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1 INTRODUCTION 
 

1.1 Genetic diversity as a basis of crop improvement 
 

Wheat is one of the most important cereal crops in the world. Its global 

consumption is close behind rice and maize. With the steadily growth of the 

world population, the demand for the food production is continually expanding 

(Lee et al., 1998; Hoisington et al., 1999). Especially, the demand for wheat is 

expected to increase faster than any other major crop such as rice and maize. 

To keep pace with the anticipated growth of human population, the predicted 

demand for the year 2020 varies between 840 (Rosegrant et al., 1995) and 

1050 million tons (Kronstad, 1998). Given the fact that much existing arable 

land is decreasing due to urban and industrial development or natural erosion 

such as expanding deserts (Reif, 2004), genetic improvement of crops is 

considered as the most viable and sustainable approach to increase agricultural 

productivity (Tanksley & McCouch, 1997). 

Effective crop improvement depends on the extent of genetic diversity in the 

gene pools. Over the past century, the achievements of plant breeding have 

contributed a lot to increase crop productivity and needs of societies by 

systemically genetic improvements with utilization efficiency of agricultural 

inputs (Warburton et al., 2002). However, these gains have often been 

accompanied by decreased genetic diversity within elite gene pools (Lee, 1998; 

Fernie et al., 2006). Although landraces have a diverse genetic base, they are 

therefore rarely integrated into the plant breeding programs due to their low 

productive performance. New varieties are usually derived from a set of 

genetically related modern high-yielding varieties. As a result, many landraces 

were continually replaced by modern wheat cultivars and crop improvement is 

still practiced in a narrow genetic base (Fernie et al., 2006). 

It has been presumed that modern breeding practices with intensive selection 

leads inevitably to a loss of the genetic diversity in crops (Cluies-Ross, 1995; 

Tanksley & McCouch, 1997). Such reduction may have serious consequences. 

The vulnerability of crops against pests and diseases and the ability to respond 
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to changes in environmental conditions can be drastically influenced and 

threaten the sustained genetic improvement (Harlan, 1987; Tripp, 1996; Smale, 

1996; FAO, 1996; Donini et al., 2000). This risk was brought sharply into focus 

in 1970 with the outbreak of Southern corn leaf blight (National Research 

Council, 1972). This disease drastically reduced corn yields in the United States 

due to the extensive use of a single genetic male sterility cytoplasm, which was 

associated with disease susceptibility. Other several server evidences occurred 

in India also in 1970s like epidemics of shoot fly (Atherigona spp.) and karnal 

bunt (Tilletia indica) (Dalrymple, 1986). 

Reduction in diversity can be counterbalanced by introgression of novel 

germplasm. However, it should be noted that only a small proportion of the 

available genetic variation of the gene pools has been exploited for plant 

breeding so far (Frankel, 1977; Tanksley & McCouch, 1997; Fernie et al., 2006), 

but most of the exotic pools remain untapped, uncharacterized and 

underutilized (Alisdair et al., 2006). Therefore, the genetic variation provided by 

the current and expanded gene pools should be examined and harnessed for 

further crop improvement. 

 

1.2 Evaluation methods of genetic diversity 
 

Effective management and utilization of resources depends to a large extent on 

appropriate estimation of the material represented in the collection. Diversity 

can be generally characterized either by apparent diversity reflecting the 

different performance of crops across environments and management or by 

latent diversity referring to the genealogical and molecular measurements which 

are not necessarily expressed in crop performance (Smale et al., 2002). Several 

methods including pedigree records, biochemical markers and DNA marker can 

be performed to measure the latent diversity to quantify genetic diversity among 

genotypes (Cox et al., 1985; Karp et al., 1996). 

 

1.2.1 Coefficient of parentage (COP) 
 
The COP method is based on pedigree information and provides an indirect 
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measurement for the genetic diversity of cultivars by estimating the probability 

that alleles at a given locus are identical by descent. However, calculation of 

COP values has limitations because of the simplifying assumptions regarding 

relatedness of ancestors, parental contribution to the offspring, selection 

pressure, and genetic drift, which are generally not met (Cox et al., 1985; 

Cowen & Frey, 1987). Furthermore, pedigree records are not always available 

or detailed enough for such type of analysis, especially when large numbers of 

breeding lines or cultivars are being assessed (Parker et al., 2002). 

 

1.2.2 Molecular markers 
 
Diversity on a molecular level has been studied in plants for about three 

decades. The most comprehensive early studies were performed with 

biochemical markers such as isozymes and protein subunits (Hamrick & Godt, 

1990; Weeden et al., 1994; Eagles et al., 2001) and provided many insights into 

population structure and breeding systems. Although these markers allowed 

large numbers of samples to be analyzed, only a limited number of loci could be 

scored. Furthermore, the comparison of samples from different species and 

laboratories were problematic (Buckler & Thornsberry, 2002). 

In contrast, DNA markers offer quantitative views of genetic diversity among 

genotypes on the DNA level and have been widely accepted as potentially 

valuable tools to assess precisely genomic diversity in cereals, like wheat 

(Burkhamer et al., 1998; Eagles et al., 2001; Koebner, 2003), rice (Mackill et al., 

1999), barley (Donini et al., 2001; Russell et al., 2000) and maize (Smith et al., 

1997; Gauthier et al., 2002). In general, molecular markers can be classified 

into three categories based on their detection method: (1) hybridization-based 

such as restriction fragment length polymorphisms (RFLPs); (2) polymerase 

chain reaction (PCR)-based such as random amplified polymorphic DNAs 

(RAPDs), amplified fragment length polymorphisms (AFLPs) and simple 

sequence repeats (SSRs), and (3) DNA chip and/or sequence-based such as 

single nucleotide polymorphisms (SNPs) (Gupta et al., 1999; Collard et al., 

2005). 
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1.2.2.1 Restriction fragment length polymorphisms (RFLPs)  
 
Among the various molecular markers, RFLPs were developed first and initially 

used to human genome mapping (Bostein et al., 1980). Later, these DNA 

marker technique was used in plant genome analysis including genome 

mapping (Weber & Helentjaris, 1989; Tanksley et al., 1989), variety identification 

(Vaccino et al., 1993) and assessing the level of genetic diversity and 

relationships within germplasm (Kim & Ward, 1997; Paull et al., 1989). 

RFLPs refer to variation between genotypes in lengths of DNA fragments 

produced by restriction enzymes that cut genomic DNA at specific sites. The 

polymorphisms can arise either when mutations alter restriction sites, or result 

in insertions/deletions between these sites (Burr et al., 1983). 

The polymorphisms detected by RFLP technique compassed the recognition 

and cleavage by specific restriction enzymes and hybridization with a specific 

probe. Therefore, RFLPs have been shown the most reliable polymorphisms, 

which can be used for accurate scoring of genotypes. Further advantages of 

RFLP markers are the high level of information obtained by their co-dominant 

inheritance and their high level of reproducibility (Weeden et al., 1991; 

Helentjaris et al., 1985). However, several drawbacks limiting the use of RFLPs 

are: laborious, time-consuming, and low frequency of polymorphisms in crops 

especially in wheat (Bryan et al., 1997; Powell et al., 1996). 

 

1.2.2.2 Random amplified polymorphic DNAs (RAPDs) 
 
The polymerase chain reaction (PCR) technique (Saiki et al., 1988) facilitated 

the development of simple and low-cost molecular markers such as random 

amplified polymorphic DNAs (RADPs, Williams et al., 1990), amplified fragment 

length polymorphisms (AFLPs) (Vos et al., 1995), and simple sequence repeats 

(SSRs) (also known as microsatellites, Tauz & Renz, 1984). 

RAPDs are based on amplification of DNA fragments by PCR using decamer 

primers homologous to random target sites in the genome (Williams et al., 

1990). The polymorphisms revealed are either due to point mutations or 

insertions /deletions within the amplified region (Tingey & Deltufo, 1993). 
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RAPDs are much simpler and less laborious in comparison to RFLPs because 

they rely on a universal set of decamer primers without needs for prior 

sequence information and radioactive labeling of probes (Devos & Gale, 1992). 

However, since the natures of their random and short primer length, they cannot 

easily be transferred between species. They are mainly used as species-

specific markers in diversity and phylogenetic studies, e.g. genome 

relationships in Triticeae (Joshi & Nguyen, 1993; Wei & Wang, 1995). Beside 

their dominant inheritance, their more general disadvantages are the sensitivity 

to the experimental conditions and a poor reliability and reproducibility (Karp & 

Seberg, 1996). 

 

1.2.2.3 Amplified fragment length polymorphisms (AFLPs) 
 
AFLPs are based on PCR amplification of restricted fragments generated by the 

combination of two specific restriction enzymes, the ligation of restriction site 

specific adapters and the use of adapter specific oligo-nucleotides with 

additional nucleotides at the 3’ end (Zabeau & Vos, 1993). The polymorphisms 

detected are due to modifications of restriction sites e.g. after point mutation 

(Vos et al., 1995). 

AFLPs procedure involve three essential steps: (1) digestion of genomic DNA 

with two restriction enzymes (a low and a high frequent cutter), (2) ligation of 

adapter to the restriction ends, and (3) selective amplification of sets of 

restriction fragments by two successive PCR reactions using primers 

complementary to the restriction sites and adapter plus one to three additional 

nucleotides. Because this technique combines the reliability of the RFLPs 

technique with the power and ease of the PCR techniques (Jones et al., 1997), 

and exhibits intraspecific homology (Powell et al., 1996; Tohme et al., 1996), 

AFLP analysis is the most efficient method compared to RFLPs and RAPDs 

(Powell et al., 1996; Lin et al., 1996). However, the AFLPs method is technically 

difficult and expensive to set up, but it detects a large number of loci, reveals a 

great deal of polymorphisms and produces high complex DNA fingerprints, what 

is very useful in saturation mapping and for discrimination between varieties 

(Mohan et al., 1997; Jones et al., 1997). 
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1.2.2.4 Simple sequence repeats (SSRs) 
 

Plant genomes contain large numbers of simple sequence repeats (SSRs) (also 

termed microsatellites). The core units of SSRs are usually one to five 

nucleotides, which are tandemly repeated and widely scattered at many 

different loci throughout the genome (Taute and Renz, 1984). These small 

repetitive DNA sequences provide the basis for a PCR-based, multi-allelic, co-

dominant genetic marker system (Saghai-Maroof, 1994). Because the genome 

regions flanking the microsatellite are generally conserved among genotypes of 

the same species, SSR primers are designed matching unique flanking 

sequences, composed of short nucleotides, by which the microsatellite locus 

can be defined (Powell et al., 1996). Polymorphisms revealed by PCR-

amplification are due to the variation of the number of repeats in a defined 

region of the genome (Morgante & Olivieri, 1993; Jones et al., 1993). 

The utility of SSR markers is primarily deduced from their abundant distribution 

and hyper-variability in the whole genome (Morgante & Olivieri, 1993). Due to 

the existence of these hyper-variable regions, SSR markers exhibit a high 

power in distinguishing between closely related genotypes. Furthermore, the 

reproducibility of SSRs makes them interchangeable among different 

laboratories to produce consensus data. 

However, the development of SSR markers is laborious and expensive. 

Through a public database to access primer sequences would maximize the 

use of microsatellites and reduce the development costs (Powell et al., 1996). 

 

1.2.2.5 Single nucleotide polymorphisms (SNPs) 
 
Single nucleotide polymorphisms (SNPs), referred to as single point mutations, 

have recently been developed into DNA markers, which offer high-throughput 

and automated genotyping approaches (Shi, 2001; Gupta et al., 1999). SNPs 

are highly abundant and distributed throughout the plant genomes such as 

maize (Edwards & Mogg, 2001; Tenaillon et al., 2001), barley (Kanazin et al., 

2002) and in rice (Yu et al., 2002; Nasu et al., 2002). Various methods have 

been developed to genotype SNPs like pyrosequencing (Ahmadian et al., 2000),  
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TaqMan (Livak, 1999), fluorescence energy transfer (Chen et al., 2000) or 

allelic-specific PCR (Drenkard et al., 2000). However, those using automated 

systems developed for high-throughput applications, which often require 

specific detection equipment, have high development costs and the marker 

assays generated are commonly not transferable between laboratories 

(Bundock et al., 2006). The development and use of allele-specific PCR-primers 

would be preferred due to its simplicity, low cost and reproducibility of 

genotyping SNP (Lee et al., 2004; Hayashi et al., 2004). By this approach, 

SNPs can be identified simply using allele-specific PCR primers designed that 

the 3’ terminal nucleotide of a primer corresponds to the site of the SNPs. The 

PCR-amplified products can be resolved on a standard agarose gel (Hayashi et 

Figure 1  
Single nucleotide polymorphisms 
identified in a 263-nt segment of the 
maize stearoyl-ACP-desaturase gene 
(A Ching, unpublished data). The 
horizontal rows correspond to each of 
the 32 individuals sequenced. The 
vertical columns identify nine 
polymorphic sites, including one 
insertion/deletion (I/D) polymorphism. 
Four distinct haplotypes are shown. 
These four haplotypes can be 
unambiguously identified using only 
three SNPs, for example, those 
marked with an asterisk (*). The 
remaining SNPs provide redundant 
information. No two SNPs are sufficient 
to distinguish all four haplotypes 
(adapted from Rafalski 2002). 
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al., 2004; Lee et al., 2004). Through sequencing the PCR-amplified products 

from a number of diverse individuals, DNA polymorphisms can be detected in 

the most straightforward way compared to the other types of DNA markers 

based on the indirect detection of sequence-level polymorphisms including 

SSRs (Rafalski, 2002). Moreover, the PCR primers designed are either derived 

from the known DNA sequences of genes available from public GeneBank, or 

from expressed sequence tags (ESTs) (Rafalski, 2002). Therefore, the detection 

of SNPs provides the opportunity to uncover allelic variation directly within the 

sequences of genes or expressed sequences of candidate genes (Snowdon & 

Friedt, 2004). With the rapid development of public sequence databases in crop 

species, haplotype analysis is possible and more informative compared to 

individual SNP analysis (Figure 1) (Rafalski. 2002). 

 
1.3 Lodging, its occurrence and types 
 
Lodging of cereals is defined as permanent displacement of the culms from the 

upright position (Pinthus, 1973). It can result in buckling of the stem at a basal 

internode (stem lodging) (Figure 2) or in the rotation of the whole plant in the 

soil (root lodging) (Figure 3) (Zuber et al., 1999). Causes are usually a 

combination of wind and rain, but can be enhanced by different pathogens and 

pests affecting stems or roots (Keller et al., 1999) or by agronomic practices 

such as excessive fertilization and/or high seeding rates in wheat (Easson et al., 

1993; Stapper & Fischer, 1990; Berry et al., 2000). Lodging can be a major 

constraint on yield potential in many crops, but it is of particular importance in 

the small-grain cereals, e.g. like wheat (Triticum aestivum L.) (Atkins et al., 1938; 

Easson et al., 1993), barley (Hordeum vulgare) (Baker et al., 1990; Travis et al., 

1996), oat (Avena sativa) (Mulder, 1954; Murphy et al., 1958), corn (Zea mays) 

(Hondroyianni et al., 2000; Flint-Garcia et al., 2003), and rice (Oryza sativa) 

(Takahashi, 1960; Setter et al., 1997). At any stage of plant development (Atlins, 

1938; Baker et al., 1990), lodging can occur and it is most detrimental at 

anthesis or in the early grain filling stage by reducing the number of kernels per 

ear and grain size (Laude & Pauli, 1956; Fisscher & Stapper, 1987; Briggs, 

1990; Berry et al., 2004). 
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1.4 Effects of lodging on yield and quality of cereals 
 
Grain yield reduction always accompanies lodging at which the degree of loss 

depends on the cultivar, growth stage and severity of lodging (Jedel & Helm, 

1991; Easson et al., 1993; Fischer & Stapper, 1987). Several reports mentioned 

that lodging can reduce cereal production up to 20% (Briggs, 1990), 30% 

(Pinthus, 1973) or even 40% (Easson et al., 1993). Lodging can complicate 

harvesting and may cause deterioration in the milling and baking quality of the 

grains due to the increased moisture content of the grains and pre-harvest 

sprouting (Weber & Fehr, 1966; Kono, 1995). Furthermore, in lodged plants the 

contamination with mycotoxins produced by Fusarium species on the ears can 

 Figure 2 Stem lodging in barley (cited by Berry et al., 2004) 

Figure 3 Root lodging in barley (cited by Berry et al., 2004) 
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be significantly increased due to the humid atmosphere surrounding lodge 

crops (Langseth & Stabbetorp, 1996; Scudamore, 2000). 

 
1.5 Factors affecting lodging 
 
Lodging resistance is an important goal of cereal breeding. Lodging researches 

can be traced to 1930s for over a century and numerous efforts have been 

made to find and establish methods to assess lodging resistance so far. Most 

published studies before 1980 have been conducted on determining the 

correlations between morphological traits and lodging resistance (Clark & 

Wilson, 1933; Brady, 1934; Atkins, 1938; Sato, 1957; Jellum, 1962; Kohli et al., 

1970; Stanca et al., 1979), whereas more recent publications have tried to 

established mechanical models for lodging resistance (Jezowski et al., 1987; 

Dolinski, 1990; Ennos, 1991; Crook & Ennos, 1993; Berry et al., 2006) or have 

focused on physiological and chemical components of the culms and their 

histological distribution (Dunn & Briggs, 1989; Kokubo et al., 1989; Zhu et al., 

2004; Tripathi et al., 2003; Wang et al., 2006). 

 

1.5.1 Plant height 
 
Plant height is the major trait for the improvement of lodging resistance in cereal 

crops. A strong correlation between plant height and lodging has been reported 

for barley (Murthy & Rao, 1980, Stanca et al., 1979) and wheat (Atkins, 1938; 

Pinthus, 1967; Min et al., 2001). Since the 1960s, the introgression of dwarf 

genes has increased lodging resistance and grain yield (“green revolution”, 

Keller et al., 1999; Khush, 1999; Worland & Snape, 2001). Modern high-yielding 

cultivars are generally shorter with stronger straw, so a higher harvest index 

(Kelbert et al., 2004). Compared to high-growing plants, dwarfism increase 

lodging resistance through decreasing the centre gravity height of plant (Huang 

et al., 1988). According to Huang et al. (1988), plant height showed a 

significantly positive correlation with the centre gravity moment of plant (r = 

0.969) while lodging resistance index is significantly negative correlated with the 

height at centre of gravity (r = -0.891). Hence, the history of lodging resistance 
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breeding was to some extent a history of dwarfism breeding (Wang et al., 1996). 

However, very short plants can reveal a decrease of biomass, high density of 

leaves, shrunken grains, premature senescence, aggravated diseases, etc. 

(Xiao et al., 2002). Therefore, continuous plant height reduction using dwarf 

genes may not be compatible with high yield (Berry et al., 2004). Moreover, 

lodging will still happen if the stem strength is not strong enough after dwarfing 

(Li et al., 1998; Min et al. 2001). 

 

1.5.2 Stem characteristics 
 
Lodging usually occurs when the stems bend or break at the basal internodes 

(Pinthus, 1973). Thus, the stem basal internode traits seem to be more 

important in comparison to other aerial traits of plants (Huang et al., 1988; Wang 

et al., 1996; Xiao et al., 2002). The stem basal internode traits comprised stem 

basal internode morphologies, anatomic characters, physiological factors, 

chemical ingredients, etc. (Wang et al., 1996). 

