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SUMMARY

Dynamical behavior of a parametrized family of one-dimensional maps

Erkan MUŞTU

Justus Liebig University
Institute of Mathematics

2018

We investigate the dynamics of the maps f�;! (x) := x� sin(! ln(x)) with � > 1 (and
odd continuation). The �rst chapter describes how a family of one-dimensional maps
f�;! appears in the context of return maps associated to homoclinic orbits for ODEs.
Corresponding to the shape of graph of f�;!, we introduce so-called ��at�intervals con-
taining exactly one maximum or minimum. We shall also use the expression �steep�
for intervals containing exactly one zero point of f�;!. Then we construct an open set
of points with orbits staying entirely in the ��at� intervals in chapter three. In the
fourth chapter, it is proved that there exist some points whose orbits stay totally within
the �steep� intervals. Then, to orbits (f j (x)) of f�;! we associate a symbol sequence
(sj) = (signf j (x)) = (+1;�1;�1;+1; :::), and we show that the measure of the set of
points which follow such symbol sequences is zero. In the last chapter, it is shown that
there exist some points whose orbits travel regularly from ��at�intervals to �steep�inter-
vals, then from �steep�to ��at�intervals and so on. To such orbits of f�;! we associate a
symbol sequence (L;R;R; L; :::) ; indicating whether the iterates of points are to the left
or to the right of corresponding maxima of f�;!, and �nally the Lebesgue measure of the
set of these points is shown to be zero.

KEY WORDS: Dynamical systems, one-dimensional maps, symbolic dynamics,
measure
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1. Introduction

In dynamical systems theory one-dimensional dynamical systems play an important
role. Although they may seem very simple at the �rst glance, they can have very compli-
cated dynamics. For instance, the problems in smooth dynamical systems, especially
in low dimensions, can sometimes be reduced to the study of one-dimensional maps
f : I ! I, where f is a smooth function and I is a circle or an interval. We try to
understand the behavior of the orbits of given points in I. The orbit of a point x is the
sequence

x; f (x) ; f (f (x)) ; f (f (f (x))) ; :::

Our aim in this paper is to analyze the dynamics of certain parametrized families
f�;! of one-dimensional maps. These arise in the dynamics of �ows in three dimensions
of saddle-focus homoclinic connections which were studied by P. Holmes [2]. Holmes
considered maps f similar to f�;! : x ! x� sin(! ln(x)) for � > 1; ! > 0 (and odd
continuation). The property � > 1 implies that all points 0 < x < 1 approach 0 under fn

as n !1 . Holmes claimed that the set Z of points x for which there exists an nx 2 N
such that fnx (x) = 0 can be a dense subset of [0; 1], but it seems that this proof is not
conclusive. In chapter four, we are interested in the orbit x; f (x) ; f (f (x)) :::. We �rst
assign to x a symbolic trajectory s0; s1; s2; ::: where sn is �1 or +1 according as fn�;! is
in (�1; 0) or (0; 1) respectively. Then we construct sets 
cn (depending on a parameter
c and n 2 N) of points with the �rst n iterates contained in certain �steep�intervals and
following arbitrary symbol sequences. We show that 
cn is contained in the closure of the
set Z, but 
c1 =

\
n2N


cn has measure zero. The remark on the bottom of the page 395 of

[2] conjectures, that open sets of points with orbit only in the ��at�intervals can exist for
certain parameters. (These ��at�intervals are disjoint to Z:) We prove this in chapter 3.
In the last chapter, we focus on constructing another type of orbit whose points travel

regularly from a ��at�interval to a �steep�interval, then again from the �steep�interval to
a ��at�interval. These points form a Cantor type set and are described by sequences of
the type (L;R;R; L; :::), indicating whether iterates of the initial points are to the left or
to the right of corresponding maxima of f�;!. Taking counter images f�1 (J) of intervals
J with f�1 (J) close to a quadratic maximum of f involves inversion of the second order
Taylor expansion and thus taking square roots. We also show that, despite the expanding
e¤ect of the square root, the measure of the points with such orbits (and thus the measure
of the Cantor set) is also zero.

1.1. Motivation of the map
In this section we brie�y de�ne the class of three-dimensional di¤erential equations

where the maps that we will study arrise. We consider the di¤erential equation

�
x = sx� !y + F1 (x; y; z)
�
y = !x� sy + F2 (x; y; z) or

�
X = F (X) ; (1.1.1)

�
z = �z + F3 (x; y; z)

1



Figure 1: Cross sections �0, �1, and homoclinic orbit �

with smooth functions F1, F2, F3 which vanish at the origin together with their derivatives.
We assume that there exists a doubly homoclinic connection associated to a saddle-focus
singularity at the origin (0; 0; 0) with eigenvalues s � i!, s < 0; ! 6= 0; � > 0. We also
assume that the saddle value s+� < 0 and F possesses symmetry under the change of sign,
F (X) = �F (�X). Here, note that while the stable manifold W s (0) is two-dimensional,
the unstable manifold W u (0) is one-dimensional. The global unstable manifold W u (0)
consists of the homoclinic loops and is contained in W s (0) (see Figure 1). Note also that
in case s + � < 0 stable periodic orbits bifurcate from the homoclinic loop as described
by L. P. �il�nikov in reference [4].
Furthermore, we derive expressions for a Poincaré �rst return map de�ned by the

tracjectories close to the homoclinic loop �. For the sake of simplicity, we assume that
the vector �eld is linear (i.e. F1 = F2 = F3 = 0) in a neighborhood of (0; 0; 0). First, in
a neighborhood of (0; 0; 0) we introduce a cross section �0 that is transversal to � and
has a nonzero projection to the unstable direction. The second property is an automatic
consequence of the �rst in three dimensions. The stable manifold W s

loc splits �0 into the
upper and lower components �+0 and �

�
0 respectively, and the homoclinic loop intersects

�0 at some point p = (�; 0; 0) 2 � \ �0 on W s
loc. We next introduce two cross-sections

��1 transversal to W
u
loc. Using the trajectories which travel from �+0 to �

+
1 we aim at

computing local maps G+0 : �
+
0 ! �+1 and G

�
0 : �

�
0 ! ��1 . These local maps assosiate to

each point p 2 �0 the �rst intersection with �1 of the trajectory which starts at p. Thus,
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a local map G0 is de�ned by the �ow on subsets ��0 of �0. Note that since the upper and
lower homoclinic orbit of the system have analogous behavior, we shall continue with one
(the upper homoclinic loop) of them. For simpli�cation we assume that there exist � > 0;
� > 0 such that �+0 � f(�; y; z) : (y; z) 2 R2g and �+1 � f(x; y; �) : (x; y) 2 R2g.
The solution (x (t) ; y (t) ; z (t)) of (1:1:1), which starts from a point (x0 = �; 0; z0) 2 �+0

close to the origin at the time t = 0 and ends up at the point (x1; y1; z1 = �) 2 �+1 at the
time t = � , is written (taking into account only the linear terms in (1:1:1)) as follows:

(x (t) ; y (t)) = est
�
cos!t � sin!t
sin!t cos!t

��
x0
y0

�
(1.1.2)

z (t) = z0e
�t.

The �ight time � that the trajectory takes from �+0 to �
+
1 is given by � =

1

�
ln

�
�

z0

�
.

Substituting � and � into formula (1:1:2), we get the following expression for the local
map G+0 , in complex notation:

x1 + iy1 = e
(s+i!)�(z0) (x0 + iy0) = e

(s+i!)�(z0) (� + iy0) . (1.1.3)

On the other hand, due to the existence of the homoclinic connection and its transversal
intersection with �+0 and �

+
1 , we also have a Poincaré type map

G+1 : �
+
1 ! �0

Hence, for (x1; y1; z1 = �) 2 �+1 we have G
+
1 (x1; y1; z1 = �) = (�; y2; z2) 2 �0. With

DG+1 (0; 0; �) represented by the matrix

�
� �
 �

�
=

0B@
@y2
@x1

@y2
@y1

@z2
@x1

@z2
@y1

1CA (0; 0) , we have
�
y2
z2

�
=

�
� �
 �

��
x1
y1

�
+ h:o:t: (higher order terms).

In this approximation, we obtain for the composite map�
G+1 �G+0

�
: (�; y0; z0)! (�; y2; z2) ;�

y2
z2

�
=

�
� �
 �

��
x1
y1

�
=

�
�x1 + �y1
x1 + �y1

�
,

and �nally we get
z2 = x1 + �y1. (1.1.4)

Substituting the value of � (z0) ; x1 and y1 in (1:1:4), in particular for y0 = 0, one obtains

z2 = �e
s�(z0) [ cos+� sin] (!� (z0)) (1.1.5)
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Setting c := �
p
2 + �2 and choosing ' with

p
2 + �2

= sin',
�p

2 + �2
= cos' in

(1:1:5), we �nally have

z2 = �es�(z0)
q
2 + �2 [sin (') cos (w� (z0)) + cos (') sin (w� (z0))]

= c

�
�

z0

� s
�
�
sin

�
!

�

�
ln
�

z0

�
+ '

��
. (1.1.5)

Hence, the z�component after one return is approximately given by

z0 ! z2 = c

�
�

z0

� s
�
�
sin

�
!

�

�
ln
�

z0

�
+ '

��
.

Note that
s

�
< �1 so � := � s

�
> 1, and with x :=

z0
�
we can rewrite the last equation as

z2 = cx
�
h
sin
�
�!
�
(lnx) + '

�i
.

This motivates the study of the one-dimensional map f!;� : [�1; 1]! [�1; 1] given by the
following simpler expression

f�;!(x) =

�x� sin(! ln(x));
0

�f (�x)

x > 0
x = 0
x < 0

where we use x instead of z from now on. Here, note that odd continuation in the
de�nition of f�;! is motivated by the corresponding symmetry of vector �eld. The above
process shows how to arrive at this map starting from homoclinic orbits, which is studied
by P. Holmes [2; p: 388], or J. Guckenheimer/P. Holmes [1; p: 320]. The maps of this kind
(see Figure 2) were also studied by M.J. Pasi�co, A. Rovella and M. Vianna [3], but for
� < 1 which has expansion properties of f�;! as a consequence. Brie�y, they proved that a
family of one dimensional maps with in�nitely many critical points exhibit global chaotic
behavior in a persistent way: For a positive Lebesgue measure set of values �, the map f
has positive Lyapunov exponent at every critical value and at Lebesgue almost all points
in its domain; morover, f is topologically transitive, i.e. has dense orbits [3].
After giving some preparatory calculations for the following chapters, we are going to

study the orbit fn!;� (x) = f
n(x); n = 1; 2; 3; ::: of a typical point x 2 (0; 1). If fn(x) = 0

for some n <1, then it is clear that all (f j(x))j�n will equal to 0. To orbits of f we can
associate symbol sequences
(sj) = (signf j (x))j�0 = (+1;+1;�1; :::). fn (x) = 0 implies that sn = 0, then sk = 0

for all k � n. Here +1;�1 and 0 correspond to the upper, to the lower homoclinic branch
or to the stable manifold W s (0) in terms of the original motivation. Consequently, the
following questions arise:

4



Figure 2: Graph of f for � = 2; ! = 10

1. Are all symbol sequences possible or not?
2. Does the symbol sequence change in every interval? (Is there chaotic motion?)
3. Is it possible to construct open intervals where the symbol sequence does not

change?

