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SUMMARY

Additive modelling is known to be useful for multivariate nonparametric regres-
sion as it reduces the complexity of problem to the level of univariate regression.
This usefulness could be compromised if the data set was contaminated by outliers
whose detection and removal are particularly difficult to achieve in high dimension.
We propose an estimation procedure for the additive component of the regression
function, less sensitive to possible outliers in the sample. Our procedure is based on
marginal integration of conditional R-estimators. In addition to univariate rate of
convergence and asymptotic distribution, we also obtain robustness results for our
estimator. All of our results are valid for a broad class of # mixing processes. Monte
Carlo findings confirm the theoretical results in finite sample.

Some key words: R-estimator; Additive model; Kernel estimator; Marginal integra-
tion; Robustness.

1 INTRODUCTION

Regression analysis is a powerful tool for investigating the links between a set of
regressors and a response variable for which prediction is needed. Classical linear
and nonlinear parametric regression models have proved to be inadequate for many
data sets one encounters in practical problems (see for instance Hardle 1990). As a
remedy, non and semi-parametric models have received greater attention in recent
years from both practitioners and theoreticians. These estimators are free from the
constraint of any parametric specification, allowing a much more flexible adaption
to the structure of the data.

Due to the lack of any parametric formula, the object of nonparametric modelling
is a function unconstrained to lie in a finite dimensional space, and as a consequence,



much more data are needed for an accurate estimation. This limitation of nonpara-
metric estimators becomes acute as the dimension of the data becomes higher. This
phenomenon is commonly referred to as the “curse of dimensionality”. There exists
various tools under the general term dimension reduction techniques that seek a
compromise between flexibility and accuracy. Among these, additive modelling is
one of the most natural.

Consider the problem of predicting the value of the random variable Y using a d
dimensional set of predictor variables X. The best predictor one can use in the sense
of the mean square error is the conditional expectation m (x) = E (Y|X = x). Due
to the “curse of dimensionality”, the reconstruction of the function m based on a set
of realizations {(X;,Y;)},_; ,, of the random vector (X,Y") is unsatisfactory for high
dimension d unless some simplifying can be imposed on the form of m. Additive
modelling consists of assuming that the function m (x) is of the form

m(x) = p+ Z Mo (Za) (1)

a=1

where z,, is the a-th component of x. Under suitable assumptions many techniques
are available for estimating the additive components m,(z,) with the univariate
rate of convergence. Stone (1985) proposed to estimate mq(z,) using polynomial
spline and gave bounds on the optimal rate of convergence that can be obtained.
Hastie and Tibshirani (1990) developed the backfitting algorithm on heuristic basis.
Linton (1995) and Tjgstheim and Auestad (1994) independently used the marginal
integration procedure and gave asymptotic distributions. More recently, Mammen,
Linton and Nielsen (1999) proposed and established asymptotic distribution theory
for a variation of the backfitting algorithm.

Since all the procedures mentioned above are based on least squares criterion,
they are vulnerable to the influence from a few extreme observations. For exam-
ple, if Y, is extremely large, the estimators using the sample {(X;,Y;)},_, , and
{(X;,Y;)},_1 ,_, may be quite different. In univariate regression estimation such
extreme observations can often be removed by a careful visual inspection. In high
dimension, their identification and removing become much more problematic since
the data set no longer has simple graphical representation. As a consequence, it
is necessary to develop estimation procedure of additive model more resistant to
outliers.

Figure 1 illustrates the non-robustness of ordinary marginal integration estimator
based on least squares. One can see from plots (a) and (b) the presence of outliers
in the simulated data set. As a consequence, the ordinary marginal integration
estimators do not fit their target well as can be seen in plots (c) and (d). At the
same time, the robust estimator that we propose gives a much better fit.



In this work, we propose an R-type marginal integration estimator. The esti-
mator is shown to be robust in the sense that the contribution of any observation
to the error of estimation is bounded. As a consequence, a large observation can
not result in an extreme change in the value of the estimator. Hence, there is no
need to look for and remove any outliers when using this procedure. We will show
that the proposed estimator enjoys the univariate rate of convergence and we derive
its asymptotic distribution. Our results are valid under mild #-mixing conditions.
Our Monte-Carlo study corroborates the theoretical results. In other words, our R
robustified procedure outperforms the ordinary marginal integration estimator when
the sample is contaminated with outliers.