 

1.5.2.1 Morphological characters 
 
Under natural field conditions, lodging occurs in general sporadically. Thus, 

selection for lodging resistant cultivars is difficult in early generations of crops 

(Kelbert et al., 2004). Identification of easily measurable stem traits associated 

with lodging resistance may simplify the selection process and are a goal for 

cereal breeding. 

The differences among lodging resistant and susceptible cultivars regarding 

various morphological characters of stems have been found in barley (Dunn & 

Briggs, 1989; Stanca et al., 1979), whereupon resistant cultivars exhibited 

shorter basal internodes, wider basal culm diameter and thicker culm walls 

compared to susceptible ones. Similarly, wider basal culm diameter and thicker 

culm walls associated with lodging resistant cultivars have been reported in 

wheat (Mukherjee et al., 1967; Shevchuk et al., 1981; Zuber et al., 1999; 

Tripathi et al., 2003) and oat (Jellum, 1962). Studies of Zuber et al. (1999) 

indicating that stem diameter explain 48% of the phenotypic variance of lodging 
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resistance while 50% of the phenotypic variance of lodging can be explained by 

stem weight cm-1. Whether plants are resistant or susceptible to lodging is 

finally predicted by stem strength, implying mechanical elasticity and rigidity of 

the stem (Wang et al., 1996). The relation between lodging resistance and stem 

strength has been reported again in wheat (Atkins, 1938; Crook & Ennos, 1994; 

Pu et al., 2000) and barley (Clark & Wilson, 1933; Murthy & Rao, 1980). By path 

analysis, Pu et al. (2000) estimated the correlation between stem strength and 

lodging in a set of 11 high-yielding wheat varieties. The results indicated that an 

increase of one standard unit for stem strength was related to a decrease of 

0.592 standard units for lodging index (Px-y = -0.592) in average, suggesting that 

plants with higher stem strength have a lower lodging index. 

Focusing on the relationships between stem strength and stem basal internodes, 

several investigations have been performed. Xiao et al. (2002) observed that 

the stem diameter of the basal internodes was significantly correlated with stem 

strength from the milk to maturity stage (r =0.379, 0.498 and 0.461), while the 

stem diameter of the upper internodes was not positively related to stem 

strength. More recently, Wang et al. (2006) found out that the thickness-

diameter ratio showed significant correlation with stem strength at r = 0.780, 

whereas the stem wall thickness is significantly correlated with stem strength at 

r = 0.551. Similar results have been reported by Zhu et al. (2004). These two 

studies are comparable to the results of Huang et al. (1988) where the 

thickness-diameter ratio of stem showed a significant positive correlation with 

lodging resistance (r = 0.681). No significant correlation was observed between 

the stem wall thickness and the stem diameter versus lodging resistance in 

wheat, indicating that plants with high thickness-diameter ratio have high 

resistance to lodging (Huang et al., 1988). 

However, dependent on the plant materials and crops deployed, different or 

contradictory results have been reported. For example, some authors did not 

find a significant correlation between stem diameter and lodging resistance in 

wheat (Atkins, 1938; Pinthus, 1967; Al-Qaudhy et al., 1988; Kelbert et al., 2004; 

Wang et al., 2006). In oats and barley, the negative correlation between the 

stem diameter and stem strength have been observed (Norden et al., 1970; 

Dunn et al., 1989). 



INTRODUCTION  13

 

1.5.2.2 Anatomical structure 
 
The stem is one of the most important plant organs playing a key function in 

transportation, storage and mechanical support. Cereal stems are comprised of 

several nodes and internodes, mostly with pith cavities. The internodes close to 

the stem basis are generally shorter with a thicker stem wall compared to the 

upper internodes. The transverse section of internodes from the center to the 

outer layer is mainly composed of different tissues: pith, parenchyma, vascular 

bundles, sclerenchyma and epidermis. Vascular bundles are distributed within 

the transverse section in two circles: (1) small vascular bundles close to the 

epidermis embedded in sclerenchyma, which consists of fiber cells and (2) large 

vascular bundles, which are included in the parenchyma. 

Up to now, many studies have been carried out to determine the relationship 

between anatomic stem characters and lodging resistance in wheat (Ford, 1979; 

Li, 1979; Cenci et al., 1984; Huang et al., 1988; Han et al., 1990; Wang et al., 

1991; Wang et al., 1998; Zhu et al., 2004; Wang et al., 2006) and barley 

(Kokubo et al., 1989; 1991), respectively. Already in 1934, Brady reported that 

an increased number of vascular bundles is the most significant anatomical 

feature of the stem related to lodging resistance in wheat. According to Han et 

al. (1990), the percentage of mechanical tissue of stem and the number of 

vascular bundles mm-2 are closely correlated with lodging. However, Wang et al. 

(2006) revealed in wheat that the total number of vascular bundles mm-2 is 

negatively correlated with stem strength, whereas the number of large vascular 

bundles showed a positive correlation with stem strength (r = 0.494). The same 

study mentioned a positive correlation between the percentage of sclerenchyma 

and stem strength (r = 0.804). Similar results that the thickness of the 

sclerenchyma was responsible to lodging resistant have been reported for 

barley (Jezowski & El-Bassam, 1985; Dunn & Briggs, 1989). Studies on 

anatomical stem structure in rice also proposed that the difference of stem 

strength between normal and brittle stems was due to the differences of 

sclerenchyma and vascular bundles (Li et al., 2003). One explanation  

for this phenomenon can be that fiber cells extensively exist in vascular bundles 

and sclerenchyma, and it has been shown that fiber cells play a key role in 
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mechanical support of plants (Wang et al., 2006). Beside, in an interfascicular 

fiber mutant (ifl1) of Arabidopsis thaliana, Zhong et al. (1997) detected that a 

lack of interfascicular fibers is correlated with a dramatic change of stem 

strength. Stems of the mutant were not able to stand erected and were easily 

broken by bending in comparison to wild type stems. 

 

1.5.2.3 Physiological factors and chemical ingredients 
 
Many studies have indicated that the lodging resistance is not only due to 

morphological and anatomical stem characters, but well associated with 

physiological processes and chemical ingredients (Wang et al., 1996). The dry 

matter accumulated in the stem is mainly comprised of carbohydrates including 

monosaccharide, disaccharides and polysaccharides. The accumulation of dry 

matter, especially of polysaccharides the basis for cellulose and hemi-cellulose 

production, results in stem wall thickened and an increase of elasticity, which 

add up to an increase in stem strength (Wang et al., 1996). Several studies 

focusing on this issue have been performed and all indicated that the soluble 

carbohydrate content of the basal internodes of the stem contributed greatly to 

lodging resistance in wheat (Li et al., 1998) and rice (Sato, 1957; Takahashi, 

1960; Matsuzaki et al., 1972; Taylor et al., 1999; Yang et al., 2001). According to 

Huang et al. (1988), the correlation between the carbohydrate content and 

lodging resistance can reach r = 0.991. 

Plant cell walls possess of a strong fibrillous netted structure that provides 

mechanical support to cells, tissues, and the entire plant body (Li et al., 2003). 

Cellulose, hemi-cellulose and lignin as the main components of the cell wall, 

seem to have an intrinsic correlation with lodging resistance (Bernards & Lewis, 

1998; Wang et al., 1996). For example, Taylor et al. (1999) and Jones et al. 

(2001) reported that lignin and cellulose content is related to stem rigidity. 

Huang et al. (1988) revealed that the lignin content of basal internodes of strong 

stems was higher compared to week stems. Kokubo et al. (1989) found a high 

correlation between the cellulose content of barley cell wall and maximum 

bending stress (r = 0. 93). 

However, whether the lignin content or cellulose content of stems is a 
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determinant factor for the stem strength, different conclusions have been 

reported regarding more recently studies. Zhu et al. (2004) and Jones et al. 

(2001) emphasized that the lignin content of stems is more important than the 

cellulose content for increasing the mechanical support. In contrast, Wang et al. 

(2006) reported that the cellulose content is more important in mechanical 

support in comparison to the lignin content (r = 0.764 and r = 0.547, 

respectively). 

In addition, several authors have investigated the relationship between chemical 

elements and molecules versus lodging resistance. The stem of wheat contains 

2.3 - 4.6% silicon, which is mostly present in the epidermis of wheat culms and 

considered to contribute to lodging resistance (Li, 1979). Comparing the silicon 

contents between lodging resistant and susceptible wheat varieties, Gartner et 

al. (1984) observed a significantly higher silicon content in the epidermis and 

mechanical tissue of culms in the lodging resistant variety. Moreover, silicon of 

the cell wall was thought to contribute to mechanical strength in rice stems. 

Other chemical elements, like K, Ca and Mg are also associated with lodging 

resistance (Takahashi, 1995). 

 
1.6 Evaluation methods and index for lodging 

 

Several methods have been proposed and used to evaluate lodging. The most 

frequently used method is by visual ranking of naturally or artificially occurring 

lodging on a scale from 1 (all plants upright) to 9 (all plants flat) (Keller et al., 

1999; Verma et al., 2005; Huang et al., 2006; McCartney et al., 2005). The 

ranking based on the fact that the degree and area of occurring lodging in the 

field directly reflect the lodging resistant level of crops. Different methods 

include the manually scoring of elasticity of the stem (Jezowski et al., 1987; 

Keller et al., 1999), the measurement of stem–breaking strength (Min et al., 

2001; Wang et al., 1995) or testing the pushing resistance of the stem by 

specific instruments, like done for wheat (Xiao et al., 2002; Zhu et al., 2004; 

Wang et al., 2006), rice (Kashiwagi &  Ishimaru et al., 2004; Terashima et al., 

1992), barley (Kokubo et al., 1989) and corn (Fouere et al., 1995). 

Vaidya et al. (1982) suggested that stem length × height per root weight and 
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breaking strength per height × shoot weight are the most suitable indexes of 

lodging resistance in wheat. Other indexes have been proposed like the 

moment of the gravity centre × load per fresh weight (Huang et al., 1988), 

height × aerial fresh weight per stem strength (Wang et al. 1995) and height × 

aerial fresh weight per root weight × stem strength (Pu et al., 2000). Because it 

is known that lodging is a complex trait covering many factors, up to now no 

method or index has been considered to be a reliable evaluation method for 

measuring and estimating lodging resistance. 

 

1.7 Inheritance mode and chromosomal location of genes related to 
lodging 
 

Studies concerning the mode of inheritance of lodging and related traits can be 

found in recent publications. Kohli et al. (1970) observed a transgressive 

segregation of traits related to lodging including stem strength, culm diameter 

and unit length weight in a segregating wheat F2 generation and suggested a 

quantitative mode of inheritance of these three traits. Moreover, Li et al. (1998) 

analysed the general combining ability (GCA) and specific combining ability 

(SCA) of plant height at center of gravity, stem strength, pith diameter, stem wall 

thickness and mechanical tissues and indicated that these traits were controlled 

by genes with additive and non-additive gene effects. Stem fresh weight was 

controlled by non-additive genes, whereas small and large vascular bundles 

were controlled by genes with additive effects. 

 

1.8 Quantitative trait loci (QTL) mapping  
 

QTL analysis involved three main steps: 

(1) Generation of mapping population; 

(2) Genotyping and construction of a marker-based linkage map and 

(3) QTL analysis combining linkage map and phenotypic values of traits. 
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1.8.1 Mapping population 
 
Selection of parents is the key step for generation of mapping population. Most 

important is the discrimination of putative parental breeding lines, cultivars or 

landraces in at least one or even better in more traits of interest. Especially in 

self-pollination species such as most of the cereals, parental genotypes for 

mapping purposes should be almost homozygous. Several different types of 

mapping populations are used and can be classified into two categories 

according the genetic stability: 

• Temporary segregation populations like F2 and backcross (BC) populations 

• Fixed segregation populations like doubled haploid (DH) and recombinant 

inbred (RI) populations. 

 

1.8.1.1 F2 population 
 
The F2 population is common directly derived from F1 hybrids. Their major 

advantage is the easily done development in a short time independent of the 

reproduction system (self-pollination or cross-pollination) (Fang et al., 2001; 

Collard et al., 2005). However, F2 population comprise the maximum of 

heterozygousity (each locus will segregate in a 1:3 and, 1:2:1 ratio, 

respectively), where unfortunately dominantly inherited traits and molecular 

markers can not distinguished between dominant homozygous genotypes and 

heterozygous genotypes. Further disadvantage is that is not possible to 

conserved and proliferate a single F2 genotype without further segregation. 

 
1.8.1.2 Backcross (BC) population 
 
A BC population is derived from a cross between the F1 hybrid and one of the 

respective parents. This kind of population has similar advantages and 

drawbacks as F2 population. It also cannot be kept permanently. However, there 

is only a segregation ratio of 1 (homozygous): 1 (heterozygous) of each locus. 

Because the segregation ratio of the crossed F1 gamete directly reflects in BC 

population, the efficiency for mapping is higher compared to F2 population. 
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1.8.1.3 Doubled Haploid (DH) population 
 

DH population can be produced through inducing the production of haploid 

plants by anther- or microspore-culture starting from the F1 hybrids. Doubling of 

chromosomes will happen spontaneously or after induction with colchicine, a 

“mitotic poison” originated from Colchicum autumnale, commonly known as 

autumn crocus. However, the production of DH population is only possible in 

species that are amenable to tissue culture, e.g. cereal species such as wheat, 

rice and barley (Fang et al., 2001). The major advantage of a DH population is 

that each single line is homozygous at each locus and can be multiplied and 

reproduced without genetic change occurring (Collard et al., 2005). Thus, why 

DH population is called permanent population permitting to conduct replicated 

trials across different locations and years. Furthermore, DH lines can be 

transferred between different laboratories for further linkage analysis (Paterson, 

1996a; Yong, 1994). A major disadvantage of DH population is the different 

capability in tissue culture and therefore selection effects occurs, which may 

cause segregation distortion affecting later the precision of linkage between 

marker loci and thus the whole genetic map (Fang et al., 2001). 

 

1.8.1.4 Recombinant inbred (RI) population 
 
Population comprised of Recombinant inbreed lines (RILs) are developed by 

continued self-pollination of individuals starting from F2 plants by e.g. single 

seed descent (SSD) approach over several generations until almost all of 

segregating loci become homozygous. The major advantage of RILs just like 

DH-lines are that every line imply a unique combination of genomic segments 

from the ancestral parents in a homozygous manner and can be multiplied and 

reproduced without further segregation and change of genetic composition 

(Collard et al., 2005). RI populations as well as DH populations represent 

‘eternal’ resources for QTL mapping and RI populations are also called 

permanent population (Yong, 1994; Paterson, 1996a). The major disadvantages 

of RI populations are the time consuming development and it may not be 

possible for each line to achieve homozygosity at every loci through limited 
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generations (in general six to eight) of self-pollination. A fact that decreases the 

efficiency for linkage map construction to some extent (Fang et al., 2001). 

 
1.8.2 Linkage map construction 
 
The construction of a linkage map essentially includes two steps: (1) grouping 

of linked markers into linkage groups, and (2) arranging the markers within each 

linkage group. Linkage between markers is usually determined by odds ratios, 

which represents the ratio of linkage versus no linkage (Fang et al., 2001). The 

ratio is more convenient expressed as the logarithm of the ratio and is called a 

logarithm of odds (LOD) value or LOD score (Risch, 1992). The commonly used 

threshold for the LOD value is ≥ 3.0 for statistical acceptance of linkage 

(Kosambi or Haldane function, Lu et al., 1998; Lincoln et al., 1993). A LOD 

value = 3.0 between two markers indicate that the linkage is 1,000 times more 

probable than no linkage (Collard et al., 2005). Length and distance of a linkage 

map are measured according to the frequency of recombination between two 

markers (Paterson, 1996a). Because the recombination frequency and the 

frequency of crossing-overs are not always linearly related (Kearsey & Pooni, 

1996), mapping functions are required to convert recombination fraction into 

centiMorgans (cM). Therefore, two mapping functions are commonly used: 

Kosambi function (Kosamb, 1944) and Haldane function (Haldane, 1919). The 

main difference is that the Kosambi function assumes that recombination events 

influence the occurrence of adjacent recombination events, while Haldane 

function assumes no interference between crossover events (Hartl & Jones, 

2001; Collard et al., 2005). Several software programmes can be used to 

perform the construction of linkage map. The most common ones are 

Mapmaker/EXP (Lincoln et al., 1993) and JoinMap (Biometris, Wageningen, 

The Netherlands, http:// www.joinmap.nl).  

 

1.8.3 Statistical methods for QTL mapping 
 
The principle of QTL detection is to devide the mapping population into different 

genotypic groups based on genotypes at the marker locus and to determine 

http://www.joinmap.nl/
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whether significant differences exist between groups with respect to the trait 

being measured. If the phenotypes between groups differ significantly, it 

indicated that the marker locus used to subdivide the population is linked to a 

QTL affecting the trait (Tanskley, 1993). Three main methods commonly used 

for QTL analysis are single-marker analysis, simple interval mapping (SIM) and 

composite interval mapping (CIM) (Liu, 1998; Tanksley, 1993)  

 

1.8.3.1 Single-marker analysis 
 
Single-marker analysis is the simplest method of QTL analysis and focus on 

individual associations between a single marker and the phenotypic 

characteristics. If an association is discovered, it is likely that there is a QTL 

affecting the trait linked to that marker locus (Zeng, 1994). Single-marker 

analysis based on analysis of variance (ANOVA) statistics, t-test and multiple 

regression analysis (Soller & Brody, 1976; Simpson, 1989; Rodolphe & Lefort, 

1993). The most commonly used method is multiple regression analysis 

proposed by Rodolphe & Lefort (1993). Single-marker analysis by multiple 

regression analysis, e.g. for a DH population, is based on the following model: 

 

yi ,
1

iij

m

j
j xb εμ ++= ∑

=

 

 

yi is the phenotypic value of the ith individual 

i is individual;j is marker;  

m is the number of the indicator variables;  

µ is the mean value; b is the partial regression coefficient of the phenotype y on the jth marker;  

xij is an indicator variable of the jth marker in the ith individual, taking a value of 1 if the ith individual has the 

marker genotype j and 0 if otherwise;  

εi is a residual error. 

  

Regarding this model, the degree of correlation between each marker locus and 

phenotypic value is decided by the coefficient of partial regression. Generally, if 

the coefficient of partial regression reaches a determinated significance level, 

the QTL is indicated to be linked with the specific marker. Using this method, the 

(1)        
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phenotypic variation explained by QTL can be determined by the coefficient of 

partial regression. However, using single marker analysis the genomic position 

of the QTL cannot be determined (Fang et al., 2001). 

 
1.8.3.2 Simple Interval Mapping (SIM) method  
 
SIM method is an extension of single-marker analysis and simultaneously 

analyses intervals between adjacent pairs of linked markers along several 

linkage groups (chromosomes), determines the likelihood profile of a QTL 

position at any particular point of each marker interval and calculates the LOD 

value (Lander & Botstein, 1989). So, SIM method can be considered as a 

statistical more powerful procedure compared to the single marker analysis (Liu, 

1998). SIM procedure is also based on regression analysis. However, unlike 

single-marker analysis, SIM is based on the regression of phenotype and QTL 

instead of the regression of phenotype and marker locus. For example, 

regarding a DH population with only one QTL on a chromosome, Lander & 

Botstein (1989) proposed the following regression model to test for a QTL 

located on an interval markers j and j + 1: 

 

 

b* is the effect of the QTL; 

xi* is an indicator variable of the putative QTL with a value of 0 or 1 with a likelihood depending on the 

genotypes of markers j and j + 1 and position being tested for the putative QTL.  

