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programs. Inserting disrete probability distributions into hane onstrained and two-stage mixed-integer stohasti programs represents an often used approximation tehniquefor solving these models (f. [21℄). Suh disrete approximations lead to mixed-integerprograms in both ases (see [15, Chapter 11.9℄ for hane onstrained models), whosedimensions grow rapidly with the number of senarios involved. Hene, moderately sizedsenario sets that represent good approximations of the underlying probability distributionare even of greater importane than for two-stage models without integrality requirements.The present paper aims at paving some roads for optimal senario redution in haneonstrained and mixed-integer two-stage stohasti programming models. Let P be adisrete probability measure on Rs with support {ξ1, . . . , ξN} and P (ξi) = pi > 0 for
i = 1, . . . , N . We onsider the problem of �nding another disrete probability measure
Q on Rs whih is supported on a subset of {ξ1, . . . , ξN} and whih deviates from P aslittle as possible with respet to some disrepany. We reall from [10, 9℄ that, for givenBorel probability measures P , Q on Rs and for a given system B of Borel subsets of Rs,the B-disrepany between P and Q is de�ned as

αB(P,Q) := sup
B∈B

|P (B) −Q(B)| .Important examples are the systems Bcl of all losed subsets, Bconv of all losed, onvexsubsets, Bpolyk of all polyhedra having at most k verties, Brect of all losed, s-dimensionalretangles ×s
i=1Ii with Ii, i = 1, . . . , s, denoting a losed interval in R, and Bcell of alllosed ells (i.e., sets of the form ξ + Rs

− with ξ ∈ Rs) of Rs. Evidently, one has that
αBcell

≤ αBrect
≤ αBpolyk

≤ αBconv
≤ αBcl

, (1)where for the inequality αBrect
≤ αBpolyk

one has to require that k ≥ 2s (in order to ensurethat Brect ⊆ Bpolyk). Any B-disrepany is a semimetri on the spae of all probabilitymeasures on Rs, i.e., it is non-negative, symmetri and satis�es the triangle equality.The disrepany αBcell
(and, thus, all disrepanies in (1)) are metris as, in addition,

αBcell
(P,Q) = 0 implies P = Q. A sequene (Pn) of probability measures onverges to Pwith respet to αB with B ⊆ Bcl i� it onverges weakly to P and P (∂B) = 0 holds foreah B ∈ B (with ∂B denoting the boundary of B) [2℄. We refer to the monograph [1℄for further bakground on weak onvergene of probability measures.In the literature (f. [16℄), αBcell

is also alled uniform or Kolmogorov metri as
αBcell

(P,Q) is just the uniform distane of the probability distribution funtions of Pand Q on Rs. The distane αBconv
is known as isotrope disrepany [12℄ and αBcl

astotal variation [16℄. Consistently, the distane αBcell
(αBrect

, αBpolyk
) will be alled ell(retangular, polyhedral) disrepanies. Some of these disrepanies have been extensivelyused for studying properties of uniformly distributed sequenes in the s-dimensional unitube Us = [0, 1]s [11℄ and, more reently, for developing Quasi-Monte Carlo methods[13℄. Converse inequalities to (1), e.g., for the isotrope and retangular disrepanies ofprobability measures P and Q on Rs, were also derived [9, 11, 12, 14℄. For instane, theestimate

αBconv
(P,Q) ≤ s

(
4Ms

s− 1

) s−1
s

αBrect
(P,Q)

1
s2



holds if P has a density (with respet to the Lebesgue measure on Rs) whih is boundedby M [14℄. In the ontext of quantitative stability of stohasti programs it is worthnoting that the polyhedral, retangular and ell disrepanies are of speial importanefor linear hane onstrained and mixed-integer two-stage models [19, 22, 17, 18, 8℄.Denoting by δξ the Dira-measure plaing mass one at the point ξ, one may write thedisrete measure P introdued above as
P =

∑N

i=1
piδξi , (2)where ∑N

i=1 pi = 1. Now, the redution problem formulated above an be restated as thefollowing optimization problem:minimize αB(P,Q) = αB(
∑N

i=1
piδξi,

∑n

j=1
qjδηj )subjet to {η1, . . . , ηn} ⊂ {ξ1, . . . , ξN}, qj ≥ 0 (j = 1, . . . , n),

∑n

j=1
qj = 1 (3)The variables to be optimally adjusted here are η1, . . . , ηn and q1, . . . , qn and altogetherthey de�ne the desired redued disrete measure Q via

Q =
∑n

j=1
qjδηj . (4)The optimization problem (3) may be deomposed into two subproblems: a ombinatorialoptimization problem for determining the senario set η = {η1, . . . , ηn} and a (linear)program for �xing q = (q1, . . . , qn). To desribe this in more detail, we denote by αB(η, q)the B-disrepany between P and Q for �xed P , and by Sn the standard simplex in Rn,i.e.,

αB(η, q) := αB(
∑N

i=1
piδξi ,

∑n

j=1
qjδηj )

Sn := {q ∈ Rn|qj ≥ 0, j = 1, . . . , n,
∑n

j=1
qj = 1}.Now, the optimization problem (3) is of the form

min
η

{ inf
q∈Sn

αB(η, q)|η ⊂ {ξ1, . . . , ξN},#η = n}, (5)where infq∈Sn
αB(η, q) refers to the in�mum of the inner optimization model

min{αB(η, q)|q ∈ Sn} (6)for �xed senario set η. While (5) represents a spei� lustering problem, a so-alled
k-median problem of ombinatorial optimization, the problem (6) will turn out as a linearprogram. Both problems will be further disussed in Setion 3. In Setion 2, we deriveupper and lower bounds of the optimal value of (3) and disuss some partiular ases,whih allow for an expliit solution. In Setion 4 we provide some preliminary numer-ial experiene for optimal senario redution with respet to the ell disrepany (orKolmogorov distane). 3



2 Bounds and spei� solutionsIn this setion, we shall derive a spei� solution for problem (3) in the ase of the losedset disrepany αB = αBcl
as well as universal bounds for the optimal value of (3) inase of general disrepanies. By 'universal' we mean a bound that just depends on theprobabilities pi of the original disrete measure P but not on its support. In partiular,these bounds do not depend on the geometry of the support or the spae dimension s.Hene, in ontrast to the exat solution of (3), these bounds are very easy to ompute fora quite general lass of disrepanies.2.1 Ordered solution and upper boundIntuitively, approximating the original disrete measure P by some other measure Q whihis supported by a subset of the support of P , requires well to approximate those supportingpoints of P having large probability. In this setion, we assume, without loss of generality,that p1 ≥ · · · ≥ pN . Then, a naive idea for solving (3) would be to put in the de�nition(4) of Q:

ηj := ξj (j = 1, . . . , n); qj := pj (j = 1, . . . , n− 1); qn :=
∑N

i=n
pi. (7)This means that Q selets its support as the atoms of P having largest probability and,that the assignment of probabilities is adopted from the original measure exept at thelast atom, where the new probability is modi�ed to make all qj sum up to one. Evidently,this simple approximating probability measure Q, whih from now on shall be alled theordered solution, is feasible in (3). It has the interesting feature, that it realizes a universal(with respet to any disrepany), easy to alulate upper bound in (3) whih is atuallysharp in ase of the losed set disrepany.Proposition 2.1 As before, we assume, without loss of generality, that p1 ≥ · · · ≥ pN .Denote by ∆B the optimal value of (3), where B is any system of Borel measurable subsetsof Rs. Then, one has that1. ∆B ≤

∑N
i=n+1 pi.2. ∆Bcl

=
∑N

i=n+1 pi.Proof. De�ne Q in (4) as the ordered solution aording to (7). Let B ∈ B be arbitraryand put
J := {j ∈ {1, . . . , n}|ξj ∈ B}.
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Then, by (7),
|P (B) −Q(B)|

=
∣
∣
∣

∑N

i=1
piδξi(B) −

∑n

j=1
qjδηj (B)

∣
∣
∣

=

∣
∣
∣
∣

∑

i∈J\{n}
piδξi(B) + pnδξn(B) +

∑N

i=n+1
piδξi(B)

−
∑

j∈J\{n}
qjδξj (B) − qnδξn(B)

∣
∣
∣
∣

=

∣
∣
∣
∣

∑

i∈J\{n}
pi + pnδξn(B) +

∑N

i=n+1
piδξi(B) −

∑

j∈J\{n}
qj − qnδξn(B)

∣
∣
∣
∣

=
∣
∣
∣pnδξn(B) − qnδξn(B) +

∑N

i=n+1
piδξi(B)

∣
∣
∣

=

{ ∣
∣
∣
∑N

i=n+1 piδξi(B) −
∑N

i=n+1 pi

∣
∣
∣ if n ∈ J

∑N
i=n+1 piδξi(B) if n /∈ J

.Due to
0 ≤

∑N

i=n+1
piδξi(B) ≤

∑N

i=n+1
pi,one arrives at

|P (B) −Q(B)| ≤
∑N

i=n+1
pi.Sine B ∈ B was arbitrary, there follows assertion 1.:

∆B ≤ αB(P,Q) = sup
B∈B

|P (B) −Q(B)| ≤
∑N

i=n+1
pi.Conerning assertion 2., let Q in (4) be any disrete measure whih is feasible in problem(3) with respet to the speial disrepany distane αB = αBcl

. Feasibility of Q in (3)implies that {η1, . . . , ηn} ⊆ {ξ1, . . . , ξN}. Therefore, ηj = ξij for ertain seletions ij ∈
{1, . . . , N} and j = 1, . . . , n. Sine B := {ξ1, . . . , ξN}\{η1, . . . , ηn} is a losed set, onederives that B ∈ Bcl and thus:

αBcl
(P,Q) ≥ |P (B) −Q(B)|

=

∣
∣
∣
∣

∑

i∈{i1,... ,in}
piδξi(B) +

∑

i/∈{i1,... ,in}
piδξi(B) −

∑n

j=1
qjδηj (B)

∣
∣
∣
∣

=
∑

i/∈{i1,... ,in}
pi ≥

∑N

i=n+1
pi,where in the last inequality the assumed dereasing order of the pi was exploited. As Qwas supposed to be arbitrary feasible in (3), one gets that

∆Bcl
= inf{αBcl

(P,Q)|Q feasible in (3)} ≥
∑N

i=n+1
pi .Taking into aount the reverse inequality, already proved in assertion 1. for an arbitrarydisrepany, there follows assertion 2. 5



Corollary 2.1 The ordered solution de�ned in (7) is a (nonunique) optimal solution ofproblem (3) for the losed set disrepany αBcl
.Proof. In the �rst part of the proof of Proposition 2.1, we have shown that, for anydisrepany αB, the ordered solution realizes an objetive value in (3) whih is not largerthan ∑N

i=n+1 pi. On the other hand, the same value is optimal in (3) for the losed setdisrepany αBcl
(see assertion 2. in Prop. 2.1).The last orollary shows, that in ase of the losed set disrepany, an expliit solution ofproblem (3) an be found without any omputational e�ort. The same does not hold truefor the weaker disrepanies mentioned in the introdution. Nevertheless, for those otherdisrepanies too, one may bene�t from the upper bound information for the optimal valuein (3) provided by the �rst statement in Proposition 2.1. For instane, from the (ordered)values of the original probabilities pi, one an diretly read o� the number of atoms

n < N required for the approximating measure Q, in order to make the approximationerror αB(P,Q) not exeed a presribed tolerane ε > 0. In the speial ase of pi = N−1(i =
1, . . . , N), one derives the ondition

n

N
≥ 1 − ε.For instane, a tolerane of 10% (ε = 0.1) an be satis�ed then, if n is at least 90%of N . Of ourse, suh linear relation between tolerane and size of distribution is notvery satisfatory. Indeed, the seond assertion of Proposition 2.1 tells us, that, in theassumed equi-distributed ase, one atually observes this undesirable linear relation forthe losed set disrepany. Consequently, there is some hope, that a better behaviour anbe observed for the weaker disrepanies, whih are more appropriate for the stability ofhane onstrained and mixed-integer stohasti programs (f. Setion 1). This, however,omes at the prie that a simple solution of (3) is no longer available and, atually, annoteven be obtained omputationally for relevant problem sizes in an exat sense.The following example omplements Corollary 2.1 by showing that the ordered solutionneed not be optimal for a disrepany di�erent from αBcl

:Example 2.1 De�ne the original measure P on R by
ξ1 := 1, ξ2 := 3, ξ3 := 2, ξ4 := 4; p1 := p2 := 0.4; p3 := p4 := 0.1.We are looking for the optimally redued measure Q in problem (3) whih selets n := 2atoms from the original measure. As far as this is done with respet to the losed setdisrepany αBcl

, Corollary 2.1 guarantees that the ordered solution Q de�ned by
η1 := 1, η2 := 3, q1 := 0.4, q2 := 0.6is optimal and, by Proposition 2.1, realizes the minimal disrepany ∆Bcl

