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Error-in-variables (EIV) models are regression models in which the regressors
are observed with errors. These models include the linear EIV models, the non-
linear EIV models, and the partially linear EIV models. Suppose that we want to
investigate the relationship between the yield (Y') of corn and available nitrogen
(X) in the soil. A common approach is to assume that ¥ depends upon X linearly.
To evaluate the degree of dependence, it’s necessary to sample the soil of the ex-
perimental plot and to perform an analysis. We can not observe X, but rather an
estimate of X. Therefore, we represent the observed nitrogen by W, also called the
surrogate of X. The model thus studied is an errors-in-variables model.

This chapter surveys the basic results and explains how errors in variables mod-
els are implemented in XploRe. The first part covers the class of ordinary linear
errors-in-variables models, which has been studied in detail by Fuller (1987). The
second part focuses on the nonlinear errors-in-variables or measurement error mod-
els surveyed in Carroll, Ruppert and Stefanski (1995). In the third part, we give an
overview of partially linear errors-in-variables models. All chapters contain practical
examples. The corresponding quantlets are contained in the quantlib eiv.

1 Linear EIV Models

gest = eivknownatt(w,y,kww)
estimates the parameters with known reliability ratio

gest = eivknownratue(w,y,delta)
estimates the parameters with known ratio of the two variances of the
two measurement errors

gest = eivknownvaru(w,y,sigmau)
estimates the parameters with known variance of the measurement
error U

gest = eivknownvarumod (omega,w,y,sigmau)
calculates modified estimators of the parameters with known variance
of the measurement error U

gest = eivlinearinstr(w,z,y)
estimates the parameters with the instrumental variable z

gest = eivvecl(w,y,sigue,siguu)
estimates the parameters with multi-dimensional variables x with
known variance and covariance of € and U

gest = eivvec2(w,y,gamma)
estimates the parameters for multi-dimensional variables x with
known covariance of the measurement error U

gest = eivlinearinstrvec(w,z,y)
estimates the parameters for multi-dimensional variables with the in-
strumental variable z




A linear errors-in-variables model is defined as:

Y = a+87X +¢
W = X+T, (1)

where Y is the dependent variable, X is the matrix of regressors, and U is a random
term. In this model, the regressors X are observed with error, i.e., only the variable
W = X + U, called the manifest variable, is directly observed. The unobserved
variable X is called a latent variable in some areas of application, while U is called
the measurement error. Models with fixed X are called functional models,
while models with random X are called structural models.

We assume that the random variables (X,e,U) are independent with mean
(pz,0,0) and covariance matrix diag(X;z,0ce,0unlp). In the eiv quantlib the
method of moments is used to estimate the parameters. In the literature, it’s
generally assumed that (X,e,U) are jointly normally distributed, and that (W,Y")
follows a bivariate normal distribution (Fuller (1987)). Even without the normal-
ity assumption, various moment methods may be used to estimate all parameters.
Furthermore, we assume that 0., = doy,. Thus, the mean and the variance of the
joint distribution of (Y, W) are
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We write myy = S (Y = ¥)2/(n = 1), myy = Yo, (W = W)(¥; = Y)/(n — 1)
and My = Yy (Wy = W)(Wy = W)T /(n — 1). Using the method of moments, we
define the solutions of the following equations as the estimators of 3, ¥, 0yy-

Myy =00y + ﬂTEzwﬂ
Myw = Zge + Uuulp

1.1 A Single Explanatory Variable

Let’s first investigate the case of single explanatory variable, i.e., p = 1. The least
squares estimator based on the observed variables is biased towards zero because of
the disturbance of the measurement error. In fact, let

n

=W -2} - W) - 7) (4)

t=1 t=1

be the regression coefficient computed from the observed variables. 51 would be an
unbiased estimator of f if there were no measurement error U. By the properties
of the bivariate normal,

E:y\l = aqquua-wz = ﬂl (Uzz + Uuu)_lawz- (5)

The least squares regression coeflicient is biased towards zero because of the distur-
bance of the measurement error U; the measurement error attenuates the regression
coefficient. The ratio kyw = 024/(0zz + Ouu), Which defines the degree of atten-
uation, is called the reliability of W, or the reliability ratio. As pointed out
above, ignoring measurement error leads to the least squares slope as an estimator
of Bkyw, not of §.