Definitions of other parameters see (1) 

 

Likelihood ratio (LR) test statistics uses the LOD score to estimate parameters 

and determine the significance of the regression: 
 

LOD = lg [L (b ≠ 0) / L (b = 0)],                                                                         

 

where L (b=0) and L (b≠0) represent the maximum likelihood value (LOD≈0.217 

LR) when b=0 and b≠0, respectively. If LOD exceeds a pre-defined threshold 

(b≠0), that is the effect of the putative QTL is not equal to 0, the existence of a 

(2) yi = μ + b*xi
* + εi, 

(3)
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QTL can be deduced (Lander & Botstein, 1989). 

Using this method, the probable position of the QTL can be inferred by the 

supporting interval. The estimated locations and effects of QTL tend to be 

unbiased if there is only one QTL on a chromosome. However, if there are two 

closely linked QTL in one marker interval, a “ghost QTL” might appear between 

these two real linked QTL and the two real QTL will be hidden by the “ghost 

QTL” (Moreno-Gonzalez, 1992), which may result in a bias estimation of QTL 

and a decrease in the testing power (Fang et al., 2001). 

 

1.8.3.3 Composite Interval mapping (CIM) method 
 
CIM method is an extension of the simple interval mapping technique and is a 

combination of interval and multiple regression analysis (Zeng, 1994). The SIM 

method is modified by inclusion of additional markers as ‘cofactors’ in the 

regression model to get rid of the influence and background of other QTL to the 

target QTL interval (Fang et al., 2001). Regarding a DH population, testing of a 

QTL in a marker interval (j, j + 1) by CIM, Zeng (1994) proposed the following 

regression model: 

 

 

 

b* is the effect of the putative QTL; 

bk is the partial regression coefficient of the phenotype y on the kth marker;  

xi is an indicator variable of the putative QTL, taking a value 1 or 0 with probability depending on the 

genotypes of markers j and j + 1 and position being tested for the putative QTL; 

xik is a known coefficient for the kth in the ith individual, taking a value of 1 for the same marker genotype 

with one of the parents and 0 for the same marker genotype with the other.  

Definitions of other parameters are the same as (1) 

 

CIM method used the similar likelihood ratio test statistic compared to SIM 

method:                        
LR = - 2ln [L (b = 0) / L (b ≠ 0)], 

 
Compared to SIM, the threshold of the test statistic for the CIM is different.  

i
jjk

ikki xbxb εμ +++= ∑
+≠ 1,

**

(5)

(4)
yi 
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Using multiple regression analysis in CIM, the test statistic is more or less 

uncorrelated for different interval, because the entire genome is tested for the 

presence of QTL rather then focusing on a particular interval by SIM (Zeng, 

1994). 

Because CIM method uses appropriate unlinked markers, which can partly 

account for the variation due to the unlinked QTL, and linked markers, which 

can reduce the variation resulting from linked QTL, in comparison to SIM 

method, the power of QTL detection is greatly improved by the CIM method 

(Jansen, 1996). 

 

1.8.4 QTL mapping of agronomic traits in wheat  
 
Up to now, numerous studies for QTL mapping have been carried out in many 

crop species. Particularly in cereals, QTL for major agronomic traits like yield 

and its components have been described in barley (Marquez-Cedillo et al., 2001; 

von Korff et al., 2006), in rice (Septiningsih et al., 2003; Takeuchi et al., 2003) 

and maize (Ho et al., 2002; Moreau et al., 2004). 

In wheat, QTL for major agronomic traits have been extensively investigated so 

far. These traits includes grain filling time (Börner et al., 2002), maturity time 

(McCartney et al., 2005; Huang et al., 2006), heading date (Kato et al., 1999; 

Huang et al., 2003; Marza et al., 2006), seed dormancy, pre-harvest sprouting, 

grain color (Gross et al., 2002), and grain quality (Charmet et al., 2005; James 

et al., 2006; Perretant et al., 2000; Prasad et al., 2003; Cambell et al., 2001). 

Moreover, grain yield and yield components like grain weight, grain number and 

1000-grain weight have been mapped by several studies (summarised in Table 

1). 
 
1.8.5 QTL mapping of lodging resistance and related traits in wheat  
 
Focusing on QTL for lodging resistance and related traits, reports in many 

cereal crops like barley (Backes et al. 1995; Hayes et al., 1993; Tinker et al., 

1996), rice (Champoux et al., 1995; Kashiwagi & Ishimaru, 2004), oat (De 

Koeyer et al., 2004) and maize (Flint-Garcia et al., 2003) are available. 
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Table 1 Summary of mapped QTL for yield and yield components in wheat (Triticum aestivum L.) 
Trait Chromosome Population Population 

type 
Marker Reference 

Grain yield 4A CS/CS(kanto1074A)  RILs RFLPs Araki et al.  
Grain 4A    (1999) 
Grain 4A     
50-grain 4A     
Plant height 4A     
Spikelet 4A     
1000-grain 3A CNN /CNN (W13A) RILs RFLPs Shah et al. 
Grain 3A    (1999) 
Plant height 3A     
Grain yield 5A CS(Capelle-esprez  RILs RFLPs Kato et al. 
Grain 5A 5A)/CS (T. spelta5A)   (2000) 
50-grain 5A     
Spikelet 5A     
Grain 2D, 4A W7984/Optata85 RILs SSRs Börner et al. 
Grain 4A, 7D   RFLPs (2002) 
1000-grain 5A     
Plant height 1B, 3B, 3D,     
 5D, 6A     
Grain yield 3A Cheyenne/Wichita RILs RFLPs Campbell et 
1000-grain 3A    (2003) 
Grain 3A     
Plant height 3A     
Grain yield 7D Renan/Récital RILs SSRs Gross et al. 
1000-grain 2B, 5B, 7A   AFLPs (2003) 
    RFLPs  
Grain yield 2A, 2B, 3D, RI4452/AC Domain DH SSRs McCartney et 
 4D    (2005) 
1000-grain 2A, 3D, 4A,     
 4D, 6D     
Plant height 2D, 4B, 4D,     
 7A, 7B     
Grain yield 1A, 1B, 2B, 

7B, 
CS/SQ1 RILs SSRs  Quarrie et al.  

 4A, 4B, 5A,   RFLPs (2005) 
 5D, 7A,   AFLPs  
1000-grain 1B, 3D, 4A,     
 4D, 5A, 5B,     
 6B, 7B     
Grain weight 5A, 7A, 7B ACKarma/87E03S2B1 DH SSRs Huang et al.  

1000-grain 2B, 2D, 3B,    (2006) 
 4D, 6A     
Plant height 4B, 4D, 5D,     
Yield weight 1A, 1B, 2B, Ning7840/Clark DH AFLPs Marza et al. 
 4B, 5A, 5B,   SSRs (2006) 
Grain 1A, 1B, 2B,     
 3B, 4B, 6A,     
Plant height 2B, 2D, 3B,     
 6A     



INTRODUCTION  25

 

Furthermore, QTL for lodging resistance have been reported in several studies 

on wheat summarised in Table 2.  

 
Table 2 Summary of mapped QTL for lodging resistance in wheat (Triticum aestivum L.) 
Chromosome Population Population type Marker Reference 
1B Oberkulmer/Forno RILs SSRs Keller et al. 
2A  RFLPs (1999) 
2D   
4A   
5A   
5B   
6B   
7B   
2D W7984/Optata85 RILs SSRs Börner et al. 
6A  RFLPs (2002) 
5A AC Karma/87E03-S2B1 DH SSRs Huang et al.  
6D  (2006) 
1B Ning7840/Clark DH AFLPs Marza et al. 
4A  (2006) 
5A   
3D RI4452/AC Domain DH SSRs McCartney et al.
4B  (2005) 
4D   
1D Milan/Catbird DH SSRs Verma et al. 
2B  (2005) 
4B   
4D   
6D   
7D   
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2 OBJECTIVES 
 
(1) SSR markers were used to describe and characterize the genetic 

diversity in a set of 69 spring bread wheat accessions from different 

geographical areas of the world but for the most part belonging to the 

European gene pools used for breeding purposes. 

(2) QTL analysis of stem strength and related traits including stem diameter, 

culm wall thickness and pith diameter of basal internodes of wheat 

(Triticum aestivum L.) based on a DH population (cross CA9613 × 

H1488) to determine and analyse (i) genomic locations of the traits, (ii) 

markers associated with QTL, (iii) phenotypic effects, (iv) the 

homologous relationships among QTL and (v) to explore their utilization 

in wheat lodging resistance breeding by means of marker-assisted 

selection (MAS). 
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3.1.1 Abstract 
 
Genetic diversity in spring bread wheat (T. aestivum L.) was studied in a total of 

69 accessions. For this purpose, 52 microsatellite (SSR) markers were used 

and a total of 406 alleles were detected, of which 182 (44.8%) occurred at a 

frequency of < 5% (rare alleles). The number of alleles per locus ranged from 2 

to 14 with an average of 7.81. The largest number of alleles per locus occurred 

in the B genome (8.65) as compared to the A (8.43) and D (5.93) genomes, 

respectively. The polymorphism index content (PIC) value varied from 0.24 to 

0.89 with an average of 0.68. The highest PIC for all accessions was found in 

the B genome (0.71) as compared to the A (0.68) and D genomes (0.63). 

Genetic distance-based method (standard UPGMA clustering) and a model-

based method (structure analysis) were used for cluster analysis. The two 

methods led to analogical results. Analysis of molecular variance (AMOVA) 

showed that 80.6% of the total variation could be explained by the variance 

within the geographical groups. In comparison to the diversity detected for all 

accessions (He = 0.68), genetic diversity among European spring bread wheats 

was He = 0.65. A comparatively higher diversity was observed between wheat 
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varieties from Southern European countries (Austria/Switzerland, 

Portugal/Spain) corresponding to those from other regions.  

 
Key words: genetic diversity, microsatellites, spring bread wheat, Triticum 

aestivum L., SSRs, quantitative structure analysis 

 

3.1.2 Introduction 
 
Effective crop improvement depends on the existence of genetic diversity. 

Trends concerning the loss of genetic diversity due to modern breeding practice 

have been reported by several studies (Russell et al., 2000; Roussel et al., 

2004; Fu et al., 2005). Therefore, it seems necessary to understand the levels 

and distribution of genetic diversity in existing crop gene pools, as a basis for 

developing strategies of resource management and exploitation. Considering 

broadening the genetic base of crops for the maintenance of substantial 

breeding progress, exotic germplasm has shown to be a valuable resource, 

especially basic materials possessing specific agronomic traits such as disease 

and pest resistance. Furthermore, for incorporating exotic germplasm into 

respective breeding programmes, the genetic relationship between exotic 

accessions and adapted cultivars should be studied.  

Molecular markers have been shown to be reliable tools to assess genomic 

diversity. However, some of the marker systems, such as restriction fragment 

length polymorphism (RFLP) (Botstein et al., 1980) and random amplified 

polymorphic DNA (RADP) (Williams et al., 1990) have been of limited use for 

crop plants due to their low polymorphism, particularly in self-pollinating species 

with a narrow genetic basis, such as bread wheat (Sharam et al., 1983). On the 

other hand, simple sequence repeats (SSRs) (Tautz et al., 1989) have been 

widely exploited in wheat due to their high level of polymorphism, co-dominant 

inheritance and equal distribution in the wheat genome (Röder et al., 1995; 

Parker et al., 2002). Up to now, besides their application for identifying 

genotypes and detecting genetic diversity (Plaschke et al., 1995; Prasad et al., 

2000), SSRs have been used for the characterization of the genetic integrity of 

gene bank accessions (Börner et al., 2000), the genetic differentiation caused 



L Hai et al. 2006. Genetica DOI 10.1007/s10709-006-9008-6                                                                                        40

 

by selection (Stachel et al., 2000), and temporal changes in genetic diversity 

(Donini et al., 2000; Christiansen et al. 2002; Roussel et al., 2004). Moreover, 

comparisons of genetic diversity among gene pools from different geographical 

origin in Europe or worldwide have been carried out by this approach (Roussel 

et al., 2005; Röder et al., 2002; Huang et al., 2002). 

For statistical data analysis and presentation, the UPGMA clustering is 

commonly used as a standard procedure. More recently, a model-based 

clustering method, the so–called structure analysis was developed by Pritchard 

et al. (2000), and first used for association studies in Human genetics (Pritchard 

and Przeworski, 2001; Rosenberg et al., 2002). This method uses Bayesian 

clustering and allows to characterize populations (or groups) by allele 

frequencies at each locus, and individuals in the samples can be assigned to 

one or more population(s) or group(s) based on probability. Therefore, structure 

analysis is considered as a more suitable approach to fine statistical inference 

than the distance-based UPGMA clustering (Pritchard et al. 2000). This method 

has recently been applied for structural analysis of populations or the 

identification of genetically distinct groups in crop species, such as rice (Jain et 

al., 2004; Lu et al., 2005), maize (Liu et al., 2003), barley (Ordon et al., 2005) 

and wheat (Maccaferri et al., 2005).  

In the present study, SSR markers were used to characterize the genetic 

diversity in a set of 69 spring bread wheat accessions selected on the basis of 

their diverse origin from different geographical areas of the world. Cluster 

analysis was performed by, both, the genetic distance-based and the model-

based methods. Finally, genetic relationship and diversity levels were analysed 

to describe and characterise the European gene pools for breeding purposes. 

 

3.1.3 Materials and methods 
 
3.1.3.1 Plant materials 
 
A total of 69 spring bread wheat (Triticum aestivum L.) accessions including 66 

cultivars and three landraces out of a German evaluation program (EVAII) were 

used for this study. Among them, 56 accessions originated from different 
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European countries like Austria and Switzerland (A/CH), Czech Republic (CZ), 

France, Germany and Netherlands (F/G/NL), Norway and Sweden (N/S), 

Portugal and Spain (E/P), the United Kingdom (UK), and 13 varieties originated 

from North America (Canada, USA), South America (Argentina, Brazil), and 

East Asia (China, Japan). Nyubay and Aruakomugi (from Japan) and 

Wangshuibai (from China) represent landraces (Table 3).  
 
Table 3 Sixty-nine spring bread wheat accessions used in this study with their country of origin. 

 

3.1.3.2 DNA extraction and SSR analysis  

 

Seeds were sown and grown in pots in the greenhouse. For each accession 

fresh leaf material of five plants were pooled and bulk genomic DNA was 

extracted according to a standard CTAB method (Doyle and Doyle, 1990). Fifty-  

No. Accessions Origin* No. Accessions Origin 
1 Diablon Switzerland 36 Bastian Norway 
2 Fiorina Switzerland 37 Bjarne Norway 
3 Gerina Switzerland 38 Brakar Norway 
4 Nadro Switzerland 39 Melissos Germany 
5 Pizol Switzerland 40 Monsun Germany 
6 B5769 Switzerland 41 Munk Germany 
7 Tirone Switzerland 42 Nandu Germany 
8 Kommissar Austria 43 Naxos Germany 
9 Alva Portugal 44 Perdix Germany 

10 Amazonas Portugal 45 Quattro Germany 
11 Coa Portugal 46 Star Germany 
12 Eufrates Portugal 47 Thasos Germany 
13 Mondego Portugal 48 Triso Germany 
14 Roxo Portugal 49 Velos Germany 
15 Sever Portugal 50 Remus Germany 
16 Sorraia Portugal 51 Fasan Germany 
17 Jordao Spain 52 Baldus Netherlands 
18 Asby the United Kingdom 53 Cracker Netherlands 
19 Cadenza the United Kingdom 54 Minaret Netherlands 
20 Chablis the United Kingdom 55 Sarina Netherlands 
21 Samoa the United Kingdom 56 Josselin France 
22 Shiraz the United Kingdom 57 Transec the United States
23 Aranka Czech Republic 58 IDO232 the United States
24 Leguan Czech Republic 59 AC Reed Canada 
25 Linda Czech Republic 60 Colotana266/51 Brazil 
26 Sandra Czech Republic 61 Frontana Brazil 
27 Saxana Czech Republic 62 Eureka FCS Argentina 
28 Avle Sweden 63 Universal Argentina 
29 Dragon Sweden 64 Yang89-110 China 
30 Hugin Sweden 65 Ning7840 China 
31 Lavett Sweden 66 Sumai3 China 
32 Polkka Sweden 67 Wangshuibai China 
33 Tjalve Sweden 68 Nyubay Japan 
34 Troll Sweden 69 Arurakomugi Japan 
35 Vinjett Sweden  



L Hai et al. 2006. Genetica DOI 10.1007/s10709-006-9008-6                                                                                        42

 

Table 4 Chromosomal location, number of alleles, number of rare alleles and polymorphism 
information content (PIC) values per locus for 52 microsatellite loci in two sets of data: all 69 
accessions (aa) and 56 European accessions (ea), respectively. 

