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Abstract

In this paper a Canonical Correlation Analysis (CCA) is used to test the
hypothesis » = ry against the alternative r < ry. Such a test flips the
null and alternative hypotheses of Johansen’s LR test and can be used
jointly with the LR test to construct a confidence set for the cointegra-
tion rank. As the latter test, our tests are based on the eigenvalues of a
CCA between differences and lagged levels of a time series vector. The re-
sulting test statistics can easily be adjusted for nuisance parameters using
a nonparametric correction in the spirit of Phillips (1987, 1995). Monte
Carlo simulations suggest that variants of the CCA statistic may have bet-
ter properties than alternative tests and can be used as an alternative to
Johansen’s LR tests for determining the cointegration rank.
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University Berlin and was printed using funds made available by the Deutsche Forschungsge-
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1 Introduction

Kwiatkowski et al. (1992) (henceforth: KPSS) suggest a test for the null hy-
pothesis that a time series is (trend) stationary against the alternative that the
series is a first order integrated process. Such a test flips the null and alternative
hypothesis of the unit root tests suggested by Dickey and Fuller (1979) and can
be used to determine the degree of integration in a similar manner as the usual
Dickey-Fuller type of tests.

In a multivariate setup, the LR test of Johansen (1988) can be employed
to select the cointegration rank r in a vector autoregressive system by testing
a sequence of hypotheses on the cointegration rank. There are two different
strategies to do so. The “bottom-up” procedure starts with the hypothesis Hj :
r = 0 and proceed by increasing the rank until the null hypothesis cannot be
rejected anymore. For the “top-down” procedure we start with testing Hy :
r = n — 1, where n is the dimension of the time series vector, and reduce the
rank by one whenever the null hypothesis cannot be rejected. Both procedures
are considered in Section 2. It is shown that by using a test procedure with a
reversed set of hypotheses, the bottom-up strategy can be employed to construct
a confidence set for the cointegration rank. In this paper such a test based on
canonical correlations is suggested. Tests of the null hypothesis » = 1 against
the alternative r = 0 was already suggested by Leybourne and McCabe (1994a),
Shin (1994) and Harris and Inder (1994). Harris (1997) and Snell (1998) extend
the test procedure to the case ry > 1 by using a principal components approach.

The principle for constructing these tests follows Stock (1994a) and can be
demonstrated most easily in the context of a univariate unit root test. Assume

that the univariate time series {y;}._, is generated by the AR(1) process:

Yy = QY1+ E¢

where ¢, is a white noise process uncorrelated with ¢;_;. Under the null hypothesis
y; is assumed to be stationary, that is, |¢| < 1, whereas under the alternative

¢ = 1 so that y; is a random walk. An equivalent formulation of this null



hypothesis can be obtained from considering the differenced process

Ayy = ¢Ay + &4 — Yei

where A = 1—L and L is the backshift operator such that LFy;, = y; . If || < 1,
then the differenced series has an ARMA(1,1) representation with ¢» = 1. In other
words, under the null hypothesis the moving average polynomial (1 — ¢ L) has a
unit root. This reasoning suggests to test the null hypothesis that y, is stationary
by testing the MA representation of Ay, against a unit root. This approach is used
by Tanaka (1990), Tsay (1993), Saikkonen and Luukkonen (1993), Leybourne and
McCabe (1994b), Choi (1994) and Breitung (1994), among others.

Tests for MA unit roots are based on the integrated (or partial sum) process
Y; = 3!, y;. Under the null hypothesis the series Y; has an ARIMA(1,1,0) re-
presentation and under the alternative, Y; is ARIMA(0,2,0). Therefore, (Dickey-
Fuller type) unit root statistics can be applied using critical values from the
opposite tail of the null distribution. For example, Tsay (1993) proposes to use
the ordinary Dickey-Fuller ¢-statistic and KPSS (1992) is based on a Sargan and
Bhargava (1983) type of unit-root statistic (see Stock (1994b) for an overview).

This test principle can be straightforwardly adopted to test the hypothesis
that there exist » = ry cointegration relationships for the n-dimensional time
series vector y; against the alternative of r < ry cointegration relationships. The
idea for a test of the cointegration rank with a reverse sequence of null hypo-
thesis is to consider the cointegration properties of the n-dimensional partial sum
process Y; = !, y;. As in Johansen (1988) we use a test procedure based on
a Canonical Correlation Analysis (CCA). However, whereas Johansen’s LR test
is based on a CCA between Ay; and y;_1, our test is based on a CCA between
AY; =y, and Yy ;.

Alternative approaches suggested by Harris (1997) and Snell (1998) adopt a
principal components approach. These tests are based on estimates of the cointe-
gration vectors obtained from the eigenvectors of the matrix > y,y;. There does
not seem to be an ultimate reason for preferring one (the principle components)
approach over the other (CCA) so it seems worthwhile to consider Johansen’s

CCA (or “reduced rank”) approach to the partial sum process.

2



For the special case of testing ro = n it is shown in Section 3 that the asymp-
totic null distributions of the test (corrected for nuisance parameters) is identical
to the limiting distributions of Johansen’s LR statistic for testing » = 0. For
hypotheses with ry < n, the asymptotic null distribution is presented in Section
4. In contrast to Johansen’s LR test, the asymptotic distribution depends on r
and n. In Section 5 it is argued that the eigenvectors of a CCA between y; and
Y, 1 yields T-consistent estimates for the cointegration vectors. However, these
estimates can be improved by using additional instruments.

It is well known (e.g. KPSS 1992, Leybourne and McCabe 1994b), that tests
of the stationarity hypothesis suffer from the poor properties of the estimated
nuisance parameters under the alternative hypothesis. In Section 6 we therefore
suggest a modification similar to the one recommended in Breitung (1995) for
the case of the KPSS test statistic. Indeed the simulation results reported in
Section 7 demonstrate that this small sample modification yields a substantial
improvement of the test. Furthermore the simulation results suggest that the
augmented CCA statistic proposed in Section 5 is roughly as powerful as the test
of Shin, although no prior normalization of the cointegration matrix is required
for our test. In fact it is shown that if the normalization used for the latter test is
invalid, the test is seriously biased. Finally, a four-variable cointegrated system
is considered to assess the ability of the new test to select the cointegration rank.
Section 8 considers an empirical example and Section 9 offers some concluding
remarks. All proofs can be found in Appendix A.

Finally a word on the notational conventions applied in this paper. The
symbol = denotes weak convergence with respect to the associated probability
measure and [z] denotes the smallest integer < x. For notational convenience we

write integrals such as [} B(a)da simply as [ B.

2 A Confidence Set for the Cointegration Rank

There are two mayor principles to select the cointegration rank by using Jo-
hansen’s LR test procedure. First, we may apply a “general-to-specific” type of

test procedure by starting with the hypothesis Hy : r = n — 1 and proceed by



reducing the rank as long as the LR test renders an insignificant test statistic.
This procedure will be called “top-down procedure”. Second, we may start with
the hypothesis » = 0 and increase the rank as long as the test yields a signifi-
cant test statistic. This procedure is called “bottom-up procedure”. The latter
procedure is preferred by Johansen (1995, p.167).

