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“If you try and take a cat apart to see how it works, the first thing you have on your hands 

is a non-working cat. Life is a level of complexity that almost lies outside our vision…” 

- Douglas Adams 
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Abstract 

Phenotypes often visibly reflect the health state of organisms. Especially in diseases with a 

genetic component, examination of the phenotype can aid understanding the underlying 

genetics. Many technologies to generate phenotypes systematically in a high-throughput 

manner, such as RNA interference (RNAi) or gene knock-out, have been developed to de-

cipher functions for genes. This ongoing large-scale characterization of genes in model 

systems will increase phenotypic information exponentially in the near future. 

It is still a major challenge to interpret the results of large-scale functional screens, even 

more so if heterogeneous data sets are to be combined. Furthermore, there have been rela-

tively few efforts to make use of phenotype data beyond the single genotype-phenotype re-

lationship. In this thesis, methods are presented for knowledge discovery in phenotypes 

across species and screening technologies. 

A thorough survey is conducted of the available phenotype resources and various ap-

proaches to analyzing their content are reviewed, including a discussion of hurdles yet to 

be overcome, e.g. lack of data integration, inadequate phenotype ontologies and shortage 

of appropriate analytical tools. 

PhenomicDB version 2, a multi-species genotype/phenotype database, is an approach to in-

tegrate and show genotype and phenotype data on a large scale, using orthologies to show 

phenotypes across species. Here, the focus lies on the incorporation of quantitative and de-

scriptive RNAi screening data and ontologies of phenotypes, assays and cell-lines. 

Furthermore, as the heart of this thesis, the results of a study are presented in which the 

large set of phenotype data from PhenomicDB is taken to predict gene annotations. Here, 

text clustering is utilized to group genes based on their phenotype descriptions. It is shown 

that these clusters correlate well with several indicators for biological coherence in gene 

groups, such as functional annotations from the Gene Ontology (GO) and protein-protein 

interactions. The clusters are then used to predict gene function by carrying over annota-

tions from well-annotated genes to less well-characterized genes in the same cluster.  

Finally, the prototype PhenoMIX is presented, showing the integration of genotype and 

phenotype data with clustered phenotypes, orthologies, interaction data and other similarity 

measures. These data, grouped by their similarity measures are evaluated for predictiveness 

in gene functions and phenotype terms. 
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Zusammenfassung 

Häufig spiegeln Phänotypen die Gesundheit von Organismen sichtbar wider. Die Untersu-

chung des Phänotyps bringt daher insbesondere bei genetischen Krankheiten ein Verständ-

nis der zugrunde liegenden genetischen Mechanismen mit sich. Aufgrund dessen wurden 

neue Technologien entwickelt, so zum Beispiel RNA-Interferenz  (RNA interference – 

RNAi) oder Gen-knock-out Verfahren, um unbekannte Genfunktionen zu entschlüsseln. 

Diese Experimente führen zu einem starken Anstieg der phänotypischen Daten. 

Es bleibt eine große Herausforderung, Ergebnisse von großen Versuchen zu interpretieren, 

insbesondere bei heterogenen Daten. Nur wenige Ansätze haben bisher solche Daten über 

die einzelne Verknüpfung von Genotyp und Phänotyp hinaus interpretiert. In dieser Disser-

tation werden neue Methoden gezeigt, um Entdeckungen in Phänotypen über die Grenzen 

von Spezies und Methodik hinweg zu ermöglichen. 

Es erfolgt eine gründliche Erfassung der verfügbaren Phänotypen-Ressourcen und einiger 

Ansätze zur Analyse ihres Inhalts. Die Grenzen und Hürden, die noch bewältigt werden 

müssen, beispielsweise fehlende Datenintegration, lückenhafte speziesübergreifende Onto-

logien und der Mangel an angemessenen Methoden zur Datenanalyse, werden diskutiert. 

Der Ansatz zur Integration von Genotyp- und Phänotypdaten in großem Maßstab, Pheno-

micDB Version 2, wird präsentiert. Diese Datenbank assoziiert Gene mit Phänotypen mit-

tels Orthologie über Spezies hinweg. Im Fokus liegen die Integration von RNAi-Daten und 

die Einbindung von Ontologien für Phänotypen, Experimentiermethoden und Zelllinien. 

Ferner wird als Herzstück dieser Arbeit eine Studie präsentiert, in der die Phänotypendaten 

aus PhenomicDB genutzt werden, um Genfunktionen vorherzusagen. Dazu werden Gene 

aufgrund ihrer Phänotypen mittels Textclustering gruppiert. Diese Gruppen zeigen hohe 

biologische Kohärenz, da sich viele gemeinsame funktionale Annotationen aus der Gen-

Ontologie (Gene Ontology – GO) und viele Protein-Protein-Interaktionen (PPi) innerhalb 

der Gruppen finden, was zur Vorhersage von Genfunktionen durch Übertragung von Anno-

tationen von gut annotierten Genen zu Genen mit weniger Annotationen genutzt wird. 

Zuletzt wird der Prototyp PhenoMIX präsentiert, in dem Genotypen und Phänotypen mit 

geclusterten Phänotypen, PPi, Orthologien und weiteren Ähnlichkeitsmaßen integriert 

wurden. Diese Daten werden aufgrund ihrer Ähnlichkeitsmaße gruppiert und zur Vorhersa-

ge von Genfunktionen, sowie von phänotypischen Wörtern genutzt. 
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1 Introduction 

1.1 Motivation 

Phenotypes are traceable changes or variations in behavior or appearance, differentiating 

one individual of a species from another on all but the genetic levels. They are thus a 

highly valuable information resource at the interface of medicine and biology. They can be 

used to dissect the relationships between genetic diseases and their responsible genes. 

However, they are not limited to superficial physical observations, e.g. the skin, of an or-

ganism and are usually the result of a long-term interaction between genes and environ-

ment, so they are a highly complex concept. 

Phenotypes have been a subject of research ever since ancient Greek and Roman physi-

cians such as Hippocrates (460-370 BC), Celsus (25 BC – 50 AD), and Galen (130 - 201 

AD) took an interest in meticulously describing and studying the human body and associ-

ated illnesses with physical causes [Delvey and Barbara, 2005]. It was in the 19th century, 

however, when scientists started to systematically examine phenotypes for their origins. By 

minutely describing the differences and common traits of different species, Charles Darwin 

(1809 - 1882) postulated his theory of evolutionary selection which states that variation 

within species occurs randomly and that the survival or extinction of each organism is de-

termined by that organism's ability to adapt to its environment [Bowler, 1996]. Although 

his renowned book was entitled ‘The Origin of Species’, he never explained the actual ori-

gin of species or how heritable changes were passed on to subsequent generations, a topic 

heavily disputed at the time. By examining successive generations of peas, Gregor Mendel 

(1822 - 1884) observed that specific ‘traits’ of peas were passed on from one generation to 

the next and recurred in certain numerical ratios. To explain his results, he distinguished 

between the internal state (‘genotype’) and the external appearance (‘phenotype’). He came 

up with the ideas of dominance and segregation, postulating that offspring receive different 

sets of discrete ‘hereditary factors’ (‘genes’) from parents, and thus founded modern genet-

ics. Although published in 1866 already, Mendel’s findings were only really understood in 

the early 20th century, when they were independently rediscovered by Hugo de Vries, Carl 

Correns and Erich von Tschermak [DeVries, 1900; Klare, 1997; Rheinberger, 1995; 

Tschermak, 1900]. It was the Danish botanist Wilhelm Johannsen who in 1909 coined the 

terms genotype and phenotype (derived from Greek genein meaning ’to give birth’ and 
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phanein ’to show’ respectively) and later, in 1911, introduced the distinction between geno-

type as a descriptor of the genome (describing the process of inheritance) and phenotype as 

a descriptor of the phenome (describing the process of development) [Johannsen, 1911]. 

Thus, in the most general sense, a phenotype is the expression of an organism’s individual 

genetic blueprint under varying environmental influences. In the same sense, a genotype 

comprises that organism’s entire genetic blueprint. 

It is now well accepted that there is a close relationship between genotype and phenotype. 

We are accustomed to defining diseases by a sum of symptoms and try to trace changes in 

phenotype back to their genetic origin or to environmental properties. It is common prac-

tice that researchers define a phenotype in terms of the very small set of phenotypic char-

acteristics that differ at the clinical, cellular, or molecular level from a fictitious average 

within a species. Our limited ability to fully describe all similarities and differences be-

tween several individual’s entire genomes and phenomes leaves us no choice but to learn to 

live with partial data in this area. This is also why the term genotype is often used incor-

rectly for a single genetic change at a certain site in the genome (as if compared to a ‘refer-

ence genome’) and phenotype as a synonym for a certain phenotypic characteristic that is 

different as if compared with a hypothetical average individual of that species. Researchers 

typically do not report all other observable changes obviously unrelated to their specific in-

terest. Another limitation is that for most phenotype data collected so far, the environ-

mental contributions are either neglected or, in the case of model organisms, kept to a ho-

mogeneous minimum using standardized laboratory conditions. Still, enormous efforts 

have been undertaken to decipher genes and their functions, and to find the phenotypes 

corresponding to them. Most are motivated by the fact that an understanding of genotypes, 

phenotypes and their relationships will lead to new cures for diseases and give further in-

sights into the connection between the molecular and systemic functions of organisms. 

Driven by this motivation, new methods have been developed in order to find more func-

tional relationships between genotypes and phenotypes in less time. These efforts have 

culminated in the development of high-throughput phenotype screening methods such as 

RNA interference (RNAi) [Tuschl and Borkhardt, 2002] and in combination with public 

databases [Gunsalus, et al., 2004; Sonnichsen, et al., 2005], phenotypes have become an 

acknowledged and widely used component of functional genomics. Mostly, these data are 

interpreted for a gene-by-gene functional annotation, using each single genotype-

phenotype relationship, since it is the most immediate result of such a screen. This simple 
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biological evaluation can already uncover the involvement of genes in diseases and may 

lead to novel therapeutic approaches. However, such genotype-phenotype relationships, 

especially generated in large amounts as is currently the case, may yield more than just the 

information about a single gene. As is the case in other large-scale whole-genome ap-

proaches (such as microarray analyses), data mining can be applied in order to analyze 

groups of phenotypes, and thus groups of genes. Thus, information can be gained beyond 

the single genotype-phenotype relationship. These comprehensive studies of phenotype 

data aim at helping to understand the genotype-phenotype relationship across datasets, 

methods and even species, and form the field of research termed comparative phenomics. 

Phenotype studies in biomedical research have driven the creation of public phenotype data 

repositories for many different kinds of data types, species and purposes (for more details, 

see section 4.2.4 and the survey by Groth and Weiss [Groth and Weiss, 2006a]), and have 

in consequence helped to increase the amount of available phenotype data in the recent 

years. Almost all phenotype data are stored in textual form. Entries range from descriptions 

of the outcome of RNAi knock-down experiments in model organisms such as Caenor-

habditis elegans with single terms from a controlled vocabulary, like ‘lethal’ or ‘reduced 

egg size’ in WormBase [Rogers, et al., 2008], knock-out studies in Mus musculus described 

with free-text supplemented with terms from the Mammalian Phenotype ontology (MP) 

[Smith, et al., 2005] in the Mouse Genome Database (MGD) [Bult, et al., 2008], all the 

way to clinicians’ free-text descriptions of genetic diseases in Homo sapiens, such as Dia-

betes mellitus or Alzheimer’s disease in the Online Mendelian Inheritance in Man (OMIM) 

[McKusick, 2007]. 

Methods for data integration, data mining and discovery are being developed to make this 

wealth of information readily accessible and comparable and to provide the means for new 

discoveries. For example, the outcomes of RNAi experiments supplemented with a con-

trolled vocabulary mentioned above have been be used to create a ‘disease map’, a graphi-

cal display of 45 disease categories [Sonnichsen, et al., 2005], which in turn has led to the 

development of ‘PhenoBLAST’, a tool to compare knock-down phenotypes by absence or 

presence in any of these 45 disease categories [Gunsalus, et al., 2004]. These approaches 

have culminated in the integration of data from protein interactions, gene expression clus-

ters, and phenotypic RNAi profile similarities into one large gene/protein network with ‘a 

high predictive value for novel gene functions’ [Gunsalus, et al., 2005] (for more details, 

see section 4.2.4 and the survey by Groth and Weiss [Groth and Weiss, 2006a]). 
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In light of the advances in utilizing genotypes and phenotypes in the functional discovery 

process, and given the possible benefits in biomedical science, it is feasible to explore fur-

ther the knowledge discovery on genotype/phenotype data. The present thesis deals with 

this. In the following, I shall explore how to efficiently gather and integrate large amounts 

of genotype-phenotype data across species in the database PhenomicDB [Groth, et al., 

2007; Kahraman, et al., 2005], use text clustering on the textual phenotype descriptions in 

order to predict gene functions [Groth, et al., 2008] and develop an integrative system for 

large-scale genotype-phenotype data mining and prediction, named PhenoMIX. 
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Figure 1: 

The number of new publications each year in PubMed and PubMed Central (PMC) that can be 

found with the search terms ‘(rnai or (rna and interference))’ and ‘ (microarray or microarrays)’. 

 

In short, comparative phenomics approaches can help to identify gene functions and select 

candidate genes for widespread genetic disorders, like diabetes. The public awareness of 

this topic can also be traced with GoogleTM Trends (http://www.google.com/trends). 

GoogleTM Trends provides a basic graphical indication for the number of searches in 
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GoogleTM with a specific keyword over time. Here, the number of searches with the term 

‘microarray’ (another popular method for high-throughput gene function analysis) has been 

decreasing steadily for the past three years, while the number of searches with ‘rnai’ is ap-

proaching that number. In 2006, the number of searches with ‘rnai’ is actually higher than 

those for ‘microarray’ for a short period of time, corresponding to the announcement of the 

2006 Nobel Prize for medicine to be awarded to Craig Mello of the University of Massa-

chusetts Medical School in Worcester, MA, and Andrew Fire of Stanford University for 

their discovery that strands of RNA can selectively silence genes [Couzin, 2006]. This is a 

clear indication that phenotype experimentation is an advancing hot topic. Looking up the 

number of new publications each year since 2000 in PubMed and PubMed Central (PMC) 

with the search terms ‘(rnai or (rna and interference))’ and ‘(microarray or microarrays)’ 

shows that the number of new publications about RNA interference each year is still chas-

ing the number of new publications on microarrays (see Figure 1). Thus, there is a keen 

scientific interest on phenotype information for the use of biomedical knowledge.  

1.2 Genotypes 

1.2.1 Definitions and concepts 

For practical use, both genotypes and phenotypes are vague concepts. In order to be able to 

work with them it is necessary to narrow down both definitions to more practical concepts, 

such that they can be pinpointed to actual traceable and comparable entities. Only then can 

they be used to represent a ‘genotype’ or a ‘phenotype’ on a practical level, e.g. in a data-

base or in a computational analysis. 

Figure 3 shows different concepts for a genotype at different levels of resolution of the ge-

netic composition. Any of these can be considered a ‘genotype’ from a certain point of 

view. From this, it becomes clear that a genotype is regarded as anything ranging from the 

sum of all genetic properties of an organism (which is closest to its actual definition, see 

section 1.1) to a single variant in a single nucleotide in the genetic code of that same organ-

ism. Despite its clear definition, this heterogeneity of concepts for a genotype needs to be 

overcome for practical use. 

Another limiting factor for using the ‘genotype’ even in its strictest definition in practice is 

that it is virtually impossible to determine the entire genetic composition of an individual 

organism. In fact, each individual’s genotype differs from all others, even within a species. 

It is thus necessary to work with more practical structures than a ‘genotype’. 
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One idea is to use the concept of genes rather than that of a genotype in order to have a 

more clear-cut definition. However, in a recent publication, Gerstein et al. give eight dif-

ferent definitions of a gene, showing that the perception of the concept has changed dra-

matically over time [Gerstein, et al., 2007]. Derived from Gregor Mendel’s ‘hereditary fac-

tors’, the concept for a gene was specified by Thomas Morgan as an ‘abstract entity whose 

existence is reflected in the way phenotypes were transmitted between generations’ 

[Gerstein, et al., 2007; Morgan, et al., 1915]. After Watson and Crick had solved the three-

dimensional structure of DNA in 1953 [Watson and Crick, 1953], a molecular view of the 

gene developed as ‘a code residing on nucleic acid that gives rise to a functional product’ 

[Gerstein, et al., 2007]. The genetic code, using letters ‘A’, ‘C’, ‘G’ and ‘T’ in sequencing 

and cloning technologies, along with algorithms developed to discover functional se-

quences in genomes meant that a DNA sequence could be used to infer structure and func-

tion for the gene and its products. Thus, in the 1970s and 1980s, a gene was viewed as 

some part of a (predicted) sequence rather than as a genetic locus responsible for a pheno-

type [Gerstein, et al., 2007; Griffiths and Stotz, 2006]. The sequence view is still widely 

accepted and the Human Genome Nomenclature Organization defines a gene as ‘a DNA 

segment that contributes to phenotype/function. In the absence of demonstrated function, a 

gene may be characterized by sequence, transcription or homology’ [Wain, et al., 2002]. 

Clearly, the concept of a gene is under constant development. For practical use, other defi-

nitions are necessary for gene or genotype. In this thesis, the term genotype is used syn-

onymously with the term gene and is regarded solely as an entry in the NCBI’s Entrez gene 

database (see Figure 2) [Maglott, et al., 2007] with its unique identifier. The composition 

of such an entry is explained in section 1.2.3 and the gene data used here is shown in sec-

tion 2.1.1. 
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Figure 2: 

NCBI Entrez gene entry (abridged) on the gene coding for the human HBG1 protein, depicting in-

formation on location, function, sequence, interactions and orthologies (from: [Maglott, et al., 

2007] / adapted: P. Groth, 2008). 
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Figure 3: 

Different concepts for a genotype at different levels of granularity of the genetic composition of an 

individual from A to E. Even a single change in one of the nucleotides represented in E gives a dif-

ferent genotype, termed single-nucleotide polymorphism (SNP). 

A: Shows a karyogram, the entire genetic composition of the diploid chromosome set of a female 

human individual (from: [Manske, 1995]); 

B: Depicts a schematic view on the human chromosome 8 (from: [Rankinen, et al., 2006]); 

C: Schematic view of a part of the double-helix DNA strand within this chromosome (from: 

[Felsenfeld and Groudine, 2003]); 

D: Depicts the possible borders of a gene on this DNA strand; 

E: Shows the nucleotide sequence of a part of this gene. Each letter of that sequence represents 

one of the four nucleotides Adenine, Cytosine, Guanine or Thymine. 

 

1.2.2 From genes to proteins 

By a process called ‘protein biosynthesis’, proteins are synthesized from genes by tran-

scription of DNA sequence to mRNA and translation into their amino acid sequence. It is 

by this mechanism that genes encode for proteins. Furthermore, many genes encode for 

more than one protein by effects occurring during the protein biosynthesis, i.e. post-

transcriptional (e.g. ‘alternative splicing’) and post-translational modifications (e.g. ‘phos-

phorylation’) [Campbell and Reece, 2008]. 

It is beyond the scope here to discuss this ‘central dogma of molecular biology’ as it was 

postulated by Crick [Crick, 1970], the criticism of its application [Werner, 2005] or the im-

portance of RNA editing [Maydanovych and Beal, 2006] and small non-coding RNA in 

biological processes [Mattick, 2003]. It is sufficient to know that proteins are essential for 

every organism and are participating in many processes in the cells. They form enzymes 

and are thus vital parts of the metabolism by catalyzing biochemical reactions. Further-

more, proteins have structural and mechanical functions, e.g. in muscles or in the cy-
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toskeleton, maintaining the shape of cells. Proteins also play significant roles in cell signal-

ing, immune responses, cell adhesion, and in the cell cycle [Campbell and Reece, 2008]. 

This relationship between genes and proteins is used in sections 3.2.2.1, 3.2.2.5, and 3.3, 

where physically interacting proteins are treated as groups of their encoding genes. 

1.2.3 Gene-centered information 

The National Center for Biotechnology Information (NCBI – http://www.ncbi.nlm.nih.gov) 

is a suitable source for gene-centered information. Wheeler et al. provide a thorough sur-

vey of available resources at the NCBI [Wheeler, et al., 2008]. Most gene-centered infor-

mation (or links thereto) can be found in the NCBI’s Entrez gene database (see Figure 2 for 

an entry) [Maglott, et al., 2007]. Major aspects that are important to understand genes are 

gathered there. Gene-centered information includes, but is not limited to: Gene name and 

symbol, species of origin, chromosomal location and genomic context, orthologies, interac-

tions, functional annotation, and sequence(s). In the context of this thesis, the central 

pieces of information for a gene that are extracted and kept for each gene are orthologies, 

physical interactions of gene products, functional annotations and the sequence (see section 

2.1.1 for details). These four data points contain both necessary information to understand 

the function of a gene and possibilities to compare one gene with another. 

Of course, there are other repositories for gene-centered information, e.g. Ensembl [Flicek, 

et al., 2008]. While the data presentation and the structure of the underlying database may 

vary, most of the contents are the same. It is therefore reasonable to choose one of the ma-

jor gene databases with daily updates, such as Entrez gene (see also section 2.1.1 for more 

details). The many different gene information repositories are discussed by Furey [Furey, 

2006]. 

1.2.4 Genotype-genotype relationships 

1.2.4.1 Orthologies  

Knowledge of a group of homologous genes (or homologs) can be highly useful for trans-

ferring information from one member of such a group to another (see section 2.1.2 for de-

tails on the data). Homology has been used to search for novel genes [Cui, et al., 2007], to 

predict protein function [Friedberg, 2006] or protein structure [Ginalski, 2006], for predic-

tion of proteins with specific locations and properties, e.g. membrane proteins [Punta, et 

al., 2007] and for prediction of protein-protein interactions (PPi) [Shi, et al., 2005]. There 
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are two types of gene homology: orthology and paralogy (see Figure 4 for an overview). 

Whereas paralogs may only partially share function, orthologous genes, which are defined 

to be the same genes on functional level in two different species derived from a common 

ancestor, are of interest in disease modeling and function prediction. Rubin et al. have 

identified 177 genes of Drosophila melanogaster as ortholog to human disease genes 

[Rubin, et al., 2000]. This is a highly interesting finding since by definition these orthologs 

should have a similar function and may thus be useful for finding cures for the associated 

diseases. In Caenorhabditis elegans, 12% of the species’ genes encode for proteins whose 

biological roles are highly similar to their putative orthologs in Saccharomyces cerevisiae 

(~27% of all yeast genes) [Chervitz, et al., 1999]. 

 

 

Figure 4: 

Depiction of the types of gene homology: orthology and paralogy. An ancestral gene (in this ex-

ample from the globin family) is separated into two types (alpha and beta) by gene duplication. 

Each of the resulting alpha and beta chain genes are orthologs in the different species. Two differ-

ent genes deriving from one ancestor gene in a single species (here: alpha and beta chain genes in 

mouse) are paralogs (from: [Sezen, 2000]). 
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1.2.4.2 Interactions 

Another very useful way to find functionally related genes is by looking at groups of inter-

acting gene products, i.e. protein-protein interactions (PPi, see section 2.1.3 for details). 

Physically interacting proteins have a higher chance to be part of the same biological proc-

ess or pathway than non-interacting proteins [Guo, et al., 2006]. Furthermore, such groups 

are essential for all cellular functions and they work in concert by physical interaction with 

other biomolecules [Mathivanan, et al., 2006]. Thus, groups of interacting proteins have 

highly interesting biological properties. Furthermore, they can be regarded as networks of 

genes and have been subject to intensive studies in the past (see for example: [Jaeger and 

Leser, 2007; Kemmer, et al., 2005; Riley, et al., 2005; Schuster-Bockler and Bateman, 

2007; von Mering, et al., 2007] and section 4.2.3.2 for further details). The importance of 

these networks have brought forth a large number of PPi databases, many of which have 

been reviewed by Mathivanan, et al. [Mathivanan, et al., 2006]. 

1.2.5 Functional annotation: The Gene Ontology (GO) 

Many eukaryotic gene products have been found to share core biological functions [Rubin, 

et al., 2000]. The Gene Ontology (GO) was created in 1999 with the goal to ‘produce a dy-

namic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of 

gene and protein roles in cells is accumulating and changing’ [Ashburner, et al., 2000]. GO 

is structured, which means that all terms are organized in one of three sub-ontologies, i.e. 

molecular function, biological process and cellular component, representing a directed 

acyclic graph with a number of successors and predecessors for each term. In short, GO 

provides a structured controlled vocabulary to coherently annotate genes with functions, 

locations and processes. GO is widely recognized as the most comprehensive functional 

classification system and has become a de facto international standard for functional anno-

tation and to control predictions [Daraselia, et al., 2007; Pandey, et al., 2006; Rison, et al., 

2000]. As of January 2008, 199,703 unique IDs from Entrez gene are associated with 

12,425 (of 25,928) unique IDs from GO. The structure and style used to represent gene 

functional annotations and associations to genes within GO is illustrated in Figure 5 

[Ashburner, et al., 2000]. 
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Figure 5: 

Example from the Gene Ontology. This example illustrates the structure and style used to represent 

gene function annotations and associated genes within GO. The depicted part of GO illustrates a 

small portion of the biological process sub-ontology describing DNA metabolism (from: 

[Ashburner, et al., 2000]). 

 

1.3 Phenotypes 

1.3.1 Differences in concepts and how to overcome them 

Our growing knowledge about the complexity of genetic interactions and the inter-

individual genetic variance reflects our daily experience of the high degree of phenotypic 

individuality within the species Homo sapiens. Therefore, the concept of a phenotype is 

even more difficult to grasp than that for a genotype. In the frame of the present work, it is 

necessary to reduce a phenotype to reflect the following: Only a change in appearance, i.e. 

a deviation from the so-called wild-type will be considered a phenotype. Furthermore, such 

a change of a wild-type needs to be associated with a traceable change in a genotype, either 

by mutation, disease or genetic interference. Even in this narrow view of a phenotype, it 

could still comprise any observable characteristic of an organism, the description of a dis-
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ease, the characterization of natural mutations, results of a gene knock-out or knock-down 

experiment or an artificially induced mutation, etc. (refer to the review by Groth and Weiss 

[Groth and Weiss, 2006a] for more examples on the definition of a phenotype). Unfortu-

nately, there is no common vocabulary to describe these observations. Instead, researchers 

use either home-grown or domain-specific vocabularies or plain English text. Due to the 

resulting heterogeneity in descriptions, and in order to maintain the ability to use all the 

available phenotype data, this thesis uses the broadest common denominator for a pheno-

type, i.e. its textual description. Thus, phenotype descriptions used here comprise all of the 

concepts named above. In summary, the scope of what can be considered ‘phenotype data’ 

is poorly defined (if at all) and can range from data at the molecular level to clinical patient 

records at organism or even population level. 

Currently, the phenotype community places particular emphasis on phenotype data from 

RNA interference screens (RNAi). The concept of introducing one RNA sequence into a 

cell to knock-down one single gene and thus the abundance of its protein derivative at a 

time is groundbreaking [Tuschl and Borkhardt, 2002]. Its high specificity (a single base 

mismatch prevents the silencing effect [Brummelkamp, et al., 2002]) makes its application 

cost-effective and thus gives ground to the possibility of knocking down the expression of 

mutated alleles e.g. in cancer and neurodegenerative diseases [Shi, 2003].  The develop-

ment of RNAi technologies for mammals, where now the immune response against long 

dsRNA is avoided by using short 21-23nt long siRNAs [Shi, 2003], has enabled generating 

large amounts of mammalian in-vitro data [Downward, 2004; Kolfschoten, et al., 2005; 

Stephens, et al., 2005; Westbrook, et al., 2005]. As RNAi is applicable at the cellular level, 

it overcomes the limiting generation time of genetically modified higher mammals (e.g. 

knock-out mice) and has proven to be useful in filling gaps in our understanding of geno-

type-phenotype relationships [Shi, 2003; Tuschl, 2003; Tuschl and Borkhardt, 2002]. The 

‘range of biological read-outs that can be used to infer function’ [Wheeler, et al., 2005] is 

actually not limited and is one of the most important aspects of large RNAi screens. Due to 

the availability of whole genome sequences for many model organisms as well as for hu-

mans, the number of projects relating phenotypes with genotypes using RNAi is rising 

steadily (see the review by Friedman and Perrimon [Friedman and Perrimon, 2004]). From 

the number of RNAi-based phenotypes elucidated in the last few years, a large number of 

RNAi-based phenotype data can be extrapolated: for instance, 25 RNAi phenotypic assays 
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in a genome-wide screen (~ 20,000 genes) in 8 of the most important model organisms 

would lead to the accumulation of 4 million cellular phenotypes. 

The recently started mutagenesis programs using chemical agents such as ethylmethane-

sulphonate (EMS) or N-ethyl-N-nitrosourea (ENU) add to this wealth of phenotype data. 

Both EMS and ENU induce point mutations in DNA, leading to a variety of genetic lesions 

that are expressed as complete loss of function, partial loss of function, or gain of function 

alleles [O'Brien and Frankel, 2004]. Three NIH mutagenesis centers are equipped to screen 

over 13,000 mice each year and have generated ~500 mouse strains of interest for neuro-

science mutagenesis alone [Frankel, et al., 2008]. The NCBI and the National Human Ge-

nome Research Institute have announced they will commit US$ 50 million to collect and 

analyze all genetic mutations found in human cancers. 

These low-level cellular ‘phenotypes’ are blessing and curse in our understanding of phe-

notype data. Their abundance in almost all sequenced model organisms, each adding their 

part to a mosaic, will eventually give a phenotypic picture in unparalleled high resolution. 

On the other hand, they are very simple, often quantitative data points in such vast amounts 

but low granularity that makes a comparison to ‘classical’ phenotypes e.g. from knock-out 

mice or human genetic diseases notoriously difficult. Yet, they are too valuable to be ig-

nored. The co-existence of qualitative (i.e. ‘classical’ phenotype data) and quantitative 

phenotype data leads to a heterogeneity that can explain why there have been few attempts 

to integrate phenotype data, leaving us with a large number of data resources. Given the 

plethora of species-specific and locus-specific databases with phenotype content, genome-

wide and cross-species databases are the next logical step towards comparative phenomics. 

Large-scale projects like the Mouse Phenome Project [Bogue, 2003; Bogue and Grubb, 

2004] and Eumorphia [Brown, et al., 2005] have started to coordinate world-wide efforts 

for the generation of standardized phenotype data published in purpose-orientated data-

bases. Recently, the European Union granted € 12 million in order to support GEN2PHEN, 

a collaborative Genotype-Phenotype effort involving 19 institutions across Europe 

[Brookes, 2008]. The call for an analogous project for human phenotypes, namely the Hu-

man Phenome Project [Freimer and Sabatti, 2003] was made in 2003. 

Three stages have been identified to enable general data handling independent of data 

sources [Groth and Weiss, 2006a]. In the first stage, data sources need to be gathered (for 

optimal coverage), aligned (e.g. to remove redundancy), mapped onto a gene index and ul-

timately integrated at a semantic level such that equivalent data is eventually found in the 
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same place. The next stage aims at making the data comparable by introducing ontologies 

and other data structures that relate the data points (e.g. orthologies). Only then, in the final 

stage, can robust data mining methods be employed systematically to exploit the data 

based on statistical analyses and/or direct or cross-species functional comparison. In this 

thesis, all three stages are implemented in order to overcome the hurdles that have been 

raised by the current phenotype data diversity. 

1.3.2 The Mammalian Phenotype ontology (MP) 

The most consistent way to structure knowledge domains based on large heterogeneous 

data is the creation of a useful ontology. This has been proven true for genotypes by the 

creation of GO and it is also true for phenotypes. The strength of ontologies and controlled 

vocabularies is their use beyond one system, especially when instances or patterns reoccur. 

The Mammalian Phenotype ontology (MP) [Smith, et al., 2005], containing in September 

2008 6,182 phenotype terms [MGI, 2008], and the very recently published Human Pheno-

type ontology (HP) [Robinson, et al., 2008] (~8,000 terms in April 2009) are the major 

phenotype ontologies available for mammals today (see Figure 6 for an example of pheno-

type annotations from MP). Even though HP was developed for humans (and is mostly fo-

cused on anatomic abnormalities) and MP was mainly developed for rats and mice, their 

potentials go beyond these species and even beyond mammals. MP, for example, contains 

cellular phenotypes that can partially be applied to other model organisms such as Droso-

phila melanogaster or Caenorhabditis elegans, opening up new perspectives for the use of 

this resource. Such efforts, however, could certainly not be maintained by the main HP and 

MP contributors alone. Thus, there have been calls for a larger community effort to drive 

forward more general phenotype ontologies [Brookes, 2008; Groth and Weiss, 2006a; 

Hancock, et al., 2007], the creation of which using automated methods has been studied by 

Boehm [Boehm, 2008] (see sections 4.3 and 4.4 for a discussion) and could be supported 

by phenotype annotation software like Phenote (available from http://www.phenote.org). 

