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Zusammenfassung

Es besteht weitgehend Einigkeit darüber, dass inzidentelles Lernen bewusstes Wissen über 

eine  sequenziell  strukturierte  Regelhaftigkeit  erzeugen  kann,  auch  wenn  die  zu  Grunde 

liegenden Lernprozesse nur ungenügend verstanden sind.  Ob jedoch Sequenzlernen auch 

„implizit“ oder unbewusst erfolgen kann, ist umstritten. Fortschritte in diese Frage sind von 

Untersuchungen zu bewusstem und unbewusstem Lernen zu erwarten, die vor dem Hinter-

grund übergreifender Bewusstseinstheorien erfolgen. Rünger und Frensch (2008a) zeigen, 

wie  „bewusstes  Sequenzwissen“  in  Rückgriff  auf  die  „global  workspace“-Theorie  des 

Bewusstseins definiert und operationalisiert werden kann. Im Rahmen dieser Theorie wird 

„inferenzielle  Promiskuität“  als  zentrales  funktionales  Merkmal  bewusster  mentaler 

Repräsentationen  betrachtet.  Rünger  und  Frensch  (2008b)  überprüfen  eine  zentrale 

Vorhersage  der  „unexpected  event“-Hypothese,  einer  Theorie  zur  Entstehung  bewussten 

Wissens  in  inzidentellen  Lernsituationen.  In  einer  Serie  von  Experimenten  wurden 

unerwartete  Ereignisse  durch  Unterbrechungen  des  inzidentellen  Lernprozesses 

experimentell induziert. In Übereinstimmung mit der „unexpected event“-Hypothese fanden 

die Autoren, dass sich die Verfügbarkeit bewussten Sequenzwissens erhöhte. Rünger, Nagy 

und Frensch (in Druck) untersuchen schließlich die Funktion bewussten Sequenzwissens im 

Kontext  eines  Rekognitionstests.  Die  empirischen  Befunde  deuten  darauf  hin,  dass 

bewusstes Sequenzwissen die epistemische Grundlage für rationale Urteile im Gegensatz zu 

intuitiven oder heuristischen Urteilen darstellt.

Schlagwörter: 

Sequenzlernen, Bewusstsein, unerwartetes Ereignis, Rekognition
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Abstract

There is  a  general  consensus  that  incidental  learning  can  produce  conscious  knowledge 

about a hidden sequential regularity, even though the underlying learning mechanisms are 

still poorly understood. By contrast, whether sequence learning can also be “implicit” or 

nonconscious is a matter of intense debate. Progress can be achieved by grounding research 

on conscious and nonconscious learning in larger theoretical frameworks of consciousness. 

Rünger and Frensch (2008a) show how “conscious sequence knowledge” can be defined and 

operationalized  in  reference  to  global  workspace  theory  of  consciousness  that  depicts 

“inferential  promiscuity” as the functional hallmark of conscious mental representations. 

Rünger and Frensch (2008b) test a central prediction of the unexpected-event hypothesis—a 

theoretical  account  of  the  generation  of  conscious  knowledge  in  incidental  learning 

situations. In a series of experiments, unexpected events were induced experimentally by 

disrupting the incidental learning process. In line with the unexpected-event hypothesis, the 

authors  observed  an  increased  availability  of  conscious  sequence  knowledge.  Finally, 

Rünger, Nagy, and Frensch (in press) explore the function of conscious sequence knowledge 

in the context of a sequence recognition test. The empirical results suggest that conscious 

sequence knowledge provides the epistemic basis for reasoned—as opposed to intuitive or 

heuristic—judgments.

Keywords:

sequence learning, consciousness, unexpected event, recognition
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1 Overview
In  the  following I  summarize  a  dissertation  project  on the  generation  of  conscious 

knowledge  about  an  incidentally  experienced  sequential  regularity  and  its  subsequent 

application in the context of a recognition test. The dissertation comprises four manuscripts. 