In the �fth chapter, we shall also consider symbol sequences di¤erent from (signf j (x)),
describing whether fn(x) is to the left or to the right hand side of maximum points of f .
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2. Formulas for the derivatives of f�;!, for � > 2, ! > 0:

Lemma 2.1. Assume � 2 (2;1); ! > 0. Set 'j := arctan

�
!

�+ 1� j

�
2
�
0;
�

2

�
and

g!;�+1�j :=

q
(�+ 1� j)2 + !2

for j 2 f1; 2; 3g. Consider the map

f�;!(x) =

�x� sin(! ln(x));
0

�f (�x)

x > 0
x = 0
x < 0

.

Then, the following formulas hold for x 2 R:
(1).

f 0�;!(x) = g!;� � f��1;!;'1(x); (2.1.1)

cos ('1) =
�p

�2 + !2
=

�

g!;�
; (2.1.2)

sin ('1) =
!p

�2 + !2
=

!

g!;�
: (2.1.3)

(2).
f 00�;!(x) = g!;� � g!;��1 � f��2;!;'1+'2(x). (2.1.4)

(3).
f 000�;!(x) = g!;� � g!;��1 � g!;��2 � f��3;!;'1+'2+'3(x). (2.1.5)

Proof.

(1). From the de�niton of 'j, we have '1 = arctan
�
!

�

�
; and also from the de�nition

of g!;�+1�j, we have g!;� =
p
�2 + !2. It follows that

cos ('1) =
�

g!;�
and sin ('1) =

!

g!;�
:

This proves (2:1:2) and (2:1:3). Now, it is convenient to de�ne a class of functions

f�;!;'(x) := x
� sin (! ln (x) + ')

which is slightly more general than f�;!(x) = x� sin (! ln (x)) : For x > 0; we have

f 0�;!;'(x) = x� cos (! ln (x) + ')

�
1

x
!

�
+ x��1� sin (! ln (x) + ')

= x��1 (� sin (! ln (x) + ') + ! cos (! ln (x) + ')) .

6



By multiplying and dividing the last equation with g!;�, we have

f 0�;!;'(x) = g!;� � x��1
�
�

g!;�
sin (! ln (x) + ') +

!

g!;�
cos (! ln (x) + ')

�
. (2.1.6)

Putting (2:1:2) and (2:1:3) in (2:1:6), we �nally obtain

f 0�;!;'(x) = g!;� � x��1 (cos ('1) � sin (! ln (x) + ') + sin ('1) � cos (! ln (x) + '))
= g!;� � x��1 sin(! ln (x) + '+ '1)
= g!;� � f��1;!;'+'1(x). (2.1.7)

(2). Further, using (2:1:7) with ' + '1 instead of ', and � � 1 instead of �; we see
that

f 00�;!(x) = f 00�;!;0(x) =
�
g!;� � f��1;!;'+'1

�0
(x)

= g!;� � g!;��1 � f��2;!;'1+'2(x),

which proves (2:1:4).
(3). Using (2:1:7) we obtain (2:1:5) analogously.

Lemma 2.2. Let � > 2 and ! > 0 be given. De�ne q := e�
�
! and 'j as in Lemma

2.1. Then, the following properties are satis�ed in (0; 1]:

(1). f�;! has the zero points
qk = e�

k�
! , (2.2.1)

(k 2 N) and
f 0�;!(q

k) = (�1)k !qk(��1). (2.2.2)

(2). f�;! has the extremal points

mk = q
ke
�'1
! (2.2.3)

and

f�;! (mk) = (�1)k+1 � exp
�
�k��+ '1�

!

�
� sin('1). (2.2.4)

(3). If � is an even integer, and � 2 N is odd and l (k) := k� + �, then f�;! has a
maximum at

ml(k) = q
l(k)e

�'1
! . (2.2.5)

Proof.
(1). We �rst �nd the zeros of f�;!. For x 2 (0; 1) one has

sin(! ln(x)) = 0, 9k 2 N ! ln(x) = �k� , 9k 2 N ln(x) =
�k�
!
;

7



and hence x = e
�k�
! . With q = e�

�
! ; the zeros of f�;! in (0; q] are given by x = e

�k�
! = qk.

Therefore, by inserting qk in (2:1:1), we have

f 0�;!(q
k) = qk(��1) � g!;� � sin(!

�
ln qk

�
+ '1)

= qk(��1) � g!;� � sin(!
�
ln e

�k�
!

�
+ '1)

= (�1)k qk(��1) � g!;� � sin('1)
Using (2:1:3) we obtain

f 0�;!(q
k) = (�1)k qk(��1) � g!;� �

!

g!;�

= (�1)k !qk(��1).
Hence, assertion (1) is proved.
(2). Let k 2 N. We �nd the extremum points of f�;! in the interval Ik =

�
qk+1; qk

�
by solving f 0�;!(x) = 0 for x 2 Ik. Since x > 0, x��1 6= 0. So, we have

sin(! (lnx) + '1) = 0,

and hence x = e
�k��'1

! . The last expression equals to qke
�'1
! = mk, which proves (2:2:3).

Furthermore, for the extremum point mk of f�;! in the interval
�
qk+1; qk

�
we have

f�;! (mk) = m�
k sin(! ln(mk))

=
�
qke�

'1
!

��
sin(! ln

�
qke�

'1
!

�
)

=

�
e�

k�
! e�

'1
!

��
sin(! ln

�
e�

k�
! e�

'1
!

�
)

= exp

�
�k��+ '1�

!

�
sin(!

�k� � '1
!

)

= (�1)k+1 exp
�
�k��+ '1�

!

�
sin('1):

(3). Substituting l (k) instead of k in (2:2:4), we have

f�;!
�
ml(k)

�
= (�1)l(k)+1 exp

�
� l (k)��+ '1�

!

�
sin('1)

= exp

�
� l (k)��+ '1�

!

�
(�1)k�+�+1 sin('1)

Therefore, it is clear that f�;!
�
ml(k)

�
> 0 (and hence f�;! has a maximum at ml(k)), if �

is even and � is odd.

We shall frequently use the simple lemma below.

Lemma 2.3. Assume f : [a; b]! R is continuous on [a; b] and di¤erentiable on (a; b).
If jf 0j � c, or jf 0j � d (c and d are constant), then we have

c jb� aj � jf (b)� f (a)j � d jb� aj . (2.3.1)

Proof. (Follows from the mean value theorem.)
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3. The behavior of orbits remaining in some ��at�intervals

In this part we �nd some parameters � and ! such that f�;! maps some extremal
points mk to some other extremal points m`(k) (see Figure 3). Then, we construct some

open intervals Uk around mk and orbits of f�;! = f which are entirely contained in
[
k2N

Uk.

Theorem 3.1. For k 2 N, ! > 0, and even integer � > 2, de�ne

� := min

(
q

g!;� � g!;��1
;
e�

'1
! � q
2

;
1� e�

'1
!

2

)
, (3.1.1)

and set ` (k) := k� + 1 (which corresponds to � = 1 in assertion (3) of Lemma 2.2),
�k := �qk , �`(k) := �q`(k). Then, for every large even integer enough � there exists a
corresponding ! such that the following properties are satis�ed:

(1). With the intervals Uk = (mk � �k;mk + �k) one has f (Uk) � U`(k) and

8k 2 N : f�1(f0g) \ Uk = ;.

(2). If k is odd, then for x 2 Uk; the orbits (f j (x))j2N all have the symbol sequence
(sj) = (signf j (x))j2N = (+1;+1;+1; :::).
(3). The set

Z = fx j 9n 2 N : fn (x) = 0g (3.1.2)

is disjoint to
[
k

Uk and, in particular, is not dense in [�1; 1].

The proof is divided into several lemmas.

Lemma 3.2. Let k 2 N and de�ne '1 as in Lemma 2.1. De�ne � and �k as in
Theorem 3.1, and

� := min

(
e�

'1
! � q
2

;
1� e�

'1
!

2

)
:

Then we have

(mk � �k;mk + �k) � [mk � �k;mk + �k] �
�
mk � �qk;mk � �qk

�
�
�
qk+1; qk

�
.

Proof. From (3:1:1) we have � � �. Multiplying both sides with qk, and using (2:2:3)
we have

�k � �qk = min
(
qke�

'1
! � qk+1
2

;
qk � qke�

'1
!

2

)
= min

�
mk � qk+1

2
;
qk �mk

2

�
,

it follows that (mk � �k;mk + �k) � [mk � �k;mk + �k] �
�
mk � �qk;mk � �qk

�
�
�
qk+1; qk

�
.
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Figure 3: f (mk) = m`(k)

Lemma 3.3. De�ne '1 as in Lemma 2.1, and de�ne ` (k) as in Theorem 3.1. Then
the following statements are true.

(a) For every even integer � � 32; there exists ! 2 (0; 1) such that for all k 2 N f has
the property

f (mk) = m`(k):

(b) For any choice of ! as in assertion (a), one has ! ! 0 as �!1.

Proof.
(a) From (2:2:4) we have for all k 2 N

jf (mk)j = exp
�
�k��+ '1�

!

�
sin('1). (3.3.1)

On the other hand, from the third assertion of Lemma 2.2 we know that for even �, f
has a maximum at the point

m`(k) = exp

�
��` (k) + '1

!

�
. (3.3.2)

Using (2:1:3), (3:3:1) and (3:3:2), we obtain the following equivalences:

10



Figure 4: Graph of F (!; �), for � = 32

m`(k) = f (mk)

, exp

�
��` (k) + '1

!

�
= exp

�
�k��+ '1�

!

�
� sin('1)

, exp

�
��` (k) + '1

!

�
= exp

�
�k��+ '1�

!

�
� 1r

1 +
�2

!2

, exp

�
��
!
[k�� ` (k)] + '1 (1� �)

!

�
=

r
1 +

�2

!2
. (3.3.3)

Substituting ` (k) = k�+ 1 in (3:3:3), we have

exp

�
� + '1 (1� �)

!

�
=

r
1 +

�2

!2

or, using the de�nition of '1;

exp

0BB@� � (�� 1) arctan
�
!

