
Computations with Disjunctive Cuts for Two-Stage
Stochastic Mixed 0-1 Integer Programs

Lewis Ntaimo and Matthew W. Tanner
Department of Industrial and Systems Engineering, Texas A&M University, 3131 TAMU, College

Station, TX 77843, USA, ntaimo@tamu.edu and mtanner@tamu.edu

Abstract

Two-stage stochastic mixed-integer programming (SMIP) problems with re-
course are generally difficult to solve. This paper presents a first computational
study of a disjunctive cutting plane method for stochastic mixed 0-1 programs
that uses lift-and-project cuts based on the extensive form of the two-stage SMIP
problem. An extension of the method based on where the data uncertainty appears
in the problem is made, and it is shown how a valid inequality derived for one
scenario can be made valid for other scenarios, potentially reducing solution time.
Computational results amply demonstrate the effectiveness of disjunctive cuts in
solving several large-scale problem instances from the literature. The results are
compared to the computational results of disjunctive cuts based on the subproblem
space of the formulation and it is shown that the two methods are equivalently
effective on the test instances.

Keywords: stochastic programming; integer programming; disjunctive program-
ming; lift-and-project cuts.

1 Introduction

Incorporating uncertainty in deterministic mixed-integer programming models leads to
stochastic mixed-integer programming (SMIP) problems. Such models arise in many
applications such as dynamic capacity acquisition (Ahmed and Garcia, 2003), supply
chain planning (Alonso-Ayuso et al., 2003), vehicle routing (Laporte et al., 2002), and
server location (Ntaimo and Sen, 2004). Stochastic programming allows for plans to
be evaluated against possible future outcomes (scenarios) that represent alternative
realizations of the problem data. In two-stage stochastic programming, one has to
make first-stage decisions “here and now” without full information on a random event.
Recourse actions are made in the second-stage after full information about the random
event becomes available.

In this paper we focus on the following two-stage SMIP problem:

SIP: Min c>x + E[f(x, ω̃)]

s.t. x ∈ X

xi ∈ {0, 1}, ∀i ∈ I,

(1)

where x ∈ <n1 is the first-stage decision vector, c ∈ <n1 is the first-stage cost vector, and
X = {x ∈ <n1

+ | Ax ≥ b} with b ∈ <m1 as the right-hand side, and A ∈ <m1×n1 as the

1



first-stage constraint matrix. E[·] is the mathematical expectation operator with respect
to ω̃, where

E[f(x, ω̃)] =
∑
ω∈Ω

pωf(x, ω),

and ω̃ is a multi-variate discrete random variable with an outcome (scenario) ω ∈ Ω with
probability of occurrence pω. For any scenario ω,

f(x, ω) = Min q(ω)>y

s.t. W (ω)y ≥ r(ω)− T (ω)x

y ≥ 0, yj ∈ {0, 1}, ∀j ∈ J,

(2)

where y ∈ <n2 is the recourse decision vector, q(ω) ∈ <n2 is the cost vector, r(ω) ∈ <m2 is
the right-hand side, T (ω) ∈ <m2×n1 is the technology matrix, and W (ω) ∈ <m2×n2 is the
recourse matrix. Throughout this paper, we assume that the constraints −x ≥ −1 and
−y ≥ −1 are explicitly included in the constraint matrices A and W (ω), respectively.
Problem (2) is generally referred to as the scenario problem or simply, the subproblem.

In this paper we consider instances of SIP (1-2) under the following assumptions:

(A1) Ω is a finite set.

(A2) X = {x ∈ <n1
+ | Ax ≥ b} is bounded by the hypercube defined by the

constraints 0 ≤ x ≤ 1.

(A3) For all (x, ω) ∈ X ∩ B × Ω, f(x, ω) < ∞.

Assumption (A3) is the relatively complete recourse (Wets, 1974) property, which requires
that subproblem (2) remain feasible for all (x, ω) ∈ X ∩ B × Ω.

Since we consider instances of SIP (1-2) under the assumption that Ω has finite
support, we can rewrite the formulation (1-2) in extensive form (EF) as follows:

EF: Min c>x +
∑
ω∈Ω

pωq(ω)>y(ω)

s.t. Ax ≥ b

T (ω)x + W (ω)y(ω) ≥ r(ω) ∀ω ∈ Ω

x ≥ 0, xi ∈ {0, 1}, ∀i ∈ I

y(ω) ≥ 0, yj(ω) ∈ {0, 1}, ∀j ∈ J, ∀ω ∈ Ω.

(3)

Branch-and-cut type algorithms have seen great success in deterministic integer pro-
gramming, benefiting from careful generation of cuts. However, it is only recently that
such algorithms have had any success for SMIP. In fact, few comprehensive compu-
tational results have been reported for this class of problems. One recent approach for
solving SMIP incorporates the theory of disjunctive programming (Balas, 1975, Blair and
Jeroslow, 1978, Balas, 1979, Sherali and Shetty, 1980) within the context of stochastic
programming. Disjunctive programming is used to generate valid inequalities (cuts) for
the linear programming relaxation of the original problem.

2



The theory of disjunctive programming is first applied to SMIP in a dissertation
by Carøe (1998) (also Carøe and Tind (1997)). The author proposes a scheme for solving
a relaxation of mixed 0-1 SMIP problems. Using the dual block-angular structure of
two-stage stochastic programs, the convex hull of feasible solutions for the EF relaxation
is characterized using results from disjunctive programming. Carøe (1998) shows how a
lift-and-project cut (Balas et al., 1993) can be generated for one subproblem and made
valid for different outcomes. The cuts are generated in the (x, y(ω))-space for each ω ∈ Ω.

Related to the decomposition method by Carøe (1998) is the disjunctive decompo-
sition (D2) method of Sen and Higle (2005). Unlike Carøe’s method, the D2 method
uses cuts in a lower dimension y(ω)-space of the scenario subproblem and draws on the
“common-cuts-coefficients” theorem to generate a cut based on disjunctive programming
for one scenario subproblem, and uses a simple translation to make it valid for different
scenarios. However, this approach assumes fixed recourse (i.e. W (ω) = W for all ω ∈ Ω)
and that x ∈ vert(X). An extension of the D2 method is the D2-BAC method (Sen
and Sherali, 2006) which allows for ‘truncated’ branch-and-bound in the second-stage.
This method not only includes convexification of the second-stage feasible set, but also
allows for the convexification of the second-stage value function based on the subproblem
terminal nodal dual information from the branch-and-bound tree using a strategy from
reverse convex programming (Sen and Sherali, 1987). More recently, Ntaimo (2006) has
extended the D2 approach to allow for random recourse. In this case, the cut coefficients
are independently generated for each scenario subproblem.

The contributions of this paper include extending and implementing the decom-
position method for SMIP proposed in Carøe (1998) and providing a computational
experience with lift-and-project cuts for these problems. To the best of our knowledge,
this is the first paper reporting on computations with this class of disjunctive cuts for
SMIP. Also, we computationally compare the results obtained with Caroe’s cuts with
results obtained with the D2 cuts of Sen and Higle (2005). We show that on our test
instances, the two cuts provide comparable benefits in run time and so both types of
cutting planes could be considered for future algorithms. We believe that the results
presented in this paper will provide a motivation for new algorithms for SMIP based on
disjunctive programming.