Frensch and Rünger (2003) review empirical findings from the implicit learning literature 

and  spotlight  two  important  theoretical  issues.  First,  how  to  define  and  operationalize 

“implicit” or nonconscious learning is a matter of continuing debate. Second, the mecha-

nisms  that  produce  conscious  knowledge  during  incidental  learning  are  still  poorly 

understood. In an attempt to meet these theoretical challenges, Rünger and Frensch (2008a) 

define  and  operationalize  “conscious  sequence  knowledge”  on  the  basis  of  a  broader 

theoretical view of consciousness that regards conscious mental contents as inferentially 

promiscuous. In Rünger and Frensch (2008b) we explore a theoretical framework for the 

generation of conscious knowledge in incidental learning situations—the unexpected-event 

hypothesis. Finally, Rünger, Nagy, and Frensch (in press) test the prediction that conscious 

sequence knowledge provides the epistemic basis  for reasoned (as opposed to heuristic) 

decisions in a sequence recognition test.

2 Implicit Learning
Learning  about  environmental  regularities  is  a  popular  research  topic  in  cognitive 

psychology. An important reason for the unabated interest is the controversial claim that 

such learning can be “implicit” or nonconscious. The term “implicit learning” was coined by 

Arthur Reber (1967). In a seminal study on artificial grammar learning (AGL) Reber asked 

his participants to memorize sets of letter strings such as TPPTS or VXVPS. Unbeknownst 

to participants, the strings were generated by traversing through a finite-state grammar that 

is shown in Figure 1. After the study phase participants were informed that the strings they 

had just memorized conformed to a complex set of grammatical rules. They then received 

new strings that were either grammatical or not, and were asked to make a grammaticality 

judgment for each string based on the strings they had studied earlier. Reber found that on 

average 69% of the classification decisions were correct. He proposed that classification was 

based on abstract rules that participants had formed implicitly during the initial study phase, 

that is, without using conscious, verbalizable strategies. The acquired rules themselves were 

regarded as “tacit” knowledge—knowledge that is, to a significant degree, unavailable to 

conscious inspection (Reber, 1989).
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Another important tool to study implicit learning is the the serial reaction time (SRT) 

task (Nissen & Bullemer, 1987). In the training phase with the SRT task participants respond 

to a target that appears on a computer screen in one of four horizontally arranged locations. 

Each location is assigned to a response key, and participants are asked to respond as quickly 

and accurately as possible by pressing the key that corresponds to the current target location. 

The target locations on successive trials follow a systematic pattern that is continuously 

repeated  throughout  the  training  phase.  Although  participants  are  not  informed  of  this 

sequential regularity, they nevertheless learn something about the deterministic structure of 

the task: When, at some point during the training phase, the systematic response sequence is 

replaced by random sequences, response times (RTs) increase. This increase provides an 

indirect, performance based measure of sequence learning.

Several  early  studies  with the SRT task reported that  participants  showed sequence 

learning on the performance measure, even though they had very little conscious knowledge 

about  the  sequential  regularity.  For  example,  Nissen  and Bullemer  (1987)  observed RT 

savings for structured relative to random responses in six amnesic patients who claimed to 

be completely unaware of a sequential regularity. This finding was confirmed by Reber and 

Squire (1994). In their study nine amnesic patients showed normal sequence learning on the 

performance measure, but were severely impaired in direct tests of conscious knowledge 

such  as  verbal  report  or  recognition  of  the  sequence.  Finally,  Willingham,  Nissen,  and 

Bullemer (1989) demonstrated that implicit  sequence learning also occurs in individuals 

without memory impairment. They identified a subgroup of participants who could neither 

report the sequence nor generate it in a prediction task, yet showed greater RT savings over 

Figure 1. Finite-state grammar used by Reber (1967). A grammatical string is generated by following the 
arrows through the grammar, starting at node S0 and exiting at node S0'. Letters are picked up along the 
way.
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training with the systematic sequence than participants in a control group that were trained 

on random sequences.

The early findings reported in the implicit learning literature lent credence to the view 

that memory is composed of functionally separate systems with distinctive neural underpin-

nings  (e.g.,  Cohen & Squire,  1980;  Gabrieli,  1998;  Tulving,  1985;  Schacter & Tulving, 

1994). In particular, the distinction between declarative and nondeclarative memory (e.g., 

Squire & Zola, 1996) seemed to capture the pivotal finding well that individuals can adapt 

to the statistical structure of their environments without being conscious of the underlying 

statistical contingencies. 

However, the multiple-systems view of conscious and nonconscious learning did not 

stand uncontested. Arguably the most influential critique was formulated by Shanks and St. 

