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Abstract

This paper addresses critical points of linear differential-algebraic equations (DAEs) of the
form A(t)(D(t)z(t)) + B(t)x(t) = q¢(t) within a projector-based framework. We present a
taxonomy of critical points which reflects the phenomenon from which the singularity stems;
this taxonomy is proved independent of projectors and also invariant under linear time-varying
coordinate changes and refactorizations. Under certain working assumptions, the analysis of
such critical problems can be carried out through a scalarly implicit decoupling, and certain
harmless problems in which such decoupling can be rewritten in explicit form are characterized.
A linear, time-varying analogue of Chua’s circuit is discussed with illustrative purposes.
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1 Introduction

The present paper extends the results of [12], focused on linear differential-algebraic equations
(DAEs) of the form

A@®)(D(#)z(t)) + B(t)x(t) = q(t), t€ T, (1)
by addressing so-called singular or critical points.

Roughly speaking, critical points of linear DAEs are often defined in terms of the non-existence
or non-uniqueness of solutions at those points. This is the case for instance in [6], where a definition
of critical point is provided for analytic problems relying upon the impossibility to continue a given
solution. In the present paper we face critical points from a different point of view, described below.

Most approaches to the analysis of DAEs [1, 2, 5, 7, 8, 9, 13, 14] are based on an iterative or
recursive definition of an index, and end up with some kind of related (underlying/inherent/reduced
etc.) ODE. The index definition usually implies that this ODE is uniquely solvable. But, sometimes,
although the analysis procedure can be completed, it ends up with a non-solvable (or a non-uniquely
solvable) ODE. In linear cases, non-solvable continuous problems are related to singularities and, in
the analytic setting, can be tackled via Fuchs-Frobenius theory. These singularities arise typically
in the last step of the analysis procedure, and drive the problem to the setting of singular ODEs.

But we look at somehow pathological behavior not from the ODE perspective but from the
DAE viewpoint. Hence, broadly speaking, critical points will be those where the DAE analysis
procedure meets difficulties; formally, a point ¢, € J will be called critical if no neighborhood
of t, admits an index or, equivalently, there is no regularity interval including t.. Instances of
these phenomena, beyond the above-mentioned last-step singularities, are rank-changing points of
an identically singular, non-analytic matrix function A(¢) in (1). If the analysis procedure can be
adapted in order to handle these critical points, then it would typically end up with a singular ODE,
although some (informally called harmless) cases may result in a non-singular (hence solvable) linear
ODE. In contrast, in the most involved cases there is simply no way to obtain such an ODE.



From this point of view, we show in this paper how to adapt the projector-based analysis
of linear DAEs introduced in [9, 10, 11] in order to accommodate critical points. Our approach
extends the results of [15], proved for index-1 DAEs in standard form, and is directly based on
[12]. Critical points will be classified according to a taxonomy which reflects the phenomenon from
which the singularity stems. To emphasize that critical points arise at a well-defined step we use
from [12] the notions of a nice at level & DAE, and admissible up to level k projector sequences.
The different types of critical points will be proved independent of projectors and invariant with
respect to rescaling and linear, time-dependent coordinate changes. This discussion is carried out
in Section 2.

We then discuss in Section 3 working assumptions which, allowing to relax constant rank condi-
tions, still make it possible to construct a chain of continuous matrix functions which particularizes
to a tractability chain at regular points. Several algebraic properties of this modified or critical
matrix chain will be analyzed. As shown in Section 4, under the same working assumptions the
dynamical behavior of the DAE can be unveiled through a decoupling based on a scalarly implicit
inherent ODE. Our working scenario allows for a uniform over singularities treatment, in prob-
lems which include non-isolated critical cases beyond the analytic setting of [6, 13]. Finally, this
framework will be applied in Section 5 to the analysis of critical points of the linear, time-varying
analogue of Chua’s circuit introduced in [12].

2 Critical points

The reader is here referred to [12, Section 2] for the concept of a DAE with properly stated leading
term, and to Section 3 of that paper for the notions of (algebraically) nice DAEs, (pre)admissible
projector sequences, and regular DAEs with index p on a given subinterval Z C 7. All these
concepts are based on the construction of a tractability chain {G;(¢)} on Z satisfying certain

a) constant rank;
b) transversality;

c¢) smoothness

assumptions at every step k. Section 4 of the same work discusses the corresponding notions at a
given point ¢, € J.

Definition 1 Assume that the DAE (1) has continuous coefficients A(t), D(t), B(t). A point t, is
said to be critical if there is no regularity interval comprising it.