Why are ontologies important for comparative phenomics? The free-text description used 

by researchers to document their phenotypic observations may differ considerably and al-

low comparison only manually or by text-mining approaches as shown in this thesis. Phe-

notypic results from one screen need to be abstracted to a level where comparisons with re-

sults from other screens are enabled. An RNAi readout for apoptosis can be achieved with 

a TUNEL, a PARP cleavage, or an anoikis assay (see for example the review by Karaflou 
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et al. [Karaflou, et al., 2008]). Although the absolute values of each result type are not di-

rectly comparable, they can at least qualitatively be compared if abstracted to an ontologi-

cal instance like ‘decreased apoptosis (MP:0006043)’. Ontologies also allow for unambi-

guous identification of biological objects when synonyms are used as query terms. For 

these reasons, they are highly useful for cross-species comparisons. 

 

 

Figure 6: 

Abridged excerpt from the Mammalian Phenotype ontology (MP) showing most of its level 1 

classes and for ‘pigmentation phenotype’ also its subclasses. The terminology that is used to de-

scribe a phenotype strongly depends on the species and on the community of researchers studying 

it. 
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1.4 Relationships between genotypes and phenotypes 

1.4.1 Mendelian phenotypes 

So-called ‘Mendelian’ or ‘monogenic’ diseases are traceably inherited and thus, positional 

cloning techniques have led to the identification of roughly 1,200 disease-causing genes in 

humans [Botstein and Risch, 2003]. Unfortunately, their genotype-phenotype relationships 

are not always obvious. Different single nucleotide polymorphisms (SNPs) of the same ge-

netic locus have been shown to cause different phenotypes (e.g. varying mutations in the 

Drosophila’s shaker gene lead to a reduced sleep rate or to shaking legs after etherization 

[Cirelli, et al., 2005]) or, if less pronounced, may lead to subtle sub-phenotypes of a dis-

ease (e.g.  mild or severe muscular dystrophy [Botstein and Risch, 2003]). Furthermore, 

combinations of correlated SNPs (so-called haplotypes) may ‘fine-tune’ the final pheno-

typic outcome of a disease-causing SNP or explain differential disease susceptibility 

[Botstein and Risch, 2003; Crawford and Nickerson, 2005; Shastry, 2003]. For example, 

phenylketonuria (PKU) is considered a classic monogenic disease which can be caused by 

several different mutations in the enzyme phenylalanine hydroxylase (PHA). However, 

even siblings who share an identical PHA genotype show ‘widely differing phenotypes’ 

[DiSilvestre, et al., 1991; Scriver and Waters, 1999; Treacy, et al., 1996; Weatherall, 1999]. 

For PHA, there is a locus-specific mutation database (PHAdb) listing 498 mutations for 

this locus alone [Scriver, et al., 2003; Scriver, et al., 2000], most of which are presumed to 

be disease-causing [Scriver and Waters, 1999; Waters, 2003]. There are hints that the ‘re-

markable phenotypic variability’ [Weatherall, 1999] within this monogenic disease may 

also be influenced by other genetic factors [Scriver, et al., 1994; Weatherall, 1999]. An-

other such example for a complex genotype/phenotype relationship of a monogenic disease 

is thalassaemia, reviewed by Weatherall [Weatherall, 1999]. If sets of SNPs are inherited 

together as haplotypes, the individual phenotypic contribution of each SNP within this hap-

lotype is further obscured. Nevertheless, haplotype analysis is an opportunity to measure 

the effects en-bloc [Crawford and Nickerson, 2005] and detailed elucidation of haplotypes 

is currently underway within the International HapMap Project [HapMapConsortium, 

2003]. In short, ‘simple Mendelian inheritance is often not so simple’ [Botstein and Risch, 

2003]. 



 - 18 - 

1.4.2 Complex traits 

In comparison with the monogenic diseases, phenotypes of complex diseases are even 

harder to link unequivocally to the relevant variant genomic sites, as the signal spreads 

over several loci. Accordingly, for many multifactorial and ‘complex diseases’ like diabe-

tes, Alzheimer’s disease, stroke, psychiatric disorders, or obesity, the complete picture of 

the genotype-phenotype relationships remains largely unsolved. Here, the contributions of 

a gene to the disease are usually detected through studies of larger populations and are 

rather termed ‘association’ or ‘susceptibility’ underlining the lack of a true understanding 

of the contribution. Variability in two phenotypes despite identical sequences of the pheno-

type-causing gene(s) are often declared to be a consequence of the ‘different genetic back-

ground’ hereby referring to unexplained effects from the rest of the genome (e.g. epigenetic 

influences). Association or susceptibility data of complex diseases are difficult and expen-

sive to measure and not the subject here. Even in a perfect setting, two organisms with an 

identical genotype having experienced development in an ideal environment would still 

differ slightly due to the stochastic nature of the underlying processes (so-called pheno-

typic plasticity or polyphenism [Nijhout, 2003]). Here, however, the focus shall be more on 

phenotype data from genotype-phenotype relationships where the genetic component plays 

a proportionally much more pronounced role than e.g. the epigenetic or environmental in-

fluences on the phenotype. 

1.4.3 The genotype-phenotype association 

Despite the difficulties of mapping a phenotype to the underlying genotype and the chal-

lenges of describing phenotypes consistently and in a highly standardized manner, many 

efforts have been undertaken to collect and generate phenotype data [Goldowitz, et al., 

2004; Kuttenkeuler and Boutros, 2004; Page and Grossniklaus, 2002; Peters, et al., 2003]. 

The fruit fly is a good example for this, where one genetic screen to identify mutations 

with developmental phenotypes in Drosophila [Nusslein-Volhard and Wieschaus, 1980] 

was awarded the Nobel Prize. A battery of methodologies (reviewed by Carroll et al. 

[Carroll, et al., 2003]) has been employed over the past few decades to collect and describe 

mutants in great detail. These data have helped to work out the genotype-phenotype rela-

tionship with the help of so-called forward genetics, where one starts with a mutation phe-

notype and works toward identifying the mutated gene [Peters, et al., 2003]. In contrast, 

analogous studies in higher mammals have been hampered by much longer life spans, a 
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lack of sophisticated methods, or for ethical reasons. Here, systematic examinations of 

transgenic or knock-out animals as well as comprehensive SNP analyses have been suc-

cessful but limited in number, especially since there was a lack of high-throughput meth-

ods to generate large quantities of data. 

This situation has changed through the advent of RNAi screening methods and other potent 

screening technologies (see section 1.3.1) like the recently started mutagenesis programs 

using chemical agents such as ethylmethanesulphonate (EMS) or N-ethyl-N-nitrosourea 

(ENU) for uncovering genotype-phenotype relationships in high numbers. 

1.5 Managing genotype-phenotype data 

Knowledge management comprises methods for the identification, extraction and storage 

of information and knowledge. In this thesis, data integration, clustering and prediction 

have been applied in order to drive forward the use of phenotypes in biomedical sciences 

and to make use of them beyond the single genotype-phenotype association. 

In the past, prior to any analysis, the status of phenotype resources required difficult man-

ual intervention and curation of data subsets in order to allow for a systematic analysis 

workflow. Thus, many analytical methods have been developed and applied to such tedi-

ously hand-curated phenotype data sets. 

Data integration is an essential first step when dealing with diverse data such as cross-

species phenotypes. In order to create a system such as presented here, integrating hetero-

geneous data from many different sources, several aspects of data integration have to be 

considered, e.g. whether the data should be materialized or virtual, which integration tech-

nologies to use, etc. [Busse, et al., 1999]. Usually, and as is the case here, large-scale data 

integration is only a semi-automated process, where the mappings of fields between data-

bases have to be done manually. Furthermore, there are some cases where automated data 

acquisition is not supported by the data source, leaving ‘screen scraping’ (i.e. data 

download by programming a script against the interface of the data source) as the only 

method for data retrieval. Thus, all data used here were integrated in a materialized man-

ner. To demonstrate diversity in phenotype data, Figure 7 shows available phenotype in-

formation for the cdk-7 gene of Caenorhabditis elegans in WormBase [Rogers, et al., 

2008], PhenoBank [Sonnichsen, et al., 2005], and RNAi Database [Gunsalus, et al., 2004], 

and the corresponding yeast and mouse orthologs. 
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Figure 7: 

Even equivalent phenotype information for Caenorhabditis elegans cdk-7 gene is presented in di-

verse ways across relevant databases, here RNAi Database [Gunsalus, et al., 2004], WormBase 

[Rogers, et al., 2008], and PhenoBank [Sonnichsen, et al., 2005]. Phenotype description for cdk-7 

in other species (here Saccharomyces cerevisiae, CYGD [Guldener, et al., 2005] and Mus muscu-

lus, MGD [Bult, et al., 2008]) is characterized by species-specific terminology and a layout unique 

to each resource. The phenotype information is partially complementary, but mostly redundant. 

Assembling available phenotype information of the ortholog group for cross-species comparison is 

a time-consuming manual task. 
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1.6 Cross-species phenotype clustering 

Any comparison or clustering of genes and phenotypes is based on similarity, e.g. sequence 

similarity for genes or textual similarity for phenotypes. Genes that are considered ‘similar’ 

should in some way show a consistent picture of their relatedness. For example, they 

should encode for proteins from the same family, or have physical protein-protein interac-

tions (PPi). Such a group shows a ‘biological coherence’ as a meaningful biological state-

ment of the relatedness of its members. 

It has been shown that similar phenotypes can reflect such biological coherence. Thus, they 

can show functional coherence, and could even be used to identify new members of known 

pathways on the genetic level [Eggert, et al., 2004; Piano, et al., 2002; van Driel, et al., 

2006]. However, ‘comparing genotypes or even phenotypes between organisms as different 

as yeast and humans may involve serious scientific hurdles’ [Kahraman, et al., 2005]. 

Thus, it is hypothesized within this thesis that clusters of phenotypes (= phenoclusters, see 

section 2.1.6 and Definition 5 in section 2.2.2), even across species and methods, should 

reflect a common biological theme. Since each phenotype used here is directly associated 

with a gene, this method is a novel way to group genes. In order to understand the methods 

for phenotype clustering (see section 2.2.2) and the results (see section 3.2.2), this section 

gives an overview over the possibilities for text clustering and some aspects of the evalua-

tion of results. 

Generally, there are two types of clustering algorithms: hierarchical and partitional cluster-

ing. These methods differ regarding approach, results and interpretation of results. After 

hierarchical clustering, the remaining question is at which level to set a cut-off to receive a 

sensible partitioning of the data. In a partitional clustering, this is determined by the a pri-

ori choice of the number of clusters with the parameter k. The success of the clustering can 

then only be estimated by evaluating the coherence of the resulting clusters. In the worst 

case, non-coherence will imply a re-computation with a different choice of k (see section 

4.3.2.3 on the choice of k). 

In the hierarchical clustering algorithm, the divisive implementation repeats a sequence of 

binary partitions on one single cluster of all elements until all these elements are left in 

single sets at the bottom (leafs) of the resulting tree (dendrogram) and the initial cluster 

containing all samples at the top (root) of the tree. The agglomerative implementation (see 
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Algorithm 1) starts with the single sets, merging two smaller clusters into one larger cluster 

until all elements are merged into a single cluster. 

Algorithm 1: Hierarchical clustering with the agglomerative method (from: 

[Steinbach, et al., 2000]). 

1. Start with a set of N clusters, each containing exactly one element. 

2. Calculate the pair-wise similarity of all clusters, i.e. calculate an NxN simi-

larity matrix M in which the ijth entry reflects the similarity between the ith and 

the jth cluster. 

3. Merge the two clusters with the highest pair-wise similarity. 

4. Recompute M, such that it now contains the similarities between the old 

clusters and the new one and remove the two single clusters that have been 

merged. 

5. Repeat steps 2 and 3 until only one cluster is left. 

 

In the partitional clustering method, the result consists of k unnested and distinct clusters. 

The most common partitional clustering method is k-means. This algorithm uses centroids, 

which are (in most cases) virtual points, one in the centre of each cluster. Thus, the centroid 

is a vector that is calculated as the mean or median of all (real) data points. 

The k-means algorithm can be implemented either as basic k-means (see Algorithm 2A.) or 

bisecting k-means (see Algorithm 2B.). In basic k-means, the centroids will be set ran-

domly into the feature space and then re-centered step by step according to their nearest 

data point until a steady state is reached. The bisecting k-means algorithm starts from one 

single cluster containing all samples. This cluster is partitioned into two clusters (of similar 

size) by a repeated search for the highest similarity. From the resulting clusters, one (the 

largest remaining cluster) is selected and partitioned again until there are k clusters. 

The main difference between the two implementations is that the basic k-means can result 

in empty clusters, which is not possible with bisecting k-means. Furthermore, the bisecting 

k-means approach generally creates more coherent clusters in a shorter computation time 

and outperforms any hierarchical clustering approach in a high-dimensional feature space 

[Steinbach, et al., 2000]. For these reasons, the bisecting k-means is used (see section 2.2.2 

for details of the software). Further discussions of the advantages and disadvantages or 
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suitable applications of either method can be found elsewhere (see chapter 20 of the book 

by MacMay [MacKay, 2003] and especially chapter 8 of the book by Backhaus et al. 

[Backhaus, et al., 2000]). 

 

Algorithm 2: Partitional clustering algorithms for A. basic k-means, and B. bi-

secting k-means (from: [Steinbach, et al., 2000]). 

A 

1. Randomly select k points (initial 

centroids) in the feature space. 

2. Assign all samples to their near-

est centroid. 

3. Re-compute the centroid vector 

from the sample vectors in the 

emerged cluster. 

4. Repeat steps 2 and 3 until all 

centroids have reached a steady 

state. 

B 

1. Select a cluster for partitioning 

(e.g. by random, or the largest 

available cluster). 

2. From this cluster, form 2 clusters 

according to basic k-means rules. 

3. Repeat step 2 n times and keep 

the partitioning with the highest 

similarity of the cluster members. 

4. Repeat steps 1 through 3 until k 

clusters have been formed. 

 

1.7 Objectives 

The objectives of the present work are: 

1. To identify the current state of the art in the field of comparative phenomics, especially 

the current approaches in phenotype data integration, clustering of textual phenotype 

descriptions and data mining. Also, the possibilities involved in application of these 

techniques to textual phenotype data and the implications on gene function prediction 

shall be explored. 

2. To extend PhenomicDB as a means for integrating phenotype data from more diverse 

sources and to include means for structuring these data, i.e. ontologies and controlled 

vocabularies. 
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3. To create a workflow for text clustering of phenotypes from PhenomicDB with the goal 

of assessing possibilities and benefits of gene function prediction from phenotype data, 

also in comparison to other methods. 

4. To apply this workflow and implement an integrative system for genotype/phenotype 

data analysis and prediction in a usable and useful fashion for computational life scien-

tists. 

1.8 Contributions 

The present work mainly contributes to the fields of comparative phenomics and gene 

function prediction, with special focus on the practical development and advancement of 

the field. Since large-scale data integration and data mining requires less of a theoretical 

advancement of algorithms and formulas, this work’s central aspects lie in exploring the 

implications and benefits of clustering a large-scale cross-species data set, such as in Phe-

nomicDB. 

In particular, the main contributions of this thesis are: 

1. The extensions to PhenomicDB, making it one of the world’s largest integrated reposi-

tories of cross-species phenotype data and enabling a more structured view of the data 

using phenotype ontologies and controlled vocabularies. This will be shown in an in-

depth exploration of the benefits coming from this integration. See section 3.1. 

2. The application of k-means text-clustering to the entire corpus of PhenomicDB’s tex-

tual phenotype descriptions and the exploration of the resulting phenotype clusters. 

Since each phenotype in PhenomicDB is directly associated with a gene, this method 

provides a novel way to group genes. These groups of genes are the basis for gene 

function prediction from functional annotation with competitive precision in compari-

son to other methods. Benefits and limitations of this approach will be shown in the 

course of this work. See section 3.2. 

3. The development of PhenoMIX, a system to access cross-species genotype-phenotype 

data and to enable comprehensive data mining possibilities for all interested scientists, 

e.g. grouping similar phenotypes by textual description or common annotation with 

phenotype ontology terms. It can also be used to group genes with many pair-wise in-

teractions, common functional annotations, high sequence similarities or cross-species 

homologies. As proof of concept, a set of human and mouse genes and phenotypes de-
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rived through the use of this resource are evaluated for their predictiveness of func-

tional annotations and phenotype terms. See section 3.3. 

4. This work further contributes to the field of comparative phenomics with a comprehen-

sive survey of the current standing of the field, giving insight into its most urgent needs 

and most promising developments. See chapters 1 and 4. 

1.9 Structure of this thesis 

Chapter 2 first gives an overview of materials and methods that have been used to produce 

the result of this thesis. These are genotype-phenotype data, protein-protein interactions, 

and the preparation of these data for clustering and grouping, as well as data for the exten-

sions in PhenomicDB. In the second part of Chapter 2, I present the methods applied in 

text-clustering and prediction, as well as cross-validation and evaluation of biological co-

herence. In Chapter 3 the development and outcome of genotype-phenotype data integra-

tion, clustering and mining are presented. In this chapter I show how text clustering is used 

to group genes based on their phenotype descriptions. Such gene groups correlate well with 

several indicators for biological coherence, e.g. functional annotations from the Gene On-

tology (GO) and protein-protein interactions (PPi). Grouped genes are used for predicting 

gene function by carrying over annotations from well-annotated genes to other, less well-

characterized genes. For a subset of groups selected by applying objective criteria, GO-

term annotations are predicted from the biological process sub-ontology with up to 72.6% 

precision and 16.7% recall, as evaluated by cross-validation. Furthermore, this chapter 

contains the results of the application of the integration and clustering into a system named 

PhenoMIX enabling comprehensive data mining possibilities. It is shown that the inte-

grated data can be used for prediction of phenotypes from groups of similar genes as well 

as prediction of gene function annotations. Chapter 4 gives an overview over the achieve-

ments and contributions within this thesis, along with a thorough survey of related works 

and of the current status of the field of comparative phenomics, followed by a discussion of 

results, conclusions and outlook. 
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2 Materials and Methods 

2.1 Materials 

2.1.1 Gene-centered data 

In PhenomicDB, gene-centered data are taken from NCBI Entrez gene for reasons stated 

by Kahraman et al. [Kahraman, et al., 2005], i.e. due to the availability of a common cross-

species gene index and due to the existence of NCBI HomoloGene [Wheeler, et al., 2008] 

which is being used to interlink genes across species. As PhenomicDB is the main data 

source for this thesis, the genotype data was taken from PhenomicDB (Version 2.4, Source 

release date: 2007-10-04) downloaded at http://www.phenomicdb.de/downloads.html and 

supplemented, where necessary, with the data from Entrez gene. 

Nucleotide sequences (see sections 2.2.4) were downloaded from the NCBI using RefSeq 

nucleotide IDs [Pruitt, et al., 2009] and the NCBI efetch tool 

(http://www.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=nucleotide&id=<identifier>&ret

type=fasta) [Wheeler, et al., 2008]. To retrieve sequences by RefSeq nucleotide ID, each 

Entrez gene ID in PhenomicDB also found in column 2 of the file gene2refseq.gz (75,146 

KB, downloaded on 2008-01-2 from ftp://ftp.ncbi.nlm.nih.gov/gene/DATA), having one or 

more RefSeq nucleotide ID entries in column 4 of the same file was used. Where an Entrez 

gene entry referred to more than one RefSeq nucleotide entry, the longest sequence was 

taken. 

For supplementing genotypes with GO-terms [Harris, et al., 2004] (used in sections 2.1.4, 

2.2.3, 2.2.5, and 2.2.7), the GO-term IDs with reference to an Entrez gene ID in the file 

gene2go.gz (7,675 KB, downloaded on 2008-01-20 from 

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA) were used. 

To match PPi data from IntAct [Kerrien, et al., 2007] (see section 2.1.3) with genotypes 

from Entrez gene, the file gene2refseq.gz mentioned above (75,146 KB, downloaded on 

2008-01-2 from ftp://ftp.ncbi.nlm.nih.gov/gene/DATA), was used again, this time matching 

Entrez gene IDs in column 2 with RefSeq protein IDs [Pruitt, et al., 2009] in column 6 of 

that file. Then, these RefSeq protein IDs were mapped to UniprotKB IDs 

[UniProtConsortium, 2009] (the format in which IntAct PPi data is stored, see section 

2.1.3) using the file gene_refseq_uniprotkb_collab.gz (11,727 KB, downloaded on 2008-

01-20 from ftp://ftp.ncbi.nih.gov/refseq/uniprotkb), in which the first column is a RefSeq 
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protein ID and the second column the corresponding UniProtKB ID. Thus, one pair of in-

teracting proteins from IntAct is mapped to one or more Entrez gene IDs (see Table 1). 

 

Table 1: 

Example for referencing two interacting proteins from IntAct to Entrez gene IDs via RefSeq pro-

tein IDs and UniProtKB IDs. 

IntAct            
UniprotKB 

RefSeq  
protein IDs

Entrez 
gene IDs

IntAct         
UniprotKB 

RefSeq  
protein IDs

Entrez 
gene IDs

P67662 NP_417710 947760 P76142 NP_416033 945418
NP_417798 947838
NP_418407 948482

P53619 XP_612353 533078 P35604 NP_776707 281707

P0A6N1 P0A8I3 NP_414547 944749

 

 

To associate Entrez gene IDs to taxonomy information (used for additional information on 

genotypes and species), supplementary genotype information from the NBCI’s taxonomy 

database [Wheeler, et al., 2008] was taken from the file gene_info.gz (65,436 KB, 

downloaded on 2008-06-8 from ftp://ftp.ncbi.nlm.nih.gov/gene/DATA). Further taxonomy 

information (such as Latin species names, trivial species names, etc.) was taken from the 

file taxdump.tar.gz (11,411 KB, downloaded on 2008-06-15 from 

ftp://ftp.ncbi.nih.gov/pub/taxonomy). 

In order to remain up-to-date with Entrez gene IDs throughout the work on this thesis, the 

NCBI’s gene history file gene_history.gz was downloaded and consulted regularly (last 

download: 2,734 KB, on 2008-06-10 from ftp://ftp.ncbi.nlm.nih.gov/gene/DATA). 

2.1.2 Orthology data 

In this work, orthology of genes is one of the available measures for genotype-genotype re-

lationship (similarity) to derive groups of functionally related genes (see section 1.2.4.1). 

Orthology information has been retrieved from the NCBI’s HomoloGene database 

[Wheeler, et al., 2008], using the file homologene.data (10,114 KB, downloaded on 2007-

11-1 from ftp://ftp.ncbi.nih.gov/pub/HomoloGene/current). 

2.1.3 Data of protein-protein interactions 

PPi data are used for evaluation of the biological coherence of gene groups (derived by 

clustering), and as a measure for similarity in PhenoMIX (see sections 1.2.4.2 and 2.1.1). 
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PPi data have been retrieved from both BioGrid (21,934 genes in 203,051 pair-wise inter-

actions) [Breitkreutz, et al., 2008; Stark, et al., 2006] and IntAct (27,083 genes in 128,807 

pair-wise interactions) [Kerrien, et al., 2007] due to quantity and quality of content and due 

to their marginal overlap. Evaluation of phenoclusters was based on the number of PPis be-

tween their associated genes. PPi data was obtained from the files BIOGRID-ALL-

2.0.36.tab.zip and BIOGRID-IDENTIFIERS-2.0.36.tab.zip from the BioGrid website 

(downloaded on 2007-12-15 from http://www.thebiogrid.org/downloads.php). As PPi in-

formation, these files contain lists of Entrez gene IDs of genes encoding for interacting 

proteins. The binary protein interactions in UniprotKB-format from IntAct (file: intact.zip, 

downloaded on 2008-01-04 from ftp://ftp.ebi.ac.uk/pub/databases/intact/current/psimitab) 

was transformed into this format. Details on how IntAct data was transformed into lists of 

Entrez gene IDs in the same format as BioGrid data are shown in section 2.1.1. 

2.1.4 Functional data from GO 

The Gene Ontology [Harris, et al., 2004] data used here (see sections 1.2.5, 2.1.1, 2.2.3, 

2.2.5, and 2.2.7) were taken from the file gene_ontology_edit.obo (in OBO v1.2 format, 

cvs version 5.658, downloaded on 2008-01-21 from 

http://www.geneontology.org/GO.downloads.ontology.shtml). GO-terms were matched to 

genotypes as described above (see section 2.1.1). 

2.1.5 Phenotype annotations from MP 

The Mammalian Phenotype ontology [Smith, et al., 2005] (see sections 1.3.2 and 2.2.3) is 

not only used for its annotations. Like GO, it is used to calculate the similarity of pheno-

types from their MP-annotations. The methods are the same as described for GO (see sec-

tion 2.2.3). Since the number of phenotypes annotated with MP-terms is an order of magni-

tude smaller than the number of genotypes annotated with GO-terms, MP-terms from the 

descriptive text of phenotypes were extracted by exact matching with an ontology term or a 

synonym thereof using a script written in the Perl programming language. Extracted terms 

were then stored as part of the MP-annotation of the phenotype. 

Associations of genes from Mus musculus with GO-terms were taken from the file 

gene_association.mgi (version 1.38, downloaded on 2008-01-23 from 

ftp://ftp.informatics.jax.org/pub/reports/index.html#pheno). MP-terms were taken from the 

file mammalian_phenotype.obo (in OBO v1.2 format, downloaded on 2008-01-18 from 

http://obofoundry.org/cgi-bin/detail.cgi?id=mammalian_phenotype). Associations of MGI 
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gene identifiers with gene identifiers from Entrez gene were taken from the file 

MGI_EntrezGene.rpt (downloaded on 2008-01-23 from 

ftp://ftp.informatics.jax.org/pub/reports/index.html#pheno). Associations of genes with 

MP-terms were taken from the files MGI_PhenoGenoMP.rpt, MGI_PhenotypicAllele.rpt 

and MRK_Ensembl_Pheno.rpt (all three files downloaded on 2008-01-23 from 

ftp://ftp.informatics.jax.org/pub/reports/index.html#pheno). 

2.1.6 The cross-species phenotype data set 

PhenomicDB [Groth, et al., 2007; Kahraman, et al., 2005] is a cross-species geno-

type/phenotype database integrating data from the Online Mendelian Inheritance in Man 

database (OMIM), the Mouse Genome Database (MGD), WormBase, FlyBase, the Com-

prehensive Yeast Genome Database (CYGD), the Zebrafish Information Network (ZFIN), 

DictyBase and the MIPS Arabidopsis thaliana database (MAtDB). 

All phenotypes from PhenomicDB were considered. Of 428,150 (347,689) phenotype en-

tries from PhenomicDB (version 2.1, Source release date: 2006-03-01 and in parentheses 

entries from version 2.4, Source release date: 2007-10-04, both downloaded from 

http://www.phenomicdb.de/downloads.html), 411,102 (327,201) entries are directly associ-

ated to at least one gene; only those were considered for this study. For each entry, its En-

trez gene ID and the available text from all corresponding phenotype entries using the Phe-

nomicDB fields ‘names’, ‘descriptions’, ‘keywords’ and ‘references’ were collected. 

Phenotypes with less than 200 characters were removed, as they are expected to be too 

short to deliver reasonable results in textual comparison and clustering (see section 4.3.2.2 

for a discussion on this issue). All words were then stemmed using the stemming algorithm 

from the doc2mat package (implementing Porter’s stemming algorithm [Porter, 1980]) 

which is part of the clustering toolkit CLUTO version 2.1.1 (see section 2.2.2) [Zhao and 

Karypis, 2005]. Also, HTML-tags were removed, as well as so-called ‘stop-words’, which 

are words of such high frequency that they will not add to the distinctiveness of any feature 

vector (see Appendix A7 for the full list). This stop-word list comprises 348 unique words 

derived from the lists of the 319 most common words in the English language (downloaded 

from the Department of Computing Science, University of Glasgow, on 2006-10-16 from 

http://www.dcs.gla.ac.uk/idom/ir_resources/linguistic_utils/stop_words) and the 133 most 

common words in PubMed (from the NCBI help pages, downloaded on 2006-10-16 from 

http://www.ncbi.nlm.nih.gov/bookshelf/br.fcgi?book=helppubmed&part=pubmedhelp). All 
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texts were then concatenated into a single string, called phenotype document or phenodoc 

(see Definition 1). 

 

Definition 1: Let p be a phenotype and T be the set of descriptive texts associated 

to that phenotype. A phenodoc is defined as the concatenation 

Tnttt ∈ooo ...21 after removal of HTML-tags, stop-words and subsequent stem-

ming of the remaining words in each Tt ∈ . 

 

For this study, all 511 phenotypes linked to more than one gene (forming 1,227 ‘complex’ 

genotype-phenotype relationships) were removed. Since PhenomicDB is not normalized 

with respect to replicate phenotype entries, there was no filter for those phenotypes associ-

ated with various genes (see Appendix A3 for some numbers about the phenotypes and 

phenodocs, see Figure 8, Figure 9, Figure 10 and Figure 11 for examples for phenotypes 

and their transition into gene-specific phenodocs and see Table 2 for how features translate 

into words). This resulted in a data set of 39,610 (38,656) phenodocs associated with 

15,426 (15,431) genes from 7 species: 1.7% (1.9%) Danio rerio (zebrafish), 19.9% 

(20.0%) Caenorhabditis elegans (earth worm), 1.7% (1.7%) Dictyostelium discoideum 

(slime mold), 24.1% (23.9%) Drosophila melanogaster (fruit fly), 15.6% (15.8%) Homo 

sapiens (human), 28.7% (28.7%) Mus musculus (mouse) and 8.3% (8.0%) Saccharomyces 

cerevisiae (yeast). This strong data reduction (only ~9% (~11%) of all phenotypes in Phe-

nomicDB passed the filters) will be discussed later (see section 4.3). 

 

Table 2: 

Excerpt from the feature translation table used to document the correspondence between features 

and words. 

1 rnai 26 larval 44 drosophila 66 pupal 150 downstream
2 lethal 27 stage 45 melanogast 67 littl 151 compon
3 rang 28 wildtyp … 68 increas 152 induct
... … 60 systemat 69 mitot 153 nonleth
18 function 36 map 61 genom 70 index 154 invers
19 caus 37 orfeome-bas 63    71 mutant 155 arisen
20 non-viabl 38 librari 63 10a … 156 vde2
21 phenotyp 39 fbcv0000351 64 heterozygot 148 absentia 157 clear
... … 65 die 149 tramtrack …  
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Figure 8: 

Example of a phenotype as it is retrieved from PhenomicDB in textual form. The first integer is 

the Entrez gene ID associated with this phenotype, next is the PhenomicDB phenotype ID, and 

then follows its description. 

 

 

Figure 9: 

The same phenotype as in Figure 8 after stemming and removal of tags, stop words and Entrez 

gene ID. The phenotype description has now the phenodoc format as defined in Definition 1. 

 

3354888 6511032 <b>Mutant phenotype: </b>rl<sup>9</sup>/rl<sup>10a</sup> heterozygotes die in 
the pupal stage. In contrast to wild type, there is very little increase in the mitotic index in either 
rl<sup>9</sup>/rl<sup>10a</sup> or rl<sup>10</sup>/rl<sup>10a</sup> mutants after colchicine 
treatment for 3 hrs, and over-condensation of the chromosomes is not seen.<br><br><b>Mutant pheno-
type: </b>rl<sup>9</sup>/rl<sup>2</sup> flies lack the R7 photoreceptor cell and some outer photore-
ceptors. This phenotype is dominantly suppressed by aop<sup>pok-1</sup>.<br><br><b>Mutant pheno-
type: </b>Hemizygous larvae completely lack imaginal discs and die. Individuals die as pupae when 
heterozygous with rl<sup>1</sup> or rl<sup>6</sup>.<br><br><b>Mutant phenotype: </b>L3 larval 
lethal as hemizygote no imaginal discs pupal lethal when heterozygous with rl<sup>1</sup> or 
rl<sup>6</sup> (Hilliker, 1976).<br><br><b>Mutant phenotype: </b>Mutants have a have a mild rough 
eye phenotype. FBcv0000351:lethal FBcv0000351:lethal | FBdv00005336:larval stage | 
FBcv0000298:recessive FBcv0000354:visible The Drosophila Ral GTPase regulates developmental cell 
shape changes through the Jun NH(2)-terminal kinase pathway. Genetic analysis of rolled, which encodes 
a Drosophila mitogen-activated protein kinase. rugose (rg), a Drosophila A kinase anchor protein, is re-
quired for retinal pattern formation and interacts genetically with multiple signaling pathways. Cytoge-
netic analysis of the second chromosome heterochromatin of Drosophila melanogaster. The Drosophila 
rolled locus encodes a MAP kinase required in the sevenless signal transduction pathway. The sevenless 
signaling cassette mediates Drosophila EGF receptor function during epidermal development. Genetic 
analysis of the centromeric heterochromatin of chromosome 2 of Drosophila melanogaster: deficiency 
mapping of EMS-induced lethal complementation groups. Involvement of the rolled/MAP kinase gene in 
Drosophila mitosis: interaction between genes for the MAP kinase cascade and abnormal spindle. Genetic 
interactions of pokkuri with seven in absentia, tramtrack and downstream components of the sevenless 
pathway in R7 photoreceptor induction in Drosophila melanogaster. The new Drosophila melanogaster 
nonlethal inversion, arisen from the In(2R)bw<sup>VDe2</sup>. 

