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1 Introduction 
 

Barley (Hordeum vulgare L.) and wheat (Triticum aestivum L.) are two of the most 

important crop species. The worldwide acreage of wheat is first before rice maize and 

barley: In 2006 the global production was estimated at about 622 million (mio) tonnes 

of wheat and 138 mio tonnes of barley (USDA 2007). In Germany 3.12 mio hectares 

(ha) of wheat were harvested and the area under barley cultivation accrued to 2.03 

mio ha (BMELV 2007).  

Due to the predicted growth of the world’s human population and the corresponding 

increased global food demand, it is a continuing challenge to improve varieties of 

crop plants, i.e. for disease resistance, to guarantee a stable harvest and yield 

production parallel to the decreasing acreage under cultivation worldwide, i.e. for 

barley in the last decades (USDA 2007). In spite of a permanent improvement of 

resistance in barley and wheat they are still confronted with many viral, bacterial and 

fungal pathogens, which cause significant damages and reduction in yield and quality 

due to a co-evolutional adaptation of respective pathogens. In the last decades 

several soil-borne virus diseases transmitted by the fungus Polymyxa graminis 

became increasingly important in Europe as pathogens of cereals, particularly of 

barley and wheat (HUTH 2002). These viruses are Barley yellow mosaic virus 

(BaYMV), Barley mild mosaic virus, Soil-borne cereal mosaic virus (SBCMV) and 

Wheat spindle streak mosaic virus (WSSMV), which cause high yield losses up to 

80%. Therefore, because chemical treatments against Polymyxa graminis to prevent 

high yield losses are neither efficient nor economic, it is of prime interest to produce 

resistant varieties against these viral pathogens. The main objectives of the present 

study were on one hand to screen exotic genetic resources of barley for resistance 

and on the other hand to identify molecular markers for new resistance genes against 

Barley yellow mosaic virus (BaYMV) by screening seven different DH populations. 

With regard to wheat, the project aimed at the identification of sources of tolerance or 

resistance to Soil-borne cereal mosaic virus (SBCMV) by field tests carried out in 

France followed by genotyping of respective cultivars using EcoRI+3/MseI+3 AFLP 

primer combinations and microsatellite markers in order to achieve information on the 

genetic relatedness of resistant and susceptible cultivars and to identify SSR markers 

suitable for mapping respective genes or quantitative trait loci (QTL). 
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2 Literature survey 
 
2.1 Soil-borne viruses of cereals 
 
Several soil-borne viruses of cereals are known belonging to the plant virus family 

Potyviridae. This family consists of six genera designated as Potyvirus, Ipomovirus, 

Macluravirus, Rymovirus, Tritimovirus and Bymovirus (REVERS & CANDRESSE 

2004, ADAMS et al. 2005). Besides this, there are the Furoviruses, a genus which is 

not assigned to any specific family. Some of the most important viruses causing 

serious diseases of cereals like the Barley yellow mosaic virus, Barley mild mosaic 

virus, Wheat spindle streak mosaic virus, Oat mosaic virus, Wheat yellow mosaic 

virus and Rice necrotic mosaic virus belong to the bymovirus group, that are all 

transmitted by the fungus Polymyxa graminis (KANYUKA et al. 2003). Alike the 

furoviruses, i.e. Soil-borne cereal mosaic virus, Soil-borne wheat mosaic virus and 

Oat golden stripe virus, infect cereals via Polymyxa graminis (KANYUKA et al. 2003). 

Besides Polymyxa graminis, a related fungal vector Polymyxa betae transmits the 

furovirus beet necrotic yellow vein virus in sugar beets (RUSH 2003). All these 

Polymyxa-transmitted viruses have in common that high yield losses and important 

diseases are caused mainly in cereals (KANYUKA et al. 2003, ADAMS et al. 2004).  

 

2.1.1 The Barley yellow mosaic virus complex 
 
In Japan the Barley yellow mosaic virus disease is already known since the 1940’s 

and it is epidemic since the 1970’s (IKATA & KAWAI 1940, cited in INOUYE & SAITO 

1975). After the first report in Germany in 1978 (HUTH & LESEMANN 1978) the 

disease also occurred in several other European countries and in Eastern China 

(HILL & EVANS 1980, LAPIERRE 1980, MAROQUIN et al. 1982, YILI & DENGDI 

1983, LANGENBERG & VAN DER WAL 1986, FANTAKHUN et al. 1987, SIGNORET 

& HUTH 1993, KATIS et al. 1997, ACHON et al. 2005). The typical yellow patches 

appear in winter or early spring in the field as a result of the infection of roots in 

autumn by the different strains of the Barley yellow mosaic virus disease. The 

symptoms are mosaic pale green or yellow discolorations mostly on the youngest 

leaves. Sometimes infected plants show complete yellowing with necrotic patches 

and a stunted growth. Affected plants show fewer tillers, less reduction in grain yield 



  Literature survey 

 3

and grain size may be inhomogeneous. The severity of symptoms depends on the 

barley cultivar and the environmental conditions in autumn during the infection and in 

winter during the reproduction and spread of the virus within the plants. In general 

symptoms become less obvious with increasing temperatures and plant growth. 

Upper leaves are often free of symptoms. Typically, the symptoms appear in the 

newly emerging leaves when plants begin to grow again after a cold period in winter. 

This seems to be related to a temporary reversal of the major direction of phloem 

transport (SCHENK et al. 1995). Until now, the manner of virus movement has not 

been determined but virus RNA and the coat protein can be detected in root cells 

before symptoms appear in the leaves (PEERENBOOM et al. 1996). Barley yellow 

mosaic virus survives within resting spores that remain within root debris after crop 

harvest and can persist in soil for many years (HUTH 1991) even in the absence of a 

suitable host (USUGI 1988). The inoculum mostly becomes distributed as resting 

spores within soil or crop debris through soil cultivation and on machinery. Therefore, 

existing infected patches in the field enlarge and new ones may easily emerge. 

Resting spores may also spread by wind-blown soil particles and zoospores may 

travel short distances in soil water (HILL & WALPOLE 1989). Spring-sown barley 

normally does not develop symptoms of the disease in the field due to adverse 

environmental conditions for virus reproduction and spread and the viruses do not 

cause yield losses in spring barley. However, many spring barley cultivars turned out 

to be susceptible in laboratory resistance tests. 

In Europe, the Barley yellow mosaic virus disease is caused by a complex of at least 

four viruses or virus strains, i.e. Barley mild mosaic virus (BaMMV), BaMMV-SIL 

(named according to the village Sillery in France, where the strain was first detected), 

Barley yellow mosaic virus (BaYMV-1), and BaYMV-2 (HUTH 1989, HARIRI et al. 

2003), infecting barley individually or in combinations. BaYMV-2 was detected in 

Germany (HUTH 1989), in the United Kingdom (BEATON 1989), Belgium and France 

(HARIRI et al. 1990). A new strain similar to BaMMV-SIL and BaMMV has just 

recently been detected in Germany (HUTH et al. 2005, HABEKUSS et al. 2006). An 

even more complex situation is present in Japan where seven strains of BaYMV and 

two strains of BaMMV have been described (NOMURA et al. 1996). In Korea a strain 

biologically and serologically different from BaMMV strains known in Germany and 

Japan has been detected and several different strains have also been discovered in 

China (CHEN et al. 1996, LEE et al. 1996, LEE et al. 2006). Due to transmission by 
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the widespread soil-borne fungus P. graminis growing of resistant barley cultivars 

has to be considered as the only effective means to avoid high yield losses caused 

by BaMMV, BaMMV-SIL, BaYMV and BaYMV-2.  

The viruses of this complex have a quite narrow natural host range limited to the 

Poaceae. The natural host is barley (Hordeum ssp.) but successful transmission by 

mechanical inoculation to Aegilops (PROESELER 1988), Eremopyrum, Lagurus 

(ADAMS 2004), Triticosecale (KEGLER et al. 1985), Secale (ORDON et al. 1992) 

and Triticum durum L. (PROESELER 1993) has been carried out.  

The whole genus Bymovirus, family Potyviridae, is a well-defined group of viruses 

that resemble the aphid-transmitted potyviruses and other members of the family in 

having flexuous filamentous particles (12-13 diameters) with modal lengths of 270 

and 568 nm causing pin wheel inclusions in infected cells (KANYUKA et al. 2003). 

The members have bipartite single stranded (ss) RNA genomes with a genome 

linked protein (VPg) at the 5’terminus. Each segment carries a single open reading 

frame (ORF) which encodes a polyprotein that is cleaved into functional proteins by 

virus-encoded proteases. The coding sequence of the coat protein is located in the 

C-terminus of the larger RNA1 polyprotein (KANYUKA et al. 2004a). Both RNA 

species are needed for infection (KASHIWASAKI 1996). BaMMV causes similar 

symptoms like BaYMV but the two viruses are serologically unrelated and their 

polyproteins share only about 36% identical amino acids (SCHLICHTER et al. 1993). 

Regarding these differences, serological methods or sequence tests are used to 

discern both viruses. BaYMV-2, a strain which is able to infect cultivars carrying the 

resistance gene rym4 (see below chapter 2.2.1), is very closely related to BaYMV. 

The strains do not differ in the coding sequence of the coat protein and no diagnostic 

serological methods have been reported to distinguish them (HUTH & ADAMS 1990). 

The French BaMMV-SIL isolate is the only European BaMMV isolate able to infect 

barley cultivars with the rym5 gene (see chapter 2.2.1, HARIRI et al. 2003). It is very 

similar to the BaMMV strain with only five amino acid exchanges consistently 

different between BaMMV and BaMMV-SIL. Two of these exchanges are in the viral 

genome linked protein (VPg) cistron and in the nuclear inclusion protein b (NIb) 

cistron region, respectively and seem to be functionally important (KANYUKA et al. 

2004a).  
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2.1.2 Soil-borne cereal mosaic virus disease 
 
Soil-borne wheat mosaic virus (SBWMV) is a member of the genus Furovirus which 

is also transmitted by the fungus Polymyxa graminis. Due to its high persistence the 

virus causes yield losses in winter wheat in many areas of the world, especially in the 

central and eastern part of the United States of America. SBWMV was first detected 

in 1919 in the USA (MCKINNNEY 1925) and furoviruses causing similar diseases in 

wheat and rye were later also found in Japan, China (DIAO et al. 1999), Italy 

(RUBIES-AUTONELL & VALLEGA 1990), France (LAPIERRE et al. 1985), UK 

(CLOVER et al. 1999a, CLOVER et al. 2001, BUDGE & HENRY 2002), several 

African countries (KAPOORIA et al. 2000), Belgium (VAIANOPOULOS et al. 2005) 

and in Germany (KOENIG et al. 1999). These isolates were thought to belong to the 

same SBWMV species, but it turned out that the global population of furoviruses on 

wheat consists of genetically divergent strains with a relatively high degree of 

polymorphisms at the nucleotide and amino acid level. The American, Chinese, 

European and Japanese isolates are now separately reclassified (KOENIG & HUTH 

2000, SHIRAKO et al. 2000). The European virus isolate shares only 70% genome 

identity with SBWMV from the USA and Japan (DIAO et al. 1999) and due to the 

mainly infection of rye the name soil-borne rye mosaic virus was proposed in 

Germany (KOENIG et al. 1999). The natural hosts of this virus are bread wheat, 

durum wheat, rye, and triticale. In Germany, Poland and Denmark, the virus mainly 

infects rye, whereas in the United Kingdom, Italy and France wheat is the 

predominant host (HUTH 2002). Therefore, it was renamed as Soil-borne cereal 

mosaic virus (SBCMV, KOENIG & HUTH 2000, YANG et al. 2001) in Germany and 

Europe, respectively, which has recently been approved by the International 

Committee on Taxonomy of Viruses. In 2002, severe damage in wheat due to a 

furovirus infection was observed in a field near Heddesheim, Baden-Wuerttemberg, 

Germany. As a result of sequencing the disease causing virus it turned out to be 

closely related to the American strain of SBWMV. This was the first report of a type 

strain of Soil-borne wheat mosaic virus in Europe (KOENIG & HUTH 2003). 

Symptoms caused by SBCMV on susceptible cultivars in the field are a pale green-

yellow mosaic or streaks on the leaves and moderate to severe stunting. Young 

leaves appear mottled and develop pale discolorations that cover both the leaf 

lamina and the sheath (CLOVER et al. 2001, KASTIRR et al. 2004). The appearance 

and severity of soil-borne mosaic virus symptoms on wheat may vary considerably 
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depending on the plant genotype, the concentration and aggressiveness of the virus 

strain as well as the environmental conditions (BUDGE & HENRY 2002). Generally, 

late planting in autumn is recommended to reduce the number of infected plants and 

to minimise yield losses (HUTH 2002). All tolerant varieties are known to contain high 

virus levels in the root system and no or low to moderate levels in the leaf tissue 

(DRISKEL et al. 2002). Infected plants often occur in the field in circular patches of 

varying size. In field samples SBCMV frequently occurs in mixed infections with the 

bymovirus Wheat spindle streak mosaic virus (WSSMV) due to transmission of both 

viruses via Polymyxa graminis (see chapter 2.1.3, HUTH 2002). The primary 

zoospores of the vector penetrate root hairs or epidermal cells in autumn when there 

is sufficient moisture and soil temperature and the SBCMV is subsequently 

introduced into the host cytoplasm (KANYUKA et al. 2003). SBCMV consists of virus 

particles with a bipartite genome. All particles are rod-shaped with modal length of 

120 to 130 and 200 to 230 nm. The genome consists of two positive-sense ssRNAs, 

with three open reading frames (ORFs, KOENIG et al. 1999) each. RNA1 and RNA2 

have a cap structure at the 5’terminus and a tRNA-like structure at the 3’terminus. 

Three different strains (-G, -O, -C) of SBCMV which only differ in their 

aggressiveness (HUTH 2002) have been distinguished and showed after sequencing 

more than 90% sequence identity (KOENIG et al. 1999). SBCMV can be 

mechanically transmitted to several Poaceae like Bromus secalinus L., Chenopodium 

quinoa Willd., Hordeum vulgare L., Secale cereale, Triticum aestivum, T. durum, T. 

turgidum and Triticale (KASTIRR et al. 2004). Since virus-containing resting spores 

of Polymyxa graminis persists in soil and crop debris for several decades, cultural 

practises for virus control such as crop rotations or delayed planting are not effective, 

whilst chemical control measures are unacceptable for ecological reasons. 

 

2.1.3 Wheat spindle streak mosaic virus disease 
 
The appearance of Wheat spindle streak mosaic virus was reported for Africa, 

Canada, the USA and several European countries (RUBIES-AUTONELL & 

VALLEGA 1990, HAUFLER 1996, KAPOORIA & NDUNGURU 1998, CLOVER et al. 

1999b, HUTH 2002, VAIANOPOULOS et al. 2006). The virus belongs to the 

Bymoviruses such as Barley yellow mosaic virus, Barley mild mosaic virus, Oat 

mosaic virus or Wheat yellow mosaic virus and is therefore also transmitted by the 

soil-borne fungus Polymyxa graminis. The symptoms are similar to SBCMV. Infected 
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plants show yellow-to-light green streaks which occur in parallel to the leaf veins. 

Besides the streaky symptoms fewer tillers are generated and the plants are dwarfed 

resulting in yield reductions (HUTH 2002). Infection of the roots and symptom 

expression are generally at temperatures between 5-17°C. Mixed infection with 

SBCMV and WSSMV in fields is widespread (see chapter 2.1.2.1). Reportedly, 

Wheat spindle streak mosaic virus reduces the level of field resistance to Soil-borne 

cereal mosaic virus (CLOVER et al. 1999a). The natural host is winter wheat, durum 

wheat, rye and triticale whereas some gramineous plants like Hordeum vulgare and 

Avena sativa can not be infected by WSSMV. Like BaMMV/BaYMV, WSSMV has a 

bipartite, positive ssRNA genome with two RNAs both encoding single polyproteins. 

The function of the polyprotein of RNA1 is unknown whereas RNA2 encodes one 

polyprotein, which is divided into two single proteins, i.e. P1 and P2. P2 is known to 

be involved in fungal transmission (SOHN et al. 2004). Until now, no different 

WSSMV strains have been detected. 

 

2.2 Genetics of resistance 
 
2.2.1 Barley Yellow Mosaic Virus Complex 
 
On the basis of intensive screening programmes, mainly with barley germplasms 

derived from East Asia, resistance sources against the barley yellow mosaic virus 

disease have been identified (ORDON et al. 1993) and different reactions to the 

different strains of the BaYMV-complex have been observed (GÖTZ & FRIEDT 1993, 

ORDON & FRIEDT 1993). Up to now 16 resistance genes are known of which 14 

derived from the primary barley gene pool are recessive, while Rym14Hb and 

Rym16Hb derived from Hordeum bulbosum are dominant (RUGE et al. 2003, RUGE-

WEHLING et al. 2006). The resistance genes are distributed over the whole barley 

genome (GRANER et al. 2000, Ordon et al. 2005). An overview on all mapped 

resistance genes against barley yellow mosaic virus disease is given in table 1. In 

Europe barley yellow mosaic virus disease resistance is mainly based on two 

resistance genes, rym4 and rym5, which are located on the long arm of chromosome 

3H. Rym4 and rym5 represent two alleles of the same gene, the eukaryotic 

translation initiation factor 4E (Hv-eIF4E, STEIN et al. 2005, KANYUKA et al. 2005). 

The recessive resistance-encoding allele rym4, derived from the Dalmatian landrace 

‘Ragusa’ (HUTH 1985), confers resistance against BaMMV and BaYMV-1 but it is not 
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effective against BaYMV-2. In contrast rym5, which is derived from the Chinese six-

rowed land race ‘Mokusekko 3’ (KONISHI et al. 1997, GRANER et. al. 1999a), 

confers resistance against BaMMV, BaYMV-1 and BaYMV-2. However, rym5 has 

been recently overcome by the new German BaMMV strain and BaMMV-SIL 

(HARIRI et al. 2003, HABEKUSS et al. 2006). On chromosome 4H KONISHI et al. 

(1997) identified another recessive resistance gene, rym1, which also derived from 

‘Mokusekko 3’ and confers resistance against all BaMMV and BaYMV strains. The 

resistance of ‘Mokusekko 3’ to all strains of the barley yellow mosaic virus complex in 

Japan and Europe, including BaMMV-SIL and the new German BaMMV strain, is the 

result of the combination of at least two genes, i.e. rym1 and rym5 (OKADA et al. 

2003, OKADA et al. 2004, HABEKUSS et al. 2006). Another gene that confers 

resistance against the European and Japanese BaYMV but not against BaMMV is 

rym3, which was detected in ‘Haganemugi’ and ‘Ea 52’, which is a mutant of the 

Japanese cultivar ‘Chikurin Ibaraki 1’ (UKAI 1984, KAWADA 1991, ORDON et 

al.1993). Rym3 was mapped by RFLP analysis on the short arm of chromosome 5H 

(SAEKI et al. 1999). By using a Japanese strain of BaYMV, the resistance gene 

rym2, derived from the variety ‘Mihori Hadaka 3’, was mapped on chromosome 7HL 

and rym6 of ‘Amagi Nijo’ on chromosome 3HL (TAKAHASHI et al. 1973, IIDA et al. 

