dosage-dependent manner causing earlier 

flowering than in wild type under both long- and short-day conditions (Robert et al. 

1998). 
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Recently, new information has emerged on COL genes in the short-day legume 

soybean. Soybean has multiple group COL genes, which comprise two pairs of 

homeologs; COL1a/b and COL2a/b. Two recent studies show that one of these, 

GmCOL2a, is able to complement the Arabidopsis co-2 mutant (Fan et al. 2014, Wu 

et al. 2014), and there is evidence that the remaining genes COL1a/b and COL2b 

may also have some activity in Arabidopsis (Wu et al. 2014).  

 

Flowering is an essential stage of plant growth and development. The successful 

transition to flowering not only ensures the completion of plant life cycles, it also 

serves as the basis for the production of economically important seeds and fruits. 

CONSTANS (CO) and FLOWERING LOCUS T (FT) are two genes playing critical 

roles in flowering time control in plants. Transcriptional activation of FT under 

inductive daylength conditions is mediated by CO, which is itself regulated by a 

complex interplay of signals in the photoperiod pathway.  Adrian et al (2010) analyze 

the promoter region of FT to define the minimal promoter sufficient to mediate the 

response to daylength and identify several key regions that play a role in FT 

chromatin structure and promoter activity.  

Evidence from molecular evolution studies suggests that the emergence of FT-like 

genes coincided with the evolution of the flowering plants. Hence, the role of FT in 

floral promotion is conserved, but appears to be restricted to the angiosperms. 

Besides flowering, FT-like proteins have also been identified as major regulatory 

factors in a wide range of developmental processes including fruit set, vegetative 

growth, stomatal control and tuberization. These multifaceted roles of FT-like proteins 

have resulted from extensive gene duplication events, which occurred independently 

in nearly all modern angiosperm lineages, followed by sub- or neo-functionalization 

(Pa and Nillson 2012). Furthermore, the CONSTANS gene has been a central 

feature of models explaining the molecular basis for plant responses to photoperiod, 

and the potential conservation of CO function across flowering plants is in fact a topic 

of considerable interest.  

Regarding TFL2, it has been found to be a structural component of heterochromatin 

involved in gene repression, including several floral homeotic genes that regulates 

flowering time. It is required for maintenance of vernalization-induced repression of 
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FLOWERING LOCUS C (FLC). Loss of function TFL2, causes daylength-

independent early flowering mainly due to upregulation of FT expression. TFL2 is 

expressed in meristematic tissues and young leaves, whereas expression in 

developing leaves becomes restricted to the petiole and the proximal side of the leaf 

blade, areas where cells continue to proliferate. In mature leaves, TFL2 mRNA is 

restricted to the vascular tissue (Kotake et al. 2003). Further experiments teased out 

other facets of the FT promoter, in particular properties of chromatin structure 

mediated by the chromo domain chromatin-associated protein TFL2. TFL2 is known 

to negatively influence FT expression, since mutants show daylength-independent 

early flowering due to upregulation of FT expression.  

In plant development, two homologous genes, FT and TFL1, modulate the flowering 

transition and inflorescence architecture. The florigen FT promotes the transition to 

reproductive development and flowering, while TFL1 represses this transition. 

Despite their importance to plant adaptation and crop improvement and their 

extensive study by the plant community, the molecular mechanisms controlling the 

opposing actions of FT and TFL1 have remained mysterious. Recent studies in 

multiple species have unveiled diverse roles of the FT/TFL1 gene family in 

developmental processes other than flowering regulation. In addition, the striking 

evolution of FT homologs into flowering repressors has occurred independently in 

several species during the evolution of flowering plants. These reports indicate that 

the FT/TFL1 gene family is a major target of evolution in nature (Wickland and 

Hanzawa 2015).    

Flowering is a key step in plant development, and research on Arabidopsis has 

revealed complex networks of genetic regulatory pathways (reviewed in Amasino 

2010). Much information has been gained towards an understanding of the molecular 

cascades whereby flowering is controlled by environmental cues, especially 

photoperiod and vernalization, whereas endogenous flowering signals have been 

more difficult to investigate. Plant hormones regulate multiple aspects of growth and 

development, so that it is hard to discriminate the direct and indirect effects that 

mutations in their signalling components might have on late phenotypic traits, such 

as seed yield and plant height at flowering.  
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For instance, cytokinin-induced TFL1 expression has been reported to may be 

involved in the control of grapevine fruitfulness. For instance, grapevine bud 

fruitfulness is determined by the differentiation of uncommitted meristem (UCM) into 

either tendril or inflorescence. Since tendril and inflorescence differentiation have 

long been considered sequential steps in inflorescence development, factors that 

control the progression of floral meristem development may regulate the final 

outcome of UCM differentiation, and thus affect fruitfulness. A comparison of the 

expression profiles of the master regulators of floral meristem identity (FMI) during 

development of fruitful and non-fruitful buds along the same cane allowed associating 

the expression of a homolog of TERMINAL FLOWER 1 (TFL1, a negative regulator 

of FMI) to fruitful buds, and the expression of positive FMI regulators to non-fruitful 

buds (D’ Aloia et al. 2011).  

 

Cytokinins are involved in many aspects of plant growth and development, and 

physiological evidence also indicates that they have a role in floral transition. For 

instance, Crane et al. (2012) combined cytokinin-induced upregulation of Vitis 

vinifera TFL1 expression in cultured tendrils, which accompanied cytokinin-derived 

tendril transformation into branched and inflorescence-like structures.  Positive 

regulation of TFL1 expression by cytokinin demonstrated involvement in the control 

of inflorescence development.  

 

Many plants respond to environmental cues, such as day-length and temperature, to 

regulate flowering time. Phytohormones and age, two internal cues, also induce 

flowering. Molecular genetic studies using Arabidopsis have revealed that four major 

floral-promoting pathways — the photoperiod, vernalization, autonomous and 

gibberellin pathways — work in response to environmental and internal cues (Reeves 

and Coupland 2000). These pathways form a network that integrates flowering sig- 

nals into the regulation of several key genes.  

 

Network analysis on genes that are highly representative of flowering process 

(expressed in young plants) such as COL10, TFL1 and TFL2 suggest them as 

sensible targets for further targeted functional characterization in B. napus, or as 

candidates for association mapping that can serve as robust markers for breeding for 

adult plant yield-stability. 
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The WGCNA approach used identified genes with proven functional roles in flowering 

signalling pathway in Arabidopsis, B. napus, and other species, suggest that the 

method is biologically robust and the results are meaningful. Network analyses have 

been proposed as a solution to systems biology studies, particularly those involving 

transcriptomic data-sets, as this approach both models the interactions of real 

biological networks and is intuitively understood by users. The reconstruction of 

biological networks allows processes to be examined from a truly system-scale 

perspective and provides unique insight into the structure and behaviour of the 

molecular interactions that underlie important phenomena such as development  

(e.g. flowering). Furthermore, the clustering of co-expressed genes into “modules” 

mirrors regulatory associations found in biological systems and provides information 

on well-characterized genes with external traits.     

 

4.4.2 Top hub genes during seedling development at 8 and 12 DAS  

 
Top hub unigenes were found in each module using the WGCNA function 

‘chooseTopHubInEachModule’. The topological overlap was recalculated, using the 

WGCNA function ‘TOMsimilarityFromExpr’ (power = 5), for the 3526 unigene in 

fifteen selected modules. The principle is that unigenes highly significantly associated 

for a trait are often also the most important (central) elements of modules associated 

with the trait. These Unigenes can be identified, by correlating the gene significance 

(GS) and module eigengene-based connectivity (kME).  

 

This correlation basically indicates whether, the hub genes in a module are also the 

ones most strongly associated with the trait. Gene significance is defined as the 

correlation of gene expression profiles with an external trait and where the kME is 

determined for each module. Each gene within a module is correlated with the ME, to 

give a measure of module membership (MM). Genes with a high value for MM, are 

central to the modules and may be of importance to organization of the rest of the 

module.  

 

This could be important if we wanted to draw more speculative conclusions, for 

example to hypothesize that the module represents a pathway, the hub genes are 

the ones most important for the pathway, and hence we would hypothesize that the 
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hub genes are also the ones most important for the trait. In this study, the same 

unigene was the top for datasets, 8 and 12 DAS, for fifteen modules. It is assumed 

that if modules have the identical hub genes then these modules are robust between 

datasets. The fifteen modules were selected for investigation of Top Hub Unigenes in 

B. napus at seedling development. Annotation of these 15 top hub unigenes to the 

Arabidopsis thaliana genome was performed. BLASTN hits in Arabidopsis (p≤1.0E-

30) were found for 15 Brassica unigenes (Table 12).  

 

These fifteen top hub genes were identified to be involved in many processes of 

growth and development for seedling development at 8 and 12 DAS. For instance, 

the genes GF14 (G BOX FACTOR 14-3-3 OMEGA) or GRF2 (GENERAL 

REGULATORY FACTOR 2) encode so called CF14 proteins which participate in 

protein/DNA complexes and show more than 60% identity with a highly conserved, 

widely distributed protein family, collectively referred to as 14-3-3 proteins (de Vetten 

and Ferl 1994). Moreover, GRF1 (GROWTH REGULATING FACTOR 1), which plays 

a key role in various aspects of tissue differentiation and organ development (Li et al. 