In this section, we consider several estimators for the linear eiv models. These

estimators have different forms based on the corresponding assumption on the vari-
ances. A complete account is given in Fuller (1987).



Assume that the degree  of attenuation £y, is known. In this case, the estimators

— A~

of B and « are defined as 3 = k141 and @ =Y — SW. Moreover, their variances
are estimated by

n

v/aTr(E) = n_lsvv {Z(Wz - W)Q} Sl2

i=1
and
Var(@) = n"1Sy, + W var(B),

where S? = (n—2)"1 Y0 {Y;-Y -3 (W;=W)}? and Sy, = (n—2)"1 >0, (Vi—
a— BW;)2. Incidentally, the estimators of a and var(@) always have the same forms,

-~

whatever the estimators of # and var(f).

The quantlet eivknownatt evaluates the moment estimates of the parameters
Uz By Ogyy Oy, var(@) and var(B). Its syntax is the following;:

gest = eivknownatt(w,y,kww)
Q eivknownatt-example.xpl

where

W
the observed regressors,

the response,

kww
the degree of attenuation.

This quantlet returns a list gest, which contains the followings estimates:

gest.mux
estimate of the mean of X,

gest.betal E,
gest.betald a,

gest.sigmax
estimate of the variance of X,

gest.sigmau
estimate of the variance of U,

gest.sigmae
estimate of the variance of ¢,

gest.varbetal
the estimate of the variance of 3,

gest.varbetal
the estimate of the variance of a.

We consider the following example, based on simulated data, in which the distri-
bution of the measurement error U is normal with mean 0 and standard deviation
0.9, the latent variable X having the same distribution, so that the reliability ratio
equals Ky = 0.5.



library("eiv")

n = 100

randomize (n)

x=0.9*%normal (n) ; latent variables
w=x+0.9*normal (n) ; manifest variables
y=0.9+0.8%*x+0.01*normal (n)

kww =0.5 ; reliability ratio

gest=eivknownatt (w,y,kww)
The parameter estimates are the following:

gest.mux=-0.093396
gest.betal=0.79286
gest.beta0=0.8425
gest.sigmax=0.72585
gest.sigmau=0.72585
gest.sigmae=0.074451
gest.varbetal=0.0085078
gest.varbeta0=0.0054358

The true values are g0 = 0, So = 0.8, ag = 0.9, o0 = 0.81 and o9 = 0.81.

Assume that the ratio of two variances of the two measurement errors, ky.,, =
Omloee, is known. Then the estimators of the parameters of the most interest are
defined as

Myy — My + {(Myy — 0Mapw)? + 45mfuy}1/2

b= 2Myy
and
@r(B) = (n — 1)7'6 52 GwwSvo + FuuSvw — 52,),
where Gy = My By Guu = Muww — Gwws Fuv = —B0uu; Sow = (0 —2) "1 X {V; —

Y - B(W; = W)}
The quantlet eivknownratue estimates the parameters in this situation. Its
syntax is similar to that of the quantlet eivknownatt:

gest = eivknownratue(w,y,delta)
Q'eivknownratue—example.xpl

where delta is the ratio of the two variances.

For the purpose of illustration, we use the data which Fuller (1987) originally
analyzed. The variables Y and W are the numbers of hen pheasants in Iowa at
August and spring in the period from 1962 to 1976. Both measurement are subjected
to the measurement errors. The ratio of g t0 0y, is supposed to be 1/6. We use
the following XploRe code:

v=read ("pheasants.dat")
n=rows (v)

y=v[,2]

x=v[,3]

delta=1/6

The data set available in XploRe. Running

library("eiv")
gest=eivknownratue(x,y,delta)
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Figure 1: Pheasant data and estimated structural lines

we obtain the estimates of slope and intercept as 0.75158 (s.e. 0.0962) and 1.1158
(s.e. 0.9794). In Figure 1, the empty circles represents the observation data, the
solid line is based on the ordinary least squares estimator, and the dashed line is
the fit based on the moment estimator. Even in this small-sample data set, different
conclusions are obvious if we are ignoring the measurement errors.