The rest of the paper is organized as follows. In the next section, we summarize some
key theoretical results on lift-and-project cuts based on Carøe (1998) and make exten-
sions. Using the theoretical results, in Section 3 we present variations of Caroe’s algorithm
for special cases of SMIP and highlight the connections with the D2 method (Sen and
Higle, 2005). We report on a computational experiment with the cutting plane approach
on several large-scale instances from the literature in Section 4. We end the paper with
some concluding remarks in Section 5.

2 Lift-and-Project Cuts for SMIP

We begin by reviewing the main theoretical results from disjunctive programming and
lift-and-project cuts for SMIP based on Carøe (1998). Disjunctive programming deals

3



with linear programs with logical constraints. The results we present draw heavily upon
the work of Balas et al. (1993) who derives lift-and-project cuts for deterministic IP.
Even though the lift-and-project cuts are derived based on the LP relaxation of the EF
(3), we will work with the two-stage LP relaxation of the original problem (1-2) given as
follows:

SLP: Min c>x + Eω̃[fc(x, ω̃)] (4a)

x ∈ X, (4b)

where for any realization ω of ω̃,

fc(x, ω) = Min q(ω)>y (5a)

s.t. W (ω)y ≥ r(ω)− T (ω)x (5b)

y ≥ 0. (5c)

Let us define the feasible set of the LP relaxation for a given ω based on constraining
x and y(ω) as follows:

SLP (ω) =
{
x ∈ <n1

+ , y(ω) ∈ <n2
+ | Ax ≥ b

T (ω)x + W (ω)y(ω) ≥ r(ω)
}

Then the set of feasible solutions for ω becomes:

SIP (ω) =
{
(x, y(ω)) ∈ SLP (ω) |
xi ∈ {0, 1}, ∀i ∈ I

yj(ω) ∈ {0, 1}, ∀j ∈ J
}

Which means that the feasible set for the original problem can be written as

S = {x, {y(ω)}ω∈Ω | (x, y(ω)) ∈ SIP (ω) for all ω} .

Now let (xk, {yk(ω)}ω∈Ω) be a non-integer optimal solution to SLP (4-5) at some
algorithmic iteration k. While Carøe (1998) focuses on eliminating non-integer solutions
in the subproblems, in this paper we generalize the approach to allow for eliminating
non-integer solutions in the first-stage as well. Let zk

` (ω) denote a non-integer variable
component of either x or y(ω) for some ω ∈ Ω whose solution value is z̄k

` (ω). Then using
zk

` (ω) we can create the following two sets:

S0,`(ω) =
{
x ∈ <n1

+ , y ∈ <n2
+ | Ax ≥ b (6a)

T (ω)x + W (ω)y(ω) ≥ r(ω) (6b)

−z`(ω) ≥ 0
}

(6c)

and

S1,`(ω) =
{
x ∈ <n1

+ , y ∈ <n2
+ | Ax ≥ b (7a)

T (ω)x + W (ω)y(ω) ≥ r(ω) (7b)

z`(ω) ≥ 1
}
. (7c)

4



To eliminate the non-integer solution (xk, yk(ω)), the following disjunction can be used:

S(ω) = S0,`(ω) ∪ S1,`(ω). (8)

The variable z`(ω) is referred to as the disjunction variable in disjunctive decomposi-
tion (Sen and Higle, 2005). Notice that both (6) and (7) are non-empty due to assump-
tions (A1-A3), which ensure that the subproblems remain feasible for any restriction of
the integer variables.

Now let λ0,1 and λ0,2 denote the vector of multipliers associated with (6a) and (6b),
respectively, and let λ0,3 denote the scalar multiplier associated with (6c). Let λ1,1, λ1,2

and λ1,3 be similarly defined for (7a),(7b) and (7c), respectively. Also, define

Ik
i =

{
1, if i = `
0, otherwise.

and

Ik
j =

{
1, if j = `
0, otherwise.

Therefore, the following LP can be used to generate a cut of the form γ>(ω)x+π>(ω)y(ω) ≥
ν(ω) for scenario ω ∈ Ω:

Min − ν(ω) + (xk)>γ(ω) + yk(ω)>π(ω)

s.t. γi(ω)− λ>0,1Ai − λ>0,2Ti(ω) + Ik
i λ0,3 ≥ 0, ∀i

πj(ω)− λ>0,2Wj(ω) + Ik
j λ0,3 ≥ 0, ∀j

γi(ω)− λ>1,1Ai − λ>1,2Ti(ω)− Ik
i λ1,3 ≥ 0, ∀i

πj(ω)− λ>1,2Wj(ω)− Ik
j λ1,3 ≥ 0, ∀j

− ν(ω) + λ>0,1b + λ>0,2r(ω)− λ0,3bȳj(k)c ≥ 0

− ν(ω) + λ>1,1b + λ>1,2r(ω) + λ1,3dȳj(k)e ≥ 0

− 1 ≤ γi(ω) ≤ 1, ∀i
− 1 ≤ πj(ω) ≤ 1, ∀j
− 1 ≤ ν(ω) ≤ 1,

λ0,1, λ0,2, λ0,3, λ1,1, λ1,2, λ1,3,≥ 0.

(9)

A cut generated in this manner is referred to as a “lift-and-project” cut. LP (9) is
formulated based on the disjunctive cut principle (Balas, 1975, Blair and Jeroslow, 1978)
applied to the disjunction (8). In the formulation, Ai is the i-th column of A, Ti(ω) is
the i-th column of T (ω), and Wj(ω) is the j-th column of W (ω). The objective of the
LP is to maximize the (Euclidean) distance between the current point (xk, yk(ω)) and
the hyperplane γ>(ω)x + π>(ω)y(ω) ≥ ν(ω). If the optimal objective value of (9) is
non-negative it implies that the point (xk, yk(ω)) is cut off.

The main drawback of lift-and-project cuts is that they are computationally expensive
to generate, since they require solving an LP of size nearly double that of the system

5



defining either (6) or (7). Therefore, Carøe (1998) proposes generating a cut for one
scenario, and then making it valid for other scenarios. This is done under additional
assumptions on problem (1-2) and is summarized in the following three propositions.
The first proposition is an extension based on the results in Carøe (1998), while the last
two are restated from Carøe (1998) to fit our context.

PROPOSITION 2.1. Let the recourse matrix W (ω) be random and technology matrix
T (ω) = T and r(ω) = r for all ω ∈ Ω, and suppose that γ>x + π>(ω)y(ω) ≥ ν is a cut
obtained from (9) for some ω. Let the optimal solution to (9) be (π(ω), γ, ν, λ0,1, λ0,2, λ0,3,
λ1,1, λ1,2, λ1,3). If for $ ∈ Ω, $ 6= ω the problem

Min
π($)

yk(ω)>π($)

s.t. πj($) ≥ λ>0,2Wj($)− Ik
j λ0,3, ∀j

πj($) ≥ λ>1,2Wj($) + Ik
j λ1,3, ∀j

− 1 ≤ πj($) ≤ 1, ∀j

(10)

is feasible, then γ>x+π>($)y($) ≥ ν is valid for SIP ($). If ν−γ>xk−π>($)yk($) > 0,
then γ>x + π>($)y($) ≥ ν cuts off the point (xk, yk($)).

Proof. Follows the proof of Theorem 4 in Ntaimo (2006).