�

�
!

1CCA =

r
1 +

�2

!2
. (3.3.4)

In view of (3:3:4), we de�ne

F (!; �) = exp

0BB@� � (�� 1) arctan
�
!

�

�
!

1CCA�
r
1 +

�2

!2
. (3.3.5)
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We try to �nd (!; �) with F (!; �) = 0 (see Figure 4). Noting that for �xed �,
lim!!0 F (!; �) = +1, it is enough to �nd at least one pair (!; �) with F (!; �) < 0. For
! = 1, we have

F (1; �) = exp

�
� � (�� 1) arctan

�
1

�

��
�
p
1 + �2

= exp

�
� � � arctan

�
1

�

�
+ arctan

�
1

�

��
�
p
1 + �2. (3.3.6)

Since arctan0 (x) =
1

1 + x2
, we have arctan0 (x) � 1

2
for jxj � 1. Hence, (2:3:1) shows

arctan (x) � 1

2
x for x 2 [0; 1]. It follows that for � > 1,

� arctan

�
1

�

�
� 1

2
: (3.3.7)

Using (3:3:7) and arctan
�
1

�

�
<
�

4
for � > 1 in (3:3:6), we have

F (1; �) � exp
�
� � 1

2
+
�

4

�
�
p
1 + �2 = exp

�
5�

4
� 1
2

�
�
p
1 + �2.

From the fact that exp
�
5�

4
� 1
2

�
< 32, we have F (!; �) < 0, if we set ! = 1 and � � 32.

With the intermediate value theorem, it is trivial that F (!; �) has at least one zero point
! 2 (0; 1). It follows that (3:3:5) is satis�ed with this ! depending on the even integer
� � 32. Hence, the proof of assertion (a) is completed.
(b) Consider a sequence �k; �k ! 1 with corresponding !k 2 (0; 1) such that

F (�k; !k) = 0: Then

s
1 +

�2k
!2k

! 1. Further, (�k � 1) arctan
�
!k
�k

�
is bounded. The

exponential term in (3:3:5) must go to +1; so !k ! 0 necessarily. This completes the
proof of (b) and the proof of Lemma 3.3.

Remark. Consider the equality (3:3:3). Because � > 1, so
'1 (1� �)

!
< 0; andr

1 +
�2

!2
> 1, the term

��
!
[k�� ` (k)] must be positive, if we have a solution. Accord-

ingly, ` (k) > k� must be satis�ed. It means (3:3:4) has no solution for ` (k) � k�. Thus
` (k) � k�+ 1 necessarily; we made the choice ` (k) = k�+ 1.

Numerical observations. In order to �nd a numerical solution we use two starting
points where F (�; �) has opposite signs and at the 9 th step of a bisection method we
obtained ! = 0:69895 and � = 24 as an appropriate F (!; �) = 0. Although one can
obtain some other solution points !, for some other the parameters �, we numerically
found out that there is no solution for � < 3:1.
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Lemma 3.4. Choose an even integer � � 32 and ! 2 (0; 1) with the properties as
in Lemma 3.3. De�ne ` (k), �, �k and �`(k) as in Theorem 3.1. Then with the intervals
Uk = (mk � �k;mk + �k), we have f (Uk) � U`(k).

Proof. Let � and ! be as in the assumption of the lemma, and x 2 Uk. With
` (k) = k�+ 1 we claim that ��f (x)�m`(k)

�� < �`(k) = �q`(k) . (3.4.1)

From the second order Taylor expansion, we have

f (x) = f (mk) + f
0 (mk) (x�mk) +

f 00 (�)

2
(x�mk)

2 (3.4.2)

with � 2 (mk � �k;mk + �k). Since � > 2, note that we also have

q(k+1)(��2) � j�j��2 � qk(��2). (3.4.3)

Substituting the equality (3:4:2) in the left hand side of (3:4:1), we get

��f (x)�m`(k)

�� = �����f (mk) + f
0 (mk) (x�mk) + f

00 (�)
(x�mk)

2

2
�m`(k)

����� .
From the fact that we now have �xed parameters �, ! with the property f (mk) = m`(k)

as in Lemma 3.3 and using f 0(mk) = 0 and (x�mk) < �k, the last equality gives��f (x)�m`(k)

�� � ����f 00 (�) �2k2
���� .

Using (2:1:4) in the last equality, we obtain

��f (x)�m`(k)

�� = ����g!;� � g!;��1 � sin (! ln (x) + '1 + '2) j�j��2 �2k2
���� . (3.4.4)

Using the upper estimate of (3:4:3) and substituting the value of �k in (3:4:4), we get

��f (x)�m`(k)

�� �
����g!;� � g!;��1 � ��qk����2 �2q2k2

����
=

���g!;� � g!;��1 � qk���
2

��� . (3.4.5)

Finally, using the de�niton of � from (3:1:1) in (3:4:5), we have

��f (x)�m`(k)

�� �
����g!;� � g!;��1 � qk��2 q

g!;� � g!;��1

����
= qk�+1

�

2
< �qk�+1 = �q`(k) = �`(k).
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Proof of Theorem 3.1. Choose �; ! as in Lemma 3.3, and let ` (k) be as in Theorem
3.1.
(1). Lemma 3.4 shows f (Uk) � U`(k) and the de�nition of U`(k) implies 0 =2 U`(k), so

f�1 (f0g) \ Uk = ;.
(2). If k is odd and � is as above (therefore even), then all `j (k) (j � 0) are odd and

all U`j(k) are intervals around maxima of f , where f is positive. Hence the assertion is
proved.
(3). For k0 2 N; x 2 Uk0 and n 2 N0, fn (x) 2

[
k2N

Uk, in particular fn (x) 6= 0, which

proves assertion 3.

Note that the possible existence of the orbits which remain close to critical points, i.e
implying non-density has been mentioned as a remark by Holmes P. J. in the bottom of
the page 395 of [2] with only a vague indication of proof. With this section we gave a
rigorous proof of that idea.
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4. Behavior of the map f�;! in some �steep�intervals

In this section we �rst construct some orbits whose points stay entirely in so-called
�steep� intervals, and then analyze the measure of the set of points which have such
orbits. In contrast to chapters 3 and 5, where the parameters � and ! are connected by
the conditions given in assertion (a) of Lemma 3.3 and in (5:2:1), in this chapter both of
them can be varied independently.
Consider the interval (�mk;�mk+1) or (mk+1;mk). From Lemma 2.2 we have��f 0�;!(qk+1)�� = ! �qk+1�(��1) .

Since f 0�;! (�mk) = f 0�;! (�mk+1) = 0, continuity of f 0�;! implies that we can choose a
�steep�interval Sk, either as a subset of (mk+1;mk) or as a subset of (�mk;�mk+1), on
which

��f 0�;!�� satis�es a lower estimate. We begin by specifying the boundaries of the
�steep�interval Sk and by giving some new notations.

We use the notation jIj for the length of an interval I.

De�nition 4.1. Let k 2 N and c 2 (0; 1). De�ne

ak := min
n
x 2

�
mk+1; q

k+1
�
:
��f 0�;!(x)�� � c! �qk+1�(��1) on �x; qk+1�o

and
bk := max

n
x 2

�
qk+1;mk

�
:
��f 0�;!(x)�� � c! �qk+1�(��1) on �qk+1; x�o .

Note that qk+2 < ak < qk+1 < bk < qk (see Figure 5). Given a symbol sequence of the
form

(sj) = (+1;�1;+1;+1;+1;�1; :::) ,
where symbols represent the signs of f j�;! (x) for some starting value x, we construct
corresponding orbits of f�;!. Note that in terms of the motivation by the three dimensional
vector �eld, such orbits correspond to solutions converging to the doubly homoclinic loop,
and taking turns along the upper and lower homoclinic orbit according to the symbol
sequence. For 0 � a � b, de�ne

[a; b]+1 : = [a; b] ;

[a; b]�1 : = [�b;�a] ;

and de�ne �steep�intervals by

Sck;s := [ak; bk]s =

�
[ak; bk] , if s = +1
[�bk;�ak] , if s = �1 :

So, we have ��f 0�;!(x)�� � c! �qk+1�(��1) for x 2 Sck;s; s 2 f�1g ; k 2 N. (4.1.1)
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Figure 5: The interval
�
qk+2; qk

�

We also de�ne Sk;�1 := Sck;+1 [ Sck;�1 and de�ne the union of all �steep�intervals by

	c=
[
k2N

Sk;�1.

Note that for s 2 f�1g ; Sck;s � (mk+1;mk)s ; and hence��Sck;s�� � mk �mk+1 = q
ke�

'1
! (1� q) (4.1.2)

Setting f 0 := f 0�;!, we de�ne sets of points with forward orbits which are contained in
these �steep�intervals (see Figure 6). Namely,


cn =
n\
j=0

f�j (	c) ; 
c1 =
1\
j=0

f�j (	c) .

Theorem 4.2. Let c 2 (0; 1). Assume � > 1 and de�ne Sck;�1 and 
c1 as above. Then
for k0 2 N the following statements are true:

(1). For every symbol sequence s =(s0; s1; s2; :::) there exists a point y0 2
�
Sck0;s0 \ 


c
1
�

with the property that signf j (y0) is given by sj 2 f�1g, where j 2 N0.
(2). Let ! >

1

c
+ � (�+ 1). Then with the set Z from (3:1:2) we have�

Sck0;s0 \ 

c
1
�
� Z.

(3). Let c 2
�
2

�
; 1

�
and ! >

c�2 (2�+ 3)

2 (c� � 1) . Then 

c
1 � Z, but 
c1 has Lebesgue

measure zero.
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Figure 6: Graphical observations of orbits whose points stay in �steep�intervals

Remark. A similar argument is sketched in the page 395 of [2], with the purpose to
show that Z can be dense, but it seems that the method gives density only in a set of
measure zero.

The proof starts with the following lemma.

Lemma 4.3. Let k0 2 N, c 2 (0; 1) and s =(s0; s1; s2; :::) 2 f+1;�1gN0 be given.
De�ne Sck0;sj as in the passage given before Theorem 4.2. Then the following statements
are true:

(a) There exists a point y0 2 Sck0;s0 and a sequence k0 < k1 < k2 < ::: such that
8j 2 N0 f j (y0) 2 Sckj ;sj , in particular, y0 2 


c
1.