2011) was also identified as a top hub gene mainly involved in leaf development. 
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Table 12. Top Hub Unigenes at 8 and 12 DAS (days after sowing) in B. napus. 

Annotation of Top Hub unigenes to Arabidopsis genome (TAIR 10).  

 
  Top Hub Unigene    
Module       8DAS     12DAS Unigenes BLASTX to 

Arabdopsis Gene 

darkgreen A_EE513355 A_EE513355 677 AT1G19870 IQD32 (IQ-domain 32); calmodulin 
binding 

darkorange A_JCVI_31511 C_JCVI_31511 622 AT5G44560 VPS2.2 (VACUOLAR PROTEIN 
SORTING 2.2) 

indianred3 C_JCVI_24 A_JCVI_24 60 AT5G19140   AILP1 (ALUMINUM INDUCED 
PROTEIN 1) 

indianred4 A_EV128580 A_EV128580 123  !

lavenderblush2 C_JCVI_1353 C_JCVI_1353 95 AT1G54020 MyAP ( MYROSINASE-
ASSOCIATED PROTEIN)  

lightcoral C_EV101618 A_JCVI_36839 130 AT4G09800 RPS18C (S18 RIBOSOMAL 
PROTEIN) 

mediumpurple1 C_JCVI_27124 C_JCVI_27124 62 AT1G28240 unknown protein 

orangered1 A_JCVI_6967 C_JCVI_6967 66 AT4G15000 RPL27C (60S ribosomal protein 
L27) 

orangered3 A_JCVI_10152 A_JCVI_10152 149 AT5G55850  NOI (NITRATE INDUCED 
PROTEIN) 

plum C_JCVI_25605 A_JCVI_25605 152 AT1G04560 AWPM-19-like membrane family 
protein 

plum2 C_JCVI_5013 C_JCVI_5013 263 AT1G17110  UBP15 (UBIQUITIN-SPECIFIC 
PROTEASE 15) 

salmon4 C_JCVI_22791 A_EH421644 237 AT1G78300 GRF2 (GENERAL REGULATORY 
FACTOR 2), GF14 

    AT2G14080  TIR-NBS-LRR class (disease 
resistance protein) 

skyblue C_JCVI_1160 A_JCVI_1160 563 AT5G43830 unknown protein 

thistle2 C_JCVI_41561 A_JCVI_41561 248 AT2G22840 GRF1 (GROWTH-REGULATING 
FACTOR 1) 

yellow3 A_JCVI_391 A_JCVI_391 77 AT1G72610  GER1 (GERMIN-LIKE PROTEIN 1) 
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4.4.3. Identifying biological functions of modules using gene ontology over-

representation analysis 

 

The top Arabidopsis hit corresponding to each Brassica unigene was used for 

functional analysis. Functional classification was carried out using the agriGO web- 

based GO analysis toolkit (Table 12). Arabidopsis genes (corresponding to each 

unigene) were input into the Singular Enrichment Analysis (SEA) using a customised 

reference background (63,797 unigenes corresponding to 17,933 Arabidopsis 

genes). The Hypergeometric Test with Yekutieli (FDR under dependency) adjusted 

the p-values, which was employed in the SEA analysis using the agriGO ontology. 

For instance, regulation of cell size, shoot system development and fruit development 

were found as the function of each module.  

 

A consensus co-expression network was constructed for both datasets containing 15 

modules, each were represented by a specific colour. Using a cut off of ≥ 0.1 for 

unigene connections, the module network was exported to Cytoscape (Cline 2007) to 

enable the visualisation of the network (Figure 9). The Cytoscape Plugin Network 

Analyzer (Assenov 2008) was used to calculate topology parameters. Candidate 

network drivers were identified by ranking nodes based on their degree index and 

also by comparing the index values determined for closeness, radiality and 

eccentricity. The top hub unigenes were identified from 15 modules, which were 

highly conserved between the two datasets and selected as candidate genes in this 

study.  

 

 

 

 



 50 

Table 13. Singular enrichment analysis (SEA) of modules with their respective top 

hub unigenes using agriGO. 

 

  
Function of module 

  
  SEA analysis  http://bioinfo.cau.edu.cn/agriGO/index.php 

Module 
Top Hub 
unigene 

Arabidopsis 
hits GO term Description FDR 

darkgreen A_EE513355 242 GO:0008361 regulation of cell size 0.014 

darkorange A_JCVI_31511 206 GO:0022621 shoot system development 0.0039 

  C_JCVI_31511         

indianred3 C_JCVI_24 20 GO:0010035 response to inorganic substance 2.50E-05 

  A_JCVI_24         

indianred4 A_EV128580 38 GO:0005198 structural molecule activity 0.0018 

lavenderblush2 C_JCVI_1353 35 GO:0009753 
response to jasmonic acid 
stimulus 7.10E-05 

lightcoral C_EV101618 36 
No significant 
term     

  A_JCVI_36839         
mediumpurple
1 C_JCVI_27124 14 GO:0016740 transferase activity 4.60E-02 

orangered1 A_JCVI_6967 12 GO:0006412 translation 0.013 

  C_JCVI_6967         

orangered3 A_JCVI_10152 59 GO:0006412 translation 0.0041 

Plum C_JCVI_25605 52 GO:0010154 fruit development 2.00E-07 

  A_JCVI_25605         

plum2 C_JCVI_5013 136 GO:0016773 
phosphotransferase activity, 
alcohol group as acceptor 0.013 

salmon4 C_JCVI_22791 69 
No significant 
term     

  A_EH421644         

Skyblue C_JCVI_1160 212 GO:0009266 response to temperature stimulus 0.006 

  A_JCVI_1160         

thistle2 C_JCVI_41561 117 GO:0043231 
intracellular membrane-bounded 
organelle 0.022 

  A_JCVI_41561         

yellow3 A_JCVI_391 23 
No significant 
term     
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Figure 8. Co-expression network visualised in Cytoscape for 8 and 12 DAS (days 

after sowing) seedling plants. Each colour module with its respective gene ontology 

description. Eight hub genes shown in the same colour as their respective module 

identified.  NITRATE INDUCED PROTEIN (NOI), MYROSINASE-ASSOCIATED 

PROTEIN (MyAP), ALUMINUM INDUCED PROTEIN 1 (AILP1), GERMIN-LIKE 

PROTEIN 1 (GER1), GENERAL REGULATORY FACTOR 2 (GF14), GROWTH-

REGULATING FACTOR 1 (GRF1), UBIQUITIN-SPECIFIC PROTEASE 15 (UBP15) 

and,  VACUOLAR PROTEIN SORTING 2.2 (VPS2).  Colour for each network 

corresponds to the module colour for which the top hub gene was identified. As 

example, the arrow shows the indianred3 module.  

 

 
 

Figure 3. Co-expression correlation network for the 8DAS dataset and the names of the eight regulatory candidate

genes. The position of the eight candidate genes is shown in the network together with the function of the module.
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5 Discussion 

High throughput DGE data was generated to achieve parallel quantitative expression 

profiling for hundreds of transcripts from each individual of the ExV8-DH mapping 

population. The aim was to investigate global gene expression during seedling 

development of WOSR, based on multiplexed DGE-tag profiling. The results 

demonstrate that this method can be used to multiplex genotypes from a rapeseed 

population and give enough DGE data to identify candidate genes for specific 

complex trait regulation.  

5.1 Multiplexing DGE-Ilumina sequencing for large plant 

populations 

Illumina multiplexed DGE-tag sequencing of seedling cDNA libraries from the ExV8-

DH population, segregating for a large population at a seedling developmental stage 

have been performed. DGE multiplexed libraries were generated from the cross 

parents 'Express 617' and 'V8', their F1 and 96 ExV8-DH lines that show maximal 

phenotypic diversity during seedling development. Multiplexing of samples is a 

suitable approach to reducing costs during the sequencing process. I have combined 

DGE-Illumina sequencing with LongSAGE method to generate multiplexed DGE 

(Obermeier et al. 2015) profiling data as a suggested method to uncover higher level 

of complexity of transcriptomes (Hanriot et al. 2008, Asmann et al. 2009, Morrisy et 

al. 2010).  

For instance, a study of multiplexing sequencing of plant chloropast genomes using 

Solexa sequencing by synthesis technology has been reported (Cronn et al. 2008). In 

this study, Illumina DGE sequencing of short 3'-EST tag sequences have been found 

to be a powerful alternative to conventional microarray expression analysis, 

particularly for accurate quantification of low-abundance transcripts and potential 

identification of unknown genes.  

Similar to conventional serial analysis of gene expression (SAGE), digital gene 

expression (DGE) tag sequencing library construction   involves   the   production   of   
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short tags from the 3’ end of mRNA molecules and compared to conventional 

microarrays, which provides a hybridization-based measure of gene expression, 

DGE has an advantage of significantly greater dynamic range limited only by 

sampling depth and achieved high sensitivity. This leads to improved accuracy in the 

quantification of abundant and rare transcripts and also excels de novo transcript 

discovery, which is only possible for the subset of microarrays that have probes, 

representing the entire genome (Morrisy et al. 2010). The general understanding of 

DGE methods can be simplified as sequence tags created by restriction enzyme 

digestion of cDNA, where the number of tags sequenced gives an absolute count (up 

to 30 million) of all RNA in the sample with accuracy compared to qPCR. Because 

DGE does not require any priori sequence information, it can be used for species 

with inadequate reference genomes, and as tag databases (EST) that are revised, 

existing data can be readily re-analyzed (Lakdawalla and VanSteenhouse 2008). 