When the variance of measurement error o, is known, we define the estimators
of 8 and the variance of this estimator as

B = (Muww — 0uu) "My (6)
and
var(8) = (n — 1)7'6,2 (MuwSuw + B202,),
where Gy = Muyw — Ouy and Sy = (n—2)" 13" {V;i-Y — BW; — W)}2.

The quantlet eivknownvaru evaluates the moment estimates stated above. Its
syntax is similar to that of the two previous quantlets:

gest = eivknownvaru(w,y,sigmau)
Q eivknownvaru-example.xpl

where sigmau is the variance of the error U.



We now use the quantlet eivknownvaru to analyze a real example from Fuller
(1987). In this example, we study the relationship between the yield of corn (V)
and soil nitrogen (X), the latter of which cannot be measured exactly. The variance
arising from these two variables has been estimated to be g, = 57. We assume that
Ouy 18 known and compute the related estimates using the quantlet eivknownvaru.
The ordinary least squares estimates are 81,5 = 0.34404 and ars = 73.152, ignoring
the measurement errors. We use the XploRe code:

z=read("corn.dat")

n=rows(z)

y=z[,1]

x=z[,2:3]

w=x[,2]

sigmau=57
gest=eivknownvaru(w,y,sigmau)

The moment estimates are BMM = 0.42316 (s.e. 0.1745) and apypm = 73.152
(s.e.12.542),G,, = 247.85 and G, = 43.29. So, the reliability ratio is 247.85/304.85 =
0.81. In Figure 2, the circles represent the observation data, the solid line is based
on the ordinary least squares estimator, and the dashed line is the fit based on the
moment estimator.
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Figure 2: QOutput display for Yields of Corn

Theoretical study and empirical evidence have shown that the method of mo-



ments estimator given in (6) performs poorly in small samples, since such ratios
are typically biased estimators of the ratio of the expectations. For this reason, we
consider the modification proposed by Fuller (1987) of this estimator. Define an
estimator of 8 by

g = {ﬁww + LU(TL - 1)_10uu}_1mwy;

where w > 0 is a constant to be determined later, and

o) muw—ouw FA> 1+ (n—1)"1
o Muww — A= —1)" Yo A<+ (n—1)""1

with A being the root of
det{m y,u)(yu) — A diag(0, o0uu)} = 0.

This estimator has been shown to be almost unbiased for 5. Its variance is estimated
by
@r(B) = (n— 1) {HyyGu + Hyi(0uidon + Fol,)

where Gy, = (n — 2)"1(n — 1)(myy — 2BMuwy + B2Mayy). For detailed theoretical
discussions see Section 2.5 of Fuller (1987).
The quantlet eivknownvarumod implements the calculating procedure.

gest = eivknownvarumod(omega, w, y, siemau)
eivknownvarumod-example.xpl

input
omega
scalar,
W
n x 1 matrix, the design variables,
y
n X 1 matrix, the response,
sigmau
the variance of measurement error.
output

gest.mux  the mean value of X,
gest.betal E,
gest.betad @,

gest.sigmax
the estimate of the variance of X,
gest.sigmae

the estimate of the variance of error ¢,

gest.varbetal
the estimate of the variance of 3,

gest.varbetal
the estimate of the variance of a.



We return to consider the data set “corn”. Calculating the different choices of
omega, we obtain the following results. A comparison with the results shown by the
quantlet eivknownvaru indicates that ﬂ is the same as ﬁMM when omega takes 0.

omega Brs B var ()
0 0.34404 | 0.42316 | 0.030445
1 0.34404 | 0.41365 | 0.030165
2 0.34404 | 0.40455 | 0.029927
2+ 2, 0ua | 0.34404 | 0.40125 | 0.029847
5 0.34404 | 0.37952 | 0.029419
10 0.34404 | 0.34404 | 0.029072

