Binary Decision Diagrams for
Random Boolean Functions

Dissertation

zur Erlangung des akademischen Grades
DOCTOR RERUM NATURALIUM
im Fach Informatik

eingereicht an der

Mathematisch-Naturwissenschaftlichen Fakultat 11
der Humboldt-Universitat zu Berlin

von Dipl.-Math.
Clemens Gropl

geboren am 13. September 1968 in Mannheim

Prasident der Humboldt-Universitiat zu Berlin
Prof. Dr. Dr. h. c. Hans Meyer

Dekan der Mathematisch-Naturwissenschaftlichen Fakultat IT
Prof. Dr. Bodo Krause

Gutachter:

1. Prof. Dr. Hans Jiirgen Promel, Humboldt-Universitit zu Berlin
2. Prof. Dr. Ingo Wegener, Universitdt Dortmund

3. Prof. Dr. Anand Srivastav, Christian-Albrechts-Universitit zu Kiel

Tag der miindlichen Priifung: 3. Mai 1999

This dissertation is published electronically at: http://dochost.rz.hu-berlin.de/

Author’s current e-mail adress: groepl@informatik.hu-berlin.de
WWW: http://www.informatik.hu-berlin.de/~groepl/

Abstract

Binary Decision Diagrams (BDDs) are a data structure for Boolean functions which are
also known as branching programs. In ordered binary decision diagrams (OBDDs), the
tests have to obey a fixed variable ordering. In free binary decision diagrams (FBDDs),
each variable can be tested at most once. The efficiency of new variants of the BDD
concept is usually demonstrated with spectacular (worst-case) examples. We pursue
another approach and compare the representation sizes of almost all Boolean functions.
Whereas 1. Wegener proved that for ‘most’ values of n the expected OBDD size of a ran-
dom Boolean function of n variables is equal to the worst-case size up to terms of lower
order, we show that this is not the case for n within intervals of constant length around
the values n = 2" + h. Furthermore, ranges of n exist for which minimal FBDDs are al-
most always at least a constant factor smaller than minimal OBDDs. Our main theorems
have doubly exponentially small probability bounds (in 7). We also investigate the evo-
lution of random OBDDs and their worst-case size, revealing an oscillating behaviour
that explains why certain results cannot be improved in general.

Zusammenfassung

Binary Decision Diagrams (BDDs) sind eine Datenstruktur fiir Boolesche Funktionen,
die auch unter dem Namen branching program bekannt ist. In ordered binary decision
diagrams (OBDDs) miissen die Tests einer festen Variablenordnung gentigen. In free
binary decision diagrams (FBDDs) darf jede Variable hochstens einmal getestet werden.
Die Effizienz neuer Varianten des BDD-Konzepts wird gewohnlich anhand spektakularer
(worst-case) Beispiele aufgezeigt. Wir verfolgen einen anderen Ansatz und vergleichen
die Darstellungsgrof3en fiir fast alle Booleschen Funktionen. Wahrend I. Wegener be-
wiesen hat, daf} fiir die ‘meisten’ n die erwartete OBDD-Gr6R3e einer zufélligen Boole-
schen Funktion von n Variablen gleich der worst-case Grof3e bis auf Terme kleinerer
Ordnung ist, zeigen wir daf3 dies nicht der Fall ist fiir n innerhalb von Intervallen kon-
stanter Linge um die Werte n = 2" 4 h. Ferner gibt es Bereiche von n, in denen mini-
male FBDDs fast immer um mindestens einen konstanten Faktor kleiner sind als minimale
OBDDs. Unsere Hauptsitze haben doppelt exponentielle Wahrscheinlichkeitsschran-
ken (in n). Auflerdem untersuchen wir die Entwicklung zufalliger OBDDs und ihrer
worst-case Grofse und decken dabei ein oszillierendes Verhalten auf, das erklart, warum
gewisse Aussagen im allgemeinen nicht verstarkt werden konnen.

Acknowledgements

I am grateful to everybody who supported and contributed to this work: Hans Jiirgen
Promel (my supervisor), Anand Srivastav, Mathias Block, Harry Preuf3, Martin Skutella —
as my coauthors; also to all the many other people with whom I discussed these things:
Stefan Hougardy, Bernd Kreuter, Christoph Meinel, Paul Molitor, Till Nierhoff, Ralf
Oelschlédgel, Martin Sauerhoff, Detlef Sieling, Anusch Taraz, Thorsten Theobald, ... ;
and my wife Antje’

The graduate program Algorithmische Diskrete Mathematik’ provided financial al-
lowance and a high quality scientific framework. The graduate school ‘Algorithmi-
sche Diskrete Mathematik’ is supported by the Deutsche Forschungsgemeinschaft, grant
GRK 219/2-97.

Contents

INtroductionottt i et e e 7
1.1 Ordered Binary Decision Diagramsc.ciiiiennnnon.. 10
1.2 Some Variants of OBDDS.ttt 12
1.3 The Variable Ordering Problem i, 14
1.4 Free Binary Decision Diagramscouiiiiiiiiinininnnne. 15
1.5 An Invitation to Probabilistic Analysis oLt 18
1.6 Previous Work and This Dissertationc.coiiiean.... 19
1.7 TheResultsin MoreDetail, 24

PART 1: RANDOM OBDDS

2

The Worst-Case Size of Quasireduced and Reduced OBDDs 31
2.1 TheFunction L ettt e 32
2.2 The Worst-Case Size of Quasireduced OBDDS.covvuenenan... 33
2.3 The Worst-Case Size of Reduced OBDDScvviiinnenenn.. 37
2.4 Remark on the History of TheseBounds 38
The Expected Size of qOBDDs with a Fixed Variable Ordering 41
3.1 PrerequUiSitesttt e 42
3.2 The Expected Size of the Levels of a Random qOBDD 46

3.3 The Expected Size of Random qOBDDs with a Fixed Variable Ordering .. 53
The Strong Shannon Effect for qOBDDs with Optimal Variable Orderings . 55

4.1 Azuma’sInequalityttt e 55
4.2 Large Deviations from the Expected qOBDD size 56
4.3 Optimal qOBDDs for Random Boolean Functions. 57
The Effect of the DeletionRule 59
5.1 The Expected Reduction by the DeletionRule 59
5.2 Large Deviations from the Expected Reduction by the Deletion Rule 62
5.3 Optimal Variable Orderings and the DeletionRule 64
5.4 The Weak Shannon Effect for OBDDsccovuiienven... 65
Comparing the Reduction Rules, 67
6.1 Comparing the Expected Amount of Reduction 67
6.2 Another Kind of Large Deviation Inequalities 73
Other Decision Diagrams with a Variable Ordering..................... 77
7.1 Zero-Suppressed Binary Decision Diagrams (ZBDDS) 77

7.2 Ordered Kronecker Functional Decision Diagrams (OKFDDs) 77

PART 2: RANDOM FBDDs

8

10

11

12

13

Minimal FBDDSttt ittt ettt et 81
8.1 Definitionsvvitit et i e e 81
8.2 StrongReductionRules., 83
Quasireduced FBDDs and the DeletionRule........................... 87
9.1 Algorithm INVERSEDELETION .. t.vtvtnetntneneneteenenennenennnnn 87
9.2 A Property of INVERSEDELETION ... tuuvtnuneeneneeenenneeneennnn 89
9.3 Probabilistic Analysis of INVERSEDELETION« vvveeneenennnnn 91
FBDDs and the Merging Rule.......... i, 95
10.1 Algorithm INVERSEMERGING ..t vttiteeeteinteeeneeeeneneennnn 95
10.2 Relating FBDDS t0 QOBDDSi'titeeieiii e eieeieieenennn 96
10.3 The Minimal FBDD Size of Random Boolean Functions. 100
10.4 Some Remarks on Main Theorem 2 (1)vviiiiiiiiiii i 102
Small FBDDs and large OBDDSititiiiiiininenananannnn 105
11.1 Algorithm SIMPLETYPEttt tte ettt e eie e eeeieieenennennn 105
11.2 The Expected Sizeof the Set Uottt 107
11.3 Large Deviations from the Expected Size of theSet U 111
11.4 Small FBDDs via SIMPLETYPEottt e e e e e aeeeeae 112
11.5 How Not to Improve Algorithm SIMPLETYPE.vvvenennnn.. 113
APPENdiX . . .ot e e e 115
12,1 NOTAtION . .ttt ettt ettt e ettt et e ettt 115
12.2 Inequalitiesoutieiie it ittt ettt e e 115
12.3 ASYMPLOLICS . . v et ettt ettt e e e 115
RefOrENCESottt e 117

List Of PUDLICALIONS . . . oo e et e 125

1 Introduction

Binary Decision Diagrams are an efficient data structure for Boolean functions. Since
Boolean functions (sometimes also called switching functions) are an abstraction of
circuits, Boolean manipulation tasks arise naturally in all stages of the design process
of digital circuits. For example, if a network of combinational logic has to be checked
for equivalency with its specification, or an optimised version of itself, one is faced with
many tasks of Boolean manipulation like synthesis (given representations for f and g,
compute a representation for f ® g, where ® is a Boolean operator like A, V, —,
®, =, ...), negation (given f, compute f = 1@ f), and equivalence testing (decide
whether the represented functions satisfy f(Z) = g(Z) for all).

A data structure problem. Let us explain with this example which difficulties arise
when one has to come up with an efficient data structure for Boolean functions. There
is a sort of trade-off between space requirements and algorithmic manageability. One
extreme case is the combinational circuit itself, which can be viewed as a succinct rep-
resentation for the Boolean function it computes. Circuits are very space efficient, be-
cause they are flexible enough to mirror many kinds of inherent structures of Boolean
functions. But whereas synthesis and negation are trivial, equivalence checking is NP-
hard for circuits. (See e.g. Papadimitriou’s book [Pap94] for definitions of complexity
classes.) Note that (unless P = NP) practical data structures for Boolean functions will
always retain a certain ‘heuristic flavour’; we cannot expect them to do things which are
provably hard even for small instances. Going to the other extreme, the truth table is an
example for a data structure that does not really care about ‘structures’. It is just ‘data’.
While algorithms are trivial for truth tables, the space requirements are dramatic. An n-
variable Boolean function has 2" truth table entries. Typical circuits (or design blocks)
have tens or hundreds of inputs, and thus a truth table approach is totally infeasible,
except for the simplest cases.

We have seen from two extreme cases that every data structure for Boolean func-
tions is a compromise between memory requirements and efficiency of manipulation
algorithms, or between space and time. Basic Boolean manipulation tasks should have
fast algorithms (though probably not too fast, as we have seen), but there will always

be Boolean functions for which the memory requirements are high.

Counting arguments. Another reason why Boolean functions are hard to deal with
algorithmically is that they exist in abundance. For n inputs, there are 22" Boolean
functions. This is because for each of the 2" input combinations we can choose an
output value. Already in one of the first papers on “The Synthesis of Two-Terminal
Switching Circuits”, Shannon [Sha49] proved that simply because we need a lot of
basic building blocks in order to have enough choices to connect them in so many

different ways, almost all Boolean functions have a minimal circuit size of £2(2"/n) —
and circuits are among the smallest representations we know.! At first sight, from these
counting arguments one might be led to the conclusion that “all hope is vain”, but then
numbers are not the whole truth.

Circuit complexity. Many Boolean functions which are encountered in practical appli-
cations (and in particular those which will fit on a chip of silicon) have a circuit size
of 2°(") | This observation also has a counterpart in theory. Despite many years of re-
search on lower bounds for circuit size, we are still unable to come up with an explicitly
defined Boolean function whose circuit complexity is only just super-linear. Here ‘explic-
itly defined’ (roughly) means that ‘tricks’ like diagonalisation are not allowed. In fact,
the fifteen-year-old 3n lower bound by N. Blum [Blu84] is still unsurpassed. However
in the meantime, more restricted computation models (e. g., monotone circuits) have
been investigated, and larger (even exponential) lower bounds have been proved for
them. The complexity of Boolean functions is a fascinating area of research on its own
with many deep and surprising results. (See [Weg87] for an extensive monograph.)

Normal forms. Each representation of Boolean functions emphasises some structural
aspects and (therefore) neglects others. Circuits are not only a representation for
Boolean functions, but also a model of computation—a program that decides a cer-
tain property in fact computes a Boolean function. Computation time is an important
parameter in the complexity theory of algorithms. Programs should be fast, and circuits
should have small depth, that is the (largest) number of gates which a signal must pass
from an input to the output. Minimising the depth of logic units is most critical e. g. in
the design of microprocessors, in order to accelerate the clock cycle. Therefore, theo-
reticians have investigated symbolic representations (formulae) for Boolean functions
which correspond to circuits of bounded depth. The usual canonical forms like conjunc-
tive normal form (DNF), disjunctive normal form (DNF), and ring sum expansion (RSE,
also called parity normal form (PNF) or Reed-Muller expression), which are taught in
the undergraduate courses, belong to this class. These representations assign with each
Boolean functions a unique, i.e., canonical formula, and therefore equivalence testing
can be performed in polynomial time with respect to the size of the representation. How-
ever, simple tasks of Boolean synthesis can result in an exponential blow-up. Therefore,
many synthesis tools (e.g., MINI [HCO74], ESPRESSO [BHMS84], MIS [BRSW87],
and BOLD [HLJ+89]) have used a combination of non-canonical representations and
heuristic manipulation techniques. We will not go into the details here.

Branching programs (or BPs, for short) emphasise the aspect that all computation
over finite domains is based on making decisions. For example, if we want to compute
the product of two numbers, all we have to do is to decide which digits to write down.

! For definitions of O, 0, £2, w, @, and ~, see Section 12. (Note the usage of absolute values.)

1 Introduction 9

How does a program look like that uses uses nothing but decisions as its means of
computation? It consists of a lot of ‘if-then-else’ statements, in combination with ‘goto’s.
The program ends when an output instruction is reached. This model of computation
is called a branching program (abbreviated BP) and has a history which is almost as old
as that of circuits [Lee59].

Read-once branching programs. Branching programs are a representation for Boolean
functions, whose space requirements lie in between those of circuits and formulas (up
to constant factors). An early result of Cobham [Cob66] states that the BP size is closely
related to the space requirements of nonuniform Turing machines. Barrington [Bar89]
showed that the complexity class NC! contains precisely those Boolean functions which
have polynomial BPs of width 5. Again, lower bounds are of great interest. A natu-
ral restriction is to allow every variable to be tested at most once [Mas76]; yet there
exist powerful lower bound techniques for the size of such read-once branching pro-
grams (BP1s) for special functions. For example, Ponzio [Pon95] has shown that the
‘middle’ bit of integer multiplication has BP1-size > ovn/5 (Here, zop_1---2¢9 =
Tp_1°*"To*Yn_1-" Yo, and the ‘middle’ bit is z,,.)

Equivalence testing. The way in which branching programs achieve a concise repre-
sentation is by identification of isomorphic substructures. If it turns out that some part of
an ‘if-then-else’ program is identical to another, then we can redirect the ‘goto’s appro-
priately and save some lines of code. Starting from a complete binary decision tree (that
sort of branching program surely exists for every Boolean function), we can identify iso-
morphic substructures until we end up with a acyclic directed graph in which no more
reductions can be performed. —Now, surely we do not want to start with a complete
binary decision tree; it will not fit into the memory. So in the process of Boolean manip-
ulation (think of the introductory example of an equivalence test among combinatorial
circuits), we must somehow start with the most basic functions and then combine them
together step by step. But how do we test the equality of the represented functions?
There can be many different ways to represent a function. Testing the equality of two
functions given as read-once branching programs is a difficult problem for which only a
coRP Algorithm is known [BCW80]. (That is a randomised algorithm which can falsely
accept nonequivalent pairs with some constantly bounded error probability.) The pre-
cise complexity status of the problem is still unknown.

A word on terminology is appropriate. Theoretical work on lower bounds has shown
what makes certain functions ‘hard’ for BPs or BP1s which nevertheless are ‘simple’ in
another model of computation. Binary decision diagrams, on the other hand, were
designed as a (hopefully) very efficient data structure for Boolean functions (see be-
low). Although these are really just different ways to look at the same thing, the two
communities have not yet agreed upon a common terminology. A (general) BDD is a BP

10 1.1 Ordered Binary Decision Diagrams

1.1 Ordered Binary Decision Diagrams

While read-once branching programs had been around for quite a while, it was only in
the middle-eighties that Bryant came up with efficient algorithms for a special kind
of read-once branching programs which he called ordered binary decision diagrams
([Bry86], see also [Bry92] for a survey). This approach turned out to be very successful
for many Boolean functions encountered in real-world situations.

An ordered binary decision diagram (OBDD) is a read-once branching program in
which the tests obey a fixed global variable ordering. For example, if the variable order-
ing is (21, ..., ,), then z; must not be tested after x;, if 4 < j. The variable ordering
implies that we can position the nodes of an OBDD (now viewed as an acyclic directed
graph) in levels, one for each variable. Computation proceeds in the top-down direc-
tion. The order in which the variables are tested does not depend on their values. Thus,
OBDDs are also called oblivious read-once branching programs in the BP-community.
An OBDD is allowed to leave out some tests. This possibility to jump across a level’
implies that there is another way to reduce the size of an OBDD: If both ‘goto’s of an
‘if-then-else’ statement point to the same line, then we can eliminate this test.

Canonicity. Bryant [Bry86] proved that the minimal OBDD for a given variable or-
dering is a canonical representation of Boolean functions. The acyclic directed graph
structure implies that the equivalence test for OBDDs can be performed in polynomial
time. Finding the minimal OBDD is also a feasible task. Let us explain why. We have
already mentioned that there are two ways in which the size of a branching program
can be reduced: identification of isomorphic subgraphs and elimination of redundant
tests. The key observation is that both reductions can be performed using only local
structural information. In the BDD community, these are called reduction rules. The
merging rule asserts that two nodes of a BDD can be merged (i.e., identified) if they
agree with respect to their successor nodes and the variables they test (see Fig. 1). The
deletion rule asserts that a node can be removed if both outgoing edges point to the

same successor node (see Fig.2).

Fig.1. Merging v and v’ Fig.2. Deleting v

1 Introduction 11

Shared OBDDs. One can show that the variable ordering implies that an OBDD is
minimal if and only if it is reduced with respect to the merging and the deletion rule.
Reduced OBDDs also have the property that their nodes represent different functions.
Usually, we have to deal with a lot of Boolean functions during a computation. Fortu-
nately, OBDDs allow us to merge their representations into a single data structure (in
the obvious way). This is called a shared OBDD. Within shared OBDDs, equivalence
testing only amounts to pointer comparison, which is a constant time operation.

Efficient algorithms. Of course, here is not the place to describe how efficient al-
gorithms for OBDD synthesis work, but the basic idea can be explained very quickly.
Assume that a Boolean function f = f(Z) = f(z1,...,,) is represented at the ‘top’
node v of an OBDD. If the variable tested at v is z;, then the two successor nodes of v
represent the Boolean functions

fo(@) = f(0,zo,...,2,) and f1(Z) = f(1,ze,...,2,).

So formally, we can write f as
F(@) = 31 A fol@) V 21 A fi(F). (1.1)

This is called the Shannon expansion of f with respect to the variable x;. Now the cru-
cial observation is that Shannon expansion commutes with every Boolean operator ®,
that is, we have

(f®9)a=fa®ga forall aec{0,1}.

In this way, efficient synthesis algorithms can be designed for OBDDs, which proceed by
a simultaneous depth-first traversal of the data structures.

Let us continue the success story of OBDDs with some other Boolean manipulation
tasks which can be performed quite efficiently with them. We can replace a variable z;
by a constant ¢; € {0,1}. This is rather clear from (1.1). (We emphasise that x;
need not be the first variable in the ordering.) Note in contrast that if we apply this
operation to a read-once branching program, it will generally change the order in which
the variables are tested along some of the computation paths. Although probably not
evident at first glance, this is one of the main reasons why it is so hard to work with
BP1s as a data structure. We will come back to this later. If we can replace variables by
constants and can perform As and Vs, then we can also replace variables by functions,
that is, compute fg(z) (Z) from f and g. (For simplicity, we will not always distinguish
between a function and its representation.) And of course, we can evaluate functions
given as OBDDs. Another feasible task is quantification: 31 : f(&) and V1 : f(&) can
be computed using replacements and synthesis. We can test for satisfiability, because
the OBDD for a constant function is just a terminal node. More gratifying, we can
even count and enumerate the on-set of a function f, which is defined as the set of all

12 1.2 Some Variants of OBDDs

assignments & for which f(Z) = 1 holds. Similar for the off-set. If we test fo and f;
for equivalence, then we can decide whether f depends on z;. There is an even simpler
way to achieve this: Just look whether the OBDD has any nodes at z;’s level.

BDD packages. Efficiency is very important in applications, and there has been put a
great amount of clever work into the details of the OBDD data structure. Nowadays,
OBDDs are not a thing that one would like to implement from scratch, and several
BDD-packages are available for free, see e.g. [BRB90,Lon93,Som96,HDB]. (Since for
important tasks which involve equivalence tests there are no efficient algorithms for
general BDDs = BPs, the abbreviation BDD is often used as a synonym for OBDD in this
context.) Recently, it has been observed that a breadth-first approach to the synthesis
problem is favourable if the OBDD size exceeds the size of primary memory, due to a
better cache miss rate [SRBS96,RGBS97]. OBDDs with millions of nodes are not an
exception in applications. See [Sen96] for an attempt to evaluate the performance of
different BDD packages (which turns out to be not so easy, due to the many param-
eters which can have an influence). Many implementation issues are covered by the
monographs [MT98,DB98].

1.2 Some Variants of OBDDs

OBDDs are the state-of-the-art data structure for Boolean functions (at least in many
areas), but of course sometimes they are not as good as you want. Since the pioneering
work of Bryant, many variants of OBDDs have been proposed in the literature, and there
is a telling that you can have “-DD”s from A to Z. Even a leading expert in the area has
to admit that it is a challenging task to keep track with the innovations [Bry95b]. Some
of them might not ‘survive’ the next ten years, but others are clearly superior for certain
purposes.

Zero-suppressed binary decision diagrams (ZBDDs)
are a variant of OBDDs with a modified deletion rule,
which allows a node to be deleted if and only if its ‘high’
successor is the terminal 0 (see Fig. 3). For example, in
the situation of (1.1), the node representing f could be
deleted if and only if f; = 0. Zero-suppressed BDDs

were introduced by Minato [Min93]. Assume that we

want to represent a system of subsets of a finite universe
Fig.3. The modified deletion rule,

by its characteristic function. If the number of subsets
applied to v

is comparatively small, and each subset consists only of

a few points, then ZBDDs are the recommended data structure. ZBDD have found
applications in two-level logic minimisation [Cou94] and various combinatorial prob-
lems [Cou97,LSW95,Min96].

1 Introduction 13

Ordered functional decision diagrams (OFDDs) are another modification of OBDDs
in which the Reed-Muller expansion takes over the part of the Shannon expansion. They
were introduced by Kebschull, Schubert, and Rosenstiel in [KSR92]. Let f; and f; be
asin (1.1) and f5 := fo @ f1. Then we have

f(@) = fo(Z) & z1 A fo(D). (1.2)

The deletion rule for OFDDs is syntactically the same as for ZBDDs, but now it has the
meaning that a node can be eliminated if and only if the function it represents does not
depend on the variable tested there. OFDDs are particularly useful for algorithms that
deal with the ring sum expansion [TM94,DTB94], although standard operations like
A and V can lead to an exponential blow-up [BDW95].

Ordered Kronecker functional decision diagrams. There is another possibility for
functional decomposition, namely

f(&) = fi(@) & Z1 A fa(T) - (1.3)

which leads to a data structure similar to OFDDs. Since there exist functions which
have polynomial OBDD size and exponential OFDD size and vice versa, Drechsler,
Sarabi, M. Theobald, Becker, and Perkowski [DST+94] combined the three decomposi-
tion types into a hybrid data structure which they called ordered Kronecker functional
decision diagram (OKFDD). In OKFDDs, each variable is assigned one of the three de-
composition types (1.1), (1.2), and (1.3). Still OKFDDs are a canonical representation
for each such decomposition type list and variable ordering and can be manipulated effi-
ciently (but note the remark on OFDDs above). There exist functions for which OKFDDs
are exponentially smaller than both OBDDs and OFDDs [BDT95].
We will deal with ZBDDs, OFDDs and OKFDDs in Section 7.

Complementing edges. Another subtlety about decision diagrams (of all kinds) is the
use of complementing edges [Ake78,Kar88,MB88]. A complementing edge pointing to
some node which represents g is like a normal edge pointing to a node which repre-
sents g. Although complementing edges can reduce the size of a decision diagram by at
most a factor of two, they are very important in practice, because the complement flag
can be stored in the lowest bit of the pointers without increasing the amount of memory
allocated per node, at the price of a marginal increase on the running time.

Word-level decision diagrams. Bryant proved that OBDDs are not good at multipli-
cations [Bry91], and this result was extended to BP1s by Ponzio [Pon95]. One of the
reasons is that these decision diagrams can only deal with two-valued functions, and
they are ‘blind’ for algebraic properties. Recently, BDDs have been taught some lessons
in this direction [CMZ+93,BFG+93,LPV94,BC95,DBR96]. Verifying the correctness of
arithmetic hardware can be very difficult, due to faults which arise only under rare

14 1.3 The Variable Ordering Problem

circumstances. (Even using an OBDD-based verification technique, the Intel company
could have saved a lot of money [Bry95a]. But see also [Ede97] for a critical estimation
of Bryant’s claim.) These so-called word-level decision diagrams are currently a very
vivid area of research. We will not be concerned with them in this dissertation.

1.3 The Variable Ordering Problem

All the decision diagrams we have seen so far have the property that the minimal repre-
sentation is unique for each variable ordering (plus decomposition type list in the case
of OKFDDs). But in applications, the size of the minimal representation generally de-
pends heavily on the variable ordering. Therefore, optimisation of the variable ordering
is among the most studied problems in the OBDD literature.

Complexity. From a theoretical point of view, the variable ordering problem is known
to be NP-hard for OBDDs and OFDDs [BW96,BLSW96] and even hard to approximate to
within a constant factor of the optimal size for OBDDs [Sie98b]. (The input is assumed
to be given as a decision diagram in these results.)

OBDD-independent methods. Long before these negative results were proved, peo-
ple developed heuristic techniques to find reasonably good variable orderings. Several
heuristics for circuits have been proposed in the literature, none of which is clearly supe-
rior to the other (see e.g. [FMK88,MWBS88,MIY90]). For fanout-free circuits, optimal
variable orderings can be computed in linear time [SWW96], but these are a somewhat
artificial special case [PS98].