John (1994). Shanks and St. John concluded from an extensive review of the literature that 

the  existence of  dissociable  conscious  and nonconscious  learning  systems had not  been 

established convincingly. Their critique was, first and foremost, a methodological one. The 

standard demonstration of nonconscious learning requires a dissociation between an indirect 

performance  measure  that  indicates  learning,  and  a  direct  test  that  indicates  a  lack  of 

conscious knowledge (cf. Erdelyi, 2004). However, in order to accept this dissociation as 

evidence for nonconscious learning, one needs to presume that the direct test is sensitive 

enough  to  detect  all  conscious  knowledge  that  might  have  been  expressed  on  the 

performance  measure  (the  exhaustiveness criterion;  Reingold  &  Merikle,  1988).  When 

viewed in this light, empirical dissociations reported in the literature either did not withstand 

scrutiny (see Shanks & St. John, 1994), or they simply failed to replicate. For example, both 

Reed  and  Johnson  (1994)  and  Destrebecqz  and  Cleeremans  (2001)  reported  sequence 

learning on the indirect test and chance performance on a recognition test, but subsequent 

replication  studies  by  Shanks  and  collaborators  (Shanks  &  Johnstone,  1999;  Shanks, 

Wilkinson,  &  Channon,  2003)  provided  no  evidence  of  dissociation.  Implicit  learning 

therefore remained an elusive phenomenon. 

3 On How to Define Conscious Sequence Knowledge
In a summary of key findings reported in the literature on AGL and sequence learning, 

Frensch and Rünger (2003) highlighted some of the unresolved theoretical problems. Most 

notably, how to define and operationalize implicit learning continued to be a moot issue. As 

noted above, many researchers consider learning to be implicit if the products of learning 

are  not  available  to  consciousness  (see  e.g.  Frensch,  1998,  for  an  alternative  view). 
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However, the resulting problem of having to distinguish conceptually between conscious 

and nonconscious knowledge is typically not acknowledged. Instead, researchers resort to 

operational definitions of consciousness and conscious knowledge. Conscious knowledge, 

operationally  defined,  is  knowledge  that  can  be  expressed  on  some  direct  test  that  the 

researcher  deems  adequate—appealing  to  intuition  and  common  practice  rather  than 

theoretical considerations. Not surprisingly, evidence for the existence of implicit learning 

varies  with  the  particular  direct  test  employed.  For  example,  there  is  little  doubt  that 

participants can acquire knowledge with the SRT task that they find difficult or impossible 

to express verbally (Frensch & Rünger, 2003; Shanks, 2005). Consequently,  with verbal 

report as the principal measure of conscious knowledge, implicit sequence learning appears 

to be a valid concept. In contrast, when recognition or sequence generation are used as direct 

tests,  one  typically  finds  that  the  expression  of  sequence  learning  on  the  performance 

measure is accompanied by above-chance performance on the direct tests.  

Rünger and Frensch (2008a) recount the interpretational problems that arise from the 

use of different direct tests to determine the epistemic status of knowledge. These problems 

are not unique to the domain of implicit learning. Particularly striking dissociations between 

different direct tests occur in individuals with neuropsychological impairments that affect 

the integrity of consciousness. Consider, for example, patient DB described in Weiskrantz 

(1997). Surgical removal of a small tumor in primary visual cortex (V1) left him with a 

large scotoma in his left visual hemifield. When an experimenter flashed a circular patch of 

lines in DB's blind field, he typically reported to have no visual experience, yet he was 

virtually perfect at forced-choice guessing the orientation of the line gratings. In DB's case, 

two  direct  tests  of  visual  processing  yield  contradictory  results.  If  forced-choice 

discrimination is regarded a valid test of DB's conscious knowledge of line orientation, then 

one needs to conclude that this information was consciously available to DB. By contrast, if 

one regards verbal reports as an adequate measure of the contents of consciousness, then the 

conclusion is that DB had no visual experience.