6511032 10a heterozygot die pupal stage wildtyp littl increas mitot index 10a 10a mutant colchicin hr 
over-condens chromosom seen fly lack photoreceptor outer photoreceptor phenotyp dominantli suppress 
aop pok-1 hemizyg larva complet lack imagin disc die individu die pupa heterozyg larval lethal hemi 
zygot imagin disc pupal lethal heterozyg hillik mutant mild rough eye phenotyp fbcv0000351 lethal 
fbcv0000351 lethal fbdv00005336 larval stage fbcv0000298 recess fbcv0000354 visibl drosophila ral 
gtpase regul shape jun termin kinas pathwai genet roll encod drosophila mitogen-activ kinas rugos droso-
phila kinas anchor requir retin pattern format interact geneticli multipl signal pathwai cytogenet second 
chromosom heterochromatin drosophila melanogast drosophila roll locu encod map kinas requir sevenless 
signal transduct pathwai sevenless signal cassett mediat drosophila egf receptor function epiderm genet 
centromer heterochromatin chromosom drosophila melanogast defici map ems-induc lethal complement 
involv rolled/map kinas drosophila mitosi interact map kinas cascad abnorm spindl genet interact pokkuri 
seven absentia tramtrack downstream compon sevenless pathwai photoreceptor induct drosophila 
melanogast drosophila melanogast nonleth invers arisen vde2 
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Figure 10: 

The same phenotype as in Figure 9 represented as vector showing term frequencies. Each word has 

been translated into a numeric feature and has received its frequency (TF-) score. 

 

 

Figure 11: 

The same phenotype as in Figure 10, now in a vector format, where term frequencies have been 

multiplied by their respective inverse document frequencies (i.e. TFIDF-score). 

 

2.1.7 Phenotype and disease-specific vocabularies 

Specialized phenotype and disease vocabularies were used in section 3.2.3 to over-weight 

TF- and TFIDF-scores of vocabulary terms in phenotype vectors (see 2.2.1 for methods). 

Utilized vocabularies were GO-terms (see section 2.1.4), the Medical Subject Headings 

(MeSH) [Nelson, et al., 2004] (Files: Descriptors: d2007.bin, Qualifiers: q2007.bin, Sup-

plementary Concept Records: c2007.bin, source release date for all files: 2007-08-01, 

downloaded from http://www.nlm.nih.gov/mesh/filelist.html) and MP-terms (see section 

2.1.5). 

6511032 2 0.08460 18 0.00983 21 0.02114 26 0.03343 27 0.03441 28 0.00507 36 0.05651 39 0.05698 40 
0.08022 44 0.17934 45 0.10405 63 0.26168 64 0.04040 65 0.11750 66 0.09284 67 0.05253 68 0.03795 69 
0.04489 70 0.05860 71 0.04908 72 0.08393 73 0.07311 74 0.09344 75 0.06396 76 0.03538 77 0.03722 78 
0.07061 79 0.13850 80 0.05561 81 0.06376 82 0.04011 83 0.07985 84 0.09870 85 0.049511 86 0.04228 
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0.03202 129 0.18175 130 0.05008 131 0.06823 132 0.03837 133 0.05299 134 0.03493 135 0.05090 136 
0.05917 137 0.03960 138 0.06878 139 0.04471 140 0.03413 141 0.09014 142 0.05193 143 0.06056 144 
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0.04452 153 0.08828 154 0.05554 155 0.06547 156 0.08628 
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2.1.8 Data for phenocopies 

Usually, a phenocopy is a condition produced by an environmental effect that mimics the 

condition produced by a gene. However, there are phenocopies which are independently 

induced by two or more different genes. In an extensive manual search of Medline litera-

ture on such phenocopies induced by different genes, 27 such phenocopies, induced by 57 

genes in total, were identified and used here (see Appendix A4 for details of the pheno-

copies and the literature references). 

2.1.9 Data integration 

Data integration for PhenoMIX has been done in the same way as for PhenomicDB by 

Kahraman et al. [Kahraman, et al., 2005]: the physical (i.e. materialized) integration of 

phenotype data from various sources, i.e. the Online Mendelian Inheritance in Man data-

base (OMIM) [McKusick, 2007], the Mouse Genome Database (MGD) [Bult, et al., 2008], 

WormBase [Rogers, et al., 2008], FlyBase [Wilson, et al., 2008], the Comprehensive Yeast 

Genome Database (CYGD) [Guldener, et al., 2005], the Zebrafish Information Network 

(ZFIN) [Sprague, et al., 2008], and the MIPS Arabidopsis thaliana database (MAtDB) 

[Schoof, et al., 2004], where each data field from each data source was mapped manually 

(by ‘course-grained semantic mapping’ [Kahraman, et al., 2005]) to the data fields of the 

target database. Furthermore, the genotypes directly associated to each phenotype were 

manually mapped back to a common gene index, namely the NCBI’s Entrez gene index 

[Maglott, et al., 2007; Wheeler, et al., 2008]. Finally, genotypes where grouped by species 

using orthology information taken from the NCBI’s HomoloGene [Wheeler, et al., 2008]. 

2.1.10 Extensions in PhenomicDB 

In the first part of this thesis, PhenomicDB was extended by over 250,000 RNAi pheno-

types, now making up roughly two thirds of the phenotypes in PhenomicDB (see section 

3.1 for more results from the extension effort). In addition to the data sources mentioned 

above (see section 2.1.9 and section 4.2.4), new data sources have been made accessible 

(all data sources are listed in section 4.2.4 with more details). These new data sources are: 

1. FlyRNAi, maintained by the Drosophila Resource Screening Centre (DRSC) (13,900 

targeted genes; available at http://www.flyrnai.org) [Flockhart, et al., 2006], 
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2. PhenoBank (24,671 RNAi phenotypes for 20,981 genes; available at 

http://www.phenobank.org) [Gonczy, et al., 2000; Gonczy, et al., 1999; Sonnichsen, et 

al., 2005], 

3. RNAiDB (59,991 RNAi phenotypes; available at http://www.rnai.org) [Gunsalus, et al., 

2004], 

4. PharmGKB (608 targeted genes; available at http://www.pharmgkb.org) [PharmGKB, 

2008]. 

Extensive RNAi data was also derived from previously integrated data sources that had to 

be updated due to their novel content, namely WormBank (74,602 RNAi phenotypes on 

77,763 genes; available at http://www.wormbase.org) and FlyBase (150,000 phenotypic 

statements on 14,029 genes; available at http://www.flybase.org) [Tweedie, et al., 2009; 

Wilson, et al., 2008]. 

To properly host these data, the PhenomicDB database scheme was updated (see section 

3.1 for details and results). The schemes were tested and populated with the above men-

tioned data using two simple Java classes (one for database handling and one for database 

queries) to connect to, update and query the database. The finished MSSQL scheme was 

presented to database experts for revision and was then sent to the collaboration partner 

metalife AG for implementation along with the SQL statements and the raw data. Subse-

quently, the data were mapped by hand to the fields of the newly created tables (see also 

the integration methods described in section 2.1.9). 

In order to present the data to the user in a comprehensive and structured format, several 

mock-up screenshots were written in HTML using the PhenomicDB style sheets and the 

newly integrated data. These mock-ups were then presented to biologists and database ex-

perts for revision and then sent to the metalife AG for implementation. 

2.2 Methods 

2.2.1 Pair-wise similarity measures for phenotypes 

The textual descriptions of phenotypes were used as the basis for feature vectors, in which 

each feature is equal to a word within the phenotype description. The features were then 

weighted according to their importance within the description and within the set of docu-

ments and thus, phenotypes could be compared in their feature space. There are several 

possibilities for weighting terms by their importance. The most common and most broadly 
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applicable weighting schemes are term frequency (TF) and term frequency-inverse docu-

ment frequency (TFIDF, see Definition 2). These weighting schemes are very common, 

since they account for the importance of each term within the document. The multiplica-

tion of the term frequency by inverse document frequency (=TFIDF) ‘discounts frequent 

words with little discriminating power’ [Steinbach, et al., 2000] and thus is a better weight-

ing scheme when there are many documents under consideration, which is the reason why 

this is the weighting scheme of choice here. There are many other weighting schemes 

[Cummins and O'Riordan, 2005; Manning, et al., 2008], e.g. an (over-) weighting of terms 

on their occurrence within a specialized dictionary, also applied here in order to test 

whether over-weighted phenodocs have a better correlation of similarity to biological co-

herence than those with the TFIDF-weighting scheme (see section 3.2.3). 

For this, I used the phenotype- and disease-specific vocabulary described previously (see 

section 2.1.7). With the help of a script written in the Perl programming language, each 

term (and its synonyms where applicable) was parsed from each of the term lists and 

matched to the phenotype documents with simple exact matching. Wherever there was 

such a match in the phenotype description, the term would be weighted tenfold in contrast 

to its original frequency (TF x 10). Stemming (where applicable) was performed after this 

step. The results of these efforts are described in section 3.2.3.5. 

 

Definition 2 (from: [Steinbach, et al., 2000]): Given an alphabet 
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Once a document (or rather a set of documents) has been transferred into numerical feature 

vectors, similarity measures can be applied in order to find sets of similar documents 
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within the entire set. The similarity measure for comparing document vectors used is the 

cosine similarity, a measure of correlation between length-normalized vectors (see 

Definition 3) [Steinbach, et al., 2000; Zhao and Karypis, 2002]. 

 

Definition 3 (from: [Steinbach, et al., 2000; Zhao and Karypis, 2002]): The 

cosine similarity ),( yxsim of two length-normalized vectors y and x of 

length n is equal to ( )yxcos rr
⋅−1 , representing the angle between them 
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These similarity values range from 0 (no similarity) to 1 (identity). The normalization of 

the vectors over their lengths results in the property that only the direction of the two vec-

tors is an indication of their similarity. In a feature space of terms, this direction correlates 

with the ‘theme’, or the textual content of the document represented by the vector. Thus, 

two vectors pointing in the same direction (with a small angle between them) contain many 

similar words, making it a reasonable and useful similarity measure. 

2.2.2 Phenotype clustering with CLUTO 

The software used for clustering was CLUTO (Clustering Toolkit, version 2.1.1, 9.3 MB, 

file cluto-2.1.1.tar.gz downloaded on 2006-10-3 from 

http://glaros.dtc.umn.edu/gkhome/cluto/cluto/download) [Zhao and Karypis, 2003]. It is 

up-to-date, fast and simple open-source software for clustering and was thus used for all 

clustering applications here. Specifically, the scalable implementations of the bisecting k-

means algorithm from the CLUTO package, called vcluster and scluster, were used. From 

the available clustering algorithms in the public domain, CLUTO has been chosen here for 
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its reliability and availability. Furthermore, it has been proven to work well on textual data 

sets from the life science domain on several occasions [Steinbach, et al., 2000; Tagarelli 

and Karypis, 2008; Zhao and Karypis, 2003; Zhao and Karypis, 2005]. Also, it should be 

noted that quality and coherence of a clustering depend more on the choice of parameters 

than on the algorithm’s implementation (assuming this has been done with reasonable 

care). 

 

Definition 4 (from: [Zhao and Karypis, 2002]): For a subset A of docu-

ments Dd ∈ , represented by their vectors, the composite vector 
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and centroid for each available document, where Nrki ∈,, . 

 

There are three main parameters to the k-means algorithm: k (the command-line parameter 

nclusters, i.e. the number of clusters), the similarity (or distance) measure (the command-

line parameter colmodel, e.g. ‘idf’ when the input features’ values are given as term fre-

quencies and the TFIDF scoring scheme should be calculated, or ‘none’ when the given 

values should be accepted as they are) and the criterion function (the command-line pa-

rameter crfun, typically I2, see Definition 4). The choice for the criterion function, i.e. the 

function that uses the similarity measure in order to assign samples to their best (i.e. near-

est) centroid is highly dependent on the choice of similarity measure, which in turn is de-

pendent on the clustered data [Zhao and Karypis, 2002]. The cosine similarity measure is 

the best choice for document clustering (see section 2.2.1) for which CLUTO’s criterion 

function I2 (see Definition 4) has been suggested [Zhao and Karypis, 2002]. 

Clustering with vcluster was done as follows. Prior to clustering, the phenotypes had to be 

prepared as phenodocs (see Definition 1 in section 2.1.6) and transferred into vectors (see 

section 2.1.6), stored in a single file (one line for each phenodoc) containing just the pairs 

of feature identifiers and frequencies for each vector (omitting the vectors’ identifiers, 
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since they are identified by the order of occurrence within the file). A single line was added 

to this file as header, consisting of three separate integers denoting the number of vectors 

(total number of lines), the number of unique features (words) and the total number of fea-

tures in all phenodocs, respectively. This file, called the matrix file, was stored and given 

as the command-line parameter filename.mat. Two other very useful optional files could be 

created, namely the rlabel file (giving the phenodocs’ identifiers in order of appearance in 

the matrix file) and the clabel file, containing all unique words as represented by feature 

identifiers in the matrix file. For convenience, the vectors could also be created by the 

doc2mat package which is part of CLUTO (see also section 2.1.6). The program takes as 

input a file of phenotypes or phenodocs with identifiers and textual descriptions (one per 

line) and returns the three files named above. When given phenotypes, doc2mat can be 

used to create phenodocs, as it optionally allows for stemming of words with Porter’s 

stemming algorithm (see 2.1.6 and [Porter, 1980]) and also offers the option to remove 

stop-words (either generic or from a list). It offers, however, no cut-off for character or fea-

ture count (as it has been applied, see section 2.1.6) and offers no options for word weight-

ing and can only calculate term frequencies. The clustering program was then run with 

‘vcluster -colmodel=<string> -crfun=<string> <filename.mat> <nclusters>’ on com-

mand-line. 

In another setting, where instead of vectors, there was only a matrix of pairwise similarities 

available (e.g. for clustering of sequences by their pairwise sequence similarities), the util-

ized program was scluster, also from the CLUTO package. The data input for scluster is 

called a graph file, in which each line represents a vertice (or node) in a graph and each en-

try consists of a pair of values, one integer value as the identifier of a vertice connected to 

the vertice represented by the current line in the file followed by whitespace and a floating 

point value representing the value (or weight) of the edge between the two vertices fol-

lowed by one or more such pairs of vertice identifier and edge weight. The file also con-

tains a header consisting of two integers, denoting the number of vertices and the number 

of edges in the file respectively. The program is also called on command-line with ‘scluster 

-crfun=<string> <filename.graph> <nclusters>’. 

The result of the vcluster and scluster is the file filename.mat.clustering.nclusters contain-

ing an integer between 0 and nclusters-1 in each line, representing the cluster identifier 

number for the vector in the corresponding line from the input file. Now, using the pheno-
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type identifiers correspondingly stored in the rlabel file, each cluster identifier is associ-

ated with at least one phenotype identifier, resulting in phenoclusters (see Definition 5). 

 

Definition 5: Phenoclusters are defined as the result of applying a k-means 

clustering to n phenodocs resulting in k clusters, each associated with at 

least 1 and at most n-k+1 phenotypes, knNkn ≥∈ ,, . A phenocluster is any 

one of those k clusters. 

 

2.2.3 Gene similarity based on GO-annotation 

The similarity of two genes can be calculated effectively using their GO-annotations. Gen-

erally, there are two different approaches to measuring the similarity of pairs of sets of GO-

terms, namely to analyze the graphs induced by the terms of either set, or to measure the 

frequency of term occurrence in samples (reflecting information content of both terms). 

The latter approach has been declared most effective in a study by Guo et al., comparing 

many similarity measures of either class and was therefore used here to calculate GO-term 

similarities [Guo, et al., 2006]. Based on the two general approaches, there are several 

other similarity measures for two groups of GO-terms, resulting in similarity measures for 

genes (see section 4.2.2 for an overview). 

Here, a variation of the approach suggested by Lord et al. was used [Lord, et al., 2003]. In-

stead of considering all pairs of terms from either set, only the k best-scoring term pairs 

(with k being the size of the smaller term group) were used, where each term from the 

smaller set contributes exactly its best similarity score with one of the terms from the larger 

set. In case of an equal number of terms in both sets, all of them were paired and all pair-

wise similarity scores were used (see Definition 6). For example, if one gene has ten asso-

ciated GO-terms and another gene has only three associated GO-terms, the GO-similarity 

of the two genes is the mean of the three highest similarity scores from the three terms of 

the smaller set with any one of the terms from the larger set. This score better reflects the 

nature of GO-annotations, where genes are unequally well annotated or genes only par-

tially share functions with each other. For calculating the similarity of two GO-terms, the 

similarity measure proposed by Lin was used here (see section 4.2 or [Lin, 1998]). This 

score is intuitive, because resulting scores range between 0 (when the terms are connected 
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only via the root) and 1 (if both sets of terms are equal). Since beginning this thesis, this 

definition has been independently described and published as the optimal way to measure 

gene similarity by Frohlich et al. (see section 4.2.2 or [Frohlich, et al., 2007] for more de-

tails), with the variation that they suggest applying maximum weighted bipartite matching 

(see e.g. the book by West for details [West, 1999]) when both sets of terms are of equal 

size. 

As is the case for genes, phenotype similarity can also be calculated from ontology terms, 

here from MP (see sections 1.3.2 and 2.1.5). Calculation is carried out as described in this 

section. These resulting similarities were used in section 3.3. 

 

Definition 6: For any term t that is part of the set of terms T making up the 

biological process sub-ontology GOBP, a gene g is associated with one or 

more terms t ∈ T. For two genes gh associated with the set Tk of n terms t ∈ 

T and gj associated with the set Tl of m terms t ∈ T, the similarity sim(gh,gj) 

is defined as the sum of the highest similarity score (calculated using the 

formula by Lin [Lin, 1998]) from each term of the smaller of the two term 

sets with any term from the larger set. If both sets are of equal size, the 

highest pair-wise similarity score is summed for each term of both sets. To 

adjust for differing sizes of term sets, the resulting sum is divided by the 

number of total term pairs considered. 

 

2.2.4 Gene similarity based on sequence 

The most commonly used similarity measure for two genes is the similarity of their respec-

tive sequences, also utilized here. The three most popular algorithms to calculate this simi-

larity are BLAST [Altschul, et al., 1990], the Smith-Waterman local alignment algorithm 

[Smith and Waterman, 1981] and the Needleman-Wunsch global alignment algorithm 

[Needleman and Wunsch, 1970]. Global alignment algorithms are designed to align every 

letter in every sequence and are most useful for similar and equally sized sequences. Local 

alignments are commonly used for dissimilar sequences containing several shorter 

stretches of similarity within the entire sequence. With sufficiently similar sequences, there 

is basically no difference between local and global alignments [Brudno, et al., 2003]. 
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BLAST compares a query sequence with many sequences from a database and calculates 

the statistical significance of local matches between query and database entries. This makes 

BLAST a very useful tool to find the best matches for a sequence. Its great advantage is 

that it outperforms the Smith-Waterman algorithm on large databases of sequences in terms 

of time by at least an order of magnitude [Altschul, et al., 1990]. The main disadvantage of 

BLAST is that it is a heuristic, thus giving not the optimal local alignment like the Smith-

Waterman algorithm does. However, when pair-wise comparisons between many se-

quences are needed, especially when looking for all pair-wise similarity scores between a 

set of sequences, the performance advantages of BLAST are enormous. Thus, BLAST 

(version 2.2.9, 27,868 KB, file blast-2.2.18-ia32-linux.tar.g downloaded on 2008-07-10 

from ftp://ftp.ncbi.nlm.nih.gov/blast/executables/release/2.2.9) was the algorithm of choice 

applied here for sequence similarity calculations. It is freely available from the NCBI 

BLAST webpage (http://www.ncbi.nlm.nih.gov/BLAST/download.shtml). 

The gene sequences used for similarity calculations (see section 2.1.1) were stored in a file 

and formatted into a BLAST-able database file (seqs.fasta used by BLAST with command-

line option -d) by a program named formatdb delivered with BLAST. Then, a script written 

in the Perl programming language consecutively extracted each sequence from the original 

file, stored it in a temporary file tmp.txt (command-line option -i) and applied BLAST on 

command-line (using command-line option –p blastn for nucleotide sequences) with 

’blastall -p blastn -i tmp.txt -d seqs.fasta -v 0 -b 100’ to retrieve all pair-wise alignments of 

this sequence with all other sequences in the original file. The results were stored when 

query and target sequence showed an identity value greater than or equal to 0.1. 

2.2.5 Assembling groups of similar genes 

Groups of genes are assembled from phenoclusters (used in section 3.2) but also from 

other similarity measures (used in section 3.3): 

1. Interactions in Intact and BioGrid (see sections 1.2.4.2 and 2.1.3), 

2. Orthology (see sections 1.2.4.1 and 2.1.2), 

3. GO-similarity (see sections 1.2.5, 2.1.4 and 2.2.3), measured separately in all of the 

three sub-ontologies, 

4. Nucleotide sequence similarity (see sections 2.1.1 and 2.2.4), 
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5. Using groups of similar phenotypes, measured by cosine similarity (see sections 2.1.6 

and 2.2.1) MP-similarity (see sections 1.3.2, 2.1.5 and 2.2.1), calculated analogously to 

gene similarity from GO-terms (see section 2.2.3). 

For phenoclusters, groups of genes were derived by looking up the associated genes to the 

phenotypes in PhenomicDB (see section 2.1.7) and joining all genes together into one 

group for which associated phenotypes are together in the same phenocluster. 

For Boolean similarity measures, i.e. interactions and orthology, all genes belonging to-

gether were joined into one group, e.g. when gene A interacts with B and gene B interacts 

with gene C, genes A, B and C form one group. In any other case, groups were assembled 

analogously, defining as threshold a similarity measure of 0.8. Where groups of phenotypes 

were assembled by this method, i.e. using the cosine similarity measure and MP-similarity, 

gene groups were built the same way as it was done for phenoclusters. 

2.2.6 Correlation between GO-similarity and phenodoc similarity 

For each gene pair from a ‘phenocluster’, two measures were calculated: the GO-similarity 

score (see section 2.2.3) and the mean pair-wise similarities of phenodocs associated with 

the genes (see section 2.2.1). From these measures, the mean cluster GO-similarity and 

phenodoc similarity was computed, resulting in two functional measures of which the de-

gree of correlation was calculated using the Pearson correlation coefficient r (ranging from 

r = -1.0, with perfect inverse linear correlation, over r = 0.0, no correlation, to r = 1.0, per-

fect linear correlation). This correlation coefficient was used for cluster coherence assess-

ment. 

2.2.7 Prediction of functional annotation 

One of the observations made during the clustering experiment showed that the resulting 

groups of genes are highly enriched in terms of coherence of their functional annotation 

(see section 3.2.2.2), suggesting that genes within a phenocluster have a high chance of 

sharing gene function. This led to the hypothesis that phenoclusters can be used for func-

tion prediction by transferring the function of badly characterized or un-annotated genes in 

a cluster from well characterized genes in the same cluster (see Figure 12). To estimate 

precision and recall (see section 2.2.8) of this approach, all gene groups with at least three 

members were considered, but groups with no GO-terms common to at least 50% their 

members were disregarded. Each resulting group was then randomly partitioned into a 
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training set of at most 90% of its genes and a test set of at least one gene and at most 10% 

of genes. The terms associated to the training set were ‘predicted’ as new annotations to all 

genes in the test set of the same group. Then, these predictions were compared to the real 

annotation of the test genes to judge prediction correctness. This procedure was repeated 

200 times (with different training / test sets) and the means of precision and recall values of 

the suggested terms were computed (see section 2.2.8). To measure an empirical threshold 

(p-value ≤ 0.05), randomly populated gene groups of equal size were used. 
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Figure 12: 

Schematic view of gene function prediction for a group of genes. 

A. Genes of a group annotated with several different GO-terms (large circle). To predict functional 

annotations, only GO-terms commonly annotated to at least 50% of members are considered 

(small oval). 

B. From a group of genes, a training set of 90% of those genes is separated from a test set of 10%. 

The GO-terms associated with the genes are divided into a set of ‘known’ terms (the prediction) 

and ‘unknown’ terms (the predicted). From the resulting overlap of these two groups, precision 

and recall can be calculated. 

 

Analogously, groups of genes assembled as described in section 2.2.5 were used to predict 

GO-terms (as described above for phenoclusters), and also phenotype terms from their as-

sociated phenotypes (see sections 2.1.1 and 2.1.6 for details on the data set). For this, genes 

associated with at least one phenotype and only groups with at least three members were 

considered. From each associated phenotype, the entire phenotype description was ex-

tracted (after stemming and stop-word-removal as described in section 2.1.6) and unique 

words were merged (when there was more than one associated phenotype) and stored as 
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annotation to the gene (as if they were GO-terms). The subsequent prediction of (pheno-

type) terms and cross-validation were done exactly as described above. 

2.2.8 Precision and recall 

Precision and recall (see Definition 7 and Definition 8) are important parameters to evalu-

ate search and prediction methods. Prerequisite is the knowledge of the amounts of rele-

vant data that can be found in a data set. The amount of data that actually will be found in 

this set should overlap to some degree with the relevant data and depends on the quality of 

the applied search or prediction method (see Figure 13) [Jizba, 2000]. In absence of a ‘gold 

standard’, where a set of genes is fully annotated with all applicable GO-terms, any predic-

tion may be correct, but cannot (currently) be verified. As a result, TP=FP may hold for 

both definitions below (see also the comment in section 3.2.2.4). 

 

Definition 7: Precision is the relation between the correctly predicted anno-

tations (TP) and the annotations that have been predicted (TP+FP). High 

precision means a small fraction of wrong predictions. In terms of Figure 

13, where M1 represents all available annotations, M2 represents annota-

tions that should be predicted and M3 represents annotations that have been 

predicted. 
3

32:
M

MM
Precision

∩
= . 

 

Definition 8: Recall is the relation between the correctly predicted annota-

tions (TP) and the annotations that should have been predicted (TP+FN). 

High recall means a high percentage of correct predictions. In terms of 

Figure 13, where M1 represents all available annotations, M2 represents an-

notations that should be predicted and M3 represents annotations that have 

been predicted. 
2
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Figure 13: 

In a search for relevant data (M2) within a total set of data (M1), a set of data (M3) overlapping 

with the relevant data will be retrieved. The degree of overlap is dependent on the quality of the 

applied method (from: [Jizba, 2000] / adapted: P. Groth, 2008). 
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3 Results 

3.1 PhenomicDB: Integration of genotype/phenotype data 

3.1.1 Background 

Almost all of the available genotype-phenotype resources that have been reviewed for this 

thesis (see section 4.2.4 and the review by Groth and Weiss [Groth and Weiss, 2006a]) are 

limited in scope and in content. It is common practice for a research group to keep their re-

sults in a (more or less public) database limited to their species of interest. The situation is 

worse for RNAi data, where the published data is locked up (in terms of availability for 

automatic processing) as supplementary material or in a specific database for one single 

screen (as in PhenoBank). A result of this one-sided view is the abundance of community-

specific vocabulary used by the different research groups to describe their species. 

In 2004, the first version of PhenomicDB was created by Kahraman et al., ‘in order to 

remedy to this situation’ that there is no integrative system of genotypes and phenotypes 

across species and screening methods [Kahraman, et al., 2005]. They gathered data from 

the different public resources and mapped them into a single data model (see Appendix 

A1.1) initially termed ‘Multi-Species Genotype/Phenotype Database’ (MSP). With the help 

of metalife AG they created the database’s first productive version, since then termed Phe-

nomicDB (see Appendix A1.2 for the database scheme of PhenomicDB version 1.x). 

3.1.2 New structures and data for PhenomicDB 

The publicly available genotype-phenotype data has increased steadily since 2004, when 

especially large amounts of RNAi data came into the public domain. This development can 

be traced by the near-7-fold increase of available genotype-phenotype information of the 

data content from the Drosophila Resource Screening Centre (DRSC), the only resource 

dedicated to RNAi data (see Figure 14 and section 4.2.4 for details, also on the data in-

crease for other resources). Thus, PhenomicDB had to be extended in order to host these 

new data and make them available in a semi-structured way. One of the results of this the-

sis is therefore the remodelling of the database scheme, update and extension of data con-

tent and scope as well as a restructuring of data presentation, moving PhenomicDB to-

wards its current version 2.6 (April 2009). 
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Figure 14: 

Fold-change of the increase in the number of genotypes with available phenotype information 

from 2006 (data taken from [Groth and Weiss, 2006a]) to 2008 (data taken from section 4.2.4) for 

9 different online genotype-phenotype resources. It can be seen for example that data from the 

DRSC, the only dedicated RNAi database in this list has increased almost 7-fold in that period. 

MP = Mammalian Phenotype ontology [Smith, et al., 2005]; 

RGD = Rat Genome Database [de la Cruz, et al., 2005]; 

WB = WormBase [Rogers, et al., 2008]; 

DRSC = Drosophila Resource Screening Centre [Flockhart, et al., 2006]; 

ZFIN = Zebrafish Information Network [Sprague, et al., 2008]; 

DictyB = DictyBase [Chisholm, et al., 2006]; 

OMIM = Online Mendelian Inheritance in Man [McKusick, 2007]; 

HGMD = Human Genome Mutation Database [Cooper, et al., 2006]; 

PharmGKB = Pharmacogenetics and Pharmacogenomics Knowledge Base [Hodge, et al., 2007] 

 

3.1.3 Home for large-scale RNAi data 

The extension of PhenomicDB towards version 2.x has primarily been targeted towards the 

inclusion of RNAi phenotypes. Previously, it was already possible to insert such pheno-

types. However, these data typically consist of a very short description, like e.g. ‘embry-

onic lethal’ or ‘binucleated cell’. Thus, one of the main goals of the extension was to en-

able supplementing these data with more information on the cellular conditions during the 
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screen, on the type of screen itself, as well as the siRNA sequence used for the silencing. 

Another novel feature in PhenomicDB version 2.x is the possibility to describe these short 

phenotypes by a controlled vocabulary in order to avoid inconsistency in information, 

when for example the same phenotype observed in one screen is labeled ‘lethal’ and ‘non-

viable’ in a second screen. For this purpose, the phenotype terms from MP were added as a 

controlled vocabulary. All these data mentioned above are now stored in a newly designed 

database scheme with new tables hosting siRNA sequences and information, controlled vo-

cabulary terms for phenotypes and cell types, tables for experimental design and condi-

tions, as well as descriptions for experiments and phenotypes (see section 2.1.10 and Ap-

pendix A1.3 for the new tables within the database scheme of PhenomicDB version 2.x). 

 

Table 3: 

Examples of a controlled vocabulary of RNAi assays added to PhenomicDB version 2.x 

Assay Name Assay Type
Mitotic index proliferation
BrdU incorporation proliferation
Metabolic activity metabolism
Cell number apoptosis
Apoptosis TUNEL apoptosis
Alamar blue viability
Centrosome duplication morphology
Cell cycle affected cell cycle
Cytokine creation immunology  

 

With this, PhenomicDB was redesigned to accept large datasets of over 250,000 RNAi 

phenotypes in total (now making up roughly two thirds of the phenotypes in PhenomicDB 

version 2.x, see sections 2.1.10 and 4.2.4 for details on these data sources). Finally, the 

controlled vocabularies for RNAi screens (from the scientists at Bayer Schering Pharma 

AG, see Table 3), phenotypes (from MP, see sections 1.3.2 and 2.1.5 for details) and cell 

cultures (from the ATCC, Table 4) ere integrated and associated with these RNAi pheno-

types where possible. 
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Table 4: 

List of cell lines from the online catalogue of ATCC (http://www.atcc.org), some of which were 

added as controlled vocabulary in PhenomicDB version 2.x for the appropriate RNAi screens. 