As indicated in the Introduction, critical points may well arise in the last step of the tractability
chain construction (see [12, Section 3]), leading to a singular inherent ODE. This is the case in
example 1 below.



Example 1 Consider the DAE

11

0 2

H (11— () +

] a(t) = q(t), t € J = (—00,00) (2)

which has a properly stated leading term with m =2, n =1, kerA =0, imD = IR", R =1. The
chain construction can be performed up to level £ = 1:

1 —t 1 —t 0 ¢t 1 1 1
G = s P = s = s D_ = s G = s
R F T [0 0] @ [0 1] 0] I ' 2—t]
. 1 1 |2—-t —1 ) . .
with detGy =1 -, G|~ = 15 ! Bk While all points being not equal to 1 are regular

(with index one), t, = 1 is a critical point, since G; undergoes a rank deficiency there. For ¢ < 1
and t > 1 the solutions of the DAE (2) are given by the expression

It alt) - )
where u solves the singular ODE (see [12])

2 1

' (t) + I——tu(t) = 1——t(2q1 (t) = (t+1)g2(2)). (3)

Observe that here, for ¢ > 0 and t < 0,
Sean, (1) = So(t) :={z € IR* : B(t)z € imGy(t)} = {z € R? : 2, = 2},

N()(t) N S()(t) = {Z S ]R2 LRl =22, Z1 = tZZ} = 0.

A geometrical picture of the critical phenomenon occurring at ¢, is the loss of transversality of these
subspaces, since Ny(t.) N Sp(t.) has dimension one. The canonical projector Il.q,, = (I — Ko)P

1 —t
1 —t

The homogeneous inherent ODE (3) with ¢; = 0, g2 = 0 has the solutions u(t) = (¢t — 1)2u(0).
The solutions of the homogeneous DAE (2) with ¢ = 0 are then

onto Sy along Ny

1
Hcam (t) = m

does not exist for t — ¢, = 1.

z(t) = (1 —t)u(0) [ ] , u(0) € IR,

which shows that the space of the solution values at t. = 1 consists of the origin only while, for
t # t., the space Sy(t) is filled by solution values. Note that uniqueness of solutions is broken at
the critical point.



Nevertheless, critical points do not only follow from rank deficiencies occurring in the last step
of the chain construction. In more involved cases, the chain construction cannot be carried out
up to the last step in the whole interval J. In this regard, we will not be interested in problems
that arise if a given continuous component should be continuously differentiable but is not, that
is, we do not consider critical points that arise just from the fact that pre-admissible projector
sequences may be not admissible. We suppose the DAE coefficients to be smooth enough to avoid
those cases; sufficient conditions for this will be given in Proposition 3. Our interest is directed
to critical points corresponding to failures of the used algebraic constant-rank and transversality
conditions, as acknowledged in Definition 3. Proposition 1 will prove that these notions are actually
independent of the (admissible up to level k£ — 1) choice of projectors.

Definition 2 A continuous matriz function G : T — L(IR¥), T C IR an interval, has a rank drop
at ty € L, if each neighborhood of t, contains points where the rank is different from rk G(t.). Then,

t. is called a rank-change or rank-drop point of G.

Definition 3 Given the DAE (1) with continuous coefficients, t. € J will be said to be a critical
point of

(i) type 0 if Gy has a rank drop at t;

(11) type k-A, k > 1, if there exists a neighborhood T C J of t. where the DAE is nice up to level
k —1, but Gy has a rank drop at t. for some (hence any) admissible sequence Qo, ..., Qk_1;

(13i) type k-B, k > 1, if there exists a neighborhood T C J of t. where the DAE is nice up to level
k —1 and Gy has constant rank for some (hence any) admissible sequence Qq,...,Qr—1, but
the intersection Ni(t.) N{No(ts) ® -+ ® Nk_1(ts)} is nontrivial, for these (hence any other)
projectors and Gj.

We will often speak of level-k critical points to refer either to type k-A or type k-B; and we will
say that a critical point is of type A or B if it has type k-A or k-B with arbitrary k.

Definition 4 A critical point t. € J of the DAE (1) is isolated if there is a neighborhood of t.
such that all points that are different from t, are reqular.

By definition, an isolated critical point ¢, of type (k+1) is the border of two regularity intervals,
say Z~ and ZT, Z-,7% C . The characteristic values rg, ..., apply to both intervals since there
is a sequence Qy,...,Qx that is admissible on Z. In case of a type (k + 1)-B critical point, G
has uniform rank 74,1 on Z~ and Z*. However, there may be different further characteristics
B3 Tigos s Ty——1, and om0 o re g on Z7 resp. 7. In case of a type (k + 1)-A critical
point, there are possibly different characteristic values r,_ ;, 7“,;:_1, too.