Our work is organized as follows. In Section 2, we describe the additive model
setup and define an R estimator of m, (x,) based on the idea of marginal integration.
Its asymptotic and robustness properties are studied in details. In Section 3, a Monte
Carlo example illustrates the improvements of the R-robustified estimator when the
data are contaminated with outliers. Proofs and important assumptions are given
in Appendix.

2 R-ESTIMATOR OF ADDITIVE REGRESSION

We consider an additive form for the regression function m (x) as given in (1).
In order to identify the additive components m,(z,), we will assume that

E{m, (Xs)}=0,1<a<d.

Under these assumptions we have p = E(Y). In order to simplify the notations,
we will assume in the following that ;1 = 0. The function m,(z,) then satisfies the
equality
Ma(zq) = E {m (a:a, X(_a))} 1< a<d, (1)
where X (_,) denotes the random vector X with the a-th component removed.
Relation (1) gives a way of estimating m,(z,) based on plug-ins

a(za) = [ 11 () dF (X w),

where F (x(,a)) is an estimator of the marginal distribution of X(_,y and 7 (x) is
an estimator of the function m (x). The marginal integration estimator of Linton
(1995) consists of using the Nadaraya-Watson estimator for / (x) and the empirical
cumulative distribution function for £ (x(_a)).

In the following work, we propose an alternative plug-in version of my, (z4)-
In our scheme, F (x(_a)) is the integration of the Parzen Rosenblatt estimator of
density

X(=a)

F(xca) = / f (bcw) dbca,
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Figure 1: Scatterplots and function estimates for a simulated sample of size 150:
Y = my (X1) + mg (Xs) + € where my (t) = 5t — 5/3, my (t) = 10t* and ¢ has a
normal mixture distribution (see Section 3). (a) plot of (X;,Y’), and m; (t) — solid,
robust estimator — circle, ordinary estimator — cross. (b) is the counterpart of (a)
for (X5,Y) and ms. (¢) and (d) are zoomed in copies of (a) and (b).
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with K being the product of a univariate kernel describe in assumption (A4). Our
robustification process consists of using an estimator for 7 (x) more robust than
the Nadaraya-Watson. To be more precise, we will assume that the conditional

J(xv)
oo f(x)
E (Y|X =x). Under this assumption, adapting rank test theory to conditional
setting as in Cheng and Cheng (1990), the regression function m (x) is the unique
solution to the equation

cumulative distribution function Fy(y) = dv is symmetric round m (x) =

+o0

[ 727 {By) + 1= Fx2m(x) — y)}] dFx(y) =0, (2)
provided that the following assumptions (R1) and (R2) hold.
(R1) The function J is twice continuously differentiable on [0,1] and satisfies

[ 7 (Blw) (Faw))* dy > 0.

(R2) The function J is increasing on [0, 1] with J(¢) = —J(1 —?).

These assumptions are common in the literature on R-estimation, see, for instance,
Huber (1981). A commonly used choice for the score function J is the Hodges-
Lehmann score J(t) = ¢ — 1/2 which corresponds to Wilcoxon rank test (see section
9.1.3 in Serfling 1980).

The function m(x) can then be estimated by solving the equation (2) where
Fx(y) is replaced by

I . y f(X,U)
SO L e

with f(x,v) and f(x) being kernel Parzen Rosenblatt density estimators. The ex-
istence and the convergence properties of the solution to this plug in equation have
been studied in details in Tamine (2002). The asymptotic robustness properties of
Ma(Ts) are summarized in the following theorem:

dv,

Theorem 1 Under assumptions (A1) to (A5), we have
(i)

1 n
Ma(Ta) — Ma(zs) = —ZA X, Y, h) + op((nh)~
=1

MI»—I

);
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where

Kh(X — ux)Kh(y — Uy)
f(x)

[ T B H W)Y dy

J{F(y)} dy

A (ux,uy, h) = /

f (X(,a)) dX(,a) .

() A (ux,uy,h) is bounded in (ux,uy).