Whenever the sequence of LR tests yields “monotonic” outcome in the sense
that there is a rank r; such that the test accepts the null for all » > r; and rejects
for r < ry, then the top-down and the bottom-up procedures yield the same
result. However, both procedures differ in the treatment of a “non-monotonic”
sequence of test decisions. For illustration assume that the sequence of tests in a

five-dimensional system yields the following non-monotonic result:

where “-”

and “x” indicate that the null hypothesis is accepted or rejected,
respectively. For such a sequence, the top-down procedure would select the rank
4 and the bottom-up procedure would suggest the rank 2.

To assess the probability for a non-monotonic sequence of test decisions, it is
useful to consider the (asymptotic) distribution of the test statistic for the case
that the the true rank r* is lower than the rank under test. Usually, when testing a
sequence of nested hypotheses, the test statistics are asymptotically stochastically
independent (e.g. Holly 1988, Sec. 4), so that we might expect that for ro > r*
the test rejects with a probability equal to the size of test. Intuitively, when
a subset of hypotheses is tested then this test does not depend on the validity
of another subset of hypotheses. Similarly, we may assume that when testing a
subset of eigenvalues against zero, the values of the other eigenvalues does not
affect the test decision. However, this is not the case. Since the eigenvalues are
ordered by their value, the test will depend on the values of the other eigenvalues,
in general.

Let LR(r¢) denote Johansen’s LR trace statistic of the hypothesis r = ry.

Then under the assumptions of Johansen (1988) for a n-dimensional VAR model



Table 1: Actual sizes for LR tests with rq > r*

g=n—r1r* n—ry
1 2 3 4 bt
2 0.94 4.73 - - -
3 0.28 0.39 4.87 - -
4 0.13 0.07 0.45 4.79 -
5 0.17 0.02 0.02 0.51 4.85
6 0.13 0.01 0.00 0.05 0.42

Note: Entries report the rejection frequencies in percent for Johansen’s
trace test with a significance level of 0.05 computed from 10.000 repli-
cations of random walk sequences with 7' = 500. The bold numbers are
the sizes for using the true cointegration rank in the null hypothesis.

with cointegration rank ro > r* we have as 1" — oo:

n—ro
LR(T()) = Z )\J(q) ,
7=1
where g =n —r* and 0 < A\;(¢) < -+ < A\y(¢) are the ordered eigenvalues of the

1
[awwy ([wawi) [ waw;,

and W, is a ¢g-dimensional standard Brownian motion.

stochastic matrix

Since all eigenvalues are positive it follows that LR(0) < LR(1) < --- <
LR(r*), and, thus, tests with ry > r* are conservative. To get an impression of
the size bias we compute the actual sizes for various combinations of n — ry and
n —r*. The results are presented in Table 1. It turns out that tests with ry > r*
are highly conservative. If the ry exceeds r* by more than one, then the actual
size is very small (< 0.3 percent). This results demonstrates that the probability
of detecting a non-monotonic sequence of test decisions is small and, thus, in
practice we usually find that both procedures give the same result.

Nevertheless, in situations where the test has a poor power (e.g. in small
samples), the procedures may select different ranks more frequently. Therefore, it
is interesting to compare the properties of both procedures. It is well known that
in a sequence of tests the overall size is different from the size of the individual

tests. In the case that the tests statistics are uncorrelated it is easy to calculate



the overall significance level (see, e.g., Liitkepohl 1991, p. 126). However, in our
case the test statistics are correlated and we only can give a quite conservative
upper bound for the top-down procedure.

In contrast, for bottom-up procedure the overall type I error is bounded by the
size of the individual tests. To see this, assume that the tests are performed for
the whole sequence of n hypotheses rather then stopping if the null hypothesis is
accepted. Then, for Hy : 79 = r* (the true rank) we will find that the test accepts
in (1 —a*)100% of the cases, where o* denotes the size of the individual tests.
By construction, for these cases the bottom-up procedure selects a rank r% > r*
and, thus, we get

Pirh <r) <ar. (1)

Thus, the advantage of the button-up strategy is that we can easily control the
overall size of the procedure. A similar result is obtained by Dickey and Pantula
(1987) for the determination of the degree of integration of a univariate time
series.

Next we show that by using two different bottom-up procedures it is possible
to construct a confidence set for the unknown cointegration rank. From (1)
it is seen that by using Johansen’s LR procedure it is possible to control the
probability that the bottom-up procedure selects a lower rank. Assume that we

have a different type of test procedure that allows to test the hypotheses
Hy: r=mry versus H;: r<rgy.

Such a test procedure flips the null and alternative hypotheses of Johansen’s LR
test. We then can construct a bottom-up procedure by starting with a test of the
hypothesis r = n. If the hypothesis is rejected, we test the hypothesis r =n — 1
and will proceed so until the test accept the hypothesis. We denote the selected
rank of such a procedure as 7%, where the index R indicates that the test uses
a reversed sequence of hypotheses. Although the rank is tested in a descending
order, it is essentially a bottom-up strategy because we proceed with testing as

long as the test rejects the null hypothesis.



As for 7%, it is possible to control the overall size such a test sequence so that
P(ry >r7) < a”, (2)

where again o denotes the size of the individual tests. Using (1) and (2) it is

possible to construct a 1 — 2a* confidence set for the rank r*:
Pirh <r<rb) <1—2a". (3)

It should be noticed that this confidence set may be conservative. If the power
of the test is unity and the test statistics are perfectly correlated such that both
tests always reject Hy : 7 = r* together, then the probability in (3) is 1 — . If
rg = 0 and r; = n, then the confidence set is uninformative.

The rest of the paper deals with a test based on a CCA between y; and Y;_;
which can be used to obtain rb. Of course, the tests of Harris (1997) and Snell
(1998) can be used as well.

3 Testing for Stationarity
Assume that the n x 1 vector y; is generated by a linear process given by

Ay, =1lyp1 +uy (4)
where {u;} obeys the following assumption:

Assumption 3.1: Let uy = A(L)g;, = 5 Aje,; with 5 72| A4]1* < oo and
j=0 J=0

gy s i.i.d. with E(g;) = 0 and positive definite covariance matriz E(e,e}) = 3.

A similar assumption is used in Bewley and Yang (1995) and Quintos (1998).
Although it is possible to relax this assumption to allow for some kinds of het-
eroscedasticity, this assumption is used to facilitate the exposition.

If the rank of the matrix II is 0 < r < n, then the factorization II = «af’
applies, where o« and [ are n X r matrices. Furthermore, it is assumed that Ay,

has a Wold representation of the form:
Ay, = Cey + C*(L)Agy (5)
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where 8'C' =0 and C*(L) = C} + C; L+ C3;L? + - - - is a matrix polynomial with
all roots outside the unit circle and C' is an n x n matrix with 7&(C) = n — k.
This assumption ensures that Ay; is stationary.