The estimates E and \Fa\r(g) decrease with omega, and E is equivalent to BLS
when omega= 10. The linear fitting for omega= 2 + 2mg} 0, is shown in Figure 3.

omega=2+2*inv(var(w))*sigmau
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Figure 3: Output display for Yields of Corn

In this paragraph, we assume that we can observe a third variable Z which is
correlated with X. The variable Z is called as an instrumental variable for X if

E {n_l i(zz —7)(6“[];)} = (030)7



n
E {nl > (Zi- Z)X,} # 0.
i=1
Although we do not assume that k,,, and o¢, are known or that o, is zero, we
can still estimate a and 3 by the method of moments as follows: Let 8 = my,tm,;
and @ = Y — BW, where my, = (n — 1) 37 (Y; — Y)(Z — Z) and my, =
(n—1)"13" (W; — W)(Z; — Z). Furthermore, we estimate the variances of the
approximate distributions of B and a by

.

var(B) = (n — 1)"'my2m.. Sy, and var(@) = n~1Sy, + W var(B)

with Sy, = (n —2)"' Y7 {V; =Y — B(W; — W)}
The quantlet eivlinearinstr accomplishes the implementation. Its syntax is
the following:

gest = eivlinearinstr(w,z,y)
Qeivlinearinstr—example.xpl

The estimates of a and 8 are returned in the list gest

gest.betal
the estimate of 3,

gest.betal
the estimate of «.

Before ending this section, we use the quantlet eivlinearinstr to study a prac-
tical data-set, in which we study Alaskan earthquakes for the period from 1969-1978.
The data are from Fuller (1987). In the data structure, we have the logarithm of
the seismogram amplitude of 20 second surface waves, denoted by Y, the logarithm
of the seismogram amplitude of longitudinal body waves, denoted by W and the
logarithm of maximum seismogram trace amplitude at short distance, denoted by
Z.

gest = eivlinearinstr(w,z,y)
Qeivlinearinstr—example.xpl

The estimates are

gest.beta0=-4.2829 (s.e.1.1137)
gest.betal=1.796 (s.e.0.2131)

Figure 4 shows the fitted results, in which the circles represent the data Y, the
solid line is based on the above estimates, and the dashed line contains the esti-
mated values based on the regression of Y on W. This means that if we ignore the
measurement errors, then it shows an obvious difference.

1.2 Vector of Explanatory Variables

Suppose that X is a p-dimensional row vector with p > 1, § is a p-dimensional
column vector, and the (1 + p)-dimensional vectors e = (¢,U)7 are independently
normal N(0, X..) random vectors.

Assume that the covariance between ¢ and U, X, and the covariance matrix
of U, ¥, are known. Then the other parameters, such as 3, a and others, are
estimated by

B\ = (mww - Euu)_l (mwy - EEU)’
a = Y- Wﬁa
. = Myy — 2Myy B + B\mewﬁ + 288 — BTzuuﬂ
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Figure 4: Output display for Alaskan Earthquakes

and f]m = Myw — Xuu, provided f]m is positive definite and 0. > X, 35, Ty,
where X}, denotes the generalized inverse of X,. If either of these conditions is
violated, the estimators fall on the boundary of the parameter space, and the above
forms must be modified. For a detailed discussion, see Section 2.2 of Fuller (1987).

The quantlet eivvecl evaluates these estimates. Its syntax is the following:

gest = eivvecl(w, y, sigue, siguu)
Q'e:'vaecl—example.xpl

The estimates are listed in the variable gest as follows:

gest.mux
scalar, the estimate of the mean of X,

gest.hatbetal
scalar, the estimate of «,

gest.hatbetal
vector, the estimate of 3,

gest.hatsigmax
p X p matrix, the estimate of the covariance of X,

gest.hatsigae
scalar, the estimate of the variance of €.
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We calculate a simulated data set with the quantlet eivvec1 as follows:

library("xplore")
library("eiv")

n = 100

randomize (n)

nu =#(2,3,4)

sig=0*matrix(3,3)
sigl,1]=#(0.25, 0.9, 0.1)
sigl,2]1=#(0.9, 1, 0.2)
sigl,3]=#(0.1, 0.2, 4)
x=normal (n,3) *sig+nu’
w=x+0.01*normal(n,3)

al=#(1.2, 1.3, 1.4)
y=0.75+x*al+0.09%normal (n)
sigue=#(0.11, 0.09, 045)
siguu=0*matrix(3,3)
siguul,1]=#(1.25, 0.009, 0.01)
siguul,2]=#(0.009,0.081, 0.02)
siguul,3]=#(0.01, 0.02, 1.96)
gest=eivvecl(w,y,sigue,siguu)