= p3 + p4 = 0.2.For the onvex set disrepany αBconv
(see introdution), this ordered solution realizes thesame value αBconv

(P,Q) = 0.2. However, onsidering the redued measure Q∗ de�ned by
η1 := 1, η2 := 3, q1 := 0.5, q2 := 0.5,6



it follows that αBconv
(P,Q∗) = 0.1. Consequently, the ordered solution is not optimal in(3) with respet to αBconv

. At the same time, this is an example for a strit inequality instatement 1. of Proposition 2.1.2.2 Lower boundIn this setion, we want to �nd a universal lower bound for the optimal value of problem(3). For this purpose, we will aess on the following property.De�nition 2.1 We all a system B of Borel subsets of Rs isolating if for any �nite subset
{x1, . . . , xp} ⊆ Rs there exist sets Bi ∈ B for i = 1, . . . , p with

Bi ∩ {x1, . . . , xp} = {xi} (i = 1, . . . , p) .Clearly, the systems Brect, Bconv, Bcl and Bpolyk (for k ≥ 2s) mentioned in the introdutionare isolating, whereas Bcell, for instane, is not.Theorem 2.1 Let B be an isolating system of Borel subsets of Rs. In (3), let n < N .Then, assuming as before that the pi are dereasingly ordered, the optimal value ∆B inproblem (3) has the lower bound
∆B ≥ max

{

pn+1, n
−1

∑N

i=n+1
pi

}

.Proof. Eah measureQ de�ned by (4) whih is feasible in problem (3) indues an injetiveseletion mapping σ : {1, . . . , n} → {1, . . . , N} with
ηi = ξσ(i) (i = 1, . . . , n) .Applying De�nition 2.1 to the support {ξ1, . . . , ξN} of the original measure P , we derivethe existene of sets Bi ∈ B for i = 1, . . . , N suh that

Bi ∩ {ξ1, . . . , ξN} = {ξi} (i = 1, . . . , N) .Then,
∣
∣P (Bσ(i)) −Q(Bσ(i))

∣
∣ =

∣
∣P ({ξσ(i)}) −Q({ηi})

∣
∣ =

∣
∣pσ(i) − qi

∣
∣ (i = 1, . . . , n)

∣
∣P (Bi) −Q(Bi)

∣
∣ = pi (i ∈ Cσ) ,where Cσ := {1, . . . , N}\{σ(1), . . . , σ(n)}. It follows for the disrepany that

αB(P,Q) ≥ max
i=1,... ,N

∣
∣P (Bi) −Q(Bi)

∣
∣ = max

{

max
i∈Cσ

pi, max
i=1,... ,n

∣
∣pσ(i) − qi

∣
∣

}

.Note, that the variation of Q among the feasible measures in (3) amounts to variation ofthe seletion mapping σ and to variation of oe�ients qi ≥ 0 subjet to the onstraints
∑n

i=1 qi = 1. This allows to write
∆B = inf{αB(P,Q)|Q feasible in (3)}

≥ inf {ϕ(σ)|σ : {1, . . . , n} → {1, . . . , N} injetive} , (8)7



where
ϕ(σ) : = max

{

max
i∈Cσ

pi, ψ(σ)

}

ψ(σ) : = inf

{

max
i=1,... ,n

∣
∣pσ(i) − qi

∣
∣

∣
∣
∣
∣
qi ≥ 0 (i = 1, . . . , n) ,

∑n

i=1
qi = 1

}

.Next, we want to develop the expression for ψ(σ). Sine pi > 0 for i = 1, . . . , N and
n < N , by assumption, it follows that

γ :=
∑n

i=1
pσ(i) < 1.Note that the in�mum in the de�nition of ψ(σ) is always realized as a minimum. Welaim that q̂ ∈ Rn de�ned by

q̂i = pσ(i) + n−1(1 − γ) (i = 1, . . . , n) (9)provides this minimum. We have q̂i ≥ 0 for i = 1, . . . , n due to γ < 1 and ∑n
i=1 q̂i = 1,hene q̂ is feasible in the de�nition of ψ(σ). Now, let q′ ∈ Rn be any other feasible n-tupel.Then, by

∑n

i=1
q′i =

∑n

i=1
q̂i = 1,it is exluded that q′i < q̂i holds true for all i = 1, . . . , n. Consequently, there exists some

k ∈ {1, . . . , n} with q′k ≥ q̂k. From the relation q̂k ≥ pσ(k) (see (9)), one derives that
∣
∣pσ(k) − q′k

∣
∣ ≥

∣
∣pσ(k) − q̂k

∣
∣. Thus,

max
i=1,... ,n

∣
∣pσ(i) − q′i

∣
∣ ≥

∣
∣pσ(k) − q̂k

∣
∣ = n−1(1 − γ) = max

i=1,... ,n

∣
∣pσ(i) − q̂i

∣
∣ .This shows that indeed q̂ realizes the in�mum in the de�nition of ψ(σ) and so, by (9) andby de�nition of Cσ, one gets that

ψ(σ) = n−1(1 − γ) = n−1(1 −
∑n

i=1
pσ(i)) = n−1

∑

i∈Cσ

pi.Now, we ontinue (8) as
∆B ≥ inf

{

max

{

max
i∈Cσ

pi, n
−1

∑

i∈Cσ

pi

}∣
∣
∣
∣
σ : {1, . . . , n} → {1, . . . , N} injetive} .Identifying the set of all seletions as given in this relation with the system of all subsetsof {1, . . . , N} having ardinality n, one obtains the reformulation

∆B ≥ inf

{

max

{

max
i∈A

pi, n
−1

∑

i∈A
pi

}∣
∣
∣
∣
A ⊆ {1, . . . , N}, #A = N − n

}

.As the pi are dereasingly ordered, both expressions
max
i∈A

pi and n−1
∑

i∈A
pi8



are simultaneously minimized by the set A∗ := {n+ 1, . . . , N}. Therefore,
∆B ≥ max

{

max
i∈{n+1,... ,N}

pi, n
−1

∑N

i=n+1
pi

}

.Owing to max{pi|i ∈ {n+ 1, . . . , N}} = pn+1, the assertion of the theorem is proved.Remark 2.1 The lower bound from Theorem 2.1 an be interpreted as follows. Consideran arbitrary redued measure Q. Sine B is isolating, the B-disrepany between P and
Q is larger than the maximal di�erene of P and Q on a singleton. Over all ommonmass points of P and Q, this maximum is at least n−1