Tumor Cell Line
ATCC No. Name Cancer Type Tissue Source
CCL-256 NCI-H2126 carcinoma; non-small cell lung cancer lung
CRL-5868 NCI-H1395 adenocarcinoma lung
CRL-5872 NCI-H1437 adenocarcinoma lung
CRL-5911 NCI-H2009 adenocarcinoma lung
CRL-5985 NCI-H2122 adenocarcinoma pleural effusion
CRL-5922 NCI-H2087 adenocarcinoma lymph node (metastasis)
CRL-5886 NCI-H1672 carcinoma; classic small cell lung cancer lung
CRL-5929 NCI-H2171 carcinoma; small cell lung cancer lung
CRL-5931 NCI-H2195 carcinoma; small cell lung cancer lung
CRL-5858 NCI-H1184 carcinoma; small cell lung cancer lymph node (metastasis)
HTB-172 NCI-H209 carcinoma; small cell lung cancer bone marrow (metastasis)
CRL-5983 NCI-H2107 carcinoma; small cell lung cancer bone marrow (metastasis)
HTB-120 NCI-H128 carcinoma; small cell lung cancer pleural effusion
CRL-5915 NCI-H2052 mesothelioma pleural effusion
CRL-5893 NCI-H1770 neuroendocrine carcinoma lymph node (metastasis)
HTB-126 Hs 578T ductal carcinoma mammary gland; breast
CRL-2320 HCC1008 ductal carcinoma mammary gland; breast  

 

After its November 2008 data update, PhenomicDB hosted 280,533 phenotypes, connected 

to 77,400 eukaryotic genes. All data entries are cross-referenced by links to their original 

data sources. It is kept up-to-date on a regular schedule and is freely accessible without re-

strictions. By the end of 2006 (data from Groth and Weiss [Groth and Weiss, 2006b]), the 

percentage of the Entrez gene index with a phenotype was approximately 99% for Droso-

phila melanogaster, 79% for Caenorhabditis elegans, 21% for Saccharomyces cerevisiae, 

approximately 16% for Mus musculus (this number was estimated on the basis of the hu-

man Entrez gene entries, as Entrez gene index for mouse (62,907 gene IDs) was still in 

progress and therefore had not collapsed then) and 8% for Homo sapiens. 84% of all avail-

able phenotypes in PhenomicDB came from Drosophila melanogaster and Caenorhabditis 

elegans. 16.2% of phenotypes were associated with a gene having no orthologs, and less 

than 1.5% of the phenotypes were associated to a gene that could not be mapped to the En-

trez gene index. 40,299 eukaryotic orthology groups were registered and a third of them 

(13,695) had at least one phenotype in any of the species. For Homo sapiens, 2,850 genes 

were linked to 4,009 phenotypes and for another 7,592 human genes there was at least one 

‘orthologous phenotype’ available. Thus, the percentage of human genes with phenotypic 

information was raised from 8% of the Entrez gene index (without orthologous informa-
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tion) to 31% with orthologous information. For Mus musculus, ‘orthologous phenotypes’ 

increased available phenotypic information for mouse genes to over 30% of the gene index 

(see Figure 15 for more details, also on other species). These figures clearly show that in-

tegrating disparate phenotype data from different species can generate new information 

with worthwhile implications for each of these species. 

 

 

Figure 15: 

Percentage of NCBI Entrez gene indices with phenotypic information in PhenomicDB for 5 model 

organisms and Homo sapiens. The percentage of genes with one or more phenotype from the given 

species is shown in blue (‘direct phenotypes’), of genes with one or more phenotype associated 

only by orthology are shown in red (‘orthologous phenotypes’), and of those genes that have no 

phenotype associated are shown in yellow. The red bars show the direct benefit from cross-species 

integration in PhenomicDB. The high coverage of Caenorhabditis elegans and Drosophila 

melanogaster gene indices with phenotypic information is mainly due to integrated RNA interfer-

ence data (data and figure taken from [Groth and Weiss, 2006b]). 

Ce = Caenorhabditis elegans; Dm = Drosophila melanogaster; Hs = Homo sapiens; Mm = Mus 

musculus; Sc = Saccharomyces cerevisiae; Dr = Danio rerio 
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3.1.4 Extensions to the user interface 

In PhenomicDB, genotype and phenotype data have been organised in a single database 

scheme. Having all genes annotated and also indexed over orthology groups allows search-

ing orthologous genotype and phenotype data with a single database query. The advent of 

RNAi data required the scheme to be extended (as described in sections 2.1.10 and 3.1.3) 

in order to cope with a ‘qualitative’ phenotype, e.g. the description of a visual inspection 

via microscopy, but also with a ‘quantitative’ phenotype, i.e. a floating point number ex-

pressing an absolute or relative deviation from an expected ‘normal’ or average phenotype. 

The update in the database scheme also required improvements in the interface (see section 

2.1.10). This interface can now show these details, as well as the important aspects of 

RNAi study design that have been specially addressed in the new database scheme, e.g. as-

say, cell line, time point, mRNA knock-down efficiency, phenotype penetrance, siRNA se-

quence, etc. have been addressed adequately. Furthermore, PhenomicDB was enriched 

with tables holding MGI’s Mammalian Phenotype ontology and controlled vocabulary for 

cell lines and RNAi assays. 

PhenomicDB’s graphical user interface has been designed to be as simple and as effective 

as possible. A basic query can be started intuitively by entering any search term (e.g. apop-

tosis, BUB1) or identifier (e.g. NM_001211). Users can configure the output data fields to 

be shown individually, e.g. gene symbol, phenotype name, ontology, chromosomal local-

ization, etc. Queries allow wildcards and logical operators (‘AND’, ‘NOT’, ‘OR’) and can 

be further refined by limiting to data fields, data domains or organisms. 
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Figure 16: 

Typical result list, showing here the search for the frataxin orthology group (some entries omitted 

for simplicity). The frataxin genes from different species are shown with a marble background; in-

dented and with green background, the corresponding phenotypes are shown. Hyperlinks lead to 

the source database. The ‘Show Entry’ button displays the full genotype/phenotype information. 

For Gallus gallus, no phenotype (with red background) is available. 

 

The customizable results interface (see Figure 16) lists all hits organised by genes with 

their associated phenotypes indented and provides further links to more detailed views. The 

button ‘Orthologies’ enables the user to show all orthologous genes with their associated 

phenotypes for each hit. The ‘Show entry’ buttons lead to the full-length genotype or phe-
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notype entries. Also, the entire hit list can be expanded to show the orthologs of all or se-

lected genes as well as their corresponding phenotypes. All entries consistently link back to 

their original sources (e.g. entries derived from OMIM link back to OMIM) to make sure 

data will be properly referenced by users. 

For convenient external access to PhenomicDB, static hyperlinks can be created to direct to 

any genotype or phenotype using e.g. the Entrez gene ID. Dynamic URLs using any query 

term behave as if the term was entered into the search mask of the homepage. A manual is 

available on the homepage. External linking to PhenomicDB is also featured in the browser 

task bar BioBar (http://biobar.mozdev.org). 

Like other phenotype data, RNAi data was historically stored in a plain text field in the old 

version of PhenomicDB (see Figure 17). This changed with PhenomicDB version 2.x, 

where the additional phenotype information (see section 2.1.10 and 4.2.4 for details) is 

stored with the quantitative and qualitative RNAi phenotype data (see Figure 18). 

 

 

Figure 17: 

Entry for an RNAi phenotype from WormBase in the old PhenomicDB version 1.x. It can be seen 

that in comparison to Figure 18, the phenotype description was very sparse, with very short de-

scriptions and domain-specific vocabulary. 
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Figure 18: 

RNAi phenotype data entry in PhenomicDB version 2.x. More detailed information is given not 

only for the phenotype itself (with a link to MP), but also about other controlled vocabularies for 

screens and cell-lines. 

 

3.1.5 Discovering knowledge with PhenomicDB 

It becomes clear that PhenomicDB in its current version is ready for knowledge discovery, 

with its functionality to present phenotypes for orthologous genes on one single page. This 

is a valuable feature, for example in a pharmaceutical target discovery setting. Here, hu-

man genes are the actual targets, but there is much more information available for ortholo-

gous genes from model organisms and from various experiments or mutations that are at 

present impossible to obtain in such detail for any human gene. Also, PhenomicDB can be 

used to gain more insight into the nature of genetic diseases, due to its high-level integra-

tion of diverse phenotypes directly associated with responsible genes. 



 - 56 - 

However, one question that could not be answered yet is whether similar phenotypes asso-

ciated with different genes also yield new biological insights. The next part of this thesis 

(section 3.2) deals with the results of a study focusing on this question. 

3.2 Cross-species phenotype clustering 

3.2.1 PhenoDoc clustering: A new approach to group genes 

Textual descriptions of phenotypes were obtained with reference to their associated gene 

from the PhenomicDB database (here: PhenomicDB version 2.1). For text-mining pur-

poses, the descriptions had to be properly filtered, adapted and prepared, resulting also in a 

data reduction (see section 2.1.6 for details of methods and data). The term phenodoc is 

used in the following to refer to this adjusted form of phenotype description (see Definition 

1). Phenocluster refers to a cluster of phenodocs (see Definition 5). The resulting 39,610 

phenodocs associated to 15,426 genes from 7 different species (see section 2.1.6 for more 

information on the data set) were allocated to 1,000 clusters (and also other cluster sizes, 

see section 3.2.2.6) based on the cosine similarity between phenodocs using the k-means 

algorithm on a vectorized representation of the documents. From these clusters, gene 

groups were assembled as described in section 2.2.5. The resulting groups were studied 

from a number of perspectives to assess whether or not the grouping itself was biologically 

reasonable. Then, gene function was predicted within each cluster and evaluated using 

cross validation. Finally, the TFIDF weighting scheme for the vectorized presentation of 

the documents was challenged using other weighting schemes and the results were re-

evaluated. 

Of the 1,000 clusters, 90.4% were single species. Figure 19 shows the distribution of clus-

ter sizes. Figure 20 details the distribution of genes by species (independent of the cluster-

ing) and the distribution of species in clusters (depending on the clustering). 
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Figure 19: 

The diagram shows the distribution of the number of clusters in different sizes. 

 

 

 

Figure 20: 

The left pie chart depicts the distribution of genes by species, i.e. the relative number of genes in 

the gene set according to species affiliation. The right pie chart shows the distribution of clusters 

according to single species or ‘mixed’, if the cluster is made up of genes from more than one spe-

cies. 
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3.2.2 PhenoCluster: Gene function prediction from phenotype data 

3.2.2.1 Proteins within a ‘phenocluster’ intensively interact with each other 

To test whether phenoclusters consist of genes with a high chance of being part of a com-

mon biological process, it was studied whether the proteins encoded by the genes within 

one cluster interact with each other more often than proteins in random control groups. 

This approach derives from the observation that physically interacting proteins have a 

higher chance to be part of the same biological process or pathway than non-interacting 

proteins [Guo, et al., 2006]. To test whether this is true for interacting proteins, PPi data 

was downloaded from the BioGrid database represented by pairs of Entrez gene IDs (see 

section 2.1.3 for details on the data set and see section 3.2.2.1 for an anecdotic inspection 

of phenoclusters and PPi). The degree of interactions among the members of a given 

phenocluster was then analyzed and those figures were compared to random gene groups 

of similar size. 

In 60 phenodoc clusters (from 1,000) comprising 1,858 genes, all genes physically interact 

in a cell with at least 75% of the rest of the genes from the same group within at most two 

intermediates (empirical p-value smaller than 0.05). Thus, those clusters consist of genes 

which almost build cliques in the protein-protein-interaction network. Such quasi-cliques 

previously have been associated to functional modules [Spirin and Mirny, 2003]. In an-

other 138 clusters, comprising a total of 4,322 genes, all genes interact with at least 33% of 

the rest of the genes in each group. In the mean, these groups have 30 members, which is 

approximately twice the expected mean size for groups (~ 15,000 genes in 1,000 clusters). 

However, they are still in the same size range of large ‘functional modules’ (as shown by 

e.g. Wu et al. [Wu, et al., 2005]). These numbers were compared to 200 repetitions of ran-

domly sampled control groups. In this control dataset, only one group reached the thresh-

old of 75% and two groups reached the threshold of 33%. 

These figures show that clustering of phenodocs results in gene groups whose members 

much more often interact with each other than expected by chance and thus represent co-

herent biological knowledge. However, the interaction score of the rest of these clusters is 

not significantly higher than in the control groups. This difference is exploited in section 

3.2.2.4 to sort clusters based on this score to see whether the prediction of function im-

proved in highly interacting clusters. 
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The large number of those non-interacting clusters is mostly an artefact of the current in-

completeness of PPi data sets in BioGrid, with the notable exception of Saccharomyces 

cerevisiae. Therefore, biologically coherent phenoclusters are only partially congruent with 

PPi networks. Even highly interacting phenoclusters will not necessarily mimic the PPi 

network due to the diverse nature of phenotypes or the lack of data, both on the PPi and the 

phenotype side (see findings in section 0). 

Figure 21 shows genes from a phenocluster with many connected proteins (blue nodes), in-

cluding interacting proteins with no phenotype described yet (added a posteriori and col-

oured in red). 

Many of the proteins in Figure 21 are involved in the division of germ line stem cells or in 

the regulation of that process in Drosophila melanogaster. Cyclin B (blue node with Entrez 

gene ID 37618) is required for the division of germ line cells [Wang and Lin, 2005]. This 

protein associates with spindle microtubules throughout meiosis I and meiosis II [Swan 

and Schupbach, 2007]. Profilin (blue node with Entrez gene ID 33834) and roughex (blue 

node with Entrez gene ID 31535) both act independently as suppressors of cyclin B 

throughout the cell cycle [Foley, et al., 1999; Ji, et al., 2002]. BetaTub85D (blue node with 

Entrez gene ID 41124) forms microtubules and is a structural constituent of the cytoskele-

ton and the spindle [Goldstein and Gunawardena, 2000]. NCD (blue node with Entrez gene 

ID 43517) is responsible for the generation of sliding forces between adjacent microtubules 

and plays a role in spindle morphogenesis [Oladipo, et al., 2007]. Even though spindle as-

sembly occurs in NCD mutants, its movement along microtubules is needed to stabilize in-

teractions between chromosomes [Skold, et al., 2005]. Subito (blue node with Entrez gene 

ID 44870) is required for establishing and maintaining the meiotic spindle pole formation 

in oocytes [Giunta, et al., 2002; Jang, et al., 2005]. Centrosomin (blue node with Entrez 

gene ID 36491) targets and anchors gamma-tubulin to the centrosome and organizes 

microtubule-nucleating sites [Terada, et al., 2003]. One of the proteins with no known phe-

notype (red node) directly interacting with centrosomin is sina (Entrez gene ID 39884), 

which forms an ubiquitin ligase complex and is involved in ubiquitin-dependent protein 

catabolic process [Carthew and Rubin, 1990]. It may also be involved in regulating the 

levels of developmentally important transcription factors [Cooper, et al., 2008]. Effete 

(blue node with Entrez gene ID 41785), a ubiquitin-conjugating enzyme, acts as a suppres-

sor of sina [Ryoo, et al., 2002], is involved in chromosome organization and meiosis 

[Cenci, et al., 1997], as well as regulation of R7 cell differentiation and protein ubiquitina-
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tion [Bergmann, et al., 2003]. Interacting with BetaTub85D and NCD, the protein with no 

known phenotype (red node) is sina homologue (sinaH, Entrez gene ID 39885). It has been 

found that flies lacking sinaH are viable and that there is no redundancy in the function 

with sina [Cooper, 2007]. However, not much is known about this protein and it may still 

play an important regulatory role similar to that of sina. There are two further proteins for 

which no phenotype is known, but which interact with and actually connect two proteins 

from the same phenocluster. One is brp (Entrez gene ID 35977) connecting cyclin B with 

BetaTub85D and the other is CG15631 (Entrez gene ID 33675) connecting subito and ef-

fete. This is evidence that their phenotype will eventually turn out to be similar to those of 

the proteins described above and that these proteins will be involved in the same processes. 

There is a pair of proteins in Figure 21 that are not connected to the main network, three 

more which are not connected at all. Still, according to their phenocluster they show a 

similar phenotype. Mei-P26 (blue node with Entrez gene ID 45775) restricts growth and 

proliferation in the ovarian stem cell lineage [Neumuller, et al., 2008] and is involved in 

meiosis and germ cell development [Page, et al., 2000]. Meiotic (blue node with Entrez 

gene ID 247151) is a protein with unknown molecular function, no known biological proc-

ess involvements and no annotated transcripts. The observed mutant phenotype, however, 

is defective in its meiotic cell cycle [Ivy, 1981; Orr-Weaver, 1995]. Fireworks (blue node 

with Entrez gene ID 45977), is a protein with unknown molecular function, no known bio-

logical process involvements and no annotated transcripts. The observed mutant phenotype 

is meiotic cell cycle defective, manifesting in neuroblast and larva [Dean, et al., 2001]. Asp 

(blue node with Entrez gene ID 42946) plays a role in spindle pole organization [Morales-

Mulia and Scholey, 2005]. Its mutation leads to severe defects in spindle microtubule 

within the germarium [Riparbelli, et al., 2004]. Asterless (blue node with Entrez gene ID 

250471) is involved in the following biological processes: centrosome cycle; centrosome 

organization, and biogenesis. Furthermore, it is associated with defective meiotic cell cy-

cle, manifesting in the larval brain, neuroblasts and spindle [Bonaccorsi, et al., 2007; Ru-

san and Peifer, 2007; Varmark, et al., 2007]. 
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Figure 21: 

The figure shows an example of interactions between proteins from genes in a single phenocluster. 

Depicted is a network with many genes from the same phenocluster (blue nodes with Entrez gene 

IDs) for which associated proteins are connected, while the genes of all proteins that are responsi-

ble for these connections are not in the initial set of genes due to lack of substantial phenotype data 

(red nodes). 

 

There is a lot of biological evidence to show that this phenocluster indeed comprises a 

group of proteins acting in concert in closely related processes and functions. It is therefore 

very likely that for a growing number of connected proteins with unknown functions and 

no known phenotypes, information will soon be available with even more substance to this 

biologically coherent phenocluster. 

In contrast to the phenocluster described above, there are other phenoclusters with seem-

ingly unrelated members. In Figure 22, the clustered blue nodes are again supplemented by 

nodes from the PPi data. Here, connected proteins with available phenotype data (green 

nodes) that have not clustered into this phenocluster were added a posteriori. There also is 

a single unconnected node in this phenocluster. The proteins within this phenocluster are 

mostly involved in the regulation of the Hedgehog signaling pathway. This pathway is 
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mostly responsible for embryonic development in general and wing development in Dro-

sophila melanogaster in particular [Cohen, 2003]. Ci (blue node with Entrez gene ID 

43767) is an essential part of the hedgehog signaling complex [Bijlsma, et al., 2004; Steg-

man, et al., 2000]. Then there is the protein hedgehog itself which is an essential regulator 

of the pathway (blue node with Entrez gene ID 42737). Extracellular binding of hedgehog 

inhibits the proteolytic cleavage of Ci [Apionishev, et al., 2005]. Tsc1 (blue node with En-

trez gene ID 42862) is a (negative) regulator of cell proliferation, growth, size and cycle 

[Johnston and Gallant, 2002; Manning and Cantley, 2003; Potter, et al., 2002; Tapon, et al., 

2001]. Cos2 (blue node with Entrez gene ID 35653) plays an important role in regulating 

the amounts and activity of Ci, thus regulating the level of hedgehog to which cells are ex-

posed [Farzan, et al., 2008]. The protein fused (blue node with Entrez gene ID 32855) in-

duces activation of hedgehog targets [Ruel, et al., 2007] and is in fact vitally important for 

hedgehog signaling, as the signaling pathway requires an intramolecular association be-

tween two domains of fused [Ascano and Robbins, 2004]. 

 

 

Figure 22: 

Interactions between proteins encoded by genes from more than one phenocluster. Depicted is a 

network with 6 genes from the same phenocluster (blue nodes with Entrez gene IDs) for which en-

coded proteins are interacting (connected by lines), while other genes with known phenotypes are 

also shown, encoding for more interacting proteins not found in the same phenocluster (shown as 

green nodes). 
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This biologically coherent account of this phenocluster is unsettled by the fact that there 

are many more interacting proteins with known phenotypes that are not within this pheno-

cluster. A good explanation for this is probably that the hedgehog signaling pathway is 

highly versatile in Drosophila melanogaster. For example, the protein hedgehog itself has 

78 interactors and 69 GO-annotations according to BioGrid [TheBioGrid, 2009]. Neverthe-

less, phenoclusters give insight into the structure of biological networks and can be used to 

gain novel biological insights as it is the case for the only unconnected node in Figure 22 

(blue node with Entrez gene ID 36614). This protein named DEXT1 is part of the Wnt sig-

naling pathway [Bornemann, et al., 2004; Han, et al., 2004]. There is growing evidence 

that these two signaling pathways are commonly regulated, a fact which is now also evi-

denced by the membership of DEXT1 in this phenocluster [Bornemann, et al., 2004; Kal-

deron, 2002; Nusse, 2003]. 

3.2.2.2 Genes in phenoclusters have coherent GO-annotations 

Another systematic way to determine biological coherence of phenoclusters lies in comput-

ing the similarity of the GO-terms assigned to the genes of a group (see section 1.2.5 for 

more information on GO and section 2.2.3 on the methods for calculation and an interpre-

tation of the following similarity scores). It should be noted here that in PhenomicDB, GO-

terms are associated to the gene descriptions and are not part of phenodocs (unless by rare 

coincidence, i.e. when authors had used GO-terms in the free-text descriptions that may 

also occur in GO). In the analysis of the 1,000 phenoclusters, 237 groups were found con-

taining 1,957 genes with a mean GO-similarity score ≥ 0.4 (see Figure 23 for the distribu-

tion of mean GO-similarity for all phenoclusters). For each distinct group size, 200 control 

groups were formed from randomly picked genes. Only two control groups reached this 

threshold by chance. The Pearson correlation coefficient r (see section 2.2.6 for details) 

calculated between the mean GO-similarity with the mean phenotype similarity of clusters 

was 0.41, indicating a shared variance in both similarity scores, approximately 16% higher 

than expected by chance. 
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Figure 23: 

Distribution of 1,000 clusters with their mean GO-similarity. 

 

This shows that phenotype similarity is indicative for a high probability to share GO-

annotations between the associated genes. In Table 5, an exemplary cluster with a GO-

similarity score of 0.9 is shown (randomly chosen from one of the 13 the clusters with a 

GO-similarity score between 0.9 and 1.0). From all of the terms associated with this group, 

5 terms are commonly annotated to 14 out of 17 genes (≥ 75% of genes in the group). Due 

to the homogeneous nature of the annotations, one can hypothesize that the remaining 3 

genes (eif-3.G, rrt1, and Y37B11A.3) should play similar biological roles and hence, anno-

tations can be predicted. This idea will be picked up later in the prediction of GO-terms in 

phenoclusters (see section 3.2.2.4). 
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Table 5: 

Phenocluster with 17 associated genes with a GO-score of 0.9 in the biological process sub-

ontology. 

From all of the terms associated with this group, 5 terms are commonly annotated to 14 out of 17 

genes. Due to the homogeneous nature of the annotations, one can hypothesize that the remaining 

3 genes should play similar biological roles and hence, annotations can be predicted. 

Entrez ID Gene symbol Gene name
# annotated 
GO-process 
terms

# terms common 
to ≥ 50% of 
genes in group

# terms common 
to ≥ 75% of 
genes in group

172805 rps-19 Ribosomal Protein, Small subunit 19 5 5 5
174346 eif-3.G Eukaryotic Initiation Factor 7 4 4
175501 rpl-3 Ribosomal Protein, Large subunit 3 6 6 5
175538 lrs-1 Leucyl tRNA Synthetase 14 6 5
175584 rps-19 Ribosomal Protein, Small subunit 1 7 6 5
175659 rrt1 aRginyl aa-tRNA syntheTase 8 4 4
175796 rpl-23 Ribosomal Protein, Large subunit 23 8 6 5
175901 rps-13 Ribosomal Protein, Small subunit 13 5 5 5
176007 rpl-36 Ribosomal Protein, Large subunit 36 6 6 5
176011 rps-21 Ribosomal Protein, Small subunit 21 6 6 5
176024 prs-1 Prolyl tRNA Synthetase 9 6 5
176071 rpl-9 Ribosomal Protein, Large subunit 9 7 6 5
176097 rpl-35 Ribosomal Protein, Large subunit 35 5 5 5
176146 rpl-21 Ribosomal Protein, Large subunit 21 5 5 5
177583 rps-21 Ribosomal Protein, Small subunit 2 5 5 5
179063 W02F12.5 W02F12.5 8 5 5
189611 Y37B11A.3 Y37B11A.3 2 1 1
 

3.2.2.3 Phenocopies co-occur in phenoclusters 

If phenoclusters properly reflect phenotype similarity on a biological basis, the genes caus-

ing phenocopies (see section 2.1.8 for details) should co-occur within the same clusters. Of 

the 27 phenocopies induced by 57 genes that were retrieved from literature, 25 pheno-

copies (55 genes) were found in the data set. In 1,000 phenoclusters, the genes of 13 

phenocopies (54.2%) co-occurred in a cluster. In 1,000 random clusters of the same size 

none of those genes co-occurred in any cluster. 

3.2.2.4 Predicting gene function within phenoclusters 

The previous results lead to the hypothesis that gene function can be predicted on the basis 

of association of genes to phenoclusters. If gene groups based on phenoclusters have a co-

herent GO-annotation, it should be possible to predict similar functions for genes from the 

same cluster that are not or only partially annotated. The following sections present values 

for precision and recall of GO-term predictions for different subgroups of genes from the 

phenodocs. These ‘predictions’ show the percentage of overlaps between the true annota-
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tions of a set of genes (test set) and ‘predicted’ terms which are derived from a training set 

(according to the Entrez Gene2GO annotations – see sections 2.1.1 and 2.1.4 and 2.2.7 for 

further details). 

In evaluating the correctness of a GO-annotation prediction, one has to consider the struc-

ture of GO. Recall that GO-terms form an ontology, and that terms are connected by IS-A 

and PART-OF relationships. The simplest case would be to consider a prediction as correct 

only when it appears exactly as it is in the test data. However, this criterion is too strict, 

since terms which are a little more general or more specific can equally contribute to a bio-

logical annotation. In the following, results are therefore given for different definitions of 

‘correctness’ of a prediction. In the most stringent case, a term is considered correctly pre-

dicted only if it appears in both test and training set. Thus, predicting a child of a term ac-

tually counts negative twice – as a false positive and a false negative. Because this measure 

is much stricter than that of other studies (see for instance [Kelley, et al., 2003]), it is also 

shown how the figures change when the criterion for ‘equality’ of GO-terms is relaxed. 

 

Table 6: 

Different criteria for filtering clusters for function prediction. 

In order to push the values for precision and recall towards the precision ceiling, filter criteria for 

selecting appropriate gene groups a priori were tested. The following filter criteria were defined. 

Filter Effect
Filter 1 Removes groups with fewer than 3 genes or no GO-terms associated to at least 50% of genes.
Filter 2 Removes groups with a GO-similarity score < 0.4.
Filter 3 Removes groups with a PPi-connectedness < 33%.
Filter 4 Removes all non-single species clusters.
Filter 5 Removes all single-species clusters.  

 

Table 7: 

Results for different filters applied to gene groups (k=1,000). 

Precision and recall values of function prediction in all clusters and with varying k selected by dif-

ferent combinations of the filters defined in Table 6. 

Filter 1 Filter 1 & Filter 2 Filter 1 & Filter 3 Filter 1 & Filter 4 Filter 1 & Filter 5
# of groups 196 74 53 185 11
# predicted terms 345 159 102 338 16
# of genes 3,213 711 409 2,895 320
Precision 67.91% 62.52% 60.52% 67.73% 64.70%
Recall 22.98% 26.16% 19.78% 23.80% 11.21%  
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To explore the upper limit of ‘predictability’ (the so-called ‘precision ceiling’) of GO-terms 

based on phenotype clustering with this method, function prediction was performed for all 

gene groups based on the clustering of the phenodocs. For each group, precision and recall 

of the predictions were computed (see section 2.2.8 for methods). The groups were filtered 

to leave the 10% highest-scoring groups sorted by the harmonic mean of recall and preci-

sion (so-called F-measure). Thus, clusters were selected a posteriori based on their per-

formance in prediction. Of course, this measure cannot be extrapolated to the result of a 

prediction for unknown groups; however, it gives a good estimate of the maximum per-

formance achievable using this data set and this approach. Function prediction from only 

the highest scoring groups yielded a mean precision of 81.5% and a mean recall of 61.2%.  

Considering this as upper limit, the goal in the following was to find criteria for selecting 

appropriate gene groups a priori. 

To this end, five filters were defined for selecting clusters. These filters were based on cri-

teria such as the number of genes they contain, the number of available annotations, and 

their scores for in-group functional coherence and in-group PPi-connectedness (see Table 

6). Precision and recall of function prediction in all clusters selected by various combina-

tions of those filters were then calculated. Results are summarized in Table 7 (refer to sec-

tion 4.3.2.3 for details of filters and evaluation). Using the least stringent filter (filter 1), 

but the strict criterion for judging the identity of GO-terms, the initial number of 1,000 

clusters was reduced to 856 by filtering all clusters containing fewer than 3 genes and was 

reduced once more to 295 by filtering all clusters without any descriptive GO-terms (i.e. 

any biological process terms assigned to at least 50% of cluster members). The prediction 

gave 345 distinct GO-terms from the biological process subtree at a mean precision of 

67.9% and a mean recall of 23.0% over all selected clusters. 

Relaxing the criteria for GO-term identity, now allowing for a single deviation towards the 

root (i.e. a predicted term is considered correct if it exactly matches a removed term or if it 

matches a parent of the removed term) resulted in a mean precision of 75.6% and a mean 

recall of 28.7% (191 unique terms for 2,686 genes in 279 groups). Allowing one more step 

towards the root, 151 unique terms could be predicted with 76.3% mean precision and 

30.7% mean recall. The number of correctly predicted terms decreases here as an effect of 

the collation, e.g. when any of two child terms and a parent term is counted only once (as 

parent term). 
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Using function prediction on only those clusters passing filter 1 and showing a mean GO-

similarity ≥ 0.4 (filter 2), the mean precision dropped slightly to 62.5% and recall in-

creased to 26.2% (74 groups, 711 genes and 159 predicted distinct GO-process terms). This 

drop in precision and increase in recall is due to the increasing number of predictions made 

per gene and group, and is explained in more detail in the following sections. Applying 

again a less stringent criterion for identity of GO-terms as explained above, mean precision 

and recall were 75.3% and 31.7% respectively in the first step towards the root (91 unique 

terms for 612 genes in 80 groups). When only those clusters containing genes from only 

one species were selected (applying filter 4), the values for precision and recall stayed 

roughly the same. This was expected as 90% of all clusters met this condition (see the dis-

cussion in section 4.3.2.2). The values for precision fell slightly and values for recall 

dropped quite dramatically when only cross-species clusters were used (filter 5). 

Surprisingly, when only those clusters with a PPi-connectivity of at least 33% (filter 3) 

were used, mean precision and recall dropped (to 60.5% and 19.8% respectively; 53 

groups, 409 genes and 102 GO-terms). In a recent study, Schwikowski et al. report that 

35% of interactions occur between proteins with no common functional annotation 

[Schwikowski, et al., 2000]. Lack of common functional annotations in relatively small 

groups of immediate neighbours in PPi-networks can explain the surprising drop in preci-

sion and recall when using only these groups. Nevertheless, both enrichment in pair-wise 

interactions and common GO-terms show the high biological coherence of phenoclusters. 

It can be concluded that despite some shortcomings in the data, phenoclusters appear to be 

a suitable source for functional annotation prediction (see also the discussion in section 

4.3.3). 

3.2.2.5 Selecting gene groups from PPi-cliques 

To compare the prediction method using phenoclusters with another non-random gene se-

lection method, the 13,068 initial genes based on direct pair-wise interaction were grouped, 

resulting in 2,875 groups in which each gene interacts with each other (i.e. cliques in the 

PPi graph). Applying filter 1 to this data set, 720 groups were derived resulting in 3,692 

predictions with a precision of 56.4% and 32.3% recall. Thus, the precision of this ap-

proach (which is similar to the method applied by Spirin and Mirny [Spirin and Mirny, 

2003]) was about 10-20% less precise than the method of clustering genes based on 

phenodoc similarity. 
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3.2.2.6 Clustering phenotypes with different values of k 

As an internal measure for cluster quality (see section 4.3.2.3 for a discussion on cluster 

quality assessment), different values for k, ranging from 500 to 3,000, were chosen (see 

Table 8). There are a number of interesting results. Firstly, the mean number of genes per 

cluster clearly decreases with increasing k. However, the percentage of clusters that com-

ply with filter 1 in Table 6 stays roughly the same. Although in the mean, those clusters 

contained fewer genes, the number of predicted annotations and affected genes increased 

considerably with increasing k. This indicates that the top clusters – selected by filter 1 – 

become more homogeneous (in terms of functional annotation) with increasing k, as more 

clusters have more terms which are annotated to more than 50% of their members. Partly, 

this is also a statistical effect of the decreasing cluster sizes in which their phenotypes lead 

to more homogeneous groups. At the same time, the precision drops slightly with increas-

ing k while recall increases considerably. This means that more predictions come with 

more errors, but the ratio of errors to the overall number of predictions decreases. Another 

effect is that in smaller clusters there is usually only a single gene left in the test set. The 

increasing recall shows that more terms from the test set are descriptive in the training set, 

but the decreasing precision means that the number of terms associated with a single gene 

cannot compensate for the number of suggestions derived from the training set. 

