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Abstract

In this paper a Canonical Correlation Analysis �CCA� is used to test the

hypothesis r � r� against the alternative r � r�� Such a test �ips the

null and alternative hypotheses of Johansen�s LR test and can be used

jointly with the LR test to construct a con�dence set for the cointegra�

tion rank� As the latter test� our tests are based on the eigenvalues of a

CCA between di	erences and lagged levels of a time series vector� The re�
sulting test statistics can easily be adjusted for nuisance parameters using

a nonparametric correction in the spirit of Phillips �
��
� 
����� Monte

Carlo simulations suggest that variants of the CCA statistic may have bet�

ter properties than alternative tests and can be used as an alternative to

Johansen�s LR tests for determining the cointegration rank�
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� Introduction

Kwiatkowski et al� ������ �henceforth� KPSS� suggest a test for the null hy�

pothesis that a time series is �trend� stationary against the alternative that the

series is a �rst order integrated process� Such a test �ips the null and alternative

hypothesis of the unit root tests suggested by Dickey and Fuller ���	�� and can

be used to determine the degree of integration in a similar manner as the usual

Dickey�Fuller type of tests�

In a multivariate setup
 the LR test of Johansen ������ can be employed

to select the cointegration rank r in a vector autoregressive system by testing

a sequence of hypotheses on the cointegration rank� There are two di�erent

strategies to do so� The 
bottom�up� procedure starts with the hypothesis H� �

r � � and proceed by increasing the rank until the null hypothesis cannot be

rejected anymore� For the 
top�down� procedure we start with testing H� �

r � n � �
 where n is the dimension of the time series vector
 and reduce the

rank by one whenever the null hypothesis cannot be rejected� Both procedures

are considered in Section �� It is shown that by using a test procedure with a

reversed set of hypotheses
 the bottom�up strategy can be employed to construct

a con�dence set for the cointegration rank� In this paper such a test based on

canonical correlations is suggested� Tests of the null hypothesis r � � against

the alternative r � � was already suggested by Leybourne and McCabe �����a�


Shin ������ and Harris and Inder ������� Harris ����	� and Snell ������ extend

the test procedure to the case r� � � by using a principal components approach�

The principle for constructing these tests follows Stock �����a� and can be

demonstrated most easily in the context of a univariate unit root test� Assume

that the univariate time series fytg
T
t�� is generated by the AR��� process�

yt � �yt�� � �t �

where �t is a white noise process uncorrelated with yt��� Under the null hypothesis

yt is assumed to be stationary
 that is
 j�j � �
 whereas under the alternative

� � � so that yt is a random walk� An equivalent formulation of this null

�



hypothesis can be obtained from considering the di�erenced process

�yt � ��yt�� � �t � ��t�� �

where � � ��L and L is the backshift operator such that Lkyt � yt�k� If j�j � �


then the di�erenced series has an ARMA��
�� representation with � � �� In other

words
 under the null hypothesis the moving average polynomial ��� �L� has a

unit root� This reasoning suggests to test the null hypothesis that yt is stationary

by testing the MA representation of �yt against a unit root� This approach is used

by Tanaka ������
 Tsay ������
 Saikkonen and Luukkonen ������
 Leybourne and

McCabe �����b�
 Choi ������ and Breitung ������
 among others�

Tests for MA unit roots are based on the integrated �or partial sum� process

Yt �
Pt

i�� yi� Under the null hypothesis the series Yt has an ARIMA��
�
�� re�

presentation and under the alternative
 Yt is ARIMA��
�
��� Therefore
 �Dickey�

Fuller type� unit root statistics can be applied using critical values from the

opposite tail of the null distribution� For example
 Tsay ������ proposes to use

the ordinary Dickey�Fuller t�statistic and KPSS ������ is based on a Sargan and

Bhargava ������ type of unit�root statistic �see Stock �����b� for an overview��

This test principle can be straightforwardly adopted to test the hypothesis

that there exist r � r� cointegration relationships for the n�dimensional time

series vector yt against the alternative of r � r� cointegration relationships� The

idea for a test of the cointegration rank with a reverse sequence of null hypo�

thesis is to consider the cointegration properties of the n�dimensional partial sum

process Yt �
Pt

i�� yi� As in Johansen ������ we use a test procedure based on

a Canonical Correlation Analysis �CCA�� However
 whereas Johansen�s LR test

is based on a CCA between �yt and yt��
 our test is based on a CCA between

�Yt � yt and Yt���

Alternative approaches suggested by Harris ����	� and Snell ������ adopt a

principal components approach� These tests are based on estimates of the cointe�

gration vectors obtained from the eigenvectors of the matrix
P
yty

�

t� There does

not seem to be an ultimate reason for preferring one �the principle components�

approach over the other �CCA� so it seems worthwhile to consider Johansen�s

CCA �or 
reduced rank�� approach to the partial sum process�

�



For the special case of testing r� � n it is shown in Section � that the asymp�

totic null distributions of the test �corrected for nuisance parameters� is identical

to the limiting distributions of Johansen�s LR statistic for testing r � �� For

hypotheses with r� � n
 the asymptotic null distribution is presented in Section

�� In contrast to Johansen�s LR test
 the asymptotic distribution depends on r

and n� In Section � it is argued that the eigenvectors of a CCA between yt and

Yt�� yields T �consistent estimates for the cointegration vectors� However
 these

estimates can be improved by using additional instruments�

It is well known �e�g� KPSS ����
 Leybourne and McCabe ����b�
 that tests

of the stationarity hypothesis su�er from the poor properties of the estimated

nuisance parameters under the alternative hypothesis� In Section � we therefore

suggest a modi�cation similar to the one recommended in Breitung ������ for

the case of the KPSS test statistic� Indeed the simulation results reported in

Section 	 demonstrate that this small sample modi�cation yields a substantial

improvement of the test� Furthermore the simulation results suggest that the

augmented CCA statistic proposed in Section � is roughly as powerful as the test

of Shin
 although no prior normalization of the cointegration matrix is required

for our test� In fact it is shown that if the normalization used for the latter test is

invalid
 the test is seriously biased� Finally
 a four�variable cointegrated system

is considered to assess the ability of the new test to select the cointegration rank�

Section � considers an empirical example and Section � o�ers some concluding

remarks� All proofs can be found in Appendix A�

Finally a word on the notational conventions applied in this paper� The

symbol � denotes weak convergence with respect to the associated probability

measure and �x� denotes the smallest integer � x� For notational convenience we

write integrals such as
R �
� B�a�da simply as

R
B�

� A Con�dence Set for the Cointegration Rank

There are two mayor principles to select the cointegration rank by using Jo�

hansen�s LR test procedure� First
 we may apply a 
general�to�speci�c� type of

test procedure by starting with the hypothesis H� � r � n � � and proceed by

�



reducing the rank as long as the LR test renders an insigni�cant test statistic�

This procedure will be called 
top�down procedure�� Second
 we may start with

the hypothesis r � � and increase the rank as long as the test yields a signi��

cant test statistic� This procedure is called 
bottom�up procedure�� The latter

procedure is preferred by Johansen �����
 p���	��

Whenever the sequence of LR tests yields 
monotonic� outcome in the sense

that there is a rank rJ such that the test accepts the null for all r � rJ and rejects

for r � rJ 
 then the top�down and the bottom�up procedures yield the same

result� However
 both procedures di�er in the treatment of a 
non�monotonic�

sequence of test decisions� For illustration assume that the sequence of tests in a

�ve�dimensional system yields the following non�monotonic result�

r� � � � � � �
� � � � �

where 
�� and 
�� indicate that the null hypothesis is accepted or rejected


respectively� For such a sequence
 the top�down procedure would select the rank

� and the bottom�up procedure would suggest the rank ��

To assess the probability for a non�monotonic sequence of test decisions
 it is

useful to consider the �asymptotic� distribution of the test statistic for the case

that the the true rank r� is lower than the rank under test� Usually
 when testing a

sequence of nested hypotheses
 the test statistics are asymptotically stochastically

independent �e�g� Holly ����
 Sec� ��
 so that we might expect that for r� � r�

the test rejects with a probability equal to the size of test� Intuitively
 when

a subset of hypotheses is tested then this test does not depend on the validity

of another subset of hypotheses� Similarly
 we may assume that when testing a

subset of eigenvalues against zero
 the values of the other eigenvalues does not

a�ect the test decision� However
 this is not the case� Since the eigenvalues are

ordered by their value
 the test will depend on the values of the other eigenvalues


in general�

Let LR�r�� denote Johansen�s LR trace statistic of the hypothesis r � r��

Then under the assumptions of Johansen ������ for a n�dimensional VAR model

�



Table �� Actual sizes for LR tests with r� � r�

q � n� r� n� r�
� � � � �

� ���� ���� � � �
� ���� ���� ���� � �
� ���� ���	 ���� ���� �
� ���	 ���� ���� ���� ����

� ���� ���� ���� ���� ����
Note� Entries report the rejection frequencies in percent for Johansen�s
trace test with a signi�cance level of ���� computed from 	����� repli�
cations of random walk sequences with T 
 ���� The bold numbers are
the sizes for using the true cointegration rank in the null hypothesis�

with cointegration rank r� � r� we have as T ���

LR�r�� �
n�r�X
j��

�j�q� �

where q � n� r� and � � ���q� � � � � � �q�q� are the ordered eigenvalues of the

stochastic matrix Z
dWqW

�

q

�Z
WqW

�

q

��� Z
WqdW

�

q �

and Wq is a q�dimensional standard Brownian motion�

Since all eigenvalues are positive it follows that LR��� � LR��� � � � � �

LR�r��
 and
 thus
 tests with r� � r� are conservative� To get an impression of

the size bias we compute the actual sizes for various combinations of n� r� and

n� r�� The results are presented in Table �� It turns out that tests with r� � r�

are highly conservative� If the r� exceeds r
� by more than one
 then the actual

size is very small �� ��� percent�� This results demonstrates that the probability

of detecting a non�monotonic sequence of test decisions is small and
 thus
 in

practice we usually �nd that both procedures give the same result�

Nevertheless
 in situations where the test has a poor power �e�g� in small

samples�
 the procedures may select di�erent ranks more frequently� Therefore
 it

is interesting to compare the properties of both procedures� It is well known that

in a sequence of tests the overall size is di�erent from the size of the individual

tests� In the case that the tests statistics are uncorrelated it is easy to calculate
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the overall signi�cance level �see
 e�g�
 L�utkepohl ����
 p� ����� However
 in our

case the test statistics are correlated and we only can give a quite conservative

upper bound for the top�down procedure�

In contrast
 for bottom�up procedure the overall type I error is bounded by the

size of the individual tests� To see this
 assume that the tests are performed for

the whole sequence of n hypotheses rather then stopping if the null hypothesis is

accepted� Then
 for H� � r� � r� �the true rank� we will �nd that the test accepts

in �� � ������� of the cases
 where �� denotes the size of the individual tests�

By construction
 for these cases the bottom�up procedure selects a rank rbJ � r�

and
 thus
 we get

P �rbJ � r�� � �� � ���

Thus
 the advantage of the button�up strategy is that we can easily control the

overall size of the procedure� A similar result is obtained by Dickey and Pantula

����	� for the determination of the degree of integration of a univariate time

series�

Next we show that by using two di�erent bottom�up procedures it is possible

to construct a con�dence set for the unknown cointegration rank� From ���

it is seen that by using Johansen�s LR procedure it is possible to control the

probability that the bottom�up procedure selects a lower rank� Assume that we

have a di�erent type of test procedure that allows to test the hypotheses

H� � r � r� versus H� � r � r� �

Such a test procedure �ips the null and alternative hypotheses of Johansen�s LR

test� We then can construct a bottom�up procedure by starting with a test of the

hypothesis r � n� If the hypothesis is rejected
 we test the hypothesis r � n� �

and will proceed so until the test accept the hypothesis� We denote the selected

rank of such a procedure as rbR
 where the index R indicates that the test uses

a reversed sequence of hypotheses� Although the rank is tested in a descending

order
 it is essentially a bottom�up strategy because we proceed with testing as

long as the test rejects the null hypothesis�

�



As for rbJ 
 it is possible to control the overall size such a test sequence so that

P �rbR � r�� � �� � ���

where again �� denotes the size of the individual tests� Using ��� and ��� it is

possible to construct a �� ��� con�dence set for the rank r��

P �rbJ � r� � rbR� � �� ��� � ���

It should be noticed that this con�dence set may be conservative� If the power

of the test is unity and the test statistics are perfectly correlated such that both

tests always reject H� � r � r� together
 then the probability in ��� is � � �� If

rR � � and rJ � n
 then the con�dence set is uninformative�

The rest of the paper deals with a test based on a CCA between yt and Yt��

which can be used to obtain rbR� Of course
 the tests of Harris ����	� and Snell

������ can be used as well�

� Testing for Stationarity

Assume that the n� � vector yt is generated by a linear process given by

�yt � �yt�� � ut � ���

where futg obeys the following assumption�

Assumption ���� Let ut � A�L��t �
�P
j��

Aj�t�j with
�P
j��

j�jjAjjj
� � � and

�t is i�i�d� with E��t� � � and positive de�nite covariance matrix E��t�
�

t� � ���

A similar assumption is used in Bewley and Yang ������ and Quintos �������

Although it is possible to relax this assumption to allow for some kinds of het�

eroscedasticity
 this assumption is used to facilitate the exposition�

If the rank of the matrix � is � � r � n
 then the factorization � � �	 �

applies
 where � and 	 are n� r matrices� Furthermore
 it is assumed that �yt

has a Wold representation of the form�

�yt � C�t � C��L���t � ���

	