Drawing on neuropsychological evidence, experimental findings, and neurocomputa-

tional models,  Rünger and Frensch (2008a) propose to abandon the common practice of 

defining consciousness operationally in favor of a conceptual definition of consciousness in 

terms of global availability or accessibility. This proposal is rooted in several theoretical 

accounts  of  consciousness  that  depict  global  availability  to  cognitive  processes  as  the 

functional hallmark of consciousness (Block, 1995; Baars, 1988, 1997; Dennett, 1991, 2001; 
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Dehaene & Naccache,  2001).  For example,  in Dennett's  Multiple  Drafts  model  multiple 

cognitive processes operate in parallel,  competing for control of behavior. Most of these 

processes have only short-lived effects, but some get perpetuated and spawn continuing, 

widespread effects, including verbal reports of the contents of consciousness. According to 

Block  (1995),  a  mental  state  is  access  conscious  if  its  content  is  “inferentially 

promiscuous”—that is, if it can be used as a premise in reasoning and for the rational control 

of speech and action.

With consciousness thus defined, Rünger and Frensch (2008a) turn to the question of 

what a participant in an experiment with the SRT task may, or may not, become conscious 

of. We argue that sequence learning can have multiple conscious and nonconscious effects. 

First, a participant can become conscious of the repeating sequence of response locations in 

the training phase. For example, a participant can come to know consciously that response 

location 1 was followed by locations 6 and 4. Moreover, executing a systematic response 

sequence might engender conscious feelings of perceptual-motor fluency or familiarity (e.g., 

Buchner,  Steffens,  Erdfelder,  &  Rothkegel,  1997;  Fendrich,  Healy,  &  Bourne,  1991; 

Perruchet  & Amorim,  1992;  see also Norman,  Price,  & Duff,  2006,  and Koriat,  2000). 

Presumably, these feelings mediate conscious knowledge of the presence of a regularity that 

can, in principle, exist without conscious knowledge of the order of response locations that 

defines the regularity (cf. Dienes & Scott, 2005). In other words, a participant might be able 

to report that responses followed a systematic pattern, but she may be at loss when being 

asked to describe the specific series of response locations.

Our analysis of the different effects of sequence learning leads us to identify “conscious 

sequence knowledge” with conscious knowledge of the serial order of response locations. 

Moreover, we argue that verbal reports, unlike recognition and generate tasks, provide a 

sensitive and valid measure of conscious sequence knowledge. Recognition and generate 

tasks,  though  commonly  employed  in  research  on  sequence  learning,  fail  to  meet  the 

exclusiveness  criterion  formulated  by  Reingold  and Merikle  (1988):  They  are  not  only 

sensitive to conscious sequence knowledge, but to nonconscious and derivative conscious 

effects of sequence learning (e.g., perceptual-motor fluency). 

4 The Generation of Conscious Sequence Knowledge
A second focus in Frensch and Rünger's (2003) review concerns the learning mech-

anisms  that  create  conscious  knowledge of  regularities  in  incidental  learning  situations. 

Traditionally,  researchers have not paid particular attention to conscious knowledge as a 
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possible  outcome of  incidental  learning,  as  most  theoretical  and  empirical  efforts  were 

directed at characterizing learning that is implicit. In order to encourage a shift in theoretical 

perspective, we outlined possible relations between learning processes, behavioral changes 

due to learning, and consciousness of the products of learning. 

Rünger  and  Frensch  (2008b)  and  Rünger,  Nagy,  and  Frensch  (in  press)  delineate 

theoretical  accounts  that  can  be  applied  to  the  question  of  how  conscious  sequence 

knowledge is generated. Despite Shanks and St. John's (1994) critical review, the multiple-

systems view of memory continues to feature prominently in the sequence learning literature 

(e.g.,  Keele,  Ivry,  Mayr,  Hazeltine,  &  Heuer,  2003;  Reber  &  Squire,  1994,  1998). 

Willingham (1998; Willingham & Goedert-Eschmann, 1999) proposed that conscious and 

nonconscious  sequence  learning  can  proceed  in  parallel.  Conscious  learning  requires  a 

strategic process—akin to high-level problem solving—that selects and sequences spatial 

targets that are represented in allocentric space. Implicit learning, on the other hand, relies 

on target representations in egocentric space that are inaccessible to consciousness. Implicit 

learning is achieved through tuning of a sequencing process that is engaged whenever a 

sequence of spatial targets is executed. 

