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In this work, we introduce a smoothed influence function that constitute a
theoretical tool for studying the outliers robustness properties of a large class
of nonparametric estimators. With this tool, we first show the nonrobustness
of the Nadaraya-Watson estimator of regression. Then we show that the
M, the L and the R-estimators of the regression achieve robustness (when
estimated by kernel). Our results are illustrated performing Monte-Carlo
simulation.

Keywords robustness, influence function, M-estimator, L-estimator, R-
estimator, nomparametric, regression, Von-mises statistical functional,
generalized Delta theorem.

JEL Classification C13, C14, C15

*Acknowledgements: The author received financial support from Greqam, Université de la
Meéditerranée, Marseille and from the Deutsche Forschungsgemeinschaft via Sonderforschungs-
bereich 373 “Quantifikation und Simulation Okonomischer Prozesse” at Humboldt-Universitéit zu
Berlin.



1 Introduction

The robustness properties of parametric estimators have received much attention
since the seminal work of Huber (see [12] ) and Hampel (see [8]). The problem of
robustness of nonparametric estimators may seem, at first view, less important since
nonparametric estimators are often considered as a way of robustifying parametric
estimators. This thought is justified when the robustness under study concerns de-
partures from the parametric null model since, with nonparametric techniques, less
stringent assumptions are made on the underlying data generating process. Nev-
ertheless, when robustness to outliers is concerned, the behavior of nonparametric
estimators is also worth studying.

The concept of outlier has often been used rather informally (for a general dis-
cussion see Lucas [13]). Nevertheless, some attempts of definition have been given in
the past : for instance, Barnett and Lewis ( see[3] ) define an outlier as an observa-
tion (or subset of observations) which appears to be inconsistent with the remainder
data set; as underlined by Lucas ( see [13] ), this is not what we could call a precise
definition. A quantitative definition has been given by Davis and Gather ( see[7]
): if F'is the null distribution, for instance, the standard univariate distribution
with mean g and variance o2, an observation x is said to be an « (€ ]0; 1]) outlier if
|z — p| > 021_q/2 Where 21_q/5 is the 1—a/2 quantile of the null distribution F. This
definition is interesting since it states that outliers need not be generated out of the
null data generating process. In this sense, outliers may also affect nonparametric
estimators.

In the parametric field, the functional approach of Von-Mises ( see [18] ) has
been extensively used for assessing the robustness properties of estimators through
the concept of influence function ( see hampel [8]). In comparison, the literature
on the links between the robustness properties of nonparametric estimators and
functional analysis is much more restricted and only a few references, limited to
the special case of nonparametric regression are available (see for instance Boente
and Fraiman [4]). This is, in our sense, due to the lack of functional framework for
their analysis. Indeed, for a long time, Von-Mises statistical functionals have found
no applications in the field of nonparametric estimators so that, in particular, the
concept of influence function has completely been occulted.

Recently, Ait Sahalia (see [1]) has shown how a large category of nonparamet-
ric kernel estimators can be considered in a functional framework. His functional
approach has been used in various fields such as for instance game theory (see Pro-
topopescu [15]) or noisy differential equations ( see Vanhems [17]) but it hasn’t been
used yet as a tool for studying the robustness properties of nonparametric estimators.
Our purpose is twofold. First, we aim at filling this gap by defining an analogous of
Hampel’s influence function for nonparametric estimators : the smoothed influence
function. Next, we want to illustrate the usefulness of this smoothed influence func-
tion; for this, we will study the M, the L and the R estimators ( see Huber [12] ) of
the nonparametric regression in a functional framework and we will calculate their



smoothed influence function. This study will constitute a theoretical basis which
will confirm the conclusions of the empirical work that has already been led on the
subject (see Hirdle [10] for a survey).

Our work is organized as follows : in section 2, we set the functional tools
introduced by Ait-Sahalia and we show how the smoothed influence function can
be defined in this framework. In section 3, we show how this framework can be
useful in the particular case of an estimator implicitly defined by an equation. In
section 4, we study the Nadaraya-Watson estimator of the regression and we show its
nonrobustness in the sense of the smoothed influence function. In section 5, we study
the M, L and R estimators of the regression and we give conditions ensuring their
robustness in the sense of the smoothed influence function. In section 6, we discuss
the differences between the estimators we analyze in this work an those that have
already been proposed in the literature. Finally, we give a Monte-Carlo simulation
illustrating the performances of the M, L. and R estimators of the regression in the
presence of outliers in the sample. Proofs are given in appendix.

2 Functional analysis of nonparametric estima-
tors

2.1 Afit-Sahalia Generalized Delta Theorem

First of all, we’re going to define the concept of strong Frechet differentiability in a
general setting that we will restrict later.

Definition 1 let (E1, ||o]|;) and (Es,||o||,) be Banach spaces and let T be an ap-
plication from Ey to Es. The functional T will be strongly Frechet differentiable at
the point F' € Ey with respect to the norm ||o||; if there exists a linear continuous
operator DT : E1 — FEs such that

T(F+ H) =T(F)+ DT.H + O (| H|?)
for all H in a neighborhood of zero.

e One of the appealing features of the strong Frechet differentiability is the
validity of the chain rule.

e If F; is the product of two (or more spaces), one can define in an analogous
way the concept of partial strong Frechet derivative. The existence of the
strong Frechet derivative implies the existence of the partial strong Frechet
derivatives too.