The first part of this theorem allows us to distinguish the leading order error
terms in estimating mq(x4) by Mq(x4). This is useful not only for studying the
asymptotic distribution of the estimator as is done in corollary 1, but also for quan-
tifying its robustness properties. Indeed, as shown by point (ii) of Theorem 1, the
contribution of any observation toward the estimation error can’t become arbitrarily
large. As pointed by Hampel (1994) through the concept of influence function of
which A (ux,uy, h) is a smoothed analog, this robustness property is particularly
useful in case the sample would contain outliers.

Corollary 1 Under assumptions (A1) to (A5), we have
V nh {’I’;’La(ﬂl‘a) - ma(a:a)} — N(07 V)a

where

V= / K*(t)dt /1 J? (t)dt / +o0 I ) 20X (~a)-
’ f(x) [

[ T H W)Y dy

— 00

3 MONTE-CARLO SIMULATION
For our simulation study, we use data generated from the following equation
Y =m(X) +¢,

where m is the following bivariate additive function, whose components have been
plotted in Figure 1

m(x) = 522 — 5/3 + 10x3.
The predictor variable X is uniformly distributed on [—1,1]* and ¢ has a density
function which is a mixture of normal densities

1-v g v g?
0= 75 (-5) e ()



where v is the degree that the standard normal law has been contaminated, and &
is the variance of the contaminating law. In our study, we set ¥ =10 and k£ = 9.
We chose the score function

eif le] < ¢
Ule) =49 Yle)ifep < le] <ey
0if |e] > ¢

where U is a fifth order polynomial chosen in such a way that ¥ is twice continuously
differentiable and ¢y, ¢y are trimming constants. Following Lucas (1996), we chose

c1 = 4/x~1(0.99) and ¢ = 1/x~1(0.999). If Y; — m(X) follows a standardized normal

law, such a choice ensures that the observations for which |Y; — m(X)| > 3.5 are
discarded and the observations for which 3.5 > |Y; — m(X)| > 2.8 are downweighted.

In order to compare the performances of our estimators, we estimated the re-
gression function on a grid {¢1, .....tg} equally spaced on [—0.7,0.7]. This restriction
is to avoid the boundary effects. Our criterion of comparison for each o = 1,2 is the

1 8
sum of squared errors SSE, = 3 > {ma(t:) - 1o (t;)} where 70, will be either the
i=1

ordinary marginal integration estimator of the regression component function m, or
the R robustified estimator. Our results are consigned in Figure 2. Clearly, for both
components m; and my, the robustified estimators have overall smaller SSE than
the ordinary estimators. A typical example is seen in Figure 1 in the introduction.
The ordinary estimators show greater bias, due to the influence of outliers. This is
consistent with Theorem 1.
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APPENDIX

We need the following assumptions for the proofs

(A1) The sequence {(X;,Y;)},_, , is a sequence of strictly stationary and § mixing
realizations of the vector (X,Y) satisfying k°8; — 0 for some fixed § > 1.

Here 5, = Esup {‘P (A ‘ffn) - P (A)‘ tAe f,ﬁl} where F!' is the o algebra
generated by (X, Y3), ...... , (X, Vi)

(A2) The density f(x,y) is compactly supported and has continuous derivatives up
to order r.



(A3) The density f(x) admits a strictly positive lower bound, c.

(A4) The univariate function K is a symmetric, compactly supported kernel of order
T

(A5) The bandwidth satisfies Jim h =0 (the dependance of h on n is left implicit
for the simplicity of notations) in such a way that lim n2h%*+3 — oo and

. 1 1
lim n2h" T2 — 0.

n—oo

A.1 Proof of Theorem 1

Rewriting equation (2) with

),
F (y) —_4 o dv, (A1)
m(x) is implicitly defined by the equation
[ 2 B )+ 1 - Fx @m(x) = y)}] dFx (y) = 0. (A.2)

As is shown by equation (A.1), Fx (y) is completely determined by f (x,y). There-
fore, using (A.2), m(x) is a functional f (x,y) that we will denote as R(f). In
the following, the norm ||g (x,¥)||,, is used for the topology on the function space.
Using Tamine (2002), under assumptions (A2), (A3), (R1) and (R2), for g being
compactly supported and lying in a neighborhood of zero that satisfies |g (x)| < ¢/2
, the following expansion holds

+o00

9(%,y)
[ AR T

R(f+g)=R(f)+ +0(lgxyls) .  (A3)
/fw* W)HFL )} dy

Using the identification equation

o(Ta) /m )dx( —a)s (A.4)