With this terminology, ¢, = 1 in Example 1 is an isolated critical point of type 1-A. More subtle

phenomena are defined by the critical points of types 1-B and 0, respectively, in Examples 2 and
3 below.



Example 2 Consider the circuit displayed in Figure 1, defined by a parallel connection of an
independent voltage source, a capacitor and an inductor which are linear time-invariant, and a

time-varying current-controlled current source (CCCS).

e

+
) L ¢ Eho

Ref
Figure 1: A linear time-varying circuit with a current attenuator/amplifier.

Modified Node Analysis (MNA) equations [4] read for this circuit

(Ce) +ir+ (y(t) = Diu = 0, (4a)
(Liy)' —e = 0, (4b)
e = u(t), (4c)

and this system can be written as a DAE with properly stated leading term letting

10 C 0 0 0 1 ~(t)—1
c oo v(t)
A= 1|0 1|, D= . Go=1|0 L o|l, B=|-1 0 0
0 L 0
0 0 0 00 1 0 0

The function y(¢) is continuous, and satisfies y(¢) < 1 if ¢ < 0 and y(¢) > 1 if ¢ > 0. At the point
t =0 it is y(0) = 1 and the behavior of the CCCS switches from that of an attenuator to one of
an amplifier. From an electrical point of view, it is worth emphasizing that the network includes
a C-V loop, and that the controlling current of the CCCS is the one of a voltage source within a
C-V loop, hence falling out of the scope of [4] (see specifically item 4 of Table V there).

1/C 0
Write in the sequel a(t) = y(t) — 1, so that a(t) =0 iff t =0. Choose D™ = | 0 1/L|,and
0 0
00 0 C 0 at)
Qo= 1|0 0 0|,sothat Gy = |0 L 0 | results. G1(t) has constant rank r; = 2, and the
0 0 1 0 0 O

nullspace N7 = ker G is continuous. Compute No(t) N N1(t) = {z € IR? : z; = 0,29 = 0, ()23 =
0}, hence Ny(t) N Ni(t) = {0}, for t # 0, No(0) N N1(0) = No(0). Therefore, ¢, = 0 is a critical
point of type 1-B.



1 00 1 0 0
On R~ and R™ we may choose Q1 = | 0 0 0], yielding Q; = Q1 Py, PoQ1= |0 0 0],
-Lo0 o0 000
Lo 0 1 0] C 0 «
DPyQ1D = [0 ,Bp =BPy=|-1 0 0|, Go=|-1 L 0f. It results that Gy(¢) is
1 00 1 0 0

nonsingular except at the critical point ¢, = 0, the problem hence being regular with index 2 in R~
and R*.

The last example in this Section, discussed below, attempts to illustrate that critical points of type
A do not necessarily yield a singular inherent ODE. This harmless phenomenon will be discussed

in more detail in Section 3.

Example 3 Consider the DAE

[g] (0 o) +a=0q (5)

where « is a continuous scalar function, J = (—o0,00),n = 1,m = 2,D = [0 «af,A = g],
0 o? . .
B=1Gy,= 0 ol All points ¢, with a(t,) # 0 are regular ones. Namely, Gy has constant rank
. . _ 0 10 1 o?
ro = 1 in a neighborhood of t.. There we may choose D™ = | | | ,Qo = ,G1 =
= 0 0 0 0
i 0 —a? -
has constant rank 1 = 1, it holds that Ng N N7y = 0, Qo and Q4 := 0 1 form an admissible
. - 1 o o
projector sequence, DPyPiD~ = 0,G2 = o 1l hence ro = 2,4 = 2. On the regularity interval

the solution of the DAE is given by the expression

z = (PoQ1 + QoP1)Gy g+ QoQ1D (DPy,Q1G5'q) = q — [g] (age), (6)
where the coefficients are
Qo@D = [g , DPyQ1Gy* = (o 0), (PQ1+ QoP1)G,! =1. (7)

On intervals where «(t) vanishes identically, we have simply A = 8] , D=100], D~ = [8],

Go=0,Qy=1,1=0, Gy =1, 1y =2, u=1, that is, the DAE (5) is there regular with index
one. Letting Q1 =0, P, =1, G2 = Gy, we find DPyP,D~ = 0 and (6), (7) keeps its value also in
this case.