(b) Let y0 2
�
Sck0;s0 \ 


c
1
�
be given and de�ne the sequence k0 < k1 < k2 < ::: by

f j (y0) = yj 2 Sckj ;sj (j 2 N0). Then there exists a sequence (�j) of intervals in S
c
k0;s0

with

�j � �j+1 3 y0, (f j)0 6= 0 on �j and

f j (�j) =
�
qkj+1; yj

�
sj
=

� �
qkj+1; yj

�
; if sj = +1�

yj;�qkj+1
�
; if sj = �1

� Sckj ;sj for j 2 N0; (4.3.1)

in particular, Z \ �j 6= ; for all j 2 N0.
(c) For y0 2

�
Sck0;s0 \ 


c
1
�
and k0; k1; k2;... as in assertion (b) and all j 2 N we have

����f j�0 (y0)��� � (c!)j  j�1Y
n=0

qkn+1

!��1
. (4.3.2)
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(d) Let y0 and the sequence k0 < k1 < k2 < ::: be as in (b). Then

8j 2 N : qkj� � qkj+1+2. (4.3.3)

(e) Let ! >
1

c
+� (�+ 1). Let y0 and the associated �j be as in assertion (b) and '1

be as in Lemma 2.1. Then j�jj �
qk0e�

'1
! (1� q)

(c!q�+1)j
and c!q�+1 > 1; in particular, j�jj ! 0,

as j !1.

Proof.
(a) Let k0 2 N and s =(s0; s1; s2; :::) be given. For Sck0;s0 = [ak0 ; bk0 ]s0 it is clear that

f
�
Sck0;s0

�
is an interval which contains 0 in its interior, and since ak ! 0; bk ! 0 as

k !1, there exists k1 > k0 with Sck1;s1 � f
�
Sck0;s0

�
. Further f jSck0;s0 is injective, and we

set

J1 :=
�
f jSck0;s0

��1 �
Sck1;s1

�
.

(f maps J1 bijectively onto Sck1;s1.) Similarly, there exists k2 > k1 with S
c
k2;s2

� f
�
Sck1;s1

�
,

and a closed subinterval J2 � J1 such that f 2 jJ2 : J2 ! Sck2;s2 is bijective. Thus, we obtain
a nested sequence

J1 � J2 � J3 � :::
of closed intervals and sequence of numbers

k0 < k1 < k2 < :::

with the property that f j (Jj) = Sckj ;sj ; j = 1; 2; 3; :::. Furthermore, the intersection of

nested closed intervals
\
j2N

Jj is not empty. It means that there exists a point y0 2
\
j2N

Jj

which follows the symbol sequence s, and this result completes the proof of assertion (a).
(b) For the proof of this assertion we use a recursive construction. De�ne

�0 :=
�
qk0+1; y0

�
s0
=

� �
qk0+1; y0

�
; if s0 = +1�

y0;�qk0+1
�
; if s0 = �1

� Sck0;s0.

Then y0 2 �0, and the de�nition of Sck0;s0 implies f
0 6= 0 on �0, so (4:3:1) holds for

j = 0. Assume �j with the properties in (4:3:1) is constructed and we want to construct
�j+1 � �j such that (4:3:1) is also satis�ed for j+1. We have, observing that sign(yj) = sj,

f
��
qkj+1; yj

�
sj

�
= [0; f (yj)]sj+1 = [0; yj+1]sj+1 ,

and f j j�j as well as f j[qkj+1;yj]
sj

are invertible. Hence, we can de�ne

�j+1 =
�
f�j j�j

��1�
f j[qkj+1;yj]

sj

��1 ��
qkj+1+1; yj+1

�
sj+1

�
.
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Then y0 2 �j+1 � �j, the chain rule shows (f j+1)0 6= 0 on �j+1; and
(f j+1) (�j+1) =

�
qkj+1+1; yj+1

�
sj+1

� Sckj+1;sj+1. Hence, the recursive construction is com-
pleted.
Note also that for j 2 N; �j contains a point xj with f j (xj) = qkj+1, so

f j+1 (xj) = f
�
qkj+1

�
= 0, hence xj 2 �j \ Z.

(c) By the chain rule the derivative (f j)0 at y0 2
\
j2N

�j can be calculated as the

product of the derivatives of f along the orbit

����f j�0 (y0)��� = jf 0 (y0) � f 0 (y1) � ::: � f 0 (yj�2) � f 0 (yj�1)j = j�1Y
n=0

jf 0 (yn)j .

Using (4:1:1) for each derivative in the last equality, we have

����f j�0 (y0)��� =

j�1Y
n=0

jf 0 (yn)j � (c!)j
j�1Y
n=0

�
qkn+1

���1
= (c!)j

 
j�1Y
n=0

qkn+1

!��1
.

This gives the proof of (4:3:2).
(d) Let now y0 2 Sck0;s0 and sequence k0 < k1 < k2 < ::: as in (b) be given. With �j

from (4:3:1) we have f j (�j) � Sckj ;sj , and so

f j+1 (y0) 2 Sckj+1;sj+1 \ f
j+1 (�j) � f

�
f j (�j)

�
� f

�
Sckj ;sj

�
, for j 2 N0

which implies f
�
Sckj ;sj

�
\Sckj+1;sj+1 6= ;. Morover, since jf j � q

kj� on Sckj ;sj , we obviously
have
qkj� � max

n
jf (x)j : x 2 Sckj ;sj

o
. Together with

max
n
jf (x)j : x 2 Sckj ;sj

o
� min

n
jyj : y 2 Sckj+1;sj+1

o
;

we conclude

qkj� � max
n
jf (x)j : x 2 Sckj ;sj

o
� min

n
jyj : y 2 Sckj+1;sj+1

o
= akj+1 � qkj+1+2.

Hence, the proof of (d) is also completed.
(e) Finally, from (2:3:1) we know that on �j we have

j�jj �
j(f j) (�j)j
min�j

��(f j)0�� . (4.3.4)

From (4:3:1) we have j(f j) (�j)j �
���Sckj ;sj ���, and from (4:1:2) we have ���Sckj ;sj ��� � qkje�'1

! (1� q).
Combining both inequalities, we get
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���f j� (�j)�� � ���Sckj ;sj ��� � qkje�'1
! (1� q) . (4.3.5)

Using (4:3:5) and (4:3:2) in (4:3:4) ; we obtain

j�jj �
qkje�

'1
! (1� q)

(c!)j
 
j�1Y
n=0

qkn+1

!��1 . (4.3.6)

By using (4:3:3) we can estimate the denominator of (4:3:6) as follows:

(c!)j
 
j�1Y
n=0

qkn+1

!��1
= (c!)j �

 
j�1Y
n=0

q

!��1 j�1Y
n=0

qkn

!��1

= (c!)j �
qj(��1)

j�1Y
n=0

qkn�

j�1Y
n=0

qkn

� (c!)j � qj(��1) �

j�1Y
n=0

qkn+1+2

j�1Y
n=0

qkn

= (c!)j � q(��1)j �
q2j

j�1Y
n=0

qkn+1

j�1Y
n=0

qkn

=
�
c!q�+1

�j � qkj
qk0
.

Substituting this estimate in (4:3:6), we �nally have

j�jj �
qkje�

'1
! (1� q) qk0

(c!q�+1)j qkj
=
qk0e�

'1
! (1� q)

(c!q�+1)j
.

To show that j�jj ! 0 as j !1, it is enough to show (c!q�+1) > 1. Note that the �rst
order Taylor expansion of q�+1 = exp

�
��
!
(�+ 1)

�
is

exp
�
��
!
(�+ 1)

�
= 1� � (�+ 1)

!
+R1 (�) ;

where R1 (�) =
exp00 (�)

2

�
� (�+ 1)

!

�2
> 0, and � 2

�
�� (�+ 1)

!
; 0

�
. The assumption

of (e) gives us
1

c
+ � (�+ 1) < !, and hence

1 < c! � c� (�+ 1) = c!
�
1� � (�+ 1)

!

�
:

Since R1 (�) > 0, we obtain
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1 < c!

�
1� � (�+ 1)

!

�
< c!

�
1� � (�+ 1)

!
+R1 (�)

�
= c! exp

�
��
!
(�+ 1)

�
= c!q�+1,

and this completes the proof of (e).

The next lemma estimates the measure of the points in the �steep�interval Sck0;+1 which
have the �rst n iterates in the union of all �steep�intervals.

Lemma 4.4. Let k0 2 N, c 2
�
1

�
; 1

�
. Let 	c and Sck0;�1 be as in the passage before

Theorem 4.2. De�ne '1 as in Lemma 2.1. Then for k0 2 N we have�����Sck0;+1 \
n\
i=1

f�i (	c)

����� � qk0e�
'1
! (1� q)

(c!q�+1 (1� q))n . (4.4.1)

(The same estimate holds for Sck0;�1)

Proof. Let k0 2 N and c 2
�
1

�
; 1

�
be given. It is clear that f

�
Sck0;+1

�
contains

in�nitely many �steep�intervals. Assume `; i 2 N are such that Sck0;+1 \ f
�i �Sc`;�1� 6= ;.

Since jf i (x)j � jxj�
i

on Sck0;�1, one must have q
k0�i � min

�
jyj : y 2 Sc`;�1

	
� q`+2. It

follows that ` � k0�i � 2 � k0�� 2. Hence, the intersection in (4:4:1) equals

Sck0;+1 \
n\
i=1

f�i

 [
`�k0��2

Sc`;�1

!
. We now prove (4:4:1) by induction over n. For n = 1,

��Sck0;+1 \ f�1 (	c)�� =

�����Sck0;+1 \ f�1
 [
`�k0��2

Sc`;�1

!�����
=

X
`�k0��2

��Sck0;+1 \ f�1 �Sc`;�1��� . (4.4.2)

From (4:1:2) we have ��Sc`;�1�� � q`e�'1
! (1� q) . (4.4.3)

Using (2:3:1), (4:1:1) and (4:4:3) in (4:4:2), we have

��Sck0;+1 \ f�1 (	c)�� =
X

`�k0��2

��Sck0;+1 \ f�1 �Sc`;�1��� � X
`�k0��2

1

c!q(k0+1)(��1)
��Sc`;�1��

� e�
'1
! (1� q)

c!q(k0+1)(��1)

X
`�k0��2

q`. (4.4.4)

Here, note that X
`�k0��2

q` =
X

`�dk0��2e

q` = qdk0��2e
1

1� q , (4.4.5)
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where d:::e denotes the ceiling function. Setting " (k0) := dk0�� 2e � (k0�� 1) 2 [�1; 0)
and using (4:4:5) in (4:4:4), we obtain

��Sck0;+1 \ f�1 (	c)�� � e�
'1
!

c!q(k0+1)(��1)
qdk0��2e =

qk0e�
'1
!

c!
� q

dk0��2e

qk0��1
� 1
q�

= q"(k0) � q
k0e�

'1
!

c!q�
� q�1qk0e�

'1
!

c!q�
=
qk0e�

'1
! (1� q)

c!q�+1 (1� q)

which proves the case n = 1.
Assume the assertion is true for n, i.e, for all k0 2 N we have�����Sck0;+1 \

n\
i=1

f�i (	c)

����� � qk0e�'1
! (1� q)

�
1

c!q�+1 (1� q)

�n
, (4.4.6)

and now we show that it is true for n+ 1.