∑N
i=n+1 pi, over all points without

Q-mass it is not less than pn+1.Corollary 2.2 Under the assumptions of Theorem 2.1, the following holds true:1. If n ≥ N
2
, then the lower bound in Theorem 2.1 redues to pn+1.2. If n = 1, then ∆B = 1 − p1 and the optimal solution of (3) is given by the measure

Q plaing unit mass on the atom realizing maximum probability with respet to theoriginal measure P .If n = N − 1, then ∆B = pN , and any measure Qj of the form
Qj =

∑N−1

i=1,i6=j
piδξi + (pj + pN )δξj j ∈ {1, . . . , N − 1}is an optimal solution of (3).Proof. The dereasing order of the pi implies 1. by Theorem 2.1 and the estimate

npn+1 ≥ (N − n)pn+1 ≥
∑N

i=n+1
pi,whih proves the �rst statement.In both ases n = 1 and n = N−1, Theorem 2.1 provides that ∆B ≥

∑N
i=n+1 pi. Now,the upper bound in Proposition 2.1 turns this inequality into an equality:

∆B =
∑N

i=2
pi =

{
1 − p1 if n = 1
pN if n = N − 1From the proof of statement 1. in Proposition 2.1) we know that the ordered solutionalways realizes a disrepany not larger than ∑N

i=2 pi., where this last value was justreognized to be optimal for n = 1 and n = N − 1. Consequently, the ordered solutionmust be optimal in these ases. For n = 1, the ordered solution plaes unit mass on theatom with highest probability in the original measure P . For n = N − 1, the orderedsolution orresponds to the measure QN−1. Sine B is isolating, the measure Qj is optimalfor any j ∈ {1, . . . , N − 1}.Unfortunately, the results in Corollary 2.2 are lost for the ell disrepany αBcell
as thenext example shows.Example 2.2 Consider the probability measure P =

∑3
i=1 piδξi on R2 with ordered prob-abilities p1 ≥ p2 ≥ p3 and ξ1 = (1, 1), ξ2 = (1, 0.5), ξ3 = (2, 2). For n = 1 we obtain

∆Bcell
= αBcell

(P, δξ1) = p2, whih ontradits to the results of Corollary 2.2.9



3 Solution tehniquesAs mentioned in Setion 1 problem (3) an be takled by a bilevel approah: in an outeriteration, the support seletion is arried out by solving the ombinatorial optimizationproblem (5), whereas in an inner iteration optimal probabilities qj are determined ondi-tional to the �xed support by solving (6). Sine problem (5) is known to be NP -hard, weresort to applying heuristi approahes. For two-stage models ertain forward seletionand bakward redution tehniques are developed in [4℄. In the ontext of the presentpaper, their analogues represent reursive extensions of the ases n = 1 and n = N − 1in Corollary 2.2. The forward and bakward algorithms determine index subsets J [n]and J [N−n], respetively, of {1, . . . , N}. Both index sets are of ardinality n and theorresponding senario sets form the support of the redued probability measure Q.Algorithm 3.1 (Forward seletion)Step [0℄: J [0] := ∅ .Step [i℄: li ∈ argminl 6∈J [i−1] inf
q∈Si

αB({ξl1, . . . , ξli−1, ξl}, q),

J [i] := J [i−1] ∪ {li}.Step [n+1℄: Minimize αB({ξl1, . . . , ξln}, q) subjet to q ∈ Sn.Algorithm 3.2 (Bakward redution)Step [0℄: J [0] := {1, . . . , N}.Step [i℄: ui ∈ argminu∈J [i−1] inf
q∈SN−i

αB({ξj|j ∈ J [i−1] \ {u}}, q),

J [i] := J [i−1] \ {ui} .Step [N-n+1℄: Minimize αB({ξj|j ∈ J [N−n]}, q) subjet to q ∈ Sn.Note that, at eah Step [i℄, i = 1, . . . , n, one has to solve N − i linear programs, whih areof dimension i and N− i in Algorithms 3.1 and 3.2, respetively. Hene, forward seletionseems to be preferable in most relevant ases. Although both algorithms do not lead tooptimality in (3) in general, the performane evaluation of their implemented analoguesfor transportation distanes in [4, 6℄ is enouraging.In the following, we want to onsider the inner iteration problem of optimizing the prob-ability distribution onditional to a �xed support. Without loss of generality, we mayassume that {η1, . . . , ηn} = {ξ1, . . . , ξn}. Of ourse, we may no longer maintain then theassumption of ordered probabilities pi from the previous setion without restriting thegenerality. Anyway, ordered probabilities pi are no longer relevant in the sequel. Then,problem (6) is of the form:minimize αB({ξ1, . . . , ξn}, q) = αB(
∑N

i=1
piδξi,

∑n

j=1
qjδξj ) subjet to q ∈ Sn. (10)

10



3.1 Formulation as a linear optimization problemIn this setion, we are going to reformulate (10) as a linear optimization problem. For
B ∈ B, de�ne a 'ritial index set' I(B) ⊆ {1, . . . , N} by the relation

B ∩ {ξ1, . . . , ξN} = {ξi|i ∈ I(B)}.Then,
|P (B) −Q(B)| =

∣
∣
∣
∣
∣
∣

∑

i∈I(B)

pi −
∑

j∈I(B)∩{1,... ,n}

qj

∣
∣
∣
∣
∣
∣

. (11)Obviously, this value does not depend on the onrete struture of the set B but is uniquelydetermined by the index set I(B). That is why, for alulating the disrepany αB(P,Q),it su�es to know all (�nitely many) ritial index sets whih may our when B variesin B. We de�ne the system of ritial index sets as
IB := {I ⊆ {1, . . . , N}|∃B ∈ B : I = I(B)}.For the losed set disrepany, for instane, one has IBcl

= 2{1,... ,N}, beause for anarbitrary subset I ⊆ {1, . . . , N} and an arbitrary ξi with i ∈ I, one may �nd a smalllosed ball Bi ⊇ {ξi}, suh that ξj /∈ Bi for all j ∈ {1, . . . , N}�{i}. Consequently,
B := ∪i∈IBi ∈ Bcl satis�es B ∩ {ξ1, . . . , ξN} = {ξi|i ∈ I}, so I(B) = I. For the othersystems B onsidered in the introdution, all one usually gets, is the strit inlusion
IB ⊂ 2{1,... ,N}.As soon as for some onrete B the system IB of ritial index sets is known, thedisrepany between P and Q may be alulated aording to (11) by using the formula