If t, € (—o0,00) is such that «(t,) = 0 but in any neighborhood of ¢, there are points ¢ with
a(t) # 0, then ¢, is no longer regular but a type 0 critical point. In the particular case

at)=t if t>0, at)=0 if t<0, (8)

the DAE (5) is regular with index two on (0, c0) but regular with index one on (—o0,0). The point
t, = 0 is no longer regular. Here, at ?,, the characteristic numbers rp,r; and p change their value.
Nevertheless, DPyP;D~ = 0 and (7) hold true on both intervals (—oo,0) and (0,00) so that all
these terms have continuous extensions on (—o0o, 00), and the solution expression (6) holds true on
(—00, 00).

If we consider (5) with a(t) = t* or with a(t) = ¢'/3 instead of (8), formulas (6), (7) result
again, and, furthermore, now the characteristics ro = 1,71 = 1,70 = 2,4 = 2 are equal for both
(—00,0) and (0,00). Observe that, in all cases, it holds on regularity intervals that DPyPi D~ = 0,
so that there is a trivial smooth extension on the whole interval 7. Moreover, the function G2 can

be continuously extended on J and the extension remains nonsingular.

Critical points of type 0, that is, rank drops in Gy, may be caused by rank drops in A or D, or
in both, but also by failures of the transversality condition for ker A and im D. At those points,
D7, R and F, are no longer continuous, however, they may have continuous extensions through
the critical point. We will focus our interest on cases in which Py has a continuous extension.

Propositions 1 and 2 below are an easy consequence of [12, Proposition 2].

Proposition 1 The definitions of critical points of types k-A and k-B are independent of the
(admissible) choice of projectors.

Proposition 2 With every critical point of type k we may associate a characteristic critical value
i an invariant manner, namely:

(i) vk Gi(ts) for those of type A;

(1) dim (No @ --- @ Nj_1) N Ni(ts) for those of type B.

Furthermore, if ¢, is an isolated k-A critical point, and rp = rk Gj(¢) is constant in some punctured
neighborhood Z'* — {t,}, then we may speak properly of the rank deficiency at t., which is also
independent of projectors.

In sufficiently smooth cases, the only critical points are those of types A and B, as proved
below.

Proposition 3 Assume that the coefficients A(t), D(t), B(t) in the DAE (1) are C™~'. Then
every critical point is of type k-A or k-B, with 1 <k < m, or of type 0.



Proof: Note that, if the DAE is algebraically nice at a given level £k < m — 1, then the smoothness
requirement (iv) in [12, Definition 5] can be satisfied. This is due to the fact that, in the matrix
chain construction, supposed the DAE to be algebraically nice at level 0, we can take @)y in the
class C™7!, so that G = Gy + BQy is also C™~!. If neither type 1-A nor type 1-B singularities
are met, then we may choose a preadmissible @1 in C™~!, so that @; will actually be admissible.
Then B; and so Gy will be in the class C™~2.

If no critical points are displayed in subsequent levels nor an invertible G; is met, we can
continue the sequence in an admissible manner up to G,,,—1, @m_1 in C', so that continuous B,,,_1
and G, can be constructed. Now, if Gy, is singular and has constant rank (so that regular points
with index m and critical points of type m-A are also ruled out), then (Ng & ... ® Np—1) NN, =
R™ N Ny = Ny, # {0} and a critical point of type m-B is met.

|

This means that, for sufficiently smooth (meaning in this context C™~!) DAEs, there will be no
difficulties in the particular smoothness requirement (iv). In this situation, a DAE will be nice at
a given level if and only if it is algebraically nice at the same level, and if a preadmissible sequence
up to a given level exists, then an admissible one exists at the same level. This is implicit in the
classification of critical points depicted in Figure 4 at the end of the paper.

We finish this Section by showing that the taxonomy of critical points presented in Definition
3 is invariant under linear time-varying coordinate changes z(t) = K (¢)y(t) and premultiplication
by a continuous matrix function L(t).

Proposition 4 Let t, be a critical point of type k-A or k-B, 1 < k < m, or of type 0, for the DAE
(1). Then t, is a critical point of the same type for the rescaled, transformed DAE

A6)(D(8)y()) + B(t)y(t) = L(t)a(t), t€ T, (9)

with nonsingular L(t), K(t) € C(J, L(R™)), A(t) = L(t)A(t), D(t) = D(t)K (t), B(t) = L(t)B(t)K(t).

