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Abstract

Abramov�s transfer method ��� for ordinary di�erential equations �ODE� transfers
linear boundary value problems into initial value problems and systems of linear
algebraic equations that have to be solved�
K� Balla and R� M�arz applied Abramov�s transfer method to homogenized index �
di�erential algebraic equations �DAE� �	��
In this paper a direct version of the transfer method for inhomogeneous di�erential
algebraic equations is formulated and stability is proved�
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�� Preliminaries� Consider the linear index � boundary value problem

A�t�y� � B�t�y � f�t�� t� � t � t����a�

C� � y�t�� � g����b�

C� � y�t�� � g����c�

A � C� ��t�� t��� IRm�m�� B � C ��t�� t��� IRm�m�� f � C ��t�� t��� IRm��
Let Q�t� be a projector onto kerA�t�� P �t� � I �Q�t��

A necessary and su�cient condition for index � is that rank A�t� � const and the matrix G�t�
def
�

A�t� �B�t�Q�t� is regular for all t � �t�� t��� This condition does not depend on the special choice of Q�
Since A � C�� Q can be chosen in such a way that Q � C��
Assume that the matrices Ci �i � �� �� have full rank and ful�ll CiP �ti� � Ci�
Now consider the adjoint problem

AT�� �
�
BT � AT �

�
� � ����a� �

�TAy
�� � �T f � ����b�

The adjoint problem has index � i� the original problem has it�
Introduce the function h as

h � �TAy��	a�
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Then the adjoint problem reads

AT�� �
�
BT � AT �

�
� � ���	b�

h� � �T f � ���	c�

Let P�s�t� 
� I �Q�s�t�� where Q�s�t� is the projector onto kerA
T �t� along

S��t�
def
�
n
� � Rn 


�
B�t�T � AT ��t�

�
� � Im AT �t�

o
�

There are two natural ways to choose the initial conditions of the adjoint equation�

��ti� � P�s�ti� �AT��ti� �CT
i and��a�

h�ti� � gi���b�

or

��ti� � P�s�ti� �AT��ti� �CT
i Li and��c�

h�ti� � LTi gi��d�

The subscript i stands either for � or for �� Li regular� LiLTi �
�
CiC

T
i

���
�

Whenever the second choice of the initial conditions looks a little bit arti�cal� we will see later that a
transformation of the adjoint system has nice properties�
The fact that the solution y�t� of the original problem ��a� belongs to

Sf �t�
def
� f� � Rn 
 B�t�� � f�t� � Im A�t�g

can be formulated as R�t�B�t�y�t� � R�t�f�t�� R�t� is a di�erentiable projector function with ker�R�t�� �
im�A�t���
A possible choice is R � QG��� which leads to Qs�t�y�t� � Q�t�G���t�f�t�� Qs�t� is the unique projection
onto kerA�t� along S��t� �f � ���
The solution space of the initial value problem

A�t�y� � B�t�y � f�t�� t� � t � t��

Ci � y�ti� � gi

with the initial conditions mentioned above is determined by the equations

�T �t�A�t�y�t� � h�t��

R�t�B�t�y�t� � R�t�f�t�� t � �t�� t���
What we want to do is solving the system �	b�� �	c� �rstly with one pair of initial conditions for i � � from
t� into the direction t�� and secondly for i � � from t� into the direction t�� We get two matrix�valued
functions �l� �r and two vector�valued functions hl� hr�
We call an analytical procedure a �transfer of the boundary conditions� if the procedure leads to a system
of initial value problems and the following system of algebraic equations

�Tl �t�A�t�y�t� � hl�t����a�

�Tr �t�A�t�y�t� � hr�t����b�

R�t�B�t�y�t� � R�t�f�t�� t � �t�� t�����c�

In the case of explicit regular ordinary di�erential equations �A � P � P� � I�� equation ��c� disappears�
The solution space of the system ��a����c� is given by all solutions of ��a����c��
What we have got are two matrix�valued di�erential equations with initial conditions that have to be
solved� Then we have to determine the solutions of systems of algebraic equations on a grid to obtain
the solutions of the problem ��a����c��
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�� Transformation of the adjoint equation� In this section a transformation due to Abramov
��� of the system ��a�� ��b� is introduced�
Take a variable � and consider the following transformation

� � � � T ���

where T � C� ��t�� t��� IR
m�m�� We will say something about the special choices of T later�

Now it holds �
AT�

��
�

�
AT�

�� � T � AT� � T �
� BT� � T �AT� � T �
� BT� �AT� � T��T �� �z �

w

� �
AT�

�� � BT� � AT� �w � �����

� �
�
�TAy

�� � �Tf

�
�
TT��

�TAy
��
� TT��

�Tf

�
�
TT��

��
�TAy � TT�� �

�TAy
�� � TT��

�Tf

� � � TT
�
TT��

��
�TAy �

�
�TAy

�� � �T f

� � �TT
��
TT��

�TAy �
�
�TAy

�� � �Tf

� �wT�TAy �
�
�TAy

�� � �T f�

Set

h 
� �TAy���a�

then

� h� � wTh � �T f���b�

Remark
 The h in ��a� is di�erent from the h in �	a�� but it has to ful�ll the same function in the
resulting algebraic equations� This is the reason for the same notation h�
In the following we consider two choices of the transformation T �

���� First Transformation� The transformation T is chosen such that

�TA
�
AT�

��
� ����

holds�
This leads to �TAAT� � � � const � CT

� C� �CT
� C�� or� in case the second choice of initial conditions

is used� �TAAT� � I in the solution�
Fortunately there is no need to compute the transformation T explicitly� but it is possible to get an
expression for w


w � � ��TAAT�
���

�TABT��

Put w into the equations ��� and ��b�� so you get the following equations

�
AT�

�� � �I �AT�
�
�TAAT�

���
�TA

�
BT� � �����a�

h� � �TBAT�
�
�TAAT�

���
h� �T f � �����b�

�



The di�erential equation for h is completely decoupled from the equation for �� This is of interest for
theoretical investigations like the existence of solutions� but for the numerical solution of the resulting
algebraic equations the same grid is needed�
The existence of a solution of equation ���a� on the whole interval �t�� t�� is proved in �	�� theorem ����
The existence of a solution of equation ���b� follows from the fact that the equation is linear in h�

���� Homogenization� Choose T such that

�TA
�
AT�

��
� hhT

�

� ������

With W 
� �TAAT� � hhT � const �in the solution� this leads to

w � �W��
�
�TABT� � hfT�

�
�

and hence to

�
AT�

�� � �
I � AT�W���TA

�
BT� �AT�W��hfT� � �����a�

h� � �TBAT�W��h � ��� hTW��h��T f � �����b�

The latter transformation is equivalent to the approach by Balla�M�arz �	� via homogenization of the DAE
��a����c�� The equations are coupled via the matrix W �

In this case LiL
T
i �

�
CiC

T
i � gig

T
i

���
is valid for the initial conditions and leads to W � I�

The existence of a solution of the equations ���a�� ���b� on the whole interval �t�� t�� is proved directly
in �	� for an equivalent formulation�

The result is an algorithm for the transfer of index � DAEs

�� Solve the transformed adjont problem ���a�� ���a� or ���a�� ���b� with the relevant initial con�
ditions from the left to the right and vice versa�

�� Solve the linear algebraic system ��a����c� with � instead of ��
This algorithm is feasible on the whole interval �t�� t���

���� Hessenberg systems� For linear index � Hessenberg systems

u� � B��u�B��v � f����	a�

B��u�B��v � f���	b�

it is easy to verify that the special structure can be exploited�
Let � be partitioned as ��T� � �

T
� �

T � Then the transfer equations for the �rst transformation are

��� �
�
I � ����

T
� ���

���T�
�
�BT

���� � BT
����� � ��

BT
���� � BT

���� � ��

h� � ��T�B�� � �T�B�������
T
� ���

��h � ��T� f� � �T� f�� � ��

In this case the algebraic equations are

�T��lu � hl�

�T��ru � hr�

B��u�B��v � f��

An analogous consideration� but with the homogenized equation� leads to similar results�

	



�� Stability considerations� Without loss of generality only the transfer equations with initial
conditions on the left are regarded in the following�
Look at the system ���a�� ���b� with small perturbations on the right�hand side

�
AT ��

��
�
�
I �AT ��

�
��TAAT ��

���
��TA

�
BT �� � �����a�

�h� � ��TBAT ��
�
��TAAT ��

���
�h� ��Tf � �����b�

where ����h are the exact solutions of the perturbed equations�
Assume that �� � are su�ciently smooth and introduce the following transformation