If u; is white noise, then Johansen’s LR test for the cointegration rank is based

on a CCA between Ay, and y;_; leading to the problem:
[AS11 = Si0S50 Siol = 0, (6)

where

T T T
S = Zytflygfla Sop = ZAytAyé, S = ZytflAyg .

t=2 t=2 t=2
The eigenvalues are equivalent to the eigenvalues of the matrix products [
(or ﬁ*ﬁ), where I is the least-squares estimate from a regression of Ay, on y;
and II* denotes the estimate from a (reverse) regression of 1_; on Ay,. The LR
test statistic is (approximately) the sum of the r smallest eigenvalues. If y; is
cointegrated with rank r, then n—r eigenvalues for (6) tend to zero with the rate
Tt

The hypothesis on the cointegration rank is tested by analyzing the cointegra-
tion properties of the partial sum process Y; = 3-f_ | y;. Under the null hypothesis
we assume that the cointegration rank is r, that is, there exists an n X r matrix
( such that 3y, ~ I(0). The eigenvalues from a CCA between y; and Y;_; result

from the problem

|ASas — S5151,"55,] =0 (7)
or  |AS1 — 85,5,/ S| =0, (8)
where
T T T
Su=Y i, Sw= YiaYl,, Sau=>Y Yy .
=2 =2 =2

As in Johansen (1995, p. 151f) we first consider the limiting distribution of a
special case. To test the null hypothesis 7g = n (y; is stationary) against the
alternative 7y < n we use the normalized sum of the eigenvalues of problem (8)
as the test statistic. The following theorem gives the asymptotic null distribution

for this test statistic.



Theorem 3.1: Let y, be a vector of stationary time series with positive defi-
nite covariance matriz E(yyy;) = Uo. The test statistic for testing Hy : r = n is
on =T Y Aj, where \j, j =1,...,n denote the eigenvalues of the problem (8).

=1

For'T' — oo the asymptotic null distribution is given by

1
on = w[(/m&m@) (/M@dﬂﬁ4—T)qu%19y2</dWQWﬁ4-TDL

where
T = QfoeQ)?
=1
Ty = E(yyi)

and it is assumed that QY? is a symmetric matriz such that QY2QV? = Q.

This result suggests to correct the test statistic for the nuisance parameters

by using the expressions
~ T ~ ~
So1 = lz Y1y, — T\I”] Q12
S GRS 1/2 1/2
Su = Z Ly ytyéro

instead of Sy and Sy; in (7), where \TJ, Q and fo are consistent estimates of ¥, 2

and ['y. Following Phillips (1995) the following estimators are used:

U(k) = };sz)fi (9)
Qk) = Lo+ U(k)+ U(k) (10)
I, = T_lTizytytH, (11)

where w() is an appropriate weight function and k£ denotes the truncation lag,
which increases with the sample size such that £ — oo as 7' — oo but k/T" — 0.
Further kernel conditions and bandwidth expansion rates are given in Phillips

(1995).



A natural estimator for I'y is f‘o =T >~ Yy, so that the term 511 reduces to

T yielding a standard eigenvalue problem:
M, — So1 (k) Sy, Sor (k)] = 0, (12)
where the factor 7' is absorbed in A. The resulting test statistic is

Fulk) = 30X, = tr(Sn (KY'S5 S (). (13)

Using Theorem 3.1 it is easy to verify that this statistic has the same distribution

as Johansen’s LR trace statistic.

4 The Asymptotic Null Distribution for ry < n

In this section we consider a test of the null hypothesis Hy : r = ry < n against
the alternative r < ry. The special case Hy: r = 1 is the situation considered
in Leybourne and McCabe (1994a), Shin (1994) and Harris and Inder (1994).
Without loss of generality we will consider the transformed system x; = Qu;,
where () is an invertible n x n matrix. This transformation is used to separate
r stationary linear combinations from the remaining n — r nonstationary compo-
nents. A further feature of this transformation is that the resulting components
are asymptotically independently distributed with unit covariance matrix. Note
that such a “rotation” of the system does not affect the eigenvalues for our test
procedure. It is merely introduced to facilitate the asymptotic analysis of the

system.

Lemma 4.1: There exists an invertible matriz Q = [3*,7*]', where * is an
n X r cointegration matriz and v* is an n x (n — r) matriz linearly independent

of B* such that

z, = [Ilt] = Qy; = [ﬂ*,yt]

Loy V*IZJt
[aT]

T’l/Qlei = W.(a)
i=1

T71/21‘2,[aT} = anr (CL),
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where W, and W,,_, are uncorrelated r and (n—r) dimensional Brownian motions

with unit covariance matrix.

Furthermore, to abstract from nuisance parameters we will make the following

assumption, which will be relaxed below.

Assumption 4.1: xy; and Ay are white noise with E(x14|xi_1, T4_9,...) =0

and E(Axo|Ti—1,24—9,...) =0 for all t.

For notational convenience we define the matrices X = [x9,23,...,27|" and
Z = [X1,Xy,...,Xp 1]', where X; = 3!, x;. Similar as in the case 7y = n the

eigenvalue problem is of the form
N, - X'Z(Z'Z) ' Z'X|=0. (14)

Originally, a CCA between z; and Z; would require to set X’'X instead of I,,.
However, as argued in Section 3, the term X'X drops out when the test statistic
is corrected for nuisance parameters.

Let b; denote the eigenvector corresponding to A;. If b; falls inside the coin-
tegration subspace, then A; is O,(1). That is, there exist r eigenvalues with a
nondegenerate limiting distribution. On the other hand, if b; falls outside the
cointegration subspace, then the corresponding eigenvalues diverge at the rate!
T2

It is interesting to compare this asymptotic behavior with the properties of
the eigenvalues from the ML estimation in a VAR system. In the latter case
Johansen (1988) shows that r eigenvalues are O,(1) and n — r eigenvalues are
O,(T™'). Whereas Johansen’s test is based on the (normalized) n—r eigenvalues,
our test is based on the smallest r eigenvalues. Accordingly, the test flips the null
and alternative hypotheses.

In the following theorem the asymptotic null distribution of the test ist given.

!Note that by replacing X'X by I,, in (14) the eigenvalues need no longer be smaller than
one, as it is the case for the original CCA problem.
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Theorem 4.1: Let y; be generated as in (4), with cointegration rank 1 < r <
T

n — 1. Furthermore @, = > \;, where Ay < -+ < A\, are the eigenvalues of the
=1

problem (14). Then, under Assumption 3.1 and T — oo we have

o = tr[( [ave) ([ae) (/ &d%’)] ,

dv, = dw, — {V awe, ([ snsg)l / &W;_r]
< |fmea(fee)” | an,;rll}Wnr,

En =W [W! 1, W, and W,,_, are r and (n —r) dimensional standard Brow-

nian motions.

where

This limiting distribution is more complicated as for the case ry = n and
depends on the dimensions r and n—r. Critical values obtained from this limiting
distribution are presented in Appendix B (Table B.1).

In order to allow for a constant or a trend the test can be performed using
the mean-adjusted series §; = y, — 7' >y, or the trend adjusted series §; that
results as the residuals from a regression of y; on ¢ and a constant. The partial
sums are then constructed by using ¢; or ;. As usual the limiting distribution
of the resulting test statistics is different from the case without any determinis-
tics. Although the general form of the asymptotic distribution is the same, the
Brownian motions are replaced by multivariate Brownian bridges in case of mean
adjusted series and by second order Brownian bridges (cf KPSS 1992) in the case
of a trend adjustment. Corresponding critical values for these cases can be found
in the Appendix (Table B.2 and Table B.3).