PROPOSITION 2.2. (Carøe, 1998) Let the recourse matrix W (ω) = W and technology
matrix T (ω) = T for all ω ∈ Ω, and suppose that γ>x + π>y(ω) ≥ ν(ω) is a cut obtained
from (9). Then γ>x + π>y($) ≥ ν($) is valid for SIP ($), ω 6= $,$ ∈ Ω, where

ν($) = ν(ω) + Min {λ>0,2(r($)− r(ω)), λ>1,2(r($)− r(ω))}, (11)

and λ0,2 and λ1,2 are optimal solutions from (9). If ν($) − γ>xk − π>yk($) > 0 then
γ>x + π>y($) ≥ ν($) cuts off the point (xk, yk($)).

Proof. See Proposition 3.1 in Carøe and Tind (1997).

PROPOSITION 2.3. (Carøe, 1998) Let the recourse matrix W (ω) = W, ∀ω ∈ Ω and
suppose that γ>x + π>y(ω) ≥ ν(ω) is a cut obtained from (9) whose optimal solution is
(π, γ, ν, λ0,1, λ0,2, λ0,3,

6



λ1,1, λ1,2, λ1,3). If for $ ∈ Ω, $ 6= ω the problem

Min
γ($), ν($), λ0,1, λ1,1

(xk)>γ($)− ν($)

s.t. γi($)− λ>0,1Ai ≥ λ>0,2Ti($)− Ik
i λ0,3, ∀i

γi($)− λ>1,1Ai ≥ λ>1,2Ti($) + Ik
i λ1,3, ∀i

− ν($) + λ>0,1b ≥ −λ>0,2r(ω) + λ0,3bȳj(k)c
− ν($) + λ>1,1b ≥ −λ>1,2r($)− λ1,3dȳj(k)e
− 1 ≤ γi($) ≤ 1, ∀i
− 1 ≤ ν($) ≤ 1,

λ0,1, λ1,1 ≥ 0.

(12)

is feasible, then γ>($)x + π>y($) ≥ ν($) is valid for SIP ($). If ν($) − γ>($)xk −
π>yk($) > 0, then γ>($)x + π>y($) ≥ ν($) cuts off the point (xk, yk($)).

Proof. Follows the proof of Proposition 3.2 in Carøe and Tind (1997).

REMARK 2.4. Proposition (2.3) is an extension of Proposition 5.3.3 in Carøe (1998)
taking into account disjunctions based not only on y, but also on x. In the case of
fixed recourse, both Propositions (2.2) and (2.3) allow a cut generated for one scenario
to be made valid for the other scenarios by fixing the coefficients π and generating the
coefficients γ(ω) and scalar ν(ω) for each ω ∈ Ω. This idea is the essence of the Common-
Cut-Coefficients theorem (Sen and Higle, 2005) in disjunctive decomposition, which
allows for generating the π coefficients in the y-space while the right-hand coefficients
γ(ω) and scalar ν(ω) are determined for each ω ∈ Ω via a simple translation. For
SMIP with fixed recourse, the two propositions result in less proliferation of cuts in the
subproblem as well as providing for a relatively less expensive way of generating cuts.

3 Disjunctive Cutting Plane Algorithms

We are now in a position to state a class of disjunctive cutting plane algorithms using
the results from the previous section. We will refer to this class of algorithms as ‘lift-
and-project decomposition’ (LPD) algorithms for SMIP, which are extensions of Carøe’s
algorithm (Carøe and Tind, 1997, Carøe, 1998). The extensions are twofold, (1) allowing
the generation of lift-and-project cuts based on x and not only y(ω), and (2) allowing the
generation of a cut based on one scenario and then making it valid for other scenarios for
SMIP with random recourse but fixed technology matrix and right-hand side vector. Even
though the algorithm in Carøe (1998) includes branch-and-bound based on branching on
y, here we focus on a pure cutting plane approach.

Since the cutting plane approach involves sequential addition of cuts to the LP
relaxation (4-5) of the original problem in order to refine the approximation of the
convex hull of integer solutions, we redefine the problem data as follows. Let k denote

7



the algorithmic iteration index. Then for k = 1 we initialize the problem data with
T 1(ω) = T (ω), W 1(ω) = W (ω), and r1(ω) = r(ω) for all ω ∈ Ω. At k ≥ 2 the
vector γk(ω) is appended to T k−1(ω), πk(ω) is appended to W k−1(ω), and the scalar
νk(ω) is appended to rk−1(ω). Following the L-shaped method (Slyke and Wets, 1969)
for solving the LP relaxation, at algorithmic iteration k the problem has the following
master program:

Min c>x + η,

s.t. Ax ≥ b

β>t x + η ≥ αt, t ∈ Θk

x ≥ 0,

(13)

where the second set of constraints are the optimality cuts with Θk being the index set
for the L-shaped iterations at k. Note that feasibility cuts have been omitted due to
assumption A3. The subproblem for ω ∈ Ω takes the form:

fk
c (x, ω) = Min q(ω)>y

s.t. W k(ω)y ≥ rk(ω)− T k(ω)x

y ≥ 0.

(14)

3.1 The Basic Lift-and-Project Decomposition (LPD) Algorithm

We can now state a basic LPD algorithm for SMIP as follows:

Basic LPD Algorithm:

Step 0. Initialization.
Set k ← 1, U1 ← ∞, L1 ← −∞, ε > 0, T 1(ω) ← T (ω), W 1(ω) ← W (ω), and
r1(ω) ← r(ω), for all ω ∈ Ω, and let x0 ∈ X be given.

Step 1. Termination.
(a) If Uk − Lk > ε go to Step 2.
(b) If Uk − Lk ≤ ε and an incumbent has been found, stop. Declare the incumbent
optimal.
(c) If no incumbent has been found and xk stops changing, impose integer restrictions
on (13-14) and solve the problem to get an incumbent solution and update Uk.
Compute ε′ = Uk − Lk, stop and declare the incumbent ε′-optimal.

Step 2. Solve LP Relaxation.
Solve (13-14) using the L-shaped method. Let (xk, {yk(ω)}ω∈Ω) be the LP optimal
solution. If (xk, {yk(ω)}ω∈Ω) satisfy the integer restrictions, set Uk+1 ← Min{c>xk +
E[f(xk, ω̃)], Uk}, and if c>xk + E[f(xk, ω̃)] < Uk, store current solution as the
incumbent, set k ← k + 1 and go to Step 1. Otherwise, set Lk+1 ← Max{c>xk +
E[fc(x

k, ω̃)], Lk}.

8



Step 3. Solve Cut Generation LPs and Perform Updates.
For i ∈ I such that 0 < xi < 1 or j ∈ J such that 0 < yi(ω) < 1 choose a disjunction
variable ` and form and solve (9) to obtain (γk(ω), πk(ω), νk(ω)). Update T k+1(ω) =
[(T k(ω))>; γk(ω)]>, W k+1(ω) = [(W k(ω))>; πk(ω)]> and rk+1(ω) = [rk(ω), νk(ω)].
Repeat this for all ω ∈ Ω. Set k ← k + 1 and go to Step 1.

For practical size problems the pure cutting plane LPD algorithm may take an expo-
nential number of iterations to converge to the optimal solution. Also, since we are not
performing any branching, we may eventually get stuck with the hull-relaxation (Balas,
1984) of S as pointed out in Carøe (1998). This can be detected when xk stops changing
for several consecutive iterations in Step 1(c) of the algorithm. To terminate the algo-
rithm we suggest computing an upper bound at this point which requires solving the
subproblems to integer optimality. Computing the upper bound and setting ε′ = Uk−Lk

proves the incumbent solution is ε′-optimal.