The estimates are: p, = (2.024,2.9106,3.9382)7, 3 = (0.011384, 0.013461, 0.013913)7,
R R 0.84466, 1.0319, 0.43677
Bo = 12.362, G = 1034.9, X,, = | 1.0319, 1.664, 1.0941

0.43677, 1.0941, 19.781

In this paragraph, our aim is to estimate the parameters in p-dimensional mea-
surement error models when the entire error covariance structure is either known,
or known up to a multiple scalar. Assume that the errors (U, e) obey normal distri-
bution with mean zero vector and covariance cov(U, ¢), which can be represented as
F(U’E)(U,E)az, where I'(y o)(u,¢) 18 known. Then the maximum likelihood estimators
of B and o2 are

B (mww - /)\\Fuu)71 (mwy - X Fsu);
52, = (+1)7')

where I'y,, and I'c,, are the submatrices of I'¢y ¢)(u,c), and ) is the smallest root of
7 y,0) ) = AL () ()| = O-

The quantlet eivvec2 evaluates these likelihood estimators. This case is an
extension of the case discussed in the context for the quantlet eivknownvaru. The
theoretical details are given in Fuller (1987). The syntax of this quantlet is the
following:

gest = eivvec2(w, y, gamma)
Q'eivvec2—examp1e.xpl

where gamma is a known matrix.
The following simulated example shows us how to run the quantlet eivvec2.

library("xplore")
library("eiv")
n=100
randomize (n)

11



sig=0x*matrix(3,3)

sigl,1]=#(0.25, 0.09, 0.1)

sigl,2]=#(0.09, 1, 0.2)

sigl,3]=#(0.1, 0.2, 0.4)

x=sort (uniform(n,3)*sig)

w=x+0.03*normal(n,3)

betaO=#(0.5, 0.6, 0.7)
y=x*beta0+0.05*normal (n)

gamma= (#(0.03,0,0,0)) | (#(0,0,0)~0.05*%unit (3))
gest=eivvec2(w,y,gamma)

The estimates are the following:

gest.hatbeta=(0.18541, 0.0051575,-0.088003)
gest.sigmam=0.015424

Consider the method of instrumental variables for the p-dimensional case. As-
sume that the g—dimensional vector of instrumental variables Z is available and
that n > ¢ > p. In addition, assume that ;. ; ZIZ,; is nonsingular with proba-

bility one, E{Z7 (e:,Ui)} = (0,0), and the rank of (Y7, ZTZ;) "' Y1, ZT W, is q
with probability one. When ¢ = p, we define the estimator of § as
B=(zTW)"1(ZTY).
Otherwise, write
Saa = (n = )" H(Y, W) (Y, W) — (Y, W)"Z(Z"Z) "' Z" (Y, W)}
and define the estimator as
B = (W'W —5S022) " (W'Y = §Sa21),
where Sgq21 and Sgq00 are the submatrices of S,,, and 7 is the smallest root of
[(Y, W)T(Y, W) — 7Saa| = 0.