To accommodate more general processes we allow x1; and Awo; to be serially
correlated. As a consequence, the limiting distribution of the test statistic de-
pends on nuisance parameters. Therefore, to adjust the test statistic for nuisance
parameters we use the same estimators (9) — (11) as for the case ry = n and

replace Z'X in (14) by
Sii(k) = [Z'X — T (k)| (k)7

12



where U#(k) and Q¢(k) are computed as in (9) — (11) but with ; instead of y,.
This may appear inappropriate since for r < n the covariances fj are O,(71') and,
thus, the nuisance parameters tend to infinity as 17" — oco. Nevertheless, under
appropriate assumptions on the asymptotic behavior of the nuisance parameters
it is shown that the asymptotic null distribution is not affected by using estimates

for the nuisance parameters.

Assumption 4.2: Let U* and QF be partitioned according to x, = [z, x},|'

such that

x x ! T x !
velon wp] o=l o]

It 1s assumed that the estimates of the submatrices of ¥* and Q2* obey the following
assumptions:

V() = W +o,(1)

Qn(k) = Qf +0,(1) = I + 0,(1)

U5(k) = O,(kT)

Q5y(k) = Op(kT)

V5 (k) = Op(k)

Q1(k) = Oy(k)

The usual kernel estimates such as the ones considered in Phillips (1995)

satisfy this assumption.

Theorem 4.2: Let y; be generated as in (4), with cointegration rank 1 < r <
n—1. Furthermore ¢, (k) = ZT: Xj, where Xj (j =1,...,n) denote the eigenvalues
of the problem =

(AL, — S5,.(k)(2'2) 7' S5, ()| = 0. (15)
For k/T — oo, and under Assumption 3.2, a test based on @,(k) has the same

limiting distribution as @,.

For a similar set of conditions an analogous result is obtained for the KPSS

statistic. There are two reasons for this result to hold. First, by rotating the
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system as in Lemma 4.1, we obtain two sets of nuisance parameters. The esti-
mates of the nuisance parameters involved by the smallest 7 eigenvalues converge
to the true values as 1" — oo, whereas the estimates of the nuisance parameters
corresponding to the remaining n — r eigenvalues diverge. Since the test statistic
only involves the smallest r eigenvalues, the estimated nuisance parameters do

not affect the null distribution.

5 Using More Efficient Estimates

In Johansen’s ML estimation procedure, the eigenvectors corresponding to the
r largest eigenvalues are T-consistent estimates for some suitably normalized
cointegration vectors. For a CCA between y;, and Y; ; a similar result can be

obtained. The eigenvalue \; for the problem (14) can be written as

WX 222 2 X,

= (16)
I Vb

and the corresponding eigenvector b; can be decomposed as

bj = Bp; + Bryq; ,

where p; and ¢; are 7 x 1 and (n — r) x 1 vectors. In the transformed system,
the cointegration matrix is 3 = [[,,0]" and the orthogonal complement is given
by . =10,1,_,)". Since the r smallest eigenvalues are O,(1), it follows that the
vector ¢; must converge to zero with the rate O(7 ') and, thus, the eigenvectors
are T-consistent estimates for the respective cointegration vectors fp;. In the
proof of Theorem 4.1 it is shown that by normalizing the matrix of the eigen-
vectors as [ = 1, —5}]’ the submatrix @ is asymptotically equivalent to an

instrumental variable (IV) estimator of ® in the model
r1 = O'wy + vy (17)
with

by = [(XLZ(2'2) ' 2'Xs) ' XLZ(2'Z) 2 X1 + O,(T ).

14



Recall that in the rotated system z,, = (3*'y, is stationary and o = 7*'y; is
nonstationary so that Dy converges to zero as 1’ — oc.

A useful instrument w, for estimating (17) should obey two conditions
T ww, = 0
t
T> wah, = A£0
t

for some § > 0. It is easy to verify that Xy; satisfies these conditions for 6 = 2
and Xy, satisfies these conditions for 6 = 3. However, in addition xy; is a useful
instrument implying, which can be seen by setting ¢ = 2. Hence, the IV estimator
can be improved by adding w9; to the set of instruments. This can be done by

considering the eigenvalues of the problem:
NI, — X' Z(ZY 725 174X =0, (18)

where z; = [X],, 2, X}, and Z* = [27,..., 25 ]’
For estimating the nuisance parameters, the covariance matrices are computed
as T
i =T7"> vl
t=1
where y; = [y;, Axh,|". The differences of x4, are used because this term is known
to be I(1) under both the null and under the alternative. If it is unknown
how to construct w9, one may use the n — r eigenvectors corresponding to the
zero eigenvalues of Johansen’s estimation procedure to construct an estimated
version of the nonstationary components. It is easy to verify that the asymptotic
distribution is not affected by using consistent estimates of the nonstationary
components. The asymptotic null distribution of the test statistic is given the

following Theorem.

Theorem 5.1: Let y, be generated as in (4), where 1 <r <n—1 and {u;}
obeys Assumption 3.1. Furthermore op = 375 | A7, where \] < --+ < A} are the

eigenvalues of the problem (18). Then, as T — 0o:

i = | (faves) (fes) " (fean)
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where

av, = daw, - {[/ e ([aoa.) | ss‘an;r]
g ([ens) [am }W

& =W W __[W!_ W, and W,,_, arer and (n—r) dimensional standard
2n—r r n—r n—r

Brownian motions.

X

Critical values resulting from this limiting distribution are presented in Ap-
pendix B.

Another possibility is to use the efficient “Fully-modified” estimator of Phillips
and Hansen (1990) or the projection estimator of Saikkonen (1991) as in Shin
(1994). Assume that the time series vector can be partitioned as y; = [y}, y5,)
where yo; is assumed to be strongly exogenous. Furthermore we assume that the
cointegration matrix can be normalized as 3 = [I, —¥’]. In this case an efficient
estimate of the cointegration matrix can be obtained from a regression of y;; on
Y. A test statistic corresponding to the sum of the r smallest eigenvalues is
obtained as

pp = tr By Y (YY) Y 'yp)
where 3 = [I,,—U']' and ¥, is an asymptotically efficient estimator for the
cointegration regression y1; = W'ya+u;. As in Shin (1994) the regression includes
leads and lags of Aysy, if yo; is endogenous. Alternatively, the “fully-modified”
system estimator of Phillips (1995) may be used (see Harris and Inder 1994).
The following theorem gives the asymptotic null distribution of the resulting test

statistic.

Theorem 5.2: Let y, be generated as in (4), where 1 <r <n—1 and {u;}
obeys Assumption 3.1. Let B = [, —&)’e]’ and ®, is an asymptotically efficient

estimator of the cointegration matriz normalized as f = [I,,—®'|'. Then, as

g = tr [( [ave) ([es) (/ fndv:)] ,

16

T — oo:



where
-1
dv. = dw, — VdWTW </W W ) ]Wn_,,

and W, and W,_, are r and (n — r) dimensional standard Brownian motions.