�����Sck0;+1 \
n+1\
i=1

f�i (	c)

����� =
��Sck0;+1 \ f�1 (	c) \ ::: \ f�n�1 (	c)

��
=

�����Sck0;+1 \ f�1
 

n\
i=0

f�i (	c)

!�����
=

�����Sck0;+1 \ f�1
  [

`�k0��2

Sc`;�1

!
\

n\
i=0

f�i (	c)

!����� .
Note that Sc`;�1 � 	c implies

Sc`;�1 \
n\
i=0

f�i (	c) = Sc`;�1 \
n\
i=1

f�i (	c) .

So, we obtain�����Sck0;+1 \
n+1\
i=1

f�i (	c)

����� =
�����Sck0;+1 \ f�1

 [
`�k0��2

 
Sc`;�1 \

n\
i=1

f�i (	c)

!!����� (4.4.7)

Using (2:3:1), (4:1:1), (4:4:3) ; (4:4:5) and (4:4:6) in (4:4:7), we have�����Sck0;+1 \
n+1\
i=1

f�i (	c)

����� � 1

(c!) q(k0+1)(��1)

X
`�k0��2

�
1

c!q�+1 (1� q)

�n
q`e�

'1
! (1� q)

=
qk0e�

'1
!

(c!)n+1 (q�+1)n q�qk0��1

�
1

1� q

�n�1 X
`�k0��2

q`

=
qk0e�

'1
!

(c!)n+1 (q�+1)n q�

�
1

1� q

�n�1
qdk0��2e

qk0��1
1

1� q
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With " (k0) as above, we obtain�����Sck0;+1 \
n+1\
i=1

f�i (	c)

����� � qk0e�
'1
! q"(k0)

(c!)n+1 (q�+1)n q�

�
1

1� q

�n
� qk0e�

'1
! q�1

(c!)n+1 (q�+1)n

�
1

1� q

�n
= qk0e�

'1
! (1� q)

�
1

c!q�+1 (1� q)

�n+1
,

so the assertion is true for n+ 1 and hence, the proof of Lemma 4.4 is completed.

Remark 4.5. Let c 2
�
2

�
; 1

�
and � > 1. Then

1

c
+ � (�+ 1) � c�2 (2�+ 3)

2 (c� � 1) .

Proof. Let c 2
�
2

�
; 1

�
. Then

1

c
+ � (�+ 1) =

1 + c��+ c�

c
=
� + c�2�+ c�2

c�
� 2c�2�+ 2c�2 + 2�

2 (c� � 1) .

Since c� > 2, we have 2� < c�2 and hence

1

c
+ � (�+ 1) � 2c�2�+ 3c�2

2 (c� � 1) =
c�2 (2�+ 3)

2 (c� � 1) .

4.6. Proof of Theorem 4.2
(1). From assertion (a) in Lemma 4.3 we see that there exists a point y0 2

�
Sck0;s0 \ 


c
1
�

with signf j (y0) = sj, because f j (y0) 2 Sckj ;sj .
(2). Assume y0 2

�
Sck0;s0 \ 


c
1
�
. Assertion (b) of Lemma 4.3 shows that �j 3 y0 and

Z \ �j 6= ;. Further, assertion (e) of Lemma 4.3 shows that j�jj ! 0 as j ! 1. This
means that there exists a sequence (zj) � Z with zj ! y0, and this completes the proof.

(3). Let c 2
�
2

�
; 1

�
be given. Remark 4.5 shows that the condition ! >

c�2 (2�+ 3)

2 (c� � 1)
from assertion (3) of Theorem 4.2 implies the condition ! >

1

c
+ � (�+ 1) of assertion

(2). Hence,
�
Sck0;�1 \ 


c
1
�
� Z for all k0 2 N. It follows that


c1 =
[
k02N

�
Sck0;�1 \ 


c
1
�
� Z, so 
c1 � Z. To prove that 
c1 has measure zero, we show

limn!1
��
cn \ Sck0;�1�� = 0 for every k0 2 N. For this purpose it is enough to show that

under the conditions of assertion (3) of Theorem 4.2, c!q�+1 (1� q) > 1 in (4:4:1). We
use the second order Taylor expansion of e�y around 0 for y > 0;

e�y = 1� y + y
2

2
+R3,

with R3 =
exp000 (�)

3!
(�y)3 < 0 for some � 2 (�y; 0). Hence, since
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q = e�
�
! = 1� �

!
+
(�)2

2!2
+R3

��
!

�
< 1� �

!
+
(�)2

2!2
,

we have

1� q = 1� e� �
! =

�

!
� �2

2!2
�R3

��
!

�
>
�

!
� �2

2!2
. (4.6.1)

On the other hand, with appropriate �,

q�+1 = e�
�
!
(�+1) = 1� � (�+ 1)

!
+
exp00 (�)

2!

�
�� (�+ 1)

!

�2
> 1� � (�+ 1)

!
. (4.6.2)

Using (4:6:1) and (4:6:2), we get

c!q�+1 (1� q) > c!

�
1� � (�+ 1)

!

��
�

!
� �2

2!2

�
= c�

�
1� ��+ �

!

��
1� �

2!

�
= c�

�
1� (3� + 2��)

2!
+
�2 (�+ 1)

2!2

�
> c�

�
1� � (3 + 2�)

2!

�
. (4.6.3)

In view of Remark 4.5, and using the assumption which is given in the assertion (3) of
Theorem 4.2 in (4:6:3), we �nally obtain

c!q�+1 (1� q) > c�

0BB@1� � (3 + 2�)

2 � c�
2 (2�+ 3)

2 (c� � 1)

1CCA = c�

�
1� c� � 1

c�

�
= 1.
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Figure 7: Graphical representation of ULk and U
R
k

5. The behavior of the points whose orbits follow ��at-steep-�at�intervals

In chapter three we analyzed the behavior of the points which are mapped from ��at�
intervals to some other ��at�intervals, and in chapter four we studied the behavior of the
points which are mapped from �steep�intervals to some other �steep�intervals. Finally
in this chapter, as we brie�y mentioned in the summary of this thesis, we �rst construct
a speci�c type of orbit whose points travel from ��at�intervals to �steep�intervals, then
from �steep�intervals again to ��at�intervals under the iteration (see Figure 7). Besides, to
avoid repeating the same expression, we shall use g!;�+1�j as in Lemma 2.1 and c 2 (0; 1)
for the rest of the paper. For a speci�c choice of �; ! > 0;maximamk get mapped to zeros
q`1(k) of f�;!. We shall �rst introduce ��at�intervals of the form Uk = [mk � �k;mk + �k]
for odd k and use the notations URk = [mk;mk + �k] and ULk = [mk � �k;mk] for the right
and left part of Uk respectively, and we de�ne U =

[
k2N
k odd

Uk , S =
[
k2N
k odd

Sk. Then, we

construct the orbit (f j (x))j2N ; with the properties

f j (x) 2
�
U; j is even
S; j is odd

.

Furthermore, for k; � 2 N; ! > 0 de�ne `1 (k) = k�+1 and with '1 as in Lemma 2.1, we
de�ne

`2 (k) := min

�
` 2 N : q` � q`1(k)� � q

'1(��2)
� � c (1� c)!

3

4g!;� � g2!;��1

�
:

We denote by `j2 (k) the j th iterate of the function `2 applied to k. Then, given a symbol
sequence of the form (L;R;R; L;R; :::; R), where symbols represent the left �L�or right
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�R�hand part of Uk (that is ULk ; U
R
k ), we construct corresponding orbits of f . Given a

�nite sequence
s = (s0; s1; s2; :::; sn) 2 fL;Rgn+1

and k 2 N, we �rst construct the subset of points x in Uk which follow this symbol
sequence in the sense that f 2j (x) 2 UL

`j2(k)
or f 2j (x) 2 UR

`j2(k)
, j = 0; 1; 2; :::; n depending

on whether sj = L or sj = R. Hence, we construct the set Ink;s =
n\
j=0

f�2j
�
U
sj

`j2(k)

�
and

the set �nk =
[

s2fL;Rgn+1
Ink;s which is the set of points following symbol sequences in the

set fL;Rgf0;1;2;:::;ng. Finally, we analyze the Lebesgue measure of the set �nk , and consider
the limit as n!1.

Note that the �steep�intervals Sk that we use in our calculations in this chapter are
some subintervals of

�
mk; q

k
�
, whereas the �steep�intervals which were used in the fourth

chapter are some subintervals of (mk+1;mk). In the theorem below we restrict ourselves
to � 2 N for simplicity.

Theorem 5.1. Let k be a positive odd integer number. Let c 2 (0; 1), and � 2 N,

� � max
(�

30e

7�

�2�
1� c
2c

�
; 15

)
be given. Then there exist an ! > 0 (depending on �)

and a set �kn � Uk with the following properties:

(1). Let a sequence of the form s = (L;R;R;R; L;R; L;R; :::) 2 fL;RgN0 be given.
Then, there exists exactly one point xk;s 2 Uk with the property:
For all n 2 N0, f 2n (xs) 2 U`n2 (k), and f

2n (xs) is to the left of m`n2 (k)
or to the right of

m`n2 (k)
, depending on whether sn = L or sn = R.

(2). The measure of �nk as de�ned above goes to zero, as n!1.

The proof requires several lemmas and propositions. The proof of the following lemma
is analogous to the proof of Lemma 3.3, but is included for completeness.

Lemma 5.2. De�ne '1 as in Lemma 2.1. Then the following statements are true.

(a) Assume � 2 N, � � 15 and de�ne `1 (k) as in the passage before Theorem 5.1.
Then there exists an ! 2 (0; 1) such that for all k 2 N; f has the property

jf (mk)j = q`1(k), (5.2.1)

which is eqivalent to

exp

0BB@� � � arctan
�
!

�

�
!

1CCA =

r
1 +

�2

!2
. (5.2.2)
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(b) For any choice of ! as in assertion (a), we have ! ! 0 as �!1:

Proof.
(a) Let k 2 N be given. With mk from (2:2:3), we have from (2:2:4)

jf (mk)j = exp
�
�k��+ '1�

!

�
� sin('1).

Using (2:1:3) we obtain

jf (mk)j = exp
�
�k��+ '1�

!

�
� 1r

1 +
�2

!2

. (5.2.3)

On the other hand, from (2:2:1) we have

q`1(k) = exp

�
��`1 (k)

!

�
. (5.2.4)

With (5:2:3) and (5:2:4) together, we see that (5:2:1) is equivalent to

exp

�
��`1 (k)

!