Such techniques based on sequencing of complete messenger RNA libraries 

(mRNA-Seq) or of short cDNA-tags (digital gene expression; DGE), allow more 

powerful studies in mapping populations with hundreds of individuals. Fully 

quantitative mRNA-Seq is generally too expensive for frequent application in large 

segregating populations. On the other hand, high-depth sequencing of short defined 

tags offers a powerful alternative at a fraction of the price, which enables the 

generation of highly quantitative global expression data in large populations of plant 

individuals. Because it can be applied to large mapping populations of 100 or more 

individuals at relatively low cost, the DGE approach like the one presented here are 

suitable and cost-effective and accurate for further identification of transcript-based 

markers for breeding. Many of the methods for library preparation to be used with 

next-generation sequencing are amenable to sample multiplexing.  

The ability to multiplex samples increases the efficiency of the system by enabling 

the analysis of a large number of samples simultaneously. Indexing individual 

samples requires the inclusion of an indexing tag (barcode) to the adapter 

oligonucleotides that is unique to the sample. Samples would be prepared 

separately, ligated to sample specific Illumina GEX1 adapter (index sequence + 

adapter), and then combined for cluster information and sequencing. A four-base 

index code would allow 256 individual codes (44 unique combinations would 

therefore enable 256-plex sequencing). 
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5.2 DGE data analysis enables mapping to the Brassica unigenes 

 

The DGE method was applied in order to perform deep transcriptome analysis and to 

explore a large genome of winter oilseed rape (Brassica napus L.), using the doubled 

haploid (DH) population Express617xV8 at the seedling stage. The multiplexed DGE 

protocol described here for production of DGE libraries, with 21 bp tag length for 

mapping populations with 96 genotypes allowed application of 8-plex barcoding for 

sequencing in 12 flow cells on Illumina systems GAIIx (Obermeier et al. 2015). The 

number of unique DGE-tag sequences detected, represented the quantitative 

expression level of the corresponding transcript for each genotype. DGE-tags were 

mapped to the Brassica unigenes AC ‘cured’, as reference sequence using 810,254 

EST sequences, mainly from the three species B. napus, B. rapa and B. oleracea. 

Mapping was conducted with the aim of specific identification of unigenes in B. napus 

from each of the A and C genomes.  

 

To do this, the mapping strategy was a three-step procedure based on estimates of 

DGE specific tags. This is due to multiple Tag-to-gene matching ocurring in B. napus 

because of its complex paleopolyploid structure. First, DGE-tag counts are evenly 

distributed to the matching unigenes. Second, the average values of the relative 

abundance of a gene expression, based on the specific tag-to-gene matching to 

Brassica unigenes has to be done if the tag matched more than one unigene.  And 

thirdly, DGE-tags are added together if different tags matched the same unigene. 

After this, the sum of DGE-tag counts for each unigene were normalised to a total tag 

counts of 10, 000,000 for all DGE libraries.  

 

This DGE normalised data was next used for detection of differentially expressed 

genes as well as for the network analysis. In contrast to functional assays, 

quantitative analysis of gene expression level lends itself to large scale 

implementation, for this, two main approaches have been proposed. First, the 

bulked-segregant analysis of DGE and second, the weighted gene co-expression 

network analysis (WGCNA) for identification of candidate genes.  
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5.3 DGE-BSA approach contributes to the understanding of 

complex trait regulation in winter oilseed rape 

 
In the present study, DGE data based on 27 phenotypic traits have been used for 

pooling of genotypes. Using BSA in combination with DGE data (BSA-DGE), many 

genes differentially expressed in the developing seedlings of the B. napus ExV8-DH 

mapping population were identified. For each time point, 8 and 12 DAS, differentially 

expressed genes were identified using a relaxed P-value (p<0.05). Although, not 

several genes belonging to the ABA biosynthetic pathway were identified here, the 

presence of the RING/U-box superfamily protein has been recently reported to play a 

role in transcriptional regulation in response to ABA in Arabidopsis thaliana (Jiang et 

al. 2014). On the other hand, the enzyme ATP citrate lyase, also identified here as 

differentially expressed, has been reported to be found in crude extracts from 

endosperm tissue of germinating castor bean and showed its maximum activity in 4-

to 5-day-old seedlings (Fritsch and Beevers 1979).  

 

The phytohormone abscisic acid (ABA) is well known for its regulatory roles in 

integrating environmental constraints with the developmental programs of plants. 

ABA affects a broad range of physiological processes during different developmental 

stages. Therefore, ABA-regulated processes are generally divided into two broad and 

overlapping categories: ABA signalling in seeds for maintenance of seed dormancy 

and control of early seedling development. In the case of ABA trait for 12DAS, a 

down-regulation of the LATE EMBRYOGENESIS ABUNDANT (LEA) gene was 

identified. LEA gene expression has been reported during seed maturation and is 

largely controlled by a combinatorial action of transcription factors.  

 

Extensive analyses of promoter sequences for protein storage and LEA genes have 

demonstrated the presence of elements required for hormone responsiveness, 

stage- and tissue-specificity (Finkelstein 2014). The Leucine-rich repeat protein 

kinase was also identified as differentially expressed for ABA3 at 8DAS. The 

Leucine-rich repeat receptor-like kinase has been reported to be a key membrane-

bound regulator of abscisic acid at early signalling in Arabidopsis (Osakabe et al. 

2005). Identification of MIKC (MADS intervening keratin-like and C-terminal), a key 

transcription regulator involved in many process during plant development and FP1 
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(FRIGIDA INTERACTING PROTEIN 1), a plant-specific coiled-coil domain-containing 

protein required for the up-regulation of FLC (FLOWERING LOCUS C), was also 

observed, under ABA3 trait.  

 

ABA regulate the expression of many agronomically important aspects of plant 

development, including the synthesis of seed storage proteins and lipids, promotion 

of seed desication and dormancy, inhibition of the phases of transition from 

embryonic to germinative growth and from vegetative to reproductive growth (Leung 

and Giraudat 1998, Johanson et al. 2000, Caicedo et al. 2004, Wang and Zhang 

2008) Overall, ABA-regulated genes range from relatively high abundance 

transcripts, which are required for adaptation or stress response, to low abundance 

transcripts, which encode signalling components (Finkelstein et al. 1985, Finkelstein 

and Sommerville 1989, Finkelstein et al. 2002). ABA pathways from the earliest 

activities of FLC in the juvenile-to-adult transition and in response to abiotic stress 

and hormonal action of various kinds, do relate the vegetative to reproductive 

transition (Wang et al 2013, Zhang et al 2014).  

In addition, CLV1 was found to be differentially expressed for complex traits such as 

plant height at flowering as well as for shoot leaf weight. CLV1 is a putative receptor 

kinase with an extracellular leucine-rich domain that controls shoot and floral 

meristem size, and contributes to establish and maintain floral meristem identity 

(Stone et al. 1998, Betsuyaku et al. 2011), thus suggesting its role during 

development of winter oilseed rape. Differential expression of CLAVATA1 (CLV1) 

gene delighted understanding for shoot meristem development when identified for 

shoot fresh weight (SPHW) trait. In Arabidopsis, CLV1 gene is involved in 

maintaining the balance between the stem cells in the central zone of the stem apical 

meristem and the determined cells at its periphery (Clark et al. 1997, Martinov et al. 

2004).  Overlapping of CLV1 gene within traits, such as SPHW at 8 DAS, and plant 

height at flowering for year 2006 (PH06) at 8 and 12 DAS suggested the importance 

of identification of this gene as a regulator during transition phases from vegetative to 

reproductive stage in winter oilseed rape. For instance, Elhiti and Stasola (2012) 

efforts to identify the role of CLV1, during in vitro shoot formation in Brassica napus, 

observed over-expression of BnCLV1 and acceleration of transition to differentiation 

in transformed plants. Recently, CLV1 has been reported to join the plant root system 
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pathway playing a key role as a root stem cell regulator (Williams and Smet 2013, 

Araya et al. 2014).  

The TT7 (TRANSPARENT TESTA 7) was differentially expressed for seed yield trait 

for year 2006. TT7 encode a flavonoid-3’-hydroxylase (F3’H) and is named 

TRANSPARENT TESTA (TT) because it confers a pale-brown to yellow seed 

phenotype when mutated (Xu et al. 2007, Auger et al. 2009, Routaboul et al. 2012) 

Flavonoid metabolism has been largely elucidated in the model crucifer Arabidopsis 

thaliana in which at least 23 loci are required for normal seed pigmentation (Lepiniec 

et al. 2006) thus, they stand for good candidate genes to be investigated the 

procyanidin-related molecular mechanisms in B. napus. For instance, TT7 ortholog 

has been identified in oilseed rape (Xu et al. 2007). 

Regarding the LHCB3 (LIGHT HARVESTING CHLOROPHYLL B BINDING 

PROTEIN 3) gene was found to play a crucial role during seed yield in the year 2007. 