In this work we will be denote by C°, the space of s times continuously differ-
entiable functions on R?, whose derivatives of all order are compactly supported on
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R4. We will restrict ourselves to the particular case where E; is a closed subspace
of C*® (that we will precise for each study) and Ey; = R. More precisely, we will
be interested in estimating the quantity 7' (F z ) where FZ € FE, is the cumulative
distribution of a d—dimensional random vector Z and T : E; — R is a real valued
functional. Our goal in this section will be to give sufﬁcient conditions for T (FZ )

Z) is the
kernel! estimator of F.
We now need to define a norm on the space C'* which will induce a norm on
E1 C Cs .

to be consistently estimated by T (Fnz ) where FZ( Z K; (

Definition 2 for any function H € C?, the m™(m < s) order uniform Sobolev
norm s classicaly defined by

[ H | 1 (00,m) = SUPO<c<mSUP|A|=cSUPue RE ‘G(A)H(u)‘
where A = (Aq, ..., Ag) € N® with |A| = Ay + ...+ Ag and O H (u) =

We are now going to precise further which functionals will be considered in this
work :

Definition 3 Let u € R? denote an integration variable and u® a d(1) dimensional
subvector of u. Let 240 denote a fived point in R¥® and let A' € N¥D denote an
indice set. We suppose that a;(F')(u) has continuous partial derivatives up to order
}Al’, all belonging to L', for all 1 < d(l) < d. The functional T will be said to admit
the representation (R) if it’s strongly Frechet differentiable at the point FZ for the
norm |[o[| o my and if DpzT.H can be written under the form

Dp®.H = / [Ap(u) + Br(u)] dH (u)

where Apz(u Zal )08 oy (u®) and Bpz(u) is a cadlagfunction

e (R) implicitly supposes the function H to be an element of C |2 since

[ nE) @080 (u)aH(w) = [ 5 (@(F)b) (0, u)du

LK is an integrated kernel ie a cumulative distribution function. We will precise later conditions
on the kernel in order to ensure the consistency of the estimators considered.
2right continuous with left hand limits.



e The aim of this characterization is to allow for the identification of terms of
different order when plugging H = F,, — F. Intuitively speaking, d(l) indicates
the dimension of the random vector which density is to be estimated (i.e. the
so called curse of dimensionality) and ‘Al‘ indicates the order of this density’s
derivative.

Before enunciating Ait-Sahalia’s Generalized Delta Theorem (see [1]), we have
to state a few assumptions :

(A1) : We suppose {71, ....., Z,} to be a sample of strictly stationary and (3
mixing realizations of the random vector Z.

(A2)(s) : We suppose K to be an even kernel® of order 7 on R? which partial
derivatives exist up to order s + d and are square summable on R%.

(A3)(e,m) : we suppose the bandwidth & to satisfy the following conditions for
values of m and e which will be specified later : for n — oo, we have h — 0 in such
a way that n2h® — 0 et n2h?™ — oco.

Theorem 1 Ai#t-Sahalia’s Generalized Delta Theorem :

We suppose the functional T to be strongly Frechet differentiable at the point
FZ for the norm o]l £(oo,my i such a way that DpzT.H admits the representation
(Rep). Then, under the assumptions (Al) and (A2)(s) :

(1) if Apz(u) =0, under the assumption (A3)(r,m) we have

Jn (T (FZ) _T (FZ)) — N(0,Vp(F?))

where

Vr(F”) = var(Bpz(Zi)) + 2 _ cov (Bpz(Z:), Br(Zitr))

k=1

(i1) if Apz(u) # 0, let * = maz {d(l) + 2 ’Al}, l=1...L} and let L* denote
the subset of {1...L} defined by L* = {l € {1...L}\d(l) + 2 |A'| = *} . Finally

let d* = max {d(l) + 2 ‘Al} , L € L*} then, under the assumption A3(r + ox m) we
have :
RN (T (Fnz) -7 (FZ)) — N(0, Vi(FZ))

and

! 2
Ve(FH =Y / [aA K(l)(u(w)} du® / an(FZ) (50 D) P20, D) gy

leL*

31n order to simplify the notations, K will always be the product of d univariate kernels and the
variables will be supposed to be scaled so that the bandwith chosen is the same in each direction.
4These conditions can only be satisfied if e > 2m
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where f denotes the density of the random vector Z and K (u /K D) du D,

%

e the assumption A3(r + Ex m) ensures, among others things, that the asymp-

totic bias is equal to zero. It implicitly determines the order of the kernel to
d*

be used since it implies » > m — 5

2.2 Smoothed influence function

In this section, we suppose satisfied the assumptions of the generalized delta theorem
so that we are ensured of the convergence of T(FZ) to T(FZ) and of the strong
Frechet differentiability of the functional 7'

We are now going to define the smoothed influence function by analogy with
Hampel’s influence function ( see [8] ). Using the expansion

T(F7) = T(F?) + DpzT.(E] = F?) + O, ( FZHL<OO m))

and the expression of

ro-r- L () -

=1

with the linearity of the Frechet differential, we obtain

T(E?) = T(F?) + ZDFZT {KI< hZ) FZ]JFO(

)
L(oco,m)

This expression tells us that the asymptotic error in estimating T'(F#) by T(F7) can

%

be split into the sum of the contribution of each observation Z; : DpzT. | K;

The first idea would then be to define the asymptotic influence of the observation
— 7
Z; as DpzT. (KI (o

> — F?% ) . This approach wouldn’t be satisfactory since

h

asymptotically negligible and don’t deserve to enter the expression of the influence
function. Once again, the representation (R) will allow us to separate these terms
and to define the smoothed influence function using only the asymptotic leading
terms.

o — Z2 . . .
DpzT. (K I ( — FZ )contains terms of different order, some of which are

Definition 4 (i) if Apz(u) = 0 then we define the smoothed influence function by

SIF(z) = Dgz®. <K1< hZ> FZ>

-77|.



(1) if Apz(u) # 0 then we define the smoothed influence function by

SIF(z) = / ol (F2) (u)d2)6 0y (u®)d (KI (“ _hZ) - FZ>

leL*

An estimator will then be robust in the sense of the smoothed influence function

if SIF(z) is bounded for ||| — oo (and h fixed).

3 Identification problems

Let’s now see how the previous functional theory can be applied in the particular case
of a parameter #° € R implicitly defined by an equation of the form Q(FZ,0%) =
0. The question that naturally arises is to know under which conditions on the
functional Q2 the equation Q(FZ,0°) = 0, with F/Z defined as in section 2.1, admits

~0
a solution #,. This framework will be useful for the analysis of robustified non-
parametric regression.