1999). Whereas rym2 confers resistance against BaMMV, BaYMV-1 and BaYMV-2, 

rym6 donors are completely susceptible against European strains of the barley 

yellow mosaic virus complex (KONISHI et al. 2002). The resistance gene rym7, 

which confers partial resistance to BaMMV, has been mapped to the centromeric 

region of chromosome 1HS (GRANER et al. 1999b). At the telomeric region of 

chromosome 4HL four resistance genes, rym8, rym9, rym12 and rym13 are mapped, 

whereas rym8, rym9 and rym13 forming a gene cluster. Thereof, resistance gene 

rym8 derived from the cultivar ‘10247’ shows partial resistance against BaMMV and 

BaYMV (BAUER et al. 1997, GRANER et al. 1999b). Rym9 confers resistance 

exclusively against BaMMV, whereas rym12, derived from the Korean cultivar ‘Muju 

covered 2’, shows a complete resistance against all strains of the Barley yellow 

mosaic virus complex in Europe (ORDON et al. 1993, GRANER et al. 1996, BAUER 

et al. 1997, SCHIEMANN et al. 1998). Furthermore, rym13, derived from the 

Taiwanese cultivar ‘Taihoku A’, shows a complete resistance to the Barley yellow 

mosaic virus complex (WERNER et al. 2003b, HABEKUSS et al. 2006). Further on,  
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rym10, found in ‘Hiberna’, was assigned to chromosome 3HL (GRANER et al. 1995, 

GRANER et al. 1999a) and confers resistance against BaYMV-1 and BaYMV-2. 

Resistance gene rym11 from the resistance donor ‘Russia 57’ has been mapped to 

the telomeric region of chromosome 4HL and confers resistance to all strains of the 

BaYMV complex (BAUER et al. 1997, NISSAN-AZZOUZ et al. 2005). The 

BaYMV/BaYMV-2 resistance of ´Chikurin Ibaraki 1´ has been located on 

chromosome 5HS (WERNER et al. 2003a) and the BaMMV resistance gene of this 

variety, called rym15, on chromosome 6H (LE GOUIS et al. 2004). In addition to 

these genes, two dominant resistance genes from Hordeum bulbosum, member of 

the secondary barley gene pool, are mapped on chromosome 6HS (Rym14HB) and 

Rym16HB on chromosome 2HL (RUGE et al. 2004, RUGE-WEHLING et al. 2006). 

Regarding the new German BaMMV strain and BaMMV-Sil it turned out that rym4, 

rym7, rym9, rym11, rym12, rym13, rym15, Rym14HB and Rym16HB, are effective 

against these strains (HABEKUSS et al. 2006). 

 

2.2.2 Soil-borne cereal mosaic virus 
 
Regarding the genetic base of resistance of bread wheat and durum wheat against 

Soil-borne cereal mosaic virus (SBCMV) several resistance tests were carried out 

and SBCMV resistant cultivars were identified (BUDGE & HENRY 2002, KANYUKA 

et al. 2003). These resistant varieties are reported to carry a translocation resistance, 

because all varieties show high virus levels in the roots (DRISKEL et al. 2002) but 

normally virus transmission to stems and leaves is restricted but may appear under 

certain environmental conditions (DRISKEL et al. 2002, HUTH & GOETZ 2007). The 

inheritance of Soil-borne wheat mosaic virus (SBWMV) resistance, which is closely 

related to SBCMV, was investigated in several studies. The determinism of genetic 

resistance against this virus was described to be controlled by one dominant gene 

(MODAWI et al. 1982), two (BARBOSA et al. 2001) or even three genes 

(NAKAGAWA et al. 1959). In the United Kingdom SBCMV resistant cultivars were 

developed including genetic material of the resistant cultivars ‘Cadenza’, ‘Charger’ 

and ‘Claire’. Due to a recently established glasshouse-based resistance test, the 

monogenic inheritance of ‘Cadenza’ was identified (KANYUKA et al. 2004b). A study 

based on a doubled haploid (DH)-population of the cross ‘Avalon’ x ‘Cadenza’ 

reveals a 1:1 segregation ratio, giving hint to a monogenic mode of inheritance of the 

‘Cadenza’ derived resistance. This resistance locus, referred to as Sbm1, was 
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mapped to the distal end of chromosome 5DL and closely linked microsatellite 

markers to the Sbm1 locus were identified (BASS et al. 2006). Until now, it is still 

unknown whether the resistance of ‘Cadenza’ is related to a dominant, semi-

dominant or a recessive inheritance due to the totally homozygous character of the 

used DH population (BASS et al. 2006). Regarding the pedigrees of ‘Charger’ and 

‘Claire’ a genetic relation of these varieties to ‘Cadenza’ can be excluded. In this 

case, the Argentinean wheat cultivar ‘Klein Rendidor’, which shows also resistance 

against SBWMV, was identified as the resistance donor (MODAWI et al. 1982, BASS 

et al. 2006). Within the European wheat germplasm, two resistance sources against 

SBCMV are known, but further studies are necessary to confirm these presumptions 

(BASS et al. 2006). 

With respect to WSSMV (see chapter 2.1.3) resistance sources have been found in 

some wheat species (COX et al. 1994, CADLE-DAVIDSON et al. 2006). In WSSMV 

resistance screenings a qualitative resistance was observed and therefore a high 

heritability controlled by a few dominant genes was assumed (KOEVERING et al. 

1987). Due to difficulties in screening and mechanical inoculation of WSSMV, the 

identification of molecular markers is of high interest for the development of resistant 

cultivars. Hence, KHAN et al. (2000) identified one major gene resistance gene 

against WSSMV in a RIL population from a cross between the resistant variety 

‘Geneva’ and the susceptible cultivar ‘Augusta’. This resistance locus was mapped 

by RFLP markers on chromosome 2DL but due to the population type, the mode of 

inheritance could not be identified. Furthermore, a Triticum aestivum-Haynaldia 

villosa translocation line T4VS·4DL was developed, which shows resistance against 

WSSMV. The resistance locus was designated as Wss1 and is located on 4VS 

(ZHANG et al. 2005). In several studies it has been demonstrated that the virus is 

detectable by DAS-ELISA in resistant varieties after mechanical inoculation in the 

greenhouse and even under natural conditions in the field (CARROLL et al. 2002, 

KANYUKA et al. 2003). Therefore, the WSSMV resistance has to be assigned as a 

tolerance, because distribution of the virus in the root system and virus transport from 

the roots into the leaves is limited (KANYUKA et al. 2003). These findings are in 

contrast to HUTH et al. (2002), who reported on immune wheat plants against 

WSSMV. 
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2.3 Molecular markers 
 
Molecular markers or more generally speaking genetic markers detect genetic 

differences, i.e. polymorphisms, at the DNA level between individuals and species, 

respectively, whereas the variations are not visible in the phenotype except for 

morphological markers (JONES et al. 1997). Regarding a target gene or trait of 

interest, molecular markers act as flags because of their close localization to the 

gene of interest. Molecular markers, which are tightly linked to an agronomical 

important gene, can be used by breeders for marker-assisted selection (MAS), a tool 

for an early selection of difficult traits in plants (VARSHNEY et al. 2006). Random 

markers of unknown localisation and function can be used in pedigree studies and 

germplasm investigations to discover genetic relations based on the comparison of 

fingerprints. There are three different marker classes, mainly the morphological, the 

biochemical and the DNA-based markers (COLLARD et al. 2005). Morphological 

markers are visual traits, biochemical markers come up to differences in detected 

enzymes and are influenced by environmental factors. Therefore, DNA, respectively 

Polymerase chain reaction (PCR)-based molecular markers have been preferred in 

the last decades, because of their numerous occurrences in the genome and their 

neutral behaviour to environmental conditions (JOSHI et al. 1999). 

 

2.3.1 DNA-based markers 
 

2.3.1.1 Restriction Fragment Length Polymorphisms (RFLPs)  
 
RFLPs have primarily been used in human genome mapping (BOTSTEIN et al. 

1980), the first organism for which polymorphisms were detected in coding 

sequences. The procedure of this molecular marker method is divided into two steps. 

The first step is based on the restriction endonuclease digestion of DNA, where the 

restriction enzyme recognizes and cleaves specific nucleotide sequences and 

therefore variations in the restriction site arise as a result of restriction fragments of 

different sizes (JONES et al. 1997). The whole range of different DNA fragments are 

separated by gel electrophoresis and transferred to a membrane by Southern blotting 

(SOUTHERN 1975). In a second step hybridisation to a labelled probe visualises 

DNA fragments of different size (polymorphisms). RFLPs were mainly used in the 

1990s for creating linkage maps (GRANER et al. 1995, SAGHAI-MAROOF et al. 
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1996) or the assessment of genetic diversity in different crop plants like oilseed rape 

(for review cf. SNOWDON & FRIEDT 2004) or barley (RUSSELL et al. 1997). The 

major advantage of this method is its reliability and transferability to other populations 

although RFLPs are very time-consuming. 

 

2.3.1.2 Random Amplified Polymorphic DNAs (RAPDs) 
 

In 1983 the Polymerase chain reaction (PCR) was developed (MULLIS & FALOONA 

1987), which facilitated the efficient development of molecular markers. The PCR is 

based on the amplification of a specific single nucleic acid sequence. To achieve this, 

three steps are needed. First of all double-stranded DNA is denaturated followed by 

an annealing step, where the primers attach to the single-stranded DNA template. 

The third step is the elongation of the DNA template. During the last step the Taq 

DNA polymerase isolated from a bacterium called Thermus aquaticus (CHIEN et al. 

1976), synthesises a complementary DNA strand defined by the primers, and thus 

copies the DNA sequence between the primer annealing sites. RAPDs are based on 

using only a single primer of about 8-10 nucleotides for DNA amplification 

(WILLIAMS et al. 1990). This decamer-primer acts as forward and reverse primer. 

RAPDs are able to generate a large number of fragments of different size. 

Polymorphisms are detected by gel electrophoresis and thus RARD markers are 

identified due to the sequence differences in the primer binding sites. Therefore, 

RAPDs are dominant markers. Furthermore, the method is relatively cheap and easy 

to handle. The main disadvantages of these PCR-based markers are their lack of 

reproducibility and their non-transferability to other plants (SCHLÖTTERER 2004). 

Further on, RAPDs are used as specific markers in diversity studies (RUSSELL et al. 

1997, SIMIONIUC et al. 2002) as well as in genetic mapping for identification and 

localisation of e.g. resistance genes (ORDON et al. 1995, SCHIEMANN et al. 1997, 

PELLIO et al. 2004). 

 

2.3.1.3 Amplified Fragment Length Polymorphisms (AFLPs) 
 
AFLPs are based on the selective PCR amplification of restricted fragments 

(ZABEAU & VOS 1993). This technique is divided into three different steps. In the 

first one, genomic DNA is digested by two different restriction enzymes, a frequently 

cutting enzyme (e.g. MseI, 4bp recognition sequence) and another one cutting less 
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frequently (e.g. EcoRI, 6bp recognition sequence). The resulting fragments are 

ligated to restriction enzyme site specific adapters. The selective amplification of sets 

of restriction fragments follows in a second step. In the PCR reaction primers are 

used, which are complementary to the adapter sequences except for the presence of 

one to three additional bases at the 3’ end arbitrarily chosen by the user. These 

selective amplifications lead to a reduction in the number of amplified fragments to 

1/16 and 1/256, respectively. The third step complies with a gel analysis where the 

PCR products are visualised on a polyacrylamide (PAA) gel (VOS et al. 1995). The 

polymorphisms, which are observed, are the results of insertions, deletions and point 

mutations at the restriction sites, respectively. With AFLPs it is possible to detect 

more than 100 DNA fragments in just one PCR. The disadvantage of the AFLPs is 

their dominant inheritance and therefore the difficulty to identify homologous alleles. 

In this case their reduced informativeness leads to problems in mapping e.g. F2 

generations with heterozygous individuals (MUELLER & WOLFENBARGER 1999, 

SAAL et al. 2002). Nevertheless, the AFLP method has a lot of advantages like its 

high reproducibility, the quality of information, the ease of handling and the high 

grade of polymorphisms detected. Therefore, AFLP markers are often used for DNA 

fingerprinting, fine mapping of genes, genetic diversity analyses and for the 

construction of genetic linkage maps (SCHIEMANN et al. 1999, UPTMOOR et al. 

2003, ABU-ASSAR et al. 2005, NISSAN-AZZOUZ et al. 2005, STODART et al. 2005, 

BRATTELER et al. 2006).  

 

2.3.1.4 Simple Sequence Repeats (SSRs) 
 
SSRs or microsatellites are tandemly arranged repeats of several nucleotides, which 

are present in the vast majority of eukaryotic genomes (DÁVILLA et al. 1999, 

RAKOCZY-TROJANOWSKA et al. 2004). The frequencies of SSRs vary significantly 

among different organisms. The most common SSRs in plants are dinucleotide 

repeats including (AT)n, (GT)n and (GA)n (GUPTA & VARSHNEY 2000), whereas 

(AC)n is one of the most frequent SSRs in mammals (TOTH et al. 2000). SSRs are, 

due to their variation in the number of repeat units, highly polymorphic and flanked by 

highly conserved genomic regions. SSR markers are in general inherited 

codominantly, have a moderate abundance and good genome coverage. The main 

advantages of SSRs are their multi-allelic nature, the reproducibility, their 

unambiguous designation of alleles and their locus specificity (LI et al. 2000, 
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MACAULY et al. 2001, PARIDA et al. 2006). These properties have made SSRs a 

powerful tool for genetic mapping, genome analysis and population genetics 

(SCHLÖTTERER 2004). SSRs based linkage maps have been developed in all 

major cereals such as barley (RAMSAY et al. 2000, LI et al. 2003), wheat (ROEDER 

et al. 1998, SOMERS et al. 2004), maize (SHAROPOVA et al. 2002), and rice 

(MCCOUCH et al. 1997, 2002). In wheat and barley significant progress has been 

made by sequencing expressed sequence tags (ESTs) derived from SSRs for high 

density mapping (THIEL et al. 2003, STEIN 2007, VARSHNEY et al. 2007). 

Furthermore, SSRs have been used for genetic diversity studies in many plant 

species e.g. sorghum (UPTMOOR et al. 2003, ABU-ASSAR et al. 2005), oat (LI et al. 

2000), wheat (HAMMER et al. 2000), and barley (ROUSSEL et al. 2004, PANDEY et 

al. 2006).  

 

2.3.1.5 Single Nucleotide Polymorphisms (SNPs) 
 
SNPs represent the marker of choice during the last years and are based on a 

single-base change in the DNA sequence (point-mutation), usually with an alternative 

of two possible nucleotides at a specific position (VIGNAL et al. 2002). In the human 

genome a total of ten million SNPs were detected, whereas over five million SNPs 

possess a minor allele frequency of more than 10% (BOTSTEIN & RISCH 2003). 

Furthermore, SNPs are distributed over the whole human genome at an estimated 

frequency of one SNP every 506 bp (CARLSON et al. 2003). SNPs are bi-allelic, 

codominant markers and regarding the modification or expression of a gene in non-

coding regions they are mostly silent. Moreover, SNPs have great potential for 

automation and therefore for high-throughput screening (GUPTA et al. 2001). In 

general, SNPs are used for association studies due to their high frequency in the 

genome and their stability. Regarding the fully sequenced human genome the 

location of the allelic variations is known. In linkage analysis studies of different 

plants it could be confirmed that SNPs are very common in plant genomes. CHING et 

al. (2002) found one SNP per 60 bp in outbreeding maize, in wheat one SNP every 

212 bp (RAVEL et al. 2006) was reported, one SNP per 300 bp was detected in rice 

and Arabidopsis thaliana (SCHMID et al. 2003, YU et al. 2005), and in barley SNPs 

were found every 200 bp (ROSTOKS et al. 2005), whereas there was one SNP every 

50 bp (RUSSELL et al. 2004) and 58 bp (NEUHAUS et al. 2004), respectively, in 

samples including varieties of Hordeum spontaneum and Hordeum vulgare.  
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To identify SNPs various strategies have been developed (LANDEGREN et al. 

1998). One method is the heteroduplex analysis of DNA molecules by density 

gradient gel electrophoresis (DGGE). Electronic dot blot assays and denaturing high-

performance liquid chromatography (DHPLC) are further well-suited methods (KOTA 

et al. 2001, SHIRASAWA et al. 2006). Furthermore, mass-spectroscopy using 

MALDI-TOF (Matrix Assisted Laser Desorption/Ionisation Time-of-Flight), microarray 

technology, EcoTilling and single strand conformation polymorphism (SSCP) are 

used to score SNPs (STOERKER et al. 2000, ANDERSEN et al. 2003, COMAI et al. 

2004, WANG et al. 2005). 

 

There are still a lot of other molecular markers, mostly variations of the mentioned 

procedures above, which are based on point mutations in the DNA sequence and are 

used for genetic diversity studies or linkage mapping. A few recently developed 

methods with high potential are listed. One of these techniques are the single feature 

polymorphisms (SFPs), which are identified in transcript profiling data by visualizing 

differences in hybridisation to individual oligonucleotide probes (VARSHNEY et al. 

2005, WEST et al. 2006). The polymorphisms present in the DNA are transcribed into 

the messenger RNA and may affect hybridization to the microarray probes if located 

in a region complementary to the probe. SFPs detected using high density 

oligonucleotides microarrays such as the Barley1 Affymetrix GeneChip (CLOSE et al. 

2004) can serve as function-associated markers for genetic analyses including 

quantitative trait loci (QTL) and linkage disequilibrium (LD) mapping. Further on, 

Diversity Arrays Technology (DArT) enables the profiling of the whole genome 

without any DNA sequence information. This method is based on the microarray 

hybridisation which detects the presence or absence of a specific DNA fragment from 

the whole genomic DNA of an individual or a whole population (JACCOUD et al. 

2001, WENZL et al. 2004). Therefore, this technology generates a large number of 

high-quality markers in several crop species like barley (WENZL et al. 2004), 

Arabidopsis thaliana (WITTENBERG et al. 2005), cassava (XIA et al. 2005), wheat 

(AKBARI et al. 2006), and pigeonpea (YANG et al. 2006).  

Besides the already described marker techniques, several methods are described to 

convert already existing unspecific PCR-markers to more robust ones, which are 

easier and less laborious to use. To specify point mutations-based AFLPs or RAPDs 

it is necessary to convert them into more stable single locus PCR markers like 
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Cleaved Amplified Polymorphic Sequences (CAPS), Sequence Characterised 

Amplified Region (SCAR) or Sequence Tag Sites (STS). These techniques are 

based on sequencing and design of specific primer pairs. Expressed Sequence Tags 

(ESTs), which are useful tools in gene discovery, comply with STS markers. Their 

sequence and location in the genome are known but ESTs derive from cDNA clones 

(JOSHI et al. 1999). In addition, there are several functional and gene targeted 

markers described like ACGMs (Amplified consensus genetic markers), GSTs (Gene 

specific tags), RGAs (Resistance gene analogues) or ERAP (Exon-Retrotransposon 

amplification polymorphism), which are ideal tools for marker-assisted selection 

(GUPTA & VARSHNEY 2000, ANDERSEN & LÜBBERSTEDT 2003, GUPTA & 

RUSTGI 2004, BAGGE et al. 2007). 

 

2.4 Application of molecular markers in plant breeding 
 
The development of molecular markers was an important step for plant breeding and 

opened a new area of molecular plant breeding. Molecular markers and especially 

PCR-based marker systems facilitate genotyping and the assessment of genetic 

diversity, the construction of linkage maps and the application in marker-assisted 

breeding. Further on, molecular markers ease pyramiding of genes, e.g. resistance 

genes, the detection of Quantitative trait loci (QTL) as well as the acceleration of 

back crossing procedures (ORDON et al. 2004b, WERNER et al. 2005). 