While the correlation between GO-similarity and phenotype similarity drops significantly 

for increasing k, the percentage of single-species clusters increases. This is an indication 

that within clusters mentioned above, the shift from a functional homogeneity to a mere 

methodical (i.e. a descriptive) homogeneity is due to the fact that similar vocabulary – 

from the same species – yields less variance than similar function. This is also indicated by 

the sharp drop in the number of phenocopies found in the same cluster, which are also de-

pendent on functional clustering. This effect may be amplified by a statistical effect that 

smaller cluster sizes yield less probability that the phenocopies end up in the same cluster. 

Thus, k is an important parameter to balance the trade-offs between precision, recall and 

number of predictions. One can either choose a small k-value, resulting in few high quality 

predictions, or a larger k-value, resulting in a much larger number of less accurate predic-

tions. Clearly, the choice of the k-value depends on the concrete application. In a large-

scale functional prediction approach, it is more desirable to make a few very good predic-

tions than to make many predictions with average quality (especially from the curator’s 

point of view). Therefore, the goal was to achieve the best precision with acceptable recall. 
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This goal was best reached with k=1,000, even though a large k (k=3,000) results in many 

small clusters as the best technical solution with an F-measure (calculated as the harmonic 

mean of recall and precision values) of 0.385 (precision = 60.3% and recall = 28.3%). The 

choice for k is discussed further in section 4.3.2.3. 

 

Table 8: 

The distribution of clusters with their characteristics given different values for k (the number of 

clusters) from 500 to 3,000. Here, filter 1 has been applied for GO-predictions. For details, see text 

(the F-measures is calculated as the harmonic mean of recall and precision values). 

k 500 1,000 2,000 3,000
# single species cluster 422 (84.4%) 904 (90.4%) 1,897 (94.9%) 2,894 (96.5%)
# of phenocopy pairs (of 25) 25 (100%) 13 (52%) 12 (48%) 8 (32%)
# cluster w/ PT-sim ≥ 0.4 92 (18.4%) 293 (29.3%) 526 (26.3%) 810 (40.5%)
# genes 3,221 5,886 6,379 6,878
# clusters w/ GO-sim ≥ 0.4 51 (10.2%) 206 (20.6%) 522 (26.1%) 921 (46.1%)
Correlation GO-sim vs PT-sim 0.53 0.41 0.37 0.28
# genes 863 1,800 2,392 3,065
# clusters w/ PPi ≥ 75% 21 (4.2%) 60 (6.0%) 174 (8.7%) 305 (10.2%)
# genes 1,497 1,858 2,335 2,702
# cluster w/ PPi ≥ 33% 63 (12.6%) 138 (13.8%) 286 (14.3%) 413 (13.8%)
# genes 3,890 4,322 4,965 4,996
# clusters for GO-predictions 90 (18%) 196 (19.6%) 393 (19.7%) 611 (20.4%)
# genes 2,820 3,213 4,145 4,546
# predicted terms 142 345 730 1,226
Precision 72.55% 67.91% 63.40% 60.31%
Recall 16.73% 22.98% 25.63% 28.32%
F-measure 0.2719 0.3434 0.365 0.3854
Mean genes/cluster 54 29 16 11  

 

3.2.3 Using cross-species phenotype vocabulary for clustering 

3.2.3.1 Many ontology terms can be matched to phenodocs 

Another highly interesting measure with a great impact on the result of phenotype cluster-

ing is the structure of the feature vector of phenodocs. As described in sections 2.2.1 and 

2.2.2, the TFIDF measure was used to weight each feature in feature space. In section 

2.2.1, the possibility was also mentioned to ‘over-weight’ certain features, e.g. those fea-

tures believed to have a special impact on the phenotypes’ descriptions, like terms from a 

specific disease vocabulary or phenotype ontology. Terms and their synonyms from GO, 

MP and MeSH (see section 2.1.7 for details on these data) were matched to phenotype de-
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scriptions (from PhenomicDB version 2.4 – see 2.1.6 for details) by exact matching (see 

also section 4.4 for other ways to match phenotype descriptions and terms). 

224,387 ontology terms and 446,449 synonyms to these terms were matched from the con-

trolled vocabularies GO, MP and MeSH to all 38,656 phenotype descriptions in the set by 

exact matching (see Table 9 for results). Matching terms and synonyms from all vocabular-

ies (called ‘hits’) was possible with varying degrees of ontology usage (between 44.66% 

and 0.55%), where ‘ontology usage’ is the percentage of ‘hits’ from the total amount of 

terms and synonyms in the ontology. Where a synonym was matched in the description, 

these terms were assigned to their respective term (‘Weighted terms’). 

 

Table 9: 

Result of matching terms from controlled vocabularies to phenotype descriptions. 

MP
MeSH 
Supplementary 
Concept Records

MeSH 
Descriptors

MeSH 
Qualifiers GO

Terms 5,606 170,663 24,357 83 23,678
Synonyms 1,980 268,792 152,166 235 23,276
Hits 2,857 2,406 13,242 142 1,792
Ontology usage 37.66% 0.55% 7.50% 44.66% 3.82%
Weighted terms 1,093 1,966 8,412 67 1,642
Mean term length 27.74 27.41 17.57 12.63 38.46  

Terms: The number of terms in the vocabulary. 

Synonyms: The number of synonyms to keywords in the vocabulary. 

Hits: The number of unique keywords or synonyms found in any phenotype description. 

Ontology usage: The percentage of hits in all keywords and synonyms. 

Weighted terms: The number of unique hits, where hits to a synonym are assigned as hits to their 

corresponding keyword. 

 

The most terms (in absolute numbers) that could be matched came from the MeSH De-

scriptors vocabulary. However, since this a very large repository, the coverage of matches 

to the number of terms and synonyms was very small (only 7.50%). The largest ontology 

usage was seen with the MeSH Qualifiers vocabulary. This is a very small vocabulary 

(only 318 terms and synonyms); therefore this high term usage is not surprising. However, 

as almost 45% of the phenotypes in this set derived from either human or mouse (see sec-

tion 2.1.6), it was surprising that only slightly more than a third (37.66%) of all terms from 
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MP could found in at least one phenotype description. The reason for this may be that most 

annotators commonly use leaf terms for annotations, thus (possibly unintentionally) disre-

garding many terms in the upper hierarchy of the ontology that cannot be found in this 

analysis. 

In any case, it is noteworthy, that the phenotypes can be generally regarded as fairly well 

supplemented with vocabulary terms. 5-10% of the terms in almost half of the descriptions 

of phenotypes (17,351 of 38,656) consist of terms, and no term could be matched in fewer 

than 5% (1,727 of 38,656) of the phenotype descriptions (see Figure 24). Also, there is no 

phenotype description consisting of more than 45% keywords, which is not surprising (as 

this would resemble more a listing of vocabulary than a description). 
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Figure 24: 

Distribution of the percentages of keywords from controlled vocabularies in the total number of 

words in the phenotype description.  

 

These phenotypes were then transformed into phenodocs (see section 2.1.6) and all fea-

tures that were found in any one of the vocabularies named above were over-weighted 10-

fold in comparison to all other features, which were weighted normally according to the 

TFIDF weighting scheme (see section 2.2.1 for details on both). The phenodocs with 
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weighted terms were used in another clustering experiment (with k=1,000). The resulting 

groups of genes were evaluated in respect to the distribution of clusters in species, preci-

sion and recall of functional predictions, the number of phenocopies found and the PPi-

connectivity (see sections 2.1.1, 2.1.3, 2.2.2, 2.2.7 and 2.2.8 for details). The results can be 

found in Table 10 and Table 11. The effect of stemming on the clustering results was also 

evaluated. 

3.2.3.2 Weighting ontology terms overcomes species-specific vocabulary 

When looking at either Table 10 or Table 11, the first striking feature is the difference be-

tween the TF-scores and the TFIDF-scores. The next very obvious result is that the per-

centage of cluster with mixed species is much higher in the weighted scheme (up to 32.3%) 

than in the unweighted scheme (~10 to 14%). It seems that the weighting helps to over-

come to some extent the boundary set by the species-specific vocabulary (e.g. screening 

methodology) already discussed in section 3.2.2.6. A closer look at these figures reveals 

that the fraction of clusters best provided with a controlled vocabulary, i.e. mouse-specific 

clusters, drops considerably from 16.60% in the unweighted TFIDF-scheme to 12.90% in 

the weighted TFIDF-scheme (Table 10, stemmed results). This leads to the conclusion that 

the over-weighting of certain terms helps to overcome the emphasis of specific vocabulary 

in favour of the less abundant more general (e.g. functional) terminology. As this also 

holds for other model organisms, it may be a general theme in term over-weighting. 

However, a drop in specificity cannot be observed in human phenoclusters. This is unex-

pected and can only be explained by the fact that human disease descriptions from OMIM 

are by far the longest free-text descriptions so that even an over-weighting of a few key-

words will not compensate for the sheer number of vocabulary-specific clinical descrip-

tions. It is also surprising to see a significant drop in the number of fly-specific clusters 

(from 44.7% to 35% in the same schemes as above), but not in worm-specific clusters 

(from 11.6% to 11.1%). The reasons for this is assumed to have something to do with the 

very specific three-letter controlled vocabulary (e.g. ‘SLO’, ‘EMB’, ‘GRO’, etc.) that is 

used to describe many Caenorhabditis elegans phenotypes (see Figure 17 for an example 

of a typical Caenorhabditis elegans phenotype) but not Drosophila melanogaster pheno-

types. The assumption thus holds that worm vocabulary is hard to generalize and leads to 

the conclusions that the most tenacious species-specific vocabulary can be found in pheno-

types from Homo sapiens and Caenorhabditis elegans; likely for different reasons, but 

with the same effect: they are much harder to be clustered across species. 
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3.2.3.3 Weighted terms in phenodocs yield higher biological coherence 

Regarding the functional predictions, it can be seen that the over-weighting has not only 

decreased the number of species-specific clusters. It seems indeed that the overweighting 

has an effect on the functional coherence of the clustering. The F-measures from the over-

weighted clustering (between 0.3227 and 0.3417) are higher than those from the un-

weighted clustering (between 0.2985 and 0.3105). This indicates higher functional (i.e. 

biological) coherence of the clusters when terms from the controlled vocabularies are over-

weighted. Still, it is surprising that the best F-measure of 0.3417 is observed for the over-

weighted TF-score (see Table 11), but it is for the smallest number of predictions for only 

140 clusters and thus could also be a statistical effect. Notably, the over-weighting of un-

stemmed terms with a TFIDF-scheme yields a prediction precision of almost 71% (see 

Table 10), which is an outstanding result and exceeds the precision values observed so far 

(for k=1,000). It can be concluded that the over-weighting of terms in phenodocs result in a 

higher biological coherence of the clusters. 

3.2.3.4 Phenocopies and PPi are species-specific measures of coherence 

This section will show that the prediction of gene functions and the measurement of the re-

sulting precision and recall values are the best available measure of functional coherence 

that have yet been found. When regarding the number of phenocopies (compare to section 

3.2.2.3) and the PPi-connectivity (compare to section 3.2.2.1), it can be seen that the num-

bers are much better for the unweighted clusters than they are for the over-weighted clus-

ters. 

For example, the number of phenocopies found in the same cluster is between 7 and 10 for 

unweighted clusters (both tables, unweighted results), but only between 2 and 6 for over-

weighted clusters (both tables, weighted results). Similarly, the numbers of unweighted 

clusters with a high PPi-connectivity (over 33% of proteins in a group interact with each 

other) are between 201 and 255. On the other hand, they range from 202 to 237 for the 

over-weighted clusters. This difference may not seem large, but the number of TF-scored 

clusters with very high PPi-connectivity (over 75% of cluster members interact) drops al-

most by half (from 99 to 53), when comparing weighted clusters derived with TFIDF-score 

and their weighted counterparts in Table 10. 

These observations may appear to contradict the conclusions from the previous sections. 

However, PPi-connectivity and phenocopies are species-specific measures, since – by 
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definition – only proteins from the same species interact and phenocopies must also derive 

from the same species in order to be observed here. Thus, an increase in the number of 

mixed-species clusters must lead to a decrease for these two measures. This is the case here 

and it can thus be concluded that PPi-connectivity and phenocopies are species-specific 

measures of functional coherence. 

Now, given the observations from the previous sections, it seems feasible that PPi-

connectivity and functional coherence by GO-annotations are to some extent complemen-

tary (at least with regard to the cross-species clusters) and thus, the seemingly ‘low’ num-

ber of coherent clusters are somewhat additive and – regarded from this perspective – not 

so low anymore. This is more evidence that phenoclusters represent valuable units of high 

functional coherence. Furthermore, it is postulated here that extending the PPi-connectivity 

measure for proteins across species e.g. by inference from orthologies (which is only feasi-

ble in some cases, however), the number of over-weighted clusters with a high PPi-

connectivity are likely to increase, possibly even above the observed numbers for the un-

weighted clusters. 

3.2.3.5 Term-weights have a higher impact on coherence than stemming 

Looking at the results for phenoclusters from the same weighting scheme for which the 

terms were stemmed or not stemmed a priori (see section 2.2.1 for detailed methods for 

over-weighting and stemming), there is very little difference in the measures recorded in 

this experiment. The largest difference that can be observed is between stemmed and 

weighted clusters and unstemmed and weighted clusters with the TF-score (see Table 11). 

The number of mixed-species cluster doubles from the unstemmed to the stemmed cluster-

ing. This is mostly due to significant drops in mouse- and fly-specific clusters which can-

not be observed to this extent in any other pairing of that kind. It is obvious that stemming 

has an effect and generalizes terms but can only enhance the effect of generality after over-

weighting of terms. 

From these observations, it is concluded that stemming does have an effect on the biologi-

cal coherence of the phenoclusters, but this effect is much smaller than that of weighting 

terms. This can already be observed by comparing TF-scoring and TFIDF-scoring; even 

when comparing across stemmed and unstemmed clusters, the TFIDF-score usually per-

forms slightly better (and in one case only slightly worse) in terms of the percentage of 
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mixed-species clusters. This underlines the conclusion that an effective weighting scheme 

is much more important than stemming. 

 

Table 10: 

Results of phenodoc clustering using the TFIDF weighting scheme for all phenodocs. Here, the 

clustering of phenodocs with 10-fold over-weighted vocabulary terms and stemming of words is 

compared to clustering without stemming and no over-weighting (k = 1,000). 

TFIDF unweighted & 
unstemmed

unweighted & 
stemmed

weighted & 
stemmed

weighted & 
unstemmed

Mm 15.8% 16.6% 12.9% 14.3%
Sc 1.6% 2.0% 1.5% 1.3%
Dr 1.5% 1.6% 0.5% 1.3%
Ce 11.2% 11.6% 11.1% 9.3%

Dm 46.8% 44.7% 35.0% 40.1%
Hs 4.6% 5.3% 5.7% 6.7%
Dd 3.7% 3.6% 1.1% 2.0%

Mixed 14.8% 14.6% 32.2% 25.0%
# clusters 234 243 175 201

# predicted terms 417 431 317 336
# genes 3,857 3,882 2,743 3,537
Recall 19.99% 19.92% 22.10% 21.26%

Precision 65.48% 69.15% 64.14% 70.86%
F-measure 0.3063 0.3093 0.3287 0.3271

Phenocopies 8 of 25 7 of 27 5 of 25 6 of 25
75% or above 97 (1,724 genes) 99 (1,757 genes) 53 (932 genes) 52 (1,423 genes)

33%-75% 155 (3,338 genes) 156 (3,258 genes) 167 (5,389 genes) 185 (5,095 genes)
Intact connectivity 
clusters

Percentage of 
species in clusters

Prediction

 

Here, phenodocs were clustered applying filter 1 from Table 6 four times with the basic TFIDF 

weighting scheme to compare different methods of word manipulation: stemming and over-

weighting of vocabulary terms. Results are shown for the distribution of clusters in species, func-

tional predictions of GO-terms (counting only unique and exactly matching GO-terms as correctly 

predicted), the number of phenocopies found, as well as the PPi-connectivity with information 

taken from IntAct. See text for further details and interpretation of the results shown here. 

Ce = Caenorhabditis elegans; Dm = Drosophila melanogaster; Hs = Homo sapiens; Mm = Mus 

musculus; Sc = Saccharomyces cerevisiae; Dr = Danio rerio; Dd = Dictyostelium discoideum 
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Table 11: 

Results of phenodoc clustering using the TF weighting scheme. Here, the clustering of phenodocs 

with 10-fold over-weighted vocabulary terms and stemming of words is compared to clustering 

without stemming and no over-weighting (k = 1,000). 

TF unweighted & 
unstemmed

unweighted & 
stemmed

weighted & 
stemmed

weighted &     
unstemmed

Mm 18.5% 16.9% 13.0% 19.8%
Sc 1.2% 1.3% 2.5% 1.0%
Dr 2.4% 2.7% 1.3% 1.7%
Ce 14.5% 13.7% 12.1% 12.3%

Dm 41.7% 43.4% 32.6% 41.9%
Hs 6.6% 5.7% 8.2% 4.9%
Dd 4.9% 4.9% 1.6% 3.6%

Mixed 10.2% 11.4% 28.7% 14.8%
# clusters 197 211 140 170

# predicted terms 330 366 226 284
# genes 3,236 3,747 2,493 2,951
Recall 20.03% 20.44% 22.83% 21.01%

Precision 68.99% 66.02% 67.92% 69.52%
F-measure 0.3105 0.2985 0.3417 0.3227

Phenocopies 7 of 25 10 of 25 2 of 25 3 of 25
75% or above 68 (1,846 genes) 67 (1,695 genes) 49 (924 genes) 42 (1,368 genes)

33%-75% 133 (4,616 genes) 134 (4,544 genes) 153 (6,030 genes) 164 (6,233 genes

Percentage of 
species in clusters

Prediction

Intact connectivity 
clusters
 

Here, phenodocs were clustered applying filter 1 from Table 6 four times with the basic TF weight-

ing scheme to compare different methods of word manipulation: stemming and over-weighting of 

vocabulary terms. Results are shown for the distribution of clusters in species, functional predic-

tions of GO-terms (counting only unique and exactly matching GO-terms as correctly predicted), 

the number of phenocopies found, as well as the PPi-connectivity with information taken from In-

tAct. See text for further details and interpretation of the results shown here. 

Ce = Caenorhabditis elegans; Dm = Drosophila melanogaster; Hs = Homo sapiens; Mm = Mus 

musculus; Sc = Saccharomyces cerevisiae; Dr = Danio rerio; Dd = Dictyostelium discoideum 
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3.3 PhenoMIX: Genotype/phenotype data for new discoveries 

3.3.1 Introduction 

PhenoMIX is a prototype system aimed at making the results of this thesis publicly avail-

able. It is based on the contents and concepts of PhenomicDB and introduces phenoclusters 

(see section 3.2), as well as additional pair-wise similarities among genotypes and pheno-

types, like sequence similarity (see sections 2.1.1 and 2.2.4), pair-wise PPi (see sections 

2.1.3), the similarities of genotypes and phenotypes imposed from Gene Ontology and 

Mammalian Phenotype ontology annotations, respectively (see sections 2.1.4, 2.1.5 and 

2.2.3), as well as the pair-wise cosine similarity measures among phenotype descriptions 

(see sections 2.1.6 and 2.2.1). 

In order to enable easy and systematic access, a new database scheme was implemented, as 

well as an API programmed in the Java programming language, defining objects for ac-

cessing, querying and populating the database and objects, for making calculations on the 

data, as well as methods appropriate for each class. The implemented classes represent 

genotypes, phenotypes, annotations and ‘networks’ thereof (depicted as lists of genes, phe-

notypes and their similarity values). Such ‘networks’ contain their members as well as 

similarities between their members and an evidence code to track the similarity measure 

and its origin (e.g. similarities of phenotypes calculated from the cosine similarity measure 

or the similarity of genotypes calculated from sequence similarity). These ‘networks’ can 

be combined as multi-evidence networks, for example to emphasize connections between 

genotypes or phenotypes from several evidences and they can be regarded as groups of 

genes or phenotypes assembled by applying a similarity threshold. Groups of phenotypes 

can be used to predict functional annotations for genes, e.g. from the phenoclusters as 

demonstrated in section 3.2, or from PPi (also shown in section 3.2). Analogously, groups 

of genes can be used to predict the outcome of a phenotypic experiment, e.g. by predicting 

phenotype terms according to the PPi-connectivity of their associated genes. Based on the 

experience with phenoclusters, it is postulated here that it is feasible to infer terms com-

mon to most phenotypes grouped from genes in a similarity network. Such terms represent 

the typical outcome of a phenotype experiment, thus enabling the prediction of plausible 

phenotypes for genes. This hypothesis is tested in section 3.3.6. 

Finally, with the help of a student assistant, the basic functionalities of the database and the 

API were implemented into a graphical web interface, such that the system can be used in 
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a productive version until full functionality of PhenoMIX becomes available with Phe-

nomicDB version 3.x. The PhenoMIX prototype has been made freely available at 

http://www.phenomix.de. This prototype is currently being reimplemented in the develop-

ment departments of metalife AG for productive service. 

3.3.2 Data 

As in PhenomicDB, the key feature of PhenoMIX lies in the direct relation between geno-

types and phenotypes. By this, it is possible to infer any available information about a 

genotype or a group of genotypes (grouped by any biologically feasible method) to a group 

of phenotypes and vice versa. This is a central feature of PhenomicDB, where the orthol-

ogy of genes (one biologically feasible type of grouping) has enabled showing the pheno-

typic context of grouped genes (here: orthologous genes). This feature, also available in 

PhenoMIX, has been extended to include the depiction of related genes by their sequence 

similarity, their involvement in a pair-wise PPi, and their similarity imposed from annota-

tion of GO. 

 

Table 12: 

Data types and derived similarity measures available in PhenoMIX. See Appendix A5 for distribu-

tions of values. 

Data types Similarities
Genotypes
GO-annotations (ontology for genes) Similarity from GO-annotations
Interactions (IntAct and BioGrid) Similarity from interaction (binary)
Orthologies Orthology similarity (binary)
(Nucleotide) Sequences Sequence similarity
Phenotypes Similarities by association to phenotypes
Phenotypes
Descriptions Cosine similarity from descriptions
MP-annotations Similarity from MP-annotations
Phenocluster Membership in a phenocluster  

 

In addition to these extensions, the novel feature is now to show similar phenotypes, either 

by membership in a phenocluster (see section 3.2) or by phenotype similarity. Similarities 

of phenotypes are given either by cosine similarity (see section 2.2.1) or by the similarity 

of the ontology annotations from MP (which is analogous to the pair-wise gene similarity 

by ontology annotation from GO described in sections 2.2.1 and 2.2.3). Furthermore, the 
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depiction of a group of genes and phenotypes derived from phenoclusters is possible. Table 

12 gives an overview of the available data types and derived similarity measures in Phe-

noMIX. 

3.3.3 Structure 

The structure of PhenoMIX very closely resembles the structure of the very first prototype 

of PhenomicDB (MSP, described in section 3.1.1, see Appendix A1.1 for the database 

scheme of MSP). It has three central tables, one containing genotypes (see Appendix A2.1 

for the ‘genotype’ tables), the other phenotypes (see Appendix A2.2 for the ‘phenotype’ ta-

bles) and their genotype_phenotype relation table enabling both the currently implemented 

1:N relationship, but also the envisioned N:M relationship, if ‘complex traits’ enter the da-

tabase (see section 1.4.2 for more details). Since some of the genotypes and phenotypes are 

annotated with GO- or MP-terms, the tables genotype and phenotype both also have an at-

tribute table genotype_attr and phenotype_attr, responsible for keeping track of the N:M 

relationship between these entities and their annotations. As long as these two tables con-

tain only ontology terms, they are both only connected to the tables containing the entire 

ontology (go_terms and mp_terms respectively), keeping the ontology’s identifier and the 

term itself (as textual description and – in case of GO – also its source branch in the form 

of the field namespace). Furthermore, within the tables, a count is kept with each term on 

the number of genotypes or phenotypes that are annotated with it. This count is necessary 

for efficiently calculating the pair-wise similarities of genes or phenotypes from the group 

of associated ontology terms (see Definition 6 in section 2.2.3). The other necessary tables 

for these calculations are named go_tree (for genotypes) and mp_tree (for phenotypes). In 

these tables, the hierarchies of the GO and MP ontologies are stored respectively. They 

contain each term from the ontology and all its parent terms. Further tables that were estab-

lished keep the pair-wise similarities of GO-terms (named go_go) and MP-terms (named 

mp_mp). 

In analogy to the table genotype_phenotype, there are two tables for storing pair-wise simi-

larities of genotypes and phenotypes, namely genotype_genotype and pheno-

type_phenotype. The tables have in common that each entry consists of a unique identifier, 

two identifiers from either genotype or phenotype, their similarity value (e.g. ‘1’ if the 

‘similarity’ is derived from an interaction or orthology), and the evidence code, which is a 
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foreign key provided by the table data_evidence keeping track of the sources of each type 

of similarity. 

Since some of the genotype-genotype similarity values are calculated from sequences, 

these sequences are also stored in the database, in the table called sequences. Since Entrez 

gene models its genotypes so that several sequences can be available for one genotype en-

try (e.g. due to alternative splicing), these two tables are connected by the table geno-

type_sequence, containing as key the two foreign keys pointing to these tables. To refer-

ence sequences to their original sources, the table sequences contains the RefSeq ID and 

the source URL. 

To keep track of phenoclusters, the tables named phenocluster, phenoclustering, pheno-

type_cluster and phenofeatures are also part of the database. The table phenocluster con-

tains all available clusters, the number of clusters and a member count. The table pheno-

type_cluster contains the identifiers of the phenotypes and the identifiers of the clusters 

they are member of as well as the identifier of the appropriate clustering information. This 

clustering information, i.e. the parameter sets with which phenotypes have been clustered, 

is kept in the table phenoclustering. The phenofeatures table only keeps each of the feature 

identifiers from vectors of phenodocs and their associated term from the phenodocs for 

documentation purposes. 

All tables are documented in the database scheme which can be found in Appendix A2. 

3.3.4 PhenoMIX API 

As described above, PhenoMIX consists of a database and a Java API (see Figure 25 for an 

overview over the API’s classes and Appendix A2.2 for the full documentation). The API’s 

most basic functionality consists of the possibility to extract entities (genes with associated 

phenotypes or phenotypes with associated genes) from the database by identifier. This, like 

all requests to the database is performed by the package database, where the class DBHan-

dle deals with the interaction to the database. The class DBInterface wraps pre-formulated 

queries in the Structured Query Language (SQL) into functions that can be used in the 

classes. The data from the query is returned from the database via the class DBReturn and 

is then transferred into the appropriate objects found in the package objects by the factories 

from the package common. The user can request entities that are similar to the retrieved en-

tity by specified evidence. For example, if all genes should be retrieved that are coding for 

an interacting protein evidenced in IntAct, then this request is passed on to the database as 



 - 82 - 

explained above, but now, a Connection from the package objects is created for each pair 

of interacting proteins (‘connectors’ represented by their coding genes). In this particular 

case, the connection receives the connection weight of 1 (interactions only have a Boolean 

‘similarity’ score; there is an interaction or there is no interaction). All of these Connection 

objects of resulting pair-wise interactions are stored as a list and thus form a Network (from 

the same package), which can be returned to the user, indicating what type of Evidence (in 

this example interactions from IntAct) has been used to create the Network and giving ac-

cess to each of its members. 

In further steps, these networks can be used for functional prediction or phenotype predic-

tion (depending on the network type); the functionalities are provided in the package 

calc.predict by the classes FunPred and PhenoPred respectively (see section 2.2.7 and Ap-

pendix A2.3.2 for further details on functional predictions). For calculations on pairs of en-

tities, the package calc.sims provides the classes Alignment, Cosine and Ontology to calcu-

late the pair-wise sequence similarity (only when entities are of type Genotype), cosine 

similarity (only when entities are of type Phenotype) or similarity of ontology annotations 

(GO for ‘Genotype’ and MP for Phenotype entities) respectively. 

An administrator can use these classes to further populate the database. For example, one 

could imagine writing a main method that loops through a set of genes (e.g. from another 

database), calculating their pair-wise sequence similarities and storing them in the data-

base. The class PhenoCluster represents objects instantiating a physical clustering. The 

PhenoClustering class from the objects package and another class also named PhenoClus-

tering in the calc package. The former class is designed to store meta-information to a 

clustering, e.g. the scoring-method (TF or TFIDF), the cutoff for the phenotype lengths 

(e.g. 200), and the value of k. The latter class has methods to do the actual clustering. This 

class calls the CLUTO package and is responsible for proper interaction with the vcluster 

algorithm, collecting its output, populating an instance of the ‘PhenoCluster’ object and 

writing the results to the database (in case of success) or an error message (in case of fail-

ure). 
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.  

Figure 25: 

Java classes forming the API of PhenoMIX. In total, the API consists of 31 classes that are ar-

ranged into 4 packages: calc with classes for calculations, like the clustering algorithm, common 

with classes common to several packages, like exceptions and factories, database with classes for 

database interactions, like connecting and retrieval and objects with classes for all objects, like the 

phenodoc, vector, genotype, phenotype, but also the network, etc. The calc package has two fur-

ther sub-packages calc.predict for making functional and phenotypic predictions and calc.sims for 

calculating similarities between entities. Further details are in the Appendix A2.2. 
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3.3.5 Interface 

The interface of the PhenoMIX prototype does not yet offer all functionalities from the 

API. It should be considered as a proof-of-concept, providing essential functionality. A 

full-fledged system is currently under development to be included in PhenomicDB version 

3.x in collaboration with Bayer Schering Pharma AG and metalife AG. The new database 

for PhenomicDB 3.x scheme has already been completed and is shown in Appendix A1.4. 

The website of PhenoMIX allows entering an identifier for a genotype or a phenotype (see 

Figure 26). The genotype identifiers are NCBI Entrez gene IDs, while the phenotype iden-

tifiers are taken from PhenomicDB. 

 

 

Figure 26: 

Entry page for searching for a gene or phenotype identifier in PhenoMIX. Here, the integer ‘22’ is 

entered as an example, which will retrieve the gene with the Entrez gene ID ‘22’ (which is the hu-

man gene ABCB7). If a query is ambiguous, all results will be retrieved. 

 

The search results are presented in the main window of the webpage (see Figure 27). To 

help frequent users of PhenomicDB to cope better with the interface of PhenoMIX, the 

coloring of genotypes and phenotypes has been imported from the appropriate style sheets. 

In general, genotypes are shown on a marble background, with all associated phenotypes 

depicted underneath with green background. The descriptions are shortened for clear ar-

rangement, but can be toggled for a full view. Underneath their descriptions, each entry 

(genotypes and phenotype alike) has buttons to access a network of the connecting entities 

which is calculated and presented as a list on the next webpage. Each of the buttons is la-

beled with the evidence label from which the entity network will be calculated. 
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Figure 27: 

Result of searching for the identifier ‘22’. The resulting genotype (the human gene ABCB7) is 

shown with its associated phenotype (sideroblastic anemia). 

 

A click on any of the buttons returns the result of the calculations, i.e. the resulting list of 

genes and phenotypes with a similarity to the searched entity (see Figure 28). The list de-

picts genotypes and phenotypes in the same style as all search results are shown. Along 

with each of the connecting entities from the network, its similarity score to the original 

query is shown. The results are ordered by descending similarity score. The user can 

quickly find genes that are most similar to the gene of interest, along with the available de-

scriptions and associated phenotype. It is also possible to find the most similar phenotype 

to a phenotype of interest and all associated genes, a feature that is not yet available in 

PhenomicDB. 

 

 

Figure 28: 

Display of results when clicking the button ‘BioGrid Interaction Sim’ on the human gene ABCB7. 

The result is the human gene FECH, which is the only gene interacting with ABCB7 according to 

BioGrid evidence. The depicted similarity score is ‘1’, since an interaction is a binary ‘similarity’ 

(proteins can interact or not). In other cases, a floating point number representing the similarity 

score is shown. 
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3.3.6 Making use of PhenoMIX data 

3.3.6.1 Building gene groups from similarity data 

As shown in section 3.2, groups of genes derived from phenoclusters are biologically co-

herent and are suited for gene function prediction. As PhenoMIX brings together many 

more similarity measures for genotypes (see Table 12 in section 3.3.2), the hypothesis that 

it is possible to predict phenotype terms and GO-terms from such groups shall be tested 

here. One way to assemble such groups of similar genes is a ‘greedy’ approach, where 

genes above a certain similarity threshold are merged into groups (this approach is de-

scribed in section 2.2.5). However, since it cannot be implied when ‘A is similar to B’ and 

‘B is similar to C’ that ‘A is similar to C’, this approach yields many errors, low precision 

values and the results are therefore omitted. 