Its statistical inferences refer to Section 2.4 of Fuller (1987).
The quantlet eivlinearinstrvec achieves the calculation procedure in XploRe.
This generalizes the quantlet eivlinearinstr to the p-dimensional case.

gest =eivlinearinstrvec(w,z,y)
Q'e:‘LVl:'Lnear:'Lnstrvec—example.xpl

We end this section with an example, in which we randomly produce vari-
ables w, instrumental variables z, and response y. Then we execute the quantlet
eivlinearinstrvec and get the estimates.

library("xplore")

library("eiv")

n=100

randomize (n)
w=floor(6*uniform(n,3)+#(4,5,5)7)
z=floor(8*uniform(n,4)+#(3,3,2,2)°)
y=floor(9xuniform(n)+2)
gest=eivlinearinstrvec(w,z,y)

The estimate of the parameter vector is

gest=(0.19413, 0.24876, 0.37562)

12



2 Non-linear EIV Models

res = reca(y,w,z,su2)
implementation of regression calibration

res = simex(y,w,z,su2,lam,b)
implementation of simulation extrapolation

When the relationship between response and the covariates is nonlinear and the
covariates are measured with errors, the models are called nonlinear EIV models.
There is a numerous body of literature on the nonlinear EIV models (the monograph
by Carroll, Ruppert and Stefanski (1995) give a good overview of the nonlinear
methods). In this section we mainly describe two simple approximate techniques
for handling measurement error in the analysis of nonlinear EIV models. The
presentation here is based on Carroll, Ruppert and Stefanski (1995).

We denote the dependent variable by Y, the variables observed with error by
X, the variables measured without error by Z, and the manifest variable by W. We
define a nonlinear errors-in-variables model as:

E(Y|X) = g(X)
W = X+U (7)

Two classes of nonlinear eiv models are considered:

e Error models, including Classical Measurement Error models and Error Cali-
bration models, where the conditional distribution of W given (Z, X) is mod-
eled;

e Controlled-variable or Berkson error models, where the conditional distribu-
tion of X given (Z, W) is modeled.

From the viewpoint of measurement error construction, the usual model is typically
restricted on the classical additive measurement error model:

W =X +u with E(u|X,Z) =0.
In the controlled variable model, the measurement error model has the form:
X =W + U’ with E({U'|W) =0.

The example considered in this section is an occupational study on the relation-
ship between dust concentration and chronic bronchitis. In the study, N = 499
workers of a cement plant in Heidelberg were observed from 1960 to 1977. The
response Y is the appearance of chronic bronchitis, and the correctly measured
covariates Z are smoking and duration of exposure. The effect of the dust concen-
tration in the individual working area X is of primary interest in the study. This
concentration was measured several times in a certain time period and averaged,
leading to the surrogate W for the concentration.

Ignoring the ME, we conducted a logistic regression with the response chronic
bronchitis and the regressors log(1+dust concentration), duration (in years), and
smoking. The calculations were conducted by XploRe with the following commands:

read("heid.dat")
dat[,1]

dat
y

13



dat[,2]
Z dat[,3]
library("glm")
doglm(w™z y)

w

In interactive modeling, the binomial distribution and the logistic link have to be
chosen for the GLM. The output table from XploRe for the logistic model is given
in Figure 5.

Mfit, 'bilo, n=4 it "hilo’ —
GMfit, "bilo', n=499 GLM fit, "bilo’, n=499
1 1 1
A HHE R
Estimates (b, s.e., t-value)
const -1.42226 0.2408 -5.91
X1 2.45428 0.7467 3.29
X2 0. 421456 0.2396 1.76 0 | L
o
* constant variable: const
Statistics >
g of .
df 496 § ©
Devi ance 617. 0653 gf
Log- Li kel i hood -308. 5326 [hd
Pear son 499. 2736 S
R2 0.0236 € <
. X 5 -
adj. R2 0.0196 € ©
AC 623. 0653 -
BIC 635. 7031
iterations 3
distinct obs. 154 o~
S -
O R T T AR
T T T
-1 -0.5 0
Index eta

Figure 5: XploRe output display the Heidelberg data

2.1 Regression Calibration

Regression calibration was suggested as a general approach by Carroll and Stefanski
(1990) and Gleser (1992). The idea of this method is to replace the unobserved X
by its expected value E(X|W,Z) and then to perform a standard EIV analysis,
since the latent variable X is approximated by the regression E(X|W,Z). The
corresponding XploRe quantlet is called reca and is discussed below.

res = reca(y, w, z, su2)
Q reca-example.xpl

input

14



n x 1 matrix, the design variables,
n X 1 matrix,

n X 1 matrix,

su2
scalar, the variance of measurement error.

output

res.beta
vector, the estimate,

res.bv
matrix, the variance of the estimate.