Mma(Zq) is also a functional of f (x,y) which we denote as R, (f). Equation (A.4)
can be written using functional forms as

/R ))dx( )



so that
Ro(f+9)= [ RU +9){f (xw) + 9 (o)} dxa

Using expansion (A.3), we obtain

—+00

A ()
f+g /R a)))dX(_a) +/ _l;ooo f((;)a) dX(_a)
[ TAE@HEL )Y d

—00

/J{Fx (1)} 9(x, y)dy o (%o
+/R X( a) dX( +/ o) dx(_a)
/ T {F W)HF ()} dy

—00

+0 (Il (x, y)llio)/{f(x(—a)) + 9 (%-w) } d%(-a)-

/ J{Fx ()} 9(x, )y
/ g (x(,a)) dx(,a)

/ T {E, ()} {F (y))Y dy

The term

is easily shown to be O (||g (x, y)||oo) and the term

J{F (k) + 9 (x-w) } dxa

is bounded, so we finally obtain

“+o0o

/ J{Fx (y)} 9(x,y)dy
Ry (f+9g) = /R(f)f<x(fa)))dx(fa)+/ — =) dX(_a)
[ TR FL )Y dy

—00

+/R ) dxay +0 (Ilg (x9)I2) - (A.5)

Under assumptions (A1) to (A5), for g (x,y) = f (x,y)— f (x, ), Ait-Sahalia (1995)
has established that ||g (x,v)||,, =% 0, so that we can use expression (A.5) for this



particular ¢ function. We obtain

“+oo

[ 7P wH

K,_“
—~~
SN—r
~
—~
<
SN—r
——
U
<
o

o F %
/R )dx( ) +/ T )

[ AR FL )Y dy

—oQ

+ [ROF (xw) = £ (i) paixew+ O (|F ) = F 0]

which can also be written as

+o00

J{F, F(x,y)d
A [IBWH ey X

Ma (Ta) = Mg (Ta) +
I5 /J'{F HEwry T

+/m (X) f X(,a)) —f <X(,a))} dX(_a) + O (

o -
fe)

Here, we have taken advantage of the fact that / J [Fx(y)] ) 0, which
x
follows directly from the assumption (R2) that J (t) = —J (1 — t).
We now show the term
= /m (x) {f (X(_a)) —f (X(_a))} dX(—a) (A.7)

to be O, <n’% + hT). Using an integration by parts in expression (A.7) we obtain

T = ‘ / m!(2) {F (x-)) = F (x(-a)) } dx(-a)

X(—a) X(-a)

where F (X(_a)) = / f(u(_a)) dU(_a) and F (X(_a)) = / f (U(_a)) du(_a).

According to Lemma 1 of Ait-Sahalia (1995), under assumptions (A1) to (A5), we
have

I

sup |F (X)) = F (x(-)| = Opln™ + 1),

so that
Tln - Op (n_% + h,'r) .

Using the same lemma from Ait-Sahalia, we also have

) = F )| =0, (n7h20D 4 p2r),

10



so that (A.6) becomes

“+00

/ A ()} f (x,9) dy

m(xa)—maxa-i-/ X
/J'{F pEwry |

+0, (n" 7 + hT) + 0, (n 1A 4 pr)
Under assumption (A5),
Op (n_é + hr) + Op (n—lh—Z(d-i—l) + h27‘) =0, (n—l/Qh—l/Q) ’

so that using the expression

n

Foew) = 5 Kb~ X Kiy — 1)

=1

we obtain
+o00
| 7B @)} Knlx = XKy = Yoy (o)
ma (xa) = ma ’ﬂ Z/ = +oo (o) dX(—a)

! / 2 f(X)
/J{F JHEL )Y dy

+op (n_1/2h_1/2) .

Point (ii) follows immediately from assumptions (A4), (R1) and (R2).