*The chromosome location of SSR markers according to Somers et al (2004) 

No of alleles   No of rare alleles PIC. 
Locus Chr* 

aa  ea    aa     ea aa ea 

wmc24 1AS 7 5    4    1 0.68 0.67 
wmc177 2AS 12 12    6    7 0.81 0.77 
wmc264 3AL 10 2    6    2 0.79 0.76 
wmc169 3AL 5 3    3    1 0.43 0.28 
wmc232 4AL 7 4    5    1 0.54 0.51 
wmc219 4AL 5 4    1    0 0.51 0.46 
xgwm129 5AS 5 5    0    1 0.74 0.73 
barc117 5AS 5 4    2    0 0.51 0.42 
xgwm304 5AS 11 8    5    3 0.75 0.68 
barc40 5AL 7 5    2    1 0.71 0.67 
xgwm156 5AL 11 9    3    2 0.85 0.83 
wmc254 6AL 10 9    8    6 0.67 0.66 
wmc168 7AS 10 6    5    4 0.70 0.58 
wmc276 7AL 13 8    7    2 0.82 0.81 
wmc51 1BS 4 4    2    2 0.53 0.56 
wmc44 1BL 12 9    7    4 0.85 0.83 
wmc154 2BS 10 8    6    3 0.75 0.71 
wmc272 2BS 7 5   3    2 0.72 0.64 
xgwm120 2BL 11 10    3    2 0.90 0.89 
barc147 3BS 7 6    4    2 0.56 0.52 
wmc754 3BS 14 9    7    1 0.87 0.83 
wmc78 3BS 10 7    4    1 0.82 0.78 
wmc231 3BS 6 6    1    2 0.75 0.73 
wmc777 3BS 7 4    4    1 0.63 0.53 
wmc307 3BS 4 4    0    1 0.47 0.37 
wmc710 4BS 12 8    6    1 0.83 0.81 
barc20 4BS 5 3    3    1 0.34 0.20 
wmc238 4BS 9 6    5    1 0.81 0.78 
wmc513 4BL 6 5    2    1 0.75 0.73 
wmc47 4BL 3 3    1    2 0.24 0.20 
wmc326 5BL 14 11    9    4 0.85 0.83 
wmc104 6BS 8 7    3    4 0.73 0.63 
wmc494 6BS 10 7    4    2 0.80 0.75 
xgwm133 6BS 9 6    3    0 0.74 0.65 
xgwm644 6BS 8 5    4    2 0.74 0.66 
wmc539 6BL 13 11    6    5 0.84 0.80 
xgwm537 7BS 10 9    6    4 0.79 0.75 
wmc147 1DS 4 4    1    1 0.45 0.43 
wmc245 2DL 2 2    0    0 0.44 0.45 
wmc601 2DL 14 12    8    6 0.89 0.88 
wmc167 2DL 5 4    2    1 0.58 0.60 
xgwm341 3DL 11 11    5    5 0.85 0.85 
wmc418 3DL 6 4    2    0 0.73 0.73 
wmc52 4DL 5 5    3    1 0.42 0.50 
wmc331 4DL 5 4    1    1 0.62 0.59 
wmc233 5DS 2 2    0    0 0.45 0.49 
wmc215 5DL 6 5    2    0 0.73 0.73 
wmc97 5DL 7 7    2    2 0.80 0.79 
wmc161 5DL 8 7    2    2 0.63 0.59 
barc196 6DS 3 3    0    0 0.55 0.59 
barc96 6DL 5 4    2    1 0.67 0.65 
wmc273 7DL 6 4    2    1 0.67 0.62 
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two microsatellite markers representing at least one SSR marker for each 

chromosome were selected from the wheat microsatellite consensus map 

published by Somers et al. (2004) (Table 4). PCR was carried out with the M13–

tailing technique described by Berg and Qlaisen (1994). For this method, the 

fluorochrome-labeled universal M13 primer sequence  

5’AGGGTTTTCCCAGTCACGACGTT3’ (MWG Biotech, Ebersberg, Germany) 

was added to the 5’ end of each forward primer. After the first round of 

amplification, the PCR fragments were subsequently amplified by the labeled 

universal primer. The PCR reactions were performed in a volume of 25µl 

containing 1x PCR Buffer with 1.5 mM MgCI2, 200 µM of each dNTP (Promega, 

Madison, WI, USA), 0.2 pmol forward primer, 2 pmol reverse primer and 1.8 

pmol M13 oligonucleotide (IRD700- or IRD 800-labelled), 50 ng template DNA 

and 0.5 units Taq polymerase (Eppendorf, Westbury, NY, USA). PCR 

amplification reactions were carried out in a thermocycler model 9700 (Perkin-

Elmer, Norwalk, CT, USA). The PCR reaction mixture was denatured at 95°C for 

3 min, followed by 35 cycles of 94°C for 1 min; either 50°C, 55°C, or 60°C 

(depending on the primer pair) for 1 min, 72°C for 2 min with a final extension 

step of 72°C for 5 min. Separation of SSR amplificated products were visualized 

using an automated laser fluorescence sequencer LI-COR 4200 (LI-COR 

Biosciences, Lincoln, NE, USA). 

 

3.1.3.3 Statistical analysis 
 

SSR profiles were scored reflecting either the presence “1” or absence “0” of 

bands. The sizes of fragments were determined in compassion to a molecular 

weight standard using the software package RFLP Scan 2.1. Genetic similarity 

between pairs of accessions was estimated according to DICE similarity 

coefficient (Dice, 1945) based on the proportion of shared alleles using 

SIMQUAL (similarity of qualitative data) routine by software NYSTS-pc 2.0 

(Rohlf, 2000),  

GSDice = 2a / 2a + b +c, 

where a refers to alleles shared between two varieties, and b and c refer to 

alleles present in either one of the two varieties.  
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Variability at each locus was measured using polymorphism information content 

(PIC), 

 

 

where n is the number of alleles of locus j and pij is the frequency of the ith allele 

of locus j (Botstein et al., 1980).  

Correlations and regression analyses were performed using SAS 6.0 (SAS 

Institute, Cary, NC, USA).  

Whether the number of SSR markers deployed in this study will provide 

sufficient information on allele diversity in the whole data set of 69 genotypes 

and the European subset of 56 genotypes, respectively, or not was evaluated 

by calculating the average coefficient of variation (CV) of the PIC value. 

Therefore CV was estimated for each SSR marker by bootstrapping (Efron, 

1986) where SSR markers were submitted to 1,000 samplings one by one with 

replacement. This procedure was repeated with a continuous growing number 

of markers until the total number of 52 SSR markers was reached. The mean 

CV was plotted against the number of SSR markers.  

Cluster analysis was carried out by software POPGENE version 1.32 (Yeh et al., 

1999) using the UPGMA method. Nei’s unbiased genetic distance (Nei, 1978) 

was used to calculate the pair-wise genetic distance among all accessions. 

Dendrograms were visualized with the TreeView programme (Page, 1996). 

Model-based cluster analysis was performed by the software STRUCTURE 

version 2.0 (Pritchard et al., 2000), which is designed to identify the population 

structure by a set of allele frequencies at each locus and assign individuals to 

populations. The number of presumed populations (K) was set from 2 to 10, and 

each was repeated three times. For each run, burn-in and iterations were set to 

50,000 and 100, 000, respectively, and a model allowing for admixture and 

correlated allele frequencies. When alpha was constant, the run with maximum 

likelihood was used to assign individual genotypes into groups. Within a group, 

genotypes with affiliation probabilities (inferred ancestry) ≥ 80% were assigned 

to a distinct group, and those with < 80% were treated as “admixture”, i.e. these 

genotypes have a mixed ancestry from parents belonging to different gene 

pools or geographical origin.  

∑
=
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Analysis of molecular variance (AMOVA) (Excoffier et al., 1992) was performed 

to test the significance of the partitioning of genetic variance between and within 

the detected groups. AMOVA was carried out using the software ARLEQUIN 

version 2.0 (Schneider et al., 2002).  

Relationships among groups were inferred using UPGMA clustering method 

based on Nei’s unbiased genetic distance (Nei, 1978) with POPGENE version 

1.32 (Yeh et al., 1999). 

Genetic differentiation between groups was quantified with Fst (Slatkin, 1995) 

values based on all 52 microsatellite loci using software FSTAT version 2.9.3 

(Goudet, 2001). Fst may be interpreted as the correlation between allele 

frequencies of different individuals in the same population under an infinite 

allele model (IAM) (Weir & Cockerham, 1984), and it thought to be more 

appropriate for recently diverged populations (Olsen and Schaal, 2001). A 

significance test of population differentiation (pairwise Fst) was performed by 

randomizing genotypes among samples to obtain the log-likelihood G-statistics 

(Goudet et al., 1996). Significance tests of correlations were performed by 

bootstrapping over loci with a 95% nominal confidence interval. The sequential 

Bonferroni correction was implemented for the multiple tests (Rice, 1989).  

In order to specify the level of diversity between wheats of the European 

germplasm, statistical descriptive parameters like number of allele per locus or 

allelic richness (A), the number of rare alleles per locus and Nei’s average gene 

diversity (He) (Nei’s 1978) were calculated for each European subgroup. 

Considering that the observed number of alleles in a sample set is highly 

dependent on the sample size, allele rarefaction method was performed to 

estimate unbiased A by software FSTAT version 2.9.3 (Goudet, 2001) as 

suggested by El Mousadik and Petit (1996).  

The number of rare alleles per locus of each group was estimated following 

Roussel et al. (2004) with minor modifications. The ratio was calculated as the 

total expected number of alleles per locus by rarefaction divided by the total 

observed of alleles per locus for each group before multiplying the observed 

number of rare alleles per locus by this ratio.  

Average gene diversity (He) was estimated as mean genetic diversity over loci 

and adjusted for the sample size according to Nei (1978):  
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where pij is the frequency of the ith allele of locus j, nl is the number of genetic 

loci, and na is the number of accessions. 

 
3.1.4 Results 
 
3.1.4.1 SSR polymorphisms and genetic diversity 
 
Fifty-two SSR markers, covering all 21 chromosomes of the hexaploid wheat 

genome with one to four SSR markers per chromosome were used to 

characterise the genetic diversity of 69 spring bread wheat accessions (Table 4). 

All loci used in this study were multiallelic, ranging from two (wmc233 and 

wmc245) to 14 (wmc601, wmc754 and wmc326) with an average of 7.81 + 3.28 

alleles per locus. The largest number of alleles per locus occurred in the B 

genome (8.65 ± 3.19) in comparison to the A (8.43 ± 2.87) and D genomes 

(5.93 ± 3.42). In total, 406 alleles were detected in the whole set of 69 

accessions (Table 5), of which 182 (44.8%) occurred at a frequency of < 5% 

and are considered as rare alleles varying from 0 (xgwm129, wmc307, wmc245, 

wmc233 and barc196) to 9 (wmc326). The PIC values of the 52 SSR loci 

ranged from 0.24 (wmc47) to 0.90 (xgwm120) with an average of 0.68 ± 0.16. 

The highest PIC value for all accessions was identified for the B genome (0.71 

± 0.17) compared to the A (0.68 ± 0.13) and the D genomes (0.63 ± 0.15). 

Focusing on the European subset of 56 accessions, 320 alleles were detected 

including 100 rare alleles (Table 4). Regarding the number of alleles per locus 

the European subset showed slightly lower values in comparison to the whole 

set of analysed accessions (Table 5). In the subset of European wheats the PIC 

value for the A genome has been found to be equal to the PIC of the D genome, 

while the B genome again had the highest PIC in European accessions. Further 

on, most of the genetic loci showed a higher diversity for all accessions in 

comparison to the European subset alone. Especially the SSR loci wmc51, 

wmc245, wmc601, wmc167, wmc52, wmc233 and barc196 showed fewer 

)12/())1(/1(2 2 −−= ∑ ∑ a
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alleles in the European accessions, whereas the diversity in the whole set and 

the European wheats were similar for SSRs wmc418 and wmc215 (Table 4). 

Additionally, a significant correlation between the PIC values and the number of 

alleles were observed in the whole set of 69 genotypes (r = 0.82, P < 0.0001) 

and for the European subset of 56 genotypes (r = 0.71, P < 0.0001), 

respectively. In order to specify the effect of the sample size on the accuracy of 

the estimated genetic diversity, CV of the PIC value estimated on 1,000 

bootstrap re-samples revealing an asymptotic curve (Figure 4) where an 

increasing number of loci led to decreased CV (CV = 3.2% and 3.42% in the 

whole data set of 69 accessions and the European subset of 56 accessions, 

respectively 

 
Table 5 Number of alleles, number of rare alleles, number of alleles/locus and mean PIC value cross 52 
microsatellite loci in the A, B and D genomes in all accessions (aa) and in European accessions (ea).  

Genome 
Item Accessions 

A B D 
Overall 

Loci  14 23 15 52 
Number of alleles aa 118 199 89 406 
 ea 89 153 78 320 
Number of rare alleles aa 57 93 32 182 
 ea 31 48 21 100 
Number of alleles/Locus aa 8.43 + 2.87 8.65 + 3.19 5.93 + 3.42 7.81 + 3.28 
 ea 6.36 + 2.80 6.65 + 2.40 5.20 + 2.93 6.15 + 2.69 
Mean PIC value aa 0.68 + 0.13 0.71 + 0.17 0.63 + 0.15 0.68 + 0.16 
 ea 0.63 + 0.16 0.66 + 0.18 0.63 + 0.17 0.64 + 0.17 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4 Coefficient of variation of the PIC values among all accessions estimated by bootstrap 
analysis for subsamples with an increasing number of SSR loci. 
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Figure 5 Dendrogram of 69 spring bread wheats based on Nei’s unbiased genetic distance 
(1978) using UPGMA method by POPGENE (Yeh et al, 1997). 

 

3.1.4.2 Genetic similarity and relatedness among accessions 
 
Pair-wise genetic similarity (GSDice) among all accessions varied widely from 

0.08 (Coa vs. Mellissos, and Dragon vs. Nyubay) to 1.00 (Amazonas vs. Avle). 

The average GSDice within accessions was estimated at 0.31 in comparison to 

an average GSDice of 0.35 within the European subset (data not shown).  
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Distance-based UPGMA cluster analysis divided all 69 accessions into five 

main groups (Figure 5). Within group 1, six accessions were differentiated into  

two subgroups comprising, two Portugal varieties and Universal (Argentina) on 

the one hand and three Chinese varieties on the other hand. The larger group 2 

and group 3 comprised almost all European accessions including the varieties 

AC Reed (Canada) in group 2 and IDO232 and Transec (USA) in group 3.  

Group 2 mainly contains varieties from the Czech Republic (5) and most of the 

varieties from Portugal (6). All the Czech varieties exclusively cluster together in 

a subgroup within group 2, whereas the remaining varieties are distributed to 

further subgroups. Group 3 comprises 39 accessions from France, Germany, 

the Netherlands, and UK (57%) and contains four subgroups (a, b, c and d). In 

subgroup (a) five UK varieties clustered together along with one French variety, 

whereas three German and two Dutch varieties generated further subgroups. 

Subgroup (b) consists of 21 accessions including Swedish (6) and German (10) 

varieties along with one Austrian and four varieties from Switzerland and the 

Netherlands, respectively. Subgroup (c) includes all Norwegian varieties and 

one Swedish variety, whereas two US varieties along with B5769 (Switzerland) 

are placed in subgroup (d). Group 4 contains further the two Swiss varieties on 

the one hand and two Brazilian varieties along with the Argentinean Eureka 

F.S.C. on the other hand. Three landraces are well separated from the 

remaining cultivars representing group 5. 

STRUCTURE software was used to perform model-based cluster analysis. In a 

range of simulated runs for different K values from 2 to 10 (presumed number of 

populations), the most appropriate number of groups (K) was identified at K = 9 

with a constant alpha ~ 0.03 and the natural log probability of the data which is 

proportional to the posterior probability was maximized (-4412.0). The 69 

accessions were assigned into nine genetically distinct groups, except 22 

accessions identified as admixtures having 37.5 - 78.3% shared ancestry with 

one of the major groups (Figure 6). In comparison to UPGMA clustering, 

structure analysis led to analogical results. Groups VIII and IX identified by the 

structure analysis were identical to group 4 and 5 of UPGMA clusters. Three 

landraces assembled in group IX shared an average of 95% ancestry with each 

other. In group VIII, two Brazilian varieties shared 98.7% ancestry, whereas  
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Figure 6 Graph showing the proportion of shared ancestry among the 69 spring bread wheats based on 
52 SSR markers using model-based method by structure (Pritchard et al, 2000). The symbol “◆” represent 
admixtures. 
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other accessions were identified as admixtures, showing only 66% mean 

shared ancestry with the major group. Groups III and IV are conform to group 2 

of UPGMA clustering. The Czech varieties present groups III showing more than 

93% mean shared ancestry were clearly separated from the accessions in 

group III. Within group III, nine out of 10 accessions had an average of 88.5% 

shared ancestry, only the variety Mondego (Portugal) was identified as an 

formed group II and was comparable to one subgroup of group 1 according to 

UPGMA clustering with an average of 96.4% shared ancestry. The remaining 

three accessions of group 1 (UPGMA clustering) together with two USA 

accessions and variety Jordao (Spain) from group 3 and group 2, respectively, 

reveal nearly 90% shared ancestry and were placed into group I (structure). All 

accessions in the groups V, VI and VII represented European varieties, 

corresponding to group 3 (UPGMA clustering). Hereby group V corresponds to 

subgroup (a) including two German varieties, two UK varieties and the Dutch cv. 

Minaret with an average shared ancestry of 95.2%, whereas the other five 

accessions with only 60% mean shared ancestry were identified as admixtures. 

Group VI correspond to subgroup (b), where out of the 22 accessions, 13 

mainly including varieties Swedish and German ones as well as the Dutch cv. 

Baldus, showed 94% shared ancestry, whereas nine accessions were identified 

as admixtures (56% shared ancestry). Group VII corresponds to subgroup (c) 

comprising two Norwegian cultivars with 94.5% shared ancestry and the 

accession Brakar with only 56.4% shared ancestry. 
 
3.1.4.3 Relevance of geographical origin for genetic variation 
 
By investigating the genetic variation among spring wheat accessions, all 

samples (69 accessions) were assigned to 10 geographical pools, whereas the 

European accessions (56 genotypes) were differentiated into six pools. AMOVA 

test was carried out at two hierarchical levels, between and within 10 

geographical groups, and between and within European groups, respectively 

(Table 6). On both hierarchical level, the variation is highly significant, but the 

variation within groups had a major effect amounting to 80.6% and 84.4% of the 

total variation for the whole set and the European accessions, respectively.  
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3.1.4.4 Relationship and diversity between six European geographical 
groups 
 
For a better understanding of genetic variation within the European germplasm, 

genetic diversity and differentiation was investigated for the geographical 

groups including Austria/Swiss (A/CH), Czech Republic (CZ), Portugal/Spain 

(E/P), France/Germany/Netherlands (F/G/NL), Norway/Sweden (N/S), and the 

United Kingdom (UK). A diagram was generated based on Nei’s unbiased 

genetic distance by UPGMA to show the genetic relationships between these 

groups and was presented in Figure 7, which showed two broad groups. One 

comprises CZ and E/P, whereas the accessions from A/CH, F/G/NL, N/S and 

UK cluster together in one other group. Pairwise FSt among the six groups of 

European germplasm, five showed a significant differentiation. Group F/G/NL 

showed the significant differentiation to the groups A/CH, E/P and UK, whereas 

A/CH and E/P were significantly different to UK, respectively. The mean genetic 

diversity between European accessions is estimated at 0.65 (He) compared to 

He = 0.68 for all accessions. Regarding each geographical group, a higher 

diversity was found within A/CH (He = 0.63) and E/P (He = 0.62), whereas a 

lower diversity was observed in the pools F/G/NL (He = 0.55) and N/S (He = 

0.51), and especially within UK (He = 0.42) and CZ (He = 0.37). The of alleles 

number per locus are same ordered starting with the highest values within A/CH 

(2.92), E/P (2.88) and F/G/NL (2.56), followed by N/S (2.38), UK (2.01) and CZ 

(1.84). Analogically, the highest percentage of rare alleles per locus was 

detected among the E/P wheats (27.5%), whereas the lowest was observed 

within the CZ group (3%) (Figure 8 and 9).  
 
 
Table 6 Analysis molecular of variance (AMOVA): effect of geographical groups  
Source of variation df Sum of squares Variance % Variation  
All accessions     
Among the groups 9 680.6 7.1*** 19.4 
Within the groups 59 1727.3 29.3*** 80.6 
Total 68 2407.9 36.3  
European accessions     
Among the groups 5 386.3 5.4*** 15.6 
Within the groups 50 1460.1 29.2*** 84.4 
Total 55 1846.5 34.6  
*** Significant level at P < 0001.  
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Figure 7 Relationship between six European geographical groups based on Nei’s unbiased genetic 
distance (1978). A/CH = Austria/Switzerland; CZ = Czech Republic; E/P = Spain/Portugal; F/G/NL = 
France/Germany/Netherlands; N/S = Norway/Sweden; UK = the United Kingdom 

 
Table 7 Matrix of Fst (below) and Nei’s unbiased genetic distance (above) between the six 
groups particularly originated from Europe, calculated for 52 microsatellite loci  
Group A/CH E/P UK CZ N/S F/G/NL 
A/CH - 0.293 0.468 0.420 0.344 0.212 
E/P 0.057 - 0.724 0.439 0.480 0.487 
UK 0.161* 0.244* - 0.640 0.417 0.239 
CE 0.165 0.179 0.343 - 0.627 0.427 
N/S 0.130 0.186 0.211 0.310  - 0.226 
F/G/NL 0.065*  0.179* 0.100* 0.211 0.111 - 
* Significant level at P < 0.05 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 8 Nei’s average gene diversity (He) (Nei, 1978) for each European geographical group based on 52 
microsatellite loci. A/CH = Austria/Switzerland; CZ = Czech Republic; E/P = Spain/Portugal; F/G/NL = 
France/Germany/Netherlands; N/S = Norway /Sweden; UK = the United Kingdom. 
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Figure 9 Expected alleles number per locus for each European geographical group based on 52 
microsatellite loci estimated by rarefaction method (El Mousadik and Petit, 1996). A/CH = 
Austria/Switzerland; CZ = Czech Republic; E/P = Spain/Portugal; F/G/NL = France/Germany/Netherlands; 
N/S = Norway/Sweden; UK = the United Kingdom. 