LHCB3 is involved in reducing the rate of state transitions and containing trimers in 

the M position associated more tightly to Photosystem II (PSII), conferring in some 

way an evolutionary advantage to plants, in fact most of the photons that are 

converted to biochemical energy and biomass through photosynthesis are harvested 

by the major light-harvesting chlorophyll a/b binding antenna complex light- 

harvesting complex II (LHCII), known as the most abundant proteins on earth. The 

LHCB3 protein is synthesized in the cytosol, posttranslationally imported into the 

chloroplasts, and inserted into the thylakoid membranes (Janson et al. 1992, 

Damkjær et al 2009, Pietrzykowska et al. 2014). 

Moreover, CRU2 (CRUCIFERIN 2) was one of the genes shown to be a differentially 

expressed SY07 trait. CRU2 is synthesized during seed development, assembled 

into very compact protein complexes, and finally stored in protein storage vacuoles 

(Nietzel et al. 2013). Cruciferins are the major type of seed protein in Arabidopsis 

(Pang et al. 1988) and B. napus and are 12S globulins, synthesized as 

preproproteins, and are ultimately cleaved into a (30–35 kD) and b (21–25 kD) 

polypeptides and assembled into hexamers. Plant seeds naturally accumulate 

storage reserves, e.g, cruciferins that are mobilized during germination to provide 

energy and raw materials to support early seedling growth (Lin et al. 2013). Previuos 

studies, using the same parental line Express617 used in this study, reported 
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differentially expression of CRU2 at 35 days after pollination (DAP) (Obermeier et al. 

2009). 

The identification of differentially expressed genes in seedling plantlets was relevant 

not only for its intrinsic biological significance, but also for discovering potential 

targets and prognostic gene expression markers at an early developmental stage. 

After identifying differentially expressed genes, the next step is to investigate, 

whether these genes reveal functionally relevant information. As was mentioned 

above, the CLV1 gene controls shoot and floral meristem and could be therefore a 

very suitable candidate as key regulator in B. napus. The CLAVATA signalling 

pathway consists of the small secreted CLV3 peptide, the receptor-like kinases CLV1 

and CORYNE (CRN), and the receptor-like protein CLV2 (Clark et al. 1997). The 

model for CLAVATA signalling suggests that CLV1, CLV2 and CRN perceive CLV3 

peptide, and receptor activation functions to restrict the expression WUSCHEL 

(WUS).  The WUS expression acts as an organizing center required for maintenance 

of the stem cell in shoot apical meristem.  

 

The shoot apical meristem is responsible for aboveground organ initiation in higher 

plants, accomplishing continuous organogenesis by maintaining a pool of 

undifferentiated cells and directing descendent cells toward organ formation. The 

CLAVATA signalling pathway regulates cell proliferation in fruit organ formation. 

Thus, differential expression of CLV1 during seedling development could be useful 

as a target for breeding adult plants oriented to improve yield stability. It is interesting 

to note also the functional relevance of the LHCB3 gene expressed for the seed yield 

trait. LHCB3 is part of the light-harvesting complex of higher plants very important 

during photosynthesis process. The most likely role of LHCB3 is as an intermediary 

between light energy transfer from the main LHCB1/LHCB2 antenna to the 

photosystem II core. Usefulness of LHCB3 as a candidate gene expressed in young 

plants for early stage of breeding selection of genotypes would lead to improving of 

plant seed yield. In addition, to efficiently harvest solar energy, overexpression of 

LCHB3 could be an option for increasing photosynthetic rate in B. napus.   For this, 

the use of the leaf-specific promoter region of LCHB3 would be recommended.  
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5.4 WGCNA candidate genes expressed during seedling 

development  

A well-known network strategy, WGCNA, has been applied as an easy approach for 

network modelling based on simple correlation procedure for clustering genes by 

their expression patterns. WGCNA helps us to identify modules with highly correlated 

genes (Barabasi and Oltvai 2004, Keurentjes et al. 2007, DiLeo et al. 2011, Basnet et 

al. 2013). Correlation analysis provides an overview of potential candidates genes 

associated with a trait or development stage, thus the next would be finding of the 

putative function of the highly correlated genes. Furthermore, in this work by using 

DGE sequencing data to perform WGCNA gave an insight of how expression 

variation contributes to phenotypic variation at early stages of seedling devlopment. 

For complex traits, it was aimed to identify a major regulator, which largely explains 

the phenotypic variation observed in winter oilseed rape during seedling 

development. A combination of WGCNA and GO enrichment tests was realised to 

better determine potential regulators involved during seedling development of the 

ExV8-DH population.   

A total of 15 top hub Brassica unigenes were identified for the 8 and 12 DAS DGE 

datasets (Table 5). The IQD32, VPS2.2, MyAP, RPS18C, RPL27, NOI, AWPM-19, 

UBP15, GF14, GRF1, and GER1 genes were clearly annotated to the genome of 

Arabidopsis thaliana (Table 6) and their key role during plant development has been 

reported before (Li et al. 2011). For instance, the IQD32 gene has been identified in 

Arabidopsis and rice. IQD gene family members share as many as three calmodulin 

binding motifs IQ, 1-5-10, and 1-8-14. While the IQD32 gene function has not been 

well characterized, IQD1 has been shown to function in defense response to 

herbivore. In contrast, the role of VPS2 may lie beyond shoot system development, 

the membrane deformation and fission function is supported by the large fraction of 

proteins annotated in and isolated from nuclei and the localization of AtVPS2.2-GFP 

in the nucleus. Most of the membrane binding function is mediated by the  large 

multimeric ESCRT-III complex and associated proteins.  

The endosomal sorting complexes required for transport  (ESCRT) guides 

transmembrane proteins to domains that bud away from  the cytoplasm (Ibl et al. 

2011). In the case of MyAP gene, it has been reported that myrosinases can be 
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found in seeds, seedlings, and mature tissues, although the amount of activity and 

the type of isoenzymes expressed, differ with respect to both the type of organ and 

the developmental stage (Bones 1990). Cloning and analysis revealed the existence 

of a gene family encoding MyAP or MyAP-related protein and that transcripts 

corresponding to MyAP in non-wounded plants are found predominantly in seeds and 

to response to jasmonic acid (Taipalensuu et al. 1997).  

Furthermore, MyAP displayed considerable similarity to an early nodulin (ENOD8) 

from Medicago sativa and to a proline-rich protein (APC), described as anther 

specific, from Arabidopsis tbaliana and B. napus (Taipalensuu et al. 1996). This 

could be an important key regulator during seed development at the end of flowering 

stage for winter oilseed rape. Thus to be correlated with yield and yield components. 

For instance, comprehensive phenotype characterization UBP15 gene using ubp15 

mutants revealed that UBP15 plays a critical role in Arabidopsis leaf development by 

controlling cell proliferation and reproductive development. Both ubp15 mutants 

produced narrow rosette leaves that are serrated and flat, and exhibit a decrease in 

the cell number in a transverse section across the lamina, whereas the UBP15 

overexpression line shows an opposite phenotype. This indicates that UBP15 can 

affect the leaf shape by controlling cell proliferation, possibly by regulating cell-cycle 

proteins (Liu et al. 2008). 

Another key regulator identified and playing an important role during plant 

development was GRF1. Generally, growth regulating factors (GRFs) are a 

conserved class of transcription factor in seed plants specifically involved in leaf 

development (Figure 10). The implication of GRFs in biotic stress response reports a 

role of these transcription factors in coordinating the interaction between 

developmental processes and defense dynamics. However, the molecular 

mechanisms by which GRFs mediate the overlaps between defense signaling and 

developmental pathways are elusive (Liu et al. 2014). GRF1 seems to fine-tune the 

crosstalk between microRNA (miRNA) signaling networks by regulating the 

expression of several miRNA target genes. Li et al. (2011) reported that 

microRNA396 (miR396)-targeted Arabidopsis growth-regulating factors (AtGRFs) are 

required for leaf adaxial–abaxial polarity formation during leaf morphogenesis. It is 

further shown that miR396 negatively regulates cell proliferation in leaves by 

controlling the entry into the mitotic cell cycle, coincident with its expression in leaf 
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cells arrested for cell division. Because, the cells are unable to enter into the mitotic 

cell cycle often undergo enlargement and expansion to start differentiation 

(Nieuwland et al. 2009). These data together with previous results strongly suggest 

that active cell division in the primordium is important for leaf adaxial– abaxial polarity 

formation, and highlights that miR396- targeted at AtGRFs may mediate coordination 

processes of cell division, coupled with cell differentiation during leaf morphogenesis.  

On the other hand, GER1 was first identified in germinating wheat embryos and was 

shown to play an important role in the plant defense response as well as to possess 

oxalate oxidase activity (Sharkawy et al. 2010). Proteins with sequence similarity to 

germins have been identified in various plant species, termed ‘germin-like proteins’ 

(GLPs). They were assumed to be structural proteins as a consequence of their 

localization in the extracellular matrix. Regarding RPS18C and RPL27 genes, it has 

been suggested, that expression of ribosomal protein genes in plants and other 

organisms is coordinately regulated (Gannt and Key 1985) and a number of plant 

ribosomal protein genes have been isolated, including cDNA clone from Solanum 

tuberosum TUBL27 (Taylor and Davies 1994). Furthermore, RPS18C leader 

mediated cap independent translation (CIT) as demonstrated by dicistronic 

constructs consisting of luciferase and chloramphenicol acetyl transferase reporter 

genes in an in vitro wheat germ extract system. CIT was rapidly inhibited upon 

addition of an oligonucleotide that competed for the 18S rRNA site complementary to 

the RPS18C leader and interfered with polysome assembly at the transcript 

(Vanderhaeghen et al. 2006).  