Dynamic variable ordering. OBDD-independent variable ordering heuristics have the
advantage that they can be computed very fast. But usually the optimal variable or-
dering of the shared OBDD containing the intermediate results will change during the
run of an algorithm. Fortunately, there also exist powerful variable ordering techniques
which enable us to change the ordering dynamically (i.e., during the run time), and
‘static’ ordering heuristics are nowadays mainly used as initial solutions for these. The
basic operation in dynamic variable ordering is the exchange of two adjacent variables
in the ordering. It is not very hard to see that this so-called swap operation can be
performed locally. If we have lists for the nodes on each level, then the running time
of a swap is linear in the size of the two levels involved, and not in the size of the
whole shared OBDD. Each swap can change the size of an OBDD by at most factor of
two [BLW96].

Optimal variable orderings can be found by dynamic programming for small values
of n (say, n < 15), but the running times are in general exponential [FS90,ISY91].
In many cases, a near-optimal solution will suffice, and is what we are really aiming
for. Dynamic variable ordering heuristics have different ways in which they employ the
swap operation in a local search strategy.

1 Introduction 15

The window permutation heuristic [ISY91] tries all permutations of the variables in
a window of constant size (typical values are k = 2, 3, or 4) and then restores the best.
The window ‘slides’ from levels [1 .. k] to [n — k 4+ 1 .. n] (or in the other direction).
The window permutation heuristic is relatively fast and the results are generally better
than those of OBDD independent heuristics.

Rudell’s famous sifting heuristic [Rud93] usually achieves much better results and
has been further refined in subsequent work. For each variable in turn, it searches an
optimal position in the variable ordering while keeping the relative order of the other
variables unchanged. So sifting proceeds by a sequence of locally optimal jump oper-
ations, where each jump is performed as a sequence of swaps. Recent refinements of
the sifting method deal with ‘groups’ or ‘blocks’ of variables which can be user-defined
or are found during the reordering process. [PS95,PSP94,Som96,MS97]. For OKFDDs,
the optimisation of the decomposition type list can be integrated into the sifting pro-
cess [DB95].

Using meta-heuristics like simulated annealing, evolutionary algorithms or genetic
algorithms, one can find very good variables orderings, but the running times are some-
what impractical [BIW96,DG97,MKR92]. In work not covered by this dissertation,
the author was engaged in experimental studies showing the practical feasibility of a
simulated annealing approach to for the (initial and dynamic) variable ordering prob-
lem [BGP+97].

1.4 Free Binary Decision Diagrams

Since the choice of a good decomposition ordering can have such a great influence on
the resulting OBDD size, the variable ordering concept also has been generalised to-
wards read-once branching programs. BP1s are called free binary decision diagrams
(FBDDs) in the BDD community, because the outcome of a test of a variable cannot
be predicted from earlier tests. (All tests are ‘free’.) In general BPs, a variable might
be tested somewhere for the second time, and then the outcome is not free. Conse-
quently, BPs can have directed source-sink paths which do not correspond to variable
assignments. This is what makes the satisfiability test difficult for general branching
programs. FBDDs appear as a compromise between OBDDs and BPs.

Graph orderings. In another meaning of the word, FBDDs are more ‘free’ than OBDDs,
because the choice which variable to test can depend on the outcomes of earlier tests.
This freedom is governed by a generalisation of the variable ordering concept which
is called a (complete) type in the approach of Gergov and Meinel [GM94,SM93] and a
graph ordering (formerly oracle graph) in the approach of Sieling and Wegener [SW94,
Sie95,SW98]. A graph ordering is defined like a BP1, but has only one sink. Also, each
variable is tested exactly once along each ‘computation’ path. An FBDD G respects a
graph ordering 7 if for all assignments, the variables are tested in the same order in G

16 1.4 Free Binary Decision Diagrams

and 7. Similar reduction rules as for OBDDs can be given for FBDDs. One can show
that 7-FBDDs are a canonical (unique) representation of Boolean functions for every
graph ordering 7. Certain restricted classes are of special interest. If the graph ordering
looks like a chain, then the graph ordering concept degenerates to ordinary variable
orderings. Also, tree-like graph orderings have been considered [Sie94,Sie95,BMS96].

Good news. The nice thing about FBDDs is that one can perform synthesis and equiv-
alence checks efficiently with them. In [SW95], also a variant of the FBDD concept is
investigated, which is a bit more restrictive but has better algorithmic properties. It is
not necessary to go into the details here. Most important for our investigations is the
fact that for every BP1 G, there exists a graph ordering 7 such that G is a 7-FBDD. So
the classes of Boolean functions representable by BP1s and FBDDs of a given size are
identical.

The efficiency of a new decision diagram type is usually demonstrated with spec-
tacular examples. Here is one for FBDDs. The function hidden weighted bit is defined
as

HWB,(z1, ...,) := {x‘”t(f)’ 1 wi() =200 > 0:

0, otherwise .
Already this definition suggests why HWB has exponential OBDD size [Bry91]: In or-
der to determine HWB,, (%), we should know wt(Z); but this number is known only
at the very end, and then we would still need another test to output Zy(z), which
is not allowed. But in FBDDs, one can arrange the decomposition process in such
a way that Ty (z) is tested near the end. The minimal FBDD size of HWB is only
quadratic [GM94,SW95].

Bad news. Unfortunately, nobody knows how to find optimal or near-optimal graph
orderings efficiently. Heuristics to derive tree-like graph orderings from circuit descrip-
tions were proposed in [BMS96]. But one can show that HWB has exponential size
for tree-like types [Sie95]. Very recently, Glinther and Drechsler [GD99] adapted the
exact minimisation algorithm of [FS90] to the FBDD case and gave a heuristic that
transforms an OBDD into a smaller FBDD. Since the number of graph orderings is dou-
bly exponential in n, FBDD minimisation algorithms have to deal with a much larger
search space.

Another bad news about graph-ordered FBDDs is that restricting a variable to a con-
stant can cause exponential blow-up. To see why, consider a function g = g(z2, . .., Zy)
which has a good (OBDD) variable ordering 7 and a bad variable ordering #’. Then
the function f := 1 A g(2, ..., ,) has a small FBDD for the tree-like type in which
x1 is tested first, followed by 7’ in case of £; = 0 and by 7 in case of z; = 1. But
the function f; = g has a large FBDD, because the top node cannot be removed by
the reduction rules and so another copy of g has to be represented for the 0-branch

1 Introduction 17

registers

combinational logic

2> >

primary inputs primary outputs

Fig. 4. A sequential circuit

of x, with respect to a bad variable ordering. A similar argument holds for quantifica-
tion.— One can also show that unless we can test equivalence of BP1s in polynomial
time, there is no algorithm that transforms a 7-FBDD into a 7'-FBDD in polynomial

time with respect to the size of the input and output [Sie95].

Sequential analysis. Quantification is not necessary to test circuit equivalence by
means of a canonical BP1-based data structure, since we know the representation of
the zero function. Why is quantification so important? This is explained by a second

major field of OBDDs applications, sequential analysis.

A simple abstraction of a sequential circuit is shown in Fig. 4. This is essentially
a finite state machine with outputs, whose state is described by the contents of the
registers. A set of states S naturally corresponds to a Boolean function (or ‘predicate’)
defined by S(Z) := 1 iff £ € S. A basic step in the analysis of sequential systems is
image computation. Assume that the transition relation of the system is T'(Z, §) := 1 iff
there exists an input such that state & is followed by 7. Initially, the system is in a
state from some set Sy. The set of reachable states can be computed by the following
recursion: S;11(9) := 3Z: Si(Z) A T(Z,y). The least fixed point S; = S;41 is the
set of states reachable from Sy. More complex specifications for sequential systems can
be specified in temporal logics (e. g., computation tree logic (CTL), see [Eme90]). This
approach to exact verification is called model checking. OBDD-based model checkers like
SMV [McM93], RuleBase [BBEL96], CVE [BLPV95], or VIS [VIS96] have been applied
successfully to systems with more than 10'% states [BCM+92,BCL+94]. The method
is not restricted to hardware: communication protocols are notoriously error-prone
(even published ones), and model checking has been very successful in finding some
of them [McM93]. Model checking has now reached a state of maturity that begins
to attract commercial interest, but the need to write down specifications in the formal
notation of a temporal logic is an obstacle for its dissemination which should not be

underestimated.

18 1.5 An Invitation to Probabilistic Analysis

1.5 An Invitation to Probabilistic Analysis

We have seen that OBDDs and variants of them are very efficient in practice and thus
have found applications in many areas (we only mentioned a few). But is this assertion
really based on solid ground? Some trends come in and out of fashion. We need a
method to evaluate the scope of data structures for Boolean functions.

Benchmarks. Experimental studies in VLSI design usually contain results on bench-
mark circuits (for references on benchmark collections see [DB98], p. 147) or ‘bench-
mark functions’ like HWB and the middle bit of integer multiplication. While this
sometimes gives useful information for practical purposes, benchmarks are unsatisfac-
tory for theory. For every new -DD type, one can find circuits for which the new method
performs better than others, and vice versa. This can be very confusing for non-insiders.
Also, no set of benchmarks covers all possible kinds of applications.

Worst-case analysis. Theoreticians have to make precise statements, and therefore
they usually prove that one class is contained in another (i. e., the set of functions of a
certain size) or that two classes are incomparable or that the sizes are somehow related.
We mention only some of these results on the DD classes introduced above. Trivially,
each OBDD and each OFDD is an OKFDD. OBDDs and OFDDs are incomparable in
the sense that there exist Boolean functions whose size is polynomial in one class and
exponential in the other. One can also show that some functions have small OKFDDs,
but only large OBDDs or OFDDs. These relations are well understood theoretically in
terms of a certain transformation that operates on Boolean functions [DB98]. The size
of OBDDs and ZBDDs can differ by a factor of at most n [LSW95], which can be a lot
in applications. Much less is known about the relation between OBDDs and FBDDs.
The hidden weighted bit function has FBDD size O(n?) but only exponential OBDDs.
However the middle bit of integer multiplication remains difficult for FBDDs.

Probabilistic analysis. Of course, FBDDs are a superclass of OBDDs, but it seems that
the real question is whether there exists a significant portion of functions for which
FBDDs are much smaller than OBDDs. Can we prove that almost all Boolean functions
have a minimal FBDD which is, say, only half as large as a minimal OBDD? And what
are the ‘typical’ OBDD and FBDD sizes of Boolean functions? Similar questions can be
asked for OKFDDs.

What is a ‘typical’ Boolean function? A hardware engineer might say: “one that is
likely to occur in our applications”. Actually, we are asking for a (more or less) realistic
probability distribution on the set of all Boolean functions. It is not clear how such a
probability distribution should be defined. Maybe it would be easier to define what is,
or is supposed to be, a typical instance for an algorithm that applies OBDDs. But it
is even less clear how to make this notion precise. VLSI designs are not constructed
‘at random’. Of course, artificial models can be considered: Since we want to analyse

1 Introduction 19

BDDs, we could define a ‘typical OBDD’ directly, using structural properties like size and
width. We indeed worked on this for a while, but due to the many side constraints, such
a probability distribution is not easily amenable to mathematical analysis. Also, such
a model would not say much about the ‘real world’ situations in which OBDDs will be
applied. In the end, it seems that the best answer from a practical point of view is that
indeed a typical Boolean function is simply one of the benchmarks.

But this dissertation is solely devoted to theoretical investigations, and from a theo-
retical point of view, it is clearly most natural to suppose that all Boolean functions are
equally likely. That is, we will consider binary decision diagrams for random Boolean
functions which are uniformly distributed. We do not claim that this is a ‘realistic’ model.
Our choice is justified by the results we obtain.

Probabilistic analysis of algorithms and data structures is an alternative to reasoning
in terms of worst-case examples and has a long history in theoretical computer science.
For example, the simplex algorithm for linear programming has exponential worst-case
running time [KM72], but the expected running time is polynomial under reasonable
assumptions [Bor82]. The quicksort algorithm needs £2(n?) time in the worst case, but
only O(nlogn) on average [OW93, Chapter 2.2]. Sometimes polynomial-time heuris-
tics perform very well on random instances. Long before Arora’s PTAS for the Euclidean
travelling salesman problem [Aro98], it was known that the polynomial-time patching
heuristic achieves an approximation ratio of 1+ O(4/n) with high probability [KS85].
Note that all these are deterministic algorithms. All randomness is governed by the
distribution of the instances. Universal hash families lead (with high probability) to
efficient data structures for all kinds of dictionary problems [MR95, Chapter 8].

1.6 Previous Work and This Dissertation

Liaw and Lin. Research on the OBDD representation of random Boolean functions
has started with the work of Liaw and Lin [LL92,L1L90]. They showed that almost all
Boolean functions have a minimal OBDD size of at least % - 2"/n and gave an upper
bound on the worst-case size of a reduced OBDD (for some function of n variables)
of (2 + 0(1))2"/n. Consequently, changing the variable ordering can only affect the
OBDD size by a factor of at most 4 + o(1), with high probability. It is not surprising
that most Boolean functions have large minimal OBDDs; we have already seen that
a similar result holds for circuits. The theoretical observation that almost all Boolean
functions are not very sensitive to variable orderings is in contrast to the experience
from applications.

Quasireduced OBDDs. Liaw and Lin also noted that not using the deletion rule does
not change the OBDD size of a random Boolean function by much (less than one per-
cent for large n). It is well-known that blowing up a reduced OBDD by using the
deletion rule in the reverse direction can only increase the size of a (non-constant)

20 1.6 Previous Work and This Dissertation

OBDD by a factor of at most O(n), and this bound is attained for the projection func-
tions f(Z) = x; [LSW95]. An OBDD in which every variable is tested along every
computation path and which is reduced with respect to the merging rule is called a
quasireduced OBDD or simply a qOBDD. Besides theory, qOBDDs are of some relevance
in breadth-first BDD packages [RGBS97]. In the following, we always assume that
OBDDs are reduced, unless stated otherwise.

Wegener. The results of Liaw and Lin were improved and generalised by Wegener
[Weg94]. He proved that quotient of the size of the qOBDD and the size of the OBDD is
only 1+ O (n 2-n/3) for all variable orderings, with high probability; this improves the
1% statement from [LL92]. He also showed that the sensitivity of a Boolean function,
that is, the factor by which changing the variable ordering can alter the OBDD size, is
only 1+0 (n2 2 n/3) with high probability; improving the factor 4+ 0(1) from [LL92].
He gave a formula for the expected qOBDD size as a sum over the expected level sizes,
which also holds for OBDDs and optimal variable orderings up to terms of lower order.
This made it possible to compute the expected size very precisely for each n, but the
‘global’ lower and upper bounds 1 - 2"/n and (2 + 0(1))2"/n from [LL92] were not
addressed. In all theorems of [Weg94], “with high probability” can be replaced by
“with probability O (27"/3°("))” (sometimes the o(n) can be dropped). While this is
exponential in n, it is only (roughly) the cubic root of the expected OBDD size.

The probabilistic method. An important methodological innovation in Wegener’s ap-
proach is the use of urn experiments or more generally, the probabilistic method. The
probabilistic method is a powerful technique with applications in many areas of combi-
natorics which was pioneered by the famous mathematician Erdés who (co-)authored
more than 1500 papers. Although the change from counting arguments to probabili-
ties is only a replacement of terminology in the simplest cases, it gives us access to a
whole host of deep and powerful results from probability theory while being a great
alleviation for intuition. For an introduction to the probabilistic method, see the book
of Alon and Spencer [AS91], which contains applications of the probabilistic method in
random graph theory, number theory, Ramsey theory, geometry, coding theory, circuit
complexity, and more. (See also [Spe94].)

The Shannon effect. The phenomenon that almost all Boolean functions have almost
the same size for a certain kind of representation is called weak Shannon effect. If the
weak Shannon effect holds and the expected size is almost equal to the worst-case size,
that is, if almost all Boolean functions have almost the worst-case size with respect to
this representation, we say that the strong Shannon effect holds.

Wegener [Weg94] proved that for almost all sequences of n, chosen from a certain
probability distribution, the strong Shannon effect for optimal FBDDs holds with proba-
bility tending to 1 as m — +o00. This includes OBDDs as a special case. More precisely,

1 Introduction 21

he showed the following: Assume that n is (itself) chosen at random from the interval
{2‘3, S, 20 1} according to the uniform distribution. Then the probability that
almost all Boolean functions of n variables have a minimal FBDD size which is almost
equal to the worst-case OBDD size tends to 1 as £ — +o00.

Intuitively, Wegener’s theorem asserts that for ‘most’ sequences of n, OBDDs and
FBDDs for random Boolean functions of n variables have almost the same size, which is
almost as large as it could be. So it seems natural (at least at first glance) to conjecture
that Wegener’s “almost all” result holds in fact for all sequences of n. However, we will
show that this is not the case.

The Shannon effect for OBDDs. Our Main Theorem on OBDDs with optimal variable
orderings for random Boolean functions gives an exact criterion to decide whether the
strong Shannon effect holds for a particular sequence of n.

In order to make the main results easily accessible, the following formulations
avoid some technical concepts which will be introduced in Section 3.1. The worst-case
size of a qOBDD for a Boolean function of n variables is denoted by W (n). Simi-
larly, W'(n) for reduced OBDDs. For a detailed discussion of the worst-case size of
(quasi)reduced OBDDs and FBDDs, see Section 2. Here we only need to mention that

they are W'(n) ~ W(n) = ©(2"/n).

Main Theorem 1. (on OBDDs with Optimal Variable Orderings)

Denote the minimal size of an OBDD for a Boolean function f by Z,(f). Let

B = (J[2"+h—d(h)..2"+h+d(n)],
heN
where d is specified below, and set A := N\ B.
() If n — +o0 in such a way that n € A for some d(h) = w(1), then

Pr(Z.= (1-o))W) ~ 1,

i.e., the strong Shannon effect holds for the minimal OBDD (and qOBDD)
size of random Boolean functions.

(ii) If n — 400 in such a way that n € B for some d(h) = O(1), then
Pr(Z.=(1- Q)W) ~ 1,

and the strong Shannon effect does not hold for the minimal OBDD (and
qOBDD) size of random Boolean functions.

22 1.6 Previous Work and This Dissertation

A A ¥
m,ﬁ S AN M >
o< N -
0 94\1 947% 94%1 %y, n
Y4 % Xé%
J 4 2

Fig. 5. The set B from Main Theorems 1 and 2

Not every sequence of n is covered by (i) or (ii) of Main Theorem 1, but every
sequence not covered by (i) contains a subsequence covered by (ii), which implies that
the strong Shannon effect does not hold for the original sequence.

The Shannon effect for FBDDs. When Main Theorem 1 had been proved [GPS98], we
conjectured that there was an analogue for FBDDs. Indeed, the author has been able to
prove that the overall picture is similar for FBDDs, but there is a remarkable difference.

Main Theorem 2. (on Minimal FBDDs)

Denote the minimal FBDD size of a Boolean function f by ¥(f). Let

B = [J[2"+h—d(h)..2" + h+d"(h)],
heN
where d~ and d* are specified below, and set A := N\ B.

(i) If n — +oo in such a way that n € A for some d~(h) = h? + w(1) and
d*(h) = w(1), then
Pr(e=(1-o)W) ~ 1,

i.e., the strong Shannon effect holds for the minimal FBDD size of random
Boolean functions.

(i) If n — 400 in such a way that n € B for some d~(h) = O(logh) and
d*(h) = O(1), then
Pr(¢=(1-20)W) ~ 1.

Since the set B in Main Theorem 2 (ii) is considerably larger than in Main Theo-
rem 1 (ii) (note that the ‘left’ interval halves have non-constant length), there is a range
of n for which the minimal FBDD size is almost always a constant factor smaller than the
minimal OBDD size. Such ‘gaps’ were already known for special functions like HWB
(even of exponential size), but our result shows that this holds for almost all Boolean

1 Introduction 23

functions, provided n is in a certain range. The upper bound on ¥ is derived from the
probabilistic analysis of an algorithm which we call SIMPLETYPE.

Assertion (i) of Main Theorem 2 gives a range of n in which the strong Shannon
effect holds for both OBDDs and FBDDs. Since we do not know the precise worst-case
size of FBDDs, we cannot conclude in Assertion (ii) that the strong Shannon effect does
not hold. Also, there exists a small range of n for which Main Theorem 2 makes no
assertion at all (e.g., n = 2hy.

Investigations of the relative computation power of various decision diagram types
usually focused on hierarchy results in terms of worst-case examples. The investigation
of expected minimal sizes provides additional and sometimes unexpected insights. The
answer sometimes depends on 7.

The Shannon effect for ZBDDs and OKFDDs. Average case analysis can reveal differ-
ences which remain invisible otherwise. For example, OKFDDs are another generalisa-
tion of OBDDs which are sometimes exponentially more succinct, but we will explain
in Section 7 how to prove that the minimal sizes remain almost unchanged with high
probability (for all n).

The Shannon effect for general BDDs. Breitbart, Hunt, and Rosenkrantz proved that
the minimal BDD size of a random Boolean function is (14 0(1))2"/n with high prob-
ability and that the worst-case size is approximately the same (see [BHR95, page 55]).
Thus the strong Shannon effect holds for the minimal BDD size and there are no oscil-
lations as in our main theorems. Interestingly, their construction tests every variable at
most twice. The lower bound follows from a counting argument.

We show that there are parametrisations of n for which the minimal BDD, FBDD,
and OBDD size are almost the same with high probability. For other parametrisations,
minimal FBDDs and OBDDs have almost the same size, but BDDs are a constant factor
smaller. It is an open question whether parametrisations exist such that BDDs and
FBDDs have almost the same size, but OBDDs are larger. Although we do not prove
this, it seems fairly natural from our results in Section 11 that parametrisations do exist
for which all the three sizes are separated by constant factors.

Evolutionary aspects. More often than one might expect, asymptotic results on OBDDs
and FBDDs for random Boolean functions depend on the particular choice of the se-
quence of n which goes to infinity. To get a better understanding of phase transitions
like those described in our main theorems, it is necessary to deal with a whole spectrum
of parametrisations between the ‘extremal’ ones like n = 2" + h. This ‘viewpoint of
evolution’ will be emphasised in Sections 2 and 6.

The analysis of evolution processes has a prominent example in the theory of ran-
dom graphs (see [Kar95] for a recent survey). For many interesting graph parameters
like connectivity, hamiltonicity, planarity, the clique number, or the chromatic number

24 1.7 The Results in More Detail

there are sharp threshold results in terms of the edge probability p = p(n) known. For
example, almost all graphs with o(n) edges are forests, and almost all graphs with w(n)
edges consist of a unique ‘giant component’ and small components of size O(log n) with
at most one cycle. Some of our methods have originated in random graph theory.

1.7 The Results in More Detail

OBDD Terminology. We collect a bunch of definitions and trivial observations in the
following proposition. (See also the appendix, Section 12.)

Proposition 1.1. Let f = f(xy,...,z,) be a Boolean function.

(i) The quasireduced ordered binary decision diagram with the canonical variable
ordering for f is denoted by qOBDD(f). The nodes at level i (where z; is
tested) represent the different subfunctions of f which can be obtained by
substituting the first ¢ — 1 variables z1,...,x; 1 by constants ¢, ...,¢; 1.
Let Y;(f) denote the number of nodes at level ¢ of QOBDD(f).

(ii) Similarly, the reduced ordered binary decision diagram with the canonical
variable ordering for f is denoted by OBDD(f). The nodes at level ¢ of
OBDD(f) represent the different subfunctions of f which can be found at
level 7 of OBDD(f) and which depend essentially on z; (that is, the two
successor nodes are different). Let Z;(f) denote the number of nodes at
level ¢ of OBDD(f).

(iii) Clearly, Y; is upper bounded by the growth rate of the decision tree,

k; == 2i_1,
and the number of Boolean functions with n — ¢ + 1 variables,
m; = 22n_¢+1 .
For Z;, the upper bound m; can be improved to
m; (= m; — Mit1 -

So

w; == min{k;, m;} > Y;
and
w; := min{k;, mi} > Z;.

(iv) The amount of reduction achieved by the merging rule is

The additional amount of reduction achieved by the deletion rule is
X, =Y, - 7.

) Weset W(n):= S0 w;, W'(n) := Y1 wl, Y(f) =", Yi(f),

X(f) =2 Xilf), 2(f) = Z?:; Zi(f), and X'(f) := 371, Xi(f). -

1 Introduction 25

The worst-case size of OBDDs and qOBDDs. There was a question in the litera-
ture [BHR95] whether the worst-case size of OBDDs could be determined up to a
factor of 1 + o(1). We show in Section 2 that such a formula cannot be easily de-
rived for general n, because the relative worst-case size W'(n) - n/2" (recall that
W'(n) = ©(2"/n)) oscillates between 1 + o(1) and 2 + o(1). Actually, in our analysis
the relative worst-case size is defined as W /2("), where L is defined in Section 2.1.
The function L has the nice properties that k;; = mg,; = 2L ~ 2™/n and will be
used throughout the whole dissertation. We prove estimates from a ‘local’ point of view
(near 2" + h) and a ‘global’ point of view (between 2" + h and 2"*! + h 4 1). For a
discussion and comparison with related work, see Section 2.4. We remark that such an
oscillation does not happen for general BDDs. To the best of our knowledge, no results
on the worst-case FBDD size are known except those which follow from the BDD and
OBDD bounds.

The expected qOBDD size. The proof of Main Theorem 1 has three parts. In the first
step, contained in Section 3, we neglect the effect of the deletion rule. Also, we consider
a fixed variable ordering and do not look at large deviations. The section starts with
some preliminaries which will be used throughout the whole dissertation (Section 3.1).
The final result of this section is Theorem 3.13 on page 53, which the reader might want
to compare with Main Theorem 1 right now. (For a quantitative result on the decrease
rate of the ‘Shannon gap’, see Theorem 3.8 and Fig. 9 on page 47.)

Quasireduced OBDDs with optimal variable orderings. To account for the effect
of the variable ordering in qOBDDs, we derive a strong concentration result and then
“multiply with the number of variable orderings”. This is possible because the probabil-
ity of exceptional Boolean functions is doubly exponential in n, which is much smaller
than Wegener’s O (2_n/ 3+°(")) bound. Our large deviation result follows from Azuma’s
martingale inequality, which is a standard tool of the probabilistic method. The status
of the proof of Main Theorem 1 at the end of Section 4 is summarised in Theorem 4.5,
page 58. This Theorem asserts (in the terminology introduced in Section 3.1) that Main
Theorem 1 has been proved for qOBDDs.

The effect of the deletion rule in random qOBDDs is investigated in Section 5. We
compute the expected amount of reduction by the deletion rule and derive another large
deviation result using Chvdtal’s inequality on the tail of the hypergeometric distribution.
As a consequence, the weak Shannon effect holds for qOBDDs and OBDDs. Again we
have a doubly exponentially small probability bound for large deviations (Corollary 5.6
on page 65) which improves Wegener’s exponential estimate. This completes the proof
of Main Theorem 1.