 

2.4.1 Genetic linkage maps 
 
To construct a genetic linkage map the grouping of linked markers into linkage 

groups and the arrangement of the known markers to each other within this group is 

necessary. This involves coding data for each marker on each individual of a 

segregating population, e.g. a DH population, and later on linkage analysis using 

software programmes like MapMaker (LANDER et al. 1987) or JoinMap (STAM & 

VAN OOIJEN 1995) to detect linkage groups and construct genetic maps. The 

linkage between two markers is usually measured by likelihood of odds ratio, which 

calculates the ratio of linkage versus no linkage (COLLARD et al. 2005). This ratio is 

worded as the logarithm of the ratio and is called a logarithm of the odds value (LOD) 

or LOD score (RISCH 1992). Usually, LOD values over 3.0 are taken for the 

construction of linkage maps, viz this value between two markers indicates that the 
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linkage is 1,000 times more likely than no linkage. The arrangement of markers is 

based on the frequencies of recombination between them. By means of mapping 

functions, recombination fractions are converted into genetic distances assessed in 

centiMorgan (cM), because of the non-linearity of recombination frequency, i.e. the 

frequency of crossing-over (COLLARD et al. 2005). The Kosambi mapping function 

(KOSAMBI 1944) and the Haldane mapping function (HALDANE 1919) are the most 

commonly used ones. Whereas Haldane expects no interference between crossing 

over, Kosambi assumes that a recombination event gains influence on the 

occurrence of a neighbouring recombination event (HARTL & JONES 2001). Genetic 

linkage maps are necessary for the identification of chromosomal regions, which 

possess ‘genes of interest’ or traits controlled by one or more genes, the 

identification of genetic markers closely linked to these important traits, for synteny 

studies (comparing genomes of different species) or for genome sequencing 

(MOHAN et al. 1997). The first barley linkage map was constructed by KLEINHOFS 

et al. (1988) with RFLP markers for chromosome 6H. A few years later more detailed 

maps of the whole genome were created based on different types of populations 

(GRANER et al. 1991, HEUN et al. 1991, KLEINHOFS et al. 1993). Other markers 

like AFLPs (WAUGH et al. 1997) or SSRs (BECKER & HEUN 1995, LIU et al. 1996, 

LI et al. 2003) were integrated in already existing maps to enhance the marker 

density. RAMSAY et al. (2000) established the first linkage map using only 

microsatellites. Further on, EST-derived SSRs were integrated into molecular maps 

(PILLEN et al. 2000, THIEL et al. 2003). Herefrom, a strong clustering of 

microsatellites markers around the centromeres of all chromosomes was observed 

(RAMSAY et al. 2000, LI et al. 2003), which results from suppressed recombination 

events in the centromeric regions (KÜNZEL et al. 2000) and leads further on to an 

incomplete genome coverage. Among others, WENZL et al. (2006) constructed a 

barley consensus map, which combines different maps with DArT markers to improve 

the genome coverage. Corresponding dense molecular linkage maps of other crops 

of worldwide importance like rice (MCCOUCH et al. 2002), maize (SHAROPOVA et 

al. 2002), sorghum (MENZ et al. 2002), wheat (SOMERS et al. 2004, SONG et al. 

2005), rape seed (KIM et al. 2006) and grapevine (DOLIGEZ et al. 2006) are 

available. 

The knowledge of the position of molecular markers on these linkage maps is very 

useful for the identification of closely linked markers to genes encoding important 
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traits, and allows e.g. the precise localization of resistance genes. Several recessive 

resistance genes are mapped in barley using Bulked Segregant Analysis (BSA, see 

chapter 3.5, MICHELMORE et al. 1991). One of the first successful reports on the 

application of BSA in barley was the mapping of resistance genes against powdery 

mildew by GIESE et al. (1993), where the RFLP marker ris16 was closely mapped to 

the resistance gene MlLa on chromosome 2H within a distance of 1 cM. Furthermore, 

GARVIN et al. (2000) mapped the scald resistance gene Rrs14 by using BSA on 

chromosome 1H closely linked to the STS marker Hor2 with a distance of 1.8 cM to 

the resistance locus (for an overview of all resistance genes already mapped by 

close association with DNA markers see CHELKOWSKI et al. (2003), WILLIAMS 

(2003) and ORDON et al. (2004b)). A high number of studies have demonstrated the 

identification of Quantitative Trait Loci (QTL) in many crop species based on existing 

genetic linkage maps. The principle of QTL analysis is to separate the mapping 

population into different groups with respect to the presence or absence of a 

genotype at a marker locus and to determine the differences, which exist between 

these groups on the phenotypic level with respect to a quantitative trait. If the 

phenotypes between groups differ significantly, the marker locus, which partitions the 

groups, is linked to a QTL. There are three different methods to detect a QTL: (1) 

single-marker analysis, (2) simple interval mapping (SIM) and (3) composite interval 

mapping (CIM, COLLARD et al. 2005), whereas CIM is the most common one 

(JANSEN & STAM 1994). In cereals, many QTL for major agronomic traits have been 

described. In barley, several markers for QTL of agronomic traits have been 

identified so far. These works include QTL for yield (VON KORFF et al. 2006), 

disease resistances like barley yellow dwarf virus (SCHEURER et al. 2000) or scald 

(ZHAN et al. 2007), and leaf rust (MARCEL et al. 2007). Further on, e.g. SOMERS et 

al. (1998) identified RAPD markers linked with linoleic acid desaturation in Brassica 

rapa, and AFLP and SSR markers could be detected for Fusarium head blight 

resistance in wheat (BUERSTMAYR et al. 2002, LIU & ANDERSON 2003). In other 

crop species NARASIMHAMOORTHY et al. (2007) recently found markers for QTL 

associated with the aluminium tolerance in alfalfa.  

These molecular markers, which are closely linked to a gene of interest or to a QTL, 

can be used for marker-assisted selection (MAS). The specific DNA marker alleles 

can be applied for an indirect selection of DH populations, which are used for fixation 

of the traits, to identify genes of interest in the seedling stage and furthermore to 
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screen for the genetic background (VARSHNEY et al. 2006, TUVESSON et al. 

2007). This method simplifies the work of plant breeders due to the great efficiency of 

marker assisted selection (MAS). One example of the sufficient use of MAS in barley 

breeding is the incorporation of resistances into the existent barley breeding 

materials against the barley yellow mosaic virus complex. Until now, several markers 

for the selection of resistance gene loci have been developed (ORDON et al. 2003, 

2004b). The most common one is the SSR marker Bmac0029, which is used by 

many barley breeders for the selection of the rym4 and rym5 resistance genes (RAE 

et al. 2007). Furthermore, MAS offers the opportunity for the accomplishment of gene 

pyramiding. This has been shown in many crops like wheat (LIU et al. 2000), cotton 

(GUO et al. 2005), rice (ZHANG et al. 2006) and barley (WERNER et al. 2005, 2007). 

The use of tightly linked markers to a gene of interest is also the basis for map-based 

cloning, in which the marker is used as a probe for the screening of a genomic library 

(COLLARD et al. 2005), e.g. in barley based on a high resolution mapping (PELLIO 

et al. 2005). The resistance locus rym4/rym5 was isolated (STEIN et al. 2005) 

facilitating the production of ideal diagnostic marker, i.e. allele specific markers. The 

map based cloning strategy has been applied in several crop species (for overview 

STEIN & GRANER 2004). 

 

2.4.2 Genetic diversity 
 
Genetic diversity represents the multifariousness within and between groups of 

individuals or populations. The knowledge of this pool of genetic variation for these 

individuals or within a population is necessary for breeding purposes (RAO & 

HODGKIN 2002). Genetic diversity is estimated based on differences in DNA 

sequences and these DNA-based marker data facilitate the reliable differentiation of 

genotypes. Molecular marker-based genetic diversity can be expressed and 

presented by different estimators and approaches like genetic diversity, genetic 

similarity respectively distance, population structure and cluster analysis (LABATE 

2000).  

Frequently used methods for the estimation of genetic similarity and distance, 

respectively, are the NEI and LI coefficient (1979), JACCARDs coefficient (1908), 

modified ROGERs’ distance (WRIGHT 1978) and the simple matching coefficient 

(SMC, SNEATH & SOKAL 1973). All are based on binary data, which count the 

presence or absence of fragments or the allele frequency. The major differences 
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between these four methods are due to their emphasis of monomorphic or 

polymorphic alleles. Whereas JACCARD just considers fragments, which are present 

in all individuals, and ignores fragments, which are absent in both individuals. NEI & 

LI measures the proportion of alleles, which are present and shared in each 

individual. Modified ROGERs distance includes every locus scored as an orthogonal 

dimension and SMC considers the fragments, which are present and absent 

(MOHAMMADI et al. 2003). Due to this different emphasis on present and absent 

alleles, JACCARD is commonly used for dominant markers and NEI & LI for 

codominant markers (SCHÖN et al. 1997). Based on the matrix of genetic 

distances/similarities cluster analyses can be carried out. Cluster analysis is a 

statistical procedure, which groups individuals or populations into subsets or clusters 

based on their common traits. The clustering methods can be differentiated into two 

groups, herein after referred to as (1) the distance-based method and (2) the 

Bayesian model-based method. The main principle of the first one is the calculation 

with a pair-wise distance matrix as an input, whereas the model-based method 

assumes that the observations from each cluster are random draws from some 

parametric model (PRITCHARD et al. 2000). Distance-based methods are divided 

into two groups: (1) hierarchical procedure, where single individuals are treated 

separately before grouping into bigger clusters, and (2) non-hierarchical procedures, 

which is rarely used for the estimation of genetic diversity (MOHAMMADI et al. 2003). 

Among different hierarchical procedures known, the Unweighted Paired Group 

Method using Arithmetic averages (UPGMA) is due to the high level of accuracy the 

most frequently used one (MOHAMMADI et al. 2003).  

The genetic diversity (H) is based on the number of alleles per locus and the 

frequency of alleles per locus. The most frequently used index is the gene diversity 

index by NEI (1973), which is a measure of the probability that two genotypes chosen 

randomly out of the population possess different alleles (KREMER et al. 1998). 

Another diversity measure is the Shannon-Weaver Index (H’, SHANNON & WEAVER 

1949). In contrast to the gene diversity index by NEI (1973) the Shannon-Weaver 

Index doesn’t prerequisite the Hardy-Weinberg equilibrium (FRITSCH & RIESEBERG 

1996). Genetic diversity is of prime interest for plant breeding. Due to the variation in 

allele frequency within species a selection is possible to change populations and to 

introduce new varieties into breeding populations. Furthermore, the breeding system 

of the species is significant for the evaluation of differences between populations 
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from different geographical regions (RAO & HODGKIN 2002). For the estimation of 

genetic diversity DNA-based markers are an efficient tool. Attention should be paid to 

the differences in genetic diversity resulting from different markers and their amount 

of genome coverage (STAUB et al. 1997). In cereals and other crop species, many 

studies about genetic diversity have been described, e.g. in barley (AHLEMEYER et 

al. 2006, PANDEY et al. 2006), wheat (REIF et al. 2005, HAI et al. 2007) or rapeseed 

(HASAN et al. 2006). 
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3 Material and Methods 
 

3.1 Plant Material 
 

3.1.1 Identification of new resistance resources of barley against the barley 
yellow mosaic virus complex 
 

120 exotic barley germplasms, resistant against BaYMV in Japan, have been 

screened with the microsatellite marker Bmac0029 closely linked to the rym4/rym5 

locus (GRANER et al. 1999a) in order to identify new resistance donors carrying 

resistance genes different from rym4 and rym5 which are at present widely used in 

European barley breeding programmes. Most of the 120 barley accessions mainly 

originated from China, Nepal, Japan, Russia, Ethiopia and Turkey (Table 2) were 

provided by the Barley Germplasm Centre, Research Institute for Bioresources, 

Okayama University, Japan.  

 
Table 2: New resistance resources of barley against the BaYMV-complex. 
 
Name Origin Name Origin 

J. 20 Afghanistan Debra Birhan 1 Ethiopia 

9055 Austria Debra Birhan 7 Ethiopia 

Baku 3 Azerbaijan Deder 2 Ethiopia 

Shemakha 1 Azerbaijan Dembi 3 Ethiopia 

Shemaka 2 Azerbaijan Ethiopia 14 Ethiopia 

Shemakha 3 Azerbaijan Ethiopia 53 Ethiopia 

Chiuchiang China Ethiopia 65 Ethiopia 

Chihchou Yinchiaai 3 China Ethiopia 80 Ethiopia 

Hsingwuke 2 China Ethiopia 89 Ethiopia 

Juichang 2 China Ethiopia 506 Ethiopia 

Liussuchiao 1 China Ethiopia 510 Ethiopia 

Liussuchiao 2 China Ethiopia 534 Ethiopia 

Paishapu 2 China Gondar 6 Ethiopia 

Paoanchen 1 China Glyorgi 2 Ethiopia 

Shanghai 1 China Kulubi 1 Ethiopia 

Tatung China Mota 1 Ethiopia 

Addis Ababa 64 Ethiopia Mota 7 Ethiopia 

Adi Abun 2 Ethiopia Nazareth 3 Ethiopia 

Dabat 1 Ethiopia Sululta 4 Ethiopia 
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Name Origin Name Origin 

Sululta 10 Ethiopia Jungbori 20 Korea 

France 7 France Masan Covered 5 Korea 

Tibilisi 1 Georgia Sacheon Naked Korea 

Tibilisi 7 Georgia Samcheog Dolbori Korea 

Mammuto Germany Suweon 31 Korea 

Esfahan 1 Iran Waegwan Covered 1 Korea 

Esfahan 4 Iran Yeoncheon Native Korea 

Gorgan 1 Iran Zairaishu Korea 

Ramsar Iran Zairai Junkei 8 Korea 

70 g Iran Chame 8 Nepal 

Chikurin Ibaraki 3 Japan Dhumpu 2 Nepal 

Fushiguro Japan Keronja 2 Nepal 

Hakusanmugi Japan Keronja 3 Nepal 

Hanhadaka 2 Japan Keronja 5 Nepal 

Hayamugi Japan Sikha 10 Nepal 

Hiroshima Japan Sipche 14 Nepal 

Hosomugi 3 Japan Thonje 16 Nepal 

Iwate Hozoroi 1 Japan Thonje 19 Nepal 

Kinukawa Gozen 22 Japan Tsumje 3 Nepal 

Kobinkatagi 4 Japan Katana 2 Syria 

Koshimaki 40 Japan Turkey 3 Turkey 

Nagaoka Japan Turkey 29 Turkey 

Oeyama Rokkaku 3 Japan Turkey 33 Turkey 

Sakaiwa Rokkaku 27 Japan Turkey 39 Turkey 

Sekitori 2 Japan Turkey 41 Turkey 

Shiro Omugi 79 Japan Turkey 44 Turkey 

Taishomugi Japan Turkey 45 Turkey 

Tochigi Torano-o 1 Japan Turkey 47 Turkey 

Torano-o Japan Turkey 56 Turkey 

Torano-o 7 Japan Turkey 62 Turkey 

Baegsan Santoku 1 Korea Turkey 68 Turkey 

Boseong Covered 3 Korea Turkey 77 Turkey 

Changweon Jecheon 5-1 Korea Turkey 83 Turkey 

Cheongyang Covered 2 Korea Turkey 86 Turkey 

Gangneung Covered 3 Korea Turkey 101 Turkey 

Gogseong Covered 4 Korea Turkey 179 Turkey 

Goheung Covered 2 Korea Turkey 440 Turkey 

Gwangju Baitori 1 Korea Turkey 524 Turkey 

Hamyang Covered 9 Korea Turkey 581 Turkey 

Hongcheon Anjeunbaengi 2 Korea Turkey 723 Turkey 

Hongseong Native Korea Russia 4 USSR 

 



Material and Methods 

 25

3.1.2 Mapping populations used for the development of new PCR-based DNA 
markers for resistance genes against BaMMV, BaYMV-1 and BaYMV-2 
 

For the mapping approach of currently unknown resistance genes against the 

BaYMV complex seven different crosses with original exotic resistance donors have 

been generated and used. The mapping populations have been provided by the plant 

breeding companies Pajbjergfonden, Odder, Denmark, Florimond-Desprez, Cappelle 

en Pévèle, France and the Institute of Crop Science and Plant Breeding I, University 

of Giessen and herein referred to as MAP1-7. 

  

3.1.2.1 Mapping population 1 (MAP 1) 
The doubled haploid (DH) population MAP1 consists of 94 lines derived from a cross 

between the resistance donor ‘Cebada’ and the German susceptible two-rowed 

cultivar ‘Cleopatra’. 

 

3.1.2.2 Mapping population 2 (MAP 2) 
A number of 54 anther-derived DH lines of the Japanese cultivar ‘Shimane Omugi’ 

crossed with the susceptible cultivar ‘Sumo’ as well as 65 additional DH lines of the 

cross ‘Shimane Omugi’ with the German susceptible two-rowed cultivar ‘Gilberta’ 

were used for genetic mapping. 

 

3.1.2.3 Mapping population 3 (MAP 3) 
MAP 3 was developed by crossing the resistance donor ‘CI 3517’ with the 

susceptible two-rowed cultivar ‘Reni’ and comprises 80 DH lines.  

 

3.1.2.4 Mapping population 4 (MAP 4) 
A progeny of 131 DH lines of the cross between the resistance donor ‘Belts 1823’ 

and the German cultivar ‘Franziska’ were used for marker development. ‘Franziska’ is 

carrying rym4 and is therefore known to be resistant against BaMMV and BaYMV-1 

in Europe. 

 

3.1.2.5 Mapping population 5 (MAP 5) 
The Japanese resistant six-rowed cultivar ‘Chikurin Ibaraki 1’ was crossed with the 

German susceptible two-rowed winter barley cultivar ‘Igri’. The DH population, which 
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derived from the F1 generation by anther culture, comprised 163 DH lines. ‘Chikurin 

Ibaraki 1’ shows resistance against all three types of the BaYMV complex in Europe 

but is susceptible to BaYMV in Japan (GOETZ & FRIEDT 1993). 

 

3.1.2.6 Mapping population 6 (MAP 6) 
A subset of the original population from the cross between the Taiwanese six rowed 

cultivar ‘Taihoku A’ and the French susceptible cultivar ‘Plaisant’ (WERNER et al. 

2003b) was used for the development of closer linked markers. The original subset 

comprised 90 DH lines which was later enlarged to 154 DH lines of the same cross. 

‘Taihoku A’ is known to be resistant to BaMMV and BaYMV/BaYMV-2 (GOETZ & 

FRIEDT 1993).  

 

3.1.2.7 Mapping population 7 (MAP 7) 
MAP 7 is composed of 151 DH lines derived from a cross of the Korean resistance 

donor ‘Muju covered 2’ with the susceptible cultivar ‘Spirit’. Like ‘Taihoku A’, ‘Muju 

covered 2’ is resistant to BaMMV, BaYMV/BaYMV-2, and to the new German 

BaMMV-strain (GOETZ & FRIEDT 1993, HABEKUSS et al. 2006). 

 

3.1.3 Wheat cultivars used for fingerprinting and studies on genetic 
diversity 
 

Different wheat lines provided by different co-operation partners (W. von Borries-

Eckendorf, Germany; Pajbjergfonden, Denmark; Florimond-Deprez, France) were 

screened for resistance against SBCMV and WSSMV in France in 2003 and 2004. 

Based on resistance screening in the field, 64 interesting wheat lines were selected 

and used for genotyping (Table 3).  
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Table 3: Selected wheat genotypes for fingerprinting. 
 