where 	 �C � � and C��L� � C�

� �C�

�L�C�

�L
� � � � � is a matrix polynomial with

all roots outside the unit circle and C is an n � n matrix with rk�C� � n � k�

This assumption ensures that �yt is stationary�

If ut is white noise
 then Johansen�s LR test for the cointegration rank is based

on a CCA between �yt and yt�� leading to the problem�

j�S�� � S��S
��
�� S

�

��j � � � ���

where

S�� �
TX
t��

yt��y
�

t��� S�� �
TX
t��

�yt�y
�

t� S�� �
TX
t��

yt���y
�

t �

The eigenvalues are equivalent to the eigenvalues of the matrix products b� b��
�or b�� b��
 where b� is the least�squares estimate from a regression of �yt on yt��

and b�� denotes the estimate from a �reverse� regression of yt�� on �yt� The LR

test statistic is �approximately� the sum of the r smallest eigenvalues� If yt is

cointegrated with rank r
 then n�r eigenvalues for ��� tend to zero with the rate

T���

The hypothesis on the cointegration rank is tested by analyzing the cointegra�

tion properties of the partial sum process Yt �
Pt

i�� yi� Under the null hypothesis

we assume that the cointegration rank is r
 that is
 there exists an n� r matrix

	 such that 	 �yt 	 I���� The eigenvalues from a CCA between yt and Yt�� result

from the problem

j�S�� � S��S
��
�� S

�

��j � � �	�

or j�S�� � S ���S
��
�� S��j � � � ���

where

S�� �
TX
t��

yty
�

t� S�� �
TX
t��

Yt��Y
�

t��� S�� �
TX
t��

Yt��y
�

t �

As in Johansen �����
 p� ���f� we �rst consider the limiting distribution of a

special case� To test the null hypothesis r� � n �yt is stationary� against the

alternative r� � n we use the normalized sum of the eigenvalues of problem ���

as the test statistic� The following theorem gives the asymptotic null distribution

for this test statistic�

�



Theorem ���� Let yt be a vector of stationary time series with positive de��

nite covariance matrix E�yty
�

t� �  �� The test statistic for testing H� � r � n is


n � T
nP

j��
�j� where �j� j � �� � � � � n denote the eigenvalues of the problem ����

For T �� the asymptotic null distribution is given by


n � tr

��Z
WnW

�

n

��� �Z
WndW

�

n �!
�
"���
y  ��

� "���
y

�Z
dWnW

�

n �!�

��
�

where

! � "���
y #"���

y

# �
�X
i��

 i

 i � E�yty
�

t�i�

and it is assumed that "��� is a symmetric matrix such that "���"��� � "�

This result suggests to correct the test statistic for the nuisance parameters

by using the expressions

eS�� �

�
TX
t��

Yt��y
�

t � T b#�

� b"����

eS�� �
TX
t��

b ����
� yty

�

t
b ����
�

instead of S�� and S�� in �	�
 where b#� b" and b � are consistent estimates of #
 "

and  �� Following Phillips ������ the following estimators are used�

b#�k� �
kX

i��

w�i�b i ���

b"�k� � b � � b#�k� � b#�k�� ����

b i � T��
T�iX
t��

ytyt�i � ����

where w�i� is an appropriate weight function and k denotes the truncation lag


which increases with the sample size such that k �� as T �� but k�T � ��

Further kernel conditions and bandwidth expansion rates are given in Phillips

�������

�



A natural estimator for  � is b � � T��P yty
�

t so that the term
eS�� reduces to

T yielding a standard eigenvalue problem�

je�In � bS���k�
�S��

��
bS���k�j � � � ����

where the factor T is absorbed in e�� The resulting test statistic is
e
n�k� �

nX
j��

e�j � tr� bS���k�
�S��

��
bS���k��� ����

Using Theorem ��� it is easy to verify that this statistic has the same distribution

as Johansen�s LR trace statistic�

� The Asymptotic Null Distribution for r� � n

In this section we consider a test of the null hypothesis H� � r � r� � n against

the alternative r � r�� The special case H�� r � � is the situation considered

in Leybourne and McCabe �����a�
 Shin ������ and Harris and Inder �������

Without loss of generality we will consider the transformed system xt � Qyt


where Q is an invertible n � n matrix� This transformation is used to separate

r stationary linear combinations from the remaining n� r nonstationary compo�

nents� A further feature of this transformation is that the resulting components

are asymptotically independently distributed with unit covariance matrix� Note

that such a 
rotation� of the system does not a�ect the eigenvalues for our test

procedure� It is merely introduced to facilitate the asymptotic analysis of the

system�

Lemma ���� There exists an invertible matrix Q � �	�� ����� where 	� is an

n� r cointegration matrix and �� is an n� �n� r� matrix linearly independent

of 	� such that

xt �
�
x�t
x�t

�
� Qyt �

�
	��yt
���yt

�

T����
�aT �X
i��

x�i � Wr�a�

T����x���aT � � Wn�r�a��

��



where Wr andWn�r are uncorrelated r and �n�r� dimensional Brownian motions

with unit covariance matrix�

Furthermore
 to abstract from nuisance parameters we will make the following

assumption
 which will be relaxed below�

Assumption ���� x�t and �x�t are white noise with E�x�tjxt��� xt��� � � �� � �

and E��x�tjxt��� xt��� � � �� � � for all t�

For notational convenience we de�ne the matrices X � �x�� x�� � � � � xT �
� and

Z � �X�� X�� � � � � XT���
�
 where Xt �

Pt
i�� xi� Similar as in the case r� � n the

eigenvalue problem is of the form

j�In �X �Z�Z �Z���Z �Xj � �� ����

Originally
 a CCA between xt and Zt would require to set X �X instead of In�

However
 as argued in Section �
 the term X �X drops out when the test statistic

is corrected for nuisance parameters�

Let bj denote the eigenvector corresponding to �j� If bj falls inside the coin�

tegration subspace
 then �j is Op���� That is
 there exist r eigenvalues with a

nondegenerate limiting distribution� On the other hand
 if bj falls outside the

cointegration subspace
 then the corresponding eigenvalues diverge at the rate�

T ��

It is interesting to compare this asymptotic behavior with the properties of

the eigenvalues from the ML estimation in a VAR system� In the latter case

Johansen ������ shows that r eigenvalues are Op��� and n � r eigenvalues are

Op�T
���� Whereas Johansen�s test is based on the �normalized� n�r eigenvalues


our test is based on the smallest r eigenvalues� Accordingly
 the test �ips the null