Comparing the reduction rules. Going beyond Main Theorem 1, we describe the
evolution of E(X) and E(X') in Section 6. It turns out that n = 2" + h is not the only

26 1.7 The Results in More Detail

interesting point. Two other, more subtle phase transitions take place as n passes from
2" +2h — 1 to 2" + 2h and at n = (2 + 0(1))2". The first marks the point where the
size of E(X) changes from exponential to polynomial very suddenly, whereas E(X")
remains exponential. Here the ‘Shannon’ gap is minimised for qOBDDs. The second
parametrisation minimises E (X + X'), the size of the Shannon gap for OBDDs. We
take local and global viewpoints similar as in the analysis of the worst-case sizes. Since
the values of E(X) and E(X') vary over such a wide range, the large deviation results
from Sections 4 and 5, though best possible in certain cases, are rather meaningless in
others. Therefore we also consider a weak, but sometimes more useful large deviation
bound that has a smaller ‘cut-off’ point and follows from Markov’s inequality.

Other Decision Diagrams with a variable ordering. At the end of Part 1, we indicate
how our results on OBDDs can be extended to ZBDDs and OKFDDs in Section 7. Since
only minor modifications are necessary, we do not work out the details.

The structure of minimal FBDDs is investigated at the beginning of Part 2 in Sec-
tion 8. We introduce some terminology and define strongly reduced FBDDs. Some easy
observations are noted, which are used in the next section.

Quasireduced FBDDs. The effect of the deletion rule is estimated via the probabilistic
analysis of an algorithm (INVERSEDELETION) that converts a minimal FBDD into an
FBDD in which every variable is tested along every computation path (called quasire-
duced FBDD or qFBDD). It turns out that the minimal quasireduced FBDD size ¥'(f)
is almost equal to the minimal FBDD size ¥(f) for almost all Boolean functions f (the
probability bound is doubly exponential). See Corollary 9.7 on page 93.— Section 9
serves a similar purpose as Section 5. But unlike the OBDD case, the proof techniques
for both parts of Main Theorem 2 are completely different.

The lower bound on the minimal qFBDD size is proved in Section 10. To show that all
levels (these are defined similarly as for qOBDDs) are almost full with high probability,
we use the results from the OBDD case and sum up the reductions for several variable
orderings. This proof technique goes back to [Weg94], but here we work out the details
more carefully to determine and minimise the size of the set A in Main Theorem 2 (i).
Also, we have a doubly exponential probability bound, whereas Wegener’s is just o(1).
The main result of this section is Theorem 10.10, page 101. Finally we discuss some
ideas for improvements.

The upper bound on the minimal qFBDD size follows from the (probabilistic) analysis
of our new algorithm SIMPLET YPE, which is given in Section 11. Using the insights
from the lower bound proof, this algorithm has been devised to collect mergings which
are possible within qOBDDs for different variable orderings. The variable orderings we
consider agree up to some level i¥. Then we choose a set of variables which are tested

1 Introduction 27

at the next few levels in such a way that at level i’ = i* + O(1), the mergings for all
the corresponding variable orderings sum up. Again, we derive a doubly exponential
probability bound via Azuma’s inequality in Theorem 11.7, page 112. In some sense,
our analysis of SIMPLET YPE is best possible (Section 11.5). But since the number of
‘amalgamated’ variable orderings is very limited, a gap remains between Assertions (i)
and (ii) of Main Theorem 2.

PART 1:

RANDOM OBDDs

2 The Worst-Case Size of Quasireduced and Reduced
OBDDs

In this section we investigate the behaviour of the worst-case bounds W (n) and W'(n)
for different parametrisations of n. This is best explained in terms of the ratios W /2%
and W'/2%, called relative worst-case size henceforth. (The function L = L(n) will be
defined soon. We have 2% ~ 2"/n.) We describe the oscillation of the quasireduced
relative worst-case size and give tight lower and upper bounds, improving upon earlier
results of Liaw and Lin [LL92], Heap and Mercer [HM94], and Breitbart, Hunt, and
Rosenkrantz [BHR95]. The results carry over to reduced OBDDs without major changes.
Finally, we discuss the history of these bounds.

But first, let us see that the upper bounds w; and wj are tight. The following lemma
was proved in [HM94, Lemma 2].

Lemma 2.1. For all n, there exist Boolean functions f and f’ of n variables
such that

Vien]: Y (f)=w; and Vi€ [n]: Z(f') = w.

Proof. We show how to construct reduced and quasireduced OBDDs matching the upper
bounds, thus defining f and f’. Let i be the largest index such that k; < m;. For the
top part of the OBDD, we take a decision tree with k; terminals. Since k; < m;, we
can assign different subfunctions depending on n — ¢ + 1 variables to all the terminals
of the decision tree. So we can guarantee that in the resulting OBDD, no mergings are
possible above and at level 7.

But how can we enforce that the upper bound is attained at the levels below 2? We
need to specify the assignment of subfunctions to the leaf nodes of the top part tree in
more detail. Think of a ‘universal’ shared OBDD U representing all Boolean functions of
the lower variables x;, . .., x,. In the reduced OBDD case, U has m; nodes, including
the sinks, whereas in the quasireduced OBDD case, the top level of U where z; is
tested (possibly redundantly) alone already has m; nodes. In the reduced OBDD case,
the terminals of the top part tree are replaced with nodes from the whole lower part,
while in the quasireduced OBDD case, we only use the nodes at the top level of the
lower part.

Since 2k; = k;y1 > m;; 1, we can choose the first m;1/2 subfunctions in such
a way that the high- and low-successors of these nodes already ‘cover’ the second
level of U (where z;,; is tested) completely. The levels below ¢ + 1 are ‘full’, be-

cause each node at level 7 > ¢ + 2 has incoming edges from level j — 1. O

32 2.1 The Function L

2.1 The Function L

It is desirable to have a concise notation for the “critical point” # where the two upper
bounds k; and m; meet. For technical reasons, we consider m; instead of m;}, although
our interest is mainly in reduced OBDDs. But the difference is only marginal.

Proposition 2.2. Define the function L by the functional equation

L(n) +logL(n) =n, (2.1)
and set
is:=L(n)+d+1. (2.2)
Then by definition,
ki, =2°*Y and my, = 927°L (2.3)

In particular,
=k = m, = 2L®)
Wi, = kiy = My, = .

S
—

log(size)

“J\%o\

10

Y Level

Fig. 6. The worst-case shape of a qOBDD (worst-case OBDDs look almost the same)

2 The Worst-Case Size of Quasireduced and Reduced OBDDs 33

Note that 2 is not an integer in general. It only marks the borderline where the
worst-case level width turns from growing exponentially to shrinking doubly exponen-
tially (see Fig. 6).

The definition of L is really important for our work. Earlier investigations dealt
with L, [Weg94] in some way, or approximated L by other means [LL92]. In [HM94],
[i9] was implicit in the form of min{: € N|k; > m;}, but no asymptotic for [ig]| — 7o
was given. In our approach, we work with L itself and use the functional equation (2.1)
frequently. With some habituation, this makes the computations much easier.

Unfortunately, there is no closed formula for L, whereas by the defining functional
equation (2.1), the inverse function of L is simply L~(3) = i +logi. As an alternative
definition, one can also obtain L as a pointwise limit of a sequence of functions L.,
r € Ny, defined by L_;(n) := 1 and L,;;(n) := n — log L.(n). It is elementary
to show that the pointwise limit L(n) := lim,_,, L.(n) exists iff n > 1. In fact, the

inequalities
Loy (n) > Loy ya(n) > L(n) > Lari3(n) > Lopi1(n) (2.4)
are valid for » € Ny and n > 1. The first approximations are
Lo(n) =mn,
Li(n) =n —logn,

(n
Ly(n) = n —log(n —logn), (2.5)
(n

L3(n) = n —log (n — log(n — logn)) .
From these one can easily show that L(n) ~ n and 2™ ~ 2"/n. Also, Li(n) —

L(n) = o(1), since Li(n) — La(n) = o(1). The inequalities (2.4) will be applied
occasionally, but the asymptotics are more important. Again, we refer to the appendix.

2.2 The Worst-Case Size of Quasireduced OBDDs

By definition of the function L, we have

ki, 1< 1;
w; = (2.6)
>

mg, ©2=1g.

To estimate W, we write out the sum and substitute (2.6).

[i0]—1

W(n) = > 27" + En: 92"

i=1 i=[io]
[L]—-1 n—[L]

=) 24) o
=0 =1

= 2 4 2 Mg o2)| 2.7)

34 2.2 The Worst-Case Size of Quasireduced OBDDs

Both leading terms are roughly of size 2¥. The exact value of [L] is given in the next
lemma.

Lemma 2.3.
[L(2"+h+4a)] = {

M4+a+1, ac[-2"1-1.-1];
2" +a, ac[0..2"] .

Proof. Using the functional equation (2.1), we can write
L(2h+h+a) :2h+h+a—logL(2h+h+a).

Since L(Qh + h) = 2h by (2.1) and log L is a strictly isotone function, we have for
a€[-2"—1.-1],

h—1=1logL(2" " +h—1) <logL(2"+h+a) <logL(2"+h) =h,
and for a € [O..2h],
h=1logL(2"+h) <logL(2"+h+a) <logL(2""' +h+1)=h+1.

Thus, the points where [L] does not increase are [L(2" + h — 1)] = [L(2" + h)].

From these observations, the lemma is easily inferred. O

The next theorem gives the asymptotic value of W/2 for parametrisations of n
‘close’ to 2" + h. (See Fig. 7 on page 36.)

Theorem 2.4. Assume that n — +o0 is of the form n = 2" + h + a, where
a = o(2"). Then
W (n) 2, a<0;
PZOR 1+27%, a>0

Proof We approximate W and 2% separately and then consider their ratio. — To esti-

mate W (n), we use (2.7) and apply Lemma 2.3. For a € [—2h"1 —1..—1],
W (2" + h+a) = 22"Fotl £ 927" 4 0(22’”’2) ~ 92 tatl L 92 (0 g)
and for a € [0 .. Qh])

W (2" +h+a) =240 422 1 O(22) ~ (204127 2.9)

2 The Worst-Case Size of Quasireduced and Reduced OBDDs 35

Since L(n) ~n ~ 2" expanding L twice using the functional equation (2.1) yields

on 22h+h+a

2L(n) _

_ ~ 92"+a. 2.10
n—1logL(n) 2F+a (2.10)

This leads to the asserted formulae for W/2%: For a € [—2"_1—1 . —1} ,

W 92" +a+1 + 92"~1

A e

by (2.8) and (2.10). For a € [0 . 2"} ,

woo(2¢41)2%"
2L T g% a

by (2.9) and (2.10). O

=1+2"

Theorem 2.4 is complemented by Theorem 2.5, which describes how W /2% devel-
ops between 2" 4+ h and 2"*! + h 4+ 1. (See Fig. 8.)

Theorem 2.5. Assume that n — +oo and write n = b2" + h with b € [1, 2],
h € N. Then

% = b(14209% 40 (20597)) (1 _ logh :g(hM)) ,

which is ~ b, if b converges to a real number in |1, 2].

Proof. It is easy to see that h and b are well-defined for every n. The theorem is proved
in a similar way as the case a > 0 in Theorem 2.4, but we must estimate 2L(") more
accurately. First, observe that L(n) = n + O(logn) = b2"(1 + O(h/n)), so from
log(1 4+ z) ~ zloge for z — 0 we get

log L(n) = log (b2"(1 + O(h/n))) = logb+ h + O(h/n).
Therefore, a refined version of (2.10) is
9b2" +h
b2 —logb+ O(h/n)
Using (2.9) and (2.10"), we see that

2L(n) —

(2.10)

h h h—1
w272 +0(2) ar logh 4 0(h/m)

2L(n) Qb2h oh

=b (1 Lotz | 0(2(%—b)2h)) (1 _ logb 41;20’1(}1/”)) '

36 2.2 The Worst-Case Size of Quasireduced OBDDs

w
2L
2 - o @ @ @
[]
1 D
g g | | | . |
2 Y- - Y-
x, ¥ 2%
[ERRCERSS S S Ol P J%é %4 *J%é
&5 ~7 %7
Fig. 7. The relative worst-case size of OBDDs near n = Fig. 8. The oscillation of the relative worst-case size of
2k + h OBDDs

Our refined analysis of the oscillation of the relative worst-case size leads to some
improvements over the upper bound of Liaw and Lin [LL92] and Heap and Mercer
[HM94] and the lower bound of Breitbart, Hunt, and Rosenkrantz [BHR95]. (Essen-
tially, the lower bound from [BHR95] is 1 + 0(1) , and the upper bound from [L1.92] is
2 + 0(1).) Our bounds are attained for certain sequences of n which are described in
the proof.

Theorem 2.6. For n — +00,

1<

W(n) —L(n)/2\ _ n
S S 2+0(2) =2+0(4/5)

Furthermore, if n € N\ {2" + h | h € N} is large enough, then the upper
bound can be improved to W/2% < 2.

Proof The lower bound holds because W > 2[*1 > 2% by (2.7).—For the upper
bound, we use the asymptotic from Theorem 2.5. Let A and b be as defined there.
First, we simplify the 0(2(1/ 2*b)2h) term. Observe that

L(n) = L(b2" + h) < L(b2" + logb+ k) = L(b2" + log(b2")) = b2"

by the isotonicity and the defining functional equation of L. Therefore,

2 2 2

This proves

2 The Worst-Case Size of Quasireduced and Reduced OBDDs 37

With a := (b — 1)2" (so n = 2" + h + a) the asymptotic from Theorem 2.5 becomes

W(n) — <1+2h) (1+27°+0(2°" /2)) <1_10g(1+a/2h)+0(1))‘

9L(n) a+ 2k
(2.11)

In particular, for any sequence of the form n = 2" + h + a, where a — +o00 and
a= 0(2") , we get W/2L' =1 + o(1), which proves that the lower bound is asymptot-
ically tight.

On the other hand, if n = 2" + h, then L(n) = 2" by Lemma 2.3, and from (2.7)

we can easily read off that
W@+ h) =222 4277 £ 0(277) = 2L(n) + O(24?),

which shows that the upper bound is attained for ¢ = 0. (Recall that L(n) = n —
logn + o(1), so 2% ~ 27/n.)

It remains to show that W (n)/2X™ < 2,ifn = 2" + h+a and a € [1..2"],
provided h is bigger than some fixed constant (which will not be determined here).
In the following estimations, we always assume that h is large enough. Note that
L(n)=0(2").1fa =1, then W/2% = 3+ 0(1) <2 by (2.11). If 2 < a < 22", then

75 7

1 2h)1 2 £.2_1

<+a\/,./(+v) 5 4 4’
<25 <1/

which implies W/2% < I + (1) < 2 by (2.11). Finally, if 22" < a < 2", then

W(n) _ (1+a/2h) (1+3:+0(/2)) <1_ l\og(1+a/2h)+o(1j)> <2

L(n) h
25 A , a —i;2
s2 > (log Z+o(1)) /2h+1

_29h _ h
<275 2-202%)

by (2.11). O

2.3 The Worst-Case Size of Reduced OBDDs

We point out how the results on W /2% from the previous section carry over to W'/2L.
By (2.6), j = [4p] is the smallest index such that k; > m;. Since both k; and m; are
powers of 2 and m}; = m;(1 — [o (1)|) for j = n — w(1), it follows that j = [ig] is

also the smallest 1ndex such that k; m . The starting point of our analysis was (2.7).

38 2.4 Remark on the History of These Bounds

For reduced OBDDs, we have

[i0]—1

W'(n) = Z 2i-1 4 zn: (22n7i+1 _22%@)

i=1 i=[io]

M eom o
Y)
=0 =1
— ofLl 4 o2n"M1 _ g (2.12)

Corollary 2.7. Theorems 2.4 and 2.5 hold for W'/2% as well.

Proof. All we need to check is that since —3 = O(22L_2) , the estimates (2.8) and (2.9)
from the proof of Theorem 2.4 are valid for W', too. O

The overall bounds on the relative worst-case size have a particularly nice form for
reduced OBDDs.

Corollary 2.8. For large enough n,

| < W)

2L(n)

< 2,

and both bounds are asymptotically tight.

Proof The lower bound follows since W' > 2[L1 > 2L by (2.12).—Since W’/ < W,
the upper bound follows from Theorem 2.6 except for the case n = 2" + h. If n =
2" 1+ h, then [L] = 2" by Lemma 2.3, and we have W' = 27 + 22" " —3 =2.2F 3
by (2.12). This also shows that the upper bound is asymptotically attained. O

2.4 Remark on the History of These Bounds

Already in his seminal paper from 1959, Lee [Lee59] proved that the worst-case OBDD
size is at most 4 - 2"/n — 2 and that Boolean functions f exist having a minimal BDD
size of at least % - 2"/n + 1, which is also a lower bound for the OBDD case. The lower
bound uses a variant of Shannon’s classical counting argument [Sha49].

Liaw and Lin [LL92] improved the upper bound to (2+ |o(1)[)2"/n and showed by
a family of counterexamples that this cannot be improved to 2 - 2"/n. Heap and Mercer
[HM94] showed that the worst-case size is exactly W’ (n) , see our Lemma 2.1.

2 The Worst-Case Size of Quasireduced and Reduced OBDDs 39

Lee’s lower bound was improved by Breitbart, Hunt, and Rosenkrantz [BHR95],
who showed that the worst-case BDD size is (1 + 0(1))2"/n. Independently of [LL92]
and [HM94], they also discovered the upper bound (2 + 0(1))2"/n for OBDDs. They
remark that the construction from their proof (which is essentially identical to that
of [LL92,HM94]) gives an upper bound of (1 + 0(1))2”/ n for certain sequences of n.

To the best of our knowledge, the ‘evolution’ of the worst-case size has not been in-
vestigated thoroughly before. Heap and Mercer gave a diagram of Wn /2™ for n < 160
which clearly reveals the oscillations, but did not comment on this fact. Although
[HM94, Figure 1] indicates that (1 + 0(1))2"/n is the right global lower bound, they
only proved W'(n) > % - 2"/n. Breitbart, Hunt, and Rosenkrantz (falsely) conjec-
tured that W'(n) = (1 + 0(1))2"/n similar to their result on BDDs, see the comments
following [BHR95, Theorem 2].

Constructions like that of Lemma 2.1 are frequent in the literature, and we believe
it is good advice that these should be ‘tested’ for a number of ‘odd’ parametrisations
of m in a routine way in order to get an idea of the evolution.

We feel that the main (little) achievements of our approach to the worst-case size of
OBDDs are:

(1) Using 2% instead of 2"/n makes it possible to remove the o(1) terms form the upper
and lower bounds (Corollary 2.8).

(2) A thorough investigation of the evolution of W'(n) reveals an interesting oscillating
behaviour that explains why the global upper and lower bounds cannot be improved
(Theorems 2.4 and 2.5).

(3) For any given sequence of n, we know W'(n) up to a factor of 1 + o(1).

Actually, it was the strange ‘peak’ of W (n) near n = 2" + h which led us to the
conjecture of Main Theorem 1 (ii). (See also Proposition 3.2.)

Since the worst-case size of FBDDs lies between that of general BDDs and that of
OBDDs, it is known by the above discussion up to a factor of 2 + o(1), and only for
certain sequences of n (those for which W’(n) ~ 2%) up to 1+ o(1). As a direction of
future research, we suggest that the worst-case size of FBDDs should be determined up
to a factor of 1 + o(1). Such a bound seems to be necessary in order to prove that the
strong Shannon effect does not hold in a situation similar to that of Main Theorem 2 (ii).

3 The Expected Size of gOBDDs with a Fixed Variable
Ordering

In a typical qOBDD, we would expect that not all levels are as large as in the worst-case
examples. Recall that X; = w; — Y; was defined as the number of ‘missing’ nodes at
the i-th level of a qOBDD. For each level, the expected value E(X;) can be computed
by the following urn experiment [KSC78,Weg94].

Proposition 3.1. Think of the subfunctions that result from constant assign-
ments to the first ¢ — 1 variables as balls and of the possible subfunctions at
level ¢ as urns. Then at level 7, there are k; balls being thrown into m; urns, so
the expected number of non-empty urns is

E(Y;) = Z Pr(j-th urn is non-empty) = m; (1 — ¢;),
j€[mi]
where

k;
g; := Pr(first urn is empty) = (1 — —) i
With (2.6), it follows that

ki—mi(1—q), ©<1ip;
E(Xi):{ m(Q) Z>Z'0

m; q;, ¢

Wegener’s results are based on the fact that random OBDDs are essentially worst-
case shaped whenever n is such that for all levels i, either k; = o(m;) or k; = w(m;)
holds. But the situation in Main Theorem 1 (ii) is different. We have to be especially
careful about those n for which an ¢ exists such that k; and m; are of roughly the same
size, because then ¢; # o(1) and ¢; # 1 + o(1). These levels have the form i5 € N for
some sufficiently small |6 | (See Definition 3.3 for a formal statement.)

These so-called critical levels are what we will be mainly concerned with in this
section. More precisely, we say that a level j is critical if the size of E(X}) is bigger
than a constant fraction of W. The existence of such a critical level is what makes the
strong Shannon effect break down occasionally.

There seems to be no way to compute E (X;) /W directly. But using the results from
Section 2, we will look at the ratio E(X)/2" instead. Of course, for |§| — 400, no
level ¢4 can be critical, since then w; = o(W). But the “threshold” for § which we will

determine is much smaller. We will show that there is always at most one critical level.

42 3.1 Prerequisites

This analysis culminates in Theorem 3.8, which then leads to a first qualitative result
about the expected qOBDD size with respect to a fixed variable ordering of random
Boolean functions, Theorem 3.13.

Large deviations from the expected value of Y will be considered in Section 4. The
effect of the deletion rule will be analysed in Section 5, and finally the proof of the Main
Theorem 1 on OBDDs with optimal variable orderings will be completed in Section 5.4.

Many asymptotics derived in this section will be used throughout the whole dis-
sertation. For the convenience of the reader, we have tabulated some of them in the
appendix, see page 116.

Before we delve into the technicalities, we explain the idea of the proof in an easy

special case.

Proposition 3.2. For n = 2" + h and h +oo, E(X)/W = £2(1), so the
strong Shannon effect does not hold. More precisely,

E (X; 1 E(X 1
lim inf (Xio) > —, and liminf (X) > —.
n=2ht+n 2L e n=2hth 2e
h 400 h, 400

Proof Recall that L(2" +h) = 2", which implies that the critical point io = 2" +1 € N

is also a level. Observe that w;, = k;, = m;, = 2F = 22", By Proposition 3.1, we have

h
1 kiO N 1 22 22h
E (X;,) :m,-0<1—) = 22 <1—2?> ~

m;, (&

and by Theorem 2.4, W(Qh + h) ~ 222" O

The tightness of these bounds will be shown in Theorem 3.8. Some prerequisites
are developed in the next section.

3.1 Prerequisites

The proof of Proposition 3.2 was easy because L(2h + h) = 2" is an integer (and
therefore 4y, too). This no longer true for arbitrary n. We will show that taking more
than a constant number of steps away from the “bad” values n = 2" + h is enough to
guarantee that the strong Shannon effect holds, and that any constant number does not

suffice.

3 The Expected Size of qOBDDs with a Fixed Variable Ordering 43

Stated in another way, the difficulty that arises in the proof for general n is that
the critical point %y does no longer coincide with the critical level of the qOBDD, which
in fact can be [4y| or [ig], depending on n. Therefore, we introduce a parameter
0'(n) € R such that tg'(n) Will (hopefully) be the critical level, if there is any.

Definition 3.3. Let ¢’(n) denote the gap between L(n) and the next natural
number, i. e.

8'(n) := £ — L(n),

, L(n) +] NN, and write

where ¢ € N is the unique element of |L(n) — %

i’ = 1:51 .

By definition, i5:(n) = 2o + 0'(n) = £+ 1 is the integer nearest to ig. In case of a
tie, we round up, so &'(n) € | 3L, 1].

Observe that §'(2" + h) = 0, and this was the easy case we considered in Propo-
sition 3.2. We will see that as |§’| gets larger, E (Xi 6,) becomes negligible compared
to 2L, Another fact remaining to be shown is that there is always at most one critical
level. Since we do not want to state theorems in terms of ¢’, we have to find out how
large ¢' is, depending on n.

In the proofs of the bounds on the worst-case size in Section 2, we wrote n in the
form n = 2" + h + a or n = b2" + h for appropriately chosen k, a, and b. We will
continue using this idea and introduce two other parameters h(n) and a(n) such that
n = 2k 4+ h(n) + a(n). As one might have expected, it turns out that a is closely
related to ¢’.

There is one difficulty with this approach, however. As n grows from 2 1 b to
oW +1 4 b 4 1, the parameter §'(n) first goes up from 0 to about 1/2, then suddenly
jumps down to about —1/2 and finally becomes 0 again (remember that L(n) grows
slightly slower than n). To make things easier, we want to ensure that the jumps of a(n)
are at the same positions as those of §’(n). It turns out that the precise position of the
jumps is not important. Therefore, in the following definition we simply require that a
and ¢’ have the same sign.

Definition 3.4. For n € N, we define h(n) € N and a(n) € Z by the
requirements that n = 2™ + h(n) + a(n) and a(n) - §'(n) > 0, and |a(n)|
be minimal under the first two conditions.

We note some immediate consequences of Definitions 3.3 and 3.4.

44 3.1 Prerequisites

Proposition 3.5.

(i) The positions where the parameter §'(n) jumps are of the form n ~
V22", B e N.

(i) Assume that we are given two sequences (h;|t € N) and (a;|t € N)
such that aj = o(2") as ¢t — 400, and let n; := 2" + h} + a}. Then
h(n:) = h} and a(n;) = aj.

(iii) For large n, we have ‘a(n)‘ < 0.42 - 2M") and thus, n = 9(2h(")).

Proof. Assertion (i): Writing L(n) = n — log L(n) using (2.1), we see that |§'(n)| =
1/2+0(1) mod 1 ifand onlyif log L(n) = 1/2+0(1) mod 1. Let h’ be the largest
integer such that 2* < L(n). Then logL(n) = log Lz(,:,‘) mod 1, and the claim
follows because 1/2 = log V2.

Assertion (ii): Immediate from (i).

Assertion (iii): Let h' be as in the proof of (). If ¢'(n) ~ 1/2, then h(n) = A
and a(n) ~ (v2 — 1)2¥™_ 1f §'(n) ~ —1/2, then h(n) = k' + 1 and a(n) ~
(1/3/2 — 1)2"), 5o

a(n)‘ 1
li | = 2—-1,1- — 0.42.
ngesNup Sh(n) max {\/_) \/i} <

How are the two parameters §' and a related? Given an a, we would like to
know how big ¢’ is, at least in an approximate sense. It turns out that ¢ and §' are
approximately proportional as long as we do not move away “too far” from the “nice”
values n = 2" + h. This connection is made explicit by the definition of @(n) and
the lemma that follows it. The notation @(n) was chosen to emphasise that @(n) is of
about the same size as a(n). The ‘magic’ scaling factor is just log'(1).