Proof: The result follows from the construction of the projectors Q; = K 1Q; K [9] for (9), which
results in the identities G; = LG, K. The rank of G; is therefore transferred to G; and type 0 and
type-A singularities are hence invariant. Additionally, N; = kerG; = K~'N;, so that the loss of
transversality in the N; spaces defining type-B singularities is also transferred to N;.

3 Algebraic aspects of critical chains

Generally speaking, the existence of critical points in J precludes the construction of a tractability
chain defined on the whole J. We figure out in this Section working assumptions which make it
possible a “uniform over singularities” treatment, that is, the construction of a globally defined
matrix chain which yields a tractability chain at regular points. Several algebraic properties of



such critical chains are considered in this Section, whereas the fact that they allow to unravel the
behavior through a scalarly implicit inherent ODE is addressed in Section 4.

Assumption 1. The set Tiey of reqular points is dense in J.

We restrict further the attention to problems with almost uniform characteristic values, defined by
the following working hypothesis.

Assumption 2. There exist projector functions Qq,...,Qm—1 on J such that, for 0 <i < m —1:

(i) Qi is continuous in the whole J;
(it) Q; is onto ker G; for all t € Lyeg;
(1it) QiQ; =0 forallte J,0< 5 <i;

(iv) DPy--- P;D~ is continuously differentiable in Z,cq, and (DPy--- P;D~), D~ (DPy--- P,D~)'D

have continuous extensions on J .

These working assumptions make it possible to define a matrix chain as in the regular setting.
But now it accommodates rank deficiencies in some of the G; matrices at critical points. This
critical chain has two important properties, described in Propositions 5 and 6 below. In particular,
Proposition 5 follows immediately from the constant rank condition on G; in Z,¢ implied by (i)
and (ii) in assumption 2.

Proposition 5 Under assumptions 1-2, the DAE has the same characteristic values and, in par-
ticular, the same index p in the whole L eg.

Note that @, = ... = Qn—1 = 0 and then G, = ... = Gy, in the whole J. Since the projectors
(); realize the “regular” matrix chain on Z..; and are well-defined and continuous on the whole
interval, we will say that the DAE is almost uniformly reqular with indezx i on J.

Proposition 6 Assumptions 1-2 rule out type B critical points on J.

Proof: Fix t, € J. Assume that the DAE is nice up to level k& — 1, for some k& > 1, and that rk Gy,
is constant in some neighborhood of #,, so that ¢, is not a type k-A critical point, and Ny = ker Gy,
has constant dimension around ¢.. We need to show that ¢, cannot be a type k-B critical point,
namely, that Ni(t.) and Ny(ts) @ ... ® Ni_1(t) intersect trivially. From assumption 2-(iii), it
follows that im Q(t) is transversal to No(t) & ... & Ni_1(¢) for all ¢ in some neighborhood of ¢,;
it then suffices to show that imQ(ts) = Nk(ts). On the one hand, both spaces have the same
dimension due to the continuity of )5 and the constant dimension of Ny; on the other hand, from
the vanishing of the continuous product G, Q. in the dense set Zyg, it follows that Gy (t.)Q(t.) = 0,

10



so that im Qg (t.) C ker Gi(t.) = Ni(t«). This proves that type k-B critical points are precluded
by assumptions 1-2, for 1 < k < m.

|

We will hence call the matrix chain G; constructed under assumptions 1-2 an A-critical chain.
This provides a setting beyond just p-A critical points; note that these last step critical points do
not put in question the matrix chain construction (and the regular framework could be essentially
used), in contrast to the ones in previous levels.

On harmless A-critical chains

We will show in Section 4 that the behavior of critical DAEs, under assumptions 1-2, can be
unveiled through a scalarly implicit decoupling. The leading coefficient will actually vanish iff G,
is singular. Therefore we might speak of “harmless” critical points #, in A-critical chains if G, (%)
is non-singular. Obviously, u-A critical points are never harmless. But this is not always the case
for lower level A critical points. Consider the DAE

0 0 10
t 0 0 0
with the type 0 critical point ¢, = 0, and which is regular for ¢ # 0,

1 0 _ 1 0 0 0 0 0 1 0
RZ[O OI,D:[() 0]3G0: aQozlo 1]3G1:[t 1],Q1:[—t 0],

10
G1 + BoPyQ1 = [ ] .

:1:) +z=gq, (10)

0 0
t 0

t 1

It therefore seems to be an interesting problem to check when type k-A critical points are lifted to
the (k + 1)-level or, more generally, how rank deficiencies overlap or accumulate at different levels,
for every critical point .. A result in this direction follows:

Proposition 7 Under assumptions 1-2, a type (u—1)-A critical point t, leads to a singular G, (t).