We give an example to explain this code. Let’s come back to the Heidelberg
data.

library("xplore")
library("eiv")
v=read("heid.dat")
y=v[,1]

w=vl[,2]

z=v[,3]
su2=var (w) /4
res=reca(y,w,z,su2)

The estimate of the slope parameter of the dust concentration is 2.9193 with stan-
dard error 0.9603, compared to the naive estimates 2.54428 (s.e. 0.8641). Here, the
shape of the curve is similar to that obtained by the naive model.

2.2 Simulation Extrapolation

Simulation extrapolation is a complementary approximate method that shares the
simplicity of regression calibration and is well suited to problems with additive
measurement error. This is a simulation-based method for estimating and reducing
bias due to measurement error. The estimates are obtained by adding additional
measurement error to the data in a resampling-like stage, establishing a trend of
measurement error, and extrapolating this trend back to the case of no measurement
error. For a detailed explanation of this method, see Carroll, Ruppert and Stefanski
(1995). The quantlet simex implements calculation in XploRe. Its syntax is

library("eiv")
gest = simex(y,w,z,su2,lam,b)
Qsimex—example.xpl

where
input

y
n x 1 matrix, the design variables,

n X 1 matrix,

15



@Mfit, bilo', =409 GLM fit, "bilo’, n=499

1 1 1
1+ HHHHH S HHHE B

Estimates (b, s.e., t-value)

const -1.47036 0.2503 -5.88
X1 2.91934 0.9221 3.17
X2 0.421298 0.2395 1.76

0.8
i
T

* constant variable: const

Statistics
df 496 P °
Devi ance 617. 7953 %
Log- Li kel i hood -308. 8976 o
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Figure 6: RECA estimation

n X 1 matrix,

su2
the variance of the measurement error,

lam
pseudo-parameter for generating pseudo-errors,

the number of replication in each simulation.

output
The list variable gest contains:

gest.simexl
the estimate based on linear extrapolant function

gest.simexq
the estimate based on quadratic extrapolant function

Consider the Heidelberg data again. As before, we assume that the ME is normal
with variance 02 = 0.25%02. The results for Bspex were 2.8109 (linear) and 3.0051
(quadratic).
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3 Partially Linear EIV Models

sf = eivplmnor (w,t,y,sigma,h)
computes statistical characteristics for the partially linear EIV models

Partially linear eiv models relate a response Y to predictors (X,T) with mean
function 87X 4 g(T'), where the regressors X are measured with additive errors,
that is,

Y = XT"B+4+9(T)+e

W = X+U, (8)
where the variable U is independent of (Y, X, T') with mean zero and Var(U) = 2y,
E(|X,T) =0and E(e%|X,T) = 0*(X,T) < .

Here, we only introduce the conclusions. The related proofs and discussions can
be found in Liang, Hirdle and Carroll (1997).

3.1 The Variance of Error Known

In EIV linear regression, inconsistency caused by the measurement error can be
overcome by applying the so—called correction for attenuation. In our context, this
suggests that we use the estimator

Bn = (WTW —n¥,,) 'WTY. (9)

In some cases, we assume that the model errors ¢; are homoscedastic with com-
mon variance o2. In this event, since E{Y; — XT38 — g(T:)}?> = o? and E{Y; —
WEIB —g(T)}? = E{Y; — XI'B — g(T})}? + BT EyuB, we define

n o~ —~ -~ ~
52 =n"t > (Vi = W' Bn)? — Bl SuubBn (10)
i=1

as the estimator of o2.