Instead, all pairwise similarity measures for genotypes associated to phenotypes in Phe-

noMIX were clustered separately using CLUTO again. This software package also con-

tains an implementation of the k-means algorithm enabling clustering of such large similar-

ity matrices (see section 2.2.2.). With this, clusters of all genotypes in PhenoMIX 

associated with at least one phenotype and a similarity value greater than or equal to 0.1 

were built using each similarity measure (see Appendix A5 for distribution of these val-

ues). To ensure comparability with the results from section 3.2 (see Table 7), it was aimed 

to achieve comparable mean cluster sizes resulting in slight variations of k for each simi-

larity measure (see Table 13). The resulting clusters were filtered accordingly using filter 1 

from section 3.2.2.4 (see Table 6 for details on the filter and Table 14 for results of the fil-

tering) and mean precision and recall were recorded for the prediction of GO-terms from 

the biological process sub-ontology (methods in sections 2.2.7 and 2.2.8). To go beyond 

the phenotype prediction approaches in single-species networks [Famili, et al., 2003; Lee, 

et al., 2008] these clusters were then used for a cross-species phenotype term prediction 

approach which has not yet been tried in literature. By association of genes to phenotypes, 

phenotype terms (i.e. the treated phenotype descriptions from phenodocs) were considered 

to be the annotation of the associated gene. By this, phenotype terms could be ‘predicted’ 

in the same way as it was done for GO-terms. Furthermore, as an extension of the approach 

by Gunsalus et al., where three types of similarities for predicting gene function were si-

multaneously employed in Caenorhabditis elegans networks [Gunsalus, et al., 2005], all 

eight similarity measure were integrated in a linear combination approach, summing the 
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value of all similarities between two genes and dividing by the number of values used. 

Here, the similarity of genes in phenoclusters was calculated as a Boolean measure (two 

genes are either found in the same phenocluster or not). 

In analogy to the control groups used in section 3.2, genes from all clusters were randomly 

assigned to groups of the same sizes and mean precision and recall were recorded subse-

quently. 

 

Table 13: 

The number of genes and pairwise similarities for each of the seven different similarity measures 

for genes available in PhenoMIX. Only genes associated to at least one phenotype and similarity 

values ≥ 0.1 were considered. Clusters of sizes comparable to the phenoclusters (see Table 7) were 

obtained by variations of the parameter k. Bold figures indicate the clusters with the mean size 

comparable to phenoclusters assembled with k = 1,000. These are evaluated in Figure 29 and in 

Figure 30. See Appendix A5 for the distributions of values. See Table 14 for the numbers of genes 

and clusters that remained after filtering. 

Similarity measure # genes # similarities 
(threshold ≥ 0.1)

k to obtain 
mean of 15 
genes/cluster

k to obtain 
mean of  30 
genes/cluster

k to obtain 
mean of 60 
genes/cluster

GO biological process 23,406 1,973,214 1,560 780 390
GO molecular function 23,565 1,373,660 1,571 786 393
GO cellular component 19,288 2,897,516 1,286 643 321
Nucleotide 16,069 27,793 1,071 536 268
Intact 9,692 44,193 646 323 162
Biogrid 11,525 84,927 768 384 192
HomoloGene 9,932 7,756 662 331 166
Linear combination 32,827 5,286,708 2,188 1,094 547  
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Table 14: 

The number of remaining genes (from Table 13) and clusters, as well as mean genes per cluster 

and standard deviation (sd) of cluster size after application of filter 1 (described in Table 6) for 

each similarity measure.  

Similarity measure # genes    
after filtering k

# clusters (mean  
# genes/cluster) 
after filtering

sd of cluster size 
after filtering

GO biological process 12,864 1,560 944 (14) 9.1287
11,060 780 423 (26) 13.6837

9,884 390 199 (50) 21.9711
GO molecular function 5,645 1,571 412 (14) 11.2198

4,206 786 167 (25) 20.6362
3,502 393 78 (45) 29.7944

GO cellular component 1,630 1,286 116(14) 23.3822
1,304 643 36(36) 61.8958
1,320 321 18 (73) 81.6816

Nucleotide sequence 2,702 1,071 378 (7) 4.067
1,477 536 127 (12) 6.3867

523 268 29 (18) 7.6368
Intact PPi 2,128 646 189 (11) 6.4099

1,197 323 59 (20) 12.4292
450 162 16 (28) 16.3335

BioGrid PPi 3,149 768 248 (13) 7.1554
1,756 384 77 (23) 13.4859
1,021 192 29 (35) 18.4398

Homologene 1,908 662 546 (3) 0.6215
1,056 331 287 (4) 0.6703

532 166 141 (4) 0.68
Linear combination 9,354 2,188 675 (14) 11.6594

8,097 1,094 299 (27) 17.906
7,251 547 144 (50) 19.7185

Phenocluster 3,213 1,000 196 (16) 21.583  

 

3.3.6.2 Predictions of phenotype- and GO-terms from gene groups 

3.3.6.2.1 Predictions of GO-terms from phenoclusters are most successful 

When looking only at the comparable clusters with a mean of 30 genes per cluster, the 

highest observed mean precision is 67.91% for phenoclusters (see Table 8 in section 

3.2.2.6 and Figure 29). Moreover, the recall of phenoclusters is the highest (22.98%). Con-

sequently, predicting GO-terms in phenoclusters with an F-measure of 0.343 was most 

successful. 

Clusters from BioGrid and IntAct PPi, as well as clusters from nucleotide sequence simi-

larity performed comparably, with precision values between 54.7% up to 63.8%. Interest-

ingly, the best-performing clusters from sequence similarity have a mean size of 60 genes 
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per cluster; whereas the clusters from PPi similarity yield the highest precision values at a 

mean size of 15 genes per cluster (data not shown here; see full data in the Appendix A6). 

Thus, clusters from PPi similarity (as well as HomoloGene and GO biological process) 

seem to form small homogeneous ‘functional modules’, whereas clusters of high sequence 

similarity are most homogeneous and thus best suited for gene function prediction when 

assembled in larger groups. 

 

GO process term prediction
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Figure 29: 

Precision, recall and F-measures for predicting GO-terms from the biological process sub-

ontology. Clusters were assembled with eight different similarity measures (and randomly). Mean 

size: 30 genes per cluster. More information is shown in Table 13 and Table 14. Full data can be 

found in Appendix A6. 

 

The attempt to predict GO-terms from clusters that were assembled by similarities in the 

other sub-ontologies (cellular component and molecular function) resulted in precision 

values between 53.3% (for cellular component) and 63.0% (for molecular function), with 

smaller differences to the randomly assembled groups. The only clusters showing even 

lower precision values were derived from HomoloGene. On the one hand, this is somewhat 
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surprising, as the resulting clusters should be groups of orthologous genes with similar 

functions by definition. On the other hand, those genes were clustered aiming for a mean 

cluster size of 15 genes per cluster. This is a far too large number for orthology groups that 

commonly consist of orthologs for 10-12 different species, of which only 3-4 have an asso-

ciated phenotype. Thus, the clustering failed here, as it was not possible to assemble ho-

mogeneous clusters. 

Predicting GO-terms from the linear combination of all available measures was also very 

successful with precision values between 60.1% and 63.5%. The reasons why this ap-

proach did not yield the best precision values can most likely be found in the averaging of 

values within the linear combination. Here, a pair of genes that has interactions from Bi-

oGrid and IntAct, as well as a low sequence similarity of 0.6 would yield a combined simi-

larity score of (1+1+0.6)/3=0.87, whereas it would yield a higher score in BioGrid and In-

tAct clusters alone. Still, this measure is better suited than each of the other measures alone 

due to the abundance of available data points. Furthermore, with this method, up to 850 

GO-terms could be correctly predicted (see Appendix A6). This number is only exceeded 

by clusters derived from the GO-term similarity for biological process and molecular func-

tion terms (up to 1,313 correctly predicted terms) which – by definition – are better suited 

for yielding highly enriched clusters of biological process GO-terms. 

3.3.6.2.2 Prediction of phenotype terms from clustered genes 

Using the data from PhenoMIX, phenotype terms (from the phenodoc descriptions) were 

predicted for clusters of genes. Thus, PhenoMIX enables a benchmark of the ability of 

gene clusters to visibly reflect their functional coherence. Furthermore, this is a feature that 

may be used for predicting the outcome of phenotype (e.g. knock-down) experiments with 

genes that are similar to others that already have an associated phenotype. The results from 

this section can thus also be used to find the most useful similarity measures for this appli-

cation. 

It is interesting to note that groups from protein-protein interactions (apart from pheno-

clusters) perform best at predicting the terms of their associated phenotypes (see Figure 

30). This shows that interaction data is most useful to reflect biological coherence. How-

ever, as already stated in section 3.2.2.1, interaction data are not abundantly available for 

all species. Furthermore, the quality of PPi data in repositories has been criticized [Cusick, 
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et al., 2009]. It is shown here that other similarity measures are also useful to infer pheno-

type terms from gene clusters. 

Naturally, phenoclusters are best suited to predict phenotype terms. Still, clusters assem-

bled from GO-similarities from the biological process and molecular function sub-

ontologies also yield precision values above 60% (see Figure 30). These two ontologies are 

commonly used to describe the functionality of genes, which in many cases seems to pro-

trude to the surface of the organism. 
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Figure 30: Precision, recall and F-measures for predicting phenotype-terms. Clusters were assem-

bled with eight different similarity measures (and randomly). Mean size: 30 genes per cluster. 

More information is shown in Table 13 and Table 14. Full data can be found in Appendix A6. 

 

Clusters from GO cellular component and from nucleotide sequence similarity perform 

less well, with precision values slightly below 60%. In case of sequence similarity, this 

seems to reflect the property that this measure (even more so on the nucleotide level) can 

only partially reflect function (also seen in the previous section). However, the precision 
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rises above 65%, when larger clusters of genes are assembled (with a mean of 60 genes per 

cluster, see Appendix A5). The higher number for recall may partially be due to the statisti-

cal effect that larger groups have a higher chance of ‘predicting’ a term. For the precision, 

this indicates that the ‘optimum’ k for phenoclusters is not the best choice for other similar-

ity measures, as the members of these clusters are part of other biological mechanisms. 

As was the case with GO-term predictions, the most correct term predictions could be 

made with clusters from biological process GO-terms (between 8,200 and 9,219 correctly 

predicted terms from phenotype descriptions – see Appendix A6). Similar to predicting 

GO-terms from GO clusters, the most correct phenotype terms could be predicted with 

phenoclusters (up to 12,896). In predicting phenotype terms, the linear combination did not 

perform so well, as only 5,019 to 6,397 terms could be predicted correctly, yielding, how-

ever, a high precision of up to 69.4%. 

These findings show that the genotype-phenotype associations in combination with the 

similarity measures gathered in PhenoMIX can be used for gene function prediction as 

well as phenotype prediction with high precision and reasonable recall. Clustering enables 

the assembly of groups that can be used for this task. As shown in section 3.2.2.1, such 

groups, e.g. in combination with protein-protein interactions can be used to detect func-

tional modules and supplement biological context. Furthermore, they can be used to predict 

the outcome of phenotype experiments which has already been shown by Lee et al. [Lee, et 

al., 2008] on a much smaller set of Caenorhabditis elegans genes. 
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4 Summary & Discussion 

4.1 Summary of results and contributions 

In this thesis, knowledge discovery and knowledge management combined with bioinfor-

matics methods have been applied to the field of comparative phenomics. PhenomicDB, 

PhenoClustering and PhenoMIX are the three eye-catching implementations summarizing 

the results of this work. 

After a thorough survey of the field, it must be concluded that the field of comparative 

phenomics is still in its infancy. Thus, a thorough analysis of phenotype data is a next logi-

cal step towards understanding the nature of human disease to help find novel therapeutic 

approaches. The vast majority of phenotype data generated so far have been gathered in 

free-text archives of biomedical literature and cannot be found in any structured phenotype 

database. A consistent approach to automated data extraction and conversion into a single 

structured repository has not yet been reported. In consequence, many groups have made 

great efforts to adapt specific parts of these data to their special scientific needs. Hence, 

large-scale approaches using these data have systematically been hampered by the complex 

nature of the data and by the difficulties of integration and normalization. Issues that will 

have to be tackled range from compatibility of data types of the various resources to their 

systematic comparability. First attempts at systematic storage and comparison have been 

made, e.g. with PharmGKB and PhenomicDB, but these approaches still suffer from limi-

tations, e.g. the lack of an appropriate and unifying ontology. 

This thesis contributes PhenomicDB version 2.x (see section 3.1), which has seen several 

important functional improvements as well as the largest increases in data content in its 

four years of existence. More phenotype data have been integrated in a more consistent 

manner, applying – for the first time in the existence of the Mammalian Phenotype ontol-

ogy – its terms to cellular phenotypes of non-mammalian origin. Still, more data, espe-

cially from whole-genome RNAi screens, are expected to be included in the very near fu-

ture. It is therefore expected that the percentage of human genes associated with 

phenotypic data will steadily rise, making it an increasingly valuable resource in biomedi-

cal research. In the meantime, the efforts from this thesis and those of others have culmi-

nated in the creation of GEN2PHEN, an EU-funded € 12 million effort involving 19 insti-

tutions aiming at comparative phenomics. 
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The steadily growing wealth of information raises the question of how to benefit beyond 

the mere rearrangement of views and data. In this work, data mining methods have been 

designed to take advantage of PhenomicDB’s data content. Text clustering was applied to 

its phenotypes, and thus a novel method to create functionally coherent groups of genes 

was contributed here (see section 3.2). The result is a new method for automated gene 

function prediction from GO-terms with reasonable recall and precision values competitive 

to comparable methods. Furthermore, this thesis contributes valuable information about 

text-mining of phenotypes by identifying the limitations and the possibilities for improve-

ment of the applied methods. 

Section 3.3 describes the development of the prototype PhenoMIX. It is a system to access 

cross-species genotype-phenotype data and to enable comprehensive data retrieval possi-

bilities as a first step to full-fledged data mining. PhenoMIX is a tool to group genes and 

phenotypes by several types of similarity measure. As shown with another clustering ap-

proach, clusters of similar genes help to gain knowledge, by presenting its members in a 

novel biologically coherent context. Furthermore, these clusters enable the prediction of 

phenotype terms, and thus the possible outcome of an RNAi experiment. To show this 

within this thesis, a cross-validation of methods using PhenoMIX data, predicting GO-

terms and phenotype terms from gene groups clustered by several similarity measures was 

presented. 

Thus, this work contributes to the field of comparative phenomics, giving insight into its 

most urgent needs, its promising developments and adding new methods and tools to fur-

ther advance the field. 

4.2 Related Works 

4.2.1 Comparative phenomics 

Some of the groundwork of comparative phenomics studies has been laid by Piano et al. 

who used manually curated data sets from one RNAi screen to describe a phenotype as the 

sum of 45 phenotypic features, each represented by either absence or presence calls. They 

coined the term ‘phenoclusters’ to describe groups of such vectorized phenotypes that ‘cor-

relate well with sequence-based functional predictions and thus may be useful in predicting 

functions of uncharacterized genes’ [Piano, et al., 2002]. By this method termed ‘Pheno-

BLAST’ [Gunsalus, et al., 2004], phenotypes can be compared within this data set accord-

ing to the sum of absence or presence of features in the vector (Figure 31). In its version 



 - 95 - 

5.0 from January 2007, PhenoBLAST supports 191 phenotypic features [PhenoBlast, 

2007]. Furthermore, the well-structured manually curated Caenorhabditis elegans data set 

of Sonnichsen et al. [Sonnichsen, et al., 2005] was used to create a ‘disease map’, a graphi-

cal display of 45 disease categories – like ‘meiotic arrest’ – with values characterizing each 

category – like ‘passage through meiosis’. Such categories are ideally taken from pheno-

type ontologies or other adequate vocabularies/ontologies (e.g. functional classes in GO). 

This profiling system allows using for example bi-clustering to group genes based on their 

common phenotypic feature patterns as distance measure, associating genes of unknown 

function directly with specific disease categories. Other clustering methods based on fea-

ture vectors have found broad application in the analysis of post-genomic data and are re-

viewed elsewhere [Handl, et al., 2005]. 

The present work goes beyond the notion of Boolean feature vectors in a single species. 

Here, the use of textual descriptions as the common denominator to build phenoclusters 

across species and screening methods has enabled function prediction on a broader basis. 

 

 

Figure 31: 

Result of a PhenoBLAST query for the gene lig-1. The query in the top row is followed by the 

best-matching hits by phenotypic ‘fingerprints‘ from the database, where blue squares represent a 

wild type and yellow squares an observed change in phenotype. A red square indicates that no in-

formation is available. The search is limited to Caenorhabditis elegans genes that have been 

screened and for which these features have been recorded (from: [Gunsalus, et al., 2004]). 
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In a study by van Driel et al. human phenotype descriptions from OMIM were compared 

[van Driel, et al., 2006]. They found that grouping such descriptions reflects biological 

modules of interacting, functionally-related genes. Lage et al. have developed a phenotype 

similarity score based on text-mining [Lage, et al., 2007]. They show that 90% of their 

similar phenotypes are equally found to be similar by human curators. They build a ‘human 

phenome-interactome network’, integrating interactions of human proteins with this pheno-

type score for identifying protein complexes ranked as candidates for disease models 

[Lage, et al., 2007]. These studies are most comparable to the work presented here. How-

ever, again, they are limited to one species (i.e. Homo sapiens). On the other hand, this en-

ables ranking of candidates for disease models which was not the scope of this thesis. In-

stead, it was shown in this work that clustering of phenotypes across species and methods 

is also very successful and thus complements the works of van Driel et al. and Lage et al. 

Gaulton et al. have developed a computational system to suggest new genes contributing 

towards a ‘complex trait’ (i.e. a phenotype) [Gaulton, et al., 2007]. They use ontologies and 

entity recognition to extract genes and proteins from phenotype descriptions and rank them 

to corresponding biological data from online resources. Butte and Kohane clustered key-

words from the Unified Medical Language System (UMLS) annotated to gene expression 

data and interpret the resulting connection between these terms and the associated genes 

(termed ‘phenome-genome network’) [Butte and Kohane, 2006]. This thesis goes beyond 

clustering of gene annotations. Phenotypes from actual experiments are clustered and the 

existing associations are exploited. However, it was not pursued to find new associations 

between genes and phenotypes. Still, novel phenotypes and novel gene functions were pre-

dicted from actual experimental data. In a next step, this could be used for assigning new 

associations between genotypes and phenotypes. 

Using phenotype data for more than annotation prediction, Eggert et al. compared pheno-

types from RNAi as well as chemical genetic screens to find genes responsible for the 

same cellular phenotype [Eggert, et al., 2004]. Thus, they could identify new members of 

known pathways as well as small molecules with an effect on the same pathway. Bergholdt 

et al. have published a study in which they used physical protein interaction data in combi-

nation with genetic interactions from genome scan data to identify novel candidate genes 

for type 1 diabetes [Bergholdt, et al., 2007]. Eggert et al. and Bergholdt et al. have shown 

the possibilities of comparative phenomics. The present work builds on these studies. 

Comparison of phenotypes – either experimentally or electronically – and the integration 
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of different data types enables the discovery of novel biological context. From the experi-

mental side, this was shown in these related works. 

Prank et al. have compared methods to determine phenotype-genotype relationships in or-

der to predict genetic alterations that lead to adrenal hyperplasia from complex biochemi-

cal data [Prank, et al., 2005]. Using serum level profiles of steroid intermediates from 54 

patients with heterozygous 21-hydroxylase (CYP21B) mutations versus healthy controls, 

they compared traditional clinical methods, traditional linear discriminant analysis, support 

vector machines and nonlinear methods, i.e. artificial neural networks, and k-nearest 

neighbour classifiers. They showed that the nonlinear statistical analyses performed with 

an accuracy of up to 83%, in contrast to prediction accuracy by clinical methods of 39% 

and of 64% by classical linear analysis. 

Generally, in order to classify phenotype data based on vectorization of their phenotypic 

profile as illustrated in the above examples, various supervised machine learning methods 

are available. The k-nearest neighbor (kNN) classification maintains a set of training cases 

in predefined classes (clusters) where each data point is nearest to the mean feature vector 

of that class. For a test case, the k nearest data points are computed and this new point is 

allocated to a class, depending on the prior classification of these k points by majority vote 

[Chaudhuri, et al., 1993]. Artificial neural networks (ANN) are an extension of the stan-

dard k-means clustering procedure and take into account a ‘neighbourhood ranking’ of the 

nearest vectors. The dynamic neighbourhood ranking takes place during an input-driven 

adaptation procedure of the reference vectors [Martinetz, et al., 1993]. Support vector ma-

chines (SVM) realize pattern recognition between two classes by finding a decision func-

tion (hyperplane) determined by selected points from the training data, termed support vec-

tors. In general, this hyperplane corresponds to a linear decision boundary in the input 

space. While traditional techniques for pattern recognition are based on minimizing the 

empirical risk (i.e. on the attempt to optimize the performance of the training set), SVMs 

minimize the structural risk (i.e. the probability of yet-to-be-seen patterns to be classified 

correctly for an unknown probability distribution of the data) [Vapnik and Chapelle, 2000]. 

These machine-learning approaches can grasp well the typically nonlinear nature of the 

underlying complex genetic interactions by learning from a training set. For example, 

Rodin et al. have applied Bayesian belief networks to phenotype data consisting of plasma 

apolipoprotein E (apoE) levels from 702 African-Americans and 854 non-Hispanic whites 

[Rodin, et al., 2005]. From 72 individuals, 20 variable sites in the apoE gene were included 
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in the belief networks. Three SNPs could be singled out as most likely responsible for 

plasma apoE levels. This method can be used to reduce the number of candidates in an as-

sociation study for a phenotype of interest, provided that reliable phenotype data are at 

hand. A belief network’s topology shows a graphical relationship among variables (here 

SNPs and genes), or nodes, thus showing which variables are dependent on other variables 

or conditionally independent of them. Edges connecting nodes are therefore undirected and 

indicate dependence. The edge strength indicates the relative magnitude of the dependency 

between two variables, given the other interrelationships within the network. It therefore 

reflects a joint probability distribution among the nodes. Conveniently, an edge between 

two SNPs also indicates linkage disequilibrium. By employing this approach, Rodin et al. 

could ‘simultaneously take into account linkage disequilibrium while performing geno-

type–phenotype association analyses’ [Rodin, et al., 2005]. 

Clare and King have applied supervised machine learning methods to the problem of pre-

dicting the functional classes of genes in Saccharomyces cerevisiae from phenotypic 

growth data [Clare and King, 2002]. The data are combined from three different sources 

(TRIPLES [Kumar, et al., 2002], EUROFAN [Dujon, 1998] and MIPS [Mewes, et al., 

2008]) and represented as a vectorization of attributes (growth medium) and values (ob-

served sensitivity or resistance of the mutant compared to the wild type). The classes were 

assigned from the MIPS functional catalogue. The accuracy of the learned rules was then 

estimated using phenotype data from deletion mutants of genes with known function. 

Eventually, Clare et al. could predict the function of 83 genes of hitherto unknown function 

with an estimated precision of at least 80%. 

These studies form the methodical basis for discoveries in large-scale biological data. Even 

though none of the methods presented above were used within the present work, they form 

a useful repository of statistical and computational methods to which this thesis also con-

tributes. 

Troyanskaya et al. developed MAGIC (Multisource Association of Genes by Integration of 

Clusters) as a general and flexible probabilistic framework to combine heterogeneous data 

sets for integrated analysis based on Bayesian networks [Troyanskaya, et al., 2003]. To il-

lustrate its utility, clusters of Saccharomyces cerevisiae genes were formed using data 

about genetic and physical interactions, microarray, and transcription factor binding sites 

with methods like k-means clustering, self-organizing maps, and hierarchical clustering. 

For these clusters, MAGIC created a posterior belief for whether a gene pair has a func-
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tional relationship, identifying a cluster of genes involved in ubiquitin-dependent protein 

catabolism, which provides ‘potential functional annotation for an ORF present in that 

cluster (YGL004C), and confirms the recently added annotation for YNL311C’. Further-

more, they discovered a gene group involved in protein biosynthesis. In this cluster, 49 

genes already annotated as involved in protein biosynthesis were found as well as 10 un-

known genes. One could imagine using MAGIC also for integrated analysis of data sets 

from phenoclusters, making use of the high-precision predictions that have been made 

within this work. 

Another interesting field in phenotype analysis is pathway reconstruction. From only mi-

croarray expression profiles (‘global transcriptional phenotypes’), groups have successfully 

used epistasis analysis to reconstruct topologies of pathways in organisms such as Dictyos-

telium discoideum [Van Driessche, et al., 2005] or Saccharomyces cerevisiae [van de Pep-

pel, et al., 2005]. To that end, double mutants are generated and the distance of all their ex-

pression profiles to each of the profiles of the corresponding single mutants is determined. 

The single mutant closer to the double mutant is topologically downstream from the other 

single mutant. However, full reconstruction of pathways with components not transcrip-

tionally regulated is only feasible if additionally external interventions such as RNAi or 

gene knock-outs are applied and used as ‘single-gene phenotypes’ as shown by Markowetz 

et al. [Markowetz, et al., 2005]. The present thesis may contribute to such approaches by 

providing more abundant and better annotated phenotype data, e.g. from PhenomicDB. 

In order to better understand Caenorhabditis elegans embryogenesis at a systems level, a 

large-scale integrative approach has been employed by Gunsalus et al. [Gunsalus, et al., 

2005]. Data from protein interactions, gene expression clusters, and phenotypic RNAi pro-

file similarities were incorporated to model one large gene/protein network said to have ‘a 

high predictive value for novel gene functions’. To integrate three different types of func-

tional relationships, graphs were built representing 661 embryogenesis genes as nodes 

connected by edges suggested by any evidence from the three data sets. Integration was 

accomplished by finding correlation among pairs of the same nodes in the different graphs. 

This last high-profile multi source approach gives a first taste of the emerging power of 

comparative phenomics. Such a system could also work in a cross-species setting where 

these methods are applied for large-scale functional annotation, e.g. using PhenomicDB. 

Thus, these approaches form the basis of next steps that are enabled by the framework gen-

erated with this thesis. A first taste of such a combined approach has been shown in section 
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3.3.6, where a linear combination of similarities (using up to eight similarity measures as 

evidence) was clustered and used for predictions. 

4.2.2 Gene similarity based on GO-annotation 

Calculating the similarity between two genes based on GO-annotations is actually a ques-

tion of finding the similarity between two sets of ontology terms. Thus, the first question 

really is to find a proper similarity measure for pairs of ontology terms (see for example: 

[Couto, et al., 2007; Jiang and Conrath, 1997; Lin, 1998; Resnik, 1999]). Such measures 

have been reviewed and benchmarked elsewhere (see the review by Guo et al. [Guo, et al., 

2006]). Then, the remaining question is how to measure the similarity of two sets of ontol-

ogy terms. The frequently cited paper by Lord et al. suggests simply taking the mean of all 

pair-wise term similarities from the two sets of terms [Lord, et al., 2003]. Other similarity 

measures for groups of GO-terms have been suggested (see for example: [Tao, et al., 2007; 

Wang, et al., 2007]) and over 14 approaches have also recently been reviewed in a com-

prehensive benchmark [Pesquita, et al., 2008]. 

 

 

Figure 32: 

Assignment of GO-terms from a smaller set of terms to a larger set of terms, where the arrows in-

dicate the highest similarity score for each term from the smaller set (from: [Frohlich, et al., 

2007]). 

 

Frohlich et al. have developed a software package in the R programming language com-

prising some of these measures and an additional, novel one, labelled ‘optimal assignment 

of terms from one gene to those of another one’ [Frohlich, et al., 2007]. The idea is that 

two sets of terms should only be measured by their highest-scoring term pairs. For two sets 

of terms of unequal size, this means assigning for each term of the smaller set the most 

similar term from the other set (see Figure 32). For two equally-sized term sets, they sug-

gest application of maximum weighted bipartite matching (see [West, 1999]) such that 
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each term in either set has exactly one assignment. In either case, the sum of these similar-

ity measures is the similarity score assigned to the gene pair. Corresponding gene similarity 

calculations from GO-terms have also been suggested in this thesis (see section 2.2.3), ex-

cept for the application of the maximum weighted bipartite matching for equally-sized 

term sets. 

4.2.3 Prediction of gene function and phenotype terms 

4.2.3.1 Gene function prediction from sequence- and GO-Similarity 

Two features from Entrez gene can be used to calculate similarity measures reflecting – to 

some degree – the functional relationship of genes, i.e. the gene sequence and the GO-

annotation. Many function prediction approaches are based in part on the use of sequence 

similarity, e.g. by use of BLAST [Altschul, et al., 1990] or PSI-BLAST [Altschul, et al., 

1997; Schaffer, et al., 2001] (see: [Jones and Thornton, 2004; Laskowski, et al., 2003; 

Whisstock and Lesk, 2003] for some reviews on the use of sequence similarity for function 

prediction). Among others, approaches using GO for functional prediction are from Guo et 

al., Lussier et al., Tao et al. and Wu et al. [Guo, et al., 2006; Lussier, et al., 2006; Tao, et al., 

2007; Wu, et al., 2005]. Pazos and Sternberg combine both sequence and GO-similarity in 

PHUNCTIONER, a tool using structural alignments and functional features from GO to 

assign in a use case correct GO-annotations to 90% of the protein structures, approximately 

20% higher than inferring a functional annotation from homology alone [Pazos and Stern-

berg, 2004]. 

The availability of many fully sequenced genomes in several species and the increasing 

number of identified genes and proteins with unknown function has made automated func-

tion prediction, i.e. the ability to evaluate and predict gene function annotations (using for 

example GO), an important field in bioinformatics [Eisenberg, et al., 2000; Enright, et al., 

2003; Murali, et al., 2006]. In 2003, only 62% of known eukaryotic genes had either com-

pletely unknown or only tentatively known functional annotations [Enright, et al., 2003] 

and still most of the other 38% were derived from annotation transfer from prokaryotic or-

ganisms [Rost, et al., 2003]. Even though this figure may have improved since then, there 

is still a great need for proper annotation prediction with high precision and recall [Murali, 

et al., 2006; Pandey, et al., 2006]. Pandey et al. [Pandey, et al., 2006] describe the success 

of function prediction with the Gene Ontology for many different approaches. The results 

show precision values for sequence similarity-based methods of 50% when decision trees 
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were used, a precision of up to 65% when using inductive logic programming and a preci-

sion of up to 74% with BLAST searches. Protein structure-based methods showed preci-

sion values from 75% up to 90% when predicting 121 GO-terms. With gene proximity on a 

set of 31 genomes, a precision value of 35% could be reached. Protein-protein interaction 

networks utilizing neighborhood-based approaches were able to predict annotations for 60 

unannotated Drosophila melanogaster genes with 65% precision. The same approach 

reached a precision of 70% for 132 unannotated human genes. Literature-mining ap-

proaches using information retrieval on PubMed documents linked to proteins and GO-

terms reached a precision of 55%. In another text-mining approach, up to 82% precision 

was achieved by calculating keyword frequencies in the SWISS-PROT database (see 

[Pandey, et al., 2006] for more details on the approaches described above). 

In general, the most important goal of a function prediction method to generate new and 

biologically relevant results with high precision and a reasonable recall, as this represents a 

small rate of errors. The function prediction approaches presented in this work are com-

petitive in the light of the studies shown above. Thus, this thesis contributes another valid 

method for gene function prediction, i.e. phenoclusters. 

4.2.3.2 Gene function prediction from PPi 

Groups of interacting proteins have highly interesting biological properties. They can be 

regarded as networks of genes which have been subject to intensive studies in the past. 

Jaeger and Leser combine structural and functional conservation sub-graphs in PPi net-

works of multiple species for the prediction of protein function. Based on proteins from 

Mus musculus, they predict functions for Homo sapiens proteins with a precision of 70% 

[Jaeger and Leser, 2007]. Deng et al. use PPi data from Saccharomyces cerevisiae and ap-

ply Markov random fields to infer protein functions from the functional annotations of in-

teraction partners. Additionally, each predicted function is assigned a confidence probabil-

ity [Deng, et al., 2003]. Xiao and Pan make predictions using protein-protein interaction 

data in combination with clustered gene expression profiles by weighting the evidence of 

both data sources [Xiao and Pan, 2005]. 

In this work, PPi have been used to enhance the biological contexts of phenoclusters. Fur-

thermore, genes with PPi information have been clustered and precision and recall of GO-

term predictions were measured to receive a benchmark for the same method, using other 
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data than phenotypes. One could imagine that combinations of PPi and phenoclusters may 

enable higher prediction accuracy. 