Proof: Note that the identity G,—1@Q,—1 = 0 holds in the whole J by continuity and due to the
fact that it holds in the dense subset Ze. Since G,_1 undergoes a rank drop at ., and Q,_1
has constant rank by assumption, it follows that im(,_1 (%) is strictly contained in ker G,,_1 ().
Equivalently, there exists a nontrivial vector z € ker G, (t.) —im@Q,_1(t.). Because of this, it is

i (t)z = (I = Quor ()2 # 0,

and
Gu(t)Pu—1(te)z = Guo1(t) Pu—1(t:)2 + Bu—1 () Qu—1(ts) Pu—1(t)z = 0,
since G (t«)Pu—1(ts)z = G,(t)z = 0 and Qu—1(t«)Py—1(ts) = 0. This proves that ker G, (t.)

includes a non-vanishing vector.

11



N,
N,

ta te tas tas

Figure 2: Accumulation or overlapping of rank deficiencies in an A-chain.

Corollary 1 A necessary condition for t. to be harmless is that G,—1 has constant rank in some
neighborhood of t.,.

4 Dynamical aspects

We generalize [15, Th. 3], holding for standard-form index-1 problems, along the lines defined by
[9, 10], making use of the fact that any continuous function which vanishes on a dense subset of 7

actually vanishes on the whole Z.

Proposition 8 Let assumptions 1-2 hold. Then, = € C},(I, R™), T C J, is a solution of the
DAE (1) if and only if it can be written as

r=D u+vy+ - +vu_1, (11)
where u € CY(Z,IR") is a solution of the scalarly implicit ODE
wyt' — wy(DPy -+ Py_yD™)u+ DPy-+ Py 1GYYBD u= DPy--- P,_1G%q, (12)

on the locally invariant space imDPy - -+ P,_1, andv; € CH(Z, R™),i=1,...,u—1, vy € C(Z, R™)
satisfy

Wylp—1 = —ICdelefu + EZ‘ijlq, (13a)
. . #71 uil
Wy = —ICZdJD_u—i—[,Zd]q—i—wu Z Nij(Dvj) + wy, Z Myjvj, k=p—2,...,1,0.  (13b)

Here, w, stands for det G,, and G’zdj is the transposed matrix of cofactors of G,. The coefficients
ICZdJ, EZd], Nij, My; are given in the Appendix.

12



Proof: Let x € CL(Z,IR™) be a solution of (1) on some subinterval Z C J. Since the identity
AR = A holds in the dense subset 7 N 7., it remains true in the whole Z. We may then write
A= ADD~ in (1). Premultiplying by G’Zdj and using

GUG, = GYWGPy 1 Py=w,Py 1D, (14)
in the particular case k = 0, we transform (1) into

wyPy1 -+ PoD™(Dz) + G4Y Bz = G4 q. (15)

Now, writing
B=BPy---P,_1+BPy---P,_2Q,-1+ ...+ BPyQ1 + BQo, (16)

taking into account the definition of B; as well as the relations

GUBLQr = GYUWGH1Qk =wuPu1 Poy1Qr = wpQp, 0< k < p— 1, (17)
and premultiplying by DF, --- P,_1, we arrive at

wy(DPy -+ Py_q1z) —w,(DPy---Py_1D7)'DPy-+- P12+
+DPy-- Py 1G4“BD™DPy-+-Py_1z = DPy---P,1G4%q,

which is the scalarly implicit inherent ODE (12) with u = DPy--- P, 2.

Proceeding as in [10], if we multiply (15) by Q,—1, then by Py---P,_o if 4 > 2, and in
turn by QP -+ Py—1 and Py Py 1QpPyy1--- Py—1, we get the relations depicted in (13) for
vo = Qoz, vi = Py  P1Qiz, 1=1,...,p— 1.

The local invariance of the space im D P - - - P, owes to the fact that « = (I-DPy--- P,_1 D™ )u
satisfies the homogeneous equation w,[a/ +(DPy--- P,—1D~)'a] = 0 on Z. Since w;, # 0 on a dense
set, it follows that o/ + (DPy---P,_1D~)'a = 0 on Z, and therefore a vanishing initial condition
for o (in virtue of u = DPy--- P,_1D~u) yields a trivial solution in the whole 7.