Name Provided by Reaction to 

SBCMV/WSSMV

Name Provided by Reaction to 

SBCMV/WSSMV 

Asperge Florimond Desprez resistant 701-477c Pajbjergfonden resistant 

Autan Florimond Desprez resistant 701-481a Pajbjergfonden resistant 

Bobino Florimond Desprez resistant 798-398b Pajbjergfonden susceptible 

Brando Florimond Desprez resistant BE01 W. v. Borries-Eckendorf resistant 

Cadenza Florimond Desprez resistant BE02 W. v. Borries-Eckendorf resistant 

Charger Florimond Desprez resistant BE03 W. v. Borries-Eckendorf resistant 

Claire Florimond Desprez resistant BE04 W. v. Borries-Eckendorf resistant 

Enesco Florimond Desprez resistant BE05 W. v. Borries-Eckendorf resistant 

Farandole Florimond Desprez resistant BE06 W. v. Borries-Eckendorf resistant 

Gaspard Florimond Desprez resistant BE07 W. v. Borries-Eckendorf resistant 

Gascogne Florimond Desprez resistant BE08 W. v. Borries-Eckendorf resistant 

Igor Florimond Desprez resistant BE09 W. v. Borries-Eckendorf resistant 

Intense Florimond Desprez resistant BE10 W. v. Borries-Eckendorf resistant 

Levis Florimond Desprez resistant BE12 W. v. Borries-Eckendorf resistant 

Rubens Florimond Desprez resistant BE13 W. v. Borries-Eckendorf resistant 

Sponsor Florimond Desprez resistant BE14 W. v. Borries-Eckendorf resistant 

Taldor Florimond Desprez resistant BE15 W. v. Borries-Eckendorf resistant 

Tremie Florimond Desprez resistant BE16 W. v. Borries-Eckendorf resistant 

701-37c Pajbjergfonden resistant BE17 W. v. Borries-Eckendorf resistant 

701-42c Pajbjergfonden susceptible BE18 W. v. Borries-Eckendorf resistant 

701-176a Pajbjergfonden resistant BE19 W. v. Borries-Eckendorf resistant 

701-176c Pajbjergfonden resistant BE20 W. v. Borries-Eckendorf resistant 

701-177a Pajbjergfonden resistant BE21 W. v. Borries-Eckendorf resistant 

701-177c Pajbjergfonden resistant BE22 W. v. Borries-Eckendorf resistant 

701-191a Pajbjergfonden susceptible BE23 W. v. Borries-Eckendorf resistant 

701-210a Pajbjergfonden resistant BE24 W. v. Borries-Eckendorf resistant 

701-210b Pajbjergfonden susceptible BE25 W. v. Borries-Eckendorf resistant 

701-244c Pajbjergfonden resistant BE26 W. v. Borries-Eckendorf resistant 

701-256b Pajbjergfonden resistant BE27 W. v. Borries-Eckendorf resistant 

701-372c Pajbjergfonden resistant BE28 W. v. Borries-Eckendorf resistant 

701-422b Pajbjergfonden resistant BE29 W. v. Borries-Eckendorf resistant 

701-477b Pajbjergfonden susceptible BE30 W. v. Borries-Eckendorf resistant 

 

3.2 Evaluation of virus resistance 
 

The reaction against BaMMV was estimated after mechanical inoculation in the 

greenhouse according to FRIEDT (1983) in two replications comprising five plants 

per DH-line. The inoculation was carried out with plant sap extract of BaMMV-

infected leaf material of the cultivar ‘Gerbel’. The sap was diluted 1:10 in K2HPO4 



Material and Methods 

 28 

buffer (0.1 M; 9.1 pH), mixed with carborundum powder (0.5 g/25 ml) and applied by 

using a spray gun with 8 bar pressure. The youngest and second youngest leaves 

were sprayed from both sides with an average of 2.5 ml diluted sap. The inoculated 

plants were briefly rinsed under tap water and kept for one day in the shade at 18°C. 

Afterwards the plants were transferred to a cooled green house chamber at 16°C. 

Four weeks after inoculation resistance was estimated by double antibody sandwich 

enzyme-linked immunosorbent assay (DAS-ELISA, KOENIG 1985).  

Since neither BaYMV nor BaYMV-2 can be transmitted mechanically at a sufficient 

infection level, field experiments were performed in 2003/2004 and in 2004/2005 at 

three locations which were either infested with BaMMV, BaYMV (Giessen, Hesse) or 

additionally with BaYMV-2 (Eikeloh, Northrhine-Westphalia and Lenglern, Lower 

Saxony). Besides visual assessment, the resistance reaction against the two different 

virus strains was determined by DAS-ELISA using specific antisera against BaMMV 

and BaYMV (kindly provided by Dr. Frank Rabenstein, Federal Centre for Breeding 

Research, Quedlinburg, Germany). Optical density was estimated photometrically at 

405 nm and 620 nm reference wavelengths (Easy Reader 400 ATX, SLT-

Labinstruments, Crailsheim). 

Regarding the new German BaMMV strain the resistance reaction of MAP 6 was 

estimated by Dr. Antje Habekuß, Federal Centre for Breeding Research, Institute of 

Epidemiology and Resistance Resources, Quedlinburg. 

Resistance against SBCMV and WSSMV was scored visually by two different 

breeders of the breeding companies Borries-Eckendorf and Florimond-Deprez at an 

infested field at Vatan, France, in the years 2003 and 2004. The cultivars and wheat 

lines were sown in two replications, whereas every replication comprised a double 

row. The severity of virus infection was easy to differentiate, so it was possible to 

score the symptoms using the complete range from 1 (resistant) to 9 (susceptible).  

 

3.3 Molecular analysis 
 

3.3.1 DNA extraction and measurement of DNA concentrations  
 

DNA was isolated from two weeks old leaves as described by Doyle & Doyle (1990). 

For this purpose, the frozen plant material was grounded with liquid nitrogen to a fine 

powder. 200 mg of plant material together with 700 µl of the CTAB-extraction buffer 
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were homogenised and incubated at 65°C for 20 to 30 minutes. To separate 

polysaccharides, 700 µl of chloroform/isoamylalcohol (CIA, 24:1 [v/v]) were added to 

the solution and shaken for 5 minutes. After a centrifugation step at 4°C during 10 

min at 10,000 rpm the upper phase was removed and mixed with 600 µl of CIA. After 

shaking the samples for 5 minutes, centrifugation was again carried out and the liquid 

phase was transferred to a new 1.5 ml reaction tube and loaded with 50 µl 10 M 

ammonium acetate (NH4OAc), 60 µl 3 M sodium acetate (NaOAc) and 500 µl cold 

isopropanol. Upon slight swivelling, the DNA precipitated and formed a DNA pellet 

after centrifugation at 4°C and 4,000 rpm for 4 minutes. The supernatant was 

discarded and the DNA pellet was washed with 200 µl washing buffer (70 % ethyl 

alcohol/10 mM ammonium acetate) for at least 10 minutes. After drying, the DNA was 

dissolved in 100 µl TE-Buffer (10 mM Tris HCl, 1 mM EDTA, pH 8). RNA impurities 

were removed by supplying 1 µl of RNAse (1mg ml-1) per 100 µl DNA solution. The 

composition of the different buffers used for DNA extraction is shown in Table 4. 

 

Table 4: Composition of buffers used for DNA extraction. 
 

CTAB-Extraction buffer  Washing buffer  

CTAB 2 % ethyl alcohol 70 % 

Na2EDTA [ pH 8.0] 20 mM NH4OAc 10 mM 

ß-mercaptoethanol 0.2 %   

NaCl 1.4 M TE-buffer  

Na2S2O5 1 % Tris-HCl [ pH 8.0] 10 mM 

Tris-HCl [pH 8.0] 0.1 M Na2EDTA [ pH 8.0] 1 mM 

 

DNA concentration was determined using a Fluorometer (Model TK 100, Hoefer 

Scientific Instruments, San Francisco, USA) and diluted to a final concentration of 25 

ng/µl. The measurement is based on the attachment of the fluorescent dye H33258 

(Hoechst) to the double stranded DNA. At 365 nm wavelength, this complex emits 

light at 458 nm wavelength, which is measured by the fluorometer. For calibration of 

the instrument, a calf thymus DNA solution (100 ng/µl) was used. Buffers and 

solutions used for determining DNA concentration are listed in Table 5. 
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Table 5: Solution for the determination of DNA concentrations. 
 

10 x TNE  Dye-Solution  

Na2EDTA 10 mM H33258 10 mg 

NaCl 1 M H20dd 10 ml 

Tris-HCl 100 mM   

pH 7.4    

 

 

3.3.2 RAPD-analysis 
 

According to WERNER et al. (2003b) two identified decamer-primers (Operon 

technologies) OP-C13 and OP-E14 linked to the resistance gene rym13 were 

included in the mapping approach. AmpliTaq Stoffel-Fragment DNA-polymerase 

(Perkin Elmer Applied Biosystems, Weiterstadt, Germany) was used to perform the 

RAPD amplification, which, due to the higher thermostability, is different from 

unmodified Taq-polymerase. PCR reaction and PCR cycler program used are 

described in table 6-7. The amplification was carried out in a thermocycler type 

GenAmp® PCR System 9700 (Applied Biosystems, Darmstadt, Germany). The 

RAPD PCR products were separated on a 2 % agarose gel (Ultra Pure, Gibco BRL 

Life TechnologiesTM, Karlsruhe, Germany) via horizontal gel electrophoresis (BioRad 

Sub-Cell GT, Munich, Germany) in 0.5 x TBE–buffer solution with 4 V/cm (Table 8 ). 

Each reaction mix was completed with 5 µl of loading buffer (bromophenol blue: 

orange G = 3:1) and an aliquot of 10 µl was loaded. The size of the resulting RAPD 

fragments were determined by means of a standard DNA ladder ranging from 100 bp 

to 2072 bp (Gibco BRL Life TechnologiesTM, Karlsruhe, Germany). The visualization 

of the amplificats was achieved by staining the agarose gel for 15 min in an ethidium 

bromide solution (2 µg/ml) followed by exposure to UV light (254 nm) on an UV-

transilluminator. 
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Table 6: Reaction components of a 25 µl-PCR reaction mix for RAPD amplification. 
 

Components Per reaction 

DNA (5 ng/µl) 25 ng 

decamer-primer (5 pmol/µl) 7.5 pmol 

dNTPs (10 mM) 0.4 mM 

MgCl2 (100 mM) 6.0 mM 

PCR buffer 10x (Stoffel) 1x 

AmpliTaq Stoffel-Fragment polymerase (10 U/µl) 1.5 U 

H2Odd add 25 µl 

 

 

Table 7: Amplification cycles of the RAPD reaction. 
 

Cycles Phase Temperature Duration 

1 x Denaturation 94°C 4 min 

 Denaturation 94°C 1 min 

45x Annealing 36°C 1 min 

 Extension 72°C 2 min 

1 x Fill in 72°C 7 min 

 

 

Table 8: Composition of ingredients used for RAPD analysis. 
 

10x TBE-buffer  Loading Buffer   

Tris HCl (Roth) 0.89 M Bromophenolblue 0.15 % 

Boric acid (Roth) 0.89 M  Ficoll 15 % 

EDTA 0.5 M pH 8.0 0.5 M EDTA 100 mM 

    

  Orange G 0.15 % 

  Ficoll 15 % 

  EDTA 100 mM 
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3.3.3 Microsatellite-analysis 
 

A total of 45 simple sequence repeats (SSRs, microsatellites) were used for 

genotyping the different barley populations (MAP 1-7). Out of these, 26 SSRs (Table 

1-2, Appendix) evenly distributed on the seven barley chromosomes, were used for 

BSA (see chapter 3.5). All microsatellites were amplified according to LIU et al. 

(1996), RAMSAY et al. (2000) and THIEL et al. (2003). The diagnostic marker 

Bmac0029 (rym4, rym5) was amplified according to GRANER et al. (1999a). PCR 

reaction for each SSR which turned out polymorphic in BSA is shown in Table 10. 

The different PCR cycling programs are shown in Table 3 in the appendix. PCR 

amplifications of 65 wheat SSRs (Table 4-5, Appendix) were carried out according to 

ROEDER et al. (1998), GUPTA et al. (2002) and SOMERS et al. (2004). In some 

cases, the forward primer was 5’-end labelled with the fluorescence dye IRD 700 or 

IRD 800 whereas in other cases a ‘tailed primer method’ (OETTING et al. 1995) was 

used (Table 4, Appendix). This method employs a two-part primer. A standard 

sequencing primer M13 or ‘tail’ is added to the 5’-end of the forward primer. The 

forward primer binds specifically to the DNA sequence and can be amplified together 

with the SSR-motif by a universal fluorescence labelled primer (M13) complementary 

to the ‘tail’, thereby saving costs for labelling each SSR forward primer. All 

microsatellites used for mapping are listed in Table 1 of the appendix including 

sequence information, repeat motif, labelling, fragment size, PCR recipe, PCR 

program and chromosomal localisation. SSR-amplification products were separated 

on a denaturing polyacrylamide gel based on an 8 % Long Ranger Gel Solution 

(FMC Biozym, Hessisch Oldendorf, Germany). The fluorescence-labelling allowed 

the detection on a LI-COR DNA Sequencer GenReadir 4200 (MWG Biotech AG, 

Ebersberg, Germany). An equal amount of formamide loading buffer was added to 

the PCR-samples, which afterwards were denatured in a thermocycler at 95°C for 90 

s. The electrophoresis was conducted in 1 x TBE Long Run Buffer under specific 

conditions: 1500 V, 50 W, 35 mA and 48°C. Determination of the microsatellites 

allele sizes was achieved by utilising a labelled standard ladder ranging from 50 to 

350 bp. The chemical composition of gels and buffers used for SSR detection are 

listed in Table 9. The EST derived microsatellite GBM 1015 was separated on a 2 % 

agarose gel via horizontal gel electrophoresis (BioRad Sub-Cell GT, München, 

Germany) in 0.5 x TBE–buffer with 4 V/cm like described before for the RAPD  
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amplification (see chapter 3.3.2). 

 

Table 9: Compounds of solutions and buffers used for gel electrophoresis. 

 

 

 

PAA-gel solution 8%  10 x TBE Long Run 

Buffer 

 

Long Ranger PAA Solution 

50 % (FMC, Biozym, 

Hessisch Oldendorf) 

16 ml tris-HCl (Sigma) 

boric acid (Sigma) 

EDTA (Sigma) 

1340 mM 

450 mM 

25 mM 

urea (USB, Cleveland, USA) 42 g H20dd add 1 l 

10 x TBE 10 ml   

H20dd add 100ml   

    

Gel Solution for a PAA-Gel 

(0.25 mm, 25 cm) 

 Formamide-Loading-

buffer 

 

PAA-Gel Solution 8 % 25 ml formamide (Sigma) 95 ml 

TEMED (Sigma) 25 µl EDTA (Sigma) 2 ml 

DMSO (Sigma) 250 µl basic fuchsine (Sigma) 0.1 g 

APS, 10 % (Roth) 175 µl bromophenol blue 0.01 g 

  H20dd add 100 ml 
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3.3.4 AFLP-analysis 
 
AFLP analysis was essentially carried out according to VOS et al. (1995). DNA 

restriction and ligation was performed using the AFLP Core Reagent Kit (Gibco Life 

Technologies, Eggenstein, Germany). 150 ng of genomic DNA was digested with the 

restriction enzymes EcoRI (5’-G/AATTC-3’) and MseI (5’-T/TAA-3’) according to the 

manufacturers’ instructions in a thermocycler at 37°C for two hours and a final 

enzyme inactivation at 70°C for 15 min. Adapters with complimentary sequences to 

the restriction enzymes’ recognition sites were ligated to the specific restriction sites 

of the DNA fragments by T4-ligase. Incubation of the samples was carried out in a 

thermocycler at 20°C for two hours. A 1:10 dilution in TE-AFLP-buffer was used as 

DNA template for the following pre-amplification steps. Ligation was followed by two 

pre-amplification steps using primers complementary to each of the two adapter 

sequences. First, non-selective AFLP primers E-00 and M-00 were used in order to 

reduce unspecific background on polyacrylamide gels (+0 pre-amplification), followed 

by an amplification using primers (E01 and E02 as well as M01 and M02) 

complementary to each of the two adapter sequences with one additional selective 

nucleotide (+1 pre-amplification). Thus, amplification of only 1/16th of EcoRI-MseI 

fragments occurred. The PCR-reaction of the +0 pre-amplification was diluted 1:10 

and used as DNA template for the +1 pre-amplification. The components of the PCR-

reaction and the PCR cycle profiles of the +0/+1 pre-amplification are listed in Table 

12+13. The sequences of the primers are listed in Table 11.  

 

Table 11: AFLP sequences for the +0/+1 pre-amplification. 
 

Primer Primer name Sequence 

+0-EcoRI-primer E00 5' - GAC TGC GTA CCA ATT C - 3' 

+0-MseI-primer M00 5' - GAT GAG TCC TGA GTA A - 3' 

+1-EcoRI-primer E01 5' - GAC TGC GTA CCA ATT CA - 3’ 

+1-EcoRI-primer E02 5’ - GAC TGC GTA CCA ATT CC - 3’ 

+1-MseI-primer M01 5’ - GAT GAG TCC TGA GTA AA - 3’ 

+1-MseI-primer M02 5' - GAT GAG TCC TGA GTA AC - 3' 
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Table 12: Composition of the +0/+1 pre-amplification reaction mix. 
 

 +0 pre-amplification +1 pre-amplification per reaction 

DNA template  5µl of a 1:10 dilution  

of the ligation 

5µl of a 1:10 dilution 

of the +0 pre-

amplification 

 

polymerase-buffer 10x 5µl 5µl 1x 

dNTPs (10 mM) 1µl 1µl 0.2 mM 

EcoRI-primer (50 ng/µl) 1.5 µl E00 1.5 µl E01 or E02 75 ng 

MseI-primer (50 ng/µl) 1.5 µl M00 1.5 µl M02 or M01 75 ng 

Taq-polymerase 0.2 µl 0.2 µl 1 U 

H20dd add 50 µl add 50 µl  

 

 

Table 13: Amplification cycles of the +0/+1 analyses. 
 

Steps Reaction Temperature Time Cycles 

1 Denaturation 94°C 3 min 1 x 

2 Denaturation 

Annealing 

Polymerisation 

94°C 

56°C 

72°C 

30 s 

60 s 

60 s 

 

20 x 

3 Fill in 72°C 5 min 1 x 

 

The PCR reaction of the +1 pre-amplification was diluted 1:20 with TE buffer and 

used as template for the selective amplification (+3-amplification). This amplification 

was carried out using primers with three additional selective nucleotides (Table 14). 

The compounds of the PCR reactions and the PCR-cycle profile are listed in Table 

15+16. For AFLP-detection the PCR products were separated on a polyacrylamide 

(PAA)-gel using the same protocol as described before for SSR-detection (see 

chapter 3.3.2). In each case the EcoRI primer was labelled at the 5'-end with 

fluorescence dye IRD700 or IRD800 (MWG Biotech). Electrophoresis was conducted 

in 1 x Long Run TBE buffer at 1.500 V, 40 W, 40 mA and 48°C. Determination of the 

generated fragment sizes was achieved using the 50 to 700 bp standard ladder. 
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Table 14: AFLP-sequences for the +3 amplification. 
 

Primer Selective bases Primer Selective bases 

E31 5' - ... AAA - 3' M47 5' - ... CAA - 3' 

E32 5' - ... AAC - 3' M48 5' - ... CAC - 3' 

E33 5' - ... AAG - 3' M49 5' - ... CAG - 3' 

E36 5' - ... ACC - 3' M50 5' - ... CAT - 3' 

E39 5' - ... AGA - 3' M51 5' -… CCA - 3' 

E40 5' - ... AGC - 3' M52 5‘ -… CCC - 3' 

E43 5' - ... ATA - 3' M53 5' -… CCG - 3' 

E51 5’ - ... CCA - 3’ M54 5' -… CCT - 3' 

E53 5’ - ... CCG - 3’ M55 5' -… CGA - 3' 

E56 5’ - ... CGC - 3’ M56 5' -… CGC - 3' 

M36 5’ - ... ACC - 3’ M57 5' - ... CGG - 3' 

M39 5’ - ... AGA - 3’ M58 5' - ... CGT - 3' 

M40 5’ - ... AGC - 3’ M59 5' - ... CTA - 3' 

 

 

Table 15: Composition of the +3 pre-amplification reaction mixes. 
 

 +3 amplification per reaction 

DNA template 5µl of a 1:20 dilution of the 

+1 pre-amplification 

 

polymerase-buffer 10x 2 µl 1x 

dNTPs (10 mM) 0.4 µl 0.2 mM 

EcoRI-primer (50 ng/µl) 0.25 to 1.5 µl 7.5 to 12.5 ng 

MseI-primer (10 ng/µl) 3 µl 30 ng 

Taq-polymerase 0.08 µl 0.4 U 

H20dd add 20 µl  
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Table 16: Amplification cycles of the +3 amplification. 
 