Theorem 2

Let Q) : By Xx R — R be a functional supposed to be strongly Frechet differen-
tiable at the point (F7,0°) with respect to the norm maz {HHHL(OO,q) ) \9\}, q < s.

0N} 05}
We further suppose that E(FZ ,90) > 0 and that 20 18 continuous at the point

(FZ,6°%). If Q(F*,6°) =0 and if FZ is a consistent estimator of FZ for the norm
[ H [ (00,q) » then :

(1) There exists a functional T defined on an open subset O C Ey , continuous
at the point (F?) for the norm |[H||y, o and such as the equation QFZ,0) =0

~0
asymptotically admits (with probability one) a locally unique solution satisfying 0,, =
T(EY).

(ii) T 1is strongly Frechet differentiable at the point FZ# for the norm || H|| L(co.q)
with differential given by

DpzT.H = —m;@(FZ,GO).H
_(FZ 90) oF
o0

Q Q
where g—F(FZ,HO) and g—F(FZ,HO) are the strong partial Frechet differential of

with respect to F and 6.



4 Non robustness of the Nadaraya Watson regres-
sion estimator

We are now going to apply the previous concepts to the particular case of regression
estimation. The d—dimensional random vector Z is now supposed to be partitioned
under the form Z = (X, Y) where Y is the one dimensional stochastic response to
the d — 1 dimensional set of stochastic regressors X.

We first need to state a further assumption that will allow us to show the Frechet
differentiability of the functionals we will consider.

(A4) : We suppose the density of the vector Z to admit a strictly positive lower
bound on its support.

Let’s consider the problem of estimating m(z) = E(Y/X = x) using the well-
known Nadaraya-Watson estimator ( see Nadaraya [14] or Watson [19]). Our aim is
to calculate its smoothed influence function and to show its non-robustness in this

sense.
We can see m(z) = / ymdgﬁ as a functional of F, we will denote it by

()
T(F). The Nadaraya-Watson estimator of the regression is then defined by :

n i=1 - K (:[ — XJ>
: h
j=1

This estimator being a weighted mean of the response Y;, its nonrobustness
has been studied by analogy with results on the estimation of a non conditional
expectation. The smoothed influence function we’re going to calculate will provide
us with a direct criterion to quantify this nonrobustness and to take into account
the effect of smoothing. Furthermore, it will allow us to rediscover many properties
of the Nadaraya-Watson estimator.

]

iy ] i K(tﬂ—hxi)

Theorem 3 We suppose FZ to be an element of Ey = C% and we suppose satisfied
d—1
the assumptions (Al), (A2)(d), (A3)(r + ?,d) and (A4) then :

(i) the functional T is strongly Frechet differentiable at the point FZ for the norm
Ilo|| Loy and its differential is given by

1
DpzT.H = e {/ yh(z,y)dy — h(x)m(x)

SWith a slight abuse of notations, we will denote by f(x,y) the joint density of the random
vector (X,Y) and by f(x) the joint density of the random vector X.




(i) the functional T(F%) is consistently estimated by T(FZ) and
Sk (T (Fnz) -7 (FZ)) — N(0, Vi (F?))
where

/KQ(:c)dx
Vip(F?) = TE [(y —m(2)*|X =z]-

Corollary 4 Under the assumptions of theorem 3, the smoothed influence function
of the Nadaraya-Watson regression estimator at the point X = x is given by :

b T (e
hd_lf(.T) [yl ( )]

e SIF(z;,y;) is unbounded for |y;| — co. An outlier Y; can have an unlimited
influence on the estimator m(x). We recover with theoretical foundations what
intuition suggested to us.

o SIF(z;,y;) is bounded for |z;| — oo. This means that an outlier X; has a
limited influence on the estimator 7 (z). This property is intuitively coherent
since the weight given to X; decreases with its distance to x.

e the more Xj; is distant from x, the weaker the influence of Y; is.

e the more the density f(z) is important, the weaker the influence of Y; is.
Intuitively, this means that the observation Y; is flooded in the observations
round the point x.

5 Robustification of the Nadaraya-Watson esti-
mator

In this section, we will denote by F (o) the cumulative distribution function of the
random variable Y conditional on the event {X = z}. We will suppose F, to be
symmetric round m(z) so that the robust conditional location estimators we will
propose will be equal to the conditional expectation of Y.



5.1 M-robustified nonparametric regression

We are now going to study the M-estimator of regression (see among others Hirdle
[9] or Boente and Fraiman [4] ). We are interested in the robustness properties an
the estimation of the functional T}, implicitly defined by the relation :

/xp (y — Tw (F%)) %dy =0

We will make the following assumption on the score function :

ov
(M1) : ¥ is twice continuously differentiable on R that satisfies / 5 (y —m(z)) dFy(y) >

0.
(M2) : ¥ is an odd function..
(M3) : ¥ is bounded on R.

Remark : these assumptions are stronger than those that are usually required
for the study of the M estimator of the regression. It has to be noted that our aim is
not to lead a study under minimal conditions but to develop a functional framework
suitable for the robustness properties of the M-estimator to be analyzed.

Assumption (M2), together with the symmetry or F, insures that m(z) is a
solution to

/\I/ (y — T (F)) f](:f’ :)y)dy = 0. Together with assumption (M1), it ensures that
x

m(z) is locally the unique solution to that equation, and it will allow us to establish

the Frechet differentiability of the functional Tj;. Assumption (M 3) will ensures the

robustness of the M-estimator with respect to the smoothed influence function. For

more details on the role of each of these assumptions, see the proof of theorem 5 in

appendix.