3.2 Special Cases

The basic LPD algorithm can be adapted for SMIP with further properties on the
problem data as outlined in Propositions 2.1, 2.2 and 2.3. To accomplish this we need
to modify the cut generation Step 3 of the basic LPD algorithm. Next we state three
algorithms for the following three special cases for SMIP with: (1) random recourse,
fixed technology matrix, and fixed right-hand sides, (2) fixed recourse, fixed technology
matrix, and random right-hand sides, (3) fixed recourse, random technology matrix, and
random right-hand sides, and (4) pure binary first stage.

LPD-1 Algorithm: Random W (ω), fixed T and fixed r.

Step 3. Solve Cut Generation LPs and Perform Updates.
(a) Choose a scenario ω ∈ Ω and a disjunction variable ` for which 0 < xk

i < 1, i ∈ I
or 0 < yk

i (ω) < 1, j ∈ J . Form and solve (9) to obtain (γk(ω), πk(ω), νk(ω)). Update
T k+1 = [(T k)>; γk]>,W k+1(ω) = [(W k(ω))>; πk(ω)]> and rk+1 = [rk, νk].
(b) For all $ 6= ω, $ ∈ Ω such that 0 < xk

` < 1, i ∈ I or 0 < yk
` ($) < 1, j ∈ J

use the solution from Step 3(a) to form and solve (10) to get πk($). If problem is
feasible update W k+1($) = [(W k($))>; πk($)]>. Set k ← k + 1 and go to Step 1.

LPD-2 Algorithm: Fixed W , fixed T and random r(ω).

Step 3. Solve Cut Generation LPs and Perform Updates.

9



(a) Choose a scenario ω ∈ Ω and a disjunction variable ` for which 0 < xk
i < 1, i ∈ I

or 0 < yk
i (ω) < 1, j ∈ J . Form and solve (9) to obtain (γk, πk, νk(ω)). Update

T k+1 = [(T k)>; γk(ω)]>,W k+1 = [(W k)>; πk]> and rk+1(ω) = [rk(ω), νk(ω)].
(b) For all $ ∈ Ω, $ 6= ω such that 0 < xk

` < 1, i ∈ I or 0 < yk
` ($) < 1, j ∈ J use

the solution from Step 3(a) to computer νk($) using (11) and update rk+1($) =
[rk($), νk($)]. Set k ← k + 1 and go to Step 1.

LPD-3 Algorithm: Fixed W , random T (ω) and random r(ω).

Step 3. Solve Cut Generation LPs and Perform Updates.
(a) Choose a scenario ω ∈ Ω and a disjunction variable ` for which 0 < xk

i < 1, i ∈ I
or 0 < yk

i (ω) < 1, j ∈ J . Form and solve (9) to obtain (γk(ω), πk, νk(ω)). Update
T k+1(ω) = [(T k(ω))>; γk(ω)]>,W k+1 = [(W k)>; πk]> and rk+1(ω) = [rk(ω), νk(ω)].
(b) For all $ 6= ω, $ ∈ Ω such that 0 < xk

` < 1, i ∈ I or 0 < yk
` ($) < 1, j ∈ J use

the solution from Step 3(a) to form and solve (12) to get (γk($), νk($)). Update
T k+1($) = [(T k($))>; γk($)]>, and rk+1($) = [rk($), νk($)]. Set k ← k + 1 and
go to Step 1.

Modification for SMIP with Pure Binary First Stage

For the case where the first-stage has pure binary variables, Step 1 and Step 2 of the
algorithms can be modified as follows in order to guarantee finite convergence. In Step 2,
solve the problem using the L-shaped method, but enforce the binary restrictions on the
first-stage variables in the master program. In part (c) of Step 1, instead of terminating
the algorithm, solve the subproblems as IPs and generate an optimality cut according
to the algorithm of Laporte and Louveaux (1993) for SMIP, which we will refer to as
the ‘L2 algorithm’. Add the optimality cut to the master program and continue to Step
2. This modification allows for convergence of the algorithm to an optimal solution as a
direct consequence of the convergence of the L2 algorithm.

3.3 Improved Cut Generation

A variety of computational ”tricks” can be used to improve the run time of this algo-
rithm. These include procedures for starting and stopping generation of cuts, different
normalizations for the cut generation LP, rounding to strengthen the cuts, and lifting cuts
generated by a smaller LP, possibly in the context of a branch-and-bound framework.
The last two of these methods are described in Balas et al. (1993, 1996).

In our description of the basic LPD algorithm, we only generated one round of cuts
per iteration. An alternative procedure could be to start adding cuts once the L-shaped

10



algorithm has terminated and then adding a preset number n rounds of cuts before
restarting the L-shaped algorithm to find the next relaxed solution. Also, since finding
the optimal master solution is the true goal of this algorithm, cuts could be added until
the solution to the master program stops changing as a result of the cuts.

In (9), we use the normalization −1 ≤ γi(ω) ≤ 1, ∀i and −1 ≤ πj(ω) ≤ 1, ∀j in order
to ensure that we find a feasible solution and hence a valid inequality. However, there are
other possible normalizations that provide tighter cuts. In the case of non-zero righthand
sides, the normalization ν(ω) = 1 or ν(ω) = −1 can be used. The advantages to this
normalization is that the cut generating linear program can be shrunk because the γ(ω)
and π(ω) variables can also be fixed and it is sometimes possible to determine whether
it is better to fix the value of ν(ω) to 1 or to −1 (see Balas et al. (1993)). However,
this normalization loses the guarantee that the program will have a finite optimal value.
Another possible normalization is to make the sums of the absolute values of the γ(ω) and
π(ω) equal to 1. As with our original normalization, this normalization also guarantees
a finite solution to (9).

After a round of cuts has been generated, it is possible to strengthen the cuts through
a rounding procedure. The basic idea of this procedure is to use the integrality conditions
on the variables other than the disjunction variable to find some tighter parameter values
for the cut. The full description of this tightening procedure can be found in Balas et al.
(1993, 1996).

It is also possible to solve a variation of formulation (9) on some restriction of the
variables. Then the cut generated from that restricted space can be lifted to the entire
space. The main purpose of this technique is to allow for cuts generated at individual
nodes of a branch-and-bound tree to be made valid for the entire tree, but it can also be
used in the context of our algorithm by choosing proper restriction of variables (perhaps
the non-integer variables of a given solution). The main benefit from doing this is to
solve a smaller linear program than might otherwise have to be solved. Again, a full
description of the lifting procedure can be found in Balas et al. (1993, 1996).

3.4 Comparison with the D2 Method

Some comments on the differences between the D2 method (Sen and Higle, 2005) and the
basic LPD method are now in order. While the D2 method is designed specifically for
SMIP with fixed recourse having x ∈ vert(X), the LPD method is applicable to a wider
class of SMIP problems. Convergence in both methods is only guaranteed for mixed-
binary second-stage. The difference between the two methods from a cut generation
point of view is in how the disjunctive cuts are generated. The D2 algorithm generates
D2-cuts which are in the subproblem y(ω)-space while the LPD lift-and-project cuts are
in the (x, y(ω))-space of the extensive form (EF) (3).