The attractive feature of this approach is that such a test uses an efficient
estimate for the cointegration matrix. However, in practice it is not clear whether
the chosen normalization is valid. In particular for large dimensions r, there is a
serious danger that the normalization fails which may have serious effects on the
distribution of the test statistic. Therefore, the CCA approach or a test based

on principal components (Harris 1997, Snell 1998) is favorable in practice.

6 A Small Sample Refinement

From KPSS type of tests it is known that the correction for nuisance parameters
reduce the power of the test considerably (e.g. KPSS 1992, Leybourne and Mc-
Cabe 1994b). Although the local power of the test is unaffected, the power in
finite samples depends crucially on the truncation lag of the estimates (cf Breitung
1995). Leybourne and McCabe (1994b) therefore suggest to adopt a parametric
model to correct for nuisance parameters. However, such an approach requires to
estimate an ARMA model with » MA unit roots by exact maximum likelihood
which would be fairly complicated task in a multivariate framework. We therefore
adopt a simpler approach suggested in Breitung (1995).

The principle is easily explained in a univariate context. Assume that a
univariate time series y; (without deterministics) is tested for stationarity by
using the test suggested by KPSS (1992). Let Y; denote the partial sum of y,
and 7p = T~ 3 Y}?/57 is the KPSS statistic, where 7 is the estimated “long run
variance” of y,.

Now, consider the autoregression

Yo = QY1 + Vg .

If y, is I(1), then the OLS estimator of ¢ converges to one at rate 7 and the

residuals are approximately the difference of y;. The next step is to form the
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partial sum V; = Z;ZQ v; and run the regression
Yo = 7Vi1 + e (19)

If y, is stationary, then the OLS estimator of v should be close to zero, because
the partial sum V; ; cannot explain a stationary variable. In contrast, if y; is
I(1), then V; | = y; 1 and we therefore expect that 4 is close to one. Accordingly,
for the residuals of (19) we have é; &~ y, for a stationary series and é; ~ Ay, if y;
is I(1). This reasoning suggest that the residuals of (19) behave like a stationary
series no matter whether y, is 1(0) or I(1).

Unfortunately, this reasoning is only valid if v, is observable. If v; is replaced
the residual and ‘A/t = 2522 v; is used instead of V;, the estimate of v does not
converge to one under the alternative (cf Breitung 1995). Nevertheless, under
the null hypothesis that y; is 1(0), it can be shown that the estimate of -y indeed
converge to zero at a sufficient rate, so that estimating the nuisance parameter
using the residuals é; instead of y; does not affect the limiting distribution of the
test.

Notwithstanding the asymptotic failure under the alternative hypothesis, it
is reasonable to expect that our intuitive reasoning is helpful in small samples.
Since the regression minimize the variances of the residuals, the regression will
render a residual series that resembles a stationary series as much as possible and,
thus, produces a correction term which is usually smaller than the one computed
from the original series. Thus, the loss in power is usually smaller by using é;
instead of y; when estimating the nuisance parameters.

This approach can be straightforwardly adopted to the multivariate case. For
convenience we will consider the rotated system ;. Since the CCA is invariant
with respect to such transformations this does not imply any loss of generality.

The first auxiliary regression is
Axy = 1la_y + vy . (20)
The second auxiliary regression is of the type
v =ZViate, (21)
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where ‘A/t is the multivariate partial sum given by XA/t = ZEZQ U; and 0; denotes the
residual from (20). Following Breitung (1995) it is straightforward to show that
using the residuals of (20) instead of z; for estimating the nuisance parameters

does not affect the asymptotic null distribution.

Theorem 6.1: Let é, = z, — =V,_1 denote the residuals of (21), where = s
the least-squares estimator of =. If W* and QF are estimated as in Assumption
3.2 but using é; instead of x;, then the the resulting test statistic has the same

asymptotic distribution as ¢, (k) in Theorem 4.2.

Although the modification does not affect the asymptotic size of the test, it
may have an important fact on the power of the test. Assume that we estimate

Zin (21) by using

t—1
_ Axyy . ;0 Tit—1
Voo = Z {A@t] |:H21 0] { ]

i—2 Tot—1
o [l‘lt - Hllet}
Tor — o1 Xyy

instead of V,_;. It is not difficult to see that in this case the least-squares estimator

of = converges to the matrix

==l ]
= Iy L,
and, thus, we have in the limit

® o — L1t
=y ==V [A$2t + ﬁt}

where 7, = Iy I1;{ 2y, is stationary. Obviously, ef has the desired properties for
estimating the nuisance parameters U? and €2* because the resulting estimates
converge in probability to a fixed limit as 7" — oco. Unfortunately, this reasoning
is no longer valid if V;_; is replaced by V1. Nevertheless, we may hope that
V,_; resembles V,_; so that the power of the test may be improved substantially

when using é; instead of ;.
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7 Simulation Results

To compare the properties of the new tests with the test suggested by Shin we

consider a bivariate model given by the two equations

Yyu = Y1t & (22)
Ayyr = YAy +v — dvy (23)

where ¢, and v; are mutually uncorrelated white noise with unit variance. If ¢ = 1,
the difference operator drops out and (23) defines the cointegrating relationship
Yor — YY1t = vy On the other hand, an integration of equation (23) shows that
there is no cointegration between y;; and yo; for |y| < 1. Besides ¢, the power of
the test depends on parameter v, so we present results for different values of ¢
and 7.

First, we use the test statistic suggested in Section 4 to test the hypothesis
r=1 (¢ =1) against r = 0 (|]¢| < 1). Two different truncation lags £ = 4 and
k = 8 are used. The corresponding test statistics are indicated by CCA(k). The
respective test statistics using a the modified estimates of the nuisance parameters
suggested in Section 6 is labeled as CCA* (k).

The CCA statistic using the augmented set of instrumental variables are in-
dicated by CCA,. Two versions of this test statistic are computed. First, yy; is
used as additional instrument. By construction, this variable is (1) and there-
fore is a valid instrument for estimating ® in (17). The respective statistic with
the modified estimator of the nuisance parameters (see Section 6) is labeled as
CCA? (k). Second, the nonstationary linear combination is estimated using the
eigenvectors corresponding to the nonstationary eigenvalues of Johansen’s ML
estimation procedure. The respective test statistic is denoted by CCAX(k).

For the test problem considered here, the test suggested by Shin can be applied
and will be used as a benchmark for testing the power of the new statistics. The

test is based on Saikkonen’s (1991) approach, estimating the equation

m
Yor = YY1t + Z Ayrpyj + 1, (24)

j=—m
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where m = 2 is used in our simulations. To estimate the long-run variance of v, a
Bartlett kernel with truncation lag £ = 4 is used. The respective test statistic is
denoted by Shin(2,4). Note that for = 1 this test is asymptotically equivalent
to Harris’ (1997) test and, thus, we expect that our results apply to the latter test
as well. Table 2 reports the rejection frequencies computed from 10.000 samples
generated from the model (22) — (23) with sample size 7" = 200. The following
conclusions can be drawn from the simulation results. The tests using ¥, for
computing the nuisance parameters tend to be conservative. On the other hand,
if ¢; is used to compute the nuisance parameters as suggested in Section 6, the
actual size is much closer to the nominal one, although now the test tend to be
slightly liberal.