The competing single-system view rejects the notion of multiple memory systems (e.g., 

Shanks,  2005;  Shanks  &  St.  John,  1994;  Perruchet  &  Vinter,  2002).  According  to 

Cleeremans  and  collaborators  (e.g.,  Cleeremans,  2006;  Cleremans  &  Jiménez,  2002) 

sequence learning is a mandatory consequence of performing a sequentially structured task 

Figure 2. Schematic depiction of the color-matching version of the SRT task. On each trial during the 
training phase a manual response was determined by the small target rectangle at the bottom of the screen 
that matched the color of the large probe rectangle at the top. The six target rectangles were mapped to 
six spatially compatible response keys. Although the colors of the rectangles changed pseudorandomly 
from trial to trial, participants kept pressing the same sequence of response keys.
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such as the SRT task. Learning produces, over time, increasingly strong, stable, and distinct 

representations  of  the  underlying  sequential  regularity.  With  increasing  quality  of  a 

representation  comes  a  greater  influence  on  the  behavior  of  the  individual,  but  the 

representation does not necessarily become available to consciousness. For knowledge to be 

conscious, it has to be re-represented in a metarepresentation (Cleeremans, 2006; cf. Dienes 

&  Perner,  1999).  Cleeremans'  framework  thus  demarcates  conscious  and  nonconscious 

knowledge according to the presence or absence of relevant metaknowledge. Nevertheless, 

the  framework  qualifies  as  a  single-system  account  of  sequence  learning  because 

metarepresentations  are  produced  by  the  same  learning  mechanisms  in  the  same 

representational systems as their first-order counterparts (Cleeremans, 2006).

Frensch, Haider, Rünger, Neugebauer, Voigt, and Werg (2003) advanced a theoretical 

framework for the generation of conscious knowledge in incidental learning situations that 

is  compatible with the multiple-systems view of memory.  According to  the unexpected-

event hypothesis, behavioral effects of nonconscious learning can trigger explicit reasoning 

processes  that  generate  conscious  knowledge  about  the  underlying  task  structure. 

Specifically,  we  assume  that  nonconscious  learning  can  produce  unexpected  events—

behavioral effects  that are discrepant with an individual's  current  expectations about  the 

learning situation. For example, an individual might notice that her responses in the training 

phase with the SRT task have become surprisingly fast and fluent. Such unexpected events 

are believed to trigger an intentional search for their likely cause. A successful search then 

leads to discovery of the sequential regularity and its subsequent verbal report. 

In a series of experiments Rünger and Frensch (2008b) tested the central prediction that 

unexpected events can trigger the generation of conscious, reportable sequence knowledge. 

The  test  consisted  of  a  comparison  of  the  amount  of  reportable  sequence  knowledge 

generated in two experimental conditions: Participants completed a training phase with the 

SRT task that either did or did not contain experimentally induced unexpected events.

We used a modified version of the SRT task in which the response on any given trial is 

determined  by  the  screen  position  of  one  of  six  horizontally  arranged  rectangles  that 

matches  the  color  of  a  centrally  presented  probe  rectangle  (see  Figure  2).  Our  color-

matching version retains the key feature of the standard SRT task: Responses on successive 

trials in the training phase followed a repeating pattern. Specifically, the colors were chosen 

pseudorandomly in such a way that the same sequence of the six response locations was 

continuously  repeated  (e.g.,  ...-4-2-1-5-6-3-4-2-1-5-6-3-4-...).  In  the  control  condition 
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participants performed ten blocks of trials with the SRT task. Immediately after the training 

phase participants were asked to verbally describe the regular response pattern. 

In order to quantify the sequence knowledge contained in a verbal report, we introduced 

a novel scoring procedure. In a first step, we determined the structural overlap between a 

verbalized  sequence  and the  actual  training  sequence  in  terms  of  the  number  of  shared 

sequence  segments  (i.e.,  pairs,  triplets,  quadruples,  and  quintuples).  In  a  second step,  a 

verbal  knowledge score  was  assigned based  on  the  likelihood of  achieving  a  particular 

structural match (e.g., two shared pairs and one shared triplet) by random guessing—with 

lower guessing probabilities affording higher verbal knowledge scores.