From an algorithmic perspective, the D2 method seeks to iteratively generate the
convex hull of the subproblems for every xk. In this case the cut is guaranteed to be
a facet for the subproblem LP relaxation at that specific right-hand side value. The
advantage of the D2 cuts is that the lower dimension allows more flexibility in finding

11



cuts that will be useful when the x solution changes. Even though there is no guarantee
of quality for the cuts once the x solution changes, computational experience seems to
show that early cuts do help in closing the lower and upper bound gap (Ntaimo and
Sen, 2004). In the LPD method the cuts are generated based on the solution of the LP
relaxation of the EF. Thus these cuts are facets of the problem restricted to the larger
dimension (x, y(ω))-space.

4 Computational Results

We designed some computational experiments to gain insight into the effectiveness of
the disjunctive cuts for closing the LP relaxation optimality gap of large-scale stochas-
tic mixed-binary programs. Specifically, we apply the LPD algorithm to large-scale
instances from two problem classes from the literature, namely, strategic supply chain
(SSCh) planning under uncertainty (Alonso-Ayuso et al., 2003), and stochastic server
location problems (SSLPs) (Ntaimo and Sen, 2004). We wanted to study the problem
characteristics for which the LPD cuts might be particularly effective. We compare our
results to those obtained from the D2 algorithm, which has previously been shown to be
successful on the two problem classes (Ntaimo and Sen, 2006). We also report on the
performance of the ILOG CPLEX 9.0 MIP solver (ILOG, 2003) applied directly to the
extensive form (EF) of the SSLPs.

In our experiments, the D2 algorithm is implemented as follows. First, the L-shaped
algorithm is used to solve the LP relaxation of the problem with the binary restrictions
enforced on the first-stage variables in the master program. Second, disjunctive cuts are
added until the first-stage decision stops changing after re-solving the relaxation. Then
the subproblems are solved to integer optimality and an L2 cut generated and added to
master program. Finally, the algorithm returns to the second step unless the optimal
solution has been found. We conducted all our experiments on an Optiplex GX620 with
a Pentium D processor running at 3.0Hz with 3.5GB RAM. The problem instances were
run to optimality or stopped when a CPU time limit of 10,800 seconds (3hrs) was reached.

4.1 Stochastic Supply Chain Planning Problems

We tested the LPD algorithm on a set of very large stochastic mixed integer program
instances arising in strategic supply chain (SSCh) planning under uncertainty generated
by Alonso-Ayuso et al. (2003). The objective function of the SSCh is to maximize the
profit from expanding and running a given supply chain. The first-stage decision variables
are pure binary and are for initial strategic decisions of plant capacity. The second-stage
decision variables are mixed binary. The binary decisions are strategic recourse decisions
about plant capacity, which products are processed, and which products are purchased
from which vendors. The continuous decisions are for operating the supply chain. The
uncertainty appears in the net profit parameter in the second-stage objective function,
and in the demand parameter in the right-hand side of the second-stage problems. A
version of the problem formulation is given in the Appendix.

12



Table 1 gives the problem characteristics for these instances. The headings of the
table are as follows: ‘Constrs’ is the number of constraints, ‘Bins’ is the number of
binary decision variables, ‘Cvars’ is the number of continuous decision variables, and
‘Tot. Vars’ is the total number of variables in the instance. The extensive form (EF)
of the instances were too large for CPLEX to solve so we were unable to use that as
a benchmark for our results. However, since the first-stage decisions are pure binary,
we are able to compare these results with the results from the D2 algorithm. Since the
uncertainty in these problems appears both in the objective value and the right-hand
side, we used the LPD-2 case of the algorithm to solve the problems.

Table 1: SSCh Instance Dimensions.
EF First-Stage Second-Stage

Case Constrs Bins Cvars Tot. Vars Constrs Bins Constrs Bins Cvars Tot. Vars
c1 76,318 899 67,551 68,450 73 71 3315 36 2,937 2,973
c2 77,928 900 70,564 71,464 73 72 3385 36 3,068 3,104
c3 70,795 895 61,249 62,144 70 67 3075 36 2,663 2,699
c4 76,775 897 70,495 71,392 70 69 3335 36 3,065 3,101
c5 88,743 906 84,042 84,948 78 78 3855 36 3,654 3,690
c7 69,411 895 58,489 59,384 66 67 3015 36 2,543 2,579
c8 87,824 906 83,582 84,488 79 78 3815 36 3,634 3,670
c10 69,871 895 58,259 59,154 66 67 3035 36 2,533 2,569

Table 2 shows the computational results for the LPD algorithm. The columns of
this table given in order are, the number of iterations of the algorithm, the number of
LPD cuts that were added, the number of L2 cuts that were added, the CPU time taken,
the lower and upper bounds given by the algorithm, and finally, the best solution found
by Alonso-Ayuso et al. (2003). The main characteristic of these results is that within
our time limit, the algorithm is able to obtain comparable and often improved solutions
to those obtained by Alonso-Ayuso et al. (2003) with their branch-and-fix coordination
(BFC) algorithm. In most of the cases, the algorithm either found the optimal solution, or
was able to find relatively tighter upper and lower bounds on the optimal solution. This
shows the effectiveness of the lift-and-project cuts towards solving this class of problems,
and demonstrate that the LPD method has promise as a technique for solving stochastic
integer programs of a practical size.

Ntaimo and Sen (2006) show that the D2 is quite effective on these problems and
so we ran our implementation of the D2 algorithm on the instances for comparison.
Table 3 gives the results of the D2 algorithm. An interesting observation about Tables 2
and 3 is that the results of the algorithms are very similar. In every case but one, both
algorithms found the same upper bounds, and always found the same lower bounds. This
gives strong evidence that the D2 cuts and the lift-and-project cuts are equally effective
for this class of problems.

Figure 1 shows the characteristic plot of the convergence of lower and upper bounds
for the two algorithms on the SSCh test set over time. The most important aspect of
these plots is that both algorithms are able to converge to a near optimal solution in a
short amount of time. In general, the convergence of the lower and upper bounds for the

13



Table 2: LPD Computational Results for SSCh.
Instance Iters LPD Cuts L2 Cuts CPU (secs) ZLB ZUB ZIP BFC
c1 296 1127 41 10932.50 -206760 -184439 -178366.79
c2 68 69 0 80.22 0 0 0.00∗

c3 529 3243 131 10847.60 -249903 -230268 -224564.20
c4 466 2576 103 10876.50 -222740 -201454 -197487.36
c5 320 713 18 10881.60 -278.49 724.783 0.00∗

c7 772 3197 115 10834.30 -151205 -137217 -144181.28∗

c8 344 1449 38 10915.40 -119767 -100523 -89607.39
c10 460 2645 102 10848.00 -153033 -139739 -139738.36∗

LPD algorithm stopping tolerance used is UB − LB < 0.0001 or 3 hrs.
∗ Optimality has been proven by Alonso-Ayuso et al. (2003).