The original CCA statistic is less powerful than Shin’s test although the mo-
dification for estimating the nuisance parameters suggested in Section 6 improves
the power substantially. For £ = 8 there is a considerable loss in power compared
to a truncation lag of £ = 4. A similar finding was reported for the KPSS
statistic by KPSS (1992) and Breitung (1995). The inclusion of the nonstationary
linear combination y;; leads to a substantial gain in power and the resulting
test has roughly the same power as Shin’s test. For v close to one, Shin’s test
is slightly more powerful, whereas for v close to zero, CCA} (k) and CCA%(k)
perform slightly better.

Next we investigate the impact of v on the size of the test. For the Shin test

we assume that the model is (inappropriately) specified as

m
Y1t = (1/7)y2t + Z AyQ,t+j =+ Z/Z( .

j=—m

In this formulation of the model yo; is correlated with v} and for v = 0 (i.e.
yor is stationary) Shin’s test is invalid because a nonstationary variable (yi;)
is regressed on a stationary variable (yy) and there is no value of v rendering
a stationary error process. From the simulation results presented in Table 3
it is seen that Shin’s test is seriously biased when ~ is close to zero. These

findings clearly demonstrate the problems with Shin’s test if the normalization
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Table 2: Rejection frequencies for different values of ¢ (7 = 1)

Test statistic 1 0.95 0.9 0.8 0.5 0

CCA(4) 0.033 0.176 0.308 0.387 0.418 0.421

CCA*(4) 0.059 0.249 0.397 0.480 0.524 0.575

CCA(8) 0.018 0.091 0.170 0.223 0.242 0.243
CCA*(8) 0.060 0.211 0.315 0.378 0.411 0.466
CCAZ(4) 0.046 0.401 0.620 0.742 0.797 0.865
CCAZ\(KL) 0.045 0.397 0.613 0.725 0.781 0.833
Shin(2,4) 0.049 0.478 0.619 0.705 0.741 0.744

Note: Entries report the rejection frequencies computed from 10.000 replications of
model (22) — (23) with sample size T' = 200.

Table 3: Rejection frequencies for different values of v (¢ = 1)
Test statistic 1.00 0.50 0.10 0.05 0.01 0.00
CCA*(4) 0.059 0.059 0.059 0.059 0.059 0.059
CCA;(4) 0.042 0.034 0.015 0.014 0.013 0.013
CCA§(4) 0.045 0.045 0.046 0.046 0.046 0.046
Shin(2,4) 0.073 0.118 0.562 0.781 0.899 0.902
Note: see Table 2.

of the cointegration vector is invalid.? On the other hand, the CCA statistics
perform well in this situation. For v = 0, the statistic CCA(4) is also based
on a wrong normalization as it uses y9; as additional instrument. However, it
can be shown that in this case the CCAZ (k) statistic has the same asymptotic
distribution as the original CCA*(k) statistic. Since the critical values of the
latter statistic are lower than those of CCAZ(k), the test using CCA’(4) with
an invalid normalization tends to be conservative. In contrast, the actual size of
the test using the estimated nonstationary linear combination from the Johansen
procedure (CCA%(4)) is close to the nominal size of 0.05.

In the final Monte Carlo experiment we investigate the potential of the new

tests to select the cointegration rank. A four-dimensional cointegrated VAR(1)

2See Boswijk (1996) and Saikkonen (1996) for a further discussion of the problems related
to the normalization of the cointegration vectors.
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Table 4: Rank Selection with Alternative Test Statistics

TestStatistic‘ r=20 ‘ r:I‘ r=2 ‘ r=3 ‘ r=4
a; =04
LR 0.000 0.000 0.956 0.042 0.002
CCA*(8) 0.016 0.013 0.830 0.141 0.000
CCA%(8) 0.000 0.048 0.903 0.049 0.000
CCA%(S) 0.000 0.023 0.909 0.068 0.000
ap = 0.3
LR 0.000 0.000 0.948 0.046 0.006
CCA*(8) 0.016 0.012 0.835 0.136 0.001
CCAL(8) 0.000 0.060 0.898 0.041 0.001
CCA%(S) 0.000 0.026 0.918 0.055 0.001
ap = 0.2
LR 0.000 0.000 0.948 0.048 0.004
CCA*(8) 0.015 0.019 0.802 0.163 0.001
CCAZ(8) 0.000 0.056 0.883 0.060 0.001
CCAX(8) 0.002 0.039 0.888 0.070 0.001
a; = 0.1
LR 0.000 0.000 0.935 0.062 0.003
CCA*(8) 0.026 0.046 0.793 0.134 0.001
CCA%(8) 0.003 0.191 0.770 0.035 0.001
CCA%(S) 0.004 0.180 0.759 0.056 0.001

Note: The entries report the relative frequencies of selecting the indicated rank
computed from 1.000 replication of a four-dimensional VAR(1) system with sample
size T=200.

model is used, where the matrices # and « are specified as follows:

1 0 — 0

0 1 0 05
B=1ly —q| aad a=) 4 |

1 0 0 0

that is, the first error correction term enters the first equation with the coefficient
—ay and the second error correction term enters the second equation with the
coefficient —0.5. The innovations of the model are mutually uncorrelated Gaus-
sian white noise with unit variances. If a; approaches zero, the test procedures
will have difficulties to decide whether the cointegration rank is r =1 or r = 2.
To assess the ability of the new tests to determine the cointegration rank,

a “bottom-up” strategy is used (see Section 2). For the tests using a reversed

23



sequence of hypotheses the truncation lag is k = 8, although for higher values
of a; (such as a; = 0.4) a smaller truncation is sufficient and leads to a more
powerful test procedure. For Johansen’s LR test, we assume that the VAR order is
known to be one. Of course, assuming the correct parametric model to be known,
whereas the other tests adopt a semiparametric approach to estimate the nuisance
parameters favors the parametric LR procedure of Johansen. However, it is not
the intention here to investigate which procedure performs better. Rather we use
the LR test as a benchmark against which we are able to assess the potential of
the new tests for the selection of the cointegration rank.

Table 4 reports the observed relative frequencies of selecting a particular rank
r € {0,1,...,4}. The frequencies are based on 1000 simulated samples. From
the results it turns out that for small values of «;, Johansen’s LR test performs
better than the CCA statistics. For substantial values of a1, however, the relative

performance of the CCA statistics is similar to the LR test procedure.

8 An Empirical Application

In this section the application of the new tests is illustrated by using a dataset
of interest yields with different time to maturity. The expectation hypothesis
of the term structure implies that interest yields with different time to maturity
are mutually cointegrated. Therefore, we expect three cointegration relationships
between four k-month interest rates, where k = 1, 3,6,12. The data are monthly
observations running from 1982(1) to 1996(12) and were taken from the database
of the German Bundesbank.