4.2.3.3 Prediction of phenotypes 

The first to predict phenotypes were Famili et al., conducting an analysis of a genome-

scale metabolic network from Saccharomyces cerevisiae [Famili, et al., 2003]. Computa-

tions of functions within such a network were consistent with observed phenotypic func-

tions for 70-80% of the considered conditions. 

In a more comprehensive study, Lee et al. have built networks of genes essential for viabil-

ity in Caenorhabditis elegans for which edges indicate the probability of involvement in 

the same biological process [Lee, et al., 2008]. To calculate this functional relationship 

probability, they integrate gene expression profiles, physical or genetic interactions, litera-

ture-mined associations, functional associations and co-inherited or operon-related ho-

mologs, building an integrated network model from all of these relationships. They then 

examined 43 different loss-of-function phenotypes from genome-wide RNAi screens and 

their responsible genes and ranked connected genes within their network by connectivity as 

candidates for the same phenotype. They have shown that 29 of the 43 phenotypes can be 

predicted with high accuracy, another 10 with accuracy better than random. The network 

and data is freely accessible in WormNet (currently version 1), covering 16,113 genes with 

384,700 linkages (82% of all protein-coding loci) [WormNet, 2009]. 

This impressive study is limited to one species, i.e. Caenorhabditis elegans. However, 

even though the presented prototype PhenoMIX does not (yet) enable the prediction of 

RNAi phenotypes, the phenotype prediction approaches presented in this thesis are compa-

rable to those by Lee et al., yielding similar results. One could imagine implementing the 

possibilities of WormNet into PhenomicDB in order to enable full-fledged phenotype pre-

diction across species. 

4.2.4 Data repositories for genotypes and phenotypes 

Almost all databases for phenotypes have in common the lack of vigorous exploitation of 

the existing orthology information to ease phenotype comparison between species (see 

Table 15 for an overview over the most common phenotype resources). Besides OMIA 

[Lenffer, et al., 2006; Nicholas, 2003], an animal equivalent of OMIM on a smaller scale, 

the first cross-species phenotype database on a larger scope was PhenomicDB [Groth, et 
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al., 2007; Kahraman, et al., 2005]. The present work contributes to PhenomicDB and thus 

it remains unique in scope, content and – with PhenoMIX – in functionality. Since then 

only a few other integrative databases have emerged, e.g. the NCBI’s dbGaP [Mailman, et 

al., 2007], phenotype data in Ensembl [Flicek, et al., 2008], or the recent announcement of 

19 research institutes to collaborate in creating a cross-species database of genotypes and 

phenotypes designated GEN2PHEN (http://www.gen2phen.org) [Brookes, 2008]. 

Furthermore, these integrative resources are comparatively small in scale. For example the 

NCBI dbGaP database of genotypes and phenotypes currently stores data from 41 studies 

of 26 human diseases [Mailman, et al., 2007], the Online Mendelian Inheritance in Man 

(OMIM) catalog of human genetic disorders currently stores 4,446 diseases mapped to a 

genetic locus [McKusick, 2007], and only PhenomicDB has a wider scope (see section 

2.1.6 for details on the data content of PhenomicDB). There are other large-scale genotype-

phenotype repositories, but these are commonly kept to a single species or method. 

For mice, the MGI group at Jackson Laboratory has assigned 127,506 phenotypic terms 

from the Mammalian Phenotype ontology (MP) [Smith, et al., 2005] to 28,986 genotypes 

from roughly 7,700 unique genes [Bogue and Grubb, 2004; Bult, et al., 2008; Grubb, et al., 

2004; MGI, 2008; Smith, et al., 2005]. Furthermore, 853 human diseases with available 

genotypic mouse models are featured. Most of these data are derived from genetically en-

gineered KO mice or naturally occurring mutants. Recently, a consortium has formed to in-

tegrate mouse phenotypes from various resources [Hancock, et al., 2007]. 

The Rat Genome Database (RGD) aims at integrating its genomics data with phenome 

data, currently covering information on more than 39,233 rat genes, 1,293 strains, and 

1,337 QTLs [de la Cruz, et al., 2005; RGD, 2007; Twigger, et al., 2005]. It also offers a 

special disease portal presenting 4,443 disease annotations for 1,541 rat genes in their ge-

nomic context. 
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Table 15: 

Summary of Phenotype Data Resources 

Organism Name URL Reference 

cross-species PhenomicDB – Multi-species 
Phenotype-Genotype Database 

http://www.phenomicdb.de [Groth, et al., 2007] 

 OMIA – Online Mendelian Inheri-
tance in Animals 

http://omia.angis.org.au [Lenffer, et al., 2006] 

Homo sapiens OMIM – Online Mendelian Inheri-
tance in Man 

http://www.ncbi.nlm.nih.gov/omim [McKusick, 2007] 

 HGMD – Human Gene Mutation 
Database 

http://www.hgmd.cf.ac.uk  [Cooper, et al., 2006] 

 PharmGKB – Pharmakogenetics and 
Pharmakogenomics Knowledge Base 

http://www.pharmgkb.org [Altman, 2007] 

 GenAtlas – Gene and Phenotype 
database 

http://www.genatlas.org [Frezal, 1998] 

Rattus 
norvegicus 

RGD – Rat Genome Database http://rgd.mcw.edu [de la Cruz, et al., 2005] 

Mus musculus MGD – The Mouse Genome Data-
base 

http://www.informatics.jax.org [Bult, et al., 2008] 

 MPD – The Mouse Phenome Data-
base 

http://www.jax.org/phenome [Bogue, et al., 2007] 

Caenorhabditis 
elegans 

WormBase – Biology and Genome 
of Caenorhabditis elegans 

http://www.wormbase.org  [Rogers, et al., 2008] 

 RNAiDB – Caenorhabditis elegans 
RNAi Database 

http://nematoda.bio.nyu.edu  [Gunsalus, et al., 2004] 

 PhenoBank – Caenorhabditis ele-
gans RNAi Screens 

http://www.phenobank.org [Sonnichsen, et al., 
2005] 

Drosophila 
melanogaster 

FlyBase – Database of the Droso-
phila Genome 

http://www.flybase.org [Wilson, et al., 2008] 

 FlyMine – Database for Drosophila 
Genomics 

http://www.flymine.org [Lyne, et al., 2007] 

 FlyRNAi – Drosophila RNAi 
Screening Center (DRSC) 

http://www.flyRNAi.org [Flockhart, et al., 2006] 

Saccharomyces 
cerevisiae 

PROPHECY – Profiling of Pheno-
typic Characteristics in Yeast 

http://prophecy.lundberg.gu.se [Fernandez-Ricaud, et 
al., 2007] 

 SGD – Saccharomyces Genome 
Database 

http://www.yeastgenome.org [Hong, et al., 2008] 

 CYGD – Comprehensive Yeast Ge-
nome Database 

http://mips.gsf.de/genre/proj/yeast [Guldener, et al., 2005] 

Danio rerio ZFIN – The Zebrafish Model Organ-
ism Database 

http://www.zfin.org [Sprague, et al., 2008] 
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WormBase [Rogers, et al., 2008] currently contains 74,602 well-organized RNAi pheno-

types from Caenorhabditis elegans, gathered from public screens [Fraser, et al., 2000; Ka-

math and Ahringer, 2003; Kamath, et al., 2003; Piano, et al., 2002; Rual, et al., 2004; 

Simmer, et al., 2003; Walhout, et al., 2002] and data resources like PhenoBank (24,671 

RNAi phenotypes for 20,981 genes) [Gonczy, et al., 2000; Gonczy, et al., 1999; Sonnich-

sen, et al., 2005], along with data on 1,711 mutant phenotypes and 77,763 genotypes (data 

counted using WormMart [Schwarz, et al., 2006] in September 2008). By this, the Worm-

Base group has shown impressively the potential of integrating RNAi data from various 

screens and sources. 

Also an integrative resource for RNAi screens for Caenorhabditis elegans is RNAiDB 

[Gunsalus, et al., 2004]. In their current version 5 (January 2007 release [RNAiDB, 2009]), 

this resource contains 59,991 RNAi phenotypes from several screens ([Fernandez, et al., 

2005; Piano, et al., 2000; Piano, et al., 2002; Sonnichsen, et al., 2005]) and WormBase and 

RNAiDB seem to make an effort to regularly scan supplementary information of RNAi 

publications. 

As mentioned above, large mutant screens based on different methodologies (reviewed by 

Carroll et al. [Carroll, et al., 2003]) have led to a rich database for Drosophila 

melanogaster. The FlyBase group has associated roughly 150,000 phenotypic statements 

on 14,029 genes and presents 22,954 mutant aberrations in 27,200 stocks [Tweedie, et al., 

2009; Wilson, et al., 2008]. Drysdale and Crosby have given a detailed guide on how to ac-

cess phenotype data in FlyBase [Drysdale and Crosby, 2005]. In contrast to WormBase, 

RNAi data from genome-wide screens in Drosophila melanogaster are being kept sepa-

rately in FlyRNAi [Flockhart, et al., 2006] which is run by the Drosophila RNAi Screening 

Center (DRSC) at Harvard Medical School where in its current version DRSC 2.0, 13,900 

genes have been targeted in 37 RNAi knock-down studies [DRSC, 2008]. 

More than 19,869 genotypes associated with phenotypes from Danio rerio (zebrafish), a 

helpful model organism e.g. for angiogenesis, can be found in the Zebrafish Information 

Network database [Sprague, et al., 2008; ZFIN, 2008]. DictyBase [Chisholm, et al., 2006] 

for Dictyostelium discoideum (slime mold) contains 1,353 genes with associated phenotype 

data [dictyBase, 2008]. 
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For Homo sapiens, the phenotype data resources are more diverse (Clinical data as a phe-

notype resource are being omitted here). For a long while, the first address has been 

OMIM, the Online Mendelian Inheritance in Man database [McKusick, 2007], a rich hand-

curated free-text catalogue linking human genes to genetic disorders. OMIM is good at 

giving excellent textual reviews of the literature but its shallow structure makes the text 

corpus difficult for automatic parsing into categorized facts. The number of phenotype en-

tries in GenAtlas is similar to that of OMIM (4,039 phenotypes, 21,202 genes) [Frezal, 

1998; Roux-Rouquie, et al., 1999]. In contrast to OMIM, GenAtlas is rich in gene details 

and the phenotype data are listed in the ‘Variant and Pathology’ section which is further 

subdivided into several well-structured fields. This substructure is also reflected in the 

query interface allowing narrow and specific filtering. HGMD, the Human Genome Muta-

tion Database [Cooper, et al., 2006], has been collecting and manually curating disease-

causing mutations for over 20 years and now covers 60,036 mutations of 2,232 genes in 

the public version. The HGMD professional release 2008.2 covers 80,887 mutations of 

3,064 genes [HGMD, 2008]. HGMD also features a large list of links to more than 300 

specialized locus-specific mutation databases (reviewed by Claustres et al. [Claustres, et 

al., 2002]). GeneClinics (recently renamed GeneTests) is intended for a medical audience 

providing over 451 very detailed and peer-reviewed ‘GeneReviews’ rich in phenotype data 

of genes with an available genetic test, covering a total of 1,610 diseases [GeneTests, 

2008]. Whereas dbSNP [Wheeler, et al., 2008] is the repository for human SNPs, the Hu-

man Genome Variation Database (HGVbase) group [Estivill, et al., 2008] has announced 

they will go one step further in the future, annotating these SNPs with their phenotypic 

consequences [Patrinos and Brookes, 2005]. HGVbase and dbSNP exchange their SNP 

content bidirectionally. SNPeffect [Reumers, et al., 2008; Reumers, et al., 2006], in con-

trast, tries to predict the effects of SNPs on functional or physicochemical properties of the 

corresponding proteins. The Pharmacogenetics and Pharmacogenomics Knowledge Base 

(PharmGKB) compiles data on how genetic variation contributes to variation in drug re-

sponse [Altman, 2007; Hodge, et al., 2007]. Currently, PharmGKB holds information on 

542 diseases and 546 drugs for 608 genes [PharmGKB, 2008]. 

There are additional databases on human diseases, genetic variation and phenotypes but 

they are either too specialized to be mentioned here, or do not connect the phenotypes to 

the genotypes, or have restricted access. Many of them are reviewed elsewhere [Ayme, 

2000; Claustres, et al., 2002; Horaitis and Cotton, 2004]. 
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4.2.5 Data integration approaches 

In general, and not specifically for the phenotype data domain, various data integration ap-

proaches can be applied, e.g. data warehousing (collating all data in a single large data-

base) [Theodoratos and Sellis, 2000], or federation of independent databases [Busse, et al., 

1999]. These approaches have different advantages and disadvantages which are discussed 

elsewhere [Stein, 2003]. Integration of phenotype data, however, is a notoriously difficult 

and time-consuming endeavour, especially for cross-platform or cross-species data and has 

previously been shown by other groups [Hubbard, 2002; Kahraman, et al., 2005; Lutz, et 

al., 2005; Searls, 2005]. PhenomicDB is contributed as an integrated resource. However, as 

the integration was mostly done by hand, and ‘screen scraping’ has been the method of 

choice for data extraction, the present work does not contribute a novel approach to the 

field of database integration. 

4.3 Discussion 

4.3.1 Using phenotype data  

For a long time, phenotypes have been regarded solely as indicators for changes in geno-

types or diseases. The ability to interfere with the genetic component in a systematic man-

ner, e.g. by gene knock-out or RNA interference [Hannon, 2002; Shi, 2003], has raised the 

importance of phenotypes as a tool to understand biological processes on the molecular 

level. Even though whole-genome RNAi screens have created large amounts of publicly 

available phenotype data, very few attempts have been reported to systematically analyze 

these data beyond single gene effects. It is noteworthy that even 5 years after the availabil-

ity of RNAi screens for mammals and many calls for standardization of data types and 

analysis methods in phenomics [Freimer and Sabatti, 2003; Scriver, 2004], such data are 

still poorly organized and difficult to access. Only the Eumorphia project has released 

standard operating procedures for phenotype screening in Mus musculus and has created 

PhenoStat, a tool for visualization and systematic statistical analysis of standardized phe-

notype data [Brown, et al., 2005; Green, et al., 2005]. 

One of the reasons for this lack of organization lies in the data heterogeneity. The term 

‘phenotype’ in itself is used for a broad variety of concepts, including the descriptions of 

clinical diseases, the characterization of naturally occurring mutants or experimentally 

generated mutants, and RNAi screens or gene knock-out experiments, and sometimes even 

for large-scale microarray gene expression data, which makes an integrated analysis of 
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phenotypes from different experiments and laboratories particularly hard (see section 1.3.1 

and [Groth and Weiss, 2006a]). Another issue was that until very recently, no comprehen-

sive set of phenotypes with associated genes was available. This issue has been partly ad-

dressed by the creation of PhenomicDB and the extensions made within this thesis (see 

section 3.1). PhenomicDB helps to integrate more data in a more consistent manner. Espe-

cially the large amounts of data from high-throughput screening methods that are being 

generated can thus be integrated in a way that is more likely to keep their value beyond the 

single genotype-phenotype relationship and its single screen of origin. 

4.3.2 Cross-species phenotype clustering 

4.3.2.1 Background 

As stated above, integrating these data in PhenomicDB was a necessary step in order to use 

them beyond a single gene-phenotype relation. Almost all approaches described in section 

4.2.1 have in common that they work either with very little phenotype data (usually only 

one data set from one screen) or with a large but very unspecific set of ‘phenotypes’ (such 

as a selected subset of Medline abstracts or ontology terms). Still, to go beyond these limi-

tations is the next logical step in comparative phenomics. This works presents one feasible 

approach, i.e. to use the common denominator of these phenotypes – their textual descrip-

tions – and cluster them (see section 3.2). 

In the attempt to find the best-matching phenotypes (and in section 3.3 also genotypes for 

different similarity measures), clustering is a promising method. It was also attempted (but 

not shown) to group genes by similarity threshold (‘guilty-by-association’-approach). 

However, such an approach does not yield precision and recall values above random 

thresholds. In contrast, the utilized clustering method is comparable to the search for quasi-

cliques in protein interaction networks that has successfully been employed, e.g. by Jaeger 

et al. [Jaeger and Leser, 2007]. 

4.3.2.2 Cross-species clustering 

One of the hurdles of clustering phenotypes is the difference in the lengths of their descrip-

tions. Here, a drastic approach has been taken, i.e. to disregard all phenotype descriptions 

shorter than 200 characters (see section 2.1.6). Due to the large number of extremely short 

phenotype descriptions like ‘embryonic lethality’ created e.g. in high-throughput RNAi 

screens, this lead to a data reduction of 90%, probably leaving out a lot of the valuable 
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RNAi data tediously gathered before. However, the feasibility of clustering textual descrip-

tions with hundreds of words to descriptions with only one or two words is questionable. 

This data reduction can be seen as a sacrifice to feasibility and is planned to be tackled in 

the release of PhenomicDB version 3.x (see section 4.4). However, this limitation of clus-

tering can even then only be overcome by application of a complementary method for short 

feature vectors. Piano et al. (see section 4.2.1 and [Piano, et al., 2002]) have show that such 

very short vectors can effectively be transformed into Boolean absence or presence calls 

and then ‘quasi-clustered’, using e.g. ‘PhenoBLAST’. Thus, a combination of approaches, 

phenoclustering long phenodocs, PhenoBLASTing short phenodocs, and finally merging 

the results in the end seems most feasible for future applications. 

The next issue to tackle with cross-species phenotype clustering is the species-specific vo-

cabulary, reflected not only by the terminology used to describe certain characteristics, but 

also by the descriptions of methodology of examination, which is clearly different in each 

of the species. As a result of this, shown in section 3.2, more than 90% of clusters contain 

only genes from a single species. However, this can be partially overcome by over-

weighting of terms from controlled phenotype vocabularies like MP or MeSH, believed to 

be more general and thus applicable across species and methods. By application of a ten-

fold over-weight to terms found with simple exact matching within the phenotype descrip-

tions, it was possible to push the portion of mixed-species clusters to almost one third. 

However, many clusters still remain within their species, which is even more prominent for 

clusters from Homo sapiens and Caenorhabditis elegans, than it is for Mus musculus or 

Drosophila melanogaster. This tendency of genes to fall into species-specific clusters 

shows that the terminology used to describe a phenotype depends partly on the species, and 

thus on the community of researchers studying it. Such a separation of vocabulary is only 

partly justified, as many phenotype-effects are highly similar across species. However, un-

til now, no common terminology for describing phenotypes in different species has been 

established. Such a unified ontology would open the door to more powerful ways of ana-

lyzing phenotypes, in the same manner as the establishment of GO has opened the door for 

many new approaches to analyzing biological knowledge. Boehm has shown that the 

automated build-up of such an ontology can only be partially successful and will therefore 

be mainly dependent on a community effort [Boehm, 2008]. However, it seems clear that 

the approach by Boehm to extract phenotype terms from descriptions with more elaborate 
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methods than simple exact matching in combination with a proper weighting of these terms 

prior to the clustering will result in a very feasible workaround for the time being. 

4.3.2.3 Assessing Cluster Quality 

The applied method for clustering here, namely k-means, is a clustering method that re-

quires the a priori determination of the number of clusters (k). Typically, to assess cluster 

quality, internal and external measures are evaluated [Hur, et al., 2002; SanJuan and 

Ibekwe-SanJuan, 2006]. External measures, however (e.g. a comparison with a gold stan-

dard), could not be applied due to the lack of a gold standard for clustered phenodocs. 

It is evident that in order to achieve reasonable clustering results, the parameter k has to be 

chosen well. The basic assumption of clustering is the presence of natural clusters within 

the data. However, such natural clusters are not immediately evident, especially in a high-

dimensional space; otherwise the clustering task would be trivial and unnecessary. 

Thus, the clustering result is most dependent on a rigorous analysis of all possibilities for 

k, or a more educated a priori selection of k and a thorough a posteriori validation, possi-

bly followed by another clustering with an adjusted k, which has been done here, see sec-

tion 3.2.2.6. Immediately, the main disadvantage of the a priori selection of k becomes 

evident. The existence of natural groups within the data is required but not enforced and 

furthermore can not be determined with certainty. Thus, in order to be able to interpret the 

clustering, a thorough validation is necessary. For this, many strategies have been sug-

gested (and reviewed by Handl et al. [Handl, et al., 2005]), e.g. assessment of stability (= 

cluster reproducibility), or coherence in the similarity of the cluster members. There are 

also a number of statistical measures like the gap statistic [Tibshirani, et al., 2001], its re-

finement as weighted gap statistic [Yan and Ye, 2007] or the elbow criterion (controver-

sially discussed by Bezdek and Pal [Bezdek and Pal, 1998]), both implemented in the 

software package SenseCluster [Pedersen, 2006]. 

This list of (controversial) measures for finding the ‘optimum’ k raises the question of 

whether that is actually possible. It is certainly possible to define a dense group of samples 

surrounded by a lower density boundary in a feature space as a natural cluster. The statisti-

cal measures define such density boundaries. However, it can be argued that in a high-

dimensional space with many samples of similar or even overlapping origin or content, 

such boundaries are no longer evident. In such a case it is likely that there are several sen-

sible values for k, dependent on the granularity of the data representation. Let us assume 
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that proteins should be clustered into groups according to their functional domains. Thus, 

the similarity of any two proteins depends on the number of domains they have in com-

mon. It is now feasible to select a k that clusters all proteins with a transmembrane domain. 

A decrease in k would add further proteins to this cluster – similar but without a trans-

membrane domain. Increasing k would result in the exemption of proteins from the cluster, 

even though they have a transmembrane domain. Increasing k even further could result in a 

cluster of all proteins with 7 transmembrane domains. Another slight increase of k now re-

sults in a cluster of only those proteins that are in fact G-protein coupled receptors. Thus, 

different choices for k yield different clusterings, several of which make sense and none of 

which is an ‘optimum’ in terms of an unspecific statistical boundary. In consequence, the 

choice for k must be dependent on the goal of the clustering. If the aim is to cluster pro-

teins into their respective families, a good choice for k could be either the number of ex-

pected families in the data set or the number of clusters that would divide the proteins into 

groups of the expected size of a protein family. Hopefully, if any of these assumptions are 

correct, the result will be a division of proteins into families. Here, the focus lies on the 

biological coherence of the clustering result, especially in the light of different choices for 

k and several selection filters for samples. 

Thus, in order to determine the success of a clustering in this study, biological coherence 

was measured by examining the relatedness of the genes in a cluster using several inde-

pendent measures, i.e. protein-protein-interaction (PPi) of encoded proteins (see section 

3.2.2.1), functional annotations from GO (see section 3.2.2.2), and the co-occurrence of 

pairs of genes known to be responsible for identical phenotypes (so-called ‘phenocopies’) 

(see sections 2.1.8 and 3.2.2.3). By these measures, it has been shown in anectodic exam-

ples that the phenoclusters presented in this work are biologically coherent and can be used 

to generate and extend biological contexts. 

4.3.3 Prediction of annotations 

As outlined in section 3.3, one of the key features of PhenoMIX is to enable new discover-

ies. Showing data in an as yet unseen but biologically interesting context (see section 

3.3.6.2), discoveries are achieved through integrating many similarity evidences and thus 

enabling to look up much of the available information for a genotype or phenotype of in-

terest. 
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Besides aggregating known information in a novel context, it is even more interesting to 

discover new knowledge, e.g. a gene found to be a member of a certain pathway. To gain 

insights of this sort, scientists like Eggert et al. [Eggert, et al., 2004] have developed meth-

ods, which are, however, usually accompanied by very tedious laboratory work. For such a 

scientist, the attractiveness of predicting candidates lies in the possibility to focus quickly 

on the few promising targets and compounds from a large heap, which can then be biologi-

cally verified. The possibility to predict functional annotations (i.e. GO-terms) for geno-

types and the actual descriptive terms of phenotypes is a central theme throughout this the-

sis. PhenoMIX is designed to gather these groups, accumulated by different similarity 

scores and to present them to enable predictions.  

The predictions that have been made within this thesis are realistic, as the cross-validation 

for predictions of GO-terms from phenoclusters (in section 3.2.2) and the benchmark of 

predicting GO-terms from other gene similarity measures, as well as the cross-validation 

for phenotype term predictions from groups of similar genes (in section 3.3.6.2) have 

shown. A linear combination of scores is a method yielding very good F-measures while 

combining most data points and thus enabling a large number of correct predictions for 

more genes than from any single score. However, linear combination can in some cases re-

duce the score between edges, where complementary evidences should actually increase it. 

This situation could be improved with a formula that adds the score of supporting edges, or 

applies a correlation measure as it has been done by Gunsalus et al. (see section 4.2.1 and 

[Gunsalus, et al., 2005]). Also, the integration of other methods, e.g. kNN (see section 

4.2.1), may help improving the situation in the future, especially in the light of the devel-

opment of PhenomicDB version 3.x. Variations in the application of the clustering algo-

rithm, e.g. tuning the parameter k more towards biological coherence than towards similar 

cluster sizes is a possibility to improve results even without application of further methods. 

This was not attempted in section 3.3 because there, it was aimed to compare the possibili-

ties of gene function prediction from phenoclusters with other similarity measures and con-

sequently, the same methods were applied to clusters of similar sizes. 

The benchmarks for the phenotype term predictions have shown that the system can feasi-

bly be used for predicting the outcome of phenotype experiments. Still, there are other ap-

proaches, e.g. by Lee et al. (see section 4.2.3.3) that are more tuned to predicting actual 

RNAi phenotypes. Another possibility to make phenotype predictions is predicting terms 

from phenotype ontologies. However, the available ontology annotation for phenotypes is 
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not yet abundant enough for such an approach. This can be seen, e.g. in the similarity 

measures for MP-term annotations to phenotypes (in Appendix A5.2), where most MP-

terms are equal. Such a limited variability within the annotation will lead to inconclusive 

predictions. This lack in unified annotation of phenotypes needs to be tackled by a com-

munity effort to build a cross-species phenotype ontology. This is the logical next step in 

the field of comparative phenomics and can be seen as one of the most urgent tasks that 

will have to be done in order to get better and more consistent results from phenotype data 

(see also section 4.4 and [Groth and Weiss, 2006a]). 

4.3.4 Biological insights from phenoclusters 

4.3.4.1 Overview 

Evaluation of any of the presented prediction methods has the fundamental drawback that 

only included annotations are considered as correct. Apart from the more general criticism 

of GO as annotation system [Smith, et al., 2003], it is well-known that GO-annotations are 

highly incomplete for virtually all species. This is even more the case with annotations 

from MP. Thus, there is a considerable chance for false predictions that actually may be the 

most interesting ones from a biological point of view. False positive predictions potentially 

represent new functional insights, e.g. when a gene not yet annotated with a particular 

function is found in a cluster with a strong consensus annotation for that function. In the 

following, the biological nature of exemplary phenoclusters is discussed to show their bio-

logical significance beyond pure precision values (see also section 3.2.2.1 for further bio-

logical examples of phenoclusters in combination with PPi data). 

4.3.4.2 Example 1: Odorant Receptors from Drosophila melanogaster 

One of the clusters consisting of 25 genes shows a high consensus annotation for the three 

GO-terms G-protein coupled receptor protein signaling pathway (GO:0007186), sensory 

perception of smell (GO:0007608) and cell-cell signaling (GO:0007267). This group con-

tains 24 genes from the Drosophila melanogaster odorant receptor (DOR) group and one 

other gene. This other gene is called myospheroid (mys). It is in several ways a very inter-

esting group: 

Firstly, all 24 genes are antennal DOR genes, a physiological region of Drosophila 

melanogaster in which a total of 32 DOR genes are located [Vosshall, et al., 2000]. The 

other 8 antennal DOR genes not found in this group (Or13a, Or22b, Or33a, Or42b, Or56a, 
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Or69a, Or69b and Or83c) are not in the initial list of 15,426 genes, likely due to a lack of 

substantial phenotype description. 13 of the 24 genes are annotated with all three GO-terms 

from the consensus annotation in that cluster, the other 11 genes are only annotated with 

GO-term sensory perception of smell (GO:0007608). The other interesting aspect is the oc-

currence of mys, which is neither a gene from the DOR group, nor annotated with any of 

the three GO-terms, but instead with 19 other terms, among them signal transduction, axon 

guidance, calcium-dependent cell-cell adhesion, calcium-dependent cell-matrix adhesion, 

cell adhesion, cell migration and cell-matrix adhesion. Even though it has been previously 

suggested that mys is a candidate gene for Drosophila olfactory associative learning 

[Roman and Davis, 2001], a link between the Drosophila olfactory system and mys has 

been reported only recently, in a publication not yet included in PhenomicDB. Bhandari et 

al. have shown that expression of mys-RNAi transgenes in the antennae, antennal lobes, 

and mushroom bodies disrupted olfactory behaviour, confirming that mys is important for 

the development and function of the Drosophila olfactory system [Bhandari, et al., 2006]. 

It is not clear why some of the antennal receptors are not annotated with the two GO-terms 

G-protein coupled receptor protein signaling pathway and cell-cell signaling. After all, all 

are clearly odorant receptor proteins consisting of seven transmembrane domains, and 

transduce odour recognition into neural activation through G-protein-coupled second mes-

senger signaling pathways [Keller and Vosshall, 2003]. In the analysis of GO-annotations, 

these genes represent false false positive results, i.e. the annotation that has been predicted 

is in fact true but missing, thus reducing the precision of the prediction. 

Another important lesson that can be learned from this example is the dependence of phe-

notypic similarity on complete and well-structured phenotypic data. Even though one study 

reports on both antennal receptors Or22a and Or22b (which are co-expressed in the ab3A 

antennal neuron and share 78% amino acid identity, separated by an intergenic region of 

only 650 base pairs [Dobritsa, et al., 2003]), the gene group only includes OR22a, simply 

due to missing phenotypic information about the other gene. 

4.3.4.3 Example 2: 8 Drosophila melanogaster genes 

In another group, yielding very high mean pair-wise phenotype- and GO-similarities, most 

genes are associated with the two GO-terms cellularization (GO:0007349) and pole cell 

formation (GO:0007279). This group consists of 8 Drosophila melanogaster genes, includ-

ing 6 genes from the mat(2)syn (maternal effect syncytial blastoderm arrest) family, as well 
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as the indirect flight muscle gene RU2 (ifm(2)RU2) and a gene called presto. Presto and the 

genes from the mat(2)syn group are both associated with deficiencies on the second Dro-

sophila melanogaster chromosome and are part of closely related maternal effect loci that 

cause defects before cellularization of the blastoderm embryo [Schupbach and Wieschaus, 

1989]. During these stages of nuclear division, the embryo is called a syncytial blastoderm, 

meaning that all the cleavage nuclei are contained within a common cytoplasm, including 

cleavages that form the two cell types of early development (pole cell and blastoderm cell) 

[Bate and Martinez-Arias, 1993]. 

Seven genes are annotated with both GO-terms, while ifm(2)RU2 is not annotated with any 

of those terms. Instead, it is annotated with the term muscle development (GO:0007517). 

Still, all phenotypes in the cluster show a high similarity and this may indicate that the 

genes are commonly regulated or that they are part of one developmental process. The de-

velopment of the indirect flight muscle has been closely associated with the myosin heavy 

chain gene (MHC) [Cripps, et al., 1994]. Since ifm(2)RU2 and MHC are found on adjacent 

loci, they have been studied together in an ethyl methanesulfonate mutagenesis screen 

[Nongthomba and Ramachandra, 1999], where mutated MHC and ifm(2)RU2 have been 

found to act together, enhancing muscle disorganization compared to their respective het-

erozygous phenotypes. 

Another gene, the 95F unconventional myosin gene (95F MHC) is shown to be required 

for proper organization of the Drosophila melanogaster syncytial blastoderm [Mermall and 

Miller, 1995]. Compared to MHC, this gene shows a high degree of conservation in the 

ATP-binding and actin-binding regions, and SH2, one of the two reactive thiols (SH1 and 

SH2) found in many muscle MHC heads is also present in 95F MHC. The amino-terminal 

two thirds of the protein comprise a head domain that is 29-33% identical (60-65% similar) 

to other myosin heads, and contains ATP-binding, actin-binding and calmodulin/myosin 

light chain-binding motifs [Kellerman and Miller, 1992]. 

When looking only at GO-annotations, this gene is a true false positive result, i.e. its avail-

able annotation is in line with the biology but not part of the consensus annotation for the 

rest of the genes from this cluster, so the prediction is classed as wrong. Even though there 

is not yet proof for an immediate interaction between MHC and 95F MHC, these genes are 

very similar to one another. A relationship between MHC and ifm(2)RU2 has already been 

suggested and here, further indications have been found that those genes are responsible 

for similar phenotypes (the term ‘myosin’ does not occur in any of the phenotype descrip-
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tions). These are reasons to believe that there are some undisclosed functional links be-

tween 95F MHC, MHC, ifm(2)RU2 and at least some mat(2)syn gene family members. 