 

3.1.5 Discussion 
 
Bread wheat (Triticum aestivum L.) is an allohexaploid (2n = 6x = 42) plant and 

comprises three sub-genomes: A, B and D. The diversity levels of the sub-

genomes have been shown to be different: the highest PIC is usually reported 

for the B genome followed by the A and D genomes (Huang et al., 2002; Stachel 

et al., 2000). The highest genetic diversity in the present study was found in the 

B-genome (PIC = 0.71) as compared to PIC values of 0.68 and 0.63 for the A 

and D genomes, respectively (Table 5). These results correspond to those of 

Huang et al. (2002) who estimated somewhat higher but similarly diverse PIC 

values for the B (0.81), A (0.78) and D (0.73) genomes. The fact that the latter 

values are higher is probably due to a larger number of diverse wheat types 

(almost 1,000 accessions) originating from all over the world. On the contrary, 

Stachel et al. (2000) observed lower PIC values in 60 accessions originating 

from three European countries, i.e. Austria, Germany and Hungary. Similarly, 
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this can be explained by a lower geographical diversity of the genotypes 

investigated in their just like our study. Among 559 French varieties (Roussel et 

al., 2004) higher PIC value was detected in the D genome than in the A genome, 

but still the highest PIC value was observed in the B genome. This finding can 

be explained by the larger number of landraces (62 vs. 559 total genotypes) in 

their study. By comparing the difference of diversity between the A and D 

genomes in landraces (229 accessions) and modern varieties (111 accessions), 

respectively, Hao et al. (2006) found that more diversity exists in the D genome 

of landraces compared to the A genome, whereas the diversity in the A genome 

is higher than in the D genome in modern varieties. However, the highest 

genetic diversity was detected in the B genome. This observation supported our 

assumption mention above. Furthermore, a higher difference of diversity in the 

D genome between modern varieties and landraces was reported in 

comparison to the A and B genomes, respectively (You et al., 2004).  

The question still remains in what extent the PIC value is related to the number 

of alleles at a given locus. In the present study, the PIC values per locus 

showed a significant, positive correlation with the number of alleles per locus for 

all accessions (r = 0.82, P < 0.0001) and the European subset (r = 0.71, P < 

0.0001). The results are consistent with those of Huang et al. (2002) (r = 0.73, P 

< 0.01) and Roussel et al. (2004) (r = 0.69). Positive correlation between the 

PIC values per locus and the number of alleles per locus was also reported by 

Yu et al. (2003) and Jain et al. (2004) in rice (r = 0.62, 0.72, respectively), and 

by Vaz Patto et al. (2004) in maize (r = 0.85). In contrast, Prasad et al. (2000) 

and Fu et al. (2005) reported that the PIC value per locus was not significantly 

associated with the number of detected alleles per locus. In fact of the different 

observation of correlation between the number of alleles per locus and PIC 

values, an objective evaluation of genetic diversity in germplasm collections 

should be considered, by both, the number of alleles per locus and their 

respective PIC values in combination as suggested by Hao et al. (2006). 

How much loci (or alleles) are sufficient to precisely reveal the genetic diversity 

among accessions have been discussed by several authors (Tiang et al., 1994; 

Uptmoor et al., 2003). In the present study, it was clearly shown that little or no 

increase in CV of the PIC value was obtained with more 50 loci, corresponding 
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to ~400 alleles in the whole set data (69 accessions) and ~300 in the European 

subset (56 accessions), respectively. This result indicated that 52 SSR loci used 

in this study were enough to assess genetic variation. Similar results of Zhang 

et al. (2002) suggested that 350 - 400 alleles were required to objectively 

assess the relationship between wheat accessions.  

Our cluster analysis based on two different methods led to similar groupings 

with only minor exceptions: e.g. two US varieties (IDO232 and Transec) as well 

as the variety B5769 (Switzerland) clustered in one of the subgroups of group 3 

(UPGMA clustering), while these three varieties were not assigned to a 

separate group by structure analysis (Figure 3 and 4), but they were all 

assigned to group I with more than 90% shared ancestry each. The cv. Jordao 

was placed into group 2 by UPGMA clustering, however, as a result of structure 

analysis it was assigned to group I with 81.8% shared ancestry rather than to 

group III as would have been expected. Similar results showing minor deviation 

between UPGMA and structure analysis were reported by Lu et al. (2004) in rice 

where out of 145 cultivars, 139 were consistently grouped by both methods. 

Concerning GSDice, the present results showed a broad genetic variation in the 

whole set of genotypes (GSDice = 0.08 - 1.00), with similar mean values for all 

accessions (0.31) compared to the European subset of spring wheats (GSDice = 

0.35). The maximum GSDice value of 1.00 was observed between cv. Amazonas 

and Avle, suggesting that these two genotypes are very closely related. 

Pedigree information was not extensive but there was not any hint that 

Amazonas originated from Portugal was equivalent to Avle from Sweden. 

AMOVA indicated that genetic variation within geographical groups had a major 

effect, contributing more than 80% of the total genetic variation. This is in 

agreement with the results of Roussel et al. (2005), where 92.3% of the total 

genetic variation in a set of 480 bread wheat varieties originating from 15 

European areas could be explained by geographical origin. The higher 

proportion of genetic variation within groups found in the present study can be 

explained by breeding activities, i.e. the selection for germplasm adapted to 

local agro-ecological conditions as presumed by Roussel et al. (2005).  

The relationship between the six European geographical gene pools 

discriminated in our study is comparable to Roussel et al. (2005). In agreement 
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with the latter authors, we found that clustering between six genetic groups was 

more related to pedigree-relatedness rather than geographical origin (Figure 7). 

For example, in the present study, in spite of geographical distance, wheats 

from CZ and E/P appeared in a common cluster (Figure 7), suggesting that 

there are genetically close to some extent. The relationship between the other 

four groups (A/CH, F/G/NL, N/S and UK) also reflected both the pedigree-

relatedness as well as the geographical proximity. For example, the three 

German varieties Triso, Munk and Nandu and the Dutch cv. Baldus share a 

common parent (German cv. Kolibri). Correspondingly, these four varieties 

along with the German cv. Star (one of the parents of Munk) were assigned to 

group VI with more than 89% mean shared ancestry, whereas variety Nandu 

was assigned to this group as an admixture (50.4% shared ancestry; Figure 6). 

Accordingly, the pedigree relatedness between some varieties from the 

Netherlands and UK (group I) were also reflected in the results of structure 

analysis. For example, the two UK varieties Shiraz and Chablis have cv. Jerico 

(UK) as a common parent, which contributed to Bastion (UK), one of the parents 

of cv. Minaret (Netherlands) (Figure 7). 

Focusing on European accessions, the overall genetic diversity of the six 

different geographical groups was He = 0.65, with varying values for the 

individual groups. The lowest He value was detected for the CZ group (He = 

0.37), which may be due to the small number of samples and just a few founder 

genotypes. For example, the varieties Linda, Saxana and Sandra share cv. 

Rena as a common parent, and Linda and Saxana were even selected from the 

same cross (Rena/ST802-74). This close relationship within the CZ group was 

elucidated by UPGMA cluster as well as by structure analysis. A similar 

explanation applies to the UK group, where a comparatively low diversity (He = 

0.42) was detected due to the cultivars’ close relatedness. For example, Jerico 

is a common parent of Shiraz and Chablis, and Axona is a parent of Shiraz and 

Cadenza; furthermore, Cadenza and Chablis share cv. Tonic as a common 

parent. On the contrary, the A/CH geographical group exhibited the highest 

genetic diversity (He = 0.63). This is reflected the fact that accessions from this 

origin were distributed to different groups by UPGMA as well as by structure 

analysis. The A/CH set of genotypes and the E/P wheats had a similarly high 
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genetic diversity (He approx. 0.6) along with the highest number of alleles per 

locus. Correspondingly, Röder et al. (2002) reported that the highest diversity 

exists in Southern European wheats followed by Alps region. In agreement with 

this, Huang et al. (2002) observed a higher genetic variation in wheats from 

these countries as compared to wheat varieties from Western and Northern 

Europe such as Germany, Netherlands, Sweden and UK. Further on, Roussel 

et al. (2005) reported the highest number of alleles appeared in Spain and 

Portugal. In this context, it is worth mentioning that the correlation between the 

number of rare alleles per locus for each geographical area and He value is 

rather close (r = 0.89, P < 0.05) whereas the correlation between the number of 

common alleles per geographical area and He is weaker (r = 0.83, P < 0.05). 

Therefore, we assume that the higher genetic diversity observed in Southern 

European regions may be due to the presence of relatively more rare alleles, 

resulting from less stringent selection applied in these regions (Roussel et al. 

2005). Studies of allele distribution in Nordic spring wheats throughout the 20th 

century, Christiansen et al. (2002) revealed that the loss of alleles only 

comprised of rare alleles in the new cultivars. This finding further confirmed our 

assumption that breeding practice affected the number of rare alleles.  

The optimal strategies of breeding system require extensive knowledge of the 

breeding materials employed. The result of presented here will be useful to 

understand the current status of genetic diversity between accessions. Because 

most of SSRs markers applied in the present study were randomly selected 

from the whole wheat genome, exploring genetic variation for specific traits 

could not be expected. With advances in mapping of quantitative trait loci (QTL) 

for many agronomic important traits in wheat (Börner et al., 2002), it becomes 

possible to detect the allelic variation at these loci among accessions by using 

markers haplotypes. Haplotype information will allow the breeder to directly 

accumulate favourable alleles at multiple loci in a controlled manner leading to 

superior varieties (Peleman et al., 2003).  
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3.2.1 Abstract 
 
Scoring for lodging resistance is difficult under natural field conditions. The stem 

strength of wheat has been used as an index of lodging resistance. However, 

this is a complex trait comprised of two characters, i.e. stem mechanical 

elasticity and rigidity. Therefore it is closely associated with stem morphological 

and anatomical features. A study of the genetics of stem strength and related 

traits of basal stem internodes is very important for genetic improvement of 

lodging resistance in wheat. In this study, a doubled haploid (DH) population 

derived from anther culture of the cross CA9613/H1488 was used. Stem 

strength and related basal internode traits were measured at the milk stage. A 

molecular map of the DH population was constructed using 189 SSR markers, 

and quantitative trait loci (QTL) for each trait were analysed based on this 
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molecular linkage map. A total of six QTL for stem strength, culm wall thickness, 

pith diameter and stem diameter were identified: 1) Two QTL (QSs-3B) for stem 

strength were detected on chromosomes 3A and 3B, exhibiting 10.6 and 16.6% 

phenotypic variation, respectively. 2) Two QTL (QPd-1A and QPd-2D) 

associated with pith diameter were detected on chromosomes 1A and 2D, 

respectively, jointly explained about 30% of phenotypic variance. 3) As far as 

stem diameter and culm wall thickness were concerned, one QTL was detected 

on chromosomes 3B and 2D, respectively; QSd-3B explained 8.7% of the 

phenotypic variance of stem diameter, whereas QCwt-2D explained 9.6% of the 

phenotypic variance of culm wall thickness. In addition, among the QTLs 

detected, two with pleiotropic effectes were observed. Correlated traits are 

usually associated with the pleiotropic effects of the same QTL(s) or linkage of 

different QTLs. But this was not true in some cases. The results of QTL 

mapping showed that stem strength can be improved by breeding for wider 

stems with a higher stem diameter /pith diameter ratio. This can be facilitated by 

using the markers linked to QSd-3B and QCwt-2D. Combing stem strength, 

stem diameter and culm wall thickness may be used as a selection index for 

lodging resistance with marker-assisted selection (MAS) to improve lodging 

resistance in this population 

 
Key word: basal internode trait, doubled haploid; quantitative trait loci (QTL), 

stem strength; wheat (Triticum aestivum L.) 

 

3.2.2 Introduction 
 
Lodging is one of the major limiting factors to the production of cereals. It was 

estimated that lodging may cause up to 40% yield loss in wheat (Esson et al., 

1993). The quality of the grain may deteriorate considerably due to increased 

grain moisture content and preharvest sprouting. Since the 1960s, with the 

introgression of dwarfing genes, lodging resistance has increased in wheat 

(Worland & Snape, 2001). It has been found that extreme dwarfism is also 

associated with several other undesirable characteristics, like decreased 

biomass, higher leaf density, shrunken kernels, premature senescence, and 
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increased susceptibility to diseases. However, lodging may still occur if stem 

strength is weak after dwarfing (Li, 1998). Consequently, efforts to improve stem 

strength should be an important focus in breeding wheat for lodging resistance. 

Since lodging can occur at the different stages of plant growth, scoring for 

lodging resistance is difficult under natural field conditions, and breeders have 

to established methods of essentially assessing lodging resistance (Pu et al., 

2000). Lodging usually occurs when the stems bend or break at the basal 

internode (Pinthus, 1973). Many studies have been conducted on the 

correlation between stem characters and lodging resistance, and no finding 

stem morphological and anatomical traits that can be used as indirect selection 

criteria in wheat, Some of these studies showed that lodging is negatively 

correlated with stem diameter and culm wall thickness, lodging resistance 

cultivars exhibited wider basal diameter and thicker culm wall than those 

susceptible to lodging (Muckherjee et al., 1967; Zuber et al., 1999). Such 

studies have also been reported for barley (Dunn & Briggs, 1989) and oats 

(Jellum, 1962). 

However, Atkins (1938) and Pinthus (1967) found no significant correlation 

between stem diameter and lodging resistance in wheat. Kelbert et al., (2004) 

conducted a study to determine the association between culm anatomy and 

lodging using 13 spring wheat cultivars differing in lodging susceptibility, and 

slaos did not find stem diameter to be a significant character related to lodging 

resistance. Rather, three lodging resistant cultivars had shorted, wider basal 

internodes and thicker culm walls. Moreover, Luthra et al. (1981) determined 

that F1 hybrids from a diallel cross involving seven wheat cultivars differed 

significantly from the parents in characteristics related to lodging including plant 

height, stem strength, stem diameter and length of second internode. Wang et 

al. (1998) reported that using systematic cluster analysis based on the stem 

strength differences at different growth stages, 15 high-yielding wheat varieties 

were divided into four lodging resistant types, and highly significant differences 

of stem strength between wheat varieties at different stages were found. Berry 

et al. (2000) suggested that combining stem strength with other desirable 

characteristics remains a major goal in breeding for lodging resistance.  

Stem strength seems to be a complex trait including mechanical elasticity and 
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rigidity of the stem and is therefore closely associated with stem morphological 

and anatomical traits (Wang & Li, 1996). Related studies by some researchers 

showed that stem strength was correlated with stem diameter of the basal 

internodes (r = 0.80, Shevchuk et al., 1981; r = 0.87, Min, 2001). In another 

study, Xiao et al. (2002) found that the diameter of basal internodes was 

correlated with stem strength from the milk to maturity stage (r = 0.379, 0.498 

and 0.461), while the diameter of the upper internodes was not positively 

related to stem strength. Based on classical quantitative genetic methods, 

experiments have been performed to determine the genetics of stem strength 

and related traits.  

Both stem strength and stem diameter were normally distributed in the F2 

populatioon, with significantly transgressive segregation as usually observed for 

quantitative traits (Kohli et al., 1970; Xiao et al., 2002). Li (1998) reported that 

stem strength, stem diameter and pith diameter were controlled by both additive 

and non-additive gene effects.  

The development and utilization of DNA molecular markers and genome 

mapping techniques have facilitated the identification of QTL for complex traits 

(Lander & Bostein, 1989; Tanksley, 1993). With the QTL mapping approach, it 

is feasible to analyse the genetic basis of the relationship between traits (Lin et 

al., 1996; Kato et al., 2000; Ishimaru et al., 2001). This will be useful for genetic 

improvement of lodging resistance in wheat. In this study, we attempt to identify 

QTL affecting stem strength, stem diameter, culm wall thickness and pith 

diameter of basal internodes in a DH population, and to explore their utilization 

in wheat lodging resistance breeding by means of marker-assisted selection 

(MAS). 

 

3.2.3 Materials and methods 
 
3.2.3.1 Plant materials 
 
A doubled haploid (DH) population consisting of 113 lines established in our 

laboratory were used. This population was developed through anther culture of 

F1 hybrid derived from the cross between the winter wheat cultivars ‘CA9613’ 
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with a tenuous stem as female parent and the winter wheat cultivar ‘H1488’ with 

a strong stem as male parent. The 113 DH lines and their parents were planted 

during the periods 2000-2001 and 2001-2002 at the experimental station of 

Institute of Crop science, Chinese Academy of Agricultural Sciences, Beijing. 

The field experiment was conducted in a randomized block design with three 

replications. Each experimental unit contained one row (2m) with 25 cm row 

space. One hundred seeds were sown in each row.  

 

3.2.3.2 Measurement of stem strength and related basal internode traits 
 
The prostrate tester (DIK-7400, Daiki Rika Kogyo Co. Ltd., Tokyo, Japan) was 

used to measure the stem strength of plants in the study (Figure 10). The 

instrument functions on the basis of the principle of action and reaction. Stem 

strength was measured at the milk stage according to the method of Xiao et al. 

(2002). The internodes were numbered from top to bottom. The prostrate tester 

was set perpendicularly at the middle of the second internode of the plant. The 

stem strength was measured when the plant was pushed to an angle of 45 from 

the vertical and it was estimated using the following formula: Stem strength 

(g/stem) = test reading ÷ 40 × 1000 ÷ number of stems. Five stems were 

measured in each experimental unit (plot). Stem diameter (mm) and culm wall 

thickness (mm) were measured at the center of the fifth internode using a 

sliding caliper. Pith diameter was calculated according to the equation: stem 

diameter = culm wall thickness + pith diameter. 

 

 

 

 

 

 

 

 
Figure 10. Measurement of stem strength using the Prostrare tester. The prostrare tester was set 
perpendicularly at the middle of the 2th internode on the aerial parts of plants (a). The stem strength was 
measured when plant was bent to 45° (b). (Sketch cited from the study of Kashiwagi et al. (2004) with 
thanks, some changes have been made with respect to his original study.). 
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Table 8 Descriptive statistics of stem strength, stem diameter, pith diameter and culm 
wall thickness of basal internode on the DH population and their parents 
Trait Mean ± SD Range CA9613 H1488 
Stem strength 8.11 ± 5.54 0.1427.46 7.63 17.79 
Stem diameter 3.53 ± 0.35 2.754.38 3.42  3.53 
Pith diameter 1.46 ± 0.46 0.633.00 1.29  1.77 
Culm wall thickness 2.08 ± 0.40 0.752.87 2.13  1.76 

 

3.2.3.3 SSR analysis 
 

The microsatellite markers developed by Röder et al. (1998) and by the Wheat 

Microsatellite Consortium were used in this study. PCR reactions wee 

performed in a programmable thermal controller (PTC-100, MJ Research Inc., 

Watertown, MA, USA) in a total volume of 20µl containing 1 × buffer (Promega), 

1.8 mmoll-1 MgCl2, 200 mmoll-1 dNTPs, and 250 nmoll-1 of each primer, 1U of 

Taq-polymerase, 100ng of genomic DNA as template. After an initial denaturing 

step for 5 min at 95°C, 35 cycles were performed for 40s at 94°C, 30s at either 

50°C, 55°C, or 60°C (depending on the primer pair), 45s at 72°C, followed by a 

final extension step of 10 min at 72°C. Amplification products were separated on 

5% (w/v) denaturing polyacrylamide gels and were detected by silver staining 

according to the protocol of Bassam et al. (1991). 