Table 3: D2 Computational Results for SSCh.
Instance Iters D2 Cuts L2 Cuts CPU (secs) ZLB ZUB ZIP BFC
c1 270 3772 69 10876.80 -206760 -184439 -178366.79
c2 57 299 1 96.18 0 0 0.00∗

c3 288 4945 151 10870.70 -249903 -230268 -224564.20
c4 225 4094 70 10801.50 -222740 -201454 -197487.36
c5 237 1633 33 10836.90 -278.49 0 0.00∗

c7 295 5037 142 10909.80 -151205 -137217 -144181.28∗

c8 254 3036 79 10963.90 -119767 -100523 -89607.39
c10 310 5267 160 10836.50 -153033 -139739 -139738.36∗

D2 algorithm stopping tolerance used is UB − LB < 0.0001 or 3 hrs.
∗ Optimality has been proven by Alonso-Ayuso et al. (2003).

two algorithms is similar. In the case of c5, the D2 algorithm closes the gap much earlier
than the LPD algorithm. This observation is backed up by the similarity of the solution
times and optimality gaps for all the other instance runs. Since these algorithms tend
to converge to a pretty good solution quickly and then stay stable for the rest of the 3
hours, one can terminate the algorithm once it has found that initial stable first-stage
solution.

4.2 Stochastic Server Location Problems

We also tested the LPD method on randomly generated two-stage stochastic combinato-
rial optimization problem instances arising in server location under uncertainty (Ntaimo
and Sen, 2004). The test instances we use are reported in Ntaimo and Sen (2006) and
involve random instances each with five replications to guard against pathological cases.
In these stochastic server location problems or SSLPs, the first-stage decision variables
are binary and represent the potential “server” locations and take a value of 1 if a server
is located at a given site, and 0 otherwise. The second-stage decision variables are mixed-
binary with the binary variables taking a value 1 if a given “client” i is served by a server
at given site, and 0 otherwise. The continuous variables represent overflow or unmet
resource demand. Only one server can be located at any site and each client is served by

14



Case: c5 

-50000

-40000

-30000

-20000

-10000

0

10000

20000

30000

40000

50000

0 2000 4000 6000 8000 10000 12000

CPU Time (secs.)

V
a
lu

e

D2 lb

D2 ub

LPD lb

LPD ub

LPD lb

LPD ub

D
2
 lb

D
2
 ub

Figure 1: Convergence of lower and upper bounds for c5

only one server. The randomness in the model appears only in the right-hand side and is
defined by whether or not a client is available to demand service. The SSLP formulation
and a short description of the model are given in the Appendix.

We chose to test the LPD algorithm on these instances because they are a large
set of SMIP test problems with published computational results using the D2 method.
These instances allow us to test the performance of the LPD algorithm when varying the
number of scenarios, first-stage decision variables, and second-stage decision variables.
This gives us insight into the strengths and weaknesses of the LPD cuts for different
problems of different sizes. Since all of the randomness in these problems appears in the
right-hand side only, the LPD-2 case of the algorithm is used in our experiments. Also,
since the master variables are pure binary, the modification given at the end of section 3
is used to guarantee finite convergence of the algorithm.

Table 4 gives the problem characteristics. The problem instances are named according
to the convention SSLPm.n.S, where m is the number of potential server locations, n is
the number of potential clients, and S= |Ω| is the number of scenarios.

The computational results from the LPD algorithm are given in Table 5. The column
heading ‘L-shaped Iters’ refers to the total number of iterations of the L-shaped algorithm
during solution of the problem relaxation and ‘LPD Cuts’ is the number of lift-and-
project cuts generated. Translated cuts are counted as distinct cuts, for example, 2000
cuts for problem instance SSLP10.50.2000 means that one disjunctive cut was generated,

15



Table 4: SSLP Instance Dimensions.
EF Second-Stage

Instance Cons Bins Cvars Tot. Vars Cons Bins Cvars Tot. Vars
SSLP5.25.50 1,501 6,255 250 6,505 30 130 5 135
SSLP5.25.100 3,001 12,505 500 13,005 30 130 5 135
SSLP5.50.50 2,751 12,505 250 12,755 55 255 5 260
SSLP5.50.100 5,501 25,005 500 25,505 55 255 5 260
SSLP10.50.50 3,001 25,010 500 25,510 60 510 10 520
SSLP10.50.100 6,001 50,010 1,000 51,010 60 510 10 520
SSLP10.50.500 30,001 250,010 5,000 255,010 60 510 10 520
SSLP10.50.1000 60,001 500,010 10,000 510,010 60 510 10 520
SSLP10.50.2000 120,001 1,000,010 20,000 1,020,010 60 510 10 520
SSLP15.45.5 301 3,390 75 3,465 60 690 15 705
SSLP15.45.10 601 6,765 150 6,915 60 690 15 705
SSLP15.45.15 901 10,140 225 10,365 60 690 15 705
SSLP15.45.20 1201 13,515 300 13,815 60 690 15 705
SSLP15.45.25 1501 16,890 375 17,265 60 690 15 705

and then translated for the rest of the scenarios. The column ‘L2Cuts’ refers to the
number of times the subproblems were solved to integer optimality and an optimality
cut of Laporte and Louveaux (1993) was generated and added to the master program.
The column ‘LPD CPU’ gives the minimum, maximum, and average times, respectively,
for each of the instances.

As benchmarks, we also applied the CPLEX MIP solver directly on the EF instances.
The last column of Table 5 gives the CPU time and % gap reported by CPLEX. The
results show that CPLEX is unable to solve the larger instances to optimality within the
time limit, and the % gap is generally larger as the number of scenarios increases. To
solve the EF instances, we used the CPLEX MIP solver with the following parameter
settings suggested in Ntaimo and Sen (2004): “set mip emphasis 1” (emphasizes looking
for feasible solutions), “set mip strategy start 4” (uses barrier at the root), and “branching
priority order on x” (first branches on any fractional component of x before branching on
y). Based on previous experimentation, these parameters seemed to give the best CPU
time for these instances.

The results show that the LPD algorithm is quite successful for solving these particu-
lar instances. The worst time for any of the problems is slightly over 30 minutes and every
instance was solved to optimality. The most striking aspect of the results is that only a
few lift-and-project cuts are needed to solve the large instances. Most tests only needed
one round of cuts before converging to the optimal solution. Instance SSLP15.45.25
has the largest average number of cuts, needing up to four sets. This shows the ability
of translated lift-and-project cuts to improve algorithm performance without too much
computational effort. Like other decomposition algorithms, the LPD algorithm seems to
be relatively insensitive to the number of scenarios, but highly sensitive to the number
of first-stage decision variables.

Ntaimo and Sen (2006) solved the SSLP instances using the D2 algorithm. Using our
implementation of the algorithm, we obtained the results given in Table 6 for comparison.

16



Table 5: LPD Computational Results for SSLP with Five Replications.
Iters LPD Cuts L2 Cuts CPU (secs) CPLEX on EF

Problem Avg Avg Avg Min Max Avg CPU Gap
SSLP5.25.50 18.67 33.33 0.50 0.12 0.20 0.17 1.73 0.00%
SSLP5.25.100 18.83 83.33 0.67 0.14 0.30 0.23 130.20 0.00%
SSLP5.50.50 17.60 0.00 0.00 0.11 0.16 0.15 1.30 0.00%
SSLP5.50.100 18.00 0.00 0.00 0.20 0.27 0.24 3.61 0.00%
SSLP10.50.50 250.50 50.00 1.83 16.77 48.60 29.36 >10800 0.30%
SSLP10.50.100 250.83 100.00 2.00 21.00 57.17 32.97 >10800 0.74%
SSLP10.50.500 268.83 500.00 2.00 70.77 114.57 99.56 >10800 12.57
SSLP10.50.1000 269.83 1000.00 2.00 124.57 183.42 160.88 >10800 24.17
SSLP10.50.2000 275.33 2000.00 1.83 139.38 344.69 264.47 >10800 39.74
SSLP15.45.5 283.50 19.17 4.33 10.36 1579.51 311.81 >10800 0.67%

SSLP15.45.10 610.00 23.33 2.83 38.52 1421.21 599.53 >10800 0.52%
SSLP15.45.15 429.50 47.50 3.67 26.89 2017.18 564.23 >10800 1.50%
SSLP15.45.20 315.40 44.00 2.80 57.06 1827.37 505.40 >10800 1.00%
SSLP15.45.25 381.20 95.00 4.00 259.76 943.96 511.63 >10800 0.73%

LPD algorithm stopping tolerance used is 0.0001% Gap.