These very interesting findings are provided here to be tested biologically. 

4.4 Conclusion and Outlook 

It was shown that a great deal of the heterogeneous nature of phenotype data can be over-

come by application of knowledge management, integration, text-mining and prediction. 

Within the framework of PhenomicDB, textual descriptions of clinical diseases, naturally 

occurring mutants, RNAi screens, gene knock-out experiments, and many others were sys-

tematically integrated. Using clustering, a reasonable fraction of genes associated to phe-

notypes from PhenomicDB can be grouped into biologically meaningful categories. This 

works even better when the phenotype vectors are created with methods tuned to the nature 

of their descriptions, i.e. over-weighting of terms specific to the phenotype domain and yet 

general enough and thus valid across species. Grouping genes based on certain properties 

is a powerful tool that has often been applied for function prediction before, using criteria 

such as participation in the same pathway [Huynen, et al., 2003; Jaeger and Leser, 2007], 

participation in PPi cliques [Spirin and Mirny, 2003], or mentioning in the same Medline 

abstracts [Raychaudhuri, et al., 2002] – but not on phenotypes. This is an important new 

approach, as phenotypes (in contrast to interaction data for example) yield more informa-

tion on the high diversity of biological meaning that is innate to any gene. It is, in fact, the 

intrinsic nature of phenotypes to visibly reflect genetic activity. Thus, phenotype data has 

the potential to be more useful for functional studies than most other types of data. Fur-

thermore, the integration of genotype and phenotype data enables large-scale discoveries 

across species that are highly useful when real data is sparse and can help e.g. to model 

human diseases. 

A much larger fraction of clusters are more homogeneous with respect to pair-wise interac-

tions, GO-annotations and re-occurrence of phenocopies than expected by chance. The re-

maining part of the phenodocs do also cluster, probably not driven by biology but by spu-

rious effects of the data set itself and the clustering methods; this is an effect typical of 

high-throughput methods (e.g. gene expression). It was shown that phenoclusters can be 

used to infer gene functions for poorly annotated genes with high precision and reasonable 

recall. In a recent survey, Pandey et al. [Pandey, et al., 2006] have collected success rates 

for different approaches, like sequence clustering, to protein function prediction using GO. 
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These approaches show precision values between 50% and 74%, i.e. from slightly below to 

slightly above the values presented here (note that some of the methods applied in these 

works are not directly comparable to the approach of this thesis). In the light of this survey, 

large-scale phenotype clustering as carried out here should be considered as a novel tool to 

predict gene functions with highly competitive results. As a generalization, it can be as-

sumed that the prediction methods are applicable to all functionally coherent groups of bio-

logical entities and will return appropriate predictions with comparable recall and precision 

values. 

It is planned to advance the development of the prototypes and proof-of-concepts presented 

here to productive versions within the framework of PhenomicDB. More specifically, the 

groups of similar genes and phenotypes in PhenoMIX will be used to enable automated 

predictions and a scoring system for the confidence of prediction results. As an example, it 

should be possible for an extracted group of phenotypes, their phenotypic features and their 

associated TFIDF-score, to multiply this score with the weight of the similarity connec-

tions (e.g. when evidence from several sources supports the connection of two entities). 

This would result in a score of importance for each phenotype term and can then be used to 

assign the most important terms as the most likely phenotypic outcome of an experiment 

for those genes of the group. Another desirable functionality is the prediction of ontology 

annotations for both genotypes and phenotypes including a probability measure for the 

prediction confidence. 

It has been shown that rigorous amplification and application of ontologies is necessary to 

successfully apply innovative or classical tools to foster a more widespread use of pheno-

type data. Automated annotation of phenotypes will thus be the next hot topic in compara-

tive phenomics, with the ultimate goal of developing a more general ontology. However, to 

retain this ontology in high quality would require the collective work of experts from all 

fields of phenotyping. This can possibly be achieved in combination with other promising 

public biomedical ontologies including more specialized phenotype ontologies (e.g. for cell 

type, plant trait or Drosophila development) which can be found in the open biomedical 

ontologies (OBO) repository at http://obo.sf.net. Consequently, an international consortium 

of phenotype research groups should be established (see also [Groth and Weiss, 2006a]), in 

order to drive forward the development of a universal cross-species ontology for pheno-

types. 
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These ontologies will eventually lead to a more homogeneous body of phenotype descrip-

tions, enabling a more refined application of term-weights than ‘simple’ TFIDF and an 

over-weighting of vocabulary terms extracted by exact matching. Adding to this, more so-

phisticated extraction methods, such as shown by Boehm [Boehm, 2008], as well as pheno-

type annotation software like Phenote (see section 1.3.2) will further advance the field. 

In a final step, the potential of PhenomicDB to enable discoveries in a large cross-species 

scope should be combined with the methods to develop integrated functional gene net-

works from Lee et al. (see section 4.2.3.3 and [Lee, et al., 2008]) on more species and data 

and thus could leverage comparative phenomics to systemic discoveries leading – eventu-

ally – to novel therapeutic approaches. 
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Appendix 

A1 PhenomicDB: Database schemes 

A1.1 Database scheme of MSP 
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A1.2 Database schemes of PhenomicDB version 1.x 

A1.2.1 Database scheme ‘Entry’ 

 

A1.2.2 Database scheme ‘Common’ 
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A1.2.3 Database scheme ‘External reference’ 

 

A1.2.4 Database scheme ‘Genotype’ 
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A1.2.5 Database scheme ‘Phenotype’ 

 

A1.3 PhenomicDB version 2.x database scheme ‘Phenotype’ 
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A1.4 PhenoMIX database scheme in PhenomicDB version 3.x 
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A2 PhenoMIX: Database scheme, packages and classes 

A2.1 Database scheme ‘Genotype’ 

 

A2.2 Database scheme ‘Phenotype’ 
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A2.3 Packages and classes 

A2.3.1 The ‘calc’ package 

A2.3.1.1.1 The class ‘Distributions’ 

For any given evidence code, this class calculates a reasonable similarity score threshold 

which if applied would return a good portion of the available entities, but not too many of 

them (in view of retrieval inefficiencies). It also suggests an integer value k to return a rea-

sonable group size (a certain quantile) if there is no applicable similarity threshold (i.e. 

when all similarity values are equal to ‘1’). 

Example: 

Distributions dist = new Distributions(evidence); 

int myK = dist.suggestK(); 

float myThreshold = dist.suggestThreshold(); 

A2.3.1.1.2 The class ‘Phenoclustering’ 

This class does the actual phenoclustering by interacting on command-line with the vclus-

ter algorithm from the CLUTO package. It needs just three input parameters; the minimum 

lengths of the input vectors, the value for k and the scoring method (TF or TFIDF). The 

class interacts with a method from the ‘DBInterface’ class which retrieves for a given (in-

teger) length all phenodocs that are of at least this given length. 

Example: 

PhenoClustering phenoclustering = new PhenoClustering(); 

phenoclustering.do_phenoclustering(5000, 50, "tfidf"); 

A2.3.2 The ‘calc.predict’ subpackage 

A2.3.2.1.1 The class ‘AnnotationProbabilities’ 

This class calculates the probabilities of annotation for all annotations associated with a 

given list (ArrayList) of entities. It does so by calculating a Hypergeometric Distribution 

over the input set of associated annotations, depending on the type of the input entities. It 

retrieves the entire set from the database and the number of times this term has been asso-

ciated and thus calculates the probability for this term to have ended up in this grouping by 
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chance. This class is used by the classes ‘FunPred’ to calculate the annotation probabilities 

of the lists of associated terms. The Hypergeometric Distribution is calculated by using the 

appropriate method from the ‘MathUtils’ class. 

Example: 

AnnotationProbabilities annoprob = new AnnotationProbabilities(); 

annoprob.setSourceEntities(listofentities); 

annoprob.calc_annotation_probability(); 

Hashtable<java.lang.String,java.lang.Double> myresultlist = anno-

prob.getAnnotationProbabilities(); 

A2.3.2.1.2 The class ‘FunPred’ 

This class calculates a prediction of genotype annotations for a network of phenotypes or 

vice versa. It calculates for each associated ontology term of each phenotype associated to 

genotype (and vice versa) from the input network a probability score and returns this list of 

terms together with this score. Furthermore, it calculates a precision and recall values for 

these observations with the methods discussed in section 2.2.8. The result is a list of words 

that are most likely to represent the ontology annotation of a phenotype for each associated 

gene from the network, as well as the precision and recall values of the calculations. 

Example: 

FunPred funpred = new FunPred(); 

funpred.setSourceNetwork(entitynetwork); 

funpred. do_function_prediction(); 

Hashtable<java.lang.String,java.lang.Double> myresultlist = fun-

pred.getAnnotationProbabilities(); 

double myRecall = funpred.getRecall(); 

double myPrecision = funpred.getPrecision(); 

A2.3.2.1.3 The class ‘PhenoPred’ 

This class calculates a prediction of phenotypes for a network of genotypes. It calculates 

for each feature of each associated phenotype of each genotype from the input network a 
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probability score and returns this list of features (words) together with this score. The result 

is a list of words that are most likely to represent the outcome of a phenotype experiment 

for each of the genes from the network. 

Example: 

PhenoPred phenopred = new PhenoPred(); 

phenopred.setSourceNetwork(genotypeentitynetwork); 

phenopred. do_phenotype_prediction(); 

Hashtable<java.lang.String,java.lang.Double> myresultlist = phenopred.getPhenoScore(); 

A2.3.3 The ‘calc.sims’ subpackage 

A2.3.3.1.1 The class ‘Alignment’ 

This class calculates the alignment of two sequence strings and returns their similarity 

value (float). It could – theoretically – also return an ASCII representation of the align-

ment, showing in the top line the query sequence aligned with the subject sequence in the 

line below. Since this has no application, however, this output is discarded. 

Example: 

Alignment align = new Alignment(); 

align.setQuerySequence(‘ACGT’); 

align.setSubjectSequence(‘ACCT’); 

align.calc_alignment(); 

float myScore = align.getSimilarityScore(); 

A2.3.3.1.2 The class ‘Cosine’ 

This class calculates the overall cosine similarity (float) of two vectors from phenodocs. 

The vectors can be given as strings or instances from the SparseVector class (otherwise 

they are transformed into such instances). The class itself uses the method cosine() from 

the SparseVector class to calculate the similarity values. 

Example: 

Cosine cosine = new Cosine(); 
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cosine.setQueryVector(queryVector); 

cosine.setSubjectVector(subjectVector); 

cosine.calc_cosine_sim(); 

float myScore = cosine.getSimilarityScore(); 

A2.3.3.1.3 The class ‘Ontology’ 

This class calculates the overall similarity score of two sets (ArrayLists of Integers, repre-

senting ontology term identifiers) of ontology terms. It contains a getter method for the 

calculated ontology score (float). 

Example: 

Ontology ontology = new Ontology(); 

ontology.setSubjectOntologyTerms(subjectOntologyTerms);  // ArrayList<Integer> - a list 

of term identifiers 

ontology.setQueryOntologyTerms(queryOntologyTerms);   // ArrayList<Integer> - a 

list of term identifiers 

ontology.setOntology(“GO”); 

ontology.calc_ontology_sim(); 

float myScore = ontology.getSimilarityScore(); 

A2.3.4 The ‘common’ package 

A2.3.4.1.1 The class ‘EntityFactory’ 

This class is a factory for creating and populating instances of entities. Factories are pro-

grammed in order to separate objects from their populating methods. By this, the objects 

can be populated more easily by different methods, e.g. via a database, a form from a web-

interface, a command-line, etc. The class contains a constant INSTANCE which instanti-

ates an object of this class without constructor. This helps to handle the calls to the factory 

more easily and helps preserving system resources. 

Example: 

EntityFactory.getINSTANCE().method(); 
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A2.3.4.1.2 The class ‘EntityNotFoundException’ 

This class instantiates an Exception message and returns the Exception when it occurs. Par-

ticularly, it throws an exception if an identifier for which an Entity object should be created 

is not in the database. 

A2.3.4.1.3 The class ‘ErrorMessage’ 

This class is instantiated with an error message (as string) and returns it to the specified 

output. The reason this class exists is that it is extensible for throwing error message for 

any type of output, whether it is command-line or web-interface. The difference between 

exceptions and errors is that exceptions are usually fatal to the program, while errors 

mostly allow the program to keep running but communicate some type of failure in the 

process of the program. 

A2.3.4.1.4 The class ‘EvidenceFactory’ 

This class is a factory for creating and populating instances of evidence. Factories are pro-

grammed in order to separate objects from their populating methods. By this, the objects 

can be populated more easily by different methods, e.g. via a database, a form from a web-

interface, a command-line, etc. The class contains a constant INSTANCE which instanti-

ates an object of this class without constructor. This helps to handle the calls to the factory 

more easily and helps preserving system resources. 

Example: 

EvidenceFactory.getINSTANCE().method(); 

A2.3.4.1.5 The class ‘ExceptionMessage’ 

This class is instantiated with an exception message (as string) and returns it to the speci-

fied output. The reason this class exists is that it is extensible for throwing exception mes-

sage for any type of output, whether it is command-line or web-interface. The difference 

between exceptions and errors is that usually, exceptions are fatal to the program, while er-

rors mostly allow the program to keep running but communicate some type of failure in the 

process of the program. 
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A2.3.4.1.6 The class ‘InvalidClusteringException’ 

This class instantiates an Exception message and returns the Exception when it occurs. Par-

ticularly, it throws an exception if a clustering is invalid, i.e. when the number of vectors to 

be clustered is smaller than K. 

A2.3.4.1.7 The class ‘MathUtils’ 

This class contains some very useful additions to the built-in functions in java.lang.Math. 

Especially, this class contains a highly efficient implementation of the Hypergeometric 

Distribution, returning the probability that from a population of size N of which M mem-

bers have a specific property, x elements with that specific property are drawn in k trials. 

The problem with the Hypergeometric Distribution is that it needs binomial coefficients. In 

many implementations (and also in the built-in java implementations) of these binomial 

coefficients, the actual values of ‘n choose k’ are calculated with factorials. This means that 

very large numbers are calculated and then need to be broken down again into very small 

numbers, if n and k are very large numbers themselves, but have only a very small absolute 

difference. An easy workaround for this dilemma is using logarithmic values returning the 

correct result of ‘n choose k’ even for large values of n and k. All methods of this class are 

static for direct access to the method without constructor. 

Example: 

MathUtils.method(); 

A2.3.4.1.8 The class ‘PhenoClusteringFactory’ 

This class is a factory for creating and populating instances of phenoclusterings. Factories 

are programmed in order to separate objects from their populating methods. By this, the 

objects can be populated more easily by different methods, e.g. via a database, a form from 

a web-interface, a command-line, etc. The class contains a constant INSTANCE which in-

stantiates an object of this class without constructor. This helps to handle the calls to the 

factory more easily and helps preserving system resources. 

Example: 

PhenoClusteringFactory.getINSTANCE().method(); 
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A2.3.5 The ‘database’ package 

A2.3.5.1.1 The class ‘DBHandle’ 

This class is the actual handler of a database connection. It keeps the physical information 

for the connection, such as password, database, host and driver as private variables and re-

ceives only the SQL query as string in the constructor. 

Example: 

DBHandle dbh = new DBHandle(‘select * from anytable’); 

A2.3.5.1.2 The class ‘DBInsert’ 

This class is part of the connection interface to the database and is responsible for passing 

through data to the database handle and the query from the database query instances. The 

difference between the class ‘DBInsert’ and the class DBReturn’ is the type of return value. 

While ‘DBInsert’ only returns a Boolean value, indicating success or failure of the query, 

‘DBReturn’ returns actual data from the database (as ResultSet). 

Example: 

DBInsert dbins = new DBInsert(‘insert into anytable anything’); 

A2.3.5.1.3 The class ‘DBInterface’ 

This class is the full-fledged interface to the database and the factories and objects. It is by 

far the class with the most implemented methods. Each method contains a pre-formulated 

SQL query that is passed on to the other classes from the ‘database’ package and each of 

these method returns either data from the database, or calls upon class methods from the 

packages ‘objects’ or ‘common’ to instantiate and populate them with data from the data-

base. The class contains a constant INSTANCE which instantiates an object of this class 

without constructor. This helps to handle the calls to the database more easily and helps 

preserving system resources. 

Example: 

DBInterface.getINSTANCE().method(); 
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A2.3.5.1.4 The class ‘DBReturn’ 

This class is part of the connection interface to the database and is responsible for passing 

through data from the database handle and the query from the database query instances. 

The difference between the class ‘DBInsert’ and the class DBReturn’ is the type of return 

value. While ‘DBInsert’ only returns a Boolean value, indicating success or failure of the 

query, ‘DBReturn’ returns data from the database (as ResultSet). 

Example: 

DBReturn dbret = new DBReturn(‘select * from anytable’); 

A2.3.6 The ‘objects’ package 

A2.3.6.1.1 The class ‘Connection’ 

This class represents a pair-wise similarity between two entities of the same kind (either 

two genotypes or two phenotypes). The class keeps a unique identifier for the connection, 

as well as the full information of the two entity objects. Furthermore, the similarity value 

(distance) and the amount of support for this connection are stored. This class has been im-

plemented as comparable in order to be able to find equal connections in two networks. 

Example: 

Connection connection = new Connection(); 

connection.setConnectorA(genotype1); 

connection.setConnectorB(genotype2); 

connection.setConnectionDistance(0.9876); 

A2.3.6.1.2 The abstract class ‘Entity’ 

This class instantiates genotype and phenotypes into a more general (and thus easier to use) 

class, namely ‘Entity’. 

Example: 

Entity entity = new Genotype(); 

   OR 

Entity entity = new Phenotype(); 
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A2.3.6.1.3 The class ‘Evidence’ 

This class instantiates the evidences (hence: the similarity calculations) for entities. It con-

tains basic setters and getters, like the type of evidence that has been instantiated (e.g. in-

teraction from IntAct), the type of entity (genotype or phenotype) and some basic ‘statis-

tics’ on the instantiation, e.g. whether this evidence is calculable (like sequence or ontology 

similarity) or just retrievable (like interaction or orthology), the number of available simi-

larity values of this type of evidence, etc. 

Example: 

Evidence evidence = new Evidence(); 

evidence.setNumEntities(10); 

int  numOfEntites = evidence.getNumEntities(); 

A2.3.6.1.4 The final class ‘Genotype’ 

This class represents a Genotype. It is meant to instantiate an Entity as such. 

Example: 

Entity phenotype = new Genotype(); 

A2.3.6.1.5 The class ‘Network’ 

This class represents a Network. In its basic form, it represents a list of entities (members 

of the network, either genotypes or phenotypes) and a list of connections (pair-wise simi-

larities of genotypes and phenotypes). However, there have been many methods for net-

work manipulation implemented in this class. One of the basic manipulation methods lies 

in adding or subtracting a network member (and thus also its connection and the other 

member of this connection, unless this member is active in another connection). Another 

implemented basic manipulation strategy is the removal of a connection (and thus the re-

moval of both its members, unless they are involved in other connections). The class also 

contains advanced manipulation algorithms, such as finding a connected subnetwork for an 

entity, where, given an entity and an evidence, all other entities that have a connection with 

the given entity and evidence are returned as a network. Furthermore, this class also returns 

networks limited by a threshold or a size (ordered by similarity values). Lastly, it is respon-

sible for the creation of consensus networks, which are networks of different evidences and 

overlapping members and connections. 
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Example: 

Network network = new Network(entitylist, evidence); 

ArrayList<Connection> nwconnections = network.getConnections(); 

ArrayList<Entity> nwmembers = network.getMembers(); 

A2.3.6.1.6 The class ‘PhenoCluster’ 

This class instantiates objects of phenoclusters. Currently, these phenoclusters are Hash ta-

bles with integers for keys and entities (genotypes or phenotypes) for values. The class 

comes with a conversion method to convert a phenocluster to its group of associated genes 

and vice versa. 

Example: 

PhenoCluster phenocluster = new PhenoCluster(); 

Hashtable<Integer, ArrayList<Entity>> phenotypeclusters = phenoclus-

ter.getPhenotypeClusters(); 

Hashtable<Integer, ArrayList<Entity>> genotypeclusters = phenoclus-

ter.getGenotypeClusters(); 

A2.3.6.1.7 The class ‘PhenoClustering’ 

This class represents an object keeping the parameter selection of a clustering of pheno-

types. It is populated by retrieval from the database or from the result of a phenoclustering 

by CLUTO. 

Example: 

PhenoClustering phenocluster = new PhenoClustering(1000, 25, "tfidf"); 

phenocluster.setK(500); 

phenocluster.setMinlength(50); 

phenocluster.setMethod("tf"); 

A2.3.6.1.8 The final class ‘Phenotype’ 

This class represents a Phenotype. It is meant to instantiate an Entity as such. 
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Example: 

Entity phenotype = new Phenotype(); 

A2.3.6.1.9 The class ‘SortableHashtable’ 

This class extends the normal Hashtable and represents a Hashtable which is sortable by 

values. It brings along the method getSortedValues() sorting the values of a Sortable-

Hashtable. It inherits modifier methods from its superclass Hashtable. Equal values will be 

sorted by their keys. Keys and values have been generalized and are not limited to any par-

ticular object, type or class but must be of the Comparable class. 

Example: 

 SortableHashtable sortableHashtable = new SortableHashtable(); 

sortableHashtable.put(1, 5); 

sortableHashtable.put(2, 1); 

sortableHashtable.put(3, 3); 

<Iterator> i = labelfrequency.getSortedValues().iterator(); 

Entry entry = null; 

while(i.hasNext()) { 

entry = i.next(); 

System.out.println(entry.getKey() + " " + entry.getValue()); 

A2.3.6.1.10 The class ‘SparseVector’ 

This class represents a SparseVector, i.e. a vector that has only few non-zero entries, as is 

the case for vectors from phenodocs, derived from a large body of documents. This class 

supports special (space) optimized routines for binary vectors and also supports k-means 

with Euclidean and cosine distance. Furthermore, one of the class constructors has been 

optimized to allow for a simple string to be transformed into an instance of this class. 

Example: 

String s1 = "1.0 1:2.523 3:7.81 4:2.313"; // (s = "label dim:val ...") 

String s2 = "2.0 1:1.23 2:0.453 4:4.7235"; // (s = "label dim:val ...") 
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SparseVector vector1 = new SparseVector(s1); 

SparseVector vector2 = new SparseVector(s2); 

double cosineSimilarity = vector1.cosine(vector2); 

A2.3.6.1.11 The final class ‘SubstitutionMatrix’ 

This class represents an object needed for the calculation of sequence similarities and 

brings along the access method getValueAt(String querystring, String subjectstring). 

Each value in a substitution matrix describes the rate at which one character in a sequence 

changes to other character states over time. 

Example: 

SubstitutionMatrix matrix = new SubstitutionMatrix(); 

int substitutionValue = matrix.getValueAt("A", "C"); 
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A3 Numbers on phenotypes 

This file contains some basic information on word and character sizes of phenotypes and 

the number and sizes of features in the resulting vectors. 

Number of phenotypes/phenodocs: 39,610 

Phenotypes: 

Words: Mean: 169.99, Min.: 27, Max.: 985 

Characters (excluding whitespaces): Mean: 1,135.29, Min.: 251, Max.: 6,528 

Number of unique words: 113,283 

Phenodocs: 

Features: Mean: 67.87, Min.: 12, Max.: 364 

Number of unique features: 73,188 
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A4 Listing of and evidence for phenocopies 

The following table lists all 27 phenocopies that have been identified from literature, in-

cluding the Entrez gene IDs of each gene which is a phenocopy and the PubMed ID of the 

evidence for why exactly those genes are said to be phenocopies. 

Number Entrez gene identifier for 
phenocopies PubMed identifier

1 38879, 36538 16129829
2 42445, 31293 12049762
3 15460, 22337 11564167
4 16835, 100017 15728179, 17200716, 14717060, 16343504
5 18516, 27140 15466398
6 36775, 43916 11877391
7 41885, 39844 17353360
8 11491, 13649 16079154
9 19378, 15426 15753214
10 44279, 34009 11029007
11 35197, 41363 16774999
12 3346167, 31816 16862128
13 12802, 14678 16924491
14 856580, 850675 17553781
15 13433, 20937 16980612
16 13711, 19116 15650748
17 14179, 14182 15221377
18 14460, 14461, 22761 12077323
19 15111, 22160 16237669
20 17319, 15251 17142669
21 16449, 18129 12496659, 15509774
22 4000, 10269 16079796
23 17283, 214162 15199122
24 19164, 19165, 18128, 12424225, 15525534
25 17125, 55994 15899870
26 14950, 74585 15998642
27 69581, 22408 11459829  
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A5 Histograms of similarity data in PhenoMIX 

A5.1 Similarities of genotypes where associated to phenotypes 
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A5.2 Similarities of phenotypes where associated to genotypes 
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A6 Figures for GO- and phenotype term prediction 

A6.1 Figures for GO-term prediction from different similarities 

Similarity 
measure k

GO-term 
prediction   
# predicted 
terms (real)

GO-term 
prediction 
Recall 
(real)

GO-term 
prediction 
Precision 
(real)

GO-term 
prediction 
F-measure 
(real)

GO-term 
prediction   
# predicted 
terms 
(random)

GO-term 
prediction 
Recall 
(random)

GO-term 
prediction 
Precision 
(random)

GO-term 
prediction 
F-measure 
(random)

GO biological 1,560 1,313 13.7% 67.1% 0.228 243 3.6% 31.7% 0.065
process 780 1,159 13.2% 65.0% 0.219 281 5.4% 42.5% 0.096

390 1,025 13.8% 64.0% 0.227 310 7.6% 50.5% 0.132
GO molecular 1,571 1,009 12.3% 59.8% 0.204 229 2.6% 27.6% 0.048
function 786 1,018 11.5% 63.0% 0.194 254 3.3% 35.2% 0.06

393 968 11.3% 58.6% 0.189 310 4.0% 36.0% 0.072
GO cellular 1,286 602 8.5% 50.6% 0.146 238 3.5% 43.2% 0.065
component 643 813 6.6% 53.3% 0.117 370 3.7% 38.8% 0.068

321 819 5.1% 40.0% 0.09 410 5.0% 37.1% 0.088
Nucleotide 1,071 763 22.3% 49.0% 0.307 124 2.5% 11.8% 0.041
sequence 536 509 18.7% 54.7% 0.279 117 2.6% 19.1% 0.046

268 215 16.8% 64.6% 0.267 62 3.8% 31.3% 0.068
Intact PPi 646 546 12.3% 49.5% 0.197 142 1.3% 11.8% 0.023

323 330 13.1% 59.0% 0.214 132 2.3% 22.6% 0.042
162 127 12.7% 66.2% 0.213 63 4.2% 35.8% 0.075

BioGrid PPi 768 825 12.3% 53.0% 0.2 189 1.1% 11.3% 0.02
384 640 14.4% 63.8% 0.235 184 2.1% 20.1% 0.038
192 403 14.9% 69.5% 0.245 167 3.6% 33.5% 0.065

Homologene 662 598 24.1% 43.0% 0.309 48 1.4% 3.3% 0.02
331 425 22.4% 42.2% 0.293 41 1.2% 3.0% 0.017
166 244 22.3% 45.4% 0.299 26 1.5% 3.6% 0.021

Linear 2,188 850 12.5% 60.1% 0.207 178 4.2% 32.8% 0.074
combination 1,094 824 12.0% 63.5% 0.202 204 6.0% 44.7% 0.106

547 638 12.7% 62.3% 0.211 192 8.2% 52.6% 0.142
Phenocluster 1,000 345 23.0% 67.9% 0.343 51 5.0% 29.1% 0.085
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A6.2 Figures for phenotype prediction from different similarities 

Similarity 
measure k

PT-term 
prediction   
# predicted 
terms (real)

PT-term 
prediction 
Recall 
(real)

PT-term 
prediction 
Precision 
(real)

PT-term 
prediction  
F-measure 
(real)

PT-term 
prediction   
# predicted 
terms 
(random)

PT-term 
prediction 
Recall 
(random)

PT-term 
prediction 
Precision 
(random)

PT-term 
prediction  
F-measure 
(random)

GO biological 1,560 9,219 9.9% 54.9% 0.168 3,176 4.3% 18.3% 0.070
process 780 8,564 11.6% 64.3% 0.197 3,292 5.9% 32.7% 0.100

390 8,200 12.8% 67.4% 0.215 7.5% 47.4% 0.130
GO molecular 1,571 7,092 9.4% 57.9% 0.162 2,499 4.0% 14.6% 0.063
function 786 8,000 10.1% 62.3% 0.174 3,131 5.8% 28.5% 0.096

393 7,776 10.4% 62.6% 0.178 3,260 8.2% 41.6% 0.137
GO cellular 1,286 6,556 7.6% 52.9% 0.133 3,147 5.2% 17.3% 0.080
component 643 8,030 7.3% 55.8% 0.129 4,525 7.0% 36.4% 0.117

321 8,271 9.0% 56.9% 0.155 4,182 7.3% 46.2% 0.126
Nucleotide 1,071 6,821 15.4% 49.0% 0.234 2,093 5.3% 13.7% 0.076
sequence 536 5,032 13.2% 58.8% 0.216 2,026 5.4% 21.1% 0.086

268 2,799 12.6% 67.7% 0.212 1,204 5.3% 30.2% 0.090
Intact PPi 646 5,554 16.8% 68.9% 0.270 1,751 5.1% 17.0% 0.078

323 3,950 14.2% 70.2% 0.236 1,664 5.6% 22.2% 0.089
162 1,467 15.1% 69.8% 0.248 534 6.5% 26.1% 0.104

BioGrid PPi 768 9,243 16.0% 70.3% 0.261 2,374 5.3% 18.4% 0.082
384 6,993 16.7% 71.9% 0.271 2,385 7.3% 32.1% 0.119
192 4,791 16.6% 72.5% 0.270 2,014 9.2% 41.1% 0.150

Homologene 662 2,547 9.3% 23.0% 0.132 1,114 5.7% 8.7% 0.069
331 1,992 9.3% 24.4% 0.135 981 5.9% 9.7% 0.073
166 1,450 8.7% 23.0% 0.126 722 5.1% 9.0% 0.065

Linear 2,188 6,397 11.8% 57.5% 0.196 2,097 3.8% 13.8% 0.060
combination 1,094 6,229 13.1% 66.7% 0.219 2,239 5.7% 27.9% 0.095

547 5,019 13.6% 69.4% 0.227 2,241 6.9% 40.9% 0.118
Phenocluster 1,000 12,896 27.1% 74.2% 0.397 5,589 6.2% 25.1% 0.099  
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A7 List of stop-words 

The following list of 348 unique stopwords has been used to create phenodocs as described 

in sections 2.1.7 and 2.2.2. 

these none toward yourselves anyway only a cant 
mm did anything he indeed very would can 
you inc describe until herself significantly no where 
both do full was anyhow may seen mill 
put we whereby serious really re might throughout 
my find twelve another therein me in into 
many ten thick which something by quite never 
see somehow myself two whoever hasnt upon above 
couldnt to four nobody below mine sixty at 
give from they if during thereupon first empty 
co towards especially least hereby otherwise thin had 
what thru same less bottom herein between seemed 
although her whereupon him using whose than whatever 
wherever any fify himself amount hers without take 
them detail fill keep alone after overall hereafter 
seems perhaps fire wherein side am just our 
sometime more us own now get become who 
used an nearly always becomes nine somewhere nevertheless
computer the his also then hence its obtained 
again made i yours afterwards five amongst bill 
twenty against anyone due pmid cry thence were 
though done make each onto back whenever next 
shown noone everywhere name fifteen go ml yourself 
several yet under interest since there one eleven 
km or latterly your elsewhere hundred some ever 
system could across but whole anywhere with even 
of does well too few as here ltd 
still this through and down showed eg therefore 
mainly before via over amoungst why almost up 
all once while six about everyone kg front 
being so themselves found whom became off out 
she regarding please is ie shows thus formerly 
will for because already show itself etc thereafter 
nor per nothing becoming how sometimes former theirs 
much else eight have enough ourselves latter someone 
neither whither however con whence third ours must 
when among mg moreover those has beyond namely 
various whereas around meanwhile de on having top 
hereupon everything move it rather thereby use seem 
nowhere be others last un further been behind 
part seeming along besides other sincere should  
every such cannot forty their mostly together  
beforehand most that within whether beside except  
either are not often three whereafter call  
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Eidesstattliche Erklärung 

Ich, Philip Groth, geboren am 15.12.1978 in Berlin, erkläre hiermit, dass ich 

• die vorliegende Dissertationsschrift ‚Knowledge Management and Discovery for Geno-

type/Phenotype Data’ selbständig und ohne unerlaubte Hilfe angefertigt habe; 
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