 

3.2.3.4 Molecular map construction 
 
Genetic linkage maps were constructed by MAPMAKER/Exp version 3.0b (Land 

et al., 1987). A threshold log likelihood ratio (LOD) of 3.0 was used to arrange 

markers into linkage groups. The Kosambi (1994) mapping function was applied 

to transform recombination frequencies into centiMorgans. Linkage groups were 

assigned to chromosomes via comparison to reference maps using 

microsatellite loci (Röder et al., 1998). 

 

3.2.3.5 Statistical analysis 
 
Statistical analysis of traits was performed using the SAS statistics package 

(SAS Institute, Raleigh, NC, USA). Normality of each trait measured was 
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verified suing the “PROC UNIVERIATE” procedure was performed using 

“PROC CORR” procedure. QTL detection was performed by Composite interval 

mapping (CIM) (Zeng, 1994) using the program QTL Cartographer 1.3 (Basten 

et al., 1997). A forward and backward stepwise regression was performed to 

choose factors before QTL detection by CIM. Ten cofactors with the highest F 

value were taken into account. A window size of 10 cM around the test interval 

was chosen or all analyses. Permutation tests were performed to estimate 

appropriate significant thresholds for CIM. After 1000 permutations, LOD 

thresholds of 2.5 were chosen for CIM. For each QTL, the position, the additive 

effects(s), and the percentage of phenotypic variation explained were estimated. 

 

3.2.4 Results 
 
3.2.4.1 Variation in stem strength and correlation between stem strength 
and related basal internode traits 
 

Parental performance and segregation for stem strength, stem diameter, pith 

diameter and culm wall thickness of basal internode are shown in Table 8 and 

Figure11, The measured values of stem strength, stem diameter and pith 

diameter were greater for ‘H1488’ than for ‘CA9613’, whereas the measured 

value of culm wall thickness was greater for ‘CA9613’ than for ‘H1488’.  

Significant differences were found in stem strength and pith diameter between 

two parents (P <0.05), whereas differences in stem strength and culm wall 

thickness were not significant. All the four traits were normally distributed with 

transgressive segregation in the DH population. Correlation coefficients 

between stem strength, stem diameter, pith diameter and culm wall thickness in 

the DH population are shown in Table 9. Stem strength was significantly 

correlated to stem diameter (r = 0.143, P <0.05) and culm wall thickness (r = 

0.196, P <0.05), whereas there was a negative relationship between stem 

strength and pith diameter (r = -0.064). Coefficients between stem diameter and 

pith diameter (r = 0.529, P <0.001) and between stem diameter and culm wall 

thickness (r = 0.259, P <0.01) were both positively significant, whereas there 

was negatively significant correlation between pith diameter and culm wall  
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thickness (r = -0.682, P <0.001). 

 

3.2.4.2 Molecular map 
 

Among 771 microsatellite markers, 200 were identified as polymorphic between 

‘CA9613’ and ‘H1488’, and these markers were used to assess the marker 

genotype of the DH lines to construct a molecular map. The map comprised 189 

markers on 25 linkage groups with two or more markers each. The total length 

of the present map is 2308.3cM. The linkage groups are distributed throughout 

the wheat genome but chromosomes 1D, 4A, 4D, 5A, 6A and 6D were 

underrepresented. Among all 189 markers, segregation significantly deviating 

from the expected 1:1 ratio was determined by Chi-square tests. A total of 59 

markers (31.38%) showed distorted segregation at P < 0.05; and 36 markers 

(19.15%) showed distorted segregation at P < 0.01. Most of these markers map 

to chromosomes 1D, 2A, 2D, 3B, 6A and 7A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
Figure 11 Distribution of stem strength, stem diameter, pith diameter and culm wall thickness of basal 
internode in the DH population. 
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Table 9 Correlation coefficients between stem strength, stem diameter, pith diameter 
and culm wall thickness of basal internode in the DH population 

Trait Stem  
strength 

Pith  
diameter 

Stem  
diameter 

Culm 
 wall thickness 

Stem strength  1.000    

Pith diameter -0.064 1.000   

Stem diameter  0.143*  0.529*** 1.000  

Culm wall thickness  0.196* -0.682*** 0.259** 1.000 

*,** and *** indicate 0.05, 0.01 and 0.001 significant level, respectively. 
 
 
Table 10 QTLs associated with stem strength, stem diameter, pith diameter and culm 
wall thickness of basal internode detected by CIM in the DH population derived from 
CA9613 and H1488 
Traits QTLs Chr. Marker Interval LODa Ab R2 (%)c Positive Allele 

Stem strength QSs-3A 3A xwmc527 - xwmc21 3.19 2.37 10.61 H 

 Qss-3B 3B xgwm108 - xwmc291 4.11 3.12 16.60 H 

Stem diameter QSd-3B 3B xgwm108 - xwmc291 2.75 0.11 8.75 H 

Pith diameter QPd-1A 1A xgwm135 - xwmc84 2.81 0.16 10.72 H 

 QPd-2D 2D xgwm311 - xgwm301 5.29 0.21 18.70 H 

Culm wall thickness QCwt-2D 2D xgwm311 - xwmc301 2.93 -0.14 9.63 C 
a Log10-likehood value. 
bAdditive effect: its positive value indicates the genotype from parent ‘H1488’ toward increasing the 
phenotype value. 
c Variance explained by each QTL. 
dPositive allele was derived from ‘H1488 (H)’ or ‘CA9613 (C)’. 

 
3.2.4.3 QTL detection 
 
QTL controlling stem strength, stem diameter, pith diameter and culm wall 

thickness of basal internode were detected in the DH population CA9613 

/H1488 (Tabe 8, Figure 12). Two putative QTLs (QSs-3A and QSs-3B) for stem 

strength were detected on chromosomes 3A and 3B which individually explain 

10.6 and 16.1% of phenotypic variance, respectively; and the positive alleles of 

both derived from parent ‘H1488’. Two QTLs (QPd-1A and QPd-2D) associated 

with pith diameter were mapped to chromosomes 1A and 2D; and these QTL 

explained 10.7 and 18.7% of phenotypic variation, respectively; the positive 

alleles of both also derived from the parent ‘H1488’. One QTL (QSs-3B) 

affecting stem diameter was detected on chromosome 3B, and it explained 
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8.7% of the phenotypic variance. For culm wall thickness, one QTL (QCwt-2D) 

was detected on chromosome 2D, explained 9.6% of phenotypic variance of 

stem thickness. The positive allele of QSd-3B derived from ‘H1488’, which the 

positive allele of QCwt-2D derived from ‘CA9613’. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 12 The most likely location of QTLs for stem strength and related traits in a 
wheat DH population derived from a cross between ‘CA9613’ and ‘H1488’. 

 

3.2.4.4 Pleiotropic effects 
 
Among the QTL detected, two loci with pleiotropic effects were observed. One 

locus in the interval xgwm108-xwmc291 on Chromosome 3B simultaneously 

influenced stem strength and stem diameter; the other locus in the interval 

xgwm311-xgwm301 on chromosome 2D is simultaneously associated with pith 

diameter and stem thickness, but positive alleles were derived from both 

parents.  

 
3.2.5 Discussion 
 
Lodging is a complex trait affected by many morphological and anatomical traits. 

Therefore selection based on phenotype for lodging-resistant genotypes is very 

difficult. Marker-assisted selection could therefore become an important tool in 

breeding for this trait (Keller et al., 1999). Lodging resistance determined by 
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stem strength in wheat has been reported earlier (Mulder, 1954; Malkani & 

Vaidga, 1956; Wang & Li, 1995). Stem strength as an index of lodging 

resistance has been used in rice (Terashima et al., 1992) and in wheat (Xiao et 

al., 2002). However, few studies have reported on QTL analysis of these traits in 

wheat.  

In the present study, stem strength, stem diameter, pith diameter and culm wall 

thickness in the DH population showed normal distributions, indicative of 

quantitative traits. This is in conformity with the results previously reported by 

Kohli et al. (1970), Li (1998) and Xiao et al. (2002). In total six QTL were 

detected for stem strength and related stem traits; two QTL (QSs-3A and QSs-

3B) associated with stem strength were detected on chromosomes 3A and 3B, 

respectively. The positive alleles for both QTL were derived from ‘H1488’, a 

cultivar with a strong stem. Also, the chromosome region QSs-3B was shown to 

exhibit pleiotropic effect (s). The locus flanked by markers xgwm108 and xwmc 

291 on chromosome 3B simultaneously affected stem strength and stem 

diameter. Again, the positive allele of this QTL was from ‘H1488’ with an additive 

effect for an increased stem strength and stem diameter. Based on a 

cytogenetic study for location of genes associated with lodging on this 

chromosome, Al-Qaudhy et al. (1988) found that chromosomes 3A and 3B of 

wheat had major effects in increasing stem strength. The in the present study, 

one QTL associated with stem-breaking strength was additionally detected on 

chromosomes 3A (data not shown). Together with the results of Al-Qaudhy et al. 

(1988), it is presumed that there may be QTLs on both chromosomes 3A and 

3B associated with stem strength.  

Correlated traits are often associated with pleiotropic effects of the same QTL or 

linkage of different QTL as reported for heading data and plant height in barley 

(Qi et al., 1998), oats (Holland et al., 1997) and for grain number and grain 

weight in rice (Xing et al., 2002). In our study, chromosomes regions of QPd-2D 

and QCwt-2D are different from that of QSs-3B and QSd-3B. The positive effect 

for QPd-2D was contributed by ‘H1488’, whereas the positive effect for QCwt-

2D was derived from ‘CA9613’. The results were consisted with the results of 

the correlation analysis for these traits in this population, where significant 

negative correlations were observed between pith diameter and culm wall 
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thickness (r = - 0.682, P < 0.001). Similar results were reported for rice by 

Yamagishi et al. (2002). However, they were not always correct. For example, 

stem diameter was highly co-associated with pith diameter compared to other 

traits, which were significantly and positively related with each other, although 

no identical QTL was detected for these two traits. Bao et al. (2002) reported 

that no common QTL was identified for gelatinization temperature and viscosity 

breakdown associated with rice grain quality, while a highly significant 

correlation between these two traits was found.  

Our results of QTL mapping show that stem strength can be improved by 

breeding for stem thickness and higher stem diameter/pith diameter ratio. This 

can be facilitated by using markers linked to QSd-3B and QCwt-2D. Combined 

stem strength, stem diameter and culm wall thickness may be used in 

combination as a selection index to be used in MAS for improving lodging 

resistance in this population. However, further studies are needed to verify: 1) 

the stability of QTLs detected in this population to different population(s) 

including DH and RIL populations derived from the same cross, and also in 

diverse environments; and 2) the chromosome regions with pleiotropic effects 

identified in this study. Fine mapping will be necessary to determine the 

pleiotropic effects of a single QTL or a tight linkage of two QTL in the same 

region. Based on corresponding results, a strategy for application of MAS in 

breeding for lodging resistance in wheat may be developed.  

It needs to be stressed that stem strength is not only associated with 

morphological and anatomical traits of the stem, but also associated with 

several physiological plant trait. According to Huang (1988) and Li (1998), the 

soluble carbohydrate content in basal internodes of the stem was significantly 

correlated with lodging resistance, and the lignin content of basal internodes of 

strong stems was higher than that of weak stems. Similar results have been 

found in rice. For example, Taylor et al. (1999) found that lignin content is 

related to stem rigidity, and higher contents accumulated carbohydrates in rice 

stem contributed greatly to lodging resistance (Sato, 1957; Yang et al., 2001). In 

addition, Matsuzaki et al. (1972) showed that higher accumulation of starch 

contributed to high bending strength.  

In the future, we are planning to map QTL affecting physiological factors 
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responsible for or involved in stem strength, and to elucidate the physiological 

functions of QTL associated with stem strength and related traits in our DH 

population. This may contribute to a better understanding of how to improve 

stem strength by breeding. 

 
3.2.6 Acknowledgements 
 
This study was supported by the research project 973-G1998010205. We would 

like to thank Prof. X. Chen, Prof. H. J. Xu, Prof. W. X. Zhang and L. P. Du for 

their assistance. We are especially grateful to Prof. D. R. Christenson (Michigan 

State University, USA), and Dr. M. C. Luo The university of California, Davis, 

USA) for their valuable suggestions on an earlier version of this manuscript. Hai 

L. especially thanks Prof. W. Friedt (Justus-Liebig-University of Giessen, 

Germany) for critically reading and correcting the manuscript. 

 

3.2.7 References 
 
Al-Qaudhy W, R Morris & RF Mumm, 1988. Chromosome locations of genes for 

traits associated with lodging on winter wheat. Crop Sci 28: 631-635 
Atkins IM, 1938. Relation of certain plant characters to strength of straw and 

lodging in winter wheat. J. Agri Res 56: 99-120 
Bao JS, YR Wu, B Hu, P Wu, HR Cui & QY Shu, 2002. QTL for grain quality 

based on a DH population derived from parents with similar apparent 
amylose content. Euphytica 128: 317-324 

Bassam BJ, G Caetano-Anolles & PM Gressoff, 1991. Fast and sensitive silver 
staining of DNA polyacrylamid gels. Anal Biochem 196: 80-83 

Basten JC, BS Weir & ZB Zneg, 1997. QTL Cartographer. A Reference Manual 
and Tutorial for QTL mapping. Department of statistics, North Carolina State 
University, Raleigh, NC 

Berry PM, JM Griffin, R Sylvester-Bradley, RK Scott, JH Spink, CJ Baker & RW 
Clare, 2000. Controlling plant form through husbandry to minimize lodging 
in wheat. Field Crops Res 67: 51-58 

Dunn GJ & KG Briggs, 1989. Variation in culm anatomy among barley 
genotypes differing in lodging resistance. Can J Bot 67: 1838-1848 

Easson DL, EM White & SL Pickles, 1993. The effects of weather, seed rate and 
genotype on lodging and yield in winter wheat. J Agri Sci (Camb) 121: 145-
156 

Holland JB, HS Moser, LS O’Donoughue & M Lee, 1997. QTLs and epistasis 
association with vernalization responses in oat. Crop Sci 37: 1306-1316 

Huang YL, 1988. Morphological factors and control techniques of lodging in 
wheat. Jiangsu Agri Sci 10: 5-8 



L Hai et al. 2005. Euphytica 141: 1-9                                                                                                                           76

 

Ishimaru K, K Shirota, M Higa & Y kawamitsu, 2001. Identification of 
quantitative trait locui for adaxial and abaxial stomatal frequencies in Oryza 
sativa. Plant Physiol Biochem 39: 173-177 

Jellum MD, 1962. Relationships between lodging resistance and certain culm 
characters in oats. Crop Sci 2: 263-267 

Kashiwagi T & K Ishimaru, 2004. Identification and functional analysis of a locus 
for improvement of lodging resistance in rice. Plant Physiol 134: 676-683 

Kato K, H Miura & S Sawada, 2000. Mapping QTLs controlling grain yield and 
its components on chromosome 5A of wheat. Theor Appl Genet 101: 1114-
1121 

Kelbert AJ, D Spaner, KG Briggs & JR King, 2004. The association of culm 
anatomy with lodging susceptibility in modern pring wheat genotypes. 
Euphytica 136: 211-221 

Keller M, CH Karutz, JE Schmid, P Stamo, M Winzeler, B Keller & MM Messmer, 
1999. Quantitative trait loci for lodging resistance in a segregating wheat x 
spelt population. Theor Appl Genet 98: 1171-1182 

Kohli SP, KK Mukherjee & KL Sethi, 1970. Inheritance of characters associated 
with lodging in a wheat cross. India J Genet Plant Breed 30: 431-438 

Kosambi DD, 1944. The estimation of map distance from recombination values. 
Ann Eugen 12: 172-175 

Lander ES, D Bostein, 1989. Mapping Mendelian factors underlying quantitative 
traits using RFLP linkage maps. Genet 121: 185-199 

Lander ES, P Green, J Abrahamson, A Barlow, MJ Daly, SE Lincoln & L 
Newburg, 1987. Mapmaker: An interactive computer package for 
constructing primary genetic linkage maps of experimental and natural 
populations. Genomics 1: 174-181 

Li QQ, 1998. Creation, Evaluation and Utilization of Winter Wheat Germplasm. 
pp. 203-219. Shandong Sci Tech Press, Jinan (in Chinese with English 
abstract) 

Lin HX, HR Qian, JY Zhuang, J Lu, SK Min, ZM Xiong, N Huang & KL Zheng, 
1996. RFLP mapping of QTLs for yield and related characters in rice (Oryza 
sativa L.). Theor Appl Genet 92: 920-927 

Luthra OP, RS Paroda & RB Srivastava, 1981. Combing ability of characters 
related to lodging in wheat. India J Agric Sci 51: 367-371 

Malkani JJ & SM Vaidga, 1956. Morphological characters of shoot and root in 
relation to lodging in three wheat cultivars. India J Genet Plant Breed 16: 
121-133 

Matsuzaki A, S Matsushima, T Tomita & E Katsuki, 1972. Analysis of yield-
determining process and its application to yield - production and culture 
improvement of lowland rice. CIX. Effects of nitrogen top - dressing at full 
heading stage on lodging resistance, root activity, yield and kernel quality. 
Jpn J Crop Sci 41: 139-146 

Min DH, 2001. Studies on the lodging resistance with its subtraits of different 
height wheat varieties and correlation between plant height and yield. J 
Triticeae Crops 21 (4): 76-79 (in Chinese with English abstract) 

Mukherjee KK, SP Kohli & KL Sethi, 1967. Lodging resistance in wheat. India J 
Agron 12: 56-61 

Mulder EG, 1954. Effect of mineral nutrition on lodging of cereals. Plant Soil 5: 



L Hai et al. 2005. Euphytica 141: 1-9                                                                                                                           77

 

246-306 
Pinthus ML, 1973. Lodging in wheat, barley, and oats. The phenomenon, its 

causes, and preventative measures. Adv Agron 25: 210-256 
Pinthus, 1967. Spread of the root system as an indicator for evaluating lodging 

resistance of wheat. Crop Sci 7: 107-111 
Pu DF, JR Zhou, BF Li, Q Li & Q Zhou, 2000. Evaluation method of root lodging 

resistance in wheat. Acta Agri Breali-Occidentalis Sini 9: 58-61 (in Chinese 
with English abstract) 

Qi X, RE Niks, P Stam & P Lindhout, 1998. Identification of QTL for partial 
resistance to leaf rust (Puccinia hordei) in barley. Theor Appl Genet 96: 
1205-1215 

Röder MS, V Korzun, K Wendehake, J Plaschke, M Tixier, P Leroy & MW Ganal, 
1998. A microsatellite map of wheat. Genet 149: 2007-2023 