A.2 Proof of Corollary 1
Let’s now study the leading term

/ TE W} b= XKaly =Yy
=g

—00
“+00

, o, f) T
/J{F VHEFL )Y dy

We first examine the bias term
400

[ A )} Kilx = X) Ky — Yi)dy )

_E/ -

! i 2 f(X) A
/J{F JHEL ()Y dy

11



| 70J{F (1)} Kn(x — u) Ki(y —U)dyf( |
= ] = X(_a))dx —a) ¢ f(u,v)dudv.
nr JRCILOIRT o

\ 7

X—u
Using the change of variable & = in the integration with respect to u and

h

n= Y %in the integration with respect to v, we obtain
[ [ 7B} K@K @) (x = he,y— hn)dsdndy 1 (x_o))
/ , , , F(x) dX(—a)
/ T {Fe ) HFL )Y dy

Using a Taylor expansion of f(x— h&,y— hn) up to order r, under assumptions (A2)
and (A4), we obtain

[ IR} Fxm)dy 7 (x )
B = | ™
/J’{F JHEFL W)Y dy

dX(,a) + O(hr).

Nest, use again the fact that / J [F(v)] f J(C’(‘;CZ)/)

BZn - O(hr),

so that, under assumption (A5), we have

dy = 0, implied by assumption (R2),

we obtain

nl/2hY2 By, = 0,(1).

We now have to study the variance term normalized at rate n'/2h'/?

o | T B WY K- XKy - Yody ()
nl/2pi/2 o = )
WV =G [ 2 )
/J'{F (1)} {F% (1)} dy

12




Let’s define F, ; the o field generated by {X;, Yj}j:1 _; and let’s define the random

variable

| [ AR K- X0 Kl — Yy ()
Zn,i = E /—00 Foo ) f((;)a) dX(—a) — By, ’
| T @ HE W)Y dy

i
ZZn,j:}—n,ial <i:<n,n> 1} is a zero

7j=1

so that n'/2h'/2Vy, =" Z, ;. The array {

7j=1
mean, square integrable martingale array. We have

[ B )} Kilx = wEn(y — v)dy

ORI RN et
[ T FL )Y dy

J

F(u, v)dudv — h(Bay)?.

To — U . i .
With the change of variable £, = =~ % in the integration with respect to u, and

o) — U(_
§(ca) = w in the integration with respect to x(_,), we obtain

nlE(Zz,j) = // /+OO /J{F(za,u(_a)+h§(_a))(y)}Kh(y_v)dy |
— / J' {F(wa,U(—a)+h€(—a>) (y)} {Féma,u(_a)—khg(_a))(y)} dy

J

2
faa) + héa)) . ] ]
f (xa, U(_q) + hg(_a)) (E-a)dE(-a)| %
KQ(ga)f(l‘a — hé&,, W(_q), v)d&adu(_a)dv — h(an)Z,

Now making the change of variable w = Y in the expression Kj(y — v) and

letting n — oo we have

lim [ J {F(wa,u(a>+h§<a)) (y)} Knly —v)dy = J {F(wa,u(a)) (u)}

n—oo

so that

13



pe($2,) =[]+ Wercd} _finc
i=1 / J,{F(%u(_a))(y)} {Féza,u(_a))(y)} dyf (xa,u(—a))
F (T U(—qy, v)du_qydv / K2(£,)de,
and
/ {F(wa’l‘(—a)) (U)} fua)

J

n

1

B(#5fFus) = 7

+oo

| —OO

f(xaa u(—a)av)du(—a)dv/KQ(‘Sa)dga-

/ J' {F(za,u(_a)) (y)} {Féwa’u(_a)) (y)}2 dy

f (l“a, u(—a))

Under assumptions (A1) to (A4), conditions 3.19 and 3.20 of Corollary 3.1 of Hall
and Heyde (1981, pp 58) are satisfied, so that we finally get

(nh)?Vay, — N(0,V),

where
12
Vo // J{F(wa,%a))(v)} flu_w)
an F "y (e 0-)
_/ { (wa’“w))(y)}{ (ma’“w))(y)} Y
f(@as 0y, ) oy [ K (€a)dEe.
This can be written with simpler variable notations
-2
J {Fx —a
V:// e {E W)} 2 f%fxéx))) f(x,v)dx(,a)dv/KQ(t)dt,
[ 7B HFW)Y dy
ie. _
1 2
+00 ) 50X (—a)-

V= /KQ(t)dt/J2 (t) dt/
" f(x) [

— 00

14
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Figure 2: Kernel estimates of density function of the SSE’s of estimators of m,,, with
a = 1,2, based on 100 simulated samples of size 150: (a) SSE’s of my, robustified
estimator— solid, ordinary estimator — dash. (b) is the counterpart of (a) for my