Theorem 5 We suppose F' to be an element of 1 = C? and we suppose satisfied
d—1
the assumptions (Al), (A2)(d), (A3)(r + T’d) and (A4) then :

(i) the functional Ty is Frechet differentiable at the point FZ for the morm
0[] £ (oo,a) and its differential is given by :

/ ¥ (y - m(z)) bz, y)dy

ov

N (y —m(z)) f(z,y)dy

DpzTo . H =

(i1) Tar(EZ) is a consistent estimator of Th(FZ) and we have
Vih? (Tu (BE) = T (F%)) = N(0, Vi, (F2))
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where

Vi (%) = [ | g =) fady. [ K@)

n (y —m(z)) f(z,y)dy

Corollary 6 The smoothed influence function of the M -robustified estimator of the
regression 1s given by

%K<$;%)/@Um+%—m@»KWM“

[ v = m) o)y

SIF(%A yi) =

e SIF(x;,y;) is bounded for [y;| — oo ( this stems from assumption (M3)) so
that outliers in the response Y can only have a limited influence on Ty, (FZ).

o SIF(x;,y;) is bounded for |z;] — oo so that Ty (F7) is also robust (in the
sense of the smoothed influence function) to the presence of outliers in the
regressors.

5.2 L-robustified nonparametric regression

We are now going to consider the L estimator of the regression as proposed by Boente
and Fraiman (see [5]) so that we are interested in the estimation of the conditional

L-estimate .

nw%z/mwf@@

where J is a score function defined on [0;1].
We will make the following assumptions on the score :

(L1) : Jr has compact support [a,b] C ]0;1].
(L2) : Jp is twice continuously differentiable on its support.

The assumption (L2) will ensure the robustness of the L-estimator and the as-
sumption (L3) will allow us to establish the strong Frechet differentiability of the
functional 77..

Theorem 7 We suppose F'Z to be an element of E1, the closed subspace of the

04F . . .
admits a strictly lower bound on its supports.

821....8Zd J
-1
We suppose further satisfied the assumptions (Al), (A2)(d), (A3)(r+ T,d) and
(A4) then :

functions F' € C¢ such as

11



(i) the functional Tg is strongly Frechet differentiable at the point FZ for the

norm [|o|| 4 and its differential is given by :

Ay b
DFZTL'H_{ TP [P~ gt gy £ 0]

(i1) TL(F,) is a consistent estimator of Tp(F) and :

(3 (52) 12 (#) = 305 )

where
1 2

Vi, (F?) = / /JL e I] “qz]()y))dp f(:r,y)dy-/KQ(x)dw

Corollary 8 The smoothed influence function of the conditional L-estimate TL(ﬁ’n)

s given by :

StFG) = |k (S57) - 10) me;—%pdp
) ()

adle B
/ AR e (e T )

o SIF(xi,y;) is bounded for |y;| — oo (under assumption (L2)). An outlier in
the observations Y; can only have a limited influence on the estimation of the
conditional L-estimate.

e SIF(xi,y;) is bounded for |x;| — oo which means that outliers among the
regressors have a limited influence.

5.3 R-robustified nonparametric regression

We are now going to consider the conditional R-estimator of the regression as pro-
posed by Cheng and Cheng (see [6]) so that we are now interested in the estimation
and the robustness properties of the functional Tg(F') implicitly defined by

+o00
/ Tx[27V (Fay) + 1 — FQTR(F) — y))] dFs(y) =0

—0o0
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where Jg is a score function defined on [0;1].

We will make the following assumptions on the score :
+oo
(R1) : Jg is twice continuously differentiable on [0; 1] / Tt (Fu(y)) (Fl(y))* dy >

—00

(R2) : Jg si an increasing function on [0; 1] with Jg(t) = —Jr(1 —t).

The assumption (R1) will allow us to establish the strong Frechet differentiability
of the functional Tg. The assumption (R2) ensures the identification of Txr(F%).
Together with the symmetry assumptions on F}, it also ensures that Tr(F?) = m(z).

Theorem 9 we suppose FZ to be an element of By = C% and we suppose satisfied
the assumptions (Al), (A2)(d+ 1), (A3)(r + %, d+1) and (A4) then :
(1) the functional Tg is Frechet differentiable for the norm ||-|1 (0 av1y and its
differential is given by :
+o00
[ InlE ) e v)dy

DpzTr.H = +;o°°

[EAO

—00

(i1) Tr(F),) is a consistent estimator of Tr(F) and :

JnhE (TR (Fnz) T (FZ)) — N(0, Vi (F))

where .
/ JE(t)dt
Vi (F7) = ———— 2-/K2(x)d:1:
[ IR (F)

Corollary 10 Under the assumptions of theorem 5, the smoothed influence function
of the conditional R-estimate Tr(F?Z) is given by :

13



“+o00

K(‘”;x) /J(Fm(hu—l—y,-)K(u)du

SIF(xiy:) = too —
/ T (Eu(y)] (F2(y))? dy

e SIF(z;,vy;) is bounded both for z; — oo and for y; — oo so that outliers among
the regressors or among the regressand can only have a limited influence on
the estimation of m(z).

Remark 1 the boundedness of SIF(x;,y;) for y; — oo stems from the fact that the
score is supposed to be twice continuously differentiable on [0;1], this assumptions
ezxcludes the normal score.

6 Computational concepts

6.1 Smoothing’s effects

In this work, we have considered the M, L. and R estimators of the regression as
functionals of F'Z, the joint cumulative distribution function of Z = (X,Y). The es-
timation procedure consists of plugging the smoothed cumulative distribution func-
tion FnZ . Another approach, studied by various authors (see for instance Boente and
Fraiman [4]), consists of studying these estimators as functionals of F;, the cumula-
tive distribution of Y, conditional on the event {X = x} . The estimation procedure
they propose is based on the plug-in of an empirical estimate of F, :

n - K(I_hXi>
B =)
N ()

Jj=

Ty, <y

Our estimation procedure can be linked to this estimation procedure since it can
also be viewed as the plug-in of a smoothed estimate of F} :

F2(y) = Zl iKK(I(:X;ZJ) / K(u)du

There are many differences between these estimators : ours introduce an additional
small sample bias which is due to the effect of smoothing on Y. From an asymp-
totic point of view, this bias is made negligible by the conditions imposed to the

14



bandwidth so that the asymptotic distributions of the M, L and R estimators are
identical, no matter on the estimate of F, which is plugged.