αB(P,Q) = max
I∈IB

∣
∣
∣
∣
∣
∣

∑

i∈I

pi −
∑

j∈I∩{1,... ,n}

qj

∣
∣
∣
∣
∣
∣

.We reall the well-kown fat that minimizing a funtion |f(x)| in terms of the variable x isequivalent to minimizing the funtion t subjet to the onstraints f(x) ≤ t and −f(x) ≤ tin terms of the variables (x, t). This allows to solve (10) by means of the following linearoptimization problem: minimize t subjet to q ∈ Sn, (12)
−

∑

j∈I∩{1,... ,n} qj ≤ t−
∑

i∈I pi
∑

j∈I∩{1,... ,n} qj ≤ t+
∑

i∈I pi

}

I ∈ IB.The variables to be optimized here, are t and the qj . If (q∗, t∗) is an optimal solution of(12), then q∗ is an optimal solution of the original problem (10), whereas t∗ indiates theoptimal value attained by q∗ in (12), i.e., t∗ provides the minimal disrepany αB(P,Q)between the original measure P and any measure Q whose support oinides with the�rst n points of the support of P . 11



Unfortunately, the size of (12) is too large to be useful, in general. Indeed, sine IBcl
=

2{1,... ,N}, as observed above, the number of onstraints in (12) amounts to 2N+1 + n + 1.On the other hand, one reognizes from (12), that many inequalities are just opies ofthemselves as far as the involved oe�ients qj are onerned, beause many di�erentindex sets I ∈ IB may lead to the same intersetion I ∩ {1, . . . , n}. The only term whihvaries then for those sets I, is the right-hand side of the inequalities in (12). Consequently,one may pass to the minimum of these right-hand sides orresponding to one and the sameintersetion I ∩ {1, . . . , n} whih will drastially redue the number of inequalities. Inorder to do so formally orret, we introdue a redued system of ritial index sets as
I∗
B := {I ∩ {1, . . . , n}|I ∈ IB}.Eah member J ∈ I∗

B of the redued system generates a set ϕ(J) of members in theoriginal system IB all of whih share the same intersetion with {1, . . . , n}:
ϕ(J) := {I ∈ IB|J = I ∩ {1, . . . , n}} (J ∈ I∗

B). (13)Now, introduing the quantities
γJ := max

I∈ϕ(J)

∑

i∈I

pi and γJ := min
I∈ϕ(J)

∑

i∈I

pi (J ∈ I∗
B), (14)(12) may be rewritten as minimize t subjet to q ∈ Sn, (15)

−
∑

j∈J qj ≤ t− γJ

∑

j∈J qj ≤ t+ γJ

}

J ∈ I∗
B.This orresponds indeed to passing to the minimum on the right-hand sides of the in-equalities in (12). Sine I∗

B is a subset of {1, . . . , n}, the number of inequalities in (15) isnot larger than 2n + n + 1. Having in mind that often n ≪ N , this results in a drastiredution of size in the linear optimization problem (12).The linear onstraints for eah J ∈ I∗
B imply that every feasible t of problem (15)satis�es t ≥ 1

2
(γJ − γJ) and, thus, one obtains the lower bound

1

2
max
J∈I∗

B

(γJ − γJ) ≤ inf
q∈Sn

αB({ξ1, . . . , ξn}, q).Hene, if q∗ ∈ Sn satis�es the onditions
γJ −

1

2
max
J∈I∗

B

(γJ − γJ) ≤
∑

j∈J
q∗j ≤

1

2
max
J∈I∗

B

(γJ − γJ) + γJ (J ∈ I∗
B),implying, in partiular,

∑

j∈J∗

q∗j =
1

2
(γJ∗ + γJ∗

) (J∗ ∈ argmaxJ∈I∗

B

(γJ − γJ)),then the pair (q∗, 1
2
maxJ∈I∗

B
(γJ − γJ)) is an optimal solution of (15).12



3.2 The speial ase of the ell disrepany αBcellThe main hallenge in the solution of (15) is not the solution of the linear program itself butthe omputational determination of the redued ritial index set I∗
B and of the oe�ients

γJ and γJ introdued in (14). As these strongly depend on the geometri struture ofthe hosen system B of Borel subsets, there is no general proedure available for thisdetermination. In this setion, an algorithmi approah for dealing with the speial aseof the ell disrepany αBcell
shall be presented. The same methodology an be arriedover to the retangle disrepany αBrect

though with higher omputational e�ort. Themore general disrepanies αBpolyk
and αBconv

of polyhedra and losed onvex sets, wouldrequire more sophistiated approahes whih are outside the sope of this paper.Reall that the sytem of ells is de�ned by
Bcell = {z + Rs

−|z ∈ Rs},where Rs
− = {x ∈ Rs|xj ≤ 0 (j = 1, . . . , s)} is the negative orthant of Rs. For the purposeof abbreviation, we put [z] := z + Rs

− for z ∈ Rs.Sine the support {ξ1, . . . , ξN} of the measure P is �nite, it is ontained in an openretangle (c, d) for some c, d ∈ Rs. We introdue an arti�ial point set {r1, . . . , rs} inorder to ontrol the boundary of the support, where rj is de�ned by
rj
j := dj and rj

k := ck if k 6= j. (16)Reall that the support of any feasible redued measure Q in (10) is given by the set
{ξ1, . . . , ξn} of �rst n atoms of the support of P . We will show that it is su�ient toonsider those ells, whih are bounded in every diretion by an element of

R := {ξ1, . . . , ξn} ∪ {r1, . . . , rs}in the following sense.De�nition 3.1 A ell [z] is alled supporting, if there exists a subset {x1, . . . , xs} ⊆ Rsuh that {x1, . . . , xs} ⊆ [z] and xj
j = zj for j = 1, . . . , s.Indeed, we an restrit ourselves on supporting ells as shown by the following proposition,whih relies on the fat that every ell an be enlarged until it is a supporting one. Asthe proof of this proposition is rather tehnial, it is given in the appendix.Proposition 3.1 For any J ∈ I∗
Bcell

, there exists a supporting ell [z] suh that γJ =
P (int [z]) and

∪j∈J{ξ
j} = {ξ1, . . . , ξn} ∩ int [z] . (17)Before drawing some essential onlusions from Proposition 3.1, we mention the obviousfat that for any z ∈ Rs and any �nite subset F ⊆ Rs, there exists some ε > 0, suh that

[zε] ∩ F = int [z] ∩ F, (18)where zε is de�ned by zε
j := zj − ε for j = 1, . . . , s.13