SAS Institute, 1988. SAS procedure guide for personal computers release 6.03. 
SAS Institute. Cary, North Carolina, USA 

Sato K, 1957. Studies on the starch contained in the tissue of rice plant: IV. 
Starch content in the culm related to lodging. Jpn J Crop Sci 26 (1): 19-19 

Shevchuk NS, 1981. Inheritance of quantitative characters of lodging resistance 
in winter durum wheat hybrids. In: 4-Ĭ S”ezd genetikov I selectsionerov 
Ukrainy, Odessa. Tez. Dokl., 3. kiev, Ukrainian SSR, pp. 66-68  

Tanksley SD, 1993. Mapping polygenes. Annu Rev Genet 27: 205-233 
Taylor NG, WR Scheible, S Cutler, CR Somerville & SR Turner, 1999. The 

irregular xylem 3 locus of Arabidiopsis encodes a cellulose synthase 
required for secondary cell wall synthesis. Plant Cell 11: 769-779 

Terashima K, S Akita & N Sakai, 1992. Eco-physiological characteristics related 
with lodging tolerance of rice in direct sowing cultivation. I. Comparison of 
the root lodging tolerance among cultivars by the measurement of pushing 
resistance. Jpn J Crop Sci 61: 380-387 

Wang Y & CH Li, 1996. Advances in the study of wheat lodging resistance. J 
Shangdong Agric Univ 27 (4): 503-508 (in Chinese with English abstract) 

Wang Y & QQ Li, 1995. Study on the evaluation method of lodging resistance in 
wheat. Acta Agronomica Boreall-Sini 10 (3): 84-88 (in Chinese with English 
abstract) 

Wang Y, QQ Li, CH Li & AH Li, 1998. Studies on the culm quality and anatomy 
of wheat varieties. Acta Agron Sini 24: 452-458 

Worland T & JW Snape, 2001. Genetic control of plant stature, In: AP Bonjean & 
WJ Angus (Eds.), The World Wheat Book: A History of Wheat Breeding, pp. 
67-71. Lavoisier Publishing, Paris, France 

Xiao SH, XY Zhang, CS Yan, WX Zhang, L Hai & HJ Guo, 2002. Determination 
of resistance to lodging by stem strength in wheat. Agric Sci China 35 (1): 7-
11 

Xing YZ, YF Tan, JP Hua, XL Sun, CG Xu & Q Zhang, 2002. Characterization of 
the main effects, epistatics effects and their environmental interactions of 
QTLs on the genetic basis of yield traits in rice. Theor Appl Genet 105: 248-
257 

Yamagishi M, Y Takeuchi, Y Kono & M Yano, 2002. QTL analysis for panicle 
characteristics in temperate japonica rice. Euphytics 128: 219-224  

Yang J, J Zhang, Z Wang & Q Zhu, 2001. Activated of starch hydrolytic 



L Hai et al. 2005. Euphytica 141: 1-9                                                                                                                           78

 

enzymes and sucrose-phosphate synthase in the stems of rice subjected to 
water stress during grain filling. J Exp Bot 52: 2169-2179. 

Zeng ZB, 1994. Precision mapping of quantitative trait loci. Genet 136:1457-
1468 

Zuber U, H Winzeler, MM Messmer, M Keller, B Keller, J E Schmid & P Stamp, 
1999. Morphological traits associated with lodging resistance of spring 
wheat (Triticum aestivum L.). J Agron Crop Sci 182: 17-24 



DISCUSSION                                                                                                      79

 

 
4 DISCUSSION 
 
4.1 Genetic variation in existing gene pools of spring wheat (T. aestivum) 
 
It is a basic requirement for the genetic improvement of crop plants such as 

bread wheat to characterize the range and structure of genetic variation among 

elite lines and cultivars in existing gene pools. Both, the magnitude of variation 

and heritability directly determine the result and success of combination 

breeding.  

The patterns of variation of microsatellite (SSR) markers presented here 

provide a comprehensive characterization concerning the level and distribution 

of genetic diversity among spring wheat accessions originating from different 

geographic regions of the world. This work is also expected to make a useful 

contribution to the discussion related to the efficient conservation and utilization 

of wheat germplasm resources.  

For example, in the present study evidence for unequal diversity and 

differentiation among wheat accessions was found. The results of analysis of 

molecular variance (AMOVA) indicate that genetic variation within geographical 

groups has a major effect, contributing more than 80% of the total genetic 

variation. This finding is in agreement with a previous report by Roussel et al. 

(2005) on a set of 480 wheat varieties originating from 15 European 

geographical regions where 92.3% of the total genetic variation could be 

explained by geographical origin. In particular, it was found in the present study 

that a higher genetic diversity along with a higher allelic richness appeared in 

accessions belonging to the European geographical groups Austria/Switzerland 

and Spain/Portugal. Similar results showing that these two regions exhibit a 

high genetic diversity and allelic richness have been presented in the studies of 

Röder et al. (2002), Huang et al. (2002) and Roussel et al. (2005). The higher 

genetic diversity observed in Southern European regions may be the results of 

both, i) adaptation of the initial germplasm to different environmental conditions, 

and ii) specific breeding practices (Roussel et al., 2005). 

Further on, in the present study, a high number of rare alleles has been 
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observed among wheats from these regions, especially Spain/Portugal, where 

27.5% of all alleles detected belong to rare alleles. This may be the result of the 

combined effects of the two major factors mentioned above, where rare alleles 

may be associated with favourable traits adapted to local agro-ecological 

conditions. Obviously, such accessions should receive a high priority in 

germplasm conservation. 

On the whole, the different levels of diversity observed in European 

geographical groups suggest that more attention needs to be paid to the 

maintenance of the existing germplasms and to increase the exchange of 

genetic resources to exploit the whole range of allelic variation. 

 
4.2 Exploration of desirable alleles in genetic resources  
 
Since the SSR markers used in this study are presumably neutral (or non-

functional) and their polymorphism may not contribute directly to the variation in 

traits of interest, exploring genetic variation for specific agronomic or useful 

traits could not be expected. However, with the rapid development of molecular 

marker techniques, several approaches have been proposed or applied for 

understanding the allelic diversity in breeding populations. 

One of these approaches is based on the genetic mapping of quantitative trait 

loci (QTL). Many QTL for traits of agronomic relevance such as grain yield and 

related characteristics have been identified in wheat so far (Börner et al., 2002; 

McCartney et al., 2005; Huang et al., 2006). This may enable the determination 

of the allelic variation at loci of agronomic importance among distinct 

accessions using tightly linked markers for these loci. 

Moreover, a great number of ESTs (expressed sequence tags) have recently 

become available for bread wheat. Functional molecular markers such as EST-

SSRs and single nucleotide polymorphisms (SNPs) developed from ESTs 

provide very powerful tools to reveal the functional polymorphism(s) at specific 

gene loci (Rafalski, 2002). Since such markers represent part(s) of the 

expressed gene sequence they are completely linked to the functional allele(s) 

encoding the desired trait expression. Therefore, they have a clear advantage 

over non-functional markers such as SSRs, which are generated from 
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anonymous regions of the genome (Varshney et al., 2005). With the functional 

markers-approach, the allelic variation at specific genetic loci can be directly 

identified in genetic resources, for example of bread-making wheat. 

Recently, trait-allele association studies based on linkage disequilibrium (LD), 

defined as the non-random association of alleles, have been paid more 

attention in crop plants (Buckler et al., 2002). Only polymorphisms with 

extremely tight linkage to a locus are likely to be significantly associated with 

the trait in natural populations or germplasm collections (Remingtom et al., 

2001). Therefore, it is probably possible with this approach to correlate the 

genetic diversity with phenotypic variation and allow the identification of the 

actual genes (alleles) responsible for QTLs (Garris et al., 2003). 

Since the resolution of association studies depends on the genomic structure of 

LD, understanding the extent of LD is critical for the success of an association 

study (Reif et al., 2005). In the present work, using a set of 52 SSR markers, we 

have attempted to test LD between pairs of loci within the set of wheat 

accessions used. However, since small sets of SSR markers applied are not 

sufficient to conduct a genome scan, no evidence could be found for significant 

LD. Further studies using a larger number of SSR markers are necessary for 

this purpose. 

 
4.3 Quantification of lodging resistance as a major stability trait of wheat 
 
An objective estimation of lodging resistance is critical for breeding research. 

Several methods are available to evaluate the severity and effect lodging. The 

most frequently used approach is visual ranking (Verma et al., 2005; Huang et 

al., 2006; McCartney et al., 2005). However, due to the fact that the degree of 

lodging is subject to the environmental conditions, this scoring method of 

lodging can result in a biased estimation. Another common method is hand 

scoring of culm stiffness (Keller et al., 1999). This method is simple, however, 

the problem is its repeatability, since different breeders may give different 

scores for the same materials, especially in large populations. 

Other procedures are based on stem strength, i.e. the mechanical elasticity and 

rigidity of the stem which is considered to be closely related to lodging 
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resistance (Wang et al., 1996; Pu et al., 2001). Several methods have been 

proposed and applied for evaluating lodging resistance: For example, 

measuring the stem-breaking strength (Wang et al., 1995) or testing the pushing 

resistance of the stem (Xiao et al., 2001). As compared to the measurement of 

the stem-breaking strength, testing the pushing resistance of the stem seems to 

be a more suitable approach for estimating lodging resistance. This method can 

be performed by a special instrument and lodging scores can be automatically 

recorded. Furthermore, this approach enables to quickly, repeatedly and directly 

test a large number of wheat breeding materials without any damage (Xiao et 

al., 2002). 
Several instruments, which generally function on the basis of the principle of 

action and reaction, have been developed and are available to measure the 

stem strength. Such instruments have been used in several studies (Kashiwagi 

& Ishimaru, 2004; Zhu et al., 2004; Wang et al., 2006). For example, using a 

prostrate tester, Xiao et al. (2002) successfully measured the stem strength of 

661 varieties and of 1,183 single plants from an F2 population of bread wheat. A 

large variation of stem strength ranging from 0 to 68 g/stem was observed, 

indicating that this method was very effective for assessing the phenotypic 

variation of lodging resistance. Using the prostrate tester and the same method 

as in the study mentioned above, a significant difference of stem strength 

between two parental wheat varieties (CA9613 and H1488) was detected in the 

present work, and a variation of stem strength from 0.14 to 27.46 g/stem was 

found amongst 113 DH lines derived from a cross of these two parents. 

Regarding the method used, it should be mentioned that the test instrument 

was set perpendicularly at the middle of the 2nd internode (counted from the top) 

of the plant. Thus, the stem strength value measured reflects the combined 

stem strength of the internodes under the 2nd internode and the effect of plant 

height could thereby be eliminated to some extent (Xiao et al., 2002). 

 
4.4 QTL mapping of stem strength and perspectives of marker-assisted 
selection for lodging resistance 
 
QTL for lodging resistance of bread wheat determined by visual ranking have 
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been reported in several studies. These QTL mainly involved as many as 11 of 

the 21 wheat chromosomes, i.e. 1B, 1D, 2B, 2D, 4A, 4B, 4D, 5A, 6A, 6D and 7D 

(Börner et al., 2002; Verma et al., 2005; Marza et al., 2006; McCartney et al., 

2005; Huang et al., 2006). However, in the present work no significant QTL for 

stem strength as an indicator of lodging resistance were found on the 

chromosomes mentioned above. Instead, two QTL associated with stem 

strength were mapped on chromosomes 3A and 3B, respectively, and were 

putatively named QSs-3A and QSs-3B. The different results can be explained 

by the fact that visual ranking was used for scoring lodging resistance in the 

studies above, and stem strength was measured as an indirect criterion for 

lodging resistance in the present study. As mentioned above, lodging is not only 

determined by genetic but also by environmental factors. Therefore, further 

studies are necessary to identify the main genes involved in and responsible for 

resistance of wheat against lodging as a major trait determining standability and 

yield stability of the cereal crop. For example, using visual ranking of lodging 

resistance and to conduct QTL mapping for this trait in our DH population in 

order to compare the results of QTL mapping of the two different scoring 

methods would be helpful to further elucidate the relationship between stem 

strength and lodging resistance. 

As discussed above, lodging is easily affected by the respective environmental 

conditions. Thus, the identification of stable QTL across different environments 

is important for their further application in markers-assisted selection (MAS) 

programmes. However, since the QTL analysis was conducted based on the 

average data across two environments, the environmental effects could not be 

determined in the present work. Therefore, the expression of QTLs in different 

environments needs to be analysed in a further study. 

In addition, two loci with pleiotropic effects were detected in the present study. 

One of the pleiotropic loci was identified in the marker interval xgwm108–

xmwc291 on wheat chromosome 3B, simultaneously affecting stem strength 

and stem diameter. The positive allele of this QTL was derived from the parental 

line ‘H1488’ and has an additive effect regarding increased stem strength and 

stem diameter. Another locus in the marker interval xgwm311–xgwm301 on 

chromosome 2D has a pleiotropic effect on the pith diameter and the culm wall 



DISCUSSION                                                                                                      84

 

thickness; the positive allele of QCwt-2D (affecting culm wall thickness) was 

derived from parental line ‘H1488’, whereas the positive allele of QPd-2D (pith 

diameter) originates from the parental line ‘CA9613’. Based on these two loci it 

may be concluded that increasing the stem diameter and culm wall thickness 

and decreasing pith diameter may result in an increased stem strength.  

Further on, the stem strength can be improved by selecting for wider stems and 

a higher stem diameter/pith diameter ratio. This may be facilitated by combining 

the markers linked to QSs-3A, QSd-3B (QSd-3B) and QCwt-2D (QPd-2D). 

Moreover, it can be selected for the markers closely linked to the stem strength 

QTL to analyse the allelic variation in our collection of elite wheat germplasm by 

marker haplotyping. Further, by trait-allele association studies combing the 

bread wheat haplotypes with phenotypic values favourable alleles associated 

with stem strength can be determined. This will provide useful tools for the 

selection of lodging resistant elite lines and wheat cultivars for bread-making 

purposes by MAS programmes. 
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5 SUMMARY 
 
Effective crop improvement depends on the existence of genetic diversity. 

Therefore, it seems necessary to understand the levels and distribution of 

genetic diversity in existing crop gene pools, as a basis for developing 

strategies of resource management and exploitation. 

In the first part of this study, fifty-two SSR markers were used to characterize 

the genetic diversity among 69 varieties of spring bread wheat (Triticum 

aestivum L.). The number of alleles per locus ranged from 2 to 14 with an 

average of 7.81. The largest number of alleles per locus occurred in the B 

genome (8.65) in comparison to the A (8.43) and D genomes (5.93). In total, 

406 alleles were detected in the whole set of 69 accessions, of which 182 

(44.8%) occurred at a frequency of <5% and are considered as rare alleles 

varying from 0 (xgwm129, wmc307, wmc245, wmc233 and barc196) to 9 

(wmc326). The PIC values of the 52 SSR loci ranged from 0.24 to 0.90 with an 

average of 0.68. The highest PIC value for all accessions was identified for the 

B genome (0.71) compared to the A (0.68) and the D genomes (0.63).  

Analysis of molecular variance (AMOVA) showed that 80.6% of the total 

variation could be explained by the variance within the geographical groups. 

Genetic distance-based method (standard UPGMA clustering) and a model-

based method (structure analysis) were used for cluster analysis. Distance-

based UPGMA cluster analysis divided all 69 accessions into five main groups, 

while by the model-based structure analysis the 69 accessions were assigned 

to nine genetically distinct groups, except 22 accessions identified as 

admixtures having 37.5-78.3% shared ancestry with one of the major groups. In 

comparison to UPGMA clustering, structure analysis led to analogous results.  

The mean genetic diversity between European accessions is estimated at 0.65 

(He) compared to He = 0.68 for all accessions. Regarding each geographical 

group, a higher diversity was found within A/CH (He = 0.63) and E/P (He = 0.62), 

whereas a lower diversity was observed in the pools F/D/NL (He = 0.55) and 

N/S (He = 0.51), and especially within UK (He = 0.42) and CZ (He = 0.37). The 

number of alleles per locus was in the same order, starting with the highest 
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values within A/CH (2.92), E/P (2.88) and F/D/NL (2.56), followed by N/S (2.38), 

UK (2.01) and CZ (1.84).  

Based on the results of the present study, we suggest that more attention needs 

to be paid to maintain the already existing germplasm collections and increase 

the exchange of germplasm resources for the exploitation of the whole range of 

allelic variation. 

 

The exploitation of existing germplasm is particulalry relevant for further 

improvements of yield performance and yield stability. As one of the major 

limiting factors for yield stability and the production lodging regularly causes 

severe yield damages in cereals like wheat (T. aestivum). Exact scoring of 

lodging resistance is difficult under natural field conditions. The stem strength of 

wheat has been used as an index of lodging resistance. Efforts to improve stem 

strength should be an important focus in breeding wheat for lodging resistance. 

In this study, a doubled haploid (DH) population derived from anther culture of 

the cross CA9613 x H1488 was used. A molecular map of the DH population 

was constructed based on microsatellite (SSR) markers. Stem strength and 

related basal internode traits were measured at the milky stage of grain 

development. Quantitative trait loci (QTL) for stem strength and related traits 

were analyzed based on this molecular linkage map. Two putative QTLs (QSs-

3A and QSs-3B) for stem strength were detected on chromosomes 3A and 3B, 

which individually explain 10.6 and 16.1% of phenotypic variance, respectively, 

and the positive alleles of both derived from parent ‘H1488’. Two QTLs (QPd-1A 

and QPd-2D) associated with pith diameter were mapped to chromosomes 1A 

and 2D; and these QTL explained 10.7 and 18.7% of phenotypic variation, 

respectively; the positive alleles of both also descended from the parent ‘H1488’. 

One QTL (QSs-3B) affecting stem diameter was detected on chromosome 3B, 

and it explained 8.7% of the phenotypic variance. For culm wall thickness, one 

QTL (QCwt-2D) was detected on chromosome 2D, explaining 9.6% of 

phenotypic variance of stem thickness. The positive allele of QSd-3B derived 

from ‘H1488’, whereas the positive allele of QCwt-2D descended from ‘CA9613’. 

Combining the results of the QTL mapping for strength and related traits, it is 

assumed that increasing the stem diameter and culm wall thickness and 
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decreasing pith diameter can result in an enhanced stem strength. Further on, 

the stem strength can be improved by selecting for wider stems and a higher 

stem diameter/pith diameter ratio of the culm. This can be facilitated by a 

combined selection for the markers linked to QSs-3A, QSd-3B (QSd-3B) and 

QCwt-2D (QPd-2D) in marker-assisted breeding in this as well as other wheat 

populations. 
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6 ZUSAMMENFASSUNG 
 

Eine erfolgversprechende Verbesserung von Kulturpflanzen setzt das 

Vorhandensein und die Nutzbarkeit genetischer Diversität voraus. Eine 

Kenntnis über den Grad und die Verteilung genetischer Diversität stellt daher 

eine wichtige Grundlage für die Entwicklung geeigneter Strategien zur 

optimalen Nutzung der verfügbaren genetischen Ressourcen dar. 