Conversely, we need to show that, provided w, vy, ...,v,—1 verify (12)-(13) in some subinterval
Z, then x = D" u + vy + -+ + v,—1 solves the DAE (1) on Z. But this is easier, since from the
smoothness properties of u, vo,...,v,—1 it follows that z € Cb (Z,R™), and additionally we know

the relation A(Dz)" + Bz — g = 0 to be satisfied on Z N Z,ey. Now, A(Dz) + Bz — ¢ is continuous
and, again by density of Z N Z,eg, the identity A(Dz)" + Bz — ¢ = 0 must hold in the whole Z,
showing that z actually solves (1).

|

Under assumptions 1-2, the behavior of a DAE with critical points is therefore addressed in terms
of the scalarly implicit decoupling (12)-(13). This way, the analysis of a critical DAE is driven to
the singular ODE setting; this is analogous to the approach carried out in the reduction approach
of Rabier and Rheinboldt [13] and also in the framework of the strangeness index by Ilchmann and
Mehrmann [6]. Note that in those works the results hold only for analytic problems.
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Note, however, that not necessarily w, vanishes at all critical points. This reflects that critical
points, defined in terms of the failing of the regularity assumptions in the chain construction, do
not exclude cases with unique solvability properties. A well-known example is (10), for which
z1 = q1(t), zo = q2(t) — tq}(t) is a well-defined (actually unique) solution. The same phenomenon
is acknowledged in the above-mentioned approaches [6, 13]. A complete formal characterization of
these “harmless” critical points is currently an open problem. Proposition 7 provides a result in this
direction. An important consequence of this proposition is that this type of harmless critical points
cannot follow from rank deficiencies in the leading matrix in almost uniformly index-1 problems

such as those of [15]. Obviously, a type u-A critical point will always yield a zero in w,.

5 Critical points of a linear time-varying Chua’s circuit

Following [12], we consider the linear time varying analogue of Chua’s circuit [3] with current-
controlled resistors depicted in Figure 3. The framework presented in previous sections will make
it possible to classify the critical points arising in the DAE model of this circuit; in particular, the
harmless nature of certain type-0 critical points owing to the vanishing of the values of reactances
will be discussed in an index-2 context.

€ Ry (t) €

lew lco
L(t)fg A — iy =R

Ref.

Figure 3: Linear time-varying Chua’s circuit with current-controlled resistors.

Due to the current-control assumption and the eventual vanishing of R;(¢) and Ra(t), resistors’
currents appear as variables in the Modified Nodal Analysis (MNA) model

(Ci(t)er) —ip, +ip, = 0 (18a)
(Ca(t)es) +iy+ir, = 0 (18b)
(L(t)i)" — ez 0 (18¢)

eag —er — Ry(t)iy, = 0 (18d)

e1 — Ry(t)i,, = O. (18¢)

This setting precludes the standard state reduction to Chua’s equation [3] and drives the problem
to the DAE context.
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We assume in the sequel that the resistor Ry verifies Ry (t) > 0 for ¢ < 0, and R;(t) = 0 for
t > 0. This models a persistent short-circuit in the interval [0, 00); note that the model (18) is valid
in the whole real line. Below we consider critical points due to the vanishing of Ry, C, Cs or L in
both subintervals.

R;i(t) > 0. In [12], it is shown that the simultaneous non-vanishing at a given ¢ of R, R, C|,
Cy and L defines t as a regular index-1 point. Assume that the non-vanishing of these values holds
true in some open dense subset of R~ (where Ry > 0), and let us analyze the effect of the vanishing
of Ry, Ci, Cy or L. To this end, write

1 00 0 0 0 -1 1
0 10 cCi 0 0 0O 0 0 1 1 0
A=10 0 1|, D=|0 Cy 0 0 O|,By=B=|0 -1 0 0 0 |, (19)
0 0O 0 0 L 0 O -1 1 0 —-Ry O
0 00 1 0 0 0 -—R
and
cCi 0 0 0O
0 C, 0 0 O
Go=|0 0 L 00 (20)
0 0 0 0O
0 0 0 0O

The vanishing of C, Cs or L yields a rank-deficiency in D and Gy, and therefore a critical point of
type 0. Nevertheless, under the assumed density of the regular set Z,.; N R™, we may define there

1/c, 0 0
0 1/C, 0
D =1 0 0 1/L|, (21)
0 0 0
0 0 0

yielding continuous projectors Py, (Qp in the whole R™, namely

10 000 0 00 0O

01000 0 00 0O
Fob=10 01 0 0],Q=1]0 0 0 0 0f. (22)

00 00O 00010

00 00O 000 01

From this projector, we get

ci 0 0 -1 1

0 Co O 1 0
Gi=Gy+ByQy=]0 0 L 0 0 (23)

0 0 0 —R 0

0 0 0 0 —Ry
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At points where Cq, Cy and L do not vanish, but Re = 0, we have a critical point of type 1-A4,
due to the rank deficiency on G1. In contrast, at points where all C, Cs, L and Rs are nonzero,
the problem is indeed regular with index-1, so that the problem is almost uniformly regular with
index-1 in R™.