Definition 3.6. We define

__zloge

%= L)

and 5 L
a(n) (?c?g e(n)

such that ¢’ = §; is satisfied.

3 The Expected Size of qOBDDs with a Fixed Variable Ordering 45

By the following lemma, “not too far” means “o(n)”. Since we also want to prove
when the strong Shannon effect does hold, we must show that in the other case, ¢’ is
not small enough. It suffices to prove |G| — +oo.

Lemma 3.7.
(@) If a = o(n), then @ = a + O(a?*/n) ~ a.

(ii) If @ — oo, then a — +o0.

Proof. Assertion (i): Let h = h(n) and L = L(n). To determine ¢'(n), we expand L

using the functional equation (2.1):

L:n—logL:n—h—logQ—h. (3.1
€N
We claim that §'(n) = %% = (1) . Using (2.1) once more, we find that
2" + h —log L h —log L
log - = log + +: °8 = log 1++—|—a . (3.2)
2 2 2
Since

log(1+ z) = zloge + O(z?) (3.3)

for x = 0(1), and L(n) ~ n,

h —log L = h —log (2"(1 + o(1))) = —log (1 + o(1)) = o(1).

L a+o(1) aloge a
is indeed the fractional part of L as was suggested in (3.1), and ¢'(n) = aloge/L +
O(a*/ L*) ~ aloge/L. Therefore, @ = L&'/ loge = a + O(a®*/n) ~ a.

Assertion (ii): To prove the contrapositive, assume that there exists an infinite sub-

So

sequence of n for which @ = O(1). This means that we have
L=(—-¢§=10-10;, (3.4)

where £ = ¢(n) € N and @ = @(n) = O(1). For notational convenience, assume that
the subsequence is equal to the original one. Application of L ! to both sides of (3.4)

gives

n=4_{—06;+log(l—). (3.5)

46 3.2 The Expected Size of the Levels of a Random qOBDD

Observe that |d;| is rather small; we have
da=0(a)/L=0(1/n).

So we can rewrite (3.5) as
n=~{¢+logl—c,

with a small correction term ¢, whose size is only

c:=6; +log O(1/n) (3.6)

14
— 6
by (3.3). Therefore, we can guess that h(n) is equal to

h :=logl —c=n—{€N. (3.7

So far, we know that A’ is an integer close to log £. But what about 2" and £? Express-

ing £ in terms of ¢ and h’, we find
€ = 2lo8t = gh"Fe = QW' FOW/n) = M (1 4 O(1/n)) = 2" + O(2"/n),
and using (3.4) and (3.6), we have
ol = glost-c — 9og(L+0(1)-0(/m) _ ([, 4 0(1))2°0/") ~ L = O(n).
Therefore,
d=n—-2" —hW=n—t—H+01)=0().

But this implies that h(n) = h’ and a(n) = a’ = O(1) by Proposition 3.5 (ii). Going
from the subsequence back to the original sequence, we have shown that |a| - +o0

implies |a| -+ 400. By definition, a and & have the same sign. O

Actually, the following considerations suggest (but not prove) that Lemma 3.7 (ii)
can be improved to say that d(n)/a(n) = ©(1) as n — +oco0. We take up the estima-
tions from the proof of Proposition 3.5. If ¢'(n) ~ 1/2, then a(n) ~ L(n)

2loge
~ —L _ .
2;({;62" . If §'(n) ~ —1/2, then a(n) ~ 210(gne) ~ 4132_62"(”). So if we take for
granted that these are the extremal parametrisations, we can conclude that d/a lies
between % / o(1) < 1.19 and 4loge/(— —1) +o(1) > 0.83.

3.2 The Expected Size of the Levels of a Random qOBDD

Now we are prepared to extend the idea of Proposition 3.2 to the case of general n.
Assertions (i) and (ii) of Theorem 3.8 are concerned with the size of the (possibly)
critical level ¢', while Assertion (iii) says that the other levels altogether contribute only

3 The Expected Size of qOBDDs with a Fixed Variable Ordering 47

lim B
n=2"4+h+a w
h,/+oo 1
2e
°
°
°
° o a
o ® : : : : : ® ® o >
-6 -5 -4 -3 -2 -1 0 1 2 3 4

Fig. 9. When the strong Shannon effect does not hold (Corollary 3.11).

o(1) to E(X)/2". Note that (i) implies the existence of a limit for constant a, which

is not at all obvious. See Fig. 9 for an illustration.

Theorem 3.8.
(i) For sequences of n such that a(n) = o(y/n),
E(Xy) _ f2or® (e —1) +1, a<o0;
2L 9—a+o(1) 672‘”'0(1) a>0.
i f n such th B(XY) _
(i) For sequences of n such that |a(n)| — +oo, L = o(1).
E(X - X,
(iii) For all sequences of n, % = 2=(Vn)
Proof Let k := ky and m := my. Since we want to use Proposition 3.1, we need

upper and lower bounds on q := q; .

Estimating q:
Writing

48 3.2 The Expected Size of the Levels of a Random qOBDD

and using the inequalities (1 — 1/z)* * > 1/e > (1 — 1/z)*, valid for = > 2, we see
that

m2

=e(1-p(5)

which is e7*/™ (1 — |O(1/m)

efk/m >q> efk/(mfl) > efk:/meka:/m2 > efk/m (1 _ 2k>) (3.8)

Therefore,

), if a < 0 (because then &£ < m).

Proof of Assertion (i):
In view of the proof of Assertions (ii) and (iii), the estimations we derive to prove
Assertion (i) will be based on the weaker assumption a = o(n) and not require that
a = o(y/n). By Lemma 3.7 (i), @ = a + o(1) for a = o(y/n). We will investigate
positive and negative values of @ separately.

Estimating k/2% and m/2" for a = o(n):
Clearly,

k

of = 20" — 8/l — gol1) 1 (3.10)

Y

because n ~ L(n).—To estimate m/2%, we apply the Taylor approximation e® =
1+ z + O(z?) for £ — 0, which yields

1-2)L=(1-e¥")L=d+r~a (3.11)
for some
r=r(n)=0(a*L) = 0(a’/n) = o(a). (3.12)
So
2% —9(2")L _ g-ir (3.13)

The case 0 > @ = o(n):
In this case, E (Xi:) =k — m(1 — q) by Proposition 3.1, and the asymptotic (3.9) for
q implies that
E(X;,)=k-m(l-q) =k-m(1- e km(1 — O(k/m?)))
=k-—m(l—e*™) +0(k/m). (3.14)

3 The Expected Size of qOBDDs with a Fixed Variable Ordering 49

By substituting (3.10) and (3.13) into (3.14), we obtain

P (6_25+rea/L _ 1) + ea/L + 0(2—L)) (3.15)

In particular, (i) follows for a = — |o(\/ﬁ) ‘
The case 0 < @ = o(n):
In this case, E (Xy) = mq by Proposition 3.1 and ¢ = e */™ (14 O(k/m?)) by (3.9).
Since ¢’ = 65 = o(n)loge/L = o(1), we have
k 90'+L

= ey ST = o),
=

and the asymptotic for ¢ simplifies to ¢ ~ e~*/™ . Together with (3.10) and (3.13), we

obtain

= (3.16)

where r = O(@% L) by (3.12). In particular, (i) follows for a = |o(y/n)|.

Proof of Assertion (ii), first part:

We split the sequence of n into four subsequences, depending on whether ‘&(n) ‘ <V/n
or |a(n)| > y/n and whether G(n) > 0 or G(n) < 0. Lemma 3.7 (ii) tells us that
|@(n)| — 400, because |a(n)| — +oc.

For the two subsequences satisfying |a(n)| < +/n, the estimations from the proof
of Assertion (i) can be applied, since we only used the premise @ = o(n) in the proof.
Also, we still have a ~ &, so (3.12) implies » = O(1).

The case 0 < a(n) — 400 A a(n) < 4/n:

Since @ + r — 400, E(Xy) /2" — 0 follows immediately from (3.16).

The case 0 > a(n) — —oo A a(n) = —y/n:

In this case, @ +7 — —00, so 23" = o(1). Using (3.15) and the Taylor approximation
e =1+z+ (1+0(1))z%2 for z — 0 we see that

E(Xi,)
9L

= 20 (=28Hre/h 4 2@ 2L (1 4 o(1))) + e+ O(27F)

_ 2d+r71626/L(1+0(1)) +0(275) = o(1). (3.17)

So far we have proved Assertion (ii) for |a| < \/ﬁ . To complete the proof of

Theorem 3.8 (ii) and (iii), we need a lemma. cee

50 3.2 The Expected Size of the Levels of a Random qOBDD

Lemma 3.9. Assume that n — +o00 and j = j(n) € [n] is a level such that

v/n loge

|.7 1’0‘ = L(TL))

where iy denotes the critical point. Let a’ := (j — i) L(n)/loge. Then

E(X)) _ {QHO(U =270, <o

_9a(y/m) S
e 2" J>1.

Proof. Recall that the definition of @(n) was made such that iy = i5,. In this lemma,
we are no longer concerned with 75, but an arbitrary level j. Nevertheless, we can
define

a = w (3.18)
loge

such that j = is,, is satisfied. Then |j — 39| > y/n loge/L(n) is equivalent to |a’| >

/1. We write k := k; and m := m; and ¢ := ¢; and L := L(n). We consider two

cases: a' < —y/n and a’ > y/n. Recall that w; is given by (2.6) and bounded by 2.
First, assume that a’ < —+/m. Then

k 2L _9—04' _.—a'/L 1 7
B2 (1271 _ g(1-em"H)L < gd' _ g (vA) | (3.19)

AN
m m
In particular, we have
g=e ™1+ 0(k/m?) = e *™(1+ O(2“I/m))
by (3.9). Therefore, analogously to (3.14), it holds

E(X;)=k—m(l—gq)=k—m(l—e*™(1-0(2%m)))
=k—-m(l—e*m™) +0(2).

Using e® = 1+ z + (1 + o(1))2%2 for z — 0, we get

2

E(X;))=k—-m (1 — (1 —~ % + k—(1+0(1))>) +0(2%)

2m?
k2

-2 o) + o). 20

3 The Expected Size of qOBDDs with a Fixed Variable Ordering 51

Here the leading term is bounded by

k2 k '
— =k-— < k-2¢1
2m 2m

because of (3.19). It follows that

E(X;)) _ E(X;) < 20H0(1) — 9=R(vn) (3.21)
wj k'

as claimed.
Now for the second case, a’ > 4/n. By (3.8), and since k > 2L,

E(X;) =mgq < me k™ < me=2"/m (3.22)
Here,
2 e
m
and using e * < Hiw, we get

(-2 n= (-0 e e =)

Therefore,

j) < e~ 2"/m < 2—29(\/5).

O (Lemma 3.9)

Proof of Theorem 3.8, continued:
Proof of Assertion (ii), conclusion:
The remaining subsequences satisfy |5L(n)| > 4/n and are therefore covered by Lem-
ma 3.9 —just set j := 7',
Proof of Assertion (iii):
If j € [n] \ {is}, then |j — i9| = 1/2 holds by definition of §'. So by Lemma 3.9,

E(X — Xa)

R SR

L
j€\{i'}

[(Theorem 3.8)

Theorem 3.8 gives us a fairly complete overview of the ‘expected’ shape of a random
qOBDD. Above and below iy, the levels are essentially full. If ¢ is sufficiently small,
i.e., ' = O(1/n), then the expected size of the critical level is is by a factor 1 — §2(1)
smaller than its worst-case width. For later reference, we summarise these observations
in a corollary.

52 3.2 The Expected Size of the Levels of a Random qOBDD

Corollary 3.10. Assume that n — +o00 and j = j(n) € [n].

(i) For all j,

E(Y;
L B
€ wj
(i) If | — dp| = w(1/n), then
B
W)

Proof. Assertion (i): It follows from Theorem 3.8 (in particular, equations (3.15) and
(3.16) from the proof of its Assertion (i)) that E(X)/w; is maximised at j = i, where
E(X;,) = wj,/e. Thus,

B(Y) _w-B(Y) 1
w; w; e
Assertion (ii): This is immediate from Theorem 3.8 (ii) and Lemma 3.9. O

If a(n) = o(y/n), then we can determine the rato of the expected qOBDD size to
its worst-case size very precisely.

Corollary 3.11. If n — +oo is such that a(n) = o(y/n), then

QﬂHdn(gﬁ”m)—1)+1

E(Y) _ 2+ o(1) !
9—a+o(1) €—2a+°(1)
=0
1+2+o0(1) ’ ¢
Proof. Direct plug-in from Theorems 2.4 and 3.8. O

The decrease rate of E(X)/W (shown in Fig. 9 on page 47) is doubly exponential
for a — 400, but only exponential for a — —oo by the next proposition. While
this makes little difference for constant a and the results on OBDDs, it will become
important for FBDDs (Theorem 10.9).

Proposition 3.12. If « -+ —oo, then 27¢ (e_za — 1) +1 ~ 2071

3 The Expected Size of qOBDDs with a Fixed Variable Ordering 53

Proof Using e* =1+ + ‘”2—2(1 +0(1)) forz — 0,

27%(e ™ —1)+1=2"2(—-2+2""(1+0(1))) +1=2*"(1+0(1)). O

3.3 The Expected Size of Random qOBDDs with a Fixed Variable
Ordering

We extract a qualitative result from the preceding quantitative analysis of the expected
qOBDD size with a fixed variable ordering of a random Boolean Function. Using The-
orem 3.8, we obtain a yes-or-no answer to the question: “For which n is the expected
size of the qOBDD with a fixed variable ordering for a random Boolean function equal
to the worst-case size up to terms of lower order?”

Theorem 3.13. Let B := |J,[2"+h—d(h) .. 2"+h+d(h)] and A := N\B.

(i) If n — +oo such that n € A for some d(h) — +o00, then

Proof We have E(X)/W = ©(E(X)/2%), since by Theorem 2.6, W = ©(2%). By
Theorem 3.8 (iii), all levels except 7' are negligible (i. e., they contribute only o(1) to
E(X)/25).

Assertion (1): Since d(h) — +oo and n is a sequence chosen from the set A,
we have |a(n)| — +oco as n — +oo. Therefore, lim, E(Xy)/2" = 0 by Theo-
rem 3.8 (ii), and we are done.

Assertion (ii): Since d(h) = O(1) and n is a sequence chosen from the set B,
we have a(n) = O(1). By partitioning the sequence of n into subsequences, we may
assume that a(n) is a constant. The subsequences may have finite or infinite length,
but only a finite number of subsequences can be infinitely long, because the original
sequence satisfied a(n) = O(1). For each infinite subsequence of integers n where
a(n) is a constant, we have proved in Theorem 3.8 (i) that lim, E (X;) /2% > 0. So
the original sequence satisfies lim inf,, E (Xi:)/QL >0,ie., E (X,-:)/?L =0(1). O

54 3.3 The Expected Size of Random qOBDDs with a Fixed Variable Ordering

Knowing the expected size is nice, but in order to determine for which n the strong
Shannon effect holds, we must also understand the probability of large deviations from
the expected size. This will be investigated in the next sections.

4 The Strong Shannon Effect for gOBDDs with Optimal
Variable Orderings

To find out for which n the strong Shannon effect holds for (reduced) OBDDs with opti-
mal variable orderings, we must show that for almost all Boolean functions, all variable
orderings lead to an OBDD size which is equal to the worst-case size W' up to a factor
of 1+ o(1). Remember that W’ ~ W . We have already seen that the expected qOBDD
size for a fixed variable ordering is ~ W if and only if |a(n)| — 400 (Theorem 3.13).
The next step is to consider qOBDDs with optimal variable orderings. Our approach is to
prove that for a random Boolean function, with high probability all variable orderings
lead to almost the same qOBDD size. (Here we apply Azuma’s inequality.) In particu-
lar, an optimal variable ordering does only a little better than the canonical one. The
effect of the deletion rule still will not be considered. This is postponed to Section 5 for

technical reasons.

4.1 Azuma’s Inequality

Azuma’s martingale inequality is an important tool in random graph theory and the
analysis of random discrete structures. It enables us to prove strong concentration
results for random variables which satisfy a Lipschitz condition. Also, the probability
space must ‘factorise’ in an appropriate way. Here we give a combinatorial formulation

that totally avoids the language of martingale theory.

Theorem 4.1. (Azuma’s Inequality, see e. g. [AS91, Theorem. 7.4.2])
If B is a finite domain and S: B*¥ — R is a function satisfying the ‘Lipschitz
condition’

Vb b € B #{j b b} <1 — [S(b) - S(b)| <1 (4.1)
and the coordinates of b are chosen independently at random, then

f;r(\S(b) —E(S)| > ,\\/E) < 2672, 0

The application of Azuma’s inequality to the urn experiment is straightforward. This

in not a new idea; a similar result was already given in [AS91].

56 4.2 Large Deviations from the Expected qOBDD size

Corollary 4.2. Consider an urn experiment where k balls are thrown inde-
pendently uniformly at random into m urns, and denote by y the number of
non-empty urns. Then

Pr (|y—E(y)\ > M/E) < 26772,

Proof. Denote a random assignment of balls to urns by b: [k] — [m] and let y(b) :=
#b[k] be the number of non-empty urns for this particular assignment. Clearly, y satis-
fies the Lipschitz condition (4.1), since the number of non-empty urns can only change
by 1 if we move a ball from one urn to another. Therefore, Theorem 4.1 is applicable.
O

It is a bit surprising that the bound we obtained via Azuma’s inequality does not
involve any dependency on m at all.

4.2 Large Deviations from the Expected qOBDD size

Using Theorem 4.2, we can prove a very strong concentration result for the expected
size of the quasireduced OBDD (respecting the canonical variable ordering) of a random
Boolean function. The next theorem asserts that the probability that Y is somewhat
more than /E(Y") apart from its expected value is only doubly exponentially small
(in n).

Theorem 4.3. For every ¢ > 0,

Pr([Y — E(Y)| > n2 %) < 2ne 74,

Proof. At each level j, we have an urn experiment where k; balls are thrown into m;
urns, and Y is the number of nodes at level j of the qOBDD as well as the number of

non-empty urns. So by Corollary 4.2,
Pr (|¥; ~ B()| > MW) < 2772, 42)

For best results, we consider two cases. If 7 > iy, then ¥; < my = 2L/2 If j <144,
then k; < 2541 and using (4.2) with A := 213;%/\ /k;, we get

Pr (|¥; - B()| > 2%7) < 20, 3

4 The Strong Shannon Effect for qOBDDs with Optimal Variable Orderings 57

since \%/2 > 2(+e)l-L-1/3 = 2¢l/4 5o

Pr (Hj € [n]: |Y; — E(Y})| > 213LCL) < n- 267201‘/4, (4.4

and the theorem follows. O

It is easy to see that using Azuma’s inequality, one cannot improve the cut-off
point beyond w(y/k;), and k; = 2(2L) for j = ¢'. The question arises whether a
weaker (not doubly exponential) probability bound is provable for some cut-off point
0(2(%_”(1))L) The answer is “at least in general: no”, because Y is asymptotically
normally distributed for certain parametrisations of n. For example, if n = 2" + h,
then i’ = 2" + 1 and ky = my = 2", and the distribution of Ysn 41 is asymptotically
normal by Theorem 1.3.1 of [KSC78]. Note however, that this result can only be applied
if the ratio k/m is a constant, because it makes no assertion on the convergency rate.

For another kind of large deviation inequalities, see Section 6.2.

4.3 Optimal gOBDDs for Random Boolean Functions

Define Y,(f) := min, Y, (f), where the index 7 runs over all variable orderings.
Y.(f) is the minimal size of a qOBDD representing f. Clearly, E(Y}) does not depend
on w. The next theorem asserts that for most Boolean functions, choosing an opti-
mal variable ordering gives little improvement. The probability that Y, is somewhat
more than 1/ E(Y") apart from E(Y") is doubly exponentially small (in n). Of course,
E(Y,) < E(Y). We consider two-sided deviations for simplicity.

Theorem 4.4. For every ¢ > 0,

Pr(|V. — B(Y)| > n2'¥F) < e @4/100mionn).

Proof. If ‘Y* - E(Y)‘ is large, then there exists a variable ordering 7 such that |Y,; —
E(Y)‘ is large. For each variable ordering, there is only a doubly exponentially small
fraction of exceptional Boolean functions. So we simply multiply the probability bound

from Theorem 4.3 by n! < n® = enlogn, O

From a larger perspective, the important facts are that 2L = o(W) and W -
e~2"/4+0(nlogn) — (1), As a consequence, Theorem 3.13 carries over (without any
changes) to the case of optimal variable orderings. This answers the question: “For
which n is the expected optimal qOBDD size of a random Boolean function equal to the
worst-case size up to terms of lower order?” But Theorem 4.4 is much stronger. We get

58 4.3 Optimal qOBDD:s for Random Boolean Functions

a yes-or-no answer to the question: “For which n does the strong Shannon effect hold
for qOBDDs with optimal variable orderings?” This is an assertion about Y, not E(Y,).

Theorem 4.5. Let n — +00. Then
Pr(Y,=1-0o(1))W) ~1 + |a(n)| =w(1).

That is, the strong Shannon effect holds for qOBDDs with optimal variable or-
derings if and only if n is such that |a(n)‘ — +00. O

In the next section, we will take the effect of the deletion rule into account.

5 The Effect of the Deletion Rule

So far, we know that the minimal qOBDD size is ~ W if and only if |a(n)| — +oc0
(Theorem 4.5). The analysis of the influence of the deletion rule has been postponed
until now for two reasons: Firstly, the deletion rule is only applicable after some nodes
have been merged (namely, the two successors of the node which is about to be deleted).
The second reason is of a more technical kind: We need to know the size of the levels
in order to estimate the expected number of deletions.

The general message of this section is that for most Boolean functions, the deletion
rule gives only a comparatively small amount of reduction. The proofs are organised
very similar to the analysis of the merging rule. First, we consider random reduced
OBDDs with a fixed variable ordering and compute E(X ;), the expected number of
deletions, for each level j. Then we prove a large deviation inequality for X, using
a result of Chvétal [Chv79]. Again, we obtain a doubly exponential probability bound,
which then leads to the proof of the Main Theorem 1 for reduced OBDDs with optimal
variable orderings.

The result that the deletion rule does not give much reduction when applied to a
qOBDD is not new [Weg94], but here we give a much more refined analysis and better
probability bounds.

5.1 The Expected Reduction by the Deletion Rule

The expected reduction by the deletion rule is described level wise in the following
theorem.

Theorem 5.1. Assume that n — 400 and j € [n]. Let § := j — iy and
a' :=0L(n)/loge, so that j = is, .

go+(1-270 1)L 5 .
(i) We have E(X/) ~c-) ; 0,

VoA

2-6-1p,
2 ;

(ii) If o’ = o(n), then E(X}) ~ c- v2L-le'l

(iii) In both (i) and (ii), we have
E(Y;) +0(2757)

)

c<1 and c~
wj

where the size of E(Y})/wj is given by Corollary 3.10.

Proof. The number of nodes deleted at level 7 can be computed by an(other) urn experi-

ment. Among the m; subfunctions which are possible at level % of the qOBDD there are

60 5.1 The Expected Reduction by the Deletion Rule

m;1 functions that do not depend essentially on the variable x;. Since the merging
rule has already been applied, we have a situation in which Y} balls are chosen with-
out replacement from an urn containing m; — m;4; “white” and m;; “black” balls.
The black balls correspond to the nodes which are deleted at level j. Therefore, X ; is

hypergeometrically distributed with parameters

eS| —§—1_o9-3 _9—6-1
pj = j+ :2(2 2)L:2 2 L
m;

and Yj. Note, however, that Y; is itself a random variable. So far, we can only conclude
that

by the formula for the expected value of the hypergeometric distribution. To get around
this difficulty, we apply Theorem 4.3 with, say, ¢ := 1/log L. Actually, we did not only
prove that |Y — E(Y)| is small with high probability, but that each |Y; — E(Y})] is
small with high probability (see (4.4)). It follows that

1+1/log L
2 L _

Y; —E(Y;)| <2 2(1+o(1))L (5.1)

with probability
1—2e7 24 = 1 — o(1/w;).

Even if (5.1) does not hold, we still have the upper bound Y; < wj;. Therefore,
B(X;) = p; (E(Y) +O(vat+er))

and of course, E(X J’) < pjw;. This gives us the size of ¢ which was claimed in (iii).
The rest of the proof is just straightforward calculation.

For < 0, we have
pjw; = pik; =272, (5.2)
For § > 0, we have
pjwj = pjm; =myiq =2°" L. (5.3)

This proves Assertion (i).

Now assume that @’ = o(L). Then for a’ < 0,

pjw; = 2((172_5’11)1’4—[’)/24’6“' = V/2L+a'+o(1)

by (5.2) and (3.11). For a’ > 0,

pjw; = o((27%' —1)+L) /2 _ VoL—ato(1)

5 The Effect of the Deletion Rule 61

lim E(X')
n=2"+h+a VW 05e
h 400
) +04
. 103 ¢
[J [J
° + 0.2 ®
[J 1 [}
° ° 0.1 PY @
-7 -6 -5 —-4 -3 -2 -1 0 1 2 3 4 5 6 7
Fig. 10. The effect of the deletion rule for n close to 2" + h (Corollary 5.2).
by (5.3) and (3.11). This proves Assertion (ii). O

Of course, we are especially interested in the situation near n = 28 + h'. For
a(n) = o(n), we have E(X}) = 25" L by Theorem 5.1 (ii), whereas W = ©(2F)
by Theorem 2.4. We can even compute the size of the ratio E(X})/v/W fairly exactly.
See Fig. 10.

Corollary 5.2. If n — 400 is such that a(n) = o(n), then

E(X") N (1 B 672a+0(1)) . 1/\/2a+1’ a <
VW 1V20+1, a>

I

0
0.

Proof. We begin by showing that E(X') ~ E(X]). To prove this, observe that if
J < i_1/2, then
E(XI) — 0(2(172—1/2)L) — 0(20.4L/n) ,

and if j > 419, then
E(X)) = 0(2273/21‘) = 0(2%*%/n).
Therefore,
B 3) o,

j€m\{#'}
which is 0(E(X},)), because

E(Y: 0

B(x)) ~ 209 ora (2. (5.4)

w;

62 5.2 Large Deviations from the Expected Reduction by the Deletion Rule

The precise size of E(Y;)/wy was computed in the proof of Theorem 3.8 (ii). By
(3.10), (3.12), (3.13), (3.15), and (3.16), we have

N

—a-+o(1) _ 72“"‘"(1)) .
E(Y;’) ~ 2 <1 € ’ 0 (5.5)

Wyt 1— e_2<z+0(1) ’ a> 0.
Now we combine (5.4) and (5.5) with the asymptotics for W/ 2L given in Theorem 2.4.
O

Oddly, E(X')/\/W is maximised not at a = 0, but at ¢ = 1 (with value = 0.499).
The reason for this is that E(X;)/2% declines doubly exponentially as a — +00, so
the increase of E(Yy)/wy temporarily compensates the decay of v/2L—lal, (See also
Fig. 9 on page 47.)