�� � �K� �h � KT������

K has to be chosen such that

�TA
�
AT�

��
� ��

With this property it is possible to compute K and to transform ���a�� ���b� into

�
AT�

�� � �
I � AT�

�
�TAAT�

���
�TA

�
�BT� � ����a�

�� � �T �BAT�
�
�TAAT�

���
� ��T �f � ����b�

�B� �f are de�ned as

�B � AAT ��
�
��TAAT ��

���
�T � B�

�f � AAT ��
�
��TAAT ��

���
� � f�

The equations ��a�� ��b� are the transfer equations of the DAE

A�y� � �B�y � �f �����

The DAE ���� has index �� too
 The matrix pencil �A�B� is regular and has index �� Then� for each matrix
W � L�IRm� the matrix pencil �A�B � AW � is regular and has index � ����� appendix A� theorem �	��
The projections of this DAE coincide with the projections of the DAE ��a�

The matrix A does not change� This implies that P is the same projection for both DAEs� For the
projections R and Qs one can argue that� for the spaces S�� �S��

�S��t� �
n
� � Rn 
 �B�t�� � Im A�t�

o
�

	
� � Rn 
 B�t�� � A�t�W �t��T � � Im A�t�



� S��t�

is true with a matrix W � AT ��
�
��TAAT ��

���
� The arguments are skipped for brevity�

In the case of homogenization the perturbed transfer equations are not related to a perturbed homogenized
problem� There are additional couplings of the equations ���a�� ���b� with the factors � and ��

In the following parts we are interested in bounds for the perturbation�term�
��TAAT ��

���
��TA�






���� Bounds for the perturbation term� Unless it leads to confusions� the arguments of the
matrix functions are suppressed again�

Denote
���AT �t�� ���t��

���
�
� w �� IR�� v 
�

����
�
��TAAT ��

�������
�

� v� � v�t���

�� 
� supt��t�t� k��t�k� and ��jt� � t�j �
q
w� � �

v�
� w� If we take the initial conditions ��c�� then

v� � �� For the de�nition and properties of the Dini derivatives D
� see Appendix A�

Using

�
��TAAT ��

��
� ��TA

�
AT ��

��
�
�
��TA

��
AT ��

���a�
� ��TA� � �TAT ��

and

���D�
��� ��TAAT ��

���
�

��� �
����
�
��TAAT ��

������
�

� �k�k�
���AT ��

���
�
�

then

�
���AT ��

���
�

���D�
���AT ��

���
�

��� � �k�k�
���AT ��

���
�

�
���D�

���AT ��
���
�

��� � ���

Because of w � � it holds that
���AT �t� ���t�

���
�
� w � ���t� t��� Hence� with

�
��TAAT ��

�����
� �

�
��TAAT ��

��� �
��TAAT ��

�� �
��TAAT ��

���

it follows

kD�vk� �
�����
�
��TAAT ��

����������
�

� �v��� �w � ���t � t���

�
����D�

�
�

v

�����
�

� ��� �w � ���t� t��� �

Let v�t�� � v� � ��

�

v�
� �

v�t�
� ���w�t� t�� � ��

�
��t� t��

�� this means

v�t� � �
�
v�
� ���w�t� t��� �����t � t���

�

Now the following inequality can be concluded����
�
��T �t�A�t�AT �t� ���t�

���
��T �t�A�t�

����
�

� w � ���t� t��
�
v�
� ���w�t� t��� �����t� t���

�����

This inequality is sharp� there is no better estimation at t � t��

���� Stability theorem� Consider the state space form of the index � DAE ��a�

u� � �P �Ps � PG��B�u � P �I � P ��G��f����a�

y � Psu� QG��f����b�

�



The state space form of the perturbed problem reads

�u� � �P �Ps � P �G�� �B��u � P �I � P �� �G�� �f ����a�

�y � Ps�u� Q �G�� �f ����b�

Recall that

�G � A� �BQ � A �BQ �AAT ��
�
��TAAT ��

���
�TQ

� G� AAT ��
�
��TAAT ��

���
�TQ�

hence

k �G�t�� G�t�k� � kA�t�k� � k��t�k� � kQ�t�k� � w � ���t� t��
�
v�
� ���w�t� t�� � �����t� t���

�

Equation ���a� is a regular perturbation of ���a�� and ���b� is a regularly perturbed assignment of ���b��
Now all theorems and properties from the theory of regular perturbations for ODEs can be applied to
the underlying ODEs ���a�� ���a�� and this leads to the following de�nition and statement