�
= exp

�
�k��+ '1�

!

�
1r
1 +

�2

!2

and hence to

exp

�
� (`1 (k)� k�)� '1�

!

�
=

r
1 +

�2

!2
. (5.2.5)

So, if we substitute `1 (k) = k�+1 and the value of '1 given by Lemma 2.1 in (5:2:5), we
�nally get that (5:2:1) is equivalent to

exp

0BB@� � � arctan
�
!

�

�
!

1CCA =

r
1 +

�2

!2
,

which proves the equivalence of (5:2:1) and (5:2:2). Now, we want to �nd ! and � such
that
jf (mk)j = q`1(k). De�ne

F (!; �) = exp

0BB@� � � arctan
�
!

�

�
!

1CCA�
r
1 +

�2

!2

and try to �nd F (!; �) = 0 at least for a special pair of (!; �) (See Figure 8). On the

one hand, for a �xed � > 2, arctan
�
!

�

�
! 0 as ! ! 0. Hence, due to the exponential

growth, F (!; �)!1 as ! ! 0. On the other hand, for ! = 1 we have

F (1; �) = exp

�
� � � arctan

�
1

�

��
�
p
1 + �2. (5.2.6)
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Figure 8: Graph of F (�; �) for � = 15

From (3:3:7) we have � arctan
�
1

�

�
� 1

2
for � > 2, and using this estimate in (5:2:6), we

�nally have F (1; �) < e��
1
2 �

p
1 + �2. From the fact that e��

1
2 < 15, we �nally have

F (1; �) < 0, if we choose � � 15. With the intermediate value theorem, it is clear that
there exists at least one ! 2 (0; 1) which satis�es F (!; �) = 0 for �xed �. This gives the
proof of assertion (a).
(b) The proof is analogous to the proof of the assertion (b) of Lemma 3.3.

In order to �nd a numerical solution, one can use the bisection method, and we found
numerically that there is no solution for � < 2:3.

The next three propositions (5.3, 5.4, 5.5 ) give some preparatory calculations.

Proposition 5.3. Let '1 be as in Lemma 2.1. Set � (!; �; c) :=
exp

�
(�� 2)'1

2!

�
g!;��1

r
1� c
2c!

.

If � 2 N,

� � max
(�

30e

7�

�2�
1� c
2c

�
; 15

)
,

and ! is a corresponding value obtained as in Lemma 5.2, then we have � (!; �; c) <
1

2
.

Proof. Let � and ! 2 (0; 1) be as in the assumption. Then, it is clear that 3�
2

!2
� 1,

and in view of (5:2:2) we have

2�

!
=

r
3�2

!2
+
�2

!2
�
r
1 +

�2

!2
= exp

0BB@� � � arctan
�
!

�

�
!

1CCA .
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Since arctan
�
!

�

�
� !

�
, we get

2�

!
� exp

0B@� � � �
!

�

!

1CA = exp
��
!
� 1
�
,

and hence we have 2�e � !e �! . Using the second order Taylor expansion of e �! in the last
inequality, we obtain

2�e � !

�
1 +

�

!
+
1

2

�2

!2

�
� 1

2

�2

!
, or

4e� � �2

!
. (5.3.1)

On the other hand, we know that � �
�
30e

7�

�2�
1� c
2c

�
, so

p
� � 30e

7�

r
1� c
2c

which

implies
1

2
� e 12

r
1� c
2c

30e
1
2

14�
p
�
. Since e

1
2 > e

1
2
� 1
� , it follows that

1

2
> exp

�
1

2
� 1

�

�
�
r
1� c
2c

� 15
p
4e

14�
p
�
= exp

�
!

2�!
(�� 2)

�
�
r
1� c
2c

� 15
p
4e�

14��
. (5.3.2)

On the other hand, since � � 15, we have 1

�� 1 �
15

14�
, and with the fact that

arctan

�
!

�

�
� !

�
we can conclude from (5:3:2)

1

2
> exp

0BB@(�� 2) arctan
�
!

�

�
2!

1CCA �
r
1� c
2c

�
p
4e�

� (�� 1) .

Finally, using (5:3:1) and the de�nition of '1, we obtain

1

2
> exp

�
(�� 2)'1

2!

�
�
r
1� c
2c!

�
s

1

(�� 1)2

� exp

�
(�� 2)'1

2!

�
�
r
1� c
2c!

�
s

1

!2 + (�� 1)2

=

exp

�
(�� 2)'1

2!

�
g!;��1

�
r
1� c
2c!

= � (!; �; c)

and this completes the proof.
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Proposition 5.4. Let '1 be as in Lemma 2.1 and c 2 (0; 1) be given. Set

e�1 (!; �) := !e�
'1(��2)

!

2g!;��1 � g!;��2
; e�2 (!; �) := e�

'1
! � q
2

; e�3 (!; �) := 1� e�
'1
!

2
and

e�4 (!; �) := p(1� c) q!g!;� � g!;��1
. Then for small enough ! > 0 and large enough � 2 N, � � 3,

we have

e� := min fe�1 (!; �) ; e�2 (!; �) ; e�3 (!; �) ; e�4 (!; �)g = e�4 (!; �) . (5.4.1)

Proof. We prove that e�4 (!; �) � e�1 (!; �) � min fe�2 (!; �) ;e�3 (!; �)g for � large
enough, ! small enough. For ! > 0, we have g!;��1 �

q
(�� 1)2, g!;��2 �

q
(�� 2)2

and using these simpli�cations, we obtain

e�1 (!; �) � !e�
'1(��2)

!

2
q
(�� 1)2 (�� 2)2

=
!e�

'1(��2)
!

2 (�� 1) (�� 2) . (5.4.2)

We have already de�ned

e�2 (!; �) = e�
'1
! � q
2

=
1

2
e�

'1
!

�
1� e

'1��
!

�
,

and for ! small, '1 � � < 0 implies
�
1� e

'1��
!

�
>
1

2
. Hence, we have

e�2 (!; �) � 1

4
e�

'1
! . (5.4.3)

From (5:4:2) and (5:4:3) it is obvious that e�1 (!; �) � e�2 (!; �) for � � 3 and small
enough !. The proof of e�1 (!; �) � e�3 (!; �) for small ! and large � is analogous; observee�3 (!; �) ! 1

2
as ! ! 0. There exist c1; c2 > 0, and �0 > 0 for � � �0 such that

e�1 (!; �) � c1!e�'1(��2)
!

�2
and e�4 (!; �0) � c2p!e� �

!

�2
. Hence, we have for � � �0

e�4 (!; �)e�1 (!; �) � c2
p
!e�

�
!

c1!e
�'1(��2)

!

=
c2
c1

1p
!
exp

0@'1 (�� 2)� �2
!

1A
Substituting the explicit form of '1 as in Lemma 2.1, the last equality turns to

e�4 (!; �)e�1 (!; �) � c2
c1

1p
!
exp

0BB@(�� 2) arctan
�
!

�

�
� �
2

!

1CCA . (5.4.4)
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Using the fact that

lim
�!1;!!0

0BB@(�� 2) arctan
�
!

�

�
!

1CCA = lim
�!1;!!0

0B@(�� 2)
!

�

!

1CA = 1; and

lim!!0
1p
!
exp

�
��
2!

�
= 0 in (5:4:4), we �nally have

lim
�!1;!!0

�e�4 (!; �)e�1 (!; �)
�
� lim

�!1;!!0

c2
c1

1p
!
exp

�
1� �

2!

�
= 0

and that shows for large enough � and small enough ! one has e�4 (!; �) � e�1 (!; �).
Now, we aim at �nding an interval Uk := [mk � �k;mk + �k] as indicated in the passage

before Theorem 5.1, which gets mapped to a �steep�interval S`1(k), but we �rst provide
upper and lower estimates for the second derivative f�00�;! of f .

Proposition 5.5. Let k 2 N. Assume � and ! are as in Proposition 5.4. De�ne e� as
in Proposition 5.4 and set �k := e�qk; Jk := �qk+1; qk�. Then

Uk := [mk � �k;mk + �k] �
�
qk+1; qk

�
= Jk

and the following estimates hold:

8x 2 [mk � �k;mk + �k] : g!;� � g!;��1 � qk(��2) � jf 00 (x)j �
�
qke�

'
!

���2 � ! � g!;�
2

. (5.5.1)

Proof. Let k 2 N. With � from Lemma 3.2, the de�nition of e� given in Proposition
5.4 shows e� � min fe�2; e�3g = �. Hence, in view of Lemma 3.2, we see that

Uk = [mk � �k;mk + �k] �
�
mk � �qk;mk + �q

k
�
�
�
qk+1; qk

�
= Jk:

Further, inserting mk from (2:2:3) in (2:1:4) we have

jf 00 (mk)j = g!;� � g!;��1 � jmkj��2 jsin ((! ln (mk) + '1) + '2)j
= g!;� � g!;��1 � jmkj��2 jsin (�k� + '2)j .

Using '2 = arctan

�
!

�� 1

�
from Lemma 2.1, we have sin ('2) =

!

g!;��1
and, inserting

this value in the last equality, we have

jf 00 (mk)j = g!;� � g!;��1 � jmkj��2
!

g!;��1
= jmkj��2 ! � g!;�. (5.5.2)
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From (2:1:5) we have on
�
qk+1; qk

�
jf 000 (x)j =

��g!;� � g!;��1 � g!;��2 � x��3 sin (! ln (x) + ('1 + '2 + '3))��
� g!;� � g!;��1 � g!;��2 � qk(��3). (5.5.3)

From (2:3:1) for x 2 [mk � �k;mk + �k] and with the de�nition of �k, we also have

jf 00 (x)j � jf 00 (mk)j � �k � max
[mk��k;mk+�k]

jf 000j

= jf 00 (mk)j � e�qk � max
[mk��k;mk+�k]

jf 000j

� jf 00 (mk)j � e�1qk � max
[mk��k;mk+�k]

jf 000j . (5.5.4)

With the de�nition of e�1; using (2:2:3) ; (5:5:2) and (5:5:3) in (5:5:4), we �nally have
jf 00 (x)j � m��2

k ! � g!;� �
qk!e�

'1(��2)
!

2g!;��1 � g!;��2
g!;� � g!;��1 � g!;��2 � qk(��3)

=
�
qke�

'
!

���2
� ! � g!;� �

qk(��2)!e�
'1(��2)

!

2
g!;�

=
�
qke�

'
!

���2
� ! � g!;� �

�
qke�

'
!

���2 � ! � g!;�
2

=

�
qke�

'
!

���2 � ! � g!;�
2

.

This is the lower estimate for jf 00 (x)j; the upper estimate even on the interval
�
qk+1; qk

�
follows with the formula for f 00 in (2:1:4).
For k 2 N; we specify the boundaries of an associated �steep�interval S`1(k) with the

next proposition.