Corollary 3.1 De�ne
Z := {z ∈ Rs| [z] is a supporting ell}.Then,

I∗
Bcell

= {J ⊆ {1, . . . , n}|∃z ∈ Z : (17) holds true}
γJ = max{P (int [z])|z ∈ Z, (17) holds true} ∀J ∈ I∗

Bcell
.Proof. The inlusion '⊆' in the �rst identity follows diretly from the seond statementof Proposition 3.1. Similarly, the inequality '≤' in the seond identity follows diretlyfrom the �rst statement of Proposition 3.1. For the reverse diretion of the �rst identity,let z ∈ Z be given suh that (17) holds true for some J ⊆ {1, . . . , n}. Now, we apply(18) to F := {ξ1, . . . , ξn} to derive the existene of some zε suh that

{ξ1, . . . , ξn} ∩ [zε] = {ξ1, . . . , ξn} ∩ int [z] = ∪j∈J{ξ
j}. (19)Sine [zε] ∈ Bcell, we observe upon realling the de�nition of I(B) for B ∈ Bcell in thebeginning of setion 3.1, that

I ([zε]) = {i ∈ {1, . . . , N}|ξi ∈ [zε]} = J ∪ {i ∈ {n + 1, . . . , N}|ξi ∈ [zε]}.Therefore,
I ([zε]) ∩ {1, . . . , n} = J ∩ {1, . . . , n} = J, (20)whih provides J ∈ I∗

Bcell
via the de�nition of I∗

Bcell
. This shows the inlusion '⊇' in the�rst identity. Conerning the reverse diretion of the seond identity, let J ∈ I∗

Bcell
and

z ∈ Z be arbitrary, suh that (17) holds true. Applying again (18), this time onseutivelyto {ξ1, . . . , ξn} and to {ξ1, . . . , ξN}, one dedues the existene of some zε suh that (19)and
{ξ1, . . . , ξN} ∩ [zε] = {ξ1, . . . , ξN} ∩ int [z] (21)hold true simultaneously. From (19) it follows (20) as in the lines above. Therefore,

I ([zε]) ∈ ϕ(J) (see (13)) and
γJ ≥

∑

i∈I([zε])

pi =
∑

ξi∈[zε]

P (ξi) = P ([zε]) = P (int [z]),where the last equality relies on (21). Sine z ∈ Z was hosen arbitrarily suh that (17)holds true, this shows the inequality '≥' in the seond identity.Corollary 3.1 suggests that one an alulate the index family I∗
Bcell

as well as all upperoe�ients γJ for J ∈ I∗
Bcell

, as soon as one knows the set Z of supporting ells whihis �nite. Indeed, it follows from De�nition 3.1, that eah supporting ell is de�ned byan s-tupel {x1, . . . , xs}. Consequently, one may extrat the �nite system of all s-tupels
{x1, . . . , xs} out of the set R = {ξ1, . . . , ξn} ∪ {r1, . . . , rs} and hek for eah of itsmembers, whether this s-tupel de�nes a supporting ell. If so, this ell ontributes to thealulation of I∗

Bcell
and of γJ for J ∈ I∗

Bcell
. It remains to determine the lower oe�ients

γJ for J ∈ I∗
Bcell

. 14



Proposition 3.2 For all J ∈ I∗
Bcell

, one has γJ =
∑

i∈I pi, where
I := {i ∈ {1, . . . , N}|ξi

k ≤ max
j∈J

ξj
k (k = 1, . . . , s)}.Proof. Completely analogous to the derivation of (22) in the appendix, one obtains that

γJ = min{P ([y])| [y] ∩ {ξ1, . . . , ξn} = ∪j∈J{ξ
j}}.De�ne z ∈ Rs by zk := maxj∈J ξ

j
k for k = 1, . . . , s. Then, ξj ∈ [z] for all j ∈ J and, thus,

∪j∈J{ξ
j} ⊆ [z] ∩ {ξ1, . . . , ξn}.Assume that this inlusion is strit. Then, there is some i ∈ {1, . . . , n}\J suh that

ξi ∈ [z]. J ∈ I∗
Bcell

means that there exists some B ∈ Bcell with J = I(B) ∩ {1, . . . , n}.Consequently, ξj ∈ B for all j ∈ J , whih entails that [z] ⊆ B, by onstrution of z. Wederive that ξi ∈ B and, hene, i ∈ I(B). On the other hand, i ∈ {1, . . . , n}\J , whih isa ontradition. It follows that
∪j∈J{ξ

j} = [z] ∩ {ξ1, . . . , ξn}.and, thus, γJ ≤ P ([z]). On the other hand, if y ∈ Rs is arbitrary feasible in the de�nitionof γJ , then ξj ∈ [y] for all j ∈ J , and so, [z] ⊆ [y] again by onstrution of z. Now, P ([z]) ≤
P ([y]) whih, upon passing to the minimum over all feasible y, provides P ([z]) ≤ γJ . Wemay onlude that

γJ = P ([z]) =
∑

ξi∈[z]

pi,whih proves the assertion of the proposition.4 Algorithm and numerial resultsThe results of the previous setions suggest the following algorithmi approah for thesolution of problem (10) in the speial ase of the ell disrepany αBcell
, given the problemdata N , n, s, {ξ1, . . . , ξN} and {p1, . . . , pN}:

15



Algorithm 4.1Step [1℄: To �nd an open retangle (c, d) suh that {ξ1, . . . , ξN} ⊆ (c, d) , de�ne
cj := min

i=1,... ,N
ξi
j − 1, dj := max

i=1,... ,N
ξi
j + 1 (j = 1, . . . , s) .Calulate the set R from De�nition 3.1 with points rj de�ned in (16).Put I∗

B := {∅}, A′ := {∅} and γJ := 0 for all J ⊆ {1, . . . , n}.Let A := {A ⊆ {1, . . . , n + s}|#A = s}.Step [2℄: If A′ = A then go to Step [7℄ else selet A = {i1, . . . , is} ∈ A\A′.Put A′ := A′ ∪ {A} and
xj :=

{
ξij if ij ≤ n
rij−n if ij > n

(j = 1, . . . , s) .Then, xj ∈ R for j = 1, . . . , s.Step [3℄: De�ne a 'potential' supporting ell [z] for some z ∈ Rs by
zk := max

j=1,... ,s
xj

k (k = 1, . . . , s) .Chek whether it is indeed a supporting ell aording to De�nition 3.1.If not so, then go to Step [2℄.Step [4℄: De�ne J by the relation (17), i.e.,
J := {i ∈ {1, . . . , n}|ξi

k < zk (k = 1, . . . , s)}. If J ∈ I∗
B then go to Step [6℄.Step [5℄: I∗

B := I∗
B ∪ {J}. Calulate γJ aording to Proposition 3.2.Step [6℄: Calulate α :=

∑

i∈I

pi, where I := {i ∈ {1, . . . , N}|ξi
k < zk (k = 1, . . . , s)}.If α > γJ , then γJ := α. Go to Step [2℄.Step [7℄: With the additional data I∗