Like with the SSCh instances, the results in Tables 2 and 3 are very similar, probably and
indication of the similarity of the strength of the cuts generated by the two algorithms.
Figure 2 shows the characteristic plots of the convergence of lower and upper bounds for
the two algorithms on instance SSLP10.50.1000 over time. Like in the SSCh case, the
plots reveal how both algorithms are able to quickly converge to a near optimal solution
in the first few iterations. Therefore, one can terminate the algorithm once it has found
that initial stable first-stage solution. The convergence of the lower and upper bounds
for the two algorithms is very similar. In this case the LPD algorithm closes the gap
just a little before the D2 algorithm.

Table 6: D2 Computational Results for SSLP with Five Replications.
Iters D2 Cuts L2 Cuts CPU (secs) CPLEX on EF

Problem Avg Avg Avg Min Max Avg CPU (secs) Gap
SSLP5.25.50 18.33 33.33 0.67 0.08 0.22 0.17 1.73 0.00%
SSLP5.25.100 18.33 66.67 0.67 0.16 0.33 0.25 130.20 0.00%
SSLP5.50.50 16.60 0.00 0.00 0.09 0.17 0.13 1.30 0.00%
SSLP5.50.100 17.00 0.00 0.00 0.14 0.20 0.19 3.61 0.00%
SSLP10.50.50 249.67 233.33 1.00 17.17 47.44 27.75 >10800 0.30%
SSLP10.50.100 251.00 616.67 1.00 18.51 96.21 37.88 >10800 0.74%
SSLP10.50.500 268.33 2416.67 1.00 61.58 96.21 80.84 >10800 12.57
SSLP10.50.1000 268.83 5166.67 1.00 100.66 148.71 129.90 >10800 24.17
SSLP10.50.2000 274.50 9000.00 1.00 200.50 281.09 243.69 >10800 39.74
SSLP15.45.5 281.33 248.33 3.33 9.67 1555.45 306.53 >10800 0.67%

SSLP15.45.10 608.17 365.00 2.00 38.13 1400.89 581.91 >10800 0.52%
SSLP15.45.15 426.67 835.00 2.67 24.35 2006.32 552.25 >10800 1.50%
SSLP15.45.20 312.40 668.00 1.80 49.01 1613.02 454.62 >10800 1.00%
SSLP15.45.25 375.60 960.00 3.00 229.46 615.95 433.17 >10800 0.73%

D2 algorithm stopping tolerance used is 0.0001% Gap.

17



Case: sslp10.50.1000

-10000

-8000

-6000

-4000

-2000

0

2000

4000

6000

8000

10000

0 20 40 60 80 100 120 140 160 180

CPU Time (secs.)

V
a
lu

e

LPD lb

LPD ub

D2 lb

D2 ub

LPD ub

D
2
 lb and LPD lb

D
2
 ub

Figure 2: Convergence of lower and upper bounds for SSLP10.50.1000

The results of the LPD algorithm on the SSLP and the SSCH test instances are
encouraging. It is important to note that the SSLP test set has characteristics that
seem to be amenable to this solution approach. These particular instances have a
large integrality gap (up to over 20%), but if they are solved with the first-stage binary
restrictions enforced, with relaxed subproblems, that gap becomes much smaller. The
effect of this is that the first-stage solution of the LP relaxation (second-stage) is often
close to the optimal first-stage solution. The disjunctive cuts generated by the LPD
algorithm are highly effective at closing the optimality gap in this situation, but might
not be nearly as effective for problem instances with large optimality gaps. However, the
SSCH test instances are much larger than the SSLP cases and do not have such a tight
relaxation. The ability of these cutting plane algorithms to find good solutions with
pretty small gaps on these instances gives evidence that disjunctive cuts are effective
towards solving stochastic mixed 0-1 integer programs.

5 Conclusion

This paper presents a first computational study of a class of disjunctive cuts for two-
stage stochastic mixed 0-1 programs with recourse. In particular, the paper extends and
implements a cutting plane decomposition method for SMIP proposed by Carøe (1998)
that uses lift-and-project cuts based on the extensive form of the two-stage stochastic

18



mixed 0-1 program. The advantage of this approach is that with some assumptions on
where the data uncertainty appears in the problem, a cut derived for one scenario can
be made valid for other scenarios, potentially reducing the solution time. A comparison
with an alternative disjunctive cut algorithm for SMIP, the D2-algorithm, is made and
it is computationally shown that both cuts seem to be equally effective in solving our
test instances. In general, the computational results demonstrate the effectiveness of dis-
junctive cuts in solving large-scale instances from the literature arising in server location
under uncertainty and stochastic supply chain management. Since the cuts prove to be
effective on their own, this line of research holds promise for the development of branch-
and-cut algorithms for SMIP that take advantage of these disjunctive cuts. Finally,
the decomposition methods presented in this paper are amenable to parallel/distributed
implementation, which can significantly reduce computation time.

Acknowledgments. This research was supported by a grant (CNS-0540000) from the
Dynamic Data-Driven Application Systems (DDDAS) program of the National Science
Foundation. The authors would like to thank the anonymous referees for their comments
which helped improve the presentation of the paper.

Appendix

SSCh Model Formulation

In this section we provide a short description and formulations of the stochastic supply
chain planning problem that generates the SSCH test instances. This application of
stochastic programming was reported in Alonso-Ayuso et al. (2003). The problem is to
minimize the cost of running a production supply chain minus the revenue from selling
products. The first-stage decisions are binary and concern plant sizing. The second-stage
decisions are mixed binary and include recourse for the binary decisions from the first-
stage, product allocation, vendor selection, and tactical decisions for running the created
supply chain. The uncertainty in this problem arises in the objective function in the form
of net profit from products and in the right-hand side in the form of demand. The two
stage formulation of this stochastic MIP is given next.

Decision Variables:
x: Binary first-stage decisions concerning the expansion of facilities
y(ω): Binary second-stage decisions concerning expansion of facilities, which vendors to
supply from, and which products are processes
z(ω): Continuous decision variables for the operation of the supply chain
Problem Data:
a: Cost of expanding facilities
b: Cost of expanding facilities in the second-stage
c(ω): Operations costs of the supply chain
A1: Capacity constraint for facility expansion combined with a budget constraint

19



A2: Parameters to ensure that capacity expansions are well defined and are within the
budget constraint after the second-stage
B: Parameters to force the second-stage recourse decisions to be feasible with the plant
capacities
C: Parameters to ensure the bill of materials requirements and that the demands are
met
q: Budget constraint for capacity expansion
p(ω): Random demands for the products

min a>x + Eω̃[f(x, ω)] (15a)

s.t. A1x = q (15b)

x ∈ {0, 1} (15c)

where for any x satisfying the constraints (15b - 15c) and for each scenario realization
ω of ω̃ we have

f(xk, ω) = min by(ω) + c(ω)z(ω) (16a)

s.t. By(ω) + Cz(ω) = p(ω)− A2xk (16b)

y(ω) ∈ {0, 1}, z(ω) ≥ 0, ∀ω ∈ Ω (16c)

Notice that the first-stage decision variables are pure binary while the second-stage
subproblems are mixed binary. The objective value is to minimize the cost of setting up
the chain minus the revenue from selling products. The first-stage constraints include
budgetary constraints and maximum expansion that can be completed as well as forcing
at least some production to be done. The second-stage constraints are for the operational
decisions of the supply chain e.g. which venders to buy from, which products to sell, which
plants manufacture which products, etc.