and alternative hypotheses�

In the following theorem the asymptotic null distribution of the test ist given�

�Note that by replacing X �
X by In in �	�
 the eigenvalues need no longer be smaller than

one� as it is the case for the original CCA problem�

��



Theorem ���� Let yt be generated as in ���� with cointegration rank � � r �

n � �� Furthermore 
r �
rP

j��
�j� where �� � � � � � �n are the eigenvalues of the

problem �	��� Then� under Assumption 
�	 and T �� we have


r � tr

��Z
dVr


�

n

��Z

n


�

n

��� �Z

ndV

�

r

��
�

where

dVr � dWr �

��Z
dWr


�

n

�Z

n


�

n

��� Z

nW

�

n�r

�

�

�Z
Wn�r


�

n

�Z

n


�

n

��� Z

nW

�

n�r

����
Wn�r�


n � �W �

r�
R
W �

n�r�
�� Wr and Wn�r are r and �n� r� dimensional standard Brow�

nian motions�

This limiting distribution is more complicated as for the case r� � n and

depends on the dimensions r and n�r� Critical values obtained from this limiting

distribution are presented in Appendix B �Table B����

In order to allow for a constant or a trend the test can be performed using

the mean�adjusted series $yt � yt � T��P yt or the trend adjusted series %yt that

results as the residuals from a regression of yt on t and a constant� The partial

sums are then constructed by using $yt or %yt� As usual the limiting distribution

of the resulting test statistics is di�erent from the case without any determinis�

tics� Although the general form of the asymptotic distribution is the same
 the

Brownian motions are replaced by multivariate Brownian bridges in case of mean

adjusted series and by second order Brownian bridges �cf KPSS ����� in the case

of a trend adjustment� Corresponding critical values for these cases can be found

in the Appendix �Table B�� and Table B����

To accommodate more general processes we allow x�t and �x�t to be serially

correlated� As a consequence
 the limiting distribution of the test statistic de�

pends on nuisance parameters� Therefore
 to adjust the test statistic for nuisance

parameters we use the same estimators ��� � ���� as for the case r� � n and

replace Z �X in ���� by

bSx
���k� � �Z �X � T b#x�k���b"x�k�����

��



where b#x�k� and b"x�k� are computed as in ��� � ���� but with xt instead of yt�

This may appear inappropriate since for r � n the covariances b j are Op�T � and


thus
 the nuisance parameters tend to in�nity as T � �� Nevertheless
 under

appropriate assumptions on the asymptotic behavior of the nuisance parameters

it is shown that the asymptotic null distribution is not a�ected by using estimates

for the nuisance parameters�

Assumption ��	� Let #x and "x be partitioned according to xt � �x��t� x
�

�t�
�

such that

#x �
�
#x

�� #x
��
�

#x
�� #x

��

�
and "x �

�
"x

�� "x
��
�

"x
�� "x

��

�
�

It is assumed that the estimates of the submatrices of #x and "x obey the following

assumptions�

b#x
���k� � #x

�� � op���b"x
���k� � "x

�� � op��� � Ir � op���b#x
���k� � Op�kT �b"x
���k� � Op�kT �b#x
���k� � Op�k�b"x
���k� � Op�k�

The usual kernel estimates such as the ones considered in Phillips ������

satisfy this assumption�

Theorem ��	� Let yt be generated as in ���� with cointegration rank � � r �

n��� Furthermore e
r�k� �
rP

j��

e�j� where e�j �j � �� � � � � n� denote the eigenvalues

of the problem

je�In � bSx
���k�

��Z �Z��� bSx
���k�j � �� ����

For k�T � �� and under Assumption 
��� a test based on e
r�k� has the same

limiting distribution as 
r�

For a similar set of conditions an analogous result is obtained for the KPSS

statistic� There are two reasons for this result to hold� First
 by rotating the

��



system as in Lemma ���
 we obtain two sets of nuisance parameters� The esti�

mates of the nuisance parameters involved by the smallest r eigenvalues converge

to the true values as T ��
 whereas the estimates of the nuisance parameters

corresponding to the remaining n� r eigenvalues diverge� Since the test statistic

only involves the smallest r eigenvalues
 the estimated nuisance parameters do

not a�ect the null distribution�

� Using More E�cient Estimates

In Johansen�s ML estimation procedure
 the eigenvectors corresponding to the

r largest eigenvalues are T �consistent estimates for some suitably normalized

cointegration vectors� For a CCA between yt and Yt�� a similar result can be

obtained� The eigenvalue �j for the problem ���� can be written as

�j �
b�jX

�Z�Z �Z���Z �Xbj

b�jbj
����

and the corresponding eigenvector bj can be decomposed as

bj � 	pj � 	�qj �

where pj and qj are r � � and �n � r� � � vectors� In the transformed system


the cointegration matrix is 	 � �Ir� ��
� and the orthogonal complement is given

by 	� � ��� In�r�
�� Since the r smallest eigenvalues are Op���
 it follows that the

vector qj must converge to zero with the rate O�T
��� and
 thus
 the eigenvectors

are T �consistent estimates for the respective cointegration vectors 	pj� In the

proof of Theorem ��� it is shown that by normalizing the matrix of the eigen�

vectors as $	T � �Ir��e&�T �� the submatrix e&T is asymptotically equivalent to an

instrumental variable �IV� estimator of & in the model

x�t � &�x�t � �t ��	�

with

e&T � �X �

�Z�Z
�Z���Z �X��

��X �

�Z�Z
�Z���Z �X� �Op�T

����

��



Recall that in the rotated system x�t � 	��yt is stationary and x�t � ���yt is

nonstationary so that e&T converges to zero as T ���

A useful instrument wt for estimating ��	� should obey two conditions

T��
X
t

wt�
�

t � �

T��
X
t

wtx
�

�t � A 
� �

for some � � �� It is easy to verify that X�t satis�es these conditions for � � �

and X�t satis�es these conditions for � � �� However
 in addition x�t is a useful

instrument implying
 which can be seen by setting � � �� Hence
 the IV estimator

can be improved by adding x�t to the set of instruments� This can be done by

considering the eigenvalues of the problem�

j��In �X �Z��Z��Z����Z��Xj � � � ����

where z�t � �X �

�t� x
�

�t� X
�

�t�
� and Z� � �z�� � � � � � z

�

T���
��

For estimating the nuisance parameters
 the covariance matrices are computed

as

 �i � T��
T�iX
t��

y�t y
�

t�i
� �

where y�t � �y�t��x
�

�t�
�� The di�erences of x�t are used because this term is known

to be I��� under both the null and under the alternative� If it is unknown

how to construct x�t
 one may use the n � r eigenvectors corresponding to the

zero eigenvalues of Johansen�s estimation procedure to construct an estimated

version of the nonstationary components� It is easy to verify that the asymptotic