The size of E(X’) for various parametrisations of n will be investigated in Sec-
tion 6, where it is also compared with E (X). It turns out that E(X") is always concen-
trated on the two levels |ig| and [ig]. Also, the amount of reduction achieved by the
deletion rule changes in a periodic way, as was the case for the merging rule. However,
the shape of the oscillations is quite different.

5.2 Large Deviations from the Expected Reduction by the Deletion
Rule

To estimate the probability of large deviations from the expected amount of reduction
by the deletion rule, we apply a large deviation inequality for hypergeometrically dis-
tributed random variables due to Chvatal. The statement of the following theorem is
already adapted to our setting.

Theorem 5.3. (Chvatal [Chv79]) Assume that y balls are chosen without re-
placement from an urn containing a fraction of p black balls, and denote by z’
the number of black balls chosen. Then z' is a hypergeometrically distributed
random variable with parameters p and y, mean E(z') = py, and forall € > 0,
we have

Pr(z' > (p+e)y) <e®V. 14

The next theorem gives a doubly exponential bound on the probability that X' is
somewhat bigger than the square root of W or E(Y"), which are both ©(2"/2).

5 The Effect of the Deletion Rule 63

Theorem 5.4. For every ¢ > 0,

Pr (X' > RQ%L) < o~ (2+o(1)2T

Proof. Recall that X ; is hypergeometrically distributed with parameters p; = m;l—:rl and

Y;. Using Theorem 5.3 and Y} < w;, we can estimate the situation at each level by

Wj

Pr (X} > (p; +¢j)w;) = Zf’r (X5 > (pj +£5)w; | ¥y =y) Pr(Y; = y)
y=0

< Pr (X,’-Z(pj:ffj)wj | Yi=w;)
<Pr(X; > (ps +e)w; | Yy = wj)

< e 25w (5.6)

A sufficient condition for X' < n27= L is that the inequality

X]’- <27 (5.7)

is satisfied for all j. Let § := j — i (so that j = i5). If 7 > 4y, then (5.7) holds

trivially, because

For j < %1, we set

so that

1+CL

(pj +&j)w; =22

We claim that €; > 0. Observe that for j > iy, we have

5 ST T 1
p] — 272 o—1p — 2,2—6[] —) (58)

VW5

Comparing the logarithms, we find that

14
275°L

14c¢

—1log (254 p;) = (4 -2)L > 5L >0, (5.9)

log
W;j Pj

Sogj = 0 for j > 1. For j < 19, we use the facts that €;, > 0 and that for every n,
> e, = 0.

the mappings j + k; and j — p; are isotone. Therefore, ¢; .

64 5.3 Optimal Variable Orderings and the Deletion Rule

So (5.6) is applicable, and we have

Pr <X]’. > 213”) < e 2w (5.10)

for all j.

To lower bound 6?10]', we again consider two cases. If 79 < j < 11, then by (5.8),

1tec 2
2 _ 2 _ o(14e)L. 2 ltey g)
eiw; = (w —pj> w; = 20FpE 27 Iy 11 = ¢ 2t +1,

where t; := 2“2r

CLp]- > 231 by (5.9). Therefore,
elw; > 21 (1 +0(1)) .

If 5 < 19, then

2 2%11 ’
777 wj J J
(o)L ’ (ro)L 2
21—|—c 21+c
= on] > ~ —— +0(1) | ~ 2.
(wj+<>) (2L+<>)

So we have shown that e2w; > 2°(1 + o(1)) for j < 4;. Using (5.10), the
probability that (5.7) fails for at least one level is bounded by

n - e 22 (o) — pm(2ro()2t (5.11)

and the theorem follows. O

The attentive reader might wonder why the proof of Theorem 5.4 makes no ref-
erence to Theorem 5.1, but uses only the trivial inequality E(Y;) < w; instead (see
(5.6)). The reason is that it would make no difference for the main result we are aim-
ing for, the sharp concentration of the reduced OBDD size. We already saw that the
cut-off point cannot be improved beyond 2%/2 when analysing large deviations from
the expected quasireduced OBDD size. (See the remarks following Theorem 4.3.) —
Theorem 5.1 will be used in Section 6 and the proof of Theorem 9.6.

Another kind of large deviation bounds will be derived in Section 6.2.

5.3 Optimal Variable Orderings and the Deletion Rule

Using the results from Section 5.2, we now show that the gap between Y and Z is com-
paratively small for all variable orderings, with high probability. This follows easily from

5 The Effect of the Deletion Rule 65

the doubly exponential bound on the probability of large deviations, e~ (2ro()2°" ip

Theorem 5.4.
We define X|(f) to be the maximal number of nodes that can be deleted from
qOBDD,(f), for any variable ordering 7. So formally, X_(f) := max, X.(f).

Theorem 5.5. For every ¢ > 0,

Pr (Xi > nQI;CL) < e~ (2to(1)2eF

Proof. All we have to do is to multiply the probability bound from the fixed variable
ordering case by the number of variable orders, which is n! < n" = €™, We get a
probability bound of

enlnn | o= (o) _ o—(24+o(1))2 (5.117)

which proves the corollary. O

We make no attempt to optimise the factor 2 + o(1) in the exponent or even the
double exponent cL in the probability bound in Theorems 5.4 and 5.5 any further,
because it has no consequences for our main results.

The deletion rule will be revisited in the context of FBDDs in Section 8.

5.4 The Weak Shannon Effect for OBDDs

Recall that the weak Shannon effect asserts that almost all Boolean functions have al-
most the same size for a certain kind of representation. If we combine the large devia-
tion results Theorem 4.4 and Theorem 5.5, we obtain the following corollary.

Corollary 5.6. Let Z,(f) denote the minimal OBDD size of a Boolean func-
tion f. Then

Pr (‘Z* - E(Y)‘ Z 277,21;_01’) < 6_2CL/4+O(nlogn)

and since E(Y) = §2(2L), the weak Shannon effect holds for OBDDs (and
qOBDDs) with optimal variable orderings representing random Boolean func-
tions. ad

Finally, the Main Theorem 1 on OBDDs with optimal variable orderings follows from
Theorem 3.13 and Corollary 5.6.

6 Comparing the Reduction Rules

While Main Theorem 1 is sufficient to decide whether the strong Shannon effect holds
for a particular sequence of n (or not), a closer inspection shows that n = 2k + h
is not the only interesting point in the evolution of random OBDDs. Two other (more
subtle) phase transitions take place as n passes from 2" + 2h — 1 to 2" 4 2k and at
n = (% + 0(1))2h. These results are complementary to Main Theorem 1 in the sense
that they make assertions about where the ‘Shannon gap’ X + X' is minimised.

6.1 Comparing the Expected Amount of Reduction

Once we know that E(X) is ‘big’ near 2k 4+ h and ‘small’ (compared with W) otherwise,
it is natural to ask: “How small can E (X ') become?” The following theorem tells us that
E(X) = O(n?) for n = 2" + 2h, which is very small compared with the worst-case
size ©(2"/n). Another remarkable fact is that E(X) > 228" for the parametrisation
n = 2" 4 2h — 1, which has only one level less. This rapid phase transition is due to
the merging rule solely; note that for both parameterisations, E(X') = 2(1/2+o())n by
Theorem 5.1 (i), since [§| > 1 implies E(X]) = O(2%/*). In other words, there is
a phase transition for quasireduced OBDDs, but not for reduced OBDDs. The following
theorem looks at parametrisations of n ‘around’ 2% +2h’. See Fig. 11 for an illustration.

Theorem 6.1.

(i) Assume that n = 2" 4 ¢(n)h(n) — +oo, where 2 < ¢(n) = o(n). Then
E(X) = nf™

where &(n) ~ 2(c(n) — 1).
(i) Assume that n = 2™ 4+ 2h(n) — ¢(n) — +o0o, where ¢(n) > 1 and
0 < h(n) — ¢'(n) = +oo. Then

!

E(X) = 2"

Y

where &@(n) =1 —2™loge + o(1).

Proof The assumptions in (i) and (ii) ensure that a(n) = o(n), so Lemma 3.7 (i)
is applicable and we have §'(n) = d; with @ ~ a. Also, 0 < a — 400, because
a=(c—1h>2h— 4ooin(@) and 0 < a = h — ¢ — +o0o in (ii). Note that
d' €0, %] It turns out that the proportions of E (Xi/) and E (X,-/,l) become inverted

as a passes from h — 1 to h.

68 6.1 Comparing the Expected Amount of Reduction

A
1 e ° |
b |
® I
|
1-7ge & ° |
|
|
|
lo
== 71 * log E(X")
' n
|
1/2 I
|
|
|
1 |
1_35_5 T .,
L I
7 [
g 4 log E(X) | log E(X) .
6 -+ n | logn o
| o'...
4+ | o
*®
2 =+ |. [] [] [] n
0 >
))
s Vo s v W v v v v v v v v s > >
X XX, X, X, X, X, X, X, X, X, X, X, X X X X
. P A S w0 TRt
e

Fig. 11. Comparison of E(X) and E(X') around n = 2" 4+ 2h (Theorem 6.1).
The dashed line marks the phase transition.

For level ¢, we apply the estimates from the proof of Theorem 3.8 (i), which are

valid under the assumption @ = o(n). By (3.16) and (3.12), we have

E(Xy) ~ oL—a+0(a%/n) 6—25+0(&2/n)+0(1) ‘ 1)

5!

For level ¢/ — 1, we apply the estimates from the proof of Lemma 3.9. If we plug in the
special value j = 241 into (3.18), then
, (8'(n) —1)L(n)

= loge = a(n)

_ L(n)
loge’

(6.2)
which implies a’ < —\/7_1 . So the leading term in (3.20) is

2 —Ox
kilil _ (2(6’_1)+L)2 2—21_61L—1 — 226&_3+2 (1_2 6a)L — 226—34‘0(&2/”)
2my_y

6 Comparing the Reduction Rules 69

by (3.11), and

Now we know E(X;) and E(Xy_1), but we also have to show that all the other
levels j € [n] \ {¢'=1,i'} C [n]\ [i_3/2, 1] are negligible.

If j > 4, then E(X;) < me 2"/m by (3.22). But m; < 2L/2 5o E(X;) <
9L/2¢=2" — o(1/n).

If j < i_g/2, then E(X;) < 2879+9() by (3.21). Similar to (6.2), we find that

< —1.01 L(n),
loge ()

so B(X;) < 27L/100+0(1) = o(1/n). (Note that loge = 1.44.)
Altogether, we have shown that
Z E(X;) <n-o(l/n) =0o(1).
Je\{#'~1,4'}
Assertion (): Using (6.3) and the facts that @ ~ a — 400, a = o(n), a = (c—1)h,
and h ~ logn, we find that
E (Xi’fl) ~ 22&—3+O(F12/n) — 22a(1+0(1))

— 92(c=1)h(1+0(1)) _ 92(c—1)logn (1+0(1)) _ ,2(c—1)(1+0(1))

=N y

which has already the right exponent of n. We claim that E(X;) = o(1). By (6.1), we

have ,
_ a+0(a“/n)+o(1

We consider two cases. If a > 2h and n is large enough, then
a+0(@/n)+o(1)=a(l+o(1)) +o(1) > h.
If h < a < 2h, then @*/n = o(1), so
a+0(@*/n) +o(1) = h+o(1).
In both cases, we have
L—loge 9a+0(a’/n)+o(1) <L-— 10g62h+o(1) s —o0,

since L ~ 2". So indeed, E(Xy) = o(1), and Assertion (i) follows.

70 6.1 Comparing the Expected Amount of Reduction

Assertion (ii): Using (6.3) and the facts that 0 < @ = h —c < h and a ~
a = o(y/n), we see that E(X;_;) = O(n?). To estimate E (X), observe that
d@ = a + o(1) by Lemma 3.7 (i). So (6.1) implies that

E (Xz’) ~ 2L—a+0(1)62&+0(1) — 2L—h+c+o(]_)62h—c+o(1)

_ 2L—h+c+o(1)—loge2h_c+°(1) _ 2(1—log62*°+o(1))L

Y

which is !2(2(1_1°g e/2+o(1))L) , because ¢ > 1. Assertion (ii) follows. O

We have seen that both E(X) > E(X’) and E(X) < E(X’) are possible. So for
finding the point where the “Shannon gap” is minimised, we must take the deletion rule
into account as well. The proportion of E(X) and E(X') for small a > 0 is already
clear from Theorems 6.1 and 5.1. In Theorem 6.2, we look at the values of n which are
not covered by Theorem 6.1. This is illustrated by Fig. 12.

Theorem 6.2. Assume that n — 400 and A’ € N and b are such that n =
b2" + b’ and b € [1 + h'/2%,2]. (So n is in the range [2" + 2h' .. 2"*1 4 A'].)
Then

log E(X) 2

6y — = 2—5-1-0(1), and
.. logE(X') 1 1
(ii) — . = max{2b, 1 b} +0(1).

Proof. First, we introduce a new parameter 6" = §"”(n), which will be used in this proof

only. Since L(n) ~ n ~ b2", we have
L(n) =n—1logL(n) =n—h—logb+o(1). (6.4)

Here n — h € N, so §'(n) = logb + o(1) mod 1. The important levels are is» and
i511_1 , where
§":=n—h—L=logb+ o(1)

by (6.4). Note that §” € {d¢',8'+ 1}. By working with ¢” instead of §', we avoid
difficulties with the jumps of §’, see Lemma 3.5. Using the monotonicity of L, one can
easily show that 6" jumps from ~1 to 0 as n passes from 2% + A’ — 1 to 2* + b’ and
that 6" € [0, 1].

Assertion (i): If h < a < n??3, then b ~ 1, and logE(X)/n = o(1) follows since
E(X) = no®*?) by Theorem 6.1 (i). So we can assume without loss of generality that

6 Comparing the Reduction Rules 71

A

h—w(1)
h

/ be [1,14+2550]

1/2

2/5
1/3

b
0 I I I L

1 5/4 3/2 2

Fig. 12. A global view on E(X) and E(X') (Theorem 6.2). The dot at (1,1) refers to Theorem 6.1.

8" > /n loge/L. Lemma 3.9 implies that E(X) < 2ne 27" = (1) for all levels
J 2 155, which includes 4.
We claim that

E(X;,) = 222" +WE L 0(1) 6.5)

+
if 6 < 0.—Choose a' such that 6 = 4. For 0 > o' > —4/n we can apply the
asymptotic (3.17), and get

E(X,) — 2Lfa’(1—|—o(1))eo(1) + 0(1) — 2n(1+o(1)) + 0(1)

as claimed in (6.5). If @’ < —4/n, then by (3.20) from the proof of Lemma 3.9, we

have
2

E(X;,) = 27;';5 (1+0(1)) +0(1),

72 6.1 Comparing the Expected Amount of Reduction

and again,

E(X,

5

) _ 22(6—|—L)7172*’5L + 0(1) _ 2(272*5—}—0(1))77, + 0(1)

as claimed in (6.5).
By (6.5), E(X;) = 2°") for all levels j < i_;. Therefore, E(X) = E(X;,,) +
2°(L) Since §"” — 1 =logh — 1 + o(1), we have

2—21-log b4 5(1))n 2—2/b+0(1))n
E(X;,) =2 +o(1)n _ 9(2-2/b+o(1))

bl

and Assertion (i) follows.
Assertion (ii): Theorem 5.1 (i) implies that E(X{a) = O(2L/4) if [6] > 1. Also, we
have
E(X') _ @(22—1°sb—1+0(1)L) _ 9(2(1/2b+o(1))L)

51

and
E(X{) _ 9(210gb—1+(1—2_1°gb+0(1))L) _ 9(2(171/b+o(1))L) _

15” 1

Therefore,
E(X') _ @(2(1/2b+o(DL 4 9(1-1/bto(1))) n O(n2L/4)
Simple computations show that
min max{ 1 1-— 1}:1
be[1,2] 2b’ b 3’
and Assertion (ii) follows. O

The results of this section are summarised in Corollaries 6.3 and 6.4.

Corollary 6.3. The minimising parametrisations for the ‘Shannon gap’ are

(i) for E(X): n = 2" + 2h, where E(X) = n2tol);

):
(i) for E(X) + E(X"): n = (2+0(1))2", where E(X)+ E(X') =

(
(i) for E(X'): n = (2 +0(1)) 2", where E(X') = 2(%+°(1))";
9(5-+ol

1))n 0O

Corollary 6.4. Assume that n — +oo and write n = 2°(") 4+ h(n) + a(n) =
b2" + 1!, where h' € N and b € [1,2].
@ If 0<a(n) <h(n)—2 or b> 2+ 2(1), then E(X) > E(X").

(i) If h(n) —1 < a(n) and b< § —£2(1), then E(X) < E(X').

6 Comparing the Reduction Rules 73

Proof If a = o(n), then we have E(X') = ©(2£/2) by Theorem 5.1. Only level ' is
significant for E(X').

If a > 0 is very small, say a = ‘O(log logn)|, then by Theorem 3.8 (i),

E(Xi‘;/) N 9—O(loglogn) 9—O(loglogn) o—oln) _ g—o()

oL 7 g2000glogn) 2 e(logn)0 (M) - ’

so BE(X) = 2(280+W)) > E(X).

Ifa € [L..h—2] and @ — +00, then E(X) = 2¢" by Theorem 6.1 (ii), where
& >1—22loge+ o(1) = 0.639 > 1/2, and we still have E(X') = ©(2%/2). So
again, E(X) > E(X').

If a = h — 1, then E(X) = 21 7l8¢/2+2(1) < E(X') by Theorem 6.1 (ii).

For a > h, we invoke Theorem 6.2. If b < % — 2(1), then 2 — 2 < L so

b 2b°

E(X)<E(X').Ifb>2+02(1),then2—2>1—3 > L. so E(X)>E(X'). O

6.2 Another Kind of Large Deviation Inequalities

A remark on large deviations is appropriate. For several parametrisations of n, the cut-
off point 2n2 2" from Corollary 5.6 is much larger than E (X) or E(X"), so we cannot

derive meaningful large deviation results in the optimal variable ordering case. For
1+o(1
2() L)

example, we can only say that X, = O (2 with (very) high probability for the

parametrisation n = 2" 4 2h, whereas Theorem 6.1 (i) asserts that E(X) = n2to(1),
For the case of a fixed variable ordering, one can use Markov’s inequality straightfor-

wardly to derive (rather weak) concentration inequalities. We omit the trivial details.

Proposition 6.5. (Markov’s Inequality) For any nonnegative random variable

R,

Pr(R})\-E(R)) < 0

1
L

For example, if n = 2" + 2k, then Pr (X = n?T2())) = o(1).
But we can also prove something for optimal variable orderings, if we are willing to
consider ‘really large’ deviations.

Theorem 6.6. For R = X or R = X' and large n, we have

Pr (R* >\ 241°g2"-E(R)) < %

74 6.2 Another Kind of Large Deviation Inequalities

R p— < E .

where 7 runs over all variable orderings. The idea is to exploit the fact that almost all
reductions take place at levels near the bottom to reduce the number of 7 in the sum.
Actually, we will use a more refined version of (6.6), namely
§'=1
R, = max R, = max Z R;; < maxz R:;+ maxz R, (6.6")
j€[n]

where j' := |ip| — 2logn. The key observation (already used by Wegener [Weg941)
is that R, ; does not depend on the relative order of the first (with respect to w) j — 1

variables and the last n — j variables. Therefore,
n
maXZRM—maX R,
i=jJ'

where [T is a set of representatives of size

n . n 4log>n
#IT = <j,_1>3’< (n_j,+1)n=o(2 “")

—we choose a j' — 1 variable set to be tested above level j', and the variable which is
tested at level j'. So

j'—1

n'ZE) + 0(24°6° " E(R))

by (6.6”). To prove that the sum over the upper levels is negligible, we refer to the
preceding analyses.

In the case R = X, for j < j' we have E(X;) < 27"°6"/n by Lemma 3.9. So
n! I E(X) = o(1).

In the case R = X', for j < j' we have E(X}) < 2~2(L*) by Theorem 5.1 (i). So
again, n! Z;:ll E(X}) = o(1).

We have shown that in both cases, E(R,) < 2*°¢°"E(R) for large n. Now the
theorem follows by Markov’s inequality (Proposition 6.5). O

Since R, > R, we obtain the following large deviation result.

Corollary 6.7. Let n — +o0o and R = X or R = X'. Then

Pr <Efﬂj*) :w(24‘°g2")> = o(1). -

6 Comparing the Reduction Rules 75

How good is this bound? In the cases where R = 2°(") we determined E(R)
up to a factor of 2°1) | so these bounds hold essentially unchanged for R, with high
probability, too. Only for R = X it can happen that E(X) = 0(241°g2”) — namely if
a(n) € [h(n)..2h(n)*(1+0(1))], which is a fairly small, but interesting, interval (see
Theorem 6.1 (i)). The factor 4 in the exponent in Corollary 6.7 could be improved to 1
using a somewhat more complicated technique which will be developed in Section 10,
but not to o(1).

Let us conclude with the remark that we know how large X, and X are with high
probability, and their expected values, up to a factor of 20(") | which is very small in
comparison with the expected size of an optimal OBDD for a random Boolean func-

tion (2(1+°(1))") and the expected amount of reduction achievable by the deletion rule
(2 2(1/3+o(1))n).

7 Other Decision Diagrams with a Variable Ordering

7.1 Zero-Suppressed Binary Decision Diagrams (ZBDDs)

It has been observed by Lobbing, Schréer, and Wegener [SW98a,LSW95] that zero-sup-
pressed BDDs behave quite similar to OBDDs, if random Boolean functions are consid-
ered. The analyses of Liaw and Lin [LL92] and Wegener [Weg94] carry over without
major changes. This is true for our results, too.

First, observe that a quasireduced ZBDD is the same as a qOBDD, because both
binary decision diagram types use the same merging rule. Therefore, the analysis of
qOBDDs we gave in Sections 3 and 4 does not need to be modified.

The key observation is that the modified deletion rule in ZBDDs leads to the same
probability distribution of X]. We quote from the proof of Theorem 5.1, page 59:
“Among the m; subfunctions which are possible at level ¢ of the qOBDD there are
m;4+1 functions that do not depend essentially on the variable x;.” For ZBDDs, this
sentence should read: “Among the m; subfunctions which are possible at level 7 of the
qZBDD = qOBDD there are m;; functions g such that g,,—y = 0.” For random g =
9(xi, ..., zy), the events g(0,z;, ..., z,) = g(1,z4,...,2,) and g(1, 24, ..., 2,) =0
have the same probabilities, since we consider the uniform distribution.

All results of Sections 5 and 6 hold for ZBDDs, too. In particular, we have a modified
‘Main Theorem 1’.

7.2 Ordered Kronecker Functional Decision Diagrams (OKFDDs)

The situation is slightly more complicated for OKFDDs, because the choice of the de-
composition type list constitutes another potential for minimisation.

Again, quasireduced OKFDDs are the same as qOBDDs. Also, regardless which de-
composition type is performed at a level, a node can be deleted if and only if the sub-
function it represents does not depend on the variable tested there, so we do not even
need to modify the proof of Theorem 5.1 as for ZBDDs.

If the OKFDD is in fact an OFDD, then the same conclusions as for ZBDDs can be
made.

For arbitrary decomposition type lists, the key observation is that multiplying the
doubly exponential probability bounds with either n! or 3" n! does little harm, see
(5.171°) on page 65. Thus, the large deviation results from Section 5 hold for OKFDDs
as well (only the 0(1) terms change). This includes the weak Shannon effect (Corol-
lary 5.6) and a ‘Main Theorem 1’ for OKFDDs.

We remark that there seems to be no way to overcome this difficulty in the frame-
work of [Weg94] due to the weaker probability bounds. The proof of Theorem 6.6
(which is based on Markov’s inequality) does not carry over to OKFDDs. The results of
Section 6.1 hold for each decomposition type list.

PART 2:

RANDOM FBDDs

8 Minimal FBDDs

This section contains preliminary considerations on minimal FBDDs. After fixing some
terminology, we show that the class of FBDDs in which the nodes represent ‘different’
subfunctions (in a sense to be defined below) is characterised by strong versions of the
standard reduction rules. Since minimal FBDDs are ‘strongly reduced’, they have this
property, which will be used in afterwards. See Section 9 for an outline of the proof of
Main Theorem 2.

8.1 Definitions

The support of a Boolean function is the set of variables it depends on. Usually, the sup-
port is clear from the context, and although formally incorrect, Boolean functions like

fz1,29) = 24 and g9(z1) = x4 (8.1)

are taken as if they were the same.— We will say that f and g are equivalent, but not
equal subfunctions. We admit that this distinction is a sort of ‘abstract nonsense’ if con-
sidered on its own, but it enables us to state and prove some observations not possible
otherwise. —In the following, we assume that f is a Boolean function with support
Z :={zy,...,2,}. Sometimes ¢ is used as a metavariable for the elements of =.

We can specify a node in an FBDD (like in any ‘-DD’) by declaring the values of
the variables tested along a ‘partial’ computation path leading to it. The corresponding
concept for Boolean functions are partial assignments. In a partial assignment, there
can be variables which are not assigned values. These are called free. If we impose a
partial assignment on a Boolean function, we obtain a cofactor.

Definition 8.1.

(i) A partial assignment is a mapping o : = — 3 = {0, 1, 2}.

(i) The set of free variables of a partial assignment is defined by free(a) :=
a {2}, and its complement is free(a) := = \ free(a) = a {0, 1}.

(iii) The cofactor of a Boolean function f for a partial assignment « is a Boolean
function f, of the variables in free(a). The value of f, for an argument
¢ = (c; | z; € free(a)) € (@2 is defined by f,(c) := f(c*), where
= (cf,...,c¥) and

o)G alz;) = 2;

' a(z;), otherwise.

(iv) Two partial assignments « and [are equivalent for a Boolean function f

(written a /¢ 3, or simply a ~ (3, if f is clear from the context), if

Ve=(ci,...,cn): F(c®) = F(P).

82 8.1 Definitions

The simplest example where cofactors occur is the Shannon decomposition

flz1,29,...;20) = Z1 A F(O,20,...,2,) V 21 A f(1,20,...,2,).

Note that a & § does not imply that free(a)) = free(3). The functions f and g from
(8.1) may serve as an example.

In an FBDD, many nodes are reached along different (partial) computation paths,
that is, the corresponding cofactors are equivalent. Intuitively, a subfunction of f is just
“what is represented at some internal node of an FBDD for f”. But then a difficulty
arises, because in terms of FBDDs, there is also a natural notion what the support of a
subfunction should be (namely, the set of variables tested somewhere below the sub-
function node), and this set need not be the same as the set of variables which have
not been tested yet. There might be some variables which are not tested at all. This
ambiguity is the reason why we have to distinguish between equivalence and equality of
Boolean functions.