Steps Reaction Temperature Time Cycles 

1 Denaturation 94°C 3 min 1 x 

2 Denaturation 

Annealing 

 

Polymerisation 

94°C 

65°C 

(-0.7°C/cycle) 

72°C 

30 s 

30 s 

 

60 s 

 

12 x 

3 Denaturation 

Annealing 

Polymerisation 

94°C 

56°C 

72°C 

30 s 

30 s 

60 s 

 

22 x 

4 Fill-in 72°C 5 min 1 x 

 

 

3.4 Bulked segregant analysis (BSA) 
 

According to the phenotypic data, bulks comprising equal amounts of 10 barley 

DNAs of the respective DH lines (susceptible/resistant) were constructed for BSA 

(MICHELMORE et al 1991). For the identification of polymorphic SSRs, 26 

microsatellites (Table 1, Appendix) uniformly distributed over the seven barley 

chromosomes were screened for polymorphisms between these two bulks. To detect 

linkage of the polymorphic microsatellites, the 10 DH lines included in each bulk were 

tested. In case linkage was detected, the whole population was analysed with this 

SSR and additional SSRs located in the same region were screened on the bulks 

and mapped accordingly (see chapter 3.3.3). The same procedure was applied to 

AFLPs. 
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3.5 Data analysis 
 

3.5.1 Genetic mapping of BaMMV/BaYMV resistance loci 
 

Linkage analysis of the barley mapping populations was performed with the JoinMap 

3.0 software (STAM & VAN OOIJEN 1995). Crossover units were converted into map 

distances (cM) by applying the Kosambi function (KOSAMBI 1944). By using the chi-

square test it was determined, whether the observed data were compatible to the 

expected values of a 1:1 segregation ratio of the DH populations or whether there 

was a distorted segregation ratio. A threshold log likelihood ratio (LOD) of 3.0 was 

used to arrange markers into linkage groups. 

 

3.5.2 Estimation of genetic diversity and genetic relatedness 
 

Based on the analyses of 40 SSRs and 30 AFLP primer combinations the genetic 

diversity and genetic similarity of wheat breeding lines and cultivars was estimated 

based on the presence (1) or absence (0) of bands using the software package 

RFLP-Scan 2.0. The resulting 0/1 matrix includes both monomorphic and 

polymorphic bands. The genetic similarity was estimated according to NEI and LI 

(1979), which is corresponding to the Dice coefficient (DICE 1945): 

GS=2a/2a+b+c 

whereby a refers to alleles shared between two varieties, and b and c refer to alleles 

present in either one of the two varieties. On the basis of the Dice similarity matrix, 

Unweighted Pair Grouped Method Arithmetic Average (UPGMA-) clustering of the 

different wheat genotypes was carried out using the Sequential Agglomerative 

Hierarchical and Nested (SAHN) method of the software package NTSys-pc 1.7. The 

genetic diversity of SSR data was estimated based on the number of alleles per 

locus and the mean diversity index (DI) over all loci was calculated according to NEI 

(1973):  

 
where xij is the frequency of the i th allele of locus j and n is the number of loci. 

The Shannon-Weaver Index (also called Shannon-Wiener Index, SHANNON-

WEAVER 1949) H’ was used to analyse genetic diversity of the AFLP data due to the 
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dominant character of this marker type. This index takes into account the phenotypic 

frequency: 

 
whereas S is the number of species and pi is the relative abundance of each species. 

The analysis was performed by the software POPGENE 1.32. 

In order to get information of the usefulness of the SSRs the polymorphic information 

content (PIC) of the different microsatellites was calculated (see Chapter 4.3). The 

polymorphic information content (PIC) is a tool to measure the informativeness of a 

given SSR marker. According to WEBER (1990) and ANDERSSON et al. (1993), the 

PIC-value was calculated as follows: 

 
whereby k is the total number of alleles detected for a microsatellite and Pi is the 

frequency of the ith allele in the set of wheat genotypes investigated. 
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4 Results 
 
The main objective of this work was to identify and characterise new or already 

known resistances resources in barley and wheat against soil-borne viruses, i.e. 

Barley yellow mosaic virus (BaYMV), Barley mild mosaic virus (BaMMV) in barley 

and Wheat spindle streak mosaic virus (WSSMV) and Soil-borne cereal mosaic virus 

(SBCMV) in wheat. Therefore, molecular markers were used to map resistance 

genes of diverse origin in different DH populations of barley and fingerprint resistant 

or tolerant cultivars and landraces in wheat. 

 

4.1 Screening of germplasms for the presence of rym4/rym5 
 

In order to identify donors of new resistance genes against barley yellow mosaic 

virus disease carrying genes different from rym4 and rym5, 120 gene bank 

accessions, resistant against BaYMV in Japan, were analysed by using the SSR 

marker Bmac0029 

being closely linked to 

the rym4/rym5 locus 

and being to some 

extent diagnostic for 

these different alleles. 

In these studies it turned out, that out of the screened exotic germplasm 12 

genotypes revealed a fragment size of 145 bp indicative for rym4, 44 showed the 

size of 148 bp indicative for rym5 and 61 genotypes carried different fragment sizes 

ranging from 140 to 170 bp (Fig. 1). Those remaining genotypes not carrying rym4 or 

rym5 are potential candidates for detecting new resistance genes. Detailed results of 

detected fragment size after screening the barley accessions are given in Table 17. 

To identify new resistance resources, the remaining 61 genotypes were evaluated for 

resistance against the European strains of BaYMV and BaMMV in a one year trial at 

three locations. After the screening, ‘Chikurin Ibaraki 3’, ‘Hakusanmugi’, ‘Hongcheon 

Anjeunbaengi 2’, ‘Ramsar’, ‘Sekitori 2’, ‘Turkey 3’ and ‘Turkey 179’ turned out to be 

resistant to the common European strains BaMMV, BaYMV and BaYMV-2 (Heidi 

Jaiser, personal communication). Therefore, these accessions represent useful 
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Table 17: Screening of 120 gene bank accessions with the SSR marker Bmac0029. 
 
Name Fragment 

size 

Name Fragment 

size 

Name Fragment 

size 

Adi Abun 2 168 Hiroshima 148 Sipche 14 145 

Addis Ababa 64 168 Hongcheong Anjeunbaengi 2 168 Sululta 4 168 

Baku 3 157 Hongseong Native 148 Sululta 10 168 

Baegsan Santoku 1 148 Hosomugi 3 148 Suweon 31 148 

Boseong Covered 2 148 Hsingwuke 2 -* Taishomugi 172 

Chame 8 168 Iwate Hozoroi 1 148 Tatung 168 

Cheongyang Covered 2 139 Juichang 2 148 Thonje 16 145 

Changweon Jecheon 51 148 Jungbori 20 148 Thonje 19 168 

Chihchou yinchiaai 3 148 J. 20 145 Tibilisi 1 148 

Chikurin Ibaraki 3 168 Katana 2 159 Tibilisi 7 145 

Chiuchiang 148 Keronja 2 145 Tsumje 3 145 

Dabat 1 168 Keronja 3 145 Tochigi Torano-o 1 148 

Debra Birhan 1 168 Keronja 5 145 Torano-o 148 

Debra Birhan 7 168 Kinukawa Gozen 22 148 Torano-o 7 148 

Deder 2 168 Kobinkatagi 4 148 Turkey 3 168 

Dembi 3 168 Koshimaki 40 148 Turkey 29 164 

Dhumpu 2 168 Kulubi 1 168 Turkey 33 168 

Esfahan 1 168 Liussuchiao 1 148 Turkey 39 145 

Esfahan 4 168 Liussuchiao 2 148 Turkey 41 168 

Ethiopia 14 168 Mammuto 168 Turkey 44 164 

Ethiopia 53 168 Masan Covered 5 148 Turkey 45 141 

Ethiopia 65 168 Mota 1 168 Turkey 47 168 

Ethiopia 80 168 Mota 7 168 Turkey 56 168 

Ethiopia 89 168 Nagaoka 168 Turkey 62 168 

Ethiopia 506 148 Nazareth 3 168 Turkey 68 168 

Ethiopa 510 168 Oeyama Rokkaku 3 148 Turkey 77 168 

Ethiopia 534 168 Paishapu 2 148 Turkey 83 168 

France 7 168 Paoanchen 1 148 Turkey 86 145 

Fushiguro 148 Ramsar 140 Turkey 101 145 

Gangneung Covered 3 148 Russia 4 148 Turkey 179 168 

Glyorgi 2 168 Sacheon Naked 148 Turkey 440 168 

Gogseong Covered 4 148 Sakaiwa Rokkaku 27 148 Turkey 524 170 

Goheung Covered 2 148 Samcheog Dolbori 148 Turkey 581 -* 

Gondar 6 168 Sekitori 2 168 Turkey 723 168 

Gorgan 1 148 Shanghai 1 148 Waegwan Covered 1 148 

Gwangju Baitori 1 148 Shemakha 1 158 Yeoncheon Native 148 

Hakusanmugi 168 Shemaka 2 165 Zairai Junkei 8 148 

Hamyang Covered 9 148 Shemakha 3 -* Zairaishu 168 

Hanhadaka 2 148 Shiro Omugi 79 148 70 g 168 

Hayamugi 148 Sikha 10 145 9055 168 

* - = unverifiably  
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sources for broadening the genetic base of barley yellow mosaic virus disease in 

Europe. 

 

4.2 Identification and mapping of BaMMV resistance genes in different DH- 
populations 
 
4.2.1 Mapping the resistance gene of ‘Cebada’ (MAP 1) 

 

Due to breeders 

information it was 

supposed that the 

resistance of ‘Cebada’ is 

not due to rym4 or rym5. 

The phenotyping of 

resistance against 

BaMMV after mechanical 

inoculation suggested the 

presence of one 

resistance gene in this 

DH population due to the 

observed segregation 

ratio of resistant vs. susceptible plants of 46:48 (Chi2 = 0.42, p=0.650). However, 

since checking respective bulks with markers of each chromosome did not result in 

any polymorphisms, resistant and susceptible bulks were screened with Bmac0029 

being closely linked to the rym4/rym5 locus. As can be seen in Figure 2 the analysis 

revealed that ‘Cebada’ carries rym5 because a fragment of 148 bp was detected in 

‘Cebada’ being indicative for rym5 and a clear differentiation between the susceptible 

and resistant bulk was observed. Therefore, no further molecular work was carried 

out on this DH population. 

 

4.2.2 Mapping the resistance gene of ‘Shimane Omugi’ (MAP 2) 
 

In the DH population ‘Shimane omugi’ x ‘Sumo’ and ‘Shimane Omugi’ x ‘Gilberta’ 

(MAP 2) a segregation ratio of resistant vs. susceptible plants of 51: 46 (Chi2 = 0.257;  
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Figure 3: Partial map of chromosome 6H including the BaMMV-resistance of 

‘Shimane Omugi’. 

 

p=0.612) was observed giving hint to a single recessive gene effective against 

BaMMV. In the initial screening using BSA the BaMMV resistance of ‘Shimane 

Omugi’ was mapped on chromosome 6H. Polymorphisms between the bulks 

containing susceptible and resistant lines, respectively, were observed with 

Bmac0018. Linkage of the BaMMV resistance to Bmac0018 has been confirmed by 

analysis of the single lines included in these bulks. Furthermore, additional SSRs 

located in the same chromosomal region of 6H were analysed on the bulks. In this 
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respect well defined polymorphisms between bulks differing in their resistance to 

BaMMV were detected for Bmac0127, Bmag0001, Ebmac0639, Ebmac0874, 

HVM14, and HVM74. In order to achieve further marker saturation in this 

chromosomal region AFLP based BSA was conducted with 96 EcoRI+3/MseI+3 

AFLP primer combinations. Sixteen AFLP primer combinations revealed 

polymorphisms between the parents as well as the susceptible and resistant bulks. 

Out of these 16 promising primer combinations just six combinations E31M56, 

E31M57, E31M58, E32M53, E40M54, and E40M57 revealed linkage on the DH lines 

included in the bulks. The whole population was screened with these AFLP primer 

combinations and the microsatellites mentioned above. The resulting linkage group 

(Fig. 3) located on chromosome 6H comprises a length of 13.5 cM with six SSR 

markers plus six AFLP markers. The marker with the closest linkage to the BaMMV 

resistance locus is E40M54, which has been mapped in a distance of 2.2 cM. 

E40M54 generated an additional fragment on lines carrying the resistance encoding 

allele at 274 bp. Furthermore, three AFLP markers were detected to co-segregate at 

a genetic distance of 3.3 cM. All three AFLP marker show an additional fragment in 

resistant DH lines namely E31M56 at 234 bp, E31M57 at 508 bp and E40M57 at 500 

bp. A second cluster comprises four microsatellite markers. These are HVM14, 

Ebmac0874, Ebmac0639 and HVM74, which have been mapped at a distance of 4.7 

cM from the resistance locus. HVM14 generated a resistant fragment at 157 bp 

whereas susceptible lines reveal a fragment at 161 bp. HVM74 amplifies a fragment 

of 216 bp in resistant lines and 228 bp in susceptible lines. The SSR markers 

Ebmac0639 and Ebmac0806 amplified a fragment of 147 bp and 173 bp, 

respectively, in resistant lines and 167 bp and 198 bp, respectively, in susceptible 

lines.  

 

4.2.3 Mapping the resistance gene of ‘CI 3517’ (MAP 3) 
 

Alarmed by the results obtained in MAP1, ‘CI 3517’ and MAP 3 were screened with 

Bmac0029 in a first step in order to exclude that ‘CI 3517’ may also carry rym5 or 

rym4. Although it was shown that ‘CI 3517’ did not carry rym5 or rym4, 15 DH lines 

out of 80 were identified in this DH population to carry rym4 and were thus excluded 

from further analyses. In the remaining DH lines a segregation ratio of resistant (r) vs. 

susceptible (s) of 1:1 (26r:38s; Chi2= 2.25; p= 0.134) was observed based on the  
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Figure 4: Partial map of barley chromosome 4H including the BaMMV resistance of 

´CI 3517´. 

 
DAS-ELISA-results giving hint to a single recessive resistance gene effective against 

BaMMV. Bulks were composed of six susceptible and six resistant lines of the DH- 

population. In order to assign the resistance gene to a chromosome SSRs (listed in 

Table 1, Appendix) were analysed in a first step. Polymorphisms between the bulks 

were revealed by microsatellite Bmag0353 on chromosome 4H. Additional 

microsatellites located in the same chromosomal region were analysed in order to 

identify more closely linked markers. In this respect, additional polymorphisms 
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between the bulks were detected for Bmac0384, Ebmac0906, Bmac0181, HVM03, 

HVM68 and Bmac0310. The remaining population comprising 65 DH lines was 

genotyped with these markers. Based on the genotypic data, the BaMMV resistance 

was mapped with the closest linkage at a distance of 8.4 cM to the co-segregating 

SSR markers Bmac0384, Bmac0181, Ebmac0906, and HVM03 (Fig. 4). The SSR 

markers HvOle and HVM40, which are located in the direction of the centromer, 

turned out to be monomorphic. 

 

4.2.4 Mapping the resistance gene of ‘Belts 1823’ (MAP 4) 
 

It was known that ‘Franziska’, one of the parents of the population MAP 4, carries 

rym4. Therefore, the population has been primarily screened with SSR marker 

Bmac0029 in order to identify lines carrying the resistance encoding allele at the 

rym4/rym5 locus, which had to be excluded from mapping as they are not informative 

for mapping the resistance of ‘Belts 1823’. In this respect it turned out that ‘Belts 

1823’, which is the donor of the assumed new resistance of MAP 4, possesses rym5. 

Therefore, no further analysis was performed on this population.  

 

4.2.5 Mapping the resistance gene of ‘Chikurin Ibaraki 1’ (MAP 5) 
 

The phenotyping of resistance against BaMMV after mechanical inoculation 

suggested the presence of one resistance gene in the MAP 5 DH population due to a 

detected segregation of 78 resistant to 85 susceptible lines fitting a 1:1 segregation 

ratio (Chi2 = 0.301; p=0.583). In order to localise the BaMMV resistance, DNA bulks 

were composed and analysed by microsatellite markers. Primary screenings 

revealed polymorphisms between the bulks consisting each of 15 completely 

resistant lines and susceptible lines with Bmac0018 and Ebmac0806 located on 

barley chromosome 6H. Further analysis, first on the members of the bulks then on 

the whole population confirmed linkage between the resistance locus and these two 

markers. Consequently, additional microsatellite markers located in the same region 

of chromosome 6H were screened. Additional polymorphisms between the single 

lines included in these bulks were detected for Bmac0127, Bmag0001, Ebmac0639 

and Ebmac0874. Therefore, all 163 DH lines of the cross were analysed with these 

SSR markers resulting in a linkage group of six mapped SSRs (Fig. 5). The map  
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Figure 5: Partial map of chromosome 6H including the resistance locus rym15 of 

‘Chikurin Ibaraki 1’. 

 

shows the BaMMV resistance gene flanked by three markers whereby the closest co- 

segregating SSR markers are Bmac0018 and Bmac0127 located proximal at a 

distance of 1.0 cM. Furthermore, Ebmac0874 shows linkage to the resistance gene 

with a distance of 6.0 cM. In this cross Bmac0018 shows a fragment of 132 bp in 

resistant lines whereas susceptible lines reveal a fragment at 138 bp. Bmac0127 

amplifies a fragment of 120 bp in resistant lines and 118 bp in susceptible lines. The 
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two co-segregating microsatellites Bmac0018 and Bmac0127 are ideal DNA markers 

for marker assisted selection due to their small genetic distance of 1.0 cM. 

 

4.2.6 Mapping the resistance gene of ‘Taihoku A’ (MAP 6) 
 

On the basis of earlier work (WERNER et al. 2003b) it was known that ‘Taihoku A’ 

contains a new BaMMV resistance gene also referred to as rym13 located on 

chromosome 4H. Recently, HABEKUSS et al. (2006) described a new German 

BaMMV strain, against which ‘Taihoku A’ also confers resistance after mechanical 

infection. Using a subset of the original mapping population ‘Taihoku A’ x ‘Plaisant’, 

which was enlarged by 64 DH lines of up to 154 DH lines, mechanical inoculation 

and DAS-ELISA was carried out. A segregation ratio of 87r: 67s (p=0,107; Chi2= 

2.59) confirmed that rym13 also confers resistance against the new German strain of 

BaMMV. BSA was carried out with so far untested SSRs and with AFLPs to identify 

more closely linked markers to the resistance gene. At that time the closest SSR 

marker (WMS06) had been mapped proximal of rym13 at a distance of 15.2 cM 

(WERNER et al. 2003b). Furthermore, a marker cluster comprising the AFLP 

markers E53M36, E53M40 and the RAPD marker OP-C13 located 6.7 cM distally 

was identified (WERNER et al. 2003b). 

 

Unfortunately, in this region of chromosome 4H only few microsatellites are known. 

Therefore, EST derived SSRs’ (THIEL et al. 2003), kindly provided by Prof. Andreas 

Graner, IPK Gatersleben, were used for BSA. Polymorphisms between the two bulks 

containing 10 resistant and 10 susceptible DH lines were only observed with 

GBM1015. To find polymorphism on the different bulks a subset of 256 

EcoRI+3/MseI+3 AFLP primer combination was applied for BSA. Eleven 

EcoRI+3/MseI+3 AFLP primer combinations showed polymorphism on these bulks. 

Three combinations differentiated between the several DH lines included in the bulks 

and were used for mapping. E33M56 (250 bp) and E43M59 (285 bp) generated an 

additional fragment on the resistant lines (Figure 6). The map comprises a length of 

39.1 cM with seven AFLP markers, three microsatellite markers and two RAPD 

markers, with the closest markers being linked at a distance of 1.0 cM to rym13. This 

marker is E53M36, which shows an additional fragment on resistant DH lines at 105 

bp. GBM1015, E51M40 and the RAPD-marker OP-C13, which are co-segregating, 
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Figure 6: Partial map of chromosome 4H including rym13 of ‘Taihoku A’. 