distribution is not a�ected by using consistent estimates of the nonstationary

components� The asymptotic null distribution of the test statistic is given the

following Theorem�

Theorem ���� Let yt be generated as in ���� where � � r � n� � and futg

obeys Assumption 
�	� Furthermore 
a
r �

Pr
j�� �

�

j � where �
�

� � � � � � ��n are the

eigenvalues of the problem �	��� Then� as T ���


iv
r � tr

��Z
dVr


�

n
�

��Z

�n


�

n
�

��� �Z

�ndV

�

r

��

��



where

dVr � dWr �

��Z
dWr


�

�n�r
�

�Z

��n�r


�

�n�r
�

��� Z

��n�rW

�

n�r

�

�

�Z
Wn�r


�

�n�r
�

�Z

��n�r


�

�n�r
�

��� Z

��n�rW

�

n�r

����
Wn�r�


��n�r � �W �

r�W
�

n�r�
R
W �

n�r�
�� Wr andWn�r are r and �n�r� dimensional standard

Brownian motions�

Critical values resulting from this limiting distribution are presented in Ap�

pendix B�

Another possibility is to use the e'cient 
Fully�modi�ed� estimator of Phillips

and Hansen ������ or the projection estimator of Saikkonen ������ as in Shin

������� Assume that the time series vector can be partitioned as yt � �y��t� y
�

�t�
�

where y�t is assumed to be strongly exogenous� Furthermore we assume that the

cointegration matrix can be normalized as 	 � �I��#��� In this case an e'cient

estimate of the cointegration matrix can be obtained from a regression of y�t on

y�t� A test statistic corresponding to the sum of the r smallest eigenvalues is

obtained as


e
r � tr

h b	 �y�Y �Y �Y ���Y �y b	i �
where b	 � �Ir�� b#�

e�
� and b#e is an asymptotically e'cient estimator for the

cointegration regression y�t � #�y�t�ut� As in Shin ������ the regression includes

leads and lags of �y�t if y�t is endogenous� Alternatively
 the 
fully�modi�ed�

system estimator of Phillips ������ may be used �see Harris and Inder ������

The following theorem gives the asymptotic null distribution of the resulting test

statistic�

Theorem ��	� Let yt be generated as in ���� where � � r � n� � and futg

obeys Assumption 
�	� Let b	 � �Ir��b&�e�� and b&e is an asymptotically e�cient

estimator of the cointegration matrix normalized as 	 � �Ir��&
���� Then� as

T ���


e
r � tr

��Z
dVr


�

n

��Z

n


�

n

��� �Z

ndV

�

r

��
�

��



where

dVr � dWr �

�Z
dWrW

�

n�r

�Z
Wn�rW

�

n�r

���
�
Wn�r �

and Wr and Wn�r are r and �n� r� dimensional standard Brownian motions�

The attractive feature of this approach is that such a test uses an e'cient

estimate for the cointegration matrix� However
 in practice it is not clear whether

the chosen normalization is valid� In particular for large dimensions r
 there is a

serious danger that the normalization fails which may have serious e�ects on the

distribution of the test statistic� Therefore
 the CCA approach or a test based

on principal components �Harris ���	
 Snell ����� is favorable in practice�

� A Small Sample Re�nement

From KPSS type of tests it is known that the correction for nuisance parameters

reduce the power of the test considerably �e�g� KPSS ����
 Leybourne and Mc�

Cabe ����b�� Although the local power of the test is una�ected
 the power in

�nite samples depends crucially on the truncation lag of the estimates �cf Breitung

������ Leybourne and McCabe �����b� therefore suggest to adopt a parametric

model to correct for nuisance parameters� However
 such an approach requires to

estimate an ARMA model with r MA unit roots by exact maximum likelihood

which would be fairly complicated task in a multivariate framework� We therefore

adopt a simpler approach suggested in Breitung �������

The principle is easily explained in a univariate context� Assume that a

univariate time series yt �without deterministics� is tested for stationarity by

using the test suggested by KPSS ������� Let Yt denote the partial sum of yt

and �T � T��PY �
t �(�

�
y is the KPSS statistic
 where (�

�
y is the estimated 
long run

variance� of yt�

Now
 consider the autoregression

yt � �yt�� � vt �

If yt is I���
 then the OLS estimator of � converges to one at rate T and the

residuals are approximately the di�erence of yt� The next step is to form the

�	



partial sum Vt �
Pt

j�� vj and run the regression

yt � �Vt�� � et� ����

If yt is stationary
 then the OLS estimator of � should be close to zero
 because

the partial sum Vt�� cannot explain a stationary variable� In contrast
 if yt is

I���
 then Vt�� � yt�� and we therefore expect that %� is close to one� Accordingly


for the residuals of ���� we have %et � yt for a stationary series and %et � �yt if yt

is I���� This reasoning suggest that the residuals of ���� behave like a stationary

series no matter whether yt is I��� or I����

Unfortunately
 this reasoning is only valid if vt is observable� If vt is replaced

the residual and bVt � Pt
i�� %vi is used instead of Vt
 the estimate of � does not

converge to one under the alternative �cf Breitung ������ Nevertheless
 under

the null hypothesis that yt is I���
 it can be shown that the estimate of � indeed

converge to zero at a su'cient rate
 so that estimating the nuisance parameter

using the residuals %et instead of yt does not a�ect the limiting distribution of the

test�

Notwithstanding the asymptotic failure under the alternative hypothesis
 it

is reasonable to expect that our intuitive reasoning is helpful in small samples�

Since the regression minimize the variances of the residuals
 the regression will

render a residual series that resembles a stationary series as much as possible and


thus
 produces a correction term which is usually smaller than the one computed

from the original series� Thus
 the loss in power is usually smaller by using %et

instead of yt when estimating the nuisance parameters�

This approach can be straightforwardly adopted to the multivariate case� For

convenience we will consider the rotated system xt� Since the CCA is invariant

with respect to such transformations this does not imply any loss of generality�

The �rst auxiliary regression is

�xt � �xt�� � vt � ����

The second auxiliary regression is of the type

xt � ) bVt�� � et � ����

��



where bVt is the multivariate partial sum given by bVt � Pt
i�� %vt and %vt denotes the

residual from ����� Following Breitung ������ it is straightforward to show that

using the residuals of ���� instead of xt for estimating the nuisance parameters

does not a�ect the asymptotic null distribution�

Theorem 
��� Let %et � xt � b) bVt�� denote the residuals of ��	�� where b) is

the least�squares estimator of )� If #x and "x are estimated as in Assumption


�� but using %et instead of xt� then the the resulting test statistic has the same