Definition �� A regular perturbation of an index � DAE is a perturbation that leads to a regular
perturbation of the underlying ODE ���a� and a regular perturbation of the assignment ���b��
Theorem ���� The boundary condition transfer ���a�� ���b� is stable in the sense that small right�hand
side perturbations of the transfer equations represent a regular perturbation of the original index � DAE
of the same size�

�� Numerical examples� For the integration of the transfer equations the code DASSL ��� was
used� This is the reason why the matrix A in the examples has to be constant so that we do not have to
use an explicit derivative of the matrix A�
The tolerances were chosen as atol � rtol � �d�� The intervals were divided into equidistant subintervals
and DASSL produced output at the gridpoints� The resulting system of linear equations was solved with
a precision of �d� � at every gridpoint�

���� An ODE example� To demonstrate that the transfer of the boundary conditions works well
even in the ODE case� an ODE example ����� page ���� example 	��	� page ��� example ���	� was testet�
The example is constructed in such a way that� in an ODE with an obvious dichtomy� the components
of the variables rotate�
The example is

y� �

�
	 cos��
t� �
 � 	 sin��
t�


 � 	 sin��
t� �	 cos��
t�
�
y � �� � � t �  �

The eigenvalues of the matrix above are �p	� � 
�� while the kinematic eigenvalues �they come from
the system with the obvious dichotomy� are �	� If the amount of 
 increases� the eigenvalues drift away
from the kinematic eigenvalues� for 
 � 	 they become imaginary and do not yield any information about
the dichotomy� which does not change with 
�
A solution is given by

y�t� �

�
cos�
t� sin�
t�
� sin�
t� cos�
t�

��
e�t �
� e��t

��
�



�
�

for ��  � IR�
The authors of ��� describe that for 	 � � and large 
 the Riccati method performs poorly� for 
 � � and
	 large the Riccati method performs well� Exact numerical results are not given in the book�
With the matrices

C� � �cos�
t��� sin�
t��� C� � �sin�
t�� cos�
t��

�



for the boundary conditions and 	 � � the problem is well posed� the components of the fundamental
matrix

Y �t� �

�
cos�
t� sin�
t�
� sin�
t� cos�
t�

��
e�t �
� e��t

�

are integrated into the stable directions�
The solution was computed in the interval ������� � ������ with exact boundary conditions� The other
values were chosen as � � ��  � ��
If !y denotes the computed solution and y denotes the solution� then the regarded errors are

error � max
i

k!y�ti�� y�ti�k�
ky�ti�k� �

These relative errors of the transfer method are given in the following table



 � �� �� ��� ��� ����
	

� ���D�� ���D��� ���D��� ���D��� ��	D��	 ���D���

� ��	D�� ��	D��� ��	D��� ���D��� ��D��	 ���D���

� 	��D��� ���D��� ��	D��� ��	D��� ���D��	 ��D���

�� 	��D��� 	��D��� 	��D��� ���D��� ���D��	 ���D���

��� ���D��� ���D��� ���D��� ��D��� ���D��� ���D��	

��� ���D��	 ���D��	 ���D��	 ��D��	 ���D��	 ���D��	

The transfer method performs well� even in the sti� case of 	 � ����

���� An index � example� Consider the following example

Let the matrices E and F be de�ned as follows

E �

�
BBBB�

� � 	 � �
� � � � ��
� � �� � ���
� � �� �� ��
� 	� ��	 ���� 	���

�
CCCCA � F �

�
BBBB�

�� �� � � 	
� � � � �
�� �� � � ��
� � � � ��
�� �	� � 	� ��	

�
CCCCA �

The matrices A and B are de�ned as

A � E � diag��� �� �� �� �� � F��� B � E � diag��� �� t� �� t� �� �t� ���� � F���

The solution y is given by

y�t� �

�
BBBB�

sin�t� � cos��t�
t� � 	
e�t

cos�t� � et
�

t��

�
CCCCA �

The right�hand side q is de�ned by

Ay� �By � q�

Due to the Kronecker canonical normal form this DAE has index ��

�



The boundary conditions were chosen as�
�
�

�
�� ���

�� � �
��

�
���

�
��

�
	 ��


�� ��
	

��
���

�
� y��� �

�
�
	
��
�

�

and � � �
��

�
�

�

�� ��

�
��
���

� � y��� �

��

�� �

�

�� � e�� � �

�e cos��� � �
���cos��� � sin���� �

������ Results with the �rst choice of the initial conditions� Firstly� the results of the com�
putations with the initial conditions ��a�� ��b� are regarded�
The maximal error taken over all �ve components in the interval ��� �� was ���	�D � ���
The product �TAAT� was monitored� too� At t � ���� this matrix was computed and used for comparing
with the matrix at the actual time� The Euclidian norm of the di�erence was divided by the Euclidian
norm of the comparison matrix� The norm of the maximal errors may be much larger with this choice of
initial conditions�
The maximal �relative� error of the constant matrix during the computation from the left to the right
was �����d� ��� in the other direction �����d� �

������ Results with the second choice of the initial conditions� Now the results with the
initial conditions ��c�� ��d� are presented�
Here the error over all components was at most ���d� ��
The product �TAAT� was monitored� too� Here the comparison matrix was really an approximation
of the identity matrix� The absolute errors of the constant matrix had nearly the same values as at the
other initial conditions�

Some further examples were tested� too� The results were as good as those of the examples above�
Remark �� The restriction CiP �ti� � Ci is due to the choice of the initial condition

��ti� � P�s�ti� �AT��ti� � CT
i �� Li��

For the considered form of the transfer equations this restriction is essential� there exists a simple example
that shows that� �

� �
� �

�
y� �

�
� �
� �

�
y �

�
�
�

�
� y����� y���� � ��

The solution is y� � y� � ��
The transfer equations simplify to

��� � �

�� � �

h� � �� � ��

With the initial conditions �	a�� �	b�

���� � P�s��� �AT���� �CT
� �

�
� �
� �

�
�
�
� �
� �

�
�
�

�
��

�
�

�
�
�

�
�

h��� � �

we get �� � �� �� � h � � and this leads 
nally to y� � � and y� � ��
When using the initial conditions for the P�components only� y���� � �� the transfer method provides the
correct results�
Remark �� Methods that preserve quadratic invariants �see �	� can be used to solve the system of
transfer equations�

�



A� The Dini derivative � Let M be a di�erentiable matrix�valued function� m�t� 
� kM �t�k��
The classical concept of derivatives cannot be applied to m due to corners originating from the norm�
This is why the Dini derivatives are used as a generalization for continuous functions m ��

D�m�t� 
� lim sup
h��

m�t � h��m�t�

h
�

D�m�t� 
� lim sup
h��

m�t � h��m�t�

h
�

Furthermore� some nice properties of the Dini derivatives are needed�

From the triangle inequality it follows

kM �t� h�k� � kM �t�k� � kM �t� h� �M �t�k������

kM �t�k� � kM �t� h�k� � kM �t� h� �M �t�k��
Dividing the inequalities ���� by h � � ��h � �� yields

jD� kM �t�k�j � kM ��t�k� �
Here D� stands for one of the Dini derivatives�

In the Euclidian norm for any matrixM it holds

kMk�� � ��MTM � � �
�
T � d � T��� �

kMTMk� �
q
��MTMMTM � �

p
� �T � d� � T����

���� denotes the largest eigenvalue of the argument� T is the matrix that transforms MTM into a
diagonal�matrix d consisting of the nonnegative eigenvalues of MTM � Let 	 be the greatest of these
eigenvalues� Then 	 � kMk��� On the other hand� kMTMk� �

p
	� � 	�

The next property of Dini derivatives is needed� too


jD�kMk��j � � � kMk� jD�kMk�j �
Firstly we prove the chain rule for Dini derivatives� For any continuous function m we have

D�m� � lim sup
h ��

m��t � h��m��t�

h

� lim sup
h ��

�
m�t� h�

m�t � h� �m�t�

h
�m�t�

m�t � h��m�t�

h

�

� lim sup
h ��

�m�t � h� �m�t��
m�t � h� �m�t�

h

� lim
h��

�m�t� h� �m�t�� � lim sup
h��

m�t� h��m�t�

h

� � �m �D�m�

Now we can set m � kMk��
The next property we need is D�

�
�
m

�
� �D�m

m� 


D�

�
�

m

�
� lim sup

h��

�
�

m�t � h�
� �

m�t�

�

� lim sup
h��

m�t� �m�t � h�

m�t�m�t � h�

� �D
�m

m�
�

��
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