More important a difference between these estimators relies in their regularity
properties : the empirical conditional distribution function has a step structure
function whereas the smoothed conditional distribution function is at least a con-
tinuous function. This difference is of major importance on a theoretical point of
view since it has allowed us to solve the identification problem using the implicit
function theorem (see section 3) and to define the M, L and R estimators uniquely.
This difference has also practical consequences since it allows for the use of classical
numerical algorithms for inversion (estimation of the conditional quantiles for the
L-estimator) and search of zeros (for the R estimator).

6.2 Monte-Carlo simulation

In order to illustrate the behavior of the robustified estimators, we performed a
Monte-Carlo simulation. The data generating process we have chosen is the following

Y=m(X)+e¢

where m is the quadratic function m(z) = 2%, X is uniformly distributed on [—1; 1]
and ¢ is a mixture of normal laws with probability density function

1—v g2 v g2
10 ="y (-3) + s ()
v represents the degree of contamination of the standard normal law. This degree
of contamination has successively been set equal to 5%, 10% and 15%. k represents
the variance of the contaminating law and has been set equal to 9.

In the case v = 10%, this model of contamination implies that, in a sample of
100 observations, 10 are expected to come from the contaminating law. But on these
10 observations, only those who will be outside the interval [m(x) — 2.5; m(z) + 2.5]
will be noticeable as outliers (in the interval [—2.5;2.5], the cdf of the contaminat-
ing is almost confounded with those of the standard normal law). For the contam-
inating law N(0,9), the probability of finding observations outside of the interval
[m(z) — 2.5;m(x) + 2.5] is equal to 0.4 so that we can only expect 4 observations of
the contaminating law to lie outside the interval [m(z) — 2.5;m(z) + 2.5] (for more
details see Huber [11]). The identification of these observations would necessitate
a preliminary estimation of m(z) and this estimation would surely be imprecise
due to the outliers. Furthermore, on the 4 observations lying outside the interval
[m(z) — 2.5;m(x) + 2.5], some of them may come from the standard normal law
and would be indistinguishable from those coming from the contaminating law.

With this data generating process, the law of Y conditional on the regressors

X is symmetric so that with the scores we have chosen (see below), the conditional
expectation is equal to both Ty (F?), Ty (F#) and Tr(F7?).
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For the M-robustified estimator, we chose the score function

eif le] < ¢
Ule) =< Ule)ifcy < el < e
0 if |€‘ > Co

where U is a fifth order polynomial chosen in such a way that W is twice continuously
differentiable and ¢;, ¢ are trimming constants. Following Lucas (see [13]), we chose

c1 = 4/ x71(0.99) and ¢y = /x71(0.999). If Y; — m(x) follows a standardized normal

law, such a ch01ce ensures that the observatlons for which |Y; — m(z)| > 3.5 are
discarded and the observations for which 3.5 > [Y; — m(x)| > 2.8 are downweighted
if Y; — m(z) (for more details see Lucas [13]). Ths(F},) is obtained as

Tar(EZ) = argsoly {i K (‘” _hX) /\If (V; + hu — 0) K (u)du = 0}

where K is the Gaussian kernel.

1
For the L-robustified estimator, we chose the score function Jy(p) = T Tio1-0)(p)

which correspond to the o conditional trimmed expectation. The trimming param-
eter was set equal to 5%. We took

TL(FE) = =5 [ (B e

with Fff defined in section 6.1, the Kernel K being the Gaussian kernel. The integral
was approximated by a Riemann sum calculated on a grid of 50 points regularly
spaced on the interval [a;1 — @] .

For the R-robustified estimator, we chose the score Jg(e) = e — % which corre-
sponds to the Hodges-Lehmann estimator. Tx(F,) was obtained as

+oo
TR(F’HZ) = argsoly / Jr [2*1 (F;f(y) +1-— Fﬁf(% — y))} dﬁ’g(y) =0

—00

where F? is calculated as in section 6.1 with the kernel K (u) = 5 \/— (3—u?) exp(—“;)
which is a fourth order kernel as required by assumption A(r, g) (see theorem 5 with
d=2).

In order to compare the performances of our estimators, we estimated the regres-
sion function on a grid {ty, .....t5} equally spaced on [—0.7;0.7]¢. Our criterion of

6We restricted the grid to [—0.7;0.7] in order to avoid the boundary effects.
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20
1
comparison is C' = 20 Z (m(t;) — m(t;))* where 7n will be either the Nadaraya wat-
i=1
son estimator of the regression or one of the robustified estimators of the regression.

Our results are consigned in table 1 below :

degree of contamination
| estimator 5% | 10% | 15%
| Nadaraya-watson | 120 | 124 | 1.36 |
| M-robustified | 054 | 050 | 0.38 |
| L-robustified | 057 | 059 | 0.64 |
| Rerobustified | 040 | 036 | 0.47 |

Table 1 shows us the improvement achieved by robustified estimators since in
each contamination case, the criterion C for the Nadaraya-Watson estimator is twice
as large as the criterion C of the robustified estimator. Of course, we would obtain
different results if we would choose different tuning constant for the M-estimator or a
different trimming parameter for the L-estimator but, the choices we have made are
reasonable’ choices when one doesn’t know the amount of outliers in the sample.
The good performances of the R-robustified estimator have to be noticed, since,
contrarily to the M and L estimators, no parameter has to be chosen for its use; in
this sense, one can think it’s less subjective an estimator.

7 Conclusion

In this work, we have developed the concept of smoothed influence function that
allows us to quantify the robustness properties of a large class of nonparametric
estimators. With this concept, we have shown that M, L. and R regression achieved
robustness. Such robustness properties had already been stated by empirical means
but so far, no tool was available for a theoretical analysis.