Definition 8.2.

(i) A subfunction of a Boolean function f is a cofactor f, of f for some par-
tial assignment «. A subfunction f, is said to depend on a variable z;,
if z; € free(a). By convention, subfunctions “do not look at” variables
on which they do not depend, and we will write fo(c) := fa((c; |
z; € a '{2})) to simplify the notation. As a special case, we define
fe = feso and fe = feo1, where z; — c denotes the partial as-
signment defined by (z; — ¢)(z;) = ¢, and (z; — ¢)(§) = 2 for

(i) Two subfunctions f, and fg of f are said to be equivalent, if a ~y
B (because then, f,(c) and fg(c) take ‘equal values’ for all ¢), and
equal (written fo, = fg), if @ ~; [and free(a) = free(s) (be-
cause then they are equal as functions, thinking of their free vari-
ables as argument positions). Functions are said to be different if
they are not equal. Also, we say that they are the same if they are
equal.

Stated in another way, the difficulty is that cofactors with different supports may
correspond to the same FBDD node.

Our notion of dependency allows that a function may depend on a variable whose
value need not be known to determine its value. That is, we can have f, z;, = f, ., and
z; € free(a). Those variables whose value must be known are called essential.

8 Minimal FBDDs 83

Definition 8.3. A variable ¢ is essential for a Boolean function f, if fg % f.
We denote the set of essential variables of f by ess(f).

We fix some notation: F', F', D, D', and V.

Definition 8.4. Let v be a node of an FBDD for a Boolean function f. Then v
represents a subfunction F'(v) of f, which by definition depends on D(v), the
set of variables tested below v. The essential variables set of F'(v) is D'(v) :=
D(v) Ness (F(v)). The function depending on D'(v) which is equivalent to
F(v) is denoted by F'(v). Let V(v) denote the variable tested at v.

Note that F'(v) ~ F'(w) if and only if F'(v) = F'(w). Also, F(v) = F(w) implies
that D(v) = D(w).

8.2 Strong Reduction Rules

We are mainly interested in minimal FBDDs, i. e., those of minimal size.

Definition 8.5. Let G be an FBDD representing a Boolean function f.
Then nodes(G) denotes its node set (including the sinks) and size(G) :=
nodes(G). We say that G is minimal, if size(G) is minimal among all FBDDs
representing f.

Sometimes the terminal nodes are counted in the size, but the difference is asymp-
totically negligible.

Minimal FBDDs should not be confused with reduced ones. Of course, a minimal
FBDD is reduced. But in the absence of a global variable ordering, the standard reduc-
tion rules are no longer sufficient to ensure that the nodes of a reduced FBDD represent
different (or even nonequivalent) subfunctions, and this property is necessary for being
minimal. See Fig. 13 on page 85 for an example.

Since our analysis relies on the property that the nodes represent different subfunc-
tions, we introduce strongly reduced FBDDs as an intermediate class. Strongly reduced
FBDDs can be characterised by the strong merging rule and the strong deletion rule,
which are defined next.

We feel that the strong reduction rules are a very natural and self-suggesting concept
and hence do not claim originality.

84 8.2 Strong Reduction Rules

Definition 8.6. An FBDD is strongly reduced, if neither the strong merging rule
M™ nor the strong deletion rule D is applicable to its nodes.

M™: Two nodes v and v’ can be merged, if they represent the same subfunction

F(v)=F(").

D*: A node v can be deleted, if V(v) is not essential for F(v), that is, if
V(v) & D'(v).

The choice which node to keep is free in both cases.

The reader is invited to check that M+ and D+ indeed transform an FBDD into a
smaller FBDD representing an equivalent function.

Strongly reduced FBDDs are not necessarily minimal. For example, a reduced OBDD
is always strongly reduced, and need not be minimal. The next lemma shows that the
strong reduction rules characterise the class of FBDDs in which the nodes represent
nonequivalent subfunctions.

Lemma 8.7. An FBDD is strongly reduced if and only if its nodes represent
non-equivalent subfunctions.

Proof. Assume that v and v’ are two nodes of an FBDD which represent equivalent
subfunctions F'(v) ~ F(v'). If D(v) = D(v'), then F(v) = F(v') and M7 is
applicable. If D(v) # D(v') holds, then their symmetric difference D(v) A D(v') :=
D(v) \ D(v') U D(v") \ D(v) is non-empty. Let £ € D(v) A D(v'), without loss of
generality £ € D(v), and let w be a node below v where ¢ is tested. Since £ ¢ D(v'),
we have £ ¢ D'(v) = D'(v') C D(v'), and since F(w) is a subfunction of F'(v), we
have D'(w) C D'(v) # £ = V(w). So D™ is applicable to w. This shows that strongly
reduced FBDDs have non-equivalent subfunctions.

The converse implication is easy. If M is applicable to v and w, then F(v) =

F(w), so F(v) ~ F(w). If D is applicable to u, and u' is one of its successors, then
F(u) ~ F(u). O

We observe that strongly reduced FBDDs do not perform ‘redundant’ tests like the
test for x; in Fig. 13. Note that in this example, the strong deletion rule is applicable
to the source, and that there is indeed a choice which node to keep after deletion.

Stated in another way, the fine distinctions between D and D’ and between F'
and F’ we made in Definition 8.4 do not apply in strongly reduced (or even minimal)
FBDDs.

8 Minimal FBDDs 85

Corollary 8.8. In a strongly reduced FBDD, we have D(v) = D'(v) and
F(v) = F'(v) for all nodes v.

Proof: Let £ € D(v) \ D'(v) be a non-essential variable of F'(v). Then there is a node
w below v with V(w) = &, and V(w) is non-essential for F(w), because F(w) is a
subfunction of F'(v). But this implies that w and its successor node(s) represent equiv-
alent subfunctions, a contradiction. Clearly, D(v) = D'(v) implies F'(v) = F'(v). O

The strong reduction rules are very different from the standard ones from an algo-
rithmic point of view. Note that the strong reduction rules M and D™ are defined us-
ing the semantic notions ‘equal’ and ‘essential’, which cannot be read off from the FBDD
using local structural information. At this time, it is open (but not an important issue
in our context) whether the strong reduction rules have an efficient algorithm, like the
‘standard’ reductions. An efficient algorithm for the test F'(v) = F(v') required in M+
would in particular enable us to check the equivalence of FBDDs, a problem for which
only a randomised algorithm with one-sided error is known so far [BCW80]. There is a
trivial gadget (Fig. 14) showing that the test V(v) € D’'(v) required for DT is of the
same degree of difficulty.

While a lot of (mostly experimental) work has been done on OBDD reordering
techniques, very little is known about FBDD minimisation techniques so far (but see
[BMS96,GD99]). Using the additional potential for reduction seems to be difficult in
practice, due to the vast size of the search space.

.
L4
L4
L4
0 1 . .
’ ’
Fig.13. A reduced FBDD for x2 @ 3 with a redundant Fig.14. F(v) = F(v') +> V(u) ¢ D' (u)

test for 1

9 Quasireduced FBDDs and the Deletion Rule

To estimate the size of minimal FBDDs, we will investigate the effect of the two reduc-
tion rules in turn, as we did for OBDDs. This section is devoted to the deletion rule.

If only the merging rule is applied to a complete binary decision tree in which Shan-
non decomposition is performed with respect to some variable ordering, then the result
is a qOBDD. In the absence of a global variable ordering, the result is what we call a
quasireduced FBDD, or qFBDD for short.

Definition 9.1. An FBDD is quasireduced, if it is reduced with respect to the
merging rule and every variable is tested along every computation path. The
minimal qFBDD size of a Boolean function f is denoted by ¥'(f).

Recall that the minimal FBDD size was given the name ¥ in Main Theorem 2.
Quasireduced FBDDs will serve us as an intermediate step in the analysis of the reduc-
tion process. In this section, we show that for most Boolean functions, every strongly
reduced FBDD can be converted into a gFBDD by adding only a comparatively small
number of new nodes using the inverse deletion rule. The inverse deletion rule is just
the ordinary deletion rule applied in the reverse direction.

As a consequence, the minimal FBDD size of a random Boolean function is almost
equal to its minimal qFBDD size with high probability. More precisely, in Corollary 9.7
we give a doubly exponential probability bound for deviations of ¥/ — ¥ which are not
much larger than those we considered for OBDDs in Section 5. Actually, this bound
follows from a slightly more general result on the effect of the algorithm INVERSE-
DELETION (which is described next) on strongly reduced FBDDs.

Therefore, later sections can deal with ¥’ instead of ¥. Section 10 is devoted to
lower bounds on ¥, leading to Main Theorem 2 (i). In Section 11, an upper bound
for ¥' is derived by an explicit (algorithmic) construction, proving Main Theorem 2 (ii).

9.1 Algorithm INVERSEDELETION

Algorithm INVERSEDELETION will serve us to estimate the effect of the deletion rule.
An example application is shown in Fig. 15. There is a technical reason why our analysis
of the reduction rules proceeds in the reverse direction for FBDDs: To prove that ¥' is
not much larger than ¥, we show that every minimal FBDD can be converted into a
gFBDD by relatively few applications of the inverse deletion rule. Let G’ := INVERSE-
DELETION(G). If G was reduced, then G’ will be quasireduced, but we can estimate
size(G') — size(G) only if G was strongly reduced. Simply blowing up the FBDD
in an arbitrary way does not work;to bound the number of inserted nodes, we need

88 9.1 Algorithm INVERSEDELETION

the property that in the resulting qFBDD, all nodes represent different subfunctions, in
the sense defined in Section 8. Otherwise, for example the node marked with “!” in
Fig. 15 could have been generated twice, wrecking our argumentation. The output of
INVERSEDELETION has this property, if the input was strongly reduced (Lemma 9.4),
and later we will apply INVERSEDELETION to minimal FBDDs.

For those readers who are acquainted with graph driven BDDs, we mention that
INVERSEDELETION is very similar to the algorithm of [SW95, Theorem 1] that con-
structs an oracle graph Gy from a read-once branching program G such that G is a
weak Go-FBDD (which was called G-driven WBDD there). The main difference is the
local merging step, which is necessary for Lemma 9.4.

Definition 9.2. For a node v of an FBDD, we denote the set of its (immedi-
ate) predecessor nodes by P(v) and the set of variables tested along any com-
putation path going through v before it leaves v by T'(v). So in particular,
V(v) € T'(v). The ‘top’ node of an FBDD G is denoted by source(G).

Algorithm INVERSEDELETION

Input: A reduced FBDD G.
Output: A quasireduced FBDD G, equivalent to G.

- Each node can carry a ‘mark’. Initially, all nodes are unmarked.
An unmarked node becomes ‘active’, if all its predecessors are marked.

- Using the inverse deletion rule, insert a chain of new nodes in front of
source(G), in which the variables in ="\ D(source(G)) are tested, respecting
the canonical variable ordering.

- Mark source(G).
- Repeat the following steps, until both sinks have been marked:

- Let v be an active node.

- For all predecessors u € P(v) of v:
Using the inverse deletion rule, replace the edge uv by a chain of nodes,
in which all variables in T'(v) \ T'(u) \ V(v) are tested, respecting the
canonical variable ordering.

- Apply the merging rule to the nodes inserted during the last step.
- Mark v.

9 Quasireduced FBDDs and the Deletion Rule 89

Fig. 15. An application of the inverse deletion rule

Proof (Correctness of INVERSEDELETION) We must show that in G’ all variables are
tested along all computation paths. Note that the merging rule has no effect on this
property. In a reduced FBDD, the last node on any computation path represents either
z; or T;, for some variable ;. So for both terminal nodes ¢, T'(¢) = U,ep() T'(p) =
D(source(G)). The variables in =\ D(source(G)) are tested in the chain inserted be-
fore source(G). By construction, INVERSEDELETION has the property that whenever
a node v is marked, all computation paths leading into it test precisely the variables in
T(v) before leaving v. So when both sinks are marked, all computation paths test all

variables. O

Although it is not an important question for the main stream of our considerations,
one might ask whether INVERSEDELETION can be performed efficiently. A time (and
space) bound of O(n size(G)) was given for the algorithm in [SW95, Theorem 1].
Since only O (nsize(G)) nodes are inserted (because there are only O (size(G)) edges
in (), the local merging steps can be performed in a total time of O(n size(G)) using
the linear reduction algorithm for OBDDs of Sieling and Wegener [SW93].

9.2 A Property of INVERSEDELETION

A trivial observation is that if v was inserted by INVERSEDELETION while v’ was
active, then F'(v) ~ F(v'). So we have to show that the supports are different. The
proof of the proposition and lemma which follow exploit the variable ordering to show
that after the local merging step in INVERSEDELETION the nodes represent different

subfunctions.

90 9.2 A Property of INVERSEDELETION

Proposition 9.3. Assume that u and v were inserted by INVERSEDELETION
while w was active, and not merged before w was marked. Then D(u) #

D(v).

Proof. Assume that u and v were inserted while w was active, and D(u) = D(v).
To prove that 4 and v were merged, we apply induction on z := #D(u) \ D(w) =
#D(v)\ D(w). Since u and v were inserted respecting the canonical variable ordering
and D(u) = D(v), we must have V(u) = V(v). Let v’ and v’ denote the successor
nodes of u and v, respectively. Now either z = 1, which implies v’ = w = v', or the
variable ordering implies that V' (u') = V(v'), and ' and v’ have been merged by the

induction hypothesis. So the merging rule is applicable to u and v. O

Lemma 9.4. If GG is a strongly reduced FBDD and G' := INVERSEDELE-
TION(G), then the nodes of G’ represent different subfunctions.

Proof. Consider a node v that was inserted while v' was active and let w # v be
another node of G'. We must show that F'(v) # F(w). If w # v' and w was already
present in G, then we have F(w) % F(v') by Lemma 8.7. Since F(v) ~ F(v'), we
have F(w) % F(v), which implies F(w) # F(v). If w = ¢/, then F(w) # F(v)
because D(w) = D(v') # D(v). So assume that w was inserted while w' was active.
If w' # o', then F(v) # F(w) because F(v) ~ F(v') % F(w') = F(w) (again using
Lemma 8.7). If w' = ¢/, then D(w) # D(v), because otherwise by Proposition 9.3, w
and v would have been merged before w' = v’ was marked. So F(w) # F(v). O

To bound the number of insertions during INVERSEDELETION, we give an upper
bound on the number of subfunctions which are represented at nodes which can be
inserted while running INVERSEDELETION on any FBDD for a particular function f.
This is possible because each such node v corresponds to an ordered pair (f,,&) con-
sisting of a subfunction f, of f having nonessential variables in its support and one of
these nonessential variables £ = V' (v), which is tested at the node v (see the definition
of Del(f) below). Using Lemma 9.4, it is easy to see that for each such pair at most one
node is inserted during a run of INVERSEDELETION. Thus, we obtain an inequality.

9 Quasireduced FBDDs and the Deletion Rule 91

Corollary 9.5. Let f be a Boolean function and del(f) := # Del(f), where

Del(f) = {(fa,€) | € %3 A £ € free(a) \ ess(fa)} -

If G is a strongly reduced FBDD for f and G' = INVERSEDELETION(G), then

size(G") — size(G) < del(f) .

Proof We show that the mapping
¢: nodes(G') \ nodes(G) — Del(f); v+— (F(v),V(v))

is injective. Note that (F(v), V(v)) € Del(f), because the deletion rule is applicable
to v. The mapping ¢ is injective, since by Lemma 9.4, already v — F'(v) is injective.
O

We hope that the reader will agree with us that the subtleties of Section 8 have
payed off by now.

The main ideas leading to Corollary 9.5 can be found in [Weg94, proof of Theo-
rem 7]. However, Wegener’s explanation of the unfolding process is very short and we
cannot follow his argument because the problem with multiple FBDD nodes correspond-
ing to the same application of the deletion rule in a qOBDD is not even mentioned. We
understood that he does not exclude that the node marked “!” in Fig. 15 could be
generated twice.

9.3 Probabilistic Analysis of INVERSEDELETION

Now we switch over to probabilities. Using results from the analysis of the deletion rule
in the OBDD case, we prove a large deviation inequality for del. By Corollary 9.5, this
also bounds the number of nodes which can be inserted by INVERSED ELETION.

Theorem 9.6. For every ¢ > 0,

—9(1+4o0(1))en/2logn

Pr (del()= n2(%+0)") <2

Proof. We work with the ‘stratification’ Del(f) = [J;¢, Del(f,), where

Del(f,j) == {(fa,€) | @ € F3 A £ € free(a) \ ess(fa) A # free(a) = j — 1}.

92 9.3 Probabilistic Analysis of INVERSEDELETION

If (fa,&) € Del(f,7), then foe = f,¢, and this corresponds to the deletion of an
FBDD node which is reached along the partial computation path determined by the
partial assignment . On the other hand, there is a unique variable ordering 7 that
satisfies free(a) <, & <, free(a) \ {£} and coincides with the canonical variable
ordering within both free(a) and free(a) \ {¢}, and (£, &) corresponds to an appli-
cation of the deletion rule at the j-th level (where ¢ is tested) of qOBDD,(f). In this
way, we can apply the results on the effect of the deletion rule in qOBDDs from Sec-
tion 5 to estimate del(f,7) := # Del(f,). To get an upper bound for del(f,7), we
sum up X ;(f) over all variable orderings 7 of the form described above. We consider
two ranges of j separately.

Ifj>(1-

)n + 1, then there are at most

(“.)jz (" .)j@ﬁ":ﬁ"
J n—7

ways to choose 7. Therefore,

210gn

f}r (del(f,j) > 2(%“)”) < 25~ (2012 _ —(2+o(1))2°"

by Theorem 5.4. (For every variable ordering 7, X,’T, ; is small with high probability.)
For j < (1 —

210°gn)n + 1, we apply Markov’s inequality (see Proposition 6.5).

Pr (del(f,5) Pr(ZX,’rJ 1)
E(Zx;,j) = Y B(X;;) <nlB(Xy).
Writing 7 = 15, we have

c —cn
—i—ip=(1-= —(1+0o(1))n ~
O0=J—t (210gn>n (1+o0(1)n 2logn’

and by Theorem 5.1,

E(X:r,]) < (1 + 0(1))25+(1—2_5_1)L _ 2_2(1+o(1))cn/210gn .

So
_2(1+0(1))cn/210gn _2(1+0(1))cn/210gn

P;r(del(f,j)>1)<n!2 =2 ,

and the theorem follows by summing over all levels. O

9 Quasireduced FBDDs and the Deletion Rule 93

Corollary 9.7. For every ¢ > 0,

—2(1+40(1))en/2logn
)

Pr(W’—W > n2(%+c)") <2

and for almost all Boolean functions, minimal quasireduced FBDDs and minimal
FBDDs have almost the same size.

Proof. Let G be an FBDD for a Boolean function f with size(G) = ¥(f). Since G is
minimal, it is also strongly reduced, and by Corollary 9.5 we have size(G') —size(G) <
del(F), where G’ := INVERSEDELETION(G). Thus, ¥'(f) < size(G') < ¥(f) +
del(f), and del(F) is ‘small’ with high probability, see Theorem 9.6.

The second claim follows from a result of Breitbart, Hunt, and Rosenkrantz who
showed that almost all Boolean functions have a minimal BP size of (1 + 0(1))2"/n,
which is a lower bound for ¥ [BHR95, page 55]. O

10 FBDDs and the Merging Rule

The aim of this section is to prove Main Theorem 2 (i). So far, we know that ¥' ~ ¥
with high probability (Corollary 9.7). Using the inverse merging rule, a qFBDD can be
unfolded into a binary decision tree. This is done by Algorithm INVERSEMERGING,
which is described below. Since we know the number of nodes in a complete binary
decision tree, we can determine the size of the original gFBDD if we know (at least
approximately) the number of nodes which are inserted by INVERSEMERGING. There
are some technical complications in the ‘lower’ part of the gFBDD, however.

For quasireduced FBDDs, there is a natural notion of a level that generalises the
notion of a level in qOBDDs. Levels are determined by the distance from the source.
Mergings are only possible within levels.

Definition 10.1. Let G be a gFBDD and j € [n]. Then
Level(G, j) := {v € nodes(G) | #D(v) =n—j+1}
and level(G, j) := # Level(G, j).

The lower part of an qFBDD consists of the levels below iy. Fortunately, it turns out
that the lower part has only comparatively few nodes under the assumptions of Main
Theorem 2 (i).

The main result of this section is Theorem 10.10, which implies Main Theorem 2 (i).

10.1 Algorithm INVERSEMERGING

Algorithm INVERSEMERGING is very simple, and stated here mainly for reference.

Algorithm INVERSEMERGING

Input: A quasireduced FBDD G.
Output: A complete binary decision tree G’ equivalent to G.

« Forj=2,...,n:
- Expand the nodes at level j using the inverse merging rule.

- Expand the terminals using the inverse merging rule.

It is straightforward to implement INVERSEMERGING using O(2") time and space.
The decision tree can be output during a ‘lexicographical’ traversal of the qOBDD (with
respect to the levels, not the variables). This is optimal due to the size of the result.

96 10.2 Relating qFBDDs to qOBDDs

10.2 Relating gFBDDs to qOBDDs

Assume that G is a minimal gFBDD for some Boolean function f and G' := INVERSE-
MERGING(G). We want to lower bound size(G). Using the results from the qOBDD
case, we will derive upper bounds on level(G’, j) — level(G, j) = k; — level(G, j) for
each level j. The intuition of these estimations is that qFBDDs are smaller than qOBDDs
because they can somehow ‘collect’ mergings which are possible within qOBDDs for sev-
eral variable orderings. But it is not necessary to sum up over all n! variable orderings
to get an upper bound. To explain why, we need some definitions.

First, let us fix what kind of mathematical entity a variable ordering should ‘really’
be. (We have been successful in avoiding this question so far, but now we will work
with variable orderings more specifically.)

Definition 10.2. A variable ordering is a bijection 7: & — [n]. We write

£ <& = 7w(&) <m().

In qOBDDs, the nodes of each level have the same dependency sets. In qgFBDDs, we
only know that their dependency sets have the same size. Thus, we further partition the
nodes of each level into classes with equal dependency sets d. Each dependency set d
corresponds to a certain variable ordering 4. This forges the link to OBDDs.

Definition 10.3. Let j € [n].

(i) The set of all dependency sets D(v) which are possible for a node v at
level 7 of a qFBDD is denoted by

AQG) == {d|dCEAN#d=n—j+1}.

(ii) For each d C Z, denote by 7y the unique variable ordering that satisfies
Z'\ d <, d and coincides with the canonical ordering within both =\ d
and d.

Note that D(v) = 71'5%1)) [j .- n] by definition. This gives us a handy way to get from
an application of the merging rule in an FBDD to a corresponding application in an
OBDD. It turns out that the order in which the variables in =\ D(V') have been tested
in the gFBDD is irrelevant, as is V' (v). It is only the sets of variables D(v) which are
important. In this way, the number of m which have to be considered can be reduced
tremendously. This idea is essentially due to Wegener [Weg94].

10 FBDDs and the Merging Rule 97

We note an easy observation which will be used in the proof of the lemma follow-
ing it. It relates the size of certain qOBDD levels to the number of subfunctions with
prescribed supports.

Proposition 10.4. Let j € [n| and d € A(j). Then

Yr,,i(f) = level (QOBDD,,(f),) = #{fa | € Z3 A free(a) = d} .

Proof. We give a ‘proof by bijection’. (The first equality holds by definition.) Let v €
Level (QOBDD,,(f),j). Then v represents a subfunction F'(v) of f which depends
on the variables in 71'5%1})[j..n] = d. Due to the merging rule, all the F'(v) at this
level are different. Conversely, each subfunction f, with free(a) = d is represented by
the node v € Level (qOBDD7T (), g) which is reached along the (partial) computation
path which is determined by the values of @ on =\ d. Therefore,

level (QOBDDy,(f),5) = #{F(v) | v € Level (qQOBDD,,(f),7) }
:#{fa|vEE3/\free(a):d}. O

The next lemma enables us to estimate the gap between expected and worst-case
width in the ‘upper’ part of a random qFBDD by using the results on X;.

Lemma 10.5. Let GG be a qFBDD for a Boolean function f and define

Xag(F) =Y XnyilF).
deA())
Then for all j € [iy],

level(G,j) > ki —Xa;(f).

Proof. Let G’ := INVERSEMERGING(G). For any FBDD H and d C =, we denote the
set of nodes with dependency set d by Level(H,d) := {v € nodes(H) | D(v) = d}.
Also, let level(H,d) := # Level(H, d). Clearly,

ki —level(G,j) = Y (level(G'd) — level(G, d)),

deA(j)

and due to the merging rule, level(G,d) > #{F(v) |v € Level(G',d)}. (Two nodes
can only be merged if they represent the same subfunction. In general, this inequality

is strict, because the decomposition variables must also coincide.) There is a bijective

98 10.2 Relating qFBDDs to qOBDDs

correspondence between each v € Level(G’, d) and a (partial) assignment to the vari-
ables in = \ d, since G’ is a decision tree. Denote this assignment by «,. Then we
have
level(G', d) — level(G, d)

< level(G,d) — #{F(v) | v € Level(G', d)}

= #{a, |v € Level(G"d)} — #{fa, | v € Level(G',d) }

< #{a | a € F3 A free(a) =d} — #{ fa ‘ a € 3 A free(a) = d}

= k] - Yﬂ.d:j(f) = Wdaj(f))

where the second inequality holds simply because o — f, is a mapping, and the
equality

Ve i(f) = #{fa| @ € T3 A free(a) = d}
was proved in Proposition 10.4. The lemma follows. O

The lower bounding technique of Section 10.2 breaks down for levels j > 3. In-
stead, we estimate the worst-case size of the whole lower part. Fortunately, for the
range of a in question we have W’ = o(W).

Lemma 10.6. Let n — +oo and denote the worst-case size of all levels below

ioby
Wb = Z wj.
j=li1]
Then
O(QL/‘@), a<0;
le
W= 0277, 0<a</n;
O(QL_‘/E), a>+/n.

Proof By Theorem 2.6, W = ©(2%), and due to the doubly exponential decrease rate
of j — my; (for each n), we have

b N N gto—li1] f,
W~ i] = Mgy i =)

Clearly,
-0 —-1< 3, §<0;
ip— |91] =40 — [do] —1=1¢ -1, 0'=0;
—o', 0 >0.

10 FBDDs and the Merging Rule

99

This already settles the case a < 0.

For 0 < a < 1/n, wehave @ = a+O(1) byLemma3.7and 2 L = L —a+0O(1)

by (3.11) and (3.12) from the proof of Theorem 3.8 (i), which implies
279L=L—-a+0(1).
For a > y/n, we have @ > y/n + O(1), and
2L =2"%L < L—+/n+0(1)

follows from (10.1).