 

mapped at a genetic distance of 1.5 cM proximal to rym13. OP-C13 generated bands 

of 900 bp in the resistance donor ‘Taihoku A’. The AFLP primer combination E51M40 

(120 bp) showed an additional fragment on lines carrying the resistance encoding 

allele. GBM1015 amplified a fragment of 100 bp in resistant lines and bands of 200 

bp were detected in susceptible lines. They are all located proximal to the resistance 

locus. Furthermore, linkage was detected for the microsatellite marker HVM67 with a 

recombination rate of 4.3 cM. DH lines with the susceptibility encoding allele revealed 
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a fragment of 115 bp and the resistant lines showed a smaller fragment of 112 bp 

after using HVM67. 

 

4.2.7 Mapping the resistance gene of ‘Muju covered 2’ (MAP 7) 
 

In the DH population ‘Muju covered 2’ x ‘Spirit’ a segregation ratio of 51 resistant to 

100 susceptible lines (Chi2= 15.90, p= 6.675) was found after a resistance test 

against BaMMV. This segregation ratio does not fit to the expected 1r:1s segregation 

as an excess of susceptible plants was observed which may be due to different 

suitability of the parental lines for tissue culture procedures. Due to former analyses 

by GRANER et al. (1996) it was known, that the resistance of ‘Muju covered 2’ is 

localised on chromosome 4H. In order to map this BaMMV resistance bulks were 

composed and analysed by SSR markers located on this chromosome. 

Polymorphisms were found only with HVM67 and Ebmac0788 because of the limited 

availability of microsatellites in this region of chromosome 4H. WMS06 located on the 

long arm of chromosome 4H was monomorphic between the bulks. Therefore, EST 

derived SSRs, kindly provided by Prof. Andreas Graner, IPK Gatersleben, were 

additionally analysed. Out of these only GBM1015 was polymorphic and used 

besides the two above mentioned SSRs for mapping. Based hereon, a genetic map 

was constructed based on 154 DH lines with a length of 38.7 cM (see Figure 7). The 

SSR marker with the closest linkage to the BaMMV-resistance is Ebmac0788 

mapped within a distance of 7.8 cM. Furthermore, linkage to the resistance gene was 

detected for GBM1015, located distally with a distance of 23.9 cM. The linkage of 

HVM67 is rather loose with a recombination rate of 30.9 cM to the resistance locus.  

 

4.3 Estimation of genetic relatedness of wheat cultivars and breeding lines 
 

The aim of this work was to reveal the genetic relatedness within a subset of wheat 

genotypes and breeding lines resistant against Soil-borne cereal mosaic virus 

(SBCMV) compared to a few tolerant varieties. Therefore, 1146 wheat cultivars had 

been evaluated by different breeders (see Material and Methods chapter 3.2) in field 

trials in Vatan, France, for resistance. Out of all screened wheat genotypes 64 

interesting, predominantly resistant wheat genotypes were selected for analysis of 

genetic relatedness by fingerprinting with 40 SSRs and 30 +3-AFLP primer  
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Figure 7: Partial map of barley chromosome 4H including the BaMMV resistance of 

‘Muju covered 2’. 

 

combinations. Genetic analyses with the 40 SSRs resulted in the detection of 305 

alleles, whereas the number of alleles per locus was on average 7.5 within the range 

of 1 to 17. In addition, the Polymorphic Information Content (PIC) value was 

estimated, which gives information about the usefulness of a SSR regarding marker 

development in breeding programmes and estimation of genetic diversity. The SSR 

marker with the highest PIC-value is wmc276 (0.89) whereas the monomorphic 

wmc41 shows the lowest value (0.00). All results and further information of the 40 

SSRs are given in Table 18. Based on the presence or absence of the amplification 

of alleles, the pair-wise genetic similarity (GS) according to NEI and LI (1979), which 
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corresponds to the likelihood that an allele is generated in a second genotype, was 

analysed ranging from 0.19 to 0.86 with an average of GS=0.49. The minimum 

genetic similarity of 0.19 was observed between the genotypes ‘Enesco’ vs. 

‘Sponsor’ and the maximum genetic diversity of 0.86 was found between the Danish 

breeding lines ‘701-176c’ vs. ‘701-177c’. The mean genetic diversity (DI) across the 

loci within the analysed set of wheat genotypes was DI=0.57. An UPGMA-cluster 

analysis, based on the 0/1-matrix derived GS, was carried out (Fig. 8). The 

dendrogram reveals a strong differentiation of the French cultivars (from ‘Tremie’ to 

‘Gaspard’) from the rest of the analysed wheat lines due to their origin. However, no 

clear grouping could be observed within the remaining genotypes, but the high level 

of genetic diversity in the analysed set indicated a sufficient level of genetic diversity 

within these SBCMV resistant lines.  

Regarding AFLP data, 1847 fragments were detected in total. The genetic similarity 

(GS) was estimated between 0.50 and 0.97 with an average of GS=0.74. The 

maximum similarity was observed between the French cultivars ‘Tremie’ vs. ‘Taldor’, 

whereby the minimum genetic similarity of 0.50 was found between the cultivars 

‘Sponsor’ vs. ‘Enesco’. Genetic diversity according to the Shannon-Weaver Index 

was H’=0.521, whereas the percentage of polymorphic loci added up to 88.2%. 

Within the wheat accessions of the three different breeding companies the genetic 

diversity was calculated on a similar level between the lines of the German 

(H’=0.439) and the Danish (H’=0.443) breeding company. The genetic diversity of the 

genotypes within the French group was clearly higher with H’=0.524. The UPGMA 

cluster analysis based on UPGMA is shown in Figure 9. Similar results as mentioned 

for the SSR analysis were obtained with AFLPs. The French cultivars of the group 

‘Tremie’ to ‘Gaspard’ are separated from the rest of wheat genotypes. A stronger 

grouping according to their origin, respectively to the breeding companies, was 

observed for the rest of the lines. Detailed information about the different genotypes 

has to be concealed with respect to further breeding programs at each breeding 

company.  
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Table 18: Chromosomal location, number of alleles and the PIC-values per locus for 

40 wheat SSRs. 

SSR Chromosome Alleles PIC-value 

wmc24 1A 13 0.67 

wmc254 1A 07 0.48 

wmc177 2A 07 0.69 

wmc264 3A 06 0.75 

gwm513 4A 05 0.57 

psr6465 4A 02 0.17 

wmc219 4A 05 0.26 

barc117 5A 04 0.65 

gwm129 5A 06 0.56 

gwm304 5A 10 0.88 

gwm415 5A 06 0.70 

wmc215 5A 10 0.74 

wmc398 6A 05 0.55 

wmc168 7A 07 0.59 

wmc44 1B 13 0.76 

wmc149 2B 13 0.76 

wmc245 2B 02 0.49 

barc147 3B 05 0.43 

wmc78 3B 07 0.77 

wmc307 3B 07 0.57 

wmc322 3B 06 0.68 

wmc418 3B 05 0.67 

wmc625 3B 08 0.41 

wmc754 3B 13 0.85 

wmc777 3B 04 0.22 

barc20 4B 07 0.75 

wmc47 4B 09 0.40 

wmc238 4B 10 0.86 

wmc710 4B 11 0.68 

gwm539 5B 07 0.40 

wmc104 5B 06 0.59 

wmc276 7B 17 0.89 

wmc147 1D 08 0.28 

wmc41 2D 01 0.00 

wmc167 2D 09 0.48 

wmc601 2D 14 0.85 

wmc52 4D 04 0.12 

wmc331 4D 15 0.67 

psr6394 5D 08 0.70 

wmc161 5D 07 0.61 
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5 Discussion 
 
5.1 Identification of new resistance donors against barley yellow mosaic virus 
disease 
 
As a result of extensive screening programmes several exotic germplasms were 

identified within the primary barley gene pool showing resistance against all known 

strains of the barley yellow mosaic virus disease (GÖTZ & ORDON 1993, ORDON et 

al. 1993), but due to co-evolution of the virus (HARIRI et al. 2003, HABEKUSS et al. 

2006), i.e. the detection of new resistance breaking virus strains, new sources of 

resistance have to be identified. Therefore, it is of prime interest to identify new 

varieties possessing a BaMMV/BaYMV resistance, which is not allelic to the BaMMV 

resistance genes rym4 (ORDON & FRIEDT 1993) or rym5, because these have 

already been overcome by new strains of these viruses. In this context, exotic 

germplasms, although their agronomic traits are not outstanding, become more and 

more important for broadening the genetic base of resistance against BaYMV 

disease (ORDON & FRIEDT 1994). The main objective of the present study was to 

identify new resistance genes against BaMMV/BaYMV and respective molecular 

markers by screening resistant genetic resources for known PCR-based markers for 

rym4/rym5 and analysing segregating DH populations. In order to identify new 

resistance donors against BaYMV/BaMMV 120 exotic gene bank accessions, which 

are resistant against BaYMV in Japan, were analysed in the present study with the 

diagnostic SSR marker Bmac0029 for rym4 and rym5 resistance. The genotypes, 

which are not carrying rym4 or rym5, are potential candidates for the identification of 

new resistance genes. After evaluation of the BaYMV/BaMMV resistance of these 

exotic germplasms in greenhouse and field trials the varieties ‘Chikurin Ibaraki 3’, 

‘Hakusanmugi’, ‘Hongcheon Anjeunbaengi 2’, ‘Ramsar’, ‘Sekitori 2’, ‘Turkey 3’ and 

‘Turkey 179’ were identified to be resistant against BaMMV, BaYMV and BaYMV-2 

(H. JAISER personal communication) and carrying genes different from rym4/rym5. 

Therefore, these are useful sources for further breeding programmes to broaden the 

genetic base of resistance against the barley yellow mosaic virus complex. These 

germplasms can now be crossed to high yielding barley varieties to develop new 

resistant cultivars. However, in tests for allelism it has to be verified, if these exotic 

genotypes possess already known resistance genes like rym11, rym12 and rym13, 
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which impart resistance against all known strains of BaYMV, or if the varieties 

possess new, not yet identified, resistance genes. Despite only a few newly detected 

virus strains which are able to overcome already known resistance genes in Europe 

up to now, the search of new resistance donors is an ongoing task, because of the 

enduring risk of co-evolution. Regarding the present situation seven strains of 

BaYMV and two of BaMMV have been described in Japan (NOMURA et al. 1996), 

whereas in France and Germany new variants of BaMMV have been reported which 

have overcome the resistance genes being effective so far (HARIRI et al. 2003, 

KANYUKA et al. 2004, HABEKUSS et al. 2006). Beside the primary barley gene 

pool, the secondary gene pool, i.e. Hordeum bulbosum, is used to improve BaYMV 

resistance. Hordeum bulbosum possesses a lot of useful traits like several disease 

resistances (PICKERING et al. 2000, WALTHER et al. 2000). Due to problems with 

hybrid instability, interspecific incompatibility and endosperm degeneration the 

transfer of genetic material was previously limited, but these problems have been 

solved almost completely (PICKERING & JOHNSTON 2005). Through interspecific 

crosses loci from Hordeum bulbosum, which confer resistance against BaYMV, 

scald, stem rust, and powdery mildew, were transferred into the Hordeum vulgare 

genome (PICKERING et al. 1995, RUGE et al. 2003, RUGE-WEHLING et al. 2006, 

PICKERING et al. 2006, SHTAYA et al. 2007).  

 

5.2 Mapping of new resistance genes against Barley yellow mosaic virus 
 
The aim of the present work was to identify and localize new resistance genes and to 

develop closely linked molecular markers in addition to those genes already known. 

Therefore, seven different DH populations were used for mapping purposes. The 

total offspring of all seven crosses between a new resistance donor and a 

susceptible variety were screened with the diagnostic marker Bmac0029 to identify 

rym4 and rym5 resistance donors. By this approach, the offspring of the cross 

‘Cebada’ x ‘Cleopatra’ and the cross ‘Belts 1823’ x ‘Franziska’ were identified to carry 

the recessive resistance genes rym5 and rym4, respectively. Both genes have 

successfully been mapped already (SCHIEMANN et al. 1997, GRANER et al. 1999a, 

PELLIO et al. 2005). Map based cloning and sequencing revealed that rym4 and 

rym5 are two alleles of the same gene and encode a eukaryotic translation initiation 

factor 4E (Hv-eIF4E, STEIN et al. 2005). Since sequence information is already 

available and rym4 and rym5 are no longer effective against certain BaYMV strains 
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(HARIRI et al. 2003, HABEKUSS et al. 2006), no further analysis and mapping was 

carried out on these DH populations. 

 

5.2.1 Mapping resistance genes on chromosome 4H 
 
The resistance locus of the variety ‘CI 3517’ was mapped on chromosome 4H, with 

the closest linkage revealed by a cluster of SSR markers (Bmac0384, Bmac0181, 

Ebmac0906 and HVM03) in a distance of 8.4 cM. In comparison to the map position 

of the recessive resistance locus rym11 of the DH mapping population ‘IPK1’ and 

‘IPK2’ on chromosome 4H (NISSAN-AZZOUZ et al. 2005) allelism with the resistance 

locus of ‘CI 3517’ can be hypothesized because all three maps (see Fig. 10) show 

the same SSR markers linked, located all in the centromeric region of chromosome 

4H. The map of ‘CI 3517’ compared with the partial map of ‘IPK1’ published by 

NISSAN-AZZOUZ et al. (2005) and the barley consensus map (VARSHNEY et al. 

2007) revealed only some slight rearrangements of the marker order (see Fig. 10). 

The SSR markers Bmac0384 and Bmac0181 have been mapped proximally to 

rym11 (NISSAN-AZZOUZ et al. 2005) contrary to the DH population of ‘CI 3517’, 

where a co-segregation with other SSR markers distally to the resistance locus was 

observed (NISSAN-AZZOUZ et al. 2005). Furthermore, the order of the flanking 

marker located distally is inversed compared to the barley consensus map published 

by VARSHNEY et al. (2007). The SSR marker HVM03 has been mapped distally to 

the resistance gene in the DH population of ‘CI 3517’, whereas the marker has been 

mapped proximally to rym11 in the ‘IPK2’ map. These differences between the order 

of the markers and the map distances are assumed to be due to the size of the 

mapping populations, because in smaller mapping population estimations of 

recombination frequencies are not as accurate as in larger populations. Therefore 

rearrangements may be due to the higher resolution of the rym11 region of ‘IPK1’ 

(191 DH lines) and ‘IPK2’ (161 DH lines) in comparison to the rym region of 65 DH 

lines of the population ‘CI 3517’ x ‘Reni (see Fig. 10). In addition, it has to be taken 

into account that SSR markers are clustering in the centromeric region (RAMSAY et 

al. 2000, LI et al. 2003) and a suppressed recombination occurs in proximal 

chromosome regions (KÜNZEL et al. 2000) leading to differences in the estimations 

of genetic distances. Furthermore, the order of SSR markers can vary due to the 

application of the AFLP markers in mapping of genes like applied to map the 

resistance genes of ‘IPK1’ and ‘IPK2’. Based on earlier works by WERNER et al.  



Discussion 

 60 



Discussion 

 61

(2003b), the resistance gene rym13 of ‘Taihoku A’ mapped on chromosome 4H, like 

the earlier described resistance genes rym1 (OKADA et al. 2004), rym8 (BAUER et 

al. 1997) rym9 (WERNER et al. 2000a), the above mentioned rym11 (BAUER et al. 

1997, NISSAN-AZZOUZ et al. 2005) and rym12 (GRANER et al. 1996). The closest 

linked markers in the mapping approach of WERNER et al. (2003b) revealed a 

cluster comprising the AFLP markers E53M36, E53M40 and the RAPD marker OP-

C13 located 6.7 cM distally of the resistance gene rym13. Therefore, in the present 

work more closely linked single markers were identified by enlarging the mapping 

population to an entire DH population of 154 lines and mapping of additional AFLP 

markers. In doing so, a new linkage map was generated, comprising seven new 

AFLP markers, three microsatellite markers and two RAPD markers with the closest 

one present in a distance of 1.0 cM to the BaMMV resistance locus rym13 (Fig. 11 

B). Regarding the mapped SSR markers HVM67 and WMS06, the results suggest 

that the resistance gene rym13 is located within the same genomic region like the 

resistance gene rym9 from ‘Bulgarian 347’ (WERNER et al. 2000b, see Fig. 11). In 

both cases, HVM67 shows a closer linkage to the resistance genes compared to 

WMS06. On the basis of a preliminary allelism test (WERNER 2002) it can be 

deduced that rym13 and rym9 are not allelic like the rym4/rym5 resistance locus 

(STEIN et al. 2005), but additional test are necessary to confirm these results.  

As a result of previous studies by GRANER et al. (1996) it is known, that the 

resistance gene rym12 is located on chromosome 4H, too. In the present study, 

rym12 is mapped in the cross ‘Muju covered 2’ x ‘Spirit’ by the use of SSR markers of 

the long arm of chromosome 4H. Due to the limited availability of microsatellites in 

this region, polymorphisms between the bulks were only found by using the markers 

HVM67, Ebmac0877, and the EST derived SSR GBM1015. Ebmac0877 is distally 

the closest linked marker to the resistance locus with a distance of 7.8 cM (D, Figure 

11). With respect to the other linkage maps mentioned above the SSR marker 

WMS06 does not reveal polymorphisms in the ‘Muju covered 2’ x ‘Spirit’ map. 

BAUER et al. (1997) mapped the resistance gene rym8, which shows only partial 

resistance against BaMMV and BaYMV (GRANER et al. 1999b), in the telomeric 

region of chromosome 4H in the map interval between the RFLP markers MWG051 

and MWG616 (C, Fig. 11). Due to double-crossover events it was not possible to 

determine the exact map position. The mapping of the RFLP markers MWG051 and 

MWG616 suggest that the recessive resistance genes rym8 and rym9 are located in 
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the same genomic region of chromosome 4H, because both RFLP markers are 

linked to the two resistance loci (BAUER et al. 1997). Therefore, the three resistance 

genes rym8, rym9 and rym13 form a gene cluster on the long arm of chromosome 

4H in the telomeric region. To find out, if these resistance genes are allelic additional 

tests have to be carried out. With respect to rym12, which is located in the same 

telomeric region like rym8, rym9, and rym13 (ORDON et al. 2004a), it may be 

concluded that it is pertinent to the gene cluster mentioned above. Further marker 

saturation with AFLP marker has to be done to find more closely linked markers to 

confirm this hypothesis. Due to the great distance of the SSR marker HVM67 of 77.7 

cM to the resistance gene rym11 from ‘Russia 57’ (see Fig. 10 C, NISSAN-AZZOUZ 

et al. 2005), it exemplifies the different position of rym11 in contrast to rym13, where 

HVM67 showed a close linkage of 4.3 cM (Fig. 11 B).  