Proposition 5.6. Let k 2 N. Assume � and ! are as in Proposition 5.4 and de�ne
`1 (k) = k� + 1 as in the passage before the Theorem 5.1. Set r`1(k) :=

(1� c)!
g!;� � g!;��1

q`1(k)

and S`1(k) :=
�
q`1(k) � r`1(k); q`1(k)

�
. Then, S`1(k) �

�
m`1(k); q

`1(k)
�
and on S`1(k) we have

jf 0j � c!q`1(k)(��1). (5.6.1)

Proof. Let k 2 N. From the upper estimate of (5:5:1), on S`1(k) we have

kf 00k1;S`1(k) � g!;� � g!;��1 � q
`1(k)(��2). (5.6.2)

From (2:3:1) we have

8x 2 S`1(k) : jf 0 (x)j �
��f 0 �q`1(k)���� kf 00k1;S`1(k) � r`1(k) , (5.6.3)
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and from (2:2:2) we also have
��f 0 �q`1(k)��� = !q`1(k)(��1). Using (5:6:2) and substituting

the explicit values of both
��f 0 �q`1(k)��� and r`1(k) in (5:6:3), we get

8x 2 S`1(k) : jf 0 (x)j �
��f 0 �q`1(k)���� g!;� � g!;��1 � q`1(k)(��2) � r`1(k)

= !q`1(k)(��1) � g!;� � g!;��1 � q`1(k)(��2) �
(1� c)!
g!;��1 � g!;�

q`1(k)

= !q`1(k)(��1) � (1� c)!q`1(k)(��1) = c!q`1(k)(��1) .

It follows now from f 0
�
m`1(k)

�
= 0 that m`1(k) < q

`1(k) � r`1(k).

From the graph of the map one can understand that the image of S`1(k) under f�;!
includes many �steep�and ��at�intervals, but we continue our calculations with a subin-
terval ]S`1(k) of S`1(k) which is contained in f (Uk). The next lemma gives an estimate for
the size of f (Uk) with a relation between ]S`1(k) and S`1(k).

Note that for the sake of simplicity we shall use k as a positive odd integer number
for the rest of the paper.

Lemma 5.7. Let k be a positive odd integer number. Let ! and even integer � be
as in Proposition 5.4 and satisfying (5:2:2). De�ne e� as in Propositon 5.4, �k and Uk as
in Proposition 5.5, and ULnRk as in the passage before Theorem 5.1.Then the following
statements are true.

(a) De�ne r`1(k) and S`1(k) as in Proposition 5.6. Then we have f (Uk) � S`1(k);
(b) Set

]r`1(k) := q`1(k) � q
'1(��2)

� � (1� c) � !
2

4g!;� � g2!;��1
(5.7.1)

and ]S`1(k) =
�
q`1(k) �]r`1(k); q`1(k)

�
. Then we have f

�
U
LnR
k

�
� ]S`1(k).

Proof. Note that due to (5:2:1), and since k is odd (see (2:2:4)),
max ff (Uk)g = f (mk) = q

`1(k). For the interval Uk we have

min
���f (mk � �k)� q`1(k)

�� ; ��f (mk + �k)� q`1(k)
��	

� jf (Uk)j
� max

���f (mk � �k)� q`1(k)
�� ; ��f (mk + �k)� q`1(k)

��	 :
It follows from second order Taylor expansion of f around the extremum mk and from
(5:2:1) that

min
�2[mk��k;mk+�k]

jf 00 (�)j �
2
k

2
� jf (Uk)j � max

�2[mk��k;mk+�k]
jf 00 (�)j �

2
k

2
. (5.7.2)
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Consequently, using (5:4:1) and inserting the upper estimate of jf 00j given in (5:5:1) and
the value of �k in the upper estimate of (5:7:2), we �nally get

jf (Uk)j � max
�2[mk��k;mk+�k]

jf 00 (�)j �
2
k

2
� g!;� � g!;��1 � qk(��2)

�2k
2

= g!;� � g!;��1 � qk(��2)e�2q2k
� g!;� � g!;��1 � qk(��2) (e�4)2 q2k
� g!;� � g!;��1 � qk(��2)

 p
(1� c) q!

g!;� � g!;��1

!2
q2k

= qk�+1
(1� c)!
g!;� � g!;��1

=
(1� c)!
g!;� � g!;��1

q`1(k) = r`1(k) =
��S`1(k)�� .

From (5:2:1) we know that f (mk) = q`1(k). So, f (Uk) =
�
min f (Uk) ; q

`1(k)
�
and the

estimate jf (Uk)j � r`1(k) shows f (Uk) �
�
q`1(k) � r`1(k); q`1(k)

�
= S`1(k) and this completes

the proof of assertion (a).

Note that, although there is no symmetry between the graph of f�;! to the left and
right hand side of Uk, we can estimate the size of f

�
ULk
�
and f

�
URk
�
in a similar way.

Substituting the lower bound of jf 00j given by (5:5:1), the value of �k in the analogue of
the lower estimate of (5:7:2) for ULnRk , and using (5:4:1) we obtain���f �ULnRk

���� � min
�2Uk

jf 00 (�)j �
2
k

2
�
�
qke�

'
!

���2 � ! � g!;�
2

�2k
2

=

�
qke�

'
!

���2 � ! � g!;�
4

e�2q2k = qk��2k � e�
'1(��2)

! ! � g!;�
4

(e�4)2 q2k
=

qk��2k � e�
'1(��2)

! ! � g!;�
4

 p
(1� c) q!

g!;� � g!;��1

!2
q2k

=
qk�+1 � e�

'1(��2)
! � !2

4

(1� c)
g!;� � g2!;��1

= q`1(k) � q
'1(��2)

� � (1� c) � !
2

4g!;� � g2!;��1
=]r`1(k) =

���]S`1(k)��� ,
and this completes the proof of assertion (b) and the proof of the lemma.
We continue analyzing the next ��at�interval obtained by the second iteration of f .

Lemma 5.8. Let k be a positive odd integer number. Let !; � be as in Lemma 5.7.
De�ne `1 (k) and `2 (k) as in the passage before Theorem 5.1. Then for ]S`1(k) as in Lemma
5.7, we have

f
�
]S`1(k)

�
�
�
0; q`2(k)

�
:

Proof. Using (2:3:1) on ]S`1(k); we obtain���f �]S`1(k)���� �]r`1(k) � min
x2Ŝ`1(k)

jf 0 (x)j . (5.8.1)
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Using (5:6:1) and (5:7:1) in (5:8:1), and also the de�nition of `2 (k) at the beginning of
this section, we have

���f �]S`1(k)���� � ]r`1(k) � min
x2Ŝ`1(k)

jf 0 (x)j

= q`1(k) � q
'1(��2)

� � (1� c) � !
2

4g!;� � g2!;��1
� c!q`1(k)(��1)

= q`1(k)� � q
'1(��2)

� � c (1� c)!
3

4g!;� � g2!;��1
� q`2(k).

Note also that `1 (k) = k� + 1 is odd, since � is even. Hence, f � 0 on ]S`1(k) and since
f
�
q`1(k)

�
= 0, f

�
]S`1(k)

�
=
h
0;max f

�
]S`1(k)

�i
. The estimate

���f �]S`1(k)���� � q`2(k) implies
that f

�
]S`1(k)

�
�
�
0; q`2(k)

�
.

From Lemma 5.7 we know f
�
U
LnR
k

�
� ]S`1(k). In Proposition 5.8 we showed that

f
�
]S`1(k)

�
�
�
0; q`2(k)

�
. In particular, U`2(k) �

�
q`2(k)+1; q`2(k)

�
� f

�
]S`1(k)

�
. Now, in the

next lemma we estimate the counterimage of subsets of U`2(k) under
�
f 2 j

U
LnR
k

�
.

Lemma 5.9. Let k be a positive odd integer number. Assume � is an even integer,

� � max

(�
30e

7�

�2�
1� c
2c

�
; 15

)
and ! 2 (0; 1) is a corresponding value satisfying

(5:2:2) and such that the assertion of Proposition 5.4 is true (this is possible due to asser-
tion (b) of Lemma 5.2). De�ne � (!; �; c) as in Proposition 5.3 and Jk as in Proposition
5.5. Then, for p 2 (0; 1] and any subinterval [U`2(k) of U`2(k) with `2 (k) as in the passage
before Theorem 5.1, if ���[U`2(k)��� = p ��J`2(k)�� , then (f jUk)�2 �[U`2(k)�
has two parts of the formcULk = �mk � �Lk;2;mk � �Lk;1

�
� ULk , and cURk = �mk + �

R
k;1;mk + �

R
k;2

�
� URk ,

where �Lk;1; �
L
k;2 2

�
0;mk � qk+1

�
and �Rk;1; �

R
k;2 2

�
0; qk �mk

�
, and each of them has the

size ����[ULnRk

���� � � � p � jJkj . (5.9.1)

Proof. Set [S`1(k) :=
�
f j

Ŝ`1(k)

��1 �[U`2(k)�. Note that injectivity of f jS`1(k) and Lemma
5.8 imply that

�
f jS`1(k)

��1 �[U`2(k)� = �f jŜ`1(k)��1 �[U`2(k)�. Using (2:3:1) on [S`1(k), we
have
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�����f jŜ`1(k)��1 �[U`2(k)�
���� = ���[S`1(k)��� �

���[U`2(k)���
min\S`1(k)

jf 0j .

On the other hand, from Proposition 5.6 we already know that on S`1(k), jf 0j � c!q`1(k)(��1).
Because of [S`1(k) � ]S`1(k) � S`1(k), this property also satis�ed on [S`1(k). Hence, inserting
both

���[U`2(k)��� = p ��J`2(k)�� and the estimate of minS`1(k) jf 0j in the last expression, we have
���[S`1(k)��� �

���[U`2(k)���
min\S`1(k)

jf 0j �
p
��J`2(k)��

minS`1(k) jf
0j �

p � q`2(k) (1� q)
c!q`1(k)(��1)

. (5.9.2)

Now, we calculate subintervals of (mk � �k;mk + �k) which get mapped bijectively to
[S`1(k). Note that the counterimage of [S`1(k) has two parts in the form cULk � ULk , andcURk � URk . It follows from strict monotonicty of f on [mk � �k;mk] and [mk;mk + �k] and

from the fact that f
�
U
LnR
k

�
� ]S`1(k) that there exist �

LnR
k;1 ; �

LnR
k;2 with

���f �cURk ���� =
��f ��mk + �

R
k;1;mk + �

R
k;2

���� (5.9.3)

=
��f ��mk � �Lk;2;mk � �Lk;1

���� = ���f �cULk ���� = ���[S`1(k)��� .
We continue our calculations by using the boundaries of cURk . Note that for the interval�
mk;mk + �

R
k;1

�
we know that f

�
mk + �

R
k;1

�
= max[S`1(k) and f (mk) = q

`1(k). Again from

the monotonicity of the map it follows that f
��
mk;mk + �

R
k;1

��
=
h
max[S`1(k); q`1(k)

i
.