For the Johansen procedure a VAR(12) model is used and for the CCA statis-
tics a truncation lag of 16 is applied. Whereas the results from the Johansen test
do not change very much for different lag orders, the CCA statistics are quite
sensitive to the choice of the truncation lag. Since an underspecification of the
truncation lag may produce a considerable size bias, a fairly large value of k is
chosen. Furthermore, we allow for a constant mean in the data. The results for
the cointegration rank tests are presented in Table 5.

The sequence of LR tests suggests that » = 2. However, it may be that the
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Table 5: Cointegration Rank Statistics for Interest Yields

LR CCA*(16) CCA’(16) CCAZ(16)
r=20 52.961* n.a. n.a. n.a.
r=1 33.195* 0.464 9.652 9.639
r=2 17.350 9.502 19.987 21.522
r=3 2.879 28.206 38.035 38.849
r=4 n.a. 92.587** n.a. n.a

Note: “LR” denotes Johansen’s LR trace statistic from a VAR(12) model with con-
stant term. * and ** indicate significance at the levels 0.05 and 0.01, respectively.

power of the test is not sufficient to reject r = 2 and r = 3, so that the rank
may well be three or four. Therefore, it is useful to apply the reverse sequence of
tests.

Applying the CCA statistics, the picture is quite clear. Since the hypothesis
r = 4 is rejected, while the hypotheses r < 3 are accepted by all versions of the
CCA statistic, both tests together suggest that the rank is either two or three.

9 Conclusions

In this paper a CCA approach is adopted to test for cointegration using a reverse
sequence of hypotheses. Together with Johansen’s LR tests, such a test may
give useful additional and allows the construction of a confidence set for the
cointegration rank.

As for univariate time series, it is shown that similar principles can be adopted
for testing the opposite hypotheses. However several differences remain. First, it
is difficult to adopt a parametric framework like the VAR model for Johansen’s
tests. We therefore make use of nonparametric corrections for nuisance parame-
ters in the tradition of Phillips (1987). Second, whereas the power of Johansen’s
LR test does not seem to depend sensitively on the correction for short run dy-
namics, the power of the CCA statistics (similar as the KPSS statistic) is highly
sensitive to the choice of the truncation lag. This is an undesirable property of
the tests because the power of the tests can be made arbitrarily small by choosing

a truncation lag sufficiently high. Third, the asymptotic theory is a little bit more
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complicated and the critical values have to be tabulated for both dimensions r
and n.

Since there does not appear to exist a theoretical reason for choosing among
the principal components and the CCA approach it might be interesting to com-
pare the performance of the different tests in an extensive Monte Carlo study as
was done by Gonzalo (1994), Haug (1997) and Hubrich et al. (1998) for the test

of r = ry against r > rg.
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Appendix A

Proof of Theorem 3.1:

From standard asymptotic results we get:
TS Yy, = / QYW dW! QY% + b
T2Y VY, = [ QW

T_lzyty£ = FOJ

where W, is an n-dimensional Brownian motion. Using these results, the nor-

malized sum of the eigenvalues results as
n -1
TSN = tr [(/ wawa) ([ waaw+ 1) eyergtey? ([ awaw + T)] .
7=1

Proof of Lemma 4.1

From (5) we have for every cointegration matrix § and a linearly independent
matrix :
By = BC(L)ey
= [C*(1)e, + C™(L)Ag,
t
'Y,yt = ’)/,CZQ —+ C*(L)€t ,
i=1
where C**(L) = [C*(L) — C*(1)](1 — L)~! has all roots outside the complex unit

circle. Let R be a block diagonal matrix such that

RH 0 ]

R= [
R21 R22

and ,
Then, by using , ,
0= (7] (2]

[aT]

it readily follows that T='/2 Y a1; and T~/22y (417 converge weakly to the stan-
i=1

dard Brownian motions W, and W,,_,, respectively.
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Proof of Theorem 4.1:

It is convenient to normalize the matrix of the first r eigenvectors as B; =
[b1,...,b,] = [I,,—®7]. Consider the j’th eigenvector (j = 1,...,r), which

is determined by the equation
(N1, — X'Z(Z2'2)'Z'X]b; = 0.
The lower n — r equations of this system can be written as
Nby — X3Z(2'2)7 2(X gy, — Xady) = 0

where ¢; is the j’th column of ®7, X(; is the j’th column of X and X, =
[@21, ..., xor]'. Since ¢; is Op(T1), A\j = O,(1) it follows that

XyZ(2'2) T2/ (X(j) — Xagj) = Op(T ).
Using X5 Z = O,(T?) and Z'Z = O,(T*) we get
¢; = XSZ(Z'2) " Z' X)X Z(Z' Z2) T 2 X (jy + Op(T7) (25)
or, by collecting the results for ¢q, ..., ¢,
O = (X, Z(Z2'2) 1 2' X 1 XL Z(Z'Z) 72X, + 0,(T 3,

where X, is a submatrix with the first  columns of X.
Finally, let Dy =diag[l., T 'I,_,]. Then, using standard asymptotic results

for unit root processes:

T-2X, 72Dy = / Wiy €!
T2D;7'ZDy = / £.6"

T2D;7'X, = / £,dW!

the limiting distribution follows immediately.
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Proof of Theorem 4.2:

The eigenvalue problem is equivalent to

A (k) = [X'Z = TV (k)(Z'2) [2'X = TV (k)]

=0 (26)

yielding

- VIX'Z — TV (k) (Z2'2) Y 2'X — TV (k)']b;
’ b, (k)b
To show that the eigenvalues only depend on the nuisance parameters ¥; we
consider the numerator and denominator separatly.
Let Dy =diag|I,,T7'I,,_,]. Then, using
T

T t—1 t
T let (Z xl2z> =-T* Z ( xli) xIZt +0,(1) = _/WrWé—r
t=2 i—1 t=1 1

we have as k/T — 0

17 DnX' 2Dy = DDy = T DpxzDy - Y5 L) O oh

[aW, W] — ¥y, —[wWWw_. }

= [ Wl W (W [WE_,)

Furthermore, we have

_ w.w! JfW, fw]_
T=*DyZ'ZD ;»[f’“’“ T e ]
! ! JUWa) W S Waer) (W5 2,)
Next we show that the eigenvector IN)J- (j =1,...,7) does not depend on nuisance

parameters, asymptotically. From Assumption 4.2 it follows that the lower n —r

equations of eigenvalue problem (26) we have
X42(Z2'2) 1 Z'Xb; = O, (k)
and, thus,
b = [X4Z(Z'2) 12X IXQZ(Z'2) 1 2 X gy + Ol T?)

where éj is defined as the lower n — r subvector of b;. Since all variables in X,

and Z are I(1) or I(2) variables, the asymptotic distribution of @ only depends
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on their long run covariance matrices, which are unity by construction. Thus,
for k/T — 0 the asymptotic distribution of q;j is the same as the asymptotic
distribution of ¢; in (25).

It remains to show that b;@“’(k)bj does not depend on nuisance parameters.