In addition to this, no link between NOI proteins and nitrogen metabolism has been 

established. The family of proteins containing NOI domains contains members, 

exclusively from the plant lineage as far back as moss. In addition to the conserved 

NOI domain, family members containing conserved C-terminal cysteine residues 

which are sites for acylation and membrane tethering, might be involved in defense 

associated vesicle trafficking. The NOI domain comprises of approximately 30 amino 

acids and contains 2 conserved motifs (PXFGXW and Y/FTXXF) (Afzal et al. 2013). 

Another gene identified, was belonging to the AWPM-19 like membrane family 

protein, whose members are 19 kDa membrane proteins. It is known that levels of 

the plant protein AWPM-19 increases dramatically when there is an increased level 

of abcisic acid (ABA). The increasing presence of this protein has been related to a 
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greater tolerance of freezing. The increased freezing tolerance of ABA-treated cells 

was closely associated with the remarkable accumulation of 19-kDa polypeptides in 

the plasma membrane of suspension-cultured cells derived from immature embryos 

of winter wheat (Triticum aestivum L. cv. Chihoku). The response to ABA treatments 

indicated that this protein is relevant for further research, to study its role in the 

freezing tolerance process (Koike et al. 1997).  

GF14 called GRF2, has been reported to be a member of the 14-3-3 protein family 

that activates Tyr and Trp hydroxylases, modulate protein kinase C activity, and 

activate ADP-ribosyltransferase. The mRNAs of the GF14 gene is encoded by six 

exons interrupted by five introns. The transcriptional units of the GF14 gene was 

found to be very similar, with complete conservation of the intron positions (de Vetten 

and Ferl 1994). The 14-3-3 proteins were the first signaling molecules to be identified 

as discrete phosphoserine/threonine binding modules. This family of proteins, which 

includes seven isotypes in human cells and up to 15 in plants, plays critical role in 

cell signaling events that control the progress through the cell cycle, transcriptional 

alterations in response to environmental cues, and programmed cell death. Protein 

14-3-3 are a family of evolutionary conserved dimeric proteins that accomplish a wide 

range of regulatory roles in eukaryotes, including cell cycle control, mitogenesis, and 

apoptosis. In plants, these proteins regulate primary metabolism, ion transport, 

cellular trafficking, gene transcription and hormone signalling (Palluca et al. 2014). 

The key emerging role for GF14 including its role in the response to the plant 

extracellular environment, particularly environmental stress, pathogens and light 

conditions and address potential key roles in primary metabolism, hormone signaling, 

growth and cell division (Aducci et al 2002, Denison et al 2011� ��

 
It should be apparent that network analysis of gene interaction patterns bears a 

striking resemblance to what is now called ‘systems biology’. One of the central 

questions in this field is whether there are emergent properties of complex systems 

that are not predicted from looking at individual systems components, yet are 

essential for understanding the function of the system as a whole. The gene 

interactions of IQD32, VPS2.2, MyAP, RPS18C, RPL27, NOI, AWPM-19, UBP15, 

GF14, GRF1, and GER1 genes within their respective consensus module need to be 

further studied to really understand complex patterns of gene regulation. These 15 
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genes have been further selected for evaluation of relative expression using qPCR 

during seedling development (Körber et al. 2015).   

 

5.5 Gene expression of complex traits  
 

Nowadays gene expression represents a major genetic basis for complex traits. 

Many complex traits of biological and agronomic significance in plants are controlled 

in a complex manner by multiple genes. Candidate genes that display differential 

expression and networks, defined by shoot and leaf development-related genes 

could be identified. Thus, Holland (2007) suggested that gene expression analyses 

would be an important tool for unraveling genetic architecture and the connections 

between genotypic and phenotypic variation, but the results of such studies require 

careful interpretation, since gene expression levels are phenotypes that can be 

affected by numerous loci beyond the specific gene, whose mRNA level is being 

considered. Many traits that are important for fitness and agricultural value of plants 

are complex quantitative traits, affected by many genes, the environment, and 

interactions between genes and environments.  

 

Genetic dissection of transcript abundance or either DGE data has shed on the 

architecture of quantitative traits, providing a new approach for connecting mRNA 

sequence variation with phenotypic variation, and has improved our understanding of 

transcriptional regulation and regulatory variation in plants (Rockman and Kruglyak 

2006, Shen et al. 2011, Nishiyama et al. 2012, Zhang et al. 2014). In the last decade, 

DGE global transcriptome profiling methods have evolved rapidly due to the 

increasing availability and diversity of cost-effective next generation sequencing 

technologies (Hunt et al. 2011, Wei et al. 2013, Philippe et al. 2014). A focal point in 

the field of eukaryotic gene regulation is understanding the mechanisms of 

transcription control. The prevailing view is that this regulation is mediated, in part, by 

interplay between distinct DNA sequence elements found in the promoter region of a 

gene and sequence-specific DNA-binding proteins. In plant systems, there has been 

a major effort to identify DNA-binding proteins specifically interacting with their 

cognate promoter sites and to elucidate how the binding of such proteins results in 

increased or decreased transcription of the associated gene. Furthermore, 

determining the genetic basis for the variation during seedling development had great 
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potential for both, modification of metabolic composition through classical breeding 

and for unravelling metabolic, regulatory, and developmental pathways.  

 

In addition to this, epistatic effects could also be suggested, to highlight complex 

interactions that would explain a complex phenotype. Epistasis, or interactions 

between different genes, has long been recognized to be fundamentally important to 

understanding both the structure and function of genetics pathways as well as the 

evolutionary dynamics of complex genetic systems e.g FLC, FRI interactions 

(Caicedo et al. 2004, Philips 2008, Chiu et al. 2012, Wan et al. 2013, Le Rouzic 

2014). Genetic interactions among loci is called epistasis, and among traits is 

referred to as pleiotropy. Recent multi-trait analyses at different phenotypic levels are 

uncovering the pleiotropy and the genetic regulation underlying high-level complex 

traits (Blanco and Méndez-Vigo 2014). The existence of pleiotropic loci is well 

documented in model organisms. 

 

Since the Brassica A and C genomes most likely have arisen from a hexaploid 

ancestor common to Arabidopsis, with a series of chromosomal rearrangements and 

duplications (Lysak et al. 2005, Chaloub et al. 2014), I extended my analysis by using 

the ‘Express617xV8’ double haploid (ExV8-DH) mapping population composed of 

homozygous lines to increase the likelihood of detecting significant differentially 

expressed genes and genetic effects associated with the complex traits (e.g. 

flowering, seed yield) and thus, information on their complex biosynthetic pathway. 

Unraveling the genetic architecture of complex traits in plants will require many more 

studies along the parallel tracks of detailed analysis of small genome regions and 

large-scale investigations of the genome function across diverse populations.  

 

Nevertheless, deciphering the genetic and molecular bases of quantitative variation 

is a long-standing challenge in plant biology because, it is essential for understanding 

evolution and for accelerating plant breeding (Blanco and Méndez-Vigo 2014). To 

date, Chalhoub et al (2014) released a whole genome sequence of B. napus and 

aligments with progenitors A and C genomes have been performed. Further 

annotation of our DGE data with the genome of B. napus would be useful to fully 

ease an understanding of the candidate regulatory genes identified in this study. The 

DGE data presented in this work are the basis for ongoing breeding programmes in 
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oilseed rape, because detailed knowledge on the genetic diversity between 

genotypes in the frame of a breeding programme is of prime interest and facilitates a 

more efficient selection of parental genotypes for both, line and hybrid breeding. 

BSA-DGE allowed the identification of genes associated with several traits during 

seedling development of winter oilseed rape. Overall, differentially expressed genes 

revealed candidate genes associated with shoot system development, plant height at 

flowering, and seed yield traits in the years 2006 and 2007. The last question here 

would be whether one approach was better than the other for meeting the stated 

objectives. Transcriptome analysis or WGCNA alone are not sufficient to identify 

candidate genes, instead it is necessary to integrate this data with other genetic 

approaches such as eQTL since, we need to specifically dissolve localized genomic 

regions.  
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6   Summary 
 

A more efficient digital gene expression (DGE) method to produce sequencing data 

by multiplexing from a large plant population of winter oilseed rape (Brassica napus 

L.) was created. Subsequently, DGE analysis to identify candidate regulatory genes 

associated with complex traits during seedling development was performed. Seedling 

vigour is an important trait due to its influence on seedling establishment before 

winter and the consequent effects on yield and yield stability. The multiplexed-DGE 

analysis was proved to be a cost-effective method for large-scale quantitative 

transcriptome analysis, using next-generation Illumina (Solexa) sequencing. The 

normalised DGE data with barcode multiplexed indexing could then be successfully 

applied to weighted gene co-expression network analysis (WGCNA) together with an 

integration of phenotypic and metabolic hormone data.  