(10.1)

O

We have already seen how the widths of the levels 7 < i in a qFBDD are related
to those in a qOBDD in Lemma 10.5. Now we estimate this bound for the whole upper
part. (The attentive reader will notice a great similarity to the proof of Theorem 6.6.)

Lemma 10.7. Let

Xalf) = D Xaj(f),
]

J€lio

where X 4 ;(f) was defined in Lemma 10.5, and

() = Y X0
Then e
B(Xa) = o(2°""B(X) + 1) .

Proof. Clearly, #A(j) < 2™. By Lemma 3.9, for j € [i_4] we have
E(_X]) < 2(1—@)[1 < 2721’/

for large n. So

For j € |i_4..1], we have

n nlog L+10
X

e logL\ __ logzn
log L + 10 S o(n¢%) = o(2%7),

#a0) < -

because

log L R logk jog(log L) 10logn
(log L)! > 5 =23 18(757) = (2100en) |

100 10.3 The Minimal FBDD Size of Random Boolean Functions

and the lemma follows since X; < X. O

Here is how the results on the upper and the lower part fit together.

Proposition 10.8. For all Boolean functions f,

U(f) = W—-W —Xa(f).

Proof. Let G be a minimal FBDD for f. Then by definition,

U (f) = size(G) = Zlevel(G, 7).

Using Lemma 10.5, we see that

U(f) > Y ki~ Xaj(f) =W - W’ — Xa(f). O
]

J€lio

10.3 The Minimal FBDD Size of Random Boolean Functions

Now we put things together and prove Main Theorem 2 (i). The expected size of mini-
mal FBDDs is given by the next theorem.

Theorem 10.9. If n — +oo is such that a(n) ¢ [—log’n — w(1) .. w(1)],
then

E(W) ~ W.

Moreover, |a| > y/n implies

E(¥) = (1—2—9(@)14/.

Proof: We split the sequence of n into two subsequences according to the sign of a.
The case a = w(1):
Since 7' > 1y, we have X < X — Xy, and by Theorem 3.8 (iii),

E(X) < E(X — X;) =28 920n)
So Lemma 10.7 implies

B(Xa) = o 2987 2 20/) 4 1) = 2 8WA) — (1)

10 FBDDs and the Merging Rule 101

Also W’ = o(W) by Lemma 10.6. For a > 1/n we even have W*/W = O(2L-V").
So by Proposition 10.8, E(¥) ~ W, and a > y/n implies E(¥) = (1 — 2-?Vm))I¥.
The case a = —log®n — w(1):

Here we use the upper bound X < X. By Theorem 3.8 (iii),
E(X) = E(Xy) + 287920

Using Theorem 3.8 (i) and Proposition 3.12, E(X;) ~ 221971 For a < —\/n, we
have E(Xy) = 2¢7%(V") by Lemma 3.9. Therefore, Lemma 10.7 implies that

B(Xa) = o297 254471 4 1) = 0(25741) +1) = o(W),

and a similar calculation shows that E(X4) = 2£72(V?) for a < —,/n. The relative
size of W’ is only W*/W = 0(2]‘/‘@) by Lemma 10.6. O

Perhaps the following brief statement gives a better understanding why the log2 n
in Theorem 10.9 cannot be improved easily: If ¢ = —w(1) and a = o(y/n), then we
have E(X;/)/2" ~ 23~ by Proposition 3.12, and this has to be multiplied by

#A(Z’) — (] z0(1)> > 2(logn+0(1))(log n—log log n+o(1)))
ogn

So either a = —Q(log2 n) or a better idea for a proof is necessary.
Finally, we show that Theorem 10.9 does not only hold for the expected minimal
FBDD size E(¥), but also for ¥ itself with high probability.

Theorem 10.10. If n — oo is such that a(n) ¢ [—log’n — w(1) .. w(1)],

then
Pr (2 < (1-o(1)W) = e 2™,

Moreover, if |a| > 4/n, then forall A > 1,

Pr (W < (1 — Q—Q(W))W> — R/l

Proof. The heart of the proof of Theorem 10.9 was the asymptotic estimation of E (X 4)
and W’ and an application of Proposition 10.8. So we are done if we can show that
Xa — E(X4) is small with high probability.

102 10.4 Some Remarks on Main Theorem 2 (i)

Actually, we have to use a refinement of Proposition 10.8. Let

X’A,j(f) ‘= min {kj,XA,j} = min {kja Z

deA(j

| Xm,j(f)} :

Since level(G, j) is nonnegative, we can replace Xa,; with XA,j in Lemma 10.5.
jelio] K44 S Xa. Here

X A< KA+ XbA, where X = ZJL':"JW X a,; and 7 will be specified below. Then in

Similarly, in Lemma 10.7 we can replace X 5 with X, = >

Proposition 10.8, we have
H>2W-W —k— X, (10.2)

Observe that X’ (f) is a sum over <n™ **10 summands of the form X, ;(f), d €
A(j), and each X, ; is no more than 2'3°L away from its expected value with prob-
ability 1 — 2e=2""/4 by (4.3) from the proof of Theorem 4.3, for each ¢ > 0. We set
i:=n—n?3, sothat k; = 0(2"_"2/3) = W -27°W") Also, for ¢ := 1/logn, we

. i1te 1
have n?~#10. 925" L — 2(2+O(1/1°g"))L, so that

Pr (|XbA _ E(Xl’A)| > 2(%+O(1/logn))L) < 2O(n2/3) 672L/logn/4 -

Since XI’A < X4, the estimations on the lower bound from Proposition 10.8 in the proof
of Theorem 10.9 also apply to the improved lower bound (10.2) up to k; = 2~ Wn).w.
Therefore, the asymptotics for E(¥) from the proof of Theorem 10.9 are valid for ¥

with probability 6_9(2L/logn) , t0o. O

Thus, Main Theorem 2 (i) is proved.

10.4 Some Remarks on Main Theorem 2 (i)
We end this section with some ideas how Theorems 10.9 and 10.10 might be improved.

(1) The cut-off point in Theorem 10.10 can be pushed closer to W in some cases.
E.g., for a < 0, W’ is much smaller than just o(W), but still we cannot achieve a
lower bound of E(¥) — 2n2"2°F as for OBDDs, see Corollary 5.6.

(2) Use a better bound than W' for the lower part.

(3) Show that we do not really have to sum up the reduction effect for different variable
orderings, due to incompatibilities among them.

(4) It is fairly easy to come up with results for a fixed graph ordering. (But the number
of graph orderings is so large that even our doubly exponential probability bounds
are not strong enough to make the simple proof technique from the OBDD analysis
carry over.)

10 FBDDs and the Merging Rule 103

(5) So one should try to reduce the number of graph orderings which have to be consid-
ered, or exploit dependencies among variables which correspond to ‘similar’ graph
orderings. (We worked on this for a while, but it seems to become very technical.)

We believe that the log® in Theorem 10.10 is not best possible. More refined methods
seem to be necessary to close the gap between Assertions (i) and (ii) of Main Theorem 2.

11 Small FBDDs and large OBDDs

This section contains the proof of Main Theorem 2 (ii). We show that there exists
a certain range of sequences of n such that for a random Boolean function with n
variables, the minimal OBDD size is Z, = (1 + o(1)) W'(n) and the minimal FBDD
size is ¥ = (1 — £2(1)) W'(n), with high probability. Thus, FBDDs are a constant
factor smaller than OBDDs. The upper bound follows from the probabilistic analysis of
the performance of the algorithm SIMPLETYPE.

11.1 Algorithm SIMPLETYPE

The idea behind algorithm SIMPLET YPE is that minimal FBDDs should be smaller than
minimal OBDDs because they can somehow ‘collect’ mergings which are possible within
OBDDs for different variable orderings. While a lot of ideas come into one’s mind when
thinking about a way how the additional reduction potential of FBDDs that arises from
the absence of a global variable ordering could be exploited algorithmically, it turns out
to be rather difficult to come up with an algorithm that has a provable performance
guarantee. Note that we are not interested in (possibly rare) worst-case inputs; SIM-
PLETYPE is a deterministic algorithm which performs ‘well’ on random inputs.

In the application of FBDDs, reasonable FBDD types are found using heuristics
which exploit, for example, circuit structure [BMS96]. Of course, such an approach
is not feasible in our context. Let us emphasise that Algorithm SIMPLETYPE is not
meant to be used in practice, but serves us to derive an existence result in a constructive
way. Consequently, we shall give no complexity analysis here, but it is clear that the
running time is not ‘pathological’ (i. e., primitive recursive).

Algorithm SIMPLETYPE has three phases. In the first phase, we perform Shannon
decomposition up to some level i#, using the canonical variable ordering (any other
variable ordering does equally well, due to the symmetry of the probability space).
Recall that the analysis of random OBDDs showed that the ‘gap’ between expected and
worst-case size is almost entirely concentrated on the ‘critical’ level 7', if there is such a
gap at all. Later in the probabilistic analysis, we will consider sequences of n such that
the OBDD gap is rather small — less than a constant fraction of W - but not extremely
small. The parameters can be adjusted in such a way that for some constant fraction of
the nodes at level i which were constructed in Phase 1, there is a possible merging at
level 7' below each node for some variable ordering which coincides with the canonical
one on the first # levels. Also, 3 is not very far above 7', so that the size of level it isa
constant fraction of . For technical reasons, we will only consider those nodes at level
i which have a unique ‘partner’. These are called ‘uniquely partly mergeable’. Now in
Phase 2, we choose an appropriate decomposition ordering below the uniquely partly
mergeable nodes at level i# and use the canonical one otherwise to obtain a binary
decision tree. Finally, we apply the merging rule in Phase 3.

106 11.1 Algorithm SIMPLETYPE

Algorithm SIMPLETYPE

Input: A Boolean function f = f(zy,...,2,) and i 4 € [n], i <i <.

Output: A quasireduced FBDD G representing f.

Phase 1:
. At the first i# — 1 levels, we perform Shannon decomposition with respect
to the canonical variable ordering. This determines the subfunctions to be

represented at level 4*.

Phase 2:
- To describe the order in which the remaining variables are tested, we use the
following technical notions:
- Let 5= {d C {z;]j € [..¢"-1]} | #d =1’ — '} and denote for d € =
the partial assignment which sets the variables in d to 0 by d.
- Define a relation of being ‘partly mergeable?” on Level(G, i*) by
M(v,v') ¢ v#v' A3deE: Flv)g=F[');
and denote the set of ‘uniquely partly mergeable®’ nodes by
U:={v|Fv*: M(v,v*)}.
- For each partly mergeable pair v, v* € U, choose one d(v) = d(v*) € =
arbitrarily among those which satisfy F'(v)gmy = F/(v")g) -
+ For the computation paths going through some uniquely partly mergeable
v € U, continue Shannon decomposition according to the variable ordering
T{21,.w4_,} Ud(v) - FOr the remaining v € Level(G, ") \ U, use the canonical
variable ordering.

Phase 3:
- Apply the merging rule to get the qFBDD G.

SiMPLET YPE makes no use of the deletion rule at all, but in view of Corollary 9.5
and Theorem 9.6, only a marginal improvement would be possible. Note however,
that the estimations on the effect of the deletion rule were proved for strongly reduced
FBDDs. It seems hard to show that one will get a strongly reduced FBDD by applying
the deletion rule to the result of SIMPLETYPE (and we conjecture that this is even
false in general).

2 In german: ‘teilverschmelzbar’ % ‘eindeutig teilverschmelzbar’

11 Small FBDDs and large OBDDs 107

The parameter i° will be used for fine-tuning of the size of = ensuring that the
set U is large. For too small #=, there are only a few partly mergings. For too large
#Z=, not enough partly mergings satisfy the uniqueness condition.

The restriction to uniquely partly mergeable nodes is made for technical reasons,
but we do not expect the number of partly mergeable nodes to be much (i.e., more
than a constant factor) larger, at least in the interesting cases. See the remarks on “how
not to improve algorithm SIMPLETYPE” at the end of this section.

11.2 The Expected Size of the Set U

By choosing the right decomposition variables at and below level 3#, SIMPLET YPE can
save some nodes at level ' which lie below the uniquely partly mergeable nodes at

level i* in the topological ordering. This is why we use the term “partly mergeable”.

Proposition 11.1. Let G := SIMPLETYPE(f,i*,’). Then

U
level(G,4'") < ki — #7

Proof. For each pair v,v" € U such that M(v,v"), we can perform a merging among

the successor nodes representing F'(v)z,y and F'(v')y atlevel 4. O

Hence, we must show that #U is large. The first step to estimate the size of U
is to determine the probability that two nodes at level i# are partly mergeable (not

necessarily uniquely).

Lemma 11.2. Let G := SIMPLETYPE(f,4* 4’). Then for any two nodes
v,v" € Level(G, "),

Proof Let v,v' € Level(G, i¥) after Phase 1 of SIMPLETYPE. The two nodes v and v’
are partly mergeable if and only if there exists a d € = such that F\(v); = F(v')7. We

estimate the probability of this event using the “principle of inclusion and exclusion”.

108 11.2 The Expected Size of the Set U

The Bonferroni inequalities tell us that

< ZPr (F(v)g= F(v")3) =: p*;
Pr (M(U,U)) > pﬁ: Z Pr (F(v)g:F(vl)g A F(v)g :F(v!)a_l,) = pb.

{dd}cE
d#d'

Note that F(v) and F(v') are independent random Boolean functions of n — * + 1
variables. Let g := F'(v) @ F(v'). Then F(v);=F(v')g < g;=0 forall d.

To compute the probabilities, we count the number of unconstrained truth table po-
sitions of g. A position c¢ is called constrained if and only if g5 = 0 implies g(c) = 0.
If we want to produce a g satisfying g; = 0, we are free to choose the value of g(c)
if and only if ¢ is unconstrained. Thus, each constrained position ‘halves’ the proba-
bility of the event g; = 0. The number of constrained truth table positions can itself
be counted using the probabilistic method. Think of ¢ as a random variable taking

uniformly distributed values in [n=i'+1]2 Then

log Pr(g; = 0) = —#{c| c is constrained }
g
= —#{c|gg=0 forces g(c) =0}
= g+l py (g5 =0 forces g(c)=0)
= o # PV €d: ¢ =0)
_2n7i“+1 o #d
— _2n7i'—|—1)
Similarly,
log Pr(gg =0A gz = 0)
g
— " Py (Vo €di; =0V Vo, €d: ¢ =0)
= —2" 1 (2Pr (Vo € di ;= 0) = Pr(Va; € dUd': ;= 0))
— _277.71'&—}—1 (2 . 27#d _ 27#dUd’)
— _on—it—#d+2 | gn—it—#dud'+1

— _2nf’i’—|—2 + 2n7i'7#d\d'—|—1
3

4!
< 5 2n z+1.

11 Small FBDDs and large OBDDs

109
Therefore,
M =
~ —_gn—1 +1 #,:
po=#5-2 =
my
and
. 3on—i'+1 é
22 o—32
P> #5227 =p”(1—)
my O

Next we compute the probability that a node is uniquely partly mergeable and the
expected size of U.

Lemma 11.3. Let G := SIMPLETYPE(f,4#,4’) and k := k. For two nodes
v,v" € Level(G, "), let

p:=Pr(M(v,v')) and p':=Pr(37v*: M(v,0v%)).

Then E(#U) = kp', and

I

o(1),

p
pP=k-1pl-p*?=¢0(1), p
p

o(1),

o(1/k);
O(1/k);

w(1/k).

|

Proof. The equation E(#U) = kp' is just the linearity of expectations.
For each v, #{v*

M(v,v*)} is a sum of independent identically distributed in-

dicator random variables and therefore binomially distributed with parameters k — 1
and p. So

e W T e R IR

Finally, the asymptotics hold since

E—2)*2]<e?t2 L1, forall p,and
(1-p)*?= <1 _pk=2))> P
k—2 ~ e Pk forp =6O(1/k). O

If n is in a certain range, then by the following theorem we can arrange the settings
of 4% and #* for SIMPLETYPE such that the expected size of #U for random f is at
least some constant factor of w;s. As a consequence, level ¢’ is not completely ‘full’.

110 11.2 The Expected Size of the Set U

Theorem 11.4. If n — 400 in such a way that 0 > a(n) = O(loglogn), then
there exist parameters i# and i’ for SIMPLETYPE so that E (#U) = .(2(2L(”)) .

Proof We have ky = §2(2%). Assume that we can find i* and ¢’ such that

[1)c

#

Then in Lemma 11.2, we have
#7:: -0 (\/;ni') _ O<22o(1)—1L+0(1)—L) — 0(1)
I3 i’

and hence, the p in Lemma 11.3 is

#5 1 1
~ = () —_— = () _
P my kil k’iﬁ ’
which implies p’ = ©(1) and finally,
B(#0) = ket = Ofkep)) = 2029

=0 (nk%) and ¢ —i'=0(1). (11.1)

So let us see how to satisfy (11.1). We have

(= (bt
C\e=4t) b)’
—2a

— ¢'. It turns out that b := (log Tog Tt
Observe that 1 < b = O(1) as required. On the other hand, by (3.11) and Lemma 3.7,

(1)

#

b

writing b := ¢ — i* and ¢ := i W is a good choice.

M _ 927 -1)L—8 _ 5-a(i+o(1))
Kk
So we choose ¢ such that

log (b Jbr c) = (27 -1)L+0(1),

minimising the O(1) term. (This will imply (11.1).) Since

b+c+1 b+c b+c+1
="' _ 0
("5 /() = - o,

such a ¢ clearly exists. But can it happen that we need ¢ > n — ¢ = logn + O(1)

b+c

sometimes? — No, because log (b

(b +logn + O(1)
log b

and we only need to achieve a value of

) can become as large as

) = blog (b+logn + O(1)) + O(1) = bloglogn + O(1)

e B bloglogn
(2 1)L e —5 .

11 Small FBDDs and large OBDDs 111

11.3 Large Deviations from the Expected Size of the Set U

To show that #U is not much smaller than E(#U) with high probability, we need a
large deviation inequality. We will apply Azuma’s martingale inequality once more. The

first step is to check that #U indeed satisfies a (somewhat relaxed) Lipschitz condition.

Lemma 11.5. In the framework of algorithm SIMPLETYPE, let f and f’ be
Boolean functions such that

#{a|ae "3 Afree(a) = {z;|j <} A fa# fo} < 1.

Then |#U(f) — #U(f)| < 2(#2 +1).

Proof. There is nothing to prove if f = f'. So assume that « is the (unique) partial as-
signment with free(a) = {z; | j < i*} such that f, # f.. Let v be the corresponding
node at level 4 after Phase 1, whose subfunction changed from f, to f2.

The relation M defines a graph structure on Level(G, i*). An edge between w and
w' is labelled with {d € £ | F(w)g = F(w')g}, which is nonempty. Only edges inci-
dent to v can change if we replace f, by f.,. We split this replacement into two steps.

In the first step, we remove all edges incident to v. If v € U(f), this takes two
nodes away from U. On the other hand, new uniquely partly mergeable pairs can
originate, if at least one of their nodes was formerly adjacent to v. The number of
such pairs is bounded by #5 , because the set labels are disjoint for removed edges
corresponding to different pairs. So #U can increase by at most 2#.=.

In the second step, we insert the new edges incident to v according to f'. By
symmetry, #U can increase by at most 2 and decrease by at most 2#§ . It follows that

[#U(f) — #U(f)] < 2(#5 +1). O

Now the proof of the large deviation result is straightforward.

Theorem 11.6. Under the assumptions and with the parameter settings of The-
orem 11.4,

Pr (\#U —E#U)| > E(ZEU)> < e (2" (loglogn)?)

112 11.4 Small FBDDs via SIMPLETYPE

Proof. By Lemma 11.5, 2(?;%(21) satisfies the Lipschitz condition (4.1). Therefore by

Azuma’s inequality (Theorem 4.1),

Note that #5 = (O(Ol‘g)")) = (logn)°W, so log #= = O(loglogn). Setting

___E#U)
CAHE + D)

= Q(2L/2/ loglog n) ,

we get

Pr (|#U ~E(#U)| > E(fU)> < 9 o~ 2(2"/(loglogn)?)

11.4 Small FBDDs via SIMPLETYPE

Our probabilistic analysis of SIMPLET YPE can be summarised as follows.

Theorem 11.7. Let n — +o0 in such a way that 0 > a(n) = O(loglogn).
Then with the parameter settings from Theorem 11.4,

I;r (size (SMPLETYPE(f)) > (1 — Q(l))W(n)) — ¢ 2(2/(0glogn)?)

Thus, FBDDs are a constant factor ‘better’ than OBDDs on average for sequences
of n such that a(n) = w(1) A a(n) = O(loglogn).

Proof. Let G := SIMPLETYPE(f). For j € [i'— 1], we apply the worst-case bound
level(G, j) < k;.
By Theorems 11.4 and 11.6,

Pr (#U < 2(2")) = 6*9(2L/(10g10gn)2)’
so using Proposition 11.1,
Pr (level(G,1') > ky — 2(27)) = o~ 2(2"/(toglogn)*)

This gives us a constant factor ‘gap’ at level 7.
However, the width of the levels j € [¢' + 1 .. n] is no longer bounded by m;

in the FBDD case. For example, level n might well contain 2n nodes, testing all the

11 Small FBDDs and large OBDDs 113

variables. But we can multiply m; by #E , the number of variable orderings that can
possibly occur on any computation path in G, to get an upper bound. Fortunately,

#5 < gn—if — 90(legn) — nO() i5 4 rather small number. Using (2.7), we get

Z level(G, j) < no) 0<22n—rL1) .

j=it+1
Since ¢’ < 0, we have [L] > L+ 1/2,s0

n0(1)22n—|—L_| < nO(1)221°gL_1/2 — 2(1/\/5"'0(1))1’ = O(W) ,

~

which completes the proof of the theorem. O

Thus, Main Theorem 2 (ii) has been proved.

11.5 How Not to Improve Algorithm SIMPLETYPE

We conclude with some remarks on how not to improve Theorem 11.7, and speculate
about what else might be provable.

The challenge in using the additional power of FBDDs to get a better upper bound
on the optimal size is to arrange the process of Shannon decomposition in such a way
that the achieved reduction (which is always mostly due to the merging rule) is as large
as possible.

In the framework of algorithm SIMPLETYPE, there is a close connection between
p' (or #U) and #=. In order to keep p' = 9(1/k,-u) (see Lemma 11.3), #= must
become larger as a approaches —oo. This is mostly controlled by the value of i’ — ¥,
which is called b in the proof of Theorem 11.4. But since at most one merging is
counted below each node at level ¥, we are not allowed to let b — +00. We must
keep b = O(1) in order to get #U = 2(2%).

So the question arises if we can enlarge p by other means. One idea is to relax the
relation of being partly mergeable. We could use

M(v,v") ¢ v#v A IdC{z;]j> it}
(#d=1 - A Ja,d: free(a) = Free(a)) =d A F(v)q = F(v')y)

instead of M (v,v'). In this way, we might hope to increase p by a factor of 220 But
this is just O(1), as long as b = O(1).

Another idea would be not to neglect nodes which are partly mergeable, but not
uniquely partly mergeable. The restriction to uniquely partly mergeable nodes was
made to simplify the analysis. If a node can participate in several ‘partly mergings’,
conflicts can arise between the corresponding variable orderings, if they are different. It
is not always possible to ‘realize’ such mergings. However, to estimate the power of this

114 11.5 How Not to Improve Algorithm SIMPLETYPE

approach, assume contrafactually for a moment that no conflicts would arise. Then we
still have the problem that p decreases as —a increases. By the proof of Theorem 11.3,
the number of partly mergings in which a node is involved has a binomial distribution
with parameters k; — 1 and p. Therefore, for p = o(1/k;), almost all partly mergings
are unique. So this approach will not get us beyond a = O(loglogn), too. —

Of course, the size of the ‘Shannon gap’ in Theorem 11.7 could be determined more
precisely. Also, one might try to improve SIMPLETYPE (or analyse it better) such that
the upper bound matches the lower bound for general BDDs for some parametrisation
of n for which there is really ‘room’ for such an improvement. Such a result would be
very interesting and surprising, because it implies that FBDDs alternate between BDD-
like and OBDD-like behaviour on random Boolean Functions for different parametrisa-
tions of n. Stated in another way, the question is whether the read-once property or the
variable ordering restriction is the larger step from general BDDs to OBDDs. Although
we have not proved this, it seems fairly natural from Main Theorem 2 that parametri-
sations do exist for which all the three sizes are separated by constant factors.

12 Appendix

12.1 Notation

O-terms. The Landau symbols O and o are used everywhere in computer science, but
there seems to be little agreement in the literature with respect of the signs. The con-
fusion seems to be even greater for {2, see e.,g. [OW93] for a nonstandard definition.
ws are a bit unusual (though not our invention), but come in handy sometimes. So let
us briefly define the way we will use them. The policy we adopt is that O and o are
unsigned, whereas {2 and w are nonnegative. We say that

f=0(g) iff Fe>03In.Vn=n.: |f(n) <c-g(n),
=2(g) iff Fe¢>03In.Vn=n. f(n) > c-g(n),
=o(g) iff Ve>0dn.Vn=n.: |f(n)] <c-g(n),
zne: f(n) 2 c-g(n),

=0O(g) iff f=0(g9) and f=12(g),

f
f
f=w(g) iff Ve>03dn.Vn
f
Frg i f=(1+0(1)g.

Intervals of integers are denoted as [a..b] := [a,b]| N Z and [a] :=[1.. q].

ab

Fractions. We write ab/cd for 27.

Logarithms. Unless stated otherwise, all logarithms have base 2: log = log,. The
natural logarithm is denoted by In = log, .

12.2 Inequalities

The following inequalities are used occasionally.

Forxr e R, e£>1+4+2 and ez>1+x+§+%.

\

2

l+z+ %

1
1-z°

Forx <0, €*

NN

Forz <1, €*

For z > —1, log(l+z) < zloge.

12.3 Asymptotics

exp. For z = o(1),

116 12.3 Asymptotics

log. For z = o(1),
log(1+z) = 1+ zloge+O(a®) = zloge(l+0(1)) = o(1).
L. The function L is defined in Proposition 2.2 on page 32. For n — 400,

n = L+logL = L+log(n —logL)
= L+logn+o(1)~L

and
2L = ov/L ~2Yn.

&', a, v, ki, my. These are defined in Proposition 1.1, page 24 (k;, m;) and
Section 3.1, page 42 (8' = 85, @ =iy = L+1+0", my = 22" L, ky = 25+L).
For the convenience of the reader, we repeat some frequently used estimations in the

following table.

then) = o(n) a=0(yn) a=o(yn) a=0(1)
i= | a(l1+o0(1)) a+0(1) a+o(1) o(1)
§ = o(1) O(1/y/n) o(1/+/n) O(1/n)
];—L = 20(1) ~ 1
ZLI’;’ — 2a(1—|—o(1)) 2a—|—0(1) — 9(2a) 2a+o(1) ~ 20 20(1) — 9(1)

13 References

A commented list of publications of the author is given at the end of this section.