 

5.2.2 Mapping resistance genes on chromosome 6H 
 
The BaMMV resistance gene of the Japanese variety ‘Chikurin Ibaraki 1’ could be 

mapped on the short arm of chromosome 6H. The two closest PCR markers are the 

co-segregating SSRs Bmac0018 and Bmac0127, which have been mapped in a 

distance of 1.0 cM from the resistance gene rym15. These results are in accordance 

with the results of LE GOUIS et al. (2004) based on 217 DH lines of the cross 

‘Chikurin Ibaraki 1’ x ‘Plaisant’. Regarding the results of LE GOUIS et al. (2004), the 

SSR marker Bmac0173 shows the closest linkage to rym15. Unfortunately, 

Bmac0173 is monomorphic in the ‘Chikurin Ibaraki 1’ x ‘Igri’ population used in the 

present work (see Fig. 12). Besides the co-segregating SSRs Bmac0018 and 

Bmac0127 rym15 was found to be flanked distally by the SSR Ebmac0874, which is 

in accordance with the results of LE GOUIS et al. (2004). The molecular marker 

order of the two already mentioned maps of chromosome 6HS are confirmed by 

maps published by RAMSAY et al. (2000) based on the DH population ‘Lina’ x ‘H. 

spontaneum Canada Park’ composed of 86 DH lines and by the barley consensus 

map recently published by VARSHNEY et al. (2007). Both maps reveal a highly 

comparable clustering of the markers Ebmac0874 and Ebmac0806 with only slightly 

different genetic distances in between. Bmac0173, which is closely linked to rym15 in 

the ‘Chikurin Ibaraki 1’ x ‘Plaisant’ population (LE GOUIS et al. 2004), is located 

distally in both maps. The two common SSR markers closest to rym15 Bmac0127 

and Bmag0018 also form a cluster in the ‘Lina’ x ‘Hordeum spontaneum Canada 
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Park’ map of RAMSEY et al. (2000), but are mapped in a distance of 0.5 cM in the 

barley consensus map of VARSHNEY et al. 2007. Furthermore, the marker order of 

the ‘Chikurin Ibaraki 1’ x ‘Igri’ population used in the present study is highly similar 

when compared to other maps (LE GOUIS et al. 2003, RAMSAY et al. 2000, 

VARSHNEY et al. 2007), except for Ebmac0639, which is more closely linked to the 

centromeric region. A strong clustering of SSR markers close to the centromeric 

region of chromosome 6H was observed (RAMSAY et al. 2000, LI et al. 2003), which 

is probably due to suppressed recombination in the centromeric regions and which 

likely impede further marker saturation. This results in a gap of 14-22 cM without any 

mapped SSR markers at the short arm of chromosome 6H (RAMSAY et al. 2000, 

VARSHNEY et al. 2007). All markers shown in the four different linkage maps (see 

Fig. 12), are suitable for the marker assisted selection (MAS), whereas Bmac0127 

and Bmac0018 can be used for a fine-mapping approach of the BaMMV resistance 

gene of ‘Chikurin Ibaraki 1’, because these markers are flanking the gene in a 

distance of 1.0 cM (see Fig. 12A). To check whether the majority of plants selected 

on the basis of these markers will carry the resistance-encoding allele, the two 

flanking markers Bmac0018 and Bmac0127, respectively, and Ebmac0874 can be 

chosen instead of only one. In addition, the markers Bmac0018, Bmac0127 and 

Ebmac0874 possess high diversity indices with 0.59, 0.83 and 0.62 (RAMSAY et al. 

2000), which make them powerful tools for MAS (LE GOUIS et al. 2004) due to their 

high polymorphic character in European barley cultivars. 

For the identification and mapping of a new resistance gene against the barley yellow 

mosaic virus disease the DH populations of the cross ‘Shimane Omugi’ x ‘Gilberta’ 

and ‘Shimane Omugi’ x ‘Sumo’ were characterised concerning their BaMMV reaction 

in greenhouse trials. Thereby, a BaMMV resistance gene could also be mapped on 

the short arm of chromosome 6H. In this case additional AFLP markers were used 

where E40M54 reveals the closest linkage within a distance of 2.2 cM, followed by a 

cluster of co-segregating AFLP markers. In comparison to the results of LE GOUIS et 

al. (2004), the barley consensus map of VARSHNEY et al. (2007), and the map of 

‘Chikurin Ibaraki 1’ from the study discussed before, the two BaMMV resistance 

genes seem to be located within the same genomic region of chromosome 6HS. The 

map of the ‘Shimane Omugi’ resistance shows some rearrangements regarding the 

molecular marker order but there are still some of the same SSRs mapped. Only the 

SSR marker Ebmac0874 has been mapped distally of the resistance locus derived of  
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‘Shimane Omugi’ in opposite direction compared to the results of LE GOUIS et al. 

(2004). However, results are still in accordance to the population of ‘Lina’ x ‘H. 

spontaneum Canada Park’ (RAMSAY et al. 2000). Furthermore, the SSR markers 

Bmac0127, HVM74 and HVM14 are also co-segregating in the DH population of 

‘Chikurin Ibaraki 1’ x ‘Plaisant’, whereas the markers Bmac0127 and HVM14 have 

been mapped within a distance of 0.4 cM to HVM74 in the barley consensus map. 

Only two markers, HVM14 and Bmac0127, could be mapped by RAMSAY et al. 

(2000), but are also co-segregating. Molecular markers like Ebmac0806 and 

Bmac0173, which are located distantly from the centromeric region, turned out to be 

monomorphic in the ‘Shimane Omugi’ population. Due to a still concordant order of 

the SSRs of the maps of the ‘Shimane Omugi’ and ‘Chikurin Ibaraki 1’ resistance 

(Fig. 12A+B), it can be assumed that the different localization of the resistance gene 

rym is likely due to the included AFLP markers. In summary, it can be hypothesised, 

that the locus conferring resistance in ‘Shimane Omugi’ is the same like the 

resistance locus in ‘Chikurin Ibaraki 1’, which has to be proven by tests for allelism. 

 

5.3 Application of doubled haploids and molecular markers in plant breeding 
 
Molecular markers, in particular microsatellite markers (SSRs), are important tools to 

facilitate the effective selection on a single plant level in an early developmental 

stage independently of the symptom development in the field. The use of molecular 

markers for the breeding companies is time-saving, and therefore cost-effective 

which is a major aspect in developing new improved varieties (FRIEDT & ORDON 

2004, ORDON et al. 2005) especially for a private profit-oriented breeding company. 

In the present study the usefulness of the SSR marker Bmac0029 as a diagnostic 

selection marker facilitated e.g. the identification of the already known resistance 

genes rym4 and rym5. Especially for mapping the ‘CI 3517’ resistance on 

chromosome 4H it was a prerequisite to eliminate DH lines carrying the rym4 

resistance gene to be able to map the new resistance gene. Furthermore, the 

usefulness of SSR markers in gene mapping and in MAS has been proven already in 

many different crop species like barley (WERNER et al. 2003a), wheat (PENG et al. 

1999), and soybean (MUDGE et al. 1997). In comparison to RFLPs (GRANER et al. 

1991), SSRs facilitate a much faster mapping and compared to AFLPs (VOS et al. 

1995) specific SSR markers can be used by breeding companies directly and easily 

in plant breeding programs without the conversion into STS markers. Further on, 



Discussion 

 67

SSR markers are very useful tools for the location of a gene of interest on 

chromosomes (JOSHI et al. 1997) and therefore giving hint to the specific map 

position.  

Regarding the present study, it was observed that the use of DH populations as 

mapping populations is well suited for the development and application of PCR-

based markers to identify resistance genes against Barley yellow mosaic virus 

disease. DH populations are advantageous in comparison to F2-populations, because 

DHs represent totally homozygous lines, with a defined segregation ratio of recessive 

to dominant genotypes in 1:1, which can be easily phenotyped (TUVESSON et al. 

2007). The DH-technology, starting from F1 donor plants, leads immediately to 

homozygous DH lines without further segregation and facilitate a more accurate 

selection compared to F2-generations (WERNER et al. 2007). Further on, DH 

populations can be easily reproduced. Reliable phenotypic data are of high 

importance for marker development. These data can be obtained for BaMMV on 

segregating DH populations by mechanical inoculation in the greenhouse followed by 

DAS-ELISA (FRIEDT 1983), a prerequisite for the estimation of the segregation ratio 

(GÖTZ & FRIEDT 1993). Furthermore, DH populations are advantageous in 

comparison to recombinant inbred lines (RIL), because they can be produced in a 

shorter period of time. The DH-technology is already used for practical breeding in 

several crop species like rapeseed, wheat and barley (CUSTERS 2003, JACQUARD 

et al. 2003, TUVESSON et al. 2003, DEVAUX & PICKERING 2005). This procedure 

has also been developed for rye, triticale, oat, and cabbage, but is still rarely used 

(MANNINEN et al. 2004). Based on the DH-technology, the resistance genes rym12, 

rym13, rym15, the BaMMV resistance of ‘Shimane Omugi’ and of ‘CI 3517’ have 

been mapped. Furthermore, rym4 (GRANER & BAUER 1993), rym5 (GRANER et al. 

1999), rym13 (WERNER et al. 2003b), rym15 (LE GOUIS et al. 2004) and the 

BaYMV/BaYMV-2 resistance of ‘Chikurin Ibaraki 1’ (WERNER et al. 2003a) have 

been identified by using DHs. 

The availability and combination of molecular markers and doubled haploids facilitate 

an efficient combination of different resistance genes in one breeding line 

(pyramiding) against the barley yellow mosaic virus complex (ORDON et al. 2004, 

WERNER et al. 2005, 2007). Pyramiding may lead to durable and broad spectrum 

resistance (WERNER et al. 2000b, ORDON et al. 2005), which is of prime interest 

due to resistance breaking strains described in the last years in Europe and Japan 
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(NOMURA et al. 1996, HARIRI et al. 2003, HABEKUSS et al. 2006). There are 

several possibilities to create durable resistances due to the application of molecular 

markers, which were developed e.g. for the resistance genes rym13 and rym15 in 

this study. WERNER et al. (2005) reported on two strategies, which involve one and 

two DH steps, respectively, to combine the resistance genes rym4 or rym5 with rym9 

and rym11. Many of the resistance genes described before (see Chapter 2.2.1) – 

except rym11 and rym13 – are not effective against all strains of the barley yellow 

mosaic virus complex, rym9 for example is only effective against BaMMV and 

BaMMV-SIL and rym5 shows resistance against BaMMV, BaYMV and BaYMV-2 

(KANYUKA et al. 2004) and are therefore appropriate genes for pyramiding 

strategies. The identified resistance genes in the present work like rym13 or rym15 

can easily be incorporated into pyramiding strategies due to the availability of closely 

linked markers. The combination of genes is a useful approach for extending the 

usability of these resistance genes in barley breeding. For example the combination 

of rym5 and rym9 should result in a resistance against all strains of barley yellow 

mosaic virus known in Europe (KANYUKA et al. 2004). Pyramiding of genes has 

been applied in several crop breeding programmes leading to the development of 

varieties possessing multiple and durable resistances (ORDON et al. 2005, BOYD 

2006, ZHANG et al. 2006). The successful marker-assisted pyramiding has already 

been reported for wheat with respect to three powdery mildew resistance genes 

Pm3, Pm4a and Pm21 (LIU et al. 2000) and two cereal cyst nematode resistance 

genes of Aegilops variabilis (BARLOY et al. 2007). Furthermore ZHANG et al. (2006) 

published the combination of the two dominant resistance genes Xa7 and Xa21 

against bacterial blight in hybrid rice. The combination of the two resistance genes 

Bph1 and Bph2 against the brown planthopper (Nilaparvata lugens Stål) into rice by 

means of pyramiding has also been reported (SHARMA et al. 2004). 

 

5.4 Wheat genetic diversity 
 
The wheat data presented in this study are the basis for ongoing breeding 

programmes for soil-borne cereal mosaic virus, because detailed knowledge on the 

genetic diversity between genotypes in the frame of a breeding programme is of 

prime interest and facilitates a more efficient selection of parental genotypes. 

Furthermore, parental lines can be selected based on the cluster analysis and 

molecular markers can be used for the identification of suitable wheat genotypes. 
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The objective of the studies on wheat was to analyse the genetic relatedness 

between 64 wheat genotypes, provided by different co-operation partners from 

Denmark, France and Germany, using 40 SSR markers and 30 EcoRI+3/MseI+3 

AFLP primer combinations. Both types of molecular markers were able to distinguish 

the 64 accessions examined and therefore found to be suitable for assessing the 

genetic diversity within this material. The set of 40 (39 polymorphic ones) SSRs 

produced a total number of 305 different alleles, which can be considered as 

sufficient to get stable and reliable estimations of the genetic relatedness (STACHEL 

et al. 2000). Although ZHANG et al. (2002) insist upon the need of 350 to 400 alleles 

to distinguish between wheat materials, STACHEL et al. (2000) required only 202 

alleles to get a cluster analysis, which clearly differentiated between the wheat 

accessions according to their agroecological areas. Furthermore, STĘPIEŃ et al. 

(2007) came to the conclusion that 166 alleles are sufficient for the successful 

assessment of the genetic diversity in Polish wheat varieties. Thus the necessary 

number of polymorphic alleles can vary and depends highly on the investigated 

numbers of included varieties and their evolutionary relatedness (STACHEL et al. 

2000, ROUSSEL et al. 2004). GAO et al. (2003) reported only on 163 alleles for the 

effective characterisation of 108 rice accessions and PANDEY (2006) suggested that 

237 alleles are enough to cluster 161 barley varieties. Based on the polymorphic 

information content (PIC) value, which is a tool to measure the informativeness of a 

given SSR marker, 27 SSR markers used in the present study turned out to be highly 

polymorphic (PIC value > 0.5, STODART et al. 2005) and are therefore well suited 

for the use in genetic diversity studies and discrimination of varieties. In comparison 

to previous studies on genetic diversity of wheat cultivars, it could be shown that the 

average number of alleles per locus in the present work (7.5) was lower. The mean 

number of alleles per locus reported by RÖDER et al. (2002), studying 502 recent 

European wheat varieties, was 10.5, whereas ROUSSEL et al. (2005) detected the 

mean average of 16.4 alleles per locus in 480 European wheat cultivars released 

from 1840 to 2000. Furthermore ROUSSEL et al. (2004) assessed the genetic 

diversity of 559 French bread wheat varieties with 41 SSRs and found the average 

number of alleles with 14.5. These differences and the higher variation respectively 

are probably due to the analyses of old varieties and landraces in comparison to the 

present study where breeding lines and newer cultivars were used. This result could 

be explained by the intensive use of related species during the last decades 
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(ROUSSEL et al. 2004). In addition to this, the extended geographic distribution of 

the investigated genotypes is a further explanation (STACHEL et al. 2000, 

ROUSSEL et al. 2004). Further on, the number of genotypes, which were used in 

other studies for the estimation of genetic diversity, was usually higher when 

compared to the 64 genotypes described in this project. Therefore, a higher variation 

within the wheat material was expected. STACHEL et al. (2000) reported the mean 

number of alleles with 4.8 for studying genetic differentiation in only 60 wheat 

cultivars originating from Austria, Germany and Hungary. This value is comparable to 

the present study and to results of different authors, who detected 5.5 alleles per 

locus in 43 Chinese wheat varieties (ZHANG et al. 2002) and found the average 

number of 4.7 alleles per locus in 30 parents (LIU et al. 2007). The PIC values for 

each SSR marker (see Table 18, chapter 4.3) is comparable to the PIC values 

published in earlier works (PRASAD et al. 2000, MCCARTNEY et al. 2004). Only the 

wheat SSRs wmc167, wmc177, and wmc254 used in the present study were less 

informative compared i.e. to the work of PRASAD et al. (2000) and MCCARTNEY et 

al. (2004), who showed the use of SSR markers for detecting DNA polymorphism 

and haplotype diversity in wheat. 

Regarding the use of AFLPs as genetic markers, one major advantage is the large 

number of scorable bands (ROY et al. 2004), which increases the power for the 

detection of polymorphisms. In the present study more than 1800 fragments were 

detected and 88.2 % of scorable AFLP loci turned out to be polymorphic, which is 

relatively high when compared to other studies. The mean level of polymorphism 

reported by HAZEN et al. (2002) or ROY et al. (2004) was 14 % and 46 %, 

respectively. However, both authors used only 8 EcoRI+3/MseI+3 AFLP primer 

combinations in genetic diversity studies with 44 and 55 genotypes, respectively. The 

genetic similarity of the different AFLP markers was 0.74 in contrast to the SSR 

markers, where a wider range was found leading to a lower GS value of 0.54. Similar 

results were published by ROY et al. (2004) for bread wheat, RUSSELL et al. (1997) 

for barley, and UPTMOOR et al. (2003) for sorghum. In accordance with these 

results similar levels of the mean genetic diversity were observed with both marker 

systems. Regarding the SSR data the diversity index (DI) value, which is the mean 

number of alleles detected over all loci, is 0.57 and the genetic diversity within the set 

of the 64 wheat cultivars analysed with AFLP is 0.521. The comparison of AFLP 

markers with SSRs showed that microsatellite markers have a higher specificity while 
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AFLPs possess the highest marker index resulting from the large number of loci 

detected by one AFLP primer combination. This comparison was described in 

different studies of crop species like barley, wheat and soybean (POWELL et al. 

1996, RUSSELL et al. 1997, BOHN et al. 1999). Furthermore, the knowledge about 

the genome location of SSRs is useful for future studies and for sampling the 

genome, but the efficiency in detection of polymorphism and therefore the generation 

of well saturated maps is much higher for the AFLP markers (MORAGUES et al. 

2007). The results on genetic relatedness after UPGMA cluster analysis within the 64 

wheat accessions revealed a clear grouping of the cultivars regarding their origin, 

respectively their breeding companies. With respect to the genetic diversity estimated 

by the Shannon-Weaver-Index for the 64 genotypes, which are separated into three 

different groups according to their breeding companies, it was observed, that the 

group with varieties of the French breeding company had the highest diversity with 

H’=0.524, whereas the genetic diversity was calculated on a similar level in the 

German and Danish accessions with H’=0.439 and H’=0.443, respectively. These 

differences can be considered to be due to their different pedigrees. For the cultivars 

of the French company it could be shown that wheat varieties like ‘Tremie’ or 

‘Cadenza’ were used, which had already been released in France and the UK in 

contrast to the German and Danish breeding companies, where breeding lines with a 

similar genetic background were taken for the estimation of genetic relatedness.  
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6 Summary 
 

Barley yellow mosaic virus (BaYMV) and Barley mild mosaic virus (BaMMV) have 

spread to the most winter barley growing areas in Europe and have become a 

serious threat to winter barley cultivation. Besides, an increasing spread of soil-borne 

viruses of wheat, i.e. Soil-borne cereal mosaic virus (SBCMV) and Wheat spindle 

streak mosaic virus (WSSMV), respectively, was observed in the last decade. Due to 

transmission of these viruses by the ubiquitous soil-borne fungus Polymyxa graminis 

chemical measures are neither efficient nor economically and environmentally 

acceptable to prevent high yield losses. The only way to ensure high crop yields in 

infested areas is breeding and cultivation of resistant cultivars. Therefore, the aim of 

the present study was to identify PCR-based markers for new resistance genes 

against BaYMV by analysing seven DH populations and to evaluate barley 

germplasm for new resistance donors by screening them with already known 

molecular markers. With respect to wheat the main objective was to identify sources of 

tolerance or resistance to SBCMV followed by marker-based genotyping of resistant 

and tolerant cultivars as the starting point of a breeding program.  

After screening 120 exotic barley germplasm by using the SSR marker Bmac0029 for 

the identification of rym4/rym5, seven genotypes were detected, which carry neither 

rym4 nor rym5 and showed complete resistance against BaYMV/BaMMV in field trials. 

Those barley accessions are potential candidates for detecting new resistance 

genes. By analysing different DH populations the resistance locus of barley stock ‘CI 

3517’ was mapped on the long arm of chromosome 4H, just like the resistance gene 

rym13 of variety ‘Taihoku A’. The new closest linked marker E53M36 for rym13 was 

mapped at a distance of 1.0 cM and can be used for MAS in the future. Furthermore, 

rym12 of the resistant cultivar ‘Muju covered 2’ was localised by SSR markers on the 

long arm of chromosome 4H. However, closer molecular markers have to be 

developed for MAS. Using bulked segregant analysis (BSA) the resistance genes of 

Japanese varieties ‘Chikurin Ibaraki 1’ and ‘Shimane Omugi’ were mapped on 

chromosome 6H. Regarding rym15 of ‘Chikurin Ibaraki 1’ the SSR markers 

Bmac0127 and Bmac0018 are closest linked with a distance of 1.0 cM. With respect 

to ‘Shimane Omugi’ E40M54 is the closest marker mapping in a distance of 2.2 cM. 