 

A bulked-segregant analysis (BSA)-DGE approach was used in this study. For each 

of the investigated traits, 20 best and 20 worst performing individuals, respectively, 

were assigned to bulks with significant phenotypic variance. The bulked DH lines 

segregate strongly for numerous complex quantitative traits, e.g. development, 

vigour, flowering, and yield components. A number of significantly differentially 

expressed genes could be identified.  

 

The regulatory gene CLV1 (CLAVATA 1) was found to be differentially expressed for 

traits such as shoot fresh weight and plant height at flowering for year 2006. This 

suggests its role as regulatory component of the molecular network controlling shoot 

meristem activity in winter oilseed rape. In addition, the genes NIP (NOD26-LIKE 

INTRINSIC PROTEIN), LHCB3 (LIGHT HARVESTING CHLOROPHYLL B BINDING 

PROTEIN 3), TT7 (TRANSPARENT TESTA 7) and CRU2 (CRUCIFERIN 2) were 

significantly differentially expressed for the seed yield trait for years 2006 and 2007. 

Interestingly, NIP, which belongs to the aquaporin superfamily and is plant-specific, 

was found to be differentially expressed at both 8 and 12 DAS. The expression of 

NIP in WOSR indicates a wide range of function that may include a greater range in 

selectivity. The LHCB3 gene is a component of the main light harvesting chlorophyll 

a/b-protein complex of Photosystem II (PSII) and is therefore very important during 

the photosynthetic process. CRU2 belongs to an important group of seed storage 
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proteins in Brassica napus, the 12S globulin complex, and is synthesized during seed 

development.  

 

In addition, a total of fifteen Top Hub Brassica Unigenes for A (B. rapa) and C (B. 

oleracea) genomes were identified as candidate regulatory genes for complex trait 

interaction during seedling development. Annotation of these Top Hub Unigenes with 

Arabidopsis thaliana genome (by BLASTX, TAIR 10 and agriGO) was performed to 

determine gene functions and they could be related to leaf and shoot system 

development, cytokinin pathway and circadian clock. The transcription activators 

GRF1 (GROWTH REGULATING FACTOR 1), UBP15 (UBIQUITIN-SPECIFIC 

PROTEASE 15), and VPS2 (VACUOLAR PROTEIN SORTING 2) were found to play 

a key role in leaf and shoot system development. Furthermore, GF14 (G BOX 

FACTOR 14-3-3 OMEGA) also known as GRF2 was identified within the co-

expression network interacting almost all aspects of plant growth and development, 

including hormonal metabolism and gene transcription. These results gave an insight 

into the genetic regulation of complex traits, providing some candidate genes and 

allowing to some extent an interpretation of their regulatory role. The DGE data 

presented in this study comprise a novel basis for further genetical genomics 

approaches, e.g. eQTL, gene isolation, functional validation, and development of 

gene expression markers (GEMs).   
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7  Zuzammenfassung 
 
Im Rahmen der vorliegenden Arbeit wurde eine verbesserte Multiplex-Methodik der 

Digitalen Genexpressionsanalyse (DGE) anhand einer großen Winterraps-Population 

(Brassica napus L.) etabliert. Die DGE-Analyse wurde eingesetzt, um Kandidaten für 

regulatorische Gene von komplexen Merkmalen der Keimlingsentwicklung zu 

identifizieren. Die Keimlingsentwicklung ist ein wichtiges Entwicklungsstadium wegen 

seiner Rolle für die Etablierung der Pflanzen vor Winter und damit die Ertragsbildung 

und Ertragstabilität. Wie nachgewiesen werden konnte, stellt die Multiplex-DGE 

Analyse eine nützliche Methode für die quantitative Hochdurchsatz-Transkriptom-

Analyse (’Next-Generation Illumina’ Sequenzierung) dar. Anhand der DGE-Daten 

konnte mithilfe von Multiplex-Barcodes und durch Integration von phänotypischen 

und metabolischen Hormondaten eine Genkoexpressions-Netzwerkanalyse 

erfolgreich durchgeführt werden. 

 

Ferner wurde eine ’bulked segregant analysis’ (BSA) durchgeführt und mit den 

Ergebnissen der DGE-Analyse verglichen. Für jedes der untersuchten Merkmale 

wurden die 20 Genotypen (DH-Linien) mit der höchsten sowie 20 Genotypen mit der 

niedrigsten Merkmalsausprägung (größte phänotypische Abweichung gemäß simple 

t-test, p < 0.05) zwei extremen Gruppen zugeordnet. Die DH-Linien Bulks 

differenzierten stark für zahlreiche komplexe quantitative Merkmale, z.B. 

Sprossfrischgewicht, Blühzeit und Samenertrag.  

 

Mehrere differentiell exprimierte Gene konnten identifiziert werden. Das Gen 

CLAVATA 1 (CLV1) erwies sich als involviert in Merkmale wie Sprossfrischgewicht, 

Pflanzenhöhe und Blühzeitpunkt. CLV1 besteht zum einen aus einer extrazellulären 

Domäne, die sich aus wiederholenden Leucin-reichen Motiven zusammensetzt und 

für eine Interaktion von Rezeptor und Ligand sorgen könnte. Eine Rolle von CLV1 als 

regulatorische Komponente im apikalen Sprossmeristem von Winterraps konnte 

festgestellt werden. Die Gene NIP (NOD26-LIKE INTRINSIC PROTEIN), LIGHT 

HARVESTING CHLOROPHYLL B BINDING PROTEIN 3 (LHCB3), TRANSPARENT 

TESTA 7 (TT7) und CRUCIFERIN 2 (CRU2) wurden differentiell exprimiert für das 

komplexe Merkmale Samenertrag. Das Gen LHCB3 ist ein Bestandteil des 

Chlorophyll a/b-Protein-Komplexes im Photosystem II (PSII) und ist deshalb relevant 

im Photosynthese-Prozess. Ferner gehört das Gen CRU2 zum 12S-Globulin-
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Komplex, einer wichtigen Gruppe von Samenvorratssproteinen in B. napus, die 

während der Samenentwicklung synthetisiert werden.  

Insgesamt fünfzehn „Schlüsselgene“ (Unigene) wurden im Brassica napus AACC-

Genom als regulatorische Kandidatengene für Komplexmerkmale der 

Keimlingsentwicklung identifiziert. Es wurde eine Annotation dieser ‘Top Hub’ 

Unigene anhand des Genoms von Arabidopsis thaliana durchgeführt, um 

Genfunktionen zu identifizieren. Manche Gene erscheinen gleichermaßen involviert 

in die Sprosssystementwicklung, den Cytokinin-Stoffwechsel und den circadianen 

Rhythmus. Wie die Ergebnisse andeuten, haben die Transkiptsionsaktivatoren 

GROWTH REGULATING FACTOR 1 (GRF1), UBIQUITIN-SPECIFIC PROTEASE 

15 (UBP15), und VACUOLAR PROTEIN SORTING 2 (VPS2) eine Schlüsselrolle für 

die Blatt- und Sprosssystem-Entwicklung. Außerdem wurde der Transkriptionsfaktor 

G BOX FACTOR 14-3-3 OMEGA, auch bekannt als GRF2 (GF14), als Komponente 

des Gen-Koexpressionsnetzwerks identifiziert, der in viele Vorgänge des 

Pflanzenwachstums und der Entwicklung, einschließlich der hormonellen Regulation 

und Gen-Transkiption involviert ist. Die vorliegenden Ergebnisse geben wichtige 

Hinweise auf die genetische Regulierung von komplexen Leistungsmerkmalen. Es 

wurden Kandidatengene identifiziert, deren regulatorische Rolle nun weiterer 

Interpretation bedarf. Die in dieser Studie präsentierten Daten aus der DGE bilden 

eine Basis für weitere zielführende Ansätze des ‘Genetical Genomics’, wie z.B. 

eQTL, Genisolierung, funktionelle Genanalyse und Entwicklung von Gen-expression 

Markern. 
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9 Appendix  

Appendix Table A1. List of the 29 differentially expressed genes for the secondary 

metabolite dihydrophaseic acid (ABA2) at 8 DAS after bulked-segregant analysis of 

DGE data (BSA-DGE). The Brassica Unigenes are listed with their respective 

logarithmic fold change (logFC > 2) value. Arabidopsis genome initiative (AGI) was 

used for identification of genes. 

 
Unigene              logFC p_value AGI Gene  

JCVI_19664 3.00645E+14 0.0066 AT1G62660 Glycosyl hydrolases family 32 protein 

JCVI_4674 2.69569E+14 0.0133 AT1G76160 SKU5 similar 5 (sks5) 

JCVI_10809 2.31159E+14 0.0021 AT1G28590 GDSL-like Lipase/Acylhydrolase superfamily protein 

JCVI_17618 2.30298E+14 0.0019 AT1G31650 Encodes a member of KPP-like gene family 

JCVI_31848 2.29456E+14 0.0041 AT1G59820 Encodes a phospholipid translocase 

JCVI_19225 2.24891E+14 0.0022 AT1G77000 AtSKP2;2 is a homolog of human SKP2 

JCVI_21574 2.22154E+14 0.0023 AT1G58520 RXW8 

JCVI_23070 2.19314E+14 0.0066 AT1G70270 unknown protein 

JCVI_874 2.18772E+14 0.0112 AT1G30630 Coatomer epsilon subunit 

EX093668 2.15664E+14 0.0015 AT1G63740 

Disease resistance protein (TIR-NBS-LRR class) 

family 

JCVI_37668 2.15228E+14 0.0088 AT1G12240 Encodes a vacuolar invertase betaFruct4 

JCVI_7956 2.14989E+14 0.0133 AT1G64720 membrane related protein CP5 

EE450367 2.13893E+14 0.0151 AT2G22090 encodes a nuclear protein that binds to RNA 

JCVI_3599 2.13528E+14 0.0088 AT1G24764 Member of the MAP70 protein family. 