Of course, the field of application of the smoothed influence is much wider than
those of regression and such robustness studies could be lead for many others non-
parametric and semi-parametric estimators that enter in the framework of Von-Mises
statistical functionals. This will be done in further work.

A proofs

The proofs of Ait-Sahalia’s generalized delta theorem 1 and of theorem 3 can be
found in Ait-Sahalia (see [1]).

"by reasonable, we mean choices we would recommend when one suspects the presence of outliers
in the sample.
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A.1 proof of theorem 2

The point (i) of this theorem is exactly the implicit function theorem since strong
Frechet differentiability implies Frechet differentiability : there exists an open subset
O C Fj and a continuous functional 7" such as, for all F' € O, the equation Q(F,0) =
0 is equivalent to 6 = T'(F).

FZ being supposed to be a consistent estimator of FZ for the norm |[o|| (o)

it will asymptotically be in O so that Q(F},,0) = 0 will admit the (locally) unique
solution 6, = T(FZ).

The point (i7) is a slight modification of the proof of the implicit function theorem
using the concept of strong Frechet differentiability. This proof can be found for
instance in Zeidler (see [20])

A.2 Proof of corollary 4

Under the assumptions of theorem 1, the functional 7" is Frechet differentiable with

DpsT.H — ﬁ [ / yh(z, ) dy — h(m)m(z)]

The smoothed influence function of T(EF%) is defined by

SIF(xs,4:) = DpaT. (KI (O ;”3) K, (O ;y) — FZ)

with DpzT.F = 0, we obtain

strtenn) = g5 [k (57 K (45 - (57 i

which can also be written

STF(zi,) = @ i o () v mio)

hi1f(z) |k h

— ¥ in the integral, we get

if we make the change of variable u = Y

SIF (i) — m U WK () du + y; / K () du — m(x)}

with / uK (u) du = 0 and / K (u) du = 1, this expression is reduced to
Xr — I;

K( )
b T (e
hd_lf(.r) [yl ( )]
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Preliminary : we are first going to introduce some notations and establish some
results that we will need in the following :
for t € [0;1], let’s define

o) = ) T ()

We have
@;,y(t) _ h(.T,y)f({L‘) B f(xva)h(x)
(f(z) + th(z))
and
" _ T h({L‘,y)f('T) B f(.T,y)h(.T)
Feoll) = 2T ) b))

Following Ait-Sahalia, Bickel and Stoker (see [2]), we are going to establish a few
majorations that will be useful to us. From assumption (A4), there exists a constant
¢ > 0 such as |f(z)| > c. For H in a neighborhood of zero for the norm |[of|; .,

we can suppose |h(z)| < g Applying a triangular inequality to |f(z) + th(x)|,

1 2
we obtain [——————| < — for all ¢ € [0;1]. Using this majoration, we obtain
@) +th(o)| = e
immediately
o) = O (1 Hll )
and
2
2y (1) =0 (1H1l} )

A.3 Proof of theorem 5
[z, y)
dy.
7@
Note that since V¥ is continuous (assumption (M1)), / U (y—0) f(@.y) dy is defined

1)
for all F € C? and 0 € R (i.e. we take E; = C9).

t— Qup(F +tH, 0+ tk)
0;1] = R
compactly supported and ¥ being twice continuously differentiable (assumption

(M1)), differentiation with respect to ¢ under the integral operator yields :

With the notations of theorem 1, let’s define Qp/(F,6) = / U (y—40)

Let’s also define the function w M{ . f and h being

wi(t) = —k/‘l” (y = (0 +1k)) ¢y ()dy + / U (y — (0 + tk)) ¢y, (t)dy
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and
Wylt) = & / U (y = (0 + tk)) @y, (t)dy — 2k / Uy = (0+tk)) @l (t)dy
s [l 6+ 0) e, 0y
If we make a Taylor expansion of wj; between 0 and 1, we find
onr(1) = war(0) + W4y (0) + 5fi(€) (1)
where ¢ € ]0; 1].

Using the majorations established in the preliminary and the assumption (M1),
we readily find that

n 2
i) = 0 (sup (171, 1))

Expansion (1) can be written Qy(F+H, 0+k) = Qu(F,0)—k / U (y —0) f(, y)dy

f(z)
h(x,y)f(m) - h(x)f(x, y) )
72(2) dy + O <sup (HHHL(OO,d) : \k\) ) where

ot [rw-o ()

linear and continuous. This establishes the Frechet differentiability of the functional
Qur.
The symmetry of F,, together with assumption (M2) imply that the equation

/\I/ (y—0) CY) dy = 0 admits for solution # = m(zx). Furthermore

- f(x)
x

St (Pum(a) = = [ (= mia)) E2Y
(M1) so that, together with the Frechet differentiability of the functional €25, pre-
viously established, and the convergence of FZ to FZ for the norm ||o|| Looa) (under
the assumptions of theorem 3, see Ait Sahalia [1]), we can apply the point (i) of
theorem 1 : there exists a functional Ty, such as m(z) = Ty/(F) and such as the
equation M(Fn, 0) = 0 asymptotically admits (locally) a unique solution TM(Fn).