Consequently, since f
�
q`1(k)

�
= 0 and f

�
max[S`1(k)

�
2
�
q`2(k)+1; q`2(k)

�
, from (2:3:1) we

have ���max[S`1(k) � q`1(k)��� � q`2(k)+1

kf 0k1;S`1(k)
. (5.9.4)

From (2:1:1) we also have that kf 0k1;S`1(k) � g!;� � q`1(k)(��1). Inserting this estimate in
(5:9:4), we obtain ���max[S`1(k) � q`1(k)��� � q`2(k)+1

g!;� � q`1(k)(��1)
. (5.9.5)

In addition, from (2:1:4) we know that

kf 00k1;Uk � g!;� � g!;��1 � q
k(��2). (5.9.6)

Now, using the second order Taylor expansion of f
�
mk + �

R
k;1

�
, we have

��f �mk + �
R
k;1

�
� f (mk)

�� � �����f 00 (�)
�
�Rk;1
�2

2

����� , (5.9.7)
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where � 2
�
mk;mk + �

R
k;1

�
. Substituting the values of f

�
mk + �

R
k;1

�
and f (mk) in (5:9:7),

we have��f �mk + �
R
k;1

�
� f (mk)

�� =
���max[S`1(k) � q`1(k)��� � kf 00k1;Uk

�
�Rk;1
�2

2
; which implies

�Rk;1 �

vuut
2

���max[S`1(k) � q`1(k)���
kf 00k1;Uk

. (5.9.8)

Using both estimates (5:9:5) and (5:9:6) in (5:9:8), we �nally get

�Rk;1 �
s
2

q`2(k)+1

g2!;� � g!;��1 � qk(��2) � q`1(k)(��1)
. (5.9.9)

On the other hand, from Taylor�s formula with the integral remainder term we have

f (mk + �) = f (mk) +

Z mk+�

mk

(mk + � � t) f 00 (t) dt

= f (mk) +

Z �

0

(� � t) f 00 (mk + t) dt. (5.9.10)

Consequently, applying (5:9:10) for the boundaries of cURk , we have���[S`1(k)��� =
���f �cURk ���� = ��f �mk + �

R
k;2

�
� f

�
mk + �

R
k;1

���
=

�����
Z �Rk;2

0

�
�Rk;2 � t

�
f 00 (mk + t) dt�

Z �Rk;1

0

�
�Rk;1 � t

�
f 00 (mk + t) dt

����� .
From (5:5:1) we already know that M := minx2Uk jf 00 (x)j �

qk(��2)q
'1(��2)

� � ! � g!;�
2

. In

particular, f 00 has constant sign on Uk. Using the fact that �
R
k;1 < �

R
k;2 in the last equality,

we obtain���[S`1(k)��� =

�����
Z �Rk;1

0

�
�Rk;2 � �Rk;1

�
f 00 (mk + t) dt+

Z �Rk;2

�Rk;1

�
�Rk2 � t

�
f 00 (mk + t) dt

�����
�

�����
Z �Rk;1

0

�
�Rk;2 � �Rk;1

�
f 00 (mk + t) dt

����� � ���Rk;2 � �Rk;1�� �M � �Rk;1;

so ���Rk;2 � �Rk;1�� �
���[S`1(k)���
M � �Rk;1

. (5.9.11)

Substituting the estimate ofM and the estimate �Rk;1 given by (5:9:9) in (5:9:11), we obtain

���Rk;2 � �Rk;1�� �
���[S`1(k)���

qk(��2)q
'1(��2)

� � ! � g!;�
2

�
s
2

q`2(k)+1

qk(��2) � g!;��1 � g2!;� � q`1(k)(��1)

: (5.9.12)
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Combining the estimate of [S`1(k) given by (5:9:2) with (5:9:12), we �nally have���cURk ��� =
���Rk;2 � �Rk;1��

�
p
2p � q`2(k) (1� q)
c!q`1(k)(��1)

q
qk(��2) � g!;��1 � g2!;� � q`1(k)(��1)

qk(��2)q
'1(��2)

� � ! � g!;� �
p
q`2(k)+1

=
p
2p
q`2(k) (1� q)
c!q`1(k)(��1)

�
p
qk(��2)g!;��1

qk(��2)q
'1(��2)

� � !
�
p
q`1(k)(��1)p
q`2(k)+1

=
p
2p
(1� q)pg!;��1
c!2 � q

'1(��2)
�

� q
`2(k)

q
`2(k)
2

�
p
qk(��2)

qk(��2)+
1
2

�
p
q`1(k)(��1)

q`1(k)(��1)

=

p
2p � qk (1� q) � q

`2(k)
2

q
`1(k)(��1)

2 � q k�+12 � q
'1(��2)

�

�
p
g!;��1

c!2
.

Here, using the estimate of q`2(k) given in the passage before Theorem 5.1 and
jJkj = qk (1� q), we obtain

���cURk ��� �

p
2p � jJkj �

s
q`1(k)� � q

'1(��2)
� � c (1� c)!

3

4g!;� � g2!;��1

q
`1(k)(��1)

2 � q k�+12 � q
'1(��2)

�

�
p
g!;��1

c!2

=

p
2

2
p � jJkj �

p
q`1(k)�

q
`1(k)��`1(k)

2 � q k�+12

�

q
q
'1(��2)

�

q
'1(��2)

�

�

s
(1� c)

c!g!;� � g!;��1
.

Inserting `1 (k) = k�+ 1 one gets

���cURk ��� �
p
2

2
p � jJkj �

p
q(k�+1)�

q
(k�+1)��(k�+1)

2 � q k�+12

�

q
q
'1(��2)

�

q
'1(��2)

�

�

s
(1� c)

c!g!;� � g!;��1

= p � jJkj � q�
'1(��2)

2� �

s
(1� c)

2c!g!;� � g!;��1
.

Since g!;��1 < g!;�, we can simplify the last inequality as follows:

���cURk ��� � p � jJkj � q�
'1(��2)

2� �
s

(1� c)
2c!g2!;��1

= p � jJkj �
q�

'1(��2)
2�

g!;��1
�
r
1� c
2c!

.
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Inserting q = e�
�
! we have

���cURk ��� � p � jJkj �
exp

�
�

!
� (�� 2)'1

2�

�
g!;��1

�
r
1� c
2c!

= p � jJkj �
exp

�
(�� 2)'1

2!

�
g!;��1

�
r
1� c
2c!

.

Finally, using the de�nition of � (�; !; c), we get���cURk ��� � � � p � jJkj ,
and this completes the proof for cURk . The proof for cULk is analogous.
Corollary 5.10. If the set [U`2(k) in Lemma 5.9 is not only one interval, but a disjoint

union of subintervals of U`2(k), and
���[U`2(k)��� (the measure of [U`2(k)) satis�es���[U`2(k)��� = p ��J`2(k)��, then (f jUk)�2 �[U`2(k)� has two parts (one in ULk and the other in URk )

and each of them has measure less or equal �p jJkj.

Proof. (By summation over the subintervals.)

Now, we consider symbol sequences of the form (L;R;R; L;R; :::; R) and construct
corresponding orbits of f . For given a �nite sequence

s = (s0; s1; s2; :::; sn) 2 fL;Rgn+1

and odd k 2 N, we now construct the subset of points x in Uk which follow this symbol

sequence. Recall the set Ink;s =
n\
j=0

f�2j
�
U
sj

`j2(k)

�
de�ned in the passage before Theorem

5.1. We estimate the size of
��Ink;s��.

Corollary 5.11. Let s = (s0; s1; s2; :::; sn) and an odd k 2 N be given. Then, with
!; � as in Lemma 5.9 and � (!; �; c) as in Proposition 5.3 we have ; 6= Ink;s and��Ink;s�� � �n jJkj .
Proof. We prove the corollary by induction over n. For n = 0, I0k;s = U

s0
k 6= ;, and��I0k;s�� = jU s0k j � jJkj .

Now, we assume the result is true for n, and we verify it for n+1. Let s = (s0; s1; s2; :::; sn+1)
be given. De�ne es = (s1; s2; :::; sn+1). From the induction hypothesis we have In`2(k);es 6= ;,
In`2(k);es � U`2(k), and
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��In`2(k);es�� =

�����
n\
j=0

f�2j
�
U
sj+1

`j2(`2(k))

������
� �n

��J`2(k)�� .
Note that In+1k;s = f�2

�
In`2(k);es

�
\ U s0k . Hence, we have��In+1k;s

�� = ��f�2 �In`2(k);es� \ U s0k �� . (5.11.1)

Applying Corollary 5.10 with p := �n and In`2(k);es instead of [U`2(k) in (5:11:1), and using
this p together with (5:9:1), we �nally obtain��In+1k;s

�� = ��f�2 �In`2(k);es� \ U s0k �� � � � p � jJkj = �n+1 jJkj .
This completes the induction and the proof of corollary 5.11.

Proof of Theorem 5.1. Assume k; c and � are as in the assumptions of the Theorem

5.1 and, � = � (!; �; c) be as in Proposition 5.3, so that � <
1

2
. Choose ! 2 (0; 1) as in

Lemma 5.2.
(1). Let a symbol sequence s = (s0; s1; s2; :::) 2 fL;RgN0 be given. From Corollary

5.11 one can see that for n 2 N0 the the closed interval Ink;s consists of the points x 2 Uk
which follow the �nite symbol sequence s = (s0; s1; s2; :::; sn) 2 fL;Rgn+1. Further we
have In+1k;s � Ink;s. It follows that

\
n2N0

Ink;s 6= ;. Since, in view of Corollary 5.11 and � <
1

2
,

we have
��Ink;s�� ! 0 for n ! 1; the intersection

\
n2N0

Ink;s contains exactly one point xk;s.

This point xk;s has the asserted properties. Any point in Uk with these properties would
also be contained in this intersection and thus equal xk;s.

(2). The set fL;Rgf0;1;:::;ng has 2n+1 elements and from Corollary 5.11 we know that
each set corresponding to one s 2 fL;Rgf0;1;2;::;ng satis�es the estimate

��Ink;s�� � �n jJkj. It
follows that j�nk j � 2n+1�n jJkj, and it turns out that the measure

lim
n!1

j�nk j = lim
n!1

������
[

s2fL;Rgf0;1;2;::;ng
Ink;s

������ � 2 limn!1 2n�n jJkj = 0
and this completes the proof.
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