JCVI_35775 2.11868E+14 0.0457 AT1G60690 NAD(P)-linked oxidoreductase superfamily protein 

JCVI_17004 2.10858E+14 0.0153 AT1G80640 Protein kinase superfamily protein 

JCVI_20832 2.10035E+14 0.0089 AT1G08310 alpha/beta-Hydrolases superfamily protein 

JCVI_26832 2.08304E+14 0.0114 AT2G04340 unknown protein 

JCVI_23549 2.08098E+14 0.0118 AT1G20330 Encodes a sterol-C24-methyltransferases  

EV100880 2.05504E+14 0.0003 AT1G53380 Plant protein of unknown function (DUF641) 

JCVI_35576 2.05269E+14 0.0072 AT1G45010 TRAM, LAG1 and CLN8 (TLC) lipid-sensing domain  

JCVI_2810 2.04209E+14 0.0212 AT1G80030 Molecular chaperone Hsp40/DnaJ family protein 

JCVI_33566 2.04102E+14 0.0128 AT1G05730 Eukaryotic protein of unknown function (DUF842) 

EV179359 2.02392E+14 0.0109 AT1G08430 Encodes a Al-activated malate efflux transporter 

JCVI_37043 2.02292E+14 0.0165 AT1G18450 Encodes a gene similar to actin-related proteins 

EV183065 2.01198E+14 0.0068 AT2G19830 SNF7.2; INVOLVED IN: vesicle-mediated transport 

DY000377 2.00599E+14 0.0057 AT2G29200 Arabidopsis Pumilio PUF domain (APUM)  

ES918166 2.00599E+14 0.0057 AT2G29200 Arabidopsis Pumilio PUF domain (APUM) 

JCVI_4422 2.00151E+14 0.0059 AT1G04010 phospholipid sterol acyl transferase 1 (PSAT1) 
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Appendix Table A2. List of the most significant (P<0.05) differentially expressed 

genes for abscisic acid glucose ester (ABA3) hormone metabolite trait at 12 DAS 

after bulked-segregant analysis of DGE data (BSA-DGE). The Brassica Unigenes are 

listed with their respective logarithmic fold change (logFC > 2) value. Arabidopsis 

genome initiative (AGI) was used for identification of genes.  

 
Unigenes logFC p_value AGI Gene 

JCVI_15419 2.91119E+14 0.0024 AT4G39740 
HOMOLOGUE OF COPPER CHAPERONE 
(SCO1 2) 

JCVI_9241 2.45014E+14 0.0231 AT3G01570 Oleosin family protein 

JCVI_107 2.44186E+14 0.0299 AT5G40420 
 
OLEOSIN 2 (OLEO2) 

JCVI_7854 2.37324E+14 0.0041 AT4G39970 
Haloacid dehalogenase-like hydrolase 
(HAD) superfamily protein 

JCVI_15903 2.28107E+14 0.0148 AT2G43590 Chitinase family protein 

JCVI_1212 2.23495E+14 0.0155 AT4G25140 Encodes oleosin1 

EV092872 2.211E+14 0.0048 AT3G58360 TRAF-like family protein 

JCVI_32916 2.17881E+14 0.0026 AT5G27420 
CARBON/NITROGEN INSENSITIVE 1 
(CNI1) 

EE431728 / 
ES907651 2.17272E+14 0.0107 AT4G13390 

 
EXTENSIN 12 (EXT12) 

EE426713 2.16208E+14 0.0109 AT4G08410 Proline-rich extensin-like family protein 

JCVI_21194 2.14044E+14 0.0094 AT3G16860 COBRA-like protein 8 precursor (COBL8) 

JCVI_28372 2.11307E+14 0.0062 AT5G63610 
CYCLIN-DEPENDENT KINASE E;1 
(CDKE;1) 
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Appendix Table A3. List of the most significant (P<0.05) differentially expressed 

genes for ABA4 hormone metabolite trait at 12 DAS after bulked-segregant analysis 

of DGE data (BSA-DGE). The Brassica Unigenes are listed with their respective 

logarithmic fold change (logFC > 2) value. Arabidopsis genome initiative (AGI) was 

used for identification of genes. 
 
 

Unigene logFC p_value AGI Gene 

JCVI_11550 2.63396E+14 0.001080786 AT1G33990 METHYL ESTERASE 14 (MES14) 

JCVI_31237 / 
ES902008 
/EX113607 2.59494E+14 0.007252184 AT2G40080 

EARLY FLOWERING 4 (ELF4) 
  

JCVI_3319 2.36228E+14 0.02578562 AT5G23240 
 
DNA J PROTEIN C76 (DJC76) 

JCVI_2121 2.17246E+14 0.005620503 AT1G21640 
NAD KINASE 2 
NADK2,  

JCVI_32290 2.13987E+14 0.016037008 AT4G31210 DNA topoisomerase, type IA, core 
 

Appendix Table A4. List of the most significant (P<0.05) differentially expressed 

genes for 7'-Hydroxy-abscisic acid (ABA5) hormone metabolite trait at 8 DAS after 

bulked-segregant analysis of DGE data (BSA-DGE). The Brassica Unigenes are 

listed with their respective logarithmic fold change (logFC > 2) value. Arabidopsis 

genome initiative (AGI) was used for identification of genes. 

  

Unigene logFC p_value AGI Gene 

JCVI_22468 2.57912E+14 0.003177967 AT1G68570 Unknow protein 

ES910643 2.34462E+14 0.004052359 AT1G23550 SIMILAR TO RCD ONE 2 (SRO2) 

JCVI_32206 2.17743E+14 0.007028005 AT1G36370 
SERINE HYDROXYMETHYLTRANSFERASE 
7 (SHM7) 

JCVI_9029 2.15552E+14 0.028159416 AT1G62750 SNOWY COTYLEDON 1 (SCO1) 

JCVI_13819 2.1473E+14 0.004052359 AT1G48920 NUCLEOLIN LIKE 1 (NUC-L1) 

JCVI_34350 2.12588E+14 0.011715058 AT1G52410 TSK-ASSOCIATING PROTEIN 1 (TSA1) 

JCVI_3154 2.07533E+14 0.020849153 AT1G17650 GLYOXYLATE REDUCTASE 2 (GLYR2) 

EV001793 2.0616E+14 0.00105644 AT2G02850 PLANTACYANIN (ARPN) 

JCVI_36450 2.0475E+14 0.011517836 AT1G17220 FU-GAERI1 (FUG1) 

JCVI_4551 2.03135E+14 0.016147242 AT1G18070 Unknow protein 

JCVI_7217 2.00556E+14 0.011516771 AT1G72710 CASEIN KINASE 1-LIKE PROTEIN 2 (CKL2) 
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Appendix Table A5. List of the most significant (P<0.05) differentially expressed 

genes for cis-Zeatin (CYT4) hormone metabolite trait at 12DAS after bulked-

segregant analysis of DGE data (BSA-DGE). The Brassica Unigenes are listed with 

their respective logarithmic fold change (logFC > 2) value. Arabidopsis genome 

initiative (AGI) was used for identification of genes. 

 
 

Unigene logFC p_value AGI Gene 

JCVI_5722 2.99256E+14 0.0001 AT1G60710 
Encodes ATB2, coumarin biosynthetic 
process  

ES903789 2.60327E+14 0.0015 AT2G27550 CENTRORADIALIS (ATC) 

JCVI_35775 2.59978E+14 0.0146 AT1G60690 
NAD(P)-linked oxidoreductase 
superfamily protein 

JCVI_6917 2.5116E+14 0.0018 AT1G18640 
3-PHOSPHOSERINE PHOSPHATASE 
(PSP) 

JCVI_20779 2.49744E+14 0.0068 AT2G20990 SYNAPTOTAGMIN A (SYTA) 

EV216677 2.47937E+14 0.0020 AT1G22770 GIGANTEA (GI) 

JCVI_6565 2.46599E+14 0.0003 AT1G18640 
3-PHOSPHOSERINE PHOSPHATASE 
(PSP) 

JCVI_15421 2.41745E+14 0.0008 AT1G11050 Protein kinase superfamily protein 

JCVI_40734 2.39592E+14 0.0005 AT1G54390 INHIBITOR OF GROWTH 2 (ING2) 

JCVI_17004 2.38498E+14 0.0007 AT1G80640 Protein kinase superfamily protein 

JCVI_6334 2.37094E+14 0.0001 AT2G26660 SPX DOMAIN GENE 2 (SPX2) 