Zur Charakterisierung der genetischen Diversität in 69 Sorten von 

Sommerweizen (Triticum aestivum L.) wurden 52 SSR-Marker eingesetzt, 

wobei alle 21 Chromosomen des Weizengenoms mit ein bis vier Markern 

abgedeckt waren. Für die Studie wurden lediglich polymorphe SSRs 

herangezogen, mit durchschnittlich 7,8 Allelen pro Locus und einer Variation 

von zwei (wmc233 und wmc245) bis 14 (wmc601, wmc754 und wmc326) 

Allelen pro Locus. Bei einem Vergleich der drei Weizengenome zeigte sich im 

D-Genom eine deutlich geringere Anzahl von Allelen pro Locus (5,93) als im A-

Genom (8,43) und im B-Genom (8,65). Insgesamt wurden 406 Allele 

einbezogen, von denen 182 (44,8%) mit einer Häufigkeit von <5% auftraten. 

Diese seltenen Allele waren mit keinem (xgwm129, wmc307, wmc245, wmc233 

and barc196) bzw. bis zu neun (wmc326) Allelen pro Locus vorhanden. Die 

PIC-Werte der 52 SSR-Loci liegen bei durchschnittlich 0,68 (0,24 - 0,90). Die 

jeweiligen PIC-Werte der Genome variieren von 0,68 im A-Genom und 0,63 im 

D-Genom bis zum höchsten PIC-Wert von 0,71 im B-Genom.  

Fokussiert auf das europäische Subset von 56 Varietäten, wurden 320 

polymorphe Allele detektiert, worunter sich 100 seltene Allele befinden. 

Insgesamt zeigte sich im europäischen Subset eine geringere Anzahl von 

Allelen pro Locus im Vergleich zur Gesamtpopulation aller Akzessionen. Im 

Hinblick auf die PIC-Werte ergaben sich vergleichbare Werte für das A-und D-

Genom, während das B-Genom wiederum den höchsten PIC-Wert auf wies.  

Zwischen den PIC-Werten und der Anzahl der Allele wurde für alle 69 

Genotypen sowie das europäische Subset allein eine signifikante Korrelation 

festgestellt (r = 0,82 bzw. 0,71; P <0,001). 

Um den Einfluß der Stichprobengröße auf die Genauigkeit der Schätzung der 
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genetischen Diversität näher zu bestimmen, wurde basierend auf einer 

Bootstrap-Analyse mit 1000 zufällig generierten Datensätzen der 

Variationskoeffizient (CV-Wert) der jeweiligen PIC-Werte geschätzt. Die durch 

diese Vorgehensweise aufgezeigte Beziehung ist gekennzeichnet durch eine 

asymptotisch verlaufende Kurve, die bei einer zunehmenden Anzahl 

einbezogener Allele/Genloci exponentiell sinkende CV-Werte von 3,2% im 

Gesamtsortiment bzw. 3,42% im europäischen Subset zeigt. 

Um die genetische Ähnlichkeit auf molekularer Ebene zwischen den 69 Sorten 

näher zu charakterisieren, wurde die paarweise genetische Ähnlichkeit nach 

DICE (GSDICE) ermittelt und im weiteren eine UPGMA-Clusteranalyse 

durchgeführt. Parallel dazu wurde anhand der SSR-Fingerprints eine Modell-

basierte Struktur-Analyse durchgeführt. Die genetische Ähnlichkeit zeigte eine 

große Variation von GSDICE = 0,08 bis 1,00 mit einer durchschnittlichen 

genetischen Ähnlichkeit von GSDICE = 0,31 aller Varietäten und GSDICE= 0,35 im 

europäischen Subset. Die UPGMA-Clusteranalyse ergab eine Differenzierung 

der 69 Akzessionen in fünf Hauptgruppen, wobei nahezu alle europäischen 

Sorten in zwei größeren Gruppen zusammengefasst sind.  

Die Modell-basierte Struktur-Analyse wurde unter der Annahme von K 

verschiedenen Populationen (2 - 10) simuliert. Für die Populationsgröße K = 9 

ergab sich bei einem konstanten α-Wert von 0,03 eine stabile Gruppierung und 

ein Maximum (-4412,0) der logarithmischen Wahrscheinlichkeit der 

zugrundeliegenden Daten, proportional zur a posteriori Wahrscheinlichkeit. 

Jede der 69 Akzessionen konnte einer der neun genetisch differenzierten 

Gruppen zugeordnet werden. Jedoch wiesen 22 Genotypen Gemeinsamkeiten 

(37,5 – 78,3%) mit Akzessionen anderer Hauptgruppen auf und konnten daher 

nicht genau einer distinkten Gruppe zugeordnet werden. Im Vergleich zur 

UPGMA-Cluster Analyse lieferte die Modell-basierte Struktur-Analyse eine 

analoge Gruppierung unter Berücksichtigung von Haupt- und Sub-Clustern der 

UPGMA-Clusteranalyse. 

Die in die Untersuchung einbezogenen 69 Sommerweichweizen-Genotypen 

können 10 geographischen Herkünften zugeordnet werden, wobei die 

europäischen Akzessionen (56 Sorten) sechs geographische Regionen 

repräsentieren: Österreich/Schweiz (A/CH), Tschechien (CZ), Portugal/Spanien 
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(E/P), Frankreich/Deutschland/Niederlande (F/D/NL), Norwegen/Schweden 

(N/S) und Großbritannien (UK). Eine AMOVA wurde auf beiden hierarchischen 

Ebenen (Gesamtset und europäisches Subset) zur Bestimmung des Anteils an 

der Gesamtvarianz, welcher durch die Variabilität zwischen bzw. innerhalb der 

10 geographischen Gruppen bzw. zwischen und innerhalb der europäischen 

Gruppen erklärt wird, durchgeführt. Auf beiden hierarchischen Ebenen war die 

Variabilität hoch signifikant, wobei der Anteil der Variabilität innerhalb der 

Gruppen mit 80,6% bzw. 84,4% an der Gesamtvarianz aller Genotypgruppen 

beziehungsweise der europäischen Sortengruppen bestimmend ist. 

Die genetische Variation innerhalb des europäischen Materials wurde im 

Hinblick auf die genetische Distanz und Divergenz näher charakterisiert. 

Basierend auf Nei’s stichprobenunabhängiger genetischer Distanz konnten 

nach UPGMA-Clusteranalyse zwei Cluster deutlich differenziert wurden: (1) CZ 

und E/P sowie (2) A/CH, F/D/NL, N/S und UK. 

Der FSt-Index zur Beschreibung der genetischen Differenzierung der 

europäischen geographischen Gruppen wurde basierend auf allen 52 SSR-Loci 

bestimmt. Die paarweisen Fst -Werte zeigen eine signifikante Differenzierung 

der Gruppe F/G/NL zu den Gruppen A/CH, E/P und UK sowie der Gruppe A/CH 

und E/P von der Gruppe UK. 

Die mittlere genetische Diversität zwischen den europäischen Gruppen ist mit 

He = 0,65 geringfügig niedriger als in der Gesamtpopulation (He = 0,68). Bei 

einer differenzierten Betrachtung der jeweiligen europäischen Gruppen wurde 

eine größere Diversität innerhalb A/CH/ (He = 0,63) und E/P (He = 0,62) 

festgestellt, etwas geringere Werte in den Gruppen F/G/NL (He  = 0,55) und N/S 

(He = 0,51) und die niedrigsten Werte innerhalb UK (He = 0,42) und CZ (He = 

0,37). Bei Betrachtung der Allelfrequenzen ist die gleiche Reihenfolge 

erkennbar, beginnend mit den höchsten Werten für A/CH (2,92), E/P (2,88) und 

F/D/NL (2,56) gefolgt von N/S (2,3), UK (2,01) und CZ (1,84). Analog wurde der 

größte Anteil seltener Allele mit 27,5%in der E/P-Gruppe festgestellt und der 

niedrigste Anteil in der CZ-Gruppe (3%). 

Basierend auf diesen Ergebnissen ist insbesondere der Erhaltung bereits 

bestehender genetischer Ressourcen und der Variabilität erhöhte 

Aufmerksamkeit zu widmen und der Austausch genetischen Materials zu 



ZUSAMMENFASSUNG 92

 

fördern, um eine optimale Nutzung der insgesamt vorhandenen genetischen 

Variation zu ermöglichen. 

Die Notwendigkeit einer intensiveren Nutzung genetischer Ressourcen besteht 

vor allem hinsichtlich der Ertragssicherheit bei Weizen ebenso wie anderen 

Nutzpflanzen. Ein wesentlicher Aspekt der Ertragssicherheit von Getreidearten 

ist die Standfestigkeit bzw. Lagerneigung, einem der wichtigsten 

ertragslimitierenden Faktoren im Getreidebau. Die exakte Erfassung der 

Lagerneigung ist unter Freilandbedingungen schwierig. Als ein Indikator für die 

Lagerneigung von Weizen wurde die Stängelfestigkeit untersucht. Dabei 

wurden folgende Parameter bzw. Eigenschaften der basalen Internodien im 

Milchreifestadium analysiert: Stängelfestigkeit, Stängeldurchmesser, 

Durchmesser des Marks, Halmwandstärke.  

In der vorliegenden Untersuchung zur Lagerneigung von Weizen wurde eine 

aus Antherenkultur hervorgegangene Population doppelhaploider (DH) Linien 

der Kreuzung CA9613 x H1488 eingesetzt. Die beiden Eltern unterscheiden 

sich hierbei hinsichtlich der Merkmale Stängelfestigkeit, Stängeldurchmesser 

und Markdurchmesser (‘H1488’ mit höheren Werten als ‘CA9613’) sowie 

Halmwandstärke (‘CA9613’ mit höherem Wert als ‘H1488’), wobei lediglich die 

Unterschiede hinsichtlich der Stängelfestigkeit und des Markdurchmessers 

zwischen den beiden Eltern signifikant (P < 0,05) sind. In der vorliegenden DH-

Population weisen alle vier Parameter eine Normalverteilung mit transgressiver 

Segregation auf. 

Hinsichtlich der Beziehung der genannten Parameter zueinander konnten bei 

der DH-Population keine ausgeprägte Korrelationen der Stängelfestigkeit mit 

dem Stängeldurchmesser (r = 0,143, P <0,05) und der Halmwandstärke (r = 

0,196, P <0,05) sowie dem Markdurchmesser (r = -0,064) festgestellt werden. 

Eine engere positive Korrelation liegt zwischen Stängeldurchmesser und 

Markdurchmesser (r = 0,529, P <0,001) bzw. Halmwandstärke (r = 0,259, P 

<0,01) vor. Deutlich negativ korreliert sind Markdurchmesser und 

Halmwandstärke (r = -0,682, P <0,001). 

Nach einem Screening von 771 SSR-Markern konnten 200 zwischen den 

beiden Elternlinien ‘CA9613’ und ‘H1488’ polymorphe Marker identifiziert 

werden, die im weiteren für die Erstellung einer genetischen Karte anhand der 
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DH-Population CA9613 x H1488 herangezogen wurden. Die genetische Karte 

umfasst 25 Kopplungsgruppen mit 189 SSR-Markern. Im Rahmen einer QTL-

Analyse der Merkmale Stängelfestigkeit, Stängeldurchmesser, 

Markdurchmesser und Halmwandstärke der basalen Internodien in der DH-

Population konnten zwei QTL (QSs-3A und QSs-3B) für die Stängelfestigkeit 

detektiert und den Chromosomen 3A und 3B zugeordnet werden. Diese QTL 

erklären 10,6 bzw. 16,1% der phänotypischen Varianz, wobei in beiden Fällen 

das positive Allel vom Elter ‘H1488’ stammt. Zwei QTL (QPd-1A and QPd-2D) 

sind assoziiert mit dem Markdurchmesser und konnten den Chromosomen 1A 

und 2D zugeordnet werden. Diese beiden QTL erklären 10,7 bzw. 18,7% der 

phänotypischen Varianz, wobei die positiven Allele wiederum vom Elter ‘H1488’ 

kommen. Ein QTL (QSs-3B) auf Chromosom 3B ist assoziiert mit dem 

Stängeldurchmesser und erklärt 8,7% der phänotypischen Varianz. Im Hinblick 

auf die Halmwandstärke konnte ein QTL (QCwt-2D) mit einer erklärten 

phänotypischen Varianz von 9,6% auf Chromosom 2D detektiert werden. Das 

positive Allel von QSd-3B stammt ebenso vom Elter ‘H1488’, wohingegen das 

positive Allel von QCwt-2D von ‘CA9613’ abstammt. Eine Analyse der 

Wechselwirkungen zwischen den QTL ergab pleiotrope Effekte zweier Loci. Ein 

Locus im Intervall xgwm108-xwmc291 auf Chromosom 3B beeinflusst 

gleichzeitig Stängeldurchmesser und Stängelfestigkeit. Ein weiterer Locus im 

Intervall xgwm311-xgwm301 auf Chromosom 2D ist sowohl assoziiert mit dem 

Markdurchmesser als auch der Stängeldicke, wobei die positiven Allele von 

beiden Eltern stammen.  

Ausgehend von den Ergebnissen der QTL-Analyse bezüglich Parametern der 

Lagerneigung, kann von einer Zunahme des Stängeldurchmessers und der 

Halmwanddicke bei gleichzeitiger Abnahme des Markdurchmessers eine 

erhöhte Stängelfestigkeit erwartet werden. Darüber hinaus kann die 

Stängelfestigkeit durch die Selektion auf einen breiteren Stängel und ein 

höheres Verhältnis Stängeldurchmesser/Markdurchmesser verbessert werden. 

Die Kombination dieser Parameter mit molekularen Markern, welche die QTL 

QSd-3A, QSd-3B (QSd-3B) und QCwt-2D (QPd-2D) flankieren, können auf dem 

Wege einer marker-gestützten Selektion die Entwicklung von Weizen-

Genotypen mit reduzierter Lagerneigung gegebenenfalls erheblich erleichtern.  
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Fig. 1: Single nucleotide polymorphisma identified in a 263-nt segment 

of the maize stearoyl-ACP-desaturase gene (A Ching, 

unpublished data). The horizontal rows correspond to each of 

the 32 individuals sequenced. The vertical columns identify nine 

polymorphic sites, including one insertion/deletion (I/D) 

polymorphism. For distinct haplotypes are shown. These four 

haplotypes can be unambiguously identified using only three 

SNPs (for example, those marked with*). The remaining SNPs 

provide redundant information. No two SNPs are sufficient to 

distinguish all four haplotypes (cited from Rafalski 2002) 
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Fig. 2: Stem lodging in barley (cited by Berry et al., 2004) 9 

Fig. 3: Root lodging in barley (cited by Berry et al., 2004). 9 

Fig. 4: Coefficient of variation of the PIC values among all accessions 

estimated by bootstrap analysis for subsamples with an 

increasing number of SSR loci. 
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Fig. 5: Dendrogram of 69 spring bread wheats based on Nei’s unbiased 

genetic distance (1978) using UPGMA method by POPGENE 

(Yeh et al, 1997). 
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Fig. 6: Graph showing the proportion of shared ancestry among the 69 

spring bread wheats based on 52 SSR markers using model-

based method by structure (Pritchard et al, 2000). The symbol 

“♦” represent admixtures. 
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Fig. 7: Relationship between six European geographical groups based 

on Nei’s unbiased genetic distance (1978). A/CH = 

Austria/Switzerland; CZ = Czech Republic; E/P = 

Spain/Portugal; F/G/NL = France/Germany/Netherlands; N/S = 

Norway/Sweden; UK = the United Kingdom. 
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Fig. 8: Nei’s average gene diversity (He) (Nei, 1978) for each European 

geographical group based on 52 microsatellite loci. A/CH = 

Austria/Switzerland; CZ = Czech Republic; E/P = 
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Spain/Portugal; F/G/NL = France/Germany/Netherlands; N/S = 

Norway /Sweden; UK = the United Kingdom.  
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Fig. 9: Expected alleles number per locus for each European 

geographical group based on 52 microsatellite loci estimated by 

rarefaction method (El Mousadik and Petit, 1996). A/CH = 

Austria/Switzerland; CZ = Czech Republic; E/P = 

Spain/Portugal; F/G/NL = France/Germany/Netherlands; N/S = 

Norway/Sweden; UK = the United Kingdom. 
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Fig. 10: Measurement of stem strength using the Prostrare tester. The 

prostrare tester was set perpendicularly at the middle of the 2th 

internode on the aerial parts of plants (a). The stem strength 

was measured when plant was bent to 45° (b). (Sketch cited 

from the study of Kashiwagi et al. (2004) with thanks, some 

changes have been made with respect to his original study.). 
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Fig. 11: Distribution of stem strength, stem diameter, pith diameter and 

culm wall thickness of basal internode in the DH population. 
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Fig. 12: The most likely location of QTLs for stem strength and related 

traits in a wheat DH population derived from a cross between 

‘CA9613’ and ‘H1488’. 
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	Table 3 Sixty-nine spring bread wheat accessions used in this study with their country of origin.
	No.
	Accessions
	Origin*
	No.
	Accessions
	Origin
	1
	Diablon
	Switzerland
	36
	Bastian
	Norway
	2
	Fiorina
	Switzerland 
	37
	Bjarne
	Norway
	3
	Gerina
	Switzerland 
	38
	Brakar
	Norway
	4
	Nadro
	Switzerland 
	39
	Melissos
	Germany
	5
	Pizol
	Switzerland 
	40
	Monsun
	Germany
	6
	B5769
	Switzerland 
	41
	Munk
	Germany
	7
	Tirone
	Switzerland 
	42
	Nandu
	Germany
	8
	Kommissar
	Austria
	43
	Naxos
	Germany
	9
	Alva
	Portugal
	44
	Perdix
	Germany
	10
	Amazonas
	Portugal
	45
	Quattro
	Germany
	11
	Coa
	Portugal
	46
	Star
	Germany
	12
	Eufrates
	Portugal
	47
	Thasos
	Germany
	13
	Mondego
	Portugal
	48
	Triso
	Germany
	14
	Roxo
	Portugal
	49
	Velos
	Germany
	15
	Sever
	Portugal
	50
	Remus
	Germany
	16
	Sorraia
	Portugal
	51
	Fasan
	Germany
	17
	Jordao
	Spain
	52
	Baldus
	Netherlands
	18
	Asby
	the United Kingdom
	53
	Cracker
	Netherlands
	19
	Cadenza
	the United Kingdom
	54
	Minaret
	Netherlands
	20
	Chablis
	the United Kingdom
	55
	Sarina
	Netherlands
	21
	Samoa
	the United Kingdom
	56
	Josselin
	France
	22
	Shiraz
	the United Kingdom
	57
	Transec
	the United States
	23
	Aranka
	Czech Republic
	58
	IDO232
	the United States
	24
	Leguan
	Czech Republic
	59
	AC Reed
	Canada
	25
	Linda
	Czech Republic
	60
	Colotana266/51
	Brazil
	26
	Sandra
	Czech Republic
	61
	Frontana
	Brazil
	27
	Saxana
	Czech Republic
	62
	Eureka FCS
	Argentina
	28
	Avle
	Sweden
	63
	Universal
	Argentina
	29
	Dragon
	Sweden
	64
	Yang89-110
	China
	30
	Hugin
	Sweden
	65
	Ning7840
	China
	31
	Lavett
	Sweden
	66
	Sumai3
	China
	32
	Polkka
	Sweden
	67
	Wangshuibai
	China
	33
	Tjalve
	Sweden
	68
	Nyubay
	Japan
	34
	Troll
	Sweden
	69
	Arurakomugi
	Japan
	35
	Vinjett
	Sweden 
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