Theorem 3.1 Suppose that certain conditions hold and E(e* + ||U||*) < co. Then
Br is an asymptotically normal estimator, i.e.,

n'’?(B, — B) —* N(0,=7'TE1),
where Y. = E{X — E(X|T)}®?, T = E[(e — UTB){X — E(X|T)}®? + E{(UUT -
S0 Y224+ E(UUTE2). Note that T = E(e—UT B)2S+E{(UUT = Suu) BY®*+ S0
if € is homoscedastic and independent of (X,T), where A®2 = A . AT,

Theorem 3.2 Under the same conditions as that of Theorem 3.1, if the €’s are
homoscedastic with variance o2, and independent of (X, T). Then

n'/2(@; —o%) —* N(0,02),

where 02 = E{(e — UTB)? — (BT SuuB + 02)}2.
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3.2 The Variance of Error Unknown
The technique of partial replication is adopted when ¥, is unknown and must be
estimated. That is, we observe W;; = X; +U;5, j=1,..m

We consider here only the usual case that m; < 2, and assume that a fraction ¢
of the data has such replicates. Let W; be the sample mean of the replicates. Then
a consistent, unbiased method of moments estimate for %, is

Ez 12 ( W)
Ef_l(m —1)

The estimator changes only slightly to accommodate the replicates, becoming

~
Euu

-1

Z{W — Gun(T)Y® = n(1 = §/2)Su

XZ{WZ = Gun(T)} Y = Gyn(T)}, (11)

where Gy, 1 () is the kernel regression of the W;’s on T;.
The limit distribution of (11) is N(0, £~ 'T,51), with
Ty = (1-8)F[e-UTB{X - B(XIT)}*
T ®2
+3E (e =T B){X - B(X|T)}]
+(1-0)E ([{UUT —(1-6/2)Sw 8% + UUTeZ)
+0E ([{WT — (1= 6/2)u}8]% + WT52) : (12)

In (12), U refers to the mean of two U’s. In the case that ¢ is independent of (X, T),
the sum of the first two terms simplifies to {02 + 87 (1 — §/2)ZuuB} 2.

3.3 XploRe Calculation and Practical Data

The quantlet eivplmnor estimates the parameters of partially linear eiv model,
with the assumption that the conditional distribution of Y given X and T is nor-
mally distributed. Its principle is similar to the quantlet gplmnoid in the GPLM
quantlib. We show the following example:

library("xplore")
library("eiv")

n = 100

randomize(n)

sigma = 0.0081

b=1|2

p = rows(b)

x = 2.xuniform(n,p)-1 ; latent variable

t = sort(2.*uniform(n)-1,1) ; observable variable
w = x+sqrt(sigma)*uniform(n) ; manifest variable
m = 0.5xcos(pi.*t)+0.5*t

y = x*b+m+normal (n)./2

h=0.5

sf = eivplmnor(w,t,y,sigma,h)

b~sf.b ; estimates of b and g(t)
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dds = createdisplay(1,1)
datahl=t"m
datah2=t"sf.m
part=grid(1,1,rows(t))’
setmaskp(datahl,1,0,1)
setmaskp(datah2,4,0,3)
setmaskl(datahl,part,1,1,1)
setmaskl(datah2,part,4,1,3)
show(dds,1,1,datahl,datah?2)
Q‘e:'valmnor—example.xpl

A partially linear fit for E(y|z,t) is computed. sf.b contains the coefficients for the
linear part. sf.m contains the estimated nonparametric part evaluated at observa-
tions t, see Figure 7. There the thin curve line represents true data and the thick
one does the nonparametric estimates.

Simulation Comparison

0.5

g(t) and sf.m

-0.5 0 0.5 1

Figure 7: Output display for partially linear EIV example

We now use the quantlet eivplmnor to calculate practical data from the Fram-
ingham Heart Study. In this data set, the response variable Y is the average blood
pressure in a fixed 2—year period, T, the age and W, the logarithm of the observed
cholesterol level, for which there are two replicates.

For the purpose of illustration, we only use the first cholesterol measurement.
The measurement error variance is obtained in the previous analysis. The estimate
of B is 9.438 with the standard error 0.187. For nonparametric fitting, we choose
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the bandwidth using cross-validation to predict the response. Precisely we compute
the squared error using a geometric sequence of 191 bandwidths ranging in [1, 20].
The optimal bandwidth is selected to minimize the square error among these 191
candidates. An analysis ignoring measurement error found some curvature in T,
see Figure 8 for the estimate of g(T').

Kernel fit: SBP on patient Age
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Patient Age
Figure 8: Framingham data study
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