The critical experimental manipulation consisted of the induction of unexpected events 

during  the  training  phase  with  the  SRT  task.  We  predicted  that  the  experience  of 

experimentally  induced  unexpected  events  would  increase  the  availability  of  reportable 

sequence  knowledge  after  the  training  phase.  Unexpected  events  were  produced  by 

disrupting the learning process with the systematic training sequence. At different points 

during  the  training  phase  participants  were  either  transferred  to  randomly  determined 

response locations or to an alternate systematic sequence that had the same basic structure as 

the training sequence. For example,  in one experiment the training phase comprised ten 

blocks of trials with the training sequence (e.g., 1-6-3-4-2-5) and an additional four blocks, 

distributed over the training phase, that contained a different sequence (e.g, 1-3-5-2-4-6). In 

another experiment we used the same ordering of regular blocks and transfer blocks, but 

response locations on the four transfer blocks were structured randomly.

We expected that the shift to random sequences or to an alternate sequence would bring 

about performance decrements (e.g., slower RTs and an increased error rate). If a participant 

noticed this unexpected change in her performance, she would engage in a search for an 

explanation  to  the  unexpected  event.  This  search  then  leads  to  the  discovery  of  the 

sequential regularity—at least in subset of participants. 

Our  results  partially  confirmed  the  unexpected-event  hypothesis.  Most  importantly, 

participants who were shifted to a systematic transfer sequence generated significantly more 

reportable knowledge about the training sequence than participants in the control condition. 

In  contrast,  participants  who received interpolated random transfer  blocks  generated the 

same amount of reportable sequence knowledge. The lack of an effect in the latter condition 

can  be  explained  as  follows:  Presumably,  the  shift  to  randomly  determined  response 

locations  produced unexpected  performance decrements  that  triggered a  search  for  their 



12

cause. However, the search could not possibly lead to discovery of a regularity when it was 

carried  out  during  random  transfer  blocks.  In  other  words,  the  facilitative  effect  of 

unexpected events critically depends on the successful execution of the search process. This 

hypothesis was tested in two follow-up experiments. 

In the first experiment the same experimental manipulation was used that had led to an 

increase in reportable sequence knowledge earlier: Four transfer blocks were interpolated 

during  the  training  phase  that  contained  an  alternate  systematic  sequence.  The  only 

procedural change was that on transfer blocks, participants now had to perform a demanding 

secondary task in addition to the SRT task. With the secondary task we intended to prevent 

the search for an underlying regularity on transfer blocks. The second experiment served as 

a  control  condition  to  ensure that  the  effect  of  the  secondary task  was  confined  to  the 

transfer blocks. The training phase included the same four dual-task transfer blocks, with the 

only  difference  that  response  locations  were  structured  randomly.  Crucially,  in  both 

experiments  an  intentional  search  that  would  lead  to  discovery  of  a  regularity  was  not 

possible on transfer blocks. We therefore expected to observe the same amount of reportable 

sequence knowledge that we obtained in the original control condition. This prediction was 

born out by the data.

In summary,  the pattern of results  in a series of experiments with a color-matching 

version of the SRT task confirmed the central prediction of the unexpected-event hypothesis. 

Unexpected disruptions of the learning process with the SRT task increase the availability of 

reportable sequence knowledge—provided that the search for cause of the unexpected event 

is not obstructed.

5 On the Function of Conscious Sequence Knowledge
A psychological taxonomy derives its validity from that fact that its taxa are associated 

with qualitatively different and psychologically interesting behaviors. This, of course, is also 

true  for  the  distinction  between conscious  sequence  knowledge,  nonconscious  sequence 

knowledge,  and  additional  conscious  effects  of  learning  such  as  feelings  of  fluency  or 

familiarity. Rünger; Nagy, and Frensch (in press) explore the function of conscious sequence 

knowledge in the context of a recognition test: The predictions of a single-system model 

about  the  relationship  between  RT  priming  and  recognition  are  contrasted  with  the 

predictions of a competing dual-process model.
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According  to  Shanks  and  collaborators  (Shanks,  2005;  Shanks  & Perruchet,  2002; 

Shanks et al., 2003) RT savings to systematic response locations and participants' ability to 

discriminate learned and new sequences in a recognition test are expressions of the same 

underlying memory representations that were generated during the training phase with the 

SRT task.  A computational  model  is  presented  according  to  which  individual  RTs  and 

recognition judgments can be decomposed into a linear combination of a memory strength 

variable  and  an  error  term.  The  memory  strength  variable,  referred  to  as  “familiarity”, 

reflects  the  degree to  which  a  participant  has  learned a recognition  test  sequence.  Let's 

assume  that  a  participant  first  executes  a  test  sequence  and  then  makes  a  recognition 

judgment about the sequence. In the Shanks model the speed of executing the test sequence 

and the subsequent recognition judgment are both determined by the same familiarity value. 