Due to the asserted exclusion of harmless critical points in these a.u. index-1 problems, the
vanishing at a given ¢ of any of the values C, Cs, L or Rp is expected to yield a singularity in the
scalarly implicit decoupling of the DAE. This is indeed the case, since the scalarly implicit inherent
ODE (12) can be checked to read

LC,y (R1 + RZ) —LC1Ry 0
L0102R1R2’U,I + —LC5Ry LC{Ry CiCoR1 Ry | u=0. (24)
0 —LC1R1 Ry 0

Ry(t) = 0. Let us now consider the behavior in Rt U {0}, where R; does vanish. Assume that
the conditions Ry # 0, 0 # C; # —C3 # 0, L # 0 hold in some dense subset of RT, so that the
DAE has index-2 there, according to [12]. Let us again consider the effect of the vanishing of some
of these values at certain points. We assume that no more than one of the values of Ry, C1, C or
L vanishes at a given t.

Looking at (19), the vanishing of Cy, Cs or L yields again a critical point of type 0. Take P
and @ as in (22), so that

c, 0 0 -1 1
0 C,b 0 1 0
Gi=|0 0 L 0 0 (25)
0 0 0 0 0
0 0 0 0 -—Ry

The vanishing of Ry yields a rank drop in GG; and therefore the zeros of Ry define critical points
of type 1-A. But in the light of G; we may get additional conclusions regarding critical points of
type 0. When L does vanish, G1 undergoes a rank deficiency and, according to Corollary 1, critical
points owing to the vanishing of L cannot be harmless. In contrast, the vanishing of C; or C; alone
does not change rank in (G, so that these cases might well yield harmless critical points.

Assuming C 4+ C5 # 0, we may take

C —C:
CI£C2 Clékéz 0 0 0
Cl+é2 C'1+1C'2 000
Q=] 0 0 0 0 0], (26)
C,C. —C1C
Cll-i-C%2 01-11-03 000
0 0 0 00
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which yields, after some computations,

4 0 0 -1 1
0 Cy 0 1 0
_ C -C
Gy = 01_1_102 Cl+é2 L 0 0 (27)
-1 1 0 O 0
C —C
_C'1+2C'2 C'1+é'2 0 0 _RQ_

It can be checked that neither type-B nor type 2-A critical points are displayed under the condition
C1 + C5 # 0. In this setting, the matrix Go is singular if and only if L = 0 or Ry = 0, so that
the vanishing of C} or Cs alone indeed defines a harmless critical point. The latter cases define
non-singular points of the scalarly implicit inherent ODE

LC a \' e o\
Cl+é2 - LR2(01 + 02) (ClJ:C2> C'1+1C'2 - LR2(01 + 02) (ClJrlCz) Ry

'— | _Lc e\ _Lc ERY = 0.
LBy (CrHCo)u'— | LG LRy (Cr + O) () Sy — LBa(C1 + o) () RaCa| #=0

—LRy —LR, 0

Appendix: The coefficients of (13)

Fork=1,....,.u—1, j=k+2,...,u0—1:

['Zdj = Py Py 1QpPry1- "Puf1GZdj,
,Czdy = —Py-- Py 1QpPiy - "PM—IGZijPO Py

—wu Py Pe1QyPyy1 - Puo1 PuD~(DPy--- P,_1D™)'DPy--- Py,

Ly% = QoPi-- PG,
K = —QoPi- Py1GBPy- - Pyy —wuQoPy - Pyt P\D~(DPy-+- P,_1D™)DPy--- Py,

Nik1 = Po-- Peo1QpQr D,
Nij = Py Poo1QpPryr -+ Pj1Q;D7,

Myj = =Py P 1Qi{Qr+1D (DPy -+ PyQp+1D7) 4+ Pyy1Qpi2D ™ (DPy -+ - Py Q2D ™)
R ¥ TEREE P,u72Q;L71D7(DPO . P,u72Qu71D7)I}DP0 . ijQj

(2
— Z Py Pyo1QiPiy1--Py1---PD™(DPy---PD™)'DPy--- Pj_1Qj.
=1

For k = 0, in the top of these expressions, Py --- P,_1Q has to be replaced by Q.
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Figure 4: The smooth G-building and critical points in R™.
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