JCVI_15012 2.35329E+14 0.0004 AT1G33140 PIGGYBACK2 (PGY2) 

EX079936 2.34657E+14 0.0018 AT1G73700 MATE efflux family protein 

JCVI_19062 2.32045E+14 0.0072 AT1G67300 Major facilitator superfamily protein 

JCVI_36770 2.24832E+14 0.0051 AT1G54170 CTC-INTERACTING DOMAIN 3 (CID3) 

JCVI_39191 2.19865E+14 0.0036 AT1G65610 KORRIGAN 2 (KOR2) 

JCVI_18494 2.15361E+14 0.0067 AT1G21770 
Acyl-CoA N-acyltransferases (NAT) 
superfamily protein 

CV546383 2.1522E+14 0.0005 AT1G27730 SALT TOLERANCE ZINC FINGER (STZ) 

EV177451 2.12327E+14 0.0126 AT2G19760 PROFILIN 1 (PRF1) 

JCVI_24237 2.09401E+14 0.0055 AT2G29580 
MOS4-ASSOCIATED COMPLEX SUBUNIT 
5B (MAC5B) 

JCVI_7670 2.08829E+14 0.0264 AT1G66480 

WEAK CHLOROPLAST MOVEMENT 
UNDER BLUE LIGHT 2 (WEB2);PLASTID 
MOVEMENT IMPAIRED 2 (PMI2) 

JCVI_15383 2.08447E+14 0.0097 AT1G07420 
STEROL 4-ALPHA-METHYL-OXIDASE 2-1 
(SMO2-1) 

JCVI_9226 2.08432E+14 0.0040 AT2G24970 unknown protein 

JCVI_11121 2.07924E+14 0.0106 AT1G79730 EARLY FLOWERING 7 (ELF7) 
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Appendix Table A6. List of the 20 significant (P<0.05) differentially expressed genes 

for Hypocotyl height (HCH) trait at 8 DAS after bulked-segregant analysis of DGE 

data (BSA-DGE). The Brassica Unigenes are listed with their respective logarithmic 

fold change (logFC > 2) value. Arabidopsis genome initiative (AGI) was used for 

identification of genes. 

 
 

Unigene logFC p_value AGI Gene 

EL587455 2.79623E+14 0.000135832 AT1G25290 RHOMBOID-LIKE PROTEIN 10 (RBL10) 

JCVI_33584 2.69586E+14 0.003051722 AT1G15110 PHOSPHATIDYLSERINE SYNTHASE 1 (PSS1) 

JCVI_19864 2.67596E+14 0.001331782 AT1G24140 Matrixin family protein 

EV178926 2.6599E+14 0.011172071 AT1G72370 40S RIBOSOMAL PROTEIN SA (P40) 

JCVI_37808 2.44417E+14 0.000521288 AT1G33990 METHYL ESTERASE 14 (MES14) 

JCVI_34702 2.42327E+14 0.000481046 AT2G22880 VQ motif-containing protein 

JCVI_25456 2.37045E+14 0.006080123 AT1G59560 ZCF61 

JCVI_34125 2.31261E+14 0.00031286 AT2G30020 AP2C1 

JCVI_8458 2.26232E+14 0.008222515 AT1G64790 ILITYHIA (ILA) 

JCVI_6286 2.22806E+14 0.003312206 AT1G36160 ACETYL-COA CARBOXYLASE 1 (ACC1) 

EV087433 2.13184E+14 0.00347743 AT1G52030 MYROSINASE-BINDING PROTEIN 2 (MBP2) 

EX098073 2.09709E+14 0.005670568 AT1G66760 MATE efflux family protein 

JCVI_12387 2.09421E+14 0.008188878 AT1G69930 
GLUTATHIONE S-TRANSFERASE TAU 11 
(GSTU11) 

EE552387 2.08935E+14 0.01053626 AT1G26665 Mediator complex, subunit Med10 

JCVI_41393 2.07903E+14 0.008169996 AT1G65030 protein with a DWD motif 

JCVI_34460 2.06924E+14 0.008714875 AT1G78280 transferases, transferring glycosyl groups 

JCVI_3794 2.06067E+14 0.022500638 AT1G54020 GDSL-like Lipase/Acylhydrolase superfamily protein 

JCVI_27422 2.03039E+14 0.001518809 AT1G72320 PUMILIO 23 (PUM23) 

JCVI_26327 2.02706E+14 0.004455493 AT2G24280 alpha/beta-Hydrolases superfamily protein 

JCVI_38005 2.02226E+14 0.022674413 AT1G28050 B-box type zinc finger protein with CCT domain 
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Appendix Table A7. List of the 9 significant (P<0.05) differentially expressed genes 

for shoot fresh weight (SFW) trait at 8 DAS after bulked-segregant analysis of DGE 

data (BSA-DGE). The Brassica Unigenes are listed with their respective logarithmic 

fold change (logFC > 2) value. Arabidopsis genome initiative (AGI) was used for 

identification of genes. 

 

Unigene logFC p_value AGI Gene 

JCVI_36531 2.09395E+14 0.005983601 AT2G20890 
PHOTOSYSTEM II REACTION 
CENTER PSB29 PROTEIN (PSB29) 

EV029825 2.02053E+14 0.01096563 AT1G18880 
NITRATE TRANSPORTER 1.9 
(NRT1.9) 

JCVI_29531 2.61515E+14 0.016870269 AT2G25450 
encodes a protein whose sequence 
is similar to ACC oxidase 

ES943297 2.08326E+14 0.006032013 AT2G28900 
OUTER PLASTID ENVELOPE 
PROTEIN 16-1 (OEP16-1) 

EE547519 2.3586E+14 0.007380827 AT2G16600 Encodes cytosolic cyclophilin ROC3. 

JCVI_37763 2.06059E+14 0.011480547 AT2G23890 HAD-superfamily hydrolase 

EX123254 2.2643E+14 0.003503589 AT1G34040 Pyridoxal phosphate (PLP) 

EX131553 2.32938E+14 0.001134072 AT1G74050 Ribosomal protein L6 family protein 

JCVI_19101 2.39366E+14 0.036633298 AT1G05205 unknown protein 
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Appendix Table A8. List of the 20 most significant (P<0.05) differentially expressed 

genes for plant height end of flowering for year 2006 (PH06) at 12 DAS after bulked-

segregant analysis of DGE data (BSA-DGE). The Brassica Unigenes are listed with 

their respective logarithmic fold change (logFC > 2) value. Arabidopsis genome 

initiative (AGI) was used for identification of genes. 

 

Unigene logFC p_value AGI Gene 

EV118481 3.55314E+14 0.0031 AT1G75820 CLAVATA 1 (CLV1) 
JCVI_5500 2.89744E+14 0.0047 AT1G73940 unknown protein 

JCVI_19365 2.87925E+14 0.0012 AT1G05680 
URIDINE DIPHOSPHATE 
GLYCOSYLTRANSFERASE 74E2 (UGT74E2) 

JCVI_5641 2.85758E+14 0.0093 AT1G74160 TON1 RECRUITING MOTIF 4 (TRM4) 

JCVI_2440 2.5734E+14 0.0031 AT1G69295 
PLASMODESMATA CALLOSE-BINDING 
PROTEIN 4 (PDCB4) 

EX134309 2.56614E+14 0.0028 AT1G72790 
hydroxyproline-rich glycoprotein family 
protein 

DY008024 2.43143E+14 0.0031 AT1G32050 
SECRETORY CARRIER MEMBRANE 
PROTEIN 5 (SCAMP5) 

EX119630 2.39502E+14 0.0016 AT1G49380 cytochrome c biogenesis protein family 

JCVI_20104 2.37441E+14 0.0004 AT2G16530 
3-oxo-5-alpha-steroid 4-dehydrogenase 
family protein 

JCVI_26530 2.25328E+14 0.0019 AT1G03000 PEROXIN 6 (PEX6) 

JCVI_20012 2.24724E+14 0.0061 AT1G73920 alpha/beta-Hydrolases superfamily protein 
EV021416 2.20485E+14 0.0003 AT1G09450 HASPIN-RELATED  GENE (Haspin) 

JCVI_12217 2.19781E+14 0.0116 AT1G79440 
ALDEHYDE DEHYDROGENASE 5F1 
(ALDH5F1) 

JCVI_15291 2.1761E+14 0.0333 AT1G36310 
S-adenosyl-L-methionine-dependent 
methyltransferases superfamily protein 

JCVI_31755 2.16487E+14 0.0035 AT1G18800 NAP1-RELATED PROTEIN 2 (NRP2) 

JCVI_14073 2.16444E+14 0.0080 AT1G03220 
Eukaryotic aspartyl protease family 
protein 

JCVI_8923 2.14652E+14 0.0116 AT2G26510 
PIGMENT DEFECTIVE EMBRYO 135 
(PDE135) 

EV029370 2.14599E+14 0.0019 AT1G33490 unknown protein 
JCVI_6204 2.14276E+14 0.0148 AT1G06290 ACYL-COA OXIDASE 3 (ACX3) 
JCVI_16055 2.12104E+14 0.0088 AT2G17500 Auxin efflux carrier family protein 

JCVI_38679 2.11106E+14 0.0114 AT1G51200 A20/AN1-like zinc finger family protein 
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