In addition, each type of response is associated with a unique error component.

The following predictions can be derived from the Shanks model. First, RT priming 

scores  (i.e.,  RT differences  to  old  and new test  sequences)  and  recognition  scores  (i.e., 

differences in recognition judgments to old and new sequences) should be correlated across 

participants because both measures express the identical difference in familiarity for old and 

new test sequences. Second, if measurement error is statistically controlled for, RT priming 

and recognition should be perfectly correlated because the difference in familiarity between 

old and new sequences is the only systematic determinant of the correlation.

The alternative dual-process model belongs to a class of models that posit two distinct 

cognitive processes, often labeled  familiarity1 and  recollection, as the basis of recognition 

judgments (e.g., Atkinson & Juola, 1994; Jacoby, 1991; Mandler, 1980; Yonelinas, 1994). 

Like Buchner and colleagues (1997) we assume that participants can derive a recognition 

judgment about a test sequence from feelings of perceptual-motor fluency: A sequence that 

can be performed fluently appears familiar and thus receives an “old” rating. When using 

the fluency heuristic, a participant who exhibits large differences in RT to old and new test 

sequences should also discriminate well between old and new sequences in her recognition 

judgments. Thus, RT priming and recognition can be expected to correlate. However, the 

correlation does not reflect a common underlying knowledge base as assumed in the Shanks 

model, but a causal effect of processing fluency, indexed by RT priming, on recognition. 

1 Note  that  in  the  literature  on  recognition  memory,  familiarity denotes  a  conscious  feeling  of  having 
encountered a particular stimulus in the past, whereas in the Shanks model, familiarity refers to the strength of 
memory representations.
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We further endorse Buchner et al.'s (1997) position that participants can supplement the 

fluency  heuristic  with  a  recollective  process.  Specifically,  a  participant  with  conscious 

sequence knowledge can generate a recognition judgment by consciously matching the test 

sequences  against  the  recollected  training  sequence.  This  conscious  comparison  can 

contribute  to  recognition  performance  independently  of  the  fluency  heuristic.  However, 

consciously  comparing  sequence  representations  requires  time  and  mental  effort.  We 

therefore  predicted  that  when  recognition  judgments  have  to  be  made  quickly  and 

intuitively, a conscious comparison is no longer feasible and the rapidly available fluency 

heuristic alone determines recognition judgments. In this case, recognition and RT priming 

should be perfectly correlated after controlling for measurement error. By contrast, when a 

participant is asked to deliberate her recognition decisions, we expected RT priming and 

recognition to dissociate. In this case, participants' verbal knowledge scores are assumed to 

predict  recognition  independently  of  RT  priming  because  the  availability  of  conscious 

sequence  knowledge  is  the  prerequisite  for  the  postulated  comparison  between  test 

sequences and the training sequence.

In order to test the predictions of the two models, we conducted an experiment with the 

color-matching  SRT  task.  Participants  performed  ten  blocks  of  trials  that  contained  a 

continuously repeating response sequence. After the training phase we assessed the available 

reportable sequence knowledge and administered a recognition test under both speed and 

accuracy conditions. In the speed condition, a response deadline forced participants to make 

recognition judgments quickly and intuitively. In the accuracy condition, participants were 

required to carefully deliberate their decisions. RT priming scores were derived from the 

speed of executing old and new test sequences.

Recognition and RT priming scores were submitted to a confirmatory factor analysis 

(CFA). The CFA consists of two components—a measurement model and a structural model. 

The purpose of  the measurement  model  is  separate  true  differences  in  RT priming and 

recognition  from  measurement  error.  The  structural  model,  in  turn,  represents  the 

characteristics of true RT priming and recognition—means, standard deviations and, most 

importantly, the correlation between true priming and recognition. 