Applying the point (i) of theorem 1, we obtain the Frechet differentiability of
the functional T} for the norm [o]|, ., , With

+ / U (y—0)
the functional

(H, k) — [—k/\l/’(y—@)

dy] is

dy is strictly positive® from assumption

U (y —m(x)) h(z,y)dy

/@%y—m@Df@wwy

DpzTap . H =

8Note that differentiation under the integral operator is, one’s more justified by the regularity
properties of F' and W.
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DrTys can also be written under the form

) T (u, — m(u,))
MJMH//WW@—mm»ﬂuw@
6t T T

0z (ug) h(Ug, uy)dugduy,

so that s* = d — 1 and /nh*z" [TM(F,f) - TM(FZ)} — N(0, Vi, (F?)) with

2

Z W (uy —m(x)) 2
Vi, (F?) = flz,uy)duy,. | K*(z)dx
/‘L/wwym@»fmﬂmw /

A.4 Proof of corollary 6

The smoothed influence function of the estimator T, (F7) is given by

SIF(s,y:) = DpzTar. (Kl (O _hx) K, (O ;y) - F)

with
DyprToy H = /‘I' (y —m(x)) h(z,y)dy
/WWy—m@»f@wmy
we obtain
S”%”%):%K(xzﬁ)/hwy_m@D%K<y2%>dy‘/ﬁwy—m@»f@ymy

/W%y—m@Df@wMy

f(z,y)
f(x)

i.e. with /\Il(y —m(x)) f(z,y)dy = f(:z;)/\Il (y — m(x)) dy = 0 and the

change of variable u = %, we finally get

%K<$;%)/@Um+%—m@»KWM“

/@%y—m@Df@wwy

SIF(%’, yi) =
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A.5 Proof of theorem 7

With the notations of theorem 1, let’s define

F(b)
b
QL(F,0) =0 —/ Jr(p)E; Y (p)dp = 0 — / yJr (Fp(y)) dF,(y). Let’s take for
’ Fi(a)
d
E; the subspace of the functions F' € C? such as EP admits a strictly lower
z1....02q

bound on its support. E; is a closed subspace of C? and Qp(F,#) is defined for all
F e E1 and 0 € R.
: . 0;1] — R
Let’s also define the function wL{ t— Qu(F +tH, 0 + tk)
compactly supported and J; being twice continuously differentiable (assumption

(L3)), differentiation with respect to ¢ under the integral operator yields :

. f and h being

F7l(b) Y Yy
() = k- / y / (b | T, / as(®)dv | o, (1)dy
Fm_l(a) —00 —00
F;71(b) Y
- / yJL /@m,v(t)dv 90;7y(t)dy
Fy Ya) —0
and
Fl(b) y y
) = - / y / S (t)dv | T, / ua (D)0 | puy(t)dy
Fz_l(a) —00 —00
Fy(b) y 2 Yy
- / y / (v | T / ean(t)dv | puy(t)dy
F;l(a) —00 —00
F7L(b) Y Yy
9 / y / (v | T, / ean (v | & (B)dy
Fz_l(a) —00 —00
F;'(b) y
- / y s / uu(t)d | ! ()dy
Fy'(a) -

Using the majorations established in the preliminary and the assumption (L3) on

2
the score Jy, we readily find w7 (t) = O (sup (||H||L(oo’d) : |k:|) ) . A Taylor expansion
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of wy, between o and 1 (see proof of theorem 3) establishes the Frechet differentiability
of the functional Q.
£ (0)
The equation Q2 (F, 0) = 0 obviously admits the solution § = / yJr (Fz(y)) dEy(y).

F;'(a)

o0
Furthermore, we have 8—¢9L(F ,0) = 1 > 0 so that, using the Frechet differen-

tiability of the functional 2 previously established, and the convergence of FnZ
to FZ for the norm ||o|| L(oo,ay (under the assumptions of theorem 3, see Ait Sa-
halia [1]), we can apply the point (i) of theorem 2 : there exists a functional

Fr ()
TL(F) = / yJr, (Fy(y)) dF,(y) such as the equation Q(F,,0) = 0 asymptoti-
Fi(a)

A

cally admits (locally) a unique solution Tg(F},).
Note : It would not be necessary here to apply the theorem 2 since the functional
Fo ' (b)
Ty, is defined in an explicit way by Ty, (F?#) = / yJL (Fz(y)) dFy(y). Nevertheless,

F;(a)
its use allows us to solve rapidly the problem of the existence of T(ﬁ’nz ).

Applying the point (i7) of theorem 2, with the change of variable p = F,(y), we
obtain the strong Frechet differentiability of the functional 77, for the norm [o]|,, »
with

b Fz ' (p)

_ f(x) h(z,v)f(z) — f(z,v)h(z)
DpzTy,.H = / JL(p)—(p)) /OO 20) d

v | dp

which can also be written

T ) 0T
DFzTL.H—[f(x’le(p)) {ph( ) = Gt gt @ e (p))] dp

Using generalized functions, DrzT}, can also be written under the form

Uz, F

Uy

DpzTy.H :/ /f( JL(Ii)l(p)) [p— I[foo;Fle(p)ﬂ dp | h(ug,uy)b, (ug)dugdu,

so that »* = d —1 and /nh’" [TL(FnZ) - TL(FZ)} — N(0, Vir, (FZ)) with
b 2

- [ JL<p>7%°°q’g(y)dp Fady [ Koyts

a
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A.6 proof of corollary 8

The smoothed influence function for the estimator T'(FZ) is given by

o — X o — UY;
SIF(af, a7%, ;) = DFzTL.<KI( . )KI( hy>—F>

( )
DFZTl .H —_— Ph X
/ ?(Zﬂ,F]: 1(p

we obtain STF(x;,y;) = 7}0(30:]}—%19 [%K (%) —f (:v)] dp

/ f(z [hdl ik (x ;x) K <F$1(Zigj - yl’) - axff.alﬂ—l(x,F;l(p))} dp

StFG) = |k (S52) - @) Zf%pdp
) ()

9 1F .
/ R gt (o 0

>=

A.7 proof of theorem 9
+o0
With the notations of theorem 2, let’s define Qg(F, 0) = / Jr[27Y (Fu(y) + 1 — Fu(20 — y))] dF,y.

Since Jp is continuous on [0; 1] from assumption (R1), Qg is defined for all F' € C4*!
(so that we will take F; = C%*!) and 6 € R.