SSLP Model Formulation

In this appendix we provide a short description of the application inspiring the stochastic
server location problem (SSLP) test instances and a summary of the model formulation
reported in Ntaimo and Sen (2004). The basis for stochastic server location problems
is how to make optimal strategic decisions regarding where to locate “servers” now in
the face of future uncertainty in resource demand based on whether or not a “client”
will be available in the future for service. This problem arises is such diverse fields as
electric power management, internet services, and telecommunications. The two-stage
SSLP problem can be summarized as follows (Ntaimo and Sen, 2004):

Decision Variables:
xj is 1 if a server is located at site j, 0 otherwise
yω

ij is 1 if client i is served by a server at location j under scenario ω, 0 otherwise

20



Problem Data:
cj: Cost of locating a server at location j.
u: Server capacity.
v: An upper bound on the total number of servers that can be located.
wz: Minimum number of servers to be located in zone z ∈ Z
Jz: The subset of server locations that belong to zone z.
qij: Revenue from client i being served by server at location j.
dij: Client i resource demand from server at location j.
hi(ω): Takes a value of 0 if client i is present in scenario ω, 0 otherwise.
pω: Probability of occurrence of scenario ω ∈ Ω.

Min
∑
j∈J

cjxj − Eω̃[f(x, ω̃)] (17a)

s.t.
∑
j∈J

xj ≤ v, (17b)

∑
j∈Jz

xj ≥ wz, ∀z ∈ Z, (17c)

xj ∈ {0, 1}, ∀j ∈ J , (17d)

where for any x satisfying the constraints (17b - 17d) and for each scenario realization ω
of ω̃ we have

f(x, ω) = Min −
∑
i∈I

∑
j∈J

qijyij +
∑
j∈J

qj0yj0 (18a)

s.t.
∑
i∈I

dijyij − yj0 ≤ uxj, ∀j ∈ J , (18b)

∑
j∈J

yij = hi(ω), ∀i ∈ I, (18c)

yij ∈ {0, 1}, ∀i ∈ I, j ∈ J , (18d)

yj0 ≥ 0, ∀j ∈ J . (18e)

The objective function in (17a) is to maximize expected profit from providing some
limited resource to the clients. Constraints (17b) enforces the requirement that only up
to a total of v available servers can be installed while constraints (17c) are the zonal
requirements of having at least wz servers located in a given zone z ∈ Z. Constraints
(17d) are the binary restrictions on the strategic decision variables.

In the second-stage, constraints (18b) require that a server located at site j serve only
up to its capacity u. The continuous variable yj0 accommodate any overflows that are
not served due to limitations in server capacity and result in a loss of revenue at a rate of
qj0. Constraints (18c) meets the requirement that each available client be served by only
one server. Finally, constraints (18d) are the binary restrictions on the tactical decision
variables and constraints (18e) are nonnegativity restrictions on the overflow variables.

21



References

S. Ahmed and R. Garcia. Dynamic capacity acquisition and assignment under
uncertainty. Annals of Operational Research, 124:267–283, 2003.

A. Alonso-Ayuso, L.F. Escudero, A. Gaŕın, M.T. Ortuńo, and G. Perez. An approach for
strategic supply chain planning under uncertainty based on stochastic 0-1 program-
ming. Journal of Global Optimization, 26:97–124, 2003.

E. Balas. Disjunctive programming: cutting planes from logical conditions. In O.L.
Mangasarian, R.R. Meyer, and S.M. Robinson, editors, Nonlinear Programming 2.
Academic Press, 1975.

E. Balas. Disjunctive programming. Annals of Discrete Mathematics, 5:3–51, 1979.

E. Balas. Disjunctive programming and a hierarchy of relaxations for discrete optimiza-
tion problems. SIAM Journal on Algorithmic and Discrete Mathematics, 6:466–486,
1984.

E. Balas, E. S Ceria, and G. Cornuéjols. A lift-and-project cutting plane algorithm for
mixed 0-1 integer programs. Mathematical Programming, 58:295–324, 1993.

E. Balas, E.S. Ceria, and G. Cornuéjols. Mixed 0-1 programming by lift-and-project in
a branch-and-cut framework. Management Science, 42:1229–1246, 1996.

C. Blair and R. Jeroslow. A converse for disjunctive constraints. Journal of Optimization
Theory and Applications, 25:195–206, 1978.

C.C. Carøe and J. Tind. A cutting-plane approach to mixed 0-1 stochastic integer
programs. European Journal of Operational Research, 101:306–316, 1997.

Claus C. Carøe. Decomposition in Stochastic Integer Programming. Ph.D. thesis, Dept.
of Operations Research, University of Copenhagen, Denmark, 1998.

Inc. ILOG. CPLEX 9.0 Reference Manual. ILOG CPLEX Division, 2003.

G. Laporte and F. V. Louveaux. The integer L-shaped method for stochastic integer
programs with complete recourse. Operations Research Letters, 1:133–142, 1993.

G. Laporte, F.V. Louveaux, and L. Van Hamme. An integer l-shaped algorithm for the
capacitated vehicle routing problem with stochastic demands. Operations Research,
50:415–423, 2002.

L. Ntaimo. Disjunctive decomposition for two-stage stochastic
mixed-binary programs with random recourse. Submitted, 2006.
http://ie.tamu.edu/people/faculty/Ntaimo/default.htm.

L. Ntaimo and S. Sen. The million-variable ‘march’ for stochastic combinatorial
optimization. Journal of Global Optimization, 32(3):385–400, 2004.

22



L. Ntaimo and S. Sen. A comparative study of decomposition algorithms for stochastic
combinatorial optimization. Computational Optimization and Applications Journal,
2006. To appear.

S. Sen and J.L. Higle. The C3 theorem and a D2 algorithm for large scale stochastic
mixed-integer programming: Setconvexification. Mathematical Programming, 104(1):
1–20, 2005.

S. Sen and H.D. Sherali. Nondifferentiable reverse convex programs and facetial cuts via
a disjunctive characterization. Mathematical Programming, 37:169–183, 1987.

S. Sen and H.D. Sherali. Decomposition with branch-and-cut approaches for two stage
stochastic mixed-integer programming. Mathematical Programming, 106(2):203–223,
2006.

H.D. Sherali and C.M. Shetty. Optimization with disjunctive constraints. Lecture Notes
in Economics and Math. Systems,, 181:411–430, 1980.

R. Van Slyke and R.-B. Wets. L-shaped linear programs with application to optimal
control and stochastic programming. SIAM Journal on Applied Mathematics, 17:638–
663, 1969.

R. J-B. Wets. Stochastic programs with fixed recourse: The equivalent deterministic
problem. SIAM Review, 16:309–339, 1974.

23