The  model  was  fit  separately  to  data  from  the  accuracy  condition  and  the  speed 

condition. In the speed condition we obtained a correlation between true RT priming and 

recognition  that  did  not  deviate  significantly  from  unity.  By  contrast,  in  the  accuracy 

condition  the  correlation  was  estimated  at  .79,  and  fixing  the  correlation  to  1  led  to 
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significant decrease in model fit. In order to account for the attenuated correlation in the 

accuracy condition, reportable sequence knowledge was added to the structural model as a 

second predictor of recognition performance. We found that both RT priming and reportable 

knowledge had a significant effect on recognition in the extended structural model.

To summarize: In the speed condition true RT priming and recognition were perfectly 

correlated. This finding is consistent with both the Shanks model and the competing dual-

process model. The attenuated correlation in the accuracy condition, however, violates the 

prediction  of  the  Shanks  model  and  points  to  an  additional  influence  on  recognition 

judgments.  In  line with the assumptions  of the dual-process  model,  reportable sequence 

knowledge predicted recognition performance independently of RT priming. This finding 

suggests a function of conscious sequence knowledge: It enables an individual to reason 

about the structural correspondence between the test sequences and the training sequence 

(cf.  Block,  1995).  Without  conscious  knowledge  about  the  structure  of  the  training 

sequence, participants need to rely on their intuitions about the test sequences. In this case, 

decision are presumably based on evoked feelings of fluency and familiarity.

6 Summary and Outlook
How  can  we  distinguish  between  conscious  and  nonconscious  cognition?  Most 

researchers  agree  that  cognitive  processes  themselves  are  inaccessible  to  consciousness. 

Nobody knows from direct experience how the brain manages to produce the name that 

belongs to the person on the cover of the latest issue of People magazine. By contrast, the 

epistemic status of representations that are produced and shaped by cognitive processes is a 

moot issue. The standard approach to the problem in the implicit learning literature is to 

contrast performance on an indirect test of learning with performance on direct tests such as 

recognition or generate tasks. A prominent view is that as long as a direct test indicates 

knowledge, learning has to be considered conscious (Shanks, 2005; see also Holender, 1986, 

and Holender & Duscherer, 2004). On the other hand, several authors have pointed out that 

direct  tests  may  not  be  exclusively  sensitive  to  conscious  knowledge,  that  is,  they  are 

potentially contaminated by the effects of nonconscious knowledge (e.g., Berry & Dienes, 

1993; Cohen & Curren, 1993; cf. Reingold & Merikle, 1988, 1990). If this is true, then 

above-chance  performance on  a  direct  test  would  be  possible  in  the  absence  conscious 

knowledge.

Who is wrong and who is right? The answer depends on the theory of consciousness 

endorsed. Unfortunately, few attempts have been made in the implicit learning literature to 
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anchor research in conceptual frameworks of consciousness. One exception from the rule is 

the  work  of  Dienes  and  collaborators  (e.g.,  Dienes  &  Perner,  1999,  2002).  Adopting 

Rosenthal's (1986) higher-order thought theory, Dienes and Perner delineate various ways in 

which knowledge can implicit. Importantly, the (in-) adequacy of the available tests for the 

assessment of conscious and nonconscious knowledge follows directly from their theoretical 

framework. 

Rünger and Frensch (2008a) conceptualize consciousness in terms of global availability 

to  cognitive  processes  and  conclude  that  verbal  reports  provide  a  sensitive  and  valid 

measure of conscious sequence knowledge. We further demonstrate that the observation of 

unexpected events can precipitate the generation of conscious sequence knowledge with the 

SRT task (Rünger & Frensch, 2008b). Finally, we explore the functional role of conscious 

sequence  knowledge in  the  context  of  a  recognition  test  (Rünger,  Nagy,  & Frensch,  in 

press). The finding that reportable sequence knowledge predicts recognition performance 

when participants are required to deliberate their decisions lends credence to the view that 

conscious propositional knowledge provides the epistemic basis for reasoned as opposed to 

intuitive decisions. 

Much remains to be understood about the processes that generate conscious knowledge 

in incidental learning situation. In particular, unexpected events need to be operationalized 

in such a way that their occurrence during task performance can be measured directly, and 

the search process that is  assumed to generate conscious structural knowledge has to be 

characterized  in  considerably  greater  detail.  Finally,  the  function  of  conscious  sequence 

knowledge needs to be explored in task contexts other than recognition tests in order to 

validate  our  distinction  between  the  different  conscious  and  nonconscious  effects  of 

incidental sequence learning.
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