Let’s also define the function wg { PR [?}71]_1_7}[}%0 th)
R )

compactly supported and Jgr being twice continuously differentlable (assumption

- f f and h being
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(R1)), differentiation with respect to ¢t under the integral operator yields :

Salt) = 27 / / oo (t)dv - / oo ()0 — 20y 0 (1)

—0o0 —0o0 —0o0

y 2(0+tk)—y
FAPS / an(t)dv+1— / an(®)dv | | ooy (B)dy

— 0 —00

+o00 y 2(0+tk)—y

i / Jn |2 / () + 1 — / au(t)dv | | oL (t)dy

—0o0 —00 —o0

oo [y 2(0+tk)—y

_ /
i) = 20 [ | [ehaoar= [ 00— 2k [(anprng o 0) + oo of0)

—00 —00 —00

y 2(0+tk)—y

‘];2 2_1 / wm,v(t)dv +1-— / S%,v(t)d” sz,y(t)dy

—00 —00

+o00 Yy 2(9—|—t1€) -y

e / / oy (t)d — / 2o ()0 — 200, 501 (1)

—00 —00 —00

y 2(0+tk)—y
75 2 / o (f)dv 41— / o tdv | | puy(t)dy

—00 —00

400 Y 2(0+tk)—y
N / / () — / 2 ()l — 20, 01 ()

—00 —00 —00

y 2(0+tk)—y

Ty 2 / oL (v +1 - / oo tdv | | oy (6)dy

—00 —00

400 r y 2(9—|—tk)—y
+ / Ja |27 / aa(t)do +1 - / ean(tdv | | &7 (B)dy

—00 —0o0 —o0

% (g—g (2,2(0 + tk) — y) +t§—Z (2,2 (6 + tk) —y))
where (¢,90.40)-y(t) = (F(2) + th(z))’

25



h(z,2 (0 +tk))f(z) — h(x)f(z,2 (0 + tk))
(f(2) + th(z))®
kind of majorations as in preliminary and the fact that ' € ¢?*1) to be O (sup {||H||L(oo’d+1) | &l })

+

which can be shown (using the same

2
so that w(t) = O (sup (||H||L(oo’d+1) : |l<:|> ) . A Taylor expansion of wg between o

and 1 (see proof of theorem 5) shows us that Qg is strongly Frechet differentiable.
The symmetry of F, round m(z) implies 27! [F,(y) + 1 — F,(2m(x) — y)] =
F,(y). This relation, together with the property of the score Jg(t) = —Jg(1—1) (as-
—+oo
sumption (12)), shows us that the equation / Jr[27 (Fu(y) + 1 — F(20 — )] dF,(y) =
0 admits for solution 6 = m(x). )

Differentiating” with respect to @ the expression
+oo

Qr(F,0) = / Jr[2 1 (Fy(y) + 1 — Fy(20 — y))] dF,y, we obtain agé” (F,m(z)) =
oo —00
[ Fremis) = )T 27 (Buly) + 1 - BoCim(a) - )] F)dy

+0o0
= / J [Fx(y)] (F'.(y))? dy which is strictly positive from assumption (R1). This

strict positivity, together with the Frechet differentiability of the functional {2z pre-
viously established and the convergence of FZ to FZ for the norm ||o| L(co,d+1) (under
the assumptions of theorem 5, see Ait Sahalia [1]), allows us to apply the point (i)
of theorem 2 : there exists a functional Tg such as m(x) = Tr(F') and such as the
equation Qy/(F,, ) = 0 asymptotically admits (locally) a unique solution Tx(F,).
Applying the point (i7) of theorem 2, we obtain the Frechet diffentiability of the

functional T with Frechet differential given by
2m(z)—y

+o0 Y
3 M) f(x) — flenh@) [ ) f() - fenhE)
= [ @) w— | @) !

—0o0 —0o0
2m(z)—y

O B PR B (GO PR R W IC")
wlz| [ g [ e ) ) et
DprTp.H = = oo

—00

9differentiation under the integral operator is justified by the regularity properties of F' and Jx
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/ Jn (2( / Jl@.v),, +1_2m7 f(z )) (. )f(xJ)CQ?x{(x,y)h(x)dy

/ TR @) (Fi(y))? dy

—00

Fortunately, this expression can be conderably simplified. Indeed, if we denote

y
H,(y) = / Mz, ?))dv we have

J )

T B ) o1 B o flmy)

[ 1l = Hooma) = ) Tp[27 (Pu)+ 1 = Fufzm(a) = ) Hehay o
T _ _ ! -1 _ _ f('ray) _

[ 1P) = Fufemi@) = )] T 2 (Flo) + 1= Fuzm(a) — ) Lty — 0

f,y)

J (o)

the symmetry of F, round m(x) and from the relation Jg(t) = —Jg(1 —t))
Finally, we obtain :

/ Ja 2" (Faly) + 1 — Fy(2m(x) — y)

dy = 0 (these relations come from

Using generalized functions, DrzTg can also be written under the form

Jr [Fu, (uy)]

DpzTg.H = / = 0z (ug) h(ug, uy)dugydu,

e / T P ()] (FLL () dy

so that »* = d —1 and /nh7" [TR(F;) - TR(FZ)} — N(0, Vi, (F?)) with

2

Vi (F7) = / Tr [P (1) (@, uy)du,. / K2(2)dz

“+o0o

[ I IE ) ()

—00
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A.8 proof of corollary 10

We have
SIF(zi,y;) = DypzTh. (KI (O _hx) K (O ;y) . F)
ie.
+ooJ Foy) Sk (P20 L (v g +ooJ F d
[anle gk (S50) 5 (S v [ IalRat) £ vy
SIF(xs,y;) = = oo —
[ IR () dy
+o0 +oo
with / Jr[Fe(y)] f(z,y)dy = f(x) / Jr [Fx(y)]| dF;(y) = 0, we obtain :
1 —a\ T 1 oy,
SIF (i, y:) = oo —
[RADI
and with the change of variable u = %, we finally get
1 a2\ T
EK (:c hxz) /JR[Fz(hu-l-yi)]K(u)du
STF(z0,ys) = =
[ I IE ) (7)) dy
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