Since ¢; = O,(T) it follows from Assumption 4.2 that
b (k)b; = 1+ O,(k/T)

and thus, for k£/T — 0 all terms that enter the expression for 5\]- are free from nui-
sance parameters and yield the same asymptotic distribution as the in Theorem

4.1.

Proof of Theorem 5.1

Let D4 = [I,,,T7'I,_,]. It follows that

T2 X fary
T 2Dy = | T Pwpary | = €
T73/2X2,[aT]

and, it is straightforward to show that the limiting distribution results from

replacing & by £* in Theorem 4.1.

Proof of Theorem 5.2

Following Saikkonen (1991) we find that under appropriate conditions on m the

OLS estimator of ® in the cointegration regression

m
T = (I),.’L’Qt + Z A.’L’gyt_j +
j=—m
is asymptotically distributed as

R —1
% — WnTW,;T] [ W aw;

Furthermore, using 7 2Dy X(gy = £ the limiting distribution stated in the

theorem is easly derived.
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Proof of Theorem 6.1

It is not difficult to verify that for the least-squares estimate of IT in (20) we have

0 — {Hll + O, (T71/2) T
H21 + Op(Til/Q) Tl2r

where nyp and o are O,(T1). Accordingly, we get for the partial sum

& I Xy +mirXo tl]
I s 14 0,0) .
! o1 Xy o1+ 1merXoiy »(1)

This gives

T

|
—

S [0,(T? 0,(T? — s [0,(T) O,T
= [ o] w0 it = [ohr oftrd

t

||
N

and, thus,

It follows that

and, thus, estimates of (2* and ¥U* based on é; instead of x; satisfy Assumption

4.2.
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Appendix B: Critical Values

The critical values are computed from 10.000 realizations of the asymptotic ex-
pression, where Brownian motions are replaced by random walks with 7" = 500.

Table B.1: Critical Values (zero mean)

CCA-statistic CCA-statistic

0.10 0.05 0.01 0.10 0.05 0.01
n=2r= 4.822 6.372 9.616 | 8.710 10.503 14.770
n=2r=2110.376 12.220 15.934 | n.a. n.a. n.a.
n=3,r= 6.093  7.947 11.711 | 14.083 16.330 20.860
n=3,r= 13.384 15.639 20.069 | 19.704 22.383 27.292
n=3r= 21.697 24.272 28.946 | n.a. n.a. n.a.
n=4,r= 7177 9.350  13.956 | 18.780 21.543 26.442
n=4,r=2]16.013 18.479 23.566 | 28.966 31.959 38.133
n=4,r= 26.193 28.774 34.037 | 34.163 37.286 43.979
n=4r = 36.650 39.665 46.015 | n.a. n.a. n.a.
n=>5r= 8.008 10.588 16.088 | 23.922 26.507 32.299
n=>5r= 18.216 20.799 26.737 | 38.155 41.519 48.421
n=>5,r= 30.205 33.322 39.221 | 47.734 51.458 58.829
n=>5,r= 42.976 45976 53.054 | 53.280 56.926 65.138
n=2>yr= 55.630 59.283 67.173 | n.a. n.a. n.a.
n==6,r= 8.494 11.231 16.858 | 28.086 31.150 37.481
n==6,r= 20.006 22.944 28.946 | 46.776 50.605 58.008
n==6,r= 33.436 36.580 43.590 | 60.574 64.932 73.827
n==6,r= 48.370 52.044 58.780 | 70.328 74.647 83.109
n==6,r= 63.827 67.888 75.844 | 76.473 80.603 88.713
n==6,r= 78.571 83.178 91.861 | n.a. n.a. n.a.
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Table B.2: Critical Values (mean adjusted)

CCA-statistic

CCA-statistic

0.10 0.05 0.01 0.10 0.05 0.01
n=2r= 1.060 1.647  3.453 | 10.503 12.460 16.436
n=2r=2113842 15.753 20.122 | n.a. n.a. n.a.
n=3r= 6.722 8.673 13.174 | 15.615 17.964 22.778
n=3,r= 13.211 15.311 19.484 | 22.829 25.204 30.066
n=3r= 25.808 28.552 33.581 | n.a. n.a. n.a.
n=4,r = 1.547 2225  4.005 | 20.430 22.899 27.985
n=4,r = 17.043 19.602 24.702 | 32.058 34.777 40.607
n=4,r = 27.433 30.157 35.572 | 38.750 41.782 48.296
n=4r = 41.802 44.710 50.524 | n.a. n.a. n.a.
n=>5r= 8.155 10.498 15.436 | 25.335 28.105 34.411
n=>5r= 16.344 18.811 23.556 | 41.059 44.260 51.320
n=>5r= 31.728 34996 41.465 | 52.046 55.922 63.246
n=>o,r= 45.502 49.022 55.514 | 58.524 62.442 69.403
n=2>yr= 61.383 65.274 72.566 | n.a. n.a. n.a.
n==6,r= 2.118  2.811  4.713 | 29.703 32.700 39.091
n==6,r= 19.945 22.903 29.395 | 49.614 53.519 60.683
n==6,r= 33.569 36.664 42972 | 64.707 68.999 77.761
n==6,r= 50.469 54.170 61.740 | 75.812 80.346 89.405
n==6,r= 67.537 71.501 79.508 | 82.639 86.966 95.530
n==6,r= 85.062 89.607 99.066 | n.a. n.a. n.a.
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Table B.3: Critical Values (trend adjusted)

CCA-statistic

CCA,-statistic

0.10 0.05 0.01 0.10 0.05 0.01
n=2r= 1.920 2.688 5.145 | 13.612 15.852 20.318
n=2r=2|19.787 22.140  26.959 n.a. n.a. n.a.
n=3r= 9.572 11.586  16.391 | 18.314 20.796 26.116
n=3r= 16.576 18.839  23.628 | 28.205 31.063 36.621
n=3r= 33.988 36.938  42.589 n.a. n.a. n.a.
n=4,r = 2.414 3.162 5.217 | 22.866 25.462 31.311
n=4,r = 21.884 24.766  30.964 | 36.858 40.287 46.568
n=4,r= 33.354  36.423  42.830 | 46.341 49.814 57.097
n=4,r= 02.309 55.532  62.394 n.a. n.a. n.a.
n=>5r1r= 10.500 13.144  18.624 | 27.417 30.199 36.224
n=>5r1r= 19.159  21.698  26.779 | 45.517 48.993  56.940
n=>5r1r= 37.694 41.338  49.236 | 58.744 62.589 70.879
n=2=51r= 03.409 57.326  65.033 | 68.211 72.418 80.114
n=>=o,1r= 74.035 78.155  85.836 n.a. n.a. n.a.
n==06,1r= 3.092 3.864 5.733 | 31.781 34.886 41.504
n==06,r= 24.081 27.390 33.679 | 54.037 57.635 65.274
n==06,r= 38.532 41.969  48.534 | 71.176 75.679 84.773
n==6,r= 08.544  62.866  71.545 | 84.523 88.930 99.143
n==6,r= 77.272  81.477  90.417 | 93.878 98.423 107.645
n==06,r= 99.808 104.466 114.275 | n.a. n.a. n.a.
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