B and γJ , γ
J for all J ∈ I∗

B solve the linearoptimization problem (15).In the following, we present some numerial results whih are based on a Mathematiaimplementation of Algorithm 4.1. Calulations were arried out on a 1200 MHz PC. Figure1 shows possible redutions of a randomly generated (w.r.t. support and probabilities)2-dimensional measure with N = 1000 atoms. A redution on n = 50 atoms is onsidered.The left diagram of the �gure illustrates the ordered solution de�ned in (7).By de�nition, this solution selets the 50 atoms of the original measure realizing thelargest probabilities. The �rst 49 atoms even keep the original probabilities, whereas thelast one is arranged to omplement the sum of theses probabilities to one in order to makethe seleted measure a probability measure as well. Sine eah of the seleted 50 atoms hasrather low probability whereas the set of all non-seleted 950 atoms has high probability,the ordered solution plaes almost all mass on atom no. 50. Although suh hoie wouldbe optimal in ase of the losed-set disrepany αBcl
aording to Proposition 2.1, it isintuitively lear from the piture that suh solution may not be meaningful for otherdisrepany distanes. Indeed, the ordered solution realizes a losed-set disrepany of16



Figure 1: Redution of a 2-dimensional measure with 1000 atoms (thin lines) to 50 atoms(thik lines). Heights orrespond to probabilities. The left diagram illustrates the orderedsolution, whereas the right diagram shows the measure whih, on the �xed support of theordered solution, is best approximating in the sense of the ell disrepany.

αBcl
= 0.90. Realling, that disrepanies always take values between 0 and 1, this valueis ertainly not satisfatory. It illustrates the e�et of 'linear derease' mentioned inSetion 2.1: a redution of the support to 5% of its atoms leads to a redution of thedisrepany whih is no more than 10%. On the other hand, Proposition 2.1 tells us, thatthe same value of 0.90 is an upper bound for any solution of any other disrepany. Now,measuring the ordered solution in the ell disrepany instead, yields the slightly smallervalue of αBcell

= 0.81, whih is still far from satisfatory. However, there is no reason,why the ordered solution should be optimal with respet to the ell disrepany, neitherfrom the hoie of the support nor from the assignment of probabilities. We illustrate thisfat by keeping the same support as the ordered solution but optimizing the probabilitiesaording to Algorithm 4.1. The resulting solution is illustrated in the right diagram ofFigure 1. It realizes the ell disrepany αBcell
= 0.08, whih is optimal for the hosen�xed support (of ourse, even better solutions might exist for a di�erent support). Thisvalue of 8% disrepany obtained by 5% of the original atoms highlights the potential ofAlgorithm 4.1 for senario redution.Numerial experiments show, that the main e�ort in Algorithm 4.1 is spent for thedetermination of supporting ells (ompared to this, the time onsumed by the solutionof the linear program in the last step is negligible). Supporting ells are identi�ed in thisalgorithm by heking all subsets of ardinality s in a set of ardinality n+ s. Therefore,the omplexity of the algorithm is mainly determined by the binomial oe�ient (

n+s
s

).This suggests that the pratial value of the algorithm is limited to small dimension s ofthe random distributions and moderate ardinality n of the redued support or to small nand moderate s (due to the identity (
n+s

s

)
=

(
n+s
n

)). On the other hand, the omputational17



e�ort is basially linear in the ardinality N of the original support, so larger values of Nseem to be no problem.Table 1: Computing times (in seonds) for di�erent problem parameters (the two quan-tities orrespond to dimensions s=3 and s=4, respetively.
N = 100 N = 200 N = 300

n = 5 0.24 - 0.49 0.48 - 0.84 0.83 - 1.6
n = 10 0.92 - 2.5 1.7 - 3.8 2.9 - 8.3
n = 15 3.2 - 12.1 4.1 - 16.8 9.6 - 33.2Table 1 ompiles some omputing times for Algorithm 4.1 under di�erent problem sizes.As one an see, the dependene of time on the size N of the original support is moderate(basially linear), whereas it quikly grows with the size n of the redued support andwith the dimension s. This is not surprising, beause the determination of all supportingells was arried out by heking all subsets of ardinality s in the set {1, . . . , n + s}.One might wonder if there is a more e�ient way of determining supporting ells thanjust by rude enumeration. It seems, however, that basially all mentioned subsets arepotential andidates for realizing the upper bound in the ell disrepany between twomeasures. Indeed, reall that the ell disrepany oinides with the supremum distaneof distribution funtions (the Kolmogorov distane).Figure 2: Di�erene between the distribution funtions of two disrete probability mea-sures (having 30 and 18 atoms, respetively).
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Figure 2 plots the di�erene of two disrete distribution funtions having 30 and 18 atoms,respetively. It an be reognized at how many di�erent regions, the maximum (positiveor negative) deviation may our.Figure 3: Derease of the ell disrepany in the ourse of a forward seletion proedure.
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Finally, Figure 3 shows the derease of the minimal disrepany in the ourse of a forwardseletion proedure (see Algorithm 3.1), where the original 2-dimensional measure having50 atoms is redued in a stepwise manner to a measure having 20 atoms. Computationtime was 160 seonds.5 AppendixProof of Proposition 3.1. Let J ∈ I∗
Bcell

be arbitrary. By de�nition of ϕ(J) in (13), forany I ∈ ϕ(J) there exists some B ∈ Bcell suh that I = I(B) and J = I(B) ∩ {1, . . . , n}.Then, by de�nition of I(B),
∑

i∈I

pi =
∑

i∈I(B)

pi = P (B),whene
γJ = max

I∈ϕ(J)

∑

i∈I

pi = max{P (B)|B ∈ Bcell, J = I(B) ∩ {1, . . . , n}}

= max{P (B)|B ∈ Bcell, B ∩ {ξ1, . . . , ξn} = ∪j∈J{ξ
j}}

= max{P ([y])|y ∈ (c, d) , [y] ∩ {ξ1, . . . , ξn} = ∪j∈J{ξ
j}}, (22)where in the last equation it was used that the support of P is ontained in (c, d). Let

y(0) be a maximizing ell, i.e.,
γJ = P (

[
y(0)