asymptotic distribution as $
r�k� in Theorem ����

Although the modi�cation does not a�ect the asymptotic size of the test
 it

may have an important fact on the power of the test� Assume that we estimate

) in ���� by using

Vt�� �
t��X
t��

�
�x�t
�x�t

�
�
�
��� �
��� �

� �
x��t��

x��t��

�

�
�
x�t � ���X�t

x�t � ���X�t

�

instead of bVt��� It is not di'cult to see that in this case the least�squares estimator

of ) converges to the matrix

)� �
�

� �
����

��
�� In�r

�

and
 thus
 we have in the limit

e�t � yt � )�Vt�� �
�

x�t
�x�t � �t

�

where �t � ����
��
�� x�t is stationary� Obviously
 e

�

t has the desired properties for

estimating the nuisance parameters #x and "x because the resulting estimates

converge in probability to a �xed limit as T ��� Unfortunately
 this reasoning

is no longer valid if Vt�� is replaced by bVt��� Nevertheless
 we may hope thatbVt�� resembles Vt�� so that the power of the test may be improved substantially

when using %et instead of yt�

��



� Simulation Results

To compare the properties of the new tests with the test suggested by Shin we

consider a bivariate model given by the two equations

y�t � y��t�� � �t ����

�y�t � ��y�t � vt � �vt�� � ����

where �t and vt are mutually uncorrelated white noise with unit variance� If � � �


the di�erence operator drops out and ���� de�nes the cointegrating relationship

y�t � �y�t � vt� On the other hand
 an integration of equation ���� shows that

there is no cointegration between y�t and y�t for j�j � �� Besides �
 the power of

the test depends on parameter �
 so we present results for di�erent values of �

and ��

First
 we use the test statistic suggested in Section � to test the hypothesis

r � � �� � �� against r � � �j�j � ��� Two di�erent truncation lags k � � and

k � � are used� The corresponding test statistics are indicated by CCA�k�� The

respective test statistics using a the modi�ed estimates of the nuisance parameters

suggested in Section � is labeled as CCA��k��

The CCA statistic using the augmented set of instrumental variables are in�

dicated by CCAa� Two versions of this test statistic are computed� First
 y�t is

used as additional instrument� By construction
 this variable is I��� and there�

fore is a valid instrument for estimating & in ��	�� The respective statistic with

the modi�ed estimator of the nuisance parameters �see Section �� is labeled as

CCA�a�k�� Second
 the nonstationary linear combination is estimated using the

eigenvectors corresponding to the nonstationary eigenvalues of Johansen�s ML

estimation procedure� The respective test statistic is denoted by CCA�ba�k��
For the test problem considered here
 the test suggested by Shin can be applied

and will be used as a benchmark for testing the power of the new statistics� The

test is based on Saikkonen�s ������ approach
 estimating the equation

y�t � �y�t �
mX

j��m

�y��t�j � �t � ����

��



where m � � is used in our simulations� To estimate the long�run variance of �t a

Bartlett kernel with truncation lag k � � is used� The respective test statistic is

denoted by Shin��� ��� Note that for r � � this test is asymptotically equivalent

to Harris� ����	� test and
 thus
 we expect that our results apply to the latter test

as well� Table � reports the rejection frequencies computed from ������ samples

generated from the model ���� � ���� with sample size T � ���� The following

conclusions can be drawn from the simulation results� The tests using yt for

computing the nuisance parameters tend to be conservative� On the other hand


if %et is used to compute the nuisance parameters as suggested in Section �
 the

actual size is much closer to the nominal one
 although now the test tend to be

slightly liberal�

The original CCA statistic is less powerful than Shin�s test although the mo�

di�cation for estimating the nuisance parameters suggested in Section � improves

the power substantially� For k � � there is a considerable loss in power compared

to a truncation lag of k � �� A similar �nding was reported for the KPSS

statistic by KPSS ������ and Breitung ������� The inclusion of the nonstationary

linear combination y�t leads to a substantial gain in power and the resulting

test has roughly the same power as Shin�s test� For � close to one
 Shin�s test

is slightly more powerful
 whereas for � close to zero
 CCA�a�k� and CCA�ba�k�
perform slightly better�

Next we investigate the impact of � on the size of the test� For the Shin test

we assume that the model is �inappropriately� speci�ed as

y�t � �����y�t �
mX

j��m

�y��t�j � ��t �

In this formulation of the model y�t is correlated with ��t and for � � � �i�e�

y�t is stationary� Shin�s test is invalid because a nonstationary variable �y�t�

is regressed on a stationary variable �y�t� and there is no value of � rendering

a stationary error process� From the simulation results presented in Table �

it is seen that Shin�s test is seriously biased when � is close to zero� These

�ndings clearly demonstrate the problems with Shin�s test if the normalization

��



Table 	� Rejection frequencies for di�erent values of � �� � ��
Test statistic � ���� ��� ��� ��� �
CCA��� ����� ���	� ����� ����	 ����� �����
CCA���� ����� ����� ����	 ����� ����� ���	�
CCA��� ����� ����� ���	� ����� ����� �����
CCA���� ����� ����� ����� ���	� ����� �����
CCA�a��� ����� ����� ����� ��	�� ��	�	 �����
CCA�ba��� ����� ����	 ����� ��	�� ��	�� �����
Shin��
�� ����� ���	� ����� ��	�� ��	�� ��	��

Note� Entries report the rejection frequencies computed from 	����� replications of
model ���
 � ���
 with sample size T 
 ����

Table �� Rejection frequencies for di�erent values of � �� � ��
Test statistic ���� ���� ���� ���� ���� ����
CCA���� ����� ����� ����� ����� ����� �����
CCA�a��� ����� ����� ����� ����� ����� �����
CCA�ba��� ����� ����� ����� ����� ����� �����
Shin��
�� ���	� ����� ����� ��	�� ����� �����

Note� see Table ��

of the cointegration vector is invalid�� On the other hand
 the CCA statistics

perform well in this situation� For � � �
 the statistic CCA�a��� is also based

on a wrong normalization as it uses y�t as additional instrument� However
 it

can be shown that in this case the CCA�a�k� statistic has the same asymptotic

distribution as the original CCA��k� statistic� Since the critical values of the

latter statistic are lower than those of CCA�a�k�
 the test using CCA
�

a��� with

an invalid normalization tends to be conservative� In contrast
 the actual size of

the test using the estimated nonstationary linear combination from the Johansen

procedure �CCA�ba���� is close to the nominal size of �����
In the �nal Monte Carlo experiment we investigate the potential of the new

tests to select the cointegration rank� A four�dimensional cointegrated VAR���

�See Boswijk �	���
 and Saikkonen �	���
 for a further discussion of the problems related
to the normalization of the cointegration vectors�

��



Table �� Rank Selection with Alternative Test Statistics

Test Statistic r � � r � � r � � r � � r � �
�� � ���

LR ����� ����� ����� ����� �����
CCA���� ����� ����� ����� ����� �����
CCA�a��� ����� ����� ����� ����� �����
CCA�ba��� ����� ����� ����� ����� �����

�� � ���
LR ����� ����� ����� ����� �����

CCA���� ����� ����� ����� ����� �����
CCA�a��� ����� ����� ����� ����� �����
CCA�ba��� ����� ����� ����� ����� �����

�� � ���
LR ����� ����� ����� ����� �����

CCA���� ����� ����� ����� ����� �����
CCA�a��� ����� ����� ����� ����� �����
CCA�ba��� ����� ����� ����� ���	� �����

�� � ���
LR ����� ����� ����� ����� �����

CCA���� ����� ����� ��	�� ����� �����
CCA�a��� ����� ����� ��		� ����� �����
CCA�ba��� ����� ����� ��	�� ����� �����

Note� The entries report the relative frequencies of selecting the indicated rank
computed from 	���� replication of a four�dimensional VAR�	
 system with sample
size T
����

model is used
 where the matrices 	 and � are speci�ed as follows�

	 �

�			

� �
� �
� ��
� �

����
 and � �

�			

��� �
� ����
� �
� �

����
 �
that is
 the �rst error correction term enters the �rst equation with the coe'cient

��� and the second error correction term enters the second equation with the

coe'cient ����� The innovations of the model are mutually uncorrelated Gaus�

sian white noise with unit variances� If �� approaches zero
 the test procedures

will have di'culties to decide whether the cointegration rank is r � � or r � ��

To assess the ability of the new tests to determine the cointegration rank


a 
bottom�up� strategy is used �see Section ��� For the tests using a reversed

��



sequence of hypotheses the truncation lag is k � �
 although for higher values

of �� �such as �� � ���� a smaller truncation is su'cient and leads to a more

powerful test procedure� For Johansen�s LR test
 we assume that the VAR order is

known to be one� Of course
 assuming the correct parametric model to be known


whereas the other tests adopt a semiparametric approach to estimate the nuisance

parameters favors the parametric LR procedure of Johansen� However
 it is not

the intention here to investigate which procedure performs better� Rather we use

the LR test as a benchmark against which we are able to assess the potential of

the new tests for the selection of the cointegration rank�

Table � reports the observed relative frequencies of selecting a particular rank

r � f�� �� � � � � �g� The frequencies are based on ���� simulated samples� From

the results it turns out that for small values of ��
 Johansen�s LR test performs

better than the CCA statistics� For substantial values of ��
 however
 the relative

performance of the CCA statistics is similar to the LR test procedure�

	 An Empirical Application

In this section the application of the new tests is illustrated by using a dataset

of interest yields with di�erent time to maturity� The expectation hypothesis

of the term structure implies that interest yields with di�erent time to maturity

are mutually cointegrated� Therefore
 we expect three cointegration relationships

between four k�month interest rates
 where k � �� �� �� ��� The data are monthly

observations running from ������� to �������� and were taken from the database

of the German Bundesbank�

For the Johansen procedure a VAR���� model is used and for the CCA statis�

tics a truncation lag of �� is applied� Whereas the results from the Johansen test

do not change very much for di�erent lag orders
 the CCA statistics are quite

sensitive to the choice of the truncation lag� Since an underspeci�cation of the

truncation lag may produce a considerable size bias
 a fairly large value of k is

chosen� Furthermore
 we allow for a constant mean in the data� The results for

the cointegration rank tests are presented in Table ��

The sequence of LR tests suggests that r � �� However
 it may be that the

��



Table �� Cointegration Rank Statistics for Interest Yields
LR CCA����� CCA�a���� CCA�ba����

r � � ������� n�a� n�a� n�a�
r � � ������� ����� ����� �����
r � � �	���� ����� �����	 ������
r � � ���	� ������ ������ ������
r � � n�a� �����	�� n�a� n�a
Note� �LR� denotes Johansen�s LR trace statistic from a VAR�	�
 model with con�
stant term� � and �� indicate signi�cance at the levels ���� and ���	� respectively�

power of the test is not su'cient to reject r � � and r � �
 so that the rank

may well be three or four� Therefore
 it is useful to apply the reverse sequence of

tests�

Applying the CCA statistics
 the picture is quite clear� Since the hypothesis

r � � is rejected
 while the hypotheses r � � are accepted by all versions of the

CCA statistic
 both tests together suggest that the rank is either two or three�


 Conclusions

In this paper a CCA approach is adopted to test for cointegration using a reverse

sequence of hypotheses� Together with Johansen�s LR tests
 such a test may

give useful additional and allows the construction of a con�dence set for the

cointegration rank�

As for univariate time series
 it is shown that similar principles can be adopted

for testing the opposite hypotheses� However several di�erences remain� First
 it

is di'cult to adopt a parametric framework like the VAR model for Johansen�s

tests� We therefore make use of nonparametric corrections for nuisance parame�

ters in the tradition of Phillips ����	�� Second
 whereas the power of Johansen�s

LR test does not seem to depend sensitively on the correction for short run dy�

namics
 the power of the CCA statistics �similar as the KPSS statistic� is highly

sensitive to the choice of the truncation lag� This is an undesirable property of

the tests because the power of the tests can be made arbitrarily small by choosing

a truncation lag su'ciently high� Third
 the asymptotic theory is a little bit more

��



complicated and the critical values have to be tabulated for both dimensions r

and n�

Since there does not appear to exist a theoretical reason for choosing among

the principal components and the CCA approach it might be interesting to com�

pare the performance of the di�erent tests in an extensive Monte Carlo study as

was done by Gonzalo ������
 Haug ����	� and Hubrich et al� ������ for the test

of r � r� against r � r��

��



Appendix A

Proof of Theorem ����

From standard asymptotic results we get�
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where Wn is an n�dimensional Brownian motion� Using these results
 the nor�

malized sum of the eigenvalues results as
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Proof of Lemma ���

From ��� we have for every cointegration matrix 	 and a linearly independent

matrix ��

	 �yt � 	 �C��L��t

� 	 �C�����t � 	 �C���L���t

��yt � ��C
tX

i��

�i � C��L��t �

where C���L� � �C��L��C�������� L��� has all roots outside the complex unit

circle� Let R be a block diagonal matrix such that

R �
�
R�� �
R�� R��

�
and �
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�
�
�
	 �C����
��C

��
� RR��

Then
 by using

Q � R��
�
	 �

��

�
�
�
	��

���

�

it readily follows that T����
�aT �P
i��

x�i and T����x���aT � converge weakly to the stan�

dard Brownian motions Wr and Wn�r
 respectively�

�	



Proof of Theorem ����

It is convenient to normalize the matrix of the �rst r eigenvectors as B� �

�b�� � � � � br� � �Ir��&
�

T �
�� Consider the j�th eigenvector �j � �� � � � � r�
 which

is determined by the equation

��jIn �X �Z�Z �Z���Z �X�bj � ��

The lower n� r equations of this system can be written as

�j�j �X �

�Z�Z
�Z���Z ��X�j	 �X��j� � �

where �j is the j�th column of &T 
 X�j	 is the j�th column of X and X� �

�x��� � � � � x�T �
�� Since �j is Op�T

���
 �j � Op��� it follows that

X �

�Z�Z
�Z���Z ��X�j	 �X��j� � Op�T

����

Using X �

�Z � Op�T
�� and Z �Z � Op�T


� we get

�j � �X �

�Z�Z
�Z���Z �X��

��X �

�Z�Z
�Z���Z �X�j	 �Op�T

��� ����

or
 by collecting the results for ��� � � � � �r�

&T � �X �

�Z�Z
�Z���Z �X��

��X �

�Z�Z
�Z���Z �X� �Op�T

����

where X� is a submatrix with the �rst r columns of X�

Finally
 let DT �diag�Ir� T
��In�r�� Then
 using standard asymptotic results

for unit root processes�
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Z
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the limiting distribution follows immediately�
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Proof of Theorem ����

The eigenvalue problem is equivalent to

���e�b"x�k�� �X �Z � T b#x�k���Z �Z����Z �X � T b#x�k���
��� � � ����

yielding

e�j � $b�j�X
�Z � T b#x�k���Z �Z����Z �X � T b#x�k���$bj

$b�j
b"x�k�$bj

To show that the eigenvalues only depend on the nuisance parameters #�� we

consider the numerator and denominator separatly�

Let DT �diag�Ir� T
��In�r�� Then
 using
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Furthermore
 we have
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Next we show that the eigenvector $bj �j � �� � � � � r� does not depend on nuisance

parameters
 asymptotically� From Assumption ��� it follows that the lower n� r

equations of eigenvalue problem ���� we have

X �

�Z�Z
�Z���Z �X$bj � Op�k�

and
 thus


$�j � �X �

�Z�Z
�Z���Z �X��

��X �

�Z�Z
�Z���Z �X�j	 �Op�k�T

��

where $�j is de�ned as the lower n � r subvector of bj� Since all variables in X�

and Z are I��� or I��� variables
 the asymptotic distribution of $�j only depends

��



on their long run covariance matrices
 which are unity by construction� Thus


for k�T � � the asymptotic distribution of $�j is the same as the asymptotic

distribution of �j in �����

It remains to show that b�j
b"x�k�bj does not depend on nuisance parameters�

Since $�j � Op�T
��� it follows from Assumption ��� that

b�j
b"x�k�bj � � �Op�k�T �

and thus
 for k�T � � all terms that enter the expression for $�j are free from nui�

sance parameters and yield the same asymptotic distribution as the in Theorem

����

Proof of Theorem ���

Let D�

T � �In� T
��In�r�� It follows that

T����D�

T z
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��
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and
 it is straightforward to show that the limiting distribution results from

replacing 
 by 
� in Theorem ����

Proof of Theorem ���

Following Saikkonen ������ we �nd that under appropriate conditions on m the

OLS estimator of & in the cointegration regression

x�t � &�x�t �
mX

j��m

�x��t�j � �t

is asymptotically distributed as
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�Z

Wn�rW
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��� Z
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r

Furthermore
 using T����DTX�aT � � 
 the limiting distribution stated in the

theorem is easly derived�
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Proof of Theorem ���

It is not di'cult to verify that for the least�squares estimate of � in ���� we have

b� �
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����� ��T
��� �Op�T

����� ��T
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where ��T and ��T are Op�T
���� Accordingly
 we get for the partial sum
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It follows that
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and
 thus
 estimates of "x and #x based on %et instead of xt satisfy Assumption
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Appendix B� Critical Values

The critical values are computed from ������ realizations of the asymptotic ex�
pression
 where Brownian motions are replaced by random walks with T � ����

Table B��� Critical Values �zero mean�
CCA�statistic CCAa�statistic

���� ���� ���� ���� ���� ����
n � �
 r � � ����� ���	� ����� ��	�� ������ ���		�
n � �
 r � � ����	� ������ ������ n�a� n�a� n�a�
n � �
 r � � ����� 	���	 ���	�� ������ ������ ������
n � �
 r � � ������ ������ ������ ���	�� ������ �	����
n � �
 r � � �����	 ����	� ������ n�a� n�a� n�a�
n � �
 r � � 	��		 ����� ������ ���	�� ������ ������
n � �
 r � � ������ ����	� ������ ������ ������ ������
n � �
 r � � ������ ���		� �����	 ������ �	���� ����	�
n � �
 r � � ������ ������ ������ n�a� n�a� n�a�
n � �
 r � � ����� ������ ������ ������ �����	 ������
n � �
 r � � ������ ���	�� ���	�	 ������ ������ ������
n � �
 r � � ������ ������ ������ �	�	�� ������ ������
n � �
 r � � ����	� ����	� ������ ������ ������ ������
n � �
 r � � ������ ������ �	��	� n�a� n�a� n�a�
n � �
 r � � ����� ������ ������ ������ ������ �	����
n � �
 r � � ������ ������ ������ ���		� ������ ������
n � �
 r � � ������ ������ ������ ����	� ������ 	����	
n � �
 r � � ����	� ������ ���	�� 	����� 	����	 ������
n � �
 r � � �����	 �	���� 	����� 	���	� ������ ���	��
n � �
 r � � 	���	� ����	� ������ n�a� n�a� n�a�
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Table B�	� Critical Values �mean adjusted�
CCA�statistic CCAa�statistic

���� ���� ���� ���� ���� ����
n � �
 r � � ����� ����	 ����� ������ ������ ������
n � �
 r � � ������ ���	�� ������ n�a� n�a� n�a�
n � �
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n � �
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n � �
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n � �
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n � �
 r � � ������ ���	�� ������ n�a� n�a� n�a�
n � �
 r � � ����� ������ ������ ������ ������ ������
n � �
 r � � ������ ������ ������ ������ ������ ������
n � �
 r � � ���	�� ������ ������ ������ ������ ������
n � �
 r � � ������ ������ ������ ������ ������ ������
n � �
 r � � ������ ����	� 	����� n�a� n�a� n�a�
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Table B��� Critical Values �trend adjusted�
CCA�statistic CCAa�statistic
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