[Ake78]

[Aro98]

[AS91]

[Bar89]

[BBEL96]

[BC94]

[BCI5]

[BCL+94]

[BCM+92]

[BCW8O0]

[BDT95]

[BDW95]

Sheldon B. Akers: Binary Decision Diagrams; IEEE Transactions on Com-
puters, vol. C-27, no. 6, 509 — 516, 1978.

Sanjeev Arora: Polynomial Time Approximation Schemes for Euclidean
Traveling Salesman and Other Geometric Problems; to appear in: Jour-
nal of the ACM. (This article is based upon work presented at FOCS 1996
and FOCS 1997.)

Noga Alon, Joel H. Spencer: The Probabilistic Method; John Wiley & Sons,
New York, 1991.

D. A. Barrington: Bounded-Width Polynomial-Size Branching Programs
Recognize Exactly those Languages in NC!; Journal of Computer and Sys-
tem Sciences, vol. 38, 150 — 164, 1989.

I. Beer, S. Ben-David, C. Eisner, A. Landver: RuleBase: An Industry-Ori-
ented Formal Verification Tool; Proceedings of the 339 ACM/IEEE Design
Automation Conference, 655 — 660, 1996.

Randal E. Bryant, Yirng-An Chen: Verification of Arithmetic Functions with
Binary Moment Diagrams; Technical Report, Carnegie Mellon University,
Pittsburgh, 37 pages, 1994.

Randal E. Bryant, Yirng-An Chen: Verification of Arithmetic Functions with
Binary Moment Diagrams; Proceedings of the 32" ACM/IEEE Design Au-
tomation Conference, 535 — 541, 1995. See also [BC94] for more details.

Jerry R. Burch, Edmund M. Clarke, David E. Long, Kenneth L. McMillan,
David L. Dill: Symbolic Model Checking for Sequential Circuit Verification;
IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 13, no. 4, 401 — 424, 1994.

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill,
L.J. Hwang: Symbolic Model Checking: 10?° States and Beyond; Informa-
tion and Computation, vol. 98, 142 — 170, 1992.

M. Blum, A.K. Chandra, M.N. Wegman: Equivalence of Free Boolean
Graphs can be Decided Probabilistically in Polynomial Time; Information
Processing Letters, vol. 10, no. 2, 80 — 82, 1980.

Bernd Becker, Rolf Drechsler, Michael Theobald: OKFDDs versus OBDDs
and OFDDs; International Colloquium on Automata, Languages and Pro-
gramming, Springer LNCS 944, 475 — 486, 1995.

Bernd Becker, Rolf Drechsler, Ralph Werchner: On the Relation Between
BDDs and FDDs; Information and Computation, vol. 123, no. 2, 185 - 197,
1995.

118

13 References

[BFG+93]

[BGP+97]

[BHMS84]

[BHR95]

[BLPV95]

[BLSW96]

[Blu84]

[BLW96]

[BMS96]

[Bor82]

[BRB90]

[BRSW87]

[Bry86]

R.I. Bahar, E.A. Frohm, C.M. Gaona, G.D. Hachtel, E. Macii, A. Pardo,
E Somenzi: Algebraic Decision Diagrams and Their Application; Proceed-
ings of the IEEE International Conference on Computer-Aided Design,
188 - 191, 1993.

M. Block, C. Gropl, H. Preuf3, H.J. Promel, A. Srivastav: Efficient Order-
ing of State Variables and Transition Relation Partitions in Symbolic Model
Checking; Technical Report, Humboldt-Universitat zu Berlin, 1997.

Robert K. Brayton, Gary D. Hachtel, Curtis T. McMullen, Alberto L. San-
giovanni-Vincentelli: Logic Minimization Algorithms for VLSI Synthesis;
Kluwer Academic Publishers, Boston, 1984.

Y. Breitbart, H. Hunt III, D. Rosenkrantz: On the Size of Binary Decision
Diagrams Representing Boolean Functions; Theoretical Computer Science,
vol. 145, 45 — 69, 1995.

J. Bormann, J. Lohse, M. Payer, G. Venzl: Model Checking in Industrial
Hardware Design; Proceedings of the 3274 ACM/IEEE Design Automation
Conference, 298 — 303, 1995.

Beate Bollig, Martin Lobbing, Martin Sauerhoff, Ingo Wegener Complexity
Theoretical Aspects of OFDDs; in: Representations of Discrete Functions,
T. Sasao and M. Fujita (eds.), Kluwer Academic Publishers, 1996.

N. Blum: A Boolean Function Requiring 3n Network Size; Theoretical
Computer Science, vol. 28, 337 — 345, 1984.

Beate Bollig, Martin Lobbing, Ingo Wegener: On the Effect of Local
Changes in the Variable Ordering of Ordered Decision Diagrams; Infor-
mation Processing Letters, vol. 59, 233 — 239, 1996.

Jochen Bern, Christoph Meinel, Anna Slobodova: Some Heuristics for Gen-
erating Tree-Like FBDD Types; IEEE Transactions on Computer-Aided De-
sign of Integrated Circuits and Systems, vol. 15, no. 1, 127 — 130, 1996.

K. H. Borgwardt: Some Distribution Independent Results About the Asymp-
totic Order of the Average Number of Pivot Steps in the Simplex Algorithm;
Mathematics of Operations Research, vol. 7, 441 — 462, 1982.

K.S. Brace, R.L. Rudell, R.E. Bryant: Efficient Implementation of a BDD
Package; Proceedings of the 27t ACM/IEEE Design Automation Confer-
ence, 40 — 45, 1990.

R. K. Brayton, R. Rudell, A. L. Sangiovanni-Vincentelli, A. R. Wang: MIS: A
Multiple-Level Interactive Logic Optimization System; IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 6,
1062 - 1081, 1987.

Randal E. Bryant: Graph-Based Algorithms for Boolean Function Manipu-
lation; IEEE Transactions on Computers, vol. C-35, no. 8, 677 — 691, 1986.

13 References

119

[Bry91]

[Bry92]

[Bry95a]

[Bry95b]

[BW96]

[CMZ+93]

[Chv79]

[Cob66]

[Cou94]

[Cou97]

[DB95]

[DB97]

[DB98]

[DBR96]

[DGI7]

Randal E. Bryant: On the Complexity of VLSI Implementations and Graph
Representations of Boolean Functions with Application to Integer Multipli-
cation; IEEE Transactions on Computers, vol. C-40, 205 — 213, 1991.

Randal E. Bryant: Symbolic Boolean Manipulation with Ordered Binary-
Decision Diagrams; ACM Computing Surveys, vol. 24, no. 3, 293 - 318,
1992,

Randal E. Bryant: Bit-Level Analysis of an SRT Divider Circuit; Technical
Report, Carnegie Mellon University, Pittsburgh, 9 pages, 1995.

Randal E. Bryant: Binary Decision Diagrams and Beyond: Enabling Tech-
nologies for Formal Verification; Proceedings of the International Confer-
ence on Computer-Aided Design, 1995.

Beate Bollig, Ingo Wegener: Improving the Variable Ordering of OBDDs is
NP-Complete; IEEE Transactions on Computers, vol. 45, 993 — 1002, 1996.

E.M. Clarke, K.L. McMillan, X. Zhao, M. Fuyjita, J.C.-Y. Yang: Spectral
Transforms for Large Boolean Functions with Application to Technology
Mapping; Proceedings of the 30" ACM/IEEE Design Automation Confer-
ence, 54 — 60, 1993.

Vasek Chvatal: The Tail of the Hypergeometric Distribution; Discrete Math-
ematics, vol. 25, 285 — 287, 1979.

A. Cobham: The Recognition Problem for the Set of Perfect Squares; Pro-
ceedings of the 7. Symposium on Switching and Automata Theory, 78 — 87,
1966.

Olivier Coudert: Two-Level Logic Minimization: An Overview; Integration,
vol. 17, 97 — 140, 1994.

Olivier Coudert: Solving Graph Optimization Problems with ZBDDs; Pro-
ceedings of the European Design & Test Conference, 1997.

Rolf Drechsler, Bernd Becker: Dynamic Minimization of OKFDDs; Proceed-
ings of the International Conference on Computer Design, 602 — 607, 1995.

Rolf Drechsler, Bernd Becker: Overview of Decision Diagrams; IEE Pro-
ceedings Computers and Digital Techniques, vol. 144, no. 3, 187 — 193,
1997.

Rolf Drechsler, Bernd Becker: Graphenbasierte Funktionsdarstellung —
Boolesche und Pseudo-Boolesche Funktionen; Teubner Verlag, Stuttgart,
200 pages, 1998.

Rolf Drechsler, Bernd Becker, Stefan Ruppertz: K*BMDs: A New Data Struc-
ture for Verification; European Design & Test Conference, 2 — 8, 1996.

Rolf Drechsler, Nicole Géckel: Minimization of BDDs by Evolutionary Al-
gorithms; Proceedings of the International Workshop on Logic Synthesis,
Lake Tahoe, 1997.

120

13 References

[DST+94] R. Drechsler, A. Sarabi, M. Theobald, B. Becker, M.A. Perkowski: Ef-

[DTB94]

[Ede97]

[Eme90]

[Feio6]

[FMK88]

[FS90]

[GD99]

[GPS98]

[GM94]

[Has96]

[Has97]

ficient Representation and Manipulation of Switching Functions Based
on Ordered Kronecker Functional Decision Diagrams; Proceedings of the
31st ACM/IEEE Design Automation Conference, 415 — 419, 1994.

Rolf Drechsler, Michael Theobald, Bernd Becker: Fast OFDD Based Min-
imization of Fixed Polarity Reed-Muller Expressions; Proceedings of the
European Design Automation Conference, 2 — 7, 1994.

Alan Edelman: The Mathematics of the Pentium Division Bug; SIAM Re-
views, vol. 39, no. 1, 54 — 67, 1997.

E. Allen Emerson: Temporal and Modal Logic; Chapter 16 in: Jan van
Leeuwen (ed.), Handbook of Theoretical Computer Science, vol. B (Formal
Models and Semantics), Elsevier Science Publishers, Amsterdam, 995 —
1072, 1990.

Uriel Feige: A Threshold of In n for Approximating Set Cover; Proceedings
of the 28™ Annual ACM Symposium on Theory of Computing, 314 — 318,
1996.

M. Fujita, Y. Matsunaga, T. Kawato: Evaluation and Improvement of
Boolean Comparison Method Based on Binary Decision Diagrams; Proceed-
ings of the International Conference on Computer-Aided Design, 2 — 5,
1988.

S.J. Friedman, K.J. Supowit: Finding the Optimal Variable Ordering for
Binary Decision Diagrams; IEEE Transactions on Computers, vol. 39, 710 —
713, 1990.

Wolfgang Giinther, Rolf Drechsler: Minimization of Free BDDs; Proceed-
ings of the Asia and South Pacific Design Automation Conference, 4 pages,
1999.

Clemens Gropl, Anand Srivastav, Hans Jiirgen Promel: Size and Structure
of Random Ordered Binary Decision Diagrams (Extended Abstract); Pro-
ceedings of the 15% Annual Symposium on Theoretical Aspects of Com-
puter Science, Springer LNCS 1373, 238 — 248, 1998.

Jordan Gergov, Christoph Meinel: Efficient Boolean Manipulation with
OBDDs can be Extended to FBDDs; IEEE Transactions of Computers,
vol. 43, no. 10, 1197 - 1209, 1994.

Johan Héstad: Clique is Hard to Approximate Within n!~¢; Proceedings
of the 37™ Annual IEEE Symposium on Foundations of Computer Science,
627 — 636, 1996. (See ECCC TR97-038 for a newer version.)

Johan Hastad: Some Optimal Inapproximability Results; Proceedings of
the 29t Annual ACM Symposium on Theory of Computing, 1 — 10, 1997.
(See ECCC TR97-037 for a newer version.)

13 References

121

[HCO74]

[HDB]

[HLJ+89]

[HM94]

[ISY91]

[Kar88]

[Kar95]

[KM72]

[KMS98]

[KS85]

[KSC78]

[KSR92]

[Lee59]

[LL90]

[LL92]

S. Hong, R. Cain, D. Ostapko: MINI: A Heuristic Approach for Logic Min-
imization; IBM Journal of Research and Development, vol. 18, 443 — 458,
1974.

Andreas Hett, Rolf Drechsler, Bernd Becker: The DD-Package PUMA; avail-
able via http://www.informatik.uni-freiburg.de/FREAK/papers/puma/
pumamain.html.

G. Hachtel, M. Lightner, R. Jacoby, C. Morrison, P Moceyunas, D.Bostick:
BOLD: The Boulder Optimal Logic Design System; in: Hawaii International
Conference on System Sciences, 1989.

Mark A. Heap, Melvin Ray Mercer: Least Upper Bounds on OBDD Sizes;
IEEE Transactions on Computers, vol. 43, no. 6, 764 — 767, 1994.

N. Ishiura, H. Sawada, S. Yajima: Minimization of Binary Decision Dia-
grams Based on Exchanges of Variables; Proceedings of the IEEE Interna-
tional Conference on Computer Aided Design, 472 — 475, 1991.

K. Karplus: Representing Boolean Functions with If-Then-Else DAGs; Tech-
nical Report UCSC-CRL-88-28, University of California at Santa Cruz,
1988.

Michat Karonski: Random Graphs; Chapter 6 in: R. Graham, M. Grotschel,
L. Lovéasz (eds.): Handbook of Combinatorics, vol. 1; Elsevier, Amsterdam,
1995.

V. Klee, G.J. Minty: How Good is the Simplex Algorithm?; In: Sisha: In-
equalities - ITI, Academic Press, 159 — 175, 1972.

D. Karger, R. Motwani, M. Sudan: Approximate Graph Coloring by
Semidefinite Programming; Journal of the ACM, Vol. 45, No. 2, 246 — 265,
1998.

R. M. Karp, J. M. Steele: Probabilistic Analysis of Heuristics; Chapter 6 in:
E.L. Lawler, J.K. Lenstra, A. H. G. Rinnooy Kan, D.B. Shmoys: The Travel-
ing Salesman Problem; Wiley, Chichester, 1985.

Valentin E Kolchin, Boris A. Sevast'ianov, Vladimir P Chistiakov: Random
Allocations; John Wiley & Sons, 1978.

U. Kebschull, E. Schubert, W, Rosenstiel: Multilevel Logic Synthesis Based
on Functional Decision Diagrams; Proceedings of the European Design Au-
tomation Conference, 43 — 47, 1992.

C.Y. Lee: Representation of Switching Circuits by Binary Decision Pro-
grams; Bell System Technical Journal, vol. 38, 985 — 999, 1959.

Heh-Tyan Liaw, Chen-Shang Lin: On the OBDD-Representation of General
Boolean Functions; NSC Rep., NSC79-0404-E002-35, 1990.

Heh-Tyan Liaw, Chen-Shang Lin: On the OBDD-Representation of General
Boolean Functions; IEEE Transactions on Computers, vol. 41, no. 6, 661 —
664, 1992.

122

13 References

[Lon93]

[LPV94]

[LSW95]

[Mas76]

[MB88]

[McM93]

[Min93]

[Min96]

[MIY90]

[MKR92]

[MR95]

[MS97]

[MT98]

[MWBS88]

David Long: Model Checking, Abstraction and Compositional Verification;
Dissertation, Carnegie Mellon University, 1993.

Y.-T. Lai, M. Pedram, S.B.K. Vrudhula: EVBDD-Based Algorithms for In-
teger Linear Programming, Spectral Transformation and Functional De-
composition; IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 13, 959 — 975, 1994.

Martin Lobbing, Olaf Schroer, Ingo Wegener: The Theory of Zero-Sup-
pressed BDDs and the Number of Knights Tours; Proceedings of the IFIP
WG 10.5 Workshop on Applications of the Reed-Muller Expansion in Cir-
cuit Design, Makuhari, Chiba, Japan, 38 — 45, 1995.

W. Masek: A Fast Algorithm for the String Editing Problem and Decision
Graph Complexity; Master’s thesis, MIT, 1976.

J.-C. Madre, J.-P. Billon: Proving Circuit Correctness Using Formal Com-
parison Between Expected and Extracted Behaviour; Proceedings of the
25 ACM/IEEE Design Automation Conference, 205 — 210, 1988.

Kenneth L. McMillan: Symbolic Model Checking; Kluwer Academic Pub-
lishers, Boston, 194 pages, 1993.

Shin-Ichi Minato: Zero-Suppressed BDDs for Set Manipulation in Combi-
natorial Problems; Proceedings of the 30t ACM/IEEE Design Automation
Conference, 272 — 277, 1993.

Shin-Ichi Minato: Binary Decision diagrams and Applications for VLSI CAD;
Kluwer Academic Publishers, Boston, 141 pages, 1996.

S. Minato, N. Ishiura, S. Yajima: Shared Binary Decision Diagrams with
Attributed Edges for Efficient Boolean Function Manipulation; Proceedings
of the 27" ACM/IEEE Design Automation Conference, 52 — 57, 1990.

M.R. Mercer, R. Kapur, D.E. Ross: Functional Approaches to Generat-
ing Orderings for Efficient Symbolic Representations; Proceedings of the
29t ACM/IEEE Design Automation Conference, 624 — 627, 1992.

Rajeev Motwani, Prabhakar Raghavan: Randomized Algorithms; Cam-
bridge University Press, 476 pages, 1995.

Christoph Meinel, Anna Slobodova: Speeding up Variable Ordering of
OBDDs; In: Proceedings of the International Conference on Computer De-
sign, 1997.

Christoph Meinel, Thorsten Theobald: Algorithmen und Datenstrukturen
im VLSI-Design; Springer Verlag, Berlin, 283 pages, 1998.

S. Malik, A.R. Wang, R.K. Brayton, A.L. Sangiovanni-Vincentelli; Logic
Verification Using Binary Decision Diagrams in a Logic Synthesis Environ-
ment, Proceedings of the International Conference on Computer-Aided De-
sign, 6 — 9, 1988.

13 References

123

[OW93]

[Pap94]

[Pon95]

[PS95]

[PS98]

[PSP94]

[Raz95]

[RGBS97]

[Rud93]

[Sen96]

[Sha49]

[Sie94]

[Sie95]

[Sie98a]

Thomas Ottmann, Peter Widmayer: Algorithmen und Datenstrukturen;
BI Wissenschaftsverlag, Mannheim, Reihe Informatik, Nr. 70, 755 pages,
1993.

Christos H. Papadimitriou: Computational Complexity; Addison-Wesley
Publishing Company, Reading, Massachusetts, 523 pages, 1994.

Stephen Ponzio: A Lower Bound for Integer Multiplication with Read-Once
Branching Programs; Proceedings of the 27% Symposium on Theory of
Computing, 130 — 139, 1995.

S. Panda, E Somenzi: Who are the Variables in Your Neighborhood; Pro-
ceedings of the IEEE International Conference on Computer Aided Design,
74 -77, 1995.

Harry Preufd, Anand Srivastav: Blockwise Variable Orderings for Shared
BDDs; Proceedings of the 23" International Symposium on Mathematical
Foundations of Computer Science, Springer LNCS 1450, 1998.

S. Panda, E Somenzi, B. E Plessier: Symmetry Detection and Dynamic Vari-
able Ordering of Decision Diagrams; Proceedings of the IEEE International
Conference on Computer Aided Design, 628 — 631, 1994.

Ran Raz: A Parallel Repetition Theorem; Proceedings of the 27% Annual
Symposium on Theory of Computing, 447 — 456, 1995.

Rajeev K. Ranjan, Wilsin Gosti, Robert. K. Brayton, Alberto L. Sangiovan-
ni-Vincentelli: Dynamic Reordering in a Breadth-First Manipulation Based
BDD Package: Challenges and Solutions; Proceedings of the IEEE/ACM
International Conference on Computer Design, 1997.

Richard Rudell: Dynamic Variable Ordering for Ordered Binary Decision
Diagrams; Proceedings of the International Conference on Computer Aided
Design, 42 — 47, 1993.

E. Sentovich: A Brief Study of BDD Package Performance; Proceedings
FMCAD, 389 - 403, 1996.

C.E. Shannon: The Synthesis of Two-Terminal Switching Circuits; Bell Sys-
tem Technical Journal, vol. 28, 59 — 98, 1949.

Detlef Sieling: On the Complexity of Operations on Graph Driven BDDs
and Tree Driven BDDs; Technical Report No. 554, Universitidt Dortmund,
1994.

Detlef Sieling: Algorithmen und untere Schranken fiir verallgemein-
erte OBDDs; Dissertation, Universitdt Dortmund, Shaker Verlag Aachen,
133 pages, 1995.

Detlef Sieling: On the Existence of Polynomial Time Approximation
Schemes for OBDD-Minimization; Proceedings of the 15" Annual Sym-
posium on Theoretical Aspects of Computer Science, Springer LNCS 1373,
205 - 215, 1998.

124

13 References

[Sie98b]

[SM93]

[Som96]

[Spe94]

[SRBS96]

[SW93]

[SW95]

[SW98a]

[SW98Db]

[SWW96]

[TM94]

[VIS96]

[Weg87]

Detlef Sieling: The Nonapproximability of OBDD-Minimization; For-
schungsbericht Nr. 663, Universitiat Dortmund, Fachbereich Informatik,
46 pages, 1998. An earlier version appeared as [Sie98a].

Anna Slobodovd, Christoph Meinel: Efficient Manipulation with FBDDs by
Means of a Modified OBDD-Package; Technical Report No. 93-09, Univer-
sitat Trier, 30 pages, 1993.

Fabio Somenzi: CUDD: Colorado University Decision Diagram Package;
available via ftp://vlsi.colorado.edu/pub/, 1996.

Joel Spencer: Ten Lectures on the Probabilistic Method; Society for Indus-
trial and Applied Mathematics, 88 pages, second edition 1994.

Jagesh V. Sanghavi, Rajeev K. Ranjan, Robert K. Brayton, Alberto L. San-
giovanni-Vincentelli: High Performance BDD Package Based on Exploit-
ing Memory Hierarchy; Proceedings of ACM/IEEE Design Automation
Conference, 1996. The CAL BDD-package is available via http://www-
cad.eecs.berkeley.edu/Research/cal _bdd .

Detlef Sieling, Ingo Wegener: Reduction of OBDDs in Linear Time; Infor-
mation Processing Letters, vol. 48, 139 — 144, 1993.

Detlef Sieling, Ingo Wegener: Graph Driven BDDs —a New Data Structure
for Boolean Functions; Theoretical Computer Science, vol. 141, 283 — 310,
1995.

Olaf Schroer, Ingo Wegener: The Theory of Zero-Suppressed BDDs and
the Number of Knight's Tours; Formal Methods in System Design, vol. 13,
235 -253, 1998.

Detlef Sieling, Ingo Wegener: A Comparison of Free BDDs and Transformed
BDDs; Technical Report No. 697, Universitat Dortmund, 13 pages, 1998.

Martin Sauerhoff, Ingo Wegener, Ralph Werchner: Optimal Ordered Bi-
nary Decision Diagrams for Fanout-Free Circuits; Proceedings of Synthesis
and System Integration of Mixed Technologies (SASIMI), Fukuoka, Japan,
197 - 204, 1996. Submitted to Discrete Applied Mathematics.

C.-C. Tsai, M. Marek-Sadowska: Boolean Matching Using Generalized
Reed-Muller Forms; Proceedings of the 315t ACM/IEEE Design Automation
Conference, 339 — 344, 1994.

The VIS Group: VIS: A System for Verification and Synthesis; Proceed-
ings of the 8™ International Conference on Computer Aided Verifica-
tion, Springer LNCS 1102, 428 - 432, 1996. Homepage: http://www-
cad.eecs.berkeley.edu/Respep/Research/vis/index.html .

Ingo Wegener: The Complexity of Boolean Functions; Teubner (Stuttgart) /
Wiley (Chichester), 457 pages, 1987.

13 References 125

[Weg94] Ingo Wegener: The Size of Reduced OBDDs and Optimal Read-Once
Branching Programs for Almost All Boolean Functions; IEEE Transactions
on Computers, vol. 43, no. 11, 1262 — 1269, 1994.

List of Publications (in reverse chronological order):

Size and Structure of Random Ordered Binary Decision Diagrams (Extended Abstract); Pro-
ceedings of the 15th Annual Symposium on Theoretical Aspects of Computer Science,
Springer LNCS 1373, 238 — 248, 1998. (With Anand Srivastav and Hans Jiirgen
Promel.)

This paper presents an earlier stage of the results from Part 1. The results from
Part 2 of this dissertation are due to its author alone.

Parallel Repetition of MIP(2,1) Systems; Chapter 6 in: E.W. Mayr, H. J. Promel, A. Ste-
ger (Eds.): Lectures on Proof Verification and Approximation Algorithms, Springer
LNCS 1367, 1998. (With Martin Skutella.)

We explain the main ideas of Raz’s celebrated proof of a ‘parallel repetition theorem’
for two-prover one-round proof systems (=MIP(2,1)) [Raz95]. This is a revised version
of a talk given at a research seminar for young scientists at Schlof3 Dagstuhl in April
1997. Raz’s parallel repetition theorem answered an important conjecture in the field of
probabilistically checkable proofs to the positive and has since been applied in several
important inapproximability results, including approximability thresholds for the set
cover problem by Feige [Fei96] and for the clique number and other graph parameters
by Hastad [Has96,Has97].

Efficient Ordering of State Variables and Transition Relation Partitions in Symbolic Model
Checking; Technical Report, Humboldt-Universitdt zu Berlin, 1997. (With Mathias
Block, Harry Preul3, H.J. Promel and A. Srivastav.)

We investigate the potential of simulated annealing for the two ordering problems
mentioned in the title (see also page 17). (Partitioned transition relations were intro-
duced by the authors of [BCL+94].) These investigations were carried out within the
framework of the research project ‘Effiziente Algorithmen zur formalen Verifikation von
VLSI-Designs’ at Humboldt Universitit zu Berlin.

Uber Approximationsalgorithmen zur Firbung k-fiarbbarer Graphen, die vektorchromati-
sche Zahl und andere Varianten der 1-Funktion; Forschungsinstitut fiir Diskrete Mathe-
matik, Rheinische Friedrich-Wilhelms-Universitat zu Bonn, 1996.

This diploma thesis contains investigations on the vector chromatic number, a semi-
definite relaxation of the chromatic number related to the Lovasz 1J-function which
has been used in the O(n'/%)-colouring algorithm for 3-colourable graphs of Karger,
Motwani, and Sudan [KMS98]. We show that the vectorchromatic number does not
coincide with the ¥-function, although there always exists a subgraph with the same

126 13 References

vectorchromatic number for which they do. Two new ‘semidefinite parameters’ are
introduced and compared with the two mentioned above. The proofs are based on

complementary slackness and an explicit counterexample.