Based on the mapped SSR markers it can be hypothesised that the locus conferring 



Summary 

 73

resistance in ‘Shimane Omugi’ is the same as the resistance locus in ‘Chikurin 

Ibaraki 1’. However, this has to be further proven by allelism tests. 

In addition, 64 wheat accessions derived from a set of 1,146 cultivars tested for 

resistance to SBCMV of three different breeding companies were analysed for 

genetic relatedness using SSR markers and EcoRI+3/MseI+3 AFLP primer 

combinations. The application of 40 genome covering microsatellites revealed a high 

level of genetic diversity (DI=0.57) and genetic similarity (GS) was estimated to range 

from GS=0.19 to GS=0.86, with an average of GS=0.49. The genetic diversity 

according to the Shannon-Weaver Index based on 30 AFLP primer combinations 

amounts to H’=0.521, whereas genetic similarity was estimated to vary between 0.50 

and 0.97, with an average of GS=0.74. Furthermore, genetic diversity was measured 

among the wheat lines of the different breeding companies revealing a similar level 

between the German (H’=0.439) and the Danish materials (H’=0.443). Regarding the 

varieties of the French breeding company, a much higher genetic diversity (H’=0.524) 

was estimated, probably due to the incorporation of susceptible accessions and 

already released cultivars. 

The results on genetic diversity in the breeding materials of barley and wheat 

developed by different European breeding companies presented here allow 

conclusions on the potentials for future progress. Above that, the identification of 

molecular genetic markers for different virus resistance genes enables the 

confirmation of the chromosomal location of resistance genes and an indirect 

selection for these major-gene resistances based on the respective molecular 

markers (“Smart Breeding”). 
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7 Zusammenfassung 
 

Eine der bedeutendsten Viruskrankheiten im europäischen Wintergerstenanbau ist 

die bodenbürtige Gelbmosaikvirose. Die Krankheit wird in Europa durch einen 

Erregerkomplex verursacht, dem die Viren Barley Mild Mosaic Virus (BaMMV), 

BaMMV-SIL, Barley Yellow Mosaic Virus (BaYMV) und BaYMV-2 zugerechnet 

werden (HUTH 1989, HUTH & ADAMS 1990). Weiterhin gehört ein in Deutschland 

erst kürzlich entdeckter neuer BaMMV-Stamm dazu, der dem französischen BaMMV-

SIL Stamm sehr ähnlich ist (HABEKUSS et al. 2006). Als weitere, bedeutende 

bodenbürtige Getreideviren sind das Wheat Spindle Streak Mosaic Virus (WSSMV) 

und das Soil-borne Cereal Mosaic Virus (SBCMV) zu nennen, für die in den letzten 

Jahren insbesondere im Winterweizenanbau eine starke Ausbreitung nachgewiesen 

wurde (HUTH 2002, HUTH & GOETZ 2007). Aufgrund der vektoriellen Übertragung 

der Viren durch den weit verbreiteten bodenbürtigen Pilz Polymyxa graminis 

(TOYAMA & KUSABA 1970) ist weder eine chemische Bekämpfung dieser Virosen 

noch eine weite Fruchtfolgestellung der Wintergerste bzw. des Winterweizens 

effektiv. Die einzige Möglichkeit zur Vermeidung hoher Ertragsverluste liegt somit im 

Anbau resistenter Sorten. Insgesamt wurden bisher 16 Resistenzgene gegenüber 

der Gelbmosaikvirose beschrieben, von denen lediglich die Resistenzgene rym4 und 

rym5 im aktuellen Sortenspektrum in Deutschland vorliegen. Mit der Entdeckung 

neuer Erregerstämme in Deutschland bzw. Europa, gegen welche rym4/rym5-Träger 

keine Resistenz zeigen, nimmt der Bedarf nach neuen Resistenzgenen bzw. der 

Integration weiterer Gene in das Sortenmaterial deutlich zu. 

Wesentliches Ziel der vorliegenden Arbeit war es daher, molekulare Marker für 

Resistenzgene der Gerste gegen die Gelbmosaikvirose zu identifizieren, indem 

genetische Ressourcen mit Hilfe PCR-basierter Marker im Hinblick auf bekannte 

Resistenzgene analysiert sowie segregierende DH-Populationen untersucht wurden. 

Bezüglich Weizen zielte das Projekt auf die Identifikation von resistenten bzw. 

toleranten Sorten gegenüber SBCMV ab, gefolgt von einer molekularen 

Genotypisierung des bearbeiteten Weizenmaterials als Beginn eines zielgerichteten 

Resistenzzüchtungsprogramms. 

Um neue Resistenzdonoren zu identifizieren, wurden 120 exotische 

Gerstenherkünfte aus der Genbank in Okayama, Japan, untersucht. Hierzu wurden 
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die Genotypen, die Resistenz gegen japanische BaYMV-Isolate zeigten, mit Hilfe des 

codominanten SSR-Markers Bmac0029 (GRANER et al. 1999a) im Hinblick auf die 

Resistenzgene rym4 und rym5 analysiert. Bei 44 Genotypen zeigte sich das für rym5 

spezifische Allel (148 bp) und in weiteren 12 Herkünften ein Fragment von 145 bp, 

welches für rym4 spezifisch ist. Die sieben exotischen Gersten ‚Chikurin Ibaraki 3’, 

‚Hakusanmugi’, ‚Hongcheon Anjeunbaengi 2’, ‚Ramsar’, ‚Sekitori 2’, ‚Turkey 3’ and 

‚Turkey 179’ (Heidi Jaiser, pers. Mitt.), die nach diesen Untersuchungen weder rym4 

oder rym5 trugen und Resistenz in Feldversuchen gegen BaMMV, BaYMV-1 und 

BaYMV-2 Isolate zeigten, stellen nach weiteren Allelietests mit Resistenzdonoren 

wertvolles Ausgangsmaterial für eine Erweiterung der genetischen Basis gegenüber 

BaYMV/BaMMV dar.  

 

Um für eine zielgerichtete Selektion molekulare Marker für Resistenzgene gegen die 

Gelbmosaikvirose zu entwickeln, wurden sieben verschiedene DH-Populationen 

genotypisiert. Zusätzlich zu den molekularen Analysen wurden die DH-Populationen 

anhand von Resistenztests gegenüber BaMMV mittels mechanischer Inokulation in 

Anlehnung an FRIEDT (1983) phänotypisiert und anschließend DAS-ELISA Tests im 

Gewächshaus durchgeführt. Zuerst erfolgte bei den molekularen Analysen ein 

Screening der Kreuzungen zwischen jeweils einem neuen Resistenzdonor und einer 

anfälligen Varietät mit dem SSR-Marker Bmac0029, um auszuschließen, dass in 

diesen trotz anderslautender Angaben rym4 bzw. rym5 vorhanden sind. Anhand 

dieser Vorgehensweise wurden in den Kreuzungen ‚Cebada’ x ‚Cleopatra’ und ‚Belts 

1823’ x ‚Franziska’ die Resistenzgene rym4 und rym5 identifiziert. Da diese beiden 

Resistenzgene in vorherigen Arbeiten kartiert (SCHIEMANN et al. 1997, GRANER et 

al. 1999a, PELLIO et al. 2005) und isoliert (STEIN et al. 2005) wurden und nicht 

mehr gegen alle europäischen BaYMV-Stämme eine Resistenz zeigen, wurden keine 

weiteren Kartierungsarbeiten durchgeführt. Mittels der ‚bulked segregant analysis’ 

(BSA) wurden in den verbleibenden fünf DH-Populationen Resistenzgene gegen die 

Gelbmosaikvirose mittels molekularer Marker lokalisiert. Dadurch konnte der BaMMV 

Resistenzlocus von ‚CI 3517’, aus der 65 DH-Linien umfassenden Kreuzung ‚CI 

3517’ x ‚Reni’, auf Chromosom 4H kartiert werden. Die aktuelle Kopplungskarte 

umfasst sieben SSR-Marker, wobei die am engsten gekoppelten Marker Bmac0181, 

Bmac0384, Ebmac0906 und HVM03 ein Cluster bilden und eine Distanz von 8,4 cM 

zu dem Resistenzlocus aufweisen. Des Weiteren konnte das Resistenzgen rym13 
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aus ‚Taihoku A’, welches eine vollständige Resistenz gegen alle bisher in Europa 

auftretenden Gelbmosaikvirus-Stämme aufweist, auf dem langen Arm von 

Chromosom 4H lokalisiert werden. Dort wurden bereits aus vorherigen Arbeiten die 

Resistenzgene rym1 (OKADA et al. 2004), rym8 (BAUER et al. 1997), rym9 

(WERNER et al. 2000a), rym11 (BAUER et al. 1997, NISSAN-AZZOUZ et al. 2005) 

und rym12 (GRANER et al. 1996) lokalisiert. Die betreffende Kopplungsgruppe der 

Kreuzung ‚Taihoku A’ x ‚Plaisant’ (154 DH-Linien) besteht aus sieben AFLP-, drei 

SSR- und zwei RAPD-Markern und besitzt eine Länge von 39,1 cM. Der AFLP-

Marker E53M36 ist bei einem Abstand von 1,0 cM mit rym13 am engsten gekoppelt. 

Proximal zu dem Resistenzlocus konnte der SSR-Marker HVM67 in einer Distanz 

von 4,3 cM zu rym13 kartiert werden. Aufgrund der in dieser Population kartierten 

SSR-Marker HVM67 und WMS06 kann davon ausgegangen werden, dass rym13 in 

dem gleichen Chromosomenabschnitt wie rym9 und rym8 lokalisiert ist. Mittels einer 

SSR-Analyse konnte das Resistenzgen rym12 von ‚Muju covered 2’ aus der 

Kreuzung ‚Muju covered 2’ x ‚Spirit’, bestehend aus 151 DH-Linien, ebenfalls auf 

dem langen Arm von Chromosom 4H kartiert werden. Aufgrund der geringen 

Markerabsättigung in dieser Region umfasst die genetische Karte mit einer Länge 

von 38,7 cM lediglich drei SSR-Marker. Dabei zeigt der Marker Ebmac0877 mit einer 

Distanz von 7,8 cM den geringsten Abstand zu rym12. Um Aussagen darüber treffen 

zu können, ob rym12 in der gleichen Region wie rym8, rym9 und rym13 lokalisiert ist, 

müssen weitere Marker in dieser Region kartiert werden. 

Der BaMMV-Resistenzlocus von ‚Shimane Omugi’ konnte auf dem langen Arm von 

Chromosom 6H lokalisiert werden. Hierzu wurden die zwei Kreuzungen ‚Shimane 

Omugi’ x ‚Gilberta’ und ‚Shimane Omugi’ x ‚Sumo’ zu einer Kartierungspopulation 

von 97 DH-Linien zusammengefasst. Die Kopplungsgruppe umfasst eine Länge von 

13,5 cM mit insgesamt sechs AFLP-Markern und sechs Mikrosatellitenmarkern. Der 

Marker mit der geringsten Kopplung zu dem Resistenzlocus ist der AFLP-Marker 

E40M54, welcher in einer Distanz von 2,2 cM kartiert werden konnte. Des Weiteren 

konnten drei AFLP-Marker, welche co-segregieren, proximal mit einem Abstand von 

3,3 cM zu dem Resistenzgen kartiert werden. In der 163 DH-Linien umfassenden 

Population ‚Chikurin Ibaraki 1’ x ‚Igri’ konnte das Resistenzgen rym15 in der 

centromeren Region von Chromosom 6H lokalisiert werden. Die aktuelle 

Kopplungsgruppe, die 30 cM umfasst, besteht aus sechs Mikrosatellitenmarkern, 

wobei drei SSR-Marker das BaMMV-Resistenzgen rym15 flankieren. Die beiden am 
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engsten gekoppelten SSR-Marker sind Bmac0018 und Bmac0127, welche proximal 

einen Abstand von 1,0 cM zu dem Resistenzlocus aufweisen. Distal konnte der 

Mikrosatellit Ebmac0874 in einer Distanz von 6,0 cM zu dem Resistenzgen rym15 

lokalisiert werden. Die beiden Marker Bmac0018 und Bmac0127 sind aufgrund ihrer 

geringen genetischen Distanz zu dem BaMMV-Resistenzlocus sehr gut für eine 

markergestützte Selektion geeignet. Im Hinblick auf die Resistenz von ‚Shimane 

Omugi’ und dessen Lokalisation auf Chromosom 6H kann durchaus vermutet 

werden, dass es sich um identische Resistenzloci handelt. Um dies bestätigen zu 

können, müssen weitere Allelietests durchgeführt werden. 

 

Zur Identifikation resistenter Weizengenotypen gegenüber Soil-borne cereal mosaic 

virus (SBCMV) wurden 1146 Sorten und Genotypen in Feldversuchen in Frankreich 

von Züchtern getestet, von denen 64 potentielle Kreuzungspartner auf molekularer 

Ebene unter Verwendung von 40 Mikrosatelliten und 30 EcoRI+3/MseI+3 AFLP-

Primerkombinationen charakterisiert wurden. Basierend auf der Auswertung der 

Fragmentmuster und der Erstellung einer 0/1 Matrix wurde die genetische Ähnlichkeit 

nach NEI und LI (1979) errechnet sowie die genetische Diversität nach Shannon-

Weaver (1949). Im Rahmen der SSR-Analysen wurden insgesamt 305 Fragmente 

detektiert, wobei 1 bis 17 Allelen pro Locus entsprechend durchschnittlich 7,65 

Allelen pro Locus, identifiziert werden konnten. Die ermittelten Polymorphic 

Information Content (PIC) – Werte lagen zwischen 0,00 (wmc41) und 0,89 (wmc276). 

Innerhalb des Sortimentes wurde anhand der Daten eine genetische Diversität (DI) 

von DI=0,57 ermittelt und die genetische Ähnlichkeit (GS) umfasste einen Bereich 

von GS=0,19-0,86 (Mittelwert GS=0,49), wobei der größte Wert der genetischen 

Ähnlichkeit zwischen den dänischen Züchtungslinien ‘701-176c’ und ‘701-177c’ und 

die geringste Ähnlichkeit zwischen den Varietäten ‚Sponsor’ und ‚Enesco’ auftrat. 

Ähnliche Ergebnisse zeigten die AFLP-Analysen. Basierend auf der Untersuchung 

von 1847 Fragmenten wurde eine genetische Diversität von H’=0,52 ermittelt, wobei 

der Prozentanteil der polymorphen Loci bei 88,2 % lag. Die genetische Ähnlichkeit 

wurde anhand der Analysen mit GS=0,50-0,97 (Mittel GS=0,74) bestimmt. Die größte 

genetische Ähnlichkeit konnte zwischen den Varietäten ‚Tremie’ und ‚Taldor’ und die 

geringste wiederum zwischen ‚Sponsor’ und ‚Enesco’ ermittelt werden. Die 

Clusteranalysen, die auf den genetischen Ähnlichkeitskoeffizienten basieren, zeigten 

bei den SSR- sowie den AFLP-Analysen eine deutliche Gruppierung von Genotypen 



Zusammenfassung 

 78 

gleicher geographischer Abstammung, welche sich weiter entsprechend der Herkunft 

der untersuchten Sorten (Züchterhäuser) untergliedert. Im Hinblick auf die 

genetische Diversität differenziert nach den jeweiligen Gruppen, die sich nach den 

drei verschiedenen Züchtungshäusern richten, konnte für das dänische (H’=0,443) 

und deutsche Sortiment (H’=0,439) eine ähnlich große genetische Diversität 

beobachtet werden. Dagegen war die Diversität zwischen den Varietäten der 

französischen Gruppe mit H’=0,524 deutlich größer. Aufgrund dieser Ergebnisse ist 

von einer ausreichenden genetischen Variabilität zwischen den resistenten Linien 

und im Vergleich zu anfälligen Sorten auszugehen, so dass eine gute Basis für eine 

effektive Resistenzzüchtung von Weizen gegen SBCMV gegeben ist. 

Die hier präsentierten Ergebnisse der genetischen Diversität von Zuchtmaterial der 

Gerste und des Weizens verschiedener europäischer Züchter verdeutlichen das 

große Potenzial für zukünftige Züchtungsprogramme. Des Weiteren ermöglicht die 

Entwicklung von molekularen Markern für verschiedene Virusresistenzgene die 

Identifizierung und Bestätigung der chromosomalen Lokalisation und die indirekte 

marker-gestützte Selektion auf diese Resistenzen („Smart Breeding“). 
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Table A3: PCR program for the SSR-analysis. 

 
 
 
 

PCR program Phases 

A 18 cycles of 1 min at 94°C, 1 min at 64°C (0.5°C/cycle), 1 

min at 72°C 

30 cycles of 1 min at 94°C, 1min at 55°C, 1 min at 72°C 

1 cycle of 5 min at 72°C 

B 18 cycles of 1 min at 94°C, 1 min at 69°C (0.5°C/cycle), 1 

min at 72°C 

30 cycles of 1 min at 94°C, 1min at 55°C, 1 min at 72°C 

1 cycle of 5 min at 72°C 

C 1 cycle of 3 min at 94°C, 2 min at 55°C, 1 min 30 s at 72°C 

30 cycles of 1 min at 94°C, 1min at 55°C, 1 min 30 s at 72°C

1 cycle of 5 min at 72°C 

D 1 cycle of 3 min at 94°C, 1 min at 66°C, 1 min at 72°C 

6 cycles of 30 s at 94°C, 30 s at 65°C 

24 cycles of 30 s at 72°C, 30 s at 94°C, 30 s 60°C 

1 cycle of 5 min at 72°C 

E 1 cycle of 3 min at 94°C, 1 min at 55°C, 1 min at 72°C 

30 cycles of 1 min at 94°C, 1min at 55°C, 1 min at 72°C 

1 cycle of 5 min at 72°C 

F 1 cycle of 3 min at 94°C, 1 min at 58°C, 1 min at 72°C 

30 cycles of 1 min at 94°C, 1min at 58°C, 1 min at 72°C 

1 cycle of 5 min at 72°C 

Ebmac906 1 cycle of 3 min at 94°C, 30 s at 52°C, 30 s at 72°C 

25 cycles of 30 s at 94°C, 30 s at 52°C, 30 s at 72°C 

1 cycle of 5 min at 72°C 

GBM 1 cycle of 3 min at 94°C 

10 cycles of 30 s at 94°C, 30 s 60°C (-0.5°C/cycle), 15 s 
72°C 

30 cycles of 30 s at 94°C, 30 s 55°C, 15 s 72°C 

1 cycle of 5 min at 72°C 
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PCR program Phases 

HVM03 1 cycle of 3 min at 94°C, 2 min at 55°C, 1 min 30 s at 72°C 

30 cycles of 1 min at 94°C, 2 min at 55°C, 1 min 30 s at 

72°C 

1 cycle of 5 min at 72°C 

HVM15 18 cycles of 3 min at 94°C, 1 min at 94°C, 30 s 64°C  

(-0.5°C/cycle), 1 min at 72°C 

30 cycles of 1 min at 94°C, 1min at 55°C, 1 min at 72°C 

 
 
Table A4: PCR recipes of the wheat SSRs. 
 
 I II 

DNA 2.0 µl 2.0 µl 

10x PCR-buffer  2.5 µl 1.5 µl 

dNTPs 0.4 µl 0.3 µl 

MgCl2 / 0.4 µl 

R-primer 1.0 ml 0.15 µl 

F-primer 1.0 µl 0.15 µl 

M13-primer / 0.15 µl 

H20 18.0 µl 10.25 µl 

Taq- polymerase 1.0 µl 1.0 µl 

 
 
Table A5: PCR programs for the wheat SSR reactions. 
 
PCR program Phases 

I 1 cycle of 3 min at 94°C 

45 cycles of 1 min at 94°C, 1 min at 55°C, 2 

min at 72°C 

1 cycle of 10 min at 72°C 

II 1 cycle of 3 min at 95°C 

35 cycles of 20 s at 95°C, 20 s at 55°C, 30 s 

at 72°C 

1 cycle at 5 min at 72°C 
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