]
), y(0) ∈ (c, d) ,

[
y(0)

]
∩ {ξ1, . . . , ξn} = ∪j∈J{ξ

j}.For t ≥ 0, put y(t) :=
(

y
(0)
1 + t, y

(0)
2 , . . . , y

(0)
s

) and onsider the enlargement [y(t)] of theell [
y(0)

] along the �rst oordinate diretion. Put
τ := sup{t| [y(t)] ∩ R =

[
y(0)

]
∩R}.19



Sine the intersetion of [y(t)] with the �nite set R remains onstant for small t > 0, itfollows that τ > 0. From y(0) ∈ (c, d), we derive that y(0)
1 < d1 = r1

1, whene r1 /∈
[
y(0)

]
∩R.On the other hand, with t∗ := d1 − y

(0)
1 , one gets that r1 ∈ [y(t∗)] ∩ R. Consequently,

τ ≤ t∗ <∞. We put y(1) := y(τ) and arrive at
[
y(1)

]
∩ R =

{[
y(1)

]
∩ {y|y1 < y

(1)
1 } ∩ R

}

∪
{[
y(1)

]
∩ {y|y1 = y

(1)
1 } ∩ R

}

︸ ︷︷ ︸

α1

= {∪t<τ [y(t)] ∩R} ∪ ∆1 =
{[
y(0)

]
∩ R

}
∪ ∆1.One more, due to [y(τ + t)] ∩R remaining onstant for small t > 0 and to the de�nitionof τ , it follows that [

y(1)
]
∩ R 6=

[
y(0)

]
∩ R. Consequently, ∆1 6= ∅, whih means thatthere exists some x1 ∈

[
y(1)

]
∩ R suh that x1

1 = y
(1)
1 .Now, in the seond step, we extend the onstrution above for the seond oordinateby de�ning

y(t) : =
(

y
(1)
1 , y

(1)
2 + t, y

(1)
3 , . . . , y(1)

s

)

τ : = sup{t| [y(t)] ∩R =
[
y(1)

]
∩ R}.Upon observing that y(1)

2 = y
(0)
2 < d2 and replaing r1 by r2, we may repeat the sameargumentation as before, in order to verify that 0 < τ < ∞, whih allows to put y(2) :=

y(τ). As before, the de�nition of τ allows to �nd that
[
y(2)

]
∩R =

{[
y(1)

]
∩ R

}
∪ ∆2 =

{[
y(0)

]
∩ R

}
∪ ∆1 ∪ ∆2,where

∆2 :=
{[
y(2)

]
∩ {y|y2 = y

(2)
2 } ∩ R

}

.With the same argument as in the �rst step, one infers that ∆2 6= ∅, whih means thatthere exists some x2 ∈
[
y(2)

]
∩ R suh that x2

2 = y
(2)
2 .Continuing the onstrution in this way for all oordinates, we �nally arrive at points

y(j) and xj for j = 1, . . . , s, suh that
[
y(j)

]
∩R =

{[
y(0)

]
∩ R

}
∪ ∆1 · · · ∪ ∆j

∆j =
{[
y(j)

]
∩ {y|yj = y

(j)
j } ∩ R

}

(j = 1, . . . , s)and
xj ∈

[
y(j)

]
∩ R, xj

j = y
(j)
j (j = 1, . . . , s).We put z := y(s). Then,

[z] ∩ R =
{[
y(0)

]
∩R

}
∪ ∆1 · · · ∪ ∆s. (23)20



By the very onstrution, [
y(j)

]
⊆

[
y(s)

] and zj = y
(s)
j = y

(j)
j for j = 1, . . . , s. Conse-quently,

xj ∈ [z] ∩R, xj
j = zj (j = 1, . . . , s),whih means that [z] is a supporting ell.To prove the remaining statements of the proposition, note that the equalities xj

j = zjfor xj ∈ R and j = 1, . . . , s imply that cj ≤ zj ≤ dj for j = 1, . . . , s beause the samebounds apply for all points of R. Again by onstrution, y(j)
j > y

(j−1)
j for j = 1, . . . , s,whih entails that zj > y

(0)
j for j = 1, . . . , s. Now, we de�ne a sequene of ells [zm] by

zm
j := zj − 1/m (j = 1, . . . , s). (24)It follows that, for m large enough, zm ∈ (c, d) and
zm

j > y
(0)
j (j = 1, . . . , s). (25)We onlude from (24) and (23) that, for all m ∈ N,

[zm] ∩ R ⊆ [z] ∩R =
{[
y(0)

]
∩ R

}
∪ ∆1 · · · ∪ ∆s.The de�nition of ∆j shows that all elements of this subset have jth oordinate equal to

y
(j)
j = zj . Combining this with (24) yields

[zm] ∩ ∆j = ∅ (j = 1, . . . , s).Therefore, we may ontinue by
[zm] ∩ R ⊆

[
y(0)

]
∩ R.On the other hand, [zm] ⊇

[
y(0)

] by (25), hene [zm] ∩ R =
[
y(0)

]
∩ R. We reall thefat that y(0) ∈ (c, d), whene - by de�nition of the set {r1, . . . , rs} in (16) - [

y(0)
]
∩

{r1, . . . , rs} = ∅. With the same reasoning, the inlusion zm ∈ (c, d) stated above, yieldsthat [zm] ∩ {r1, . . . , rs} = ∅. Owing to the de�nition of y(0), we may ontinue as
[zm] ∩ {ξ1, . . . , ξn} = [zm] ∩R =

[
y(0)

]
∩ R =

[
y(0)

]
∩ {ξ1, . . . , ξn}

= ∪j∈J{ξ
j} (m ∈ N) . (26)Clearly,

int [z] = ∪m∈N [zm] , (27)so (26) yields that
int [z] ∩ {ξ1, . . . , ξn} = ∪j∈J{ξ

j},whih is (17). Finally, (22) and the inlusion [zm] ⊇
[
y(0)

] lead to
γJ ≥ P ([zm]) ≥ P

([
y(0)

])
= γJ (m ∈ N) ,21



hene, atually equality holds true here. Sine [zm] is an inreasing sequene of ells inthe union (27), one gets that
P (int [z]) = P (∪m∈N [zm]) = lim

m→∞
P ([zm]) = γJ .Aknowledgement: This work was supported by the DFG Researh CenterMatheon �Math-ematis for key tehnologies� in Berlin and the BMBF under the grant 03SF0312E.
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